
Chair of Polymer Processing

Master's Thesis

Investigating Hydrogen Diffusion in
Filled Polymers with Simple Geometries:

An ABAQUS Simulation Study

Alexander Lukas Graf, BSc

May 2024

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich diese Arbeit selbstständig verfasst, andere als die angegebenen
Quellen und Hilfsmittel nicht benutzt, den Einsatz von generativen Methoden und Modellen der
künstlichen Intelligenz vollständig und wahrheitsgetreu ausgewiesen habe, und mich auch sonst
keiner unerlaubten Hilfsmittel bedient habe.

Ich erkläre, dass ich den Satzungsteil „Gute wissenschaftliche Praxis“ der Montanuniversität Leoben
gelesen, verstanden und befolgt habe.

Weiters erkläre ich, dass die elektronische und gedruckte Version der eingereichten
wissenschaftlichen Abschlussarbeit formal und inhaltlich identisch sind.

Datum 22.04.2024

Unterschrift Verfasser/in
Alexander Lukas Graf

Acknowledgements

I would like to use these lines to express my gratitude to all those who helped me complete
this work.

First of all, I would like to thank Assoc. Prof. Dr. Thomas Lucyshyn for supervising and
reviewing this thesis. I am very grateful to him for taking the time out of his busy schedule
to supervise this work.

I would also like to thank the PCCL for giving me the opportunity to write this thesis. I
sincerely appreciate the help of my supervisor, DI Dr. Johannes Macher, who always gave
me advice and support. I would also like to take this opportunity to thank DI Dr. Peter Fuchs,
MBA for his support.

I would also like to express my heartfelt gratitude to my mother Jutta, my brother Max, my
sister Katrin and my brother-in-law Stefan. They have always actively supported me and
made it possible for me to get this far on the path I have taken.

Last but not least, I would like to express my gratitude to my girlfriend Selina, who has
always been there for me and helped me to get back on my feet even in the most difficult
times.

The research work was performed within the COMET module “Polymers4Hydrogen” (project
no.: 872165) at the Polymer Competence Center Leoben GmbH (PCCL, Austria), within the
framework of the COMET program of the Federal Ministry for Transport, Innovation and
Technology and the Federal Ministry for Digital and Economic Affairs. The COMET module
is funded by the Austrian Government and the State Government of Styria.

Alexander Graf, B.Sc
May 2024

Abstract

This work was carried out in the context of the module "Polymers 4 Hydrogen" at the
Polymer Competence Center Leoben GmbH. The aim of this thesis was to create a Finite
Element Method (FEM) model for the simulation of hydrogen diffusion through particle
filled membranes with an interface zone around the filler particles. This FEM model was
based on an extended Nielsen model and was implemented in ABAQUS. At the end of this
thesis, a comparison was made between the interface model, a standard FEM model without
interface zone and the analytical solution of the extended Nielsen model.

For all simulations performed in this thesis, it was assumed that the polymer matrix is a
homogeneous material and the filler particles act as absolute barriers which were therefore
implemented as holes in the matrix. Each filler particle was modelled with a thin interface
around its boundary edges that separates the particle from the matrix. In this interface zone,
an orientation is applied to the mesh nodes that allows the diffusivity of the interface zone to
be changed depending on the direction of flow and the adhesion coefficient. The purpose of
this interface zone was to represent the true interfacial diffusion behavior between a filler
particle and the matrix material.

Several ways to implement such an interface zone in an FEM model were evaluated. In
the final version of the model, the interface zone was implemented at the mesh node level
through the use of ABAQUS subroutines. In these models, the filler particles were regularly
and periodically arranged in the membrane according to the assumptions of the Nielsen
model. The evaluation and comparison of the analytical model results with the results of
the FEM simulations with and without the interface zone showed that the FEM simulations
with an interface zone were in better agreement with the analytical data than the simulations
without the zone.

Kurzfassung

Diese Arbeit wurde im Rahmen des Moduls "Polymers 4 Hydrogen" am Polymer Competence
Center Leoben GmbH durchgeführt. Ziel dieser Arbeit war die Erstellung eines FEM-
Modells zur Simulation der Wasserstoffdiffusion durch partikelgefüllte Membranen mit einer
Interface-Zone um die Partikel. Dieses FEM-Modell basiert auf einem erweiterten Nielsen-
Modell und wurde in ABAQUS implementiert. Am Ende dieser Arbeit wurde ein Vergleich
zwischen dem Interface-Modell, einem Standard-FEM-Modell ohne Interface-Zone und der
analytischen Lösung des erweiterten Nielsen-Modells durchgeführt.

Für alle in dieser Arbeit durchgeführten Simulationen wurde angenommen, dass die Poly-
mermatrix ein homogenes Material ist und die Füllstoffpartikel als absolute Barrieren wirken,
welche daher als Löcher in der Matrix implementiert wurden. Jeder Füllstoffpartikel wurde an
seinen Rändern mit einer dünnen Interface-Zone modelliert, die das Partikel von der Matrix
trennt. In dieser Interface-Zone wird eine Materialorientierung auf die Netzknoten angewen-
det, die es ermöglicht, die Diffusivität der Interface-Zone in Abhängigkeit von der Flussrich-
tung und dem Adhäsionskoeffizienten zu bestimmen. Der Zweck dieser Interface-Zone ist es,
das tatsächliche Grenzflächendiffusionsverhalten zwischen einem Füllstoffpartikel und dem
Matrixmaterial darzustellen.

Es wurden mehrere Möglichkeiten zur Implementierung einer solchen Interface-Zone in
ein FEM-Modell untersucht. In der endgültigen Version des Modells wurde die Interface-
Zone auf der Netzknotenebene mit Hilfe von ABAQUS-Subroutinen implementiert. In
diesen Modellen wurden die Füllstoffpartikel nach den Annahmen des Nielsen-Modells
regelmäßig und periodisch in der Membran angeordnet. Die Auswertung und der Vergleich
der Ergebnisse des analytischen Modells mit den Ergebnissen der FEM-Simulationen mit
und ohne Interface-Zone zeigten, dass die FEM-Simulationen mit Interface-Zone besser mit
den analytischen Daten übereinstimmen als die Simulationen ohne Interface-Zone.

Table of contents

1 Introduction 1
1.1 Motivation . 1
1.2 State of the Art . 2
1.3 Contribution of this Work . 3

2 Theory 5
2.1 Permeation . 5
2.2 Sorption Models . 6
2.3 Basic Diffusion Models . 7

2.3.1 Analytical Solution of Fick’s Laws for Diffusion through a Membrane 8
2.4 Classification of Diffusion Modes for Polymers 10
2.5 Diffusion in Particle Filled Polymer Systems 11

2.5.1 Nielsen Model . 11
2.5.2 Extension of the Nielsen Model 14

2.6 Interface Layer . 17

3 Simulation 18
3.1 Interface Zone . 19
3.2 Fortran Subroutines . 22
3.3 Simulation Workflow . 27

3.3.1 Overview . 27
3.3.2 Creation of Input File . 29
3.3.3 ABAQUS Interface Simulation . 29
3.3.4 ABAQUS Standard Simulation . 30

4 Results 31
4.1 Raw Results - One Filler Particle . 31
4.2 Raw Results - Multiple Filler Particles . 33
4.3 Accumulated Permeate - One Filler Particle 35
4.4 Accumulated Permeate - Multiple Filler Particles 37

Table of contents

5 Conclusions 39

6 Outlook 41

7 References 42

8 List of figures 46

9 List of tables 48

10 List of symbols 49

Appendix A Codes 53
A.1 Fortran - ABAQUS Subroutines . 53

A.1.1 Subroutine ORIENT . 53
A.1.2 Subroutine UFIELD . 54
A.1.3 Subroutine USDFLD . 54

A.2 Python - ABAQUS Control Scripts and General Utility Scripts 55
A.2.1 ABAQUS Input File Creation . 55
A.2.2 ABAQUS Result Extraction . 65
A.2.3 ABAQUS Standard Simulation . 67
A.2.4 Postprocessing . 76

vii

Chapter 1

Introduction

1.1 Motivation

Applications in mobility and transport such as hydrogen powered vehicles make light-weight
tank solutions necessary, which consist partially or completely of fiber-reinforced polymers
[39]. Hydrogen, as a small molecule, easily permeates comparably dense materials. This
is even more the case if the molecular structure of the dense material is not latticed, as is
the case in polymers. Consequently, a polymer hydrogen tank will lose its content faster
than a hydrogen tank made from metal. Therefore a reinforcement is sought to increase the
diffusion barrier properties of polymers. [20]

While comparatively simple permeation models are sufficient to describe permeation in
homogeneous materials, complex material systems with e.g. voids, different crystal structures,
fillers, fibers, different layers, etc. are not fully understood yet and can for this reason only be
modeled with simplifications. Therefore, a simulation model which is specifically designed
for a more complex material system could help with predicting the diffusion processes around
fillers and fibers as barrier materials in polymeric membranes.

The objective of this work is to develop a new numerical model for the simulation of diffusion
through fiber-reinforced polymer composites using the Finite Element Method (FEM) solver
ABAQUS [42]. The model will be built from three different phases:

• The matrix, the homogeneous polymer volume of the membrane in which diffusion
occurs according to the Fickian laws and independently of direction.

1

1 Introduction

• The filler particles, which are embedded in the matrix and are assumed to have ideal
barrier properties. Consequently, no mass flow can occur into or out of the filler.

• The interface between the filler and the matrix. The dimension of this interface is one
less than that of the entire filler-matrix geometry. This filler-matrix-interface (FMI)
does not alter mass flow along its thickness, but the diffusion rate parallel to the outer
edge of the filler will be assumed to be dependent on the adhesion coefficient between
filler and matrix.

With this model, the barrier properties of the simulated composite can be correlated to the
mechanical adhesion between the fillers and the matrix. Therefore, this model should provide
a better understanding of diffusion processes in reinforced polymers.

1.2 State of the Art

The fundamentals of permeation and diffusion in polymers have been known for decades as
shown by Crank [3], Klopffer et al. [18] and Philibert [36]. The resulting analytical models
derived are still in use today and have benefited greatly from modern computing power
as shown by Macher et al. [25]. However, with the increasing use of reinforced polymer
composites in all areas of engineering, the need for a suitable simulation model for diffusion
and permeation has arisen especially in the fields of transportation and energy. For highly
simplified composite models, in which each phase is assumed to be homogeneous and all
phases are separated from each other, the established models are still usable, as shown by
Macher et al. [24] and Monsalve-Bravo et al. [29]. However, for more advanced and detailed
simulations of filler or fiber-reinforced composites, these models must be revised. This is
shown by Schultheiss [41] in his work where he used the analytical models based on Fick’s
laws and extended them so that they could better describe the properties of an interface
layer. He uses a custom made finite difference method (FDM) solver to simulate the barrier
properties of a three-phase fiber-reinforced polymer model.

Duncan et al. [5] give an overview about the basics of diffusion and permeation processes of
hydrogen in polymers and describe how to model these processes. They also roughly deal
with the topic of FEM simulation of diffusion processes. Furthermore, Alhijazi et al. [1]
wrote a review about the possibilities of FEM analysis for natural fiber composites.

There are a few papers in the literature that use ABAQUS to simulate hydrogen diffusion
through metals. Most of them use ABAQUS to simulate the mechanical weakening effects

2

1 Introduction

of hydrogen diffusion through metals. These works used the heat transfer / mass diffusion
analogy and included user-defined subroutines to couple the diffusion process with the
weakening of the material, e.g. [2, 4, 17, 31]. Olden et al. [32] simulated the diffusion of
hydrogen through duplex stainless steels. Their model was built on two different phases
(austenite and ferrite) and was used in three different setups: fine, coarse, and elongated
phases. In addition, the effects of strain and stress near an embedded flaw on the hydrogen
concentration were evaluated using a user-defined subroutine. Similarly, in the work of
Zhang et al. [47], the effects of tensile and compressive stresses on the diffusion of hydrogen
through steel pipes were simulated. A multi-phase ABAQUS simulation was performed by
Pu et al. [37], on the topic of stress-assisted diffusion process along grain boundaries and the
mechanical response of the grain boundary in a general polycrystalline material. Their model
consists of seven different crystalline zones and the grain boundary interfaces between them.

In most of the reviewed literature references, the FEM models for the simulation of diffusion
are built from only one phase and the composite behavior is added by using experimentally
determined parameters, e.g. [7, 8, 13, 19, 34]. In contrast, Gholami et al. [11] used ABAQUS
to simulate the hygrothermal degradation of the mechanical properties of fiber reinforced
composites by performing a micro-scale analysis on a two-phase model (matrix and fibers).
Li et al. [21] and Zhao et al. [48], simulated the diffusion of chloride ions through cement
and they used three-phase and five-phase models, respectively. Papathanasiou and Tsiantis
[35] dealt with the barrier properties of flake-filled polymers with a two-phase model in
OpenFOAM [33].

1.3 Contribution of this Work

The novelty of this work is based on the following points:

1. Few papers have been found in the literature that focus on the use of ABAQUS or other
commercial FEM solvers to simulate diffusion processes in reinforced polymers.

2. In almost all of the literature found, simplifications were made in the models used
in one way or another, e.g. [7, 8, 11, 13, 19, 34, 35]. Most of the simulation models
consist of only one material whose permeation parameters were determined in advance
in experiments. Some simulations use a material model with two phases but these
phases are depicted as homogeneous and separated from each other. These models are
described in more detail in Section 1.2. The simulation model proposed in this work
uses a three-phase model, which connects the matrix and the filler with the FMI.

3

1 Introduction

3. The proposed adhesion coefficient could allow more accurate modeling of complex
reinforced polymer components. A model with this coefficient was not found in any of
the literature reviewed. With this coefficient, it would be possible to translate the real
filler matrix adhesion into an FEM model for permeation simulation. This could lead
to a better understanding of the barrier properties of reinforced polymers.

4

Chapter 2

Theory

2.1 Permeation

Permeation is a process in which the equalization of concentration differences takes place
without external influences, resulting in an increase in entropy. This physical process arises
from the undirected random movements of particles as result of their thermal energy. If
there are different particle concentrations in an area, these random particle movements tend
to cause particles to move from higher concentrations to lower concentrations with higher
probability. This results in a macroscopic mass transport which leads to an equalization of
the particle concentrations.

Since all the simulations performed in this thesis are purely two-dimensional, the following
equations and coefficients are also assumed to be two-dimensional. The random movements
of the particles are mathematically represented by the diffusion coefficient D (m2 · s−1). This
coefficient comes from the Einstein-Smoluchowski relationship [6, 45] which links D with
the mobility of the particles µ (s ·kg−1):

D = µ · kb ·T (2.1)

where kb (J ·K−1) is the Boltzmann constant and T (K) the absolute temperature. Another
important factor is the solubility coefficient S (mol ·m−2 ·Pa−1) which establishes the rela-
tionship between the concentration C (mol ·m−2) and partial pressure p (Pa) of a gas in the
polymer membrane:

5

2 Theory

C = S(T, p) · p (2.2)

S can be dependent on T , p or both. If the diffusion coefficient D is multiplied with the
solubility coefficient S the permeation coefficient P (mol · s−1 ·Pa−1) is obtained:

P = D ·S (2.3)

This coefficient is the link between the kinetic and thermodynamic aspects of diffusion and
is a measure of how well a gas can permeate through a solid at a given pressure. [10, 18]

2.2 Sorption Models

In Table 2.1, five established sorption models are listed. The first three are explained in
detail below as they are relevant for the diffusion of gases through polymer membranes. The
last two models are mainly applied on the diffusion of vapors which tend to condense, and
therefore cause swelling in polymers, and are only listed for the sake of completeness.

Table 2.1 Different models of sorption and typical associated interactions. [18]

Sorption model Main component interactions
Henry polymer-polymer

Langmuir polymer-penetrant
Dual mode combination of Henry and Langmuir models

Flory-Huggins penetrant-penetrant
BET combination of Langmuir and Flory-Huggins models

• Henry’s law sorption: This is the simplest sorption case where the gas can be assumed
to be ideal and the relationship between the concentration and the pressure of the gas
can be described as linear. This model works best at low pressures where the polymer-
polymer interactions are stronger than the polymer-penetrant or penetrant-penetrant
interactions. The solubility coefficient S (Eq. 2.2) is constant for this model. Thereby,
the equation for Henry’s law can be written as followed: [18]

C = S · p (2.4)

• Langmuir mode sorption: In this sorption model, a linear relationship between pressure
and concentration in the membrane at low pressures is assumed. Above a certain

6

2 Theory

concentration, this sorption model depicts a saturation of the membrane. Once the
saturation is reached, the concentration in the membrane will stay constant, even if
the pressure is increased further. The saturation concentration of the membrane is
described by C′

H (mol ·m−2) and bH (Pa−1) describes the gradient of the linear segment
at the start of the model.

C =
C′

H ·bH · p
1+bH · p

= S(p) · p (2.5)

• Dual mode sorption: The dual mode model is a combination of Henry’s law model
and the Langmuir model. It was developed to describe the sorption of non-reactive
gases in glassy polymers. This model considers the presence of two different diffusing
molecule types: one trapped and one freely moving. [18]

In this work, the Henry’s law sorption model is applied, because it is assumed that the
simulations operate in a region in which a linear relationship between gas pressure and
concentration is valid. Furthermore, hydrogen can be assumed to behave ideally at such low
pressures and the membrane has no trapping sites.

2.3 Basic Diffusion Models

In 1855, Adolf Fick empirically derived the two basic laws of diffusion, the so-called Fick’s
laws. These were theoretically derived from thermodynamics, and thereby proven, by Albert
Einstein at the beginning of the 20th century. [6]

Fick’s first law describes the relationship between the diffusive flow density F (mol ·m−1 ·s−1)
and the gradient of the concentration ∇C (mol ·m−3). In this work, it is assumed that D is
independent of C and is therefore not derived. This assumption is reasoned in Section 2.4.
This results in the equation for Fick’s first law:

F =−D ·∇C (2.6)

Fick’s second law is described by a partial differential equation relating the change in
concentration over time ∂C

∂ t (mol ·m−2 · s−1) to the Laplace operator of the concentration C.
This results in the following formula for Fick’s second law:

∂C
∂ t

= D ·∆C (2.7)

7

2 Theory

2.3.1 Analytical Solution of Fick’s Laws for Diffusion through a Mem-
brane

This section gives a brief overview of the analytical simulation of diffusion. For a detailed
description of the mathematical derivation of the equation shown below, see Crank [3] or
Macher et al. [25].

At the start of the permeation process the initial state is in effect. There is no concentration
of the permeate in the membrane and the diffusion process is just beginning. As soon as
the diffusion process has started, it is in the transient state. Here the concentration of the
permeate in the membrane increases with time. The permeate is deposited in the membrane,
so to speak. The saturation of the increase in concentration of the permeate in the membrane
depends on the boundary conditions of the membrane. For example, if the membrane is
immersed in the medium. Then each side of the membrane would be exposed to the same
level of medium concentration Csub. In this case, saturation of the membrane is reached when
Csub is present at every point in the membrane. Another case would be that the membrane
acts as a barrier of some kind. Then on one side of the membrane the concentration of the
permeate would be high (Chigh) and on the other side of the membrane the concentration of
the permeate would be low (Clow). In this case, saturation of the membrane would be reached
when a linear gradient of concentration across the membrane is reached. When the membrane
has reached such a saturated state, the transient state is over and the steady state is reached.
At steady state, the rate of diffusion into the membrane is equal to the rate of diffusion out
of the membrane. Therefore, the concentration of the permeate in the membrane does not
change in this state. This means that reaching steady state does not mean that the membrane
is completely saturated, but that it has reached a saturation state according to the boundary
conditions. The initial and boundary conditions shown in Eq. 2.8 allow the evaluation by an
analytical method. Only if the concentration at the inlet and outlet surface remains constant,
an analytical calculation of the diffusion can be derived.

C(x, t = 0) = 0 for 0 < x < L

C(x = 0, t) =C1 for 0 < t < ∞

C(x = L, t) =C2 for 0 < t < ∞

(2.8)

If Eq. 2.7 is solved as a Sturm-Liouville problem with the initial and boundary conditions
shown in Eq. 2.8 by using eigenfunctions, the result for the concentration is

8

2 Theory

C(x, t) = (C2 −C1)
x
L
+C1

+
2
π
·

∞

∑
n=1

[(−1)n ·C2 −C1] · sin(nπ
x
L
) · e−

n2π2Dt
L2

(2.9)

In order to calculate the flow out of the membrane as a function of time, the analytical
solution of the concentration (Eq. 2.9) is substituted into Fick’s first law (Eq. 2.6) with
differentiation at x = L, so that the result is

F(t) = D · C1 −C2

L
+

2D
L

·
∞

∑
n=1

[(−1)n ·C1 −C2] · e−
n2π2Dt

L2 (2.10)

If Eq. 2.10 is integrated by t with limits 0 (s) and t (s), the following equation for the
cumulative flow density Q (mol ·m−1) out of the membrane for time t is obtained:

Q(t) = D · C1 −C2

L
· t − (C1 +2C2)L

6

− 2L
π2 ·

∞

∑
n=1

[(−1)n ·C1 −C2]

n2 · e−
n2π2Dt

L2
(2.11)

In general, it is advantageous for the application of an analytical solution in a numerical
calculation that its quantities are changed into a dimensionless form because this reduces
rounding errors and simplifies fitting algorithms, as the dimensionless equations are eas-
ily scalable. The following equations show an example of such a transformation for the
concentration C, the distance x and the time t.

Ĉ =
C
C1

, x̂ =
x
L
, t̂ =

D · t
L2 (2.12)

where C1 is the boundary condition of the concentration at the upstream face of the membrane
and L is the total thickness of the membrane. Ĉ, x̂ and τ are the respective dimensionless
variables.

9

2 Theory

2.4 Classification of Diffusion Modes for Polymers

Diffusion is a process at the molecular level and therefore both the type of diffusing gas
and the structure of the polymer membrane are crucial. As shown in Table 2.2, the glass
transition temperature Tg of the polymer membrane and the critical temperature Tc of the gas
are of crucial importance.

Table 2.2 General behavior observed for the transport of small molecules in polymers.[16, 26]

T value compared More condensable gases
to a characteristic Gases with T > Tc or vapors (T < Tc)

temperature of H2, He, O, N2 CO2, SO2,
the system NH3, hydrocarbons

Fickian diffusion Fickian diffusion
constant D D function of C: D(C)

T > Tg Henry’s mode sorption Single mode sorption
Rubbery polymers constant S increases slightly with T S decreases with T

P decreases slightly with pressure P increases with pressure
(hydrostatic pressure effect) (plasticization effect)

T < Tg Dual mode sorption S(p) Dual mode sorption S(p)
Glassy polymers Free volume diffusion Non-Fickian and

anomalous diffusion

Depending on the ambient temperature T , the following four cases can be distinguished
[18, 40]:

• T is higher than Tc and Tg: This case is most easily represented analytically or by
computer simulation. Diffusion proceeds strictly according to Fick and it is reasonable
to calculate with constants D, S and P values. Henry’s mode sorption applies, whereby
the pressure and concentration of the gas have a linear relationship at low gas pressures.
This model reaches its limits if the compressibility of the gas has a significant influence.

• T is lower than Tc and higher than Tg: This case can still be described by purely using
Fick’s equations. As a rule, S can still be assumed to be constant. On the other hand,
D shows a dependence on C, which means that P can also be assumed to be variable.

• T is higher than Tc and lower than Tg: In this case, Fick’s laws can no longer be applied;
instead, free volume diffusion methods are used. Furthermore, dual mode diffusion
can be assumed in this case. This means that there is a Henry diffusive flux and a
Langmuir diffusive flux. The resulting two diffusion coefficients can be combined

10

2 Theory

into a p-dependent diffusion coefficient. S is also p dependent, but S and D are not
interdependent. P can also be assumed to be variable.

• T is lower than Tc and Tg : As in the previous case, all three coefficients are variable.
However, this area is absolutely Non-Fickian and the methods of abnormal diffusion
are used.

As mentioned earlier in Section 2.2, Henrys’ law sorption and Fickian diffusion are assumed
for this work. Furthermore, this work focuses on the diffusion of hydrogen gas. Therefore,
of the four cases shown in Table 2.2, only the upper left is applicable to this work.

2.5 Diffusion in Particle Filled Polymer Systems

The focus of this work is on particle-filled polymer membranes. Therefore, this section
serves as a brief introduction to the theoretical models that have been formulated for this type
of multi-component material system. An overview of the structure of such a filler-polymer
system is given in Fig. 2.1. The particles shown in this figure are regularly and periodically
arranged as described by Nielsen in his work [30]. Furthermore, the distances between the
fillers and the rows of fillers are defined by s and d as described by Macher et. al. [24] in
their work, which serves as an extension of the model proposed by Nielsen. This extension
of the model also allows it to be implemented in numerical simulations. This in turn allows a
direct comparison between the analytical and numerical data obtained.

2.5.1 Nielsen Model

Fick’s First law (Eq. 2.6) is used to calculate the flow of the permeate. In this work, it is
assumed that the sorption behaves according to Henry’s law (Eq. 2.4). By combining these
two laws, the following equation is obtained:

F =−D ·S · d p
dx

(2.13)

with d p
dx (Pa ·m−1) as the pressure gradient along the thickness of the membrane. Furthermore,

since this work assumes steady-state behavior for all diffusion processes, the following
equation can be derived.

11

2 Theory

Fig. 2.1 Schematic drawing of a particle-filled polymer membrane, F represents the diffusion flow
density and the arrow indicates the direction, w (m) is the width of a filler particle perpendicular to
F and b (m) is the thickness of a filler particle parallel to F , s (m) is the slit shape which describes
the distance between two filler particles in a row and d (m) is the filler distance which describes the
distance from one row of filler particles to another. [24]

F =−D ·S · p1 − p2

L
(2.14)

Where p1 (Pa) and p2 (Pa) are the pressures on the side of the membrane with the high and
low concentration of the permeate, respectively, and L (m) is the thickness of the membrane
between these two sides. Nielsen described filler particles as impermeable barriers in the
membrane [30]. With this assumption, Eq. 2.15 describes the effective length Le f f (m)
that the permeate has to travel through the membrane. τ (-) is the tortuosity factor that
proportionally describes the longer tortuous path of the permeate due to the impermeable
filler particle assumption.

Le f f = τ ·L (2.15)

On average, a filler particle in the membrane can be expected to add w
2 to the length of Le f f

[30]. Each diffusing particle encounters on average a number of filler particles ⟨N⟩, which
is calculated as described in Eq. 2.16. b is the thickness of the filler particles as shown in
Fig. 2.1 and φ f is the volume fraction of the filler particles in the membrane.

⟨N⟩= L
b
·φ f (2.16)

12

2 Theory

With these two assumptions, the effective length of the path of the permeate can be calculated
as

Le f f = L · (1+ w
2b

·φ f) (2.17)

Where w is the width of the filler particle as shown in Fig. 2.1. By comparing Eq. 2.15 and
Eq. 2.17, the tortuosity factor of the filled membrane can be described as

τ = 1+
α

2
·φ f (2.18)

with α being the aspect ratio of the filler particles defined as w
b .

For convenience, it is suggested not to change the external measurable parameters such as L,
p1 or p2. Instead, an effective diffusion coefficient De f f can be defined according to Eq. 2.14
and Eq. 2.17:

De f f =
D0

1+ α

2 ·φ f
(2.19)

where D0 is the diffusion coefficient of an unfilled membrane.

Furthermore, since the filler particles are assumed to be impermeable, they reduce the
available volume for permeation. The effective solubility coefficient is calculated in Eq. 2.20,
in which S0 is the solubility coefficient of an unfilled membrane.

Se f f = S0 · (1−φ f) (2.20)

In essence, the Nielsen model can be written as the ratio of the effective flow Fe f f through a
filled membrane to the flow F0 through an unfilled membrane of the same external dimensions.
By combining this statement with Eqs. 2.14, 2.19 and 2.20, the following equation can be
derived.

Fe f f

F0
=

De f f ·Se f f

D0 ·S0
=

Pe f f

P0
=

1−φ f

1+ α

2 ·φ f
(2.21)

13

2 Theory

2.5.2 Extension of the Nielsen Model

As shown in Eq. 2.21, the Nielsen model depends on only two variables, α and φ f . As
mentioned above, this is not enough information about the particle filled membrane to model
a numerical simulation with it. An additional specification of the geometric dimensions
of the filled membrane is necessary to directly compare Nielsen’s model with the results
of a numerical simulation. As shown in Fig. 2.1, Macher’s extension of Nielsen’s model
introduces the slit shape s and the filler distance d. With these two additional variables, it is
possible to reproduce the same model in a numerical simulation. Furthermore, this figure
shows that there are channels with unobstructed flow paths between the filler particles, which
was also predicted by Nielsen in his work [30]. This means that the flow of the permeate
through the filled membrane consists of two partial flows. One is the unobstructed flow
through the channel and the other is the tortuous flow that is obstructed by parts of the fillers.
This configuration of the filled membrane can be reduced to a unit cell model shown in
Fig. 2.2. There is also a representation of the paths of the two types of flow through the filled
membrane. This approach is similar to the one used by Minelli et. al. [27] in their work.

(a) (b)

Fig. 2.2 Schematic representation of a unit cell in a filled membrane structured as described by Nielsen
[30]. The unit cell is enclosed by the dashed lines. (a) Dimensions of the components in the unit cell.
The blue area represents a channel with a width of wch (m) where the permeate is not hindered in its
flow. (b) The two accumulating flows through the unit cell are shown. Fch in blue is the unobstructed
flow as described in (a) and Ft in red is the tortuous flow around the filler particles. [24]

The area Au (m2) of such a unit cell can then be calculated as shown in Eq. 2.22. Furthermore,
the area A f (m2) of the filler particle in this unit cell is then defined according to Eq. 2.23.

Au =
w+ s

2
·d (2.22)

14

2 Theory

A f =
w ·b

2
(2.23)

Due to the two-dimensionality of this model, φ f (-) is reintroduced as the filler area fraction,
which can be calculated as

φ f =
A f

Au
=

w ·b
d · (w+ s)

(2.24)

By rearranging Eq. 2.24, the filler distance can then be calculated as

d =
w ·b

φ f · (w+ s)
(2.25)

As shown in Eq. 2.25, the filler distance depends on the slit shape s of the filled membrane.

To calculate s, it is necessary to determine the ratio between the flows through a filled and an
unfilled membrane. As shown in Fig. 2.2, the flow through the filled membrane consists of
the two flows Fch and Ft . Assuming that the channels in the filled membrane are constant
along the thickness of the membrane, the flow through them depends only on their width.
The width of these channels can be calculated as

wch =
s−w

2
(2.26)

If the width of the channels in the filled membrane is related to the width of the whole unit
cell, the channel flow ratio fch (-) can be calculated as the fraction of the flow through the
channel Fch and the flow through the unfilled membrane F0.

fch =
Fch

F0
=

s−w
w+ s

(2.27)

To calculate the tortuous flow Ft , it is necessary to calculate the effective length Lt (m) of this
flow through the unit cell as shown in Eq. 2.28. The solution of the integral in this equation
results in the average additional path length x (m) caused by the filler particle in the unit cell.

Lt = d +

∫︁ w
2

0 xdx
w
2

= d +
w
4

(2.28)

15

2 Theory

By combining Eq. 2.15 with Eq. 2.28, the following equation can be derived for the tortuosity
of the effective path length.

τt = 1+
w
4d

(2.29)

Before the tortuous ratio ft (-) of the flow through the filled membrane can be calculated,
another assumption must be made. As shown in Fig. 2.2, the tortuous flow is not calculated
per unit cell, but per two unit cells connected in the direction of flow. With this arrangement
of two unit cells it is possible to calculate the tortuous flow ratio with only one equation:

ft =
Ft

F0
=

1
2τ

· w
w+ s

(2.30)

Combining Eq. 2.30 with Eqs. 2.25 and 2.29 results in the final equation for the tortuous
ratio of flow through the filled membrane as

ft =
2w ·b

φ f · (w+ s)2 +4b · (w+ s)
(2.31)

The sum of fch and ft is equal to the relative flow through the filled membrane Fe f f
F0

and can
be substituted into Eq. 2.21. This results in

Fe f f

F0
=

1−φ f

1+ α

2 ·φ f
= fch + ft (2.32)

Substituting Eqs. 2.27 and 2.31 in Eq. 2.32 defines the following equation for the slit shape.

s = w ·

⎡⎣− 2α ·φ f +4
φ f ·α · (α +2)

+

√︂
α4 ·φ 2

f +6α3 ·φ f +12α2 +24α +16

φ f ·α · (α +2)

⎤⎦ (2.33)

With Eqs. 2.25 and 2.33 in place, the missing parameters s and d of the Nielsen model are
determined and the now extended model can be compared to numerical simulations. It is
important that one of the following two statements in Eq. 2.34 is true so that there is no
collision between filler particles.

16

2 Theory

s > w

or

d > b

(2.34)

2.6 Interface Layer

Every multi-component material contains interfacial layers formed by chemical and physical
processes. These processes include interdiffusion of atoms or molecules, immobilization,
crystallization of thermoplastics, and crosslinking. The interfacial layer is a thin transition
zone between the matrix and a filler, with a thickness in the nanometer range. The structural,
physical, chemical and mechanical properties of the interfacial layer may differ from those
of the matrix and filler, depending on the type of filler and matrix and the physical and
chemical processes involved. The existence of this interfacial layer has been proven by
Fourier transform infrared (FTIR) spectroscopy [12]. Each interfacial zone has different
properties due to the many influences acting on it. In general, the interface is considered the
weakest part of a multi-component material, but it also provides the opportunity to tailor the
material to provide the required properties [16].

Because of their variability, but also because of the numerous factors that influence their
properties, there have been many studies on interface layers. A lot of research has been done
on carbon fibers due to their popularity in the industry, (e.g. [9, 22, 23, 46, 49]). But there is
also literature for various other material combinations such as polymer-natural fiber, polymer
blends, nanocomposites, etc. [14, 28, 38, 43, 50].

17

Chapter 3

Simulation

For this work, several simulations were carried out for three different simulation models. The
specifyers of these models are:

• Membrane with a circular filler particle, shown in Fig. 3.1a

• Membrane with a rectangular filler particle, shown in Fig. 3.1b

• Membrane with multiple rectangular filler particles, shown in Fig. 3.1c

The first two models, each with just a single filler particle in the center, were primarily used
to enable the development of the interface zone simulation technique. This technique is
described in more detail in Section 3.1. These simple models were also used to gather data
for parameters such as interface zone thickness, interface zone mesh size, et cetera. These
parameters were necessary for the successful implementation of the interface zone in the
more complex third model. Several tests were carried out with this model using different
filler particle aspect ratios and filler particle area ratios. These were then compared with the
results of the same simulations without the interface zone and the results of the extended
Nielsen model, which was described in Section 2.5.2.

Each model in this work consists of a two-dimensional membrane containing one or more
two-dimensional filler particles. The filler particles are either circular or rectangular in
shape and have an interface zone and a mesh transition zone around them. A simplified
schematic of such a membrane with a rectangular filler particle in the center is shown in
Fig. 3.2. The purpose of the interface zone is to create a thin layer around the filler particle
that increases or decreases the diffusion rate of the membrane along the filler edge. Therefore,
the diffusion rate normal to the filler particle edge remains unchanged from the diffusion

18

3 Simulation

(a) (b)

(c)

Fig. 3.1 Geometries of membranes with a) a circular, b) a rectangular and c) multiple rectangular
filler particles. The inlets of these membranes are always at the top edge, the outlets are always at the
bottom edge, and the left and right edges of the membranes are connected by a periodic boundary
condition.

rate of the membrane and only along the edges of the filler a change is applied. The mesh
transition zone is only used to provide a more gradual transition of the mesh for a stable
mesh generation process.

3.1 Interface Zone

The core of this work is the implementation of the interface zone. Therefore, the process
leading to the final configuration of the interface zone is discussed in detail in this section.
As described in Section 2.6, a real membrane, reinforced with filler particles would show a
change in the properties of the membrane in the transition area from filler to membrane. This
effect occurs most strongly directly at the edge of the filler and bleeds into the membrane
material. Since the significant portion of the effect occurs directly at the filler edge, it was
initially decided to define the interface zone as a one-dimension lower element, in comparison
to the rest of the model. That is, if the geometry of the membrane and the filler particle are
assumed to be two-dimensional, the interface zone would have had to be implemented as a

19

3 Simulation

Mesh Transition
Zone

Inlet

Filler Particle

Outlet

Interface ZoneMembrane

Fig. 3.2 Simple overview of the membrane with a rectangular filler particle, the mesh transition zone
and the interface zone.

one-dimensional element. This would have allowed for the simplest possible model setup
and kept the simulation time low. In ABAQUS, however, it is not possible to implement a
one-dimensional element, i.e. an edge, with its own material properties in a two-dimensional
diffusion analysis. There are so-called STRINGER elements in ABAQUS which allow to
assign a material to an edge, but these also require the specification of a cross-sectional area
for this edge. This means that the one-dimensional behavior is only superficial, and behind
a black box the simulation operates in two dimensions. This was unacceptable because it
would lead to results that were difficult or impossible to evaluate. Therefore, it was decided
to implement a custom two-dimensional solution that could best represent the real behavior
of such an interface zone. This process would eliminate the black box and allow more control
over the simulation process.

The first approach in this variant of implementation was to partition the membrane in such
a way that a separate area is created around the filler particle. This area was then assigned
its own direction-dependent material. Furthermore, the local orientation of the coordinate
system in this area was rotated in such a way that the above-described effect of a changed
flow around the filler was created. If the thickness of this area was small enough, the results
of these simulations were a step in the right direction. However, due to the sharp transition

20

3 Simulation

of the diffusion coefficients at the boundaries of the interface zone, undesirable edge effects
occurred which significantly degraded the simulation quality.

In order to keep the interface zone as thin as possible and still ensure that the materials show
a gradual transition, it was decided to change the material properties at the mesh node level.
For this purpose it was necessary to integrate ABAQUS subroutines into the simulation.
ABAQUS provides more than 100 different subroutines for different applications. Each of
these subroutines has access to different systems or data from ABAQUS and has its own
methods to interact with ABAQUS. To achieve the desired effect, three different subroutines,
ORIENT, UFIELD, and USDFLD, were programmed and implemented in Fortran [15] as
described in Section 3.2.

In the first iteration the handling of these subroutines was mostly unknown so the subroutines
were powered by a Python [44] script which calculated the necessary field data. In this
Python script, the positions and sizes of the filler particles as well as the positions of the mesh
nodes were read from the ABAQUS input file. Then the distance of the nodes to the filler
particles was calculated and if their distance to the particle edge was below a threshold value,
they were assigned a scalar value representing the relative position between the filler particle
edge and the threshold value. Furthermore, in the script the interface zone was divided into
the areas shown in Fig. 3.3 and for each node the corresponding area was evaluated. This
enabled the calculation of the necessary rotation of the local coordinate system for each node.
The values for distance and rotation calculated in this script were then written to CSV files.
Of the three subroutines used, UFIELD and USDFLD were responsible for adjusting the
diffusion coefficients and ORIENT for rotating the local coordinate systems of the nodes.
For this purpose, the relevant CSV file was read in each case and the correct value was
imported and applied. This procedure had the disadvantage that a lot of file calls had to
be made which increased the simulation time significantly. For this reason, the membrane
was first divided into two materials, the interface material and the membrane material. The
interface material is linked to the subroutines, i.e. the subroutines are only called for mesh
nodes and mesh elements for which this material has been assigned. The membrane material
is a homogeneous material with constant values that is assigned everywhere except in the
interface zone. This minimized the number of subroutine calls. However, simulations with
many filler particles still resulted in long simulation times due to the mesh density in the
interface zone. Therefore, the Python script tasks were shifted to the subroutines, reducing
the number of file calls to one per type of subroutine. The exact structure and details of the
functions of the final subroutines will be discussed in the next section.

21

3 Simulation

1 2

3

456

7

8

Filler Particle

Fig. 3.3 Simple sketch of the interfacial zone and its partitions around a rectangular filler particle.
Partitions 1 and 5 change the diffusive flow along the vertical axis, partitions 3 and 7 along the
horizontal axis, and partitions 2, 4, 6, and 8 always at a 45 degree angle between the two neighboring
partitions.

3.2 Fortran Subroutines

The subroutine ORIENT is responsible for rotating the local coordinate system of each
mesh node to achive the desired directional behavior of the interface zone. This means that
during the simulation this subroutine is called for each mesh node in the interface zone.
Two different sequences exist for this subroutine, depending on whether the filler particle
is circular or rectangular. For the variant used for rectangular fillers, an example is given
in Algorithm 1 in the form of pseudocode. The code for a filler particle with a circular
shape differs in that it is not necessary to divide the interface zone into separate orientation
partitions since the direction vector from the filler center to the node can be calculated and
the local coordinate system can be rotated based on it. The final result of this subroutine is
shown in Fig. 3.4. By comparing the circular and rectangular filler particles there, it is easy
to see that in the case of the circular filler particle, there is a continuous change of orientation
along the edge of the filler, while in the case of the rectangular filler particle, different zones
are clearly visible. The actual code used for the subroutine is provided in the appendix in
Section A.1.1.

22

3 Simulation

(a) (b)

(c) (d)

Fig. 3.4 Oriention of the loacal node coordinate system in the interface zone for a circular filler
particle: (a) complete membrane and (b) zoomed view. Oriention of the loacal node coordinate system
in the interface zone for a rectangular filler particle: (c) complete membrane and (d) zoomed view. In
this work, the 2-axis shown in yellow is the one with the variable diffusion rate.

The subroutine UFIELD is responsible for generating a field over the interface zone around
the filler particles. This field contains a scalar value for each node in the interface, which
indicates the relative position of the node with respect to the thickness of the interface zone.
This means that if a node is located directly on the edge of a filler particle, the value of this
field for this node is equal to one. On the other hand, if a node is located directly on the
outer edge of the interface zone, the field has a value of zero for this node. An example of
this subroutine is given in Algorithm 2 in the form of pseudocode. The final result of this
subroutine can be seen in Fig. 3.5. The actual code used for the subroutine is provided in the
appendix in Section A.1.2.

23

3 Simulation

Algorithm 1: Pseudocode example for an ABAQUS ORIENT subroutine.
SUBROUTINE ORIENT

/* The data of the node for wich this subroutine is called. */
Input: nodeData;
/* Create a global list, which can be called from every

subroutine call, in which the data of all the filler
particles is stored. */

Create Global List: fillerPartikelList = EMPTY;
/* Create variables to hold numerical data. */
Create Variable: minDistanceToFillerParticle = INFINITY;
/* Create variables to hold numerical data. */
Create Variable: idClosestFillerParticle = NULL;
/* If the filler particle list is empty, load the necessary

data from a csv file. This is only necessary for the first
time this subroutine is called. */

if fillerPartikelList == Empty then
load fillerParticleData into fillerPartikelList;

/* Search for the closest filler particle to the node and save
its id. */

for fillerParticle in fillerPartikelList do
calculate distance from node.position to fillerParticle;
if distance < minDistanceToFillerParticle then

minDistanceToFillerParticle = distance;
idClosestFillerParticle = fillerParticle.id;

/* Evaluate the orientation zone id for the current node based
on its position. */

calculate orientationZone;
/* Apply a rotation to the local coordinatesystem of the node

based on the orientation zone. */
if orientationZone == 1 then

rotate localCoordinateSystem LEFT 90 DEGREES;
else if orientationZone == 2 or 6 then

rotate localCoordinateSystem LEFT 45 DEGREES;
else if orientationZone == 3 or 7 then

Pass;
else if orientationZone == 4 or 8 then

rotate localCoordinateSystem RIGHT 45 DEGREES;
else if orientationZone == 5 then

rotate localCoordinateSystem RIGHT 90 DEGREES;

24

3 Simulation

(a) (b)

Fig. 3.5 Diffusion coefficient field in the interface zone for (a) a circular filler particle and (b) a
rectangular filler particle.

The subroutine USDFLD is significantly different from the two previously described. This
subroutine is called for all mesh elements in the interface zone and not for the mesh nodes.
This is because this subroutine is integrated in the material behavior and thus directly accesses
the integration points of the elements. It follows that the task of this subroutine in this work
is to interpolate the values of the field generated by the UFIELD subroutine to the integration
points of the mesh elements. Since this is the basic function of this subroutine, it was
implemented without any additional code. It was not possible to output the result of this
subroutine graphically by ABAQUS, because it is only a subfunction and not an independent
field. The actual code used for the subroutine is provided in the appendix in Section A.1.3.

The field generated by the USDFLD subroutine is then used by the ABAQUS material itself
to assign a diffusion coefficient to the integration points based on this exponential function:

DIP(x) = DImax · eΨ·(x−1)+DM · (1− eΨ·(x−1)) (3.1)

In this equation, DIP is the diffusivity coefficient in the interfacial zone for a flow parallel to
the edge of the filler as a function of the distance to the outer edge of the interface zone x,
DImax is the maximum of the diffusivity in the interfacial zone, and DM is the diffusivity in
the matrix. x is a control variable that represents different relative distances from the outer
edge of the interface at which the diffusivity is calculated. This is necessary because in
ABAQUS the material data can only be provided as a table and not as a function. In order to
generate the desired course of the diffusion rate change, a prefactor Ψ was introduced. This
type of function was chosen because it allows for a large gradient without creating jumps

25

3 Simulation

Algorithm 2: Pseudocode example for an ABAQUS UFIELD subroutine.
SUBROUTINE UFIELD

/* The data of the node for wich this subroutine is called. */
Input: nodeData;
/* Create a global list, which can be called from every

subroutine call, in which the data of all the filler
particles is stored. */

Create Global List: fillerPartikelList = EMPTY;
/* Create a variable to hold numerical data. */
Create Variable: minDistanceToFillerParticle = INFINITY;
/* If the filler particle list is empty, load the necessary

data from a csv file. This is only necessary for the first
time this subroutine is called. */

if fillerPaticelList == Empty then
load fillerParticleData into fillerPartikelList;

/* Search for the distance of the closest filler particle to
the node. */

for fillerParticle in fillerPartikelList do
calculate distance from node.position to fillerParticle;
if distance < minDistanceToFillerParticle then

minDistanceToFillerParticle = distance;

/* Calculate the relative position of the node in relation to
the thickness of the interface zone. */

calculate relativePositionValue;
/* Save the relative position as a field variable. */
Save relativePositionValue in FIELD;

in the curve. Various experiments were then carried out to find a Ψ for which the curve has
no jumps at the beginning, a large rate of change while still maintaining the bleeding effect,
which was explained in Section 3.1. Such curves are shown in Fig. 3.6. After evaluating
these experiments, it was decided to use a Ψ of 20 for the simulations in this thesis.

Furthermore, for future projects, the adhesion coefficient mentioned in the introduction can
be represented by the two variables DImax and Ψ.

26

3 Simulation

Fig. 3.6 Curve shapes of diffusion rates in the interface zone at different prefactors Ψ. A value of 0 on
the x-axis represents the position at the outer edge of the interface zone and a value of 1 represents
the position at the outer edge of the filler particle.

3.3 Simulation Workflow

3.3.1 Overview

Since the used simulation models differ only in geometry and the resulting relevant code
differences have already been explained in Section 3.1, the proposed simulation workflow is
generally valid for this work. First of all, each simulation has the following basic configura-
tion:

• The inlet of the membrane is at the top edge. There the concentration of the permeate
is constant at a value of 1 mol ·m−2.

• The outlet of the membrane is at the bottom edge. There the concentration of the
permeate is constant at a value of 0 mol ·m−2.

• The initial concentration of the permeate in the membrane is set to 0 mol ·m−2.

• The left and right edges of the membrane are connected with a periodic boundary
condition.

• The filler particle is always implemented as a hole in the membrane. The permeate can
therefore not penetrate the particle.

27

3 Simulation

• Every filler particle has an interface zone around it, as described in Section 3.1.

The general workflow of the simulations used in this work consists of multiple steps, which
are controlled by one central script. First of all, the following simulation parameters are
defined in this central script:

• Filler particle thickness, b

• Filler particle aspect ratio, α

• Filler particle area ratio, φ f

• Number of filler particles in the membrane

• Mesh seeding sizes of the membrane, mesh transition zone and the interface zone

• Inlet and outlet concentration of the diffusion medium, C1 and C2, respectively

• Diffusion coefficients for both materials, DM for the matrix material, DIP and DIN for
the interface material

• Solubility coefficient for both materials, SM for the matrix and SI for the interface

Based on these simulation parameters, the positions of all fillers in the membrane are then
calculated, inserted into a list and saved together with the simulation parameters in CSV
files. These files are then automatically read in during the simulation steps in which they are
required. Next, the following steps are performed:

1. Generation of the ABAQUS input file based on the parameters from the CSV file.

2. Running the ABAQUS interface simulation, with the subroutines.

3. Extracting data out of the ABAQUS ODB file.

4. Running the ABAQUS standard simulation.

These steps are explained in detail in the following subsections. At the end of a simulation
series, the result files were read in again with the help of a subsequent script, the data
contained therein was transformed into the desired form and plotted in various plots. The
actual code used in this Python script is provided in the appendix in Section A.2.4.

28

3 Simulation

3.3.2 Creation of Input File

First, the ABAQUS input file is created on the basis of the simulation parameters defined
in the input. For this purpose ABAQUS is automated by a Python script which runs the
following sequence:

1. Geometry creation: The membrane is drawn as a rectangle. The filler particles are
simultaneously cut into this rectangle as holes. The area around these holes is then
partitioned twice. Once at a very small distance from the perimeter of the hole and
once at ten times that distance.

2. Material creation: The interface and membrane materials are created and assigned to
the corresponding areas of the model.

3. Mesh creation: The membrane mesh is kept coarse, while the edges of the filler
particles are seeded with a finer mesh size. The outer edges of the interface zone are
also seeded with the same fine mesh size. The outer edges of the mesh transition zone
are seeded with an intermediate mesh size between the size of the membrane and the
interface zone mesh. This results in a mesh configuration as shown in Fig. 3.7. This
mesh configuration is necessary for the above mentioned subroutines to work with
sufficient accuracy.

4. Field creation: The ABAQUS field for the UFIELD Subroutine is created and assigned
to the interface zone.

5. Set creation: The necessary ABAQUS node sets on the left, right and bottom edge are
created. The sets on the left and right edge are necessary for the periodic boundary
condition which connects these two edges. The set on the bottom edge is necessary for
collecting the output data.

6. Time step creation: A time step is the framework for the boundary conditions. That
means in this step the inlet and outlet boundary conditions as well as the periodic
boundary are defined.

The actual code used in the Python script is provided in the appendix in Section A.2.1.

3.3.3 ABAQUS Interface Simulation

After the ABAQUS input file has been created, the simulation is started by a batch file. This
batch file is needed to load the input file into the simulations and to connect them with the

29

3 Simulation

(a) (b)

Fig. 3.7 Mesh of membranes with (a) a circular filler particle and (b) a rectangular filler particle.

subroutines. When the simulation is finished, ABAQUS is started again automated by a
Python script and the ODB file of the simulation is opened. Afterwards, the script extracts
all relevant data and saves them to a CSV file. This Python script is provided in the appendix
in Section A.2.2.

3.3.4 ABAQUS Standard Simulation

For the standard simulation, another simulation is performed with the previously defined
simulation parameters, but without an interface zone material in the model. However, the
mesh is generated in the same way as for the simulation with an interface zone to avoid a
significant difference in the results. Since no subroutines are required for this simulation,
all three steps, i.e. model creation, simulation and data extraction, can be automated using
a single Python script. This simulation is necessary to compare the results of the interface
simulations. The actual code used in the Python script is provided in the appendix in
Section A.2.3.

30

Chapter 4

Results

This chapter presents the results of the simulations performed in the course of this thesis.
Two types of plots have been chosen to highlight different aspects of the results. First, the
raw results of the different simulations are discussed to show the influence of the different
parameters on the resulting outflow over the width of the membrane. Then, the outflow values
are integrated over the individual membranes to obtain the total outflow for a given membrane.
These integrated values are better suited for comparison with one another. Furthermore, some
of the results obtained from ABAQUS are shown directly as examples.

4.1 Raw Results - One Filler Particle

In Fig. 4.1 the permeate concentration is shown for the simulations with only one central
filler particle in the membrane, as provided by ABAQUS. Comparing Fig. 4.1a with Fig. 4.1b
and Fig. 4.1c with Fig. 4.1d it can be observed that the implementation of an interface zone
leads to a better distribution of the permeate around the filler. It can be clearly seen that the
interface zone increases the flow of the medium through the membrane.

In Fig. 4.2, the raw results of simulations with a circular and a rectangular filler particle are
shown. These simulations were carried out with the following parameters:

• Diffusivity of the matrix material, DM = 1.0 m2 · s−1

• Diffusivity of the interface material parallel to the filler particle edges, DIP = 10.0 m2 ·
s−1

• Diffusivity of the interface material normal to the filler particle edges, DIN = 1.0 m2 ·s−1

31

4 Results

(a)
(b)

(c) (d)

Fig. 4.1 Concentration results of the simulations of a membrane with (a) a circular filler in the center
and an interface zone, (b) a circular filler in the center and no interface zone, (c) a rectangular filler in
the center and an interface zone and (d) a rectangular filler in the center and no interface zone.

• Interface thickness, wI = 0.5 µm

The purpose of these simulations was to get an overview of the influence of Ψ on the
simulation results. This was necessary as the value of Ψ was only assigned based on the
results in Fig. 3.6 and a validation was required. As can be seen from these figures, a Ψ of
50 or more results in a complete overlap of the curves. The reason for this is that only the
diffusivity of the mesh nodes closest to the filler particle is affected. However, since it was
desired to emulate a bleeding effect as described in Section 3.1, it was decided to leave the
value of Ψ at 20. These figures also show the effect of the central filler particle on the outflow
from the membrane. In both cases (circle and rectangle), there is a significant drop in the
outflow at the center of the membrane. However, the width of this drop in the graph is greater
for the rectangular filler particle. This is due to the fact that the dimensions of the round and

32

4 Results

rectangular fillers were chosen so that the areas are equal, and since the rectangular particle
is not square, the result is a particle that is wider perpendicular to the direction of diffusion.

(a)

(b)

Fig. 4.2 (a) Outflow F over the width of a membrane with one circular filler in the middle, (b) outflow
over the width of a membrane with one rectangular filler in the middle.

4.2 Raw Results - Multiple Filler Particles

In Fig. 4.3, the concentration results are shown for the simulations with multiple rectangular
filler particles in the membrane, as provided by ABAQUS. Comparing Fig. 4.3a with Fig. 4.3b
shows that the size of the filler particles is too small compared to the membrane to produce any
visible differences. This proves the previous point that it is necessary to perform preliminary
simulations on simpler systems to gather information for the more complex simulation.

Fig. 4.4 shows the raw results of simulations with multiple filler particles in the membrane.
These simulations were carried out with the following parameters:

• φ f = 0.01

33

4 Results

(a)

(b)

Fig. 4.3 Concentration results of simulating a membrane with (a) multiple rectangular filler particles
and an interface zone around each filler, (b) multiple rectangular filler particles without the interface
zone.

• wI = 0.25 µm

• DM = 1.0 m2 · s−1

• DIP = 10.0 m2 · s−1

• DIN = 1.0 m2 · s−1

• Interface Prefactor (Ψ) = 20.0

The results shown here are an excerpt from the final results of this work, which are shown
and described in Fig. 4.6. The purpose of this presentation is to show how the outflow of a

34

4 Results

Fig. 4.4 Outflows across the width of various membranes with multiple rectangular fillers. The
membranes differ by the α values of the filler particles, as shown in the legends of the plots.

membrane with multiple filler particles behaves. The width of the membrane depends on the
number of filler particles, the aspect ratio α of the particles, and φ f of the particles in the
membrane. Therefore, as the aspect ratio increases, the width of the membrane also increases,
as shown in Fig. 4.6. The thickness of the filler particles, i.e. their expansion in the diffusion
direction, is constant, so α only affects the width of the filler particles, i.e. their expansion
perpendicular to the diffusion direction. This is the reason why the valleys in the curves in
Fig. 4.6 become wider as α increases. Furthermore, this behavior of the filler particles also
results in a stronger barrier effect, which also reduces the total amount of outflow Q as α

increases.

4.3 Accumulated Permeate - One Filler Particle

In Fig. 4.5 the processed results of several simulations with either a round or a rectangular
filler particle are shown. The results were processed by integrating the outflow values over
the width of each membrane and accumulating the outflow values over the duration of the
simulation to obtain the total outflow over time Qtotal from the membrane. These results
show the effect of Ψ and DIP on the amount of total outflow from the membrane.

When comparing the two subfigures in Fig. 4.5, it is noticeable that the integrated outflow
values of the membrane with a round filler particle are higher than those of the membrane

35

4 Results

with a rectangular filler particle, although both particle types have the same area. This
difference is due to the fact that the rectangular particle is wider than the round particle. To
achieve a higher barrier effect for the same filler area fraction, particles with a large width
but small thickness should be used. In the case of the definition used in this work, this means
that a high aspect ratio results in better barrier properties for the same filler area fraction.
Under this condition, a significant barrier effect can be achieved, even with a low particle
filler area fraction. However, highly aspected filler particles have the disadvantage that the
orientation of the filler particles has a major influence on the barrier effect.

The resulting value of a simulation without interface zone around the filler particle is shown
in both subfigures of Fig. 4.5 as a red line. If DIP is set to 1, the resulting cumulative
outflow values lie on the red line. If DIP is greater than 1, the result is above the red line,
indicating that more outflow has occurred. If DIP is less than 1, the result is below the red
line, indicating less outflow.

(a)

(b)

Fig. 4.5 (a) Integrated outflow of membranes with one circular filler in the middle, (b) integrated
outflows of membranes with one rectangular filler in the middle.

36

4 Results

4.4 Accumulated Permeate - Multiple Filler Particles

One aim of this work was to compare the following three types of data and assess the
influence of an interface zone on the diffusivity of reinforced membranes:

• Analytically obtained data from the Nielsen model described in detail in Section 2.5

• FEM simulated result data with interface zones, which was described in detail in
Section 3.3.3

• FEM simulated result data without interface zones, which was described in detail in
Section 3.3.4

This comparison is shown in Fig. 4.6, where the analytical data are plotted as continuous
lines, the FEM data without interface zone are labeled "o" and the FEM data with interface
zone are labeled "x". As described in Section 2.5, the filler particles in the Nielsen model are
arranged in a regular pattern. This creates channels in which unhindered diffusion flow is
possible. As φ f and α increase, the width of these channels relative to the membrane width
decreases. Above a certain φ f value, this ratio remains more or less constant. The φ f value
at which this plateau occurs, depends on α . The higher the α value, the earlier the plateau
occurs. This structure of the membrane causes the outflow to decrease with increasing φ f

as well as with increasing α . This result was expected because increasing the number of
filler particles or increasing the size of the filler particles should result in an increased barrier
effect.

Since the differences between the FEM data and the analytical data are difficult to see in
Fig. 4.6, the absolute deviations of the FEM data from the analytical data were calculated and
are shown in Fig. 4.7. The standard FEM model agrees quite well with the analytical model
for filler area fractions between 0.06 and 0.09. When φ f is below this range, the results
of the FEM model are higher than those of the analytical model. When φ f is above this
range, the results are lower than those of the analytical model. The results of the FEM model
with interface zone are consistently higher than those of the standard FEM model, since the
interfacial zone facilitates diffusion flow through the membrane. The advanced FEM model
agrees quite well with the analytical model for filler area fractions between 0.06 and 0.15.

37

4 Results

Fig. 4.6 Accumulated outflows of membranes with multiple rectangular fillers.

Fig. 4.7 Absolute error of the total outflow from the membranes in FEM models in respect to the
analytically obtained data.

38

Chapter 5

Conclusions

The aim of this thesis was to numerically simulate the diffusion of hydrogen through different
particle filled membranes with the introduction of a filler-matrix interface. The difference in
the membranes was based on the area fraction of the particles in the membrane and the width
of the filler particles. ABAQUS was chosen as the numerical solver for this work because of
the software’s feature set and in-house knowledge of it. The extended Nielsen model was
selected as the basis for the simulation model because it has the advantage that it can be used
in both analytical and numerical simulations, making the results directly comparable.

Implementing the interface zone was difficult for two reasons. Firstly, the implementation
of an interface zone in ABAQUS was not easy. Instead of the ABAQUS GUI, Fortran
subroutines had to be used, which had to be learned first. Furthermore, a lot of research
had to be done to find the right subroutines for the problem at hand, as there are over 100
different subroutines avaiable in ABAQUS. Each of these subroutines has its own usecase,
comes with different methods and functions and has access to different systems of ABAQUS.
Secondly, the implementation of the Python modules and the subroutines had to be improved,
as a first, non-optimized attempt showed very poor performance due to too many file calls for
each calculation step. All calculations necessary for the subroutines to function were carried
out using Python scripts and the results were saved on the hard disk. These result files were
then opened several times by the Fortran subroutines in each simulation step.

In its final implementation, the interface zone was integrated into the model at a mesh node
and integration point level. Three subroutines were used for this setup. The first subroutine
had the sole purpose of calculating the orientation of each node in the interface zone, based
on its position in this zone, relative to the global coordinate system. The second subroutine
was used to calculate the position of each node in the interface zone relative to the thickness

39

5 Conclusions

of the interface zone. Therefore, if the node is exactly at the edge of the filler particle, the
relative position value is equal to one, and if the node is at the outer edge of the interface zone,
the relative position value is equal to zero. The results of these calculations are stored in a
scalar field attached to all interface mesh nodes. The third subroutine is necessary because
the relative position values stored in the scalar field cannot be used directly by ABAQUS to
adjust the material data. This third subroutine takes the scalar field values at the mesh node
positions and interpolates them to the integration points of the corresponding mesh elements.
With this sophisticated system in place, it was possible to create the desired behavior of the
interface zone and perform the necessary simulations for this work.

The results of this work not only show that such a FEM model with interface zone is possible,
but also provide plausible data with respect to the standard FEM and the analytical model.
However, both numerical models show larger deviations from the analytical model for
membranes with low filler area fraction and small filler particle widths. The analytical model
predicts better barrier properties for such filled membranes than the numerical simulations.
Due to the lack of data from real experiments, it was not possible to quantitatively compare
the two numerical models. After completing the work, it can be said that ABAQUS has a
steep learning curve, but the simulation results and the adaptability of the simulation models
with the subroutines are convincing.

40

Chapter 6

Outlook

The next step to improve this model should be to optimize the code to achieve better
simulation runtime and stability. Before extending the simulation setup further, consideration
should be given to comparing the results not only with analytical data, but also with real
experimental results. These comparisons are essential for the evaluation of the model. Below
are some suggestions about additions to the model that could lead to an improvement in
accuracy.

For example, the filler particles could be placed randomly. This method of membrane
generation would allow for more naturally built models. Another way to generate more
realistic data would be to develop a three-dimensional system. This setup would make it
easier to replicate real world experiments. Since the Nielsen model, which was heavily
referenced in this thesis, only works in two dimensions, either a new model for the structure
of the membrane would have to be developed, the filler particles would have to be placed
randomly or the model could be based on a CT scan of a real reinforced polymer membrane.

For a different simulation model in this project, an attempt was made to implement a random-
based distribution of filler particles in a two-dimensional model. The implementation was
successful, but required a lot of optimization to achieve a reasonable runtime of the membrane
generation. It can be concluded that it would be even more difficult to achieve a reasonable
implementation in a three-dimensional model. [26]

41

7 References

[1] Alhijazi, M., Zeeshan, Q., Qin, Z., Safaei, B., and Asmael, M. (2020). Finite element
analysis of natural fibers composites: A review. Nanotechnology Reviews, 9(1):853–875.

[2] Barrera, O., Tarleton, E., Tang, H. W., and Cocks, A. (2016). Modelling the coupling
between hydrogen diffusion and the mechanical behaviour of metals. Computational
Materials Science, 122:219–228.

[3] Crank, J. (1975). The Mathematics of Diffusion. Clarendon Press, Oxford, second edition
edition.

[4] Díaz, A., Alegre, J. M., and Cuesta, I. I. (2016). Coupled hydrogen diffusion simulation
using a heat transfer analogy. International Journal of Mechanical Sciences, 115-116:360–
369.

[5] Duncan, B., Urquhart, J., and Roberts, S. (2005). Review of Measurement and Modelling
of Permeation and Diffusion in Polymers. Report, National Physical Laboratory.

[6] Einstein, A. (1905). Über die von der molekularkinetischen Theorie der Wärme
geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der
Physik, (322(8)):549–560.

[7] Eslami, S., Honarbakhsh-Raouf, A., and Eslami, S. (2015). Effects of moisture absorption
on degradation of E-glass fiber reinforced Vinyl Ester composite pipes and modelling of
transient moisture diffusion using finite element analysis. Corrosion Science, 90:168–175.

[8] Eslami, S., Rauf-Honarbakhsh, A., and Eslami, S. (2014). Durability of E-glass/Vinyl
Ester Composite Structures and Their Modeling in ABAQUS. Proceedings of the American
Society for Composites 2014-Twenty-ninth, University of California San Diego.

[9] Gao, S.-L., Mäder, E., and Zhandarov, S. F. (2004). Carbon fibers and composites with
epoxy resins: Topography, fractography and interphases. Carbon, 42(3):515–529.

[10] George, S. C. and Thomas, S. (2001). Transport phenomena through polymeric systems.
Progress in Polymer Science, 26(6):985–1017.

[11] Gholami, M., Afrasiab, H., Baghestani, A. M., and Fathi, A. (2021). Hygrothermal
degradation of elastic properties of fiber reinforced composites: A micro-scale finite
element analysis. Composite Structures, 266:113819.

42

7 References

[12] Hatsuo Ishida and Jack L Koenig (1978). Fourier transform infrared spectroscopic
study of the silane coupling agent/porous silica interface. Journal of Colloid and Interface
Science, 64(3):555–564.

[13] Huan-Chang, T., Chia-Hsiang, H., and Rong-Yeu, C. (2017). Long Fiber Orientation and
Structural Analysis Using Moldex3D, Digimat and ABAQUS Simulations: Conference
Paper - SPE ANTEC® Anaheim 2017.

[14] Kabir, M. M., Wang, H., Lau, K. T., and Cardona, F. (2012). Chemical treatments on
plant-based natural fibre reinforced polymer composites: An overview. Composites Part
B, 43(7):2883–2892.

[15] Kedward, L. J., Aradi, B., Čertík, O., Curcic, M., Ehlert, S., Engel, P., Goswami, R.,
Hirsch, M., Lozada-Blanco, A., Magnin, V., Markus, A., Pagone, E., Pribec, I., Richardson,
B., Snyder, H., Urban, J., and Vandenplas, J. (2022). The State of Fortran. Computing in
Science & Engineering, 24(2):63–72.

[16] Kim, J.-K. and Hodzic, A. (2003). Nanoscale characterisation of thickness and proper-
ties of interphase in polymer matrix composites. The Journal of Adhesion, 79(4):383–414.

[17] Kim, N.-H., OH, C.-S., KIM, Y.-J., YOON, K.-B., and Ma, Y.-W. (2012). Hydrogen-
assisted stress corrosion cracking simulation using the stress-modified fracture strain
model. Journal of Mechanical Science and Technology, 26(8):2631–2638.

[18] Klopffer, M. H. and Flaconneche, B. (2001). Transport Properties of Gases in Polymers:
Bibliographic Review. Oil & Gas Science and Technology, 56(3):223–244.

[19] Li, H., Wang, N., Han, X., Fan, B., Feng, Z., and Guo, S. (2020). Simulation of
Thermal Behavior of Glass Fiber/Phenolic Composites Exposed to Heat Flux on One Side.
Materials, 13(2).

[20] Li, H.-W. and Onoue, K. (2016). Compressed Hydrogen: High-Pressure Hydrogen
Tanks. In Sasaki, K., Li, H.-W., Hayashi, A., Yamabe, J., Ogura, T., and Lyth, S. M.,
editors, Hydrogen Energy Engineering, Green Energy and Technology, pages 273–278.
Springer Japan, Tokyo.

[21] Li, Y., Chen, X., Jin, L., and Zhang, R. (2016). Experimental and numerical study
on chloride transmission in cracked concrete. Construction and Building Materials,
127:425–435.

[22] Liu, F., Wang, D., Liu, J., Wei, H., Zhang, H., Xu, J., Li, S., Qin, Z., Wang, R., Jia, H.,
and Zhang, J. (2020). Reviews on Interfacial Properties of the Carbon Fiber Reinforced
Polymer Composites. Journal of Physics: Conference Series, 1637(1):012027.

[23] Liu, L., Jia, C., He, J., Zhao, F., Fan, D., Xing, L., Wang, M., Wang, F., Jiang, Z., and
Huang, Y. (2015). Interfacial characterization, control and modification of carbon fiber
reinforced polymer composites. Composites Science and Technology, 121:56–72.

[24] Macher, J., Golestaneh, P., Macher, A. E., and Hausberger, A. (2022a). Filler Models
Revisited: Extension of the Nielson Model with Respect to the Geometric Arrangements
of Fillers. Polymers.

43

7 References

[25] Macher, J., Hausberger, A., Macher, A. E., Morak, M., and Schrittesser, B. (2020).
Critical Review of Models for H2-Permeation through Polymers with Focus on the
Differential Pressure Method. International Journal of Hydrogen Energy.

[26] Macher, J., Morak, M., and Hausberger, A. (2022b). Hydrogen Permeation in Filled
Polymers: Correlation of Permeation Properties and Filler Arrangements. Report, Poly-
mer Competence Center Leoben GmbH, Leoben.

[27] Minelli, M., Baschetti, M. G., and Doghieri, F. (2009). Analysis of modeling results
for barrier properties in ordered nanocomposite systems. Journal of Membrane Science,
327(1-2):208–215.

[28] Mishin, Y., Herzig, C., Bernardini, J., and Gust, W. (1997). Grain boundary diffusion:
fundamentals to recent developments. International Materials Reviews, 42(4):155–178.

[29] Monsalve-Bravo, G. and Bhatia, S. (2018). Modeling Permeation through Mixed-Matrix
Membranes: A Review. Processes, 6(9):172.

[30] Nielsen, L. E. (1967). Models for the Permeability of Filled Polymer Systems. Journal
of Macromolecular Science: Part A - Chemistry, 1(5):929–942.

[31] OH, C.-S., KIM, Y.-J., and YOON, K.-B. (2010). Coupled Analysis of Hydrogen
Transport using ABAQUS. Journal of Solid Mechanics and Materials Engineering,
4(7):908–917.

[32] Olden, V., Saai, A., Jemblie, L., and Johnsen, R. (2014). FE simulation of hydrogen
diffusion in duplex stainless steel. International Journal of Hydrogen Energy, 39(2):1156–
1163.

[33] OpenCFD Ltd. (2011 - 2023). OpenFOAM.

[34] Ounaies, M., Harchay, M., Dammak, F., and Daly, H. B. (2018). Prediction of hygrother-
mal behavior of polyester/glass fiber composite in dissymmetric absorption. Journal of
Composite Materials, 52(29):4001–4007.

[35] Papathanasiou, T. D. and Tsiantis, A. (2017). Orientational randomness and its influence
on the barrier properties of flake-filled composite films. Journal of Plastic Film & Sheeting,
33(4):438–456.

[36] Philibert, J. (1991). Atom movements - diffusion and mass transport in solids. Les
Editions de Physique.

[37] Pu, C., Gao, Y., Wang, Y., and Sham, T.-L. (2017). Diffusion-coupled cohesive interface
simulations of stress corrosion intergranular cracking in polycrystalline materials. Acta
Materialia, 136:21–31.

[38] Pukánszky, B. (2005). Interfaces and interphases in multicomponent materials: past,
present, future. European Polymer Journal, 41(4):645–662.

[39] Sasaki, K., Li, H.-W., Hayashi, A., Yamabe, J., Ogura, T., and Lyth, S. M., editors
(2016). Hydrogen Energy Engineering. Green Energy and Technology. Springer Japan,
Tokyo.

44

7 References

[40] Scheichl, R., Klopffer, M., Benjelloundabaghi, Z., and Flaconneche, B. (2005). Per-
meation of gases in polymers: parameter identification and nonlinear regression analysis.
Journal of Membrane Science, 254(1-2):275–293.

[41] Schultheiß, D. (2007). Permeation Barrier for Lightweight Liquid Hydrogen Tanks.
Master’s Thesis, Universität Augsburg, Augsburg.

[42] Smith, M. (2009). ABAQUS/Standard User’s Manual, Version 6.9.

[43] Sukjoo, C. (2005). Micromechanics, Fracture Mechanics and Gas Permeability of
Composite Laminates for Cryogenic Storage Systems. Dissertation, University of Florida.

[44] van Rossum, G. and Drake, F. L. (2009). Python 3 Reference Manual. CreateSpace,
Scotts Valley, CA.

[45] von Smoluchowski, M. (1906). Zur kinetischen Theorie der Brownschen Molekularbe-
wegung und der Suspensionen. Annalen der Physik, 326(14):756–780.

[46] Wu, Q., Li, M., Gu, Y., Li, Y., and Zhang, Z. (2014). Nano-analysis on the structure
and chemical composition of the interphase region in carbon fiber composite. Composites
Part A: Applied Science and Manufacturing, 56:143–149.

[47] Zhang, S., Wang, H., Hou, F., Chen, H., and Tan, P. (2015). Influence of the Types of
Stress on Hydrogen Induced Damage By Simulating Hydrogen Diffusion. International
Conference on Materials, Environmental and Biological Engineering.

[48] Zhao, R., Wang, M., and Guan, X. (2023). Exploring Exact Effects of Various Factors
on Chloride Diffusion in Cracked Concrete: ABAQUS-Based Mesoscale Simulations.
Materials, 16(7).

[49] Zheng, H., Zhang, W., Li, B., Zhu, J., Wang, C., Song, G., Wu, G., Yang, X., Huang, Y.,
and Ma, L. (2022). Recent advances of interphases in carbon fiber-reinforced polymer
composites: A review. Composites Part B: Engineering, 233:109639.

[50] Zhou, Y., Fan, M., and Chen, L. (2016). Interface and bonding mechanisms of plant
fibre composites: An overview. Composites Part B: Engineering, 101:31–45.

45

8 List of figures

2.1 Schematic drawing of a particle-filled polymer membrane, F represents the
diffusion flow density and the arrow indicates the direction, w (m) is the
width of a filler particle perpendicular to F and b (m) is the thickness of a
filler particle parallel to F , s (m) is the slit shape which describes the distance
between two filler particles in a row and d (m) is the filler distance which
describes the distance from one row of filler particles to another. [24] 12

2.2 Schematic representation of a unit cell in a filled membrane structured as
described by Nielsen [30]. The unit cell is enclosed by the dashed lines. (a)
Dimensions of the components in the unit cell. The blue area represents a
channel with a width of wch (m) where the permeate is not hindered in its
flow. (b) The two accumulating flows through the unit cell are shown. Fch in
blue is the unobstructed flow as described in (a) and Ft in red is the tortuous
flow around the filler particles. [24] . 14

3.1 Geometries of membranes with a) a circular, b) a rectangular and c) multiple
rectangular filler particles. The inlets of these membranes are always at the
top edge, the outlets are always at the bottom edge, and the left and right
edges of the membranes are connected by a periodic boundary condition. . 19

3.2 Simple overview of the membrane with a rectangular filler particle, the mesh
transition zone and the interface zone. 20

3.3 Simple sketch of the interfacial zone and its partitions around a rectangular
filler particle. Partitions 1 and 5 change the diffusive flow along the vertical
axis, partitions 3 and 7 along the horizontal axis, and partitions 2, 4, 6, and 8
always at a 45 degree angle between the two neighboring partitions. 22

3.4 Oriention of the loacal node coordinate system in the interface zone for a cir-
cular filler particle: (a) complete membrane and (b) zoomed view. Oriention
of the loacal node coordinate system in the interface zone for a rectangular
filler particle: (c) complete membrane and (d) zoomed view. In this work,
the 2-axis shown in yellow is the one with the variable diffusion rate. 23

46

8 List of figures

3.5 Diffusion coefficient field in the interface zone for (a) a circular filler particle
and (b) a rectangular filler particle. 25

3.6 Curve shapes of diffusion rates in the interface zone at different prefactors
Ψ. A value of 0 on the x-axis represents the position at the outer edge of the
interface zone and a value of 1 represents the position at the outer edge of
the filler particle. 27

3.7 Mesh of membranes with (a) a circular filler particle and (b) a rectangular
filler particle. 30

4.1 Concentration results of the simulations of a membrane with (a) a circular
filler in the center and an interface zone, (b) a circular filler in the center and
no interface zone, (c) a rectangular filler in the center and an interface zone
and (d) a rectangular filler in the center and no interface zone. 32

4.2 (a) Outflow F over the width of a membrane with one circular filler in the
middle, (b) outflow over the width of a membrane with one rectangular filler
in the middle. 33

4.3 Concentration results of simulating a membrane with (a) multiple rectan-
gular filler particles and an interface zone around each filler, (b) multiple
rectangular filler particles without the interface zone. 34

4.4 Outflows across the width of various membranes with multiple rectangular
fillers. The membranes differ by the α values of the filler particles, as shown
in the legends of the plots. 35

4.5 (a) Integrated outflow of membranes with one circular filler in the middle,
(b) integrated outflows of membranes with one rectangular filler in the middle. 36

4.6 Accumulated outflows of membranes with multiple rectangular fillers. . . . 38
4.7 Absolute error of the total outflow from the membranes in FEM models in

respect to the analytically obtained data. 38

47

9 List of tables

2.1 Different models of sorption and typical associated interactions. [18] 6
2.2 General behavior observed for the transport of small molecules in poly-

mers.[16, 26] . 10

48

10 List of symbols

α Aspect ratio of the filler particles. (dimensionless)
∂C
∂ t Change of the concentration in the mem-

brane over time. (2D)
[∂C

∂ t] = mol ·m−2 · s−1

∂ p
∂x Pressure gradient along the thickness of

the membrane. (2D)
[∂ p

∂x] = Pa ·m−1

Ĉ Dimensionless concentration of the gas in
the membrane.

(dimensionless)

t̂ Dimensionless time. (dimensionless)
x̂ Dimensionless distance. (dimensionless)
⟨N⟩ Number of filler particles in the mem-

brane.
(dimensionless)

µ Mobility of the particles. [µ] = s ·kg−1

∇C Gradient of the concentration along the
thickness of the membrane. (2D)

[∇C] = mol ·m−3

φ f Area fraction of the filler particles in the
membrane.

(dimensionless)

Ψ Diffusion prefactor, necessary to calcu-
late the interface diffusion coefficent in
respect to the relative position in the inter-
face zone.

(dimensionless)

τ Tortuousity factor, describes the longer
tortuous path of the diffusing medium due
to the impermeable filler particles.

(dimensionless)

A f Area of the filler particle in an unit cell. [A f] = m2

Au Area of a unit cell in the membrane. [Au] = m2

b Thickness of the filler particle. [b] = m

49

10 List of symbols

bH Describes the gradient of the linear seg-
ment at the start of the Langmuir model.

[bH] = Pa−1

C Concentration of the gas in the membrane.
(2D)

[C] = mol ·m−2

C′
H Membrane saturation constant in the

Langmuir model. (2D)
[C′

H] = mol ·m−2

C1 Concentration of the gas at the upstream
border of the membrane. (2D)

[C1] = mol ·m−2

C2 Concentration of the gas at the down-
stream border of the membrane. (2D)

[C2] = mol ·m−2

D Diffusion coefficient of the membrane.
(2D)

[D] = m2 · s−1

d Distance between two rows of filler parti-
cles.

[d] = m

D0 Diffusion coefficient of the unfilled mem-
brane. (2D)

[D0] = m2 · s−1

De f f Effective diffusion coefficient of the filled
membrane. (2D)

[De f f] = m2 · s−1

DImax Maximum diffusion coefficient in the in-
terface zone. (2D)

[DImax] = m2 · s−1

DIN Diffusion coefficient in the interface zone,
if flow is normal to the filler particle edge.
(2D)

[DIN] = m2 · s−1

DIP Diffusion coefficient in the interface zone,
if flow is parallel to the filler particle edge.
(2D)

[DIP] = m2 · s−1

DM Diffusion coefficient of the membrane out-
side of the interface zone. (2D)

[DM] = m2 · s−1

F Diffusive flow density through the mem-
brane. (2D)

[F] = mol · s−1 ·m−1

F0 Flow density through the unfilled mem-
brane. (2D)

[F0] = mol · s−1 ·m−1

Fch Unhindered flow density through the chan-
nels of the membrane. (2D)

[Fch] = mol · s−1 ·m−1

fch Ratio of the flow through the unobstructed
channel in respect to the total flow.

(dimensionless)

50

10 List of symbols

Fe f f Effective flow through the filled mem-
brane. (2D)

[Fe f f] = mol · s−1 ·m−1

Ft Tortuous flow density through the chan-
nels of the membrane. (2D)

[Ft] = mol · s−1 ·m−1

ft Ratio of the tortuous flow in respect to the
total flow.

(dimensionless)

kb Boltzmann constant. [kb] = J ·K−1

L Membrane width. [L] = m
Le f f Effective length of the tortuous path of the

permeate through the filled membrane.
[Le f f] = m

Lt Length of the tortuous path through the
unit cell.

[Lt] = m

P Permeation coefficient of the membrane. [P] = mol · s−1 ·Pa−1

p Partial pressure of the gas in the mem-
brane.

[p] = Pa

p1 Pressure of the gas at the upstream bound-
ary of the membrane.

[p1] = Pa

p2 Pressure of the gas at the downstream
boundary of the membrane.

[p2] = Pa

Q Cumulative diffusive flow density through
the membrane. (2D)

[Q] = mol ·m−1

Qtotal Cumulative diffusive flow through the
membrane.

[Qtotal] = mol

S Solubility coefficient of the membrane.
(2D)

[S] = mol ·m−2 ·Pa−1

s Slit shape, distance between two filler par-
ticles in the same row.

[s] = m

S0 Solubility coefficient of the unfilled mem-
brane. (2D)

[S0] = mol ·m−2 ·Pa−1

Se f f Effective solubility coefficient of the filled
membrane. (2D)

[Se f f] = mol ·m−2 ·Pa−1

SI Solubility coefficient in the interface zone.
(2D)

[SI] = mol ·m−2 ·Pa−1

SM Solubility coefficient in the undisturbed
membrane. (2D)

[SM] = mol ·m−2 ·Pa−1

T Temperature. [T] = K

51

10 List of symbols

Tc Critical temperature of a gas. [Tc] = K
Tg Glass transition temperature of a polymer. [Tg] = K
w Width of the filler particle. [w] = m
wI Thickness of the interface zone. [wI] = m
wch Width of a channel in a filler particle ar-

rangement.
[wch] = m

52

Appendix A

Codes

A.1 Fortran - ABAQUS Subroutines

A.1.1 Subroutine ORIENT

1 SUBROUTINE ORIENT(T , NOEL, NPT , LAYER, KSPT ,COORDS, BASIS ,
2 * ORNAME,NNODES,CNODES,JNNUM)
3 C
4 INCLUDE ’ABA_PARAM. INC ’
5 C
6 CHARACTER*80 ORNAME
7 C
8 DIMENSION T (3 , 3) ,COORDS(3) , BASIS (3 , 3) ,CNODES(3 ,NNODES)
9 DIMENSION JNNUM(NNODES)

10

11 u s e r co d in g t o d e f i n e T
12

13 RETURN
14 END

53

A Codes

A.1.2 Subroutine UFIELD

1 SUBROUTINE UFIELD (FIELD , KFIELD , NSECPT , KSTEP , KINC , TIME ,NODE,
2 * COORDS, TEMP,DTEMP, NFIELD)
3 C
4 INCLUDE ’ABA_PARAM. INC ’
5 C
6 DIMENSION FIELD (NSECPT , NFIELD) , TIME (2) , COORDS(3) ,
7 1 TEMP(NSECPT) , DTEMP(NSECPT)
8 C
9

10

11 u s e r co d in g t o d e f i n e FIELD
12

13

14 RETURN
15 END

A.1.3 Subroutine USDFLD

1 SUBROUTINE USDFLD(FIELD , STATEV,PNEWDT, DIRECT , T , CELENT,
2 * TIME , DTIME ,CMNAME,ORNAME, NFIELD , NSTATV, NOEL, NPT , LAYER,
3 * KSPT , KSTEP , KINC , NDI , NSHR,COORD, JMAC, JMATYP,MATLAYO, LACCFLA)
4 C
5 INCLUDE ’ABA_PARAM. INC ’
6 C
7 CHARACTER*80 CMNAME,ORNAME
8 CHARACTER*3 FLGRAY(1 5)
9 DIMENSION FIELD (NFIELD) ,STATEV(NSTATV) ,DIRECT (3 , 3) ,

10 * T (3 , 3) ,TIME (2)
11 DIMENSION ARRAY(1 5) ,JARRAY(1 5) ,JMAC(*) ,JMATYP(*) ,COORD(*)
12

13

14 u s e r co d in g t o d e f i n e FIELD and , i f n e c e s s a r y , STATEV and PNEWDT
15

16

17 RETURN
18 END

54

A Codes

A.2 Python - ABAQUS Control Scripts and General Utility
Scripts

A.2.1 ABAQUS Input File Creation

1 # I m p o r t s
2 from abaqus i m p o r t *
3 from a b a q u s C o n s t a n t s i m p o r t *
4 from caeModules i m p o r t *
5

6 i m p o r t csv
7 i m p o r t math
8 i m p o r t numpy as np
9 i m p o r t r e

10 i m p o r t s y s
11

12

13 d e f l o g (msg) :
14 # Helper − f u n c t i o n t o p r i n t l o g s t o t h e py thon c o s o l e , t h e abaqus

c o n s o l e and save them i n a l o g f i l e
15 p r i n t (s t r (msg))
16 p r i n t >> s y s . _ _ s t d o u t _ _ , s t r (msg)
17 wi th open (" . . / Logs / l o g . t x t " , " a ") a s l o g _ f i l e :
18 l o g _ f i l e . w r i t e (s t r (msg))
19 l o g _ f i l e . w r i t e (" \ n ")
20

21

22 # V a r i a b l e s
23 c a s e = None
24 wi th open (" . . / DATA_FILES / a c t u a l _ c a s e . t x t ") a s f i l e :
25 r e a d e r = csv . r e a d e r (f i l e , d e l i m i t e r =" , ")
26 f o r row i n r e a d e r :
27 i f row :
28 c a s e = row [0] . r e p l a c e (" \ \ " , " / ") . r e p l a c e ("DATA_FILES / " , " ")
29

30

31 c a s e _ p a t h = " . . / DATA_FILES / " + c a s e
32

33 g e o m e t r i c _ p a r a m s = []
34 wi th open (c a s e _ p a t h + " / Geomet r i c_Da ta . csv ") a s f i l e :
35 r e a d e r = csv . r e a d e r (f i l e , d e l i m i t e r =" , ")
36 f o r row i n r e a d e r :

55

A Codes

37 f o r row_elem i n row :
38 s t r _ f l o a t s = r e . f i n d a l l (r " [− +] ? \ d * \ . \ d + | \ d+" , row_elem)
39 tmp = []
40 f o r s t r _ e l e m i n s t r _ f l o a t s :
41 tmp . append (f l o a t (s t r _ e l e m))
42 g e o m e t r i c _ p a r a m s . append (tmp)
43

44 name_params = None
45 wi th open (c a s e _ p a t h + " / Outpu t_Da ta . csv ") a s f i l e :
46 r e a d e r = csv . D i c t R e a d e r (f i l e , d e l i m i t e r =" , ")
47 f o r row i n r e a d e r :
48 name_params = row
49

50 f i l l e r _ r a d i u s = g e o m e t r i c _ p a r a m s [0] [0]
51 i n t e r f a c e _ t h i c k n e s s = g e o m e t r i c _ p a r a m s [1] [0]
52 membrane_ th i cknes s = g e o m e t r i c _ p a r a m s [2] [0]
53 membrane_width = g e o m e t r i c _ p a r a m s [3] [0]
54

55 s o l u b i l i t y = g e o m e t r i c _ p a r a m s [4] [0]
56 d i f f u s i v i t y _ m a t r i x = g e o m e t r i c _ p a r a m s [5] [0]
57 d i f f u s i v i t y _ i n t e r f a c e = g e o m e t r i c _ p a r a m s [6] [0]
58 i n t e r f a c e _ p r e f a c t o r = g e o m e t r i c _ p a r a m s [7] [0]
59

60 m a t r i x _ m e s h _ s i z e = g e o m e t r i c _ p a r a m s [8] [0]
61 i n t e r f a c e _ m e s h _ s i z e = g e o m e t r i c _ p a r a m s [9] [0]
62

63 f i l l e r _ c e n t e r = [g e o m e t r i c _ p a r a m s [1 0] [0] , g e o m e t r i c _ p a r a m s [1 1] [0]]
64

65 i n t e r f a c e _ d i s t a n c e s = [
66 0 . 0 5 ,
67 0 . 1 ,
68 0 . 1 5 ,
69 0 . 2 ,
70 0 . 2 5 ,
71 0 . 3 ,
72 0 . 3 5 ,
73 0 . 4 ,
74 0 . 4 5 ,
75 0 . 5 ,
76 0 . 5 5 ,
77 0 . 6 ,
78 0 . 6 5 ,
79 0 . 7 ,
80 0 . 7 5 ,

56

A Codes

81 0 . 8 5 ,
82 0 . 9 ,
83 0 . 9 5 ,
84 0 . 9 8 ,
85 0 . 9 9 ,
86]
87 d i f f u s i v i t y = [(1 . 0 , d i f f u s i v i t y _ m a t r i x , 0 . 0 , 0 . 0 , 0 . 0)]
88

89 f o r d i s t i n i n t e r f a c e _ d i s t a n c e s :
90 d i f f _ v a l u e = d i f f u s i v i t y _ i n t e r f a c e * math . exp (i n t e r f a c e _ p r e f a c t o r *

(d i s t − 1)) + d i f f u s i v i t y _ m a t r i x * (
91 1 − math . exp (i n t e r f a c e _ p r e f a c t o r * (d i s t − 1))
92)
93 d i f f u s i v i t y . append ((1 . 0 , d i f f _ v a l u e , 0 . 0 , 0 . 0 , d i s t))
94

95 d i f f u s i v i t y . append ((1 . 0 , d i f f u s i v i t y _ i n t e r f a c e , 0 . 0 , 0 . 0 , 1 . 0))
96 d i f f u s i v i t y = t u p l e (d i f f u s i v i t y)
97

98 # −−−−−−−−−−−−
99 # Abaqus Se tup

100 # −−−−−−−−−−−−
101

102 Mdb ()
103 my_sess ion = s e s s i o n
104 my_mdb = mdb
105

106 my_mdb . models . changeKey (fromName=" Model −1 " , toName=name_params [" model "])
107 my_model = my_mdb . models [name_params [" model "]]
108

109 # −−−−−−−−−−−−−
110 # P a r t C r e a t i o n
111 # −−−−−−−−−−−−−
112

113 s k e t c h = my_model . C o n s t r a i n e d S k e t c h (name=" _ _ p r o f i l e _ _ " , s h e e t S i z e = 2 0 0 . 0)
114 s k e t c h . r e c t a n g l e (p o i n t 1 = (0 , 0) , p o i n t 2 =(membrane_width ,

membrane_ th i cknes s))
115 p1 = (f i l l e r _ c e n t e r [0] + f i l l e r _ r a d i u s , f i l l e r _ c e n t e r [1])
116 s k e t c h . C i r c l e B y C e n t e r P e r i m e t e r (c e n t e r = f i l l e r _ c e n t e r , p o i n t 1 =p1)
117 my_par t = my_model . P a r t (name=name_params [" p a r t "] , d i m e n s i o n a l i t y =

TWO_D_PLANAR, t y p e =DEFORMABLE_BODY)
118 my_par t . B a s e S h e l l (s k e t c h = s k e t c h)
119

120 s k e t c h = my_model . C o n s t r a i n e d S k e t c h (name=" _ _ p r o f i l e _ _ " , s h e e t S i z e = 2 0 0 . 0)

57

A Codes

121 p2 = (f i l l e r _ c e n t e r [0] + f i l l e r _ r a d i u s + i n t e r f a c e _ t h i c k n e s s ,
f i l l e r _ c e n t e r [1])

122 s k e t c h . C i r c l e B y C e n t e r P e r i m e t e r (c e n t e r = f i l l e r _ c e n t e r , p o i n t 1 =p2)
123 my_par t . P a r t i t i o n F a c e B y S k e t c h (f a c e s = my_par t . f a c e s , s k e t c h = s k e t c h)
124

125 # −−−−−−−−−−−−−−
126 # M a t e r i a l Se tup
127 # −−−−−−−−−−−−−−
128

129 m y _ m a t e r i a l = my_model . M a t e r i a l (name=name_params [" m a t e r i a l _ m a t r i x "])
130 m y _ m a t e r i a l . D i f f u s i v i t y (law=GENERAL, t a b l e = ((d i f f u s i v i t y _ m a t r i x ,) ,))
131 m y _ m a t e r i a l . S o l u b i l i t y (t a b l e = ((s o l u b i l i t y ,) ,))
132

133 m y _ m a t e r i a l = my_model . M a t e r i a l (name=name_params [" m a t e r i a l _ i n t e r f a c e "])
134 m y _ m a t e r i a l . D i f f u s i v i t y (t y p e =ORTHOTROPIC, law=GENERAL, d e p e n d e n c i e s =1 ,

t a b l e = d i f f u s i v i t y)
135 m y _ m a t e r i a l . S o l u b i l i t y (t a b l e = ((s o l u b i l i t y ,) ,))
136 m y _ m a t e r i a l . U s e r D e f i n e d F i e l d ()
137

138 # −−−−−−−−−−−−−
139 # S e c t i o n Se tup
140 # −−−−−−−−−−−−−
141

142 my_model . HomogeneousSo l idSec t ion (
143 name=name_params [" s e c t i o n _ m a t r i x "] , m a t e r i a l =name_params ["

m a t e r i a l _ m a t r i x "] , t h i c k n e s s =None
144)
145 my_model . HomogeneousSo l idSec t ion (
146 name=name_params [" s e c t i o n _ i n t e r f a c e "] , m a t e r i a l =name_params ["

m a t e r i a l _ i n t e r f a c e "] , t h i c k n e s s =None
147)
148

149 r e g i o n _ m a t r i x = r e g i o n T o o l s e t . Region (
150 f a c e s = my_par t . f a c e s . f i n d A t (
151 ((f i l l e r _ c e n t e r [0] + f i l l e r _ r a d i u s + i n t e r f a c e _ t h i c k n e s s + 1e −3 ,

f i l l e r _ c e n t e r [1] , 0) ,) ,
152)
153)
154 r e g i o n _ i n t e r f a c e = r e g i o n T o o l s e t . Region (
155 f a c e s = my_par t . f a c e s . f i n d A t (
156 ((f i l l e r _ c e n t e r [0] + f i l l e r _ r a d i u s + i n t e r f a c e _ t h i c k n e s s − 1e −3 ,

f i l l e r _ c e n t e r [1] , 0) ,) ,
157)
158)

58

A Codes

159 my_par t . S e c t i o n A s s i g n m e n t (
160 r e g i o n = r e g i o n _ m a t r i x ,
161 sec t ionName =name_params [" s e c t i o n _ m a t r i x "] ,
162 o f f s e t = 0 . 0 ,
163 o f f s e t T y p e =MIDDLE_SURFACE,
164 o f f s e t F i e l d =" " ,
165 t h i c k n e s s A s s i g n m e n t =FROM_SECTION,
166)
167 my_par t . S e c t i o n A s s i g n m e n t (
168 r e g i o n = r e g i o n _ i n t e r f a c e ,
169 sec t ionName =name_params [" s e c t i o n _ i n t e r f a c e "] ,
170 o f f s e t = 0 . 0 ,
171 o f f s e t T y p e =MIDDLE_SURFACE,
172 o f f s e t F i e l d =" " ,
173 t h i c k n e s s A s s i g n m e n t =FROM_SECTION,
174)
175

176 # −−−−−−−−−−
177 # Mesh Se tup
178 # −−−−−−−−−−
179

180 elemType1 = mesh . ElemType (elemCode=DC2D4 , e l e m L i b r a r y =STANDARD)
181 elemType2 = mesh . ElemType (elemCode=DC2D3 , e l e m L i b r a r y =STANDARD)
182

183 my_par t . s e t M e s h C o n t r o l s (r e g i o n s = my_par t . f a c e s , e lemShape=QUAD, a l g o r i t h m
=ADVANCING_FRONT)

184 my_par t . s e t E l e m e n t T y p e (
185 r e g i o n s = r e g i o n T o o l s e t . Region (f a c e s = my_par t . f a c e s) ,
186 elemTypes =(elemType1 , elemType2) ,
187)
188 my_par t . s e e d P a r t (s i z e = m a t r i x _ m e s h _ s i z e , d e v i a t i o n F a c t o r = 0 . 1 ,

m i n S i z e F a c t o r = 0 . 1)
189

190 i n t e r f a c e _ e d g e s = my_par t . edges . getByBoundingBox (
191 xMin =(f i l l e r _ c e n t e r [0] − f i l l e r _ r a d i u s − i n t e r f a c e _ t h i c k n e s s − 1e −3)

,
192 xMax=(f i l l e r _ c e n t e r [0] + f i l l e r _ r a d i u s + i n t e r f a c e _ t h i c k n e s s + 1e −3)

,
193 yMin =(f i l l e r _ c e n t e r [1] − f i l l e r _ r a d i u s − i n t e r f a c e _ t h i c k n e s s − 1e −3)

,
194 yMax=(f i l l e r _ c e n t e r [1] + f i l l e r _ r a d i u s + i n t e r f a c e _ t h i c k n e s s + 1e −3)

,
195)
196 my_par t . S e t (edges = i n t e r f a c e _ e d g e s , name=" SeedByEdge ")

59

A Codes

197 my_par t . seedEdgeBySize (edges = i n t e r f a c e _ e d g e s , s i z e = i n t e r f a c e _ m e s h _ s i z e)
198 my_par t . gene ra t eMesh ()
199

200 # −−−−−−−−−−−−−−−−−
201 # O r i a n t a t i o n Se tup
202 # −−−−−−−−−−−−−−−−−
203

204 my_par t . M a t e r i a l O r i e n t a t i o n (r e g i o n = r e g i o n _ i n t e r f a c e , o r i e n t a t i o n T y p e =
USER)

205

206 # −−−−−−−−−−−−−−
207 # Assembly Se tup
208 # −−−−−−−−−−−−−−
209

210 my_assembly = my_model . roo tAssembly
211 my_assembly . DatumCsysByDefaul t (CARTESIAN)
212

213 m y _ i n s t a n c e = my_assembly . I n s t a n c e (name=name_params [" p a r t "] + " −1 " , p a r t
=my_part , d e p e n d e n t =ON)

214

215 # −−−−−−−−−
216 # S e t Se tup
217 # −−−−−−−−−
218

219 a l l _ n o d e s = m y _ i n s t a n c e . nodes
220 t o p _ n o d e s = m y _ i n s t a n c e . nodes . getByBoundingBox (
221 xMin=−1e −3 ,
222 yMin= membrane_ th i cknes s − 1e −3 ,
223 zMin = 0 . 0 ,
224 xMax=membrane_width + 1e −3 ,
225 yMax= membrane_ th i cknes s + 1e −3 ,
226 zMax = 0 . 0 ,
227)
228 b o t _ n o d e s = m y _ i n s t a n c e . nodes . getByBoundingBox (
229 xMin=−1e −3 , yMin=−1e −3 , zMin = 0 . 0 , xMax=membrane_width + 1e −3 , yMax=1

e −3 , zMax =0 .0
230)
231

232 i n t e r f a c e _ n o d e s = m y _ i n s t a n c e . nodes . g e tB y B ou n d in g C y l i nd e r (
233 c e n t e r 1 =(f i l l e r _ c e n t e r [0] , f i l l e r _ c e n t e r [1] , 0 − 1e −3) ,
234 c e n t e r 2 =(f i l l e r _ c e n t e r [0] , f i l l e r _ c e n t e r [1] , 0 + 1e −3) ,
235 r a d i u s = f i l l e r _ r a d i u s + i n t e r f a c e _ t h i c k n e s s + 1e −3 ,
236)
237

60

A Codes

238 i n t e r f a c e _ e l e m e n t s = m y _ i n s t a n c e . e l e m e n t s . g e tB y B ou n d in g Cy l i nd e r (
239 c e n t e r 1 =(f i l l e r _ c e n t e r [0] , f i l l e r _ c e n t e r [1] , 0 − 1e −3) ,
240 c e n t e r 2 =(f i l l e r _ c e n t e r [0] , f i l l e r _ c e n t e r [1] , 0 + 1e −3) ,
241 r a d i u s = f i l l e r _ r a d i u s + i n t e r f a c e _ t h i c k n e s s + 1e −3 ,
242)
243

244 a l l _ n o d e s _ s e t = my_assembly . S e t (nodes = a l l _ n o d e s , name=name_params ["
s e t _ A l l "])

245 i n t e r f a c e _ n o d e s _ s e t = my_assembly . S e t (nodes = i n t e r f a c e _ n o d e s , name=
name_params [" s e t _ I n t e r f a c e _ N o d e s "])

246 i n t e r f a c e _ e l e m e n t _ s e t = my_assembly . S e t (nodes = i n t e r f a c e _ e l e m e n t s , name=
name_params [" s e t _ I n t e r f a c e _ E l e m e n t s "])

247 i n l e t _ s e t = my_assembly . S e t (nodes = top_nodes , name=name_params [" s e t _ I n "])
248 o u t l e t _ s e t = my_assembly . S e t (nodes = bo t_nodes , name=name_params [" s e t _ O u t "

])
249

250

251 a l l _ l e f t _ n o d e s = m y _ i n s t a n c e . nodes . getByBoundingBox (
252 xMin=−1e −3 ,
253 yMin=−1e −3 ,
254 zMin = 0 . 0 ,
255 xMax=1e −3 ,
256 yMax= membrane_ th i cknes s + 1e −3 ,
257 zMax = 0 . 0 ,
258)
259 a l l _ l e f t _ n o d e s _ y _ c o o r d = []
260

261 a l l _ r i g h t _ n o d e s = m y _ i n s t a n c e . nodes . getByBoundingBox (
262 xMin=membrane_width − 1e −3 ,
263 yMin=−1e −3 ,
264 zMin = 0 . 0 ,
265 xMax=membrane_width + 1e −3 ,
266 yMax= membrane_ th i cknes s + 1e −3 ,
267 zMax = 0 . 0 ,
268)
269 a l l _ r i g h t _ n o d e s _ y _ c o o r d = []
270

271 f o r node i n a l l _ l e f t _ n o d e s :
272 a l l _ l e f t _ n o d e s _ y _ c o o r d . append (node . c o o r d i n a t e s [1])
273

274 l e f t _ i d x = np . a r g s o r t (a l l _ l e f t _ n o d e s _ y _ c o o r d)
275

276 l e f t _ n o d e s = []
277 f o r i d x i n l e f t _ i d x :

61

A Codes

278 f o r node i n a l l _ l e f t _ n o d e s :
279 i f node . c o o r d i n a t e s [1] == a l l _ l e f t _ n o d e s _ y _ c o o r d [i d x] :
280 l e f t _ n o d e s . append (node . l a b e l)
281

282 f o r node i n a l l _ r i g h t _ n o d e s :
283 a l l _ r i g h t _ n o d e s _ y _ c o o r d . append (node . c o o r d i n a t e s [1])
284

285 r i g h t _ i d x = np . a r g s o r t (a l l _ r i g h t _ n o d e s _ y _ c o o r d)
286

287 r i g h t _ n o d e s = []
288 f o r i d x i n r i g h t _ i d x :
289 f o r node i n a l l _ r i g h t _ n o d e s :
290 i f node . c o o r d i n a t e s [1] == a l l _ r i g h t _ n o d e s _ y _ c o o r d [i d x] :
291 r i g h t _ n o d e s . append (node . l a b e l)
292

293

294 n o d e _ s e t s = []
295 f o r i i i n r a n g e (l e n (l e f t _ n o d e s)) :
296 r i g h t _ n a m e = "NR" + s t r (i i)
297 l e f t _ n a m e = "NL" + s t r (i i)
298

299 my_assembly . SetFromNodeLabels (
300 n o d e L a b e l s =(
301 (
302 name_params [" p a r t "] + " −1 " ,
303 (l e f t _ n o d e s [i i] ,) ,
304) ,
305) ,
306 name= l e f t _ n a m e ,
307)
308 my_assembly . SetFromNodeLabels (
309 n o d e L a b e l s =(
310 (
311 name_params [" p a r t "] + " −1 " ,
312 (r i g h t _ n o d e s [i i] ,) ,
313) ,
314) ,
315 name= r igh t_name ,
316)
317 n o d e _ s e t s . append ([r igh t_name , l e f t _ n a m e])
318

319 # −−−−−−−−−−−−−−
320 # Times tep Se tup
321 # −−−−−−−−−−−−−−

62

A Codes

322

323 my_model . M a s s D i f f u s i o n S t e p (
324 name=name_params [" t i m e _ s t e p "] ,
325 p r e v i o u s =" I n i t i a l " ,
326 r e s p o n s e =STEADY_STATE,
327 a m p l i t u d e =RAMP,
328)
329 d e l my_model . h i s t o r y O u t p u t R e q u e s t s ["H−Output −1 "]
330 my_model . f i e l d O u t p u t R e q u e s t s ["F−Output −1 "] . s e t V a l u e s (v a r i a b l e s =("MFL" , "

CONC" , "COORD" , "FV"))
331

332 # −−−−−−−−−
333 # Se tup BCs
334 # −−−−−−−−−
335

336 i n l e t _ r e g i o n = r e g i o n T o o l s e t . Region (nodes = t o p _ n o d e s)
337 my_model . Concen t r a t i onBC (
338 name=name_params [" bc_In "] ,
339 c rea t eS tepName =name_params [" t i m e _ s t e p "] ,
340 r e g i o n = i n l e t _ r e g i o n ,
341 f i x e d =OFF ,
342 d i s t r i b u t i o n T y p e =UNIFORM,
343 f i e ldName =" " ,
344 magni tude = 1 . 0 ,
345 a m p l i t u d e =UNSET,
346)
347

348 o u t l e t _ r e g i o n = r e g i o n T o o l s e t . Region (nodes = b o t _ n o d e s)
349 my_model . Concen t r a t i onBC (
350 name=name_params [" bc_Out "] ,
351 c rea t eS tepName =name_params [" t i m e _ s t e p "] ,
352 r e g i o n = o u t l e t _ r e g i o n ,
353 f i x e d =OFF ,
354 d i s t r i b u t i o n T y p e =UNIFORM,
355 f i e ldName =" " ,
356 magni tude = 0 . 0 ,
357 a m p l i t u d e =UNSET,
358)
359

360 # −−−−−−−−−−−−
361 # Se tup F i e l d s
362 # −−−−−−−−−−−−
363

364 f i e l d _ r e g i o n = r e g i o n T o o l s e t . Region (nodes = i n t e r f a c e _ n o d e s _ s e t . nodes)

63

A Codes

365 my_model . F i e l d (
366 name=name_params [" d i f f _ f i e l d "] ,
367 c rea t eS tepName =name_params [" t i m e _ s t e p "] ,
368 r e g i o n = f i e l d _ r e g i o n ,
369 d i s t r i b u t i o n T y p e =USER_DEFINED ,
370 f i e l d V a r i a b l e N u m =1 ,
371)
372

373 # −−−−−−−−−
374 # Se tup C o n s t r a i n t s
375 # −−−−−−−−−
376

377 f o r i i , n o d e _ s e t i n enumera t e (n o d e _ s e t s) :
378 r i g h t _ n a m e = n o d e _ s e t [0] . uppe r ()
379 l e f t _ n a m e = n o d e _ s e t [1] . uppe r ()
380 my_model . E q u a t i o n (
381 name=" eq " + s t r (i i) ,
382 t e r m s = ((1 . 0 , r i gh t_name , 11) , (− 1 . 0 , l e f t _ n a m e , 11)) ,
383)
384

385 # −−−−−−−−−
386 # Se tup Job
387 # −−−−−−−−−
388

389 my_job = my_mdb . Job (
390 name= case ,
391 model=name_params [" model "] ,
392 d e s c r i p t i o n =" " ,
393 t y p e =ANALYSIS ,
394 a tTime =None ,
395 w a i t M i n u t e s =0 ,
396 wai tHour s =0 ,
397 queue=None ,
398 memory =90 ,
399 memoryUnits=PERCENTAGE,
400 getMemoryFromAnalysis=True ,
401 e x p l i c i t P r e c i s i o n =SINGLE ,
402 n o d a l O u t p u t P r e c i s i o n =SINGLE ,
403 e c h o P r i n t =OFF ,
404 m o d e l P r i n t =OFF ,
405 c o n t a c t P r i n t =OFF ,
406 h i s t o r y P r i n t =OFF ,
407 u s e r S u b r o u t i n e =" " ,
408 s c r a t c h =" " ,

64

A Codes

409 r e s u l t s F o r m a t =ODB,
410 numThreadsPerMpiProcess =1 ,
411 m u l t i p r o c e s s i n g M o d e =DEFAULT,
412 numCpus =2 ,
413 numDomains =2 ,
414 numGPUs=1 ,
415)
416

417 my_job . w r i t e I n p u t ()

A.2.2 ABAQUS Result Extraction

1 # I m p o r t s
2 from odbAccess i m p o r t *
3 i m p o r t numpy as np
4 i m p o r t os
5 i m p o r t csv
6

7

8 d e f l o g (msg) :
9 # Helper − f u n c t i o n t o p r i n t l o g s t o t h e py thon c o s o l e , t h e abaqus

c o n s o l e and save them i n a l o g f i l e
10 p r i n t (s t r (msg))
11 p r i n t >> s y s . _ _ s t d o u t _ _ , s t r (msg)
12 wi th open (" . . / Logs / e x p o r t _ l o g . t x t " , " a ") a s l o g _ f i l e :
13 l o g _ f i l e . w r i t e (s t r (msg))
14 l o g _ f i l e . w r i t e (" \ n ")
15

16

17 c a s e = None
18 wi th open (" . . / DATA_FILES / a c t u a l _ c a s e . t x t ") a s f i l e :
19 r e a d e r = csv . r e a d e r (f i l e , d e l i m i t e r =" , ")
20 f o r row i n r e a d e r :
21 i f row :
22 c a s e = row [0] . r e p l a c e (" \ \ " , " / ") . r e p l a c e ("DATA_FILES / " , " ")
23

24 c a s e _ p a t h = " . . / DATA_FILES / " + c a s e
25

26 name_params = None
27 wi th open (c a s e _ p a t h + " / Outpu t_Da ta . csv ") a s f i l e :
28 r e a d e r = csv . D i c t R e a d e r (f i l e , d e l i m i t e r =" , ")
29 f o r row i n r e a d e r :

65

A Codes

30 name_params = row
31

32 # E xp or t Data
33 my_sess ion = s e s s i o n
34 my_odb = my_sess ion . openOdb (name= c a s e + " . odb ")
35 f rame = my_odb . s t e p s [name_params [" t i m e _ s t e p "]] . f r am e s [1]
36 i n s t a n c e = my_odb . roo tAssembly . i n s t a n c e s [name_params [" p a r t "] . uppe r () + "

−1 "]
37

38 s e t _ r e g i o n = my_odb . roo tAssembly . n o d e S e t s [name_params [" s e t _ O u t "] . uppe r ()
]

39 m f l _ d a t a = frame . f i e l d O u t p u t s ["MFL"] . g e t S u b s e t (r e g i o n = s e t _ r e g i o n ,
p o s i t i o n =ELEMENT_NODAL) . v a l u e s

40

41 d a t a _ l i s t = []
42 f o r i n d e x i n r a n g e (l e n (m f l _ d a t a)) :
43 d a t a _ l i s t . append (
44 [
45 i n s t a n c e . getNodeFromLabel (m f l _ d a t a [i n d e x] . nodeLabe l) .

c o o r d i n a t e s [0] ,
46 i n s t a n c e . getNodeFromLabel (m f l _ d a t a [i n d e x] . nodeLabe l) .

c o o r d i n a t e s [1] ,
47 m f l _ d a t a [i n d e x] . d a t a [1] ,
48]
49)
50 np . s a v e t x t (
51 " . . / RESULTS / R e s u l t _ " + c a s e + " . csv " ,
52 d a t a _ l i s t ,
53 d e l i m i t e r =" , " ,
54 fmt="% s " ,
55 h e a d e r =" x , y , mfl_2 " ,
56)

66

A Codes

A.2.3 ABAQUS Standard Simulation

1 # I m p o r t s
2 from abaqus i m p o r t *
3 from a b a q u s C o n s t a n t s i m p o r t *
4 from caeModules i m p o r t *
5

6 i m p o r t csv
7 i m p o r t math
8 i m p o r t numpy as np
9 i m p o r t r e

10 i m p o r t s y s
11

12

13 d e f l o g (msg) :
14 # Helper − f u n c t i o n t o p r i n t l o g s t o t h e py thon c o s o l e , t h e abaqus

c o n s o l e and save them i n a l o g f i l e
15 p r i n t (s t r (msg))
16 p r i n t >> s y s . _ _ s t d o u t _ _ , s t r (msg)
17 wi th open (" . . / Logs / l o g . t x t " , " a ") a s l o g _ f i l e :
18 l o g _ f i l e . w r i t e (s t r (msg))
19 l o g _ f i l e . w r i t e (" \ n ")
20

21

22 # V a r i a b l e s
23 c a s e = None
24 wi th open (" . . / DATA_FILES / a c t u a l _ c a s e . t x t ") a s f i l e :
25 r e a d e r = csv . r e a d e r (f i l e , d e l i m i t e r =" , ")
26 f o r row i n r e a d e r :
27 i f row :
28 c a s e = row [0] . r e p l a c e (" \ \ " , " / ") . r e p l a c e ("DATA_FILES / " , " ")
29

30

31 c a s e _ p a t h = " . . / DATA_FILES / " + c a s e
32

33 g e o m e t r i c _ p a r a m s = []
34 wi th open (c a s e _ p a t h + " / Geomet r i c_Da ta . csv ") a s f i l e :
35 r e a d e r = csv . r e a d e r (f i l e , d e l i m i t e r =" , ")
36 f o r row i n r e a d e r :
37 f o r row_elem i n row :
38 s t r _ f l o a t s = r e . f i n d a l l (r " [− +] ? \ d * \ . \ d + | \ d+" , row_elem)
39 tmp = []
40 f o r s t r _ e l e m i n s t r _ f l o a t s :
41 tmp . append (f l o a t (s t r _ e l e m))

67

A Codes

42 g e o m e t r i c _ p a r a m s . append (tmp)
43

44 name_params = None
45 wi th open (c a s e _ p a t h + " / Outpu t_Da ta . csv ") a s f i l e :
46 r e a d e r = csv . D i c t R e a d e r (f i l e , d e l i m i t e r =" , ")
47 f o r row i n r e a d e r :
48 name_params = row
49

50 f i l l e r _ r a d i u s = g e o m e t r i c _ p a r a m s [0] [0]
51 i n t e r f a c e _ t h i c k n e s s = g e o m e t r i c _ p a r a m s [1] [0]
52 membrane_ th i cknes s = g e o m e t r i c _ p a r a m s [2] [0]
53 membrane_width = g e o m e t r i c _ p a r a m s [3] [0]
54

55 s o l u b i l i t y = g e o m e t r i c _ p a r a m s [4] [0]
56 d i f f u s i v i t y _ m a t r i x = g e o m e t r i c _ p a r a m s [5] [0]
57 d i f f u s i v i t y _ i n t e r f a c e = g e o m e t r i c _ p a r a m s [6] [0]
58 i n t e r f a c e _ p r e f a c t o r = g e o m e t r i c _ p a r a m s [7] [0]
59

60 m a t r i x _ m e s h _ s i z e = g e o m e t r i c _ p a r a m s [8] [0]
61 i n t e r f a c e _ m e s h _ s i z e = g e o m e t r i c _ p a r a m s [9] [0]
62

63 f i l l e r _ c e n t e r = [g e o m e t r i c _ p a r a m s [1 0] [0] , g e o m e t r i c _ p a r a m s [1 1] [0]]
64

65 # −−−−−−−−−−−−
66 # Abaqus Se tup
67 # −−−−−−−−−−−−
68

69 Mdb ()
70 my_sess ion = s e s s i o n
71 my_mdb = mdb
72

73 my_mdb . models . changeKey (fromName=" Model −1 " , toName=name_params [" model "])
74 my_model = my_mdb . models [name_params [" model "]]
75

76 # −−−−−−−−−−−−−
77 # P a r t C r e a t i o n
78 # −−−−−−−−−−−−−
79

80 s k e t c h = my_model . C o n s t r a i n e d S k e t c h (name=" _ _ p r o f i l e _ _ " , s h e e t S i z e = 2 0 0 . 0)
81 s k e t c h . r e c t a n g l e (p o i n t 1 = (0 , 0) , p o i n t 2 =(membrane_width ,

membrane_ th i cknes s))
82 p1 = (f i l l e r _ c e n t e r [0] + f i l l e r _ r a d i u s , f i l l e r _ c e n t e r [1])
83 s k e t c h . C i r c l e B y C e n t e r P e r i m e t e r (c e n t e r = f i l l e r _ c e n t e r , p o i n t 1 =p1)

68

A Codes

84 my_par t = my_model . P a r t (name=name_params [" p a r t "] , d i m e n s i o n a l i t y =
TWO_D_PLANAR, t y p e =DEFORMABLE_BODY)

85 my_par t . B a s e S h e l l (s k e t c h = s k e t c h)
86

87 s k e t c h = my_model . C o n s t r a i n e d S k e t c h (name=" _ _ p r o f i l e _ _ " , s h e e t S i z e = 2 0 0 . 0)
88 p2 = (f i l l e r _ c e n t e r [0] + f i l l e r _ r a d i u s + i n t e r f a c e _ t h i c k n e s s ,

f i l l e r _ c e n t e r [1])
89 s k e t c h . C i r c l e B y C e n t e r P e r i m e t e r (c e n t e r = f i l l e r _ c e n t e r , p o i n t 1 =p2)
90 my_par t . P a r t i t i o n F a c e B y S k e t c h (f a c e s = my_par t . f a c e s , s k e t c h = s k e t c h)
91

92 # −−−−−−−−−−−−−−
93 # M a t e r i a l Se tup
94 # −−−−−−−−−−−−−−
95

96 m y _ m a t e r i a l = my_model . M a t e r i a l (name=name_params [" m a t e r i a l _ m a t r i x "])
97 m y _ m a t e r i a l . D i f f u s i v i t y (law=GENERAL, t a b l e = ((d i f f u s i v i t y _ m a t r i x ,) ,))
98 m y _ m a t e r i a l . S o l u b i l i t y (t a b l e = ((s o l u b i l i t y ,) ,))
99

100 # −−−−−−−−−−−−−
101 # S e c t i o n Se tup
102 # −−−−−−−−−−−−−
103

104 my_model . HomogeneousSo l idSec t ion (
105 name=name_params [" s e c t i o n _ m a t r i x "] , m a t e r i a l =name_params ["

m a t e r i a l _ m a t r i x "] , t h i c k n e s s =None
106)
107

108 r e g i o n _ m a t r i x = r e g i o n T o o l s e t . Region (f a c e s = my_par t . f a c e s)
109

110 my_par t . S e c t i o n A s s i g n m e n t (
111 r e g i o n = r e g i o n _ m a t r i x ,
112 sec t ionName =name_params [" s e c t i o n _ m a t r i x "] ,
113 o f f s e t = 0 . 0 ,
114 o f f s e t T y p e =MIDDLE_SURFACE,
115 o f f s e t F i e l d =" " ,
116 t h i c k n e s s A s s i g n m e n t =FROM_SECTION,
117)
118

119 # −−−−−−−−−−
120 # Mesh Se tup
121 # −−−−−−−−−−
122

123 elemType1 = mesh . ElemType (elemCode=DC2D4 , e l e m L i b r a r y =STANDARD)
124 elemType2 = mesh . ElemType (elemCode=DC2D3 , e l e m L i b r a r y =STANDARD)

69

A Codes

125

126 my_par t . s e t M e s h C o n t r o l s (r e g i o n s = my_par t . f a c e s , e lemShape=QUAD, a l g o r i t h m
=ADVANCING_FRONT)

127 my_par t . s e t E l e m e n t T y p e (
128 r e g i o n s = r e g i o n T o o l s e t . Region (f a c e s = my_par t . f a c e s) ,
129 elemTypes =(elemType1 , elemType2) ,
130)
131 my_par t . s e e d P a r t (s i z e = m a t r i x _ m e s h _ s i z e , d e v i a t i o n F a c t o r = 0 . 1 ,

m i n S i z e F a c t o r = 0 . 1)
132

133 i n t e r f a c e _ e d g e s = my_par t . edges . getByBoundingBox (
134 xMin =(f i l l e r _ c e n t e r [0] − f i l l e r _ r a d i u s − i n t e r f a c e _ t h i c k n e s s − 1e −3)

,
135 xMax=(f i l l e r _ c e n t e r [0] + f i l l e r _ r a d i u s + i n t e r f a c e _ t h i c k n e s s + 1e −3)

,
136 yMin =(f i l l e r _ c e n t e r [1] − f i l l e r _ r a d i u s − i n t e r f a c e _ t h i c k n e s s − 1e −3)

,
137 yMax=(f i l l e r _ c e n t e r [1] + f i l l e r _ r a d i u s + i n t e r f a c e _ t h i c k n e s s + 1e −3)

,
138)
139 my_par t . S e t (edges = i n t e r f a c e _ e d g e s , name=" SeedByEdge ")
140 my_par t . seedEdgeBySize (edges = i n t e r f a c e _ e d g e s , s i z e = i n t e r f a c e _ m e s h _ s i z e)
141 my_par t . gene ra t eMesh ()
142

143 # −−−−−−−−−−−−−−
144 # Assembly Se tup
145 # −−−−−−−−−−−−−−
146

147 my_assembly = my_model . roo tAssembly
148 my_assembly . DatumCsysByDefaul t (CARTESIAN)
149

150 m y _ i n s t a n c e = my_assembly . I n s t a n c e (name=name_params [" p a r t "] + " −1 " , p a r t
=my_part , d e p e n d e n t =ON)

151

152 # −−−−−−−−−
153 # S e t Se tup
154 # −−−−−−−−−
155

156 a l l _ n o d e s = m y _ i n s t a n c e . nodes
157 t o p _ n o d e s = m y _ i n s t a n c e . nodes . getByBoundingBox (
158 xMin=−1e −3 ,
159 yMin= membrane_ th i cknes s − 1e −3 ,
160 zMin = 0 . 0 ,
161 xMax=membrane_width + 1e −3 ,

70

A Codes

162 yMax= membrane_ th i cknes s + 1e −3 ,
163 zMax = 0 . 0 ,
164)
165 b o t _ n o d e s = m y _ i n s t a n c e . nodes . getByBoundingBox (
166 xMin=−1e −3 , yMin=−1e −3 , zMin = 0 . 0 , xMax=membrane_width + 1e −3 , yMax=1

e −3 , zMax =0 .0
167)
168

169 i n t e r f a c e _ n o d e s = m y _ i n s t a n c e . nodes . g e tB y B ou n d in g C y l i nd e r (
170 c e n t e r 1 =(f i l l e r _ c e n t e r [0] , f i l l e r _ c e n t e r [1] , 0 − 1e −3) ,
171 c e n t e r 2 =(f i l l e r _ c e n t e r [0] , f i l l e r _ c e n t e r [1] , 0 + 1e −3) ,
172 r a d i u s = f i l l e r _ r a d i u s + i n t e r f a c e _ t h i c k n e s s + 1e −3 ,
173)
174

175 i n t e r f a c e _ e l e m e n t s = m y _ i n s t a n c e . e l e m e n t s . g e tB y B ou n d in g Cy l i nd e r (
176 c e n t e r 1 =(f i l l e r _ c e n t e r [0] , f i l l e r _ c e n t e r [1] , 0 − 1e −3) ,
177 c e n t e r 2 =(f i l l e r _ c e n t e r [0] , f i l l e r _ c e n t e r [1] , 0 + 1e −3) ,
178 r a d i u s = f i l l e r _ r a d i u s + i n t e r f a c e _ t h i c k n e s s + 1e −3 ,
179)
180

181 a l l _ n o d e s _ s e t = my_assembly . S e t (nodes = a l l _ n o d e s , name=name_params ["
s e t _ A l l "])

182 i n t e r f a c e _ n o d e s _ s e t = my_assembly . S e t (nodes = i n t e r f a c e _ n o d e s , name=
name_params [" s e t _ I n t e r f a c e _ N o d e s "])

183 i n t e r f a c e _ e l e m e n t _ s e t = my_assembly . S e t (nodes = i n t e r f a c e _ e l e m e n t s , name=
name_params [" s e t _ I n t e r f a c e _ E l e m e n t s "])

184 i n l e t _ s e t = my_assembly . S e t (nodes = top_nodes , name=name_params [" s e t _ I n "])
185 o u t l e t _ s e t = my_assembly . S e t (nodes = bo t_nodes , name=name_params [" s e t _ O u t "

])
186

187

188 a l l _ l e f t _ n o d e s = m y _ i n s t a n c e . nodes . getByBoundingBox (
189 xMin=−1e −3 ,
190 yMin=−1e −3 ,
191 zMin = 0 . 0 ,
192 xMax=1e −3 ,
193 yMax= membrane_ th i cknes s + 1e −3 ,
194 zMax = 0 . 0 ,
195)
196 a l l _ l e f t _ n o d e s _ y _ c o o r d = []
197

198 a l l _ r i g h t _ n o d e s = m y _ i n s t a n c e . nodes . getByBoundingBox (
199 xMin=membrane_width − 1e −3 ,
200 yMin=−1e −3 ,

71

A Codes

201 zMin = 0 . 0 ,
202 xMax=membrane_width + 1e −3 ,
203 yMax= membrane_ th i cknes s + 1e −3 ,
204 zMax = 0 . 0 ,
205)
206 a l l _ r i g h t _ n o d e s _ y _ c o o r d = []
207

208 f o r node i n a l l _ l e f t _ n o d e s :
209 a l l _ l e f t _ n o d e s _ y _ c o o r d . append (node . c o o r d i n a t e s [1])
210

211 l e f t _ i d x = np . a r g s o r t (a l l _ l e f t _ n o d e s _ y _ c o o r d)
212

213 l e f t _ n o d e s = []
214 f o r i d x i n l e f t _ i d x :
215 f o r node i n a l l _ l e f t _ n o d e s :
216 i f node . c o o r d i n a t e s [1] == a l l _ l e f t _ n o d e s _ y _ c o o r d [i d x] :
217 l e f t _ n o d e s . append (node . l a b e l)
218

219 f o r node i n a l l _ r i g h t _ n o d e s :
220 a l l _ r i g h t _ n o d e s _ y _ c o o r d . append (node . c o o r d i n a t e s [1])
221

222 r i g h t _ i d x = np . a r g s o r t (a l l _ r i g h t _ n o d e s _ y _ c o o r d)
223

224 r i g h t _ n o d e s = []
225 f o r i d x i n r i g h t _ i d x :
226 f o r node i n a l l _ r i g h t _ n o d e s :
227 i f node . c o o r d i n a t e s [1] == a l l _ r i g h t _ n o d e s _ y _ c o o r d [i d x] :
228 r i g h t _ n o d e s . append (node . l a b e l)
229

230

231 n o d e _ s e t s = []
232 f o r i i i n r a n g e (l e n (l e f t _ n o d e s)) :
233 r i g h t _ n a m e = "NR" + s t r (i i)
234 l e f t _ n a m e = "NL" + s t r (i i)
235

236 my_assembly . SetFromNodeLabels (
237 n o d e L a b e l s =(
238 (
239 name_params [" p a r t "] + " −1 " ,
240 (l e f t _ n o d e s [i i] ,) ,
241) ,
242) ,
243 name= l e f t _ n a m e ,
244)

72

A Codes

245 my_assembly . SetFromNodeLabels (
246 n o d e L a b e l s =(
247 (
248 name_params [" p a r t "] + " −1 " ,
249 (r i g h t _ n o d e s [i i] ,) ,
250) ,
251) ,
252 name= r igh t_name ,
253)
254 n o d e _ s e t s . append ([r igh t_name , l e f t _ n a m e])
255

256 # −−−−−−−−−−−−−−
257 # Times tep Se tup
258 # −−−−−−−−−−−−−−
259

260 my_model . M a s s D i f f u s i o n S t e p (
261 name=name_params [" t i m e _ s t e p "] ,
262 p r e v i o u s =" I n i t i a l " ,
263 r e s p o n s e =STEADY_STATE,
264 a m p l i t u d e =RAMP,
265)
266 d e l my_model . h i s t o r y O u t p u t R e q u e s t s ["H−Output −1 "]
267 my_model . f i e l d O u t p u t R e q u e s t s ["F−Output −1 "] . s e t V a l u e s (v a r i a b l e s =("MFL" , "

CONC" , "COORD" , "FV"))
268

269 # −−−−−−−−−
270 # Se tup BCs
271 # −−−−−−−−−
272

273 i n l e t _ r e g i o n = r e g i o n T o o l s e t . Region (nodes = t o p _ n o d e s)
274 my_model . Concen t r a t i onBC (
275 name=name_params [" bc_In "] ,
276 c rea t eS tepName =name_params [" t i m e _ s t e p "] ,
277 r e g i o n = i n l e t _ r e g i o n ,
278 f i x e d =OFF ,
279 d i s t r i b u t i o n T y p e =UNIFORM,
280 f i e ldName =" " ,
281 magni tude = 1 . 0 ,
282 a m p l i t u d e =UNSET,
283)
284

285 o u t l e t _ r e g i o n = r e g i o n T o o l s e t . Region (nodes = b o t _ n o d e s)
286 my_model . Concen t r a t i onBC (
287 name=name_params [" bc_Out "] ,

73

A Codes

288 c rea t eS tepName =name_params [" t i m e _ s t e p "] ,
289 r e g i o n = o u t l e t _ r e g i o n ,
290 f i x e d =OFF ,
291 d i s t r i b u t i o n T y p e =UNIFORM,
292 f i e ldName =" " ,
293 magni tude = 0 . 0 ,
294 a m p l i t u d e =UNSET,
295)
296

297 # −−−−−−−−−
298 # Se tup C o n s t r a i n t s
299 # −−−−−−−−−
300

301 f o r i i , n o d e _ s e t i n enumera t e (n o d e _ s e t s) :
302 r i g h t _ n a m e = n o d e _ s e t [0] . uppe r ()
303 l e f t _ n a m e = n o d e _ s e t [1] . uppe r ()
304 my_model . E q u a t i o n (
305 name=" eq " + s t r (i i) ,
306 t e r m s = ((1 . 0 , r i gh t_name , 11) , (− 1 . 0 , l e f t _ n a m e , 11)) ,
307)
308

309

310 # −−−−−−−−−
311 # Se tup Job
312 # −−−−−−−−−
313

314 job_name = " S t a n d a r t _ _ " + c a s e
315 my_job = my_mdb . Job (
316 name=job_name ,
317 model=name_params [" model "] ,
318 d e s c r i p t i o n =" " ,
319 t y p e =ANALYSIS ,
320 a tTime =None ,
321 w a i t M i n u t e s =0 ,
322 wai tHour s =0 ,
323 queue=None ,
324 memory =90 ,
325 memoryUnits=PERCENTAGE,
326 getMemoryFromAnalysis=True ,
327 e x p l i c i t P r e c i s i o n =SINGLE ,
328 n o d a l O u t p u t P r e c i s i o n =SINGLE ,
329 e c h o P r i n t =OFF ,
330 m o d e l P r i n t =OFF ,
331 c o n t a c t P r i n t =OFF ,

74

A Codes

332 h i s t o r y P r i n t =OFF ,
333 u s e r S u b r o u t i n e =" " ,
334 s c r a t c h =" " ,
335 r e s u l t s F o r m a t =ODB,
336 numThreadsPerMpiProcess =1 ,
337 m u l t i p r o c e s s i n g M o d e =DEFAULT,
338 numCpus =2 ,
339 numDomains =2 ,
340 numGPUs=1 ,
341)
342

343 my_job . sub mi t ()
344 my_job . w a i t F o r C o m p l e t i o n ()
345

346 # −−−−−−−−−
347 # Outpu t
348 # −−−−−−−−−
349

350 my_sess ion = s e s s i o n
351 my_odb = my_sess ion . openOdb (name=job_name + " . odb ")
352 f rame = my_odb . s t e p s [name_params [" t i m e _ s t e p "]] . f r am e s [1]
353 i n s t a n c e = my_odb . roo tAssembly . i n s t a n c e s [name_params [" p a r t "] . uppe r () + "

−1 "]
354

355 s e t _ r e g i o n = my_odb . roo tAssembly . n o d e S e t s [name_params [" s e t _ O u t "] . uppe r ()
]

356 m f l _ d a t a = frame . f i e l d O u t p u t s ["MFL"] . g e t S u b s e t (r e g i o n = s e t _ r e g i o n ,
p o s i t i o n =ELEMENT_NODAL) . v a l u e s

357

358 d a t a _ l i s t = []
359 f o r i n d e x i n r a n g e (l e n (m f l _ d a t a)) :
360 d a t a _ l i s t . append (
361 [
362 i n s t a n c e . getNodeFromLabel (m f l _ d a t a [i n d e x] . nodeLabe l) .

c o o r d i n a t e s [0] ,
363 i n s t a n c e . getNodeFromLabel (m f l _ d a t a [i n d e x] . nodeLabe l) .

c o o r d i n a t e s [1] ,
364 m f l _ d a t a [i n d e x] . d a t a [1] ,
365]
366)
367 np . s a v e t x t (
368 " . . / RESULTS / R e s u l t _ " + job_name + " . csv " ,
369 d a t a _ l i s t ,
370 d e l i m i t e r =" , " ,

75

A Codes

371 fmt="% s " ,
372 h e a d e r =" x , y , mfl_2 " ,
373)

A.2.4 Postprocessing

1 # I m p o r t s
2 i m p o r t os
3 i m p o r t numpy as np
4 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
5 i m p o r t s c i p y . i n t e g r a t e a s s c i
6

7 p l t . r c (" f o n t " , s i z e =18) # c o n t r o l s d e f a u l t t e x t s i z e s
8 p l t . r c (" l e g e n d " , f o n t s i z e =10) # l e g e n d f o n t s i z e
9 p l t . r c (" f i g u r e " , t i t l e s i z e =18) # f o n t s i z e o f t h e f i g u r e t i t l e

10 p l t . r c (" axes " , l a b e l s i z e =18) # f o n t s i z e o f t h e x and y l a b e l s
11

12 # PCCL− C o l o r s
13 PCCL_main = t u p l e (np . a r r a y ([0 . 0 , 1 2 5 . 0 , 1 6 6 . 0]) / 2 5 5 . 0)
14 PCCL_l igh tb lue = t u p l e (np . a r r a y ([1 . 0 , 1 7 4 . 0 , 2 4 0 . 0]) / 2 5 5 . 0)
15 PCCL_darkgreen = t u p l e (np . a r r a y ([5 6 . 0 , 1 8 1 . 0 , 7 7 . 0]) / 2 5 5 . 0)
16 PCCL_l igh tg reen = t u p l e (np . a r r a y ([1 5 3 . 0 , 2 0 2 . 0 , 5 9 . 0]) / 2 5 5 . 0)
17 PCCL_yellow = t u p l e (np . a r r a y ([2 3 2 . 0 , 1 9 6 . 0 , 5 6 . 0]) / 2 5 5 . 0)
18 PCCL_orange = t u p l e (np . a r r a y ([2 3 8 . 0 , 1 3 8 . 0 , 4 4 . 0]) / 2 5 5 . 0)
19 PCCL_red = t u p l e (np . a r r a y ([2 3 0 . 0 , 4 7 . 0 , 4 1 . 0]) / 2 5 5 . 0)
20 PCCL_purple = t u p l e (np . a r r a y ([1 3 1 . 0 , 4 2 . 0 , 1 3 2 . 0]) / 2 5 5 . 0)
21 PCCL_vio le t = t u p l e (np . a r r a y ([9 2 . 0 , 7 3 . 0 , 1 5 2 . 0]) / 2 5 5 . 0)
22 PCCL_darkblue = t u p l e (np . a r r a y ([0 . 0 , 1 0 2 . 0 , 1 7 6 . 0]) / 2 5 5 . 0)
23

24 p c c l _ c o l o r s = [
25 PCCL_main ,
26 PCCL_red ,
27 PCCL_darkgreen ,
28 PCCL_orange ,
29 PCCL_purple ,
30 PCCL_darkblue ,
31]
32

33 l i n e s t y l e s = {
34 " l o o s e l y d o t t e d " : (0 , (1 , 10)) ,
35 " d o t t e d " : (0 , (1 , 1)) ,
36 " d e n s e l y d o t t e d " : (0 , (1 , 1)) ,

76

A Codes

37 " long dash wi th o f f s e t " : (5 , (1 0 , 3)) ,
38 " l o o s e l y dashed " : (0 , (5 , 10)) ,
39 " dashed " : (0 , (5 , 5)) ,
40 " d e n s e l y dashed " : (0 , (5 , 1)) ,
41 " l o o s e l y d a s h d o t t e d " : (0 , (3 , 10 , 1 , 10)) ,
42 " d a s h d o t t e d " : (0 , (3 , 5 , 1 , 5)) ,
43 " d e n s e l y d a s h d o t t e d " : (0 , (3 , 1 , 1 , 1)) ,
44 " d a s h d o t d o t t e d " : (0 , (3 , 5 , 1 , 5 , 1 , 5)) ,
45 " l o o s e l y d a s h d o t d o t t e d " : (0 , (3 , 10 , 1 , 10 , 1 , 10)) ,
46 " d e n s e l y d a s h d o t d o t t e d " : (0 , (3 , 1 , 1 , 1 , 1 , 1)) ,
47 }
48

49 r e s u l t _ d i r e c t o r y = "RESULTS / "
50 f i l e _ n a m e s = []
51 f o r f i l e i n os . l i s t d i r (r e s u l t _ d i r e c t o r y) :
52 i f f i l e . e n d s w i t h (" . c sv ") :
53 i f " Outf low " n o t i n f i l e :
54 f i l e _ n a m e s . append (f i l e)
55

56 d a t a _ a r r = []
57 f o r f i l e _ n a m e i n f i l e _ n a m e s :
58 d a t a _ a r r . append (np . g e n f r o m t x t (r e s u l t _ d i r e c t o r y + f i l e _ n a m e ,

d e l i m i t e r =" , "))
59

60 p l o t _ l i s t = []
61 o u t f l o w _ d a t a = []
62 f o r idx , d a t a i n enumera t e (d a t a _ a r r) :
63 p o s _ a r r = np . a r r a y ([i t em [0] f o r i t em i n d a t a])
64 m f l _ 2 _ a r r = np . a r r a y ([i t em [2] f o r i t em i n d a t a])
65

66 s o r t e d _ p o s _ a r r , s o r t _ i d x = np . u n iq ue (p o s _ a r r , r e t u r n _ i n d e x =True)
67 s o r t e d _ m f l _ 2 _ a r r = np . z e r o s (s o r t e d _ p o s _ a r r . s i z e)
68 f o r un ique_ idx , u n i q u e _ p o s i n enumera t e (s o r t e d _ p o s _ a r r) :
69 v a l u e _ i d x = np . where (p o s _ a r r == u n i q u e _ p o s)
70 s o r t e d _ m f l _ 2 _ a r r [u n i q u e _ i d x] = np . mean (m f l _ 2 _ a r r [v a l u e _ i d x])
71

72 i n t e g r a t e d _ v a l u e = s c i . s impson (s o r t e d _ m f l _ 2 _ a r r , s o r t e d _ p o s _ a r r)
73 membrane_length = s o r t e d _ p o s _ a r r [−1] − s o r t e d _ p o s _ a r r [0]
74 o u t f l o w _ v a l u e = i n t e g r a t e d _ v a l u e / membrane_length * −1.0
75

76 p l o t _ l a b e l = (
77 f i l e _ n a m e s [i d x]
78 . r e p l a c e (" . c sv " , " ")
79 . r e p l a c e (" R e s u l t _ J o b _ _ " , " ")

77

A Codes

80 . r e p l a c e (" FS_5 −0__2 −0 __IT_0 −5__DM_1−0__ " , " ")
81 . r e p l a c e (" PF_ " , " p s i : ")
82 . r e p l a c e (" DI_ " , "D: ")
83 . r e p l a c e ("−" , " . ")
84 . r e p l a c e (" __ " , " , ")
85)
86 i f " S t a n d a r t " i n p l o t _ l a b e l :
87 p l o t _ l a b e l = "No I n t e r f a c e "
88

89 o u t f l o w _ d a t a . append ([p l o t _ l a b e l , o u t f l o w _ v a l u e])
90 p l o t _ l i s t . append ([p l o t _ l a b e l , s o r t e d _ p o s _ a r r , s o r t e d _ m f l _ 2 _ a r r])
91

92 p l t . f i g u r e ()
93 p l t . x l a b e l (" Membrane Width ")
94 p l t . y l a b e l (" Outf low ove r Membrane Width ")
95

96 f o r p l o t _ d a t a i n p l o t _ l i s t :
97 p l o t _ l a b e l = p l o t _ d a t a [0]
98 p l o t _ c o l o r = p c c l _ c o l o r s [1]
99 p l o t _ l i n e s t y l e = "−"

100

101 i f " p s i : 75 " i n p l o t _ l a b e l :
102 p l o t _ l i n e s t y l e = l i n e s t y l e s [" dashed "]
103 e l i f " p s i : 50 " i n p l o t _ l a b e l :
104 p l o t _ l i n e s t y l e = l i n e s t y l e s [" d a s h d o t t e d "]
105 e l i f " p s i : 20 " i n p l o t _ l a b e l :
106 p l o t _ l i n e s t y l e = l i n e s t y l e s [" d o t t e d "]
107 e l i f " p s i : 5 " i n p l o t _ l a b e l :
108 p l o t _ l i n e s t y l e = l i n e s t y l e s [" d a s h d o t d o t t e d "]
109

110 i f "D: 1 0 . 0 , " i n p l o t _ l a b e l :
111 p l o t _ c o l o r = p c c l _ c o l o r s [0]
112 e l i f "D: 1 . 0 , " i n p l o t _ l a b e l :
113 p l o t _ c o l o r = p c c l _ c o l o r s [2]
114 e l i f "D: 0 . 1 , " i n p l o t _ l a b e l :
115 p l o t _ c o l o r = p c c l _ c o l o r s [3]
116 e l i f "D: 0 . 0 1 , " i n p l o t _ l a b e l :
117 p l o t _ c o l o r = p c c l _ c o l o r s [4]
118 e l i f "D: 0 . 0 0 1 , " i n p l o t _ l a b e l :
119 p l o t _ c o l o r = p c c l _ c o l o r s [5]
120

121 p l t . p l o t (
122 p l o t _ d a t a [1] ,
123 p l o t _ d a t a [2] ,

78

A Codes

124 l a b e l = p l o t _ l a b e l ,
125 c o l o r = p l o t _ c o l o r ,
126 l i n e s t y l e = p l o t _ l i n e s t y l e ,
127)
128

129 p l t . l e g e n d ()
130 # p l t . t i g h t _ l a y o u t ()
131

132 p l t . f i g u r e ()
133 p l t . x l a b e l (" Membrane Width ")
134 p l t . y l a b e l (" Outf low ove r Membrane Width ")
135 f o r p l o t _ d a t a i n p l o t _ l i s t :
136 i f "No I n t e r f a c e " i n p l o t _ d a t a [0] o r " p s i : 20 " i n p l o t _ d a t a [0] :
137 p l o t _ l a b e l = p l o t _ d a t a [0]
138 p l o t _ c o l o r = p c c l _ c o l o r s [1]
139 p l o t _ l i n e s t y l e = "−"
140

141 i f " p s i : 75 " i n p l o t _ l a b e l :
142 p l o t _ l i n e s t y l e = l i n e s t y l e s [" dashed "]
143 e l i f " p s i : 50 " i n p l o t _ l a b e l :
144 p l o t _ l i n e s t y l e = l i n e s t y l e s [" d a s h d o t t e d "]
145 e l i f " p s i : 20 " i n p l o t _ l a b e l :
146 p l o t _ l i n e s t y l e = l i n e s t y l e s [" d o t t e d "]
147 e l i f " p s i : 5 " i n p l o t _ l a b e l :
148 p l o t _ l i n e s t y l e = l i n e s t y l e s [" d a s h d o t d o t t e d "]
149

150 i f "D: 1 0 . 0 , " i n p l o t _ l a b e l :
151 p l o t _ c o l o r = p c c l _ c o l o r s [0]
152 e l i f "D: 1 . 0 , " i n p l o t _ l a b e l :
153 p l o t _ c o l o r = p c c l _ c o l o r s [2]
154 e l i f "D: 0 . 1 , " i n p l o t _ l a b e l :
155 p l o t _ c o l o r = p c c l _ c o l o r s [3]
156 e l i f "D: 0 . 0 1 , " i n p l o t _ l a b e l :
157 p l o t _ c o l o r = p c c l _ c o l o r s [4]
158 e l i f "D: 0 . 0 0 1 , " i n p l o t _ l a b e l :
159 p l o t _ c o l o r = p c c l _ c o l o r s [5]
160

161 p l t . p l o t (
162 p l o t _ d a t a [1] ,
163 p l o t _ d a t a [2] ,
164 l a b e l = p l o t _ l a b e l ,
165 c o l o r = p l o t _ c o l o r ,
166 l i n e s t y l e = p l o t _ l i n e s t y l e ,
167)

79

A Codes

168

169 p l t . l e g e n d ()
170 # p l t . t i g h t _ l a y o u t ()
171 p l t . s a v e f i g (" Outf lows_Rect_Smal l_New . png " , b b o x _ i n c h e s =" t i g h t ")
172

173

174 p l t . f i g u r e ()
175

176 x _ p o s i t i o n s = [1 , 2 , 3 , 4]
177 x _ a x i s _ l a b e l s = [" 5 " , " 20 " , " 50 " , " 75 "]
178 p l t . x l a b e l (" p s i ")
179 p l t . x t i c k s (x _ p o s i t i o n s , x _ a x i s _ l a b e l s)
180

181 p l t . y l a b e l ("Sum of Outf low ove r Membrane Width ")
182

183 f o r elem i n o u t f l o w _ d a t a :
184 p l o t _ l a b e l = elem [0]
185 m a r k _ s t y l e = " o "
186 p l o t _ c o l o r = p c c l _ c o l o r s [1]
187 x_pos = 0
188

189 i f " p s i : 75 " i n p l o t _ l a b e l :
190 x_pos = 4
191 e l i f " p s i : 50 " i n p l o t _ l a b e l :
192 x_pos = 3
193 e l i f " p s i : 20 " i n p l o t _ l a b e l :
194 x_pos = 2
195 e l i f " p s i : 5 " i n p l o t _ l a b e l :
196 x_pos = 1
197

198 i f "D: 1 0 . 0 , " i n p l o t _ l a b e l :
199 p l o t _ c o l o r = p c c l _ c o l o r s [0]
200 e l i f "D: 1 . 0 , " i n p l o t _ l a b e l :
201 p l o t _ c o l o r = p c c l _ c o l o r s [2]
202 e l i f "D: 0 . 1 , " i n p l o t _ l a b e l :
203 p l o t _ c o l o r = p c c l _ c o l o r s [3]
204 e l i f "D: 0 . 0 1 , " i n p l o t _ l a b e l :
205 p l o t _ c o l o r = p c c l _ c o l o r s [4]
206 e l i f "D: 0 . 0 0 1 , " i n p l o t _ l a b e l :
207 p l o t _ c o l o r = p c c l _ c o l o r s [5]
208

209 i f n o t "No I n t e r f a c e " i n p l o t _ l a b e l :
210 p l t . p l o t (x_pos , elem [1] , c o l o r = p l o t _ c o l o r , m a r k e r s i z e =4 , l a b e l =

p l o t _ l a b e l , marker = m a r k _ s t y l e , l i n e w i d t h =0)

80

A Codes

211 e l s e :
212 p l t . h l i n e s (xmin =1 , xmax =4 , y=elem [1] , c o l o r = p l o t _ c o l o r , l a b e l ="

No I n t e r f a c e ")
213

214

215 p l t . l e g e n d ()
216 # p l t . t i g h t _ l a y o u t ()
217 p l t . show ()

81

	1 Introduction
	1.1 Motivation
	1.2 State of the Art
	1.3 Contribution of this Work

	2 Theory
	2.1 Permeation
	2.2 Sorption Models
	2.3 Basic Diffusion Models
	2.3.1 Analytical Solution of Fick’s Laws for Diffusion through a Membrane

	2.4 Classification of Diffusion Modes for Polymers
	2.5 Diffusion in Particle Filled Polymer Systems
	2.5.1 Nielsen Model
	2.5.2 Extension of the Nielsen Model

	2.6 Interface Layer

	3 Simulation
	3.1 Interface Zone
	3.2 Fortran Subroutines
	3.3 Simulation Workflow
	3.3.1 Overview
	3.3.2 Creation of Input File
	3.3.3 ABAQUS Interface Simulation
	3.3.4 ABAQUS Standard Simulation

	4 Results
	4.1 Raw Results - One Filler Particle
	4.2 Raw Results - Multiple Filler Particles
	4.3 Accumulated Permeate - One Filler Particle
	4.4 Accumulated Permeate - Multiple Filler Particles

	5 Conclusions
	6 Outlook
	7 References
	8 List of figures
	9 List of tables
	10 List of symbols
	Appendix A Codes
	A.1 Fortran - ABAQUS Subroutines
	A.1.1 Subroutine ORIENT
	A.1.2 Subroutine UFIELD
	A.1.3 Subroutine USDFLD

	A.2 Python - ABAQUS Control Scripts and General Utility Scripts
	A.2.1 ABAQUS Input File Creation
	A.2.2 ABAQUS Result Extraction
	A.2.3 ABAQUS Standard Simulation
	A.2.4 Postprocessing

