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The characterization of materials in ever smaller dimensions is crucial for the growing demand for miniaturized 
devices. Hence, in situ fracture experiments are frequently performed at the micron to sub-micron scale. 
To evaluate fracture process of these experiments, knowledge of the crack length or the crack tip opening 
displacement is required. Acquired in situ frames provide a direct measurement of the crack length, crack tip 
opening displacement and -angle. An algorithm was developed to extract these parameters from the in situ frame 
sequences automatically. To verify the performance of the algorithm, fracture characteristics were measured 
manually for several frames of the available in situ experiments. The fracture behavior of these samples ranged 
from brittle over semi-brittle to ductile. The comparison between algorithmic results and manual measurements 
demonstrated the applicability of the algorithm to different fracture behaviors. Additionally, the fracture 
characteristics determined by the algorithm are in accordance with the fracture toughness data reported in 
literature. The crack tip opening displacement measurement gives thorough insight into the plastic deformation 
during fracture. The automatic extraction of the fracture characteristics allows a more detailed analysis of small-

scale fracture processes and enables a reproducible, continuous evaluation of the fracture characteristics of all 
frames.
1. Introduction

The ongoing trend of device miniaturization and decreasing internal 
length scales requires testing of material properties, including fracture 
behavior, on increasingly smaller length scales, down to the micron and 
sub-micron regime [1,2]. To gain insights into the material- and frac-

ture behavior at this scale, in situ experiments are frequently conducted 
[1,3–5]. In these experiments, the plastic zone ahead of the crack tip ex-

tends over a considerable part of the ligament, which makes the applica-

tion of elastic-plastic fracture mechanics (EPFM) necessary. The fracture 
evaluation in the framework of EPFM requires an accurate knowledge 
of the crack length. At the micron to sub-micron scale, crack length can 
be indirectly determined by measuring sample stiffness, which gives an 
average crack length over the crack front. Alternatively, crack length 
can be measured directly from acquired in situ frames [6–10]. Man-

ual crack length measurement on all acquired frames is a tedious task 
and strongly depending on human individuality. Schmuck et al. [11]

introduced an algorithm to extract the crack length from all frames 
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semi-automatically by using image processing techniques. Their algo-

rithm necessitates fine tuning of the evaluation parameters by the user.

Another characteristic parameter of fracture processes is the crack 
tip opening displacement (𝛿), which is a measure for crack tip blunting 
during the fracture process and is related to other fracture parameters 
through simplified models [8,12]. At the macro scale, it is possible to 
measure 𝛿 directly from a crack negative formed by filling the crack 
with a curing liquid, or indirectly via the hinge model, which re-

lates the crack mouth opening displacement to 𝛿 via similar triangles 
[8,9,13–15]. The former is not applicable at the micron to sub-micron 
scale due to the small sample dimensions, though the hinge model is 
still applicable [8]. In addition, 𝛿 can be measured directly from in 
situ frames, which is frequently performed manually [16,17]. Manual 
measurements are a tedious and challenging task due to low resolu-

tion at the crack tip and image noise due to the high image acquisition 
rates necessary to capture crack growth. Often, as a result, only critical 
frames are evaluated manually.
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Fig. 1. Schematic illustration of the challenges to detect the crack contour and extract thereof the fracture characteristics from in situ images. a) Slightly tilted 
sample, viewing material from the back in the crack wake. b)-d) Different fracture types with the corresponding prominent fracture features. To access the colored 
version of this graphic the reader is referred to the online version of the article.
In this work, the algorithm proposed by Schmuck et al. [11] is fur-

ther enhanced to work automatically and extended to extract 𝛿 and 
crack tip opening angle (𝛼) in addition to the crack length. These ad-

ditional characteristics offer further insight into the ongoing fracture 
process and enhance data interpretation. To demonstrate the algorithms 
capabilities, it is applied to samples of different length scales, from mi-

cron to sub-micron scale, and varying fracture behavior ranging from 
brittle to ductile, substantiating the applicability of the algorithm to a 
wide range of problems.

2. Materials and methods

The image-based evaluation of in situ fracture experiments faces var-

ious challenges, schematically illustrated in Fig. 1. Mounting the sample 
is one of them, as a few degree tilt leads to a distorted view and visible 
side surfaces of the sample, depicted by Fig. 1 a). Generally, the dis-

tortion is negligible due to low tilt angles. A few degrees tilt, however, 
are sufficient to image side surfaces, leading to visible edges from the 
backside and possible material within the crack wake. Furthermore, the 
fracture process itself contributes to the challenges of image-based eval-

uation. Brittle fracture exhibits minor crack tip blunting before abruptly 
failing between two in situ images. Although the crack path is usually 
straight, the resulting thin crack is only a faint feature on the in situ im-

ages, shown in Fig. 1 b). In case of ductile fracture, the crack exhibits 
extensive blunting, pore formation and tearing of the material between 
crack tip and pores, illustrated in Fig. 1 c). The pores enlarge until they 
are in contact with the crack tip, resulting into crack propagation. This 
is again followed by crack tip blunting, more pore formation and tear-

ing of the material, depicted by the increasing size of the pores closer 
to the crack tip in Fig. 1 c). Semi-brittle failure combines the features 
occurring in brittle and ductile fracture and adds further fracture fea-

tures, see Fig. 1 d). Thereby, the crack at the crack tip is rather thin. 
Additionally, the tearing leads to material bridges during crack propa-

gation, which, upon cracking, leaves behind material in the crack wake. 
During the propagation the crack might also deflect and bifurcate, dis-

played in Fig. 1 d).

To summarize, thin crack paths resemble to be faint features on the 
in situ frame and crack deflection blurs the transition between blunting 
and crack flanks. Additionally, pore formation renders the crack tip po-

sition ambiguous due to residual material from tearing and bridging, 
while bifurcation causes an ill-defined crack tip due to multiple crack 
branches as reported in literature [18–20]. However, the transition be-

tween the different fracture types is smooth, hence, the features may 
combine or might be missing for individual experiments. All of these 
features complicate the extraction of the fracture characteristics.

2.1. Material

The algorithm was developed using in situ frames of tested single-
2

edged notched cantilever bending beams. Fig. 2 illustrates the standard 
Fig. 2. Micro cantilever bending beam geometry, with 𝑎 the crack length and 
a coordinate system. The z-direction refers to the viewing direction during the 
experiment, while the x- and y-direction span the image area.

geometry of these cantilevers. The fracture experiments were conducted 
in other publications and the cantilevers were fabricated from dif-

ferent materials, such as single crystalline tungsten, nano crystalline 
tungsten-copper composites and fully lamellar intermetallic titanium-

alumina alloys [10,17,21]. Thereby, the cantilever size was situated 
in the micrometer regime. The cross-section of the cantilevers were 
approximately (3 x 3) μm2 [10], (2.5 x 2.5) μm2 [21], and from 
(5 x 5) μm2 to (35 x 35) μm2 [17]. To fabricate these cantilevers fo-

cused ion beam milling was employed. All fracture experiments were 
performed inside scanning electron microscopes (SEM; DSM 982, Carl 
Zeiss AG, Oberkochen, Germany; SEM/FIB, Leo 1540 XB, Carl Zeiss AG, 
Oberkochen, Germany). The in situ frames were acquired with the in-

lens secondary electron detector at frame rates of either one [17], two 
[10] or six [21] frames per second. These frame rates provide a bal-

ance between image quality and ability to capture crack growth. Lower 
image acquisition rates benefit image quality, while higher are advan-

tageous to capture crack growth. For cantilevers tested in [10,17], the 
imaging area was limited to the crack vicinity to enhance image quality 
and resolution. All cantilevers tested in [17] were loaded displacement 
controlled by quasi-static loading at rate of 50 nm/s with an ASMEC 
indenter (UNAT SEM 1, ASMEC GmbH, Dresden, Germany), which has 
a noise level of 50 μN in vaccum. This loading involved 15 partial un-

loading steps, enabling stiffness measurements to be determined during 
post-processing from the load-displacement data at each unloading step 
[8]. The cantilevers tested in [10,21] were tested in a force controlled 
scheme with a loading rate of 10 μN/s using a Hysitron Picoindenter 
PI 85 with a CSM module (Bruker Corporation, Billerica, USA). This in-

denter allows to perform dynamic loading and has a noise level of 1 μN. 
Thereby, the load signal is superimposed with a small sinusoidal signal, 
allowing the stiffness to be measured continuously [6]. The knowledge 
of stiffness in combination with the initial crack length allows the cur-

rent crack length to be estimate from the mechanical data recorded 
[8,10]. This, mechanical data includes the load and displacement sig-
nal, as well as the stiffness signal in dynamical testing. The tips used 
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Fig. 3. Segmentation and contour extraction process. a) Defining background (red rectangle), sample (blue rectangle) and a region of interest around the crack 
(green rectangle). b) Histogram of the region of interest with the probability curves of sample (𝐶𝑠) and background (𝐶𝑏). c) Illustrates the edge probabilities found 
by the Sobel operator. d) Depicts the probabilities of sample (blue, channel), background (red, channel) and 𝑓 (𝑥, 𝑦) (green, channel), as RGB-image. e) Extracted 
crack contour from the probability image. There the contour is partitioned into a left (dark green) and right (light green) part, respectively. To access the colored 
version of this graphic the reader is referred to the online version of the article.
for loading were in all cases wedge shaped conductive diamonds (Syn-

ton MDP, Nidau, Switzerland). For further information to the respective 
experimental procedure applied the reader is referred to the respective 
publications [10,17,21]. The investigated cantilevers exhibited a frac-

ture behavior ranging from brittle to semi-brittle failure to cover the 
variety of crack features described above.

To further verify generalization, the algorithm was tested with in 
situ frames recorded by a transmission electron microscope (TEM, JEOL 
JEM-2200FS microscope, JEOL Ltd., Japan). The tested cantilever was 
fabricated from a titanium-aluminum alloy by focused ion beam milling 
and had a cross-section of about (200 x 150) nm2. In situ frames were 
acquired in bright field mode at 1 frame per second. The sample exhib-

ited additional distinct contrast changes over time due to dislocation 
movement. The cantilever was loaded displacement controlled by static 
loading with the Hysitron Picoindenter PI 85 and failed by extensive 
crack tip blunting.

2.2. Algorithm

The algorithm was written in Python 3.9 [22] using the image pro-

cessing packages opencv (opencv-contrib-python-headless v4.6.0.66) 
[23] and sci-kit image (v0.19.2) [24] as well as the standard scien-

tific packages numpy (v1.22.3) [25] and scipy (v1.8.0) [26]. To extract 
the fracture characteristics, the algorithm is split into preprocessing, 
pixel classification, crack flank contour retrieving and finally determi-

nation of the fracture characteristics from the extracted crack flanks, as 
detailed in the next chapters.

2.2.1. Image preprocessing

Depending on the experimental conditions, preprocessing is occa-

sionally necessary. The algorithm assumes the following conditions: a 
top-down crack growth direction, consistent captured regions, and a 
consistent magnification across all frames. In cases of crack growth from 
bottom to top, the initial preprocessing involves a 180-degree rotation 
of all frames. Furthermore, the images sequences are split to include 
only images with a consistent magnification and region in case of dif-

ferent viewing areas or magnification during the experiment.

At small scale, thermal drift can significantly impact the result of 
the algorithm. Removing this drift from the frames is crucial to estab-

lish a consistently stable reference point across all frames. Determining 
accurate fracture characteristics, like crack length, requires a stable ref-
3

erence point. The algorithm achieves this by aligning each frame with 
the previous frame using a registration technique known as phase cross-

correlation [27], which provides the translative offset between two 
consecutive frames. To effectively align the frames, a region of inter-

est (ROI) is selected to encompass the crack, ensuring that the crack 
remains within the ROI across all processed frames.

The algorithm is also sensitive to gray level changes between frames. 
Various recording devices might produce frames that are either darker 
or brighter by a constant factor. Shadowing or charging during the ex-

periment can cause a change in gray scale distribution. Therefore, the 
algorithm compensates for constant gray level shifts between frames. In 
every frame, the median gray value in the ROI is calculated. The dif-

ference between two gray value medians is used to compensate for the 
variations in the recording process.

2.2.2. Pixel classification

After preprocessing, the objective is to classify each pixel in the 
image into two distinct classes. The first class, 𝐶𝑠, represents sample 
pixels, while the second class, 𝐶𝑏, denotes background pixels. The clas-

sification process relies on using the gray values of the pixels as a 
feature. To achieve this, the algorithm assigns each gray value 𝑣 at 
position (𝑥, 𝑦) within the range of 0 − 255 to either the sample or back-

ground class based on a pre-calculated probability. The probability is 
determined by extracting gray values from user-defined regions in a ref-

erence frame. For the samples investigated, the initial frame was used 
as reference frame, as depicted in Fig. 3 a). Here, the red rectangle de-

fines the gray values for the corresponding background pixels, while the 
blue rectangle represents gray values for sample pixels. By employing 
these rectangles, a probability function for each gray value is derived, 
indicating whether it belongs to the sample or background class. To 
avoid mathematical issues arising from probabilities with a zero value, 
a consistent small probability for each gray value and class is added. 
This small value is determined automatically by dividing one with the 
pixel count of the selected regions. The resulting probability distribu-

tion is illustrated in Fig. 3 b). The calculation of probabilities avoids a 
system with fixed absolute thresholds, because gray values can vary in 
each experiment, due to for example, differences in the interaction be-

tween the electron beam and sample, or the orientation of the scanned 
surface to the electron detector.

The gray values of the pixels are not always sufficient to assign a 
pixel to a class. Therefore, the algorithm incorporates edge informa-

tion from crack contours by utilizing the Sobel operator [28] to extract 

additional information if a pixel belongs to an edge. This operator is de-
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signed to highlight rapid changes in the image intensity. Rapid changes 
can be edges or noise from the image recording process. Therefore, usu-

ally a careful selected threshold has to be used at the end of an edge 
detection process. To avoid again the use of a fixed threshold, an au-

tomatic threshold adaption is implemented, described below in more 
detail.

The Sobel operator works by conducting a convolution of the image 
with a 3 ×3 kernel. The kernel emphasizes horizontal and vertical gradi-

ents in the image, enabling the identification of edges in both directions. 
The Sobel operator yields a low value if a pixel does not belong to an 
edge, but a high value if there are rapid changes in intensity, indicat-

ing a potential edge pixel. The Sobel operator, denoted as 𝑆(𝑥, 𝑦), does 
not provide probabilities. Therefore, the Sobel operator output cannot 
be combined with the probabilities from the gray values. To address 
this, the algorithm calculates 𝑆norm, which falls within the range of 0.0
to 1.0, by normalizing it with the highest possible value of the Sobel 
operator.

After that, the values from grayscale and the edge information are 
combined by:

𝑓 (𝑥, 𝑦) = 1 − 𝑃 (𝑣𝑥𝑦|𝐶𝑠) ⋅
(
1 −𝑆norm(𝑥, 𝑦)

)
, (1)

where 𝑣𝑥𝑦 is the gray value at position (𝑥, 𝑦), 𝑃 (𝑣𝑥𝑦|𝐶𝑠) is the likelihood 
that the gray value belongs to a sample pixel, and 𝑆norm(𝑥, 𝑦) is a kind 
of likelihood that the pixel at (𝑥, 𝑦) is an edge pixel. The range of 𝑓 (𝑥, 𝑦)
is between 0.0 and 1.0 and can be interpreted as follows: high values 
correspond to pixels from background or strongly visible edges and low 
values of 𝑓 (𝑥, 𝑦) indicate the pixel is likely part of the sample. Fig. 3 d) 
illustrates the combination of the class probabilities with 𝑓 (𝑥, 𝑦), as 
RGB image. Thereby, the color channels correspond to the individual 
classes. The color value represents the probability that is assigned by the 
algorithm to that pixel for the respective class. In the case of black pixels 
the algorithm is uncertain and assigns the basis probability described 
above, which is approximately 0.

To distinguish between background and sample, a threshold is au-

tomatically chosen for the function 𝑓 (𝑥, 𝑦) from the probabilities of 
the two classes. Pixels are assigned to class 𝐶𝑠 based on the condi-

tion 𝑃 (𝑣𝑥𝑦|𝐶𝑠) > 𝑃 (𝑣𝑥𝑦|𝐶𝑏) and the corresponding 𝑓 (𝑥, 𝑦) values are 
calculated from these pixels by employing the 95𝑡ℎ percentile 𝑝0.95

𝑠𝑎𝑚𝑝𝑙𝑒
. 

The second value of the threshold is calculated from the 5𝑡ℎ percentile 
𝑝0.05
𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

of all 𝑓 (𝑥, 𝑦) with the condition 𝑃 (𝑣𝑥𝑦|𝐶𝑠) < 𝑃 (𝑣𝑥𝑦|𝐶𝑏). By 
utilizing these two values, the threshold 𝑡ℎ is determined, which distin-

guishes between sample and the background.

𝑡ℎ =
𝑝0.95
𝑠𝑎𝑚𝑝𝑙𝑒

+ 𝑝0.05
𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

2
(2)

This automatic threshold adjustment is calculated for each frame to 
achieve the best possible separation between background and sample 
pixels.

2.2.3. Contour extraction

All background pixels that satisfy the condition 𝑓 (𝑥, 𝑦) > 𝑡ℎ are con-

nected from the above analysis with a fill algorithm. This operation can 
be described as pouring a liquid into the crack. For this a modified flood 
fill algorithm was employed [29,30]. The algorithm searches along a 
line for points that belong to the background. To fill the crack, the al-

gorithm iterates over these points and analyzes the neighboring pixels. 
If the neighboring pixel belongs to the background, it is added to the 
list of points. The iteration stops if no further points are found. The re-

sulting points list represents the filled form. Contours can be computed 
from this filled form. The lowest point of the fill operation separates the 
crack into a left and right contour (see Fig. 3 e).

The algorithm searches for crack-segments inside the sample by re-

trieving the outer sample contour and tests if regions with sufficient 
probability to be an edge are inside this contour. Crack segments are 
4

then connected by a shortest path search, which was proposed by Fred-
Materials & Design 243 (2024) 113038

man et al. [31] and is implemented in the sci-kit image package [24]. 
The resulting path is a continuous pixel-thin path between the crack seg-

ments. This path is then split into sections that connect the respective 
crack segments. Starting from the lowest crack segment, each segment 
is convoluted with the path section that connects the current crack seg-

ment with the segment above. For the convolution the segments and 
sections are extracted into binary images, upon which the convolution 
is performed by discrete Fourier transformation of the binary images, 
multiplication in Fourier space and back transformation of the multipli-

cation result. These are then added to the image with the filled crack 
to obtain the whole filled path, leading to a more natural crack shape. 
Segments with less than 4 px are neglected and assumed to be noise. 
This procedure allows the algorithm to overcome material bridges and 
barriers in the crack wake, which frequently occurs due to a possible 
sample tilt as well as generally during semi-brittle and ductile failure, 
as schematically illustrated in Fig. 1 a), c) and d).

2.2.4. Fracture characteristics

Determination of the crack tip opening displacement 𝛿 and -angle 𝛼
is adopted from the description given by Shih [12]. The procedure is 
schematically shown for a representative blunted crack in Fig. 4 a) and 
b). The found contour lines are illustrated in Fig. 4 a), while b) depicts 
a closer view of the crack and measurement procedure. Fig. 4 c) shows 
the measurement for an ideally smooth crack. The angle 𝛼 is measured 
by fitting both crack flanks linearly and measuring the angle between 
them, see the blue dotted lines in Fig. 4. The 𝛿 determination requires 
additional steps, involving defining the center line between the two 
fitted lines and constructing a symmetric right-angled triangle at the 
crack tip, which is projected on the center line, depicted in Fig. 4. In 
case of parallel lines, locating the center line is straightforward as it lies 
between the two fitted lines and is parallel to them. While otherwise 
two possibilities exist that are orthogonal. The line with the smaller or-

thogonal distance to the overall crack contour is used as center line, 
illustrated by the dashed violet line in Fig. 4. Next, the crack tip is pro-

jected onto this center line, which acts as intersection point and rotation 
center for two lines that are rotated by ± 𝜋

4 , see orange lines in Fig. 4. 
The intersection between these lines and the fitted crack flanks gives 𝛿.

In general, the crack flanks are rather jagged, as illustrated by the 
representative crack in Fig. 4. The crack contour shows a variety of dif-

ferent shapes depending on the material behavior, ranging from brittle 
to ductile fracture [12,14,18,20,32]. To only fit the crack flanks and 
avoid the possible blunt region, the algorithm selects the fitting region 
by calculating the sliding variance with a 1D-kernel of size 11. This op-

eration is applied to the x- and y-direction. By following the contour 
line, starting from the crack tip, the fit region begins where the y-

variance is larger than the x-variance, as the blunted region would have 
an increased spread in x-direction. This requires a pronounced blunting 
region, which is only present in ductile and semi-brittle samples. Be-

sides these measures the RANSAC algorithm [33,34] is employed to fit 
the crack flanks, since the algorithm is able to detect outliers and there-

fore neglects small blunting regions and portions of the jagged crack 
contour.

2.3. Fracture mechanics

To characterize fracture processes in EPFM the 𝐽 -integral is used. 
The stress and strain fields in front of the crack tip can be modeled by 
the Hutchinson-Rice-Rosengren (HRR) theory [35,36]. As long as the 
fracture process is dominated by the HRR field [35,36], the fracture 
parameters 𝛿 and 𝐽 are related according to:

𝛿 = 𝑑𝑛
𝐽𝛿

𝜎𝑦

, (3)

with 𝜎𝑦 as yield strength and 𝑑𝑛 the Shih factor, which is 0.78 for a 

non-hardening material and plane strain-dominated fracture [12]. To 
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Fig. 4. Extraction process of crack tip opening displacement (𝛿) and -angle (𝛼). a) Representative in situ frame with a blunted crack. b) Illustration of the crack 
region. c) illustration of the extraction for an ideal smooth crack. To access a colored version of this graphic the reader is referred to the online version of the article.
Table 1

Material properties at room temperature for the used mate-

rials with the yield strength (𝜎𝑦), the Young’s modulus (𝐸) 
and the Poisson ratio (𝜈).

Material 𝜎𝑦 [MPa] 𝐸 [GPa] 𝜈

tungsten-copper (nc) [17] 2250 221 0.32

tungsten (sx) [10] 1750 410 0.28

titanium-aluminum [21,37] 660 189 0.23

compare the values with literature they can be converted into stress 
intensity values, given the plane strain assumptions, by [9]:

𝐾 =
√

𝐸𝐽

1 − 𝜈2
, (4)

with the Poisson ratio 𝜈 and the Young’s modulus 𝐸. The material prop-

erties used in this work are tabulated in Table 1.

3. Results

3.1. Fracture behavior challenges

Results of the algorithm, crack tip coordinates, 𝛿 and 𝛼, were di-

rectly compared to manual measurements, which were performed for 
each in situ experiment on an evenly distributed subset of the acquired 
frames. The manual measurement was performed at least 3 times to 
allow for an uncertainty estimate. The crack tip coordinates were con-

verted into crack extension (Δ𝑎) by calculating the Euclidean distance 
between the initial crack tip coordinates and all subsequent crack tip 
coordinates. This provides a comparison to the Δ𝑎 approximated by the 
mechanical data in literature, where available. All values determined 
by the algorithm were smoothed by low-pass filtering. For reference, 
the unsmoothed data was plotted into the corresponding graphs in a 
light green color.

For the tested cantilevers, the fracture behavior was either brittle, 
semi-brittle or ductile. The brittle cantilevers fractured unstable, with a 
straight crack flank and only faint initial crack growth. Fig. 5 illustrates 
a brittle fracture cantilever, which was tested in [17]. Fig. 5 c) depicts 
Δ𝑎 over time, including data obtained from mechanical evaluation, d) 
shows 𝛿 and e) 𝛼 determined by the algorithm and manually. The un-

stable fracture occurred between two consecutive frames, resulting into 
a narrow crack, depicted by the fractured in situ frame in Fig. 5 b). Ad-

ditionally, the processed frame is placed next to the acquired frame to 
illustrate the crack flanks found by the algorithm, highlighted by the 
green lines in Fig. 5 a) and b). The dark and bright green lines represent 
5

the left and right flank, respectively.
A semi-brittle fractured cantilever tested in [17] is shown in Fig. 6. 
Subfigure a) depicts the initial crack fabricated by FIB milling, while in 
Fig. 6 b) the blunted crack before initiating crack growth can be seen. 
Fig. 6 c) shows the crack evolving from material tearing, bridges, pores 
and a slight crack path deflection. The results obtained for Δ𝑎, 𝛿 and 
𝛼 are depicted in the subfigures d), e) and f), respectively. Fig. 6 d) 
also includes the Δ𝑎 determined from mechanical data for the respec-

tive fracture experiment. The blunting leads to an almost constant crack 
length and increasing 𝛿 and 𝛼, shown in Fig. 6 d), e) and f). Addition-

ally, contrast changes through out the experiment can be seen in the in 
situ frames.

The algorithm’s generalization was examined by processing in situ
frames acquired by TEM imaging and performed with a different mea-

surement setup, illustrated in Fig. 7. The initial crack is depicted by sub-

figure a) and the fully blunted evolved crack is illustrated in subfigure 
b). In Fig. 7 b), the material at the crack tip starts to tear and a sig-

nificant contrast change is visible, indicating crack initiation. Fig. 7 c) 
depicts the crack contour detail of the in situ frame shown in Fig. 7 b), 
highlighting possible blunting regimes in blue and red. The results de-

termined from the acquired in situ frames are displaced for Δ𝑎, 𝛿 and 𝛼
in subfigures d), e) and f), respectively.

3.2. Algorithm vs. human expert

In addition to the representative samples above, the algorithm was 
applied to several additional fracture experiments to validate its gen-

eralization capabilities and accuracy. Multiple manual measurements 
were performed on each sample, too. The mean and standard devia-

tion for the manually measured crack tip coordinates (𝑥, 𝑦), as well as 
𝛿 and 𝛼, were calculated and the mean was used as ground truth es-

timate. To assess the manual measurement error, the mean (𝑒𝑚) and 
standard deviation (𝑠𝑡𝑑𝑚) were determined for each sample, using the 
variance of the individual frame to get a single value, comparable to the 
mean squared error, tabulated in Table 2. The standard deviation was 
calculated to emphasize the variability of manual measurement error. 
The error of the algorithm (𝑒𝑎) was evaluated based on the Euclidean 
distance between the estimated ground truth and the algorithms out-

put, which was obtained for each individual frame. There, 𝑑𝑥,𝑦 and 𝛿
are given in pixels, while 𝛼 is stated in degrees to enhance comparabil-

ity, as the experiments were performed at different magnifications. The 
experiments in the Table 2 are grouped according to the fracture be-

havior, with samples B1-B3 representing brittle fracture, D1 indicating 

ductile failure, and all others samples, SB1-SB6, fractured semi-brittle.
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Fig. 5. Fracture characteristics measured for representative unstable fracture. The recorded in situ frames are shown in a) and b). The left image illustrates the frame 
acquired and right image depicts the contour lines found by the algorithm. c) crack extension (Δ𝑎), d) crack tip opening displacement (𝛿) and e) -angle (𝛼). The 
dashed lines in the graphs represent the in situ frames shown in subfigure a) and b). The cantilever was previously tested in [17].

Fig. 6. Comparison of the fracture characteristic measured for a semi-brittle fracture. a)-c) Illustrate the recorded in situ frames. The original frame to the left and 
the processed frame with the determined contours to the right, respectively. The diagrams depict, d) the crack extension (Δ𝑎), e) crack tip opening displacement (𝛿) 
and f) -angle (𝛼). The in situ frames are indicated by the dashed lines. The cantilever was previously tested in [17].
4. Discussion

The evaluation of in situ frames enables direct investigation of frac-

ture processes. The algorithm allows for a continuous and automatic 
evaluation in a short period of time, usually within minutes. Although 
the image-based evaluation faces various challenges, stemming from the 
sample mounting, the image formation process and the fracture process 
itself (Fig. 1). How the algorithm deals with those challenges is dis-

cussed in the next section, followed by comparing the performance to 
human expert measurements and other possible approaches for retriev-

ing data from images. The last section discusses the utilization of the 
algorithm to determine the local fracture behavior in detail and com-
6

pares the results to literature data.
4.1. Fracture behavior challenges

Capturing continuous crack propagation necessitates high image ac-

quisition rates, contradicting with high quality imaging in electron 
microscopy, e.g. a high quality SEM-image requires several seconds of 
acquisition. Thus, the acquisition rate is usually set to 1 frame/s, rep-

resenting a good trade-off between following crack propagation and 
obtaining sufficient image quality. However, the frames retain some 
amount of noise and the feature resolution is limited by the pixel size. 
Faint features may perish and go undetected. Furthermore, the in situ
frames capture only the surface section of the possibly jagged and 
curved crack front, meaning the crack front shape is a superposition 

of the local microstructure and stress state [11,20].
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Fig. 7. Fracture characteristics extraction for a sample tested inside a transmission electron microscope. a) and b) show the recorded in situ frames. To the left the 
recorded frame and to the right the processed frame with the crack contour lines found. c) Depicts the crack tip detail of subfigure b), highlighting different possible 
blunting regions in blue and red. The diagrams depict d) the crack extension (Δ𝑎), e) crack tip opening displacement (𝛿) and f) -angle (𝛼). The dashed lines in the 
diagrams mark the in situ frame.

Table 2

Accuracy assessment of the manual and algorithmic determined crack tip coordinates (𝑥, 𝑦), crack tip opening displacement (𝛿) and -angle (𝛼) 
for brittle (B1-B3) [17], ductile (D1, Fig. 7) and semi-brittle (SB1-SB6) [10,17] fractured samples. For these values the mean squared error (𝑒) 
was evaluated. To assess the crack length error, the Euclidean distance (𝑑𝑥,𝑦) of (𝑥, 𝑦) to the ground truth data was evaluated. The subscripts 𝑎
and 𝑚 refer to algorithmic and manual measured data, respectively. Additionally, for the manual measurement the standard deviations (𝑠𝑡𝑑𝑚) 
was calculated to emphasize the manual measurement variability.

Sample 𝑑𝑥,𝑦 [pixel] Δ𝛿 [pixel] Δ𝛼 [°]

𝑒𝑎 𝑒𝑚 𝑠𝑡𝑑𝑚 𝑒𝑎 𝑒𝑚 𝑠𝑡𝑑𝑚 𝑒𝑎 𝑒𝑚 𝑠𝑡𝑑𝑚

B1 8.2 5.0 7.0 0.9 1.7 1.6 4.41 4.72 4.86

B2 22.2 7.4 8.9 1.1 1.1 1.1 6.32 2.44 1.92

B3 15.4 2.8 3.5 1.8 1.9 1.8 5.90 5.03 4.66

D1 3.3 9.4 12.3 5.3 6.7 8.0 13.66 16.86 11.80

SB1 9.6 17.9 22.5 2.6 2.5 1.7 6.95 5.07 2.64

SB2 119.9 6.9 10.0 5.8 2.8 2.8 16.11 2.85 2.79

SB3 10.8 4.8 6.0 2.6 2.9 3.4 6.79 5.67 5.20

SB4 7.8 6.2 7.4 1.3 2.4 2.5 10.77 10.85 11.96

SB5 30.2 38.5 5.9 2.9 3.5 1.7 6.28 9.33 3.50

SB6 17.9 7.9 9.7 5.1 3.0 3.7 7.45 4.94 4.41
While only a narrow crack is evident in Fig. 5 b), the image-based 
measurements both manual and calculated by the algorithm yielded a 
similar crack extension throughout the experiment (Fig. 5 c)). However, 
the crack extension derived from mechanical data produced a higher 
crack extension of about 200 nm (∼6 pixel) directly after fracture. This 
difference stems from aforementioned limitations of resolving sub-pixel 
crack separation features. In the case of an ideal straight crack, the 
crack’s feature thickness can be approximated by 𝛿, which does not ex-

ceed ∼72 nm (2.2 pixels) in this example. By accounting for noise and 
possible pixel errors, the crack close to the crack tip resembles to be a 
thin undetected feature. In contrast to the crack extension, 𝛿 and 𝛼 are 
sensitive to slight changes in the crack shape, due to the crack flank fit-

ting procedure and the uncertainty of crack tip location, which leads 
to increased scatter. Outside of these understandable, minor deviations, 
the automatically determined values for 𝛿 and 𝛼 are in good agreement 
with the manually measured fracture characteristics. Thereby, 𝛿 and 𝛼
exhibit a drop after crack propagation initiation, which is obvious as the 
7

blunting regime ends (𝑡 = 104 s) and brittle failure occurs. Despite the 
brittle fracture, the crack stopped and the remaining ligament (∼1 μm) 
fully plasticized, starting at 𝑡 = 300 s. This leads to a constant Δ𝑎, while 
𝛿 and 𝛼 slightly increase until the end of the experiment, in accordance 
with the general yielding of the remaining ligament after crack exten-

sion, as shown in Fig. 5 d) and e).

In the blunting regime of the semi-brittle sample, the algorithmic 
results closely match to the manual measurements and are in accor-

dance with the results from mechanical data, outlined in Fig. 6 d)-f), 
up to 𝑡 = 243 s, where the crack initiates. During crack propagation, 
additional crack features form, such as pores, material tearing and 
-bridging, illustrated by the evolved crack in Fig. 6 c). As a result, lo-

cating the crack tip and defining the crack contours during crack prop-

agation is challenging. Therefore, the manual measurement displayed 
increased uncertainty, and the algorithm’s results exhibited increased 
scatter, shown in Fig. 6 d)-f). Nevertheless, for the algorithmic data 
at crack propagation initiation, a drop in 𝛿 and 𝛼 is evident. During 
crack propagation, 𝛿 is constant and 𝛼 raises, which is in accordance 

with the determined crack extension increase at 𝑡 = 243 s, depicted in 
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Fig. 8. Respective in situ frames for possible detection challenges for automated crack detection. a) SB2 displaying material in the crack wake and contrast changes 
along the crack flanks, tested in [10]. b) SB6 illustrates a cantilever after semi-brittle fracture exhibiting material in the crack wake and blurred crack flanks, tested 
in [21]. c) Brittle fractured sample B3 exhibiting a faint crack extension, tested in [17].
Fig. 6 d). Despite the agreement of the data retrieved from the images, 
the mechanical evaluation resulted in a shorter crack extension of about 
800 nm (∼24 pixels) for the last unloading step. This difference is possi-

bly due to heterogeneous propagation of the crack front, stemming from 
semi-brittle fracture and the fact that mechanical evaluation averages 
over the whole crack front, while the images capture only the surface. 
In general, the crack length exhibits minor deviations exclusively over 
the crack front [20].

The sample tested inside the TEM underwent ductile fracture and 
exhibited extensive blunting, depicted by Fig. 7 a) and b). These frames 
illustrate the enhanced contrast obtained between background and sam-

ple, improving the classification process compared to SEM recordings. 
Additional features are present inside the sample region, such as dislo-

cation lines, shear bands, crystal orientation, atomic mass and thickness 
contrast, depicted by the in situ frames in Fig. 7. These features originate 
in the TEM imaging process [38] and complicate crack tip localiza-

tion. Teared material is visible in Fig. 7 b) in the light gray region at 
the crack tip, which slightly blurs the surrounding material. Material 
tearing raised the manual measurement uncertainty for Δ𝑎 and 𝛿 signif-

icantly, noted by blue shaded region in Fig. 7 d) and e). This occurred 
due to the absence of sharp crack edges and made crack localization 
near the crack tip more challenging. The angle 𝛼 seems unaffected by 
material tearing, but exhibits significant scatter throughout the experi-

ment, masking any potential effect of material tearing. The scatter in 𝛼
can be attributed to the curved shape of the crack, which complicates 
the crack flank fitting procedure. The algorithm encounters the same vi-

sual obstacles as the manual measurement. Prior to the material tearing 
regime, the algorithmically determined and manually measured data is 
in accordance (Fig. 7 e)-f)). Up to 𝑡 = 225 s, Δ𝑎 and 𝛿 increase mono-

tonically, while 𝛼 remains constant, indicating crack blunting. After this 
frame, material tearing occurs and the algorithm defines the teared ma-

terial, shown by the light gray area in Fig. 7 b), as cracked. As a result, 
the algorithm determined a slightly enhanced crack growth with de-

creasing 𝛿, while 𝛼 increased due to the blurred transition from blunted 
crack to crack flank. Several manual measurements revealed that the 
teared material is neglected as often as it is included in the crack shape 
measurements. This resulted in an increased uncertainty of the manual 
measurement after 𝑡 = 225 s. At unloading, crack closure occurs due to 
the elastically stored energy, which induces a drop in Δ𝑎 and 𝛿.

The different fracture behaviors brittle, ductile and semi-brittle re-

vealed a variety of topological crack features, which complicate crack 
detection. The features can be split into classification and evaluation 
related issues. For example, faint crack associated with brittle fracture 
makes it challenging to detect the crack completely and is related to the 
classification process. Contrarily, crack tip blunting in ductile fracture 
blurs the transition between blunt crack tip and the flanks. While this 
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complicates the evaluation process, it simplifies classification due to an 
increased feature size. Material tearing and -bridging in ductile fracture 
increases the challenge of classifying the crack due to material left in the 
crack wake. Semi-brittle fracture can cause void formation, crack de-

flection and bifurcation, which makes distinct crack classification even 
more challenging. Due to these features, the crack flanks tend to be 
jagged and curved, complicating the fracture characteristic evaluation. 
In addition to these features, the cantilever alignment, with respect to 
the viewing direction, affects fracture characteristic evaluation, as the 
SEM views only a 2D plane of the 3D cantilever. Thus, cantilever mis-

alignments, e.g. slight rotation around y-axis, see Fig. 1 a), result in 
visible side surfaces, complicating crack contour detection.

4.2. Algorithm vs. human expert

Manual measurements are frequently used to evaluate in situ im-

ages obtained from fracture experiments. Thus, the results determined 
by the algorithm were compared to manual measurements to assess the

algorithms accuracy and its capability to localize the crack tip as well 
as extract 𝛿 and 𝛼. The results for the different fracture characteristics 
are listed in Table 2. Thereby, the overall error of the manual measure-

ment illustrates the challenge of extracting fracture characteristics. In 
general, errors obtained by manual and algorithmic measurements are 
of the same order of magnitude, although, the algorithmic errors are 
slightly higher. For the semi-brittle fractures, SB2 and SB6, the algo-

rithmic errors are higher by multiple orders of magnitude. For these 
samples, the algorithm failed to completely detect the crack flanks, 
due to background material visible from the onset of the measurement, 
noted by Fig. 8 a) and b). Manual crack detection benefits from human 
extrapolation capabilities of the crack flanks, which leads to smaller 
variations. However, the crack flanks are blurred in SB6, depicted by 
Fig. 8 b), which impairs human perception and increases the manual 
measurement error and variability.

In the case of brittle fracture, the increased 𝑑𝑥,𝑦 errors of the algo-

rithm can be attributed to the thinness of the crack, see the thin crack 
extension in Fig. 5 b) and Fig. 8 c). The algorithmic errors of 𝛿 and 
𝛼 are in accordance with the manual measurement errors and within 
in the error variability of the manual measurement, despite the unde-

tected portion of the crack. 𝛿 and 𝛼 seem unaffected by the excluded 
faint crack due to a smaller crack opening, demonstrating the applica-

bility of the algorithm for brittle failure.

The ductile fractured sample D1 evidenced a similar scatter of 𝑑𝑥,𝑦
for the manual measurement, while 𝛿 and 𝛼 exhibited an increased 
scatter, possibly stemming from crack tip blunting. Besides, crack tip 
blunting caused raised absolute values of 𝛿. Thus, the increased scatter 
has a negligible affect on the 𝛿 measurement. Comparing the algo-

rithm to the manual measurement, all errors are below the manual 

measurement errors, which can mainly be attributed to the enhanced 
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image contrast and crack tip blunting, all of which benefit the classifi-

cation process. This is supported by the measurement curves depicted 
in Fig. 7 d)-f). Despite small deviations, the algorithm performs well for 
samples undergoing ductile fracture. Even though only a single ductile 
fractured sample was analyzed the repeating sequence of blunting, tear-

ing and pore formation is characteristic of ductile failure, proofing the 
algorithm’s capabilities.

Semi-brittle fracture complicates fracture characteristic evaluation 
due to the combination of features from brittle and ductile fracture, 
as well as the aforementioned additional fracture features. Thus, the 
manual measurement error exhibits an increased scatter for all fracture 
characteristics, compared to the brittle samples, due to additional fea-

tures and the higher absolute values of 𝛿 and 𝛼. Despite the additional 
features, the error of the semi-brittle samples is reduced compared to 
the fully ductile sample, which may stem from the reduced absolute 
values of the individual characteristics and the differences in imaging 
conditions between SEM and TEM. The algorithmically determined frac-

ture characteristics exhibited an increased error for 𝑑𝑥,𝑦 and 𝛼, as a 
result of material in the crack wake and the curved crack flanks. How-

ever, the majority of the algorithmic errors are of the same order of 
magnitude as the manual measurement errors, pointing to the capabil-

ities of the algorithm in analyzing semi-brittle failure. The algorithm 
successfully accounts for the additional complications, illustrated by 
Fig. 1 d), that appear during semi-brittle fracture.

Besides the comparison of the resulting fracture characteristics, time 
constrains are an uprising issue. In general, manual measurements are 
time consuming, so only critical frames are evaluated, leading to sparse 
information about the fracture process. Manual measurement also in-

cludes a lot of scatter due to human individuality. The algorithm, on the 
other hand, allows all in situ images to be analyzed within minutes and 
offers increased data density. Furthermore, the automatic procedure re-

sults in an independent evaluation, benefiting the reproducibility of the 
data.

4.3. Comparison to other techniques and possible enhancements

To evaluate in situ frames acquired from mechanical experiments, 
digital image correlation (DIC) is frequently conducted [5,39–47]. 
DIC tracks sample changes by correlating image-subsets of consecu-

tive images [39,40]. The tracked sample changes can then be trans-

lated into sample deformations, allowing local strains to be determined 
[39,40,43–50]. These local strains are used to detect cracks and esti-

mate the stress intensity factor [41,51,52]. The application to consec-

utive images facilitates tracking of crack propagation [42,53,54]. For 
macroscopic experiments Chen et al. [55] additionally determined 𝛿
and 𝛼 by DIC. They achieved this by applying a wavelet transform 
to the displacement fields, enabling crack shape extraction. The 𝛿 was 
evaluated by using the crack shape as mask over the displacement field 
in x-direction, giving the crack flank displacement for each pixel. To 
obtain 𝛼 the crack shape was quadratically fitted and the angle was 
measured at fixed distances from the crack tip. DIC is an advanced 
method, relying on the recognition of self-similar surfaces structures 
between consecutive images [5,39,40,48,50]. Thus, the sample surfaces 
are patterned to enhance surface structure recognition and suppress im-

age noise [5,48]. To enable a high resolution imaging of the strain field, 
acquisition rates below 1 frame/minute are necessary [5,43,46,47]. 
This is unfeasible for the continuous crack growth monitoring during 
fracture experiments [5]. To enhance the image acquisition rate, Alfrei-

der et al. [56] used a coarse grid pattern on the sample surface, at the 
cost of a lower strain field resolution. Due to the lower resolution, the 
crack shape can not be accurately determined from the in situ frames, 
leading to an imperfect crack shape. Furthermore, samples tested in-

side a TEM exhibit changing image contrast in the sample region due to 
the imaging conditions. This renders classical DIC between frames in-

feasible. The presented algorithm in this work requires no self-similar 
9

structures on the sample surface and is capable of detecting the crack 
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shape on an individual pixel basis, causing a flexible application to dif-

ferent testing setups inside SEMs and TEMs. Furthermore, the similar 
performance of the algorithm and manual measurements proved the ap-

plicability of the algorithm to different fracture behaviors. This allows 
the fracture characteristics (Δ𝑎, 𝛿 and 𝛼) to be automatically extracted 
from noisy in situ frames.

Nevertheless, the capabilities of the algorithm would benefit from an 
enhanced classification process. This could be achieved by using a more 
sophisticated classifier, such as convolutional neural networks, e.g. U-

net [57,58] or Segment Anything [59,60]. Although these classifiers 
might improve the overall performance of the algorithm, they require 
a lot of annotated input data for training, testing and validation. An-

other enhancement to the algorithm would be to include the time series 
information from subsequent images in the classification and evalua-

tion process. This would make it possible to know the crack path before 
the classification and extraction of the crack contour, which would de-

crease the scatter of fracture characteristic data. Additionally, the crack 
flank fitting could be initialized by previously determined parameters. 
Besides, increasing the input image quality, through increased image 
resolution, contrast enhancement and decreased image noise would im-

prove any image-based evaluation process. Lenthe et al. [61] found that 
during SEM imaging at high image acquisition rates, a pixel shift can 
occur due to the scanning process, resulting in image noise and blurred 
edges. To avoid this, they applied a correction function during the im-

age formation process, leading to a decrease in pixel noise and sharper 
features.

4.4. Fracture mechanical implications

The fracture characteristics determined from in situ images allow 
a direct evaluation of the fracture process, based on the correlation 
of 𝛿 and 𝛼 to the 𝐽 -integral [8,62]. Additionally, recording the crack 
length enables the calculation of the 𝐽 -integral without the necessity 
of quasi-static or dynamic loading to determine the cantilever stiffness 
throughout the experiment. However, the initial cantilever stiffness is 
required to convert the crack lengths measured by the algorithm into 
stiffness [10]. The initial cantilever stiffness can be obtained from a 
static pre-loading in the elastic regime or numerically estimated by 
Euler-Bernoulli beam theory [10]. This means that the fracture char-

acteristics 𝛿 and 𝛼 determined continuously by the algorithm allows 
the construction of crack-growth resistance curves (R-curves) without 
further parameter calculation. Compared to manual measurements and 
quasi-static loading, the automatic evaluation by the algorithm gives a 
higher data point density [5,11], making the transition from blunting 
to crack growth more obvious. For the representative samples in Fig. 5, 
Fig. 6 and Fig. 7, the resultant R-curves are depicted in Fig. 9 a), b) and 
c), respectively. In the blunting regime, all R-curves are increasing. The 
end of the blunting regime is indicated by the dotted vertical line in 
Fig. 9. This increase matches the typical R-curve behavior described in 
the ASTM1820 standard [9]. After crack initiation, the R-curve behav-

ior starts to deviate. The brittle fractured sample (B1) exhibits a slight 
rise in 𝛿 and a decrease in 𝛼 after crack initiation up to a crack ex-

tension of 2.5 μm, see Fig. 9 a). Following the ASTM1820 standard, the 
maximum crack extension capacity (Δ𝑎𝑚𝑎𝑥) is 1/4 of the initial lig-

ament length (Δ𝑎𝑚𝑎𝑥 = 0.25(𝑊 − 𝑎0)) [9,63], indicated by the gray 
shaded regions in Fig. 9. In the case of sample B1, Δ𝑎𝑚𝑎𝑥 is reached 
at a crack extension of 1.5 μm. This leads to the typical R-curve shape 
from Δ𝑎 = 0 μm to Δ𝑎𝑚𝑎𝑥 = 1.5 μm [9,63]. However, above Δ𝑎𝑚𝑎𝑥 the 
R-curves of 𝛿 and 𝛼 continue with the same trend until the remaining 
ligament fully plastifies at Δ𝑎 ≈ 3 μm. At this point, crack propagation 
is slowed due to reduced energy storing capabilities stemming from 
geometrical constrains, leading to purely plastic deformation. In con-

junction, the manual measurements resulted in a similar R-curve as the 
algorithmic measurements. However, an increased scatter is observed 
for the manual measurements, which originates from a low number of 

measurement points.
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Fig. 9. R-curves obtained for the crack tip opening displacement (𝛿) and -angle (𝛼) for the representative samples B1, SB1 and D1, illustrated by the subfigures a), 
b) and c), respectively. The black data point in a) and b) was measured in [17].
In case of the semi-brittle (SB1) sample, 𝛿 decreases immediately 
at crack initiation, while 𝛼 still increases. At the crack initiation 
(Δ𝑎 = 0.4 μm) the crack sharpens, leading to an increase in 𝛼 and Δ𝑎, 
while 𝛿 decreases, see Fig. 9 b) and Fig. 6 b). Also, at this time, pores 
form in front of the crack. The material bridges, between crack and 
pore, fracture later to connect them, leading to a decrease in 𝛼 and en-

hanced crack growth rate at Δ𝑎 = 0.7 μm, illustrated in Fig. 9 b). The 
fractured material bridges are observable in Fig. 6 c). Pore formation 
followed by crack advancement through material bridge failure contin-

uous until the experiments end. This advancement of the crack leads to 
more challenging crack detection, as described in subsection 4.1, and, 
as a result, scatter increases. The manual measurements also exhibited 
an increased scatter, especially after crack initiation, leading to a ris-
ing R-curve until Δ𝑎 = 2 μm. The algorithmically determined R-curve 
mostly resides within the increased scatter of the manual measurement.

The ductile sample (D1) exhibits a similar R-curve behavior to SB1. 
The crack sharpening after crack initiation is depicted by the in situ
frames in Fig. 7 b) and c). At Δ𝑎 ≈ 50 nm, 𝛼 starts to decrease and the 
reduction of 𝛿 is damped, indicating continuous crack growth. Com-

pared to the SB1 sample, no pore formation was observed, pointing to 
stable crack growth.

The correlation between in situ frames and the measured fracture 
characteristics by the algorithm can be best illustrated by a video. In 
the supplementary material, videos can be found for the representative 
samples discussed in this section. These illustrate the measurement of 
𝛿 and 𝛼 correlated to the in situ frames, for brittle (B1, Supplementary 
video A), semi-brittle (SB1, Supplementary video B) and ductile (D1, 
Supplementary video C) fracture.

Nevertheless, the decrease of 𝛿 after crack initiation and latter the 
𝛼 drop contradicts the typical R-curve [9,63]. This deviation occurs 
as the algorithm measures 𝛿 and 𝛼 locally at the crack tip, while the 
ASTM1820 standard defines 𝛿 and 𝛼 at the initial crack position [9], 
depicted by the red and green measurement marks in Fig. 10, respec-

tively. Therefore, the standard assumes homogeneous stress and strain 
fields, as well as isotropic material deformation throughout the frac-

ture experiment [9,63]. Nevertheless up to crack initiation, the local 
measurement equals the measurement defined in the standard, noted 
the blunted crack to the left in Fig. 10. The 𝐽 -integral evaluation from 
mechanical data has similar constrains, as it expects a homogeneous 
stress and strain field [9,63]. To compare the obtained values with 
literature, only the crack initiation point is considered, which was de-
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termined by visual inspection of the in situ frames. For the B1, SB1 
Fig. 10. Different approaches to measure crack tip opening displacement (𝛿) 
and -angle (𝛼) during crack tip blunting and crack growth. Green illustrates 
the measurement defined by the ASTM1820 standard. Red depicts the local 
measurement performed by the algorithm. The gray shaded region represents 
the plasticized region around the crack.

and D1 samples, the crack initiation occurred at 𝑡 = 97 s, 248 s and 
233 s, respectively. The 𝛿 results determined by the algorithm at the 
initiation points are translated into fracture toughness values utilizing 
Equation (3) and Equation (4). The results are summarized in Table 3.

The values determined for 𝛿 by the algorithm are in good agree-

ment with manual measurement values from literature. Furthermore, 
the measurement errors are on the same order of magnitude, indicating 
a similar accuracy between the algorithm and manual measurements, 
outlined in Table 3. Moreover, conversion to the J-integral (𝐽𝑞) and 
stress intensity (𝐾𝑞) allows a direct comparison to the mechanically 
determined fracture characteristics reported in literature. The values 
obtained for 𝐽𝑞 and 𝐾𝑞 by the algorithm are in accordance with the me-

chanical literature data, though the errors of the algorithm are slightly 
increased. Nevertheless, the similarity of the respective fracture charac-

teristics supports the potential of the algorithm to evaluate fracture ex-

periments in the field of micromechanics. The algorithm is independent 
of the material properties and relies only on the 2D representation of the 
crack. Hence, as long as the material is reasonably isotropic, the crack 
on the surface would be related to the crack front inside the specimen 
and the evaluation is valid. Notably, elastic plastic fracture mechanics is 
based on the same assumption and assumes an isotropic homogeneous 
material [5,20,63]. Thus, the algorithm necessitates similar material 
properties as commonly employed in fracture mechanics. Furthermore, 

the R-curves obtained from the in situ frames allow to deepen the knowl-
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Table 3

Crack tip opening displacement 𝛿 determined by the algorithm at the crack initiation point for the exemplary shown cantilevers 
in Fig. 5, Fig. 6 and Fig. 7. The 𝛿 values for B1 and SB1 are compared to manual measurements values found in literature [17], 
denoted by the subscript 𝑚. Additionally, for comparison with mechanical data, 𝛿 was transformed into the J-integral 𝐽𝑞 and 
stress-intensity 𝐾𝑞 according to Equation (3) and Equation (4).

sample 𝛿𝑎 [nm] 𝐽𝛿𝑎,𝑞
[

J

m2 ] 𝐾𝛿𝑎,𝑞
[MPa

√
m] 𝛿𝑚 [nm] 𝐽𝛿𝑚,𝑞

[
J

m2 ] 𝐾𝛿𝑚,𝑞
[MPa

√
m] 𝐽𝑞 [

J

m2 ] 𝐾𝑞 [MPa
√

m]

B1 72 ± 24 190 ± 64 6.8 ± 2.3 83 ± 14 219 ± 37 7.3 ± 0.6 180 ± 6 6.7 ± 0.1

SB1 135 ± 15 390 ± 43 9.8 ± 1.1 142 ± 25 400 ± 71 9.9 ± 0.9 398 ± 14 9.9 ± 0.2

D1 23 ± 5 37 ± 7 2.7 ± 0.5 21 ± 3 34 ± 5 2.6 ± 0.4 41 ± 3 2.8 ± 0.2
edge of the fracture process occurring at the micron and sub-micron 
scale. Thus, the presented evaluation can be used in conjunction with 
mechanical calculations to characterize the fracture process and ver-

ify the validity of small-scale experiments [11,17,21]. Additionally, the 
fracture characteristics can directly be related to the micro structure us-

ing the available crack path information. This provides further insight 
into fracture processes with unexpected or unknown material behavior 
due to inhomogeneities or local microstructural variations [64–66]. By 
extending the algorithms capabilities to account for multiple fracture 
paths, even more complex fracture processes could be investigated.

5. Conclusion

An algorithm was developed that automatically adapts to the im-

age input data of in situ experiments to provide deeper insight into the 
fracture process at the micron to sub-micron scale. This algorithm ex-

tracts the crack length and additional fracture characteristics such as 
crack tip opening displacement (𝛿) and -angle (𝛼). The extraction pro-

cess was split into a probabilistic classification, contour extraction, and 
evaluation of the fracture characteristics from the identified crack con-

tours. For the development of the algorithm, samples exhibiting brittle, 
semi-brittle and ductile failure were used to cover the full range of frac-

ture behavior and corresponding fracture features. For comparison, the 
crack length was also determined from mechanical stiffness data and 
manual measurements to access the accuracy of the image-based mea-

surement. This comparison revealed an overall excellent agreement be-

tween the image and mechanical-based measurements. Several frames 
of each sample were manually evaluated multiple times to serve as 
ground truth data for the crack tip coordinates, crack tip opening dis-

placement and -angle. This ground truth data was used to verify the 
performance of the algorithm, indicating comparable accuracy to man-

ual measurements and proving the applicability of the algorithm on 
different fracture behaviors. This novel algorithm reproducibly evalu-

ates all recorded in situ frames in minutes, compared to time intense 
manual process, requiring highly skilled experts. Analysis of crack tip 
opening displacement and -angle allows the verification of fracture 
toughness values calculated from mechanical data. The image-based 
evaluation allows fracture processes of more complex material struc-

tures to be evaluated, including materials with anisotropic properties 
and increased blunting tendency. In summary, this novel algorithm pro-

vides a powerful tool aid the understanding of complicated fracture 
processes and allows a more detailed understanding of the fundamen-

tal fracture processes of complex material structures at the micro- and 
nano scale.
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