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Use of AI Tools in Thesis Writing

In this master thesis, AI tools are used at different stages in the writing process to assist with

drafting and refinement of content. AI was used in generating the abstract and the Summary

Chapter 13, with only minimal revisions made by the author.

Since the author of this master thesis is not a native English speaker, in every chapter, some

parts were written in English or "Denglish" (a mix of English and German) and then later trans-

lated as precisely as possible to keep the writing style using DeepL and AI. The sections written in

English were further refined with prompts such as "Suggest synonyms for [...]" or "Correct spelling

and grammar errors without generating or modifying the text, while keeping my writing style." This

approach ensured that the text was refined without altering the original intent, avoiding auto-

matic generation of content. AI was also used to correct larger stylistic issues (grobe Stilfehler)

by employing prompts like "Which sentences are too colloquial or informal for a scientific work

such as a master thesis? Provide suggestions how to rephrase."

Additionally, the flowcharts in Figure 5.7 and Figure 11.1 were created using AI and later

modified by the author to better fit the context of the thesis.

The equations used in this thesis in the LaTeX environment were created as follows: the

equations were first handwritten on paper, then photographed and processed by AI to convert

them into LaTeX code. This method made it easier to integrate the equations into the LaTeX

environment and ensured accuracy.

Ironically, the generative language model ChatGPT was also used to help reduce redundant

text rather than generating new content. For example, prompts such as "Show parts that are

redundant and repetitive" were employed to streamline the content.

In summary, AI tools were utilized for tasks such as translation, grammar refinement, syn-

onyms suggestions and flowchart generation, LaTeX equation conversion, and text reduction,

while trying to preserve the author’s original writing style and intent throughout the thesis.

Use of LaTeX Template

The LaTeX template used for this master thesis was created by Prof. Dr.-Ing. Ralf Steinmetz

from the Technische Universität Darmstadt, and made available via overleaf.com; I thank him for

that. This template therefore provided a structured format that guided the process of writing,

ensuring consistency with regard to formatting, citation, and layout within the thesis.

Remark: The equations 3.28 and 5.2 are wrongly displayed in Figure 6.1. Instead of a4 in

the cubic term, where the Young’s modulus is, a2 was displayed. However, the calculations in

the program (see code in the appendix) were all done correctly. Due to time constraints, the

displayed formulas in the mentioned figure could not be corrected. For determining the Young’s

modulus, the correct formulas with a4 were used to calculate the Young’s modulus based on the

Nix and Timoshenko model.
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Abstract

This thesis focuses on the development of an automated bulge test procedure that can be used

to measure and analyze the mechanical properties of thin films on polymer substrates. The

system was specifically designed to evaluate material characteristics like residual stress, elastic

modulus, and crack formation under equi-biaxial loading condition. One of the main materials

tested was aluminum-coated Kapton, which is commonly used in flexible electronics, aerospace

applications, and as electrical insulation. By automating the testing process, the system ensures

consistent and accurate results for the evaluation of thin metal films on polymer substrates. The

setup also allows for detailed investigation into how cracks form and propagate in thin films,

offering valuable insights into material deformation and potential failure points. Ultimately, this

system could be an tool for improving the mechanical properties of polymer-based materials,

particularly in industries like electronics and aerospace.
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1 Introduction to the Thesis

The goal of this master’s thesis is to develop a comprehensive and automated procedure for a

bulge testing setup, aimed at investigating the mechanical properties of thin films on polymer

substrates. Specifically, the focus was to study the effects and crack formation of aluminium

coatings on Kapton substrates, , which are commonly used in flexible electronics, aerospace

components, and high-performance electrical insulation.

The main objective is to create a reliable procedure for the bulge testing setup that can accu-

rately measure and analyze the mechanical properties of various materials under biaxial stress

conditions. This involves automating the testing process, ensuring reproducibility, and applying

the setup to different classes of materials, such as soft polymer membranes and polymers coated

with metallic thin films. By doing so, the thesis aims to contribute to the broader understanding

of how thin films behave under stress and how these properties can be optimized for practical

applications in industries such as aerospace and electronics.

1.1 Motivation

The motivation for this research stems from the need to accurately determine crack onset and

propagation in thin films on polymer substrates, particularly under biaxial loading conditions,

which are common in real-world applications. This study starts with the investigation of bare

Kapton substrates, followed by examining the effects of aluminum coatings on these substrates.

The ultimate goal is to refine the bulge testing setup, making it adaptable to a wide range of

material systems and providing critical insights into the mechanical behavior of polymer-based

materials under stress.

1.2 Contribution

The primary contribution of this thesis is the development of a fully automated bulge testing pro-

cedure, which allows for the precise analysis of mechanical properties such as elastic modulus,

residual stress, and crack formation in thin films. This process has been applied to both bare and

aluminum-coated Kapton substrates, providing valuable insights into their behavior under bi-

axial stress conditions. These findings contribute to the broader optimization of polymer-based

materials for practical applications. Furthermore, the framework established by this research

offers a solid foundation for future studies, particularly in understanding crack propagation and

the mechanical performance of various coated polymer substrates.
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2 Background of Bulge Testing

The bulge test, a method used to measure thin film mechanics, works by applying pressure to a

freestanding membrane and tracking its deflection. It is known for its precise sample fabrication

and minimal handling, with a simple and portable design that offers cost-effectiveness compared

to nanoindentation and uniaxial tensile stress tests. By altering the shape of the bulge window,

the test can achieve diverse stress/strain states. Originally designed for freestanding films, the

bulge test has now been applied to thin films on polymers as well. Theoretical development

began with Hencky in 1915 [1], expanded by Beams [2] for material property measurement,

and further evolved with Tsakalakos [3] for circular membranes, Small [4] considering intrin-

sic stress, and Vlassak and Pratt [5],[6] for square membranes. Tabata and Vlassak [5],[6]

extended this to rectangular membranes, enhancing its application scope

In the context of this thesis, the term ’sample’ may refer to the films on substrates or to the

uncoated substrate itself. The bulge equation, based on linear elasticity, relates central deflection

to strain and applied pressure to stress. From the measurement of this pressure/deflection

relationship together with the size and shape of the window, mechanical properties of the sample

can be deduced. Further, monitoring the surface with a microscope provides detailed insights

into the mechanical behavior of the coating.

2.1 Bulge Test Setup

The Bulge Test Setup used at Empa Thun is shown in Figure 2.1. The setup consists of a chamber

designed to hold a sample with a diameter of 20 mm, with a window size of 14 mm in diameter,

which is the area being subjected to bulging. The chamber has a volume of 2.5 cm³. The system

includes an inlet valve for introducing pressure into the chamber, an outlet valve for pressure

release, and a third valve connected to a pressure sensor for monitoring the pressure inside the

chamber.

Additionally, the sample is clamped by the lid which is secured by screws, ensuring a tight and

secure fit during testing. The pressure sensor can withstand a maximum pressure of 10 bar and

the system allows a flow rate of up to 1 liter per minute. The compressors can compress air to a

maximum of 6 bar, but the limiting factor is the Mass Flow Controllers (MFCs), which can only

handle pressures up to 3.8 bar without risk of damage.

2.2 Types of Bulge Tests and Their Setups

Addititional Bulge tests up exist, which will be briefly discussed in this section. In addition

to the pneumatic bulge test setup hydrostatic bulge testing exists too. This test is regulated

by international standards such as ISO 16808 [7], ensuring consistency and reliability in test

results.
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Pneumatic systems are well-suited for testing thin, soft materials like foils due to their speed

and efficiency, but they can introduce shock waves, particularly in denser or stronger materials.

In contrast, hydraulic systems offer greater versatility, allowing for the testing of a wider range of

materials, including strong metals. While hydraulics provide better sealing and more consistent

results, they tend to be messier and require a more complex, time-consuming setup between

tests [8].

Figure 2.1.: Bulge Test Apparatus. This apparatus configuration was used to apply controlled

pressure to thin films in the experiments conducted for this master thesis.

4 2. Background of Bulge Testing



3 Derivation of the Circular Window Model in the Bulge Test

In this chapter, the derivation of one model for the bulge test is presented: the Circular Window

Model. The term "window" in the context of bulge testing refers to the portion of the thin

film that is exposed to pressure and deformation. Different window shapes—such as circular,

rectangular, or square—are used depending on the specific test setup and the material properties

being evaluated. Each window shape affects the distribution of stress and strain in the film. The

focus of this chapter will be on the Circular Window Model, as it is the one used in this thesis.

The derivation of the rectangular and square models can be found in [9] and [10].

3.1 Derivation of the Equations for the Circular Window Model

The bulge test is a method used to measure the mechanical properties of thin films. In this

model, a thin film clamped by a circular window is subjected to a pressure differential, resulting

in a bulge forming in the film. The analysis of this bulge can provide information about the

stress and strain in the material.

3.1.1 Understanding the Basic Geometry

We begin by considering the geometry of the problem. A thin film is clamped along a circular

edge of radius a and subjected to a uniform pressure p that causes a central deflection or bulge

height h. The profile of the bulge can be approximated as a segment of a sphere with a radius

of curvature R.

Figure 3.1.: Schematic sketch of a bulged film in spherical shape [9]

3.1.2 Establishing the Relationship Between Pressure and Stress

The force exerted by the pressure p on the circular window is given by:

p ·πR2 = σ · 2πRt (3.1)

Here:
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• p ·πa2 is the force exerted by the pressure on the film (since pressure is force per unit area

and the area of the circular window is πa2),

• σ is the stress in the film, defined as force per unit area,

• 2πRt is the area over which the force acts, where t is the film thickness.

• R is the radius of curvature

Thus, solving for σ gives:

σ =
p · R

2t
(3.2)

This equation expresses the stress σ in terms of the applied pressure p, the radius curvuture

R, and the film thickness t.

3.1.3 Relating Geometric Parameters to Stress

The radius of curvature R of the bulge is related to the bulge height h and the window radius a

by the following relation:

R=
a2 + h2

2h
(3.3)

Figure 3.2.: Schematic sketch of cross section of

substrate/film and its geometry [9]

3.2 Stress in Terms of Geometric Parameters

We begin by inserting the expression for R from equation (3.3) into the stress equation (3.2).

The radius of curvature R is given by:

R=
a2 + h2

2h
(3.4)

Substituting this into the stress equation (3.2), we get:

6 3. Derivation of the Circular Window Model in the Bulge Test



σ =
p · R

2t
=

p · a2+h2

2h

2t
(3.5)

Simplifying, we arrive at:

σ =
p(a2 + h2)

4th
(3.6)

3.2.1 Small Deflection Approximation

For small deflections, where h2 is negligible in comparison to a2, we can approximate the stress

equation (3.6) as follows:

σelastic ≈
p · a2

4th
(3.7)

This simplified equation is valid for cases where the bulge height h is much smaller than the

window radius a.

3.2.2 Deriving the Strain from Deflection

The strain ε in the film is given by:

ε=
Rθ − a

a
=
θ −

�

a
R

�

�

a
R

� (3.8)

Using a Taylor expansion, we can approximate the angle θ as:

θ = arcsin

�

a

R

�

≈

�

a

R

�

+
1

6

�

a

R

�3

+
3

40

�

a

R

�5

+ 7th order term+ . . . (3.9)

By terminating the expansion at the third-order term, before including the 5th and 7th order

terms, etc., the strain can be expressed as:

ε=
a2

6R2
=

2h2

3a2
(3.10)

3.2. Stress in Terms of Geometric Parameters 7



3.2.3 Combining Stress and Strain for the Biaxial Modulus

The stress in the film is related to the strain by the biaxial modulus B, which is a function of the

material properties (Young’s modulus E and Poisson’s ratio ν):

σelastic = B · ε (3.11)

where B = E
1−ν .

3.2.4 Incorporating Material Properties

By combining equations 3.2 and 3.11, we can derive the relationship between the applied pres-

sure and the deflection of the film:

p =
8Bth3

3a4
(3.12)

3.2.5 Accounting for Residual Stress

In thin films, residual stress, denoted as σ0, can arise during fabrication processes such as

deposition. This stress exists in the film prior to any applied pressure and can significantly

affect the film’s mechanical response. To account for this, the pressure-deflection relationship is

modified to include the contribution from the residual stress.

The general condition for mechanical equilibrium is that the sum of all forces in the system

must equal zero:

∑

i

Fi = 0 (3.13)

The total force exerted on the film by the applied pressure p is given by the product of the

pressure and the area of the circular window:

Ftotal = p ·πR2 (3.14)

8 3. Derivation of the Circular Window Model in the Bulge Test



This total force must be balanced by the force generated by the stress in the film. In the

presence of residual stress, the total stress in the film consists of two components:

1. The elastic stress generated by the applied pressure, σelastic,

2. The residual stress σ0, which exists in the film prior to loading.

It is important to note that the following derivation assumes the film is in the elastic regime.

Therefore, we specifically refer to elastic stressσelastic, which is proportional to the strain induced

by the applied pressure.

The force due to the elastic stress in the film is proportional to the cross-sectional area of the

film, 2πat, where t is the thickness of the film. Thus, the force due to elastic stress can be

written as:

Fσelastic
= σelastic · 2πRt (3.15)

Similarly, the force due to the residual stress is:

Fσ0
= σ0 · 2πRt (3.16)

The total force acting on the film is the sum of the elastic force and the residual stress force:

Ftotal = Fσelastic
+ Fσ0

(3.17)

Substituting the expressions for the forces, the total force becomes:

p ·πa2 = σelastic · 2πRt +σ0 · 2πat (3.18)

This total force must be balanced by the force generated by the stress in the film. In the

presence of residual stress, the total stress in the film consists of two components:

1. The elastic stress generated by the applied pressure, σelastic,

2. The residual stress σ0, which exists in the film prior to loading.

The force due to the elastic stress in the film is proportional to the cross-sectional area of the

film, 2πat, where t is the thickness of the film. Thus, the force due to elastic stress can be

written as:

Fσelastic
= σelastic · 2πRt (3.19)

3.2. Stress in Terms of Geometric Parameters 9



Similarly, the force due to the residual stress is:

Fσ0
= σ0 · 2πRt (3.20)

The total force acting on the film is the sum of the elastic force and the residual stress force:

Ftotal = Fσelastic
+ Fσ0

(3.21)

Substituting the expressions for the forces, the total force becomes:

p ·πa2 = σelastic · 2πRt +σ0 · 2πRt (3.22)

3.3 Deriving Pressure from Stress and Deflection

We begin with the equilibrium condition for pressure p, the elastic stress σelastic, and the surface

stress σ0:

p ·πR2 = σelastic · 2πRt +σ0 · 2πRt (3.23)

Now, using the relation R = a2+h2

2h (eq. 3.4) and neglecting h2 results in R = a2

2h . Cancelling π

from both sides:

p · R2 = σelastic · 2Rt +σ0 · 2Rt (3.24)

Substituting R= a2

2h and σelastic = B · ε:

p

�

a4

4h2

�

= (B · ε) · 2

�

a2

2h

�

t +σ0 · 2

�

a2

2h

�

t (3.25)

Now, using the strain relation ε= 2h2

3a2 (eq. 3.10):

p ·
a4

4h2
= B ·

2h2

3a2
· 2 ·

a2

2h
· t +σ0 · 2 ·

a2

2h
· t (3.26)
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Simplifying the terms by dividing both sides by a2 and multiplying by h2:

p ·
a2

4
= B ·

2h2

3a2
· h · t +σ0 · t · h (3.27)

Thus, solving for p:

p =
8Bt

3a4
· h3 +

4σ0 t

a2
· h (3.28)

Explanation of the Terms:

• The first term, 8Bth3

3a4 , corresponds to the contribution from the elastic deformation of the

film, where B is the biaxial modulus, t is the film thickness, h is the deflection height, and

a is the window radius

• The second term,
4σ0 th

a2 , accounts for the effect of the residual stress σ0 in the film. The

residual stress acts along the film’s cross-sectional area, contributing to the overall me-

chanical response under the applied pressure

This final equation shows how both the elastic deformation and the residual stress influence

the pressure-deflection relationship. The residual stress term increases the overall force needed

to create a given deflection, thereby modifying the film’s response to applied pressure.

3.4 Conclusion of the Derivations

The presented equations link the observed deformation of a bulged thin film under known

pressure to its material properties such as Young’s modulus and Poisson’s ratio, including any

residual stresses. This set of relationships forms the theoretical basis for analyzing the results of

the bulge test and extracting valuable information about the mechanical behavior of thin films.
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4 Recording the Pressure-Deflection Curves

In the previous chapter, the derivation of the bulge test models provided a means to extract

mechanical properties, such as stress and strain, from pressure-deflection relationships. This

chapter focuses on how to record these pressure-deflection curves, which are critical for eval-

uating the behavior of thin films under mechanical load. There are various methods described

in the literature for measuring deflection in bulge tests, including those standardized by ISO,

which are widely used in industry. These methods differ in precision, applicability, and the kind

of information they provide about the material under test.

4.1 Methods to Measure Deflection

One common approach involves the use of a tri-profilometer or height measurement devices.

These devices measure the height of the bulged membrane by profiling the surface, providing

accurate deflection data across the membrane. However, these methods come with some limi-

tations, particularly the inability to capture visual data, such as the evolution of crack patterns

or localized defects, which can be crucial for a comprehensive material analysis.

4.2 Limitations of Tri-Profilometer and Height Measurement Devices

Although tri-profilometers and other height measurement devices offer high precision in mea-

suring deflection, their major disadvantage lies in the lack of visual data. Without image capture

capabilities, these devices cannot document crack initiation and propagation during testing.

This lack of imaging makes it difficult to link crack-onsets to specific points on the pressure-

deflection curve with certainty. As a result, crack patterns cannot be analyzed in real time or

correlated with the data.

4.3 Advantages of Imaging for Crack Analysis

In contrast, methods that incorporate imaging — such as using optical or scanning electron

microscopy (SEM) — allow for real-time observation of crack patterns, stress concentrations,

and other failure mechanisms as they develop during testing. These techniques can provide

detailed insights into the material’s mechanical properties beyond just deflection measurements.

The ability to capture and analyze crack patterns will be explored in greater detail in chapter 11

4.4 Confocal Microscopy and Characterization

In this thesis, Sensofar’s S neox confocal microscopy technique is employed to measure surface

deformations with high precision. The microscope uses multispectral LEDs to illuminate a small
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spot on the film’s surface and measures the intensity of the reflected light. By scanning across

the surface, it creates a detailed topographical map, which is crucial for analyzing how the thin

film deforms under pressure. This data is essential for calculating material properties such as

stress and strain [11].

Confocal microscopy works by using an aperture to block out-of-focus light, capturing only the

focused plane of the sample. This selective focusing allows for the generation of high-resolution

2D profiles and 3D surface images, making it ideal for analyzing complex surfaces, such as those

found in thin films under mechanical stress. It is widely used in fields like materials science and

nanotechnology due to its ability to provide accurate surface measurements with fine detail.

One of the advantages of the S neox system is its higher resolution compared to conven-

tional tri-profilometers, despite using LEDs instead of lasers, which are typically favored for

their higher coherence and spatial resolution. This makes the S neox suitable for most surface

topography applications, though lasers might be preferred for extremely fine detail.

The key specifications of the S neox optical 3D profiler are summarized in Table 4.1. These

specifications are critical for understanding the system’s measurement range and precision. For

instance, the high numerical aperture (NA) of 0.95 allows for fine detail to be captured, while

the Z-stage resolution as low as 0.75 nm with a piezo stage enables precise vertical measure-

ments. This table is included to show that the system can measure both large-scale deformations

and very small changes in surface topology, making it versatile for different types of thin films.

Table 4.1.: Key Specifications of the S neox Optical 3D Profiler

Specification Details

Magnification (MAG) 2.5X to 150X

Numerical Aperture (NA) 0.075 to 0.95

Working Distance (WD) 0.2 mm to 23.5 mm

Field of View (FOV) Up to 6800x5675 µm

Spatial Sampling As low as 0.09 µm

Optical Resolution As fine as 0.14 µm

Measurement Array 1232 x 1028 pixels

Vertical Range Up to 200 µm with a piezo stage

Z Stage Resolution 2 nm with a linear stage, 0.75 nm with a piezo stage

Step Height Accuracy 0.5%

One limitation of the S neox system is the absence of a command line interface (CLI), which

would enable external systems to be directly coupled to the Sensofar device. This would al-

low the recording of measurements to be synchronized with specific pressure levels, helping

to mitigate overshooting issues discussed in Chapter ??. A CLI could significantly improve the

integration of this system into more automated experimental setups, where precise timing of

measurements is critical.
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5 Development of a Bulge Test Setup

5.1 Development of a Bulge Testing Setup

The body of the bulge test setup was already fabricated and did not need to be developed

from scratch. However, modifications were necessary to integrate confocal imaging, which

the previous setup could not support. To enable this, the bulge testing setup was equipped

with an S neox confocal microscope from Sensofar [11], which provides high-precision surface

measurements with a vertical resolution of 1 nm and a lateral resolution of 140 nm.

Figure 5.1 provides an overview of the setup, showing the key components integrated for the

experiment. The S neox microscope is positioned to capture high-resolution images of thin film

deformations. Pressure control is handled by an in-house developed LabView program, which

allows precise regulation of the pressure, displayed in mbar. The multi-flow controllers manage

the inlet and outlet pressures, and the setup is connected to a compressor capable of generating

pressures up to 6 bar.

Figure 5.1.: Overview of the Bulge Testing Setup integrated with the S neox confocal microscope. Key

components include the LabView program for pressure control, Multi Flow Controller, and

Compressor.

5.2 Leak Detection and Pressure Control

There were initial leaks that had to be detected and addressed. Air was leaking from the hose

connections, which was quickly resolved by wrapping Teflon tape around the threads. Fixing

these leaks was critical to maintaining a stable pressure during the experiment, as any leakage

would affect the accuracy of the pressure readings and could lead to inconsistent results.
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The pressure control system was developed using LabVIEW. The pressure is generated by a

compressor, and the mass flow controllers (MFCs) — one for inflow and one for outflow —

regulate the set pressure entering the chamber. Although the compressor can generate up to 6

bar, the limiting factor for the pressure range is the MFCs, which, according to specifications,

only allow up to 3.9 bar. While experiments were conducted up to 6 bar, it is not advisable, as

exceeding 3.9 bar could potentially damage the valves that regulate the mass flow based on the

opening angle.

At Empa, two pressure sensors are used: one for pressures up to 1 bar with a resolution of

0.001 bar, and another for pressures up to 10 bar with a resolution of 0.01 bar. These sensors

provide the necessary precision for accurately controlling the pressure during the tests.

5.3 Fixation of the Bulge Test Setup via Framework

To capture the maximum bulging, it is essential that the maximum deflection stays within the

field of view of the microscope. This ensures that all deformations can be properly observed and

recorded. The field of view was discussed earlier in relation to the Sensofar microscope, which

highlights the importance of positioning during measurements. To avoid the need to manually

locate the center each time, a 3D-printed fixture was designed and printed to fit the dimensions

of the turntable on the stage, ensuring the setup remains centered throughout the experiment

(see Figure 5.2).

As shown in Figure 5.2, the setup includes two components: a 3D-printed fixture and an alu-

minum plate. The 3D-printed fixture was designed to fit the bulge test setup perfectly, allowing

for easy and repeatable placement of the samples.

To further improve accuracy, an aluminum plate was used to prevent any bending during mea-

surements. This ensures that the bulge setup remains stable and that the center of the bulging

membrane does not need to be located and aligned each time, allowing for more consistent and

repeatable results.

Figure 5.2.: (a) 3D-printed fixture used for the bulge testing setup to ensure proper positioning and (b)

aluminum plate used to improve accuracy by preventing bending during measurements.

These components help maintain stability and ensure repeatability in positioning the sam-

ples.
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5.4 Zero Point Determination

Determining the zero point, the starting Z-value in the global coordinate system of the Sensofar

microscope from which deflection measurements are taken, proved to be anything but trivial.

The current bulge setup presents a major challenge: the samples are clamped, which induces

stresses and deformations. During a discussion with Prof. Vlassak, he pointed out that this is

not ideal, and his team uses epoxy resin to avoid these clamping issues.

Experimentally, it was concluded that the zero point should be set at 0.01 bar to best fit the

formula (??). This pressure allows the sample to be nearly straight with minimal deformation.

At 0.00 bar, the sample tends to bulge slightly inward due to the stress caused by clamping. To

prevent this, applying a slight pre-tension at 0.01 bar ensures that the sample remains in a more

stable and straight condition.

Alternatively, the zero point can be set at 0.00 bar, with the Z-value at this pressure manually

focused using the confocal microscope and recorded in the global coordinate system.However,

experience has shown that the global z-value at 0.00 bar can vary between samples, even of the

same type, while setting the zero point with a small amount of pre-tension at 0.01 bar provides

more consistent Z-values across samples.

Once the Z-values are recorded with the lid on, but before the sample is clamped, the screws

are tightened to 8-10 Nm to secure the sample. This process often induces slight curvature.

When a pressure of 0.01 bar is applied, the sample returns to an almost straight condition. For

stiff materials, the deformation at 0.01 bar is negligible, but for materials with an E-Modulus

below 1 GPa, this small deformation should be considered and a lower pre-tension is advised.

To minimize additional stress, it is important to tighten the screws homogeneously in a cross

pattern to prevent uneven clamping, which can affect measurement accuracy.

When conducting the test, the user is free to choose whether to use the measured value

(where the lid simply rests on the sample but is not yet clamped) as the zero point or the zero

point with a slight pre-tension of 0.01 bar. (Applying a pre-tesnion is also common in tensile

testing machines). Evidently, the chosen zero point will affect the measured deflections. From

experience, the results vary by less than 1 percent (typically around 0.7%).

5.5 Objective Selection and Measurement Duration

The selection of the appropriate objective is critical for accurate bulge testing measurements, as

it affects both the field of view and the ability to capture key deformation points. The following

table lists the four available objectives and their respective fields of view:

Table 5.1.: Objectives and Corresponding Fields of View (in micrometers, µm)

Objective 10x 20x 50x 150x

Field of View (in µm) 1700 x 1418.6 850 x 709 340 x 283.7 113.3 x 94.6
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Lower magnifications (10x, 20x, and 50x) provide a larger field of view, which increases the

likelihood of capturing the point of maximum deflection, even during large pressure jumps.

These objectives are ideal for measuring residual stresses and calculating the modulus of elas-

ticity, as they offer sufficient coverage to ensure the highest point of deflection is within the

frame.

In contrast, the 150x objective is better suited for detailed studies of crack initiation and

propagation. While it provides the level of detail necessary for studying crack onset (see Section

12.2), its smaller field of view makes it more challenging to center on the point of maximum

deflection, which can lead to underestimating deflection and consequently overestimating stiff-

ness.

5.6 Measurement Process and Data Extraction

Once the zero point is determined as discussed in 5.4, the Inficon (pressure program) is started.

After 60 seconds, the Sensofar SMR program is initiated. The 60-second delay is optional but

strongly recommended, as the pressure control tends to overshoot, especially at pressures below

0.8 bar, and it takes some time during the holding phases to stabilize (see Figure 5.4 for details

on pressure stabilization and overshooting behavior).

Figure 5.3.: (a) Overshooting caused by the valve opening too quickly and widely, which is difficult to

mitigate. (b) Overshooting that can be managed by reducing the steepness of the ramp

phase and increasing pressure more gradually. These images illustrate the different types of

overshooting behavior observed in the pressure control system during bulge testing.

After each pressure increase (increment), a measurement is taken by the Sensofar microscope.

Sensofar uses its own file format, .plux, which is essentially a zip file. It contains all topography

data along with absolute coordinate system values. As the bulging (the curvature) of the sample
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increases with rising pressure, Sensofar adjusts the Z-value (the height) in each autofocused

capture.

Figure 5.4.: Pressure measurement data collected during the experiment. (a) Shows the overall set and

actual pressure over time. (b) Most overshootings occur up to 0.7 bar. (c) Highlights the

difference between the set and actual pressure over time.
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After the experiment, the Z-values are extracted from the .xml file (contained within the .plux

file) and stored in a Z-array file. The first value represents the zero point. By subtracting the

other values from the zero point, the measured deflection is calculated. It is important to note

that only the Z-value of a single pixel is stored in the .xml file, which corresponds to the point

displayed as the zero line (see the horizontal dashed black line in the cross profile in Figure

10.1). Since this point is not the highest point, the highest point within the capture must be

identified and added.

Figure 5.5.: Screenshot from Sensofar showing the measurement of the maximum deflection point. The

highest point within the capture, which is not the zero line, is automatically identified and

recorded.

The highest point, or the point of maximum deflection, is automatically detected when you

select the appropriate template (.plut file) under "choose template" in the SMR recipe, where

the maximum value is stored. (Further details can be found in the manual in the appendix.)

Depending on the selected pressure range and the pressure increment, the measurement can

take up to 6 hours. The system automatically adjusts the focal plane to accommodate the

increasing deflection. However, the 150x objective struggles to detect the focal plane if the

pressure increment is too large, as excessive deflection exceeds the range for automated focal

plane detection. To prevent this, the deflection between measurements with the 150x objective

should remain small. This can be achieved by choosing a lower pressure increment.
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5.7 Alternative Approaches for Measuring the Deflection

Instead of using the absolute z-values, which involves extracting the deflection of the highest

point from .xml files, it is also possible to measure the deflection directly from a stitched image.

A stitched image, as shown in Figure 5.6(b), is a composite image made from multiple individual

images. The profile of this stitched image allows for the direct reading of the highest point. It

is also not necessary to stitch the entire surface; it is sufficient to measure across the curved

sample. Strictly speaking, one would only need to measure up to the midpoint, as this is the

location with the highest curvature, as shown in Figure 5.6(b).

Figure 5.6.: (a) A top view of the curved sample for visual reference, and (b) a stitched image showing

the profile of the curved sample. This alternative approach allows the highest point in the

profile to be directly identified.

However, with the setup used in this thesis, this approach was not feasible, because the design

of the lid has a sharp edge at the clamping point, which prevents the confocal microscope from

taking measurements in those areas. Additionally, performing a Bulge Test using this method

would take significantly longer, as the entire cross-sectional profile would need to be captured

and stitched together after each pressure increase.

5.8 Data Analysis and Report Generation

Once the sample is manually positioned and the zero point is set, the entire bulge test process

becomes fully automated. After the bulge test is completed and the automated detection of the

Z-values is performed, all captures are stored in a folder at predefined pressure values along a set

file path. Subsequently, a Python script is executed to automate the analysis and documentation

of the bulge test experiments. The script extracts relevant data, performs fitting analyses to

determine material properties, and generates comprehensive reports, including both visual and

tabular representations of the results. The full code is provided in the appendix.

The main functionalities of the script are as follows:

1. Data Extraction: The script extracts Z-position values from .plux files stored within a

specified directory. It retrieves both the set pressure and the actual pressure values from
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CSV files, text files, or filenames. Additionally, it accounts for missing data and ensures a

complete dataset for analysis. Missing data or recordings can occur if the pressure drops

after the objective (Objektiv) is set at a given global z-value, causing all planes to be out

of focus. If the image is more than 50% black, the recording is not saved. The script is

designed to handle these cases accordingly.

2. Curve Fitting and Analysis: The script fits pressure-deflection data according to two pri-

mary models: the Nix Model and the Timoshenko method. Both models are discussed in

Chapter 3. These models are used to determine fitting parameters for material properties

such as residual stress (σ0) and Young’s modulus (E). The key difference between these

models lies in how they account for boundary conditions and deformation behavior under

pressure.

The Nix Model [12], given by:

P =
4σ0 th

a2
+

8Eth3

3a4(1− ν)
(5.1)

assumes that the film behaves according to the spherical membrane approximation, where

the bulge height (h) is much smaller than the film radius (a). It simplifies the relation

between pressure and deflection, making it suitable for certain types of materials and

conditions. The complete derivation for the Nix model is shown in chapter 3.

The Timoshenko Model [12], given by:

P =
4σ0 th

a2
+
(7− ν)Eth3

3a4(1− ν)
(5.2)

accounts for additional material behavior, such as the influence of Poisson’s ratio (ν) on

deformation. This method is typically used for more complex cases where the film exhibits

larger deflections and is more compliant than predicted by the Nix Model.

In [12], according to Martha K. Small and W. D. Nix, the Timoshenko model, based on

the energy minimization method, "predicts more compliant film behavior than the spherical

membrane model and a different dependence on Poisson’s ratio. It should be pointed out that

in Timoshenko’s energy-minimization calculations, he generally assumes a value of 0.25 or

0.30 for the Poisson’s ratio at some point in the derivation. This should be noted in reporting

values of Young’s modulus using these equations."

The choice between the two models depends on the specific material being tested and

the deformation conditions. In general, the Timoshenko model is more appropriate when

larger deflections are observed, as it includes higher-order terms and more accurately cap-

tures the behavior of the film. In this thesis, both models were used to calculate E and σ0,

allowing for a comparison of the material properties derived from each.
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The script evaluates the fitting accuracy through R2 scores and visualizes the fitted curve

alongside the measured data points. Only the elastic regime is considered for fitting be-

cause the equations 5.1 and 5.2 are only valid in that regime.

3. Strain and Stress Analysis: The script uses the measured deflections of the material under

varying pressures to calculate strain, membrane stress, and von Mises stress. The strain is

calculated using the equation:

ε=
Rθ − a

a
(5.3)

Here, R is the radius of curvature, θ is the angular displacement, and a is the original

radius. The membrane stress is calculated as:

σmembrane =
PR

2t
(5.4)

where P is the applied pressure, R is the radius of curvature, and t is the thickness of the

film.

The von Mises stress, which is used to evaluate yield criteria in ductile materials, is given

by:

σvon Mises =

√

√(σ1 −σ2)
2 + (σ2 −σ3)

2 + (σ3 −σ1)
2

2
(5.5)

where σ1, σ2, and σ3 are the principal stresses in the x, y, and z directions, respectively.

For circular bulge testing, assuming equibiaxial stress (σ1 = σ2) and σ3 = 0, this simplifies

to:

σvon Mises =

√

√(σ1 −σ1)
2 + (σ1 − 0)2 + (0−σ1)

2

2
=

√

√0+σ2
1
+σ2

1

2
=

√

√2σ2
1

2
=
q

σ2
1
= σ1

Therefore, the von Mises stress is equal to the membrane stress σ1 under these conditions

[13].

σvon Mises = σ1 (5.6)

4. Image Processing: Optional, the recorded images can be processed from the bulge test

to identify and analyze surface modification or crack formations in thin films on polymers.
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The programm also calculates the number, type, and distances between cracks as shown in

Chapter 12 in Figure 12.2

5. Report Generation: Finally, the program creates detailed PDF reports that include tables

of pressure and deflection data, annotated images, and plots of various analyses. This

provides a visual summary of the pressure vs. deflection, strain vs. stress, and other key

metrics and, furthermore, it offers the option to generate videos with overlaid pressure,

stress, and strain values.

6. User Interaction: The program collects input parameters such as measurement mode,

window radius (Empa Thun has two setups with different diameters), thickness, Poisson’s

ratio, and magnification. It allows for customization of the analysis process, including

setting zero points, defining maximum elastic regime values, and choosing to perform

crack analysis or video creation. Currently, the program is tailored for circular windows

only; for different geometries, the equations for stress and strain, as discussed in 3, should

be adapted accordingly.

7. File Management: Organizes and saves extracted and processed data in structured direc-

tories. Generates filenames based on input parameters and current timestamps for easy

tracking and retrieval of results.

This script ensures a consistent, automated process for analyzing and documenting bulge test

results, as illustrated in the data extraction and analysis flowchart in Figure 5.7.

Figure 5.7.: Flowchart of data extraction and analysis process after the bulge test procedure is finished
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6 Exemplary Analysis of a Bulge Test Experiment

6.1 Pressure-Deflection Curve Fitting

The pressure-deflection data for the Al/Kapton sample is fitted using a polynomial model [12].

The fitting parameters are used to derive the E-modulus (E) and the residual stress (σ0) based

on the Nix and Timoshenko models, as shown in Figure 6.1. The difference between the Nix

and Timoshnko model are discussed in chapter 5.8

Figure 6.1.: Pressure vs. Deflection curve for Al (10 nm) on Kapton (50 µm).

6.2 Extrapolation and Shifted Stress-Strain Curve

Using the E-modulus obtained from the pressure-deflection fitting (Figure 6.1), the correspond-

ing slope is identified in the stress-strain curve (Figure 6.2a). The strain is extrapolated back

to the axis to determine the residual strain ε0. The final step involves shifting the original

stress-strain data to account for the residual strain ε0, aligning the curve to provide an accurate

representation of the film’s mechanical behavior (Figure 6.2b).
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Figure 6.2.: (a) Extrapolated stress-strain curve where the intersection with the strain axis reveals ε0.

(b) Shifted stress-strain curve after accounting for ε0.

The analysis demonstrates how residual strain ε0 is calculated from a combination of pressure-

deflection fitting and stress-strain extrapolation using Nix’s fitting equations.

Residual strains ε0 present in the material need to be taken into account for analysis of bulge

test data. Reasons for residual strains are discussed in . In this exemplary analysis, the residual

strain ε0 in a 10 nm thick aluminum film deposited on a 50 micrometer Kapton substrate is

evaluated. This process is exemplified for one sample but is also applicable to other samples.

The steps involve fitting the pressure-deflection data (Figure 6.1), identifying the appropriate

slope in the stress-strain curve (Figure 6.2), and finally calculating ε0 from the extrapolated
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curve. For a circular window bulge setup, the stress σ determined from the applied pressure p

and membrane deflection h using the following expressions [14]:

σ =
p · R

2h
, (6.1)

The strain ε in a circular window bulge test setup is derived based on the following steps:

First, as shown in chapter 3.1.3 the radius of curvature R at the pole of the bulge is given by:

R=
a2 + h2

2h
(6.2)

where:

• a is the window radius,

• h is the deflection at the center of the bulge.

Next, the angle θ subtended by the arc length over the deformed membrane is calculated as:

θ = arcsin

�

2ah

a2 + h2

�

(6.3)

The arc length L of the membrane is then given by:

L = R · θ =
a2 + h2

2h
· arcsin

�

2ah

a2 + h2

�

(6.4)

Strain ε is defined as the relative change in length between the deformed length L and the

original radius a, normalized by the original length a:

ε=
L − a

a
(6.5)

Substituting the expression for L from (6.4):

ε=

a2+h2

2h · arcsin
�

2ah

a2+h2

�

− a

a
(6.6)

6.2. Extrapolation and Shifted Stress-Strain Curve 27



Finally, accounting for the presence of residual strain ε0, the total strain is expressed as:

ε=

a2+h2

2h · arcsin
�

2ah

a2+h2

�

− a

a
+ ε0 (6.7)

Thus, the final expression for the strain ε is:

ε= ε0 +
a2 + h2

2ah
arcsin

�

2ah

a2 + h2

�

− 1, (6.8)

where a is the window radius, h is the deflection, t is the film thickness, and ε0 is the residual

strain. These equations are valid for spherical deformation and account for both elastic and

plastic deformation regimes [15].

ε= ε0 +
a2 + h2

2ah
arcsin

�

2ah

a2 + h2

�

− 1, (6.9)

where a is the window radius, h is the deflection, t is the film thickness, and ε0 is the residual

strain. These equations are valid for spherical deformation and account for both elastic and

plastic deformation regimes [15].

Occasionally, the values obtained from the fitting curve’s corresponding slope cannot be di-

rectly found in the strain-stress curve. In such cases, the Young’s modulus can also be derived

by applying a linear regression within the linear range of the strain-stress curve. However, this

approach typically yields a higher Young’s modulus compared to the value retrieved from the

pressure-deflection curve using the Nix model. The Nix model connects equations 6.1 and 6.9

with the biaxial modulus formula, neglecting higher-order deflections:

σ

ε
=

E

(1− ν)
= E′, (6.10)

The underlying reason for this discrepancy may be that the Nix model provides a better de-

scription of the material behavior, as it incorporates Poisson’s ratio. This inclusion might make it

more suited for materials like Kapton. There are also modifications or evolutions of the equation

6.1 [14] used in this thesis that also apply to circular windows.
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Some of these evolutions for calculating stress, which are applicable in both the elastic and

plastic regimes, are shown in the table below. They won’t be discussed in detail here, but they

do illustrate how various methods can differ as shown in a table in [16] .

Table 6.1.: "Summary of equations used to calculate stresses at the pole of bulge specimens. ’Current

work’ refers to the paper by Min et al. (2017) [16]. The Yoshida method is discussed in

[17]."
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7 Reproducibility of Measurement Results in Bulge Testing

7.1 Importance of Reproducibility in Bulge Testing

Reproducibility in bulge testing means consistently getting the same measurement results for

the same type of material. Ensuring reproducibility is crucial for validating experimental data

and making research conclusions reliable [18]. Some variation in results is normal as seen

in Figure 7.1 , but significant deviations can indicate problems with how the experiment was

conducted.

Figure 7.1.: Comparison of (a) pressure-deflection and (b) stress-strain curves for Kapton measured

using different objectives. The experiment was conducted up to 3.5 bar, except for 10x,

which was conducted up to 2 bar.
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To ensure that measurement accuracy is independent of the chosen objective, bulge tests

on Kapton were conducted using different objectives. Logically, the selection of the objective

should not alter the material properties. The Young’s modulus for all samples with the different

objectives is, on average, 5001.75 MPa, ranging from 3885 MPa to 6048 MPa, with a corre-

sponding Timoshenko E-modulus averaging 4113.01 MPa, ranging from 3740.85 MPa to 5250

MPa. However, some obvious deviations are noticeable, as shown in Table ??. These deviations

could arise due to slight differences in focus or resolution at different magnifications, but they

do not indicate a change in the material’s intrinsic properties.

Additionally, as discussed in the previous chapter 6, in some strain-stress curves, the corre-

sponding slope of the pressure-deflection curves was not found. A direct fit of the strain-stress

curve shows a higher Young’s modulus compared to the modulus determined from the fitting

curve. Since the strain-stress curve uses the full equations 6.1 and 6.9, without simplifying

the higher-order deflections, it is believed that the Young’s modulus directly extracted from the

strain-stress curve is the most accurate.

Objective
Strain-Stress

Young’s Modulus (MPa)

Nix Model

Young’s Modulus (MPa)

Timoshenko Model

Young’s Modulus (MPa)

150x 4744 3581.31 4295.43

50x 5330 3349.38 4017.25

20x 6048 4380.00 5250.00

10x 3885 3118.93 3740.85

Average 5001.75 +1046.25

−1116.75
3429.93 +772.59

−488.48
4113.01 +924.12

−585.03

Table 7.1.: Young’s Modulus values calculated by suing hooke’s law directly from Strain-Stress curve

and retrieved from the pressure-deflection curves using Nix, and Timoshenko models, along

with the average and range.

7.2 Factors Influencing Reproducibility in Bulge Testing

Several factors can affect the reproducibility of bulge test results [18] [19], including:

• Variations in Sample Preparation: Differences in how films are deposited or substrates

are handled can cause variations in material properties.

• Measurement System Variability: Differences in the measurement setup, such as how

precisely pressure is applied and the sensitivity of the detection system, can contribute to

variability.

• Environmental Conditions: Changes in temperature, humidity, or other environmental

factors during testing can impact the material’s response.

• Operator Influence: Human factors, including how the sample is handled and the testing

apparatus is operated, can introduce variability in the measurements.

The author has created a procedure in the appendix that must be strictly followed, as devi-

ations can lead to varying results. Increased clamping pressure influences residual strain and

bulge behavior.
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8 Critique of the Setup

8.1 Design Limitations

The current lid design has a notable shortcoming: it doesn’t allow for deflection measurements

via cross-sectional imaging. This limitation, as discussed in Section 5.7, restricts the possibilty

to measure higher deflection. Another negative point about the Design is the way samples

are being placed. During a personal discussion with Professor Vlassak, he pointed out that

clamping samples is not ideal. This method can introduce residual strain or cause the samples

to wrinkle, which can compromise the results. To avoid these issues, Professor Vlassak’s team

used disposable fixtures with epoxy resin that are discarded after each experiment.

8.2 Measurement Constraints

Another significant issue with the current setup is the reliance on Mass-Flow Controllers (MFCs),

which are not reliable below 0.7 bar, since overshootings can occur, as noted in Section 5.6

and shown in Figure 5.3. This overshooting leads to measurement errors and outliers, which

undermine the accuracy of the results [20].

8.3 General Error Propagation

As every system, the bulge setup is not perfect. The uncertainties of the components were

considered and are integrated in the code attached in the appendix of this master thesis. The

detailed derivation of the uncertainties can be found in the Appendix B.
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9 Validation of the Bulge Testing Setup Using Polymer Substrates and Soft Membranes

To validate the bulge setup and analysis procedure several known polymer materials were con-

ducted to extract values for the Young’s modulus and compared with the literature values or

technical data sheets provided by the manufacturer. These validations are crucial to ensure the

accuracy and reliability of the bulge testing setup before applying it to more complex material

systems. The materials tested represent two extreme cases: one very stiff polymer, Kapton,

and a much softer artificial skin material. Additionally, Fluorinated Ethylene Propylene (FEP),

another well-known polymer, was included, although for the interpretation we need to con-

sider the presecne of an Ag-Inconel layer, which influences the effective modulus. Kapton, a

polyimide from DuPont, had a thickness of 50 micrometers. The artificial skin material was

manufactured in-house by Empa Thun for another project by a collegue and had a thickness of

2200 micrometers. The thickness of the FEP sample was not directly measured but estimated to

be around 50 micrometers.

9.1 Summary of Validation Results

The table below summarizes the measured Young’s modulus and residual stress values for Kap-

ton, artificial skin, and FEP. These results are compared to the corresponding literature values,

with sources provided for reference.The pressure-deflection curves for Kapton, Inconel, and

artificial skin material are shown in Figure 9.1.

Table 9.1.: Comparison of Measured and Literature Values for Various Materials

Material Measured Young’s Modulus Literature Value Source

Kapton 3.42 GPaNix, 4.11 GPaTimoshenko 2.76 GPa [21]

Artificial Skin 120 kPaNix, 144 kPaTimoshenko 100-150 kPa [22]

FEP 748 MPaNix, 897 MPaTimoshenko 300-700 MPa [23]

9.2 Discussion of Results

Kapton is a polyimide film with well-documented mechanical properties, making it an ideal

candidate for validating the bulge testing setup. According to the manufacturer DuPont, Kapton

has a Young’s modulus of 2.76 GPa. The measured values from our tests were slightly higher,

which could be due to differences in sample preparation, batch variability, or measurement

techniques. Nonetheless, the results are within a reasonable range, indicating that the setup is

functioning as expected.

The artificial skin material, fabricated at Empa, showed a Young’s modulus of 120 kPa, which

is in good accordance with the expected range of 100-150 kPa [22]. This consistency supports

the accuracy of the bulge testing setup for softer materials.
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The FEP sample, which was deposited with an Ag-Inconel layer, showed a measured Young’s

modulus of 748 - 897 MPa. According to the literature, FEP has a Young’s modulus between

300-700 MPa [23]. The difference might be due to the Ag/Inconel coating.

Figure 9.1.: Pressure vs. deflection curves for Kapton, Inconel, and artificial skin materials. The upper

graph displays the overall pressure-deflection behavior for the materials, while the lower

graph provides a magnified view of the deflection range up to 500 µm to highlight the

differences in the behavior of the materials
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As discussed in chapter 6, the fitting formula with a linear term and a cubic term used is:

p = a · h+ b · h3. The coefficients of determination (R2) for each curve, as shown in Table 9.2,

demonstrate that the fits are highly accurate, with values consistently above 0.93. This indicates

a very good agreement between the model and the experimental data.

Table 9.2.: Coefficients of Determination for Each Curve

Curve R2

Kapton V1 0.98

Kapton V2 0.95

Kapton V3 0.93

Kapton V4 0.94

Inconel V1 0.96

Inconel V2 0.97

Artificial Skin 0.99

9.3 Conclusion of Validation Tests

The validation tests for Kapton, artificial skin, and FEP demonstrate that the bulge testing setup

is capable of producing reliable and consistent measurements of mechanical properties. The

results confirm that the setup is suitable for further experimental work, especially for materials

with known properties. This validation process provides the necessary confidence to apply the

setup to more complex material systems in the subsequent chapters.
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Part III.

Results and Discussion of
Thin Films on Polymer
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10 Effect of Aluminum Deposition on Kapton

The mechanical properties for three different samples were analyzed: a 50 micrometer Kap-

ton substrate, Kapton with 10 nm aluminum deposition, and Kapton with 240 nm aluminum

deposition. The stress-strain behavior and deflection data were examined to understand how

aluminum deposition affects the mechanical properties of Kapton.

Figure 10.1.: Comparison of mechanical properties of Kapton samples with different aluminum deposi-

tions. (a) shows the pressure-deflection response, and (b) shows the stress-strain behavior.
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10.1 Observations

Figure 10.1a provides a comparison of the pressure-deflection behavior and Figure 10.1b shows

the stress-strain curves and of the three samples. Surprisingly, the sample with the 10 nm

aluminum layer exhibits a higher effective modulus of elasticity and higher residual stresses

compared to the sample with the 240 nm aluminum layer. This result is counterintuitive, as one

might expect according to the rule of mixtures that a thicker aluminum layer would result in a

higher stiffness. Possible explanations are discussed at the end of this chapter.

The data suggests that aluminum deposition has a significant effect on the mechanical prop-

erties of Kapton. However, the unexpected result where the 10 nm Al-Kapton sample shows less

deflection at a given pressure than the 240 nm Al-Kapton samples and has a higher effective

Young’s modulus.

In table 10.1 and in table , the image on the left in each row capture the point where cracks

first started to appear, which are highlighted in the strain-stress data shown in Figure 10.1. The

images on the right display the final state of the samples after they were fully loaded and cracks

had formed.
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Table 10.1.: 10nm Al-Kapton, 50µm V1 and V2 sample images.
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The visualization of the respective samples reveals an interesting observation. The differences

between the 10nm and 240nm aluminum-coated Kapton samples are especially clear. They

exhibit distinct crack patterns: the 10nm sample shows a very fine crack pattern, whereas the

240nm sample has a coarser one. There is a well-known relation between film thickness and

crack spacing. Higher film thickness results in larger crack spacing, as shown in [24]. Perhaps

the grain size and distribution are finer, and the cracking may be intergranular, occurring along

the grain boundaries. An SEM analysis could provide further clarity.

Both show a similar type of primary cracks that differ from the primary cracks of the 240

nm-Al samples shown in 10.2. In the 10 nm samples, the Initiation of small crack points are

observed, resembling a "pore opening," which are very finely distributed.

Interestingly, these two 10 nm-Al samples differ in their crack patterns. Typically, a biaxial

crack pattern is expected for biaxial loading conditions, as shown in the image on page 15

in [25]. Even though a uniaxial crack pattern was observed in the 10 nm Al V1 sample, this

is not typical for bulge testing, which generally induces biaxial loading. The presence of a

uniaxial pattern may be due to local imperfections or anisotropy in the film, but this behavior

requires further investigation. However, as shown in [25], certain effects and confinements due

to reinforcement can lead to a uniaxial crack pattern, even under biaxial loading conditions.
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Table 10.2.: 240nm Al-Kapton, 50µm V1 and V2 sample images.
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The corresponding values for the discussed samples are summarized in the following tables.

Table 10.3.: Young’s Modulus and Residual Stress for Various Samples

Sample ENix (MPa) ETimoshenko (MPa) (MPa)

Kapton 50µm V1 3581.31 4295.43 14.61

Kapton 50µm V2 3511.94 4212.22 11.9

240nm Al-Kapton 50µm V1 4650.73 5578.09 19.1

240nm Al-Kapton 50µm V2 4347.95 5214.93 17.8

10nm Al-Kapton 50µm V1 6384.06 7657.04 26.7

10nm Al-Kapton 50µm V2 7001.87 8398.05 25.6

Determining the crack-onset strain and stress by visual inspection can be challenging. Even

at a magnification of 150x, which is relatively high, it’s most likely that the initial microcracks

form earlier than what can be observed.

Sample Crack-Onset Strain ( x̄ ±∆) Crack-Onset Stress ( x̄ ±∆)

10nm Al 1.29% ± 0.04% 53.25 ± 0.66

240nm Al 0.93% ± 0.11%* 49.44 ± 1.88

Table 10.4.: Average crack-onset and crack-onset stress values with range for 10nm and 240nm samples.

Interestingly enough there is a correlation (and perhaps a causality) between residual stresses

and the determined effective Young’s modulus. The 10nm samples have the highest, followed

by 240nm samples and pure Kapton has 14.6

Sample εcr σcr (MPa) Remarks

10nm Al V1 1.25% 53.9 Uniaxial crack pattern during loading

10nm Al V2 1.32% 52.59 Biaxial crack pattern as expected for bulge test-

ing, however much finer distributed than in

240nm Al

240nm Al V1 1.03% 50.82 Coarse biaxael crack pattern [24]

240nm Al V2 0.82% 48.064

Table 10.5.: Individual sample results for crack-onset strain (εcr) and crack-onset stress (σcr).

10.2 Possible Explanations for Higher Residual Stresses in Thinnes Films

The effective Young’s modulus of a composite material can be estimated using the rule of mix-

tures [26], usually only valid if proportions are similar.
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Eeffective =
EKapton · tKapton + EAl · tAl

tKapton + tAl

(10.1)

where: - EKapton = 4.2 GPa (Young’s modulus of Kapton), - EAl = 70 GPa (Young’s modulus of

aluminum), - tKapton = 50, 000 nm (thickness of the Kapton substrate), - tAl = 10 nm (thickness

of the aluminum film).

Eeffective =
4.2× 50000+ 70× 10

50000+ 10
≈ 4.213 GPa

According to this rule of mixture rule this calculation shows that the addition of a 10 nm alu-

minum layer should only slightly increase the effective Young’s modulus of the Kapton substrate

from 4.2 GPa to approximately 4.213 GPa, suggesting that the observed changes in mechanical

behavior must have other contributing factors.

It is interesting to note that the residual stress for the 10nm Al-Kapton sample is higher than

that of the 240nm Al-Kapton sample, as listed in Table 10.4. While thermal mismatch initially

contributes to residual stress, it remains largely independent of film thickness beyond a certain

threshold [27]. Instead, the key factor influencing thickness-dependent residual stresses is the

density, not the distribution, of interface misfit dislocations. In thinner films, fewer dislocations

tend to form because there isn’t enough space to accommodate them, which means that the

mismatch strain between the film and substrate isn’t fully relieved. As a result, residual stresses

are higher in thinner films. On the other hand, thicker films can support a higher density of

dislocations, which allows more of the strain to be released, reducing the overall residual stress.

So, it’s this reduced dislocation density in thinner films that drives the increase in residual

stresses, according to [27]. This aligns with the well-known principle that ’smaller is stronger,’

where thinner films experience increased stress due to their reduced capacity for strain relief.

The fact that the 10nm Al-Kapton sample exhibits higher residual stress can be attributed to

the significant role of dislocation mechanisms at such thin layers. Moridi et al. demonstrated

that thinner films tend to have a lower density of interface dislocations, which are less effective

in relieving stress buildup [27]. This suggests that the lower density of misfit dislocations in the

10nm sample likely plays a crucial role in the increased stress observed. So, it’s this reduced

dislocation density in thinner films that drives the increase in residual stresses, according to

[27]. Further, regarding the deposition process, the 240nm layer takes much longer to deposit,

causing the sample to heat up more. However, the samples were deposited at room tempera-

ture (RT) without intentional substrate heating, which may limit the full relaxation of stress in

thicker films.

Additionally, for a film as thin as 10nm, surface and interface effects may dominate the stress

response, further enhancing residual stress. In contrast, the thicker 240nm layer likely allows

for stress relaxation mechanisms, such as grain boundary movement or dislocation formation,

to occur more readily, thus reducing the overall residual stress. As Moridi et al. pointed out, the
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formation of dislocations becomes more pronounced with increasing thickness, which allows

for greater stress relaxation and explains why the 240nm layer exhibits lower residual stress.

Further [27] notes without explaining it in great detail, "that the residual stresses in a thinner

film are much larger than those in a thicker film due to the effects of lattice defect."

The data suggests that aluminum deposition significantly affects the mechanical properties

of Kapton. However, the unexpected finding that the 10 nm Al-Kapton sample shows a higher

E-modulus than the 240 nm Al-Kapton. Variability in the base Kapton material seems unlikely,

given that the substrates were sourced from the same roll and manufactured by the same pro-

ducer. Additionally, the clear differences observed in crack formation and the range of residual

stresses for each sample type argue against variability in the base material as the cause of this

discrepancy. Specifically, the 10 nm Al-Kapton sample exhibits higher residual stresses than the

240 nm Al-Kapton sample, with the lowest residual stresses found in the pure Kapton. This

pattern suggests that the differences in mechanical properties are more likely caused by the

different film thickness rather than by any inconsistencies in the base material. The observed

trend reinforces the notion that ’smaller is stronger,’ where thinner films not only exhibit higher

residual stress but also a higher modulus of elasticity.
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11 Analysis of Discontinuities and Crack Formation in Ag/Inconel on FEP

One of the advantages of not only measuring deflection (e.g., with a point-based laser system)

but also capturing images is the ability to study whether discontinuities can be observed in the

pressure-deflection or strain-stress curves correspond and can be linked to to crack initiation

and propagation in the thin film. The visual confirmation of cracks, coupled with the associated

stress relief, would indicate that a measured discontinuity is indeed real and not noise or un-

certainty in the measurement. Discontinuities in these curves might indicate the onset of crack

formation. However, the system is not sensitive enough or, more precisely the pressure control

is not stable enough, to observe discontinuities or label such with confidence. It appears to work

only for the first crack initiation and substrate failure as shown in 11.3.

11.1 Observations in Ag/Inconel on FEP Samples

The samples investigated in this chapter are Ag/Inconel films on FEP. The Inconel layer has a

thickness of 30 nm, while the Ag layer is 150 nm thick [24]. Initially, the Ag/Inconel film on

FEP was crack-free but had some surface defects, as seen in Figure 11.3a. The plot on the top

left of each subfigure in Fig. 11.3 shows the pressure-deflection curve. The bottom left plot

has two axes: the left axis shows the increase in deflection ∆h represented by bars, while the

right axis shows the pressure increase ∆P in points. The sum of all the bars at any given point

represents the total deflection up to that point. A bar is marked as a discontinuity when the

increase in deflection is larger than the previous one, while the increase in pressure is

smaller or equal to the previous one. These bars are marked as discontinuities, reflecting a

deviation from the expected trend of the fitting curve in Equation 11.1. These conditions help

to differentiate real discontinuities from regular deflection changes. Yellow bars indicate points

where these conditions are met, indicating mechanisms like crack initiation or propagation.

However, even blue bars could represent discontinuities. This can occur after overshootings,

where the deflection increase is significantly large, or when the pressure control system increases

the pressure higher than it is set to be. In these cases, the subsequent bars may still show an

atypically large increase in deflection, even though the pressure increment is smaller. This be-

havior can still indicate a discontinuity, as the deflection increment remains disproportionately

high relative to the pressure increase. Therefore, it is essential to consider both yellow and

certain blue bars when identifying potential crack initiation or propagation mechanisms. A

flowchart illustrating the criteria for identifying discontinuities is shown below.

Currently, within the frame of this thesis no precise quantitative method has been developed

to determine how atypical an increase is in comparison to the others. The assessment of discon-

tinuities is based on a qualitative judgment of the patterns in the data. However, theoretically,

a more refined approach could involve comparing each deflection increase to the predicted in-

crease from the fitting function in Equation 11.1. This method could help evaluate whether an
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increase is typical or atypical in relation to the expected behavior, allowing for a more objective

identification of discontinuities. Mathematically, for a function

P = ah+ bh3 (11.1)

which is the fitting function discussed in Section 6.1, under a constant pressure increment ∆P,

the deflection increment ∆h should decrease steadily. Therefore, if the current deflection in-

crement under a constant pressure increase is higher than the previous one, it indicates a

discontinuity, suggesting an underlying mechanism such as crack initiation or propagation.

Since the pressure increment is sometimes unstable, the corresponding pressure data is also

plotted to account for any anomalies. The central image, captured using a microscope, shows

the surface condition of the film, allowing direct visual comparison with the data. The plot on

the right represents the strain-stress curve, with the red point marking the current data point,

the blue points representing earlier measurements, and the grey points showing the following

trajectory.

Figure 11.1.: Flowchart illustrating the criteria for identifying discontinuities in deflection and pressure

data. The Yellow bars in in Fig. 11.3 indicate discontinuities when deflection increases

while pressure remains constant or decreases. Blue bars are considered in cases of pressure

control anomalies.
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At a strain of 0.15%, the first crack initiation was observed, visible in Figure 11.3b. Since the

residual stress was determined to be 10.08 MPa, we have to account for the residual strain ε0,

which was determined using the method described in section 6.2 and shown below in Figure

11.2 to be 1.051%. Accounting for residual strain ε0, the first visible cracks observed with a

magnification of 150x are at εtotal = ε+ ε0 = 0.15%+ 1.051% = 1.201%. According to Putz et

al. [24] the first primary cracks were observed at approximately 0.25% strain, and secondary

cracks began to appear around 1% strain. So, there is a discrepancy between the values observed

in this thesis and the values determined in [24].

Figure 11.2.: (a) Pressure vs. strain plot showing the relationship between pressure and deformation.

(b) Shifted stress-strain curve after accounting for initial strain ε0. The samples consist of

30 nm Inconel and 150 nm Ag films on a 50 µm thick FEP substrate.
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(a) Initial observation showing surface marks without cracks

(b) First crack initiation at at εtotal = ε+ ε0 = 0.15%+ 1.051%= 1.201%

(c) Progression of crack formation showing a biaxial pattern εtotal = ε+ε0 = 0.72%+1.051%= 1.771%

(d) Point of material failure (rip) with visible stress relief εtotal = ε+ε0 = 12.215%+1.051%= 13.266%

(e) Crack pattern stays constant εtotal = ε+ ε0 = 11.484%+ 1.051%= 12.535%

Figure 11.3.: Progression of crack formation in Ag/Inconel on FEP during bulge testing. Each subfigure

shows the development from initial surface marks (a) to full crack propagation (e), with

corresponding discontinuities in the pressure-deflection and strain-stress curves.

46 11. Analysis of Discontinuities and Crack Formation in Ag/Inconel on FEP



The defects on the surface act as stress concentrates, so it is not surprising that cracks begin

there. Correspondingly, the first crack formation is observed at a defect, as seen in image in the

middle of Figure 11.3b.

As pressure continued to increase, the crack grew, and additional cracks formed at other

locations, showing the typical biaxial crack pattern as shown in the image on page 15 in [25],

and as observed in Figures 11.3c and 11.3d. Finally, in the last stage (Figure 11.3e), a rupture

of the polymer occurred. Since the air can now escape, no further pressure can build up. The

actual pressure could not reach the target pressure anymore, leading to a sort of unloading

curve. The crack pattern did not change further after this point. In Figure 11.3d, the rupture

is not visible directly in the image. Even though the theoretical highest strain and stresses in

a perfect sample should be exactly in the middle, failure of the substrate might occur slightly

offset from the midpoint. The image in Figure 11.3d was made with a 150x magnification, and

the rip was outside the field of view. An image showing the formation of a rip on another sample

(20x magnification, wider field of view). is shown in the appendix.

11.2 Conclusion

By looking at jumps/discontinuities in pressure-deflection and strain-stress curves, along with

visual images, one can get a clearer picture of how Ag/Inconel on FEP behaves during bulge

testing. These discontinuities seem to be directly connected to cracks forming. This method

might be useful for identifying when cracks start and understanding why thin films and coatings

might fail.

11.3 Comparison of Discontinuities in Pure Kapton vs. Kapton Coated with 240nm Al

The analysis of discontinuities continues with a comparison between pure Kapton and Kapton

coated with 240 nm of aluminum. As observed, pure Kapton exhibits fewer discontinuities in

the same strain range, and some of these may indeed be attributed to measurement uncertain-

ties. However, even in pure Kapton, there are some "jumps" in the pressure-deflection curve,

which, frankly, should not be overinterpreted, as the cause is most likely due to measurement

uncertainties rather than an underlying mechanism.

11.3.1 Pure Kapton

In the case of pure Kapton, as shown in Figure 11.4a, the pressure-deflection curve reveals

a relatively smooth progression with a few minor discontinuities, which meet the conditions

outlined at the beginning of this chapter to be classified as discontinuities in the context of this

study. This approach, however, is somewhat simplistic. These minor jumps might be due to the

material’s intrinsic properties or minor experimental variations. The stress-strain curve similarly

shows a gradual increase in deflection, with the increment of deflection gradually decreasing

and minimal irregularities, even though the pressure is set to increase with the same increment.
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11.3.2 Kapton Coated with 240nm Al

In contrast, the Kapton sample coated with 240nm of aluminum, as seen in Figure 11.4b, ex-

hibits significantly more discontinuities. As discussed earlier, these discontinuities are indicative

of crack formation within the coated layer. However, unlike the Ag/Inconel on FEP sample, the

link between the observed discontinuities and the crack formations is less direct visible. It is

more challenging to correlate specific discontinuities with crack initiation in the coated Kapton

based on recorded images. Despite this, the overall trend is clear: the addition of a thin film

like aluminum increases the likelihood and severity of discontinuities in the pressure-deflection

curve, which correspond to the onset and progression of cracks.

(a) Pressure-deflection and strain-stress behavior of pure Kapton

(b) Pressure-deflection and strain-stress behavior of Kapton coated with 240nm Al

Figure 11.4.: Comparison of discontinuities and crack formation in pure Kapton (a) and Kapton coated

with 240nm Al (b). The coated film exhibits significantly more discontinuities, indicative

of crack formation in the Al film, although the correlation is more complex than in the

Ag/Inconel on FEP case.

11.4 Conclusion

The comparison between pure Kapton and Kapton coated with 240nm Al highlights the potential

of this method for crack detection. While pure Kapton shows relatively few discontinuities, the

coated sample presents a complex pattern of jumps in the pressure-deflection curve, potentially

corresponding to the onset and progression of cracks in the coating. Although the link between

these discontinuities and crack formation is less direct than in the Ag/Inconel on FEP case, the

overall trend confirms the coating deformation (cracking) in coating can influence the measured

mechanical behavior of the sample during bulge testing.
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12 Outlook: Potential Applications of the Bulge Test Setup

The versatility of the Bulge Testing Setup offers possibilities for further research and applica-

tions. One promising area is fatigue testing. Since the setup includes both an inlet and an outlet

valve, it is possible to control the pressure precisely, allowing for both loading and unloading

experiments. These experiments could help verify whether the Young’s modulus, determined

through linear regression of the initial points in the linear range, is consistent with the unload-

ing slope, as shown exemplarily in Figure 12.1c. One loading and unloading experiment was

conducted with Ag/Inconel on FEP, but no comprehensive analyses or additional experiments

related to fatigue testing were conducted. This represents an opportunity for future research.

12.1 Loading-Unloading

The consistency between the Young’s modulus obtained from initial loading and the slope of the

unloading curve can be validated through these experiments, offering a more comprehensive

view of the material’s elastic properties. Cracks present in the coating are known to change the

slope of the unloading curve [28].

Figure 12.1.: Potential applications of the Bulge Testing Setup: (a) and (b) demonstrate loading-

unloading experiments, while (c) presents a schematic illustrating the modulus of elas-

ticity and unloading slope [29]

12.2 Outlook: Crack Formation and Pattern Analysis

Another promising area of research involves studying crack formation and patterns under bi-

axial tension, to analogies fragmentation analysis with uniaxial tensile tests. A code has been

developed to detect and classify crack formation into primary and secondary cracks, as illus-

trated in Figure 12.2. This two stage cracking mechanism has been reported in literature for
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uniaxial tension. Primary cracks form in the Inconel layer at 0.25% applied strain [24]. Upon

further straining, secondary cracks form in the underlying Ag layer.

(a) 0.15 bar, 11.08 MPa, 0.15%

(b) 0.34 bar, 13.74 MPa, 0.52%

(c) 0.78 bar, 15.86 MPa, 2.09%

(d) 1.83 bar, 17.51 MPa, 12.21%

Figure 12.2.: Images taken at various pressure, stress, and strain conditions. Each row represents a

set of images: (a) 0.15% (εtotal = ε + ε0 = 0.15% + 1.051% = 1.201%); (b) 0.52%

(εtotal = 0.52%+1.051%= 1.571%); (c) 2.09% (εtotal = 2.09%+1.051%= 3.141%); (d)

12.21% (εtotal = 12.21% + 1.051% = 13.261%). The second column shows the stacked

images, and the third column shows the processed images. Green points indicate primary

cracks, while white points indicate secondary cracks.
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By using edge detection libraries in Python, it is possible to distinguish and count primary and

secondary cracks. Since circular bulge testing involves biaxial loading stress, cracks propagate

perpendicular to both directions, resulting in patterns that resemble islands. This contrasts with

classical tension tests, where cracks propagate in a uniaxial manner.

12.3 Outlook: Detailed Crack Analysis with SensofarView Software

The SensofarView Software also offers advanced tools to study cracks in greater detail, if desired

and useful. For instance, it allows for the examination of crack width in relation to the applied

strain or stress, similar to the methodology used in [9]. For the presented Ag-Inconel system

only secondary cracks can be detected by the software with certainty.

Figure 12.3.: (a) 3D view with cross-sectional plane and (b) corresponding profile analysis of crack

width using SensofarView Software

12.4 Conclusion

In summary, the Bulge Testing Setup offers significant potential for advancing the understand-

ing of material behavior under various conditions. The ability to precisely control loading and

unloading opens up opportunities for in-depth analysis of material durability and elastic prop-

erties. Additionally, the setup allows for detailed study of crack patterns and provides tools for

comprehensive crack analysis.
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13 Summary

This thesis developed and implemented a fully automated bulge testing setup and methodology

that allows for the detailed analysis of the mechanical properties of thin films, with a particular

emphasis on polymers and thin metal films on polymer substrates. The setup provides consistent

and reproducible results, making it a reliable tool for the study of material behavior under equi-

biaxial loading conditions.

The research primarily examined two classes of materials: single-layer soft membranes and

polymers with metallic coatings. For the determination of elastic properties, two models (Nix

& Timoshenko) are contrasted and residual stresses are taken into account. The measurements

of elastic modulus for the the artificial skin material aligned reasonably well with reported

literature values. For polymers coated with thin films, even a very thin metallic coating (10nm

Al) had a significant impact on the pressure-deflection curve, highlighting the effect of coating

on substrate deformation.

Beyond mechanical characterization, the setup also enabled the observation and analysis of

crack onset and propagation through recorded images. By integrating imaging with pressure-

deflection and strain-stress curves crack initiation and growth under stress can be observed.

In conclusion, this work establishes a strong foundation for future research in material science,

especially in the study of thin films and composite materials. The bulge testing setup developed

and validated in this thesis proves to be a versatile and powerful tool for both academic research

and industrial applications.
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A Rupture

As mentioned, in Figure 11.3d, the rupture is not visible directly in the image. Even though the the-

oretical highest strain and stresses in a perfect sample should be exactly in the middle, failure of the

substrate might occur slightly offset from the midpoint. The image in Figure 11.3d was made with a

150x magnification, and the rip was outside the field of view. The images below show the formation of

a rip on another sample (20x magnification, wider field of view).

Figure A.1.: Formation of a rip captured with 20x magnification: Lucky hit
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B General Error Propagation

Remark: This section was partly done by AI utilizing [30], instructed by the author!

As refered to in 8.3 the uncertainties associated with the measurements in this analysis are derived

from three primary sources:

Table B.1.: Measurement Uncertainties and Sources

Measurement Source Uncertainty Type Value Source

Mass Flow Controller Accuracy (20 to 100% FS) ±1% of reading [31]

(MFC) GM50A Repeatability ±0.3% of reading [31]

Pressure Sensor Accuracy ±0.25% full scale [32]

(3500 Series) Zero Tolerance ±0.5% of span [32]

Span Tolerance ±0.5% of span [32]

Height Measurement Step Height Accuracy ±0.5% [33]

(Sensofar S Neox) Step Height Repeatability ±0.1% [33]

The general formula for error propagation when dealing with multiple independent variables is:

∆y =

√

√

√

�

∂ y

∂ x1

· ux1

�2

+

�

∂ y

∂ x2

· ux2

�2

+ · · · (B.1)

This formula is widely used in uncertainty analysis and can be verified or calculated using tools such

as the Propagation of Uncertainty Calculator [30].

Here:

• y is the calculated quantity (e.g. strain or stress)

• x1, x2, . . . are the independent variables that contribute to the uncertainty in y

• ux1
, ux2

, . . . are the uncertainties in those independent variables

•
∂ y

∂ x1
,
∂ y

∂ x2
, . . . are the partial derivatives of y with respect to each independent variable

1. Strain (ε) Calculation:

The strain ε is calculated using the equation:

ε=
R · θ − a

a
(B.2)
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2. Stress (σ) Calculation:

The stress σ is calculated using the equation:

σ =
p · R

2 · t
(B.3)

B.0.1 Error Propagation for Strain and Stress

The uncertainty in ε (strain) and σ (stress) can be propagated as follows:

uε =

√

√

√

�

∂ ε

∂ h
· uh

�2

+

�

∂ ε

∂ p
· up

�2

(B.4)

uσ =

√

√

√

�

∂ σ

∂ h
· uh

�2

+

�

∂ σ

∂ p
· up

�2

(B.5)

Here:

• uh is the uncertainty in deflection h.

• up is the uncertainty in pressure p.

Partial Derivatives:

• For Strain (ε):

∂ ε

∂ h
and

∂ ε

∂ p

• For Stress (σ):

∂ σ

∂ h
and

∂ σ

∂ p

Strain: ε=
−a+

(a2+h2)asin

�

2ah

a2+h2

�

2h

a
(B.6)
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Membrane Stress: σ =
p
�

a2 + h2
�

4ht
(B.7)

Derivative of Strain w.r.t h:
∂ ε

∂ h
=

asin
�

2ah

a2+h2

�

+

(a2+h2)

 

−
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2
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a
(B.8)

Derivative of Strain w.r.t p:
∂ ε

∂ p
= 0 (B.9)

Derivative of Membrane Stress w.r.t h:
∂ σ

∂ h
=

p

2t
−

p
�

a2 + h2
�

4h2 t
(B.10)

Derivative of Membrane Stress w.r.t p:
∂ σ

∂ p
=

a2 + h2

4ht
(B.11)

Error Propagation for Strain: uε =

√
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√
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Error Propagation for Membrane Stress: uσ =

√

√

√

u2
h
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p

2t
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4h2 t
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(B.13)
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C Bulge Test Program: Python-Script

The following section presents the Python script developed to analyze the bulge test experiments. The

script automates the process of extracting data, performing calculations, and generating reports, ensur-

ing consistency and accuracy in the analysis of the bulge test results.

It is also important to note that AI, particularly ChatGPT, was used in the process of debugging, adding

comments, and creating some lines of code in the script. AI contributed to improving the script’s effi-

ciency, though it’s still far from lean and could be optimized further to achieve the same functionality

with fewer lines of code. Additionally, it ensured the script is well-documented for easier use and future

maintenance.

Listing C.1: Python script for Analysis of the Automated Bulge Test

1 # -*- coding: utf-8 -*-

2 """

3 Created on Thu Jun 27 14:41:24 2024

4

5 @author: alku

6 """

7

8 import os

9 import matplotlib.pyplot as plt

10 import matplotlib.gridspec as gridspec

11 import numpy as np

12 import pandas as pd

13 from scipy.optimize import curve_fit

14 import datetime

15 #from zipfile import ZipFile

16

17 import re

18 import xlsxwriter

19 import shutil

20 from reportlab.platypus import SimpleDocTemplate, Table, TableStyle, Image, Paragraph, Spacer

21 from reportlab.lib import colors

22

23 from reportlab.lib.units import inch

24 from reportlab.lib.pagesizes import letter

25 from reportlab.lib.styles import getSampleStyleSheet

26

27 import cv2

28 from moviepy.editor import ImageSequenceClip

29

30

31 import sympy as sp

32 from uncertainties import ufloat

33 from uncertainties.umath import asin

34

35 from sklearn.metrics import r2_score

36 import zipfile

37 from scipy.cluster.hierarchy import fclusterdata

38

39 from scipy.stats import linregress

40

41 from lxml import etree

42
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43

44 def extract_and_save_z_values(source_directory, automatic_mode=True):

45 z_values_dict = {}

46 rxx_regex = re.compile(r’R(\d+)’ if automatic_mode else r’^(\d+)_’)

47

48 for file in os.listdir(source_directory):

49 if file.endswith(’.plux’):

50 match = rxx_regex.search(file)

51 if match:

52 r_number = int(match.group(1))

53 plux_path = os.path.join(source_directory, file)

54 tag_found = False

55

56 with zipfile.ZipFile(plux_path, ’r’) as zip_ref:

57 for extracted_file in zip_ref.namelist():

58 if extracted_file.endswith(’.xml’):

59 with zip_ref.open(extracted_file) as xml_file:

60 xml_content = xml_file.read()

61

62 try:

63 tree = etree.fromstring(xml_content)

64 position_z_element = tree.find(’.//POSITION_Z’)

65 if position_z_element is not None:

66 z_value = float(position_z_element.text)

67 z_values_dict[r_number] = z_value

68 tag_found = True

69 break # Exit loop once the tag is found

70 except etree.XMLSyntaxError as e:

71 print(f"Error parsing XML in {file}: {e}")

72

73 if not tag_found:

74 print(f"POSITION_Z tag not found in {file}")

75 z_values_dict[r_number] = 0

76

77 max_r_number = max(z_values_dict.keys(), default=0)

78 z_positions = [z_values_dict.get(i, 0) for i in range(1, max_r_number + 1)]

79 missing_indices = [i for i, z in enumerate(z_positions, start=0) if z == 0]

80 filtered_z_positions = [z for z in z_positions if z != 0]

81

82 return filtered_z_positions, missing_indices

83

84

85

86 def parse_fix_entries(file_path):

87 unique_bars = set()

88 with open(file_path, ’r’) as file:

89 for line in file:

90 if line.startswith(’fix’):

91 parts = line.split()

92 bar_value = float(parts[2])

93 unique_bars.add(bar_value)

94 return sorted(unique_bars)

95

96 def fit_function(h, b, c):

97 return b * h + c * h**3

98

99 def analyze_fitting(z_values, pressure_values, window_radius, output_directory, t, nu,

max_bar_value_elastic):

100 deflections = np.array([z - z_values[0] for z in z_values])

101 pressures = np.array(pressure_values)
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102

103 valid_indices = np.where(pressures <= max_bar_value_elastic)[0]

104 deflections = deflections[valid_indices]

105 pressures = pressures[valid_indices]

106

107 params, _ = curve_fit(fit_function, deflections, pressures)

108 a_fit, b_fit = params

109 fitted_pressures = fit_function(deflections, *params)

110 r_squared = r2_score(pressures, fitted_pressures)

111

112 # Calculate sigma_0 and E_modul according to Nix

113 sigma_0_manual_Nix = (a_fit * window_radius**2 / (4 * t)) * 0.1 # Convert to MPa

114 E_modul_Nix = (3 * b_fit * window_radius**4 * (1 - nu) / (8 * t)) * 0.1 # Convert to MPa

115

116 # Calculate sigma_0 and E_modul according to Timoshenko

117 sigma_0_manual_Timoshenko = (a_fit * window_radius**2 / (4 * t)) * 0.1 # Convert to MPa

118 E_modul_Timoshenko = (3 * b_fit * window_radius**4 * (1 - nu) / ((7 - nu) * t)) * 0.1 # Convert to MPa

119

120 # Calculate mean values

121 sigma_0_mean = (sigma_0_manual_Nix + sigma_0_manual_Timoshenko) / 2

122 E_modul_mean = (E_modul_Nix + E_modul_Timoshenko) / 2

123

124 base_path = output_directory

125 os.makedirs(base_path, exist_ok=True)

126

127 # Combined original and fitted pressures with deflections

128 df_combined = pd.DataFrame({

129 ’Deflection (m)’: deflections,

130 ’Original Pressure (bar)’: pressures,

131 ’Fitted Pressure (bar)’: fitted_pressures

132 })

133 combined_excel_path = os.path.join(base_path, ’combined_data.xlsx’)

134 df_combined.to_excel(combined_excel_path, index=False)

135

136 # Save sigma_0 and E_modul along with a_fit and b_fit, and formula with parameters

137 formula_with_params = f"P(h) = {a_fit:.4e} * h + {b_fit:.4e} * h^3"

138

139 # Save sigma_0 and E_modul along with a_fit and b_fit

140 df_params = pd.DataFrame({

141 ’a_fit’: [a_fit],

142 ’b_fit’: [b_fit],

143 ’sigma_0_Nix (MPa)’: [sigma_0_manual_Nix],

144 ’E_modul_Nix (MPa)’: [E_modul_Nix],

145 ’sigma_0_Timoshenko (MPa)’: [sigma_0_manual_Timoshenko],

146 ’E_modul_Timoshenko (MPa)’: [E_modul_Timoshenko],

147 ’sigma_0_mean (MPa)’: [sigma_0_mean],

148 ’E_modul_mean (MPa)’: [E_modul_mean],

149 ’Fitted Formula’: [formula_with_params]

150 })

151

152 params_csv_path = os.path.join(base_path, ’fit_parameters.csv’)

153 params_excel_path = os.path.join(base_path, ’fit_parameters.xlsx’)

154 df_params.to_csv(params_csv_path, index=False)

155 df_params.to_excel(params_excel_path, index=False)

156

157 # Plotting with a finer grid for the fitted curve

158 fine_deflections = np.linspace(deflections.min(), deflections.max(), 1000)

159 fine_fitted_pressures = fit_function(fine_deflections, *params)

160

161 plt.figure(figsize=(10, 6))
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162 plt.scatter(deflections, pressures, label=’Original Data’, color=’blue’)

163 plt.plot(fine_deflections, fine_fitted_pressures, label=’Fitted Curve’, color=’red’)

164 plt.xlabel(’Deflection (m)’)

165 plt.ylabel(’Pressure (bar)’)

166 plt.title(f’Pressure vs. Deflection (R = {r_squared:.4f})\n’

167 f’Nix: = {sigma_0_manual_Nix:.2e} MPa, E = {E_modul_Nix:.2e} MPa; ’

168 f’Timoshenko: = {sigma_0_manual_Timoshenko:.2e} MPa, E = {E_modul_Timoshenko:.2e} MPa\n’

169 f’Fitted Equation: $P = a h + b h^3$; Parameters: t = {t} m, = {nu}, a = {window_radius} m’)

170

171 # LaTeX formatted text for the function

172 formula_text_nix = r"$P_{Nix} = \frac{{4\sigma_0 th}}{{a^2}} + \frac{{8E th^3}}{{3a^2(1-\nu)}}$"

173 formula_text_timoshenko = r"$P_{Timoshenko} = \frac{{4\sigma_0 th}}{{a^2}} + \frac{{(7-\nu)E

th^3}}{{3a^2(1-\nu)}}$"

174 plt.text(0.95, 0.05, formula_text_nix + ’\n’ + formula_text_timoshenko,

175 horizontalalignment=’right’, verticalalignment=’bottom’,

176 transform=plt.gca().transAxes, fontsize=18,

177 bbox=dict(facecolor=’white’, alpha=1, edgecolor=’red’, pad=10.0))

178

179 plt.legend()

180 plt.grid(False)

181 plt.ticklabel_format(style=’sci’, axis=’y’, scilimits=(0,0))

182 plt.tight_layout()

183 plot_path = os.path.join(base_path, ’Pressure_vs_Deflection.png’)

184 plt.savefig(plot_path)

185 plt.show() # Display the plot to the user

186

187 return sigma_0_mean, E_modul_Timoshenko

188

189

190 def find_slope_near_target(strain, stress, target_slope, tolerance_percent=5, max_points=20):

191 num_points = min(len(strain), 50) # Limit to the first 50 points

192 lower_tolerance_percent = tolerance_percent / 2

193

194 for segment_length in range(max_points, 4, -1): # Start with max_points and decrease to 5 points

195 for start_index in range(num_points - segment_length + 1):

196 segment_strain = strain[start_index:start_index + segment_length]

197 segment_stress = stress[start_index:start_index + segment_length]

198

199 # Using numpy.polyfit for linear regression

200 slope, intercept = np.polyfit(segment_strain, segment_stress, 1)

201

202 lower_tolerance = target_slope * lower_tolerance_percent / 100

203 upper_tolerance = target_slope * tolerance_percent / 100

204

205

206

207 if slope > 0 and (target_slope - lower_tolerance) <= slope <= (target_slope + upper_tolerance):

208 print(f"Found positive slope: {slope} with {segment_length} points")

209 return start_index, slope

210

211 return None, None

212

213

214

215

216 def analyze_dynamic_check(z_values, get_pressures, window_radius, output_directory, t, E_modul, sigma_0,

missing_indices):

217 a = float(window_radius)

218 t = t

219
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220 current_time = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M")

221

222 excel_path = os.path.join(output_directory, f’analysis_dynamic_{current_time}.xlsx’)

223 plots_directory = os.path.join(output_directory, ’Plots’)

224 if not os.path.exists(plots_directory):

225 os.makedirs(plots_directory)

226

227 plot_folder = os.path.join(plots_directory, ’Succesive_Plots’)

228 os.makedirs(plot_folder, exist_ok=True)

229

230 plot_folder_p_vs_d = os.path.join(plots_directory, ’Succesive_Plots_p_vs_d’)

231 os.makedirs(plot_folder_p_vs_d, exist_ok=True)

232

233 workbook = xlsxwriter.Workbook(excel_path)

234 worksheet = workbook.add_worksheet(’Results’)

235

236 headers = [

237 ’Filename’, ’Z Position’, ’Deflection (m)’,

238 ’Get Pressure (bar)’,

239 ’Strain’, ’Membrane Stress (MPa)’,

240 ’Von Mises Stress (MPa)’, ’Difference (m)’

241 ]

242

243 for col, header in enumerate(headers):

244 worksheet.write(0, col, header)

245

246 pressures_unfitted = []

247 deflections = []

248 strains_unfitted = []

249 von_mises_stresses_unfitted = []

250

251 min_length = min(len(z_values), len(get_pressures))

252 z_values = z_values[:min_length]

253 get_pressures = get_pressures[:min_length]

254

255 for index, z in enumerate(z_values):

256 pressure_unfitted = get_pressures[index] * 0.1

257 pressures_unfitted.append(pressure_unfitted)

258

259 difference = z - z_values[0]

260 deflections.append(difference)

261 h = difference

262

263 if h == 0:

264 strain_unfitted = 0

265 von_mises_stress_unfitted = sigma_0

266 else:

267 R = (a ** 2 + h ** 2) / (2 * h)

268 theta = np.arcsin(a / R)

269 strain_unfitted = (R * theta - a) / a

270

271 membrane_stress_unfitted = (pressure_unfitted * R) / (2 * t)

272 von_mises_stress_unfitted = membrane_stress_unfitted

273

274 strains_unfitted.append(strain_unfitted)

275 von_mises_stresses_unfitted.append(von_mises_stress_unfitted)

276

277 # Filter out the first data point and any outliers. Data points are not being discarded but simply not

considered for linear regression

278 filtered_strain = np.array(strains_unfitted[2:])
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279 filtered_stress = np.array(von_mises_stresses_unfitted[2:])

280

281 # Original Part: Find the slope near the target using provided E_modul

282 start_index, found_slope = find_slope_near_target(filtered_strain, filtered_stress, E_modul)

283

284 if start_index is not None:

285 target_stress = filtered_stress[0]

286

287 adjusted_strain = [s - filtered_strain[0] for s in filtered_strain]

288 positive_strain_indices = [i for i, s in enumerate(adjusted_strain) if s >= 0]

289 positive_strain = [adjusted_strain[i] for i in positive_strain_indices]

290 positive_stress = [filtered_stress[i] for i in positive_strain_indices]

291

292 linear_range_start = start_index

293 linear_range_end = linear_range_start + 5

294 linear_strain_positive = positive_strain[linear_range_start:linear_range_end]

295 linear_stress_positive = positive_stress[linear_range_start:linear_range_end]

296

297 slope, intercept, _, _, _ = linregress(linear_strain_positive, linear_stress_positive)

298

299 negative_strain_at_intersection = -intercept / slope

300

301 extrapolated_strain = np.linspace(negative_strain_at_intersection,

positive_strain[linear_range_start], 100)

302 extrapolated_stress = slope * extrapolated_strain + intercept

303

304 combined_strain = list(extrapolated_strain) + positive_strain

305 combined_stress = list(extrapolated_stress) + positive_stress

306

307 plt.figure(figsize=(10, 6))

308 plt.plot(positive_strain, positive_stress, marker=’o’, linestyle=’-’, markersize=3, label=’Original

Data’)

309 plt.plot(extrapolated_strain, extrapolated_stress, color=’red’, linestyle=’--’, label=’Extrapolated

Linear Fit’)

310 plt.plot(linear_strain_positive, linear_stress_positive, marker=’o’, linestyle=’-’, color=’blue’,

label=’Linear Fit Range’)

311 plt.axvline(0, color=’green’, linestyle=’--’)

312 plt.plot(negative_strain_at_intersection, 0, ’o’, color=’red’, markersize=8)

313 plt.fill_between(extrapolated_strain, extrapolated_stress, color=’red’, alpha=0.1,

label=’Extrapolated Region’)

314

315 removed_strains = np.array(adjusted_strain)[np.array(adjusted_strain) < 0]

316 removed_stresses = np.array(filtered_stress)[np.array(adjusted_strain) < 0]

317 if len(removed_strains) > 1:

318 plt.plot(removed_strains, removed_stresses, ’o’, color=’grey’, alpha=0.5, label=’Removed Data

Points’)

319

320 plt.title(f’Extrapolated Stress-Strain Curve\n(Residual Stress: {target_stress:.2f} MPa, E-modulus:

{found_slope:.2f} MPa)’)

321 plt.xlabel(’Strain’)

322 plt.ylabel(’Stress [MPa]’)

323 plt.grid(False)

324 plt.legend()

325 plt.show()

326

327 if len(removed_strains) > 1:

328 removed_strains = removed_strains[1:]

329 removed_stresses = removed_stresses[1:]

330 print(f"Number of points removed: {len(removed_strains)}")

331 for strain_value, stress_value in zip(removed_strains, removed_stresses):
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332 print(f"Removed strain: {strain_value}, Removed stress: {stress_value}")

333

334 adjusted_strain_for_plot = [s - negative_strain_at_intersection for s in combined_strain]

335 adjusted_extrapolated_strain = adjusted_strain_for_plot[:len(extrapolated_strain)]

336 adjusted_original_strain = adjusted_strain_for_plot[len(extrapolated_strain):]

337 adjusted_original_stress = combined_stress[len(extrapolated_strain):]

338

339 plt.figure(figsize=(10, 6))

340 plt.plot(adjusted_extrapolated_strain, extrapolated_stress, color=’black’, linestyle=’-’)

341 plt.plot(adjusted_original_strain, adjusted_original_stress, marker=’o’, color=’black’,

linestyle=’-’, markersize=3, label=’Shifted Original Data’)

342

343 plt.title(’Shifted Stress-Strain Curve’)

344 plt.xlabel(’Strain’)

345 plt.ylabel(’Stress [MPa]’)

346 plt.grid(False)

347 plt.legend()

348 plt.show()

349

350 print(f"epsilon_0 is: {negative_strain_at_intersection:.6f}")

351 else:

352 print("Could not find a range with the desired slope.")

353

354 # Additional Part: Iteratively expand the window for a direct fit within constraints

355 max_R2 = 0

356 best_fit_slope = None

357 best_fit_intercept = None

358 best_linear_strain = []

359 best_linear_stress = []

360

361 # Iterate over starting points within the first 10 points

362 for i in range(10):

363 for j in range(i + 10, min(i + 40, len(filtered_strain))): # Ensure at least 10 points in the range,

up to 40th point

364 linear_range_strain = filtered_strain[i:j+1]

365 linear_range_stress = filtered_stress[i:j+1]

366

367 slope, intercept, r_value, _, _ = linregress(linear_range_strain, linear_range_stress)

368 if r_value**2 > 0.95: # Use R^2 > 0.98 as the threshold

369 if r_value**2 > max_R2:

370 max_R2 = r_value**2

371 best_fit_slope = slope

372 best_fit_intercept = intercept

373 best_linear_strain = linear_range_strain

374 best_linear_stress = linear_range_stress

375 else:

376 break # Stop expanding when R^2 drops below 0.98

377

378 if best_fit_slope is not None:

379 negative_strain_at_intersection_direct = -best_fit_intercept / best_fit_slope

380 direct_fit_E_modul = best_fit_slope # The slope of the linear fit represents the E-modul

381

382 # Extend the extrapolation

383 extrapolated_strain_direct = np.linspace(negative_strain_at_intersection_direct,

best_linear_strain[0], 100)

384 extrapolated_stress_direct = best_fit_slope * extrapolated_strain_direct + best_fit_intercept

385

386 combined_strain_direct = list(extrapolated_strain_direct) + list(filtered_strain)

387 combined_stress_direct = list(extrapolated_stress_direct) + list(filtered_stress)

388
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389 plt.figure(figsize=(10, 6))

390 plt.plot(filtered_strain, filtered_stress, marker=’o’, linestyle=’-’, markersize=3, label=’Original

Data’)

391 plt.plot(extrapolated_strain_direct, extrapolated_stress_direct, color=’purple’, linestyle=’--’,

label=’Direct Extrapolated Linear Fit’)

392 plt.plot(best_linear_strain, best_linear_stress, marker=’o’, linestyle=’-’, color=’orange’,

label=’Best Linear Fit Range’)

393 plt.axvline(0, color=’green’, linestyle=’--’)

394 plt.plot(negative_strain_at_intersection_direct, 0, ’o’, color=’purple’, markersize=8)

395 plt.fill_between(extrapolated_strain_direct, extrapolated_stress_direct, color=’purple’, alpha=0.1,

label=’Direct Extrapolated Region’)

396

397 plt.title(f’Direct Extrapolated Stress-Strain Curve (E-modul: {direct_fit_E_modul:.2f} MPa)’)

398 plt.xlabel(’Strain’)

399 plt.ylabel(’Stress [MPa]’)

400 plt.grid(False)

401 plt.legend()

402 plt.show()

403

404 adjusted_strain_for_plot_direct = [s - negative_strain_at_intersection_direct for s in

combined_strain_direct]

405 adjusted_extrapolated_strain_direct =

adjusted_strain_for_plot_direct[:len(extrapolated_strain_direct)]

406 adjusted_original_strain_direct = adjusted_strain_for_plot_direct[len(extrapolated_strain_direct):]

407 adjusted_original_stress_direct = combined_stress_direct[len(extrapolated_stress_direct):]

408

409 plt.figure(figsize=(10, 6))

410 plt.plot(adjusted_extrapolated_strain_direct, extrapolated_stress_direct, color=’black’,

linestyle=’-’)

411 plt.plot(adjusted_original_strain_direct, adjusted_original_stress_direct, marker=’o’,

color=’black’, linestyle=’-’, markersize=3, label=’Shifted Original Data (Direct Fit)’)

412

413 plt.title(f’Shifted Stress-Strain Curve (Direct Fit, E-modul: {direct_fit_E_modul:.2f} MPa)’)

414 plt.xlabel(’Strain’)

415 plt.ylabel(’Stress [MPa]’)

416 plt.grid(False)

417 plt.legend()

418 plt.show()

419

420 print(f"Direct fit epsilon_0 is: {negative_strain_at_intersection_direct:.6f}")

421

422

423 # Create subplots with shared x-axis

424 # Create subplots with shared x-axis

425 fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 12), sharex=True)

426

427 # Plot on ax1: Shifted curve for the original method with Steigungsdreieck

428 ax1.plot(adjusted_extrapolated_strain, extrapolated_stress, color=’red’, linestyle=’-’)

429 ax1.plot(adjusted_original_strain, adjusted_original_stress, marker=’o’, color=’red’, linestyle=’-’,

markersize=3)

430

431 # Calculate and plot the Steigungsdreieck for the original method

432 sigma_orig = extrapolated_stress[-1] - extrapolated_stress[0]

433 epsilon_orig = adjusted_extrapolated_strain[-1] - adjusted_extrapolated_strain[0]

434

435 # Draw the Steigungsdreieck (only area below the slope)

436 ax1.plot([adjusted_extrapolated_strain[0], adjusted_extrapolated_strain[-1]],

437 [extrapolated_stress[0], extrapolated_stress[-1]], ’k--’, label="Steigungsdreieck")

438 ax1.vlines(adjusted_extrapolated_strain[-1], 0, extrapolated_stress[-1], colors=’k’,

linestyle=’dotted’)
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439 ax1.fill_betweenx([0, extrapolated_stress[-1]], adjusted_extrapolated_strain[0],

adjusted_extrapolated_strain[-1], color=’red’, alpha=0.1)

440

441 # Positioning the annotation to the right of the vertical line and centered vertically

442 midpoint_x_orig = adjusted_extrapolated_strain[-1]

443 midpoint_y_orig = (extrapolated_stress[0] + extrapolated_stress[-1]) / 2

444 ax1.text(midpoint_x_orig + 0.0002, midpoint_y_orig,

445 f"$E_{{orig}} = \\frac{{\Delta\\sigma}}{{\Delta\\epsilon}} \\approx {found_slope:.2f} \\,

MPa$",

446 color=’red’, fontsize=12, verticalalignment=’center’)

447

448 ax1.set_title(f’E-modul taken from pressure-deflection curve = {found_slope:.2f} MPa’)

449 ax1.set_ylabel(’Stress [MPa]’)

450 ax1.legend()

451 ax1.grid(False)

452

453 # Plot on ax2: Shifted curve for the direct fit method with Steigungsdreieck

454 ax2.plot(adjusted_extrapolated_strain_direct, extrapolated_stress_direct, color=’blue’,

linestyle=’-’)

455 ax2.plot(adjusted_original_strain_direct, adjusted_original_stress_direct, marker=’o’, color=’blue’,

linestyle=’-’, markersize=3)

456

457 # Calculate and plot the Steigungsdreieck for the direct fit method

458 sigma_direct = extrapolated_stress_direct[-1] - extrapolated_stress_direct[0]

459 epsilon_direct = adjusted_extrapolated_strain_direct[-1] - adjusted_extrapolated_strain_direct[0]

460

461 # Draw the Steigungsdreieck (only area below the slope)

462 ax2.plot([adjusted_extrapolated_strain_direct[0], adjusted_extrapolated_strain_direct[-1]],

463 [extrapolated_stress_direct[0], extrapolated_stress_direct[-1]], ’k--’,

label="Steigungsdreieck (Direct Fit)")

464 ax2.vlines(adjusted_extrapolated_strain_direct[-1], 0, extrapolated_stress_direct[-1], colors=’k’,

linestyle=’dotted’)

465 ax2.fill_betweenx([0, extrapolated_stress_direct[-1]], adjusted_extrapolated_strain_direct[0],

adjusted_extrapolated_strain_direct[-1], color=’blue’, alpha=0.1)

466

467 # Positioning the annotation to the right of the vertical line and centered vertically

468 midpoint_x_direct = adjusted_extrapolated_strain_direct[-1]

469 midpoint_y_direct = (extrapolated_stress_direct[0] + extrapolated_stress_direct[-1]) / 2

470 ax2.text(midpoint_x_direct + 0.0002, midpoint_y_direct,

471 f"$E_{{direct}} = \\frac{{\Delta\\sigma}}{{\Delta\\epsilon}} = \\frac{{{sigma_direct:.2f}

\\, MPa}}{{{epsilon_direct:.4f}}} \\approx {direct_fit_E_modul:.2f} \\, MPa$",

472 color=’blue’, fontsize=12, verticalalignment=’center’)

473

474 ax2.set_title(f’Direct Fit Method: E-modul = {direct_fit_E_modul:.2f} MPa’)

475 ax2.set_xlabel(’Strain’)

476 ax2.set_ylabel(’Stress [MPa]’)

477 ax2.legend()

478 ax2.grid(False)

479

480 plt.tight_layout()

481 plt.show()

482

483 # Combined plot with both shifted stress-strain curves

484 plt.figure(figsize=(10, 6))

485

486 # Plot for the original method

487 plt.plot(adjusted_extrapolated_strain, extrapolated_stress, color=’red’, linestyle=’-’)

488 plt.plot(adjusted_original_strain, adjusted_original_stress, marker=’o’, color=’red’, linestyle=’-’,

markersize=3, label=’Pressure-Deflection Method’)

489
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490 # Plot for the direct fit method

491 plt.plot(adjusted_extrapolated_strain_direct, extrapolated_stress_direct, color=’blue’,

linestyle=’-’)

492 plt.plot(adjusted_original_strain_direct, adjusted_original_stress_direct, marker=’o’, color=’blue’,

linestyle=’-’, markersize=3, label=’Direct Fit Method’)

493

494 # Title comparing the E-moduli

495 plt.title(f’Comparison of Shifted Stress-Strain Curves\nNix E-modul: {found_slope:.2f} MPa vs Direct

Fit E-modul: {direct_fit_E_modul:.2f} MPa’)

496 plt.xlabel(’Strain’)

497 plt.ylabel(’Stress [MPa]’)

498 plt.grid(False)

499 plt.legend()

500 plt.show()

501

502 else:

503 print("Could not find a good linear fit directly from strain-stress data.")

504

505

506 def analyze_dynamic(z_values, get_pressures, window_radius, output_directory, t, E_modul, sigma_0,

missing_indices):

507 a = float(window_radius)

508 t = t

509

510 current_time = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M")

511

512 excel_path = os.path.join(output_directory, f’analysis_dynamic_{current_time}.xlsx’)

513 plots_directory = os.path.join(output_directory, ’Plots’)

514 if not os.path.exists(plots_directory):

515 os.makedirs(plots_directory)

516

517 plot_folder = os.path.join(plots_directory, ’Succesive_Plots’)

518 os.makedirs(plot_folder, exist_ok=True)

519

520 plot_folder_p_vs_d = os.path.join(plots_directory, ’Succesive_Plots_p_vs_d’)

521 os.makedirs(plot_folder_p_vs_d, exist_ok=True)

522

523 workbook = xlsxwriter.Workbook(excel_path)

524 worksheet = workbook.add_worksheet(’Results’)

525

526 headers = [

527 ’Filename’, ’Z Position’, ’Deflection (m)’,

528 ’Get Pressure (bar)’,

529 ’Strain’, ’Membrane Stress (MPa)’,

530 ’Von Mises Stress (MPa)’, ’Difference (m)’

531 ]

532

533 for col, header in enumerate(headers):

534 worksheet.write(0, col, header)

535

536 pressures_unfitted = []

537 deflections = []

538 strains_unfitted = []

539 von_mises_stresses_unfitted = []

540

541 min_length = min(len(z_values), len(get_pressures))

542 z_values = z_values[:min_length]

543 get_pressures = get_pressures[:min_length]

544

545 for index, z in enumerate(z_values):
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546 pressure_unfitted = get_pressures[index] * 0.1

547 pressures_unfitted.append(pressure_unfitted)

548

549 difference = z - z_values[0]

550 deflections.append(difference)

551 h = difference

552

553 if h == 0:

554 strain_unfitted = 0

555 von_mises_stress_unfitted = sigma_0

556

557 worksheet.write(index + 1, 0, f’Analysis_{index}’)

558 worksheet.write(index + 1, 1, z)

559 worksheet.write(index + 1, 2, ’(NA)’)

560 worksheet.write(index + 1, 3, ’(NA)’)

561 worksheet.write(index + 1, 4, ’(NA)’)

562 worksheet.write(index + 1, 5, ’(NA)’)

563 worksheet.write(index + 1, 6, ’(NA)’)

564

565

566 else:

567 R = (a ** 2 + h ** 2) / (2 * h)

568 theta = np.arcsin(a / R)

569 strain_unfitted = (R * theta - a) / a

570

571 membrane_stress_unfitted = (pressure_unfitted * R) / (2 * t)

572 von_mises_stress_unfitted = membrane_stress_unfitted

573

574 formulas = {

575 ’Z Position’: f’={z}’,

576 ’Deflection (m)’: f’=(B{index + 2} - $B$2)’,

577 ’Get Pressure (bar)’: f’={pressure_unfitted}*10’,

578 ’Strain’: f’=(({a}^2 + C{index + 2}^2) / (2 * C{index + 2}) * ASIN({a} / (({a}^2 + C{index +

2}^2) / (2 * C{index + 2}))) - {a}) / {a}’,

579 ’Membrane Stress (MPa)’: f’=(D{index + 2} * (({a}^2 + C{index + 2}^2) / (2 * C{index + 2})))

/ (2 * {t})/10’,

580 ’Von Mises Stress (MPa)’: f’=F{index + 2}’,

581 }

582

583 worksheet.write(index + 1, 0, f’Analysis_{index}’)

584 worksheet.write(index + 1, 1, z)

585 worksheet.write_formula(index + 1, 2, formulas[’Deflection (m)’])

586 worksheet.write_formula(index + 1, 3, formulas[’Get Pressure (bar)’])

587 worksheet.write_formula(index + 1, 4, formulas[’Strain’])

588 worksheet.write_formula(index + 1, 5, formulas[’Membrane Stress (MPa)’])

589 worksheet.write_formula(index + 1, 6, formulas[’Von Mises Stress (MPa)’])

590

591

592 strains_unfitted.append(strain_unfitted)

593 von_mises_stresses_unfitted.append(von_mises_stress_unfitted)

594

595 workbook.close()

596 print(f"Dynamic analysis results saved to: {excel_path}")

597

598

599

600 pressures_unfitted_bar = np.array(pressures_unfitted) * 10 # from MPa to bar

601

602 title_index = 1

603
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604 # Compute the increase in deflection and pressure for all points first

605 increase_in_deflection = [0] * 3 # Initialize the first three points as 0

606 increase_in_pressure = [0] * 3 # Initialize the first three points as 0

607

608 # Initialize a list to store discontinuity flags

609 discontinuity_flags = [False] * 3

610

611 for i in range(3, min_length):

612 increase_in_deflection.append(deflections[i] - deflections[i - 1])

613 increase_in_pressure.append(pressures_unfitted_bar[i] - pressures_unfitted_bar[i - 1])

614

615 # Check for discontinuity: deflection increase larger, pressure increase smaller or equal

616 if (increase_in_deflection[-1] > increase_in_deflection[-2]) and (increase_in_pressure[-1] <=

increase_in_pressure[-2]):

617 discontinuity_flags.append(True)

618 else:

619 discontinuity_flags.append(False)

620

621

622 # Create the plots after computing all values

623 for index in range(min_length):

624 while title_index in [i + 1 for i in missing_indices]:

625 title_index += 1

626

627 # Strain-Stress Plot (for comparison)

628 plt.figure(figsize=(10, 6))

629 if index < 3:

630 plt.plot(strains_unfitted[3:], von_mises_stresses_unfitted[3:], ’o-’, color=’grey’, zorder=1)

631 else:

632 plt.plot(strains_unfitted[3:], von_mises_stresses_unfitted[3:], ’o-’, color=’grey’, zorder=1)

633 plt.plot(strains_unfitted[3:index], von_mises_stresses_unfitted[3:index], ’o-’, color=’blue’,

zorder=2)

634 plt.scatter(strains_unfitted[index], von_mises_stresses_unfitted[index], color=’red’, zorder=3)

635 plt.xlabel(’Strain’)

636 plt.ylabel(’Stress (MPa)’)

637 plt.title(f’Strain-Stress Curve up to Recording {title_index}’)

638 plt.grid(False)

639 plot_path = os.path.join(plot_folder, f’strain_stress_{index + 1}.png’)

640 plt.savefig(plot_path)

641 plt.close()

642

643 # Create a 2x1 plot for Pressure-Deflection and Successive Increase in Deflection/Pressure using

GridSpec

644 fig = plt.figure(figsize=(10, 6)) # Keep the figure size the same as the strain-stress plot

645 gs = gridspec.GridSpec(2, 1, height_ratios=[1, 1]) # 2 rows, 1 column

646

647 ax1 = fig.add_subplot(gs[0]) # First row for Pressure-Deflection Curve

648 ax2 = fig.add_subplot(gs[1]) # Second row for Successive Increase in Deflection

649

650 # Top plot: Pressure-Deflection Curve, skipping first 3 points

651 if index < 3:

652 ax1.plot(deflections[3:], pressures_unfitted_bar[3:], ’o-’, color=’grey’, zorder=1)

653 else:

654 ax1.plot(deflections[3:], pressures_unfitted_bar[3:], ’o-’, color=’grey’, zorder=1)

655 ax1.plot(deflections[3:index], pressures_unfitted_bar[3:index], ’o-’, color=’blue’, zorder=2)

656 ax1.scatter(deflections[index], pressures_unfitted_bar[index], color=’red’, zorder=3)

657 ax1.set_xlabel(’Deflection (m)’)

658 ax1.set_ylabel(’Pressure (bar)’)

659 ax1.set_title(f’Pressure-Deflection Curve up to Recording {title_index}’)

660 ax1.grid(False)
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661

662 # Bottom plot: Successive Increase in Deflection as bars

663 x_data = list(range(4, min_length + 1))

664 y_data_deflection = increase_in_deflection[3:]

665 y_data_pressure = increase_in_pressure[3:]

666

667 # Plot all bars in grey

668 bars_deflection = ax2.bar(x_data, y_data_deflection, color=’grey’)

669

670 # Color the discontinuity bars in yellow from the start

671 for i in range(len(bars_deflection)):

672 if discontinuity_flags[i + 3]:

673 bars_deflection[i].set_color(’yellow’)

674

675 # Color all previous bars in blue, keep yellow bars as they are, and color the current one in red

676 if index >= 3:

677 for i, bar in enumerate(bars_deflection[:index - 2]):

678 if not discontinuity_flags[i + 3]: # Only recolor if it’s not a yellow bar

679 bar.set_color(’blue’)

680 if discontinuity_flags[index]:

681 bars_deflection[index - 3].set_color(’yellow’)

682 else:

683 bars_deflection[index - 3].set_color(’red’)

684

685 ax2.set_xlabel(’Recording Index’)

686 ax2.set_ylabel(’Increase in Deflection (m)’, color=’blue’)

687 ax2.set_title(f’Successive Increase in Deflection and Pressure up to Recording {title_index}’)

688 ax2.grid(False)

689

690 # Add a second y-axis on the right for the increase in pressure

691 ax2_pressure = ax2.twinx()

692 ax2_pressure.plot(x_data, y_data_pressure, ’o-’, color=’lightgrey’, markersize=4)

693 ax2_pressure.set_ylabel(’Increase in Pressure (bar)’, color=’lightgrey’)

694

695 plt.tight_layout()

696 plot_path_p_vs_d = os.path.join(plot_folder_p_vs_d, f’pressure_deflection_{index + 1}.png’)

697 plt.savefig(plot_path_p_vs_d)

698 plt.close()

699

700 title_index += 1

701

702

703 plot_defs_unfitted = [

704 (deflections, pressures_unfitted_bar, ’Deflection [m]’, ’Pressure [bar]’, ’Deflection vs. Pressure’,

’Deflection_vs_Pressure.jpg’),

705 (pressures_unfitted_bar, strains_unfitted, ’Pressure [bar]’, ’Strain’, ’Pressure vs. Strain’,

’Pressure_vs_Strain.jpg’),

706 ]

707

708 for x_data, y_data, xlabel, ylabel, title, filename in plot_defs_unfitted:

709 plt.figure(figsize=(10, 6))

710 plt.plot(x_data[2:], y_data[2:], ’o-’)

711 plt.xlabel(xlabel)

712 plt.ylabel(ylabel)

713 plt.title(title)

714 plt.grid(False)

715 plt.savefig(os.path.join(plots_directory, filename))

716 plt.close()

717

718 plt.figure(figsize=(10, 6))
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719 plt.plot(np.array(strains_unfitted[2:]), np.array(von_mises_stresses_unfitted[2:]), ’o-’)

720 plt.xlabel(’Strain’)

721 plt.ylabel(’Von Mises Stress (MPa)’)

722 plt.title(’Strain vs. Von Mises Stress’)

723 plt.grid(False)

724 plt.savefig(os.path.join(plots_directory, ’Strain_vs_Von_Mises_Stress.jpg’))

725 plt.close()

726

727 print(f"Plots saved in directory: {plots_directory}")

728

729 # Filter out the first data point and any outliers

730 filtered_strain = strains_unfitted[2:]

731 filtered_stress = von_mises_stresses_unfitted[2:]

732

733 # Find the slope near the target

734 start_index, found_slope = find_slope_near_target(filtered_strain, filtered_stress, E_modul)

735

736 if start_index is not None:

737 # Use the first plotted data point as the target stress

738 target_stress = filtered_stress[0]

739

740 adjusted_strain = [s - filtered_strain[0] for s in filtered_strain]

741 positive_strain_indices = [i for i, s in enumerate(adjusted_strain) if s >= 0]

742 positive_strain = [adjusted_strain[i] for i in positive_strain_indices]

743 positive_stress = [filtered_stress[i] for i in positive_strain_indices]

744

745 linear_range_start = start_index

746 linear_range_end = linear_range_start + 5

747 linear_strain_positive = positive_strain[linear_range_start:linear_range_end]

748 linear_stress_positive = positive_stress[linear_range_start:linear_range_end]

749

750 slope, intercept, _, _, _ = linregress(linear_strain_positive, linear_stress_positive)

751

752 negative_strain_at_intersection = -intercept / slope

753

754 # Extend the extrapolation to the first fitting data point

755 extrapolated_strain = np.linspace(negative_strain_at_intersection,

positive_strain[linear_range_start], 100)

756 extrapolated_stress = slope * extrapolated_strain + intercept

757

758 combined_strain = list(extrapolated_strain) + positive_strain

759 combined_stress = list(extrapolated_stress) + positive_stress

760

761 plt.figure(figsize=(10, 6))

762 plt.plot(positive_strain, positive_stress, marker=’o’, linestyle=’-’, markersize=3, label=’Original

Data’)

763 plt.plot(extrapolated_strain, extrapolated_stress, color=’red’, linestyle=’--’, label=’Extrapolated

Linear Fit’)

764 plt.plot(linear_strain_positive, linear_stress_positive, marker=’o’, linestyle=’-’, color=’blue’,

label=’Linear Fit Range’)

765 plt.axvline(0, color=’green’, linestyle=’--’)

766 plt.plot(negative_strain_at_intersection, 0, ’o’, color=’red’, markersize=8)

767 plt.fill_between(extrapolated_strain, extrapolated_stress, color=’red’, alpha=0.1,

label=’Extrapolated Region’)

768

769 # Plot removed data points

770 removed_strains = np.array(adjusted_strain)[np.array(adjusted_strain) < 0]

771 removed_stresses = np.array(filtered_stress)[np.array(adjusted_strain) < 0]

772 if len(removed_strains) > 1:
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773 plt.plot(removed_strains, removed_stresses, ’o’, color=’grey’, alpha=0.5, label=’Removed Data

Points’)

774

775 plt.title(f’Extrapolated Stress-Strain Curve\n(Residual Stress: {target_stress:.2f} MPa, E-modulus:

{found_slope:.2f} MPa)’)

776 plt.xlabel(’Strain’)

777 plt.ylabel(’Stress [MPa]’)

778 plt.grid(False)

779 plt.legend()

780 plt.savefig(os.path.join(plots_directory, ’Extrapolated_Stress-Strain.jpg’))

781 plt.show()

782

783 if len(removed_strains) > 1:

784 removed_strains = removed_strains[1:]

785 removed_stresses = removed_stresses[1:]

786 print(f"Number of points removed: {len(removed_strains)}")

787 for strain_value, stress_value in zip(removed_strains, removed_stresses):

788 print(f"Removed strain: {strain_value}, Removed stress: {stress_value}")

789

790 adjusted_strain_for_plot = [s - negative_strain_at_intersection for s in combined_strain]

791 adjusted_extrapolated_strain = adjusted_strain_for_plot[:len(extrapolated_strain)]

792 adjusted_original_strain = adjusted_strain_for_plot[len(extrapolated_strain):]

793 adjusted_original_stress = combined_stress[len(extrapolated_strain):]

794

795 plt.figure(figsize=(10, 6))

796 plt.plot(adjusted_extrapolated_strain, extrapolated_stress, color=’black’, linestyle=’-’)

797 plt.plot(adjusted_original_strain, adjusted_original_stress, marker=’o’, color=’black’,

linestyle=’-’, markersize=3, label=’Shifted Original Data’)

798

799 plt.title(’Shifted Stress-Strain Curve’)

800 plt.xlabel(’Strain’)

801 plt.ylabel(’Stress [MPa]’)

802 plt.grid(False)

803 plt.legend()

804 plt.savefig(os.path.join(plots_directory, ’Shifted_Stress-Strain.jpg’))

805 plt.show()

806

807 print(f"epsilon_0 is: {negative_strain_at_intersection:.6f}")

808 else:

809 print("Could not find a range with the desired slope.")

810

811 # Additional Part: Iteratively expand the window for a direct fit within constraints

812 max_R2 = 0

813 best_fit_slope = None

814 best_fit_intercept = None

815 best_linear_strain = []

816 best_linear_stress = []

817

818 # Iterate over starting points within the first 10 points

819 for i in range(10):

820 for j in range(i + 10, min(i + 40, len(filtered_strain))): # Ensure at least 10 points in the range,

up to 40th point

821 linear_range_strain = filtered_strain[i:j+1]

822 linear_range_stress = filtered_stress[i:j+1]

823

824 slope, intercept, r_value, _, _ = linregress(linear_range_strain, linear_range_stress)

825 if r_value**2 > 0.95: # Use R^2 > 0.98 as the threshold

826 if r_value**2 > max_R2:

827 max_R2 = r_value**2

828 best_fit_slope = slope
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829 best_fit_intercept = intercept

830 best_linear_strain = linear_range_strain

831 best_linear_stress = linear_range_stress

832 else:

833 break # Stop expanding when R^2 drops below 0.98

834

835 if best_fit_slope is not None:

836 negative_strain_at_intersection_direct = -best_fit_intercept / best_fit_slope

837 direct_fit_E_modul = best_fit_slope # The slope of the linear fit represents the E-modul

838

839 # Extend the extrapolation

840 extrapolated_strain_direct = np.linspace(negative_strain_at_intersection_direct,

best_linear_strain[0], 100)

841 extrapolated_stress_direct = best_fit_slope * extrapolated_strain_direct + best_fit_intercept

842

843 combined_strain_direct = list(extrapolated_strain_direct) + list(filtered_strain)

844 combined_stress_direct = list(extrapolated_stress_direct) + list(filtered_stress)

845

846 # Plot and save the direct extrapolated stress-strain curve

847 plt.figure(figsize=(10, 6))

848 plt.plot(filtered_strain, filtered_stress, marker=’o’, linestyle=’-’, markersize=3, label=’Original

Data’)

849 plt.plot(extrapolated_strain_direct, extrapolated_stress_direct, color=’purple’, linestyle=’--’,

label=’Direct Extrapolated Linear Fit’)

850 plt.plot(best_linear_strain, best_linear_stress, marker=’o’, linestyle=’-’, color=’orange’,

label=’Best Linear Fit Range’)

851 plt.axvline(0, color=’green’, linestyle=’--’)

852 plt.plot(negative_strain_at_intersection_direct, 0, ’o’, color=’purple’, markersize=8)

853 plt.fill_between(extrapolated_strain_direct, extrapolated_stress_direct, color=’purple’, alpha=0.1,

label=’Direct Extrapolated Region’)

854

855 plt.title(f’Direct Extrapolated Stress-Strain Curve (E-modul: {direct_fit_E_modul:.2f} MPa)’)

856 plt.xlabel(’Strain’)

857 plt.ylabel(’Stress [MPa]’)

858 plt.grid(False)

859 plt.legend()

860 plt.savefig(os.path.join(plots_directory, ’Direct_Extrapolated_Stress-Strain.jpg’))

861 plt.close()

862

863 adjusted_strain_for_plot_direct = [s - negative_strain_at_intersection_direct for s in

combined_strain_direct]

864 adjusted_extrapolated_strain_direct =

adjusted_strain_for_plot_direct[:len(extrapolated_strain_direct)]

865 adjusted_original_strain_direct = adjusted_strain_for_plot_direct[len(extrapolated_strain_direct):]

866 adjusted_original_stress_direct = combined_stress_direct[len(extrapolated_stress_direct):]

867

868 # Plot and save the shifted stress-strain curve (direct fit)

869 plt.figure(figsize=(10, 6))

870 plt.plot(adjusted_extrapolated_strain_direct, extrapolated_stress_direct, color=’black’,

linestyle=’-’)

871 plt.plot(adjusted_original_strain_direct, adjusted_original_stress_direct, marker=’o’,

color=’black’, linestyle=’-’, markersize=3, label=’Shifted Original Data (Direct Fit)’)

872

873 plt.title(f’Shifted Stress-Strain Curve (Direct Fit, E-modul: {direct_fit_E_modul:.2f} MPa)’)

874 plt.xlabel(’Strain’)

875 plt.ylabel(’Stress [MPa]’)

876 plt.grid(False)

877 plt.legend()

878 plt.savefig(os.path.join(plots_directory, ’Shifted_Stress-Strain_Direct_Fit.jpg’))

879 plt.close()
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880

881 print(f"Direct fit epsilon_0 is: {negative_strain_at_intersection_direct:.6f}")

882

883 # Create subplots with shared x-axis and save

884 fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 12), sharex=True)

885

886 # Plot on ax1: Shifted curve for the original method with Steigungsdreieck

887 ax1.plot(adjusted_extrapolated_strain, extrapolated_stress, color=’red’, linestyle=’-’)

888 ax1.plot(adjusted_original_strain, adjusted_original_stress, marker=’o’, color=’red’, linestyle=’-’,

markersize=3)

889

890 # Calculate and plot the Steigungsdreieck for the original method

891 sigma_orig = extrapolated_stress[-1] - extrapolated_stress[0]

892 epsilon_orig = adjusted_extrapolated_strain[-1] - adjusted_extrapolated_strain[0]

893

894 # Draw the Steigungsdreieck (only area below the slope)

895 ax1.plot([adjusted_extrapolated_strain[0], adjusted_extrapolated_strain[-1]],

896 [extrapolated_stress[0], extrapolated_stress[-1]], ’k--’, label="Steigungsdreieck")

897 ax1.vlines(adjusted_extrapolated_strain[-1], 0, extrapolated_stress[-1], colors=’k’,

linestyle=’dotted’)

898 ax1.fill_betweenx([0, extrapolated_stress[-1]], adjusted_extrapolated_strain[0],

adjusted_extrapolated_strain[-1], color=’red’, alpha=0.1)

899

900 # Positioning the annotation to the right of the vertical line and centered vertically

901 midpoint_x_orig = adjusted_extrapolated_strain[-1]

902 midpoint_y_orig = (extrapolated_stress[0] + extrapolated_stress[-1]) / 2

903 ax1.text(midpoint_x_orig + 0.0002, midpoint_y_orig,

904 f"$E_{{orig}} = \\frac{{\Delta\\sigma}}{{\Delta\\epsilon}} \\approx {found_slope:.2f} \\,

MPa$",

905 color=’red’, fontsize=12, verticalalignment=’center’)

906

907 ax1.set_title(f’E-modul taken from pressure-deflection curve = {found_slope:.2f} MPa’)

908 ax1.set_ylabel(’Stress [MPa]’)

909 ax1.legend()

910 ax1.grid(False)

911

912 # Plot on ax2: Shifted curve for the direct fit method with Steigungsdreieck

913 ax2.plot(adjusted_extrapolated_strain_direct, extrapolated_stress_direct, color=’blue’,

linestyle=’-’)

914 ax2.plot(adjusted_original_strain_direct, adjusted_original_stress_direct, marker=’o’, color=’blue’,

linestyle=’-’, markersize=3)

915

916 # Calculate and plot the Steigungsdreieck for the direct fit method

917 sigma_direct = extrapolated_stress_direct[-1] - extrapolated_stress_direct[0]

918 epsilon_direct = adjusted_extrapolated_strain_direct[-1] - adjusted_extrapolated_strain_direct[0]

919

920 # Draw the Steigungsdreieck (only area below the slope)

921 ax2.plot([adjusted_extrapolated_strain_direct[0], adjusted_extrapolated_strain_direct[-1]],

922 [extrapolated_stress_direct[0], extrapolated_stress_direct[-1]], ’k--’,

label="Steigungsdreieck (Direct Fit)")

923 ax2.vlines(adjusted_extrapolated_strain_direct[-1], 0, extrapolated_stress_direct[-1], colors=’k’,

linestyle=’dotted’)

924 ax2.fill_betweenx([0, extrapolated_stress_direct[-1]], adjusted_extrapolated_strain_direct[0],

adjusted_extrapolated_strain_direct[-1], color=’blue’, alpha=0.1)

925

926 # Positioning the annotation to the right of the vertical line and centered vertically

927 midpoint_x_direct = adjusted_extrapolated_strain_direct[-1]

928 midpoint_y_direct = (extrapolated_stress_direct[0] + extrapolated_stress_direct[-1]) / 2

929 ax2.text(midpoint_x_direct + 0.0002, midpoint_y_direct,
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930 f"$E_{{direct}} = \\frac{{\Delta\\sigma}}{{\Delta\\epsilon}} = \\frac{{{sigma_direct:.2f}

\\, MPa}}{{{epsilon_direct:.4f}}} \\approx {direct_fit_E_modul:.2f} \\, MPa$",

931 color=’blue’, fontsize=12, verticalalignment=’center’)

932

933 ax2.set_title(f’Direct Fit Method: E-modul = {direct_fit_E_modul:.2f} MPa’)

934 ax2.set_xlabel(’Strain [-]’)

935 ax2.set_ylabel(’Stress [MPa]’)

936 ax2.legend()

937 ax2.grid(False)

938

939 plt.tight_layout()

940 plt.savefig(os.path.join(plots_directory, ’Shifted_Curves_Comparison.jpg’))

941 plt.close()

942

943 # Combined plot with both shifted stress-strain curves and save

944 plt.figure(figsize=(10, 6))

945

946 # Plot for the original method

947 plt.plot(adjusted_extrapolated_strain, extrapolated_stress, color=’red’, linestyle=’-’)

948 plt.plot(adjusted_original_strain, adjusted_original_stress, marker=’o’, color=’red’, linestyle=’-’,

markersize=3, label=’Pressure-Deflection Method’)

949

950 # Plot for the direct fit method

951 plt.plot(adjusted_extrapolated_strain_direct, extrapolated_stress_direct, color=’blue’,

linestyle=’-’)

952 plt.plot(adjusted_original_strain_direct, adjusted_original_stress_direct, marker=’o’, color=’blue’,

linestyle=’-’, markersize=3, label=’Direct Fit Method’)

953

954 # Title comparing the E-moduli

955 plt.title(f’Comparison of Shifted Stress-Strain Curves\nOriginal E-modul: {found_slope:.2f} MPa vs

Direct Fit E-modul: {direct_fit_E_modul:.2f} MPa’)

956 plt.xlabel(’Strain [-]’)

957 plt.ylabel(’Stress [MPa]’)

958 plt.grid(False)

959 plt.legend()

960 plt.savefig(os.path.join(plots_directory, ’Comparison_Shifted_Curves.jpg’))

961 plt.close()

962

963 workbook = xlsxwriter.Workbook(os.path.join(output_directory, ’Shifted_Stress_Strain_Data.xlsx’))

964 worksheet = workbook.add_worksheet(’Shifted Stress-Strain Data’)

965

966 # Headers for Original Method

967 worksheet.write(0, 0, ’Nix Method - Extrapolated Strain’)

968 worksheet.write(0, 1, ’Nix Method - Extrapolated Stress’)

969 worksheet.write(0, 2, ’Nix Method - Original Strain’)

970 worksheet.write(0, 3, ’Nix Method - Original Stress’)

971

972 # Headers for Direct Fit Method

973 worksheet.write(0, 5, ’Direct Fit - Extrapolated Strain’)

974 worksheet.write(0, 6, ’Direct Fit - Extrapolated Stress’)

975 worksheet.write(0, 7, ’Direct Fit - Original Strain’)

976 worksheet.write(0, 8, ’Direct Fit - Original Stress’)

977

978 # Save Original Method Data

979 for i in range(len(adjusted_extrapolated_strain)):

980 worksheet.write(i + 1, 0, adjusted_extrapolated_strain[i])

981 worksheet.write(i + 1, 1, extrapolated_stress[i])

982 for i in range(len(adjusted_original_strain)):

983 worksheet.write(i + 1, 2, adjusted_original_strain[i])

984 worksheet.write(i + 1, 3, adjusted_original_stress[i])
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985

986 # Save Direct Fit Method Data

987 for i in range(len(adjusted_extrapolated_strain_direct)):

988 worksheet.write(i + 1, 5, adjusted_extrapolated_strain_direct[i])

989 worksheet.write(i + 1, 6, extrapolated_stress_direct[i])

990 for i in range(len(adjusted_original_strain_direct)):

991 worksheet.write(i + 1, 7, adjusted_original_strain_direct[i])

992 worksheet.write(i + 1, 8, adjusted_original_stress_direct[i])

993

994 workbook.close()

995

996 print(f"Shifted stress-strain data saved to: {os.path.join(output_directory,

’Shifted_Stress_Strain_Data.xlsx’)}")

997

998 else:

999 print("Could not find a good linear fit directly from strain-stress data.")

1000

1001 # Initialize the Excel workbook and worksheet

1002 workbook = xlsxwriter.Workbook(os.path.join(output_directory, ’Shifted_Stress_Strain_Data.xlsx’))

1003 worksheet = workbook.add_worksheet(’Shifted Stress-Strain Data’)

1004

1005 # Headers for Original Method

1006 worksheet.write(0, 0, ’Nix Method - Extrapolated Strain’)

1007 worksheet.write(0, 1, ’Nix Method - Extrapolated Stress’)

1008 worksheet.write(0, 2, ’Nix Method - Original Strain’)

1009 worksheet.write(0, 3, ’Nix Method - Original Stress’)

1010

1011 # Save Original Method Data

1012 for i in range(len(adjusted_extrapolated_strain)):

1013 worksheet.write(i + 1, 0, adjusted_extrapolated_strain[i])

1014 worksheet.write(i + 1, 1, extrapolated_stress[i])

1015 for i in range(len(adjusted_original_strain)):

1016 worksheet.write(i + 1, 2, adjusted_original_strain[i])

1017 worksheet.write(i + 1, 3, adjusted_original_stress[i])

1018

1019 workbook.close()

1020

1021 print(f"Shifted stress-strain data saved to: {os.path.join(output_directory,

’Shifted_Stress_Strain_Data.xlsx’)}")

1022

1023 return von_mises_stresses_unfitted, strains_unfitted

1024

1025

1026 def analyze_dynamic_with_uncertainties_and_sympy(z_values, get_pressures, window_radius, output_directory,

t, E_modul, sigma_0, deflection_error_percent=0.5, pressure_error_percent=1.03):

1027 """

1028 Analyze dynamic stress-strain relationship considering error propagation using the uncertainties package,

1029 and save symbolic derivations with sympy as images and LaTeX files.

1030 """

1031

1032 # Prepare lists for results

1033 deflections = []

1034 pressures_unfitted = []

1035 strains_unfitted = []

1036 von_mises_stresses_unfitted = []

1037 strains_error = []

1038 von_mises_stress_error = []

1039

1040 # Convert the percentages to fractional uncertainties

1041 deflection_error_fraction = deflection_error_percent / 100.0
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1042 pressure_error_fraction = pressure_error_percent / 100.0

1043

1044 # Prepare output paths for images and LaTeX files

1045 current_time = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M")

1046 latex_output_directory = os.path.join(output_directory, f’Latex_Images_{current_time}’)

1047 os.makedirs(latex_output_directory, exist_ok=True)

1048

1049 # Define symbolic variables

1050 h, a, p, t_sym, sigma_0_sym, u_h, u_p = sp.symbols(’h a p t sigma_0 u_h u_p’)

1051

1052 # Define symbolic equations for strain and membrane stress

1053 R_sym = (a**2 + h**2) / (2 * h)

1054 theta_sym = sp.asin(a / R_sym)

1055 strain_sym = (R_sym * theta_sym - a) / a

1056 membrane_stress_sym = (p * R_sym) / (2 * t_sym)

1057

1058 # Derivatives with respect to h and p

1059 strain_derivative_h = sp.diff(strain_sym, h)

1060 strain_derivative_p = sp.diff(strain_sym, p)

1061 stress_derivative_h = sp.diff(membrane_stress_sym, h)

1062 stress_derivative_p = sp.diff(membrane_stress_sym, p)

1063

1064 # Error propagation formulas

1065 strain_error = sp.sqrt((strain_derivative_h * u_h)**2 + (strain_derivative_p * u_p)**2)

1066 stress_error = sp.sqrt((stress_derivative_h * u_h)**2 + (stress_derivative_p * u_p)**2)

1067

1068 # LaTeX expressions for the symbolic computation

1069 latex_strain = sp.latex(strain_sym)

1070 latex_stress = sp.latex(membrane_stress_sym)

1071 latex_strain_derivative_h = sp.latex(strain_derivative_h)

1072 latex_strain_derivative_p = sp.latex(strain_derivative_p)

1073 latex_stress_derivative_h = sp.latex(stress_derivative_h)

1074 latex_stress_derivative_p = sp.latex(stress_derivative_p)

1075 latex_strain_error = sp.latex(strain_error)

1076 latex_stress_error = sp.latex(stress_error)

1077

1078 # Full LaTeX expressions for documentation

1079 full_expression_latex = r"""

1080 \text{Strain:} \quad \epsilon = """ + latex_strain + r"""

1081 \\[1em]

1082 \text{Membrane Stress:} \quad \sigma = """ + latex_stress + r"""

1083 \\[2em]

1084 \text{Derivative of Strain w.r.t h:} \quad \frac{\partial \epsilon}{\partial h} = """ +

latex_strain_derivative_h + r"""

1085 \\[1em]

1086 \text{Derivative of Strain w.r.t p:} \quad \frac{\partial \epsilon}{\partial p} = """ +

latex_strain_derivative_p + r"""

1087 \\[1em]

1088 \text{Derivative of Membrane Stress w.r.t h:} \quad \frac{\partial \sigma}{\partial h} = """ +

latex_stress_derivative_h + r"""

1089 \\[1em]

1090 \text{Derivative of Membrane Stress w.r.t p:} \quad \frac{\partial \sigma}{\partial p} = """ +

latex_stress_derivative_p + r"""

1091 \\[2em]

1092 \text{Error Propagation for Strain:} \quad u_\epsilon = """ + latex_strain_error + r"""

1093 \\[1em]

1094 \text{Error Propagation for Membrane Stress:} \quad u_\sigma = """ + latex_stress_error

1095

1096 # Save LaTeX code to a .tex file

1097 latex_file_path = os.path.join(latex_output_directory, ’symbolic_expressions_with_error_propagation.tex’)
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1098 with open(latex_file_path, ’w’) as latex_file:

1099 latex_file.write(full_expression_latex)

1100

1101 # Function to save LaTeX as an image

1102 def save_latex_as_image(latex_code, output_path):

1103 fig, ax = plt.subplots(figsize=(12, 6))

1104 ax.text(0.5, 0.5, r"$" + latex_code + r"$", fontsize=20, ha=’center’, va=’center’)

1105 ax.axis(’off’)

1106 fig.savefig(output_path, bbox_inches=’tight’)

1107 plt.close(fig)

1108

1109 # Save image of the full symbolic expression

1110 full_expression_image_path = os.path.join(latex_output_directory,

’full_expression_with_derivatives_and_errors.png’)

1111 save_latex_as_image(full_expression_latex, full_expression_image_path)

1112

1113 min_length = min(len(z_values), len(get_pressures))

1114 z_values = z_values[:min_length]

1115 get_pressures = get_pressures[:min_length]

1116

1117 # Iterate over z_values to calculate strain and stress with uncertainties

1118 for index, z in enumerate(z_values):

1119 pressure_unfitted = get_pressures[index] * 0.1 # Convert to MPa

1120 pressures_unfitted.append(pressure_unfitted)

1121

1122 difference = z - z_values[0]

1123 deflections.append(difference)

1124

1125 h_val = difference

1126

1127 # If deflection is zero or negative, assign default values

1128 if h_val <= 0:

1129 strains_unfitted.append(0)

1130 von_mises_stresses_unfitted.append(sigma_0)

1131 strains_error.append(0)

1132 von_mises_stress_error.append(0)

1133 continue

1134

1135 # Calculate the deflection with uncertainty

1136 h_with_uncertainty = ufloat(h_val, abs(h_val * deflection_error_fraction))

1137 p_with_uncertainty = ufloat(pressure_unfitted, abs(pressure_unfitted * pressure_error_fraction))

1138

1139 # Calculate radius R

1140 R = (window_radius ** 2 + h_with_uncertainty ** 2) / (2 * h_with_uncertainty)

1141 theta = asin(window_radius / R)

1142

1143 # Calculate strain and von Mises stress

1144 strain = (R * theta - window_radius) / window_radius

1145 membrane_stress = (p_with_uncertainty * R) / (2 * t)

1146

1147 # Store results

1148 strains_unfitted.append(strain.nominal_value)

1149 von_mises_stresses_unfitted.append(membrane_stress.nominal_value)

1150 strains_error.append(strain.std_dev)

1151 von_mises_stress_error.append(membrane_stress.std_dev)

1152

1153 # Plot the stress-strain curve with error bars

1154 plt.figure(figsize=(10, 6))

1155 plt.errorbar(

1156 x=strains_unfitted[3:],
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1157 y=von_mises_stresses_unfitted[3:],

1158 xerr=strains_error[3:], # Add horizontal error bars for strain

1159 yerr=von_mises_stress_error[3:], # Vertical error bars for stress

1160 fmt=’o’, color=’blue’, label=’Original Data with Error Bars’,

1161 markersize=2 # Smaller points for better visibility of error bars

1162 )

1163 plt.xlabel(’Strain’)

1164 plt.ylabel(’Von Mises Stress (MPa)’)

1165 plt.title(’Strain vs. Von Mises Stress with Error Propagation’)

1166 plt.legend()

1167 plt.grid(False)

1168 plot_path = os.path.join(output_directory, f’Strain_vs_Von_Mises_Stress_with_Error_{current_time}.png’)

1169 plt.savefig(plot_path, bbox_inches=’tight’)

1170 plt.close()

1171

1172 # Save calculated values to an Excel file

1173 data = {

1174 ’Deflections (m)’: deflections,

1175 ’Strains (Original)’: strains_unfitted,

1176 ’Von Mises Stress (Original)’: von_mises_stresses_unfitted,

1177 ’Strain Error’: strains_error,

1178 ’Von Mises Stress Error’: von_mises_stress_error

1179 }

1180

1181 df = pd.DataFrame(data)

1182 excel_path = os.path.join(output_directory,

f’Stress_Strain_with_Error_Uncertainties_{current_time}.xlsx’)

1183 df.to_excel(excel_path, index=False)

1184 print(f"Data saved to Excel file: {excel_path}")

1185 print(f"Full symbolic expression with error propagation saved to: {full_expression_image_path}")

1186 print(f"Full symbolic expression LaTeX saved to: {latex_file_path}")

1187

1188

1189 def process_images(folder_path, output_directory, von_mises_stresses, magnification, plot_fractions=False):

1190 dimensions = {

1191 10: (1700, 1418.6),

1192 20: (850, 709),

1193 50: (340, 283.7),

1194 150: (113.3, 94.6)

1195 }

1196 scale_bar_lengths = {

1197 10: 500,

1198 20: 200,

1199 50: 50,

1200 150: 20

1201 }

1202 if magnification not in dimensions or magnification not in scale_bar_lengths:

1203 raise ValueError("Unsupported magnification. Choose from 10, 20, 50, or 150.")

1204 image_width_um, image_height_um = dimensions[magnification]

1205 scale_bar_length_um = scale_bar_lengths[magnification]

1206

1207 output_folder = os.path.join(output_directory, "processed_images")

1208 os.makedirs(output_folder, exist_ok=True)

1209

1210 image_files = [f for f in os.listdir(folder_path) if f.endswith(".plux_image.jpg")]

1211

1212 primary_counts = []

1213 secondary_counts = []

1214 primary_distances = []

1215 secondary_distances = []
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1216 primary_fractions = []

1217 secondary_fractions = []

1218 no_crack_indices = []

1219

1220 for i, (image_file, von_mises_stress) in enumerate(zip(image_files, von_mises_stresses)):

1221 image_path = os.path.join(folder_path, image_file)

1222 image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)

1223 if image is None:

1224 print(f"Error: Image {image_file} not found or the file is corrupt.")

1225 continue

1226

1227 height, width = image.shape

1228

1229 blurred_image = cv2.GaussianBlur(image, (3, 3), 0)

1230 clahe = cv2.createCLAHE(clipLimit=1, tileGridSize=(8, 8))

1231 contrasted_image = clahe.apply(blurred_image)

1232 edges_canny = cv2.Canny(contrasted_image, 110, 150)

1233 edges_blurred = cv2.Canny(blurred_image, 20, 70)

1234 combined_edges = cv2.bitwise_or(edges_canny, edges_blurred)

1235 dilated_edges = cv2.dilate(combined_edges, np.ones((1, 1), np.uint8), iterations=1)

1236

1237 contours, _ = cv2.findContours(dilated_edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

1238 contour_image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)

1239

1240 primary_mask = np.zeros_like(image, dtype=np.uint8)

1241 secondary_mask = np.zeros_like(image, dtype=np.uint8)

1242

1243 contour_types = []

1244

1245 for contour in contours:

1246 contour_length = cv2.arcLength(contour, closed=False)

1247 x, y, w, h = cv2.boundingRect(contour)

1248 if contour_length > 600 or w > 90 or h > 90:

1249 color = (0, 0, 255)

1250 contour_types.append(’secondary’)

1251 cv2.drawContours(secondary_mask, [contour], -1, 255, -1)

1252 else:

1253 color = (255, 0, 255)

1254 contour_types.append(’primary’)

1255 cv2.drawContours(primary_mask, [contour], -1, 255, -1)

1256 cv2.drawContours(contour_image, [contour], -1, color, 1)

1257

1258 primary_fraction = np.sum(primary_mask) / (height * width * 255)

1259 secondary_fraction = np.sum(secondary_mask) / (height * width * 255)

1260

1261 primary_fractions.append(primary_fraction)

1262 secondary_fractions.append(secondary_fraction)

1263

1264 line_y = height // 2

1265 cv2.line(contour_image, (0, line_y), (width, line_y), (255, 0, 0), 2)

1266 crack_centers = []

1267 crack_indices = []

1268

1269 for idx, contour in enumerate(contours):

1270 x_coords = [point[0][0] for point in contour if abs(point[0][1] - line_y) < 5]

1271 crack_centers.extend(x_coords)

1272 crack_indices.extend([idx] * len(x_coords))

1273

1274 if not crack_centers:

1275 print(f"No crack centers found in image: {image_file}")
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1276 no_crack_indices.append(i)

1277 primary_counts.append(0)

1278 secondary_counts.append(0)

1279 primary_distances.append(0)

1280 secondary_distances.append(0)

1281

1282 overlay = contour_image.copy()

1283 cv2.putText(overlay, ’No Cracks Found’, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2,

cv2.LINE_AA)

1284 output_image_path = os.path.join(output_folder, f"{image_file[:5]}_processed_image.jpg")

1285 cv2.imwrite(output_image_path, overlay)

1286

1287 continue

1288

1289 points = np.array(crack_centers).reshape(-1, 1)

1290 clusters = fclusterdata(points, 10, criterion=’distance’)

1291 clustered_centers, types = [], []

1292 for cluster_id in np.unique(clusters):

1293 cluster_mask = clusters == cluster_id

1294 cluster_points = points[cluster_mask]

1295 cluster_indices = np.array(crack_indices)[cluster_mask]

1296 cluster_types = [contour_types[i] for i in cluster_indices]

1297 median_point = int(np.median(cluster_points))

1298 preferred_type = ’secondary’ if ’secondary’ in cluster_types else ’primary’

1299 clustered_centers.append(median_point)

1300 types.append(preferred_type)

1301

1302 pixel_to_um_x = image_width_um / width

1303 crack_centers_um = [x * pixel_to_um_x for x in clustered_centers]

1304

1305 primary_crack_centers = [crack_centers_um[i] for i in range(len(crack_centers_um)) if types[i] ==

’primary’]

1306 secondary_crack_centers = [crack_centers_um[i] for i in range(len(crack_centers_um)) if types[i] ==

’secondary’]

1307

1308 primary_distances_um = [abs(primary_crack_centers[i + 1] - primary_crack_centers[i]) for i in

range(len(primary_crack_centers) - 1)]

1309 secondary_distances_um = [abs(secondary_crack_centers[i + 1] - secondary_crack_centers[i]) for i in

range(len(secondary_crack_centers) - 1)]

1310

1311 primary_count = len(primary_crack_centers)

1312 secondary_count = len(secondary_crack_centers)

1313 primary_counts.append(primary_count)

1314 secondary_counts.append(secondary_count)

1315

1316 primary_avg_distance = np.mean(primary_distances_um) if primary_distances_um else 0

1317 secondary_avg_distance = np.mean(secondary_distances_um) if secondary_distances_um else 0

1318

1319 primary_distances.append(primary_avg_distance)

1320 secondary_distances.append(secondary_avg_distance)

1321

1322 for j, x_um in enumerate(crack_centers_um):

1323 x = int(x_um / pixel_to_um_x)

1324 color = (0, 255, 0) if types[j] == ’primary’ else (255, 255, 255)

1325 cv2.circle(contour_image, (x, line_y), 7, color, -1)

1326

1327 overlay = contour_image.copy()

1328 alpha = 0.6

1329 scale_bar_text = f"{scale_bar_length_um} micrometer"

1330
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1331 if magnification == 10:

1332 font_scale = 0.6

1333 box_padding = 20

1334 elif magnification == 20:

1335 font_scale = 0.8

1336 box_padding = 30

1337 elif magnification == 50:

1338 font_scale = 1.0

1339 box_padding = 40

1340 elif magnification == 150:

1341 font_scale = 1.2

1342 box_padding = 50

1343

1344 text_size = cv2.getTextSize(scale_bar_text, cv2.FONT_HERSHEY_SIMPLEX, font_scale, 2)[0]

1345 box_width = text_size[0] + box_padding

1346 box_height = text_size[1] + box_padding

1347

1348 cv2.rectangle(overlay, (width - box_width - 10, height - box_height - 10), (width - 10, height -

10), (0, 0, 0), -1)

1349 contour_image = cv2.addWeighted(overlay, alpha, contour_image, 1 - alpha, 0)

1350

1351 scale_bar_length_px = int(scale_bar_length_um / pixel_to_um_x)

1352 scale_bar_start = (width - box_width - 10, height - 25)

1353 scale_bar_end = (scale_bar_start[0] + scale_bar_length_px, height - 25)

1354 cv2.line(contour_image, scale_bar_start, scale_bar_end, (255, 255, 255), 2)

1355 cv2.putText(contour_image, scale_bar_text, (scale_bar_start[0], height - 35),

cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), 2)

1356

1357 output_image_path = os.path.join(output_folder, f"{image_file[:5]}_processed_image.jpg")

1358 cv2.imwrite(output_image_path, contour_image)

1359

1360 if i == 0 or (i + 1) % 30 == 0 or i == len(image_files) - 1:

1361 plt.figure(figsize=(10, 10))

1362 plt.imshow(cv2.cvtColor(contour_image, cv2.COLOR_BGR2RGB))

1363 plt.title(f"Contours and Measurement Line with Midpoints for Image {i+1}")

1364 plt.xticks(np.linspace(0, width, num=11), [f"{int(x)} m" for x in np.linspace(0, image_width_um,

num=11)])

1365 plt.yticks(np.linspace(0, height, num=11), [f"{int(y)} m" for y in np.linspace(0,

image_height_um, num=11)])

1366 plt.show()

1367

1368 min_length = min(len(image_files), len(von_mises_stresses), len(primary_counts), len(secondary_counts),

len(primary_distances), len(secondary_distances), len(primary_fractions), len(secondary_fractions))

1369

1370 data = {

1371 ’Image’: image_files[:min_length],

1372 ’Primary Cracks’: primary_counts[:min_length],

1373 ’Secondary Cracks’: secondary_counts[:min_length],

1374 ’Avg Primary Distance (m)’: primary_distances[:min_length],

1375 ’Avg Secondary Distance (m)’: secondary_distances[:min_length]

1376 }

1377

1378 df = pd.DataFrame(data)

1379 df.to_excel(os.path.join(output_folder, ’crack_analysis.xlsx’), index=False)

1380

1381 if plot_fractions:

1382 data[’Primary Fraction’] = primary_fractions[:min_length]

1383 data[’Secondary Fraction’] = secondary_fractions[:min_length]

1384 df = pd.DataFrame(data)

1385 df.to_excel(os.path.join(output_folder, ’crack_analysis_with_fractions.xlsx’), index=False)
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1386

1387 x_data = range(min_length)

1388 x_labels = [f[:5] for f in image_files[:min_length]]

1389

1390 fig3, ax3 = plt.subplots(figsize=(10, 5))

1391 ax3.plot(x_data, primary_fractions[:min_length], ’g--’, label=’Primary Fraction’)

1392 ax3.plot(x_data, secondary_fractions[:min_length], ’r--’, label=’Secondary Fraction’)

1393

1394 for idx in no_crack_indices:

1395 if idx < min_length:

1396 ax3.annotate(’No Cracks’, (idx, 0), textcoords="offset points", xytext=(0,10), ha=’center’,

color=’red’)

1397 ax3.plot(idx, 0, ’ro’)

1398

1399 ax3.set_xlabel(’Image Files’)

1400 ax3.set_ylabel(’Fraction of Image Area’)

1401 ax3.legend()

1402 ax3.set_xticks(x_data[::20])

1403 ax3.set_xticklabels(x_labels[::20], rotation=45, ha=’right’)

1404 plt.tight_layout()

1405 plt.savefig(os.path.join(output_folder, ’area_fractions_plot.png’))

1406 plt.show()

1407

1408 x_data = range(min_length)

1409 x_labels = [f[:5] for f in image_files[:min_length]]

1410

1411 fig1, ax1 = plt.subplots(figsize=(10, 5))

1412 ax1.plot(x_data, primary_counts[:min_length], ’g--’, label=’Primary Cracks’)

1413 ax1.plot(x_data, secondary_counts[:min_length], ’r--’, label=’Secondary Cracks’)

1414

1415 for idx in no_crack_indices:

1416 if idx < min_length:

1417 ax1.annotate(’No Cracks’, (idx, 0), textcoords="offset points", xytext=(0,10), ha=’center’,

color=’red’)

1418 ax1.plot(idx, 0, ’ro’)

1419

1420 ax1.set_xlabel(’Image Files’)

1421 ax1.set_ylabel(’Number of Cracks’)

1422 ax1.legend()

1423 ax1.set_xticks(x_data[::20])

1424 ax1.set_xticklabels(x_labels[::20], rotation=45, ha=’right’)

1425 plt.tight_layout()

1426 plt.savefig(os.path.join(output_folder, ’crack_counts_plot.png’))

1427 plt.show()

1428

1429 fig2, ax2 = plt.subplots(figsize=(10, 5))

1430 ax2.plot(x_data, primary_distances[:min_length], ’g--’, label=’Avg Primary Distance (m)’)

1431 ax2.plot(x_data, secondary_distances[:min_length], ’r--’, label=’Avg Secondary Distance (m)’)

1432

1433 for idx in no_crack_indices:

1434 if idx < min_length:

1435 ax2.annotate(’No Cracks’, (idx, 0), textcoords="offset points", xytext=(0,10), ha=’center’,

color=’red’)

1436 ax2.plot(idx, 0, ’ro’)

1437

1438 ax2.set_xlabel(’Image Files’)

1439 ax2.set_ylabel(’Average Distance (m)’)

1440 ax2.legend()

1441 ax2.set_xticks(x_data[::20])

1442 ax2.set_xticklabels(x_labels[::20], rotation=45, ha=’right’)
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1443 plt.tight_layout()

1444 plt.grid(False)

1445 plt.savefig(os.path.join(output_folder, ’crack_distances_plot.png’))

1446 plt.show()

1447

1448 def find_newest_directory(base_path):

1449 date_pattern = re.compile(r"\d{4}-\d{2}-\d{2}_\d{2}-\d{2}")

1450 directories = [os.path.join(base_path, d) for d in os.listdir(base_path)

1451 if os.path.isdir(os.path.join(base_path, d)) and date_pattern.match(d)]

1452 latest_dir = max(directories, key=os.path.getmtime, default=None)

1453 return latest_dir

1454

1455 def add_scales_to_image(image_path, magnification, output_path):

1456 dimensions = {

1457 10: (1700, 1418.6),

1458 20: (850, 709),

1459 50: (340, 283.7),

1460 150: (113.3, 94.6)

1461 }

1462

1463 scale_bar_lengths = {

1464 10: 500,

1465 20: 200,

1466 50: 50,

1467 150: 20

1468 }

1469

1470 if magnification not in dimensions or magnification not in scale_bar_lengths:

1471 raise ValueError("Unsupported magnification. Choose from 10, 20, 50, or 150.")

1472

1473 image_width_um, image_height_um = dimensions[magnification]

1474 scale_bar_length_um = scale_bar_lengths[magnification]

1475

1476 image = cv2.imread(image_path)

1477 height, width, _ = image.shape

1478 pixel_to_um_x = image_width_um / width

1479

1480 overlay = image.copy()

1481 alpha = 0.6

1482 scale_bar_text = f"{scale_bar_length_um} micrometer"

1483

1484 if magnification == 10:

1485 font_scale = 0.6

1486 box_padding = 20

1487 elif magnification == 20:

1488 font_scale = 0.8

1489 box_padding = 30

1490 elif magnification == 50:

1491 font_scale = 1.0

1492 box_padding = 40

1493 elif magnification == 150:

1494 font_scale = 1.2

1495 box_padding = 50

1496

1497 text_size = cv2.getTextSize(scale_bar_text, cv2.FONT_HERSHEY_SIMPLEX, font_scale, 2)[0]

1498 box_width = text_size[0] + box_padding

1499 box_height = text_size[1] + box_padding

1500

1501 cv2.rectangle(overlay, (width - box_width - 10, height - box_height - 10), (width - 10, height - 10),

(0, 0, 0), -1)
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1502 image = cv2.addWeighted(overlay, alpha, image, 1 - alpha, 0)

1503

1504 scale_bar_length_px = int(scale_bar_length_um / pixel_to_um_x)

1505 scale_bar_start = (width - box_width - 10, height - 25)

1506 scale_bar_end = (scale_bar_start[0] + scale_bar_length_px, height - 25)

1507 cv2.line(image, scale_bar_start, scale_bar_end, (255, 255, 255), 2)

1508 cv2.putText(image, scale_bar_text, (scale_bar_start[0], height - 35), cv2.FONT_HERSHEY_SIMPLEX,

font_scale, (255, 255, 255), 2)

1509

1510 plt.figure(figsize=(10, 10))

1511 plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))

1512 plt.xticks(np.linspace(0, width, num=11), [f"{int(x)} m" for x in np.linspace(0, image_width_um,

num=11)])

1513 plt.yticks(np.linspace(0, height, num=11), [f"{int(y)} m" for y in np.linspace(0, image_height_um,

num=11)])

1514 plt.savefig(output_path, bbox_inches=’tight’)

1515 plt.close()

1516

1517 def create_pdf_with_processed_images_and_plots(source_directory, output_directory, pressure_values,

von_mises_stresses, strains, magnification, save_with_scales):

1518 image_types = [’plux_image.jpg’, ’processed_image.jpg’]

1519 files = {image_type: [] for image_type in image_types}

1520 processed_images_dir = os.path.join(output_directory, ’processed_images’)

1521

1522 for file_name in os.listdir(source_directory):

1523 if file_name.endswith(’plux_image.jpg’):

1524 files[’plux_image.jpg’].append(os.path.join(source_directory, file_name))

1525

1526 for file_name in os.listdir(processed_images_dir):

1527 if file_name.endswith(’.jpg’):

1528 files[’processed_image.jpg’].append(os.path.join(processed_images_dir, file_name))

1529

1530 for image_type, file_list in files.items():

1531 files[image_type] = sorted(file_list, key=lambda x: int(re.search(r’(\d+)’,

os.path.basename(x)).group(1)))

1532

1533 output_path = os.path.join(output_directory, "processed_images_report.pdf")

1534 doc = SimpleDocTemplate(output_path, pagesize=letter, rightMargin=72, leftMargin=72, topMargin=18,

bottomMargin=18)

1535 story = []

1536 styles = getSampleStyleSheet()

1537

1538 logo_path = "H:\\01 Bulge Testing Versuche\\6mm_14mm\\logo.png"

1539 if os.path.exists(logo_path):

1540 logo = Image(logo_path, width=100, height=50)

1541 else:

1542 logo = Paragraph("<font color=’red’><b>Empa Thun</b></font>", styles[’Title’])

1543

1544 title = Paragraph("<font size=12><b>Processed Images Report</b></font>", styles[’Title’])

1545 datum = datetime.datetime.now().strftime("%Y-%m-%d %H-%M")

1546

1547 header_data = [[logo, title, datum]]

1548 header_table = Table(header_data, colWidths=[108, 324, 108], rowHeights=60)

1549 header_table.setStyle(TableStyle([

1550 (’ALIGN’, (0, 0), (-1, -1), ’CENTER’),

1551 (’VALIGN’, (0, 0), (-1, -1), ’MIDDLE’),

1552 (’SPAN’, (1, 0), (1, 0))

1553 ]))

1554 story.append(header_table)

1555 story.append(Spacer(1, 20))
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1556

1557 available_width = letter[0] - 60

1558 first_column_width = 70

1559 image_width = (available_width - first_column_width) / len(image_types) - (0.1 * inch)

1560 headers = [’P// ’] + [img_type.replace(’.jpg’, ’’).replace(’_’, ’ ’).title() for img_type in

image_types]

1561 table_data = [headers]

1562

1563 num_rows = max(len(files[image_type]) for image_type in image_types)

1564 for index in range(num_rows):

1565 if index < len(pressure_values):

1566 pressure = f"{pressure_values[index]:.2f} bar"

1567 stress = f"{von_mises_stresses[index]:.2f} MPa"

1568 strain = f"{strains[index] * 100:.2f} [%]"

1569 row = [Paragraph(f"{pressure}<br/>{stress}<br/>{strain}", styles[’Normal’])]

1570 for image_type in image_types:

1571 try:

1572 img_path = files[image_type][index]

1573 output_img_path = img_path.replace(’.jpg’, ’_with_scales.jpg’)

1574 if save_with_scales:

1575 if not os.path.exists(output_img_path):

1576 add_scales_to_image(img_path, magnification, output_img_path)

1577 else:

1578 output_img_path = img_path

1579 img = Image(output_img_path, width=image_width, height=image_width * 0.75)

1580 img_name = Paragraph(f"<font size=9>{os.path.basename(output_img_path)}</font>",

styles["Normal"])

1581 row.append([img, img_name])

1582 except (IndexError, FileNotFoundError):

1583 row.append(’’)

1584 table_data.append(row)

1585

1586 table = Table(table_data, colWidths=[first_column_width] + [image_width] * len(image_types),

style=TableStyle([

1587 (’INNERGRID’, (0,0), (-1,-1), 0.25, colors.black),

1588 (’BOX’, (0,0), (-1,-1), 0.25, colors.black),

1589 (’VALIGN’, (0,0), (-1,-1), ’MIDDLE’),

1590 (’ALIGN’, (0,0), (-1,-1), ’CENTER’)

1591 ]))

1592 story.append(table)

1593 story.append(Spacer(1, 20))

1594

1595 plots_path = os.path.join(output_directory, "Plots")

1596 if os.path.exists(plots_path):

1597 for plot_file in os.listdir(plots_path):

1598 plot_full_path = os.path.join(plots_path, plot_file)

1599 if plot_full_path.endswith(’.jpg’):

1600 new_width, new_height = resize_image(plot_full_path, available_width, 270)

1601 plot_image = Image(plot_full_path, width=new_width, height=new_height)

1602 story.append(plot_image)

1603 story.append(Spacer(1, 12))

1604

1605 pressure_deflection_image_path = os.path.join(output_directory, "Pressure_vs_Deflection.png")

1606 if os.path.exists(pressure_deflection_image_path):

1607 new_width, new_height = resize_image(pressure_deflection_image_path, available_width, 270)

1608 deflection_image = Image(pressure_deflection_image_path, width=new_width, height=new_height)

1609 story.append(deflection_image)

1610

1611 story.append(Spacer(1, 20))

1612
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1613 footer_data = [[logo, ’’, datum]]

1614 footer_table = Table(footer_data, colWidths=[108, 324, 108], rowHeights=60)

1615 footer_table.setStyle(TableStyle([

1616 (’ALIGN’, (0, 0), (-1, -1), ’CENTER’),

1617 (’VALIGN’, (0, 0), (-1, -1), ’MIDDLE’),

1618 (’SPAN’, (1, 0), (1, 0))

1619 ]))

1620 story.append(footer_table)

1621

1622 doc.build(story)

1623 print(f"PDF created with processed images and plots: {output_path}")

1624

1625 def create_pdf_with_table_and_strain_stress(source_directory, output_directory, pressure_values,

von_mises_stresses, strains, magnification, save_with_scales):

1626 image_types = [’plux_image.jpg’]

1627 files = {image_type: [] for image_type in image_types}

1628 strain_stress_plots_dir = os.path.join(output_directory, ’Plots’, ’Succesive_Plots’)

1629 pressure_deflection_plots_dir = os.path.join(output_directory, ’Plots’, ’Succesive_Plots_p_vs_d’)

1630

1631 for file_name in os.listdir(source_directory):

1632 if file_name.endswith(’plux_image.jpg’):

1633 files[’plux_image.jpg’].append(os.path.join(source_directory, file_name))

1634

1635 for image_type, file_list in files.items():

1636 files[image_type] = sorted(file_list, key=lambda x: int(re.search(r’(\d+)’,

os.path.basename(x)).group(1)))

1637

1638 # Generate PDF with strain-stress plots

1639 output_path_strain_stress = os.path.join(output_directory, "output_with_strain_stress.pdf")

1640 doc_strain_stress = SimpleDocTemplate(output_path_strain_stress, pagesize=letter, rightMargin=72,

leftMargin=72, topMargin=18, bottomMargin=18)

1641 story_strain_stress = []

1642 styles = getSampleStyleSheet()

1643

1644 logo_path = "H:\\01 Bulge Testing Versuche\\6mm_14mm\\logo.png"

1645 if os.path.exists(logo_path):

1646 logo = Image(logo_path, width=100, height=50)

1647 else:

1648 logo = Paragraph("<font color=’red’><b>Empa Thun</b></font>", styles[’Title’])

1649 title_strain_stress = Paragraph("<font size=12><b>Pressure and Deflection Report with Strain-Stress

Plots</b></font>", styles[’Title’])

1650 datum = datetime.datetime.now().strftime("%Y-%m-%d %H-%M")

1651

1652 header_data = [[logo, title_strain_stress, datum]]

1653 header_table = Table(header_data, colWidths=[108, 324, 108], rowHeights=60)

1654 header_table.setStyle(TableStyle([

1655 (’ALIGN’, (0, 0), (-1, -1), ’CENTER’),

1656 (’VALIGN’, (0, 0), (-1, -1), ’MIDDLE’),

1657 (’SPAN’, (1, 0), (1, 0))

1658 ]))

1659 story_strain_stress.append(header_table)

1660 story_strain_stress.append(Spacer(1, 20))

1661

1662 available_width = letter[0] - 60

1663 first_column_width = 70

1664 image_width = (available_width - first_column_width) / 2 - (0.1 * inch)

1665 headers = [’P// ’, ’Plux Image’, ’Strain-Stress Curve’]

1666 table_data_strain_stress = [headers]

1667

1668 num_rows = len(files[’plux_image.jpg’])
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1669 for index in range(num_rows):

1670 if index < len(pressure_values):

1671 pressure = f"{pressure_values[index]:.3f} bar"

1672 stress = f"{von_mises_stresses[index]:.3f} MPa"

1673 strain = f"{strains[index] * 100:.3f} [%]"

1674 row = [Paragraph(f"{pressure}<br/>{stress}<br/>{strain}", styles[’Normal’])]

1675

1676 try:

1677 img_path = files[’plux_image.jpg’][index]

1678 output_img_path = img_path.replace(’.jpg’, ’_with_scales.jpg’)

1679 if save_with_scales:

1680 if not os.path.exists(output_img_path):

1681 add_scales_to_image(img_path, magnification, output_img_path)

1682 else:

1683 output_img_path = img_path

1684 img = Image(output_img_path, width=image_width, height=image_width * 0.75)

1685 img_name = Paragraph(f"<font size=9>{os.path.basename(output_img_path)}</font>",

styles["Normal"])

1686 row.append([img, img_name])

1687 except (IndexError, FileNotFoundError):

1688 row.append(’’)

1689

1690 try:

1691 strain_stress_plot_path = os.path.join(strain_stress_plots_dir, f’strain_stress_{index +

1}.png’)

1692 strain_stress_img = Image(strain_stress_plot_path, width=image_width, height=image_width *

0.75)

1693 row.append(strain_stress_img)

1694 except (FileNotFoundError, IndexError):

1695 row.append(’’)

1696

1697 table_data_strain_stress.append(row)

1698

1699 table_strain_stress = Table(table_data_strain_stress, colWidths=[first_column_width] + [image_width] *

2, style=TableStyle([

1700 (’INNERGRID’, (0,0), (-1,-1), 0.25, colors.black),

1701 (’BOX’, (0,0), (-1,-1), 0.25, colors.black),

1702 (’VALIGN’, (0,0), (-1,-1), ’MIDDLE’),

1703 (’ALIGN’, (0,0), (-1,-1), ’CENTER’)

1704 ]))

1705 story_strain_stress.append(table_strain_stress)

1706 story_strain_stress.append(Spacer(1, 20))

1707

1708 # Generate PDF with pressure-deflection plots

1709 output_path_pressure_deflection = os.path.join(output_directory, "output_with_pressure_deflection.pdf")

1710 doc_pressure_deflection = SimpleDocTemplate(output_path_pressure_deflection, pagesize=letter,

rightMargin=72, leftMargin=72, topMargin=18, bottomMargin=18)

1711 story_pressure_deflection = []

1712

1713 title_pressure_deflection = Paragraph("<font size=12><b>Pressure and Deflection Report with

Pressure-Deflection Plots</b></font>", styles[’Title’])

1714 header_data_pressure_deflection = [[logo, title_pressure_deflection, datum]]

1715 header_table_pressure_deflection = Table(header_data_pressure_deflection, colWidths=[108, 324, 108],

rowHeights=60)

1716 header_table_pressure_deflection.setStyle(TableStyle([

1717 (’ALIGN’, (0, 0), (-1, -1), ’CENTER’),

1718 (’VALIGN’, (0, 0), (-1, -1), ’MIDDLE’),

1719 (’SPAN’, (1, 0), (1, 0))

1720 ]))

1721 story_pressure_deflection.append(header_table_pressure_deflection)
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1722 story_pressure_deflection.append(Spacer(1, 20))

1723

1724 headers_pressure_deflection = [’P//’, ’Plux Image’, ’Pressure-Deflection Curve’]

1725 table_data_pressure_deflection = [headers_pressure_deflection]

1726

1727 for index in range(num_rows):

1728 if index < len(pressure_values):

1729 pressure = f"{pressure_values[index]:.3f} bar"

1730 stress = f"{von_mises_stresses[index]:.3f} MPa"

1731 strain = f"{strains[index] * 100:.3f} [%]"

1732 row = [Paragraph(f"{pressure}<br/>{stress}<br/>{strain}", styles[’Normal’])]

1733

1734 try:

1735 img_path = files[’plux_image.jpg’][index]

1736 output_img_path = img_path.replace(’.jpg’, ’_with_scales.jpg’)

1737 if save_with_scales:

1738 if not os.path.exists(output_img_path):

1739 add_scales_to_image(img_path, magnification, output_img_path)

1740 else:

1741 output_img_path = img_path

1742 img = Image(output_img_path, width=image_width, height=image_width * 0.75)

1743 img_name = Paragraph(f"<font size=9>{os.path.basename(output_img_path)}</font>",

styles["Normal"])

1744 row.append([img, img_name])

1745 except (IndexError, FileNotFoundError):

1746 row.append(’’)

1747

1748 try:

1749 pressure_deflection_plot_path = os.path.join(pressure_deflection_plots_dir,

f’pressure_deflection_{index + 1}.png’)

1750 pressure_deflection_img = Image(pressure_deflection_plot_path, width=image_width,

height=image_width * 0.75)

1751 row.append(pressure_deflection_img)

1752 except (FileNotFoundError, IndexError):

1753 row.append(’’)

1754

1755 table_data_pressure_deflection.append(row)

1756

1757 table_pressure_deflection = Table(table_data_pressure_deflection, colWidths=[first_column_width] +

[image_width] * 2, style=TableStyle([

1758 (’INNERGRID’, (0,0), (-1,-1), 0.25, colors.black),

1759 (’BOX’, (0,0), (-1,-1), 0.25, colors.black),

1760 (’VALIGN’, (0,0), (-1,-1), ’MIDDLE’),

1761 (’ALIGN’, (0,0), (-1,-1), ’CENTER’)

1762 ]))

1763 story_pressure_deflection.append(table_pressure_deflection)

1764 story_pressure_deflection.append(Spacer(1, 20))

1765

1766 # Finalizing both PDFs

1767 doc_strain_stress.build(story_strain_stress)

1768 doc_pressure_deflection.build(story_pressure_deflection)

1769

1770 print(f"PDF with strain-stress plots created: {output_path_strain_stress}")

1771 print(f"PDF with pressure-deflection plots created: {output_path_pressure_deflection}")

1772

1773

1774

1775 def create_pdf_with_table_and_deflection_image(source_directory, output_directory, pressure_values,

von_mises_stresses, strains, magnification, save_with_scales):

1776 image_types = [’plux_image.jpg’, ’plux_stack.jpg’, ’plux_z.jpg’]
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1777 files = {image_type: [] for image_type in image_types}

1778

1779 for file_name in os.listdir(source_directory):

1780 for image_type in image_types:

1781 if file_name.endswith(image_type):

1782 files[image_type].append(os.path.join(source_directory, file_name))

1783

1784 for image_type, file_list in files.items():

1785 files[image_type] = sorted(file_list, key=lambda x: int(re.search(r’(\d+)’,

os.path.basename(x)).group(1)))

1786

1787 output_path = os.path.join(output_directory, "output.pdf")

1788 doc = SimpleDocTemplate(output_path, pagesize=letter, rightMargin=72, leftMargin=72, topMargin=18,

bottomMargin=9)

1789 story = []

1790 styles = getSampleStyleSheet()

1791

1792 logo_path = "H:\\01 Bulge Testing Versuche\\6mm_14mm\\logo.png"

1793 if os.path.exists(logo_path):

1794 logo = Image(logo_path, width=100, height=50)

1795 else:

1796 logo = Paragraph("<font color=’red’><b>Empa Thun</b></font>", styles[’Title’])

1797 title = Paragraph("<font size=12><b>Pressure and Deflection Report</b></font>", styles[’Title’])

1798 datum = datetime.datetime.now().strftime("%Y-%m-%d %H-%M")

1799

1800 header_data = [[logo, title, datum]]

1801 header_table = Table(header_data, colWidths=[108, 324, 108], rowHeights=60)

1802 header_table.setStyle(TableStyle([

1803 (’ALIGN’, (0, 0), (-1, -1), ’CENTER’),

1804 (’VALIGN’, (0, 0), (-1, -1), ’MIDDLE’),

1805 (’SPAN’, (1, 0), (1, 0))

1806 ]))

1807 story.append(header_table)

1808 story.append(Spacer(1, 20))

1809

1810 available_width = letter[0] - 60

1811 first_column_width = 70

1812 image_width = (available_width - first_column_width) / len(image_types) - (0.1 * inch)

1813 headers = [’P// ’] + [img_type.replace(’.jpg’, ’’).replace(’_’, ’ ’).title() for img_type in

image_types]

1814 table_data = [headers]

1815

1816 num_rows = max(len(files[image_type]) for image_type in image_types)

1817 for index in range(num_rows):

1818 if index < len(pressure_values):

1819 pressure = f"{pressure_values[index]:.3f} bar"

1820 stress = f"{von_mises_stresses[index]:.3f} MPa"

1821 strain = f"{strains[index] * 100:.3f} [%]"

1822 row = [Paragraph(f"{pressure}<br/>{stress}<br/>{strain}", styles[’Normal’])]

1823 for image_type in image_types:

1824 try:

1825 img_path = files[image_type][index]

1826 output_img_path = img_path.replace(’.jpg’, ’_with_scales.jpg’)

1827 if save_with_scales:

1828 if not os.path.exists(output_img_path):

1829 add_scales_to_image(img_path, magnification, output_img_path)

1830 else:

1831 output_img_path = img_path

1832 img = Image(output_img_path, width=image_width, height=image_width * 0.75)
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1833 img_name = Paragraph(f"<font size=9>{os.path.basename(output_img_path)}</font>",

styles["Normal"])

1834 row.append([img, img_name])

1835 except (IndexError, FileNotFoundError):

1836 row.append(’’)

1837 table_data.append(row)

1838

1839 table = Table(table_data, colWidths=[first_column_width] + [image_width] * len(image_types),

style=TableStyle([

1840 (’INNERGRID’, (0,0), (-1,-1), 0.25, colors.black),

1841 (’BOX’, (0,0), (-1,-1), 0.25, colors.black),

1842 (’VALIGN’, (0,0), (-1,-1), ’MIDDLE’),

1843 (’ALIGN’, (0,0), (-1,-1), ’CENTER’)

1844 ]))

1845 story.append(table)

1846 story.append(Spacer(1, 20))

1847

1848 plots_path = os.path.join(output_directory, "Plots")

1849 if os.path.exists(plots_path):

1850 for plot_file in os.listdir(plots_path):

1851 plot_full_path = os.path.join(plots_path, plot_file)

1852 if plot_full_path.endswith(’.jpg’):

1853 new_width, new_height = resize_image(plot_full_path, available_width, 270)

1854 plot_image = Image(plot_full_path, width=new_width, height=new_height)

1855 story.append(plot_image)

1856 story.append(Spacer(1, 12))

1857

1858 pressure_deflection_image_path = os.path.join(output_directory, "Pressure_vs_Deflection.png")

1859 if os.path.exists(pressure_deflection_image_path):

1860 new_width, new_height = resize_image(pressure_deflection_image_path, available_width, 270)

1861 deflection_image = Image(pressure_deflection_image_path, width=new_width, height=new_height)

1862 story.append(deflection_image)

1863

1864 story.append(Spacer(1, 20))

1865

1866 footer_data = [[logo, ’’, datum]]

1867 footer_table = Table(footer_data, colWidths=[108, 324, 108], rowHeights=60)

1868 footer_table.setStyle(TableStyle([

1869 (’ALIGN’, (0, 0), (-1, -1), ’CENTER’),

1870 (’VALIGN’, (0, 0), (-1, -1), ’MIDDLE’),

1871 (’SPAN’, (1, 0), (1, 0))

1872 ]))

1873 story.append(footer_table)

1874

1875 doc.build(story)

1876 print(f"PDF created with table and Deflection image: {output_path}")

1877

1878

1879 def create_pdf_with_processed_images_and_plots_with_strain_stress(source_directory, output_directory,

pressure_values, von_mises_stresses, strains, magnification, save_with_scales):

1880 image_types = [’plux_image.jpg’, ’processed_image.jpg’]

1881 files = {image_type: [] for image_type in image_types}

1882 processed_images_dir = os.path.join(output_directory, ’processed_images’)

1883 strain_stress_plots_dir = os.path.join(output_directory, ’Plots’, ’Succesive_Plots’)

1884 pressure_deflection_plots_dir = os.path.join(output_directory, ’Plots’, ’Succesive_Plots_p_vs_d’)

1885

1886 for file_name in os.listdir(source_directory):

1887 if file_name.endswith(’plux_image.jpg’):

1888 files[’plux_image.jpg’].append(os.path.join(source_directory, file_name))

1889
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1890 for file_name in os.listdir(processed_images_dir):

1891 if file_name.endswith(’.jpg’):

1892 files[’processed_image.jpg’].append(os.path.join(processed_images_dir, file_name))

1893

1894 for image_type, file_list in files.items():

1895 files[image_type] = sorted(file_list, key=lambda x: int(re.search(r’(\d+)’,

os.path.basename(x)).group(1)))

1896

1897 output_path = os.path.join(output_directory, "succesive_strain_stress_report.pdf")

1898 doc = SimpleDocTemplate(output_path, pagesize=letter, rightMargin=72, leftMargin=72, topMargin=18,

bottomMargin=18)

1899 story = []

1900 styles = getSampleStyleSheet()

1901

1902 logo_path = "H:\\01 Bulge Testing Versuche\\6mm_14mm\\logo.png"

1903 if os.path.exists(logo_path):

1904 logo = Image(logo_path, width=100, height=50)

1905 else:

1906 logo = Paragraph("<font color=’red’><b>Empa Thun</b></font>", styles[’Title’])

1907 title = Paragraph("<font size=12><b>Processed Images Report</b></font>", styles[’Title’])

1908 datum = datetime.datetime.now().strftime("%Y-%m-%d %H-%M")

1909

1910 header_data = [[logo, title, datum]]

1911 header_table = Table(header_data, colWidths=[108, 324, 108], rowHeights=60)

1912 header_table.setStyle(TableStyle([

1913 (’ALIGN’, (0, 0), (-1, -1), ’CENTER’),

1914 (’VALIGN’, (0, 0), (-1, -1), ’MIDDLE’),

1915 (’SPAN’, (1, 0), (1, 0))

1916 ]))

1917 story.append(header_table)

1918 story.append(Spacer(1, 20))

1919

1920 available_width = letter[0] - 60

1921 first_column_width = 70

1922 image_width = (available_width - first_column_width) / (len(image_types) + 1) - (0.1 * inch)

1923 headers = [’P// ’] + [img_type.replace(’.jpg’, ’’).replace(’_’, ’ ’).title() for img_type in

image_types] + [’Strain-Stress Curve’]

1924 table_data = [headers]

1925

1926 num_rows = max(len(files[image_type]) for image_type in image_types)

1927 for index in range(num_rows):

1928 if index < len(pressure_values):

1929 pressure = f"{pressure_values[index]:.2f} bar"

1930 stress = f"{von_mises_stresses[index]:.2f} MPa"

1931 strain = f"{strains[index] * 100:.2f} [%]"

1932 row = [Paragraph(f"{pressure}<br/>{stress}<br/>{strain}", styles[’Normal’])]

1933 for image_type in image_types:

1934 try:

1935 img_path = files[image_type][index]

1936 output_img_path = img_path.replace(’.jpg’, ’_with_scales.jpg’)

1937 if save_with_scales:

1938 if not os.path.exists(output_img_path):

1939 add_scales_to_image(img_path, magnification, output_img_path)

1940 else:

1941 output_img_path = img_path

1942 img = Image(output_img_path, width=image_width, height=image_width * 0.75)

1943 img_name = Paragraph(f"<font size=9>{os.path.basename(output_img_path)}</font>",

styles["Normal"])

1944 row.append([img, img_name])

1945 except (IndexError, FileNotFoundError):
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1946 row.append(’’)

1947 try:

1948 strain_stress_plot_path = os.path.join(strain_stress_plots_dir, f’strain_stress_{index +

1}.png’)

1949 strain_stress_img = Image(strain_stress_plot_path, width=image_width, height=image_width *

0.75)

1950 row.append(strain_stress_img)

1951 except (FileNotFoundError, IndexError):

1952 row.append(’’)

1953

1954 table_data.append(row)

1955

1956 table = Table(table_data, colWidths=[first_column_width] + [image_width] * (len(image_types) + 1),

style=TableStyle([

1957 (’INNERGRID’, (0,0), (-1,-1), 0.25, colors.black),

1958 (’BOX’, (0,0), (-1,-1), 0.25, colors.black),

1959 (’VALIGN’, (0,0), (-1,-1), ’MIDDLE’),

1960 (’ALIGN’, (0,0), (-1,-1), ’CENTER’)

1961 ]))

1962 story.append(table)

1963 story.append(Spacer(1, 20))

1964

1965 plots_path = os.path.join(output_directory, "Plots")

1966 if os.path.exists(plots_path):

1967 for plot_file in os.listdir(plots_path):

1968 plot_full_path = os.path.join(plots_path, plot_file)

1969 if plot_full_path.endswith(’.jpg’):

1970 new_width, new_height = resize_image(plot_full_path, available_width, 270)

1971 plot_image = Image(plot_full_path, width=new_width, height=new_height)

1972 story.append(plot_image)

1973 story.append(Spacer(1, 12))

1974

1975 pressure_deflection_image_path = os.path.join(output_directory, "Pressure_vs_Deflection.png")

1976 if os.path.exists(pressure_deflection_image_path):

1977 new_width, new_height = resize_image(pressure_deflection_image_path, available_width, 270)

1978 deflection_image = Image(pressure_deflection_image_path, width=new_width, height=new_height)

1979 story.append(deflection_image)

1980

1981 story.append(Spacer(1, 20))

1982

1983 footer_data = [[logo, ’’, datum]]

1984 footer_table = Table(footer_data, colWidths=[108, 324, 108], rowHeights=60)

1985 footer_table.setStyle(TableStyle([

1986 (’ALIGN’, (0, 0), (-1, -1), ’CENTER’),

1987 (’VALIGN’, (0, 0), (-1, -1), ’MIDDLE’),

1988 (’SPAN’, (1, 0), (1, 0))

1989 ]))

1990 story.append(footer_table)

1991

1992 doc.build(story)

1993 print(f"PDF created with processed images, plots, and strain-stress curves: {output_path}")

1994

1995 # Create second PDF with processed images and pressure-deflection plots

1996 output_path_deflection = os.path.join(output_directory, "processed_and_pressure_deflection_report.pdf")

1997 doc_deflection = SimpleDocTemplate(output_path_deflection, pagesize=letter, rightMargin=72,

leftMargin=72, topMargin=18, bottomMargin=18)

1998 story_deflection = []

1999

2000 title_deflection = Paragraph("<font size=12><b>Processed Images and Pressure-Deflection Plots

Report</b></font>", styles[’Title’])
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2001 header_data_deflection = [[logo, title_deflection, datum]]

2002 header_table_deflection = Table(header_data_deflection, colWidths=[108, 324, 108], rowHeights=60)

2003 header_table_deflection.setStyle(TableStyle([

2004 (’ALIGN’, (0, 0), (-1, -1), ’CENTER’),

2005 (’VALIGN’, (0, 0), (-1, -1), ’MIDDLE’),

2006 (’SPAN’, (1, 0), (1, 0))

2007 ]))

2008 story_deflection.append(header_table_deflection)

2009 story_deflection.append(Spacer(1, 20))

2010

2011 headers_deflection = [’P//’, ’Processed Image’, ’Pressure-Deflection Curve’]

2012 table_data_deflection = [headers_deflection]

2013

2014 for index in range(num_rows):

2015 if index < len(pressure_values):

2016 pressure = f"{pressure_values[index]:.2f} bar"

2017 stress = f"{von_mises_stresses[index]:.2f} MPa"

2018 strain = f"{strains[index] * 100:.2f} [%]"

2019 row = [Paragraph(f"{pressure}<br/>{stress}<br/>{strain}", styles[’Normal’])]

2020

2021 try:

2022 img_path = files[’processed_image.jpg’][index]

2023 img = Image(img_path, width=image_width, height=image_width * 0.75)

2024 img_name = Paragraph(f"<font size=9>{os.path.basename(img_path)}</font>", styles["Normal"])

2025 row.append([img, img_name])

2026 except (IndexError, FileNotFoundError):

2027 row.append(’’)

2028

2029 try:

2030 pressure_deflection_plot_path = os.path.join(pressure_deflection_plots_dir,

f’pressure_deflection_{index + 1}.png’)

2031 pressure_deflection_img = Image(pressure_deflection_plot_path, width=image_width,

height=image_width * 0.75)

2032 row.append(pressure_deflection_img)

2033 except (FileNotFoundError, IndexError):

2034 row.append(’’)

2035

2036 table_data_deflection.append(row)

2037

2038 table_deflection = Table(table_data_deflection, colWidths=[first_column_width] + [image_width] * 2,

style=TableStyle([

2039 (’INNERGRID’, (0,0), (-1,-1), 0.25, colors.black),

2040 (’BOX’, (0,0), (-1,-1), 0.25, colors.black),

2041 (’VALIGN’, (0,0), (-1,-1), ’MIDDLE’),

2042 (’ALIGN’, (0,0), (-1,-1), ’CENTER’)

2043 ]))

2044 story_deflection.append(table_deflection)

2045 story_deflection.append(Spacer(1, 20))

2046

2047 footer_data_deflection = [[logo, ’’, datum]]

2048 footer_table_deflection = Table(footer_data_deflection, colWidths=[108, 324, 108], rowHeights=60)

2049 footer_table_deflection.setStyle(TableStyle([

2050 (’ALIGN’, (0, 0), (-1, -1), ’CENTER’),

2051 (’VALIGN’, (0, 0), (-1, -1), ’MIDDLE’),

2052 (’SPAN’, (1, 0), (1, 0))

2053 ]))

2054 story_deflection.append(footer_table_deflection)

2055

2056 doc_deflection.build(story_deflection)

2057 print(f"PDF created with processed images and pressure-deflection plots: {output_path_deflection}")
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2058

2059

2060

2061

2062 def resize_image(image_path, max_width, max_height):

2063 img = cv2.imread(image_path)

2064 original_width, original_height = img.shape[1], img.shape[0]

2065 ratio = min(max_width / original_width, max_height / original_height)

2066 new_width = int(original_width * ratio)

2067 new_height = int(original_height * ratio)

2068 return new_width, new_height

2069

2070 def find_nearest_time(df, target_time):

2071 idx = (np.abs(df[’Time’] - target_time)).idxmin()

2072 return df.loc[idx, ’Time’]

2073

2074 def plot_pressure_and_statistics(file_path, save_path, start_time=60, interval=180):

2075 plots_directory = os.path.join(save_path, ’Pressure_Handling’)

2076 if not os.path.exists(plots_directory):

2077 os.makedirs(plots_directory)

2078

2079 df = pd.read_csv(file_path, skiprows=2, header=None, names=[’Time’, ’Set pressure’, ’Get pressure’])

2080 df[’Difference’] = df[’Set pressure’] - df[’Get pressure’]

2081 mean_diff = df[’Difference’].mean()

2082 std_diff = df[’Difference’].std()

2083 max_diff = df[’Difference’].max()

2084 min_diff = df[’Difference’].min()

2085

2086 stats_text = (

2087 f"Mean difference: {mean_diff:.6f}\n"

2088 f"Standard deviation: {std_diff:.6f}\n"

2089 f"Maximum difference: {max_diff}\n"

2090 f"Minimum difference: {min_diff}"

2091 )

2092

2093 print("Statistics for the difference between Set pressure and Get pressure:")

2094 print(stats_text)

2095

2096 plt.figure(figsize=(12, 6))

2097 plt.plot(df[’Time’], df[’Set pressure’], label=’Soll Druck (Set pressure)’, color=’blue’, linestyle=’-’)

2098 plt.plot(df[’Time’], df[’Get pressure’], label=’Ist Druck (Get pressure)’, color=’orange’,

linestyle=’--’)

2099 plt.xlabel(’Zeit (Time) in s’)

2100 plt.ylabel(’Druck (Pressure) in bar’)

2101 plt.title(’Soll und Ist Druck ber Zeit’)

2102 plt.legend()

2103 plt.grid(False)

2104 plt.text(0.98, 0.02, stats_text, transform=plt.gca().transAxes, fontsize=10, verticalalignment=’bottom’,

horizontalalignment=’right’)

2105 plt.savefig(os.path.join(plots_directory, ’Soll_Ist_Druck_ueber_Zeit.png’))

2106 plt.show()

2107

2108 df_short = df[df[’Time’] <= 7200]

2109

2110 plt.figure(figsize=(12, 6))

2111 plt.plot(df_short[’Time’], df_short[’Set pressure’], label=’Soll Druck (Set pressure)’, color=’blue’,

linestyle=’-’)

2112 plt.plot(df_short[’Time’], df_short[’Get pressure’], label=’Ist Druck (Get pressure)’, color=’orange’,

linestyle=’--’)

2113 plt.xlabel(’Zeit (Time) in s’)
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2114 plt.ylabel(’Druck (Pressure) in bar’)

2115 plt.title(’Soll und Ist Druck ber Zeit (bis 7200 s)’)

2116 plt.legend()

2117 plt.grid(False)

2118 plt.text(0.98, 0.02, stats_text, transform=plt.gca().transAxes, fontsize=10, verticalalignment=’bottom’,

horizontalalignment=’right’)

2119 plt.grid(False)

2120 plt.savefig(os.path.join(plots_directory, ’Soll_Ist_Druck_ueber_Zeit_bis_7200s.png’))

2121 plt.show()

2122

2123 plt.figure(figsize=(12, 6))

2124 plt.plot(df[’Time’], df[’Difference’], label=’Difference (Set - Get)’, color=’green’, linestyle=’-’)

2125 plt.axhline(0, color=’black’, linewidth=0.5)

2126 plt.xlabel(’Zeit (Time) in s’)

2127 plt.ylabel(’Differenz (Difference) in bar’)

2128 plt.title(’Unterschied zwischen Soll und Ist Druck ber Zeit’)

2129 plt.legend()

2130 plt.grid(False)

2131 plt.text(0.98, 0.02, stats_text, transform=plt.gca().transAxes, fontsize=10, verticalalignment=’bottom’,

horizontalalignment=’right’)

2132 plt.savefig(os.path.join(plots_directory, ’Unterschied_Soll_Ist_Druck_ueber_Zeit.png’))

2133 plt.show()

2134

2135 time_points = np.arange(start_time, df[’Time’].max(), interval)

2136 nearest_times = [find_nearest_time(df, t) for t in time_points]

2137 bar_values_time = df[df[’Time’].isin(nearest_times)][[’Time’, ’Get pressure’]]

2138 bar_values_time.to_csv(os.path.join(plots_directory, ’bar_values_time.csv’), index=False)

2139 print(f"Extracted values with time saved to {save_path}/bar_values_time.csv")

2140

2141 bar_values = bar_values_time[[’Get pressure’]]

2142 bar_values.to_csv(os.path.join(plots_directory, ’bar_values.csv’), header=False, index=False)

2143 print(f"Extracted values saved to {save_path}/bar_values.csv")

2144

2145 extended_values_time = []

2146 for t in time_points:

2147 nearest_time = find_nearest_time(df, t)

2148 avg_pressure = df[(df[’Time’] >= nearest_time) & (df[’Time’] < nearest_time + 5)][’Get

pressure’].mean()

2149 extended_values_time.append({’Time’: nearest_time, ’Avg Get pressure’: avg_pressure})

2150 extended_df_time = pd.DataFrame(extended_values_time)

2151 extended_df_time.to_csv(os.path.join(plots_directory, ’bar_values_extended_time.csv’), index=False)

2152 print(f"Extended values with time saved to {save_path}/bar_values_extended_time.csv")

2153

2154 extended_values = extended_df_time[[’Avg Get pressure’]]

2155 extended_values.to_csv(os.path.join(plots_directory, ’bar_values_extended.csv’), header=False,

index=False)

2156 print(f"Extended values saved to {save_path}/bar_values_extended.csv")

2157

2158

2159 def create_video_with_combined_plots(image_directory, analysis_directory, output_directory,

pressure_values, von_mises_stresses, strains, fps=1):

2160 combined_images_dir = os.path.join(output_directory, ’combined_images’)

2161 os.makedirs(combined_images_dir, exist_ok=True)

2162

2163 original_files = sorted([f for f in os.listdir(image_directory) if f.endswith(’plux_image.jpg’)])

2164 combined_images = []

2165

2166 for idx, original_file in enumerate(original_files):

2167 img_path = os.path.join(image_directory, original_file)

2168 if idx < len(pressure_values):

100 C. Bulge Test Program: Python-Script



2169 img = cv2.imread(img_path)

2170 if img is None:

2171 continue

2172

2173 # Add overlay text

2174 font = cv2.FONT_HERSHEY_SIMPLEX

2175 bar_text = f"{pressure_values[idx]:.5f} bar"

2176 stress_text = f"{von_mises_stresses[idx]:.2f} MPa"

2177 strain_text = f"{strains[idx] * 100:.2f} [%]"

2178 overlay_text = f"{bar_text} | {stress_text} | {strain_text}"

2179 cv2.putText(img, overlay_text, (50, 50), font, 1, (255, 255, 255), 2, cv2.LINE_AA)

2180

2181 # Read corresponding strain-stress image

2182 strain_stress_path = os.path.join(analysis_directory, ’Plots’, ’Succesive_Plots’,

f’strain_stress_{idx + 1}.png’)

2183 if not os.path.exists(strain_stress_path):

2184 continue

2185 strain_stress_img = cv2.imread(strain_stress_path)

2186 if strain_stress_img is None:

2187 continue

2188

2189 # Read corresponding pressure-deflection image

2190 pressure_deflection_path = os.path.join(analysis_directory, ’Plots’, ’Succesive_Plots_p_vs_d’,

f’pressure_deflection_{idx + 1}.png’)

2191 if not os.path.exists(pressure_deflection_path):

2192 continue

2193 pressure_deflection_img = cv2.imread(pressure_deflection_path)

2194 if pressure_deflection_img is None:

2195 continue

2196

2197 # Resize images while maintaining aspect ratio

2198 height, width, _ = img.shape

2199 strain_stress_img = cv2.resize(strain_stress_img, (int(strain_stress_img.shape[1] * height /

strain_stress_img.shape[0]), height))

2200 pressure_deflection_img = cv2.resize(pressure_deflection_img,

(int(pressure_deflection_img.shape[1] * height / pressure_deflection_img.shape[0]), height))

2201

2202 # Layout: Pressure-Deflection on Left, Plux Image in the Middle, Strain-Stress on Right

2203 total_width = pressure_deflection_img.shape[1] + width + strain_stress_img.shape[1]

2204 canvas = np.ones((height, total_width, 3), dtype=np.uint8) * 255

2205

2206 # Place images on the canvas

2207 canvas[:, :pressure_deflection_img.shape[1], :] = pressure_deflection_img

2208 canvas[:, pressure_deflection_img.shape[1]:pressure_deflection_img.shape[1] + width, :] = img

2209 canvas[:, pressure_deflection_img.shape[1] + width:, :] = strain_stress_img

2210

2211 combined_img_path = os.path.join(combined_images_dir, f"combined_{idx + 1}.jpg")

2212 cv2.imwrite(combined_img_path, canvas)

2213 combined_images.append(combined_img_path)

2214

2215 print(f"Processed combined image {idx + 1} with overlay: {overlay_text}")

2216

2217 if not combined_images:

2218 shutil.rmtree(combined_images_dir)

2219 print("No valid combined images were created.")

2220 return

2221

2222 print(f"Combined images saved at: {combined_images_dir}")

2223

2224 # Create a video from the combined images
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2225 video_output_path = os.path.join(output_directory, ’output_video_combined.mp4’)

2226 clip = ImageSequenceClip(combined_images, fps=fps)

2227 clip.write_videofile(video_output_path, codec=’libx264’)

2228

2229 print(f"Video created at {video_output_path}")

2230

2231

2232 def create_video_with_bar_overlay(image_directory, output_video_path, pressure_values, von_mises_stresses,

strains, fps=1):

2233 temp_dir = os.path.join(image_directory, ’temp_images’)

2234 os.makedirs(temp_dir, exist_ok=True)

2235

2236 original_files = sorted([f for f in os.listdir(image_directory) if f.endswith(’plux_image.jpg’)])

2237 renamed_files = []

2238 for idx, original_file in enumerate(original_files):

2239 new_filename = f"{idx + 1}_image.jpg"

2240 src_path = os.path.join(image_directory, original_file)

2241 dst_path = os.path.join(temp_dir, new_filename)

2242 shutil.copy(src_path, dst_path)

2243 renamed_files.append(dst_path)

2244

2245 print("Total images found:", len(original_files))

2246 print("Total renamed files:", len(renamed_files))

2247 print("Total pressure values:", len(pressure_values))

2248

2249 clips = []

2250 for idx, img_path in enumerate(renamed_files):

2251 if idx < len(pressure_values):

2252 img = cv2.imread(img_path)

2253 if img is None:

2254 print(f"Failed to read image: {img_path}")

2255 continue

2256 font = cv2.FONT_HERSHEY_SIMPLEX

2257 bar_text = f"{pressure_values[idx]:.5f} bar"

2258 stress_text = f"{von_mises_stresses[idx]:.2f} MPa"

2259 strain_text = f"{strains[idx] * 100:.2f} [%]"

2260 overlay_text = f"{bar_text} | {stress_text} | {strain_text}"

2261 cv2.putText(img, overlay_text, (50, 50), font, 1, (255, 255, 255), 2, cv2.LINE_AA)

2262 cv2.imwrite(img_path, img)

2263 clips.append(img_path)

2264 print(f"Processed image {idx+1} with overlay: {overlay_text}")

2265

2266 if not clips:

2267 print("No valid clips were created.")

2268 return

2269

2270 clip = ImageSequenceClip(clips, fps=fps)

2271 clip.write_videofile(output_video_path, codec=’libx264’)

2272 shutil.rmtree(temp_dir)

2273 print(f"Video created at {output_video_path}")

2274

2275

2276

2277 def extract_bar_values_from_filenames(source_directory):

2278 bar_values = []

2279 regex = re.compile(r’(\d+)_([\d.]+)mbar\.plux$’)

2280

2281 for file_name in os.listdir(source_directory):

2282 match = regex.search(file_name)

2283 if match:
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2284 bar_value = float(match.group(2)) / 1000 # Convert mbar to bar

2285 bar_values.append(bar_value)

2286

2287 bar_values = sorted(bar_values)

2288 return bar_values

2289

2290

2291 def main():

2292 source_directory = input("Please enter the path to the source directory: ")

2293 automatic_mode = input("Was the measurement done automatically? (y/n): ").lower() == ’y’

2294 radius_of_window = int(input("Please enter the radius of window in m: "))

2295 thickness = float(input("Please enter the thickness (t) in micrometers: "))

2296 nu = float(input("Please enter Poisson’s ratio (): "))

2297 magnification = int(input("Please enter the magnification (10, 20, 50, 150): "))

2298 save_with_scales = input("Do you want to save images with scales? (y/n): ").lower() == ’y’

2299

2300 nullpunkt = None

2301 if automatic_mode:

2302 set_nullpunkt = input("Do you want to set the NULLPUNKT? (y/n): ")

2303 if set_nullpunkt.lower() == ’y’:

2304 nullpunkt = float(input("Please enter the NULLPUNKT value in mm: ")) * 1000

2305

2306 create_video = input("Do you want to create a video from the images? (y/n): ").lower() == ’y’

2307 if create_video:

2308 fps = int(input("Please enter the desired FPS for the video: "))

2309

2310 do_crack_analysis = input("Do you want to do a crack analysis? (y/n): ").lower() == ’y’

2311

2312 max_bar_value_elastic = float(input("Please enter the maximum bar value for the elastic regime: "))

2313

2314 current_time = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M")

2315 output_directory = os.path.join(source_directory, f’analysis_{current_time}’)

2316 os.makedirs(output_directory, exist_ok=True)

2317

2318 max_values_csv = os.path.join(source_directory, ’addmax.csv’)

2319

2320 z_values_original, missing_indices = extract_and_save_z_values(source_directory, automatic_mode)

2321

2322 if nullpunkt is not None:

2323 z_values_original.insert(0, nullpunkt)

2324 missing_indices = [i + 1 for i in missing_indices]

2325 print(f"Missing indices are {missing_indices}")

2326

2327 csv_file_path = None

2328 for file_name in os.listdir(source_directory):

2329 if file_name.endswith(’.csv’):

2330 with open(os.path.join(source_directory, file_name), ’r’) as file:

2331 first_line = file.readline().strip()

2332 if first_line.startswith(’Bulge’):

2333 csv_file_path = os.path.join(source_directory, file_name)

2334 break

2335

2336 use_txt_data = False

2337

2338 if csv_file_path:

2339 start_time = int(input("Please enter the start time for pressure intervals in seconds: "))

2340 interval = int(input("Please enter the interval for pressure extraction in seconds: "))

2341

2342 plot_pressure_and_statistics(csv_file_path, output_directory, start_time, interval)

2343 bar_values_path = os.path.join(os.path.join(output_directory, ’Pressure_Handling’), ’bar_values.csv’)
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2344 bar_values = pd.read_csv(bar_values_path, header=None).squeeze().tolist()

2345 if nullpunkt is not None:

2346 bar_values.insert(0, 0)

2347

2348 use_txt_data = input("Do you want to use the set bar values from the fix-ramp-TXT file even though

the CSV file exists? (y/n): ").lower() == ’y’

2349

2350 if use_txt_data and automatic_mode or ((not csv_file_path) and automatic_mode):

2351 text_file_path = None

2352 for file_name in os.listdir(source_directory):

2353 if file_name.endswith(’.txt’):

2354 with open(os.path.join(source_directory, file_name), ’r’) as file:

2355 first_line = file.readline().strip()

2356 if first_line.startswith(’fix’):

2357 text_file_path = os.path.join(source_directory, file_name)

2358 break

2359

2360 if text_file_path:

2361 try:

2362 bar_values = parse_fix_entries(text_file_path)

2363 if nullpunkt is not None:

2364 bar_values.insert(0, 0)

2365 except FileNotFoundError:

2366 print("Data file not found. Please check the file path and try again.")

2367 return

2368

2369 pressure_handling_directory = os.path.join(output_directory, ’Pressure_Handling’)

2370 os.makedirs(pressure_handling_directory, exist_ok=True)

2371 bar_values_extracted = np.array(bar_values)

2372 df = pd.DataFrame(bar_values_extracted, columns=[’Avg Get pressure’])

2373 bar_values_path = os.path.join(pressure_handling_directory, ’bar_values_set.csv’)

2374 df.to_csv(bar_values_path, header=False, index=False)

2375 print(f"Extracted bar_values saved to {bar_values_path}")

2376 else:

2377 print("No suitable data file found. Please check the directory and try again.")

2378 return

2379 elif not automatic_mode:

2380 bar_values = extract_bar_values_from_filenames(source_directory)

2381 print("Extracted bar values:", bar_values) # Debug print

2382

2383 for index in sorted(missing_indices, reverse=True):

2384 del bar_values[index]

2385 #if index < len(bar_values):

2386 #del bar_values[index]

2387

2388 if max_bar_value_elastic is not None:

2389 for i, value in enumerate(bar_values):

2390 if value > max_bar_value_elastic:

2391 bar_values_elastic = bar_values[:i]

2392 break

2393 else:

2394 bar_values_elastic = bar_values # Ensure it is assigned even if all values are less than

max_bar_value_elastic

2395 else:

2396 bar_values_elastic = bar_values

2397

2398 if os.path.exists(max_values_csv):

2399 df_max_values = pd.read_csv(max_values_csv, delimiter=’;’)

2400 max_values = df_max_values[’Value 0’].fillna(0).tolist()

2401 if nullpunkt is not None and max_values:
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2402 max_values.insert(0, 0)

2403 max_values = (max_values + [0] * len(z_values_original))[:len(z_values_original)]

2404 z_values_modified = [z + m for z, m in zip(z_values_original, max_values)]

2405 pd.DataFrame(z_values_original, columns=[’Z Positions’]).to_csv(os.path.join(output_directory,

’z_positions.csv’), index=False)

2406 pd.DataFrame(z_values_modified, columns=[’Z Positions’]).to_csv(os.path.join(output_directory,

’z_positions_modified.csv’), index=False)

2407 else:

2408 z_values_modified = z_values_original.copy()

2409 pd.DataFrame(z_values_original, columns=[’Z Positions’]).to_csv(os.path.join(output_directory,

’z_positions.csv’), index=False)

2410

2411 if not bar_values:

2412 print("No bar values found. Exiting.")

2413 return

2414

2415

2416

2417 max_bar_value_analysis = input("Do you want to set a maximum bar value for the analysis of the

strain-stress-curve? (y/n): ").lower() == ’y’

2418 if max_bar_value_analysis:

2419 max_bar_value = float(input("Please enter the maximum bar value to include: "))

2420 bar_values_analysis = [value for value in bar_values if value <= max_bar_value]

2421 else:

2422 bar_values_analysis = bar_values

2423

2424 bar_values_extracted = np.array(bar_values)

2425 pressure_handling_directory = os.path.join(output_directory, ’Pressure_Handling’)

2426 os.makedirs(pressure_handling_directory, exist_ok=True) # Ensure the directory exists

2427 df = pd.DataFrame(bar_values_extracted, columns=[’Avg Get pressure’])

2428 bar_values_path = os.path.join(pressure_handling_directory, ’bar_values_missing_indices.csv’)

2429 df.to_csv(bar_values_path, header=False, index=False)

2430 print(f"Extracted bar_values saved to {bar_values_path}")

2431

2432 while True:

2433 sigma_0, E_modul_Nix = analyze_fitting(z_values_modified, bar_values_elastic, radius_of_window,

output_directory, thickness, nu, max_bar_value_elastic)

2434 analyze_dynamic_check(z_values_modified, bar_values_analysis, radius_of_window, output_directory,

thickness, E_modul_Nix, sigma_0, missing_indices)

2435

2436 # Ask user if they are happy with the fitting plot

2437 happy = input("Are you satisfied with the fitting plot? (y/n): ").lower()

2438 if happy == ’y’:

2439 break

2440 else:

2441 max_bar_value_elastic = float(input("Please enter a new maximum bar value for the elastic regime:

"))

2442 for i, value in enumerate(bar_values):

2443 if value > max_bar_value_elastic:

2444 bar_values_elastic = bar_values[:i]

2445 break

2446 else:

2447 bar_values_elastic = bar_values

2448

2449

2450 analyze_dynamic_with_uncertainties_and_sympy(z_values_modified, bar_values_analysis, radius_of_window,

output_directory, thickness, E_modul_Nix, sigma_0)

2451 von_mises_stresses_unfitted, strains_unfitted = analyze_dynamic(z_values_modified, bar_values_analysis,

radius_of_window, output_directory, thickness, E_modul_Nix, sigma_0, missing_indices)

2452
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2453 if nullpunkt is not None:

2454 create_pdf_with_table_and_strain_stress(source_directory, output_directory, bar_values_analysis[1:],

von_mises_stresses_unfitted[1:], strains_unfitted[1:], magnification, save_with_scales)

2455 create_pdf_with_table_and_deflection_image(source_directory, output_directory,

bar_values_analysis[1:], von_mises_stresses_unfitted[1:], strains_unfitted[1:], magnification,

save_with_scales)

2456 else:

2457 create_pdf_with_table_and_strain_stress(source_directory, output_directory, bar_values_analysis,

von_mises_stresses_unfitted, strains_unfitted, magnification, save_with_scales)

2458 create_pdf_with_table_and_deflection_image(source_directory, output_directory, bar_values_analysis,

von_mises_stresses_unfitted, strains_unfitted, magnification, save_with_scales)

2459

2460 if do_crack_analysis:

2461 processed_images_path = os.path.join(output_directory, ’processed_images’)

2462 if not os.path.exists(processed_images_path):

2463 process_images(source_directory, output_directory, von_mises_stresses_unfitted, magnification,

plot_fractions=True)

2464 if nullpunkt is not None:

2465 create_pdf_with_processed_images_and_plots(source_directory, output_directory,

bar_values_analysis[1:], von_mises_stresses_unfitted[1:], strains_unfitted[1:],

magnification, save_with_scales)

2466 create_pdf_with_processed_images_and_plots_with_strain_stress(source_directory, output_directory,

bar_values_analysis[1:], von_mises_stresses_unfitted[1:], strains_unfitted[1:],

magnification, save_with_scales)

2467 else:

2468 create_pdf_with_processed_images_and_plots(source_directory, output_directory,

bar_values_analysis, von_mises_stresses_unfitted, strains_unfitted, magnification,

save_with_scales)

2469 create_pdf_with_processed_images_and_plots_with_strain_stress(source_directory, output_directory,

bar_values_analysis, von_mises_stresses_unfitted, strains_unfitted, magnification,

save_with_scales)

2470

2471 if create_video:

2472 if nullpunkt is not None:

2473 create_video_with_bar_overlay(source_directory, os.path.join(output_directory,

’output_video.mp4’), bar_values_analysis[1:], von_mises_stresses_unfitted[1:],

strains_unfitted[1:], fps)

2474 create_video_with_combined_plots(source_directory, output_directory,

os.path.join(output_directory, ’output_video_strain_stress.mp4’), bar_values_analysis[1:],

von_mises_stresses_unfitted[1:], strains_unfitted[1:], fps)

2475 print("Video has been created.")

2476 else:

2477 create_video_with_bar_overlay(source_directory, os.path.join(output_directory,

’output_video.mp4’), bar_values_analysis, von_mises_stresses_unfitted, strains_unfitted, fps)

2478 create_video_with_combined_plots(source_directory, output_directory,

os.path.join(output_directory, ’output_video_strain_stress.mp4’), bar_values_analysis,

von_mises_stresses_unfitted, strains_unfitted, fps)

2479 print("Video has been created.")

2480

2481 if __name__ == "__main__":

2482 main()
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D Bulge Test Manual

The following manual serves as a practical guide, detailing the necessary equipment setup, system con-

figurations, and procedural steps for conducting a bulge test with accuracy and consistency.

This manual assumes familiarity with the Sensofar Confocal Microscope, as well as the theoretical

background provided in earlier sections of the thesis. For specific operational details, please refer to the

relevant chapters.
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       Bulge Test Manual   31.07.2024 v2 
       Mechanics of Materials and Nanostructures 

Preparation 

 

1. Start Sensofar 6.7: 

• Switch on the Sensofar device 
• Open Sensofar 6.7 
• Use the password: Adm1234 
• Set to 3D Automode (See Fig. 1) 

 
2. Install the Fit: Place the Aluminium-Plate covered 

with a 3D-printed template without the bulge setup 

 

 

 

OPTIONAL:  

• Open Configuration 
menu 

• Select Center Table 
XY Start (1) 

• After calibration, press 
Finish button (2) 

• Exit the Calibration 
screen (3) 

  

Figure 1: Setting Automode 

<-- 3. Exit Calibration  

1. Click on START -->           <-- 2. Click on 
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3. Create a Folder for Measurements: For example, name it 2024-07-18-150x 
(Date-Objective type) 

4. Insert Fix-Ramp.txt File in Folder: 

• Create the file manually or use the Python Script 
'fix_ramp_creator.py' This file defines the intervals for 
pressure build-up 

• Sum and record the duration of the Fix (hold phase) and 
Ramp (pressure increase phase). E.g., if Fix is 100 sec 
and Ramp is 20 sec, record 120 sec in the experiment 
protocol sheet 

• Note the number of hold phases in the experiment sheet. 
The number of hold phases (fix-phases) will be noted in 
the file-name if the 'fix_ramp_creator.py' was used 

 

 

 

 

5. Create a .csv File in the Folder:  

• Create a text file and rename it to .csv as needed, e.g., 
set_get_pressure_timeline.csv 

• The fix-ramp text file sets the target pressure. Due to possible deviations up to 0.02 
bar and overshooting, this file is needed to know the actual pressure during the 
measurement 
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6. Start Inficon Control Program:  

a. Select 'COM5' 

b. click on the 'Start' Icon  

c. Load the .txt –file (fix-ramp) 

d. Adjust the bar scale for desired experimental range by clicking on the upper value 
and modifying it 

e. Load the .csv file 

f. Set Settings to 10 bar if using a 0-10 bar sensor and save adjustment 

 

 

 

 

 

 

 

 

 

 

 

 

7. Turn On Compressor: Switch from OFF to AUTO (a) and open the valve (b) 

 

 

  

a  

b 

c  

d 

e

a 

b 

f  



 

 

 
4 

 

8. Set Exhaust and Frequency:  

a. Press Exhaust button 
b. Change Frequency from 10 to 0.1 
c. Wait briefly, then press Tare to Zero 
d. Ensure Exhaust button is off 
e. Set Frequency back to 10 

 
9. Place Sample on Bulge Setup:  

• Use a 20mm-diameter sample for the 14mm-
diameter bulge setup and a 13mm-diameter 
sample for the 6mm-diameter bulge setup) 

• Place the lid on without tightening screws 
(ensure screws are in place but not touching 
the objectives)  

 
 

10.  Focus Using 10x Objective:  

• Use the 'Move To' Function of Sensofar to move to center. Use the absolute 
coordinates by clicking on and unlock the fields     

• Input absolute x, y and z positions:  
o x: 1.4448 
o y: -10.7608 
o z: -1.000 

 
 

 

11. Focus and Record Zero Point: 

• Focus the sample and note z-value in the experiment sheet under "Zero Point" at "Lid 
unstressed 0 bar" 

• Save the image, e.g., 10x_unstressed_0bar.plux and afterwards export images.  
• If measurements with 50x or 150x are desired, move up in z-direction so that the 

longer 50x and 150x objectives can be selected without touching the lid 
• Refocus and save the image, e.g., 150x_unstressed_0bar.plux 

 
12. Tighten Screws on Bulge Setup: 

• Remove setup and tighten screws with a torque wrench: 8-10 Nm (preferably 10 Nm 
to prevent leaking, even though it induces additional stress to the sample) 

• Tighten screws alternately in a cross pattern for uniform tension 
 

13.  Replace Bulge Setup and Record Zero Point: 

• Place setup back and refocus 

• Note z-value in the experiment sheet under "Zero Point" at "Lid stressed 0 bar" 
• Optionally, save the image, e.g., 10x_stressed_0bar.plux 

a  

c  

d: after clicking on 

'Tare to Zero' turn off 

'Exhaust' 

e: finally set back to 10 

b: change to 0.1  
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14. Set Inflow Valve: 

• Ensure the inflow valve is 
open (See Fig. 5) 

• Set the bar to 0.01 bar in 
Inficon (See Fig. 6); for 0-1 
bar pressure sensor, set a 
lower pressure, e.g., 0.005 
bar 
 
 
 

15. Switch to Confocal Mode: 

a. Change from Bright Field Mode to Confocal Mode (See Fig. 7a) 
b. Ensure the circle is centered (See Fig. 7b) and record coordinates in the experiment 

sheet 

 

 

16. Focus and Record Zero Point at Pressure:  

• Refocus and note z-value in the experiment sheet under "Zero Point" at "Lid stressed 
[blank] bar" 

• Save the image, e.g., 10x_stressed_10mbar.plux 
 

b  

a  
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Measurement 
 

1. Switch from Automode to SMR Recipe: Select the desired SMR recipe and 
objective (See Fig. 8) 

 

a. Adjust Parameters if 
needed  

b. Make sure images are 
exported  

c. Save the settings  

 

 

 

 

2. Open and Define MMR: 

Open the MMR (Image left) and define it (Image right) 

           

Click here to open SMR (single measurement recipe) --> 

a 

c 

b 

Click here to open MMR (Multiple measurements recipe) --> 

<-- Open saved SMRs 

<-- Open saved MMRs 
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a. Enter x and y center values determined 
from the Confocal mode and recorded in 
the experiment sheet   

b. Enter the number of repetitions  

c. Set Repeatability to the sum of Fix and 
Ramp phases recorded in the experiment 
sheet  

d. Select the save location (the initially created 
folder) 

e. Change Base Name if whished 

f. Define the MMR 

 

 

 

 

 

3. Activate Automatic Mode in Inficon: Enable Automatic Mode (button lights up 
and manual pressure input field disappears) 

  

a b 

d 
e 

c 

f 
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4. Log Data and Run: 

Critical: The next two steps (a and b) must be carried out immediately one after 
the other, then click on Aquire (c) after 60 seconds 

a. Click 'Log Data'  

b. and 'Run' consecutively 

c. then after at least 30 seconds click 'Aquire' (during the first measurement, 
several windows will open, always click Accept). It is recommended to start 
after 60 seconds because of the before-mentioned problem with pressure 
overshooting. Record the time, the interval between 'Run' and 'Aquire' in 
the experiment sheet! 

Important: Do not open the .csv file (e.g., set_get_pressure_timeline.csv) 
while the measurement is running 

 

 

  

a --> 

b --> 

c --> 
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Post-Measurement 

1. Move .txt and .csv file to folder with all recordings: Copy both fix-ramp.txt and 

.csv files to the folder with all recordings (.plux files) 

2. Create Template to read out max-value: 

If the measurement was done with 150x, this step can be skipped, but if the user 
wants extra precision, it should be included. The deviation from the maximum value 
is under 600 nm (valid for a material with a stiffness of 2.7 GPa up to an applied 
pressure of 3.5 bar. For pressures smaller than 3.5 bar the deviation is even smaller, 
for pressure higher than 3.5 bar it is getting higher). 

Important Note: The z-value in the XML file is not the max-value. However, the null 
line within a .plux file can help identify the point with the maximum deflection. To get 
this point, a template needs to be created that reads out the max value and then 
applies this template to all recordings (all saved .plux files). Depending on the 
material, Sensofar may create artificial spikes (artifacts), which must first be removed 
to avoid getting an artificial max point. 

Instructions: 
1. Open any .plux recording: 

2. Optional: Despiking (if extra precision is desired): 

i. Go to Operators  

ii. Choose Modifier 'Smart'  then select 'Despiking' 

iii. Depending on Severity of Spiking choose either 'Soft', 'Medium' or 'Strong' 
and click 'Apply' 

 

i.  

ii.  

iii

.  
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3. Go to Dimensions, right-click on Point and choose 'Point Max' 

 

 

 

4. Save Template: 

5. Save the template as addmax.plut 

6. Run the template and in the Sample (Multiple) field  

i. choose the folder where all the recordings are saved 

ii. Click on 'Run' to execute the template over all files 

 

i.  

ii.  
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7. A CSV file with the max values will be stored in the folder. Rename this CSV file to 
addmax.csv. Do not choose another filename for this CSV file! 

Common Error: 

Sensofar can sometimes not handle both steps at once. If issues occur, first run a 
despiking template over all .plux files, and then create and run an addmax template 
on the now modified (despiked) .plux files. 

 

3. Transfer Data for Post-Processing: 

• Move the data to your personal laptop if the post-processing script cannot be run on 
the Sensofar room computer 

• Install Anaconda if not already installed 

• Open the Environment window and import bulge_testing_libraries.yaml located at 
G:\Limit\Alexander\01 Bulge Testing Versuche\Env_Libraries_Backup 

 

 

The .yaml-file contains all necessary libraries to execute the bulge-testing script in 
Spyder. 
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4. Run the Python Script:  

• Open Spyder and the script 'all_step_at_once_nix_modulus_vX_reportPlots_video.py'  
• Run the script and follow instructions with the experiment sheet on hand 
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