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Symbols and Abbreviations 

Symbols 

 

fh factor to determine heq 

a crack length, crack depth 
A point at the front of a surface crack 
A Auerbach constant 
ac critical crack length 
ai as-indented crack length 
b specimen width 
b1 width of a CharAM cantilever at the minimum fracture position 
b2 width of a CharAM cantilever at the maximum fracture position 
beq equivalent specimen half-width (rectangular cross section) 
bmax maximal width of a bulged cross section 
c surface crack length 
C intersection point of the crack front - specimen surface 
c0 – c6 coefficients for fB3B 
ci as-indented surface crack length 
D specimen diameter (disc or ball) 
Deff effective specimen diameter 
DL load diameter 
DS support diameter 
DSB diameter of the support balls in the B3B test 
E Young's modulus of specimens 
ELB Young's modulus of the load ball in a B3B test 
F probability of failure 

f, fb, fn, fc 
factors to consider finite specimen width, Poisson's ratio and crack-front – 
surface angle in the geometry factor 

fB3B dimensionless stress factor for the Ball-on-Three-Balls test 
fB3B,hex dimensionless stress factor for the Ball-on-Three-Balls test on hexagonal plates 
fB3B,new dimensionless stress factor for the Ball-on-Three-Balls test 
fBoR dimensionless stress factor for the Ball-on-Ring test 
fcorr corrected dimensionless stress factor for Ball-on-Three-Balls tests 
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Fdes probability of failure – design goal 
fNBT dimensionless stress factor for the Notched-Ball test 
fpiston dimensionless stress factor for the Piston-on-Three-Balls test 
fRoR dimensionless stress factor for the Ring-on-Ring test 
ftest dimensionless stress factor for strength tests 

fs dimensionless correction factor 

G energy release rate 
GIc critical energy release rate 
h specimen thickness, ligament height 
heq equivalent thickness 
hmax maximal thickness of a bulged cross section 
I moment of inertia of a bulged cross section 
Iideal moment of inertia of a rectangular cross section 
J J-integral 
K0 material intrinsic fracture toughness 
k1 dimensionless correction factor for fB3B,new for deflection (B3B test) 
k2 dimensionless correction factor for fB3B,new for large load contact (B3B test) 
Kappl applied stress intensity 
kcorr dimensionless correction factor 
KI mode I stress intensity 
KIc mode I fracture toughness 
KR crack length dependent fracture toughness, R-curve 
Kshield shielding stress intensity 
Ktip stress intensity at the crack tip 
L side length of a plate 
Leff Weibull effective length 
LL load span 
LN length of a notch 
LS support span 
Ltest length of the testing region of a CharAM cantilever 
m Weibull modulus 
m0 – m3 coefficients for the ligament stress in NBT-KIc tests 
mex Weibull modulus through size extrapolation 
n0 – n1 coefficients for the ligament stress in NBT-KIc tests 
P fracture load 
r radial coordinate of a coordinate system at the crack tip 
R radius of a disc or ball specimen 
Rdes design-reliability 
Reff effective specimen radius  
RN notch fillet radius 
RS support radius 
Seff Weibull effective area 
t specimen thickness (discs, plates) 
V volume 
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V0 normalising volume 
Veff Weibull effective volume 
WN width of a notch 
x, y, z cartesian coordinates, coordinate system in a 3D-printer 
Y geometry factor 
YA geometry factor at the front of a surface crack 
YC geometry factor at the intersection point crack front - specimen surface 
Ymax maximal geometry factor along the crack front 
YNRF geometry factor for surface cracks according to Newman & Raju 
YS geometry factor for surface cracks according to Strobl et al. 
YS,A geometry factor for surface cracks at point A according to Strobl et al. 

Da amount of crack growth 

Dh amount of ground-off material in SCF tests 

Dx offset of a crack in a B3B test 

Dy offset of a crack in a B3B test 

a rotation of a crack in a B3B test 

b opening angle of a constant moment cantilever beam 

x coordinate 

c intersection angle crack front – specimen surface 

d shift of the load introduction point on CharAM-cantilevers 

f parameteric angle of a semi-elliptical surface crack 

g thermodynamic surface energy 

gf surface energy 

j angle in a coordinate system at the crack tip 

n Poisson's ratio of specimens 

nLB Poisson's ratio of the load ball in a B3B test 

r notch root radius 

s stress 

s0 Weibull characteristic strength 

s0,C charactersitic strength of components 

s0,S charactersitic strength of specimens 

sa operating stress 

sdes design stress 
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sf strength 

sf,corr corrected strength of a CharAM cantilever 

slim maxumum threshold stress for application of fB3B,new 

sNBT stress in a Notched-Ball test 

sref reference stress 

sy component of a stress field in y -direction 

sz,lig ligament stress in NBT-KIc tests 

 
 
Abbreviations 

 

AM additive manufacturing 
B3B Ball-on-three-Balls test 
BoR Ball-on-Ring test 
CAD/CAM computer aided design/computer aided manufacturing 
DLP digital light processing 
FE finite element 
FEA finite element analysis 
VPP vat photo-polymerization 
LCM lithography-based ceramic manufacturing 
NBT Notched-Ball test 
RoR Ring-on-Ring test 
SCF Surface-Crack-in-Flexure 
SEPB Single-Edge-Pre-cracked Beam 
SEVNB Single-Edge-V-Notched Beam 
SOEC Solid Oxide Electrolyzer Cell 
SOFC Solid Oxide Fuel Cell 

TZP tetragonal zirconia polycrystal 
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1 Introduction 

There is one decisive condition for all components that we manufacture from materials: they must 
not break. In case they are ceramic components, dealing with this requirement is a particular 
challenge due to their brittle failure behavior. 

A ceramic component is the outcome of a sequence of shaping and processing steps during which 
strength-limiting defects may be introduced. Such defects can come into existence at any time, 
up to - and frequently during - component service. Thus, on one hand, in order to ensure the 
structural integrity of components, their properties must be known and compared with their in-
service load profiles. On the other hand, it is also necessary to test the strength of materials with 
standardized specimens, in order to establish comparability between materials, select materials, 
define goals for material development and establish qualification profiles for materials for specific 
applications. In order to be able to make statements about the actual component behavior, 
however, for the reasons explained above, it is desirable to test components directly or to 
investigate specimens made from components [1-3]. 

This is particularly important for additively manufactured (AM) ceramics. This technology enables 
unprecedented designs and aims at avoiding machining. In additive manufacturing, there are only 
components and no "semi-finished" products. In this field too, either testing the components 
directly or making specimens that are close to components in their geometry (dimensions, 
orientation in the building space, ... [4, 5]) is a viable strategy. To arrive at reasonable procedures, 
it has to be considered which properties are typical and need to be represented and how the 
specimens can be skillfully designed, manufactured and consolidated using the possibilities a 
certain AM process offers. 

When it comes to developing such qualified testing methods, it should be kept in mind that 
materials testing has to provide relevant and accurate values through validated and reproduceable 
procedures [6]. This is particularly important if the data have to be used to perform for example 
calculations of service life or if size extrapolations according to Weibull strength statistics are to 
be carried out. The formal description derived to obtain the strength or fracture toughness from 
experimental quantities such as specimen dimensions and load at fracture must therefore reflect 
the testing reality sufficiently close. If this is not possible, deviations can be quantified and 
considered when evaluating tests. 

In the following, activities will be reported and summarized which address some issues related to 
strength and fracture toughness testing of ceramic specimens and components. The text is 
organized as follows. Chapter 2 introduces the reader very briefly to the fracture behavior of 
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ceramics and the determination of relevant material properties such as strength and fracture 
toughness. Based on the current state of knowledge, the subsequent chapter 3 points out some 
areas in which questions remain unanswered. This is intended to explain the motivation for the 
work of this habilitation. Chapter 4 summarizes the results of the publications which are part of 
the presented thesis. The following topics are addressed: A first section, which is supported by 
papers A – C, deals with a thorough description of a biaxial strength test that can be applied to a 
wide range of specimen sizes. The following part, according to papers D – F, introduces a 
methodology to measure the strength of ceramics produced by the Lithography-based Ceramic 
Manufacturing (LCM) process. The final section, associated to papers G – K, is dedicated to various 
aspects of fracture toughness testing using indentation induced surface cracks. The text is 
concluded by a summary and outlook. 
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2 Fracture Behavior of Ceramics and its Characterization 

Due to their manufacturing route from powders, ceramics - specimens or components - contain 
defects. A number of defects of different sizes is present at different locations in every single 
ceramic part [7]. One of them will be the most dangerous one for a given loading situation and 
trigger the brittle fracture. In this context it is common experience that tensile stresses are much 
more dangerous than compressive stresses. In order to deal with this behavior, it is necessary to 
understand its causes and characteristics, describe it with theoretical models and be able to 
measure the relevant material properties. Only then it may be possible to design reliable 
components using such materials. 

2.1 Brittle Fracture 

Brittle fracture occurs when acting stresses are high enough to break the atomic bonds in a 
material. Generally, the loads to achieve such high stresses would be extremely high if there were 
no ways to concentrate stresses. In ceramics this happens because they contain small defects that 
intensify stresses to sufficiently high levels. The failure is brittle, e.g. occurs without prior plastic 
deformation, because flow mechanisms to relieve the stress concentration are insufficient in 
ceramics [8]. Linear elastic fracture mechanics [9-15] offers insights into the conditions at which 
stress these defects might expand, based on knowledge of the part's geometry and the applied 
loads. For the ease of formal treatment, the actual defects occurring in a polycrystalline material 
can be described as small cracks in a continuum [14]. 

Three ways in which a stress can be applied to a crack can be envisaged, see Figure 1a. 

(a) 

 

(b) 

 

Figure 1: (a) Body with an edge crack and crack opening modes of fracture. (b) Coordinate system to describe stresses 
in front of cracks [15]. 
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For mode I, "opening", which is the most dangerous one for brittle materials, the relevant stress 
component sy (cp. Figure 1b) of the general stress state is given by  

 ( )
2

I
y

K
f

r
s j

p
=  (1) 

with r the distance of a point from the crack tip at an angle j The stress intensity KI is a scaling 
term which relates the applied uniaxial stress s (at the position of the crack if the crack was not 
present) to the crack size a through 

 IK Y as p=    . (2) 

where Y is a geometry factor that takes the crack geometry and location in the part into account 
as well as the loading details. Expressions for Y can be found in literature [16, 17]. Crack extension 
may take place if the stress intensity factor is high enough to produce stresses so that rupture of 
atomic bonds takes place at the crack tip: 

 I IcK K³     . (3) 

The critical stress intensity factor KIc is called fracture toughness. This description of the condition 
for crack growth is based on the stresses near the crack tip. Alternatively, the involved energies 
can be considered. Thus, it is possible to relate the fracture toughness to the specific energy that 
is required to produce a unit area of crack surface, GIc, or the fracture surface energy gf :  

 ( ) ( )12 1 2
2Ic Ic fK E G E gº º    . (4) 

Since the yield stress of ceramics is very high, only small process zones at the crack tip will be 
present, so that in practically all cases of interest the crack will be in a state of plane strain. Then 
eq. (4) must be adjusted using E' = E /(1 - n² ) with Poisson's ratio n , when stress intensities (KI, 
KIc ) are converted to energy release rates (G, GIc ).  

Using eq.  (2) and the failure criterion eq. (3) we can now relate the strength sf of a part to the 
material property KIc and the size of the critical crack ac. 

 Ic
f

c

K
Y a

s
p

=  (5) 

Eq. (5) highlights the interplay between fracture toughness KIc as a material property, the critical 
defect size ac influenced by processing, and strength sf, which remains the primary design 
objective for components. 

2.2 Scatter of Strength 

Different specimens or components typically contain defects of varying size at random locations, 
consequently leading to unique strengths, as becomes obvious from eq. (5). Thus, the "strength 
of ceramics" is not typically characterized by a single value but rather described using a distribution 
function. Particularly fitting has been the Weibull distribution, initially empirically substantiated 
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[18, 19] and subsequently associated with the fracture mechanical description of brittle failure of 
non-interacting defects with a specific crack-size frequency density through Extreme Value 
Statistics [20-22]. For uniaxial tension the probability of failure F of a Volume V at a stress s is 
given by 

 ( )
0 0

, 1 exp
m

VF V
V

s
s

s

é ùæ öê ú÷ç ÷= - - çê ú÷ç ÷çè øê úë û
 (6) 

with the characteristic strength s0, the Weibull modulus m and a normalizing volume V0. The 
characteristic strength is the stress at which a specimen with V = V0 has F  63% and is thus 
always linked to the choice of the value of V0.  

For inhomogeneous uniaxial stress states s(x, y, z ) = sref  g (x, y, z ) eq. (6) can be generalized as  

 ( )
0 0

, 1 exp
m

eff ref
ref eff

V
F V

V
s

s
s

é ùæ öê ú÷ç ÷= - - çê ú÷ç ÷çè øê úë û
 (7) 

with the effective volume Veff given by 

 ( )
0

, ,
m

effV g x y z dx dy dz
s>

é ù= ë ûòòò    . (8) 

This representation considers that highly stressed regions have a much higher probability of failure 
than portions with low stresses. Situations with multiaxial stress states can be considered by 
defining an equivalent stress [23, 24]. So far, this approach holds for failure-causing defects that 
are located in the interior of the specimens or components. In the case that defects located at the 
surface or on edges are relevant for failure, the effective volume has to be replaced by an 
analogously calculated effective area (Seff ) or effective length (Leff ). 

The strength distribution is usually determined by measuring the strengths of a set (ideally 30 
pieces) of similar specimens [25-27]. From this, the parameters of the distribution, the 
characteristic strength s0 and the Weibull modulus m, can be estimated using statistical methods. 
As V0 = Veff is used in this process, the value of s0 is unambiguously linked to the selected 
specimen geometry and loading situation (which determine the Weibull effective quantities Veff, 
Seff, Leff ). Measured strength values are often represented in a Weibull diagram, Figure 2, the axes 
of which are selected so that the cumulative distribution function appears as a straight line 
("Weibull line") with slope m. A few important facts of the statistical strength behavior and the 
application to probabilistic design shall be noted: 

 Every measured strength distribution also represents a crack-size frequency density 
according to eq. (5), where, depending on the covered stress levels, a corresponding 
range of critical defect sizes is empirically captured [28, 29]. 

 Eqs. (6) and (7) indicate a relationship between the loaded volume and the probability of 
failure. In practice, this is observed as a size dependence of strength. It manifests itself in 
the Weibull diagram as a parallel shift of the Weibull line. A formal description for this is 

 1 ,1 2 ,2
m m

eff effV Vs s⋅ = ⋅    . (9) 
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 The probabilistic design process that is used to estimate an allowable design stress (sdes) 
for a desired reliability (Rdes = 1 - Fdes ) or to predict the probability of failure (R = 1 – F ) 
at a given operating stress (sa ) relies on the existence of similar defect populations in 
specimens and components. Only in this case (i.e. if the material is a "Weibull material" 
[24]) it is guaranteed that the size extrapolation according to eq. (9) is correct and that 
the Weibull line can be extrapolated to smaller stresses/probabilities of failure than those 
measured with specimens. The process can be represented graphically as shown in Figure 
2. Blue symbols indicate measured strength values and the blue line is the fitted strength 
distribution (m, s0,S ). In this example, the components have a larger effective volume than 
the specimens and the green line indicates the extrapolated strength distribution for the 
components (m, s0,C ) given by eq. (9). This line can be used to evaluate the design 
quantities sdes or F (red arrows). 

 
Figure 2: Weibull diagram showing a measured strength distribution (blue) and a graphical representation of 

the procedure to calculate the reliability or the design stress for components (green line, red arrows). 

 In case that two or more distinct flaw types act as critical defects [30, 31], or if defects are 
not homogeneously distributed within the material [32], or if the material exhibits an R-
curve behavior (see section 2.5) [33] or there are residual stresses acting on a scale similar 
to the defect size [34-36], the scatter of strength can no longer be described using the 
Weibull distribution and measured strength values will no longer lie on a straight line in 
the Weibull diagram. A more general approach has to be used to describe the statistical 
nature of strength [1, 2, 21, 37]. 
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2.3 Measurement of Strength 

A number of methods has been developed to measure the strength of ceramics [38-40]. Usually 
an increasing load is applied in a defined way to a specimen until fracture occurs. The maximum 
stress that occurs in the specimen at the moment of failure is equated to the strength. Therefore, 
it is essential for every test configuration to have a knowledge of the stress distribution as 
accurately as possible. Traditionally, the relationship between loading, specimen geometry, and 
the maximum stress occurring is provided in the form of analytically derived expressions for linear-
elastic deformations. These expressions often rely on an idealized loading situation. Deviations 
from this, which always occur in reality, are either quantified through an error analysis [41], 
mitigated by specific provisions for test execution [42] or eliminated by restricting the specimen 
geometry [43]. It should be mentioned that strength tests have to be sufficiently accurate in order 
to allow for a meaningful estimation of the material's Weibull modulus. It has been shown that 
in order to determine a Weibull modulus of m = 20 (which is a desirable value for structural 
applications) the random error in any individual strength measurements must not exceed ±5 % 
[44]. 

Another prerequisite for useful strength test for ceramics are specimen geometries which can be 
readily provided either in the form of as-sintered test bodies without the need for any hard 
machining or by simple cutting and grinding procedures to fabricate them out of larger blanks or 
even components. This is especially important when considering that the determination of a 
strength distribution and its parameters requires thirty or more measured strength values [25-27]. 

For the design of ceramic components according to the probabilistic methodology outlined in 
section 2.2 not only knowledge of the parameters of the strength distribution is indispensable, 
but also the Weibull effective volume, area or length are required and have to be provided [45-
47]. 

In addition to delivering strength values, fractured strength specimens or components are the key 
to analyzing strength determining defects [48-51]. A critical defect must inevitably be present on 
the fracture surface of every broken specimen. These defects can be found and imaged using 
suitable fractographic methods, showing which defect type is the most dangerous. The 
fractographic examination of strength specimens is not only useful in order to better understand 
the material and its manufacturing process. It can additionally provide valuable information for 
refining the design of components and improving their reliability and mechanical performance 
[50, 52, 53]. During failure analysis, details of the fracture sequence and the stress at fracture can 
also be obtained from the specific characteristics of fractured parts and their fracture surfaces [54, 
55]. 

2.3.1 Uniaxial Flexure Tests 

Bending beams are most commonly used to measure the strength of ceramics. Either prismatic 
bars with cross section b × h (width × thickness) [56-58] or cylindrical rods [59] with a thickness 
to length ratio >10 are loaded in 3-point or 4-point bending, Figure 3. The maximum stress can 
be calculated from the load at fracture P using Euler beam theory, eq. (10). The simple stress 
distribution allows for a straightforward calculation of Weibull effective quantities [60]. Possible 
errors associated with these tests have been extensively analyzed [41, 61]. The most important 
complications arise when friction is present between the specimen and support and loading 
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rollers. Due to the concentration of the high stresses onto the tensile surfaces, these tests are 
quite sensitive to the state of the tensile surface and its edges. 

 
( )

2

3

2
S L

f

P L L
b h

s
-

=  (10) 

(a) (b) (c) 

 

Figure 3: Schematics of uniaxial flexure tests for ceramics. (a) Four-point bend test. (b) Cross section of typical 
prismatic specimen. (c) Three-point bend test. 

Dimensions of test set-ups are 40mm or 20mm for the support span LS and load spans of 
LL = LS / 2, respectively, on which prismatic specimens with a cross section of 
b = 4mm × h = 3mm or 2.5mm × 2mm are tested [56-58]. An analysis was carried out to 
determine the minimum size of flexure tests with a claimed maximum error of ±5% (which is 
deemed sufficient for statistical analysis of strength data [25-27, 44]) considering typical 
manufacturing tolerances in metal working. The resulting miniature specimen with a cross section 
of 2mm × 1.5mm tested on 13mm/4.33mm spans is still manageable on standard testing 
equipment yet in many cases too big to be harvested from components [62]. 

Standard flexure bars also serve as basic structures for fracture toughness tests due to their 
specimen geometry which is suitable for simple pre-crack introduction. 

2.3.2 Biaxial Flexure Tests 

While strength testing with uniaxial stress field provides easy-to-interpret results, the majority of 
components experience multi-axial stress states. Hence, there is a need for simple strength tests 
that use multi-axial stress states, in the simplest case equi-biaxial ones. Biaxial stressing is a more 
severe loading case than uniaxial stressing and provides data that are more useful for conservative 
strength design [24]. Common biaxial strength tests are performed on discs or plates which are 
supported on a ring or on three support points evenly distributed on a support diameter. The load 
can be introduced by a ring, a flat piston or a ball [39]. A few tests are shown in Figure 4. 
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Figure 4: Schematics of different types of biaxial flexure tests and equations for strength evaluation. (a) Ball-on-Ring 
test [63], (b) Ring-on-Ring test [42], (c) Piston-on-Three-Balls test [43], (d) Ball-on-Three-Balls test [64]. 
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The maximum stress in such specimens is calculated from the load at fracture P using the general 
relation 

 2f test
Pf
t

s = ⋅  (17) 

with a factor ftest that depends on the test configuration (support diameter DS, load diameter DL), 
specimen shape (diameter D, thickness t ) and Poisson's ratio. For the Ring-on-Ring (RoR) [42, 65], 
Piston-on-Three-Balls [43, 66] and the Ball-on-Ring (BoR) [67-69, 63] configurations, analytical 
solutions exist for ftest. For the Ball-on-Three-Balls (B3B) test an expression fitted on FEA results 
covering a wide specimen geometry range has been provided [64, 70]. 

The Ring-on-Ring test is standardized [42] for a parameterized geometry which allows to maintain 
test conditions where small deflections and linear-elastic material behaviour prevail. This motivates 
limits in specimen thickness relative to the support diameter. Figure 5 indicates these limits 
graphically for some engineering and dental ceramics. Practical restrictions (due to manufacturing 
issues) in the size of the support diameter thus pose a lower bound to specimen thickness of 
approximately t > 500μm [71, 72]. This limitation can prevent valid tests on thin specimens of 
strong, compliant materials. The test provides a large stressed region, but is strongly affected by 
friction. To mitigate this, low-friction or soft interlayers between specimen and loading and 
support rings are prescribed. Expressions for the Weibull effective quantities have been provided 
[42]. 

 
Figure 5: Approximate graphical representation of the geometrical restraints according to ASTM 1499 [42] for the 

RoR test to ensure linear-elastic deformations for various materials. Lines indicate combinations of support diameter 
Ds and thickness t. For a given material the grey "property bubble" must lie above a certain combination. 

The Piston-on-Three-Balls test is only standardized for a very limited specimen size range because 
the analytical expression provided for the evaluation does is not sufficiently accurate for other 
geometries [43]. Loading of a specimen with a flat piston is not well defined due to deflection of 
the specimen and possible wear of the piston. As with the RoR test, soft interlayers are frequently 
used as a remedy. 
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It is obvious that both of these tests suffer from a somewhat undefined load introduction situation 
due to the use of the interlayers. This problem, together with friction can be avoided altogether 
by supporting the specimen on three balls and loading it with a fourth ball. This is the Ball-on-
Three-Balls test [64, 70]. For this test, the support is formed by three balls in contact with each 
other, so that the support diameter is defined by the diameter of these balls, eq. (15). By using a 
simple guide to arrange support balls, specimen and load ball, the test set-up is not confined 
anyhow during loading, so that friction can be ruled out [73]. Other than for the previously 
described tests, no sufficiently accurate analytical expression for the factor fB3B can be obtained. 
Instead, it has been evaluated by a parametric FE analysis with a linear elastic model using point 
supports and a point load. The results have been provided as empirical function fitted to the FEA 
results and employing 7 × 6 constants for a range of seven different Poisson's ratios [64, 70]. 
Weibull effective quantities can only be obtained by multivariant interpolation of the FEA results. 
Due to its simple execution and robustness against systematic errors [73], it can be downscaled 
easily to maintain small-deflection conditions even for very thin specimens. It has been applied to 
disc and plate specimens with diameters or side lengths ranging from 3mm to 45mm and 
thicknesses from 130μm to 5mm made from various structural and functional ceramics, single 
crystals or hard metals [74-81]. 

2.3.3 Tests on Components 

Components made from brittle materials have specific properties that result from the entire 
manufacturing process. Naturally, care is taken during manufacture to produce the best possible 
material condition. However, as already mentioned, defects can still occur during finishing, 
transportation, installation and operation [82-86]. It is therefore of great interest to be able to 
measure the strength directly on components. To do this, it is necessary to consider whether and 
how the component needs to be modified/machined in order to create a test specimen that can 
be subjected to a quantifiable stress field [3]. 

A prominent example for such a test is a strength test for ceramic bearing balls. Of course, discs 
or flexure specimens could be manufactured from balls if they are big enough. But with such 
specimens the interior of the ball would be tested and not the surface, which is on one hand the 
part of the ball that experienced machining and on the other hand the stressed location during 
service. The strength test for balls exists in two variations, the Notched-Ball test (NBT) [87-89], 
which has also been standardized [90, 91], and the C-sphere test [92]. 

Both variations of the test apply the same principle to apply a tensile stress to the surface of a 
sphere: a wide notch with a length LN, exceeding the radius R of the sphere, is made in the 
equatorial plane of the sphere, Figure 6. 

The sphere is then compressed perpendicular to this notch. A bending stress field develops in the 
circle-segment shaped ligament of the equatorial plane, with the tensile stress components at the 
surface of the sphere. Fracture usually occurs at the apex of the ball. The stress field has been 
evaluated by FEA for a variety of relative notch geometries. The maximum stress at fracture which 
is equated to the strength sf can be calculated from the fracture load P and the ligament thickness 
h by  
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with ball diameter D = 2 R, the notch length LN, the notch width WN, the notch fillet radius RN 
and Poisson's ratio n.  

 

(a) 
 
 

 

(b) 

 

Figure 6: Schematic of the Notched-Ball test. (a) FE model. (b) 1st principal stress distribution on the ball surface [87]. 

The factor fNBT is provided as analytical expression fitted to the FEA results [88, 90, 91]. The Weibull 
effective volume Veff and effective area Seff are provided as approximated expressions fitted to FEA 
results [90]. This test is probably the most accurate strength test for ceramics. The specimens 
(balls) are usually extremely accurate, the dimensions of the notches can be measured accurately 
to a level that only introduces a minor systematic error to the result. The load introduction 
happens far away from the location of the maximum stress and friction can be completely 
excluded by using test fixtures (flat plates) from the same materials as the balls. 

2.4 Measurement of Fracture Toughness 

The principle to determine fracture toughness is offered by Eq. (5). By knowing the size and 
configuration of a crack a in a specimen fractured under a quantified applied stress sf, and with 
knowledge of the geometric factor Y, one can easily calculate the fracture toughness KIc. As for 
any mechanical testing method, in order to achieve accurate measurements, it is crucial to ensure 
that the real-world scenario follows closely the fracture mechanical model employed for 
evaluation. Hence, the essential prerequisites for a correct fracture toughness measurement 
include [93]: 

i. Fracture by fast crack propagation of 
ii. a well-defined crack a in 
iii. a well-defined stress field, for which 
iv. a well defined geometry factor Y is known. 

Guidelines for implementing specimens and procedures that meet these conditions have been 
established for metals in ASTM E399 [94]. However, transferring these guidelines directly to 
ceramics presents challenges for several reasons: 
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─ Machining Complexity: Ceramics pose challenges in machining due to their hardness and 
brittleness. While it is relatively straightforward to grind ceramics to achieve prismatic 
bodies with flat surfaces, tasks such as drilling holes or shaping cylinders are notably more 
challenging and expensive. 

─ Pre-cracking Issues: The fatigue pre-cracking techniques commonly recommended for 
metals are not feasible for ceramics. 

─ Limited Material Availability: Often, there is a restricted quantity of ceramic material 
available for testing purposes. Moreover, the properties of ceramics are intricately tied to 
the characteristics of their processing. 

─ R-curves: In ceramic microstructures, mechanisms may act that lead to an increasing 
resistance against crack propagation with crack extension (section 2.5). The R-curve 
behaviour has to be considered if results from different methods are compared [93, 95]. 

Consequently, the standardized techniques for determining the fracture toughness of ceramics 
use the test configurations for uniaxial flexure tests as described in section 2.3.1 to generate a 
well-defined stress field. They employ prismatic bars with dimensions h = 4mm and b = 3mm 
which undergo flexural loading either in 4-point or 3-point bending configurations. Pre-cracks or 
appropriate notches are incorporated into the bars' potential tensile surfaces using a range of 
methods. Some methods shall be introduced here as examples. Figure 7 offers an overview of the 
loading setup and some pre-crack configurations. 

2.4.1 Methods with Edge Cracks or Notches in Flexure Specimens 

In the standardized single edge pre-cracked beam (SEPB) method [96, 97], a pre-crack with a 
relative depth of 0.35 < a /h < 0.6 is introduced into the tensile face of a standard bend bar, see 
Figure 7a. Subsequently, the specimen undergoes a bending fracture test at a rapid loading rate 
to determine sf. Typically, fracture in such a test takes place by unstable crack propagation. The 
length of the pre-crack, a, is measured on the fracture surface. Any specimens exhibiting pre-
cracks that are excessively long, irregular, or tilt or twist away from the optimal plane are deemed 
unsuitable and rejected from the evaluation. Criteria for this are detailed in the respective 
standards. The method works with realistic, but very long pre-cracks. These cracks are not easy to 
introduce, which often leads to a high number of invalid specimens [98, 99]. 

A variation of this method is the single-edge V-notched beam (SEVNB) method [100]. This 
technique shares similarities with the SEPB method concerning fracture test procedures and the 
computation of fracture toughness. However, instead of employing a sharp pre-crack, a slender 
notch is introduced. Fracture toughness is determined based on the failure stress sf recorded in a 
4-point bend test, the notch depth a, and the associated geometric factor. Ideally, the notch 
should exhibit a relative depth within the range 0.2 < a /h < 0.3. Moreover, the radius r at the 
notch root should be less than twice the average grain size of the material being tested, ensuring 
 < 10μm in all instances. To create such notches, one can sharpen a saw cut using a razor blade 
combined with 1μm diamond paste by a honing procedure. In materials with small grains, notch 
root radii around   2μm can be achieved, as illustrated in Figure 7a. In materials with very fine 
grains such as TZPs, suffciently sharp notches cannot be produced so that they are excluded from 
the application of the method [100]. 

This method replaces the sharp crack with a notch that has a slightly smaller stress intensity than 
a crack of the same length. Theoretical considerations backed-up by experimental evidence [101, 
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102] postulate the existence of small cracks in front of such notches, which mitigate the blunting 
effect. The system 'notch + small crack' then acts as an equivalent sharp crack, so that in most 
materials accurate measurements are possible. The method is much faster and more practicable 
than the SEPB method, easy to execute and delivers precise values. 

(a) 

 

(b) 
 
 

 

Figure 7: Schematics of fracture toughness tests and typical precracks. (a) Single-Edge-Pre-cracked beam with pre-
crack emanating from a short notch and Single-Edge-V-Notched beam with sharp notch. (b) Surface-Crack-in-Flexure 

specimen with as-indented pre-crack and ground-off pre-crack made visible by fluorescent penetration dye. 

2.4.2 The Surface-Crack-in-Flexure Method 

This approach is also a standardized method [97, 103]. In this test, a small semi-elliptical pre-
crack is introduced into the bend bar using a Knoop indentation, typically executed with a load 
ranging between 5kg to 10kg. To eliminate the residual stresses linked with the hardness imprint, 
a layer Dh of approximately 4.5 to 5 times the depth of the indentation imprint must be ground 
away from the bar's indented surface, leaving a small nearly semi-eliiptical surface crack, as 
depicted in Figure 7b. Subsequently, the bar is fractured in a standard 4-point bend test. The 
fracture toughness is calculated based on the fracture stress sf of the bar, the depth a and half-
length c of the surface crack, and a geometric factor for semi-elliptical cracks as defined by 
Newman and Raju [104]. The dimensions of the pre-crack are measured on the fracture surface 
of the bar. 

The SCF method used rather small cracks with a size comparable to natural material defects. 
However, locating the crack and measuring the pre-crack size is not straightforward and requires 
fractographic experience, especially in coarse grained ceramics. Consequently, also with this 
method a considerable number of invalid specimens is to be expected [98]. 

2.5 Material Aspects of Strength and Fracture Toughness 

Considering eq. (5) it is obvious that the strength of ceramics is actually determined by two 
entities: the size of the critical defect ac and the fracture toughness KIc. Defects in ceramic bodies 
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are present in a variety of sizes. They are not necessarily a result of errors made unintentionally 
during manufacture and should be considered as intrinsic characteristics of ceramic materials. 
Defects that come into existence during processing may be pores, inclusions, inhomogeneities or 
delaminations. Cracks may be generated by machining or polishing through localized contact 
loads as well as by a superposition of residual micro-stresses with external loads or by phase 
transformations. A few examples are shown in Figure 8. The region lacking glassy intergranular 
phase in Figure 8a comes into existence during powder processing, the delamination pore in 
Figure 8b is a results of the material flow during the injection molding process. Coarse grains in 
Figure 8c grow due to a chemical interaction with kiln furniture during sintering, and the contact 
crack in Figure 8d was generated during the final grinding step by careless part management. 

(a) 

 

(b) 

  
 

(c) 

 

(d) 

 

Figure 8: Defects in ceramics. (a) Microporous region lacking glassy intergranular phase in Si3N4, (b) Delamination in 
injection molded Al2O3 [52], (c) Coarse grain zone and surface dimple in Al2O3, (d) Contact crack in Al2O3 [52]. 

The fracture toughness is apparently related to the surface energy (eq. (4)), where the 
thermodynamic surface energy g substantiates a lower boundary value for this property for a 
given material. In many polycrystalline materials, mechanisms can work during crack growth in 
addition to the formation of new crack surfaces, which require additional energy and make crack 
propagation "more difficult", i.e. they toughen the material. Such mechanisms may occur in front 
of the advancing crack or in the crack wake [95]. An example for the former is the phase 
transformation of tetragonal zirconia to its monoclinic phase [105-109]. Because of the volume 
increase associated with this transformation, the stress in front of the crack tip is reduced. 
Examples for the latter are interactions between the two faces of a crack behind the crack tip. 
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Such interactions may be interlocking bridging grains or frictional sliding grains which also reduce 
the stress acting at the crack tip [110-115]. Both mechanisms reach a saturation if either a steady 
state transformation zone is created or the crack opening is too large to maintain crack face 
tractions, respectively [95]. 

In the context of continuum mechanics and linear elastic fracture mechanics, these effects are 
modeled by superposition of the positive applied stress intensity Kappl (sappl ) with a negative 
shielding stress intensity Kshield (Da), the value of which depends on the amount of crack 
propagation [14]. For such a situation, the stress intensity at the crack tip Ktip is 

 tip appl shieldK K K= -    . (19) 

The failure criterion given by eq. (3) is valid at the crack tip and is specified as 

 0tipK K³    , (20) 

where K0 is the material intrinsic toughness. The value for fracture toughness that we can measure 
with any experimental method follows from equating eqs. (19) and (20): 

 ( )0appl shield RK K K K a= + = D    . (21) 

The quantity KR (Da) now depends on the amount of crack growth Da that a pre-crack has 
experienced during specimen preparation before it is fractured unstably in the fracture toughness 
test. The phenomenon is called rising crack growth resistance curve (R-curve). Materials differ in 
the crack growth range over which the R-curve increases (a few μm to several 100μm) and how 
far the R-curve rises before it reaches its saturation value (a small percentage of K0 to a doubling 
or more of K0) [116, 115]. Both characteristics depend details of the actual crack and loading 
configuration [95]. 

In Figure 9, R-curves of a few ceramics are shown and the intervals, in which different methods 
for the determination KIc / KR operate, are indicated by grey shaded areas. This states that 
knowledge about the used method as well as the analyzed material is necessary for the 
interpretation of measured fracture toughness values [14, 117]. 
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Figure 9: R-curves of some ceramics and crack length intervals which are covered with various fracture toughness test 

methods [118]. 
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3 Challenges for Components and New Manufacturing 
Methods 

Material development has led to a number of new ceramic materials, manufactured by new 
methods for new applications: highly porous materials or thin for SOFCs or SOECs [119], high 
strength ceramic substrates and single crystals for microelectronics [120, 121], scaffolds for 
medical applications fabricated by AM processes [122], to name only a few. Consequently, new 
challenges regarding the determination of strength and fracture toughness of these materials and 
components emerge. Some of them will be detailed in this section. 

3.1 Biaxial Strength Testing of Strong and Thin Specimens 

Biaxial strength testing methods are particularly important for components and in some areas of 
ceramic development and research. On one hand, components such as substrates for electronics, 
components for fuel or electrolyzer cells, watch glasses and semiconductors only exist as discs or 
plates. On the other hand, samples from available material batches can only be produced in this 
form, as for example when specimens are fabricated from dental ceramic-CAD/CAM blanks [79]. 
These discs are often very thin and/or the materials are particularly strong and/or compliant. 

In biaxial flexure testing of thin plates, it is difficult to avoid excessive deflection, which may violate 
Euler/Bernoulli beam-bending theory employed to analytically derive the stress factors ftest, unless 
a very small support diameter is used. It has been shown that fixtures with a support diameter 
DS < 10mm for Ring-on-Ring tests are difficult to manufacture and handle. For such cases, the 
Ball-on-Three-Balls test offers an alternative, since even small support radii can be realized very 
precisely via the contacting spheres forming the support [75]. However, even in this test, large 
deflections may occur which means that the idealized assumptions for the stress calculation are 
no longer valid [70]. 

In the case of particularly strong specimens, high fracture forces occur which not only lead to 
high deformations prior to failure but also influence the contact situation between the specimen 
and the load ball. The area of load application is then no longer so small that it can be described 
with a point load, as was done for the calculation of the pre-factor fB3B (section 2.3.2), but has to 
be described by a contact pressure distribution over a contact area [123-125]. For a given applied 
load, the applied bending moment as compared to the point load situation is then reduced and 
less tensile stress is generated on the tensile face. This effect becomes more prominent as the load 
increases. Thus, the factor fB3B decreases with increasing load. This effect can only be captured 
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numerical by using elaborate 3D FE models which require long comoputation times. It is shown 
for a single specimen geometry and material and various specimen thicknesses in Figure 10. 

 
Figure 10: Load dependence of the factor fB3B for the B3B test. The blue regions indicate loads at which the factor 

decreases by the indicated percentage compared to the point load situation. The lines indicate maximum stresses in 
the disc. Calculations were performed for discs with D = 20mm (E = 300GPa, n = 0.27) tested on steel balls with 

DSB = 15.07mm. Plot adapted from [70]. 

Strength tests on specimens are often used to estimate the reliability of components according to 
the statistical description of brittle fracture (section 2.2). For this purpose, and also to enable 
comparisons with measured values from other (standardized) strength test methods, it is 
necessary to know the Weibull effective quantities [45]. 

In order to make the B3B test applicable to many new ceramics and other brittle materials and to 
bring its application potential to the same level as that of standardized strength tests, it is 
necessary to 

─ provide an evaluation for square plates 
─ quantify the effects of large deflections and more realistic load introduction conditions for 

general cases, i.e. a variety of combinations of specimen geometries with material elastic 
properties, 

─ validate the FEA calculations for these situations, 
─ determine and provide the Weibull effective areas and volumes for relevant geometries. 

3.2 Anisotropic Strength: AM Ceramic Components 

Additive manufacturing (AM) technologies are increasingly used to manufacture ceramic 
components [126-128]. These technologies can be categorized according to the characteristics 
of the feedstock that provides the ceramic powder, in (i) powder-based, (ii) solid-based and (iii) 
slurry-based. They allow to fabricate parts of high complexity without the need of hard-machining 
thus reducing the risk of introducing strength-limiting surface defects. Even though hard 
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machining can be avoided for AM ceramic parts, specific process-related aspects of their 
mechanical performance can be observed due to the layer-by-layer build-up. 

These aspects will be explained in more detail in the following for one additive manufacturing 
process, specifically the LCM method [129]. For other processes, analogous but potentially distinct 
issues may be expected, which may entail entirely different characteristics [130]. The LCM 
(Lithography-based Ceramic Manufacturing) process belongs to the VPP (Vat Photopoly-
merization) processes, specifically falling under the category of DLP (Digital Light Processing) 
methods. In this technique, to fabricate an individual layer, a polymer slurry containing ideally 
50vol% - 60vol% ceramic particles is selectively solidified at desired locations through photo-
polymerization [131]. In DLP processes, the entire layer is exposed through a single projection. 
The positions to be polymerized are defined by an array of small mirrors, each of which can be 
individually on/off-controlled. These mirrors have a defined dimension, for instance, 
40μm × 40μm. This dimension determines the lateral resolution of the process; however, it also 
results in an approximative realization of all edges that are not parallel to the mirrors, leading to 
an aliasing effect. This effect is not limited to a single exposed (x-y )-layer but also manifests itself 
in the build direction (z ) [132]. Consequently, the surfaces of LCM components may not always 
be entirely smooth but could exhibit a wavy structure, Figure 11b. A similar effect can also be 
observed when particularly thick layers are fabricated to speed up the manufacturing process 
[133]. The high light intensities required for this purpose result in increased light scattering at the 
edges of the layers and polymerization in undesired areas [134]. In this scenario as well, wavy 
surfaces may be formed, even when the edges are parallel to the mirror array. Finally, when load 
is applied, these waves can act as stress concentrators similar to notches, potentially influencing 
the mechanical strength of the components. 

 

(a) 
 
 

 

(b) 
 
 
 

 

(c) 

 

 

Figure 11 : Typical defects and surface structures in LCM-ceramics and their effect on strength. (a) Poorly bonded 
layer interfaces as cross sections  and parallel view . (b) Surface structure due to aliasing. (c) Effect of surface 

structures on the characteristic strength measured using the B3B test [129]. 
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In addition, insufficient bonding of two subsequent layers can cause another type of typical defect 
in such components. Interfaces may be systematically weakened by a higher degree of porosity 
or even by distinct delamination defects as has been shown for alumina specimens [133], Figure 
11a. 

Moreover, as the surface structures and internal defects are dependent on the orientation of a 
part in the building space, this can then lead to a change in the measured strength depending on 
the relation of loading direction and building direction [135].The impact of aliasing on strength 
as measured with the B3B-test is represented in Figure 11c. Square plates were fabricated at 
varying inclinations (0°, 15°, 30°, 45°, 90°) relative to the vertical (z )- building direction under 
conditions avoiding overpolymerization. A correlation is evident between the printing orientation 
and the resultant characteristic strength. Specimens printed at 15° and 30° show reduced strength 
[129]. 

Apart from these effects on the produced ceramic itself, different AM processes for ceramics have 
distinctly different ranges of geometric resolution and possible part sizes [4, 5]. Standardized 
strength specimens [25] are not in all cases suitable for a given AM method. Prismatic bars of 
4mm × 3mm cross section and > 45mm length as commonly used for strength assessment (cp. 
section 2.3) are for example quite large for the LCM process leading to problems with shape 
constancy, cracking or warpage. Additionally, they are thicker than most desirable structures in 
typical components fabricated by LCM. 

When summarizing these aspects of the strength of AM ceramics and supplementing them with 
the required sample sizes for statistically significant conclusions (cf. section 2.2), requirements for 
customized strength measurement methods for AM ceramics emerge. Tailored strength test 
specimens for AM ceramics should: 

─ fully utilize the design options offered by additive manufacturing, 
─ use a test piece geometry with dimensions relevant to the specific ceramic AM method, 
─ have a tensile loaded face that is printable in different orientations with respect to the 

building direction z [132], 
─ deliver more than thirty individual test pieces for a statistical strength analysis, ideally 

produced in a time efficient single print job, 
─ provide test pieces with prospective tensile loaded faces that can be thermally processed 

without contact with kiln furniture to avoid contamination or friction effects on shrinkage. 

3.3 Fracture Toughness: Pre-crack Shape and Measurements 
on Small Components 

Similar to typical defects (section 2.5), the microstructure and thus KIc of ceramics are often 
influenced by manufacturing details [136]. On one hand, blanks specifically produced to obtain 
standard specimens for characterization purposes, have different sizes and shapes than actual 
components and may consequently exhibit different properties. On the other hand, typical 
components may be too small or too thin to extract standard specimens for applying 
corresponding testing methods. To give an example how to address such a scenario the approach 
for ceramic substrates can be mentioned: the materials of interest only exists as thin (< 1mm) 
sheets, thus a suitable standard [137] has been developed for determining their fracture 
toughness. The method is close to the SEPB-Method [96], but takes the small thickness into 
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account. In material development, processes such as uniaxial pressing, lamination of tapes [138, 
139], Spark Plasma Sintering [140], and cold-sintering [141], among others, are employed to 
produce materials in the form of small discs. However, these processes typically do not yield discs 
which are big enough to provide standard specimens. 

Determining fracture toughness in such scenarios remains a crucial task. For rolling elements for 
bearings, it is highly relevant to ensure that the pre-cracks used in the experiments are similar in 
size to defects that are failure-relevant during operation. This approach allows for the examination 
of a potentially occurring R-curve within the relevant range. Utilizing small initial cracks also 
facilitates measurements at various locations within a component or enables the use of very small 
or thin specimens. 

To address this gap in material testing methods, there should be techniques available that utilize 
other test geometries than uniaxial bending specimens as the fundamental principle for 
generating the stress field. For instance, disks or plates in a Ball-on-Three-Balls test or spheres in 
the Notched-Ball test could be considered. Suitable pre-cracks for this purpose are surface cracks 
similar to those employed in the SCF-method (section 2.4), as they generally range in size from 
several 10μm to 100μm and are straightforward to induce. 

The two mentioned loading geometries effectively meet the previously established requirement 
for a "well-defined stress field". However, when aiming for conditions such as a "well-defined 
crack" with a "well-defined geometry factor Y ", the pre-cracks warrant a more detailed 
examination. 

(a) 
 
 

 

(b) 
 

 

Figure 12: Schematics of surface cracks. (a) Semielliptical surface crack. (b) Surface crack with the shape of an ellipse 
segment [143]. 

As shown by Newman & Raju [104], semi-elliptical surface cracks like the one shown in Figure 12 
have a stress intensity factor K that varies along their front in tensile or bending stress fields. 
Fracture is believed to start at the position with the highest stress intensity. Depending on their 
shape, characterized by a /c and size relative to the specimen's thickness a /h (or a /t ) the 
maximum of K may either be at the deepest point A or at the intersection point of the crack front 
with the specimen surface, point C, cp. Figure 12. This gives rise to the definition of two distinct 
geometry factors YA and YC for such cracks. Moreover, at point C, the stress intensity is not 
proportional to r -½ (with the distance from the crack tip, r ) at angles c of approximately 
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80°< c < 90°) [142]. The standard stress intensity factor description (such as the one given in 
eq. (2)) cannot be used for such cases and should be regarded as approximation only. 
Consequently, the standardised SCF-method prescribes to use only cracks for which YA > YC, i.e. 
which are critical at point A to generate valid data [97, 103].Still, there are more details 
concerning such surface cracks. They are 2-dimensional cracks, implying that Poisson's ratio has 
an influence on their geometry factor Y. Moreover, they are not strictly semi-elliptical but rather 
take the form of segments of ellipses, cp. Figure 12. Both aspects need investigation since they 
are not considered in the existing solution [104].  
When introducing these cracks using Knoop hardness indentations, not only are the desired 
surface cracks perpendicular to the indented surface created, but additional cracks beneath the 
specimens' surface develop that grow approximately parallel to the surface as shown in Figure 13 
[144]. Conventional specimen preparation aims to eliminate these lateral cracks, although this is 
not always successful. 

 
Figure 13: Knoop indentation crack with median crack propagating normal to the indented plane (tips indicated by 

green arrows) and two systems of subsurface lateral cracks (red and blue arrows) with their crack planes 
approximately parallel to the surface. 

The aspects related to the use of Knoop indentation cracks for fracture toughness measurement 
on components or thin specimens which need investigation can be summed up: 

─ Investigation of the influence of the material's Poisson's ratio and the true geometry of 
such cracks on the geometry factor, 

─ clarification of the influence of lateral cracks on fracture toughness measurements, 
─ evaluation of the geometry factor for the specific multi-axial stress fields of component 

tests such as the NBT or the B3B-test for relevant crack and part geometries. 
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4 Improved Tests for Strength and Fracture Toughness 

This chapter will present contributions which address the challenges outlined in chapter 3 based 
on the publications that are part of this thesis. The respective publications are summarised in each 
section to point out the new achievements. The methods used are briefly described and then the 
most important results are explained. In cases where the results involve complicated, long 
formulae, their complete presentation is omitted and reference is made to the original publication. 
Please note that the nomenclature used in this text may differ from that used in the original 
papers. 

4.1 Extension of the Application Range of the Ball-on-Three-Balls Test 

This section summarizes the results of publications A ,B and C. Following some preliminary 
investigations of rectangular plates of a very limited size range [79, 145], a systematic approach 
was taken to answer the questions related to the B3B test, which are presented in Chapter 3. To 
this end, numerical [146, 147], analytical [63] and experimental [148, 149] methods were used. 
To investigate the stress distribution and the maximum stress, the test was described with three 
different FE models, which have an increasing degree of realism, complexity and computational 
effort [146]. 

To determine a simple, new pre-factor fB3B,new and to treat square plates, a partial model was used 
that utilizes the symmetry of the setup. The support situation and the load application were 
modeled using point-like conditions. In contrast to the previous calculations, parametrization for 
different geometrical variations was carried out by relating the specimen geometry (R, t ) to the 
support radius (RS ). To investigate a more realistic load application situation, a FE model was used 
which describes the load introduction using an ideal Hertzian contact pressure field [123, 125] 
acting on a circular region (the contact zone) in the center of the specimen. For a given load ball 
diameter, the size of the contact zone and the magnitude of the contact pressure depend on the 
applied load. This enables an evaluation of load dependent effects on the maximum stress. These 
analyses were conducted for various Youngs' moduli. This time efficient, simplified approach 
allowed the evaluation of a sufficient number of individual cases to cover a similar geometry range 
as the simple point-load model. In order to investigate the effects of large deformation, an existing 
analytical description of the deformation of point loaded plates was used [146]. To validate results 
obtained with the previously described models and the effects of large deformation, an even more 
elaborate FE-model was used which contains the specimen and the support and load balls and 
takes both friction and the contact situation into account. Experimental validation of the stress 
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calculation was carried out by comparing measurements with results that were obtained using 
the Ring-on-Ring test on the basis of the fracture statistical size effect [148]. 

The new factor fB3B,new is presented in eq. (22), the calculation of an effective diameter Deff for 
square plates in eq. (23). Additionally, for the special case of hexagonal plates two possibilities 
for the strength evaluation were explored. On one hand, a dedicated factor fB3B,hex has been 
determined for a limited specimen geometry range, on the other hand different effective 
diameters were proposed and analyzed. It turned out that an equal-area circle is the most suitable 
effective geometry and can be used together with fB3B,new [150]. 

A corrected factor fcorr , eq. (24), could be obtained based on two individual factors k1 an k2, which 
take the effects of the distributed contact load and the large deflection into account, respectively. 
They should be applied when the fracture load/specimen strength surpasses a certain value that 
can be obtained from eq. (25) or from look-up diagrams provided in [146]. The factors k1 and k2 
are lengthy expression which are not reproduced here but can be found in paper A [146]. The 
range of application of this evaluation of the B3B test is given in Table 1. 
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Table 1: Range of application of eqs. (22) - (25), [146]. 

relative diameter D /DS 1.05 ... 2.0 
relative plate length L /DS 1.085 ... 1.95 
fB3B,new: t /DS of discs: 0.025 ... 0.3 

t /DS of plates: 0.05 ... 0.3 
fcorr (k1, k2), slim t /DS   0.05 ... 0.25 
Poisson's ratio n 0.1 ... 0.4 
Young's modulus (GPa) 70 ... 400 
sf,max (MPa) ... 2000 

 

Figure 14 shows the trend of ftest for the B3B test with load for specimens with various thicknesses. 
The load dependence is weak for thick specimens with a high Young's modulus. Coloured symbols 
indicate results obtained with the 3D-FE model including contact and friction, black lines are plots 
of eq. (24). 
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(a) 

 

(b) 

 

Figure 14: Load dependence of the factor fB3B,new for the B3B test for two different tested materials with typical 
material properties, cp. Figure 10. (a) Alumina with E = 420GPa and (b) Glass with E = 70GPa [146]. 

The application domains of this new solutions are illustrated in Figure 15: The plot shows ftest for 
the B3B-test depending on load for a specimen of a fixed diameter with given Young's modulus 
and Poisson's ratio on a fixed support radius but with various thicknesses. The red bullets indicate 
fB3B,new as in eq. (22). For all cases inside the green region the actual ftest ≥ 0.98⋅fB3B,new, i.e. the 
error in the evaluation of strength through eq. (22) is limited to 2%. The dashed green line is a 
representation of eq. (25). Specimens with a strength sf > slim have to be evaluated using fcorr as 
in eq. (24). This is possible for all conditions inside the pink region up to a maximum strength of 
sf,max = 2000MPa. For even stronger specimens individual FEA are recommended. 

 
Figure 15: Application domains for eqs. (22) - (25) for one material and a single specimen and support diameter. 

The description of effects of large deformation and load also allowed to analyze several variations 
of the test set-up aiming to answer the following questions: Does it make sense to use smaller 
support balls to minimized the effect of large deformation? At which loads can the formation of 
contact cracks at the load introduction location be expected, which may interfere with the regular 
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fracture process caused by the tensile stress? Is there any benefit in using other than bearing steel 
grade balls for the test? 

Figure 16a indicates, that the correction factor k2, which addresses large deflection effects, 
approaches unity for smaller than ideal (touching) support balls. Yet this comes at much more 
complicated construction needs of the support. Figure 16b gives conditions for a specimen 
thickness for which no formation of ring cracks at the load ball can be expected according to 
Auerbach's law [151]. Combinations of strength and specimen thickness in the green shaded 
region below the curves are considered safe. The blue symbols indicate experiments where contact 
cracks appeared. Furthermore, experimental evidence exists, that even if such cracks are present, 
they do not interfere with the regular fracture process and do not influence the measured strength 
[152, 153]. Since a higher Young's modulus of the load ball shifts the limiting curve downwards, 
the use of hard metal or ceramic load balls is not recommended except for cases where plastic 
deformation of the load ball becomes an issue. 

(a) 

 

(b) 

 

Figure 16: (a) Effect of using smaller than touching support balls on the stress in B3B tests. "Strong" refers to a 
fracture stress of sf = 2000MPa, "weak" to sf = 500MPa. (b) Boundary curves for contact crack formation at the load 

ball compared to experimental findings. The two curves refer to different choices A1 and A2 of Auerbach's constant 
for the investigated material [146]. 

Additionally, the Weibull effective volume Veff and effective area Seff of the B3B test were 
determined [147]. This allowed for an experimental comparison of the B3B test with the 
standardized and widely accepted RoR-test using disc specimens made from a commercial 
alumina. The experiments were conducted in the validity regime of fB3B,new for point-load 
conditions, i.e. below slim [146]. Results are shown in Figure 17. According to eq. (9), characteristic 
strength values of samples of different Seff should lie on a line with a slope of 1/mex, where mex is 
similar to the Weibull moduli of the individual samples. This condition is fully satisfied for samples 
of the two different B3B specimen sizes (B-1, B1.7) and two Ring-on-Ring samples (R-1-BT, R-1-
T). Additional tests show the influence of soft interlayers between the load ball and the specimen 
for B3B tests (B-1.7-BT) and the lack of such interlayers in RoR-tests (R-1). In the former case the 
contact area is increased by an unknown amount which leads to a decrease of stress as compared 
to the point load situation. As a consequence, the strength is overestimated. In the latter case, it 
was shown that no homogeneous support nor load application along circles was achieved which 
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led to stress concentrations below the load ring and thus an underestimation of strength. This 
was confirmed using fractography [148]. 

An experimental validation of the stress analysis for the case involving large deformations was 
done by in-situ measurement of the deflection of thin glass specimens by tomography and 
radiography. Even though the techniques have a limited resolution, the measurements show an 
excellent agreement with FEA [149]. 

(a) 

 

(b) 

 

(d) 

 

(c) 

 

(e)  

 
Figure 17: Experimental comparison of B3B and RoR-test results using the Weibull size effect. (a) Size extrapolation 
plot, cp. eq. (9). (b) and (c) Number of center and load ring failures respectively in RoR-tests. (d) and (e) Fractured 

RoR-specimens with center and load ring failure, respectively. Rings indicate the load ring, support ring and specimen 
contours, respectively, blue arrows indicate the failure origins [148]. 
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4.2 A Strength Test Methodology for AM Ceramics 

This section presents how initial work on the mechanical testing of LCM ceramics (publication D) 
and experience from the application of the AM method in material design as summarized in 
publication E have led to the development of a customized strength testing method. A failure 
analysis and initial measurement results with the method as presented in publication F complete 
this part. 

Strength measurements on LCM ceramics were carried out using established methods such as 
uniaxial and biaxial flexure tests. The results are compiled in Figure 18. The influence of surface 
structures has been demonstrated by comparing measurements on machined specimens with 
smooth surfaces (diamonds) and those with wavy as-printed + sintered surfaces (circles). For as-
printed + sintered specimens one testing direction (green) was significantly weaker than the other 
directions, while for the machined specimens, all orientations had the same strength. 
Furthermore, it was shown that the surface structures and their detrimental influence on strength 
can be avoided by selecting suitable process parameters like much thinner layers (down triangles) 
[133]. 

 
Figure 18: Characteristic strengths and Weibull moduli of various LCM ceramic samples. The inset shows the testing 

directions with respect to the layer orientation. Adapted from [133].  

The experience gained during this investigation clearly showed that conventional strength tests 
deliver meaningful results but are too elaborate. The activities on materials design with the help 
of the LCM process, which are summarized in [129] motivated the quest for a AM specific efficient 
strength test methodology. 

In a joint research project ("CharAM", FFG-IraSME 877684 & ZIM ZF4076461LT9), a specimen has 
been developed that is suitable for strength testing of additive manufactured ceramics [154-157]. 
The so-called CharAM-specimen consists of 48 pins in the form of carefully designed constant 
moment cantilever beams attached to a base plate. The base plate consists of two solid plates 
joined together at a specified angle. By varying this angle, different orientations of the cantilever 
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axis and the prospective tensile loaded face can be achieved with respect to the direction of 
material build up during the AM process, Figure 19. In order to reproduce typical dimensions of 
LCM components, the cantilevers are approximately 10mm long and 1mm thick. Strength testing 
is performed by loading each cantilever to failure at a predefined loading point. All specimens 
that fracture within the constant moment testing region, Figure 20a, are considered valid [156]. 

In commercial LCM printers, two such CharAM-specimens can be produced in one printing 
process. This means that a sufficient number of individual specimens to determine the strength 
distribution can be produced very quickly and easily. The surface of the CharAM-specimen, which 
was in contact with the build platform (i.e. the underside of the lower part of the base plate) and 
may have different properties than the rest of the material [135], is not important for the strength 
measurement. The individual samples are free-standing during the thermal post-treatment and 
are not in contact with kiln furniture. On one hand this simplifies handling and the need for 
documentation during sample production. On the other hand, contamination of the test surface 
can be avoided. 

(a) 

 

(b) 

 

(c) 

 

Figure 19: Variations of the CharAM specimen. The building direction z is vertical. (a) 0°, the cantilever axis (tensile 
face) is oriented parallel to the printing direction z. (b) The tensile face is oriented 15° down-skin and (c) 15° up-skin 

[156]. 

 
Figure 20: Schematic of a constant moment cantilever beam used in the CharAM-specimen [156]. 

The maximum stress in the testing region Ltest is constant and can be calculated using  

10mm 
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with the widths b1 and b2 and the length of the testing region Ltest. Eq. (26) only applies if the test 
load is applied at the intersection point of the side edges of the specimen. In order to ensure this 
when carrying out the fracture tests, a small hemisphere is printed at this point, which makes it 
easy to apply the load at this position using a flat punch. 

In first tests [157] and a round-robin test campaign involving three different laboratories [158], 
CharAM-specimens printed in three orientations were investigated. Individual Weibull strength 
distributions were evaluated for all CharAM-specimens. 

 
Figure 21: Characteristic strength of twelve CharAM-specimens of various orientations, results obtained on CharAM-

specimens from one laboratory [158]. 

Figure 21 shows the strength of specimens printed in the three orientations as shown in Figure 
19. The characteristic strength of the 0°-configuration is higher than that of both 15° 
configurations. It is also remarkable that for each orientation, four CharAM specimens printed in 
two different print jobs have the same strength. 

In a first approach, the dimensions h and b were determined for all individual cantilevers by 
microscopic methods. This showed that i) the cross-sections of the beams deviate significantly 
from the planned target dimensions and are not rectangular, Figure 22a, and ii) the angle b does 
not have the ideal value either, Figure 22b. This leads to errors in the stress calculation. The non-
rectangular cross-sections have too small a moment of inertia. The change in the opening angle 
means that the side edges of the specimen do not intersect at the printed load application point, 
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as shown in Figure 22b. This leads to an error in the stress evaluation. Its magnitude depends on 
the angle and the position of the fracture [156, 157]. 

As the manual measurement of the individual specimens is very time-consuming, Monte Carlo 
analysis was used to investigate whether it is appropriate to evaluate only with mean values for h 
and b, which are measured on a subset of the tested beams, and what influence this procedure 
has on the determination of the strength distribution parameters. 

(a) 

 

(b) 
 

 

 

Figure 22: Specifics of CharAM cantilevers. (a) The actual cross section is far from a perfect rectangle. (b) The opening 
angle is different from b = 18°, so that the load (if applied on the printed hemisphere ) is no longer introduced in 

the intersection point of the side faces. 

The results indicate that using mean values for the specimen dimensions will increase the 
uncertainty on every strength value to such an extent that a significant interaction with the scatter 
of strength will occur: most probably, a slight overestimation (approx. 1%) of characteristic 
strength will be determined and a significant underestimation of Weibull modulus by 10% - 20% 
[156]. 

These results show that a better and faster method must be used to determine the dimensions of 
the individual specimens. A method that uses 3D-scans of the base plates containing the remnants 
of the beams after fracture and automated detection of the required geometrical quantities was 
subsequently developed [159]. This procedure allows for determination of the shape of the actual 
cross sections (see Figure 22a) and evaluation of a correction factor kcorr 

 
( )max max,

 ideal
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I b h
k

I
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This factor quantifies the difference in moment of inertia of the irregular cross section I with 
respect to that of a perfect rectangular cross section Iideal. It can be used to calculate a corrected 
strength sf,corr according to  

 ,f corr corr fks s=    . (30) 

In addition, the factor kcorr allows an assessment how accurately the printed beams reproduce the 
desired rectangular cross-section: the better the rectangular shape is, the closer kcorr is to unity. 



 

33 

The experience gained so far with this method suggests that it is not only very suitable for 
measuring the strength of LCM components, but also for obtaining a wealth of information on 
the geometry of manufactured parts. This could be a very effective way of analyzing relationships 
between process details and geometry and/or strength – a potential which still has to be explored 
further. 

4.3 Methods for Fracture Toughness Measurement on Components 

This section recapitulates the work on fracture toughness measurement with surface cracks using 
the SCF-method and variations of it. First, the results of a detailed investigation of the geometry 
factor for realistic surface crack shapes (see Figure 7b) considering different Poisson's ratios are 
presented (publication G), followed by experimental investigations on the influence of lateral 
cracks as in publication H. Subsequently, the transfer of the SCF-method to spheres and discs is 
presented (publications I, J, K). 

4.3.1 Improved Treatment of Two-Dimensional Surface Cracks 

For surface cracks used in the SCF method, the influence of Poisson's ratio and realistic crack shape 
was analyzed parametrically using FE analysis and the J-integral method. The conversion from J-
integral quantities to stress intensities according to K = (E'   J )½ was performed assuming plain 
strain conditions. The crack size, crack shape and the crack front – surface intersection angle were 
varied within a parameter range that is relevant for actual experiments on ceramics. The results 
were compared to the values obtained with the Newman & Raju solution YNRF [104] to identify 
cases of extreme differences. Additionally, a methodology was proposed to estimate how much 
material Dh has to be removed from specimens with as-indented crack of a given size in order to 
arrive at a crack shape that has its highest stress intensity at point A. The geometry factor at point 
A (Figure 12b) is provided as empirical fitted function (eq. (31), for details see publication G) 
which is valid in the parameter range given in Table 2 [143]. It has an error less than 2.7% with 
respect to the FEA results. 
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Table 2: Range of application of eq. (31), [143, 160] 

relative crack size a /h 0.01 ... 0 5 
crack aspect ratio a /c 0.4 ... 1.2 
relative crack width c / b 0.1 ... 0.5 
crack-surface interaction angle c 70° ... 110° 
Poisson's ratio n 0 ... 0.4 

 

The results show, that when YNRF is applied to cracks in materials with n ≠ 0.3 an error in Y of up 
to 16% can occur. Even for some cases with n = 0.3, that were studied previously, significant 
deviations in the range of 10% can occur. This may be due to using significantly finer meshes in 
the new, improved FE analyses. Examples for the influence of the parameters that have been 
additionally investigated, n and c, are shown in Figure 23. By comparison of the symbols (YNRF ) 
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with the red line (YS ) in Figure 23a it is obvious, that even for a Poisson's ration of n = 0.3 the 
crack front – surface interaction angle has an influence on the geometry factor which can reach 
5% for common crack geometries with c = 70°. For materials with smaller values of n the effect 
becomes even more pronounced. Figure 23b shows that there is a small difference between YNRF 
(symbols) and the new results even for n = 0.3, which can be attributed to the details of the 
employed FE models. Overall, it turns out that for many cases of realistic (flat) crack shapes and 
especially for materials with n ≠ 0.3 the use of YNRF can easily introduce an error of more than 
5% -10% to the measurements.  

(a) 

 

(b) 

 

Figure 23: Comparison of the improved YS (lines) und YNRF (symbols) for typical cracks as used in the SCF Method 
(a/t = 0.05, a/c = 0.7) for different values of Poisson's ratio n.(a) For ellipse segment cracks at point A as a function 
of surface interaction angle c, cp. Figure 12. (b) For semi-elliptical cracks along the crack front (Point A at f = 0).  

An additional aspect to be considered is the overall three-dimensional crack system formed during 
indentation. As-indented Knoop surface-cracks exhibit a nearly semi-elliptical configuration. At 
low indentation loads (<5kg) a single lateral crack system is additionally present, while at higher 
loads a secondary lateral crack system much further below the surface emerges, see Figure 13 
and Figure 24 [144, 161]. Some sort of interaction of these crack systems during the fracture test 
may be conceivable. 

The grinding procedure specified in the standards [97, 103] to obtain a residual-stress-free surface 
crack likely removes the lateral cracks, certainly the shallow ones if they are not too prominent, 
but probably not the deep secondary ones. This raises questions whether these are still 
appropriate pre-crack situations for valid SCF-tests and how the use of appropriate geometry 
factor solutions will influence results [162]. These issues were investigated experiemntally by 
systematically grinding-off different Dh before the fracture tests. A large number of specimens 
of two ceramic materials with very different sub-surface Knoop crack systems was used to assess 
the effect of residual lateral cracks and different crack shapes. A secondary objective of this study 
was an assessment of the impact of the refined geometry factor YS on the measured results 
through comparison with independently determined fracture toughness values using alternative 
methods. It could be shown that, once a minimum Dh is removed, remnants of lateral cracks do 
not significantly interfere with the primary surface crack and correct KIc measurements are 
possible. In any case, cracks that have YS,A = Ymax should be used, but this may require a higher 
grinding depth. Some of the resulting cracks exhibited shapes a /c and crack front – surface angles 
c that were not covered by the existing parametric determination of YS. An extrapolation of the 
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existing parameter field was used in these cases and supported by verification of some exemplary 
cases through FEA [161, 163]. 

 

(a) 

 

 
 
 
 

 

(b) 

 
Figure 24: Knoop indentation crack system. (a) Serial sectioning procedure to obtain information on the crack system 
below the specimen surface. (b) Top surface and section of a Knoop indentation, surface crack and multiple lateral 

cracks in a dental ceramic [161]. 

The combined influence of Poisson's ratio and the termination angle c may lead to a significant 
difference in KIc if calculated using the two proposed solutions YNRF or YS for the geometry factors. 
This is especially important for materials with low Poisson's ratio such as SiC, dental ceramics [161, 
163] or glasses [164, 98]. The use of the YS for such cases is indicated. 

4.3.2 Fracture Toughness of Balls, Discs and Plates 

In order to measure the fracture toughness on the surface of spheres, the NBT can be used as 
basic test principle. Analogous to the procedure in the SCF method (section 2.4), small surface 
cracks can be introduced into the tensile-stressed region of the sphere surface using Knoop 
hardness indentations. In order to define a fracture toughness test in this way, two aspects must 
be evaluated: the change in the stress field in the notched ball due to the necessary removal of 
the plastic zone created by the indentation and the geometry factor Y for this configuration [165, 
166]. 

Grinding off the hardness indentation and the plastically deformed zone underneath changes the 
shape of the ball and thus the stress field, Figure 25. These changes were evaluated for different 
grinding depths Dh and Poisson's ratios by FEA and considered by a correction factor fs(n, 
LN /D, Dh /R ) in the stress calculation. Depending on the grinding depth Dh, the increase in the 
maximum stress can be up to 40%. 
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The determination of the geometry factor has been performed using two different approaches, a 
semi-analytical one and a FE analysis. As shown in Figure 25c, the stress in the ligament of the 
ground-off sphere (black line) remains very close to that of a rectangular bend specimen (red line). 
It was therefore assumed that the existing geometry factor for semi-elliptical surface cracks in 
rectangular cross sections derived by [104], YNRF, used in the standard for the SCF test is also valid 
in this case if an equivalent specimen thickness heq and width beq = heq can be defined. Based on 
the stress distribution in the ground-off ball, heq has been evaluated so that the stress magnitude 
and gradient are similar in the notched ball and the equivalent bend bar and is provided for a 
range of relative crack sizes as fitted function. In a subsequent FE analysis, the geometry factor 
was additionally calculated for various values of Poisson's ratio and a considerable dependence 
on Poisson's ratio was found [165]. 

 

  

(a) (b) (c) 

 
 

Figure 25: (a) Notched-Ball test with surface crack, (b) schematic of the ligament with crack and the equivalent 
rectangle, (c) stress in the equivalent rectangle (red line) compared to the actual stress in the ligament (black line) 

[165]. 

Summing these efforts up, the fracture toughness can be evaluated using eqs. (18) and (32) to 
(35), which are valid for the parameter range given in Table 3. The factor fs and the coefficients 
m0 – m3 and n0 and n1 can be found in publication I. There, an expression for a dedicated, 
alternative solution for the geometry factor for this load case can be found which avoids the 
calculation of heq and YNRF. 
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Table 3: Range of application of eqs. (32) - (35), [165, 166]. 

relative notch length LN /D 0.74 ... 0.82 
relative notch width WN /D 0.10 ... 0.15 
relative notch width RN /D 0.25 ... 0.40 
Poisson's ratio n 0.15 ... 0.35 
crack aspect ratio a / c 0.4 ... 1.0 
relative crack size a /R 0.005 – 0.065 
relative grinding depth Dh /R 0.02 ... 0.05 

 

An analysis of measurement uncertainties was conducted. The quantities sNBT and fs contribute 
with errors of <±1% - 2% each to the total error in KIc. The determination of the crack size has 
been identified as the most important source of uncertainty, but at the same time strategies how 
to minimize it were developed. It was found that an accurate determination of the crack depth a 
is essential and the least error (<±5%) occurs for shallow cracks that are critical at the deepest 
point. The cracks can be found much easier and measured more accurately on the fracture 
surfaces when fluorescent penetration dye is applied. 

Finally, a method for the determination of the fracture toughness on balls with diameters of 2mm 
to 20mm has been established. Test on balls with diameters between 5mm – 5.55mm of various 
structural ceramics were performed. The results were in excellent agreement with values measured 
with the standardized SCF-method applied to bars and to literature values [166]. 

The SCF-method can also be applied to discs or plates which are biaxially loaded in the Ball-on-
Three-Balls test [167, 168]. The surface crack is introduced centrally into the tensile face of the 
specimen opposite the load ball. In this case the removal of the plastic zone only changes the 
overall thickness of the specimen or component, what can be readily considered in the stress 
calculation. An especially challenging question in this case is the geometry factor of the crack. The 
stress field of the B3B test is not rotationally symmetric and has steep gradients. This implies that 
not only the relative size (with respect to the specimen size) of the crack plays a role for Y but also 
the exact position and its orientation with respect to the support positions. 

Again, the geometry factor was evaluated using FE analyses. An ideal central position of the crack 
and an ideal orientation as shown in Figure 26 were used. For this configuration, empirical 
formulae were obtained that fit the FEA results for the geometry factors YA and YC for a range of 
geometrical configurations specified in Table 4. Similar to the standardized variant of the SCF-
method, only cracks which are critical at point A should be considered for the evaluation of 
fracture toughness according to eq. (36). A detailed expression for YA can be found in publication 
K [167].  
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(a) 
 
 
 
 

 

(b) 

 

Figure 26: (a) Schematic of the Ball-on-Three-Balls fracture toughness test, view of tensile face of the disc. (b) Stress 
contours in the center of the disc, ideal and offset + rotated position of the crack [167]. 
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Table 4: Range of application of eq. (36), [167]. 

crack aspect ratio a /c 0.4 ... 0.8 
relative pre-crack size a /t 0.05 ... 0.2 
relative plate thickness t /Rs 0.1 ... 0.3 
Poisson's ratio n 0.1 ... 0.4 

 

Non-ideal positions of the pre-crack, see Figure 26b, were investigated by FEA and experimentally. 
The experiments showed that a rotation of the surface crack with respect to the positions of the 
support balls has not influence on the results, which was confirmed by the numerical analysis. 
The effect of an offset of the crack away from the center of the support circle was investigated 
parametrically. Such offsets can therefore be corrected when experiments are evaluated. 

Fracture toughness can be determined with an uncertainty of ±5% – ±10% for specimens larger 
than 8mm in diameter and thicker than 0.5mm. For accurate measurements it is important to 
position the crack within ±120μm of the stress maximum, to know the Poisson's ratio accurately, 
and to test cracks that have the maximum stress intensity factor at their deepest point. A method 
to achieve this (i.e. how to determine the necessary amount of material removal) has been 
additionally published [167]. 

The method has been validated by testing several structural and functional ceramics and 
comparing the results with literature data [169]. Since its introduction it has been frequently 
applied to fracture toughness measurements on dental ceramics [170-174]. 
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5 Summary and Outlook 

In this thesis, new developments for the characterisation of strength and fracture toughness of 
ceramic materials and components are presented. Important aspects of the work carried out were, 
on one hand, to reach accuracy, precision and analyse possible errors. On the other hand, if FE 
analyses were necessary to obtain stresses or other quantities, these analyses were carried out 
parametrically so that a large range of possible testing geometries was covered. To facilitate the 
use of the results by other members of the scientific community, such results were provided as 
empirical equations fitted to the FEA results. 

The Ball-on-Three-Balls test is a robust strength test for discs and plates from ceramics and other 
brittle materials and has been used over the last twenty years. With the help of FE analyses, a 
simplified expression to evaluate the strength from the fracture loads has now been developed, 
together with an extension of the application range of the test beyond purely linear-elastic 
conditions with small deformations. Additionally, Weibull effective volumes and areas for many 
specimen geometries have been provided. The FE analyses were experimentally verified for some 
specific loading scenarios. With this information it is now possible to convert results obtained 
with this test to other load cases. Similar to standardized strength test for ceramics, the B3B-test 
is now empowered to serve as universal tool for material characterization and also for design 
purposes. Nevertheless, these developments have created the need for more work on this test: 

» A new class of ceramics with a huge potential in medical applications shows 
transformation plasticity [175-177], which makes the existing stress calculations invalid. 
Similar complications arise when single crystals with anisotropic elastic properties are 
tested. The incorporation of suitable material laws into the stress evaluation is therefore 
an urgent research topic. 

» A method to incorporate accurate measurement of deflection should be installed. 
» As preparation for a possible standardization of the test, a round robin test program in 

which several typical materials are tested by a range of laboratories in order to thoroughly 
investigate the robustness of the test is desirable. 

In order to measure the strength of AM ceramic components, a test procedure has been designed 
that fully exploits the potential of LCM additive manufacturing. For this procedure, the feasibility 
was demonstrated, an analysis of possible errors revealed the need for a data-intensive but 
manageable evaluation procedure. A round robin exercise demonstrated the validity of the 
method not only in terms of strength measurement, but also for the assessment of geometric 
parameters as a function of processing details. Future work will concentrate on the following 
topics. 
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» Investigation of multi-material parts and bi-material interfaces [178, 179]. 
» Experience needs to be built up, if and how the test method can be used by more 

laboratories and with other DLP methods. This involves also the task of making the 
evaluation procedure easier and more widely accessible. 

» Finally, the applicability of the method to other ceramic AM methods such as binder 
jetting, material extrusion and material jetting has to be explored. 

The Surface-Crack-in-Flexure method is an important method to determine the fracture toughness 
of ceramics. Since small surface crack are used as pre-cracks in this method it is especially suitable 
to be used on small components or thin specimens. This goal has been achieved by transferring 
the concept to different specimen geometries without compromising the essential principles of 
rigorous fracture toughness evaluation. As a result, fracture toughness tests for small balls and 
thin discs have been established. Together with these achievements it was recognized that the 
consideration of the exact geometry of the used surface cracks together with a correct value for 
Poisson's ratio can significantly improve existing evaluation procedures, even when severe 
secondary crack systems are present. The elaborate experimental investigation that led to this 
conclusion clearly revealed additional research needs: 

» The expression for a precise geometry factor for ellipse segment-shaped surface cracks 
need an extension for crack-surface interaction angle smaller than 70° [161, 163]. 

» The indentation method is cheap and readily available to introduce pre-cracks but it turns 
out that they are difficult to find on fracture surfaces. Considering the progress in laser 
machining for ceramics, alternative methods for pre-crack generation should be 
investigated. 
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The Ball-on-Three-Balls strength test for discs and plates: Extending and 
simplifying stress evaluation 

Maximilian Staudacher *, Tanja Lube, Peter Supancic 
Department of Materials Science, Montanuniversität Leoben, Franz Josef-Strasse 18, A-8700 Leoben, Austria   

A R T I C L E  I N F O
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A B S T R A C T

The Ball-on-Three-Balls-test has proven to be an accurate and easy-to-use option for strength testing. However, 
the maximum stress must be calculated based on Finite-Element-Analysis results. For this purpose, a fitted 
function was already provided. This function is based on results which were generated under the assumption of 
punctiform load introduction. Deviations from these conditions occur through an increase in contact-area be-
tween the loading ball and the specimen, large specimen deformations, friction, or plastic deformation of the 
balls. These non-linear effects are investigated by Finite-Element-Analysis for a wide range of specimens. It is 
shown that the maximum stress is sensitive to the area of contact between the loading ball and the specimen. 
Furthermore, thin specimens are subject to large deformations, which significantly decrease the maximum stress. 
Therefore, a revised fitted function is derived. For specimens with exceptional geometries, non-linear effects are 
considered with correction factors added to the new fitted function.   

1. Introduction

Strength testing is probably the most important tool for ceramic ma-
terial characterization and material development. It allows the determi-
nation of both general mechanical strength and the scatter thereof, which 
then enables the prediction and reduction of component failure [1]. 
Today, a number of mechanical testing methods are widely available and 
well examined. They can be categorized by the type of stress field that the 
specimen is subjected to, which is usually either uniaxial or biaxial. The 
main uniaxial testing methods are 3-or 4-point-bending, tensile and 
compression tests [2,3]. Biaxial testing methods can be classified by the 
symmetry of their stress distribution, being either axisymmetric or not. 
Examples for common methods with axisymmetric stress distributions are 
the Ring-on-Ring-test (RoR), the Ball-on-Ring-test or the 
Ball-with-flat-on-Ring-test [4–6]. Common methods employing 
non-axisymmetric stress distributions are the Ball-on-Three-Balls-test 
(B3B), the Piston-on-Three-Balls-test (P3B), the Ball-on-Ring-of-Balls-test 
and the Three-Balls-on-Three-Balls-test [7–12]. A significant disadvan-
tage of axisymmetric tests is that a high degree of flatness of the specimen 
is required in order to guarantee even contact throughout the ring. This 
results in either additional specimen preparation requirements or de-
viations from the ideal analytical stress field due to uneven load distri-
bution [13,14]. Therefore, tests utilizing a support of three balls have been 

developed since non-planar discs can still be stably supported. The 
Piston-on-Three-Balls-test shows a similar problem, since the surface 
beneath the punch has to be planar to ensure uniform load application – 
the condition that has been assumed to derive the equation for the stress 
calculation. Furthermore, with increasing deformation of the sample, the 
assumption of an extended area of uniform pressure is lost and load 
application shifts towards the outer edge of the piston. This leaves testing 
methods such as the Ball-on-Three-Balls-test as one of the most tolerant to 
non-planar specimens and most flexible in terms of specimen geometry. As 
a result, it is among the most common biaxial testing methods and is 
employed for a variety of materials [15–24]. An extensive study about the 
influence of the most important sources of error has been conducted by 
Börger et al. [25]. Furthermore, the strongly localized area of maximum 
stress allows testing of specific regions of a component to generate 
spatially resolved strength results [26]. A prerequisite for an accurate 
evaluation for all tests that use an analytical stress calculation is to perform 
them under conditions of small deflections and linear elastic material 
behavior, i.e. maintaining a linear stress-deflection relationship. This is 
assured by prescribing that the support radius is smaller than about 6–20 
times the specimen thickness [4,13,20]. Taking into account that 
manufacturing tolerances make support rings smaller than 5 mm in radius 
impractical [13], the lower limit for the thickness of strong specimens is 
approximately 0.5 mm in the RoR-test. The B3B-test, however, can easily 
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be scaled down to much smaller support radii. With the use of standard-
ized bearing balls, specimens as small as 2 × 2 × 0.13 mm3 have been 
tested successfully [27–29]. However, the main disadvantage of the 
B3B-test is that no sufficiently accurate analytical description of the full 
stress field is available and numerical analysis has to be employed to 
determine the maximum stress and the effective volume or surface for 
each specimen [30,31]. This then entails new difficulties in making those 
results available. One possibility is to provide fitting functions for the 
factor f, which relates the applied load and the maximum tensile stress, as 
has been done by Börger et al. [30]. Yet, these functions are cumbersome 
to use and only provide a solution for the ideal case of punctiform load 
introduction and small deformations. Deviations from these ideal condi-
tions lead to a load dependency of the factor f, as shown for an exemplary 
specimen in Fig. 1, which is not represented in [30]. This may lead to a 
significant overestimation of the specimen’s strength [32]. 

Within this work, a new expression for the ideal case of both discs 
and square plate specimens will be derived by utilizing FEA for linear 
elastic isotropic materials. By modifying the range and variables of the 
underlying data field, a new and simpler fit with similar accuracy to the 
one derived by Börger et al. [30] will be presented. Furthermore, the 
difference between the ideal case and real testing situations, such as an 
increase in contact-area between the loading ball and the specimen, 
large specimen deformations, friction, or plastic deformation of the 
loading ball will be discussed. The effect of large specimen deformations 
will be investigated by utilizing a combined analytical and numerical 
approach. The effect of an increasing contact-area at the loading ball 
will be examined by utilizing FEA. This will yield correction factors 
which describe the load-dependency of the factor f. The performance of 

this new evaluation and its corrections will be assessed by comparison 
with an elaborate FEA model. The practical aspects given by the new 
evaluation and its valid domain of application will be discussed. 

2. Methods 

2.1. Finite-Element-Analysis 

FEA was performed to generate grid points for fitting and to inves-
tigate specific effects. All simulations were conducted utilizing the 
commercial FEA-program ANSYS R21.1 (ANSYS Inc., PA 15317, Can-
onsburg, USA). Each of the following models was implemented as a 
script written in Ansys-Parametric-Design-Language (APDL). This 
allowed using them in automated parametric studies for a wide range of 
geometries and isotropic material properties, covering several thousand 
unique combinations. 

2.1.1. Simplified models for discs 
To investigate the dependence of the factor f on the testing geometry 

as well as the specimen’s elastic properties, the 3D-model shown in  
Fig. 2a) was utilized. Due to the symmetry of the system and loading 
conditions, the model could be reduced to one sixth of the full disc. In 
Model 1A, the loading ball was represented by a punctiform load applied 
in the center of the disc. The support ball was represented by a puncti-
form boundary condition at the support radius Rs. Consequently, this 
model represents the ideal case during testing. The specimen was 
meshed with 178958 SOLID95 elements (20-node brick elements) and 
749574 nodes. The script further facilitates the implementation of 
various types of load application in the center of the specimen. To 
examine the influence of a finite area of contact, a Hertzian contact- 
pressure distribution with varying extent was utilized in Model 1B, as 
depicted in Fig. 2b). 

Fig. 1. FEA-results for the factor f in dependence of the applied load P for an 
exemplary specimen with a radius of 12 mm, a support radius of 10 mm and a 
thickness t of 1 mm. The specimen’s Young’s modulus and Poisson’s ratio are 
70 GPa and 0.22, respectively. 

Fig. 2. a) displays the meshed Model 1A with a punctiform load P applied. b) shows Model 1B, but with a Hertzian contact-pressure distribution p(r) applied.  

Fig. 3. Meshed Model 2 with a punctiform load P applied.  
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2.1.2. Simplified model for square plates 
Model 2 serves the same purpose as Model 1A, but for square plates. 

Due to the reduced symmetry of the system, one half of the plate has to 
be simulated, as displayed in Fig. 3. Both the loading and the support 
balls were represented by a punctiform load (or boundary condition) 
applied in the center of the disc and at the support radius Rs, respec-
tively. The specimen was meshed with a minimum of 162216 SOLID95 
elements and 682140 nodes, depending on the specimen’s thickness and 
overhang. 

2.1.3. Complete 3D-Model for discs 
Model 3 serves as a validation for the simplified models. It represents 

a 3D-model of the testing assembly, based on a model first developed by 
Börger et al. [30]. Symmetry conditions allowed a reduction to one sixth 
of the full testing assembly, see Fig. 4. The specimen was meshed with a 
minimum of 40392 SOLID95 elements and 173061 nodes and a 
maximum of 70668 SOLID95 elements and 301375 nodes, depending on 
the specimen’s thickness and overhang. The loading ball was meshed 
with 1750 SOLID95 elements and 8196 nodes, the support ball using 
3500 SOLID95 elements and 15582 nodes. The contact between the 
loading ball and the specimen was meshed with 375 CONTA174 (8-node 
surface elements) and 375 TARGET170 elements (8-node surface ele-
ments), the contact between the support ball and the specimen with 490 
CONTA174 and 490 TARGET170 elements. The friction coefficient was 
set to µ = 0.5 and symmetric contact calculations were employed. Since 
this model includes interactions between the specimen and the balls as 
well as load-dependent changes to the testing assembly and is solved 
under non-linear conditions, a better representation of real testing sit-
uations is given. A mesh convergence analysis for this and the other 
mentioned models can be found in Appendix A of this work. 

2.2. Analytic solution for the deflection of plates 

Kirstein et al. already developed an analytical solution for the 
deflection of thin centrally loaded plates on symmetric point supports in 
1966 [33]. This solution is valid for a minimum of three supporting 

points up to a theoretical maximum of an infinite number of support 
points, which would represent a ring supported situation. Within the 
context of this paper, their solution will be utilized for the special case of 
m = 3 support points and a central punctiform load. The deflection w at a 
position with radial distance r from the center of a disc with radius R and 
supported on points with distance Ds from the evaluated position is 
given by: 

w = w0 +
3P(1 − v2)

2πEt3

(

r2lnρ − 1
m
∑m

s=1
D2

s ln
Ds

c

)

(1)  

with 

w0 =
P(1 − v2)

2πκEt3

[
∑m

s=1
D2

s ln
D′

s

r′s
+
(
κ2 − 1

)
c2Re{Lm(ζ) }+

m(1 − ρ2)Rs
2

κ + 1

]

+ γ3

(2)  

and 

γ3 =
3P(1 − v2)R2

s

2πκEt3

[

Am(β) +
(
1 − κ2)Bm(β) − κlnβ −

1 − β2

κ + 1

]

. (3) 

Here, P denotes the applied load, E the specimen’s Young’s modulus, 
t the specimen’s thickness, Rs the support radius, β the ratio Rs/R, and v 
the Poisson’s ratio of the specimen. Other parameters of the equation 
will not be discussed here, the authors refer to the original work by 
Kirstein et al. [33]. 

2.3. Fitting 

Every fit in this work has been performed in Mathematica 13.1 
(Wolfram Research, IL 61820, Champaign, USA) with the command 
NonlinearModelFit. This command performs a least sum of squared errors 
fit on any given type of ansatz function by adjusting user-specified 
constants within the function. The deviation between the value of the 
fit xi,fit and the fitted data xi,ref for data point i will be referred to as re-
sidual error and is determined by 

Residual error [%] = 100⋅
xi,fit − xi,ref

xi,ref
(4) 

For each fit, the maximum positive and negative residual error for 
the complete data field will be given. Furthermore, the mean residual 
error for a fit based on n grid points is given by 

Mean residual error [%] = 100⋅

∑n

i=1
Abs

(
xi,fit − xi,ref

xi,ref

)

n
. (5)  

3. Simplifying the stress calculation 

3.1. Discs 

Due to the lack of an accurate analytical solution for the stress field, 
it must be numerically evaluated instead. Börger et al. [30] performed 
Finite-Element-analysis for the special case of contacting support balls. 
If not stated otherwise, this assumption will be maintained throughout 
this work. For this case, the support radius Rs is given by the radius of the 
support balls RSB by 

Rs = RSB
2̅
̅̅
3

√ . (6) 

In general, the maximum tensile stress σmax in the center of a bent 
plate scales with the applied load P and the inverse square of the 
thickness of the plate t: 

σmax = f
P
t2 (7) 

The factor f is a dimensionless function which takes the material 

Fig. 4. Meshed model of the specimen and the loading/support balls, Model 3.  
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properties and the involved geometry into account. Within their work, 
they reduced the factor f for the B3B-test to being dependent on the 
specimen’s thickness t, the specimen’s radius R, the support radius Rs 
and the Poisson’s ratio v. Furthermore, the results of a parametric study 
were made available by providing a fitted function for f: 

fBörger

(
t
R
,
Rs

R
, v
)

= c0 +
c1 + c2

t
R + c3

(
t
R

)2
+ c4

(
t
R

)3

1 + c5
t
R

(

1+ c6
Rs

R

)

(8) 

This function covers the range of 0.55 ≤ Rs/R ≤ 0.9, 0.05 ≤ t/R 
≤ 0.6 and 0.2 ≤ v ≤ 0.3. This range was later extended to 0.1 ≤ v ≤ 0.4 
by Danzer et al. [32]. The value of fBörger determined with this fit has an 
error ≤ ± 1% with respect to the numerical solution. This accuracy is 
made possible by providing a set of constants c0-c6 for different Poisson’s 
ratios in an increment of 0.05; a total of 49 constants. If the tested 
material has a Poisson’s ratio not tabulated, linear interpolation must be 
performed. This makes implementation of this equation prone to errors 
and cumbersome. In order to simplify the calculation of the maximum 
stress, a new study on f has now been conducted. Up to now, f was al-
ways expressed and evaluated with its arguments relative to R. How-
ever, the influence of the support radius Rs on the value of f is 
significantly higher than that of the specimen’s radius R. Therefore, a 
new data field for f based on the now modified parameters t/Rs, R/Rs and 
v was generated by FEA utilizing Model 1, with a total of 1400 data-
points. The data field covers 1.05 ≤ R/Rs ≤ 2, 0.05 ≤ t/Rs ≤ 0.6 and 0.1 
≤ v ≤ 0.4. Based on this data, a new empirical fit was developed. Now, 
the factor f can be determined by 

fnew

(
t

Rs
,

R
Rs
, v
)

= exp

[

m1(1+ v)+m2ln
t

Rs
+m3

̅̅̅̅̅̅̅
Rt2

R3
s

4

√ ]

(9)  

with m1-m3 as listed in Table 1 and the limits of valid application as the 
range of the fitted data field. 

An overview of the general deviation from Eq. (9) to the fitted data 
can be found in Table 2. Fig. 5a)-e) provide a more comprehensive 
overview of the fit’s accuracy. In terms of specimen geometry, the lowest 
accuracy/largest deviation is generally found in the peripheral regions. 
Similarly, a low accuracy for exceptionally low and high Poisson’s ratios 
can be observed. However, most technical ceramics exhibit a Poisson’s 
ratio in the range of 0.2 – 0.3 [31], a range well described by the fit. 
Furthermore, typical specimens for the Ball-on-Three-Balls-test exhibit 
geometries as marked in Fig. 5c). Here, a maximum and minimum de-
viation as low as + 0.15% and − 0.7%, respectively, are achieved. In 
principle, a small loss in (overall) accuracy as compared to the fit by 
Börger et al. [30] is observed, though only in regions of minimal interest. 
Fig. 5 further gives the possibility to derive highly accurate strength 
results for individual geometries by utilizing the given deviation in 
combination with Eq. (9) to determine the applied stress as originally 
calculated with FEA. 

3.2. Square plates 

Another very common specimen geometry are square plates, which 
can be tested in similar testing fixtures as discs. The factor f for these 
specimens does not deviate much from similarly sized disc-shaped 
specimens, but the difference is large enough to necessitate a separate 
treatment. This is due to the fact that the overhang, i.e. the part of the 
specimen from the outer edge to the support radius, has a small but still 
pronounced effect on the maximum tensile stress. Therefore, instead of 
describing square plates with fit very similar to Eq. (9), the authors 
opted to provide a conversion from square plates to equivalent discs, as 
has been done for other methods [4,34]. An equivalent disc is defined by 
its diameter Deff, which is chosen in a way so that the maximum stress is 
the same as in the square plate specimen. All other geometry parame-
ters, such as the specimen’s thickness and the support radius, remain 
unchanged. Therefore, only the conversion from the square plate’s edge 
length L to the equivalent diameter is needed. In order to derive this 
conversion, Model 2 was utilized and 1035 datapoints were generated. 
The data field covers 2.165 ≤ L/Rs ≤ 3.899, 0.0449 ≤ t/Rs ≤ 0.736 and 
0.05 ≤ v ≤ 0.45. Based on this data, a conversion from square plates to 
discs was developed. The effective diameter Deff is determined by 

Deff = L
(

1.053 − 0.017
tL
R2

s

)

. (10) 

An overview of the deviation for the factor f, derived with the con-
version to equivalent discs and Eq. (9), to the FEA-data for square plates 
can be found in Table 2. 

It should be noted that this conversion is only valid in the range 2.17 
≤ L/Rs ≤ 3.9, 0.1 ≤ t/ Rs ≤ 0.6 and 0.1 ≤ v ≤ 0.4. 

4. Improving accuracy for high-load testing situations 

So far, all simulations have been conducted with Models 1A and 2 
described in Sections 2.1.1 and 2.1.2. As previously stated, this model 
represents the ideal case during testing with both punctiform load 
introduction and support conditions. It is evident that this will not 
represent reality in a number of practical cases and that some errors are 
to be expected. Errors due to geometric deviations of various aspects of 
the testing setup have already been discussed by Börger et al. and 
deemed negligible [25]. Therefore, the aforementioned errors mostly 
arise because no interactions between the loading or support balls and 
the specimen are represented in the model. First, an increase in load 
results in deformation of the loading ball and the specimen in the area of 
contact, whereby the assumption of punctiform load introduction loses 
its validity. Instead, a finite area of contact and load introduction is 
established. Second, large deflection of the specimen may occur under 
certain conditions, causing it to roll off the support balls. This results in a 
shift of contact position towards the center of the support circle, altering 
the applied bending moment and with it the maximum tensile stress. 
Third, friction between the loading ball and the specimen can have a 
significant influence on the maximum tensile stress of the specimen. It 
induces shear stresses under the area of contact, which act through the 
specimen thickness and thus reduce the maximum tensile stress. 

Due to these interactions being included, Model 3, as described in 
Section 2.1.3, is significantly better suited to provide an accurate rep-
resentation of reality. This then provokes the idea of using this model in 
a similar way to the previous section and incorporate all the mentioned 
effects into the evaluation at once. The main drawback of this model is 
its high processing time due to its use of contact calculations despite a 
decrease in the overall number of elements. In general, the evaluation 
takes about 70–80 times longer than for Model 1A. In order to represent 
the mentioned effects in the calculation of maximum stress, a higher 
number of parameters would be needed. First, the load-dependence has 
to be considered, which is influenced by the elastic constants of both the 
specimen and the support or loading balls. This would result in the 

Table 1 
Constants m1-m3 utilized in Eq. (9).  

m1 m2 m3 

0.697 -0.118 -0.728  

Table 2 
Accuracy parameters describing the deviation of Eq. (9) to the data field for discs 
and Eq. (10) used in Eq. (9) to the data field for square plates.  

Accuracy parameter Discs Square plates 

Maximum residual error [%] + 1.4 + 1.6 
Minimum residual error [%] -1.9 -1.6 
Mean residual error [%] + 0.52 + 0.63  
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Fig. 5. Overview of the relative error of fnew to the fitted data points.  
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addition of up to four new parameters. To properly capture each de-
pendency, each relevant parameter would have to be varied within its 
relevant range in at least 10 steps. Putting all those considerations 
together, a new parameter field with a size well within millions of data 
points would be necessary. In combination with the high processing 
time, a study like this would require immense computing power. 
Developing an accurate fit for such a data field would be another chal-
lenge by itself. 

Therefore, a different method has to be considered. Within this work, 
a separation approach will be utilized. By taking an individual look at 
each major effect, a better understanding of its consequences can be 
achieved. Ideally, the deviations from the ideal solution fnew caused by 
them can be described separately with correction factors ki. Combining 
these expressions multiplicatively, as shown in Eq. (11), will yield a 
corrected factor fcorr. If each ki is a somewhat manageable functional 
expression with sufficiently similar results to FEA, this method will 
provide a valuable alternative evaluation, but within a much shorter 
time. 

fcorr = fnew

∏

i
ki (11) 

In the upcoming sections, a closer look at the change in load appli-
cation and the specimen’s deflection will be taken and functional ex-
pressions to describe their influence on the factor f will be provided. 

4.1. Contact at the loading ball 

As mentioned in the previous section, an increase in load establishes 
a finite area of contact between the loading ball and the specimen. This 
causes a change in load introduction from the ideal punctiform load to a 
distributed load over a circular contact area at the center of the spec-
imen. The size of this area will be quantified by its radius, which will be 
referred to as the contact radius Rc. In principle, an increase in contact 
radius reduces the bending moment and with it the stress applied on the 
specimen. This change in stress has been investigated by FEA with Model 
1B described in Section 2.1.1. Instead of a punctiform load, a Hertzian 
pressure distribution for the contact between a sphere and a flat surface 
has been applied. With this model, a parametric study of approximately 
6000 simulations on the influence of the contact radius Rc on the 
maximum stress (i.e. the factor f) has been conducted. More specifically, 
the contact radius Rc was varied for a wide range of specimen geome-
tries, such as the specimen’s thickness t, the specimen’s radius R and the 
support radius Rs. Additionally, the influence of the applied load P, the 
specimen’s Young’s modulus E and Poisson’s ration v was investigated 
as well. In conclusion, only the contact radius, specimen’s thickness and 
support radius have a distinct influence on the maximum stress. The 
other parameters mentioned have an influence on the contact radius, but 

not on the maximum stress directly. This allowed to reduce the number 
of relevant parameters to just three. By using dimensionless relative 
parameters, e.g. the relative contact radius Rc /Rs and relative thickness 
t/Rs, the number of parameters could be further reduced to two. Based 
on these findings, a reduced data field with 525 data points to describe 
the change in maximum stress, i.e. the factor f, was generated. The in-
fluence of these two parameters on f is shown in Fig. 6. 

By fitting this data field, a functional expression for the change of f 
due to the change in contact area can be provided. The correction k1 can 
be given as 

k1(a/Rs, t/Rs, v,E,ELB, vLB,P) = h1 + h2 ln( Rc/Rs⋅t/Rs) + h3
(Rc/Rs)

h4

(t/Rs)
h5

(12)  

where 

Rc =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

3PRLB

4

(
1 − v2

E
+

1 − vLB
2

ELB

)
3

√

(13) 

with Rc describing the contact radius based on the Hertzian solution. 
ELB and vLB are the Youngs’s modulus and Poisson’s ratio of the loading 
ball, respectively. RLB denotes the radius of the loading ball. The fitting 
constants h1-h5 are listed in Table 3. An overview of the deviation of Eq. 
(12) to the fitted data can be found in Table 4. 

4.2. Deflection of the specimen 

A different problem is raised through the interaction of the specimen 
and the support balls. With increasing specimen deflection, the point of 
contact progressively shifts inwards. This reduces the applied bending 
moment due to decreasing leverage. Since the bending moment is 
directly proportional to the maximum stress and therefore the factor f, a 
functional expression for the change in bending moment is equal to the 
searched correction k2. This effect is especially pronounced when ma-
terials with high strength (> 1000 MPa) and low Young’s modulus (<
100 GPa), such as high-strength glass, are tested. In order to predict the 
extent of this effect, the change in leverage, i.e. the shift in contact po-
sition at the support balls, has to be known. By considering the geometry 
of the problem, trigonometry can be utilized to express the shift in 
contact xshift from the slope scon of the specimen with 

xshift = RSBsinarctanscon, (14)  

where RSB is the radius of the support ball. A schematic of the geometric 
relations is shown in Fig. 7. 

Therefore, the problem can be reduced to the determination of the 
slope of the specimen’s deflection curve at the point of contact. Ideally, 
this information can be directly deduced from an analytical expression. 
Favorably, Kirstein et al. [33] derived an analytical description for the 
deflection of point-loaded plates on an arbitrary number of equally 
spaced point supports, as explained in Section 2.2. If we differentiate a 

Fig. 6. The factor f in dependence of the relative contact radius and the 
specimen’s relative thickness as predicted by FEA. Values at Rc/Rs = 0 are those 
which correspond to the point-load situation, and which are described by 
Eq. (7). 

Table 3 
Constants h1-h5 utilized in Eq. (12).  

h1 h2 h3 h4 h5 

1.0052 0.00063 -0.5928 1.6756 1.3523  

Table 4 
Accuracy parameters describing the deviation of Eq. (12) and Eq. (15) to their 
respective fitted data fields.  

Accuracy parameter k1 sred (k2) 

Maximum residual error [%] + 1.0 + 6.4 
Minimum residual error [%] -0.50 -13 
Mean residual error [%] 0.16 3.7  
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function describing the deflection of a specimen, a function describing 
its slope is obtained. However, due to its complexity, this cannot be done 
analytically for the solution by Kirstein et al. Therefore, a numerical 
approach had to be employed. First, the number of variables for the 
numerical evaluation had to be reduced. This was done by factoring out 
P/Et2, which leaves a reduced function for the deflection that is inde-
pendent of the applied load and the specimen’s Young’s modulus. 
Therefore, the variables had been narrowed down to R, Rs, v and t. By 
forming dimensionless relative parameters, i.e. the relative radius R/Rs 
and relative thickness t/Rs, the number of parameters could be further 
reduced to three. A parametric study on those three parameters for the 
reduced slope at the point of support was conducted and a data field 
comprising 1330 data points was generated. By fitting, an approxima-
tion for the analytical derivation of the equation by Kirstein et al. at this 
position can be given. The fit for the reduced slope sred can therefore be 
expressed as 

sred =
(
1 − v2)R/Rs

t/Rs

(

0.0015 − 1.13
1

(R/Rs)
2

)

. (15) 

A summary of the deviation of Eq. (15) to the fitted data can be found 
in Table 4. The high relative deviation stems from the deviation for low 
absolute values of the reduced slope. Here, a small deviation in absolute 
value causes a large relative deviation due to the reference value being 
very small. This large error would therefore only come into play when 
very small deflections are involved, a case where an application of this 
fit or correction is neither necessary nor recommended. Combining the 
reduced slope with the load- and material-specific term previously 
factored out yields the actual slope scon at the contact point between the 
specimen and the support ball 

scon =
P

Et2

[
(
1 − v2)R/Rs

t/Rs

(

0.0015 − 1.13
1

(R/Rs)
2

)]

(16)  

with the variables as denoted in previous equations. Since the slope at 
the point of contact is now known, Eq. (14) can be utilized to predict the 
shift in contact position xshift with 

xshift = RSBsinarctan
P

Et2

[
(
1 − v2)R/Rs

t/Rs

(

0.0015 − 1.13
1

(R/Rs)
2

)]

(17) 

Due to the small value of the argument of the trigonometric func-
tions, scon, a small angle approximation (sinarctanx ≈ x) can be per-
formed. This then gives 

xshift = RSB
P

Et2

[
(
1 − v2)R/Rs

t/Rs

(

0.0015 − 1.13
1

(R/Rs)
2

)]

(18)  

for xshift. In order to predict the change in bending moment, the relative 
change in leverage has to be calculated. This is done by subtracting xshift 
from the original lever arm, i.e. the support radius Rs, and then dividing 

the result by Rs. Since the slope determined with Eq. (16) is negative, 
xshift is negative as well and has to be added to Rs instead in order to 
correctly portray the change in leverage. This then yields 

k2 =
Rs + xshift

Rs
(19)  

for the change in bending moment k2. Inserting Eq. (17) into Eq. (19), 
utilizing the relationship from Eq. (6) and simplifying the resulting 
expression gives 

k2 = 1+
̅̅̅
3

√

2
P

Et2

[
(
1 − v2)R/Rs

t/Rs

(

0.0015 − 1.13
1

(R/Rs)
2

)]

(20)  

4.3. Friction & plastic deformation of the loading ball 

The influence of friction and plastic deformation has been investi-
gated through FEA with a model employing contact calculations. It was 
found that friction between the specimen and the loading ball starts to 
play an increasingly important role if the specimens are thin. For thin 
and highly flexible specimens, i.e. t/Rs= 0.05 and E = 70 GPa, a 
reduction in the maximum tensile stress of about 4% from the friction-
less case to the same setup with µ = 0.5 has been observed. This is due to 
the shear stresses caused by friction starting to affect the stress at the 
opposing face, resulting in a reduction of maximum tensile stress. For 
thicker and less flexible specimens, this effect is in the range of about 
1–2%. As will be explained in the upcoming sections, thin and flexible 
specimens are difficult to describe with the models established in this 
work and will have to be treated separately. Since this effect is only 
significant for a small portion of possible specimen geometries, while 
having only a minor influence on the remaining ones, no functional 
expression for the influence of friction will be provided. Additionally, 
friction between the support balls and the specimen is not present if the 
balls are allowed to rotate freely [25]. 

Another possible source of error is plastic deformation of the loading 
ball. The expected effect would be similar to what has been covered in 
Section 4.1. A FE study using an ideal bilinear elastic-plastic material 
model for the loading ball [35], solely for the influence of plastic 
deformation on the contact situation, was conducted. It revealed a 
nearly linear relation between the increase in load and the increase in 
contact radius compared to the pure elastic case. If the material prop-
erties of the balls are known, this additional increase can be determined 
and added to the elastic deformation. This would provide a new contact 
radius Rc’ for the usage in k1 and no further changes to the calculation of 
the maximum tensile stress would have to be made. 

4.4. The load-corrected stress evaluation 

Combining the correction factors k1 and k2 with fnew ultimately yields 
the corrected factor fcorr 

Fig. 7. Geometric relations for the contact point shift between the specimen and the support ball.  
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fcorr

(
t

Rs
,

R
Rs
, v,E, vLB,ELB,P

)

= fnewk1k2 (21)  

which now takes additional load- and material-dependent effects into 
account. The following sections will provide an overview of the per-
formance and accuracy of this functional expression for fcorr. 

5. Validation and Comparison of fcorr 

Before the comparison of fcorr to FEA results obtained with Model 3, 
some aspects of the behavior of the correction factors k1 and k2 have to 
be discussed. First, thin specimens exhibit the highest relative de-
flections and with it the strongest curvature. This especially affects the 
size of the zone of contact between the loading ball and the specimen, 
where the curvature is most pronounced. As discussed in Section 4.1, the 
size of the contact area has a strong effect on the maximum stress. 
However, the correction factor k1 is based on the assumption of Hertzian 
contact between a sphere and a flat surface. This suggests a smaller area 
of contact compared to contact between a sphere and a concave surface. 
Therefore, k1 underestimates the effect of contact for large deflections. 
Second, the geometric assumptions necessary for the equation given by 
Kirstein et al. [33] lose their validity for large deflections. Due to the 
correction factor k2 being deducted from this equation, an error for 

exceptionally thin specimens is expected. A comparison of the slope at 
the point of contact as obtained with FEA and the prediction by Eq. (1) 
for thin specimens with large deflections shows an overestimation by the 
analytical solution. Additionally, Kirstein et al. assume punctiform load 
introduction, while an extended load introduction is closer to real 
testing situations. This reduces the applied bending moment and with it 
the deflection, which is another reason for the overestimation of the 
slope at the point of contact. Therefore, the correction factor k2 gener-
ally overestimates the effect of deflection for exceptionally thin 
specimens. 

Model 3 mentioned in Section 2.1.3 was utilized as a base of com-
parison and a tool for the validation of Eq. (21). More specifically, the 
load dependency of the factor f was determined with both methods for a 
range of parameters. On one hand, this range includes “typical” speci-
mens and testing setups, as one would encounter on a regular basis. On 
the other hand, the edge-cases of possible parameter combinations were 
also examined to work out the limits of Eq. (21)’s applicability. All 
comparisons in this chapter are based on a testing setup that utilizes 
steel balls with a Young’s Modulus of 210 GPa and a Poisson’s ratio of 
0.33. For typical specimens, a relative radius R/Rs of 1.2 and a range of 
relative thicknesses t/Rs from 0.05 to 0.4 were chosen. The material- 
specific parameters are listed in Table 5. Fig. 8a)-c) depict the change 
in f in dependence of the applied load P, predicted by both FEA and Eq. 
(21). The corresponding maximum stress for each curve is approxi-
mately 2 GPa. Except for specimens with a relative thickness of 0.05, 
exceptional agreement between the two methods is achieved. The 
maximum relative error for specimens with t/Rs ≥ 0.1 is less than 1%. It 
should be noted that FEA was conducted with non-linear geometric 
behavior considered, which is represented accurately by the functional 
expressions. 

Eight edge-cases were investigated to cover extreme specimen 

Table 5 
Material parameters for "typical" specimens.  

Specimen material R/Rs [-] E [GPa] v [-] 

Glass  1.2  70  0.22 
Zirconia  210  0.25 
Alumina  420  0.2  

Fig. 8. Dependence of f on the applied load P as predicted by FEA and by Eq. (21). The colored markers represent the results of FEA, the continuous black line 
represents fcorr, Eq. (21). The maximum tensile stress for each curve is approximately 2 GPa. The results for glass are shown in a), zirconia in b) and alumina in c). 
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geometries and extreme material properties. As before, the relative 
thickness was varied, but now in the range from 0.05 to 0.5. Two main 
cases were differentiated: An exceptionally small relative radius of 1.05 
(i.e. a small overhang) and large relative radius of 1.525 (i.e. large 
overhang). Within each case, 4 combinations of material parameters 
were evaluated. The specific parameters are listed in Table 6. Fig. 1 of 
the supplementary material depicts the results for cases 1–4, while Fig. 2 
of the supplementary material depicts the results for cases 5–8. Again, 
specimens with a relative thickness of 0.05 exhibit the highest deviation, 
with the exception of case 2 and 8, and will not be included in the 
following observations. For cases 1–4, i.e. specimens with very low 
relative radius, an overall good agreement is observed. The highest 
deviation is displayed in case 3 by the specimen with a relative thickness 
of 0.1. However, the maximum deviation for this specific combination of 
parameters is about 2%, which is well within the desired accuracy. For 
cases 5–8, i.e. specimens with a very high relative radius, a similar sit-
uation is found. Cases 6–8 exhibit good agreement, only the specimen 
with a relative thickness of 0.1 in case 7 displays a deviation of about 
1.6%. Case 5 however indicates a problem for highly flexible specimens 
with a low Poisson’s ratio. Here, even the thickest specimen exhibits a 
constant deviation of about 4%. The specimen with a relative thickness 
of 0.1 exhibits an error of up to 5.9%, albeit only for a maximum stress of 
more than 1 GPa. 

As discussed in the beginning of this chapter, both corrections either 
underestimate (k1) or overestimate (k2) their respective influences with 
increasing load. Due to the factors k1 and k2 being utilized in multipli-
cative combination, these errors cancel each other out and an accurate 
description can evidently be achieved for most specimens. However, 
they cannot sufficiently describe specimens with a relative thickness 
< 0.01. Considering these aspects, the range of parameters for the 
application for fcorr , i.e. Eq. (21), is given in Table 7. Since fcorr has been 
compared to FEA only up to a maximum tensile stress of 2 GPa, the 
authors do not recommend application for specimens with a higher 
strength. Within the given range, Eq. (21) replaces individual FEA with 
an error typically ≤ ± 2%. 

6. Practical aspects 

The test set-up of the B3B-test was originally designed using three 
contacting balls to provide the support of the specimen on a perfect 
circle and a ball of similar size as loading ball, as depicted in [25,30]. 
Due to the ability of the support balls to rotate at their position during 

the test, friction can be minimized, and an important source of error can 
be eliminated [25]. Furthermore, this set-up facilitates jig-designs with 
exceptionally easy handling. Preferably, ball bearing grade steel balls 
are used, since they are easy to obtain and available in a fine grading of 
radii over a wide range of sizes. The separate description of the in-
fluences of two important issues of the B3B test – the contact situation 
through k1 and the deflection effects through k2 - paves the way to an 
analysis of some practical aspects of the test. In the following sections, 
these aspects will be discussed within the validity range of Eq. (21), as 
given in Table 8, for exemplary specimens with radius of R = 6 mm on a 
support radius of Rs = 5 mm. The ideal ball radius for this set-up is RSBi 
= RLBi = 4.33 mm. 

6.1. Support ball size 

In Section 4.2 and in Eqs. (17) and (19), the influence of the speci-
men’s deflection on the maximum stress in the specimen is described 
and quantified. It is obvious that this effect is more pronounced if the 
specimen is supported on large balls. The influence of the shift of contact 
on the maximum stress can be reduced if smaller than ideal support balls 
are used. For any test geometry, the correction factor k2 depends linearly 
on the ratio of the support ball radius over support radius, RSB/RS. For 
RSB/RS = 0, k2 = 1, for larger ratios k2 < 1. This trend is illustrated in  
Fig. 9 for thin specimens with a Young’s modulus of E = 70 GPa and 
more typical, thicker specimens with E = 300 GPa at two failure 
stresses. It can be seen that the effect of using smaller support balls is 
very small unless very flexible materials with extremely high strength 
are tested. Using smaller balls will also require a new design of the test 
fixture, which will certainly be more complicated than the one suggested 
earlier [25,30], especially regarding the exact positioning of the support 
balls and their ability to rotate. 

Table 6 
Geometry and material parameters as well as the maximum relative deviation 
from fcorr to FEA for a number of investigated edge cases.  

Designation R/Rs [-] E [GPa] v [-] Max. dev. 

Case 1  1.05  70  0.1 < 2% 
Case 2  0.4 < 2% 
Case 3  420  0.1 2% 
Case 4  0.4 < 2% 
Case 5  1.525  70  0.1 6% 
Case 6  0.4 < 2% 
Case 7  420  0.1 < 2% 
Case 8  0.4 < 2%  

Table 7 
Parameter range for the accurate application of Eq. (21).  

t/Rs [-] R/Rs [-] E [GPa] v [-] σmax [MPa] 

0.1 – 0.5 1.05 – 1.525 70–420 0.1 – 0.4 ≤ 2000 

Note that for the special case of specimens similar to case 5, i.e. highly flexible 
specimens (E ≤ 100 GPa) with a high strength (σF ≥ 1 GPa) and a Poisson’s ratio 
in the range of 0.1–0.15, deviations of up to 6% are expected.  

Table 8 
Summary of the valid parameter ranges for the functional expressions of f.   

t/Rs R/Rs or L/ 
Rs 

E [GPa] v σmax [MPa] 

fnew 0.1 – 0.6 1.05 – 2 – 0.1 – 
0.4 

material specific,Eq. 
23 

fnew, 

square 

0.1–0.6 2.17 - 3.9 – 0.1 – 
0.4 

material specific,Eq. 
23 

fcorr 0.1 – 0.5 1.05– 
1.525 

70–420 0.1 – 
0.4 

≤ 2000  

Fig. 9. Correction factor k2 for exemplary specimens (R = 6 mm, RS = 5 mm) in 
dependence of the radius of the support balls (in fractions of the support 
radius). Through lines represent thin, flexible (glass) specimens (t = 0.5 mm, 
E = 70 GPa), dashed lines represent thicker, more typical ceramic specimens 
(t = 1.5 mm, E = 300 GPa). Two cases are shown: σmax = 500 MPa and 
σmax = 2000 MPa. 
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6.2. Contact of the specimen with the loading ball 

The ideal loading situation in the B3B-test is a punctiform load 
introduction. Of course, this cannot be achieved using a ball to apply the 
load. It has been shown in Section 4.1 how an increase in the size of the 
area of load introduction influences the maximum stress. In practice, the 
desirable situation of keeping the size of this area as small as possible is 
favored by two means: by using a loading ball with a higher Young’s 
modulus (see Eq. (13) or by using a smaller loading ball (i.e. smaller than 
the ideal size which is equal to the contacting support balls). Eqs. (12) 
and (13) can be employed to evaluate the influence of using a hard metal 
loading ball of ideal size with a Young’s modulus of ELB = 600 GPa 
instead of steel balls. This only has a negligible influence of less than 1% 
on the correction factor k1. The effect of using a smaller loading ball is 
slightly more pronounced, with deviations up to 3% for very small balls. 
These numbers were obtained for the condition of a maximum tensile 
stress of 2000 MPa in the specimens. The effect will be even smaller at 
lower stresses. 

Moreover, any contact of a ball with a surface, as at the site of load 
introduction in the B3B-test, bears the risk of the formation of contact 
cracks if a certain critical load Pc is exceeded [36]. Upon increase of the 
load beyond this critical value such cracks may grow, penetrate the 
thickness of the specimens and lead to failure [37]. This is an unwanted 
situation that can be avoided if the load at fracture due to bending, Pf, is 
less than the critical load Pc for the formation of contact cracks, i.e. Pf 
< Pc. 

For common ball sizes used in the B3B test, this situation can be 
analyzed by using Auerbach’s law for the contact between a flat surface 
and a ball. According to Auerbach’s observations [38], the load required 
to produce contact cracks Pc is proportional to the radius of the loading 
ball: PC = A⋅RLB. The constant A (Auerbach constant) has been related to 
the elastic constants of the involved materials and the surface energy γ of 
the cracked material [39,40], and has further been determined experi-
mentally for various material (i.e. specimen and ball) combinations 
[41–45]: 

Pc =
3π3

16 ϕa

(
1 − ν2

E
+

1 − v2
LB

ELB

)
2γ E
(1 − ν2)

RLB (22) 

Eq. (22) or experimental values for A can be used to plot curves of 
σ(Pc), using Eq. (7), for a given specimen geometry as a function of the 
specimen’s thickness t. Such curves can be used to find limiting condi-
tions for contact cracking during B3B-tests. An example for such curves 
for the exemplary specimen is given in Fig. 10 for various specimen 
materials (glass, alumina, silicon nitride) and a steel loading ball of ideal 

size RLBi. If the expected strength of the specimen is below the line at a 
given thickness, no contact cracks should be generated during the B3B- 
test. For glass, A = 62 N/mm was taken from [41], for alumina, A 
= 590 N/mm from [42] and for silicon nitride, a value of A 
= 1360 N/mm using materials properties given in [46], Eq. (22) ϕa 

= 0.0011 [39] and the relation K2
Ic = 2γE/(1 − ν2) was used. Addition-

ally, Fig. 10 depicts the same limit curves for a loading ball made from 
hard-metal and with a radius RLB = 1 mm. 

It is obvious from Eq. (22) how the size and Young’s modulus of the 
loading ball influence the limit curve: the smaller RLB, the smaller is Pc 
and the higher ELB, the smaller is A. Both trends shift the limit curve 
towards lower strength values. These findings discourage the use of 
smaller or stiffer loading balls. However, the use of balls with RLBi and a 
high Young’s modulus may be indicated for cases where high fracture 
loads prevail, and plastic deformation of the loading ball is an issue. 

Several simplifications have been made for the construction of 
Fig. 10. The data for A are related to the contact between a ball and a 
thick, flat specimen that does not deform globally. In the case of the B3B- 
test, the contacted surface is concave and under a general compressive 
equi-biaxial stress. The curvature will increase the contact area in 
comparisons to the flat surface case and thus decrease the overall 
magnitude of the contact stress field. The overall compressive equi- 
biaxial stress state at the loaded surface of the specimen additionally 
hinders contact cracking, since tensile stresses are relevant for this 
phenomenon. The limit curves in the presented map can therefore be 
regarded as conservative estimates. 

6.3. Domains of application 

As is evident from the plots in Fig. 6, the factor f does not deviate a lot 
from fnew, i.e. the values of f on the ordinate axis, for certain conditions. 
These conditions are given by the specimen geometry (relative thickness 
and relative radius), its elastic properties and the applied load. Even 
though fcorr gives the more accurate result for f, it is not necessary to use 
this lengthy expression in all cases. In order to determine which 
expression to use, the impact of the correction factors k1 and k2 has been 
investigated for all valid parameter combinations. A combined correc-
tion of k1 and k2 of 2% has been set as the limit for the application of fnew. 
This means that if fcorr/fnew < 0.98, fnew does not sufficiently describe f 
anymore and fcorr has to be utilized instead. For the following graphs and 
statements, a testing fixture utilizing steel balls with a Young’s modulus 
of 210 GPa and a Poisson’s ratio of ν = 0.33 is assumed. This then re-
duces the possible parameters to R/Rs, t/Rs, E and v of the specimen as 
well as the applied load P. To display the limits in a way that is not 
dependent on the absolute geometry of the specimen, the applied load 
will be expressed by the maximum applied stress σ (or the measured 
strength) instead. Fig. 11 depicts the 2%-limit in dependence of R/Rs for 
exemplary specimens made from glass, zirconia, and alumina with t/Rs 

Fig. 10. Strength-thickness map for B3B-tests on exemplary specimens (R =
6 mm, RS = 5 mm) of glass, alumina, and silicon nitride. If the measured 
strength of a specimen with a given thickness t is below its respective line, no 
contact cracks are expected. The through lines refer to loading with a steel 
loading ball with the ideal radius RLBi = 4.33 mm, the dashed lines refer to 
loading with hard-metal ball with RLB = 1 mm. 

Fig. 11. 2%-Limit for selected specimens with varying Young’s modulus in 
dependence of R/Rs. 
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= 0.2. The lines in this Figure display the maximum stress that can be 
applied to the material before the deviation between fcorr and fnew is 
≥ 2%. Therefore, if a specimen exhibits a strength below this line, the 
simplified evaluation, i.e. Eq. (9), can be utilized. If the strength is 
higher, then Eq. (21) has to be utilized to accurately determine f. 

Fig. 11 shows that R/Rs does not strongly influence the limit. This 
was found to be true for all other possible configurations of t/Rs, E and v. 
Therefore, the following graphs will depict the limits only in dependence 
of t/Rs, E and v. Fig. 12 displays the application limits for typical ma-
terials such as glass, zirconia, and alumina. 

In order to ensure that the parameter R/Rs can safely be omitted, 
each datapoint for a specific configuration (t/Rs, E, v) actually represents 
the lowest value of all R/Rs in its valid range of 1.05–2 for that config-
uration. This means that the limits shown always assume the worst case 
in terms of R/Rs, so that no matter what value of R/Rs the tested spec-
imen exhibits, the limit shown might actually be lower than 2%, but 
never higher. Fig. 3a)-c) of the supplementary material display the limits 
for more cases, including the special cases discussed in Section 5. An 
alternative route to convey these limits in a more general form is by 
providing a functional expression. By setting the Poisson’s ratio of the 

specimen to a fixed and common value, one function can describe a very 
broad range of materials and geometries. This has been done for v 
= 0.25, which gives 

σlim ≤ − 347 − 497
̅̅̅̅̅̅̅̅̅
t/Rs

√
− 0.062

̅̅̅̅
E

√
+ 68

̅̅̅̅̅̅̅̅̅̅̅̅̅
E⋅t/Rs

4
√

(23)  

to describe the limiting strength σFlim (in MPa) for the application of fnew 
in dependence of t/Rs and E (in MPa). An overview of the accuracy of 
this expression is shown in Fig. 13. Again, R/Rs was chosen in a way so 
that it represents the worst-case scenario. Regarding the Poisson’s ratio, 
v = 0.25 was chosen since it represents a value close to that of many 
technical ceramics [31]. A change to a higher Poisson’s ratio would shift 
the curves slightly upwards, while lowering the Poisson’s ratio would 
shift them slightly downwards. 

Eq. (23) provides a convenient tool to decide which factor, fnew (for 
σF < σlim) or fcorr (for σF > σlim), has to be used to obtain the most accurate 
result for σmax for a given test geometry or which test geometry is suit-
able to allow for the use of the simple expression of fnew, Eq. (7). 

Overall, 3 regimes for the evaluation of f can be defined. If the 
strength of the material is below the limits displayed in Fig. 13, then the 
simple functional expression fnew (Eq. (9)) can be utilized. If the strength 
of the material is higher, than the more complex functional expression 
fcorr (Eq. (21)) has to be used. Finally, if the geometry- or material pa-
rameters of a specimen are not covered by the given range for fnew or fcorr, 
as summarized in Table 8, then individual FEA has to be conducted to 
determine f. Note that this work has been performed for linear elastic 
isotropic materials. If the tested specimen exhibits anisotropic behavior 
or material nonlinearities (such as plastic deformation of the specimen), 
then neither fnew nor fcorr should be applied. Again, this would then be a 
typical case were individual FEA has to be performed. 

7. Summary  

1) A simplified model of the B3B-test has been utilized to analyze the 
factor f for a wide range of geometric and material parameters and a 
new fitted function fnew, for the evaluation of the B3B-test is 
presented.  

2) A conversion from square plate specimens to discs with an equivalent 
diameter Deff for the calculation of f is given. This allows stress 
evaluation for square plates with the new fitted function fnew from 1).  

3) The influence of the applied load on the factor f was investigated. 
Two major effects have been considered separately. First, the in-
crease of contact area between the loading ball and the specimen due 
to high loads and elastic deformation was investigated. Second, the 
shift in contact position between the specimen and the support balls 
due to deflection of the specimen was examined. For each effect, a 
correction factor that describes the deviation in f is presented.  

4) By utilizing these corrections, a range of geometries and material 
properties can be defined, for which the ideal punctiform solution 
fnew gives an error < 2% for the calculated maximum stress. Within 
this range, the simplified evaluation from 1) is sufficient.  

5) Cases, which are not included in 4) can be accurately represented by 
taking the corrections from 3) into account and using fcorr = fnewk1k2. 
Such, the load-dependence of f is given for most practical specimens 
with strengths up to 2 GPa.  

6) Cases, which are not included in 5), have been identified. For these 
cases, the authors recommend referring to individual solutions by 
Finite-Element-Analysis. 

7) Using the correction factors, the effect of modifications of the sug-
gested test set-up were discussed. It was shown that the use of small 
support or loading balls or balls with a high Young’s modulus has 
very limited beneficial effects while making the test less practicable. 
A simple estimation was proposed that showed that contact cracking 

Fig. 12. 2%-Limit for selected specimens with various Young’s moduli and 
Poisson’s ratios in dependence of t/Rs. 

Fig. 13. Comparison of the 2% limit, expressed by the functional expression 
(dashed), and the curves derived by fcorr, for v = 0.25. 
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at the loading ball can be avoided by using sufficiently thin 
specimens. 
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Appendix A. – Mesh convergence analysis 

In order to obtain the optimum number of elements and mesh 
configuration for each model, a mesh convergence analysis has been 
performed. Fig. A1a) shows the absolute factor f for Model 1 in depen-
dence of the total number of elements for three different thicknesses. 
Fig. A1b) shows the factor f normalized to the value obtained with the 
highest number of elements. The black markers indicate the mesh uti-
lized in this work. 

Since the results of the mesh configuration utilized in this work only 
display a maximum relative error of 0.5% to the result obtained by 
approximately tripling the number of elements, it was deemed suffi-
ciently accurate. Model 2 utilizes a similar mesh-density in the central 
region of maximum stress and is loaded in the same way, hence why no 
additional mesh convergence analysis was performed for this model. 

Due to the different type of loading, the analysis has also been per-
formed for Model 3. As before, Fig. A2a) shows the absolute factor f for 
three different thicknesses, while Fig. A2b) shows the normalized factor 
f. 

As before, the factor f calculated with the mesh utilized in this work 
shows a maximum relative error of about 0.6% to the factor f calculated 
with a model with double the number of elements. For this model, 
special care was taken to primarily increase the number of elements in 
the contacting regions of both the balls and the specimen as well as the 
central tensile loaded regions of the specimen. Due to the iterative na-
ture of the contact analysis, larger deviations between different mesh 
densities are expected. As soon as the relevant abort criteria are met, the 
solver is stopped. Since the amount and step size of these iterations 
changes for each mesh density, final solutions may be just below the 
abort criteria or well below it. This allows changes of f in both directions, 
as observed for the thickest specimen in Fig. A2. 

Fig. A1. Results for the factor f (a) absolute values, b) normalized values) in the mesh convergence analysis for the model from Section 2.1.1 for a specimen with R/ 
Rs= 1.33, E = 210 GPa, v= 0.25 and varying thickness. The black markers represent the mesh configuration that was either used directly or slightly modified (in 
dependence of the specimen’s geometry) in this work. 

Fig. A2. Results for the factor f (a) absolute values, b) normalized values) in the mesh convergence analysis for the model from Section 2.1.3 for a specimen with R/ 
Rs= 1.05, E = 70 GPa, v= 0.25 and varying thickness. The black markers represent the mesh configuration that was either used directly or slightly modified (in 
dependence of the specimen’s geometry) in this work. 
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Appendix B. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.jeurceramsoc.2022.09.047. 
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[29] E. Özkol, A.M. Wätjen, R. Bermejo, M. Deluca, J. Ebert, R. Danzer, R. Telle, 
Mechanical characterisation of miniaturised direct inkjet printed 3Y-TZP 
specimens for microelectronic applications, J. Eur. Ceram. Soc. 30 (2010) 
3145–3152. 

[30] A. Börger, P. Supancic, R. Danzer, The ball on three balls test for strength testing of 
brittle discs: Stress distribution in the disc, J. Eur. Ceram. Soc. 22 (2002) 
1425–1436. 

[31] D. Munz, T. Fett, Ceramics: Mechanical Properties, Failure Behaviour, Materials 
Selection, Springer, Berlin, Heidelberg, 1999. 

[32] R. Danzer, P. Supancic, W. Harrer, Der 4-Kugelversuch zur Ermittlung der biaxialen 
Biegefestigkeit spröder Werkstoffe, Kriegsmann, J. Hrsg Tech. Keram. Werkst. 
(2009) 1–48. 

[33] A.F. Kirstein, W.H. Pell, R.M. Woolley, L.J. Davis, Deflection of centrally loaded 
thin circular elastic plates on equally spaced point supports, J. Res. Natl Bur. Std. 
Sect. C Eng. Instrum. 70C (1966) 227–244. 

[34] J.D.S. Ramos, S. Fraga, G.F. Vogel, L.G. May, Influence of the geometry of ceramic 
specimens on biaxial flexural strength: Experimental testing and finite element 
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Supplementary material 
 

A) Special (extreme) cases for comparison to FEA 
 

a) 

 

b) 

 
c) 

 

d) 

 
Figure 1: Dependence of f on the applied load as predicted by FEA and eq. Fehler! Verweisquelle konnte 

nicht gefunden werden.. Figures a), b), c) and d) show the results of specimen 1, 2, 3 and 4, respectively. 

 

 

a) 

 

b) 

 

c) d) 



  
Figure 2: Dependence of f on the applied load predicted by FEA and eq. Fehler! Verweisquelle konnte nicht 

gefunden werden.. Figures a), b), c) and d) show the results of specimen 5, 6, 7 and 8, respectively. 

 

B) 2% limits for fcorr for various materials 
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b) 

 
 



 

c) 

 
Figure 3: 2%-Limit for extreme cases of combinations of E, v and t/Rs. 
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The Ball-on-Three-Balls strength test: Effective volumes and surfaces for 
Weibull strength scaling 
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A B S T R A C T   

In order to compare the strength results of brittle materials from various testing methods or use the data for 
design purposes, it is essential to know the effective volume (Veff) or surface (Seff) for every loading scenario. For 
the Ball-on-Three-Balls-test (B3B), Veff and Seff have to be determined and investigated through Finite-Element- 
Analysis due to the lack of an accurate analytical description of the stress field. Through this work, the effective 
volume and surface of the B3B-test are made available as tabulated data for a wide range of specimen geometries 
and materials, along with the tools to utilize the data. A fitting model for the dependency of Veff and Seff on the 
Weibull-modulus for any given specimen geometry is provided. The influence of load-dependent non-linear ef-
fects on Veff and Seff is discussed. Finally, the necessity of Veff and Seff for statistical strength analysis is 
demonstrated through a practical example.   

1. Introduction 

Due to the brittle nature of ceramics and glasses, special care has to 
be taken during component design. Most notably, the scatter of strength 
has to be considered adequately. For this purpose, a multitude of uni-
axial and biaxial strength testing methods have been developed over the 
past decades. Some of the most commonly used uniaxial testing methods 
are 3- and 4-point bending, while the Ring-on-Ring-test (RoR), Ball-on- 
Ring-test (BoR) or Ball-on-Three-Balls-test (B3B) make up some of the 
most common biaxial testing methods [1]. Each method differs in the 
general shape of the specimen, e.g. bars for uniaxial tests or plates for 
biaxial tests, and the general concept of the fixture to apply the 
respective bending moment on the specimen, e.g. with rollers, rings or 
balls. Therefore, each testing method applies a unique stress field on the 
respective specimen. In combination with the statistical nature of failure 
of ceramics, strength results for the same material may vary immensely 
between each of the mentioned methods. Through Weibull-theory and 
its underlying assumptions [2–4], it is possible to take the differing stress 
fields of each method into account and to compare the respective 
strength results [5]. This comparison is based on the concept of the 
effective volume, Veff, or the effective surface, Seff. For some testing 
methods, these quantities can be derived analytically if a closed form 
solution for the stress field is available [6–9]. However, this is not the 
case for the B3B-test, where Finite-Element-Analysis (FEA) has to be 

employed for stress evaluation. In this work, FEA will be utilized to 
assess the influence of various testing geometries on Veff and Seff for the 
B3B-test. The influence of nonlinear effects on these values will be dis-
cussed and quantified in the context of strength comparison. Ultimately, 
an example for a pooled Weibull evaluation will be given, showcasing 
the application of the results and expressions provided in this work. The 
numerical values of Veff and Seff are made available for a wide range of 
testing geometries and materials. Additionally, the FEA-postprocessing 
routine to evaluate the effective volume and surface is outlined in the 
appendix of this work. 

2. Theoretical Background 

It is well accepted that the strength of brittle specimens tested in 
tension can be statistically described by the two-parameter Weibull 
distribution [3,4,10], which is typically represented by its cumulative 
form (CDF=Cumulative Distribution Function) 

P(σ) = 1 − exp
[

−

(
σ
σ0

)m]

(1) 

The scale and shape parameters of the Weibull distribution are σ0 

and m, which correspond to the characteristic strength and the Weibull 
modulus of the considered sample. The expression Eq. (1) represents the 
probability of failure at a given applied tensile stress level σ, i.e. the 
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expectation value of the fraction of specimens which fail at stresses less 
or equal to σ. The choice of the stress σ in a general test configuration is 
not definite. Usually, it is defined as the maximum value in a given stress 
field, e.g. the applied stress in a homogeneous tensile test or the edge 
fiber tension in a uniaxial bending test, or a meaningful equivalent stress 
in a complicated, multiaxial stress field. Therefore, the resulting Weibull 
parameters depend on the details of strength test interpretation. Due to 
its flexibility, the Weibull distribution can be used as an empirical 
strength distribution to describe the measured strength of brittle sam-
ples for many cases. 

If specimens of a single material with varying geometry or varying 
loading configurations are tested, systematic shifts of the expectation 
value of the Weibull parameters, predominately the characteristic 
strength, are observed. This effect is attributed to the size effect of 
strength and can be described by the Weibull-theory of the strength of 
brittle materials. This concept is linked to the material’s behavior under 
several assumptions (e.g. defect-controlled failure; randomly distributed 
and independent defects from a unimodal size distribution, weakest link 
hypothesis, etc. [2,4,11,12]) and leads to material specific strength pa-
rameters, namely the Weibull modulus m and the Weibull material scale 
parameter Σ0. While the Weibull modulus is a pure number, the unit of 
the scale parameter is given by stress⋅(volume)1/m, i.e. Pa⋅

̅̅̅̅̅̅
m3m

√
). The 

knowledge of these parameters allows the calculation of the character-
istic strength σ0 of a homogeneously tensile loaded specimen with vol-
ume V, namely by: 

σ0 = Σ0⋅(V)
− 1/m (2) 

Consequently, the size effect of the characteristic strength is inher-
ently implemented by the scaling law, Eq. (2), so that the empirical 
ansatz Eq. (1) can be rewritten as: 

P(σ,V) = 1 − exp
[

− V
(

σ
Σ0

)m]

= 1 − exp
[

−
V
V0

(
σ
σ0

)m]

(3) 

For practical (dimensional) reasons, the Weibull material scale 
parameter Σ0 is often replaced by an arbitrary reference volume V0 (in 
m3 or mm3) and its related characteristic strength σ0 (in Pa or MPa, 
respectively). The failure probability for specimens loaded in inhomo-
geneous tensile stress fields can be determined by taking the scaling law 
Eq. (2) into account. For a given stress distribution σ(x,y, z), the corre-
sponding probability of failure can be expressed by: 

P(σ,V) = 1 − exp
[

−

∫

V

(
σ(x, y, z)

Σ0

)m

dV
]

= 1 − exp
[

−
V
V0

∫

V

(
σ(x, y, z)

σ0

)m

dV
]

(4) 

The integration has to be performed over the entire specimen’s 
tensile loaded regions. For stress fields with a spatial distribution that is 
independent of the applied load, σ(x, y, z) can be expressed as 

σ(x, y, z) = σref ⋅g(x, y, z) (5)  

with a load-dependent amplitude factor σref and a dimensionless, load- 
independent and spatially varying shape function g(x,y, z). Note that if 
the spatial distribution of the stress field, i.e. g(x,y,z), changes during the 
loading history, this has to be considered appropriately [13]. A recom-
mended choice for σref is the maximum first principal stress, so that g is 
normalized and restricted to a numerical range between 0 and + 1 in the 
case of uniaxial stress fields. Many important loading configurations (e. 
g. uniaxial 3- or 4-point bending test, the RoR-test, etc.) sufficiently 
fulfill the assumption for Eq. (5). It should be noted that the accuracy of 
Eq. (5) depends on the extent of any non-linearities in the test setup, 
which will be discussed in Section 4.3 of this work. To simplify Eq. (4), 
Eq. (5) is utilized to define the effective volume Veff by 

Veff =

∫

V

(
σ(x, y, z)

σref

)m

dV =

∫

V
g(x, y, z)mdV (6)  

which can be considered as the equivalent, homogeneously loaded 
volume of the tested specimen. The advantage of introducing the 
effective volume is that it can be calculated only once for a given type of 
test-setup or loading case. The expression for the probability of failure 
for inhomogeneous stress distributions can therefore be generalized to 

P(σ,V) = 1 − exp
[

− Veff

(
σ

Σ0

)m]

= 1 − exp
[

−
Veff

V0

(
σ
σ0

)m]

(7)  

where σ = σref . To relate the effective volume to the specimen’s volume 
in a given setup or load-configuration, a ratio k 

k =
Veff

V
(8)  

can be defined [4,14]. In the case of uniaxial stress fields and with the 
recommended choice of σrefto normalize g(x,y,z), the resulting effective 
volume is always less or equal to the specimen’s volume and therefore 
k ≤ 1. In the limiting case of a homogeneous tensile stress field, k equals 
1. For multiaxial stress states, an equivalent uniaxial stress σeq must be 
defined through a failure criterion in order to replace σ(x,y,z) with σeq(x, 
y,z) in Eq. (6). For some failure criterions (e.g. the PIA-criterion), k can 
exceed 1, which would represent a more critical test compared to uni-
axial loading. Within the field of technical ceramics, two of the most 
prominent and widely employed failure criteria are the 
First-Principal-Stress criterion (FPS) [15] and the 
Principle-of-Independent-Action (PIA) [16–18]. As implied by the name, 
the FPS-criterion assumes that only the first principal stress contributes 
to failure, and therefore σeq,FPS is given through 

σeq,FPS = σI (9)  

with σI as the first principal stress. On the other hand, the PIA-criterion 
includes the contribution of all principal stresses, which is especially 
relevant when they are of similar magnitude. The equivalent stress 
σeq,PIA is determined by 

σeq,PIA =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

〈σI〉
m
+ 〈σII〉

m
+ 〈σIII〉

mm
√

(10) 

With σII and σIII as the second and third principal stress, respectively, 
and m as the Weibull-modulus of the investigated material. If any of the 
principal stresses is compressive, they will be discarded from this eval-
uation, which is indicated by the “Macaulay-Brackets” 〈〉. 

If defects on tensile loaded surfaces or edges dominate the strength 
behavior, an effective surface or effective edge length can be defined 
analogously to Eq. (6). Through calculating a surface or path integral 
with respect to the normalized stress field, a corresponding expression to 
Eq. (7) for the probability of failure is given by 

P(σ,V) = 1 − exp
[

− Seff

(
σ

Σ0

)m]

= 1 − exp
[

−
Seff

S0

(
σ
σ0

)m]

(11) 

(Note, that in this case the Weibull material scale parameter Σ0 is 
different from Eq. (2) and has the units Pa⋅

̅̅̅̅̅̅
m2m

√
). For many uniaxial 

stress states, closed form solutions for Veff or Seff can be derived 
analytically according to Eq. (6), and are widely used due to their 
simplicity and accuracy. As an example, the effective volume of a rect-
angular beam with width b, height h tested in flexure on a support span l 
subjected to 4-point bending (4PB) in a ¼-point-setup is given as [7]. 

Veff ,4PB =
lbh(m + 2)
4(m + 1)2 = V⋅

(m + 2)
4(m + 1)2 (12) 

Note that the effective volume depends on the Weibull modulus, 
which is always the case for inhomogeneous stress fields. For more 
complicated stress fields, approximate expressions can be found in 
literature. One example is the effective volume for the Ring-on-Ring-test 
under the PIA-criterion developed by Salem et al. [9,19] which was 
incorporated into the corresponding standard. Another example is the 
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analytically derived expression for the Ball-on-Ring-test under the 
PIA-criterion, which is restricted to values of m from the range of natural 
numbers [20]. Note that for both cases, the stress field is well described 
through analytical expressions. Unfortunately, a simple analytical 
expression for the stress field of the Ball-on-Three-Balls-test is not 
available and consequently no analytical expression for the effective 
volume can be found. Instead, numerical analysis through FEA must be 
performed in order to determine the effective volume or effective sur-
face for any given specimen. 

3. Methods 

3.1. FEA-Models 

All simulations conducted in this work utilized ANSYS Mechanical 
Release 2022R1 by ANSYS Inc. (Southpointe 2600 Ansys Drive, PA 
15317, Canonsburg, USA). Each model is implemented in APDL (Ansys 
Parametric Design Language) to allow detailed, script-based access to 
the model and documentation with varying input parameters. The 
Finite-Element-Analysis models utilized in this work are based on the 
ones already discussed in previous work [21], and the same designation 
will be utilized. Furthermore, a more detailed description of the models 
and their boundary conditions is given in that work. Model 1 is a 
3D-model of a disc-specimen with punctiform displacement constraints, 
i.e. a punctiform load applied at the central node of the specimen and 
punctiform boundary conditions representing the support balls. Due to 
symmetry, it is sufficient to evaluate just one sixth of the total disc. This 
results in constraining the out-of-plane displacements of the nodes on 
the mirror-symmetry faces. Model 2 is a 3D-model of a 
square-plate-specimen. Again, the load is applied at a single node in the 
center of the specimen, and the support balls are represented by punc-
tiform boundary conditions. Due to the symmetry of this problem, it is 
sufficient to model one half of the full specimen and the constraints of 
nodes in the symmetry plane are set as described for Model 1. The dif-
ference to previous iterations of both Model 1 and Model 2 is a complete 
overhaul of the mesh, to achieve a significantly finer mesh in the center 
and a coarser mesh at the edge of the disc or square plate. This overhaul 
was necessary since the effective volume is much more sensitive to the 

mesh size, especially in the high-stress regions. Finally, Model 3 repre-
sents a 3D-model of the full testing assembly, including the load- and 
support balls. The main difference to the other models is the way that the 
load is applied on the specimen. By displacing the load ball and utilizing 
contact simulations under the assumption of a friction coefficient 
µ = 0.5 for the contact pairs, a closer representation of a real-world load 
application is given. The same applies for the support balls. With this 
model, load-dependent effects, such as specimen deformation and 
increasing contact areas between the balls and the specimen, can be 
considered. Since disc-specimens are analyzed, the problem can be 
reduced to one sixth of the full testing assembly. It should be mentioned 
that the results generated with Model 3 are only valid for a testing setup 
as described in [22,23] where supporting balls are large and in contact 
with each other. 

The effective volume and surface were determined as outlined in 
Appendix A and 5th order Gauss-Legendre-Quadrature was utilized for 
numerical integration. Preliminary studies were conducted to determine 
the error of 5th order Gauss-Legendre-Quadrature compared to the exact 
analytical result for a linear stress distribution within a single element. If 
an error ≤ 2% has to be achieved for all m ≤ 50, the difference between 
the maximum and minimum stress within a single element must be 
smaller than 40% of the maximum stress. Therefore, for each model, 
special care was taken to avoid large stress gradients by adjusting the 
number of elements in both radial and vertical direction, depending on 
the respective specimen geometry. A mesh convergence analysis for the 
effective volume was performed for Model 1 and Model 2, and the results 
are shown in Fig. 1a) and b). A mesh convergence analysis for the 
maximum stress for Model 3 was already performed in [21]. Due to the 
large computational demand of Model 3, it was not feasible to signifi-
cantly increase the number of elements. Therefore, this model is not 
fully converged for the accurate determination of the effective volume 
and surface and will only be utilized for qualitative analyses instead. The 
minimum and maximum number of elements utilized for each model are 
given in Table 1. For the specimen and loading or support balls, 20-node 
brick elements (SOLID186) were utilized. The contacting regions were 
modelled with CONTA174 and TARGE170 elements. To determine the 
effective surface, only the tensile loaded face of the model was evalu-
ated. To avoid any influence of the tensile stress field around the contact 
regions between the balls and the specimen on both the effective volume 
and surface, a small part of the specimen was removed at the respective 
regions for each model. The removed region is determined by a circle 
around the contact region and a depth of about one third of the speci-
men’s thickness. In the case of Model 1 and Model 2, this removal was 
especially important due to the punctiform load introduction and 
boundary conditions, which caused numerical artifacts. 

Model 1 and Model 2 were each used to calculate the effective volume 
and surface for a wide range of specimen geometries. The relevant 

Fig. 1. Mesh convergence analysis for each model. a) shows the relative error to the result with the highest number of elements for Model 1, b) for Model 2. The red 
markers represent the approximate number of elements used in this work. 

Table 1 
Minimum and maximum number of elements and nodes used in each model.  

Model Model 1 Model 2 Model 3 

Min/Max num. of 
elements 

155936 / 
202734 

225472 / 
422730 

47373 / 78009 

Min/Max. num. of 
nodes 

652265 / 
847223 

933429 / 
1775043 

197379 / 
325153  
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specimen geometries for discs are the specimen’s thickness t, the spec-
imen’s radius R and the support radius RS, which is determined from the 
support ball radius RSB through 

RS = RSB
2̅
̅̅
3

√ (13)  

if the support balls are in contact with each other. For square plates, the 
same parameters are used, with the plate’s edge length L instead of R, 
and the support diameter DS instead of RS. For each specimen geometry, 
the effective volume and surface were determined for different Poisson’s 
ratios v and a range of m from m= 0 to m= 50. The full range of inves-
tigated parameters is given in Table 2. To reduce the total number of 
variables, the geometric parameters were combined to the relative 
thickness t/RS and the relative specimen radius R/RS for discs or L/DS for 
square plates. 

For each of the 71400 combinations of these parameters (10 steps for 
t/RS × 20 steps for R/RS × 7 steps for v × 51 steps for m), Model 1 and 
Model 2 were utilized to determine the values of the effective volume 
and the effective surface with both the FPS-criterion and the PIA- 

criterion. If not stated otherwise, all data evaluation for this work has 
been conducted with Mathematica 13.1 from Wolfram Research, Inc. 
(100 Trade Center Drive, Champaign IL 61820–7237, USA). 

3.2. The necessary accuracy of Veff and Seff 

One aspect to consider is the accuracy of Veff that is needed to convert 
the characteristic strength from one testing method or specimen ge-
ometry to a different one. Through equating Eq. (7) for the same prob-
ability of failure, but two characteristic strengths σ0,1 and σ0,2 with their 
respective effective volume Veff,1 and Veff,2, Eq. (14) can be derived: 

σ0,2 = σ0,1

(
Veff ,1

Veff ,2

)1/m

(14) 

Note that this relationship can also be derived through Eq. (2). The 
Weibull modulus m plays a very important role when relating the 
strength levels, and for typical technical ceramics, m is often found to be 
in the range of 10–25. Therefore, assuming that m is high enough, even a 
large error in one of the effective volumes does not influence the error in 
characteristic strength σ0,2 significantly. To better understand this in-
fluence, we assume that a Weibull-analysis was performed on specimens 
tested with the B3B-test, and the characteristic strength σ0,1 was deter-
mined. If this characteristic strength shall be extrapolated to that of a 
different specimen size or testing method, i.e. σ0,2, the effective volume 
of the B3B-test, Veff,1, and the effective volume of the other specimen’s or 
method, Veff,2, is necessary. If the effective volume of the B3B-test, Veff,1 
is not well known and affected by an error εV, an erroneous converted 
characteristic strength σ0,2,err is obtained. The relative error εσ2 between 
σ0,2,err and σ0,2 can be defined through 

εσ2 =
σ0,2,err − σ0,2

σ0,2
=

σ0,1

(
Veff ,1(1+εV)

Veff ,2

)1/m
− σ0,1

(
Veff ,1
Veff ,2

)1/m

σ0,1

(
Veff ,1
Veff ,2

)1/m = (1 + εV)
1/m

− 1

(15)  

with the variables as defined before. Fig. 2 depicts εσ2 in dependence of 
the Weibull modulus m for several fixed errors εV of Veff,1. 

For m≥ 10, even with εV as large as 20%, a relative error of less than 
2% for σ0,2 is obtained. While the effective volume still has to be 
determined accurately for materials with a low Weibull modulus (m≤5), 
this is not the case for materials with a medium to high Weibull modulus 
(m≥10). Note that this consideration is only relevant for strength 
extrapolation and is not generally true for all applications of Veff. 

4. Results 

The following results will only be shown and discussed for disc- 

Table 2 
Range of parameters.  

Parameter t/RS R/RS (L/DS) v m 

Range 0.05–0.5 1.05–2 0.1–0.4 0–50 
Step size 0.05 0.05 0.05 1  

Fig. 2. Relative error in σ2 through strength extrapolation, i.e. εσ2, in depen-
dence of the Weibull modulus m. Each line represents εσ2 for a different value of 
the error in Veff,1. 

Fig. 3. Dependence of the relative effective volume (a)) and relative effective surface (b)) for the PIA criterion on the Weibull modulus m for different relative 
specimen thicknesses t/RS and v= 0.25. The effective volume and surface were divided by the specimen’s volume Vspec or tensile loaded face Sspec, respectively, and 
are plotted on a double-logarithmic scale. 
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shaped specimens, but almost identical tendencies are found for square 
plates. The maximum first principal stress in the center of the specimen 
was utilized for σref. 

4.1. Geometrical dependencies of Veff and Seff 

The effective volume in dependence of the Weibull modulus m is 

given in Fig. 3. Note the strong decrease of Veff (more than six orders of a 
magnitude) with an increase in m and the change of slope at approxi-
mately m= 2 and m= 10. 

The influence of the specimen’s thickness on the effective volume 
and effective surface is shown in Fig. 4a) and b) for an exemplary ge-
ometry. Contrary to initial assumptions based on the behavior of Seff for 
the Ring-on-Ring-test, the effective surface for the B3B-test is strongly 
dependent on the specimen’s thickness, similar to the effective volume, 
where this effect was expected. This is due to a change in the general 
shape of the stress field, i.e. a widening of the region of maximum stress 
with an increase in thickness, as shown in Fig. 5a)-c). 

To assess the influence of the relative specimen radius R/RS, Veff was 
evaluated for either the full specimen, Veff,full, or just the regions 
included within RS, Veff,support. Fig. 6 displays the relative contribution of 
the overhang 

rel.contr. =
Veff ,full − Veff ,support

Veff ,full
(16)  

in dependence of the Weibull modulus m for several geometries. It is 
evident that the overhang significantly influences Veff for very low 
Weibull moduli (m<5) but has a vanishing influence as soon as m 
increases. 

4.2. The relation of Veff to Seff 

For many bending-based testing methods, it is possible to analyti-
cally derive a relationship between the effective surface and the effective 

Fig. 4. Dependence of the relative effective volume (a)) and effective surface (b)) for the PIA criterion on the specimen’s thickness t for different relative specimen 
radii R/RS for v= 0.25 and m= 15. The effective volume and surface were divided by the specimen’s volume Vspec or tensile loaded face Sspec, respectively. 

Fig. 5. Variation of the tensile stress field (first principal stress) for different relative thicknesses of a specimen with R/RS= 1.5 and v= 0.25. a) displays the result for 
a specimen with t/RS= 0.05, b) for t/RS = 0.25 and c) for t/RS = 0.5. Each contour gives a 10%-percentile of the maximum stress from 0 (blue) to the maximum stress 
(red). Gray represents compressive stresses. 

Fig. 6. Contribution of the overhang to the effective volume (PIA criterion). 
The results were obtained with Model 1 for discs with t = 0.2 mm, Rs= 10 mm 
and v= 0.25. 
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volume for the same multiaxial stress criteria. In the ideal bending case, 
a linear decrease of the magnitude of stress within a specimen from the 
tensile surface to the neutral plane (a path perpendicular to the bending 
axis/plane, parallel to the loading direction) is observed, independent of 
the position on the specimen. Considering this behavior and disregard-
ing the lateral surfaces, Eq. (6) can be utilized to derive the relationship 

Veff = Seff
t

2(m + 1)
(17)  

to relate Veff and Seff, with the other variables as defined before [9,24]. 
Through analyzing the B3B-test with FEA, it was found that an ideal 
linear decrease of stress is not given for the centermost region of the 
specimen. Since the central region determines the majority of Veff, this 
deviation from the ideal case is too severe ( ± 50%) to utilize the con-
version given in Eq. (17). Therefore, separate results for Veff and Seff have 
to be utilized to accurately determine both quantities. 

4.3. The impact of non-linear effects 

Previous work of the authors has shown that the maximum tensile 
stress may strongly depend on the applied load, especially for thin and 
flexible specimens. This is due to non-linear effects, e.g. specimen 
deformation and deviations from the ideal punctiform load introduction 
[21]. However, not just the maximum tensile stress, but the general 
shape of the tensile stress field changes due to these effects. Conse-
quently, this impacts the results for Veff and Seff, in particular for high 
values of the Weibull-modulus m. To assess the influence of non-linear 
effects on the effective volume and surface, Model 3 was utilized. Due 
to the increase in computational complexity by the use of contact sim-
ulations, the number of total elements had to be lower than that of the 
other models. Therefore, the absolute values for Veff and Seff differ 
slightly from the values generated through Model 1 and Model 2, but the 
general tendencies can still be analyzed. Through previous in-
vestigations [21], it has been determined that thin glass specimens, e.g. 
with a relative thickness t/Rs= 0.05 and a Young’s modulus = 70 GPa, 
exhibit the strongest load-dependency within the valid range of pa-
rameters (see Table 2). For the following analysis, these parameters 
along with R/Rs= 1.05 and v= 0.25 were utilized. Fig. 7 displays the 
results for the normalized stress f 

f = σmax
t2

F
(18)  

with F as the applied load and t as the specimen’s thickness. On the 
secondary vertical axis, the normalized effective volume Veff/Vspecin 
dependence of the maximum tensile stress for m= 10 is shown. The 
effective volume has been calculated with the respective maximum 
tensile stress σmax as the reference stress σref and by utilizing the PIA- 
criterion. While f decreases by about 30% through a decrease in 
bending moment, the normalized effective volume increases nearly 
threefold at a maximum stress of about 1600 MPa. The increase is 
caused by a widening of the central region of maximum tensile stress. 

However, this strong dependency of Veff on the applied load is not as 

Fig. 7. Normalized maximum tensile stress and normalized effective volume 
(PIA criterion) in dependence of the maximum tensile stress σmax for m= 10. 
The results were obtained with Model 3 for a disc with t = 0.5 mm, 
R= 10.5 mm, Rs= 10 mm, a Young’s modulus of 70 GPa and v= 0.25. 

Fig. 8. Relative error in strength extrapolation, εσ2, in dependence of the 
Weibull modulus m for the same parameters as in Fig. 7. The maximum tensile 
stress is 233 MPa. 

Table 3 
Geometry and testing parameters. N gives the number of tested specimens, tmean 
the average specimen thickness and the related standard deviation (STD), tmin 
and tmax the minimum and maximum specimen thickness, respectively, and s 
gives the crosshead-speed.  

Designation N 
[-] 

tmean ±STD 
[mm] 

tmin 

[mm] 
tmax 

[mm] 
s 
[mm/min] 

Sample A  37 0.246 ± 0.013  0.222  0.281  0.6 
Sample B  53 1.548 ± 0.024  1.460  1.608  1.5  

Table 4 
Results of strength testing, with m̂b as the biased and m̂ub as the unbiased Weibull modulus, and all other variables as defined before. The subscripts lower and upper 
indicate the extent of the 90% confidence intervals for the respective variable.  

Designation m̂b 

[-] 
m̂ub 

[-] 
m̂lower 

[-] 
m̂upper 

[-] 
σ̂0 

[MPa] 
σ̂0,lower 

[MPa] 
σ̂0,upper 

[MPa] 
Seff 

[mm2] 
Seff,lower 

[mm2] 
Seff,upper 

[mm2] 

Sample A  12.1  11.7  9.4  14.5  1134  1106  1162  0.048  0.037  0.075 
Sample B  17.5  17.1  14.3  20.4  906  894  919  0.639  0.540  0.802  

Table 5 
Results of the pooled evaluation based on the maximum- 
likelihood method.  

Parameter Result 

Reference surface S0 [mm2] 0.041 
σ̂0 [MPa] 1132 
m̂ [-] 13.5 
Σ̂0 [MPa

̅̅̅̅̅̅̅̅̅̅
mm213.5

√
] 894  
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relevant as it might first appear. This is due to two reasons: First, the 
results shown represent the worst-case scenario within the investigated 
parameter range. Second, Veff and Seff are most commonly used to 
convert or extrapolate strength results, as given through Eq. (14). As 
shown in Section 3.2, the influence of an error in Veff or Seff on the error 
in strength extrapolation using Eq. (14) is strongly dependent on the 
material’s Weibull-modulus m. For the results shown in Fig. 7, the 
observed relative error in Veff, εV, has been translated to an error in 
strength extrapolation, i.e. εσ2, according to Eq. (15). Fig. 8 gives the 
result for εσ2 in dependence of m for Veff and Seff, each calculated with 

both the PIA and S1 multiaxial stress criterion. In various previous work 
on the B3B-test, a general error of 2% on the obtained results was often 
utilized as an accuracy limit [21–23,25]. Therefore, these findings are 
discussed in the context of this accuracy limit and the displayed results 
correspond to a reduction of f by about 2%, which occurs at 233 MPa. 

A maximum for εσ2 is reached between m= 8 and m= 9, depending 
on the effective size and stress criterion. This behavior is caused by two 
contrasting effects. On one hand, the error of the effective volume εV 
increases with an increase in m, see Fig. 7. On the other hand, the effect 
of this error on the stress extrapolation εσ2 decreases rapidly with an 
increase in m, as shown in Fig. 2. Most notably, εσ2 is always smaller than 
the error in f, i.e. 2%. If the maximum stress is increased further, the 
maximum of εσ2 increases and shifts to slightly higher Weibull-moduli. 
For the highest loaded case in Fig. 7, with a maximum tensile stress of 
about 1600 MPa, the maximum of εσ2 reaches nearly 10% and is found 
between m= 9 and m= 10. Note that this analysis has been performed on 
the “worst-case scenario”. For thicker and stiffer specimens, the influ-
ence of non-linear effects will decrease drastically, as will the value of 
εσ2. Therefore, for the range of parameters given in Table 2, εσ2 will 
always be smaller than the error of f. To determine an accurate result for 
the effective size, εσ2 should be smaller than 2%. This is guaranteed if the 
error of f is less than or equal to 2%. Through an equation and figures 
given in [21], a limit for the maximum applied load (in the form of a 
maximum specimen strength) to achieve an error of less than 2% in f can 
easily be predicted. These tools are valid for any combination of testing 
and material parameters as given in Table 2. If the tested specimens are 
within or close to these limits, non-linear effects don’t need to be 
considered and the results given in this work are sufficiently accurate. If 
the tested specimens surpass these limits significantly, the authors 

Fig. 9. a) depicts a Weibull plot of each sample individually. b) displays individual specimen strength plotted with their respective effective surface. The red line 
displays the 63% quantile. The negative inverse slope of the line corresponds to m̂pooled = 13.5. The upper and lower black lines represent the 95% and 5% quantiles, 
respectively. c) shows both samples in a traditional format, with each specimen’s strength extrapolated to S0 = 0.041 mm2. d) shows both samples in a traditional 
format as well, but with the probability of failure of each specimen extrapolated to S0 = 0.041 mm2. The slope of the black line in c) and d) is the Weibull modulus 
obtained through the pooled evaluation. 

Table 6 
Natural coordinates of the corner nodes of an element in three-dimensional 
space.  

i 1 2 3 4 5 6 7 8 

ξi  -1  1  1  -1  -1  1  1  -1 
ηi  1  1  -1  -1  1  1  -1  -1 
ζi  -1  -1  -1  -1  1  1  1  1  

Table 7 
Integration points ri and associated weights wi for 5th order Gauss-Legendre- 
Quadrature.  

Index i Integration points ri Weights wi 

1 0 0.568889… 
2 & 3 ±0.538469… 0.478629… 
4 & 5 ±0.90618… 0.236927…  
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recommend individual FEA to determine the most accurate results for 
the effective volume and surface. 

4.4. Data availability 

Any attempt to provide a functional expression describing the 
effective volume and surface were deemed either insufficiently accurate 
or too unwieldy to provide any meaningful benefit. The most accurate 
way to evaluate Veff or Seff for a specific geometry is to rely on inter-
polation of the generated data field. Therefore, all datapoints for discs 
and square plates, i.e. each effective size for both multi-axial stress 
criteria, are provided in the supplementary material of this work. These 
files are available in the comma-separated value format (.csv), the tab- 
separated format (.tsv) and as Excel-files (.xlsx). Each line contains the 
respective geometry- or material parameters (t/RS, R/RS, v and m) as 
well as the associated value for the effective size. To aid data evaluation, 
scripts for the interpolation of these data-files are provided in several 
coding languages (Mathematica & Python) as well as integrated in an 
Excel-file. Note that data evaluation through the Excel-file is limited to 
linear interpolation, while the other scripts allow higher order inter-
polation and are defaulted to third-order interpolation. For m≥ 2, the 
difference between linear and third-order interpolation is in the range of 
− 8.2% to + 8.0%, with the highest differences obtained for specimens 
with a small relative thickness (t/RS<0.2). Due to the aforementioned 
effect of the Weibull-modulus on the size-scaling of strength data, this 
difference will only be relevant for small Weibull-moduli such as m< 5. 

For some applications, such as a pooled evaluation of several sets of 
data, it is necessary to describe the dependence of the effective volume 
on the Weibull-modulus m. For common strength tests such as 3- or 4- 
point-bending, this dependency is given through their closed form so-
lutions for the effective volume and effective surface. Since no closed 
form solution is available for the B3B-Test, a different method must be 
employed. For each fixed combination of geometric and material pa-
rameters, the effective volume Veff or surface Seff can be described 
through the expression 

Veff (m)t/RS ,R/RS ,v = Vspec × exp
[

v0 + v1
m − 1
m + 1

+ v2 ln m+ v3m4 + v4
1
m

]

(19)  

Seff (m)t/RS ,R/RS ,v = Sspec × exp
[

s0 + s1
m − 1
m + 1

+ s2 ln m+ s3m4
]

(20)  

with v0-v4 (or s0-s3) as constants determined through fitting of the 
respective datapoints and the other variables as defined before. Vspec and 
Sspec are the total volume of the specimen or the area of the tensile loaded 
face, respectively. This expression can be utilized to fit both discs and 
square plates and both multi-axial stress criteria. The determination of 
v0-v4 (or s0-s3) is included in the Python and Mathematica scripts in the 
supplementary material. The authors recommend to fit Eqs. (19) & (20) 
to the results from m= 2 to m= 50 to achieve an error of less than 5% 
(which is the default range within the provided scripts). If this range in m 
is narrowed, the error of the fits will decrease. 

5. Employing Veff and Seff for pooled Weibull evaluation 

To give an example for the need and application of the data and 
expressions provided above, strength results from B3B-testing of Si3N4 
will be utilized. Due to the high variability in geometry in some of the 
tested specimens, the standard procedure according to EN-843–5 pro-
vides erroneous results. Instead, a pooled data evaluation through taking 
the effective volume or surface of each specimen into account is per-
formed and the results are discussed. 

The specimen material SL200 B (v=0.27, Young’s mod-
ulus=305 GPa) was produced by CeramTec (CeramTec-Platz 1–9, 73207 
Plochingen, Germany) and provided as rectangular billets [26]. From 
these, square plates with an edge length L=11 mm and an approximate 

thickness t=0.25 mm or t=1.5 mm were cut. The tension-loaded side of 
each specimen was ground with a D46-diamond grit grinding wheel to 
purposely introduce surface defects. The testing fixture is built accord-
ing to the design outlined in [23,27,28] and support balls with a 
diameter of 2RSB= 7.5 mm were utilized, resulting in a support radius 
Rs= 4.33 mm. All specimens were tested with the universal testing 
machine Z010 (ZwickRoell GmbH & Co. KG, August-Nagel-Strasse 11, 
89079 Ulm, Germany) at a constant crosshead-speed s and failure 
occurred within 5–15 s. The dimensions of the tested specimens and 
their testing parameters are given in Table 3. 

The strength was calculated according to [21]. The results of the 
statistical strength evaluation according to EN-843–5 are given in 
Table 4 [29]. Note that this procedure assumes the same geometry for 
each specimen in each sample. To differentiate from the true, unknown 
parameters σ0 and m, the results obtained from an “estimator”, e.g. 
maximum likelihood, will be denoted as σ̂0 and m̂. Fractography has 
shown that failure is caused by surface flaws, hence why the effective 
surface Seff will be utilized for any further analyses. For these results, the 
average geometry of each sample was utilized to determine Seff through 
interpolation of the data provided in the supplementary material of this 
work. Note the difference in Seff of more than one order of magnitude 
between the samples. 

To determine the material’s Weibull-modulus from the information 
gained from both samples, the characteristic strength of each set of 
strength data is plotted in dependence of the effective surface or volume 
on a logarithmic scale. This is a graphical representation of Eq. (14). 
Then, the slope of a linear regression kreg through all pairs of data is 
determined. From kreg, the “regression modulus” m̂reg is determined 
through m̂reg = − 1/kreg. From the results given in Table 4, a “regres-
sion modulus” m̂reg of 11.5 is determined. 

However, the specimens of Sample A show a significant variation in 
thickness, with a relative difference of approximately 26% from the 
thinnest to the thickest specimen. As shown in previous chapters, the 
specimen’s thickness has a pronounced effect on the effective surface 
and effective volume of B3B-specimens. Therefore, statistical strength 
evaluation according to EN-843–5 for this set of data is flawed, since a 
nearly constant specimen geometry, i.e. similar effective surface for each 
individual specimen, is assumed. Instead, strength evaluation for mul-
tiple specimen geometries should be performed through a pooled Wei-
bull evaluation, as first outlined by Johnson & Tucker in 1992 [4,11,30]. 
The method will be presented utilizing the effective volume, but it can 
equally be applied using the effective surface. Similar to data evaluation 
in EN-843–5, this procedure is based on the maximum-likelihood 
method to obtain point estimates of the parameters of the distribution 
that describes the scatter of strength data. In the context of measuring 
the strength σi of n specimens, the likelihood function L is defined 
through 

L =
∏n

i=1
pi (21)  

with pi as the probability density to obtain σi. Consequently, the likeli-
hood L is a measure for the probability to obtain the measured sample. 
The estimates for the searched parameters are defined to be those for 
which L becomes maximal. To simplify the numerical evaluation, the 
likelihood can be expressed as the log-likelihood function 

ln L =
∑n

i=1
ln pi (22)  

instead, since it has been shown that the maximum of L corresponds to 
the maximum of ln L. In the case of the Weibull distribution, the dis-
tribution parameters are m and σ0 for a chosen reference volume V0, 
with pi as the probability density function (PDF) of the Weibull distri-
bution. The PDF is obtained by differentiating the cumulative distribu-
tion function, i.e. Eq. (7), with respect to σi, which gives 
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pi =

(
dP
dσ

)

σ=σi

= m
Veff ,i

V0

σm− 1
i

σm
0

exp
[

−
Veff ,i

V0

(
σi

σ0

)m ]

(23)  

with the variables as defined before. Inserting Eq. (23) into Eq. (22) 
yields an expression for the log likelihood functionln L 

ln L = n ln(m) − n m ln(σ0) +
∑n

i=1
ln
(

Veff ,i

V0

)

+ (m − 1)
∑n

i=1
ln(σi)

−
∑n

i=1

Veff ,i

V0

(
σi

σ0

)m

(24)  

for a set of n strength measurements. To maximize ln L, partial de-
rivatives with respect to either m or σ0 are taken and set equal to zero, 
respectively. By combining the two resulting equations, a function solely 
depending on m is obtained. Solving this equation gives a maximum- 
likelihood estimate m̂ for m: 

0 =
n
m̂
+
∑n

i=1

1
Veff ,i

dVeff ,i

dm
+
∑n

i=1
ln σi − n

∑n

i=1

(
Veff ,iσm̂

i ln σi + σm̂
i

dVeff ,i
dm

)

∑n

i=1
Veff ,iσm̂

i

(25) 

Since the term dVeff ,i/dm occurs, it is necessary to know the func-
tional dependence of the effective volume for each specimen on the 
Weibull-modulus m (see Eq. (20)). With m̂ determined, the maximum- 
likelihood estimate σ̂0 for σ0 is obtained through 

σ̂0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

Veff ,i

V0,i
σm̂

i
m̂

√

(26) 

Following this procedure for the experimental data and utilizing Seff 
instead of Veff, new and consistent results for σ̂0 and m̂were determined, 
as given in Table 5. Similarly, the method can be applied using average 
specimen geometries for each sample instead of individual specimen 
geometries. This vastly reduces the necessary number of functional ex-
pressions for Seff to just one per sample. It should be mentioned that m̂ 
can also be determined from Eq. (24) by utilizing a maximizing algo-
rithm and avoiding the usage of derivatives (as has been done in this 
work) instead of finding the root of Eq. (25). The benefit of utilizing Eq. 
(25) over Eq. (24) is a more reliable convergence towards m̂ due to the 
reduction of two variables to one. 

Fig. 9a) shows a traditional Weibull plot for each sample, with the 
data as measured from strength testing. As expected, smaller specimens 
exhibit a higher strength due to the size effect [3,4]. Fig. 9b) shows the 
strength of each sample, but now in dependence of the effective surface 
for each individual specimen. Through this presentation, the large 
scatter of the effective surface of specimens of sample A is clearly visible. 
In Fig. 9c), a traditional Weibull plot is depicted again, but with the 
strength of both samples extrapolated to the same reference surface, i.e. 
S0 = 0.041 mm2, through strength scaling according to Eq. (14). This 
results in a horizontal shift of the individual datapoints, especially those 
of Sample B, as the reference surface is the average effective surface of 
Sample A. If the material behaves according to Weibull theory, a mixing 
of both distributions should be observed, as shown in this case. Finally, 
Fig. 9d) shows a Weibull plot with the probability of failure of each 
specimen extrapolated to the reference surface S0 = 0.041 mm2. The 
extrapolated probability of failure P0,i for each specimen i is obtained 
through 

ln ln
(

1
1 − P0,i

)

= ln ln
(

1
1 − Pi

)

+ ln
(

S0

Seff ,i

)

(27)  

with Pi as the probability of failure for each specimen, and Seff,i as the 

respective effective surface of that specimen [4]. This approach gives 
insight into the material’s behavior at low strengths and if an extrapo-
lation based on Weibull-Theory is reasonable. If the material behaves 
according to Weibull theory, a single linear trend with a clear distinction 
between the individual samples should be observed, as shown in 
Fig. 9d). 

In conclusion, through testing several different specimen geometries 
and a subsequent pooled data evaluation, more information about the 
tested material can be acquired. First, testing at several different Veff or 
Seff (through varying the specimen geometry or the testing method) 
gives a better understanding whether the investigated material can be 
considered a “Weibull-material” or not [31]. Furthermore, due to the 
increased number of individual specimens for statistical analysis, the 
confidence intervals will be reduced [32]. Finally, testing larger speci-
mens results in testing larger defects, through which lower probabilities 
of failure are measured, instead of extrapolated, as depicted in Fig. 9d) 
[33,34]. 

6. Summary 

In this work, the effective volume Veff and the effective surface Seff 
have been investigated for the Ball-on-Three-Balls-test (B3B). While the 
B3B-test is a commonly used biaxial strength testing method, these 
quantities have only been available for a small range of specimen ge-
ometries and materials so far. This is due to the lack of an accurate 
analytical description for the stress field of the B3B-test. Consequently, 
Veff and Seff must be numerically determined through Finite-Element- 
Analysis (FEA). 

Therefore, a thorough analysis of the effective volume and surface 
for the B3B-test for a wide range of specimen geometries and materials 
has been conducted. Two models were implemented in ANSYS to 
determine the effective volume and surface for both discs and square 
plates. In the supplementary material of this work, the effective volume 
and surface is provided as tabulated data in various formats together 
with the tools to utilize them for specific specimens. Furthermore, the 
influence of non-linear effects on the accuracy of the provided data is 
discussed and quantified through a separate FEA-model. Additionally, 
the necessary accuracy of the provided results for Weibull strength 
scaling is investigated. 

For any given choice of geometry parameters within the range of this 
work, a fitting model that describes Veff and Seff as a function of the 
Weibull modulus is given. Finally, the application of the results and 
functions provided in this work for the statistical analysis of experi-
mental strength data is demonstrated through an example of pooled 
Weibull evaluation. In the appendix of this work, the determination of 
the effective volume and surface through a FEA-post-processing routine 
is outlined in detail. 
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Appendix A. Numerical evaluation of Veff and Seff 

This section will demonstrate the determination of Veff and Seff from the results of FEA, based on the procedure given in [35]. It will be outlined for 
the determination of Veff and the use of linear elements, but it can equally be applied to the determination of Seff or the use of higher order elements. 

Generally speaking, the procedure aims to determine Veff
(e) in each element individually through 

V (e)
eff =

∫∫∫

V(e)

[
σ(e)(x, y, z)

σref

]m

dV (28)  

with the superscript (e) referring to quantities of the individual elements and the other variables as defined before. The maximum first principal stress 
in the center of the specimen was utilized for σref. Through numerical integration of Eq. (28) and subsequent summation of the results of all individual 
elements, Veff for the full model is obtained. To simplify the integration limits for an element in an arbitrary position in three-dimensional space, it’s 
position in cartesian coordinates (x, y, z) is transformed to a natural coordinate system (ξ, η, ζ), in which each element is represented as a cube within 
the space (− 1,1). 

Within natural coordinates, each element is described through i = 8 shape functions hi (ξ, η, ζ), which give the value 1 at each respective node with 
position (ξi, ηI, ζi) and 0 at all other nodes: 

hi(ξ, η, ζ) =
1
8
(1+ ξiξ)(1+ ηiη)(1+ ζiζ) (29) 

The coordinates (ξi, ηI, ζi) of each node within an element are given in Table 6. Superimposing these functions gives a linear interpolation within 
the element for any value at each node. If this is performed for the cartesian coordinates xi, yi and zi of each node, the following transformation 
functions are derived: 

x(e)(ξ, η, ζ) =
∑8

i=1
x(e)i hi(ξ, η, ζ) (30)  

y(e)(ξ, η, ζ) =
∑8

i=1
y(e)i hi(ξ, η, ζ) (31)  

z(e)(ξ, η, ζ) =
∑8

i=1
z(e)i hi(ξ, η, ζ) (32) 

In order to use this transformation in the following calculations, the determinant of the Jacobian-Matrix J(e)(ξ,η,ζ)for the three-dimensional case 
will be necessary, which is given through 

J(e)(ξ, η, ζ) = Det

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(33) 

Similarly, superimposing the shape functions for the results of stress evaluation, i.e. the equivalent stress σ(e)
eq,i at each node, gives a function 

f (e)(ξ, η, ζ) that allows stress interpolation within each element: 

f (e)(ξ, η, ζ) =
∑8

i=1
σ(e)

eq,ihi(ξ, η, ζ) (34) 

This finally allows stress integration with natural coordinates within a single element to determine its effective volume V(e)
eff according to 

V (e)
eff =

∫∫∫

V(e)

[
f (e)(ξ, η, ζ)

σref

]m

dV =

∫ 1

− 1

∫ 1

− 1

∫ 1

− 1

[
f (e)(ξ, η, ζ)

σref

]m

J(e)(ξ, η, ζ)dξdηdζ (35)  

with the variables as defined before. The next step is a numerical integration of Eq. (35). In this work, Gauss-Legendre-Quadrature is utilized, which 
gives accurate estimates for the definite integral of a function in the space (− 1,1) through 
∫ 1

− 1
f (x)dx ≈

∑n

i=1
wif (ri) (36)  

for the one-dimensional case. The points of integration ri are given by the order n of the Gauss-Legendre-Quadrature as the roots of the nth Legendre 
polynomial, and wi are the respective quadrature weights. The integration points and associated weights for 5th-order quadrature are given in Table 7. 
For multiple dimensions, the integration points are iterated in every dimension and the associated weights are the product of their respective one- 
dimensional weights. 

Applying this procedure to Eq. (35) with a nth order quadrature converts the integral to 
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V (e)
eff =

∑n

i=1

∑n

j=1

∑n

k=1

[
f (e)
(
ri, rj, rk

)

σref

]m

wiwjwkJ(e)( ri, rj, rk
)

(37) 

for the effective surface of a single element. By conducting this evaluation for every tensile loaded element and adding them up, the effective volume 
Veff for the full model is determined. In the same way, the effective surface can be determined for two-dimensional elements. For higher-order- 
elements, the procedure doesn’t have to be changed as long as the results of stress evaluation are saved on the nodes at the corners of elements. 

However, a problem arises for two-dimensional elements or element-faces in a three-dimensional model (e.g. when Seff shall be determined for a 
three-dimensional model). While these faces are defined by two dimensions in natural coordinates, their position is determined by three dimensions in 
the cartesian space. Therefore, the transformation functions yield a non-square Jacobi-Matrix, for which the determinant can’t be formed. In that case, 
the determinant of the Gram-Matrix J(e)T(ξ, η) × J(e)(ξ, η) is formed instead and its square root G(e)(ξ, η) replaces J(e)(ξ, η) in Eq. (35). 

G(e)(ξ, η) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Det
[
J(e)T(ξ, η)J(e)(ξ, η)

]√

(38)  

Appendix B. Supporting information 

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.jeurceramsoc.2023.09.018. 
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A B S T R A C T

The Ball-on-Three-Balls-test (B3B) and the Ring-on-Ring-test (RoR) were conducted on alumina discs and
compared based on Weibull-Theory. The influence of various intermediate layers was evaluated. To support these
findings, Finite-Element-Analysis was conducted to analyze the effects of deviations from ideal loading conditions.
The influence of friction between sample and fixture and the effects of an inhomogeneous load distribution on the
maximum stress were investigated. The experiments demonstrated that measuring corresponding strength values
with both testing methods is possible. To properly asses the strength using the RoR-test, intermediate layers must
be used. Teflon-foils or adhesive tapes are considered suitable. If no intermediate layer is used, the materials
strength will be underestimated. Finite-Element-calculations show that this effect cannot be explained by the
influence of friction and is rather caused by a non-homogeneous load distribution along the load-ring. Fractog-
raphy supports these findings.
1. Introduction

Ceramic components have found their way into a multitude of highly
technological and specific fields of application due to their unique
thermal, electrical, chemical and mechanical properties [1]. However,
some of their most notable downsides are the lack of ductility and a large
scattering of mechanical strength [2]. On the upside, if the mechanisms
behind these problems are understood well, component failure can be
predicted and minimized [3]. Mechanical strength testing is well known
as one of the key methods in order to understand failure behavior and a
wide number of tests have been developed. The most common testing
methods are some types of uniaxial tensile or compressive tests, uniaxial
bending tests and biaxial bending tests [4]. The latter two are established
as the main methods for strength testing of ceramic materials [4].

One of the main benefits of biaxial testing compared to uniaxial
testing is the reduced influence of specimen preparation on its edges and
the consequential possibility to omit edge preparation at all. Machining
of ceramic materials is usually very time- and cost-intensive due to their
inherent hardness and wear resistance. Additionally, any preparation
method may introduce defects or flaws at already failure sensitive loca-
tions such as edges and surfaces. During uniaxial bending, edges and
surfaces are subjected to the maximum stress as well and therefore in-
fluence failure significantly. On the other hand, biaxial tests like the
en.ac.at (M. Staudacher).

orm 23 February 2021; Accepted

sevier Ltd on behalf of European
Ring-on-Ring-test are less dependent on specimen preparation at the
edges since the maximum stresses occur at or in the area close to the
specimen’s center. Thus, the quality of the edge preparation is in most
cases negligible with respect to the strength measurement in the speci-
men’s center. If the specimens are manufactured in compatible size and
shape, even testing in as-fabricated condition is possible [5]. Further-
more, biaxial loading provides a better representation of real-world
loading scenarios of typical ceramic parts than uniaxial loading.

To ensure an independence of specimen orientation and uniform load
distribution, equi-biaxial stress states are preferred. Several different
tests with widely varying stress fields have been developed. The most
common ones are the Ring-on-Ring-test [6,7], the Ball-on-Ring-test [8],
the Piston-on-Balls-test [9], the Ball-on-Three-Balls-test [10,11] and the
Three-Balls-on-Three-Balls-test [12]. In this work, the focus will be on the
Ring-on-Ring-test (RoR) and the Ball-on-Three-Balls-test (B3B).

The Ring-on-Ring test is standardized in ASTM C1499 [6]. This es-
tablishes a good understanding of its capabilities and limitations.
Alongside that, the loading condition exhibits a cylindrical symmetry
which leads, in the case of isotropic materials, to a cylindrical symmet-
rical stress field that can be expressed in an analytical closed form. This
allows an easy calculation of results and “effective” specimen sizes. Due
to the comparatively large portion of maximum stress in the specimen’s
center, a good representation of the materials general strength can be
4 April 2021
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measured. The major drawback of the Ring-on-Ring method is the need
for some sort of lubricant or intermediate layer to reduce friction be-
tween the specimen and the loading fixture [6,13]. Especially interme-
diate layers might change load application depending on their material
and thickness. Miniaturization of testing rigs is impeded by
manufacturing tolerances of loading and support rings, resulting in a
minimum support ring diameter of about 10 mm [13]. Moreover,
concentric alignment of loading and support ring has to be ensured since
small deviations of about 1% cause a difference in measured strength of
about 2% [14]. No definitive numbers concerning the accuracy are
available. However, an indication of precision (i.e. the coefficient of
variation) of about 5–14% is mentioned in ASTM C1499 [6]. If inter-
mediate layers are used, testing proves to be rather time consuming and
cumbersome compared to other biaxial testing methods.

In contrast to the RoR-test, the Ball-on-Three-Balls-test does not
require any intermediate layers. This major upside is achieved through
elimination of all sources of friction by using freely movable balls as a
support structure instead of a fixed ring [10]. The use of large balls
(diameter typically approx. 70% of the specimens diameter) inhibits
contact failure associated with the loading ball [15]. Furthermore, the
combination of an easy testing procedure and the general benefits of
biaxial testing (little to no specimen preparation) allow a comparatively
high testing output. Typically, standardized bearing balls are used as
support and load members, which allows test miniaturization with
specimens as small as 2.0 mm � 2.0 mm due to the balls tight
manufacturing tolerances [16–19]. This can prove to be very useful if
only small batches of material, like in the dental ceramic field, are
available [20,21]. The stress field exhibits a characteristic three-fold
symmetry with the maximum tensile stress in the center between the
three supporting balls. Since the region of maximum stress is compara-
tively small, localized strength testing of specific features or regions of
interest within a specimen is possible [22]. However, if the general
strength of a specimen has to be determined, the small region of
maximum stress proves to be a significant drawback in terms of effective
volume or area [23]. Another drawback is the absence of any analytical
description of the stress field. Therefore, Finite-Element-Analysis results
obtained for a large variety of possible test geometries have to be inter-
polated in order to determine themaximum stress in the center of the disc
[24], or approximated using a fitted expression [10,25]. So far, the
B3B-test has not been standardized. All in all, the B3B-test is robust
against inaccurate specimen shapes and alignment errors and can be
performed with a typical error of less than 2% [11].

According to ASTM C1499, and in order for the analytical stress
expression to be valid, the possible specimen geometries for the RoR-test
are limited by plate theory (and contact pressure) and the maximum
amount of deflection [6,14,26]. As a result, typical values (for materials
tested in this work) for the ratio of thickness to support ring diameter
range between 0.1 and 0.023 in order to limit the error to �2% [27]. As
for the B3B-test, the authors refer to work published by Danzer et al. [25].
It describes suitable combinations of the parameters of relative strength
(fracture strength divided by Young’s modulus) and relative thickness
(thickness divided by specimen radius), to guarantee a sufficiently small
area of contact between the balls and the specimen. Ceramics generally
show a low relative strength, which allows testing with 0.1 < t/R < 0.5,
with t being the specimen’s thickness and R the specimen’s radius.

So far, not many comparisons of strength results obtained with the
B3B-test and with other test methods, especially standardized biaxial
ones are available [28,29]. Themain emphasis of the present work was to
investigate whether the strength results measured with the Ball-on--
Three-Balls-test and the Ring-on-Ring-test are comparable to each other
in the framework of the statistical theory of fracture, i.e. in a similar way
to 4- and 3-point bend tests [30]. Another topic of investigations was the
role of intermediate layers on the strength. Furthermore, the influence of
friction on the stress field was analyzed. To complement a series of
performed fracture tests, Finite-Element-Analysis was conducted for the
Ring-on-Ring-test.
2

2. Methods and material

2.1. Weibull fracture statistics and size effect

In order to compare the strength values and Weibull distributions
determined with different test configurations, we presume that we
investigate a “Weibull material” [31], i.e. a material which shows a size
effect on strength as described by the Weibull theory [32–34]. In the
following this idea is outlined for cases where specimens fail due to a
defect located within the bulk of the material, but the concept can
analogously be applied to failure due to surface located defects [16].
According to Weibull-Theory, the probability of failure P at a certain
(equivalent) stress σr is given by:

Fðσ;VÞ¼ 1� exp
�
� Veff

V0

�
σr
σ0

�m�
(1)

with m being the “Weibull-modulus”, which describes the scatter of
measured strengths, and the characteristic strength σ0, which is related to
the reference volume V0. Characteristic strength is defined as the stress
necessary to achieve a 63.2% probability of failure at Veff/V0 ¼ 1. The
effective Volume Veff is defined by the integral over the positive values of
the stress field σ( r!):

Veff ¼
Z
σ>0

�
σð r!Þ
σr

�m

dV (2)

with σr as an arbitrary reference stress, usually representing the
maximum stress in the specimen [30]. Veff describes the theoretical
volume of a tensile specimen with the same probability of failure at σr as
the non-homogeneously loaded specimen. In the case of biaxial loading,
some form of equivalent stress has to be defined to properly quantify the
complex stress state. Several methods such as the S1 criteria or PIA are
proposed [30,35]. For this work, the “Principle of Independent Action”,
or PIA, was used [36]. If σI, σII and σIII are the (positive, tensile) principle
stresses and m is the Weibull modulus, the equivalent stress σe is calcu-
lated as:

σe ¼
�
σmI þ σm

II þ σmIII
�1=m (3)

and can be used in the same way as in an uniaxial scenario in all equa-
tions previously mentioned (note: in case of compressive stress compo-
nents, these contributions are clipped to zero). Utilizing eq. (1) to
compare different volumes at the same probability of failure, the
following relationship can be derived:

σ1

σ2
¼
�
Veff ;2

Veff ;1

�1=m

(4)

with σi and Veff,i describing strength and effective volume of specimen
type 1 or 2. Elaborating on eq. (4), larger effective volumes result in a
lower strength and vice versa. This behavior can be utilized to compare
different specimen sizes or testing methods for the same material. If
characteristic strength of different specimen types is plotted as a function
of effective volume on logarithmic scales, all data pairs should yield a
straight line with slope�1/mreg [30]. If that condition is satisfied and the
Weibull modulus mreg derived from the slope is similar to that of each
dataset, the tested material is a “Weibull material” [31]. This principle
will be the basis for the comparison of samples tested with different
testing methods in this work.
2.2. Investigated material

The investigated material Frialit F99.7 contains 99.5% alumina [37].
Its grain size is about 10 μm, and its microstructure contains about 2%
pores as well as 1%–2%Mg-spinel. The microstructure of Frialit is shown



Fig. 1. Microstructure of KYOCERA Frialit, SEM, with clearly visible pores and
elongated spinel grains.

Table 1
Mechanical properties of KYOCERA Frialit [37].

Property Unit KYOCERA Frialit

Density [g/cm3] �3.90
Purity [weight-%] >99.5
Open porosity [Vol.-%] 0
Average grainsize [μm] 10
Flexural strength DIN-EN 843-1 [MPa] 350
Weibull modulus [�] >10
Fracture toughness KIc (SEVNB) [MPa m1/2] 3.5
Compressive strength [MPa] 3500
Young’s modulus [GPa] 380
Poisson’s ratio [�] 0.22
Vickers Hardness HV1 [�] 1760
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in Fig. 1. The basic material properties can be found in Table 1. It was
sourced from KYOCERA Fineceramics Solutions GmbH (68229, Man-
nheim, Germany) [37]. The material was provided as a rod of 28 mm
diameter, which was cut and diamond ground into 1 mm and 1.7 mm
thick discs. The prospective tension-loaded side of each specimen
received a final grinding step using a D15 diamond grit wheel.
Fig. 2. Schematic of the B3B (a) and the RoR (b) loading layout [ref 36,43].

Fig. 3. Typical crack-patterns of fractured specimens for the B3B- (a) and RoR-
(b) test.
2.3. Experimental

The first developments on the Ball-on-Three-Balls method started in
the 80s and were later further developed by B€orger et al. [10,11,38,39].
It allows testing of discs and plates with minimal specimen preparation or
even in as-sintered condition. It utilizes a single steel or carbide ball to
apply the load and three moveable balls (which are in contact with each
other) as a support structure [25]. The basic design is shown in Fig. 2(a)
and a typical specimen after testing is shown in Fig. 3(a). The result is a
localized maximum of stress in the center of the disc on the opposite side
of the loading ball [40]. The maximum stress at failure σf of the specimen
is calculated by the following formula [10,25]:

σf ¼ f
�
2 t
D
;
DS

D
; ν
�
� F
t2

with DS ¼ 2DBffiffiffi
3

p (5)

with F as the applied force, ν as the Poisson’s ratio, D as the specimen’s
diameter, t as the specimen’s thickness, DS as the diameter of the circle on
which the three support points lie (i.e. support diameter) and DB as the
support ball diameter. The factor f is determined by interpolation of
Finite-Element-Analysis results which assume load introduction by a
point load [24] or by using a fitted polynomial on these FEA-results
depending on the specimen’s geometry and Poisson’s ratio [10,25]. For
this work, the maximum stress at failure was evaluated by using a third
order interpolation function calculated with Mathematica 12.0 (Wolfram
Research, IL 61820, Champaign, USA). The effective volumes and areas
were determined by interpolation of FEA results as well.

The principle of the RoR-test can be seen in Fig. 2(b) and a specimen
after testing in is shown in Fig. 3(b). Coaxial steel-rings are used to apply
the load evenly along a certain radius and to provide support for the
specimen. The result is a stress field with nearly equal and constant radial
and tangential stresses within the diameter of the loading-ring and a
drop-off towards the edge of the specimen. The stress field is ideally
symmetric with respect to the central axis. An analytical solution of the
stress field can be derived. The maximum stress at failure σf for discs is
determined by Ref. [6]:

σf ¼ 3F
2πt2

�
ð1� νÞD

2
S � D2

L

2D2
þð1þ νÞlnDS

DL

�
(6)

where F is the applied force, v the Poisson’s ratio, t the specimen’s
3

thickness, D the specimen’s diameter, DL the load ring diameter and DS
the support ring diameter. The RoR-method has been proven to allow
testing of discs and plates as well [6,41]. However, some limitations
related to the specimen’s thickness apply. If the specimen is too thin,
large deformations restrict the use of linear geometric relations. If
specimens are too thick, plate theory does not apply anymore and contact
stress increase to a level where localized contact failure occurs [14,26,
42].

An important task during testing is to reduce friction between spec-
imen and support and loading rings in order to avoid additional stresses
which are not taken into account in eq. (6). The common approach is to
either use intermediate layers or lubricants. Lubricants allow testing
without any influence on the stress field, but greatly impede



Table 3
Summary of tested sets. The prefix indicates the testing method: B3B-method (B-)
or the RoR-method (R-). The first number is the specimen diameter; the second
number the specimen thickness, both in mm. The suffix indicates the interme-
diate layers: BT (Flashbreaker® 1 compression side, loose Teflon tension side)
orT (Teflon-tape compression side, loose Teflon foil tension side). FP describes
the pre-load, v the constant cross-head speed, RH relative humidity, T the
ambient temperature and N the number of tested specimens.

Designation FP [N] v [mm/min] RH [%] T [�C] N [�]

B-28-1 10 0.5 24 23.2 30
B-28-1.7 20 2 52 22.6 30
B-28-1.7-BT 20 2 51 22.4 32
R-28-1 20 1.5 50 24.5 28
R-28-1-T 20 1.5 21 22.6 30
R-28-1-BT 20 8.5 49 21.5 29
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fractographic analysis, whereas intermediate layers might change load
application and distribution. In this work, several different loose and
adhesive materials were employed as intermediate layers. Their names,
manufacturers, materials and properties are found in Table 2. Adhesive
tape was used because of two reasons: i) to eliminate friction and - a
beneficial side effect - ii) to keep the fracture pieces together to facilitate
fractographic analysis. If adhesive tape was used, it was always applied to
the compression-loaded side to ensure the smallest possible impact on
strength results. Care was taken to use intermediate layers only for tests
with expected fracture loads below loads that lead to failure of the layer
itself. Loose layers were solely utilized between the support ring and the
specimen (tension-loaded side). Sample strength was evaluated using eq.
(6). The effective volumes and areas were calculated in the same manner
as done for the Ball-on-Ring test by Frandsen [43]. The occurring in-
tegrals were solved numerically in Mathematica 12.0.

All experiments were conducted using a Zwick Z010 test frame
(ZwickRoell GmbH & Co. KG, 89079, Ulm, Germany) equipped with a
Doli control system (Doli, 72525, Münsingen, Germany). B3B tests were
conducted using 15.08 mm diameter balls (resulting in a support diam-
eter of 17.42 mm). RoR testing rigs were manufactured from 42CrMo4
(1.7225) and hardened to HRC> 40 and has a surface -finish of about 1.2
µm. The discs were tested using a support-ring diameter of 17.24 mm and
a loading-ring diameter of 8.31 mm, both with a cross-section diameter
of 1.2 mm. In order to compare both testing methods, different thick-
nesses and intermediate layers were used. Table 3 shows all tested
samples and gives details on the testing conditions. FP describes the pre-
load, v the constant cross-head speed, RH relative humidity, T the
ambient temperature and N the number of tested specimens. Each sam-
ple, with the exception of R-28-1 and B-28-1.7-BT, was in alignment with
standards [6] or with previously published guidelines [47,48]. R-28-1
was tested without any layers or lubricants and was therefore not tested
according to standards. In contrast, the B3B-method does not call for any
compliant layers, hence why B-28-1.7-BT was not tested correctly.

The Weibull parametersm (unbiased) and σ0 were estimated from the
strength of the individual specimens for each dataset using the
Maximum-Likelihood-Method [2,4]. Confidence-intervals for m and
σ0 provide additional information about the statistical uncertainty which
is essential when comparing multiple datasets [49]. In this work, 90%
confidence intervals will be used.
2.4. Finite-Element-Analysis

Finite-Element-Analysis was conducted to complement the experi-
ments. More specifically, the influence of friction during Ring-on-Ring
testing for 28 mm diameter discs with a thickness of 1 mm, was evalu-
ated. In order to ensure consistent model properties throughout different
scenarios, the commercial FEA-program ANSYS R19.1 (ANSYS Inc., PA
15317, Canonsburg, USA) was chosen for its ability to implement Ansys-
Parametric-Design-Language (APDL) scripts. To investigate the influence
of friction within a geometrically perfect test situation, a simple 2D-
Table 2
Names, manufacturers, materials and properties of utilized intermediate layers
[44–46].

Trade name Manufacturer Material Layer
thickness

Adhesive
thickness

PTFE virginal foil
0.05–600

High-tech-flon
(78467, Konstanz,
Germany)

Teflon 50 μm –

PTFE tape 0.08 V
SW

High-tech-flon
(78467, Konstanz,
Germany)

Teflon 51 μm 38 μm

Flashbreaker® 1 Airtech
International, Inc.
(CA 91708, Chino,
USA)

Polyester 25 μm 30 μm
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contact-model was sufficient to assess the full problem due to rota-
tional symmetry. This model allows quantitative statements and com-
parison with existing analytical solutions [40]. More specifically, the
specimen (Young’s Modulus¼ 380 GPa, ν¼ 0.22) was meshed with 3145
PLANE183 (8-node quad elements) elements and 9948 nodes. The
loading and supporting rings (Young’s Modulus¼ 210 GPa, ν¼ 0.3) were
meshed with 490 PLANE183 elements and 1516 nodes. Surfaces, which
will come into contact during testing, were meshed with 338 CONTA172
and 338 TARGET169 elements. Symmetric contact calculation was uti-
lized and the friction coefficient μ between specimen and both rings was
varied between 0 and 0.5 in steps of 0.1. The model was loaded by a force
of 600 N. The model is shown in Fig. 4(a).

Additionally, the influence of uneven surfaces of the loading ring and
thus uneven load application was examined using FEA. For this investi-
gation, a simplified 3D-model had to be used (no contact calculations).
Therefore, only qualitative statements can be deduced. This model was
meshed with 35266 SOLID 95 elements (20-node brick elements) and
140759 nodes. Due to symmetry, the model could be reduced to one half.
The uneven load application was realized by applying an oscillating force
with equally spaced maxima and minima along the load-ring contour.
The script allowed for changes in both frequency and number of load
maxima (Z) and amplitude (A) in percentage of the applied total force. An
example of the model with an uneven force applied is shown in Fig. 4(b).

To verify the simplified model as described above, a single contact
scenario of the full testing assembly was modeled with a 3D-contact-
model (material properties as mentioned above). The surface of the
loading ring was modified so that it follows a sine with an amplitude of 5
μm and 3 full periods along its circumference, similar to the load in
Fig. 4(b). The model is shown in Fig. 4(c).

3. Results & discussion

As previously explained, the size effect will be used to compare
different testing methods. Since fractography did not show volume flaws
to be responsible for failure, the effective area will be used instead of
effective volume as the basis for future comparison [16,35]. A compar-
ison is valid, when two requirements are met. First, RoR samples have to
exhibit a lower strength than B3B samples due to the larger effective area.
Second, if a fit of eq. (4) through all data pairs (which appears as straight
line in the plot of characteristic strength versus effective area), results in a
fitted Weibull modulus mreg (the inverse slope of the straight line) which
is close to the Weibull moduli of the individual sets.

The number of specimens N, Weibull parameters m and σ0 as well as
their 90% confidence intervals and effective area Seff for each dataset are
found in Table 4. Fig. 5(a) allows for a better overview of these results. R-
28-1 specimens stand out due to their lowWeibull modulus (m¼ 15) and
poor characteristic strength. All other samples have a comparable Wei-
bull modulus of 25 � m � 35. Other findings are the slightly increased
Weibull moduli for samples tested with intermediate layers, as all of them
exhibit m > 34. Furthermore, the datasets R-28-1-T and R-28-1-BT are



Fig. 4. Models and mesh for the FEA analysis. (a) Shows the model to investigate the influence of friction, (b) shows the model to test the influence of uneven loading
with parameters A ¼ 100% and Z ¼ 3. The bottom plane in (b) marks the symmetry plane employed to reduce processing time. (c) Shows the model of the full testing
assembly for more precise calculations of uneven surfaces.
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nearly identical. A significant difference in strength and effective area
between B3B and RoR samples is evident. When the effective area is
considered, RoR specimens show a lower strength and higher effective
area than B3B samples, as seen in Fig. 5(b). The regression fits all but two
datasets (R-28-1 and B-28-1.7-BT), which were not considered since their
testing details deviated from the standard procedure. The fit according to
eq. (4) implies mreg ¼ 30, which is in excellent agreement with all
datasets except R-28-1. Note the high difference in strength between all
RoR sample sets and R-28-1. Furthermore, B-28-1.7-BT samples deviate
by exhibiting significantly higher strength than other B3B sample sets.

Two samples were not tested in accordance with standards or
Table 4
Results of strength testing of various specimens. m and σ0 as described beforehand, w
interval. Seff refers to the average effective area of specimens tested.

Designation N [�] m [�] mlower [�] mupper [�]

B-28-1 30 26 19 31
B-28-1.7 30 29 22 36
B-28-1.7-BT 32 34 26 41
R-28-1 28 15 11 19
R-28-1-T 30 34 26 42
R-28-1-BT 29 36 27 44

5

established guidelines: B-28-1.7-BT and R-28-1. B-28-1.7-BT was tested
with Flashbreaker® 1 on its compressive side to observe the influence of
intermediate layers on force application and strength measurement for
the B3B test. The R-28-1 RoR-specimens were tested without any inter-
mediate layers. It is evident that a significant deviation from other
samples ensued.

In the B3B test, as compared to B-28-1.7, specimens tested with an
interlayer on the compressive side (B-28-1.7-BT) show a significantly
increased strength (i.e. þ5%). This can be explained by a change in load
application.

The factor fwas determined assuming a point load, i.e. with a contact
ith indices “lower” and “upper” referring to the borders of their 90% confidence

σ0 [MPa] σ0, lower [MPa] σ0, upper [MPa] Seff [mm2]

375 370 380 0.245
360 356 364 0.965
381 378 385 0.770
242 237 248 126.8
305 302 308 116.8
307 304 310 116.4



Fig. 5. Results of strength testing. (a) Depicts the Weibull modulus m and the characteristic strength σ0 as well as their confidence intervals, (b) depicts the char-
acteristic strength for each sample depending on their effective area Seff.
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radius Rc¼ 0 mm. For load introduction over an actual contact area under
the ball with a Hertzian contact pressure [50] f(Rc > 0 mm) depends on
the contact radius (which increases with applied load), as can be seen in
Fig. 6. Note that the circles in Fig. 6 indicate the values of f(Rc ¼ 0 mm).
For most testing situations covered with available FEA results [10,11] the
specimens will fracture at loads which are low enough to give small
contact areas. For such small contact areas, the actual f is not much
different from f(Rc ¼ 0 mm). For example, the dashed areas in Fig. 6 refer
to a decrease of maximal 2% in f, which is an experimental error that is
acceptable.

Using the information from Fig. 6 the effect of a compliant interlayer
on B3B strength results can be explained qualitatively. A soft interlayer
will lead to an increased contact area between the loading ball and the
specimens as compared to the situation without any layer, resulting in a
lower value of f(Rc) and a lower maximum stress. An increased load will
be necessary to break the specimen. If f(Rc ¼ 0 mm) which is greater than
f(Rc > 0 mm) is used for the evaluation of strength from the fracture load,
the strength of each specimen will be overestimated. This statement re-
lies on the assumption that the effective area is not changed substantially.
Using compliant layers for the Ball-on-Three-Balls-test creates a load
Fig. 6. Factor f depending on the Hertzian contact zone under the central
loading ball for different values of thickness t to support radius Rs and the ge-
ometry D ¼ 12 mm, Ds ¼ 10 mm and ν ¼ 0.3. The circles represent the values of
fB3B which are used for the evaluation of strength from fracture load. The shaded
areas indicate an error <2% [50].
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introduction situation which deviates from the assumptions that were
made for theoretical stress evaluation. Consequently, incorrect stress
results will be obtained.

For the RoR set-up, tests without interlayers (R-28-1) which are
influenced by friction, lead to an approximately 20% lower strength as
compared to tests with applied interlayers (R-28-1-T and R-28-1-BT).

To investigate the influence of friction on the stress in the disc, the
stress on the tensile surface along a radial path from the disc center to its
edge was evaluated for varying friction coefficients and compared with
the analytical solution found by Fessler & Fricker [40]. The numbers
presented were evaluated for a typical fracture load for our specimens,
i.e. 600 N. Only radial stresses are shown since tangential stress exhibit
the same behavior with a lower stress concentration near the loading ring
position. Fig. 7(a) shows the FEA results of radial (σr) stress in absolute
values, Fig. 7(b) displays the radial stress results σr normalized by the
central stress σi ¼ σr(r ¼ 0). Fig. 7(c) shows the results as predicted by
equation 14–16 in Fessler & Fricker in absolute values, and the
normalized curves are found in Fig. 7(d). The dashed line represents the
position of the loading ring. The exact results of σi and σr,max and their
comparison to Fessler & Fricker can be found in Table 5.

As indicated by the FEA results, an increase in friction results in a
decrease in radial stress at the loading ring radius (up to ~8% with μ ¼
0.5) und a decrease in radial and tangential stress in the central region
(up to ~10% with μ ¼ 0.5). The position of maximum stress moves to-
wards the loading ring radius but not outside the central region. These
findings for the central region are in good accordance with Fessler &
Frickler [40]. As indicated by the FEA results, an increase in friction
results in a decrease of stress throughout the specimen. The relative stress
concentration near the load ring position (σr,max/σi) increases as friction
increases. According to FEA this effect is not very strong (1.6% for μ ¼
0–3.4% for μ¼ 0.5, cp. Table 5). This is much lower than predicted by the
Fessler & Frickler solution which results in up to 13% for μ ¼ 0.5.
However, it is stated in Ref. [40] that the analytical model overestimates
the stress at the loading ring radius due to a discontinuity in the equa-
tions, which explains the difference with respect to the FEA results. Thus,
only a very small influence on the effective area can be expected from this
effect, but an increased probability of failure from locations near the load
ring radius. If friction is not eliminated, higher loads are necessary for
specimens to fail and thus the strength would be overestimated. For the
given geometry, and from the data in Table 5 this effect is estimated to be
in the order of 5%–10%. With our RoR-tests without any intermediate
layers a significant decrease in apparent strength was observed. We
conclude that the action of friction alone cannot explain the observed
result.

Another approach to explain the low strength is a change in load
application due to the omission of any intermediate layers. More pre-
cisely, instead of a perfect line contact along both the load and support
ring, an uneven load application through several contact points is sus-
pected. If layers were used, the slight differences of height along the rings



Fig. 7. Radial stress for different friction coefficients: (a) shows the absolute FEA results, (b) the normalized FEA results, (c) the absolute results of Fessler & Fricker
and (d) the normalized results of Fessler & Fricker [40]. The dash-dotted line marks the position of the loading ring.

Table 5
Detailed results of FEA and Fessler& Fricker’s analytical solution for radial stress.

Friction
Coefficient

σi/σi,μ¼0

FEA
σi/
σi,μ¼0

Fessler

σr,max/σi
FEA

σr,max/
σi
Fessler

σmax,FEA/
σmax,Fessler

μ ¼ 0 1 1 1.016 1 1.008
μ ¼ 0.1 0.978 0.976 1.018 1.024 0.988
μ ¼ 0.2 0.956 0.953 1.021 1.048 0.969
μ ¼ 0.3 0.934 0.929 1.025 1.075 0.951
μ ¼ 0.4 0.911 0.905 1.029 1.102 0.933
μ ¼ 0.5 0.890 0.882 1.034 1.131 0.915
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and specimens would be mitigated out, but without any layers theymight
influence load introduction in a way that would underestimate the
samples strength. The FEA results in the case of ideal conditions (i.e. a
constant line load) and 5 loadmaxima are shown in Fig. 8. The parameter
A was set to 100%, meaning that the force along the loading ring
diameter oscillates between 0% and 200% of the constant line load.
Alongside that, the maximum stress at the tensile face is displayed in
Table 6 and selected stress trends are shown in Fig. 9. Localized stress
concentration along the loading ring circumference occur, while the
stress level in the center of the disc remains unchanged. With an
increasing amount of load maxima, the maximum stress decreases. Note
that these results were obtained without considering friction. As previous
results have shown, friction would result in a small general decrease of
stress, similar to the trend shown in Fig. 7(a). However, the large stress
concentrations at the loading ring radius would still be present.

It can be expected that this leads to an increased number of fractures
from these locations of stress concentration. Additionally, these speci-
mens will also fracture at a lower load compared to specimens that fail
from the central region and consequently their strength will be
7

underestimated. It can also be expected, that this results in an increased
scatter in strength, i.e. a lower Weibull modulus.

Note the difference in maximum stress for the case of three load
maxima compared to ideal conditions, which is equal to an increase of
nearly 20%. The difference in strength between the datasets R-28-1-T
and R-28-1 is approximately 20% as well.

For a more accurate representation of the real loading scenario, the
full model with amodified surface on the loading ring was evaluated. The
results for the contact model shown in Fig. 4(c) with a maximum dif-
ference of 10 μm between the highest and lowest points of the loading
ring surface are shown in Fig. 10(a). Even at a load similar to the fracture
load during our experiments, full contact along the load ring cannot be
achieved. Alternating regions of contact and no contact ensue. As can be
seen in Fig. 10(b), a 3D-scan of the loading ring used in this work shows
that even by machining with care a variation of about 20 μm between the
highest and lowest points of such a ring can be present. Even smaller
differences than what we found on a turned ring can result in a partial
loss of contact along the circumference and an increase in stress at the
remaining contact areas.

To verify the predicted results, the fractures of specimens from sets R-
28-1, R-28-1-T and R-28-1-BT were investigated on a macroscopic scale.
According to the positions of fracture origins, specimens were allocated
to one of three groups:

	 Fracture origin at or very close to the loading ring
	 Fracture origin in the central region
	 Location of fracture origin not identifiable, unknown

Since the number of unknown fracture origins were about 30% in-
dependent of the investigated sample, only the differences in clearly
assignable fractures are discussed. In Fig. 11, it is evident that dataset R-



Fig. 8. Tangential (left) and radial (right) stress field (in Pa/N) for two cases of load introduction: ideal load introduction (a) and 5 load maxima (b). The dashed lines
mark the load- and support-ring positions. The paths along which the stress trends in Fig. 9 are evaluated are marked by the dashed-dotted arrow.

Table 6
Maximum radial (σr,max) and tangential (σt,max) tensile stress for different load
introduction cases as well as their ratios to the central stress (σi).

No. of Osz. [�] σr,max [MPa] σr,max/σi [�] σt,max [MPa] σr,max/σi [�]

Z ¼ 0 290 1.016 287 1.005
Z ¼ 3 337 1.181 338 1.184
Z ¼ 5 312 1.093 320 1.121
Z ¼ 10 296 1.037 301 1.054
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28-1 (without interlayers) exhibits a significantly higher fraction of
fractures from the loading ring, while the specimens with interlayers (R-
28-1-T and R-28-1-BT) have a higher number of fractures from the center.
No major distinction between dataset R-28-1-T and R-28-1-BT were
found. Contrary to the Ball-on-Three-Balls-test, using no compliant layers
for the Ring-on-Ring-test creates a load introduction situation which
deviates from the assumptions that were made for analytical stress
evaluation. Consequently, incorrect stress results will be obtained.
Fig. 9. Comparison of radial (a) and tangential (b) stress trend

8

4. Summary

Biaxial strength tests were conducted on a commercial alumina
ceramic (Frialit 99.7, Kyocera) using the Ball-on-Three-Balls-test and the
Ring-on-Ring -test. Two different specimen thicknesses were investigated
and details of the test procedure, namely the use of compliant layers,
were varied. The results were compared based on the size effect predicted
by Weibull fracture statistics. Additionally, the influence of friction and
uneven loading was investigated using Finite-Element-Analysis.

Generally, it could be shown experimentally that both tests deliver
comparable results within a Weibull approach. The B3B test can thus be
used to evaluate the strength of specimen that may be too small or too
thin to be tested with the RoR-test. This holds true as long as the tests are
performed in a way where the real loading situation is as close as possible
to the one assumed for the theoretical description of the test.

For the numerical evaluation of the B3B-test, load application by a
point load is assumed, which is realized in most testing situations. If
compliant interlayers are used between the loading ball and the spec-
imen, the assumption is corrupted and a significant strength
s for various pointwise and ideal load introduction cases.



Fig. 10. (a) shows the contact status of the FEA model with a wavy loading ring surface, (b) shows a scan of the used loading ring.

Fig. 11. Positions of fracture origins for the datasets R-28-1 (white), R-28-1-BT (gray) and R-28-1-T (black). (a) Shows the amount of fracture origins at or very close
to the loading ring, (b) the amount of fracture origins at the center.
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overestimation may result.
For the analytical description of the RoR-test, frictionless testing and

uniform load introduction is assumed. If friction is not avoided, the
specimen strength will be overestimated. If deviations from uniform ring-
load introduction are present, the specimen strength will be under-
estimated due to the formation of regions of increased stress at the
loading ring circumference. Even for deviations as small as a waviness of
the loading ring surface of � 5 μm, regions without any contact of the
loading ring and the specimen form and an increase in stress in the
remaining regions ensues. Compliant interlayers help to achieve uniform
load introduction with the additional benefit of a reduction of friction in
the RoR-test.
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A B S T R A C T

The strength of 3D-printed alumina parts fabricated using the Lithography-based Ceramic Manufacturing (LCM)
technology is investigated. The influence of the sintering parameters, printing direction, surface condition (i.e.
machined or as-printed), and/or geometry on the strength distribution is studied under uniaxial and biaxial
bending tests. Weibull parameters, i.e. characteristic strength and Weibull modulus, are determined and com-
pared between the different samples. Experimental findings show that samples sintered at higher temperatures
yield higher Weibull modulus, associated with a more homogeneous microstructure. Fractographic analyses
reveal the influence of surface finish (as-printed or machined) on strength and show the importance of reporting
testing configuration along with printing direction to assess the mechanical response of 3D-printed parts. Based
on these results, manufacturing recommendations are given which shall advance the progress in optimization of
alumina ceramics fabricated using the LCM technology.

1. Introduction

Due to their outstanding properties, e.g. biocompatibility, wear re-
sistance, resistance to corrosion, among others, advanced ceramics have
established as materials for exceptional usage in the technical appli-
cations [1]. A critical aspect in the fabrication of ceramic materials is
associated with the relatively expensive and time consuming step of
machining the sintered material in order to shape the final ceramic
component. This poses a limitation in the design of complex parts [2].
In recent years, the developments in the sector of additive manu-
facturing, especially in the area of metals and polymers, have provided
with optimal solutions for designing complex materials systems [3,4].
An overview of the current methods and capabilities of additive man-
ufacturing in the field of ceramics can be found in [5]. Among the
different techniques, the Lithography-based Ceramic Manufacturing
(LCM) technology has consolidated as a promising route to fabricate
highly complex ceramic structures based on a layer-by-layer photo-
polymerisation process [6–9]. This method belongs to the stereolitho-
graphic printing techniques, and has been developed in the last years by
the company Lithoz GmbH. In general, the LCM-process takes ad-
vantage of the photo-curability of the slurry, which consists of a
homogeneously dispersed ceramic powder within a polymer matrix and
enables thus the layer-by-layer fabrication of ceramic green-bodies. The
polymer has to be removed after fabrication of the ceramic green body

in a debinding step. After a subsequent standard sintering process,
ceramics with high density as compared to those fabricated with tra-
ditional processing routes can be manufactured [7]. More details on the
manufacturing process can be found in [6–10]. There is a need to de-
termine the mechanical properties of LCM-alumina in comparison to
conventional alumina ceramics utilized in technical applications. In
general, additive manufactured samples or parts are assembled layer-
by-layer and hence a dependence of the mechanical properties on the
printing direction as well as on the surface quality of the part may be
expected, as shown in a preliminary study on uniaxial bend bars [11].

The aim of this work is to explore the microstructure-strength re-
lationship of additive manufactured alumina, with special focus on the
sintering conditions, surface quality and printing direction and their
influence on strength. Different samples containing the same alumina
slurry but with different printing directions, sintering parameters, sur-
face condition (i.e. machined or as-printed), and/or geometry (i.e.
prismatic bar or disc) are investigated. Uniaxial and biaxial bending
tests in different configurations are performed to assess the effect of
printing direction on the strength distribution of 3D-printed alumina
parts. Results are analysed in the framework of Weibull statistics.
Microstructural and fractographical analyses are carried out to interpret
the strength results.
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2. Experimental

2.1. Samples and tested geometries

All samples were produced by Lithoz GmbH, Vienna, Austria, via
the LCM-technology using a CeraFab 7500 3D-printer. The ceramic
material of study was alumina. The feedstock employed was LithaLox
350, an alumina-based, photocurable suspension. The characteristics of
the alumina material are listed in the datasheets of the company [12].
Different samples containing the same alumina slurry but with different
printing directions, sintering parameters, surface condition (i.e. ma-
chined or as-printed), and/or geometry (i.e. prismatic bar or disc) were
investigated, referred to as A, B1, B2, and C hereof. Sample A was
sintered at 1500 °C for 20 h and exhibited a relative density of ap-
proximately 96 %, whereas samples B1, B2, and C were sintered at 1650
°C for 2 h, with a relative density of 98 %. The individual printed layer
thickness in samples A, B1 and B2 was ∼50 μm before sintering, which
corresponds to approximately 40 μm after sintering. In sample C the
thickness was ∼25 μm before sintering, i.e. ∼20 μm after sintering.
Fig. 1 shows schematically the printed “L-shaped” parts as well as “Disc-
shaped” parts, indicating the corresponding layer assembly with respect
to the three different printing directions, i.e. x, y and z for the L-shaped
parts, and s and l for the discs.

In order to test samples A, B1 and B2 under uniaxial bending,
standard bend bars of dimension b = 2.5 mm, h = 2 mm, l≈ 25 mm
were cut out of the printed L-shaped parts, as shown schematically in
Fig. 2 (bottom left). Three testing configurations were selected (Fig. 2,
up and right) to account for the effect of the printed directions of the
layers on the mechanical response of the parts. For testing sample C
under biaxial bending, nominal sintered dimensions (i.e. diameter D≈
7.5 mm, and thickness t≈ 1.3 mm) were taken without further ma-
chining, with the printed layers arranged as shown in Fig. 1 (right). The

testing surface (tensile side) in samples A and B1 was machined with a
diamond wheel (grinding finish with a D15 grit), whereas samples B2
and C were tested as-printed.

Table 1 shows the different samples, according to the sintering
condition, geometry, surface conditioning and testing configuration.

2.2. Surface characterization and microstructural analysis

In order to study the surface quality of the as-printed and diamond-
ground samples, images of the tensile sides were taken using a scanning
electron microscope (JEOL JCM-6000Plus Neoscope™, JEOL Ltd.,
Tokyo, Japan). To investigate the microstructures of the different
samples A, B and C, cross-sections taken perpendicular and parallel to
the printing direction were prepared. Four to six specimens were po-
lished to a 1 μm mirror finish using a Struers Pedemax-2 equipment.
Subsequently, thermal etching was carried out at 1400 °C for 20 min to
reveal the grain boundaries. The grain size distributions were de-
termined for each sample on SEM microstructures using the line-in-
tersection method according to [13].

2.3. Mechanical testing and evaluation of strength

Uniaxial and biaxial bending tests were performed with respect to
the printing direction as shown in Fig. 2, and specified in Table 1. The
uniaxial bending strength was measured under four-point bending
(4PB) in samples A, B1 and B2 (prismatic bars), following the standard
EN 843-1 [14]. The biaxial strength was measured using the Ball-on-
three-Balls (B3B) test in sample C (discs) [15,16]. In this loading con-
figuration, the specimens are symmetrically supported by three balls on
one face and loaded by a fourth ball in the centre of the opposite face;
this guarantees well-defined three-point contacts. The four balls had a
diameter of 5.5 mm. One of the main advantages of this method is that
the maximal stress developed during the test is located far from the

Fig. 1. Schematic illustration of layered L-shaped parts and discs showing the layer assembly with respect to the printing direction (i.e. x, y and z for L-shaped parts,
and s and l for discs).

Fig. 2. (bottom left) Schematic of two bend bars cut out of the L-shaped part. (up
and right) Schematic illustration of the bend bars in the three different testing
directions (x, y and z).

Table 1
Samples of study classified according to the sintering condition, geometry,
surface conditioning and testing configuration.

Sample Sintering
conditions

Geometry Surface
condition

Test configuration

A 1500 °C, 20h Prismatic bar Machined x
1500 °C, 20h Prismatic bar Machined y
1500 °C, 20h Prismatic bar Machined z

B1 1650 °C, 2h Prismatic bar Machined x
1650 °C, 2h Prismatic bar Machined y
1650 °C, 2h Prismatic bar Machined z

B2 1650 °C, 2h Prismatic bar As-printed x
1650 °C, 2h Prismatic bar As-printed y
1650 °C, 2h Prismatic bar As-printed z

C 1650 °C, 2h Disc As-printed s
1650 °C, 2h Disc As-printed l
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edges (corners) of the sample, avoiding influence of edge defects [17].
Between 13 and 28 specimens were tested per sample for statistical
significance. All bending tests were performed in ambient conditions,
i.e room temperature (∼23 °C) and ∼40 % relative humidity. A uni-
versal testing machine (Zwick 010, Zwick/Roell Ulm, Germany) with a
load cell of 10 kN was employed for the uniaxial tests. The B3B-tests
were carried out using a universal testing machine (Microstrain,

Messphysik, Fürstenfeld, Austria) with a load cell of 1 kN. A pre-load
between 10 N and 20 N was applied to all specimens, which were
loaded until fracture with a cross-head speed of 1 mm/min. The max-
imum load at fracture, F, of each specimen was recorded. The 4PB
flexural strength σf was calculated as [14]:

= F S S
bh

3
2

( ) ,f
1 2

2 (1)

Fig. 3. Surface characteristics of the tensile sides: a) as-printed and b) machined condition.

Fig. 4. Microstructures of LCM-alumina: a)
sample A (cross-section perpendicular to the
layers). The arrows indicate the layer bound-
aries, b) sample A (cross-section parallel to the
layers). The yellow line separates the regions
with different porosity, c) sample B, d) sample
C. The arrows and the circles in (c) and (d)
indicate the second phases [25].
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where b is the specimen width, h is the specimen height, S1 and S2 are
the outer and inner spans (i.e. 20 mm and 10 mm), respectively. In the
B3B-test the strength is defined as the maximum tensile stress in the
midpoint of the tensile side of the specimen, σmax, and can be calculated
according to [15]:

= f F
tmax 2 (2)

where F is maximum load at fracture, t is the specimen thickness, and f
is a dimensionless factor, depending on the Poisson’s ratio, specimen
size and support geometry [15]. For alumina specimens, with a Pois-
son’s ratio of 0.23, and thickness t = 1.3 mm, a factor f ≈ 1.6 was
calculated through an interactive tool at www.isfk.at [18].

The strength data were evaluated according to Weibull statistics
[19], following the standard EN-843-5 [20]. The strength distributions
were obtained and the characteristic strength, σ0, and Weibull modulus,
m, were determined and compared for all samples [21,22].

2.4. Fractography

Fractographic analyses were carried out to investigate the failure
origin, size, type and location of the critical flaws, following the re-
commendations as in [23,24]. Selected fracture surfaces of the tested
specimens were gold coated using an Agar Sputter Coater, and subse-
quently investigated using a SEM (JEOL JCM-6000Plus Neoscope™,
JEOL Ltd., Tokyo, Japan).

3. Results and discussion

3.1. Surface and microstructure

Fig. 3a and b shows SEM images in two different magnifications

Fig. 5. Grain size distributions of the different samples A, B and C, with samples
A and B measured both perpendicular and parallel to the printing layer direc-
tion, and sample C only in parallel direction.

Fig. 6. Strength distributions of (a) sample A (bars, machined), (b) sample B1 (bars, machined), (c) sample B2 (bars, as-printed), and (d) sample C (discs, as-printed).
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corresponding to the as-printed and machined tensile surface of
bending bars (sample B), respectively. The wave-like structure of the as-
printed surface in Fig. 3a is associated with the printing process. The
"wave length" observed is of the order of the printing layer thickness. It
is likely that this kind of structure is formed due to an overexposure of
the polymer at the free edges of the part, which occurs when rather
thick layers are printed. The surface of the bending bar specimens with
machined surface appears relatively smooth, as can be seen in Fig. 3b.

Fig. 4a and b shows SEM microstructural images of cross-sections of
sample A prepared perpendicular and parallel to the printing direction,
respectively. It can be seen that this material has a relatively fine-
grained microstructure; however, it exhibits a level of high porosity at
the interfaces between the layers. This may be related to the lower

sintering temperature (i.e. 1500 °C). As a result, the layer boundaries
are clearly distinguished in the SEM image (indicated by arrows in
Fig. 4a). Nevertheless, regions immediately above or below the
boundaries are rather pore-free. This is evidenced in Fig. 4b, which
shows a polished section not perfectly parallel to the layers: the upper
region on the micrograph (referred to as region ①) shows the layer
boundary with higher porosity, the lower region (named as region ②)
reveals a rather dense microstructure adjacent to the boundary. This
finding agrees with the lower relative density (ca. 96 %) measured in
sample A.

Fig. 4c and d shows SEM images of the microstructure of samples B
and C, respectively. The microstructure is more homogenous than in
sample A, with rather larger grains but a lower amount of porosity,
associated with the higher sintering temperature (i.e. 1650 °C). The
layer boundaries were not visible in samples B an C. Thermal etching
lead to the formation of new phases at the triple points (most likely
MgAl2O4 from alumina and sintering aids [25]), as indicated by the
arrows and circles in Fig. 4c and d.

The lower sintering temperature of 1500 °C, as in sample A, yields a
relatively fine grained microstructure with almost negligible grain
growth, despite the relatively long dwelling time of 20 h. However, this
sintering condition is not ideal for the formation of a homogeneous
microstructure with high density, and high porosity (especially at the
interlayer boundaries) was found. A higher sintering temperature of
1650 °C with only 2 h dwelling time, as chosen for samples B and C,
leads to an enhanced densification and therefore to a more homo-
geneous microstructure and less porosity.

Fig. 5 plots the grain size distributions of samples A, B and C, with
samples A and B measured both perpendicular and parallel to the
printing layer direction. The mean grain size of sample A is d50 ≈ 1.2
μm in both printing directions. Sample B has a mean grain size d50 ≈
3.8 μm perpendicular to the layers and d50 ≈ 4.4 μm parallel to the
layers, and sample C shows a wider grain size distribution (parallel to
the layers) and a larger grain size, with d50 ≈ 5.7 μm.

3.2. Strength distributions

Fig. 6a–d shows the strength distributions of the different samples
A, B1, B2 and C, for the different testing configurations (x, y, z, s and l),
respectively. The probability of failure, Pf, is represented versus the
failure stress, σf, in a Weibull diagram. The full lines correspond to the
best fit of the strength data according to the maximum likelihood
method [20].

The characteristic strength, σ0, and the Weibull modulus, m, with
the corresponding 90 % confidence intervals are given in Table 2.

For sample A (machined surface), there is a clear effect of the
printing direction on the strength distribution (Fig. 6a). The char-
acteristic strength of the specimens tested in z-configuration (372 MPa)
is significantly lower than that of specimens tested in x- and y-config-
uration (488 MPa and 473 MPa, respectively), the x- and y-

Table 2
Characteristic strength, σ0, and the Weibull modulus, m, with the corresponding 90 % confidence intervals for samples A, B1, B2 and C, for the different test
configurations.

Sample Test configuration Number of specimens Characteristic strength, σ0 [MPa] Weibull modulus, m [-]

A x 28 488 [469–509] 8.4 [6.2–10.3]
y 24 473 [451–496] 8.1 [5.8–10.1]
z 18 372 [352–393] 8.3 [5.6–10.7]

B1 x 13 403 [389–417] 16.3 [10.0–21.5]
y 25 411 [403–419] 18.9 [13.7–23.5]
z 25 385 [380–391] 25.0 [18.1–30.9]

B2 x 15 397 [382–412] 13.7 [8.8–17.8]
y 25 394 [382–407] 11.6 [8.4–14.4]
z 25 356 [345–367] 11.7 [8.5–14.5]

C s 22 433 [425–441] 21.8 [15.3–27.3]
l 24 413 [405–421] 19.7 [14.2–24.6]

Fig. 7. Weibull modulus plotted versus the characteristic strength of samples A,
B1, B2 and C for the different printing directions (x, y, z, l and s).

Table 3
Estimation of defect sizes for surface defects ac,s as well as volume flaws ac,v
according to the Griffith criterion.

Sample Test configuration σ0 [MPa] ac,s [μm] ac,v [μm]

A x 488 10 30
y 473 10 32
z 372 17 50

B1 x 403 14 44
y 411 14 42
z 385 15 48

B2 x 397 15 45
y 394 15 45
z 356 20 56

C s 433 12 38
l 413 13 42
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configuration being statistically identical with a 90 % confidence. The
Weibull modulus in all three configurations is rather low (m ≈ 8).

For sample B1 (machined surface), the difference in the strength
distributions between the x-, y-, and z-configuration is almost negligible
(Fig. 6b), with slightly lower strength for the latter. The Weibull
modulus is rather high, ranging between m = 16 and m = 25.

For sample B2 (as-printed surface), the difference in the strength
distributions between the x- and y-configuration is negligible (Fig. 6c),
with a stronger decrease in strength for the z-configuration as compared
to sample B1. The Weibull modulus in sample B2 (m ≈ 12) is slightly
higher than that of sample A, but significantly lower than that of sample

B1.
For sample C (as-printed surface), there is a slightly difference in the

strength distributions between s- and l-configuration (Fig. 6d), with ∼5
% higher characteristic strength in the former (433 MPa versus 413
MPa). The Weibull modulus is rather high and similar for both con-
figurations (m ≈ 21).

For the sake of comparison, Fig. 7 plots the Weibull modulus versus
the characteristic strength for all tested samples, with the corre-
sponding 90 % confidence intervals. In general, the characteristic
strengths in x- and y-configuration in sample A, B1 and B2 are identical
with a 90 % confidence, within each individual sample. The strength in
z-configuration in sample A is significantly lower (∼30 %), whereas in
samples B1 and B2 only a slightly decrease is observed. In this regard, a
positive effect of the surface machining on the strength parameters can
be seen. The low Weibull moduli of sample A (machined) and sample
B2 (as-printed) indicate a large scatter in the strength among tested
specimens, which may be related to a relatively large difference in the
size, type and/or location of critical defects in the specimen. In the case
of sample A, the low Weibull modulus may be also related to the lower
sintering temperature (1500 °C) and higher porosity. The increase in
Weibull modulus in B1 may be associated with the surface machining,
which may have eliminated some surface defects of a different size
compared to inherent microstructural flaws. The high Weibull modulus
in sample C may be related to the testing conditions (biaxial bending),
where edge effects are neglected, and/or to the smaller size of the
printing layers (i.e. 20 μm) thus limiting the natural defect size.

Fig. 8. Representative volume defects in specimens from sample A (machined):
(a) trapped pore between two layers (x-configuration), (b) delaminated area (z-
configuration) and (c) delamination (y-configuration).

Fig. 9. Sub-surface or surface defects in specimens from sample B1 (machined):
(a) pore in y-configuration, and (b) machining defect in x-configuration.
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3.3. Estimation of critical flaw sizes

According to Linear Elastic Fracture Mechanics, the Griffith cri-
terion can be used to estimate the critical defect size, ac, causing the
failure in brittle materials, as follows [26]:

=a K
Y

1
c

Ic

f

2

(3)

where KIc is fracture toughness, σf is the fracture strength, and Y is a
geometry factor taking into account the defect shape and loading
configuration [27]. Table 3 shows the estimated critical defect sizes
calculated with the characteristic strength, σ0, of the different samples
A, B1, B2 and C, considering a value of Y = 1.12 for semi-elliptical
surface flaws or Y = 2/π for the penny-shaped volume defects, re-
spectively [24,28]. The fracture toughness of ∼3 MPa m1/2 determined
for this material using the SEVNB method in [29], was employed in the
calculations.

3.4. Failure analysis

Fig. 8 shows SEM images of typical defects that caused the failure of
the LCM-alumina specimens from sample A. In many cases, the reasons
for failure in x- and y-configuration were relatively large pores, which
were trapped between two adjacent layers. Their size is rather uniform,
extending approximately one layer thickness, i.e. 40 μm (Fig. 8a). The
failure stress of the specimen shown in Fig. 8a was 550 MPa. The defect
size observed correlates with the estimated size for volume defects as
given in Table 3. The scatter in strength (low Weibull modulus) mea-
sured in sample A may be related to the different positions of the vo-
lume pores in the specimens and to the non-uniform stress field as for
flexural bending tests, decreasing towards the neutral axis with respect
to the distance from the tensile surface. Fig. 8b shows a typical defect
found in specimens from sample A tested in z-configuration: a dela-
minated area between two printed layers. Since this type of defect is
often larger than the trapped pores, the strength in z-configuration is
smaller than in x- and y-configuration. Pronounced delaminations were
also found on x- and y-specimens (Fig. 8c). However, the failure stress
of the specimen shown in Fig. 8c was as high as 467 MPa, within the
strength interval for specimens tested in x- or y-configuration. In these
specimens the load was applied parallel to the layer boundaries and
thus possible interlaminar inhomogeneities were not responsible for
failure. This finding indicates that, depending on the direction of the
applied stress field with respect to the layer direction, specific defects
can limit the strength of a specimen (as in z-direction) or remain un-
critical (as in x- or y-direction).

Fig. 9 shows typical fracture surfaces of sample B1 (machined ten-
sile surfaces). Failure origins were in a few cases small sub-surface
pores (Fig. 9a) or – more frequently – grinding defects at the surface
associated with the machining process (Fig. 9b). The defect size cor-
relates with the size of the diamond grit used by the grinding wheel. In
this regard, machining defects are rather uniform in size, which can
explain the relatively low scatter in strength and thus higher Weibull
modulus of sample B1.

Fig. 10 shows typical fracture surfaces of sample B2 (as-printed).
The already mentioned “wave-like” surfaces were responsible for
failure, especially under y- and z-configuration. They were caused by
the over-exposure at the free edges of the printed part. Fig. 10a shows
the fracture surface of a specimen, where such a wavy structure can be
seen. When tested in y-configuration, the load is applied parallel to the
"waves" and the grooves between the waves do not necessarily com-
promise the strength. However, when tested in z-configuration, the
applied stress is perpendicular to the grooves. Consequently, they may

act as stress concentrators and reduce strength, especially if additional
damage (artifacts) as shown in Fig. 10b and c is present in the grooves.
Such artifacts may be a result of removal of excess slurry from the
surface of the printed parts. Since these features are relatively uniform
in size, they yield a low scatter in strength. The slightly lower strength
in z-configuration is a consequence of the damage inside the grooves.
Finally, the size of such wavy structure is of the order of the estimated

Fig. 10. Surface or surface near defects in specimens from sample B2 (as-
printed): (a) wavy surface in y-configuration, (b) artefact in z-configuration,
and (c) artefact similar to the one shown in (b) visible on the top surface in z-
configuration.
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defect size for sample B2, as listed in Table 3.
Fig. 11 shows a typical fracture surface of a broken disc from sample

C tested with the B3B method. Although the strength of sample C was
measured on “as-printed” discs, no wavy structures were observed on
the surface. No obvious defects could be identified either as failure
causing entities. Comparing estimated defect sizes from Table 3 and the
grain size distribution in sample C (Fig. 5), it can be concluded that the
estimated critical defect size is in the range of the size of the larger
grains in sample C, as indicated in Fig. 11 (see arrows). It may be hy-
pothesized that exceptionally weak grain boundaries along big grains
may act as failure origins in this sample.

4. Summary and conclusions

The effect of the sintering parameters, printing direction, surface
condition (i.e. machined or as-printed), and/or geometry (i.e. prismatic
bar or disc) on strength was investigated in alumina samples 3D-printed
using LCM technology.

The uniaxial strength results obtained in sample A (sintered at 1500
°C and machined) show how process-typical defects like delaminations
or large pores may – or may not – influence strength, depending on the
relation between printing and loading direction. Planar defects with
fixed orientation to the printing direction, such as weak layer bound-
aries or interlaminar inhomogeneities, are only strength limiting when
the load is applied along the printing direction, but do not affect the
strength in other loading directions. However, 3-dimensional defects
such as pores trapped inside the printed layers compromise the strength
in all loading configurations.

The comparison of uniaxial strength between samples B1 (ma-
chined) and B2 (as-printed), both sintered at 1650 °C, reveals an effect
of the surface structure on the strength distribution, influenced by the
printed direction. Nevertheless, the strength of as-printed surfaces ob-
tained with parameters for rather fast printing may yield similar
strength as the one obtained with machined surfaces, especially in the
case that the post-printing cleaning be performed with care to avoid
additional surface damage.

The biaxial bending results on system C (sintered at 1650 °C and as-
printed) show that a choice of process parameters which result in a
smooth surface can produce a material with a high, orientation-in-
dependent strength and a low scatter (high Weibull modulus).

This study demonstrates that additive manufacturing of ceramics
does need consideration of more parameters than conventional ceramic
processing. Not only the successful and costly efficient design of LCM
alumina components has to consider aspects such as printing direction

in relation to loading direction, but also testing protocols for the parts
must be able to characterize these aspects.
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1. Introduction

The progress of advanced technologies in various fields, such as
telecommunication, e-mobility and medicine, is followed
by the need for high-performance materials. Requirements
for structural and functional applications can often be fulfilled
by the outstanding properties of ceramic materials. Regarding
structural properties, ceramics exhibit low specific density,
high wear resistance as well as chemical and thermal stability.
Furthermore, ceramics are often the materials of choice for their
functional properties, such as electrical or thermal conductivity/
resistance, piezo-electricity, or optical characteristics.[1]

Despite the outstanding structural properties of ceramics, such
as high hardness and strength, their brittle character limits themar-
ket for high demanding applications, where reliability and safety are

key elements in materials selection. Contrary
to metals, ceramics show a relatively large
scatter in strength, associated with the
size, location, and type of processing flaws
(intrinsic) or surface defects (extrinsic) in
the component. Elimination of (large) intrin-
sic flaws and/or inhomogeneities has been
achieved through colloidal processing,[2] lead-
ing to higher strengths and less scatter.
However, extrinsic flaws such as surface
defects or cracks, associated with the hard
machining of the ceramic components are
still a challenge. Costly post-processing pro-
tocols involving fine polishing or lapping are
often needed, thus narrowing the applica-
tions to planar and simple structures, fabri-
cated by conventional routes such as uniaxial
pressing, tape, or slip casting.

Additive manufacturing (AM) technolo-
gies are now paving the path to fabricating ceramic components
of high complexity without the need for post-processing, avoid-
ing the high risk of introducing surface defects, which may lead
to catastrophic failure under loading. AM technologies emerging
in the field of ceramics can be categorized according to the
preprocessing of the ceramic powder prior to 3D printing, in:
1) powder-based; 2) solid-based; and 3) slurry-based.[3,4] The
former employs powder beds, where the powder particles are
compacted through droplets of resin in the case of binder-jetting
or are directly sintered through the energetic input of a laser
(powder bed fusion). The latter technologies utilize feedstocks
based on solids or slurries using polymeric matrices with embed-
ded ceramic powder particles as fillers. An example of a solid-
based technology is material extrusion, where, adapted from
polymeric 3D printing, a filament, filled with ceramic particles,
is deposited on a building platform due to the melting and cool-
ing of the filament. In contrast, for most slurry-based technolo-
gies, light is the energy source that leads to the solidification of
photosensitive polymeric suspensions, so-called vat-based photo-
polymerization (VPP). Variants of this technology are stereoli-
thography (SLA), which is a point-by-point process, and digital
light processing (DLP). The latter uses a frame of multiple
mirrors to project layers of consolidated pixels, resulting in a
layer-by-layer build-up of a ceramic component. DLP processes,
such as lithography-based ceramic manufacturing (LCM), can
print with high resolutions, making it possible to fabricate geom-
etries with a precision of� 100 μm. Although the development of
solids or slurries containing ceramic powder particles as fillers
remains a great challenge, materials intended for structural
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application, such as alumina (Al2O3), zirconia (ZrO2), or silicon
nitride (Si3N4), have already been successfully printed.[3,5]

Additive manufacturing enables new opportunities to fabri-
cate ceramic components with “intricate” geometries for partic-
ular applications, such as dental ceramics, scaffolds, catalysts, or
nozzles. Even though hard machining can be avoided, the wave-
like structure of printed surfaces, due to the layer-by-layer build-
up, entails new challenges for the mechanical performance of
printed components. Therefore, new testing protocols must be
developed to characterize the mechanical performance of 3D
printed components. Not only for the assessment of properties
in material development, but also for process monitoring and
quality control. Strength may depend on relations between print-
ing and loading direction, which has to be considered in the
design of components. In contrast, opportunities are also offered
through 3D technology thanks to the layer-by-layer and multima-
terial approach. One possible approach is the development of a
tailored (bioinspired) microstructure and architecture to enhance
mechanical strength and/or “damage tolerance.” These aspects
will be addressed in this article.

2. Aspects of the strength of stereolithographic
3D-printed ceramics

Ceramic components that are subjected to mechanical stress
exceeding their strength eventually fail by brittle fracture.
Brittle fracture is caused by the extension of the most critical
small imperfection which is present. Such flaws can stem from
the production process, machining, handling, and service.[6–9]

For convenience, they can be described as small cracks distrib-
uted on the surface or in the volume of a component. Through
the application of the principles of linear elastic fracture mechan-
ics, the strength σf of material with fracture toughness KIc then
depends on the size ac of the largest (or critical) flaw present.

σf ¼ K Ic

Y
ffiffiffiffiffiffiffi
πac

p (1)

Naturally, this size varies from component to component.[6–9]

Therefore, the strength of a ceramic material cannot be given by a
single number and is described by a strength distribution func-
tion instead. Usually, the Weibull distribution, Equation (2), is
used to this end.

Fðσ, VÞ ¼ 1� exp � V
V0

σ

σ0

� �
m

� �
(2)

The strength of ceramics is thus reported as characteristic
strength σ0 (the stress at which the failure probability is
F¼ 63%, for specimens of volume V0) and Weibull modulus
m (describing the scatter of strength). Note that Equation (2)
implies that the strength depends on the loaded volume, i.e.,
it is size-dependent. Knowledge of these parameters allows for
a statistical design procedure to assess the reliability of a compo-
nent at a given stress. A large number of specimens is required to
obtain the parameters of this distribution function.[10] The
strength distribution is graphically represented as a “Weibull-
Plot,” which is a linearized representation of Equation (2).[11]

Equation (2) combined with Equation (1) implies that the
strength distribution is actually a mapping of the size distribu-
tion of critical defects. To analyze the strength behavior of AM
ceramics, it is thus convenient to look at Equation (1). For a given
material, the fracture toughness is a material property and it can
be assumed that it is quite similar for AM ceramics and conven-
tionally manufactured ceramics. It is worth mentioning that AM
offers the possibility of tailoring the fracture toughness of a
material through architectural and/or microstructural design,
as will be described in Section 3. In any case, the critical defect
size is related to the existing defect population, which is strongly
influenced by the specific processing route.[6–9]

Additive manufacturing of components differs in several
aspects from traditional methods. The former requires feed-
stocks that contain a very high amount of polymer binder.[12–14]

For instance, stereolithographic manufacturing uses slurries
with a typical ceramic content of �50%. Homogenization and
stabilization of such slurries is a challenge: agglomeration of
either the ceramic particles or the polymer phase would inevita-
bly lead to defects in the final product. The optimization accord-
ing to rheological behavior and particle dispersion in the
photopolymeric suspension is crucial for sintered ceramic
properties.[15–18] The debinding of such green bodies must be
performed in an especially cautious way to avoid either cracking
or the formation of large defects generated by evaporating
gaseous reaction products.[12–14]

Another AM-specific origin for defects is the layer-wise
building process. It may lead to defects at different locations
of a component, i.e., in the volume or at the surface. Such defects
have a preferred orientation with respect to the building direction
and lead to a strength that depends on the relation between build-
ing direction and stress direction, i.e., an orientation-dependent
strength.[19–21] Sufficient bonding of two subsequent layers has
to be ensured to avoid delamination defects and systematically
weak layer interfaces. An example of the influence of insuffi-
ciently bonded layers on strength can be found in the literature[22]

and is exemplified in Figure 1.
The layered structure of the material is clearly visible on

polished sections normal to the layer planes and large, highly
porous regions can be found at the layer boundaries. The
strength of machined specimens stressed in the z-direction
and in the (x- or) y-direction is significantly different.
Delaminated regions act as defects causing a low strength in
the first specimen series (z-loaded), while the same type of defect
is present but not failure causing for the other two loading
directions (x- and y-loaded).[22]

One of the benefits of using additive manufacturing technol-
ogies for the production of ceramic components is the possibility
to avoid hard machining to obtain the final shape. It can be
assumed that most AM components will be used with the as-fired
surfaces without any modification. As a consequence, surface
defects which are characteristic of each printing process, require
special attention. In LCM, two effects contribute to the occur-
rence of unique surface structures. Light scattering caused by
the ceramic particles within the polymeric system may lead to
over-polymerization, causing its theoretically straight edges to
bulge out. This generates a wavy surface of each exposed
cross-sectional layer, being neither strictly straight nor normal
to the building platform, but bulged outwards instead, as seen
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in Figure 2a. This effect is more pronounced when thick layers
are printed with high exposure energy.[3,23] Second, smooth
inclined contours must be replicated with pixels that are limited
to about 40 μm� 40 μm in size, resulting in what is commonly
known as aliasing or the staircase effect.[24] Therefore, each
angled surface is made up of a stepped sequence of squares with
different sequences for each minor change in incline (Figure 2b).
In summary, each combination of process parameters (e.g., expo-
sure energy and time) and geometry parameters (e.g., surface
incline) yields a specific surface structure. Examples of this

variety are shown in Figure 2c, which depicts scans of surfaces
differently orientated with respect to the building direction.

Figure 3a shows strength distributions of two sets of speci-
mens from the same material but with different surfaces, due
to over-polymerization. In both sets specimens are stressed in
the z-direction, one set has smooth machined surfaces, and
the other set has as-sintered surfaces with a surface structure
as depicted in Figure 3b. A reduction of strength and an increase
in scatter can be observed, which may be due to the stress con-
centration effect of the grooves, cp. also Figure 5. If the grooves

Figure 1. a) 3D visualization of a sintered vat-based photopolymerization (VPP) body with insufficient layer bonding. Porous seams are visible at the layer
boundaries ①þ white arrows and extended planar porous regions are present at the boundaries ②. b) fracture surface showing a delaminated region
causing a low failure stress (250MPa) in a specimen stressed in the z-direction, c) fracture surface showing a similar delamination-type defect in a
specimen stressed in the y-direction. In this case failure was caused by a pore close to the tensile surface, resulting in a strength of 440MPa.
Adapted under the terms of the CC-BY license.[22] Copyright 2021, The Authors. Published by Elsevier.

Figure 2. a) Bulged-out edge due to over-polymerization. Adapted under the terms of the CC-BY license.[22] Copyright 2021, The Authors. Published by
Elsevier. b) schematic representation of the staircase effect, c) scans of surfaces with different orientations with respect to the building direction. Each
specimen has been manufactured with the same processing parameters, only the building direction has been altered. The height scale spans 15 μm from
blue to red.
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are stressed in the longitudinal direction, no reduction of
strength can be found.[22]

The effect of aliasing on the strength is shown in Figure 4.
Square plates (10mm� 10mm� 1mm) were printed at five
different inclines (0°, 15°, 30°, 45°, 90°) to the vertical building
direction using parameters that do not lead to over-polymerization.
Strength values for the plates were obtained with the biaxial
Ball-on-Three-Balls-Test.[25,26] A clear dependence of the charac-
teristic strength on the printing orientation was observed. 90°
specimens exhibit the highest strength, followed by 0°
specimens. The low strength of 15° and 30° samples is in good
agreement with the expected influence of surface structures for
this incline, cp. Figure 2c. Ensuing fractography indicates that
fracture follows the grooves on the surface, further pointing
out the importance of these structures on the failure behavior.

While the effect of over-polymerization can be avoided by choos-
ing suitable processing parameters that lead to smooth surfaces,[22]

the aliasing effect is intrinsic to the method and thus is the orienta-
tion-dependent strength. Both effects however are due to structures
that are in the same order of magnitude as typical failure causing
defects. They lead to high local stress gradients, which are

superposed on a general stress field. Such stress situations are
not generally covered by the theory of brittle fracture and may lead
to new fracture statistical effects. Thus, a better understanding of the
underlying mechanisms for the influence of building directions on
strength has to be performed. Stress calculations by the authors
using the Finite-Element submodel technique show that a typical
over-polymerization structure of the surface of a flexed specimen
causes an increase in the maximum surface stress of about 50%,
compared to that of an ideally flat surface, Figure 5. However,
the effect vanishes within several ten μm depths. As indicated in
the literature,[27] such stress concentrations may significantly change
the dangerously loaded volume (effective volume[9]) of a component,
which in turn affects the probabilistic design concept.

The reliable design of LCM components has to take this effect
into account in a proper way. For instance, structures that con-
tain struts in various orientations (Figure 6) should be designed
in a way to account for the orientation-dependent strength. Such
a change in design could be that struts printed in “weak directions”
are either avoided or realized with larger cross-sections.

Standardized testing methods that are typically used to assess
the strength of ceramics, like 4-point bend tests[28] or biaxial flex-
ure tests,[29] do not account for such phenomena. Furthermore,
typical standardized test specimens like slender bending bars or
thin discs or plates are unfavorable for AM. The need for testing
methods that can both capture AM process-specific influences

Figure 3. a) Strength distributions for specimens with as-printed and smooth, machined surfaces. The stress direction was normal to the layer planes
(z-direction). b) as-printed surface with stressing direction indicated. Adapted under the terms of the CC-BY license.[22] Copyright 2021, The Authors.
Published by Elsevier.

Figure 4. Biaxial strength as a function of inclination of the tensile surface
towards the building direction. Each point represents 30 measurements.

Figure 5. Stress concentrations superposing the bending stress due to the
wavy structure generated by over-polymerization, cp. Figure 2a.
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and utilize a specimen geometry that can be conveniently man-
ufactured by AM is obvious.

In recent research project (CharAM - Charakterisierung der
realen mechanischen Eigenschaften von keramischen AM-
Bauteilen, FFG of BMDW and BMK, Austria and ZIM of
BMWK, Germany) a new type of specimen, as shown in
Figure 7, is investigated to this end. It consists of an assembly
of 48 cantilevers on a common baseplate which is designed to
exhibit an extensive region of constant stress. The baseplate can
be inclined at any desired slope between 0° and the maximum pos-
sible incline without the need for supporting structures. Together
with an automated test procedure that loads and fractures these
cantilevers sequentially, an economic methodology is developed
to capture the process-specific strength as well as its scatter.
Such results can be used for material characterization to provide
essential data for design but also for periodic quality control.

3. Opportunities for the Design of Damage
Tolerant 3D-Printed Components

3.1. Architectural Design

In the past decades, much effort has been directed to designing
ceramic-based multimaterial architectures with improved

strength and/or toughness. Multilayer designs have been studied
in many ways aiming to improve both the resistance to crack
propagation and the mechanical reliability of ceramic materials
and components.[30–32] For instance, composite materials using
symmetric multilayer architectures (e.g., mullite–alumina or
alumina–zirconia among others) can exhibit enhanced fracture
toughness, higher fracture energy, and in some cases non-
catastrophic behavior compared to their constituent brittle
(monolithic) materials. An important aspect of their design is
the role of layer interfaces. Two main approaches regarding
the interface fracture energy between layers concern the use
of “weak” or “strong” interfaces. 1) Layered ceramics designed
with weak interfaces can yield significantly enhanced fracture
energy (failure resistance) favored through interface (or inter-
layer) delamination. In this type of behavior, referred to as
“graceful failure”,[30] the fracture of the first layer is followed
by crack propagation along the weak interface or within the
weaker interlayer without undergoing catastrophic failure. The
reinforcement mechanisms during fracture resemble those
found in natural systems such as mollusk shells, and are mainly
related to the low fracture energy of the interfaces and/or the
large difference in elastic properties between their constitu-
ents[33]; 2) Layered ceramics with strong interfaces have proven
to be effective by introducing compressive residual stresses in
the layers. The location of the compressive stress layers, either
at the surface layer or embedded in the architecture, can either
increase the mechanical strength[34,35] or enhance the resistance
to fracture and/or crack propagation (so-called damage
tolerance),[32,36–38] respectively. The idea of compressive stresses
in the outer layers is based on the observations in “strengthened
glasses,” the concept first studied by Nordberg et al.,[39] and tech-
nically exploited, for instance, in Gorilla glass.[40] It has been also
demonstrated the feasibility of this approach to improve the
mechanical strength and the insensitivity to subcritical crack
growth in ceramics.[41] The second approach, where compressive
layers are embedded in the architecture, may lead to the arrest of
the propagation of surface defects, thus increasing significantly
the fracture energy of the material and guaranteeing a minimum
strength (also called “threshold strength”), below which no fail-
ure can occur (see Figure 8). Recently, novel concepts have been
pursued to design ceramics using a non-periodic disposition of
“embedded” compressive layers (i.e., architectures with nonregu-
lar spacing between layers) to result in reliable components with
unprecedented damage tolerance.[42] In either case, residual
compressive stresses have been utilized to reinforce conventional
(planar) multilayer structures based on simple processing
approaches (e.g., tape casting of symmetric and periodic layered

Figure 6. Scaffold structure manufactured using the lithography-based
ceramic manufacturing (LCM) method consisting of struts with various
orientations.

Figure 8. Thermal-shock-induced surface cracks stopped at the embedded
compressive layers.[36,44] Adapted with permission.[36] Copyright 2017,
Elsevier.

50 mm

Figure 7. LCM manufactured test bodies to evaluate the orientation-
dependent strength. Left: surfaces with 0° incline to the building direction,
sintered, right: 15° incline, green body.
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ceramics, where each layer is composed of only one
material).[32,43]

3.2. Microstructural Design

Progress in processing and manufacturing techniques has
enabled tailoring of the microstructure of ceramic materials
to achieve outstanding functional properties.[45,46] “Textured”
ceramics are an example of success, where the crystallographic
orientation and morphology of individual grains can be tailored
during the sintering process.[47] Among the several techniques to
fabricate textured ceramics, templated grain growth (TGG) has
shown great potential applied to inorganic systems.[48,49] In
TGG, a subset of template particles is uniformly distributed in
a fine (matrix) powder and the templates are aligned during
forming (e.g., using tape casting[50]). After densification, the ori-
ented template grains grow preferentially with further heating by
consuming the non-oriented matrix grains and, as a result, the
final microstructure consists of elongated grains with a preferred
orientation distribution (see Figure 9),[51] which resembles the
organized microstructure as found in nacre.[52] A novel approach
to increase the toughness in layered ceramics, while keeping the
crack arrest capability, is to introduce textured layers as
embedded features.[37,51,53] This concept has been recently
demonstrated, both under bending and contact loading, in
tape-casted alumina-based layered ceramics designed with “tex-
tured” layers embedded between “equiaxed” layers.[54,55]

In this regard, there is a great potential for employing additive
manufacturing techniques, based on layer-by-layer deposition
methods, to fabricate 3D-printed multilayer architectures (of dif-
ferent complexity) with improved fracture resistance and guaran-
teed minimum strength. The “multimaterial” approach aiming to
tailor the microstructure of the parts by combining materials dur-
ing the printing work has already been successfully employed in
recent years; some examples will be presented in the next section.

3.3. Advances in Stereolithography-Based Additive
Manufacturing

The concepts of alternating ceramic layers in a multilayer archi-
tecture have been attempted using stereographic 3D printing in

alumina–zirconia-based composites. In the work of Schlacher
et al.[56] a multimaterial approach was employed by embedding
alumina–zirconia layers between outer pure alumina layers, aim-
ing to tailor internal stresses in the layers. The in-plane compres-
sive residual stresses in outer alumina layers were generated
owed to the different thermal expansion coefficients of the com-
bined material layers. Figure 10a shows the multilayer design
with outer alumina layers. Figure 10b illustrates the “strong”
interface between both alumina and alumina-zirconia materials.
Biaxial bending performed both on the 3D-printed multimaterial
and monolithic alumina parts revealed the effect of compressive
stresses in the outer layers. A characteristic strength higher than
1 GPa was measured on the alumina multimaterial system, com-
pared to �650MPa in monolithic alumina, taken as a reference
(Figure 10c). This is the first report on employing additive
manufacturing to tailor the strength of alumina ceramics, taking
advantage of the layer-by-layer printing process, and maybe
extended to other ceramic systems.[56]

Another strategy involves the use of the stereolithographic
process to tailor the microstructure of ceramics after the method
of templated grain growth (TGG). Recent work by Hofer et al.[57]

has demonstrated the feasibility of fabricating textured alumina
by employing a lithography-based ceramic manufacturing pro-
cess. Figure 11a summarizes the process as follows: 1) A
photo-curable ceramic slurry (1) containing “platelets” (large
aspect ratio alumina particles) is filled into a transparent rotatable
vat (2) where a new film of slurry is distributed by a blade and the
vat rotation (3). The slurry height is set and the building platform
(4) is immersed into the slurry bed, leaving a gap, of a few
microns (e.g., �25 μm), between the vat bottom and the building
platform (or last printed layer (5)). The corresponding layer is
then polymerized by the light source (6) from beneath the vat.
This process is repeated for each layer until the final height of
the part (total number of layers) is reached. The alignment of
the platelets can be enhanced through the shear stresses gener-
ated in the gap between the vat bottom (2) and the doctor blade
(3), during the rotation of the vat. The 3D-printed samples can
then be thermally treated up to 430 °C to burn out the polymer,
and finally sintered at 1600 °C (heating rate of 5 °Cmin�1 and
dwell time of 6 h). The schematic in Figure 11b illustrates the
TGG process and the corresponding microstructure after
sintering. This study opens new possibilities in the fabrication
of complex 3D ceramic geometries with horizontally aligned
textured microstructure, aiming to tailor structural and/or func-
tional properties.[57]

Although much progress has been achieved in improving the
resistance to crack propagation in two–dimensional multilayer
composites, the potential of complex architectural design has
not been sufficiently exploited or explored. Combining the multi-
material approach with the microstructural design capabilities of
the stereolithographic 3D-printing technique may offer a new
pathway to designing complex parts with outstanding mechani-
cal strength and reliability. This is very important because spatial
control and composite “connectivity” (i.e., number of dimen-
sions in which each feature is self-connected) of the individual
layers of a composite may ultimately be the key to developing and
controlling useful and unique properties. As a matter of fact, the
layer-wise architecture of many hybrid planar devices offers
unique opportunities for tailoring the internal stress fields

Figure 9. Textured microstructure of an alumina ceramic after Templated
Grain Growth. Adapted with permission.[51] Copyright 2010, Elsevier.
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and microstructure to enhance “damage tolerance” in the
ceramic parts. For instance, by arranging layers using different
connectivity, more complex systems can be designed.[58] Both
structural and functional properties may be tailored within the
3D architecture, as a function of materials combination, micro-
structure orientation, etc. Distribution of embedded features in
particular locations in the structure (as in Figure 12) could help to
“trap” the propagation of cracks in distinct directions, thus
increasing the structural reliability of ceramic devices. The stack-
ing sequence of different layers within a plane would allow
tailoring the spatial distribution of internal embedded features
in a 3D architecture. The fabrication of ceramics combining
microstructure and architecture significantly extends the state
of the art in ceramic science and technology, and thus shall open
new possibilities for the design of novel ceramic devices with
significantly improved reliability.

4. Summary

The advent of additive manufacturing may open new paths to
designing ceramic components with more complex geometry
and enhanced structural performance. Tailored microstructures
with controlled grain boundaries engineered in a hierarchical
architecture hold the key to a new generation of “damage
tolerant” ceramics. For instance, microstructural features
(e.g., texture degree, tailored internal stresses, second phases,
interfaces) manufactured in a 3D-printed architecture may pro-
vide outstanding lifetime and reliability to both structural and
functional ceramic devices. However, it is still necessary to
develop accurate and adjustable testing methods to evaluate
the mechanical properties of 3D printed ceramic components.
Especially challenging is the assessment of failure on multima-
terials with intricate geometries, which may contain spatially

Figure 11. a) Schematic of the LCM technique and b) the template grain growth process. Adapted under the terms of the CC-BY license.[57] Copyright
2021, The Authors. Published by Elsevier.

Figure 10. a) Multilayer design combining outer alumina layers with embedded alumina–zirconia layers; b) Detail of the “strong” interface between both
alumina and alumina–zirconia materials; c) Multimaterial biaxial strength distribution compared to monolithic material. Adapted under the terms of the
CC-BY license.[56] Copyright 2021, The Authors. Published by Elsevier.
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resolved distinct microstructures. The standardization of testing
protocols for 3D printed ceramics is still in its infancy.
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A novel test specimen for strength testing of ceramics for 
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A B S T R A C T   

This paper introduces a new method for strength testing of additively manufactured ceramics, which was 
designed to take the characteristics of the manufacturing process into account. It was developed for time- and 
material efficient specimen fabrication and its design allows adjustment so that different surface orientations can 
be investigated. This gives insight into the influence of surface structures on the measured strength, which vary 
significantly depending on the surface orientation. 

Functional expressions for strength evaluation and the determination of effective volume are given and 
validated through Finite Element Analysis (FEA). The influence of surface structures on the measured strength is 
analyzed based on Weibull theory and FEA. Other influences on the accuracy of this testing method are discussed 
and quantified based on practical observations. The manufacturing process, testing setup and statistical evalu-
ation for specimens of three different configurations is outlined and the results and applicability of this method 
are discussed.   

1. Introduction 

In the past decades, ceramic materials have taken an increasingly 
prominent position in many technical fields, which can frequently be 
traced back to their unique combination of mechanical and functional 
properties. Some of their most relevant characteristics are a high hard-
ness, strength, and wear resistance. Whilst these properties are sought 
after in many applications, they severely limit the geometric complexity 
of ceramic components due to time- and cost intensive machining. 
Therefore, new shaping and manufacturing methods have been devel-
oped, aiming to increase component complexity while simultaneously 
reducing machining effort. Amongst the most promising methods to 
achieve this goal are the different additive manufacturing (AM) tech-
nologies. Through layered material deposition, AM has opened the path 
to near-net-shaped ceramic components with similar properties to 
conventionally manufactured ones. It should be noted that many 
different AM technologies exist, and all have their merits and limitations 
[1,2]. 

In order to optimize the manufacturing process, it is of utmost 
importance to accurately determine the component’s functional and 
mechanical properties. However, AM introduces a number of additional 
challenges that have to be considered for the determination of the 

component’s mechanical properties. Notable differences to regular bulk 
ceramics are the layered structure, the layers’ orientation in relation to 
the applied load or the influence of periodically structured surfaces. As 
an example, digital-light-processing (DLP) based vat photo-
polymerization enables the fabrication of a ceramic green body with 
high spatial resolutions. The starting point for the green body is a slurry 
consisting of ceramic-powder dispersed in a photo curable polymer. The 
light source is directed at the slurry with a plethora of small mirrors, 
whose size determine the maximum resolution of the process, as each of 
them represent a curable pixel [3–7]. As a consequence, aliasing effects 
occur if a structure of any incline is manufactured, as depicted in 
Fig. 1a). This effect causes the surface to exhibit unique wave patterns 
for each inclination, i.e. surface orientation, as shown in Fig. 1b). It is 
well known that surface defects can have a severe effect on the measured 
strength due to the higher geometry-factor compared to defects found 
within the bulk material [8]. Due to the orientation dependent surface 
structures, stress concentrations may form and amplify this effect. This 
results in changes of the measured strength in dependence of the surface 
orientation [9]. Moreover, recent work has shown that the strength of 
specimens manufactured with AM is significantly dependent on whether 
the specimen is loaded perpendicular or parallel to the building direc-
tion. It has to be noted that this difference can be eliminated if the 
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surface of both specimen types is machined [10,11]. However, 
machining of the final component is not always possible and would 
reduce the benefit gained through additive manufacturing and should 
therefore be avoided altogether. Apart from these two extreme orien-
tations, the mechanical properties of the intermittent orientations are of 
high interest as well. 

Ideally, all of this information can be gathered through a single 
testing method for a wide range of surface orientations. Then, it could be 
directly implemented into the design process of an additively manu-
factured component to increase material efficiency and component 
reliability. 

Testing methods such as four-point bending or biaxial testing 
methods have the upside of already being established and standardized 
[12,13]. One of their major downsides is the time- and material inten-
sive process of manufacturing each specimen. Especially with high res-
olution methods, such as DLP-based vat photopolymerization, the 
number of specimens that can be manufactured simultaneously is 
severely limited. Additionally, the high number of layers causes long 
manufacturing times. Furthermore, if specimens are not oriented par-
allel or perpendicular to the building direction, support structures are 
necessary, which further increases material consumption and decreases 
surface quality. Therefore, new testing methods have to be developed to 
accurately assess the mechanical properties with respect to the specifics 
of AM. 

Within this work, a new strength testing method for DLP-based vat 
photopolymerization based on a novel specimen geometry, as displayed 
in Fig. 2, is presented. An introduction to the test specimen itself, its 
stand-out characteristics, and the reasoning behind them is given. Based 
on practical observations, a thorough analysis of possible sources of 
error and their influence on the measured results is carried out. The 
possible sources of error are quantified by theoretical considerations, 
Monte-Carlo analysis, and Finite-Element-Analysis (FEA). Limits for the 
influence of surface structures on the measured strength are given 
through a numerical analysis based on Weibull-theory. The imple-
mentation of the new testing method with the use of widely available 
testing equipment is shown. Empirical results obtained with the new 
testing method are given and discussed in relation to AM-specific fea-
tures. Although this testing method was developed for DLP-based vat 
photopolymerization, its applicability to other manufacturing methods 
is conceivable. 

2. Theoretical considerations 

2.1. Specimen characteristics 

The development of this test specimen was performed at IKTS 

Dresden and is given in Refs. [14,15]. The basic elements of the test 
specimen are a baseplate and 48 cantilevers attached to the baseplate’s 
upper surface. Through increasing the thickness of the cantilevers to-
wards the baseplate, a strong support for loading is formed. The other 
end of the cantilevers will be loaded perpendicular to their longitudinal 
axis (see Fig. 3), resulting in a bending load. The specimen’s baseplate is 
formed by two solid plates with an arched structure in between, as 
shown in Fig. 3. 

In combination with the anchoring points at each end of the longi-
tudinal edge, a rigid base for clamping or mounting of the test specimen 
is formed. The angle of the upper solid plate can be adjusted to subse-
quently yield any desired surface orientation for the cantilevers attached 
to it. Within this work, three configurations of the test specimen have 
been investigated, as shown in Fig. 4. Fig. 4a) displays the reference 
specimen, which will be referred to as “Type A”. The inclination of the 
longitudinal axis of the cantilevers to the z-axis (see Fig. 3) is 0◦. The 
cantilevers in specimen “Type B1”, as shown in Fig. 4b), are angled at 
15◦ to the z-axis. The same angle is chosen for specimen “Type B2”, as 
shown in Fig. 4c), but with the cantilevers rotated along their longitu-
dinal axis by 180◦. Therefore, the tension loaded side is downskin for 
cantilevers of configuration B1 and upskin for configuration B2. 

The design of the cantilever is the same for each configuration of the 
test specimen. A detailed overview of its geometry is given in Fig. 5. A 
small bulge at the front of the cantilever ensures load introduction at the 
correct position. Due to the linear increase of the cross section in the 
marked region, a constant bending moment acts within this part of the 
cantilever. This section serves as the intended region of failure and the 
maximum tensile stress σmax at the specimen’s surface is given through 

σmax =
6P
kh2 (1) 

with P as the applied load and h as the thickness of the specimen 
within this region. The variable k describes the slope of the inclined 
flanks and is determined by 

k=
b2 − b1

L
= 2 tan

(α
2

)
(2) 

with L as the length and b1 & b2 as the width at the beginning and end 
of the region of constant bending moment. Another way to determine k 
is by the opening angle α of the cantilever’s flanks. 

In order to trace the broken cantilevers to their respective counter-
parts on the baseplate after testing, each cantilever is marked by two 
binary codes which indicate the row and the column of the cantilever on 
the baseplate [15]. This allows testing of all cantilevers on the specimen 
in one session without the need to demount the specimen or collect each 
broken cantilever directly after failure. 

To get a better understanding of the accuracy of the new testing 

Fig. 1. a) shows a schematic of the aliasing effect due to the pixel-based nature of the DLP-based vat photopolymerization process (incline from left to right: 0◦; 15◦; 
30◦ and 45◦). The same effect occurs in building direction as well due to the layerd manufacturing process. A side-by-side comparison of the surface structures due to 
differing surface orientations is given in b). The upper surface was manufactured at an incline of 45◦, the lower one at 15◦. 
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method, some aspects have been investigated with FEA. A model of the 
cantilever attached to a part of the baseplate was implemented in ANSYS 
Mechanical R.22.1 by ANSYS Inc. (Southpointe 2600 Ansys Drive, PA 
15317, Canonsburg, USA) through APDL (Ansys Parametric Design 
Language) by importing a CAD-file of the model. The model was meshed 
with 224868 SOLID186 elements (20-node elements), and 316950 

nodes and is shown in Fig. 6. A mesh convergence analysis was per-
formed to ensure the use of sufficiently small elements. 

2.2. Stress field validation 

Since eq. (1) was derived by utilizing Euler-Bernoulli beam theory, 

Fig. 2. Sintered test specimen in three different configurations. For size indication refer to Fig. 3.  

Fig. 3. Overview of the test specimen in side-view in a) and top-view in b), with its most significant dimensions given and the load direction along the y-axis.  

Fig. 4. Schematic for each variation of the test specimen, with the orientation of the cantilever highlighted by the black lines and the direction of the applied load P 
given in red. The 0◦ configuration is shown in a), the 15◦ configuration in b) and the rotated 15◦ configuration, i.e. 15◦-180, is shown in c). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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some effects such as transverse shear strains are not considered [16]. 
Even though these effects are minor for thin beams and small dis-
placements, a comparison between the FEA-derived stress field and the 
ideal stress field given by eq. (1) for the tensile surface was conducted. 
The results are shown in Fig. 7. Eq. (1) underestimates the stress in the 
central region by about 1.6% and overestimates the stress in the 
edge-regions by about 0.5%. Overall, excellent agreement between eq. 
(1) and FEA-results is achieved, validating the use of Euler-Bernoulli 
beam theory to calculate the maximum stress. 

2.3. Effective volume and surface 

An important consideration during design was material efficiency. 
More specifically, as much as possible of the manufactured volume 

should be stressed at or close to the maximum tensile stress. This effi-
ciency can be quantified by calculating the effective volume Veff or 
effective surface Seff in relation to the overall stressed volume V or sur-
face S of the specimen. For the region of constant bending moment, an 
analytical solution for Veff can be derived by solving the integral 

Veff =

∫∫∫

σ>0

[
σ(x, y, z)

σ∗

]m

dx dy dz (3) 

for the tensile regions of the stress field σ(x, y, z) normalized by an 
arbitrary tensile stress σ∗ with m as the Weibull-modulus [8,17]. If the 
maximum tensile stress in the specimen is used for σ∗, this then yields 

Veff =
hL(b1 + b2)

4(m + 1)
(4) 

for the effective volume, with h as the thickness of the region of 
maximum stress of the cantilever. The other symbols are as defined 
previously. If the small contribution of the side faces of the beam are 
neglected, the effective surface Seff is derived by the general relationship 
between Seff and Veff for a stress distribution induced through bending: 

Seff = Veff
2(m + 1)

h
=

L(b1 + b2)

2
(5) 

Fig. 8 shows the relative effective volume of the testing region, i.e. 
the ratio of Veff to the total stressed volume V, of one cantilever of the 
novel test specimen in comparison to traditional flexural strength tests 
[18]. Note that the volume of the supporting structures, i.e. the base 
plate, is not taken into account, as this material would also be needed to 
a similar extent for the overhang or support structures for the other tests. 
Due to the large region of constant maximum stress at the surface of the 
cantilever, a high material-efficiency compared to traditional 
bend-testing methods is achieved. If the total volume Vtot of the spec-
imen, i.e. including all supporting structures, is considered, the new 
specimen exhibits slightly higher efficiency than 3-point-bending bars. 

Similar to before, the functional expressions for the effective volume 

Fig. 5. Geometry of the cantilever, shown in top view in a) and side view in b). All measurements are given in mm. The region of constant bending moment is marked 
in green and the applied load P is marked in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 6. Meshed model of the cantilever with a small portion of the baseplate.  
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and surface (eq. (4) and (5)) were derived under the assumption of ideal 
conditions, i.e. a constant bending moment. In order to validate these 
expressions, the FEA-model from the previous section was utilized. The 
analytical and the numerical results in dependence of the Weibull 
modulus m are shown in Fig. 9. For m ≥ 10, good agreement between eq. 
(4) and FEA is achieved. Note that the numerical results were generated 
for the full cantilever (excluding the region in immediate proximity of 
load introduction) while the analytical solution describes only the re-
gion of constant bending moment. This explains the increasing error for 
low Weibull moduli (m < 5) due to the increasing contribution of low- 
stress regions to the effective volume. 

2.4. Influence of surface orientation 

To assess the influence of surface structures, an approach based on 
Weibull theory was considered [19]. Since these surface structures 
modify the tensile stress field, the effective sizes (Veff and Seff) will 
change as well. Based on the size-effect, a change in measured strength is 
to be expected [8]. To accurately represent these surface structures, 
which are on a sub-millimeter scale, the mesh of the FEA-model has to be 
several times smaller than in the previous model. By utilizing 
sub-modelling, the region of constant bending moment can be modelled 
and meshed individually. Due to the simpler geometry of the sub-model, 
a mapped mesh with element sizes on a sub-micrometer scale can be 
implemented [20,21]. The sub-model is meshed with 52404 SOLID186 
elements and 244031 nodes. With this sub-model, the observed periodic 
surface structures of the manufactured specimens are directly imple-
mented in FEA. A sinusoidal wave was deemed as the best representation 
of the measured data, with the amplitude and wavelength for each 
specimen type determined through surface characterization (see chapter 
4.3). These structures were subsequently implemented in the sub-model 
and compared to the case of an ideal flat surface structure, i.e. specimens 
of type A. The investigated results were the change in maximum tensile 
stress and the influence of the surface structures on the effective volume 
and surface. The maximum tensile stress of the flat specimen was chosen 
as the reference stress σ∗ for the calculation of Veff and Seff for the other 
specimen types. Utilizing the size effect described by Weibull theory [8], 
the expected measured strength of a specimen σB of an effective volume 
Veff,B is given by 

σB

σA
=

(
Veff ,A

Veff ,B

)1/m

(6) 

with Veff,A and σA as the known effective volume and strength, 
respectively. In the case presented here, the subscript B corresponds to 
the specimen with a structured surface and A corresponds to the flat 
specimen. The very same principle can be applied utilizing the effective 
surface instead of the effective volume. The ratio σB/σA for each spec-
imen type, based on either Veff or Seff, will be used to quantify this effect. 

3. Practical aspects 

All equations and investigations presented in the last section were 
derived or conducted under the assumption of ideal specimen geome-
tries, i.e. as given in Fig. 5. A comprehensive analysis of the first pro-
totypes revealed a number of deviations from the ideal geometry. On 
one hand, the general dimensions of the sintered cantilever did not 
correspond to those given in Fig. 5, even though a state-of-the-art printer 
(see chapter 4) was utilized. On the other hand, these dimensions fluc-
tuated for each cantilever, even within one test specimen. Therefore, the 
initial concept of measuring a single cantilever, which is representative 
for the whole specimen, had to be investigated and reworked. In the 
upcoming section, the observed deviations from the ideal specimen 

Fig. 7. Result of the stress field determined by FEA, σFEA, in relation to the constant stress at the surface σmax as given by eq. (1). The contours give the ratio 
σFEA/σmax. 

Fig. 8. Comparison of the relative effective volume for the novel test specimen, 
3-point-bending bars and 4-point bending bars. 

Fig. 9. Effective volume for the cantilever in dependence of the Weibull 
modulus calculated with either eq. (4) or FEA. 
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geometry and ideal loading situation will be discussed. 

3.1. Non-ideal geometry of the cantilevers 

The most relevant dimensions for stress evaluation are the thickness 
h and the opening angle α of the cantilevers, as given in eq. (1). Contrary 
to initial assumptions, these dimensions are different for each cantilever 
within each test specimen. Therefore, measuring the dimensions of just a 
single cantilever is not adequate to accurately determine the fracture 
stress for each cantilever. Other options are to either determine mean 
values from the measurements of several cantilevers or to use individual 
measurements from every cantilever. In order to determine a suitable 
number of measurements for the average values, a Monte-Carlo (MC) 
analysis was conducted with Mathematica 12.0 by Wolfram Research, 
Inc. (100 Trade Center Drive, Champaign IL 61820-7237, USA) [22,23]. 
More specifically, the characteristic strength σ0 and Weibull modulus m 
were determined with dimensions from either individual or average 
measurements. An overview of the principle of this analysis is given in 
Fig. 10. The dimensions for each specimen were randomly generated 
based on normal distributions, which are determined from measure-
ments of manufactured specimens. The final result of the MC analysis is 
the relative difference between the Weibull parameters determined with 
either individual or average dimensional measurements. 

3.2. Position of load introduction 

Another problem caused by the deviation from intended cantilever 
dimensions is a shift of the point of load introduction away from the 
ideal loading position. The cantilever is designed so that the extensions 
of the inclined flanks intersect at the point of load introduction. At this 
location, a small bulge is added to facilitate a well-defined load appli-
cation. This condition is needed so that the maximum stress in the 
intended region of failure can be determined by eq. (1). If the slope k of 
the edges, i.e. the opening angle α, changes, the intersection point does 
no longer coincide with the position of the bulge, as shown by the blue 
lines in Fig. 11. Instead, the intersection of the edges is shifted by a 
distance a, depending on α, while the load will still be applied at the 
bulge. A schematic of this effect is given in Fig. 11. 

The influence of a on the maximum stress σmax,shifted can be considered 
analytically and is given through 

σmax,shifted(x, a)=
3F(x − a)
h2x tan

( α
2

) (7) 

with x as the distance from the ideal loading point for α = 18◦ and the 
other symbols as defined before. The relative error in maximum stress in 
dependence of x and a is defined by 

Rel. error[%] =
σmax,shifted − σmax

σmax
(8) 

with σmax as defined in eq. (1). 

3.3. Shape of the cantilever cross-section 

Further deviations from the ideal specimen geometry are related to 
the cross-section of the cantilevers. Even directly after specimen fabri-
cation, the desired rectangular cross-section is not achieved by DLP- 
based vat photopolymerization, resulting in a barrel shaped cross- 
section instead. This effect is still evident after sintering, as shown in 
Fig. 12. Another reason for geometric deviations might be the subse-
quent thermal crosslinking of suspension that is still adhering because it 
has not been cleaned off. 

For the derivation of eq. (1), a rectangular cross-section with height h 
was assumed to derive a simple functional expression for the section 
modulus. If the maximum thickness of the cantilever in the center, hmax, 
is utilized as h, the section modulus will be overestimated. This will 
result in an underestimation of the measured strength of the cantilever. 

4. Experimental 

4.1. Specimen fabrication 

The test specimens were manufactured in-house from the alumina- 
based slurry LithaLox350 with the DLP-based vat photopolymerization 
printer CeraFab 7500, both produced by Lithoz GmbH (Mollardgasse 
85A, 1060 Vienna, Austria). The most relevant printing parameters are 
given in Table 1. 

All specimens were manufactured from the same slurry batch and 
excess slurry was removed with the solvent LithaSol20 produced by 
Lithoz GmbH. A total of 18 test specimens were manufactured, with 6 
specimens per specimen type. The size of the building platform allows 
manufacturing of two specimens side by side as a single batch. All 
specimens of the same type, i.e. A, B1 or B2, were treated simultaneously 
during thermal postprocessing and according to the procedure recom-
mended by Lithoz GmbH. Debinding was performed in a KU15/06/A 
furnace and sintering in a HTL10/17 furnace, both manufactured by 
ThermConcept (Friedrich-List-Strasse 17, 28309 Bremen, Germany). 
The maximum temperature during debinding was 430 ◦C, then the 
specimens were transferred into the sintering furnace. Sintering of the 
specimens was conducted at 1650 ◦C for 2 h. For the sintering process, 
special care was taken to guarantee an upright position of the cantilevers 
by tilting the angled specimens by 15◦. Thus, the deformation of canti-
levers due to their own weight was kept to a minimum. 

4.2. Strength testing 

The specimens were tested with the universal testing machine Z010 
by ZwickRoell GmbH & Co. KG (August-Nagel-Strasse 11, 89079 Ulm, 

Fig. 10. General Principle of the Monte-Carlo analysis.  
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Germany) equipped with a KAP-S load cell (maximum load = 200 N) by 
AST GmbH (Marschnerstrasse 26, 01307 Dresden, Germany) and oper-
ated through a control system by Doli Elektronik GmbH (Rudolf-Diesel- 
Strasse 3, 72525 Münsingen, Germany). Each specimen was mounted on 
an X–Y table by clamping two sides of the baseplate, as shown in Fig. 13. 
The cantilevers of each specimen were tested successively through a slim 
metal probe. The X–Y table enabled an adjustment of the specimen’s 
position in the X–Y plane (see Fig. 13), so that each cantilever was 
loaded perpendicular to its longitudinal axis at the intended point of 
load introduction (bulge). The cantilevers were loaded at a constant 
crosshead speed of 1 mm/min. 

Prior to strength analysis, the validity of each individual bending test 
was verified. This involves checking for unsteady loading curves, large 
geometric imperfections, and failures outside the region of constant 
bending moment. The relevant dimensions of each cantilever, i.e. the 
thickness hmax and the opening angle α, were determined on the 

remainders of the cantilevers on the baseplate (hmax) and on the frac-
tured cantilevers (α), respectively, with a SZH10 stereomicroscope by 
Olympus K.K. (2-3-1 Nishi-Shinjuku, 163-0914 Tokyo, Japan) within the 
Olympus Stream Motion Software 2.2. Strength results were obtained 
utilizing eq. (1). Statistical Weibull analysis was performed with the 
Maximum-Likelihood method in accordance with the standard EN-843- 
5 [24]. 

4.3. Surface characterization and fractography 

The surface structures of the cantilevers were characterized with a 
VK-X1000 Laser-Confocal-Microscope by Keyence Corporation (1-3-14 
Higashi-Nakajima, 533-8555 Osaka, Japan). 6 cantilevers of each type 

Fig. 11. Positional change of the ideal point of load introduction due to the change in opening angle α. Green: ideal situation, blue: situation for a cantilever with a 
larger than ideal flank opening angle. The load will always be applied at the green circle due to the bulge at this position. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 12. Fracture surface of a sintered cantilever of specimen type B1. Note that 
the observed cross-section deviates significantly from the assumed rectangular 
cross-section. 

Table 1 
Printing parameters utilized for specimen manufacturing.  

Layer thickness 
[μm] 

Lateral resolution 
[μm] 

DLP-Intensity 
[mW/cm2] 

DLP-Energy 
[mJ/cm2] 

25 40 100 150  

Fig. 13. Testing setup for a specimen of Type A (4), which is held in place by a 
clamping fixture (3) that is mounted on a X–Y table (5). The metal probe (2) is 
fixed to the load cell (1). This setup can be used for each specimen type without 
modification. 
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were examined, and an average surface structure was determined from 
60 line-measurements on each cantilever. Fracture surfaces were 
investigated using a JEOL K.K. (3-1-2 Musashino Akishima-Shi, 196- 
8558 Tokyo, Japan) NeoScope JCM-6000Plus. Prior to imaging, the 
cantilevers were coated with gold sputtering. 

5. Results 

5.1. Errors affecting single strength values 

To quantify the influence of the shift in loading position a on the 
measured strength, typical values of a were determined for five canti-
levers of each type of specimen. For specimens of type A, the average 
shift was a = − 158μm, with a = − 161μm and a = − 133μm for type B1 
and B2, respectively. With these values, an average relative error in 
maximum stress between +1.6% and +3.7% is expected, depending on 
the position of failure, as displayed in Fig. 14. Combining the largest 
single value for the shift in load introduction a = -281μm (measured on a 
specimen of type B1) with the shortest possible failure length x = 4.4 
mm would yield a maximum error of about +6.4%. 

Similarly, the influence of non-rectangular cross-sections is quanti-
fied by evaluating the shapes of ten cross-sections of each specimen type 
in detail. The section moment of the barrel shaped cross section Wbarrel 
was determined numerically with CATIA Version 5.19 (Dassault 
Systèmes, 78140 Vélizy-Villacoublay, France) and compared to the ideal 
section moment Wideal given through 

Wideal =
bmaxh2

max

6
(9) 

with bmax as the cross-section’s maximum width and hmax as defined 
before. The relative error between Wbarrel and Wideal is calculated with 

Rel. error[%] =
Wideal − Wbarrel

Wbarrel
(10) 

and the results are shown in Fig. 15. On average, the section moment 
will be overestimated by about 3.5%–5.7% if hmax and bmax are used for 
the calculation. This leads to the same underestimation for the 
maximum strength. 

5.2. Errors affecting the Weibull distribution 

The influence of utilizing average dimensions instead of individual 
dimensions on the Weibull evaluation is assessed through MC-analysis. 
The parameters of the underlying distributions for the dimensions hmax 
and α are given Table 2. They were determined with measurements 
taken from four specimens of the 0◦ configuration, with a minimum of 
47 cantilevers per specimen. The final result of the MC analysis is the 
relative difference between the Weibull parameters determined with 
individual or average dimensional measurements. 1000 randomized 
runs were conducted, and the results are displayed as distribution den-
sities in Fig. 16a)-c). 

Note that the extent of the deviation in σ0 does decrease with an 
increased number of measurements for the average dimensions, while 
the extent of the deviation in m does not change substantially. In gen-
eral, the center of the density distribution is at about +1% deviation in 
σ0 and − 12% deviation in m. Further investigations based on MC anal-
ysis have shown that the influence of Δh on the deviation of σ0 and m is 
significantly higher than that of Δα. 

5.3. Strength and orientation dependency 

The number of valid bending tests N, the characteristic strength σ0, 
and the Weibull modulus m as well as their respective 90% confidence 
intervals are given in Table 3 for each specimen. Table 4 gives the same 
parameters for a combined evaluation of multiple test specimens. This 
has only been performed if the confidence intervals of all test specimens 
included overlap. Fig. 17 displays the individual results of strength 
testing and for the combined evaluations sorted by each specimen type. 

It is evident that the characteristic strength of both 15◦ configura-
tions (Type B1 & B2) is lower than that of the 0◦-configuration (Type A). 
The difference in characteristic strength between specimens of Type B1 
and B2 is not statistically relevant as most of their confidence intervals 
overlap. The same is true for the Weibull modulus of each specimen 
type. Furthermore, significant differences between batches can be 
observed, e. g. specimens of batch two and three of Type A. An exem-
plary fracture surface for a specimen of Type B2 is given in Fig. 18. It is 
evident that the origin of failure is within the groove of the surface. This 
was found in the majority of observed cases. In the displayed case, the 

Fig. 14. Influence of the shift a in loading position on the maximum stress. The 
black through line represents the solution of eq. (8) for the upper limit (failures 
at the very beginning of the region of constant bending moment) of this effect, 
whereas the dashed black line indicates the solution for the lower limit (failures 
at the end of the region of constant bending moment). The green bar represents 
the range of typical average values of a for all three specimen types. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 

Fig. 15. Relative error between the barrel shaped cross-section and the ideal 
rectangular cross-section for each specimen type. 

Table 2 
Parameters used for the normal distributed values of the height hmax and the 
opening angle α for the Monte-Carlo analysis.  

Parameter Mean μ Standard deviation Δ 

Height hmax [mm] 1.13 0.017 
Opening angle α [− ] 17.76 0.72  
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Fig. 16. Results of the MC analysis. Each figure shows the density distribution of the relative difference in m and σ0 between individual and average dimension 
measurements for 1000 simulations. In a), 6 random dimensions are used to determine the average dimensions, 20 in b) and 30 in c). 

Table 3 
Results of strength testing for each specimen. N gives the number of valid bending tests, m and mub the biased and unbiased Weibull modulus, and σ0 the characteristic 
strength with lower and upper indicating the respective 90% confidence intervals. The designation starts with the specimen type, followed by the batch number and 
finally the specimen number within that batch.  

Type Designation N [− ] m [− ] mub [− ] mlower [− ] mupper [− ] σ0 [− ] σ0,lower [− ] σ0,upper [− ] 

A A.1.1 25 12.3 11.7 8.9 15.2 342 332 352 
A.1.2 19 12.4 11.5 8.5 15.8 352 340 365 
A.2.1 33 9.1 8.8 7.0 11.1 335 323 346 
A.2.2 29 10.7 10.2 8 13.1 336 326 348 
A.3.1 18 8.8 8.1 5.9 11.2 376 357 396 
A.3.2 32 11.5 11.0 8.7 13.9 364 354 375 

B1 B1.1.1 44 16.3 15.8 13.0 19.2 301 296 306 
B1.1.2 41 13.7 13.3 10.8 16.3 287 281 293 
B1.2.1 27 9.9 9.4 7.3 12.2 320 309 332 
B1.3.2 32 8 7.7 6.1 9.8 281 270 292 

B2 B2.1.1 47 13.6 13.2 10.9 15.9 323 317 330 
B2.1.2 47 12.3 11.9 9.9 14.5 296 290 302 
B2.2.2 29 15.9 15.2 11.8 19.5 317 311 324 
B2.3.1 44 11.5 11.2 9.2 13.6 333 325 341  

Table 4 
Results of the combined evaluation of strength testing results for specimens of type A.  

Designation N [− ] m [− ] mub [− ] mlower [− ] mupper [− ] σ0 [− ] σ0,lower [− ] σ0,upper [− ] 

A.1.1+ A.1.2 44 12.2 11.8 9.7 14.4 347 339 354 
A.2.1+ A.2.2 62 9.8 9.5 8.1 11.3 336 328 343 
A.3 (A.3.1+ A.3.2) 50 10.0 9.8 8.1 11.7 369 360 378 
A.1 & A.2 (A.1.1+ A.1.2 + A.2.1+ A.2.2) 106 10.6 10.4 9.2 11.9 340 335 346  

Fig. 17. a) shows the characteristic strength and b) shows the (unbiased) Weibull modulus of each tested specimen. The combined evaluation of multiple test 
specimens is displayed separately through the black open markers. The 90%-confidence intervals are given by the error bars. 
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failure is caused by a pore as shown in Fig. 18b). 
To assess the influence of surface orientation on the measured 

strength, the surface structures are investigated in detail. Surface char-
acterization has shown that specimens of Type A did not exhibit any 
surface structures except the regular surface roughness after sintering, 
which appeared on all specimen types. Therefore, this configuration will 
be considered as ideally flat for further comparison and discussions. 
Characterization of the surface structures of the other configurations 
revealed a periodical wave-like structure. This structure can be quanti-
fied with two parameters, the wavelength and the wave’s amplitude. 
The average values for both 15◦ configurations are given in Table 5. 

These structures were subsequently implemented in the sub-model 
and compared to the case of an ideal flat surface structure, i.e. speci-
mens of Type A. As shown in Fig. 19, the maximum stress at the surface 
increases significantly. The stress increase for each type of specimen is 
given in Table 6. The maximum stress increases by about 54% for Type 
B1 and 45% for Type B2, with the maximum stress located in the valleys 
of the grooves. These are thus preferred locations for fracture. 

Further results from FEA are the effective volume Veff and effective 
surface Seff. Each value was determined by utilizing the same normali-
zation stress σ∗, that is the maximum tensile stress of specimen Type A. 
Note that for specimens of Type B1, the structured surface increases the 
effective surface by more than a factor of ten, while the effective volume 
increases by approximately 60%. The ratio σB/σA gives the influence of 
the increase in effective sizes on the measured strength based on either 
Veff or Seff. These results are also shown in Table 6. 

6. Discussion 

Regarding each individual strength result, the shift in ideal loading 
position a causes an average overestimation of the applied stress from 
1.6% to 3.7%, which results in an underestimation of the materials’ 
strength by the same amount. The further the cantilevers fail from the 
point of load introduction, the smaller this effect becomes. In this work, 
the majority of cantilevers failed at a distance of 6mm–7mm from the 
point of load introduction, meaning that the deviation in stress is likely 
to be smaller than 2.7%. Therefore, this effect is rather small and a does 
not have to be evaluated for each specimen, but the authors recommend 
to check this issue on several random cantilevers. In a similar way, the 
deviating shape of the cross section causes a general underestimation of 
the materials strength by 8%–10% through an overestimation of the 
section modulus. In combination with the problem of the shift in loading 

position, an average underestimation of the material’s strength of about 
12% with an uncertainty of about ±4% remains, which is similar for all 
specimen types. This means that a direct comparison between different 
specimen types, i.e. different surface orientations, of the same material 
is feasible. If the absolute strength of the tested material is of high 
importance, both effects have to be checked and considered for strength 
evaluation. 

Due to the dimensional inconsistency, the influence of utilizing 
average values for the cantilever’s dimensions on the results of Weibull 
evaluation was investigated. Monte-Carlo analysis has shown that uti-
lizing average values will slightly shift both the average characteristic 
strength (+1%) and the average Weibull modulus (− 12%). While these 
values would still be acceptable, the possible deviation in m ranges from 
+10% to − 30%, which is too much to allow Weibull evaluation with 
average dimensions. Increasing the number of measurements to 

Fig. 18. SEM-image of a typical fracture surface of a 15◦–180◦ specimen in a) with the failure-causing defect depicted in b).  

Table 5 
Average quantification parameters of the surface structures for each specimen 
type.  

Parameter Type A (0◦) Type B1 (15◦) Type B2 (15◦–180◦) 

Amplitude [μm] – 12.8 10.7 
Wavelength [μm] – 122.6 123.3  

Fig. 19. Distribution of the first principal stress for an ideal specimen without 
surface structures (Type A, left) and with surface structures (Type B2, right). 
Both simulations were conducted for specimens with the same length and 
width. The height of the wavy specimen was chosen so that the zero line of the 
sinusoidal wave is the same as the height of the ideal specimen, which gives the 
same specimen volume. 

Table 6 
Relative increase of the maximum tensile stress σmax, effective volume Veff and 
effective surface Seff for each specimen type as well as the expected change in the 
measured strength σB/σA due to the change in either Veff or Seff for m = 10.  

Parameter Flat surface Type A (0◦) Type B1 (15◦) Type B2 (15◦–180◦) 

σmax 1 1.54 1.45 
Veff 1 1.62 1.39 
Seff 1 12.82 8.45 
σB/σA (Veff) 1 0.95 0.97 
σB/σA (Seff) 1 0.78 0.8  
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determine the average dimensions does not decrease the possible vari-
ation in Weibull modulus. Therefore, individual measurements of both 
the specimen’s thickness and the opening angle for each cantilever are 
recommended to neglect this effect. However, the aforementioned un-
certainty of ±4% for each individual strength result limits the maximum 
detectable scatter of the material’s strength. With this uncertainty, a 
precise determination of the material’s Weibull modulus m is possible 
for m ≤ 20 [23]. 

The analysis of the influence of surface structures on the measured 
strength shows that the increase in effective surface from a flat to a 
structured specimen is notably larger than in effective volume. This is 
due to the surface structures mainly affecting the stress distribution at 
the surface and the first 10 μm of the bulk material. A long-range in-
fluence on the stress distribution in the bulk material was not detected. 
This forms a strong initial stress gradient from the increased surface 
stress towards the neutral plane. Seff is only dependent on the stress in 
the edge fiber, where the stress increases the most. Additionally, the 
regions of increased stress make up a significant portion of the total 
surface, hence why a stress increase of 54% (to the power of m = 10) 
results in an extreme increase in Seff. For Veff, the regions of increased 
stress only make up a very small part of the total volume, which is why 
its increase is much smaller compared to that of Seff. Usually, the defects 
found at the origin of failure are either surface defects (for which Seff is 
relevant) or volume defects (for which Veff is relevant). Therefore, these 
results give the upper and lower limits for the influence of the observed 
surface structures, with σB/σA as an estimation of the change in 
measured strength. The actual decrease in measured strength depends 
on whether the defects are more akin to surface- or volume defects. 

The strength results obtained in this work show a significant drop-off 
in strength from the 0◦ configuration to the other configurations. This 
decrease is in good agreement with the expected results based on the 
concept of effective volume or surface and previous work [11,19]. It is 
evident that the influence of surface structures on the measured strength 
should not be neglected. This observation is further supported by the 
results of fractographic analysis, which shows that a high number of 
fractures originated in the grooves of the surface structures. 

Despite these uncertainties, this novel testing method provides a 
number of promising advantages over common testing methods such as 
uniaxial and biaxial bending. First and foremost, it allows the fabrica-
tion of 96 test specimens, i.e. cantilevers, with a single manufacturing 
batch. This is well enough to perform a well-founded Weibull analysis on 
each specimen. Therefore, two different configurations could be man-
ufactured within one batch, which further increases the time- and ma-
terial efficiency of this method. Additionally, since all cantilevers are 
manufactured within one batch, it is possible to make out differences 
between individual batches and thermal treatments. Other methods 
often require a number of batches to fabricate the necessary number of 
specimens for statistical evaluation, which adds an additional layer of 
variation to those methods. This variation may stem from differences in 
specimen handling and cleaning or, if not handled properly, from 
modification of the slurry. The observed deviations from the ideal 
specimen geometry are the most important sources of error. If the non- 
rectangular cross-section of the cantilevers is not taken into account, a 
direct comparison of specimens manufactured from the same material is 
still possible. However, this error is too large to accurately determine the 
absolute characteristic strength and Weibull modulus of the utilized 
material. The other errors, which also affect the individual strength 
results, can be minimized by increasing the reproducibility during 
manufacturing. As an example, the specimens tested in this work were 
individually cleaned by hand, with low variations in the amount of 
solvent used. The solvent interacts with the specimen’s surface and 
could therefore easily influence the measured results. Similarly, speci-
mens were successively manufactured throughout three to five days 
without a complete exchange of slurry. During this time, interaction 
with the environment or contamination of the slurry might have 
occurred, changing the properties of the source material. 

Taking these manufacturing-related effects into account, the next 
step in the development of this testing method would be a higher degree 
of automation. This includes procedures such as 3D-scanning the whole 
specimen, from which the cantilevers dimensions are evaluated auto-
matically. Furthermore, a round robin with individual manufacturing 
and controlled testing could aid in determining the most important areas 
of improvement. 

7. Summary 

In this work, a new method for strength testing of additively man-
ufactured materials is presented. The testing method is based on a novel 
specimen, which was designed to take the characteristics of additive 
manufacturing into account. On one hand, it was developed for time- 
and material efficient fabrication. Each specimen consists of a base plate 
and 48 cantilevers attached to it, thus generating enough data to 
perform statistical analysis. A large effective volume in comparison to 
well-known strength testing methods further contributes to the speci-
men’s efficiency. On the other hand, the specimen can easily be adjusted 
so that different surface orientations can be investigated. This gives 
insight into the influence of surface structures on the measured strength, 
which vary significantly depending on the surface orientation. 

Functional expressions for strength evaluation and the determination 
of effective volume and surface are given and validated with Finite 
Element Analysis (FEA). The influence of surface structures on the 
measured strength is analyzed based on Weibull theory and FEA. Other 
possible influences on the accuracy of this testing method are discussed 
through analytical considerations, Monte-Carlo analysis, and FEA. These 
effects are quantified based on practical observations and their impact is 
discussed. An example for a possible testing fixture is shown and 
demonstrated for multiple specimen configurations. More specifically, a 
minimum of four specimens for three different configurations were 
fabricated and tested. The results are evaluated statistically through 
Weibull theory. The observed influence of surface structures on the 
measured strength is in good agreement with the predictions based on 
FEA. 

Overall, the deviation of the dimensions of the manufactured speci-
mens from the ideal geometry limits the achievable accuracy of this 
testing method for strength determination. This effect can be minimized 
if the dimensions for each tested cantilever are individually recorded 
and if the fabrication process is streamlined and reproducibility is 
increased. However, the testing method can depict differences between 
different surface orientations and between specimens from each 
manufacturing batch. The latter is especially important for additive 
manufacturing, as regular testing methods such as uniaxial four-point 
bending and biaxial bending often require multiple batches to produce 
the necessary number of specimens for statistical analysis. 
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bstract

he Newman and Raju formula for the stress intensity factor of a semi-elliptical surface crack loaded in uniaxial tension or in bending has been
eveloped about 30 years ago using an FE-analysis for several geometric parameters and fitting an empirical equation to the data points. The
oisson’s ratio analyzed was 0.3.
In this paper a reassessment of the Newman and Raju formula is made, where all relevant geometric parameters of crack and specimen and the

oisson’s ratio are considered. The deviations of the old formula from the new results are up to 21%, if the full range of Poisson’s ratio is taken

nto account. Furthermore the influence of the crack-surface intersection angle is discussed.

The results of this work are important for more precise fracture toughness measurements in brittle materials and give a practical guidance for
ppropriate specimen preparation for fracture toughness measurements, which is also considered here.

 2012 Elsevier Ltd. All rights reserved.
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.  Introduction

The majority of standardized fracture toughness testing meth-
ds for ceramics use bending beams, containing a crack as sharp
s possible and a well-defined geometry. The fracture tough-
ess Kc is determined by application of the Griffith/Irwin failure
riterion:

Ic ≥  K  =  σY
√

aπ  (1)

Ic is the mode I fracture toughness, K  is the stress intensity

actor (SIF), σ is a representative stress in the uncracked spec-
men (e.g. stress at the outer fibre at fracture), a  the size of the
rack and Y  is a geometric factor, which is determined by the
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eometry of the specimen, the crack shape and the course of
he stress field. For details see standard text books on fracture

echanics or on mechanical properties of ceramics.1–3 Informa-
ion on geometric factors for typical loading cases and standard
pecimen geometries can be found in literature.4

The Newman and Raju formula (NRF) is commonly used
n the “Surface Crack in Flexure” (SCF)-method to deter-

ine fracture toughness in brittle materials. For materials with
he Poisson’s ratio ν =  0.3, Newman and Raju (NR) 5 have
eveloped a parameterized and generalized solution (i.e. fitting
unction) of the geometric factor Y  = Y  (a,c,t,b,φ) of a semi-
lliptical surface crack in the stress field of a uniaxial tensile
oaded or bended bar (thickness t and width 2b). Therefore, Y
epends on the geometry of the crack (crack width 2c, crack
epth a), the bar’s cross-section and on the position at the crack
ront given by the crack angle φ, see Fig. 1.

Of course, fracture is initiated at the position the largest

IF along the crack front. But there exists some shortcomings
hich may conflict the exact determination of SIF and fracture

oughness: Thirty years ago computer capacity was very limited
hich made a relatively coarse mesh necessary. Therefore the

http://www.sciencedirect.com/science/journal/09552219
dx.doi.org/10.1016/j.jeurceramsoc.2012.01.011
mailto:stefan.strobl@mcl.at
http://www.isfk.at/
http://www.mcl.at/
dx.doi.org/10.1016/j.jeurceramsoc.2012.01.011
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Fig. 1. (a) Schematic of a pre-cracked beam (loaded by normal force F or
moment M) and (b) detail of the semi-elliptical crack assumed for the NRF.
The crack width 2c at the surface and the crack depth a are indicated as well as
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tion. Eq. (2) shows that for the crack shape ratio with the highest
he points A (φ = 0◦) and C (φ = 90◦), where the geometric factor Y can reach a
aximum in the NRF.

recision of the analysis was not very high. (NR) specified their
E accuracy with ±3% compared to the analytical solution in

erms of a completely embedded circular crack.6,7

In addition, to keep the fitting function simple, it cannot be
ery precise for all possible values of geometric parameters. NR
laim that their provided fitting function has a maximum error
f ±5% (related to the maximum of Y  along the crack front)
ccording to their FE results.5

Secondly, the analysis was only made for materials having
he Poisson’s ratio v  = 0.3 which is the typical value of steels.
his is also a good approximation for many engineering material
lasses. However, there are also many other materials – e.g.
eramics for structural applications or hard coatings – with a
ignificant deviation regarding this value.2,8–10: Diamond (0.07),
itanium diboride (0.1), zirconium diboride (0.14), glass and
ilicon carbide (0.16), hard metal and alumina (0.2), titan (0.36)
r PMMA (0.4). Because even structural ceramics can deviate
ubstantially, the Poisson’s ratio should be considered in the data

valuation. In the literature, some calculations for an individual
et of parameters can be found, e.g. by Isida et al. 4,11 in 1983,
here for a special crack geometry data for several different

a
s
f

ramic Society 32 (2012) 1491–1501

oisson’s ratios are tabulated. But there is no general solution
vailable.

Finally, the geometry of surface cracks used for fracture
oughness measurements is – in general – not semi elliptical
the crack-surface intersection angle differs from 90◦) which
ay result in additional uncertainties. This topic is treated in

2–15 in detail and addressed in.16,17 A specific example has been
tudied by Fett.18 For a crack, with the shape of circle segment,
he differences to the semi-elliptical crack in the geometric fac-
ors are less than: ±7% in point A and less than ±2% in point

 (see Fig. 1) for cracks having the same aspect ratio a/c. These
esults also are made for a specific case and their accuracy is
nknown. The influence of crack-surface intersection angle will
e investigated in detail in this work.

For these reasons, a reassessment of the NRF and a new fitting
quation for the SIF is made in this paper. Semi elliptical cracks
nd cracks having a geometry, which is more relevant for fracture
oughness testing of brittle materials, are considered. All results
nd the new fitting equation for the SIF are given at our home
age (www.isfk.at/de/1006/) as an interactive WebMathematica
ool. It is shown that – for realistic testing geometries – the NRF

ay result in huge deviations of the correct value in point A (up
o 40% for v  = 0.3).

Another aspect in SCF testing arises from the fact that –
epending on the crack geometry and the Poisson’s ratio – frac-
ure can start at the deepest position of the crack (point A) or at
ts intersection with the specimen’s surface (point C). The SCF
nalysis is valid for experiments with fracture origins at point
, while experiments with origins at point C are invalid for sev-

ral reasons. In the last part of this paper parameter regimes are
efined, where valid SCF-tests with origins at point A can be
uarantied.

. Methodology  –  FE  model  and  parameters

The geometric factor Y  for a surface crack having the geom-
try of an ellipse segment was determined in a parametric study
or tension and bending loading (each 3125 FE runs). The results
ere used to define an interpolation function for Y. The consid-

red parameter intervals are given in Table 1.
Characteristic parameters in our model are the crack depth

 and its length at the surface c. Note that the crack intersects
he surface with the angle χ  (see Fig. 2), since the crack has the
hape of a segment. The midpoint of the (truncated) ellipse is
t ahead of the surface. It holds:

0 = a(a cos(−χ) +  c sin(−χ))

2a  cos(−χ) +  c  sin(−χ)
(2)

nd

t =  a0 −  a  (3)

The other semi-axis c0 can be derived using the ellipse equa-
nalyzed axis ratio (a/c  =  1.2) the intersection angle of the
emi-ellipse segment is χ  ≥  70◦. This determines the lower limit
or the parametric FE-study. Lower angles, which were possibly

http://www.isfk.at/de/1006/
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Table 1
Parameter and considered parameter intervals for the realized FE study. For each parameter five equidistant design points have been used. For a/t the values 0.01,
0.05, 0.1, 0.3 and 0.5 have been chosen.

Dimensionless parameter name Symbol Lower limit Upper limit

Rel. crack depth a/t 0.01 0.5
Crack aspect ratio a/c 0.4 1.2
Rel. crack width c/b  0.1 0.5
Poisson’s ratio ν 0 0.4
Crack-surface intersection angle χ 70◦ 110◦

Fig. 2. Geometry of a surface crack (depth a, width 2c) having the shape of an
ellipse segment. Also the intersection angle χ is defined. The semi axes of the
e
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Fig. 3. Three examples of crack geometries and meshing details near the crack
front. (a) a/c = 1 and χ = 90◦, (b) a/c = 0.5 and χ = 50◦, (c) a/c = 1.2 and
χ  = 110◦.
llipse are: a0, c0.

eeded, have been extrapolated and checked by some specific
E runs.

The computation of stress distribution in the specimen was
erformed in ANSYS Mechanical APDL Version 13.0. The
uarter-model of the bar includes about 16,000 to 60,000 brick-
lements (i.e. SOLID186).

The J-Integral method19,20 – with quarter node collapsed
rack tip elements (CTE) – was used to calculate the SIF.
his well-implemented state-of-the-art method provides accu-

ate results (the error is less than 0.01% compared to the
nalytical solution in the case of a fully embedded circular crack
n pure tension).19 Due to the CTE and the resulting ansatz
unctions, the crack tip singularity exponent is given with −0.5.
enerally, this exponent deviates from this value if there is some

nfluence of boundaries (e.g. at the free surface or near inter-
aces). So the SIF results are the “best fit” of the actual stress
eld with K  as (FE internal) fit coefficient.

For all crack sizes, 30 elements along the crack front have
een used and their alignment around the crack tip was equal.
his was realized with an all hexahedron-meshed parallelepiped.
rack mesh details for different crack geometries are pointed out

n Fig. 3, where three special cases are given exemplarily. The
IF was evaluated at all 61 nodes (including mid nodes) along

he crack front.
In every case, singularity elements (CTE) along the crack

ront and a plain strain assumption (effective Young’s mod-
lus E∗ =  E/(1 −  ν2)) were deployed for the determination
f the stress intensity, more precisely with the formulation

 = √
E∗ · J .

19,21
This approach is commonly accepted (e.g. see ), although
enerally plain stress state should occur at the surface. However,
úñiga et al. 22 claim that the stress distribution at the surface can
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ignificantly deviate from the plain stress assumption in a 3D-
eometry with crack. In addition, since the resulting K-values
re always higher for plain strain, the calculation of the SIF
t the region very close to the surface is a good approxima-
ion regarding safety aspects (e.g. for fatigue or proof of safety
alculations).

Correlated to Eq. (1) the geometric factor along the crack
ront can be expressed with the related K, the nominal crack
pening stress σ (i.e. 1 MPa) and the crack depth a (Note: Y

lways refers to the crack depth a, what means that a  is taken as
he typical defect size).

. Results

The FE results and their tendencies behave, of course, similar
o the generalized solution of NR.5 For this reason this work has

 focus on the main differences to the NRF and on the influence
f the Poisson’s ratio and the crack-surface interaction angle on
he geometric factor. Since these effects are more pronounced
or bending than for uniaxial tension loading all further results
re plotted for χ  =  90◦, c/b=0.1 and the bending case, if not
pecified else wise.

In Fig. 4 the current FE results (lines) are shown as a function
f φ  (the ratio a/t  is parameter of the curves) for a semi-circular
rack and are compared with the fitting solution of NR (plotted
s points). The values of a/t  = 0 are extrapolated (the last design
oint is at 0.01) and represent an infinitesimal small crack. This
lso eases the comparison with other publications, e.g. NR.

As expected, both results are nearly identical for ν  = 0.3
Fig. 4a). Obvious deviations just occur for higher relative crack
izes as well as around φ  �  85◦. The last observation results
rom the facts, that the free surface influences the SIF (see also
ection 4.3) and that there was no design point (i.e. node) in the
alculation of NR. In other words their mesh was too coarse for
uch a detailed analysis.6,7 For φ  = 90◦ the agreement is good,
ince a design point for NR is there.

For ν  = 0 (see Fig. 4b) the results consequently shift com-
ared to the NRF. This indicates that the Poisson’s ratio has a
ignificant influence on SIF. On the other hand there is no change
n course of Y  in the vicinity of φ  = 90◦. The effect of the free
urface is reduced since the Poisson’s ratio decreases to zero.

In Fig. 4 two “exact” reference data points of Y  for ν =  0
nd 0.3 published by Isida et al. 11 are marked. They showed
hat their method has an error less than 0.1%, which can also
e shown with the method by Fett23. The results are tabled for
n infinite plate (pure tension loading). Their obtained values of
.659 and 0.036, respectively, are in excellent agreement with
he present work: for ν  =  0.3 (see Fig. 4a) the extrapolated val-
es of the interpolation function are 0.660 (tension) and 0.659
bending). For ν  =  0 (see Fig. 4b) they are 0.635 (tension) and
.636 (bending). Of course both loading cases should be equal
n an infinite plate.

For shallow cracks (a/c  = 0.4) an analogue comparison is

llustrated in Fig. 5. The results in point A and C match the
RF quite good for ν = 0.3 (Fig. 5a). Large deviations arise

ust in between these points, especially for small relative crack
izes (max. 12% at φ  ≈  60◦). The results obtained for ν  = 0

d
r
t
u

ramic Society 32 (2012) 1491–1501

Fig. 5b) confirm the same down-shifting trend as for semi-
ircular cracks. This results in high average deviations.

In the following, the influence of the Poisson’s ratio is
nvestigated in more detail. As anticipated, the curves respect-
ng semi-circles and ν = 0.3 correlate well with the fit of NR
Fig. 6a). Inside the specimen the geometric factor increases
much stronger than linear) with increasing Poisson’s ratio, but
ear the surface the effect is contrary; Y  declines for higher
oisson’s ratios. The same non linear trends can be observed for
mall crack shape ratios a/c, see Fig. 6b.

The influence of the crack-surface intersection angle χ  on the
IF is very pronounced (along the whole crack front; see Fig. 7).
n both cases, semicircular and shallow crack, χ  influences the
IF even at the deepest point of the crack (A), although the char-
cteristic crack parameters a  and c  (only these both are normally
sed to characterise the crack) are kept constant and the crack
ront has almost the same curvature in point A. Here the SIF
nd Y, respectively, decline with decreasing χ. In point C the
nfluence of χ  is very strong compared with point A. The mag-
itude of this effect has to be observed skeptically. For instance,
he J-Integral evaluation is valid for such a vertex point with
n acute angle if there is no material perpendicular to the crack
ront. This will not be discussed in detail here.

In the case of a/c=1 (Fig. 7a), the value for Y (χ  =  90◦) differs
rom Y (χ  =  70◦) in point A by about 10%, which is a notice-
ble effect and has also a direct impact on fracture toughness
easurements. For a/c  = 0.4 (see Fig. 7b), this influence is sig-

ificantly lower with deviations of about 1.5% than for narrow
rack (the same trend can be found in the uncertainty analysis
n 17).

. Data  fitting  and  discussion

To determine a generalized solution for Y  =
(a/c, a/t,  c/b,  φ,  ν,  χ) all its six parameters
ave to be regarded. Additionally, a fitting function derived
rom the data interpolation has to be accurate and easy to
andle at the same time. NR fitted their results by a mainly
ngineering ansatz function and an empirical approach and the
tting formula is “easy to apply in practice”. To begin with, the
RF is analyzed in terms of accuracy and expandability for the
ew parameters ν  and χ.

.1. Comparison  of  the  results  with  the  NRF

NR claim that their provided fitting function has a maximum
rror of ±5% 5 according to their FE results and their indicated
tting error always is related to the maximum along the crack
ront. In addition they specified their FE accuracy with ±3%
ompared to the analytical solution in terms of a completely
mbedded circular crack.6,7 Because they used a relative coarse
esh, especially along the crack front, some detail got lost near

he free surface. Due to this point and considering the error by

ata fitting – it is clear why their solution deviates from the
esults in this work. The maximum fitting error with respect
o the current position along the crack front probably increases
p to 10%. By adding other terms to fit two more parameters
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Fig. 4. Our FE results (lines) compared with the NRF (points) in the case of a semi-circular crack (a/c=1) along the crack front. Parameter in the curves is the relative
crack depth a/t. (a) ν = 0.3 and (b) ν = 0.
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Fig. 5. Our FE results (lines) compared with the NRF (points) in the case of a shallow semi-elliptical crack (a/c = 0.4) along the crack front. Parameter in the curves
is the relative crack depth a/t. (a) ν = 0.3 and (b) ν = 0.
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ig. 6. Influence on Y of the Poisson’s ratio ν plotted as parameter against φ (a/t =
rom ν. (a) a/c = 1 and (b) a/c = 0.4.

ould further increase the error and let the dimension of the
tting function blow up.

To determine the accuracy of the given NRF two examples

or bending with ν  = 0.3, c/b  = 0.1 and χ  = 90◦ are illustrated
n Fig. 8. The NR solution within the intersecting parame-
er intervals fits the actual FE results quite good in point A

2
A
a

he lines represent the actual FE study; the solution of NR (points) is independent

deviation maximum: 7.7%, average: 1.5%) and in point C
deviation maximum: 8.2%, average: 2.4%). But between those
oints, the maximum deviation rises up to about 13% (mean:

.6%) – this worst (and relevant) case is given in Fig. 8a.
ssuming other relative crack depths (see Fig. 8b) the general

greement is better, but the deviation is also for point A about
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Fig. 7. Influence of the crack-surface interaction angle χ plotted as parame

0% (a/c  = 1.2 and φ  = 0◦). For tension the deviations are about
he half of the bending case.

Because of these differences in Y, a new fitting function
as created instead of additional (correction) term for NRF for

 /=  0.3 and χ  /=  90◦.

.2.  Practical  aspects  in  terms  of  fracture  toughness
valuation with  the  SCF-method

The surface crack in flexure (SCF) method is frequently used
o determine the fracture toughness of ceramics.5,24,25 A Knoop
ardness indent is made on the tensile loaded side of a rectan-
ular bending bar. The indent causes some plastic deformation
round the intended zone, which also causes unknown inter-
al stresses. They are relaxed by removing the plastic deformed
aterial by grinding-off the surface layer of the specimen’s sur-

ace which contains the plastically deformed zone. Thus, a crack
ith the shape of an ellipse section is introduced in the sur-

ace (Fig. 2). Size and geometry of the surface crack has to
e determined by fractographic means (which may need some

ractographic experience).

A representative example of a crack after grinding – used for
he SCF-method – is illustrated in Fig. 9 for a silicon carbide
eramic. The crack is made visible using fluorescent penetration
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ig. 8. Comparison of the solution for Y in bending of NR (points) and the actual FE 

he crack shape a/c. a) a/t=0 and b) a/t=0.5.
ainst φ with a/t = 0 and ν = 0. Subfigure (a) shows a/c = 1 and (b) a/c = 0.4.

ye. All needed parameters (a,  c and χ) can easily be determined
ith a commercial light microscope. Note that – in the actual

ase – the crack surface interaction angle χ  is about 70◦.
All assumed parameter intervals for this analysis (see Table 1)

re realistic in terms of the practical feasibility of the SCF-
ethod. The limits of the crack geometry parameter are mainly

esignated through a qualified indentation load (i.e. HK10) and
oncerning commercial structural ceramics.

The intersection angle χ  was chosen as an input parameter
instead of the grinding depth �t) because it is much easier to
etermine than �t. Concerning that the SCF-method will be an
mportant application area of the SIF of such type of surface
racks the approaches for fitting are focusing on pure bending
s the main loading case.

.3. Simplified  approach  for  data  fitting

In general, the stress singularity at the free surface (at point C)
s not proportional to r−1/2 (with r as the distance from the crack
ip) according to Fett,18 Hutar 26–28 and deMatos.21 Strictly spo-

en, the K-concept is therefore not valid at point C and it can only
e used as a rough approximation at the vertex point. This is even
ore important including the effect of the Poisson’s ratio and

he results also depend on the crack-surface intersection angle χ.
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results (lines) plotted against the crack front angle φ Parameter in the curves is
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ig. 9. Typical example of a Knoop crack in silicon carbide after removal of the
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his twilight zone can be avoided by generating crack geome-
ries, where YA(φ  =  0◦) reaches its maximum value along the
rack front. This guaranties the validity of fracture toughness
valuation for each specimen.

The value of the geometric function YA in the case of bend-
ng can be approximated by the fitting function in Eq. (4). The

aximum fitting error is less than 2.7% and the average fitting
rror is about 0.4% (standard deviation: 0.3%). The geometric
actor is:
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Additional terms to approximate the geometric factor along
he whole crack front are given in Appendix A. The solution for
he case of pure tension is treated in Appendix B.

To quantify the importance of consideration of the new
arameters, the NRF (ν  = 0.3 and χ  = 90◦) and the new fit accord-
ng to Eq. (4) is compared with the results of the actual FE
tudy (interpolation) within the parameter range (0 ≤  ν  ≤  0.4 and
0◦ ≤  χ  = 90◦) in the case of pure bending, see Table 2. For all
ther parameters the intersecting intervals have been chosen.

At this point it should clearly be said that the NRF was made
or χ  = 90◦ and ν  = 0.3. But even for ν = 0.3 and χ  = 90◦ the devi-
tion rises up to 11% for both points A and C. In the worst case
he deviations are about 50% which occur at ν  = 0 and χ = 70◦

n both points. These extremely high deviations regarding the
ctual FE results are minor relevant for the SCF-method because
hey occur in point A only for almost semi-circular cracks for
hich YA is the minimum along the whole crack front.
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Table 2
Maximum fitting error of the NRF and the fit according to Eq. (4) regarding the FE results (interpolation).

Point A Point C Complete crack front

max. mean max. mean max. mean

NRF
70◦ ≤ χ ≤ 90◦ 0 ≤ ν ≤ 0.4 47.8% 7.7% 50.5% 14.8% 50.5% 5.0%
70◦ ≤ χ ≤ 90◦ ν = 0.3 39.5% 5.4% 41.2% 15.8% 41.2% 4.4%
χ = 90◦ 0 ≤ ν ≤ 0.4 18.9% 4.2% 11.7% 4.4% 20.7% 4.0%
χ = 90◦ ν = 0.3 11.4% 1.6% 10.9% 2.8% 13.8% 2.7%

Actual fit Eq. (4)
70◦ ≤ χ ≤ 90◦ 0 ≤ ν ≤ 0.4 2.7% 0.4% 38.6% 11.1% 38.6% 4.0%
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The actual formula, given in Eq. (4), has a good agreement
max. 2.7% and 0.4% averaged) in point A in the complete field
f the parameters which was the main purpose of this fit. With
he assumption of χ  = 90◦ the geometric factor can be calculated
ith a maximum deviation of 6.9% (mean: 1%) that is a tolerable
tting error. It is about the half compared to the NRF.

Considering Table 2 makes obvious that the new fitting func-
ion provides in every case a higher accuracy than the NRF even
ur equation is of similar length.

.4. Evaluation  of  the  minimum  grinding  depth

To get a valid KIc value also the ASTM standard for the SCF-
ethod 24 instructs to use shallow crack shapes with YA>  YC, i.e.

he maximum of Y  should be positioned at point A. In practice,
he easiest way to realize this, is to increase the grinding depth
t. But where is the critical grinding depth? It is not satisfying

nd a waste of time to see after testing and data evaluation that
his sample has to be rejected. So what do one know about the
pecimen after indentation (before grinding): the original crack
idth 2c0 at the surface, the original thickness t0 of the bar and

n idea of the original crack shape a0/c0 (maybe approximated
ith a0/c0 =  1, from literature or determined in a pretest for the
iven material).
As can be seen from the results, YA as well as the maximum
long the crack front YMax depend on the χ  and �. The Poisson’s
atio is given for a specific material and χ  is predetermined by the
rinding depth, if you do serial sectioning to find the equilibrium p
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epth, since YA=YMax. With this in mind one can calculate the
ritical grinding depth �t  related to c0 with the FE results under
ension and bending, that is illustrated in Fig. 10.

For ease of use, the relative grinding depth �t/c0 can be
pproximated for bending Eq. (9) and tension Eq. (10). The
aximum fitting error for both solutions is less than 1.35% of

0. This approximation takes also the Poisson’s ratio as well
s the initial crack shapes in the range 0.8 ≤  a0/c0 ≤  1.2 into
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ommercial silicon carbide was chosen with ν  =  0.16. A stan-
ard 4-point bending beam (3 × 4 × 50 mm3) was produced to
arry out a fracture toughness test with the SCF-method with an
ndenter load of 4 kg (Knoop). After indentation, a surface layer
f about 75 �m was removed (60 �m are suggested by Eq. (9)
or a0/c0 =  1) to initiate the fracture at the deepest point of the
rack. The specimen used for testing had the following geome-
ry: t  =  2.853 mm, b  =  2.001 mm, a  =  57 μm, c  =  91 μm and

 =  65◦. For this specimen the NRF results in geometric factors
f YA =  0.808 and YC =  0.716. The actual interpolation function
rovides the values YA =  0.737 and YC =  0.526, respectively. In
oth cases point A has the highest value of Y  along the whole
rack front; however, the results of the formulas differ signifi-
antly. Considering the influence of the Poisson’s ratio and the
rack-surface intersection angle allows a difference of YA of
bout 8.8% to be obtained. Furthermore, the supported fitting
ormula provides in point A YA =  0.730 instead of 0.737 which
ncompasses a fitting error of about 1%.

. Concluding  remarks

The geometry factor Y  was calculated within a practical range
f crack and specimen geometries by FEA. These results are
ompared with the Newman and Raju formula.

The developed interpolation function of the new results takes
lso the Poisson’s ratio and the crack-surface interaction angle
nto account, which has a significant influence on the geometric
actor. If the crack aspect ratio a/c is low enough, the deepest
oint of the crack gets critical; this is a well-defined situation in
racture mechanics. Hence, fitting functions for the geometric
actor Y  in tension and bending have been developed for this
pecific case considering the new parameters.
The influence of the surface-crack interaction angle on YA is
igh for almost semi-circular cracks but decrease with decreas-
ng crack shape ratios a/c.
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The implications for fracture toughness measurements using
CF-methods are discussed. The above argument indicates to
im shallow cracks for fracture toughness measurement with the
CF-method. Also the critical grinding depth Δt  was calculated

o guarantee that YA becomes the maximum. An approximate
ormula for the grinding depth is given regarding pre-known
uantities. This simplifies, among other things, the practical
sage of the standardized SCF-method for a (scientific) deter-
ination of the fracture toughness.
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ppendix A.  Fit  function  for  Y along  the  crack  front
nder bending  load

The results of the FEM-calculations for Y  along the complete
rack front in the case of bending can be approximated by Eq.
A.1) with a maximum fitting error of 6.7% and an average fitting
rror of 0.9% (standard deviation: 1%). The only restriction for
his fit along the crack front is χ=90◦. Note that fφ reduces to 1
n the case φ=0◦ (i.e. in point A).(a
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ppendix  B.  Fit  function  for  Y  along  the  crack  front  in
ure tension

The numerical values of the geometric factor Y  in the case
f tension can be approximated by Eq. (B.1). This equation fits
he FE results within a maximum error of 1% (average: 0.21%)
or point A. Along the whole crack front – with the restriction
=90◦– the maximum fitting error is 2.6% (average: 0.36%).
ote that fφ,T reduces to 1 in the case φ=0◦ (i.e. in point A).(a
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Abstract
Among the several methods available for themeasurement of the fracture tough-
ness (KIc), the surface-crack-in-flexure (SCF) has the advantages of being based
on an easy-to-produce short (application relevant) crack size of defined geom-
etry with a naturally sharp crack tip. The production of ready-to-test cracked
specimens is fast and uncomplicated, rendering accurate results with low scat-
ter. However efficient and reliable, the procedural steps for the obtainment of a
valid crack need revisions, especially on aspects concerning the polishing depth,
the removal of lateral cracks, the obtainment of an appropriate crack geome-
try, and the use of adequate solutions for the geometry factor. In this study we
attend to these issues by systematically polishing a large number of specimens
of two ceramic materials having very distinct subsurface Knoop crack systems to
assess the effect of remnants of lateral cracks. By evaluating the geometry factor
of the median precrack along the entire crack front, we provide valid ranges for
the crack geometry regarding the crack-surface intersection angle as resulting
from the polishing depth, extending the applicability of the Strobl et al. solution
to shallow cracks in detriment of the Newman and Raju formula that is poised
to overestimations of KIc of up to 10%. Our results debunk the belief that lat-
eral cracks affect the obtained KIc, but demonstrate the necessity of a minimum
polishing depth for the attainment of valid crack geometries.
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fracture toughness, Knoop indentation, lateral cracks, lithium disilicate, silicon nitride, stress
intensity factor, surface-crack-in-flexure
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1 INTRODUCTION

In a paper from 2002, Quinn and Salem1* attended to the
problem of testing inaccuracies when using the surface-
crack-in-flexure (SCF)method (standardized at the time in
ASTM C1421-99) for measuring the mode-I fracture tough-
ness (KIc) of ceramic materials at room temperature. In
that occasion, their focus was directed to the effects of
remnants of lateral cracks (LCs) resulting from Knoop
indentation on the obtained KIc-values using the Newman
and Raju formula (NRF) for the crack geometry factor Y,2
as detailed in the standard. The need for the removal of
the damage zone under the indentation imprint had been
recognized in studies prior to that: if not done, it would
lead to some underestimation of KIc from crack-opening
residual tensile stresses,3,4 along with reports5–8 that the
persistence of LCs due to conservative polishing might
induce an overestimation of KIc-values and high scatter of
the data. This led Quinn and Salem1 to reevaluate their
substantial archive of broken SCF specimens and test new
sets of an alpha silicon carbide material at increasing pol-
ishing depths X, with X = nh, using the indentation depth
as the unit of measure (h is defined as 2d1/30, being d1 the
half-long diagonal of the indentation imprint). The 1999
version of ASTM C1421 recommended a minimum polish-
ing depthX of 3h to remove the damage zone and 4.5–5h for
LCs. Figure 1 shows the profile of the Knoop crack system,
adapted from references 1 and 9.
Quinn and Salem1 made some observations: (i) of their

stock of hundreds of broken SCF specimens, only those
measured to have a KIc-value <3 MPa√m were found to
contain significant remnants of LCs; (ii) small traces of LCs
inmaterials havingKIc-values>3MPa√mwerewithin the
scatter of the data; (iii) their SCF dataset of 17 specimens
from NIST’s silicon nitride reference material SRM 2100
polished to 4.5–5h showed no LC remnants and aKIc-value
matching those obtained using the chevron-notched-beam
(CNB) and single-edge-precracked-beam (SEPB) methods,
seen thus as a testament of test precision. Their new tests
on two different batches of silicon carbide yielded a plot
of KIc versus X showing mostly low KIc-values at X= 0h as
origin of a steep increase up to a peak atX∼5h, followed by
a slight decrease up to about X ∼11h (vestiges of LCs were
ascertained forX≤ 7.5h). They concluded that the presence
of LC remnants can be responsible for an artificial increase
of the calculated KIc-value up to 12%; the leveling off at
the KIc-values measured using SEPB and CNB methods

* One finds therein some background on the development of the standard
and a somewhat retrospective account of the literature on descriptions
of the anatomy of the Knoop and Vickers crack systems with respect to
the origins and dimension of lateral cracks. We intend thus not to repeat
those here.

was used as the yardstick for correctness. Emphasis was
given to the necessity of polishingKnoop indented surfaces
of low-KIc materials up to 7–10h in depth, to guarantee
the complete elimination of LCs. The recommendation
to extend the polishing depth beyond 4.5–5h appeared in
the 2003 version of ISO 18756 and in the 2009 version of
ASTM C1421, along with the instruction to take the mea-
sure of certifying the disappearance of LCs by monitoring
the polishing procedure under the microscope.
Since Quinn’s and Salem’s paper,1 the case of LCs was

considered as good as closed. However diligent and com-
mendable their contribution had been, new developments
on the front of the SCF method indicate that some aspects
went unregarded. Specifically, an improved solution for
the geometry shape factor Y for the semi-elliptical sur-
face crack has been made available in 2012 by Strobl
et al.,10,11 revealing that diverging cases from the limita-
tion of NRF to materials having a Poisson’s ratio ν of 0.3
and crack-surface intersection angles χ of 90◦ cannot avert
substantial overestimations of Y (up to 50%). In explor-
ing the SCF method using the refined solution from Strobl
et al.10,11 in LC-free specimens since then, we obtained
values of KIc on average 10%–15% lower than when cal-
culated with NRF.12–18 Quinn’s and Salem’s SCF results
showing amere offset of 9%–12% over SEPB and CNBmust
now be considered under a new light. Their relatively low
number of specimens and high data scatter may benefit
from a new, more comprehensive evaluation. It is thus our
opinion that a revision of aspects pertaining to the influ-
ence of LC remnants, recommended polishing depth, and
valid crack geometries on the basis of the SCF method
is due.

2 MATERIALS ANDMETHODS

2.1 Materials

In order to evaluate the effect that remnants of LCs
induce on the obtained KIc-values, and therefore the depth
of polishing necessary to achieve a median crack that
is undisturbed but also has a geometry in which Y is
maximum at the deepest point, we selected two familiar
materials with known different subsurface cracks systems.
Commercial materials with a track record of service relia-
bility disposing of a repository on characterization data on
chemistry, microstructure, and mechanical behavior were
preferred. Additionally, from the observations of Quinn
and Salem,1 materials having a KIc-value of less than 3
MPa√m are especially susceptible to the nucleation of
deep LCs; one of the materials should therefore have a
KIc-value that lies below that threshold, and the other
significantly above.
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F IGURE 1 Schematic of the Knoop indentation-crack system adapted from reference 1 (left-hand side), showing a 3D view from above
through the material and the profiles of the lateral planes in 2D projections. On the right-hand side the dimensions of the indentation and
median crack are given (adapted from reference 9)

The first material is a gas pressure sintered silicon
nitride produced by CeramTec (Plochingen, Germany)
under the name of SL200B, subjected to the reference
material testing program led by the Technical Commit-
tee 6 “Ceramics” of the European Structural Integrity
Society (ESIS), introduced in reference 19 and character-
ized in references 20–23. The SL200B material contains
∼3wt% Al2O3 and ∼3wt% Y2O3 as additives giving rise to
a microstructure containing β-Si3N4 grains of 1–5 μm in
length with aspect ratio of about 3–5, and a 12.4 vol% amor-
phous silicate glass interphase. It is delivered in plates of
47 mm × 11 mm × 102 mm that show a lighter “skin” layer
of ∼1.5 mm and a darker “core” region; the core contains
a larger volume fraction of α-Fe (0.08 vol%) than the skin
(0.01 vol%), with the latter showing slightly higher values
of Young’s modulus (skin = 307.0 GPa, core = 302.8 GPa),
shearmodulus (121.2 GPa vs. 119.9 GPa), and Poisson’s ratio
(0.266 vs. 0.262).22 The KIc-value of the core material has
been measured previously using the SEVNB method ren-
dering 4.9± 0.1MPa√m24 and the CNBmethod rendering
5.2 ± 0.1 MPa√m.
The second material is a partially crystallized lithium

disilicate (hereafter LS2) glass ceramic used for dental
prosthetic applications commercialized under the brand
IPS e.max R© CAD by Ivoclar Vivadent AG (Schaan, Liecht-
enstein), currently taken as gold-standard dental glass-
ceramic for single- and multi-unit replacement regarding
clinical performance25 and mechanical properties.13,15,26

The material is delivered as partly crystallized cuboid
blocks of different sizes containing 32.6 vol% Li2SiO3, 3.9
vol% Li3PO4, and 0.7 vol% Li2Si2O5 as an intermediate
state to bemachined and subsequently annealed to achieve
the final microstructure composed of 62.2 vol% 1–2 μm
Li2Si2O5, 7.2 vol% submicrometric Li3PO4, and 0.6 vol%
cristobalite embedded in a SiO2-rich (79.2 mol%) resid-
ual glass.15 It has a Young’s modulus of 102.5 GPa, a
shear modulus of 42.2 GPa, and a Poisson’s ratio of 0.21627
after annealing. The KIc-value of this LS2 material has
been published in 2019 by Quinn et al.28 using the SCF
method, reporting values measured under N2 atmosphere
to amount to 2.34 ± 0.17 MPa√m and 2.09 ± 0.13 MPa√m
in air (both n= 10 specimens), calculated using the NR for-
mula. In the same set of experiments, their results using
the SEPB method rendered 2.10 ± 0.06 MPa√m in N2 gas
(n = 10).28 In references 29 and 30, we presented indirect
evidences of a modest R-curve behavior.
The microstructure of both materials is shown in

Figure 2.

2.2 Specimen shaping

Beam-shaped specimens for the SCF method were pro-
duced following the dimensions recommended in ASTM
C1421 to be tested in four-point bending (4PB)with support
span Ss of 20 mm and loading span Sl of 10 mm.
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F IGURE 2 Microstructure of the evaluated materials. (A) SL200B, polished and etched with CF4/O2-plasma, (B) LS2, etched with 5%
hydrofluoric acid for 10 s

The LS2 material was sawed in the as-supplied pre-
crystallized state (B32 cuboid blocks 15 mm × 15 mm ×

32 mm) using a water-cooled diamond-embedded copper
disc in an automatic sawing machine (Buehler 5000) in
beams of 25mm in length L, each block rendering six spec-
imens. A grinding wheel D15 was used to wet grind two
non-opposing sides to obtain the final cross-section height
W ×width B of 3.0 × 4.0 (±0.1 mm tolerance). The anneal-
ing heat treatment recommended by the manufacturer
aimed to induce the Li2SiO3 to Li2Si2O5 transformation
and achieve final microstructure and properties was con-
ducted in a Programat EP 3010 (Ivoclar Vivadent AG) at
ramp rate of 90◦C/min to 830◦C, 10 s dwell time, and sub-
sequence heating at 30◦C/min to 850◦C and dwell time of
10 min; slow cooling was conducted at 10◦C/min down to
710◦C, after which the specimens were exposed to ambient
convective air. This annealing treatment has shown to heal
crack-type defects induced by sawing and/or grinding and
not induce warping or bending of the specimen.
The SL200B material was serially sawed under water-

cooling from the as-supplied geometry in beams of 47
mm in length L, each plate rendering ∼40 specimens. The
“skin” region was maintained to ease the obtainment of
more specimens per block, resulting in bicolor specimens
containing a ∼1.5 mm thick light-gray on one of the 3 mm
width sides (see Figure 3). Grinding was performed on
all sides with a D46 resin-bonded diamond grinding disc
according to the procedures in Test Method C1161 to a final
cross-section height W x width B of 4.0 × 3.0 (±0.1 mm
tolerance).

2.3 Measurements using the SCF
method according to ASTM C1421

A Knoop indentation was placed at the center of the lower
(tensile) side of each specimen at L/2 and B/2. For the
LS2 material the indented surface was the wider side (B
= 4 mm), whereas for the SL 200B material the narrow

surface (B = 3 mm) was the indented one so as to avoid
the “skin” region. From the start of this series of exper-
iments, the recommendation of ASTM C1421 to tilt the
beams upon indentation at 0.5◦ along the long axis L was
followed, aimed to facilitate posterior fractographic pre-
crack measurement; a second series of 11 specimens of
the LS2 material was indented without this tilt. Care was
taken to align the main axis of the indenter perpendic-
ular to the length (L) of the beam, using an indentation
force of 98 N (10 kg weight) with a full-load dwell time of
15 s. The length of the indentation diagonal d was mea-
sured under 10× magnification under a stereomicroscope
and used to calculate the impression depth h, taking h
= 2d1/30. Sequential polishing of the indented surface
was performed within 5 min of indentation using P600
(for LS2) or P240 (for SL200B) SiC papers in dry condi-
tions in alternating directions, with periodical checking
of the surface under the microscope and measuring the
beam thickness with a ball caliper having a resolution of
0.002 mm and an accuracy of ±0.004 mm as certified by
the manufacturer (Mitutoyo, Japan) (see Figure 3). The

F IGURE 3 Ball caliper used to measure the polished depth of
SCF specimens during the polishing procedures. Note the “skin”
and the “core” in the specimen of the SL200B material
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F IGURE 4 (A) Custom 4PB jig used to guarantee alignment and articulation; (B) CNB specimen positioned in a 10–20 mm spans; (C) jig
mounted on the universal testing machine for tests under N2 atmosphere

thickness was constantly measured at L/2 and B/2 after
wiping the specimens from the grinding dust, with the pol-
ishing interrupted at differentX in order to cover the range
of 0 < X/h ≤ 12. The caliper was checked periodically with
gage blocks to ascertain reproducibility of measurements.
During polishing, the intersection of the LCs at the surface
plane became visible in the LS2 material; for each speci-
men at the final interrupted X, the distance between the
two LCs was measured under the microscope when still
present. LCs in the SL200B material were not visible on
the surface during sequential polishing. Ten specimens of
SL200B and 16 of LS2 were kept unpolished (X = 0h). The
lower edges of the specimens from LS2 were chamfered
and their strength later corrected by a factor 1.002. All spec-
imens were kept stored in a desiccator under vacuum until
2 h prior to testing, dried in an oven at 150◦C for 1 h and
later exposed to ambient air.
Specimens were tested in a universal testing machine

at a cross-head speed of 1.5 mm/min using a custom-built
4PB fixture (see Figure 4A,B and reference 31) with the
precrack in tension and aligned at the middle of the inner
loading rollers. The 4PB entire jig was involved in a Ziploc-
type bag with two sealed entries, one for a humidity sensor
and the other for N2 gas infusion (See Figure 4C). Once the
atmosphere inside the bag wasmoisture-free as seen in the
sensor dialog, the bag was completely sealed, additional 1–
2 min were given for ascertaining constant 0% humidity,
the bag was further inflated and the jig was loaded until
fracture of the specimen.
The displacement of the specimen during the test was

tracked by the speckle-correlation method registered by a
video camera recording the speckle pattern on the surface
of the specimen created by a laser beam through the plastic
bag. The fracture stress was calculated using themaximum
force at fracture and specimen dimensions:

𝜎𝑓 =
3𝐹max (𝑆s − 𝑆𝑙)

2𝐵𝑊2
(1)

The fractographic analysis was conducted on gold-
sputtered fractured surfaces to increase the reflectivity of
precracks, recorded on a stereomicroscope coupled with a
video camera and a calibrated image software (ZenCore,
Zeiss). The images were imported in a freeware (ImageJ)
for the measurement of the precrack dimensions 2c and a.
The shape of the crack boundaries was fit to a segment of
a circle and the angle χ determined from a visually deter-
mined tangent linewith the circle at point C using software
tools. The stress intensity factor at fracture was calculated
using:

𝐾𝐼𝑐,SCF = 𝑌𝜎𝑓
√
𝜋𝑎𝑐. (2)

Two Y solutions for semi-elliptical surface cracks were
used: the new solution for truncated semi-elliptical surface
cracks revisited by Strobl et al.,10,11 and the NRF,2 the lat-
ter still recommended in ASTM C1421 version 2018. The
NRF, which already contains embedded the term√π from
Equation (2), is given in two forms, that is, for point C (YC)
and for point A (YA). The maximum value of Y should
determine whether the crack initiated from the deepest
point A or at the intersection with the surface at point C;
the latter case should make the test invalid and is recom-
mended in the standard to be rejected. In Figure 5A the
geometry of the median Knoop crack is illustrated refer-
ring to the dimensions used for the calculation of the Y
solutions of Strobl et al. and NRF.

2.4 Comparison methods using the CNB
method

To offer a comparison to the obtained values from the SCF
method, we prepared additional specimens to be tested
using another of the three fracture toughness tests stan-
dardized inASTMC1421, namely the CNB. The procedures
followed strictly the guidelines from the standard, respect-
ing the criteria for validity, and consisted of sawing a
V-notch using a diamond disc for the CNB specimens. The
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F IGURE 5 (A) Geometry of the Knoop median crack (blue) after polishing a thickness of ΔW, thus reducing the initial crack size from
a0 to a, and the width 2c0 to 2c, defining points A and C, the latter intersecting the surface at an angle χ. ϕ is the projection to the crack front
in degrees. Plane ahc-plane is the plane-of-view (grey), while the ac-plane (blue-grey) is 0.5◦ out-of-plane (in the z-direction), with the tip of
the median crack (point A) at the farthest point. (B) Geometry of the halo boundary with dimensions denoted with a subscript letter h. The
area circumscribed by the points C-Ch-Ah-Ch-C-A-C is the halo. The points C, Ch, and Ah are located on the ahc-plane. ϕh is the projection to
the crack front of the halo in degrees

dimensionsW andBwere, respectively, 4mmand 3mmfor
both materials and tested in 4PB in 10–20 mm spans in the
same jig in N2 atmosphere (loading rate of 0.05 mm/min).

2.5 Visualization of the geometry of the
subsurface Knoop crack system

In order to provide a description of the geometry of the sub-
surface crack system in terms of dimensions of the damage
zone, median crack, and LCs, fractured half-specimens
were indented (98 N, 15 s) at ∼100 μm from one long edge,
flipped 90◦, and diamond polished using an automatic
polishing machine. Polishing was interrupted at different
depths and the polished surface was photographed under
a light microscope to reveal the evolution of the features of
the Knoop subsurface system at different distances d1 from
the edge to the center of the indentation imprint.

3 RESULTS AND DISCUSSION

3.1 Subsurface crack profiles

The SL200B and LS2 materials showed very distinct sub-
surface crack systems when Knoop-indented with 98 N
force, as revealed by sequential polishing of the sides
of samples to create transverse cross-sections, as seen in
Figures 6 and 7, respectively (the plane of view is that in
red in Figure 1).
In SL200B, the damage zone depth b2 extended around

the imprint up to about 30–40 μm close to the center of the
imprint, fromwhich amedian crack nucleated and grew to
reach a0 = 162 ± 5 μm, as measured from the fracture sur-
faces of the unpolished specimens (X = 0h). The deeper

parts of the median crack were not very clear from the
transverse sections, presumably because too tightly closed,
so that they appeared shorter than a0 values measured
from the unpolished fractured specimens. LCs could only
be seen as the transverse sections approached the center
of the imprint at d1 < 50 μm, departing from the center
and bottom of the damage zone at very low angles to the
surface, almost parallel to it, reaching no more than 40–50
μm in length. Here one cannot say for certain if the LCs
are displayed in their full extent or likewise closed near
the tip. During the polishing of the SCF specimens, LCs
could not be distinguished on the polished surface, per-
haps due to their low-angle orientation in respect to the
surface. The long diagonal 2d1 measured 355 ± 15 μm, giv-
ing h≈ 12 μm. On the basis of the sections seen in Figure 6,
both the damage zone and the LCs in SL200Bmight aswell
be completely removed by polishing the surface to about 50
μm, ∼4h.
The morphology of LCs in LS2 are depicted in Figure 7.

The transverse sections revealed very clear LCs, even at dis-
tances d away from the extremity of the imprint (i.e., d >
d1), indicating that the elastic damage was not confined to
the area under the imprint, as was the case for SL200B.
As the transverse sections got closer to the center of the
imprint, awide crack is seen running down from the center
of the imprint connecting both LCs. A damage zone under
the imprint is not clearly distinguishable; a median crack
is often not fully visible, presumably due to the two crack
faces being too tightly closed. The LCs ran straight in the
regionnear the extremities of the imprint and began to bow
at the tip at sections closer to the center of the imprint;
sectioning passed the center of the imprint led LCs fre-
quently to grow laterally to ultimately chip off (not shown).
With polishing passed the center of the indenter, LCs were
observed to grow due to the polishing procedure. In LS2,
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F IGURE 6 SL200B. Polished transverse cross-sections of the subsurface Knoop crack system at different distances from the center of the
indentation imprint. (A) At about half-way from the extremity to the imprint toward its center, a small damage zone (dz) of about 20 μm in
depth is seen under the imprint, from which a wide median crack (mc) extends orthogonal to the surface into the depth; no lateral cracks
(LCs) can be seen. The dz appears rough and heterogeneous. (B) At 22 μm from the center, the dz becomes wider and deeper, from which two
short LC nucleate in its center running parallel to the surface. (C) Nearing the center of the imprint, the dz extends about 50 μm deep and the
LCs reach the bottom of the dz, running now at a steeper angle to the surface, up to 40–50 μm in length. The tip of the mc appears to get
narrow and difficult to define

F IGURE 7 LS2. Polished transverse cross-sections of the subsurface Knoop crack system at different distances from the center of the
indentation imprint. (A) Before the cross-section plane reaches the extremity of the imprint, lateral cracks (LC) can already be seen extending
in a sharp angle to the surface, meaning that they bow to the sides and surpass the limits of the indentation. A shallow and narrow median
crack (mc) can be seen. (B) As the cross-section enters the imprint, a wide crack is seen connecting the surface to the root of the LCs, from
where they extend in to the depth in a sharp angle to the surface and begin to curve at the tip. The median crack is too narrow to be seen. (C)
At 20 μm from the center of the imprint, the root of the LCs reaches a depth of about 50 μm. The tips of the LCs curve toward the surface. An
mc runs down from the bottom of the imprint, but its tip is too narrow to be distinguished. No clear damage zone can be distinguished as per
alteration of morphology under the imprint

LCs could be easily distinguished on the surface during the
polishing of the SCF specimens; measurements on the sur-
face resulted in the half-2D profile plot in Figure 8. LCs
started to be visible first around 25–40 μm in depth, and
their last remnants disappeared at polished depths >90–
120 μm. The shape of the LC profile in Figure 8 matches
the images of the transverse sections very well, with LCs

developing at angles∼55◦ with respect to the surface plane
and extending as much as 220 μm laterally, provided that
the cracks did not grow much during the polishing. Com-
plete removal of LCs could be thus accomplished in the LS2
material by polishing about 6h, with the long diagonal of
the imprint 2d1 measuring 526 ± 12 μm, giving h ≈ 17 μm.
The mean median crack depth and width as measured at
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F IGURE 8 Half 2D profile of the subsurface lateral crack in
the LS2 materials as measured at the surface of SCF specimens after
the polishing protocol was finished

the surface of unpolished fracture specimens amounted to
a0 = 244 ± 42 μm, and 2c = 515 ± 45 μm, respectively.
Having two distinct Knoop subsurface crack systems at

our disposal, namely, SL200B showing an extensive dam-
age zone developing under the indentation imprint and
shy of LCs, and LS2 showing extensive LCs, allows us
to better assign causal associations between these mor-
phological alterations and any effect on the obtained
KIc-values. This will be addressed in the following text.

3.2 SCF experiments

It is important to note here that the fit function provided
by Strobl et al. computes the value of Y at point A without
distinguishing if the value ofY at ϕ= 0◦ is actually themax-
imumoccurring along the entire crack front or at any other
value of ϕ. In turn, NRF provides the possibility of calcu-
lating Y at both points A and C, so that the evaluator can
dismiss the conditionYA<YC as invalid, regardless of if the
maximumofY is located at one of those points or at neither
of them. Whether one uses the solution of Strobl et al. or
NRF to evaluate the value of Y, one gets no answer to the
requisite YA = Ymax, or how both values diverge otherwise.
To offer clarity in this regard, we evaluated our data using
the original FEM-database of Strobl et al.10,11 and calcu-
lated for each data-point the value ofY at points A, C and at
the point ϕ where it reaches a maximum. Those three val-
ues of Ywere used to calculate KIc to build a series of plots
of KIc versus X in Figures 9 and 10 with SL200B and LS2
side by side for comparison. Included are the evaluations

using NRF, and in all cases we give the distinction between
data-points showing YA > YC or YA < YC. In all KIc ver-
sus X plots, our CNB results of 10 valid specimens (mean
and S.D., purple stripe) serve for comparison, togetherwith
previous data from the literature for the samematerial. An
arbitrary third-order polynomial function was fitted to the
SCFdata to emulateQuinn’s and Salem’s1 handling of their
data; such a function would reveal an eventual “peaking”
resulting from any artificial overestimation coming from
an effect of LCs remnants beyond the removal of the dam-
age zone, followed by a decrease at higher X when LCs
were to be fully eliminated, provided that Ymax is used.

3.2.1 SL200B material

A total of 146 SCF specimenswere prepared for the SL200B
material, from which 57 could not be evaluated, most of
those at polishing depths X > 8h, whether because the
crack could not be clearly identified and measured, or
because the fracture originated from a defect other than
the Knoop median crack (the latter more frequently at X>
10h). Overall, the limits of themedian cracks in the SL200B
material were not always very sharp, inducing some uncer-
tainty in themeasurements of a and 2c in some specimens;
the lower the X, the clearer they appeared. Let us first
evaluate the data using the solution of Strobl et al., with
discussion on the differences to NRF set aside for later (see
Section 3.2.4).
As seen in Figure 9A,B, the shape of the trend is similar

in both cases, consisting of an increase inKIc with decreas-
ing rates up to a plateau at a certain value of X. At values
of X< 5.5h, the shape of the curve is most affected by using
Ymax instead of YA; the use of the latter underestimates KIc
the lower the X. The curve using YA departs from a KIc,A-
value of 3.48 MPa√m at X = 0h, increasing thereafter to
reach a plateau of 5.02 MPa√m at X ∼ 6.5h, staying con-
stant up to X = 10h. When Ymax is used, KIc,max is 3.97
MPa√m at X = 0h and the curve reaches a near-constant
plateau at X ∼ 4h. Interestingly for the last case, the 95%
confidence band of the SCF curve overlaps with the stan-
dard deviation of our CNB results (KIc,CNB = 5.09 ± 0.13
MPa√m) already at X= 2.5h, significantly earlier than the
depth of X ∼ 4h identified in Figure 6 to be sufficient for
the removal of both the damage zone and LCs. Here it is
difficult to state if the LCs have relieved any of the tensile
residual stress at X < 4h, as reported by Quinn and Salem1

for their specimens, since LCs in SL200B were not much
longer than the width of the damage zone; most of the
residual tensile stress might have been kept stored in the
damage zone acting to open the crack. The mean and S.D.
values of KIc,max at X = 2.5h is 5.08 ± 0.22 MPa√m, at X =
4h KIc,max = 5.07 ± 0.22 MPa√m. The full removal of the
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F IGURE 9 (Left column SL200B, right column LS2 specimens showing no halo). (A,B,D,E) KIc versus X (as multiple of h) plots using
the Strobl et al. solution at point A or at the maximum value of Y, rendering KIc,A and KIc,max, respectively. Our CNB results are added (purple
circle) with S.D. as the purple band for reference, along with additional literature values. The fits to the data are third-order polynomial
functions through all the data-points, with 95% confidence band. (C,F) Calculations using the NRF

damage zone—even the removal of the LCs at all—seem
thus not to be necessary for achieving stable KIc-values
with SL200B, provided that Ymax is used; for full-accuracy
(on the basis of crack geometry), matching values of KIc,A
and KIc,max were reached at X ≥ 4.5h (see close overlap-
ping of blue and green data-points in Figure 10A). For X >
0h, values of KIc,C are only slightly lower than KIc,A up to
X = 2.5h, decreasing heavily thereafter, when the polished
depth induces χ to drop below ∼75◦ (see Figure 10A,C,D).

3.2.2 LS2 material

From the 127 specimens prepared for LS2, 119 could be eval-
uated; median crack boundaries were visible and sharp,

assuring a high certainty in measurements. However, in
contrast to the precracks in SL200B, the great majority of
the precracks in LS2 presented a double-boundary, the so-
called “precrackhalo.” Still, 39 specimens did not showany
halo, andwere evaluated separately using the crack dimen-
sions a and 2c from the Knoop median crack, making the
dataset in theKIc versusXplots in Figure 9D–F. To fill some
of the gaps within the full range of X, new specimens were
produced—this time foregoing the hitherto applied 0.5◦
tilt—tominimize the occurrence of halos and verify if they
were indeed being caused by the tilting. From the 11 new
“no 0.5◦ tilt” specimens, nine showed no halo, composing
the dataset represented by the crossed symbols. Here too,
a third-order polynomial function was used for fitting to
both datasets together (tilted and not tilted), representing
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F IGURE 10 (Left column SL200B, right column LS2 specimens showing no halo). (A,E) KIc versus X (as multiple of h) plots using the
Strobl et al. solution using YA, YC or Ymax. (B,F) Calculations using the NRF. (C,G) KIc versus χ for different values of Y. (D,H) Relationships
between χ and X

the behavior of measurements undisturbed by the forma-
tion of a pre crack halo. The effect of halos will be closely
addressed in Section 3.2.3.
Let us again address the use of the solution of Strobl

et al. The curves in Figure 9D,E showdistinct shapes, influ-
enced mainly by the data-points at X < 6.5h. When using

YA, the curve departs from KIc,A = 1.73 MPa√m at X =

0h, increasing up to X ∼10h. However, the 95% confidence
bands overlap the plateau line of KIc,A = 2.05 MPa√m
already atX= 7.5h. Based on that trend, one is led to believe
that the damage zone and the presence of LCs would have
the effect of decreasing the measured KIc. The shape of
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the curve changes drastically when using Ymax, which is
substantially higher than YA forX< 5h, and equaling YC at
X = 0h (see Figure 10E). As opposed to SL200B, YC in LS2
becomes higher than YA for X values below ∼3h, when χ
is higher than about 75◦. This difference between the two
materials in terms of Ymax (Ymax moving away from YA in
LS2) at low values of X is due in part to their difference
in Poisson’s ratio, but mainly due to the parameter a/W,
which for LS2 is more than double than that for SL200B,
once a for unpolished specimens was larger for LS2, andW
was the long side of the specimen (4 mm) for SL200B and
the short side (3 mm) for LS2. This has also the effect of
increasing Y on point A for lower a/t ratios, accounting for
the flatter curve in LS2 at lower X. For LS2, Ymax matches
YA sufficiently well within the range 5h ≤ X ≤ 11.5h. For
the two data-points at X > 11.5h, Ymax was much higher
than YA, inducing the curve to bow upward. The lower
the χ (the deeper the polishing), the higher is the variation
between YA and Ymax for cracks with a/c ∼1, as shown in
Figure 7 in reference 10 (shown only for χ between 70◦ and
110◦).
In LS2, LCs are completely removed at X = 6h (see

Figure 7), and the damage zone presumably at X ∼3h.
When using the solution of Strobl et al. with YA, trun-
cating the data at X < 3h gives a KIc,A = 2.00 ± 0.09
MPa√m, which closely approaches theKIc,max between 5h
≤ X≤ 11.5h (2.06± 0.07MPa√m), the range in which Ymax
matches YA very well (when blue and green symbols over-
lap, see Figure 10E,G).AtX= 3h, only∼50μmofmaterial is
removed, leaving a substantial part of the LCs still in place,
which intersect the surface about 25 μm away from the
median crack plane. Thus, those remnants of LCs between
3h and 6h seem not to affect the obtained KIc-values sig-
nificantly, regardless of using YA or Ymax, in disagreement
with the conclusions from Quinn and Salem1 (this will
be shown later also for the case of specimens showing a
halo).
The lower KIc-values obtained by the SCF method in

comparison to the KIc-values obtained by CNB and SEPB
methods is a consequence of the effect that crack extension
Δa (Δa= ac − a) and initial crack size a have on the result-
ing KIc-value in materials showing an R-curve behavior.
Once initial cracks in SEPB and CNB grow longer before
instability than in SCF, their tangent points between the
applied stress intensity factor KI,appl(a) curve and the R-
curve KI,R(Δa) (i.e., KI,appl(a)= KI,R(Δa)) is located farther
along the R-curve, with the KIc-value being the KI,R-value
at failure in a quasi-static test. In flat-R-curve materials,
short-crack and long-crack fracture toughness methods
should yield equivalent KIc-values.32 This behavior agrees
with indications from the literature of the existence of an
R-curve for this specific LS2 material.29,30

3.2.3 The effect of halos

Precrack halos have been described in earlier studies using
the SCF method and analyzed in detail in a 1998 paper
from Swab andQuinn,33 using different ceramicmaterials.
They classified the different reasons for halos appearing
whether by evaluating the morphological appearance of
the microstructure in the different crack regions, or by
comparing precracks in specimens tested in air or in N2
atmosphere, eventually foregoing the polishing procedure.
When environmentally assisted slow crack growth (SCG)
was confirmed in tests in air, the inclusion of the halo in
the precrack size led the KIc-value to match those tested in
N2 showing no halo, for instance in 99.9% alumina and in
a glass-ceramic. Halos were also shown to develop when
Knoop-indented specimens were not polished to remove
the damage zone in a MgF2 ceramic, thus indicating some
influence of residual stress. In hot-pressed AlN, halos were
found in test performed in air and in dry atmosphere, lead-
ing the authors to conclude that the halos formed due to
the reorientation of the precrack prior to instability,34 in
view of the fact that all their specimens were tilted 0.5◦
off perpendicular to the long axis of the indenter. Because
such halos due to crack kinking are rough topographic
disturbances on the fracture plane, they can be manipu-
lated to change appearance during fractographic analysis
by altering the angle of light incidence, as opposed to
sources of halo such as SCG. A description of the geom-
etry and different planes involved in the formation of the
precrack halo is illustrated in Figure 4B.
A precrack-kink halo looks like an uneven shadow sur-

rounding the Knoop median precrack. The halos found
in our LS2 specimens have the appearance of shadows, as
shown in Figure 11 for different crack sizes, and although
the LS2 material has been shown to be susceptible to
SCG,29,35 our protocol of drying and testing in N2 atmo-
sphere at a high loading rate (1.5 mm/min) was meant
to eliminate any relevant SCG effect. The extent of the
observed halos thus cannot be reconciled with severe SCG
events.
Halos appeared in polished as well as in unpolished

specimens, and showed to be independent of the size of
the remnantmedian precrack (thus negating any influence
of the polishing procedure). Interestingly, Knoop median
cracks that developed no halo were significantly larger
than those that did (a = 289 ± 25 μm, 2c = 563 ± 28 μm vs.
ah = 214.8 ± 13 μm, 2ch = 483 ± 15 μm as measured from
unpolished specimens—compare Figure 9A,B with Figure
9C,D). In unpolished specimens, those that showed no
halo were half-circle shaped (χ= 89.5◦ ± 1.2◦), while those
showing a halo were nearly half-circle shaped (χh = 81.1◦ ±
1.7◦). This suggests that despite being tilted 0.5◦, specimens
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F IGURE 11 Examples of the appearance of median cracks in the LS2 material at different polishing depths. All these specimens were
indented with a 0.5◦ tilt. Some show no halos (C,D), other small halos at the crack front near the surface only (F), while large halos represent
an increase of the entire critical crack front (A,B,E,G,H). Specimens in (A), (B), and (C) were not polished. Note how the median cracks in (C)
and (D) are larger compared to those that presented a halo (A,B). Scale bar is 100 μm (actual 5.6×magnification). Plane of view is orthogonal
to the long axis of the beam. dz, damage zone; mc, median crack

showing no halo developed their median cracks actually
perpendicular to the surface, while those median cracks
that developed a halo grew in an angle (on the ac-plane,
see Figure 4) and seem to have suffered some resistance
against crack growth, probably due to the contribution of
a mode II stress condition.
As a rule, halos were wider at the surface (distance

C-Ch) than at the deepest point (distance A-Ah) when
seen from the plane-of-view, with the kink angle being
steeper along points A-Ah (see Figure 4B) and becoming
smoothened out toward points Ch (along points C- Ch).
Actually, points C and Ch are on the same plane, and
because of that, point Ch is not very distinguishable on the
fracture surface since the shadow at this point vanishes
(see Figure 9E,G,H). The shape of the halos was generally
the same regardless of the initial median precrack ratio
a/c (that is, not only in deeply polished specimens but also
in unpolished and low-X precracks). Such a shape could
be suggestive of the median precrack becoming critical
first at the deepest part of the crack (i.e., ϕ = 0◦) where
the vectors of growth are bi-directional (along coordinates
a and z, see Figure 4; z is parallel to the uniaxial bending
stress and perpendicular to the plane-of-view), with the
crack extending stably along the crack front (ϕ → 90◦)
with the contribution of three vectors (along coordinates
a, z, and c) within 0◦ < ϕ < 90◦, with diminishing a and
z contributions during crack extension, and ultimately
a = 0 and z = 0 at point Ch. Meaning that the plane
of the new critical crack front ϕh at instability is now
perpendicular to the uniaxial stress direction; the crack
reoriented to 0◦ (onto the ahc-plane, see Figure 4B). In the
hypothetical case of a crack extending first from point C

toward the deepest point (ϕ → 0◦) simultaneously from
both sides meeting up at ϕ = 0◦, chances would be that
somemisalignment of the fracture plane would take place,
resulting in a fractographic feature akin to a wake hackle
appearing along points A-Ah. By originating from one of
the two points C, an asymmetric halo should be expected.
These features were not seen in any of the specimens.
The distinction between taking the Knoopmedian crack

dimensions (a, 2c, χ) or the halo dimensions (ah, 2ch, χh) to
compute Y or Yh for the evaluation of the KIc is demon-
strated in Figures 12 and 13 (the dataset of specimens
showing no halo is not included). Expectedly, by consid-
ering the original Knoop median precrack as the critical
crack, lower values ofKIc are obtained, once the extra exter-
nal load necessary to extend the crack (and kink it) is
computed for a shorter crack. That, assuming that the halo
is formed before instability, and that crack extension (i.e.,
ϕ → ϕh, C-A-C → Ch-Ah-Ch) is stable concomitant to an
increase in KI,appl taking place during the crack extension
and crack kink. In that (most probable) scenario, the halo
is formed during the development of the R-curve. Thus, it
is not surprising that taking the halo as the critical crack
size results in higher values ofKIc. Even if the LS2material
had no R-curve, the reorientation from amixed-mode con-
dition to a pure-mode I planewould require the addition of
an extra K-term. The data-points using the halo boundary
as the critical crack size fall now within the S.D. range for
our CNB tests or slightly below the lower bound, a strong
suggestion that the crack extension during the formation
of the halo involved some gain in KI,appl comparable to
that developing during crack extension in the CNB spec-
imen. Suggestively, the KIc-value of SCF is shifted farther
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(A) (D)

(E)

(F)

(B)

(C)

F IGURE 1 2 LS2 specimens showing a halo. (Left column calculations using original precrack dimensions, right column calculations
using halo dimensions). (A,B,D,E) KIc versus X (as multiple of h) plots using the Strobl et al. solution at point A or at the maximum value of Y,
rendering KIc,A and KIc,max, respectively. Our CNB results are added (purple circle) with S.D. as the purple band for reference, along with SEPB
values from reference 28. (C,F) Calculations using the NRF, along with SCF values from reference 28, which also used NRF

along theR-curve approaching the location of theKIc-value
obtained in the CNB tests. Interestingly, that happened for
specimens over the range 0h ≤ X ≤ 10h, thus apparently
compensating for the effect of residual stresses at X < 3h
and providing further support for the argument against the
effect of LCs. Thus, in the situation in Figure 12D, the rela-
tionship of KIc versus X established in Figure 9D for the
specimens developing no halo vanishes, and KIc seems to
become constant overmost of the entire range ofX (KIc,max
= 2.30 ± 0.48 MPa√m); for X > 10h, χ falls under 35◦
and Ymax diverges hugely from YA (Figure 13G,H). From
this, it appears that, should R-curve materials show a halo
consistent to those seen here, polishing can be shallow, if
necessary, at all.

The scatter is however higher than for those specimens
that showed no halo (dataset in Figure 9D–F). In the
evaluations from Swab and Quinn,33 the incorporation of
the halo into the critical crack size was also shown to
eliminate the R-curve behavior as concluded from tests
with different initial crack sizes and leveled the values
of KIc to those obtained using long-crack methods in
alumina.
At high a/c ratios and high χ, as is the case for unpol-

ished and low-X specimens, the value of Y tends to reach
a maximum at the crack front near the surface (Point C, ϕ
∼90◦) and not at the deepest point (Point A, ϕ = 0◦). This
comes out of the solution from Strobl et al. as well as NRF
(see Figure 13A,B), with the caveat that these two solutions
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(A) (E)

(F)

(G)

(H)

(B)

(C)

(D)

F IGURE 13 LS2 specimens showing a halo. (Left column calculations using original precrack dimensions, right column calculations
using halo dimensions). (A,E) KIc versus X (as multiple of h) plots using the Strobl et al. solution using YA, YC, or Ymax. (B,F) Calculations
using the NRF. (C,G) KIc versus χ for different values of Y. (D,H) Relationships between χ and X

assume the crack tip is oriented in-plane with the fracture
plane (crack tip is in pure mode I loading); whether val-
ues of Y are favored to attain a maximum at point A under
mixed-mode conditions even in high a/c ratios is currently
not known since such solutions for Y are not available.
Notwithstanding, the precrack growth during the forma-
tion of the halo (i.e., ϕ → ϕh) led to the geometry of the
halo boundary (Ch-Ah-Ch) to result in Yh-values calculated

by both the Strobl et al. solution and NRF to become max-
imum now at the deepest part (see Figure 13E,F), due to
lower a/c ratios and lower χ angles (Figure 13G) attained
compared to the original precrack shape. That is, the devel-
opment of halos widened the crack front, forcing Y to
become maximum at point A, and that over almost the
entire range of X (including at low-X and X = 0h) up to
about 10h (corresponding to χ∼ 35◦, see Figure 13H). Using
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the geometry of the original precrack (which were smaller
than thosewhich developed no halo), goodmatching ofYA
and Ymax occurred between the range of 70◦ ≥ χ≥ 46◦ (cor-
responding to a polishing depth between 2h ≤ X ≤ 8h, see
Figure 13C).
The precracks in the SL200B material exhibited no

halos, even though SL200B has been shown by Fünf-
schilling et al.36 to develop a steep R-curve departing from
an intrinsic crack-tip toughness of 2.0 MPa√m37 that flat-
tens after 10–20 μm of crack extension (Δa) followed by
a shallow rising plateau. The near-saturation of the R-
curve after such short crack extensions is argued to lie on
sharp transitions of toughening mechanisms dominated
initially by high-energy expenditure elastic bridging, fol-
lowed by partially debonded elastic bridges, and reaching
a steady-state bridging zone consisting of frictional bridges
of fully debonded β-Si3N4 grains.38 OurKnoopmedian pre-
cracks of size 100–150 μm grew during indentation and
are expected to have developed some condition of small-
scale bridging39 along the entire crack front (tip), akin
to that observed for SL200B in reference 36—even before
being monotonically loaded—and consist not of a pristine
(bridging-zone free) crack. With the shape of the R-curve
measured in reference 36 in mind, our cracks must show
some stable crack extension during loading and become
critical tangent to the R-curve passed its steeper incline
thus sitting on the shallow rising plateau. Much further
shielding of the crack tip is not gained at this point, and
the development of a halo is undue. The obtainedKIc-value
obtained in a monotonic test is the tangent point extended
toward the y-axis, even though computed for a shorter
crack size defined by the border of the indentation median
crack (the Δa is not readily visible at the crack surface).
K-values are yet poised to vary between experiments, with
shorter cracks and semi-circular cracks having the effect
of slightly decreasing the magnitude (along the Kappl axis)
of the R-curve, while unaffecting its shape nor the earlier
stages of its steep rise, as shown by Fett et al.40 Our val-
ues of KI,max for SCF were 5.07 MPa√m and 5.09 MPa√m
for CNB, with a/W of ∼0.04 and 0.37, respectively, while
the edge-to-edge notch in Fünfschilling et al.,36 were in the
order of a/W ∼0.63 (all having W = 4 mm), resulting in a
KR,max = 5.62 MPa√m.

3.2.4 Strobl et al. solution versus NRF

For each of the datasets calculated using the solution of
Strobl et al. for Y, a second dataset was created using the
NRF for Y, shown for SL200B in Figures 9C and 10B, and
for LS2 in Figures 9F,10F,12C,F, and 13B,F. In all cases, the
KIc,max-values computed using the NRF resulted in signif-
icantly higher values, with an average increase of 7.6% for

SL200B and 5.3% for LS2—no halo (both for X ≥ 5h). For
KIc,A these values increase to 8.5% and 9.0%, respectively.
For SL200B evaluated with NRF, the plateau values for

SCF were shifted vertically above the range measured for
the CNB specimens, a behavior that is not befitting the ini-
tial crack size dependency of KIc, as discussed above. The
same anomaly was seen by Quinn and Salem1 for their sil-
icon carbide material in the region 4.5h < X < 7.5h, for
which remnants of LCs were ascribed (even though data-
points located above their CNB and SEPB ranges were
present up to X ∼10h). KIc-values obtained by short-crack
methods such as SCF rising above those based on large
cracks (such asCNB)was seen as a sign of an artificial over-
estimation due to LCs. Correcting their values by about
−8.5% would level off most their SCF values with X > 4.5h
to their CNB and SEPB results. In a comprehensive 2017
paper on the fracture toughness of glasses using the SCF
and SEPB methods, Quinn and Swab41 reported that their
SCF results using NRF were about 10% higher than when
using the solution of Strobl et al., with the latter being
more consistent and at the same level of their SEPB values;
glasses are flat R-curve materials and KIc-values should
match irrespective of testingmethod (provided they use an
atomically sharp precrack).
For LS2, the dataset of precracks presenting no halo

(Figures 9F and 10F), when treated with NRF gets flat-
tened and shifted vertically to fall within the range defined
by our CNB specimens; that situation would imply that
LS2 has no R-curve behavior. When the precracks with
halo are evaluated with NRF (Figures 12F and 13F), the
dataset using the halo boundary as the critical crack size
falls within the CNB range but mostly above it, and more
interestingly, fitting perfectly within the range of the SCF
results in N2 gas (2.34 ± 0.17 MPa√m) obtained by Quinn
et al.27 for this LS2 computed with NRF, which was higher
than their SEPB (2.10 ± 0.05 MPa√m) in the same study.
Although they usually use the recommendation of ASTM
C1421 to tilt the specimens 0.5◦ during indentation, this
was not strictly stated, along with the missing information
if the precracks showed or not showed halos, and how they
were evaluated.
The problems associated with the NRF stem from the

rough mesh that NR used in their FE-simulations, espe-
cially near the surface, and the parameter constraints
employed, that is, for materials with a Poisson’s ratio ν =
0.3 and semi-elliptical precracks presenting crack-surface
intersection angles of 90◦. The reassessment of Strobl et al.
of the NRF resulted in a parameterized fitting function
expanded for cases including 0.4 ≤ a/c ≤ 1.2, 0.01 ≤ a/W
≤ 0.5, 0.1 ≤ c/B ≤ 0.5, 0 ≤ ν ≤ 0.4, and 100◦ ≥ χ ≥ 70◦.
In their analysis, Strobl et al.10,11 found fitting errors using
NRF of up to 7.7% at point A for χ = 90◦ and ν = 0.3, and
up to 34.2% for 90◦ ≥ χ ≥ 70◦ and 0 ≤ ν ≤ 0.4.
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The NRF provides the possibility of calculating the Y-
factor at point C (YC) and at point A (YA), with the crack
to be regarded as invalid if YA < YC. It is worth noting
that precracks in both SL200B and LS2 (no halo) show-
ing χ > 68◦ generally led to the forbidden condition of YC
> YA using NRF, while this was the case only for χ > 80◦
using Strobl et al. Precracks showing χ above those values
should thus in principle not be allowed for the evaluation
ofKIc—precisely the rangewhere the effects of the damage
zone andLCs are considered. The data-points ofQuinn and
Salem1 with low-X are thus also deemed to have shown a
crack geometry leading to invalid Y-values.
Obviously, the solution of Strobl et al. cannot fix the

problem of crack geometries showing high a/c and high
χ in resulting in the maximum Y-value being located at
point C instead of point A. Unfortunately, Strobl et al. pro-
vide only a generalized geometric fitting function for YA,
and not for YC. Instead, they provide an equation (with
parameters a0, c0, W0, and ν) for the calculation of the
minimum polishing depth (ΔWmin) necessary to obtain a
crack geometry resulting in the condition YA = Ymax. For
LS2, we obtain ΔWmin = 153 μm, which is equivalent to
∼8.7h, invalidating all the data-points below that thresh-
old. However, one really sees in Figure 10E,G that the blue
and green symbols match well already at X ≥ 5h for LS2,
corresponding to χ of about 72◦, but overlap perfectly at
first between 6.5h ≤ X ≤ 11.5h, corresponding, respectively,
to 67◦ ≥ χ ≥ 50◦ (see Figure 10E,G,H). For SL200B, we
obtain ΔWmin = 63 μm (equivalent to X ∼5.3h); values of
YA equating those of Ymax are shown in Figure 10A,C at X
≥ 4.5h (corresponding to 67◦ ≥ χ≥ 45◦, see Figure 10D). The
calculation of ΔWmin by Strobl et al. thusmatches verywell
to our data; although slightly excessive, it safely places χ
within those ranges. Additionally, the YA solution of Strobl
et al. was simulated for the condition 110◦ ≥ χ ≥ 70◦; spec-
imens polished beyond ∼5h for LS2 and ∼2.5h for SL200B
resulted invariably in χ < 70◦. Despite that, the solution
from Strobl et al. seems to be robust enough to yield extrap-
olated YA-values giving accurate KIc-values also for lower
χ-values (i.e., shorter cracks), at least down to 40◦–45◦ (see
Figures 10C,G and 13C,G).

4 CONCLUSIONS

Our evaluation of SCF specimens at varying polishing
depths, originally devised to assess the effect of LCs on the
measured KIc, revealed the following facts:

1. The damage zone in SL200B showed the effect of
reducing the measured KIc substantially; its removal
needed not be complete (thus leaving the short LCs
in their entirety) in order to reach a KIc,max-value

at 2.5h that is comparable to an accurate KIc,A-
value (when YA = Ymax) at deeper polishing depths
X ≥ 4.5h.

2. The LS2 material developed deep and long LCs, but
they showed not to influence the measured KIc-value.
Although a polishing depth of 3h was shown to reach
consistent KIc-values, high accuracy in KIc determina-
tion (when YA = Ymax) could only be achieved for
polishing depths in the range 6.5h ≤ X ≤ 11.5h.

3. The values ofYA given by Strobl et al., evenwhenhigher
than YC, do not always correspond to the maximum
value of Y along the entire crack front, especially at low
polishing depths. For bothmaterials, a very goodmatch
between YA and Ymax took place at deeper polishing
depths, where the crack-surface angle of encounter was
smaller than 67◦. Therefore, the rationale of polishing
SCF specimens in order to obtain reliable KIc should be
based more heavily on grounds pertaining to attaining
an appropriate crack geometry, rather than due to LCs
effects.

4. For low polishing depths, the YA solution from Strobl
et al. yields values that are lower than the true Ymax,
underestimating KIc. For extended polishing depths,
the Strobl et al. solution for YA yields accurate values
for a wider range than it was evaluated for, for exam-
ple, for shallow cracks showing crack-surface angles χ
as low as ∼40◦.

5. At low polishing depths, the NRF underestimates YA,
making it (erroneously) invalid. When YA > YC, the
NRF yields KIc-values of up to about 10% higher than
the solution from Strobl et al.

6. When using the halo dimensions as the critical crack
size, any effect of polishing vanishes, and the KIc levels
off to that obtained for methods which yield KIc-values
farther along the R-curve. In R-curve materials, such
halos seem to develop during the rising of the R-curve if
the obtained KIc with SCF still lie on the steeper incline
of the R-curve with remaining potential for stable crack
extension (the case of LS2). For SL200B, halos did not
develop, as the KIc-value obtained by SCF apparently
lies on the later near-plateau stage of the R-curve. The
use of the formula for YA from Strobl et al. becomes
valid when using the halo boundaries as crack dimen-
sions due to their low χ to the surface, making any
polishing superfluous.

7. Precrack halos seem to occurmore frequently when the
specimen is tilted at 0.5◦ during indentation; perform-
ing indentations at 90◦ with the surface reduces the
frequency of halos.

Established the fact that damage zones, the morphol-
ogy of LCs, and even the a/c ratios of pristine Knoop
median cracks differ from material to material, and that
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the most consistent parameter determining a valid YA-
solution (i.e., YA = Ymax at Point A, where ϕ = 0◦) seems
to be the crack-surface termination angle χ, it appears to
us that the recommendation of standards to make use of
the parameter h to define the polishing depth can lead to
unwanted uncertainties. From a practical standpoint, pro-
cedural preparation and testing of SCF specimens would
profit from aiming for a polishing depth that assures that
a minimum crack-surface termination angle χ of 67◦ and
maximum of 40◦ is always achieved. This can be done in
one of the two ways: by using the ΔWmin formula given
in Strobl. et al,10,11 or by performing a couple of pre-tests
in unpolished specimens in order to measure the dimen-
sions of the pristineKnoopmedian crack and subsequently
calculating ΔWmin geometrically. Not that the purpose of
polishing should be the removal of LCs, we saw here that
the requisite ΔWmin for 67◦ ≥ χ ≥ 40◦ will consequently
remove LCs entirely for probably most materials.
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bstract

 new toughness test for ball-shaped specimens is presented. In analogy to the “Surface Crack in Flexure”-method the fracture toughness is
etermined by making a semi-elliptical surface crack with a Knoop indenter into the surface of the specimen. In our case the specimen is a notched
all with an indent opposite to the notch. The recently developed “Notched Ball Test” produces a well defined and almost uniaxial stress field.

The stress intensity factor of the crack in the notched ball is determined with FE methods in a parametric study in the practical range of the notch

eometries, crack shapes and other parameters. The results correlate well with established calculations based on the Newman–Raju model.
The new test is regarded as a component test for bearing balls and offers new possibilities for material selection and characterisation. An

xperimental evaluation on several ceramic materials will be presented in a consecutive paper.
 2011 Elsevier Ltd. All rights reserved.
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.  Introduction

Structural ceramics, especially silicon nitride (Si3N4), are
istinguished due to their special properties: low wear rates,
igh stiffness, low density, electrical insulation and high cor-
osion resistance. For this reason they are advantageous for
ighly loaded structural applications or when special proper-
ies (due to additional requirements) are needed. An important
pplication with a rapidly growing market are hybrid bearings
ceramic rolling elements and metal races), which are used for
igh operation speeds (e.g. racing), current generators (e.g. in
ind turbines) or in the chemical industry.1,2 Key elements of

he bearings are the ceramic rolling elements, which should have
o comply with highest requirements. But relevant standards for
he proper determination of the mechanical properties of roller

lements are missing.

Mechanical properties of ceramics depend to a large frac-
ion on their microstructure, which is strongly influenced by
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hed Ball Test

rocessing conditions. Therefore proper mechanical tests should
e made on specimens cut out of the components, or – even bet-
er – on components themselves. The strength depends on the
aw populations occurring in the component which are – in gen-
ral – different in the volume and at the surface. In roller bearing
pplications the highest tensile stresses occur at (and near) the
urface of the rolling elements and surface flaws are of outmost
ignificance for the strength of rolling elements. Therefore the
ighest loaded area in mechanical testing of bearing balls should
e situated at the surface of the balls.

These conditions are fulfilled in the case of the Notched Ball
est (NBT)3–6 for the strength measurement of balls, which has
ecently been developed by several of the authors. A slim notch
s cut into the equatorial plane of a sphere and the testing force
s applied on the poles perpendicular to the notch. In that way
n almost uniaxial tensile stress field is generated in the surface
ear area opposite the notch, which is used for the determination
f the strength of the Notched Ball (NB) specimen. Therefore
he NBT is very sensitive to surface flaws and relevant for deter-

ining the strength of ceramic balls. Note that a similar test,
he C-Sphere Test,7 was proposed earlier, where the notch is
ot slim but wide and must have a precise shape. The quality

f bearing balls is strongly related to a high toughness, which
hould also be measured at specimens cut out of the balls or
n the balls themselves. In industry toughness measurements on
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Fig. 1. Stress distribution of a notched ball (NB) specimen. The ball is loaded
in compression with the force F perpendicular to the notch. This causes tensile
stresses in the outer surface region of the ball opposite to the notch with a
maximum stress σNBT at position 1. WN is the notch width.
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Fig. 2. The stress field in the specimen depends on the ball diameter D, the
notch length LN, the notch width WN and the fillet radius RN of the notch. The
164 S. Strobl et al. / Journal of the Europe

earing balls are commonly made with indentation methods (i.e.
Indentation Fracture”-method8–12 due to their ease of use. It has
een recognised in the last years that the toughness values mea-
ured with indentation methods depend on the size and shape
f the plastic deformation zone around the indent, which may
ary from material to material. Therefore the resulting “Inden-
ation Fracture Resistance” (IFR) is only a rough estimate of
racture toughness and has to be calibrated for each material
nd indentation load.

Standardised fracture toughness testing methods normally
se standard beams, which contain a well defined crack and
hich are loaded and broken in 4-point bending. The fracture

oughness KC is determined by application of the Irwin failure
riterion: K  = KC, where K  is the stress intensity factor (SIF).
ote that K  and KC mean pure Mode I configuration (i.e. crack
pening). In the following the authors disclaim to use indices
ecause the other loading Modes are not discussed. The critical
tress intensity factor can be determined using the fracture load
nd with information on beam and crack geometry.

A prominent example is the “Single Edge V-Notched Beam”
SEVNB) method,13 in which, a slim notch is introduced in a
ending beam using a razor blade. In that way straight notches
ith a tip radius of at least 3 �m can be produced. For materi-

ls having a mean grain size of several micrometers or greater,
his is an accurate approximation of a crack14,15 but for fine
rained materials sharper cracks would be beneficial for a precise
oughness measurement.

Very sharp cracks are used in the “Surface Crack in Flex-
re” (SCF) method.16,17 A Knoop hardness indent is made on
he tensile loaded side of a rectangular bending bar. Thus, an
lmost semi-elliptical and very sharp crack is introduced in the
urface. The size of the remaining Knoop crack is determined
y fractographic means, which may need some fractographic
xperience.

In comparison the SEVNB method is easier to apply and less
ime consuming but the SCF-method is more appropriate for

aterials with a very fine grain structure.
To measure the fracture toughness of ceramic balls, bending

ars can machined out of balls, if the balls have minimum diam-
ter, say 20–25 mm, but most of the produced rolling elements
re smaller. So a simple toughness test for ball shaped compo-
ents is needed. In this work we will focus on an extension of
he SCF method on NB specimens.

. The  SCF-method  applied  to  notched  ball  specimens

.1. The  Notched  Ball  Test  for  strength  measurement

Recently, the “Notched Ball Test” (NBT) was established at
he Institut für Struktur- und Funktionskeramik at Montanuni-
ersitaet Leoben to measure the strength of ceramic balls, see
ig. 1. With a commercial diamond disc, a notch is cut into the

quatorial plane of the ball (depth ca. 80% of the diameter) and
he load F  is applied at the poles (point 3) using a conventional
esting machine. Then the notch is squeezed together and high
ensile stresses occur in the surface region of the ball opposite to

d
r
b
a

dapted from [6].

he notch root (the maximum stress σNBT is located at position
, furthermore called peak stress).

The stress field in the NB only depends on the ball diameter
 (ball radius R), the notch length LN, the notch width WN, the
llet radius RN of the notch at the notch base, and on the Pois-
on’s ratio ν of the tested material. The geometric parameters
re defined in Figs. 1 and 2.

To generalize the results the definition of the following
imensionless geometric parameters is convenient: the relative
otch length λ = LN/D, the relative width of the notch ω  = WN/D,
he relative radius of the fillet of the notch base ρ  = RN/WN.

The peak stress σNBT can be calculated using Eq. (1), with h
s the ligament thickness and fN as dimensionless factor, which
epends on the relative notch geometry (λ, ω, ρ) and the Pois-
imensionless geometric parameters are the relative notch length λ = LN/D, the
elative width of the notch ω = WN/D, the relative radius of the fillet of the notch
ase ρ = RN/WN. In the equatorial plane remains a ligament having the shape of

 segment of a circle with the thickness h = D − LN.
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s 0.4 ≤  fN ≤  1.5. A detailed analysis of fN for a wide range of
elative parameters can be found in.6

NBT =  fN × 6F

h2 with fN =  fN(λ,  ω,  ρ,  ν) (1)

The sample preparation is clearly specified and the geome-
ry measurement of the NB specimen is precisely feasible. The
imple testing setup minimizes measurement errors caused by
naccurate alignment. Because the loading point is far away from
he area, where the maximum tensile stress occurs (and which is
sed for strength testing), the result is only very little influenced
y the local contact situation (contact stresses). Furthermore fric-
ion is extremely reduced (in comparison to bending testing; here
riction may have a very strong impact on stress determination)
nd can be neglected for data evaluation.

In summary the NBT is a very precise and simple testing
ethod, which makes the characterisation of original ball sur-

aces possible. Up to now almost 1000 NB-tests on specimens
aving different diameters and relative notch geometries, and
re made from different materials have been successfully tested
n the laboratory of the authors.3–6,18

.2.  Basic  principles  and  fracture  toughness  determination

The common approach in fracture toughness testing for
eramic materials is based on the Griffith/Irwin fracture crite-
ion:

C ≥  K  =  σY
√

aπ.  (2)

C is the Mode I fracture toughness, K  is the stress intensity
actor, σ  is a reference stress in the uncracked specimen (e.g.
uter fibre stress for bending), a  is the size of the crack and Y
s a geometric factor, which is determined by the geometry of
he specimen, the crack shape and the course of the stress field.
or details see standard text books on fracture mechanics or
n mechanical properties of ceramics.19,20 Information on geo-
etric factors for typical loading cases and standard specimen

eometries can be found in literature.21

To apply this equation for fracture toughness determination, a
ell defined stress field, which contains a crack of well-known
eometry and size, is needed. In the case of the standardized
CF-method16,17,22,23 a surface crack is produced with a Knoop

ndent in a bending bar specimen. The indent causes plas-
ic deformation around the indented zone, which also causes
nknown internal stresses. They are relaxed by removing the
lastic deformed material by grinding-off a thin surface layer of
he specimen’s surface, in which the hardness impression was

ade. Then the specimen is loaded in four point bending, i.e. a
ell defined (known) stress field is applied. The load is increased
ntil fracture occurs.

After fracture the crack size is determined on the fracture
urface by fractographic means. It has a semi-elliptic shape. For

 material with the Poisson’s ratio ν  = 0.3 Newman and Raju24–26
ave developed a parameterized and generalized solution of the
eometric factor Y  of a semi-elliptic crack in the stress field of a
ent bar (thickness t and width 2b). It depends on the geometry of
he crack (crack width 2c, crack depth a), the bar’s cross-section

F
(
r

ϕ  = 0◦), where the geometry factor Y can reach a maximum.

nd on the position at the crack front given by the angle ϕ, see
ig. 3. The geometric factor Y(a, t, b, c, ϕ) shows a maximum
ither in point A (deepest point of the crack) or in point C (crack
ront intersection with the specimen surface). In the following
hese special values of the geometric factor are called YA and
C. Tentatively YA > YC for shallow cracks (c  > a) and vice versa.
f course fracture is initiated at the position the largest stress

ntensity factor.
The SCF-method can be adopted for the loading situation

n a NB specimen. The stress distribution in the NB specimen
s well-known and similar to that in a conventional four point
ending bar, i.e. almost uniaxial. The Knoop indent is introduced
pposite to the notch, where the maximum stress occurs (posi-
ion 1), see Fig. 4. In the following, the plastically deformed
urface layer is ground off and the NB specimen is broken.
or the evaluation of fracture toughness, the stress field of the
B specimen after grinding-off the plastically deformed surface

ayer has to be determined. Then the geometric factor of a semi-
lliptical crack in that stress field has to be determined. Again
he crack size and geometry will be measured by fractographic
ig. 4. Illustration of notched ball (half model) with a semi-elliptical crack
white) and ground down to remove the plastic zone around the indent. The
emaining ligament thickness is (h′ = h − 	h).
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Fig. 5. Reference model of a ground-off notched ball specimen used for the
parametric study: (a) mesh overview and (b) stress distribution (σz) without
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Fig. 6. Stress profile along a path at the surface of the notched ball specimen
for the original ball and two different grinding depths α (calculated with FE
analysis for the reference model) in relative units. The ratio σ/σNBT is called
f . The edge of the ground surface for each case is indicated with arrows
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negligible. The relative stress at position 1′ as a function of α

and ν is plotted in Fig. 7. An interpolation function of fSigma
based on 320 calculation points was used for data evaluation.
rack (compare with Fig. 1). Stress values given in MPa for an applied load of
 = 1 N.

.3.  Stress  distribution  in  the  NB  specimen  due  to  material
emoval

As in the case of SCF measurements on bending bars, the
lastically deformed material in the surface of the ball around
he indent has to be removed. The thickness of the removed
urface layer (removal depth) is called 	h, or in relative units

 = 	h/R, see Fig. 4.
The stress distribution in the ground-off NB specimen has

een determined by a FE analysis which was performed in
NSYS 12.1/13.0. The quarter-model is shown in Fig. 5a and

t includes about 35,000–50,000 elements (hexahedral- and
etrahedron-shaped). In the region, where the crack will be
ocated (position 1′), the mesh is refined. A convergence study
ith an overall refinement of the mesh (i.e. half element size)

howed no significant change of the peak stress. The uncertain-
ies in the determination of the maximum tensile stress in the
B specimens are assumed to be less than 0.1% of its value.
If not specified elsewhere a reference model with the follow-

ng standard parameters is used for all further investigations:

 = 0.8, ω  = 0.15, ρ  = 0.25, ν  = 0.3, α  = 0.04, β  = 0.05 and γ  = 0.5,
here β  is the relative crack size (β  = a/R) and γ  represents the

rack shape (γ  = a/c). In Fig. 5b the stress field perpendicular

F
t
i

Sigma

position 2′). The maximum stress value in position 1 (position 1′, respectively)
ncreases significantly with α.

o the notch plane (σz) at the surface of the reference specimen
ithout crack and after grinding-off a surface layer is illustrated.
he stress distribution and its maximum changes due to material

emoval (compare with Fig. 1).
It is interesting to note, that by modest geometric changes

aused by the grinding-off material at the ball apex, the peak
tress at the ground surface (position 1′) increases significantly,
ee Fig. 6. For α  = 0.04 (the grinding depth is 4% of the ball
adius), the peak stress increases almost 25% and for α = 0.08
he stress rises strongly again.

In the following, stresses will be described in dimensionless
relative) units, i.e. they will be related to the maximum stress in

 perfect NB specimen: fSigma = (σ/σNBT). Consider that σNBT is
he first principal stress at position 1, see also Fig. 1. The relative
tress at position 1′ depends on the amount of removed material,
he Poisson’s ratio and the notch geometry.

Apart from the notch length, the notch geometry has a
arginal effect on fSigma, so that the influence of ρ  and ω  is
ig. 7. Relative first principal stress fSigma at the specimen’s surface opposite
he notch (position 1′) versus the relative removal α (main influence). Parameter
s the Poisson’s ratio ν.
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Table 1
Overview and considered parameter intervals for the realised parametric FE
study.

Dimensionless
parameter name

Symbol Lower
limit

Upper
limit

Number of
design points

Notch length λ  = LN/D 0.74 0.82 5
Notch width ω  = WN/D 0.10 0.15 2
Notch fillet radius ρ = RN/WN 0.25 0.40 2
Poisson’s ratio ν 0.15 0.35 5
Grinding depth α = 	h/R 0.02 0.05 4
Crack depth β = a/R 0.005 0.065 7
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n interactive applet of the interpolation (regarding λ, ω, ρ,
 and α) can be found in27 and a fitting function is given in
ppendix A. The fitting error is less than 0.25%.
In the experimental practice, to avoid a strong influence of

easurement uncertainties, the grinding depth should be deep
nough to be outside the parameter range, where the influence
f grinding depth in stress is very pronounced. This is the case
or α  ≥  0.02 (see Fig. 7), which used to be the lower limit of our
arameter range. Furthermore α  should be smaller than 0.05 to
nsure an approximate linear course of fSigma (with respect to
he variation of all other notch parameters). Both bounds fit the
ractical feasibility for commercial bearing ball diameters.

.4. Numerical  determination  of  the  geometric  factor  Y

In Fig. 8 the stress field (σz) at the surface of the reference
pecimen, including a crack and after grinding-off, is illustrated.
or all crack sizes, the amount of the elements along the crack
ront and their alignment around the crack tip was equal. This
as performed with an all hexahedron-meshed cuboid (for mesh
etails see Fig. 8c).

In every case, the J-Integral method, singularity elements
long the crack front and a plain strain assumption (effec-
ive Young’s modulus E* = E/(1 −  ν2)) were deployed for the
etermination of the stress intensity, more precisely with the
ormulation K  = √

E∗ · J . Correlated to Eq. (2) the geometric
actor along the crack front can be expressed with the related K,
he crack opening stress (σz; calculated in the first loading step)
t position 1′ and the crack depth a  (Note: Y  always refers to the
rack depth a, see Eq. (2). This means that a not the crack width

 is taken as the typical defect size).
The geometric factor Y (see Eq. (2)) was determined in a

arameter study (about 20,000 FE runs). The results are used to
efine two interpolation functions for the geometric factor YA
nd YC, respectively. The parameter intervals given in Table 1 for
he parametric study have been considered in equidistant steps.

All assumed intervals are realistic in terms of the practical fea-
ibility, if the range of ball diameters is considered to be between

 and 20 mm. The parameter intervals for the notch geometry
re explained in6 (strength testing). The limits of the Poisson’s
atio were chosen concerning typical structural ceramics (sili-

on carbide: 0.16 and zirconia: 0.34). The limits of the crack
eometry parameter, β  and γ , are mainly designated through a
ualified indentation load (i.e. HK10).

s
r
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To show the significance of each of the seven varied parame-
ers for the value of the geometric factor Y, the trends are shown
n Fig. 9. Only one of the seven parameters is varied in each
ubfigure, for the other six parameters, the values of the ref-
rence model were used. The standard crack shape is γ  = 0.5
ellipse with half axis ratio of 1/2) but for comparison also
he curves for a semicircular crack (γ  = 1) are also shown. In
ubfigure (a) the change of the geometric factor (YA and YC
espectively) with the notch length is illustrated. YA decreases
uch more than YC with the notch length, which is reason-

ble: As a first approximation the ligament is loaded in pure
ending. If the ligament h  gets thinner (i.e. due to a deeper
otch) and the crack size is constant the relative stress value
t the crack tip at the surface (point C), so YC is not influ-
nced. The relative stress value at the deepest point of the
rack (point A) decreases for bended specimens, hence, YA is
ffected.

The notch parameters ρ  and ω  have almost no effect on Y  (see
ubfigures (b) and (c)). Plot (d) shows the influence of the Pois-
on’s ratio ν. YA and YC shift clearly with ν  but in the opposite
irections.

The tendency of YA is decreasing (see plot (e)) for an increas-
ng amount of ground-off material (α).

The relative depth of the crack β  has a stronger influence
n the geometric factors YA and YC compared with the relative
otch length λ, but both parameters have the same tendencies;
ee plot (a) and (f). Note that the influence of the analysed param-
ters on YC is weak. Plot (g) shows the course of Y  in both
oints with respect to the crack shape (γ). For γ  →  0, YA tends
o the analytical value of 1.12 and YC tends to become zero.
oth facts reflect the analytical solutions for an edge through
rack.28 In summary, the main influences on the geometric fac-
or Y are (i) the crack shape (γ) and size (β) and (ii) the ligament
eometry (α  and λ) with respect to the observed parameter
ntervals.

An interactive applet for the geometric factors YA and YC
n a NB-specimen can be found in27 and a fitting function is
iven in Appendix B. The fits provide an error of less than
.5%.

Additionally, a semi-analytical approximation for the geo-
etric factor of a semi-elliptical surface crack in the ground
B-specimen based on the Newman–Raju formula is pointed
ut in Appendix C.

.5. Data  evaluation

Summing it up, the fracture toughness KC is determined by
he stress value in the ground NB-specimen (σNBT ×  fSigma) at
racture, the typical crack size a  and the maximum of the geo-
etric factor Y  along the crack front, which is influenced by the

eometry of the crack and the ligament:

C =  σNBTfSigmaYMAX
√

aπ  (3)
For data evaluation, the established interpolation functions
hould always be used to avoid errors due to fitting of the FE
esults.
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ig. 8. Stress distribution (σz) of a ground-off notched ball specimen with cra
alculation the reference parameters have been used.

.  Discussion

.1.  The  precision  of  the  FE  model  and  the  mesh  quality

Due to the rising importance of fracture mechanics for proof
f safety in structural applications, many different approaches
or stress intensity factor (SIF) calculation have been developed.
ext to the direct method,29–32 fitting the stress distribution
ear the crack tip, three implemented methods are available
n the used FE tool ANSYS 13.0 for the linear elastic mate-
ial behaviour: the “J-Integral”,29,33,34 “Virtual Crack Closure
echnique” (VCCT)35–37 and “Crack Opening Displacement”
COD).29

To estimate the principle error of these methods the resulting
eometric factor Y  can be compared to the analytical solu-
ion for a fully embedded circular crack in an infinite body
Y = 2/π). A quarter model of a finite block (full edge length
0 mm ×  40 mm ×  40 mm) with about 80,000 elements (all hex-
hedral) and with an embedded crack loaded in Mode I (crack
adius a  = 1 mm) was used. The J-Integral method with quar-
er node collapsed crack tip elements (CTE) provides the best
ccuracy out of all tested methods (the error is less than
.01%). This statement can also be found in literature,29 so
his method was chosen for all investigation regarding the NB
pecimen.

Also a convergence study considering the level of mesh
efinement in the NB was carried out for three resulting val-
es: peak stress (position 1′) and the SIF’s KA and KC. The
nfluences of local mesh refinements of the crack front and the
est of the NB specimen have been observed and compared to
he reference model (see Table 1).
There is almost no effect of the crack front mesh refinement
n peak stress (first principle stress at position 1′). A global
efinement increases the peak stress slightly more (<0.05%).

s

m

) overview and (b) detail of the crack. (c) FE mesh around the crack. For this

The influence of mesh refinement on the SIF’s is more del-
cate. The SIF value at the centre of the crack (point A) is not
ensitive to crack front refinement. The value at the free surface
point C) is mesh dependent and is continuously decreasing with
efinement at the crack front, which is an artifact due to J-value
etermination.29

According to this situation the crack front meshing of the ref-
rence model seems to be qualified to provide accurate results
ithin an estimated error of 0.5% (note that the principles of

tress singularity near the crack tip was always presumed accord-
ng to Eq. (2), details are discussed below). The mesh refinement
part from the crack front has a negligible effect (∼0.05%) on
IF’s.

.2. Influence  of  the  Poisson’s  ratio  ν  on  the  geometric
actor

The dependence of the geometric factors Y  on the Pois-
on’s ratio ν  for small (β  = 0.005) and large (β  = 0.05) cracks
espectively (as determined in our FE analysis) is shown
n Fig. 10. Also shown are the solution of Newman and
aju which is only carried out for ν ∼  0.3. But for a pre-
ise determination of the geometric factor, the influence of
he Poisson’s ratio has also to be considered. (Note: own
E analysis of a rectangular beam under tension with a
emi-elliptical surface crack showed that the variation of ν

ndicates the same tendencies as plotted in Fig. 10 for the NB-
pecimen.)

.3. Deviations  of  the  crack  shape  from  the  semi-elliptical

hape

In our calculations (and also in the calculations of New-
an and Raju) it is assumed that the crack is “perfectly”
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Fig. 9. Parametric study of the influence of model parameters on the geometric factor Y (in each case for point A and point C) in the dimensionless reference model.
(a–c) Variation of the notch geometry (λ, ω, and ρ), (d) variation of the Poisson’s ratio ν, (e) variation of the removed material α and (f–g) variation of the crack
g

s
s
n
f
w
w
g
t
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3

l
b
t

eometry β and γ .

emi-elliptically shaped. This assumption is also made in the
tandards for SCF toughness measurements. In reality, this is
ormally not the case. Even if the initial Knoop crack was per-
ectly semi-elliptical, grinding the surface layer of the crack
ill leave another contour. This case has been studied in,28

here – for worst case assumption – the differences in the

eometric factors are less than: ±4% in point A and less
han ±2% in point C for cracks having the same aspect ratio
/c.

l
t

.4. Stress  singularity  at  the  free  surface

The maximum of the Y-values along the crack front is always
ocated either at point A or at point C (see Fig. 3) and never
etween them,22,23,25 so just those two distinguished points have
o be observed.
Generally at the free surface (at point C) the stress singu-
arity is not proportional to r−1/2 (with r  as the distance from
he crack tip) according to Fett,38 Hutar30,32 and de Matos.39
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Fig. 10. Comparison of the Y-solutions of the own FE analysis (NBT) and the
N
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the maximum tensile stress in a NB specimen without surface
ewman–Raju formula plotted versus the Poisson’s ratio ν for (a) small cracks
α  = 0.5%) and (b) big cracks (α = 5%).

ore precisely, the K-concept is therefore not valid at point C
nd it can only be used as an approximate approach. This effect
s pronounced, if the crack intersects the surface perpendicular
φ ≈  90◦) and the Poisson’s ratio is unequal to zero (the Poisson’s
atio also influences the thickness of this boundary layer).

Therefore the ASTM standard for the SCF-method16

nstructs to use flat crack shapes with YA > YC, i.e. the maximum
f Y  should be positioned at point A. In practice, the easiest way
o realise this is to increase the grinding depth 	h. This has sev-
ral useful effects: the intersection angle φ  gets smaller and the
rack shape becomes flatter. The condition YA > YC is fulfilled
or flat crack shapes (the limit is at γ  = 0.6 ÷  0.8, which depends
n the crack size β).

On the other hand the ISO-standard for the SCF-method17

etermines that the greater one out of both Y-value should be
sed for fracture toughness calculation. For this, two conditions
ave to be considered: (1) the crack has to be nearly semi-
lliptical and (2) the datum has to be rejected, if YA < YC and
he fracture could be caused by preparation damage or corner
op-ins at the surface-point C.

. Concluding  remarks
The standardized SCF-method for fracture toughness mea-
urements on ceramics is modified and applied to a new

m
t
n

ramic Society 32 (2012) 1163–1173

pecimen type, the notched ball. Compared to the NBT strength
esting procedure, a modification of the geometry of the notched
all is necessary. Grinding-off the plastic zone produced by the
noop indentation changes the peak stress at the ball apex. A
imensionless stress correction factor was evaluated by numer-
cal analysis.

The geometry factor Y  was calculated for a wide range of
otch and crack geometries by FEA. These results are com-
ared with the Newman–Raju formula (generalized solution
sed in the standard SCF-method). An interpolation func-
ion of the new results takes the Poisson’s ratio into account,
hich is necessary for the characterisation of other structural

eramics.
If the crack aspect ratio is a/c  < 0.6, the notched ball speci-

en also favours crack instability at the deepest point (point A),
hich is a well defined situation in fracture mechanics, there-

ore flat surface cracks should be aimed. With typical indentation
rack sizes (that can be achieved for advanced ceramics) the new
ethod may be applied to balls with diameters between 2 mm

nd 20 mm.
In the second part of the paper, which will be published

oon, the experimental procedure of the new fracture tough-
ess test are described in detail, measurement uncertainties are
iscussed and experimental results on silicon nitride balls are
resented. The results fit well to measurement results deter-
ined using other standard testing procedures on bending test

pecimens.
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ppendix A.  Fit  function  for  the  maximum  tensile
tress in  the  NB  specimen  (at  position  1′)  after  material
emoval (an  interactive  applet  with  the  original
nterpolation can  be  found  in  [27])

The results of the FEM-calculations were fitted to a polyno-
ial. It is intended to keep the fit function simple and that the

eviation of the fit function from the FE results should be less
han 1%. The stress is given in relative units (normalised with
aterial removal). The relative stress significantly depends on
he relative amount of material removed (α  = 	h/R), the relative
otch length (λ  = 1 −  h/(2R)) and on the Poisson’s ratio (ν). R  is
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Table A1
Coefficients for the fitting function for the stress factor (see Eq. (A.1)).

Indices Fit coefficients (with z0 = 1.07844)

a b c d

10 −0.591634 2.37305 2.8519 2.74222
11 2.6177 4.54232 2.65985 1.65029
12 −2.06407 −19.5959 −3.41503 4.938
20 −1.39017 3.50268 −8.0687 9.59176
21 4.62443 6.77471 −9.46501 6.54502
22 −3.41374 −44.9503 11.1753 24.7514
30 3.08148 8.73812 20.9244 10.3407
31 −7.41486 17.1121 23.2816 3.63325
3
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A fitting function of the equivalent thickness h – based at
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2 4.803 −164.037 −24.6965 18.151

he radius of the ball. The influences of the relative notch width
nd of the relative notch fillet radius are weak.

The general fit function for fSigma is given in Eq. (A.1) and
he needed coefficients in Table A1. The fitting error is less than
.25%.

fSigma(λ,  ω,  ρ,  ν,  α) =  z0 +  α(a10 +  a11λ  +  a12λ
2)

×(b10 +  b11ω  +  b12ω
2)(c10 +  c11ρ  +  c12ρ

2)

×(d10 +  d11ν  +  d12ν
2) +  α2(a20 +  a21λ  +  a22λ

2)

×(b20 +  b21ω  +  b22ω
2)(c20 +  c21ρ  +  c22ρ

2)

×(d20 +  d21ν  +  d22ν
2) +  α3(a30 +  a31λ  +  a32λ

2)

×(b30 +  b31ω  +  b30ω
2)(c30 +  c31ρ  +  c32ρ

2)

×(d30 +  d31ν  +  d32ν
2) (A.1)

ppendix B.  Fit  function  of  the  geometric  factor  Y  in
he ground  NB-specimen  (an  interactive  applet  with  the
riginal interpolation  can  be  found  in  [27])

The numerical values of the geometric factor YA and YC can
e fitted in terms of the parameters λ, ν, α, β  and γ . The influence
f the notch parameters ω  and ρ  is negligible (consider Fig. 9);

he reference values were used. The general fitting function –
or YA and YC – is shown in Eq. (B.1). The needed coefficients
re given in Table B1 The fitting error is less than 1.5% in point

o

i

able B1
oefficients for the fitting function for the geometric factor (see Eq. (B.1)).

ndices Point A (with z0 = 1.259) 

a b c d 

0 −1.16634 0.84972 0.482606 1.23491 

1 0.0191434 1.97075 28.3316 −3.02365 

2 0.208143 −7.32415 −113.135 2.21254 

0 0.128234 1.33431 1.77848 1.18249 

1 −0.0209168 −1.41052 −11.5363 −10.7237 

2 −0.153399 8.01953 64.7578 7.67749 

0 0.355241 3.16874 −1.3068 0.0796565 

1 −0.217446 −2.99067 5.18989 −0.66641 

2 −0.94953 17.7899 −29.3815 0.454138 
ramic Society 32 (2012) 1163–1173 1171

 and less than 1% in point A.

Y (λ, ω  =  0.12,  ρ =  0.25,  ν,  α,  β,  γ)

= z0 +  γ0.2(a10 +  a11λ  +  a12λ
2)(b10 +  b11ν  +  b12ν

2)

×(c10 +  c11β  +  c12β
2)(d10 +  d11α +  d12α

2)

+γ(a20 +  a21λ  +  a22λ
2)(b20 +  b21ν  +  b22ν

2)

×(c20 +  c21β  +  c22β
2)(d20 +  d21α +  d22α

2)

+γ2(a30 +  a31λ  +  a32λ
2)(b30 +  b31ν  +  b32ν

2)

×(c30 +  c31β  +  c32β
2)(d30 +  d31α +  d32α

2) (B.1)

ppendix C.  A  semi-analytical  approximation  for  the
eometric factor  of  a  semi-elliptical  surface  crack  in  the
round NB-specimen

More than 30 years ago Newman and Raju have derived an
pproximation for the geometric factor of a semi-elliptical sur-
ace crack in a bended rectangular bar. This solution is used for
ata evaluation in the standard SCF-method. The geometric fac-
or of a semi-elliptical surface crack in the NB specimen having

 ground surface can also be found – in a semi-analytical approx-
mation – using the Newman and Raju solution. In the ligament
f the ground NB specimen the course of the first principal stress

 perpendicular to the surface – is almost linear decreasing (see
ig. C1). In other words the stress field is very similar to that
f a bended rectangular bar. Therefore it is possible to define a
ending bar, which has the same slope of the stress field as the
round NB specimen. The thickness of the bar is heq and, for
implicity, the half width b  is defined to be b  = heq (see Fig. C1).

The equivalent beam thickness heq depends on the liga-
ent geometry (mainly on α  and λ) and the crack depth

. The stress distribution is nearly linear in the relevant
egion, i.e. over typical ranges of the crack depth a (for

 ≤  a  ≤  0.25h′).

eq

ur FE results – is given in Eq. (C.1)–(C.3).
The relations have been derived by computing the stresses

n the ligament of the actual (ground) notched ball specimen in

Point C (with z0 = −1.46387)

a b c d

1.30137 1.3381 0.785785 2.27784
−0.0735881 0.315134 −0.0836458 −0.0569606
−0.364722 −3.18661 1.64754 0.0292848

0.632871 0.983236 −0.247442 5.72478
−0.259051 1.25891 −0.511638 2.34767
−0.161234 −12.3825 1.13783 −1.71875

3.05859 −0.0162337 −1.20701 −1.53108
−3.10434 −0.0538943 −14.9341 11.5755

2.0719 0.577001 84.2279 −8.59851
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ig. C1. The stress field in a bended beam of thickness heq and of width 2heq is a
here high stresses occur).

rack depth direction x(or ξ  = x/h′) for several ball-notch config-
rations. For further information see.18,40

eq =  fhh
′ (C.1)

ith

h = −2a/h′

σz,Lig(ξ  =  a/h′) −  1
(C.2)
nd

z,Lig =  1 +  (m0λ  +  m1λ
2)n0ξ  +  (m2λ  +  m3λ

2)n1ξ
2 (C.3a)

ig. C2. Comparison of the geometric factors determined by FE-calculations
nd by a semi analytical approach based on the Newman–Raju formula, plotted
re values of the factor versus the crack shape γ for (a) small cracks (β = 0 5%)
nd (b) big cracks (β = 5%).
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 equal to that of the stress field in a ground NB specimen (at least at the surface,

ith

m0 = −2.54721 m1 = 2.17406 m2 = 5.63419 m3 = −6.07159

n0 = 3.93603 n1 = 3.00221
(C.3b)

Due to the modification discussed above and the approx-
mations of the Newman and Raju, the determination of the
eometric factor of a semi-elliptical crack in a ground NB spec-
men has an unknown uncertainty. Newman and Raju claim that
heir fitting function provided has a maximum error of ±5%
ccording to their FE results.25 In addition, they specified their
E accuracy with ±3% compared to the analytical solution in

erms of a completely embedded circular crack.24,26 All their
alculations have been made for a Poisson’s ratio of ν  = 0.3. A
irect comparison of the Newman and Raju formula and with
wn FE analysis for a semi-elliptical surface crack in a rectan-
ular beam under pure tension showed an error of less than ±3%
or ν  = 0.3.

For the NB model, a comparison of the Y-courses of our (very
ccurate) NBT-FE analysis with the approximations based on the
ewman and Raju formula is shown in Fig. C2 (Note: all of our
EM values outside of 0.4 ≤  γ  ≤  1 are extrapolated). For relative
mall crack sizes (β  = 0.005, see Fig. C2a) both solutions agree
urprisingly well; the maximum deviation is less than ±1.2%.
or bigger cracks (β  = 0.05, see Fig. C2b) the maximum error
or YA rises up to 2.9%, but for YC the difference between both
olutions is still less than 1% for all analysed crack sizes. Gen-
rally, the agreement of the FE-results with the approximations
ased on the Newman and Raju formula and their tendencies
s good but the agreement decreases with bigger relative crack
izes.

In general the semi-analytical calculations of Newman and
aju give the same trend with the crack shape as our FE calcu-

ations but they are only valid for ν  = 0.3. Our FE-solution can
e used in the range of Poisson’s ratio of interest (see Table 1).
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bstract

he “Surface Crack in Flexure” method is widely used for fracture toughness (KIc) determination of ceramics. In part I of the paper we developed
he theoretical fundamentals to apply this procedure to ceramic balls by using the stress application as developed for the so-called “Notched ball
est”. The new test (SCF-NB) can be used to test spherical components without the need to cut out special specimens such as bending bars. In this
ork the practical part is presented including suggestions for crack introduction and specimen preparation and possible measurement errors are
iscussed. It is concluded that a measurement error less than ±5% is possible.
Experiments on balls and bars made from the same silicon nitride ceramic indicate that SCF-NB delivers the same KIc-values as standardised
easurements on bars. Additionally, KIc-values obtained for silicon carbide, alumina and zirconia ceramics are presented. They coincide with
Ic-data from the literature.

 2014 Elsevier Ltd. All rights reserved.
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.  Introduction

For most of all established methods for fracture toughness
etermination, the specimen geometry is standardised. Pris-
atic flexural beams with a cross section of 3 mm ×  4 mm and
40 mm in length are used in the Single Edge V-Notch Beam
SEVNB),1 the Chevron Notch (CN)2 or the Surface Crack in
lexure (SCF)3 method.

The task in the present work is to measure the toughness of

alls without cutting special specimens out of the balls. For that
e follow the basic ideas of the SCF method,3 where a well-
efined crack is made by an indent (Knoop) into surface of a

DOI of original article:http://dx.doi.org/10.1016/j.jeurceramsoc.2011.12.003.
∗ Corresponding author at: Institut für Struktur- und Funktionskeramik, Mon-

anuniversitaet Leoben, Peter-Tunner-Straße 5, 8700 Leoben, Austria.
el.: +43 3842 402 4113; fax: +43 3842 402 4102.

E-mail  addresses: stefan.strobl@mcl.at, stefan.strobl85@gmail.com
S. Strobl).
1 mclburo@mcl.at, http://www.mcl.at.
2 isfk@unileoben.ac.at, http://www.isfk.at.
3 oskar.schoeppl@skf.com, http://www.skf.at.

f
b
b
c
a
l
o
i
s
b
t
(
i

955-2219/$ – see front matter © 2014 Elsevier Ltd. All rights reserved.
ttp://dx.doi.org/10.1016/j.jeurceramsoc.2013.12.052
; Silicon nitride

rismatic beam. Then the beam is loaded in flexure until fail-
re occurs. From the crack geometry and the failure stress the
ritical stress intensity factor (fracture toughness) can be deter-
ined. One of the most important advantages of SCF method

s that the start defect is a real crack and not a relatively sharp
otch, which is required for the validity of linear elastic fracture
echanics (LEFM).4 A difficulty of the SCF method is that the

ndentation causes a plastically deformed zone, which provokes
nternal stresses. This can adulterate the testing results. There-
ore the plastically deformed material has to be removed – e.g.
y grinding – in order to avoid a preloading of the crack tip
y residual stresses and to receive a fully closed and unloaded
rack in order to follow the assumptions made for the evalu-
tion of the experiments. Standards recommend to grind-off a
ayer having the thickness of 1/6 of the long indentation diag-
nal. An alternative suggestion for the grinding depth is given
n,5 which additionally ensures that the critical point (where the
tress intensity factor becomes a maximum) is not at the surface

ut at the deepest point of the crack where the determination of
he stress intensity factor is more precise. Therefore this situation
critical point at the deepest position) is preferred. This grind-
ng depth is approximately 1/3 of the long indentation diagonal
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Fig. 2. Geometric situation in the fracture toughness test for balls. Shown is a
half model of a notched ball with a semi-elliptical crack (white). The plastically
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N, the width WN and the fillet radius RN of the notch. In the equatorial plane
emains a ligament having the shape of a segment of a circle with the thickness

 = D − LN.

more precisely it depends on the crack length before grinding
nd other additional parameters, see in Ref. 5).

The measurement of the crack shape is not straight forward
ince the crack’s visibility may dependent on the material itself.
he measured quantities are influenced by the operator6 as
ell as by the available devices (such as optical microscopy
r SEM).7 The SCF standard3 contains some advices to facil-
tate the crack size measurement on the fracture surface. From
hem only fluorescent penetration dye (FPD) was used in
his work. There are further methods to enhance the visibil-
ty of the crack and its detection, such as tilted indentation,3

on-fluorescent penetration dyes8 or decoration with lead
cetate9,10 which are not discussed in the framework of this
aper.

In the literature on the SCF testing, the geometric factor
efined by Newman and Raju in the late seventies of the last
entury is used.11,12 In these papers an FE-analysis of the stress
eld is made. But in that time, the computers were relatively
low and a coarse FE mesh had to be used to keep the calcula-
ion time manageable. In a recent paper it has been shown, that

 in extreme cases – this can cause errors up to 40% of the deter-
ined value5 (remark: the formula in the SCF-standard based

n the work of Newman and Raju11,12 is fixed to a Poisson’s
atio of 0.3 and a perfect semi-ellipse). Therefore a more pre-
ise solution for the geometric factor of the surface crack has
een proposed, which is used for the data evaluation in this paper
see part I 13).

In the new test a crack is introduced into the surface of a
all with an indenter. Then the plastically deformed material
s ground-off and traction forces are applied to the crack using
he principles of the notched ball test (NBT).14–18 In the NBT a
otch is cut in the equatorial plane of the ball and afterwards the
otch is squeezed together by introducing point loads at the poles
erpendicular to the notch (see Fig. 1). This produces a very well

efined stress field (note: the NBT has been standardised recently
4). Tensile stresses occur at the surface opposite the notch
oot. This stress field (maximum tensile stress σNBT) is almost
niaxial, simple to calculate and almost insensitive regarding

c
w

K

hickness is h = h − �h. Also shown are the positions A and C, where the crack
ay start growing.

easurement uncertainties caused by small geometry deviation
nd the testing setup. Furthermore, the specimen preparation is
ighly flexible. The needed parameters to describe the geome-
ry of the notched ball specimen are illustrated in Fig. 1. All
ogether, these are good preconditions for toughness testing.
or the SCF test applied to balls we use the notation SCF-
B.
The theoretical background and the equations necessary to

valuate the experiments in this work are described in detail in
he first part of this paper,13 but are shortly summarised in the
ollowing: for the creation of the start defect a Knoop hardness
mpression is used in analogy to the standardised SCF method to
ntroduce an approximately semi-elliptical crack into the speci-

en surface, where the maximum tensile stress occurs (i.e. apex
f the notched ball specimen).

The removal of residual stresses by grinding-off the deformed
aterial applied to the notched ball specimen causes a change

n the specimen geometry and thus an altered stress field at the
osition of the crack (see Fig. 2). This has to be taken into account
n the data evaluation: the maximum tensile stress in the NBT,
NBT, has to be multiplied with a correction factor, fSigma, to get

he stress in the specimen after removing the plastic deformed
one: σ  →  fSigma · σNBT.

The fracture toughness, KIc, is determined by the fracture
tress, fSigma · σNBT, the typical crack size, a, and the geometric
actor, Y. The maximum of the geometric factor YMAX along the
rack front is used for KIc calculation. Note that the value and
osition of the maximum depends on the geometry of the notch
nd of the crack and can either be at the deepest point of the

rack (position A, see Fig. 2) or at the intersection of the crack
ith the surface (position C, see Fig. 2).

Ic =  σY
√

aπ  =  (σNBTfSigma)YMAX
√

aπ  (1)
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Fig. 3. SEM micrographs of all investigated materials: (a) SNRef – silicon nitride, (b) SN – silicon nitride, (c) AO – alumina, (d) SC – silicon carbide and (e) ZO –
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he geometry of the notch (see Fig. 1) is defined via the notch
idth WN, the notch root radius RN and notch length LN. The

igament thickness h  is obtained by the ball diameter D  minus
he notch length: h  = D  −  LN. The resulting parameters fSigma
nd Y  were already investigated in detail in part I of this paper13

 for a better usability they were approximated by a fitting func-
ion. The remaining parameter in Eq. (1) is the crack depth a.
enerally, the crack depth a  and the crack shape a/c  (see Fig. 2)

re measured after the test on the fracture surfaces as proposed
or the SCF method. The insertion of the crack as well as its
easurement is the key topic of this part of the paper. The effect

f measurement errors of the most important quantities such
s crack dimensions on the resulting KIc-values will also be
iscussed.

To demonstrate the applicability of the method, tests were
erformed on balls with a diameter of about 5 mm on four dif-

erent structural ceramic materials. The results were compared
ith test results gained with other testing methods and with

iterature data.

a
Y
(

.  Materials  of  study

First, the new method was verified by applying it to a state
f the art commercial silicon nitride ceramic (HIPed, overall
10 wt% content of Al2O3 and Y2O3 additives). From this ref-

rence material (further called as SNRef) balls with a nominal
iameter of 5 mm and standard bending bars were available.
racture toughness was measured by the SEVNB method,1 by

he SCF method3 and with the SCF-NB. For both SCF methods
on bars and balls) Knoop indentation loads of 7 kg and 10 kg
ere used. A micrograph of SNRef can be found in Fig. 3a.
Polished balls made of four other structural ceramics were

upplied by the company SKF, Austria, for a feasibility study.
he balls had a diameter of ∼5.55 mm and were polished to a
ean surface roughness of approximately 10–15 nm, which is

esired for adequate rolling contact performance. The materi-

ls are: HIPed silicon nitride with overall ∼6 wt% Al2O3 and
2O3 additives (SN), 99.7% alumina with MgO–SiO2 additives

AO), sintered silicon carbide with B and C additives (SC) and
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Table 1
Properties of the investigated ball materials.

Short name SNRef SN AO SC ZO

Material Silicon nitride Silicon nitride Alumina Silicon carbide Zirconia
Ball diameter [mm] 4.999 ± 0.001 5.550 ± 0.001 5.555 ± 0.001 5.554 ± 0.001 5.555 ± 0.001
Hardness (HV5) 1585 ± 29 1627 ± 44 1611 ± 66 2274 ± 128 1283 ± 13
Young’s modulus [GPa] 306 ± 4 306.4 ± 0.1 386.6 ± 0.1 389.9 ± 0.1 217.5 ± 0.1
Poisson’s ratio 0.268 ± 0.005 0.269 ± 0.001 0.234 ± 0.001 0.160 ± 0.001 0.332 ± 0.001

Table 2
Characteristic dimensions of notched balls specimen for fracture toughness tests. The data are mean values of sets of 5–6 specimens.

SNRef SN AO SC ZO

Notch root radius RN [�m] 155 234 285 256 250
Notch width WN [�m] 628 609 691 641 628
N  ± 2 

z  ± 2 

Y
i

h
t
a
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t
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t
t

r
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w
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t
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3

3

(
p
4

F
o

otch length LN [�m] 3910 ± 2 4234
-Offset [�m] 15 ± 7 14

-TZP zirconia (ZO). Micrographs of these materials are shown
n Fig. 3b–e.

The mean values and standard deviations of ball diameters,
ardness and the elastic properties are given in Table 1. Note
hat the Poisson’s ratio, ν, is important for an exact data evalu-
tion (since the stress state in the SCF-NB is slightly biaxial).
t influences σNBT, fSigma and Y, which enter into the calcula-
ion of KIc in Eq. (1). Furthermore, for certain crack shapes, the
oisson’s ratio affects the position along the crack front, where

he geometric factor Y becomes a maximum (Y  →  YMAX). This
opic is discussed in detail in Ref. 5.

The elastic constants (e.g. Young’s modulus E, Poisson’s
atio ν) were measured by resonant ultrasonic spectroscopy

RUS).19–21 Balls in the as-polished condition (= as received)
ere probed. Because of the almost perfect ball geometry

i.e. the balls are manufactured within very narrow tolerances),

b
t
w
t

ig. 4. HK15 Knoop indent in SNRef. (a) before grinding, (b) before grinding with fl
f the plastically deformed zone with FPD and under UV-light.
4206 ± 4 4214 ± 8 4250 ± 3
2 ± 1 5 ± 4 24 ± 2

he measurement error in the elastic constants was very small
<0.5%).

. Sample  preparation

.1. Silicon  nitride,  alumina  and  silicon  carbide

For the conventional SCF method, standard bending beams
3 mm × 4 mm ×  50 mm) were diamond ground from larger
lates. For SEVNB tests notches were manufactured into the

 mm ×  50 mm sides of the beam according to Ref. 1.
For the notch preparation of the NBT specimens one batch of
alls (up to 30 specimens) was glued in a special guide rail and
he notch with the desired depth was cut through all specimens
ith a diamond cutting wheel. This approach guarantees that

he relevant surface area will not be damaged or pre-stressed

uorescentic pentration dye (FPD) and under UV-light and (c) after grinding-off
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occurs within 5–10 s. The maximum load (i.e. at fracture) was
ig. 5. Preparation method according to Ref. 22 for introduction of a surface
rack in zirconia. (a) Schematic procedure and (b) example for ZO (HV20).

ue to sample preparation and all samples have approximately
he same notch depth.

All relevant specimen dimensions (see Table 2) including
he deviation of the mid-cut plane versus the equatorial plane
i.e. z-offset) were measure according to the NBT standard14

nd satisfied the requirements. One exception was the notch
ength with 75–78% of the ball diameter. The stresses for these
pecimens could be evaluated using the formulas in Ref. 18 (the
BT standard is designed for a notch length of 80 ±  1%).
After the machining of the notch a crack was produced using

 Knoop indenter. For this purpose the notched ball was glued on
 chamfered blade which is marginally thinner than the notch.
his assembly guarantees that the plane of the semi-elliptical
rack is parallel to the notch mid-plane and permits an easy and
eproducible Knoop indentation. Furthermore, the successful
nfiltration with FPD, the indentation size measurement and the
rinding-off of the plastically deformed material is simplified.

In indentation pre-studies, which will not be discussed in
etail in this work, the ideal indentation load (between 0.5 kg
nd 30 kg) for each material regarding crack formation and crack
isibility was deducted. For all indentations the same hardness
ester (Zwick 3212B) and a tilt angle of 3◦ was used. An exam-
le for an indentation load of 15 kg in silicon nitride is given
n Fig. 4. Remark that the radius of the ball surface may sig-
ificantly influence the resulting indentation size, as well as the

esulting cracks next to the indent.

According to Refs. 3, 7 the long diagonal d of the Knoop
ndent (see Fig. 4a) should be used to calculate the necessary

u

t

ramic Society 34 (2014) 1881–1892 1885

epth of material removal �h  = d/6). In Fig. 4b, a photograph of
he same indent under UV-light is illustrated, where the crack
ength 2c0 before grinding is easy to determine using the FPD
cf. Fig. 4a). This initial crack length was used for the calculation
f �h  (according to Ref. 5), which in addition ensures that the
ritical point is not at the surface (point C, see Fig. 2) but at the
eepest point of the crack (point A, see Fig. 2).

After grinding (see Fig. 4c) the crack remains clearly visible
ith FPD, and this crack length 2c  can be used for verification of

he crack shape, which is needed as input for the determination
f the geometric factor.

The grinding process can be controlled very precisely by
omparison of the levels of blade edge and the ball apex (highest
oint of the ball, if the notch is aligned downwards). �h  for data
valuation is obtained by the difference of ligament thickness h
efore grinding and of ligament thickness h′ after grinding, i.e.
h = h −  h′.
In part I of this paper,13 the numerical calculations were per-

ormed for a crack depth a  in the range of 0.5–6.5% of the ball
adius and the grinding depth is restricted to 2% up to 5% of the
all radius. If no past experience exists, the indenter load that
roduces suitable cracks has to be determined, for each mate-
ial in pre-studies. The same material dependent problems occur
ith the standard SCF method in bending bars. For the present

nvestigation, a good trade-off was HK10, which was used for
he silicon nitrides, alumina and silicon carbide ceramics.

.2. Zirconia

In the case of zirconia it was not possible to create penny-
haped cracks with a Knoop indenter, even with indentation
oads up to 500 N. For this reason, a special procedure was
pplied according to the suggestions in the VAMAS report7 for
he SCF method and the work of Torres et al.22 With a Vick-
rs indenter a hardness indent with a tilt angle of about 3◦ was
roduced in the apex of the notched ball specimen. One crack
t the indentation corner was so small, that it was completely
emoved by the subsequent grinding procedure (see Fig. 5a). In
re-studies the indentation load of 196 N (HV20) showed the
est result. A typical appearance of such a tilted Vickers inden-
ation can be found in Fig. 5b. The left crack is significantly
maller than all others. As a minimum for the material removal
h the half of the Vickers indent diagonal was chosen.

. Testing  procedure

.1. General  aspects

The testing procedure is similar to the procedure used for
he conventional NBT for strength testing.14,18 A universal test-
ng machine (Zwick GmbH & Co. KG, Ulm, Germany) with
wo parallel anvils made of silicon nitride plates was used. The
ests were performed using displacement control so that fracture
sed to determine the fracture stress σNBT.14,18

After testing, the shape of the pre-crack was investigated at
he fracture surfaces. The determination of the crack geometry
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Fig. 7. Insertion of a crack via tilted Vickers indent in the material ZO (HV20).
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ig. 6. Crack shape determination in SNRef (HK7) with FPD and UV light. (a)
ull crack width 2c measured at the original surface (before fracture) and (b)
rack depth a and full crack width 2c measured at the fracture surface.

t the fracture surface can be performed using a conventional
tereo microscope with or without FPD. In the majority of cases
he geometry of the crack (a  and c) is easily to determine by
ractographic analysis (and the use of FPD).3,7 In the present
ork all specimens were infiltrated with FPD (WB200, RIL-
hemie) before grinding to decorate the pre-crack. We suggest

o measure the crack shape directly after testing, otherwise the
ye may spread further onto the rest of the fracture surface and
he pre-crack dimensions are overestimated.

.2. Silicon  nitride,  alumina  and  silicon  carbide

The ideal case is illustrated in Fig. 6 for SNRef. By com-
arison of the 2c  measured at the ground surface before testing
Fig. 6a) with the 2c  measured at the fracture surface (Fig. 6b),
ne can estimate the reliability of the crack shape determination.
enerally the FPD method works quite well for silicon nitride,

ilicon carbide and alumina. Swab and Quinn23 reported so-
alled “precrack halos” and possibly an influence of slow crack
rowth in alumina, but no halos were observed at all in our
tudies.

.3. Zirconia

As mentioned in a previous section in zirconia the pre-crack
as created via a tilted Vickers indent. Ideally three cracks

emained in the sample after material removal – an example
s illustrated in Fig. 7a. The direction of the stress in the NBT
indicated with arrows) was nearly perpendicular regarding the
orizontally aligned crack. After testing this crack was clearly
isible at the fracture surface (see Fig. 7b): it has a kidney shape.
or data evaluation it was approximated as a semi-elliptical
rack.

.4. Indentation  fracture  resistance

The significance of indentation fracture resistance6,8,22,24–32

IFR) test results is still somewhat unclear and therefore contro-

ersially discussed. But the method is often used – especially
n industry – to get a rough estimate of the fracture toughness.
hereby a Vickers indent is introduced in the material and the

engths of the cracks originating from the corners of the indent
s
i

a) After grinding at the surface with FPD, the arrows indicate the direction of
he first principal stress in the NBT and (b) Crack shape determination at the
racture surface with FPD.

re measured. The IFR can be determined from the length of the
racks, the indentation load, the Young’s modulus and the hard-
ess of the material. Many different equations for the evaluation
f IFR tests exist, which have been calibrated to measurements
n various materials. These equations may give quite different
alues for the IFR; KIFR.

We will compare IFR test results (evaluated with two of these
quations) with SCF and SEVNB test results. One is the equation
f Niihara30,31 for penny-shaped cracks, which is also a criterion
n the specification standard33 for silicon nitride materials des-
gnated for ball bearing applications. The second equation has
een proposed by Miyoshi.28 It was developed considering a
ide range of different ceramic materials and indentation loads.
We made the indents into the polished cross sections of the

alls in the equatorial plane. At least 10 indents were measured
or each material and each indentation load (1, 2, 5, 10, 20 and
0 kg).

.  Experimental  results

.1. Evaluation  of  the  SCF-NB  method:  fracture  toughness
f the  reference  material
The results of fracture toughness tests on SNRef are
ummarised in Table 3. For the SCF tests the location of the max-
mum value for the geometry factor Y is indicated in the case of
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Table 3
Results of fracture toughness measurements for SNRef on prismatic bars and balls.

Specimen type/SCF indentation load Location of YMAX No. of samples a [�m] c [�m] a/c KIc[MPa m1/2]

Bar (SEVNB) 6 5.4 ± 0.1
Bar (SCF)/7 kg A 5 71 ± 8 125 ± 5 0.57 5.7 ± 0.1
Bar (SCF)/10 kg A 6 108 ± 13 158 ± 7 0.68 6.0 ± 0.2
B
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consistent with the R-curves published in Ref. 38.

Another explanation for the high KIc-value of the HK10
indented balls could be the position of the critical point at the

Fig. 8. Measurements of the fracture toughness KIc of SNRef using different
all (SCF)/7 kg A 6 

all (SCF)/10 kg C 6 

emi-elliptical cracks. For most measurements the critical loca-
ion was at the deepest point of the crack (point A, see Fig. 2).
or the indentation load 10 kg on ball specimens, the maximum
f the stress intensity factor occurred at the intersection of the
rack with the specimen surface (point C).

The SEVNB method – evaluated according to the
EVNB standard1 – provides a fracture toughness KIc of
.4 ±  0.1 MPa m1/2 that is a little lower than all other KIc-results
btained for this material.

For the SCF method the results for KIc are given in Table 3.
or tests on bars the indentation loads of 7 kg and 10 kg pro-
ided a KIc = 5.7 ±  0.1 and 6.0 ±  0.2 MPa m1/2, respectively. The
tandard deviations of the fracture toughness data determined at
ifferent indentation loads do not overlap. As predicted for these
rack shapes in Ref. 5 the fracture starts in point A.

For the SCF-NB (performed on balls), KIc was obtained
ccording to part I.13 In the case of the balls indented with

 kg the maximum of the stress intensity factor was at point
 and the fracture toughness was KIc = 6.1 ±  0.2 MPa m1/2. In

he case of the balls indented with 10 kg the maximum of the
tress intensity factor was at point C and the fracture toughness
as 6.5 ±  0.1 MPa m1/2.
It should be noted that whether point A or C becomes critical

epends on the Poisson’s ratio and on geometrical details of the
tarter crack. In the actual case – as analysed in Refs. 5, 13 –
he critical point is C if a/c  <0.7. This perfectly fits to the test
esults described in Section 5.1.

.2. SCF-NB  fracture  toughness  of  four  structural  ceramics

Of each of the materials SN, AO, SC and ZO, six balls were
sed for SCF-NB testing, see Table 4. According to the the-
retical prediction5,13 all specimens had the critical point at
he surface (point C) due to the crack shape ratios of a/c  <0.7
remember, the condition was a/c  <0.7).

All notched ball specimens made of SN were indented with
0 kg. The mean crack shape ratio is a/c  <0.71. Accordingly to
his the stress intensity factors of point C (6.2 ±  0.1 MPa m1/2)
nd point at A (5.6 ±  0.2 MPa m1/2) were close together in the
ests. The AO sample was split in two batches with 3 specimens
ach. One batch was indented with 5 kg and one with 10 kg
hat resulted in clearly different crack sizes (factor ∼2). The KIc
ean value for HK5 is slightly smaller than the value for HK10
ut statistically indistinguishable. For all six SC notched balls
n indentation load of 10 kg was used. This resulted in relatively
ig cracks, which showed extremely good overall measurability
f the crack shape with FPD but also in a stereo microscope.

t
(
s
e

87 ± 11 131 ± 5 0.66 6.1 ± 0.2
138 ± 3 177 ± 1 0.78 6.5 ± 0.1

herefore, the scattering in KIc with 3.0 ±  0.3 MPa m1/2 does not
esult from the measurement uncertainties of the crack depth or
rack width. The KIc measurements of zirconia (ZO) resulted in
.4 ±  0.3 MPa m1/2.

. Discussion

.1.  Fracture  toughness  results

The KIc-values of the reference material (a silicon nitride
eramic) generally tends to increase with higher indentation
oads (this observation is statistically significant). A plot for
NRef of the KIc-values versus the crack length �a  is shown in
ig. 8.
�a  denotes the crack length, where crack bridging effects

ay occur (e.g. due to grain interlocking). For a “Surface Crack
n Flexure” it holds �a  = a. In the case of the SEVNB-test frac-
ure is most likely caused by very small (�a  < 10 �m) cracks in
ront of the V-notch.36,37 Hence, the results of the SEVNB-tests
re plotted at a crack length of 10 �m. The result of SEVNB
ogether with the SCF values implies the existence of a rising
rack resistance curve, i.e. R-curve. This behaviour is typical for
ommercial silicon nitrides and has already extensively stud-
ed for some special materials. The data shown in Fig. 8 are
esting methods: measurements with the SCF method on bars (squares) and balls
circles) and results determined with the SEVNB method (open diamond). Also
hown are fracture resistance measurements, KIFR, evaluated according to the
quations of Niihara (downwards triangles) and Miyoshi (upwards triangles).
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Table 4
Results of fracture toughness measurements with the modified SCF method on balls for SN, AO, SC and ZO materials.

Material/SCF indentation load Location of YMAX No. of specimens a [�m] c [�m] a/c KIc [MPa m1/2] KIc literature [MPa m1/2]

SN/HK10 C 6 118 ± 7 165 ± 2 0.71 6.2 ± 0.1 6.2 ± 0.2 28

AO/HK5 C 3 125 ± 34 155 ± 40 0.81 4.3 ± 0.3 4.0 ± 0.2 34

AO/HK10 C 3 241 ± 25 274 ± 33 0.88 4.5 ± 0.1 –
SC/HK10 C 6 216 ± 32 268 ± 29 0.81 3.0 ± 0.3 2.6–3.0 35

ZO/HV20 C 6 69 ± 17 69 ± 10 1.00 4.4 ± 0.3 4.4 ± 0.4 7
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reproducible than measurement of the crack width on the fracture
surface. The results are illustrated in Fig. 9b – all measurements
are within a deviation of ±10% for the investigated materials
urface (at point C) in contrast to all other tests. In fact the cor-
ect description of a crack intersecting the surface (at point C) is
till an open question. At point C the stress singularity does not
xactly follow an inverse square root law39 (as it is supposed
n LEFM) and T-stresses may become relevant.39–41 In addi-
ion, pop-in-events – as mentioned in Appendix B of the SCF
tandard3 – are an unsolved uncertainty.

In order to force point A to become critical, it would be neces-
ary to produce shallower cracks with a smaller a/c-ratio, i.e. to
rind-off (a little) more material from the indented ball surface.
n estimation for the minimum grinding depth for the conven-

ional SCF method in flexure bars is given in Ref. 5, which can be
nalogously used for the NBT, by approximating bar’s thickness
ith the thickness of the ligament of the notched ball specimen.
or details see Ref. 42.

In the last column of Table 4 KIc values from literature are
iven for all materials (SN, AO, SC and ZO) for comparison.
ll these results have been measured with the SCF method on
ars under similar indentation loads as used in this work. Also
he microstructures are comparable – only the alumina ceramic
as a smaller mean grain size than the AO ceramic. All KIc
eferences fit well to the results in this work considering standard
eviation.

.2. Measurement  error

For each new testing method the error analysis is a key ele-
ent to understand how reliable, reproducible and sensitive the

btained result is regarding errors of the input data. In the dis-
ussed case the measurement of the crack shape is a crucial topic
or the fracture toughness evaluation with surface cracks in the
CF method. Therefore, not only the reproducibility of surface
racks but also the measurement error in the crack length and
he crack width is an important issue to be discussed.

In Fig. 9a, a comparison of crack dimensions measured with
i) grazing incident light and (ii) with FPD is shown. The
racks in alumina and zirconia were not measurable on the
racture surface without penetration dye, so no reference val-
es are available for these materials. Hence, only the SN, SC
nd SNRef are discussed. The dashed lines in Fig. 9 indicate
he ±10% confidence intervals. As one can see, most of the
ata points are within ±10% deviation. Large cracks seem to

e measured longer without FPD. This means that the crack
imensions are not overestimated using FPD. The FPD mea-
urements were repeated one day later and the same results were
btained.

F
f
a
s

As mentioned before, the full crack width 2c  can be deter-
ined directly before fracture at the polished surface, preferably
ith FPD. This procedure is supposed to be more precise and
ig. 9. (a) Comparison of the crack shape parameter a and c measured at the
racture surface with FPD vs. stereo microscope measurements without FPD
nd (b) comparison of full crack width 2c measured at the fracture surface vs.
pecimens surface (before fracture).
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ig. 10. Influence of crack shape measurement errors aerr and cerr on the accura
nd a/c = 0.5, (c) large crack and a/c = 1, (d) large crack and a/c = 0.5.

ut the measurements at the fracture surface give tentatively
slightly) larger crack length values than the measurements at
he specimens surface. Conclusions for the crack shape mea-
urements with the used penetration dye are:

(i) For fine grained materials the use of FPD is very useful,
especially considering the ease of use, experience of the
operator and time consumption. Ideally, the measurement
precision does not suffer.

(ii) In materials such as alumina the crack shape is very difficult
to measure without FPD.

iii) The measurement of the crack at the polished surface is
only possible with FPD and helps to keep the measurement
uncertainties low (<5%).

iv) No scanning electron microscope analysis is necessary to
obtain accurate crack shape geometries.

According to Eq. (1), KIc depends on three factors. The errors
n σNBT and fSigma were already discussed in the first part of this
aper13 – both are typically less than 1–2%. The remaining fac-
ors are mainly affected by the crack size and shape. In addition,
he critical point for the start of crack propagation may change
bruptly (depending whether YMAX is in point A or in point C).

′ √

s a consequence, we introduce a new variable Y =  YMAX aπ.

or the error analysis. This approach enables us to investigate
he influence of errors in the crack geometry, i.e. the error in the
rack depth aerr and in the crack width cerr simultaneously. The

t
g

 the (modified) geometric factor Y′. (a) Small crack and a/c = 1, (b) small crack

nfluence of other geometrical parameters and of the Poisson’s
atio as well as their interaction with the crack shape deviation
n the determination of the stress intensity factor is small (much
ower than 1%) and can be neglected.

The geometrical factor Y  is unit independent and was calcu-
ated in part I for all specimen geometries, which are relevant
n practice. With Y′, the overall effect of crack dimension mea-
urement errors on error in KIc for a characteristic specimen can
e investigated. Furthermore, the relative influence of a given
err is stronger for small cracks than for big cracks. As reference
eometry of the notched ball specimen, the following parame-
ers were chosen for the error analysis: D  = 5 mm, LN = 4 mm,
→h = 1 mm), WN = 0.5 mm, RN = 0.125 mm, �h  = 100 �m and

 = 0.3. To cover all measured crack geometries in the investi-
ated materials (see Tables 3 and 4), two representative crack
epths (a  = 100 �m and a  = 200 �m) and two extrema in the
rack shapes (a/c  = 0.5 and a/c  = 1) were investigated.

An error in the measurement can occur in four different kinds:
nly in a, only in c or in both (in the same direction or in the
pposite direction, respectively). These four cases are plotted in
ig. 10a for a/c  = 1 with a = 100 �m. If aerr = 0 and only c  is incor-
ect, �Y′ is nearly zero (which is equivalent to zero error in KIc).
or a measurement error of ±20 �m in the crack dimensions a
r c, �Y′ rises up to 10%.
For a shallow crack (a/c  = 0.5) with a  = 100 �m (Fig. 10b)
he error for ±20 �m (in either a or c) is below 4% for the
eometric factor in all cases, that are representative for the SN
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Fig. 11. Indentation fracture resistance versus effective crack length for four
structural materials (SN, AO, SC and ZO). On the left hand side the KIc results
(measured with the modified SCF method on balls) is plotted. The indentation
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nd SNRef specimens. One reason for this low error could be that
he geometric factor is critical in point A for most of the plotted
ata points. The curves are discontinuous and YMAX switches to
oint C on the right hand side of the graph.

For deeper cracks (a  = 200 �m) point C always remains the
ritical one, as one can see in Fig. 10c and d. Again a measure-
ent error exclusively in c  has almost no effect on KIc. When

err is about ±  20 �m and cerr is about −20 �m, �Y′ increases
bove 10 % for a/c = 1. In all other configurations the resulting
rror stays below 5–6%. This can be quantified as the typical
rror in alumina and silicon carbide with 10 kg indents resulting
rom errors in the crack shape determination.

Three points can be concluded from this error analysis:

(i) The error in KIc due to errors in crack geometry measure-
ments is typically smaller than 10%. For shallow cracks the
resulting error is smaller than 5%, which is an additional
argument to create shallow cracks.

ii) The accurate determination of a  is significantly more impor-
tant than that of c  (see dashed lines in Fig. 10).

.3. Comparison  IFR  with  fracture  toughness  test  results

Tests on  the  SNRef  material: For all used indentation loads
racks at the corners of the indents occurred, which could be used
or the determination of the indentation fracture resistance, KIc.
ollowing the suggestion of Ref. 27 the test results are plotted in
ig. 8 versus the effective crack length �a  = cv −  dv/2. cv is the
istance between indent centre and crack tip, and dv the indent
iagonal. KIFR-results for all evaluated loads are illustrated as
ines showing a slightly increase with the crack length. If the

IFR-values are evaluated using the equation of Miyoshi, the
alues are about 6 MPa m1/2. They are in good agreement with
he SCF results. If the evaluation is made using the equation of
iihara (and therewith following the evaluation recommended

n ASTM F 2094-08), the values are about 7.5 MPa m1/2 and do
ot fit the measured fracture toughness values.

Tests on four  structural  ceramic  materials  (SN,  AO,  SC  and
O): The KIFR test results shown in Table 4 and are plotted

n Fig. 11. The KIc-values are shown on the left hand side of
he diagram without information about the crack length (see
able 4).

In the case of SN the KIFR values were determined on indents
ade with a load of 1–30 kg. The indents in the AO and SC
aterials were only evaluable, if loads between 2 kg and 5 kg
ere applied. The other tests were rejected due to the influence
f big pores, material break-outs and lateral cracks around the
ndents.

For ZO the scatter of the data was very large. As shown in
ig. 7b at an indentation load of 20 kg Palmqvist cracks were
roduced on each corner of the indent. This is in accordance
ith the work of Kaliszewski et al.26 They found that half-penny

racks are created in zirconia (Y-TZP) with loads above 50 kg.

he used IFR-formulas are only applicable for half-penny cracks
nd deliver erroneous values for other crack geometries. In our
ase the cracks had a kidney shape and the KIFR data evaluation
ay become meaningless.

•

•

racture resistance, KIFR, was evaluated using the equations of Niihara and
iyoshi28 respectively.

If the tests were evaluated with the Miyoshi equation the
N data nicely correlate with our fracture toughness values for
igher indentation loads, but data evaluated with the Niihara
quation do not. In the case of AO the KIFR do not correlate with
racture toughness values irrespective which evaluation equation
s used (neither Niihara nor Miyoshi). KIFR-values of SC do not
epend on indentation load. The Miyoshi formula gives KIFR
alues which correlate with our KIc test results.

The results of the IFR method can be summarised as fol-
owing: (i) the commonly used IFR Niihara evaluation does not

atch the fracture toughness of all investigated materials, even
f silicon nitride. (ii) In two materials (silicon carbide and silicon
itride) the Miyoshi formula fits the fracture toughness within
he experimental standard deviation. (iii) The IFR method gen-
rally depends on the indentation load. An overestimation by the
actor of 2.5 (in zirconia) is possible. (iv) Due to the formation
f different crack patterns (Penny-shaped cracks, lateral cracks,
almqvist cracks, etc.) the evaluation procedure for IFR may
ecome meaningless. In summary IFR-measurements should
ot be used for the estimation of fracture toughness.

. Conclusions

In part I of this paper13 the theoretical analysis of the SCF
ethod applied to notched ball specimen (SCF-NB) was con-

ucted. In this second part the method is applied to several
tructural ceramics to demonstrate the experimental applicabil-
ty. The following conclusion can be drawn:

 The SCF method delivers the same testing results whether
it is applied to beams (as described in standards) or to balls
(SCF-NB).

 The data determined with the SCF-NB test also coincide with

results measured with other methods and with literature data.

 The developed evaluation procedure proved to be suitable. For
example it could be shown that it can be predicted whether



an Ce

•

•

•

s
t
t
c
i
b
t
c
m
f
B
n
o

b
i
t
l
p
a
n
m
a
c

t
m
c
m

A

p
T
u
f
P
f

t
a

R

1

1

1

1

1

1

1

1

1

1

2

2

2

S. Strobl et al. / Journal of the Europe

the highest stress intensity factor is at the position A or C of
the crack front.

 It is recommended to prepare the specimens in such a way
that point A will become critical. This can simply be made by
grinding a little more of the indented volume away, so that the
ration a/c  becomes less than 0.7 (shallower cracks). In point
A the measurement uncertainties are much smaller than in C.

 The use of fluorescent penetration dye (FPD) is useful to
measure the crack size.

 The measurements of the indentation fracture resistance
showed, that the gained data strongly depend on the used eval-
uation method and are not reliable. It is recommended not to
use indentation fracture resistance measurement for fracture
toughness estimations.

The practical effort and time consumption should also be con-
idered. The production of notched balls specimen directly from
he balls for strength testing is generally faster than the produc-
ion of a (standard) bending beam from a ball. The effort for the
rack introduction, measurement, grinding procedure and test-
ng is very similar to the effort in conventional SCF-testing and
oth methods have generally the same advantages and disadvan-
agous. With the SCF-NB test also small spherical components
an be tested, which seems not to be feasible with other reliable
easurement techniques. A lower limit for the ball diameter

or the preparation of a notched ball specimen is around 3 mm.
elow that size the alignment of the crack and the cutting of the
otch may cause considerable geometrical deviations; possibly
ther notching procedures can solve this problem.

A short comment to the used evaluation equations should
e given. In this work, the solutions for stress fields and stress
ntensity factors described in part I of the paper13 are used. In
he standards the Newman and Raju equation12 is used which is
ess precise than our equation. In the case of the measurements
resented in this paper the differences between both equations
re relatively small (between 0 and 7%), but it should be recog-
ised, that depending on the Poisson’s ratio of the investigated
aterial and the crack geometry much higher differences may

rise. This fact is even more relevant if the critical point at the
rack front is point C.

In summary it can be stated, that the new method to determine
he fracture toughness in the surface of balls can be recom-

ended for wider use. Especially in the case of bearing balls it
ould be a good solution for a fair comparison between different
aterials.
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A Fracture Toughness Test Using the Ball-on-Three-Balls Test

Tanja Lube,‡,† Stefan Rasche,‡ and Tjokorda Gde Tirta Nindhia‡,§

‡Institut f€ur Struktur- und Funktionskeramik, Montanuniversit€at Leoben, A-8700 Leoben, Austria

§Department of Mechanical Engineering, Udayana University, Jimbaran, Bali, Indonesia

A method for fracture toughness measurement of ceramics

using small disks and plates is presented. Similar to the
surface-crack-in-flexure (SCF) method a semielliptical surface

crack is introduced centrally into one plane side of the speci-

men which is fractured in a ball-on-three-balls test. Finite ele-

ment simulations are used to evaluate the stress intensity
factor (SIF) for this loading geometry for a range of crack

sizes and crack geometries. Empirical formulae for the geomet-

ric function are provided for evaluation of the test. The effect

of position uncertainties is investigated using FEM and experi-
ments. Other sources which may contribute to the measurement

error are identified and quantified, resulting in recommenda-

tions for the practical realization of the test. A determination

of the fracture toughness within �10% measurement uncer-
tainty is possible with specimens larger than 8 mm in diameter

and thicker than 0.5 mm. With larger specimens an uncertainty

comparable to other fracture toughness tests can be achieved.
For precise measurements it is important to position the crack

within �120 lm of the stress maximum, to know Poisson’s

ratio exactly and to test cracks that have the maximum SIF at

their deepest point. A method how this can be achieved is
presented.

I. Introduction

I N material development or situations where ceramics are
prepared on laboratory scale (e.g., by various pressing

routes), a convenient specimen shape is a rather thin cylindri-
cal disk. There also exist ceramic components such as resis-
tors,1 watch glasses,2 and others3 which are disk-shaped.
This shape is also the prescribed form for biaxial strength
tests of bio-ceramics.4,5 Often these parts are too small to cut
standard bend bars for fracture toughness evaluation out of
them. Since suitable, separately fabricated, bodies with larger
dimensions may have different properties, a fracture tough-
ness test method that uses residual stress-free indentation
precracks and that can be applied directly to small disk- (or
plate-) shaped parts would be extremely helpful. With such a
method fracture toughness KIc instead of the poorly defined6

indentation fracture resistance KIFR determined by the IF
method7,8 will be accessible.

The ball-on-three-balls test (B3B test) is a favorable, high
precision biaxial flexural strength testing method for small
ceramic disks and plates.9–11 An advantage of this test is the
possibility to test platelike components without special grind-
ing procedure.

In Strobl et al.3 it was already shown, that the B3B test is
also a good basis for fracture toughness testing. Similar to
the surface-crack-in-flexure (SCF) method for bend bars12–14

a sharp semielliptical surface crack was introduced into a
B3B specimen. The crack size was measured on the fracture
surfaces of the broken specimen. The critical stress intensity
factor (SIF) along the crack front was evaluated with the
help of a fracture mechanical three-dimensional finite element
analysis. It was demonstrated for five different ceramic mate-
rials, that the obtained KIc results match very well the results
determined with established methods. This new method we
called B3B-KIc test.

A comparison of the three-dimensional stress field in the
B3B test with the axisymmetric stress field found in ball on
ring or punch on ring test was given in Rasche et al.15 There
it was shown that the artificial crack is loaded by a almost
axisymmetric stress field in the specimen center and therefore
the SIF distribution along the crack front is almost symmet-
ric too. But the position of the maximum can change with
respect to the crack shape ratio, the crack size to specimen
thickness ratio as well as the Poisson’s ratio.

While in Strobl et al.3 only the maximum KI value along
the crack front was presented, we now investigate the posi-
tion of the maximum. Furthermore, we proceed with an
error analysis, which quantifies the effect of uncertainties of
the crack’s position.

The calculation of the SIF distribution along the crack
front nowadays is an ordinary engineering problem thanks to
available finite element software packages with fracture
mechanical capabilities such as ANSYS or ABAQUS. Never-
theless, it might be a handicap for daily use of this new
method outside research laboratories. More practical would
be a formula which enables the test engineer to do the evalu-
ation without the need to perform a finite element analysis.
For this reason an easy-to-use empirical SIF formula is
developed in this paper. It is based on a set of finite element
calculations with systematically varied parameters.

II. Description of the B3B-KIc Test Method

The fracture toughness of ceramics can be determined when
a crack of measurable size is introduced in a specimen of
well-defined geometry which is then loaded until fracture
under well-defined boundary conditions. These prerequisites
are satisfied with the B3B-KIc method. It is already described
in detail in Strobl et al.3 In the B3B strength test, we have a
circular disk or a rectangular plate, which is supported by
three balls in contact and loaded on the opposite side by a
fourth ball of the same size. The loading ball is positioned
centrally to the three supporting balls, see Fig. 1. Using a
Knoop indentation a almost semicircular surface crack is
introduced as a starter crack in the center of the specimen,
opposite to the loading ball (Fig. 2). Residual stresses due to
the plastic imprint are removed by a grinding procedure. A
layer having the thickness of a minimum of one-sixth of the
indent diagonal has to be removed from the surface.14 The
ground specimen is put into the B3B testing jig such that the
crack is situated on the tensile stressed side and located in
one of the three symmetry planes. That means one surface
point of the crack is directed toward one supporting ball, the
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other surface point looks in the direction of the gap between
the two remaining supporting balls.

Starting from a small preload the load is increased until
fracture. The crack size is measured on both fracture surfaces
of the broken specimen. It is assumed, that the crack shape
can be modeled as semielliptical, Fig. 3, with crack depth a
and crack width 2c.

In the framework of linear elastic fracture mechanics the
fracture toughness KIc can be evaluated with the Griffith/Ir-
win relation

KIc ¼ rB3BY
ffiffiffiffiffiffi
pa

p
(1)

where rB3B denotes the maximum tensile stress in the B3B
strength test, which occurs in the center of the specimen
opposite to the loading ball. The characteristic crack dimen-
sion a is the crack depth. The load independent geometric
function Y depends on the specimen and crack geometry as
well as on the Poisson’s ratio m of the tested material. For
semicircular or semielliptical surface cracks which are of
interest here, it varies with position along the crack front. Its
maximum Ymax has to be used in Eq. (1). This maximum
was calculated and plotted for certain parameter combina-
tions and m = 0.3 in Strobl et al.3

rB3B can be expressed by the empirical formula9

rB3B ¼ F

t2
� f t

R
;
Ra

R
; m

� �
(2)

where the dimensionless factor f depends on the three dimen-
sionless parameters t=R, Ra=R and m, with the specimen

thickness t, the loading radius Ra and the specimen radius R.
Although it is intended for circular disks, an effective speci-
men radius can be calibrated for rectangular plates.16 The
loading radius is determined solely by the selection of the
diameter DB of the four balls, given by the relation:
Ra ¼ DB

� ffiffiffi
3

p
. Functions approximating f were already pub-

lished by B€orger et al.9 as well as by Danzer et al.17 In the
Annex I we provide an even simpler function with less coeffi-
cients but high accuracy. So the remaining unknown is the
geometric function Y, which depends on the following four
dimensionless parameters:

Y ¼ Y
a

c
;
a

t
;
t

Ra
; m

� �
(3)

Y can be calculated with the help of finite element simula-
tions and Eqs. (1) and (2):

Y ¼ KI;FEM

rB3B;fit

ffiffiffiffiffiffi
pa

p ¼ KI;FEM � t2
F � f t

R ;
Ra

R ; m
� � � ffiffiffiffiffiffi

pa
p (4)

The SIF varies along the crack front, which will be shown
in more detail later. Due to the shape of the SIF curve it is
sufficient to consider the values at two locations of the crack
front, near the surface and near the deepest point, to obtain
the values for Ymax. Then two geometric functions have to
be evaluated to characterize the crack growth in the depth
and at the surface. The one with the larger value has to be
used in Eq. (1) to evaluate KIc.

III. Finite Element Simulations

(1) Modeling of the B3B Test with Surface Crack
A three-dimensional model of the B3B-KIc test was devel-
oped, using the commercial finite element package ABAQUS
Standard (Release 6.13). The crack geometry is modeled as
semielliptic. A focused mesh with singular crack tip elements
(quarter point elements with collapsed element face at the
crack front) is used. Although a half model would be suffi-
cient to calculate the SIF for the ideal test geometry, because
the crack is positioned in one of the three symmetry planes
of the B3B test, a full model was developed to be able to
consider deviations from the ideal crack position. Three types
of position deviations are modeled:

1. Translation Δy tangential to the symmetry plane (in
plane shift)

2. Translation Δx normal to the symmetry plane (out of
plane shift)

3. Rotation a with the rotation axis parallel to the load-
ing axis

Of course combinations of these deviations are possible.
These position errors occur in real experiments but cannot
be measured properly. Figure 4 shows the geometric model
including the position errors Δx, Δy, and a.

Fig. 1. Ball-on-three-balls test geometry with four equally sized
balls of radius RB. Specimen and loading ball are positioned
centrally to the three supporting balls in contact.

Fig. 2. Sketch of crack position in B3B-KIc test.

Fig. 3. Sketch of the semielliptical surface crack model, C is
directed toward the gap between two support balls, C* is directed to
the contact point of the third support ball.
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The finite element model is parameterized to give the
opportunity to investigate separately and combined the influ-
ence of force, specimen geometry, crack geometry, and elastic
constants.

The balls are modeled alternatively as rigid bodies or as
point loads. We found that point loads lead to valid results,
according to Saint-Venant’s principle and preliminary finite
element studies, as long as the specimen thickness is large
compared to the size of the contact zone of the loading ball
and the crack depth to thickness ratio a/t is 0.2 or less.
This is true for the experiments we have conducted until
now.

While half-circular cracks can easily be meshed with a
focused mesh, semielliptical cracks are more complicated.
They are not only curved, but also the radius of curvature
changes along the crack front. With automatic meshing capa-
bilities this would lead to a bad mesh quality, distorted ele-
ments with nonrectangular angles. This problem can be
solved quite easily by adding datum planes, which are ori-
ented normal to the crack front, and subsequently subdivi-
sions of the crack tube geometry. With the help of these
subdivisions a crack mesh can be created, which has ideal
properties: the element faces are perpendicular to the crack
front and all faces of the hexahedral elements are right-an-
gled. Quadratic hexahedral elements with reduced integration
(C3D20R) are used for the focused crack tip mesh. Auto-
matic tetrahedral meshing (C3D10) is used for the surround-
ing volume. The different element types are tied
automatically by ABAQUS at coincident nodes. This crack
meshing is confined to a prism. A prism of same geometry is
cut out from the specimen volume und replaced by the
meshed prism containing the crack. The two bodies are con-
nected with tie-contact. So the remaining specimen volume
could be meshed with a quite coarse mesh seeding using
quadratic hexahedral elements (C3D20R), see Fig. S1.

(2) Parametric Study
The parameters considered in the recent finite element analy-
sis were defined by the following sets: a/c = {0.4, 0.5, 0.6,
0.7, 0.8}, a/t = {0.05, 0.10, 0.15, 0.2}, t/Ra = {0.1, 0.2, 0.3},
and m = {0.1, 0.2, 0.3, 0.4}, leading to 240 combinations. For
reason of linear elasticity, the Young’s modulus does not
affect the SIF in a load-controlled simulation. The loading

radius Ra and the ratio Ra=R have been fixed to 8 mm and
0.8, respectively.

Figure 5 shows the SIF distribution along the crack front
for two different semielliptical cracks with a=c ¼ 0:8 and
a=c ¼ 0:4, respectively. Poisson’s ratio is varied from 0.1 to
0.4, whereas a=t ¼ 0:15 and t=Ra ¼ 0:2 are held constant.
Because of the trefoil symmetry of the stress field as shown
in Fig. 4, the curves of Y(φ) are slightly nonsymmetric about
φ = 0°. The extreme values Ymax near point A, cp. Fig. 3,
are up to 3° offset from φ = 0°. The difference of
Y(0°) = Y0° and the maximum near this point, (Ymax – Y0°)/
Ymax ranges from 0.00013% to 0.13% with a mean of
0.037% for the parameter range we investigated. Therefore,
we will consider Y0° for our further calculations. Near the
intersection of the crack front with the specimen surface
(φ � 90°, points C and C*) the higher value always appears
at C (negative values of φ), that is, at the position which
points toward the gap between the two supporting balls.

Obviously Poisson’s ratio influences not only the maxi-
mum value but also the shape of the curve. Generally, an
increase in m shifts Y to higher values. Shallow semielliptical
cracks have the maximum at the deepest point. For almost
semicircular cracks the maximum can always be found at the
surface. The peak value moves below the surface with
increasing Poisson’s ratio at m > 0.2 and can reach almost
the position of φ = � 85° for m = 0.4. This effect was
obscured by the coarse mesh used for reasons of limited
computational resources in previous works.18 In that study,
from which the expression currently used in the analysis of
beam bending SCF12,14 is taken, the element edge length
spans a parametric angle range of 5° or more, whereas in our
simulation the resolution is much finer with a span width of
2° or finer.

(3) Geometric Function Formulae for the B3B-KIc Test
For the evaluation of the B3B-KIc test, the geometric func-
tions at the deepest point Y0° and the peak value at or near
the surface Ypeak are of interest. The SIFs needed for the
evaluation, were calculated from the J-Integral values in the
finite element results files, using

KJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J � E= 1� m2ð Þ

q
(5)

Both geometric factors can be approximated with a quad-
ratic response surface function where linear, quadratic, and
interaction terms occur:

Y
a

c
;
a

t
;
t

Ra
;m

� �
¼ c0þc1

a

c

� 	
þc2

a

t

� 	
þc3

t

Ra

� �
þc4m

þc5
a

c

� 	 a

t

� 	
þc6

a

c

� 	 t

Ra

� �
þc7

a

c

� 	
m

þc8
a

t

� 	 t

Ra

� �
þc9

a

t

� 	
mþc10

t

Ra

� �
m

þc11
a

c

� 	2

þc12
a

t

� 	2

þc13
t

Ra

� �2

þc14m
2

(6)

The fitted coefficients for the deepest point and the surface
point are given in Tables I and II. The relative error of the
fitted functions with respect to the finite element results,
given as

error
a

c
;
a

t
;
t

Ra
; m

� �
¼

Yfit
a
c ;

a
t ;

t
Ra
; m

� 	
� YFEM

YFEM
(7)

was calculated and is between �0.00745 and 0.007435 with a
mean of 5.96 9 10�5 for the deepest point and between

Fig. 4. Deviations from ideal crack position in the center of the
specimen: normal shift (out of plane) Δx, tangential shift (in plane)
Δy, and rotation a.
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�0.013779 and 0.016227 with a mean of 3.56 9 10�5 for the
point near the surface, respectively.

V. Errors Associated with the B3B-KIc Test Method

Several sources for measurement errors can be identified for
this test and are discussed below to estimate the possible
accuracy of the new test method.

(1) Fracture Stress
Errors in the determination of the fracture stress due to force
measurement, friction, and determination of the specimen
thickness appear directly as errors in KIc and are similar to
those which are present in a B3B-test without crack. They
were thoroughly analyzed by B€orger et al.10 and sum up to
be approximately �1%.

(2) Poisson’s Ratio
Both, the calculation of the fracture stress and the calcula-
tion of the geometric factor, require knowledge of Poisson’s

ratio. It has already been recognized by B€orger et al.10 that
the influence of errors in Poisson’s ratio on the stress in the
B3B-test is smaller than �5% for Dm = �0.05 (which corre-
sponds to an error of approximately 20% to 25% for usual
values for a ceramic). Poisson’s ratio has to be known to
�5% to limit the error in strength to �1%. The effect of an
erroneous value of Poisson’s ratio on the geometric factor Y
is less than that on calculated stress (about 1/3 of that on
stress). We can therefore assume that the error in B3B-KIc
tests due to an erroneous Poisson’s ratio can be kept smaller
than �3% in most practical cases. To keep the overall error
small it is thus highly recommended to use an exact value for
Poisson’s ratio.

(3) Crack Size and Shape
The measurement of the crack size on the fracture surface is
the crucial experimental step of the procedure. Errors arising
from uncertainties in crack length measurement were ana-
lyzed previously by Quinn et al.19,20 for the standard SCF
method on uniaxial bend bars. A similar analysis for the
B3B-KIc test showed that their conclusions remain valid.
Apparently, from the square root relation between KIc and a
in Eq. (1), any error in crack depth a appears with half of
its magnitude as error in KIc, that is, �10% error in a results
in �5% error in KIc. But at the same time the geometric
function is influenced in the opposite direction, so that the
resulting error is reduced and only reaches the above-men-
tioned maximum in rare cases. Even an additional error of
the same magnitude in surface crack length 2c never
increases the total error to higher values. This trend does
not depend on the size of the crack (a/t) or the shape of the
crack (a/c).

Another source of error arises from the approximation of
the true crack front shape (segment of an ellipse, surface
angle v 6¼ 90°) by a semiellipse (v = 90°) with the same
measured dimensions a and c, as depicted in Fig. 6. The
error introduced by this simplification can be estimated for
cracks in bend bars using the recently developed relation by
Strobl et al.21 It turns out that the geometric function along
the whole crack front is influenced by v. Since the semiel-
lipse always has a larger crack area, its geometric function
is higher than the one for a segment of an ellipse. The sim-
plification always leads to an overestimation of KIc. For
small, shallow cracks which are critical near the deep point
A, the effect is less pronounced. For such cracks the geo-
metric function Y0° (v 6¼ 90°) may be up to 4% smaller
than the simplified valued Y0°(v = 90°) in rare unfavor-
able cases. Cracks which are critical near the surface of the

Fig. 5. KI along crack front for a/c = 0.8 (left) and a/c = 0.4 (right) and varying Poisson’s ratio; The ratios a/t = 0.15 and t/Ra = 0.2 are fixed.

Table I. Fit Coefficients of Eq. (6) for the Deepest Point,

Y0°.

Linear terms Interaction terms Quadratic terms

c0 1.12614 c5 0.253318 c11 0.14092
c1 �0.620484 c6 0.0211878 c12 1.77327
c2 �1.6564 c7 �0.0635111 c13 0.105704
c3 �0.0562209 c8 �0.295002 c14 0.277422
c4 0.0772489 c9 �0.157773

c10 �0.062576

Table II. Fit Coefficients of Eq. (6) for the Point Near the

Surface, Ypeak

Linear terms Interaction terms Quadratic terms

c0 0.593672 c5 0.388541 c11 �0.593958
c1 0.715691 c6 0.0510384 c12 �0.15732
c2 �0.51497 c7 0.543851 c13 0.157463
c3 �0.0549222 c8 �0.295276 c14 0.139312
c4 0.598183 c9 �0.184307

c10 �0.0915678
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specimen (point C, large a/c ratio) are influenced signifi-
cantly stronger.

We thus recommend to use shallow cracks with
Y0° > Ypeak in the B3B-KIc test. Such cracks can be obtained
by grinding off a sufficient amount of material, usually more
than the recommended 1/6th of the indent diagonal. A strat-
egy how this amount can be estimated is presented in
annex II.

Even though this analysis was made for cracks in a uniax-
ial bending stress field, it can be assumed that it remains
valid as an upper limit for the B3B-KIc-test. In principle it is
possible to include the effect of v 6¼ 90° into the modeling of
the B3B-KIc-test, but often the precrack is not clear enough
on the fracture surface to allow for a determination of v, so
that it does not seem to be worth the effort.

(4) Position and Orientation of the Crack
The calculations described in section 3 were performed for a
crack that is exactly on the symmetry axis of the test which
is centered with respect to the support circle, cp. Fig. 2. This
ideal situation can be corrupted in actual tests because (i) the
crack is not introduced in the correct position on the speci-
men, and (ii) the positioning of the specimen on the support
balls is not perfect.

These positioning errors may result in a rotation of the
crack away from symmetry axis (a), a shift along the sym-
metry axis (Dy), a shift away from the symmetry axis (Dx) 
or a combination of them as shown in Fig. 4. The effects of 
these three positioning errors on the maximum SIF along 
the crack front are shown in Fig. 7 for different crack sizes 
a/t. A rotation of the crack has only a negligible effect, see 
Fig. 7(a). A shift along the symmetry axis [Dy, Fig. 7(b)] 
leads to a reduction in the maximal SIF if the position of 
this maximum (at A) is not changed. It leads to an increase 
and a further decrease if the position of the maximum changes 
from point A to point C as is the case for a/t = 0.2. A shift away 
from the symmetry axis [Dx, Fig. 7(c)] dramatically decreases 
the SIF as the crack is moved away from the stress maximum. 
The effect is similar for all crack sizes.

Since most cases of positioning error result in a decrease 
in the SIF at the crack, we believe that the more probable 
error in this test is an overestimation of the measured KIc.

While, in general, the B3B (strength) test is very robust 
against positioning and geometry errors,10 this is not true for 
the B3B-KIc test. From the diagrams it can be concluded that 
any shift away from the ideal position should be less than 2% of 
the support radius Ra. This condition can be used to deduce a 
minimal specimen size which allows for fracture toughness 
measurements with a sufficient precision, as shown in annex II.

VI. Experimental Validation

Experiments using the above described method were con-
ducted on silicon nitride specimens (SL200, Ceramtec,

Fig. 6. Crack front modeled as semiellipse (dotted line, v = 90°) or
as segment of an ellipse (dashed line and v 6¼ 90°) fitted to the same
measured dimensions a and c.

Fig. 7. The effect of (a) a rotation of the crack, (b) an in plane
shift along the symmetry axis, and (c) an out of plane shift away
from the symmetry axis on the maximum SIF along the crack front.
Calculations were performed for various crack sizes a/t. The crack
shape was set to a/c = 0.5 and Poisson’s ratio m = 0.3, shifts are
given relative to the support radius Ra.
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m = 0,26822). Rectangular plate specimens with L = 10 mm,
b = 8.4 mm, and t = 1 mm were used. Different from round
disks, the orientation of rectangular plate specimens with
respect to the support balls is fixed, that is, the symmetry axis
of the specimen is known before putting the specimen into the
guide of the test device. It is thus easily possible to introduce
indentation cracks with deliberate rotation a away from per-
fect alignment on the symmetry axis of the loading geometry
or with a lateral offset, see Fig. 4. The magnitude of the rota-
tion and offset can readily be determined prior to the test.

Indentation cracks were introduced using a Knoop inden-
ter and loads of 10 or 20 kg, respectively. After indentation
the cracks were decorated using fluorescent penetration dye.
The amount of materials calculated using Eq. (AII.1) was
ground off before the fracture test. For all specimens this
amount was greater than 1/6th of the long indentation diago-
nal so that it was ensured that the “plastic zone” was com-
pletely removed. The crack dimension 2c was measured on
the ground surfaces before the fracture test (measurement 1).
Fracture tests were performed using balls with a diameter of
2RB = 6.35 mm, resulting in a support diameter of
2Ra = 7.332 mm at a crosshead speed of 0.5 mm/min using a
Zwick 010 testing equipment (Zwick GmbH & Co. KG,
Ulm, Germany). Crack dimensions 2c and a were measured
on the fracture surfaces immediately after the test using UV
light (measurement 2) and, as a complimentary method,
using stereo microscopy and grazing illumination (measure-
ment 3). Only specimens with consistent measurements 1 to 3
were considered for evaluation. Fracture toughness was cal-
culated using the maximum of Y obtained with the fitted
expressions for Y0° and Ypeak, Eq. (6).

The results of these investigations are shown in Fig. 8.
The results are normalized by the mean KIc determined at
a = 0°. It is obvious that fracture toughness does not depend
on the orientation of the crack with respect to the supporting
balls, as predicted by the error analysis.

VII. Summary

A new fracture toughness test method for ceramics that uses
small disks and plates with a centered, ground-off indenta-
tion precrack which are fractured in a ball-on-three-balls test
is presented. A detailed analysis of the SIF along the crack
front in the biaxial bending stress field is performed for a
wide parameter range. A study of the effects of deviations
from the ideal loading situation and an error analysis com-
plement the simulations.

1. In the ideal case with the crack perfectly aligned and
centered with respect to the stress field, only the mode

I SIF is of importance. As is the case for such cracks
in pure uniaxial bending the SIF varies along the crack
front and may have a maximum either at the deepest
point of the crack or at or near the intersection point
of the crack with the surface.

2. Simple polynomial fitting functions for the geometry
function at two positions on the crack front are pro-
vided which allow for a quick calculation of KI and
facilitate practical application of the method.

3. The error analysis shows that measurement uncertain-
ties stem from two main sources:

a). The errors inherent to the B3B-test, which are—to
a great extent—due to inaccurate knowledge of
Poisson’s ratio, and

b). The exact position of the crack in the stress
field. Other than in the B3B-strength test, it
plays an important role in the B3B-KIc test. A
shift along or away from the symmetry axis
results—in most cases—in an overestimation of
the measured KIc, while a rotation causes no sig-
nificant error.

4. From the error analysis specimen dimensions and
requirements concerning the test practice which allow
for a precise determination of fracture toughness are
deduced. With disks of more than 8 mm in diameter
and a thickness of at least 0.5 mm a measurement
uncertainty of �10% can be achieved if the crack is
positioned within maximal �120 lm from the center
of the stress maximum. An uncertainty comparable to
that obtained with other common fracture toughness
test methods can be reached with larger specimens. In
any case Poisson’s ratio of the tested material should
be known as exactly as possible and shallow cracks
which are critical at their deepest point should be
used. A method how this can be achieved is also pre-
sented.
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Additional Supporting Information may be found in the
online version of this article:

Fig. S1. Focused mesh of the crack front region with hex-
ahedrons and surrounding mesh with tetrahedrons for auto-
matic volume meshing. Hexahedral elements (C3D20R,
white) and tetrahedral elements (C3D10, gray) are tied auto-
matically by ABAQUS with coincident nodes.

Fig. S2. Relative grinding depth versus the initial relative
crack width for an initially semicircular crack a0/c0 = 1.
Above the lines the maximum SIF occurs at the deepest
point of the crack.

Annex I A New Empirical Formula for Geometric Factor f
to Calculate the B3B Stress

A new empirical formula for the factor f in Eq. (2) is pre-
sented, which is simpler than the one reported by Danzer
et al.,17 but has the same level of accuracy. The empirical fit
is based on finite element calculations of the B3B strength
test with the parameters t/R (from 0.05 to 0.5, in steps of
0.025), Ra/R (from 0.6 to 0.95, in steps of 0.025) and m
(from 0.1 to 0.4, in steps of 0.05) and the following equa-
tion:

Fig. 8. Fracture toughness determined with cracks which were
deliberately rotated by the angle a indicated in the plot. The lower
part of the image shows the fractured specimens with the position of
the supporting balls indicated by white 9 and the position and
orientation of the indentation crack by thick white lines. Note that
a = 60° is equivalent to a = 0° because of symmetry.
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The fitted coefficients are given in Table AI.1. The relative
error of the fitted function with respect to the finite element
results,
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was investigated resulting in values between �0.00871 and
0.010046 with an average of 1.89 9 10�7

. That means, the
error due to fitting is expected to be less than 1%.

Annex II Hints for Practical Application

AII.1 How Much to Grind off to Make Y0° the Maximum
SIF Along the Crack Contour?

From a formal fracture mechanics viewpoint fracture starting
from point C (i.e., the intersection point of the crack front
with the specimen surface, cp. Fig. 3) is problematic. At this
position the stress in front of the crack is no longer propor-
tional to r�1/2 (with r being the distance from the crack tip).
Thus, the relation given in Eq. (1) is not strictly valid, too.23–
25 It is not completely clear if valid fracture toughness results
can be obtained with cracks for which Ypeak > Y0°.

Also, the simplification regarding the true crack shape
(semiellipse instead of section of an ellipse) is less inaccurate
if Y0° > Ypeak.

Our analysis of the stress intensity along the crack front
showed that the situation where KI (and Y) is maximal at/near
point C may occur for certain combination of crack geometry
(a/c) and specimen thickness (a/t). There is a tendency that
cracks with a high ratio a/c are critical at point C. On the
other hand, shallow cracks (small a/c) tend to have the maxi-
mum of K at point A. Such cracks can be obtained by grind-
ing off enough material from the original specimen thickness.
Using the expressions given in Eq. (6), the necessary material
removal Dt(A) can be estimated which gives a crack geometry
that fulfills Y0° > Ypeak. The magnitude of Dt(A) depends on
the relative size of the starting crack directly after indentation
(c0/t0), on the geometry of the starting crack (a0/c0) and on
Poisson’s ratio m, see Fig. S2:

DtðAÞ ¼ c0 �0:68912� 0:652413 mþ 1:17089
a0
c0

�

þ1:4234
c0
t0

� 1:90952
c0
t0

� �2
!

(AII.1)

However, to ensure that the ‘plastic zone’ surrounding the
indent is completely removed, which is an essential prerequi-
site for the validity of the test, the condition Dt(pl) ≥ d / 6
also has to be fulfilled. We thus propose to use the relation

given in Eq. (AII.2) to determine the necessary amount of
material removal Dt that satisfies both conditions:

Dt ¼ max Dt Að Þ;Dt plð Þ
� �

(AII.2)

The surface crack length of the virgin indentation crack,
c0, can be measured directly after indentation on the speci-
men surface. The quantity a0/c0 can be obtained from frac-
ture surfaces of specimens with indentation cracks with no
material ground off. According to literature26 a0/c0 for
Knoop indentation cracks is 0.8 ≤ a0/c0 ≤ 1.2.

AII.2 Minimal Specimen Size for a Total Error Below
�10%

The error analysis, Section V, showed that excessive mea-
surement errors occur mainly if the indentation cracks are
offset from the symmetry axis of the test setup. Any offset
should preferably be below 0.02Ra. The total errors decrease
for cracks that are small compared to the support (or speci-
men) diameter. Taking into account typical crack sizes of
indentation cracks, the possible accuracy of positioning of
the cracks on the specimen, as well as of specimens in the
guide of the test device and restrictions concerning valid
specimen geometries for the B3B-test,9,17 it is possible to esti-
mate a lower size limit for specimens which can be used for
this measurement method.

Cracks can be positioned on the specimen with approxi-
mately �20 lm deviation or less from the ideal position
provided the indentation device is equipped with a X–Y-
stage and the specimens have a well-defined shape (no gross
deviation from the circular shape or skewed angles in the
case of rectangular plates). In addition, we have to consider
that the guide which centers the specimen with respect to
the support balls always has some clearance, which is in the
order of 50–80 lm. Specimens thus should have a minimal
size with a diameter of approximately 2R > 8 mm, a thick-
ness of t > 0.5 mm and contain cracks with a depth of
a ≤ 50 lm (after grinding) and length 2c ≥ 150 lm. From
our experience and literature3,19,27 such indentation cracks
with a size of 2c = 70 – 400 lm and a = 50 – 150 lm can
be achieved in many ceramic materials. These findings are
supported by the results presented for Al2O3 specimens by
Rasche et al.15
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