im

MONTAN

UNIVERSITAT
M LEOBEN W

Chair of Applied Mathematics

Master's Thesis

Symmetric Quadratic Traveling Salesman
Problem with Reload Costs: Applications
& Solution Approaches

Michael Hanzlovic, BSc

April 2024

Abstract

This thesis delves into the intricate world of the Symmetric Quadratic Travel-
ing Salesman Problem (SQTSP), particularly focusing on instances where reload
costs are incurred when switching between two types of edges during the traver-
sal. Such a scenario is not only realistic in various practical applications, like
logistics and route planning, but also poses unique challenges to traditional so-
lution methods. The primary objective of this research is to rigorously test
and evaluate the effectiveness of existing Integer Linear Programm (ILP) lin-
earizations, various Subtour Elimination Constraint (SEC)s, and heuristics, as
documented in the literature, when applied to the SQTSP that models the
reload cost component.

In addition to the evaluative study, this thesis contributes by the develop-
ment of a novel heuristic specifically designed for this unique variant of the
SQTSP. This new heuristic is tailored to effectively handle the complexities
introduced by the reload costs, aiming to optimize the traversal sequence in a
manner that balances the traditional optimization goals of the SQTSP with the
specific cost considerations.

The findings unveil a nuanced interdependence between graph composition
and solver complexity, particularly under the influence of the balance of flagged
to unflagged edges and the relative magnitude of reload costs. Notably, solver
times manifest a bell-shaped curve akin to a normal distribution when related
to the percentage of flagged edges, peaking as this percentage nears a 50/50
equilibrium. Concurrently, solver times respond to an increase in reload costs
relative to average edge weights in an exponential fashion, highlighting the in-
tricate, non-linear dynamics at play.

The exploration and findings presented in this thesis not only contribute to
the theoretical advancement in the field of operations research but also have
implications for practical applications. By extending the existing knowledge on
SQTSP and introducing new methodologies for addressing the complexities of
reload costs, this research provides valuable insights for both academics and
practitioners in the field of optimization and logistics.

In essence, this thesis navigates through the theoretical and practical land-
scapes of the SQTSP with reload costs, offering a comprehensive analysis of
existing methods and pioneering a new approach to address the nuanced chal-
lenges of this problem.

Zusammenfassung

Diese Arbeit taucht in die komplizierte Welt des Symmetrischen Quadra-
tischen Traveling Salesman Problem (SQTSP) ein und konzentriert sich ins-
besondere auf Fille, in denen beim Wechsel zwischen zwei Arten von Kanten
Kosten fiir das Umsteigen anfallen. Ein solches Szenario ist nicht nur in verschie-
denen praktischen Anwendungen wie Logistik und Routenplanung realistisch,
sondern stellt auch eine besondere Herausforderung fiir traditionelle Lésungs-
methoden dar. Das Hauptziel dieser Forschungsarbeit ist es, die Effektivitét
bestehender Linearisierungsverfahren der Ganzzahligen Linearen Programmie-
rung (ILP), insbesondere diverse Ungleichungen sowie Heuristiken, wie sie in der
Literatur dokumentiert sind, rigoros zu testen und zu bewerten, wenn sie auf
das SQTSP angewendet werden, das die Umladekostenkomponente modelliert.

Zusétzlich zu der evaluativen Studie leistet diese Arbeit einen Beitrag durch
die Entwicklung einer neuen Heuristik, die speziell fiir diese einzigartige Varian-
te des SQTSP entwickelt wurde. Diese neue Heuristik ist darauf zugeschnitten,
die Komplexitéit, die durch die Umladekosten eingefiihrt wird, effektiv zu hand-
haben, und zielt darauf ab, die Traversalsequenz in einer Weise zu optimieren,
die die traditionellen Optimierungsziele des SQTSP mit den spezifischen Kos-
teniiberlegungen in Einklang bringt.

Die Ergebnisse zeigen eine nuancierte Interdependenz zwischen der Zusam-
mensetzung des Graphen und der Komplexitdt des Solvers, insbesondere un-
ter dem Einfluss des Verhéltnisses zwischen markierten und nicht markierten
Kanten und der relativen Grofe der Umladekosten. Bemerkenswert ist, dass
die Laufzeiten der Losungsmethoden eine glockenférmige Kurve aufweisen, die
einer Normalverteilung dhnelt, wenn sie in Bezug auf den Prozentsatz der mar-
kierten Kanten betrachtet werden, wobei sie ihren Hohepunkt erreichen, wenn
dieser Prozentsatz einem Gleichgewicht von 50/50 nahekommt. Gleichzeitig rea-
gieren die Laufzeiten auf einen Anstieg der Umladekosten im Verhéltnis zu den
durchschnittlichen Kantenkosten auf exponentielle Weise, was die komplexen,
nicht-linearen Dynamiken verdeutlicht.

Die in dieser Arbeit vorgestellten Untersuchungen und Ergebnisse tragen
nicht nur zum theoretischen Fortschritt auf dem Gebiet des Operations Research
bei, sondern haben auch Auswirkungen auf praktische Anwendungen. Durch
die Erweiterung des vorhandenen Wissens {iber SQTSP und die Einfiithrung
neuer Methoden zur Bewéltigung der Komplexitdt von Umladekosten liefert
diese Arbeit wertvolle Erkenntnisse sowohl fiir die Wissenschaft als auch fiir die
Praxis im Bereich der Optimierung und Logistik.

Im Wesentlichen navigiert diese Arbeit durch die theoretischen und prakti-
schen Landschaften des SQTSP mit Umladekosten und bietet eine umfassende
Analyse bestehender Methoden und bahnt einen neuen Ansatz, um die nuan-
cierten Herausforderungen dieses Problems anzugehen.

AFFIDAVIT

I declare on oath that I wrote this thesis independently, did not use any
sources and aids other than those specified, have fully and truthfully reported
the use of generative methods and models of artificial intelligence, and did not
otherwise use any other unauthorized aids.

I declare that I have read, understood and complied with the "Good Scientific
Practice" of the Montanuniversitéit Leoben.

Furthermore, I declare that the electronic and printed versions of the sub-
mitted thesis are identical in form and content.

y e

Michael Hanzlovic, BSc | 21.04.2024 | A-8700 Leoben

Contents

1 Introduction 9
1.1 Related Literature & Contribution 10
1.2 Formal Problem Definition 10

2 Integer Program Representations 12
2.1 Linearizations and Subtour Elimination Constraints 13
2.2 Elementary Integral Approach 14
2.3 Equivalent Subtour Elimination Constraints to the Basic Approach 15
2.4 Strengthened Variants of Subtour Elimination Constraints 17
2.5 Various Combinations and Extentions of Constraints 21

2.5.1 Various Combinations of Constraints 21
2.5.2 Extension of Constraint 25

3 Applications of the SQTSP 27

4 Characterization and Creation of Test Instances for the Sym-
metric Quadratic Traveling Salesman Problem 29
4.1 Characterization of Instances 29
4.2 Existing Test Instances oL 30
4.3 Creation of Test Instances 31
4.4 Challenges of Instances with Specific Attributes 33

5 Heuristics for SQTSP 34
5.1 Cheapest-Insertion Heuristic (CI) 34
5.2 Nearest-Neighbor Heuristic (NN) 34
5.3 Approach on a SQTSP Heuristic 35

6 Computational Experiments 36
6.1 Test Environment, 36
6.2 Evaluation of Constraint Performances 36
6.3 Evaluation of Heuristic Performances 39

7 Discussion 41

8 Conclusion 42

A AMPL Model 46
B Boxplots Solver Time over Flagged Edges 47
C Boxplots Solver Time over Reload Costs 55
D Boxplots Number of SECs over Percentage of Flagged Edges 63
E Boxplots Number of SECs over Reload Costs 71
F Boxplots Number of Solver Runs over Percentage of Flagged
Edges 79
G Boxplots of Number Solver Runs over Relative Reload Costs 87
Gap Trendcharts for Tested Heuristics over Flagged Edges and
Reload Costs 95
I Aggregated Computational Results for (2.3) 98
J Aggregated Computational Results for (2.9) 116
K Aggregated Computational Results for (2.10) 134
L Aggregated Computational Results for (2.11) 152
M Aggregated Computational Results for (2.12) 170
N Aggregated Computational Results for (2.14) 188
O Aggregated Computational Results for (2.15) 206
P Aggregated Computational Results for (2.16) 224
Q Aggregated Computational Results for (2.17) 242
R Aggregated Computational Results for (2.18) 260
S Aggregated Computational Results for (2.19) 278
T Aggregated Computational Results for (2.20) 296
U Aggregated Computational Results for (2.21) 314
V Aggregated Computational Results for (2.22) 332
W Aggregated Computational Results for (2.23) 350
X Aggregated Computational Results for (2.24) 368

Y Aggregated Computational Results for Heuristics 386
Z Results for Existing Reload Instances 404

Glossary 413

List of Figures

2.1
2.2
2.3

4.1

B.1
B.2
B.3
B.4
B.5
B.6
B.7

C1
C.2
C.3
C4
C.5
C.6
C.7

D.1
D.2
D.3
D4
D.5
D.6
D.7

E1
E.2
E.3
EA4
E.5

Nlustration of the Effects of Constraint (2.3) 13
Tllustration of the Initial Scenario Constraint 2.9 resolves 15
Tllustration of the Effect of Constraint 2.9 16
Example of a SQTSP Test Instance 30
Boxplot Time over Flagged Edges [n=10. 48
Boxplot Time over Flagged Edges [n=15. 49
Boxplot Time over Flagged Edges [n=20. 50
Boxplot Time over Flagged Edges [n=25. 51
Boxplot Time over Flagged Edges [n=30. 52
Boxplot Time over Flagged Edges [n=35. 53
Boxplot Time over Flagged Edges [n=40. 54
Boxplot Solver Time over Relative Reload Costs | n =10 56
Boxplot Solver Time over Relative Reload Costs | n =15 57
Boxplot Solver Time over Relative Reload Costs [n =20 58
Boxplot Solver Time over Relative Reload Costs | n =25 59
Boxplot Solver Time over Relative Reload Costs | n =30 60
Boxplot Solver Time over Relative Reload Costs [n =35 61
Boxplot Solver Time over Relative Reload Costs | n =40 62
Boxplot #SEC over Percentage of Flagged Edges | n =10 64
Boxplot #SEC over Percentage of Flagged Edges | n =15 65
Boxplot #SEC over Percentage of Flagged Edges | n =20 66
Boxplot #SEC over Percentage of Flagged Edges | n =25 67
Boxplot #SEC over Percentage of Flagged Edges | n =30 68
Boxplot #SEC over Percentage of Flagged Edges | n =35 69
Boxplot #SEC over Percentage of Flagged Edges [n =40 70
Boxplot #SEC over Percent Flagged Edges | n =10 72
Boxplot #SEC over Percent Flagged Edges | n =15 73
Boxplot #SEC over Percent Flagged Edges | n =20 74
Boxplot #SEC over Percent Flagged Edges | n =25 75
Boxplot #SEC over Percent Flagged Edges | n =30 76

E.6
E.7

F.1
F.2
F.3
F4
F.5
F.6
F.7

G.1
G.2
G.3
G4
G.5
G.6
G.7

H.1

H.2

Boxplot #SEC over Percent Flagged Edges | n =35
Boxplot #SEC over Percent Flagged Edges | n =40

Boxplot #Runs over Percent Flagged Edges [n =10
Boxplot #Runs over Percent Flagged Edges [n =15
Boxplot #Runs over Percent Flagged Edges | n =20
Boxplot #Runs over Percent Flagged Edges [n =25
Boxplot #Runs over Percent Flagged Edges [n =30
Boxplot #Runs over Percent Flagged Edges [n =35
Boxplot #Runs over Percent Flagged Edges [n =40

Boxplot #Solver Run over Relative Reload Costs | n =10
Boxplot #Solver Run over Relative Reload Costs | n =15
Boxplot #Solver Run over Relative Reload Costs | n =20
Boxplot #Solver Run over Relative Reload Costs | n =25
Boxplot #Solver Run over Relative Reload Costs | n =30
Boxplot #Solver Run over Relative Reload Costs | n =35
Boxplot #Solver Run over Relative Reload Costs | n =40

Heuristic Solution-Gap Clustered over Changing Percentage of
Flagged Edges
Heuristic Solution-Gap Clustered over Changing Relative Reload
CostS . . . v e e

List of Tables

4.1
L1
J1
K.1
L.1
M.1
N.1
0.1
P.1
Q.1
R.1
S.1
T.1
U.1
V.1
W.1
X.1
Y.1

Z.1
7.2

Tllustration of Reload Costs between Different Edge Types
Aggregated Computational Results for (2.3)
Aggregated Computational Results for (2.9)
Aggregated Computational Results for (2.10)
Aggregated Computational Results for (2.11)
Aggregated Computational Results for (2.12)
Aggregated Computational Results for (2.14)
Aggregated Computational Results for (2.15)
Aggregated Computational Results for (2.16)
Aggregated Computational Results for (2.17)
Aggregated Computational Results for (2.18)
Aggregated Computational Results for (2.19)
Aggregated Computational Results for (2.20)
Aggregated Computational Results for (2.21)
Aggregated Computational Results for (2.22)
Aggregated Computational Results for (2.23)
Aggregated Computational Results for (2.24)

Results for Heuristics

Result for Constraint (2.3) for Existing Instances
Result for Constraint (2.9) for Existing Instances

Z.3 Result for Constraint (2.10) for Existing Instances 406
Z.4 Result for Constraint (2.11) for Existing Instances 406
7.5 Result for Constraint (2.12) for Existing Instances 407
Z.6 Result for Constraint (2.14) for Existing Instances 407
Z.7 Result for Constraint (2.15) for Existing Instances 408
Z.8 Result for Constraint (2.16) for Existing Instances 408
7.9 Result for Constraint (2.17) for Existing Instances 409
Z.10 Result for Constraint (2.18) for Existing Instances 409
Z.11 Result for Constraint (2.19) for Existing Instances 410
Z.12 Result for Constraint (2.20) for Existing Instances 410
Z.13 Result for Constraint (2.21) for Existing Instances 411
Z.14 Result for Constraint (2.22) for Existing Instances 411
Z.15 Result for Constraint (2.23) for Existing Instances 412
Z.16 Result for Constraint (2.24) for Existing Instances 412

Chapter 1

Introduction

The Traveling Salesman Problem (TSP) is a classical problem in combinatorial
optimization, renowned for its conceptual simplicity and computational com-
plexity, as shown extensively in the literature like [5, 10, 15]. The problem is
framed by a simple question: Given a list of cities and the distances between
each pair of them, what is the shortest possible route that visits each city exactly
once and returns to the origin city?

Tracing back to the 18th century, the TSP was initially a purely mathemat-
ical problem. However, over time, its significance has expanded into various
fields like logistics, planning, and computer science.[1]

In mathematical terms, the TSP is represented as a graph where cities are
vertices, and paths are edges with weights indicating distances. The goal is to
find a Hamiltonian cycle with the minimum total weight, requiring an optimal
permutation of the vertices.

Despite its simplicity, the TSP is NP-complete [15], establishing its im-
portance in computational complexity and heuristic algorithms studies. It has
become a benchmark for optimization techniques, leading to numerous develop-
ments in exact and approximate algorithmic solutions.

Building upon the classic TSP, the Quadratic Traveling Salesman Problem
(QTSP) introduces an additional layer of complexity. First introduced by Jéger
and Molitor [11], the QTSP extends the objective beyond finding the shortest
route that visits each city exactly once and returns to the origin. It also considers
the interactions between successive edge pairs in the route. In the QTSP, pairs
of consecutive edges in the route generate additional costs, affecting the total
cost of the route. This extension makes the QTSP a more realistic model for
scenarios where the costs at one stage of a route depend on the previous stages
[9]. Tt is important to emphasize that in QTSP, the route’s cost is not necessarily
defined by the lengths of individual edges, as exemplified by the AngleTSP
[2, 18]. Furthermore, the classic TSP can be considered a special case of the
QTSP, where the costs between edge pairs are either zero or constant. The
SQTSP emerges as a special case of the QTSP, characterized by identical costs
for traversing edge pairs in either direction.

In a variety of applications, the QTSP demonstrates its relevance through the
nuanced cost implications of route choices. Particularly noteworthy is the cost
incurred when transitioning between different transportation modes, a common
occurrence in urban mobility. For instance, a shift from pedestrian travel to the
use of E-Scooters introduces not only the regular costs associated with distance
but also additional expenses related to the mode transition. This phenomenon
is also observed in logistics and transportation planning, where the integration
of multiple transport modes, such as rail and road or air and ground, entails not
just the cost per unit distance but also supplementary costs at each transition
point. These transition costs might include time delays, transfer fees, and ad-
ditional operational expenses. Such complexities underscore the importance of
QTSP in optimizing routes where the cost structure is influenced not only by the
distance traveled but significantly by the sequence and choice of transportation
modes.

The QTSP presents a significant computational complexity challenge and
has inspired the development of specialized heuristic and exact algorithms.

1.1 Related Literature & Contribution

The research conducted in this thesis makes a contribution to the field of opera-
tions research, particularly in the nuanced area of the SQTSP with reload costs.
The work examines how existing models and SECs [2] for SQTSP, originally not
targeted reload costs, perform under new scenarios and investigates the effects of
specific input parameters, like the quantity of possibilities to switch to another
edge type and the severity of an exchange on the test instances. Additionally,
the performance of some heuristics is evaluated, leading to the development of a
new heuristic specifically tailored for the SQTSP with reload costs. This explo-
ration helps in understanding the limitations and potential adaptability of these
models to handle additional operational parameters, providing insight into their
applicability and effectiveness in more complex scenarios.

1.2 Formal Problem Definition

"Let G = (V, E) be an undirected complete graph with vertex set
V ={1,2,...,n} and edge set E = {ij : i,j € V,i # j}. A path
P is an ordered sequence of vertices i.e., P = (p1,pa2,...,p/p|) With
p; € V. We will only consider simple paths i.e., paths contain-
ing each vertex at most once. A subtour 7 is a path with the
additional interpretation that all vertices are visited in the given
order and finally the edge from py7| to p; is traversed. If T' con-
tains all vertices of V, i.e., a Hamiltonian cycle, we call T" a tour
in the graph. Alternatively, a permutation o also describes a tour
T=0(1),0(2),...,0(n). For a tour T = {t1,...,t,} we define the
set of tour edges as E(T) := {tita}, {tats},...,{tnt1}. Finally, for

10

auxiliary graphs G = (V, E)) we denote the set of all neighbouring
vertices of v € V by §(v). In the general QTSP, costs are associ-
ated with every pair of adjacent edges traversed in succession. So
using the (incident) edges e and f one after the other in a tour gives
rise to a certain cost value ccy € R(J{ which is assigned to the edge
pair (e, f). Equivalently, we can state costs for every triple of ver-
tices (i,7,k) € V x V x V by setting ¢;jr = cey for e = {4, 7} and
f=1{4,k}. The QTSP asks for a tour T minimizing the objective

function
n—2

2(G,T) = (Z Ca(i)a(i+1)a(i+2)> + Co(tn—1)o(n)o(1) T Co(n)o(1)o(2)-
i=1

"[18]

In the symmetric case, costs are c.y = cy. for all e # f € E. For the consid-
ered problem variant, we introduce reload costs that are specific to transitions
between different types of edges within a graph. If e; and e; represent edges of
different types, a reload cost r; is incurred when transitioning from e; to e;.
The objective function accounts for these reload costs, with the total cost of a
tour being the sum of the traversal costs and any applicable reload costs. This
is mathematically formulated as:

Cijk = Cef = Ce +Cp+Tef - 6(e, f) (1.1)

where e = {i,j} and f = {j, k} are the edges, with c. and ¢y representing
the traversal costs for edges e and f respectively, and d(e, f) is an indicator
function that is 1 if edges e and f are of different types and 0 otherwise.

11

Chapter 2

Integer Program
Representations

The QTSP can be represented as a Quadratic Integer Programm (QIP), as done
by Aichholzer et al. [2]. The program utilizes binary edge variables z. = z;;
for each edge e = {i,j} € V in the vertex set, with §(i) = {e : e = {i,j} € V?}
denoting the set of all edges incident to vertex 7 in V.

The objective of the program is formulated as a minimization problem:

min Z sy Tex g (2.1)
e =(ijkyev®
e=(i,4),f=(4.k)

st > we=2, i€V, (2.2)
e€d(z)
Z xe§|s|_17 ngvs#(m (23)
e=(i,j)evi?
i,jes
z. € {0,1}, ec Vv (2.4)

2]

In the objective function, a weight d,) for a 2-edge e{® € V3 is considered
if both edges e = {7, j} and f = {4, k} are included in the tour. Constraint (2.2)
represents the degree constraints ensuring that flow in and out of each vertex
is two and subsequently is visited exactly once. Constraint (2.3) represents
the well-known Dantzig-Fulkerson-Johnson SEC (illustrated in Figure 2.1), and
constraint (2.4) enforces the binary nature of the edge variables. This model
modifies only the objective function compared to the standard model for the
TSP, as can be found for example in [14].

12

S\V

Before: Subtour 5\ V/ After: Constraint is fulfilled,
Subtour is broken open

Figure 2.1: Illustration of the Effects of Constraint (2.3)

2.1 Linearizations and Subtour Elimination Con-
straints

The quadratic integer program for the QTSP can be linearized by introducing
additional binary variables y.)y = ys;r for all 2-edges e = (i,5,k) € VO,
where y;;, = 1 if and only if the vertices ¢, j, and k are visited in the tour in
consecutive order. This linearization approach was taken over from [2, 9].

The linear representation of the objective function and associated constraints
are structured as follows:

min Y des Yo (2.5)

e(3)ev(3)
st. (2.2),(2.3),(2.4), (2.6)
Te = Z Yijk = Z Ykij, €= {7'3]} € V{2}7 (27)
keV\{i,j} keV\{i,j}
Yoiny € {0,1}, e e V), (2.8)

2]

The objective function, shown in (2.5), aims to minimize the total cost of
the tour in the QTSP. In this equation, d.s) represents the cost associated
with each 2-edge sequence e®) = (i, 5, k) in the set V). The variable y,
indicates whether the sequence of vertices %, j, k is included in the tour. The
sum of these costs over all such edge sequences in the graph provides the total
cost of the tour, which the model seeks to minimize. In this model, constraint
(2.7) plays a pivotal role in connecting the z-variables and the y-variables. The
z-variables represent the inclusion of edges in the tour, while the y-variables
are introduced to linearize the quadratic aspect of the problem by capturing

13

sequences of three consecutive vertices. Specifically, constraint (2.7) ensures
that an edge e = {4, j} is part of the solution if and only if there exists a vertex
k such that the sequence of vertices i,j,k (or k,4,7) is included in the tour.
Here, the summation of y-variables over all vertices k other than ¢ and j ensures
that the tour transitions through vertices 7 to j are properly accounted for,
maintaining the continuity and flow of the tour in the linearized formulation of
the problem. Finally constraint (2.8) enforces the binary nature of the additional
variables. [2]

During the performance evaluation of constraints, (2.3) emerges as the least
efficient in terms of solver performance (see Chapter 6.2). Regardless of the node
count, (2.3) consistently generates an exceptionally high number of SECs, hence
also solver runs. In the case of reload costs, the solver runtime for (2.3) shows a
exponential increase. Conversely, when analyzing solver time over the percent
of flagged edges in an instance, a pattern resembling a normal distribution is
observed, with a near 50/50 mix of flagged and unflagged edges leading to
significantly higher solver times. Compared to its counterparts, (2.3) displays
consistently higher runtimes and solver runs across both low and high node
counts, particularly in scenarios with a balanced mix of flagged and unflagged
edges.

2.2 Elementary Integral Approach

This thesis also follows the approach from Aichholzer et al. [2], where SEC (2.3)
is relaxed, and added specifically for each detected subtour after each run by
the solver. Note, that this thesis only utilizes the pure integer approach, tested
for the TSP by Pferschy and Stanck [13].

The elementary integral approach for solving the QTSP is outlined below:
[2, 13]:

Algorithm 1 Main Idea of the Elementary Integral Approach

Require: SQTSP instance
Ensure: An optimal SQTSP tour
Define current model as constraints (2.2), (2.4)-(2.8);
repeat
Solve the current model to optimality using an ILP-solver;
if solution contains no subtour then
return the solution as the optimal tour;
else
Find all subtours of the solution and add the corresponding SECs to
the model;
10: end if
11: until an optimal tour is found;

In practice, the elementary integral approach outlined above provides a
structured framework for solving the QTSP. By iteratively refining the model

14

Figure 2.2: Illustration of the Initial Scenario Constraint 2.9 resolves

with SECs as subtours are detected, this method capitalizes on the capability
to identify and rectify subtours efficiently. An additional note regarding the ap-
proach in this thesis is that SECs were only added to the model for all detected
subtours, consisting of at least three nodes, between each iteration.

2.3 Equivalent Subtour Elimination Constraints
to the Basic Approach

This section focuses on equivalent and strengthen SECs compared to (2.3),
which can lead to a different solver performance.

Mathematically equivalent to (2.3), (2.9) is also another form of a SEC. If
a subtour is detected, the constraint forces the vertices within the subtour to
have a flow to vertices outside the tour of at least two. The effect of (2.9) is
illustrated in Figure 2.2 and Figure 2.3.

Y me>2, SCV,5#0. (2.9)

e=(i,j)evi?}
i€8,jEV\S

2]

As highlighted by [2], the performance of the solver varies notably when
substituting (2.3) with (2.9). Referring to the computational results in Chapter
6.2, (2.9) ranks among the lower-performing constraints in terms of runtime. A
exponential increase in runtime is observed, as the percentage of reload costs
relative to the average edge weight rises. Similarly, a rise in runtime is evident
when the percentage of flagged edges approaches a near equilibrium, exhibiting
a pattern akin to a normal distribution. Despite consistent behavior across dif-
ferent node sizes, the substantial number of subtour elimination constraints and
corresponding solver runs, particularly under scenarios of high reload costs and
a 50/50 flagged /unflagged edge ratio, contribute to the less efficient runtime of
(2.9). Nevertheless, (2.9) demonstrates better and more consistent performance
compared to (2.3).

15

Figure 2.3: Illustration of the Effect of Constraint 2.9

Another approach to further improve the solvers performance can be archived
by conditional combining (2.3), if | 5] < 2% and (2.9) if [S] > 2%H.

2 1
S me<islo1 #SCV.s£0s <

e=(i,j)evi?}
i,j€S

on + 1
Yoo ze>2 SCVS] > "; . (2.10)

e=(i,j)ev iz}
i€S,jeV\S

2

(2.10) presents an intriguing performance profile, exhibiting variability based
on instance size and graph characteristics. For most instances, the performance
of (2.10) is placed between (2.3) and (2.9)

In terms of scalability, the runtime for both small and large instances in rela-
tion to the reload costs follows a exponential trend, similar to other constraints.
The interquartile range, median, and whiskers for (2.10) are generally in line
with the majority of the other constraints regarding solver time, indicating a
level of robustness and predictability in its performance.

When examining the runtime over the percentage of flagged edges within an
instance, (2.10) demonstrates a pattern akin to a normal distribution, mirroring
the behavior seen in other constraints.

A closer look at the created subtour elimination constraints reveals a normal
distribution pattern over percent flagged for larger instances, placing (2.10)
between (2.3) and (2.9) in terms of the number of subtour constraints generated.
Similarly, in the context of solver runs over changing reload costs, it occupies
an intermediate position between (2.3) and (2.9).

[2] indicates a potentially enhanced efficiency of (2.10) over (2.3) and (2.9).

16

The findings from the computational experiments in this thesis, however, offer
a more nuanced perspective on this comparison.

2.4 Strengthened Variants of Subtour Elimina-
tion Constraints

The concept is centered around the notion that the y-variable y;x;, with ikj €
V(3 behaves in a manner akin to the z-variable x5, where 4,5 € Vv Ina
solution where these variables are set to one, it signifies that the nodes ¢ and
Jj are sequentially adjacent in the tour.[2] It is important to note the strategic
significance of these advanced constraints in solving the QTSP. They represent
an evolution from simpler models by capturing more complex relationships be-
tween the nodes and edges in the graph. Utilizing this fact, as a stronger form
of (2.3) we get (2.11),

n
o met > vew SIS =1, SCV.5#0,15] < 3,
e=(i,j)evi?} e =(ik,j)ev®
i,JES 1,jE€S,kEV\S
Y aer 3 Yo < 15| — 1, SgV,|S\zg,%eV\S.
e=(i,j)ev iz} e =(ik,j)ev®
3,J€ES i,j€S,kEV\(SU{t})
(2.11)
2]
and respectively as a stronger form of (2.9), we get (2.12).
n
Z Te— 2. Z ye<3>22a SCMS#®7|S‘<§7
e=(i,j)ev e =(i,k,j)ev®
i€S,jeEV\S 1,j€8,kEV\S
Yoo e 2 3 Yo > 2, 5gu|5|zg,ieV\S.
e=(i,j)evi?} e® =(i,k,j eV ®
i€S,JEV\S i,§E€8,kEV\(SU{i})
(2.12)
2]

The second part of the constraints (2.11) and (2.12) account not only for the
direct connections between nodes within a set .S, but also for those paths that
exit S and then immediately return. This makes the constraint more potent in
this form, as (2.3) and (2.9) only account for edges within S.

(2.11) is distinguished as one of the top-performing constraints, demonstrat-
ing notable efficiency across both small and large instances. The solver time in
response to increasing reload costs for (2.11) is minimal, indicative of an excep-
tionally low exponential growth. This is further evidenced by the consistently

17

low interquartile range, and whiskers, all of which are confined within a tight
range.

When examining solver times over growing percent of flagged edges, (2.11)
continues to exhibit superior performance, aligning with the normal distribution
pattern observed in other constraints. In this respect, it stands out as one of
the leading performers.

A closer analysis of the number of created SECs, over the percentage of
flagged edges in an instance, places (2.11) in a unique category. Alongside (2.11),
(2.14), (2.16) and (2.20), it demonstrates significantly fewer SECs, highlighting
its exceptional efficiency. This pattern is mirrored in the number of solver runs
over the percentage of flagged edges, where (2.11) follows a similar trend as in
its number of created SECs.

Lastly, in the context of SECs over the relative sreload costs, (2.11) continues
to outshine its counterparts. The trend is exponential, akin to that observed in
the other mentioned constraints, yet (2.11) shows a marked superiority. This
robust performance is consistent in smaller instances and demonstrates a man-
ageable increase in efficiency for larger instances, further solidifying its position
as a highly effective constraint in various scenarios. The performance of (2.11) is
in not line with the results from [2], as Aichholzer et al. do not find sustainable
performance gains.

(2.12), when assessed in smaller instances, presents an interesting profile in
terms of solver time in relation to growing relative reload costs. The trend
observed for (2.12) is somewhat akin to that of (2.11), albeit more aligned with
the general behavior of other constraints. This trend underscores its consistent
performance across varying reload costs.

In the realm of solver time over percent flagged edges, (2.12) conforms to
the normal distribution pattern, much like the majority of the other constraints.
This aspect of its performance does not particularly stand out, indicating a
standard level of efficiency in handling instances with different percentages of
flagged edges.

Analyzing the SECs over different deviation of flagged edges, (2.12) main-
tains alignment with the general trend observed in other constraints. Similarly,
its behavior in terms of SECs over the reload costs follows the established ex-
ponential pattern, indicative of a consistent response to varying reload costs.

The number of solver runs for (2.12), both over changing relative reload
costs and flagged edges, also mirrors the patterns exhibited by other constraints,
further indicating its typical performance characteristics in smaller instances.

Transitioning to larger instances, the performance of (2.12) remains expo-
nential in response to rising reload costs, paralleling the trends seen in other
constraints. This exponential response is consistent across various metrics, in-
cluding solver runs over changing percentage of flagged edges, SECs over chang-
ing percentage of flagged edges and solver time over changing percentage of
flagged edges.

In summary, while (2.12) does not exhibit exceptionally distinct performance
characteristics, it maintains a level of predictability across both smaller and
larger instances. This uniformity in response to varying graph parameters,

18

whether in terms of changing reload costs or flagged edges, positions (2.12)
as a reliable, though not outstanding, performer within the solver framework.
The overall performance of (2.12) is in line with the performance mentioned in

2].

t =argmax{ min diz;j ¢ (2.13)
kEV\S Z;J;js

2

Equation (2.13) searches the vertex ¢ that offers the greatest possible min-
imum distance d;; for all pairs of distinct nodes ¢ and j within the set S,
considering the path that passes through vertex k. Here, the vertex k is chosen
from the set V'\'S. The function arg max seeks the value of k for which the inner
expression, the minimum of d;;; across all pairs of ¢ and j, is maximized. This
approach identifies the optimal vertex k that maximizes the distances within
the set S in relation to an external node, thus pinpointing a sort of 'worst-case’
scenario for the distances within S, extending the efficiency of (2.11), (2.12) and
later in (2.14).]2]

Constraint (2.14) is an extension from (2.11), where the second part of the
constraint only applies, if the vertices ¢ and j are connected by an edge in the
current solution, hence z7j; = 1.

n
Z Tet Z Yty < |S]—1, SCV;S¢®7|S|<§;
e=(i,j)ev 12} e =(i,k,j eV ®
i,j€S 1,jJES,kEV\S
w;-:l
n -
> met > Yew <|S| =1, SCV,IS| > i€ V\S.
e=(i,j)ev 12} e =(i,k,j)eV®
i,j€S i,j€S,kEV\(SU{%})
acfj=1
(2.14)

In the evaluation of smaller instances, (2.14)’s performance in terms of so-
lution time over reload costs reveals again a exponential pattern. Distinctively,
(2.14) ranks as one of the top performers, characterized by a very low median
and a tight interquartile range. This reflects its efficiency in handling varying
reload costs.

Regarding the solver time over percent flagged edges, (2.14) adheres to the
normal distribution pattern observed in other constraints. However, its perfor-
mance stands out as exceptionally strong, aligning it with the high-performing
constraints such as (2.11), (2.16), and (2.20). This indicates a significant level of
effectiveness in managing scenarios with various levels of percent flagged edges.

In the context of subtour elimination constraints, (2.14) falls into the lower
tier alongside the previously mentioned high-performing constraints. It does

19

not exhibit any unique pattern, maintaining consistency with the general trends
observed in other constraints.

Transitioning to the analysis of larger instances, (2.14) continues to demon-
strate exemplary performance. It maintains its standing as a top performer,
with no deviation from the expected patterns in subtour elimination constraints
and solver runs. The consistency observed in the behavior of (2.14) across vari-
ous metrics, including subtour elimination constraints and solver runs, reinforces
its position as a robust and efficient constraint in diverse instance sizes.

Overall, (2.14)’s performance, especially in its low median and tight in-
terquartile range for reload costs and its exceptional handling of percent flagged
edges, establishes it as a remarkably efficient constraint. Its uniformity across
both smaller and larger instances underscores its reliability and effectiveness
within the solver’s operational framework.(2.14) “s results partially correlates to
the results in [2], as the performance to (2.11) marginally worse but significantly
better than (2.3),

Constraint (2.15) is an adaption of (2.11) or correspondingly (2.12), where
only y variables are used.

Z Yty > 2, ch,s¢@,|5\<%

e =(i,k,j eV

i€S,5,keV\S
n -
Z Y+ 2- Z Yets» = 2, SQV7|5|Z§J€V\S~
e® =(i,k,j)ev e® =(i,t,j)eV®
i€S,j,keV\S 1,JES

(2.15)

(2.15) exhibits a consistent performance pattern across both smaller and
larger instances. In terms of solver time over reload costs, it aligns with the
general trend observed in most constraints, demonstrating neither exceptional
efficiency nor notable deficiency. This balanced performance places it within
the median range of efficiency across various instance sizes.

Similarly, when considering solver run times over percent flagged edges,
(2.15) adheres to the normal distribution pattern common among other con-
straints. This consistency further reflects its standard performance, neither
outshining nor lagging behind its counterparts.

Remarkably, (2.15) stands out for its lower count of subtour elimination
constraints, both over changing percentages of flagged edges and reload costs.
This trend extends to the number of solver runs, where (2.15) maintains lower
frequencies compared to other constraints. This aspect of its performance in-
dicates a level of efficiency in subtour management, evident in both small and
large graph instances.

Despite this efficiency in certain metrics, (2.15) does not rise to the level of
the best-performing constraints in larger instances. It continues to exhibit the
same performance pattern as in smaller instances, maintaining its position as a
reliably average performer. The absence of significant deviations or noteworthy

20

peculiarities in larger instances underscores 2.15’s stable and predictable behav-
ior within the solver’s operational framework, across a range of graph conditions
and sizes.

2.5 Various Combinations and Extentions of Con-
straints

In this section, new combination and extension of existing constraints are intro-
duced to see, if any advancement in solver performance can be archived.

2.5.1 Various Combinations of Constraints

Firstly, new combinations are introduce, base of constraint (2.10). We take
the same criteria for constraint selection as in (2.11), (2.12), (2.14) and (2.15),
namely |S| < & for the first SEC and |S| > % for the second SEC, but exchange
one of the two constraints from (2.10) with (2.11), (2.12), (2.14) and (2.15).

The first variation of (2.10), the first part is exchanged with the first part
of (2.11), shown in (2.16).

n
S aet > yew <IS] =1, SCV.5#0,15 < 3,
e=(i,j)ev{?} e =(i,k,j)ev®
1,J€S i,jES,kEV\S

Z re>2, SCV,IS|>

e=(i,j)ev i}
i€S8,7EV\S

(2.16)

SE

The constraint (2.16) is recognized for its remarkable efficiency in both small
and large instances. The solver time for (2.16) shows minimal increase even as
reload costs escalate, indicating a low rate of exponential growth. This is further
supported by the consistently narrow interquartile range and compact whiskers
in the data, signifying a constrained variation in solver time.

In terms of solver time against increasing percent flagged edges, (2.16) main-
tains its superior performance. It adheres to the normal distribution pattern
seen in other constraints, setting it apart as another top performer in this aspect.

When analyzing the subtour elimination constraints in relation to the percent
flagged edges, (2.16) stands out distinctively. Along with constraints like (2.11),
(2.14) and (2.20), it shows a substantially reduced number of subtour elimination
constraints, underscoring its exceptional efficiency. This trend is consistent in
the number of solver runs over flagged edges, where (2.16) demonstrates a similar
pattern in terms of subtour elimination constraints creation.

Furthermore, in the context of subtour elimination constraints for changing
reload costs, (2.16) exhibits remarkable performance. The trend, while expo-
nential as observed in other constraints, showcases a pronounced superiority for
(2.16). This robust performance remains consistent in smaller instances and

21

exhibits a commendable increase in efficiency in larger instances, reinforcing its
efficacy as a highly effective constraint under various operational scenarios.

Next, we adapt (2.10) by exchanging its second element with the second part
of (2.11), which is detailed in (2.17). Note, that at (2.17), the same methodology
for t is used as in (2.13)

S z<is -1, ch,57é®7|5|<g,

e=(i,j)eV 2}

i,jES
n -
Z Tet Z ye<3>S|S|_17 SQV,|S‘Z§,1§€V\S
e=(i,j)ev? e =(ik,j)ev
1,J€S i,j€S,kEV\(SU{})

(2.17)

In smaller instances, (2.17) exhibits a performance pattern that, while showing
some fluctuation, generally aligns with the other variant constraints, especially
under increasing reload costs. As these costs rise, (2.17)’s performance converges
with its counterparts, demonstrating a narrowing spread in efficiency. Over the
percent flagged edges, this constraint follows the expected normal distribution,
with performance becoming more consistent near the median flagged percentage.

In the next constraint, we follow the patterns as in (2.16), but use (2.12) as
the exchange candidate for the first part of the equation.

n
dooomem 2 Y w22 SCV.SADIS <3,
e=(i,j)ev e =(i,k,j)eVv
1€S8,7EV\S 1,JES,kEV\S

> we>2 SCVS|>

e=(i,j)ev{?}
i€8,7EV\S

SE

(2.18)

Constraint (2.18) aligns closely with the general performance trends observed
in most other constraints. In smaller instances, as well as in more complex
scenarios, (2.18) demonstrates a consistent efficiency, particularly in its response
to varying reload costs and percent flagged edges.

In terms of solver time in relation to the increasing percent of flagged edges,
(2.18) mirrors the standard distribution patterns exhibited by other constraints.
This indicates a level of efficiency and adaptability that is typical within this
field, showcasing its effectiveness in familiar operational scenarios.

Overall, (2.18), with its alignment to common trends in efficiency, solver
time, and subtour elimination constraints, reinforces its role as a reliable and
standard tool in operations research, adept at handling a variety of typical
operational contexts.

22

Further to complete the variation, we exchange the second part of (2.12).

> @ <ISI-1L SCV.S#0S|<3,
e=(i,j)eVv 12}

i,J€ES
Yo e 2 3 Yois) > 2, ng,|5|zg,%eV\S.
e=(i,j)evi e® =(i,k,j)evV®
i€S5,jEV\S i,jE€S,keV\(SU{t})
(2.19)

Constraint (2.19), akin to (2.17), presents a similar behavior in small in-
stances. Its runtime performance over growing reload costs and percent flagged
edges mirrors the patterns seen in (2.17). The constraint shows a greater propen-
sity to generate subtour constraints, particularly in scenarios with higher flagged
percentages, aligning it closely with the tendencies of (2.3).

In this version, constraint (2.10) is mixed in the same manner as above with

(2.14).

n
S aet > yew <IS| =1, SCV.S #0185 < 5,
e=(i,j)ev{? e =(ik,jyev®
i,7€S i,j€S,kEV\S
zi;=1

> we>2 SCVS|> (2-20)

e=(i,j)ev {2}
i€S8,7EV\S

SE

In an evaluation of operational efficiency, (2.20) emerges as a standout con-
straint, particularly in its response to dynamic problem sizes. The solver time
associated with (2.20) remains impressively low, even as reload costs intensify,
signifying an efficiency that does not steeply decline with increasing complex-
ity. This is evidenced by a tightly grouped interquartile range and whiskers,
indicating minimal variation in solver time across different instances.

Observing the solver time relative to the ascending percentage of flagged
edges, (2.20) showcases a commendable level of stability. It follows a pattern
of normal distribution, similar to its counterparts, but with a distinct efficiency
curve that positions it as a leading constraint in this domain.

Analyzing the subtour elimination constraints with respect to the percent
flagged edges reveals the streamlined efficiency of (2.20). It, along with con-
straints like (2.11), (2.14) and (2.16), exhibits a lower number of subtour elimi-
nation constraints, signifying an optimized approach to constraint management.
This pattern is also reflected in the solver runs over flagged edges, where (2.20)
maintains a trend consistent with its reduced subtour elimination constraint
frequency.

Furthermore, in the realm of subtour elimination constraints in relation to
reload costs, (2.20) continues to demonstrate exemplary performance. Although
it follows an exponential trend similar to other constraints, (2.20) distinguishes

23

itself with its superior performance curve. Its robustness is evident in smaller
instances and continues to impress with a scalable increase in larger instances,
affirming its effectiveness as a versatile and potent constraint in a variety of
operational contexts.

Here, the second part is exchanged.

> @ <ISI-1 SCV.S£DIS|<3,
e=(i,j)evi?}

i,jES
n -~
Z Te+ Z ye<3>S|S|_17 S_’C‘_V,|S‘Z§,t€V\S
e=(i,j)ev 2} e =(ik,jev®
i,j€S i,5€5,k€V\(SU{E})
a:fj:1

(2.21)

For (2.21), the trend in smaller instances indicates a performance closely re-
lated to (2.17) and (2.19), especially notable in contexts of high reload costs and
median flagged edge percentages. This constraint also tends towards producing
a higher number of subtour elimination constraints and solver runs, especially
over flagged edges, indicating a performance trend consistent with (2.3)’s sub-
tour creation pattern.

The last variant is a mix of (2.10) with (2.15).

> w22 SCV.S#BISI<Z,

e =(i,k,j eV ®
i€S,5,keV\S

> wm>2, SCV|S|>

e=(i,j)ev?}
1€S,7EV\S

(2.22)

SIE

The performance of (2.22) closely follows the trends observed in many other
constraints. Its behavior in small-scale instances and under complex conditions
exhibits a consistency that is characteristic of most constraints.

Regarding its efficiency in varying reload cost scenarios, (2.22) aligns with
the expected exponential efficiency curve, indicative of a predictable and sta-
ble response to increasing problem complexity. This mirrors the performance
dynamics commonly observed in similar constraints.

In summary, (2.22) maintains a performance that is aligned with the broader
trends. Its approach to managing reload costs, flagged edges, and subtour elim-
ination constraints is in keeping with the standard practices, ensuring its utility
as a reliable and effective tool in various operational settings.

24

Finally the exchange with the second part of (2.15).

E: Te §|S‘4'L S(:‘Cé;#;&|s‘< ga

e=(i,j)evi?}

i,j€S
n -
> Yo+ 2- > Yewr 22, SCV[S| 25, t€V\S.
e® =(ik,j)ev® e =(it,5)ev®
i€8,5,keV\S 4,jES

(2.23)

Finally, (2.23) shows a performance trajectory that is in line with the other vari-
ants in smaller instances. Like its counterparts, (2.23)’s efficiency over reload
costs and flagged edges exhibits a converging trend towards a unified perfor-
mance pattern. Its subtour elimination and solver run metrics over flagged and
weighted edges reflect a similar tendency to generate more constraints, resonant
with the patterns observed in (2.3).

2.5.2 Extension of Constraint

The last new constraint this thesis will cover is an extension of the existing con-
straint (2.12) with the lifting approach introduced in constraint (2.14), where
the second part of the constraint only applies, if the vertices ¢ and j are con-
nected by an edge in the current solution, hence z7; = 1.

n
Z Te— 2 Z Ye(s) = 2, 5CV,S75@a|S\<§,
e=(i,j)ev iz} e =(i,k,j eV
i€S,jeV\S i,jES,KEV\S
x%:l
Yo e 2 3 Yois) > 2, ng,|5|zg,ieV\S.
e=(i,j)ev iz} e =(ik,j)ev®
i€S,jEV\S i,j€S,kEV\(SU{t})
z%:l
(2.24)

In examining the performance of (2.24) across various instance sizes, it be-
comes apparent that this variant does not offer a notable improvement over
the original (2.12). This observation is consistent in both smaller and larger
instances, covering key performance metrics such as solver time, subtour con-
straint generation, and the number of solver runs.

The extension of (2.12) into (2.24), while theoretically promising, does not
translate into measurable benefits in terms of computational efficiency or effec-
tiveness. In smaller instances, where nuanced differences in constraint behavior
might be more discernible, (2.24) performs similarly to its base version. This
trend continues in larger instances, where one might expect the extended fea-
tures of (2.24) to demonstrate their potential. However, even in these scenarios,
(2.24)’s performance mirrors that of (2.12), showing no significant divergence
in terms of solver efficiency or subtour management.

25

Overall, the analysis indicates that (2.24), despite its modifications, fails
to surpass the performance benchmarks set by (2.12). This lack of distinction
in operational efficiency suggests that the extended attributes of (2.24) do not
significantly impact its functionality within the solver’s framework.

26

Chapter 3

Applications of the SQTSP

The SQTSP is a versatile mathematical model that finds practical applications
in various fields, where routing optimization plays a critical role. This chapter
explores the multifaceted nature of the SQTSP and its applicability in address-
ing real-world problems where costs are not merely distance-dependent but also
hinge on sequential choices and transitions between different states or modes.

Logistics and Transportation Planning

In the domain of logistics, reload costs manifest primarily during the loading
and unloading processes when goods are transitioned between various transport
modes such as ships, trains, and trucks. The SQTSP effectively captures these
costs, allowing for a more accurate representation of financial concerns in the
evaluation of transport networks.[3]

Telecommunication Networks

Analogously, in telecommunication networks, reload costs correspond to the
expenses incurred from transitions between different technological mediums,
such as fiber-optic to copper cables or satellite transmissions. The optimization
of these technology switches is essential in minimizing overall costs, which is a
prime objective of the SQTSP in network planning.[17]

Urban Mobility

Urban mobility presents unique challenges, with costs arising not only from the
distance of travel but also from the transition between modes such as walking, E-
Scooters, or automobiles. The SQTSP addresses these challenges by considering
additional expenses, including activation fees and restricted route access based
on transportation mode, thus providing a tool for optimizing urban travel routes.

Street Networks and Toll Roads

Street networks offer another application where SQTSP is valuable, especially
in scenarios where choices involve toll roads with associated fees or alternative

27

routes without tolls. The optimization here focuses on balancing the costs and
benefits of quicker, but more expensive routes versus slower, toll-free options.

Healthcare Logistics

Healthcare logistics, especially in the distribution of temperature-sensitive vac-
cines or organs for transplant, can utilize the SQTSP to minimize reload costs
associated with maintaining the cold chain and handling special medical cargo,
ensuring timely and safe delivery to their destinations.

Automated Warehousing
The SQTSP can be adapted to automate warehousing systems where robots or
automated guided vehicles must choose paths that minimize the energy con-
sumption and time delays associated with the transfer of items between various
storage and processing areas.

Multimodal Passenger Transport

In multimodal passenger transport systems, individuals often switch between
different modes of public and private transportation. The SQTSP can help in
designing optimal transit routes that consider not only the travel time and cost
but also the convenience and frequency of transfers.

28

Chapter 4

Characterization and
Creation of Test Instances for
the Symmetric Quadratic
Traveling Salesman Problem

In this chapter, we delve into the selection and examination of test instances
crucial for evaluating the performance and applicability of the algorithms pro-
posed in this thesis. These test instances play a pivotal role in demonstrating
the efficacy of our approach under various conditions reflective of real-world
scenarios.

4.1 Characterization of Instances

Reload costs, conceptualized by Wirth and Steffan [19], represent a significant
theoretical construct in the optimization of network systems. These costs are
attributed to the transitions within networked systems, be they in transporta-
tion, communication frameworks or any other application mentioned in chapter
3. The focus on reload costs stems from their potential to influence the effi-
ciency of a system’s operational transitions rather than the direct operational
costs. Within the scope of the QTSP, reload costs provide a critical variable
in the quest for optimal solutions, acknowledging that the sequence of actions,
and their associated costs, can impact the total expense as much as the actions
themselves.

Figure 4.1 presents a schematic illustration of a typical street network, where
nodes represent intersections or destinations, and edges symbolize the roads con-
necting them. The differentiation between toll and non-toll roads is effectively
visualized using dotted and solid lines, respectively. This distinction is crucial in
QTSP, as it adds an additional layer of complexity to the route planning, where

29

Glossary

—— A Normal Road
————— SA Toll Road

Figure 4.1: Example of a SQTSP Test Instance

Edge Transition Cost
. . ° 0

0
— o . 7
7

[] *r—0

Table 4.1: Illustration of Reload Costs between Different Edge Types

decisions are not solely distance-based but also cost-driven. Complementing the
graphical representation, Table 4.1 elucidates the cost structure associated with
different edge transitions in the network. The table categorically lists the po-
tential transitions between toll and non-toll roads and assigns a numerical cost
to each. This tabular representation is instrumental in quantifying the reload
costs, a fundamental aspect of the SQTSP that accounts for the expenses in-
curred due to the transition between different types of roads. The visualization
of transitions alongside their respective costs provides a clear and concise un-
derstanding of how reload costs are integral in determining the optimal route in
a network with diverse road types.

4.2 Existing Test Instances

In their research, Fischer [6] and Fischer and Helmberg [9] conducted tests on
reload instances. These specific instances were utilized to validate the model (see
Appendix A) and the SECs discussed in this thesis. The instances were obtained
through personal communication with Fischer. Notably, these instances feature
the following characteristics:

"For_the reload cost instances we generated random graphs G =
(V, E) by including each edge e € E independently with some fixed

30

probability p € [0,1] and by randomly coloring these edges with
colors D = {1,...,d}. Two types of costs are used for the instances.
In the instances RI; each color change causes costs of one, and in
RI5, the color change between two colors 4,5 € D, i # j, causes
costs d;; with d;; chosen uniformly at random in {1,...,10}." [9]

Fischer highlighted the extreme difficulty in solving these instances but did not
elaborate on the underlying reasons. In Chapter 6 of this thesis, we propose a
plausible explanation, identifying the significant discrepancy between edge costs
and reload costs as a contributing factor. Due to the computational demands,
evidenced by the 4-10 hours required to solve a single instance among the five
tested with a probability p of 1 and a node size of 20, the results for these
instances have been omitted from direct discussion (see Appendix Z).

4.3 Creation of Test Instances

As already mentioned by [7, 9], random instances need to be create, as no real
world instances are available. Additionally, this theses extends the existing
definition for generated instances by the fact that the created graphs need to
be complete.

The generated test instances encompass a wide range of configurations to
thoroughly assess the performance and effectiveness of the proposed algorithms.
A total of around 3500 unique test instances were created, varying across three
main parameters: the number of nodes, the percentage of randomly flagged
edges, and the magnitude of reload costs relative to the average edge weight for
these flagged edges.

The number of nodes in the test instances ranges from 10 to 40, to capture
different scales and levels of complexity. This allows for an in-depth analysis of
the algorithms in terms of scalability and performance across various network
sizes.

The percentage of randomly flagged edges in the test instances extends from
5% to 95% in steps of 10%. This flagging is crucial as it introduces possibilities
within the traversal to change between different edge kinds, influencing the com-
plexity of the routing. The variation in this parameter aims to demonstrate how
the algorithms respond to different densities of constraints within the network.

The reload costs for a flagged edge are defined as a percentage of the average
edge length of all edges in the graph. This percentage varies in the test instances
from 5% to 95%, also in steps of 10%. These costs represent the additional
burden incurred when transitioning from or to a flagged edge in the route. By
varying these costs in the test instances, the algorithms can be evaluated for
their ability to determine efficient routes considering different cost scenarios.
For each parameter configuration, 5 instances were generated to obtain a more
representative result.

Each generated base instance, holding the node coordinates, underwent a
subsequent process where edges were randomly flagged, and different reload

31

Algorithm 2 Generate Graph with Euclidean Distances and Reload Costs

1: Require: Bounds for Euclidean space, percentage for flagged edges, per-
centage for reload cost to average edge weight

2: Ensure: A complete graph with reload costs when traversing from or to a

flagged edge

Initialize empty graph G

Generate random vertices within the bounds in Euclidean space

Calculate the Euclidean distances between each pair of vertices

Round the distances to the nearest integer and assign as edge weights

Initialize total weight W to 0

Initialize edge count E to 0

for each pair of vertices v;,v; in G do

10: Add edge (v;,v,) to G

11: W W + weight(v;, v;)

12: E+—FE+1

13: end for

14: Calculate average edge weight w = W/E

15: for each edge in G do

16: Randomly flag this edge with given probability

17: if edge is flagged then

18: Assign reload cost r = w x reload percentage
19: end if
20: end for

21: return Graph G with assigned reload costs

32

costs were assigned. This method allows for the potential identification of pat-
terns in each instance, particularly in terms of how solutions might pivot or
change based on the varying flagged edges and their associated reload costs.
Such a nuanced approach in instance generation aids in a more comprehensive
analysis of the algorithms and constraints, especially in observing their behavior
and performance under varying network constraints and cost dynamics.

4.4 Challenges of Instances with Specific Attributes

In our computational experiments (referenced in Chapter 6), we have identified
significant challenges associated with instances characterized by high ratios of
reload costs to the average edge weight. Notably, instances from Fischer [9] that
feature reload costs at times equating to 1 against an edge weight of 0 present
pronounced difficulties in solving. These instances underscore the complexi-
ties involved when reload costs disproportionately influence the computational
landscape of the problem. To address such challenging scenarios effectively, we
recommend employing the strategy outlined in (2.16), which is designed to man-
age the computational burden introduced by these specific attributes efficiently.
This approach aims to optimize algorithmic performance under conditions where
reload costs dominate the solution process.

33

Chapter 5

Heuristics for SQTSP

Fischer et al. [8] have previously discussed several heuristics for the QTSP,
most of which are adaptations of well-known and proven heuristics used for the
regular TSP. In our study, we selected two of these heuristics mentioned in [8]
and conduct comprehensive benchmark tests to evaluate their performance and
effectiveness in solving SQTSP instances.

5.1 Cheapest-Insertion Heuristic (CI)

“This is a generalization of an ATSP heuristic [16]. We start with
an arc (vy,v2) € A considered as a cycle and choose this arc so that
the term

gg{}CQ(%Ul,UQ) + gg‘r} cq(v1,v2, 7)

is minimal. Note that the natural starting point, namely starting
with a pair of arcs (v1,v2) and (ve, v3), so that cq(vy,v2,v3) is min-
imal over all pairwise distinct triples, would lead to a bad tour, if
cq(vg,vs,x) is large for all x € V' \ {vg, v3} or if cq(x, v1,v9) is large
for all x € V' \ {v1,v2}. The new nodes are iteratively included in
the cycle in a greedy manner, so that in each step the new cycle is
cost minimal. The heuristic stops when the cycle is a tour.“[8]

5.2 Nearest-Neighbor Heuristic (NN)

“This is also a generalization of an ATSP heuristic [16]. Given a
path P;_1 = (v1,...,v;) we append a node vgy1 € V \ {vg,...,v;}
so that cq(vk—1, vk, vg+1) is minimal. The arc (vy,vy) € A for the
first iteration is chosen so that

1 .
— <Z cq(m,vl,vg)) +£%1‘I/1cq(v1,v2,x)

zeV

34

is minimal in order to respect the predecessor of v; to be chosen in
the last step.[8]“

5.3 Approach on a SQTSP Heuristic

The proposed heuristic for the SQTSP combines elements of greedy algorithms
with local search optimization techniques. It is designed to initiate the tour with
edges that have higher costs, under the premise that this approach can poten-
tially unlock more significant cost-saving opportunities during the optimization
phase. Furthermore a key aspect of this heuristic is the initial focus on forming
a tour with as many similar kind edges, subsequently reducing the number of
edge switches. Only in the later stages of the heuristic, flagged edges are strate-
gically incorporated, allowing for an efficient balance between immediate cost
savings and overall tour optimization.

Adapted Nearest Neighbor

The heuristic begins with a modified Nearest Neighbor (NN) strategy to con-
struct an initial tour. This process starts from a node that exhibits the maxi-
mum cumulative cost to its neighboring nodes, hypothesizing that such nodes
could be critical in realizing an economical tour. The algorithm then iteratively
appends the closest unvisited node to the tour, giving precedence to unflagged
edges to minimize early commitment to potentially suboptimal paths.

Once the initial tour is established, it undergoes a series of refinement steps
through the application of local search optimizations, specifically 2-Opt, 3-Opt,
and 4-Opt techniques. These methods are employed sequentially to unravel and
recombine tour segments, exploiting the quadratic nature of the problem’s cost
function to achieve a more cost-efficient solution.

2-Opt Technique

The 2-Opt technique is the simplest form of local optimization applied in this
heuristic. It inspects pairs of edges and evaluates the cost impact of exchanging
these edges. If a beneficial exchange is identified, characterized by a reduction
in the total tour cost, it is executed to yield a more favorable tour configuration.
[8, 12]

3-Opt and 4-Opt Techniques

Building on the 2-Opt foundation, the heuristic further incorporates 3-Opt and
4-Opt techniques. These methods extend the principle of edge exchange to
triplets and quadruplets of edges, respectively. They offer a more profound
rearrangement of the tour structure, facilitating the escape from local optima
and fostering the discovery of a tour closer to the global optimum.

35

Chapter 6

Computational Experiments

6.1 Test Environment

All computational experiments were executed on an Intel i7-7820HQ (2.90 GHz/3.90
GHz) with 32GB RAM, operating under Windows 10. The programs for these
tests were developed in Java 18, utilizing AMPL 4.0.0 as modeling tool and
Gurobi 11.0.0 as the ILP-solver. All tests were conducted in isolation, ensuring

no other user processes were running in the background.

6.2 Evaluation of Constraint Performances

Preliminary

In our analysis, different statistical measures are employed for various types of
data. The Arithmetic Mean is used for calculating the average values of time,
number of subtour constraints and number of solver runs. This is due to the
additive nature of these data points. The Arithmetic Mean is defined as:

n

1 ...
Arithmetic Mean = — Z T; = Ty + T+ ...+ Ty

n n
i=1

where z; represents the individual data points and n is the total number of
data points.

For the analysis of heuristic gaps, which often span several orders of mag-
nitude, the Geometric Mean is used. This measure is more appropriate for
data that are multiplicative or where percentage changes are of interest. The
Geometric Mean is defined as:

(6.1)

Geometric Mean = (H x7> = xr1 x0-... Ty (6.2)

i=1
where x; are the gap values observed in the heuristic analysis and n is the
number of data points.[4]

36

Evaluation

In an in-depth examination of the plots in Appendix B, a notable trend is ob-
served in the median computational times associated with different constraints.
This trend is characterized by an increase in computational times as the percent-
age of flagged edges in the graph escalates from 0% to around 50%. Intriguingly,
beyond this point, there is a discernible reversal in this trend, with computa-
tional times showing a tendency to revert towards their initial values.

Further analysis reveals that the variability in computational times, as ev-
idenced by the widening of the interquartile range, becomes more pronounced
with the increase in the percentage of flagged edges, up to the 50% threshold.
This phenomenon suggests that the complexity inherent in efficiently solving
smaller subtours might be a contributing factor. Supporting evidence for this
hypothesis can be found in the correlated increase in the number of SECs and
solver runs, as indicated in the plots in Appendix D and Appendix F.

Drawing conclusions from this analysis, it becomes apparent that certain
SECs, specifically those represented by equations (2.11), (2.14), (2.16) and
(2.20), exhibit a more robust performance in terms of solver time when faced
with varying percentages of flagged edges in a graph. These constraints demon-
strate consistently median values and maintain tighter interquartile ranges, in-
dicating a higher level of efficiency compared to their counterparts.

Hypothesis: This hypothesis posits that the computational complexity of solv-
ing the SQTSP follows a normal distribution relative to the percentage of flagged
edges in a graph, peaking when the distribution of flagged and unflagged edges
approaches a 50/50 ratio. It is conjectured that an increase in the number
of SECs due to this balanced edge mix leads to a higher number of solver runs,
which in turn results in greater overall solving time. Thus, the balanced distribu-
tion of flagged edges relative to all edges is hypothesized to be a critical factor in
amplifying the structural complezity and computational demands of the problem.

An examination of the solver times with respect to the reload costs relative
to the average edge weights has been conducted, see Appendix C. The box-
plot analysis reveals a noteworthy consistency in solver performance across the
examined constraints, particularly SECs (2.11), (2.14), (2.16) and (2.20).

As reload costs, relative to the average edge weights, increase, an exponential
escalation in solver times is observed across all constraints. This trend is charac-
terized by a more pronounced increase in solver times than would be expected
under a linear model. The constraints mentioned earlier exhibit a marginal
widening of their interquartile ranges in response to this growth. This pattern
suggests that the solver times react disproportionately to increments in reload
costs relative to the average edge weights, aligning with an exponential increase
in computational complexity as input parameters scale.

The robust nature of these constraints in the face of escalating reload costs
relative to the average edge weights is indicative of their efficiency. They demon-
strate not only effective management of computational load but also a notable

37

consistency in solver times, particularly in lower reload costs categories relative
to the average edge weights.

Hypothesis: Observing the exponential rise in solver times alongside an in-
crease in variance with rising reload costs relative to the average edge weights,
the following hypothesis is proposed: The median and variance of solver times,
as well as the number of SECs (see Appendiz E) and solver runs (see Appendiz
G), grow exponentially as the reload costs increase relative to the average edge
weights. This trend implies a direct link between the complexity introduced by
increasing reload costs, relative to the average edge weights, and the computa-
tional efforts required for solving instances. The exponential pattern seen in the
number of SECs and number of solver runs further corroborates the notion that
higher reload costs, relative to the average edge weights, significantly amplify the
structural and computational complexity of the problem.

Overall Hypothesis: Interplay of Edge Balance and
Reload Costs in Solver Complexity

Through the collective analysis of various graph characteristics and their impact
on the solver’s performance, a comprehensive hypothesis emerges, encapsulating
the intricate dynamics observed:

Comprehensive Hypothesis: The operational complexity of the solver, as
manifested in the number of SECSs, the frequency of solver runs, and the re-
sultant solver time, is significantly influenced by two pivotal factors in graph
composition: the balance between flagged and unflagged edges, and the propor-
tionality of the reload costs relative to the average edge weights. Firstly, a graph
exhibiting a balanced distribution of flagged and unflagged edges tends to in-
crease the intricacy of subtour challenges, leading to a higher count of SECs.
This balance acts as a catalyst in the subtour elimination process, intensifying
the solver’s computational effort. Secondly, when the reload costs bear a substan-
tial relation to the average edge weight, it further escalates the complexity faced
by the solver. This relationship amplifies the difficulty in determining efficient
paths, thereby increasing the number of SECs encountered during the solution
process. Consequently, these two factors, edge balance and reload costs to aver-
age edge weights proportionality, operate in tandem to heighten the overall solver
complexity. This heightened complezity is sequentially reflected in an increased
number of solver runs and, ultimately, extended solver times. The hypothesis
underscores a direct correlation between the nuanced structural attributes of the
graph and the operational demands placed on the solver, highlighting the intricate
interdependencies that govern the solver’s performance.

38

6.3 Evaluation of Heuristic Performances

In this section, we delve into the analysis of gap trends for the heuristic algo-
rithms, which can be found in the Appendix H.

Gap Trends for Different Ratios of Flagged Edge to Unflagged Edges

In our initial analysis, we focus on evaluating the performance of various heuris-
tics concerning the increasing percentages of flagged edges. This investiga-
tion encompasses three distinct heuristics: the Cheapest Insertion, the Nearest
Neighbor, and a novel heuristic method proposed in this thesis. A key observa-
tion across these heuristics is that the most favorable gaps, in terms of solution
quality, are evident in instances where the percentage of flagged edges deviates
significantly from an even 50/50 distribution. This outcome aligns with the nor-
mal distribution-like pattern observed in constraint performances over a variety
of percentages of flagged edges to unflagged edges within test instances.

Noteworthy within these findings is the superior efficacy of the Nearest
Neighbor heuristic, which consistently outperforms others in terms of solution
quality and computational efficiency. Following closely is the Cheapest Insertion
heuristic, which also shows commendable performance under these parameters.
In contrast, the heuristic approach advocated in this thesis exhibits a marked
underperformance. It notably lags in all evaluated aspects, including both the
quality of the solutions and computational efficiency, thereby indicating areas
for potential refinement and further investigation.

Gap Trends for Different Reload Costs Relative to Average Edge
Weights

When we shift focus to examine the heuristic gaps in relation to reload costs,
our analysis uncovers a consistent trend across the different heuristics. We ob-
serve that for scenarios with minimal reload costs, the heuristics tend to yield
lower gaps. Conversely, as reload costs intensify, there is a noticeable increase
in these gaps. This pattern is coherent across all heuristics under study.

Among the evaluated strategies, the Nearest Neighbor heuristic continues
to demonstrate its superiority, achieving the smallest gaps and thus indicating
higher efficiency, even with increasing reload costs. This is closely followed by
the Cheapest Insertion heuristic, which also exhibits commendable resilience
against the escalation of reload costs, albeit with slightly less efficiency than the
Nearest Neighbor heuristic.

In contrast, the heuristic proposed in this thesis shows a more concerning
trend. It manifests a disproportionate increase in gaps across various scenar-
ios, indicative of a potential scalability limitation within the heuristic’s design.
This trend is consistently observed, suggesting that the heuristic may not adapt
well to changing operational conditions, particularly in the context of reload
costs. These observations underscore the necessity for further refinement and
optimization of the proposed heuristic. Emphasizing its performance enhance-

39

ment, especially in managing reload costs effectively, is essential to improve its
applicability and efficiency in a broader range of scenarios.

40

Chapter 7

Discussion

In this chapter, we delve into a nuanced analysis of the findings from the study
of the SQTSP with reload costs, integrating these insights within the broader
scope of existing literature and their practical ramifications.

The research presented in this thesis highlights notable variations in the per-
formance of SECs in response to different operational conditions, particularly
reload costs relative to the average edge weight and the ratio of flagged edges
relative to all edges. This revelation not only underscores the complexity inher-
ent in the SQTSP but also challenges some of the conventional understandings
within the field of operations research. The distinctive computational patterns
observed in relation to these structural elements of the SQTSP open new avenues
for exploring the subtleties of quadratic routing problems. When juxtaposed
with existing literature, our findings reveal both alignments and deviations in
terms of constraint performances. The fundamental principles of the SQTSP
corroborate established theories, yet the nuanced behaviors of the heuristic ap-
proaches, especially the novel heuristic introduced in this study, provide fresh
perspectives. These new insights contribute to a more refined understanding
of routing problems characterized by complex cost structures. However, it is
crucial to acknowledge the limitations of this research, particularly regarding
the scalability of the proposed heuristic and the generalizability of the findings.
Future research might focus on refining the heuristic for broader application and
exploring the SQTSP in a wider array of contexts. Additionally, investigations
into alternative SECs and their computational implications could further enrich
our understanding of these complex routing problems.

In conclusion, the comprehensive evaluation conducted in this discussion not
only augments our understanding of the SQTSP with reload costs but also lays a
foundation for future explorations in operations research and related disciplines.
The interplay between the structural nuances of the SQTSP and computational
efficiency, as uncovered in this thesis, provides a fertile ground for continued
academic inquiry and practical innovation.

41

Chapter 8

Conclusion

The research presented in this thesis offers an exhaustive exploration of the
SQTSP with reload costs. Initiating with an in-depth review of pertinent liter-
ature, this work established a solid foundation for understanding linearizations
and classical SECs within this context.

Venturing beyond basic methodologies, this study scrutinized alternative
SECs under the hypothesis of enhanced performance. This led to the develop-
ment of innovative, more robust SECs variants, coupled with the construction
and rigorous evaluation of new test instances. These efforts provided a detailed
examination of the SQTSP’s versatility across diverse domains.

Furthermore, this thesis illuminates the practical applications of the SQTSP
across various domains. The SQTSP’s versatility is showcased in its applica-
bility to real-world problems where costs are influenced by sequential choices
and transitions between states or modes. These applications span from logistics
and transportation planning to telecommunication networks, urban mobility,
street networks, healthcare logistics, automated warehousing, and multimodal
passenger transport. Each domain benefits from the SQTSP’s ability to accu-
rately model and optimize complex routing scenarios, emphasizing the model’s
relevance and utility in practical settings.

The scholarly contributions of this thesis include the formalization of the
problem definition, the creation of a comprehensive suite of test instances, and
the identification of computational time distribution patterns. These contri-
butions, together with the insights on the dependency of heuristic success on
problem parameters and the practical applications of the SQTSP, pave the way
for future research to refine solution strategies and enhance solver efficiency in
the context of SQTSP with reload costs.

Computational experiments conducted during this research revealed signifi-
cant variations in the performance of different constraints, with some configura-
tions distinctly outperforming others. Notably, computational times exhibited
unique patterns in relation to reload costs relative to the average edge weight
and the ratio of flagged edges relative to all edges, suggesting a complex inter-
play between graph composition and computational complexity, aligning with

42

both normal and exponential distributions.

The heuristic approach developed in this thesis, while innovative, fell short of
anticipated benchmarks in solution quality and computational efficiency. How-
ever, it was observed that the performance gap for each constraint was consis-
tently influenced by reload costs relative to the average edge weights and the
ratio of flagged edges relative to all edges, underscoring the complex dependen-
cies between problem structure and heuristic efficacy.

From these empirical observations, a comprehensive hypothesis was formu-
lated:

The operational complexity of the solver, as manifested in the number of
SECs, the frequency of solver runs, and the resultant solver time, is signifi-
cantly influenced by two pivotal factors in graph composition: the balance be-
tween flagged and unflagged edges, and the proportionality of the reload costs
relative to the average edge weights. Firstly, a graph exhibiting a balanced dis-
tribution of flagged and unflagged edges tends to increase the intricacy of subtour
challenges, leading to a higher count of SECs. This balance acts as a catalyst
in the subtour elimination process, intensifying the solver’s computational ef-
fort. Secondly, when the reload costs bear a substantial relation to the average
edge weight, it further escalates the complexity faced by the solver. This relation-
ship amplifies the difficulty in determining efficient paths, thereby increasing the
number of SECs encountered during the solution process. Consequently, these
two factors, edge balance and reload costs to average edge weights proportional-
ity, operate in tandem to heighten the overall solver complexity. This heightened
complezity is sequentially reflected in an increased number of solver runs and,
ultimately, extended solver times. The hypothesis underscores a direct correla-
tion between the nuanced structural attributes of the graph and the operational
demands placed on the solver, highlighting the intricate interdependencies that
govern the solver’s performance.

43

Bibliography

[1] Der Handlungsreisende wie er sein soll und was er zu thun hat, um
Auftrage zu erhalten und eines gliicklichen Erfolgs in seinen Geschéften
gewils zu sein. https://nbn-resolving.org/urn:nbn:de:gbv:32-1-10036183634.
Accessed: 2024.01.13.

[2] O. Aichholzer, A. Fischer, F. Fischer, J. F. Meier, U. Pferschy, A. Pilz,
and R. Stanék. Minimization and maximization versions of the quadratic
travelling salesman problem. Optimization, 66(4):521-546, 2017.

[3] E. Amaldi, G. Galbiati, and F. Maffioli. On minimum reload cost paths,
tours, and flows. Networks, 57(3):254-260, 2011.

[4] I. N. Bronstejn, K. A. Semendjaev, G. Musiol, and H. Miihlig. Taschenbuch
der Mathematik. Edition Harri Deutsch. Verlag Europa-Lehrmittel Nour-
ney, Vollmer GmbH & Co. KG, Haan-Gruiten, 10., iiberarbeitete auflage
edition, 2016.

[5] W. J. Cook, D. L. Applegate, R. E. Bixby, and V. Chvatal. The Traveling
Salesman Problem. Princeton University Press, 2011.

[6] A. Fischer. An analysis of the asymmetric quadratic traveling salesman
polytope. SIAM Journal on Discrete Mathematics, 28(1):240-276, 2014.

[7] A. Fischer. A polyhedral study of the quadratic traveling salesman prob-
lem. In M. Liibbecke, A. Koster, P. Letmathe, R. Madlener, B. Peis, and
G. Walther, editors, Operations Research Proceedings 2014, Operations
Research Proceedings, pages 143-149. Springer International Publishing,
Cham, 2016.

[8] A. Fischer, F. Fischer, G. Jager, J. Keilwagen, P. Molitor, and I. Grosse.
Exact algorithms and heuristics for the quadratic traveling salesman prob-
lem with an application in bioinformatics. Discrete Applied Mathematics,
166:97-114, 2014.

[9] A. Fischer and C. Helmberg. The symmetric quadratic traveling salesman
problem. Mathematical Programming, 142(1-2):205-254, 2013.

44

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

G. Gutin and A. P. Punnen. The traveling salesman problem and its varia-
tions, volume 12 of Combinatorial optimization. Springer, New York, 2007.

G. Jdger and P. Molitor. Algorithms and experimental study for the
traveling salesman problem of second order. In B. Yang, D.-Z. Du, and
C. an Wang, editors, Combinatorial Optimization and Applications, vol-
ume 5165 of Lecture Notes in Computer Science, pages 211-224. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008.

S. Lin and B. W. Kernighan. An effective heuristic algorithm for the
traveling-salesman problem. Operations Research, 21(2):498-516, 1973.

U. Pferschy and R. Stanék. Generating subtour elimination constraints for
the tsp from pure integer solutions. Central European journal of operations
research, 25(1):231-260, 2017.

R. Roberti and P. Toth. Models and algorithms for the asymmetric trav-
eling salesman problem: an experimental comparison. FURO Journal on
Transportation and Logistics, 1(1-2):113-133, 2012.

Roman Hultaichuk. Modern approaches for solving the travelling salesman
problem and the examples of their effective application. PhD thesis, Un-
published, 2020.

D. J. Rosenkrantz, R. E. Stearns, and I. P. M. Lewis. An analysis of
several heuristics for the traveling salesman problem. SIAM Journal on
Computing, 6(3):563-581, 1977.

B. Rostami, F. Malucelli, P. Belotti, and S. Gualandi. Lower bounding pro-
cedure for the asymmetric quadratic traveling salesman problem. European
Journal of Operational Research, 253(3):584-592, 2016.

R. Stanék, P. Greistorfer, K. Ladner, and U. Pferschy. Geometric and
Ip-based heuristics for angular travelling salesman problems in the plane.
Computers & Operations Research, 108:97-111, 2019.

H.-C. Wirth and J. Steffan. Reload cost problems: minimum diameter
spanning tree. Discrete Applied Mathematics, 113(1):73-85, 2001.

45

10

11

12

13

16

17

18

19

20

21

22

23

24

Appendix A

AMPL Model

param NODES;

set TRIPLES := {(i, j, k) in 1..NODES cross 1..NODES
cross 1..NODES: i != j and j !'= k and i != k};

param cost {TRIPLES};

var x {1..NODES, 1..NODES} binary;
var y {TRIPLES} binary;

minimize TotalCost: sum {(i,j,k) in TRIPLES} (cost[i,j,k
1 = yli,j,k1)/2;

s.t. edgeSum {i in 1..NODES}:
sum {j in 1..NODES: i != j} (x[i,j]1) = 2;

s.t. flowConservation {i in 1..NODES, j in 1..NODES: i

1= i}:

'= j}:

sum {k in 1..NODES: k != i and k !'= j} ylk,i,jl = x[i,]
1

s.t. flowConservation2 {i in 1..NODES, j in 1..NODES: i
= j}:

sum {k in 1..NODES: k != i and k != j} yl[i,j,k] = x[i,]

1;

s.t. selfNo {i in 1..NODES}:
x[i,i] = 0;

s.t. sym {i in 1..NODES, j in 1..NODES: i < j}:
x[1i,3j] = x[j,1i];

Listing A.1: AMPL Model

46

Appendix B

Boxplots Solver Time over
Flagged Edges

NOTE:
No outliers are shown due to readability!

47

Solver Time (Seconds)

0.5 A

0.4 1

0.3 A

5 15 25 35 45 55 65 75 85 95
Percent of Flagged Edges in an Instance

(2.3) EE(2.10) [EEE(2.17) BEEE(2.19) BEEE(2.21) EE(2.23) E£E3((2.12) E=(2.14)
3 (29) [EE(2.16) [N (2.18) N (2.20) EEE(2.22) E=(2.11) [[E3(2.24) E=(2.15)

Figure B.1: Boxplot Time over Flagged Edges | n = 10

48

Solver Time (Seconds)

5 15 25 35 45 55 65 75 85
Percent of Flagged Edges in an Instance

(2.3) [EH(2.10) E=E(2.17) ©EEE(2.19) BEE(2.21) EE(2.23) E£3(2.12)
E3(2.9) [EE(2.16) EEE(2.18) ©EEE(2.20) EEE(2.22) EEI(2.11) [E33(2.24)

Figure B.2: Boxplot Time over Flagged Edges | n = 15

49

95

3(2.14)
3 (2.15)

Solver Time (Seconds)

17.5 A

15.0 -

12.5 A

=

e

o
1

7.5 A

5.0

ke

0.0 A

i

5 15 25 35 45 55 65 75 85 95
Percent of Flagged Edges in an Instance

(2.3) EE(2.10) EEE(2.17) ©EEE(2.19) EEE(2.21) EE(2.23) E£3(2.12) EE(2.14)
E3(29) [EE(2.16) [@EEE(2.18) ©EEE(2.20) EEE(2.22) EE(2.11) [E3(2.24) EE(2.15)

Figure B.3: Boxplot Time over Flagged Edges | n = 20

50

Solver Time (Seconds)

20 A

15 A

10 A

5 15 25 35 45 55 65 75 85 95
Percent of Flagged Edges in an Instance

(2.3) EE(2.10) EE(2.17) BEEE(2.19) BEEE(2.21) EE(2.23) £E3((2.12) E=(2.14)
E3(29) ©EE(2.16) [N (2.18) N (2.20) EEE(2.22) EI(2.11) [[E3(2.24) EE(2.15)

Figure B.4: Boxplot Time over Flagged Edges | n = 25

o1

200 A

1501

100 A

Solver Time (Seconds

50 A

e e e Ol O s s i, e

T T T T T T T T T T

5 15 25 35 45 55 65 75 85 95
Percent of Flagged Edges in an Instance

/(2.3) EE(2.10) EE(2.17) ©EEE(2.19) BEE(2.21) EE(2.23) £3(2.12) E=(2.14)
E3(29) [EE(2.16) [EEE(2.18) ©EEE(2.20) EEE(2.22) EEI(2.11) [[E3(2.24) E3(2.15)

Figure B.5: Boxplot Time over Flagged Edges | n = 30

92

Solver Time (Seconds)

300 A

250 A

200 A

150 A

100 A

50 A

bk %m

T T T T T T T T T T

5 15 25 35 45 55 65 75 85 95
Percent of Flagged Edges in an Instance

/(2.3) EE(2.10) EE(2.17) ©EEE(2.19) BEE(2.21) EE(2.23) £3(2.12) E=(2.14)
E3(29) [EE(2.16) [EEE(2.18) ©EEE(2.20) EEE(2.22) EEI(2.11) [[E3(2.24) E3(2.15)

Figure B.6: Boxplot Time over Flagged Edges | n = 35

93

Solver Time (Seconds)

1600 A

1400 A

1200 A

1000 A

800 A

600 A

Thumwwmmu

5 15 25 35 45 55 65 75 85 95
Percent of Flagged Edges in an Instance

(2.3) EE(2.10) EEE(2.17) ©EEE(2.19) ©EEE(2.21) EE(2.23) E3(2.12) E=(2.14)
EE(29) [(2.16) [N (2.18) EEE(2.20) EEE(2.22) E=(2.11) [[E3(2.24) E3(2.15)

Figure B.7: Boxplot Time over Flagged Edges | n = 40

54

Appendix C

Boxplots Solver Time over
Reload Costs

NOTE:
No outliers are shown due to readability!

95

Solver Time (Seconds)

0.35 A

0.30 A

0.25 A

0.20 A

0.15 A

0.10 A

0.05 A

5 15 25 35 45 55 65 75 85 95
Reload Cost to Average Edge Weight

(2.3) EE(2.10) EEE(2.17) ©EEE(2.19) EE(2.21) EE(2.23) E£3(2.12) E=(2.14)
E3(29) [EE(2.16) [N (2.18) ©EEE(2.20) EEE(2.22) EI(2.11) [[E3(2.24) EE(2.15)

Figure C.1: Boxplot Solver Time over Relative Reload Costs | n = 10

96

Solver Time (Seconds)

3.0 A

2.5 1

2.0 A

1.5 4

1.0 A

5 15 25 35 45 55 65 75 85 95
Reload Cost to Average Edge Weight

(2.3) EE(2.10) [EEE(2.17) BEEE(2.19) BEEE(2.21) EE(2.23) E£E3((2.12) E=(2.14)
3 (29) [EE(2.16) [N (2.18) N (2.20) EEE(2.22) E=(2.11) [[E3(2.24) E=(2.15)

Figure C.2: Boxplot Solver Time over Relative Reload Costs | n =15

57

Solver Time (Seconds)

12 A

10 -

5 15 25 35 45 55 65 75 85 95
Reload Cost to Average Edge Weight

/(2.3) EE(2.10) EEE(2.17) ©EEE(2.19) ©EE(2.21) EE(2.23) E£3(2.12) E=(2.14)
E3(29) ©EE(2.16) [N (2.18) EEE(2.20) EEE(2.22) [EI(2.11) [[E3(2.24) EE(2.15)

Figure C.3: Boxplot Solver Time over Relative Reload Costs | n = 20

98

Solver Time (Seconds)

30 A

25 1

20 A

15 A

10 -

o

5 15 25 35 45 55 65 75 85
Reload Cost to Average Edge Weight

(2.3) EE(2.10) EEE(2.17) ©BEE(2.19) BEEE(2.21) EE(2.23) E3(2.12)
3 (29) [EE(2.16) [N (2.18) [N (2.20) EEE(2.22) E=(2.11) [E3(2.24)

Figure C.4: Boxplot Solver Time over Relative Reload Costs | n = 25

99

95

3 (2.14)
3 (2.15)

Solver Time (Seconds)

35 A

30 A

25 1

20 A

15 A

3 (2.3)
[(2.9)

15 25 35 45 55 65 75 85
Reload Cost to Average Edge Weight

= (2.10) EE(2.17) EEE(2.19) EEE(2.21) EEE(2.23) E3(2.12)
[(2.16) [EEE(2.18) ©EEE(2.20) EEE(2.22) EE(2.11) £ET3(2.24)

Figure C.5: Boxplot Solver Time over Relative Reload Costs | n = 30

60

95

3 (2.14)
3 (2.15)

Solver Time (Seconds)

300 A

250 A

200 A

150 A

100 A

50 A

5 15 25 35 45 55 65 75 85 95
Reload Cost to Average Edge Weight

/(2.3) EE(2.10) EE(2.17) ©EEE(2.19) BEE(2.21) EE(2.23) £3(2.12) E=(2.14)
E3(29) [EE(2.16) [EEE(2.18) ©EEE(2.20) EEE(2.22) EEI(2.11) [[E3(2.24) E3(2.15)

Figure C.6: Boxplot Solver Time over Relative Reload Costs | n = 35

61

Solver Time (Seconds)

600 A

500 A

400 -

300 A

200 A

100 A

ummw

T T T T T T T T T

5 15 25 35 45 55 65 75 85 95
Reload Cost to Average Edge Weight

/(2.3) EE(2.10) EE(2.17) ©EEE(2.19) BEE(2.21) EE(2.23) £3(2.12) E=(2.14)
E3(29) [EE(2.16) [EEE(2.18) ©EEE(2.20) EEE(2.22) EEI(2.11) [[E3(2.24) E3(2.15)

Figure C.7: Boxplot Solver Time over Relative Reload Costs | n =40

62

Appendix D

Boxplots Number of SECs
over Percentage of Flagged
Edges

NOTE:
No outliers are shown due to readability!

63

#SEC

10 -

5 15 25 35 45 55 65 75 85
Percent of Flagged Edges in an Instance

(2.3) EE(2.10) EEE(2.17) ©BEEE(2.19) BEEE(2.21) EE(2.23) E3(2.12)
EE(29) [(2.16) [N (2.18) N (2.20) EEE(2.22) EI(2.11) [E3(2.24)

Figure D.1: Boxplot #SEC over Percentage of Flagged Edges | n = 10

64

95

3 (2.14)
3 (2.15)

#SEC

25 A

20 A

15 -

10 -

5 15 25 35 45 55 65 75 85
Percent of Flagged Edges in an Instance

(2.3) EE(2.10) EEE(2.17) ©BEE(2.19) BEEE(2.21) EE(2.23) E3(2.12)
3 (29) [EE(2.16) [N (2.18) [N (2.20) EEE(2.22) E=(2.11) [E3(2.24)

Figure D.2: Boxplot #SEC over Percentage of Flagged Edges | n = 15

65

95

3 (2.14)
3 (2.15)

#SEC

25 A

20 A

5 15 25 35 45 55 65 75 85
Percent of Flagged Edges in an Instance

(2.3) EE(2.10) EEE(2.17) ©BEE(2.19) BEEE(2.21) EE(2.23) E3(2.12)
3 (29) [EE(2.16) [N (2.18) [N (2.20) EEE(2.22) E=(2.11) [E3(2.24)

Figure D.3: Boxplot #SEC over Percentage of Flagged Edges | n = 20

66

95

3 (2.14)
3 (2.15)

#SEC

30 A

25 A

20 A

5 15 25 35 45 55 65 75 85 95
Percent of Flagged Edges in an Instance

(2.3) EE(2.10) EE(2.17) BEEE(2.19) BEEE(2.21) EE(2.23) £E3((2.12) E=(2.14)
E3(29) ©EE(2.16) [N (2.18) N (2.20) EEE(2.22) EI(2.11) [[E3(2.24) EE(2.15)

Figure D.4: Boxplot #SEC over Percentage of Flagged Edges | n = 25

67

60

50 A

40 A

#SEC
w
o

20 A

ii
5 15 25 35 45 55 65 75 85 95
Percent of Flagged Edges in an Instance
=((23) EE((210) EE((2.17) BEE((2.19) EE(221) EE2.23) E3(2.12) EE(2.14)
E3(2.9) [EE(2.16) [N (2.18) HEEE(2.20) mEEm(2.22) EE(2.11) [E3(2.24) [E3(2.15)

Figure D.5: Boxplot #SEC over Percentage of Flagged Edges | n = 30

68

#SEC

70

60

50 A

40 -

30 A

5 15 25 35 45 55 65 75 85
Percent of Flagged Edges in an Instance

(2.3) EE(2.10) EEE(2.17) ©BEE(2.19) BEEE(2.21) EE(2.23) E3(2.12)
3 (29) [EE(2.16) [N (2.1<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>