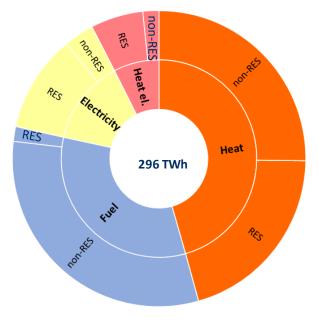


EXAMINATION OF THE SUITABILITY OF INDUSTRIES FOR THE INTEGRATION OF GEOTHERMAL ENERGY AND CASCADING UTILISATION OF HEAT USING THE EXAMPLE OF GMUNDEN

NEFI CONFERENCE 2024, VIENNA

24./25.10.2024


ANDREAS HAMMER, GEORG RIHA, JOHANNES RIEDL, EDITH HASLINGER, STEFAN STEIN, THOMAS KIENBERGER

NEFI is an Innovation Network funded by the Austrian Climate and Energy Fund.

INTRODUCTION AND CURRENT SITUATION

- Industrial energy: ~ 29 % of the final energy use
- Heat accounts for more than **50** % of final energy
- A successful transformation needs a focus on the heat sector
- low temperature heat <100 °C accounts for 64 % (space heating, water, low temperature processes in industry)
- geothermal energy is suitable for a lot a industrial processes
- kaskading energy use of excess heat is essential

CASCADE GEOTHERMALLY POWERED CASCADE HEATING AND COOLING

FOR INDUSTRIAL, COMMERCIAL AND HOUSING USE

Part of NEFI – New Energy for Industry Innovation Network

MAIN GOALS

- Evaluation of deep and near-surface geothermal resources in Steyr, Gmunden and St. Martin im Mühlkreis
- Decarbonisation of industry by cascading the use of geothermal energy and creating regional synergies
- Feasibility study and preparation for implementation of the heat supply for industry, as well as the heating networks of the two municipalities of Steyr and Gmunden

Key Facts Duration: 10/22 – 09/25 Project Volume: € 1,053,261

DAIRY OF GMUNDEN - GMUNDNER MOLKEREI

ABOUT THE COMPANY

- founded 1931
- 2022 Takeover by Milchwerk Jäger GmbH (Haag, Germany)
- Annual processing volume 2023: 291 Mio. litre of milk
- 380 employees
- Export share: 50 %
- · Energy carrier: natural gas, electricity

QUESTIONS

- Can geothermal energy supply the processes
- How much excess heat for cascading energy use is available

TYPES OF HEAT TREATMENT OF MILK

Type of heating up		Heat holding time	Temperature	Effect on germ killing	Pupose of use
Pasteurisation	Thermisation	15 – 30 s	57 – 68 °C	95 %	Cheesemaking
	Low temperature long time pasteurisation (LTLT)	up to 30 min	63 – 65 °C	99 %	Micro-entities
	High-temperature short-time processing (HTST)	15 – 30 s	72 – 75 °C	99 %	Freshmilk (up to 10 days chilled shelf life)
	Extended shelf-life (ESL) or ultra-pasteurised milk	Mostly in a flow process if temperature is reached	85 – 120 °C	99 %	ESL milk (up to 3 weeks chilled shelf life)
	Ultra-high-temperature processing	1 – 2 s	135 – 140 °C	up to 100 %	UHT milk (unchilled shelf life up to 3 months)
Sterilisation		5 – 15 min	120 – 135 °C	up to 100 %	Unchilled shelf life up to 1 year

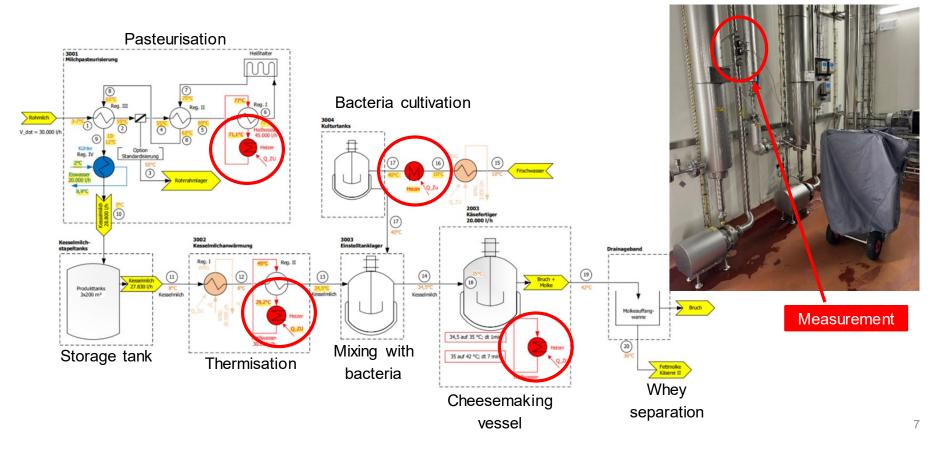
6

BOUNDARY CONDITIONS OF

BOUNDARY CONDITIONS OF GEOTHERMAL ENERGY IN GMUNDEN

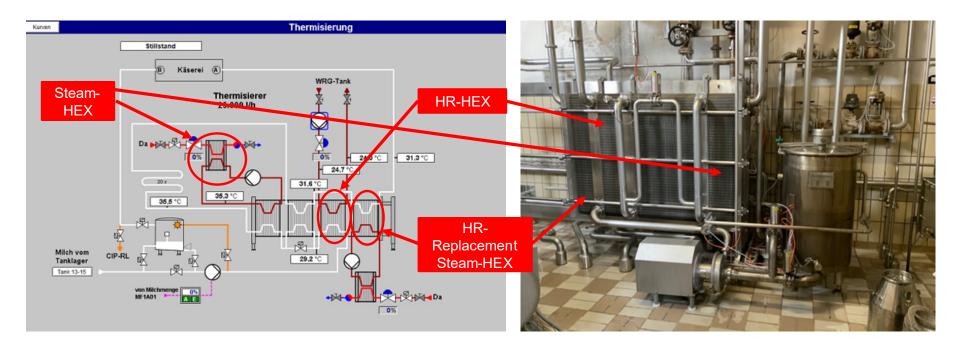
- depth of geothermal energy: ~ 4500 m
- Temperature at head of drilling probe: 110 °C
- max. temperature: 130 °C
- expected output: 19 MW

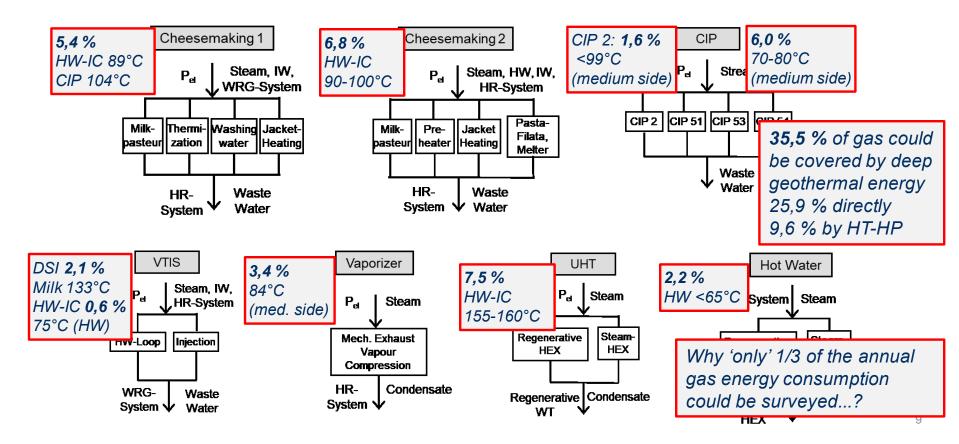
DATA COLLECTION


- Data analysis
- Volume flow measurement
- Temperature measurement
- Electrical power measurement
- Energy and mass balances
- Consideration of condensation in the flue gas
- Assumption of ideal compression

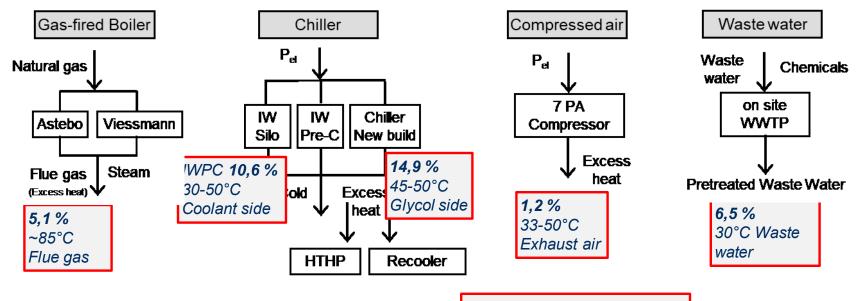
METHODOLOGY

BASIC FLOW CHART OF CHEESE PRODUCTION





VISUALISATION OF THERMIZATION


RESULTS: SUITABLE SYSTEMS FOR SUPPLY WITH GEOTHERMAL ENERGY

RESULTS: SOURCES OF EXCESS HEAT

38,3 % of total energy consumption was identified as excess heat

SUMMARY AND OUTLOOK

- 35,5 % of thermal Input (gas) could be covered by geothermal energy
- Theoretical potential of **excess heat: 38,2 %** of total energy input (gas and electricity)
- Limitations of the work: temperature difference, theoretical potential, ongoing modification works
- · Next step is to match the excess heat with the available heat sinks
- Discussion in which processes steam can be replaced by hot water

NEW ENERGY FOR INDUSTRY

THANK YOU!

NEFI is an Innovation Network funded by the Austrian Climate and Energy Fund