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Abstract

In many technical applications, materials need to absorb energy or be tolerant towards

flaws that may already be generated in the manufacturing process. This behavior is

known as toughness, and the fracture toughness is a widely known measure that allows

to compare various materials to each other. Solid materials can be tough if they form a

plastic zone, but in nature one can also observe hierarchical structures of very brittle base

materials, where the overall mechanical response is much tougher than the brittle base

material. This work aims to create such structures with a high toughness. To obtain such

a structure, homogeneous 2D plates with arbitrarily shaped holes are considered. The

goal is to optimize the shape of the holes, but first the fracture process must be predicted.

During the fracture process, new cracks can initiate from surfaces and existing cracks may

propagate. Crack initiation from a surface can be predicted using Leguillon’s Coupled

Criterion or the Theory of Critical Distances of Taylor. For the crack propagation, two

parameters need to be predicted: the critical load at which a crack will propagate and the

direction of the crack propagation. According to Griffith, a load becomes critical when the

energy release rate exceeds the critical energy release rate which is a material parameter.

A common criterion for the direction of the crack propagation is the Maximum Energy

Release Rate (MERR) criterion. In this work, Configurational Forces are implemented as

an Abaqus plugin. This implementation can be used to predict both, the critical load and

the direction of the crack initiation. This allows to simulate the fracture process and the

tensile toughness of the overall structure can be computed. Furthermore, an optimization

algorithm is developed to maximize the tensile toughness. For an example problem, a

hole structure is found with a tensile toughness more than 4.5 times higher compared to

a solid material.
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1 Introduction

In many engineering applications it is not possible to eliminate material flaws because

flaws are often generated during the production, by corrosion, or inadequate handling.

These flaws can already act as critical cracks, which suddenly propagate at a critical

load. This leads to sudden catastrophic failure [1], which is unacceptable in most cases.

Consequently, it is crucial that engineering materials are tolerant to flaws. This damage

tolerance can be quantified by the fracture toughness which corresponds to the work

required to further propagate a crack [2].

A common mechanism that makes materials tougher is plastic deformation of the mater-

ial, because much work goes into plastic deformation and blunting of cracks [3]. However,

in some environments, plasticity cannot evolve either because one is below the brittle-

ductile transition like for impact [4] or the environment leads to an embrittlement like for

hydrogen tanks [5] or Polycarbonate exposed to Acetone [6].

However, toughness does not require plasticity, but can also be achieved by heterogenous

features that first stop cracks and then require more energy for the initiation of new cracks.

Such heterogenous features can be holes [7–10] or fibers [11], but it is also possible to use

lattice [12, 13] or porous structures [14–16]. A famous example for toughening a material

by adding particles is ABS [17] which consists of a brittle and stiff matrix with rubber

particles with very low stiffness that act as crack stoppers. In natural materials like

bones [18], nacre [19], or glass sponge skeletons [18], such toughening mechanisms can

also be found at multiple length levels.
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2 Objective of the thesis

The motivation for this work is to make materials tougher and more damage-tolerant. For

example, porous materials contain many holes that can stop propagating cracks such that

new crack must be initiated, which requires higher loads and leads to a high toughness [10,

11]. To understand this effect, the author investigate the effect of holes on a millimeter

scale.

The objective of this thesis is to develop methods to predict crack initiation and crack

propagation efficiently and accurately. The developed initiation and propagation methods

are used to optimize the tensile toughness UT of 2D specimens by adding inclusions such

as holes. For this purpose, some simplifications and assumptions are made:

• Either plane stress or plane strain 2D specimens are considered.

• The material is linear elastic and isotropic.

• The crack propagation and crack initiation are brittle without plasticity.

• Dynamic effects are neglected.

Figure 2.1 illustrates the objective. The first row shows three specimens under uni-

axial tensile loading. The first specimen (Fig. 2.1a) has no holes. The second specimen

(Fig. 2.1b) contains three holes of various shapes. The topology of the third specimen

(Fig. 2.1c) maximizes the tensile toughness UT and is unknown. The tensile toughness

UT is computed by integrating the F (u) curve. All specimens contain an initial crack of

length a0. At a certain critical force, the initial crack starts to propagate. This event is

marked as 1 and can also be seen in the force-displacement F (u) curves as the first drop

in the force.

For the first specimen without any holes, the crack immediately grows through the

whole specimen when the critical load is reached. The second specimen demonstrates

that the tensile toughness UT can be increased by adding holes that stop cracks. New

cracks (2, 3, 4) initiate at higher applied displacements u, which leads to a higher UT.

Third specimen illustrates an optimized hole topology, such that UT is maximized.

For the maximization of UT, one can consider the following mechanism:

• Adding holes reduces the stiffness and subsequently the critical applied forces and

the tensile toughness UT.



4 2 Objective of the thesis

(a) (b)

?

(c)

Figure 2.1: (a) Specimen with an initial crack (black) under a tensile load. The crack propagates
(blue) when a critical load is reached. The tensile toughness UT is computed from
the F (u) curve. (b) Specimen with additional holes that stop cracks. New cracks (2,
3, 4) initiate at the holes. (c) The objective of this work is to find a specimen with
the highest tensile toughness UT by adding holes.

• However, adding a hole at the right position may stop a crack. Then, a new crack

needs to initiate at a higher critical load. This may increase the tensile toughness

UT.

• A hole causes a notch effect: The stress increases towards the hole surface, which

reduces the critical load for crack initiation. Consequently, holes should have a

smooth surface with a low curvature radius to reduce the notch effect.

• Additional stress relief holes placed in a line in loading direction may reduce the

notch effect, because they shield each other.

• Stress relief holes placed above a crack tip can even stop crack growth, because they

reduce the critical load.

With these considerations, it is obvious that placing a long but thin vertical slit (dotted

line in Fig. 2.1c) directly in front of the initial crack increase UT significantly, because

the slit stops the crack. The slit is thin and negligibly influences the stiffness in loading

direction. Since the slit has a low notch effect, a high applied load is required for the
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initiation of a new crack. However, if the loading situation and initial crack would rotate

by 90°, the slit would drastically decrease UT. Porous materials are tougher compared

to the base material for all loading directions. To understand this, the author aims to

increase UT independently of the direction of the initial crack and loading direction.





7

3 Prediction of fracture

Before optimizing the tensile toughness UT, the fracture process of a specimen must be

computed. Fracture occurs when a crack breaks the specimen such that no load can

be transferred anymore. To predict this cracking process, a proper representation of a

specimen that contains a crack is required.

A specimen is a continuum body with a continuous displacement field. However, a

crack is a discontinuity inside the specimen with a discontinuous displacement field along

the crack path. At the crack tip, the discontinuous displacement field along the crack

suddenly becomes continuous. This transition from discontinuous to continuous causes

high stresses. The stress and strain field for elastic materials is even singular at the crack

tip, which means the stresses become infinite [2]. To build a model including a crack, it

is crucial to implement the discontinuous displacement field and ideally the singularity

at the crack tip. Several approaches have been presented to model cracks. They can be

mainly categorized into discrete and smeared models [20].

• A Discrete crack causes a strong discontinuity in the displacement field. A crack has

two faces and both faces must be able to separate from each other. To implement

this separation, one can distinguish two cases. In the first case, the crack path is

known in advance and in the second case, the crack path is determined during the

computation.

If the crack path is known in advance, it can be introduced as geometrical feature

along which nodes are duplicated to open the crack.

If the crack path is not known in advance, the same approach is also possible, but

the geometry needs to be updated and remeshed after every crack increment [20],

which is slow. A more efficient approach are enriched elements [21, 22]. Elements

passed by a crack are enriched with a discontinuous displacement field that allows

the separation of both crack faces. The Extended Finite Element Method (X-FEM)

developed from this idea [23]

• A smeared crack averages the discontinuity over an area and causes a weak discon-

tinuity in the displacement field. Smeared cracks are treated as damaged areas with

a low stiffness. The damaged areas have a width that influences the result signific-

antly. Several damage models have been developed to reduce this influence. The

crack band approach [24] uses an orthotropic material to only reduce the stiffness
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in the direction normal to a crack. Other approaches like gradient-enriched [25] and

phase-field [26, 27] models use a characteristic length to control the width of the

damaged areas.

In this work, discrete cracks are introduced directly in the specimen geometry in an

iterative process. In each iteration the crack propagates by an increment ∆a. The stress

singularity at the crack tip is addressed by a special crack tip mesh that is explained in

the following sections. Next, criterions are needed to predict the path along which a crack

grows. The criterion should correctly predict three states in the lifetime of a crack:

(a) crack initiation (b) crack propagation

Figure 3.1: Open questions for predicting fracture in a 2D plate: (a) At which critical load Fc

and where does a new crack initiate? (b) At which critical load Fc and in which
direction does a crack grow?

1. Crack initiation is the process of developing a new crack. The new crack initiates at

a surface with a finite length perpendicular to the surface. As depicted by Fig. 3.1a,

several positions are possible for the crack initiation (blue arrows). A fracture

criterion should predict the most critical position with the lowest critical load Fc

for the crack initiation.

Under certain loading conditions like rolling contact [28], cracks may also initiate

underneath the surface as ”subsurface cracks”. However, subsurface cracks are not

considered in this work. Furthermore, the term ”initiation” is not used consistently

in literature and is sometimes referred to the critical load for the ”initiation” of

crack propagation, when an existing crack starts to grow [29].

2. Crack propagation presumes that a crack already exists, either because a crack initi-

ated at a hole surface, or the specimen contains an initial crack. Crack propagation

denotes the process that an existing crack grows. Figure 3.1b illustrates that the

propagation direction (blue arrows) needs to be predicted as well as the critical load

Fc for the crack propagation.
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3. Crack deactivation: If an existing crack grows into a surface, it cannot grow further

and is deactivated. In addition, cracks may also be deactivated if they run into a

field of compressive stress.

In the following sections, three categories of criteria are explained. Failure criteria like

the one of Mises [30] consider the stress state at each point and compare it to a critical

stress state. Since the stress at a crack tip becomes infinite even for the smallest load,

failure criteria always predict failure at a crack tip. This does not match with experimental

results [29]. Linear Elastic Fracture Mechanics (LEFM) can predict the critical load of a

crack, but LEFM only works for existing crack and is not able to predict crack initiation

from surfaces. Finite Fracture Mechanics works on both, crack tips and smooth notches

[31].

3.1 Failure criteria

Failure criteria consider the computed local stress (or strain) tensor for each point in

a specimen. Furthermore, a failure surface is defined that depends on experimentally

obtained material parameters like the strength or the yield stress. Failure is predicted if

the local stress tensor reaches the failure surface.

Figure 3.2 illustrates this procedure. The left side shows the computed stress output

of a specimen with a heart-shaped hole subjected to a load F . The local (in-plane) stress

tensor is computed at two points (A) and (B).

max. principal stress

Mises stress

Figure 3.2: The stress tensors at two points (A) and (B) are used to check if failure occurs. For
this, failure surfaces are plotted on the right in the principal stress coordinate system
for the Mises criterion and the (in-plane) max. principal stress criterion. Point (B)
is inside both failure surfaces and will not fail. At point (A) failure occurs according
to both criteria. Note, that σI is always greater or equal to σII.

The right side of Fig. 3.2 shows the failure surface for the Mises [30] and max. (in-plane)

principal stress criterion in the principal component coordinate system (σI, σII). To show
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whether failure occurs, the computed local stress tensors are also plotted in the principal

component coordinate system. Point (B) is inside the failure surfaces and will not fail

contrary to point (A) which exceeds the failure surfaces.

As can be seen in Fig. 3.2, the failure surfaces of the Mises criterion and the max.

principal stress criterion have different shapes and one has to decide which failure criterion

is better suited for the problem. The Mises criterion is applicable especially for ductile

materials. In this case, failure is defined when the yield stress is reached and plastic

deformation occurs [32]. This work, however, deals with cracking processes that occur in

brittle materials, where the max. principal stress criterion is better suited.

Still, the max. principal stress criterion has the problem, that it cannot be applied in

the presence of a crack, due to the stress singularity at the crack tip. Nevertheless, in some

cases the max. principal stress criterion can be used to efficiently find the most critical

position for crack initiation along a surface. For example, Li and Leguillon [33] apply a

watershed flooding algorithm to the max. principal stress, σI, around a hole and thereby

find critical positions. This is an efficient approach, because only one FEM simulation

is required to compute σI. In the next step, Li and Leguillon apply a more complicated

criterion to these critical positions. PaperD [34], presented in this thesis, also uses σI to

find the critical positions on hole surfaces.

3.2 Linear Elastic Fracture Mechanics

As mentioned in the previous section, failure criteria are not applicable in the presence of

cracks, because of the stress singularity at the crack tip. The fracture mechanics concept,

however, is designed exactly for this case. According to some authors [2], already Leonardo

Da Vinci investigated some aspects of fracture in 1500, when he tested the strength of

wires of various length and found that the strength decreases as the length of the wire

increases [35]. Since the probability of flaws (micro-cracks) in the wire increases with the

volume, it can be concluded there is a connection between material flaws and the strength

of the wire. The following sections give an overview on how to use Linear Elastic Fracture

Mechanics (LEFM) for predicting the direction of crack propagation and the critical load.

3.2.1 Griffith’s G-concept

Today’s view on fracture mechanics dates back to Griffith [36]. In 1921, he treated cracks

as very flat elliptical holes, for which Inglis [37] provided analytical equations for the

stress field. Thereby, Griffith was able to formulate an energy-based criterion according

to which a crack propagates if the change in strain energy, Π, is higher than the work,

Ws, required to create two crack faces. This occurs if a critical displacement uc is applied

to a specimen. In relation to the newly created crack area dA the criterion can be written

as:
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−
(
dΠ

dA

)
uc

=
dWs

dA
. (3.1)

Like for the failure criteria, Griffith’s criterion can be split into a left and a right side.

The left side is called (differential) energy release rate [38]

G := −
(
dΠ

dA

)
uc

(3.2)

which is computed e.g. using FEM computations and which depends on the applied load,

the crack length, and the specimen geometry. The right side is denoted as the critical

energy release rate

Gc :=
dWs

dA
(3.3)

which is a material parameter determined experimentally.

3.2.2 Irwin’s K-concept

An evaluation of Griffith’s G-concept requires the energy release rate which cannot be

computed analytically for most cases. Irwin’s K-concept instead quantifies the stress

singularity at the crack tip, as illustrated by Fig. 3.3. Westergaard [39], Irwin [40], and

Williams [41] found that for brittle elastic materials the stress in front of a crack tip

σ(r) = k · fshape ·
1√
r
+ higher order terms (3.4)

is related to a load factor k, a geometrical factor fshape, and the distance to the crack

tip r. Near the crack tip, higher order terms are negligible compared to the singularity

1/
√
r that approaches infinity for r → 0. It is a convention to define the load factor as

so-called stress intensity factor K = k/
√
2π [2]. The fracture toughness Kc is then the

critical stress intensity factor at which a crack propagates.

Figure 3.3: The stress σ in front of a crack tip is proportional to 1/
√
r and approaches ∞ when

r → 0.

The K-concept allows to split the load at the crack tip into three modes, depicted by
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Fig. 3.4. For each mode, a stress intensity factor KI, KII, KIII can be defined. However,

in this work only 2D plates are considered, hence only mode I and mode II loadings are

possible.

(a) Mode I (opening) (b) Mode II (in-plane shear) (c) Mode III (out-of-plane shear)

Figure 3.4: Three loading modes at a crack tip.

According to the K-concept, a crack under a pure mode I loading propagates if

KI = KIc (3.5)

is fulfilled. The stress intensity factor KI is computed e.g. using FEM computations,

whereas the fracture toughness KIc is determined experimentally. Analogously, for pure

mode II loadings the mode II stress intensity factor KII is compared to the mode II

fracture toughness KIIc [2]. However, this simple criterion does not work for mixed mode

loadings and more complicated criteria are required in this case [42].

Irwin [40] showed, that the K-concept is equivalent to the G-concept for a plate under

mode I loading. Assuming a linear elastic material, the fracture toughness KIc can be

converted to the critical energy release rate

Gc =

K2
Ic · 1

E
(plane stress)

K2
Ic · 1−ν2

E
(plane strain)

(3.6)

with the Young’s modulus E and the Poisson’s ratio ν. The formulation depends on

whether there is a plane stress or plane strain state.

3.2.3 Mixed mode I-II

Under a pure mode I loading, a crack propagates in a straight line. However, if there

is a mixed mode I and mode II loading, the crack propagation direction shows a kink,

as depicted in Figure 3.5a. The propagation direction α is unknown and needs to be

predicted by a mixed mode criterion. [43]

Erdogan and Sih [44] proposed the stress-based Maximum Tangential Stress (MTS)
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(a) Crack tip with possible propagation directions
α

(b) Energy release rate G(α) over propagation dir-
ection α

Figure 3.5: The crack grows in the direction of the maximum energy release rate. The corres-
ponding crack path is plotted as large bold arrow.

criterion. According to MTS, a crack propagates in the direction perpendicular to the

largest tension around the crack tip. The direction can be computed for a plane strain

plate from the stress intensity factors KI and KII:

cos
(α
2

)
· [KI · sin (α) +KII · (3 · cos (α)− 1)] = 0 . (3.7)

A few years later, Sih [45] developed another energy-based criterion, called Minimum

Strain Energy Density (MSED). This criterion considers the strain energy density

ψ :=
dΠ

dV
(3.8)

in front of the crack tip as the strain energy Π per volume V . According to MSED, a

crack propagates in the direction of the minimum ψ. Boulenouar [46] used a ring of FEM

elements around a crack tip and computes ψ for each element. He showed that ψ has

several minima in the ring of elements and the global minimum is not necessarily the

physically meaningful propagation direction.

In this thesis, the focus lies on another energy-based criterion, called Maximum Energy

Release Rate (MERR) [47]. It captures the idea of Griffith, according to which cracks

grow in the direction of the maximum change in strain energy. However, for a long time it

was too complicated to compute the direction of the maximum energy release rate. Only

the development of the J-Integral in 1968 and 1973 by Budiansky and Rice [48, 49] allowed

an efficient computation of the energy release rate G(α) for a crack propagating in the

direction α. Using this, the max. energy release rate and the corresponding propagation

direction can be computed according to MERR, as illustrated by Fig. 3.5b.
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3.2.4 Computation of the energy release rate

The MERR criterion for crack propagation needs the energy release rate, G. In this

section, three approaches for the computation of G are presented. The Full FEM approach

is the most versatile, but computationally most expensive. An efficient approximation of

G is the J-Integral [48, 49]. Configurational forces are similar to the J-Integral, but are

easier to compute in FEM simulations.

3.2.4.1 Full FEM approach for crack propagation

The Full FEM approach uses two separate Finite Element Method (FEM) simulations

with the initial and an extended crack. It approximates the energy release rate G =

−(dΠ/dA)uc by a numerical differentiation of the strain energy Π with respect to the

crack length a:

G ≈ −
(
∆Π

∆A

)
uc

= −
(
Π(a+∆a)− Π(a)

b ·∆a

)
uc

(3.9)

Since this thesis considers 2D plates, the crack area A can be decomposed in the plate

thickness b and the crack length a. The crack increment ∆a should be a small value, be-

cause the numerical differentiation converges to the exact solution (∆Π/∆A) → (dΠ/dA)

for small increments ∆a→ 0.

Figure 3.6 illustrates the implementation of the Full FEM approach. The specimen,

depicted in Fig. 3.6a, contains a crack of length a and is either subjected to a critical

force Fc or to a critical displacement uc. The specimen is meshed, such that there is an

element edge in the direction of a trial crack propagation q. This allows to open the

element edge in the next step without remeshing the specimen (Fig. 3.6b). Remeshing

would lead to additional numerical errors. If q is not known in advance, the procedure

has to be repeated for several trial directions. To open the element edge, the turquoise

nodes are duplicated and the crack propagates by ∆a. It is important that the specimen

is not remeshed when the nodes are duplicated, because this would add small numerical

errors to Π(a) and Π(a+∆a), which would significantly influence Π(a+∆a)−Π(a) and

consequently G.

If a crack propagates, one has to decide if a displacement-controlled or a force-controlled

approach should be used. The displacement-controlled approach holds the critical dis-

placement uc constant. The corresponding F (u) curves are plotted in Fig. 3.6c and

the strain energies Π1 and Π2 can be computed. The change in the strain energies

(∆Π)uc = Π2 − Π1 with a fixed uc can be inserted into Equation 3.9, which yields G.

For the force-controlled approach, the computation of G is more complicated. The

critical force Fc is held constant, as depicted by Fig. 3.6d. Since a propagating crack

reduces the stiffness, the applied displacement u becomes larger for a fixed Fc. This

requires additional external work ∆Πext, which must be considered. Figure 3.6e shows

this external work ∆Πext that must be subtracted to obtain (∆Π)uc = (Π2−Π1)−∆Πext.
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(a) State 1: Crack grows in direction q (b) State 2: Crack grew by ∆a

-co
n
tro

lled

(c) Displacement-controlled F (u)

-controlled

(d) Force-controlled F (u) (e) Released energy ∆Π

Figure 3.6: Energy released by a growing crack: A crack growing in direction q by ∆a changes
the strain energy from (a) Π1 to (b) Π2. The strain energy Π2 depends on whether
(c) the critical displacement uc or (d) the critical force Fc is held constant. (c) The
energy release ∆Π for the displacement-controlled approach ∆Π = Π2 − Π1 and for
the force-controlled approach is ∆Π = Π2 − Π1 −∆Πext, where the latter considers
the additional external work ∆Πext.

Next, G can be computed by inserting (∆Π)uc into Equation 3.9.

A drawback of the full FEM approach is that two FEM simulations are required to

compute the energy release rate G for one propagation direction q. As mentioned in the

previous section, a crack propagates in the direction of the maximum energy release rate.

To find this direction, G has to be computed for several trial directions and every time

a FEM simulation is required. Consequently, the full FEM approach needs many FEM

simulations and is too inefficient for most applications.

3.2.4.2 J-Integral

Sine the full FEM approach can be computationally expensive for obtaining the crack

propagation direction, an alternative computation of G is required. The path-independent

J-Integral, presented by Rice [48] in 1968, efficiently approximates G for a crack that

propagates in a straight line. This approach was extended by Budiansky and Rice [49] in

1973 to the vectorial J-Integral
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J =

(
Jx

Jy

)
=

∮
Γ

(
ψ · nx − t · du/dx
ψ · ny − t · du/dy

)
(3.10)

which considers a closed path Γ that includes both crack faces Γ+ and Γ−, as depicted in

Fig. 3.7. This vectorial J-Integral approximates also the propagation direction. The first

term contains the strain energy density ψ and the normal vector n of Γ. It corresponds

to the change of the strain energy inside the region Ω that is enclosed by Γ. The second

term corresponds to the external work performed on Ω due to a load redistribution caused

by a propagating crack. This term evaluates the gradient of the displacement vector u

and the traction t at the path Γ.

Figure 3.7: Domains of a crack: The region Ω surrounds the crack tip and is mainly controlled by
the stress singularity at the crack tip. The vector q points in the crack propagation
direction. The outer contour of Ω is Γ. Note, that this also includes the two crack
faces Γ+ and Γ−. The normal vector of Γ is n⃗.

Using the vectorial J-Integral, the energy release rate G ≈ b ·J ·q′ can be approximated

by a projection on an arbitrary crack propagation direction q′ and by multiplying with

the thickness of the plate b [50]. The direction q′ is a unit vector and can be varied to

maximize G according to the MERR criterion. The projection J · q′ and subsequently

G becomes a maximum if q′ is parallel to J. Consequently, the propagation direction q

according to MERR is q = J/
√
J2
x + J2

y .

The J-Integral is path-independent for a crack in an infinite plate. This means that

it does not matter if the path Γ surrounds just a small region around the crack tip or a

larger region around the whole crack. This is valid for an infinite plate containing one

crack. However, the region needs to be small enough to enclose only one crack at a time,

otherwise it would no longer be possible to compute G for each crack independently. To

prevent enclosing more cracks, it is common to compute J just around the a small region

at the crack tip and pay special attention to the FEM mesh in this region.

Referring to Fig. 3.8, the J-Integral can be evaluated for any of the red contours.

However, for the inner-most contour, the J-Integral may be underestimated, because the

FEM computation with the crack tip mesh is still just an approximation. A common
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singular node

shi�ed mid-nodes

contours

Figure 3.8: The crack tip mesh accounts for the 1/
√
r singularity in front of a crack tip. Quad-

ratic rectangular elements are placed in circles around the crack tip. Each circle is
corresponds to a contour. In the inner ring, the mid-nodes are shifted 25% towards
the crack tip and the inner nodes of the rectangular elements are collapsed to a single
position such that a singular stress filed can be accounted for and the quadrilateral
elements look like triangles, respectively.

approach to decide which contour to use, is to evaluate all contours and take the first

contour where the corresponding J-Integral stays approximately constant.

Although, the J-Integral efficiently approximates G, it has a few drawbacks that are

described in the following.

Similarity assumption The J-Integral assumes a similarity between the current crack

and the crack after a infinitesimal propagation of da. Figure 3.9 illustrates this similarity

assumption. The energy release rate G is related to the gradient of the strain energy with

respect to a crack propagation of da. However, the J-Integral computes the gradient with

respect to dX instead to da. As depicted by the blue areas in Fig. 3.9, a shift of −dX
corresponds to a moving viewpoint. The orange areas show an actual crack propagation

of da with a fixed viewpoint.

Now, assume you are standing at the viewpoint and look at a region near the crack

tip. If the shift of −dX leads to the same result as a propagation of da, the similarity

is fulfilled and the J-Integral is a valid approximation for G. However, if a feature like

a hole, a boundary condition, etc. exists in the vicinity of the crack tip, the feature is

shifted together with −dX, but stays fixed in the case of a crack propagation of da. In

this case, the J-Integral is not valid.

As mentioned previously, the J-Integral can be evaluated for various contours. If one

uses a smaller contour, that encloses a smaller region, the probability of additional features

in the observed region decreases. Consequently, the similarity assumption is more likely

to be fulfilled for smaller contours.
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What happens:

What you see:

Similarity fulfilled: Similarity violated:

Figure 3.9: Similarity between changing the viewpoint by −dX and growing a crack by da. The
viewpoint, depicted by an eye, observes a region near the crack tip. The top row shows
what really happens. In the blue columns, the viewpoint moves by dX. In the orange
columns, the viewpoint is held constant, but the crack grows by da. The bottom row
shows what you see from the viewpoint. On the left side, moving the viewpoint is
equivalent to crack growth. On the right side, there is a void included, which moves
in common with the viewpoint, but not with a growing crack. Consequently, the
similarity is not fulfilled.

Crack kinking The similarity assumption is also not fulfilled if a crack has a kink, as

depicted by Fig. 3.10. The blue contour in Fig. 3.10a is used for the evaluation of the

J-Integral. The red arrow points in the direction of the crack propagation direction q. If

the similarity assumption would be fulfilled, the cracks shown in Fig. 3.10b and Fig. 3.10c

would look the same. Obviously, this is not the case.

(a) Original crack (b) Crack tip shifted to the new position (c) Real crack propagation

Figure 3.10: If the crack propagation direction has a kink, shifting the crack tip to the new
position is inaccurate. (a) The crack propagation direction (red arrow) deviates
from previous direction. (b) The crack tip is shifted to the new position. This does
not equal (c) the real crack propagation.

Frankl et al. [51] suggested a correction method to account for crack kinking, by which

the propagation direction q′ is iteratively optimized in several FEM simulations. In each

FEM simulation, a trial crack increment in a direction q′
0 is introduced. Based on the trial
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crack increment, the vectorial J-Integral is evaluated and q′
i is updated. The optimization

stops, when q′ is aligned with the actual propagation direction within a tolerance angle

as depicted by Fig. 3.10c.

However, this approach requires additional FEM simulations, and subsequently more

computation time. Crack kinking occurs in mode II or mixed mode I/II loadings. Judt

and Ricoeur [50] showed, that the J-Integral is valid for a small mode II contribution with

KII/KI < 0.1. For higher mode II contributions, a correction scheme is required.

J-Integral based on FEM results The evaluation of the J-Integral directly from FEM

results is cumbersome. The FEM approach provides a continuous displacement field u,

but the gradient of u is discontinuous. Since the traction t is related to the gradient of

u, it is discontinuous at element edges. However, the J-Integral uses Green’s theorem

that t is continuous. Consequently, alternative approaches are required to compute the

J-Integral from FEM results. The software Abaqus [52] uses the virtual crack extension

method [53]. Another alternative are configurational forces [54].

3.2.4.3 Configurational forces

As mentioned in the previous section, the evaluation of the J-Integral based on FEM

results is difficult. Configurational forces, however, can be computed easier from FEM

results and are identical to the J-Integral for elastic bodies [48]. They base upon Eshelby’s

energy-momentum tensor [55]

Σ(mbf) := ψ · I− F⊺ ·P (3.11)

with the strain energy density ψ, the identity matrix I, the deformation gradient tensor

F, and the first Piola-Kirchhoff stress tensor P. Eshelby showed that the divergence of

the energy momentum tensor

dΣ

dx
=

(
∂ψ

∂x

)
expl.

(3.12)

equals the explicit gradient of the strain energy density ψ with respect to x. The explicit

gradient is basically a partial derivative for x with the deformation gradient held constant.

Equation 3.12 can be used to approximate the energy release rate per thickness:

G

b
= −

(
dΠ

da

)
uc

= −
∫
Ω

(
dψ

da

)
uc

dV ≈ q′ ·
∫
Ω

(
∂ψ

∂x

)
expl.

dV = q′ ·
∫
Ω

dΣ

dx
dV . (3.13)

The energy release rate G is related to the change in the strain energy Π with respect to

the crack area A = b ·a at a load uc. The strain energy Π can also be expressed as integral

of the strain energy density ψ = dΠ/dV , which is the derivative of the strain energy with
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respect to the volume V . Furthermore, similarity between a crack propagation of da and a

shift of the viewpoint of −dx in the direction of the crack propagation q′ can be assumed,

as explained in the previous section by Fig. 3.9. This allows to approximate G in terms

of the divergence of the energy momentum tensor Σ and the crack propagation direction

q′.

For the evaluation of G from FEM results, it is convenient to reformulate Equation 3.13

such that the element shape functions hi is derived instead of Σ. This approach is de-

scribed by Mueller and Maugin [56], who defined nodal configurational forces

g
(mbf)
nodal,i =

∫
Γ

(Σ(mbf) n) · hi dS︸ ︷︷ ︸
g
(mbf,S)
nodal, i

−
∫
Ω

Σ(mbf) :
∂hi
∂x

dV︸ ︷︷ ︸
g
(mbf,V)
nodal,i

(3.14)

that are computed for each node in a crack tip dominated region Ω with an outer

contour Γ, as shown in Fig. 3.11. The energy release rate G is then approximated by the

J-Integral

JCF = −
∑
i∈Ω

g
(mbf,V)
nodal,i , (3.15)

which points in the opposite direction of the summed up nodal configurational forces.

Note, that commonly only the volume nodal configurational forces g
(mbf,V)
nodal,i are summed

up, but not the surface nodal configurational forces g
(mbf,S)
nodal, i, because the computation of

g
(mbf,S)
nodal, i from FEM results is tedious and they are negligible for mode I loadings with only

a small mode II contribution [57]. This simplification is valid, because g
(mbf,S)
nodal, i vanishes

inside the body and only contributions from the crack faces Γ+ and Γ− remain. For mode

I loadings, the crack faces are symmetric and cancel out, but for mixed mode loadings,

the crack faces are not symmetric and there may be a contribution of the crack faces Γ+

and Γ− to g
(mbf,S)
nodal, i. Schmitz and Ricoeur [57] provide a correction scheme to account for

the influence of Γ+ and Γ− for mixed mode loadings.

As depicted by Fig. 3.11, the nodal configurational force right at the crack tip has the

largest contribution of JCF, but there are also some smaller nodal configurational forces

near the crack tip. These configurational forces are called spurious nodal configurational

forces and arise from jumps in the discontinuous stress field. Denzer et al. [58] showed,

that it is important to not only consider the nodal configurational force at the crack tip,

but to sum up all nodal configurational forces in the crack-dominated region Ω.

PaperB [59] describes an implementation of the configurational forces. This imple-

mentation is used in PaperD [34] to predict crack propagation.
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Figure 3.11: Nodal configurational forces g
(mbf,V)
nodal,i near a crack tip. The vectorial energy release

rate JCF is the negative sum of all nodal configurational forces in the crack domin-
ated dark gray region. Note, that the actual vectorial energy release rate points in
the opposite direction.

3.3 Finite Fracture Mechanics

Fracture mechanics is useful for analyzing cracks. Stress-based failure criteria can predict

fracture at holes. But neither fracture mechanics nor stress-based failure criteria are

suitable for both, cracks and holes. Finite Fracture Mechanics (FFM), however, can be

applied to cracks as well as to holes.

FFM goes back to Hashin [60] who investigated composites and observed that cracks

initiate suddenly in a ply with a finite length and ”it is not possible or of interest to follow

the history of their development”. Based on this observation, Hashin suggested FFM as

a new framework that considers crack formations of finite lengths.

(a) Infinitely wide plate with a crack of size a
under a critical tensile load σa,c

FFM

LEFM

UTS ( )

(b) Critical applied stress σa,c for crack propagation

Figure 3.12: Critical applied stress σa,c for (a) the infinitely wide plate predicted by (b) three
criteria: Ultimate tensile stress (UTS), Linear Elastic Fracture Mechanics (LEFM),
and Finite Fracture Mechanics (FFM).

Later, Taylor [61] reinvented FFM as an extension of LEFM, which cannot handle very

small cracks. Taylor investigated such small cracks in an infinite plate loaded by a uniaxial
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tensile load σa, as depicted in Fig. 3.12a and found that according to LEFM, the critical

load is higher than the material’s strength. This is because LEFM relates the critical

applied load σa ∝ KIc/
√
a to the crack length a and the fracture toughness KIc. For

small cracks a → 0, the critical applied load σa,c → ∞ becomes infinite, as depicted in

Fig. 3.12b. Such an infinite critical load is unphysical, especially because a plate without

a crack would already break according to the Ultimate Tensile Stress (UTS) criterion if

the applied stress σa,c reaches the material strength σc. Taylor showed that FFM fits

LEFM for long cracks and UTS for short cracks and thereby leads to physical results.

There are several FFM approaches and they can be divided into two groups depending

on how the size of the finite crack formation ac is handled.

• Criteria based on the Theory of Critical Distances (TCD) [62] assume that ac is a

material parameter that relates to the material’s characteristic length lch.

• Coupled Criteria (CC) [31, 63, 64] require both a stress- and an energy-based cri-

terion to be fulfilled simultaneously. In this case, ac is not a material parameter,

but a result.

3.3.1 Theory of Critical Distances

In 1999, Taylor [65] investigated the fatigue limit of specimens with cracks and notches.

He found that the fatigue limit can be predicted accurately if stress values are evaluated in

a critical distance in front of a notch or a crack tip or if the stress is averaged over a critical

distance. This critical distance is often related to the grain size in metals and ceramics [66].

Commonly, the critical distance is proportional to the material’s characteristic length [62]

lch =
1

π
·
(
KIc

σc

)2

, (3.16)

which is a constant material parameter that is computed from the material’s fracture

toughness KIc and tensile strength σc.

Taylor proposed a sequence of Theory of Critical Distances (TCD) criteria like the

Point Method (PM) and the Line Method (LM). Figure 3.13 illustrates those criteria for

a plate with a U-notch under a uniaxial load F . A trial crack path a is defined from the

notch surface, as depicted in Fig. 3.13a. In this thesis, the crack path is always assumed

to be normal to the notch surface.

The PM (Fig. 3.13b) uses the stress value σPM = σ(lch/2) at a distance of lch/2 in front

of a notch or a crack tip. Contrary, the LM (Fig. 3.13c) averages the stress along a line

σLM =
1

2 lch

∫ 2 lch

0

σ(a) da (3.17)

from the surface to a distance of 2 · lch. Note, that the distance for PM is a quarter of



3.3 Finite Fracture Mechanics 23

(a) Plate with a notch under
tensile load F (b) Point Method (PM) (c) Line Method (LM)

Figure 3.13: (a) The stress σ is extracted along a potential crack path with coordinate a, depicted
by a blue arrow. (b) The Point Method (PM) uses σ at a certain distance a = lch/2.
(b) The Line Method (LM) averages the stress σ from a = 0 to a = 2 · lch

the distance for LM. The distances are chosen such that the stresses σPM and σLM are

identical to the tensile strength σc if a critical uniaxial load is applied to a cracked infinite

plate. Madrazo et al. [67] provides an analytical proof for this choice of distances. The

LM and PM show a reasonable agreement with experimental results with a deviation

below 20% [67].

In PaperD [34], the authors use a failure criterion to find critical positions on a hole

surface. Next, the PM approach is used to predict crack initiation at the critical positions.

However, in some configurations LM and PM are unphysical. Cornetti et al. [31] demon-

strated this for the example of a bending beam. For a bending beam with a height

h = 2 · lch, the average stress σLM of LM is always zero, because the compressive and

tensile stresses cancel each other out. A similar thought experiment can be done for PM

and a bending beam with a height h = lch. According to PM, the stress is evaluated at

lch/2 in the neutral axis, where the stress is zero. Consequently, PM and LM will never

predict fracture in these cases, even for very high loads.

3.3.2 Energy Criterion

Instead of considering stresses, one can also analyze the strain energy released during

crack initiation or crack propagation. According to the energy criterion, creating a new

crack area Ac = b · ac requires a critical energy Gc · Ac, where Gc is the critical energy

release rate. Since energy cannot be generated, the energy stored in the new crack must

be transferred from other energy components, like the kinetic energy Πkin or the strain

energy Π. Considering this, Leguillon [63] proposed the energy balance

∆Π +∆Πkin +Gc · Ac = 0 (3.18)

for a newly created crack area Ac. In the static case, the change in the kinetic energy

∆Πkin ≈ 0 is neglected. Furthermore, it is common to rewrite Equation 3.18 and thereby
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define the incremental energy release rate

Ginc := −1

b

∆Π

ac
≥ Gc. (3.19)

A crack of length ac will initiate if the incremental energy release rate Ginc reaches

the critical energy release rate Gc. However, an assumption for the crack length ac is

necessary.

3.3.3 Coupled Criterion

Leguillon [63, 68, 69] presented a Coupled Criterion (CC) that computes the crack length

ac automatically by coupling the stress and energy criterion. Let us assume, the incre-

mental energy release rate Ginc(a, F ) and the max. principal stress σI(a, F ) are computed

along a trial crack path a for an applied load F . The critical crack length ac and the

critical load Fc are two unknown parameters that can be found using two equationsGinc(ac, Fc) ≥ Gc

σI(ac, Fc) ≥ σc
(3.20)

from the energy and the stress criterion. The latter evaluates the stress in a critical dis-

tance ac. Contrary to the PM approach within the TCD framework, the critical distance

is not constant. Some authors [31, 70–72] prefer using the average stress in the style of

the LM criterion. This leads to slightly different equations:Ginc(ac, Fc) ≥ Gc∫ ac
0
σI(a, Fc) da ≥ ac · σc

(3.21)

If a linear elastic material is used in conjunction with the small strain framework and

linearized geometry, the incremental energy release rate scales quadratically with the

applied load Ginc ∝ F 2 and the max. principal stress is directly proportional to the load

σI ∝ F . Consequently, Ginc and σI can be evaluated for an arbitrary load and then scaled

to the critical load.

Figure 3.14 illustrates how to compute the critical load Fc = λcF for a critical load

scale factor λc and an applied load F . A crack initiates at a hole once the energy and

stress criterion are fulfilled simultaneously. The energy criterion (Fig. 3.14a) is fulfilled

starting at a distance ahigh. The stress criterion (Fig. 3.14b) is fulfilled up to a distance

alow. The load is then scaled by a load factor λ, until both criteria are fulfilled at a critical

distance ac, where ahigh = alow. From this intersection, depicted in Fig. 3.14c, the critical

load for crack initiation is computed.

As mentioned before, the TCD approach is not physical for some bending beams. The

CC approach, however, provides reasonable results for bending beams [31, 73, 74], sharp

and blunted V-notches [70, 72, 75–77], circular holes [78, 79], and layered ceramics [80,



3.3 Finite Fracture Mechanics 25

(a) Energy criterion (b) Stress criterion (c) Coupled criterion

Figure 3.14: (a) According to the energy criterion, a crack may initiate with a length of at least
ahigh after Ginc exceeds Gc. (b) According to the stress criterion, a crack may
initiate with a length up to alow until σI drops below σc. (c) According to the
Coupled Criterion (CC), a crack initiates once the energy and stress criterion are
fulfilled simultaneously at a critical length ac. This can be achieved by scaling the
applied load by a factor λ, which increases Ginc by a factor of λ2 and σI by of λ.

81]. Figure 3.15 shows a selection of specimens with V-notches and circular holes under

tensile loads. The incremental energy release rate, Ginc, and the max. principal stress, σI,

are plotted as green and red curves, respectively.

A specimen with straight free edges can be considered as an open 90° V-notch. Fig-

ure 3.15a shows that such a specimen has a constant stress σI (red curve) over a and an

incremental energy release rate Ginc (green curve) that increases linearly near the crack

tip. If the specimen is wide enough, Ginc is high enough at some point and the energy

criterion is fulfilled at lower loads than the stress criterion. Then only the stress criterion

needs to be checked. However, for very thin specimens, the energy criterion is not yet

fulfilled when the stress criterion is already fulfilled. Then the energy criterion needs to

be checked. Parvizi et al. [82] observed this switch from the stress criterion to the energy

criterion in cross-ply laminates with varying ply thicknesses.

The next model (Fig. 3.15b) is a quarter model of a specimen that contains a circular

hole. Assuming an isotropic material, Inglis [37] stated that the stress at the hole, σmax, is

three times higher than the far field stress, due to the notch effect. The stress criterion is

already fulfilled for low loads directly at the hole surface, but the energy criterion is only

fulfilled further inside the specimen, when the stress has already decreased. Compared to

a failure criterion like Rankine, which predicts fracture as soon as σmax reaches σc, CC

allows higher loads, where parts of the specimen are already above σc.

Figure 3.15c depicts a quarter model of a specimen with a 30° V-notch. There is a

stress singularity at the notch tip and σI becomes infinite such that the stress criterion

is fulfilled immediately [63]. The incremental energy release rate Ginc is zero at the tip

and then rises rapidly until it reaches a plateau. Like for the previous specimens, CC is

not fulfilled directly at the notch tip. Only at a finite distance from the notch tip, Ginc is

high enough to meet the energy criterion.
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(a) Specimen with a 90° V-notch (plane surface) (b) Specimen with a circular notch

(c) Specimen with a 30° V-notch (d) Specimen with a crack

Figure 3.15: Quarter models of 2D specimens with various notches under uniaxial tension. The
blue lines highlight the notches where cracks may initiate. The incremental energy
release rate Ginc (green) and max. principal stress σI (red) are plotted along the
path a.
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For large cracks, the CC approach converges to the LEFM approach. This is shown in

Fig. 3.15d. The specimen contains a crack, which is an extreme case of a V-notch with

an opening angle of 0°. The stress is infinite at the crack tip and the stress criterion is

fulfilled near the tip. Contrary to all other notches, Ginc is not zero at the crack tip.

Instead, the incremental energy release rate Ginc at the crack tip becomes the differential

energy release rate G, which is commonly used in LEFM [63]. Since the stress criterion

is fulfilled at the tip, only the energy criterion needs to be checked at the crack tip. This

approach corresponds to Griffith’s G-concept.

3.3.4 Computation of the incremental energy release rate

The CC approach requires the incremental energy release rate Ginc. This section describes

three approaches for the computation of Ginc. Like for the computation of the differential

energy release rate, a M approach can be used. However, this can be too slow for realistic

applications. For arbitrary smooth holes, the author developed the Scaling Law based

Meta Model with Auto-Controlled boundary conditions (SLMM+AC) that is described

in PaperC [83]. Furthermore, Leguillon [63] presented the Matched Asymptotics (MA)

approach, which is suitable for V-notches.

3.3.4.1 Full FEM approach for crack initiation

Full FEM is a common approach to compute Ginc numerically with a series of FEM

simulations [33, 74, 83]. Like the Full FEM approach for the differential energy release

rate G, a trial crack path a is introduced and the change in the strain energy is evaluated.

However, Ginc(a) needs to be computed at more positions along the path a.

Figure 3.16 depicts this process. Starting from an uncracked specimen (blue) with

thickness b and a strain energy Π0, the trial crack path a is introduced normal to the

surface. Next, the crack is opened in several steps (orange specimens). It is crucial to

avoid remeshing, as this would lead to numerical errors. In each step, the strain energy Πi

and the crack length ai are used to compute the incremental energy release rate Ginc(ai)

with Equation 3.19. The computed values are interpolated linearly. Furthermore, the

incremental energy release rate for notches (contrary to cracks) starts at zero.

The Full FEM approach requires several FEM simulations to analyze a single position

on a surface. If more positions or various load cases should be considered, the number of

simulations increases significantly.

3.3.4.2 Scaling Law based Meta Model

To avoid a huge number of simulations, the author presented in his master thesis [84] a

Scaling Law based Meta Model (SLMM) for 3D holes. In PaperA [83], this approach is

extended to the SLMM+AC approach which is more accurate and suitable for 2D holes.
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Figure 3.16: Computation of the incremental energy release rate Ginc. The blue specimen shows
the initial state without a crack and a strain energy Π0. The orange specimens depict
the specimen with a growing crack for a fixed displacement u. The corresponding
strain energy Πi and the crack increment ai are used to compute Ginc.

SLMM+AC
precomputed cells 

Figure 3.17: The Scaling Law based Meta Model with Auto-Controlled boundary conditions
(SLMM+AC) uses precomputed cells to approximate Ginc(a) and σI(a). The pre-
computed cells are scaled to match any smooth position at a hole surface.

The SLMM approach is a two-scale approach. The larger scale corresponds to the

specimen level with smooth holes, as depicted on the left in Fig. 3.17. The specimen is

simulated using one FEM simulation to obtain the displacement field. The smaller scale

contains precomputed cells for σI(a) and Ginc(a), as depicted on the right in Fig. 3.17.
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These precomputed cells can be aligned to an arbitrary position on the hole and the

precomputed results, stored in the meta model, can be scaled to obtain an approximation

of Ginc(a) and σI(a) at this position. For this transfer of the results from the precomputed

cell to the specimen, methods like scaling laws, load superposition, meta modeling, and

auto-controlled boundary conditions are used.

Meta model The precomputed cells have a unconstrained curved edge on the left side

at which a trial crack (red) initiates. The top, right, and bottom sides have prescribed

displacements for a given load case. A set of load cases like tension, shear, and bending

is defined. The precomputed cell is parametrized by the curvature radius of the curved

side, the load case, and the Poisson’s ratio. Next, Ginc(a) and σI(a) are computed for

all combinations of these parameters. The results are stored in a meta model, such that

the results can be accessed at a later point based on these three parameters. Parameter

values not stored in the meta model are interpolated piecewise linearly.

Scaling laws The precomputed cells have two independent dimensions: A length di-

mension (mm) and a stress dimension (MPa). According to dimensional analysis [85]

these two independent dimensions can be used to freely chose two quantities with the

corresponding dimension. Those two quantities are the curvature radius of the free side

for the length dimension (mm) and the Young’s modulus for the stress dimension (MPa).

This allows to fit the precomputed cell to a hole with an arbitrary curvature radius and

further SLMM can predict results for an arbitrary Young’s modulus. The results Ginc(a)

and σI(a) are then scaled in common with the Young’s modulus and the curvature radius.

Load superposition Results are stored in the meta model for the independent load

cases. However, a mixture of load cases is present inside the specimen. According to the

load superposition principle, the load mixture is represented by a weighted sum of the

independent load cases and thus Ginc(a) and σI(a) can be computed by a weighted sum

of the stored results.

Auto-controlled boundary conditions A drawback of the SLMM approach is that it

behaves like a sub-model with displacement-controlled boundary conditions. If a crack ini-

tiates, the stiffness of the cell decreases, but a global stress redistribution over the whole

specimen is not possible, due to the prescribed displacements. Consequently, SLMM

underestimates Ginc(a) and only works for cracks that are small compared to the pre-

computed cell. An alternative to displacement-controlled (u-controlled) boundary condi-

tions are force-controlled (F -controlled) boundary conditions. However, a F -controlled

approach would lead to an overestimated Ginc(a).

Auto-controlled boundary conditions compute a weighting factor between the u-controlled

and F -controlled results. For this, two precomputed cells (a smaller and a larger one) are
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placed on the same position at a surface, as depicted in Fig. 3.18. For both precomputed

cells, Ginc(a) is computed u-controlled and F -controlled. Next, Ginc(a) is computed as a

weighted sum of the u-controlled and F -controlled results. The weighting factor is found,

such that Ginc(a) of both cells overlap. This leads to a more accurate approximation of

Ginc(a).

big cell
small cell

-controlled
-controlled

auto-controlled

cell

load control

Figure 3.18: The left images shows a notch. A big cell (blue) and a small cell (red) are positioned
at the notch surface. Both cells predict Ginc(a) using a displacement u- and force F -
controlled approach. The auto-controlled approach weights the u- and F -controlled
curves such that they match for the small and big cells.

3.3.4.3 Matched Asymptotics

The SLMM+AC approach works for smooth holes. For sharp V-notches, Leguillon [63]

proposed the Matched Asymptotics (MA) approach. Later, it was extended to blunted

V-notches [64, 74, 76]. The basic idea of MA is to use a generalized stress intensity

factor kMA, a singularity exponent λMA, and a geometrical coefficient B to compute the

incremental energy release rate [74]

Ginc(a) = k2MA · a2·λMA−1 · B (3.22)

and the stress

σ(a) = kMA · aλMA−1. (3.23)

The computation of kMA, λMA, and B is not straight forward, but Leguillon [63] provides

a table for λMA in dependence of the opening angle of the V-notch. The singularity

exponent is λMA = 0.5 for a crack and λMA = 1 for a fully opened V-notch. An interesting

observation is that Ginc always starts at zero, except for a crack with λMA = 0.5. For a

crack, Ginc(0) becomes the differential energy release rate G, as illustrated by Fig. 3.15d.

Contrary, the stress is always infinite at a = 0, except for λMA = 1, which corresponds to

the fully opened V-notch, as depicted in Fig. 3.15a.
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4 Toughness optimization

The aim of this thesis is to find geometries that maximize the tensile toughness

UT =

∫ umax

0

F (u) du (4.1)

that is the work needed to fully break a 2D plate loaded by uniaxial tension, as depicted

in Fig. 4.1. There are several ways to improve the tensile toughness of a structure:

e.g., by using lattice structures [13, 15], introducing inhomogeneities at different scales

like in natural material as bones or nacre [3]. In this work, the author purely focuses

on introducing holes on a macro-scale above one millimeter. Several research groups

demonstrated that the position and shape of holes significantly influences the tensile

toughness [7, 9, 10]. Yadav et al. [9] found that slits (elongated holes) lead to one of the

toughest structures if the crack propagates perpendicular to the slits. However, for cracks

propagating parallel to the slits, these slits themselves may even act as cracks and thus

drastically reduce the strength and the tensile toughness.

Figure 4.1: Maximizing the minimum tensile toughness of a plate under uniaxial tension by
varying the hole shapes. The minimum tensile toughness is computed from the
specimens with the hole shapes rotated in 0°, 90°, 180°, and 270°.

That is why the approach, presented in PaperD [34], aims to maximize the tensile

toughness for varied crack propagation directions. Figure 4.1 illustrates this objective. A

uniaxial tensile load is applied to a 2D plate that contains an initial crack in the center

of the left edge. The hole shape should be optimized. In the shown plate, the crack first

propagates from the initial crack into the hole. After this event, marked as 1, a new

crack, marked as 2, initiates at the hole. The crack propagates to the right side and fully
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breaks the specimen. During this fracture process, the force-displacement F (u) curve is

determined and the tensile toughness UT is computed. The procedure is repeated for

holes that are rotated by 0°, 90°, 180°, and 270°. Each time the tensile toughness UT(φ)

is computed. Next, the lowest of these tensile toughness minφ(UT(φ)) is considered. This

lowest tensile toughness corresponds to a crack approaching from the worst side and this

lowest tensile toughness should be maximized.

One can make a few considerations to manually optimize the hole shape. In general,

the area under the F (u) curve should be maximized. This can be done by increasing the

force or the displacement. Typical patterns to increase the toughness are circular holes

aligned in a row or a grid [9, 10], as depicted in Fig. 4.2. The holes stop cracks and new

cracks have to initiate at higher forces. However, holes reduce the overall stiffness and

subsequently the forces. Consequently, there is a tradeoff between more holes which stop

cracks more often and a higher overall stiffness. Liu [10] performed a parameter study

and highlighted some circular hole alignments that have a higher toughness than a solid

plate.

s�ffness

Figure 4.2: Removing material by adding new holes reduces the stiffness.

Furthermore, the hole shape plays a crucial role, as illustrated by Fig. 4.3. Yadav

et al. [9] investigated various hole shapes like slits and circular holes. They found that

slits in loading direction (blue specimen in Fig. 4.3) stop cracks and require the highest

work to break the specimen compared to the investigated geometries. Contrary, a slit

perpendicular to the loading direction, as depicted in orange in Fig. 4.3, reduces the

critical load due to the notch effect [71].

As the slit becomes thinner, its curvature radius becomes smaller. Damani et al. [86]

showed in this case that the critical load also becomes smaller until a critical curvature

radius at which the slit can be seen as a crack [2, 37]. Figure 4.4 illustrates the much

lower critical load for such a cracked specimen (orange) compared to a solid specimen

(blue) with the same cross section.

Slits aligned parallel to the loading direction increase the tensile toughness, whereas

cracks and slits perpendicular to the loading direction reduce it. Consequently, slits can be
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cri�cal load

Figure 4.3: An elongated hole (slit) reduces the critical load at which a crack initiates due to the
notch effect.

cri�cal load

Figure 4.4: A crack greatly reduces the critical load.

only optimized for one crack propagation direction and lead to a worse tensile toughness

in the 90° rotated case. An alternative to slits that avoid this issue are stress relief notches

or holes [87]. Figure 4.5 qualitatively compares the F (u) curve of a specimen with a single

circular hole (blue) with a specimen that contains two additional stress relief holes above

and below the hole in the center (orange). First, the crack propagates, starting from the

initial crack. This occurs at the first drop in the F (u) curves. Due to the additional holes,

the stiffness of the orange specimen will be slightly smaller. Next, a new crack initiates at

the center hole and here, the critical force of the orange specimen is greater, because the

two stress relief holes deflect the stress from the centered hole. Consequently, the orange

specimen has a higher tensile toughness.

Stress relief holes can also lead to stable crack propagation or even crack arrest. In

most scenarios, a crack will propagate in an unstable manner in tensile tests. That means

that the crack continues to propagate without further load increase until it hits a surface.

The blue specimen in Fig. 4.6 shows such an unstable crack propagation that appears

in the F (u) curve as a drop in the force at a certain displacement. However, during the

work on PaperD [34], the authors found some hole geometries where a crack propagates
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cri�cal load

Figure 4.5: Additional holes placed above and below the center hole relieve the stress at the
center hole and lead to a higher critical load for the crack reinitiation (second peak).
The first peak corresponds to the crack propagation of the initial crack.

in a stable manner or even arrests. The orange specimen in Fig. 4.6 shows such a case.

The specimen contains two stress relief holes above and below the crack path. The crack

starts propagating from the initial crack. This causes the first drop in the orange F (u)

curve. Then, the crack propagates between the two holes. Since the two holes shield the

stress from the crack tip, a higher critical load is required, which leads to a stable crack

propagation. At some point, the critical load for the crack propagation becomes even

higher than the critical load for the initiation of a new crack. This point (2) depends on

the material parameters and the exact geometry. The original crack then stops (arrests)

and the new crack propagates in an unstable manner into the right surface. After this,

the original crack finally propagates further into the top hole.

Stable crack growth

Figure 4.6: Unstable crack growth (blue) and stable crack growth (orange): For the orange
specimen, the crack starts growing (1), which causes the first drop in the force.
Then, the crack stops (2), because the holes above and below shield the crack tip
and an initiation at the purple cross is favored. After the newly initiated crack grows
into the right edge, the first crack starts again (3) and grows into the top hole.

In addition to these considerations, an optimization algorithm was used to find tough

structures. For the optimization process, two crucial issues were addressed. The first issue
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is the highly non-linear objective to maximize the tensile toughness. This objective has

multiple local maxima and the evaluation of one hole design takes several minutes. Con-

sequently, an efficient optimization algorithm is required which can escape local maxima.

The second issue is the representation of arbitrary holes. For optimization, it needs to be

possible to create new holes with smooth contours or modify and delete existing holes.

4.1 Optimization algorithm

In this section, the ”Truncated Breadth First Search with Limited depth” (TBFSL) op-

timization algorithm developed by the author and published in PaperC [88] is described.

Common topology and structural optimization methods work well for objectives like min-

imizing the compliance [89], but they do not perform well for objectives with many local

optima. To optimize the tensile toughness, a global optimization algorithm is required

that can escape local maxima and requires as few evaluations as possible.

Variable Neighborhood Search (VNS) [90–92] algorithms are such global optimization

methods. The idea of VNS is to explore the neighborhood of the currently best design.

If no improvement was achieved in this neighborhood, the neighborhood expands until a

better design is found or the termination criterion is met.

material hole

Figure 4.7: TBFSL iteration: The optimization variables fij are aligned in a grid and are assigned
either to a material or a hole. In this iteration, up to three variables vary in a
rectangular region (white framed) with an edge length of 2.

The TBFSL algorithm follows the idea of VNS and is suitable for spatial 2D problems.

It aligns binary variables into a 2D grid, as depicted in Fig. 4.7. The variables represent

either a material or a hole. Starting from an initial design, all designs in a certain

neighborhood are evaluated until an improvement is found. The neighborhood is defined

by two parameters: the size of the region to modify ∆rmax and the number of differing

variables ∆dmax. The latter describes how many variables can be changed in one iteration.

The region size ∆rmax corresponds to the perimeter of a rectangle. All variables changed

in one iteration have to lie inside a rectangle of this size ∆rmax. In the case of Fig. 4.7,

∆d = 3 variables change inside a rectangle of size ∆r = 2. Note, that TBFSL first

starts iterating designs closest to the current design with ∆d = 1. If no improvement is
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found, the neighborhood expands to ∆d = 2 and so on until it exceeds ∆dmax. Then, the

optimization terminates.

In PaperC [88], the authors showed that TBFSL performs better than alternative

common global optimization algorithms like Genetic Algorithms [93–96] and Simulated

Annealing [97]. The algorithms TBFSL, GA, and SA were assessed with an example

problem: the endpoint displacement of a bending beam loaded by its own weight under

gravity was minimized. Figure 4.8 depicts the bending beam that is fully constrained on

the left side. The endpoint displacement u is measured at the top right corner. The dark

gray squares are fixed to be material to guarantee a connection to the top right corner.

Figure 4.8: Minimizing the endpoint displacement u of a cantilever beam loaded by its own
weight under gravity g. The design space is highlighted by a violet frame.

The authors found that TBFSL is more than ten times more efficient than GA and SA,

in the sense that it needs more than ten times fewer iterations for the same result. For

this reason, TBFSL was chosen for the tensile toughness optimization problem.

4.2 Representation of hole shapes

In the previous section, geometries represented by square pixels were optimized. Such

designs are not suitable to maximize the tensile toughness, because each sharp corner of

a square pixel acts as notch, which decreases the toughness. Consequently, a method to

generate smooth holes is required.

Figure 4.9 illustrates the smoothing approach used in PaperD [34]. The optimization

algorithm alters variables fij aligned in a 2D grid. These variables are assigned to so-

called support points which are shown as spheres in Fig. 4.9a. These support points are

interpolated using Radial Basis Functions (RBF) [98, 99]. The RBF approach interpol-

ates a value at a certain position ”P” by a weighted sum of all support point values.

The weighting factors depend on the distance of the position ”P” to the support points.

Support points closer to ”P” have more influence than support points far away from ”P”.

In the next step, a new plane, depicted in grey in Fig. 4.9b, is defined at a level between

the orange (material) and green (hole) values. The hole shapes are then generated by
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(a) RBF interpolation of binary variables

leve
l

(b) Contour extraction of the interpolation

Figure 4.9: Generating smooth geometries from the variable grid. (a) The variables are interpol-
ated. (b) The interpolation is cut at a certain level and the contour (black line) is
used as hole geometry.

intersecting the RBF interpolation with the plane.

A drawback of this approach is that the hole surface can never cross the position of the

support points. To compensate this, the optimization is performed multiple times with

support points aligned in various grids.

4.3 Optimization result

Figure 4.10: Start plate (blue) and plate (orange) optimized in PaperD [34] with the F (u) curve.

In PaperD [34], the TBFSL algorithm and the representation of holes shapes are used

as described before to optimize the tensile toughness of a PMMA plate. All optimization

runs started with a solid plate, as depicted blue in Fig. 4.10. The orange plate is the result

of the optimization. It has several holes into which the crack propagates such that it has

to reinitiate at a higher load. The critical load for crack reinitiation is further increased

by stress relief holes that are placed above and below the initiation positions. The F (u)

curve of the orange plate shows a much tougher material response compared to the blue

curve. The tensile toughness of the orange plate is about 4.5 times higher than the tensile

toughness of the blue plate.
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5 Compilation of the thesis

The second part of this thesis contains the following appended papers. PaperA-PaperC

are published in peer-reviewed journals under the creative commons license CC-BY 4.0.

PaperD has been submitted to a journal and is under review. Table 5.1 lists the contri-

butions of the author.

Paper A: M. Rettl, M. Pletz, C. Schuecker, Efficient prediction of crack initiation from

arbitrary 2D notches, Theoretical and Applied Fracture Mechanics 119 (2022) 103376.

10.1016/j.tafmec.2022.103376.

Paper B: M. Rettl, S. Frankl, M. Pletz, M. Tauscher, C. Schuecker, ConForce: Compu-

tation of configurational forces for FEM results, SoftwareX 26 (2024) 101718.

10.1016/j.softx.2024.101718.

Paper C: M. Rettl, M. Pletz, C. Schuecker, Evaluation of combinatorial algorithms for

optimizing highly nonlinear structural problems, Materials & Design 230 (2023) 111958.

10.1016/j.matdes.2023.111958.

Paper D: M. Rettl, M. Pletz, C. Schuecker, Optimizing the hole geometry of 2D plates

for maximum tensile toughness, 10.2139/ssrn.4962118. under review in Engineering Frac-

ture Mechanics.

Table 5.1: Contribution of the author to the papers.

Contributions PaperA PaperB PaperC PaperD
Conceptualization 80% 50% 80% 60%
Method development & implementation 100% 60% 100% 60%
Numerical study 100% 80% 100% 70%
Writing – Original Draft 80% 80% 80% 60%

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.tafmec.2022.103376
https://doi.org/10.1016/j.softx.2024.101718
https://doi.org/10.1016/j.matdes.2023.111958
http://dx.doi.org/10.2139/ssrn.4962118
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6 Conclusions

Damage-tolerant materials are required for many engineering applications. This work

presents a method to make specimens more damage-tolerant. This can be done by op-

timizing the tensile toughness, which is the work required to fully break a specimen. To

compute the tensile toughness, the whole fracture process including crack initiation and

propagation must be predicted. Crack initiation can be predicted by the Coupled Cri-

terion that involves the incremental energy release rate. However, the incremental energy

release rate is computationally expensive to compute, especially if the initiation position is

not known in advance. In PaperA, the author developed a scaling law based meta model

that is able to efficiently and accurately approximate the incremental energy release rate

and subsequently predict crack initiation. Since the presented approach is very efficient,

it can be applied to every possible initiation position and state the most critical one.

After a crack has initiated, the crack propagates in a certain direction once the critical

load is reached. In this work, the direction of the maximum energy release rate is assumed

to be the crack propagation direction. Like for the crack initiation, this requires the com-

putation of an energy release rate. Contrary to the crack initiation, now the differential

energy release rate is required which can be computed using FEM simulations. However,

this needs to be done for every possible propagation direction to find the direction of

the maximum energy release rate. Many FEM simulations would be required to do so.

As a more efficient alternative approach, the J-Integral can be used to approximate the

propagation direction. More precisely, Configurational Forces are used to compute the

J-Integral, because Rice’s original formulation of the J-Integral cannot be computed using

FEM results. The implementation of the Configurational Forces is available as a Python

package and as Abaqus Plugin, as presented in PaperB.

With the developed methods, it is possible to predict the fracture process and evaluate

the tensile toughness. However, optimizing the tensile toughness is a highly non-linear

problem with many local maxima. In PaperC, the authors developed the ”Truncated

Breadth First Search with Limited depth” (TBFSL) optimization method that is suitable

for such a problem. The idea of TBFSL is to search for better solutions in the neighbor-

hood of the current solution. If no better solution is found, TBFSL extends the search

radius in the neighborhood. The TBFSL algorithm was assessed against common global

optimization algorithms like Genetic Algorithms and Simulated Annealing. For this, a

test problem was defined: the endpoint displacement of a bending beam loaded by its own

weight should be minimized by adding and removing material in the design space. To
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obtain a similar solution, TBFSL needs on average a lower number of FEM simulations

compared to the Genetic Algorithm and Simulated Annealing.

Finally, PaperD describes the optimization of the tensile toughness of a 2D plate with

arbitrary-shaped holes. The fracture process was predicted using the Configurational

Forces implementation of PaperD. The TBFSL optimization algorithm maximized the

tensile toughness and yielded designs with a tensile toughness that is more than 4.5 times

higher compared to a solid design.

This work is a first step in understanding toughening mechanisms as they occur in

natural materials. Based on observations in natural materials, the author demonstrated a

method to optimize the toughness of engineering materials. The author showed that the

toughness can be increased even for brittle base materials by adding holes. These holes

can stop crack propagation, which is an important toughening mechanism. In contrast to

the problem investigated in this work, many natural materials combine several materials

with various properties. Such natural materials can be seen as guideline to further increase

the toughness of engineering materials. For example, one could extend this work and add

inclusions instead of holes to a base material. The inclusion could be a softer material.

Furthermore, it is important to validate the predictions of the fracture process with real

experiments.
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[21] N. Moës, J. Dolbow and T. Belytschko. ‘A Finite Element Method for Crack Growth

without Remeshing’. In: International Journal for Numerical Methods in Engineer-

ing 46.1 (Sept. 1999), pp. 131–150. doi: 10.1002/(SICI)1097-0207(19990910)46:

1<131::AID-NME726>3.0.CO;2-J.

https://doi.org/10.1016/j.xcrp.2020.100109
https://doi.org/10.1016/j.xcrp.2020.100109
https://doi.org/10.1016/j.ijmecsci.2022.107945
https://doi.org/10.1016/j.jmps.2006.08.004
https://doi.org/10.1016/j.matdes.2021.109696
https://doi.org/10.1016/j.addma.2017.12.006
https://doi.org/10.1021/ma100633y
https://doi.org/10.1016/0032-3861(91)90425-I
https://doi.org/10.1016/0032-3861(91)90425-I
https://doi.org/10.1016/j.pmatsci.2007.06.001
https://doi.org/10.1016/j.pmatsci.2007.06.001
https://doi.org/10.1007/s11340-007-9040-1
https://doi.org/10.1002/nag.518
https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J


45

[22] T. Belytschko and T. Black. ‘Elastic Crack Growth in Finite Elements with Minimal

Remeshing’. In: International Journal for Numerical Methods in Engineering 45.5

(June 1999), pp. 601–620. doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::

AID-NME598>3.0.CO;2-S.

[23] H. Li, J. Li and H. Yuan. ‘A Review of the Extended Finite Element Method

on Macrocrack and Microcrack Growth Simulations’. In: Theoretical and Applied

Fracture Mechanics 97 (Oct. 2018), pp. 236–249. doi: 10.1016/j.tafmec.2018.

08.008.
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kombinierten Energie- und Spannungskriterium’. MA thesis. Montanuniversität Leo-

ben, 2020.

[85] E. Buckingham. ‘On Physically Similar Systems; Illustrations of the Use of Dimen-

sional Equations’. In: Physical Review 4.4 (Oct. 1914), pp. 345–376. doi: 10.1103/

PhysRev.4.345.

[86] R. Damani, R. Gstrein and R. Danzer. ‘Critical Notch-Root Radius Effect in SENB-

S Fracture Toughness Testing’. In: Journal of the European Ceramic Society 16.7

(Jan. 1996), pp. 695–702. doi: 10.1016/0955-2219(95)00197-2.

[87] M. Bijak-Zochowski, A. M. Waas, W. J. Anderson and C. E. Miniatt. ‘Reduction of

Contact Stress by Use of Relief Notches’. In: Experimental Mechanics 31.3 (Sept.

1991), pp. 271–275. doi: 10.1007/BF02326071.

[88] M. Rettl, M. Pletz and C. Schuecker. ‘Evaluation of Combinatorial Algorithms for

Optimizing Highly Nonlinear Structural Problems’. In: Materials & Design 230

(June 2023), p. 111958. doi: 10.1016/j.matdes.2023.111958.

[89] O. Sigmund and K. Maute. ‘Topology Optimization Approaches: A Comparative Re-

view’. In: Structural and Multidisciplinary Optimization 48.6 (Dec. 2013), pp. 1031–

1055. doi: 10.1007/s00158-013-0978-6.

https://doi.org/10.1016/j.prostr.2021.10.052
https://doi.org/10.1016/j.euromechsol.2015.06.008
https://doi.org/10.1016/j.prostr.2016.06.253
https://doi.org/10.1007/BF00739291
https://doi.org/10.1016/j.tafmec.2022.103376
https://doi.org/10.1103/PhysRev.4.345
https://doi.org/10.1103/PhysRev.4.345
https://doi.org/10.1016/0955-2219(95)00197-2
https://doi.org/10.1007/BF02326071
https://doi.org/10.1016/j.matdes.2023.111958
https://doi.org/10.1007/s00158-013-0978-6


51
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Efficient prediction of crack initiation from arbitrary 2D notches 
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A B S T R A C T   

An efficient two-scale approach for predicting mode I crack initiation from 2D notches based on the Coupled 
Criterion is proposed. On the scale of the local model, a voxel model containing the notch simulates the 
displacement field. The crack model is introduced on the smaller scale and is defined in an image space. Based on 
the notch curvature, the precomputed crack model can be transformed to any position on the notch surface. The 
displacement field of the local model is fitted at the boundaries of the transformed crack model by predefined 
deformation modes and results can be obtained by a superposition of precomputed crack model results. By 
introducing the crack in the crack model, the stiffness of this model is reduced and thus, the incremental energy 
release rate can be inaccurate. Therefore, a boundary relaxation approach is used to obtain more accurate energy 
release rates. It is shown that the method is very efficient as it requires only 3:20 min to analyze 50 positions on a 
notch compared to 2:21 h of a conventional approach using full FEM simulations. Thereby, the method is reliable 
in identifying the critical position. The predicted failure index at this position deviates by at most 10.8%. Since 
the crack model limits the length of initiating cracks, Irwin’s length K2

Ic/σ2
c of the material must lie below 2.53 

times the radius of a circular hole under uniaxial tension. For a brittle material like Al2O3, notches with a 
curvature radius above 31μm can thus be analyzed.   

1. Introduction 

Notches are inevitable in engineering components and often lead to 
failure. Failure is commonly predicted using stress-based approaches. 
Such criteria like the maximum principal stress criterion define a 
material-dependent failure surface that must not be exceeded by the 
computed stresses, otherwise, failure will occur [1]. The stresses are 
computed for each position to check if a component survives the applied 
load. For the computation of an arbitrary-shaped component, only one 
FEA simulation is required. This makes these approaches versatile and 
efficient, but they lack accuracy for some cases. For sharp cracks, the 
computed stress at the crack tip rises to infinity regardless of the applied 
load and each stress-based criterion immediately predicts failure, 
whereas experiments show that even in the vicinity of cracks, failure 
doesn’t occur until a critical load is applied [2]. 

The Theory of Critical Distances (TCD) honors this finding by aver
aging the stress from the surface of the notch to a critical distance into 
the material. The averaged stress must not exceed the strength, other
wise, failure will occur. The critical distance is assumed to be a material 
parameter [3]. Unfortunately, this assumption is not plausible, as Taylor 
demonstrated with the example of a bending beam [4]. 

In contrast to defining the critical distance as a material parameter, 
Leguillon’s Coupled Criterion (CC) computes the critical distance by 
combining a stress- and an energy-based criterion [5]. The CC within the 
finite fracture mechanics framework investigates the instantaneous 
initiation of a finite size crack [6]. Experiments with V-notched bending 
beams of PMMA, PS, or brittle ceramics show good agreement with the 
CC [7–10], whereas uniaxial tensile tests on PMMA plates containing a 
hole are predicted mediocrely by the CC [11]. However, compression 
tests on plates with a hole show a relative error between the CC pre
dictions and the average experimental applied stress of at most 20% 
[12]. 

Currently, there are two possibilities to implement CC. The first one, 
called Matched Asymptotic approach (MA), is extensively discussed in 
the literature for sharp and blunted V-notches [5,7,8,13,14] and plates 
containing a circular hole [13,15]. The MA approach is a two-scale 
approach with a far and a near field scale. It is an efficient and accu
rate method, but it is limited to relatively simple geometries [12] and is 
not versatile enough for engineering problems. The second method 
discretizes the geometry using the Finite Element Analysis. We call this 
method Full FEA. It is indeed versatile and accurate enough to handle 
complicated geometries, but several FEA computations are necessary 
that significantly increase the computation time, especially if Full FEA 
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must be applied to several candidate positions, because the critical po
sition on a notch is not known. Li [16] uses a sophisticated watershed 
floating process to find critical positions, but the method is still not 
efficient enough for engineering problems. Furthermore, cohesive zone 
models (CZM) provide close predictions to the CC but need computa
tionally expensive non-linear analyses and need to be manually placed 
on critical positions on the notch [17–19]. For engineering problems, 
stress-based or TCD approaches might be inaccurate in some cases. The 
CC on the other side agrees well with experiments, but its imple
mentation lacks either in versatility when using MA or in efficiency 
when using Full FEA. CZM are not practical for arbitrary shaped notches 
if the crack path is not known a priori. 

The goal of this work is to propose a novel implementation of CC that 
is efficient, versatile, and accurate enough for engineering problems. 
Therefore, we use FEA computations, as with the Full FEA approach, and 
a multi-scale model, as with MA. We use two FEA models. The local 
model contains the whole notch and is implemented as a voxel-model, 
because it is easy to create a voxel-model from an image of a notch. 
The crack model contains the crack and predicts the stresses and the 
incremental energy release rate needed by the CC. The crack model is 
used like a submodel of the local model. One drawback of using sub
models is the assumption that the crack is small compared to the size of 

the submodel [20]. Therefore, we propose a relaxation mechanism for 
the boundary conditions of the crack model that weakens the assump
tions and gives accurate predictions. Furthermore, the crack model is 
precomputed in advance for a given material. Like Budinger [21], we 
utilize a scaling law and a meta-model. This allows us to apply the 
precomputed model to arbitrary notch geometries efficiently and 
versatilely. 

Crack initiation in brittle materials often leads to unstable crack 
propagation and component failure. To state whether crack initiation 
and subsequent failure occurs, we define a failure index that predicts 
crack initiation if it becomes 1 or higher. We validate the proposed 
method with the Full FEA approach and show that the most critical 
failure indices for four examples deviate at most 10.8%. However, the 
method needs only a few minutes to compute the failure index along a 
whole notch surface, whereas the Full FEA takes several hours to do so. 

2. Methods 

The aim of this work is to provide efficient, versatile, and accurate 
predictions of crack initiation at a notch using the Coupled Criterion 
(CC). For that purpose, the maximum principal stress σI(η) along a vir
tual crack path η and the strain energy Π(a) for the virtual crack with 

Nomenclature 

Acronyms 
TCD Theory of Critical Distances 
CC Coupled Criterion 
MA Matched Asymptotic 
FEA (FEM) Finite Element Analysis (Finite Element Method) 
SLMM Scaling Law Meta-Model 
DC Displacement Control 
FC Force Control 
AC Auto Control 
Al2O3 Aluminium oxide 
PMMA Poly(methyl methacrylate) 
PS Polystyrene 

Coordinate systems 
xy specimen coordinate system 
ξη aligned normal to the notch surface 
ξ

′ η′ virtual space coordinate system 

Matrix and vector convention 
Q→ = (Qi)i vector and summation notation 
Q = (Qik)i.k matrix and summation notation 

Subscripts 
Qc critical quantity 
Qup upper bound for Qc 

Qlow lower bound for Qc 

Qmax maximum quantity 
Qmin maximum quantity 
Qxx,Qxy,Qyy tensor components in xy 
Qξξ,Qξη,Qηη tensor components in ξη 
QI maximum principal 
QFC force-controlled quantity 
QMC mixed-controlled quantity 
Qel corresponds to elements 
Qfull corresponds to the full FEM 
Qlm corresponds to the local model 
Qcm corresponds to the crack model 
QRP corresponds to a reference point 

Superscripts 
Q quantity in real space 
Q’ quantity in virtual space 

Parameters 
Γ→ notch surface 
s position on the notch surface 
c curvature of the notch surface 
a virtual crack length 
a0, ⋯,an introduced virtual crack lengths 
l,h, b, r length, height, thickness, radius 
lch Irwin’s length 
φmin ratio hcm to lel,lm 

ρ, ρsolid, ρnotch element densities 
E Young’s modulus 
ν Poisson’s ratio 
u→, u→off displacement vector 
u0,i reference value of a deformation mode 
D, Dall, Dimp set of deformation modes 

F→ reaction force 
K stiffness matrix 
Ψ difference of stiffness matrices 
σ stress 
σc material strength 
ε, γ normal strain and shear strain 
Π strain energy 
Ginc incremental energy release rate 
Gc material fracture energy 
KIc material toughness 
lf ,FI load factor and failure index 
λσ, λl scaling variables 
ncracks number of introduced virtual crack lengths 
nfit,c,nfit,u number of sampling points 
npos number of positions on the notch surface 
nel,lm number of voxel elements 
Δabs absolute tolerance 
Δrel relative tolerance 
ΔGinc, ΔσI maximum relative effect by changing a parameter 
Aplmax applicability factor  
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various crack lengths a is required. Fig. 1 depicts the two possibilities 
Full FEA and our novel approach SLMM to calculate σI(η) and Π(a) at a 
position s = sp on the notch. Both methods start with a model containing 
a notch. For example, a strain tensor can be used as a boundary condi
tion at the margins of the notch model. The surface of the notch is 
described as a cubic B-spline. 

Γ→(s) =

(
Γx(s)

Γy(s)

)

(1)  

where s defines the position on the spline [22]. The position s is defined 
as the path length from the starting point. The first approach Full FEA is 
described in detail in section 2.2.1 and uses one FEM analysis to 
compute the max. principal stress σI(η) and the strain energy Π0. Further 
analyses are necessary with various introduced crack lengths ai to 
compute the strain energies Π(ai) = Πi. The second novel approach 
SLMM uses a voxel-model to compute the displacement field u→(x, y). 
The curvature c(s) is derived from the spline Γ→(s). These parameters are 
transformed into image space. Quantities in the image space are marked 
by an apostrophe. Next, a precomputed crack model in the image space 
predicts the stress tensor σ’(η’) as well as the strain energy Π′

(a’). After 
the back transformation to the real space, σI(η) and Π(a) are computed. 

2.1. Coupled criterion (CC) 

The CC states whether a crack initiates at a specific position P of a 
notch under a certain load. Therefore, CC needs the strength σc and 
fracture energy Gc of the material as well as the computed stress and 
strain energy curves along a virtual crack path η. As shown in Fig. 2a-c), 
we assume a crack path η normal to the notch surface straight into the 
material and we use the maximum principal stress σI(η) that is evaluated 
in a model without a crack. In contrast, the strain energies Πi are 
computed in models containing a virtual crack with lengths ai. The 
strain energy Π(a) is interpolated piecewise linearly. 

The incremental energy release rate. 

Ginc(a) :=

⎧
⎪⎪⎨

⎪⎪⎩

Π0 − Π(a)

b⋅a
if a > 0

0
J

m2 if a = 0
(2)  

is the difference of the strain energy without a crack Π0 and with a 
virtual crack Π(a) in relation to the area of the virtual crack surface b⋅a, 
where b is the thickness of the specimen and a is the length of the virtual 
crack. According to the energy criterion depicted in Fig. 3a), initiation is 
possible for a length al and above where Ginc is higher than the fracture 
energy Gc. The energy criterion thus results in a lower bound al for the 
crack length ac. 

On the other hand, the stress-criterion depicted in Fig. 3b) states that 
initiation is only possible up to a length au, where the max. principal 
stress σI is higher than the strength σc. Consequently, the stress criterion 
gives an upper bound for the crack length au. 

In linear analyses, a load factor lf ≥ 0 can be used to scale the load 
linearly. The max. principal stress σI∝lf is proportional to the load fac
tor, whereas Ginc∝lf2 is scaled quadratically. The CC shown in Fig. 3c) 
computes the critical load factor lfc such that the energy- and stress- 
criterion are fulfilled simultaneously at the crack length ac. Further
more, a failure index FI = 1/lfc is defined [23]. There are three possible 
statements:  

1. FI ≤ 0: No crack will initiate.  
2. 0 < FI < 1: No crack initiates under the current load, but if the load is 

scaled by lf c initiation will occur.  
3. 1 ≤ FI: A crack will initiate under the current load. 

2.2. FEM models 

This section describes the used FEM models. The Full FEA approach 
computes the max. principal stress σI(η) and the incremental energy 
release rate Ginc(a) directly, whereas the local model and the crack 
model are used within the novel SLMM approach to compute σI(η) and 
Ginc(a). 

2.2.1. Full FEA 
Full FEA is a common approach to implement CC. As depicted in 

Fig. 1, Full FEA uses fully modeled FEM analyses. The models contain a 
virtual crack with increasing length a. In total, 1 +ncracks virtual crack 
lengths ai are introduced from a0 = 0mm to an. We chose the maximum 
crack length an as described in section 2.3. In each simulation, the strain 
energy Πi is evaluated. In the first simulation with a = a0, the max. 

Fig. 1. For a given notch defined by the 
spline Γ→(s) the max. principal stress 
σI(η) as well as the strain energies Π(a)

along the virtual crack path η are eval
uated at a position s = sp. This can be 
done either by the Full FEA approach 
that uses several FEM analyses or by our 
novel SLMM approach that calculates 
the displacement field u→(x, y) with a 
voxel-model and the notch curvature 
c(s) with the spline Γ(s). These parame
ters are passed to a precomputed crack 
model that is computed once in an 
image space for a given material and 
predicts σI(η) and Π(a).   
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principal stress σI(η) is additionally computed. With the calculated Πi 
and σI(η) values, the CC is applied as described in section 2.1. 

We use quadratic 2D elements with reduced integration. At the 
model borders, the mesh size is lel, 1 = 0.1⋅l where l is the length of the 
model. In the region around the virtual crack, a fine mesh size lel, 2 =

0.01⋅an is used. The mesh parameters lel, full =
(
lel, 1, lel,2

)
are validated in 

section 3.1.3. During the virtual crack growth, we only add new nodes at 
one crack side, but do not remesh the model. This reduces numerical 
errors. 

2.2.2. Local model 
In contrast to the Full FEA approach, the novel SLMM approach uses 

two FEA models. The local model is one of them. We implemented it as a 
voxel model such as in Fig. 4a,b) because a pixel image of a notch can be 
easily transformed into a voxel mesh. Furthermore, a voxel mesh in
terpolates a displacement field u→(x, y) much faster than an unstructured 
mesh. Fig. 4a) depicts the material density ρ, which is almost zero 
ρnotch = 0.01 (white) inside the notch and one ρsolid = 1 (gray) in the full 
material region. The element Young’s modulus Eel = ρ⋅E weights the 
material Young’s modulus E by the material density ρ. Fig. 4b) shows the 
deformed model under uniaxial vertical tension. The local model has a 

length llm and a height hlm. We chose the element size 
lel,lm ≈ 0.001⋅

̅̅̅̅̅̅̅̅̅̅̅̅̅
llm⋅hlm

√
, such that the model contains approximately 

nel,lm ≈ 106 linear rectangular fully-integrated 2D elements. The mesh 
size is validated in section 3.1.3. 

2.2.3. Crack model 
The crack model is the second FEA model used by SLMM besides the 

local model. Fig. 5 shows the crack model and Table 1 lists its parame
ters. The crack model is defined in an ξ’η’ image space. Quantities in the 
image space are marked by an apostrophe. Section 2.3 describes how the 
left curved side approximates a notch surface, how the Young’s modulus 
E’ and other dimensions are scaled to the real space, and how the cur
vature c’ is used by a meta-model. The Poisson’s ratio ν depends on the 
material. We use a structured mesh with quadratic rectangular and 
reduced integrated 2D elements. The selection of the element size l’el,cm 

as well as the number of introduced crack lengths ncracks is argued in 
section 3.1.3. 

The deformation modes shown in Fig. 6 define the boundary con
ditions of the crack model. A deformation mode. 

Fig. 2. a) CC is applied on the position P on the notch surface. The crack grows normal to the surface into the material. b) The maximum principal stress σI(η) is 
evaluated along the crack path η. c) The virtual crack is introduced with various lengths ai and the strain energy Πi is computed for each ai. 

Fig. 3. a) According to the energy criterion, crack initiation is possible for a length al and above, where the incremental energy release rate Ginc is greater than the 
fracture energy Gc. b) According to the stress-criterion, crack initiation is possible up to a length au, when the max. principal stress σI is greater than the strength σc. c) 
The load is scaled by a load factor lf that is proportional to σI∝lf and Ginc∝lf2. According to CC, the critical load factor lfc is chosen, such that both criteria are fulfilled 
at the same crack length ac. 
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u→’
i(ξ’, η’) = u’

0,i⋅
(

fξ,i(ξ’, η’)

fη,i(ξ’, η’)

)

(3)  

defines the displacements in ξ
′ - and η′ -direction with arbitrary 2D 

functions fξ,i(ξ’, η’) and fη,i(ξ’, η’) respectively. These functions are scaled 

by a reference value u’
0,i that can be any nonzero value. The unit of u→’

i(ξ’,

η’) is (mm) and the 2D functions fξ,i(ξ’, η’) and fη,i(ξ’, η’) can have a unit 

we call “unit
(
fi

)
”. The unit of u’

0,i is 
(

mm⋅unit
(
fi

)−1
)

. 

To define the ξ’- and η’-displacements independently, one of the 

functions fξ,i(ξ’, η’) or fη,i(ξ’, η’) is set to zero for each deformation mode 

u→’
i(ξ’, η’). Fig. 6 depicts the deformation modes 

{

u→’
i(ξ’, η’)|i = 1, 2, 3, 6,

7, 8, 9, 10
}

for ξ-deformations on the left side. The η-function fη,i(ξ, η) is 

set to zero for them. On the right side the deformation modes 
{

u→’
i(ξ’, η’)|

i = 4, 5, 11, 12, 13, 14, 15, 16
}

for η-deformations with fξ,i(ξ, η) = 0 are 

shown. 
The final deformation. 

u→’
(

u’
RP,i, ξ’, η’

)
=

∑

u→
’
i ∈D’

u’
RP,i⋅ u→’

i(ξ’, η’) (4)  

is a linear combination of deformation modes where dimensionless 
reference point displacements u’

RP,i act as scaling variables. Reference 
points are used in the FE software to apply a displacement as boundary 
condition or to evaluate reaction forces. This procedure, also known as 
the linear superposition principle, allows the results to be precomputed 
for each deformation mode independently and then simply be summed. 
The u→’

i(ξ’, η’) functions used in the analysis are collected in the set D’. 

The final deformation u→’
(

u’
RP,i, ξ’, η’

)
defines the displacements along 

the boundaries of the crack model, except the left curved side which is 
not constrained. 

The 2D functions are not limited to the ξ’η’ image space as fi(ξ’, η’), 
but are later used in the ξη real space as fi(ξ, η) as well. So, we omit the 
apostrophe for ξ and η when we speak of them. In this work, the 2D 
functions are generated using the scheme. 

f (ξ, η) = ξpξ ⋅ηpη withpξ, pη ∈ [0, 1, 2]andpξ + pη > 0. (5) 

Note that the units of the functions unit(f) = (mmpξ+pη ) depend on the 
powers pξ and pη and consequently are not uniform. 

For accurate predictions, the full set of deformation modes D’
all =

{

u→’
i(ξ’, η’)|i = 1⋯16

}

is neither required nor recommended. By acti

vating and deactivating each deformation mode, we found that the 

subset D’
imp =

{

u→’
i(ξ’, η’)|i = 1⋯5

}

is capable to sufficiently fit the 

deformation field at the circular cavity shown in the results section 3.1.1 
in Fig. 13 under uniaxial tension with a coefficient of determination of at 
least R2 ≥ 0.9. The effect of using D’

imp instead of D’
all is shown in section 

3.1.3. Fig. 6 highlights u→’
i(ξ’, η’) ∈ D’

imp by red frames. In the following 
section, we use only D’ = D’

imp, and disregard other deformation modes. 
Knowing the deformation modes D’, the crack model can be pre

computed. As shown in Fig. 1 the crack model contains a virtual crack 
with increasing length a’. Like for the Full FEA approach, 1 +ncracks 

virtual crack lengths a’
j are introduced from a’

0 = 0mm to a’
n. This pro

cedure is repeated for each deformation mode. Therefore, the corre
sponding reference point displacements. 

u’
RP,ik =

{
1ifi = k

0else withi, k = 1⋯|D’| (6)  

of the k-th repetition are used in u→’
(

u’
RP,ik, ξ’, η’

)
to apply only the k-th 

deformation mode as a displacement-controlled boundary condition. 
The cardinality |D’| is the number of deformation modes in the set D’. 

The reference point reaction forces F’
RP,ik

(
a’

j

)
are computed and depend 

on the virtual crack length a’
j . The stiffness matrix. 

K’
ik

(
a’

j

)
= F’

RP,ik

(
a’

j

)
⋅inv

(
u’

RP,ik

)
(7) 

Fig. 4. The local model is implemented as a voxel model. a) The undeformed 
mesh depicts the element density ρ, which is almost zero (white) inside the 
notch and one (gray) in the material. The element size lel,lm, model length llm, 
and model height hlm are shown. b) The displacement field u→(x, y) that results 
from a FEM analysis deforms the voxel mesh. 

Fig. 5. Crack model with curvature c′ , length l
′

cm, height h
′

cm and maximum 
crack length a′

n. The extension length l′

cm,e goes toward the curved surface. The 

crack model is defined in the ξ′ η′ -image-space. 

Table 1 
Crack model parameters.  

Young’s modulus E’ 1 MPa 
Poisson’s ratio ν −1 to 0.5 
Length l’cm 2 mm 
Height h’

cm 2 mm 
Maximum crack length a’

n 1 mm 
Curvature c’ −1 to 0.5/mm 
Element size l’el,cm 0,01 mm 
Number of cracks ncracks 10  
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is computed with F’
RP,ik

(
a’

j

)
and the inverse inv

(
u’

RP,ik

)
of the reference 

point displacement matrix. For simplicity, we use the notation u→’
RP =

(
u’

RP,i

)

i
, F→

’
RP

(
a’

j

)
=

(
F’

RP,i

(
a’

j

) )

i 
and K’

(
a’

j

)
=

(
K’

ik

(
a’

j

) )

i,k 
with i, k =

1⋯|D’| and j = 0⋯ncracks. Knowing the stiffness matrix, the strain en
ergy. 

Π′

(

a’
j , u→’

RP

)

= u→’T
RP⋅K’

(
a’

j

)
⋅ u→’

RP (8)  

can be evaluated for any virtual crack length a’
j and arbitrary reference 

point displacements u→’
RP. The incremental energy release rate. 

G′

inc

(

0 mm, u→
′

RP

)

:= 0
mJ

mm2
⏟̅̅ ⏞⏞̅̅ ⏟

Ψ′
(a′

=0 mm)

G′

inc

(

a′

j, u→
′

RP

)

=

Π′

(

a′

0, u→
′

RP

)

− Π′

(

a′

j , u→
′

RP

)

b⋅a′

j

= u→T ′

RP

K ′ (a′

0

)
− K ′

(
a′

j

)

b⋅a′

j
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

ψ ′ (a′
=a′

j )

u→
′

RP, ∀a′

j > 0mm (9)  

is computed by a matrix function Ψ’
(

a′

j

)
. The components of Ψ’

(
a′

j

)
are 

interpolated piecewise linearly along a’. The piecewise linear interpo

lation Ψ’(a’) preserves the positive semi definiteness of Ψ’
(

a′

j

)
. This 

guarantees a non-negative incremental energy release rate 

G’
inc

(

a’, u→’
RP

)

. 

In contrast to the Full FEA approach, the max. principal stress is not 
computed directly. Instead, the components of the 2D stress tensor. 

σ’
k(η’) =

[
σ’

ξξ,k(η’) σ’
ηξ,k(η’)

σ’
ηξ,k(η’) σ’

ηη,k(η’)

]

(10)  

are interpolated piecewise linearly along the virtual crack path η’ in the 
simulations with a virtual crack length of a’

0. 
The final 2D stress tensor. 

σ’
(

η’, u→’
RP

)

=
∑

k=i=1⋯|D’ |

σ’
k(η’)⋅u’

RP,i (11)  

is a linear combination that weights the stress tensors σ’
k(η’) with the 

corresponding reference point displacements u’
RP,i. The max. principal 

stress σ’
I

(

η’, u→’
RP

)

is the highest eigenvalue of the stress tensor 

σ’
(

η’, u→’
RP

)

. 

2.3. Scaling law Meta-Model (SLMM) 

The scaling law meta-model uses the local model and the crack 
model described in the previous sections to predict the max. principal 
stress σI(η) and the incremental energy release rate Ginc(a). The local 
model exists in the real space, whereas the crack model is defined in an 
image space. The next section describes how quantities are transformed 
from one space to another. 

2.3.1. Scaling approach 
The dimensional analysis defines how a physical system is converted 

to another equivalent physical system [24]. In this work, we want to 
convert between the image space containing the crack model and the 
real space containing the local model. Therefore, scale factors λi are 
introduced for all dimensions. We use a dimension system with the two 
dimensions, length (mm) and stress (MPa), and introduce the two cor
responding scale factors λl and λσ. Quantities and factors corresponding 
to the image space are marked with an apostrophe. To show how the 
scale factors are used, we first define a quantity in the image space. 

Fig. 6. Polynomial deformation modes for displacements in ξ-direction (left) and η-direction (right). The red framed deformation modes are important for the crack 
initiation and are collected in the set D′

imp. All other modes are ignored in the following sections. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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Q’ = q’⋅mmpl ⋅MPapσ (12)  

with a dimensionless factor q’ and a unit (mmpl ⋅MPapσ ) which is defined 
by its powers (pl, pσ). To transfer the quantity to the real space. 

Q = q⋅mmpl ⋅MPapσ = q’⋅(λl⋅mm)
pl ⋅(λσ⋅MPa)

pσ , (13)  

the length and stress units are multiplied by the scale factors. Such scale 
factors are commonly used to apply the CC [25]. It is crucial to convert 
all relevant quantities of a physical system because converted quantities 
must not be used alongside non-converted quantities. 

The stress scale factor. 

λσ(E) =
E
E’ (14)  

is the ratio between the material Young’s modulus E and the Young’s 
modulus E’ used to simulate the crack model in the image space. The 
length scale factor. 

λl(c’, c) =
c’

c
(15)  

is chosen, such that the converted curvature of the crack model in the 
image space c’⋅λ−1

l fits the notch curvature in the real space c. If λl and c 
are known and c’ is searched, it is possible to rearrange the above 
equation to. 

c’(c, λl) = c⋅λl . (16) 

As shown in Fig. 7, crack models with various curvatures c’ can be 
scaled by a factor λl such that they fit the curvatures c(s) at arbitrary 
positions s on the notch surface. In Fig. 7, the first crack model a) has a 
higher absolute curvature |c’| = 0.1mm−1 than the second crack model 
b) with |c’| = 0.05mm−1. Therefore, the scale factor for model a) is twice 
as high as the one for model b) to fit the local curvature of the notch 
surface. At position s1, both crack models are relatively small and since 
the virtual crack is introduced up to a length of half of the crack model 
an = lcm/2, the max. principal stress σI(a), and the incremental energy 
release rate Ginc(a) can be predicted only up to a small an. One possibility 
to reduce this limitation is to simulate several crack models with various 
curvatures c’ and choose the best one, as described in section 2.3.5. 

With the known scale factors λl and λσ, all other quantities can be 
transferred between the image and real space. The quantities maximum 
crack length an, cell length lcm, and cell height hcm all have the unit 
(
mm1⋅MPa0)

and are scaled by λl = λ1
l ⋅λ0

σ as. 

an(λl) = a
′

n⋅λl

lcm(λl) = l′

cm⋅λl

hcm(λl) = h
′

cm⋅λl

. (17) 

To scale a quantity in the opposite direction from the real space to 
the image space, the signs of the scale factor’s powers are inverted. For 
example, the virtual crack length a and the coordinates η and ξ have the 
unit 

(
mm1⋅MPa0

)
and are scaled to the image space by λ−1

l . 

a’(a, λl) = a⋅λ−1
l  

η’(η, λl) = η⋅λ−1
l  

ξ’(ξ, λl) = ξ⋅λ−1
l (18) 

The deformation modes are converted first from the image space 
u→’

i (ξ’, η’), to the real space u→i(ξ, η). Then, the corresponding dimen
sionless reference point displacements u’

RP,i are fitted in the real space. 

To transfer the deformation modes u→’
i (ξ’, η’) from the image space to the 

real space u→i(ξ, η), the reference values u’
0,i and the 2D functions fi(ξ’, η’)

must be scaled. The functions fi(ξ’, η’) are simply converted to fi(ξ, η) by 
inserting the real space coordinates ξ and η. The reference values u’

0,i 

have units 
(

mm⋅unit(fi)
−1

)
that depend on the unit of fi. Since the 

functions we use are polynomials fi(ξ, η) = ξpξ,i ⋅ηpη,i , their units can be 
expressed as (mmpξ,i+pη,i ). Consequently, u’

0,i have units (mm1−pξ,i−pη,i ) and 

are scaled by λl = λ1−pξ,i−pη,i
l ⋅λ0

σ as. 

u0,i(λl) = u’
0,i⋅λ

1−pξ,i−pη,i
l . (19) 

The transformed deformation modes. 

u→i(ξ, η, λl) = u0,i(λl)⋅
(

fξ,i(ξ, η)

fη,i(ξ, η)

)

∈ D (20)  

and the dimensionless reference point displacements u’
RP,i

(
uRP,i

)
= uRP,i 

Fig. 7. The curvature in the crack model c′ is set to −0.1 mm−1 and −0.05 mm−1 for two crack models depicted in the columns a) and b). The crack models can be 
scaled by a factor λl such that they fit the notch curvature c(s) at arbitrary positions s on the notch surface. 
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are inserted into the final deformation in the real space. 

u→
(
uRP,i, ξ, η, λl

)
=

∑

u→i∈D

uRP,i⋅ u→i(ξ, η, λl). (21) 

The crack model provides the max. principal stress σ’
I

(

a’, u→’
RP

)

and 

the incremental energy release rate G’
inc

(

a’, u→’
RP

)

in the image space. 

Both quantities are transferred to the local model in the real space. The 
max. principal stress has the unit 

(
mm0⋅MPa1

)
and is scaled by λσ = λ0

l ⋅λ1
σ 

to. 

σI
(
σ’

I, λσ
)

= σ’
I⋅λσ. (22) 

The incremental energy release rate has the unit 
(
mm1⋅MPa1

)
and is 

scaled by λ1
l ⋅λ1

σ = λl⋅λσ. 

Ginc
(
G’

inc, λl, λσ
)

= G’
inc⋅λl⋅λσ (23)  

2.3.2. Curvature fit of the local notch surface 
In the previous section, we aligned scaled crack models to a notch 

surface, such that the scaled curvature of the crack model fits the cur
vature of the notch surface. Therefore, the curvature c of the notch 
surface is necessary. Fig. 8 shows how c is determined. The local model 
in Fig. 8a) contains a notch. A closed cubic B-spline Γ→(s) =

(
Γx(s), Γy(s)

)

describes the surface of the notch. At a specific position s = sp, the axis ξ 
tangential to the notch surface is computed as shown in Fig. 8b). The 
normal axis η is perpendicular to the tangential axis ξ. Next, nfit,c points 
are sampled equidistant along the spline Γ→(si) =

(
xi, yi

)
in the interval 

si ∈

[

s −hcm
2 , s +hcm

2

]

. Our choice of nfit,c = 11 is argued in section 3.1.3. 

The height hcm is chosen in an iterative process described in section 
2.3.5. Fig. 8c) shows the sampled and transformed points 

(
xi, yi

)
⟿(ξi,

ηi) in the ξη-coordinate system. 

2.3.3. Displacement field fit 
Once the curvature is extracted, the boundary conditions of the crack 

model are determined. To this end, the displacement field of the local 
model is computed by a FEM analysis. Fig. 9a) shows the resulting 
deformed local model. Fig. 9b) shows the scaled crack model placed at a 
specific position sp on the notch. The displacements of the voxel mesh 
are interpolated onto nfit,u points on the three straight edges of the crack 
model boundary. Our choice of nfit,u = 28 is argued in section 3.1.3. The 
interpolated displacements are then transformed into the ξη-coordinate 
system, as shown in Fig. 9c). The final deformation u→

(
uRP,i, ξ, η, λl

)
and 

an offset vector u→off =
(

ξoff , ηoff

)
fit the transformed displacements u→j 

using the method of least squares by varying the reference point dis
placements u→RP and. u→off 

min
u→RP , u→off

∑nfit,u

j
‖ u→j − u→

(
uRP,i, ξ, η, λl

)
− u→off‖2. (24) 

The offset vector u→off handles the translation which does not intro
duce any deformation to the crack model. The fitted reference point 
displacements u→RP(s, hcm, lcm, c) depend on the position s as well as on 
the cell height hcm, the cell length lcm, and curvature c. 

2.3.4. Meta-Model 
As demonstrated in Fig. 7, it is possible to scale and align a crack 

model to any notch regardless of the curvature c’ as long as both are 
either convex or concave. However, for notches with a high absolute 
curvature |c| and crack models with a small absolute curvature |c’|, the 
scaled crack model can only predict a crack up to a small length an. 
Therefore, we recommend using crack models with various curvatures c’ 

and then choosing the best one. As shown in Fig. 10, the proposed meta- 
model consists of ncurv crack models with curvatures c’

i , ranging from 
c’

min = −1mm−1 to c’
max = 0.5mm−1. We set ncurv = 16, such that crack 

models are computed in 0.1 mm−1 steps. The minimum curvature c’
min is 

determined by the sharp corners of the curved side that distorts the finite 
elements, whereas the displacement fit only works properly if c’

max is not 
too big. 

Each crack model is computed as described in section 2.2.3. The 
components of the stiffness matrix K’(a’, c’), as well as the components 

of the stress tensor σ’
(

η’, u→’
RP, c’

)

and incremental energy release rate 

G’
inc

(

a’, u→’
RP, c’

)

are computed for each model and are interpolated 

piecewise linearly for the curvature c’. The max. principal stress σ’
I

(

η’,

u→’
RP, c’

)

is the greatest eigenvalue of σ’
(

η’, u→’
RP, c’

)

. 

2.3.5. Application of the SLMM 
In the previous section, crack models with various curvatures are 

precomputed in advance and an interpolation scheme is given. In this 
section, we describe an iterative process to find the best crack model in 
the meta-model for one position on a notch. The best crack model pre
dicts Ginc(a) and σI(η) up to a possibly large virtual crack length an and 
fulfills all constraints defined in the next paragraph. 

The code fragment (27) contains pseudo code to find the best crack 
model. First, the height hcm of the scaled crack model is set to a multiple 
φmin of the voxel element size lel,lm, because we observed that the scaled 
crack model must cover a minimum number of voxel elements to 
calculate the reference point displacements properly. Our choice of 
φmin = 10 is argued in section 3.1.3. Next, the length scale factor λl is 
computed. With λl, all other quantities such as the cell length lcm, the 
curvature c, and the reference point displacements u→RP can be calcu
lated in the real space as well as in the image space as l’cm, c’, and u→’

RP. 

Fig. 8. Computation of the local notch curvature c(s). a) A position on the notch surface is specified by s = sp. b) A coordinate system with a tangential axis ξ, and a 
normal axis −η is defined, and nfit,c points are sampled on the notch surface. c) The sampled points are transformed to the ξη-coordinate system and are fitted by a 
quadratic polynomial using the method of least squares. 
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Then, we can check if the scaled crack model violates one of the 
following constraints:  

1. The scaled crack model must not exceed the local model as shown in 
Fig. 11a)  

2. The scaled crack model must not intrude into the notch too much as 
shown in Fig. 11b). We allow at most two sampling points of the 
displacement fit to lie inside the notch. 

3. The notch must not have an undercut in the region where the cur
vature fit is performed as shown in Fig. 11c). Consequently, the ξi 
values of the sampled points must either increase or decrease 
monotonically with the sampled si values.  

4. The curvature in the image space must fulfill c’
min ≤ c’ ≤ c’

max.  

5. The curvature fit η(ξ, c) = c⋅ξ2 should approximate the notch surface 
sufficiently. To check this, the variance of the fitted curvature 

Var(c) =

∑nfit,c
i

(
ηi − c⋅ξ2

i

)2

(
nfit,c − 1

)
⋅
∑nfit,c

i ξ4
i

(25)  

is computed for the sampled ξi and ηi values [26]. An accurate fit of the 
notch surface fulfills. 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(c)

√
⋅h ≤ Δabs + Δrel⋅|c⋅h| . (26) 

In this work we use conservative settings for the absolute tolerance of 
Δabs = 0.01 and for the relative tolerance of Δrel = 0.1. 

If one of the constraints 1, 3, 4 or 5 is violated the iteration is 
stopped. If constraint 2 is not violated, the current length scale factor is 
assigned to λl,best : = λl. Then, we try a larger scaled crack cell hcm := hcm⋅ 
(1 + Δinc) and repeat the loop. Our choice of Δinc = 0.1 increases the 
scaled crack cell in each iteration by 10%. After the iteration stopped, 
λl,best is used as length scale factor. 

(27) 
Now, all quantities of the crack model in the real space and in the 

image space are calculated such as the curvatures c(s, hcm), c’(c, λl) and 

the reference point displacements u→RP(s, h, l, c), u→’
RP

(

u→RP

)

. The crack 

model predicts the max. principal stress σ’
I

(

η’, u→’
RP, c’

)

along the virtual 

Fig. 9. Computation of the reference point displacements u→RP. a) Displacement field u→(x, y) of the voxel mesh. At the position s = sp, a coordinate system ξη is 
aligned. b) The crack cell is placed onto the notch surface and the displacements of u→(x, y) are interpolated at nfit,u sampling points 

(
ξj, ηj

)
on the crack model 

border. c) The interpolated displacements u→j (arrows) are fitted by a linear combination of the deformation modes (golden line) defined in Fig. 6. 

Fig. 10. Crack models with various curvatures c′ are evaluated. Results f(c′

), 
like G′

inc, and σ′ are interpolated piecewise linearly. 

Fig. 11. Invalid crack cell alignments. a) The scaled crack cell exceeds the local 
model. b) The scaled crack cell intrudes into the notch. c) Undercut distorts the 
curvature fit. 
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crack path η’(η, λl) and the incremental energy release rate G’
inc

(

a’, u→’
RP,

c’
)

for various virtual crack lengths a’(a, λl). After those values are 

transformed back to the real space to Ginc
(
G’

inc, λl, λσ
)

and σI
(
σ’

I, λσ
)
, the 

CC computes a critical crack length ac and a failure index FI. 

2.4. Boundary relaxation 

When a crack grows, the displacement field in the whole component 
is influenced. However, our displacement-controlled (DC) submodel-like 
approach SLMM only considers the region inside the scaled crack 
model near the crack and neglects the additional deformation outside. 
So far, we assumed that the influence of the crack growth on the global 
displacement field outside the scaled crack model is neglectable. This 
assumption is only fulfilled if the crack is considerably smaller than the 
crack model. However, by introducing larger virtual cracks that can 
have a length up to half of the crack model length, this assumption is 
violated and the DC approach underestimates Ginc(a), as can be seen in 
Fig. 12. 

Fig. 12 shows two scaled crack models of different sizes as gold- 
colored curves (DC) used for the same position on a notch. The two 
scaled crack models are expected to return the same Ginc(a). The first 
model predicts Ginc(a) up to a virtual crack length of an,1, whereas the 
larger second model predicts Ginc(a) up to an,2. Since the first model is 
smaller than the second model, the first model underestimates Ginc(a) for 
the same crack length a more than the second model, because it con
siders the influence of the crack growth in a smaller region inside the 
model and neglects it in a greater region outside the model. The devi
ation between the smaller and the larger model is most visible at the 
maximum virtual crack an,1 length of the first model. 

2.4.1. Force-controlled boundary conditions 
An alternative idea to the DC approach would be a force-controlled 

(FC) approach, where reference point forces F→RP are applied instead of 
fixing the reference point displacements u→RP(s, h, l, c). The easiest way 
to do so is to compute the reference point displacements u→’

RP( u→RP) =

u→RP in the image space first because the stiffness matrix K’(a’, c’) in the 
image space is already known. For the unnotched model with a virtual 
crack length a’ = 0mm, the boundary conditions are not affected by a 
crack, so the DC and FC approaches are identical. The unnotched model 

yields the reference point forces F→
’
RP,FC

(

K’
0, u→’

RP

)

= K’
0⋅ u→’

RP with 

K’
0(c’) = K’(a’ = 0mm, c’) and the displacement-controlled u→’

RP. The FC 

forces F→
’
RP,FC

(

K’
0, u→’

RP

)

and the stiffness matrix K’(a’, c’) result in the 

FC reference point displacements. 

u→’
RP,FC

(

K’, F→
’

RP,FC

)

= K’−1⋅ F→
’

RP,FC. (28) 

Since K’(a’, c’) and thus u→’
RP,FC

(

K’, F→
’

RP,FC

)

depend on the virtual 

crack length a’, the incremental energy release rate G’
inc

(

a’, u→’
RP,FC, c’

)

can be computed along the virtual crack length a’(a, λl). 

In contrast, the max. principal stress σ’
I

(

η’, u→’
RP,FC

(

K’
0, F→

’
RP,FC

) )

is 

evaluated for the unnotched model with a virtual crack length a’ = 0mm 

and a stiffness matrix K’
0(c’). G’

inc

(

a’, u→’
RP,FC, c’

)

and σ’
I

(

a’, u→’
RP

)

are 

then scaled to the local model to yield Ginc
(
G’

inc, λl, λσ
)

and σI
(
σ’

I, λσ
)
. As 

depicted in Fig. 12 as dark blue curves, the FC approach overestimates 
Ginc. While σI is independent of the DC or FC approach, Ginc is under
estimated by DC and overestimated by FC. 

2.4.2. Scaling law Meta-Model with auto-controlled boundary conditions 
(SLMM + AC) 

The auto-controlled (AC) approach mixes the DC and FC approaches. 
Therefore, mixed reference point displacements 

u→’
RP,MC

(

u→’
RP, u→’

RP,FC, w
)

= (1 −w)⋅ u→’
RP +w⋅ u→’

RP,FC weight the DC and 

FC reference point displacements u→’
RP

(

u→RP, λl

)

and u→’
RP,FC

(

K’,

F→
’
RP,FC

)

by a weighting factor w. 

As can be seen in Fig. 12, the incremental energy release rates of two 
scaled crack models (1) and (2) diverge the most at a virtual crack length 
an,1 for the golden DC and the dark blue FC approach. The AC approach 
tries to minimize divergence between (1) and (2) by varying the 
weighting factor w in an interval w ∈ [0, 1]. Therefore, we continuously 
insert previously defined quantities (a’, λσ ,G’

inc, ⋯) into the incremental 
energy release rate. 

Ginc
(
G’

inc, λl, λσ
)
→Ginc

(

G’
inc

(

a’(⋯), u→’
RP,MC(⋯), c’(⋯)

)

, λl, λσ(⋯)

)

,

(29) 

such that only the independent quantities virtual crack length a, 
position on the notch s, material’s Young’s modulus E, length scale 
factor λl and weight factor w remain free and we can express Ginc(a, s, E,

λl, w) as a function of these independent quantities. The size of the two 
scaled crack models is controlled by the length scale factor λl. The first 
model is half as big as the second model, so the length scale factor is 
λl,1 = 0.5⋅λl,2. The length scale factor λl,2 of the second model is 
computed as described in section 2.3. 

We can now compute two incremental energy release rates Ginc
(
a, s,

E, λl,1, w
)

for the smaller-scaled crack model (1) in Fig. 12 and Ginc
(
a, s,

E, λl,2, w
)

for the bigger scaled crack model (2) up to a max. crack length 
of an,1 = an

(
λl,1

)
. As already mentioned, the incremental energy release 

rates of the two models of different sizes deviate from each other for the 
DC approach with w = 0. Furthermore, the incremental energy release 
rates deviate also for the FC approach with w = 1. However, there is one 
weighting factor w at which the incremental energy release rates fit 
together. The weighting factor w can be found by minimizing the de
viation of the incremental energy release rates at a virtual crack length 
.an,1 

min
w

‖Ginc
(
an,1, s, E, λl,1, w

)
− Ginc

(
an,1, s, E, λl,2, w

)
‖2. (30) 

As shown in Fig. 12, these red SLMM + AC curves do not deviate so 

Fig. 12. Two crack models (1) and (2) of different sizes are applied to the same 
location on a notch. Both crack models predict the incremental energy release 
rate Ginc(a) both force-controlled (FC) and displacement-controlled (DC). At 
an,1, both FC and DC are inconsistent. The Auto-Controlled (AC) approach tries 
to minimize this inconsistency at an,1 and therefore gains more accurate results. 
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much from each other, and they are a better approximation for Ginc. The 
weight factor is computed for each position on the notch separately and 
is, therefore, a function w(s) of the notch position s. In the further 
analysis, the results obtained from the scaled crack model (2) are used, 
because they cover a wider virtual crack length range from 0mm to an,2. 

3. Results 

The aim of this work is to provide a novel method to apply the CC in 
an efficient, versatile, and accurate manner. In this section, we first 
compare the accuracy of the novel SLMM approach with a Full FEA 
approach and experimental data. Then, we consider the efficiency and 
finally we explain when SLMM can be used for different materials given 
in Table 2. If not stated otherwise, we use a plane stress state and a 
Poisson’s ratio of ν = 0.35. 

3.1. Accuracy of SLMM and SLMM + AC 

To assess the accuracy of SLMM and SLMM + AC, we compare their 
results to those of the Full FEA approach for two notch geometries. A 
circular hole geometry is validated with experimental data out from the 
literature. Furthermore, model parameters are validated with the help of 

a complex-shaped notch. 

3.1.1. Circular notch 
Fig. 13a) shows a rectangular model with 100mm side length that 

contains a circular hole with a radius of r = 20mm. The boundary 
conditions at the model margins are defined by the strains εxx = 0, εyy =

0.1 and γxy = 0. The plate material is PMMA as defined in Table 2. The 
stresses and the incremental energy release rate are predicted by Full 
FEA, SLMM, and SLMM with auto-controlled boundary conditions 
(SLMM + AC) at three positions on the cavity. In addition, all three 
approaches calculate the failure index FI over the entire circular hole. 
The height of the scaled crack cells is set to h = 38.7mm for SLMM and 
SLMM + AC. 

Fig. 13 shows good agreement between Full FEA, SLMM + AC, and 
SLMM. The incremental energy release rate Ginc of SLMM in Fig. 13b) 
shows a big deviation compared to Full FEA at longer virtual crack 
lengths a, whereas SLMM + AC agrees better with Full FEA due to the 
boundary relaxation approach. This approach influences Ginc but neither 
the stress components σxx, σyy, and σxy in Fig. 13e-f) nor σI. Conse
quently, the stresses are identical for SLMM and SLMM + AC. At the 
cyan position in Fig. 13d), the stress component σxx of SLMM and SLMM 
+ AC differ from the Full FEA values. However, this influences the max. 
principal stress σI in Fig. 13c) only by −7.7%. The most critical failure 
index FI occurs at the red position and is overestimated by SLMM and 
SLMM + AC by 7.96% and 7.98%, respectively. 

SLMM + AC agrees well with full FEA computations of a circular 
hole. We further validate SLMM + AC using the work of Sapora et al. 
[15], who provide experimental data as well as analytical CC predictions 
for specimens shown in Fig. 14. The specimens are made of PMMA and 
contain a circular hole of various radii r. A crack initiates at the hole 
when a critical force Fc is applied. 

Since the specimens have a thickness of 10mm, we assume plane 
strain conditions and compute the fracture energy as Gc = K2

Ic
(
1 −ν2)/

E. 

Fig. 13. Application of the Full FEA, the auto-controlled SLMM (SLMM + AC) and the displacement-controlled SLMM (SLMM) at a circular hole. A strain of εxx = 0, 
εyy = 0.1 and γxy = 0 is applied to the model borders. SLMM underestimates Ginc at longer virtual crack lengths in b), whereas the auto-controlled boundary con
ditions of SLMM + AC are a good approximation. The max. principal stress σI in c) is computed out of the stress components in d), e) and f) and shows good 
agreement of the SLMM/SLMM + AC approaches compared to the Full FEA. 

Table 2 
Mechanical material properties. Literature provides values for KIc that are 
converted to the fracture energy by Gc = K2

Ic/E under the assumption of a plane 
stress state. Irwin’s length lch = K2

Ic/σ2
c refers the toughness KIc to the strength 

σc.   

Gc

(
J

m2

)
σc(MPa) E(MPa) lch(mm)

PMMA [15] 1298 70.5 2, 960  0.773 
PS [15] 632.3 30 3, 100  2.18 
Al2O3 [27,28] 40 400 300,000  0.75  
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The Poisson’s ratio is ν = 0.38. We used Abaqus [29] to simulate the 
displacement field in the local model and then applied SLMM + AC to 
the right side of the circular hole. 

Good agreement is obtained between SLMM + AC predictions, 
analytical CC predictions, and experimental data. The maximum devi
ation between SLMM + AC and analytical CC is 4.5% for a hole radius 
r = 0.5mm. However, SLMM + AC is not applicable for the smallest 
radius r = 0.25mm, because of a restriction discussed in section 3.3. 

3.1.2. Complex-shaped notch 
The following Fig. 15a-c) illustrates the SLMM + AC and Full FEA 

results of a complex-shaped notch under three load cases. In the first 
row, a strain of εxx = 0.1, εyy = 0.0, γxy = 0.0 is applied to the model 
boundaries, whereas in the second row, εxx = 0.0, εyy = 0.1, γxy = 0.0 is 
used and the third row shows the deformation, due to a strain of εxx =

0.0, εyy = 0.0, γxy = 0.1. The plate material is PMMA as defined in 
Table 2 for all three cases. The first picture in each row depicts the 
deformed notch and defines and enumerates critical positions. The 
second plot in each row shows the failure index FI over the position of 
the Full FEA and the SLMM + AC approaches. At positions close to s =

120mm, the geometry has a complex detail highlighted by point A in 
Fig. 15a) that leads to a discrepancy between both methods. The 
discrepancy is a result of the approximations made during the defor
mation and curvature fit. However, SLMM + AC finds all critical posi
tions. The right plots show the computation of CC for the notch position 
with the highest load factor. Whereas the stresses of the SLMM + AC fit 
the stresses of the Full FEA well, the incremental energy release rates 
deviate for longer virtual cracks. The auto-controlled boundary condi
tions cannot fully compensate for the assumption made by the 
submodel-like approach, and this leads to a deviation. 

3.1.3. Validation of model parameters 
At many points during the development of the SLMM method, it was 

necessary to make assumptions. They were tested as the tool was 
developed. Here, we justify the selection of the parameter values varied. 
Those parameters are the number of sampling points in the curvature fit 
nfit,c, the number of sampling points in the displacement fit nfit,u, the 
number of introduced crack lengths ncracks, the set containing the 
deformation modes D, the minimum size ratio of the scaled crack model 
φmin, the mesh size in the crack model lel,cm, the number of elements in 
the local model nel,lm and the mesh size of the reference model lel,full. 
Their influence on the max. principal stress σI and on the incremental 
energy release rate Ginc is listed in Table 3. 

Therefore, one parameter v at a time is set once to its default value 
v = v1 and once to a modified value v = v2. SLMM and Full FEA analyses 
are performed with both settings v1 and v2 in the model shown in 
Fig. 15a) at position (1) and the max. principal stress σI(η, v) as well as 
the incremental energy release rate Ginc(a, v) are calculated. The 
maximum relative effect on σI(η, v) and Ginc(a, v) over the virtual crack 
path η or the virtual crack length a are computed as. 

ΔσI = 100%⋅max
η

{1 − σI(η, v1)/σI(η, v2) }

ΔGinc = 100%⋅max
a

{1 − Ginc(a, v1)/Ginc(a, v2) }
. (31) 

The observed effect is less than 1% and hence neglectable nfit,c, nfit,u, 
lel, cm and lel, full. The results of the five deformation modes in Dimp differ at 
most 2.5% from the results of the 16 deformation modes in Dall. The 
number of voxel elements nel,lm in the local model leads to an acceptable 
effect of at most 3.9%. 

The number of virtual crack lengths ncracks introduced in the crack 
model does not influence ΔσI, but significantly influences ΔGinc. The 
piecewise linear interpolation Ginc(a, v2) does not look smooth, which 
explains the high effect. However, the interpolation Ginc(a, v1) looks 
smooth. 

As described in section 2.3.5, the scaled crack model must be at least 
φmin = 10 times larger than the voxel element size, because each scaled 
crack model must cover a minimum number of voxel elements to fit the 
reference point displacements u→RP properly. At position (1), the scaled 
crack model exactly fulfills this minimum requirement of being φmin 

times larger than a voxel element. Consequently, u→RP is fitted with 
φmin = v1 not as accurately as with φmin = v2, which leads to a larger 
scaled crack model that covers more voxel elements. However, for 
φmin = v2 the notch curvature c is fitted not as accurately as with φmin =

v1. This dilemma of either fitting u→RP or c accurately, is not completely 
resolved at position (1) and leads to a high relative error that is also the 
main cause for the deviation of Ginc in Fig. 15a). 

3.2. Efficiency of SLMM + AC 

A primary goal of this work is to evaluate all positions on a notch in 
terms of crack initiation efficiently. Note, that the focus is on method 
development. Further improvements are possible by code optimizations, 
whereas the most time-consuming tasks are the FEM analyses. To 
investigate crack initiation on npos positions of a notch, Full FEA needs in 
total npos⋅(ncracks +1) FEM analyses, whereas SLMM + AC only needs one 
FEM analysis for the voxel-model. 

Fig. 14. The right image shows a specimen with a thickness of 10 mm and a circular hole of a certain radius r. Crack initiation occurs at the circular hole once a 
critical force Fc is applied. Sapora et al. [15] provide experimental data and analytical CC predictions for various radii r ∈ [0.25, 0.5, 1.0, 2.0] mm. SLMM + AC agrees 
well with values provided in the literature, except for r = 0.25 mm at which SLMM + AC is not applicable, because of a restriction discussed in section 3.3. 
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The precomputation of the crack model needed by SLMM + AC does 
FEM analyses for each curvature c’ of the crack model, for each defor
mation mode |D| and for each introduced virtual crack length (ncracks +

1) including a zero-length crack. In total, ncurv⋅|D|⋅(ncracks +1) FEM ana
lyses are necessary. However, the precomputation is performed only 
once for one material and can be used again for other notch geometries. 

The runtimes of SLMM + AC and Full FEA are further compared on a 
local PC with 16 GB RAM, an Intel® i5-6500 CPU with 4 cores, and 3.2 

GHz clock rate. SLMM + AC and Full FEA is written in Anaconda Python 
3.7 [30] and in Abaqus Python 2.7. Abaqus 2017 [29] is used for the Full 
FEA approach as well as the precomputation of the crack models. To 
avoid the dependency on the commercial Abaqus software during the 
application of SLMM + AC, the voxel model is implemented purely in 
Anaconda Python. SuperLU [31], provided by SciPy [32], solves the 
linear equation system, which arises from the voxel model. 

The precomputation takes 1 h 46 min to compute the crack model in 
advance. SLMM + AC takes 2 min 48 s to simulate the voxel mesh with 

Fig. 15. Comparison of SLMM + AC results with Full FEA results. The left images depict the deformation of the notch and define and number critical positions. The 
failure indices are plotted in the middle images. The right images show the application of CC on the most critical positions. 
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106 voxel elements and 0.66 s to predict one position on the notch, 
whereas the Full FEA needs 2 min 50 s for each position. 

3.3. Applicability of SLMM + AC 

SLMM + AC should not only be efficient and accurate as discussed in 
the previous sections but should also be a versatile tool that can be used 
for different notches and different load cases. However, SLMM + AC 
computes results only up to a virtual crack length of an and therefore has 
some restrictions which we discuss in this section. 

According to the CC and scaling laws the equation. 

|c
′

|⋅
G′

inc

(
a′

c

)
⋅E′

(
σ′

I
(
a′

c

) )2

⏟̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅⏟simulation

= |c|
⏟⏞⏞⏟notch

⋅
Gc⋅E

σ2
c⏟̅⏞⏞̅⏟lch

(32)  

is fulfilled for an initiating crack of length ac = λl⋅a’
c. Both sides of 

equation (32) are dimensionless. The left side contains quantities cor
responding to the precomputed crack model in the image space, whereas 
the right side contains the notch curvature c and Irwin’s length lch, which 
is a material property composed of the fracture energy Gc, the Young’s 
modulus E, and the strength σc.

SLMM + AC is only applicable if the length of the initiating crack ac is 
not bigger than the maximum predictable virtual crack length an. 
Furthermore, the left side of equation (32) increases monotonically with 

increasing ac, if σI decreases and Ginc increases along the crack path. 
Consequently, evaluating the left side at the max. predictable virtual 
crack length ac = an results in an upper bound which we call applicability 
factor. 

Aplmax =
1
r’⋅

G’
inc

(
a’

n

)
⋅E’

(
σ’

I
(
a’

n

) )2 ≥
lch

r
. (33) 

We use the notch radius r∝|c|
−1 and Irwin’s length lch instead of the 

notch curvature c and the material properties Gc, E, and σc. Inequality 
(33) can be used to provide a lower limit for the notch radius r ≥ lch/

Aplmax and therefore, check if SLMM + AC is applicable to a problem. 
We investigate the applicability for four problems: Two notch ge

ometries each under two load cases. Fig. 16 depicts specimens with a 
circular hole in a) and b) as well as specimens with a blunted V-notch in 
c) and d). Uniaxial tension (εxx = 0.0,εyy = 0.1,γxy = 0.0) is applied to 
the specimens a) and c), whereas b) and d) are loaded with pure shear 
(εxx = 0.0, εyy = 0.0, γxy = 0.1). The radii r of the circular hole and the 
blunted V-notch are varied. The crack model is aligned to the position 
marked as sp and has a length of lcm = 1.95⋅r for the circular hole and 
lcm = 2.15⋅r for the blunted V-notch. This corresponds to a curvature of 
c’ = −0.6mm−1 in the virtual space. The crack model is placed hori
zontally on the right side of the notch for uniaxial tension a) and c), 
under 45◦ for specimen b) and 10◦ for specimen d), see Fig. 16. In the 
case of more complex notches, a smaller crack model in relation to the 
radius might be necessary to fit the notch surface. Then, the applicability 
factor Aplmax drops and must be recomputed. 

The applicability factor is Aplmax = 2.53 for a), Aplmax = 4.68 for b), 
Aplmax = 3.06 for c) and Aplmax = 0.964 for d). The differences between 
the tension load for the circular hole a) and the blunted V-notch c) are 
rather small. The shear deformation for a circular hole corresponds to a 
rotated tension load, so the deviation between a) and b) is due to the 
rotation of the load. The shear load for the V-notch d) reduces Aplmax by a 
factor of about 3 compared to the tension load in c). For the computa
tions, a Poisson’s ratio of ν = 0.35 and plane stress conditions were used. 
However, we checked Poisson’s ratios between ν = 0.01 and ν = 0.49 
for specimen a) and observed only a small change of Aplmax between 2.29 
and 2.96. A plane strain state leads for specimen a) to an applicability 
factor of Aplmax = 1.97. 

The applicability factor can be used to check whether SLMM + AC is 
applicable to a problem. Therefore, Fig. 16 plots equation (33) in a 

Table 3 
Validation of model parameters. In the model shown in Fig. 15a), analyses are 
performed at position (1) twice for each listed model parameter. Once with the 
default setting v1 and another time with the modified setting v2. The maximum 
effect over the virtual path length for the max. principal stress and the incre
mental energy release rate are computed.  

Parameter v1 v2 ΔσI ΔGinc 

nfit,c 11 21  0.4%  0.7% 
nfit,u 28 58  0.4%  0.9% 
ncracks 10 5  –  14.2% 
D Dimp Dall  2.5%  1.2% 
φmin 10 20  5.4%  17.21% 
lel, cm/mm 0.01 0.02  0.0%  0.6% 
nel,lm 106 5⋅105  1.9%  3.9% 
lel, full v1

v2
= 2 0.1%  0.1%  

Fig. 16. The applicability of SLMM + AC is discussed with the help of four specimens a-d). SLMM + AC is applicable to a specimen with a certain radius r and a 
material with a certain Irwin’s length lch, if the point (r, lch) lies below the line corresponding to the right specimen and load case. 
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diagram where Irwin’s length lch is plotted over the radius r. For the four 
cases a-d), separate lines are plotted. The region below a line is feasible 
for SLMM + AC. This allows finding the minimum notch radius r for a 
given specimen, material and load case. As depicted by line (1), a radius 
r of at least 0.03mm is required when a notch made of Al2O3 under 
tension is investigated, whereas the specimen d) requires a radius r of at 
least 0.09mm (2). The notch radius must be greater than 0.9mm (3) for a 
PMMA specimen depicted in d) and greater than 2.3mm (4) if poly
styrene is used instead. 

4. Conclusions 

A fully automated and efficient method is proposed to predict crack 
initiation for arbitrary shaped notches and load cases using the Coupled 
Criterion (CC) in a 2D model. However, the notch must not contain a 
sharp edge or crack. The method splits a crack initiation analysis into 
two steps. In the first step, crack models are precomputed for one ma
terial and five unique deformation modes. In the second step, these pre- 
computed results are scaled to an actual notch using dimensional anal
ysis, linear superposition, and meta-modeling. Furthermore, we propose 
a relaxation method for the boundary conditions to increase the accu
racy of the incremental energy release rate prediction. The results are 
compared to those given by a Full FEA approach, which uses fully 
modeled finite element analyses. 

Our main findings are:  

1. The proposed method is tested with three load cases and can identify 
the most critical position on a notch with a complex shape. The 
prediction of the failure index at the most critical position is in all 
examples too conservative. The failure index is overestimated by up 
to 10.8% compared to predictions made by the Full FEA approach.  

2. The proposed method is considerably more efficient than a Full FEA 
approach. Analyzing 50 positions on a notch takes 3 min 20 s with 
our novel method compared to 2 h 21 min with the Full FEA 
approach on a 4-core desktop computer.  

3. Due to the multi-scale approach, only small initiating cracks can be 
predicted. Depending on the ratio of strength and fracture toughness, 
the notch geometry, and the load case, it is thus possible to investi
gate notches with a curvature radius above a limiting value. For a 
circular hole specimen under uniaxial tension, Irwin’s length of the 
material must lie below 2.53 times the radius of the circular hole. 

The proposed fully-automized and fast approach can be extended to 
3d or can be used in models that feature crack growth as well. 
Furthermore, the method can help to model and thus optimize hetero
geneous materials. 
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J. Carey, İ. Polat, Y.u. Feng, E.W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, 
R. Cimrman, I. Henriksen, E.A. Quintero, C.R. Harris, A.M. Archibald, A.H. Ribeiro, 
F. Pedregosa, P. van Mulbregt, SciPy 1.0 Contributors, SciPy 1.0: Fundamental 
Algorithms for Scientific Computing in Python, Nat. Methods. 17 (3) (2020) 
261–272. 

M. Rettl et al.                                                                                                                                                                                                                                    

71





73

Paper B

ConForce: Computation of Configurational

Forces for FEM Results

Authors: Rettl, Matthias

Frankl, Siegfried

Pletz, Martin

Tauscher, Markus

Schuecker, Clara

SoftwareX

DOI: 10.1016/j.softx.2024.101718

https://doi.org/10.1016/j.softx.2024.101718


SoftwareX 26 (2024) 101718

Available online 1 April 2024
2352-7110/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ConForce: Computation of configurational forces for FEM results 
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A B S T R A C T   

ConForce is a tool for evaluating nodal configurational forces (CF) from FEM results. ConForce supports 2D plane 
strain and 3D volume elements in a solver-independent manner. Furthermore, large displacements in static load 
cases are considered. ConForce accesses previously generated and compiled C code from Python via a C code 
binding. This compiled C code is provided for predefined element types, but can be regenerated for other element 
types. ConForce also includes an Abaqus plug-in with a graphical user interface. This Abaqus plug-in allows to 
easily add CF to the Abaqus output file.   

Metadata  

Nr Code metadata description Please fill in this column 
C1 Current code version 1.0.5 
C2 Permanent link to code/repository 

used for this code version 
https://github.com/mrettl/conforce 

C3 Permanent link to reproducible 
capsule  

C4 Legal code license MIT 
C5 Code versioning system used Git 
C6 Software code languages, tools and 

services used 
Python 3.7, Abaqus Python, C 

C7 Compilation requirements, operating 
environments and dependencies 

Operating systems: Windows 64-bit, 
Linux 64-bit 
For the plug-in: Abaqus 2017 to 
Abaqus 2023 
For the Python package: NumPy, 
SymPy 
For the implementation of additional 
element types: GNU C-compiler 

C8 If available, link to developer 
documentation/manual 

https://conforce.readthedocs.io 

C9 Support email for questions martin.pletz@unileoben.ac.at   

1. Motivation and significance 

Configurational forces (CF) are used in shape optimization [1], mesh 
optimization [2,3], and to study material inhomogeneities [4]. 
Furthermore, CF are a generalization of the scalar J-Integral of Rice [5] 
widely used in Fracture Mechanics (FM) [3,4,6–12] and an alternative 

computation method for the vectorial J-Integral of Budiansky and Rice 
[13]. CF relate the energy release with a change in the reference 
configuration [4] that may be a movement of an inhomogeneity or crack 
growth [3]. Furthermore, CF can be computed in the post-processing of a 
FE analysis without additional simulations. 

Another benefit of CF as well as of the vectorial J-Integral is that in 
FM they predict the energy release rate and the direction of maximum 
energy release rate [14–16]. However, for curved cracks or mixed-mode 
loadings, the direction might be inaccurate and correction schemes are 
necessary [6,12]. 

Although, CF are popular, most commercial FEM codes do not pro
vide an output of CF. An exception is Ansys [17] that provides a CF based 
evaluation of the crack tip J-Integral. We started developing ConForce 
for the paper of Frankl et al. [6] and make it publicly available in this 
work. 

We consider two formulations of CF, which we call motion-based 
formulation (MBF) and displacement-base formulation (DBF). The 
MBF approach was presented by Mueller and Maugin [3] for elastic and 
non-linear elastic materials in the large strain framework. Based on the 
Helmholtz energy density Ψ, the identity matrix I, the deformation 
gradient F, and the first Piola-Kirchhoff stress tensor P, the Eshelby stress 
tensor or energy-momentum tensor 

Σ(MBF) = Ψ⋅I − F⊤P (1)  

is defined [18] in the reference configuration. According to Mueller and 
Maugin [3], the nodal CF for the ith node and its corresponding shape 
function hi are computed using two integrals: 
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g(MBF)

nodal, i =

∫

∂B

(
Σ(MBF) N

) ∂hi

∂X
dS

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

g(MBF,S)

nodal, i

−

∫

B

Σ(MBF) :
∂hi

∂X
dV

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

g(MBF, V)

nodal, i

(2) 

The first integral yields g(MBF,S)

nodal, i and is evaluated over the surface ∂B 

of a body B . It uses the Eshelby stress Σ(MBF), the surface normal vector 
N, the ith shape function hi, and the reference position vector X. The 
second term g(MBF, V)

nodal, i contains a volume integral over the body B . 
Following the work of Müller and Maugin [3], we compute only the 

g(MBF, V)

nodal, i and neglect the surface integral g(MBF,S)

nodal, i ≈ 0, because the eval
uation of the surface integral from FEM results introduces numerical 
errors. Neglecting g(MBF,S)

nodal, i is valid for nodes not lying on a physical 

boundary. In FM, g(MBF,S)

nodal, i is often neglected for nodes on crack faces, 
which might lead to inaccurate results [12]. 

Gurtin [19] describes the DBF approach for the evaluation of CF for 
infinitesimal deformations: First, a modified Eshelby relation 

Σ(DBF) = Ψ⋅I −

(
∂U
∂X

)⊤

P (3)  

is defined. Compared to Eq. (1), the deformation gradient is replaced by 
the gradient of the displacement vector U. Next, the nodal CF g(DBF,S)

nodal, i , 

g(DBF, V)

nodal, i ,and g(DBF)

nodal, i are defined similar to Eq. (2). In absence of body 

forces, the CF of the two approaches are the same g(DBF)

nodal, i = g(MBF)

nodal, i [19]. 
Analogous to the MBF approach, the surface integral is neglected. 

The MBF and DBF formulations of CF are valid for linear and non- 
linear elastic materials in the large strain framework. However, exten
sions for dynamics [4,11], plasticity [9,10], and the small strain 
framework [7] have been proposed. 

2. Software description 

ConForce can be used either as a Python package or as an Abaqus 
[20] plug-in. The Python package can be installed from PyPi [21]. The 
user can pass FEM results of any FEM code to a function that computes 
the nodal CF. The Abaqus plug-in reads the energy density, stresses, 
coordinates, and displacements from an Abaqus output database (ODB) 
file, computes the nodal CF, and writes them back to the ODB file. 

2.1. Software architecture 

As shown by Fig. 1, ConForce is split into three packages: 

• conforce_gen: Symbolic computation, code generation and compila
tion of the package conforce.  

• conforce: Methods for the computation of nodal CF.  
• conforce_abq: Abaqus specific package for working with ODB files 

that is used by the Abaqus plug-in. 

The packages run either in Python 2.7 (conforce_abq/conforce) or in 
Python 3 (conforce_gen/conforce). The package conforce is cross- 
compatible between Python 2.7 and Python 3. We use the deprecated 
Python 2.7 for the Abaqus-specific part, because Abaqus up to version 
2023 uses Python 2.7. To develop and maintain ConForce as an up-to- 
date Python package, conforce_gen and conforce are executable in Py
thon 3. 

Additionally, a plug-in file conforce_abq_plugin.py is provided that 
contains code for a graphical user interface (GUI). This GUI can be 
opened in Abaqus by clicking on the toolbar entry Plug-ins -> Conf. 
force. 

Package ‘conforce_gen’ 
ConForce already provides a number of element type 

Fig. 1. Components of ConForce. The package conforce_gen generates the package conforce, which is cross-compatible between Python 2.7 and Python 3 and 
computes nodal CF. The Abaqus-specific package conforce_abq reads and writes nodal CF from and into the ODB file. The plug-in script conforce_abq_plugin.py 
contains code for a graphical user interface. 
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implementations for Windows 64-bit and Linux 64-bit. The conforce_gen 
package allows additional element types to be implemented or compiled 
for other operating systems. The package is used to generate the package 
conforce. The element types are defined in a reference space by the 
coordinates of their nodes and integration points, by their shape func
tions and their weights of the integration points. The module ele
ment_definitions.py contains these data. A new element type can be 
added by writing its element information into element_definitions.py. 
The module expressions.py uses this element information of ele
ment_definitions.py for the symbolic computation of the nodal CF, 
which is performed by the package SymPy [22]. From the symbolic 
computation, the module codegen.py generates the Python module cf_c. 
py and the C-code file _cf_c.c in the package conforce. Furthermore, _cf_c. 
c is compiled using the GNU gcc compiler into _cf_c.dll for Windows 
64-bit or _cf_c.so for Linux 64-bit. 

Package ‘conforce’ 
This package is cross-compatible between Python 2.7 and Python 3. 

The method compute_CF of the module cf_c.py provides an easy and fast 
computation of the nodal CF. The module cf_c.py binds to the binaries 
_cf_c.dll and _cf_c.so via the ctypes package. The computation itself is 
performed by the binaries efficiently. 

Package ‘conforce_abq’ 
This package contains Abaqus-specific Python 2.7 code. The module 

main.py provides a single function called apply, which reads displace
ments, stresses, and energy densities from an Abaqus ODB file and adds 
nodal CF to the same ODB file. 

Plug-in script ‘conforce_abq_plugin.py’ 
The plug-in script conforce_abq_plugin.py defines a GUI, which can 

be opened in the Plug-in toolbar of Abaqus CAE. Once the user clicks the 
apply button in the GUI, the apply function of the package conforce_abq 
is called and nodal CF are computed for a selected Abaqus ODB file. 

2.2. Software functionalities 

ConForce can be used either as Abaqus plug-in or as a stand-alone 
Python package for Python environments with version 3.7 or higher. 

2.2.1. Python package 
The Python package for Python 3.7 and higher can be installed from 

PyPi with pip. pip install conforce 
This installs the packages conforce and conforce_gen as described in 

Section 2.1 and already contains compiled binaries. ConForce is able to 
process the element types listed in Table 1. The element types are named 
according to the Abaqus convention [20]. Element names starting with 
“CPE” are continuum plane strain elements in d = 2 dimensions. The 
prefix “C3D” stands for continuum d = 3 dimensional elements. 

The standalone version of ConForce requires the user to provide the 
node coordinates X_at_nodes in the reference configuration, the node 
displacements U_at_nodes, the energy densities e_at_int_points, and the 

Cauchy stress tensors at the integration points S_at_int_points. The 
detailed data structure is explained in the online documentation. 

Code snippet 1 shows how to compute nodal CF with these data for 
one 2D element. First, the module cf_c from the package conforce is 
imported. Next, the method compute_CF is called. The nodal CF are 
computed using the MBF method for one element el=1 of type "CPE4R" 
with d = 2, n = 4, and ips=1 as defined in Table 1. From the numbers el, 
d, n, and ips, the shapes of the arrays X_at_nodes, U_at_nodes, e_at_int_
points, and S_at_int_points is derived as described in the code snipped. 
For example, X_at_nodes is an array of shape (el, n, d). Note, that the 
order of the nodes and integration points inside the arrays must match 
the order defined in the Abaqus documentation for each element type. 
Unlike Abaqus, the Cauchy stress tensors in S_at_int_points are given as 
full (symmetric) stress tensors instead of vectorized tensors. This pre
vents confusion about the ordering of tensor components. Finally, the 
function returns the contribution of the element to the nodal CF. The 
user has to sum these contributions for each node. For cases with various 
element types, the method compute_CF must be called for each element 
type. 

Code snippet 1: Computation of nodal CF for an element with four nodes 
and one integration point in two dimensions. from conforce import cf_c cf_c. 
compute_CF( 

# supported methods are "mbf" or "dbf" 
method="mbf", 
# same element type names as Abaqus 
element_type="CPE4R", 
# coordinates of nodes 
# in the reference configuration 
# shape of array (el, n, d) 
X_at_nodes=[[ 

[0., 0.], 
[1., 0.], 
[1., 1.], 
[0., 1.], 

]], 
# displacement of nodes 
# shape of array (el, n, d) 
U_at_nodes=[[ 

[0.0, 0.0], 
[0.1, 0.0], 
[0.1, 0.0], 
[0.0, 0.0], 

]], 
# energy densities at integration points 
# in the reference configuration 
# shape of array (el, ips) 
e_at_int_points=[[10.]], 
# Cauchy stress tensors at integration points 
# shape of array (el, ips, d, d) 
S_at_int_points=[[[ 

[100., 0.0], 
[0.0, 0.0] 

]]], 
) 
# Result array of shape (el, n, d): 
# array([[[50., −5.], 
# [−50., −5.], 
# [−50., 5.], 
# [50., 5.]]]) 

2.2.2. Abaqus plug-in 
The second way to use ConForce is the Abaqus plug-in provided with 

ConForce in the release folder. The downloaded folder needs to be 
placed into the plug-in directory of Abaqus CAE. A new entry named 
“Conf. Force” will appear in the “Plug-ins” toolbar the next time Abaqus 
CAE is started. Clicking on this “Conf. Force” entry will open the GUI 

Table 1 
Element types currently supported by ConForce. The brackets define the number 
of dimension d, the number of nodes n, and the number of integration points ips 
ordered as (d, n, ips).  

Shape function Linear Quadratic 

Integration order Full Reduced Full Reduced 

2D 

Triangular CPE3 
(2, 3, 1)  

CPE6 
(2, 6, 3)  

Quadrilateral CPE4 
(2, 4, 4) 

CPE4R 
(2, 4, 1) 

CPE8 
(2, 8, 9) 

CPE8R 
(2, 8, 4) 

3D 

Brick C3D8 
(3, 8, 4) 

C3D8R 
(3, 8, 1) 

C3D20 
(3, 20, 27) 

C3D20R 
(3, 20, 8) 

Tetrahedron C3D4 
(3, 4, 1)  

C3D10 
(3, 10, 4)  

Triangular Prism C3D6 
(3, 6, 2)  

C3D15 
(3, 15, 9)   
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shown in Fig. 2. 
The GUI allows to select an ODB file opened in the current Abaqus 

window. The simulation should use the large strain framework by 
setting the NLGEOM flag to ON. The ODB file must contain at least the 
following field outputs:  

• displacements (U)  
• stresses (S)  
• energy densities (such as SENER) 

In addition, the ODB must have been opened with the read-only 
check box unchecked, such that the new output can be written to the 
ODB file by the plug-in. 

The computation method defines if the MBF or DBF formulation is 
used. The next text field considers the field output name of the energy 
density. ConForce supports elasticity and should consider the elastic 
strain energy density “SENER”. However, Kolednik et al. [9] suggest 
adding the plastic energy density “SENER+PENER” to account for small 
strain plasticity. The next section in the GUI is called “field output” and 
states which output should be written to the ODB file. In the case shown 
in Fig. 2, only the nodal CF are written to the ODB file. After the 
computation, they are available for visualization in Abaqus by changing 
the field output to “CONF_FORCE”. Fig. 3 depicts an example of nodal CF 
as a vector plot in Abaqus. Note, that biquadratic elements are used and 
hence the mid-side nodes have higher CF than the corner nodes of an 
element. 

3. Illustrative examples 

3.1. Two-phase bar 

The two-phase bar shown in Fig. 4 is used for the validation of 
evaluated interface CF with literature [4]. The bar has a height h =

10 mm, a length l = 20 mm, and a thickness t = 1 mm. An interface is 
located at l1 = 10 mm. The left side is fully constrained and along the 
right edge a displacement u = 0.1 mm is applied. The bar consists of two 
bilinear plane strain elements. The left element’s Young’s modulus of 
E1 = 210 GPa is twice the Young’s modulus of the right element (E2 =

105 GPa). Hence, the strain energy increases when the interface is 
shifted to the right. Transversal strain is neglected by setting the Pois
son’s ration to zero (ν = 0). 

Kolling and Mueller [4] provide an analytical solution of the energy 
release rate for a horizontal shift of this interface: 

G =
2 u2 E1 E2 h t (E1 − E2)

l2 (E1 + E2)
2 ≈ 11.67

J
m

(4) 

The energy release rate G states, that if l1 increases by a small Δx, the 

Fig. 2. Graphical user interface of the Abaqus plug-in.  

Fig. 3. Schematic vector plot of computed nodal g(MBF, V)

nodal (red) on a model of a 
crack in Abaqus under a tensile load uy. 

Fig. 4. Two-phase bar with a stiffer material E1 and a less stiff material E2.  
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strain energy increases by Δx⋅11.67J/m. For the validation, the two- 
phase bar is simulated in Abaqus. ConForce computes horizontal 
nodal g(MBF, V)

x, nodal of 5.86 N in nodes A and B. The sum of those forces is 

G ≈ 5.86 N + 5.86 N = 11.72
J
m

, (5)  

which corresponds well to the analytical result. 

3.2. Mode I and mixed-mode loaded crack 

This example considers a circular model that is depicted in Fig. 5. 
The model contains a crack with a crack tip that is located at the origin of 
the model in the center of the disk. The model is loaded by a displace
ment field associated with stress intensity factors KI and KII. Anderson 
[23] provides the corresponding displacement field: 

u(φ, KI, KII) = uKI (φ, KI) + uKII (φ, KII)

with

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uKI (φ, KI) =
KI

2G

̅̅̅̅̅
R
2π

√

⋅

⎛

⎜
⎜
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cos
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2

)(
κ − 1 + 2sin2

(φ
2

))

sin
(φ

2

)(
κ + 1 − 2cos2

(φ
2

))

⎞

⎟
⎟
⎠

uKII (φ, KII) =
KII

2G

̅̅̅̅̅
R
2π

√

⋅

⎛

⎜
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⎝

sin
(φ

2

)(
κ + 1 + 2cos2

(φ
2

))

−cos
(φ

2

)(
κ − 1 − 2sin2

(φ
2

))

⎞

⎟
⎟
⎠

κ = 3 − 4ν

(6) 

This u(φ, KI, KII) is applied at the outer ring with radius R = 50 mm in 
the circular model. The shear modulus is defined by G = E /(2 +2ν) with 
the Young’s modulus E = 210 GPa and the Poisson’s ratio ν = 0.3 for a 
linear elastic material. The model has a thickness of t = 1 mm. 

The model is meshed using fully-integrated bilinear plane strain el
ements and uses nonlinear geometry. The mesh size at the outer edge is 
8 mm and is refined towards the region A . This region is a square with 
an edge length of 2.8 mm and a mesh size of 0.05 mm. 

3.2.1. Pure mode I loading 
For this load case, we choose KI = 20 MPa

̅̅̅̅
m

√
and KII = 0 MPa

̅̅̅̅
m

√
. 

For a plane strain state, the applied energy release rate Gappl calculates as 
K2

I ⋅(1 −ν2)/E = 1733.33J/m2 [23]. Two simulations are performed. In 
the first simulation, CFA =

∑

A

g(MBF,V)

nodal = [−1738.31, 0.00] J/m2 and the 

J-Integral GJ = 1738.66J/m2 are computed inside A . The energy release 
rate according to ConForce is GCF = |CFA |2 = 1738.31J/m2. We chose a 
generously-sized region A to account not only for CF at the crack tip, but 
also for so-called spurious configurational forces in the vicinity of the 
crack tip [24]. In the second simulation, one node is closed and hence 

the crack tip moves leftwards by the distance of one element edge length 
Δa = 0.05 mm. From the associated change in the strain energy ΔΠ, the 
energy release rate can be written as GΔΠ = ΔΠ/(t⋅Δa) = 1735.24J/m2. 
The energy release rate GCF deviates less than 0.3% from Gappl and also 
agrees well with the GΔΠ and GJ. 

3.2.2. Mixed-mode loading 
For this load case, we choose KI = 20 MPa

̅̅̅̅
m

√
and KII = 10 MPa

̅̅̅̅
m

√
. 

The nodal g(MBF,V)

nodal are summarized to the resulting configurational forces 
CF3 = [−2149, 1686] J/m2 and CF15 = [−2155, 1697] J/m2 for the 
regions C 3 and C 15. Additionally, Abaqus is used to compute the 
vectorial J-Integral for both regions as J3 = [2147, −1689]J/m2 and 
J15 = [2154, − 1699]J/m2. The energy release rates are estimated as 
the magnitude of the resulting configurational forces and vectorial J- 
Integrals. This results in G3,CF = |CF3|2 = 2731 J/m2, G15,CF =

|CF15|2 = 2743 J/m2, G3,J = |J3|2 = 2732 J/m2, and G15,J = |J15|2 =

2743 J/m2.

The results show, that the CF do not vary when the size of the 
evaluation region is increased by a factor of five. However, this is not 
always the case. Schmitz and Ricoeur [12] provide a correction method 
when CF vary with the size of the evaluation region. Furthermore, the 
results computed by the Abaqus J-Integral and ConForce are almost 
identical up to the fourth digit. Except for the flipped signs, which is 
intended. 

4. Impact 

Though configurational forces can contribute in many fields such as 
inhomogeneous fracture mechanics or topology optimization, their use 
is limited today. The results of FEM models provide all the information, 
but implementing the evaluating of CF is an obstacle to research groups 
that would need them. ConForce provides an efficient CF implementa
tion that has been tested and documented to such groups. Therefore, 
ConForce facilitates the use of configurational forces. 

5. Conclusions 

A Python package and Abaqus plug-in for the computation of nodal 
configurational forces is presented. This allows an efficient and accurate 
evaluation of configurational forces from FEM results. ConForce sup
ports common 3D and plane-strain 2D elements. For each element type 
the equations are solved symbolically and then written in C-code, which 
is compiled and is accessible in Python through a C-code binding. This 
makes ConForce fast enough to be applied to FEM models with many 
thousand nodes. 

Fig. 5. Two load cases of a crack model. At the dashed green boundary, a displacement field u(φ, KI , KII) is applied. The nodal g(MBF,V)

nodal are summed a) inside the 
region A or b) inside the regions C 3 and C 15. The model’s deformations are magnified by a factor of 100 for visualization purposes. 
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a b s t r a c t

Optimizing highly nonlinear structural problems can be very challenging due to the large number of
parameters. Classical compliance minimization does not work for such problems. Common optimization
algorithms also do not find good solutions. This work evaluates both commonly used optimization algo-
rithms and algorithms not yet used in topology optimization. The algorithms are evaluated using a simple
nonlinear problem: minimizing the end displacement of a cantilever beam fixed on one side and loaded
by gravity. The global optimum for a coarse mesh grid is computed by simulating nearly 60 million pos-
sible topology designs using a Brute-Force search. We use this benchmark to evaluate the computational
cost and objective values of known and newly developed optimization methods. The known methods are
binary-coded Genetic Algorithm, Simulated Annealing, and Free Shape Optimization. The Reduced
Variable Neighborhood Search (RVNS) has not yet been applied to topology optimization. We provide
two implementations of RVNS: Breadth-First Search with a limited search depth (BFSL) and with an
optional restriction for the size of the simultaneously modified area (TBFSL). According to the benchmark,
TBFSL is the most efficient approach. For the optimization on a finer mesh grid, TBFSL is combined with a
multi-grid approach to further increase efficiency.

� 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

For many engineering problems it is important to optimize the
geometry of a component to achieve the desired behavior. In topol-

ogy optimization, the geometry in a given design space is opti-
mized in terms of an objective function [1,2,3,4]. In many cases,
the objective function is compliance, which should be minimized
for a fixed volume. Virtual densities for each element are used as
variables. If the variables are continuous, it is possible to compute
the gradient, which is required for many commonly used optimiza-
tion methods such as sequential quadratic programming [5]. How-
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ever, the final design requires a clear distinction between material
and voids. This can be done by penalizing intermediate densities
and introducing a threshold. Another approach uses discrete vari-
ables that can only be set to either zero or one. A disadvantage of
using discrete variables is that a gradient cannot be computed by
deriving the objective function. Therefore, non-gradient-based
methods such as Genetic Algorithm (GA) [6,7,8,9], Simulated
Annealing (SA) [10,11,12], or Particle Swarm Optimization (PSO)
[13] need to be used. Recently, neural networks have gained atten-
tion as surrogate models to further accelerate the optimization
process [14].

Shape optimization [15,16] is an alternative approach that
selects either a linear combination of shape functions (such as
splines, NURBS, etc.) that represent the geometry, or nodes lying
on the surface of a geometry that are moved directly [17,18]. Note
that shape optimization cannot change the topology but only the
outer shape of the structure.

Existing topology and shape optimization approaches work well
for objective functions such as the compliance, but they do not per-
form well for highly nonlinear objective functions containing many
local optima. The goal of this work is to develop optimization algo-
rithms for such complex problems and to compare them with
existing algorithms.

As an example for structural optimization, a cantilever beam
loaded by its own weight is used. The objective is to minimize
the vertical displacement of the topmost right point of the beam,
while the left side is fixed. Changing the geometry strongly affects
the load on the structure, making the problem highly nonlinear
with many local optima.

The example of a dead weight-loaded beam is studied using
existing optimization methods such as GA, SA, and Free Shape
(FS). GA and SA are common methods for combinatorial optimiza-
tion and FS is a shape optimization that describes each point of the
geometry boundary independently. Furthermore, combinatorial
optimization methods are proposed that have not yet been used
in topology optimization. They are based on Breadth-First Search
and Reduced Variable Neighborhood Search [19]. The Breadth-
First Search first varies many elements individually before varying
combinations of a few elements. However, since the Breadth-First
Search would generate too many design proposals, restrictions on
the search are required. Therefore, the newly developed optimiza-
tion methods Breadth-First Search with Limited depth (BFSL) and
Truncated Breadth-First Search with Limited depth (TBFSL) limit
the number of design proposals. For a rather coarse mesh, these
methods are evaluated against a Brute-Force (BF) computation of
all existing beam designs.

To optimize a finer mesh, the TBFSL method is embedded in a
Multi-Grid (MG) approach, which first optimizes a coarse mesh,
and then transfers the result to a finer mesh, which is optimized
again, and so on. For the best geometry found on a fine mesh,
the vertical displacement of the topmost right point of the beam
is negative, so this point moves upward.

2. Methods

2.1. Example problem definition

In this work, the geometry of a cantilever beam under dead load
is optimized. Fig. 1 shows the design space of the beam, which has
a length of 120mm and a height of 40mm. The objective is to min-
imize the endpoint displacement u at the top right point. The grid
elements in Fig. 1 contain either material or no material. All nodes
at the left edge are fixed. A gravity g acts as a body force. The mate-
rial and load parameters are listed in Table 1. The cantilever beam
is simulated using the Finite Element method. Linear geometry and

a plane stress state with a linear elastic material are assumed. Self-
contact is not considered. Isoparametric rectangular eight-node
elements with reduced integration are used. The linear solver uses
a preconditioned conjugate gradient method [20] with a symmet-
ric successive over-relaxation [21] preconditioner and an over-
relaxation factor of 1.6. The model setup, the FEM code, the linear
solver, and the optimizers were written in-house and implemented
in JAVA.

Removing material results in less bending stiffness, but also less
gravitational force on the beam. This nonlinear load makes it diffi-
cult to find an optimal design. In addition, the design must satisfy
some constraints because not all combinations of filled and empty
grid elements are valid. Designs that contain at least one freely
movable element result in a singular stiffness matrix that cannot
be solved and are therefore invalid. The black and gray elements
in Fig. 2 represent a valid design in the design space. The red ele-
ments are not valid, because they can move or rotate freely. The
design space

D Nel

� �
¼ d ¼

1 1 � � � 1
1 d22 � � � d2Nel;x

� � � � � � � � � � � �
1 dNel;y2 � � � dNel;yNel;x

2
6664

3
7775 dij 2 0;1f g

^valid dð Þ

8>>><
>>>:

9>>>=
>>>; ð1Þ

is the set of all valid designs d with a certain number of cells per

row and per column N
el
¼ Nel;x;Nel;y
� �

. A design d 2 D N
el

� �
directly

assigns the value dij to the element in the i-th row and j-th column.
A value of dij ¼ 1 turns on the i; j-th element, while a value of dij ¼ 0
turns off the i; j-th element. The left column and the top row of ele-
ments always have a value of 1 and are thus turned on. For finer
meshes, the size of the fixed left and top elements decreases, and
the variable design space grows. Since turned-off elements do not
contribute to the gravity load, the load vector depends on the
design.

The best design

dmin 2 argmin
d2D N

el

� � objective dð Þð Þ ð2Þ

minimizes the y-displacement u at the upper right endpoint. An
objective function u ¼ objective dð Þ simulates the design d and com-
putes the endpoint displacement u.

Fig. 1. Example problem definition for the optimization: The endpoint displace-
ment u of the cantilever beam loaded by gravity g to be minimized in the following.

Table 1
Material and load parameters used in the example problem.

Young’s modulus E 200MPa

Poisson’s ratio m 0:45
Density q 1000kg=m3

Gravity constant g 9:81m=s2
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The exact solution dmin of Eq. (2) is called the global optimum.
No other design in the design space can have a smaller endpoint
displacement than this exact solution. However, the global opti-
mum is often extremely difficult to find. Many optimization algo-
rithms use information gained from previous computations to
find a possible good design. These algorithms tend to find only a
locally optimal design that is surrounded by designs with a higher
endpoint displacement. To increase the probability of finding the
global optimum, the entire design space should be explored uni-
formly. A number of optimization methods are defined below,
which are then used to optimize the beam geometry. Appendix A
contains the detailed algorithms of the optimization methods.

2.2. Common methods in topology optimization

2.2.1. Brute-Force search (BF)

The Brute-Force BF N
el

� �
search, see Appendix A.1, exhaustively

explores the entire design space D N
el

� �
exhaustively by evaluat-

ing every possible design in it, and then selects the best design
dmin. Thus, BF guarantees to find a global optimum. However, the

number of simulations Nsim ¼ O 2Nvar
� �

grows exponentially with

the number of variables Nvar ¼ Nel;x � 1 � Nel;y � 1
� �

. For this reason,
global optima are rarely reported in the literature for structural
optimization problems. For small problems, sophisticated
branch-and-cut approaches can find a global optimum [5]. How-
ever, branch-and-cut approaches require a problem-specific for-
mulation and they cannot be easily applied to other problems. In
contrast, BF is a general-purpose method that can be applied to
any problem whose input arguments are enumerable and finite.
BF is a common method in cryptography for breaking weak ciphers
[22], but it is rarely used in topology optimization.

2.2.2. Random Sampling (RS)

Random Sampling RS N
el
;ulim

� �
, see Appendix A.2, randomly

and uniquely samples designs d 2 D N
el

� �
until it finds a design

with an endpoint displacement u less than or equal to an endpoint
displacement limit ulim. Like BF, RS does not use any information
gained from the computation history, such as good design patterns
or gradients. Unlike BF, RS guarantees a globally optimal design
only if the limit ulim is equal to the globally optimal endpoint
displacement.

2.2.3. Genetic algorithm (GA)
Since BF is computationally too expensive for complex prob-

lems, metaheuristic algorithms are used to approximate such prob-
lems [23,24]. These algorithms do not necessarily find the global
optimum, but they do find a good design.

One group of commonly used population-based metaheuristic
algorithms is Genetic Algorithms (GA), which are inspired by nat-
ural evolution. Genetic Algorithms differ in the description of the

problem and in the implementation of the evolution process.
Binary-coded GA represent variables as zero or one and are suit-
able for linear or nonlinear combinatorial problems [6,7,8,9,25].
Based on reported GA implementations, we implement a binary-

coded Genetic Algorithm GA d;Nrec; Pmut;Ncov

� �
, see Appendix A.3.

This GA takes an initial population d, a number of recombinations

Nrec per generation, a mutation probability Pmut for each element
per generation, and a number of generations without improvement
Ncov for the convergence check.

The GA process consists out of selection-, recombination-, and
mutation steps. The GA is initialized with a random population.

d :¼ random D N
el

� �� �� �
1�i�Npop

ð3Þ

with Npop random designs. Each design is simulated and the fitness.

fitness uð Þ ¼ exp �uð Þ ð4Þ
is computed using the simulated endpoint displacement u. The
exponential function guarantees a positive fitness that increases
as u is minimized. In the selection step, designs are randomly sam-
pled. The probability of sampling is proportional to the relative fit-
ness of a design.

The recombination step finds Nrec random pairs out of the sam-
pled designs and uses a block crossover operator as described by
Kane [9]. The mutation step takes the designs from the combina-
tion step and computes a random real number between zero and
one for each variable in a design. If the number is less than the
mutation probability Pmut, the variable is flipped dij :¼ 1� dij.

In the mutation step, any design can be generated with a non-
zero probability. This includes the globally optimal design. Conse-
quently, GA is guaranteed to find the global optimum as the num-
ber of iterations approaches infinity. In reality, however, GA stops
at some point and does not guarantee a globally optimal design.

The recombination and mutation step can produce invalid
designs with free moving elements. A constraint handling method
is required to handle invalid designs [26]. We use a repair method
to make designs valid by removing free movable elements.

The designs are then passed on to the next generation which
starts with the selection step again. We use a simple convergence
check that defines a maximum number of generations without an
improvement Ncov.

The parameters Npop, Nrec, Pmut are optimized using Bayesian
Optimization from the Python package scikit-optimize [27]. The
goal is to minimize the relative costs that are defined in section
2.4. A Bayesian Optimization uses a stochastic surrogate model
and tries to optimize the expected improvement [28]. This leads
to a population size Npop ¼ 93, a number of recombinations per

generation Nrec ¼ 34, and a mutation probability Pmut ¼ 5:5 � 10�4.
The maximum number of iterations without any improvement
for the convergence check is set to Ncov ¼ 5. An alternative to the
Bayesian Optimization would be an adaptive Genetic Algorithms
as described by Balamurugan [6], where the parameters are
adapted online during the optimization.

Fig. 2. Example design in the design space D 3;11ð Þð Þ. The topmost elements and leftmost elements are always turned on. Other elements are either turned on (di j ¼ 1) or off
(di j ¼ 0). Elements that would result in a free body motion and rotation are not allowed.
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2.2.4. Simulated Annealing (SA)
Another metaheuristic algorithm is Simulated Annealing (SA)

[10], which is inspired by the crystallization process during the
annealing of metals. To work properly, SA must be able to generate
each design in a finite number of steps. Then, SA converges to the
global optimum, if the annealing process is slow enough [10,23]. In
this work, however, a faster annealing process is used, that does
not necessarily converge to the global optimum.

Like GA, SA is often used to approximately solve difficult com-
binatorial problems that cannot be solved exactly within a reason-
able computational time [29]. Unlike GA, SA considers only one
design at a time instead of maintaining an entire population. SA
has already been used for structural optimization. Shim [11] opti-
mizes a cantilever plate under tension and Jung [12] uses SA to‚
design of a resonator.

Our implementation of SA d; T; kT;Nitð Þ, see Appendix A.4, takes
an initial design d, an initial temperature T , a cooling rate kT, and
a number of iterations Nit. SA modifies the current designs by flip-
ping a random variable dij :¼ 1� dij. If the design becomes invalid
due to freely movable elements, another variable is flipped instead.
Next, the change Du of the endpoint displacement u between the
modified and the unmodified design is computed. If the endpoint
displacement u improves and Du � 0, the modified design is
accepted. Otherwise, the probability of acceptance
Paccept Du; Tð Þ ¼ exp �Du=Tð Þ is computed by the Boltzmann distri-
bution. If the modified design is not an improvement, it is still
accepted if a random number between zero and one is less than
Paccept Du; Tð Þ. This allows SA to jump out of local optima and
explore other designs.

The temperature T decreases by a cooling rate kT in each itera-
tion, and the Boltzmann distribution becomes narrower and nar-
rower. As a result, the acceptance probability decreases, and
worse designs are rejected more often. SA continues to exploit
the region near the current design more until it finds a better
design and stops after a certain number of iterations Nit.

Grid search is used to find efficient optimization parameters.
Therefore, fixed values are defined for each parameter and all com-
binations are computed. The optimized parameters are an initial
temperature T ¼ 0:1mm, a cooling rate kT ¼ 0:999, and a number
of iterations Nit ¼ 50000. Adaptive Simulated annealing
approaches [10] automatically adjust the cooling rate. Note that
T is called temperature only for historical reasons, but it has the
same unit as the endpoint displacement u.

2.2.5. Free Shape optimization (FS)
Shape optimization is a widely used approach to optimize

geometries. It either optimizes parameters of given shape func-
tions [16] or shifts nodes on an edge [17]. In contrast, our imple-
mentation of the Free Shape FS dð Þ optimization, see Appendix
A.5, takes an initial design d as input and successively switches
on and off elements lying on the edge of a corresponding design.
Since FS is not able to generate all designs from the design space,
FS cannot guarantee a globally optimal design.

Fig. 3 shows an iteration of FS. Green strokes indicate edge ele-
ments that can be added to the design, while orange strokes indi-
cate removable elements. Starting from an initial design, FS
modifies the design by swapping one element at a time. If the mod-
ified design is not an improvement, the element is reset to its orig-
inal state and another edge element is considered. If the modified
design is an improvement, FS accepts the modified design and
starts modifying elements on the edge of the new design again.
This is repeated until all elements on the edge are switched on
or off and no improvement is found.

2.3. Novel methods in topology optimization

2.3.1. Breadth-First search with Limited depth (BFSL)
The Breadth-First Search with Limited depth BFSL d;Ddmaxð Þ, see

Appendix A.6, takes an initial design d and a maximum search
depth Ddmax as input. Breadth-First Searches are used in a wide
variety of combinatorial applications, ranging from finding mini-
mal gene subsets for tumor classification [30] to task selection
problems with limited resources for radar applications [31], but
they are not yet used for topology optimization.

BFLS can be also be classified as a Reduced Variable Neighbor-
hood Search (RVNS) [19]. Mladenović and Hansen [32] proposed
Variable Neighborhood Search (VNS) algorithms that perform a
local search. If no improvement is found, the search gets stuck in
a local optimum. To escape, VNS searches for an improvement in
a certain neighborhood and increases this neighborhood until a
better solution is found or the termination condition is satisfied.
RVNS skips the local search and relies entirely on the neighborhood
search. Recent research on VNS methods has been done primarily
in computer science [33], and VNS has already been used to opti-
mize a truss structure [34].

BFSL systematically defines the neighborhood by a parameter
Ddmax in a way for spatial problems. Fig. 4 shows how BFSL tra-
verses designs in a stochastic breadth-first search with limited
depth Ddmax. This means that BFSL first evaluates designs that are
Dd ¼ 1 elements different from the current design. These designs
are evaluated in a random order. If no improvement is found, BFSL
evaluates designs that differ Dd ¼ 2 elements from the current
design. This is repeated with increasing Dd up to the maximum
depth Ddmax. However, as soon as a design is an improvement over
the current design, the improved design becomes the new current
design. Then, BFSL starts again to evaluate designs that differ by
Dd ¼ 1 element, and so on. BFSL stops when all designs differing
by at most Ddmax elements have been computed and no improve-
ment has been found. The number of such enumerated designs
without an improvement

Ncov Ddmax;Nvarð Þ �
XDdmax

i¼1

Nvar

i

� �
ð5Þ

depends on the maximum search depth Ddmax and the number of
variables Nvar. Note, that Nvar is within the binomial coefficient
and that Ncov increases rapidly with Nvar.

Fig. 3. Geometry modification options in Free Shape (FS) optimization.
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If the maximum search depth is at least as large as the number
of variables Ddmax � Nvar, every design from the design space is
guaranteed to be generated. In this case, BFSL, like BF, guarantees
a globally optimal solution. However, for problems whose local
optima are also global optima Ddmax ¼ 1 is sufficient to find the
optimum. For realistic problems, the smallest Ddmax necessary to
find the global optimum is somewhere between 1 and Nvar.

2.3.2. Truncated Breadth-First search with Limited depth (TBFSL)
In addition to BFSL, the Truncated Breadth-First Search with

Limited depth TBFSL d;Ddmax;Drmaxð Þ, see Appendix A.7, allows only
simultaneously modified elements that are at most Drmax elements
apart. As can be seen in Fig. 5, the distance Dr between different
elements is computed using the l1 norm. Like BFSL, TBFSL is not
yet used for topology optimization.

The additional distance restriction reduces the required number
of iterations without any improvement.

Ncov Ddmax;Drmax;Nvarð Þ � Nvar �
XDdmax

i¼1

2 � Drmax þ 0:5ð Þ2 � 1
i

 !

ð6Þ
before TBFSL stops. Unlike BFSL, the number of iterations depends
only linearly on Nvar.

To guarantee a globally optimal design, the maximum search
depth should be to be at least as large as the number of variables
Ddmax � Nvar, and the maximum distance Drmax should be at least
as large as the distance between the two most distant variable
elements.

2.3.3. Multi-Grid optimization (MG)
To find a good optimum, a stepwise refinement of the grid is

performed in the following procedures. The idea of solving a prob-
lem on grids with increasing refinement is not new: It is already

used for multi-grid solvers [35,36] and is also applied to very dif-
ferent problems such as image processing with multiscale opera-
tors [37,38], prediction of local stress fields [39], or decoupling of
variables from the FEM mesh [40]. However, automatic stepwise
refinement has not yet been applied to topology optimization.

The Multi-Grid MG d; N
1
;A1

� �
; N

2
;A2

� �
; � � �

� �
optimization,

see Appendix A.8, takes as input an initial design d and a sequence
of mesh sizes N

i
and corresponding optimization algorithms Ai.

Fig. 6 shows the mapping process from a coarse mesh to a finer
mesh. MG starts with an initial design d. First, a coarse voxel mesh
is optimized using one of the previously mentioned algorithms.
When the optimizer has converged using the coarse mesh, a finer
voxel mesh is generated, and the geometry is mapped onto this
mesh. Each new design element looks for the nearest element in
the coarse mesh and takes its value. The finer mesh is then opti-
mized based on the mapped design. This process is repeated until
the desired grid size is reached.

Since a voxel in the coarse mesh covers a larger region, turning
an element on or off will result in a completely different design.
Consequently, the coarse mesh optimization explores a wide vari-
ety of designs. The fine mesh optimization, on the other hand,
turns on or off smaller elements in the finer mesh and exploits
similar-looking designs.

Whether MG guarantees a globally optimal design depends only
on the algorithm run on the last mesh. If that algorithm converges
to the global optimum, then so does MG.

2.4. Efficiency benchmark

When all valid designs d in a design space D are computed
using BF, the rank k of each design can be computed according to
the endpoint displacement u. The best design has rank k ¼ 1 and

Fig. 4. Schematic of the Breadth-First Search with Limited depth (BFSL) algorithm. Designs that are at most Ddmax different from the current design are explored until a better
endpoint displacement uiþ1 is found. This is repeated until no improvement can be found anymore.
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the rank of the worst design is equal to the number of valid designs
in the design space k ¼ Dj j.

The rank is used to compare the optimization algorithms. All
optimization algorithms require a different number of simulations
Nsim and find designs whose rank k varies. If one method finds a
better design with a lower rank, but the other method is faster
with fewer simulations Nsim, it is not clear which method is the

better one. Therefore, a performance measure is needed for com-
parison that considers both, the rank of the design k and the num-
ber of simulations Nsim. The idea of our performance measure is to
compare the number of simulations of an optimization method
Nsim, with the number of simulations RS needs on average to find

an equal or better design with rank � k, N
�
sim. The latter can be cal-

culated as

N
�RS

sim kð Þ ¼
X Dj j

i¼1
i � P ijkð Þ ¼ 1þ Dj j � k

1þ k
ð7Þ

with the number of designs Dj j in the design space D. The aver-

age number of simulations of RS N
�RS

sim is computed by weighting the
iterations i by their probability under the condition of finding a
design with rank � k. This probability

P ijkð Þ ¼ k
D� iþ 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}

find in i�th iteration

�
Yi�1

j¼1

1� k
D� jþ 1

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

do not find in previous iterations

¼ NHG i� 1 j Dj j; Dj j � k; 1ð Þ ð8Þ
is a special case of the negative hypergeometric distribution NHG as
described by Johnson [41]. This distribution considers a population
of size Dj j in which Dj j � k designs have rank > k. From this popu-
lation, unique designs are sampled until a design with rank � k is
selected. Then the sampled designs are counted, excluding the last
one. The count is equal to i� 1.

Now, the performance of an optimization algorithm that
returns the k-th best design after Nsim simulations can be measured
in terms of the relative computational cost.

c Nsim; kð Þ ¼ Nsim

N
�RS

sim kð Þ
ð9Þ

Fig. 5. Schematic of the Truncated Breadth-First Search with Limited depth (TBFSL). Unlike the BFSL approach, an additional distance restriction forces elements that have
changed from the previous design to be at most Drmax elements away from each other.

Fig. 6. The Multi-Grid (MG) approach maps an optimized 6� 2 design to an 8� 3
design that can be further optimized.
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The smaller the relative cost, the more efficient the optimiza-
tion algorithm is.

3. Results and discussion

The cantilever beam defined in section 2.1 is optimized using
the previously defined optimization methods. Therefore, all possi-
ble designs are computed on a coarse grid according to the BF
method and the optimization methods are compared with each
other. Then, the cantilever beam is optimized on a finer grid using
a multi-grid approach.

For the comparison of the multi-grid optimization, the methods
are evaluated in terms of computational time, which was obtained
using a desktop computer with an Intel i5-6500 CPU with 3.2 GHz,
four logical and physical cores, and 16 GB RAM. Since solving the
FEM system is only part of the code written, the elapsed real time
is used as the computation time. One optimization simulates up to
four designs in parallel.

3.1. Brute-Force search on a coarse grid

In this section, all designs d 2 D 8;5ð Þð Þ are computed using BF.
Since the first row and column elements are fixed, there are
7� 4 ¼ 28 binary variables. Thus, 228 ¼ 268435456 element com-
binations are possible. However, most of these combinations con-
tain freely movable elements and are therefore invalid. Only
59554032 designs are valid. The computation of all valid designs
takes about 10hours. Therefore, the effective average computation
time for a simulation is 0:56ms, but since we run four simulations
in parallel, the real average computation time for a simulation is
2:24ms.

Fig. 7 plots the endpoint displacement u and the number of ele-
ments for each design in a two-dimensional histogram. The color of
each box corresponds to the number of valid designs in that region.
Note the logarithmic scale of the color bar. Almost all designs have
between 20 and 35 elements and an endpoint displacement u
between 0:0mm and 0:1mm. The computation of all valid designs
d 2 D 8;5ð Þð Þ allows to rank the designs according to their endpoint
displacement u.

The geometry of four designs, labeled a–d in Fig. 7, is shown in
Fig. 8. The best design with rank k, shown in Fig. 8a, has the lowest
endpoint displacement, which is actually negative, so the beam
moves up at the end. In contrast, the worst design in Fig. 8b has

a large mass hanging at the end that pulls the endpoint down.
The lightest design in Fig. 8c contains only the 12 fixed elements
in the left column and the top row. The heaviest design in Fig. 8d
contains 40 elements. Note that the deformations drawn are scaled
by factors between 10 and 1000.

3.2. Benchmark on a coarse grid

The results of the Brute-Force search on an 8� 5 grid, presented
in the previous section 3.1, are used to compare the optimization
algorithms to each other. Therefore, the ranks k and relative costs
c are computed as described in section 2.4.

Table 2 lists the resulting ranks and relative costs of all opti-
mization algorithms. The algorithms are ranked according to their
efficiency. Since most algorithms are stochastic and the result of a
single run is not representative, 100 runs with randomly chosen
initial designs d ¼ random Dð Þ are performed for each algorithm.
Each cell in the table shows the observed 25%, 50% (median),
and 75% percentiles of the 100 results obtained. In addition, the
probability density distributions of the relative costs c are plotted
in the last column of Table 2. The probability density distributions
are estimated using the kernel density estimator of scipy [42],
which uses Scott’s rule [43].

BF always finds the best design with rank k ¼ 1 as shown in
Fig. 8a. However, BF is the most inefficient algorithm with a rela-
tive cost of c ¼ 200% because it simulates every valid design.

As can be seen in Table 2, RS is on average about twice as effi-
cient as BF, since it finds the best design on average after simulat-
ing half of the designs. If a much higher number of repetitions of RS
were performed, the relative cost c50% ¼ 79:496% would approach
the theoretically correct average relative cost of 100%.

SA has about half of the median cost c50% ¼ 52:265% of RS. Fig. 9
shows a typical design optimized with SA. After BF and RS, SA is the
least efficient optimization method for this problem. After 10000
iterations, the temperature drops to T ¼ 0:1mm�
0:99910000 � 4:5 � 10�6mm and the probability of accepting worse
designs is negligible. Accepting worse designs would be necessary
to escape a local minimum and explore further regions. Exploring
further regions is crucial to achieving a good design but is not very
likely after 10;000 iterations. SA mainly exploits the actual local
minimum for the remaining 40; 000 iterations.

The next best approach is BFSL d; 4ð Þ with a search depth
Ddmax ¼ 4. Although the initial design d is chosen randomly,
BFSL d; 4ð Þ most often finds the same design with rank k ¼ 202 as
shown in Fig. 9b. This is the best design found by any of the opti-
mization algorithms except BF, while BFSL d; 4ð Þ requires on aver-
age Nsim;50% ¼ 13356 simulations and causes only c50% � 4:5% of
the cost of RS.

FS is the algorithm that requires the fewest simulations with
Nsim;50% ¼ 47. However, the optimized designs have high ranks.
Fig. 9c shows an optimized design with cavities. FS does not vary
elements within the design and cavities appear only when the ini-
tial design d contains the cavities. Consequently, the optimized
design is highly dependent on the initial design, and since the ini-
tial design is randomly chosen, the relative costs vary over a wide
range with a 25% percentile of c25% � 0:4% and a 75% percentile of
c75% � 8:0%.

GA provides both a lowmedian rank k50% ¼ 508 and a low num-
ber of simulations Nsim;50% ¼ 967. This results in an average relative
cost of c50% � 0:873%. Fig. 9d shows a design optimized by GA.

TBFSLðd;4;2Þ is an extension of BFSL d; 4ð Þ that restricts the
modified elements to be at most Drmax ¼ 2 elements away from
each other. This additional restriction significantly reduces the
number of simulations from about 1 3356 to about 330. At the
same time, the median rank increases only slightly from 202 to

Fig. 7. Results of the BF computation of all valid designs d 2 D 8;5ð Þð Þ. The designs
are grouped by the number of elements on the x-axis and the endpoint displace-
ment u on the y-axis. The color of each box indicates the number of designs
contained in that box. The designs labeled a-d are shown in Fig. 8.
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247. Fig. 9e shows the result with rank k ¼ 247 and the dashed
contour illustrates the design with rank k ¼ 202. Five elements
are different between the two designs and the different elements
lie in a rectangular area of size 3� 4. This corresponds to an l1-
norm of 3j j þ 4j j ¼ 7. Consequently, TBFSL would be able to go
directly from the 247 th best design to the 202 nd best design if
the search depth was set to Ddmax ¼ 5 and the search radius was
increased to Drmax ¼ 7. However, this would significantly increase
the number of simulations and TBFSL would lose its performance
advantage over BFSL.

The most efficient methods are BFSLðd;1Þ and TBFSL d;1;0ð Þ
with a search depth Ddmax ¼ 1. Fig. 9f shows a design optimized
by BFSLðd;1Þ and TBFSL d;1;0ð Þ. Actually, BFSLðd;1Þ and
TBFSL d;1;0ð Þ are identical because the additional constraint of
TBFSL has no effect when only one element is modified at a time.
However, Table 2 shows different results for the two methods.
The reason for this is that with a search depth of Ddmax ¼ 1, the
optimizer falls into the very first local optimum, and the result thus
depends strongly on the random initial design.

3.3. Parameter study for TBFSL

Fig. 10 shows the effect of the TBFSL parameters, the maximum
search depth Ddmax and the maximum size of the modified region
Drmax, on the relative costs and the ranks of the optimized designs.
Each parameter setting is run 100 times to compute the median
relative cost c50% and the rank k50%. The interquartile range (IQR)
is a measure of scatter and is calculated as the difference between
the 75% and the 25% percentiles.

The IQR is shown in Fig. 10a. As explained in the previous sec-
tion, all methods with a search depth of Ddmax ¼ 1 (blue) are iden-
tical, but scatter due to the dependence on the random initial
design. Since the maximum distance between two variable ele-
ments on this 8� 5 grid is 9, the additional restriction of TBFSL

has no effect for settings with Drmax ¼ 9, so that
TBFSL d;Ddmax;9ð Þ is identical to BFSLðd;DdmaxÞ.

All investigated parameter settings have costs < 10% of the RS
approach, which is highlighted by a horizontal red line in
Fig. 10a. The relative costs on the logarithmic scale increase signif-
icantly with the search depth Ddmax. As the distance Drmax

increases, the relative costs increase until they plateau at
Drmax � 6.

Although running TBFSL or BFSL with a search depth Ddmax ¼ 1
is the most efficient approach, the ranks of the optimized designs
are higher. Except for Ddmax ¼ 1, all settings result in optimized
designs with ranks < 300. When the size of the modified area is
Drmax � 4, the ranks k50% decrease slightly.

3.4. Multi-grid optimization

This section compares the performance of the multi-grid (MG)
optimization with that of a single-grid optimization. Therefore,
both approaches optimize the design using a final grid of size
48� 16. This grid contains 47� 15 ¼ 705 variables compared to
7� 4 ¼ 28 variables of the previous 8� 5 grid. It is no longer pos-
sible to perform a brute-force optimization on the finer grid
because the number of designs is on the order of 2705 � 10212. Con-
sequently, the rank of an optimized design cannot be computed
and RS cannot be used as a benchmark method as in the previous
section. Therefore, the optimization methods are thus compared
directly by considering the optimized endpoint displacement u as
well as the computation time t. Since TBFSL is the most efficient
optimization algorithm for the 8� 5 grid, it is used within the
multi-grid and single-grid approaches.

Table 3 shows the results of the single-grid approach for the
48� 16 grid. We use a search depth of Ddmax ¼ 4 and limit the size
of the modified area to Drmax ¼ 2. Due to the long computation
time of up to 6 : 42h for one optimization, only 11 runs are per-

= −0.009855 mm

= 0.7216 mm

= 0.1604 mm

= 0.01055 mm

Fig. 8. Specific designs shown in Fig. 7.
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formed instead of the 100 runs in the previous section. The number
of simulations Nsim, the computation time t, and the optimized
endpoint displacement u for each of these runs are sorted by the
endpoint displacement. Runs that result in the median endpoint
displacement for the single-grid and multi-grid optimizations are
treated as representative runs. Compared to the coarse designs of
the brute force optimization, much better designs in terms of end-
point displacement can be found for this finer grid.

Table 4 lists the results of the 11 MG runs, sorted by the end-
point displacement from the best run to the worst run. Like the
one-grid approach, MG starts with a random initial design d.
Unlike the one-grid approach, MG uses 9 grids of increasing num-
ber of cells. For each grid, the grid size and an optimization algo-
rithm A are passed to MG. Since the simulation on a coarse grid
is faster than that on a fine grid, higher values Ddmax and Drmax

can be chosen on the coarse grid. As defined in Table 4, MG first
optimizes the initial design on a 10� 10 grid using the algorithm
A1, which performs a TBFSL optimization with Ddmax ¼ 4 and
Drmax ¼ 6. The resulting design is then optimized on a 12� 12 grid
using the optimization algorithm A2. This continues until the
desired grid size of 48� 16 is reached.

Compared to the one-grid approach in Table 3, MG takes a med-
ian of about half the time of the single-grid approach and provides
a better median of the endpoint displacement. Furthermore, the
computational time of MG scatters less, as can be seen by from
the IQR, and is therefore more predictable.

Fig. 11a shows this process of increasing the grid size. The end-
point displacement is plotted over the total computation time and

the line colors correspond to the grid sizes and TBFSL parameters
as shown in the legend.

Most grid sizes are not multiples of the previous grid size and
therefore do not match exactly. If a design is scaled to the next grid
that does not exactly match the previous design, the design is
scaled imprecisely and the endpoint displacement may be worse.
This effect can be seen in Fig. 11a at the transition from the brown
20� 14 grid to the pink 22� 15 grid. However, the multi-grid opti-
mization quickly recovers the previous endpoint displacement.

A drawback of MG is the higher number of parameters intro-
duced. The size of each grid has to be selected, as well as the TBFSL
parameters Ddmax and Drmax. In this example, 36 parameters have
to be specified before the optimization starts. Algorithms such as
Bayesian Optimization are designed to find such parameters that
have to be known in advance. However, methods using interpola-
tion schemes or surrogate models like Bayesian Optimization are
not suitable for such high-dimensional problems, because they
have to evaluate the multi-grid approach with an exponential
number of parameter combinations [28]. Therefore, the authors
manually selected the optimization parameters based on the
observations made in the previous section. Since the 8� 5 design
from above is already limited in the possible variants, a starting
mesh with a grid size of 10� 10 is used. The parameters Ddmax

and Drmax of the used TBFSL are derived from the parameter eval-
uations in Fig. 10 for the initial design. It is assumed that the
designs vary less each time the mesh is refined. Therefore, the
parameter Ddmax is reduced to 2 for the final mesh. This speeds
up the computation significantly, since the computational time

Table 2
Results of the used optimization algorithms. Except for BF, each algorithm is repeated 100 times. BF is computed once. The figures in the last column show an estimated
probability density distribution of c. The black point marks the median. The red line indicates the average number of simulations RS would need to get the same or a better design.

Optimization algorithm Percentile Endpoint displ. u mmð Þ Rank k 1ð Þ Simulations Nsim 1ð Þ Relative costs

c %ð Þ

BF N
el

� � �0:00986 1 59554032 200:00

RS N
el
;�0:00986mm

� �
25% �0:00986 1 13216395 44:385
50% �0:00986 1 23671511 79:496
75% �0:00986 1 43164841 144:960

SA d;0:1mm;0:999;50000ð Þ 25% 0:00589 267 50001 22:480
50% 0:00621 622 50001 52:265
75% 0:00641 1182 50001 99:345

BFSL d;4ð Þ 25% 0:00562 202 11411 3:862
50% 0:00562 202 13356 4:474
75% 0:00562 202 16331 5:567

FS dð Þ 25% 0:00680 4186 36 0:401
50% 0:00751 28810 47 2:319
75% 0:00823 122505 58 8:062

GA dð Þ1�i�93;34;5:5 � 10�4;5
� �

25% 0:00595 296 813 0:566
50% 0:00623 508 967 0:875
75% 0:00643 1290 1114 1:896

TBFSLðd;4;2Þ 25% 0:00562 202 264 0:103
50% 0:00582 247 330 0:126
75% 0:00582 247 391 0:149

BFSLðd;1Þ 25% 0:00582 247 81 0:044
50% 0:00632 875 101 0:099
75% 0:00671 3224 116 0:551

TBFSL d;1;0ð Þ 25% 0:00582 247 86 0:045
50% 0:00593 299 105 0:065
75% 0:00667 2851 126 0:304
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for one iteration significantly increases with the number of ele-
ments. A simulation on a 10� 10 grid is 10 to 50 times faster than
a simulation on a 48� 16 grid.

Fig. 11b shows the convergence curves of the single-grid (blue)
and multi-grid (red) runs. The representative runs (those with the
median endpoint displacements out of a sample of 11) are high-
lighted and marked with c and d. Fig. 11c shows the final endpoint
displacements and the computational time of all runs. As can be
seen in Fig. 11c, most of the multi-grid runs (red points) require

less computation time than the single-grid runs (blue points),
although the multi-grid approach at the median requires about
three times more simulations. Furthermore, the multi-grid runs
tend to have a smaller endpoint displacement and return a good
design quite reliably within a reasonable time, while the one-grid
results show more scatter.

However, the worst design a is achieved by the multi-grid
approach which is shown in Fig. 12a. Since only one of the multi-
grid designs has such a large endpoint displacement, this run can

Fig. 9. Examples of optimized designs for each of the optimization algorithms listed in Table 2. The plotted deformation is scaled by a factor of 100. TBFSLðd;4;2Þ adds an
additional constraint in addition to BFSLðd;4Þ and therefore returns on average a slightly worse design (e) compared to (b). The dashed line shows this difference.

Fig. 10. Effect of the search depth Ddmax and modified region size Drmax on the median relative cost c50% , the interquartile range (IQR), and the median rank k50%. The
horizontal red line in (a) marks the relative cost of RS. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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Table 3
Results of 11 runs performed on a 48� 16 grid using TBFSL with a search depth Ddmax ¼ 4 and a of the modified area size Drmax ¼ 2. The initial design d

0
:¼ random D 48; 16ð Þð Þ is

chosen randomly for each run. The runs are sorted by the endpoint displacement.

Optimization algorithm Run Simulations Nsimð1Þ Computation time t sð Þ Endpoint displ. u mmð Þ
TBFSL d;4;2ð Þ 1 364675 22312 �17:62

2 222134 13047 �16:95
3 359095 23296 �14:08
4 416722 24102 �9:01
5 131115 8174 �8:84
6	 243381 15869 �6:69
7 259145 18483 �3:68
8 144951 9666 �3:37
9 157372 5972 �2:85
10 161641 7132 �1:57
11 193293 15868 �0:58

Median 222134 15868 �6:69
IQR 149614 11478 8:44

1	 representative run

Table 4
Results of 11 runs performed on nine grids starting from a coarse 10� 10 grid and going up to a fine 48� 16 grid. Each grid is optimized using TBFSL with a search depth
Ddmax ¼ 4 and a decreasing size of the modification range Drmax. The initial design d

0
:¼ random D 10;10ð Þð Þ is chosen randomly for each run. The runs are sorted by the endpoint

displacement.

Optimization algorithm run Simulations Nsimð1Þ Computation time t sð Þ Endpoint ispl. u mmð Þ

MGðd0
; 10; 10ð Þ; A1 : d ! TBFSL d; 4; 6ð Þð Þ; 12; 12ð Þ; A2 : d !ð

TBFSL d; 4; 6ð ÞÞ; 14; 12ð Þ; A3 : d !ð
TBFSL d; 4; 5ð ÞÞ;
16; 12ð Þ; A4 : d ! TBFSL d; 4; 5ð Þð Þ; 18; 13ð Þ; A5 : d ! TBFSL d; 4; 4ð Þð Þ;
20; 14ð Þ; A6 : d ! TBFSL d; 4; 3ð Þð Þ; 22; 15ð Þ; A7 : d ! TBFSL d; 4; 3ð Þð Þ;
24; 16ð Þ; A8 : d ! TBFSL d; 4; 2ð Þð Þ; 48; 16ð Þ; A9 : d ! TBFSL d; 4; 2ð Þð ÞÞ

1 927706 8358 �14:98
2 731563 9599 �14:94
3 1037718 11385 �14:92
4 826378 8693 �14:18
5 733592 11022 �14:18
6	 700784 7591 �13:98
7 658132 6741 �13:75
8 588992 6681 �13:67
9 588461 7813 �13:52
10 648319 7009 �13:48
11 707768 7286 �0:40

Median 707768 7813 �13:98
IQR 126760 1999 0:96

1	 representative run

Fig. 11. Comparison of the multi-grid (red) and the single-grid (blue) approach. For one multi-grid optimization, (a) plots the endpoint displacement over the computation
time for the varying TBFSL parameters Ddmax and Drmax. All eleven cases of the single-grid and the multi-grid approaches are plotted in (b), and the optimized endpoint
displacement u and the computation time for all runs of each approach are shown in (c). The annotated designs a-f are plotted in Fig. 12. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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be considered a statistical outlier. The three designs labeled e, f,
and c in Fig. 11a are snapshots of the representative multi-grid
run after the first, next-to-last, and last refinement. They are
shown in Fig. 12e, f, and c. The basic principle of the final design
c is already present in the coarse design e after a fewminutes. After
about an hour, the design f is obtained on the 24� 16 grid. This
design already looks very similar to the final design. The remaining
hour is used to optimize the design on the finest grid.

The best design b is obtained using the single-grid method and
is shown in Fig. 12b. Designs a and c obtained by the multi-grid
approach appear less complicated than the designs b and d of
the single-grid approach. One reason could be that complicated
features are destroyed during the imprecise scaling to the next
grid. As a result, the multi-grid approach yields a design that is less
grid dependent than the single-grid approach.

4. Conclusions

This work evaluates a number of optimization methods for
highly nonlinear structural problems is evaluated. As an example
problem, a discrete 2D plane stress cantilever beam under dead-
weight load is optimized using these methods. This problem is
found to be both simple and highly nonlinear. Commonly used
methods such as Brute-Force search, Random Sampling, Simulated
Annealing, Genetic Algorithm, and Free Shape optimization are
compared with our methods BFSL, TBFSL which are based upon a
Reduced Variable Neighborhood Search and a Breadth-First Search.
These methods have not yet been applied to topology optimization.

Each optimization method differs in the quality of the result as
well as in the number of simulations required. For a comparison,
both quality and number of simulations need to be considered.
Therefore, an efficiency measure is introduced that indicates how

many simulations are required compared to how many simula-
tions would be required by Random Sampling to archive the same
or better quality.

The Brute Force search always finds the global optimum, but it
is twice as inefficient as the Random Sampling. In contrast, Simu-
lated Annealing is twice as efficient, the Free Shape optimization
is about 43-times more efficient, the Genetic Algorithm is about
114-times more efficient, and BFSL and TBFSL are up to 1540-
times more efficient than the Random Sampling. However, except
for the Brute Force search, none of the optimization methods finds
the global optimum.

Since TBFSL is most efficient, it is also used to optimize a finer
mesh grid. Therefore, TBFSL is applied once directly to the fine
mesh grid. Alternatively, TBFSL is applied successively to multiple
grids that become finer and finer until the desired mesh size is
reached. It turns out that this multi-grid approach finds, on aver-
age, a better beam design in about half the computational time
compared to the direct approach. The settings of the multi-grid
optimization were chosen manually in this work and could be opti-
mized in future work.

Note that the optimization algorithms studied rely on a model
that computes fast enough to run thousands of iterations in a rea-
sonable time frame. For realistic applications of finite element
models, this may not be the case.

Furthermore, since the resolution of the FEMmesh is coupled to
the representation of the variables, a finer FEM mesh significantly
increases the number of variables and the optimization time. To
overcome this problem, the FEM mesh can be decoupled from
the variable representation either by radial-basis function interpo-
lation [40] or by recently developed neural networks [44].

The newly developed optimization methods allow for the opti-
mization of highly nonlinear structural problems for applications

Fig. 12. Designs shown in Fig. 11 as a–f. The drawn deformation is scaled by a factor of 0.5. Self-contact and large deformations are not considered.
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that were previously not feasible due to high computational times.
The authors plan to use them in the design of heterogeneous mate-
rials with high energy dissipation.

Data availability

The main results of the optimizations in section 3 are provided
as csv files in the supplementary data. The results from the brute
force computation will be made available on request.
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Appendix A. Algorithms

A.1. Brute-Force search

BF evaluates all designs in the design spaceD N
el

� �
for a given grid

size N
el
and thus always finds the globally optimal design. Since all

designs can be simulated independently, BF can be parallelized
very well.

1. BF N
el

� �
2. umin :¼ 1
3. for all d 2 D N

el

� �
do:

4. u :¼ objective dð Þ
5. if u < umin:
6. umin :¼ u; dmin :¼ d
7. return umin; dminð Þ

A.2. Random search

RS randomly draws unique designs d 2 D N
el

� �
until it finds a

design with an endpoint displacement u � ulim. Then RS immedi-
ately returns the current u and d. The computed designs are stored

in Ddrawn. Consequently, D N
el

� �
fDdrawn contains only designs that

have not been computed yet. Line 4 selects a random design out of
these fresh designs.

1. RS N
el
;ulim

� �
2. Ddrawn ¼ £

3. for n :¼ 1; � � � ; D N
el

� �				
				 do:

4. d :¼ random D N
el

� �
fD

drawn

� �
5. u :¼ objective dð Þ
6. Ddrawn :¼ Ddrawn [ df g
7. if u < ulim:
8. return u;dð Þ

A.3. Genetic algorithm

GA takes as input a list of initial designs d, a number of recombi-

nations Nrec, a mutation probability Pmut, and a maximum number of
iterations without improvement Ncov. GA uses selection steps,

recombination steps, and mutation steps as described in section
2.2.3 to optimize the design. Note that the cachedObjective function
uses a cache that stores previously simulated designs. This prevents
surviving designs from being simulated again. When GA computes
the objective function in parallel, the parallel workers must wait
for each other every iteration before the selection step can be per-
formed. Consequently, GA does not parallelize as well as BF.

1. GA d; Nrec; Pmut;Ncov

� �
2. Npop :¼ length d

� �
3. umin :¼ 1;ncov :¼ 0
4. repeat while not stopped:
5. u :¼ cachedObjective dið Þð Þ1�i�Npop

6. if umin > min u
� �

:

7. umin :¼ uj :¼ min u
� �

;dmin :¼ dj

8. ncov ¼ 0
9. else if ncov < Ncov:

10. ncov :¼ ncov þ 1
11. else:
12. stop repeat loop
13. f :¼ fitness uið Þð Þ1�i�Npop

14. d :¼ selection d; f
� �

15. d :¼ recombination d; Nrec

� �
16. d :¼ mutation d; Pmut

� �
17. return umin; dminð Þ

A.4. Simulated Annealing

SA starts with an initial design d, a temperature T , and a cooling
rate kT that decreases the temperature in Nit iterations. Note that
the name ‘‘temperature” is misleading, so T has neither a kelvin
nor a degree Celsius dimension. T must have the same dimension
as the endpoint displacement u for line 7 to be valid.

The modify dð Þ-function randomly flips an element of a design
d. The flipped element must not lead to a freely movable element.
The random n 2 Rj0 � n � 1f gð Þ-function draws a real random
number between zero and one.

1. SA d; T; kT;Nitð Þ
2. umin :¼ u0 :¼ objective dð Þ;dmin :¼ d :¼ d
3. for n :¼ 1; � � � ;Nit do:
4. d :¼ modify dð Þ
5. u :¼ objective dð Þ
6. Du :¼ u� u0

7. Paccept :¼ min 1; exp � Du
T

� �� �
8. if Paccept � random n 2 Rj0 � n � 1f gð Þ:
9. u0 :¼ u; d :¼ d

10. if u < umin:
11. umin :¼ u;dmin :¼ d
12. T :¼ kT � T
13. return umin; dminð Þ

A.5. Free Shape optimization

FS takes an initial design d and tries to find better designs by
modifying only elements on the edge.

1. FS dð Þ
2. umin :¼ objective dð Þ;dmin :¼ d
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3. for all i; j do:
4. if dij is an edge in d
5. d :¼ d

6. d
0
ij :¼ 1� d

0
ij

7. u0
:¼ objective dð Þ

8. if u0
< umin:

9. umin :¼ u0
;dmin :¼ d

0

10. restart line 3
11. return umin;dminð Þ

A.6. Breadth-First search with Limited search depth

BFSL examines designs that differ from the current design d by
at most Ddmax elements. Whenever an improvement is found, BFSL
accepts the improved design and restarts evaluating designs that
differ from the improved design by at most Dd ¼ 1 elements. Line
4 lists all designs that differ by at most Dd elements, and line 5
shuffles this list. Note that the vec dð Þ function makes a vector
out of a two-dimensional array d, so the 1-norm k k1 is a vector
norm, not a matrix norm.

1. BFSL d;Ddmaxð Þ
2. umin :¼ objective dð Þ;dmin :¼ d
3. for Dd :¼ 1; � � � ;Ddmax do:

4. d :¼ d
0 2 DjDd ¼ kvec d

0 � dmin

� �
k
1

� �
5. d :¼ shuffle d

� �
6. for i :¼ 1; � � � ; length d

� �
do:

7. ui :¼ objective dið Þ
8. if ui < umin:
9. umin :¼ ui;dmin :¼ di

10. restart line 3 with Dd :¼ 1
11. return umin;dminð Þ

A.7. Truncated Breadth-First search with Limited search depth

Like BFSL, TBFSL examines designs that differ from the current
design d by at most Ddmax elements. Furthermore, different ele-
ments are separated by at most Drmax. The distance between differ-
ent elements Dr d;dminð Þ is computed using the vector 1-norm.

1. TBFSL d;Ddmax;Drmaxð Þ
2. umin :¼ objective dð Þ;dmin :¼ d
3. for Dd :¼ 1; � � � ;Ddmax do:

4. d :¼ d
0 2 DjDd ¼ kvec d

0 � dmin

� �
k
1

^Drmax > Dr d;dminð Þ

 !

5. d :¼ shuffle d
� �

6. for i :¼ 1; � � � ; length d
� �

do:

7. ui :¼ objective dið Þ
8. if ui < umin:
9. umin :¼ ui;dmin :¼ di

10. restart line 3 with Dd :¼ 1
11. return umin;dminð Þ

A.8. Multi-grid optimization

MG maps the current design d to a given problem with size N

using the scale d;N
� �

function and then applies an optimization

algorithm A to the scaled design.

1. MG d; N
1
;A1

� �
; N

2
;A2

� �
; � � �

� �
2. dmin :¼ d

3. for N;A
� �

:¼ N
1
;A1

� �
; N

2
;A2

� �
; � � � do:

4. dmin :¼ scale dmin; N
� �

5. umin; dminð Þ :¼ A dminð Þ
6. return umin; dminð Þ

Appendix B. Supplementary material

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.matdes.2023.111958.
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Abstract

A tough material response is important in many fields and can be achieved for brittle materials by adding

holes. In this work, a FEM approach is presented to maximize the tensile toughness of pre-cracked 2D plates

by adding arbitrarily shaped holes. The initial crack is stopped by a hole and a new crack must initiate at a

higher load. This fracture process is predicted using Taylor’s Point Method and Griffith’s criterion, which

is estimated by Configurational Forces. The toughest plate, optimized in a level-set like approach, achieves

a tensile toughness 4.5 times higher than a solid plate in all load directions.

Keywords: Fracture mechanics, finite element method, crack paths, optimization

1. Introduction

Common engineering materials are usually either strong or tough [1]. Most applications, however, re-

quire a material that is both strong and tough but still retain an acceptable stiffness; where strength is either

the yield stress or the ultimate stress, and toughness is either the resistance to crack propagation or the total

energy to failure (the integral of the σ(ε) curve) [2].5

Some natural materials are both strong and tough due to their heterogeneous, hierarchical structure

[3, 4]. The toughening effect is a result of the combination of strong but brittle base materials with ductile

materials of lower stiffness and yield stress. Depending on the mechanical properties of the two materials

and the interface between them as well as the geometrical arrangement of the phases on the various hier-10

archical levels, additional damage mechanisms can be activated such as crack deflection, crack trapping,

∗martin.pletz@unileoben.ac.at
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abbreviations
PM Point Method
CC Coupled Criterion
LM Line Method
PMMA Poly(methyl methacrylate)
ABS Acrylonitrile butadiene styrene
FEM Finite element method
RBF Radial basis function
TBFSL Truncated breadth first search

with limited depth
VNS Variable neighborhood search

nomenclature
q scalar quantity
q physical vector (2. order tensor)
q⃗ sequence

sub- and superscripts
q corresponds to:
qFEM a FEM simulation
qini crack initiation
qc a critical value for crack

propagation or initiation
qs support points
qf fixed support points
qv variable support points
qgrid the grid for the variable support

points
qworker asynchronous worker processes
q∗ the optimal design
q(i) the i-th optimization iteration
q[k] the k-th crack increment in a

fracture simulation
∆q a crack increment
qGc,i the critical load for crack propagation

of the i-th crack according to LEFM
qσc, j the critical load for initiation at j-th

hole according to PM

symbols
x,xmid position vector, center of the plate
n normal vector
n a number
σ, σI stress, max. principal stress
ε strain
F force
u, umax, uload displacement, max. applied

displacement, applied displacement
ũ dimensionless load factor
S stiffness
E Young’s modulus
ν Poisson’s ratio
KI, KIc stress intensity factor, fracture

toughness
G energy release rate
J vectorial J-Integral
lch material’s characteristic length
UT tensile toughness
Umin

T minimum tensile toughness
for the rotated plates

a, a0 crack length, initial crack length
∆α crack kink angle in a crack increment
l side length of plate
φ rotation angle of plate
d, ld, llow, lhigh dimensions of the support points
f RBF function value
ft threshold value
wi weight of i-th support point for the

RBF interpolation
lrbf length scale for RBF kernel
X design space
Γ all hole contours
Γh,i hole contour of i-th hole
dTBFSL parameter of TBFSL optimization

algorithm
rTBFSL parameter of TBFSL optimization

algorithm

secondary crack initiation, friction between microcrack surfaces, and crack bridging. In addition, the hier-

archical structure can limit the reduction in failure stress caused by initial flaws, making the structure more

damage tolerant.
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These mechanisms have been investigated in natural materials such as nacre [5, 6], deep sea sponges [7],

and bone [8]. Some of these mechanisms are already employed in engineering structures such as layered

composites [9, 10], materials with architectured micro-structure produced by high plastic deformation [11],

block-copolymers such as ABS [12], or additively-manufactured structures [13]. In order to develop mi-

crostructures for even tougher materials, a fundamental understanding of these damage mechanisms – and20

parameters controlling them – is crucial. In natural or artificial heterogeneous materials, however, many of

those mechanisms can occur at the same time and possibly on several length scales.

An example of simplified versions of heterogeneous materials are layered structures, which have been

shown to efficiently stop cracks due to the effects of inhomogeneous stiffness [10], inhomogeneous yield25

stress [14, 15], or residual stresses [16]. Once a crack has been arrested, it needs a higher applied load to

propagate (or re-initiate). An extreme case of layers with inhomogeneous stiffness has been addressed by

[17] considering a parallel arrangement of separate, unconnected sheets where the small gap between the

sheets can be considered as a material with zero stiffness. A layered structure, however, only works for

stopping transverse cracking of layers, while cracks parallel to the layers can grow fairly unhindered.30

For general applications with undefined crack orientations, a more suitable topology is the use a softer

second phase in the form of particles inside a matrix, as known e.g. for ABS [12] or toughened epoxies

[18, 19]. These particles work for multiple crack directions: the particles can first attract the crack, and

then require an increased load for a crack initiating from them. Furthermore, several cracks may initiate,35

but as long as they have not propagated through the second phase, the material is not completely separated.

In addition to the material properties of the particles and interface properties, the toughening effect in such

materials is also driven by the particle geometry.

For a thorough understanding of the contribution of the particle geometry, it needs to be studied indepen-40

dently, which can be achieved by replacing the particles by holes to discount the effect of the interface and

property mismatch. Such voids can divert or trap cracks, such that new cracks need to initiate at these holes

which requires higher applied stresses. This has been studied in 2D setups (using holes instead of voids)

3
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experimentally with additively manufactured specimens [20]. Numerical studies of such setups [21, 22] fo-

cus on predicting in which cases cracks are trapped, but does so without considering re-initiation of cracks.45

This work studies the effect of the hole geometry in a Finite Element Method (FEM) model that con-

siders both crack propagation and crack initiation. To this end, an optimization strategy is developed and

implemented to determine hole patterns that maximize the tensile toughness of a 2D plate containing an

initial crack. The plate can contain multiple arbitrary-shaped holes which are adapted by the optimization50

algorithm. The aim is to find hole patterns that maximize the toughness for several possible initial cracks (in

this case in four different directions are considered) to avoid layered-type patterns which would be optimal

if only one crack direction was considered.

2. Methods

To study the toughening effect of hole geometry, a 2D plate with an arbitrary arrangement of holes is55

considered (see Fig. 1a). The plate contains an initial crack loaded in tension (Mode I) and is simulated us-

ing the FEM Package ABAQUS Standard [23]. All FEM analyses are purely linear (linear elastic material,

linear geometry, small displacement). Crack propagation and initiation of new cracks (without dynamic

effects), however, is captured by automatically generating and analyzing FEM models with updated crack

increments following the full FEM scheme of a previous work [24] in combination with the Point Method60

[PM) [25] as crack initiation criterion. Therefore, the model can contain any number of cracks that can prop-

agate in the bulk material, initiate from a hole, or get arrested by growing into a hole surface, the specimen

surface, or another crack. In each increment, only one crack can propagate or initiate at a time. Each hole

pattern is analyzed in 4 different configurations to account for cracks approaching from 4 different sides.

The tension load for each configuration is applied by a prescribed incremental displacement u. From the65

incremental FEM computations (including incremental crack propagation until failure of the whole plate),

the reaction force F(u) is obtained, from which the tensile toughness of the plate, UT is then computed as

the integral of F(u) over the displacement (as also done in [2]).

With such a model, the hole geometry can be optimized for maximum UT. With only one setup with a70

4

101



crack on the left of the plate, this would result in design similar to a layered plate or other trivial solutions

(such as a arc-shaped hole in front of the crack tip [26]). Therefore, the initial crack is sequentially placed

on each side of the square. To optimize the geometry of the holes, support points are aligned in a grid. Each

support point has a parameter, which can be either 1 (material) or 0 (hole). The parameters are interpolated

and the contour line of this interpolation defines smooth hole shapes that are added to the plate. Additionally,75

the design space is simplified by considering a) x- and y-symmetry and b) rotational symmetry. A previously

developed optimization algorithm [27] is used to optimize the design.

2.1. FEM model setup

The setup of the FEM model is illustrated in Fig. 1a. The square plate has a side length l = 80 mm

and contains an initial crack located at half of its height with a length a0 = 10 mm. The holes can have any80

shapes defined by splines, but must not intersect the initial crack or the outer edges of the plate. The material

is assumed as linear elastic with parameters given in Sapora et al. [28] for PMMA with E = 2960 MPa, ν =

0.38. KIc = 1.96 MPa
√
m, and σc = 70.5 MPa. The model uses linear geometry and plane strain elements

CPE4R and CPE3 with an assigned thickness of 1 mm (to directly obtain output in consistent units).

85

The model uses two types of cracks: active cracks have a crack tip and can propagate, whereas inactive

cracks already ended in a hole surface, the plate surface, or another crack. The areas around active cracks

are partitioned using a tube of radius 0.75 mm, as done in [24]. The mesh is refined towards the crack tips

from a global mesh size of 2 mm to a local mesh size of 0.15 mm, see Fig. 1b. The factor of the local mesh

size to the tube radius is chosen according to a mesh size study in [29], where this mesh size has been shown90

to be sufficiently fine. Hole surfaces are meshed with an element edge length of 1 mm if the model contains

active cracks. If the model does not contain active cracks, hole surfaces are meshed with an edge length of

0.45 mm to accurately predict crack initiation from a hole surface, which mainly occurs if no active cracks

are present. The bottom edge of the plate is constrained in the vertical direction. The nodes of the upper

edge are coupled in y-direction to a reference point, at which a displacement uFEM = 1 mm is applied and95

the reaction force FFEM is output. Note, that the upper edge has a uniform vertical displacement and cannot

rotate.
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Figure 1: Model sketch for the used 2D model and the corresponding mesh that is refined towards the crack tips.

In the FEM model, cracks incrementally propagate with a fixed increment length ∆a, see Section 2.2.1.

If initiation from a hole surface is predicted (for details, see Section 2.2.2), cracks are inserted with a starting100

crack length ∆aini = 1 mm. The FEM model is repeatedly computed with an updated and remeshed crack

geometry.

The crack propagation increment length ∆a necessary for obtaining accurate results (particularly in

terms of accurate crack paths) is obtained by varying ∆a in six selected hole designs, depicted in Fig. 2.105

These designs showed to be sensitive to varied ∆a in preliminary computations. The smallest ∆a needed

for accurate predictions in these designs is considered to be sufficient and is used in all further model runs

independent of the chosen grid size for the optimization. The results of the parameter study are presented

in Section 3.1.

2.2. Modeling cracks110

2.2.1. Incremental crack propagation

The propagation of an active crack is determined from the vectorial energy release rate J, which is

based on configurational forces evaluated inside the tubes surrounding the crack tip. The direction of J is

taken as the propagation direction and its magnitude as the scalar energy release rate G. The limitations for
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D E F

Figure 2: Six hole designs A-F used for identifying the ∆a necessary for accurately predicting crack paths.

large mode II to mode I ratios of these methods have been discussed in [24], where efficient approaches for115

incremental crack propagation are suggested. In this work, we use the explicit approach described therein

with crack propagation defined by a linear increment in the direction of J, without any angle corrections.

Essentially, the modeling described in [24] is used in this work with the full J evaluation code provided and

documented in [30]. A small adaptation is introduced for dealing with crack tips close to a hole surface,

as shown in Fig. 3: instead of increasing ∆a in the last increment before the crack runs into the hole or120

passes it, further increments using the angle change ∆α from the last increment are added. This has proven

to perform better in cases where the crack tip comes close to a hole surface and might or might not pass it.

Active cracks in the model are meshed more finely close to their crack tips. For details on this mesh and

partitions, the reader is referred to [24]. Once a crack runs into either a hole surface, an outer boundary of

the plate, or another crack, the crack is deactivated and its mesh size is reduced to the global mesh size in125

the model.

For checking if a crack runs into a hole surface, the spline points of the hole surface are discretized as a

poly-line. This is more robust than computing the intersection of an extended crack and a spline, but means
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Figure 3: If a potential extended crack tip lies too close to a hole surface (in the blue region), it is extended using additional crack
increments with length ∆a and an angle change of ∆α each. This is repeated until the crack has grown into the hole or its tip does
not lie does not lie too close to a surface any more.

that the points approximating the spline must be rather fine. Furthermore, we check if a crack runs into any130

other crack.

2.2.2. Crack initiation from holes

For holes with a very small curvature radius ρ, the classical stress criterion no longer applies. In the

extreme case of a curvature radius ρ = 0, the stress approaches infinity and a fracture-mechanical criterion

must be used. Approaches that capture both large and very small ρ have been developed, such as the Coupled135

Criterion (CC) of Leguillon [31], which is based both on stresses and the incremental energy release rate of

a possibly initiating crack with length a. To avoid the additional computations necessary for obtaining the

incremental energy release rate, faster methods have been developed using a matched asymptotics approach

[31] or multi-scale computations [32]. Taylor [25] proposed two such fast methods based solely on stress,

called Point Method (PM) and LineMethod (LM). In this work, the PM is used. The PM takes the maximum140

in-plane principal stress σI at a normal distance lch/2 from the surface and compares it to the critical stress

σc of the material. The critical energy release rate Gc of the material is accounted for by the characteristic

length

lch = K2
Ic/(π σ

2
c) (1)

with

Gc = K2
Ic(1 − ν

2)/E (2)
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maximum at hole
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Figure 4: Mesh-based evaluation of the crack initiation position xini and normal for the initiation nini in the element with the highest
σI at a hole surface.

for plane strain. For the PMMAmaterial parameters stated above,Gc = 1110 J/m² and the characteristic145

length for plane strain is lch = 0.246 mm.

In the FEM model, we evaluate σI at the element integration points along the surface of each hole and

find its maximum for each hole, as illustrated by Fig. 4, where it is assumed that a crack initiates at the posi-

tion where σI is maximum. This initiation position, xini, is evaluated based on the mesh: The mid-side node150

of the element edge is taken as the initiation position xini and the normal to this edge defines the initiation

direction nini.

The PM of Taylor requires the stress along the path of a potentially initiating crack. This stress is

extracted from FEM results at a distance of lch/2 from the surface. With reasonable element size for the155

optimization, this evaluation point always lies within the first element. Since the path evaluation of Abaqus

first averages result variables at nodes before interpolating them, linear elements yield inaccurate path re-

sults within the element next to the surface. The maximum stress evaluated in this way yields the same value

as the maximum stress evaluated at an integration point, which considerably depends on the mesh size in

case of a steep stress gradient. To avoid using very fine mesh sizes, we use a simple method to improve the160

accuracy of the stresses evaluated close to surfaces as follows.
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𝑙ch

exclude
small intervals

Figure 5: Interpolation and extrapolation of σI along the path for obtaining mesh-independent σI values at the characteristic length
lch. The middle of each element cut is used with the corresponding element σI value, but omitting elements that are only slightly
cut.

This method evaluates σI along a path that starts at the defined initiation position at the hole and points

into the material normal to the surface. Stresses are read from each element intersected by the path and

the σI stress along the path length t is computed at the mid-point of each path section of a specific element165

as shown in Fig. 5. The stress along the path is then computed by linear interpolation between those mid-

points and extrapolation to the hole surface in the first element along the path. Note, that for very short

path sections, which occur if an element is just barely intersected by the path, the contribution of such a

section is ignored by excluding the corresponding σI value from the interpolation. This is done for path

sections with a length smaller than 0.4 of the longest interval as indicated in Fig. 5 for the second-last path170

section. The resulting stress profile is then used to evaluate σI(lch/2) to assess crack initiation in terms of

the necessary load factor ũc = uc/uFEM for each hole with its critical applied displacement uc. It is noted,

that more accurate solutions for path interpolation near hole surfaces could be devised, however, for our

purposes (where initiation is usually triggered by the stress data from one of the first two elements), this

method has been found to be robust and more realistic than the method offered by Abaqus.175
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2.2.3. Combining crack propagation and crack initiation

In the linear FEM model with applied uFEM, the stresses and the energy release ratesG can be scaled by

ũ as σ = ũ σFEM and G = ũ2 GFEM for any other load u = ũ uFEM. This also means that for all crack tips

with index i, Gi can be used to obtain corresponding critical loads uGc,i (i ∈ 1, ..., ncracks) for the propagation180

criterion uGc,i/Gc = 1. For all holes with index j, σI, j(lch/2) can be used to obtain the corresponding critical

loads uσc, j ( j ∈ 1, ..., nholes) for the initiation criterion u
σ
c, j/σc = 1. The incremental FEM model evaluates all

uc values in each increment, and takes the lowest uc to either propagate or initiate a crack. With the updated

model, uc values are evaluated and cracks either propagate or initiate. From one increment to the next, the

lowest uc can either decrease (which is common for a growing crack) or increase (which can happen when185

a crack grows into a hole and then needs to reinitiate or in cases of stable crack growth). This procedure is

repeated until the plate is broken and has zero stiffness or uload reaches the maximum displacement defined

as umax = 2 mm. Almost all designs break at lower displacements and have zero force before they reach

umax. The remaining designs are almost fully broken at umax, but they have a small material bridge with a

very low stiffness that still connects the plate. Since the contributions to UT of these bridges are very small,190

it can be neglected. To obtain the F(u) curve of the plate, in each increment k, the lowest u[k]c and the plate

stiffness S [k] (which decreases with increasing k) are extracted. The F(u) curve is built from a sequence

of (u[k]load, S
[k]) points, starting with u[0]load = 0. For each increment, uload is updated if u[k]c is larger than the

previous uload.

195

An example of this incremental crack propagation and initiation is illustrated in Fig. 6. The plate with

one hole at its center, depicted in Fig. 6c, initially has one crack that can propagate and one hole, a crack

can initiate from. Figure 6a shows the corresponding uc values for crack growth (blue line) and initiation

(orange x markers). In the initial crack propagation increment (k = 0, stage 1 in green in Fig. 6) uload

increases to 0.25 mm, which is the initial uc for crack propagation. In the next increments, uc of the crack is200

below this uload = 0.25 mm, which means that the crack just grows at this constant uload with a drop in force,

as can be seen in Fig. 6b and is indicated as stage 2. In increment k = 12, the crack grows into the hole, so at

this point, there are no active cracks in the model. Therefore, the load for initiation of uc = 0.45 mm is most

critical and uload is increased to this value (stage 3 in Fig. 6), leading to a force increase of about 800 N.
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Figure 6: Evaluation of a FEMmodel with a central hole. In each increment, the critical uc for crack propagation and crack initiation
are plotted. Using those uc, the F(u) curve can be extracted, which featured kinks where the crack stops and propagates/initiates at
an increased uc. Four stages are identified: 1) load increase until propagation if initial crack, 2) propagation of the initial crack into
the hole, 3) increase of load until a crack initiates from the hole, and 4) initiation and critical propagation of crack from the hole.

Once this uload is reached, a crack initiates at the right side of the circular hole, and since uc is already much205

higher than needed for this crack to grow further, it propagates unstably through the rest of the plate (stage

4 in Fig. 6). This is associated with a drop of the force to 0. From the F(u) curve, the tensile toughness

UT =
∫ umax

0 F(u) du can be computed (which corresponds to the area under the F(u) curve up to umax).

2.3. Definition of hole designs

In order to find an optimal design, UT should be maximized by varying the geometry of holes in the210

plate. To vary the hole geometry, a general representation of hole shapes is required that allows for creating

new holes, deleting existing holes, or changing the shape of existing holes. For this, an approach simi-

lar to parameterized level-set methods [33, 34, 35] is used, which defines a smooth parameterized function

f (x, . . . ), whose contour line at a fixed threshold ft defines the holes. Figure 7 shows such a smooth function

f (x, . . . ) that interpolates so called support points (spheres and cubes) using Radial Basis Functions (RBF)215

[36]. The support points are aligned in a grid and have either a low level to represent material or a high level

to represent holes. The function f (x, . . . ) is generated by interpolating the support points using RBF, which

are used in many fields of application like for gaussian processes [37] and response surface methods for sur-

rogate models [38], because RBF can interpolate complex functions smoothly. All function values above the

threshold ft (which will be set to 0.5)are holes (green) and all function values below ft are material (orange).220
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Figure 7: Interpolation of support points (spheres and cubes) using Radial Basis Functions. The interpolation is drawn orange for
values < ft (material) and green for values ≥ ft (hole).

For optimization, the algorithm Truncated Breadth-First Search with Limited depth (TBFSL) [27] is

used since it does not need derivatives and is able to escape local optima. Note, that the position of the

support points is held constant during an optimization run. However, the position of the support points

might influence the result, because a hole contour can never cross a support point due to the values of 0 or225

1 defined at those points. To compensate this drawback, we perform multiple optimization runs with varied

support point spacing 2d, see Section 2.4.4.

2.3.1. The design space

Figure 8 depicts the specimen with the support points. Two types of support points are used. Fixed

support points x⃗f :=
(
xf,1, . . .

)
are marked in blue and form a rectangle that defines the perimeter of the230

design space with internal variable support points x⃗v :=
(
xv,1, . . .

)
marked in orange. The variable support

points are arranged in a ngrid × ngrid grid, amounting to nv = ngrid · ngrid points. The grid size is defined for

each optimization run. The design space

X :=


x := (x, y)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
llow ≤ x ≤ lhigh

∧

llow ≤ y ≤ lhigh


(3)

thereby contains every point x = (x, y) inside the rectangle formed by the fixed support points x⃗f . All

support points x⃗s :=
(
xf,1, . . . , xv,1, . . .

)
are used to parameterize the shape of holes, with a total number235

of support points ns. For this, binary values f⃗s :=
(
fs,1, . . . ,

)
∈ {0, 1}ns are assigned to each of the sup-

port points. A value of fs = 0 stands for a point inside the material and a value of fs = 1 stands for
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Figure 8: The optimization uses support points x⃗s that can be variable (orange) or fixed (blue). The design space X contains every
point x inside the rectangle defined by the fixed support points.

a point inside a hole. To ensure that holes can only occur inside the design space X, the fixed support

points x⃗f are assigned to zero values f⃗f := (0, . . .) (i.e. material). Accordingly, the support point values

f⃗s
(
f⃗v
)
:=
(
f⃗f , f⃗v
)
=
(
0, . . . , fv,1, . . .

)
depend only on the variable vector f⃗v corresponding to the variable240

support points.

As depicted in Fig. 8, the mid-point between a fixed support point and the first variable support point

has a distance of ld = 15 mm from the specimen edge. Since the boundaries of holes are obtained from

interpolations of f (x, . . . ), this distance is approximately the minimum distance of hole boundaries from the245

specimen edge. The distance d is computed as 2d = (l−2·ld)
ngrid

and depends on the grid size ngrid of the variable

support points. The boundaries of the design space X are then computed as:


llow := ld − d

lhigh := l − ld + d
(4)

The following paragraphs explain the key elements to define the hole geometry inside the design space.

As already mentioned, the function f (x, . . . ) uses RBF to interpolate between the support points. The RBF

interpolation requires a so called length scale that defines the area of influence of the support points. Next,250

a threshold ft is applied to f (x, . . . ) to generate contour lines that represent the hole surface. Furthermore,

the contour lines might contain invalid material islands. This is checked by a validation function. Finally,
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a crack growth should not only be investigated for one direction, but for several directions. For this, the

geometry is transformed by a rotation function.

RBF. An example of a RBF interpolation is shown in Figure 7. The support points are interpolated using a255

Gaussian RBF kernel [37]

k
(
x, x

′
)
:= exp

−
∥∥∥x − x′∥∥∥22

l2rbf

 , (5)

which describes the interdependency of two points x, x′ . The length scale lrbf is chosen such that the

interpolation is smooth, but does not overshoot too much. Overshooting is the phenomenon when an inter-

polation value reaches values higher or lower than values of its neighboring support points. The function

f
(
x, x⃗s, f⃗s

)
:=

ns∑
i

k
(
xs,i, x

)
· wi
(
x⃗s, f⃗s

)
(6)

interpolates the given support point values f⃗s at x⃗s for a new position x. To do so, the kernel k computes260

the dependencies of each support point xs,i on the new position x. Furthermore, these dependencies are

weighted by w⃗
(
x⃗s, f⃗s

)
= (wi). The weights are found by solving the linear equations system

f
(
xs, j, x⃗s, f⃗s

)
=

ns∑
i

k
(
xs,i, xs, j

)
· wi = fs, j ∀ j = 1, . . . ns (7)

such that the interpolation function fits the support points.

Length scale. For the RBF interpolation, a length scale lrbf is required that controls the area of influence of

support points. Figure 9 illustrates the interpolation for various lrbf . For lrbf ≤ 1d, the area of influence is265

small and the holes are so small that they become separated. Contrary, large lrbf ≥ 3.5d the hole shapes are

smooth and connected, but support points influence a large area, which might lead to additional artificial

holes. Such artificial holes can be seen in the corners in Fig. 9 for lrbf = 4d. This is a result of overshooting.

Suitable values for lrbf lead to smooth, connected hole shapes without additional artificial holes. As can be

seen in Fig. 9, this is the case for values between 2d and 3d. In this work, we choose lrbf = 2.5d.270

Threshold. The hole contours defined by
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Figure 9: RBF interpolation for various length scales lrbf . A length scale of 1 d leads to isolated holes and a length scale of 3.5
d leads to artificial holes due to the overshooting interpolation. A length scale lrbf = 2.5d is used, because it can feature smooth
diagonal slits and does not overshoot.

Figure 10: The hole shape (black line) is defined as the intersection of the threshold plane (grey) and the interpolation function
f (x, . . . ) (green/orange).

Γ
(
f⃗v
)
:=
{
x ∈ X

∣∣∣∣ f (x, x⃗s, f⃗s( f⃗v) ) = ft
}

(8)

are generated by intersecting the interpolation function f (x, . . . ) with a plane, as illustrated by Figure 10.

This plane is placed at a threshold value of ft = 0.5, which is halfway between the min and max levels of

the support points and its intersection with f (x, . . . ) is computed numerically. For this, the interpolation

function f (x, . . . ) is evaluated at 1000 × 1000 points in the design space. Next, the marching squares275

algorithm [39], as the 2D form of the marching cubes algorithm [40], is used to extract contours Γ =
⋃

i Γh,i

as a sequence of closed poly-lines Γh,i. Each poly-line Γh,i = (x j, . . . ) is a lists of points x j. A region inside

a poly-line Γh,i is either a hole or an (invalid) material island inside a hole.
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Figure 11: Cracks approaching from four sides of the hole.

Validation. Designs that lead to material islands are rejected, but first a criterion is needed to determine

whether a material island is present or not. The marching square algorithm returns an anti-clockwise poly-280

line Γh,i if Γh,i encloses a hole and a clockwise poly-line Γh,i if Γh,i encloses a material island. Using this,

we define a validation function (isvalid(Γ)), which rejects Γ, if Γ contains any clockwise poly-line Γh,i.

Rotation. We want to find valid hole patterns Γ∗ that maximize the tensile toughness U∗T. The tensile

toughness UT(Γ) for holes Γ is evaluated as explained before. However, since a crack might approach

from various sides, the tensile toughness is evaluated for cracks approaching from four different angles285

φ ∈ {0◦, 90◦, 180◦, 270◦} and the minimum tensile toughness Umin
T

(
f⃗v
)
of all angles is computed. Instead

of rotating the crack for the model, the setup is kept the same and the hole contours are rotated as depicted

by Fig. 11. For the rotation, we define a function (rotate(Γ, φ)) that rotates the hole contours Γ around the

center of design space xmid =
(
lx
2 ,

ly
2

)
.

2.4. Optimization for maximum tensile toughness UT290

The minimum tensile toughness Umin
T

(
f⃗v
)
for all rotations should be maximized. Furthermore, the

optimization process should be as efficient as possible and hence it is beneficial to not evaluate the same

geometry twice. To do so, we identify equivalent designs that can be transformed into each other either

by a rotation or mirror operation. If one design has already been calculated, no further equivalent designs
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Figure 12: Equivalent designs. The variable vector f⃗v of each of the shown designs yield an identical minimum tensile toughness
Umin

T

(
f⃗v
)
.

need to be calculated. Figure 12 depicts such equivalent designs. The shown designs have distinct variable295

vectors f⃗v, but since the computation of the minimum tensile toughness Umin
T

(
f⃗v
)
rotates the hole shape,

each of those equivalent variable vectors leads to simulating all rotated designs. The outcome would be the

same Umin
T

(
f⃗v
)
. Furthermore, designs mirrored in vertical direction are also equivalent. Since only one of

those designs needs to be evaluated, the number of computations is reduced by a factor of up to 8.

2.4.1. Optimization algorithm300

As already mentioned, the minimum tensile toughness Umin
T

(
f⃗v
)
is the tensile toughness for a crack

approaching from the worst side. We aim to maximize this minimum tensile toughness. This leads to a

max-min objective

Umin
T

(
f⃗v
)
:= min

φ

{
UT
(
rotate

(
Γ
(
f⃗v
)
, φ
))}

U∗T := max
f⃗v

{
Umin

T

(
f⃗v
)}

subject to :


φ ∈
{
0◦, 90◦, 180◦, 270◦

}
isvalid

(
Γ
(
f⃗v
))

(9)

that finds the hole pattern Γ∗
(
f⃗ ∗v
)
with the maximum tensile toughness U∗T if the crack approaches from

the worst side φ∗. In this work, the TBFSL algorithm [27] is used to optimize this max-min objective. The305

TBFSL algorithm is a trajectory-based variable neighborhood search (VNS) with two parameters:
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• dTBFSL: the max number of simultaneously changed variables

• rTBFSL: the max distance of support points where variables are change

Higher values of dTBFSL and rTBFSL increase the probability of the TBFSL algorithm to escape local ex-

trema. However, the computation time increases significantly with larger dTBFSL and larger rTBFSL.310

Figure 13 illustrates the optimization process. In the first iteration i := 1, a variable vector f⃗ (i)v = (0, . . .)

of zeros is used as start vector. This is considered the currently best design f⃗ (i)∗v := f⃗ (i)v and the correspond-

ing currently best tensile toughness is set to U(i)∗
T := Umin

T

(
f⃗ (i)v

)
. Next, TBFSL generates a sequence of new

variable vectors that are similar to the currently best variable vector f⃗ (i)∗v . This means, that a new variable315

vector contains at most dTBFSL variables that differ from f⃗ (i)∗v . All those differing variables must correspond

to support points that are near each other inside a rectangle with a perimeter of 2 rTBFSL. The generated

variable vectors are put into a queue and are sorted according to the number of differing variables such that

designs most similar to f⃗ (i)∗v are at the front of the queue.

320

After the queue is filled, a number of asynchronous worker processes nworker is started. Each worker

process picks and removes one design from the front of the queue. If an equivalent design has already

been computed, the design is skipped. For all other designs, the iteration counter is incremented and the

minimum tensile toughness Umin
T

(
f⃗ (i)v

)
is computed. The evaluation of Umin

T

(
f⃗ (i)v

)
uses a technique called

early termination that is described in the next section and accelerates the optimization process by consider-325

ing intermediate results and stopping bad performing simulations. If Umin
T

(
f⃗ (i)v

)
cannot be evaluated due to

some error, the design f⃗ (i)v is discarded. Such an error can occur in cases where a crack comes too close to a

hole surface and the meshing algorithm generates distorted elements. Note, that such a failed design could

be the best design. However, since the number of failed designs is negligible compared to the total number

of designs, we assume this to be unlikely.330

The new minimum tensile toughness Umin
T

(
f⃗ (i)v

)
is compared to the best tensile toughness U(i−1)∗

T of the

previous step and the new best tensile toughness U(i)∗
T and best design f⃗ (i)∗v are updated. If the best values

have changed, the queue is cleared and then filled with new designs as explained above. The optimization
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Figure 13: Flow chart of the TBFSL optimization process.

stops when all designs in the queue have been investigated and none of those designs from the most recent335

queue have changed the best value of Umin
T .

2.4.2. Early termination

As already mentioned, a technique called early termination is used to accelerate the optimization pro-

cess. Early termination is used in applications like hyperparameter optimization [41] to reduce the computa-

tional costs by stopping an evaluation that has bad intermediate results before completion. In this work, the340

objectiveUmin
T

(
f⃗v
)
evaluates the tensile toughness for four rotated designs and each of those four evaluations

provides an intermediate result for the minimum tensile toughness Umin
T

(
f⃗ (i+1)v

)
. If an intermediate result is

already worse than the U(i)∗
T , the evaluation of Umin

T

(
f⃗ (i+1)v

)
is stopped and instead returns the intermediate

result.
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reflect

Figure 14: Illustrative example of the reflected pattern with variables corresponding to the variable support points in the top right
quarter. The grey dot dashed lines represent the reflection plane.

2.4.3. Patterns345

The optimization is performed for all variable support point variables nv. We call this the full pattern.

Furthermore, additional optimization runs are performed with repetition patterns that reduce the number of

variables. Two patterns are considered: A reflected and a rotated pattern.

A reflected pattern shown in Fig. 14 uses only variables that correspond to the variable support points350

in the top right quarter. The values of the other variable support points are determined by reflecting the top

right quarter around the reflection planes. The reflection planes are shown as grey dash-dotted lines. Since

the reflected designs are the same if they are rotated by 180°, only two rotations (0° and 90°) need to be

computed.

355

Figure 15 illustrates a rotated pattern. The values of the variable support points in the right top quadrant

are optimized. By rotating the top right quarter around the center of the specimen, the values of the other

variable support points are determined. Since the design stays the same for all considered rotations, only

the 0° design is computed.

2.4.4. Optimization runs360

To apply the optimization procedure described before, some parameters need to be set. The param-

eters used in this work are summarized here. The TBFSL optimization method requires two parameters

dTBFSL, rTBFSL. As discussed in Section 2.4.1, there is a trade-off between good results and a manageable

computation time. Rettl et al. [27] demonstrated that the optimization is more efficient for small param-
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rotate

Figure 15: Illustrative example of the rotated pattern with variables corresponding to the variable support points in the top right
quarter. The rotation is performed around the center of the specimen in three steps.

eters, but if parameters become too small, like dTBFSL = 1 or rTBFSL = 1 · 2d, the probability for finding365

the global optimum design significantly decreases. In this work, the parameters are set to dTBFSL = 3 and

rTBFSL = 3 · 2d. In the example investigated by Rettl et al. [27], these parameters lead to good results and

were efficient.

The grid size influences the radius of holes significantly and a hole contour can never cross a support370

point. To compensate this drawback, the grid size is varied. In total, 21 optimization runs are performed

with various grid sizes and pattern types:

1. 5 runs use the full pattern with grid sizes between ngrid = 3 and ngrid = 7.

2. 8 runs use the reflected pattern with grid sizes between ngrid = 3 and ngrid = 10.

3. 8 runs use the rotated pattern with grid sizes between ngrid = 3 and ngrid = 10.375

The optimization runs utilize nworker = 6 asynchronous worker processes.

3. Results and discussion

Prior to the actual optimization, a crack increment length ∆a for accurately predicting crack paths and

thereforeUT is identified. With this ∆a, results of some simple designs are first evaluated to show typicalUT

values obtained. Then, optimization results for three pattern types (full, reflected, rotated) and for various380

grid sizes are presented and discussed.
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1 2 3 4 5cracking sequence:

Figure 16: Crack paths depending on the crack increment length ∆a for design C.

3.1. Study of ∆a

From preliminary runs of the optimization algorithms, six designs with ngrid = 7 that had found to be

sensitive to ∆a were selected. These six designs (A-F) shown in Fig. 2 are used for checking if the method

for crack propagation, crack initiation, and cracks running into holes is robust and accurate. The crack in-385

crement length ∆a is varied between 1.5 mm and 4 mm in steps of 0.5 mm. The obtained sequence of cracks

and the qualitative crack path is similar for all computed ∆a values for all designs except for design C. Fig-

ure 16 shows the crack paths for design C for varied ∆a. The crack path changes significantly for values ∆a

> 2 mm. This change can also be seen in Fig. 17, which shows the relative tensile toughness for the designs

A-F for various ∆a. The tensile toughness evaluated with ∆a = 1 mm serves as reference value. Above ∆a390

= 2 mm, UT increases distinctively (though only by 4%) for design C. All other designs considered here are

fairly accurate also for larger ∆a. For all further computations, a crack increment length of ∆a = 2 mm is

selected. For this selected ∆a = 2 mm,UT deviates by less than 1% compared to the reference for all designs.

Figure 18 depicts the crack growth in design C with ∆a = 2 mm. Figure 18a shows the F(u) curve and395

the fully broken design. Figure 18b shows the critical displacements uc for crack propagation and crack

initiation. The numbers 1-5 highlight the positions where cracks propagate (1) or initiate (2-5). At first,

the plate contains only the initial crack. When the load is applied, F(u) increases with a constant slope

until uc for the crack propagation of the initial crack is met. At this point, marked as 1, the initial crack

starts to grow. The growing crack reduces the stiffness of the plate and thus the force decreases. Note,400

that Fig. 18b shows a slightly ascending uc after 1. This is caused by a stable crack propagation, where uc

gradually increases during crack growth and can be seen by a gradual drop in the F(u) curve after point
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Figure 17: Convergence of the tensile toughness UT obtained in the six designs A-F in respect to the crack increment length ∆a
used. Therefore, ∆a = 2 mm is considered sufficiently small.

1. After a few increments, the first crack hits a hole and is deactivated. Then, a new crack initiates. Here,

the local stresses play a crucial role, which are determined by the local curvature radius of the hole as well

as other holes nearby that may relax some of the stresses. The new crack initiates, as marked by 2, once405

a displacement of 0.5 mm is applied. According to Fig. 18b, uc for propagating the new crack directly

after 2 is at about 0.3 mm which is lower than the displacement of 0.5 mm applied at 2. Consequently, the

crack growth is unstable until it hits the bottom circular hole. The critical displacements for the next two

initiations and propagation events 3 and 4 are still smaller than the displacement for 2. This means that the

cracks 3 and 4 also initiate immediately with unstable crack growth after 2. This can be seen in Fig. 18a,410

where all three events 2, 3, and 4 occur at the same applied displacement. The final crack 5 initiates at a

higher displacement of about 0.55 mm, but since the plate is almost fully broken at that point, the remaining

stiffness is low. This leads to a small force for the initiation below 100 N, and the area underneath F(u)

from 4 to 5 remains small and thus contributes only very little to the tensile toughness UT.

3.2. F(u) curves for simple setups415

To give a reference for the following optimization results, some simple hole designs using a 7 × 7 grid

are presented in Fig. 19. We present a plate without any holes (Fig. 19a), one with all 7 × 7 voxels empty

(Fig. 19b), one with a single diamond-shaped hole (Fig. 19c), one with a small hole at the center (Fig. 19d)
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Figure 18: Results for test design C with a crack increment length ∆a = 2 mm.
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and two designs with a 1 × 7 elongated hole at the center with vertical (Fig. 19e) and horizontal (Fig. 19f)

orientation.420

The F(u) curves, depicted in Fig. 19, first increase linearly until a critical displacement, where F drops.

This drop in F is associated with the propagation of the initial crack and the associated stiffness reduction.

The more the crack propagates in this step, the bigger the drop in F. If this first drop has not been fatal for

the plate (as for the plate without holes in Fig. 19a), the force then increases up to a higher critical displace-425

ment with the reduced stiffness, where F drops again. Contrary to design C in Fig. 18, this second drop leads

to ultimate failure of these simple plate designs, which means that the initiated crack propagates through

the whole remaining cross-section of the plate. The critical displacement at the second drop depends on the

local stresses in the region of crack initiation, such that for a large curvature radius at the initiation point

(designs in Fig. 19b,e) the maximum displacement is about 1 mm, whereas for a smaller radius (designs in430

Fig. 19c,d,f) it is much lower with about 0.4 mm.

To obtain a large UT, both the critical displacements for crack growth and crack initiation should be

large, but at the same time, the stiffness should be large: this can clearly be seen when comparing the design

with all voxels empty (UT = 337 mJ, see Fig. 19b) to the design with the vertical hole (UT = 759 mJ, see435

Fig. 19e), which have similar uc for crack growth and crack initiation, but a significantly different stiffness.

The highest UT can therefore be obtained if the holes and the growth of the initial crack into the closest

hole reduce the plate stiffness as little as possible and the stress at the following initiation position is low.

The stresses can be reduced by a large curvature radius at the initiation position or by additional holes that

relieve stresses at the initiation position. The vertical hole could be moved closer to the initial crack to440

reduce the stiffness drop due to the initial crack growth, but apart from that, the design with the vertical hole

is already ideal for the given crack. This mimics the effect of a layered structure loaded in tension. For other

crack locations, however, this design can be much worse in terms of its UT, as shown for the horizontal hole

in Fig. 19f. This plate has a low initial stiffness, a big drop in the stiffness, and a low uc for crack initiation,

resulting in UT = 90.7 mJ, an even lower value than that of the full plate (UT = 109 mJ). This indicates that445

there is no simple and trivial solution to the optimization problem in this work.
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(c) diamond-shaped hole
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Figure 19: Resulting F(u) curves and crack paths for some simple hole designs. For the full plate without holes, UT = 109 mJ, and
the highest UT = 757 mJ is reached for the vertical slit, which only has UT = 91 mJ if rotated by 90°.
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3.3. Optimizing the hole geometry

As defined in Sec. 2.4.4, geometries are optimized using the three pattern types full, reflected, and ro-

tated. The size of the ngrid × ngrid grid varies between ngrid = 3 and ngrid = 10. The optimization with

the full pattern is only performed up to a grid size of ngrid = 7, because this optimization run already took450

more than 52 hours. The computation time and the optimization progress for UT are shown in Fig. 20. The

detailed results of all optimization runs are provided in the supplementary materials of this work. Table 1

provides a summary of all runs, including the number of failed iterations. Each iteration consists of up to

four model evaluations (for the rotation angles) of each design. Each model evaluation performs on average

26 FEM simulations for the crack propagation and initiation. The total number of FEM computations for455

all optimizations runs is more than 280,000. For such a large number of FEM models, it is not feasible to

completely eliminate failed computations. Only 394 (0.14%) of more than 280,000 computations were not

computed successfully. The failed iterations, which were less than 5% of the total iterations, were found to

be caused by failed Abaqus meshing for unclear reasons and cases where a crack close to a hole surface led

to distorted elements. Both cases occur more often with finer grids, where the meshing parameters and the460

∆a selected may have been too large, since it was fixed at 2 mm independently on ngrid.

Figure 20 shows that the reflected pattern leads to the best designs with the highestUT
∗. There is a weak

correlation for larger grids resulting in better designs. Considering the logarithmic scale of the computation

time in Fig. 20, it can be seen that optimization runs on larger grids take much longer. Although the full465

pattern has the highest computation time, it performs the worst. On average, the rotated and reflected pat-

terns find better UT
∗ than the full pattern in less time on the same grid size. It is obvious that the full pattern

needs more computation time, because for the same grid size, it has more variables and needs to perform

model evaluation for cracks from all four directions. The rotated pattern needs to consider only one crack

direction, because it is rotational symmetric. The reflected pattern models evaluations for cracks from two470

directions.

However, the better UT
∗ of the rotated and reflected patterns is counter-intuitive, because the set of

possible designs is greater for the full pattern and also contains all possible designs of the other patterns.
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Best design

Figure 20: The optimized tensile toughness UT
∗ depending on the computation time of the optimization. The value UT

∗ increases
with the progress in the optimization. Optimizations are carried out for the three types of patterns full, reflected, and rotated for
grid sizes between 3 and 10. The highest UT

∗ is found for the reflected pattern and a grid size of 8.

Consequently, the full pattern should be able to find the designs optimized by the rotated and reflected pat-475

terns. This is not the case, however, since it gets stuck in local optima. If the rotated and reflected patterns

fall in the same local optima, they might escape it, because a change in one variable changes up to four

support point values, due to the rotation and reflection, respectively. This leads to more diverse designs and

higher probability of escaping local optima.

480

In the following, the designs and detailed results of five selected optimizations are presented. This is

done for the full pattern with a 7 × 7 grid, the reflected pattern with a 5 × 5 grid and a 8 × 8 grid (which has

the highest UT
∗), and the rotated pattern with a 4x4 grid and a 10 × 10 grid.

3.3.1. Best overall design485

Figure 21 shows the best design found of a reflected pattern and ngrid = 8 with UT
∗ = 486.8 mJ. The

initial crack starts to grow at a force of about 500 N and is then stopped after a few increments by a small

vertical slit. The effect of this crack on the stiffness is quite small and the force drops only by a small
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Table 1: Results of all optimization runs on ngrid × ngrid grids with the patterns full, reflected, and rotated that reduce the number of
variables nvar.

UT
∗ failed model computation time

pattern ngrid nvar in mJ iterations iterations evaluations in hh:mm

full

3 9 344.9 24 0 45 00:39
4 16 404.4 397 0 506 08:01
5 25 422.9 1038 1 1352 23:04
6 36 366.2 1548 4 2149 47:57
7 49 374.7 1619 3 2136 52:34

reflected

3 4 352.6 10 0 18 00:24
4 4 388.7 10 0 17 00:19
5 9 465.1 122 0 160 02:59
6 9 466.2 55 0 72 01:18
7 16 431.4 255 4 321 06:03
8 16 486.8 235 0 277 06:35
9 25 421.2 850 8 949 23:50

10 25 455.6 644 8 692 18:47

rotated

3 3 352.7 6 0 6 00:18
4 4 393.4 10 0 10 00:17
5 7 416.5 52 0 52 00:52
6 9 428.1 99 1 99 02:12
7 13 451.2 251 5 251 05:14
8 16 430.1 259 6 259 06:19
9 21 456.7 602 15 602 14:11
10 25 462.7 687 35 687 20:24

amount. Next, the crack initiates at the vertical slit. However, the holes above and below the vertical slit

act as stress relief notches [42] by lowering the stresses by shielding. Consequently, a high force of almost490

1.4 kN is required for the crack initiation. This shielding and stress relief mechanism is the main reason for

the high UT. The crack then grows further into the hole at the center, which is again shielded by stress relief

holes above and below. Although the stresses around the central hole are reduced by the stress relief holes,

the force for the initiation is lower than before at about 1000 N. This is visible as the small third peak in the

F(u) curve. Finally, the crack hits the right vertical slit, but immediately initiates again and grows all the495

way through to the right edge of the plate.

Although the reflected pattern is not constrained to rotational symmetric designs, the optimized design

is also rotational symmetric. One might expect that the rotated pattern evaluated for the same grid finds the

same design. However, it found a worse design, because the TBFS optimization usually does not find the500
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Figure 21: Best design from the optimization runs with the reflected pattern with ngrid = 8.
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Figure 22: optimized design found using the reflected pattern with ngrid = 5.

best design, unless higher values for parameters dTBFS and rTBFS are chosen.

3.3.2. Reflected pattern design with ngrid = 5

Another interesting design was found using the reflected pattern with ngrid = 5. Figure 22 shows this

design, which consists of two vertical slits in the 0° rotation state (Fig. 22a) and two horizontal slits in the

90° rotation state (Fig. 22b). For the 0° rotation, the initial crack grows into the left vertical slit. This slit505

behaves similar to the vertical slit presented in Fig. 19e. Since this slit has a large curvature radius, the notch

effect and thus the stress concentration are small. This leads to a high critical force of about 1.3 kN. Fur-

thermore, the big slits reduce the stiffness more than in the previous design shown in Fig. 21. Consequently,

for the same force, a higher displacement is necessary. The combination of the high displacement and the

high force result in a high UT of 533.4 mJ.510

However, if the design is rotated by 90° (Fig. 22b), UT decreases. First, the crack grows midway be-

tween the two horizontal slits. The two slits shield the crack and there is almost no load at the crack tip.
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Figure 23: Two optimized designs found using the rotated pattern and various grid sizes.

Therefore, stable crack growth occurs, which is indicated by dots in the F(u) plot during the increase of the

force towards the second peak. At the second peak, the crack stops prior to hitting a hole approximately at515

the center of the plate, because the crack tip is shielded by the two holes. At this stage, the critical force for

the initiation of a new crack is lower. Next, a new crack initiates at the right side of the upper horizontal slit

and immediately grows into the right side of the plate. The plate is now almost broken and has a very low

stiffness. Only then, the first crack finally grows into the upper hole.

3.3.3. Rotated pattern designs520

Figure 23 shows two designs that were optimized using the rotated pattern both on a coarse grid ngrid = 4

(Fig. 23a) and a fine grid ngrid = 10 (Fig. 23b). The coarse grid has in total 4 variables and can only represent

very simple designs. The optimized coarse grid design consists of four oval holes with UT = 393.4 mJ. The

crack grows from left to the right and hits two of the holes. For the fine grid with its 25 variables, the best

design found (UT = 462.7) is much more complex. In total, the plate contains 11 holes of various shapes.525

Like in the best overall design, shown in Fig. 21, the crack starts here at about 500 N and runs then into a

vertical slit with stress relief holes above and below. A high load is required to initiate new cracks. In the

center, there are four circular holes that deflect the crack further. The final crack initiates at a force of about

600 N at the right slit and propagates to the right edge of the plate.

3.3.4. Full pattern design with ngrid = 7530

The optimization using the full pattern on a fine grid with ngrid = 7 involves 49 binary variables and took

more than 52 hours to compute. About 249 ≈ 5 · 1014 variable combinations would be possible, of which
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Figure 24: Design optimized by the full pattern with ngrid = 7.

only 1619 were considered during the optimization. Figure 24 shows the F(u) curves of all four rotations

of the optimized full 7 × 7 design. The plate has no symmetry and contains 9 holes without any obvious

arrangement. The holes significantly deflect the crack and lead to many initiations. This is indicated by the535

number of peaks in the F(u) curves that shows 5, 6, 5, and 3 peaks for the 0°, 90°, 180°, and 270° rotations,

respectively. Although the UT of these designs (minimum UT of 374.7 mJ) is lower compared to the best

design found for the reflected 8 × 8 grid, the displacement for ultimate failure with more than 1.5 mm is

much higher for all rotations except for 270°. This is due to small remaining material brides that have a low

stiffness and only contribute slightly to UT.540

Conclusions

In this work, an optimization strategy was developed and implemented based on an optimization method

presented by Rettl [27]. The optimization strategy was applied to an example to investigate the influence

of multiple holes on crack propagation and the toughness of a specimen. For the example, arbitrary shaped

holes in a 2D plate were optimized to maximize the tensile toughness of the quadratic plate. The holes were545

33

130



represented as contour lines of a parameterized function whose parameters act as optimization variables.

Crack initiations were predicted by Taylor’s criterion and brittle crack propagation was predicted using

configurational forces.

Optimization runs that reduced the variables with symmetry planes resulted in reduced computation550

time but also in improved designs. The optimal design, which involved 16 binary variables and included

both x- and y-symmetry planes, achieved a tensile toughness of 486.8 mJ in the 80 mm × 80 mm plate

with PMMA properties. The optimization run to obtain this design took 6:35 h to compute on a 6 core

3 GHz CPU. Notably, this design exhibited 4.5 times higher tensile toughness than a solid plate and 2.1

times higher tensile toughness than a plate with one circular hole. Additionally, the strategy of using a555

hole shielded by stress relief holes to stop crack propagation appears beneficial. This approach decreases

stresses at the hole surface, which leads to higher forces for the crack initiation, and thus increases the tensile

toughness. Furthermore, the high tensile toughness improves, if the plate stiffness remains high despite the

propagating cracks.

CRediT authorship contribution statement560

Matthias Rettl: Conceptualisation, Methodology, Software, Investigation, Visualisation, Writing —

original draft preparation, Writing — review and editing. Martin Pletz: Conceptualisation, Methodology,

Software, Investigation, Visualisation, Writing — original draft preparation, Writing — review and editing.

Clara Schuecker: Conceptualisation, Writing — review and editing.

Declaration of competing interest565

The authors declare that they have no known competing financial interests or personal relationships that

could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

34

131



References570

[1] R. O. Ritchie, The conflicts between strength and toughness, Nature Materials 10 (2011) 817–822. doi:10.1038/nmat3115.
[2] M. Ahmadi, K. Ehrmann, T. Koch, R. Liska, J. Stampfl, From Unregulated Networks to Designed Microstructures: Introduc-

ing Heterogeneity at Different Length Scales in Photopolymers for Additive Manufacturing, Chemical Reviews 124 (2024)
3978–4020. doi:10.1021/acs.chemrev.3c00570.

[3] P. Fratzl, O. Kolednik, F. D. Fischer, M. N. Dean, The mechanics of tessellations – bioinspired strategies for fracture575

resistance, Chemical Society Reviews 45 (2016) 252–267. doi:10.1039/C5CS00598A.
[4] R. Bermejo, R. Daniel, C. Schuecker, O. Paris, R. Danzer, C. Mitterer, Hierarchical Architectures to Enhance

Structural and Functional Properties of Brittle Materials, Advanced Engineering Materials 19 (2017) 1600683.
doi:10.1002/adem.201600683.

[5] M. Grossman, D. Pivovarov, F. Bouville, C. Dransfeld, K. Masania, A. R. Studart, Hierarchical Toughening of Nacre-Like580

Composites, Advanced Functional Materials 29 (2019) 1806800. doi:10.1002/adfm.201806800.
[6] G. X. Gu, F. Libonati, S. D. Wettermark, M. J. Buehler, Printing nature: Unraveling the role of nacre’s mineral bridges,

Journal of the Mechanical Behavior of Biomedical Materials 76 (2017) 135–144. doi:10.1016/j.jmbbm.2017.05.007.
[7] M. A. Monn, J. C. Weaver, T. Zhang, J. Aizenberg, H. Kesari, New functional insights into the internal architecture of

the laminated anchor spicules of Euplectella aspergillum, Proceedings of the National Academy of Sciences 112 (2015)585

4976–4981. doi:10.1073/pnas.1415502112.
[8] M. E. Launey, M. J. Buehler, R. O. Ritchie, On the Mechanistic Origins of Toughness in Bone, Annual Review of Materials

Research 40 (2010) 25–53. doi:10.1146/annurev-matsci-070909-104427.
[9] A. Parvizi, K. W. Garrett, J. E. Bailey, Constrained cracking in glass fibre-reinforced epoxy cross-ply laminates, Journal of

Materials Science 13 (1978) 195–201. doi:10.1007/BF00739291.590

[10] O. Kolednik, J. Predan, F. D. Fischer, P. Fratzl, Bioinspired Design Criteria for Damage-Resistant Materials with Periodically
Varying Microstructure, Advanced Functional Materials 21 (2011) 3634–3641. doi:10.1002/adfm.201100443.

[11] Y. Beygelzimer, R. Kulagin, P. Fratzl, Y. Estrin, The Earth’s Lithosphere Inspires Materials Design, Advanced Materials 33
(2021) 2005473. doi:10.1002/adma.202005473.
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