

AFFIDAVIT

I declare on oath that I wrote this thesis independently, did not use any sources and aids other than
those specified, have fully and truthfully reported the use of generative methods and models of
artificial intelligence, and did not otherwise use any other unauthorized aids.

I declare that I have read, understood and complied with the "Good Scientific Practice" of the
Montanuniversität Leoben.

Furthermore, I declare that the electronic and printed versions of the submitted thesis are identical in
form and content.

Date 05.09.2024

Signature Author
Guido Manzi

Acknowledgements

I write only a few words here to express the deep gratitude I hold for my supervisors Profes-

sor Tognarelli and Professor Aleardi and co-supervisors Dr. Caporal, Professor Bienati and

Professor Bleibinhaus. I sincerely thank them for their guidance, insightful critiques and de-

lightful discussions. But what I will remember the most, what will stay with me forever, is

that in this short period, they taught me what it truly means to do science and the real work

of a scientist.

A warm thank you goes to all my old and new friends I have met during this journey, who

have made me experience extraordinary moments. I would also like to extend my thanks to the

PhD students from the Faculty of Geophysics in Pisa and to the entire AESI group at the Eni

headquarters in San Donato Milanese, who allowed me to experience the thrill of being part of

a close-knit and cohesive team. A special thanks goes to my friend Diego Eustachio Farchione,

who has patiently and consistently offered me advice and topics for discussion. Finally, my

heartfelt thanks go to my dear family, who have always, unconditionally, supported me.

i

Abstract

There is an extensive body of literature demonstrating that Prestack Kirchhoff Depth Mi-

gration (PSDM) using first-arrival traveltimes often produces suboptimal migrated images in

regions with complex geology, which refers to areas with significant variations in the propa-

gation velocity of seismic waves. To address this limitation, researchers since the 1990s have

explored the use of the most energetic traveltimes for Kirchhoff migration instead of relying

solely on the first arrivals. It has been shown that this approach yields more accurate and

reliable subsalt images and offset image gathers. However, the primary drawback is the sig-

nificant increase in computation time, as calculating the most energetic arrivals often requires

solving the wave equation, which is more computationally intensive than the eikonal equa-

tion used for first arrivals. Focusing on the 2D acoustic case, this study aims to reduce the

computational burden of generating max-energy arrival times by leveraging machine learn-

ing techniques. Specifically, U-Net-like architectures were employed in a supervised learning

framework to predict the most energetic traveltimes, using velocity models and first-arrival

traveltimes as inputs. The choice of U-Net is motivated by its robustness and versatility across

various applications. Additionally, diffusion models were applied to the U-Net outputs to fur-

ther enhance the quality of the migrated images. To validate the proposed approach, the

Marmousi velocity model was migrated using the predicted traveltimes. The resulting mi-

grated images were compared against those obtained using traditional Kirchhoff migration

with first-arrival and most energetic arrival traveltimes. This thesis demonstrates that the

U-Net-based approach substantially improves computational efficiency, reducing processing

time by approximately two orders of magnitude. However, in particularly complex geologi-

cal scenarios, the resolution of the U-Net outputs is sometimes lower than desired. Applying

diffusion models improved image quality, but at the cost of increased computational time.

1

Contents

1 Introduction 4

2 Acoustic Forward Operator 7

2.1 Acoustic Wave Equation . 7

2.2 Finite Difference Method . 8

2.3 Finite Difference Solution applied on Acoustic Wave Equation 11

2.4 Dispersion and Stability Conditions . 12

2.5 Boundary Conditions in practice . 13

2.6 Devito . 14

3 Kirchhoff migration 17

3.1 Kirchhoff migration in general . 17

3.2 Wave equation Kirchhoff . 20

3.3 Implementation . 23

4 Neural Networks 26

4.1 U-Net-like Architectures . 26

4.1.1 Introduction to U-Net and Its Variants 26

4.1.2 Algorithm: U-Net training . 29

4.1.3 Forward Pass: Attention U-Net (A-Unet) 32

4.1.4 Forward Pass: Residual Attention U-Net (Res-A-Unet) 35

4.2 Neural Style Transfer (NST) . 37

4.2.1 How Neural Style Transfer Works . 37

4.2.2 Mathematical Foundations of Neural Style Transfer 39

4.2.3 Hyperparameters in Neural Style Transfer 41

4.3 Ensembling Network . 42

2

4.4 Diffusion models . 43

4.4.1 Latent Variable Models . 44

4.4.2 Hierarchical Latent Variable Models 45

4.4.3 Derivation of Diffusion Models . 45

4.4.4 Reverse Process Architecture . 47

4.4.5 Concluding remarks . 48

5 Workflow 49

6 Synthetic velocity models 52

7 Applications 58

7.1 Forward Modeling . 60

7.2 Max amplitude traveltimes . 65

7.3 Sensibility velocity analysis . 68

7.4 Comprehensive Description of Experimental Methods 70

7.5 Kirchhoff migration . 87

7.6 Final results . 94

8 Discussion and Conclusions 99

A Computational resources 102

3

Chapter 1

Introduction

Most Kirchhoff migration algorithms in the industry rely on first-arrival traveltimes as an ap-

proximation of the full Green’s function (Nichols, 1996) [1]. However, since these traveltimes

are based on the high-frequency approximation and the first arrivals often carry little energy

in complex environments, the resulting images in such areas tend to be of poor quality. As

early as the late 20th century, studies began to highlight the advantages of using the most en-

ergetic traveltimes in migration algorithms. These traveltimes provide the best single-event

approximation of the full Green’s function (Nichols, 1996) [1]. In Nichols, 1996 [1], a method

was developed to calculate the most energetic traveltimes in the seismic frequency band, not

by using the high-frequency approximation but by solving the Helmholtz equation for a few

frequencies and then, with a parametric fit to the wavefield, estimating traveltime, amplitude

and phase. Despite these advancements, first-arrival traveltimes are still preferred due to their

lower computational cost compared to the most energetic arrivals, which require solving the

wave equation rather than the simpler eikonal equation or using ray tracing.

In recent years, several papers have explored the potential of using Kirchhoff migrations with

the most energetic traveltimes, calculated by solving the wave equation, for quality control in

Full Waveform Inversion (FWI) (Pu et al., 2021) [2], (Wang et al., 2023) [3], (Jin et al., 2020) [4],

(Jin et al., 2023) [5]. This method, known as Wave Equation Kirchhoff (WEK), produces more

reliable offset gathers and image stacks than first-arrival Kirchhoff migrations, without need-

ing to smooth the high-resolution velocity, which required significant computational effort to

be estimated, as they were produced by high-frequency FWI. Moreover, WEK has an advan-

tage over Reverse Time Migration (RTM) because it requires significantly less computational

resources to generate stacks and gathers.

4

This thesis introduces a new method for calculating the most energetic traveltimes using a

supervised machine learning approach. It aims to overcome the main drawback of Kirchhoff

migration with the most energetic traveltimes: the higher computational cost. A Convolu-

tional Neural Network (CNN), specifically based on a U-Net architecture, was chosen as the

foundation for this work.

The thesis is organized as follows:

Chapter 2: Offers an overview of the 2D acoustic wave equation, introducing the Finite Differ-

ence (FD) method. The application of the FD method to solve the wave equation is discussed,

with emphasis on critical factors like stability, dispersion, and boundary conditions. The chap-

ter wraps up with a brief introduction to the Python library Devito, used for implementing

the FD method efficiently.

Chapter 3: Opens with a theoretical exploration of Kirchhoff migration, outlining its core

concepts and principles. The focus then shifts to the specific Kirchhoff migration approach

developed in this thesis, which relies on directly solving the wave equation instead of using

high frequency approximations based on the eikonal equation. Implementation details of the

migration algorithm are also provided, offering insights into its design and functionality.

Chapter 4: Delivers a description of the neural network architectures used in this thesis. It

includes an in-depth exploration of U-Net, along with its variants, Attention U-Net and Re-

sAUnet. The chapter also delves into Neural Style Transfer (NST), covering both its theoretical

and mathematical aspects, and introduces the ensembling technique. Finally, Diffusion Mod-

els are examined, focusing on their theoretical and mathematical foundations.

Chapter 5: Summarizes the entire workflow, outlining the logical sequence of steps that led

to the objectives of this thesis. Key experiments and processes are briefly mentioned, setting

the stage for a more detailed discussion in the following chapter.

Chapter 6: Stresses the importance of a high-quality training dataset for the success of ma-

chine learning projects. It details the process of selecting and preparing datasets, using five

different velocity models that represent various geological scenario. The well-known Mar-

mousi synthetic velocity model is chosen for the test dataset, specifically designed for evalu-

ating imaging algorithms.

5

Chapter 7: Examines the practical applications of the methods discussed in previous chap-

ters. It showcases the progression from the creation of the initial dataset to the generation of

migrated images and their subsequent comparison. Throughout, both final and intermediate

results are presented, with an in-depth analysis of the various parameters fine-tuned during

the process.

Chapter 8: Concludes with a discussion and analysis of the results, evaluating the performance

of the proposed method and considering its implications for future research and applications.

6

Chapter 2

Acoustic Forward Operator

2.1 Acoustic Wave Equation

The Acoustic Wave Equation is a second order linear partial differencial equation that de-

scribes the propagation of acoustic waves (Pierce 1991) [6]. The solution u(t,x) is a time-

dependent pressure field, with x ∈ Ω and t > 0. Where Ω, in this work two-dimensional,

depicts the collection of points within the simulated environment. For each point x in the

environment and for each t, the function u describes the sound pressure. The Acoustic Wave

equation relates the second time derivative of pressure to its spatial Laplacian, along with a

source term f .

∂2u

∂t2
= c2∆u+ f (2.1)

where considering two dimensions

∆ = ∇ · ∇ =
∂2

∂x2
+

∂2

∂z2
. (2.2)

The 2D Acoustic wave equation:

∂2u(x, z, t)

∂t2
= c(x, z)2

(
∂2u(x, z, t)

∂x2
+

∂2u(x, z, t)

∂z2

)
+ f(x, z, t) (2.3)

7

describes the propagation of sound waves in a medium. In the context of this thesis, the

medium is represented by a velocity model. Here, u represents the pressure field, c is the

speed of sound, and f(x, z, t) is a source term that typically represents an initial perturbation.

The equation is a partial differential equation (PDE) because it involves derivatives of u with

respect to more than one variable. To solve PDEs, boundary conditions and initial conditions

must be specified.

Boundary conditions (BCs) define how the boundaries of the environment reflect sound waves.

These can be:

• Dirichlet Boundary Conditions: Specify the values of the solution on the boundaries.

• Neumann Boundary Conditions: Specify the values of the normal derivatives of the

solution on the boundaries.

• Absorbing Boundaries: Designed to absorb incoming waves to simulate open bound-

aries.

Initial conditions specify the initial pressure distribution u(0,x) and the initial velocity dis-

tribution ut(0,x) at t = 0.

2.2 Finite Difference Method

Analytical solutions to the wave equation are only feasible for very simple velocity models,

such as constant velocity, linear gradients, homogeneous layered media with parallel inter-

faces and so on. For more complex velocity models, numerical methods are necessary.

Numerical Analysis is a branch of mathematics focused on approximating solutions to con-

tinuous problems using discrete methods. It involves discretizing the solution domain in both

time and space, and solving the resulting discrete equations.

To approximate derivatives of a continuous function f(x) defined on the interval [0, 1], dis-

cretization is used. This involves dividing this interval into N equally spaced points xi where

i = 1, . . . , N , with a distance between consecutive points denoted by h.

The Taylor series expansion provides a useful tool for deriving these approximations. Expand-

ing the function f(x) around a point x0 is obtained:

8

f(x) = f(x0) + (x− x0)f
′(x0) +

(x− x0)
2

2!
f ′′(x0) +

(x− x0)
3

3!
f ′′′(x0) + · · · (2.4)

By truncating this series and rearranging terms, different finite difference formulas can be

derived to approximate the derivative of f(x) at specific points using values of the function

at neighboring points.

The forward difference method approximates the derivative at x0 by using the value of the

function at x0 and its next point x0 + h. This gives:

∂f

∂x
(x0) ≈

f(x0 + h)− f(x0)

h
+O(h), (2.5)

This method is a first-order approximation, meaning the error decreases linearly with h

Similarly, the backward difference method uses the value of the function at x0 and its previous

point x0 − h, giving the approximation:

∂f

∂x
(x0) ≈

f(x0)− f(x0 − h)

h
+O(h), (2.6)

Like the forward difference, this is also a first-order approximation.

A more accurate approach is the central difference method, which uses the values of the func-

tion at both x0 + h and x0 − h to approximate the derivative. This gives:

∂f

∂x
(x0) ≈

f(x0 + h)− f(x0 − h)

2h
+O(h2). (2.7)

The central difference is a second-order approximation, meaning its error decreases propor-

tionally to h2, making it more accurate than both the forward and backward methods for small

h.

Figure 2.1 compares the first-order and second-order difference approximations of the func-

tion sin(1/x) over the interval [−0.2,−0.1]. The figure illustrates that higher-order approxi-

mations, the central difference scheme (2.7), provide better accuracy by more closely aligning

with the true derivative.

9

The second-order approximation for the second derivative at x0 is:

∂2f

∂x2
(x0) ≈

f(x0 − h)− 2f(x0) + f(x0 + h)

h2
+O(h2), (2.8)

where h is the step size. This formula provides an error proportional to h2.

For an even more accurate approximation, the fourth-order formula is:

∂2f

∂x2
(x0) ≈

−f(x0 + 2h) + 16f(x0 + h)− 30f(x0) + 16f(x0 − h)− f(x0 − 2h)

12h2
+O(h4).

(2.9)

The fourth-order approximation improves accuracy with an error proportional to h4, making

it more precise than the second-order method for small h.

Figure 2.1: Comparison of the first-order and second-order difference approximations of the

function sin(1/x) on the interval [−0.2,−0.1]. Image taken from (Lehtinen 2003) [7].

10

2.3 Finite Difference Solution applied on Acoustic Wave

Equation

To solve the 2D acoustic equation, it is first necessary to discretize the dimensions of the field,

from continuous (2.10) to discrete (2.11) , (2.12) , (2.13).

∂2u(x, z, t)

∂t2
= c(x, z)2

(
∂2u(x, z, t)

∂x2
+

∂2u(x, z, t)

∂z2

)
+ f(x, z, t) (2.10)

The functions then become:

u(x, z, t)→ un
j,k = u(j dx, k dz, n dt) (2.11)

c(x, z)→ cj,k = c(j dx, k dz) (2.12)

f(x, z, t)→ fn
j,k = f(j dx, k dz, n dt) (2.13)

Here, u(x, z, t) represents the acoustic pressure field as a function of spatial coordinates x

and z, and time t, while j, k, and n are integers representing the indices of the spatial and

temporal discretization. When discretized, it becomes un
j,k, which denotes the pressure at the

discrete spatial grid points j dx and k dz, and at the discrete time step n dt.

The function c(x, z) represents the speed of sound at any point in the continuous domain. Its

discretized form, cj,k, represents the speed of sound at the grid point (j dx, k dz).

The source term f(x, z, t) represents the source term in the acoustic field. Its discretized

version, fn
j,k, denotes the source term at the spatial grid points (j dx, k dz) and the time step

n dt.

By substituting the Finite Difference approximation for the second time and space derivatives:

∂2u(x, z, t)

∂t2
≈

un+1
j,k − 2un

j,k + un−1
j,k

dt2
(2.14)

∂2u(x, z, t)

∂x2
≈

un
j+1,k − 2un

j,k + un
j−1,k

dx2
(2.15)

11

∂2u(x, z, t)

∂z2
≈

un
j,k+1 − 2un

j,k + un
j,k−1

dz2
(2.16)

Substituting (2.14) , (2.15) , (2.16) into the 2D discrete Acoustic Wave Equation results in (2.17):

un+1
j,k − 2un

j,k + un−1
j,k

(dt)2
= c2j,k

(
un
j+1,k − 2un

j,k + un
j−1,k

(dx)2
+

un
j,k+1 − 2un

j,k + un
j,k−1

(dz)2

)
+ fn

j,k

(2.17)

Assuming that in the grid dx = dz and solving for un+1
j,k yields:

un+1
j,k = 2un

j,k−un−1
j,k +(dt)2fn

j,k+
(dt)2

(dx)2
[
c2j,k

(
un
j+1,k − 2un

j,k + un
j−1,k + un

j,k+1 − 2un
j,k + un

j,k−1

)]
(2.18)

Equation (2.18) provides a method to compute the future value of the acoustic field u at a given

grid point (j, k) for the next time step n+1, based on its current value un
j,k, the previous value

un−1
j,k , the source term fn

j,k, and the values of u at neighboring grid points.

2.4 Dispersion and Stability Conditions

Finite Difference computation of the Acoustic Wave Equation necessitates the establishment

of criteria for spatial and temporal discretization. A poor choice of temporal and spatial in-

terval can lead to dispersion and instability problems.

Dispersion error refers to the phenomenon where waves propagate at incorrect speeds due to

inadequate discretization. This effect results in the distortion of waveforms and can severely

impact the accuracy of simulations. Higher-order discretizations help mitigate this issue by

providing a more accurate representation of the wave equation, reducing the dispersion er-

ror. Furthermore, selecting appropriate grid spacing and analyzing the numerical method’s

dispersion characteristics can enhance accuracy, ensuring that wave propagation is modeled

effectively (Kieri, 2016) [8].

∆x <
Vmin

n · fmax
(2.19)

12

(2.19) specifies that the spatial grid interval ∆x should be smaller than Vmin
n·fmax

to minimize

numerical dispersion in two-dimensional wave propagation. In this context, n represents the

number of grid points per wavelength. For a good approximation in the case of a second

order approximation of the spatial derivatives, values of n equal to 10 are considered accurate

(Alford et al., 1994) [9]. The parameter Vmin is the minimum velocity, and fmax is the maximum

frequency of the wave.

Instability arises when the energy of the discretized solution grows over time, rather than

remaining constant. The time spacing to keep the solution stable must satisfy the Courant-

Friedrichs-Levy (CFL) stability criterion, which in the 2D case with a second order approxi-

mation is equivalent to (2.20) (Lines et al., 1999) [10]:

Vmax · dt
dx

<
1√
2

(2.20)

Therefore, appropriate choices for both spatial and temporal discretization are crucial. Ini-

tially, spatial sampling is selected to minimize grid dispersion, ensuring an accurate repre-

sentation of the wave field. Subsequently, temporal sampling is chosen to avoid instability,

adhering to the CFL criterion to ensure that the numerical solution remains stable and reliable.

2.5 Boundary Conditions in practice

A significant challenge in computational simulations of acoustic waves is addressing the infi-

nite propagation of waves in all directions, which is not feasible to model directly. To approx-

imate this infinite domain, techniques like Absorbing Boundary Conditions (ABC) (Clayton

and Engquist, 1977) [11] or Perfectly Matched Layers (PML) (Bèrenger, 1994) [12] are em-

ployed. These techniques help simulate an infinite medium by dampening and absorbing

waves at the domain boundaries, thereby preventing reflections.

The method applied in this work is an absorbing damping mask, since it was the least com-

putationally expensive. This method involves extending the computational domain and intro-

ducing a Sponge layer at the boundary. The Sponge layer acts to absorb incident waves. The

Acoustic Wave Equation incorporating this damping mask is represented as:

13

∂2u
∂t2
− c2

(
∂2u
∂x2 +

∂2u
∂z2

)
+ η ∂u

∂t
= f

u(x, z, 0) = 0

∂u
∂t
(x, z, 0) = 0

(2.21)

In this context (2.21) , η represents the damping mask. Within the physical domain, η is set to

0, and it increases progressively within the sponge layer in order to attenuate the signal and

minimize reflections at the boundary, effectively simulating an open or infinite domain.

2.6 Devito

Devito is a domain-specific language (DSL) created to develop high-performance solvers for

partial differential equations (PDEs) using finite difference methods (Louboutin et al., 2018)

[13]. It was specifically designed to address the challenges of exploration seismology, where

techniques like Full-Waveform Inversion (FWI) and Reverse-Time Migration (RTM) are used

to process seismic data. These techniques are extremely computationally demanding, often

taking weeks to complete even on modern supercomputers, largely due to the intensive cal-

culations required to solve wave equations and their adjoints. Devito was developed with a

core focus on optimizing stencil computations, a series of calculations performed on a grid

of values, which are essential for solving differential equations and other spatially dependent

computations. This core capability allows Devito to significantly improve performance across

different computer architectures, reducing computation time.

In this Thesis work, Devito was chosen for solving the isotropic acoustic wave equation due to

its ability to express the solution in just a few lines of code, thanks to its high-level abstraction

using SymPy for symbolic computation. Additionally, Devito is a Python package that is easily

downloadable and straightforward to integrate into existing workflows. Once the solution

was obtained in the form of temporal snapshots of wave propagation, it became possible

to create traveltime maps of the most energetic arrivals for each velocity model. Moreover,

Devito generated also the synthetic seismograms used in the migration part.

14

The parameters used for simulations with Devito included:

• Vp (P-wave velocity)

• Source wavelet

• Boundary thickness

• Source and receiver locations

• Sampling frequency

• Number of receivers

• Grid spacing

• Total time of simulation

Below is an example of Python code utilizing the Devito library, where the essential parame-

ters mentioned above are defined to perform the solution of the wave equation.

velocity model creation

gridspacing = 10

damspace = 300

velocity = np.ones((400, 400)) * 1.5

shape = (velocity.shape[1], velocity.shape[0])

spacing = (gridspacing, gridspacing)

origin = (0., 0.)

Tampmax = np.zeros((np.shape(velocity)[0], np.shape(velocity)[1]),

dtype=”float32”)

v = np.transpose(velocity[:, :])

model = Model(vp=v, origin=origin, shape=shape, spacing=spacing,

spaceorder=2, nbl=damspace, bcs=”damp”)

total time and dt

tn = 4000

t0 = 0.

dt = model.criticaldt

timerange = TimeAxis(start=t0, stop=tn, step=dt)

source characteristics

f0 = 0.010

src = RickerSource(name=’src’, grid=model.grid, f0=f0, npoint=1,

15

timerange=timerange)

src.coordinates.data[0, :] = np.array(model.domainsize) * .5

src.coordinates.data[0, -1] = 1.

receivers characteristics

xextent, = model.domainsize

xlocs = np.linspace(0, xextent, shape[0])

reccoords = [(x, 1) for x in xlocs]

rec = Receiver(name=’rec’, npoint=shape[0], grid=model.grid,

coordinates=reccoords, timerange=timerange)

rec.coordinates.data[:, 1] = 1.

16

Chapter 3

Kirchhoff migration

3.1 Kirchhoff migration in general

Kirchhoff migration is a well known technique in seismic imaging, it is used to reconstruct

subsurface geological structures from recorded seismic data. It operates by summing seismic

data along predicted diffraction paths to produce an accurate subsurface image. This method

was introduced by (Schneider, 1971) [14] and has been widely adopted due to its efficiency

and precision in seismic processing.

Kirchhoff migration can be performed in several domains, including space-time, space-frequency,

wavenumber-time, and wavenumber-frequency (Zhu and Lines, 1998) [15]. Prestack Kirch-

hoff migration relies on the solution of the acoustic wave equation. A common approach to

this solution involves the use of the WKBJ approximation, which provides a high-frequency

asymptotic form of the Green’s function (Aki and Richards, 1980) [16]. To calculate the trav-

eltimes used in the migration process, the eikonal equation is often employed (Cerveny, 2001)

[17]. The migration integral of a single shot in space-time domain can be expressed by the

following equation (Zhu and Lines, 1998) [15]:

R(x;xs) =

∫
∑ n · ∇τr(xr;x)A(xr;x;xs)u

m(xr, τs(x;xs) + τr(xr;x);xs) dxr (3.1)

17

where ∑ represents the recording surface; τs and τr are the traveltimes from the source point

xs to the subsurface position x, and from x to the receiver at xr, respectively; and n is the out-

ward normal of the surface ∑. The term um denotes the time derivative of the recorded traces,

with m = 1
2

for the 2-D case. The term A(xr;x;xs) represents the geometrical spreading,

which functions as an amplitude modulator for the recorded traces.

Migration using equation (3.1) is basically a weighted summation of the derivative traces along

the presumed diffraction trajectory t = τs+τr . The approximation of the weights is done based

on a constant velocity model. There, the weights, are expressed as a function of velocity,

traveled distance, and the obliquity of the emergence ray at the recording surface (Bleistein

et al., 1987) [18].

To summarize, the steps involved in performing Kirchhoff migration for each input trace are:

1. Compute the source and receiver traveltimes using a velocity-depth model.

2. Calculate the two-way traveltime by summing the traveltime from the source to the

subsurface point and the traveltime from the subsurface point to the receiver.

3. For each point, compute the amplitude factor .

4. Position each amplitude value of the seismic trace at the corresponding point with the

same traveltime, multiplying it by its amplitude factor.

Then Impulse Response of all traces (Fig.3.1) are stacked, creating seismic reflectors where

energy accumulates (Fresnel zone) and cancel each other out through stacking outside.

One significant drawback of Kirchhoff migration when the computed traveltimes are first ar-

rivals traveltimes is its accuracy in complex geological structures. The method may fail to

capture the full energy of the seismic wavefield recorded in the data, leading to poor imag-

ing results, especially if the spatial variation of propagation velocity in the subsurface is very

complex (i.e., sharp velocity contrasts along coplex interface like, for instance, those associ-

ated to the presence of salt diapirs). In fact first arrival traveltimes in complex geological areas

may contain little energy and Imaging using these traveltimes does not coherently stack the

most important parts of the wavefield (Fig.3.2).

Another issue arises from the high frequency approximations used in calculating the Green’s

function traveltimes. These traveltimes are not a good approximation to the traveltimes of the

seismic wavefield if the medium is dispersive (Kieri, 2016) [8].

18

Figure 3.1: Kirchhoff migration impulse, image taken from (Zhu, 1998) [15]

In an effort to overcome the limitations of traditional Kirchhoff migration, several authors

proposed replacing ray-based traveltime calculations with wave-equation-based approaches.

Nichols (1996) suggested estimating the wavefield by solving the Helmholtz equation at a few

selected frequencies within the seismic bandwidth, rather than solving the eikonal equation

for traveltime. He then applied a parametric fit to the computed wavefield to estimate trav-

eltime, amplitude, and phase. It is noted that, according to (Nichols, 1996)) [1] and (Nguyen

and McMechan, 2013) [20], the maximum energy traveltime is the best single-event approxi-

mation to the full Green’s function Fig(3.2). (Ehinger et al. 1996) [21] and (Etgen, 2012) [22]

proposed Kirchhoff migration using Green’s function computed with wavefield extrapolation

techniques based on a finite difference implementation of the wave equation. (Andrade et al.

2015) [23] showed a method to calculate maximum amplitude traveltimes with the Cheby-

shev polynomial recursion. (Jin and Etgen, 2020) [4] directly generated maximum-amplitude

traveltimes using finite-difference solutions to the full wave equation. (Pu et al., 2021) [2]

presented a Kirchhoff migration using both maximum energetic traveltimes and amplitudes

derived from the wavefield computed by full wavefield propagation, calling this scheme Wave

Equation Kirchhoff (WEK) (Fig.3.3).

On the migration side of this Thesis work, an attempt was made to implement a Kirchhoff

migration based on the solution of Wave Equation, using as traveltimes the most energetic

ones. The Wave Equation has been solved via a Finite Difference method.

19

Figure 3.2: a) First arrival traveltimes in dotted data superimposed upon the full diffraction

wavefield, b) Most energetic arrival traveltimes in dotted data superimposed upon the full

diffraction. Image taken from (Audebert et al., 1997) [19]

3.2 Wave equation Kirchhoff

In this Thesis, a Wave Equation Kirchhoff prestack depth migration was implemented. The

use of the Devito software not only allowed the resolution of the Acoustic Wave Equation,

but also the calculation of the most energetic traveltimes and the obtaining of shot gathers.

The migration was performed on zero offset data.

The formulation used for performing the migration is the following:

migrated area(x, y) =
Ntraces−1∑

s=0

Trecorded−1∑
t=0

∑
τ(x′,y′,s)=t×∆t}

(trace sample(t, s)×W (x′, y′, t, s))

(3.2)

Where in (3.2) :

• Ntraces: Total number of seismic traces.

• Trecorded: Total number of recorded time samples.

• τ(x′, y′, s): Travel time from the source to the subsurface point (x′, y′) for trace s.

20

Figure 3.3: a) Velocity model, b) Conventional Kirchhoff stack image, c) WEK stack image.

Image taken from (Jin, 2023) [5]

• t×∆t: Corresponding time sample t in the recorded seismic data.

• trace sample(t, s): Amplitude of the seismic trace s at time t.

• W (x′, y′, t, s): Amplitude correction weight.

As a weight, it was decided to implement an approximation of Bleistein’weight, (Bleistein et

al., 1998) [24], taken for the common 2D offset case by (Zhang et al., 2000) [25], equals to:

4z

v2t
(3.3)

In (3.3) z stands for depth, v for velocity and t for two-way travel time. This weight, which

is valid in constant velocity cases, has the advantage that it can be directly calculated during

the data spreading on the isochrone, since z and the two-way travel time t can be easily

computed. This allows for a significant reduction in the cost of Kirchhoff migration. In (Fig.3.4)

a schematic summary of the Kirchhoff algorithm implemented.

21

Figure 3.4: Workflow of Wave Equation Kirchhoff Migration implemented in this thesis work

22

3.3 Implementation

This section outlines the implementation of the pre-stack migration process used in this study,

based on a ”spraying” approach.

The velocity model, used for migration, was divided into several smaller sub-models. Within

each sub-model, the wave equation was solved via Devito using the finite difference method,

assuming the source was located at the central, near-surface position of the sub-model. From

the wave equation solution, synthetic data were generated in the form of shot gathers, along

with the most energetic arrival traveltime map. This traveltime map shows the time it takes

for the most energetic arrival to reach each point within the sub-model, starting from the

source location.

Before starting the migration, the shot gather data were filtered using a
√
i2πf filter. This

filter was necessary due to the mathematical formulation of the algorithm, which is derived

from the wave equation. After filtering, the data were sorted to transition from the shot gather

domain to the common offset domain. In this thesis, however, only zero-offset data (0 m offset)

were used.

Before migration, for each trace in the common offset domain, it was necessary to calculate the

corresponding most energetic two-way traveltime map. This map represents the time taken

for the most energetic arrival to travel from the source to any subsurface point and then back

to the receiver. In the case of this thesis, where zero-offset migration (0 m offset) is employed,

the calculation of the most energetic two-way traveltime map is greatly simplified, as the

source and receiver are located at the same position. This traveltime map is used to ”spray”

the data along corresponding trace across surfaces known as isochrones. By repeating this

operation for all traces and summing the results, the final migrated section is obtained.

23

The algorithm employed for migrating these traces is described as follows:

1 for s = 0 to number of traces do

2 migrated section = np.zeros((rows, columns)) ;

3 for t = 0 to data points recorded - 1 do

4 position = np.where(two way travel time[:, s] == t · dt)[0] ;

5 if position.size >0 then

6 for element in position do

7 row = element // len(migrated section[0, :]) ;

8 column = element % len(migrated section[0, :]) ;

9 result = function(column) ;

10 migrated section[row, column] +=

11 current offset[t, s] ·Weight function[t, z]

12 migrated section = migrated section · migration aperture ;

13 migrated area += migrated section ;

The Kirchhoff migration process begins by iterating through each trace that composes the

common offset data, starting from the leftmost trace to the rightmost one. For each cycle, an

initially empty matrix migrated section is created to store the migrated amplitudes for

that trace.

Then the algorithm, for every trace, iterates through all recorded time points t and calculates

the corresponding positions where the two-way travel time equals t × dt. These positions

represent the isochrones—curves or surfaces in the subsurface where energy arrives simulta-

neously.

For each computed isochrone, the seismic amplitudes corresponding to the current time t

are distributed across these positions in the migrated section matrix. This is done by

adding the weighted amplitude values from the seismic traces, current offset[t, s] ·

Weight function(t, z), to the migrated section. The weights are determined by

a Weight function(t,z), which adjusts the contribution of each trace to account for fac-

tors such as geometric spreading, the velocity model, and other migration parameters (see

equation 3.3).

After summing the amplitudes across all isochrones for a given shot, a depth-variant migration

24

aperture mask is applied to themigrated section. This mask limits the migrated area to

a specific region of interest, effectively controlling the spatial extent of the migration process.

Finally, the migrated section of the current shot is added to the cumulativemigrated area

matrix. This matrix represents the entire migrated image, and by summing over successive

shots, the algorithm progressively builds the final migrated result.

25

Chapter 4

Neural Networks

4.1 U-Net-like Architectures

4.1.1 Introduction to U-Net and Its Variants

U-Net: Background and Significance

Introduced by Ronneberger et al. 2015 [26], U-Net is a powerful and widely-used neural net-

work architecture, originally developed for biomedical image segmentation. Its unique ar-

chitecture allows it to effectively segment images even with limited training data, which is

particularly beneficial in fields such as medical imaging.

The U-Net architecture is renowned for its distinctive encoder-decoder structure, which is

crucial for its ability to capture both high-level semantic information and local spatial features.

This characteristic makes U-Net not only important for segmentation but also versatile for

other tasks like image regression, where precise spatial information is essential.

The U-Net model is composed of three main components:

• Encoder: The encoder path captures the context of the image through successive con-

volutional layers and down-sampling operations. It consists of a series of convolutional

blocks followed by max-pooling layers. Each block typically includes a convolutional

layer, batch normalization, and ReLU activation function (for more information, see the

Glossary of Terms later in this chapter). The convolutional layers generate feature maps

at each level, which are intermediate representations of the image that capture essential

attributes such as edges, textures, and patterns. These feature maps are progressively

refined through each convolutional block and are crucial for the encoder to effectively

26

learn and represent the input image.

• Decoder: The decoder path reconstructs the image from the feature maps produced

by the encoder. It uses up-sampling operations to reconstruct the spatial dimensions

of the feature maps. Each up-sampling step is followed by a concatenation with the

corresponding feature map from the encoder path (skip connections) and additional

convolutional layers.

• Skip Connections: These connections between the encoder and decoder paths allow the

network to retain high-resolution features from earlier layers. They help preserve spa-

tial information that might be lost during down-sampling, thus improving the accuracy

of the reconstructed image (Fig.4.1).

Figure 4.1: The U-Net architecture features an encoder on the left that reduces spatial dimen-

sions while extracting key features through convolutional and downsampling layers. On the

right, the decoder reconstructs the spatial dimensions using upsampling layers to produce a

segmented output. Skip connections (in gray) between corresponding encoder and decoder

layers preserve spatial information and improve segmentation accuracy. Image from Ron-

neberger et al. (2015).

In this work, U-Net and its variants have been adapted for regression tasks, specifically to

calculate the most energetic travel time. The regression problem involves predicting contin-

27

uous values rather than class labels, and U-Net’s ability to retain detailed spatial information

makes it suitable for such tasks.

The standard U-Net architecture was extended and tested with two notable variants: the At-

tention U-Net (AUnet) and the Residual Attention U-Net (ResAUnet).

• Attention U-Net (AUnet): This variant (Oktay et al. 2018) [27] incorporates attention

mechanisms to improve the model’s ability to focus on relevant features while ignoring

irrelevant ones. Attention blocks adjust the contribution of different features dynam-

ically, which can enhance performance in complex scenarios where certain regions of

the image are more significant than others.

• Residual Attention U-Net (ResAUnet): This model (Ni et al. 2019) [28] combines resid-

ual connections with attention mechanisms. Residual blocks help in training deeper

networks by mitigating the vanishing gradient problem (see chapter 4.1.4), while atten-

tion blocks enhance feature selection. This combination aims to improve both feature

learning and focus on important regions, potentially leading to better results.

In summary, U-Net and its variants offer powerful solutions for image segmentation and re-

gression tasks, with attention and residual mechanisms providing additional improvements

in performance and accuracy.

28

4.1.2 Algorithm: U-Net training
1. Initialize: Set θ forM(θ).

2. For epoch e = 1 to E:

• For each batch {(xj, yj)}Bj=1:

(a) Forward Pass:

for i = 1 to L− 1 :

ci+1 = σ(BN(Conv2d(pi, θ2i−1)))

ci+1 = σ(BN(Conv2d(ci+1, θ2i)))

pi+1 = MaxPool(ci+1)

end for

cL = σ(BN(Conv2d(pL−1, θ2L−1)))

cL = σ(BN(Conv2d(cL, θ2L)))

for i = L downto 1 :

ui = UpSampling(ci+1)

ui = Concat(ui, ci)

ui = σ(BN(Conv2d(ui, θ2i+1)))

ui = σ(BN(Conv2d(ui, θ2i+2)))

end for

ŷj = Conv2d(u1, θf)

(b) Loss Computation:

L(θ) = 1

B

B∑
j=1

∥ŷj − yj∥1

(c) Backward Pass & Parameter Update:

∇θ ←
∂L
∂θ

θ ← O(θ,∇θ)

29

Glossary of Terms:

• D = (xi, yi)
N
i=1: Dataset. The collection of N samples, where each sample consists of

an input image xi and its corresponding ground truth yi.

• xi ∈ RC×H×W : Input Image. A tensor representing an image with C channels, height

H , and width W .

• yi ∈ RH×W : Output Image. A tensor representing the ground truth or target image

with height H and width W .

• E: Number of Epochs. The total number of complete passes through the entire dataset

during training.

• B: Batch Size. The number of samples processed together in one forward and backward

pass during training.

• M(θ): U-Net Model. The U-Net architecture parameterized by θ, where θ represents

the model parameters.

• L: Loss Function. A function used to measure the discrepancy between the predicted

output and the ground truth, guiding the optimization process.

• O: Optimizer. An algorithm used to update the model parameters θ based on the gra-

dients computed during training.

• N : Number of Samples. The total number of samples in the dataset D.

• C : Number of Channels. The number of channels in the input image xi. For example,

C = 3 for RGB images.

• H : Height. The height of the input image xi and the output image yi.

• W : Width. The width of the input image xi and the output image yi.

• σ: Activation Function. Typically, σ represents the activation function applied after

each convolution. Common choices include the Rectified Linear Unit (ReLU) function,

which is defined as σ(x) = max(0, x).

30

• BN: Batch Normalization. A technique used to normalize the output of a previous acti-

vation layer by subtracting the batch mean and dividing by the batch standard deviation.

This helps to stabilize and accelerate training.

• Conv2d: 2D Convolution. A convolutional layer that applies 2D filters (kernels) to the

input to extract features. It is defined by the convolution operation Conv2d(x, θ) where

x is the input and θ represents the filter weights.

• MaxPool: Max Pooling. A down-sampling operation that reduces the spatial dimensions

of the input by taking the maximum value within a specified window. It is used to reduce

the computational load and capture dominant features.

• UpSampling: Up-Sampling. An operation that increases the spatial dimensions of the

input feature map, often using methods such as nearest-neighbor interpolation or trans-

posed convolution.

• Concat: Concatenation. An operation that concatenates two feature maps along a spec-

ified dimension, typically the channel dimension, to combine features from different

layers.

• θf : Final Convolution Weights. The weights used in the final convolutional layer to

produce the output predictions from the last feature map u1.

31

4.1.3 Forward Pass: Attention U-Net (A-Unet)

For the Attention U-Net (AUnet) variant, the overall architecture follows the same structure as

the standard U-Net, with the exception of the forward pass step. The forward pass for A-Unet

incorporates attention gates, which refine the feature maps to focus on important regions.

for i = 1 to L− 1 :

ci+1 = σ (BN (Conv2d(pi, θ2i−1)))

ci+1 = σ (BN (Conv2d(ci+1, θ2i)))

pi+1 = MaxPool(ci+1)

end for

cL = σ (BN (Conv2d(pL−1, θ2L−1)))

cL = σ (BN (Conv2d(cL, θ2L)))

for i = L downto 1 :

ui = UpSampling(ci+1)

ui = Concat(ui, ci)

ui = AttentionGate(g = ui, x = ci)

ui = σ (BN (Conv2d(ui, θ2i+1)))

ui = σ (BN (Conv2d(ui, θ2i+2)))

end for

ŷj = Conv2d(u1, θf)

The Attention Gate (AG) is a mechanism designed to enhance the performance of convolu-

tional neural networks, particularly in tasks like image segmentation, by dynamically focus-

ing on the most relevant regions of the input. In the architecture described by Oktay et al.

2018 [27], the Attention Gate is applied within a U-Net framework to refine the feature maps

passed from the encoder to the decoder.

32

Feature Map x:

• x represents the input feature map coming from the encoder path of the U-Net. This

feature map contains detailed spatial information but may include both relevant and

irrelevant features for the segmentation task.

Gating Signal g:

• g is the gating signal, a feature map derived from a higher-level, coarser layer of the

decoder path. This signal carries contextual information and helps guide the attention

mechanism to focus on the relevant parts of x.

Operation of the Attention Gate:

• The Attention Gate takes both x and g as inputs. Through a series of linear transfor-

mations (convolutions with 1×1×1 kernels), activation functions and element-wise op-

erations, the gate computes the attention coefficients α. These coefficients indicate the

importance of each spatial region in x based on the contextual information provided by

g.

• The coefficients α are then applied to the feature map x, effectively scaling it so that

more relevant features are emphasized while less relevant ones are suppressed.

Output:

• The output of the Attention Gate is the modulated feature map, where important fea-

tures are enhanced, and irrelevant ones are attenuated. This output is then passed to

the subsequent layers of the U-Net decoder for further processing.

By integrating this mechanism (Fig.4.2), the network becomes more effective at focusing on

the parts of the image that are most important for accurate segmentation, improving the

overall performance of the model.

33

Figure 4.2: A schematic representation of the implemented Attention U-Net. Attention Gates

filter the features propagated through the skip connections. Image taken from (Oktay et al.

2018) [27]

34

4.1.4 Forward Pass: Residual Attention U-Net (Res-A-Unet)

For the Residual Attention U-Net (ResAUnet) variant, the overall architecture follows the

same structure as the standard U-Net, with the exception of the forward pass step. The for-

ward pass for Res-A-Unet introduces additional components, including residual and attention

mechanisms.

for i = 1 to L :

ci+1 = ResidualBlock(pi, θ2i−1)

pi+1 = MaxPool(ci+1)

end for

center = ResidualBlock(pL−1, θ2L)

for i = L downto 1 :

ui = UpSampling(ci+1)

ui = Concat(ui, ci)

ui = AttentionBlock(g = ui, x = ci)

ui = ResidualBlock(ui, θ2i+1)

end for

ŷ = Conv2d(u1, θf)

The ResidualBlock (Fig.4.3) is a type of block designed to improve the training of deep neural

networks and to tackle the vanishing gradient problem, which is a common issue in train-

ing deep neural networks. The vanishing gradient problem occurs when gradients of the loss

function with respect to the network’s weights become exceedingly small as they are propa-

gated backward through the network during training. This issue is particularly pronounced in

deep networks with many layers, where gradients can diminish exponentially through each

layer. Consequently, weight updates become minimal, leading to very slow or halted learning

in the earlier layers of the network.

35

ResidualBlocks address this challenge by following the principles of residual learning. Specif-

ically, they pass the input through a series of convolutional layers and then add the original

input back to the output of these layers. This shortcut connection helps to preserve the gra-

dient flow and mitigate the vanishing gradient problem, thereby improving the network’s

training efficiency and performance.

Figure 4.3: Simple graph explaining the composition of the residual block.

Specifically, the Residual Block operates as follows:

• The input feature map is first passed through a convolutional layer with a 3× 3 kernel,

followed by a batch normalization and a ReLU activation function.

• The result is then processed through another convolutional layer with a 3 × 3 kernel

and batch normalization, if batch normalization is applied. This step refines the features

extracted by the first convolutional layer.

• Simultaneously, the original input is processed through a 1 × 1 convolutional layer to

match the dimensions of the output from the second convolutional layer.

• The output of the second convolutional layer is added to the output of the 1× 1 convo-

lutional layer.

36

• Finally, a ReLU activation function is applied to the summed result, producing the final

output of the Residual Block.

4.2 Neural Style Transfer (NST)

Neural Style Transfer (NST) is an application of deep learning that enables the synthesis of

images by combining the content of one image with the style of another (Fig.4.4). This is

achieved by leveraging the powerful feature extraction capabilities of Convolutional Neural

Networks (CNNs). Introduced by (Gatys et al. 2015) [29], NST has opened new avenues in

both artistic image creation and the study of visual perception. NST has a wide range of

applications in various fields; specifically in machine learning, it can be used to generate

augmented datasets by creating stylized versions of existing images, which can improve the

robustness of models. In this thesis work, it was employed to create a new training dataset,

starting from the original training set and using style images from the test dataset, which

proved to be highly useful for achieving the objectives of this study.

4.2.1 How Neural Style Transfer Works

The core idea behind NST is to manipulate the neural representations of images in such a

way that the content from one image is preserved while adopting the stylistic features from

another. This is achieved by using a pre-trained deep neural network, typically a VGG net-

work, to extract high-level features from both the content and style images. In this Thesis a

pre-trained VGG-19 has been used.

Content Representation

The content of an image is represented by the activations of the higher layers within a CNN

when the image is processed. These activations are the output of the neurons in those layers

and capture the high-level structure and objects, focusing on the arrangement and identity of

elements within the image while abstracting away finer details like textures and colors. This

makes the higher-layer activations ideal for content representation NST, as they reflect the

semantic content of the image, as shown in the bottom images of Fig.4.5.

37

Figure 4.4: Image at the top left: content image. Subscripts images: style content. The others

images are a combination of the content of the photograph with the style of several well-

known artworks using NST. Image taken from (Gatys et al. 2015) [29]

Style Representation

Style, on the other hand, is captured by the correlations between the different feature maps

within the network. These correlations are computed using the Gram matrix (Gatys et al.

2015) [29], which measures the similarity between different feature maps. By using multiple

layers of the CNN, NST captures style at different scales (images at the top of Fig.4.5), from

fine textures to more abstract, global patterns.

The Loss Function

The NST algorithm operates by defining a loss function that measures the deviation of the gen-

erated image from the desired content and style representations. This loss function consists

of two components:

• Content Loss: This measures the difference between the feature activations of the con-

tent image and the generated image at highest layer of the CNN.

38

Figure 4.5: Styles and content can be computed at different layers of the Convolutional Neural

Network (CNN). Image taken from (Gatys et al. 2015) [29]

• Style Loss: This quantifies the difference between the Gram matrices of the style image

and the generated image across multiple layers of the CNN.

4.2.2 Mathematical Foundations of Neural Style Transfer

The mathematical foundation of NST lies in the feature extraction capabilities of CNNs for

content representation and the use of Gram matrices for style representation.

Feature Extraction Using CNNs

Given an input imagex, a CNN processes it through a series of convolutional layers, producing

a set of feature maps at each layer. For a layer l, the feature map is denoted by Fl ∈ RNl×Ml ,

where Nl is the number of filters and Ml is the spatial dimension (height × width) of the

feature map.

Content Loss

The content loss measures the difference between the feature representations of the content

image p and the generated image x at a specific layer l of the CNN. Each layer l of the CNN

produces feature maps, which are flattened into one-dimensional vectors. Let P l and F l de-

note the feature representations of the content image and the generated image, respectively,

at layer l. The content loss is defined as:

39

Lcontent(p,x, l) =
1

2

∑
i,j

(
F l
ij − P l

ij

)2 (4.1)

Here, F l
ij and P l

ij represent the activations of the i-th filter at position j in layer l for the gen-

erated and content images, respectively. The process of generating the image x, is initialized

with an image of random noise. This random noise image is iteratively refined using gradi-

ent descent to minimize the content loss, gradually transforming it into an image that closely

matches the content representation of the original image p at the chosen layer l.

The derivative of the content loss with respect to the activations in layer l is:

∂Lcontent

∂F l
ij

=

F l
ij − P l

ij if F l
ij > 0

0 if F l
ij ≤ 0

(4.2)

Style Loss

The style representation is captured through the Gram matrix Gl ∈ RNl×Nl , which encodes

the correlations between feature maps at layer l. The element Gl
ij of the Gram matrix repre-

sents the inner product between the vectorized feature maps i and j:

Gl
ij =

∑
k

F l
ikF

l
jk (4.3)

To match the style of the generated image x to that of the style image a, the mean-squared

distance between the Gram matrices of the style image and the generated image is minimized.

The generated image x is initially created as a random noise image. During the optimization

process, this noise image is iteratively adjusted to reduce the style loss, bringing its Gram

matrix closer to that of the style image. Let Al
ij and Gl

ij represent the Gram matrices of the

style image and the generated image at layer l. The contribution of layer l to the total style

loss is defined as:

El =
1

4N2
l M

2
l

∑
i,j

(
Al

ij −Gl
ij

)2 (4.4)

The total style loss is computed by summing the contributions from each layer:

Lstyle(a,x) =
∑
l

wlEl (4.5)

40

where wl are the weighting factors for the contribution of each layer to the total style loss.

The derivative of the style loss with respect to the activations F l
ij is computed as follows:

∂El

∂F l
ij

=

1

N2
l M

2
l

((
F l
ij

)T (
Al

ij −Gl
ij

))
if F l

ij > 0

0 if F l
ij ≤ 0

(4.6)

Total Loss

The total loss function is a weighted sum of the content and style losses:

Ltotal(p, a,x) = αLcontent(p,x) + βLstyle(a,x) (4.7)

where α and β are appropriately chosen scalar weights.

4.2.3 Hyperparameters in Neural Style Transfer

NST involves several hyperparameters that can significantly affect the quality of the generated

images (Fig.4.6):

Figure 4.6: The column shows different relative weightings between the content and style

reconstruction. On the left, the content is emphasized, while on the right, the style takes

precedence. This image, taken from (Gatys et al. 2015) [29], refers to the same case study as

in Fig.4.5, using the same style and content images.

• Content Weight (α): A scalar that controls the importance of content preservation in

the generated image.

• Style Weight (β): A scalar that determines the strength of the style transfer.

• Layer Selection: The choice of layers from which to extract content and style represen-

tations can greatly influence the output. Typically, higher layers are used for content,

and a combination of lower to higher layers is used for style.

41

• Optimization Method: Gradient descent is commonly used, with options like L-BFGS

(Liu and Nocedal, 1989) [30] or Adam optimizers (Kingma, 2017) [31]. The choice of

optimizer and its parameters, such as learning rate, can affect convergence and image

quality.

Tuning these hyperparameters is often a process of trial and error, guided by the specific

artistic or practical goals.

4.3 Ensembling Network

Ensemble learning combines predictions from multiple models to improve overall perfor-

mance (Zhou, 2012) [32]. The technique involves optimizing weights to determine the ideal

contribution of each model’s predictions (Fig.4.7).

Figure 4.7: The image shows an ensemble network that combines the outputs of three neural

networks. Each output is multiplied by a learned weight w, and the weighted outputs are

summed to produce a final prediction that is closer to the true label.

The process is structured as follows:

1. Model Training: Multiple models are trained independently. Each model provides

predictions for the same task but with potentially different characteristics due to varying

hyperparameters, or architectures.

2. Prediction Aggregation: Predictions from all models are aggregated. This is typically

done by calculating a weighted sum of the predictions, where each model’s output is

scaled by a corresponding weight.

42

3. Weight Optimization: The weights used for aggregating predictions are optimized

to minimize the error of the combined prediction. This is achieved by defining a loss

function that measures the discrepancy between the combined predictions and the true

labels.

4. Evaluation: After optimizing the weights, the performance of the ensemble is evalu-

ated. The final model’s accuracy or error is assessed to ensure that the optimized weights

improve prediction performance compared to individual models.

This structure allows for the systematic improvement of prediction accuracy by effectively

combining multiple models and fine-tuning their contributions.

4.4 Diffusion models

Deep generative models have revolutionized various fields within machine learning, partic-

ularly in tasks involving image synthesis, editing, interpolation, colorization, denoising, and

super-resolution. Diffusion probabilistic models, often simply referred to as Diffusion models

(Sohl-Dickstein, 2015; Ho, 2020) [33, 34], have recently gained prominence due to their excep-

tional performance, frequently surpassing traditional algorithms like Generative Adversarial

Networks (GANs; Goodfellow, 2014) [35] and Variational Autoencoders (VAEs; Kingma, 2013)

[36]. Currently, they represent the state of the art in generative models and have only been

used in the field of geophysics for a few years.

Generative models aim to learn the underlying distribution of the observable data, such as

images. They focus on understanding and replicating how these data points are distributed

in their feature space. In diffusion models, this is achieved by adding controlled amounts of

noise to the data, gradually corrupting the data points. The model is then trained to reverse

this process by learning to denoise the data and recover the original distribution, effectively

capturing the underlying structure of the feature space (Fig.4.8).

There are various methods for estimating probability distribution p(x), including autoregres-

sive models, latent variable models, flow-based models, and energy-based models. Each of

these approaches has its own way of addressing the problem of modeling data distributions.

Here the focus is on latent variable models, as they form the foundation for diffusion models.

43

Figure 4.8: In diffusion models, the probability distribution p(x) of data is obtained by progres-

sively adding noise to the images and then learning how to reverse this process, effectively

reconstructing the original image.

4.4.1 Latent Variable Models

Latent variable models introduce hidden or latent variables z that help explain the observed

data x. In the context of diffusion models, these latent variables represent unobserved factors

that capture the underlying structure of the input, which is essential for generating or recon-

structing the observable information. They serve as an intermediary representation that aids

in modeling complex distributions by encoding the information necessary to recover the orig-

inal inputs after progressive noise has been added. The joint distribution p(x, z) represents

the combined distribution of both observable and latent variables. The marginal distribution

p(x), is obtained by integrating out the latent variables:

pθ(x) =

∫
z

pθ(x, z) =

∫
z

pθ(x|z) pθ(z) (4.8)

where:

• pθ(x|z) is the likelihood of x given z, indicating how likely x is for a specific latent

variable z.

• pθ(z) is the prior distribution over the latent variables, representing the beliefs about z

before seeing any data.

Since the true distribution p(x) is often unknown, approximated methods are used. Variational

inference is a common approach, which optimizes the Evidence Lower Bound (ELBO):

log p(x) ≥ Ez∼qϕ(z|x)[log pθ(x|z)]− KL[qϕ(z|x)∥p(z)], (4.9)

where:

44

• qϕ(z|x) is the variational posterior, an approximation of the true posterior distribution

of z given x.

• KL denotes the Kullback-Leibler divergence, a measure of how one probability distribu-

tion diverges from another (Kullback and Leibler, 1951) [37].

4.4.2 Hierarchical Latent Variable Models

Hierarchical models use multiple layers of latent variables to explain complex data structures.

For instance, with two latent variables z1 and z2, the joint distribution is:

pθ(x) =

∫
z1

∫
z2

pθ(x, z1, z2) =

∫
z1

∫
z2

pθ(x|z1) pθ(z1|z2) pθ(z2) (4.10)

where:

• pθ(x|z1) is the likelihood of x given z1.

• pθ(z1|z2) is the conditional distribution of z1 given z2.

• pθ(z2) is the prior distribution of z2.

The ELBO for hierarchical models is:

log p(x) ≥ Ez1∼qϕ(z1|z2)[log pθ(x|z1)]− KL[qϕ(z1|x)∥pθ(z1|x)]− KL[qϕ(z2|z1)∥p(z2)]. (4.11)

4.4.3 Derivation of Diffusion Models

Diffusion models can be viewed as a particular instance of hierarchical latent variable models,

where the inference process is defined without relying on learnable parameters. In Fig(4.9)

can be seen the three mentioned models.

In practice, diffusion models incrementally add noise to the data following a Markov chain

process and then learn to reverse this process to generate data samples. In Fig(4.10) an example

from Durall (2022) [38] illustrates seismic data being progressively contaminated by noise

and then recovered from noise back to its original form. The idea of applying the diffusion

method to this thesis work was inspired by Durall’s approach. These models are characterized

by a hierarchical structure where the final latent distribution q(xT) approaches a standard

Gaussian distribution N (0, I) as T (the number of steps) increases.

45

Figure 4.9: Scheme of the different latent variable models. (Top) Single latent variable model.

(Center) Hierarchical latent variable model. (Bottom) Diffusion model. Image taken from

(Durall, 2022) [38]

Forward Diffusion Process In the forward diffusion process, Gaussian noise ϵ is added to

the input image x0 over T steps, resulting in progressively noisier images:

q(x1:T |x0) =
T∏
t=1

q(xt|xt−1) =
T∏
t=1

N (xt;
√
1− βtxt−1, βtI), (4.12)

where:

• N (xt;
√
1− βtxt−1, βtI) denotes the Gaussian distribution ofxt givenxt−1, with

√
1− βtxt−1

as the mean and βtI as the covariance matrix.

• βt is a variance schedule that determines how the noise level changes at each step.

Parameterized Reverse Process The reverse process learns to reconstruct the original

data by denoising from xT back to x0.

The model parameterizes the reverse transitions as:

pθ(x0:T) = p(xT)
T∏
t=1

pθ(xt−1|xt) = p(xT)
T∏
t=1

N (xt−1;µθ(xt, t),Σθ(xt, t)), (4.13)

where:

46

Figure 4.10: Denoising diffusion process. While the Markov chain of the forward diffusion

gradually adds noise to the input (dash arrows), the reverse process removes it stepwise (solid

arrows). Image taken from (Durall, 2022) [38]

• N (xt−1;µθ(xt, t),Σθ(xt, t)) denotes the Gaussian distribution of xt−1 given xt, with µθ

and Σθ representing the learned mean and covariance, respectively.

Training Objective The training objective is to maximize the lower bound on the log-

likelihood of the data. This is achieved by minimizing the discrepancy between predicted

and actual noise components:

log p(x) ≈
T∑
t=2

∥∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)∥∥2
, (4.14)

where:

• ϵθ is the model’s prediction of the noise component ϵ at timestep t.

• αt = 1− βt and ᾱt =
∏t

i=1 αi are accumulated noise schedules used in training.

4.4.4 Reverse Process Architecture

The diffusion model used in this thesis employs a time-conditional U-Net (Ho, 2020) [34] as

the backbone for the reverse process. This architecture consists of:

• A stack of residual layers and downsampling convolutions, followed by a stack of resid-

ual layers with upsampling convolutions. This structure helps to capture multi-scale

features.

47

• Skip connections that link layers with the same spatial dimensions to maintain infor-

mation throughout the network.

• A global attention layer with a single head that integrates timestep embeddings into

each residual block, allowing the model to effectively use temporal information.

The U-Net ensures that the input and output dimensions match, which is crucial for accurately

learning the noise prediction across the diffusion steps.

4.4.5 Concluding remarks

Diffusion models offer a compelling approach in generative modeling by focusing on learning

the data distribution p(x), i.e., understanding how data points are distributed in their space.

Unlike discriminative models that learn to classify or predict data, diffusion models aim to

capture the underlying data distribution itself, enabling them to generate high-quality sam-

ples from noise. Their success in tasks like image denoising and data synthesis highlights

their robustness and versatility, making them a powerful tool for various applications in data

processing.

48

Chapter 5

Workflow

This chapter presents the workflow followed in this research, detailing the key steps from

parameter tuning to final data migration. The workflow bridges the theoretical concepts and

the empirical results, providing a clear narrative of the methodologies employed.

.

• The process began by creating the initial dataset from synthetic velocity models and

tuning the parameters of Devito for forward modeling. Key configurations were estab-

lished, including maximum recording time, the use of a Ricker wavelet, finite difference

(FD) orders for temporal and spatial dimensions, and the specification of the absorb-

ing boundary thickness. These settings were chosen to optimize the forward modeling

process

• Subsequently A method was developed to extract the most energetic arrival time from

the solution of the wave equation. This step involved modeling wave propagation and

identifying, for every grid position, the moment in time of maximum energy, a crucial

aspect for subsequent stages of the research.

• With the method in place, an initial dataset was created. The dataset consisted of ve-

locity model segments, randomly selected from synthetic models, serving as the input

data. The corresponding traveltime maps, representing the times of maximum energy

arrival, were used as labels. This required replicating the maximum energy arrival time

extraction process thousands of times, requiring significant computational resources.

To handle this, parallelization techniques were employed, which greatly reduced the

49

computational burden.

• Attention then shifted to the tuning of the U-Net neural network. This involved ad-

justing several parameters, including the number of inputs, the type of loss function,

optimizers, learning rates, the number of filters, and the size of the dataset. It was found

that the network’s performance improved significantly when the input included both

the velocity model and the first-arrival travel time, the latter calculated using an Eikonal

equation solver script. This insight led to more accurate and reliable results from the

network.

• However, the initial dataset had a limitation. The ultimate goal was to migrate the

most energetic travel times predicted by the neural network on a complex system like

Marmousi. In complex velocity models like Marmousi, the most energetic travel time

maps can exhibit phenomena such as triplications (for a detailed explanation, refer to

paragraph 7.3), which were almost absent in the initial training dataset. To address

this issue, the dataset was augmented using Neural Style Transfer (NST; for further

details on the technique see chapter 4). In this process, the Marmousi model was used

as the style image, while the initial velocity models served as the content images. This

approach allowed the dataset to better reflect the complexities of real-world scenarios.

• To further understand the triplication phenomena, a sensitivity study was conducted.

Velocity models were gradually smoothed to observe the persistence of triplications.

This study provided valuable insights into the critical parameters that influence these

phenomena, helping to refine the models and improve the network’s predictive capa-

bilities.

• Despite these advancements, a challenge persisted. Although the network trained on

the modified NST dataset could predict where triplications should occur, the predictions

were low-resolution and appeared as smoothed versions of the originals. To address

this, ensemble learning was employed to combine multiple models in order to overcome

the challenge.

• An alternative to ensemble learning was proposed with the application of diffusion mod-

els, which were used to enhance the resolution of the U-Net’s outputs. These models

50

are in general effective in improving the resolution but at the cost of increased compu-

tational time.

• Parallel to these efforts, an algorithm for Kirchhoff migration was developed, with spe-

cific focus on tuning parameters such as migration aperture and depth. This step was

critical for the accurate migration of the data, ensuring that the final images were of

high quality and suitable for detailed analysis.

• Finally, the migration results were compared across different scenarios to evaluate the

effectiveness of the approaches used throughout the research. The scenarios included

the Marmousi model migrated using first-arrival travel times, the most energetic travel

times, the traveltimes obtained from the U-Net trained using the simplest dataset, trav-

eltimes obtained by the U-Net trained using the NST modified dataset, and the travel-

times calculated by the diffusion model. These comparisons revealed valuable insights

into the strengths and limitations of each approach, providing a clear understanding of

the most effective methodologies for the task at hand.

In conclusion, the workflow outlined in this chapter demonstrates the step-by-step approach

taken to address the research problem. Each step was crucial in refining the methods and

achieving the final results, which are discussed in detail in the subsequent chapters.

51

Chapter 6

Synthetic velocity models

The neural networks were trained on five synthetic 3D velocity models, which are openly

accessible to the public. These datasets encompass a range of geological scenarios, designed

to maximize the generalizability of the network’s potential applications. Fig.6.1 illustrates

slices of these five velocity models: (a) a velocity model with complex salt formations, (b) a

velocity model representing a carbonate platform, (c) a velocity model highlighting bending

geometries, (d) a velocity model with a salt structure, and (e) a velocity model featuring an

overthrust area. From these comprehensive velocity models, smaller 2D sections with a fixed

size of 4x4 km were randomly selected, smoothed, and subsequently employed in the training

process.

To test the trained neural networks, the Marmousi dataset (Versteeg, 1994) [39] was used as

the test dataset. The Marmousi velocity model was extended by appending 200 traces to both

its left and right sides. This extension was achieved by replicating the first and last traces

of the original model 200 times, respectively. The purpose of this extension was to ensure

accurate migration near the lateral boundaries of the velocity model.

As for the training models, the Marmousi model was systematically subdivided into a series

of smaller, overlapping velocity sub-models. In total, 1800 sub-models were extracted, each

measuring 4 km by 4 km. These sub-models were generated by extracting portions of the

original velocity model. The center of the first sub-model was positioned at 2 km along the x-

axis of the original model, resulting in its boundaries extending from 0 km to 4 km. Subsequent

sub-models were created by shifting the center of each new sub-model by 10 m (equivalent

to one column) to the right, relative to the previous sub-model. This incremental shifting

process was repeated until the entire model was fully covered by these overlapping 4x4 km

52

sub-models.

Fig.6.2 shows the Marmousi velocity model, with examples of 4x4 km sub-models extracted

from the larger model. The network was then tested on each of these velocity models by pre-

dicting the corresponding maximum energy traveltime map. The use of computed traveltime

maps enables the migration of seismic data obtained through Devito.

A visual representation of this subdivision process can be found in Fig.6.3, where the velocity

sub-models have been replaced with their respective most energetic traveltime maps.

Alongside the traveltime maps, the seismic traces were also calculated using Devito. In Fig.6.4,

it is illustrated that from each velocity sub-model, both the corresponding traveltime map and

shot gather were obtained.

A second training dataset was created using Neural Style Transfer (NST), which was intro-

duced in paragraph 4.2. This technique was employed to enhance the dataset because the

original set was not general enough to fully represent the complexity of the Marmousi model.

Here, velocity models from the original dataset were used as content images, while sections

of the Marmousi dataset were used as style images (Fig. 6.5). The result are new, more com-

plex velocity models. Specifically, 6,000 images representing velocity models were randomly

selected from the original dataset of 12,000 elements, which had been created from the syn-

thetic 3D velocity models. These images were used as content images and combined with style

images, all of which were derived from randomly selected sections of the Marmousi model.

In total, five style images were extracted from the Marmousi model, and each was flipped to

create a total of 10 style images, as shown in Fig. 6.6. To increase the influence of the style

over the content during the NST process, the style (denoted by β) was assigned a weight of

107, while the content loss (denoted by α) was set to 1

Due to the high computational cost, NST was applied to only half of the initial 12,000 content

images. To maintain the dataset size, data augmentation techniques such as flipping were

employed, resulting in a final dataset of 12,000 images. The velocity values in the output

images, which originally ranged from 0 to 1, were adjusted to match the velocity range present

in the style images.

53

Figure 6.1: Different examples of velocity model used in the training: (a) a velocity model

with complex salt formations, (b) a velocity model representing a carbonate platform, (c) a

velocity model highlighting bending geometries, (d) a velocity model in which a salt structure

is present and (e) a velocity model featuring an overthrust area.

54

Figure 6.2: Marmosui velocity model (top) and 4 smaller velocity models extracted from it

(bottom)

Figure 6.3: This image represents the Marmousi velocity model extended by 200 traces on both

the left and right sides. The first and last traces have been replicated. The traveltimes, with

dimensions of 4x4 km, were calculated at intervals of 10 meters.

55

Figure 6.4: In addition to calculating the traveltime map using Devito, the seismic traces were

also computed through the software.

Figure 6.5: Example of Neural Style Transfer (NST) application in art (first row) and in this

thesis (second row).

56

Figure 6.6: These matrices represent all the style images that were used to enhance the com-

plexity of the dataset. In total, 10 style images from the Marmousi dataset were utilized.

57

Chapter 7

Applications

As mentioned in Chapter 6, for this thesis five synthetic 3D velocity models have been used,

each representing distinct geological conditions. These models were used to train a neural

network, with the intention of enhancing its versatility and adaptability. From each velocity

model, 2000 two-dimensional models (samples), each covering an area of 4 km x 4 km, were

randomly extracted. Figure 7.1 illustrates the extraction process of these 2D samples and addi-

tionally highlights the considerable size of the velocity model containing the salt formations.

The larger size of this salt model, as seen in image a of 7.1 compared to the carbonate plat-

form model in image b of 7.1, allowed for the extraction of 4000 samples, in contrast to the

2000 samples extracted from the other models. In total, 12,000 samples were collected, on

which a Gaussian filter was used for smoothing. Fig.7.2 shows a representation of some of

these 12,000 models. A size of 4x4 km was chosen to match the depths typically encountered

during seismic data acquisition campaigns. These samples served as the initial inputs for the

neural network, which was tasked with predicting the respective traveltime maps for the most

energetic arrivals.

58

Figure 7.1: Examples of 4x4 km models extracted from the synthetic velocity models. The

black square represents a potential model of this area randomly extracted. Figure a represents

a velocity model with complex salt formations, while Figure b illustrates a velocity model

representing a carbonate platform. The size difference between these two velocity models is

evident, with the velocity model represented in a being significantly larger.

59

Figure 7.2: Displayed in this image is a set of 25 two-dimensional 4x4 km models, selected

from the 12,000 subsections extracted from the three-dimensional synthetic velocity models

introduced in the previous chapter.

7.1 Forward Modeling

As mentioned in chapter 2, a Python script was developed utilizing the Devito package to

simulate accurate wave propagation through each of the extracted subsections.

The following parameters were employed in the forward modeling:

• Source Type: 10 Hz Ricker wavelet (Fig.7.3).

• Source Position: Top center of the model, at a depth of 0 meters, and 2 km from the

lateral boundaries (Fig.7.4).

• Grid Spacing: 10 meters

• Receiver Spacing: 10 meters, positioned uniformly throughout the top of the model

(Fig.7.4).

• Boundary Conditions: Absorbing boundary layers to minimize reflections.

• Boundary Layers Thickness: 300 grid points.

60

• Recording Total Time t0 : 4000 ms.

• Time Step (∆t): Selected to satisfy the Courant-Friedrichs-Lewy (CFL) condition for

stability (see equation 2.19).

• Space Order: 2 (for finite difference discretization).

• Time Order: 2 (for finite difference discretization).

These parameters were selected to balance the computational efficiency with the accuracy

of the simulated wavefields. The grid spacing was calculated to satisfy the dispersion condi-

tion (see equation 2.19), ensuring that the wave propagation is accurately captured without

numerical artifacts. The time step was determined using Devito’s model.critical dt

function, which computes the largest (∆t) that satisfies the Courant-Friedrichs-Lewy (CFL)

stability condition (see equation 2.20). Notably, (∆t) varied from model to model, as it is de-

pendent on the maximum velocity present in each velocity model. In cases of real data, a

hypothetical maximum velocity would need to be assumed to ensure a correct time step, safe-

guarding against instability in the simulation. The space order and time order were both set to

2 to reduce computational costs while maintaining sufficient accuracy. Absorbing boundary

layers, 300 grid points thick, were applied on all sides to simulate an infinite domain and min-

imize reflections at the boundaries. A total recording time of 4000 ms was selected to ensure

that all relevant wave phenomena were captured, allowing for accurate reconstruction of the

most energetic traveltimes from the wavefield solution.

The following Python code illustrates the main setup used to perform the wave propagation

simulation:

• u = TimeFunction(name=”u”, grid=model.grid,

timeorder=2, spaceorder=2,

save=timerange.num)

This line of code defines aTimeFunction namedu on the computational gridmodel.grid,

that takes as input the velocity profile, grid shape, spacing, and boundary conditions.

This function represents the wavefield over both time and space. The parameterstime order=2

and space order=2 specify the accuracy of the finite difference scheme used for

time and spatial derivatives. The save=time range.num argument ensures that

the wavefield is stored at each time step throughout the simulation.

61

• pde = model.m * u.dt2 - u.laplace + model.damp * u.dt

This code formulates the 2D acoustic wave equation as a partial differential equation

(PDE). The term model.m * u.dt2 represents the second time derivative of the

wavefield, scaled point-wise by the squared inverse of the velocity model (model.m).

The u.laplace term calculates the Laplacian of the wavefield, representing the spa-

tial second derivatives. The model.damp * u.dt term includes a damping factor

to absorb outgoing waves and minimize reflections from the boundaries.

• stencil = Eq(u.forward, solve(pde, u.forward))

This line sets up the finite difference stencil, which calculates the wavefield at the next

time step (u.forward) by solving the PDE. The solve function automatically rear-

ranges the PDE to isolate the future wavefield.

• srcterm = src.inject(field=u.forward,

expr=src * dt**2 / model.m)

This line of code injects the source wavelet (src) into the subsurface at the source loca-

tion. The expression src * dt**2 / model.m scales the source term according

to the time step and velocity model to ensure proper amplitude and energy distribution

in the simulation.

• recterm = rec.interpolate(u)

Here, the code sets up the receiver interpolation, which records the wavefield at the

receiver locations (rec) as the simulation progresses (Fig.7.5).

• op = Operator([stencil] + srcterm + recterm,

subs=model.spacingmap)

op.apply(time=timerange.num-2, dt=dt)

These lines create and execute the finite difference Operator, which combines the

wave equation stencil, source injection, and receiver interpolation (Fig.7.6). The oper-

ator is applied over the entire simulation time (time=time range.num-2) using

the specified time step (dt=dt).

62

Figure 7.3: The figure shows two side-by-side plots. On the left is the time-domain waveform

of a 10 Hz Ricker wavelet, with time on the x-axis and amplitude on the y-axis. On the right is

the frequency spectrum of the same wavelet, with frequency (Hz) on the x-axis and amplitude

on the y-axis, highlighting a peak at 10 Hz.

Figure 7.4: This image shows an example of a velocity model. The yellow star indicates the

position of the source, while the red dots represent the locations of the receivers. The red dots

are spaced 10 meters apart in the actual setup, though in this illustration, the spacing appears

more relaxed for practical reasons.

63

Figure 7.5: This image displays the shot gather traces recorded by the receivers after solving

the wave equation over the same example velocity model (Fig.7.4). Each trace represents the

recorded wavefield at a particular receiver location over time.

Figure 7.6: The image depicts several time snapshots of wave propagation within the velocity

model in (Fig.7.4), with time intervals ranging from 250 ms to 2000 ms. At 750 ms, the re-

flected wave from the salt body located at the center of the model is prominently visible. This

reflection is indicative of the wave interacting with the contrast in the medium caused by the

presence of the salt.

64

7.2 Max amplitude traveltimes

In order to compute the max amplitude traveltimes, the finite difference wave equation was

solved using a specific time step, ∆t (see chapter 7.1), over a total simulation duration t0. The

solution includes a series of snapshots capturing the wave’s propagation, where amplitudes

are recorded at intervals of ∆t until the total time t0 is reached. The total number of snap-

shots, denoted as N , is equal to t0/∆t. The values of ∆t could oscillate between 1 ms and

2 ms, resulting in corresponding numbers of snapshots ranging from approximately 4000 to

approximately 2000. Each snapshot results in a matrix of size 400 × 400, with each element

spaced 10 meters apart, representing grid points in the model.

For each grid point, the time series of amplitude values was extracted, and the square of

these amplitudes was calculated to determine the energy at each point. From this series, the

maximum value was identified, and the corresponding index n was recorded. By multiplying

this index by ∆t, we obtained the time at which the most energetic wave arrival occurred at

that specific point in the velocity model. This process was repeated for every grid point in

the matrix, resulting in a traveltime map showing the time of the most energetic wave arrival

(Fig. 7.7). Fig. 7.8 displays on the left an example of different snapshots obtained by solving

the wave equation with a Finite Difference method at different times. In each snapshot, the

same point in the domain is considered, and by collecting the amplitudes at that point across

all times, a temporal signal is obtained, which can be seen at the bottom of the image. This

signal is then squared, and the index n corresponding to the maximum value represents the

most energetic arrival. Multiplying this index n by ∆t provides the arrival time of the most

energetic wave at that specific point. This procedure, applied to every point in the matrix,

results in the traveltime map of the most energetic arrival, which can be seen on the right of

the image.

This method for calculating the traveltime map of the most energetic arrivals was then applied

across all 12,000 velocity models, producing a total of 12,000 traveltime maps (Fig. 7.9). The

entire process took approximately 17 hours of machine time, around 5 seconds for each model.

For details on the specifications of the machine used for the calculations, see Appendix A. The

use of thick absorbing boundaries was critical for accurately calculating the travel times of the

most energetic arrivals. Fig. 7.10 shows a comparison of maximum arrival traveltime maps

generated using different boundary layer thicknesses. On the left, the boundaries are only

10 grid points thick, which leads to reflections within the model and visible artifacts, such as

65

spikes at 3500 ms. On the right, the boundaries are 300 grid points thick, and the map is free

of such artifacts, indicating more accurate traveltime results. This demonstrates the effect of

boundary layer thickness on the quality of the traveltime maps.

Figure 7.7: On the left an example of a velocity model, on the right its correspective maximum

arrival traveltime map

Figure 7.8: Example of how to obtain the maximum energy traveltime map by solving the

wave equation using the finite difference method

66

Figure 7.9: Displayed in this image is a sample of 25 maximum arrival traveltime maps calcu-

lated from (Fig.,7.2), selected from the 12,000 forming the labels of the dataset

Figure 7.10: Comparison of maximum arrival traveltime maps using different thicknesses for

boundary layers. On the left, boundaries are only 10 points thick, while on the right, bound-

aries are 300 points thick.

67

7.3 Sensibility velocity analysis

In geologically complex environments, it is common to observe the formation of regions

where the most energetic arrivals are significantly delayed compared to the surrounding areas.

These delayed arrival zones are a result of various wave propagation phenomena, which are

influenced by the complexity of the velocity model. This phenomena are commonly referred

to as triplications (Aki Richards, 1980) [16]. In this study, the phenomenon of triplications

was investigated further by analyzing the arrival times of the most energetic waves within

a velocity model. For each point in the model, the arrival time of the wave with the highest

energy was calculated.

To explore the behavior of these delayed arrival zones, progressive smoothing was applied

to the velocity model using Gaussian filters from the scipy.ndimage library, with sigma

values set to 3, 5, and 7. In Fig. 7.11, the velocity models are displayed in the left column, pro-

gressively smoothed from top to bottom. In the right column, the corresponding travel time

maps of the most energetic wave arrivals are shown. It is evident that, as the velocity models

become increasingly smoothed, the regions of delayed energy arrivals characterized by higher

arrival times compared to adjacent areas gradually diminish and eventually disappear.

This demonstrates the strong correlation between the complexity of the velocity model and

the presence of zones of triplication: as smoothing reduces the complexity of the model, these

zones also diminish.

68

Figure 7.11: The left column shows the progressively smoothed velocity models, while the

right column displays the corresponding travel time maps of the most energetic wave arrivals.

As the smoothing increases, the regions of delayed energy arrivals (triplications) gradually

diminish and disappear.

69

7.4 ComprehensiveDescription of ExperimentalMethods

The initial set of 12,000 samples, representing 12,000 different velocity models, was split ran-

domly into two datasets for training the U-Net network: the training dataset and the validation

dataset. Since the dataset was quite large, 90% of the models (10,800 models) were allocated

to the training dataset, while the remaining 10% (1,200 models) were used for the validation

dataset. The training dataset was used to optimize the model’s parameters, while the valida-

tion dataset was employed to monitor the model’s performance during training and to adjust

hyperparameters. For all tests conducted, the loss function utilized was always the L1 loss,

which is particularly advantageous for regression tasks due to its robustness (Hodge, 2004)

[40].

In this thesis, a predefined number of epochs was not set for training. Instead, an early stop-

ping mechanism based on the validation loss was utilized; if the validation loss did not improve

within 100 epochs, the training process was halted. This early stopping technique was em-

ployed to prevent the model from overfitting on the training dataset, which could otherwise

lead to progressively worse results on the validation dataset and, consequently, in general

performance. For testing purposes, and as the primary focus of this thesis, velocity models

derived from the Marmousi model were used in the testing set (see Chapter 6).

experiment 1: number of inputs

The first experiment aimed to assess whether U-Net would perform better with a different

number of inputs. In both cases, the label used for training was the same: the traveltime maps

of the most energetic arrivals. One network was trained using a single input, while a second

network was trained using two inputs. Namely, both NN were trained using the velocity

models as input, while only the second also relied on the first arrival travel time maps as

additional input (Fig. 7.12). The script for generating the fisrt arrival traveltime map from the

velocity model, based on the solution of the eikonal equation, was provided by Eni.

The decision to include the first arrival traveltime map as an additional input was motivated by

two key reasons: first, its quick and efficient computation, requiring only about 0.1 seconds

per velocity model, which adds minimal computational overhead, in contrast, solving the

wave equation and extracting traveltime maps for the most energetic arrivals typically takes

about 5 seconds per model; and second, the overall similarity between first arrival and most

energetic traveltimes. This similarity suggests that incorporating the traveltime map could

70

provide a head start in the training process.

The tests were conducted using two distinct configurations. In the first configuration, both

the training and validation sets consisted solely of velocity models, with a training set of

10,000 samples and a validation set of 1,000 samples drawn randomly respectively from the

initial 10,800 and 1200 datasets. In the second configuration, the training set also consisted of

10,000 samples and the validation set of 1,000 samples, but this time, the input matrices had

dimensions 400x400x2. Here, the first channel contained the velocity model, while the second

channel contained the traveltime map of first arrivals.

These dual-input matrices were provided to the network using a technique analogous to how

RGB images are typically processed, with the difference being that instead of three channels,

as in RGB images, the network was fed with two channels. The experimental results demon-

strated that the network trained with the dual-input dataset exhibited significantly better

performance. This outcome aligns with the intuition that providing additional, relevant in-

formation to the network should enhance its performance. Fig. 7.13 depicts the validation

losses of the U-Net network trained using two different input configurations. The blue line

corresponds to the network trained with only the velocity model as input, while the orange

line represents the network trained with two inputs: the velocity model and the first-arrival

traveltime. It is evident that the loss of the network trained with two inputs is significantly

lower than that of the network trained with only the velocity model. Fig. 7.14 shows on the

left, the performance of the U-Net network on the central part of Marmousi model is evalu-

ated using Root Mean Square Error (RMSE) as the metric, while on the right, Mean Absolute

Error (MAE) is used. The red line is the U-Net with 2 inputs while the blue one the network

using only one input. It is evident that the U-Net network trained with two inputs instead of

one shows a significant improvement in performance.

Given the superior performance observed with two inputs, subsequent efforts focused on fine-

tuning the network by optimizing several parameters. The parameters adjusted in this study

included the learning rate, the size of the dataset, and the progressive number of filters within

the U-Net architecture.

71

Figure 7.12: The first two matrices on the left represent the inputs: the velocity model and the

first-arrival traveltime map, respectively. The image on the right represents the label, which

is the traveltime map of the most energetic arrivals.

Figure 7.13: The image shows the validation losses of the U-Net network for two input config-

urations: the blue line represents the network trained with only the velocity model, while the

orange line indicates the network trained with both the velocity model and the first-arrival

traveltime.

72

Figure 7.14: Performance evaluation of the U-Net network on the central part of the Marmousi

model. The left side uses RMSE (Root Mean Square Error) as the metric, while the right side

uses MAE (Mean Absolute Error). The red line represents the U-Net with two inputs, and the

blue line represents the network with a single input.

experiment 2: learning rate

In this experiment, different learning rates were tested: 0.1, 0.01, 0.001, and 0.0001. The learn-

ing rate of 0.1 proved to be the most unstable, exhibiting numerous spikes. Similar results

could be achieved with either 0.01, 0.001 or 0.0001. The value 0.01 was chosen at the end since

it reached similar results to the others in fewer epochs. The graph showing the various loss

curves for different learning rates can be seen in (Fig. 7.15)

Figure 7.15: The image illustrates various validation losses calculated using different learning

rates.

73

experiment 3: optimizers

For this analysis, different optimizers were compared: RMSprop, AdamW, and Adam. RM-

Sprop was ultimately chosen due to its lower validation loss values, although AdamW exhib-

ited a more stable learning curve. The graph showing the various loss curves for different

optimizers can be seen in (Fig. 7.16).

Figure 7.16: The graph shows the validation losses of the U-Net network calculated using three

different optimizers: RMSprop, AdamW, and Adam.

experiment 4: number of filters

Different filter configurations within the U-Net were evaluated to determine their impact on

performance. The first configuration used filters of [64, 128, 256, 512, 1024], while the second

utilized filters of [256, 512, 1024, 2048, 4096]. Although the second U-Net required greater

computational effort due to its increased number of parameters, it did not lead to a significant

reduction in loss. Therefore, the lighter version with filters [64, 128, 256, 512, 1024] was pre-

ferred for its efficiency and comparable results. The graph illustrating the various validation

losses for these configurations can be seen in (Fig. 7.17)

74

Figure 7.17: The image shows various validation losses calculated using different filter config-

urations within the U-Net.

experiment 5: the size of the dataset

The effect of training dataset size on model performance was evaluated by comparing two

training dataset sizes: 2500 and 10000. Fig. 7.18 indicates that increasing the number of sam-

ples in the training set leads to a decrease in validation loss. Although the larger dataset

requires a linear increase in training time, the decision was made to utilize 10000 samples due

to the substantially lower loss achieved, which is significantly better than that obtained with

the smaller dataset.

75

Figure 7.18: The image shows the validation losses of the Unet trained with a dataset composed

of 2500 models and 10000 models

experiment 6: NST augmentation

The effects of NST augmentation were evaluated based on the hypothesis that creating a more

complex training dataset would better represent the complexities of the Marmousi model. To

address this, velocity models from the original dataset were used as content images, while

sections of the Marmousi dataset served as style images (see chapters 4 and 6).

The computational time for creating a more complex dataset using NST was approximately 25

seconds per image, leading to a total processing time of nearly 42 hours for the 6,000 images.

For details on the specifications of the machine used for these calculations, please refer to

Appendix A.

The results indicated that the complexity of the travel time patterns in the NST-enhanced

dataset was more aligned with those expected in the test dataset, particularly in the central

region of the Marmousi model.

In Fig.7.19 the enhancement achieved through NST is illustrated. The top left shows a sim-

ple velocity model, along with its corresponding more energetic traveltime map, which lacks

the complexity necessary to capture triplications. In contrast, the bottom left presents the

NST-enhanced model, which reveals more pronounced areas of triplication in the traveltime

map displayed on the right. This improved alignment with the test dataset led to a significant

improvement in the model’s performance, as shown in Fig.7.20 and Fig.7.21. The compari-

76

son in Fig.7.20 clearly demonstrates that the network trained with the NST-enhanced dataset

achieved an average reduction in MAE by 10 ms in the central region of the Marmousi model,

represented by the blue line, compared to the network trained without NST (red line).

Fig.7.21 presents further performance comparisons on segments of the Marmousi dataset be-

tween the U-Net trained with the base dataset and the U-Net trained with the dataset enhanced

through NST. The velocity models are displayed on the left. Each example, labeled as a and b,

represents a different velocity model. In the first row of each example, the images are arranged

from left to right as follows: the more energetic traveltime map produced by the U-Net trained

with the NST-enhanced dataset, the corresponding ground truth traveltime map (the label),

and the absolute difference between the two. The second row of each example showcases the

U-Net trained on the non-NST dataset, with the leftmost image displaying the traveltime cal-

culated by this U-Net, the middle image presenting the label and the rightmost image depicts

the absolute difference between the output from the non-NST U-Net. It is evident that the

U-Net trained with the less complex dataset fails to predict triplications, whereas the U-Net

trained with the NST-enhanced dataset successfully captures these features, albeit with lower

resolution compared to the label.

These findings suggest that applying NST selectively to augment the training dataset can

effectively increase its complexity, thereby improving the model’s ability to handle complex

scenarios.

77

Figure 7.19: Example of velocity model enhancement. At the top left is a simple velocity

model, with its corresponding more energetic traveltime map to its right. At the bottom left is

the enhanced model obtained through NST, with its corresponding more energetic traveltime

map to its right

Figure 7.20: Comparison of MAE and RMSE errors in the central region of the Marmousi

between the network trained with the NST-enhanced dataset and the one trained without

NST. with the RMSE plot on the left and the MAE plot on the right.

78

Figure 7.21: Comparison of performance on Marmousi segments between the U-Net trained

with the base dataset and the U-Net trained with the dataset enhanced through NST. The

velocity models are displayed on the left. Each example, labeled as a and b, represents a

different velocity model. In the first row of each example, the images are arranged from left to

right as follows: the more energetic traveltime map produced by the U-Net trained with the

NST-enhanced dataset, the corresponding ground truth traveltime map (the label), and the

absolute difference between the two. The second row of each example showcases the U-Net

trained on the non-NST dataset, with the leftmost image displaying the traveltime calculated

by this U-Net, the middle image presenting the label and the rightmost image depicts the

absolute difference between the output from the non-NST U-Net.

experiment 7: AUnet, ResAUnet and Ensemble

The performance of the U-Net architecture can be considered highly satisfactory in regions

where geological complexity is not predominant. However, in areas with high complexity,

the U-Net tends to predict the background traveltime data quite accurately but struggles to

79

achieve precise predictions in regions affected by triplication phenomena, resulting in low-

resolution images.

Fig. 7.22 illustrates this behaviour by displaying five different velocity models in the first col-

umn. The second column shows the first arrival traveltimes used as the second input to the

network. In the third column, the network’s output is presented, while the fourth column

provides the ground truth labels. Finally, the fifth column highlights the absolute difference

between the output and the label. As can be readily observed, the network performs well in

less complex environments, but it exhibits a lack of resolution in areas of triplication within

more complex settings.

An attempt was to enhance performance in complex areas by increasing the complexity of

the CNN architecture. This was achieved by incorporating Attention Gates to better focus

on the edges of the triplication zones. These modifications led to the development of the

AUnet architecture. Additionally, residual blocks were added with the expectation that a

more intricate network would improve results. These modifications led to the development of

the ResAUnet architecture.

The U-Net architecture used had 31 million parameters, while the Attention U-Net (AUnet)

had 31 million and 400 thousand parameters, indicating that the addition of Attention Gates

introduces a relatively minor increase in complexity. On the other hand, the ResAUnet, which

integrates both residual blocks and Attention Gates, had a total of 32 million and 800 thou-

sand parameters. This significant increase in the number of parameters reflects the added

complexity of the network.

The hyperparameters used were those obtained from tuning the original U-Net architecture,

based on the experiments introduced before: a learning rate of 0.01, a dataset of 10,000 images,

the RMSprop optimizer, and filter sizes [64, 128, 256, 512, 1024]. With these parameters and a

training batch size of 20, the U-Net network required approximately 1.02 minutes to complete

an epoch. This training time was practically identical to that of the AUNet 1.09 minutes and

slightly less than that of the ResAUnet 1.20 minutes.

Given the varying characteristics of each architecture, it was hypothesized that combining the

outputs of the U-Net, AUnet, and ResAUnet using ensemble techniques could yield improved

results. This approach aimed to leverage the specialized capabilities of each model to enhance

overall predictions in both simple and complex geological environments.

To implement this strategy, the results from these three neural networks were combined using

80

ensemble techniques. In this specific case, the weights for the ensemble network were deter-

mined through an iterative process, where numerous combinations of weights were tested,

and the resulting loss was calculated for each. The combination that minimized the loss on

the validation dataset was selected (see chapter 4.3). The final weights were [0.3580, 0.3626,

0.2809], applied respectively to the U-Net, AUNet, and ResAUnet, with the expectation that

this approach would enhance the final predictions.

However, during the training process, it became apparent that the results from the three net-

works were highly comparable in this regression task, with no significant differences ob-

served. Fig. 7.23 present plots of RMSE (Root Mean Squared Error) and MAE (Mean Absolute

Error) for the 4x4 km models from the central region of the Marmousi dataset. Clearly, the

performance of the U-Net, Attention U-Net, and ResAUnet networks with two inputs is very

similar. Furthermore, the application of the ensemble technique did not yield any notable im-

provement in performance. For example, the error plots of the networks on the test dataset

clearly show that all models exhibit the maximum error at the same index. In Fig. 7.24 ex-

amples of travel times maps computed using the aforementioned network architectures and

derived from the same velocity model are presented. Row (a) corresponds to U-Net, row (b) to

Attention U-Net, row (c) to ResAUnet, and row (d) to the ensemble output. The first column

represents the outputs of the networks, the second shows the labels, and the third illustrates

the absolute differences between the network outputs and the labels. As shown, the results

tend to be very similar across all models and exhibit a lack of resolution necessary for accu-

rately representing areas with triplication phenomena..

81

Figure 7.22: Behaviour of U-Net in different geological scenarios. In the first column 5 different

velocity models are presented. The second column shows the first arrival traveltimes used as

the second input to the network. In the third column, the network’s output is presented, while

the fourth column provides the ground truth labels. Finally, the fifth column highlights the

absolute difference between the output and the label.

Figure 7.23: Plots of RMSE (Root Mean Squared Error) and MAE (Mean Absolute Error) are

presented for 4x4 km models from the central region of the Marmousi dataset, with the RMSE

plot on the left and the MAE plot on the right

82

Figure 7.24: Examples of travel time maps computed using different networks. Row (a) corre-

sponds to U-Net, row (b) to Attention U-Net, row (c) to ResAUnet, and row (d) to the ensemble

output. The first column represents the outputs of the networks, the second shows the labels,

and the third illustrates the absolute differences between the network outputs and the labels.

Although different networks were used and ensemble techniques were tested, the outputs

tend to be very similar.

83

experiment 8: Diffusion model

The problem with the U-Net model appears to be its difficulty in accurately defining the bound-

aries of triplication areas. Adjusting the hyperparameters, increasing the complexity of the

architecture did not result in sensible improvement, nor did combining various architectures

through ensembling methods. To address this issue, generative models, specifically Diffusion

Probabilistic Models, were employed. These models were designed to enhance the resolution

of the U-Net output. The architecture of the network was adapted, with minor modifications,

from Durall, 2020 [38], who utilized diffusion models to apply demultiple to data, converting

multiple-infested seismic data into multiple-free data. The forward process involves a series of

operations that add noise to the image, while the reverse process entails denoising the image

to recover the original clean version.

In this thesis, the reverse process begins with an image composed entirely of noise and the

most energetic traveltime map calculated using the U-Net trained on the NST-enhanced dataset.

The diffusion model first processes this completely noisy image along with the U-Net output.

Through this process, the model gradually reduces the noise, progressively revealing an image

that, over several iterations, approaches a resolution very similar to that of the original label

image.

This refined image is then fed back into the model, along with the U-Net output, allowing

the network to enhance the image further. This procedure is repeated for a fixed number

of iterations. As a result, the final output exhibits reduced noise and improved resolution,

making it more comparable to the label image than the initial U-Net output.

In all experiments, the diffusion model was trained for 450,000 iterations with a batch size of

5. The weighting parameter β (see Chapter 4) was set to increase linearly at each step during

the diffusion process, and a depth of 2000 timesteps was used for both the forward process

and the reverse denoising process.

The results are presented in Fig. 7.25, which compares the U-Net and Diffusion Model on test

data from the central region of the Marmousi dataset. The Diffusion Model clearly outper-

forms the U-Net, particularly in regions with potential wave triplications, and it significantly

reduces the peak error seen around index 160 in the U-Net’s output. Fig. 7.26 and Fig. 7.27

provide further detailed comparisons. In Fig. 7.26, the first row shows the U-Net’s output (a),

the corresponding label (b), and the absolute difference between them (c). The second row dis-

plays the Diffusion Model’s output (d), the label (e), and their absolute difference (f). Fig. 7.27

84

follows the same structure, with the first row showing the U-Net’s results and the second row

showing the Diffusion Model’s results, along with the corresponding labels and differences.

Overall, the results are highly satisfactory, demonstrating a notable improvement in image

quality and sharper edges in regions of triplication using the Diffusion Model. However, a

drawback of this method is the high computational time required for generating a single im-

age, approximately 160 seconds, which is four orders of magnitude greater than the prediction

generation time of the U-Net.

Figure 7.25: Comparison of the results between the U-Net and Diffusion Model on test data

from the central region of the Marmousi dataset, , with the RMSE plot on the left and the MAE

plot on the right

85

Figure 7.26: Visual comparison of Unet and Diffusion model outputs compared to their cor-

rispective labels. The first row shows the U-Net’s output (a), the corresponding label (b), and

the absolute difference between them (c). The second row displays the Diffusion Model’s out-

put (d), the label (e), and their absolute difference (f).

Figure 7.27: Another visual comparison of Unet and Diffusion model outputs compared to

their corrispective labels. The first row shows the U-Net’s output (a), the corresponding label

(b), and the absolute difference between them (c). The second row displays the Diffusion

Model’s output (d), the label (e), and their absolute difference (f).

86

7.5 Kirchhoff migration

In this study, synthetic data in the form of shot gathers were generated by solving the wave

equation using the finite difference method with Devito, applied to each sub-model derived

from the Marmousi velocity model (see chapter 6). These shot gathers were then multiplied

in the frequency domain by the filter
√
i2πf . Fig.7.30 shows an unfiltered shot gather from

the Marmousi model on the left and its corresponding filtered version on the right. In the

image below a comparison of the spectra of the filtered and unfiltered traces is presented.

Before migrating the data, it was essential to convert the synthetic data from the shot gather

domain to the common offset domain. In this thesis, the focus was on migrating traces with

an offset of 0 m. This was accomplished by extracting the trace corresponding to the source

position from each shot gather. Fig.7.31 illustrates this process: the left side shows the shot

gather domain, while the right side displays the common offset domain, using data from the

Marmousi model.

By calculating the most energetic traveltime maps from all the velocity sub-models extracted

from the Marmousi velocity model (see chapter 6), the traveltime table was constructed. Each

column of this table represents the traveltime map calculated at the corresponding position,

organized in a columnized format. Fig.6.4 compares the Marmousi traveltime table calculated

with first arrivals on the left and the table calculated with the most energetic arrivals on

the right. It is evident that the traveltimes in the most energetic arrivals table are generally

overestimated.

Creating the two-way traveltime table was straightforward. Since this thesis works with a

common offset of 0 m, the one-way traveltime tables for the source and receiver are identical,

making the two-way traveltime table simply the one-way table with doubled values. Fig.7.29

illustrates the formation of the two-way traveltime table.

To achieve optimal results from the migration algorithm described in Section 3.3, parameters

such as migration aperture and the depth at which the maximum migration aperture is reached

must be carefully tuned. Fig.7.32 presents the Marmousi velocity model on the left, while the

right side showcases various migration results characterized by the same migration aperture

but different depths at which the maximum migtation aperture is reached. Images (a), (b),

(c), and (d) correspond to depths of 1 km, 2 km, 3 km, and 4 km, respectively, with the best

resolution observed in image (a).

In Fig.7.33, the depth is fixed at 1 km while varying the migration aperture: image (a) shows

87

an aperture of 1 km, image (b) an aperture of 2 km, and so on, with the selected migration

aperture set to 3 km. Fig.7.34 illustrates the chosen migration parameters on the left, where

the maximum migration aperture of 3 km is achieved at a depth of 1 km. A cosine taper

function is applied at the edges, affecting the outermost 20% of the aperture. The right side

presents the impulse response of the trace migrated using these illustrated parameters.

Once the optimal migration parameters were determined, migration was performed. The top

image of Fig.7.35 represents the Marmousi velocity model, while the bottom image displays

the resulting migration from zero-offset data and the two-way traveltime table derived from

the most energetic traveltime maps calculated using Devito. The parameters used for the

migration are those discussed previously. Notably, the migrated image shows no artifacts at

the lateral edges, as areas where traces were replicated during the extension of the model (see

chapter 6) have been excluded from the final migration results. The black boxes identify the

central region of the Marmousi model, representing the geologically most complex part of the

area. Fig.7.36 represents a close-up of the previous figure. At the top is the velocity model

taken from the central part of the Marmousi model, and below is the migrated model, with a

maximum migration aperture of 3 km and a depth at which it is reached of 1 km.

Figure 7.28: On the left is the traveltime table of the first arrivals, while on the right is the

traveltime table of the most energetic arrivals.

88

Figure 7.29: An example of the formation of the two-way traveltime table, which enables the

migration of seismic traces. It is obtained by summing the traveltime table of the source and

the traveltime table of the receivers.

Figure 7.30: On the left unfiltered shot gather, on the right filtered one and below a comparison

of their respective spectra.

89

Figure 7.31: Transition from the shot gather domain to the common offset domain, a process

carried out using a sorting algorithm

Figure 7.32: These images represent the tuning of the depth at which the maximum migration

aperture is reached. The maximum migration aperture was kept constant.

90

Figure 7.33: These images represent the tuning of the maximum migration aperture on the

central part of Marmousi velocity model. The depth at which the maximum migration aperture

was reached was kept constant.

Figure 7.34: The image on the left depicts the migration parameters. On the right, the impulse

response of the trace is presented, migrated using the migration parameters illustrated on the

left.

91

Figure 7.35: The image at the top represents the Marmousi velocity model, while the image

at the bottom displays the resulting migration. The parameters used for the migration are the

ones discussed above. The black boxes identify the central region of the Marmousi model,

representing the geologically most complex part of the area.

92

Figure 7.36: Close-up of the previous figure. At the top is the velocity model taken from the

central part of the Marmousi model, and below is the migrated model.

93

7.6 Final results

To align with the objectives of this thesis, Figure 7.43 is used to reiterate that migration is

more accurate with the traveltime of the most energetic arrivals (subfigure c), which serves as

the benchmark in this study. This benchmark is computed from the most energetic traveltimes

calculated using the Devito software. in comparison to the migration performed with first-

arrival traveltime (subfigure b). As discussed in the introduction and in chapter 3, using first-

arrival traveltime can lead to inaccuracies in areas with high geological complexity. This

is evident in the red-circled areas of the model, located in its most internal section, which

is characterized by faults and tilted strata. In these regions, the image migrated with first-

arrival traveltime fails to provide a sufficiently accurate image, whereas the image using the

most energetic arrivals yields a much clearer result. It is important to note that the most

energetic traveltime represents the best approximation when considering the use of a single

traveltime for the entire wavefield.

In figure Fig.7.38, three traveltime tables are plotted: from left to right, the first was created

using traveltime maps obtained from Devito based on the Marmousi velocity model (bench-

mark); the second was derived from the same Marmousi model but calculated using a U-Net

network; and the third was generated using the diffusion model. As observed, the traveltime

table from the diffusion model closely matches the reference table calculated with Devito. The

table in Fig.7.39 presents the time required for different models to compute the most energetic

arrival traveltime maps from their respective inputs. For the Devito model, this computation

is made directly from the velocity model to the energetic arrival traveltime map, taking 5 sec-

onds. In contrast, for both the trained U-Net and the trained diffusion model, the computation

involves generating the most energetic arrival traveltime map from both the velocity model

and the first arrival traveltime map. The U-Net network, completes this process approximately

102 times faster than Devito. The diffusion model, however, is significantly slower due to its

2000 iterations within the time U-Net framework, requiring about 30 times more time than

the Devito model.

The final figure (Fig.7.40) presents a comparison of the migration results using the traveltimes

obtained from Devito, those obtained through the U-Net, and those from the diffusion model

derived from the U-Net outputs. The U-Net tends to yield results that are nearly identical to

the label (Figure a of Fig.7.40), where geological complexity is lower, but it struggles more in

the central part, achieving only a moderate level of accuracy. Conversely, the diffusion model

94

achieves excellent results even in the central part (Figure b of Fig.7.40). The areas of significant

importance for the comparision are marked in red.

In conclusion, it is evident that the diffusion model outperforms the other methods. However,

it is crucial to stress that generating each traveltime map for constructing the traveltime table

used in the diffusion model required significantly more time than that required by the U-Net.

95

Figure 7.37: Comparison: a) velocity model, b) Kirchhoff migrated area using first arrival

traveltimes, c) Kirchhoff migrated area using max energetic arrival traveltimes

96

Figure 7.38: On the left traveltime table calculated using the max amplitude traveltime maps

calculated with Devito, in the center traveltime table calculated using max amplitude travel-

time maps predicted with U-Net, on the right traveltime table calculated using max amplitude

traveltime maps predicted with diffusion model

Figure 7.39: The table above presents the time required for different models to transition from

their respective inputs to the most energetic arrival traveltime maps.

97

Figure 7.40: Comparison: a) Kirchhoff migrated area using max energetic arrival traveltimes,

b) Kirchhoff migrated area using max energetic arrival traveltimes calculated using U-Net,

c) Kirchhoff migrated area using max energetic arrival traveltimes calculated using Diffusion

model

98

Chapter 8

Discussion and Conclusions

In recent years, with the widespread adoption of Full Waveform Inversion (FWI) for build-

ing high-resolution velocity models, Kirchhoff migration using the most energetic arrivals

has regained interest as a quality control tool for FWI, offering the advantage over first ar-

rival Kirchhoff migration of generating accurate migrated images even in complex geological

settings. Within this line of research this thesis represents a novel contribution to the field,

addressing a gap in the existing literature. By applying advanced techniques from other do-

mains, such as machine learning and deep learning, to concepts that were initially proposed

decades ago, this work explores the potential of using traveltimes of the most energetic ar-

rivals for Kirchhoff migration, as opposed to the more commonly used first arrivals. This thesis

aims to apply this technique while minimizing the computational cost of calculating the most

energetic arrivals through the integration of U-Net architectures and diffusion models.

To provide a structured overview of the research, the thesis can be divided into three main

steps:

• Wave Equation Solution and Traveltime Extraction: The first step involved solv-

ing the 2D acoustic wave equation and extracting the traveltimes of the most energetic

arrivals based on velocity models, which was essential for dataset creation. This was

achieved through the development of a custom code that employs the finite difference

method to solve the wave equation. Particular attention was given to reducing compu-

tational time by optimizing the grid spacing, time step (∆t), and the size of absorbing

boundaries. These parameters were carefully balanced to avoid issues such as disper-

sion and instability, ensuring that the results were both accurate and computationally

efficient.

99

• Architecture Selection, Training, and Hyperparameter Tuning: The second area

focused on selecting the appropriate machine learning architecture and optimizing its

performance. The U-Net architecture was trained, and ensembling techniques, such as

AUnet and ResAUnet, were explored to enhance the robustness of the models. A key

innovation that emerged during the course of this research was the decision to pro-

vide the U-Net with two inputs, the velocity model and the first arrivals, instead of

just one. This approach, which evolved as the work progressed, provided a substan-

tial boost to the model’s performance. Subsequently, the dataset was further enhanced

using Neural Style Transfer (NST) techniques, which contributed to better model gen-

eralization. Hyperparameter tuning also played a crucial role in refining the network’s

effectiveness, highlighting the importance of careful parameter optimization in machine

learning workflows.

• Migration Algorithm Development: Finally, the third area involved writing the mi-

gration algorithm itself, where careful tuning of migration parameters was crucial for

achieving the desired results.

This thesis should be regarded as a precursor in this area, demonstrating the feasibility of

integrating machine learning techniques to expedite the migration process while simultane-

ously improving accuracy compared to traditional methods that rely solely on first arrival

traveltimes.

The final results are promising, indicating the validity of the proposed approach. The key

findings can be summarized as follows:

• Increasing the number of samples in the training dataset has led to improved network

performance.

• The application of data augmentation techniques such as NST, which introduced

greater complexity to the training dataset, proved to be a winning strategy.

• The U-Net model is capable of delivering excellent results in geologically simple sce-

narios.

• The exploration of various U-Net variants and ensembling techniques did not yield

any significant changes in performance.

100

• In more complex geological scenarios, the U-Net model struggles, requiring the sup-

port of a diffusion model to achieve satisfactory results, albeit at the cost of increased

computational time.

• There is room for improvement, particularly in reducing the time required for the

diffusion models to compute the most energetic traveltimes.This could be achieved, for

example, by reducing the steps in the forward and reverse processes or by simplifying

the temporal U-Net architecture used within the diffusion model.

• It would also be interesting to apply the developed methods to real-world data to

further validate and refine the approach.

In conclusion, while the primary objective of reducing computational time has been partially

achieved, thanks to the U-Net’s rapid processing capabilities, the challenge of maintaining

high resolution in geologically complex areas remains significant. The application of diffusion

models in this field, although promising, requires further investigation and refinement. These

architectures are highly dynamic, and their potential in geophysical applications is still largely

unexplored. Continued research and development in this area could unlock new possibilities,

ultimately leading to more efficient and accurate solutions in seismic imaging.

101

Appendix A

Computational resources

All computations for this thesis were carried out on the Galileo100 cluster, which is co-funded

by the European ICEI (Interactive Computing e-Infrastructure) project and engineered by

DELL. Access to this high-performance computing environment was provided through the

Eni bastion host known as Cometa.

The computing nodes in the cluster are equipped with Intel Xeon Platinum 8260 CPUs, each

node having 48 CPUs and 2 GPUs. The Intel Xeon Platinum 8260 CPUs are capable of oper-

ating at a base clock speed of 2.40 GHz, with a maximum clock speed of 3.90 GHz. The GPUs

installed are NVIDIA Tesla V100 models, which offer 32 GB of memory per GPU.

The computational tasks were managed using Spyder IDE with Python version 3.11.8. To

enhance performance, the solution of the wave equation for velocity models was efficiently

parallelized. This was achieved by utilizing multiple shell scripts; specifically, 20 shell files

were executed in parallel, each initiating 20 separate processes that solved the wave equation

simultaneously. This setup allowed for the concurrent use of multiple CPU cores.

For accelerating neural network training, CUDA was employed to leverage the GPU capabili-

ties. This approach significantly improved the speed of computations by utilizing the parallel

processing power of the NVIDIA Tesla V100 GPUs.

102

Bibliography

[1] D. Nichols. Maximum energy traveltimes calculated in the seismic frequency band. Stan-

ford Exploration Project, 80:1–18, 2001.

[2] Y. Pu, G. Liu, D. Wang, H. Huang, and P. Wang. Wave-equation traveltime and ampli-

tude for kirchhoff migration. First International Meeting for Applied Geoscience Energy,

1:2684–2687, 2021.

[3] Y. Wang, Y. He, A. Yeh, F. Liu, B. Wang, and C. Calderón. Improve kirchhoff depth

imaging using full wave equation traveltimes. Third International Meeting for Applied

Geoscience Energy, 1:1598–1601, 2023.

[4] J. Jin and J. Etgen. Evaluating kirchhoff migration using wave-equation generated max-

imum amplitude traveltimes. SEG International Exposition and 90th Annual Meeting,

90:2968–2971, 2020.

[5] H. Jin, V. Bashkardin, P. Jilek, C. Kumar, H. Liu, J. Etgen, M. Vyas, and G. Xia. Wave

equation traveltime kirchhoff with real data applications. Third International Meeting for

Applied Geoscience Energy, 3:1638–1641, 2023.

[6] A. Pierce. Acoustics – an introduction to its physical principles and applications. Acous-

tical Society of America, 1991.

[7] Lehtinen J. Time-domain numerical solution of the wave equation. 2003.

[8] E. Kieri. Numerical methods for wave propagation. Uppsala University, 2016.

[9] R. M. Alford, K. R. Kelly, and D.M. Boore. Accuracy of finite difference modeling of the

acoustic wave equation. Geophysics, 39:834–842, 1974.

[10] L. Lines, R. Slawinski, and R. Bonding. A recipe for stability of finite-difference wave-

equation computations. Geophysics, 64:967–969, 1999.

103

[11] R. Clayton and B. Engquist. Seismic ray theory. Cambridge University Press, 2001.

[12] J.-P. Bèrenger. A perfectly matched layer for the absorption of electromagnetic waves.

J. Comput. Phys., vol. 114,, pages 185–200, 1994.

[13] M. Louboutin, M. Lange, F. Luporini, N. Kukreja, P. A. Witte, F. J. Herrmann, P. Velesko,

and G. J. Gorman. Devito: an embedded domain-specific language for finite differences

and geophysical exploration. Devito introduction, 2018.

[14] W. Schneider. Developments in seismic data processing and analysis (1968-1970). Geo-

physics, 36:1043–1073, 1971.

[15] J. Zhu and L. Lines. Comparison of kirchhoff and reverse-time migration methods with

applications to prestack depth imaging of complex structures. Geophysics, 63:1166–1176,

1998.

[16] K. Aki and P. Richards. Quantitative seismology, theory and methods. Quantitative

Seismology, Theory and Methods, 1980.

[17] V. Cerveny. Absorbing boundary conditions for acoustic and elastic wave equations.

Bulletin of The Seismological Society of America, 1977.

[18] N. Bleistein, J. Cohen, and F. Hagin. Two and one-half dimensional born inversion with

an arbitrary reference. Geophysics, 57:26–36, 1987.

[19] F. Audebert, D. Nichols, T. Rekdal, B. Biondi, D. Lumley, and H. Urdaneta. Imaging

complex geologic structure with single-arrival kirchhoff prestack depth migration. Geo-

physics, 62:1533–1543, 1997.

[20] B. Nguyen and G. McMechan. Excitation amplitude imaging condition for prestack

reverse-time migration. Geophysics, 78:37–46, 2013.

[21] A. Ehinger, P. Lailly, and K. Marfur. Green’s function implementation of common-offset

wave equation migration. Geophysics, 61:1813–1821, 1996.

[22] J. Etgen. 3d wave equation kirchhoff migration: 82nd annual international meeting. SEG,

Expanded Abstracts, 2012.

104

[23] P. Andrade, R. Pestana, and A. dos Santos. Kirchhoff depth migration using maximum

amplitude traveltimes computed by the chebyshev polynomial recursion. 14th Interna-

tional Congress of the Brazilian Geophysical Society and EXPOGEF, Expanded Abstracts,

pages 1109–1113, 2015.

[24] N. Bleistein, J. Cohen, and J. Stockwell. Mathematics of multidimensional seismic inver-

sion. Springer, 1998.

[25] Y. Zhang, S. Gray, and J. Young. Exact and approximate weights for kirchhoff migration.

SEG 2000, Expanded Abstracts, 2000.

[26] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical

image segmentation. arXiv, 2015.

[27] O. Oktay, J. Schlemper, L. Le Folgoc, M. Heinrich M. Lee, K. Misawa, K. Mori, S. McDon-

agh, N. Y. Hammerla, B. Kainz, B. Glocker, and D. Rueckert. Attention u-net: Learning

where to look for the pancreas. arXiv, 2018.

[28] Z. Ni, G. Bian, X. Zhou, Z. Hou, X. Xie, C. Wang, Y. Zhou, R. Li, and Z. Li. Raunet: Residual

attention u-net for semantic segmentation of cataract surgical instruments. arXiv, 2019.

[29] L. Gatys, A. Ecker, and M. Bethge. A neural algorithm of artistic style. arXiv, 2015.

[30] D. Liu and J. Nocedal. On the limited memory method for large scale optimization.

Mathematical Programming B., 1989.

[31] D. P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv, 2017.

[32] Z. Zhou. Ensemble methods: Foundations and algorithms. Chapman Hall/CRC, 2012.

[33] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised

learning using nonequilibrium thermodynamics. International Conference on Machine

Learning, pages 2256–2265, 2015.

[34] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in

Neural Information Processing Systems, pages 6840–6852, 2020.

[35] I. Goodfellow, J. Pouget-Abadi, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,

and Y. Bengio. Generative adversarial networks. arXiv, 2014.

105

[36] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv, 2022.

[37] S. Kullback and R. A. Leibler. On information and sufficiency. TheAnnals of Mathematical

Statistics, 1951.

[38] R. Durall, A. Ghanim, M. Fernandez, N. Ettrich, and J. Keuper. Deep diffusion models for

seismic processing. AirXiv, 2020.

[39] R. Versteeg. The marmousi experience: Velocity model determination on a synthetic

complex data set. The Leading Edge, pages 927–936, 1994.

[40] V. Hodge and J. Austin. A survey of outlier detection methodologies. Artificial Intelligence

Review, pages 85–126, 2004.

106

