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Micro- and nanomechanical testing techniques have become an integral part
of today’s materials research portfolio. Contrary to well-studied and majorly
standardized nanoindentation testing, in situ testing of various geometries,
such as pillar compression, dog bone tension, or cantilever bending, remains
rather unique given differences in experimental equipment and sample pro-
cessing route. The quantification of such experiments is oftentimes limited to
load-displacement data, while the gathered in situ images are considered a
qualitative information channel only. However, by utilizing modern computer-
aided support in the form of the recently developed Segment Anything Model
(SAM), quantitative mechanical information from images can be evaluated in
a high-throughput manner and adds to the data fidelity and accuracy of every
individual experiment. In the present work, we showcase image-assisted
mechanical evaluation of compression, tension and bending experiments on
micron-scaled resin specimens, produced via two-photon lithography. The
present framework allows for a determination of an accurate sample strain,
which further enables determination of quantities such as the elastic modulus,
Poisson’s ratio or viscoelastic relaxation after fracture.

INTRODUCTION

Microscale characterization of mechanical prop-
erties has become an important branch of materials
science owing to the advancements in nanotechnol-
ogy, microelectronics and MEMS devices. Within
this context, in situ micromechanical testing inside
the scanning electron microscope (SEM) is a valu-
able tool for accessing mechanical properties and
investigating failure mechanisms and deformation
characteristics at small scales.1–10 While nanoin-
dentation-based techniques can be used to measure
localized mechanical properties at small scales, the
complex multi-axial stress field beneath the inden-
tation tip during deformation11 as well as a non-
perfect tip shape impedes the straightforward con-
version of measured hardness to a continuous
stress-strain relationship, as obtained via uniaxial
testing.

Fabrication of microsamples using, e.g., a focused
ion beam (FIB) offers a wide range of miniaturized
testing geometries for materials characterization,
each with its unique characteristics and limitations.
Micropillar compression12 and microtensile experi-
ments1 enable measuring material properties dur-
ing uniaxial loading, while giving profound insights
into deformation mechanisms and size effects at
small scales. Experiments of this type require a
precise alignment between testing equipment (flat
punch or gripper), as any misalignment of a few
degrees can invalidate measurement data. Addi-
tionally, no infinitely stiff substrate is present at the
base of the sample, which can cause a sink in of the
pillar into the base of the tested material during
micro-compression.

While tension experiments allow for a better
measure of ductility due to final rupture, the FIB
milling of dog bone-shaped microtensile specimens
is significantly more time-consuming to prepare and
test than other geometries, limiting the number of
samples that can reasonably be processed and
tested. Micro-cantilever samples13,14 are
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considerably easier to fabricate and test because of
simpler geometric constraints and no need to grip
the sample. Bending such specimens using a wedge
indenter tip only requires a good alignment in the
thickness direction of the cantilever to avoid tor-
sional loads. The difference of bending geometries is
the intrinsic strain gradient, whereby both tensile
and compressive regions, divided by a neutral axis,
are present within one specimen. On one hand, this
can be seen as an advantage as both loading states
are present within one specimen, which enables a
single direct measurement of stress-strain asymme-
try of materials, as is generally observed in wood,15

strongly textured nanotwinned systems16 or aniso-
tropic twin-dominated deformation in hexagonal
systems.17 On the other hand, the strain gradient
introduces potential for size effects with decreasing
sample height18–21 and is generally challenging to
separate directly using analytical beam theory.22,23

All these investigations would benefit from addi-
tional information from in situ images to counteract
their inherent drawbacks and enable accurate
determination of mechanical response in the micron
scale, especially considering the recent drive
towards higher throughput mechanical
experimentation.24,25

Therefore, the present work utilizes the state-of-
the-art Segment Anything Model (SAM),26 which
features excellent generalization capabilities for
image segmentation and helps to quantify continu-
ously gathered images. The investigations focus on
mechanical characterization of well-reproducible
IP-DIP resin specimens produced with two-photon
lithography (TPL)27 and comparison among differ-
ent loading geometries.

EXPERIMENTAL

For demonstration purposes micro-specimens
were manufactured for the common in situ testing
cases of tension, bending and compression. There-
fore, TPL is an ideal method to obtain confidentially
constant specimen dimensions, neglecting the effort
of determining dimensions individually. Since this
work aims for a demonstration of the method
utilizing image data rather than determining
mechanical properties themselves, a suitable demon-
stration material is of advantage. Photo-resist spec-
imens lack detrimental effects obtained by FIB
milling and show isotropic properties due to their
amorphous structure. Furthermore, the manufac-
turing process is automated to a large extent,
reducing specimen manufacturing effort compared
to common FIB preparation.

Sample Fabrication

The shapes of all specimens were modeled via
FreeCAD (Debian GNU/Linux 10, version: 0.18) and
had comparable critical dimensions in terms of
minimum sample size. The gauge section of the
square-shaped pillar and tension specimen had a

modeled cross section of 7.5 9 7.5 lm2 and 25 lm
height, sitting on a pyramidal base to increase the
footprint surface and therefore the overall adhesion.
This compliant base also serves to highlight the
unavoidable pillar sink in during microcompression.
The bending specimens had dimensions of
5 9 5 9 25 lm3 (height 9 width 9 length),
attached to a prismatic base block with larger
volume to act as stiff base and facilitate sufficient
clearance below the cantilever to enable unimpeded
downward bending during testing. The lower edge
of the specimens was inclined by a nominal taper
angle of a = 4.4� (2� in the model, Fig. 1c) to
counteract processing artifacts, as described in more
detail previously.28

The actual manufacturing was performed by
direct laser writing using a TPL printer (Photonic
Professional GT2, NanoScribe GmbH & Co.KG,
Eggstein-Leopoldshafen, Germany). The configura-
tion for highest resolution was selected, consisting
of a 639 objective (Plan-Apochromat 639 N.A. 1.4
Oil DIC, Carl Zeiss AG, Oberkochen, Germany) in
conjunction with IP-DIP (Nanoscribe GmbH &
Co.KG, Eggstein-Leopoldshafen, Germany) as pho-
toresist to achieve sub-micrometer precision.

As printing substrate, a pre-structured
25 9 25 9 0.7-mm3 fused silica platelet was used.
The grid-shaped grooves with a spacing of around
5 9 5 mm2, introduced via a diamond wire saw
(type: 6234, Well Diamantdrahtsägen GmbH, Man-
nheim, Germany), enable the splitting of the sub-
strate after the writing process to meet the
geometrical requirements for in situ SEM testing.
Furthermore, the substrate was subjected to a
surface salinization treatment to achieve superior
surface adhesion strength and avoid detachment of
specimen structures prior to testing. Further details
on the pre-preparation can be found in another open
access publication.28

All models were sliced at 100 nm and hatched at
200 nm, including a shift in scanning direction of
90� for consecutively printed layers. The writing
was performed with a voxel scan speed of 10 mm/s
and a laser power of 25 mW, corresponding to 50%
of the maximum value available. A printing script
was used to conveniently chain individual tasks
such as stage repositioning, surface finding and
starting individual print jobs. Thereby, the speci-
mens were printed in a row parallel to a groove at
about 30 lm. After successful specimen writing, the
standard development procedure was applied,
which is essentially washing of uncured resin.
Therefore, the entire substrate was submersed in
propylene-glycol-methyl-ether-acetate for 20 min
and isopropanol for 5 min followed by dry blowing
via a blowing ball.

Then, a uniform gold coating with a thickness of
several nm was applied with a dedicated sputter-
coating device (Sputter Coater 108auto, Cressington
Scientific Instruments Ltd., Watford, UK) using two
processing cycles of 50 s to reduce charging artifacts
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and enhance detailed SEM imaging during mechan-
ical testing. Afterwards, a hard-metal scribing pen
was used to scratch along the wire-saw grooves to
introduce pre-cracks where the substrate will be
separated in the next step. The substrate was
clamped near a groove on one side and far away
from the specimens on the other and split apart by
gently applying a bending force by hand. Thereby,
the specimens are finally exposed on an edge with
two perpendicular obstacle free directions for simul-
taneous testing and imaging.

Mechanical Testing

Micromechanical experiments of all three sample
geometries were conducted inside a SEM (DSM982,
Carl Zeiss AG, Oberkochen, Germany) using an
UNAT-SEM microindentation system (ASMEC
Gmbh, Dresden, Germany) in open-loop displace-
ment-controlled mode. Cuboidal micro-compression
pillars with a square cross section situated on a base
were tested using a conductive diamond flat punch
indenter tip (Synton-MDP AG, Nidau, Switzerland).
Dog-bone-shaped micro-tensile samples were tested
with a polycrystalline tungsten gripper.1 Both uni-
axial testing experiments were conducted using a
displacement rate of 50 nm/s. Microcantilever bend-
ing was performed using a diamond wedge indenter
(Synton-MDP AG, Nidau, Switzerland) with a dis-
placement rate of 20 nm/s. During testing, in situ
frames were acquired with a frame rate of 0.99
frames per second, using a scanning speed suit-
able for continuous image acquisition. The gathered
in situ frames were used in conjunction with
recorded load-displacement data to obtain engineer-
ing stress-strain data. Acquisition of in situ frames
is started simultaneously with the recording of
indenter load displacement data. Due to the manual
initiation, an estimated offset of up to 0.5 s can be
present. However, in view of the framerate, a
reasonable synchronization is still guaranteed. Sub-
sequent linear fitting of time-resolved deformation
is used to correct any offset between indenter

displacement and in situ frames. For compression
and tension loading, continuous determination of
the sample deformation from the in situ frames was
used to correct measurement errors arising during
uniaxial loading, such as the added compliance of
the measurement chain. For cantilever bending, the
continuous deflected contour was used to calculate
stress and strain in the tensile and compressive
fiber, respectively.

Image Segmentation and Processing

To achieve efficient deformation tracking of
micro-specimens from in situ frames, each frame is
individually treated in consecutive image and data
processing steps within a Python script, which will
be elucidated in this section. The routines described
in this section are developed using Python 3.10.8
and standard packages, while the implementation
of the image segmentation model is performed using
the PyTorch 2.1.2 package.29 The first step involves
cropping all frames to only include the region of
interest for evaluation, discarding scaling bars and
other superfluous information. The resulting image
is then used as input for a trained neural network
model, whose task is to identify the specimen using
image segmentation. For this purpose, SAM is
employed, which is a foundation model trained on
the largest image segmentation dataset so far,
consisting of 11 million images and 1.1 billion
masks.2 The developers indicate good zero-shot
generalization, meaning the model recognizes new
concepts it was not initially trained on. It should
thus be well applicable to segment grayscale in situ
electron microscopy images and ultimately recog-
nize various specimens without any additional
image processing or training necessary. For seg-
menting an object, the model requires an image as
well as a segmentation prompt for specifying the
object. From the available types of prompts, the use
of point prompts proved to be best suited. The point
prompt consists of two types of points in the form of
(x, y) coordinates that are placed on the

Fig. 1. In situ SEM images of direct laser written micro specimens: (a) square pillar shape, (b) dog-bone tensile shape and (c) printing-optimized
cantilever shape. The essential geometric dimensions and coordinate systems are depicted for each shape individually.
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image. Foreground points are located on the object
to be segmented, in this case the specimen itsel-
f, and provide information about where it is located
in the image. Background points are added onto -
other regions, not belonging to the object, in this
case the indentation tip and vacuum. Once these
points are specified on the first frame of a given
experiment, the positions of these points are applied
to all subsequent in situ frames of the experiment
(Fig. 2a–c). Additionally, the input of temporary
foreground and background points is implemented,
which are only considered on a limited range of
in situ frames. Generally, placed foreground and
background points for image segmentation are
remaining on identical positions for all frames
throughout the whole experiment. Temporary
points are required in cases where points are placed
on a region that is not consistently belonging to
foreground or background throughout the whole
in situ experiment and therefore need to be read-
justed periodically. Such readjustments were per-
formed roughly every 50 to 80 frames. Since the
sample geometry and indenter position change
during deformation, temporary points may be
placed, e.g., on the head of a micro-tensile sample
or the tip of a micro-cantilever. An image encoder
accepts the in situ frames as an input, while

foreground and background points are passed on
to a prompt encoder. The model then returns a
binary segmentation mask, ideally matching the
shape of the specimen as exemplary shown for the
in situ frames (Fig. 2d–f). For all segmentation
tasks, the ‘‘large’’ vision transformer (ViT), ‘‘ViT-L’’
model size was used, featuring a manageable net-
work size and a good performance to accuracy ratio.
Segmentation was performed on a GeForce RTX
3050 laptop GPU with 4 GB of VRAM. The infer-
ence time of a single image segmentation task was
in the range of several seconds, allowing relatively
fast evaluation of complete in situ movie frame
datasets.

The binary segmentation mask is then passed to
the ‘‘findContous’’ function30 of the OpenCV
library.31 This function calculates boundary points
along a region of identical intensity on the binary
mask, hence returning the contour of the segmented
region. It is necessary to split this singular contour
into sections that are meaningful for tracking the
edges of the respective sample. The splitting is
performed at edge points, where the sample outline
features a distinctive kink and thus the contour
shows a curvature hotspot (i.e., a small curvature
radius), as designated in Fig. 2f. Calculating the
curvature of the contour is performed by

Fig. 2. In situ micrographs of (a,d,g) compression, (b,e,h) tension and (c,f,i) cantilever specimens, with the white scale bars depicting 5 lm for
each shape, respectively. The upper images (a,b,c) show the manually added in-contour positions for the algorithm as green pluses, while the
out-of-contour positions are marked with red crosses. The second row (d,e,f) depicts the segmented mask as a gray region and the contour with
an overlaid curvature color scheme, whereby the red hotspots depict positions of high curvature. The lower row (g,h,i) provides the segmented
contours with respective linear fits and crossings to determine the current gauge length of compression and tension specimens (g,h) as well as
the compression fiber (blue) and tension fiber (red) of the bending specimen (i) (Color figure online).
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determining the image gradients in horizontal and
vertical orientation by applying a Scharr gradient
operator32 along the respective axis. The obtained
gradient values in horizontal and vertical direction
of a given point represent the gradient vector at that
position. The gradient vector at the position of point
i on the contour is then compared to the vector at
point (i + n), located further ahead on the contour.
The value n specifies the distance between points at
which the gradient vector is compared and needs to
be tuned depending on the geometry of the sample.
The angle a between these gradient vectors is
calculated and taken as a measure of the curvature.
Although the Scharr operator proves more accurate
compared to other examined gradient operators, the
curvature values are too noisy to be directly utilized
for further calculations of strain. To detect kinks in
the contour, a threshold angle aT is specified.
Regions that show a higher curvature than the
threshold angle aT are discarded from the original
contour, while sufficiently straight segments of the
sample outline remain in the dataset. The threshold
angle aT is another value that needs to be adjusted,
depending on the specific specimen geometry. The
points of all remaining continuous segments are
selectively grouped together using density-based
spatial clustering (DBSCAN).33 For correct cluster-
ing of points, to form individual continuous seg-
ments, an appropriately chosen epsilon parameter
is required, which determines the distance at which
two points are considered as being in different
segments. The continuous segments of interest for
deformation tracking are then chosen by establish-
ing arithmetic criteria for the coordinates of the
included points. As an example, the tensile fiber
during bending is selected by searching the topmost
of all sections in the in situ frame with the largest
number of points (Fig. 2i).

The selected contour segments are then used to
individually track the positions of different edges of
the specimen for each frame during the in situ
experiment video. This enables a continuous deter-
mination of the change in geometry, which is
suitable for corrections of experimental data, as
well as for calculation of quantities not straightfor-
wardly accessible from in situ frames. This is
performed in a different manner for each type of
specimen geometry, all three of which will be
elucidated separately.

Micro-compression Evaluation

As input for the image segmentation model,
several foreground points are placed on the pillar
in a uniform manner, with emphasis on the border
region between the pillar and its base, as occasion-
ally the pillar and base would be recognized as two
separate objects. The background points are placed
on the flat punch tip, as well as the vacuum
(Fig. 2a). Temporary foreground points are placed
near the top of the pillar, which need to be moved

further down during compression to not end up on
the flat punch tip. After generating a segmentation
mask for the pillar, the mean x value (Fig. 1a) of all
points in the contour section of the pillar top edge is
taken as the position of its top edge (Fig. 2g, orange
contour section). The exact position of the pillar
base is most accurately determined by considering
intersections of lines fitted to specific sections of the
sample contours. A linear fit is performed on the two
contour sections belonging to the edges of the
(truncated) pyramidal micropillar base. Likewise,
lines are fitted on the vertical edges of the micropil-
lar. The two intersections of the vertical lines of the
micropillar edges with the corresponding fitted lines
of the micropillar base represent the two points at
which the position of the base is assumed (Fig. 2g).
For tracking the base position, the mean x-coordi-
nate of the two identified base points is used.

Compressive engineering stress is calculated by
dividing the measured load evolution by the original
cross-sectional area of the unstrained pillar
(Table I), while compressive engineering strain is
calculated by dividing the compression displace-
ment of the pillar by the height of the unstrained
pillar.34 Compression displacement is usually
obtained as recorded displacement data of the
indenter system. However, some errors can remain
unconsidered using this approach, such as the
potential sinking in of the pillar into the base or
the fact that recorded displacement data are influ-
enced by the compliance of the total measurement
chain, including the pillar base and the substrate on
which the samples have been printed.35 Using the
continuous deformation tracking, a correction of the
compliance of the complete measurement chain can
be performed by measuring the height reduction by
continuously tracking the pillar height from
acquired in situ frames. The current height can be
determined by subtracting the position of the pillar
base from the position of the pillar top edge
(Fig. 2g). The resulting height in pixels is subse-
quently converted into metric units by multiplica-
tion with the correct lm/px ratio. This ratio needs to
be obtained from measuring the scaling bar, since
such information is not embedded in the image
metadata because of hardware limitations. Since
the height was calculated by subtraction of the
sample base, a potential sink in of the pillar36 can

Table I. Relevant geometric parameters measured
from SEM micrographs

Parameter Compression Tension Cantilever

h (lm) 25.0 ± 0.2 24.2 ± 0.1 –
A = a2 (lm2) 51 ± 4 51 ± 3 –
Wbase (lm) – – 5.6 ± 0.2
Wend (lm) – – 2.4 ± 0.2
B (lm) – – 4.7 ± 0.2
L (lm) – – 13.4–20.6
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already be corrected. The continuously determined
pillar height during compression loading is then
used to correct the displacement data recorded by
the indentation system. This is done via linear
correlation of the raw indentation displacement
with accurate time-resolved pillar height from the
deformation tracking algorithm to correct for addi-
tional load-train compliance and initial displace-
ment offset at the point of contact.

Micro-Tensile Evaluation

Calculating tensile engineering stress is per-
formed by dividing the measured load evolution by
the cross-sectional area of the original specimens’
gauge section (Table I), while tensile engineering
strain is obtained by dividing the measured dis-
placement of the gripper by the initial gauge
length.34 The measurement of strain during micro-
tensile testing is particularly prone to errors orig-
inating from the additional compliance of the grip-
per,37 base and head of the dog-bone sample, as well
as the substrate on which the sample is printed.
Utilizing the continuous evaluation of sample defor-
mation by tracking edge positions visible in the
in situ frames, we attempted to correct the mea-
sured tensile elongation for these errors, from which
an accurate tensile strain could be derived. The aim
is to determine the evolution of the gauge section
length to correct the measured displacement of the
indentation system. Analogous to the micro-com-
pression experiments, the evolution of the sample
length is obtained by subtracting the position of the
base section from the position of the head. This
length evolution is used for a linear correction of
displacement data of the indentation system after
contact is achieved (Fig. 4a). The method for
position determination of the micro-tensile sample
base is analogous to the method used in micro-
compression: two lines are fitted on the contour
points of the base edges and the intersection with
lines fitted on the contour points of the gauge length
edges is calculated. The calculation of the head
position is performed in a similar manner, fitting
two lines on selected points of the head edges and
calculating the intersection with the lines fitted on
the gauge length edges (Fig. 2h).

Micro-Bending Evaluation

Evaluation of micro-bending experiments using
this method involves identification and separation
of the points belonging to the tensile and compres-
sive outermost fibers of the cantilever. These points
are then used separately to fit two parametrized
curves and determine the curvature of the tensile
and compressive fibers along the cantilever, respec-
tively. The detailed mathematical framework is the
same as has been used for curvature determination
of dislocation lines and can be found in (Ref. 5). For
image segmentation, foreground points are placed
on the base of the cantilever, while background

points are located on the wedge indenter and the
vacuum (Fig. 2c). Particular care needs to be taken
when placing temporary foreground points on the
cantilever, as such points can lose alignment with
the intended region within a few frames and remain
located on vacuum as the cantilever is bending
away. Image segmentation is straightforward with
well-placed points and the cantilever is consistently
recognized, as depicted in Fig. 2f. However, the
extraction of correct contours for the tensile and
compressive fiber is not a straightforward task, as
during bending the curvature of the tensile and
compressive fibers increase. Since the curvature of
the sample contour is also used for the detection of
kinks and splitting the contour into sections, a too
low value for the threshold angle aT can prevent
further evaluation. In this case, the curvature of the
tensile or compressive fiber reaches a certain value,
at which the angle between the gradient vectors of
two points on the contour reaches aT. This leads to
unintended splitting of the continuous tensile or
compressive fiber into multiple sections, requiring
readjustment of the aT parameter.

The stress-strain evaluation is based on simplified
beam bending theory, whereby the strain is consid-
ered as a linear gradient, even if the outermost
fibers already show plastic deformation23,38 as
depicted schematically in Fig. 3. The cantilever
geometry does not exhibit a region of constant
bending moment M, as would be the case, for
example, for the four-point bending geometry, but
rather a linear dependence with bending lever.
Thus, all the following mathematical considerations
are only valid for specific incremental x-positions
(see Fig. 1c) along the cantilever. For the sake of
readability, the deduction of geometric parameters
as functions of position, e.g., W(x), was omitted in
the following. To estimate the engineering strain
from the measured curvature, it is necessary to
consider the geometric relationship between the

Fig. 3. Schematic of plastic beam bending, depicting tensile and
compressive regimes, as well as a neutral axis. The strain e is
considered to follow a linear gradient, while the stress in the plastified
regions exhibits classical non-linear hardening behavior. Relevant
geometric parameters are: position of the neutral axis z0, radius of
curvature of the neutral fiber q, compression fiber curvature jc and
tension fiber curvature jt.
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bending radius of the respective fibers jc
�1, jt

�1 and
the radius of the neutral axis q, as:

q ¼ 1

jt
� W � z0ð Þ; q ¼ 1

jc
þ z0 ð1Þ

and calculate the respective strains ec, et, as:23,38

et ¼
W � z0

q
¼ W � z0ð Þjt

1 � jt W � z0ð Þ ; ec ¼
z0

q
¼ jcz0

1 þ jcz0
ð2Þ

The precise position of the neutral axis z0 might
change during plastic deformation but will stay in
close proximity to the geometric center of the beam
for a respective incremental position. To obtain a
first-order estimate for the strains, the neutral axis
was considered constant at z0 = W/2. With these
engineering strains the nominal respective strain-
load P compliances Cc, Ct can be calculated numer-
ically as:

The stresses can further be calculated as:

CC ¼ dec

dP
;Ct ¼

det

dP
ð3Þ

rt ¼
2L

BW2Ct
P Ct þ Ccð Þ þ et þ ec

2

� �
ð4Þ

rc ¼
2L

BW2Cc
P Ct þ Ccð Þ þ et þ ec

2

� �
ð5Þ

with the cantilever width B, the cantilever height W
and the length to wedge tip L for the respective
position of evaluation. These formulations are based
on the calculus of first variation arguments, and the
interested reader is referred to the original works of
Mayville and Finnie22 and Kato et al.23 for their
precise determination.

RESULTS

The high reproducibility of geometries fabricated
by two-photon lithography is well known39–42 and
allows for high-throughput testing of quasi-equal
shapes to determine statistical variations. However,
it is still essential to measure the final geometries
after processing and before testing, as these might
vary from the initial model because of shrinkage or
other influences during the curing process. The
geometrically relevant parameters measured from
electron microscopy images before testing are sum-
marized in Table I, whereby any error estimates are
based on at least ten individual manual measure-
ments. All of them show a small overall scatter,
except for the cantilever bending length L. This is
measured for each experiment individually because
of manual positioning of the wedge tip with respect
to the specimen.

Uniaxial Microcompression/-Tension

For both uniaxial test configurations, the contour
tracking data were not directly used, but rather
employed to correct the gathered displacement from
the indentation system. This reduces stochasticity
within the stress-strain curves that could be intro-
duced because of outliers within the image data and
the reduced data point fidelity of image versus
displacement data. A representative example of a
tensile specimen displacement is shown in Fig. 4a,
where the raw data are depicted by a black line and
the contour tracking data are indicated by red
points. The image data still show a linear behavior
over time, as expected. However, an evident differ-
ence in slope arises from the fact that the load-train
is not infinitely stiff, and the raw displacement is
influenced by various sources of compliance within
the base and the head, whereas the image data only
measure direct extension on the sample. An addi-
tional benefit arises regarding the correction of
initial displacements of the gripper or flat punch tip.
These occur as the experiment starts out of contact,

Fig. 4. (a) Displacement correction scheme of a tensile specimen
based on contour tracked data and (b) resulting change in
engineering stress-strain curve (Color figure online).
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and they are often subtracted manually. Now these
are automatically removed using this procedure, as
the inherent axis offset with the contour tracking
data considers this feature as shown in Fig. 4a. The
resultant change in engineering stress-strain data
is depicted in Fig. 4b, where an increase in general
elastic slope as well as a removal of the pronounced
nonlinear behavior in the beginning of the curve (up
to a strain of 0.01) is observed, which is commonly
attributed to the initial contact settling between
gripper/punch and specimen.

For each uniaxial testing configuration six indi-
vidual specimens were tested and evaluated, and
the corrected engineering stress-strain data are
shown in Fig. 5. There, the curves of all compression
specimens are shown in sub-figure Fig. 5a, with
open black squares denoting the 0.2% yield onset
(r0.2%) calculated using an elastic slope shift for
each specimen individually. The same is depicted

for all tensile specimens in Fig. 5c, with the addition
that fatal failure can be observed in tension and the
strain-at-failure (black crosses) can be gathered as a
measure of ductility. Evidently the individual spec-
imens show strong agreement among themselves for
each loading direction, respectively. The yield onset
is consistently lower for tension at 71 ± 2 MPa,
then at compression with 89 ± 5 MPa. The rupture
for all tensile specimens occurred at the head
section of the specimen, which is likely a result of
slight stress concentration at the 45� angles in
conjunction with bending loads occurring through
imperfect sample-gripper contact. However, the
strain-to-failure exhibits only small scatter at
0.258 ± 0.024, which suggest good reproducibility
of the whole specimen fabrication and methodology.
The elastic modulus was calculated for each speci-
men using raw displacement and contour tracking
corrected displacement data and is summarized in

Fig. 5. Comparison of all calculated engineering stress-strain curves: (a) microcompression experiments, (b) compression data from bending
experiments, (c) microtensile experiments and (d) tensile data from bending experiments. White squares depict the 0.2% yield offset stress and
black crosses mark final failure.
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Table II. There it becomes evident that the modulus
is underestimated by up to 30% when neglecting the
load train compliance. Furthermore, a modulus
asymmetry between tension (Etension = 2.20 ± 0.15
GPa) and compression (Ecompression = 2.60 ± 0.17
GPa) is apparent.

The image data allow for determination of strain
on the specimen not only along the loading direction
(eXX) but also perpendicularly (eYY), which allows for
calculation of Poisson’s ratio m = � eYY/eXX. Using
individual images for such a calculation yields
rather significant scatter, but plotting eYY (consid-
ering contraction as positive) over eXX shows a
strong agreement for compression and tension
specimen, as detailed in Fig. 6, respectively. As
Poisson’s ratio is only properly defined in the
elastic regime, the data were fitted linearly between
0.02 and 0.04 for compression and between
0.01 and 0.03 for tension for each specimen and
the average Poisson’s numbers calculate to
mcompression = 0.28 ± 0.06 for compression and
mtension = 0.31 ± 0.15 for tension, respectively. In
the plastic regime (roughly for strains> 0.05),
Poisson’s ratio should theoretically be 0.5 when
assuming volumetric continuity. While the data
show slightly larger values, the scatter is also quite
significant, and the continuous trend from a shal-
lower slope to a higher slope of roughly 0.5 suggests
good agreement with standard continuum consider-
ations of plastic deformation.

To estimate strain errors, three main sources are
present: (1) scatter of averaged contour segments,
(2) image shift over frame acquisition time and (3)
error from linear fitting of image displacement for
correction of indenter displacement. A sample esti-
mation for type (1) errors will be performed for
compression experiments by considering solely the
deviation of the pillar top position. This position is
calculated by averaging over all points of the
corresponding contour section (Fig. 2g, orange sec-
tion). The resulting variance of this position over all
performed experiments is 0.613 px2. Assuming
uncertainty propagation of uncorrelated input
quantities,43 the strain error has a constant value
of 0.00255, irrespective of applied strain. This
means that the strain error decreases proportion-
ally at higher compressions, 5.10% at 0.05 compres-
sive strain, 2.55% at 0.1 compressive strain and

1.06% at maximum compressive strain of 0.24. The
type (2) error source arises from the continuous
deformation during image acquisition. It is depen-
dent on the orientation of the specimen regarding
the scanning direction. If SEM scanning is per-
formed from top to bottom of the image, the error is
considerably smaller when uniaxial testing is

Table II. Summary of all measured parameters

Compression Tension

Yield onset r0.2% (MPa) Uniaxial 89 ± 5 71 ± 2
Bending 106 ± 13 82 ± 4

Young’s modulus E (GPa) Raw data 2.45 ± 0.06 1.69 ± 0.08
Corrected 2.60 ± 0.17 2.20 ± 0.15

Poisson ratio m (–) 0.28 ± 0.06 0.31 ± 0.15
Strain to failure (–) – 0.258 ± 0.024

Fig. 6. Engineering lateral strains (eYY) over loading direction strains
(eXX) for (a) compression and (b) tension specimens, respectively, to
depict the evolution of Poisson’s ratio.
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performed in horizontal direction, opposed to verti-
cally, since the currently scanned line will travel
across the deformed region faster in the first case.
With the image dimensions and scanning parame-
ters used in the experiments, the strain error when
loading in a vertical orientation is 0.094%, while
loading in horizontal orientation it is 0.0173%. With
this error source in mind, all uniaxial testing was
performed in horizontal orientation. The type (3)
error source concerns the linear fitting of the
determined compression from in situ frames for
correction of the indenter displacement data. It can
be estimated by the mean squared error (MSE) of
the linear fit. The linear fit is performed for
specimen compression over time, while excluding
all initial frames where no contact between gripper
or flat punch and the specimen is present. The MSE
value of the linear regressions of all compression
experiments is 0.184 ± 0.0615 px2; for tension
experiments it is significantly higher, with
2.569 ± 0.9612 px2. This suggests that calculation
of sample extension using the intersection of fitted
lines produces a significantly higher error, since in
the case of tension both base and head position are
calculated with line intersection, resulting in a
higher MSE, compared to compression. However, a
full error quantification for this case would neces-
sitate statistical sampling, e.g., Markov chain
Monte Carlo, which would considerably exceed the
focus of this manuscript. From this initial estima-
tion the type (1) error source seems to be the
dominating factor.

Microcantilever Bending

Four cantilever-shaped specimens were tested at
various bending lengths spanning from 13.4 lm to
20.6 lm, and the curvature and resulting stress
strain behavior were calculated following Eqs. 1–5
at a constant position of 2 lm from the base of the
cantilever. This reduces any influence from the
stress concentration at the compression side close to
the base while still being reasonably close to the
region of first plastic deformation. The calculated
engineering stress-strain data are shown in Fig. 5b,
d for the compression and tension sides of the
cantilevers, respectively. Compared to the uniaxial
data (Fig. 5a), the compression bending data show
quite a significant scatter, with a rather unphysical
strong increase in stress far in the plastic regime.
For the bending tensile data (Fig. 5d) the behavior
in the plastic regime seems to exhibit a distinct
softening with a subsequent constant flow plateau,
which is not evident in the uniaxial data (Fig. 5c).
The initial slope is also considerably steeper than in
the uniaxial compression and tension data, with
nominal moduli reaching as high as � 20 GPa. This
can be attributed to the fact that small curvatures
are extremely hard to resolve with only (sub-)pixel
changes from frame to frame. However, while the
initial part is resolution-limited and the higher

plastic regime is limited by the accurate knowledge
of geometric constraints, the regime around the
yield onset still shows promising similarities with
the uniaxial counterparts. Using the classical 0.2%
offset construction with the slopes of the individual
specimens shows strong agreement with the uniax-
ial data as summarized in Table II. Even the yield
stress deviation between tension and compression is
accurately revealed using the cantilever data. These
possibilities, challenges and implications will be
regarded in more detail in the following discussion.

DISCUSSION

Image-Assisted Micromechanical Testing

The correction of uniaxial testing data via con-
tinuous tracking of in situ specimen edges using the
state-of-the-art image segmentation model SAM is a
straightforward task. Although the network was
never trained on these specific types of images,
owing to the good generalization capability of the
model, the segmentation of such grayscale images
containing specimens with rather simple geometric
shapes did work quasi ‘out-of-the-box,’ given suit-
able choice of point prompts. To obtain valid and
consistent segmentation results, multiple fore-
ground points need to be specified. Considerable
variation and a high ratio of unusable masks were
found when specifying only a single point, especially
when employing the smallest available variant,
with vision transformer ‘‘ViT-B.’’ Conversely,
employing the larger vision transformer models
‘‘ViT-L’’ and ‘‘ViT-H’’ with a higher number of
foreground and background points leads to consis-
tent masks with high quality. Slow processing
speeds should not be an obstacle when employing
the largest model type for evaluation of large
datasets when reasonable computing power is
available. While the entry-level RTX 3050 Mobile
GPU used in this work managed image segmenta-
tion in roughly 20 s using the largest ‘‘ViT-H’’
model, a more capable RTX 3080 desktop GPU with
an increased number of CUDA computing cores
allowed image segmentation runs with inference
times consistently around one second.

When using SAM in the as-released state, special
care needs to be taken with suboptimal SEM
scanning parameters leading to high noise or low
contrast, as the quality of segmented masks can
degrade, hindering further processing. Imaging
poorly conducting specimens can lead to polariza-
tion effects, leading to elevated noise levels, poor
contrast as well as brightness variations on the
specimen surface. Variations of contrast and bright-
ness did not cause any noticeable degradation in
mask quality, emphasizing the segmentation capa-
bilities of SAM compared to traditional thresholding
methods. However, at particularly high noise levels,
where specimen outlines can hardly be detected by
the SEM operator, unusable segmentation masks
are returned. While such noise levels show the
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limitations of SAM, they were only observed during
acquisition while the conductive diamond indenter
was out of contact with the specimen.

Furthermore, non-specimen features, such as
dust particles on the specimen surface, are correctly
excluded from the segmentation mask by the model
as they represent a separate object. This, however,
also complicates further evaluation, since a mask
featuring cutouts at the position of dust is obtained.
Most of the times simply placing a foreground point
on the dust particle solves this issue, while in some
cases the region of the mask containing the dust
particles requires manual editing. Additionally,
should such a dust particle be positioned at the
edge of a specimen, the model will consider the
particle as a separate object, discarding it from the
mask, especially when placing a background point
on top of it. However, in particular if the particle is
not sufficiently large, it can cause the mask outline
to exhibit a kink, which leads to splitting of
continuous segments at this position. The remedy
for this is increasing the epsilon parameter during
density-based clustering, which joins the formerly
separated segments together.

All these aspects strongly suggest that a purely
automated evaluation is rather challenging, when
using SAM out of the box, as to date still a human-
assisted placement of temporary background points,
tuning of contour sectioning parameters and gen-
eral sanity check are necessary to obtain trustwor-
thy high-quality data.

Digital image correlation is a popular method
used for determination and tracking of strain and
displacement field. Compared to the proposed
method of contour tracking, a higher local resolu-
tion, with fewer assumptions about boundary con-
ditions, can be achieved, which is particularly
interesting for non-uniform deformation fields.
However, for employing classical DIC on SEM
images, low noise levels are required, which leads
to long acquisition times, not suited for continuous
loading experiments. Fast image acquisition is
possible when, instead of grayscale matching, track-
ing of fiducial markers is performed, which however
leads to additional efforts in specimen fabrication,
not always feasible for high-throughput character-
ization of specimens.

Uniaxial Stress-Strain Data from Bending
Specimens

Substituting uniaxial microscale testing by using
bending geometries would provide a few benefits:
easier FIB-based sample fabrication routines com-
pared to dog-bone-shaped tensile specimens, more
convenient instrumental positioning of a wedge
compared to a gripper and examination of two
uniaxial loading modes within a single experiment.
However, the data analysis is not as straightfor-
ward as for uniaxial specimens, and the accuracy of
the stress-strain response is limited. This is rooted

in the elastic regime in the rather small curvature
changes and in the plastic regime by unknown
relative movement of the neutral axis. To progress
and assess the differences between theoretical
assumptions and experimentally observed contour
data, a purely elastic finite element simulation
(Calculix 2.17,44 CPS4 elements) was conducted
using the exact bending length as a comparative
specimen and the measured elastic modulus
(E = 2.6 GPa) and Poisson’s ratio (m = 0.31) obtained
from uniaxial tension data. The simulations were
conducted with a fixed cantilever base in analogy to
the analytical considerations (Fig. 7b) as well as an
extended 30 9 30 lm2 base to reduce stress concen-
trations in analogy to the experimental specimens
(Fig. 7c). The contour data of the simulations are
shown as individual symbols for the compression
and tension contours and two respective loads (50
lN, 250 lN) on top of the experimentally observed
contour data in Fig. 7a. There it is evident that the
simulations with a fixed base (green triangles and
crosses) show closer agreement with the contour
tracking data than the extended base simulations.
This suggests that the three-dimensional base of the
specimens is considerably more rigid than a narrow
(same width as cantilever) base and that the
simplified ‘rigid base’ assumptions are reasonable
and will not lead to major deviations. The simula-
tions suggest a linear increase of curvature with
only marginal deviations between simulations with
or without base and tension or compression fibers,
as expected by linear elastic theory (Fig. 7d). Inves-
tigating the curvature overload data necessary for
the stress evaluation in bending (Eq. 3), it is evident
that the experimental data (black and red small
dots) do not depict a change in curvature up to
approximately 150 lN. This is a result of the limited
curvature resolution in the low load regime as
individual pixel shifts only contribute marginally to
overall curvature changes. Thus, the elastic modu-
lus in the bending stress-strain curves is not in
accordance with the actual material modulus, but
rather a measurement artifact. However, after
150 lN the experimental slope of the curvature-
load data are in agreement with linear elastic
assumptions, leading to a non-linear behavior in
accordance with the uniaxial data, and are the
reason for the correct yield onset provided from the
bending evaluation. Furthermore, the simulated
strain gradients in cantilever direction (exx) at the
evaluation distance of 2 lm are shown in Fig. 7e for
five different loads ranging from 50 lN to 250 lN
with fixed base (red doted lines) and extended base
(black continuous lines). These underline that the
neutral axis does not change in the elastic regime
and stays reasonably close to the center of the beam
(0.499 for fixed base, 0.484 for extended base),
suggesting that the assumed constant z0 of 0.5 can
be considered a good approximation. Taken
together, this leads to the conclusion that bending
analysis based on classical curvature measurements
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can be used to measure yield onset but should not be
utilized for other mechanical characteristics within
the present experimental constraints. To address
these issues in more detail in case an extent plastic
analysis is required, it would be necessary to
incorporate the experimentally measured contours
into a finite element framework to obtain strain
gradients and errors thereof, similar to the feature
tracking in digital image correlation.37

Correlation of Mechanical Data

The yield onset of the present commercially
available IP-DIP resin was already exhaustively
investigated regarding strain rate and temperature
by Rohbeck et al.45 Their results for 25�C and
within the tested strain rates of 7 9 10�4 s�1 to
7 9 10�3 s�1 lie in the range of 55–80 MPa, in good
agreement with the present results (see Table II).
Especially, the asymmetry between tension and
compression yield onset is well reflected in both the
present results as well as the mentioned literature
data. This reproducible result is likely an outcome of
the hydrostatic pressure dependence of yielding in

amorphous polymers.46 Other literature based on
printed nanofibers applied directly on MEMS chips
for experimentation using the same resin reports
tensile yield strengths of 62 MPa,47 which is again
in excellent agreement and suggests a high repro-
ducibility of the material among various research
groups. Furthermore, also the ‘concave-up’
increased hardening response in the plastic regime
is well reproduced and is a direct consequence of the
high cross-link density obtained via two-photon
polymerization.48

Young’s modulus is strongly dependent on the
laser power during the fabrication process,49 as this
directly influences the cross link density. Uniaxial
Young’s modulus values have been reported ranging
from < 1 GPa to 3.6 GPa by various research
groups.45,47,49,50 The deviation in modulus between
tension and compression has also been observed in
Ref. 45, but as the focus in that work was on the
strain rate sensitivity of the mechanical response,
the slight deviation was not investigated in detail.
However, with the present addition of Poisson’s
ratio, one can now study not only Young’s modulus

Fig. 7. (a) Comparison of finite element (individual symbols) with experimental contour (orange, blue continuous) data, whereby two loads (50
lN, 250 lN) are shown for tensile and compressive fibers, respectively. (b,c) Strain (exx) plot of cantilever simulations at 250 lN with fixed support
and extended base, respectively. (d) Comparison of curvature data between simulations and experiment and (e) simulated strain (exx) gradient for
various loads with fixed and extended base supports, respectively (Color figure online).
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as a measure for the uniaxial elastic response but
also the bulk modulus as a measure for the volu-
metric response, enumerated as bulk modulus
B = E/(3-6m) for tension and compression, respec-
tively. This calculates as Bc = 1.97 GPa for com-
pression and Bt = 1.93 GPa for tension, which is
only a 2% difference, while the deviation in Young’s
moduli would be 15%. This suggests that, while the
differences in uniaxial response might be governed
by the influence of the hydrostatic stress, similar to
the yield onset, the volumetric response is an actual
material inherent quantity.

Further Opportunities for Image-Based
Quantification

While detailed quantification of uniaxial mechan-
ical parameters can be enhanced using additional
information from recorded images, there are also
cases where image data are the only source avail-
able for quantification, and precise (preferably
computer assisted) image analysis is mandatory.
For example, elastic-plastic fracture or fatigue
experiments cannot be analyzed without the knowl-
edge of actual crack extension during the test.
Therefore, continuous image gathering can be a
valuable tool for such investigations.51,52 Also some
fracture-related parameters, such as the crack tip
opening displacement/angle, or fracture process
features such as crack bridging, are inherently
geometric characteristics and can be well evaluated
using image segmentation and contour tracking.53

Other challenging geometries, such as open hole
tensile tests,54 would also benefit from segmenta-
tion of the hole. In that case, utilizing the changing
ellipticity of the hole in conjunction with finite
element method modeling would allow for determi-
nation of the local stress state and more in-depth
characterization of failure in such specimens.

Alternatively, not only the continuous deforma-
tion of more complex geometries, but also a change
in deformation, without external mechanical load
and therefore without related measurement
devices, could be conceived. For example, increasing
the temperature on a multilayer system with var-
ious different coefficients of thermal expansion can
be utilized to measure intrinsic stress gradients,55

while subsequent removal of stressed layers can be
utilized to determine depth profiles of residual
stresses.56–58 Using a combined approach of annular
FIB milling and digital image correlation, lateral
and depth-resolved information on residual stress
profiles can be obtained in multilayered thin films
with nanoscale resolution.59 All these studies neces-
sitate image information and would benefit greatly
from automated segmentation and tracking rou-
tines. In the present case, one such deformation
change without external load would be the vis-
coelastic relaxation of specimens after rupture, as
summarized in Fig. 8a. There the relative strain
decrease from the first image after rupture is shown

over time, and an exponential decay function was
fitted to each specimen individually. The results
show that, while the decrease scatters noticeably,
all specimens exhibit a relaxation over multiple
seconds, with most of the viscoelastic response
occurring over a period of � 20 s, causing an
average relaxation for all specimens of
0.031 ± 0.006. This relaxation of roughly 3% is
evidenced in Fig. 8b. The red dashed contour
corresponds to the first frame after rupture, which
is superimposed to the last gathered image reflect-
ing the nearly completely relaxed state. Such
methodological opportunities could have broad
implications for studying anelastic responses of
various micro-/nanoscaled systems, such as amor-
phous silicon nanowires with different bond densi-
ties60 or varying dopant levels in semiconductors.61

Other innovative applications beyond deformation
tracking, such as detection of slip steps on the
surface of specimens as contour kinks, are conceiv-
able, which would also allow automated determina-
tion of slip plane orientation and critical resolved
shear stresses. Investigations regarding crack prop-
agation resistance are also of significant interest;
however, rapid crack growth or fracture events
cannot be easily captured by the SEM using a finite
scan speed. One possibility would be combining the
presented methodology with inherently stable test-
ing geometries, such as chevron notch geometries62

or double cantilever wedging.52 Resulting
stable crack growth would allow tracking crack
propagation based on sectioned contours.

CONCLUSION

The present work shows the feasibility of utilizing
the freely available SAM image segmentation model
for micromechanical research purposes without the
need for additional training of the network. Three
different geometries, namely compression pillars,
dog-bone tensile specimen and bending cantilevers,
produced with two-photon lithography were suc-
cessfully segmented. Additional contour tracking
algorithms and analytical arguments enabled the
determination of corrected stress-strain response,
indicating a yield onset asymmetry between uniax-
ial tension (71 ± 2 MPa) and compression
(89 ± 5 MPa), which is in excellent agreement with
literature data. Furthermore, the Young’s modulus
as well as Poisson’s ratio can be evaluated using the
segmented image data and suggests a slight differ-
ence between tension and compression behavior,
while the bulk modulus remains constant indepen-
dent of loading direction. Finally, utilizing the
inherent compression-tension gradient within the
bending specimens is not completely straightfor-
ward based on analytical arguments only. The
Young’s modulus was considerably overestimated,
which is a result of the limited curvature resolution
at small loads, while the plastic regime showed
unphysical behavior due to a not accounted shift in
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neutral axis. However, the yield onset values
provide comparable results to the corresponding
uniaxial tests, which suggests that this approach
can be used for tension and compression strength
estimates. In summary, the additional information
gathered from images using this semi-automated
approach can be beneficial for a wide range of
experimental setups and investigation parameters.

OUTLOOK

Considering further developments on this
method, segmentation performance of SAM is
expected to improve after performing fine-tuning,
especially when using SEM images featuring high-
noise image artifacts due to polarization as well as
dust particles on the specimen for training. Aside
from improved mask quality, less detailed point
prompts might be required for valid masks with
fine-tuned SAM. To pursue efforts of automation, a
promising approach involves using a lightweight
neural network for object detection of in situ spec-
imens, which would allow determination of the
experimental geometry, as well as the outlines of
the specimen in the frame. This information could
be used to predict a suitable box prompt for
subsequent segmentation of the given frame by
SAM without user input, potentially allowing fully
automated segmentation of in situ SEM frames.

Subsequent sectioning of the mask contour to
continuous segments is a task requiring further
development as well. Contour sectioning can be
improved beyond Scharr filter and density-based
clustering, which requires considerable tweaking of
parameters for every experiment. Application of
alternative algorithms such as B-spline interpola-
tion could prove as a more robust method for kink
detection while not requiring extensive user input.

The training of a U-Net neural network to under-
stand and identify kinks in the mask contour also
constitutes a viable approach.
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