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Crystals are like people, it is the defects in them which tend to make them interesting.

Colin Humphreys

Peut-être trouvera t-on que c’est de cette figure des grains et de leur arrangement que

dépendant la ductilité des Metaux et celles de quelques autre matiéres.

Reaumur, 1724

Wer die Geometrie begreift vermag in dieser Welt alles zu verstehen

Gallileo Gallilei
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T, Ṫ temperature, cooling/heating rate

kB Boltzmann constant 1.38064852× 10−23JK−1

Na Avogardo constant 6, 022140857 · 1023mol−1

R Ideal Gas constant kB ·Na = 8, 3144598JK−1mol .

ωA mean atomic attempt frequency

vs speed of Sound ≈√G/ρ ≈ 1000 m s−1 for steel (transversal wave)

L, l0 general mean free path, e.g. for dislocation motion

m Schmidt factor or strain rate sensitivity

κ lattice curvature or gradient energy coefficient

η order parameter of phase transformation

λi eigenvalues of specific matrix

λ, λi Lagrange multipliers (=plastic multipliers in plasticity)

γsf stacking fault energy Jm−2

wsf separation width of stacking fault partials



Symbols xx

σie general interface energy

σbcc coherent twin boundary energy ≈ 0.2 Jm−2

σhcp interface energy of stacking fault ≈ 0.0115 Jm−2

ξ total phase fraction of martensite ξ =
∑

i ξ
i

ϕ1,Φ, ϕ2 Euler angles of Bunge’s convention (z, x′, z′′)

θ general angle (e.g. Lode angle)

θCP smallest angle between {111}γ and {110}α
θKS smallest angle between 〈110〉γ and 〈111〉α
θHP angle between lath habit plane and close packed direction

θILS angle between block habit plane and close packed direction

θRot rotation angle of rotation matrix: arccos(tr(R)− 1)/2)

I1, I2, I3, invariants of the Cauchy stress tensor σ
˜

σI , σII , σIII principal stresses of σ
˜

J2, J3 2.,3. invariants of the stress deviator (mechanical invariants)

J determinant of mapping (Jacobian), here det(F )

σMises, σeq equivalent Mises stress, (3J2)1/2 = (3/2 s
˜
: s
˜
)1/2

σy yield strength of macroscopic tensile test (= σeq)

σmean mean stress (negative pressure), σmean = −p = 1/3 tr(σ
˜
)

τ general shear stress

τc critically resolved shear stress (CRSS) for slip or twinning

εeq, p equivalent plastic strain

γ0, ε0 reference strain rate [s−1]

ρgnd geometrically necessary dislocation density

μ shear Modulus or twin variant fraction (often also chemical potential)

K compression Modulus

ν Poisson’s ratio

f yield surface / yield function / load-function

Vectors

X position vector in undeformed reference configuration

x x = x(X, t) position vector in deformed current configuration

u, ui vector of displacements



Symbols xxi

ai lattice vectors (=conventional basis for cubic lattices)

b Burgers vector of dislocation

bp Burgers vector of partial dislocation

s, si slip direction || b for edge and ⊥ b for screw dislocation segment

m, mi slip plane normal (commonly given in miller indices)

ξ, ξi dislocation line direction

t lattice translation vector

K1,K2,η1,η2 twinning elements: twin plane normals, twinning shear directions

h geometrically / "macroscopically" invariant plane (habit-plane) normal

d direction of shape deformation

k direction of lath (needle) long dimension

n normal vector of local terrace plane of an irrational interface

v arbitrary vector lying in an (averaged) interface plane (probe vector)

ω Frank-Rodriguez vector

ξi phase (volume) fraction of individual martensite symmetry variant i

τ i resolved shear stress on slip system i

γi vector of accumulated slips

αi, thermodynamic fluxes

Ki thermodynamic forces

Ki
c transformation threshold or hardening contributions

Second order tensors and matrices

I identity matrix, δij (Kronecker delta)

AA, AM assembly of lattice vectors into a matrix

gij , G metric tensor of crystal lattice

CAM , P lattice correspondence

F , F
˜

total deformation gradient F = ∂x(X,t)
∂X

F e, F p, F tr elastic, plastic, transformation part of deformation gradient

C Cauchy Green tensor (F TF )

U symmetric positive definite matrix

(pure stretch in an orthonormal basis)

US structural stretch tensor; for steels the Bain strain B



Symbols xxii

R, R [e, θ] rotation matrix, axis angle pair representation

S (simple) shear matrix

σ
˜

total Cauchy stress tensor in a material point

p
˜

hydrostatic part of Cauchy stress tensor, 1/3 tr(σ
˜
)I

s
˜

stress deviator, dev(σ
˜
) = σ

˜
− p

˜

n
˜

derivative of macroscopic load/yield function w.r.t σ
˜

X
˜

i generalized force/stress, e.g backstress

α
˜
i generalized flux/strain, e.g. conjugate to back stress

α
˜
, αij dislocation density tensor, or thermal expansion tensor

β
˜

i phenomenological strain variable

ε
˜
te = ε

˜
th + ε

˜
el thermoelastic (reversible), elastic, thermal strains

ε
˜
p, ε
˜
vp, γij (visco-) plastic strain (in the limiting case of negligibly

small rate dependence ε
˜
p ≈ ε

˜
vp)

ε
˜
∗, ε

˜
tr stress free (geometrical view) transformation- or eigenstrain

ε
˜
trip = ε

˜
tr + ε

˜
p total transformation induced plasticity strain

ε
˜
cI coherently stressed / constrained eigenstrain of Eshelby inclusion

ε
˜
(c) compositional eigenstrain

m
˜

i Schmidt tensor of slip system i

χ
˜
, χij generalized material gradient

hij , aij interaction matrix between slip systems

hsvij interaction matrix between martensite variants and slip systems

hvvij interaction matrix between martensite variants

Σ
˜

global homogenized stress tensor

E
˜
,E
˜
e,E

˜
p... Either global homogenized strain tensors or specifically

denoting large deformation (Green-Lagrange) strains

Third order tensors

εijk permutation- / Levi-Civita-symbol ei · (ej × ek)



Symbols xxiii

Fourth order tensors

I
˜̃
=

∂Aij

∂Akl
= δikδjl fourth order identity tensor

I
˜̃
sym 1/2 (δikδjl + δilδjk) components of I

˜̃
acting on symmetrical tensors

I
˜̃
skw 1/2 (δikδjl − δilδjk) fourth order asymmetric identity tensor

K
˜̃

= 1/3 δijδkl spherical/isotropic projection tensor

J
˜̃
= I

˜̃
skw −K

˜̃
deviatoric projection tensor

C
˜̃
= Cijkl elasticity (stiffness) tensor

M
˜̃

= Mijkl = C
˜̃
−1 compliance tensor

S
˜̃
= Sijkl Eshelby tensor

D
˜̃

Dual to Eshelby tensor



Abstract

Highly dislocated lath martensite is an essential microstructure component of many multi-

phase advanced high-strength steels (AHSS) such as dual-phase-, transformation / twinning

induced plasticity and precipitation hardened steels. In the last decade novel experimental

microstructure characterisation methods based on lattice diffraction phenomena enabled

to obtain a clearer picture of the overall microstructural state of lath martensite, revealing

that under certain circumstances it forms a hierarchical microstructural arrangement where

the smallest units (laths) group to definite blocks that again assemble definite packets. Be-

side this general trend, the exact microstructure formation during transformation is highly

sensitive on the materials processing history as well as temperature rates and external

loadings during transformation. Modelling of the transformation necessitates a multi-scale

description and a multitude of experimental data for the model verification. Since transfor-

mation induced plasticity results from accommodation processes of the highly anisotropic

transformation strains at the microscale, the morphological aspects, i.e. the crystallo-

graphic variants related to the lattice change of the transformation must be taken into

account. This work is motivated by experimental data obtained from electron backscatter-

ing diffraction measurements necessary to calibrate stress sensitive constitutive relations

formulated at the microscale for their use in finite element models. In order to be able

to accomplish such a goal (i) there must be a definite link between the experimental data

and variables of the model and (ii) the model must comprise microstructurally and mi-

cromechanics motivated relations. However, for none of these two problems a generally

accepted strategy exists up to date. Based on the requirements for the microstructure

of a thermally cycled and mechanically loaded maraging steel forming a lath martensitic

microstructure, first a unification of crystal plasticity and the crystallographic theory of

martensite formation is proposed for point (i). For point (ii) phenomenological scaling

relations for non-local effects as well as constitutive laws for the stress dependence of the

transformation, dislocation plasticity, nucleation and coupling effects fitting this framework

are advised.
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Résumé

La martensite à haut degré des dislocation présentant une structure en lattes est un com-

posant essentiel de la microstructure de nombreux aciers multi-phase à très haute résistance

dont propriétés sont à côté d’autres facteurs, tels que le durcissement par précipitation,

pour une large part en raison du effet d’écrouissage induit par une changement de phase.

Dans la dernière décennie, de nouvelles méthodes expérimentales de caractérisation mi-

crostructurale, basées sur des phénomènes de diffraction en réseau cristallin, on a décou-

vert que dans certaines circonstances, la martensite forme un arrangement microstructural

hiérarchique, où les plus petites unités (des lattes) se regroupent en blocs qui, à leur tour,

s’assemblent en paquets définis. En plus de cette tendance générale, la structure défini-

tive de la microstructure au cours de la transformation est très sensible au traitement des

matériaux avant la transformation ainsi qu’aux vitesses de changement température et de

contraintes externes pendant la transformation. La modélisation de la transformation né-

cessite une description à plusieurs échelles et une variété de données expérimentales pour la

vérification du modèle. Puisque la plasticité induite par la transformation résulte des pro-

cessus d’accommodation des souches de transformation hautement anisotropes à l’échelle

microscopique, les aspects morphologiques, c’est-à-dire les variations cristallographiques

liées au changement de réseau pendant la transformation, doivent être pris en compte à

cette échelle. Le but de ce travail est d’utiliser des données provenant d’expériences de

rétrodiffusion électronique pour calibrer différents modèles théoriques. Deux aspects sont

essentiels pour la mise en œuvre : (i) Il doit y avoir un lien précis entre les données ex-

périmentales et les variables du modèle et (ii) le modèle doit être basé sur les relations

microstructurales (géométriques et micromécaniques). A ce jour, il n’existe pas encore de

stratégie générale pour ces deux points. A partie d’un modèle de microstructure d’un acier

maraging formant une microstructure martensitique à lattes, thermo-cyclé et chargé mé-

caniquement, on propose d’abord une unification de la plasticité cristalline et de la théorie

cristallographique de la martensite, ce qui résout le point (i). Pour le point (ii), les relations

de transition d’échelle phénoménologiques pour tenir compte du effet non local caractéris-

tique des contraintes et des lois de comportement pour la dépendance à l’intensité de la

transformation, la plasticité de dislocation, la nucléation et les effets de couplage adaptés

à ce cadre sont développés.

xxv



Zusammenfassung

Lattenmartensit mit hoher Versetzungsdichte ist ein wichtiger Gefügebestandteil vieler

hochfester mehrphasiger Stahlkonzepte, die durch einen hohen Grad transformationsin-

duzierter Plastizität und andere Mechanismen wie Ausscheidungshärtung ihre Festigkeit

steigern. Durch neuartige experimentelle Charakterisierungsmethoden basierend auf Elek-

tronenrückstreubeugung am Kristallgitter fand man im letzten Jahrzehnt heraus, dass

Martensit unter bestimmten Umständen eine Mikrostruktur bildet, die einer gewissen hi-

erarchischen Struktur folgt in welcher ähnlich orientierte Martensitlatten zu definierten

Blöcken und diese wiederum zu definierten Paketen zusammengefasst werden können.

Neben diesem generellen Trend ist die Transformation höchst sensitiv bezüglich der Ver-

fahrensvorgeschichte sowie der Temperaturrate und externer Belastungen während der

Umwandlung. Die Modellierung der Transformation erfordert eine multi-skalige Beschrei-

bung und vielfältige experimentelle Daten zur Modellverifikation. Da der Effekt der trans-

formationsinduzierten Plastizität auf der Akkommodation der stark anisotropen Dehnun-

gen zufolge der Phasentransformation auf der Mikroskala basiert, müssen charakteristische

morphologische Aspekte auf dieser Skala berücksichtigt werden. Die Motivation dieser Ar-

beit ergibt sich daraus Daten aus Experimenten der Elektronenrückstreubeugung für die

Kalibrierung verschiedener theoretischer Modelle zu verwenden. Für die Umsetzung sind

zwei Aspekte entscheidend: (i) Es muss eine eindeutige Beziehung zwischen den experi-

mentellen Daten und den Variablen des Modells bestehen und (ii) das Modell muss auf

geometrischen und mikromechanischen Beziehungen der Mikrostruktur basieren. Allerd-

ings existiert für keinen der beiden Punkte eine allgemein akzeptierte Strategie. Ausgehend

von den Anforderungen der Mikrostruktur eines maraging Stahls, die durch wiederholte

Umwandlung nach mehreren thermischen Zyklen by gleichzeitiger mechanischer Belastung

entstanden ist, wird zunächst eine generalisierte Theorie der martensitischen Umwandlung

vorgeschlagen, die ein Bindeglied für (i) darstellt. Im Bezug auf (ii) wurden phänome-

nologische Skalenübergangsregeln zur Berücksichtigung nicht-lokaler Einflüsse und Konsti-

tutivgesetze für die Spannungsabhängigkeit der Transformation, Versetzungsentwicklung,

Nukleation und Kopplungseffekte zwischen ihnen verglichen und weiterentwickelt.
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Chapter 1

Motivation and Scope of the Thesis

Lath martensite is one of the main constituents in many advanced steel grades with

widespread applications. In the last decade the investigation of its microstructure experi-

enced a scientific renaissance, which has two reasons. First, orientation imaging microscopy

(OIM) devices became affordable for institutions all over the world and accompanying soft-

ware became more user friendly, which triggered a plentitude of microstructure investiga-

tions. Particularly, the influence of diverse processes on the final microstructure is still

investigated. Second, new methods to evaluate OIM data were developed for studying in

particular internal boundaries / interfaces as well as lattice strains and their gradients.

Nowadays the scientific trend strongly develops towards learning algorithms (machine /

reinforcement learning, neuronal networks etc.) and it is just a matter of time until OIM

data will be used to calibrate industrial processes. On the other hand, deterministic, semi-

empirical material modelling has already proven itself a valuable tool for describing the

behavior of steels in certain cases. Furthermore, finite element models, as treated in this

thesis, are able to account for the influence of internal and external stresses, which are

known to have a substantial influence on the microstructural evolution, especially when

a phase transformation is involved. In the author’s opinion one of the future challenges

will be to combine both approaches. For instance finite element models could be used to

generate data relatable to the information obtained by OIM, providing a stronger statistical

basis neuronal networks can be trained with.

1
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Alternatively, the OIM data can be used for the calibration of micromechanically moti-

vated constitutive models. While this has already been done in the case of plastic texture

development in the framework of crystal plasticity a comprehensive modelling approach

of the martensitic transformation texture is still lacking. While in principle, models with

a large number of model parameters allow to describe complex material behavior under

various conditions, the challenge in the use of a wide variety of (possibly interdependent)

parameters lies in the validation of the correct response of the model when one parameter is

altered. From the physical point of view this means that the effect of any of the parameters

should be verifiable by an experimentally observed behavior.

Especially models considering the coupling between the phase transformation and plasticity

often need a considerable amount of material parameters. Therefore, at least for the plastic

deformation of the austenite a model with many parameters motivated from dislocation

dynamics simulations, but without any fitting parameters is considered. This is of interest

for determining the role of each of the respective mechanisms, i.e. the transformation and

classical plasticity in TRIP steels. Such investigations are valuable, because they cannot

be carried out experimentally.

Macroscopic constitutive laws have been successfully applied to estimate macroscopic

stresses due to the transformation, but their internal variables generally do not relate do

microstructural characteristics. While macroscopic models are usually calibrated against

macroscopic stress strain curves under various conditions there are only a few micromechan-

ical tests to calibrate micromechanical models. Furthermore, as opposed to macroscopic

data, the mechanical behavior of such tests usually strongly varies due to size effects not

making it statistically representative.

The aim of this thesis is to bring together aspects of the martensitic transformation that

will eventually enable to utilise orientation imaging microscopy data of highly dislocated

martensite microstructures in steels for the calibration of micromechanically motivated

finite element constitutive frameworks.

Contrary to the constitutive framework for plastic deformation due to dislocation motion,

take Orowan’s equation for dislocation bowing (Equation 2.3) as an example, there are

very few fundamental equations for martensite that have a mechanistic character. This
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manifests itself in the fact that micromechanical approaches to the formation of martensite

are more the exception than the rule.

The solid state phase transformation community seems to be split into groups following

either purely diffusive or displacive theories for phase transformations in steels. One sig-

nificant distinction between the two is that mainly the former has been applied to alloy de-

sign. This is due to the fact that diffusional transformations are closer to thermodynamical

equilibrium (although still quite far away) for which generally accepted models exist. How-

ever, from the point of view of tuning material properties by specialised microstructures,

the catch-phrase is "microstructure property relationship", material processing routes far

away from equilibrium are more suitable.

The major point of this work is to review and extend the current understanding of lath

martensite from the point of view of its experimental characterization and its crystallo-

graphic description to eventually set up a constitutive framework general enough to account

for most effects related to thermomechanical processing. Considering a description start-

ing at the lowest scale incorporating nanoscale parameters such as the Burgers vector of

interfacial dislocations seems to be necessary as very recently emphasised by Levitas 2018,

who even designates them as as a new dimension in a "phase diagram". For that reason,

the key physical mechanisms of nucleation and elasto-plastic accommodation on the lowest

level must be well-understood under various (processing) conditions.

The thesis is organized as follows: First, experimental and specific numerical works dealing

with the topic are briefly reviewed. In chapter 2 a general introduction to the several

classifications of the phase transformation phenomenon in steels is provided. Also a general

overview of common steel types and processing routes is given and modelling strategies are

discussed emphasising the multi scale nature of the problem.

Then in chapter 3 crystallographic aspects related to martensite are treated. Since a major

characteristic of lath martensite is its strong coupling with plasticity, the nomenclature on

defects like dislocations, stacking faults and twins is briefly introduced. In this chapter

also the theoretical ground is laid for the understanding of how martensite is characterised

in terms of OIM data and which problems are still insufficiently explained. Then crystallo-

graphic theories of martensite in terms of geometrical continuum relations as well as from

the point of view of interface kinematics are reviewed. Emphasis is laid on the interplay

between crystallographic relations and the three dimensional morphology of martensite
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domains. Particularly, a refined set of possible "boundary" glide systems based on the

structured arrangement of laths to sub-blocks and blocks is discussed based on all forego-

ing considerations.

Afterwards, the existing concepts are unified and extended in a manner of most generality.

The proposed framework combines the kinematics of crystal plasticity, and the crystallo-

graphic theories of martensite and is formulated as an optimization problem with a variable

amount of constraints that can be motivated based on experimental findings. More pre-

cisely a theory of blocks built of laths is presented. This is the main result of the thesis in

terms of pushing the boundaries of the current knowledge.

In chapter 4 aspects of homogenization and localization as well as inclusion theory are

provided. Even though lath martensite forms strongly coupled with dislocation plasticity

its formation is still highly influenced by non-local strain energy contributions. The issue

is as always in multi-scale problems the trade-off between enough detail to depict the

heterogeneity due to nucleation and interfaces dictating the microstructural evolution,

while concurrently approaching as closely as possible the scale of a representative volume

element. The idea of (on average) fitting the non-linear evolution of stresses during the

phase transformation in terms of a modified phenomenological scale transition rule termed

β-rule is finally adopted to fit the hierarchical microstructure of lath martensite.

chapter 5 provides information on the experimental characterisation on the mechanical be-

havior and the kinetics of martensite. Also the effect of thermal transformation cycling on

the microstructure of a precipitation hardenable maraging steel exhibiting the phenomenon

of transformation induced plasticity upon moderate cooling rates is studied using orienta-

tion imaging microscopy. On the one hand statistical data characterising martensite over

many grains is discussed. On the other hand the ability to quantitatively measure the

finest possible features such as dislocation cells lying on the edge of the resolution of the

electron backscattering diffraction method is presented.

The last chapter is devoted to the finite element modelling of martensite. General frame-

works of implementation as well as kinematic and thermodynamic approaches for marten-

site are reviewed in order to obtain a full understanding of the variety of this topic. Plas-

ticity is discussed in terms of size effects, hardening, flow and yield formulations. Finally,

constitutive relations for martensite are reviewed. Essential parts a micromechanical model
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incorporating crystallographic variants should comprise are discussed. Possibilities for ex-

ploiting the geometrical information obtained in the crystallographic study to formulate

constitutive equations at the single crystal level are presented. For parameter fitting on

OIM data currently no general framework exists and given the complexity of the inves-

tigated microstructure at hand finding such a framework would go beyond the scope of

this work. However, essential groundwork is laid throughout the work to prospectively

tackle this problem. A full model should eventually represent the spatial and statistical

distribution of crystallographic variant fractions resembling the hierarchical assembly of

lath martensitic steels as characterised by EBSD methods.

In this work no attempt is made to set up a full model incorporating all the features

that influence the stabilisation, nucleation, growth, accommodation and homogenization.

However, key aspects such a model should contain are elaborated which will serve as an

essential input for future modelling approaches.

1.1 Hierarchical Microstructure of Highly Dislocated Lath

Martensite

Only in recent years electron back scattering diffraction (EBSD) methods with a resolution

just high enough to contrast some finer features of the microstructure of dislocated lath

martensite while recording several grains became generally available. Multiple studies then

revealed that dislocated lath martensite arranges in a three level hierarchical microstructure

pattern within grains, as sketched in Figure 1.1.

1. First, bundles of laths form blocks (regions of low crystallographic misorientation).

Either bi-variant blocks (consisting of sub-blocks as in Figure 1.2) or single variant

blocks.

2. Second, blocks, separated by irregular high-angle boundaries, stack to packets, i.e. a

lath group with the same plane parallel relationship with the close packed plane in

austenite namely {111}γ || {011}α′ (4 {111}γ CP groups.

3. Third, packets partition a grain.
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Figure 1.1: Redraw of highly idealised schematic commonly found in the literature,
showing the hierarchical microstructure of dislocated lath martensite. Laths form (com-
posite) blocks (bi-variant or single variant), blocks stack to packets and packets partition
a grain. The variant notation (pairings) is that of Morito et al. 2003. A broader classifi-

cation is found in Figure 1.3.

Morito et al. 2003; Morito et al. 2006a use the term sub-blocks for blocks which are fully

surrounded by another block (i.e. they form an inclusion in the other block). Their bound-

aries are hence sub-block boundaries. In the case of bi-variant blocks often, also the term

sub-units is used for a small cluster (mainly) of single laths. However some authors refer

to sub-units as sub-blocks. A consequence of this organized structure is for example that

"effective grain sizes" for strength, plasticity and failure (crack propagation) are substan-

tially different Guo et al. 2004; Galindo-Nava et al. 2015.

Since martensite blocks are separated by high angle grain boundaries restricting slip trans-

mission, the effective grain size in martensitic microstructures is usually defined as the

block size.

A comparative study between block boundary and sub-block boundary strengthening by

means of micro tensile testing has been carried out by Du et al. 2016a; Shibata et al. 2010;

Mine et al. 2013 and complemented by crystal plasticity simulations of individual laths by

Mine et al. 2013; Kwak et al. 2016.

In general it might be distinguished between mild / plain (Morito et al. 2003) carbon steels

and alloy steels (Morito et al. 2006a; Kitahara et al. 2006). In plain / mild carbon steels

(0.0026-0.61%) generally the size of the blocks and packets decreases with increasing C

content. Between 0.0026 -0.38%C, packets consist of well developed parallel blocks forming
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in pairs (two orientation / correspondence variants) with definite orientation relations (the

same Bain strain but two specific KS orientations, hence also bi-variant blocks), showing

a certain misorientation (namely the lowest possible - theoretically 10.5°). There are three

blocks with different orientations in a packet (all three Bain strains). Especially, for carbon

free steels and low isothermal transformation temperatures or continuous cooling paths this

is the preferred microstructure. The lath structure observed via TEM of a high alloy steel

similar in alloy design to the MarvalX12 (model material used in this work) is shown in

Figure 1.2.

The 2 variants have very regular / straight sub-block boundaries (habit planes of the

lath boundaries) of type 1̄65)α′ and (165)α′ , corresponding approximately to (575)γ and

(755)γ in the case of a Kurdjumov–Sachs orientation relation (see section 3.4). Due to

their regularity and the fact that fine austenite films may be retained at these boundaries

block boundary sliding has been studied by Du et al. 2016b using a micromechanical testing

device. Maresca 2015 incorporated this behavior in a crystal plasticity modelling approach.

In carbon alloy >0.61%C, packets consist of fine blocks whose width is a few μm. Each

block consists of laths of a single orientation / correspondence variant and blocks of all the

six variants are distributed randomly in the packet. The higher the carbon content gets

the less regular / straight the block boundaries become.

A possible interpretation of blocks and packets becoming is as follows: In low carbon alloys,

laths in a large block are formed by autocatalysis and significant plastic accommodation

occurs in the austenite matrix. However, the higher the carbon content gets, the more dif-

ficult it becomes to accommodate the strain of martensite in the austenite matrix, because

austenite becomes harder (called composite effect in Nagayama et al. 2001, solid solution

hardening of C and work hardening due to TRIP) and it must be kept in mind that C

stabilizes the austenite leading to lower lower Ms temperatures. For self-accommodation,

it is necessary that blocks and packets size decreases and all variants in a packet appear,

resulting in the formation of blocks and packets with small size and random distribution

of variants.

Furuhara et al. 2006; Morito et al. 2010 studied the carbon and temperature dependency

of the hierarchical structure for Fe-9Ni-(0.15-0.5)C and classified it as shown in Figure 1.3.

The packet size and block thickness decreases with increasing cooling rate, although the
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Figure 1.2: Lath structure of 18Cr-8Co-5Mo, see Table 1.1 Morito et al. 2006a. large
block made up of sub-blocks V1 and V4 (alternating black and white contrast). The sub-
block boundaries are marked as dashed red lines. Note the difference in the lath boundary
directions in V1 and V4. The habit planes were identified as (165)α and (165)α ≈ (575)γ

and (775)γ for V1 and V4, respectively.

sub-block thickness does not change. This trend has also been observed in upper Bai-

nite Lambert-Perlade et al. 2004. The dependence of variant-pairings on temperature and

carbon content has been investigated in Stormvinter et al. 2012; Takayama et al. 2012.

Also the prior austenite grain size (PAGS) affects the maximum plate or lath size, i.e. the

larger the austenite size the bigger the maximum plate or lath size. However Morito et al.

2006b found that the lath size is practically independent of the prior-austenite grain size.

This suggests that if the formation of blocks is well understood material models may attain

a certain universality / maturity.

Similarly, the average number of packets has been shown to be proportional to the PAGS

Morito et al. 2006a; Morito et al. 2005; Morito et al. 2013. Particularly, Morito et al. 2005

reported that not all blocks formed in Fe-0.2C-1.5Mn-0.15V when the prior-austenite grain

size is lower than ≈ 5–10 μm. This is a crucial point, since many recent investigations on

the hierarchical structure found in the literature are reported for grain sizes much larger
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Figure 1.3: Crystallographic characteristics of upper bainite and lath martensite sub-
structures in Fe-9Ni-(0.15-0.5)C alloys according to Furuhara et al. 2006

than in our specimen of the MarvalX12, see Table 1.1. Note, however, that these large grain

sizes studied in the literature are generally to large, to be favourable in typical industrial

applications An example of the situation in the MarvalX12 for a small grain size is given

in 1.4.

Note, that it is not only the PAG that has an influence, but also the plastic heterogenity of

the austenite. Their effect is a similar, namely they both influence the degree of facilitated

nucleation (cf. strain induced transformation). combined study of PAG and austenite

heterogenity for a 15Cr-9Mn–Ni–Cu stainless steel has been carried out by Kisko et al.

2013. To sum up, all recrystallization, recovery and grain growth at high temperatures

influence the later nucleation behavior of martensite.

Recently, 3D EBSD reconstructions of stacked images obtained by removing some surface

with a field ion beam between EBSD recordings have been realized by Morito and co-

workers. This way they studied the three-dimensional morphology of sub-blocks, see Morito

et al. 2009 as well as whole packets, see Morito et al. 2013 packets. For the packets a

higher irregularity for the smaller grain size can be observed, however no information on

the history of the specimen before annealing is given.
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Morsdorf et al. 2015; Morsdorf et al. 2016 emphasised the importance of transformation

sequence and multitude of plasticity mechanisms. The martensite domains formed in the

early stage of transformation are much coarser, have a relatively low dislocation density and

are subjected to a stronger autotempering during the quenching process in comparison to

later transforming thinner laths with higher dislocation densities. The stronger autotem-

pering process is explained by the evolving stress state of the austenite and martensite,

where the stress state at later stages of the transformation is sufficient to (mechanically)

stabilize the austenite (c.f. retained austenite). The consequence is a significant scatter

in local yield strength even within the bounds of a single prior austenite grain. Packet

boundaries are asymmetric, since laths on one side (which formed earlier in the sequence

of martensitic transformation) lie parallel to the packet boundary, while on the other side

laths end with their short edges at the packet boundary. This effect adds to the crystallo-

graphic misorientation of ≈ 40− 60◦ that also exists across packet boundaries.

steel Cr Ni Mo Al Ti C Si Mn
MarvalX121 12.15 9.05 2.03 0.7 0.35 <0.01 0.05 0.03

Fe-18Ni–8Cr / 304 2 18.16 8.03 - - - 0.05 0.61 0.95
Fe–5Ni-C 3 - 5 - - - 0.13 - -

Fe-18Ni–8Co 4 - 18.51 5.8 0.063 0.72 0.003 0.006 0.02
Fe-3Mn 5 - - - 0.009 0.021 0.0049 0.14 3.14
Fe-9Ni 6 0.01 9 - 0.02 - 0.046 0.23 0.64

Fe-12Mn 7 0.023 0.01 <0.01 - - 0.009 <0.01 12.23
AISI 1030 - - - - - 0.34 0.2 0.6
AISI 4140 1.0 - 0.21 - - 0.42 0.22 0.8

steel austenitization Dgrain [μm] cooling process
MarvalX121 TA03 - 1373 K for 1.8 ks 16± 3 air cooled with 1 Ks−1

TR32, TR25 1113 K for 1.8 ks 14± 3 air cooled with 1 Ks−1

Fe-18Ni–8Cr / 304 2 1273K 27 air cooled
Fe–5Ni-C 3 1173 K for 0.36ks 25 water quenched
Fe-3Mn 4 1473K for 0.6ks 350 water quenched

Fe-18Ni–8Co 5 1473K for 3.6ks 660 water quenched
Fe-9Ni 6 1473K for 7.2ks 50-100 water quenched

Fe-12Mn 7 1473K for 5.4ks; 1273K for 18ks 100 quenched to 448K,
reaust., quenched

AISI 1030 1423 K for 10.8ks 80 water quenched
AISI 4140 1423 K for 10.8ks 120 water quenched

Table 1.1: Top: Chemical compositions (wt%) of some steel types for which a hierarchi-
cal microstructure is reported. 1Nagayama et al. 2001, 2Shintani et al. 2011, 3Morsdorf
et al. 2015, 4Morito et al. 2006a,5Morito et al. 2006a,6Kinney et al. 2014,7Kinney et al.
2017. Bottom: Emphasis on the difference on processing conditions of steel specimen
for which a hierarchical microstructure is reported. Austenitization temperatures and

holding times, approximate resulting grain sizes, specification of cooling process.
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prior austenite grain boundary
packet boundary
block boundary

10μm

Figure 1.4: Exemplary orientation imaging microscopy image of hierarchic structure for
small grain size of MarvalX12 (specimen TR32 see Table 1.1). Color code: inverse pole
figure; grayscale: fit. One dominant packet (four visible blocks in the 2D representation)
and a minor packet consisting of just one single block (redundant terminology). In the
minor packet (single block) the inverse pole figure colour code contrast is zoomed on the
left. Bright/dark regions indicate a bi-variant block structure, however, TEM is required

to resolve it, see Figure 1.2.

An overview of all scales addressed in this work is given in Figure 1.5. The range of scales

effecting the material behavior leads to a discretisation problem in modelling. The ques-

tion is how to take into account microstructural complexity (and hence the description of

the evolution of driving and dragging forces) without resolving it in detail. In this work,

strains for the laths are worked out and strategies are presented to obtain homogenized

strains for the bi-variant blocks (section 3.10). A modified form of a phenomenological lo-

calisation (strain transition) rule is proposed for obtaining the stresses of each phase locally

(section 4.4). Interestingly, with the rise of gradient methods (section 6.1) instabilities are

now numerically manageable and approaches in this direction are made, see section 6.3

and subsection 6.7.1.
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Figure 1.5: Scales addressed in this work. Starting from considerations on the lattice
kinematics and the 3D structure and arrangement of laths into blocks suitable strains
are worked out. The idea is to construct a microstructure sensitive combination of a

mean-field full-field model, that e.g. recovers the variant distribution into packets.



Chapter 2

Introduction

2.1 Classifications of Phase Transformations in Steels

The solid state phase transformations in steels has been classified from three perspectives.

First, from a thermodynamic perspective (see Ehrenfest 1933b; Ehrenfest 1933a, second

from a structural perspective (see Buerger 1951 and more recently J. Hirth et al. 2011;

M.-X. Zhang et al. 2009) and third from the point of view of kinetics (see Roitburd et al.

1979; Kaufman et al. 1958). The main point of this section is that it is insufficient to

classify a system solely based on one of these three points of view.

Selection and arrangement (morphology) in phase transformations depends on thermody-

namic, kinematic and kinetic constraints. Kinematic factors include restrictions on the

lattice-invariant deformations (e.g. twinning/slip) and the influence of the interface mo-

bilities (e.g. ledge/smooth). Once kinematic constraints are specified for a given phase

transformation, thermodynamics (energy minimization of surface/strain energy, dissipation

maximization) determines the direction and kinetic constraints determine the morphology.

Three extreme cases of martensite growth modes have been defined by G. B. Olson et al.

1986:

(i) An almost purely thermoelastic, hence reversible (see subsection 2.1.1) formation as in

shape-memory alloys (SMAs).

(ii) An elastic-plastic formation, where plasticity cannot immediately follow the initially

very fast growth that is dictated by nucleation (e.g. high carbon or > 20 wt% Ni lenticular

13
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martensites/ characteristic midrib).

(iii) A formation that is fully coupled to plastic accommodation, where growth occurs via

organized disclination (cf. J. Hirth et al. 2013; generalization of dislocations to interfaces)

motion on semi-coherent interfaces with a defect structure that enables a high interface

mobility (glissile interface), see Maresca et al. 2017. (ii) and (iii) are non-thermoelastic

hence irreversible, see subsection 2.1.1. The latter is the case for dislocated lath martensite,

see subsection 2.2.3. According to Roitburd 1990 it constitutes a relaxed state, i.e. it has

the lowest transformation barrier, resulting in the comparatively high martensite start

(Ms) temperatures. It is envisioned (see Figure 3.10) that screw dislocations swipe the

interface and cause a growth of the lath, therefore providing an easy growth mechanism

because additional atoms can be added easily to the step of the screw (see section 3.2 and

subsection 3.5.5.

The question of growth mechanism is one of the central features of a martensitic transfor-

mation, again emphasizing the importance of the martensitic interface (see chapter 3).

2.1.1 Thermodynamic Classification

According to Ehrenfest 1933a the order of a transformation is the degree of derivative of the

free energy with respect to some thermodynamic variable at which the first discontinuity

occurs. For instance ΔV �= 0 or ΔS �= 0 and exchange of latent heat ΔH = TΔS occurs.

Except in quite exotic cases a discontinuity occurs at the latest in the second derivative.

Therefore, it is often considered sufficient to merely investigate the first derivative w.r.t.

field parameters of the system. If it is zero the transition is also called continuous (hence it

must be second order). In continuous transitions critical points are important (critical phe-

nomena) and corresponding physical laws show some commonalities (universality). On the

contrary, a non-zero first derivative indicates the presence of a first-order phase transition.

Examples of a typical first order transformations are any recrystallization or decomposi-

tion (see Khachaturyan 1983). However, this classification has turned out neither to be

sufficiently ample nor precise (Müller 2013).

A broader classification scheme is to denote first-order phase transitions as those involving

latent heat and second-order ones as those without latent heat (e.g. already used by Landau

1937 in the first sentence of his seminal paper).
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In contrast to SMAs that are said to behave thermoelastically, i.e. they show a reversible

or enantiotropic (see Müller 2013) transformation and therefore have a low hysteresis (e.g.

Ni-Mn-Ga, Fe-Pd, see Seiner et al. 2016), the phase change upon cooling in steels is ac-

companied by a volume dilatation between +0.5-4%. This volume change leads to a stress

distribution of dominating tension in the austenite and compression in the martensite,

most easily deduced by Barlows formula (Kesselgleichungen). Due to the heterogeneity of

a polycrystal and kinematic constraints of lattice deformation modes this volume change

can never be accommodated purely elastically (non-thermoelastic / reconstructive / irre-

versible / monotropic / only kinetically stable, but thermodynamically unstable at any

condition; high hysteresis), but is always accompanied by some degree of plastic deforma-

tion (dislocation motion). "Irreversible" also means that martensite, once formed, cannot

reorientate to another martensite variant or even transform back into austenite. In high

carbon steels, beside plastic deformation, irreversibility is also due to carbide precipitation

after transformation. For reversible processes dS = δQ/T = 0.

In a martensitic reaction, the extra strain energy is tolerated because some degree of

coherency is essential to the mechanism of transformation, and alternative forms of trans-

formation with smaller strain energies do not take place because their rates are much slower

(see Christian 1965). Artemev et al. 2001 define the ratio of strain energy produced to

driving force to characterise the degree of self accommodation, i.e. the potential to form

optimal structures minimizing the strain energy . M. Cohen et al. 1992 denote martensitic

transformations where the kinetics and morphology are not dominated by strain energy as

quasi-martensitic (e.g. in the antiferromagnetic Mn-Ni alloy).

Since this work specifically deals with a cubic martensite phase, at this point the thermo-

dynamic difference to "classical" tetragonal martensite is shortly outlined. The difference

between a b.c.c and b.c.t (martensite) crystal structure is the thermodynamic preference

for ordering of carbon atoms within one interstitial sub-lattice of b.c.c. Zener 1948 pointed

out that an indirect, strain-induced interaction between the carbon atoms causes this spon-

taneous ordering. Based on his work, Kurdjumov et al. 1975 developed a model for the

order–disorder transition using elasticity theory. However, it could not explain the mechan-

ically driven b.c.c–b.c.t transition that can be observed (see Djaziri et al. 2016). It is often

stated that for carbon contents above ≈0.6 wt% the crystal lattice becomes b.c.t because

of the extreme supersaturation of solid solution carbon. However, it must be emphasised
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that this is by no means generally valid, but strongly depends on alloying elements and

process routes.

Finally it is pointed out that historically there has always been a discrepancy between

the energies calculated in the framework of classical nucleation theory CNT (equilibrium

thermodynamics) and corresponding nucleation rates. Particularly, calculated energies

where too high (see e.g. M. Cohen 1972; Roitburd 1990) comparable to the problem of

theoretical yield strength without the concept of dislocations. As we will see, the theory

is far from complete, but considerable progress has been made by employing a multi-scale

view.

2.1.2 Structural Classification

Solid-state phase transformations are frequently classified as either reconstructive or dis-

placive see e.g. Christian 1994; Authier 2003. In a chemical bond model, an entirely

displacive transformation means that a lattice change occurs just by distorting the lat-

tice locally without breaking chemical bonds (bonds are merely distorted). Hence, each

atom moves relative to its neighbours by less than an interatomic distance. As a corollary

of this, the number of atoms must be conserved in any incremental volume. Displacive

transformations are characterised by small values of heat (few J g−1) and a symmetry re-

lation between the parent and product phase (e.g. in the simplest case a group-subgroup

relation, see subsection 3.5.2, leading to a correspondence between symmetry elements).

Bhattacharya et al. 2004; Conti et al. 2004 argues that in order for a transformation to be

reversible the symmetry group of both the parent and product phase have to be included

in a common finite symmetry group (known as weak transformations).

Reconstructive, most generally means that bonds are broken and reformed at some point in

the course of a transformation. In the reconstructive limit (commonly termed "diffusional"

transformation), atoms move on average several thousand interatomic distances. Since

diffusion is thermally activated, diffusional transformations have a tendency to occur at

higher temperatures. In the displacive limit, neighbouring atomic bonds are never broken,

hence atoms do not make a single diffusive jump. However between these two limiting

cases, statistical measures for broken bonds or the average/maximum travel distance of

atoms by diffusion cannot have not been specified. Here the terms diffusional-displacive
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Figure 2.1: Comparison of schematic atomic movements according to notions of dis-
placive (pure shear) and reconstructive transformation in the case of a simple shear. A
controversy of this notion is that although twinning in steels is generally considered to be
displacive the result is still a cubic crystal and not e.g. a rhombohedral (cf. for instance
the cubic to monoclinic transformation in NiTi). The contraction due to the pure shear
is compensated by a lattice stretch during transformation. εs are the shear magnitude.
Lower-left: Schematic of two step dislocations producing a shear magnitude of two times

their Burgers vector.

or bainitic as well as massive transformation are commonly used. Particularly, in bainitic

transformations, long range diffusion (of carbon) and displacive transformation occur se-

quentially.

Some solid solutions transform very rapidly to a new single-phase structure with the same

composition as the original phase (composition invariant). When a reaction of this type

exhibits nucleation and growth rather than martensitic characteristics, it is usually called a

massive transformation. In steels, however the growth (kinetics) is very fast and compara-

bly to classical (i.e. tetragonal, twinned with high contents of austenite stabilizing elements

especially carbon) martensite formation, which is why the transformation is nevertheless

called martensitic. In a massive transformation, specific short range diffusion (only sur-

face diffusion; diffusion length up to two lattice parameters; also excluding interstitial

carbon/nitrogen long range diffusion) plays a profound role for mobility and nucleation

of such interfaces, enabling the change of crystal structure, at constant composition by

means of coordinated diffusional jumps across matrix boundaries, controlled/permitted by
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the structure of these boundaries (elaborated in subsection 3.5.5). An important ques-

tion arising for massive transformations is to what extent, details regarding the atomic

structure and/or transport of atoms from one phase to the other at the interface (atomic

mechanism of the transformation) are important to quantify the overall transformation

process. For example the effect of solute drag, which is well-studied for diffusional trans-

formations, is not entirely clear for massive transformations. For instance the new phase

forms with the same composition as the parent phase, but behind a steep pile-up of the

minority component in the parent phase (solute drag in bainite).

In a fully reconstructive transformation diffusion occurs during nucleation and growth

(e.g. all types of ferrite, Pearlite). In Widmanstätten ferrite high internal stresses strongly

enhance diffusion giving it some displacive characteristic. In bainite, carbon diffusion plays

a significant role for nucleation, but may be negligible during the comparably short growth

duration of a transforming domain (relative to the time needed for any significant diffusion).

Features like habit planes (HPs), growth directions and orientation relationships (ORs) are

common to most of both reconstructive and displacive transformations (herein referred to

as crystallographic features). Howe 2006 points out that both martensitic and diffusional

transformation products can follow the phenomenological theory of martensite crystallog-

raphy (PTMC) and invariant-line theories (treated in section 3.5), so that determination

of orientation relationships, habit planes and surface relief are no longer sufficient to define

a transformation as martensitic. A distinguishing feature occurring in martensitic trans-

formations only is the formation of a pair or group of certain domains that are in contact

with each other, reflecting the mutual accommodation of the shape change.

Considering all possibilities of transformation types, differences in the ORs are generally

more subtle compared to morphological features. Martensitic transformation products

are inevitably plate-, lens- or even lath-shaped to minimise the strain energy associated

with the transformation, whereas reconstructive diffusional transformations may show a

similar morphology but can also be e.g. spheres or cubes, depending on the governing

factor(s). If the governing factor is lowering the interface energy this may be done by

maximising atom matching across the interface. In certain cases of interfaces and possible

mechanism(s) discussed in chapter 3, even a one dimensional matching of close-packed or

nearly close-packed rows of atoms is sufficient to do so. The consequence of this is that the

orientation relationships in these diffusional transformations often exhibit exact parallelism
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Figure 2.2: Structural classification after H. K. D. H. Bhadeshia et al. 1990. Note, that
generally there is no strict boundary on these terms. For instance the term massive ferrite
is rarely found in the literature and is normally called lath or dislocated martensite. The

figure reflects the split of the scientific field into "displacivists" and "diffusionists".
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of (nearly) close-packed directions. ORs of displacive martensitic transformations on the

other hand, are generally not exactly parallel to each other- a minor difference, that should

be considered in the determination of the transformation character.

The importance of an incoherent interface has been discussed by Massalski et al. 2006.

Again several terms from mineralogy and crystallography enter the discussion. In an "al-

lotriomorphic" transformation the forming shape does not reflect internal crystalline sym-

metries, neither of the product phase nor of the parent phase. "Idiomorphic" (or euhedral)

means that the domain shapes of the newly forming phase reflect the symmetry of the

crystal. Note that the term idiomorphic in mineralogy is actually used under conditions,

where a crystal grows at a free surface and not embedded in a matrix as in a solid state

transformation. In steels ferrite is often classified as being either idiomorphic or allotri-

omorphic, see Figure 2.2. The term "diamorphic" comes from interface theory, specifically

bi-crystals and emphasises that both sides of the interface (the parent and product phase)

have a strong influence. Particularly, such transformations show a definite orientation re-

lation. A topotactic reaction is a chemical solid-state reaction such that the orientations

of the product crystals are determined by the orientation of the initial crystal, see Müller

2013 (resulting in a topotactic texture).

2.1.3 Kinetic Classification

In order to emphasize the influence of kinetics we start with an unusual limiting example.

Notably, for high amounts of alloying elements (not regarded as steel anymore) and complex

systems (Fe + 5 elements and more) cooling rates in the order of 106 K/s from the melt

enable to form amorphous metallic glass. Such materials are indeed being investigated,

but up to now only a few applications justify their high cost. Most metallic glasses can

only be produced as thin layers and the record for so called bulk or massive metallic glasses

is somewhere around 7 cm in diameter. Obviously, the limiting factor here is the inertia

of the heat flow. A similar problem exists for martensite. In practical terms the result is

a characterisation of hardenability (see the next section). Industrially relevant maximal

cooling rates, e.g. by water quenching, for real component sizes are always below 103 K/s

(see Hasan et al. 2012). Contrary to bulk metallic glasses where high cooling rates are

sought, in additive manufacturing they are a problem for carbon containing steels due to

martensite embrittlement.
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According to the operative nucleation kinetics Roitburd et al. 1979 classify martensitic

transformations as athermal or isothermal. Especially the term athermal often is used

in a misleading way in the literature. E.g. it is often found that: The transformation

develops without any thermal activation. Which actually means that the transformation

is not triggered by thermal fluctuations at constant temperature (i.e. is time independent

at constant temperature). Also (Novikov 2002): "The transformation mostly depends on

temperature (undercooling)", which more precisely means the extent of the transformation

is only dependent on the degree of undercooling.

Athermal martensite is characterised by diffusionless nucleation and growth. It occurs

because of the existence of an easy growth mechanism (twinning), not requiring atomic

diffusion, which leads to the rapid production of a new phase and a net lowering of the free

energy. In other words, athermal martensites in most cases exhibit twinned microstructures

and have a steeper kinetics slope. Athermal behaviour is typical for steels containing higher

amounts of austenite stabilizer (particularly carbon). The transformation starts at lower

temperatures with an initial transformation burst due to an autocatalytic effect on both

the nucleation rate and self-accommodation.

Generally, the term athermal is better seen as the opposite of isothermal. Isothermal means

that a discernible time dependency at constant temperature exists. Particularly, it has been

claimed that nucleation rates are higher, hence kinetics is nucleation controlled in the case

of isothermal transformations, see Thadhani et al. 1986. Steels showing comparatively

high transformation start temperatures for low constant cooling rates mainly transform

massively and exhibit a similar nucleation controlled kinetics. Note, that both terms are

very imprecise, since no such thing as normalized cooling rates and conditions are described

in this context, making comparisons questionable.

To ultimately emphasize the variety of phenomena to consider for a classification an

overview of the characteristics due to H. K. D. H. Bhadeshia et al. 1990; Christian 1965 is

given in Table 2.1.
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comment / product phase α′ αlb αup αa αw α αi P

Nucleation and growth reaction � � � � � � � �

Plate morphology � � � � � x x x

IPS shape change with shear component � � � � � x x x

Diffusionless nucleation � x x x x x x x

Reconstructive diffusion during nucleation x � � � � x x x

Often nucleates intragranularly on defects � x x � x x � x

Diffusionless growth � � � � x x x x

Reconstructive diffusion during growth x x x x x � � �

Atomic correspondence (all atoms) during growth � � � � x x x x

Atomic correspondence, during growth for atoms

in substitutional sites
� � � � � x x x

Bulk redistribution of X atoms during growth x x x x x ≈ ≈ ≈
Local equilibrium at interface during growth x x x x x ≈ ≈ ≈
Local paraequilibrium at interface during growth x x x x � ≈ ≈ x

Diffusion of carbon during transformation x x x x � � � �

Carbon diffusion-controlled growth x x x x � ≈ ≈ ≈
Cooperative growth of ferrite and cementite x x x x x x x �

High dislocation density � � � � ≈ x x x

Incomplete-reaction phenomenon x � � � x x x x

Necessarily has a glissile interface � � � � � x x x

Always has an orientation with the Bain region � � � � � x x x

Grows across austenite grain boundaries x x x x x � � �

High interface mobility at low temperatures � � � � � x x x

Displacive transformaiton mechanism � � � � � x x x

Reconstructive transformation mechanism x x x x x � � �

Table 2.1: Characteristics of transformation product (low temperature phase) in steel.
due to H. K. D. H. Bhadeshia et al. 1990; Christian 1965. consistency (�) and inconsis-
tency (x) of phenomenon or theory stated on the left. ≈ means that both cases have been
observed. Considered products are: martensite (α′), lower bainite (αlb), upper bainite
(αup), acicular (chaotic) ferrite (αac), Widmanstätten ferrite (αw), allotriomorphic ferrite

(α), idiomorphic ferrite (αi), pearlite (P )
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2.2 From Composition via Processing to Microstructure

In this section the common terminology for martensitic or partially martensitic steels is

elaborated. An overview of the effect of alloying elements and heat treatments is given

and morphological differences are worked out. Books for this topics are e.g. that by Bain

et al. 1966; Totten et al. 1997; H. Bhadeshia et al. 2006; Haldar et al. 2009; Pereloma et al.

2012; Krauss 2015.

2.2.1 Alloying Elements, Metallurgical Hardening Relations and Steel

Types

Steels solely alloyed with carbon, so-called plain/mild carbon steels are labelled after their

carbon content as (numbers in wt%): low-: to 0.3, medium-: 0.3-0.6, high-:0.6-1 and

ultra high 1.25-2.1 carbon steels. However, steels are also termed as carbon steel when no

minimum content is specified or required for the most common alloying elements. Carbon

is an interstitial that resides in the tetrahedral interstice of the f.c.c lattice although the

octahedral interstice is larger because of elastic anisotropy E111 = 276 GPa, E100 =130

GPa.

The f.c.c. austenite possess a maximum C-solubility of 2.1 wt% (8.8 at%) at 1147°C and

0.8 wt% or (3.6 at%) at 723°C. That of N is 2.8 wt% (10.3 at%) at 650°C and decreasing

to 2.3 wt% (8.7 at%) at 590°C. Ferrite possesses a maximum C solubility of 0.022 wt %

(even much lower at room temperature). Note that cementite (Fe3C) has 6.7 wt%.

Another way to classify plain carbon steels is by stating whether the carbon content is below

or above that yielding a fully eutectic microstructure (fully pearlitic steel): Hypoeutectoid-

C: 0.022-0.77wt% and Hypereutectoid C>0.77wt% steels respectively. Note that carbon

generally has a negative effect on weldability, see subsection 2.2.3.

Plain/mild carbon steels are of a particular interest to the steel industry due to a good

balance of properties and price. They have a relatively simple ferritic microstructure, that

is especially sought for its ductility. Compared to high strength low alloy (HSLA) steels,

forming them requires ≈ 30% less power. They are widely produced and used. They

commonly serve as example material that is compared to other materials in the course of

material selection.
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Conventional low- to high-strength steels include interstitial (mainly C and N) free (IF),

ultra low carbon (ULC), bake hardened (BH), and HSLA steels. BH steels have a simple

ferritic microstructure and are hardened by solid solution strengthening. Bake hardening

occurs at ≈ 200°C, where diffusion of carbon to certain dislocation structures is possi-

ble and results in a stabilising/pinning effect (C assembles in so-called Cottrell clouds

Cottrell 1964). In principle those also form at lower temperatures, however this requires

significantly more time (cf. Portevin-Le Chatelier effect; dynamic strain aging - DSA /

Dynamische Reckalterung in German, refers specifically to the microscopic mechanism).

Special techniques are employed to keep carbon in solution through processing until it is

released during baking process.

Conventional high strength steel (HSS) also include: -) Low alloy steels (< 8% alloying

elements). The total alloy content can range from 2.07% up to levels just below that of

stainless or inox steel (cf. French inoxidable), containing a minimum of 10.5% Cr (EN

10088-1:2005). -) High alloy steels, e.g. for extreme corrosion, heat and wear resistance.

During the 20th century the automotive industry, which is especially concerned about

formability, weldability and weight reduction, triggered the development of new steel types,

due to the possibility to tune the mechanical properties of each car component. New

experimental methods opened the way to investigate microstructure–property relations

for purposes of tailoring the microstructure to specific needs. Generally, such tailored

microstructures are referred to as advanced high strength steels (AHSS). First, un- or

microalloyed steels were used. AHSS offer high work- and bake hardening capabilities,

allowing an increased formability and opportunities for optimization of part geometries,

as opposed to HSS. Their high strain / work-hardening capacity also results in a high

toughness [Energy/Volume], i.e. resistance to localized necking and fracture. This is

important for a high energy absorption in the event of a crash.

Next, the effects of alloying elements on the chemical driving and dragging forces for the

f.c.c → b.c.c transformation are outlined. Depending on the direction of the transformation

an element is a stabilizer if the transformation is retarded e.g. for γ → α a γ-stabilizer

delays this transformation.

Austenite / f.c.c stabilizer: Ni, Mn, C, N - γ-field is expanded, but its range of existence

is cut short by solid solution (=intermetallic compound) formation.
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Ferrite / b.c.c stabilizer: B, Si, Al, Be, P and strong carbide forming elements Cr, Ti, Mo,

V, Ta, Zr, Nb. The effect of silicon is indirect since it retards the formation of carbides

during quenching, thus preventing austenite decomposition. The main effect of carbide

forming elements is to bind C, hindering its diffusion.

Al, Nb, Ti and V in small amounts (0.03 wt% to 0.10 wt%) inhibit grain growth at

the austenitizing temperature since they are present as highly dispersed carbides, nitrides

or carbonitrides (Al only as nitride), which only fully go into solution at or near the

melting temperature. The main role of minor alloying additions is to form fine dispersions

of carbonitrides that are i) controlling the austenite grain size, if out of solution during

austenitization and ii) precipitate in both austenite and ferrite during cooling from the

solution treatment temperature.

In metallurgy, the ability of a steel to form martensite on quenching is referred to as the

hardenability. This is merely a practical term, not reflecting any physical principle. Porter

et al. 2009 writes: "The primary aim of adding alloying elements to steels is to increase

the hardenability, that is, to delay the time required for the decomposition into ferrite

and pearlite. This allows slower cooling rates to produce fully martensitic structures".

Several definitions of hardenability exist and are discussed along with typical tests e.g.

in Krauss 2015, chapter 16 therein. A common test (particularly for welded materials) to

study the stress accumulation of a transforming material under constrained is due to Satoh

1972. In the Satoh test a rigidly constrained tensile specimen is cooled and the stress that

accumulates is monitored.

Ultimately, the distinction into five hardening mechanisms in metallurgy (shortly out-

lined subsequently) all boil down to the fact that dislocation motion is hindered. The

actual mechanism how this happens (internal stresses, dislocation-interface, -precipitate,

-substitutional element interaction will be elaborated in the course of this work, for now

some general macroscopic relations are given.

1) Grain (domain)-size (Hall-Petch:)

Rhp = ky/
√
c1 (2.1)

where ky is a constant and c1 is a microstructure distance, e.g. proportional to the average

high angle interface boundary distance (commonly the grain size, also the martensite packet
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size, see section 1.1). Note that the dimension of ky is MPam−1/2, i.e. it can be seen as a

fracture toughness.

2) Work hardening (Taylor hardening)

σ = σ0 + c1μb
√
ρ (2.2)

where μ is the shear modulus, b is the length of the Burgers vector, ρ is the dislocation

density, σ0 is a dislocation free yield stress and c1 (often denoted α) is a constant, ≈0.2-

0.35 dependent on the material (variations are much below the accuracy of its experimental

determination as pointed out by U. Kocks et al. 2003). Note that, due to its unit of length

(
√
m/m3), √ρ may be considered as the characteristic obstacle spacing in the glide plane

or in a more general view the mean spacing between dislocations.

3) Precipitation hardening: It must be differentiated between Dislocation bowing around

precipitates or cutting. Bowing:

τorowan = c1μb/L (2.3)

τorowan (glide resistance or Orowan by-pass stress) describes the bowing of dislocations

around particles, with c1 ≈ πr, L is the spacing between pinning points and can be related

to the grain size in the case of undeformed polycrystalline metals or the separation of

HAGBs in the case of heavily deformed metals (or packet boundaries in low carbon steels)

or LAGBs. Note that above a critical threshold depending on the particles coherency the

dislocation cuts the particle. The strength decreases again and is given by: πrγ/bl with

γ the surface energy. A good work for complex 9-12 Cr steels (similar to the one mainly

studied in this thesis) is by Holzer 2010.

4) solid solution strengthening and 5) transformation hardening. After these steels are

often classified as:

1. Solid-solution-strengthened steels

2. High strength low alloy (HSLA) steels: Hardening by precipitation (e.g. fine dis-

persion of alloy carbides) or grain refinement. Most HSLA steels have directionally

sensitive properties. An industrially relevant grain size is in the range of 8− 12μm.
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Figure 2.3: Above: Strength-ductility trade-off in steels. Current research involves
"How to get off the banana?" when referred to variety of steels. Below, typical vehicle
body recoloured from Nanosteel 2017. The colouring of the individual parts corresponds
to the diagram. Nowadays, illustrations of properties like the above one can easily be
plotted with a larger variety of steels from any material selection software, such as CES
(Cambridge Engineering Selector) see EduPack 2007 as has been done e.g. by S. Kalidindi

2015.

Ultra fine grained (UFG) microstructures can be obtained by (advanced) thermo-

mechanical processing ((A)TMP) or severe plastic deformation (SPD) methods.

3. Transformation-hardened steels: Steels with a microstructure including martensite,

bainite and retained austenite, i.e. untransformed austenite stabilized by carbon

and/or high internal compressive stresses → incomplete reaction phenomenon). AHSS

include: dual-phase (ferrite and martensite) steels, transformation induced plasticity

(TRIP) steels (see subsection 2.2.4), complex-phase steels and martensitic steels.
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TRIP steels use higher quantities of carbon than Dual Phase steels to obtain a sufficient

carbon content for stabilizing the retained austenite phase to below ambient temperature.

There are several varieties of TRIP steels. Large quantities of austenite-stabilizing ele-

ments, lead to fully austenitic steels transforming to martensite when stressed. When

the austenite is a minor phase in the microstructure retaining its potential to transform

martensitic during straining, the steel is also said to be TRIP assisted (usually low alloy

steels).

2.2.2 Heat- and/or Mechanical Treatments and Transformation

Diagrams (Kinetic Experiments)

In this section, first some specifics of time temperature transformation (TTT) and con-

tinuous cooling transformation (CCT) diagrams are introduced since they are the most

common way to experimentally investigate kinetic features of phase transformations in

steels. First, process routes of steels where carbon plays a crucial role in some way are

covered. Then, steels with 0.2 wt% C and less, forming dislocated lath martensite mainly

dealt with in this thesis, are specifically treated. The mechanical treatments of these steels

will be discussed in the next section.

Transformation diagrams provide information about non-equilibrium kinetic features in-

cluding: the nature of transformation, i.e. reconstructive or displacive isothermal, athermal

or mixed kinetic characteristics, stability of phases (start and finishing temperatures) under

isothermal or continuous transformation conditions, transformation rate.

Microstructural evolution comprises a variety of phenomena (occurring partly simultane-

ously) that influence each other. These phenomena are: recovery, recrystallization, grain-

growth, transformation, precipitation, texture (preferred orientation) evolution, fibrous

texture (mechanical fibering) evolution etc. Most importantly, all this processes have their

own kinetics. A mere temperature dependence of transformation kinetics is mainly stud-

ied either by quenching to a particular temperature followed by isothermal transformation

(TTT) or utilising a constant cooling (rate) until the transformation is finished (CCT).

Note, that both TTT and CCT diagrams are strongly dependent on the specific chemical

composition as well as the initial state of the material (texture, grain size, microstructure
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heterogeneity etc.). Heterogeneous austenite leads to an earlier start as well as a later

finish for both the martensitic and bainitic transformations.

The oldest but probably still most popular technique in industry to determine TTT is

the salt bath techniques combined with metallography and hardness measurements. CCT

diagrams are often used when heat treating steel to test different temperature rates (see

e.g. Z. Zhang et al. 1995). CCT diagrams are often more convenient than TTT diagrams

just because it is easier to cool materials at a certain rate than to quickly cool down to

a certain temperature followed by holding it constant. Methods to determine transfor-

mation diagrams comprise: dilatometry, measurements of electrical resistivity or magnetic

permeability, in-situ diffraction techniques utilising X-rays or neutrons, acoustic emission,

thermal measurement techniques, density measurement techniques and thermodynamic

predictions. Further experimental aspects are given in chapter 5.

Other cases of time dependent diagrams include cases where transformation occurs under an

applied load. If the cooling stage is preceded by deformation, the phase transformation di-

agram may be called a DCCT diagram. There are time temperature embrittlement (TTE)

diagrams dealing with temper embrittlement, time temperature-precipitation (TTP) dia-

grams (mainly isothermal) showing conditions under which various nitrides, carbides or

intermetallic phases precipitate in a wide variety of steels, time-temperature-sensitization

(TTS) diagrams showing intergranular attacks after sensitization treatments (especially

important for stainless steels) etc.

As detailed in subsection 2.2.3 the carbon content strongly influences the microstruc-

ture and the microstructure in turn determines the degree of carbon partitioning between

martensite and austenite as e.g. investigated by Toji et al. 2014. Hardness changes during

tempering are also very dependent on carbon content. Figure 2.4 shows three common

processing routes for steels entailing fully or partially displacive transformations, where

carbon plays a crucial role. These are discussed subsequently.

To form martensite with these steels the cooling rate must be high enough to inhibit

diffusion and the undercooling must be large enough to trigger an athermal, displacive

transformation. For some materials that do not enable martensite by water quenching

to room temperature, it can nevertheless be obtained by further cooling e.g. with liquid
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Figure 2.4: Three common processing routes for steels with >≈ 0.2wt%C content, en-
tailing displacive or partially displacive transformations. All processes start with quench-
ing (Q) to a certain temperature. If quenched under Mf , the fully martensitic part
is tempered afterwards (Q & T). If quenched until slightly above Ms and transformed
isothermally in the bainite region this is called "austempering" (Q & A). Quenching be-
tween Ms and Mf , followed by raising the temperature slightly below Ms (partitioning)
to enrich the remaining austenite with carbon has been proposed by Speer et al. 2003;

L. Wang et al. 2013 (Q & P)

hydrogen. The martensite remains stable at room temperature due to the irreversibility of

the transformation.

Since this kind of martensite is very hard and brittle a subsequent heat treatment (tem-

pering) is necessary. The high hardness is caused by the rapid distortion of the crystal

structure that leads to an extreme solid solution strengthening of substitutional as well

as interstitial atoms (solute trapping or just trapping), accompanied by very high inter-

nal stresses. Thermodynamical trapping means that a component is transferred across a

moving interface against its chemical driving force.

Often carbide particles can be observed in the martensite forming first. This martensite

shows the tendency of tempering during the remainder of the quench duet to high residual

stresses after transformation, giving rise to an increased diffusivity of interstitials. Note,

that all tempering processes occurring during and automatically after the quenching are

denoted as autotempering.

On reheating the as-quenched martensite H. Bhadeshia et al. 2006 identify four different

tempering effects in overlapping temperature intervals i) precipitation of ε-iron carbide
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≤ 250°C

ii) decomposition of retained austenite 200-300°C

iii) replacement of ε-iron carbide by cementite 200-350°C; martensite loses tetragonality

iv) ≥ 350°C coarsening of cementite; recrystallization of ferrite.

Heating to even higher temperatures can lead to a reverse transformation, i.e. so-called

reversed (or reverted) austenite. This austenite is chemically and morphologically different

from retained austenite because more stabilizing elements are dissolved. Leem et al. 2001

found for a Fe-13Cr-7Ni-3Si steel that with increasing heating rate As and Af increased but

stabilized due to a change from diffusional to displacive character of the reverse transforma-

tion. The stable austenite film thickness increases slightly with alloying content. Speaking

of reverted austenite, a "thinner is less stable" relation has been reported by M.-M. Wang

et al. 2014 for nanometer broad retained films of austenite. Recent TEM investigations

by D. Kim et al. 2012 report retained austenite layers with thicknesses around 20 nm in

quenched martensite. Secondary hardening (i.e. the formation of alloy carbides that are

even more stable than cementite) of all alloy steels does not start until reaching a temper-

ature range of 500–600°C (depending on the diffusivity of the alloying element), because

below this temperature diffusion is insufficient to allow alloy carbides to nucleate.

The second treatment depicted in Figure 2.4 is the Q&P process suggested by Speer et

al. 2003. It creates steel microstructures with retained austenite by promoting thicker

austenitic layers. The process involves quenching austenite below the martensite-start

temperature, followed by a partitioning treatment to enrich the remaining austenite with

carbon, thereby stabilizing it at room temperature. However, upon mechanical loading the

retained austenite may transform. Hence this treatment is among others used to obtain

TRIP steels (see subsection 2.2.4). Another, typical processing route used to produce cold-

rolled TRIP steels is continuous annealing at galvanizing lines.

The third processing route in Figure 2.4, where austenite is quenched into a salt bath

followed by an isothermal transformation to bainite is called austempering.

For some steels containing less than ≈ 0.2 wt%C (strongly depending on other alloying

elements) high enough cooling rates to produce fully martensitic structures practically

cannot be reached. However, for specific compositions and upon plastic deformation, for

other steels (like the steel treated within this thesis, see chapter 5), even if the carbon

concentration is almost zero, a relatively fast transformation compared to purely athermal
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martensites, accompanied by a high degree of plastic deformation (relaxed state) can al-

ready be induced upon imposing (very) modest cooling rates of less than 1 K/s. These high

rates are why the transformation is regarded martensitic, although it is not displacive (mas-

sive ferrite). A characteristic CCT diagram of such a steel is depicted in Figure 2.5. These,

steels form a characteristic lath microstructure specifically treated in subsection 2.2.3, sec-

tion 1.1. Interestingly, during fast quenching of such steels with C ≤ 0.2 wt%, the majority

(up to 90%) of the carbon segregates to dislocations and lath boundaries, but with slower

quenching some precipitation of cementite occurs.

High-resolution TEM studies of laths and their boundaries revealed how they might be

used to tailor the microstructure of the martensite blocks to control properties (grain/lath

boundary engineering see e.g. Raabe et al. 2013). In particular, re-heating the steel trig-

gers the precipitation of austenite phase along the lath boundaries, which lays the ground

to develop three important processes as described by Morris 2016:

(1) A treatment at a low temperature within the two-phase region (intercritical temper-

ing) where thermally stable precipitates of austenite form along the lath boundaries. This

austenite breaks up the alignment of laths within the block and significantly improves low-

temperature toughness. It is widely used to process steels for low-temperature use.

(2) A treatment at a higher temperature within the two-phase region (intercritical anneal-

ing) produces interlath austenite that re-transforms on cooling. The result is “dual-phase”

steel, with blocks in which laths of fresh martensite alternate with laths of well-tempered

martensite. These steels have tailored work-hardening characteristics that produce very

good tensile elongation. They are widely used in the automotive industry.

(3) A treatment that uses an intercritical anneal followed by reversion to the austenite

phase and subsequent quenching (the “QLQ” treatment) produces a dislocated martensite

structure in which adjacent laths are different Kurdjumov-Sachs (KS) orientation variants

(see section 3.4) of the martensite, leading to exceptional combinations of strength and

toughness.

A classical example where the heat treatment is optimized w.r.t. the steel’s hardening be-

haviour are maraging steels (martensitic + aging). These steels possess a superior strength

and toughness without a significant drawback in ductility. They are nearly free of carbon

and possess a high percentage of Ni (12-25 wt%) or Mn (9-15 wt%) mainly stabilizing the

austenite and some secondary alloying elements that give this steel its strength by forming
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Figure 2.5: Typical CCT of a steel with < 0.2C and alloyed such that highly dislocated
lath martensite occurs. (1)-(4) different cooling rates Ṫ . (1) fully martensitic microstruc-
ture, (2) massive transformation, (3) Widmannstätten ferrite, (4) Slow cooling leads to

precipitation of equiaxed ferritic grains.

very fine intermetallic precipitates like Ni3Mo, Ni3Ti, Laves phase (close packed MeMe2).

While for the higher contents of austenite stabilizers, the austenite remains stable during

processing, for the lower contents quenching only provides enough driving force to produce

martensite.

Manganese steels with ≈ 13% Mn and 0.8 to 1.25 % C are called Hadfield steels (also

Mangalloys). Even higher Mn concentrations enable stable austenite at room temperature.

Due to the temperature dependence of the deformation mode twinning is now energetically

favourable, leading to so-called TWIP (twinning induced plasticity) steels. In fact, the

manganese content is so high that TWIP steel may not even be considered as steel any

more, but rather as an advanced alloy.

There are many potential benefits offered by appropriate thermo-mechanicl processing

(TMP), particularly if the same properties can be achieved by optimizing the microstruc-

ture without the addition of alloying elements, especially rare earth elements and minor

metals, cf. Lin et al. 2012. For instance segregations (inclusions) introduced during cast-

ing are refined and distributed more uniformly. Commonly, the nomenclature denoting

deformation treatments use a prefix indicating the state of the microstructure (hence also
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whether the transformation has already taken place). The prefix mar- indicates a fully

martensitic state e.g. maraging, marstraining or marforming, and treatments of austenite

prior to transformation have the prefix aus-, e.g. ausforming. TMP of steel may be distin-

guished depending on its occurrence before, during or after transformation.

After (marforming): The martensite is cold worked prior to tempering to induce a dislo-

cation substructure that a.o. improves the distribution of temper carbides, cf. Lin et al.

2012.

During (advanced or controlled TMP): E.g. controlled rolling or isoforming if the temper-

ature is held constant). Deformation below the recrystallisation region divides the grains

into several blocks separated by deformation bands caused by a plastic instability (locally

only a limited number of slip systems is active). In case the finish rolling temperature

is at or just above the recrystallisation temperature Tr, the quenching starts from a fine-

grained, equi-axed austenite and the process is called recrystallization controlled, whereas

if the finish rolling temperature is below Tr, the quenching is done from deformed austenite

and the process is called “controlled rolling” (CR).

Before (ausforming): Plastically deforming a steel, while it is in the austenite temperature

range refines the microstructure through dynamic recrystallisation (deformation in the re-

crystallisation region). At higher C contents and temperatures spheroidal carbides form

within a ferrite matrix. Lin et al. 2012 point out that ausforming alone is confined to

stainless steels. For TRIP steels, aus- and marforming are commonly combined. The high

strength of TRIP steels is thus due to the combined effect of grain boundary strengthening,

solid solution strengthening and dislocation hardening.

2.2.3 Dependencies of Transformation Modes and Morphologic-

Crystallographic Differences of Martensites in Steels

Keeping in mind all the dependencies of the transformation (i.e. composition as well

as mechanical and thermal processing history, including the fact that everything is rate

dependent), it is actually not suitable to make predictions on morphological characteristics

based on a reduced set of information. This should always be kept in mind, as explained

in the following section as well as all other literature.

Ferrous martensites may be roughly divided into three morphological types: lath-, lens-

and thin-plate martensite see Figure 2.6. Austenite stabilizing elements (mainly C see
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Figure 2.6: The three different morphologies of ferrous martensites. Left: highly dis-
located laths forming blocks and packets (Fe-9Ni-0.15C), Middle: Lenticular martensite
(Fe-29Ni-0.26C), Right: Thin-plate, fully internally twinned morphology (Fe-31Ni-0.23C).

(Images from Maki 1999; Maki 2012)

subsection 2.2.1) dictate Ms and whether the deformation mechanism is slip or twinning.

Note that a higher content of austenite stabilizing elements favours twinning. Note also

that slip and twinning is temperature dependent, where twinning is favoured at lower

temperatures, see Figure 2.7. Generally, the more twins appear, the lower is the dislocation

density. Furthermore, the following trends can be observed:

1. temperature: dislocation motion is thermally activated, thus low temperature pro-

motes twinning

2. strain rate: plasticity is strain rate sensitive, hence high strain rates favour twinning,

fully twinned structures are observed in explosive tests.

3. stacking fault energy: lowering stacking fault energy makes twinning easier (a stack-

ing fault is the smallest possible twin, see section 3.3)

4. grain size: a lower grain size makes twinning more difficult (however it may still

appear at nano grain size if the material generally has a high tendency to form

twins).

5. most lath martensites are b.c.c. and most plate ones are b.c.t., however this is no

general rule. The only difference between tetragonal and cubic martensite is that in

the former the {011}γ mirror planes are transformed into {011}α and in the later

into {112}α.

If investigating possible twinning modes is of interest, the material should be deformed at

a very low temperature and very high strain rate. Combined plastic slip and twinning has
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Figure 2.7: Schematic dependency of critical stress τc for deformation modes (slip and
twinning) enabling the phase transformation.

been argued to be active in high temperature shape-memory alloys, cf. Karaman et al.

2000.

Krauss et al. 1971 introduced the terminology ’lath’ and ’plate’ martensite based on light

microscopy studies. Expressed in terms of ellipsoids this corresponds to prolate and oblate

ellipsoids (note however that they are not space-filling). Denoting the dimensions of

martensite domains as a, b and c, experiments as well as theoretical considerations suggest

that characteristic dimensions for individual dislocated laths as well as bundles of them

are a < b 
 c (see Figure 3.10) and a 
 b ≈ c for twinned plates.

Wayman 1972 described variants forming long stretched, but narrow laths in low carbon

steels (< 0.2-0.3 %C) as winglets of an airplane. The long morphology of the lath suggests

that beside the close-packed plane also the close-packed direction is preserved. The laths

or plates are heavily dislocated to an extent that individual dislocations are very difficult

to observe in thin-foil electron micrographs. The dislocation density in dislocated lath

martensite can be as high as 1012 cm−2 = 1016 m−2. With rising carbon content P. Zhang

et al. 2016 already reported the first appearance of fine twins (about 5–10 nm) around

about 0.2 wt% C (at regions of locally higher carbon) for a 0.2C-0.85Mn-1.08Cr steel as

observed in the TEM.

Between ≈0.4 and 0.8 wt% C (depending on other alloying elements etc.) both lens/lentic-

ular martensite containing both internal twins and dislocations as well as lath martensite

coexist, i.e. the transition from a highly dislocated to a twinned microstructure occurs very

gradual. A distinct feature in the case of plate martensite is the midrib, which is reported

to be the first forming unit consisting of many transformation twins Shibata et al. 2008;
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Shibata et al. 2009. The midrib is more heavily attacked by etchants, owing to its apparent

higher state of distortion compared to the rest of the plate.

The opposite of "perfectly" dislocated lath martensite, is thin-plate martensite obtained

for high amounts of austenite stabilizing elements or C ≈> 1%. Plate-like martensites

accommodate in non-parallel, zig-zag (“butterfly”) or triangular arrangements due to the

higher stresses produced and generally have lower Ms temperatures than dislocated lath

martensites.

In the case of plate martensite the size of the unit is determined by the free mean trans-

formation path between strong obstacles (grain boundaries, precipitates, other plates) to

grow. Lath martensites do not partition grains as do plates, but instead, typically form a

hierarchical structure of bi-variant blocks that stack to packets, see section 1.1.

Since lath martensite already transforms at higher temperatures, it offers the advantage of

a better formability/ easier thermo-mechanical processing. This point is also interesting

for Ti-base alloys forming a lath martensite microstructure (see D. Banerjee et al. 2013;

S. Banerjee et al. 2010; Mayer et al. 2016).

Historically, lath martensites have been studied first by TEM revealing their incoherent

interfaces. However, TEM observation of steel has some limitations. The b.c.c phase is

ferromagnetic at room temperature, hence magnetic interference between the ferromagnetic

specimen and the objective lens magnetic field occurs. Using TEM to observe a thin-foil

steel sample therefore results in image distortion, deflection of the electron beam, and

temporary bending of the sample due to the magnetism of the ferrous iron phase (Hata

et al. 2015). The magnetic field can be reduced by a thinner foil, however, then only very

limited morphological features can be observed.

R. Davies et al. 1970 pointed out that in the Fe-Ni System, magnetic properties also have

a profound influence on the formation and morphology of martensite. They found that fer-

romagnetic austenite is a necessary but not sufficient condition for lenticular martensite. If

Ni is the only alloying element, lenticular martensite only appears above 30 wt% otherwise

the hierarchic / block structure persists. Table 2.2 gives an overview of microstructural

features of martensite in steel.
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exemplary steel composition habit-plane/OR defect structure

Fe-(< 0.3− 0.4 C), low γsf

{111}γ (ε−mart),

{1̄1̄2}γ , {557}γ - KS

- needles/laths

high dislocation density (high

plastic accommodation during

growth) in both γ and α′, laths

of 2 variants with small misori-

entation (nearly parallel)

Fe-0.4-0.6 C

mixture of habit

planes of laths and

plates

Blocks are not very parallel,

laths of single variants within

Blocks Lambert-Perlade et al.

2004; Furuhara et al. 2006

Fe-(0.5− 1.4 C)

Fe-(2.8-8 Cr)-(1.1-1.5 C)

{225}γ Baur et al.

2017 lenticular

plates, pronounced

primary and

secondary size

difference

mixed fine {112} twins in the

middle and dislocations at the

interface of the lens (twinned α′

and slip in γ)

Fe-1.78 C

Greninger et al. 1949
{259}γ plate

mixed fine twins near the invari-

ant plane and more dislocations

near the interface of the plate

(elastic/plastic)

Fe-(27− 34 Ni)-(0.4− 1.2C ) {259}γ plate - NW mainly twinned

C and or Ni steels with a

Volume ratio 1.04;

Fe-(7-10% Al)-2% C

{3 10 15}γ thin

plate - NW

Wechsler et al. 1953

twinned laminate of fine (112)

extending through the whole

cross-section of the plate

Table 2.2: Overview of typical habit planes, orientation relations and defect structures
in steels (c.f Nishiyama et al. 1978; Porter et al. 2009). Note, that actually for a lath
no definite plane is defined. From top to bottom: Dislocation density and Ms tenden-
tially decrease. γsf ...stacking fault energy (SFE). Orientation relations (ORs) such as

Kurdjumov-Sachs (KS) and Nishiyama-Wassermann (NW) are listed in section 3.4

As for slip and twinning some morphological transition dependencies are described:

For higher SFEs the tendential evolution of habit planes is {557}γ → {225}γ → {259}γ
or {3 10 15}γ with decreasing the transformation temperature and increasing the yield

strength of austenite. This evolution is depicted in Figure 2.8 in an inverse pole figure
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(cf. subsection 5.5.1). R. G. Davies et al. 1971 report that if the yield strength of the

austenite is > 207 MPa the habit plane is {259}γ and if it is < 207 MPa it is either

{111}γ ( see e.g. P. Kelly et al. 1990) or {225}γ depending on the plastic resistance of the

b.c.c phase. Laverroux et al. 1974 demonstrated a lath-to-plate morphological transition

via precipitation hardening (with Ta) in Fe-Ni and Fe-Ni-Co alloys even though Ms was

increasing (also see Talonen 2007).

There is a connection between the morphology and the isothermal nucleation rate implying

that the morphology is determined very early in the martensite formation process, i.e. by

thermally activated interfacial motion.

(225)γ

(259)γ (3, 10, 15)γ

(557)γ

(111)γ

(011)γ(001)γ

exact indicated habit planes

examplary experimental data

rotation around [110]γ
9.5° from (111)γ to (557)γ and
25.5° from (111)γ to (225)γ

(112)γ

Figure 2.8: Typical habit planes illustrated in the usual stereographic projection of the
fundamental zone (equivalent by point group symmetry) highlighted in colour of the cubic
system. Interestingly, habit planes of lath martensite are commonly found to be of the

form (xyx)

2.2.4 Mutual Couplings Between Phase Transformation and Plasticity

To sum up it is emphasised that TRIP is an intricate process that requires all strain

components e.g. also thermal strains to be correctly modelled.

Two factors should be kept in mind in the following discussion:

First, in general the interaction between the plastic deformation of austenite and the

martensitic transformation is twofold (see e.g. Kouznetsova et al. 2007; Cherkaoui et al.

1998). On the one hand, the plastic deformation of austenite is known to promote the

transformation by creation of additional nucleation sites for the transformation, on the

other hand the work hardening effect leads to the mechanical stabilization of austenite,
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thus retarding the transformation.

Second, applied stresses are significant due to both, a general free energy (strain energy)

dependency (cf. tension-compression asymmetry) as well as the role of dislocations in both

nucleation and growth mechanisms.

Subsequently, some terminology is defined and discussed since some terms are used am-

biguously in the literature. The ambiguity is due to a phenomenological macroscopic view.

In the author’s opinion it can be avoided if the problem is viewed at the microscale.

The first term is transformation induced plasticity or shortly TRIP. Some authors mis-

leadingly use the term plasticity for the total inelastic deformation (trip-strain ε
˜
trip), i.e.

transformation and plastic deformation summed up as inelastic deformation or transfor-

mation plasticity. This may be due to a macroscopic, characterisation of the experimental

results with a kind of metallurgical variable (ε
˜
trip) incorporating the concept of plastic ac-

commodation of the transformation strain in the framework of classical phenomenological

plasticity. This concept was first adopted by Greenwood et al. 1965 and later by J. B.

Leblond et al. 1989 including the martensitic volume fraction and stress deviator effects.

The assumptions are that the trip strain rate ε̇
˜
trip i) follows the stress deviator and ii) is

solely governed by the rate of transformation ξ̇, which is in turn iii) merely controlled only

by a heuristic function Φ(ξ) (often referred to as "saturation function")

ε̇
˜
trip =

3

2

(
s
˜
−X

˜

)
κ
dΦ

dξ
ξ̇ (2.4)

Sometimes also the TRIP constant / Greenwood-Johnson coefficient κ is assumed to be

a function of the volumetric strain. In general, such a description has limited predictive

capabilities.

Others, however, refer merely to the irreversible plastic part, stating that the transforma-

tion part ε
˜
tr is fully reversible upon reverse transformation as in SMAs. If the transforma-

tion is thermally cycled, these authors call the TRIP strain the magnitude of irreversible

plastic deformation after several cycles, when the loop has stabilised in the sense that the

increase of this additional irreversible plastic deformation stays constant (the initial de-

formation rate may be much higher). In the experimental studies this thesis is built on

(see Nagayama et al. 2000; Nagayama et al. 2001; Nagayama et al. 2002; Tanaka et al.
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Figure 2.9: Asymptotic behaviours under cyclic loading after Fouvry et al. 2001. Elastic
shakedown: An elastic behaviour, after possibly an initial plastic strain. Plastic shake-
down: An extended hysteresis loop, with a periodic plastic loading between two fixed
values. Ratchetting: Accumulation of inelastic deformation, eventually leading to failure.

2003) however, this is referred to as ratchetting strain ε
˜
rat following classical ratchetting

appearing under cycling (plastic) loading conditions.

Remarkably, possible behaviours of thermal transformation cycling are similar to imposed

elastic or plastic deformation cycling, as depicted in Figure 2.9. Particularly, it must be

clear what is meant by stabilization of the loop, i.e. whether elastic or plastic shakedown

or ratchetting occurs. For instance for SMAs it may be found that: ...the total deformation

loop after several cycles stabilizes to a definite cycle that is not expanding or moving any

more in stress space.

Other terms commonly occurring in conjunction with the plastic-transformation coupling

are the Magee effect (after Magee 1966) as well as the Greenwood-Johnson effect (after

Greenwood et al. 1965).

The Magee effect (or variant orientation effect, note that Magee investigated a Fe-31Ni

lenticular martensite steel) corresponds to a preferred orientation in the transformation

strain due to variant selection (for the term variant see subsection 3.5.2 and variant selection

??). This selection is due to the local stress state (which generally is a superposition of the

internal as well as applied stress) as well as specific variant nuclei (specific shear bands).

In terms of the structural stretch tensor (see subsection 3.5.2) the whole deviatoric and

in terms of plastic slip (as an integral part of the transformation) the shear components
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are particularly important. When martensite is formed, deformation incompatibilities, e.g.

near grain boundaries, are dominant in determining the local stress state.

The Greenwood Johnson effect (plastic accommodation effect) means that plasticity occurs

in the presence of an external load, even if this load is well below the yield strength of the

material. Again, this is due to the generation of internal stresses (J. Leblond 1989 calls

them micro stresses) due to the volume change between martensite and austenite that

trigger plastic flow in the weakest phase. Since neither effect makes any reference to any

particular mechanism in terms of nucleation, dislocations or variant accommodation they

are used quite general which may lead, as pointed out, to misunderstandings.

Apparently, there is a controversy on the proportional contributions due to the Magee

(plastic strain) and Greenwood Johnson (transformation strain) effect, which in the au-

thors opinion remains insufficiently investigated to the present day. Obviously, it is experi-

mentally very difficult to impossible to study of the variations of plasticity associated with

the amount of martensite formed under various loading paths. For this purpose, modelling

depicts a vital tool in predicting this values.

Next the terms ”stress-assisted” and ”strain-induced” martensite transformation introduced

by G. B. Olson et al. 1986 are widely used. They are illustrated in Figure 2.10, where

the temperature dependence of the critical stress causing a martensitic transformation is

schematically represented.

A transformation is stress-assisted if transformation is triggered upon loading (below the

yield strength) between Ms and Mσ
s . In steels Ms increases with both tensile and compres-

sive loading. In a transformation with positive volumetric change generally a macroscopic

tensile loading has a slightly stronger effect. However, in general it is the anisotropy of the

structural stretch tensor that locally determines what stress state is more favourable.

Strain induced martensite (or transformation induced by plastic deformation - J. B. Leblond

et al. 1989, or plastic strain induced transformation - Cherkaoui et al. 2000b) is associated

with the creation of nucleation sites for martensite due to the heterogeneity of plastic strain

(dislocation pile-ups, dislocation dipoles, intersection of slip bands etc. often collectively

termed shear-bands). First the plastic deformation of the austenite aids the transforma-

tion by the formation of energetically favourable nucleation sites for the martensite as e.g.

described by M. Cohen 1972; G. Olson et al. 1972 and second, the internal stress due to
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the dislocations pile-ups produces an additional mechanical driving force (cf. backstress).

Macroscopically, the concept of backstress has proven to be useful for the description of

the unloading behaviour of TRIP steels F. D. Fischer et al. 2000; Fischlschweiger et al.

2012. However, such models heavily depend on inverse parameter fitting do not posses

much predictive capabilities outside their calibration range.

The upper temperature limit for the strain-induced transformation is denoted as Md. At

this temperature even the highest plastic deformation does not produce a suitable state of

enhanced nucleation and sufficient internal stress to trigger any transformation.

From a macroscopic view the strain induced transformation is also referred to as dynamic

softening. Note, that a awareness of the overall mechanisms (particularly their time and

length scales) leading to such a behavior is required. Particularly, its an elastic (shear)

instability that facilitates local nucleation, see subsection 6.7.1 causing a strain evolution

that manifests itself in a macroscopic softening. However, the transformed state is always

more "hardened" (b.c.c. with no densest packed planes, TRIP effect leading to more dis-

locations, cf. Taylor hardening). Especially in chromium-nickel steels the transformation

Stress-assisted
transformation

Temperature

Martensite

Austenite

Strain-induced
transformation

σtens

Ms Mσ
s Md
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y

isothermal
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Figure 2.10: Schematic illustration of the critical stress σc to initiate martensitic trans-
formation as a function of temperature after G. Olson et al. 1972. σA

y is the temperature
dependent yield strength of austenite. The red line shows the behavior for martensites

showing isothermal transformation characteristics.

from f.c.c. to b.c.c. proceeds mainly via an intermediate h.c.p. ε−martensite. The lattice

is transformed via a shear resulting from partial dislocations. Therefore, an important
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nucleation site in austenitic stainless steels are bundles of overlapping stacking faults as

found by J. Venables 1964; J. A. Venables 1962 in 18Cr-8Ni (>≈ 10%Cr-equivalent) and

mechanical twins (see section 3.2).

Lecroisey et al. 1972 found that although austenitic Fe-Ni and Fe-Ni-Cr alloys exhibited

rather comparable chemical driving forces ΔGγ→α′ , the former showed a significantly lower

difference between the Ms and Md temperatures, i.e., higher stability against the strain-

induced martensitic transformation. This was explained in terms of the lower stacking fault

energy (SFE, see section 3.2) of the Fe-Ni-Cr alloys, which enables the generation of en-

ergetically favourable nucleation sites (shear band intersections), and thus, the occurrence

of the strain-induced α′-martensite transformation at much higher temperatures.

2.3 Modelling Strategies

The following section starts with a short historic note on continuum and discrete modelling

methods and outlines current trends. Discrete methods are only marginally touched, the

focus is on continuum models, especially multi-scale frameworks (see also Phillips 1998;

Phillips 2001; Luscher 2010) solved using the finite element method. Then possibilities

of multi-scale modelling methods are discussed with varying degrees of discretisation, i.e.

from approaches directly in the integration / Gauß point (IP / GP) to very discrete model

geometries (see also Böhm 1998).

2.3.1 A Question of Scale - Discrete vs Continuous (Phenomenological)

View of Materials

In the 18th century Pierre-Simon Laplace (1749-1827) coined the idea that one can describe

material behaviour knowing the interaction potentials and the distances between molecules.

Claude Navier (1785-1836) and Augustin-Louis Chauchy (1789-1857) adopted this notion to

establish the equations of elastic equilibrium. Opposed to that, Georges Green (1783-1841)

suggested a purely phenomenological theory relying directly on the magnitude of the forces

and the movements at the observed scale, disregarding microstructure. This approach

is nowadays called ’continuum mechanics’. For a historical development of continuum
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mechanics in the last century see Maugin 2013 and earlier the introduction of Timoshenko

et al. 1940.

Continuum mechanics is a phenomenological field theory, which does not neglect some

discrete properties of matter. For instance symmetries are incorporated by the principle of

Curie-Neumann stating that the symmetry of physical properties must reflect the symmetry

group of the underlying crystal lattice. The question of an application limit of continuum

mechanics is strongly problem specific and can therefore not unambiguously be answered.

Despite the longer history of continuum mechanics, phenomenological modelling is by far

not completed, but still supplemented by:

- capturing highly non-linear geometrical and physical effects

- modelling/analysing coupled field-problems (multiphysics)

- extending phenomenological models by including significant structural effects

On the discrete side, with the growing computational power of the last centuries now

everyone has the (at least theoretical) possibility to conduct ab-initio studies on their

computers, making it the fastest growing discipline of materials science. Direct interactions

between atoms and even their electrons can be considered, at least given the approximation

of density functional theory.

2.3.2 Multi-scale Modelling Methods (MMM) and

Current Developments

The main motivation for using MMM is to account for the coupling between different

geometrical scales, e.g for polycrystalline materials: the macroscale (structural problem),

mesoscale (grain structure) and microscale (individual grains, ideally single crystals, cf.

the classification of residual stresses into Type I to III). Microstructural heterogeneity is

especially important to understand processes like crack growth.

Depending on the problem at hand it may be useful to differentiate between static or

evolving geometries (e.g. microstructure), or speaking in industrial terms (except in cases

where the application requires microstructural changes), property and processing models.

Processing models predict the internal structure of materials under some processing con-

ditions, either directly (such methods are shortly discussed at the end of this section) or
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through a correlation with continuum state variables (like in this thesis). Property models

predict a material’s performance under some operating conditions, given a description of

its internal structure.

Constitutive modelling can be applied on any continuum scale, however material param-

eters of lower scales are harder to obtain, which is why MMM is often used to extract

parameters from macroscopic experimental data. A rather coarse classification into three

levels is as follows:

1. Level 1: Phenomenological (macroscopic) hardening variables, no neighbouring ef-

fects, homogeneous continuum with unknown internal characteristics, material pa-

rameters are calibrated by fitting experimental tests, these models have little to no

predictive power outside their calibration zone as pointed out by Cailletaud et al.

2016.

2. Level 2: Mean- / uniform field approaches have many possible variations in discrete-

ness of geometry and combinations with constitutive models. Constitutive equations

for eauch phase. Microfields within each constituent of an inhomogeneous material

are approximated by their phase averages 〈σ〉 and 〈ε〉. Commonly piecewise (phase-

wise) uniform stress and strain fields are employed. Better "rules of mixtures", re-

laxation methods (commonly stated for martensite), localization or homogenization

functions are discussed in chapter 4. Mean / uniform field models, are implicitly

multi-scale. This work is a falls into this category as a micromechanical thermody-

namic model of the martensitic transformation modelled in terms of a continuous

distribution of volume fraction of martensitic variants rather than a discrete (geo-

metrically resolved) microstructure.

3. Level 3: Full-field, explicit representation of discrete microstructural features, mu-

tual influences of neighbouring material points are a result of the global equilibrium

calculation.

Note that the term micromechanic model sometimes is ambiguous since it is not clear

whether a micromechanically motivated mean-field constitutive model or a full-field model

on the microscale is meant.
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If intergranular hardening is low, the presence of various grains is not the crucial point

of the modelling as pointed out by Cailletaud 1992. Therefore, some authors already

are introduce "grain averages" at the integration point level (condensed methods), see

e.g. Mahnken et al. 2015; Lange et al. 2015. The challenge is to adequately describe

interactions between average units without resolving them spatially. Roters 2011 refers to

all kinds of simulations with more than one crystal assigned to one integration point as

large scale crystal plasticity finite element modelling (CPFEM). In terms of the resolved

model geometry (volume elements) the following approaches may be distinguished (also

see section 4.1):

i) Periodic field approaches: The geometry is limited to space filling tesselations. Utilising

finite elements the mesh must be periodic and setting up periodic boundary conditions

often is tedious. Furthermore, if there is no suitable pre-conditioner of the total stiffness

matrix implemented when multi-point constraint equations are specified, calculations may

take significantly longer. In recent years periodic cells have more efficiently been solved

fast fourier transformation (FFT). This method also has the advantage to directly operate

on a voxelized image of the microstructure and it is 1-2 orders of magnitude faster than

conventional FEM. However, there are drawbacks at discontinuities such as interfaces,

see ??. Which numerical method is better suited overall for homogenization will become

apparent with future research. In terms of literature see Moulinec et al. 1995; Suquet 1997;

Lebensohn 2001; Kochmann et al. 2016.

ii) Windowing approaches: Only the properties of a small region in the bulk of a volume

element (window) is evaluated (integrated over). Typically, this window is too small to

be representative. Accordingly, windowing methods describe the behaviour of individual

inhomogeneous samples rather than of inhomogeneous materials and give rise to apparent

rather than effective macroscopic responses. The advantage is that (almost) no boundary

conditions (except of a statically determinate support) must be specified for the volume

element.

iii) Embedded approaches: The volume element is split into a local heterogeneous core

region (motif) region and an outer embedding region (matrix). In the core region a full-

field approach is utilized. In the outer region often a reduced model is applied.



Introduction 48

iv) Concurrent schemes: These involve two-way (bottom–up and top–down see Figure 2.11)

couplings between models located at different scales. In case the finite element method is

used at both scales to solve the entire problem as a nested boundary value problem (BVP)

Feyel 2003 called this FE2. A finite element submodel is employed at each integration

point, i.e. no explicit material law is used on the higher scale, but the full constitutive

behaviour is determined concurrently at the lower scale. The lower scale volume element

is coupled to a homogeneous model on the higher scale via appropriate coupling condi-

tions (which may conveniently be implemented via the boundary conditions of the lower

scale volume element). The drawback is that the lower scale BVP must be solved at each

macroscopic iteration. Above that it must be considered that the higher scale requires the

consistent tangent moduli representing the current local material stiffness. Computational

improvements in terms of hardware usage (adoption of algorithms suitable for graphics

cards’ central processing units, GPUs) has e.g. been done by Savage et al. 2015; Fritzen

et al. 2016. In addition, asymptotic homogenization allows directly coupling FE models

on the macro- and microscales.

Another efficient alternative, namely micro-sphere models have been introduced e.g. by

Miehe et al. 2004; Ostwald et al. 2010 where the consistent tangent operator used in 3d is

obtained from an average overall integration of points on a micro-sphere.

Finally, the uniform and nonuniform transformation field (TFA) analysis should be men-

tioned Suquet 1997; J. Michel et al. 2003; Fritzen et al. 2010; Dvorak 2012. Thought the

idea is very similar to FE2 (localization, constitutive equations at the local scale, homog-

enization), the realization is technically very different, since the local problem is used to

derive concentration and influence tensors, see e.g. Z-set: Multiscale Materials Modelling

V8.6 n.d.

Since multi-scale approaches like the micromechanical analysis of polycrystals with single

crystal models, or even condensed polycrystal models are computationally very demanding,

model reduction techniques (resulting in so-called meta-models) recently gained momen-

tum, see e.g. J.-C. Michel et al. 2016.

Finally, it must be pointed out that despite the strength of utilising volume elements with

a detailed geometry for homogenizing stationary microstructures, they become even more

computationally demanding if the microstructure evolves. The three main methods that are

found in the literature for finite element calculations on simulating evolving microstructures
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are: vertex or front-tracking models, the phase field method (microscopic phase field theory

for martensite see e.g. Y. U. Wang et al. 2001; Levitas 2014; Düsing et al. 2016; Yeddu

et al. 2017) and the level set method. Constitutive equations are either based on Landau

polynomials for the energy barrier or thermodynamic theory. The phase-field method has

become especially popular since no tracking of the interface is required. However, there

is often a discrepancy between the real the and numerical interface widths. Often this

parameter is chosen such that the numerical procedure is stable, disregarding its strong

physical meaning, see Levitas et al. 2016. The problem is that with an interface width

≈ 1 nm, resolution of the order parameter (see subsection 6.7.6) variation requires at least

three grid cells. Therefore, only single nanocrystals or polynanocrystals can be treated,

while the grain sizes in typical engineering materials are 10 − 1000 μm as pointed out by

Levitas et al. 2004.

As far as the modelling of the evolution of interfaces are concerned, it must be pointed out

that the important mechanisms are actually taking place on an atomic scale. It is therefore

often criticized to treat such problems within a continuum framework (e.g. Tschopp et al.

2008)

Multi-scale approaches are not limited to continuum micromechanics. Especially the ca-

pability of FEM to handle highly complex constitutive descriptions has been used to build

hierarchical approaches that employ, among others, material models based on discrete dis-

location plasticity, see e.g. Zaiser 2001; Zaiser et al. 2014; Vattré et al. 2014, as well as

links between continuum and and atomistic descriptions, see e.g. Tadmor et al. 2011. Also

the stochastic finite element method must be mentioned at this point, see e.g. Stefanou

2009.

Another approach providing at least complementary information on the overall behaviour

of microscopically heterogeneous solids is the explicit statistical formulation, where an

RVE is viewed as a member of an ensemble from which ensemble averages are estimated

and used to represent the corresponding macroscopic constitutive parameters, as well as

the material response. Variational bounding methods also fall into this category. The

notion of statistical models of intermittent flow is particularly appealing to capture rate

processes (kinetics). See Groma 1997; Groma et al. 2003 for dislocation descriptions,

Zaiser et al. 2006; Hochrainer et al. 2007; Hochrainer et al. 2014 for the concept of lifted

dislocations in the framework of continuum dislocation dynamics (suitable coarse grained
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physical dislocation density models) and E. R. Oberaigner et al. 2011 (statistical physics

approach) for phase transformations.

In a statistical framework, normally the thermal noise is irrelevant, therefore the entropic

term in the free energy (−TS) can be neglected (except e.g. for climb). A problem of

the "classical statistical physics" approach is that it is basically defined for ideal cases

(e.g. ideal gas) in equilibrium (thermostatics see subsection 6.4.1). Problems to be solved,

for an extension of this theory to dislocations and phase transformations are: Long range

interactions and dissipative motion (no Hamiltonian system).

As illustrated in Figure 2.11 the industrial demand to quickly achieve goals lead to a top-

down approach from "performance" to "processing". On the other side, a fuller picture

generally is achieved with a bottom-up strategy. However, it is best to calibrate in both

directions. In some cases upscaling is not essential.

There are many principles possessing predictive capabilities without the need to scale

up, such as quantum engineering of the bond structure at material interfaces to resist

defect nucleation or migration. A popular method to calculate interface- and stacking

fault energies as well as critical shear stresses ("energy landscapes") is the embedded atom

method Daw et al. 1984. Paragon examples for top-down developments based on experience

and empirical correlations are Ni-base super alloys and Titanium alloys, see McDowell 2008.

In recent years this approach has been challenged by the Integrated Computational Ma-

terials Engineering (ICME) paradigm, see the books by Horstemeyer 2012; S. Kalidindi

2015. ICME combines both bottom–up and top–down modelling and simulation strategies

which aims at reducing the time to market of innovative products (Matouš et al. 2017).

The microstructure is effectively a design variable in concurrent design of material and

product. Consequently, there is a need for:

-) Microstructure-sensitive parameters of macroscale models to enable preliminary design

searches.

-) An exact determination of microstructural characteristics, i.e. topology, distribution and

crystallography, due to phase transformation, see Capriz 2013.

To close this section an outlook on the possible influence of machine learning on this

research area is discussed. Machine learning generally means that a computer algorithm is

applied to data to find out patterns hidden in the data. The predictive power beside the
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Figure 2.11: Top: Top-down and bottom-up interactions arising from the interplay of in-
dustrial needs and scientific methods (according to G. B. Olson 1997). Bottom: Overview
of ideas on various length scales treated in this thesis. Starting from considerations on
the unit cell level a mean-field approach incorporating a detailed description of interac-
tions between deformation mechanisms during the phase transformation and a suitable
scale-transition rule is developed on the grain-scale. Simulation of a representative volume

element (see section 4.1) enables to approach the macroscale.
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flexibility of the algorithm then largely depends on the amount and quality of the data.

It is often emphasized that the biggest difference between machine learning and modelling

(as employed in this thesis) is that the latter approach emphasizes inference. The future

question that remains to be answered is whether experimental data is sufficient in terms of

variety and reliability so that machine learning can be applied for the prediction of complex

material behaviour involving highly coupled physical phenomena.



Chapter 3

Crystallographic Aspects of

Martensite

Concepts like that of an orientation relation, lattice correspondence and an effective de-

formation gradient require a thorough understanding of the differences and commonalties

between lattice and continuum coherency.

The process of nucleation of lath martensite is closely linked to interface dislocations G. B.

Olson et al. 1981. Since dislocations have to be nucleated at free surfaces or interfaces such

as grain- or phase boundaries these boundaries obviously play a special role if the phase

transformation is accompanied by plasticity.

In this work exclusively linear maps are utilised, particularly affine transformations / maps

(preserving straight lines) and coordinate transformations / change of basis. The latter

are mainly utilised to switch between two (mainly orthonormal) bases such as conventional

crystallographic bases. Physically this corresponds to a passive transformation as opposed

to an active transformation which actually changes the physical position of an object.

Particularly, the deformation gradient F will be used in this chapter. According to the

polar decomposition theorem any quadratic, real (or complex: in the following the complex

terminology is given alongside in brackets) matrix (such as F ) can be decomposed as

F = RU (3.1)

53
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where U is a positive semi-definite symmetric (hermitian / self-adjoint) matrix and R a

orthogonal (unitary) matrix. In any orthonormal basis U is a pure strain and R a rotation.

As to the term similarity: Geometric similarity means that two objects can be mapped

into each other by rotating, translating, scaling and reflecting.

Matrix similarity more generally means that given to matrices A,B ∈ n× n (quadratic),

they are similar if: B = P−1AP , with P ∈ n × n and P invertible. Similar matrices

represent the same linear operator with respect to (possibly) different bases and share all

properties of their shared underlying operator such as eigenvalues, rank, trace, character-

istic polynomial, etc.

3.1 Preliminaries: Lattice-Bases, -Correspondence, -Symmetry

To start with some mathematical preliminaries are provided here to avoid confusion. A

Bravais lattice L is determined by linearly independent lattice vectors ai representing

discrete translation operations under which the lattice (a pattern of points) is invariant /

periodic. The metric tensor (used for measuring lengths and angles) is given by:

gij = ai · aj (3.2)

If gij = δij = I then the basis is orthonormal (orthogonal and normalized vectors). A

mapping W between orthonormal bases is a rotation (orthogonal matrix R, det(R) = +1).

The components of R are directional cosines. The metric of the dual space / reciprocal

lattice is the inverse of gij . The reciprocal lattice / dual space follows from the periodicity

condition of any local physical property, see e.g. Khachaturyan 1983.

In our case of a f.c.c to b.c.c transformation both sets of lattice vectors are orthogonal.

If additionally the lattice vectors are normalized as is usually done for calculations in

the cubic system) both become orthonormal. For lattices the distinction of conventional

(commonly an orthonormal basis) and primitive basis (generally shortest lattice vectors)

should be kept in mind (see e.g. Müller 2013). Given two lattices L A and L M and the

assembly of their lattice vectors into matrices AA and AM

AA = CAMAM (3.3)
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where the non-singular matrix CAM is called the correspondence matrix from A to M (cf.

change of basis). Note, that it is important whether the lattice vectors are assembled as

row or column vectors. CAM links corresponding lattice planes and lines. Historically,

lattice correspondences have been found by inspection of unit cells. The principal axes

of the lattice deformation are then parallel to rational crystallographic axes of the parent

structure, even though there is no theoretical necessity for the principal axes to be rational

lattice vectors. Obviously, a lattice correspondence is not unique. Especially, there are

many possibilities when the primitive cells differ appreciably in size.

Comprehensive information on symmetry and group properties of lattices can be found in

Müller 2013 (comprehensive reference for space groups), Pitteri et al. 1998 (particularly

twinning), Sutton et al. 1995 (particularly crystalline interfaces), Authier 2003 (relations

between physical properties and crystal symmetries). In the following some particular

aspects useful for this will be pointed out:

A geometric symmetry operation / isometry is a distance preserving mapping that does

not change appearance. Particularly, a mapping W is called an isometry if det(W ) = ±1

and

gmn = gijWmiWjn G = W TGW (3.4)

The set of all symmetry operations is called space group. The space group is the largest

group because it includes translational symmetries. A point group is the set of all symmetry

operations that keeps at least one point fixed (translations are excluded). After Euler’s

theorem, any displacement of a rigid body which leaves one of its points fixed may be

produced by a rotation of the body through an angle θ < 180◦ about an axis through that

point. Point group determination follows a definite scheme where certain symmetries are

ruled out in a stepwise procedure. Nowadays this is automated e.g. in any electron back

scattering diffraction (EBSD) software. For crystallographic calculations often inversion

symmetries are excluded (the handedness of coordinate system is not allowed to change).

The resulting group is called the Laue Group.

The (bulk) free energy of a crystal is pictured as an scalar valued anisotropic tensor function

(see e.g. Itskov 2015), invariant w.r.t. the symmetry group. Particularly, it is distinguished

between material symmetry and frame indifference, i.e. no change of the free energy after
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active rotation in the symmetry group and no change after coordinate transformation

(passive rotation) within the symmetry group, respectively.

The high-temperature phase almost always has a higher symmetry than the low-temperature

phase. The number of elements in a group G often denoted as |G| is called the order of the

group. The theorem of Lagrange, which follows directly from the co-set decomposition of

a finite group states that if G is a finite group and H is a subgroup, i.e. H < G, then the

|H| is a divisor of G. This relation is useful for solid state phase transformations, where

one lattice whose operations form a group changes into another lattice whose symmetry

operations form a subgroup of the former. The number of non-equivalent lattices then is

G/H. Often the term variant is used. A group theoretical description of martensite has

recently given by Sowa 2017. Y. Gao et al. 2016 recently did a group theory description of

the transformation pathway degeneracy in structural phase transformations.

3.2 Properties of Dislocations

To Love (1927) we owe the name of "dislocation" spelled equally in English and French.

Classical books on the topic are Friedel 1964; Hull et al. 2001; J. P. Hirth et al. 1968;

Kostorz et al. 2013.

Dislocations are line defects in the material forming closed loops inside the material. The

introduction of the Burgers vector b enables a distinction of dislocations due to its relative

orientation to the dislocation line ξ. Different parts of the loop are of different character

(edge, mixed, or screw) and of different sense, but have the same Burgers vector. Any

mixed dislocation line segment can be split up into screw and edge parts. The Burgers

vector of a single dislocation or the Burgers vector content of multiple dislocations is the

difference of a the coordinates of a closed path around these dislocation lines in a strained

state of the lattice to those of an unstrained (ideal) reference lattice, see e.g. J. P. Hirth

et al. 1968. Nowadays, such mapping procedures are implemented in atomistic simulation

codes, see e.g. Stukowski et al. 2012 (for the continuum case see Equation A.3).

Edge dislocation: b ⊥ ξ, i.e. tensile, compressive and shear stress fields may be present

the polarity of the dislocation may be positive or negative depending on which side of the

half plane it exists.
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Screw dislocation: b ‖ ξ, i.e. any plane for which b is a zone axis is a possible glide

plane. Screw dislocations do not climb, however, they may slip in any plane containing

the dislocation (cross slip). An important factor in view of phase transformations is that

screw dislocations provide an easy growth mechanism because additional atoms and unit

cells can be added easily to the step / ledge of the screw. The stresses and displacements

due to a screw dislocation are calculated under the assumption of antiplane shear, see e.g.

Voss et al. 2018.

A slip system is specified by its slip direction s (given by b/|b| for edge dislocation segments

and b/|b| × m for screw dislocation segments) and slip plane normal m. If the Burgers

vector of a dislocation loop lies in the loop plane, the loop is glissile / conservative (no

mass transport required). In the opposite case, it is sessile / non-conservative (requires

mass transport). We will retrieve this nomenclature in the case of interfaces in subsec-

tion 3.5.5 because the mobility of interfaces depends on the mobility of dislocations in the

interface. The continuum shear deformations of homogenized volume elements sheared by

continuously distributed, straight screw (�) and edge dislocations (⊥) are given by

S⊥
i or S�

i = I + εs
si

||si|| ⊗
mi

||mi|| (3.5)

where εs is the shear magnitude. Note that a simple shear is a special case of an invariant

plane strain (IPS, see Equation 3.25). Caution is advisable concerning the definitions of

the vectors in the dyad when comparing different literature since some authors define both

vectors as unit vectors, H. Bhadeshia 1987, while others directly take the Miller indices,

Khachaturyan 1983, which changes of course the interpretation of the pre-factor of the

dyadic product.

For cubic lattices a simple shear can conveniently be written using Miller indices instead

of unit vectors. The spacing of adjacent slip planes (normal vector m) in the cubic lattice

is d(hkl) = acubic/
√
h2 + k2 + l2. Sketching the deformation of simple shear, and by using

the intercept-theorem (cf. Figure 2.1) it can easily be shown that

1

εs
=

g · d(hkl)
||b|| (3.6)

where ||b|| is the norm of the slip system’s Burgers vector, e.g. for b = aα/2〈110〉, this

means ||b|| = aα/
√
2 and g can be interpreted in an idealized way as the average number
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of glide planes between evenly spaced, straight (non-kinked) dislocations of the same glide

system. Equation 3.6 can be used to switch between the representation of the dyadic shear

term utilizing normalized vectors (Equation 3.5) or Miller indices resulting in

S⊥ = I +
1

gi
bi ⊗mi (3.7)

as found in Khachaturyan 1983; Qi et al. 2014 where bi and mi are the vectors of Miller

indices of the Burgers vector and the slip plane normal respectively. Qi et al. 2014 call the

pre-factor (1/gi) "slip density".

It can be shown that only 5 of the 12 {111}〈110〉 slip systems in f.c.c. are independent

in terms of constituting any arbitrary deformation: There can only be two independent

slip directions on one and the same plane, which reduces the number from 12 to 8. From

these 8, it is a simple practical exercise to show that 5 of them suffice to write down all

the others.

In f.c.c. crystals plastic slip is predominantly activated by shear stresses. This is commonly

decided by the Schmid factor m (Schmid et al. 1968) coming from the relation:

τ = F tens/A′ = σtenscos(θ1)cos(θ2) = σtensm 0 < m < 0.5(θ1 = θ2 = 45◦)

with τ being the resolved shear stress, A′ the projected area of the slip plane in the direction

of the force and θ1 and θ2 the angles between the slip plane normal m as well as the slip

direction s and the force direction, respectively (corollary σy ≤ 2τc). The ratio of tensile

yield strength of a polycrystal σy and the critical resolved shear stress (CRSS) τc of a single

crystal is the Taylor factor M
σy
τc

= M (3.8)

For f.c.c. polycrystals M is in the range of 2.7 − 3.2 depending on the degree of texture.

Nowadays EBSD software can be used to determine it more accurately as e.g. done by

Steinmetz et al. 2013. In crystal plasticity both the dyad m ⊗ s and the strain due to

simple shear (last term in a finite strain setting

m
˜

=
1

2
(m⊗ s+ s⊗m+ |s|m⊗m) (3.9)
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are often called Schmid tensor. For a general stress state the resolved shear stress is

obtained as:

τ i = σ
˜
: m
˜

i i = 1...12 (3.10)

While in f.c.c. metals normal strains are basically negligible, already for b.c.c. and h.c.p.

metals they must be taken into account (so-called non-Schmid effects).

Short segments of the dislocation line with ξ normal to the glide plane are termed jogs

(when the normal component extends over only a single interplanar spacing d they are called

unit jogs or for brevity just jogs, and over more than one interplanar spacing ’superjog’).

Kinks are steps in the dislocation line lying in the glide plane. Dislocations required for

compatible deformation of various parts of the crystal are called geometrically necessary

dislocations (also see section 6.5).

Dislocations accumulating by trapping each other in a random way are called statistically

stored dislocations. Dislocations intersecting another glide plane are called forest disloca-

tions with respect to the glide plane they intersect. With a reasonable approximation, the

intersection with a forest dislocation can be treated as point obstacle in the glide plane.

When two attractive dislocations gliding in different slip planes cross each other, they can

reduce their total energy by reacting to form a third dislocation segment called a junction.

This junction lies at the intersection of the two dislocation slip planes. It is usually not

mobile (if it is immobile it is also referred to as lock) and therefore represents a barrier to

further dislocation motion, until the local stress is raised to a critical value such that the

junction is destroyed and dislocation crossing occurs. A dislocation dipole consists of two

parallel dislocations with parallel and opposite Burgers vectors. Consequently, the elastic-

strain energy of the pair is localized in the vicinity of the pair (St. Venant’s principle) in

analogy to the localization of the electrostatic energy of an electric dipole. The specific

line energy of a dislocation segment is normally estimated as Hull et al. 2001

Edis
el = c1 l μ b

1

4π
ln

(
R

r0

)
(3.11)

where l denotes the length of the dislocation segment, b the magnitude of the Burgers

vector, R a characteristic length for the size of the strain field (outer cut-off radius, e.g.

given by Equation 6.35), and r0 the dislocation core radius (in the range of b) and c1

a material dependent parameter, related to the Poisson’s ratio ν that differs for a screw
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(c1 = 1) and edge dislocation (c1 = (1 − ν)−1). Equation 3.11 is often approximated by

Edis
el ≈ 1/2μb2 [Jm−1], Frank 1951 proposed that dislocations will decompose according

to:

|b1|2 > |b2|2 + |b3|2 (3.12)

Screw segments annihilate much easier than edge segments (Kubin et al. 2009). In general

these annihilations leave dislocation segments in the cross-slip plane, which are called

collinear superjogs (the term “collinear” indicates that they have the same Burgers vector

as the primary dislocations), see Devincre et al. 2007.

However, in a b.c.c. lattice the mobility of a screw dislocation is much smaller than that

of an edge dislocation. Consequently, screw dislocations are dominant in small samples,

since edge dislocations easily reach the surface where they annihilate. A common way to

estimate dislocation densities is by using a proposal by Stibitz 1936

ρ =
L

V
=

Eel

1/2μb2
Eel =

3E

2(1− 2ν2)
ε2 with ε =

Δd

d
(3.13)

where d is the interplanar lattice spacing and Δd is the peak broadening in X-ray or neutron

diffraction, see e.g. Christien et al. 2013. The author concedes that an estimation obtained

this way is quite inaccurate. Other methods are based on line / peak broadening analysis

of X-ray diffraction patterns, see e.g. Ungár et al. 1996; Scardi et al. 2004.

3.3 Stacking Faults and Twins

A comprehensive discussion on stacking faults is found in Christian 1965. Denoting A, B

and C as the possible layer positions in a projection normal to the close-packed layers the

stacking sequence in f.c.c. is any of ABCABCABC = CBACBACBA = CABCABCAB

and that in h.c.p. ABABAB = BCBCBC = CACACA. A stacking fault is any deviation

of these arrangements, e.g. in f.c.c. ABCACABCA (one B removed). Note, the stacking

sequence of a twin

ABCABC[B]ACBACBAC

where the twin plane is marked. Frank 1951 classified stacking faults as intrinsic or ex-

trinsic. For intrinsic faults generated by removing one atomic layer, the atomic pattern of

each half of the crystal extends right up to the composition plane (a boundary containing
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atoms shared by both lattices), whereas for extrinsic faults (adding one layer to many),

the composition plane is an atomic plane which does not belong to the lattice structure on

either side of it. Note that intrinsic and extrinsic faults may be regarded formally as mono-

layer and two layer twins respectively. Stacking faults are the basic defects of deformation

twins Christian et al. 1995a; Mahajan et al. 1973), in phase transformations, and in the

formation of dislocation barriers by intersecting dislocations. In deformation twinning the

lattice symmetry is not reduced and the deformation on each side of the coherent interface

is a simple (reconstructive) shear. They share many features, such as their nucleation

mechanisms with transformation twins, i.e. twinning deformation as a result of a phase

transformation treated in subsubsection 3.5.3.4.

According Equation 3.12 intrinsic stacking faults form in f.c.c. crystals as a consequence of

the dissociation of b = aγ/2〈110〉{111} perfect dislocations into two b = aγ/6〈211〉{111}
partial dislocations (Shockley partial dislocations) lowering the dislocation’s energy. Alter-

natively the decomposition of a perfect b = aγ/2〈110〉{111} into one Shockley partial and

an immobile Frank partial b = aγ/3〈1̄11〉 (b ⊥ m) forming a pole, is possible. However,

the Shockley partial can move around the pole forming a stacking-fault, known as the pole

mechanism for twinning. Both mechanisms are depicted in Figure 3.1.

The stacking fault energy γsf (SFE) is composition and stress dependent. The SFE quickly

and non-linearly drops to almost zero with increasing alloying content. The rate of the

drop depends on the ratio of the number of valence electrons to the number of alloy atoms.

The SFE controls the distance two partials can separate, i.e. the width of the stacking

fault. A low SFE leads to widely dissociated partial dislocations, which cannot cross slip.

As a result pronounced planar slip and a high strain rate hardening occur. High SFEs

Figure 3.1: Dislocation dissociations into partials to produce stacking faults. a) two
Shockley partials, b) (immobile) pole mechanism for twinning.
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facilitate cross slip of screw dislocations, providing extra ductility. The temperature de-

pendence of stacking fault energy (increase with higher temperature) has been qualitatively

investigated experimentally in Rémy et al. 1978. This is important for hot rolling, where

stacking fault ribbons are narrowed, facilitating dislocation cross-slip.

SFE can be determined from first principle calculations (e.g. Lu et al. 2016) or measuring

distances between single dislocations. The SFE determines the mobility of partial disloca-

tions at interfaces. Geissler et al. 2014 points out that in general the SFE is a quantity

that can only be determined with a high degree of uncertainty from ab-inito calculations

and always needs experimental verification.

U. Kocks et al. 2003 point out that dynamic recovery, characterizing the strongly temperature-

and rate-dependent decrease of the hardening rate at larger strains (stage III), is almost

independent of diffusion, but strongly coupled to the SFE (directly proportional, indicating

that cross slip is an important factor).

With decreasing SFE, the plasticity mechanisms change from: i) dislocation glide (≈ 45

mJm−2) to ii) dislocation glide in conjunction with mechanical twinning to iii) dislocation

glide in conjunction with martensitic phase transformation, see Curtze et al. 2010. In the

range of 15-45 mJm−2 deformation twinning results in an increased strain hardening rate

due to twin boundaries acting as obstacles for dislocations. If the SFE falls below 15-20

mJm−2 very fine α′ as well as ε−martensite is observed.

Twin formation involves the passage of b = aγ/6〈112̄〉 Shockley partials on every {111}
plane, while the formation of ε−martensite (f.c.c. → h.c.p. transformation) is achieved

through the passage of b = aγ/6〈112̄〉 Shockley partials on every second {111} plane.The

terminology of twinning elements is visualized in Figure 3.2.

K1

K2 η2

η1

Figure 3.2: Terminology of twinning elements. For a type I twin K1 is the twin plane
normal η1 the twinning shear direction. η2 points in the direction of the invariant line

and is the twinning shear direction of a type II twin (K2 is its twin plane normal).
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3.4 Texture, Orientation Relationships and Related Topics

Texture means the distribution of crystallographic orientations of a polycrystalline sample.

The processing of steel involves five stages of texture development (Jonas 2009):

i) austenite deformation (during hot rolling)

ii) austenite recrystallization (during and after hot rolling)

iii) the transformation (on cooling after rolling, see e.g. Tomida et al. 2013; Tomida 2018)

iv) ferrite deformation (during warm or cold rolling)

v) static recrystallization during annealing after cold rolling.

In this section the theory for the characterisation of orientation imaging microscopy (OIM)

data is shortly outlined. A particular emphasis is laid on stage iii) from above. First

the lattice roations are parameterizations, since in OIM everything is limited to rotations

(orientation of lattice). Then discrete orientation relations are discussed and the concept of

lattice correspondence variants (LCVs) / orientational variants is introduced. Correlations

between the 12 {111}γ slip systems in f.c.c. and these variants are established. Next,

texture representations and problems of commonly used orientation spaces are pointed out.

Then distribution functions are discussed. Finally, austenite reconstruction methods are

mentioned. An emphasis is laid on the correlation of all these concepts with morphology,

an aspect, that in the authors opinion, has not yet been given enough attention in the

case of high dislocation densities. The reference coordinate system used in OIM as well as

particularities and practical problems related to lath martensite are found in section 5.5.

Parametrizations of rotations (all resulting in rotation matrices) are:

i) Euler angles: Sequential plane rotations around coordinate axes. Unfortunately, a mul-

titude of different conventions exist. In this work the convention after H. Bunge 1982 is

employed ϕ1,Φ, ϕ2 around (3 = z, 1′ = x′, 3′′ = z′′, see ??). This is the most used conven-

tion in OIM, e.g. TSL OIM Analysis Manual n.d.).

ii) Axis-angle representation: 4-parameter axis [u, v, w] - angle θ pair. The 4 parameters

can be reduced to three using the Rodriguez formula

ω = tan(θ/2) [u, v, w] (3.14)
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As e.g. pointed out by He et al. 2005 the singularity associated with the ω approaching

infinity as θ → π can be avoided by confining to the fundamental zone. iii) Quaternions,

see e.g. Mason et al. 2008; Patala et al. 2012.

Given two orientations RA and RM their misorientation / orientation distance is given by

ΔRAM = RAR
−1
M (3.15)

Although orientation relations ORs between phases are most often tabulated as discrete

sets of parallel crystallographic directions (see Table 3.1 for those common in steels), the

set of measured ORs does not consist of discrete values but of a continuous distribution of

values around some maxima. These maxima correspond to a higher packing density in the

interface region between the parent and the product phase. The magnitude of variation

depends on the process history of the austenite and the amount of plasticity triggered by the

transformation that is in turn system dependent and may be referred to as “plastic trace of

the transformation mechanism” Cayron 2017. Geenerally, the final texture becomes more

sharp with increasing alloy content Ray et al. 1990 (lower stacking fault energy). In order

to formally distinguish between martensite variants (and in further consequence determine

their relative contributions, see e.g. K. Verbeken 2009), definite bounds of misorientations

around discrete crystallographic directions must be introduced.

Note that the parallel plane relationship {111}γ ||{011}α (CP1,...,CP4) is always almost

exactly satisfied, but the direction relation varies. Note, that the reason for the parallelism

of the directions is atomic row matching in the longitudinal direction of the transforming

domain, see Howe 1997 p.190-192 therein. Utilizing these parallel relations so-called lattice

correspondence / orientational (KS-,NW-...) variants may be defined by pure rotations, see

Table 3.3). However, microstructural morphology is not characterised by rotations alone

but also needs stretches. Particularly, the full deformation will have certain (geometric or

kinematic) characteristics as elaborated in the next section.
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Name Orientation Relationship # variants

Kurdjumov et al. 1930

(KS)
{111}γ || {011}α′ & 〈101〉γ || 〈111〉α′ 24

Nishiyama 1934 (NW)

{111}γ || {011}α′ & 〈112〉γ || 〈011〉α′

or equivalently

... &〈101〉γ || 〈100〉α′

12

Pitsch 1962 (P) {100}γ || {011}α′ & 〈110〉γ || 111〉α′ 12

Greninger et al. 1949

(GT) and GT’

{111}γ || {110}α′ &

half-way between KS and NW directions

...〈123〉γ || 〈133〉α′ (GT)

... & 〈133〉γ || 123〉α′ (GT’)

2×12

ε−martensite OR
{111}γ || {0001}ε & 〈101〉γ || 〈1120〉ε
{110}α′ || {0001}ε & 〈111〉γ || 〈1120〉ε

Consequently

γ → ε → α′

results in KS

Table 3.1: Overview of commonly stated (idealised) orientation relationships between
f.c.c. austenite, b.c.c. martensite and h.c.p ε−martensite in steel. Three dots indicate
that the plane relation is the same, only that of the directions changes. Both Pitsch and
NW are 5.26◦ from KS ({111}γ in-plane rotation). These relations are quite idealised
considering that orientation relations are not discrete but follow some distribution and

most interfaces are irrational.

While the KS, NW and Pitsch give rational orientation relationships (predominantly co-

herent interfaces), GT and GT’ are irrational, a term used for morphological features such

as habit planes and long directions that cannot be expressed in terms of low-index, Miller

indices (W.-Z. Zhang et al. 2005; M.-X. Zhang et al. 2009). One complication associated

with this "rational" versus "irrational" nomenclature in relation to morphological features,

such as habit planes or long directions, is that in the interest of brevity, simplicity and con-

venience, a number of published experimental and theoretical results for irrational habit

planes or long directions have been purposely expressed in terms of the nearest low-index

plane or direction (as in Table 2.2). However, as pointed out in M.-X. Zhang et al. 2009

(p.7 therein) for an exact specification of an orientation relationship the full rotation matrix

must be given.

Some commonly found texture components are:

Cube {100}(001)γ , (ϕ1 = 0,Φ = 0, ϕ2 = 0)
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Goss: {110}〈001〉 (ϕ1 = 0◦,Φ = 45◦, ϕ2 = 90◦/0◦)

Brass: {110}〈112〉γ → {332}(113)α (ϕ1 = 35◦,Φ = 45◦, ϕ2 = 90◦/0◦)

Copper : {112}〈111〉γ → {113}(110)α (ϕ1 = 60◦,Φ = 32◦, ϕ2 = 65◦).

The reason for the names of "copper" and "brass" (Cu with up to 40% Zn) has to do

with changes in texture with alloying. Ray et al. 1990 report that Brass and Copper are

the major transformation texture components inherited by α from γ in deformed austenite

such as controlled rolled steels. The texture of recrystallized austenite is made up pre-

dominantly of the Cube component. Three-dimensional representations of some important

crystallographic plane-direction in pairs Euler space (Bunge convention) can be found in

H.-J. Bunge et al. 1969.

In the author’s opinion there is a substantial problem in utilizing Euler angles and hence

the Euler orientation space to quantify transformation variants, since one orientation is

represented by many points in the asymmetric region of Euler space, i.e. 0 ≤ φ1 ≤ 2π; 0 ≤
Φ ≤ π; 0 ≤ φ2 ≤ 2π (multiple combinations of angles yield the same rotation, see Hansen

et al. 1978). Two cubic symmetries induce a sectioning (plane partitioning) of this region

into 2x4=8 symmetrically (and geometrically) equivalent subregions. However, there are

2x4x3 symmetrically equivalent regions and the further reduction is geometrically non-

linear (see Figure 3.3, upper-left therein). For the representation of the ODF in the case

of (at least) orthorhombic sample symmetry mostly the subregion 0 ≤ φ1 ≤ π/2; 0 ≤ Φ ≤
π/2; 0 ≤ φ2 ≤ 2π is used although this region generally contains each orientation 3 times

(Multiplicity = 3).

One-point statistics contain information regarding the probability of finding a particular

local state at a single point sampled from the material. This information is best captured as

distribution functions over the local state space. In OIM this state space is the orientation

space resulting in an orientation distribution function (ODF) describing the frequency of

occurrence of particular orientations

f(y) =
ΔZ

Z
(3.16)

where y, Z and ΔZ are the orientation, the total volume of the considered domain (al-

though normally obtained from a 2D OIM image) and the volume-fraction, having a crystal

orientation within Δy around y, respectively. The minimum occurring negative value of
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the calculated f(y) will be approximately equal to the absolute error of the calculation as

pointed out in H. Bunge 1982, p. 221 therein.

Other commonly used distributions are e.g. the crystallite distribution function (constant

orientation within each grain e.g. kernel average misorientation - KAM), the boundary

Figure 3.3: Upper-left: asymmetric region of full Euler space (one-sixteenth) taken from
Hansen et al. 1978. Upper-right: Surfaces representing the same misorientation of three
symmetrically equivalent components of the orientation {123} 〈634〉 (taken from Hansen
et al. 1978) illustrating the non-linearity of the Euler-space. Bottom: Major texture

components of MarvalX12 (TR32 specimen see section 5.1).



Crystallographic Aspects of Martensite 68

distribution function (y then is the orientation of the 2D boundary), the direction dis-

tribution function (y is a vector) and the misorientation distribution function (MDF, cf.

Equation 3.15), which is particularly useful for the identification of martensite variants.

Also combined properties can be studied using

f(y1, y2) =
ΔZ

Z
(3.17)

Examples are a grain-size-ODF where dZ now indicates the volume fraction of crystal

orientation within Δy1 around y1, and a grain size δy2 around y2, see Fullwood et al.

2010. Interestingly, although for martensite there are some significant correlations between

morphology and orientation relations, the author merely found some preliminary works by

Iwamoto et al. 2000; Iwamoto et al. 2002 studying these correlations using light microscopy

images. Nowadays such an approach would be very powerful in conjunction with OIM data.

Finally, high temperature austenite texture reconstruction methods, i.e. given a measured

texture at room temperature drawing conclusions about the material’s state before trans-

formation are discussed. In general this "untransformation procedure" is of considerable

potential value for the study of texture development in high temperature phases, such as

hot rolled austenite, where the direct measurement of texture is handicapped by experi-

mental difficulties. Reconstruction of austenite grains particularly is a challenge i) from

fully transformed states where no retained austenite is present and ii) if the material is ther-

momechanically processed (Notably, for the MarvalX12 studied in this work both applies).

As far as point ii) is concerned also it is pointed out that the reconstruction works better

for a lower dislocation density, i.e. as long as the transformation is well-characterised by a

set of ORs (which is mainly the case for coherent transformations, see subsection 3.5.3).

Initial studies assumed that the initial austenite is homogeneous (which obviously is not the

case in general). A reconstruction method of the parent texture given the daughter texture

expressed in terms of the coefficients of generalized spherical harmonics as well as the

misorientation distribution function (MDF) of the daughter phase was already discussed

by Sargent 1974; Kallend et al. 1976.

Cayron 2007 treated the transformation texture problem using the misorientations (called

operators therein) between the lattice correspondence variants - LCVs (cf. group multi-

plication table, see e.g. Müller 2013) and wrote the python program ARPGE, also see
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section C.1. In Cayron 2006 he described the character of these operators forming a

groupoid (as opposed to a group). Beside considering theoretical ORs, his reconstruction

was based on the use of average orientations within inherited grains.

Conversely, Miyamoto et al. 2010 proposed a reconstruction method using the local orien-

tation of every pixel, pointing out that a reconstruction on a local (i.e., pixel-based) scale

is preferable because it allows the orientation gradient within martensite domains grains to

be taken into account in the reconstruction process in highly deformed steels. L. Germain

et al. 2012 considered irrational orientation relations in the reconstruction process noting

some improvements for low alloyed steels with C<0.2 wt%. Finally, Bernier et al. 2014 com-

bined the features of orientation relationship refinement, the local pixel-by-pixel analysis

and the nuclei identification and spreading strategy. A reconstruction strategy exploiting

the hierarchical microstructure of lath martensite, specifically the notion of packets has

been proposed by Zachrisson et al. 2013.

3.5 Crystallographic Theories for Martensite Formation

The words continuity, coherency and compatibility are used synonymously in this sec-

tion. In the literature coherency is commonly used in crystallography / materials science,

compatibility in continuum mechanics and continuity in mathematics. The description of

compatibility is a question of scale.

Apparently, due to the multi-scale nature of microstructure deformations, the same frame-

work of linear mappings is applied on many different scales. Here, the lowest and second

lowest scales where it has been applied are treated. Particularly, the lower scale is es-

sentially a 2D representation of the higher scale near an (assumed) planar interface. If a

homogeneous deformation describes the deformation at a higher scale, its rotational part

(R) can often be neglected (since microstructure formation averages it out). In a crys-

tallographic description on the micro and sub-micro scale however, R is the rotation the

transforming domain of a lattice (e.g. inclusion) has to undergo while the surrounding

matrix remains invariant. Therefore, its characterisation is crucial (it is important to em-

phasize that it is not a rigid body rotation). In general, while a variety of of criteria have

been considered for validating crystallographic calculations, surprisingly that of R has not

been given enough significance. It is generally, advised to search for solutions where the
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rotation is negligibly small (either directly as a result of compatibility or due to a suitable

homogenization process.

Furthermore, the fact that each deformation component in a multiplicative decomposition

of the deformation gradient F (as elaborated in the following sections) is large, the order

of the decomposition plays a role. Normally it cannot be based on physical grounds (also

see section 6.1) which beside simplicity is another reason why an additive decomposition

is preferred.

3.5.1 Continuum and Lattice Perspective of Compatibility

The state of compatibility of enclosed particles is usually defined in terms of the contin-

uum concept of continuity of displacements and tractions across the interface. Any global

minimum of strain energy corresponds to a stress-free configuration further away from the

particle (no far field stresses). Again, it is the scale at which the problem is described that

defines what is "far".

Continuum theories postulate that the crystals need not fit together on an atomic scale

provided that the atomic misfit does not accumulate, so that there is an average fit at a

higher scale. Whether this theory is appropriate depends on the nature of the interfaces

and the absolute size of domains for which the assumption of a homogeneous deformation

is justified. In the continuum treatment the problem reduces to a geometric one (geometric

constructions of invariant planes, invariant lines using strain ellipsoids, see e.g. Wayman

1964; Christian 1965), dealt with in subsection 3.5.3. Beside the geometric description, a

structural stretch tensor US based on the Cauchy-Born Rule (CBR) (elaborated in sub-

section 3.5.2) is another postulate in the continuum picture.

Note that also an inhomogeneous deformation like lattice invariant shear / deformation

LIS / LID is considered as macroscopically homogeneous resulting in the matrix form

of Equation 3.5. Therefore the continuum theory is basically a "continuum plasticity"

matrix description superimposed on a lattice, although the lattice invariant deformation

is interpreted in terms of discrete slip or twinning events. The only difference to crystal

plasticity is that the evolution of the plastic strain does not evolve incrementally, but each

active shear is taken as a single matrix operation. Therefore, the order of the matrix

operations does matter. Particularly the rotational term usually comes last, which often

cannot be physically justified.
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In any case atom movements during transformation are homogeneous only over a localized

region (e.g. it may be found in optical microscopy that scratches on surfaces remain straight

lines). An adjacent region is formed by a different deformation in a way that accommodates

the neighbouring deformation. The following three points, as also pointed out by G. B.

Olson et al. 1986 should be considered:

1. The rotational part of the crystallographic mapping R accompanying the transforma-

tion of an enclosed particle will tend to minimize rotation of directions of maximum

dimension.

2. An inclusion will maximize and minimize its dimension in directions of minimum and

maximum distortion (specified by the eigenvectors of U) respectively.

3. An inclusion which minimizes surface energy will adopt a morphology which maxi-

mizes the coincidence of lattice sites in its interface. The probability of a site coinci-

dence along a particular plane or direction scales with the packing density.

Only principles 1 and 2 are considered in the continuum theory. In the theory of marten-

site formation the deformation, motivated by the experimentally observed morphology of

martensite, forming martensite domains are argued to be, or at least to be close to, an

invariant strain (IPS see subsubsection 3.5.3.2; limiting case of an infinitely thin, plate

inclusion), where the invariant plane generally is called habit-plane. Then in analogy to

lattice correspondence- / orientational (e.g. KS- or NW-variants, see section 3.4) symmetry

considerations lead to habit plane variants (HPVs). As opposed to lattice correspondence

variants, habit plane variants incorporate the full shape transformation including stretches.

In highly dislocated lath martensite, beside the definition as plane of a plate-shaped crystal,

the habit plane has been defined as the average plane of a semi-coherent plane glissile

interface on the atomic interface / level (Maresca et al. 2017) and the average interface

orientation on the higher block / packet level.

From a discrete lattice viewpoint the state of coherency of enclosed particles is controlled

by the extent of lattice-invariant deformations that relax these displacements and tractions.

They in turn are governed by the coherency of interfaces, defined in terms of the discrete

lattice concept of continuity of corresponding crystal planes and lines across interfaces. If

coherency at interfaces cannot be achieved additional dislocations are necessary locally at
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the interface (semi-coherent / commensurate interfaces). Christian 1965 points out that:

"The motion of a coherent boundary produces a macroscopic change of shape which is

specified by the lattice correspondence. If the boundary is incoherent, there is no corre-

spondence and no shape change when it moves." The evolution of the correspondence (cf.

update of glide system orientation in large strain crystal plasticity) should be investigated.

The vital question in this regard is to which extent the interface can accommodate, which

in turn depends on the amount of diffusional component of the transformation, the type of

interface or the types of defects forming the interface, the difference of the compliances of

the accompanied phases etc. Theories that have been developed to tackle this problem at

the discrete lattice scale (they define a local correspondence at the interface) are elaborated

in subsection 3.5.5. Note that such theories should be applied for the phase field method

at the crystallographic level.

For irregular and fine microstructures, such as in the case of lath martensite, it is difficult

to quantify a compromise between surface and strain energies. Note that the relative

importance of these factors is influenced by a size-dependent surface to volume ratio of

crystal domains, varying significantly (relative to each other) on a low scale. Considering

the fine microstructural features of lath martensite the continuum theory has been criticised

to produce unrelaxed configurations at the interface, see e.g. R. Pond et al. 2003. However,

the scale of the discrete interface approaches is too low to be used in a continuum model

at the grain scale (individual martensite laths / subunits). Unfortunately, no attempt to

homogenize results of discrete interface approaches to a higher scale has yet been followed.

In this work, such a homogenization approach is attempted utilizing averaged compatibility

conditions, see section 3.9.

In accordance with the discussion between continuum and lattice coherency in subsec-

tion 3.5.1, Sutton et al. 1995 define macroscopic and microscopic geometrical degrees of

freedom (DOFs) for an interface. The macroscopic DOFs determine the particular OR and

interface of a bicrystal (see Figure 3.9). The microscopic DOFs describe the atomic struc-

ture of the interface. They are determined by relaxation processes. Macroscopic DOFs

specify BCs far from the interface and the microscopic DOFs adjust in such a way as to

minimize the free energy of the system subject to BCs.

Crucial differences between continuum and discrete interface theories are given here ex

ante. First, essentially many of the differences come down to the definition of bases /
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coordinate systems for the two regions separated by an interface and how they are related

to each other (correspondence). Historically (up to today) in the continuum theories a

constant correspondence (Bain correspondence) has been assumed and all calculations are

carried out in the coordinate frame of the parent lattice. Essentially, this assumption is a

sufficient one if the interface is (and remains) a coherent one during transformation (rota-

tion of the interface and hence partitioning of deformation is not necessary).

Only Cayron 2015 proposed a model with varying correspondence subsection 3.5.4, but

never emphasised it (took a fixed value in the end). In the discrete theories the selection of

a reference basis is one of the key points of the solution process. Beside the assumption of

an invariant parent reference, a median reference basis (equal partitioning between inter-

faces; reference lattice halfway rotated between the two lattices) and a coherently strained

interface unit (a so-called terrace plane), which is found from the study of dichromatic

patterns / complexes introduced in subsection 3.5.5), is emphasised. Continuum theories

additionally require a specification of deformation modes e.g. allowed slip (highly ambigu-

ous) or twin systems (less ambiguous) and yield a strain based on geometrical arguments.

Results must be checked a posteriori against experimental data as outlined in section 3.10.

Discrete interface theories on the other hand require an coherent reference state (e.g. spec-

ified by an orientation relation) and yield lattice invariant deformation modes.

3.5.2 Structural Stretch Tensors

The Cauchy-Born rule (CBR) is a easy way of correlating changes in positions of atomic or

molecular theories to descriptions of deformations in continuum theories. A homogeneous

deformation gradient F is applied to a reference set of lattice vectors giving another possible

set of lattice vectors in the deformed crystal. If F does not contain any plastic / lattice

invariant / inhomogeneous deformation its positive definite symmetric part U (stretch part

/ structural stretch tensor / "natural" lattice deformation) in steels is widely known as

the Bain strain B after Bain et al. 1924, transforming a f.c.c. into a b.c.c. or b.c.t. lattice.

The question of validity of the CBR is e.g. discussed in Ericksen 2008. Therein, it is

pointed out that although extensive plastic deformation takes place in the f.c.c. → b.c.c.

transformation the CBR is valid in the sense that the Bain strain is generally accepted for

characterising the transition.
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Figure 3.4: Bain strain B model. Golden atoms (f.c.c) remain invariant. Top: Initial
b.c.t unit cell, that can be drawn into two neighbouring f.c.c unit cells (Bain OR, blue
atoms coincide with golden ones). Lower-Left: 〈100〉bcc projection after application of
B morphing b.c.t → b.c.c. Lower-right: Other view of right illustrating that a rotation
around a specific 〈100〉bcc aligns {111}γ || {011}α′ (violet || green plane), as e.g. pointed
out by Maresca et al. 2017. Graphics have been produced with VESTA (Momma et al.

2011).
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Figure 3.5: Two views of a Kurdjumov-Sachs OR, i.e. after application of the in-plane
rotation aligning 〈110〉γ || 〈111〉α′ (violet || green arrow). Experimentally, a distribution
of the in-plane rotation angle θKS with a maximum between the KS and NW directions
is observed. In the lower picture the correlation between row / edge matching between
the phases as emphasised in subsection 3.5.5 and the KS directions is illustrated (slightly

tilted projection along these directions).
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The correspondence matrix Cαγ as well as the Bain-strain B can be directly derived from

Figure 3.4 (top) in terms of a linear combination of parent phase basis vectors (red) to

form the product phase basis vectors (blue). One possibility in accordance with Figure 3.4

is:

CAB =

⎡
⎢⎢⎢⎣
1/2 −1/2 0

1/2 1/2 0

0 0 1

⎤
⎥⎥⎥⎦ (3.18)

B3 =

⎡
⎢⎢⎢⎣
√
2aα
aγ

0 0

0
√
2aα
aγ

0

0 0 aα
aγ

⎤
⎥⎥⎥⎦ MarvalX12

=

⎡
⎢⎢⎢⎣
1.1311 0 0

0 1.1311 0

0 0 0.7998

⎤
⎥⎥⎥⎦ (3.19)

with aα, aγ lattice parameters. If the factor
√
2 is already taken into account in Cαγ it auto-

matically represents the orientation relation (rotation) {100}γ || {011}α′ 〈100〉γ || 〈011〉α′

referred to as Bain orientation relation (OR). Since the Bain OR is practically never ob-

served, but rather the Kurdjumov-Sachs OR illustrated in Figure 3.5, it should become

clear that a lattice correspondence does not imply an OR, but that additional lattice ro-

tations arise.

There are methods to identify most favourable correspondences in terms of maximum

principal deformation or of some norm of the total deformation, see Chen et al. 2016; K.

Koumatos et al. 2016. It is an interesting fact that the Bain deformation involves the

absolute minimum of overall atomic movements in generating the b.c.c. from the f.c.c.

lattice K. Koumatos et al. 2016 (except maybe for only a couple of atoms Chen et al.

2016), i.e. there is an inherent size effect.

A crucial point to keep in mind is that there is no investigation of the CBR or optimality

of the structural stretch tensor that permits a varying degree of plastic shear (which ap-

parently favours the transformation by offering an easy nucleation mechanism). It would

be interesting to see how the optimum changes in terms of an energy norm.

The selection of the lattice correspondence is the first step in any crystallographic contin-

uum theory. Note that without lattice invariant deformation, the correspondence automat-

ically fixes the directions of the principal axes and the magnitudes of the principal strains

of the lattice deformation.
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Note that Cαγ in general only describes the displacements of a fraction of atoms to define

the new lattice. The remaining atoms may shuffle in various ways giving rise to different

space group symmetries, but it is the linear / homogeneous transformation (deformation

gradient) that relates to macroscopic deformation and therefore to conditions of continuum

compatibility Chen et al. 2016. Christian 1997 notes that in general there is more than

one plausible set of shuffles, so that the final site of every atom cannot always be specified

unambiguously.

3.5.3 Crystallographic Continuum Compatibility

Note that the eigenvalues λi of a symmetric matrix A (equivalent to its singular values in

this special case) are the square roots of the eigenvalues of the matrix ATA. Also note

that

F TF = (RU)T (RU) = UTRTRU = UTU = ”U2” (3.20)

hence λ2
i (F ) = λi (F TF ).

Note that some authors Khachaturyan 1983; Qi et al. 2014; Christian 1965 use the λ2
i (F ),

while others (J. Ball et al. 1987; Bhattacharya 2003) denote the eigenvalues of the matrix

U2 as λi.

3.5.3.1 Invariant lines

In an invariant line strain (ILS), as the name suggests, a line remains geometrically invariant

(undistorted and unrotated). A ILS is always accompanied by a plane strain. Plane strain

means that the normal vector of a plane is undistorted and unrotated (however rotation

around the plane vector as well as distortion in the plane is allowed). One eigenvalue λi of

F must be one (λi = 1) or exactly one is smaller or larger one (equivalently one principal

strain λ2
i − 1 be zero, or has the opposite sign from the other two). The Bain strain

(Equation 3.19) even defines a cone of undistorted lines because two eigenvalues are equal.

Practically, applying any deformation to a (unit) vector x, i.e. Fx = x′ the rotation

(written as axis-angle pair)

R
[
x× x′, arccos(x · x′)

]
(3.21)
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rotates the line back to its initial orientation. Additional deformation in general is necessary

in order for it to be completely invariant, i.e. also unstretched.

Any ILS can be decomposed into two invariant plane strains (IPS, see subsubsection 3.5.3.2),

with the invariant line lying at the intersection of the invariant planes.

F ILS = F IPS
1 F IPS

2 = S1S2 (3.22)

In the case that the two IPSs have the same invariant–plane, or the same displacement

direction, then their combined effect is simply another IPS.

Particularly, morphing the lattice with two simple shears provides for a common nucleation

model. This line of thinking already started by Kurdjumov et al. 1930 proposing a two-

shear nucleation model (two consecutive plastic shears that directly morph austenite into

martensite). Burgers 1934 deduced a double shear theory assuming hard spheres for a

zirc-alloy. His model was applied by Bogers et al. 1964 for the f.c.c-h.c.p.(ε-martensite)

transformation. J. A. Venables 1962 was one of the first to study this model using TEM.

Later, it was thermodynamically described by G. B. Olson et al. 1976a; G. B. Olson et al.

1976b; G. B. Olson et al. 1976c (Burgers-Bogers-Olson-Cohen Model, cf. stacking fault

model). The model has recently been supported by in-situ HRTEM experiments Yang

et al. 2015; Yang et al. 2017.

Dahmen 1982 used the ILS assumption for studying orientation relations for precipitations

in the Fe-Cu system based on the experimental observation that they form very long and

fine precipitates.

In Nishiyama et al. 1978; Christian et al. 1995b; H. Bhadeshia 1987 (also elaborated in

subsection 3.5.5) it is pointed out that an ILS has a kinematic role (the interface must

remain mobile / glissile) for the formation of ferrous martensite laths if the moving interface

is formed by dislocations. Therefore the factorization

F ILS = F IPS
1 S1 (3.23)

is sometimes argued to fulfil both the mobility as well as the IPS criterion. However,

nothing is said about how to form F IPS
1 in the first place, which is generally not possible

without further shears conflicting the mobility argument.
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3.5.3.2 Invariant Plane Strain (IPS) - Generalities

Cermelli et al. 1994 denote the relative deformation between two regions on either side of

an interface undergoing homogeneous deformations F1 and F2 as coherency tensor H (also

misfit)

H = F−1
2 F1 (3.24)

Note that if only rotational contributions are considered (e.g. for rotated lattices), this

corresponds to the misorientation already introduced in Equation 3.15. Also the interface

defect operator in Equation 3.38 is defined in analogy (the only difference being that in

general translations are included).

The interface is an invariant plane or the relative deformation H is an invariant plane

strain (IPS) FIPS if:

rank (F1 − F2) = 1 or F1 − F2 = ε0d⊗ h (3.25)

where d gives the direction / is collinear with the ("macroscopic") shape deformation

(shearing), h is the interface normal (both unit vectors) and ε0 is the magnitude of defor-

mation in direction d. Experimental evaluation of the shape strain normally comes from a

surface relief measurement. However, it should be kept in mind that the stress state at the

surface is substantially different than in the bulk, so that higher magnitudes of deformation

ε0 may be tolerable. Typical values for ε0 are in the range between 0.2-0.5 for steels.

Since self-accommodation is of importance it must be pointed out that for Equation 3.25,

by construction if the shape strain tends towards zero |ε0| → det(FIPS)− 1 = ε0(d ·h) this

corresponds to an optimal accommodation (in the unloaded, untextured case). The stress

free fit, i.e. perfect self-accommodation is theoretically only possible if the volume does

not change during transformation i.e. det(FIPS) = 1 and hence |ε0| → 0 and H → I.

Equation 3.25 is also referred to as Hadamard compatibility condition (continuous change

of homogeneous deformation). Note that simple shears {Si} are special cases of an IPS,

i.e. {Si} ⊆ {F i
IPS} ( d ⊥ h =⇒ ΔV = 0). As opposed to plastic deformation for evolving

strains during phase transformation in general (V −V0)/V0 = det(FIPS)−1 = ε0(d ·h) �= 0.
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Considering the polar decomposition theorem a particular basis can be found by multiplying

with rotations, where Equation 3.25 is of the form:

RU1 −U2 = ε0d⊗ h (3.26)

If plastic deformation is included, it should be noted that the pure stretch U does not

coincide with the structural stretch tensor US , but also includes the stretch part from the

plastic shear! (also the rotation includes a component due to the plastic shear).

Following J. Ball et al. 1987; Bhattacharya 2003, denoting the eigenvalues of the matrix

C = U−T
2 F T

1 F1U
−1
2 (cf. Equation 3.24 and Equation 3.20) as λi(c) , solutions to Equa-

tion 3.25 exist if the λi(c) (sorted in ascending order) fulfil

λ1(c) < 1, λ2(c) = 1, λ3(c) > 1 (3.27)

(equivalently one principal strain λ2
iF − 1 = 0 and the other two have opposite signs).

Explicit formulae to obtain d, h and ε0 in the most general case expressed in terms of the

eigenvalues (λi) and corresponding eigenvectors have been worked out e.g. by J. Ball et al.

1987; Khachaturyan 1983; Bhattacharya 2003 on the premise that the matrix C does not

comprise a rotational part. The rotation R is obtained by rearranging Equation 3.26 and

inserting d, h and ε0. There are 4 solutions due to sign changes in general, however often

these are degenerate (as in the case of the cubic to cubic transformattion where solutions

come in pairs).

A twin is characterised by two symmetry related structural stretch tensors US
1 and US

2

corresponding to energy wells (see Figure 6.2) without requiring any lattice invariant de-

formation. The variable parameter of the twinning shear is either the twin plane normal

vector (typically denoted as K1) or twin direction η1 (selection of one fixes the other). The

two US
i can, but need not be different. If the two Ui are equal the choice of K1 and η1 is

severely restricted. Either K1 (defined in the parent phase) must be a mirror plane or the

η1 direction must be derived from a two-fold symmetry axis of the parent matrix (Mallards

law, see e.g. Bhattacharya 2003). Importantly, this is the case in the cubic system.

From Figure 3.2 it is evident that mathematically / from a continuum perspective the

shear due to slip and a twinning lamellae is equivalent, if the twin plane (K1) corresponds

to the slip plane m and the twinning shear deformation (η1) is parallel (edge dislocation)
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Figure 3.6: Formal equivalence of an invariant plane strain on one side of an interface,
constructed (left) by a twinned laminate of alternating stretches (modulated / adaptive
martensite) or (right) by one homogeneously distributed, straight dislocation lines. In the
former case an IPS can be obtained by varying ξ1 (cf. Equation 3.30), in the latter by
εs (cf. Equation 3.5). Generally, the variety of ILSs/ILPs solutions using shears is much
larger, but the scale at which the concept of a homogeneous shear applies is much smaller

than as a consequence of a twin laminate.

or normal (screw dislocation) to the Burgers vector, cf. Equation 3.5. Notably, the same

holds for a laminate of twins, where the overall shear magnitude is determined by the

fraction of each twin lamella, cf. Figure 3.6 and Equation 3.30.

The matrix C (modification of its eigenvalues to Equation 3.27) in general is constructed

using a combination of structural stretch tensors US
i (e.g. the Bain strain Equation 3.19),

rotations Ri and slip shears Si as outlined in the next sections.

Note that since purely geometrical arguments are used, for each solution it must be checked

a-posteriori whether it is reasonable by comparing it against experimental results such as

orientation relations, habit plane orientation etc. Particularly, recalling the principles

mentioned in subsection 3.5.1, in the author’s opinion, a final check of the resulting R has

not received enough attention in the case of lath martensite.

Subsequently, a short historical review is given in order to better understand the diverse

literature. In the case of martensite, the seminal works by Wechsler et al. 1953 for the

{3 10 5}γ habit plane between austenite and a twinned martensite laminate (proposed for

high carbon, twinned b.c.t. martensite steels) and Bowles et al. 1954, allegedly proposed

independently, remain most cited. The latter introduced a dilation parameter det(FIPS)−
1 = ε0(d · h) normal to the habit plane in order to account for the volume change since
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they do not presuppose the Bain strain. After their treatment the field split into two

groups. The first added plasticity in a continuum averaged sense (continuously smeared

slip resulting in a homogeneous, simple shear, Wayman 1964; Christian 1965; H. Bhadeshia

1987) in analogy to what is done in crystal plasticity. A drawback of such an approach

is that the obtained set of possible solutions merely fulfilling the IPS condition is vast if

any combination of arbitrary shears is allowed. Solutions then are selected according to

experimentally observed microstructural features (i.e. via an inverse approach).

The other (more mathematical) group limited the range of linear mappings such that

plastic deformations are excluded (Ericksen-Pitteri neighborhood, see Pitteri et al. 1998)

and generalized the notion of (rank-one) compatible deformations in the framework of non-

linear elasticity (e.g. compatible laminates of twins). Particularly in the works of J. Ball

et al. 1987; Kohn 1991; Bhattacharya 2003 it is argued that the main crystallographic

characteristics are derived by energy minimization for elastic materials at finite strains

(often referred to as mathematical theory of martensitic microstructure). As the global

minimum of energy corresponds to a stress-free configuration, the problem reduces to the

geometric one. Again it must be emphasised that slip is not considered in this theory!

While this framework may be more limited in deformation modes compared to slip (at

least without considering higher order laminates / macro twins, see e.g. J. Ball 2004;

Mühlemann et al. 2015; Petersmann et al. 2017b) the advantage is that the twin-laminate

shear magnitudes follow directly from the requirement of compatibility.

Note that the plastic shear incorporated in theory is the same as in crystal plasticity,

which in turn is normally incorporated under the premise of maximum dissipation, see

subsection 6.4.2. It is, however, difficult to incorporate this principle for the selection of

the integral shear(s) since the selection is a compromise between both energy minimization

and dissipation maximisation. Notably, dissipation mainly emanates from the movement

of the incoherent interface, references can be found at the end of subsection 6.4.2.
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3.5.3.3 IPS including Slip (Reconstructive)

Despite austenite is considered the easier deformable phase the austenite-martensite inter-

face is always described with austenite remaining unaffected by deformation, i.e. repre-

sented by I, i.e.

RBi

∏
j

Sj − I = FIPS − I = ε0d⊗ h (3.28)

It is argued that since the transformation takes place in the interface the shears Si can

be selected from both sides of it, i.e. slip systems of both the austenite and martensite.

Crocker 1965; Nishiyama et al. 1978; P. M. Kelly 1992 found that the {557}γ habit plane of

individual laths can be explained utilising FIPS = RBS2S1. Iwashita et al. 2011 used the

additive decomposition (small strain) and Miller-index representation of shears following

Khachaturyan 1983 to obtain a similar result. Note that more than two shears are generally

very unlikely since the dislocations would intersect each other and make the interface

immobile / sessile (see subsection 3.5.5). In subsubsection 3.5.3.4 utilizing the continuum

analogy between slip and twinning the formalism to obtain this HP from a hierarchy of

twinned laminates is outlined.

The invariant parent phase - slipped martensite theory is very successful in the case of

f.c.c−h.c.p. transformation such as the high temperature transformation in titanium alloys,

particularly titanium-aluminides (BS1) see Mayer et al. 2016 or the transformation in

cobalt base alloys, see Weißensteiner, Petersmann et al. 2018 (in preparation). Figure 3.7

shows the accordance of the theoretical orientation of habit planes with calculated ones in

Ti-Al-3Mo.

A factor to bear in mind is that the lattice–invariant shear is an integral part of the

transformation, i.e. it does not proceed independently before or after the lattice change has

occurred. According to Wayman 1964 for relaxed lath martensite it is of utmost importance

to distinguish between the lattice invariant shear, which is a part of the transformation

mechanism, and plastic deformation arising from distortion of the martensitic phase itself.

However, the latter contribution has up to now not been considered at the continuum

theory as above, although new developments in the theory of crystalline interfaces use this

concept as well, see subsection 3.5.5.
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Figure 3.7: Traces of calculated habit planes of martensite with the surface recorded via
EBSD (given in terms of a lattice vector) taken from Mayer et al. 2016. The color-code in
the EBSD mapping and the traces correlates. U1-U6 denote the symmetry variants of the
structural stretch tensor. Note, that in general four IPS solutions occur together. In this
case the other phase easily enables a determination of the relative orientations and only
a small amount of plastic slip is necessary in order to enable an invariant plane strain.

A partitioning of the deformation between martensite and austenite has been recently

observed by J. Liu et al. 2017 in an in-situ TEM study. The obvious extension of the

current theory therefore is

RBi

∏
j

Sj −
∏
k

Sk = F IPS
1 − F IPS

2 = ε0d⊗ h (3.29)

Here the Sj may be selected from both phases whereas the Sk are exclusively austenite

systems. The latter could be identified by studying the role of the atomic interface structure

on the nucleation of glissile dislocations from a low energy, atomically flat, incoherent

f.c.c− b.c.c. interface. Such studies have already been carried out by R. Zhang et al. 2011;

R. Zhang et al. 2012 particularly for the KS orientation relationship. Such an ansatz may

also explain why neighbouring domains form subsequently instead of simultaneously.
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3.5.3.4 IPS by Transformation Twinning (Purely Displacive)

Mühlemann et al. 2015 explained the {557}γ habit plane in terms of hierarchical twinning /

twins within twins / a second order laminate, i.e. a double shear in the algebraic sense. The

general idea is the following: If det(US
i ) = 0 (in this case Equation 3.44 is automatically

fulfilled), the limit of an energy minimising sequence is given by (see Figure 3.6 )

F = (1− ξ1)U
S
1 + ξ1RUS

2 (3.30)

This is taken as an average / total shape deformation (laminate deformation). For a cubic

to tetragonal transformation there exist at most 24 twinned-laminate to austenite solutions

(Hane et al. 1998). Using Equation 3.26, one US
i can be eliminated from Equation 3.30.

Note that for two different Ui there are 4× 2 possibilities (exchange of R and ξ1). Using

US
i = Bi yields e.g.

F = Bi + ξ1η ⊗K = Bi

(
I + ξ1B

−1
i K ⊗ η

)
= BiSξ1 (3.31)

where Sξ1 = I + ξ1B
−1
i η ⊗K = I + 〈110〉α ⊗ {110}α is a simple shear (3.32)

If the same formalism is repeated once again the macroscopic deformation of twins within

twins (double shear) is obtained as

F = B1 + ξ1η ⊗K + ξ2ηξ1 ⊗Kξ1 = B1S2(ξ1, ξ2)S1(ξ1) (3.33)

where S2 = I + ξ2B
−1
1 ηξ1 ⊗ S−T

1 Kξ1 (3.34)

The results are identical to the double shear case using specific twinning shears ({112}γ)
in subsubsection 3.5.3.3, but the origin is different. Due to this analogy the twin shear

direction of the laminate is is often argued to be also active for the plastically sheared case.

Their ansatz is supported by recent TEM studies P. Zhang et al. 2016; Man et al. 2018.

Recently, K. Koumatos et al. 2018 (re-)published their work with a Matlab toolbox and

an emphasis on this analogy (plastic doubleshear). However, they still did not check their

results against Equation 3.44.

Bartel et al. 2009; Bartel et al. 2010; Hackl et al. 2014 (cf. lamination theory) present a

slightly weaker version of the above construction by introducing the notion of a quasicon-

vex hull and the direct specification of a (semi-empirical) fluctuation field that is derived
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from the displacement field by perturbation (hence automatically fulfilling compatibility).

Explicit formulae have been derived for second order laminates that can be readily used in

evolution equations (also see Hackl et al. 2008a; Peigney 2016).

Other rank-one constructions like wedge or diamond shapes can be found in Bhattacharya

2003. The basic idea is to construct coupled compatibility equations (in those cases there

are points that must full-fill 3 and more equations simultaneously).

3.5.4 Theories Considering Continuous Features of Orientation

Relationships and Kinematics of Sphere Packings

The following crystallographic models present interesting characteristics, in particular they

do not presuppose any macroscopic criterion of inelastic deformation. Orientation relations

are taken as inputs in these theories. An advantage of these theories is that statistical

information about orientation relations is readily obtained by two-dimensional EBSD mea-

surements.

It is anticipated that in these theories few to nothing is said about morphology although

arguments are based on lamination, similar to twinned microstructures.

Muehlemann et al. 2016 proposed to relax the initial postulate of an invariant plane strain

to an unrotated plane strain for the calculation of transformation strains / habit plane

variants. Their framework provides a one-to-one correspondence to orientational / cor-

respondence variants. The work also gives a good overview of operators relating these

variants.

As e.g. pointed out in K. Verbeken 2009 the poles in the pole figures of highly dis-

located lath martensite steels exhibiting transformation induced plasticity are not dis-

crete but continuous. This may be because both the Nishiyama Wassermann (NW) and

Kurdjumov-Sachs (KS) OR (see Figure 3.4) together characterise 36 coherent transfor-

mations simultaneously occurring in steels, see e.g. Guo et al. 2004. Cayron et al. 2010

interpreted these continuous features in terms of the formation mechanism and proposed

a two-step theory (via the intermediate h.c.p. ε− martensite phase). Their approach was

reviewed by H. Bhadeshia 2011 pointing out that the continuous features are an artefact

of the high dislocation density leading to a spread in diffracted intensity. He also pointed

out that even if such predictions may be statistically representative on the meso scale they
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should not be used in models considering crystallographic mechanisms. Cayron et al. 2011

correctly pointed out that the resolution of modern EBSDs (≈1°) is quite high compared

to the continuous features appearing in an interval of ≈5°.

Next, Cayron 2015 studied the way the atoms move by treating them as rigid spheres

obeying rolling kinematics. The idea is to directly construct a displacive distortion that

gives the final OR, i.e. the orientation relation implies the "natural deformation", contrary

to other models where the lattice correspondence has to be assumed. Cayron 2015 classifies

this transformation as "angular-distortive" and calls the resulting mappings distortional

variants. The question is what orientation relation is considered as final configuration.

If the KS OR is considered the model yields the same results as initially proposed by

Jaswon et al. 1948. If the NW OR is considered, the result of the model coincides with

that proposed in Bogers et al. 1964. A problem in the model is that the volume change

is overestimated due to the hard sphere assumption (up to 8%). The model predicts the

{225} habit plane (commonly observed in martensites exhibiting butterfly morphology) as

a composite block (ξ = 0.5) of two KS distortional variants, see Cayron et al. 2016 and

the {557}γ habit plane as a composite block (ξ = 0.5) of two NW distortional variants,

see Baur et al. 2017. Note that these two habit-planes occur in steels where twinning is

predominant (the transformation is displacive in character). The {557}γ also occurs in

dislocated lath martensite (see section 1.1), but not as a composite block. Furthermore,

the results are equivalent to the twinned continuum theory for displacive transformations.

Contrary to other theories the ratio of the lattice parameters does not play a role due to

the rigid sphere assumption.

Summarizing this approach is interesting regarding displacive transformations, cf. Fig-

ure 2.1 particularly for the prediction of new twinning modes, see Cyril 2018. The author

believes, however, that for highly reconstructive transformations such as the f.c.c.− b.c.c.

accompanied by a phonon soft mode instability see subsection 6.7.1) the "shear paradigm"

(Cayron 2017) should still be followed.
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3.5.5 Interfaces, Lattice Defects at Interfaces, their Characterisation

and Resulting Theories of Lattice Coherency

Sutton et al. 1995; Howe 1997 distinguish between homogeneous interfaces, such as grain

boundaries (GBs), twin boundaries, stacking faults and heterogeneous interfaces separat-

ing two crystals of different composition, different Bravais lattice or both. Heterogeneous

interfaces, are further divided into coherent, semi-coherent / commensurate (some trans-

lation vectors, not necessarily primitive, of the two adjoining lattices are equal, leading

to one- or two-dimensional periodic arrangements of dislocations in the interface plane)

and incoherent / incommensurate (e.g. high angle grain boundaries - HAGBs). According

to M. Cohen et al. 1992 the term semi-coherent / commensurate is generally used for a

transforming domain undergoing sufficient plastic relaxation by slip or twinning in order

to form an IPS.

In general, coherency requires the adjacent crystals to be strained. Very approximate

expressions for this (purely elastic) coherency / misfit strain / disregistry that are com-

monly found are ε = (ai − aj)/〈aj〉 or (ai − aj)/|a|j , where the ai are translation vectors

of the lattice. The matching of rows of atoms (in the laths’ 〈110〉γ long directions) in

the f.c.c.− b.c.c. interface seems to be of high importance. Notably, an exact match-

ing between a (111)γ and (110)α monolayer can be reached if η3 = aα/aγ = 0.9185 or

aγ/aα = r = 1.0887 by rotating the monolayers through 5.26°, see Howe 1997 p.190-192

therein.

The degree of coherency of homophase low-angle tilt and twist grain boundaries LAGB

(θ < 15°) can be described through dislocation based models and is characterised by

the spacing between dislocations within the interface plane. If the misorientation angle

of the interface is greater than 15°, the cores of the interfacial dislocations become too

densely packed for an individual distinction, requiring a different description of the interface

structure.

In the mid-1980s high-resolution TEM (HRTEM / phase contrast imaging allowing to view

the atomic structure), became available to reveal the atomic structure of transformation

interfaces, in particular interface steps (ledges in surface sciences see e.g. Shiflet et al. 1994)
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associated with both diffusional and martensitic transformations (also see Figure 3.10). In-

situ heating studies revealed how such steps propagated along the interfaces, e.g. Christian

1965; Mahon et al. 1989; Howe 1997.

Subsequently, the development of the defect theory of interfaces is outlined. Remarkably,

much has already been theoretically predicted before observations of martensitic interfaces

by means of HRTEM revealed that the interface of individual laths of martensite comprises

coherent terraces reticulated by arrays of interfacial defects.

The Frank-Bilby-Bollmann equation Equation 3.35 arises from the incompatibility of the

shape and lattice deformations. bc is the effective / net (misfit / anticoherency, see Ta-

ble 3.2) dislocation Burgers vector of the interface ("surface-dislocation" after Bullough

et al. 1956) crossing a vector v (probe vector) in this interface. bc is not unique because of

the multiplicity of affine deformations which will generate one lattice from another. Bilby’s

original derivation starts with the dislocation density tensor and is somewhat cumbersome.

An easier way to obtain the final equation based on circuit mapping through an interface

can e.g. be found in Christian 1965 (p. 364-365 therein) or Nishiyama et al. 1978 (p.408

therein). In any case the result is:

bc =
(
F−1
ref→A − F−1

ref→M

)
v = (FA→ref − FM→ref)v (3.35)

The matrices F−1
ref→A and F−1

ref→M represent the homogeneous deformations necessary to

transform the reference crystals into their coherent forms. While initially the unstrained

/ natural lattice has been considered as reference, recent treatments prefer a coherently

strained reference as elaborated subsequently.
(
F−1
ref→M − F−1

ref→A

)
is the terrace coherency

strain Eref→c. v is a random / probe vector in the interface. Examples of coherency strains

and related coherency dislocation networks are found in J.M. Howe 2009.

Taking the parent structure as reference lattice Equation 3.35 is equivalent to the "O-

lattice" construction proposed by Bollmann 1971. A conceptual difference is that Bollmann

considers solutions as discrete (v → xo ∈ O-lattice space), whereas Frank and Bilby

envision continuous distributions of dislocations (although they are always quantized in

the interface).

In this case the algebra is that of an invariant line. For the O-lattice and resulting cell

structure treatment see e.g. W.-Z. Zhang et al. 1993a; W.-Z. Zhang et al. 1993b. This
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is the most general but least quantitative theory. The equation may also be formulated

in reciprocal space (plane vectors) where it is referred to as Δg method, see W.-Z. Zhang

et al. 2005. Note that interfacial dislocations in crystalline solids are ‘quantized’ by the

discrete lattice, and truly continuous dislocation distributions are not possible.

Despite exhaustive plastic deformation the interface velocity is only slightly lower in ferrous

lath martensites than in twinned plate martensite (≈ 1/3 of the speed of sound Thadhani

et al. 1986). The semi-coherent / commensurate interface must be such that the interfacial

dislocations can glide as the interface moves (non-conservative climb is not permitted or

can be excluded because it is too slow compared to the high interface velocity). It follows

that the Burgers vectors b (one set of continuously distributed straight dislocations) or the

effective / net dislocation content of the interface bc must not lie in the interface plane

unless the dislocations are screws. However, Schoen et al. 1971 point out that the net

burgers vector b is not parallel to the net dislocation line ξi, because an array of pure

screw dislocations is not stable. Conservative interfaces may be termed glissile in the sense

in which this term is used for dislocation lines.

The line vectors of the interfacial dislocations must lie along an invariant-line, i.e., a line

which joins the parent and product crystals without any rotation or distortion. For any

distortion along the dislocation line other dislocations would be needed to accommodate

that misfit. It would then be necessary to have more than one set of non-parallel dislo-

cations in the interface. These non-parallel dislocations can intersect to form jogs which

render the interface sessile. Therefore the choice of slip systems in other theories should

be restricted due to the argument of interface mobility by imposing the requirement that

the invariant line should be contained in a particular set of slip planes: ILSF ∈ mi.

An edge to edge meeting of slip planes was first proposed by Frank 1953 (shortly before

the continuum theories) to explain the high-index, i.e. {225}γ , habit plane of martensite in

steel. As this habit plane contains the close-packed (110)γ direction of the product lattice,

Frank suggested that close-packed planes of the two lattices meet edge to edge in the

interface along close-packed rows. The relation regarding a martensite lath is illustrated

in Figure 3.8. The aspect of edge to edge matching is particularly emphasised by M.-X.

Zhang et al. 2005 known as the edge to edge model (E2EM) also popular for diffusional

transformations.
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The terminology for dislocations at the interface is diverse as shown in Table 3.2. A

coherent interface can contain partial dislocations, so-called transformation / coherency

dislocations. They are partial dislocations of both the parent and product crystal lattices

and consequently their motion is constrained by fault energy. This forces the dislocations

to remain in the interface / maintain their periodicity as the interface moves and deter-

mines the nature of their motion as individual defects G. B. Olson et al. 1979; G. B. Olson

et al. 1986. They maintain continuity (lattice correspondence) of the lattice, are capable of

conservative climb or glide during the transformation, but their motion is restricted to the

plane of the dislocation loop since they form stacking faults. The strain energy associated

with coherency dislocations can be reduced by misfit / anticoherency dislocations, gen-

erally having lattice Burgers vectors and producing a lattice-invariant deformation which

disrupts the uniformity of the lattice correspondence across the interface, and thereby re-

duces coherency (they produce steps / ledges. The anticoherency dislocations move as

conventional dislocations.

Various
names

misfit- (Frank) / anticoherency-
(G. B. Olson et al. 1979) / primary-
(Christian 1965) / accommodation- /
intrinsic- (H. Bhadeshia 1987) / in-
herent dislocations; dislocations are
a necessary

transformation- (Bilby) / coherency-
(G. B. Olson et al. 1979) / secondary-
(Christian 1965) / extrinsic (H.
Bhadeshia 1987) / extraneous dislo-
cations.

Function Continuum deformation by lattice in-
variant shear of martensite required
for reducing the long range / global
strain energy. Enables the total
shape-deformation of the habit-plane
to be an or close to an ILS / IPS.

enable transformation by providing
a suitable nucleation (SFEs) and
growth (SFE remains in the in-
terface) mechanism; preserve lattice
correspondence across the interface
(maintain the coherency of the inter-
face).

Lattice
co-
herency

generally reduce coherency and dis-
rupt uniformity of lattice correspon-
dence

Maintain coherency and lattice corre-
spondence

Burgers
vector

Except for twinning dislocations
(LIS) perfect dislocation (lattice) b

partial b

Motion conservative glide (as stacking fault
partial), climb by diffusion

Motion restricted within plane of the
dislocation loop. However, both con-
servative climb and glide possible in
that plane.

Table 3.2: Overview of terminology of dislocations at semi-coherent / commensurate
interfaces.
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Figure 3.8: Left: modified from J. Hirth et al. 2016. Upper-left: low nucleation rate,
high growth rate. Lower-left: high nucleation rate, low growth rate. According to J.
Hirth et al. 2016 this tendency even applies for twinning. Right: magnification of glissile
interface. Slip systems meet edge to edge along an invariant line. Also see Figure 3.10.

Sandvik et al. 1983 pointed out that in the f.c.c. → b.c.c. transition, transformation /co-

herency dislocations may be difficult to resolve in Fe-alloys, because their Burgers vector

can be small and the dislocations are very closely spaced.

Solving the Frank–Bilby-Bollmann equation, i.e. determining bc = −Eref→cv (coherency

dislocation content) by an iterative procedure, is referred to as topological model (TM) by

R. Pond et al. 2007; J. Hirth et al. 2013; R. Pond et al. 2015.

As for all crystallographic theories the determination of a suitable reference lattice for an

interface is not unambiguous, especially when it contains arrays of dislocations. It is most

convenient to take one of the two lattices as reference lattice, particularly if the motion of

an interface by dislocation glide is considered. For metallic systems, where the isotropic

uniform elastic approximation normally holds a so-called "median lattice" rotated half way

between the two is also often used. For a determination of the coherent reference state in

an anisotropic treatment see, Abdolrahim et al. 2016.

In the topological method, the key assumption is the existence of a reasonably coherent

"terrace plane" with sufficiently small coherency strains, see R. Pond et al. 2007; J.M. Howe

2009. Considerations on inter-penetrating lattice sides as subsequently outlined serve as

perfect reference lattices for lattice circuit mapping and hence for determining these terrace

planes, see J. Hirth et al. 2013. According to a terrace plane (reticulated by steps) has

been selected the misfit strain is deduced from the lattice parameters.
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After J. Hirth et al. 2013 v cannot be established until the final interface plane is known,

i.e. until the partitioning of rotations has been determined.

In Figure 3.9 an overview of the microscopic study of interfaces starting from bicrystals,

i.e. two non interpenetrating lattices, here austenite (A) and martensite (M), according

to J. Hirth et al. 2013 is given. Generally, the symmetry of the bicrystal is lower than

the symmetries of the component crystals (dissymetrization after R. C. Pond et al. 1983).

The first stage of dissymetrization is by interpenetrating the two lattices of the bicrystal

forming a dichromatic pattern / complex (DP / DC). Note, that so-called moiré patterns,

are formed analogously by two sets of parallel lines that are inclined relatively to each

other. DPs are distinguished according to their coherency as follows:

• no coherency strains are present - natural DP (NDP).

• coherency strains but no rotations - commensurate DP (CDP, mostly coherent).

• coherency strains and rotations (RCDP).

Reference spaces must represent all the symmetry operations of both crystals, hence the use

of DPs representing unions of both space groups. DPs with 3-D periodicity have symmetries

belonging to the classical space groups. These DPs are known as coincidence-site lattices

(CSLs) in the grain boundary literature. Predictions of the morphology of precipitates,

where the interface energy dominates is mainly based on finding the optimum interphase

boundaries with a high density of near coincidence sites (NCSs), see M.-X. Zhang et al.

2009.

The inverse density of coincident side lattice (CSL) points is defined as

Σ =
Volume unit cell of CSL

Volume unit cell crystal lattice
(3.36)

for low angle boundaries Σ ≈ 1 (Σ1). Twins are characterised by Σ3. In the case of highly

relaxed, dislocated lath martensite, beside Σ1 boundaries the coherent {111}γ and the

symmetric incoherent {112}γ Σ3 (90° from the former {111}γ) twin boundary is important.

Note that the CSL theory applies to lattice sites, not atom positions. In reality there will be

dislocations at interface and atoms wont be at the CSL points. Remarkably, the positions

of the atoms at the GB can be described by one out of seven polyhedra (Bernard structures)
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According Bicrystals

Natural / unstrained DP

Dichromatic Patterns / Complexes

Commensurate / Semicoherent DP

Rotational Commensurate /
Semicoherent DP

Austenite (A)

Martensite (M)

A

M

M

A

ZHP

XHP

Z
TP

X
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ZTP

X TP

Figure 3.9: Interface terminology following J. Hirth et al. 2013. Indices of austenite (A)
and martensite (M) lattice. For interfacial defects the suggested reference space is the
dichromatic complex / pattern (union of the space groups of both A and B). Left column:
Bicrystal, i.e. same as on the right but the atoms on the other side of the interface are not
shown. Bottom: The total rotation, is partitioned between the two crystals with respect
to the initial (coherently strained) terrace plane. The subscripts HP and TP mark the

habit plane and terrace plane bases respectively.
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that correspond to dislocations. Evidence strongly suggests that in all except f.c.c metals,

material properties are related to the two surfaces that make up the boundary, not the

CSL structure. The existence of low energy boundaries for e.g., Σ3 and Σ11 boundaries

is “coincidental” (although probable due to the high symmetry). Bollmann et al. 1972

reported CSL boundaries in stainless Cr-steels.

Using the concept of configurational Kienzler et al. 2000 and virtual (cf. method of virtual

displacements) / image force J. P. Hirth et al. 1968 showed that single dislocations in a

perfect homogeneous continuum tend to move towards free surfaces or interfaces. Following

this line of thinking a defect near interfaces and free surfaces may be split into step / ledge

(free surface) as well as screw and edge dislocation components (bulk behavior). Such a

general characterisation of a generic line defect at interfaces has been given by J. Hirth

1994.

J. Hirth 1994 obtained a formal definition of a step / ledge vector of a free surface, equiv-

alently to a Burgers vector by a-posteriori circuit mapping of a closed path crossing the

interface. He gave the combined defect at the interface the name0 ’disconnection’.

The topological character of an admissible defect that can be superimposed on a certain

reference structure is given by a combination of symmetry operators, one from each of the

bicrystal (J.M. Howe 2009). Using the matrix formalism for symmetry operators (Seitz

symbol of the mappings) set out in the International Tables for Crystallography (Hahn

1987),

W = (W , t) (3.37)

where W is a linear mapping and t is a lattice translation vector. As already mentioned in

subsubsection 3.5.3.2 the operator characterising an interface defect is defined in analogy

to the misorientation (Equation 3.15, only rotations) and the incoherency tensor (general

deformation without translation, Equation 3.24) with the only difference now translations

are included. Using the notation of Hirth, Pond, Howe The operator characterising a defect

in the interface is therefore given by:

Qij = W (A)i W ∗(M)−1
j (3.38)

with W (A)i and W ∗(M)−1
j as the operators given in the basis / coordinate frame of

austenite (A), indicated by an ∗ for the martensite (M) operator. Possibilities of distinct
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defects that can arise in a given interface depend on the extent of symmetry breaking during

dissymmetrization. Equation 3.38 is equivalent to the Frank–Bilby-Bollmann equation

(Equation 3.35), in which W (A)i and W ∗(M)−1
j represent the vector v after mapping into

the natural reference of austenite and martensite, respectively.

First, special cases are considered. A perfect dislocation (transformation/anticoherency

dislocation) in austenite therefore becomes Qij = (I, b(A)). Interface dislocations arise in

the case where dislocations from both crystals coincide at the interface and either trans-

lation or point symmetry is broken leading to t = b = b(A)i − b∗(M)j . These are the

defects considered in the continuum theories for geometrical shearing (LIS). Their motion

along an interface cannot produce transfer of material between the phases. J. Hirth et al.

1996 define the "overlap" step / ledge height, h associated with a general defect given by

Equation 3.38 to be the smaller of n · t(A)i and n · t∗(M)j where n is the unit normal

vector of the local terrace plane (of a generally irrational interface) pointing into austenite.

(Initially the ledge / step vector of interface defect l has been defined independently, later

the direction of l was specified via the terrace plane vector n). Pure interface steps / ledges

Qij = (I,0), (b = 0,h �= 0) occur in the special case where the adjacent crystals have some

symmetry in common. No dislocation character arises i.e. no misfit is accommodated.

In the general case of a disconnection (b �= 0,h �= 0). The differential flux due to long

range diffusion accompanying dislocation climb is proportional to the normal component

of the Burgers vector bn = b ·n. and the differential flux due to step / ledge movement ∝ h

(most generally also the difference in density between the crystals). The long range stress

field is solely proportional to the dislocation portion characterized by b. An overview of

this terminology regarding a martensite lath is shown in Figure 3.10.

For the mobility of line defects at interfaces and hence for the interface itself to be suffi-

ciently mobile the line defects must have translational (or if the stacking fault energy is

very high, near translational) character, i.e. t ∈ dichromatic complex (DC). Otherwise a

stacking fault forms. Equivalently to dislocations, there are perfect and partial disconnec-

tions depending on whether the dislocation and step / ledge part are translation vectors

of the lattice.

When the disconnections contain only edge Burgers vector components by lying in the

terrace plane, there is exact agreement between the geometrical treatment and the topo-

logical model. The transformation distortion is an invariant plane strain. However, for the
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slip plane of dislocations for 
LIS or twinning planes: (b,0)  coherently strained terrace planes 

n: {111}  || {110} disconnections 
with step / ledge 
character (b,h)
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growth direction 
of laths <110>
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direction of lath
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Figure 3.10: Red, green and blue colors mark correspondences between the images.
Upper-left: Habit structure of martensite laths along the lines of Christian 1965. Frank
1953 proposed a longitudinal growth by screw dislocations (b || ξD = ξL). Topological
characterisation and notion of disconnection and terrace plane after J. Hirth et al. 2011.
Recent MD simulations (e.g. Maresca et al. 2017 particularly Figure 5 therein) support
this view and reveal the nature of the two shears. Upper-right: Characteristic dimensions
of a lath. Center: Interface cross section showing orientation relation (terrace plane).
Lower-left: Schematic of habit plane interface cross section as found in publications of

J. Hirth et al. 2013. Lower-right: Habit-plane and terrace-plane systems.
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transformation case when there is also a Burgers vector component normal to the terrace

plane, the distortion is planar but it is not exactly an invariant plane strain, but contains

rotational components.

It must be kept in mind that the interface predicted by the TM does in general not predict

a lattice-matched plane on a lager scale than the crystallographic one. In other words

almost nothing is said about microstructure morphology. However, the framework leads to

an interface, which is invariant in a physical sense since its structure does not change on

average during transformation by lateral motion of the disconnections (which produces a

plane strain / invariant line deformation). Thus, the habit plane from a purely geometrical

treatment may produce unrelaxed interfaces in case the interface is stepped while the TM

interface is fully relaxed on the atomic scale. The near-distortion field predicted by the

TM is argued to be important since it not only relates to the interfacial energy, but also

to the mechanism of transformation and hence kinetics.

Considering the nature of disconnections an analysis of the diffusional flux during the

transformation on an atomic scale has been performed by G. B. Olson et al. 1986; R. Pond

et al. 2007; J.M. Howe 2009. Summarizing there are up to five requirements in the TM: i)

the composition, ii) the interface, iii) the defect, iv) the defect’s mobility (generally greater

if |b| and h have small magnitudes) and v) the requirement that if more than one set

of defects is present their defect intersections must also be glissile (network requirement)

Christian 1994; R. Pond et al. 2007; R. Pond et al. 2003.

Most of the models outlined here are comprised in the open source program PTCLab by

Gu et al. 2016; W.-Z. Zhang et al. 2016 (also see section C.1). A comprehensive overview

of the mechanical characterisation of such interfaces can be found in Fressengeas 2017.
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3.6 Relations between Oriented Crystallographic Variables

Now that the underlying principles of stretch tensors, orientations relations and their im-

portance in view of morphology and interface mobility have been elaborated it is time to

given an overview of the crystallographic relations commonly reported for the hierarchical

microstructure of lath martensitic steel. Here symmetry-related structural stretch tensors

are the Bains (B1) and KS-OR variants are denoted as Vi. Figure 3.11 illustrates the

relation between the Vi in relation to the slip systems in austenite depicted on an unfolded

Thompson tetrahedron. In Table 3.3 an overview of the grouping of variants in terms of

crystallographic relations is given. Particularly the close packed plane group (short CP)

marks packets and misorientations are calculated between V1 and other variants based on

the assumption of an ideal K-S OR.

Figure 3.11: Connections between the 24 KS-OR variants. The four triangles are the
{111}γ slip planes oriented as an "unfolded" Thompson tetrahedron. The slip / KS-
direction relation and variant number due to Morito et al. 2006a are shown on each plane.
The lines mark special interfaces (CSL see subsection 3.5.5) between the variants: Σ1 is a
low angle boundary and Σ3 a (coherent) twin boundary, see e.g. S. Zhang et al. 2012 for
a Fe-13Cr-9Ni stainless steel similar to the MarvalX12. Variants connected by Σ1 belong

to the same Bain correspondence (see subsection 3.5.2).
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Table 3.3: Overview of the twenty-four KS orientation variants (orientational / lattice
correspondence variants - LCVs). The individual Bains (compression axes), parallel plane
(CP) relations defining packets and theoretical misorientations w.r.t. variant V1 are given.
Note that all misorientations in a packet belong to a 〈110〉α direction. The 10.5° and 14.9°
misorientations are semi coherent Σ1 coincidence side lattice CSL interfaces. Vi − Vi+1

are related by a 60° rotation around a specific {111}γ and form a Σ3 twin boundary (this
is the characteristic Type I twin solution).

3.7 Overview of Important Slip and Boundary Sliding

Mechanisms for Lath Martensite

The lath geometry can become very pronounced as Fe-20Ni-5Mn with lath dimensions of

a : b : c = 0.3 : 2.8 : 100 μm Wakasa et al. 1981. Sandvik et al. 1983 investigated the same

steel in TEM and found that individual laths contained a high density of screw dislocations

with ξ = b along the four 〈110〉γ ≈ 〈111〉α (in KS OR) directions with a predominance

of one of them. Note that the net continuum shear deformation of straight, parallel screw

dislocations with 〈111〉α Burgers vector gliding in the plane {110}α is

I +
1

m
(b×m)⊗m = I + 〈112〉α ⊗ {110}α (3.39)

Sandvik et al. 1983 assumed a correspondence of this effect with the lath’s long direction

(several μm) which, however, can not be determined in a thin foil used for transmission

electron microscopy. Particularly, they stated: ”Information concerning the long direction
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of a lath in terms of the accurate variant of the austenite-martensite orientation relationship

would be very valuable”. Recently, Qiu et al. 2014 proposed a method to determine the

habit plane in TEM based on an accurate measurement of the foil thickness. P. Kelly

et al. 1990 showed that the lath long direction indeed is the close packed direction 〈110〉γ .
Sandvik et al. 1983 noted that austenite dislocation arrays associated with the straight

and irregular lath interfaces are very different, suggesting that the thickening of a lath

takes place mainly in one direction away from the initial straight interface. Generally, the

dominance of screw dislocations is interesting because they have a much higher tendency

to annihilate than edge dislocations. This has e.g. been confirmed by Shintani et al.

2011 reporting a decrease in the relative contribution of screw dislocations with increasing

deformation.

Wittridge et al. 2001 points out that there is a one to one correspondence between the

2x12 {111}γ ||{011}γ (perfect dislocation) slip shears and the 24 KS-variants as illustrated

in Figure 3.11. Note that the unit cells of the f.c.c. and b.c.c. phases in KS OR are related

by a 90° rotation about a 〈112〉 axis. In analogy Jonas et al. 2005 established a connection

between the 12 NW-variants and Shockley partial dislocations.

For modelling the effective behavior of the hierarchical arrangement two pseudo-single

crystal slip families have been considered by Schastlivtsev et al. 1999; Mine et al. 2013;

Kwak et al. 2016, again exploiting the KS OR, some {110}α′ systems act on the same

planes as f.c.c. slip systems parallel to the austenite-martensite interface assumed as

1. {111}γ〈011〉γ = {110}α′〈111〉α′ referred to as ”in-lath-plane” slip system family and

2. {011}γ〈011〉γ = {112}α′〈111〉α′ ”out-of-lath-plane” slip system family, as also illustrated

in Figure 3.12. Maresca et al. 2014 although mentioning characteristic laths’ dimensions,

merely considered lath cross-sections normal to the lath long directions and studied the

influence of inter-lath retained austenite in a (essentially) two-dimensional (1 continuum

element thick model - "2.5" dimensional) crystal plasticity model.

In the case of single laths, TEM studies Sandvik et al. 1983; Moritani et al. 2002; Ogawa

et al. 2004 show that the habit plane deviates from rational lattice directions (hence is

irrational) due to the semi-coherent, serrated nature of the glissile interface, with a typical

misorientation θ : 9.5◦ < θ < 19.5◦ about 〈110〉γ , thus lying between {575}γ and {121}γ
Maresca et al. 2017. Note that the habit plane generally is of the form {xyx}γ , hence only 12

apparent habit planes exist, although there are 24 variants of the orientation relationship.
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[100]γ

[010]γ

[001]γ

[101]γ ± 2.5◦ [110]α or
[111]α (V1, V2), B1

[110]γ ± 2.5◦ [111]α or
[111]α (V5, V6), B2

[011]γ ± 2.5◦ [111]α or
[111]α (V3, V4) B3

(111)γ || (011)α

Figure 3.12: Sketch of relative orientation between single laths (here illustrated as
ellipsoids with half axis lengths a < b 
 c with a || k the close packed γ and invariant
line direction and b || h the habit plane) of a packet relative to austenite crystal system
(also see Figure 3.11). The given pairs are actually twin pairs, which are related by a 60°
rotation around [111] (Σ3 boundary). However, the reported pairing in this block of lath
martensite is V1-V4, V3-V6, V2-V5. The theoretical lattice misorientation between these

pairs is 10.5° (Σ1 boundary, experimentally smaller, see Stormvinter et al. 2012).

In a three-dimensional setting, in fact, the pseudo slip system consisting of the habit-plane

of the lath and its long direction should be considered for lath sliding. Assuming a habit

plane of type {575}γ then the possible lath habit plane long-direction systems in agreement

with the variant pairings observed experimentally are given in Table 3.4. Consistently, the

notation due to Morito et al. 2006a is used (cf. the V1-V4 KS-variant pairing in Figure 1.2).

There are 12 {557}γ habit planes. However, as pointed out in subsubsection 3.5.3.2 it must

be considered that the habit plane solutions come in pairs. Furthermore, certain coherency

conditions have to be fulfilled. The (557)γ habit plane of the packet CP1 would correspond

to the KS direction of the variant pairing V5-V6 which are both highly misoriented (>

49.5°) and have no coherence relation (except the very weak Σ11) to both variants V1 and

V4, see Table 3.3. This may be the reason why not all three permutations of habit planes

are realized in a block. In other words the pairings in a block are dictated by the coherency
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packet lath long-direction habit-plane boundary sliding systems
CP1 (111)γ V1,V2: [101] (575)γ V3,V4: [011] (755)γ V5,V6: [110] (557)γ
CP2 (111)γ V7,V8: [101] (575)γ V9,V10: [110] (557)γ V11,V12: [011] (755)γ
CP3 (111)γ V13,V14: [011] (755)γ V15,V16: [101] (575)γ V17,V18: [110] (557)γ
CP4 (111)γ V19,V20: [110] (557)γ V21,V22: [011] (755)γ V23,V24: [101] (575)γ

Table 3.4: Sub-block boundary sliding systems: each habit plane of a certain packet
forms with a certain lath long direction a pseudo slip system. Note that within a block
only two such systems are active due to the pairings forming coherent low angle CSL

interfaces e.g. V1-V4, V3-V5, V2-V5 in packet (111)γ , see Table 3.3

Figure 3.13: Geometry of slip transfer across a grain boundary taken from Bieler et al.
2014. Horizontal (orange and blue) planes signify slip or twinning planes on either side
of the boundary. κ is the angle between slip directions, Φ is the angle between plane

normals, and θ is the angle between plane traces on the boundary.

stresses of the low angle semi-coherent interfaces. The slip direction is given by 〈110〉γ .
Particularly, the slip direction on a specific habit plane is given by the KS direction, which

is normal to the HP.

B. Liu et al. 2012 carried out discrete dislocation simulations of dislocation penetrations

through low angle grain boundaries (LAGBs) and found that coherent boundaries are

hardly penetrable. This may be the reason why martensite laths stop to grow, limited

by the developing coherency stress preventing the interface dislocations from to move in a

glissile manner. Slip transfer across interfaces, has recently been reviewed by Bieler et al.

2014. Figure 3.13 illustrates the three angles which are commonly used to formulate a slip

transfer condition. A matlab toolbox to study such effects has been developed by Mercier

et al. 2015 (see section C.1).

Recent molecular dynamic works investigate the mobility and defect structure of the
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f.c.c.− b.c.c. interface. B. Wang et al. 2013; Ou et al. 2016; Maresca et al. 2017; Karewar

et al. 2018. Such investigations are highly sensitive w.r.t. the initial configuration of atoms

in the model. Except in Karewar et al. 2018 (using a Meyer-Entel potential), all of them

use an embedded atom potential. The simulated cell is always a f.c.c.− b.c.c. bi-crystal of

several nm thickness with periodic boundary conditions. A RVE of that size is certainly

not large enough to investigate accommodation effects (also not taken into account with

a mere bi-crystal RVE). However, valuable insights of the kinematics and interface defect

structure (e.g. related slip systems) of the semi-coherent interface necessary for a glissile

interface are gained.

Ou et al. 2016 found that growth of the b.c.c. phase follows the faulting mechanism pro-

posed by G. B. Olson et al. 1976b based on the Bogers et al. 1964 model. B. Wang et al.

2013 reported that shear deformation is crucial in order to move the f.c.c.− b.c.c. inter-

face. This must be considered in conjunction with the shear instability occurring during

the transformation and the local shear stress fields of screw dislocations which produce

local shear stress fields again emphasising their importance.

Karewar et al. 2018 investigated the effect of pre-existing defects on the transformation

mechanism with the result that all well-known nucleation and transformation models could

be recovered depending on the pre-existing defect type and arrangement.

Maresca et al. 2017 relaxed many initial configurations with CP relation and varying angles

between close packed directions. Particularly, they constructed atomistic interfaces in pure

Fe guided by the experimental observation that the step direction is always close to 〈1̄01〉γ .
A difficulty in such an approach is bringing together both lattices as close as possible while

not removing too much or too few atoms, i.e. to find a stable configuration with minimum

energy that does not emit defects into the bulk phases.

They found two sets of defects: First, screw dislocations as those initially proposed by

Frank 1953 sketched in Figure 3.10 with Burgers vector aγ/2〈101〉, one dislocation per

step independent of step height lying next to the steps, with a stacking fault between

partials lying on the {111}γ terrace.

Second, there are (kinked) screw dislocations with aα/2[111]α Burgers vector gliding on

(101)α in the b.c.c. phase with a line direction in the interface (see Maresca et al. 2017

Fig. 5 therein). These dislocations, forming edge-character kinks where they cross the

steps, reside exclusively in the already rearranged b.c.c. phase and accommodate the angle
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between ideal KS directions.

They assign S1 as the aα/2[111]α (101)α slip system, i.e. the shear due to the screw

dislocations (≈ 〈110〉γ {111}γ in KS), of the second set of defects as above) and assume

that the slip magnitude it is fixed by the geometry, hence depending only on the orientation

relation, which enables them to work out an explicit expression for S1. They also assign

S2 as aγ/2[101]; (111)γ corresponding with their first set of defects as above.

They point out that both, experiments and simulations, show step heights h of multiples

of d111 = aγ/
√
3 in the same material cf. Figure 3.10. Accordingly, it seems that the

average step height must be taken into account in a theory for calculating transformation

strains. Maresca et al. 2017 denote β (similar to our g) as the average interface step height

h normalized by aγ/
√
3 and propose that a further selection criterion should be that β > 1

in accordance with experiments and simulations. The shear strain ε3s is then the shear

strain due to one f.c.c. screw dislocation Burgers vector per step divided by the average

step height, i.e. ε3s = b/h = 1/β
√

3/2. Note that contrary to Equation 3.6 (where it is as-

sumed that slip plane is normal to the initially flat interface equal to the later terrace plane

n), here the slip plane is parallel to the terrace plane, hence 1/εs = gd111/b = h/b (see

Figure 3.14). Eventually, they set F = RBS2S1 and determine β such that it becomes an

IPS. Although not explicitly stated their assumptions lead to the shear magnitudes ε3s =

0.33 (fixed by β; assuming they use normed vectors in the shear dyad; for Miller indices it

would be 0.8 which is unreasonable) and ε2s =0.1 (fixed by OR).

Finally, an overview of slip systems that have been considered for the plastic shear defor-

mation that is an integral part of the transformation strain is given in Table 3.5.
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m
m

Maresca et al. 2017
(S3)

Slip directly producing steps

h n

R. C. Pond et al. 2003;
J. Hirth et al. 2013

(small-strain)m

Martensite

Austenite

θ

θ

s

s

Figure 3.14: The habit-plane (normal vector h) is usually of type {xyx}γ) and 10◦ < θ <
20◦ from {111}γ , i.e. between {557}γ and {112}γ . n terrace plane vector (usually {111}γ).
Illustration of different assumptions of relative slip plane alignment with stepped interface.
The inter-penetrating lines indicate the general treatment as outlined in subsection 3.5.5.
Accommodation of coherency strains is most efficient if the slip direction s is parallel / m
is normal to the terrace plane. Conversely, the rotation necessary to achieve an invariant

plane strain is most efficient if s is normal / m is parallel to the habit-plane.

{110}α 〈111〉α #6× 2 classical/preferred b.c.c. type Qi et al. 2014; Khachaturyan
1983

{112}α 〈110〉α #12× 1 classical/preferred b.c.c. type (Pitsch Path Sowa 2017) e.g.
used by Lambert-Perlade et al. 2004

{112}α 〈111〉α #12× 1 classical/preferred b.c.c., e.g. Qi et al. 2014; Nishiyama et
al. 1978 p.356 therein.

{110}α 〈110〉α #6× 1 "regenerative slip" see Qi et al. 2014; Khachaturyan 1983
also Nambu et al. 2013 (NW-Path Sowa 2017). This shear
is unlikely to occur directly as such, but is equivalent to
equal amounts of shears in two {111}α directions in a spe-
cific {110}α plane.

{111}α 〈110〉α #4× 3 proposal due to MD model Maresca et al. 2017. A dissoci-
ation reaction of this type of defect has been discussed by
J. Cohen et al. 1962.

{111}γ 〈110〉γ #4× 3 classical/preferred f.c.c. type. Note that the dissociation
of this type of dislocation into two stacking fault partials
(two 〈112̄〉γ directions on the same {111}γ plane) plays
an important role for nucleation Bogers et al. 1964; G. B.
Olson et al. 1976b; R. Zhang et al. 2012.

{112}γ 〈111〉γ #12× 1 P. M. Kelly 1992
{112}γ 〈101〉γ #12× 2 P. M. Kelly 1992

Table 3.5: Overview of lattice invariant shear (LIS) systems proposed for the
f.c.c. → b.c.c. transformation in steels.
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3.8 The Composite Block Model for Dislocated Lath

Martensite of Qi and Khachaturyan (CBQK)

Khachaturyan 1983 describes the f.c.c.-b.c.c. martensite transformation with a double slip

approach assuming small plastic strains due to slip, justifying an additive decomposition

of multiple slips. The assumption is reasonable, since slip should be as small as possible.

Moreover, with this approximation the order of the shears does not matter.

AD = S2S1 ≈ I +
1

m1
b1 ⊗m1 +

1

m2
b2 ⊗m2 (3.40)

Khachaturyan 1983 initially proposed the system 〈101〉α {101}α twice (these are not stan-

dard slip systems in b.c.c, but these slips can be made by a combination of two a/2〈111〉α′

dislocations. Particularly the right combination restores the lattice, see Khachaturyan 1983

p.183 therein, which is why he refers to it as "regenerative slip" (also called "pencil glide"

in the literature).

Adopting the observation of hierarchical stacking of Bi-KS-variant blocks Morito et al.

2003; Morito et al. 2006a; Kinney et al. 2014 in the latter observed for 9Ni steel, Qi et al.

2014 reformulated the framework of Khachaturyan 1983 for tetragonal twinned martensite

(two symmetry related Bain variants, no slip, opposite and equal rotations to close the

gap between them) to one Bain strain, that is split into two KS OR-variants by mirror

symmetric double-slip in the laths (sub-blocks) (AD,A
(hkl)
D ) and are rejoined by opposite

and equal rotations (R,R−1). The model is henceforth abbreviated as CBQK (composite

block Qi Khachaturyan) model. The deformation gradient of a block in the CBQK model

is

F
Block
IPS = I + εB0 d

B ⊗ hB = RB
1

2
{R−1AD +RA

(hkl)
D }B (3.41)

where F
Block
IPS denotes the average IPS deformation of the block and A

(hkl)
D denotes the

mirrored deformation of AD relative to the plane (hkl). Qi et al. 2014 chose as mirror

planes the two highly symmetric plane families {001}α and {011}α. Although not explicitly

mentioned, the idea is rooted in the prism matching model of B. Bilby et al. 1960 also see

Nishiyama et al. 1978 p.402 therein. Note, that the rotations, (R,R−1) are chosen such

that mapped directions of these vectors are rotated back to their initial direction, (i.e. the

initial planes stay connected). This assumption is discussion in subsubsection 3.10.1.2.
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They consider the four slip system types resulting from combinations of {110}α and {112}α
planes and the 〈111〉α and 〈110〉α slip vectors, see Table 3.5.

Using the lattice parameters for 9Ni steel of aγ = 3.56 Åand aα = 2.869 Åthe Bain strain

tensor (Equation 3.19) becomes

B3 =

⎡
⎢⎢⎢⎣
1.1397 0 0

0 1.1397 0

0 0 0.8059

⎤
⎥⎥⎥⎦ EBain =

⎡
⎢⎢⎢⎣
−0.3505 0 0

0 −0.3505 0

0 0 −0.6753

⎤
⎥⎥⎥⎦

Their best solution utilizes the same active slip systems as initially proposed by Khachatu-

ryan, i.e. two of the 〈101〉 {101}α type (both with a shear magnitude of εs ≈ 0.13).

This is discussed at the end of their work. Subsequently, some aspects of the ansatz in

Equation 3.41 are discussed.

First, all characteristics of individual laths are omitted. Instead an average IPS condition

for the block is directly approached, arguing that a stacking of blocks on the same CP does

not cause significant internal strains. This argument is very promising, but simultaneously

suitable conditions for the individual laths as well the compatibility between them should

be checked. Also note that using the average deformation of the block to calculate an OR

for comparison with classical ORs inevitably leads to inaccuracies.

Second, equal volume fractions of both sub-blocks are implicitly assumed (ξ = 0.5). On

the one hand, it has been observed that within a given block, one of the two sub-blocks

may have a size larger than the other, on the other hand the dominating sub-block may

be switched around inside different blocks of a packet, such that on average sub-blocks

nevertheless appear with equal amounts in a given packet Morito et al. 2006a. Analogously

to twinning, the assumption of equal volume fractions in the blocks may be linked to the fact

that for a macro-twin the volume fractions of each of the twinned regions must necessarily

be equal Mühlemann et al. 2015. Summarizing, equal volume fractions may be justified,

but also highly restrict possible solutions.

Third, they justify their assumption of mirror related shears (same shear magnitudes) based

on the argument that:"...the variants (sub-blocks) in the block should remain (on average)

joined on a low-index mirror plane in order to avoid a dense distribution of high-energy

interfaces inside the block" (Qi et al. 2014). This may be compared to a large (macro)
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twin that is additionally highly dislocated, i.e. mirror symmetry or twin-like compatibility

is conserved between two KS-variants. Altough Morito and co-workers recently pointed

out that lath martensite and upper bainite can be identified by a higher frequency of near

twin block boundaries Morito et al. 2015, the interface structure of blocky lath martensite

generally is highly heterogeneous, involving many other interface types. Furthermore,

TEM investigations and calculations for individual laths indicate that their habit plane is

between {557}γ and {112}γ .

They employ five selection criteria: i) The shear magnitude in the laths (equal shear mag-

nitudes for both slips). ii) The deviation angle of the CP parallel plane relation henceforth

denoted as θCP They point out that experimental results show that θCP ≈ 0 in the case

of low-carbon steels. iii) The deviation angle of the direction relation in KS orientation

(θKS). iv) The deviation angle of the average block habit plane with the close packed plane

in austenite θHP. v) The shape strain of the block εB0 .

Finally, their best solution for F
Block
IPS is discussed. The smallest eigenvalue corresponds to

an eigenvector collinear with [110]γ (a close packed direction), which is very reasonable.

The same vector is also the rotation axis of its rotational part, with an angle of rotation

of 10◦, which is highly unfavourable unless the block itself is lath shaped, which is not

observed experimentally. The absolute difference of its determinant to that of the Bain

strain is 0.4% volumetric change (detFBlock
IPS − detB = ΔV err = 0.004 = 0.4%). At the

first sight this value is deceptively small but, in terms of strain energy this corresponds to

about 2 GPa due to hydrostatic stresses (G = 210 GPa, ν = 0.33 → K = 550 GPa; hence

KΔV err ≈ 2 GPa).

They point out that their best solution is only optimal (within their considerations) within

a short interval of the parameter η3 = aα/aγ . For their optimal solution the range of

η3 = [0.805 − 0.8185], otherwise deviations > 1% occur from the CP relation. More

importantly, the deviation of the habit plane jumps for values η3 > 0.81 from ≈ 0 to >5°.

Using the lattice parameters of the MarvalX12 yields η3 =0.7998 and their optimal solution

already gives a deviation of the parallel plane realtion of ≈3%, see Qi figure 12a therein,
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which is not optimal anymore.

EQKCM
IPS =

⎡
⎢⎢⎢⎣

−0.3797 0.1189 −0.0013

0.1189 −0.3797 −0.0013

−0.0013 −0.0013 −0.6304

⎤
⎥⎥⎥⎦

3.9 Average Compatibility Relations for Homogeneous

Boundary Conditions

As pointed out in subsection 3.5.1 adjacent regions of martensite are formed by a different

deformation, in a way that: i) is compatible to the first deformation and ii) accommodates

(compensates) it. The so-called average compatibility or minor relations C. Morrey 2009;

Bhattacharya 1992; Bhattacharya 2003) will be of great importance for the discussion of

accommodation in the blocks. The general case arises from the consideration of sequences of

deformations and their behavior (e.g. finite oscillation characterised by certain probabilities

- so-called Young-Measures) on imposing certain limits. Here we consider the special

case of homogeneous boundary conditions. Particularly, for a microstructure involving

matrices F1,F2...FN in the volume fractions ξ1, ξ2...ξN , satisfying the boundary condition

corresponding to a homogeneous deformation F on the boundary ∂Ω, the following is true

(see e.g. Bhattacharya 1992; James et al. 2000; Bhattacharya 2003):

F =

N∑
i

ξiFi (3.42)

cof F =

N∑
i

ξi cof(Fi) (3.43)

detF =
N∑
i

ξi det(Fi) (3.44)

Obviously a special case of the minors relations occurs if none of the Fi entail a volume

change (dV = 0), since then Equation 3.44 is automatically fulfilled. The theory of twin-

ning in subsubsection 3.5.3.4 is based on this fact and by locally ensuring Equation 3.43.

Noteworthy at this point are certain conditions of "super compatibility", for twinned mi-

crostructures based on Equation 3.30. Beside the rank-one connection, cf. Equation 3.27,
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two further constraints are set up so that the system of constraints reads:

λ2 = 1

0 = η ·US cof
(
UT

S US − I
)
K (3.45)

2 ≤ tr(UT
S US) + det(UT

S US)− 1/4|η|2|K|2

where η and K are twinning elements, see Figure 3.2. Under these conditions an invariant

plane (λ2 = 1) between a twinned laminate and an undeformed region is possible for

every choice of ξ1 ∈ [0, 1] cf. left image of Figure 3.6. Materials fulfilling these conditions

have been shown to have exceptional properties like a vanishingly small hysteresis as a

consequence of a generally small strain energy by good accommodation, see e.g. Chen

et al. 2013; Song et al. 2013.

3.10 Generalization & Unification of Discrete and Continuum

Views for the Hierarchical Microstructure of

Dislocated Lath Martensite

Calculating transformation strains based on a crystallographic theory fully specifies the

orientation relation (lattice strain) and the parameters of the transformation shape strain

(incorporating the Bain and plastic slip strain) of all symmetry related variants often

referred to as the crystallographic set H. Bhadeshia 1987; Bhadeshia et al. 2009; Chintha

et al. 2013; Giri et al. 2017.

Experimental data provides characteristic constraints, which can be considered directly

in the optimization of the crystallographic set, which normally refers to the individual

lath level (see subsubsection 3.10.1.1). If a particular crystallographic set is used in a

model, the predictions of the model (e.g. the variant fractions) then can be compared to

measurements of associated variant distributions by means of quantitative metallography,

orientation distribution functions, habit plane measurements etc., providing additional data

a model can be fit to.

Here a generalized two-level theory of blocks out of laths (forming sub-blocks) is sought.

Up to now the two microstructure levels have only been considered independently and
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without a statistical characterisation within the framework of the phenomenological theory

of martensite crystallography. Particularly, a twin laminate spans the same length scale as

a block in the CBQK model (section 3.8), which is the only block-level model for slipped

martensite to date.

To obtain a more general framework, the constraint of mirror symmetric plastic shears

with equal shear magnitudes in the laths forming a block and the constraint of equal

variant fractions on the block level are dropped. However, then a mere search for IPS

or ILS solutions in a brute force manner as done up to now leads to an unmanageable

amount of solutions, already at the lath level. Therefore, in subsubsection 3.10.1.1 an

incremental strategy in analogy to crystal plasticity is followed, with the only difference

that the criterion for the incremental evolution (or more generally the cost function that

is optimized) will be different.

The role of lattice rotations on the lath level is discussed and emphasised in subsubsec-

tion 3.10.1.2. Then the minors relations (section 3.9) and suitable side conditions on the

block level are used to construct as well as compare blocks as linear mixtures of lath level

solutions. At this stage the DOFs are the phase fractions of deformation gradients at the

lath level. Also for this level an optimization framework is proposed, see subsection 3.10.2.

Everything is implemented as an object oriented code into the computer algebra system

MATLAB. The structure of the program is outlined in subsection 3.10.3.

The framework, is very flexible and can be adopted to new theoretical and experimental

findings, either in terms of a cost function at the lath or block level or as a side constrain for

ruling out solutions. Note that finding a cost function that fulfills experimentally required

constraints can be seen as optimal in terms of both energy minimization and dissipation

maximization.

3.10.1 Lath Level

3.10.1.1 Incremental Formulation of Shearing

To deal with the freedom of plastic shear magnitudes, an incremental framework is con-

sidered. In each (plastic) increment the plastic deformation from a set of deformations
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{ΔSi(Δεs)} (all with equal incremental slip magnitude Δεs) that extremizes a certain

cost function is chosen.

In the case, where the lath deformations are supposed to be close to invariant plane strains,

it is reasonable to propose that the deviation of λ2 of the matrix C = (F Lath)TF Lath from

1 is minimal, i.e.

ΔSj = min
{ΔSi(Δεp)}

{λ2 − 1} (3.46)

Also, only combinations of two shears are considered, in accordance with the literature

Maresca et al. 2017; P. M. Kelly 1992. Consequently, {ΔSi(Δεp)} = {ΔS1,ΔS2}. As-

suming e.g. five increments, F Lath then could be of the form

F Lath = RBΔS2ΔS2ΔS1ΔS2ΔS1 (3.47)

Note that up to now the PTMC was written as F Lath = I + ε0d ⊗ h = RBS2S1, where

the magnitudes of the two shears were varied.

The solution process starts with a relatively large shear increment and the increment be-

comes smaller (cut-back) when the solution approaches the cost function optimum (e.g.

λ2 = 1). Following such a strategy introduces another mechanistic aspect beside the IPS

condition to this theory, weakening the criticism that the crystallographic theory of marten-

site is a mere a-posteriori theory. The procedure also automatically leads to small values

of εs (which is interpreted as a favourable mechanism Crocker 1965; P. M. Kelly 1992; Qi

et al. 2014; Mayer et al. 2016). Notably, any other property can be minimized or maxi-

mized incrementally. Here, without neither explicitly resolving geometries nor considering

stresses the proposed cost function seems the most suitable. It corresponds to strain energy

minimization. Dissipation maximization can e.g. be introduced by incrementally calculat-

ing the stress in an inclusion using Eshelby’s solution and Equation 4.15. In a full-field

model energy or dissipation within an RVE or a combination of both can be extremized

this way.

3.10.1.2 Rotations During the Transformation and Lattice Correspondence

In the theory of martensite crystallography the deformation due to plasticity is often de-

noted as lattice invariant shear (LIS). Intuitively it is understood that the structure of the
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lattice remains invariant as e.g. depicted in Figure 2.1. However, the lattice invariance even

is meant literally in the sense that the lattice directions also remain invariant, i.e. they do

not rotate. This corresponds to the case of a constant lattice correspondence (usually the

Bain correspondence cf. Equation 3.18). However, the shears involved in the lattice change

induce a lattice rotation, which is not taken into account using a constant correspondence.

Considering the case where the shear direction is perpendicular to the coherent interface,

see Figure 3.14 (also in Figure 2.1) the angle of rotation to return the interface to its initial

state is θ = arctan(εs) (cf. Equation 3.21). This rotation is the same as that applied by

Qi et al. 2014 ((R,R−1)) in the model presented in section 3.8. Conversely, the rotation

obtained from the polar decomposition of the same shear solely yields a rotation angle

of θ = arctan(εs/2). This rotation may be argued to be a consequence of the elastic as

well as plastic partitioning of the deformation as elaborated previously in this chapter.

On the other hand, consider a screw dislocation with Burgers vector in the interface.

Homogenization of an array of such screw dislocations gives a shear deformation lying in

the interface, i.e. the two phases would only rotate relative to each other in the interface

plane. Note, that this rotation is not reflected by the rotations (R,R−1) of the model

in section 3.8 meant to match the planes, but is nevertheless obtained from the polar

decomposition of the shear.

The phenomenological theory of martensite crystallography including plastic slip (subsub-

section 3.5.3.3) does not consider the rotation of the lattice during the high plastic shear

deformation, but defines any shear in an invariant lattice system of the initial austenite.

This is remarkable since the sum of typical shear magnitudes due to plastic slip is in the

range of εs =0.2-0.4 corresponding to 6°/ 11°- 11°/ 21° (polar or reverse-rotation angle,

respectively).

Therefore, an update of the lattice orientation during deformation (transformation) in

analogy to large strain crystal plasticity is proposed. The crucial point is how to choose the

rotation to update the lattice orientation. In this work the rotation obtained from the polar

decomposition of the plastic shear (Q) to incrementally update the lattice orientation is

used. Particularly, in each increment the shear direction and slip plane normal are updated

according to:
s′i

||s′i||
⊗ m′

i

||m′
i||

= QT

(
si

||si|| ⊗
mi

||mi||
)
Q (3.48)
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Note that slight variations in terms of the discrete ORs are less significant from the view-

point of continuum modelling (e.g. CRSS) than the directional dimensions of these strains.

3.10.1.3 Selection Criteria for Lath Level Solutions

In a next step, the multitude of lath solutions that converged to the optimum of the lath

cost function for slip are assessed. Particularly, solutions that do not fulfil a given set of

constraints are discarded.

The magnitude of plastic slip
∑

εis generally should be low. On the other hand it is

also important to check for a glissile transformation mechanism, i.e, an invariant line.

Consequently, these two aspects have to be assessed together. Particularly, the invariant

line should be a 〈110〉γ direction according to experimental findings and the fact that it

is the most densely packed direction. Here the smallest angle between the final invariant

plane and a 〈110〉γ direction denoted as θILS is evaluated. The Burgers vector content due

to Equation 3.35 should be evaluated as additional selection criterion, see e.g. P. M. Kelly

1992; Gu et al. 2011; Maresca et al. 2017, resulting in an average dislocation spacing or

an interface step height. However, it must be pointed out that both quantities generally

depend on the relative orientation of the interface and the active slip systems (also the

history of their relative orientation). Also the deviation from a perfect parallel CP plane

relation (misorientation angle θCP) and from a perfect parallel KS direction is checked

(θKS).

Lath habit-planes should be of type {xyx}γ and for the composition and processing of our

steel they are estimated to lie between {557}γ and {225}γ . Lath shape strains εL0 should

be small. The resulting strain energy strongly depends on the shape of the transforming

domain, see e.g. Khachaturyan 1983. The experimentally better investigated shape is that

of the laths, whereas the blocks generally follow no such strict shape, see e.g. Morito et al.

2013 (HC specimen therein). Therefore, the information of the shape of the laths should be

considered in the selection of the solutions. According to principle 2 in subsection 3.5.1 the

eigenvector corresponding to the smallest eigenvector should be in the lath’s long direction

Rotations must be small. Particularly, any rotation comprised in the final solution that

cannot be based on physical grounds such as a consequence of a shear deformation must

be small.
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3.10.2 Block Level: Restrictions, Selection Criteria and Optimization

Given an array of crystallographic sets on the lath level the block level is approached

using the average compatibility relations with homogeneous boundary conditions F → FB.

Particularly, following Qi et al. 2014 it is assumed that a composite block, on average,

deforms homogeneously and in turn forms approximately an invariant plane strain with

the austenite. For instance Qi et al. 2014; Kinney et al. 2014; Kinney et al. 2016 assume

that composite blocks themselves have invariant plane strain characteristics on the close

packed plane {111}γ enabling their stacking to packets. Generally, also austenite could be

considered in this mixture, however, the homogenized deformation should be restricted to

one block classified by a particular Bain strain orientation.

Admissible residuals for the deviations from the relations Equation 3.43 and Equation 3.44

(Δdetmax) are set. Particularly, to characterise the deviation from Equation 3.43 a matrix

norm must be defined. Here, the sum of absolute values of a matrix denoted as d1 (hence

the allowed residual is denoted as Δd1max) is used for that purpose since it was found that

it yields values similar to the determinant’s deviation. Furthermore, it is required that FB

merely entails a negligible net rotation. Further conditions between lath level solutions can

easily be specified but are omitted for simplicity.

The above restrictions leave some space for the optimization of the additional degree of

freedom ξ1 at this level. The cost function f now acts on the linear mixture of properties

Pi

min
ξ

f(PB) = min
ξ

f
(
ξ1P

L
1 + (1− ξ1)P

L
2

)
(3.49)

A minimization of the shape strain has been proposed by Furuhara et al. 2010 (the function

f then is the vector norm ‖.‖ ).

min
ξ

∥∥εB0 dB
∥∥ = min

ξ
f
(
ξ1
∥∥εL0dL

1

∥∥+ (1− ξ1)
∥∥εL0dL

1

∥∥) (3.50)

Mühlemann et al. 2015 suggested for an invariant determinant that

min
ξ

∣∣∣(FB
IPS)

T F
B
IPS − I

∣∣∣2 = min
ξ

∣∣EB
∣∣2 (3.51)

where |A|2 =
√
A : A =

√
Tr (ATA) denotes the Frobenius norm of a matrix, should be

minimized as a measure of strain energy. However, this neglects the rotation part of FB
IPS
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(rotation of inclusion). Although only lath mixtures forming blocks with negligible net

rotations are considered, it must additionally be checked that

min
ξ

∣∣∣FB − I
∣∣∣2 = ∣∣HB

IPS

∣∣2 (3.52)

Equation 3.50 and Equation 3.52 can be conveniently be formulated and solved as least

squares problems. Equation 3.51 has been solved with a simple line search with an initial

value of ξ1 = 0.5.

3.10.3 Martensite Calculator - Code Structure and Case Example

The open source, object-oriented Matlab code "Martensite Calculator" for the calculation

and specific selection of solutions for invariant plane strains as well as invariant line strains

has been developed and is available online (see section C.1). The basic idea behind the

code structure is shown in Figure 3.15 and the graphical user interface in Figure 3.16.

Next, a case study utilizing the lattice parameters of MarvalX12 is presented. All slip

systems from Table 3.5 are considered, i.e. a total of 84 systems in austenite and 48 systems

in martensite (both slip directions of a system are counted separately). All possible pairings

are considered. The number of pairs given by Npair = N(N − 1)/2 = 12090. The number

Figure 3.15: Basic code structure of Martensite Calculator
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of theoretically possible habit planes cannot be larger than two times this value (recall that

solutions come in pairs for the cubic to cubic transformation). All calculations are carried

out in the austenite basis. Therefore, the slip systems of martensite are transformed into

that coordinate system accordingly.

The calculation loops over all possible combinations of slip systems identified. Combina-

tions of two shears are used to compute the net transformation matrix of the smallest

microstructural features, i.e. martensite laths F L
IPS according to Equation 3.28. Particu-

larly, the plastic slip magnitudes εis are incrementally increased such that a cost function

is optimized. Note that not all combinations of slip-systems are able to optimize the cost

function (see subsubsection 3.10.1.3), i.e. they do not converge against an invariant plane

strain. All solutions for combinations of slip systems that converge against the utilised

cost function optimum are gathered for further consideration. In practice a solution is

converged if 1− λ2 < a given allowable residual (here chosen as 10−6).

In a next step the set of all possible solutions is reduced according to reasonable constraints

(cf. subsubsection 3.10.1.3). Particularly, the following constraints are specified for reduc-

ing the total number of solutions:

The maximum deviation of a perfect CP plane relationship is θL−max
CP =2°.

The maximum deviation of a perfect parallelism of KS OR directions is θL−max
KS =5.5°.

The final invariant habit plane should not be further away from {111}γ than θL−max
HP =20°.

The maximal allowable value of the sum of the two active shear magnitudes εmax
s =0.4

The maximum allowable value for the lath shape strain εL−max
0 =0.65 and the maximum

deviation of the closest packed austenite direction to the already identified invariant plane

θmax
ILS =3°.

In the case of an updated lattice correspondence the total number of solutions found is

16558. Then sequentially filtering out for θL−max
HP , θmax

CP , θmax
KS , θmax

ILS , εmax
s , εL−max

0 the

solutions are reduced to 7733, 2235, 1930, 1197, 1048 and 1023 respectively.

In the case of a constant lattice correspondence the total number of solutions found is

19576. Then the solutions are successively reduced to 9828, 3216, 3140, 688, 652, 620,

620 with the same sequence of selection criteria. Interestingly, while the total number

of solutions found without a correspondence update increases, the final number after all

reductions have been applied is almost half of that with an incrementally updated lattice

correspondence.
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Figure 3.16: Graphical user interface of written Matlab toolbox. Input parameters are
the lattice parameters and possible slip systems (either in austenite or martensite). A
default lattice correspondence is proposed but may also be changed. A set of predefined
selection criteria with user defined tolerances can be specified. A log informs the user
about errors or calculation activities. After lath solutions have been calculated, optionally
composite solutions can be constructed from lath solutions. The results can be written

to a text file.

It was also noticed that the well-known linear-dependence of slip deformations, plays a

significant role in reducing possible solutions (same overall deformation) due to the nature

of the algorithm. A reduction of solutions by a factor of about 2.5 was observed. Nev-

ertheless, all solutions of equal (within some tolerance) deformation but different active

slip systems are subsequently considered as individual solutions. Note that this fact may

explain the strong heterogeneity of sub-blocks upon high plastic deformation.

Next the evolution of selected solutions after application of the above constraints is visu-

alized with each quantity that has been used in the constraints. In the following two cases

the classical constant Bain lattice correspondence and that of an updated correspondence

due to the incremental shearing will be presented alongside.

In Figure 3.17 the evolution of the number of solutions with the larger shear magnitude as

well as the sum of both shear magnitudes is illustrated. The results indicate that for most

of the reasonable solutions one shear generally is much larger than the other. Referring to

the previous discussion on slip systems, one shear is mainly necessary to rotate the lath to

its habit plane (accommodation transformations), while the other reduces coherency strains

in the interface (transformation dislocations). While in the case of using an incrementally
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Figure 3.17: Evolution of selected habit plane solutions dependent on the larger shear
magnitude (right) as well as the sum of both plastic shear magnitudes respectively (left).
Top: Correspondence update. Bottom: Constant Bain correspondence. In both cases the
results indicate that for most solutions one shear is substantially larger than the other.
Also both cases show a strong increase in solutions above a specific value. However, in the
case of an updated lattice correspondence the total required shear magnitude is generally

lower.

updated lattice correspondence above a certain shear magnitude the possible number of

solutions increases from almost zero very fast to its final value. Without a correspondence

update the number of solutions first increases to a fraction of the total solutions and then

jumps discontinuously to the final value. In general this means, that active lattice rota-

tions during the transformation facilitate accommodation by providing more possibilities

of forming an invariant plane strain, which may be one of the reasons of the exceptional

properties of lath martensites.

Figure 3.18 illustrates the evolutions of the reduced set of solutions as a function of the

habit plane shape strain εL0 as well as of the necessary domain rotation in order for its

formation. It can be seen that most solutions are found for shape strains in the range of

0.3 to 0.45 which are quite typical values. In terms of lattice rotations this corresponds to
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Figure 3.18: Progression of selected habit plane solutions depending on their shape
strains εL0 as well as the rotation angle the inclusion must undergo in order to form an
invariant plane strain. Top: Correspondence update. Bottom: Constant Bain correspon-
dence. Due to the considered cost function that is optimized incrementally it can be seen
that the shape strain has exactly the same progression as the rotation. The right column
also illustrated the algorithms ability to find the same number of solutions due to opposite
shear directions leading to opposite rotations, which may be interesting for lattices with

lower symmetry.

an angular range of about 10° to 12° from {111}γ , corresponding to the well-known {557}γ
habit plane type of individual laths.

The difference between an updated and a constant lattice correspondence is similar as in

the aforementioned, due to the almost identical nature of εL0 and
∑

εis in the case of highly

dislocated martensite. In the constant case the number of solutions first rises gradually

and then shows a jump to comparatively high values. However, in the updated case now

clearly 3-4 small plateaus of solutions can be identified in a range where the number of

solutions increases significantly (εL0 between 0.28 and 0.42). These correspond to a distinct

type of active slip systems (and their combinations) enabling the transformation.

Next, the dependence of the selected solutions on the misorientation from a perfect Kurdjumov-

Sachs orientation relation is investigated. The results are depicted in Figure 3.19. Here the
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Figure 3.19: Dependence of results on misorientation of CP planes (θCP) and deviation
ideal KS direction parallelism θKS. θCP is reported to be almost zero. Top: Correspon-
dence update. Bottom: Constant Bain correspondence. In both cases the calculations
almost have a plateau for θCP >0.5°, so it is reasonable to assume that it is smaller than
0.5°. As opposed to previous dependencies Right: The deviation of the ideal KS direction
from the calculated one shows a continuous evolution in accordance with the continuous

features of pole figures observed experimentally.

situation is different from previous trends since now the constant correspondence case gen-

erally leads to a higher number of solutions at low optimization values (seen as favourable).

This is interesting since for an updated lattice correspondence the solutions start to rise

earlier, but than saturate again contrary to the constant correspondence case where dis-

continuous jumps occur at θCP > 0.4° as well as θKS > 0.3°.

Figure 3.20 illustrates the dependence of selected solutions on (i) the misorientation of their

habit plane normals and the nearest close packed plane in austenite ({111}γ) designated

as θHP as well as (ii) the dependence on the angle between the habit plane and the nearest

close packed direction in austenite (〈110〉γ) which normally is experimentally observed to

be collinear with the lath’s long dimension. For both a constant and an updated lattice cor-

respondence the first solutions are realized > 5°. In the case of an updated correspondence

there are generally more solutions with smaller deviations between 〈110〉γ and the lath’s
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Figure 3.20: Left: Effect of misorientation between the laths’ habit planes and the
nearest close packed plane in austenite. Right-column: Smallest angle between preferred
invariant line direction (〈110〉γ) and habit plane of solutions. Top: Correspondence up-

date. Bottom: Constant Bain correspondence.

habit plane. This is also important since the lath’s long direction favourably constitutes

the direction of an invariant line strain providing a glissile transformation mechanism.

A major advantage of the object oriented programming approach to the current problem

is that it can be easily searched for solutions fulfilling a set of properties. In order to

enable an easy visual representation here the discussion is confined to the case of a two-

variable dependence and continue with the number of possible solutions. However, it should

be noted that any combination of variables may be visualised this way with the goal to

investigate a possible correlation. Figure 3.21 shows the number of solutions fulfilling

simultaneously a restriction on θLCP and εL0 . The limiting curves for the highest value of

the second variable is recovered in the previous figures showing merely one dependence,

while now additionally the evolution in dependence on the second variable is visible.

Actually, if the specified limits for a reasonable selection of lath solutions are not clear

a-priori they can be investigated by plotting the data of the whole set of solutions.
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Figure 3.21: Visualization of combined property dependences of the number of total
habit plane solutions on εL0 and θLHP in the previous example. Left-column: εL0 < thresh-
old and θLHP < threshold. Right-column: εL0 < threshold and θBRot < threshold. Top:

Correspondence update. Bottom: Constant Bain correspondence.

The next essential step is the construction of block deformations by means of a reasonable

mixture of lath level solutions. Since the laths are elongated in shape, but nevertheless

undergo a rotation to accomplish the final orientation relation a major role of block for-

mation is to compensate individual rotations of sub-blocks of laths. Also it was tested to

what extent linear mixtures of deformations can obey the minors relations. It should be

noted that it is generally known that the minors relations pose too severe restrictions on

lattices, so that only in rare cases exact solutions are possible (e.g. Bhattacharya 2003).

Therefore, as elaborated in subsection 3.10.2, tolerances are defined under which any so-

lution is found. In order to avoid regarding mixtures of almost equal deformations now

the set of solutions is reduced by a criterion for equality of deformation. For this purpose

three angles between initial and deformed mutually orthogonal vectors as well as three

deformation stretch measures in these directions are are defined for each lath deformation

gradient respectively. Then two mappings are compared by their difference in angle and
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Figure 3.22: Overview of rotation angles of composite block deformations at a phase
fraction of ξ1 = 0.5. Left: All possible combinations of lath solutions. It can be seen
that there are about 400 composite blocks with a rotation angle near 0° which can be
seen as optimal in terms of accommodation. Right: Composite blocks reduced by minors
relations with Δd1max =0.003 and Δdetmax= 0.003 showing no blocks with low angles.

stretch measure. This corresponds to a check of similarity of parallel-epipeds. Tolerances

of 3° and 1% difference in stretch were applied. Then all possible linear mixtures with

ξ1 =0.5 are constructed from the lath solutions. While in general there are some blocks

that do not exhibit a net rotation it turns out that there are none with additional lower

bounds on the minors relations as illustrated in Figure 3.22. However, this merely indicates

that no optimally accommodated state exists in steels.

This is one reason why the transformation is irreversible.

Beside the compensation of the net rotation of the mapping for composite blocks (a toler-

ance of θB−max
Rot =1° is used) the following further constraint is considered: Experimentally

it is found that the blocks are oriented close to {111}γ , hence a limit of θB−max
HP < 5° is

specified. Also, it must be pointed out that the sum of two invariant plane strains again

yields an IPS. Therefore, a specification of the IPS condition (Equation 3.27) is a relatively

weak selection criterion. Practically setting a tolerance of 10−3 does not lead to fewer

solutions.

The number of pairings using the reduced set of lath solutions in the case of an updated

lattice correspondence is 522753 whereas it is 191890 in the case of no lattice correspon-

dence update. Applying the above constraints leaves 1400 solutions in the first case and 2

solutions in the second case.

Figure 3.23 shows the 1400 composite block rotation angles of case 1. It can be seen that

the rotation of the composite block is most efficiently compensated at ξ1 = 0.5. Also



Crystallographic Aspects of Martensite 126

d1
co

f &
 

de
t

Figure 3.23: Left: Net rotation angle of linearly mixed block strain as a function of ξ1.
It can be seen that almost all minima of the rotation angle are between ξ1 =0.4 to 0.6.

Right: Residuals of minors relations as a functions of ξ1.

the evolution of the residuals for the minors relations over the mixing weight ξ1 for block

mappings concurrently fulfilling the constraints of θB−max
Rot = 1° and θB−max

HP < 5° is shown.

Hence the rotation angle is most effectively compensated in the range ξ1 =0.4 - 0.6 for

most composite blocks. Figure 3.24 shows the evolution of the habit plane orientation

as a function of ξ1 for two randomly chosen blocks respectively as well as for all blocks

simultaneously in the range of ξ1 where the rotation minimum occurs.

To further optimize the lath fraction ξ1 of the block the procedure elaborated in sub-

section 3.10.2 is applied. The results are shown in Figure 3.25. The range of optimised

properties suggests to set the following limits for a further selection: εB0 < 0.22, |HB|2 <

0.21 and |EB
IPS|2 < 0.42, which leads to 27 very similar deformation gradients. All of them

have an optimized ξ1 in the range 0.485 - 0.5. Consequently the optimized solution in the

case of an updated lattice correspondence is

FB
upd =

⎡
⎢⎢⎢⎣

1.0744 0.0761 0.0023

0.0685 1.0817 0.0026

0.0076 0.0035 0.8672

⎤
⎥⎥⎥⎦±

⎡
⎢⎢⎢⎣

0.0065 0.0125 0.0020

0.0112 0.0060 0.0024

0.0094 0.0095 0.0008

⎤
⎥⎥⎥⎦
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Figure 3.24: Top: Evolution of block habit plane orientation (plane normal vector com-
ponents) of two randomly selected linear mixtures of lath habit plane solutions. Bottom:
Full spectrum of plots over all unrestricted linear mixtures of laths to blocks in the range
of favourable rotation. The results indicate that there exists a continuous spectrum of

block habit planes that are oriented similarly.

The better solution of the two, constructed from lath solutions without lattice correspon-

dence update (the one with the smaller εB0 is

FB =

⎡
⎢⎢⎢⎣

1.0745 0.0831 0

0.0731 1.0816 0

0 0 0.8672

⎤
⎥⎥⎥⎦

The lath solutions that build FB both use two slip systems of the type 〈100〉γ {211}γ. The

shear magnitudes for both laths are ε1s = 0.115 and ε2s = 0.17 respectively. The block habit

plane normal is made up by permutations of hB = [0.525±0.15, 0.54±0.1, 0.645±0.005]γ

(plus varying sign) and that of the individual laths hL = [0.589, −0.657, 0.476]γ . The

overall shape strain of the block is εB0 = 0.18 (as can also be seen from Figure 3.25).

On the other hand in the laths that build FB
upd preferentially only one slip system is active,

namely 〈110〉γ{211}γ with ε1s = 0.2463 ± 0.005. In some cases there is a small second
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Figure 3.25: Block optimization by means of variation of ξ1. Three cost functions
are considered. Top: Frobenius norm of the Green-Lagrange strain. Center: Minimized
shape deformation magnitude. Bottom: Frobenius norm of the displacement gradient
for verifying that the remaining small rotation has little influence on the results. The
levels of the optimized quantities are still quite different, suggesting new limits for a
further reduction of optimal solutions. Marked points are the only two remaining solutions

without correspondence using the same constraints.
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slip active in martensite on the〈111〉α{101}α system with ε2s =0.02. The block habit plane

normal within the optimal solutions is hB = [0.52, 0.55, 0.65]γ and that of individual laths

hL
upd = [0.54 ± 0.01, 0.53 ± 0.01, 0.645 ± 0.005]γ . The overall shape strain of the block

is εB0upd = 0.18. Remarkably the habit planes of the composite blocks are almost equal,

although the lath solutions they are built of differ significantly. The small strain as well as

Green-Lagrange deformation tensors of the block are

ε
˜
B

IPS

=

⎡
⎢⎢⎢⎣

0.0814 0.0728 0.0050

0.0728 0.0889 0.0031

0.0050 0.0031 −0.1271

⎤
⎥⎥⎥⎦ E

˜
B

IPS

=

⎡
⎢⎢⎢⎣

−0.4128 0.0790 0.0047

0.0790 −0.4042 0.0030

0.0047 0.0030 −0.6190

⎤
⎥⎥⎥⎦

compared to that of the Bain strain

ε
˜Bain

=

⎡
⎢⎢⎢⎣

0.1311 0 0

0 0.1311 0

0 0 −0.2002

⎤
⎥⎥⎥⎦ E

˜ Bain

⎡
⎢⎢⎢⎣

−0.3603 0 0

0 −0.3603 0

0 0 −0.6801

⎤
⎥⎥⎥⎦

The eigenvectors of all these deformation measures are within 2° of

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 1

1 0 1

0 1 0

1.1506 −1.1329 1.0057

⎤
⎥⎥⎥⎥⎥⎥⎦

where the last line lists the eigenvalues of FB
upd. This result suggests that blocks have an

elongated shape such as sheaves of Bainite in the direction in which almost no stretching

occurs, here [110]γ . The other two strain components are almost equal in magnitude, but

opposite in sign. This circumstance and the fact that blocks accommodate in packets

suggests the block arrangement as schematically depicted in Figure 3.26.
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[110]
[110]

[001]

Figure 3.26: The previous calculations suggest the following microstructural arrange-
ment of blocks. Shown are sections normal to the largest dimension of the blocks. Up
to now a stacking in only one direction has been suggested since the blocks have been

envisioned as plates.



Chapter 4

Scale Transition Strategies

Fortunately, the elastic behavior of steel is approximately isotropic, therefore the lengthy

discussion of effective moduli of heterogeneous materials, their bounds and determination

can omitted. The interested reader is referred to Maugin 1992; Nemat-Nasser et al. 2013;

Qu et al. 2006; Dvorak 2012.

Here Cauchy continua are treated. For generalizations see the works of Forest and co-

workers, Jänicke et al. 2009 (micromorphic), Luscher et al. 2010 (second gradient).

4.1 Homogenization

First, recall the Voigt upper and Reuss lower theoretical bounds of effective properties.

For polycrystals the equivalents to these bounds are the iso stress model (equal resolved

shear stress on the slip system with the highest Schmid factor) by Sachs 1928 satisfying

the stress equilibrium condition across the grains but violating the compatibility condition

between them, and the iso-strain / full constraint (uniform / constant plastic strain through

polycrystal) model by Taylor 1938 violating the stress equilibrium condition but satisfying

the compatibility condition among differently oriented grains. Bishop et al. 1951 first

presented an incremental formulation of Taylor’s model to describe the different loading

paths and to show their extreme features for the yield stress of polycrystalline materials.

Microstructurally motivated (lamination theory) Voigt upper bounds have been derived by

Bartel et al. 2009; Bartel et al. 2011.

131
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Homogenization methods are based on integration over short length scales ("coarse grain-

ing" in the physics community. The local stress is σ
˜
(x) = c

˜̃
(x) : ε

˜
el(x). The macroscopic

/ global stress and strain E
˜

are understood as:

Σ
˜
= 〈σ

˜
〉 = 1

V

∫
V
σ
˜
(x) dV (4.1)

E
˜
= 〈ε

˜
〉 = 1

V

∫
V
ε
˜
(x) dV (4.2)

If the boundary value problem (BVP) of a volume e.g. under a prescribed mean strain E
˜

can be solved, for each point x a (concentration) tensor A
˜̃
(x) can be found such that

ε
˜̃
(x) = A

˜̃
(x) : E

˜
hence

Σ
˜
=

〈
c
˜̃
(x) : ε

˜
el(x)

〉
=

〈
c
˜̃
(x) : A

˜̃
(x) : E

˜

〉
= C

˜̃
eff : E

˜
(4.3)

It must be emphasised that C
˜̃
eff is not the mean value of the elastic tensor!

Note, that from a mere mathematical point of view homogenization via an volume element

is generally an ill posed problem. At the microscale suitable boundary conditions (BCs)

have to be defined. The four standard / commonly used types of boundary conditions are:

i) Kinematic uniform boundary conditions (KUBC), i.e. a homogeneous strain at the model

boundary.

u = E
˜
x ∀x ∈ boundary ∂V (4.4)

Solution of the boundary value problem yields the (microscopic) stress field and by av-

eraging the effective stress. ii) Static / stress uniform boundary conditions (SUBC) are

understood as applying a uniform stress tensor on the model boundary (with outer normal

n), i.e.:

σ
˜
· n = Σ

˜
· n ∀x ∈ boundary ∂V (4.5)

iii) Mixed boundary conditions. iv) Periodic boundary conditions (PBC)

u = E
˜
x+ v ∀x ∈ boundary ∂V (4.6)

where v denotes a periodic fluctuation (same value on opposing sides of periodic model
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Figure 4.1: Schematic, showing the influence of several kinds of boundary conditions on
the effective bulk properties of a micromechanical model. An representative volume ele-
ment is defined as the volume above which the effective properties obtained from KUBCs

and SUBCs coincide.

mesh). Generally, PBCs give better approximations than KUBC and SUBC. However,

for many technologically relevant materials a small improvement in accuracy is often not

worth the effort as pointed by Schneider et al. 2017; Bargmann et al. 2018. It should also

be noted, that the stiffness matrix of the global finite element problem looses its band

structure by utilizing PBCs.

All types of the a.m. BCs fulfil the Hill-Mandel principle of macro-homogeneity or energy

equivalence condition (as in Nemat-Nasser et al. 2013)

〈σ
˜
∗ : ε

˜
′〉 = Σ

˜
: E
˜

(4.7)

with σ
˜
∗ being a divergence free stress field and ε

˜
′ a compatible strain field. In statistical

theories such as that due to Kröner this condition is viewed as an ergodic hypothesis.

The non-uniform / inhomogeneous case of the above types of boundary conditions as well

as the corresponding generalized Hill-Mandel condition for bending are found in Besson

et al. 2009 p.296 therein.

For the sake of completeness symmetry BCs commonly applied for components with sym-

metries are mentioned. They constrain the normal displacement components at the unit

cells’ surfaces, leaving tangential displacements free. This enforces the condition that pairs
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of faces must stay parallel throughout the deformation history. Antisymmetry (or point

symmetry) boundary conditions require the presence of centers of point symmetry (“pivot

points”) and are, accordingly, even more limited in terms of the microgeometries that they

can handle. In contrast to symmetry boundary conditions, however, unit cells employing

antisymmetry BCs on all faces are subject to few restrictions with respect to the load cases

that can be handled.

To ensure that the homogenization scheme is efficient, separability of scales must hold

Besson et al. 2009, i.e. it is required that:

size of the heterogeneities 
 size of the modelled volume 
 size of the final structure

By definition, if the model volume is of sufficient size for a proper representative volume

element (RVE) the lower and upper estimates and bounds on the overall elastic properties

will coincide, defining the effective behavior. McDowell 2010 points out that it is often

tacitly assumed that the RVE size for evolving microstructures is the same as used to study

stationary properties However, since evolution is highly sensitive to local configurations of

microstructure attributes, the RVE for such evolutionary responses must often be quite

larger than for stationary problems.

If the RVE size is too large or the microstructure very complex the concept of statistically

similar RVE (SSRVE), see Schröder et al. 2011; Balzani et al. 2014 may be useful. For

microstructures usually an n-point probability function Sn is defined, representing the

probability that n points (e.g. given by their 2D coordinates xi, yi) are located in phase

r, see e.g. Torquato 2013. Sn then is obtained from an ensemble average over indicator

functions (0 or 1).

4.2 Possible Microstructure Discretization Levels for the

Hierarchical Structure of Lath Martensite

At this point the recent progress in Voronoi tessellation codes able to reproduce statistical

microstructure data must be emphasised (Gueninchault 2017; Quey et al. 2018). For in-

stance the open source code Neper provides an easy of achieving several levels of multiscale

discretizations. References to this and other useful codes can be found in section C.1.
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To chapture the whole range of the hierarchical microstructure of dislocated lath martensite

the several levels of geometrical discretization for a RVE are possible. The least discre-

tised version is a polycrystal RVE that explicitly resolves PAGs with a single orientation.

The advantage in using such a model is that intra grain features are more a result of the

model than given a priori. The problem of not explicitly resolving the next lower level of

microstructure, i.e. packet boundaries, is that it difficult to create a model that reproduces

the spatial distribution of all 24 martensite variants into packets. It is not clear whether

this can be achieved with a mere integration point model that considers all variants. If such

a model exists then its model parameters lie in a very small range. Particularly, in order

to achieve a spatial patterning the material point behavior of each martensite variant must

be strongly coupled to the global equilibrium problem based on reasonable assumptions.

A major difficulty is to describe the effect of spatial arrangement in an average manner.

The potential of depicting reasonable variant patterning by allowing local softening behav-

ior (instability) should be investigated. A gradient based finite element framework that

considers variant fractions of neighbouring integration points would certainly facilitate this

problem.

If packet boundaries are resolved from the beginning, the drawback is that to date no

general strategy seems to exist for their selection. The author assumes that the behavior of

packet formation resembles that of subgrain formation (e.g. Sedláček et al. 2002; Kratochvíl

2014). Since the sectioning of grains into packets already occurs in the early stages of

the transformation, the selection of packet boundaries may be modelled explicitly. The

advantage of this level of discretization contrary to packet interactions is, that sub-packet

morphology follows a more well-arranged / regular / organized structure allowing for a

more reasonable formulation of block interactions.

Finally, there are also studies explicitely resolving packet and block boundaries, see Sun

et al. 2018. While the results are certainly interesting they provide almost no freedom for

microstructure evolution.

Different geometrical sectioning schemes of grains to packets have been proposed by Osipov

et al. 2009. Working out their physical significance still remains an open issue. For codes

to generate microstructure meshes see section C.1.
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4.3 The Eshelby Tensor, Inclusions, Inhomogeneities and the

Equivalent Inclusion Method (EIM)

In linear elasticity the boundary value problem of inclusions is commonly solved by using

Greens functions and assuming an infinite solid as well as small deformations.

First some common terminology is provided:

Eigenstrain denotes non-elastic strains such origination from (anisotropic) thermal expan-

sion, transformation strain of phase transformation, plastic strain or misfit strain. The

shape change the domain / inclusion (I) would undergo if it were separated from the sur-

rounding elastic solid is called the stress free eigenstrain. However, due to the constraint

by a surrounding a matrix (M) both the inclusion and the matrix will be stressed.

Inclusion: same elastic constants of matrix and some domain, where the domain has an

eigenstrain.

Inhomogenity: different elastic constants of matrix and domain, where the domain has no

eigenstrain. Furthermore, it must be distinguished between elastic strains due to accom-

modation or external loading σ
˜
ext ⇔ext ε

˜
el.

Here some results for the isotropic inclusion are presented. Remarkably, it turns out that

the stresses and strains are uniform inside the ellipsoid (in both isotropic and anisotropic

cases).

εcIij = Sijklε
∗
kl = −PijmnCijklε

∗
kl = −Pijmnτ

∗
mn (4.8)

For an ellipsoidal inclusion with a uniform, constant (stress free) eigenstrain ε∗kl in a ho-

mogeneous infinite matrix, the Eshelby tensor Sijkl is a constant, i.e. independent of x.

Hence the stress and strain fields inside the inclusion are uniform. εcIij the constrained

strain inside the inclusion, Pijmn is called the Hill polarization tensor (Hill 1983) and τ ∗
mn

the stress polarization (stress caused by the eigenstrain).

Eshelby’s tensor is symmetric in the first and second pair of indices (minor symmetries),

but in general it is not symmetric with regard to an exchange of these pairs (no major sym-

metry). If a tensor has minor and major symmetries it is referred to as super symmetric

(see e.g. Itskov 2015).

Sijkl = Sjikl = Sijlk = Sjilk �= Sklij ...
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In case of an isotropic material and a general ellipsoid, its components depend only on

Poisson’s ratio ν, the ratios of the principal axes (entering via elliptic integrals solved

via an integrated Matlab function, see section C.2) and their orientation with respect to

some Cartesian coordinate system. If additionally a spherical inclusion is considered the

dependence on the principal axes and their orientation vanishes (geometric isotropy) and

a closed form solution solely in terms of ν is possible. τ ∗
mn must not be confused with the

stress in the inclusion, given by

σ
˜
I = σ

˜
c − σ

˜
∗ = C

˜̃

(
ε
˜
cI − ε

˜
∗
)

= C
˜̃
:

(
S
˜̃
− I

˜̃
sym

)
ε
˜
∗ = −Qijklε

∗
kl (4.9)

After Qu et al. 2006 Qijkl can be viewed as the dual / conjugate of the stress polarization

tensor Pijkl. One can also show that

C
˜̃
:

(
S
˜̃
− I

˜̃
sym

)
=

(
I
˜̃
sym − S

˜̃
T

)
: C
˜̃

and C
˜̃
S
˜̃
= S

˜̃
TC
˜̃

(4.10)

Equation 4.10 are relations that are often necessary for the manipulation of expressions.

Since the stress inside an ellipsoidal inclusion is a constant, the total strain energy, as well

as that of the matrix and inclusion respectively are given as

Eel
I =

1

2
σ
˜
I : (ε

˜
cI − ε

˜
∗)V I (4.11)

Eel
M = −1

2
σ
˜
I : ε

˜
cIV I (4.12)

Eel
tot = −1

2
σ
˜
I : ε

˜
∗V I (4.13)

The interaction energy of the constrained elastic field with another superimposed field (e.g.

an external stress field σ
˜
ext leads to an interaction energy inside the inclusion of

Eint = −
∫
V
σ
˜
ext : ε

˜
∗ dV (4.14)

The fields outside Ω are no longer uniform, however, their values at points adjoining the

interface ∂Ω can be found Walpole 1969; Hill 1983; Suvorov et al. 2002 using interface

operators.

For instance Cherkaoui et al. 2000b; Cherkaoui et al. 2000a used this concept to derive

energy dissipation considering interface movement based on the assumption of incremental
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homogeneous and isotropic ellipsoidal growth of martensite.

D i = σ
˜
I : ε

˜
∗i +

ξ̇i

2
ε
˜
∗i : C

˜̃
:

(
I
˜̃
− S

˜̃
i

)
ε
˜
∗i +

ξi

2
ε
˜
∗i : C

˜̃
: Ṡ
˜̃
i : ε

˜
∗i+ (4.15)

With Ṡ
˜̃
i it is possible to distinguish several modes of growth such as homotectic- Ṡ

˜̃
i = 0,

plane- and lath-growing, see Cherkaoui et al. 2000a.

Another consequence of the homogeneous stress and strain field inside the inclusion is that

an inhomogeneous inclusion / inhomogeneity can be treated as a homogeneous inclusion

with initial eigenstrain (if present) plus equivalent eigenstrain, as proposed by J. D. Eshelby

1957. This approach is known as the equivalent inclusion method (EIM). The idea of the

EIM is to adopt the eigenstrain of an inclusion such that the stress field of an inhomogeneity

is obtained. Note that particular simplifications arise for voids or liquid inclusions since

then the stress inside is zero or purely hydrostatic.

The framework of the inhomogeneity also involves cracks, and dislocations, see J. P. Hirth

et al. 1968. If vacancies are introduced when the solid is under load, the stress and strain

fields of a crack or void of the same shape are obtained. This picture leads directly to

Eshelby’s energy-momentum tensor of elasticity (J. D. Eshelby 1999), or, as it is more

widely known in modern fracture mechanics, Rice’s J-integral.

The inhomogeneity is not treated here but can be found in the literature (e.g. J. D. Eshelby

1957; J. Eshelby 1961; Maugin 1993; Nemat-Nasser et al. 2013; Qu et al. 2006 p.87 therein.

Extensions to elastic anisotropy have been made by Mura 1987.

The most general form of the EIM is the inhomogeneous inhomogeneity (Qu et al. 2006):

C
˜̃
I :

(
extε

˜
el + ε

˜
c − ε

˜
p − ε

˜
∗
)

= C
˜̃
M

(
extε

˜
el + ε

˜
c − ε

˜
p

)
(4.16)

where the plastic strain ε
˜
p can also be considered as stress free eigenstrain. Using Eshelby’s

solution first an equivalent eigenstrain ε
˜
∗∗ is calculated. This then can be used to show

that the following relation holds:

σ
˜
I = σ

˜
+C

˜̃

(
S
˜̃
−1 − I

˜̃
sym

)
:

(
ε
˜
− ε

˜
I

)
(4.17)
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where C
˜̃

(
S
˜̃
−1 − I

˜̃
sym
)

= H
˜̃

is known as Hill’s constraint tensor (as in Qu et al. 2006

p.88-90) / (elastic-plastic) accommodation tensor (as in Besson et al. 2009 p.242).

4.4 Localization - Scale Transition Rules for

Non-linear Behavior

Localisation is the inverse operation of homogenization. A common method for localisation

is the self-consistent scheme. This means that inclusions are embedded in a homogeneous

medium / matrix which is given weighted average homogeneous properties. Assuming a

homogeneous (linear) elastic medium / matrix (HEM) Eshelby’s solution can directly be

applied as proposed by Kröner 1961 for grains (index g), considering the plastic strain as

stress free eigenstrain.

σ
˜
g = σ

˜
ext + 2μ(1− c1)

(
ε
˜
− ε

˜
p

)
(4.18)

where c1 is a coefficient related to the Eshelby tensor for the spherical inclusion in an

isotropic matrix (only depending on the Poisson’s ratio). Often 2(1− c1) is taken as one.

The next step was taken by Hill 1965, who adopted the above concept and described the

plastic flow by solving successive linear problems at each loading increment. This leads

to an implicit problem since the HEM property is not known a-priori. This model was

extended by Berveiller et al. 1978 to obtain elastic-plastic local tangent tensors under the

simplifying assumptions of isotropic elasticity, spherical inclusions with constant volume in

line with volume preservation in plasticity and monotonic loadings (analytical integration

possible).

In any case, if a linear scale transition rule is used the resulting phase stresses are over-

estimated. Therefore a nonlinear scale transition has been proposed for describing plastic

deformation in a polycrystalline aggregate (Cailletaud 1987; Cailletaud 1992; Cailletaud

et al. 1994; Hoc et al. 2001; Hlilou et al. 2009; Cailletaud et al. 2016). The starting point

is

σ̇
˜
g = σ̇

˜
ext +C

˜̃
eff :

(
S
˜̃
−1 − I

˜̃
sym

)
:

(
Ė
˜
− ε̇

˜
g

)
= σ̇

˜
ext +H

˜̃
:

(
Ė
˜
− ε̇

˜
g

)
(4.19)
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A pragmatic approach is to move the non-linear evolution of C
˜̃
eff (cf. Equation 4.3) to a

corrective term β
˜
.

σ
˜
g = σ

˜
ext +C

˜̃
:

(
S
˜̃
−1 − I

˜̃
sym

)
:

(
β
˜
− β

˜

g

)
(4.20)

Note, that here the elasticity tensor C
˜̃

basically is a model parameter. Commonly it is

simply replaced by a scalar (e.g. the shear modulus μ), otherwise it must at least be

checked against theoretical bounds. An extension to anisotropic elasticity can be found in

Cailletaud et al. 2016. The global plastic accommodation variable β
˜

is calculated as:

β
˜
=
∑
g

ξgβ
˜

g (4.21)

The task is then to find a suitable evolution equation for β
˜
, which has the status of a

localization state. The idea is to introduce a corrective term depending on plastic strains

(in analogy to non-linear kinematic hardening or a recovery term in plasticity) as

β̇
˜

g
= ε̇

˜
g −D

˜̃
: (β

˜

g − δε
˜
g)||ε̇

˜
g|| (4.22)

The β
˜

g are "kinematic-like" scale transition variables that are directly linked to the me-

chanical behavior of the geometry of material domains. The coefficients D
˜̃

(which is also

sometimes replaced by a simple scalar) and δ are not exactly material coefficients, but scale

transition parameters, which should be fitted from finite element computations on realistic

polycrystalline aggregates.

D
˜̃

is an accommodation tensor and may be calculated for a predefined shape, see e.g. Sai

et al. 2006 for the case of an infinite cylinder. For a relation of D
˜̃

with S
˜̃

see Weinberger

et al. 2005 (Equation 2.7. therein). Commonly, instead of a tensor a scalar D is employed

and seen as a fitting variable representing the a.m. heterogeneous behaviour, i.e. the

"kinematic-like" interaction is a result of the optimization procedure of the parameter

calibration. Note that for D = 0 the model coincides with Kröner’s model Equation 4.18.

According to Cailletaud et al. 2003, in the case of f.c.c. polycrystals, the single parameter

D is enough to get a reliable estimation of the behavior of the polycrystal.
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Ben Naceur et al. 2016 use the term with the coefficient δ in combination with linear kine-

matic hardening to model the ratchetting behavior of a 304 stainless steel. Chaboche 2008

points out that macroscopically 4.22 is very similar to a nonlinear kinematic hardening

(combined with a linear kinematic hardening).

Due to its explicit formulation iteration procedures like in classical self-consistent ap-

proaches are not required. The model can be seen as phenomenologically self-consistent,

offering a large choice for defining inter-phase plastic contributions, see Z-set: Multiscale

Materials Modelling V8.6 n.d. Figure 4.2 provides an conceptual overview of several homog-

enization / localization schemes including the β-rule in the case of a two-phase composite.

In the present framework the beta rule is employed within the grains for the forming

martensite microstructure. Particularly, as shown in section 5.5 for small grain sizes

martensite blocks play have the character of grains. Therefore the index g is dropped

and a (austenite) and m are introduced. Furthermore, it will be distinguished between

symmetry related variants in the martensite with the index i so that the resulting set of

equations becomes:

β
˜
= (1− ξ)β

˜

a +
∑
g

ξiβi
˜

m (4.23)

β̇
˜

a = ε̇
˜
a −Dβ

˜

a||ε
˜
a|| (4.24)

β̇i
˜

m = dev(ε̇i
˜

∗m)−D
˜̃

a : βi
˜

m|| dev(εi
˜

∗m)|| (4.25)

σ
˜
a = σ

˜
ext + μ

(
β
˜
− β

˜

a

)
+Kξ

ΔV

3
I
˜

(4.26)

σi
˜

m = σ
˜
ext + μ

(
S
˜̃
i −1 − I

˜̃
sym

)
:

(
β
˜
− βi

˜

m

)
−Kξ

ΔV

3
I
˜

(4.27)

Note that only the deviatoric part of the transformation strains lead to a nonlinear evolu-

tion, whereas the contribution due to spherical strain part is linear in the phase fraction ξ

(K is the compression modulus). Note that the β
˜
-rule gives an exponential saturation of

a strain like variable, where strain is directly proportional to the phase fraction ξ, and the

most popular kinetic equation (Equation 6.67) has exactly the same exponential saturation

character. Petersmann et al. 2017a, showed that the progression of Equation 6.67 can be

explained by evolution of the strain energy in a martensitic transformation that is governed

by elastic accommodation (hence behaves auto-catalytic in terms of energy minimization
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Figure 4.2: Schematic interpretation of scale transition rules. Particularly, the evolution
of this models under an evolving microstructure is emphasized.

by optimal selection of martensite transformation strain). This provides a physical argu-

ment to use the β
˜
-rule, which was initially proposed as a phenomenological stress scaling

law for plastic behavior, in a mean-field description of martensite.

Finally, it should be mentioned that the according flux variable conjugate to βi

˜
as well as

the dissipation contribution are given by

Xi
˜

β =
∂Ψ

∂βi

˜

Dβ = Xi
˜

β : βi

˜
(4.28)



Chapter 5

Experimental Characterisation

This chapter is organized as follows. First, essential material data to this work is given for

MarvalX12. Then a short overview of TRIP experiments is given and the characteristic

kinetic features are described. This work focuses on the microstructural changes that

lead to as well as accompany the TRIP effect. Therefore, as a next step the effect of

thermal cycling on the microstructure is outlined. Finally, a detailed orientation imaging

microscopy investigation is carried out.

5.1 MarvalX12 - Material Data

According to a recent nature publication by Morris Jr 2017 the two basic classes of steels

that have survived the multi-property selection process to become key competitors for ultra

high strength steel applications are secondary hardening steels and maraging steels. Among

the latter is the precipitation hardened (PH) 13Cr–8Ni high-strength stainless steels, which

is similar in composition to the MarvalX12 investigated in this work. The composition of

the MarvalX12 is found in Table 5.1.

The MarvalX12 has a molar mass of Mmarval = 56.22 g/mol (linear rule of mixtures) com-

pared to that of pure iron, which is MFe = 55.845 g/mol. Thermal expansion coefficients

Cr Ni Mo Al Ti C Si Mn P S N
12.15 9.05 2.03 0.7 0.35 <0.01 0.05 0.03 0.009 <0.002 0.0045

Table 5.1: Alloying components of Marval X12 (wt%),
∑ ≈ 24.2% hence Fe-75.8 %

143
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of austenite and martensite are:

αγ = 19.6× 10−6K−1 αα = 11.37× 10−6K−1

The lattice parameters for the maraging steel were measured at "Deutsche Elektronen-

Synchrotron" (DESY) in Hamburg at room temperature and linearly extrapolated to the

transformation temperature (Ms = 150±10° C depending on grain size and prior annealing

temperature) using the above thermal expansion coefficients of the pure phases resulting

in aγ = 3.6017Å and aα = 2.8807Å.

In the austenitic state the MarvalX12 has a yield strength of merely 170 MPa (before

transformation and precipitation hardening). Furthermore, its hardening behavior is al-

most linear. Interestingly, Goto et al. 2000, suggest that the linear-like hardening behavior

is a consequence of texture evolution, based on polycrystalline plasticity calculations. For

comparison, low alloy steels have typical yield strengths in the range of 500-1980 MPa,

stainless steels 280-500 MPa and mild steel ≈220 MPa (Bower 2009). Macroscopic tensile

yield strengths may be found in Lemaitre et al. 1994; Lemaitre 2001

The precipitation behavior of the MarvalX12 has been investigated by Leitner et al.

2011. Particularly, an ordered β-NiAl precipitate of spherical shape and uniform dis-

tribution within the matrix is mainly responsible for its precipitation hardening. Also

for Ti-containing maraging steels the hexagonal η-phase (Ni3(Ti,Al)) precipitate is char-

acteristic. Ping et al. 2005 found precipitate sizes of about 2–4 nm and inter-particle

distances are about several nanometers (less than 10 nm) in a compositionally similar

13Cr–8Ni–2.5Mo–2Al steel. Notably, the plasticity framework incorporating mean free

paths in subsection 6.6.2 can easily be extended to account for precipitates if reliable data

is available.

5.2 Macroscopic TRIP Experiments

Recent studies focused on the macroscopic behavior of the the MavalX12. Particularly, a

broad spectrum of mechanical tests investigating its structural hardening behaviour (uniax-

ial monotonic tension, compression, torsion and thermal cycling) are already documented
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Nagayama et al. 2000; Nagayama et al. 2001; Nagayama et al. 2002; Tanaka et al. 2003.

Similar studies have recently, been carried out by Loewy et al. 2016.

Specimens are, after machining, heated up to 1100° C in air, held there for 30 min., and

air-cooled to RT. The material has been initially rolled and the ensuing texture cannot fully

be removed even upon heating to 1200° C. An image of a specimen is shown in Figure 5.1.

Prior to all tests, the specimens were heated to at least 840° C at a heating rate of 0.5 K/s

and held there for 30 min. to ensure full austenitization. The specimens are then cooled

down to room temperature at a cooling rate of 2 K/s until about 50° above Ms (which lies

in the range of 150 ± 10° C) and at a lower cooling rate of 0.2 K/s from there in order to

set an accurate timing of load changing before the start of the transformation. The strain

evolution during transformation under various constant loading conditions is depicted in

Figure 5.2.

For a prior annealing at 840° C an additional applied tensile strain of 29 MPa (due to

an internal backstress) is necessary to close the transformation hysteresis, see Figure 5.2.

The martensite start temperature and the backstress depend on the grain size (Bohemen

et al. 2017) and on the prior annealing (time and temperature) lowering the effect of strain-

induced transformation. Different combinations of annealing times and temperatures have

been studied. For example, to close the transformation loop after annealing at 1100° C for

30 min requires an additional tensile loading of 11 MPa, whereas for annealing at 1200° C

for 20 min 12 MPa are required. Finally, the importance of biaxial tension and compression

is emphasised in the light of recent experiments (Petegem et al. 2016; Polatidis et al. 2018)

and simulations (Erinosho et al. 2016; Upadhyay et al. 2016).

Figure 5.1: Thin-walled tubular specimen used in the mechanic characterisation. Sam-
ples are machined with surfaces obtained from a longitudinal cut in the blue marked area

of the gauge length. Dimensioning plan taken from Nagayama et al. 2001.
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Figure 5.2: Top: Strain evolution due to transformation under various constant loading
conditions. Bottom: Strain evolution of one thermal cycle without loading. 29 MPa
additional tensile loading were found to be necessary to close the transformation loop for

the 840° C prior annealing.

5.3 Kinetics

Phase fraction measurement can be done via dilatometry, magnetometry (Holmquist et

al. 1995 similar composition to MarvalX12), resistance measurements, X-ray diffraction

(evolution of Debye Scherrer Rings) Tian et al. 2017; Wiessner et al. 2017; Villa et al.

2018a; San Martin et al. 2012 (similar composition to MarvalX12), differential scanning

calorimetry (DSC), laser ultrasonics (shock pulse detection), neutron depolarization Van

der Zwaag 2012 etc. Note that in DSC experiments of steels a slightly increasing heat
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flow rate up to the Curie temperature occurs due to the change of magnetic properties.

Interestingly, in the macroscopic tensile strain curve of Figure 5.4 a weak deformation

change between 800° and 900° C, which is near to the Curie temperature for this steel, can

be observed upon cooling.

In dilatometric measurements commonly a linear relation between the martensite phase

fraction and the axial strain is assumed. Additionally, a lever rule similar to that used for

the calculation of phase fractions in phase diagrams can be used to assess the transformed

phase fraction ξ as a function of temperature. The lever rule gives only an approximate

value of the transformed volume. This is due to the fact that the method neglects the differ-

ences in the specific volumes of different phases and the partition of atoms between phases.

Another source of uncertainty is connected with the superposition of dilation signals orig-

inating from several phases Pietrzyk et al. 2012. Furthermore, dilatometric measurements

may overestimate the phase fraction due to the initial strong variant orientation effect.

Basically the kinetics can also be obtained from the work hardening rate ∂σtens/∂εtens in

a stress controlled test, see e.g. Kisko et al. 2013 Figure 2. therein. In this work also

the effect of a more heterogeneous austenite leading to a steeper initial kinetics (higher

strain-induced nucleation effect) is illustrated.

The MarvalX12 merely requires a cooling rate of as low as 0.2 K/s to obtain a fully marten-

sitic state (similar to a massive transformation), as opposed to e.g. high carbon steels that

require water quenching. The kinetics curve varies between the two upper curves in Fig-

ure 5.3 within our experimental data. The kinetics curve is neither sigmoidal nor C-shaped,

but has characteristics. Loewy et al. 2014 obtained a similar kinetics investigating a Fe-

18Ni 9Co 3-5Mo steel (samples of 90 and 180 μm grain size) using dilatometry. Particularly,

they observed staggered transformation rate maxima indicating an elastic accommodation

behavior, see Figure 5.3.

Although no specific experiments have been conducted for the isothermal transformation

behavior, the literature strongly suggests that the MarvalX12 shows isothermal kinetic

characteristics. For recent state of the art kinetic studies of primarily martensites showing

isothermal kinetic characteristics, see the works of Villa 2013; Villa et al. 2014; Villa et al.

2018a; Villa et al. 2018b.
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Figure 5.3: The kinetics of the MarvalX12 is relatively independent on the cooling rate,
but varies strongly with the grain size and austenite heterogeneity both macroscopically
characterised by an effective stress in the works cited at the beginning of section 5.2.
In the experimental data available the kinetics varies between the upper-right (higher
annealing temperature, measured via dilatometry) and upper-left (lower annealing tem-
perature, transformation under load and lever-rule like calculation). The lower images
taken from Loewy et al. 2014 illustrate that the transformation rate for a steel of similar
composition and kinetics exhibit staggered rate maxima in the indicated temperature in-
terval. This behavior indicates the presence of an elastic accommodation effect, although

the transformation is strongly coupled with plasticity.



Experimental Characterisation 149

5.4 Impact of Thermal Transformation Cycling

on the Microstructure

In the works cited at the beginning of section 5.2 the macroscopic strain evolution during

thermal transformation cycling has been investigated. Therein, the remaining strain in a

full thermal cycle has been termed ratchet strain due to the backstress formalism employed.

However, the mechanism is quite different to what is normally understood under ratchetting

(cf. subsection 2.2.4) considering the full temperature cycle and phase transformation

involved. In Figure 5.4 the macroscopic strain evolution is depicted. It can be seen that

the axial ratchet strain in the first cycle is much larger than in the following cycles and

martensite start decreases slightly with each cycle. A possible explanation is that during

each cooling the TRIP effect produces a high density of dislocations. Upon heating they

partially first recrystallize and then recover. However, the time the specimen is hold in the

austenitic state is to low for material to reach its initial state before the next cooling starts,

eventually triggering TRIP again. However, the higher dislocation density, the higher the

driving force for recrystallization and recovery. Therefore, if the rates of temperature

changes and holding times are kept the same a steady state is reached.

Taleb et al. 2006 investigated a 16MND5 HSLA steel and performed similar cyclic experi-

ments for a bainitic transformation but applied a tensile load during each cycle, with the

result that they obtained a positive ratchetting strain evolution, with a total accumulated
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Figure 5.4: Strain evolution during thermal cycling (specimen TR32), without an ap-
plied load during transformation. Top: full temperature range. Bottom: Strain difference

between start of heating and end of cooling for each cycle, respectively.
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strain of almost +1.8% after six cycles as opposed to -1.4% shown in Figure 5.5.

Taleb et al. 2006 also conducted tests, with one unloading cycle and a significant plastic

deformation in austenitic state (assuming that no stress-assisted or strain-induced effects

occur) in the second cycle (between +5 and -10% plastic strain) before bainitic transfor-

mation. Interestingly, with initial plastic straining and without applied stress during the

transformation a positive plastic strain lead to a negative (but very small; -0.1%) TRIP

strain during bainitic transformation and vice versa (+0.2%). Also the kinetics changed

significantly. They also report that this result is contrary to the behavior caused by a

martensitic transformation in the same steel, see Taleb et al. 2002.

Kisko et al. 2013 specifically studied the influence of grain size on the strain induced

martensite formation in tensile straining of an austenitic 15Cr–9Mn–Ni–Cu stainless steel.

Orientation imaging microscopy studies on the effect of the thermally cycled transformation

have been conducted only very recently by Chiba et al. 2017; Hidalgo et al. 2016. Figure 5.5

is taken from the latter work and illustrates the microstructural changes within four cycles

of a Fe-0.3C-1.5Si-3.5Mn steel. Note that all of the specimens that will be considered in

the next section have been cycled with ≥4 cycles after which the grain size is reported to

not change significantly any more.

5.5 Microstructure Characterization by Orientation Imaging

Microscopy

In this work three specimens have been investigated. All of them have been cycled at

least 4 times such that their resulting block size (grain) size stays approximately constant.

Two of them are annealed at 840°C and one at 1100°C for 30 minutes respectively. Of

the specimens annealed at the lower temperature one (designated TR25) is loaded with a

tensile load of 120 MPa and the other (designated TR32) with a torsion of 120 MPa (≈
only shear stress). The specimen annealed at the higher temperature (designated TA03),

is not loaded during transformation. Two sets of EBSD recordings have been carried out.

In the first set a larger area comprising many grains has been recorded and is evaluated

statistically. In the second set of recordings only a specific block is recorded respectively

with a higher voltage and finer step size (30 nm). Attention is directed to the very fine
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Figure 5.5: Taken from Hidalgo et al. 2016. Colour-code: inverse pole figure, grayscale:
image quality. (a)-(d) Cycle 1-4. Note that in (a) a larger scale is used. White lines
represent misorientation of rotating angle between 20° and 47° argued to represent prior

austenite grain (PAG) boundaries.

substructure of martensite, being at the limit of the possible resolution of the electron back

scattering diffraction method.

From the tension-torsion specimen (see Figure 5.1) longitudinal cuts are made in the area

of the gauge length. The samples are then polished and etched. It should be noted that

there are specific methods to particularly etch the grain boundaries, however these methods

are dedicated to specific chemical compositions and mainly for the austenite.
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The typical resolution of the EBSD measurements is above the expected dimensions of inter-

lath retained austenite films. EBSD scans confirmed the prior assumption that there is no

noteworthy amount of retained austenite in the samples at room temperature. Particularly,

the few spurious films indexed as austenite in the sample are with high certainty merely

indexing errors near high angle boundaries. S. Zhang et al. 2012 mention some retained

austenite in a similar steel composition (Fe C-0.018 Si-0.29 Mn-0.8 P-0.003 S-0.002 Ni-9.05

Cr-12.95 0.49) utilizing a cooling rate of 0.45 K/s without going further into detail.

The interaction volume of the electron beam has a typical bulb / pear shape and depends on

the applied voltage. The lower the applied voltage the weaker the received signal resulting

in longer recording times. Phase identification is done by comparing reflection patterns (so-

called Kikuchi bands) resulting from the overlap of two diffraction cones, on a detector,

see Figure 5.6. The middle of a band corresponds to the trace of the diffracting plane.

Characteristic patterns are correlated with known patterns. The coherent signal forming

the Kikuchi bands comes from the first ≈ 10 nm of the surface. Therefore the sample must

be crystalline and without excessive plastic deformation. Note that plastic deformation

always occurs due to the specimen preparation. Therefore, before the recordings some of

the polished surface was removed using a soft field ion beam (FIB) method referred to as

"ion slicing".

The area that is scanned for each pixel is called step size. In the current recordings a step

size of 50 nm has been used. The raw data of orientation imaging microscopy assigns to

each pixel an orientation (a matrix) describing the rotation from a reference coordinate

system to the identified lattice system. The orientation of the reference system w.r.t.

the specimen as well as the orientation for all the orientation imaging microscopy (OIM)

images that will follow is shown in Figure 5.6. Several clean-up routines can be performed

on the raw data. A common routine is "dilation", where regions of slight misorientation

are expanded to correct the indexing errors at high angle boundaries. Another strategy is

to filter data which does not fulfil certain quality criteria.

For EBSD image mapping styles it must be distinguished between a style for the image’s

grayscale (GS) as well as its colour-code (CC). Note that due to the non-linearity and

ambiguity of the Euler-angle space, it has been pointed out that by using some prevailing

CCs some details are lost and new CCs have been proposed recently, see e.g. Nolze et

al. 2016. Subsequently a short notation will be used for designating the mapping style
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1 - RD

3 - ND

OIM
IMAGE

tensile load direction =

shear stress
direction =

2 - TD
Figure 5.6: Left: Schematic arrangement of electron source, specimen and with reference
coordinate system in the used OIM software and EBSD detector (image taken from TSL
OIM Analysis Manual n.d.). Terminology from the characterization of rolling texture: 1
- Rolling direction (RD), 2 - Transverse Direction (TD) and 3 - Normal direction (ND).
Right: Orientation of the coordinate system in the images provided in this work and its
relative alignment with the sample (indicated by an extract of the gauge length) and its

external loading during transformation.

of images, i.e. GS or CC followed by the actual style. The first GS mapping style is,

image quality (IQ). It is a parameter generally quantifying the crystallographic uniformity

within the interaction volume and how plane a specific area is. The IQ is useful for gaining

some insight into the distribution of strain in a microstructure (TSL OIM Analysis Manual

n.d.). Figure 5.7 shows an EBSD recording of the specimen that has been shear laoded

during transformation (TR32) with GS-IQ indicating a strong heterogeneity. Another GS

mapping style is "fit". A fit parameter is determined as part of the indexing procedure. It

has been found that the best contrast can be achieved using this mapping style (for details

see TSL OIM Analysis Manual n.d.), whereas the commonly used overlay with IQ leads

to very dark images.

The grain shape orientation as used in the next section is shown in Figure 5.8. What

actually constitutes a grain in OIM is specified by the user. Mainly the grain maximum

misorientation angle is important at this point. A common default in most OIM programs

is 5°. However, for the identification of bi-variant blocks constituting the role of grains in

a fully lath martensitic microsture a tolerance angle of 11° is specified, since this is slightly

larger than 10.5° which is the lowest theoretical lattice misorientation between sub-blocks

in bi-variant blocks, see Table 3.3. Finally, it must be mentioned that for all evaluations

of grains it is commonly distinguished between area and number weighted averages. These
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Figure 5.7: Sample T32, GS-IQ, lower left quarter of Figure 5.9. The sample surface is
not very flat even after ion slicing. This indicates a high degree of dislocations and hence

internal stresses.

two values are only close to one another if the grain size (block size) is uniform. Since this

is not generally the case in our samples, the area weighted evaluation is preferred.

Finally, some mentionable OIM studies of martensite are shortly reviewed. Malet et al.

2009 studied variant selection in hot-rolled, bainitic, TRIP-aided steels, reporting that hot

deformation (general prior plastic deformation) generally reduces the number of packets

that form. Miyamoto et al. 2012; Miyamoto et al. 2013 studied ausformed lath martensite

(Fe–0.15C–3Ni–1.5Mn–0.5Mo, Fe–25Ni–0.5C, average grain size ≈ 150μm) and found that

all six variants belonging to the packet whose {011}α plane is nearly parallel to the primary

slip plane in {111}γ , are formed preferentially. At very high plastic strains (> 30%), the

six variants of the packet nearly parallel to the secondary {111}γ slip plane are formed.

Especially among the two packets those variants nearly perpendicular to the compression

axis where selected. The effect of stress on variant selection has also been investigated

by Mishiro et al. 2013. Tomida et al. 2013 found that the transformation texture is near

the initial plastic texture and reproduces even after a phase transformation cycle. Kinney
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Major axis

Minor axis

Figure 5.8: Definition of grain shape in the OIM software is determined by fitting an
ellipse to points making up a grain (red line marks the grain boundary). 0 < θ <180°
gives the grain shape orientation, i.e. the angle between the major axis of fitted ellipse

and the horizontal direction (2 in Figure 5.6).

et al. 2016 studied the martensite formed from twinned prior austenite regions (annealing

twins, indistinguishable from an IPF map). Giri et al. 2017; Chintha et al. 2013 used the

crystallographic set (see section 3.10) to qualitatively identify martensite variants from OIM

data. However, the studies are limited to single grains. A characterisation incorporating

many grains automatically using a crystallographic set is still a long way of.

5.5.1 Many Grains

In this section an overview of the microstructures of the three specimens as well as some

statistics is provided over an area comprising ≈100 prior austenite grains (PAG). The

average prior austenite grain size (PAGS) of all three specimen was found to be ≈15 μm

estimated from the fully transformed microstructure. The actual grain size i.e. the block

size is about one quarter of that, but blocks are much more elongated in shape than PAGS.

The colour-code (CC) used in this section is the inverse pole figure (IPF) mapping style.

Note that the difference between a pole figure and an inverse pole figure is that a pole

figure shows a particular specified crystal direction relative to the sample frame, while the

inverse pole figure shows a particular sample direction relative to a lattice reference frame.

Thus, for instance a [001] inverse pole figure shows which crystal direction in the crystal

lattice is aligned with the normal (3,ND see Figure 5.6) of the sample reference frame. In
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Figure 5.9: Specimen TR32 - transformation under 120 MPa torsion loading, CC:
inverse pole figure (IPF), GS: fit. A visible orientation contrast from bottom right to top
left can be noticed. Particularly, sub-block features oriented in this direction are more
elongated than in any other direction. The torsion loading leads by far to the highest

heterogeneity within individual blocks.

fact this is the default inverse pole figure mapping in most programs. Furthermore, the

default of symmetry inversion is used, i.e. all points indexed on the southern hemisphere

are mirrored to the northern hemisphere.

Subsequently an overview of the microstructures of the specimens TR32 (torsion), TR25

(tension) and TA03 (higher annealed) will be given. For the inverse pole figure CC the

sample direction in all figures is chosen to be the normal direction [001] since no significant

improvement of orientation contrast could be achieved in changing this value, not even for

the tensile specimen, where some alignment with the [100] stress direction was expected.

The microstructure of the sample that was loaded in torsion during transformation (ap-

proximately pure shear stress) is shown in Figure 5.9 looks like it has been directionally

keyed (roughened) at an angle of θ = 45° from the horizontal. Considering that the shear
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Figure 5.10: Specimen TR25 - transformation under 120 MPa tensile loading, CC: IPS,
GS: fit. Contrary to the sheared sample no preferred block orientation is visible and

heterogeneity within blocks is lower.

plane normal is parallel with the upwards direction in this figure this visible texture in-

dicates a transformation front contrary to a completely homogeneous transformation over

the whole gauge length of the specimen. This phenomenon is well-known form NiTi alloys

(e.g. J. Shaw et al. 1997). Also sub-block features are far more heterogeneous than in the

other two samples indicating a higher dislocation density.

Figure 5.10 gives an overview of the tensile loaded sample during transformation (TR25).

The GS contrast due to the fit mapping style is less pronounced than in the torsion sample.

The same was observed for the IQ contrasts.

Finally in Figure 5.11 specimen TA03 (annealed higher than TR32 and TR25) is shown.

The orientation contrast between neighbouring regions is sharper (misorientation gradients

between similarly oriented regions are smaller), as is expected due to the effect of more

pronounced recrystallization and recovery phenomena.
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Figure 5.11: TA03 higher annealed, CC-IPF, GS:FIT - Same options for GS as for
TR32 and TR25. The GS contrast of this image is distinctly different than from TR32
and TR25. This is due to the annealing at higher temperature significantly reducing the

dislocation density.

Next, the specimens’ textures are investigated utilising pole figures and inverse pole figures

(IPFs). Particularly, an ODF is constructed by fitting data using spherical harmonics.

Note that a very high series rank in the harmonic expansion is computationally expensive

if the processed data set is very large. While pole figures and inverse pole figures (IPFs)

utilising one average orientation per grain weighted by the grain area are suitable to char-

acterise block selection, in our severely dislocated specimens they exhibit deviations from

the overall state of the ODF obtained by fitting all the available data points (≈ 5 million)

that have been recorded per image. This indicates strong orientation gradients within

domains classified as grains and hence a large overall heterogeneity of the microstructure.

Orientation gradients also depend to some degree on the ability of the OIM software to re-

construct grains. These circumstances are depicted in the following IPFs and pole figures.

Note that the IPF representations are shown without inversion symmetry.

The Gaussian smoothing value given in the following images is associated with the width
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of a Gaussian distribution (recall that an orientation distribution function deals with prob-

abilities) weighting in order to get rid of negative values which are otherwise unavoidable

in the fitting procedure, see H. Bunge 1982; TSL OIM Analysis Manual n.d.

Furthermore, in the case here it is important not to assume any sample symmetries (tri-

clinic) providing the most generality to identify variant selection in terms of lattice ori-

entation since it may happen that two shape strains become symmetry related although

different slip systems act during their formation.

Specimen TA03 is considered first since it depicts the reference of an unloaded trans-

formation. The IPFs shown in Figure 5.12 underline the visual impression obtained in

Figure 5.11, namely that for specimen TA03 there is little difference between using the

average orientation of areas defined as grains or the full data range. There is a pronounced

lack of inversion symmetry for the 3/ND/[001] direction, which should be investigated fur-

ther. However, since this would require to go into depth of the general indexing procedure

of Kikuchi patterns this aspect is not followed further at this point.

The textures of the loaded samples significantly differ from that of TA03 due to the com-

bined effect of loading during, as well as lower annealing temperature before, transforma-

tion. Figure 5.13 shows the IPF of the torsion sample (TR32). This specimen shows the

most pronounced difference between the IPF using merely one (average) orientation per

block defined by 11° and all data points, i.e. this microstructure is the most heterogeneous.

Nevertheless, there are distinct maxima observed in the TD and ND direction. Notably,

both maxima are not distributed around a single direction but around directions ranging

from 〈101〉α up to 20° towards 〈100〉α. Interestingly, the highest values of the maxima

are almost not affected, although the shear loading changes the position and shape of the

maxima. Particularly, the difference is about 10 % (1.51 to 1.66).

Finally, Figure 5.14 corresponds to the tensile strained specimen. The difference of a grain

average and whole data evaluation is between that of TA03 and TR32. A characterisation

of this specimen using the reduced grain average is still not exact enough, hence a full

evaluation should certainly be preferred. The most distinct feature of this sample is that the

maximum in the [100] loading direction accumulates near 〈111〉α and ≈ 〈225〉α. Moreover,

the preference of a certain orientation is most pronounced in the case of this specimen

(note that the intensity is 2.8, which is about 60 % larger than for TA03 and TR32).

While inverse pole figures are very useful to characterise the overall lattice orientation in
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Figure 5.12: 〈100〉 IPFs of specimen TA03. Top: IPFs constructed with one average
orientation per reconstructed grain defined by a misorientation of 11°. Bottom: IPFs
using all data points. It can be seen that the reduced texture evaluation reproduces the
full texture very well. Interestingly, in the 3/ND/[001] direction corresponding to the
tangential specimen direction there is a texture peak of 〈100〉α. One possibility is that
this is the Bain compression axis, but this would be counter intuitive since without any
other deformation mechanism this axis would preferably be oriented towards the free
surface in [010] sample direction. So it must be an artifact of the transformation texture
developed during the thermal cycling. As expected in an unloaded transformation there

is almost no difference between the [010] and [100] IPFs.

the sample they cannot be used for individual variant identification. In the authors opinion

also the full Euler space should not be used for individual variant characterisation due to

its drawbacks elaborated in section 3.4. It has been tried to find correlations between the

bi-variant block structure and texture representations in full Rodriguez space, but no direct

trend could be observed. Eventually, pole figures turned out to be most useful for the task

of qualitatively characterising the martensite variant distribution.

Again grain average point wise data weighted by the grain area is compared to a fit of all the

available data points. Stereographic projections are employed. Alternatively, equal angle

and equal area projections are commonly used. Note that there is a small difference between

the latter two and the stereographic projection, while the equal angle and equal area

projection almost yield identical results. Eventually, this might play a role for quantitative

variant identification over larger scanned areas. Figure 5.15 gives an overview of the texture

in the sample TA03. Generally, it is found that variants can approximately be identified
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Figure 5.13: 〈100〉 IPFs of specimen TR32. Direction of maximum shear stress is [001].
Top: IPFs constructed with one average orientation per reconstructed grain defined by
a misorientation of 11°. Bottom: IPFs using all data points. The two evaluations differ
significantly indicating strong gradients within blocks. Therefore, evaluating all data
points should be preferred. There is a preference of 〈111〉α ≈ 〈110〉γ to align with the
direction of maximum shear and 〈011〉α ≈ 〈111〉γ to align with the direction of the free

surface.

Figure 5.14: 〈100〉 IPFs of specimen TR25. Direction of tensile loading is [100]. Top:
IPFs constructed with one average orientation per reconstructed grain defined by a mis-
orientation of 11°. Bottom: IPFs using all data points. 〈111〉α preferably is oriented in
the loading direction and the absolute values of all the occurring maxima are much more

pronounced than in the shear and unloaded samples.
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Figure 5.15: Pole figures of sample TA03 (stereographic projections). Top row: one
point per grain area weighted with grains defined by 5° misorientation. Middle row: one
point per grain area weighted with grains defined by 11°. Note that the highest possible
rank of 34 is used. Bottom row: fit of all scanned data points with harmonic series rank
16. The 11° resolution for the grains should be preferred over the 5° grain resolution since
it depicts the overall state of texture much better. However, the 5° resolution is useful to
identify bi-variant pairs forming blocks. Interestingly, maxima in the 〈001〉α pole figure
are concentrated on the left hand side, cf. the lack of inversion symmetry in Figure 5.12.

by grouping the maxima of the pole figures to 12 main spots corresponding to 12 bi-variant

blocks with a maximum misorientation of 11°. In cases where the 12 variants cannot be

identified it is helpful to simultaneously regard the pole figures obtained from all data

points as well as from average grain (defined by 5° misorientation) orientations weighted

by the grain area for a characterisation of variant selection in terms of lattice orientation.

Figure 5.16 shows pole figures for the specimens TR32 and TR25. The pole figures of

the tensile loaded specimen (TR25) exhibits symmetries. This can be explained by the

fact that the load direction lies withing the specimen’s cut surface (A1/LD direction).
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Conversely, this is not the case for the sheared sample. This observation poses the question

whether the same trend would be observed if a cut of the cylinder’s cross section (containing

the maximum shear direction) instead of a longitudinal one, were investigated. Also it

puts in question the common assumption that the distribution obtained from area data is

representative for the three dimensional state. Note that this assumption is only valid for

fully randomly distributed grain or variant orientations.

Merely using lattice orientation data for the characterisation of martensite is insufficient. It

is really the interplay of lattice orientation, martensite domain morphology and interface

character that determines the properties of the microstructure and hence macroscopic

properties. Therefore, subsequently differences in interface characteristics are investigated.

Figure 5.17 shows the boundary character distribution of the three specimens. Therein it

is distinguished between low (< 15°), high (> 15°) and special low energy coincidence side

lattice boundaries. Note, all CSL boundaries are high angle boundaries. It can be seen

that external loading during the transformation has a profound effect on this distribution.

For a better interpretation the absolute values of these interface types must be known.

These are as follows: For TA03 the total interface length in the recorded area is 4.43 cm -

1.37 cm thereof are low and 3.06 cm are high angle boundaries of which again about half

are CSL boundaries (≈ 1.5 cm). For TR25 the values are 4.40 cm total, 2.37 cm low and

1.66 high with about two-fifth being CSL boundaries (≈ 1.05 cm) and for TR32: 4.74 cm,

2.36 cm low, 2.38 cm high with about one third CSL boundaries (≈ 0.77 cm).

As a next step the distribution of misorientations is investigated. Results for all three

samples are shown in Figure 5.18. All three specimens show quite a pronounced peak

exactly at 30°, although this has not been classified as any special theoretical boundary,

cf Table 3.3. It is also noted that upon coarsening the data two times (coarsening means

removing every other point in each row and every other row from the data) the peak

at 30° shrinks significantly. This indicates that it belongs to very fine microstructural

features. Another interesting aspect is that there are significantly less 60° boundaries

in the sample that transformed under shear loading. These results play a role for grain

boundary engineering by loading during the transformation.

Finally, in order to obtain a more complete microstructural picture, an attempt is made to

incorporate the martensite domain morphology, which is experimentally most difficult to
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Figure 5.16: Pole figures of TR32 and TR25 (stereographic projections). Grain average
orientation, with grains defined by a misorientation of 11°, weighted by the grain area for
TR32 (top row) and TR25 (3rd row) respectively. Fit of all data points for TR32 (second
row) and TR25 (bottom row). As for the IPFs for the torsion sample the reduced texture
representation fails to be representative of the whole data. The texture for the tensile

loaded sample is very sharp
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Figure 5.17: Boundary/interface character distribution in the three samples. It is
distinguished between low and high angle boundaries, where for the latter additionally
coincidence site lattice boundaries are distinguished. In shear deformation significantly
more low angle boundaries are formed and the number of CSL boundaries decreases most

significantly.

characterise. Particularly the effect of grain shape orientation has been considered. Such

an approach has e.g. been followed by Nambu et al. 2013 for PAGS of ≈ 100 μm, where

the martensite domains are much more elongated than in the thermally cycled specimen

considered in this work. Again the two definitions of grains by a misorientation of 5° as

well as 11° are considered. The results are shown in Figure 5.19 for 5° and Figure 5.20 for

11°. It can be seen that by defining a grain with a misorientation of 11° the maxima are

more pronounced. Note that this is not an effect due to the smaller amount of data points

since area weighting is considered rendering this effect negligible. Particularly, Figure 5.20

is in accordance with the expectations of block selection under load.
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Figure 5.18: Distributions of misorientations in the three samples. The sum of the
number fractions of each of the individual intervals (0°-2°,2°-5°,5°-60°) = 1, i.e. even small
differences between the same intervals are very pronounced. Top: TR32, Middle: TR25,
Bottom: TA03. Deviations in the second interval seem to be the lowest between the three
specimen. Interestingly, all samples show a peak around 30°, where no special boundaries
are reported (cf. Table 3.3). Therefore, this peak must be a result of the transformation

cycling.
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Figure 5.19: Distribution of grain shape orientation, cf. Figure 5.8. Grains are defined
by connected regions with a misorientation of 5°. Several levels of discretisation are shown
for a better characterisation. Left column: specimen transformed under 120 MPa tensile
loading (TR25). Right-column: specimen transformed under 120 MPa shear loading

(TR32).
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Figure 5.20: Grain shape orientation, cf. Figure 5.8 with several discretisation lev-
els. Left column: specimen transformed under 120 MPa tensile loading (TR25). Right-
column: specimen transformed under 120 MPa shear loading (TR32). Grains are defined

as connected regions with a misorientation of 11°.
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5.5.2 Block Details

For the characterisation of the substructure of individual blocks such as small twins and

dislocation cells, electron backscattering diffraction (EBSD), electron channelling imaging

contrast imaging (ECCI), X-ray and synchrotron Bragg diffraction and transmission elec-

tron microscopy (TEM) has been used. A discussion of habit plane examination using

TEM can be found in M.-X. Zhang et al. 2009. Du et al. 2016b points out that due to the

almost identical orientation of sub-blocks their boundaries are invisible in EBSD maps.

Figure 5.21 taken from the literature (Morito et al. 2006a) depicts a regular block arrange-

ment of a steel microstructure with a similar composition as the MarvalX12. Furthermore,

it is known that the prior austenite grain size (PAGS) is 320 μm and martensite has been

obtained by water quenching. Some aspects are important to keep in mind in the following.

First, the arrangement of blocks is much more regular with a PAGS much larger than in

the case investigated here, i.e. the hierarchical microstructure of lath martensite exhibits

an inherent size effect.

Second, a common way to reconstruct a few austenite grains consists in taking a rep-

resentative pole figure (such as that in Figure 5.21) or ODF, transform it according to

an appropriate orientation relationship (KS or NW) and compare it with theoretical pole

figures for this OR. Obviously, this approach is not suitable for the determination of an

overall variant distribution. References on automatized reconstruction methods are found

at the end of section 3.4.

Third, the resolution in Figure 5.21 is about two magnitudes lower than what is possi-

ble nowadays. Today often the term high resolution electron back scattering diffraction

(HREBSD) is encountered in the literature. Actually, the term does not refer to directly

recorded higher resolution, but a signal processing technique. Particularly, some regions of

interest (ROI) are extracted and their intensity distributions are cross correlated using a

cross correlation function (XCF) in order to achieve a higher angular resolution. Accord-

ing to Wilkinson et al. 2006 this technique is insensitive to hydrostatic strain changes (no

change in the angle between Kikuchi bands).

Now the sub-block heterogeneous features of the three specimens are investigated. For this

purpose a more sensitive colour coding than in the previous section is chosen to visualize
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Figure 5.21: Left: Typical regular block arrangement of 18Cr-8Ni-5Mo with large
320 μm PAGS from Morito et al. 2006a. The data either has been coarsened or the
resolution of common EBSD systems at the time of recording was significantly lower than
for more modern systems. Right: according pole figure. Such pole figure representations
are commonly used to reconstruct grains by comparing them with theoretical pole figures.

lattice orientation gradients more clearly. In addition to that the density of geometri-

cally necessary dislocations (GNDs) is calculated from the local misorientation. The GND

density is given in terms of 1 × 1012 m−2. The calculation method is according to Field

et al. 2005 and considers both edge and screw dislocations. Two evaluation parameters

can be specified. (i) a maximum misorientation, above which orientation gradients are

not considered for the GND calculation (the program default is 5°). (ii) the number of

nearest neighbours over which the orientation gradient and hence the density of GNDs is

calculated. Complementary studies on GNDs in steels may be found in Calcagnotto et al.

2010; Konijnenberg et al. 2015.

Figure 5.22 depicts the fine sub-block features of a block from the microstructure of speci-

men TR25 (tensile loaded). The heavy plastic deformation due to the repeated TRIP effect

involves block-substructure sliding and rotation as indicated by the observed dislocation

tangles arranged as dislocation cell walls. This mechanism of rearrangement is highly ef-

fective to reduce the strain energy compared to the random distribution of dislocations,

resulting in a more (thermodynamically) stable state.

In Figure 5.23 and Figure 5.24 similar evaluations have been carried out with varying

maximum misorientation angle for the GND density for the specimens TR32 (torsion) and

TA03 (higher annealed).
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Figure 5.22: Specimen TR25 tensile specimen: Upper-left: GS: fit, CC: IPF. Upper-
right: CC: [001] IPF with crystal direction 〈111〉α and colouring up to 12° misorienta-
tion indicating bi-variant block-structure. The GND density is evaluated by first nearest
neighbour analysis and considering misorientations up to 5° (larger misorientations are

ignored). GND density is, given in multiples of 1× 1012 m−2.
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Figure 5.23: Specimen TR32 (shear loaded). Left: Local misorientation with maximum
of 11° with respect to marked point in grain. Right: GND density evaluated with a
maximum considered misorientation of 60° (larger misorientations are ignored) and second

nearest neighbours analysis. The GND density is given, in multiples of 1× 1012 m−2

Figure 5.24: TA03: Left: Euler angle colouring background and local misorientation
with maximum of 15° relative to marked point in the middle of the block. Right: GND
density with maximum considered misorientation of 15° (larger misorientations are ig-
nored) and first nearest neighbours gradient calculation. The GND density is given in
multiples of 1 × 1012 m−2. Here the GND density is overlayed with an image quality
gray-scale contrast Note that at this resolution the grain boundaries can be anticipated

by the image quality contrast.



Chapter 6

Constitutive Description of

Dislocated Lath Martensite

Formation

The focus of this work, from a modelling point of view, is on plastic deformations and lattice

changes (accompanied by some positive volumetric change) enabled by dislocation motion

as well as their mutual couplings. Microstructurally motivated constitutive relations are

sought.

6.1 Continuum Kinematics and Classes of

Continuum Models

For the mean field approach developed in this work an engineering / linearised / small

/ infinitesimal definition of strain is utilized corresponding to an additive decomposition

of the total strain ε
˜
. Note that common strain functions are defined, such that for small

strains but arbitrary rotations (e.g. in plasticity), all strain measures are the same to

the order of approximation. However, the crystallographic deformation due to the phase

transformation E
˜
tr, discussed in chapter 3 in general is not small. Therefore, a large / finite

/ quadratic / non-linear strain formulation is employed for the transformation strains. A

mean field description is employed, i.e. an implicit homogenization of the mechanical

173



Constitutive Description 174

fields weighted with of variant phase fractions ξi evolving incrementally for the respective

transformation tensors.

ε
˜
= ε

˜
te

︸︷︷︸
reversible

+ ε
˜
in

︸︷︷︸
irreversible

= (ε
˜
el + ε

˜
th) + (E

˜
tr + ε

˜
p) (6.1)

with thermoelastic / reversible (elastic plus thermal strains) and inelastic / irreversible

(transformation and plastic strains). Equation 6.1 can be extended by taking into account

a compositional eigenstrain ε
˜
(c). The simplest linear assumption on atomic concentration

is known as Vegard’s law. At this point also the idea of a lattice continuum as formulated

by Mesarovic 2016 is mentioned, which is especially interesting if strong compositional

changes occur.

The deformation gradient is a compatible field derived from the displacement vector field.

Compatibility conditions are particular cases of integrability conditions and were first de-

rived for linear elasticity by Barré de Saint-Venant in 1864 and proved rigorously by Bel-

trami in 1886. The conditions for small and large strains respectively are:

Incompatibility(εij) = Inc(εij)εpmkεqnjεjk,nm = ∇× ε
˜
×∇ = 0

εqnjFjk,n = curlF = ∇× F = 0

i.e. one equation in 2D and 6 Equations in 3D. B. A. Bilby et al. 1955 and Kröner 1958

independently proposed the decomposition of the deformation gradient into elastic and

plastic parts.

F = F eF p (6.2)

The idea of Mandel 1972 was that after application of F p the lattice directions remain

unchanged (isoclinic intermediate configuration, only valid for single crystals). For phase

transformations the decomposition

F = F eF pF tr (6.3)

having two intermediate configurations is commonly used, see e.g. the works by Levitas

et al. 2009a; Addessio et al. 2016. Clayton 2010; Clayton et al. 2014 proposed an extension

of Equation 6.2 accounting for local lattice distortion due to defects. It should be noted
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Continuum

local action

nonlocal action

simple
material

F

non simple
material

Chauchy continuum 1823
(classical, Boltzmann)

medium of
order n

medium of
grade n

Cosserat et al. 1909 u , R
˜

micromorphic
R. D. Mindlin 1964

u , χ
˜second gradient

R. Mindlin 1965
F ,F ⊗∇

gradient of internal
variables

Maugin 1990
u, ∇α

nonlocal theory: integral
formulation Eringen et al.

1972

Figure 6.1: Terminology of generalized continua. Reproduced after Forest et. al: CISM
2017 - Mesoscale Models: From Micro-Physics to Macro Interpretation. Not explicitly
drawn are microstrain theories (negligible micro rotations as a complementary to the
Cosserat continuum). Second gradient approaches are probably necessary to describe the
deformation of a martensite lath. A typical example of a gradient of internal variable is

a gradient of the plastic strain in (phenomenological) strain gradient models.

however, that the actual physical mechanism of deformation is not unambiguously captured

utilising multiplicative decomposition (mathematically the order of multiplications does

matter), whereas in reality the mechanisms appear simultaneously. This is a crucial point

of this work also stressed in section 3.5. This may also be the reason why many authors like

S. Kalidindi et al. 1992; Roters et al. 2012 (DAMASK see section C.1) prefer an additive

decomposition in mean field models incorporating crystallographic variants.

Next, the term simple material as used in the next section is elaborated: After C. Truesdell

et al. 1960; C. Truesdell et al. 1965 a material is simple at the point X if and only if its

response to homogeneous deformations in a neighbourhood of X uniquely determines its

response to every deformation at X. For the sake of completeness higher order continua

(see e.g. Altenbach et al. 2013; Maugin 2016) are mentioned at this point. An overview

of the generalizations is given in Figure 6.1. R. Mindlin 1965 proposed that not only F

should be followed, but also the lattice directions ( d, D directors in original paper).

d = χ
˜
D (6.4)
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If χ
˜
= χij contains non-negligible rotations and stretches the theory is called micromorphic.

If either stretches or rotations can be neglected, the Cosserat continuum and the so-called

microstrain theory are obtained (see Figure 6.1). The most popular way for metals is to link

the plastic strain gradient to geometrically necessary dislocations (GNDs), see section 6.5.

Interestingly, by the time these theories where developed there was no way of experimental

verification. But nowadays the determination of lattice curvature (gradient of rotation)

has become a standard method (the result is e.g. a GND density), see section 5.5.

6.2 Assumptions and Consequences

The following assumptions are made in this work (also see, C. Truesdell et al. 1960; C. A.

Truesdell et al. 1965; Lemaitre et al. 1994; Besson et al. 2009; Bower 2009; Bertram et al.

2015):

i) The local state/action principle, which assumes that the thermodynamic state and result-

ing local behaviour in a given point depends only on the current values of the corresponding

state variables (observable and internal) defined in this point, and not on the surroundings.

In a finite element framework without heat conduction and diffusion, the only interaction

that arises between integration points is due to the stress or strain evolution from the

global solution of the equilibrium problem. Also commonly mentioned along this line of

argumentation is the principle of determinism, stating that the current value of any phys-

ical variable can be determined from knowledge of the present and past values of all other

variables.

ii) The principle of material simplicity elaborated in the previous section.

iii) Principle of frame indifference / objectivity stating that any constitutive law should be

independent on whatever external frame of reference is used. Practically, this is achieved

either by transforming orientation dependent properties properly or by formulating laws

depending on tensor invariants, see e.g. Boehler 1987; Zheng 1994 for the latter.

iv) Material symmetry: A constitutive relation must respect any symmetries that the

material possesses.



Constitutive Description 177

v) The laws of thermodynamics (1. law: conservation of energy, Equation 6.5, 2. law:

dissipation inequality Equation 6.6) and balance equations (conservation of mass, Equa-

tion 6.7 and momentum, Equation 6.8), in total 6 scalar equations, must be fulfilled. For

derivations see one of the a.m. works. The weak / local formulation reads:

ρ
dė

dt
= ∇ · q + σ

˜
: ε̇
˜
+ r (6.5)

ρ
ds

dt
+∇ ·

( q
T

)
+

r

T
≥ 0 (6.6)

∂ρ

∂t
+∇ · (ρu̇) = 0 (6.7)

∇ · σ
˜
+ ρf = ρü (6.8)

where r represents inner heat sources or sinks, q is the vector of heat flux and f is the

vector of body forces (hence often denoted as b). Number of unknowns: energy e − (1),

density ρ − (1), velocity vi − (3), σij − (6) (in terms of the symmetric Chauchy stress

otherwise 9) yielding a total of 11 unknowns. Therefore 11 − 6 = 5 constitutive relations

must be added. Furthermore, initial and boundary conditions must be defined. Summing

up, the following equations and conditions must be satisfied simultaneously:

1. equilibrium or balance equations (mostly in weak/local formulation as above), also

known as principle of virtual work in the continuum mechanics community (e.g.

Maugin 1980)

2. compatibility

3. constitutive equations

4. boundary conditions

If the problem is solved in terms of displacements (e.g. most finite element methods)

compatibility is satisfied automatically. Note that, although time cannot be used explicitly

in the constitutive equations, the direction of time is related to the increase of entropy

according to the second principle of thermodynamics.
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In addition, it is a good idea to ensure that the material satisfies the Drucker-Hill stability

criteria (see Drucker 1957; Hill 1958):

dσ
˜
: dε

˜
> 0 with external load, positive work

dσ
˜
: (dε

˜
− dε

˜
el) = dσ

˜
: dε

˜
p ≥ 0 for plastic deformation cycle

Materials that fail to satisfy these criteria are likely to present difficulties (i.e. non-

uniqueness / bifurcations or singularities) during the solution process causing convergence

problems.

6.3 Generalities for Multi-Variant for Phase Transformations

A constitutive law must allow us to calculate the current stress as a function of the whole

history of deformation of the continuum. State variables describe the current state of

the system and it is distinguished between observable (mechanical: σ
˜
, ε
˜
, thermal: T, S,

magnetic, electric fields) and internal variables αi, Ki, describing the internal structure

of materials. Notably, as indicated above for the mechanical and thermal fields, each

field is characterised by a pair of (conjugate / associated) variables and there are relations

between the observable and internal variables. Internal variables are not directly coupled to

the observable variables in the sense that they do not participate in "external" work. They

operate in an "internal" work and are responsible for the irreversible (dissipative) nature

of a process or for a storage of energy (E. Oberaigner 1993). Generally, relations between

state and internal variables may be algebraic relations, integral equations or differential

equations. Lemaitre et al. 1994 note that for non-linear phenomena often power functions

are used, but for phenomena, which asymptotically saturate, exponential functions are

preferred. In Lemaitre 2001 it is pointed out that they should result from observations

at a microscale and from a homogenization process. In this work, following this advice, a

detailed experimental as well as computational analysis of the microstructure yields logical

functions with regard to the mechanisms introduced at the microscale.

Following the concept of a generalized force Z and flux z any potential P may be defined

by

δP = −Zδz (6.9)
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Since each field is characterised by a pair of variables, there are always two potentials.

One depends on a generalized force and one on a generalized flux (also called primal and

dual variables). Forces and fluxes are conjugate pairs (energy conjugates), i.e. their inner

product must yield an energy. In general, conjugate pairs can be defined with respect to

any thermodynamic state function. Conjugate pairs related to entropy are often used in

the analysis of irreversible processes. The Legendre transform is used to change between

conjugate state variables. In thermomechanics it is mainly used to switch between poten-

tials described as a function of ε
˜
↔ Pε or σ

˜
↔ Pσ. For instance exchanging σ

˜
with ε

˜
in

the potential, the transformation is of the form:

Pε = sup {ż : Z − Pσ|Z} (6.10)

the transformed potential therefore depends on the time derivative of the state variables of

the former. As usual forces are obtained by deriving potentials w.r.t. fluxes (often referred

to as Coleman-Noll procedure), i.e. thermodynamical forces (here denoted Ki) associated

to the fluxes (here αi) are defined by:

Ki = − ∂P

∂αi
(6.11)

For the progress of a process the thermodynamic forces must reach a threshold Ki
c value as

a generalization of a yield- / load - surface / function / criterion / condition. For instance

assuming a potential formulated in terms of σ
˜

this condition becomes:

f(σ
˜
,Ki, T ) = Ki(σ

˜
, T,αi)−Ki

c(T,α
i) = 0 (6.12)

For a process to progress this condition must be permanently fulfilled leading to the con-

sistency condition

ḟ =
∂Ki

∂σ
˜

σ̇
˜
+

∂Ki

∂αi
α̇i +

∂Ki

∂T
Ṫ − ∂Ki

c

∂T
Ṫ − ∂Ki

c

∂α
α̇i = 0 (6.13)

Equation 6.13 sometimes is directly expressed with second derivatives of the initial po-

tentials (the matrix of second derivatives is called Hessian matrix). The interest of these

approaches is to provide natural schemes for the choice of evolution equations and the type

of internal variables, as e.g. pointed out by Cailletaud 2010. Lemaitre et al. 1994 (p. 194
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therein) note that the framework f(σ
˜
, ...) is not suitable for softening behaviours, but only

materials with monotonically increasing hardening. Softening behaviour should be treated

in a f(ε
˜
, ...) formalism, as e.g. by Idesman et al. 2005; Esfahani et al. 2018.

After Halphen et al. 1975 a model is called generalized standard / fully associated iff

both the flow rule and the evolution equations for the internal variables are derived from

the same potential. If only the flow rule is derived from a potential the model is called

simply associated and if neither the flow rule nor the evolution equations are derived from

a potential it is called non-associated. The latter are practically indispensable in soil- and

geomechanics (generally granular matter), see e.g. Houlsby et al. 2007.

Generally, the loading-unloading conditions are the following (Besson et al. 2009):

elastic behaviour f < 0 (6.14)

elastic unloading f = 0 and ḟ < 0 (6.15)

plastic flow f = 0 and ḟ = 0 (6.16)

Additionally, the stress has to be determined in such a way that it does not depart from

the yield surface during plastic deformation processes. This requirement leads to an addi-

tional constraint, known as the consistency condition ḟ = 0 (during plastic yielding only!).

The consistency conditions are often commonly written using Macaulay brackets, i.e. 〈f〉
meaning that 〈f〉 = f if f > 0 and 〈f〉 = 0 if f ≤ 0 (Heaviside function).

At this point it has to be anticipated that in plasticity (and most micromechanical models

nowadays), in addition to f ≤ 0 it is assumed that intrinsic dissipation is maximised

(normality rule / maximum dissipation principle / Hills principle of maximum power, see

subsection 6.4.2), i.e.

L(Z) = Zż − λf (6.17)

where Z is the vector of forces, ż the vector of fluxes, λ is a Lagrange multiplier. Since

∂L/∂Z must be zero for an extremum, this leads to the flow-rule of rate-independent

plasticity (Equation 6.37). The loading unloading conditions (Equation 6.14) can also be

formulated in terms of λ

λ ≥ 0 f ≤ 0 λf = 0 (6.18)
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which are simultaneously the Karush-Kuhn-Tucker conditions of convex non-linear opti-

mization / programming, see e.g. Jirasek et al. 2002; Ottosen et al. 2005; Besson et al.

2009; J. Simo et al. 2006. Note that a more general consistency condition incorporating λ

is λḟ = 0 (if f = 0). The above conditions are the main reason why it is often stressed

that the yield surface must be convex. Note that mathematically in this context the above

conditions are sufficient, but not necessary. Convexity is generally defined as:

∀x1, x2 ∈ X, ∀t ∈ [0, 1] : f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2) (6.19)

(<→ strict convexity). From a thermodynamical point of view, convexity of f also is a

sufficient condition that dissipation is positive, if f additionally includes the origin (see

e.g. Lemaitre et al. 1994. However, convexity does not seem to have a physical signifi-

cance, see Glüge et al. 2017. Convexity of a potential guarantees stability and therefore

uniqueness of the solution. Interestingly, as far as phase transformations are concerned

convexity studies started from a mere elastic point of view utilizing the direct method of

calculus of variations. As a result it was found that the governing potentials tend not to be

convex, not even quasiconvex. For several notions of convexity see the works of J. M. Ball

1976; Carstensen et al. 2002; S. Bartels et al. 2004; Heinen et al. 2007; Govindjee et al.

2007. Generally, the probability of the existence of a convex potential at the microscale is

diminished by the strong interactions between heterogeneities, necessitating nonlocal for-

mulations. For a schematic energy landscape as imagined on the microscale see Figure 6.2.

Non-quasiconvex energy densities are problematic from the mathematical and algorithmic

viewpoint as the existence of minima of such functionals cannot be guaranteed, see e.g.,

C. B. Morrey et al. 1952; C. Morrey 2009; Dacorogna 1982; Dacorogna 2007; Silhavy 1997

for a comprehensive treatise in this regard. Equilibrium states following from such energy

densities can, therefore, be regarded as unstable, causing bifurcations and thus additional

numerical problems. For a short introduction to bifurcations with this regard, e.g. differ-

entiation between continuous or discontinuous (shear bands, Lüders Bands) see Ottosen

et al. 2005 or for a comprehensive treatment Bigoni 2012.

The initiation of microstructure usually follows from a loss of stability. This can be mod-

elled using a strain softening formalism, i.e. purposefully introducing a short softening /

instability stage followed by a higher hardening stage, see e.g. Beissel et al. 1996; J. A.

Shaw 2000. The case of martensite and its variants in this manner has been treated by
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Figure 6.2: Schematics of energy "wells" from Wilmanns 2010. Red lines indicate the
general trend for various temperatures around the equilibrium temperature T0 see subsec-
tion 6.4.1. The wells are separated by activation barriers. I stands for the untransformed
parent phase, the Ui are structural stretch tensors or more generally shape strains (see

section 3.5) of the product phase.

Levitas and co-workers (Idesman et al. 2005; Esfahani et al. 2018). Such an approach is

able to produce a microstructure evolution similar to the phase field method (see also Yal-

cinkaya et al. 2011; Yalcinkaya et al. 2012 for plastic instabilities, specifically Mazière et al.

2015; Maziére et al. 2017 for Lüders band formation). Without further considerations,

numerical problems are of course an issue. It remains to be studied in more detail whether

neglecting mathematical rigour (e.g. by loss of convexity) nevertheless produces physically

reasonable results under various conditions.

Notably, the energy minimizing approach in the mathematical community has also been

followed first in the continuum modelling community. It has been argued by Siredey et al.

1999; X. Gao et al. 2000 to extend the free energy by the obvious constraints on the phase

fractions ξi, 1− ξ (interpreted in terms of mass conservation).

ξi ≥ 0
∑
i

ξi ≤ 1 (6.20)
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to extent the free energy utilizing Lagrange multipliers as

L = Ψ−
∑
i

λi(−ξi)− λ0(ξ − 1) (6.21)

At this point the generality of the Lagrange multiplier method is emphasized. It is found in

many problems that allow a similar formulation such as multi-surface / multi-mechanism

plasticity, see e.g. J. C. Simo et al. 1988; Cailletaud et al. 2018. The evolution vector

of phase fractions is obtained in analogy to rate-independent plasticity elaborated above.

Note that in contrast to plasticity, in such models also other norms than the Frobenius /

2-norm are used. A common assumption is to use only the maximum value (infinity-norm)

of the incremental phase fraction vector in each increment, as followed e.g. by Lagoudas

2008. This may be interpreted as a smaller time scale, where only one transformation event

is treated at a time.

Also note that for non-differential (non-smooth) yield surfaces (e.g. due to a multi-surface /

mechanism formalism) the notion of a subdifferential must be introduced (see e.g. Moreau

1977). Generally, whether a minimum or a maximum is obtained utilizing the formalism

of Lagrange multipliers must be checked explicitly.

Note that the constraints in Equation 6.20 are mostly inactive during the calculations (the

system is over-constrained) and the conditions can also be ensured directly. Govindjee

et al. 2001 first implemented the resulting set of equations implicitly (Backward-Euler)

with an elastic time step and described an active-set-strategy utilizing a numerical itera-

tive procedure for the determination of the residuals. They described and visualized the

transformation surface and applied the algorithm to SMAs (ΔV = 0). Mahnken et al.

2015 followed this line of implementation, adding Mises-plasticity (radial return) and (to

the authors knowledge) were among the first using crystallographic transformation strains

typical for steels (ΔV = 0.5 − 4%). In their work they point out that although the con-

straints are mainly inactive during the transformation process (i.e. L̇ ≈ Ψ̇) they achieve

a better numerical stability following this approach. It remains unclear, whether this for-

malism is necessary for the determination of variant fractions. An alternative numerical

approach for this problem, which also has first been applied in crystal plasticity, has been

presented by Schmidt-Baldassari 2003 and employed by Bartel et al. 2011; Auricchio et

al. 2014 for multi-variant phase transformations. The strategy consists in replacing the

Kuhn–Tucker complementarity inequality conditions, by a complementarity function after
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A. Fischer 1992 resulting in a non-linear equality constraint where an active set search can

be omitted, which is a fundamental advantage when dealing with many coupled evolution

equations. Numerical studies on the flexibility of (almost) equal models, utilizing a plastic

or viscoplastic solution strategy should be carried out.

Next, the alternative approach of variational constitutive updates recently gaining mo-

mentum is shortly mentioned. The formalism is not only interesting due to its more direct

physical interpretation (all unknown variables follow from minimizing a certain potential),

but also due to efficient numerics (e.g. a symmetric tangent matrix is always obtained). A

historical note is found in Besson et al. 2009 6.3.1 therein. The governing functional J in

the variational approach is of the general form

J (P (x)) =

∫
f (P (x,∇P )) dx (6.22)

and leads via variation of the parameters

J (P (x) + δP ) − J (P (x)) ≈
∫

δJ

δP
δP dx

to the Euler-Lagrange equation

δJ

δP
=

∂f

∂P
−∇ ∂f

∂∇P
with Ṗ = −M

δJ

δP

i.e. rates are proportional to "distance" from equilibrium. The coefficient(s) M are the

mobility (normally assumed constant). A good introduction to variational calculus is found

in Gelfand et al. 2000. Two famous examples of f(Ψ) are the Ginzburg et al. 1950 (Ginsburg

in German) the Cahn et al. 1958 equation (for diffusional problems) as elaborated in

subsection 6.7.1. The topic of constitutive updates is treated in Hackl 1997; Ortiz et al.

1999 and more recently by Mosler et al. 2009b; Mosler et al. 2009a; A. Bartels et al. 2015,

Miehe 2011. Hackl et al. 2014,

6.4 Thermodynamic (Extremum) Principles

For an introduction to this topic in conjunction with constitutive modelling see Malvern

1969; Lemaitre et al. 1994; Silhavy 1997; Besson et al. 2009; Kurth et al. 2013.
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First it should be noted, that we are interested in thermodynamic states far from equilib-

rium (those are the interesting ones in terms of microstructure tuning). In the literature the

used framework is often called extended irreversible thermodynamics. Particularly, there

is no need for introducing local equilibria (as in classical irreversible thermodynamics).

In this thesis no effects due to the conduction of heat are treated (i.e. only isothermal

processes are considered). Note that for realizing the limit case of an isothermal austenite-

martensite A → M (exothermic transformation) transformation in experiments sufficient

heat extraction must be secured in order for this approximation to be justified (M → A

endothermic transformation).

Note that especially in material science equilibrium thermodynamics / thermostatics /

rational thermodynamics is much better documented, e.g. in the discussion of phase dia-

grams or classical nucleation theory. Typically, the Gibbs free energy G(σ
˜
) is used in this

context (Porter et al. 2009; Christian 1965). Conversely, since most finite element codes

are formulated in terms of strains, the governing potential to minimize is the generalized

Helmholtz free energy Ψ(ε
˜
).

By contrast, for modelling the temporal evolution of physical processes non-equilibirum or

irreversible thermodynamics must be utilised. Onsager 1931 proposed a pseudo-potential

of dissipation, furnishing the complementary laws of evolution for the variables. Here we

consider two inelastic potentials, one depending on the stress Ωσ and one on the strain

Ωε. Carstensen et al. 2002 calls Ωε inelastic potential and its Legendre transform the

dissipation functional. Lemaitre 2001 points out that such potentials may be identified

from the observation of flow by integration. A popular example is Norton’s creep law

ε̇(σ) =
(
σ
K

)n yielding

Ωσ =
K

n+ 1

( σ

K

)n+1
(6.23)

Equivalently, Equation 6.67 could be used for athermal martensite formation, although this

seems to have never been proposed. For such an approach, however, it generally has to be

verified a-posteriori if the second law is fulfilled. Alternatively, Ω may be chosen from the

class of homogeneous functions of degree n, for which it can be shown that dissipation is

always positive (see e.g. Ottosen et al. 2005 p.568 therein).
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6.4.1 Energetic / Equilibrium Thermodynamics, Thermostatics

Subsequently, free energy terms in conjunction with phase transformation models are elab-

orated. In a mean field framework, considering its implicit multi-scale character, elastic,

thermal and chemical energies each can have various contributions. Homogenization and

localization strategies to quantify these contributions are discussed in chapter 4. Note that

in this work particle transfer (in the thermodynamical sense) is neglected. For the remain-

ing thermal and elastic contributions the following explicit terms stemming from different

mechanisms may be found:

Ψ = Ψel +Ψth︸ ︷︷ ︸
cf. "classical Work"

+ Ψchem︸ ︷︷ ︸
cf. Heat Q

+Ψp +Ψie +Ψint... (6.24)

Ψel commonly denotes the strain energy due to the average global / external stress state

σ
˜
ext. Ψth commonly denote strain energies due to thermal strains ∝ α

˜
(T−T ref). Ψint (often

also Ψmix as by Govindjee et al. 2000; Bartel et al. 2011) indicates homogenized quantities

at each material point. It can have various origins such as contributions due to the mixture

of at least two phases or interactions between crystallographic variants. Interpretation of

these contributions can be twofold. In terms of hardening they depict geometric constraints

on the one hand and a stabilization by stresses on the other. However, stresses may also

have an autocatalytic character on the transformation (especially for isochoric ΔV = 0

transformations like in SMAs).

Ψchem accounts for the temperature dependence of Ψ (it may also denote a dependency on

composition / chemical potential which is neglected here). Note the relation:

(
∂δQrev

∂T

)
ε

= T

(
∂S

∂T

)
ε

= T

(
∂2Ψ

∂T 2

)
ε

= cε (specific heat capacity) (6.25)

The notion ∂δQrev is used on purpose to indicate that Q is a path function and depends

on more variables than just T (obviously, it strongly depends on ξ). After Dulong-Petit

the specific heat capacity c ≈ 3R for most metals. Particularly, the value for iron ≈ 3.5R

and that for steels 3.4−3.8R. Mostly, a constant value is used for c, resulting in integrated

form (
∫ T
T0

) in a free energy contribution ρcε(1− ln(T/T0)). Note that a determination of

the latent specific heat λh in analogy to e.g. a solid-liquid transition is difficult since a

variety of plastic dissipative phenomena producing heat occur simultaneously during the
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phase transformation in a TRIP steel (see e.g. Bever et al. 1973; Chaboche 1993; Anand

et al. 2015).

Ψie are contributions due to interface energies, which again are an inherent result of a

multi-scale concept (elastic as well as chemical contributions on a lower scale). If the

interface structure is well characterized or very regular, phenomenologically introducing a

Ψie term is an easy way to introduce a size effect into the model via variation of the area

to volume ratio see e.g. Petersmann et al. 2017a. The influences of interface surface stress

and composition dependency have both been treated in a tensorial formalism by Grinfeld

1991.

In the literature often a Clapeyron relation in analogy to gases is found:

dσ

dT
=

ΔS

ΔV
=

ΔS

V0(det(F − 1))
=

ΔQ

TV0(det(F )− 1)
(6.26)

However, the problems for solids are: i) Due to heterogeneous microstructures σ
˜

strongly

varies locally. ii) This equation assumes is thermodynamic equilibrium (Gα′ − Gγ =

ΔGγ→α′ = 0), which is no longer valid for martensite in steel (where ΔV > 0).

In thermodynamic equilibrium the temperature T0 between two phases is defined as ΔGγ→α′(T0) =

0. For thermoelastic martensites T0 often is approximated by averages of martensite and

austenite transformation start and finishing temperatures: Ms, Mf , As, Af e.g.

T0 =
Ms +Af

2
(6.27)

as in Tong et al. 1974. If λh is known, for relaxed non-thermoelastic martensite exploiting

the fact that in the initial stage (ξ 
 1) self accommodation effects are small a good

approximation is obtained by

T0 = Ms +
(ΔΨγ→α′ + D)/V m

ρλh(Ms −Mf )ξ
(6.28)

where D is the internal dissipation discussed in the next section. ΔΨ+D is obtained from

the volume average of a full-field finite element simulation resolving a single martensitic do-

main (needle, lath, plate) embedded in an austenitic matrix with a suitable transformation

eigenstrain. V m is the volume corresponding to the martensite fraction ξ.
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To the authors opinion not enough effort is made to quantify relative contributions to the

free energy. A major improvement to this topic could be achieved if a whole transformation

cycle, see section 5.4 is modelled. Particularly, the reverse transformation of martensite

to austenite has been modelled using the equilibrium framework, see Ghosh et al. 2016 by

assuming that the stored energy produced by plastic deformation increases the free energy

of the austenite until it exceeds that of the normally more unstable δ-ferrite (at about

1500°).

For the sake of completeness it is mentioned that application of a magnetic field (raises

Ms because it thermodynamically favours the formation of the ferromagnetic b.c.c. phase)

which plays a role in induction-hardening or arc-welding process.

6.4.2 Dissipative / Non-equilibrium / Irreversible Thermodynamics

In section 6.3 the principle of thermodynamic orthogonality/ maximum dissipation/ max-

imum entropy production, i.e.

ż = argmax{D = Z · ż} (6.29)

has already been used to obtain a framework for evolution equations. Note that i) it

is an associated principle, an axiom, no physical rule, but a class of models and ii) it

unconditionally satisfies the dissipation inequality D ≥ 0. In a dissipative system the total

energy cannot increase.

Some names associated with this principle occurring in materials modelling literature are

(in chronological order): W. William Thomson a.k.a Baron Kelvin, Helmholtz, Rayleigh,

Onsager 1931; Prigogine 1955, Casimir, P. Germain 1973; Ziegler 1987. Application of this

principle in context of solid state phase transformations have extensively been treated by

Levitas 1998 and co-workers (e.g. Idesman et al. 2005; Levitas et al. 2009a), who com-

monly refer to it as "postulate of realizability. Interestingly, even dissipation minimization

has been proposed by Priogine, see e.g. Hackl et al. 2008b. Thermodynamic extremum

principles (TEPs) for irreversible processes have been reviewed by Hillert et al. 2006; F.

Fischer et al. 2014.
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The fundamental dissipation inequality is obtained by replacing r in Equation 6.6 with

Equation 6.5. If it is expressed using Ψ it is known as the Clausius-Gibbs-Duhem inequality.

Here additionally the additive decomposition of strains is used to obtain

0 ≤ D = σ
˜
: ε̇
˜
− ρ(Ψ̇ + sṪ )− q · ∇T

T
(6.30)

=

⎛
⎝σ
˜
− ρ

∂Ψ

∂ε
˜
el

⎞
⎠ : ε̇

˜
el + σ

˜
:

(
ε̇
˜
p + ε̇

˜
tr

)
− ρ

∂Ψ

∂αi
α̇i − ρ

∂Ψ

∂dj
ḋj − q

T
∇T

Individual contributions go by various names. Disregarding all thermal contributions leaves

the Clausius-Planck inequality. A stronger condition of the inequality may be introduced

by requiring that also individual (e.g. mechanical and thermal) parts must be greater than

zero.

In Carstensen et al. 2002 and references therein the functional to be minimized is the

increment in the elastic (bulk) energy plus the dissipated energy, i.e. both a.m. principles

are unified which he calls the principle of minimum total power / least-action-principle.

The ratio of dissipated heat to plastic work is commonly referred to as Taylor-Quinney

coefficient β (after Taylor et al. 1932; Taylor et al. 1934) and may be defined in integral or

differential form:

βdiff =
Q̇

Ẇ p
βint =

∫
Q̇dt∫
Ẇ pdt

(6.31)

Berbenni et al. 2013 developed a micromechanics-based model for shear-coupled interface

migration in bicrystals. Bluthè et al. 2017 presents an energetic approach for a sliding

inclusion accounting for plastic dissipation at the interface utilizing conformal maps /

complex algebra. Phase field models with interface stresses (and hence dissipation) can be

found in Levitas et al. 2016; Ask et al. 2018; Z-set: Multiscale Materials Modelling V8.6

n.d.

6.4.3 Couplings

Thermodynamic state couplings formally result from potential terms involving the product

of two state variables in the free energy

∂2Ψ

∂zi∂zj
�= 0 (6.32)
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Interesting in this context are the Maxwell-relations (of thermodynamics), obtained by

equating cross derivatives see e.g. Rice 1971 for solids. Popular examples are the Peltier

and Seebeck effect (electric field gradient causes heat flow and temperature gradient causes

electric current). Maybe the most widely used coupling in structural mechanics is that

between deformation and damage.

Dissipative / evolution couplings result when the potential is the sum of several potential

functions, e.g. slip systems in crystal plasticity (also multi-surface / mechanism models,

see Besson et al. 2009; Cailletaud et al. 2018)

ż =
∑
i

∂Ωi

∂Z
(6.33)

Another example is an additional potential that describes recovery. In the macro model

in Appendix B an evolution coupling between the phase fraction of martensite and a

phenomenological backstress is employed.

6.5 Some Remarks on Size Effects in Metals

A still open problem in continuum modelling is to depict length scale effects in plasticity

by means of suitable deformation measures. Explanations involve dislocation pile-ups at

microstructural obstacles, a too small bulk volume for dislocation multiplication (e.g. by

the Frank Read mechanism) to take place, etc.

Size effects may be categorized according to the underlying mechanisms or origins (cf.

ICTAM presentation Marc Geers 2016):

1. statistical size effects: these result from microstructural heterogeneity,

2. first-order (first moment) size-effects: related to the influence of the ratio between

microstructural size (e.g. grain- or phase domain size) and the characteristic spec-

imen/component dimensions, e.g. slip system orientations (texture effects), elastic

anisotropy.

3. second-order (second moment) size effects: typically induced by lattice curvature in

metals or dislocation pile-ups, modelled phenomenologically as backstress(es) or by

a strain gradient (crystal) plasticity approach.
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Strain/Work hardening is a result of an increase in dislocation density (=total dislocation

line length), as well as of deformation substructure formation such as sub-grain and cell-

structures formation, see e.g. U. Kocks et al. 2003; Sedláček et al. 2002; Kratochvíl 2014.

There exists an empirical relationship also known as the ‘law of similitude’ linking the flow

stress τc to the characteristic wavelength / cell size / spacing of dislocation walls d̄cell of

dislocation patterns (see e.g. Sauzay et al. 2011).

d̄cell = c1μb/τc (6.34)

where c1 is a material parameter approximately independent of material and deformation

conditions (k0 in Table 6.3). Combining this with the Taylor relation (Equation 2.2) yields

d̄cell = c2
1√
ρ

(6.35)

with ρ the dislocation density c2 a combined constant typically in the order of 10, see

Zaiser et al. 2014. The author found values in the range 2-15. Another important as-

pect that should be kept in mind is that most modelling approaches neglect dislocation

transport. A framework where dislocation movement is taken into account by transport

equations between elements in analogy to diffusion is provided by the software DAMASK,

see section C.1 (also see Kords 2013).

Next the continuum concept of backstress is discussed. The macroscopic metallurgical

expression explaining the grain-size influence is the Hall-Petch relation. The standard

explanation on a microscale is dislocation pile-ups at microstructural obstacles resulting

in long range stresses. Upon load reversal the flow (reverse motion of dislocations) in the

opposite direction becomes easier (Bauschinger effect). In terms of a continuum theory

the concept of effective stress is utilised, e.g. shear-stress τ eff = τ i − xi with τ i being the

resolved shear stress on the slip system i, xi a slip system backstress.

According to McDowell 2008 the backstress is inherently a multi-scale concept. i) It is a

reflection of the lack of statistical homogeneity / nonuniform distribution of stresses be-

tween grains at this scale.

ii) The backstress originates from the inelastic bowing / by-pass of dislocations on precip-

itates or martensite variants, dislocation interactions, differential yielding and the disloca-

tion arrangement in walls and cells.
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iii) The backstress should capture lattice curvature effects and may therefore be formulated

in a gradient framework, see subsection 6.6.2.

Kröner 1969; Kröner 1972 (statistical theory of dislocations) proposed that the information

be given in terms of n-point dislocation correlation tensor functions. The first correlation

function is the ensemble average of the tensor product of the dislocation line ξ(x) and

Burgers vectors b(x).

α
˜
= 〈b⊗ ξ〉 (6.36)

(The dislocation density is an invariant of the next higher correlation function). A discus-

sion of this quantity and its relation to the continuum theory of dislocations is given in

section A.1.

6.6 Constitutive Relations for Plastic Deformation

This section is organized as follows. First, general flow relations and differences between

plasticity and viscoplasticity are worked out. Yield-surfaces / -criteria / load functions and

hardening formulations are discussed afterwards, starting with macroscopic yield criteria,

followed by microscopic formulations. This corresponds to the chronological evolution

of plasticity in constitutive models rather than a systematic scale direction. Evolution

equations for internal variables for plasticity are simultaneously discussed on both scales.

Often the microscopic formalism is a generalization of a relation which also holds on the

macroscopic level (e.g. Taylor relation) to individual slip systems.

A short note on the elastic regime for steels: Strictly speaking steel does not behave purely

elastic until the yield strength. Hence the Young’s modulus is actually a cord modulus

(varying slope during loading and unloading).
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6.6.1 Flow Formulations and Yield Surfaces

6.6.1.1 Plastic and Viscoplastic Flow, Deformation and Temperature Rate

Dependencies

In plasticity the flow rule is derived from the normality rule (Equation 6.17) and consistency

condition.

ε
˜
p =

∑
i

λi∂f
i

∂σ
˜

=
∑
i

λi n
˜
i (6.37)

Most macroscopic models use a single yield surface, e.g. Mises yield criterion. In crystal

plasticity λ becomes the rate of shear on the slip system γ̇i (plastic multiplier). The yield

surface is defined as a superposition of yield criteria and can in this way be considered as

multi-surface / -mechanism model (cf. Equation 6.33). Possible sharp edges of the yield

surface lead to (numerical) bifurcations, introducing a mesh dependency.

Considering the ambiguity of slip system selection due the linear dependence of their de-

formations up to now no generally accepted rule exists for their selection. Commonly slip

system selection is a result of a numerical perturbation (at least six stress or strain evalu-

ations hence computationally expensive). The problem is even more pronounced if b.c.c.

crystals are involved where Schmid’s law does not hold any more.

In plasticity necessarily a mechanical threshold stress (MTS), i.e. an initial plus an optional

evolving hardening term is present. Hardening formulations are generally found in the flow

rule in a multiplicative or additive fashion. Viscoplastic formulations can also be used

without the need of a threshold. In viscoplasticity λ is replaced by ṗ = c1||ε̇
˜
vp|| (Frobenius

norm, c1 chosen such that it yields 1 in the inner product with the yield stress) i.e. the

length of the plastic strain path in the plastic strain space (dependent on all hardening

parameters, current stress state etc.), which is integrated numerically during the simulation.

The flow behaviour is derived from an inelastic potential Ω.

ε̇
˜
vp =

∑
i

∂Ω

∂f i

∂f i

∂σ
˜

= ṗ n
˜

(6.38)

where ∂Ω/∂f is referred to as viscosity function. Contrary to rate independent plasticity

the stress state can lead to a point outside the yield surface (hence also called overstress
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model as often attributed to Perzyna and Duvaut-Lions). Obviously, the flux is then pro-

portional to this excess stress. Besson et al. 2009 point out that the viscoplastic framework

offers many opportunities to write a model by choosing the viscosity function, whereas in

the plasticity framework, the expression of the yield surface f fully determines the flow

intensity.

Note that in viscoplasticity the plastic flow is no longer time independent. Under an

applied load viscoplastic models can exhibit creep behaviour. They are also used for time

effects without any macroscopic deformation, such as recovery or ageing. From the point of

view of this thesis they are suitable to model phase transformations (e.g. Turteltaub et al.

2005), systems exposed to high temperatures or strain rates (recall that the formation of

martensite itself is close to the speed of sound in metals), as well as to investigate stability.

A model combining these effects has been presented by Addessio et al. 2016.

Examples of macroscopic flow relations that can be rearranged and integrated to obtain

a viscoplastic potential Ω, together with characteristic tests for their determination have

been described by Chaboche 2008. Two popular examples are:

σ = σy +K(p)(εp)m (εe 
 εp; K = const: Ramberg-Osgood equation) (6.39)

σ = K(p)(εp)m(ε̇p)c1 Integration leads to Andrade’s law for primary creep (6.40)

where K(p) is a function of the accumulated viscoplastic strain p (representing the state

of the material) and σ − σy is an effective stress. Since Equation 6.40 is commonly used

to fit macroscopic tests under various strain rates, the factor m is commonly called strain

rate sensitivity and may be obtained as

m = ∂ ln ε̇/∂ ln σ̇ (6.41)

Note that there is no exact definition of strain rate sensitivity. It only means that the flow

behaviour changes with the rate of the applied load. It is important to realize that the

strain rate sensitivity is highly sensitive on dynamic strain aging - DSA (macroscopically

- Portevin-Le Chatelier effect - PLC), see e.g. Cooman et al. 2018 section 6 therein.

Note that if a low value is chosen for m, for instance, ≤ 0.01 the stress change obtained for

a quite large variation of strain rate is so low that the resulting stress-strain curves lie in a
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very narrow band. This is a way of building a time-independent behaviour in the framework

of viscoplastic equations. In crystal plasticity, this so-called viscous regularization (in the

numerical sense) has the advantage that the edges of the yield surface are not sharp anymore

but smoothed out, resulting in a better conditioning of the problem. Obviously, the physical

drawback is accuracy (however the loss of accuracy is small for m ≤ 0.01). Another

regularization method is to add gradients, i.e. to formulate a generalized continuum model

(see Figure 6.1).

Strain rate sensitivity changes as a function of temperature. As a rule of thumb a non-

negligible rate dependence for steels occurs at ≈ T > 1/3 Tm i.e. around above 500°

C. Mainly dislocation based (plastic) deformation mechanisms, including grain boundary

sliding exhibit a strain-rate dependence. For instance, it is a well known fact that the

rate sensitivity increases the finer the grain size becomes. Consequently nanocrystalline

materials exhibit the most pronounced change in strength for higher loading-rates.

After Boyce et al. 2009, factors for m for high strength and high toughness steels are

similar, ranging from m =0.004 - 0.007. Values are quite low compared to most metals

which typically fall in the range of m =0.02 - 0.2 Generally a non-linear trend is observed:

the strain rate sensitivity is small at slow strain-rates and rises with increasing strain-rate.

Specifically these alloys only exhibit approx a 10% increase of strength when strain-rates

are increased from quasi static to 200 s−1, and their work hardening is essentially unaffected

by strain rate, contrary to other metallic alloys. Chaboche 2008 studied a stainless steel

(316L) and, observed a saturation of the rate effect in the high rate regime at 550° C. At

low strain rates (< 10−10s−1) a rapid drop in the stress due to static recovery phenomena

occurs.

In the literature temperature dependence is found as an Arrhenius coefficient (see Equa-

tion A.16), beside the reference strain rate or as an exponent e.g. as in U. F. Kocks 1976.

ε̇p = ε̇0

( σ

K

)VA/kbT
(6.42)

VA is referred to as activation volume, which however varies experimentally so much that

it can be seen as a fit parameter. Note that (at least for metals) the deformation rate and

temperature dependence are to some extent both due to the fact that diffusional effects

are temperature and time dependent. The question of equivalence of rate and temperature
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dependency for metals has been investigated by Zener et al. 1944 (Zener–Hollomon pa-

rameter). The importance of thermal activation in plasticity is discussed in Caillard et al.

2003.

6.6.1.2 Macroscopic Relations

Comprehensive information on that topic can be found in Altenbach et al. 2014; Ottosen et

al. 2005. First, the Hencky-Mises relations (Equation 6.43) for proportional / monotonic

loading where σ
˜
(α, t) increases monotonically as a function of time are given (enabling

an analytical integration). They provide easily experimentally accessible quantities from

one dimensional tensile/compression tests (see Lemaitre et al. 1994 p.241 and p.242 for

an existence theorem for proportional loading). Equivalence between any multiaxial state

represented by σeq can be compared to the uniaxial case represented by σtens, this is why σeq

is called the equivalent stress in the von Mises sense. Similarly εeq can be used to express

any multiaxial evolution of strain (under proportional loading) in a manner equivalent to

the measured uniaxial hardening law:

σeq =
√
3J2 =

√
3

2
s
˜
: s
˜

εeqp =

∫ t

0
p dt =

√
2

3
ε
˜
p : ε

˜
p (6.43)

Macroscopic yield surfaces are formulated using invariants (mainly of σ
˜

or s
˜
). The yield

Uniaxial tension Simple shear (torsion)
σeq σtens

√
3 τ tors

εeq = p εtens ≈ γ/
√
3

Table 6.1: Equivalent-Mises stress and strain in proportional / monotonic uniaxial
tension/compression and and shear (approximately pure torsion) see Shrivastava et al.

2012; Pardis et al. 2017

surface for every isotropic material can be represented by the three invariants of the stress

tensor. Commonly, yield surfaces are visualized in three dimensions using the three prin-

cipal stresses σI , σII , σIII or 3 arbitrary invariants (or functions thereof) as "coordinates".

Here the (principal) invariants of the Cauchys stress tensor are denoted as I1, I2, I3 and

those of the stress deviator J2, J3 (mechanical invariants)

For many metals the behaviour in tension and compression is similar, and the main influ-

ence on plasticity and failure is represented by J2. This is reflected in the extensive use of
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the Mises-, J2-, or octahedral shear stress yield criterion.

On the other hand, the flow stresses of high strength steels are larger in uniaxial compres-

sion than in uniaxial tension. This phenomenon is known as strength-differential effect (see

Spitzig et al. 1975) or tension-compression asymmetry.

The mechanical behaviour of pressure sensitive materials, where volumetric changes occur

(e.g. granular materials, but also in martensite in steel) depends on the mean stress

−σmean =pressure= 1/3 tr(σ
˜
). It is rather simple to extend the Mises surface to incorporate

the mean stress (see e.g. Drucker-Prager model). However, differences are often observed

between the material behaviour in triaxial compression and in triaxial tension (often a

triaxiality factor is defined as I1/J2 ). A representation of this difference requires the use

of J3. Mahnken et al. 2008 correctly point out that no common agreement exists concerning

the best strategy to take into account individual loading scenarios.

For yield surfaces where the normal to the yield surface is coaxial with the projection to

the origin (circular yield surfaces like the Mises-criterion) very efficient algorithms exist in

the literature, by reducing the problem to a scalar equation, which is solved by a Newton

iteration procedure. This is referred to as "Radial Return" method first proposed by Krieg

et al. 1976. If J3 is included the coaxiality of the yield surface normal and the projection

to the origin is lost.

Lode 1926 first studied the influence of σII (middle valued principal stress) on metals.

Later the following relation was found (Nayak et al. 1972) by geometric considerations in

the σI , σII , σIII coordinate system (see e.g. Ottosen et al. 2005):

trig(σII) ≈ 3
√
3

2

J3

J
3/2
2

= trig(3θ) (6.44)

where the function trig() may be one of the following: cos(), sin(), -sin(). Depending on trig

the range of θ is different for different stress states. In honour of Lodes work the angle θ was

denoted as Lode angle. Macroscopic models for the martensitic transformation have been

proposed utilising this quantity e.g. Hallberg et al. 2007; Beese et al. 2012; Fischlschweiger

et al. 2012 (the tangent matrix required for an implicit implementation of the latter model

is given in Appendix B). Together with the two axial coordinates / invariants (orthogonal
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projections of the stress state onto the hydrostatic axis and the deviatoric plane):

( I / ||I|| ) : σ
˜

and ( s
˜
/ ||s

˜
|| ) : σ

˜
(6.45)

the set of so-called Lode invariants/coordinates (cylindrical coordinates) is obtained.

Experimental yield surfaces of metallic alloys determined after plastic deformation ex-

hibit an affine deformation (expansion or contraction = isotropic hardening or softening,

translation= kinematic hardening softening, rotation, shear) but also distortions exceeding

an affine deformation that follow the actual loading path, sometimes also referred to as

differential hardening, see e.g. Shi et al. 2013. Translations and expansions are depicted by

isotropic and kinematic hardening. A common anisotropic extension is a quadratic form

generalization of the Mises criterion

σ
˜
eff = (σ

˜
: B
˜̃
: σ
˜
)1/2 (6.46)

The number of independent components of the tensor B
˜̃

depend on the material symmetry.

Also for plastic deformation, Bjjkl = 0 must hold in order to ensure plastic incompress-

ibility Besson et al. 2009. B
˜̃

may also be used to describe initial anisotropic texture (see

section 3.4) see e.g. Teodosiu 1997; Canova et al. 1985; Lemaitre 2001. A popular model

of this type depicting the orthotropic form of initial anisotropy in polycrystalline parts

arising from the processing method (rolling, drawing, extrusion) is due to Hill 1990. An

orthotropic material has different initial yield stresses for axes lying parallel and normal to

the direction in which it has been worked. Often also transversely isotropic properties are

reported, meaning that the elastic characteristics remain invariant for all pairs of directions

symmetric w.r.t. an axis (e.g. wrought / drawn wires, rods or bars). General anisotropic

cases are treated in Boehler 1987; Schröder et al. 2008.

As a conclusion, while in general a macroscopic yield surface may be found it is however

hard to accurately describe the evolution of the yield surface using invariants.

6.6.1.3 Microscopic Relations

Many equations in this section are generalizations of propositions that can also be found for

the macroscale, to slip systems i = 1...12 (for the {111}〈011〉 f.c.c.). For instance inversion
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of Equation 6.40 leads to the flow formulation of the model by Méric et al. 1991 initially

proposed for nickel base super alloys:

ε̇
˜
p =

∑
i

∂Ω

∂f i

∂f i

∂σ
˜

=
∑
i

〈 |σ
˜
: m
˜
− xi| −Ri − σy/M

K

〉n

n
˜
=
∑
i

γ̇im
˜

i sign(τ ieff) (6.47)

where σy/M is the initial yield stress. The model has three possibilities to introducing a

hardening: i) Through isotropic hardening parameters Ri, ii) increasing K (drag stress),

iii) coupling with kinematic hardening (backstresses xi). Specific forms of xi and Ri will

be discussed in the next section.

Whereas the total strain tensor ε̇
˜

is symmetric, ε̇
˜
p is generally not. If the latter is to

be equated to the macroscopic tensor, the antisymmetric part must be compensated by a

crystal lattice rotation in the opposite sense. However, there are special orientations for

which the antisymmetric part and hence the lattice rotation becomes zero (see e.g. H. J.

Bunge 1970).

For certain cases of multiple slip (idealization with M equivalent slip systems) conversions

between macro and micro parameters can be found in Cailletaud 2010.

Often γ̇i is calculated by using the following assumption (commonly referred to as Orowan

relation in the literature)

γ̇im = ρibivieff (6.48)

γ̇im is the mobile dislocation density and vieff the effective dislocation velocity (see Equa-

tion 6.49). Note that the determination of the mobile density is still a major topic of

discussion. In most models all dislocations are considered as mobile in the flow relation.

Interestingly, Groma 2017, a Hungarian compatriot of E. Orowan mentioned that this re-

lation has never been proposed by Orowan in this form and that it may rather be seen as a

definition of dislocation density than a constitutive law. Based on Equation 6.48 flow rules,

often referred to as physical approaches (e.g. by Teodosiu 1997; Lemaitre 2001; Wong et al.

2016) have been proposed. vieff comes from the theory of thermally activated dislocation

movement taking the form

vieff = ωAL exp

[
−ΔGi

ta

kBT

]
sign(τ ieff) (6.49)
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ωA is an attempt frequency, L is an average effective barrier spacing / mean free path /

average jump distance (e.g. Equation 6.52). Ma et al. 2012 use Equation 6.35 with a forest

dislocation density, i.e. a dislocation cell diameter for L. ωAL often is condensed into one

coefficient (e.g. v0 in Wong et al. 2016). A comprehensive compilation of literature on this

equation can be found in Kubin 2013. The range of ωA spans approximately one order of

magnitude. The Debye frequency is given by νDB =
(

3N
4πV

)1/3
vs ≈ 1013s−1, where N/V

is the number of atoms N in the volume V (number density) and vs is the speed of sound

of shear waves (≈ √
μ/ρ). νDB is an upper bound for an atomic vibration frequency.

Interestingly it is in the exact same order of magnitude as in Eyrings theory for chemical

reactions kBT/h ≈ 1013s−1, with h being Planck’s constant. On the other hand Busso

et al. 1996 use ωA = vs/b ≈ 3 · 1012s−1.

Since the energy that a dislocation must overcome by its thermal activation ΔGta is far

too complex to be obtained in closed form, often a phenomenological relation representing

a typical barrier encountered by a dislocation is used, see e.g. W. F. Kocks 1975

ΔGi
ta = G0

{
1−
( |τ i − xi| − τ ic

τ̂

)c1}c2

(6.50)

where 0 < c1 < 1 and 1 < c2 < 2 define the profile of the short-range barrier to the dis-

location, τ̂ is the stress above which dislocations can be mobilized without the assistance

of thermal activation (e.g. solid solution strength τsol as used by Wong et al. 2016). xi

is a slip system backstress. Often the parameters {c1, c2} = 1. G0 is the energy required

for a dislocation to overcome the barrier solely by its thermal activation and is given by

Lemaitre 2001 p.391 as G0 = τ̂Lλb, with λ the average effective barrier dimension, e.g.

particle radius. Often the temperature dependence of τ̂ , xi, τ ic are scaled with the tem-

perature dependence of the elastic shear modulus μ(T )/μ(T ref).

The parameters must be tuned within their reasonable physical range to reflect experimen-

tally measured relations between strain rate and stress for the slip system. Note that by

combining Equation 6.49 and Equation 6.50 the expression exp(x)− exp(−x) = 2 sinh(x)

i.e. a hyperbolic sine appears that is also often found in the literature.
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The above equations are often approximated by a power law with fewer parameters, see

e.g. Hutchinson 1976; Peirce et al. 1982 (first crystal plasticity computations) as.

γ̇i = γ̇0

∥∥∥∥τ iτ ic
∥∥∥∥n sign

(
τ i
)
= γ̇0

(
τ i

τ ic

)∥∥∥∥τ iτ ic
∥∥∥∥n−1

i.e. a viscoplastic model without any threshold and multiplicative but no additive harden-

ing. γ̇0 (slip) or (macro viscoplastic) ε̇0 is a reference strain rate and n is a rate exponent.

Finally, the role of lath / sub-block boundary sliding is emphasized. Particularly, Schmid

tensors can be constructed using the geometrical information of the lath habit-planes and

lath long directions, see section 3.7 in order to formulate lath boundary sliding.

6.6.2 Evolution Equations for Hardening Variables

In dislocation density based models the evolution of the dislocation density as a function of

the accumulated slip on each slip system is most commonly expressed by (see e.g.Teodosiu

1997; Tabourot et al. 1997):

ρ̇i =
1

b

⎛
⎝∑

j

1

Lj
−
∑
j

yhklj ρi

⎞
⎠ γ̇i (6.51)

with a generalization of the mean free path for dislocation motion L. yhklj are orientation

dependent lengths (Kubin 2013 p.79 therein) describing recovery (in a more general de-

scription it should be differentiated between dynamic and static recovery). The mean free

path due to dislocations in f.c.c. metals is given by:

1

L
=

τc
μ b Khkl

(6.52)

Khkl = 7.3 − 7.5, see e.g. U. Kocks et al. 2003. The average athermal passing stress τc is

calculated after Franciosi et al. 1982 with a slip system generalization of Taylor’s relation

(Equation 2.2):

τ jc = μb

√∑
i

hijρi (6.53)

The slip system interaction matrix hij will be discussed at the end of this section.
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A slip-variant interaction matrix hsvij can be formulated based on geometrical consider-

ations, e.g. as hsvij = ξic1(1 − hi · mi) with the same geometrical considerations as in

Equation 6.59 .Furthermore, the stereographic relation by Fullman 1953 is commonly used

(e.g. Allain et al. 2004; Wong et al. 2016), eventually yielding the following contribution

to the mean free path.
1

Lsv
j

=
∑
N

hsvij
ξi

t(1− ξ)
(6.54)

Queyreau et al. 2010 proposed an additional mean free path based on Orowan’s loop mech-

anism/description for impenetrable particles assuming circular precipitates, which may be

of interest for modelling precipitation hardenable steels. Data on L for this contribution

may be obtained from atom probe tomography studies. Considerations on incorporating

dislocation cell structures (e.g. dislocation cell wall diameter from Equation 6.35) via L

are found in Castelluccio et al. 2017. Also Roters and co-workers follow such line of think-

ing and additionally consider several types of mobile and immobile dislocations Steinmetz

et al. 2013; Wong et al. 2016.

An intesting approach is that by Carson et al. 2017 who proposed to use a combination of

diffraction- and mechanics-based metrics, which may be particularly interesting in combi-

nation with the extensive habit plane characterisation of this work.

Méric et al. 1991 and also Besson et al. 2009 propose a hardening law of the type:

τ jc = c1c2
∑
i

hijρ
i and ρ̇i = (1− c2ρ

i) resuling in (6.55)

τ jc = c1
∑
i

hij
(
1− exp(c2γi)

)
γ̇i (6.56)

where c2 is the convergence rate to a saturation value c1. In Cailletaud 2009; Cailletaud

2010 it is pointed out that the phenomenological law in Equation 6.55 and Equation 6.51

have the same nature.

Next, kinematic hardening / backstress evolution is discussed. The simplest model is

Prager’s linear kinematic hardening Prager 1949, in which the evolution of the kinematic

backstress X
˜

is collinear with the evolution of the plastic strain

X
˜

=
2

3
Cε
˜
p (6.57)
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For cyclic deformation, linear kinematic hardening does not produce ratchetting and Chaboche

2008 points out that (multi) linear kinematic hardening always leads to shakedown (a sta-

bilization of the cyclic loop). For a method to model ratchetting in combination with

linear kinematic hardening, see section 4.4. Non-linear kinematic hardening has first been

proposed by Armstrong-Frederick in a company intern report that has only been officially

published in Frederick et al. 2007. It became popular through the works of Lemaitre et al.

1994 and co-workers. The idea is to construct a plastic strain path dependence of the

yield surface shift and consider a dynamic recovery term proportional to the norm of the

plastic strain rate. Macroscopic relations can be found in Appendix B. The non-linear

case always leads to ratcheting (see Figure 2.9) under a non-zero mean stress (Chaboche

2008). Possible extensions to backstress formulations include a temperature rate term in

the evolution equation of the backstress.

In Méric et al. 1991 and also Besson et al. 2009 the formalism has been generalised to

several slip systems

α̇i = sign(τ i − xi)γ̇i − c1α
iγ̇i and xi = c2α

i (6.58)

with xi scalar backstress variables and c1 as the convergence rate to the asymptotic value

of xi given by c1/c2 and αi being the generalized slip system strain conjugate to xi. This

is an effective way to phenomenologically take into account 2nd order/moment effects.

Barlat et al. 2011 and coworkers (e.g. Kitayama et al. 2013) propose a generalization of

Equation 6.51 with reversible / fluctuating dislocation densities.

Devincre et al. 2015 propose a grain internal Hall-Petch relation, calibrated by MD simula-

tions using the distance to the next grain boundary and the angle between the slip system

and the boundary.

Backstress formulations based on GNDs can be found in Bayley et al. 2006 and references

therein. The main problem is to obtain slip system GND densities ρignd as discussed in

section 6.5. Notably, in statistically inhomogeneous situations of small scale plasticity the

backstress is sensitive to microstructural details. Since in this work the geometrical details

of martensite are worked out, it is proposed to substitute the saturation constant by an

expression incorporating martensite variant fractions and information on the geometrical

relations between martensite domains and slip systems. For oblate martensite domains
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(plate martensite) then the slip system backstress is a function of the slip plane normal,

the habit plane normal and the variant phase fraction, i.e. xi(ξj , |mi · hj |). Particularly,

the following form is proposed

c1 → ci1 = c3
∑
j

ξj(1− |mi · hj |) (6.59)

For prolate (lath- and needle-like) martensite domains additionally the lath long direction

k that is also the direction of the invariant line strain could be considered resulting in

c1 → ci1 = c4
∑
j

ξj
[
(1− |mi · hj |) + (1− |mi · kj |)] (6.60)

It should be noted, that the coupling between the variant phase fractions ξi and slip

system backstresses xi also highly influences variant selection if the flow rule incorporates

a nucleation criterion that links the accumulated plastic strains on certain slip systems with

certain martensite variants (see subsection 6.7.6). Similarly, considerations on martensite

variants could lead to a formalism that enable a decomposition into slip system specific

GND densities, enabling a unique decomposition of Equation A.8.

The total dissipation in any of the above cases is of the general form:

D = σ
˜
: ε̇
˜
p −
∑
i

xiα̇i −
∑
i

τ ic ρ̇
i (6.61)

For the free energy density several forms have been proposed, but in general it strongly

depends on the specific problem at hand as elaborated by Berdichevsky 2006.

Finally, the interaction matrix hij is discussed. Here it contains both self-hardening on

each system and the latent hardening between the systems / cross hardening / off-diagonal

terms. It is reported that cross hardening may be responsible that some systems may

not become active at all. A common assumption according to Taylor 1938 is to assume

"isotropic hardening," i.e. all hij = 1. Franciosi et al. 1982; Franciosi 1983 first tried

to experimentally determine hij for f.c.c. and b.c.c.. Franciosi 1985 also observed an

increasing degree of anisotropy with decreasing stacking fault energy (SFE) and proposed

a linear dependence of the hij with the SFE.
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A2 A3 A6 B2 B4 B5 C1 C3 C5 D1 D4 D6
A2 SH Copl Copl CS GJ GJ HL GJ LC HL LC GJ
A3 SH Copl GJ HL LC CJ GS GJ LC HL GJ
A6 SH GJ LC HL LC GJ HL GJ GJ CS
B2 SH Copl Copl HL LC GJ HL GJ LC
B4 SH Copl LC HL GJ GJ CS GJ
B5 SH GJ GJ CS LC GJ HL
C1 SH Copl Copl CS GJ GJ
C3 SH Copl GJ HL LC
C5 SH GJ LC HL
D1 SH Copl Copl
D4 SH Copl
D6 SH

Table 6.2: Slip system interactions, naming convention after Franciosi et al. 1982.
Slip planes (111), (111), (111), (111) are named A, B, C. D respectively and slip direc-
tions [011], [011], [101], [101], [110], [110], as 1 2 3 4 5 6 respectively. The 12 slip systems

are Al, A3, A6, B2, B4, B5, Cl, C3, C5, Dl, D4, D6.
SH: Self hardening, Copl: Coplanar / inplane reaction (same glide plane), CS: Colinear /
cross slip (same Burgers vector), HL: Hirth Lock (orthogonal Burgers vectors) syst pair
with normal slip directions, GJ: Glissile junctions formation, LC: Lomer-Cottrel sessile

locks formation

There are three interactions belonging to forest / junction forming slip systems: The Hirth-

/ orthogonal- and Lomer Cottrel-Lock as well as glissile junctions. Parallel / non-contact

dislocation interactions (i.e. the same glide plane) incorporate the two types of coplanar

(different b) and self (same b) interactions. Colinear / cross slip interactions lead to

annihilations. The general form of the interaction matrix hij is given in Table 6.2.

In Table 6.3 values for the hij from discrete dislocation (DD) simulations of Kubin et al.

2008; Devincre et al. 2008 are given. It is seen that four interaction strengths have similar

values (self, coplanar, glissile and Lomer), while the Hirth type of interaction is weaker

and the collinear interaction much larger (preventing the activation of collinear slip under

normal conditions). hij (aij in Devincre’s notation adopted in the following) of active slip

systems can approximately be replaced by a average value (≈ 0.35).

A multiplicative, logarithmic correction term (due to bowing of dislocations) for the line

tension effect (or line tension drift as in Sauzay et al. 2011) has been devised by Devincre et

al. 2006 based on the results of large-scale DD simulations (in these simulations a reference

total forest density of the order of ρref = 1× 1012m−2 has been assumed). This term only

applies to the three interaction coefficients related to interactions between junction-forming

/ forest slip systems. Simulations indicated that long-range stresses contribute globally to
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about one-fifth of the critical stress, hence the interaction coefficients are eventually written

as √
aij = cif

√
arefij with

cif = 0.2 + 0.8
ln
(
1/b
√
aref ρ

i
f

)
ln(1/b

√
aref ρref)

(6.62)

Similarly, interaction parameters for pure b.c.c. α−iron are determined by Queyreau et al.

2009.

Also, evolution equations for dislocation densities have been proposed in Kubin et al. 2008;

Devincre et al. 2008. First, the evolution of forest densities is given. Using the short

notation ρif =
∑
j∈f i

ρj for the total density of junction-forming forest obstacles for system

i, the storage rate induced by active forest slip systems f i is given by:

dρi =
p0 k0
b

1√∑
j aij(ρ

j + ρ→i
jct)

(
ρi

ρi + ρ→i
jct

)(∑
j∈f i

√
aijρj

)(
1− ρ→i

jct

ρif

)
dγi (6.63)

Evolution of junction density (Devincre et al. 2008 16 or B.5 and B.6 therein)

dρ→i
jct =

κ0 p0 k0
b

ρi
∑

j∈f i
√
aij√∑

j aij(ρ
j + ρ→i

jct)

(
1− ρ→i

jct

(n− 1)ρi

)
dγj (6.64)

with n being the number of active slip systems, hence (n − 1) is the number of forest

systems seen by system i. Note that κ0 = ρijct/ρ
i
0 has been shown by DD simulations to

be almost constant, Devincre et al. 2008. The evolution of parallel dislocation densities is

controlled by:

dρi =

{√
a′0 ρi

KI
+

∑
j ∈ cop(i)

√
acop ρj

Kcop

}
dγi (6.65)

The set of equations Equation 6.62 - Equation 6.65 have been implemented (independently

and as part of the model in subsection C.3.1). The independent version has been used in

conjunction with the flow rule in Equation 6.48 to investigate the energy and dissipation of

the formation of a single martensite lath (sub-block unit) in a full-field model. Particularly,

utilizing the calculated eigenstrains from subsection 3.10.3 the influence of morphology

(shape parameters) of single martensite laths as well as composite bi-variant blocks has

been investigated based on energy minimization / dissipation maximization.
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a′0 acop aorth a2 (glissile) a3 (Lomer) a_colin (colinear)
0.122 0.122 0.07 0.137 0.122 0.625
p0 k0 κ0 K112 K111 K001 KI = Kcopla

0.117 1.08 0.225 10.42 7.29 4.6 180

Table 6.3: Values of the dimensionless coefficients determining the critical stress and
the storage rate in f.c.c. crystals for a reference dislocation density ρref = 1× 1012m−2 as

given by Devincre et al. 2008 and references therein.

6.7 Constitutive Relations for the Phase Transformation

In this section first differences in nucleation theories are worked out. Second, the most com-

mon equation based phenomenological kinetic relations are discussed. Third, driving and

dragging forces / hardening relations (and their evolutions) for a transformation criterion

/ yield condition are outlined. Finally, the unification of these concepts should naturally

lead to suitable evolution equations and hence transformation kinetics.

6.7.1 Differences in Nucleation and Growth Theories

This section shortly summarizes as well as extends the work of M. Cohen et al. 1992

chapters 8-10 therein (8 non-linear physics, 9 nucleation, 10 growth). The key issues of

martensitic nucleation theory are depicted in Figure 6.3. Classical nucleation assumes a

critical nucleus / embryo structure i.e. a region of martensite showing all features of a fully

grown domain of the product phase, hence the order parameter η = 1. Practically, in most

cases a free energy is expressed for an inclusion (mainly without external stresses) and

minimized w.r.t. its geometric parameters. Extremisation of the energy leads to an energy

barrier (and profile) that must be overcome, afterwards spontaneous growth occurs. At

this point the difference between a a global consideration on a RVE level (global transfor-

mation condition - GTC) corresponding to the strong form or merely a local consideration

at integration point level (local transformation condition - LTC) corresponding to the weak

form must be kept in mind. Early approaches following this concept (e.g. Kaufman et al.

1958) lead to negligible nucleation rates. Only subsequently, pre-existing defects interact-

ing with the nucleus were considered, but in some cases theoretical nucleation rates were

still far from realistic ones.

Several (possibly pre-existing) types of defects are: dislocation pile-ups or junction net-

works, stacking faults, grain boundaries. Particularly, triple junctions appear to play a
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relaxation
(substructure)

heterogenity (substructure):
homogeneous vs.
heterogeneous nucleation

strain path
(structure)

classical
η = 1
σie = const
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η < 1
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0 ηm

fully relaxed F = RB
∏

i Si

semicoherent F = RBS (IPS)

coherent F = RB
homogeneoues

weak defect
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non-classical
η → 0
κ(∇η)2

Figure 6.3: Parameter space for martensitic nucleation according to M. Cohen et al.
1992, chapter 9 therein. η is a strain order parameter, σie a interface energy, m is a
critical exponent. the initial substructure heterogeneity strongly varies depending on
the processing history and evolves during transformation. Defect strength refers to the

stabilization of a nucleus. Non-classical extensions depict softening phenomena.

role. The crucial question is what constitutes a critical stage in the growth of a marten-

site domain of any morphology. Semi-coherent martensite interfaces with their arrays of

dislocations or twins merely exacerbate the problem.

Therefore, in contrast, quasi-classical nucleation admits intermediate nuclei configurations

/ strain embryos, i.e. a partially displaced lattice along the reaction path (hence "strain-

or reaction path" model according to Cohen) between the parent and product structure

with η < 1. Recently, the reaction path model has been applied by Ma et al. 2015 by

minimizing the difference in shape strain between plastically deformed regions and the full

shape strains of an invariant plane strain (IPS) by means of an optimization problem.

The case η = 0 depicts a lattice instability of the parent phase. A possible interpreta-

tion of the difference between lath and plate martensite is: If the instability is pronounced

then lattice coherency (bi-variant Σ1 connected laths formed by plastic deformation - shear

martensite) is favoured over two Bain strains displacively forming a twin ("schiebungs-"
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martensite). The non-classical framework stems from an atomistic description of lattice

vibrations further utilised in Landau theory and statistical mechanics. Softening of elastic

constants (soft phonon-mode / lattice spinoidal) due to anharmonic effects near Ms nowa-

days is a fruitful area for ab-initio calculations. A characteristic feature of b.c.c. iron is

that it develops a reduction of the shear stiffness constant c′ = (c11 − c12)/2, which pro-

foundly impacts dislocation behaviour. An elastic instability, driven by spin fluctuations,

near the γ → α transition point has e.g. been predicted by Dudarev et al. 2008 in ab

initio calculations of b.c.c iron. However the methodology still is not mature enough to

make quantitative predictions for highly alloyed composites. Particularly it is difficult to

describe all effects simultaneously, but attempts in this direction are made, see e.g. Dong

et al. 2017. Interestingly, often the lack of macroscopic experimental evidence for this be-

haviour is criticised, but obviously due to the rapid and locally random transformation of

even single crystals such an observation may be tricky. On the other hand, the concept of

elastic / lattice softening is already used in practice, e.g. by Edalati et al. 2012 to obtain

highly ductile nanostructured materials. A recent experimental investigation of the evolu-

tion of soft-phonon modes in Fe-Pd SMA has been done by Seiner et al. 2016. Generally,

observation of homogeneous nucleation is a strong indicator for non-classical nucleation.

The notion of non-classical nucleation leads to the phenomenological Landau theory where

the free energy is an expansion in an order parameter η, which is nothing more than an

appropriate, measurable quantity apt to account for the essential differences of the parent

and product phase. For martensitic transformations the order parameter η either is a phase

fraction or a strain (the latter is especially useful for second order transitions). It is η = 1

in martensite (m), η = 0 in austenite (a) and η = εa/εm for a,m mixtures. M. Cohen

et al. 1992 merely considered the shear strain component. Recently, the angle of rotational

distortion between the phases has been suggested by Cayron 2015 for ferrous martensite.

If the order parameter is strain, its variation of the interface may be described in analogy to

the Cahn-Hilliard treatment of diffuse interface (although the interface is almost atomically

sharp as pointed out at the end of subsection 2.3.2) by a non-local gradient term (as opposed

to a classical interface energy σie). In a quadratic free energy assumption

F (η,∇η) = F0(η) + κ/2(∇η)2 (6.66)
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κ is a gradient energy coefficient. Note that there is a multitude of functions describing

the variation of the order parameter in a diffuse interface (sigmoidal shape), for which the

associated variational functional (in which the free energy is contained, see Equation 6.22)

is well-known. Note the strong similarity between generalized continuum mechanics and

phase field models. For instance Forest et al. 2011 point out that the second gradient

model of mechanics by R. D. Mindlin 1964 and the Cahn et al. 1958 diffusion theory were

developed around the same time. A thermodynamical framework incorporating the order

parameter was among others developed by Gurtin 1996 suggesting a scalar or tensorial

microforce conjugate to gradient of order parameter.

6.7.2 Semi-empirical and Phenomenological Kinetics Fit Functions

Often the kinetics curve, i.e. the relation between the phase fraction of martensite and

external driving forces, is provided as a fit. The most common fit function for fast quenching

/ athermal kinetics is due to Koistinen et al. 1959. It was initially obtained by fitting X-

Ray diffraction measurements of volume-% fraction retained austenite as a function of the

quenching temperature interval in ferrous martensite. The fit function is an exponential of

the form:

ξ = 1− exp(−c1(Ms − T )) (6.67)

with Ms the martensite start temperature. Petersmann et al. 2017a explained the ex-

ponential saturation behavior as a consequence of elastic accommodation. For partially

isothermal martensites or bainites showing a more sigmoidal kinetics curve, the most com-

monly used fit function is due to Johnson-Mehl-Avrami-Kolmogorov (JMAK) Johnson

1939; Avrami 1940. It stems from a statistical description and the following assumptions:

i) random nucleation in the untransformed volume at ii) constant nucleation rate and iii)

a constant radial growth (until impingement) in an infinite specimen. The fit function is

of the form

ξ = 1− exp(−c1t
c2) (6.68)

A physical interpretation of the exponents can be found in Hömberg et al. 2016 for grain

growth and H. K. D. H. Bhadeshia et al. 1990 for Bainite (section 6.10. therein). In

Garrett et al. 2004; Mahnken et al. 2011 a constant value of coefficient c2 is used for

ferritic, pearlitic, and bainitic transformations, respectively. The coefficient c1(T ) should
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Figure 6.4: Phenomenological ways to macroscopically introduce hardening such that
the transformation kinetics (by means of the Lever-rule) is depicted. Left: red points
mark experimentally measured phase fraction. The abscissa shows the normalized trans-
formation temperature Tn. The kinetics may be fitted with any function (blue line; here
a piecewise fit joining at the saddle point is illustrated). A hardening function Rξ that
recovers the kinetics then for instance is the inverse of this function (green). Right: Con-
struction of Rξ with initial softening as in the model proposed by Fischlschweiger et al.

2013, see Appendix B.

map the form of the TTT diagram (e.g. a modified Gaussian function (cf. nucleation

potency) is often used. Often even double exponential relations are found in the literature,

see e.g. S. Kim et al. 2016. Note that upon directly providing a kinetics function the model

automatically becomes non-associated.

For the burst-like kinetics of the MarvalX12 we found that most of the kinetics curve (apart

the slow start) can be fitted better using a tanh. In the framework of driving and dragging

forces the kinetics can be directly applied as well by providing e.g. the inverse of the fitted

kinetics curve as a hardening variable. Compared to the double ln term by Fischlschweiger

et al. 2012 it does not comprise initial softening before hardening to obtain the slow start

and then very steep increase of phase fraction, see Figure 6.4.
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6.7.3 Aspects of Discrete Transformation Strains in Mean Field Models

Govindjee et al. 2001 state that a well-posed model should automatically generate habit-

plane variants (shape transformations) from lattice correspondence / orientational variants

(structural stretch tensor plus 24 point group rotations) by “natural” evolution under ap-

propriate loading conditions. Evidently, it is difficult to realize such a behavior in a mean

field model that lacks a discrete microstructure. In the author’s opinion the closest this

has been realized for dislocated lath martensites on the integration point level is the ap-

proach of Ma et al. 2015, who minimized the difference in shape strain between plastically

deformed regions and full, a-priori determined shape strains of invariant habit planes by

means of an optimization problem.

As pointed out by Cherkaoui et al. 1998; Cherkaoui et al. 2000b the main complexity is

the description of the internal stresses on the progress of martensitic phase transition, i.e.

the micromechanical point of view. Whereas in an integration point model nucleation and

growth always take place inside a homogeneous stress field, in reality individual phase

stresses differ significantly.

In the metallurgical literature a variety of variant selection models have been proposed, an

overview of which is found in Ray et al. 1990:

(i) The shape-deformation / -strain model utilising a resolved shear stress on the full habit-

plane shape variant as proposed by Patel et al. 1953. Quoting Christian 1965: "There is

good evidence that the effects of stress on the transformation are correctly predicted by

supposing the stress to interact with the strains of the shape deformation, rather than

with those of the lattice deformation". However, as shown by Petersmann et al. 2017a the

criterion does not lead to accommodation since it only considers the local as opposed to

the global state of a representative volume element.

(ii) Strain induced nucleation models emphasising the interaction of slip systems and habit-

plane variants. In most of these models favoured variants are those whose habit planes

are nearly perpendicular to the active slip plane. In highly dislocated lath martensites

this is reasonable since the lattice rotation due to the lattice invariant shear accomplishing

the transformation compensates the necessary rotation of the laths so that the laths can

approximately form an IPS, cf. Figure 3.8. (iii) The active slip model. In this model

a set of habit plane deformations (variants) incorporating an arbitrary number of lattice

invariant shears are calculated a-priori. In the model those variants are produced with slip
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systems sustaining the maximum resolved shear stress. Particularly, in most cases only

one LIS slip system is considered, which is often argued to be of the same natrue as the

twinning shear (first / twinning shear model).

(v) The Bain strain model. Often used with 24 instead of only three variants, which is not

consistent with the actual nature of the Bain strain (produces unrealistically high lattice

rotations).

(vi) The ’geometrical parameters’ model, where those variants are selected which induce

a maximum deformation along a certain direction (e.g. the normal direction of the sheet

when the sheet is thin). The model utilised the fact that free surfaces are known to

favour martensite formation because the shape strain can be accommodated most efficiently

accommodated near them.

References on EBSD studies of variant selection can be found at the end of section 5.5.

6.7.4 Variant-Variant Interaction

The weakness of a constitutive integration point model incorporating both plasticity and

the martensitic phase transformation in a coupled manner on the one hand is its inabil-

ity to fully capture microstructural heterogeneity. On the other hand stands the problem

finding the pertaining material parameters. Utilising a mere phenomenological formalism

increasingly exacerbates the problem of ill-posedness of the inverse parameter determina-

tion. An example illustrating this problem is that the relative contributions of the overall

deformation due to dislocation plasticity and accommodated lattice reorientation during

the phase transformation are still controversially discussed.

The incorporation of crystallographic and morphological microstructural features like dis-

location microstructure interactions and information about microstructural patterns/ar-

rangements enables geometrically motivated interaction energies due to the transforma-

tion in the material which is a key factor in the transformation mechanism. Appropriate

formulation of this interaction energy is very important and requires knowledge of the

microstructural evolution.

Siredey et al. 1999 proposed to use interface operators (also see Walpole 1969; Hill 1983; Su-

vorov et al. 2002) to set up an interaction matrix between neighbouring variants. Niclaeys



Constitutive Description 214

et al. 2002 pointed out that this formulation holds preferentially if the number of variants

within a grain is low.

In the case of lath martensite in steel the knowledge of the hierarchical arrangement of

variants into blocks and packets can be used to quantify ratios of interactions and hence

reduce the number of fitting parameters. Also it depends which set of transformation

strains is used. For instance the set of 12 block strains is used and the sub-block evolution

is neglected, or the full set of 24 laths is used. The interaction modes then are self (1),

bivariant / intra block (0), block (2) and packet interactions (3). For the sake of simplicity

also the case when 24 lath strains are used is written as a 12× 12 matrix, i.e. half of the

intra block and packet interactions are not given. If individual laths are considered then

the matrix is as follows

hvvij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 2 2 3 3 3 3 3 3 3 3

0 1 2 2 3 3 3 3 3 3 3 3

2 2 1 0 3 3 3 3 3 3 3 3

2 2 0 1 3 3 3 3 3 3 3 3

3 3 3 3 1 0 2 2 3 3 3 3

3 3 3 3 0 1 2 2 3 3 3 3

3 3 3 3 2 2 1 0 3 3 3 3

3 3 3 3 2 2 0 1 3 3 3 3

3 3 3 3 3 3 3 3 1 0 2 2

3 3 3 3 3 3 3 3 0 1 2 2

3 3 3 3 3 3 3 3 2 2 1 0

3 3 3 3 3 3 3 3 2 2 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In the case where composite block strains are considered from the beginning the zeros just

have to be replaced by twos.

For a large grain size (> 150 μm) and a transformation without external loading it has been

suggested that packets equally partition grains on the argument that the grain deformation

then is a mere volume change (Qi et al. 2014). If grains are not resolved explicitly, this

fact can be exploited as a constraint in the formulation of the interaction matrix.

For microstructures with a higher degree of disorder than lath martensite the same form

as in Equation 6.54 can be used.
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6.7.5 Structural Model for Martensite Nuclei

The interface energy of coherently strained interfaces is in the range of 0.1 Jm−2 and

increases for incoherent interfaces up to about 0.8 Jm−2. The stacking fault energy (SFE)

γsf for the MarvalX12 dealt with here is about 0.01 - 0.02 Jm−2. This is about as large

as the twin boundary energy σb.c.c., which on the contrary is relatively independent of

temperature and steel composition (Ferreira et al. 1998; G. B. Olson et al. 1976a). In this

range of SFE slip is dominant, but twinning is still possible.

In general, it seems that the SFE should be used as a model parameter, not only due to

experimental evidence but also in order to compare several models utilizing it.

G. B. Olson et al. 1975; G. B. Olson et al. 1976a; G. B. Olson et al. 1976b; G. B. Olson et al.

1976c envisioned that martensite lath boundaries are formed by dislocation loops forming

stacking faults, known as the defect dissociation model. They treated a stacking fault as

a second phase embryo rather than a surface within a continuum coherency framework

(γsf = ΔG) comprising both volume energy and surface energy contributions. For the

strain energy contribution they used Eshelby’s solution for spherically shaped particles.

The free energy of a nucleus ΔGnuc then becomes

ΔGnuc = ΔGsf +ΔGwork = A(wsf , etc)
[
n(γsf − 2σhcp) + 2σhcp

]
+ Eshelby terms (6.69)

where A(wsf , etc) describes the area of the the stacking fault depending on the separation

distance of the partials wsf and other geometrical parameters, n is the number of stacking

fault layers and Eshelby terms for the strain energy dependence can be found in section 4.3.

σhcp ≈ 0.0115 Jm−2 is the interface energy of stacking fault. Obviously, the problem is in

the description of A and n. Roters 2011 formulates A(wsf , r) additionally considering the

bowing of the partials with the bowing radius r. Commonly A is assumed to be a constant

rectangular area (e.g Galindo-Nava et al. 2016).

Additionally it has been proposed to consider the pile up energy of overlapping partials

forming the nucleus (Kibey et al. 2007, mainly for twins) and the dislocation interaction

energy with the applied stress aiding in formation of the fault ΔGτ = A(wsf)bpnτ , with

τ the resolved shear stress obtained with the Schmid tensor of the partial dislocation

system (〈211〉{111}) resulting in a critical nucleus thickness, i.e. the number of layers of
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stacking faults n is still under debate. Usually the smallest values are taken, i.e. n = 1 for

ε−martensite and n = 3 for twin formation. Staudhammer et al. 1983 reported a critical

twin-fault thickness of 50 - 70 Å in a 18Cr-8Ni steel. For an overview of crystallographic

twin nucleation models see Kibey et al. 2007; Steinmetz et al. 2013; Ojha et al. 2014

(nucleation of twins in b.c.c.) or the recent comprehensive review on TWIP steels by

Cooman et al. 2018.

The equilibrium stress free separation distance of Shockley partials depending on γsf is

wsf =
Gb2

2πγsf
(6.70)

see e.g. Cottrell 1964; A. Kelly et al. 2000. However, it has been shown that this width

also strongly depends on the applied stress as derived by Byun 2003 and investigated by

Talonen et al. 2007. Particularly, the influence of applied stress affects the separation width

wsf as follows:

wsf =
Gb2

π (2γsf − τb(sin θ2 − sin θ1))
f(θ1, θ2) (6.71)

Where θ1,2 = ∠(b, ξ)±30° are the angles of the Burgers vectors of the leading and trail-

ing partials with the dislocation line vector of the perfect dislocation respectively, i.e.

f(θ1, θ2) = 3/4− 1/(4− 4ν). The angular and stress dependence of this expression is the

following: There is no effect from the applied stress on pure edge dislocations and a maxi-

mum effect of dissociation with a stress for pure screw dislocations. Hence the effect must

be important for the formation of lath martensite that is dominated by screw dislocations.

For instance Polatidis et al. 2018 recently reported a suppressed martensitic transformation

under biaxial loading in low stacking fault energy metastable austenitic steels.
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6.7.6 Transformation Driving and Dragging Forces and "Flow"

Formulation Incorporating Nucleation and Growth

Considering the effects of temperature, stress state, variant interactions and dissipative

thresholds, reintroducing the notation from section 6.3, the driving force for the transfor-

mation is given by

Ki −Ki
c = ΔGi = Δs(T − T 0) + σ

˜
a : ε

˜
∗i + ξiξjhvvij +ΔξDgrowth (6.72)

where σ
˜
a is given by Equation 4.26 and incorporates the effect of external stress and a

phenomenological contribution due to internal stresses. Additionally, for lath transforma-

tion strains it could be considered to add a term of the same kind for the composite blocks

strain the lath is a part of. Dgrowth is a dissipative threshold given e.g. by the second term

from Equation 4.15 and/or a plastic strain interaction term proposed by Cherkaoui et al.

2000b; Cherkaoui et al. 2000a of the form

Dgrowth = ε
˜
∗j : C

˜̃
:

(
S
˜̃
Pj − S

˜̃
Ii

)
: m
˜

iγi (6.73)

where S
˜̃
Pj is the Eshelby tensor of the plastic defect (or the initial shape of the martensite

nucleus) and S
˜̃
Ii that of the fully grown variant.

Levitas et al. 2009b combining the Hadamard compatibility condition (??) and the traction

continuity condition

[σ
˜
] · h = 0 (6.74)

derived the driving force for interface rotation Xij
introt in the case of small strains as

Xij
introt = −ξiξjdτ [σ

˜
] (6.75)

where dτ = d − dhh with dhh collinear and d orthogonal to h. Hence only the shear

component of the strain discontinuity contributes to Xij
introt. For the large strain case see

Levitas et al. 2009b; Levitas et al. 2009a.

In terms of the flow function it is important to consider both the strain-induced and stress

assisted effects. For the first commonly a factor Ns related to potent nucleation sites is
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used. Often, it is also considered that any threshold property, e.g. the minimum driving

forces for which nucleation sites will operate ("Potency", as proposed by G. B. Olson et al.

1975) or a nucleation threshold for void nucleation, see e.g. Z-set Materials manual Version

8.6 n.d., are distributed by a Gaussian distribution. Similar approaches are followed by

Stringfellow et al. 1992 and Iwamoto et al. 1998. The models were compared and extended

by Zaera et al. 2012.

Commonly not much time is spent with the discussion of the flow function. Mainly simple

power laws are used, such as by S. R. Kalidindi 2001. Turteltaub et al. 2005; Suiker et al.

2005 consider

ξ̇i = ξ̇0 tanh

(
Ki −Ki

c

c1 Ki
c

)
(6.76)

with fitting parameters ξ̇0 and c1 interpreted as reference variant-strain-rate and a viscosity

like parameter. Mahnken et al. 2015 construct the following function:

ξ̇i =
1

c3
〈Ki −Ki

c〉c4
(
(1− ξ)c1(ξi)c2

)c4 (6.77)

The term in parentheses causes a slower formation of bainite for a decreasing amount of

austenite . Also, small amounts of bainite lead to a slow formation of bainitic variants at

the beginning of the simulation. Therefore, such an expression, though highly phenomeno-

logical depicts an easy way to capture the main characteristics of the kinetics incorporated

in the flow function.

Here we combine classical and non-classical approaches into one to obtain a kinetics based

flow function for the phase transformation. The critical step in martensitic nucleation is

the barrierless growth of supercritical embryos, which does not appear to require the pres-

ence of soft-phonon modes. Afterwards the glissile interface moves without resistance once

it is formed. The evolution of ξ̇i should depend on both the nucleus (cf. Equation 6.69)

and a fully grown variant Equation 6.72. Morsdorf et al. 2015 found that initially formed

martensite domains are bigger since they grow with fewer constraints. This effect is ac-

counted for in the interaction matrix ?? Additionally, a temperature dependency of the

size and shape of the martensite blocks could be considered at this point.

ξ̇i = (1− ξ)

〈
ΔGi−nuc −ΔGi−nuc

c

ΔGi−nuc
c

〉c1 〈Ki −Ki
c

Ki
c

〉c2

exp

(
− t

trelax

)
(6.78)
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In Equation 6.78 solely reduced quantities are used and it is formulated in the spirit of

critical exponents commonly used in the theory of continuous phase-transitions. The relax-

ation term incorporating trelax can be used to consider the effect of momentary temperature

increase due to local transformation without actually calculating the heat transfer. Gener-

ally nucleation occurs very rapidly, once the critical supercooling is reached. However, an

inertial effect of the system arises due to the necessary heat flow considering that the latent

heat of a typical metal is about one third of the total specific heat before the melting point.

This can be taken into account with the relaxation term. An interesting approach in terms

of extremisation is that of Levitas 2000a; Levitas 2000b who propose a time minimisation

of transformation time in an Arrhenius type equation.

6.8 Model Parameter Calibration by Inverse Fitting

The challenge in modelling the TRIP effect is that models contain large numbers of param-

eters if the transformation and plasticity are considered independently (plus their coupled

effect). Generally, uniform field model parameters may be obtained by fitting experimen-

tally measured, macroscopic stress-strain behaviour under some convenient strain path.

The fitting procedure is an inverse / backward problem i.e. given data from experiments

and data from the model an optimization strategy is considered for the parameter identi-

fication (usually least squares), see e.g. Mahnken et al. 1996b; Mahnken et al. 1996a.

For uniform field models this modelling data is usually produced using a single integration

point (as e.g. used by Z-sim). However, the mean-field model proposed here targets the mi-

cro (intra-grain) scale and aims to posses a certain sensitivity for microstructure formation

(i.e. localized concentration of certain crystallographic martensite variants). Therefore

it should at least be calibrated over a couple of grains to get some initial heterogeneity

making the iterative parameter optimization a time-consuming task.

In any case, the inverse fitting problem is ill-posed in the sense of Hadamard 1923. Fitting

simulation predictions to experimental data is often poorly conditioned, in the sense that

a wide range of parameter values will fit the data.

Good / reliable / robust results will only be achieved with many (relative to the number of

model coefficients) diverse experiment conditions, emphasizing complex experiments with
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many interacting effects over simple ones. The effect of perturbations of the experimental

data on the parameters should also be checked.

If the deviation of parameters is not relatively well-established (i.e. whenever a new equa-

tion is proposed) it is advised to start the optimization procedure using global optimizers

such as simulated annealing, Monte Carlo, genetic algorithms and branch and bound strate-

gies, since generally it must be assumed that the optimization surface is rough with many

local minima. Afterwards local optimization schemes (utilizing gradients) can be used.

Dependable material parameters are one of the reasons why predictions using micromechan-

ical methods tend to be a considerable challenge. Ghassemi-Armaki et al. 2013; Srivastava

et al. 2015 utilizing micro-pillar compression tests, note the problem that the behavior is

essentially influenced by the small dimension size of the test specimens (no bulk behavior).

A similar situation occurs in nano-indentation and micro-cantilever testing (e.g. Mine et al.

2013). Bertin et al. 2016 proposes calibration of crystal plasticity parameters by an inverse

optimization methodology on digital image correlation data.

Another point is that that temperature has the role of a driving force in a phase trans-

formation model as opposed to its role in plasticity (except maybe for creep). Even if the

temperature is assumed to evolve homogeneously over the whole model it becomes an ad-

ditional parameter to take into account. A quantification of thermal / entropic and stress

dependent contributions becomes necessary.



Chapter 7

Summary and Outlook

Integrated computational material engineering (ICME) and steel research have reached a

state from where the next step must be to go beyond the concept of microstructure prop-

erty relations, to a state where the evolution of microstructure can be anticipated using a

combination of deterministic micromechanical finite element modelling as well as learning

algorithm approaches. In order to achieve this goal highly interdisciplinary approaches of

materials science (theoretic and experimental), computational mechanics, crystallography,

physics and mathematics are necessary. In this work some established frameworks of these

disciplines have been brought together in view of their usefulness for the martensitic trans-

formation.

The main result of the current work is the generalized treatment of the martensite trans-

formations as an optimization problem on the crystallographic scale. Although the key

ingredients of the theory are by no means new their combination and generalization opens

new possibilities. On the one hand, the framework permits to conduct sensitivity stud-

ies on various microstructural parameters, all included in a crystallographic set, that have

been proven to play key-roles for the formation and stability of the microstructure. On

the other hand, since the incremental framework proposed for the evaluation of lath habit

planes and/or blocks resembles that of a crystal plasticity theory, it can also be incorpo-

rated as an integration point constitutive description in finite element codes.

An extension of the approach presented at the end of chapter 3 is to consider more than two

deformation gradients in the minors rule such as in the case of a multiphase microstructure

and investigate mixtures with varying phase fractions.
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The next planned extension for the developed GUI is a plugin that enables to load OIM

data (e.g. in conjunction with MTEX) and to plot habit plane traces at user specified

positions (orientations).

In order to be able to compare and fit micromechanical models to variant statistics, the lat-

ter must first be rigorously available for highly hierarchical, highly dislocated lath marten-

site. Beside the generalized identification of the crystallographic set the demand on the

variety of orientation imaging microscopy data for a full characterisation has been dis-

cussed.

It has been argued that the required data to achieve this goal must be comprised of

lattice orientation data, interface statistics and some kind of characteristic three dimen-

sional martensite domain morphology (e.g. characterised by a "grain-shape" distribution

of blocks). In the case of external loading, all of this data should be characterised relative

to critical stress directions. An emphasis has been laid on industrially relevant (practical)

cooling rates, grain sizes etc. The next step would be to tackle the problem of austenite

reconstruction using optimized crystallographic sets. Note that the scanned area for the

statistical evaluation in this study is probably close to a lower bound for the required data.

Verifications on a larger set of data are desirable. As far as future studies on sub-block

features are concerned it would be interesting to study slip transfer effects on this scale,

e.g. using the Matlab toolbox Stabix cf. section C.1. In terms of further experiments

certainly, the most interesting question is the role of (especially martensite) sub-structure

sliding on the overall deformation during loaded transformation. Considering size effects

new experimental approaches should be explored.

If the role of substructure sliding was quantitatively characterised this would enable to nat-

urally better calibrate phenomenological scale transition rules in both phases. Considering

the importance of nucleation and defects, studies concerning the initial microstructure state

should be carried out since commonly the initial microstructural state is highly simplified,

e.g. stress free, no plastic deformation etc. In terms of model parameter verification it

would in general be useful to model a full thermal transformation cycle i.e. heating and

cooling, which requires to formulate relations for the reverse transformation of (reconstruc-

tive and displacive nature), recrystallization and recovery. Also, it is remarkable that to

the best of the author’s knowledge in the literature no modelling approaches of structural

hardening tests such as the Satoh test can be found.
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The β rule as finally stated in chapter 4 belongs to the general idea of a coupled pair of

evolution equations between a force variable and its corresponding flux variable. In the

same manner a geometrically motivated backstress relation has been deduced in subsec-

tion 6.6.2. A framework for studying the effect of parameters for a range of steel types for

the structural nucleus model advised in subsection 6.7.5 must be set up.

The importance of generalized continuum mechanics concepts providing a valuable tool for

bridging the necessary scales in finite element models for the martensite transformation is

emphasised at this point.

The essence of modelling should be to be predictive in the sense to be able to draw con-

clusions for those domains where we do not have the required experimental data. In order

to meet this requirement this work contributed to close the gap in understanding of how

the transfer of information, across length scales, can be implemented effectively within a

computational framework.
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Appendix A

Related Scale Bridging Concepts

A.1 Continuum Theory of Dislocations

For a large enough volume element, due to the ergodic hypothesis the ensemble average

may be replaced by volume averaging. Then the result is identical to the dislocation

density tensor, or Nye’s tensor α
˜

introduced subsequently, which is the basic variable of

the continuum theory of dislocations and can directly be related to the densities of so-called

geometrically necessary dislocations (GNDs) ρgnd, a terminology often attributed to Ashby

1970. Note that for a single, discrete dislocation: αij = ξibiδ(ξ), where δ() denotes the

Dirac delta-function (for many dislocations summation can be applied). In the continuum

case the Burgers vector content is given by

b =

∮
∂S

F
˜
e−1dx (A.1)

where ∂S is the closure contour surrounding an area S in the reference configuration. It

should be kept in mind that the Burgers vector is a property of the reference lattice, and

not the distorted medium. Application of Stokes theorem leads to the definition of the

so-called dislocation density tensor.

b =

∫
S
α
˜
n dS with (A.2)

α
˜
= − curlF

˜
e−1 = F

˜
e−1 ×∇ = −εiklF

e−1
ik,l ei ⊗ ej

236
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If the surface is infinitesimal of normal n, db = α
˜
n dS is the resulting true Burgers vector

of dislocations crossing the surface dS. Note that each component αij can be associated

with a "super-dislocation" As a result, diagonal components represent screw dislocations

and the off-diagonal components edge dislocations, see Forest 2012. While the density ρgnd

can be computed approximately in some situations like plastic bending, see e.g. Ashby

1970 or punching, see e.g. Nix et al. 1998, in the continuum theory of dislocations a

big enough RVE for allowing a volume average is required to compute the components

of α
˜
. Conventional plasticity laws tacitly assume that the density of GNDs is negligible

ρGND 
 ρS and no length scale enters.

Measurements from a plastically deformed material can only be performed in the deformed

(current) configuration. Hence the following is actually used:

b =

∮
∂S

F
˜
e−1dx =

∮
∂S0

F
˜
e−1F

˜
dX

Equation 6.2
=

∮
∂S0

F
˜
pdX

Stokes
= −

∫
S
∇× F

˜
pNdS = ...

(A.3)

... = −
∫
S
∇× F

˜
pJ−1F

˜
TndS hence α

˜
= ∇× F

˜
pJ−1F T

Note the difference between spatial / current and reference frame. As apparent from

Equation A.3 the spatial variation of the crystallographic slip throughout the domain is

necessary to determine the GND densities. Either FEM elements collecting neighbouring

information of the internal variable γi (see e.g. Han et al. 2007) or a generalized material

treatment, which generally needs higher order (≥ 2) Ansatz functions (C1 continuity con-

necting elements) is needed. For the latter, numerical problems due to gradients between

neighbouring integration points are often reported (especially for non-uniform meshes).

Other names for αij are torsion-flexture tensor / Burgers tensor / Nye’s dislocation density

tensor after Nye 1953. He assumes negligible elastic strain and small (strain) elastic rota-

tion, workign with an axial rotation vector of the lattice, which he calls lattice gradient /

curvature (for a derivation, see Forest et al. 1997; Forest 2012).

As a next step the small-strain formalism is presented and connections with slip system

vectors are given. Beforehand, as pointed out by Gurtin 2006:"The approximation of small

deformations obscures much of the physics underlying the notion of a Burgers vector" (as

will be elaborated after giving the equations for the small strain case that can be found
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in the literature. With Hp = H − He and considering that curlH
˜

= 0 due to the

compatibility of the deformation gradient:

α
˜
≈ curlH

˜
e = − curlH

˜
p = −∇× ε

˜
p = −εijkγlk,j (A.4)

iρedgegnd b =i ρ⊥gndb = −(∇ · γi) · si = − grad γi · si = −γ,k · si (A.5)

iρscrewgnd b =i ρ�gndb = (∇ · γi) · ξi next the index i is replaced by a
∑

(A.6)

−αij = −
∑

εijkγ,jslmk = −
∑

γ,jsl (sjξi − ξjsi) Arsenlis et al. 1999 (A.7)

α
˜
=
∑
i

ρ�gnds⊗ s+ ρ⊥gndξ ⊗ s Gurtin 2006 (A.8)

From the above the dependence of αij upon the slip gradient in the slip direction s, and the

direction of the dislocation line ξ can be seen. Note that any slip gradient in the direction

of the slip system normal m does not contribute to αij . Also note that Gurtin 2006 uses

the concept of a "macroscopic Burgers vector" as derived in their works, which is why b

does not appear explicitly in Equation A.8.

The problems of such an approach are the following: In general α
˜

is non-symmetric, i.e.

a unique mapping would (theoretically) require nine independent slip systems (recall that

the f.c.c structure has 5 independent systems, see section 3.2). A workaround in a large

strain formalism, which utilizes the fact that dislocation densities can be considered as

lengths of lines allowing certain variable substitutions, see Arsenlis et al. 1999 Equations

25-27 therein, has been developed by Ma et al. 2006 (Equations 20-27 therein). The

most general form of dislocation density projections of GNDs and SSD (statistically stored

dislocations) to forest and parallel sets can also be found in Ma et al. 2006 Equations 10-11

therein.

Due to the demanding numerics of a full crystallographic slip system treatment and the

distinction of SSDs and GNDs (many additional variables) phenomenological strain gradi-

ent theories have been developed, starting with the works of N. Fleck et al. 1994; H. Gao

et al. 1999; N. A. Fleck et al. 2014. Reducing the number of variables, while at the same

time keeping as much flexibility as possible currently is a fruitful area of research, see e.g.

Stupkiewicz et al. 2016; Petryk et al. 2016.

Next, the thermodynamical frameworks of GNDs are shortly outlined. A common assump-

tion is that H
˜

p is fully accomplished by GNDs, hence it does not appear in the dissipation
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inequality. For an overview of generalized balance laws as well as assumptions on boundary

conditions see e.g. Bertram et al. 2014.

The derivative of the free energy w.r.t. the dislocation density tensor often is denoted as

couple stress tensor (based on the early works of Koiter 1964, who introduced a gradient

similar to Nye for the linear elastic case).

Ψ(...,α
˜
= curlH

˜
p)

∂Ψ

∂α
˜

= M
˜

(couple stress tensor) (A.9)

As usual, a first assumption for the thermodynamic contributions to the free energy is a

linear relation resulting in a quadratic potential

Ψ = ...+ 1/2 c1 α
˜
: α
˜

(A.10)

Based on dimensional considerations c1 is interpreted as l2 with l being a characteristic

dimension of the microstructure. The problem is that it is not clear which value to choose

for l.

A common feature of such generalized continuum dislocation theories is that they are

associated with the existence of lattice curvature induced backstress and corresponding

kinematic hardening. Steinmann 1996; Gurtin 2002; Forest 2008 (also see Cordero et al.

2012) assume a free energy of the form Equation A.10 using curlM
˜

= curl curlH
˜

p as

projection tensor on the Schmidt tensor to obtain a GND based backstress xi on slip

system i. However it has been claimed that the scaling properties of this relation do not

correspond to that obtained in large scale MD simulations (Zbib et al. 2017).

Next a relation to the density of GND was proposed, see e.g. Ohno et al. 2007; Neff et al.

2009

Ψ = ...+ c1 ||α
˜
|| ∼ ρgndb (A.11)

with ||α
˜
|| =

√
α
˜
: α
˜

being the Frobenius norm. Finally a logarithmic strain gradient

energy based on the statistical theory of dislocations Groma et al. 2003 was proposed.

M
˜

∼ ln ρgnd ⇒ Ψ ∼ ...+ c1 ρ
gnd(ln ρgnd − 1) (A.12)
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A.2 Relations between Thermodynamic Potentials, Kinetic

Rate Factors and Statistical Mechanics

Note that in statistical physics (from where thermodynamics originates), as soon as any

dynamic enters the description the notion of an ensemble (either in time or configuration

space) is introduced. A statistical ensemble is a probability distribution for the state of

the system over the system’s phase space Gibbs 1902. If both time and space ensembles

are equivalent the system is ergodic.

The inner energy U = U(S, V,N) only depends on extensive variables. Absolute values

of U cannot be directly measured but its chances. For fixed U, V and N , the entropy S

becomes maximal (micro canonical ensemble). The according partition function (micro

canonical partition function Zm) is related to the entropy by S = kb ln(Zm).

The Helmholtz free energy F = F (T, V or ε,N) is given by F = U − TS. In the cor-

responding canonical ensemble the system can exchange energy, but no particles. The

canonical Partition function is F = −kbT ln(Zk)

If the change of particles is also considered one has the grand canonical potential that is

related to the grand canonical partition function.

In the context of irreversible thermodynamics the Shannon entropy H ("information en-

tropy") is noteworthy, see Jaynes 1957

H = −
∑

pi ln pi (A.13)

where pi is the probability of an action and ln pi is the so-called self-information. The

motivation for the name of this quantity came from the close resemblance to the Gibbs-

Boltzmann-entropy derived for an ideal gas.

S = kB ln pi (A.14)

where pi is the probability of a macroscopic state calculated from possible micro-states.

habit plane the probability of each micro-state of an ideal gas is equal, hence the probability

can be obtained by counting permutations (assumption of equal a priori probability of
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micro-states / fundamental postulate of statistical mechanics). For solids this is not the

case!

Note that x ln(x) is the first term of the Stirling approximation for n! (James Stirling

1692-1770). The error of this approximation is only small if a large number of particles is

considered (cf. law of large numbers and its limit the central limit theorem: empirical prob-

ability = theoretical probability; assumptions: same probability distribution, independent

variables).

Also well known is the relation of the Helmholtz free energy and the canonical partition

function Zc.

F = −kBT lnZc (A.15)

Which, actually belongs to equilibrium thermodynamics, but is introduced here to bridge

the gap to a coefficient often found in kinetic relations in the literature of classical nucleation

theory (CNT), or thermal activation of dislocation motion.

R = exp

(
−ΔG

kBT

)
= ln

(
Z1
c

Z2
c

)
(A.16)

This obviously results from replacing F by G writing ΔG and rearranging. This term is

widely known as Boltzmann Factor, or if kB is (somewhat unjustified) replaced by R =

NakB for molar quantities this is known as Arrhenius dependence. Relations with CNT,

where ΔG is the change of free energy upon formation of a defect or small domain of new

phase are discussed in subsection 6.7.5.

Depending on the specific problem at hand further, pre-exponential factors are commonly

used. For instance a characteristic frequency and a mean free motion path for diffusion

or thermally activated dislocation motion, see Equation 6.49 or a factor Ns related to the

number of nucleation sites, see subsection 6.7.5.

In statistical mechanics phenomenologically motivated equations differential equations of

first order for the time evolution of probability distributions, from which approximations

and limits of easier equations can be derived are generally called master equations. For

discrete states
dpi
dt

=
∑

Pijpj − Pjipi (A.17)
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where pi is the probability that the system is in a state i and Pij a (mainly constant)

transition probability (cf. Markov-Process). Such an approach has e.g. been used by

Govindjee et al. 2000; Achenbach 1989 for martensite. Another example is the Fokker-

plank equation describing the velocity of a particle under the influence certain forces. A

probabilistic model based on random events has been presented by J. M. Ball et al. 2015.

The use of the Boltzmann factor in nucleation-rate equations has been criticized since it

stems from the customary assumption that the atoms can be regarded as separate oscillators

having a characteristic frequency (see Kaufman et al. 1958). Crussard states that the energy

for the thermally activated process under consideration is really supplied by statistical

reinforcements of elastic waves are not considered and proposes an alternative probability

factor based on quantum theory. Magee emphasized that the coordinated motion of large

groups of atoms would involve much lower attempt frequencies as above, in the order

1010 − 1011s−1 and G. B. Olson et al. 1986 even proposed 107s−1.



Appendix B

Implicit Formulation of a

Phenomenological Macro Model

In general the system of equations depicting the constitutive behavior can be expressed

by much fewer variables than normally employed, e.g. in the case treated here σ
˜

and ξ.

However, doing so would result in very long equations. Therefore the design of the system

of equations itself constitutes some kind of optimization problem on its own.

Within the model code the number of mathematical operations should be optimized, e.g.

by suitable setting of code sequences and brackets. For instance, let A and B be 3 × 3

matrices and c be a scalar, then (cA) : B and c(A : B) in the first operation there are more

operations than in the second.

Note that in Zebulon operator overloading is used for the various datatypes such as fourth

order tensors. E.g. if a object is of type tensor then a tensor product is just the the

overloaded multiplication symbol ∗.

Subsequently, the residual formulation and full Jacobian matrix necessary for an implicit

implementation by the example of the model presented by Fischlschweiger et al. 2012 are

presented. A similar model in a large-strain framework (intermediate config) has been

presented by Hallberg et al. 2007
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Scale transition rule

σ
˜
a = σ

˜
ext + ξμ(β

˜

mo − β
˜

a) +Kξδ/3I
˜

σ
˜
m = σ

˜
ext − (1− ξ)μ(β

˜

mo − β
˜

a)−K(1− ξ)δ/3I
˜

Residuals

Strain partitioning

Rε = −Δε̄
˜
+ Δε̄

˜
e + (1− ξ)Δpan

˜
a + ξΔpmn

˜
m +Δξ(ε̄

˜
vol + ε̄

˜
o)

Plasticity

Rpa = −Δpa +

〈f(s
˜
a,X

˜
a, Ra)

Ka

〉na

Δt

Rpm = −Δpm +

〈f(s
˜
m,X

˜
m, Rm)

Km

〉nm

Δt

Orientation strain

Rpo = −Δpo +

〈
fo

Ko

〉no

Δt

Rεo = −Δε
˜
o +Δpon

˜
o

Kinetics

Rξ = −Δξ +

〈
f ξ

Kξ

〉nξ

Δt

Scale transition rules
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Scale transition
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Appendix C

Code

C.1 Programs, Codes, Libraries Related to the Topic

Artificial microstructure generation

• Neper: Quey et al. 2011 - C + + code available on github, multiscale tessela-

tion, supports periodic boundary conditions, mesh optimization, grain size statistics.

http://neper.sourceforge.net/

• Dream3D: Groeber et al. 2014 - Program with GUI, supports non-convex meshing

and a lot of statistics, no periodic boundary conditions

• MBuilder - Voxel mesh

• Alternatively combinations of codes can be used e.g. Voro++ to generate the geom-

etry/tesselation and Gmsh to mesh it. For meshing also the CUBIT geometry and

mesh generation toolkit developed in the Sandia National Laboratories seems to be

very powerful.

• The geometries for the ellipsoidal inclusions have been produced using FreeCad. It

supports python scripting. https://www.freecadweb.org/
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EBSD data evaluation

• ARPGE: Cayron 2007 - python executable for PAG reconstruction (personal copy

from the author via email request).

• MTEX: Hielscher et al. 2008 - matlab program EBSD data evaluation, code on github

• jtex / atom - Texture and Orientation imaging program "J.-J. Fundenberger, B.

Beausir, Université de Lorraine - Metz, 2015, JTEX - Software for Texture Analysis,

http://www.atex-software.eu/ (formerly jtex-software)

Crystallography (mostly martensite specific)

• Martensite-Calculator - matlab code written for martensitic transformation strains

during this thesis. Hosted on github: https://github.com/ManuelPetersmann/

Martensite_Calculator.

• PTCLab, Gu et al. 2016 - program for many crystallographic compatibility calcu-

lations on the lattice level and their viszualization. Also some PTMC models e.g.

double shear solution,

• Lath Martensite: K. Koumatos et al. 2018: matlab toolbox for the calculation

of martensitic microstructure considering hierarchical twinning, Available on math-

works.

• STABIX - Slip Transmission Matlab toolbox: Mercier et al. 2015, can be used in

conjunction with MTEX to investigate OIM data https://stabix.readthedocs.

io/en/latest/references.html

• VESTA, Momma et al. 2011 - programm for viszualization of atomic arrangements

Programs to for the calculation of the structural stretch tensor

• OptLat, K. Koumatos et al. 2016 - matlab program for the calculation of the struc-

tural stretch tensor in orthogonal bases available on MathWorks File Exchange

• Chen et al. 2016 structrans: http://www.structrans.org - online calculation of

structural stretch tensor US (e.g. Bain strain)



Programs, Codes, Libraries Related to the Topic 253

Selected finite element codes for materials modelling

• Z-set (Z-mat, Z-opt, Z-cracks, Z-sim)

• Code Aster - (supports Z-set, and free CAE / GUI Salome Mecca )

• Damask (Düsseldorf Advanced Modelling and Simulation Kit) - open source FFT

solver and crystal plasticity routines.

• Abaqus, Feap (free, "light" version of Abaqus), Deal2, and many more...
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C.2 Eshelby Tensor Ellipsoid - Matlab

1 function S = eshelby_tensor_ellipsoid( nu, a,b,c )

2 % call: eshelby_tensor_ellipsoid(nu,a,b,c)

3 % This function takes the Poissons ratio....nu and the half axis lengths

4 % of an ellipsoid: a > b > c and calculates the Eshelby tensor - see Eshelby 1957

6 a2 = a^2;

7 b2 = b^2;

8 c2 = c^2;

9 l2 = [a2,b2,c2];

11 theta = 1./sin( sqrt(1.- c2/a2) );

12 k = sqrt(a2 - b2) / sqrt(a2 - c2);

14 % solve incomplete elliptic integral of the second kind E(theta,k)

15 % https://de.mathworks.com/help/symbolic/mupad_ref/elliptice.html

16 E = ellipticE(theta,k);

18 % solve incomplete elliptic integral of the first kind F(theta,k)

19 % https://de.mathworks.com/help/symbolic/mupad_ref/ellipticf.html

20 F = ellipticF(theta,k);

22 pre = 4*pi*a*b*c;

23 Q = 3./(8*pi*(1.-nu));

24 R = (1.-2*nu) / (8*pi*(1.-nu));

26 %% ellipsoid

27 Ia = pre * (F-E) / ( (a2-b2)*sqrt(a2-c2) );

28 Ic = pre / ( (b2-c2)*sqrt(a2-c2) ) * ( b*sqrt(a2-c2) / (a*c) - E);

29 Ib = 4*pi - Ia - Ic;

30 I_i = [Ia, Ib, Ic];

32 % I_ij = [ Iab, Iac, Iba, Ibc, Ica, Icb ]

33 % indizes: 1 2 3 4 5 6

34 index = 0;

35 for i = 1:3

36 for j = 1:3

37 if abs(i-j) > 1.e-3 % if i-not-j

38 index = index + 1;

39 I_ij(index) = (I_i(j) - I_i(i) ) / (3*( l2(i) - l2(j) ) );

40 end

41 end

42 end

44 I_kk = [I_aa, I_bb, I_cc];

45 pre2 = 3.*pi / (3.*a2);

46 for k = 1:3

47 I_kk(k) = pre2 - I_ij( 2*k-1 ) - I_ij( 2*k );

48 end

50 %% elliptic cylinder after original paper eshelby 1957

51 % Ia = 4*pi*b / (a+b);

52 % Ib = 4*pi*a / (a+b);

53 % Ic = 0;

54 % I_ab = 4*pi/(3*(a+b)); % not sure in paper - could be 4*pi/3*(a+b)...

55 %

56 % I_aa = 4*pi/(3*a^2) - I_ab; % not sure - could be 4*pi/(3*a^2 - I_ab);

57 % I_bb = 4*pi/(3*b^2) - I_ab; % deto
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58 % I_ac = 0.;

59 % I_bc = 0.;

60 % I_cc = 0.;

61 % I_kk = [I_aa, I_bb, I_cc];

62 % I_ij = [ I_ab, I_ac, 0, I_bc, 0, 0 ];

65 S = zeros(3,3,3,3); % all values are initialized with zero

66 % [ x1, x2, x3, x4, x5 ] = deal( 8 ); is equal to x1 = x2 = x3 = 8

67 S(1,1,1,1) = Q*a2*I_kk(1) + R*Ia;

68 S(2,2,2,2) = Q*b2*I_kk(2) + R*Ib;

69 S(3,3,3,3) = Q*c2*I_kk(3) + R*Ic;

70 % relations of the form S1122 = S2211 are not valid - check!

71 S(1,1,2,2) = Q* b2* I_ij(1) - R*Ia;

72 S(1,1,3,3) = Q* c2* I_ij(2) - R*Ia;

73 S(2,2,1,1) = Q* a2* I_ij(3) - R*Ib;

74 S(2,2,3,3) = Q* c2* I_ij(4) - R*Ib;

75 S(3,3,1,1) = Q* a2* I_ij(5) - R*Ic;

76 S(3,3,2,2) = Q* b2* I_ij(6) - R*Ic;

77 %

78 % The Eshelby tensor satisfies minor symmetries

79 % S_ijkl = S_jikl = S_ijlk

80 % but in general no major symmetries

81 % S_ijkl not S_klij - see e.g. Bower solidmechanics, Eshelby1957

82 %

83 [ S(1,2,1,2) , S(2,1,1,2) ] = deal( 0.5*Q*(a2+b2)*I_ij(1) + 0.5*R*(Ia + Ib) );

84 % S(1,2,2,1), S(2,1,2,1) - would have major symmetry

86 [ S(2,3,2,3) , S(3,2,2,3) ] = deal( 0.5*Q*(b2+c2)*I_ij(4) + 0.5*R*(Ib + Ic) );

87 % S(2,3,3,2) , S(3,2,3,2) - would have major symmetry

89 [ S(1,3,1,3) , S(3,1,1,3) ] = deal( 0.5*Q*(c2+a2)*I_ij(5) + 0.5*R*(Ic + Ia) );

90 % S(1,3,3,1) , S(3,1,3,1) - would have major symmetry

91 %

92 % Coefficients coupling an extension and a shear (S1112, S1123, S2311 ...)

93 % or one shear to another (S1223...) are zero. However same shears S1212 not 0!

95 voigt = [ S(1,1,1,1) , S(1,1,2,2) , S(1,1,3,3) , S(1,1,1,2) , S(1,1,1,3) , S(1,1,2,3) ;

96 S(2,2,1,1) , S(2,2,2,2) , S(2,2,3,3) , S(2,2,1,2) , S(2,2,1,3) , S(2,2,2,3) ;

97 S(3,3,1,1) , S(3,3,2,2) , S(3,3,3,3) , S(3,3,1,2) , S(3,3,1,3) , S(3,3,2,3) ;

98 S(1,2,1,1) , S(1,2,2,2) , S(1,2,3,3) , S(1,2,1,2) , S(1,2,1,3) , S(1,2,2,3) ;

99 S(1,3,1,1) , S(1,3,2,2) , S(1,3,3,3) , S(1,3,1,2) , S(1,3,1,3) , S(1,3,2,3) ;

100 S(2,3,1,1) , S(2,3,2,2) , S(2,3,3,3) , S(2,3,1,2) , S(2,3,1,3) , S(2,3,2,3) ];

101 end
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C.3 Selected Zebfront Code

C.3.1 Micro-Meso Model Dislocation Densities Explicit in Zebront

1 @Class Disdens2 : BASIC_NL_BEHAVIOR, BASIC_SIMULATOR {

2 @Name Disdens2;

3 @SubClass ELASTICITY elasticity;

4 @Coefs dgamma0,m,r0,mu;

5 @Coefs b111,disdens_forest_ref,disdens_start;

6 @Coefs K1,k0,kappa0,p0,K;

7 @Coefs a_ref,a_hirth,a_gliss,a_colin;

8 @tVarInt eel;

9 @sVarInt evcum;

10 @sVarInt plast_diss;

11 @sVarInt disdens_tot;

12 @sVarInt juncdens_tot;

13 @vVarInt gvcum [Nsyst];

14 @vVarInt disdens [Nsyst];

15 @vVarInt juncdens [Nsyst];

16 @tVarAux ev;

17 @vVarAux tau [Nsyst];

18 @sVarAux stored_ener;

19 @sVarAux sener;

20 @Criterion yield;

21 int Ngrain,Nsyst;

22 STRING forient,fsyst;

23 //void calc_torient(double,double,double,int);

24 void calc_torient();

25 void calc_hh(SMATRIX& hh,MATRIX& ss);

26 bool isforest(double);

27 MARRAY<TENSOR2> torient;

28 MARRAY<TENSOR2> torientg;

29 //@tVarUtil sigloc;

30 @tVarUtil devloc;

31 @tVarUtil devi;

32 SMATRIX hh;

33 MATRIX ss;

34 VECTOR densforest;

35 VECTOR l0;

36 VECTOR cf;

37 };

39 @UserRead {

40 if (str=="**system_number") Nsyst=file.getint();

41 else if (str=="**system_file") fsyst= file.getSTRING();

42 else return FALSE;

43 if(!file.ok)return FALSE;

44 return TRUE;

45 }

47 @SetUp {

48 int isyst,jsyst;

49 hh.resize(Nsyst);

50 ss.resize(12,6); // initialize matrix for hardcoded f.c.c. slip systems

51 densforest.resize(Nsyst);

52 l0.resize(Nsyst);

53 cf.resize(Nsyst);

54 calc_coef();
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55 calc_hh(hh,ss);

56 Out <<"print ss "<<ss<<endl;

57 Out <<fsyst<<endl;

58 torientg.resize(Nsyst);

59 torient.resize(Nsyst);

60 // ASCII_FILE syst; syst.open(fsyst());

61 // Out <<"print syst.ok"<<(syst.ok)<<endl;

62 // if (syst.ok) {

63 Out <<"Using hardcoded "<<Nsyst<< "Octahedral slip systems"<<fsyst<<endl;

64 TENSOR2 mm(tsz());

65 double n1,n2,n3,l1,l2,l3,nmag,lmag;

66 for(isyst=0;isyst<Nsyst;isyst++){

67 //density initialization here- does not work- NAN

68 //disdens[isyst] = disdens_start/12.;

69 //juncdens[isyst] = (disdens_start*kappa0)/12.;

70 //n1=syst.getdouble(); n2=syst.getdouble(); n3=syst.getdouble();

71 //l1=syst.getdouble(); l2=syst.getdouble(); l3=syst.getdouble();

72 n1 = ss(isyst,0); n2 = ss(isyst,1); n3 = ss(isyst,2);

73 l1 = ss(isyst,3); l2 = ss(isyst,4); l3 = ss(isyst,5);

74 lmag=sqrt(l1*l1 + l2*l2 + l3*l3); l1/=lmag; l2/=lmag; l3/=lmag;

75 nmag=sqrt(n1*n1 + n2*n2 + n3*n3); n1/=nmag; n2/=nmag; n3/=nmag;

76 // if(!syst.ok) ERROR("error reading "+fsyst+" line "+itoa(isyst+1));

77 mm[0]=n1*l1; // m11

78 mm[1]=n2*l2; // m22

79 mm[2]=n3*l3; // m33

80 mm[3]=(n1*l2 + n2*l1)/M_SQRT2; // m12 multiplied by sqrt(2)

81 mm[4]=(n2*l3 + n3*l2)/M_SQRT2; // m23 multiplied by sqrt(2)

82 mm[5]=(n3*l1 + n1*l3)/M_SQRT2; // m31 multiplied by sqrt(2)

83 torientg[isyst]=mm; }

84 // Out<<"Read OK"<<endl;

85 // }

86 }

88 @StrainPart {

89 sig = *elasticity*eel;

90 m_tg_matrix=*elasticity;

91 ev=eto-eel;

92 }

94 @Derivative {

95 int isyst,jsyst,ksyst,lsyst,msyst,nsyst;

96 double crit,stmx;

97 double deveq,cutoffl0,cutofftot;

98 double rsum_forest,rsum_copla,rsum_all,pkb,r_tot,active,cf_coef;

99 double a_gvcum,dd1,dd2,jd1,jd2;

100 devi = 0.;

102 sig = *elasticity*eel;

103 ev=eto-eel;

105 cf_coef = log(1./(b111*sqrt(a_ref*disdens_forest_ref)));

106 // determine dislocation density for line tension correction EQ 3 in Kubin,Devincre,Hoc 2008 Acta

107 for(ksyst=0;ksyst<Nsyst;ksyst++){

108 densforest[ksyst] = 0.;

109 for(lsyst=0;lsyst<Nsyst;lsyst++){

110 if(isforest(hh(ksyst,lsyst))){ densforest[ksyst] += (disdens[lsyst]+disdens_start/12.); }

111 }

112 cf[ksyst] = 0.2 + 0.8*(log(1./(b111*sqrt(a_ref*densforest[ksyst]))) / cf_coef);

113 // See EQ (4) Kubin,Devincre,Hoc 2008 Acta

114 }
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116 pkb = p0 * k0 / b111;

117 active=0;

118 devloc=0.;

119 cutofftot = 0.;

120 for(isyst=0;isyst<Nsyst;isyst++){

121 rsum_forest=0.;

122 rsum_copla=0.;

123 rsum_all=0.;

124 dd1 = disdens[isyst] + disdens_start/12.;

125 // junction density about 30% of disdens - see Devincre 2008 Acta

126 jd1 = juncdens[isyst] + (disdens_start*kappa0)/12.;

127 for(jsyst=0;jsyst<Nsyst;jsyst++){

128 dd2 = disdens[jsyst] + disdens_start/12.;

129 jd2 = juncdens[jsyst] + (disdens_start*kappa0)/12.;

130 if(fabs(hh(isyst,jsyst)-(a_ref-0.001))<1.e-9){

131 //sum over coplanar interactions

132 rsum_copla +=sqrt(hh(isyst,jsyst)*dd2);

133 }

134 if(isforest(hh(isyst,jsyst))){

135 rsum_forest+=cf[isyst]*sqrt(hh(isyst,jsyst)*dd2);

136 rsum_all +=cf[isyst]*sqrt(hh(isyst,jsyst)*dd2);

137 l0[isyst]+= cf[isyst]*sqrt(hh(isyst,jsyst)*(dd2+jd2));

138 }

139 else{

140 rsum_all += sqrt(hh(isyst,jsyst)*dd2);

141 l0[isyst]+= sqrt(hh(isyst,jsyst)*(dd2+jd2));

142 }

143 }

144 tau[isyst]= sig | torientg[isyst];

145 rsum_all = rsum_all*mu*b111;

146 r_tot = r0 + rsum_all;

147 crit=fabs(tau[isyst]) - r_tot;

149 cutoffl0 = (dd1 / (dd1+jd1)) / l0[isyst];

150 cutofftot += cutoffl0;

151 if(crit<=0.){dgvcum[isyst]=0;}

152 else{

153 active+=1;

154 if((tau[isyst])>0.)stmx=1.; else stmx=-1.;

155 dgvcum[isyst] = dgamma0*pow((crit/r_tot),(1./m));

156 // dalpha[isyst]=dgvcum[isyst]*(stmx-d*alpha[isyst]); //dalpha[isyst]=0;

157 devloc += stmx*dgvcum[isyst]*torientg[isyst];

158 // Forest densities

159 // EQ 15 Kubin,Devincre,Hoc Acta 2008

160 ddisdens[isyst] = pkb * cutoffl0 * rsum_forest*(1.-(jd1/densforest[isyst]))*fabs( dgvcum[isyst] );

161 // Self-hardening and coplanar interactions:

162 ddisdens[isyst] += (sqrt(a_ref*dd1) + rsum_copla) * fabs( dgvcum[isyst] ) / (b111*K1);

163 // total density (sum over all) and stored_energy (negative in dissipation inequality)

164 ddisdens_tot += ddisdens[isyst];

165 }

166 }

167 deveq=(devloc|devloc)/1.5; deveq= (deveq>0.0) ? sqrt(deveq) : 0.0;

168 devi=devloc;

169 devcum=sqrt((devi|devi)/1.5);

170 stored_ener = mu*pow(b111,2.)*disdens_tot * 6.; // see Begau,Hartmaier 2015Arxiv

171 dplast_diss += (sig|devloc);

172 sener = 0.5*(sig|eel);

174 // EVOLUTION OF JUNCTION DENSITIES

175 // MUST BE DONE SEPERATELY BECAUSE THE ACITIVE SYSTEMS & dgvcum HAVE TO BE DETERMINED BEFORE

176 //cout<<"active = "<<active<<endl;
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177 for(msyst=0;msyst<Nsyst;msyst++){

178 dd1 = disdens[msyst] + disdens_start/12.;

179 jd1 = juncdens[msyst] + (disdens_start*kappa0)/12.;

180 a_gvcum = 0.;

181 for(nsyst=0;nsyst<Nsyst;nsyst++){

182 if(isforest(hh(msyst,nsyst))){

183 a_gvcum += fabs( dgvcum[msyst] ) * cf[nsyst]*sqrt(hh(msyst,nsyst));

184 }

185 else{

186 a_gvcum+= fabs( dgvcum[msyst] ) * sqrt(hh(msyst,nsyst));

187 }

188 }

189 // Evolution of Junctions formed by mobile forest dislocs

190 // EQ 16 Kubin,Devincre,Hoc Acta 2008

191 if(active > 1){ //kappa0*dd1 = jd1 !

192 djuncdens[msyst] = kappa0*dd1*(pkb / l0[msyst])* a_gvcum *(1.-jd1/((active-1)*dd1));

193 }

194 djuncdens_tot += djuncdens[msyst];

195 }

197 if(devcum==0.) resolve_flux_grad(*elasticity, deel, deto);

198 else resolve_flux_grad(*elasticity, deel, deto, devi);

199 } // end @Derivative

201 bool Disdens2::isforest(double a){

202 int i;

203 // forest interactions: Hirth Lomer glissle

204 // small correction to distinguish a_lomer as a forest-/junction forming type

205 // from a_ref (however same interaction value)

206 if( (fabs(a-a_hirth<1.e-9)) && (fabs(a-(a_ref+0.001)<1.e-9)) && (fabs(a-a_gliss<1.e-9)) ){

207 return true;}

208 else{

209 return false;

210 }

211 }

213 void Disdens2::calc_hh(SMATRIX& hh,MATRIX& ss){

214 int i,j;

215 for (i=0;i<Nsyst;i++) hh(i,i)=a_ref; // self interaction

217 hh(0,1) =hh(0,2) = hh(1,2) = hh(3,4) =hh(3,5)= hh(4,5) = hh(6,7) =hh(6,8) =

218 hh(7,8) = hh(9,10)= hh(9,11)= hh(10,11)= a_ref-0.001; // coplanar interaction

220 hh(0,3) = hh(1,6) = hh(2,9) = hh(4,11) = hh(5,7) = hh(8,10) = a_colin;

222 hh(0,8) =hh(0,10) = hh(1,4) =hh(1,11) = hh(2,5)= hh(2,7) = hh(3,8) =hh(3,10) =

223 hh(4,6) = hh(5,9)= hh(6,11) = hh(7,9) = a_hirth;

225 hh(0,4) =hh(0,5) =hh(0,6) =hh(0,9) = hh(1,3) =hh(1,7) =hh(1,8) =hh(1,9) =

226 hh(2,3) =hh(2,6) =hh(2,10) =hh(2,11) = hh(3,7) =hh(3,11) = hh(4,7) =hh(4,9) =hh(4,10) =

227 hh(5,6) =hh(5,8) =hh(5,11) = hh(6,10) = hh(7,10) = hh(8,9) =hh(8,11) = a_gliss;

229 hh(0,7) =hh(0,11) = hh(1,5) =hh(1,10) = hh(2,4) =hh(2,8) = hh(3,6) =hh(3,9) =

230 hh(4,8) = hh(5,10) = hh(6,9) = hh(7,11) = (a_ref+0.001); //Lomer lock

232 for (i=0;i<Nsyst;i++){ for (j=i+1;j<Nsyst;j++){ hh(j,i) = hh(i,j); }}

234 // hard coded slip systems for f.c.c.

235 ss(0,0) = ss(0,1) = ss(0,2) = ss(0,5) = ss(1,0) = ss(1,1) = ss(1,2) = ss(1,5) = ss(2,0) =

236 ss(2,1) = ss(2,2) = ss(2,4) = ss(3,0) = ss(3,2) = ss(3,5) = ss(4,0) = ss(4,2) = ss(4,4) =

237 ss(4,5) = ss(5,0) = ss(5,2) = ss(5,3) = ss(5,4) = ss(6,1) = ss(6,2) = ss(6,5) = ss(7,1) =
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238 ss(7,2) = ss(7,3) = ss(7,4) = ss(8,1) = ss(8,2) = ss(8,3) = ss(8,5) = ss(9,0) = ss(9,1) =

239 ss(9,4) = ss(10,0) = ss(10,1) = ss(10,3) = ss(10,5) = ss(11,0) = ss(11,1) = ss(11,4) =

240 ss(11,5) = 1.;

241 ss(0,4) = ss(1,3) = ss(2,5) = ss(3,4) = ss(4,3) = ss(5,5) = ss(6,3) = ss(7,5) = ss(8,4) =

242 ss(9,5) = ss(10,4) = ss(11,3) = 0.;

243 ss(0,3) = ss(1,4) = ss(2,3) = ss(3,1) = ss(3,3) = ss(4,1) = ss(5,1) = ss(6,0) = ss(6,4) =

244 ss(7,0) = ss(8,0) = ss(9,2) =ss(9,3) = ss(10,2) = ss(11,2) = -1.;

245 }

Coefficient input file:

1 ***material

2 *rotation

3 x1 1. 1. 0.

4 x2 0. 0. 1.

5 *integration runge_kutta 1.e-4 1.e-4

6 % default is 1.e-3

7 ***save_energies

8 ***behavior Disdens2

9 **elasticity isotropic

10 young 174800.

11 poisson 0.33

12 **system_number 12

13 **system_file octa.sys

14 **model_coef

15 mu 73000.

16 dgamma0 0.001

17 m 0.01

18 r0 38.

19 b111 2.547e-7

20 disdens_forest_ref 1.e6

21 disdens_start 1.e2

22 kappa0 0.225

23 K1 180.

24 k0 1.08

25 p0 0.117

26 a_ref 0.122

27 a_hirth 0.07

28 a_gliss 0.137

29 a_colin 0.625

30 ***return

C.3.2 Macro Model Explicit and Implicit in Zebront

1 #include <iostream.h>

2 #include <string.h>

3 #include <Elasticity.h>

4 #include <Basic_nl_behavior.h>

5 #include <Basic_nl_simulation.h>

6 #include <External_parameter.h>

7 #include <stdlib.h>

8 #include <Print.h>

9 #define Id TENSOR2::unity(tsz())
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11 //-----------------------------------------------------------------------------------------------

12 //- Mean Field Model for TRIP -

13 //- Formalism and explicit code (@Derivative): M. Fischlschweiger 2012 -

14 //- Implicit implementation (@CalcGradF): M. Petersmann - Jan 2016 -

15 //-----------------------------------------------------------------------------------------------

17 @Class MARAGING_full : BASIC_NL_BEHAVIOR, BASIC_SIMULATOR {

18 @Name MARAGING_full;

19 @SubClass ELASTICITY elasticity;

20 @Coefs K, mu;

21 // kinetics and orientation

22 @Coefs K_o, n_o;

23 @Coefs K_T, K_P, K_Z, K_ZZ, K_S, B, alpha_t;

24 @Coefs K_t, n_tt;

25 @Coefs R0_t;

26 @Coefs b_o, R_o0, H_o;

27 @Coefs n_p, n_ot;

28 @Coefs delta;

29 @Coefs k_0, n_asym;

30 @Coefs T0;

31 // plasticity

32 @Coefs K_a, n_a;

33 @Coefs K_m, n_m;

34 @Coefs R0_a, R0_m;

35 @Coefs Q_a, Q_m;

36 @Coefs b_a, b_m;

37 // backstresses

38 @Coefs C_a, D_a;

39 @Coefs C_ao;

40 @Coefs C_m, D_m;

41 @Coefs C_o, D_o;

42 // scale transition

43 @Coefs D_b_a, D_b_mo;

45 @tVarInt eel;

46 @tVarInt e_o;

47 @sVarInt z;

48 @sVarInt eocum;

49 @sVarInt evcum_a, evcum_m;

50 @tVarInt alpha_a, alpha_m, alpha_o;

51 @tVarInt beta_a, beta_mo;

53 @Implicit

55 @tVarAux norm_a, norm_m, norm_o, norm_o_dz, norm_J3_o, norm_J2_o, dAo_ds, dAon_ds;

56 @tVarAux sigma_a, sigma_m;

57 @tVarAux m1, m2, m3, z2, z3;

58 @tVarAux devi, devo, ev;

59 @sVarAux f_o, f_t, f_t1;

60 @sVarAux Ao, R_t, R_a, R_m, R_o, J2_o_aux, J3_o_aux, Jeo_aux, J_a_aux;

61 @sVarAux z1, test, dt2, hilf, TT;

63 Zfstream my_file;

64 int iter;

65 int glob_counter;

67 static double fz_alpha_a_pert(MARAGING_full* b, const TENSOR2& );

69 static double fz(MARAGING_full* b, const TENSOR2& sig);

70 static double fz_eo_pert(MARAGING_full* b, const TENSOR2& e_o);
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72 static double ff_o(MARAGING_full*, const TENSOR2& sig);

73 static double fp_o(MARAGING_full* b, const TENSOR2& e_o);

75 static TENSOR2 fnorm_o(MARAGING_full*, const TENSOR2& sig);

76 static TENSOR2 fnorm_o_part1(MARAGING_full*, const TENSOR2& sig);

78 static TENSOR2 dI3(MARAGING_full*, const TENSOR2& t);

79 static TENSOR4 d2I3(MARAGING_full*, const TENSOR2& t);

81 TENSOR4 d2_pert(const TENSOR2& e, TENSOR2 (*)(MARAGING_full*, const TENSOR2&) );

82 TENSOR2 d_pert(const TENSOR2& e, double (*func)(MARAGING_full*, const TENSOR2&) );

83 double s_pert_s(const double& e, double (*)(MARAGING_full*, double) );

84 double test1(const double& e);

85 double test2(const TENSOR2& e);

87 @Implicit

88 };

90 @PostStep {

91 ev = eto - eel;

92 sig = *elasticity*eel;

93 if (integration&LOCAL_INTEGRATION::THETA_ID) { // calculation of consistent tgmat

94 TENSOR4 tmp(psz,f_grad,0,0);

95 if (Dtime>0.0) m_tg_matrix=*elasticity*tmp;

96 else m_tg_matrix=*elasticity;

97 }

98 else{

99 m_tg_matrix=*elasticity;

100 }

101 }

103 @PreStep {

104 iter = 0;

105 }

107 @Derivative {

108 int rank_of_temp =EXTERNAL_PARAM::rank_of("temperature");

109 double T=(*curr_mat_data->param_set())[rank_of_temp];

110 double Tini=(*curr_mat_data->param_set_ini())[rank_of_temp];

112 sig=*elasticity*eel;

114 sigma_a = sig + z * mu * (beta_mo - beta_a) + Id * K * z * delta/3.;

115 sigma_m = sig - (1.-z) * mu * (beta_mo - beta_a) - Id * K * (1.-z) * delta/3.;

117 double CCa=C_a/1.5; double CCm=C_m/1.5; double CCao=C_ao/1.5; double CCo=C_o/1.5;

118 TENSOR2 X_a = CCa*alpha_a + CCao*alpha_o;

119 TENSOR2 X_m = CCm*alpha_m;

120 TENSOR2 X_o = CCao*alpha_a + CCo*alpha_o;

122 TENSOR2 sigeff_a = deviator(sigma_a) - X_a;

123 TENSOR2 sigeff_o = deviator(sigma_a) - X_o;

124 TENSOR2 sigeff_m = deviator(sigma_m) - X_m;

126 R_a = R0_a + Q_a*( 1.0-exp(-b_a*evcum_a) );

127 R_m = R0_m + Q_m*( 1.0-exp(-b_m*evcum_m) );

129 double Jeo = sqrt(2./3.*(e_o|e_o));

130 Jeo_aux = Jeo;

131 R_o = R_o0 + H_o*pow(Jeo,b_o)*pow(z,2.);
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133 double eps1 = 1.e-12;

134 double eps = 0.0;

135 if (z < eps1){

136 R_t = R0_t - K_Z*(log(1.-eps1)) + K_ZZ*log(eps1) + K_T*pow(Jeo,n_ot) - K_P*pow(evcum_a,n_p);

137 }

138 else if (z<(1.-eps1)){

139 R_t = R0_t - K_Z*(log(1.-z)) + K_ZZ*log(z) + K_T*pow(Jeo,n_ot) - K_P*pow(evcum_a,n_p);

140 }

141 else{

142 R_t = R0_t - K_Z*(log(eps1)) + K_ZZ*log((1.-eps1)) + K_T*pow(Jeo,n_ot) - K_P*pow(evcum_a,n_p);

143 }

144 if(R_t < 0.0) R_t = 0.0;

146 double J_a = sqrt(1.5*(sigeff_a | sigeff_a));

147 J_a_aux = J_a;

148 double I_a = trace(sigma_a);

150 double J2_o = sqrt(1.5*(sigeff_o|sigeff_o));

151 J2_o_aux = J2_o;

152 double J2_o2 = pow(J2_o,2.);

153 double J2_o3 = pow(J2_o,3.);

154 double J2_o4 = pow(J2_o,4.);

155 double J2_o5 = pow(J2_o,5.);

156 double J3_o = sigeff_o.determin();

157 J3_o_aux = J3_o;

159 if (J2_o > 0.0){

160 Ao = 1.0+k_0*J3_o/J2_o3;

161 }

162 else{

163 Ao = 1.;

164 }

165 double nAo_inv = 1.0/(Ao*n_asym);

166 double Aon = pow(Ao,(1.0/n_asym));

168 TENSOR2 titi = syme(sigeff_o * sigeff_o);

169 norm_J3_o = titi - (1./3.)*trace(titi)*Id;

171 f_t=0.;

172 f_o=0.;

173 if (J2_o > 0.){

174 f_t = K_S*(alpha_t*I_a + (1.-alpha_t)*Aon*J_a) - B*(T-T0) - R_t;

175 f_o = J2_o*z*Aon - R_o;

177 norm_J2_o = (1.5/J2_o)*sigeff_o;

178 dAo_ds = (k_0/J2_o3)*(norm_J3_o - (3.*J3_o/J2_o)*norm_J2_o);

179 dAon_ds = (Aon*nAo_inv)*dAo_ds;

180 norm_o_dz = Aon*norm_J2_o + J2_o*dAon_ds;

181 norm_o = z*norm_o_dz;

182 }

183 else {

184 f_t = K_S*alpha_t*I_a - B*(T-T0) - R_t;

185 norm_J2_o = 0.;

186 dAo_ds = 0.;

187 dAon_ds = 0.;

188 norm_o_dz = 0.;

189 norm_o = 0.;

190 }

192 double f_a = J_a - R_a;
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193 double J_m = sqrt(1.5*(sigeff_m|sigeff_m));

194 double f_m = J_m - R_m;

196 if (J_a > eps){

197 norm_a = (1.5/J_a)*sigeff_a;

198 }

199 else {

200 norm_a = 0.;

201 }

202 if (J_m > eps){

203 norm_m = (1.5/J_m)*sigeff_m;

204 }

205 else {

206 norm_m = 0.;

207 }

209 //Strain parts

210 deocum = devcum_a = devcum_m = dz = 0.;

211 dalpha_a = dalpha_m = dalpha_o = 0.;

212 dalpha_m = 0.0;

213 dbeta_a = dbeta_mo=0.;

214 devi = de_o = 0.;

216 if (f_a>0.) {

217 devcum_a = pow(f_a/K_a,n_a);

218 if (CCa > 0.) { dalpha_a = devcum_a*(norm_a - (D_a/CCa)*X_a); }

219 dbeta_a = devcum_a*(norm_a - D_b_a*beta_a);

220 }

221 if (f_m>0.){

222 devcum_m = pow(f_m/K_m,n_m);

223 if (CCm>0.) { dalpha_m = devcum_m*(norm_m - (D_m/CCm)*X_m); }

224 dbeta_mo = devcum_m*norm_m - (D_b_mo*devcum_m)*beta_mo;

225 }

227 if ((f_o>0.)&&(z<0.99)&&(z>0.)){

228 deocum = pow(f_o/K_o,n_o);

229 if (CCo>0.){ dalpha_o = deocum*(norm_o - (D_o/CCo)*X_o); }

230 de_o = deocum*norm_o;

231 dbeta_mo = deocum*norm_o - (D_b_mo*deocum)*beta_mo;

232 }

234 if ((f_t>0.)&&(z<=1.0)) {

235 dz = pow(f_t/K_t,n_tt);

236 }

238 //Strain formulation

239 devi= (devcum_m*z)*norm_m + (devcum_a*(1.0-z))*norm_a;

240 devo= devi + (dz*delta/3.)*Id + e_o*dz;

241 resolve_flux_grad(*elasticity,deel,deto,devo);

242 }

245 @CalcGradF {

247 f_vec_eel -= deto;

249 TENSOR4 dn_o_ds, dn_o_dX, dn_o_dsig;

251 int rank_of_temp =EXTERNAL_PARAM::rank_of("temperature");

252 double T=(*curr_mat_data->param_set())[rank_of_temp];

253 double Tini=(*curr_mat_data->param_set_ini())[rank_of_temp];
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255 ELASTICITY& E=*elasticity;

256 sig = E*eel; // Update stress tensor

258 double tdv_o = theta*deocum;

259 double tdz = theta*dz;

260 double tdv_a = theta*devcum_a;

261 double tdv_m = theta*devcum_m;

263 sigma_a = sig + z * mu * (beta_mo - beta_a) + Id * K * z * delta/3.;

264 sigma_m = sig - (1.-z) * mu * (beta_mo - beta_a) - Id * K * (1.-z) * delta/3.;

266 double CCa=C_a/1.5; double CCm=C_m/1.5; double CCao=C_ao/1.5; double CCo=C_o/1.5;

268 TENSOR2 X_a = CCa*alpha_a + CCao*alpha_o;

269 TENSOR2 X_m = CCm*alpha_m;

270 TENSOR2 X_o = CCao*alpha_a + CCo*alpha_o;

272 TENSOR2 sigeff_a = deviator(sigma_a) - X_a;

273 TENSOR2 sigeff_o = deviator(sigma_a) - X_o;

274 TENSOR2 sigeff_m = deviator(sigma_m) - X_m;

276 double Jeo = sqrt(2./3.*(e_o|e_o));

277 Jeo_aux = Jeo;

278 R_o = R_o0 + H_o*pow(Jeo,b_o)*pow(z,2.);

280 R_a = R0_a + Q_a*( 1.0-exp(-b_a*evcum_a) );

281 R_m = R0_m + Q_m*( 1.0-exp(-b_m*evcum_m) );

283 double eps1 = 1.e-12; // if too big problem with derivative,

284 //too small problem with badly conditioned tangent matrix

285 double eps = 1.e-10;

286 if (z < eps1){

287 R_t = R0_t - K_Z*(log(1.-eps1)) + K_ZZ*log(eps1) + K_T*pow(Jeo,n_ot) - K_P*pow(evcum_a,n_p);

288 }

289 else if (z<(1.-eps1)){

290 R_t = R0_t - K_Z*(log(1.-z)) + K_ZZ*log(z) + K_T*pow(Jeo,n_ot) - K_P*pow(evcum_a,n_p);

291 }

292 else{

293 R_t = R0_t - K_Z*(log(eps1)) + K_ZZ*log((1.-eps1)) + K_T*pow(Jeo,n_ot) - K_P*pow(evcum_a,n_p);

294 }

295 if(R_t < 0.0) R_t = 0.0;

297 double I_a = trace(sigma_a);

298 double J_a = sqrt(1.5*(sigeff_a | sigeff_a));

299 J_a_aux = J_a;

301 double J2_o = sqrt(1.5*(sigeff_o|sigeff_o));

302 J2_o_aux = J2_o;

303 double J2_o2 = pow(J2_o,2.);

304 double J2_o3 = pow(J2_o,3.);

305 double J2_o4 = pow(J2_o,4.);

306 double J2_o5 = pow(J2_o,5.);

307 double J3_o = sigeff_o.determin();

308 J3_o_aux = J3_o;

310 if (J2_o > eps){

311 Ao = 1.0+k_0*J3_o/J2_o3;

312 }

313 else{

314 Ao = 1.;
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315 }

316 double nAo_inv = 1.0/(Ao*n_asym);

317 double Aon = pow(Ao,(1.0/n_asym));

319 TENSOR2 titi = syme(sigeff_o * sigeff_o);

320 norm_J3_o = titi - (1./3.)*trace(titi)*Id;

322 double f_t=0.;

323 double f_o=0.;

324 if (J2_o > eps){

325 f_t = K_S*(alpha_t*I_a + (1.-alpha_t)*Aon*J_a) - B*(T-T0) - R_t;

326 f_o = J2_o*z*Aon - R_o;

328 norm_J2_o = (1.5/J2_o)*sigeff_o;

329 dAo_ds = (k_0/J2_o3)*(norm_J3_o - (3.*J3_o/J2_o)*norm_J2_o);

330 dAon_ds = (Aon*nAo_inv)*dAo_ds;

331 norm_o_dz = Aon*norm_J2_o + J2_o*dAon_ds;

332 norm_o = z*norm_o_dz;

333 }

334 else {

335 f_t = K_S*alpha_t*I_a - B*(T-T0) - R_t;

336 norm_J2_o = 0.;

337 dAo_ds = 0.;

338 dAon_ds = 0.;

339 norm_o_dz = 0.;

340 norm_o = 0.;

341 }

343 hilf = J2_o*z*Aon;

344 TT = T;

345 dt2 = dt;

347 double f_a = J_a - R_a;

348 double J_m = sqrt(1.5*(sigeff_m|sigeff_m));

349 double f_m = J_m - R_m;

351 if (J_a > eps){

352 norm_a = (1.5/J_a)*sigeff_a;

353 }

354 else {

355 norm_a = 0.;

356 }

358 // power n_o < 1 ==> (-x)^n_o = nan e.g. for z < 1.0

359 if ( ((( f_o > eps) && (deocum >= 0.0)) || (deocum > 0.0)) && (z < 0.99 && z > 0.)) {

360 f_vec_eocum -= (f_o > 0.0) ? dt*pow(f_o/K_o , n_o) : 0.0;

361 f_vec_e_o -= deocum*norm_o;

362 double dv_o_df = (f_o > 0.0) ? tdt*(n_o/K_o)*pow(f_o/K_o , n_o-1.) : 0.0;

363 if( CCo > 0.) {

364 m3 = norm_o - (D_o/CCo)*X_o;

365 f_vec_alpha_o -= m3*deocum;

366 }

367 f_vec_beta_mo -= deocum*(norm_o - D_b_mo*beta_mo);

369 SMATRIX dn_J2o_ds = unit32; dn_J2o_ds -= norm_J2_o^norm_J2_o; dn_J2o_ds *= 1.0/J2_o;

371 TENSOR4 mix1 = 0.5*( TENSOR4::Tikjl(Id,sigeff_o) + TENSOR4::Tiljk(Id,sigeff_o) );

372 mix1 = mix1 +0.5*( TENSOR4::Tikjl(sigeff_o,Id) + TENSOR4::Tiljk(sigeff_o,Id) );

373 SMATRIX mix11( shrink( mix1 ) );

374 TENSOR4 mix2 = ((2./3.)*sigeff_o) ^ Id;

375 TENSOR4 mix3 = ((2./3.)*Id) ^ sigeff_o;
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376 TENSOR4 dn_J3o_ds = mix11 - mix2 - mix3;

377 TENSOR4 J = TENSOR4::J(tsz());

379 double nAo2_inv = nAo_inv/Ao;

380 double nf = (1./n_asym - 1.);

381 TENSOR4 t1 = (((nAo_inv)*norm_J2_o)^dAo_ds);

382 TENSOR4 t2 = dn_J2o_ds;

383 TENSOR4 t3 = (((nf*nAo2_inv/J2_o2)*norm_J3_o)^dAo_ds);

384 TENSOR4 t4 = (nAo_inv/J2_o2)*dn_J3o_ds;

385 TENSOR4 t5 = ((( - 2.*nAo_inv/J2_o3)*norm_J3_o)^norm_J2_o );

386 TENSOR4 t6 = ((( - 3.*nf*nAo2_inv*J3_o/J2_o3)*norm_J2_o)^dAo_ds);

387 TENSOR4 t7 = ((( - 3.*nAo_inv/J2_o3)*norm_J2_o)^norm_J3_o);

388 TENSOR4 t8 = ( - 3.*nAo_inv*J3_o/J2_o3)*dn_J2o_ds;

389 TENSOR4 t9 = ((( 9.*nAo_inv*J3_o/J2_o4)*norm_J2_o)^norm_J2_o);

390 dn_o_ds = (t1 + t2 + (t3 + t4 + t5 + t6 + t7 + t8 + t9)* k_0 ) * z * Aon;

391 // the derivative with respect to the backstresses the deviator must not be made here!

392 dn_o_dX = dn_o_ds* tdv_o; // added tdv_o

393 TENSOR4 dn_o_dXeel = dn_o_dX * E;

394 dn_o_dsig = dn_o_ds*J;

395 //prn("dn_o_dsig :", dn_o_dsig);

396 //prn("dn_o_dsig_pert :", d2_pert(sig, fnorm_o));

397 dn_o_dsig *= tdv_o;

398 TENSOR4 dn_o_deel = dn_o_dsig*E;

399 TENSOR2 df_o_fs = dv_o_df*norm_o;

401 deocum_deel -= df_o_fs*E;

402 if (Jeo > 0.){

403 deocum_de_o = dv_o_df* H_o*b_o*pow(Jeo,b_o-1.)*pow(z,2.)*(2./(3.*Jeo))*e_o;

404 //deocum_de_o = d_pert(e_o, fp_o); //using this changes nothing except its slower

405 }

406 deocum_dz = dv_o_df*( (-1.)*J2_o*Aon + 2.*H_o*pow(Jeo,b_o)*z );

407 de_o_deel -= dn_o_deel;

408 de_o_deocum -= norm_o;

409 de_o_dz -= tdv_o*norm_o_dz;

411 if ( (CCao > 0.) ) {

412 deocum_dalpha_a = df_o_fs * CCao;

413 de_o_dalpha_a = dn_o_dX * CCao;

414 dbeta_mo_dalpha_a = dn_o_dX*CCao;

415 }

416 if ( (CCo > 0.) ) {

417 deocum_dalpha_o = df_o_fs * CCo;

418 dalpha_o_deel -= dn_o_dXeel;

419 dalpha_o_deocum -= m3;

420 dalpha_o_dalpha_o += dn_o_dX * CCo; dalpha_o_dalpha_o.add_to_diagonal( tdv_o*D_o);

421 if ( (C_ao > 0.0) ) {

422 dalpha_o_dalpha_a += dn_o_dX * CCao; dalpha_o_dalpha_a.add_to_diagonal( D_o*C_ao*tdv_o/C_o);

423 }

424 dalpha_o_dz -= tdv_o * norm_o_dz;

425 de_o_dalpha_o = dn_o_dX * CCo;

426 dbeta_mo_deel -= dn_o_deel;

427 dbeta_mo_dalpha_o = dn_o_dX*CCo;

428 }

429 deocum_dbeta_a += df_o_fs* (z*mu);

430 deocum_dbeta_mo -= df_o_fs* (z*mu);

431 de_o_dbeta_a += dn_o_dsig* (z*mu);

432 de_o_dbeta_mo -= dn_o_dsig* (z*mu);

434 dbeta_mo_deocum -= (norm_o - D_b_mo*beta_mo);

435 dbeta_mo_dbeta_mo.add_to_diagonal( D_b_mo*tdv_o );

436 dbeta_mo_dz -= tdv_o*norm_o_dz;
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438 dalpha_o_dbeta_a += dn_o_dsig* (z*mu);

439 dalpha_o_dbeta_mo -= dn_o_dsig* (z*mu);

440 }

442 if ( ((f_t > eps && dz >= 0.0) || (dz > 0.0) ) && (z<1.0) ) {

444 f_vec_z -= (f_t > 0.0) ? dt*pow(f_t/K_t , n_tt) : 0.0;

445 f_vec_eel += dz*((delta/3.)*Id + e_o);

446 double dv_t_df = (f_t >0.0) ? tdt*(n_tt/K_t)*pow( f_t/K_t , n_tt-1.) : 0.0;

448 TENSOR2 J_a_Aon = Aon*norm_a + dAon_ds*J_a;

450 TENSOR2 z0 = dv_t_df* K_S*alpha_t*Id;

451 z1 = dv_t_df* K_S*(1.-alpha_t);

452 z3 = z1* J_a_Aon;

454 deel_dz += (delta/3.)*Id + e_o;

455 deel_de_o = tdz*(TENSOR4::I(tsz()));

456 dz_deel -= (z0 + z3)*E ;

458 if(Jeo > 0.){

459 dz_de_o = dv_t_df* K_T*n_ot*pow(Jeo,n_ot -1.)*(2./(3.*Jeo))*e_o;

460 }

461 if (z < eps1){

462 dz_dz += dv_t_df * ( K_Z/(1.0-eps1) + K_ZZ/eps1 );

463 }

464 else if (z < (1.0-eps1)){

465 dz_dz += dv_t_df * ( K_Z/(1.0-z) + K_ZZ/z );

466 }

467 else{

468 dz_dz += dv_t_df * ( K_Z/(eps1) + K_ZZ/(1.0-eps1) );

469 }

471 if (z < (1.0-eps1)){

472 dz_dz += (R_t > 0.0) ? dv_t_df * ( K_Z/(1.0-z) - K_ZZ/z ) : 0.0;

473 }

474 else{

475 dz_dz += dv_t_df * ( K_Z/(eps1) - K_ZZ/(1.0-eps1) );

476 }

477 dz_devcum_a = (-1.0) * dv_t_df * K_P*n_p*pow(evcum_a , n_p-1.); // added at this level

479 if ( (CCa > 0.0) ) {

480 dz_dalpha_a = z1 *( norm_a*(CCa*Aon) + (J_a*CCao)*dAon_ds );

481 //prn("dz_dalpha_mine :", dz_dalpha_a );

482 //dz_dalpha_a = d_pert( alpha_a, fz_alpha_a_pert);

483 //prn("dz_dalpha_a_pert :", dz_dalpha_a );

484 }

485 if ( (CCao > 0.0) ) {

486 dz_dalpha_o = z1 *( norm_a*(CCao*Aon) + (J_a*CCo)*dAon_ds );

487 }

489 dz_dbeta_a -= (z0 + z3)*mu*z; //added at this level

490 dz_dbeta_mo += (z0 + z3)*mu*z;

491 }

494 if ( (f_a > eps && devcum_a >= 0.0) || (devcum_a > 0.0) ) {

495 f_vec_eel += ((1.-z)*devcum_a)*norm_a;

496 f_vec_evcum_a -= (f_a > 0.0) ? dt*pow(f_a/K_a,n_a) : 0.0;

497 double dv_a_df = (f_a > 0.0) ? tdt*(n_a/K_a)*pow( f_a/K_a ,n_a-1.) : 0.0;
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498 if( C_a > 0.) {

499 m1 = norm_a - (D_a/CCa)*X_a;

500 f_vec_alpha_a -= m1*devcum_a;

501 }

502 f_vec_beta_a -= devcum_a*(norm_a - D_b_a*beta_a);

504 SMATRIX dn_a_ds = unit32; dn_a_ds -= norm_a^norm_a; dn_a_ds *= tdv_a/J_a; // contains p_dot !

505 SMATRIX dn_a_deel = dn_a_ds*E;

506 TENSOR2 df_a_fs = dv_a_df*norm_a;

508 deel_deel += (1.-z)*dn_a_deel;

509 deel_dz -= tdv_a*norm_a;

511 deel_devcum_a = (1.-z)*norm_a;

512 devcum_a_deel -= df_a_fs*E;

513 devcum_a_devcum_a += dv_a_df* b_a*Q_a*exp( - b_a*evcum_a);

515 //added at this level

516 if ( (CCa > 0.0) ) {

517 deel_dalpha_a -= ((1.-z)*CCa)*dn_a_ds;

518 devcum_a_dalpha_a = df_a_fs*CCa; //inner derivative of -X is -CCa

519 dalpha_a_devcum_a -= m1;

520 dalpha_a_dalpha_a += dn_a_ds*CCa; dalpha_a_dalpha_a.add_to_diagonal(tdv_a*D_a);

521 if ( (CCao > 0.0) ) {

522 dalpha_a_dalpha_o = dn_a_ds*CCao; dalpha_a_dalpha_o.add_to_diagonal( tdv_a*D_a*C_ao/C_a);

523 }

524 dalpha_a_deel -= dn_a_deel;

526 dbeta_a_dalpha_a = dn_a_ds*CCa;

527 }

528 if ( (CCao > 0.0) ) {

529 deel_dalpha_o -= ((1.-z)*CCao)*dn_a_ds;

530 devcum_a_dalpha_o = df_a_fs*CCao;

531 dbeta_a_dalpha_o = dn_a_ds*CCao;

532 }

533 deel_dbeta_a -= ((1.-z)*z*mu)* dn_a_ds; //added at this level

534 deel_dbeta_mo += ((1.-z)*z*mu)*dn_a_ds;

535 devcum_a_dbeta_a += df_a_fs* (z*mu);

536 devcum_a_dbeta_mo -= df_a_fs* (z*mu);

538 dbeta_a_deel -= dn_a_deel;

539 dbeta_a_devcum_a -= (norm_a - D_b_a*beta_a);

540 dbeta_a_dbeta_a.add_to_diagonal( D_b_a*tdv_a );

542 dalpha_a_dbeta_a += dn_a_ds* z*mu;

543 dalpha_a_dbeta_mo -= dn_a_ds* z*mu;

544 }

546 if ( (f_m > eps && devcum_m >= 0.0) || (devcum_m > 0.0) ) {

548 norm_m = (1.5/J_m)*sigeff_m;

549 f_vec_eel += (z*devcum_m)*norm_m;

550 f_vec_evcum_m -= (f_m > 0.0) ? dt*pow(f_m/K_m,n_m) : 0.0;

551 double dv_m_df = (f_m > 0.0) ? tdt*(n_m/K_m)*pow(f_m / K_m,(n_m-1.)) : 0.0;

552 if( CCm > 0.) {

553 m2 = norm_m - (D_m/CCm)*X_m;

554 f_vec_alpha_m -= m2*devcum_m;

555 }

556 f_vec_beta_mo -= devcum_m*(norm_m - D_b_mo*beta_mo);

558 SMATRIX dn_m_ds = unit32; dn_m_ds -= norm_m^norm_m; dn_m_ds *= tdv_m/J_m;
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559 SMATRIX dn_m_deel = dn_m_ds*E;

560 TENSOR2 df_m_fs = dv_m_df*norm_m;

562 deel_deel += z*dn_m_deel;

563 deel_devcum_m = z*norm_m;

564 deel_dz += tdv_m*norm_m;

565 devcum_m_deel -= df_m_fs*E;

566 devcum_m_devcum_m += dv_m_df* b_m*Q_m*exp(- b_m*evcum_m);

567 if ( (CCm > 0.) ) {

568 deel_dalpha_m -= (z*CCm)*dn_m_ds;

569 devcum_m_dalpha_m = df_m_fs*CCm;

570 dalpha_m_devcum_m -= m2;

571 dalpha_m_dalpha_m += dn_m_ds*CCm; dalpha_m_dalpha_m.add_to_diagonal(tdv_m*D_m);

572 dalpha_m_deel -= dn_m_deel;

573 dbeta_mo_dalpha_m += dn_m_ds*CCm;

574 }

575 deel_dbeta_a -= dn_m_ds*(z*(1.-z)*mu);

576 deel_dbeta_mo += dn_m_ds*(z*(1.-z)*mu);

577 devcum_m_dbeta_a -= df_m_fs* ((1.-z)*mu);

578 devcum_m_dbeta_mo += df_m_fs* ((1.-z)*mu);

579 dbeta_mo_deel -= dn_m_deel;

580 dbeta_mo_devcum_m -= (norm_m - D_b_mo*beta_mo);

581 dbeta_mo_dbeta_mo.add_to_diagonal( D_b_mo*tdv_m );

583 dalpha_m_dbeta_a -= dn_m_ds* (1.-z)*mu;

584 dalpha_m_dbeta_mo += dn_m_ds* (1.-z)*mu;

585 }

588 // For printing individual residual derivatives:

589 // STRING str;

590 // str = "\n---> Iteration: ";

591 // str += itoa(++iter);

592 // str += " Integration at time:"+dtoa(Time)+" dt:"+dtoa(Dtime)+" eto: ";

593 // for(int i=0;i<!eto;i++) str += dtoa(eto[i]) + " ";

594 // str += " deto: ";

595 // for(int i=0;i<!deto;i++) str += dtoa(deto[i]) + " ";

596 // prn(str);

597 // str = "var : ";

598 // for(int i=0;i<!chi_vec;i++) str += dtoa(chi_vec[i]) + " ";

599 // prn(str);

600 // str = "dvar : ";

601 // for(int i=0;i<!chi_vec;i++) str += dtoa(d_chi[i]) + " ";

602 // prn(str);

603 // str = "f_vec : ";

604 // for(int i=0;i<!f_vec;i++) str += dtoa(f_vec[i]) + " ";

605 // prn(str);

606 // prn("f_vec_evcum_a : ", f_vec_evcum_a);

607 // prn("f_vec_evcum_m : ", f_vec_evcum_m);

608 // prn("f_grad",f_grad);

611 //OTHER PARTS

612 //prn("dv_t_df : ", tdt*(n_tt/K_t)*pow( f_t/K_t , n_tt-1.));

613 //prn("K_Z/(1.-z) - K_ZZ/z ):", ( K_Z/(1.-z) - K_ZZ/z ));

614 // prn("sig = ",sig);

615 // prn("sigeff_o = ",sigeff_o);

616 // prn("sigeff_m = ",sigeff_m);

617 // prn("X_m = ",X_m);

618 // prn("f_t = ",f_t);

619 // prn("f_o = ",f_o);
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620 // prn("f_a = ",f_a);

621 // prn("f_m = ",f_m);

622 // prn("z = ",z);

623 // prn("R_t = ", R_t);

624 // prn("eocum :", eocum);

626 // RESIDUAL DERIVATIVES

628 //prn("deel_dalpha_m :", deel_dalpha_m );

629 //prn("devcum_m_dalpha_m :", devcum_m_dalpha_m);

630 //prn("dalpha_m_devcum_m :", dalpha_m_devcum_m);

631 //prn("dalpha_m_dalpha_m :", dalpha_m_dalpha_m);

632 //prn("dalpha_m_deel :", dalpha_m_deel );

633 //

634 //prn("deel_dalpha_a :", deel_dalpha_a );

635 //prn("devcum_a_dalpha_a :", devcum_a_dalpha_a);

636 //prn("dalpha_a_devcum_a :", dalpha_a_devcum_a);

637 //prn("dalpha_a_dalpha_a :", dalpha_a_dalpha_a);

638 //prn("dalpha_a_dalpha_o :", dalpha_a_dalpha_o);

639 //prn("dalpha_a_deel :", dalpha_a_deel );

640 //prn("deel_dalpha_o :", deel_dalpha_o );

641 //prn("devcum_a_dalpha_o :", devcum_a_dalpha_o);

642 //

643 //prn("dz_dalpha_a :" , dz_dalpha_a);

644 //prn("dz_dalpha_a_pert :", d_pert( alpha_a, fz_alpha_a_pert) );

645 //prn("dz_dalpha_o :" , dz_dalpha_o);

646 //

647 //prn("deocum_dalpha_a :", deocum_dalpha_a );

648 //prn("de_o_dalpha_a :", de_o_dalpha_a );

649 //prn("deocum_dalpha_o :", deocum_dalpha_o );

650 //prn("dalpha_o_deel :", dalpha_o_deel );

651 //prn("dalpha_o_deocum :", dalpha_o_deocum );

652 //prn("dalpha_o_dalpha_o :", dalpha_o_dalpha_o);

653 //prn("dalpha_o_dalpha_a :", dalpha_o_dalpha_a);

654 //prn("dalpha_o_dz :", dalpha_o_dz );

655 //prn("de_o_dalpha_o :", de_o_dalpha_o );

657 glob_counter++;

658 bool convergence = FALSE;

659 double conv_error;

660 convergence = ((THETA*)m_inttn())->check_convergence(f_vec,d_chi,d_chi,conv_error);

661 my_file<<glob_counter<<" "<<conv_error<<endl;

662 // Out<<"res : "<<conv_error<<endl;

664 }

667 @PreRead {

668 my_file.open("convergence.txt", ios::out);

669 glob_counter = 0;

670 }

672 // FUNCTIONS FOR NUMERICALLY CHECKING THE DERIVATIVES

673 double MARAGING_full::fz_alpha_a_pert(MARAGING_full* b, const TENSOR2& alpha_a){

674 TENSOR2 fsigeff_o = deviator(b->sigma_a) - (b->C_ao/1.5)*alpha_a; // X_o(alpha_a)

675 TENSOR2 fsigeff_a = deviator(b->sigma_a) - (b->C_a/1.5)*alpha_a; // X_a(alpha_a)

676 double fI_a = trace(b->sigma_a);

677 double fJ_a = sqrt(1.5*(fsigeff_a|fsigeff_a));

678 double fJ2_o = sqrt(1.5*(fsigeff_o|fsigeff_o));

679 double fJ2_o3 = pow(fJ2_o,3.);

680 double fJ3_o = fsigeff_o.determin();
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681 double fAo = 1.0+b->k_0*fJ3_o/fJ2_o3;

682 double fnAo_inv = 1.0/(fAo*b->n_asym);

683 double fAon = pow(fAo,(1.0/b->n_asym));

684 double f_t = b->K_S*(b->alpha_t*fI_a + (1.-b->alpha_t)*fAon*fJ_a) - b->B*(b->TT-b->T0) - b->R_t;

685 double fz = (-1.0) * b->dt2 * pow( f_t/b->K_t , b->n_tt);

686 return fz;

687 }

690 double MARAGING_full::fz(MARAGING_full* b, const TENSOR2& sig){

691 TENSOR2 fsigeff_o = deviator(sig) - (b->C_ao/1.5)*b->alpha_a;

692 TENSOR2 fsigeff_a = deviator(sig) - (b->C_a/1.5)*b->alpha_a; // add here the other backstress parts if neede

693 TENSOR2 fsigma_a = sig;

694 double fI_a = trace(fsigma_a);

695 double fJ2_o = sqrt(1.5*(fsigeff_o|fsigeff_o));

696 double fJ_a = sqrt(1.5*(fsigeff_a|fsigeff_a));

697 double fJ2_o3 = pow(fJ2_o,3.);

698 double fJ3_o = fsigeff_o.determin();

699 double fAo = 1.0+b->k_0*fJ3_o/fJ2_o3;

700 double fAon = pow(fAo,(1.0/b->n_asym));

701 double f_t = b->K_S*(b->alpha_t*fI_a + (1.-b->alpha_t)*fAon*fJ_a) - b->B*(b->TT-b->T0) - b->R_t;

702 double fz = (-1.0) *pow( f_t/b->K_t , b->n_tt);

703 return fz;

704 }

706 double MARAGING_full::fz_eo_pert(MARAGING_full* b, const TENSOR2& e_o){

707 double Jeo = sqrt(2./3.*(e_o|e_o));

708 double R_t = b->R0_t - b->K_Z*(log(1.-b->z)) + b->K_ZZ*log(b->z) + b->K_T*pow(Jeo,b->n_ot);

709 double fz_pert = (-1.0)*b->dt2 *pow( (b->f_t1 - R_t) / b->K_t , b->n_tt);

710 return fz_pert;

711 }

713 double MARAGING_full::fp_o(MARAGING_full* b, const TENSOR2& e_o){

714 double fJeo = sqrt(2./3.*(e_o|e_o));

715 double fR_o = b->H_o*pow(fJeo,b->b_o)*pow(b->z,2.);

716 double fp_o = (-1.0) * pow(( (b->hilf - fR_o)/b->K_o ),b->n_o);

717 return fp_o;

718 }

720 double MARAGING_full::ff_o(MARAGING_full* b, const TENSOR2& sig){

721 TENSOR2 fsigeff_o = deviator(sig);

722 double fJ2_o = sqrt(1.5*(fsigeff_o|fsigeff_o));

723 double fJ2_o3 = pow(fJ2_o,3.);

724 double fJ3_o = fsigeff_o.determin();

725 double fAo = 1.0+b->k_0*fJ3_o/fJ2_o3;

726 double fAon = pow(fAo,(1.0/b->n_asym));

727 double f_o_pert = b->z*fAon*fJ2_o;

728 return f_o_pert;

729 }

731 TENSOR2 MARAGING_full::fnorm_o(MARAGING_full* b, const TENSOR2& sig){

732 TENSOR2 fsigeff_o = deviator(sig);

733 double fJ2_o = sqrt(1.5*(fsigeff_o|fsigeff_o));

734 double fJ2_o3 = pow(fJ2_o,3.);

735 double fJ3_o = fsigeff_o.determin();

736 double fAo = 1.0+b->k_0*fJ3_o/fJ2_o3;

737 double fnAo_inv = 1.0/(fAo*b->n_asym);

738 double fAon = pow(fAo,(1.0/b->n_asym));

739 TENSOR2 ftiti = syme(fsigeff_o * fsigeff_o);

741 TENSOR2 fnorm_J3_o = ftiti - (1./3.)*trace( ftiti )*TENSOR2::unity(b->tsz());
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742 //TENSOR2 fnorm_J3_o = ftiti - (2./9.)*pow(fJ2_o,2.)* TENSOR2::unity(b->tsz());

744 TENSOR2 fnorm_J2_o = (1.5/fJ2_o)*fsigeff_o;

745 TENSOR2 fdAo_ds = (b->k_0/fJ2_o3)*(fnorm_J3_o - (3.*fJ3_o/fJ2_o)*fnorm_J2_o);

746 TENSOR2 fdAon_ds = (fAon*fnAo_inv)*fdAo_ds;

747 TENSOR2 fnorm_o_dz = fAon*fnorm_J2_o + fJ2_o*fdAon_ds;

748 TENSOR2 norm_o_pert = b->z*fnorm_o_dz;

749 return norm_o_pert;

750 }

752 TENSOR2 MARAGING_full::fnorm_o_part1(MARAGING_full* b, const TENSOR2& sig){

753 TENSOR2 fsigeff_o = deviator(sig);

754 double fJ2_o = sqrt(1.5*(fsigeff_o|fsigeff_o));

755 double fJ2_o3 = pow(fJ2_o,3.);

756 double fJ3_o = fsigeff_o.determin();

757 double fAo = 1.0+b->k_0*fJ3_o/fJ2_o3;

758 double fAon = pow(fAo,(1.0/b->n_asym));

759 TENSOR2 fnorm_J2_o = (1.5/fJ2_o)*fsigeff_o;

760 TENSOR2 norm_o_part1_pert = b->z*fAon*fnorm_J2_o;

761 return norm_o_part1_pert;

762 }

765 TENSOR2 MARAGING_full::dI3(MARAGING_full* b, const TENSOR2& t){ //here t is sig

766 TENSOR2 fsigeff_o = deviator(t);

767 TENSOR2 ftiti = syme(fsigeff_o * fsigeff_o);

768 TENSOR2 ret = ftiti - (1./3.)*trace( ftiti )*TENSOR2::unity(b->tsz());

769 return(ret);

770 }

772 //TENSOR2 function, derivative w.r.t TENSOR2

773 TENSOR4 MARAGING_full::d2_pert(const TENSOR2& e, TENSOR2 (*func)(MARAGING_full*, const TENSOR2&) ){

774 int i;

775 //prn("NSYM d2g by perturbation = ");

776 SMATRIX dle_de(!e);

778 double perturb = 1.e-6*sqrt(e|e);

780 for (int j=0;j<!e;j++) {

781 TENSOR2 le2 = e;

782 le2[j] += perturb;

783 TENSOR2 dd2= (*func)(this,le2);

785 TENSOR2 le1 = e;

786 le1[j] -= perturb;

787 TENSOR2 dd1= (*func)(this,le1);

789 for (i=0;i<!e;i++) {

790 dle_de(i,j) = (dd2[i]-dd1[i])/(2.0*perturb);

791 }

792 }

794 TENSOR4 ret = dle_de;

795 //

796 //STRING str2;

797 //str2 = "perturbated: ";

798 //for(int i=0;i<!ret;i++) str2 += dtoa(ret[i]) + " "; // [] for TENSOR4 non existent

799 //prn(str2);

800 return(ret);

801 }
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803 //scalar test2 function with TENSOR2 argument e, derivative w.r.t TENSOR2 argument by pertubation

804 TENSOR2 MARAGING_full::d_pert(const TENSOR2& e, double (*func)(MARAGING_full*, const TENSOR2&) ){

805 //prn("NSYM dg by perturbation =");

806 VECTOR dle_de(!e);

808 double perturb = 1.e-4*sqrt(e|e); // eps must be in the size of the timestep investigated!!!

810 for (int j=0;j<!e;j++) {

811 TENSOR2 le2 = e;

812 le2[j] += perturb;

813 double dd2= (*func)(this,le2);

815 TENSOR2 le1 = e;

816 le1[j] -= perturb; // comment out for one sided perturbation

817 double dd1= (*func)(this,le1);

819 dle_de[j] = (dd2-dd1)/(2.0*perturb);

820 //dle_de[j] = (dd2-dd1)/(perturb); // one sided perturbation

821 }

823 TENSOR2 ret = dle_de;

825 // STRING str2;

826 // str2 = "perturbated: ";

827 // for(int i=0;i<!ret;i++) str2 += dtoa(ret[i]) + " ";

828 // prn(str2);

829 return(ret);

830 }

832 //scalar function, derivative w.r.t scalar

833 double MARAGING_full::s_pert_s(const double& e, double (*func)(MARAGING_full*,double) ){

834 //prn("NSYM dg by perturbation");

836 double perturb = 1.e-6;

838 double le2 = e;

839 le2 += perturb;

840 double dd2= (*func)(this,le2); //test1(le2);

842 double le1 = e;

843 le1 -= perturb;

844 double dd1= (*func)(this,le1); //test1(le1);

846 double dle_de = (dd2-dd1)/(2.0*perturb);

848 return(dle_de);

849 }
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