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ABSTRACT

The use of machine learning (ML) models to describe material properties has become
an important research direction in materials science and many relevant datasets are
becoming available. However, the systematic treatment of uncertainties associated with
measurement errors remains a challenging topic. This thesis provides an investigation of
the impact of measurement errors on the prediction accuracy of ML algorithms for the
mechanical properties of steels.

In the first part, this topic is addressed using artificially generated linear and non-linear
datasets. It is shown that the errors in the target variable y, although affecting prediction
accuracy more strongly than the errors in the features X, average out if y is normally
distributed. Errors in the features X, on the other hand, lead to bias in relation to the
true correlation that systematically offsets the prediction with respect to the true value.

In the second part, this thesis aims to provide a deeper understanding of the nature
of the prediction error via the bias-variance decomposition. It analyses how separate
determination of the measurement error and investigation of Learning Curves can be
used to quantify bias or variance of the ML model. This is demonstrated on a martensite
starting temperature (Ms) data set and a r-value data set. For the Ms dataset, it is
found that for underparametrized models such as linear regression, the training error
and validation error converge well above the measurement error indicative of bias. For
overparametrized models such as XGBoost or Random Forest, the training error is smaller
than the measurement error, while the validation error is sizably higher. Therefore, these
models exhibit variance and would benefit from more data points. The performance
on the validation set of XGBoost, Random Forest, and Gaussian Process regression is
comparable. For the r-value dataset, XGBoost reveals behavior similar to that of the Ms

dataset. Finally, an analysis of ML models available from the literature to predict the
mechanical properties obtained from tensile testing reveals that the model’s validation
error is close to the measurement error. Therefore, the bias and variance of these models
are small and, therefore, the prediction accuracy is higher than the validation error (or
the associated coefficient of determination R2) suggests.
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NOTATION

In this thesis, we adopt different notations to denote different mathematical entities that
are commonly used in machine learning [1]:

• Scalars are denoted by italic letters such as x = 1

• Vectors are denoted by bold lowercase letters, like x.

x =

⎡
⎢⎢⎣
1

2

3

⎤
⎥⎥⎦

• Matrices are denoted by bold capital letters. For example, X.

X =

[︄
1 −2 2

3 1 0

]︄
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1 Introduction

The use of ML models to describe material properties has become a popular method
since they can cope with the large number of factors that can influence the production
of materials. In the steel industry, many machine learning models have been created to
model the mechanical properties of steel from the industrial production route [2–11].
Another representative example of the suitability of ML methods is the prediction of the
martensite start temperature (Ms) of steels [12–14] via the chemical composition.

However, when performing an experiment such as a tensile test, there will always be some
noise due to factors that cannot be 100 % controlled. Some of the measurement noise
comes from the geometry and machining of the test piece, or the characteristics of the test
machine (stiffness, drive, and control mode), to name a few factors [15]. Bhadeshia gives
an overview of the applications and implications of neural networks in materials science.
He also mentions the importance of accounting for uncertainties in material science in his
paper [16]. Heidl and colleagues thoroughly examine the impact of noise, model bias, and
model variance on chemical property predictions. By conducting controlled experiments
on datasets of molecular properties, they reveal significant patterns in model performance
linked to the degree of noise present in the dataset [17]. Relevant to this topic is also an
early work that has pointed out the conceptual difference between the error in the target
variable and the input variable [18]. More recently, a detailed description of uncertainty
in deep learning has also been provided. [19].

The aim of this thesis is to gain a better understanding of the impact of measurement
uncertainties on prediction accuracy. Gaining insight into these uncertainties can sig-
nificantly improve the decision-making process of what steps to take next in a machine
learning project. In this thesis, the influence of measurement errors is first investigated on
synthetic data sets where the noise is applied to the input and output variables at different
levels. In this case the ground truth is known. This will be followed by an examination of
real-world data sets and considerations on how a known measurement error can be used
to evaluate the machine learning model. In addition, a brief comparison of the existing
literature on machine learning models used to predict mechanical properties from tensile
testing will be provided.
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2 Fundamentals

This section describes the concepts of measurement error and how it can be divided into
random and systematic errors. The focus then shifts to the uncertainties in machine
learning and the additional complexities encountered when applying machine learning
models in real-world scenarios. A brief summary of key machine learning models and
performance metrics is presented along with a short analysis of the bias-variance trade-off.

2.1 Measurement Error

A measurement error or observational error is the difference between a measured value
of a quantity and its unknown true value. Generally, measurement errors can be divided
into random errors and systematic errors [20].

Statistical fluctuations in measured data due to precision limitations of the measurement
device are known as random errors. These errors can be evaluated by statistical analysis
and reduced by averaging over a large number of observations. Systematic errors are
inaccuracies that occur consistently in the same direction. They are difficult to detect
and cannot be analyzed statistically. If a systematic error is identified during calibration
against a standard, a correction or correction factor should be applied to compensate
for the effect. Unlike random errors, systematic errors cannot be detected or reduced by
increasing the number of observations [21].

The total measurement error is the sum of systematic and random errors [22]. Figure 1
illustrates the concept of measurement error. The x-axis represents the measured value
and the y-axis shows the frequency of each measured value.The curve itself represents
the distribution of measured values around the measured value. The spread of the curve
indicates the variability or precision of the measurements. A narrower curve would
suggest more precise measurements, while a wider curve would indicate less precision
[23].

2.2 Classification of Uncertainty in Machine Learning

There are two main categories of uncertainty that affect machine learning algorithms
epistemic and aleatoric (Figure 2). The word aleatory derives from the Latin alea, which
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Figure 1: Illustration of the cumulative effect of systematic and random error.

means the rolling of dice, and the word epistemic derives from the Greek episteme, which
means knowledge [17, 24, 25].

Aleatoric uncertainty is also known as stochastic uncertainty and is representative of
unknowns that differ each time we run the same experiment. For example, the measure-
ment of martensite start (Ms) temperature with dilatometric data. This inconsistency
can be attributed to uneven temperatures across the small samples placed inside the
dilatometer or other factors, as explained by Bhadeshia [16].

Epistemic uncertainty, also known as systematic uncertainty, arises from information that
could be known in principle, but is not known in practice. This can occur when the model
ignores certain effects. An example of this would be the increase in the Ms temperature
as a result of the formation of carbides. This depletes the matrix of carbon and the Ms

temperature increases to higher temperatures [26]. The fraction of carbides could be
measured and incorporated into the model to reduce the resulting uncertainty. However,
as this measurement is difficult and costly, this is not done in most models, and therefore
not all relevant variables are included in the model.

Even so in a practical application of a machine learningmodel, some additional uncertainty
is to be expected. This can be understood by looking at the onion layer model (Figure
3) of the prediction uncertainty described by Kläs [27]. The three uncertainties, scope
compliance, data quality and model fit, are stacked on top of each other.
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Figure 2: Division of the uncertainty in machine learning (based on [17].)

Uncertainty in model fit is caused by the fact that machine learning techniques provide
empirical models that are only an approximation of the real (functional) relationship
between the model input and its output. The accuracy of this approximation, which is
limited, has been discussed above in the text.

In a real environment, all types of collected data (e.g. based on sensors but also human
input) are limited in their accuracy and potentially affected by various types of quality
issues. Thus, the actual level of uncertainty in the output of a machine learning model is
affected by the quality (especially the accuracy) of the data on which it is currently being
applied. Therefore, additional uncertainty resulting from a delta between the quality
of the cleaned data and the data on which the model is currently being applied can be
defined as data quality (induced) uncertainty. An example would be that the chemical
analysis of the steel is less accurate than it was in training. This would lead to a less
precise prediction in the Ms temperature.

Scope compliance addresses the issue of how machine learning models are built and
tested in a specific context. If these models are used outside of that context (scope
compliance), their results may become unreliable (because the model has to extrapolate).
An example would be that the model was trained on lean C-Mn steels, but now we want
to use it on tool steels.
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Figure 3: Onion layer model of the prediction uncertainty.

2.3 The Bias-Variance Decomposition

In general, when our machine learning model wants to predict a target point y, we use
our features x. We assume that there is a relationship that relates to the other such as
y = f(x) + ϵ where the error term ϵ is normally distributed with a mean of zero. This
leads to the formulation of a machine learning model f̂(x) for the given point x, as an
approximation of the true function f(x). This results in the expected squared prediction
error:

Err(x) = E
[︂
(y − f̂(x))2

]︂
(1)

This error can then be decomposed into bias and variance components[28]:

Err(x) =
(︂
E
[︂
f̂(x)

]︂
− f(x)

)︂2

+ E
[︃(︂

f̂(x)− E
[︂
f̂(x)

]︂)︂2
]︃
+ σ2

ϵ (2)

Err(x) = Bias2 + Variance+ Irreducible Error (3)

The decomposition into bias variance and irreducible error as shown above is described
in more detail in the book by Hastie et al. [29]. Then the accuracy of a machine learning
model’s predictions can essentially be broken down into two key elements: the error
rooting from "bias" and the error resulting from "variance". Just like many situations in
life, there is a balancing act involved in a model’s capacity to reduce bias and variance
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simultaneously. This principle is called the Bias-Variance trade-off. When the model is
underfitting (Figure 4), it means it has high bias, as the model has not learnt enough
information from the training set and does not capture the relationship between the
features X and the target variable y. When the model is overfitting, it means that it has
high variance and the model is too closely related to the examples in the training set and
does not generalise well to other examples. Besides these errors, there is also something
called an Irreducible Error, which is basically the noise in the data. Noise is random and
cannot be predicted, so we cannot lower this type of error.

Figure 4: Demonstration of overfitting and underfitting.

2.4 Machine learning evaluation metrics

This subsection describes some important regression metrics: the mean squared error
MSE, the root mean squared error RMSE, and the coefficient of determination R2.

2.4.1 Mean Squared Error MSE

The mean squared error (MSE) measures the amount of error in statistical models. It
is the average squared difference between the observed and predicted values. When a
model has no error, the MSE is equal to zero. As the model error increases, its value
increases. Mathematically, it’s represented as:

MSE =
1

n

n∑︂

i=1

(yi − ŷi)
2 (4)

where yi are the observed values, yî are the predicted values, and n is the number of
observations. A graphical representation can be seen in Figure 5.
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Figure 5: Graphical representation of the calculation of MSE.

2.4.2 Root Mean Squared Error RMSE

The root mean square error (RMSE) is a standard method for measuring the error of a
model to predict quantitative data. It is defined as the square root of the mean squared
error (MSE):

RMSE =
√
MSE (5)

The RMSE has the benefit of being in the same units as the original data. In addition, it
serves as a measure of the dispersion of residuals, similar to standard deviation (SD) in
its role and application. This similarity to the univariate case allows us to understand that
the RMSE represents the typical deviation of residuals from the regression line, essentially
indicating the vertical scatter of data points around this line. Furthermore, RMSE benefits
from an empirical rule similar to SD, where approximately 68 % of observations are
expected to lie within ±1 RMSE. Moreover, the principle that about 95% of the data
values are found within ±2 RMSE holds true for many datasets, although there are
exceptions where these approximations may not apply [30].

2.4.3 Coefficient of Determination R2

R2 is a statistical measure that represents the proportion of the variance for the depen-
dent variable that’s explained by the independent variables in a regression model. It is
calculated as follows:

R2 = 1−
∑︁n

i=1(yi − ŷi)
2

∑︁n
i=1(yi − ȳ)2

(6)
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where yi is the actual observed values of the dependent variable in the data, ŷi the
predicted values of the dependent variable obtained from the regression model, ȳ the
mean (average) of the actual observed values of the dependent variable in the data and n

the number of data points in the data set. If R2 is 1, this means that the predictions of the
model are perfectly in line with the real results. If R2 is 0.7, that means that the model
explains 70 % of the variance. The remaining 30 % of the variance is not explained by
the model, suggesting that other factors not included in the model might account for this
portion of the variance.

Figure 6: Graphical representation of the calculation of R2. The total sum of squares is represented
in the left plot while the residual sum of squares is shown to the right.

2.5 Machine Learning Models

This section provides a brief overview of several machine learning models, focussing
on tree ensemble learning algorithms, Gaussian process regression (GPR), and neural
networks. It is important to note that these are just a few examples from a wide range of
models used in the field. Other commonly used models are, for example, Support Vector
Machines SVMs[31].

2.5.1 Tree Ensemble Learning Algorithms

Tree ensemble learning algorithms combine the outputs of multiple trees to produce more
accurate results. Two ensemble techniques are Bagging and Boosting. Bagging and
Boosting are both ensemble techniques, but they differ in their approach to combining
models. Bagging aims to introduce diversity by training models simultaneously on
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different subsets of the data.(Figure 7). Boosting, on the other hand, focuses on sequential
training and adaptive learning, where each model attempts to correct the errors of the
previous ones[32] (Figure 8). A popular example of bagging is the Random Forest (RF)
algorithm [33], which builds a collection of decision trees. Each tree is trained on a
different bootstrap sample and the final prediction is determined by aggregating the
predictions of individual trees. A popular example of boosting is the eXtreme Gradient
Boosting (XGBoost) algorithm [34]. It is an advanced implementation of gradient
boosting algorithms designed for speed and performance.

Figure 7: Illustration of Bagging. Figure 8: Illustration of Gradient Boosting.

2.5.2 Gaussian Process Regression (GPR)

GPR are widely used for non-linear, non-parametric regression modelling. They predict
outcomes using prior knowledge encapsulated in what are known as kernels. Because
different kernels can be specified, the GPR model can become very versatile. However,
this is also a drawback, as it raises the question of which kernel to use for a given problem
[35]. Its strength lies in the use of Bayesian statistics to produce mean predictions with
confidence intervals. Traditional GP models assume that any noise affects only the output
values, while the input values are assumed to be perfectly accurate. However, there is some
research that considers the noise in features X as well [36, 37]. A significant limitation of
these models is their inefficient performance as the size of the dataset increases. Because
an inverse matrix has to be calculated, the GPR is slow for more than a few thousand
data points[38, 39].

2.5.3 Neural Network

A vanilla neural network is constructed of artificial neurons (Figure 10) arranged in
layers, including an input layer, a hidden layer, and an output layer (Figure 9). Each
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neuron applies an activation function to its input, introducing non-linearity to the model
and enabling the network to capture complex patterns. The standard architecture of
neural networks is feedforward, meaning that the information flows forward from the
input to the output layer, with each layer’s output serving as the next layer’s input. When
a neural network contains more than one hidden layer, it is referred to as a multilayer
neural network or a deep neural network. Adding more hidden layers can enhance the
network’s ability to fit complex functions, although it increases the computational cost
and the risk of overfitting.

Figure 9: The structure of a multilayer neural network.

Neural networks learn by adjusting the weights of connections between neurons, primarily
using a method called backpropagation. This learning process is enhanced by the use of
activation functions, which introduce non-linearity to the network, allowing it to model
complex relationships in the data. The choice of activation function is crucial as it affects
the network’s ability to converge during training and its overall performance. Common
activation functions include the sigmoid, tanh, and ReLU (Rectified Linear Unit) function.
Each of these functions has its own characteristics and is chosen based on the specific
requirements of the neural network and the nature of the problem being solved. Together
with the network architecture, these elements form the foundation of a neural network’s
ability to tackle a wide array of tasks [40, 41].
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Figure 10: The structure of an artificial neuron.

3 Methods

The code was implemented in Jupyter Notebooks using Python 3.11. For data manip-
ulation and visualisation, the Pandas [42], NumPy[43], Seaborn [44] and Matplotlib
[45] libraries were used. Machine learning models were constructed and evaluated using
the XGBoost [34] and Scikit-learn [46] libraries. The methods used to investigate errors
on artificial datasets and to investigate datasets from the real world Learning Curve are
described separately.

4 Investigation of errors on artificial data sets

This section of the examination focuses on artificial datasets. One advantage of this
approach is that the ground truth is known. The following section will examine three
datasets.

4.1 Procedure of Investigation on artificial data sets

Figure 11 shows the general workflow of noise analysis, where the first step is to create
artificial data sets. This involves defining a mathematical function that simulates the
relationship between the features (independent variables) and the target (dependent
variable). Three functions were used to generate synthetic data sets: a simple linear
function (equation 7), a Renard Series R10 linear function (equation 8) and the Friedman
1 nonlinear function (equation 9).
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y = x+ d (7)

y = x0 + 1.25x1 + 1.6x2 + 2x3 + 2.5x4 + 3.15x5

+ 4x6 + 5x7 + 6.3x8 + 8x9 + 10x10 (8)

y = 10 sin(πx0x1) + 20(x2 − c)2 + 10x3 + 5x4 (9)

The sample size n for all data sets includes 5000 data points. For the linear function, the
input feature values xi are uniformly distributed on the interval U [0.5, 2] and the intercept
d = 1. The input feature for the Renard Series R10 x0,i...x10,i and for the Friedman
1 x0,i...x4,i are uniformly distributed on the interval U [0, 1]. The constant variable was
chosen as c = 0.5 in the Friedman 1 function.

After the artificial data were generated, the next step was to introduce Gaussian noise to
both the features and the target to simulate measurement errors. The noise in the feature
was defined as a product of the mean value of the feature x and a noise factor σ that is
normally distributed and varied between 0 and 0.5 The same was done for the noise in
the y-value and y represents the mean value of the target value:

xnoise = xN (0, σ) (10)

ynoise = yN (0, σ) (11)

This leads to the following corrupted relationship for the data sets:

[y + ynoise] ≈ [x+ xnoise] + d (12)
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[y + ynoise] ≈ [x0 + x0,noise] + [1.25x1 + x1,noise] + [1.6x2 + x2,noise]

+ [2x3 + x3,noise] + [2.5x4 + x4,noise] + [3.15x5 + x5,noise]

+ [4x6 + x6,noise] + [5x7 + x7,noise] + [6.3x8 + x8,noise]

+ [8x9 + x9,noise] + [10x10 + x10,noise] (13)

[y + ynoise] ≈ 10 sin(π[x0 + x0,noise][x1 + x1,noise])

+ 20([x2 + x2,noise]− c)2

+ 10[x3 + x3,noise] + 5[x4 + x4,noise] (14)

The data sets were then divided into a training set and a test set. The training set is
used to fit the model and for cross-validation, while the test set was used to evaluate
performance on unseen data and to measure accuracy against the ground truth function
in this particular case. This should mimic the normal workflow of a machine learning
project. The split ratio is 80 % for training and 20 % for testing.

The next step is to train the machine learning models using the training set. For each
noise variation, a model was trained. For the corrupted linear dataset (equation 12)
and the noisy Renard Series R10 dataset (equation 13) a linear ordinary least squares
regression model was used and for the corrupted Friedman 1 nonlinear dataset a XGBoost
(equation 14) model has been trained.

To evaluate the performance of the model, a 10-fold cross-validation is used. This involves
splitting the training data set into ten parts, using nine parts for training and one part for
validation. This process is repeated ten times, each part being used once as the validation
set. This method provides a more reliable estimate of the performance of the model. The
performance measures chosen are R2 and RMSE. The performance of the model was
also evaluated against the ground truth of the noise-free function defined with the test
set. This evaluation provides insight into how well the model can capture the underlying
relationship defined by the function.
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Figure 11: Workflow of investigation of errors on artificial data sets.

4.2 Results of errors on artificial data sets

Figure 12 shows the results of the linear regression with a noise factor of σ = 0.15 on
feature and the target variable. The black line is the ground truth function, and the
orange dots show the predicted values. The blue dots are the 20 % test data. Because this
graphical representation is only possible for the linear function, a different presentation
was developed. This can be seen in Figure 13. This 3D surface plot illustrates the
relationship between all applied noise levels and R2. In principle, Figure 12 corresponds
to one point on the black surface and one point on the coloured surface. The x and y axes
represent the noise factor, while the z axis represents the value of R2. The black surface
represents R2 calculated using the true function (equation 7) and the trained models. The
coloured surface below represents R2 from cross-validation calculated using observed
data (equation 12) and trained models. The colour gradient indicates the magnitude of
R2. Red or grey represents higher values, closer to 1, indicating a better fit, while blue
or black represents lower values, closer to 0, indicating a poorer fit. The same graphical
representation was done for the linear dataset Renard Series R10 (Figure (14) and the
nonlinear dataset Friedman 1 (Figure (15).

The 3D surface plot was also created for the RMSE. Figure 16 shows this for the Renard
Series R10 dataset and Figure 17 for the Friedman 1 dataset. The y-axis represents
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the standard deviation of the added noise, while the x-axis shows the average standard
deviation of the noise applied to each feature. The black surface shows the RMSE
calculated using the true function and the trained models. The coloured surface shows
the RMSE calculated from cross-validation using observed data and trained models. The
colour gradient indicates the magnitude of the RMSE, with red or grey representing
higher values and blue or black representing lower values. When only noise is applied on
y, the RMSE matches the standard deviation of the noise applied to the target variable.

Figure 12: Results of the linear regression. The black line shows the ground truth function, orange
dots show the predicted values and blue dots show the testing data.
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Figure 13: Results of the linear regression. Black surface shows R2 calculated with the true function
value while the colored surface shows R2 calculated for the observed data.
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Figure 14: Results of the linear regression. Black surface shows R2 calculated with the true function
value while the colored surface shows R2 calculated for the observed data.
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Figure 15: Results of the XGBoost Model. Black surface shows R2 calculated with the true function
value while the colored surface shows R2 calculated for the observed data.
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Figure 16: Results of the linear regression. Black surface shows RMSE calculated with the true
function value while the colored surface shows RMSE calculated for the observed data.
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Figure 17: Results of the XGBoost Model. Black surface shows RMSE calculated with the true function
value while the colored surface shows RMSE calculated for the observed data.
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4.3 Bridging the gap between synthetic data analysis and real-

world data analysis - The Learning Curves

Real-world machine learning models trained on noisy datasets correspond to a point on
the coloured surface on the graps from the previous section. The ground truth function
(black surface) is not known. Expanding on the findings from the previous analysis, we
have determined that under conditions where the measurement error follows a normal
distribution, the RMSE aligns with the standard deviation of the measurement error in an
ideal model scenario. So in many material science problems, the optimal error rate would
be the measurement error of the predicted properties. However, there is still an epistemic
error to consider. One heuristic way to evaluate a model that suffers from bias or variance
is to plot a Learning Curve and compare it to the optimal error rate, as described by Ng
[47].

In Figure 18 an example Learning Curve is shown. The x-axis represents the number
of training examples used to train the model, and the y-axis measures the error of the
model. There are two main lines showing the training error and the mean validation
error. The black dashed horizontal line represents the expected measurement error. In
many material science problems, a good approximation of the optimal error rate would
be the measurement error of the predicted properties. This allows us to estimate the bias
and variance of the model:

Variance ≈ Validation error - Training error (15)

Bias ≈ Training error - Optimal error (16)

If the training error curve deviates significantly from the measurement error line, the
model is considered to have high bias. When the validation error curve is far from the
training error curve, it signifies that the model exhibits variance. An interesting point to
note is that if the model would have negative bias, this implies that the model’s accuracy
on the training data is higher than the optimal error rate, indicating overfitting due to
the memorization of the training data, which means that the model suffers from variance.
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Figure 18: Illustration of an ideal Learning Curve.

In the next subsection, the method is explained and analysed with respect to the Renard
Series R10 & Friedman 1 datasets.

4.3.1 Applying Learning Curves to Renard Series R10 & Friedman 1 dataset

The generation of the datasets and the training of the model are the same as described in
the previous section. Three noise variations were investigated: no noise, only noise in y
and noise on X and y. The data sets were then divided into a 80 % training set and a
20 % test set. The Learning Curve function systematically varies the number of training
samples used to fit the model and calculates the training and validation errors for each
subset. The root mean squared error (RMSE) was chosen as the performance metric
and a 10-fold cross-validation was applied to ensure comprehensive and reliable error
estimates. The validation error, the training error, and the standard deviation for each
model are shown in Table 1. The expected measurement error ME was calculated from
the applied noise in the target variable. This estimation allows for the bias and variance
to be estimated. The bias and variance were calculated with the formulas (15, 16) and
also shown in Table 1.

For the R10 dataset, employing a linear model results in validation and training errors of
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0 when no noise is present, resulting in an ideal fit without bias or variance. When noise
is added to y, the validation error increases to 3.44, showing the impact of noise and is
the same as the applied error (Figure 19). Adding noise to both X and y further increases
the validation error to 4.2 (Figure 20).

When applying a XGBoost model to the Friedman 1 dataset without noise, the validation
error is 0.71, while the training error is 0.24 (Figure 21). Adding noise to y increases the
validation error to 2.38, and the bias becomes negative (Figure 22). Adding noise to both
X and y further increases the validation error (Figure 23).

Dataset Model Noise ME Val. Er. Train. Er. Bias Var.
R10 linear no noise 0 0 0 0 0
R10 linear σx = 0;σy = 0.15 3.43 3.44± 0.07 3.43± 0.01 0.03 0.01
R10 linear σx = σy = 0.15 3.38 4.2± 0.12 4.18± 0.01 0.8 0.02

Fried.1 XGBoost no noise 0 0.71± 0.05 0.24± 0.01 0.24 0.46
Fried.1 XGBoost σx = 0;σy = 0.15 2.17 2.38± 0.1 1.25± 0.01 −0.92 1.13
Fried.1 XGBoost σx = σy = 0.15 2.16 3.1± 0.1 1.72± 0.02 −0.44 1.38

Table 1: Results of the effect of noise on the Bias and Variance for the Renard Series R10 & Friedman
1 dataset. For a more detailed explanation, please refer to the text.

Figure 19: Learning Curve for the Renard Series R10 dataset with the noise level :σy = 0.15.
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Figure 20: Learning Curve for the Renard Series R10 dataset with the noise level :σx = σy = 0.15.

Figure 21: Learning Curve for the Friedman 1 dataset with no noise.
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Figure 22: Learning Curve for the Friedman 1 dataset with the noise level σy = 0.15.

Figure 23: Learning Curve for the Friedman 1 dataset with the noise level :σx = σy = 0.15.
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4.4 Discussion on the analysis of synthetic data

Measurement errors have different effects depending on whether they occur in features or
in the target variable. If there is a random measurement error in the outcome variable y, it
will increase the standard error of the estimates. However, if the sample size is big enough,
the ground truth will be found due to the fact that the noise averages out. However, if
there is an error in the features X, larger sample sizes will still lead to an inaccurate
estimate regarding the true function. This is known as regression dilution [48]. If there
is a measurement error in the features, the estimates of the regression slope coefficients
will be biased toward the null [49]. Appendix A.1 provides a detailed examination of this
effect based on the linear function that was utilized. This principle seems to be true not
just to linear regression, but also to more complex models like XGBoost when they are
used for regression tasks, like for the Friedman 1 function problem.

If the data set is incomplete or contains errors that are not normally distributed, the
findings will be affected. Adding additional independent features can lead to the "kitchen
sink regression" phenomenon. In the context of kitchen sink regression, the researcher
includes a wide array of variables in the regression analysis with the aim of identifying
a statistical pattern. This kind of regression frequently leads to inaccurately implying
connections between variables and the target outcome in the dataset, potentially causing
overfitting. This occurs because the higher the number of independent variables incorpo-
rated in a regression analysis, the higher the probability that one or more of them will
show statistical significance, even if they do not have a causal impact on the dependent
variable.[30, 50].In advanced machine learning models, this is often addressed through
techniques such as regularisation. Appendix A.2 provides some extra figures for better
understanding.

Missing relevant features can lead to the omitted-variable bias. The omitted variable
bias occurs when a statistical model does not include one or more relevant variables
[30]. An effective way to comprehend this concept is through an illustration, such as a
model designed to predict the Ms temperature of steels. With that model, we want to
predict this for steel type 18CrNi8. The continuous cooling transformation (CCT) diagram
can be seen in Figure 24 which was taken from the "Atlas zur Wärmebehandlung der
Stähle" [51]. But our model does not include the cooling rate. If the cooling rate is
too slow, bainite will form before the martensite transformation. This leads to carbon
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enrichment in the austenitic phase and a lower martensite start temperature. If we focus
only on the chemical composition and ignore the cooling rate in our analysis, we might
conclude that the chemical composition is the only or most important factor for martensite
transformation. However, this conclusion would be biased because we have omitted the
cooling rate in our study. The cooling rate is just as important as the chemical composition
(at least for the low alloyed 18CrNi8). This can be seen for slow cooling times, where 60
% ferrite and 40 % pearlite and no martensite is formed. To avoid this kind of bias, it is
crucial to identify and include all significant factors that could influence the outcome of
interest or to specify the model application.

Figure 24: CTT diagram for steel grade 18CrNi8, the chemical composition can be seen at the top
austenitisation temperature of 870 °C and a heating time of 3 min and a holding time of
10 min [51].
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4.4.1 Learning Curves

The ordinary least squares regression model, when trained on the Renard Series R10
dataset has zero bias and variance (Table 1), when there is any error present in the
dataset. This idealised scenario results in a perfect fit to the data. Conversely, training
the XGBoost model on the nonlinear Friedman 1 dataset introduces a different challenge:
epistemic uncertainty. This type of uncertainty comes not from the randomness inherent
in the data, but from the model’s own limitations: its inability to perfectly capture the
underlying data distribution. The model’s performance flaw underscores the inherent
complexity of non-linear data and the limitations of predictive modeling.

The Learning Curves offer a graphical representation of how the model’s performance
improves as more training data is provided. It also helps to identify whether the model is
affected by bias or variance, which is helpful to set the next crucial steps in the machine
learning project.

4.4.2 Preliminary summary

• Measurement errors in features versus target variables affect models differently.
• Noise in the target variable primarily increases the standard error, whereas noise

in features leads to biased estimates regarding to the ground truth function, a
phenomenon known as regression dilution.

• Large sample sizes help mitigate noise in target variables but not in features, empha-
sising the need for noise-free high-quality data in machine learning applications.

• Learning Curves in combination with a known measurement error are a useful tool
for estimate bias and variance in model performance.

5 Investigation of real world datasets

This section uses the Learning Curve on two material science related datasets to evaluate
bias and variance of some machine learning models. It also compares neural network
models to predict tensile test results to round-robin test results.
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5.1 Martensite Start Temperature from steels

This data set was provided by Lu et al. [52], where most of the data from CTT diagrams
from various sources was taken [13, 51, 53–58]. The data were cleaned and a Principal
Component Analysis (PCA) performed to select the relevant features. In the end, 15
features, including the chemical composition and austenitisation temperature for 1142
steels were included in the dataset. When the element content was not reported, the
corresponding values were set to zero. A summary statistic can be seen in Table 2.

Minimum Maximum Mean Standard deviation
TAUST (K) 1023 1673 1257 177.64
C (wt%) 0.01 2.25 0.37 0.29
Si (wt%) 0.00 3.80 0.33 0.36
Mn (wt%) 0.00 3.50 0.80 0.47
Ni (wt%) 0.00 10.00 0.84 1.46
Cr (wt%) 0.00 14.55 1.24 2.37
Mo (wt%) 0.00 5.75 0.26 0.54
V (wt%) 0.00 5.05 0.11 0.39
Cu (wt%) 0.00 1.49 0.05 0.12
W (wt%) 0.00 19.20 0.47 2.42
Al (wt%) 0.00 1.26 0.013 0.090
Ti (wt%) 0.00 0.20 0.002 0.014
Nb (wt%) 0.00 0.17 0.002 0.011
N (wt%) 0.00 0.29 0.002 0.017
Co (wt%) 0.00 11.35 0.08 0.75
Ms (K) 335 819 613.3 86.61

Table 2: Descriptive statistics of the Ms temperature dataset [52].

5.1.1 Applying Learning Curves to Ms temperature dataset

The dataset was then split into an 80 % training set and a 20 % test set.The training
set is used to fit the model and for cross-validation. The test set was used to evaluate
the performance on the unseen data. For three advanced machine learning regression
models, a Learning Curve was created. These three models are Extreme Gradient Boosting
(Fig.25) XGBoost, Random Forest Regression RF (Fig.26) and Gaussian Process Regression
(GPR) with a Matérn kernel (Fig.27). The hyperparameters for the models, which were
optimised using a grid search, are listed in the appendix A.3. As a reference, a simple
Ordinary Least Squares Regression model was trained. The performance metric selected
was the root mean squared error (RMSE), and to obtain comprehensive and dependable
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error estimates, a 10-fold cross-validation was conducted. Table 3 displays the validation
error, training error, and standard deviation for each model. The expected measurement
error was σ = ±12K using the offset method according to Yang’s paper [59]. This estimate
makes it possible to calculate bias and variance. The values for bias and variance were
determined using the equations (15, 16) and are also presented in Table 3.

Model Val. Error [K] Train. Error [K] Bias Variance
XGBoost 22.77± 2.16 6.67± 0.33 −5.33 16.09

RF 23.38± 2.3 9.08± 0.1 −2.92 14.31
GPR 22.89± 2.84 13.65± 0.37 1.65 9.25
linear 39.72± 3.98 38.49± 0.46 26.49 1.24

Table 3: Comparison of the different models. For a more detailed explanation, please refer to the text.

Figure 29 illustrates the performance of the GPR model with the Matérn kernel, showing
a scatter plot of the test data against the predicted Ms temperatures, together with error
bars indicating the uncertainty of the prediction. The model has a R2 value of 0.93 and a
RMSE of 23.86 K. In Figure 30 the prediction uncertainty of the model is visualised using
a histogram. The minimum standard deviation is 16.87 K and the maximum is 63.2 K.
The median of the standard deviation is 18.91 K.
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Figure 25: The Learning Curve for XGBoost.

Figure 26: The Learning Curve for RF.
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Figure 27: The Learning Curve for GPR.

Figure 28: The Learning Curve for Ordinary Least Squares Regression.
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Figure 29: Prediction of Ms temperature using GPR model.

Figure 30: Standard deviation of MS temperature predictions.
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5.1.2 Discussion on the analysis of the Ms temperature dataset

When examining the validation errors of the four models presented in Table 3, it is
observed that the three advanced models exhibit comparable performance metrics. In
contrast, the linear model performs significantly worse than the other models. This
outcome aligns with expectations, as the linear model demonstrates a pronounced bias,
indicating its inability to capture complex relationships within the data. Both the RF and
XGBoost models are characterized by high variance, suggesting a tendency to overfit.
Similarly, the GPR model encounters issues with variance and a slight degree of bias. The
XGBoost model showed high variance. Attempts to address this issue, such as increasing
regularisation parameters and reducing tree depth, led to worse scores on the validation
set.

The training error curve of the RF model decreases with more data (Figure 26). RF is a
bagging algorithm. This means that the RF algorithm makes predictions by averaging
the predictions of all individual trees. Because the spread of the chemical composition
is very large in this dataset, the predictions are less accurate for the small sample size.
This results in an improvement in performance with more training data, as there is more
information for the model to learn from. However, if the sample size becomes larger than
the actual size, the training error should increase again.

When comparing our results with those of Rahaman et al. [14], who used a database
with 2277 unique entries of Ms versus alloy composition, we find some differences.
Their approach, employing an AdaBoost model, achieved a RMSE of 18 K. As is known,
a common way to reduce variance is to add more data, this could explain why the
performance of the model is better. However, it is also important to mention that their
study excluded alloys containing strong carbide-forming elements such as W, V, Nb, and
Ti. These elements were omitted because the carbides may not dissolve completely in
the austenite matrix at austenitization temperatures. This was not done in our current
database.

A key advantage of GPR is its ability to provide a confidence intervals for predictions,
as illustrated in Figure 30. The median standard deviation of these predictions is 18.91
K, closely aligned with the measurement error reported of 12 K. It is important to note
that the reported values for the Ms temperature are derived from various sources,[13, 51,
53–58] some of which date back to the 1950s. Another benefit of the GPR model is its
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ability to indicate uncertainty. For example, the reported maximum standard deviation is
63.2 K for steel with a Cu concentration of 1.49 wt%. In Figure 31, a histogram shows
the distribution of Cu concentrations. For most steels, the Cu concentration was assumed
to be zero, indicating that the GPR model has limited information on how Cu affects Ms

temperature, resulting in high uncertainty in prediction.

Figure 31: This histogram shows the copper concentration in wt.% for the MS temperature dataset.

5.2 Investigation of the r-value (plastic strain ratio) dataset

This data set was provided by Millner et al.[9]. It contains 14430 observations of the
r-value (plastic strain ratio) and 594 features of a cold-rolled batch-annealed low carbon
steel coil. The r-value is a measure of the resistance of a sheet to thinning during deep
drawing. The r-value was taken from a tensile test and calculated according to ISO 10113
using an 80 mm sample at 18 % elongation. The properties are taken from an industrial
steel production route that includes chemistry, cutting, hot rolling, pickling, cold rolling,
annealing, skin-pass rolling, and sampling.

5.2.1 Using the theoretically measurement error in the Learning Curve

The expected measurement error for the measurement of the r value was estimated using
the propagation of uncertainty from the ASTM E 517-00 Appendix X1 [60] for the median
value of 2.1. This leads to an expected standard deviation of 0.09 (calculation can be
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found in Appendix A.4). With this information, we can now apply the same analysis we
performed for the Ms temperature dataset. In Figure 32 the Learning Curve of a XGBoost
model with the optimised hyperparameter which where reported from Millner et al.[9]
can be seen. The bias and variance were again calculated with the equations (15, 16)
and can be seen in Table 4.

Figure 32: The XGBoost Learning Curve for predicting r-value.

Model Val. Error Train. Error Bias Variance
XGBoost 0.14± 0.01 0.09± 0.00 0.0 0.05

Table 4: Validation and Training Error, Bias, and Variance for the XGBoost Model. For a more
detailed explanation, please refer to the text.

5.2.2 Discussion on the analysis of the r-value dataset

The XGBoost model for the r-value data set shows variance. Common ways to deal with
this are to add more training data, add regularisation, reduce the number / type of input
features, or reduce the model size [47]. However, 14430 observations are already a very
large data set in the context of materials science. L2 regularisation is already applied in
the optimised hyperparameter. With the current 594 features, feature selection could be
beneficial.
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An important consideration is that we have no information about the error in the X
features. If we look at the Learning Curve of the Friedman 1 data set23), where noise has
been applied to X and y, we can see that there is a greater deviation from validation error
to the measurement error. Another very important point is that the error also depends on
the r-value as well. This calculated standard deviation as a function of the r-value can be
seen in Figure 33. Due to these effects, it is very difficult to determine an optimum error
rate, and therefore it should not be regarded as a hard limit but as a benchmark.

Figure 33: Calculated standard deviation as a function of r-value for a relative length and width
measurement error of 0.001 at an axial strain of 0.18.
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5.3 Comparison of the performance of neural networks from the

literature in the production of steel for the prediction of mate-

rial properties from tensile tests

Tensile testing is a key experiment in materials science and engineering, providing critical
insight into the mechanical properties of materials, such as their strength, ductility, and
elasticity. This importance is reflected in the development of many neural networks aimed
at predicting tensile properties directly from production data. In Table 6 is a summary of
the performance of different machine learning models from the literature for different
types of steel. This table includes the yield strength (YS), the ultimate tensile strength
(UTS), the elongation at the fracture (A) and their corresponding RMSE and R2 from the
predictions of the model versus the test data.

Despite technological advances, no test is completely free of errors. Factors such as
machine calibration, specimen preparation and test conditions can all influence the
results. Table 5 summarises the results of an interlaboratory comparison of the results of
tensile tests for different types of steel. It includes yield strength (YS), ultimate tensile
strength (UTS), and elongation at fracture (A). The 95% confidence interval has been
reported in ISO 6892-1 Annex K [61]. The standard deviation was calculated from the
confidence interval reported. The interlaboratory scatter provides a baseline of variability.
If the predictive model has a RMSE close to the measurement error, it would suggest
that the machine learning model’s predictions are within the natural variability range of
different laboratory measurements, which is an indication of good model performance,
and therefore all variables required for the prediction are included in the model.

For example, let us compare the DX56 (deep-drawing steel) with the model from Lalam et
al. [4] that describes a commercial quality & drawing quality steel. For the yield strength
(YS), the round robin test shows a standard deviation of 3.8 MPa, while the model has a
higher RMSE of 6 MPa. This suggests that the model predictions for YS are less accurate
than the variability seen in laboratory tests. The ultimate tensile strength (UTS) shows a
closer alignment between the round robin test standard deviation of 7.7 MPa and the
model’s RMSE of 5.52 MPa, indicating that the model is quite effective in predicting UTS
within the range of natural variability observed in the tests. This comparison is useful in
understanding how well the predictive model performs relative to the natural variability
observed in material testing.
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Another important point is that when evaluating and comparing the performance of
different prediction models, relying only on R2, can be misleading [62]. Although a high
R2 indicates a good fit of the model to the data, it does not provide any information
on the absolute size of the errors. To gain a complete understanding, it is important to
consider additional metrics, such as RMSE. A good example is the work of Tamminen et
al. [7] (Figure 34). An excellent value of R2 of 0.99 was reported for the prediction of
the ultimate tensile strength. However, the RMSE for the ultimate tensile strength is 13.3
MPa, which may not be expected when considering the value of R2 alone.

Figure 34: Graphical representation of ultimate tensile strength predictions by Tamminen et al. [7].
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Code YS [MPa] ± [%] σ [MPa] UTS [MPa] ± [%] σ [MPa] A [%] ± [%] σ [%]
DX56 (deep-drawing steel) 162 4.6 3.8 301.1 5 7.7 45.2 12.4 2.9
HR3 (hot-roiled carbon steel sheet) 228.6 8.2 9.6 335.2 5 8.6 38.4 13.8 2.7
ZStE 180 (bake hardening steel) 267.1 9.9 13.5 315.3 4.2 6.8 40.5 12.7 2.6
P245GH 367.4 5 9.4 552.4 2 5.6 31.4 14 2.2
C22 402.4 4.9 10.1 596.9 2.8 8.5 25.6 10.1 1.3
S355 427.6 6.1 13.3 564.9 2.4 6.9 28.5 17.7 2.6
30NiCrMo16 1 039.90 2 10.6 1167.8 1.5 8.9 16.7 13.3 1.1

Table 5: Reproducibility from laboratory intercomparison exercises [61]

Steel type YS RMSE [MPa] YS R2 UTS RMSE [MPa] UTS R2 A RMSE [%] A R2 Total Datasize Ref.

aluminium killed steel 21.4 — 11.05 — 2.37 — 4196 [2]
bake hardening steel 10.42 — 8.58 — 2.03 — 6584 [2]
dual phase steel 14.48 — 18.56 — 1.67 — 3538 [2]
high-strength low-alloy 15.55 — 11.39 — 2.41 — 14 332 [2]
interstitial-free steel 7.06 — 5.99 — 1.81 — 20 362 [2]
rephosphorized steel 11.1 — 8.11 — 1.94 — 2495 [2]
hot rolled steel (S355,Q345,AH36,X80,12Mn,Q550) 21.9 0.92 16.73 0.93 2.37 0.94 11 101 [3]
interstitial-free steel 6.001 — 5.36 — — — — [4]
commercial quality & drawing quality 6.009 — 5.52 — — — — [4]
tempered steel — — 34.6 — — — — [5]
non-micro-alloyed thermo-mechanical steel — 0.9321 — 0.9799 — 0.8569 35 000 [6]
micro-alloyed thermo-mechanical steel — 0.9479 — 0.9667 — 0.8479 35 000 [6]
hot-rolled C–Mn and micro-alloyed steel strip 18 0.99 13.3 0.99 1.8 0.94 56 436 [7]
hot-rolled C–Mn and micro-alloyed steel strip > 720 MPa 27.7 0.75 21.5 0.62 1.2 0.55 — [7]
hot-rolled IF steel — 0.97 — 0.985 — 0.967 1557 [8]
mild steel grade — 0.77 — 0.85 — 0.71 6986 [9]
low carbon strip steel UTS > 320 MPa — 0.76 — 0.76 — 0.51 1209 [10]
carbon & HLSA steel 20.2 — 12.5 — 3.2 — 12 197 [11]

Table 6: Summary of Machine Learning Models from the literature and their performance metrics
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6 Conclusion & Future Work

The discussions prior to this section have already addressed the investigation of both
synthetic and real-world datasets. The success of a machine learning project is highly
dependent on the difficulty of the problem, the cost of the data, and the quality of the
performance of the needed model. If high accuracy is required, the precision of the
measurement becomes decisive. The bias-variance decomposition also highlights this
issue, with an irreducible noise term related to measurement error, further emphasizing
the importance of verifying the measurement error in advance. For a successful machine
learning model,high-quality data is the key factor [25, 63].

The thesis investigated the influence of measurement uncertainties on the prediction accu-
racy of machine learning. Through the analysis of both synthetic and real-world datasets,
it was shown that measurement uncertainties significantly affect model performance. In
particular, errors in features X were found to introduce bias in predictions, while errors
in target variable y tended to average out over large datasets. It was shown that the
measurement error can be used as an optimal error which offers a heuristic method to
evaluate a model’s variance and bias. The thesis underscores the importance of selecting
appropriate evaluation metrics, such as the root mean square error (RMSE), which aligns
more closely with the nature of measurement errors than the coefficient of determination
(R2).

If a high level of precision is necessary for predictions made with the ML model, it may be
constrained by the measurement error. Therefore, it is helpful to verify the measurement
error in advance. For the Ms dataset, it was found that the validation error of the ML
models was about 20-23 K which can be compared to the measurement error of about 12
K. For the r-value dataset, the XGBoost model showed an error of about 0.14 while the
measurement error is about 0.09. For completeness, the thesis also provides a review of
applications of ML to predict mechanical properties. The review revealed that the best
ML models provide validation errors of the same size as the measurement error. Models
applied to more general steel classes were less performant and revealed validation errors
of about twice the measurement error. In general, the validation error is close to the
optimal error which indicates that the ML models are quite efficiently extracting the
information present in the data.
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Future research could focus on exploring Bayesian neural networks (BNNs) as an al-
ternative to Gaussian process regression (GPR) in material science. Bayesian models,
including GPR and BNNs, offer compelling advantages due to their ability to quantify un-
certainty, which is critical when addressing measurement errors. While the more complex
architecture and longer training times of BNNs have historically limited their use, recent
advances in computational power and the development of improved software libraries
have significantly improved their usability [64]. For example, Yang et al. demonstrated
the effectiveness of BNNs in predicting the ultimate tensile strength of hot-rolled steel
products, achieving an RMSE of approximately 17 MPa [65]. This work highlights the
potential of BNNs to provide high prediction accuracy and also accurate uncertainty
quantification which may be also used for smart data acquisition strategies such as e.g.
active learning concepts.
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A APPENDIX

A.1 Regression Dilution

In this Appendix the regression dilution is demonstrated for the linear function (equation
7) which was used in the section Investigation of errors on artificial data sets. Acknowl-
edgment to Michael Schmid for deriving the intercept function (see the following page)
for the given function. The intercept and slope for the function is calculated as follows:

β1 = 1− σ2

1
n−1

∑︁
x2
i − 1

(n−1)
(
∑︁

xi)2 + σ2

β0 = ȳ − β1x̄

where y is the dependent variable, x represents the independent variable, β1 is the slope
coefficient of the linear regression mode, β0 is known as the intercept coefficient, σ2 is
the variance of the error, and n represents the sample size. In Figure 35 the regression
dilution is shown for a sample size n = 5000 and a standard deviation of σ = 0.15. The
blue line shows the ordinary least-squared regression model. The orange line represents
the linear model with the analytical coefficient.
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Figure 35: Representation of the regression dilution. It can be seen that the slope decreases from 1 to
0.9 with σ = 0.15.
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Für den Schätzwert β̂1 des unbekannten Parameters β1 im linearen Regressionsmodell
Yi = β0 + β1xi1 + Ei, (i = 1, . . . , n) gilt bekanntlich

β̂1 =
n
∑n

i=1 xiyi − (
∑n

i=1 xi)(
∑n

i=1 yi)

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)2

. (1)

1. Die yi sind verrauscht: Ausgehend von einem funktionalen Zusammenhang der Form
y = f(x) = 1 + x addiert man einen normalverteilten, zentrierten Fehler εi mit
Varianz σ2 zu den Werten yi. Dann gilt für den Zähler Z von (1):

Z = n
∑

xi(1 + xi + εi)− (
∑

xi)(
∑

(1 + xi + εi))

= n
∑

xi + n
∑

x2
i + n

∑
xiεi − (

∑
xi)(n+

∑
xi +

∑
εi)

= n
∑

xi + n
∑

x2
i + n

∑
xiεi − n

∑
xi − (

∑
xi)

2 − (
∑

xi)(
∑

εi)

= n
∑

x2
i − (

∑
xi)

2 + n
∑

xiεi − (
∑

xi)(
∑

εi).

(2)

Somit ist

β̂1 = 1 +
n
∑

xiεi − (
∑

xi)(
∑

εi)

n
∑

x2
i − (

∑
xi)2

. (3)

Nun sind die εi als zentriert vorausgesetzt, d.h. es gilt

∑
εi ≈ 0. (4)

Weiters gilt
∑

xiεi =
∑

(xi − x)εi + x
∑

εi︸ ︷︷ ︸
≈0

, also
∑

xiεi ≈ const · rx,ε, wobei

rx,ε den Pearsonschen Korrelationskoeffizienten zwischen den Stichproben {xi} und
{εi} bezeichnet. Verschwindet diese Korrelation annähernd, so wegen (4) auch der
Zähler des Bruches in (3), und es gilt β̂1 ≈ 1, wie es aufgrund des funktionalen
Zusammenhangs auch zu erwarten war.

2. Die xi sind verrauscht, der Fehler wird zu den Werten xi addiert. Dann gilt mit den
selben Annahmen wie unter 1. für den Zähler Z von (1):

Z = n
∑

(xi + εi)(1 + xi)− (
∑

(xi + εi))(
∑

(1 + xi))

= n
∑

(xi + x2
i + εi + εixi)− (

∑
xi +

∑
εi)(n+

∑
xi)

= n
∑

xi + n
∑

x2
i + n

∑
εi︸ ︷︷ ︸

≈0

+n
∑

εixi︸ ︷︷ ︸
≈0

− n
∑

xi − (
∑

xi)
2 − n

∑
εi︸ ︷︷ ︸

≈0

− (
∑

xi)(
∑

εi)︸ ︷︷ ︸
≈0

≈ n
∑

x2
i − (

∑
xi)

2

(5)
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und für den Nenner N von (1):

N = n
∑

(xi + εi)
2 − (

∑
(xi + εi))

2

= n
∑

x2
i + 2n

∑
xiεi︸ ︷︷ ︸

≈0

+n
∑

ε2i − (
∑

xi +
∑

εi)
2

= n
∑

x2
i + n

∑
ε2i − (

∑
xi)

2 − 2(
∑

xi)(
∑

εi)︸ ︷︷ ︸
≈0

− (
∑

εi)
2

︸ ︷︷ ︸
≈0

≈ n
∑

x2
i − (

∑
xi)

2 + n
∑

ε2i︸ ︷︷ ︸
≈n(n−1)σ̂2

.

(6)

Somit ist

β̂1 = 1− σ̂2

1
n−1

∑
x2
i − 1

n(n−1)
(
∑

xi)2 + σ̂2
. (7)

Man beachte, daß wegen

0 ≤ n
∑

(xi −
1

n

∑
xj)

2 = n
∑

(x2
i −

2

n
xi

∑
xj +

1

n2
(
∑

xj)
2)

= n
∑

x2
i − 2(

∑
xi)

2 + (
∑

xi)
2 = n

∑
x2
i − (

∑
xi)

2 (8)

der Bruch in (7) streng mit σ̂2 wächst, die Steigung der Regressionsgerade nimmt
also mit zunehmender Streuung des Fehlers ab.
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A.2 Additional Figures for the Friedman 1 dataset

Figure 36: R2 :The data set was created normally with the Friedman 1 function (equation 9), but
95 additional independent features were added.Then the noise was added as described in
the section Investigation of errors on artificial data sets.
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Figure 37: RMSE: The data set was created normally with the Friedman 1 function (equation 9), but
95 additional independent features were added.Then the noise was added as described in
the section Investigation of errors on artificial data sets.

Page 64 of 71



Impact of measurement errors on machine learning models in steel production

Figure 38: R2 :The data set was created normally with the Friedman 1 function (equation
9), but then instead of a normal distributed noise a Weibull noise was multiplied
(numpy.random.weibull (a = 1.1)).
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Figure 39: R2: The data set was created normally with the Renard series R10 function (equation 8).
Then the noise was added as described in the section Investigation of errors on artificial
data sets. But then the features x1 and x9 were removed from the dataset.
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Figure 40: RMSE: The data set was created normally with the Renard series R10 function (equation
8). Then the noise was added as described in the section Investigation of errors on artificial
data sets. But then the features x1 and x9 were removed from the dataset.

Page 67 of 71



Impact of measurement errors on machine learning models in steel production

A.3 Hyperparameters for the Ms Temperature Dataset

1

2 " Hyperparameter f o r the models f o r p r ed i c t i ng Martens i te S t a r t
Temperature from S t e e l s "

3

4 #Gaussian Process model with Matern kerne l
5 kerne l = Matern ( l eng th_ s ca l e=10, nu=1.5) + WhiteKernel (

no i s e _ l e v e l=225)
6 gp = Gauss ianProcessRegressor ( kerne l=kernel ,

n _ r e s t a r t s _op t im i z e r=0,alpha=1e−10,normalize_y=True )
7

8 # XGBoost r eg r e s s i on model
9 model_XGB = xgb . XGBRegressor (

10 ob j e c t i v e=" reg : squarederror " ,
11 n_es t imators=200,
12 l e a rn ing_ ra t e =0.1 ,
13 max_depth=5,
14 reg_alpha=0.1 ,)
15

16 #Random Fores t r eg r e s s i on model
17 model_RF = RandomForestRegressor (
18 n_es t imators=150,
19 max_depth=15,
20 max_features= None ,
21 min_samples_sp l i t= 2 ,)
22

23 " Grid search parameters f o r the models to p r ed i c t the
mar tens i te s t a r t temperature of s t e e l s "

24

25 #Gaussian Process model with Matern kerne l
26 param_grid = {
27 ’ k e rne l__k1__ leng th_sca le ’ : [0 .1 , 0 .5 , 1 , 1 .5 , 2 .5 ,

10] ,
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28 ’ k e rne l__k2__no i se_ l eve l ’ : [100 , 225 , 400] ,
29 ’ a lpha ’ : [1e−10, 1e−2, 1 , 10] ,
30 ’ n _ r e s t a r t s _op t im i z e r ’ : [0 , 5 , 10] ,
31 }
32

33

34 #XGBoost r eg r e s s i on model
35 param_grid = {
36 ’ n_es t imators ’ : [50 ,75 ,100 , 200 , 300 , 400 , 500] ,
37 ’ l e a rn ing_ ra t e ’ : [0 .01 , 0.05 , 0 .1 , 0 .15] ,
38 ’ max_depth ’ : [3 , 5 ,6 ,7 ,10 , 15 , 30] ,
39 ’ reg_alpha ’ : [0 , 0 .1 , 0 .2 , 0 .3 , 0 .5]
40 }
41

42 #Random Fores t r eg r e s s i on model
43 param_grid = {
44 ’ n_es t imators ’ : [100 ,150 ,200 , 300 , 400 , 500] ,
45 ’ max_depth ’ : [3 ,5 ,7 ,10 ,15] ,
46 ’ m in_samples_sp l i t ’ : [2 , 5 , 10] ,
47 " max_features " : [ None , " log2 " ]}
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A.4 Error analysis of the r-value

The coefficient of variation v(r) for the r-value is calculated as described in ASTM E
517-00 Appendix X1 using the following formula:

ν(r) =
1 + r

εl

{︄
ν(W0)

2

(︃
1 + r

r

)︃2

· [1 + exp(−2εw)] + ν(l0)
2 [1 + exp(−2εl)]

}︄1/2

where:

• r: r-value (plastic strain ratio)
• ν(W0): coefficient of variation of the original width measurement
• ν(l0): coefficient of variation of the original length measurement
• ϵl: length strain
• ϵw: width strain

ϵw = −
(︃

r

1 + r

)︃
ϵl

The standard deviation s(r) was then calculated in the following way:

s(r) = v(r)r

For the coefficient of variation of the original width & length measurement, a value of
0.001 was chosen, as also done in ASTM E 517-00 Appendix X1. The value of 0.18 was
chosen for the length strain.
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B Use of Generative AI tools

Figure 41 shows the workflow that I used for Generative AI in my thesis. The first step is
that I put my writing ideas in ChatGPT and DeepL. This step involved formulating specific
prompts to guide the AI in generating relevant content. The next step is that I reviewed
the results generated by ChatGPT and DeepL. After receiving the initial results, I carefully
evaluated the suitability of the content. I made the necessary changes to the AI-generated
text to ensure that it met my research objectives and academic standards. This step
involved editing, rephrasing, and fine-tuning the content to meet the requirements. This
iterative workflow continued until I was satisfied with the quality of the final output.

Figure 41: Illustration of the iterative workflow for the generative AI that was used.

Used generative AI tools for writing where: ChatGPT 3.5, ChatGPT 4.0, ChatGPT 4o,
DeepL Write, DeepL Translate and Writefull. ChatGPT 3.5, ChatGPT 4.0 was also used
for some programming and debugging tasks.
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