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Abstract 
This thesis addresses the challenge of upscaling in porous media, a critical issue where 

the accurate prediction of continuum behavior depends on pore-scale characteristics. 

By employing statistical modelling, the study thoroughly investigates the upscaling 

footprint from pore to Darcy scale for homogeneous pore network models. Through 

detailed property scaling, comprehensive REV relationships that quantify the impact of 

microscale size and connectivity heterogeneities on continuum behavior are developed. 

Model-agnostic analysis concurrently reveals complex non-linear dependencies 

between pore-scale features and emergent flow behavior. These insights highlight the 

intricate nature of upscaling and underscore the necessity for precise microscale 

characterization to inform effective macroscopic predictions. 
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Zusammenfassung 
Diese Dissertation befasst sich mit der Herausforderung der Upskalierung in porösen Medien, 

einem entscheidenden Problem, bei dem die genaue Vorhersage des Kontinuumverhaltens von 

pore-scale-Eigenschaften abhängt. Durch den Einsatz statistischer Modellierung wird der 

Upskalierungseinfluss vom Poren- bis zum Darcy-Maßstab für homogene 

Porennetzwerkmodelle umfassend untersucht. Mittels detaillierter Eigenschaftsskalierung 

werden umfassende REV-Beziehungen entwickelt, die den Einfluss mikroskaliger 

Heterogenitäten auf das Kontinuumverhalten quantifizieren. Gleichzeitig zeigt eine 

modellunabhängige Analyse komplexe nichtlineare Abhängigkeiten zwischen pore-scale-

Merkmalen und dem resultierenden Strömungsverhalten auf. Diese Erkenntnisse verdeutlichen 

die komplexe Natur der Upskalierung und unterstreichen die Notwendigkeit einer präzisen 

mikroskaligen Charakterisierung, um effektive makroskopische Vorhersagen zu ermöglichen. 

 



 
 
 
 
 

  
  
  

 
  
  
  

 
  
  
  

 
 
 
 





 

 

 

  

Introduction 
Understanding flow and transport in porous media is key to the realization of many industrial 

initiatives aimed at sustainability issues, such as eco-responsible hydrocarbon recovery, 

enduring nutrient cycling and carbon sequestration, and waste and contaminant management. 

While such applications are necessarily designed for basin-spanning formations, they are 

fundamentally driven by pore-scale dynamics that place leading order controls on continuum 

behavior. Furthermore, properties that parametrize large-scale models, particularly multi-

phasic ones, are typically measured at much smaller laboratory scales. This multi-scale nature 

poses a significant challenge in harmonizing data and processes across disparate scales to 

enhance the predictive accuracy of field applications. 

Figure 1 provides an overview of the multi-scale modelling framework employed in the study 

of porous media. The diagram follows the measurement of a hypothetical property evaluated 

across 12 orders of magnitude, ranging from the nano to the kilometer scale. This vast range 

showcases the significant differences in investigation scales utilized in both academic research 

and industrial applications. Included in the framework are key features of pore architecture and 

continuum domains relevant for flow in porous media as a function of the investigation length. 

While physical observations are typically associated with three primary scales – the pore, core 

(or laboratory), and field scales – the governing mechanisms of flow and their corresponding 

equations of motion may vary. For instance, the nano scale might be described by molecular 

dynamics or models accounting for geometric constraints and high Knudsen number 

phenomena, the micron scale by first-principal balances such as the Navier-Stokes equations at 

the pore level, and larger scales by constitutive continuum models. Though the diminishing 

resolution of detail with increasing scale of investigation leads to an increased practical 

significance of flow models, it's essential to note that the behavior at any given scale 

fundamentally remains influenced by the physics operating at finer scales. 
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Figure 1: Theoretical fluctuation of property across orders of magnitude relevant to transport in 

porous media. After Nelson (2009) and Xiong (2015). 
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These nested hierarchies of heterogeneities make the supplantation of pore-scale variations with 

continuum process descriptions a non-trivial challenge. Moving to the macroscopic scale 

involves reducing the complexity of the domain by transforming heterogeneous fields into 

properties that characterize transport processes. For instance, velocity fields can be replaced by 

a single-valued permeability and diffusion coefficient once the scale reaches a point where the 

influence of microstructure on advective transport and species mixing, respectively, averages 

out within the field. However, to accurately model media characteristics, it is essential to 

capture enough pore-scale variations in the continuum models. It is crucial, therefore, to 

acknowledge that heterogeneities may be prevalent on all length scales extending up to the field 

domain, which renders upscaling a categorically localized procedure. 

As an example of upscaling without necessarily considering all heterogeneity scales, 

measurements of multi-phase continuum properties are typically conducted on samples at a 

centimeter scale, raising concerns regarding the legitimacy of extrapolating core-scale results 

to horizons that often span kilometers. That is not to say, however, that considerable efforts are 

not dedicated to the examination of field-scale heterogeneities across various stages of the 

upstream workflow. Such efforts usually consist of process-driven sedimentological 

interpretations, structural inferences based on regional geology, and various models derived 

from geophysical and borehole data. Collectively, these endeavors contribute significantly to 

enhancing our understanding of preferential flow paths and predicting the performance of 

infiltration fronts. Nevertheless, the scientific community grapples yet with the unresolved 

issue of validating the upscaling process from the microscopic pore level to the broader field 

scale. The critical obstacle to this unresolved challenge is the difficulty of accurately delineating 

scales in a manner that comprehensively addresses the complete hierarchy of heterogeneities. 

High-resolution imaging technologies such as X-ray computed tomography (micro-CT) have 

unlocked the direct visualization of pore-scale microstructure and the distribution of dynamic 

flow-field variables. These advancements have permitted researchers to construct intricate 3D 

models that facilitate the exploration of complex fluid flow phenomena, including multi-phase 

displacement and hysteresis. Additionally, these 3D models serve as simulation domains for 

advanced numerical methods that leverage high-performance computing to gain valuable 

insights into the upscaling process. 

Tomographic imaging offers a powerful non-invasive means of characterizing the 

microstructure and contrast between fluid phases in porous media through detailed 3D 

visualizations. This method stands apart from traditional techniques like porosimetry and 

microscopy as it provides a quantitative insight into volume topology. Analyses typically 

depend on post-processed images of grayscale captures, which might introduce artifacts into 

the analysis. The biggest limitation of high-resolution tomography, though, is the requisite use 
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of smaller specimen sizes, which constraints the overall scope of the sample under study. 

Micro-computed tomography (mCT) for instance, can achieve spatial resolutions down to 1 

micron. This field of view allows for the direct observation of flow and transport dynamics 

through time-resolved images. However, sub-micron features might elude identification, 

potentially leaving portions of the structure unresolved in the digital models. Such omissions 

can lead to discrepancies between properties inferred from tomographic data and those derived 

from experimental results (Rozenbaum, 2011). For investigations at the nanoscale, especially 

when analyzing complex morphologies, Focused Ion Beam (FIB) nanotomography presents an 

alternative, for example when investigating clay rocks as part of an unconventional study 

(Keller et al., 2013). 

In recent years, Digital Rock Physics (DRP) has emerged as a burgeoning methodology that 

utilizes digital models in conjunction with high-performance computing to simulate 

petrophysical properties. DRP represents a cost-effective and time-efficient alternative to 

conventional laboratory methods, particularly for complex multi-phase phenomena. By 

employing numerical methods to solve flow fields of percolating fluids, valuable insights on 

various pore-scale processes can be obtained, complex models such as on reactive transport 

calibrated, and continuum descriptions validated (Jiang et al., 2016). Naturally, this includes 

the possibility to investigate the impact of pore structure on continuum behavior. Because DRP 

schemes incur significant computational cost, the domain size ought to be optimized for 

performance while maintaining the representativity of results. Continuum modelling however 

will likely remain the principal approach in the foreseeable future for practicable 

characterization on broader scales where continuum mechanics operate. 

It is crucial therefore to be able to systematically transition between the pore and continuum 

scale by honoring the underlying dynamics. This transition is called upscaling and attempts to 

relate the statistical distributions on the pore scale to effective properties on the continuum 

scale. The continuum framework is established by upscaling pore-scale conservation laws over 

an appropriately large dimension such that a porous medium can be treated as a continuum 

described by single-valued properties that emerge from explicit realizations of pore fields. 

Therefore, continuum-scale modelling imposes strict assumptions about porous media in order 

to implement closed-form equations parametrized by aggregate properties. 

Historically, continuum descriptions of flow in porous media have been primarily empirical or 

semi-empirical. Their empirical nature originated from large-scale experiments without a 

precise understanding of how pore properties translated to bulk behavior. The most common 

constitutive law in porous media is Darcy’s Law, which models the potential loss of non-inertial 

flow. Other common laws include Fick’s Law and Fourier’s Law for modelling mass and heat 
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fluxes. The effective coefficients parametrizing constitutive laws are usually measured 

experimentally at the core scale, and while such equations provide some qualitative insights, 

there was an absence of a rigorous mathematical framework delineating the conditions under 

which continuum modelling was valid or how it might be extended to more complex scenarios. 

It is in this context that upscaling theories emerged in the latter half of the 20th century as a 

systematic way to bridge the conceptual gap between pore-level physics and the larger-scale 

continuum descriptions. The aim of upscaling is thus to explain effective properties based on 

pore-scale features. Some of the most popular theories include the volume averaging theory 

(VAT) and the homogenization theory. 

The volume averaging theory (VAT) has been used extensively to derive macroscopic 

equations from conservation equations by averaging pore-scale heterogeneities over a domain 

of investigation. Each microstructural quantity is cast as a decomposition of its space-dependent 

volume average and a local fluctuation term. Substituting the decomposition into the governing 

equations and then applying the spatial averaging theorem provides a set of continuum 

equations in terms of the volume-averaged quantities. Homogenization theory originates from 

the study of differential equations with rapidly oscillating coefficients and finds purposeful 

application in porous media where the oscillations arise from microstructural heterogeneities. 

Central to this theory is the assumption of spatial periodicity in the heterogeneities, represented 

by the condition  

𝜀

𝐿
≪ 1 (1) 

where 𝜀 is a pore-scale characteristic length and 𝐿 denotes the domain length. By imposing this 

separation of scales, pore-scale field quantities undergo double-scale asymptotic expansions, 

which are subsequently integrated into the appropriate equations of motion to derive 

macroscopic continuum models. In both approaches, the volume-averaged equations may 

contain terms involving higher-order correlations of the fluctuations quantities whose 

resolution may require additional assumptions, which is referred to as the closure problem. The 

closure problem may also be required to set proper boundary conditions on the macroscopic 

scale. 

The result of these complexities is that in all but the simplest problems these pore-to-continuum 

upscaling methods are not practically applicable. Their primary value, however, lies in the 

conceptual foundation behind the origins of continuum-scale equations and the understanding 

thereby established. Although the result is a predetermined outcome, these theories are key to 

explaining how and why continuum models work as averaged manifestations of underlying 

pore-scale physics and under what conditions they might fail or require corrections, such as 

larger Reynolds numbers for non-inertial flow and multi-phase flow effects.  



14 Introduction 

 

 

The crux of these upscaling theories is ensuring a separation between the pore and continuum 

scales. The requisite degree of this separation depends on the microstructural heterogeneities; 

specifically, the region of interest (ROI) must be sufficiently small relative to the entire domain 

yet expansive enough to encapsulate a statistically representative set of property values. 

Consequently, averaged quantities should converge towards consistent values within a 

Representative Elementary Volume (REV). In such an ergodic system, the ensemble and spatial 

averages become identical. 

Upscaling is not exclusively confined to the transition from pore-to-continuum scales but often 

involves moving from one continuum scale to a coarser one. The rationale behind continuum-

to-continuum upscaling is twofold: to bridge the gap between scales at which detailed property 

measurements are made and those at which field-flow simulations are performed, and to replace 

intricate models with more tractable versions. In reservoir engineering, continuum-to-

continuum upscaling plays a crucial role. By reducing the grid cell count in simulation models, 

computational efficiency is enhanced – both in terms of runtime and resource utilization. 

Upscaled models thus offer faster turn-around times that expedite simulation studies across 

multiple development scenarios, uncertainty assessment in reservoir and operational 

parameters, and history-matching procedures. 

However, the utility of upscaling is contingent upon its accurate application. In the current 

state-of-the-art upscaling, there is a lack of a standardized theoretical framework to evaluate 

the quality and robustness of upscaled models, without referencing the results of finer-scale 

counterparts or resorting to post-hoc history matching. In the context of flow in porous media, 

the upscaled grid ought to mirror fluxes obtained on finer models under consistent boundary 

conditions. This presents a complex challenge, as heterogeneities often impact flow 

considerations and patterns on larger scales. Thus, preserving the heterogeneity fingerprint 

becomes paramount for the coarse-scale model’s accuracy. A loss in the intricate details of the 

original heterogeneity can compromise the fidelity of upscaled models.  

There are numerous methods in the upscaling toolkit that can be classified broadly as analytical 

and numerical. Analytically, methods often employ some combination of power averages – 

such as arithmetic, geometric, and harmonic means – or mathematical techniques such as 

iterative renormalization groups, to transition models to coarser representations by aggregating 

properties systematically. Simulation methods, on the other hand, leverage computational 

solutions to underlying continuum equations and can be subdivided into diagonal methods, 

which simplify anisotropy representation, and full tensor methods, which capture anisotropy in 

its entirety. Furthermore, there have been several studies that explored the potential of deep 

learning applications. Ultimately, the choice of upscaling method depends on the properties in 
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question, the grid structure, and the prevailing boundary conditions, with an engineering trade-

off between accuracy and computational cost. 

This thesis addresses the complexities of upscaling in porous media, where accurate prediction 

of continuum behavior critically depends on detailed pore-scale characteristics through the use 

of pore network modelling. It specifically targets a gap in the literature concerning the thorough 

investigation of the upscaling footprint from pore to Darcy scale. The aim is to establish a robust 

link between microscopic structural details and their macroscopic implications through 

detailed, property-specific characterization of pore-scale structure and a statistical modeling 

approach. This approach is used to determine the extent to which microscopic descriptors 

control continuum behavior across different scales and includes a comprehensive 

Representative Elementary Volume (REV) analysis.  





 

 

 

  

Literature Review 

2.1 Methods to Characterize Microstructure 
There are numerous methods to characterize pore structure. One of the most fundamental and 

important sets of metrics stems from integral geometry and assigns measures to geometrical 

space that are invariant under the natural symmetries of that space. The Minkowski functionals 

are universally utilized to characterize pore-scale structures and multiphasic distributions of 

bulk in porous media (Armstrong et al., 2018). A cornerstone result that underscores the 

practical implications of the Minkowski functionals is Hadwiger’s theorem, which states that 

for any additive and continuous 𝑑-dimensional valuation 𝑣 that is motion-invariant, there exist 

coefficients 𝑐𝑖 such that in the space of convex bodies 𝑆 

𝑣(𝑆) = ∑ 𝑐𝑖𝑊𝑖(𝑆)

𝑛

𝑖=0

(2) 

Where 𝑊𝑖 are the intrinsic volumes, which in three dimensions amount to 

Volume 𝑊3(𝑆) represents the total space occupied by the object, which is crucial for 

determining the storage capacity and mass of a medium. 

Surface area 𝑊2(𝑆) is an important scaling parameter for processes involving surface 

phenomena, directly influencing the object's ability to interact with its environment. 

Integral mean curvature 𝑊1(𝑆) is related to the mechanical properties of an object, including 

the phase distributions due to capillary phenomena. 

Euler characteristic 𝑊0(𝑆) as a topological invariant that provides information about the 

connectivity of a structure, which is relevant for flow and transport considerations. 
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By expressing any continuous, translation and rotation invariant valuation as a linear 

combination of these intrinsic volumes, Hadwiger's theorem reveals the 𝑑 + 1 Minkowski 

functionals as the sole building block required for a complete classification of a vast group of 

measures, which enables researchers to develop models that can predict the behavior of 

complex systems based on their geometric and topological characteristics. Although the 

Minkowski functionals offer a direct and symmetric characterization of pore structure, they fall 

short in describing properties that do not meet the criteria established by Hadwiger's theorem. 

One significant limitation involves non-additive properties that depend on the detailed 

interactions between components rather than simply being the sum of individual contributions. 

Another one is with non-motion-invariant properties that depend on the specific alignment of 

the material's internal structure relative to an external reference frame. Furthermore, Minkowski 

functionals are restricted to providing global measures and do not offer local information about 

the spatial distribution of these properties within the structure. This insensitivity to fine details 

means that while they can describe overall shape and connectivity, they may overlook small-

scale features that are crucial for understanding medium properties. These limitations 

necessitate the use of additional characterization methods that can address these aspects more 

effectively. 

Fractal theory offers a distinctive approach to quantifying structural complexities across scales. 

A fractal is a shape with non-integer dimensions that exhibits properties of self-similarity. 

Natural porous media only approximate a fractal character in terms of self-affinity. The fractal 

dimension is a characteristic measure that captures the scale invariance of a domain and 

provides insight into the complexity of pore space. Despite the challenges in estimating the 

fractal dimension of porous media, analytical methods such as the Rieu-Sposito (RS) model 

have been developed to relate it to measures such as the pore size distribution (Xia et al., 2018). 

Furthermore, the Minkowski functionals are not capable of reproducing the spatial correlation 

of pore space. The study of random heterogeneous media provides a rigorous and oriented 

method to quantify the spatial dissimilarity of pore-scale features and their effects on continuum 

properties (Torquato, 2005). Canonical correlation functions capture the probability of some 

spatial occurrence as a function of distance between points. Since such functions describe the 

fingerprint of structural disorder, each value is an agglomeration of multiple conditional 

realizations for a prescribed error bound. In particular, n-point correlation functions represent 

the probability that each of 𝑛 randomly positioned points separated by a correlation length 𝑟 

falls into a specific phase. Correlation functions deliver information on how randomly 

distributed point ensembles are correlated in space, thereby reflecting the structure of the pore 

space itself. Differences in the correlation function with direction have been used to quantify 
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the anisotropy of porous media (Rozenbaum & du Roscoat, 2014). There are various other 

statistical measures of a medium’s microstructure depending on the application; two of the most 

common ones are the lineal path function, which describes a medium’s capacity to 

accommodate linear flow paths, and the chord distribution function and density function, which 

measure the distance between interfaces (Levitz, 1998). 

Minkowski functionals do not explicitly address the emergence of long-range connectivity 

patterns in a porous medium. Percolation theory, on the other hand, has been applied 

extensively in understanding how coordinated bulk behavior arises from the interaction of 

individual pore-scale elements. The interaction of individual pore-scale elements gives rise to 

coordinated bulk behavior in porous media (Hunt and Ewing, 2009). At the core of percolation 

theory lies the concept of a phase transition that occurs at a critical point where connectivity is 

established in the form of a percolating cluster. In most cases, there emerges a single percolating 

cluster which accounts for most of the effective porosity (Jarvis, 2016; Keller et al., 2013; 

Renard & Allard, 2013). Cluster properties are characterized by power-law relationships that 

provide insight into the scale-dependence of the underlying pore structure. The percolation 

threshold and the associated critical phenomena provide a foundation for generalizing the 

application of percolation theory to any porous network.  

Numerous studies have applied percolation theory to various aspects of porous media. Ewing 

et al. (2010) investigated the influence nonuniform porosity distributions on diffusion 

phenomena near the percolation threshold using scaling relationships, while Jarvis et al. (2017) 

explored the connectivity of pore spaces using cluster statistics. Keller et al. (2013) and Pringle 

et al. (2009) studied anisotropy in the percolation threshold, the latter also characterizing the 

temperature-dependence of length scales governing transport. Various descriptors have been 

developed to characterize connectivity in terms of cluster statistics. Connection probability 

represents the probability that pores within an investigation volume are part of the same cluster; 

it is biased towards larger clusters and is less sensitive than the Euler Characteristic to local 

perturbations. Koestel et al. (2020) observed that the connection probability decreases with 

investigation scale due to the greater likelihood of capturing unconnected clusters.  

Beyond connection probability, parameters such as the fraction of pore space in the largest 

cluster and the probability that two random pores belong to the largest cluster provide additional 

information on cluster statistics (Jarvis, 2016). Another powerful tool to analyze connectivity 

is Local Probability Theory (LPT). This sampling method constructs distributions that account 

for connectivity heterogeneity as a function of porosity (Biswal, Manwart, & Hilfer, 1998; 

Hilfer & Lemmer, 2015). In LPT, percolation probability 𝜆(𝜙, 𝐿) represents the probability to 

find a percolating pathway across a window of size 𝐿 and porosity 𝜙. LPT permits a scaling 
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and anisotropy assessment of connectivity structures (Regenauer-Lieb et al., 2017; Keller et al., 

2013). 

2.2 Microstructural Impact on Single-Phase Flow 
The size distributions of pore-scale features exert a significant impact on continuum behavior. 

Pore throats, in particular, act as conductive constraints that control flow and capillary 

displacement, taking up most of the pressure drop in a pore-throat conduit and thus affecting 

permeability strongly. Pore throat distributions are intimately tied to the pore size and seem 

predisposed to lognormal forms in natural media (Xiong et al., 2021).  

The broadness of pore and throat size distributions is a well-observed source of heterogeneity 

in literature. More heterogeneous size distributions lead to a greater space-filling effect due to 

a more efficient accommodation of different sizes, resulting in a reduced porosity and poorer 

connectivity; broader distributions likewise create a greater variety in the shape of generally 

shorter and narrower throats (Peng-Fei et al., 2022). With increasing grain size, the peaks of 

size distributions shift rightwards due to the larger pore space. Furthermore, the number of 

pores and throats has been observed to become smaller as diameter increases in natural media. 

Xiong et al. (2021) reported lower permeabilities for both fine-grained media and media with 

wider particle size distributions. This is in line with the general power-law trend of permeability 

being affected disproportionately by larger pores and thus having a positive correlation with 

pore diameter and a negative correlation with pore variance (Hamamoto et al., 2016). 

Furthermore, there is a well-established trend in most porous media where permeability 

decreases with porosity. Besides the implication of decreasing pore diameter, this relationship 

may be explained by the conceptual model that the reduction in available pore space results in 

a lower density of conducting pathways (Ewing et al., 2010; Hamamoto et al., 2009). 

Though permeability has been investigated extensively in the scientific community and is the 

cornerstone for nearly all Darcian advective models, the exact relationship to pore-scale 

heterogeneities remains an unresolved technical challenge, particularly in complex porous 

media. Despite significant efforts to develop accurate models, there is still much to be learned 

about the underlying mechanisms that govern permeability in these systems. 

The biggest challenge is to find a representative way to quantify permeability through structural 

observables. Analytical models include the capillary bundle model that assumes a bundle of 

stream tubes, permeability bounds that depend on statistical correlation functions (Rubinstein 

and Torquato, 1989), and the Kozeny-Carman equation which refines the permeability 

estimation through empirical constants based on tortuosity and specific surface area. However, 

the applicability of such models outside the idealized conditions for which they are valid is 
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limited, and they often overestimate permeability for strongly heterogeneous or poorly 

connected media (Mostaghimi et al., 2012). 

Thus, a multitude of empirical models have been proposed to estimate permeability from 

properties like grain size (Berg, 1970), critical percolation diameter (Skaggs, 2011), 

autocorrelation length (Ioannidis et al., 1996), and NMR relaxation time (Banavar and 

Schwartz, 1987). The issue is that these relations differ greatly, which highlights the non-unique 

relationship between permeability and the heterogeneities of different pore-scale aspects that 

cannot be condensed into a single correlation.   

Nonetheless, based on the extensive work done in the field of permeability modelling, 

important qualitative conclusions have been reached regarding the nature of the relationships 

between permeability and pore-scale heterogeneities. For example, Xiong et al., (2022) 

simulated the permeability of media with different grain sizes and angularities and found that 

the permeability was lower for more angular sands in the same sieving size range due to lower 

pore coordination numbers. In general, higher pore coordination numbers seem to enhance the 

permeability. But pore and throat size distributions alone offer no information on the spatial 

arrangement of individual elements (Tao et al., 2019). It has been observed for example that 

smaller pore-scale features contribute disproportionately to the connectivity between larger 

pore clusters (Koestel et al., 2020), such that increasing the dimensions of well-connected pores 

does not lead to an appreciable increase in the permeability (Kai Xu et al., 2022). Permeability, 

however, has been observed to decrease exponentially with a reduction in the overall throat to 

pore ratio (An et al., 2015; Kai Xu 2020). 

More complex pore spaces arise from irregular grain shapes, which leads to a wider distribution 

of shape factors and pore coordination numbers (Peng-Fei et al., 2022). Pore shape and 

angularity also have a strong impact on continuum properties. Pore elements manifest in a wide 

variety of geometric profiles depending on the burial and diagenetic conditions, with the 

particular shape of an element typically described in terms of its sphericity and angularity, and 

often expressed as a deviation from the proportions of a sphere. Xiong et al., (2022) for instance 

performed a Fourier analysis of SEM images to find that the throat radius and coordination 

number of more angular sandstones are larger than those of rounder beads with the same sieving 

size. 

Generally, more complex pore spaces seem to arise from irregular grain shapes, which leads to 

a wider distribution of shape factors and pore coordination numbers (Peng-Fei et al., 2022). For 

a fixed volume, non-spheroidal elements offer greater specific surface area to interfacial 

phenomena, which is why diffusion-based models ought to consider the shape factor to predict 

sorption more accurately (Ewing et al., 2010). Additionally, pore aspect ratio affects the 
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porosity profile (Katagiri et al., 2014). The specific surface area is therefore an indicator of 

shape irregularity. In a similar vein, greater surface roughness increases specific surface area 

and, consequently, adsorption capacity (Vanson et al., 2017). Moreover, Vanson et al., (2017) 

found that roughness can alter boundary conditions and lead to low-pressure velocity profiles, 

manifesting on the continuum scale as an inverse relationship to permeability. Whereas the 

permeability does not seem to change appreciably with the shape for otherwise identical 

structures, the shape factor assumes a central role in certain empirical relations such as the 

Kozeny-Carman equation as a curve-fitting parameter, implying that the relationship between 

pore shape and permeability is implicitly mediated through the porosity and packing structure 

(An et al., 2016; Katagiri et al., 2014). However, the shape factor has a strong influence on the 

relative permeability curves of a medium, such that sharper pore corners generate phase 

distributions with higher wetting phase relative permeabilities at the cost of larger non-wetting 

residual saturations (An et al., 2016).  

The presence of directional bias in the orientations of pore elements is a key component of the 

spatial organization of microstructure. Anisotropy strongly influences the hydraulic continuum 

behavior of porous medium. Tao et al., (2020) quantified the pore-scale anisotropy of tight 

sandstone models and assessed the impact of microstructural controls on continuum properties. 

Though most static parameters showcased no meaningful correlation with anisotropy, the 

tortuosity displayed a negative correlation, representing the mechanism that controls the 

directional dependence of permeability. In most sedimentary rocks, the horizontal permeability 

is larger than the vertical one, in what is well-accepted as due to the biased grain direction 

during deposition. 

The comprehensive characterization of topology in porous media is crucial for understanding 

flow and transport processes at various scales, as the connectivity of microstructure directly 

influences dynamic properties and their sensitivity to heterogeneous flow paths (Renard Allard, 

2011). The effective transmission of fluid through a network is not only important for 

permeability characterization but also for interfacial phenomena (Ewing et al., 2010, Vanson et 

al., 2017). Furthermore, studies have shown that connectivity has a strong impact on multi-

phase phenomena, shaping immiscible invasion patterns and saturation-dependent functions 

such as relative permeability curves (Ju et at., 2022; Renard Allard., 2011). As such, knowledge 

of connectivity is essential for performance forecasts and upscaling analysis. 

Despite its central role, quantifying connectivity and understanding its relationship with 

Darcian properties remains a challenge. The porous media community has yet to agree on a 

universal mathematical definition, as connectivity is a broad, application-specific concept 

encompassing both static and dynamic metrics. Static metrics depend solely on pore structure, 
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whereas dynamic metrics are more diverse as they are obtained by considering physical 

processes that incorporate not only the structure but also boundary conditions and state 

variables. In DRP, dynamic metrics such as hydraulic and diffusive tortuosity are implicit 

properties calculated by specific simulation methods. 

The coordination number is a common static metric that describes the number of throats linking 

a pore to its neighbors and serves as a fundamental characteristic of topology, typically taking 

on average values between 3 and 9 across various media types (Jiang et al., 2020, Xiong et al., 

2022, An et al., 2015). While Xiong et al. (2022) reported smaller mean coordination numbers 

with large pore sizes, Hamamoto et al., (2016) found this effect insignificant, and Peng-Fei et 

al., (2022) observed no discernible relationship between pore size and connectivity. These 

conflicting results may stem from the varied media types studied. Hamamoto et al., (2016) 

however concurrently observed a significant reduction in sample tortuosity with pore size. This 

implies that tortuosity should be considered as a potentially superior indicator of connectivity 

because the coordination number delivers no meaningful information on the spatial 

arrangement of connected pores. 

The observations by An et al., (2015) reinforce this notion, as a strong anisotropic effect on 

permeability was noted between pore network models with similar size and coordination 

number distributions but different pore orientations. Tortuosity has also been shown to decrease 

with increasing porosity and pore coordination number due to a smaller variance in path lengths 

(Provis et al., 2012; Xiong et al., 2022).  On the other hand, compaction-induced porosity 

reduction was observed to increase the coordination number, even as denser packings exhibited 

higher tortuosity, as what Hamamoto et al., (2016) interpreted in terms of elongated pores at a 

reduced inactive porosity. In a statistical sense, connectivity is linked to the probability of 

finding a conductive pathway from one location to another, meaning that both coordination 

number and throat dimensions along a pathway are relevant to consider. Disentangling the 

effect of connectivity on permeability from size distributions thus becomes a complex task (Kai 

Xu et al., 2022). 

2.3 Representative Elementary Volume 
Because spatial dependencies are a ubiquitous phenomenon in most physical processes, 

understanding and confirming the existence of the Representative Elementary Volume (REV) 

is paramount in the study of flow and transport in porous media. The REV is thus critical to the 

Darcian framework by enabling the effective upscaling of flow performance in media that 

adhere to statistical homogeneity.  
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Though there are different definitions for REVs, each one rests on the keystone assumption that 

heterogeneities need to be delineated through a unique separation of scales. The most basic and 

critical requirement for defining the REV scale is that it acts as the lower and upper bound for 

the characteristic length of macroscopic heterogeneities and microscopic fluctuations, 

respectively. In inequality form 

𝑙𝑚𝑖𝑐𝑟𝑜𝑠𝑐𝑜𝑝𝑖𝑐 ≤ 𝑙𝑅𝐸𝑉 ≤ 𝑙𝑚𝑎𝑐𝑟𝑜𝑠𝑐𝑜𝑝𝑖𝑐 (3) 

To ensure that this scale separation is feasible and for upscaling to be valid, the REV must be 

large enough to encompass a statistically representative number of microstructural features and 

flow mechanisms, allowing for Darcian effective moduli to be independent of the investigation 

scale. However, the REV should also be small enough to ensure that the moduli accurately 

characterize the macroscopic behavior of the medium without having reached macroscopic 

heterogeneities.  

When the investigation scale is sized between 𝑙𝑚𝑖𝑐𝑟𝑜𝑠𝑐𝑜𝑝𝑖𝑐  and 𝑙𝑚𝑎𝑐𝑟𝑜𝑠𝑐𝑜𝑝𝑖𝑐 , the property is 

expected to have only minor fluctuations because it is structurally typical of the pore-scale 

heterogeneities. Within this plateau, measurements are scale-independent and consequently 

provide practical and consistent readings. These measurements can be used to reliably 

parametrize a continuum model, which supplants the pore-scale description (Baveye et al., 

2002). Measurements taken at scales below 𝑙𝑚𝑖𝑐𝑟𝑜𝑠𝑐𝑜𝑝𝑖𝑐  maybe susceptible to the disparate 

influence of pore-scale heterogeneities because only a spatially unrepresentative portion of the 

medium is captured. Similarly, measurements above 𝑙𝑚𝑎𝑐𝑟𝑜𝑠𝑐𝑜𝑝𝑖𝑐  may capture large-scale 

variability in the macroscopic structure due to spatial changes in mineralogy or texture in the 

sedimentary profile that cause deviations from a stabilized value.  

Only practical and consistent measurements inside the REV range may reliably parametrize 

continuum models (Baveye et al., 2002). Since Darcian properties are upscaled entities, the 

presence of multi-scale heterogeneities with spatial correlation lengths that deny a meaningful 

delineation may make the identification of the upper and lower bounds difficult and invalidate 

the existence of an REV (Constanza-Robinson et al., 2011). These considerations lead to the 

most common definition of REV for a homogeneous medium: the range of lengths for which 

an averaged property converges to a constant value with incremental changes in the 

investigation scale (Bear, 1972). For some property 𝑌(𝒙, 𝑙) that is a function of location 𝒙 and 

scale 𝑙 this requires 

𝜕𝑌(𝒙, 𝑙)

𝜕𝑙
|

𝑙=𝑙𝑅𝐸𝑉

= 0 (4) 
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The requirement for no change whatsoever in the studied property as a criterion for REV 

existence is too rigid, as it does not account for the presence of noise and fluctuations due to 

finite-sized samples that make it impossible to find more than two consequent points with the 

same property value. The condition is commonly relaxed in practice by introducing a pre-

defined tolerance margin, which, despite its widespread use, lacks a rigorous scientific 

justification. It is also worth noting that the choice of threshold may significantly affect the 

resulting REV size estimate (Gerke & Karsanina, 2020; Rahman et al., 2020). The relaxed form 

of the convergence criterion: 

𝜕𝑌(𝒙, 𝑙)

𝜕𝑙
|

𝑙=𝑙𝑅𝐸𝑉

≈ 0 (5) 

Increasing the investigation scale should not lead to appreciable changes of 𝑌 as it parametrizes 

a model that represents the average constitutive response with sufficient accuracy. Properties 

that do not obey the relaxed criterion are considered not to have attained the REV and may 

require additional data analysis or may need to be excluded from the analysis altogether 

(Constanza-Robinson et al., 2011; Borges et al., 2018). 

2.3.1 Analysis Methods 
There are two principal ways to conduct a REV analysis depending on the characteristics of the 

medium and study requirements. The deterministic REV (d-REV) is found by repeatedly 

calculating a property in a sequence of expanding volumes anchored to a single point in the 

domain. The d-REV then corresponds to the volume over which fluctuations decay and the 

property converges with increasing window size. The d-REV approach makes up the traditional 

volume averaging procedure for REV determination in literature and typically involves the 

placement of a single point either through aleatory means or at the center of the domain (Al-

Raoush & Papadopoulos, 2010; Borges et al., 2018). 

To observe the spatial variability of a property, the statistical REV (s-REV) provides an 

alternative approach. The s-REV is obtained through a moving window approach that involves 

sampling properties across the medium. The medium is split into discrete volumes and a 

property is calculated on each placement for incremental window sizes. An s-REV is then 

defined as the window size beyond which both the mean and variance of the property become 

constant. Since a statistical analysis assesses the spatial dispersion of a property, the statistical 

significance of results depends on the number of independent windows, the relative precision 

in estimating the s-REV, and the degree to which windows overlap. Overlapping windows leads 

to an artificial reduction of variance, which places a natural upper bound on the investigation 

size (Brown et al., 2000). Though each property in the study of Koestel et al. (2020) meets the 
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lower-bound for d-REV, for connectivity measures based on percolation theory the lower-

bound was found only in the scale range where the windows overlapped. 

Though both approaches satisfy the definition of REV as presented earlier for the convergence 

of property values, the s-REV places an additional set of conditions by requiring the property 

to be treated as a stationary function in the medium for any 𝒙 

 

𝐸[𝑌(𝒙, 𝑙𝑅𝐸𝑉)] ≈ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (6) 

and 

𝑉𝑎𝑟[𝑌(𝒙, 𝑙𝑅𝐸𝑉)] ≈ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (7) 

 

where 𝐸[𝑌(𝒙, 𝑙𝑅𝐸𝑉) and 𝑉𝑎𝑟[𝑌(𝒙, 𝑙𝑅𝐸𝑉)] are the mean and variance of 𝑌 within the REV range 

of scales, respectively. Estimating s-REV is the recommended approach due to its explicit 

consideration of medium-wide heterogeneity (Lake & Srinivasan, 2004; Ozelim & Cavalcante, 

2018). A geostatistical approach that uses a measure of spatial dissimilarity in the form of 

semivariograms for REV determination is seeing increasing application in pore-scale analysis 

(Jackson et al., 2020). 

2.3.2 Sampling Methods 
The most common d-REV sampling technique used to average unique portions of a medium is 

the expanding prism method. This method involves continuously extending a rectangular prism 

and is classified according to the evolution of the volume centroid. In the point-centered 

sampling scheme, concentric volumes are centered on a point held constant in space. 

Alternatively, in the face-centered sampling scheme, successive volumes extend outward from 

the same boundary face or corner. Baveye et al. (2002) reported negligible differences between 

the two sampling techniques, albeit for an apparently homogeneous soil sample. This finding 

suggests that, under the conditions approaching statistical homogeneity, either technique may 

be suitable for obtaining averaged information about a medium. 

However, in the context of analyzing heterogeneous media, the choice of sampling technique 

can significantly affect the accuracy of the estimated Darcian properties because a single 

window may fail to capture the spatial variability of the medium, leading to biased estimates. 

This is demonstrated in studies that constructed face-out windows from the corners of samples 

with varying degrees of heterogeneity, producing up to eight independent realizations with 

drifting window centers. Notably, the more heterogeneous samples (e.g., dolomitic cores with 

gypsum intrusions) showed considerably more variation among the individual curves for 
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calculated properties (Brown et al., 2000, Koestel et al., 2020, Peng-Fei et al., 2022). Such a 

face-out scheme might be useful for a preliminary evaluation of heterogeneity prior to the 

evaluation of a more comprehensive s-REV. 

Window geometry may also exert a strong influence on REV assessment. An isotropically 

expanded cube is the most frequently used window geometry (Mu et al., 2016, Borges et al., 

2018, etc.), although cylindrical volumes are also prevalent (Al-Raoush & Papadopoulos, 

2010). It is nonetheless possible to adjust the aspect ratio of the window to better fit the 

geometry and approximate the heterogeneity of the medium, as in the study of Constanza-

Robinson et al. (2011) where a core-centered window was accommodated to the height of the 

sample. The resulting d-REV estimate for porosity was lower than for the cubic geometry, 

attributed to averaging out the variation with height. This greater insensitivity to microscopic 

variation leads to smoother REV curves but makes facilitating comparison with literature 

difficult. 

2.3.3 Estimation Methods 
The most direct method to determine the d-REV range is through visual observation of the 

plateau. But in the absence of a quantitative analysis there is no clear indication whether a 

property has converged or is still a function of the window size. Qualitative criteria are therefore 

required to avoid ambiguity regarding the existence and location of the REV range. More 

accurate and reliable methods for testing the convergence of property descriptors can be derived 

from numerical approximations for a discrete set of investigated windows. A center-difference 

approximation of 𝑙𝑚𝑖𝑛 leads to 

 

𝑌𝑙𝑖+1
− 𝑌𝑙𝑖−1

𝑙𝑖+1 − 𝑙𝑖−1
≈ 0 (8) 

 

where the subscript 𝑖 refers to the window size. The approximation as estimated above depends 

on the property being investigated and on the system of units. A more standardized REV 

criterion that can be used comparatively across different properties and media is formulated by 

nondimensionalizing Eq (above) to express the relative error of a property as 

 

‖
𝑌𝑙𝑖+1

− 𝑌𝑙𝑖−1

𝑌𝑙𝑖+1
+ 𝑌𝑙𝑖−1

‖ ≈ 0 (9) 

 



28 Literature Review 

 

 

representing the change in a property as a fraction of the sum of 𝑌𝑙𝑖+1
 and 𝑌𝑙𝑖−1

, circumventing 

the dependence on specific units and improving the consistency of results (Li et al. 2009). The 

lower bound of the REV range is then the minimum window scale 𝑙 for which the relative 

change over the given size increment remains below an ad hoc threshold, frequently taken as 

0.2 or 0.1. Further subjectivity is introduced by the choice of how many consecutive window 

sizes must sustain an acceptable relative deviation. Determining the preferred combination of 

threshold and number of successive points remains a challenge due to the lack of established 

objective criteria. It is also interesting to note that these criteria are usually used to investigate 

the potential existence of 𝑙𝑚𝑖𝑛, with only a few studies having attempted to disentangle the 

heterogeneity bounds and investigate the existence of 𝑙𝑚𝑎𝑥, to varying degrees of success. 

For s-REV determination, the issue of spatial variability needs to be addressed. Since the REV 

might vary across a medium for each Darcian property of interest, the statistical profile of each 

property as a function of window size must be investigated. Simply ensuring that the mean of 

a property fulfills convergence criteria is not sufficient. The standard deviation, which measures 

the spread of the property around the mean, must also converge to a sufficiently small value 

with increasing window size. In other words, an approximately constant mean and low standard 

deviation are necessary conditions for the s-REV range existence. 

A divergent statistic implies that due to unbounded heterogeneity in either the microscopic or 

macroscopic scale an s-REV range cannot be determined. The lower bound of the s-REV range 

is therefore, the scale below which the mean varies significantly, or the standard deviation is 

large enough so the domain cannot be treated as approximately homogeneous. It is practical to 

define a global convergence measure rather than evaluating the two variables separately. Such 

a measure should consider both the mean and the standard deviation to determine the s-REV 

range accurately. The coefficient of variation (CV) expresses the deviation of a variable relative 

to its mean and is defined as the ratio of the standard deviation to the mean 

𝐶𝑉 =
𝜎

𝜇
(10) 

The CV can evaluate the convergence of both the mean and standard deviation, with an 

asymptotic limit indicating that an s-REV range may exist. Moreover, the CV is useful for 

comparing variability between different datasets. However, the choice of cut-off threshold for 

testing statistical homogeneity appears to be largely arbitrary in the literature. Some studies 

define a medium as heterogeneous if the CV is greater than 0.5 (Corbett & Jensen, 1992; 

Nordahl & Ringrose, 2008), while others propose much lower thresholds such as 0.2 or 0.1 to 

identify the lower s-REV scale (Zhang et al. 2000, Bruns et al. 2017, Singh et al., 2020). In 

particular, Rahman et al. (2020) opted for a threshold of 0.05 to be consistent with pycnometric 
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measurements and noted that under the assumption of similar sandstone samples, s-REV 

increased a hundred-fold compared to the estimation by Zhang et al. (2000). Because the level 

of accuracy exerts a strong control on the estimated s-REV range, the cut-off needs to be chosen 

with forethought for desired accuracy and compatibility with experimental results. As of 

writing the author is not aware of literature that systematically tests the dependence of s-REV 

estimation on threshold values. Therefore, further research is necessary to determine the most 

appropriate cut-off threshold for estimating s-REV ranges. 

It is also possible to evaluate the conditions of statistical homogeneity through an appropriate 

statistical test. Statistical testing encompasses a diverse range of techniques for analyzing 

datasets that involve more than two treatments. The principle behind testing the null hypothesis 

of mean and standard deviation constancy across successive window sizes involves partitioning 

the total variation in the datasets into within-group and between-group variation. Brown et al. 

(2000) employed one-way Analysis of Variance (ANOVA) and Hartley’s test to investigate 

mean and variance equivalence, respectively, of static properties with increasing volume in 

dolomitic cores. However, the limited sample size, consisting of only eight corner-out 

realizations for each investigation scale, raises concerns about the statistical power of their 

results. The interpretation of statistical differences strongly depends on sample size, which 

should be large enough to accurately represent the underlying distributions and allow for 

reliable inferences. It is therefore imperative to base any statistical tests on a domain-wide s-

REV approach. 

Another limitation to consider is potentially prohibitive assumptions behind procedures like 

ANOVA and Hartley’s such as that data are normally distributed. In general, the evaluation of 

confidence intervals gives a clearer idea of how closely statistics estimate population 

parameters. Ozelim et al. (2018) used a bootstrap algorithm to test the null hypothesis that 

samples from consecutive window sizes stem from the same distributions for sandstone and 

claystone. Their study showed that more than one interval of statistical equivalence exists, 

highlighting the presence of heterogeneities at multiple scales. This also suggests that in natural 

media, finding a unique REV may not always be possible. As a workaround for this issue, 

Rahman et al. (2020) proposed a regression model that estimates the window size by 

extrapolating variance to zero. This method eliminates the need for a subjective threshold and 

arrives at a unique yet unphysical s-REV estimate. 

Statistical models can also offer insights into the connection between the sampling method and 

the accuracy of the resulting estimations without requiring information on the pore-scale 

structure. Kanit et al. (2003) proposed a sampling theory-based model in a geostatistical context 

that provides a formula for the minimum window size required to achieve a specified 
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convergence threshold for a given integral range of spatial covariances. The model predicts that 

estimates of the s-REV display exponential-type variation as a function of the threshold value. 

2.3.4 Applications 
The dependence of the REV range on the specific property under investigation has been widely 

acknowledged in the scientific community. This dependence arises from the fact that the same 

averaged heterogeneities exert varying degrees and types of upscaling control, contingent upon 

the property being studied. Flow-based properties, such as permeability and saturation, that are 

intricately influenced by dynamic features that may vary with boundary conditions, in general, 

require a larger window size for representativity (Mostaghimi et al., 2012; Mu et al., 2016; 

Jackson et al., 2020). Conversely, purely geometric properties, such as porosity and specific 

surface area, which remain fixed within a given domain and are expressible through Minkowski 

functionals, typically exhibit a smaller REV. Studies have routinely demonstrated that when 

estimating the lower bounds for porosity and specific surface area, the investigated samples 

were usually significantly larger than the resulting REV values. The same cannot be said for 

properties such as permeability in highly heterogeneous media, where the sample might not be 

large enough to deliver a representative estimate (Mostaghimi et al., 2012). 

This underscores two important observations about the REV in porous media. The first 

observation highlights that static properties possess a comparatively smaller spatial scale of 

correlated heterogeneities, necessitating a smaller REV for accurate representation. The second 

observation emphasizes that to avoid the misidentification of the REV, the REV of one property 

cannot be used as a reference to obtain representative measurements of other another. These 

observations have significant implications for the design and interpretation of experiments and 

simulations based on property-specific REV behavior. Failure to account for such 

heterogeneities may result in inaccurate representations of continuum models, leading to 

erroneous upscaling and suboptimal design decisions. It is therefore crucial to adopt a rigorous 

approach to determining the appropriate REV by using precise statistical methods. 

In addition, the variability of REV with rock type is a well-established phenomenon that is 

important to consider. REV analyses have been conducted on various porous media, natural 

and artificial, revealing significant differences in estimated REV due to distinct pore-scale 

dimensions and degrees of structural homogeneity. For instance, Mostaghimi et al. (2012) and 

Rahman et al. (2020) examined the REV behavior in sand packs, sandstones, and carbonates. 

Costanza et al. (2010) analyzed glass beads and commercial silica sand, Ozelim et al. (2018) 

used a statistical approach to investigate the REV of glass spheres, sand, and clayey sandstone, 

and Peng-Fei et al. (2022) looked at numerous sand packs, both consolidated and 

unconsolidated, as well as sandstone samples with different grain shapes. These findings have 



Literature Review 31  

 

 

 

enriched our comprehension of how pore-scale heterogeneities vary among rock types and their 

connection to the REV. As a rule of thumb for similar pore size distributions, artificial media 

that lack structural biases due to depositional and diagenetic processes have lower REV 

estimates compared to natural media, in which carbonates typically exhibit larger REV sizes. 

Practically all REV studies in recent years have investigated the REV of imaged porosity, 

reporting a variety of scales for various samples. Though an inter-study comparison is 

inadvisable due to dissimilar methodologies, a synthesis of findings illustrates typical scales for 

materials relevant to flow in porous media. For sand packs these ranged from approximately 

0.50 mm (Mostaghimi et al., 2012) to larger than approximately 0.62 mm (Singh et al., 2020) 

and 1.71 mm (Zhang et al., 2000). Sandstones were ascribed REVs of approximately 0.43 mm 

(Mostaghimi et al., 2012), 1.1 mm (Singh et al., 2020), and 1.2 mm (Okabe & Oseto, 2006). 

REV values for permeability have been investigated in relatively fewer studies but are usually 

reported to be larger than those for porosity.  

Referring to most of the same studies, Mostaghimi et al. (2012) estimated a REV of 

approximately 1.1 mm for sand packs and approximately 0.8 mm for sandstones, while Singh 

et al. (2020) found a REV of approximately 1.04 mm for sand packs. For carbonates with higher 

heterogeneity, REV values upwards of approximately 2.64 mm have been reported (Singh et 

al., 2020). Anisotropy has also been found to be an important factor in determining REV for 

tensorial properties. Thus, the estimation of the REV for porosity alone is inadequate to 

tolerably capture the variability in permeability. Moreover, Al Raoush & Papadopoulos (2010) 

demonstrated that the REV of other static properties, such as pore size distribution and 

coordination should not be determined based solely on the REV for porosity either, observing 

that the REV for pore size distribution was 2-3 larger than for porosity.   

In contrast to the extensive body of research on porosity and permeability, investigations into 

the REVs of connectivity measures are scanter. Among the few studies investigating REVs of 

percolation quantities, Biswal et al. (1998) and Keller et al. (2013) utilized local porosity theory 

to estimate the REVs of percolation probability and percolation threshold. Borges et al. (2017) 

found that for soil samples the REV of tortuosity is higher than that of porosity. Wu et al. (2018) 

found the tortuosity REV up to 15 times larger than for porosity. Additionally, they reported 

that the Euler characteristic exhibited no trend towards an acceptable convergence, which is 

consistent with reports of very large REVs for this property (Peng-Fei et al., 2020; Vogel, 

2002). Al-Raoush & Papadopoulos (2010) calculated the REV for the pore coordination 

number of sand packs and reported smaller scales for poorly graded packs. 

At a conceptual level, the REVs of most properties depend on the separation distances between 

pore-scale features, which can be best quantified by grain-size distributions. Peng-Fei et al. 
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(2022) observed that property REVs become gradually smaller with decreasing grain size in 

otherwise identical sand packs. Notably, positive linear correlations were found between 

porosity REVs and grain diameters in several studies (Wang et al., 2013; Costanza-Robinson 

et al., 2011; Rahman et al., 2020). Even in cases where the pore size distribution in a medium 

appears to be uniform, the presence of large pores can lead to comparatively large REVs. A 

widely used strategy is to normalize the REV scales by a characteristic dimension of the grains 

or pores, typically the average diameter (Constanza-Robinson et al., 2010). 

Peng-Fei et al. (2022) furthermore noted that wider distributions lead to larger heterogeneity 

scales for all the static properties that were investigated, a result consistent with the findings of 

Koestel et al. (2020) who observed a decreasing REV range for soil samples that had their pore 

distributions narrowed. One way to quantify the broadness of pore size distributions is to use a 

shape parameter such as the coefficient of uniformity. Studies have shown a positive 

relationship between the uniformity coefficient and the scaled porosity REV, as reported by 

Constanza-Robinson et al. (2010), and smaller REVs in well-grade systems, as observed by Al-

Raoush & Papadopoulos (2010). This is explained by the fact that broadening a pore-size 

distribution results in increased heterogeneity in separation distances, thereby requiring a larger 

averaging scale. 

 



 

 

 

  

Methodology 

3.1 Workflow 
The workflow diagram in Figure 2 illustrates the methodological framework employed in this 

thesis to comprehensively evaluate the pore-to-Darcy upscaling footprint through a detailed 

structural characterization and statistical sampling analysis. It captures the steps undertaken 

from pore network generation to numerical simulations, focusing on the key aim of conducting 

a multi-property Representative Elementary Volume (REV) analysis. 

 

Figure 2 – Visual depiction of the stages of the framework, beginning with network model generation 

and statistical sampling. The central part of the workflow involves dynamic simulations for computing 

continuum flow properties and investigating scaling behaviors across multiple properties. The final 

stages encompass a machine learning analysis to discern the impact of pore-scale heterogeneities on 

macroscopic flow behaviors, completing the framework for a thorough multiscale upscaling study. 
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The workflow visually outlines the multi-stage process implemented to explore the upscaling 

footprint of pore-scale heterogeneities within porous media. The process begins with the 

generation of idealized pore network models using Delaunay triangulation. This geometric 

partitioning method is specifically chosen to construct networks devoid of macroscopic 

heterogeneities, ensuring the study focuses solely on isotropic pore-scale variations in terms of 

size and connectivity. Such a controlled setup allows for a precise exploration of scaling 

behavior within a homogeneous dataset, setting a benchmark for comparison against more 

complex heterogeneities encountered in natural systems. A sampling method is employed to 

assess spatial variability, and heterogeneity impacts on flow properties. These analyses are 

necessary for understanding the scaling behaviors of different properties and leveraging data-

driven techniques to predict the influence of pore-scale characteristics on continuum-scale 

behavior. 

3.1.1 Network Generation and Sampling 
A reference pore network model is systematically constructed through the probabilistic 

technique of Delaunay triangulation. Base nodes, representing pore centres emerge as randomly 

assigned points within the network domain. By applying Delaunay tessellation – a geometric 

partitioning algorithm - the base points interconnect while adhering to the Delaunay criterion, 

forming a set of distinct non-overlapping simplices. The shared edges and vertices of these 

simplices, representing throats and pores respectively, can be ascribed relevant attributes like 

radii and occupation probabilities, that describe the physical properties of the network. 

Delaunay triangulation acts as a stochastic process that generates a homogeneous and isotropic 

network, while also providing control over the inherent variability in pore-scale properties. This 

approach enables the study of a more random network in comparison to a regular lattice 

characterized by a predefined connectivity. With a composition of one million pores, the 

resultant network model is populated probabilistically in the absence of macroscopic 

heterogeneities. This prerequisite is crucial for accurately determining REVs purely based on 

pore-scale inhomogeneities. Furthermore, because connectivity metrics utilized in this work 

involve probabilities, their interpretation is relatively straightforward for a random pore 

network model with a stochastic and stationary structure. It is important to note that given the 

nature of this upscaling study and the normalization of results, the specific choice of units is 

inconsequential to the analysis and can be adapted to convenience without affecting the results 

or conclusions drawn therefrom. Therefore, all lengths are expressed in units of a characteristic 

length scale of 1. The reference pore network is then a 100 × 100 × 100 unit cube. 

The following sampling procedure is employed to conduct a comprehensive sREV analysis into 

the representativeness of properties across different scales on a cubic pore network model. This 
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method involves systematically partitioning the pore network into equal-sized cubic sub-

volumes and is a special case of the moving window approach that overcomes the limitation of 

an overlapping sub-volume arrangement. The known edge length of the parent pore network 

model is 𝐿𝑒𝑑𝑔𝑒  in all cardinal directions. For a chosen investigation scale 𝑙𝑠𝑐𝑎𝑙𝑒 from a range 

considered in the analysis, the maximal number of non-overlapping cubic sub-volumes that can 

fit within the parent network is given by 

𝑛𝑠𝑢𝑏 = 𝑓𝑙𝑜𝑜𝑟 (
𝐿𝑒𝑑𝑔𝑒

𝑙𝑠𝑐𝑎𝑙𝑒
)

𝑑

(11) 

where 𝑑 is the network dimension. A more general formulation for an arbitrary sub-volume 

aspect ratio and moving step is given in Mu et al. (2016). Subsequently, the parent network is 

partitioned into 𝑛𝑠𝑢𝑏  sub-volumes under the constraint that coterminous sub-volumes must 

share common boundary faces. Within each sub-volume, the quantities of interest are evaluated, 

both pore-scale descriptors and continuum properties. Statistical analysis techniques are then 

applied to assess the heterogeneity of these properties across the sampled network domain. 

𝑙𝑠𝑐𝑎𝑙𝑒 as the designated scale parameter for sub-volume sizing is incrementally increased to 

explore the effect of scale on the upscaling response. Half 𝐿𝑒𝑑𝑔𝑒  represents the scale beyond 

which sub-volumes would overlap. The analysis is conducted for an ensemble of sub-volumes 

in the range of 3 to 33 scale units, covering more than three orders of magnitude in investigation 

volume. As shown in Table 1, total 𝑛𝑠𝑢𝑏  for each scale represents the maximum number of sub-

windows available, while active 𝑛𝑠𝑢𝑏 indicates the actual number of sub-volumes used in the 

analysis for static and dynamic properties. For scales 3 to 6, a representative sample of 4096 

randomly selected sub-volumes is used to reduce computational load while maintaining 

acceptable standard error. It is important to acknowledge that due to the constraint of non-

overlapping sub-volumes and equal sizes, there may be portions of the parent network that 

cannot accommodate a sub-volume. These uncovered portions are excluded from the statistical 

analysis. The location of each active sub-volume is determined randomly such that the borders 

of the partitioned network model are never violated. Each sub-volume is severed from the 

parent network so that it is self-contained, and fluxes are non-existent outside of the sub-

volume. Boundary conditions are prescribed to the boundary pores in the plane perpendicular 

to the flow direction. The solid phase is considered impermeable. Pore-scale models that define 

the hydraulic and diffusive tortuosity of pore-throat sets are evaluated for an artificial fluid 

which percolates through the pore network. The estimation of permeability and diffusion 

coefficient is then done through a system of linear equations. Based on the pressure and 

concentration solutions, the permeability and diffusion coefficient can be determined by means 

of Darcy’s Law and Fick’s Law. 
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Table 1 – Sampling specifications of the subdivision of the network in terms of the total number of 

windows, the active number of windows included in the analysis for each investigation scale, and the 

percentage of the total volume covered by the discretization. 

Investigation scale 𝑙𝑠𝑐𝑎𝑙𝑒 Total 𝑛𝑠𝑢𝑏  Active 𝑛𝑠𝑢𝑏  for analysis Volume covered 

3 35937 4096 97% 

4 15625 4096 100% 

5 8000 4096 100% 

6 4096 4096 88% 

7 2744 2744 94% 

8 1728 1728 88% 

9 1331 1331 97% 

10 1000 1000 100% 

11 729 729 97% 

12 512 512 88% 

13 343 343 75% 

14 343 343 94% 

15 216 216 73% 

16 216 216 88% 

17 125 125 61% 

18 125 125 73% 

19 125 125 85% 

20 125 125 100% 

21 64 64 59% 

22 64 64 68% 

23 64 64 77% 

24 64 64 88% 

25 64 64 100% 

26 27 27 47% 

27 27 27 53% 

28 27 27 59% 

29 27 27 65% 

30 27 27 72% 

31 27 27 80% 

32 27 27 88% 

33 27 27 97% 
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To comprehensively assess the upscaling footprint, a dual-pronged approach is undertaken, 

involving variations in both pore size distribution and pore coordination number within the 

reference pore network model, systematically increasing the pore-scale heterogeneity in terms 

of both size and connectivity. 

The exploration of pore size distributions is initiated through a sensitivity analysis. Initially, 

each pore’s maximal diameter is calculated as the largest diameter assignable without 

overlapping with neighboring features. Then, a random variable 𝑈 is introduced, representing 

the multiplier applied to each pore’s maximal diameter. 𝑈 follows a continuous uniform 

distribution over the interval [𝑎, 1.0] 

𝑈~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑎, 1.0) (12) 

By incrementally decreasing the lower limit 𝑎 of the uniform distribution, the resulting pore 

size distributions exhibit greater variability, resulting in a sequence of progressively more 

heterogeneous networks with equivalent topologies. A uniformity coefficient is calculated for 

the series of networks to parametrize the degree of pore size heterogeneity within a distribution. 

The coefficient captures the spread of the distribution in relation to its central value 

𝑈𝐶 =  
𝑝90 − 𝑝10

𝑝50

(13) 

where 𝑝90, 𝑝10, and 𝑝50 are the 90𝑡ℎ , 10𝑡ℎ , and 50𝑡ℎ  percentile, respectively. The uniformity 

coefficient serves as a more apt variable for subsequent analysis of how changes in the pore 

size distribution affect continuum phenomena. 

The investigation into the influence of connectivity on the upscaling footprint consists of 

varying the occupation probability 𝑝 for a given pore size distribution. 𝑝 represents the 

likelihood of each throat in the network being active, thereby probabilistically determining 

which throats serve as conducting pathways. This describes the network’s topology through its 

active throat connections. Networks are generated for occupation probabilities within the range 

𝑝𝑐 ≤ 𝑝 ≤ 1.0, with the aim of isolating the upscaling effect rooted exclusively in connectivity 

on continuum behavior. 𝑝𝑐 is the percolation threshold and is found by iteratively eroding the 

connectivity until the network-wide connection is lost. It was found that 𝑝𝑐 = 8.6032%. 

Connection quantification in this study incorporates the pore coordination number, the Euler 

characteristic, geometric and diffusive tortuosity, and metrics from percolation theory. 

In summation, this methodology generates two sets of pore network realizations across the two 

variables under scrutiny: pore size and connectivity. By evaluating heterogeneity within sub-

volumes at various investigation scales, insights are gained into how these properties change as 

the scale increases. The analysis provides information about the REV at different scales. The 
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method of statistical REV analysis on cubic pore network models offers a structured approach 

to assessing the impact of pore-scale heterogeneities on continuum properties across scales. By 

systematically analyzing nonoverlapping sub-volumes and evaluating properties within them, 

this method aids in characterizing porous media and supports the process of upscaling for a 

wide range of applications. 

3.2 Pore-scale Characterization 

3.2.1 Minkowski Functionals 

3.2.1.1 Volume 
The volumetric properties are quantified by computing the volumes corresponding to the bulk 

window, total pore space, and effective pore space within the network models. Specifically, the 

bulk volume (𝑉𝑠𝑢𝑏) is the volume of the cubic subwindow, the total pore volume (𝑉𝑡𝑜𝑡) the sum 

of non-overlapping pore and throat volumes comprising the network, and the refined effective 

pore volume (𝑉𝑒𝑓𝑓) consists only of the interconnected regions that contribute to flow. 

From these volumetric measurements, two types of porosity 𝜙 are computed as derived 

quantities, defined by the ratio of the respective pore volume to the investigated window volume 

𝜙𝑡𝑜𝑡 =
𝑉𝑡𝑜𝑡

𝑉𝑠𝑢𝑏

(14) 

and 

𝜙𝑒𝑓𝑓 =
𝑉𝑒𝑓𝑓

𝑉𝑠𝑢𝑏

(15) 

Surface Area 

Similarly, computation of total surface area 𝐴𝑡𝑜𝑡  and effective surface area 𝐴𝑒𝑓𝑓 provides a 

detailed measure of the interfacial characteristics. The specific surface areas are then derived 

by normalizing the surface areas by the corresponding pore volumes 

𝜓𝑡𝑜𝑡 =
𝐴𝑡𝑜𝑡

𝑉𝑠𝑢𝑏

(16) 

and 

𝜓𝑒𝑓𝑓 =
𝐴𝑒𝑓𝑓

𝑉𝑒𝑓𝑓

(17) 
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3.2.1.2 reflecting the surface area available per unit volume of pore space. Euler 

Characteristic 

In this thesis, the Euler characteristic χ is used to describe the connectivity properties of network 

models. According to Mecke and Stoyan (2001), the specific connectivity number for a 

stationary random network is given by 

χ = 𝜆0 − 𝜆1 (19) 

where 𝜆0 is the vertex intensity and 𝜆1 is the edge intensity, representing the total number of 

pore centers and throat connections per unit volume, respectively. These intensities are 

measured directly from the network structure and describe the connectivity in a density format 

that provides a scalable measure applicable to various sizes (Peng-Fei et al., 2022). 

3.2.2 Geometric Tortuosity 
The geometric tortuosity is calculated using Dijkstra’s shortest path algorithm (Dijkstra, 1959). 

The application of Dijkstra’s algorithm requires the identification of boundary pores located on 

opposing faces of a designated sub-volume of a pore network model. Establishing the most 

direct path between two boundary pores is done by minimizing the sum of straight-line 

distances between connected pores on the same cluster. A boundary pore is chosen at random 

and paired with a boundary pore chosen at random from the opposing face. Naturally, the 

geometric mean is defined only if both pores belong to the same cluster. Let 𝐴 = {𝑃1, 𝑃2, … , 𝑃𝑛} 

and 𝐵 = {𝑄1, 𝑄2, … , 𝑄𝑚} be the two sets of boundary pores making up opposite faces of a sub-

volume. The set of two-pore combinations is given by the Cartesian product of sets 𝐴 and 𝐵 

𝐴 × 𝐵 = {(𝑎, 𝑏) | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, |(𝑎, 𝑏)| ≤ 4000} (20) 

(𝑎, 𝑏) represents an ordered pair where 𝑎 is a boundary pore from 𝐴 and 𝑏 is a boundary pore 

from 𝐵, representing the endpoints of the shortest path to be found. Subsequently, the shortest 

path between the selected pores is found by accounting for the intervening interior pores. The 

geometric tortuosity is then defined as the ratio between the shortest path and the boundary-to-

boundary straight line 

𝜏𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 =
𝐿𝑝𝑎𝑡ℎ

𝐿𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡

(21) 

To obtain a statistical description of the path distributions, the computation is performed across 

several boundary pore combinations. However, the number of combinations considered is 

limited to a maximum of 4000 for the analysis of a manageable set of unique pathways. 

Geometric tortuosity provides insights into the topological complexity of a porous medium. 
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3.2.3 Percolation Metrics 
Two connectivity metrics based on the size of pore clusters are used: (1) the proportion of the 

pore volume contained in the largest cluster, and (2) the probability that two randomly chosen 

pores are connected within the investigation window. In this work, they are referred as the first 

and second percolation metrics, respectively. 

3.2.4 Autocorrelation Function 
The two-point correlation point is calculated by allocating line segments of correlation length 

𝑟 to the pore network and recording the fraction of times both endpoints of the segments fall in 

the pore space. The calculation is repeated for a succession of correlation lengths and the 

resulting function quantifies the probability of encountering two points within a given distance 

𝑟 of each other, both residing within the pore space. Because the set of pore network models 

investigated possess no directional bias, the correlation function depends on the magnitude of 

the correlation length 𝑟 alone. An indicator function 𝐼(𝒙𝒊) is assigned to each point 𝒙𝒊 and 

assumes a value of unity when 𝒙𝒊 falls within the pore space and assumes a value of zero 

otherwise 

𝐼(𝒙𝒊) = {
1 𝑖𝑓 𝒙𝒊 ∈ 𝑉𝑝𝑜𝑟𝑒

0 𝑖𝑓 𝒙𝒊 ∉ 𝑉𝑝𝑜𝑟𝑒
(22) 

The correlation function 𝜉(𝑟) for a given distribution of point pairs is then approximated as 

𝜉(𝑟) =
1

𝑀
∑ ∏ 𝐼𝑘(𝒙𝒊)

𝑛

𝑖=1

𝑀

𝑘=1

(23) 

where 𝑛 equals 2 for two-point statistics and 𝑀is the total number of point pairs analysed for 

each length 𝑟 in the investigated correlation range. Adding an additional condition that both 

endpoints must fall within the same cluster modifies the autocorrelation function to consider 

only the spatial correlation of the effective pore space. In this case, the correlation function is 

referred to as the cluster correlation function 𝜉𝑐(𝑟) and gives information on the spatial 

arrangement of connected clusters. The integrals of the autocorrelation functions, 𝐿𝜉  and 𝐿𝜉𝑐
, 

are a characteristic correlation scale of the microstructure and are used to quantify heterogeneity 

in the correlation functions 

𝐿𝜉 = ∫ 𝜉(𝑟)
𝑟

0

, 𝐿𝜉𝑐
= ∫ 𝜉𝑐(𝑟)

𝑟

0

(24) 

Lastly, the lineal path function 𝜉𝑙  is calculated concurrently and conveys the probability that 

the entire line segment of length 𝑟 is accommodated within the pore space. The lineal path 
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function describes statistically the ability of the pore network model to facilitate flow along 

linear flow paths.  

The proposed method for calculating the three correlation functions uses a distance-based 

criterion in conjunction with the geometric relationship of a point relative to neighboring pore 

elements. Barycentric coordinates enable precise evaluation of the indicator function based on 

the position of a point within a simplex anchored at the endpoints of a throat. Point coordinates 

are thus represented as a linear combination of throat vertices. The process starts with retrieving 

the locations and dimensions of all pores and throats in the immediate vicinity of a randomly 

placed point 𝒑𝑖. To facilitate rapid data retrieval, a KD-tree algorithm (Cormen et al., 1990) is 

used to partition the network in terms of its pores; the search radius is taken as the length of the 

longest throat in the network. Firstly, the algorithm calculates the distance map of point 𝒑𝑖 

directed towards the centres of the indexed pores as a check for whether 𝒑𝑖 resides within a 

pore. If the Euclidean distance to a nearby pore centre 𝑷𝑖 is less than or equal to the radius of 

that pore 

𝑑𝑖𝑠𝑡(𝒑𝑖 , 𝑷𝑖) ≤ 𝑑𝑖 (25) 

 𝒑𝑖 is deemed to be situated in the pore space, and the corresponding indicator function is 

assigned. If none of the distances satisfies this condition, the algorithm checks for the point’s 

inclusion within an indexed throat by calculating the Plücker coordinates of each throat. As an 

example, a throat is considered that connects two indexed pores, 𝒑𝑎 and 𝒑𝑏. Plücker coordinates 

are a representation of lines in 3𝐷 space and facilitate efficient line-line intersection tests. They 

consist of the line segment which encodes the direction of the throat 

𝒅 = 𝒑𝑎 − 𝒑𝑏 (26) 

and the moment vector, which encodes the position of the throat relative to the origin 

𝒎 = 𝒑𝑎 × 𝒑𝑏 (27)  

𝒑𝑖 is then projected onto 𝒅 to find 𝒑𝑖
′ 

𝒑𝑖
′ = 𝒑𝑖 +

𝒅 × (𝒎 + 𝒅 × 𝒑𝑖)

‖𝒅‖2
(28) 

wherefrom the local barycentric coordinates can be defined as 

𝒑𝑖
′ = 𝜔𝑎𝒑𝑎 + 𝜔𝑏𝒑𝑏 (29) 

If the coefficients satisfy the endpoint condition of non-negativity and unity summation 

0 ≤ 𝜔𝑎 ≤ 1 𝑎𝑛𝑑 0 ≤ 𝜔𝑎 ≤ 1  (30)  
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the point 𝒑𝑖 lies between the point centres 𝒑𝑎 and 𝒑𝑏. For instance, if 𝒑𝑖 is located at the 

midpoint of 𝒅, the coefficients would be (0.5, 0.5). Additionally, a distance map is calculated 

between 𝒑𝑖 and 𝒅. If the distance is smaller than a threshold value 𝑅𝑡  that depends on the 

geometry of the throat 

  
‖𝒎 + 𝒅 × 𝒑𝑖‖

‖𝒅‖
≤ 𝑅𝑡 (31) 

and the endpoint condition is simultaneously met, the point is considered part of the pore space, 

and the corresponding indicator function is assigned. In the case of cylindrical throats, the 

distance-based criterion simplifies to a check against the throat radius. 

 

 

Figure 3: Schematic representation of the method for estimating the spatial correlation of idealized 

pores and throats in a pore network model. 

3.3 Steady-State Simulation 

3.3.1 Permeability 
Pore network modelling discretizes continuous flow-field variables to a system of point values 

assigned to pore centers. As conservation relations are applied to each pore, the flow rate 

through a pore-throat conduit is proportional to the pressure difference between two directly 

connected pores. Mass conservation for steady-state, incompressible, and non-inertial flow for 

a Newtonian fluid in the 𝑖 − 𝑡ℎ interior pore is described by a linear response 
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𝑞𝑖 = ∑
𝐺𝑖𝑗

𝜇
∙ (𝑃𝑗 − 𝑃𝑖)

𝑛

𝑗=1

= 0 (32) 

where 𝑞𝑖 denotes the net volume rate through the 𝑖 − 𝑡ℎ pore, 𝑗 indexes all connected 

neighbours, 𝑛 is the pore coordination number of the 𝑖 − 𝑡ℎ pore, 𝜇 is the fluid viscosity, 𝑃𝑗 −

𝑃𝑖 is the pressure differential driving the flow, and 𝐺𝑖𝑗 is the hydraulic size factor of the flow 

channel spanning the centres of pores 𝑖 and 𝑗. The net volume rate for an incompressible fluid 

is zero for all except the boundary pores. 𝐺𝑖𝑗 contains purely geometrical information and is 

given under Stokes conditions for an arbitrarily shaped channel with cross-section 𝐴(𝑥) and 

length 𝐿 by (Akbari et al., 2011) 

𝐺𝑖𝑗 = [16𝜋2 ∫
𝐼𝑝

𝐴(𝑥)2
𝑑𝑥

𝐿

0

]

−1

(33) 

where 𝐼𝑝 is the polar moment of inertia which captures the distribution of channel space from 

the centreline. OpenPNM (Gostick et al., 2016) calculates the effective hydraulic size factor for 

each assembly of two pores 𝑅1and 𝑅2 connected by a throat 𝑅 as the length-weighted harmonic 

average along the pore centre-to-centre conduit length 

1

𝐺12
=

1

𝐺1
+

1

𝐺𝑡
+

1

𝐺2

(34) 

Elements 𝐺1 and 𝐺2 are associated with each respective pore and 𝐺𝑡 corresponds to the throat. 

The total conduit length for the series connection is 

𝐿𝑡 = 𝐿𝑖 + 𝐿𝑘 + 𝑙𝑖𝑘 (35) 

where 𝐿𝑖 and 𝐿𝑘 are the centre-to-throat distances of 𝑅i and 𝑅k, respectively, and 𝑙𝑖𝑘 is the 

throat length, as depicted in Figure 4 below. For a cylindrical conduit, the expression above 

reduces to the Hagen-Poiseuille equation for a cylindrical channel 

𝐺1 =
𝜋𝑑𝑖

4

128𝐿𝑖
, 𝐺𝑡 =

𝜋𝑑𝑖𝑘
4

128𝑙𝑖𝑘
, 𝐺2 =

𝜋𝑑𝑘
4

128𝐿𝑘

(36) 
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Figure 4: Schematic diagram of a pore pair coupled by a shared throat. Labelled are the effective 

lengths of each element contributing to the calculation of the effective conductance (Gostick et al., 

2016). 

Summing over all 𝑁 pores in the network results in the incompressibility condition 

𝑄𝑖 = ∑ ∑
𝐺𝑖𝑗

𝜇
∙ (𝑃𝑗 − 𝑃𝑖)

𝑛

𝑗=1

𝑁

𝑖=1

= 0 (37) 

from which we can deduce that the inlet and outlet flow rates at steady state must be equivalent. 

The resulting system of 𝑁 linear equations 𝑸 = 𝑮 ∙ 𝑷 consists of the flow rate vector 𝑸 that 

sums to zero, the pressure vector 𝑷, and the sparse symmetric conductance matrix 𝑮. Fixing 

the pressures at the boundary pores to solve the system for the pressure field permits the 

calculation of the flow rate 𝑄𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 . The permeability is then found through a simple 

application of Darcy’s Law  

𝐾 =
𝑄𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝜇𝐿𝑛𝑒𝑡𝑤𝑜𝑟𝑘

𝐴𝑛𝑒𝑡𝑤𝑜𝑟𝑘∆𝑃𝑛𝑒𝑡𝑤𝑜𝑟𝑘

(38) 

where 𝐿𝑛𝑒𝑡𝑤𝑜𝑟𝑘, 𝐴𝑛𝑒𝑡𝑤𝑜𝑟𝑘 , and ∆𝑃𝑛𝑒𝑡𝑤𝑜𝑟𝑘  are the Euclidean distance, cross-sectional area, and 

pressure difference across the network, respectively. This approach can be extended for the 

continuum prediction of multi-phase properties like relative permeability by using separate 

conductivity models for each phase (Bultreys et al., 2020). 

3.3.2 Diffusion Coefficient 
Calculation of the diffusion coefficient follows much the same methodology. Diffusive mass 

balance in interior pore 𝑖 states that the mass rate 𝑚𝑖 in accordance with Fick’s Law is given 

by 
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𝑚𝑖 = ∑ 𝐹𝑖𝑗𝐷 ∙ (𝐶𝑗 − 𝐶𝑖)

𝑛

𝑗=1

= 0 (39) 

where 𝐷 is the fluid-dependent diffusivity, (𝐶𝑗 − 𝐶𝑖) the concentration difference between 

pores 𝑖 and 𝑗, and 𝐹𝑖𝑗 the diffusive size factor. For a series ensemble of two pores and an active 

throat connection, the overall diffusive size factor is 

1

𝐹12
=

1

𝐹1
+

1

𝐹𝑡
+

1

𝐹2

(40) 

and for an element with an arbitrary cross-sectional area 𝐴(𝑥) 

𝐹 = [∫
𝑑𝑥

𝐴(𝑥)

𝐿

0

]

−1

(41) 

For a cylindrical channel with diameter 𝑑, the size factor simplifies to 

𝐹 =
𝜋𝑑2

4𝐿
(42) 

In analogy to the pressure solution, the concentration field is solved from a system of linear 

equations with imposed boundary concentrations  

𝑀𝑖 = ∑ ∑ 𝐹𝑖𝑗𝐷 ∙ (𝐶𝑗 − 𝐶𝑖)

𝑛

𝑗=1

𝑁

𝑖=1

= 0 (43) 

The overall diffusion coefficient follows suit from Fick’s Law applied to the entire sample 

𝐷 =
𝑀𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝐿𝑛𝑒𝑡𝑤𝑜𝑟𝑘

𝐴𝑛𝑒𝑡𝑤𝑜𝑟𝑘∆𝐶𝑛𝑒𝑡𝑤𝑜𝑟𝑘

(44) 

with ∆𝐶𝑛𝑒𝑡𝑤𝑜𝑟𝑘  as the concentration difference between the boundaries and 𝑀𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦  the 

boundary mass rate. 

 





 

 

 

  

Results and Discussion 

4.1 Representative Elementary Volume Analysis 
Accurately determining Representative Elementary Volumes (REVs) is essential for 

understanding the scale dependency and spatial variability of macroscopic properties in porous 

media. Many previous studies have been limited by insufficient sample sizes or too few 

samples, resulting in sparse data that inadequately captures the true existence and size of REVs. 

This thesis overcomes these limitations by employing a higher resolution and a broader range 

of REVs, providing a more robust foundation for understanding these key parameters. 

This section systematically examines the scale dependency of spatial variability in a number of 

properties and quantifies the existence and size of statistical REVs. By utilizing an efficient 

pore network modelling approach, the study significantly reduces the computational burden 

associated with REV estimation, making the analysis reliable and reproducible within a 

reasonable timeframe. This optimized framework balances the need for accuracy with practical 

constraints, ensuring that the findings are both robust and applicable across different scales. 

Figure 5 and Figure 6 present a construction of the coefficient of variation (CoV) for the suite 

of computed properties as a function of cube window size across different media for pore size 

uniformity coefficient and occupation probability, respectively. Each data point within this 

figure represents the CoV for a specific window size, offering a quantified measure of statistical 

dispersion within potential REVs, with the resulting curves encapsulating the scale-dependent 

variability inherent in the pore networks. As such, the CoV, calculated as the standard deviation 

of a property over its mean across sampling sizes, serves as the measure of choice for estimating 

the sREV, acknowledging that REVs may vary spatially across different locations within the 

network. 
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Figure 5: Coefficient of Variation (CoV) for multiple properties at lower limit  𝑎 of 26% (a) and 76% 

(b), plotted against window size. 

An advantage of using the CoV is that it facilitates direct comparisons due to its unitless nature, 

making it easier to compare datasets with different means and of different property classes, 

allowing for a consistent definition of sREV that is solely determined by the chosen error 

threshold. A lower CoV value indicates a more robust estimation of the REV, as it reduces 

variability among samples, thereby providing a more precise average REV scale. By using CoV 

as a global measure, this approach ensures that the resulting sREV is well-defined, avoiding the 

issue of non-unique REVs (Gerke & Karsanina, 2020). The sREV is thus defined as the scale 

below which the statistics of the property of interest exhibit statistically significant variability 

with scale. 

Analysis of the CoV form unveils a systematic trend: the CoV declines exponentially with 

increasing window size; consequently, this decay pattern suggests a homogenization of the 
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measured properties towards a representative value. Such behavior is in line with the principle 

that broader sampling mitigates the heterogeneities of the network and aligns with the statistical 

theory that larger samples tend to approximate the true population average more closely (Kanit 

et al., 2003). At smaller window sizes, there is noticeable variability across the networks - these 

fluctuations highlight the significant impact of pore-scale heterogeneity, which are more 

pronounced at smaller scales. As the window size increases, the spatial variability diminishes, 

leading to a rapid decrease in variance. This trend indicates that an sREV can theoretically be 

established when the window size is sufficiently large, such that the CoV becomes 

diminishingly small. Additionally, the observed variance can act as a qualitative measure of the 

impact of rock heterogeneity on property-specific upscaling. 
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Figure 6: Coefficient of Variation (CoV) for multiple properties at occupation probabilities of 12% (a) 

and 30% (b), plotted against window size. The graphs represent the CoV for permeability, diffusion 

coefficient, effective porosity, effective specific surface area (S.S.A), effective pore coordination 
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number (PCN), diffusive tortuosity, geometric tortuosity, and percolation metrics. The data illustrates 

the exponential decay of CoV with increasing window size, indicating a trend towards homogenization 

and representative averaging of properties. 

Measurements taken at scales of larger variability are inherently unreliable, as they are 

influenced by random heterogeneities in pore size and connectivity rather than representing true 

macroscopic properties. Achieving the sREV ensures that the measured property is stable and 

unaffected by these random variations, providing a statistically valid representation of the 

material. As the window sizes grow larger, the properties tend to converge toward homogeneity. 

This trend was consistently observed for all properties in the analysis, confirming that the sREV 

can be practically achieved for both static and dynamic properties in the networks examined in 

this study.                                                                                                      

The exponential decrease in the CoV can be understood as a result of averaging over 

increasingly larger volumes, which progressively incorporate a broader range of 

heterogeneities. Smaller windows might capture localized features—such as a large pore or a 

sparse cluster of throats—that can skew property measurements. However, as the window size 

increases, these local anomalies are averaged out, leading to more representative measurements 

that reflect the medium's overall characteristics. This reduction in variability is a natural 

consequence of the system becoming more homogeneous at larger scales. 

The dynamic continuum properties registered the highest CoV curves for both pore size and 

connectivity analyses, reflecting a stronger and more varied response to pore-scale 

heterogeneities because of the added mechanisms underpinning transport processes: they are 

influenced by the size, shape, and connectivity of pore elements. A single bottleneck can for 

instance significantly impede flow, causing high variability in permeability across different 

samples at no discernible change to the porosity. In the same vein, more tortuous paths can 

dramatically slow down diffusion though the pore sizes remain unchanged. CoV magnitude can 

thus directly quantify the extent to which heterogeneities scale a specific aspect of continuum 

behavior. Nonetheless, the observation of exponential behavior in the CoV for dynamic 

properties would seem to indicate that structural heterogeneities exert a similar scaling 

influence on both static attributes and transport mechanisms. The difference in sensitivity 

between permeability and diffusion coefficient is likely because permeability is a continuum 

manifestation of not only the pathways available but also on the specifics of viscous flow that 

impose an additional boundary condition at the fluid-solid interface. 

Curve-fitting of an exponential-type relationship to the CoV values of each property was done 

using a generalized version of the exponential decline function  

𝑎𝑥𝑏 ∙ 𝑒−𝑐𝑥𝑑
(45) 



52 Results and Discussion 

 

 

to allow for additional flexibility in accommodating the diverse decay rates and conformations 

present in the dataset. The optimal fit for each property’s CoV was determined by minimizing 

the root mean square error (RMSE) while ensuring that the curve adheres globally to the 

downward trend. The exponential curves fitted to these points serve not only as descriptive 

tools but also as predictive models for the network’s behavior at REV thresholds beyond the 

range of the empirical data. In general, smaller decay rates are observed in networks with larger 

𝑝 because more densely connected networks yield a more homogeneous distribution of 

connectivity. Sparsely connected networks on the other hand reveal greater heterogeneity and, 

consequently, a higher CoV for a given window size. 

Because the rate of convergence to the true population means is inherently exponential, further 

increases in the spatial scale are met with a diminishing reduction in the error.  This suggests 

that the benefits of increasing the sample size come at a greater computational cost or 

experimental expediency. An optimal sREV size must, therefore, be chosen judiciously to strike 

a balance between these competing demands.  

sREV estimation can be conducted using various criteria, though the impact of these thresholds 

on REV identification can be ambiguous because they are based on subjective assessments of 

acceptable property variability (Constanza-Robinson et al., 2011; Keller et al., 2018; Rahman 

et al., 2020). In this study, the REV was defined as the minimum window length at which the 

coefficient of variation (CoV) for the measured property remained below 5%. This threshold 

ensures that the statistical variability, relative to the mean, is sufficiently small. The 5% 

criterion is well below thresholds commonly suggested in the literature for homogeneous 

samples and typically represents reasonable balance between sensitivity and specificity in data 

analysis. While the choice of this criterion depends on the system and desired accuracy, it offers 

a reliable standard for ensuring acceptable error across the domain. 

However, it is important to note that such criteria are based on subjective assessments of 

acceptable property variability. To validate the prudence of this threshold, we compared it with 

visual assessments of plateau regions in the mean data (shown in the following section) and 

found it to align well with similar literature standards. Thus, the sREV estimated using this 

method represents the lower bound of a scale range within which property variability is 

minimal, with the upper bound defined by the linear extent of the domain. 

When fitting exponential curves to the CoV values, an initial exponential decay 𝑎𝑒−𝑏𝑥 is 

observed, followed by a shift to a sub-exponential rate at larger scales (Figure 7). This transition 

reflects that, beyond a certain point, the decrease in variability is no longer due to averaging 

out pore-scale heterogeneities, but rather because the system approaches an inherent limit of 

error reduction. As window sizes increase, the CoV decline slows, indicating that the variability 
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is reaching a minimal threshold determined by the fundamental measurement limits rather than 

structural heterogeneities. The 5% CoV threshold captures this shift effectively, marking a scale 

well beyond the point where the reduction in statistical error offers diminishing returns. This 

threshold represents a balance between sensitivity and specificity, ensuring that the window 

size encompasses a statistically adequate range of features. Thus, the choice of this threshold is 

crucial for defining the REV, accounting for both the inherent error limits of the measurement 

and the need for representativity across different scales. 

 

Figure 7: Permeability CoV values for different values of the occupation probability, plotted along 

with the best-fit curves as well as dashed lines representing the exponential function. Notably, at a 10% 

occupation probability, closely adjacent to the percolation threshold, the exponential model remains 

the closest fit, potentially because the window sizes have not yet reached the scale where the CoV's 

decline rate would noticeably slow down. 

Figure 8, capturing the CoV at an occupation probability of 9%, near the percolation threshold, 

reveals a breakdown of scaling behavior where no singular scale can confidently yield 

representative continuum behavior. The CoV curves for dynamic properties exhibit significant 

variability that does not conform to recognizable exponential decay, which challenges the 

determination of an accurate REV. In contrast, the specific surface area (SSA) demonstrates a 

more consistent exponential decay, suggesting that as a static property, it remains less perturbed 

by connectivity fluctuations that heavily influence dynamic mechanisms as a network nears the 

threshold. The total porosity presents relatively more stability compared to effective porosity, 
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pointing to the impact of connectivity on effective transport pathways. Notably, both the 

geometric tortuosity and the second percolation metric exhibit a near-constant CoV. This 

plateau may suggest that these properties are less sensitive to the scale at which they are 

measured in highly fragmented systems. The absence of a stabilizing CoV illustrates the 

difficulties of upscaling in networks where traditional concepts of structure become erratic and 

non-representative of bulk behavior. This instability precludes the determination of a reliable 

REV, and as such, the results at 𝑝 = 9% are omitted from further consideration. Lastly, the 

fluctuations in the Euler characteristic draw attention to a drawback of the Coefficient of 

Variation as a metric; in networks with poor connectivity, the mean Euler characteristic 

undergoes a sign change with increasing window size. This transition from positive to negative 

values results in an inflated CoV. 

 

Figure 8: Coefficient of Variation (CoV) for multiple properties at a 9% occupation probability, 

depicting the challenge of defining a Representative Elementary Volume (REV) near the percolation 
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threshold. These curves collectively underscore the complexities in networks below the correlation 

length. 

The analysis of the representative elementary volumes (REVs) presented in Figure 9 reveals a 

critical transition at approximately 30% connection probability, beyond which a power-law 

relationship emerges. This shift aligns with the onset of clustering within the network and 

mirrors the behavior of the correlation length near the percolation threshold. As the connection 

probability decreases toward this threshold, the correlation length diverges, leading to 

increasingly larger scales over which network properties must be averaged to achieve 

representativity. Below the clustering onset, the network's inherent redundancy of pathways 

preserves connectivity despite throat removals, maintaining relatively stable REV values that 

do not exhibit significant fractal influence. 

 
Figure 9: Variation in the Coefficient of Variation (CoV) for key properties against occupation 

probability (p), illustrating the critical transition in network clustering at p=30%. The graphs capture 

the REV for effective and total porosity and specific surface area (S.S.A), permeability, diffusion 
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coefficient, percolation metrics, and different tortuosity measures, each exhibiting a distinct power-law 

rise beyond p=30%. 

In other words, the redundancy of pathways ensures a negligible effect on the correlation length, 

which translates to a comparatively insensitive representativity. A relationship between the 

correlation length and REV is expected because both are measures of scale: the correlation 

length describes the extent of fractal influence within the network, while the REV defines the 

scale at which the network's properties become statistically representative of the whole. 

The correlation length basically bifurcates the network into two domains: below this critical 

scale, the network exhibits fractal characteristics. As percolation theory suggests, near the 

percolation threshold, universal aspects dominate, and the fractal nature of clusters introduces 

a strong dependence of transport properties on network connectivity. The CoV curves for 

permeability, presented in Figure 10, illustrate the interplay between REV and the correlation 

length. For occupation probabilities of 15%, 12%, and 10%, we observe that the CoV decreases 

in a non-monotonic and erratic fashion at smaller window sizes, indicating that no single 

window size within this range can effectively capture the network's heterogeneity. This fractal 

nature arises due to being below the correlation length scale. Within this regime, the network 

retains complex, approximately self-similar patterns that defy averaging. The expected 

exponential decay in CoV, which would suggest the approach of a stable REV, is only observed 

once the analysis transcends the bounds of the correlation length. For the networks under 

consideration, this transition to exponential behavior begins at window sizes of approximately 

8, 10, and 17 units for the 15%, 12%, and 10% occupation probabilities, respectively. 

In stark contrast, the 9% occupation probability network presents a consistently erratic CoV 

across all investigated window sizes, implying that the entire window size range falls below the 

correlation length. Here, the fractal nature characterizes every size examined, prohibiting the 

identification of a representative REV in a scale-invariant regime. Intuitively, this fractal nature 

means that the pore space, when sampled below the REV, retains a complexity that does not 

average out. Above the clustering threshold, however, where the correlation length falls below 

the smallest window size considered, the system has transitioned away from its fractal character 

and into a more homogeneous state where REV can be effectively determined. Consequently, 

the power-law increase in REV predictions as we approach the percolation threshold mirrors 

the divergence of the correlation length, such that there is a rapidly expanding scale for 

representativity. 
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Figure 10: Coefficient of Variation (CoV) for permeability across different occupation probabilities 

within a network, showcasing the relationship between REV and correlation length. Subfigures (a), (b), 

(c), and (d) correspond to occupation probabilities of 15%, 12%, 10%, and 9%, respectively. 

The graphical representation in Figure 11 offers a comprehensive view of the scale dependency 

of various properties, showing the requisite investigation sizes to achieve representativity at 5% 

precision. There is a uniformity in scale representation across the networks, which do not 

exhibit any clustering (from 𝑝 = 90% to 𝑝 = 30%) and thus, there is minimal change in the 

functional form of the relationship curve due to the approximately linear variation with 

connectivity. However, as clustering commences the relationship undergoes a transformation. 

The hierarchy of property-specific REVs diverges, signifying a shift in how each property's 

spatial variability responds to the network's heterogeneity. 
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Figure 11: Scale dependence of Representative Elementary Volume (REV) sizes across occupation 

probability and uniformity coefficient. This graph illustrates the required window sizes to achieve a 5% 

coefficient of variation (CoV) for different properties within porous networks. The curves exhibit a 

distinct transition at p=30%, where clustering begins, and demonstrate the varying scale sensitivities 

of properties. 

The analysis of the linear relationships between the predicted 5% CoV threshold REVs and the 

variables that capture network heterogeneity reveals critical insights into the behavior of porous 

media under different connectivity and size conditions. Figure 12 and Figure 13 reveal a linear 

relationship when the predicted 5% CoV threshold is plotted against the uniformity coefficient 

and mean geometric tortuosity for each network, respectively. The fact that there is a 

proportional increase in the size of the REV suggests that geometric tortuosity encapsulates the 

complexity of available flow paths within the network in a manner that scales proportionally 

with the window size needed to achieve a representative average. This consistency in how it 

evolves allows geometric tortuosity to serve as an accurate representation of network 

heterogeneity in the case of the connectivity analysis. 
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Figure 12: Representative Elementary Volume (REV) size scaling with uniformity coefficient across 

different rock properties. The top left graph correlates porosity, specific surface area, and sizes. The 

right graph shows the relationships with permeability, diffusion coefficient, and diffusive tortuosity. 

Interestingly, both permeability and diffusion coefficient REVs demonstrate nearly identical 

slopes for the connectivity analysis. Despite the different physical phenomena governing the 

effective coefficients, the REVs required to describe both properties seem to be equally 

influenced by the network's connectivity constraints as captured by the geometric tortuosity. 

The observed linear trends suggest that geometric tortuosity is a robust predictor of the REV 

size across different transport mechanisms. In contrast, effective porosity and SSA deviate from 

the linear trend. Overestimation by the linear fit could indicate that these properties are less 

sensitive to changes in tortuosity or affected by additional factors not captured by geometric 

tortuosity alone. This could serve as a valuable insight for modeling as it indicates a clear 

linkage between the microstructural complexity and the scale at which continuum assumptions 

become valid. The results confirm the intricate property-specific dependence of REV on the 

structural attributes of the pore networks. 
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Figure 13: Representative Elementary Volume (REV) size scaling with geometric tortuosity across 

different rock properties. The top left graph correlates permeability, diffusion coefficient, and two 

percolation metrics with geometric tortuosity. The top right graph shows the relationship of effective 

porosity, total porosity, effective specific surface area (S.S.A.), and total S.S.A. The bottom graph 

compares diffusive tortuosity, geometric tortuosity, and effective pore coordination number (PCN). 

Table 2 provides a summary of the linear regression parameters for sREV fits across both size 

and connectivity analyses, showing the slopes, extrapolated sREV sizes under homogeneity 

conditions, and coefficients of determination. The homogeneity conditions are defined as 

scenarios where the uniformity coefficient approaches zero and the geometric tortuosity equals 

unity, representing idealized conditions of perfectly uniform pore sizes and entirely straight 

flow paths. This conceptual framework allows us to interpret the influence of microstructural 

variations on the required scale of representativity. In the connectivity analysis, the 

homogeneity condition for geometric tortuosity—where all paths are ideally straight—results 

in larger sREV’s compared to the uniformity coefficient's homogeneity condition due to the 



Results and Discussion 61  

 

 

 

fixed size distribution of pores, which introduces residual complexity even when paths are 

straight. 

Table 2: Linear regression parameters for all sREV linear fits in the size and connectivity analysis , 

including the slope, the coefficient of determination, and the extrapolated sREV size at homogeneous 

conditions. 

 Fit Parameters - Size Fit Parameters - Connectivity 

Property Slope Homo. Coeff. Slope Homo. Coeff. 

Effective P.C.N - - - 0.49 4.0 0.44 

Total S.S.A 2.3 2.9 0.99 1.0 5.5 0.94 

Effective S.S.A - - - 2.2 5.5 0.99 

Total Porosity 3.4 3.1 1.0 11 7 0.86 

Effective Porosity - - - 15 7 0.91 

Geom. Tortuosity - - - 14 0.0 1.0 

Diff. Tortuosity 2.4 5.3 0.97 20 4.3 1.0 

Diff. Coefficient 4.9 3.9 0.99 18 6.9 0.99 

Permeability 8.6 6.0 0.99 19 14 0.99 

4.2 Property Scaling Analysis 
Figure 14 and Figure 15 plot the average values of the computed properties at the final window 

size against the uniformity coefficient and the occupation probability, respectively, furnishing 

valuable insights into the upscaling of these properties in relation to network heterogeneity. The 

figures reveal the differing impacts of pore-size variations on viscous-driven versus diffusion-

driven flow in porous media. Both permeability and diffusion coefficient decrease with 

increasing uniformity coefficient, but the decline in permeability is more pronounced due to its 

greater sensitivity to pore size heterogeneity. Hydraulic conductivity, governed by Hagen-

Poiseuille's law, scales with the fourth power of the radius in cylindrical channels, making it 

highly dependent on the size of the largest pores and throats that dominate fluid flow. In 

heterogeneous networks, changes in the most conductive pathways significantly reduce 

permeability. In contrast, the diffusive conductivity, described by Fick's law, scales with the 

square of the diameter and is influenced by overall accessible pore space and tortuosity rather 

than just the largest pores. This allows diffusion to occur through a broader range of pathways, 

including smaller pores, making it less sensitive to heterogeneity. 
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Figure 14: Scaling behavior of average properties across the range of investigated uniformity 

coefficients. 

The figures show that both mean throat diameter and porosity decrease with uniformity 

coefficient. In more heterogeneous media, the presence of smaller pores reduces the overall 

average throat diameter, which directly diminishes the network’s porosity. This reduction 

occurs because heterogeneous distributions tend to include narrower channels and void spaces, 

limiting the accessible pore volume. This relationship reveals how increasing pore size 

variability directly impacts the structural openness and overall capacity of the medium to store 

and transmit fluids, making these properties fundamental indicators of the influence of size 

heterogeneity. 

Conversely, both specific surface area (SSA) and diffusive tortuosity increase with rising 

heterogeneity. Smaller pores contribute disproportionately to the total surface area. 

Simultaneously, diffusive tortuosity, which measures the complexity of pathways for diffusive 

transport, also rises due to the more convoluted routes created by heterogeneous pore 

distributions. This sheds light on how heterogeneity affects the interaction between fluid and 
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solid phases while complicating transport pathways, affecting the efficiency of diffusive 

processes in porous media. 

Furthermore, the rate of change decreases the broader the pore size distribution becomes. 

Initially, increasing heterogeneity sharply reduces these properties due to the addition of 

smaller, restrictive pores. However, as heterogeneity continues to rise, the system reaches a 

saturation point where the structure is already dominated by restrictive features, and further 

increases in uniformity coefficient have a progressively smaller impact. The most accessible 

spaces are already minimized, resulting in only marginal further reductions.  

The first and second percolation metrics in Figure 15 illustrate the critical sensitivity of the pore 

network to connectivity loss as the connection probability decreases. The first metric, which 

measures the percentage of pore volume within the largest cluster, sharply declines with 

reduced connectivity because the single dominant cluster fragments into smaller, isolated 

clusters. The second metric, representing the probability that two randomly selected pores 

belong to the same cluster, shows a similar but slightly steeper decline. Together, these metrics 

provide a concise yet comprehensive view of the breakdown in connectivity. 
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Figure 15: Relationship between occupation connectivity and various transport properties in a porous 

medium. The graphs illustrate the effects of decreasing occupation probability on various properties. 

The decline in permeability and diffusion coefficient on a semi-log scale highlights the sensitivity of these 

properties to changes in connectivity. 
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Permeability and diffusion coefficient exhibit a nearly identical functional shape on a semi-log 

scale, which is in contrast with the effect of pore size distribution, where permeability is more 

sensitive due to its dependence on larger flow channels, highlighting that connectivity 

proportionally disrupts both flow and diffusion mechanisms. Above a connection probability 

of 30%, where the network remains well-connected with excess throats, both properties 

decrease linearly. Because throat removal minimally impacts overall flow paths and percolation 

metrics, the linear decline matches the behavior observed in sREV. However, as connectivity 

nears the critical threshold, the decline becomes exponential, with even small reductions in 

connection probability causing dramatic drops that span several orders of magnitude. 

The Euler characteristic and effective pore coordination number's linear variation with 

occupation probability align with the expectation for a pore network where throats are randomly 

removed. However, these linear metrics are insufficient to capture the nonlinear impact of 

connectivity changes on continuum properties. They do not account for the complex interplay 

between pore geometry and transport pathways. Therefore, while useful in describing 

topological features of the network, the Euler characteristic and pore coordination number alone 

do not provide a complete description of connectivity impact. 

Instead, geometric tortuosity, with its non-linear variation, better reflects these dynamics by 

accounting for the increased complexity of paths. Unlike the linear expectations, geometric 

tortuosity shows how random throat deactivation elongates or blocks paths in a non-uniform 

manner across the network, highlighting disproportionate impacts on transport routes 

depending on their specific configurations. While both diffusive and geometric tortuosity 

increase as connectivity falls, diffusive tortuosity changes far more drastically—often to the 

thousands— due to its consideration of porosity. Thus, in ramified networks where the non-

linear effects are critical to understanding the scaling of continuum properties, geometric 

tortuosity offers a more reliable description. 

  



66 Results and Discussion 

 

 

The evolution of effective porosity and specific surface area (SSA) shows distinct phases in 

response to connectivity changes. Initially, effective porosity decreases linearly, correlating 

with the reduction in active throats. However, beyond the clustering point, the decline steepens 

as isolated clusters form, contributing to pore space but not transport. This results in larger 

disconnected regions, significantly reducing the volume that supports effective flow, while SSA 

may increase due to the increased surface complexity of disconnected clusters. 

The evolution of effective porosity and specific surface area (SSA) indicates distinct phases of 

behavior in response to connectivity changes. Initially, the reduction in effective porosity 

appears linear, reflecting a direct correspondence between the number of active throats and the 

volume available for flow. However, the decline intensifies past the clustering point. This 

suggests that the impact of disconnection becomes magnified due to the formation of isolated 

clusters that contribute to the pore space but do not facilitate transport. Increasingly larger 

portions of the pore space become disconnected from the main channels, disproportionately 

reducing the volume that contributes to effective porosity. 

In order to investigate property evolution and the unfolding of the upscaling process, Figure 16 

and Figure 17 depict the mean property values over the spatial range and across occupation 

probabilities, with 95% confidence intervals. A commonality among all properties is the 

gradual stabilization of the mean with increasing window size, which is an explicit condition 

for the determination of sREV using the CoV. However, especially at low occupation 

probabilities, significant variability and broader confidence intervals indicate that stabilized 

means may still inadequately represent effective transport behavior. This is particularly evident 

at 9% occupation probability, where fractal characteristics dominate, causing an unabating 

decline in permeability and diffusion. Below the correlation length, the system's scale 

invariance challenges traditional upscaling, with no clear transition to homogeneity. This 

section focuses on these transitions, emphasizing the critical role of scale in capturing the true 

transport properties of heterogeneous networks. 

This sensitivity to the investigation scale below the correlation length is observed in other 

topology-dependent properties as well. As window size increases, geometric tortuosity rises 

sharply due to the need to navigate increasingly convoluted pathways. The observed peak 

occurs at the intersection where the sampling scale captures maximum irregularity. The 

continued increase in tortuosity up to the correlation length indicates that sampling still only 

includes fragmented paths rather than routes that can be averaged to something representative. 

Once window sizes exceed the correlation length, tortuosity begins to stabilize because the 

averaging process is able to diminish the impact of localized complexities. 
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The effective porosity graph shows higher values at smaller scales, decreasing with increasing 

window size, particularly in the 9% occupation network. This is because smaller sampling 

windows are more likely to capture segments of the percolating cluster in a way that maximizes 

the observed pore space. As the window size grows, the scale begins to capture the larger, 

interconnected structure, including the interstitial empty spaces or “holes” of the ramified 

cluster. For 10% and 12% occupation probabilities, a local minimum appears, followed by a 

rebound as the sampling window exceeds the correlation length and accommodates a higher 

proportion of connected pore space. This reflects the transition to sampling scales that more 

accurately represent the full spatial extent of the percolating cluster, which is underrepresented 

at smaller scales. 
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Figure 16: This graph illustrates the scaling behavior of effective porosity, specific surface area, 

effective coordination number, and Euler characteristic with increasing window size across different 

occupation probabilities (p = 9% to 30%). 
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As a result, in clustered networks below the correlation length, transport coefficients initially 

appear higher for lower occupation probabilities due to the structural simplicity of the 

percolating cluster near the percolation threshold. At these scales, the lower occupation 

networks exhibit less tortuous pathways because the percolating cluster forms through the 

merging of smaller, less convoluted clusters—favoring the least tortuous connections necessary 

to span the observation scale. This results in lower mean geometric tortuosity at smaller window 

sizes. However, as the observation scale expands, the inherent complexity of the fractal network 

emerges, revealing more circuitous pathways. Thus, initially, straighter paths at smaller scales 

transition into more complex routes at larger scales that cannot be described by a representative 

value, diminishing the permeability and diffusion coefficients due to the increasing fractal 

influence of the network's sparse connectivity. 
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Figure 17: Depicting the evolution of normalized permeability, diffusion coefficient, tortuosity, and 

percolation metrics with window size for different occupation probabilities (p = 9% to 40%). The 

curves demonstrate how lower occupation probabilities result in higher initial tortuosity and slower 

stabilization of transport properties. 
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For networks where the correlation length is smaller than the smallest window size, property 

behaviors lack fractal influences. In porosity curves above 15% occupation, initially lower 

values stabilize after a monotonic increase due to smaller windows being more sensitive to local 

porosity variations and often biased toward regions of lower porosity. The increasing negativity 

in the Euler characteristic suggests that the number of throats grows faster than the number of 

pores, indicating enhanced connectivity and a rise in the number of loops relative to volume. 

This reflects the ability of larger windows to capture more of the network's topological features 

that smaller scales fail to adequately represent. 

Finally, Figure 18 illustrates the evolution of geometric tortuosity distributions with increasing 

window size. As the window size grows, the interquartile range (IQR) narrows, reflecting a 

homogenization of available pathways. The shift towards a more platykurtic distribution shows 

that extreme values of tortuosity become less frequent, reducing the dominance of either highly 

tortuous or highly straightforward paths. Similarly, higher skewness in smaller windows 

reflects the presence of disproportionately high tortuosity, but an increasing window size 

symmetrizes the distribution. This statistical homogenization explains why, at higher 

occupation probabilities, mean tortuosity decreases with window size: larger windows better 

capture a representative sample of the network, including a greater number of more direct 

pathways that dominate flow. For these well-connected, even small windows capture a dense 

array of paths, resulting in elevated permeability and diffusion coefficients at smaller scales. 

This highlights the critical role of conductive pathways in transport characterization, where the 

variability in tortuosity is offset by the volume of direct paths, ensuring stable continuum 

behaviour even in the presence of tortuosity extremes at smaller scales. 
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Figure 18: Scaling behavior of statistical properties of the geometric tortuosity distributions. 

 

4.3 Regression Analysis 
In this section, Accumulated Local Effects (ALE) plots are utilized to delve into the individual 

contributions of predictor variables to the permeability response across various window sizes, 

using a Random Forest Regressor model. Unlike traditional global interpretation methods that 

focus on average scaling behaviour, ALE plots allow for a nuanced examination of how each 

variable locally impacts the model's predictions by capturing the change in the predicted 

response as each predictor varies, while accounting for interactions with other features. This 

local interpretability provides a more accurate reflection of the relationship between predictor 
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variables and the permeability response, especially in complex, non-linear models like Random 

Forests, where interactions and dependencies between variables can obscure individual effects 

in average analyses. 

ALE plots are constructed for the most significant features identified by the Random Forest 

model, which include mean geometric tortuosity, minimum geometric tortuosity, mean pore 

diameter, and the second percolation metric. These plots provide insights into the marginal 

effects of each feature on permeability by accumulating the localized changes in the model’s 

response across the predictor’s range, averaged over conditional distributions of the other 

features to provide a more reliable understanding of predictor influence on permeability. This 

approach allows us to refine our understanding of the complex interplay between network 

structure and transport properties, moving beyond average scaling to focus on the granular, 

local effects that drive the observed behaviours in permeability across scales. 

The feature importance shown in Figure 19 illustrates how the relative significance of the 

predictors within the model evolves with increasing window size. In unclustered networks, 

mean geometric tortuosity consistently holds the highest importance across all window sizes, 

indicating that the overall tortuosity of paths plays a dominant role in modelling permeability 

when the network is intact. This suggests that the flow efficiency in well-connected networks 

is primarily governed by the complexity of hydraulic paths. The geometric tortuosity uniformity 

coefficient and the second percolation metric also maintain steady importance, reflecting the 

significant role of the distribution of tortuous paths and the extent of percolating clusters, even 

if it’s unity throughout. The relatively stable feature importance across increasing window sizes 

for these variables implies that at, these properties consistently impact the permeability 

predictions. 

In contrast, fragmented networks show more erratic shifts in feature importance at smaller 

scales. As the window size increases, the importance of the geometric tortuosity uniformity 

coefficient rises. This rising trend highlights how, in fragmented networks, the variability in 

tortuosity has a pronounced effect on permeability. The second percolation metric also shows 

increasing importance. These graphs indicate that the importance of predictor variables for 

permeability is scale-dependent and varies significantly with the underlying network 

connectivity. 
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It is interesting to note that the feature importance of mean pore diameter is notably higher at 

smaller window sizes and therefore seems to play a more significant role in model prediction 

at smaller scales. Physically, this could be attributed to individual pores and their sizes having 

a more pronounced impact on fluid flow in smaller scales because these windows capture less 

of the overall network’s connectivity. 

The ALE plots in Figure 20 illustrate the impact of mean geometric tortuosity on permeability 

predictions for unfragmented networks (left column, p > 30%) and fragmented networks (right 

column, p ≤ 30%) across window sizes 6, 9, and 14. In both network types, a pronounced 

decline in the standardized effect on permeability  by transforming it to have a mean of zero 

and a standard deviation of one to reduce the multicollinearity and improve interpretability, 

with increasing tortuosity is observed, such that even slight changes in mean tortuosity 

significantly reduce permeability, especially close to unity. The effect is most pronounced at 

smaller window sizes. 

For unfragmented networks, the ALE plots reveal a plateau effect where further increases in 

tortuosity beyond a threshold do not significantly alter permeability. The surplus of throats 

within the percolating cluster provides a buffering capacity that maintains overall flow 

continuity despite local variations. This plateau indicates that, in well-connected systems, 

permeability is less sensitive to changes in tortuosity because redundant pathways mitigate the 

effect of greater tortuosity. In contrast, for fragmented networks, the influence of tortuosity on 

permeability remains strong and continuous across all scales. Here, even minor increases in 

tortuosity significantly impact the prediction, due to the presence of isolated clusters and dead-

Figure 19: Feature importances for unfragmented (a) and fragmented (b) networks as a function of 

window size for the trained Random Forest Model. 
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end paths. The larger range of tortuosity values in fragmented networks causes overlap among 

different network configurations. 

 

Figure 20: Series of 1D Accumulated Local Effects (ALE) plots illustrating the impact of mean 

geometric tortuosity on permeability predictions in porous networks. The left column (a, c, e) 

represents unclustered networks. The right column (b, d, f) depicts clustered networks, characterized 
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by fragmented percolation clusters that introduce significant heterogeneity. Figures (a) and (b) 
correspond to subwindows with a unit size of 6, (c) and (d) to a unit size of 9, and (e) and (f) to a unit 

size of 14. The horizontal color bar at the bottom represents the data point density. 

Figure 21 reveals a steep initial decline in the ALE plots of minimum geometric tortuosity, 

showing that increases in the smallest available tortuosity significantly reduce permeability by 

adding resistance to the most conductive pathways. This effect quickly plateaus, suggesting 

that once a critical level of tortuosity is reached, further increases add little additional resistance 

as the network. As window size increases, the standardized effect on the permeability prediction 

diminishes due to the transition from localized flow resistance to more aggregated flow 

characteristics. This reflects that while minimum tortuosity critically affects permeability in 

smaller, localized regions, its impact fades as broader spatial extents are considered, with mean 

tortuosity emerging as a more dominant factor. The correlation between increasing minimum 

tortuosity and mean tortuosity suggests a uniform rise in complexity across the network rather 

than isolated spikes, such that that changes in minimum tortuosity are indicative of broader 

structural shifts. 

The ALE plots for the tortuosity uniformity coefficient in Figure 22 show diverse trends. The 

uniformity coefficient, which measures the spread of the middle 80% of tortuosity values scaled 

by the median, captures how broader distributions affect permeability. At smaller scales, higher 

uniformity coefficients generally enhance permeability by facilitating a mix of pathways that 

includes efficient, less tortuous routes. However, as scale increases, this heterogeneity begins 

to hinder flow by reducing the overall pathway efficiency, as the impact of highly conductive 

pathways diminishes when spread across a broader, more heterogeneous network. At the largest 

scale (window size 14), a broader distribution of tortuosity uniformly decreases permeability 

predictions for both clustered and unclustered networks, indicating that even the presence of 

less tortuous pathways cannot compensate for the increased resistance from the overall network 

structure. The scale-dependent nature of tortuosity effects, where a broad distribution can either 

support or impede flow depending on the balance of pathway efficiency versus resistance.  
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Figure 21: Series of 1D Accumulated Local Effects (ALE) plots illustrating the impact of minimum 

geometric tortuosity on permeability predictions in porous networks. 
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The ALE plots for mean pore diameter (Figure 23) consistently show a monotonic increase, 

indicating that larger mean pore diameters positively impact permeability, which aligns with 

physical expectations. The approximately linear effect implies that the impact of mean pore 

diameter on permeability remains stable across different network configurations. Since the 

networks were generated through random throat removal without directly altering pore sizes, 

the mean diameter stays relatively constant despite variations in occupation probability. The 

uniformity of mean pore diameters across the analyzed networks implies that the observed 

linear relationship reflects the functional capacity of the connected pores—those significantly 

contributing to flow—rather than changes in pore size itself. 

For size 6 and 9, as the second percolation metric increases, indicating higher probabilities of 

intra-cluster connectivity, the ALE plots initially show a decrease in the standardized effect on 

permeability prediction, which then transitions to an increase, particularly notable at higher 

values of the metric (Figure 24). The magnitude of the change in the ALE values and the turning 

point of the curve (or lack thereof) depends on the scale. The plot for size 14, for example, 

shows a monotonic relationship. The semi-log cross-plot in fig. of permeability versus the 

second percolation metric color-coded by the occupation probability offers an explanation by 

way of how permeability behaves under extensive fragmentation in a pore network. At very 

low values of the second percolation metric corresponding to 𝑝 = 10% as denoted by the 

square markers, there is a tremendous amount of variance in the encountered permeability 

values because of the presence of a relatively small number of pathways that dominate the flow 

in a very strong manner. As discussed in the previous section, the network is below the 

correlation length and therefore exhibits fractal behavior where even a window size of 9 units 

is insufficient to capture a representative sample of the network behavior. However, for larger 

values of occupation probability a better connectivity emerges that leads to a bounded, more 

consistent trend as more paths become part of a connected cluster that does not have a fractal 

character. The network’s behavior becomes more predictable and less sensitive to changes in 

structure. Additionally, the second percolation metric, along with the mean tortuosity, retains 

significant ALE values at the largest investigated window size. 
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Figure 22: Series of 1D Accumulated Local Effects (ALE) plots illustrating the impact of geometric 

tortuosity uniformity coefficient on permeability predictions in porous network. 
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Figure 23: Series of 1D Accumulated Local Effects (ALE) plots illustrating the impact of mean pore 

diameter on permeability predictions in porous networks. 
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The cross plot of permeability versus the second percolation metric, color-coded by network 

occupation probability, supports the ALE findings. For lower occupation probabilities (e.g., 

𝑝 = 10%, shown by squares), there is significant spread in permeability values, which aligns 

with the initial decrease in the ALE plots where improvements in connectivity have limited 

impact. As occupation probability increases (e.g., 𝑝 = 20% and 𝑝 = 30%, shown by circles 

and triangles), data points shift upward and rightward, indicating a consistent and substantial 

increase in permeability with less fragmentation. This supports the ALE findings. 

 

 

Figure 24: Series of 1D Accumulated Local Effects (ALE) plots illustrating the impact of the second 

percolation metric on permeability predictions in porous networks. 
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2D Accumulated Local Effects (ALE) plots extend the capabilities of 1D ALE plots by 

capturing interaction effects between pairs of features, providing insights into how these 

interactions impact model predictions beyond the isolated influence of each feature. While 1D 

ALE plots are effective in revealing the main effects of individual features, they fail to account 

for how features may interact with each other to influence the prediction. 2D ALE plots address 

this by partitioning the feature space into a grid, computing localized effects within each grid 

cell, and calculating second-order differences that isolate the purely interaction-driven effects. 

This method subtracts the main effects of the features, allowing the visualization of the residual 

impact that arises purely from their combined variation. The utility of 2D ALE plots lies in their 

ability to reveal whether the simultaneous changes in two features produce synergistic, 

antagonistic, or neutral effects on the model's predictions—effects that are not evident when 

considering features independently. By exploring these complex dependencies, 2D ALE plots 

provide a more nuanced understanding of the interdependencies within the model. 

The 2D ALE plots of mean geometric tortuosity versus mean pore diameter in Figure 25 for 

unfragmented networks reveal distinct interaction effects, especially at smaller window sizes. 

Positive interaction effects occur where tortuosity is low and pore diameters are large, as well 

as in the opposite configuration of high tortuosity and small pore diameters. The combination 

of low tortuosity and large pore diameters facilitates efficient fluid flow, enhancing 

permeability. Conversely, negative interaction effects are seen when both tortuosity and pore 

diameter are either low or high. Small pore diameters with low tortuosity create uniformly 

restrictive paths, while large pore diameters with high tortuosity introduce flow inefficiencies 

due to convoluted routes, even with ample pore space. As window size increases from 6 to 14 

units, these interaction effects diminish, indicating that the interaction effects of specific 

configurations weaken with scale. 
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Figure 25: Series of 2D Accumulated Local Effects (ALE) plots illustrating the impact of mean 

geometric tortuosity interacting with mean pore diameter on permeability predictions in unfragmented 

porous networks. 

There are both parallels and distinctions in the ALE plots for fragmented networks in Figure 26 

(below 30% occupation probability). In fragmented networks, interaction effects between mean 

geometric tortuosity and mean pore diameter follow familiar patterns, such as larger pores 

enhancing flow and higher tortuosity impeding it, indicating that fundamental flow dynamics 

persist despite fragmentation. However, these effects are generally weaker and more dispersed. 

The reduced clarity and strength of interactions suggest that connectivity loss, characteristic of 

these fragmented networks, imposes a dominant influence that can overshadow the subtler 

interplay of pore structure and tortuosity. Regions with extreme combinations of tortuosity and 

pore diameter, indicated by areas of low data density, are particularly prone to variability and 

less reliable model predictions. 
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Figure 26: Series of 2D Accumulated Local Effects (ALE) plots illustrating the impact of mean 

geometric tortuosity interacting with mean pore diameter on permeability predictions in fragmented 

porous networks. 

Figure 27 provides a perspective on how variations within tortuosity metrics interact to 

influence the prediction. Areas with significant positive interaction effects are seen to occur 

where the mean and minimum tortuosity converge. Regions with pronounced negative effects 

are observed where both mean and minimum tortuosity align either at higher or lower ends of 

the feature space, with combinations of low mean tortuosity and high minimum tortuosity, and 

high mean tortuosity and low minimum tortuosity. For the clustered network group in Figure 

28, the interaction effects are considerably less pronounced and largely absent across the 

majority of the feature space. The majority of the feature space in the 2D ALE plots shows very 

minimal to zero interaction effects between mean and minimum geometric tortuosity. The 

interaction effects that do appear are localized in regions far removed from the main 

concentration of data points, indicating that these are not representative of the typical network 
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conditions. The absence of strong multiplicative interactions across most of the feature space 

implies that the model primarily responds to other factors or individual effects of these features 

rather than their combined influence. 

 

Figure 27: Series of 2D Accumulated Local Effects (ALE) plots illustrating the impact of mean 

geometric tortuosity interacting with minimum geometric tortuosity on permeability predictions in 

unfragmented porous networks. 
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Figure 28: Series of 2D Accumulated Local Effects (ALE) plots illustrating the impact of mean 

geometric tortuosity interacting with mean pore diameter on permeability predictions in fragmented 

porous networks. 

Across the various plots, interaction effects manifest consistently irrespective of window size, 

although the intensity and clarity of these interactions tend to fluctuate. Notably, in larger 

analysis windows, there is a noticeable decrease in the magnitude of these interaction effects. 

This trend stems from the averaging processes inherent in larger window analyses, which tend 

to mitigate not only the effects of individual features but also the second-order interaction 

effects.



 

 

 

  

Conclusion 
This thesis has comprehensively examined the complexities of upscaling from pore to Darcy 

scale through evaluations of the Representative Elementary Volume (REV), property scaling 

behaviors, and regression analysis using a domain-wide statistical sampling approach for 

homogeneous and isotropic pore network models. 

The REV analysis effectively illustrated the scale-dependent variability in pore networks, as 

demonstrated by the exponential decay of the Coefficient of Variation (CoV) with increasing 

window sizes. This decline is indicative of a homogenization process, where larger sampling 

volumes average out the microstructural heterogeneities. The fitted exponential decay functions 

for the CoV across different properties underscore a systematic approach to determining REV 

thresholds and quantifying the impact of network connectivity on statistical dispersion. It was 

found that properties displayed unique REV scales, which varied uniquely depending on the 

underlying microstructural heterogeneity, and were intimately tied to the existence of the 

correlation length. 

The property scaling analysis provided a nuanced view of property averages across varying 

scales and occupation probabilities. Distinct property-specific trends were observed across 

scales straddling the identified correlation lengths. For scales below the REV, properties 

exhibited significant fluctuations influenced by local heterogeneities. These sub-REV 

behaviors provide crucial insights into the microscale interactions and their impact on flow and 

transport phenomena. As the scale approached and exceeded the REV, a transition to a more 

homogeneous and predictable behavior was noted, affirming the continuum hypothesis. 

However, at occupation probabilities near the percolation threshold, the scaling behavior breaks 

down, indicating no singular scale can yield representative continuum behavior due to the 

emergence of fractal behavior. This finding suggests a need for a more adaptive approach to 

handling near-threshold phenomena. 
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Accumulated Local Effects (ALE) plots provided model-derived insights into the relationships 

between pore-scale properties and permeability. These plots highlighted how changes in 

properties like geometric tortuosity and pore diameter significantly affect permeability, 

especially in smaller window sizes where the network's microstructure has a more pronounced 

impact on flow properties. The ALE analysis showed that mean geometric tortuosity is a 

consistent predictor of permeability across various scales, underscoring its importance in 

capturing the network's overall resistance to flow, and illuminated interaction effects between 

features. 

The integration of REV analysis, property scaling, and regression insights paints a clearer 

picture of the upscaling process from pore to continuum scales. The findings demonstrate that 

while upscaling can homogenize certain properties, critical thresholds like the percolation point 

introduce significant challenges that require careful consideration and possibly novel modeling 

approaches to accurately predict and manage. 

Recommendations for further work include incorporating more realistic pore architecture from 

extracted models to capture a wider range of different heterogeneities and explore the upscaling 

footprint on more complex structures in more granular detail. Furthermore, designing targeted 

experiments to validate the scaling relationships derived in this study and enhance the empirical 

foundations of upscaling methodologies. 
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