
Chair of Information Technology

Master's Thesis

A DSMS approach to support surveillance

data based services in U-space

Daniel Pfisterer, BSc

February 2024

DSMS approach in U-space Danksagung

Danksagung

Diese Arbeit möchte ich meiner großartigen Familie widmen, die mich immer tatkräftig

unterstützt hat. Es war nicht immer einfach im Studium, doch es hilft enorm, wenn man

stets jemanden hinter sich hat, der einem den nötigen Rückhalt bietet, sei es finanziell

oder emotional. Auch wenn man es manchmal für selbstverständlich nimmt, das ist es

keinesfalls. Liebe Familie, ich weiß eure Unterstützung sehr zu schätzen und bin euch

unheimlich dankbar für die Möglichkeiten, die ihr mir gegeben habt. Ohne euch hätte ich

das nie geschafft.

Mein Dank gilt auch meinem Betreuer Herrn Dr. Ronald Ortner für all die Unterstützung

während meiner Arbeit. Insbesondere weiß ich die Flexibilität zu schätzen, die es mir erst

ermöglich hat meine Arbeit in Spanien zu schreiben. Lieber Herr Ortner, vielen herzlichen

Dank für die umfangreiche Betreuung meiner Arbeit, die trotz der geografischen Distanz

reibungslos funktioniert hat.

An dieser Stelle möchte ich mich auch noch bei Herrn Dr. Juan José Ramos Gonza-

lez bedanken, der mir das Thema meiner Arbeit angeboten und es mir ermöglicht hat

fünf großartige Monate in Spanien zu verbringen. Lieber Juanjo, vielen Dank für deine

Unterstützung und dein Vertrauen in mich, dieses Thema zu bearbeiten.

Montanuniversität Leoben II Daniel Pfisterer

DSMS approach in U-space Abstract

Abstract

The market for UAS (Unmanned Aerial System) holds a lot of potential for growth in

the near future, both in industrial and consumer applications. With an increasing rate

of adoption, standardized regulations and technical developments are crucial to enable

safe UAS operations. One initiative that blends both is the definition of a U-space that

provides digital services for a safe access to airspace. In order to provide these services

in real-time, with 1Hz as reference value, the implementation of a prototype of a DSMS

(Data Stream Management System) is proposed.

The developed DSMS is specified based on a combination of regulatory and problem-

specific requirements. For defining the technical specifications the system is divided into

three parts (ingestion, processing, and storing). According to the specifications a DSMS

should be fault-tolerant and scalable while providing tools for stateful computations and

SQL-compatibility. These specifications serve as basis for selecting the frameworks for

the implementation of the prototype. For the data ingestion Apache Kafka is utilized,

the stream processing is done with Kafka Streams, and all data is stored in a PostgreSQL

database. Based on these frameworks the architecture of the whole system is designed. As

Kafka is responsible for most of the data handling, designing the data flow within, from

and to Kafka proved to be crucial for a successful implementation. To simplify testing

and deployment of the prototype, all frameworks are implemented as containerized appli-

cations using Docker. Yet, even as containerized applications, applying these frameworks

is not trivial. A smooth data exchange between the different components, is only possible

with consistent schema definitions. Coordinating the partitioning logic from Kafka with

the stream processors for scalability requires careful adjustment of all parameters. Over-

coming these challenges demands a deep understanding of the whole system with all its

components and the interactions between them.

The finished DSMS prototype implements a selection of U-space services which are tested

with a customized simulator. Although results have to be viewed with care, as all tests

are conducted in a controlled environment, the results demonstrate the feasibility of using

a DSMS to provide U-space services.

Montanuniversität Leoben III Daniel Pfisterer

DSMS approach in U-space Kurzfassung

Kurzfassung

Das Wachstumspotential für den Markt für UAS (Unmanned Aerial System) ist groß,

sowohl für industrielle als auch für Verbraucheranwendungen. Auf Grund der steigenden

Adaptionsrate braucht es standardisierte Regulierungen und technische Entwicklungen

im Bereich der Sicherheit. Mit der Definition eines U-Space zur Bereitstellung digitaler

Services für einen sicheren Zugang zum Luftraum werden beide Anforderungen abgedeckt.

Um diese Dienste in Echtzeit bereitstellen zu können (mit 1Hz als Richtwert) wird die

Entwicklung eines DSMS-Prototypen (Data Stream Management System) vorgeschlagen.

Eine Kombination aus regulatorischen und problemspezifischen Anforderungen stellt die

Basis für die Spezifikation des entwickelten DSMS dar. Zur Definition der technischen

Spezifikationen ist das System in drei Teile unterteilt: Datenverwaltung, Datenverar-

beitung, und Datenspeicher. Dabei gelten Fault-tolerance und Skalierbarkeit als beson-

ders wichtig für ein DSMS. Weiters muss eine Datenverarbeitung mit State möglich und

SQL-Kompatibilität vorhanden sein. Diese Spezifikationen dienen als Grundlage für die

Wahl der Frameworks, die zur Implementierung des Prototypen verwendet werden. Zur

Datenverwaltung wird Apache Kafka verwendet; Kafka Streams erledigt die Datenver-

arbeitung, bevor alle Daten in einer PostgreSQL Datenbank gespeichert werden. Die

Architektur des Systems basiert auf diesen Frameworks, wobei besonders die Rolle von

Kafka hervorzuheben ist. Da Kafka für die Datenverwaltung verantwortlich ist, ist die

Gestaltung des Datenflusses innerhalb, von, und zu Kafka ein entscheidender Erfolgsfak-

tor. Zur Vereinfachung des Entwicklungsprozesses sind alle Frameworks mit Docker als

Container-Anwendungen implementiert. Doch selbst dann ist die Implementierung dieser

Frameworks nicht einfach. Ein reibungsloser Datenaustausch zwischen allen Komponen-

ten ist nur mit konsistent definierten Schemata möglich. Um Kafka Streams skalierbar

zu machen, muss es mit der Partitionierungslogik von Kafka durch Parameterkonfigura-

tionen abgestimmt sein. Die Implementierung verlangt ein tiefgreifendes Verständnis des

ganzen Systems mit allen Komponenten und deren Interaktionen.

Der fertige DSMS-Prototyp implementiert eine Auswahl an U-Space Services, welche mit

einem Simulator getestet werden. Aufgrund der kontrollierten Testumgebung sind die

Ergebnisse mit Vorsicht zu betrachten. Dennoch zeigen die Resultate, dass ein DSMS

verwendet werden kann, um U-Space Services bereitzustellen.

Montanuniversität Leoben IV Daniel Pfisterer

DSMS approach in U-space Contents

Contents

Eidesstattliche Erklärung I

Danksagung II

Abstract III

Kurzfassung IV

Table of Contents V

List of Figures VII

List of Tables IX

Acronyms X

Terminology XI

1 Introduction 1

1.1 Relevance . 1

1.2 Research question . 3

1.3 Structure . 3

2 System specifications 5

2.1 Regulations and general specifications . 5

2.1.1 Regulatory requirements . 5

2.1.2 Problem-specific requirements . 6

2.1.3 General specifications . 7

2.2 Streaming data architecture . 10

2.2.1 Lambda architecture . 10

2.2.2 Kappa architecture . 11

2.3 Challenges and concepts from stream processing 12

2.3.1 UAS and stream processing . 12

2.3.2 Ingestion black box . 14

2.3.3 Processing black box . 17

Montanuniversität Leoben V Daniel Pfisterer

DSMS approach in U-space Contents

2.3.4 Database technology . 25

2.4 Specification and decision summary . 30

3 Framework selection 32

3.1 Data distribution framework . 32

3.1.1 Introduction to Apache Kafka . 33

3.1.2 How data flows through Kafka . 36

3.2 Database technology . 38

3.3 Stream processing framework . 39

3.3.1 Scaling in Kafka Streams . 40

3.3.2 Stateful stream processing in Kafka Streams 41

4 System architecture and dataflow 42

4.1 Architecture . 42

4.1.1 Schema registry . 43

4.1.2 Kafka Connect . 44

4.2 Deployment . 45

4.2.1 Docker set-up . 47

4.2.2 Java applications . 50

4.2.3 Simulator . 50

4.3 Stream processing . 51

4.3.1 Stream processing data flow . 51

4.3.2 Stream processor implementations 53

4.4 Database connections . 56

5 System implementation tests 58

5.1 Runtime environment . 58

5.2 Test procedure, settings, and scenarios . 58

5.3 Results . 64

5.4 Discussion . 68

5.5 Limitations . 70

6 Conclusion 72

Bibliography XII

A Java class diagrams XXII

A.1 Tools Java class diagram .XXII

A.2 Main Java class diagram .XXIV

A.3 Producers Java class diagram .XXV

A.4 Stream processing Java class diagram .XXVI

Montanuniversität Leoben VI Daniel Pfisterer

DSMS approach in U-space List of Figures

List of Figures

2.1 Lambda architecture . 10

2.2 Kappa architecture . 11

2.3 Illustration comparing unbounded and bounded data 13

2.4 Exemplary illustration of a fleet of UAS transmitting data as a continuous

stream of messages, which are ingested into a DSMS and processed 13

2.5 Illustration of an example where event time and ingestion time differ strongly 16

2.6 Example of how state evolution in counting can be modeled with a changelog 18

2.7 Illustration why exactly once can be important for stream processing . . . 21

2.8 Illustrations of the three most common types of windows 23

2.9 Summary of all decisions made for the framework selection based on the

specifications and concepts presented in Section 2.1, Section 2.2 and Sec-

tion 2.3 . 31

3.1 Simple illustration of the connection between essential Kafka components . 33

3.2 Exemplary illustration how partitions can be distributed and replicated

between three different brokers in a single cluster 36

3.3 Example for a system with Kafka at its core 37

3.4 Illustration how stream processing of two different topics can be scaled

across multiple tasks and threads in Kafka Streams 41

4.1 Simplified overview of the prototype’s architecture 43

4.2 Illustration of the schema registry’s functionality 44

4.3 Illustration how all components from the prototype are connected through

ports . 49

4.4 Start sequence dependencies of all components running in Docker containers 50

4.5 Illustration of the streaming dataflow centered around Kafka 52

4.6 Illustration of the streaming dataflow as DAG 53

4.7 Overview of all tables (source and sink) in our PostgreSQL database 57

5.1 Mean value comparison for the latency of LD1, LD2, FD1, and FD2 for

the topics with the highest throughput . 65

5.2 Mean comparison over the run time of the simulation between the corre-

lated topic and the adherence topic . 66

Montanuniversität Leoben VII Daniel Pfisterer

DSMS approach in U-space List of Figures

5.3 Box plots for the topics telemetry, enriched, correlated, and adherence . . . 67

5.4 Calculating the difference in creation time between the telemetry and the

enriched topic for all more than 30’000 messages 67

5.5 Calculating the difference in creation time between the enriched and the

correlated topic for all more than 30’000 messages 68

A.1 Java class diagram of all tools that were implemented for the prototype . .XXII

A.2 Java class diagram of the main class and the set-up classes used for Kafka

and the simulator .XXIV

A.3 Java class diagram of all producer classes and the interface that communi-

cates with the simulator .XXV

A.4 Java class diagram of the Kafka Streams implementation with all de-

/serializers (serdes) and processors .XXVI

Montanuniversität Leoben VIII Daniel Pfisterer

DSMS approach in U-space List of Tables

List of Tables

5.1 Overview of all manually created topics in Kafka 60

5.2 Overview of all producers and their settings in Kafka 61

5.3 Overview of all connectors from Kafka Connect 62

5.4 Overview of all stream processors implemented with Kafka Streams 62

5.5 Test configurations for the a Docker set-up where all CPU-cores and more

memory are available to Docker . 63

5.6 Test configurations for the a Docker set-up where memory and CPU re-

sources are limited . 63

5.7 Comparison of the results from the initial tests for the adherence topic . . 65

5.8 Comparison of the results from the initial tests for telemetry, enriched, and

correlated topic . 65

Montanuniversität Leoben IX Daniel Pfisterer

DSMS approach in U-space Acronyms

Acronyms

• ACID - Atomicity, Consistency, Isolation, and Durability

• API - Application Programming Interface

• BASE - Basically Available, Soft State, and Eventual Consistency

• CAP - Consistency, Availability, and Partition-resilience

• CDC - Change Data Capture

• DAG - Directed Acyclic Graph

• DSL - Domain Specific Language

• DSMS - Data Stream Management System

• EU - European Union

• FP - Flight Plan

• GUI - Graphical User Interface

• HDD - Hard Disk Drive

• IDE - Integrated Development Environment

• JDBC - Java Database Connectivity

• JMX - Java Management Extension

• RAM - Random Access Memory

• RF - Replication Factor

• SSD - Solid State Drive

• UAM - Urban Air Mobility

• UAS - Unmanned Aerial System

• UAV - Unmanned Aerial Vehicle

Montanuniversität Leoben X Daniel Pfisterer

DSMS approach in U-space Terminology

Terminology

• Producer - Any device or system that can create a data stream is referred to as

producer (e.g. a sensor on a UAS).

• Consumer - Any system or sub-system that consumes a data stream to produce

some output is referred to as consumer (e.g. a DSMS or one of its sub-systems).

• Operation - Any number of tasks carried out by a single UAS between landings is

referred to as one operation.

• U-space (services) - Digital procedures supporting safe, efficient and secure access

to airspace so UAS can safely execute their operations are referred to as U-space

services or U-space.

• Message - Any data sent from a producer to a consumer is referred to as message.

• Event - The content of a message that describes something unique and immutable

that happened at some point in time is referred to as event.

• Data stream - A continuous, real time series of messages that is order based on a

timestamp and cannot be saved to storage entirely is referred to as data stream.

Unless otherwise stated, the terms message stream and event stream are used syn-

onymously with data stream.

• Batch data - A massive collection of messages that is available in its entirety right

from the beginning is referred to as batch data.

• DSMS - A system that can handle data streams and deliver results in real time is

referred to as DSMS. Unless otherwise stated, the term system is used synonymously

with DSMS.

• Log - An append-only sequence of messages ordered by a unique, sequential identi-

fication number is referred to as log.

• Prototype - A DSMS in development that supports selected U-space services (e.g.

legal recordings) is referred to as prototype.

• Ground-based control system - The superordinate system of the DSMS that coordi-

nates all UAS activities in U-space is referred to as ground-based control system.

Montanuniversität Leoben XI Daniel Pfisterer

DSMS approach in U-space Chapter 1. Introduction

1. Introduction

In this chapter, an argument for the relevance of the topic is given before the problem

definition and the subsequent research question are presented. Finally, a short overview

of the thesis’ structure is provided.

1.1. Relevance

UASs (Unmanned Aerial System) or UAVs (Unmanned Aerial Vehicle), commonly referred

to as drones, are mostly known for their consumer applications (e.g. taking a picture from

above). However, they are also applied in various industries. The top three industries

are energy, construction and agriculture, where UAS are utilized to do mappings and

inspections[1]. This leads to a global UAS market with an estimated worth of $30.6

billion in 2022; yet there is potential for growth. Until 2030 a steady compound annual

growth rate of approximately 7.8% is predicted, resulting in a global market worth about

$55.8 billion. Taking a closer look at the European market, an increase from $6.8 billion

in 2022 to $13.2 billion in 2030 is expected[2]. The numbers for Europe are in-line with

expectations from the European Commission, who estimate a market size of at least €10

billion in 2035, with the service industry as the primary driver for growth. One example

of potential growth is the increase of UAS-deliveries of small and premium goods (e.g.

pharmaceuticals) in the e-commerce sector[3]. This is not unrealistic considering that that

drones can be cost-competitive compared to traditional ground-bound delivery systems,

albeit only for light-weight packages and short distances[4]. There is even a real world

example in Zurich, Switzerland. Here, the company Matternet has set up a drone delivery

route for transporting samples between hospitals and laboratories[5]. Yet examples like

this are rare in densely populated areas.

For an increased rate of adoption technological developments and new regulations play

a crucial role. Because of the aforementioned market potential, initiatives for new de-

velopments are taken. One such initiative is the definition of a common U-space service.

1Find the Top Drone Application |Drone Industry Insights 2022 2022.
2Industry Leading Drone Market Analysis 2022-2030 | Droneii 2022.
3SESAR Joint Undertaking 2017a.
4GuestEditorialCan2014.
5Matternet Launches World’s Longest Urban Drone Delivery Route Connecting Hospitals and Labora-

tories in Zurich, Switzerland 2022.

Montanuniversität Leoben 1 Daniel Pfisterer

DSMS approach in U-space Chapter 1. Introduction

U-space can be defined as a set of highly digitalized services and procedures with the aim

of providing safe, efficient and secure access to airspace for all types of missions, users and

drones. It is planned to roll-out U-space in four stages with increasing levels of automa-

tion. This is done by adding more and more services until the highest level of automation

(autonomously operating UAS) is reached[6]. Services provided by U-space considered in

this thesis include[7]:

• A digital logbook for creating user reports based on the legal recording information.

• Creating legal recordings of the system’s state at any moment, allowing to investi-

gate incidents. Additionally, legal recordings could serve as a source of information

for future research and training.

• A network identification service for tracking and reporting all flight movements in

real-time. It is essential to know where the UAS is at any moment in time.

• A tactical conflict resolution that checks for potential incidents in real-time and

provides instructions (e.g. speed reduction, change of direction) to prevent potential

incidents.

To reach a higher level of automation by adding the above mentioned services, extensive

amounts of data must be exchanged (between the UAS and a ground-based control system)

and processed in real-time continuously. This means that the data is not available all at

once but rather as a continuous data stream. Here, a data stream can be defined as a

real-time, continuous series of items that are ordered by either their inherent timestamp

or their time of arrival. It is not possible to alter the order of the items’ arrival, nor is it

practical to assume that the entire data stream can be stored locally[8]. A system capable

of handling multiple data streams that produces answers continuously and promptly is

referred to as DSMS (Data Stream Management System)[9]. The main aim of this thesis

is to develop and test a prototype for such a DSMS to support U-space services.

Various frameworks are available to help with the implementation of a DSMS. For in-

stance, Apache Kafka is a highly scalable and fault-tolerant open-source framework for

real-time data ingestion[10]. Apache Spark and Apache Flink are open-source frameworks

used for processing data streams in real time to do some analysis or apply machine learn-

ing techniques[11][12]. These are just some of the most common frameworks utilized by

6SESAR Joint Undertaking 2017b.
7CORUS XUAM Consortium 2022.
8Golab and Özsu 2003.
9Motwani et al. 2002.

10Apache Kafka 2023.
11Apache Spark - Unified Engine for Large-Scale Data Analytics 2023.
12Apache Flink — Stateful Computations over Data Streams 2023.

Montanuniversität Leoben 2 Daniel Pfisterer

DSMS approach in U-space Chapter 1. Introduction

many leading technology companies (e.g., Apache Kafka is used by PayPal, Netflix, Or-

acle[13]). Of course, just because large technology companies use these frameworks does

not necessarily mean that they are applicable in any scenario. After all, none of these

frameworks are without their downsides. Depending on the use scenario an alternative

framework might yield better results. The large amount of available frameworks provides

a lot of opportunities, while making it difficult to select the right ones based on criteria

like manageability, support for different programming languages[14], fault-tolerance[15] or

latency and throughput[16]. These criteria strongly correlate with the U-space system

requirements, which form the basis for the selection of frameworks in this thesis.

1.2. Research question

The main goal of this thesis is to develop and test a prototype for a DSMS that provides

U-space services like legal recording, tactical conflict resolution etc. These services should

be provided in real-time with 1Hz as reference value. The DSMS should be built using

open-source frameworks where the selection of these frameworks is based on the system

requirements of U-space (e.g. fault-tolerance and throughput). In addition to the DSMS, a

storage system for long-term storage of recordings must be designed. All decisions behind

design and implementation choices must be documented. Interfaces from the existing

system must be considered to provide a compatible prototype. Also, the prototype must

be in line with all current regulations and standards. In the end, a test should show

the limits of the implemented prototype (e.g. number recordings processed per second),

where the results are validated through the use of a customized simulator.

1.3. Structure

Chapter 2 of the thesis focuses on defining system specifications and proposing a gen-

eral direction of the components needed to build the system. Specifications are defined

based on regulations, problem-specific requirements and general challenges for developing

software. In order to understand what a DSMS looks like at a high level of abstraction,

fundamental principles from stream processing are presented and their relevance for this

thesis is discussed. Finally, all system specifications and design choices are summarized.

Chapter 3 presents the frameworks that are selected based on the system specifications

defined in Chapter 2. We discuss our choices for a data distribution framework, a database

technology and a stream processing framework. Moreover, we give brief explanations on

13Apache Kafka Powered By 2023.
14Isah et al. 2019.
15Van Dongen and Van den Poel 2021.
16Nasiri et al. 2019.

Montanuniversität Leoben 3 Daniel Pfisterer

DSMS approach in U-space Chapter 1. Introduction

why these frameworks meet our requirements.

Chapter 4 presents the general architecture of our system at a high level of abstraction.

In order to understand how the prototype can be set up for execution, an overview of

its deployment is provided. Finally, the dataflow for the stream processing is presented,

before a design for a database is proposed.

Chapter 5 describes the machine the prototype is executed on, explains the most im-

portant settings of Kafka and all the producers, topics, and stream processors that are

created. Moreover, a test procedure is proposed before the results are elaborated. Finally,

the results and the limitations of the prototype are discussed.

In the last part, the thesis is concluded and an outlook for further improvements and

research is provided.

Montanuniversität Leoben 4 Daniel Pfisterer

DSMS approach in U-space Chapter 2. System specifications

2. System specifications

In this chapter, regulatory requirements from U-space as well as general specifications

that affect many software systems are introduced. This should help to better understand

the requirements the DSMS has to meet. Furthermore, streaming data architectures for

a DSMS at a high level of abstraction are presented, before a more detailed look on a

potential architecture for IoT devices is offered. Based on these architectures the main

parts of the DSMS, their functions, and potential difficulties are explained. To be able

to follow the reasoning of subsequent decisions, essential concepts from stream processing

are outlined. Finally, all specifications are summarized in a table and the decisions made

are documented.

2.1. Regulations and general specifications

First, this section explores regulatory requirements from the European Commission for

U-space. Second, problem-specific requirements based on the regulations and the existing

system are discussed. Finally, an overview of general specifications of software systems is

presented and their relevance for this thesis explained.

2.1.1. Regulatory requirements

The European Commission[17] has defined a set of regulations for U-space. The target

for these regulations are UAS operating beyond the visual line of sight because they are

considered a risk to safety, security, privacy and the environment. Not included are, e.g.

UAS with a take-off mass of less than 250g that operate within the visual line of sight.

The regulations cover a wide range of topics such as flight authorization, application for

a U-space certificate and capabilities of competent authorities. Regulations considered in

this thesis include:

• Existence of a network identification service, which allows authorized users to re-

ceive messages containing, among other things, geographical position, height above

surface and time of creation of the message. The update frequency for presenting

this information to the users is defined by the competent authority. Authorized users

are, among other things, the general public and other U-space service providers.

17European Commission 2021.

Montanuniversität Leoben 5 Daniel Pfisterer

DSMS approach in U-space Chapter 2. System specifications

• Existence of a conformance monitoring service, which checks if the UAS operates in

conformance with other regulations. Any deviations should be reported immediately

to the UAS operator.

• Existence of U-space service providers, who have to keep a storage of all records

that allows to retrace all their activities. The exchange of information has to meet

the data quality, latency and safety requirements. Thereby, all metadata must be

kept, data quality maintained and verification and validation should ensure data is

not corrupted.

2.1.2. Problem-specific requirements

Based on the regulatory requirements and the existing system it is possible to divide

problem-specific requirements into two categories. The first category refers to the process-

ing tasks that must be executed, the second category concerns the storage requirements

and how historical data is used.

Processing tasks

The prototype must be able to execute the following tasks (or at least provide means to

implement them at a later point in time):

• C1 Enrich telemetry data

Each telemetry message must contain information referring to the altitude of the

UAS. The task of C1 is to update this altitude information for each message so it is

in line with the required standard.

• C2 Flight plan correlation

Each UAS operation must be correlated with a flight plan (FP), otherwise it is

categorized as an unknown UAS operation. The task of C2 involves checking for

each telemetry message if it can be correlated with a FP or not. Moreover, we have

to check for a loss of signal. If we do not receive telemetry messages from a UAS

for a while we must emit a warning and mark the telemetry messages accordingly

as soon as the signal is re-established.

• C3 Conformance monitoring

For all messages that can be correlated with a FP it is necessary to verify that

they comply with this FP at any point in time. Moreover, any kinds of geofences

(geometry that restricts the airspace e.g. at an airport) must not be violated. This

is important in e.g. emergency cases like police surveillance where temporarily set

up geofences can lead to conflicts with existing FPs. The task of C3 is to monitor

Montanuniversität Leoben 6 Daniel Pfisterer

DSMS approach in U-space Chapter 2. System specifications

the conformance with FPs and geofences and to alert the system in case there is a

violation.

• C4 Conflict detection

Collisions of UAS must be avoided at all costs, therefore it is essential to predict

potential collisions based on the current trajectories of UAS. Here all telemetry

messages are taken into consideration, even the ones from unknown UAS. The task

of C4 is to monitor for potential collisions and alert the system in time, so precautions

can be taken.

• C5 Spatial clustering

With relation to C4, it is not reasonable to check for potential collisions of UAS in

zones that are far apart from a geographical point of view. The task of C5 is to

divide the incoming telemetry messages into spatial clusters in order to simplify C4.

Storage requirements

The following list includes a few use cases describing the requirements for the database

technology; it is by no means an exhaustive list:

• For reporting and visualization, data on the whole operations must be retrieved.

This includes all telemetry messages, any correlated FPs or any alarms sent by the

system. It should be possible to filter data based on e.g. geographical location, time

range, pilot operator.

• Analysis of historical data is done only sporadically. Typical analysis relates to

latency, flight performance and alert KPIs. Similar to reporting and visualization,

it should be possible to filter the data based on time range, location etc.

• It is essential to keep a log of all historical data to the extent and for the timespan

defined by current regulations. Easy retrieval of historical data is less important

than compression in order to minimize storage requirements.

2.1.3. General specifications

Designing software depends on many system-specific factors such as the above mentioned

regulations. However, there are three factors that are not just relevant for this software

prototype, but for many other software systems as well[18]:

• Reliability

Reliability of a software system is about making sure that a systems continues to

18Kleppmann 2017, p. 3 ff.

Montanuniversität Leoben 7 Daniel Pfisterer

DSMS approach in U-space Chapter 2. System specifications

work correctly even in the event of a fault. Thereby it is important to distinguish

between a fault and a failure. A system has a failure if it stops providing the user

the service defined in the system’s specification. A fault is a failure of one of the

system’s components, where the system as a whole still provides the desired service.

A system that is able to continue to provide the desired service in the event of a

fault is called fault tolerant[19]. Faults can happen due to hardware, software or

human errors. In our use case, an example for a hardware error is the failure of a

sensor on one of the UAS. Even if one sensor fails, the DSMS should be able to keep

processing incoming data from other UAS sensors. Software errors are harder to

detect, as bugs may lie undetected for quit some time. For instance, due to a software

error it could happen that identical sensor recordings from an UAS are written to

a database multiple times, resulting in a congested database. Examples for human

errors include any mistakes made by the UAS operator such as entering the wrong

update frequency for messages. Ultimately, we want a fault tolerant DSMS that can

deal with any of the mentioned faults, as it is impossible to guarantee that no fault

will ever happen. (How fault tolerance is achieved in a DSMS will be explained in

Section 2.3.3).

• Scalability

Scalability is defined as the ability of a software system to deal with future growth

(i.e. increased data volume or complexity) by adding more computational resources.

Thereby the first step is to define the current load of the system with so-called load

parameters. In our case, the expected number of UAS multiplied by the expected

frequency of messages is a viable choice. Next, the load parameters can be used to

investigate what happens to the DSMS if the load increases. Of course, this cannot

be done without performance metrics. Typical performance metrics are throughput

or response time. Throughput is defined as the number of transactions that can be

computed within a given amount of time. It strongly depends on the complexity of

the transactions. Response time is frequently considered to be identical to latency,

but it is not. Whereas response time describes the amount of time it takes to process

a request from outside, latency is the least amount of time required to receive any

response, even when no work needs to be done[20].

As stated in Chapter 1, 1Hz is the reference value for providing U-space services,

as we want messages from UAS (requests from outside) to be processed by the

DSMS within one second. Consequently, it is reasonable to use the response time

as the main performance metric. Unfortunately, response time and throughput do

have a positive correlation. If the number of active UAS (throughput) is increased,

19Walter Heimerdinger, Charles Weinstock 1992.
20Fowler 2002, p. 16 f.

Montanuniversität Leoben 8 Daniel Pfisterer

DSMS approach in U-space Chapter 2. System specifications

response time increases too. Further tests have to show how many UAS can operate

at the same time while keeping the response time at 1Hz.

Other scalability issues concern the way scaling is done. Computational resources

can be added through vertical scaling (switch from the current machine to a more

powerful one) or horizontal scaling (split the load among multiple smaller systems).

Furthermore, the scaling could be done either elastically (system automatically takes

the resources when the load increases) or manually (a human checks the load and

scales the system accordingly).

• Maintainability

During the life cycle of a software system, many different people are going to work

on it in one way or another (e.g. add new functionality, fix bugs). Maintainability

is about ensuring that any work on the system can be carried out without losing

time while dealing with system peculiarities. Three design principles help to make

this possible.

A system with good operability simplifies routine tasks such as monitoring and

documentation to support all engineers working on the system. In general, some

form of monitoring (for response time, data volume, etc.) should be implemented

right from the start. It is not recommendable to wait for deployment, as mistakes

would potentially remain undetected for too long[21].

Simplicity is about avoiding complexity wherever possible. Thereby, a distinction

is made between two types of complexity. Essential complexity is inherent in the

problem solved by the software, whereas accidental complexity is due to flaws in the

implementation of the software[22]. Accidental complexity can be avoided through

abstractions that hide implementation details to make the concepts easier to un-

derstand. This will be important when selecting a streaming data architecture in

Section 2.2. Another aspect of simplicity is deciding between a monolithic and a

modular approach for building the system. A monolithic system integrates a lot of

functionality into one system as opposed to a modular system where each compo-

nent is specialized to do one task only. Consequently, a monolithic system is easier

to deploy at the beginning, yet more difficult to adapt if new technologies emerge[23].

This is why this thesis will follow the modular approach, while trying to keep the

system as simple as possible.

Evolvability is concerned with keeping the system changeable, as requirements will

(most likely) change. Moreover, it is closely linked to complexity. As systems grow,

21Reis and Housley 2022, p. 266.
22Moseley and Marks 2006.
23Reis and Housley 2022, p. 139.

Montanuniversität Leoben 9 Daniel Pfisterer

DSMS approach in U-space Chapter 2. System specifications

their complexity increases, making them more difficult to evolve[24]. An interesting

thought on this is building the system around an immutable technology at its core.

It is difficult to determine which technologies will prevail, but finding an immutable

technology gives stability as the transitory tools built around it change with evolv-

ing technologies[25]. In order to develop a future-proof prototype, the notion of

immutability is important for the framework selection in Chapter 3.

2.2. Streaming data architecture

At a high level of abstraction it is possible to define general streaming data architectures

that help building a DSMS. This section introduces the Lambda architecture and the Kappa

architecture, as they are the two most common streaming data architectures. Further,

advantages and disadvantages of each architecture are elaborated. These advantages and

disadvantages serve as basis for decision-making for the selection of one architecture as

blueprint for the prototype DSMS.

2.2.1. Lambda architecture

The general idea behind the Lambda architecture (cf. Figure 2.1) is to run two sys-

tems simultaneously: The batch (processing) layer yields accurate results from the whole

dataset, whereas the speed (stream processing) layer processes data as it arrives to pro-

duce immediate but potentially inaccurate results with low latency. In cases where the

fast approximation from the speed layer yields inaccurate results, results from the slower

batch layer (using all historic data) can be utilized to correct the stream layer at a later

point in time. The results from the speed and the batch layer are combined in a special

database called the serving layer. This serving layer simplifies creating queries and is

updated each time new results (from speed or batch layer) are available[26].

Speed layer

Batch layer

QueriesServing layerSource

Figure 2.1.: Lambda architecture

Unfortunately, the Lambda architecture is not without its disadvantages. First, main-

taining two different systems (possibly created with two different frameworks) requires a

24Breivold et al. 2008.
25Reis and Housley 2022, p. 122.
26Marz and Warren 2015, p. 14 ff.

Montanuniversität Leoben 10 Daniel Pfisterer

DSMS approach in U-space Chapter 2. System specifications

lot of additional work. Moreover, the different results created by speed and batch layer

must be merged in order to respond to stakeholder requests. For some computations (e.g.

aggregation) this might be easy, but it becomes increasingly difficult for more complex

operations (e.g. joins). Finally, using all (historic) data to compute a result in the batch

layer is problematic if extensive amounts of data are available, which is why the batch

processing can be done incrementally. If, however, the processing is done incrementally,

the lines between the speed and the batch layer blur, which makes it questionable whether

the batch layer is needed at all[27].

2.2.2. Kappa architecture

The Kappa architecture is an alternative to the Lambda architecture first proposed by

Kreps[28]. He argues that if simplicity is more important than efficiency, the Kappa

architecture is the better choice. As opposed to a main assumption from the Lambda ar-

chitecture that the speed layer can deliver inaccurate results, Kappa assumes that stream

processing does not yield inaccurate results. Consequently, all data is processed as a

stream (the relation between batch and stream processing is explained in Section 2.3.1)

and the batch layer is omitted to create a simpler system, as seen in Figure 2.2. Another

difference to the Lambda architecture is that batch processing is done only if the require-

ments change; Lambda requires to do batch processing all the time in order to correct

results from the speed layer.

Stream processing QueriesServing layerSource

Figure 2.2.: Kappa architecture

Depending on the use case, the assumption that stream processing does not yield in-

accurate results is wrong, which is why results from the Lambda architecture are more

accurate. Furthermore, the batch processing performance of Kappa is not as good as

Lambda’s either, as dedicated systems for batch processing run more efficiently. Yet,

saying that one architecture is better than the other is not reasonable, as they serve dif-

ferent purposes. Ultimately, which architecture to choose depends on the requirements

for the system (cf. Section 2.1)[29]. However, considering the additional effort required to

implement a system following the approach of the Lambda architecture and the limited

27Kleppmann 2017, p. 497 f.
28Kreps 2014b.
29Feick et al. 2018.

Montanuniversität Leoben 11 Daniel Pfisterer

DSMS approach in U-space Chapter 2. System specifications

time frame of this thesis, it is reasonable to stick with the Kappa architecture. A second

pipeline for batch processing can be added in the future, if more complex batch processing

jobs have to be executed.

2.3. Challenges and concepts from stream processing

This section offers a general overview of important challenges and concepts from stream

processing. First, the relevance of stream processing for this thesis is explained and

the differences to batch processing are highlighted. Next, a more detailed view on how to

ingest data into a DSMS is given, before concepts for stream processing and their necessity

are expounded. Finally, important storage concepts are presented and the synchronization

of different storage locations is explained.

Please note that the presented list of terms and principles is not exhaustive, as they are

selected with the problem setting of this thesis in mind. Furthermore, the descriptions of

the presented principles focus on the general concepts underlying them and their purpose.

In order to gain a more detailed understanding of how these principles work, we refer to

the cited literature.

2.3.1. UAS and stream processing

In general, we distinguish between two forms of data: bounded and unbounded data (cf.

Figure 2.3). Unbounded data is similar to data in reality, a continuous (or sporadic) flow

of events without a known end. Bounded data is created by splitting the data into finite

pieces (so-called batches) by introducing a boundary such as time. It can be assumed that

most data is received in an unbounded form before it becomes bounded. Defining where to

set boundaries closely relates to the frequency with which data is ingested into a system

for processing. If the frequency is low (e.g. data for quarterly financial statements)

data can be collected and processed as one huge batch; this is called batch processing.

However, batch processing is not an option if the frequency of arrival is high, and data

is to be processed in real time[30]. Collecting data to create a batch before processing

results is a delay that is intolerable for real time processing. In order to evade any

unacceptable delay the processing must be done continuously by processing each newly

incoming message immediately. This is the general concept of stream processing[31].

For large parts, this thesis will deal with stream processing. To understand how stream

processing, DSMS, and UAS are related, consider e.g. a fleet of UAS where each UAS

is equipped with multiple sensors. Thereby, each sensor sends messages continuously

and at a high frequency during operation. In order to monitor this fleet in real time,

30Reis and Housley 2022, p. 235 ff.
31Kleppmann 2017, p. 439 f.

Montanuniversität Leoben 12 Daniel Pfisterer

DSMS approach in U-space Chapter 2. System specifications

Time

Unbounded data

Bounded data

Figure 2.3.: Illustration comparing unbounded and bounded data

sensory data must first be ingested into a system that can handle the incoming messages.

This can be done through something we will (for now) refer to as ingestion black box (cf.

Section 2.3.2). The ingestion black box takes the incoming messages and prepares the

stream so that it can be consumed by the processing black box (cf. Section 2.3.3). In

the processing black box the data is processed to create the required real time insights

for monitoring and to store the data to resilient storage. In addition to resilient long

term storage, all messages have to be cached in the streaming storage (cf. Section 2.3.4)

throughout the whole process. An illustration of this process can be seen in Figure 2.4.

The tasks carried out by the two black boxes and the streaming storage, while having to

meet all requirements from Section 2.1, is what this thesis refers to as stream processing.

Because these components form a system that can handle data streams in real time, it is

called a DSMS.

UAS fleet

Ingestion
black box

Processing
black box

Message stream Storage

Real-time reports

DSMS

Streaming storage

Figure 2.4.: Exemplary illustration of a fleet of UAS transmitting data as a continuous
stream of messages, which are ingested into a DSMS and processed

As mentioned above, another possibility to deal with large amounts of data is batch

processing. Instead of computing answers timely, newly arriving messages are buffered

and results are produced at a later point in time[32]. For instance, we could wait until

the end of day to collect any sensory data from the UAS before processing it. By doing

so, producing any form of real time insight becomes impossible. That is why this thesis

32Babcock et al. 2002.

Montanuniversität Leoben 13 Daniel Pfisterer

DSMS approach in U-space Chapter 2. System specifications

focuses on developing a prototype for stream processing. However, the notion of batch

processing is not irrelevant. Imagine that after extensive testing a huge batch of test

data is available. This batch data could then be used to enhance the results from stream

processing, as many machine learning techniques still depend heavily on batch processing.

Consequently, it is essential to design the prototype with the possibility in mind that batch

processing is added in the future and/or the produced data is used for batch processing.

2.3.2. Ingestion black box

To shine some light on how the ingestion black box ingests data for stream processing,

this subsection introduces potential difficulties and important definitions.

Events

Until now we assumed that a DSMS processes streams of messages, whereby messages can

contain anything from a picture to an audio file. However, for ingestion it is not enough

to assume that an ominous message with unknown content is processed. After all, we

need to control the type of data in the system. Just think what would happen if messages

with different or even unknown data types are saved in the same database. Consequently,

for this thesis it is assumed that messages are used to transmit events. Thereby, an

event can be defined as: "a small, self-contained, immutable object containing the details

of something that happened at some point in time"[33]. Moreover, it is assumed that

each event is subject to a payload. Usually, the payload is used to describe a dataset’s

characteristic like kind, shape, and size. However, throughout this thesis payload is used

as a means of describing events. Thus, kind describes the type and the format of an

event, whereby the type (e.g. text, tabular) influences how the format is expressed as file

extension. Shape describes the dimensions of the event such as the number of characters

if text is transmitted. Size describes how many bytes one event has[34].

Message broker

Dealing with large amounts of incoming messages introduces the following problem: What

if messages are produced at a higher rate than the consumer (e.g. a stream processor) can

handle? There are three possibilities how to deal with this: Either messages are dropped,

buffered in a queue or back pressure is applied, which means the producer is blocked and

therefore cannot send more messages. Of course, dropping messages before processing is

not an option if one purpose of the system is to store all records in order to be able to

retrace all activities (cf. Section 2.1). This is why the possibility to send messages directly

from the producer to the consumer can be eliminated, as it is prone to message loss. To

33Kleppmann 2017, p. 440.
34Reis and Housley 2022, p. 235 ff.

Montanuniversität Leoben 14 Daniel Pfisterer

DSMS approach in U-space Chapter 2. System specifications

prevent any message loss, so-called message brokers (also known as message queues) can

be utilized[35]. They are comparable to a database class in object-oriented programming

that is enhanced with methods such as enqueue() and dequeue() for handling message

streams[36].

After a message is processed (thus it is saved to long-term storage), the message broker

can either delete it from or keep it in the (short-term) streaming storage. Deleting it

is not ideal, as that would not allow to do any re-processing if a consumer fails. If

messages are deleted from the queue you cannot re-run the same queue and expect the

same result[37]. In order to be able to re-process a queue of messages in the same order

and yield the same results the notion of log is essential. A log can be defined as an

append-only series of messages ordered by time. Append-only implies, that messages are

immutable and therefore it is not possible to delete or update any values from a message.

The ordering by time is done via a log entry number, which is assigned to each message

when appended. Thereby, each log entry number is a unique, sequential number; it is

like a timestamp, yet independent of any physical clock. Working with logs guarantees

that results are deterministic (when the same messages are processed in the same order

by different systems they yield the same result)[38]. The importance of re-processing is

highlighted in Section 2.3.3.

Given that the message order is relevant and dropping messages is not an option, this

thesis will use a log-based message broker as ingestion black box.

Defining time

Logs enable the processing and re-processing of message in the exact order in which they

arrive. However, by definition it is assumed that the order of arrival of events in any data

stream cannot be influenced (cf. Section 1.1). This means we cannot assume that the

order of arrival is equal to the order of occurrence; at least not if multiple producers are

connected to the system. This is problematic in cases where events are ingested at times

that differ strongly from the times of their actual occurrences.

In Figure 2.5 an example of two UAS, that send messages at the same frequency but time-

shifted, is illustrated. Usually, we would assume that both UAS send messages (containing

events) in the same order as events occur. The message broker then assigns a unique log

entry number so the order is not lost. Unfortunately, arrival time and time of occurrence

will not always be equal. For instance, during the message transmission, UAS 2 could

experience some kind of network delay due to network congestion. Because UAS 1 is in a

different network its messages arrive earlier, although some of them actually occur later

35Kleppmann 2017, p. 441 ff.
36Gray 1995.
37Kleppmann 2017, p. 444 ff.
38Kreps 2014a, p. 1 ff.

Montanuniversität Leoben 15 Daniel Pfisterer

DSMS approach in U-space Chapter 2. System specifications

in time. However, this is not reflected in the message queue, where the message with the

log entry number 2 occurs after 3 and 4 occurs after 5.

2

1

1 2 3 4 5 6 7 8 9 10 11 12
TimeProcessing

UAS Events

Log based message queue
DSMS

Figure 2.5.: Illustration of an example where event time and ingestion time differ strongly

Problems like this cannot be solved with a DSMS, as it cannot influence potential network

delays, transmission failures, device failures etc. Consequently, it is of utmost importance

to keep track of time as events are handled by different parts of the DSMS. A distinction

can be made between three points in time[39]:

• Event time indicates when an event is generated by a producer.

• Ingestion time indicates when a message is put in queue by the message broker.

• Process time indicates the point in time after ingestion when the message is pro-

cessed, whereby processing time describes the amount of time it takes to process

it.

We note that the notion of time for stream processing is not defined uniformly in literature.

For instance, Akidau et al.[40] distinguishes between event time and processing time.

Whereas event time is as defined above, processing time is defined differently as "... the

time at which an event is observed at any given point during processing within the pipeline

...". Another example is Babcock et al.[41] who distinguish between implicit and explicit

time. They define implicit time as an indicator for the order of event arrivals and explicit

time as a data attribute that is selected as timestamp. In order to deal with the difficulty

of different system clocks Dean[42] proposes to record the time an event occurs (according

to the device clock), the time it is sent to the server (according to the device clock) and

the time it is received by the server (according to the server clock). Even if all definitions

are slightly different, the general idea is to keep track of time during all phases of message

handling from event generation to processing.

39Reis and Housley 2022, p. 164 f.
40Akidau et al. 2015.
41Babcock et al. 2002.
42Dean 2015.

Montanuniversität Leoben 16 Daniel Pfisterer

DSMS approach in U-space Chapter 2. System specifications

Late arrivals

It is common to define some sort of exclusion time for data that arrives late with respect

to event time. After this exclusion time late data is dropped and will not be processed[43].

However, in this thesis, defining an exclusion time is not feasible, because we still need to

save all messages to resilient storage. If we drop messages before saving them we would

not have a full record of all activities available after the UAS operations finish. Of course,

we still need to make sure, that late events do not delay our stream processing results for

too long. How late data can be handled during stream processing is explained in more

detail in Section 2.3.3.

Ingestion task summary

The tasks of the ingestion black box can be summarized as follows: A producer creates

an event, which is an immutable object that represents something that happened. This

event is sent to a consumer as a message. Now, it could happen that messages are sent

at a higher rate than the consumer can process. Since message loss is not acceptable,

the messages are queued, which is done by a message broker. Considering the possibility

that a consumer fails, it is important to allow re-processing of messages. To guarantee

deterministic results, a log is used to keep the exact order of message arrivals. However,

the order of message arrivals must not equal the order of event occurrences. Given that

the DSMS cannot influence the order of arrival, it is important to track different times

during all stages of message handling, such as event time, ingestion time and process

time. Regardless of when events are received, they must be saved to resilient storage to

guarantee complete recordings of all UAS operations.

2.3.3. Processing black box

In Section 2.3.1 the processing black box is described as a means for processing a stream

of data to gain insights; there is no mention of how this is done. In this thesis it is

assumed that the processing is done by one or more stream processors. Thereby a stream

processor takes a stream as input, applies a transformation and produces another stream

as output. Typical tasks carried out by a transformation are manipulation (e.g calculating

an average), enhancement (e.g. adding additional information from a database) and saving

data for downstream use[44]. Based on the problem definition the output stream can then

be consumed by another stream processor, written to a database, or used to create real

time reports. The unbounded nature of data streams introduces a whole range of new

challenges for stream processors that require a number of new concepts, both of which

are discussed in this subsection.

43Reis and Housley 2022, p. 248 f.
44Reis and Housley 2022, p. 309.

Montanuniversität Leoben 17 Daniel Pfisterer

DSMS approach in U-space Chapter 2. System specifications

State

In stream processing the notion of a mutable state is essential to do non-trivial com-

putations with data streams. This kind of processing is referred to as stateful stream

processing whereby state can be defined as a local variable that stores the result of a

computation carried out with incoming, immutable events. When a new event arrives

the updated state is computed based on the current state and the new event. In other

words: The result of a stateful calculation depends on all previous events and the newly

arriving event[45]. This means if the log of all events is viewed, it is possible to reconstruct

how the state evolved over time. An analogy from mathematics is to define state as the

integral of a stream of events over time from t = 0 until the present t = now; if the state

is differentiated by time at any t you get the stream of events that changed the state until

t (cf. Equation (2.1))[46].

state(now) =
⁄ now

t=0

stream(t) dt stream(t) =
d state(t)

dt
(2.1)

A simple example for state is monitoring the number of operating UAS. As soon as a

UAS sends a message that a new operation is started, the number of operating UAS

is increased. After the UAS completes its operation it sends a message to inform the

system, decreasing the number of active UAS. If the log of all messages (often referred

to as changelog) is viewed, it is possible to reconstruct how many UAS were operating

at any point in time. An example how the state evolves based on the changelog from

multiple UAS starting and ending operations can be seen in Figure 2.6. Moreover, this

example highlights the importance of state: If each event is viewed individually without

considering the other events there is no possibility to know the number of active UAS. Of

course, there are operations in stream processing that do not require a state (e.g. simply

view a message), yet without any state it is not possible to do any complex computations.

Consequently, it is important to build a DSMS that can handle stateful stream processing.

id: 1 start 12:00
id: 2 start 12:00
id: 1 end 12:08
id: 3 start 12:15
id: 2 end 12:20
id: 4 start 12:22
id: 5 start 12:25

12:00 12:10 12:2012:05 12:15 12:25

UAS Event Time

Changelog
Time

2

1

2

1

2

3
State evolution

Figure 2.6.: Example of how state evolution in counting can be modeled with a changelog

45Hueske and Kalavri 2019, p. 53 ff.
46Kleppmann 2017, p. 459 ff.

Montanuniversität Leoben 18 Daniel Pfisterer

DSMS approach in U-space Chapter 2. System specifications

State and fault tolerance

In Section 2.3.2 the log based message broker, that allows to re-process messages if a

consumer fails, has been presented. However, it is not discussed where exactly messages

(or state) are stored for re-processing and why it is important to be able to re-process

them. Storing messages or state to remote storage is not ideal, as the data would not

be available locally in the system. A possibility that provides locality would be to store

the changelog to a local table as an incremental record-for-record backup of the state[47].

The importance of re-processing originates from using a backup to restore the state in

order to achieve fault tolerance (cf. Section 2.1.3). For instance, considering the example

in Figure 2.6, if processing fails at 12:10 the current state of counting s = 1 is lost. Not

knowing any state, the system is restarted at 12:14 before a new UAS operation is started

at 12:15 with the result that the system now wrongly thinks s = 1 not s = 2. With an

available changelog the system would be able to replay all events and restore the correct

state.

This, however, leads to another problem: If a long-running system fails it is not feasible

to re-process all events, as it would require too much time and storage. If the state is

changed by events identified by a key (i.e. IDs for different UAS), so-called log compaction

can help to reduce storage requirements. Thereby, only the most recent updates by a key

are kept, allowing to re-construct the latest state only, not its complete history[48]. Let

us return to the example mentioned above: A system without log compaction would have

to store m = 3 messages to restore the state at 12:10. With log compaction only the

most recent updates are kept, which are start for UAS 2 and end for UAS 1, so m = 2.

Knowing these last two states, it is easy to figure out that s = 1 at 12:10, because there

is only one UAS that started an operation but did not end it. Certainly, reducing m

from 2 to 3 does not seem like a huge achievement and yet it could have a significant

impact on systems dealing with large UAS fleets. For example, a fleet with n UAS would

have to keep at most m = n messages to restore the current state. Assuming that each

UAS carries out x operations in one day, a system without log compaction would have to

keep m = n ∗ x messages. That means, the number of messages that must be stored and

re-processed to restore the state is reduced by a factor of x.

Saving the state as log compaction in a local table is a valid option to create a backup

for restoring the state. However, when to create a backup remains to be answered. A

simple solution would be to create backups at fixed time intervals. Yet, depending on the

framework, there are different concepts available that define when the state is saved. For

instance, Apache Flink uses a variant of a checkpointing algorithm called Asynchronous

Barrier Snapshotting, which stores the global state (snapshot) to resilient storage[49];

47Kreps 2014a, p. 37 f.
48Kreps 2014a, p. 38 f.
49Fault Tolerance via State Snapshots 2023.

Montanuniversität Leoben 19 Daniel Pfisterer

DSMS approach in U-space Chapter 2. System specifications

it is based on the Chandy-Lamport algorithm[50]. The creation of checkpoints is done

by continuously inserting barriers into the data stream. A checkpoint is created for all

messages received between two consecutive checkpoints. If a process fails, all messages

that were received after the last checkpoint are re-processed. This means that all messages

before the last checkpoint can be discarded[51]. Another approach is microbatching utilized

by Apache Spark[52]. Microbatching partitions a continuous data stream into finite pieces

based on small time intervals. Whenever an interval is complete according to the measured

time, an intermediate state is created and saved to resilient storage. If processing fails,

only the latest, incomplete interval must be re-processed[53].

In order to guarantee fault tolerance in line with system requirements, how and where

to store messages and state is an important consideration when selecting frameworks for

deployment (cf. Chapter 3).

Exactly once

By resetting the computation and its input, messages can be re-processed to restore the

state after a fault. However, it is not possible to reset any output produced by the stream

processor. Particularly not if it is already consumed by a downstream processor or written

to a database. In order to prevent wrong results, it is essential that re-processing of mes-

sages must not influence results[54]. Consequently, mechanisms are needed to guarantee

exactly once processing of messages, whereby a message only affects a result once. Please

note that exactly once processing and exactly once delivery are not equivalent. Whereas

exactly once processing allows to deliver a message at least once, exactly once delivery

strictly forbids redeliveries. Technically, however, exactly once delivery is impossible, as

you can never be absolutely certain that a message will arrive. This means messages can

only be are delivered at most once or at least once[55]. The issue with exactly once delivery

is closely related to the Two generals problem, where two parties have to communicate

to coordinate a potential attack. Because neither the message to start the attack nor

the acknowledgment for the message arrive with absolute certainty, no party ever really

knows when the other one will attack, thus no one attacks[56].

The following example highlights why exactly once processing is important in this thesis:

In Figure 2.7 the situation from Figure 2.6, where a stream processor tracks the count

of active UAS, is extended by a downstream stream processor that calculates a moving

average of active UAS per time interval. The first processors receives the start/end

50Chandy and Lamport 1985.
51Carbone et al. 2015.
52Structured Streaming Programming Guide - Spark 3.4.1 Documentation 2023.
53Zaharia et al. 2012.
54Kleppmann 2017, p. 477 f.
55Treat 2015.
56Archer Brown 2023.

Montanuniversität Leoben 20 Daniel Pfisterer

DSMS approach in U-space Chapter 2. System specifications

messages from the UAS and counts the number of active UAS every two minutes. Thereby

a new message format is created; it contains a new ID, the timestamp and the UAS

count. These messages are sent to the second processor who collects all messages in order

to calculate the moving average of active UAS. This moving average is updated each

time a new message from the first processor is received. Now, it could happen that the

count processor fails at 12:05 like in our example. As a consequence, the count processor

reprocesses all start/end messages received after 12:05 in order to recreate the state before

the failure. Assuming that no results should get lost we send each message at least once.

Since we cannot discard the messages we already sent, the second processor receives some

messages twice and computes a wrong average (in our example the message with id = 4

is included twice).

id: 2 end id: 3 start

Restart count processor at 12:05

Input stream Output stream

12:00 21
12:02 22
12:04 23

12:00 21
12:02 22
12:04 23
12:06 24
12:08 15
12:10 16
12:12 17
12:14 18

12:00 21
12:02 22
12:04 23
12:06 24
12:08 15

12:10 1612:12 17

9
Avg. = 1.8

12:00 21
12:02 22
12:04 23
12:06 24

12:08 15

11
Avg. = 1.83

12:08 1512:10 16 12:06 2412:06 24
12:08 15
12:10 16

12:20 12:15

id: 1 end
12:08

id: 3 start
12:15

12:12 17
12:14 18

Resend results after 12:05Reprocess events after 12:05

Figure 2.7.: Illustration why exactly once can be important for stream processing

A possibility to guarantee exactly once processing is to make the computations idempotent.

The term idempotence means that running an operation multiple times yields the same

results as running it exactly once. A simple example for an idempotent operation is

cleaning a floor. No matter how often the floor is cleaned, the result remains a clean

floor. An operation that is not idempotent is withdrawing money from a bank account[57].

Naturally, the computation done in the above mentioned example is not idempotent (i.e.

increasing a counter without decreasing it yields a different result). Yet, it is possible to

make the processor idempotent via the log entry number (cf. Section 2.3.2)[58]. Given

57Helland 2012.
58Kleppmann 2017, p. 478.

Montanuniversität Leoben 21 Daniel Pfisterer

DSMS approach in U-space Chapter 2. System specifications

that it is a unique sequence number, the processor can check if a number has already been

processed. If so, the message is discarded and does not affect the result again[59].

The need for exactly once processing to guarantee correct results in all downstream op-

erations highlights the importance of a log based message broker for data ingestion (cf.

Section 2.3.2).

Windowing

Windowing is the process of dividing a data stream into smaller, finite subsets called

windows and calculating a result for each window (you could also refer to windows as

micro-batches). Thereby a window is specified by a set of parameters such as size s

and slide period p (which delimits the beginnings of different windows)[60]. When to use

windows strongly depends on the use case. For instance, if you want to filter or map

some data, it is not mandatory to utilize windows. However, any form of e.g. time-bound

operations require some form of windowing. There are many different forms of windows,

the three most common ones are[61][62]:

• Fixed windows

Fixed windows, also known as tumbling windows, have a static window size s, which

is defined by either time or the number of events. For fixed windows, the slide period

p = s. Usually, fixed windows are aligned, which means that a window applies to

all messages, no matter which id they are assigned to (e.g. a windows applies to

all UAS independent of the id). An illustration of fixed windows can be seen in

Figure 2.8a.

• Sliding windows

Sliding windows are defined by a static window size s and a slide period p (time

or number of events). If p < s, the windows overlap, i.e. sliding windows are a

special case of fixed windows where the windows can overlap. Sliding windows are

illustrated in Figure 2.8b, here you can see that they are aligned like fixed windows.

• Sessions

Sessions are used to capture periods of activity defined by a timeout gap tg. All

events that take place within a span of time < tg are grouped together, filtering

periods of inactivity. Unlike fixed or sliding windows, sessions are always unaligned,

i.e. a window applies to one id only. An illustration can be seen in Figure 2.8c.

59Fernandez et al. 2014.
60Li et al. 2005.
61Akidau et al. 2015.
62Reis and Housley 2022, p. 283. ff.

Montanuniversität Leoben 22 Daniel Pfisterer

DSMS approach in U-space Chapter 2. System specifications

id: 1

id: 2

id: 3

Times s s

(a) Fixed windows

id: 1

id: 2

id: 3

Time
sp

s

(b) Sliding windows

id: 1

id: 2

id: 3

Timetg

(c) Sessions

Figure 2.8.: Illustrations of the three most common types of windows

Windowing provides a lot of flexibility for processing data streams. For instance, with

windows it would be possible to compute and monitor the average speed of a UAS in

five second intervals. So, we receive messages containing the speed of a UAS at a given

rate, collect these messages for five seconds and compute a result for the average speed

of the UAS in the last five seconds. Thus, if any unexpected deviations are detected

actions can be taken immediately. Of course, without windows it would still be possible

to monitor the speed by computing a moving average (similar to Figure 2.7). However,

with a moving average outliers can be missed easily, because it is hard to tell exactly when

they happened. Consequently, when selecting frameworks in Chapter 3, it is important

to include support for some sort of windowing as criterion.

Watermarks Although it is possible to define a window’s size based on the number of

events it should contain, the size of a window is mostly determined by time. As explained

in Section 2.3.2, there are many different times to keep track of in a DSMS. This raises

the question of what time should be used to define a window’s size. If windows are defined

based on ingestion or process time, results are computed with low latency exactly when

and in the same order the data arrives. The computed results, however, would not take

into account any events that are late with respect to event time[63]. A mechanism used

to help defining windows based on event time is called watermark. Thereby a watermark

can be defined as a threshold used to determine whether events belong to a window or

are considered late[64]. Unfortunately, watermarks are not perfect in the sense that they

could be too fast by emitting the threshold before the arrival of a late event or too slow

by waiting too long for a single late event, delaying subsequent processing. In general,

no system can wait indefinitely long for late data, so no system can ever be 100% certain

that no data is missing[65]. It is important to find the right balance between confidence

in the results and the delay introduced by waiting for late data.

63Hueske and Kalavri 2019, p. 31.
64Reis and Housley 2022, p. 285.
65Akidau et al. 2015.

Montanuniversität Leoben 23 Daniel Pfisterer

DSMS approach in U-space Chapter 2. System specifications

Given that not all computations need to define windows based on event time, it is essential

to evaluate any computation beforehand and take into account how late data would

influence the result. If the influence is substantial, mechanisms like watermarks must

be implemented in order to yield correct results. Maybe this is not important for the

first prototype of the system, but more complex computations in the future might require

watermarks. Consequently, the availability of mechanisms like watermarks is an important

factor for framework selection (cf. Chapter 3).

Stream joins

Typically, a record in a dataset is associated with another record through some reference

(e.g. a foreign key in relational database). If you want to access information from the

record holding the reference and the record being referenced a join is needed. Usually,

joins are used on static batch datasets, but by maintaining a state it is possible (yet more

difficult) to apply them to unbounded data streams as well[66]. Three different types of

stream joins can be distinguished[67][68][69]:

• Stream-stream join

You can use stream-stream joins to combine events from two different data streams

into a single, enhanced data stream. It is possible to do an inner join or an outer

join. With the inner join an output event is only created if events are received from

both streams. For the outer join an output is created if one event arrives, regardless

of the arrival of an event from the other stream. Please note that the (potentially)

different arrival times of the streams requires buffering of events. For instance, if

the first stream is delayed for 5 seconds, the second stream has to buffer events for

5 seconds until the two streams match. The buffer size depends on the expected

delay and the available storage. An application example for stream-stream joins is

the joining of streams from different sensors, e.g. one sensor monitors the speed of

the UAS, whereas the other one monitors wind speeds.

• Stream-table join

With a stream-table join it is possible to enrich a data stream with information

stored in a table. It works similarly to stream-stream join, whereby one of the

streams is known from the beginning in its entirety. For example, the events from

the data stream might contain a UAS’ unique ID but no information about its

model, age, etc. Given that this information is (mostly) static it can be stored in its

entirety in a table. Every time a new event arrives the system can check the table

for the UAS ID to enrich the event with additional details if needed.
66Kleppmann 2017, p. 403, 473 ff.
67Samza - State Management 2023.
68Introducing Stream-Stream Joins in Apache Spark 2.3 Tue, 03/13/2018 - 07:59.
69Reis and Housley 2022, p. 286 ff.

Montanuniversität Leoben 24 Daniel Pfisterer

DSMS approach in U-space Chapter 2. System specifications

• Table-table join

If the changelogs of data streams are saved to tables you can use table-table joins

to create a new table. Doing this join in a DSMS has the advantage that whenever

data changes in one table, it is automatically synchronized with the most recent

data for the same key from the other table to create a joined output.

Joining streams and tables in a DSMS is a powerful tool to enhance a stream with ad-

ditional information. The notion of stream joins could become even more relevant, the

more data on UAS operations is accumulated. A framework’s ability to do stream joins

will be considered for the framework selection in Chapter 3.

Processing task summary

The tasks of the processing black box can be summarized as follows: First, a stream of

messages enhanced with logs and timestamps is received from the ingestion black box.

Next, the received stream is transformed by one or more stream processors to produce

the desired output. In order to produce results that depend on changes made by previous

events, the system has to maintain a state. This state must be retrievable in the event

of a fault, otherwise the system would not be fault tolerant. The state can be retrieved

through a changelog that stores all changes made to the state by the events. Because

storing all changes could require too much storage, mechanisms like log compaction can

help to reduce storage requirements. Now, if events are re-processed, it must not happen

that results are affected twice. This can be evaded by guaranteeing exactly once processing

whereby computations can be made idempotent with the help of the log entry number.

Furthermore, a concept for making stream processing more flexible is called windowing,

thereby unbounded data is split into finite pieces called windows before processing. While

windowing is very powerful, it can become challenging, if a correct order of events based on

event time is required. In this case mechanisms like watermarks need to be implemented.

Finally, another essential concept from stream processing are stream joins. They can be

used to enhance a stream with additional details if needed.

2.3.4. Database technology

Whenever an event is generated during an UAS operation it must be saved to a database

for long-term storage to comply with EU regulations (cf. Section 2.1). Additionally,

parts of the data stream need to be saved in cache (streaming storage), where the data

stream can be accessed quickly, in case parts of it must be replayed after a fault (cf.

Section 2.3.3). This section outlines general storage concepts and elaborates how to keep

different databases and caches synchronized during stream processing. Moreover, popular

concepts like the CAP-theorem and ACID transactions are presented and discussed.

Montanuniversität Leoben 25 Daniel Pfisterer

DSMS approach in U-space Chapter 2. System specifications

Hot, warm, and cold data

Depending on how frequently data needs to be accessed it is possible to distinguish be-

tween hot, warm and cold data[70]:

• Hot data is data that is accessed frequently and must be cheap to retrieve (i.e.

requires little time to retrieve). Typically, the storage required for hot data is very

expensive, as it is saved to Random Access Memory (RAM) (as it is the fastest form

of storage) or a fast Solid State Drive (SSD). The notion of hot data is important

for replaying data streams in the event of an error. If retrieving the data after an

error takes too long, the performance of the DSMS suffers severely, as the processing

of any subsequent events has to be postponed until the old events are replayed. In

general, it can be said that hot data is the only form of data that is saved in a cache,

not in a database.

• Cold data is data that is accessed only infrequently, whereby costs for retrieval are

high but storage itself is cheap. Typically, cold data is saved on a cloud or on a Hard

Disk Drive (HDD). Considering the limited read and writes speeds of a HDD, and

the limited bandwidth for cloud storage, retrieval of data is expensive in the sense

that it takes very long. If accessing legal recordings is a rare occasion, it makes

sense to store them as cold data in a database.

• Warm data is data that is not accessed as often as hot data but more often than

cold data; storage costs are cheaper than for hot data, but slightly more expensive

than for cold data. Typically, warm data is stored on a slower SSD. If, e.g. the legal

recordings need to be accessed frequently, it is reasonable to store them as warm

data. Of course, it would be possible to store the most recent recordings as warm

data first and as cold data later.

The bottom line here is that we need different kinds of storage to build a DSMS (with

caches and databases) that fulfills all performance requirements. This also means that

we have to think of a way to keep all these different kinds of storage synchronized during

operations.

Event sourcing and change data capture

Data must be synchronized across multiple databases and caches for two reasons: Per-

formance requirements must be met, and data must be available to different stakeholders

(e.g. operators and authorities). There are two important concepts related to synchro-

nization:

70Reis and Housley 2022, p. 223 ff.

Montanuniversität Leoben 26 Daniel Pfisterer

DSMS approach in U-space Chapter 2. System specifications

• Event sourcing is a concept used to describe how data is structured in a database

(or a cache). Thereby every write to a database is considered an immutable event

that is saved to a log. An identical database can be constructed by consuming this

log in sequential order. Errors during log consumption do not yield wrong results,

as keeping track of the sequential log number helps to resume consuming the log

after an error. The log of all changes acts as the single source of truth[71].

• Change data capture (CDC) is a concept similar to event sourcing, but at a different

level of abstraction; CDC does not require to keep track of all writes to a database

but the most recent ones. It pairs well with the concept of log compaction explained

in Section 2.3.3, whereby the number of events that are saved depends on the number

of different keys for the events. CDC is often used if an existing database is in

place. Thereby, a snapshot of the current database is taken and all subsequent

changes are recorded as a stream of events. If we select one database as the leader

(the only database where writes are possible), we can track all changes applied to

this database to replicate it in any of the downstream databases (the followers).

Thereby the followers can consume the changes at their own pace without affecting

the performance of the leader[72].

Although logs are a simple concept, they are very powerful. Utilizing logs throughout

a DSMS is not only a requirement to build a fault tolerant system, but also helpful to

correctly synchronize changes across multiple databases and caches. Both, event sourcing

and CDC, rely heavily on a log as a single source of truth for synchronization. Whether

the prototype uses event sourcing or CDC strongly depends on the existing system and

its interfaces. Either way, the final system (maybe the prototype not yet) will require

multiple synchronized databases and caches with different kinds of storage to meet all

performance and stakeholder requirements, regardless of which of the above mentioned

concepts is used.

CAP-theorem

Deciding on how to build a database for longterm storage does not only depend on

choosing the right storage technology, but also on balancing trade-offs and providing

requirement-based guarantees. The relation between the most important guarantees and

the trade-offs between them can be explained by the CAP-theorem (also known as Brewer-

theorem)[73]. CAP is the abbreviation for:

• Consistency C - Strong consistency provides the capability to execute updates while

offering the same view of data to all consumers.

71Kleppmann 2016, p. 1 ff., 52 ff.
72Kleppmann 2016, p. 81 ff.
73Fox and Brewer 1999.

Montanuniversität Leoben 27 Daniel Pfisterer

DSMS approach in U-space Chapter 2. System specifications

• Availability A - High availability is given if a consumer can access any replica of the

given data at any point in time. Availability can be provided by creating redundan-

cies through data replication.

• Partition-resilience P - Partition-resilience is given if the entire system can outlast

a partition between data replicas.

The theorem states that in the presence of partition-resilience it is not possible for any

networked shared-data system to provide both, strong consistency and high availability.

In other words, if partition-resilience is required you have to find a trade-off between C

and A. Based on our requirements, we can choose between three different types of systems

(CA, CP and AP). However, it is not that one type is better than the other in general,

they simply serve different purposes.

We note that some sources criticize the applicability of the CAP-theorem to database

classification. Most notably, Kleppmann[74] argues that CAP is too vague and ignores

a wide range of other essential trade-offs. Examples include not taking latency or node

failures into account. Moreover, he argues that many technologies that claim to offer

CA, CP, or AP do not obey to the original definitions, which leads to a lot of confusion

and misunderstandings. He proposes a different framework called delay-sensitivity and

recommends to abandon the CAP-theorem.

Although there are arguably strong limitations to the CAP-theorem, it still finds wide

application in classifying database technologies today. Given the vast amount of available

technologies (cf. Section 3.2), we require an easy, widely applied classification to guide

us in the right direction. CAP offers this guidance, which is why the decision is made to

apply it in spite of its limitations. Albeit, we are aware of its limitations and do consider

them.

ACID vs BASE

A series of interactions with a database (typically reads and writes) that should happen

as one operation is called a transaction. Safety guarantees related to transactions can be

described with the ACID acronym (Atomicity, Consistency, Isolation and Durability)[75].

• Atomicity means that transactions must either be completed or undone entirely (i.e.

all-or-nothing).

• Consistency means that a transaction shifts a database from one consistent state to

another (i.e. transactions can commit only legitimate results).

74Kleppmann 2015.
75Haerder and Reuter 1983.

Montanuniversität Leoben 28 Daniel Pfisterer

DSMS approach in U-space Chapter 2. System specifications

• Isolation refers to hiding transactions from each other so they can occur concurrently

without leading to inconsistent states.

• Durability refers to making sure that once a transaction is committed, its results

are stored permanently (i.e. results are not lost when the system fails).

While ACID describes the way transactions are handled in traditional transactional

databases, there are alternatives. A popular alternative that weakens ACID-guarantees

is called BASE (Basically Available, Soft state, and Eventual consistency)[76]. Its def-

initions are very vague, and basically mean that anything that is not ACID is BASE.

ACID is focused on providing consistency above all else, while no guarantees concerning

availability are provided. BASE relaxes some of the guarantees in order to shift the focus

to availability. Which one wants to utilize comes down to the use case.

SQL vs NoSQL

A popular alternative to traditional SQL-based relational databases are so-called NoSQL

databases (which stands for Not only SQL). NoSQL emerged from the trade-offs discussion

sparked by the CAP-theorem. In general, NoSQL solutions can be divided into four

different categories: document databases, wide-column databases, key-values databases

and graph databases. Some of these options are discussed briefly in Section 3.2. For now

it is only important to know that there are alternatives to SQL-based relational databases.

Database technology summary

How to choose the right database technology strongly depends on the specific use case.

First, it is important to consider how often the stored data is accessed by differentiating

between hot, warm and cold data. This distinction alone shows that we require at least

two different kinds of storage: one for the "hot" data from the stream processing, and

one for the "cold" data from logging all UAS activities. Another important concept in-

volves synchronization across multiple databases. Here, event sourcing and CDC are two

popular concepts that are based on observing the database’s log of changes. In order to

classify databases based on the guarantees they provide the CAP-theorem can be utilized.

Although it has its limitations, it still is a widely-known framework that can help to get

a broad overview of the available technologies. Guarantees for database transactions can

be classified in ACID and BASE transactions. Whereas ACID strictly obeys rules to pro-

vide consistency, BASE relaxes the rules and provides more flexibility. Finally, a popular

alternative to SQL databases are NoSQL databases.

76Fox, Gribble, et al. 1997.

Montanuniversität Leoben 29 Daniel Pfisterer

DSMS approach in U-space Chapter 2. System specifications

2.4. Specification and decision summary

Starting with the general specifications, the decision is made to make the system fault

tolerant. This is inevitable, as a complete failure of the whole system is not acceptable due

to regulatory safety requirements. Related to scalability, the most important performance

metric is response time, because we need to be able to respond to alerts from the system

immediately. Moreover, all scaling should be done horizontally and elastically, as the

system will be subject to changing workloads throughout its runtime. In order to keep

the system easily maintainable, a documentation should be provided and monitoring of

the most important parameters should be implemented right from the start. The system

itself will be modular with an immutable framework at its core. This attempts to make

the system future proof as much as possible, while keeping a certain degree of flexibility.

Considering that there is no immediate need for complex batch processing jobs, the general

architectural approach is based on the Kappa architecture.

The data ingested into the system is exclusively available in JSON format. The shape

of the data cannot be precisely defined, as the messages vary in terms of their content,

but it is certain, that messages will not exceed a message size of 1MB. Considering the

monitoring requirements for the system and how important the correct order of messages

is, event, ingestion and process time must be tracked for each message. Late events will

always be saved to resilient storage, no matter when they arrive. However, they will only

be considered relevant for processing for a limited timespan.

Stream processing will involve almost exclusively tasks that require the maintenance of

a state. Moreover, we do not tolerate the loss of any messages, as this could lead to

safety related issues. Consequently, we have to implement a system that guarantees

that messages are sent at least once, whereby all processing is made idempotent through

unique message identifications. In order to deal with more complex processing jobs related

to conflict detection, windows are a must have. Also, mechanisms like watermarks are

required to deal with late events. Knowing that incoming messages must be correlated

with existing data like flight plans, the selected framework must provide stream join

capabilities.

Selecting a database technology comes (mostly) down to the CAP-theorem. As the ex-

pected workload for the system is not in the magnitude of hundreds of thousands of con-

current writes, it is decided to focus on consistency and availability rather than partition-

resilience. Moreover, it is assumed that all data ingested into the system is structured.

The stored messages will only be accessed sporadically for analysis purposes, which is

why it makes sense to put them in cold storage. However, the streaming storage requires

to be easily accessible, which is why hot storage must be considered, too. Furthermore,

it is necessary to be able to perform different operations like filtering, mapping etc. on

the data. Considering SQL’s wide-spread application it is only reasonable to implement a

Montanuniversität Leoben 30 Daniel Pfisterer

DSMS approach in U-space Chapter 2. System specifications

database that supports SQL queries. Finally, it is defined that transactions must comply

with the ACID-schema.

A summary of all decisions described above made for the specifications and concepts

presented in Section 2.1, Section 2.2 and Section 2.3 can be seen in Figure 2.9.

Ge
ne

ral
 sp

ec
ific

ati
on

Ing
est

ion
Str

ea
m

pro
ce

ssi
ng

Da
tab

ase

Reliability

Scalability

Maintainability

Streaming architecture

Fault tolerance
Performance metric

Computational ressources
Automation
Operability
Simplicity

Evolvability

Message payload

Message broker

Type
Shape
Bytes
Time

Late events

State
Guarantees

Idempotence

Additional requirements
Windows

Watermarks
Stream joins

Yes No
Response time Throughput

Horizontal scaling Vertical scaling
Elastically Manually

Documentation Monitoring
Monolithic Modular

With immutable core Without immutable core
Lambda Kappa

JSON CSV Avro
Depends on kind

< 1 MB > 1 MB
Event time Ingestion time Process time

Keep (always) Keep (timespan) Drop

Stateless Stateful
At least once At most once

Yes No
Yes No
Yes No
Yes No

CAP-theorem
Data structure

Access frequency

Data model

Transactions ACID BASE

Consistency Availability Partition-resilience
Structured Semi-structured Unstructured

Hot Warm Cold

Wide-column Key-value GraphDocument
NoSQLSQL

Figure 2.9.: Summary of all decisions made for the framework selection based on the spec-
ifications and concepts presented in Section 2.1, Section 2.2 and Section 2.3

Montanuniversität Leoben 31 Daniel Pfisterer

DSMS approach in U-space Chapter 3. Framework selection

3. Framework selection

Looking at the proposed concept from Section 2.3.1 while taking all requirements from

Section 2.4 into consideration, it becomes clear that it is highly unlikely to find an all-

in-one framework that fulfills every requirement. Consequently, the framework selection

is split in three parts. First, the technology at the heart of the system is selected. It

assumes the role of the message broker (cf. Section 2.3.2), i.e. the data ingestion and

data distribution between the various frameworks. The next step is to select a database

technology for longterm storage (which is not to be confused with streaming storage).

Finally, a framework for implementing the tasks of stream processing is selected. In order

to justify the choice of frameworks, each of the selected frameworks is described briefly

and it is explained how these frameworks fulfill the given requirements and specifications.

3.1. Data distribution framework

There are numerous open-source frameworks for data distribution available. Popular

examples include frameworks like RabbitMQ[77] (which implements the Advanced Messag-

ing Queuing Protocol (AMQP)), ActiveMQ (which implements the Java Message Service

(JMS))[78] and Apache Kafka[79]. All requirements considered, of the three, Apache Kafka

is the most viable option for the system we are trying to build. Frameworks like RabbitMQ

and ActiveMQ can be excluded, because neither AMQP nor JMS allows the reprocessing

of messages. They both require the discarding of messages after acknowledgement, which

is not the case for Kafka, where logs allow deterministic reprocessing.

Of course, there are lots of other, lesser known frameworks available that (potentially)

meet all our requirements for a message broker. Especially as handling large amounts of

data becomes more and more important the number of smaller, more specialized frame-

works increases. These frameworks are focused on solving very specific problems in niches

where Kafka might not be the best choice. However, these frameworks are (often) not

as mature and do not (yet) have a huge community for supporting and developing the

framework further. Given the importance of resources like demo projects, known error

messages, community support, etc. for learning and deploying an unknown framework,

77RabbitMQ: Easy to Use, Flexible Messaging and Streaming — RabbitMQ 2023.
78ActiveMQ 2023.
79Apache Kafka 2023.

Montanuniversität Leoben 32 Daniel Pfisterer

DSMS approach in U-space Chapter 3. Framework selection

smaller, less mature frameworks are excluded from consideration.

The following sections will offer a brief overview of Kafka’s most important components

and give a few simple examples for data flows in Kafka. This should help to better

understand why Kafka is our framework of choice.

3.1.1. Introduction to Apache Kafka

Apache Kafka is a distributed publish and subscribe messaging framework for event stream-

ing. Here, publish and subscribe messaging can be described as a framework for asyn-

chronous distribution of messages between publishers (sending messages) and subscribers

(receiving messages). This means that, in order to send and receive messages, publishers

and subscribers do not have to be aware of each other. This decoupling of publishers and

subscribers allows to build highly scalable and reliable applications[80].

In order to understand how Apache Kafka works and how it meets our requirements, first

the different components and their interaction have to be explained. We note that all

information in this subsection is either from the website to the Apache Kafka documen-

tation[81] or the guide book Kafka: The Definitive Guide, 2nd Edition[82]. An overview

of how all components, that are presented in the following, are connected from source to

sink is illustrated in Figure 3.1.

ProducerSource Consumer Sink

Zookeeper

Cluster

Partition 1
Broker 1

Partition 2
Broker 2

Topic
Partition 1
Partition 2

Figure 3.1.: Simple illustration of the connection between essential Kafka components

• Topics and partitions

A topic in Kafka is used to categorize incoming messages (i.e. data streams). For

instance, we could have one topic for the drones’ sensory data, one for external

information like weather, geofences etc. Within a topic data is split into so-called

partitions, whereby the partitions are a way for Kafka to provide scalability and

redundancy. How many partitions are created and how the data is distributed to

80Publish-Subscribe - Intro to Pub-Sub Messaging 2023.
81Apache Kafka Documentation 2023.
82Shapira et al. 2021.

Montanuniversität Leoben 33 Daniel Pfisterer

DSMS approach in U-space Chapter 3. Framework selection

the different partitions in a topic must be defined before starting the application.

Usually, data is distributed to the partitions based on a key (e.g. the ID of a

drone). The number of partitions depends strongly on how the rest of Kafka is

configured. In order to allow deterministic reprocessing of messages in topics, a log

(cf. Section 2.3.2) guarantees that all messages within a partition are ordered. It

is important to understand, that the order guarantee does not apply to the whole

topic, as each partition has its own log (otherwise the system would not be scalable).

• Kafka Clients

The most common Kafka Clients are the producer and the consumer. The producer

writes new messages to a topic (i.e. in a publish/subscribe system it assumes the

role of the publisher). Moreover, the producer implements the partitioning logic

needed to distribute messages between different partitions based on e.g. a key. In

order to guarantee that messages with the same key are sent to the same partition,

the key is hashed and mapped to the specific partition (this guarantee expires, if the

number of partitions changes). Another task provided by the producer is message

serialization. Internally, Kafka handles messages as a byte representation, not the

message in its original format (e.g. JSON).

After a producer pushed data into Kafka, a consumer can pull the data from Kafka

and read it (i.e. it assumes the role of the subscriber). Thereby the consumers

read data from partitions from one or more topics in the order provided by the

log. With the log entry number [83] (cf. Section 2.3.3) the consumers can keep

track of the messages they already consumed. Whenever a consumer fails, it just

resumes consuming messages from the latest offset. In order to know the latest

offset, it must be submitted to be stored by Kafka. How often to submit the offset

depends on the required message delivery guarantee, at least once or at most once

(cf. Section 2.3.3). Furthermore, each consumer operates as part of a consumer

group. Each consumer in a group consumes different partitions of a topic (i.e. two

distinct consumers in the same group cannot consume the same partitions). If one

consumer fails, the load is spread across the remaining consumers (the submitted

offset for the failed consumer is available for the whole group). Similarly, if the load

increases to a point where the existing consumers cannot handle it, new consumers

can be added to the group. This allows for horizontal scaling of consumers. Of

course, as messages are serialized by the producer, there must also be a mechanism

for deserialization that converts the byte representation from Kafka back into its

original format.

In general, Kafka enables the decoupling of producers and consumers, so either side

can be scaled according to the current needs. For instance, it is possible to have

83The Kafka documentation often refers to the log entry number as offset

Montanuniversität Leoben 34 Daniel Pfisterer

DSMS approach in U-space Chapter 3. Framework selection

multiple consumer groups that consume the topic of a single producer for different

purposes (e.g. stream processing, saving in a database).

• Broker and cluster

A broker is a single server that contains partitions, handles the messages created by

the producer, assigns offsets to the messages, serves the requests from consumers

etc. By taking multiple brokers, with each broker having a unique ID, you can form

a cluster (it is also possible to create multiple clusters). Having multiple brokers

is essential for creating a fault tolerant system, which requires to share partitions

between multiple brokers. For each partition one broker assumes the role of the

leader. Brokers that contain the same partitions, but are not elected leader, are

called followers. However, reading data from and writing data to a partition is only

possible through the leader. If a leader is down (e.g. server is down due to a power

failure), one of the followers must assume its place as leader. By doing so the system

can continue to provide its functionality, even in the event of a broker failure. How

many followers a leader has depends on the replication factor (RF). For instance, if

we set RF = 3, there are three replications of each partition available. In this case

we can tolerate the failure of two brokers, as we only require one functioning replica

to continue operations. However, fault tolerance comes at the cost of latency. The

partition replication between the different brokers consumes time, because each new

message that is written to the leader has to await confirmation from all its followers.

Consequently, it is important to find the right balance between fault tolerance and

the latency requirements of the system. Which broker assumes the role of leader is

determined by one controller broker per cluster. Usually, the controller is the first

broker to be started in a cluster. Managing the brokers in a cluster and electing

a controller is done by a different framework called Apache Zookeeper [84]. It is

important to understand that Zookeeper is not utilized to manage Kafka Clients,

as this is done by Kafka itself. Moreover, Zookeeper will be replaced by Kafka Raft

in Kafka 4.0 (for more details we refer to the official documentation[85]).

An example for a Kafka set up with three brokers in a single cluster managing two

different topics with two partitions each, can be seen in Figure 3.2. In this example,

each broker is the leader for a different partition (Broker 1 for T1_1, Broker 2 for

T1_2 and Broker 3 for T2_1 and T2_2) and Broker 1 is the controller. It is

not common to make one broker the leader for all partitions, because if this leader-

brokers fails you would have to elect a new leader for all partitions (which takes too

much time). In order to make the system fault tolerant we set RF = 3, which is

why each of the three brokers has the data from all four partitions (if we had more

brokers, not every broker would contain all partitions). We note that it is possible

84Apache ZooKeeper 2023.
85KIP-500: Replace ZooKeeper with a Self-Managed Metadata Quorum 2023.

Montanuniversität Leoben 35 Daniel Pfisterer

DSMS approach in U-space Chapter 3. Framework selection

that a broker is the leader for partitions from different topics, yet it is not possible

to have two leaders for the same topic at the same time.

Cluster

Broker 1

Partition T1_1
Partition T1_2

Partition T2_2
Partition T2_1

Broker 2
Partition T1_2
Partition T1_1
Partition T2_1

Topic 1

Partition T1_1

Partition T1_2

Topic 2

Partition T2_1

Partition T2_2

Partition T1_1
Partition T2_2

Broker 3
Partition T2_1
Partition T2_2

Partition T1_2

Leader T1_1
Controller

Leader T1_2 Leader T2_1
and T2_2

Figure 3.2.: Exemplary illustration how partitions can be distributed and replicated be-
tween three different brokers in a single cluster

3.1.2. How data flows through Kafka

One of Kafka’s biggest advantage is its vast ecosystem and how flexibly components

can be aligned around it. In Figure 3.3 an example for a system built around Kafka is

illustrated. The block in the center represents all topics that are stored within Kafka.

We note that all topics are partitioned and distributed across multiple brokers in the

same way as illustrated in Figure 3.2. On the left side we have two data sources: One

is a simulator creating messages at a fixed rate (i.e. a data stream); the other one is a

database containing legacy records. On the right side we have two sinks: messages are

either saved to a database, or forwarded to a monitoring system. The three data flows

illustrating how data can flow from source to sink through Kafka are discussed in the

following:

1. The first data flow illustrates a simple example of a data stream from source to

sink through Kafka without any processing in between. Thereby a producer writes

messages to a topic; in our example legal records. The consumer then reads messages

from this topic and writes them to a database for e.g. historical records.

2. The second data flow illustrates how a stream of alerts for an external monitoring

system can be created by observing a different data stream. The telemetry producer

pushes messages from the simulator to the topic tracking. In order to observe a

stream and make predictions, stream processing is required. Because Kafka offers

lots of options for connecting stream processors (here we use Kafka Streams, cf.

Section 3.3), it is easy to implement a stream processor for writing alert messages

Montanuniversität Leoben 36 Daniel Pfisterer

DSMS approach in U-space Chapter 3. Framework selection

to a new topic alerts. The consumer alert tracker can then read messages from this

topic so that they can be monitored by a warning system.

3. The third data flow combines historical and real-time messages to create an enriched

stream that can be used for machine learning. Reading messages from an existing

database can be done by implementing CDC (cf. Section 2.3.4). Assuming that

for our purposes a standard implementation is sufficient, we can re-use existing

implementations through a framework called Kafka Connect. This Kafka Connect

client pushes data to the topic legacy before the topics legacy and tracking are joined

via a stream join (cf. Section 2.3.3). Stream joins can be implemented with Kafka

Streams, whereby a new stream is created and written to the topic ML. From there

it can be used for any kind of machine learning we want to implement.

Regulations Legal records

Telemetry Tracking Prediction

Alerts

CDC Legacy

ML

Kafka topics

Simulator

Source

Producer
Recording Database

Consumer

Kafka
Streams

Alert tracker Alert system

Sink

Legacy
records Kafka

Connect

Stream join
Kafka

Streams

1 1

2 2

3 3 Monitoring

Source

Figure 3.3.: Example for a system with Kafka at its core

As illustrated in the example above, Kafka provides a lot of options for creating a system

that is highly flexible. If we require a second database we can simply add a new consumer

that reads the desired topic and writes it to the database. If we need to set up a new

source we create a new producer that writes to a new topic. In the same manner we can

add new processing operations, connect existing databases, use pre-configured connectors

from Kafka Connect etc. All this connectivity and flexibility makes Kafka a future proof

choice. Additionally, all data is partitioned and distributed between brokers automatically

(based on the user’s settings) to create a fault tolerant and highly scalable system. The

sum of all these features is why Kafka is our framework of choice.

Montanuniversität Leoben 37 Daniel Pfisterer

DSMS approach in U-space Chapter 3. Framework selection

3.2. Database technology

Selecting a database technology depends strongly on the problem-specific requirements,

even more so than selecting a data distribution framework. This is due to the large

number of open-source options available. On one hand, there are lots of big frameworks

for all kinds of different needs. On the other hand, there are also smaller even more

specialized frameworks that are often based on the big frameworks. However, like with

data distribution frameworks, smaller frameworks are (usually) more difficult to deploy

given their lack of community support and demo projects. Consequently, we do not

consider them to be viable options for building our database. In the following we will

discuss a selected list of potential frameworks before presenting our decision.

• Apache Cassandra[86]

Apache Cassandra is a popular NoSQL, column-based database. With its peer-to-

peer architecture it is highly scalable for millions of concurrent writes. Referring to

the CAP-theorem, Cassandra is usually associated with AP systems. Considering

that we do not require to handle millions of concurrent writes and that we prefer a

system that is as close to AC as possible, Cassandra can be excluded from our list

of potential database technologies.

• MongoDB[87]

MongoDB is a popular document-based NoSQL database. Due to its master-slave

architecture it is highly scalable and it does not require a schema. As opposed to

Cassandra, MongoDB typically favors consistency over availability; it is associated

with CP systems. Considering that we want to store time series data, using a

document-based database does not seem like the most feasible option, as it does not

offer support for SQL-queries. As a consequence we exclude MongoDB from our list

of considerations.

• PostgreSQL[88]

PostgreSQL is one of the most widely utilized database frameworks for relational

databases. It supports SQL queries and ACID transactions. Typically it is associ-

ated with CA systems. In total, it checks all our boxes for a database technology

(cf. Section 2.4). A potential downside is its steep learning curve. This, however,

is not a reason to exclude it from consideration entirely.

• Influxdb[89]

Researching popular database technologies showed the possibility of utilizing time

86Apache Cassandra 2023.
87MongoDB 2023.
88Group 2023.
89InfluxDB | Real-time Insights at Any Scale Sat, 15 Jan 2022 15:32:09 +0000.

Montanuniversität Leoben 38 Daniel Pfisterer

DSMS approach in U-space Chapter 3. Framework selection

series databases for data storage. Knowing that all data stored in our database

will have a time stamp, this is indeed a viable option. Influxdb is the most popular

representative of time series databases. It is highly scalable for reads and writes

and can store historical and real-time data in the same place. Referring to the

CAP-theorem, it is usually associated with CP systems. However, a big limitation

of the open-source version of Influxdb is its lack of scalability. This might not be a

problem for the first prototype, but a production ready system would (most likely)

require the paid version for proper scaling. Consequently, Influxdb can be excluded

as potential database technology.

• Timescale[90]

Timescale is a time series database that is based on PostgreSQL (i.e. it is like a

PostgreSQL database that is optimized for storing time series data). Consequently,

it offers support for SQL queries and ACID transactions. Referring to the CAP-

theorem, it is mostly assumed a CP system. As it is based on PostgreSQL, Timescale

has an even steeper learning curve, especially without previous experience with

PostgreSQL.

Ultimately, the choice for a database technology comes down to either PostgreSQL or

Timescale. Assessing the advantages of Timescale over PostgreSQL for our use case is

hardly possible without any previous experience. For the moment using PostgreSQL

provides more flexibility, as we do not have to stick exclusively to time series data. Con-

sidering that Timescale is based on PostgreSQL, it would be possible to change from

PostgreSQL to Timescale at a later point in time. Consequently, the decision is made to

opt for a traditional relational database built using PostgreSQL.

3.3. Stream processing framework

Our stream processing "framework" of choice is Kafka Streams, as it is already included

in Kafka (so technically it is more a feature of Kafka than a framework) and provides all

functionality we require. It is possible to create windows, maintain a state, execute stream

joins and deal with out-of-order data. Of course, there are other, more advanced dedi-

cated stream processing frameworks like Apache Flink[91] and Apache Spark[92]. However,

adding yet another framework would increase the complexity of deploying the prototype

significantly. For the moment, Kafka Streams provides a tight integration within Kafka

of all techniques we require to implement our stream processing tasks (cf. Section 2.1.2).

If more complex processing is required or requirements change, it is still possible to add a

90PostgreSQL ++ for Time Series and Events 2023.
91Apache Flink — Stateful Computations over Data Streams 2023.
92Apache Spark - Unified Engine for Large-Scale Data Analytics 2023.

Montanuniversität Leoben 39 Daniel Pfisterer

DSMS approach in U-space Chapter 3. Framework selection

dedicated framework at a later point in time. For this purpose Kafka provides interfaces

for the most common stream processing frameworks.

The following subsections will give a quick overview of scaling in Kafka Streams, and how

state can be maintained. We note that all information in these subsections is either from

the the official Kafka Streams documentation[93] or the guide book Kafka: The Definitive

Guide, 2nd Edition[94].

3.3.1. Scaling in Kafka Streams

In order to understand how Kafka Streams can scale, it is essential to know what a stream

processing application is and what it does. A stream processing application is a Java

application that is built using Kafka Streams’ library. The underlying processing logic

can be described through a graph consisting of nodes and edges. Nodes represent stream

processors (cf. Section 2.3.3) that describe a processing step in the data transformation

process (e.g. filtering, mapping). These nodes are connected through edges that represent

the data stream. A stream processing application reads data from topics and transforms

a data stream with one or more stream processors before the last node writes the output

to a new topic or an external system.

An example of how one stream processing application that consumes two topics can

be scaled across two threads is illustrated in Figure 3.4. In general, scaling is done

by splitting a stream processing application into multiple tasks. The tasks share the

processing workload by reading from different partitions from one or more topics. This

means that the maximum number of tasks is determined by the maximum number of

different partitions in the consumed topics. In our example the maximum number of

partitions in all topics we consume is 3 in topic 1. Because topic 2 with two partitions is

consumed by the same stream processing application, we can split the stream processing

application into three tasks, not five. Depending on the number of threads available,

Kafka Streams tries to balance the workload as good as possible. In our example thread

1 processes task1_1 and task1_2, whereas thread 2 processes task1_3. Because Kafka

can scale horizontally, threads do not have to be in the same machine. This means that

in our example we have the option to add a third thread from a different machine if we

require better performance (i.e. one task from thread 1 is assigned to the new thread).

Having more threads than tasks (and therefore partitions) would not make any sense

from a performance point of view. The additional threads would remain in idle mode

until another thread fails and they have to pick up its work. The dependence of multi-

threading on the maximum number of partitions highlights how important it is to define

a suitable partitioning logic in Kafka.

93Kafka Streams Documentation 2023.
94Shapira et al. 2021.

Montanuniversität Leoben 40 Daniel Pfisterer

DSMS approach in U-space Chapter 3. Framework selection

Task1_1
Thread 1 Thread 2

Stream
processing

application 1
Task1_3

State

Task1_2

Partition P1_1 Partition P1_2

Topic 1

Partition P1_3 Partition P2_1 Partition P2_2

Topic 2

Stream
processing

application 1

Stream
processing

application 1

Topic 3

State State

Figure 3.4.: Illustration how stream processing of two different topics can be scaled across
multiple tasks and threads in Kafka Streams

3.3.2. Stateful stream processing in Kafka Streams

In general, there are two options for saving state in Kafka Streams. One option is to save

the state locally in an in-memory database; the other one is to store it in an external

system. Because saving state externally would require to set up yet another system, our

prototype will work exclusively with local state. Local state has the advantage of being

way faster than external state (cf. Section 2.3.4). However, storage for local state is

limited, and memory spilling to disk would cause significant performance losses. This

is something to keep in mind when testing the performance of the system. Of course, if

necessary it is always possible to complement Kafka with an external state storage system

later.

Coming back to Figure 3.4, we can see that each task requires its own local state. This

local state is automatically saved by Kafka Streams in-memory utilizing the embedded

RocksDB[95]. To ensure that local state is not lost in case a stream processor fails, changes

to the local state are stored in a topic. Like all other topics in Kafka, they are partitioned

and distributed across multiple brokers. This means that after the failure of a stream

processor local state can be restored by reading all changes from the topic. This is done

automatically, which is why it is reasonable to argue that the processing is fault tolerant.

Moreover, log compaction (cf. Section 2.3.3) makes sure that topics do not grow too big.

Finally, it is important to understand that the state of the entire system is distributed

across all local state storages. It is not possible (nor feasible) to keep only one local state

for all tasks.

95RocksDB | A Persistent Key-Value Store 2023.

Montanuniversität Leoben 41 Daniel Pfisterer

DSMS approach in U-space Chapter 4. System architecture and dataflow

4. System architecture and dataflow

This chapter begins with a section that describes the general architecture, and the data

flow between the different components of the prototype. Further, it is explained, how a

test environment for the prototype is deployed, and how all components within the test

environment can communicate. The following section elaborates the data flow specific

for stream processing in more detail and provides insights into the implementation of the

stream processors. Finally, a design for a database for long term storage is presented.

4.1. Architecture

As explained in Section 2.3, the three main components of our prototype are data inges-

tion, stream processing, and storage. However, in order to build our system we require

additional supporting components for certain tasks. In our case supporting components

include a schema registry, Kafka Connect and monitoring frameworks. The schema reg-

istry is explained in more detail in Section 4.1.1. Kafka Connect can be used to connect

existing databases to Kafka, or to get data from Kafka into a database. Because we have

decided to implement a relational database for longterm storage with PostgreSQL, it is

sound to use an existing solution built for Kafka Connect (cf. Section 4.1.2). Moreover,

monitoring is not built into Kafka, yet it is essential to keep an overview of all topics, the

number of written messages, etc. Similarly, we have to keep track of the data written to

our relational database. For this reason we can use existing external solutions that sim-

plify any monitoring. A general overview of all components and their connections can be

seen in Figure 4.1. We start by producing data from data streams (telemetry messages)

and existing databases (e.g. registered missions, geofences) into Kafka. To process the

data we use Kafka Streams, whereby the data is consumed from Kafka, processed, and

then written back into Kafka. To get the data from Kafka into our relational database

we utilize an existing connector from Kafka Connect. All de-/serialization between the

different components is handled with the help of the schema registry. Finally, because

Kafka and our relational database are two distinct components, we implement a monitor

for each of them.

Montanuniversität Leoben 42 Daniel Pfisterer

DSMS approach in U-space Chapter 4. System architecture and dataflow

Data streams

Monitor

Schema registry
Kafka Streams

Kafka Connect
RDBMS

DB viewer

Databases Zookeeper

Kafka

Kafka Connect

Figure 4.1.: Simplified overview of the prototype’s architecture

4.1.1. Schema registry

The schema registry is an external (to Kafka) component that is utilized to simplify

the process of de-/serialization of data sent between different components and Kafka.

As explained in Section 3.1.1, Kafka handles all data as a byte representation, which

makes de-/serialization an absolute necessity. By default, Kafka implements a set of de-

/serializers for generic data types such as String, Integer, etc. However, we are working

exclusively with JSON messages. For de/-serializing JSON messages there are two options:

Either the JSON message, is converted into a String which is then de/-serialized with a

standard de-/serializer, or a custom de/-serializer working with a schema (describing the

structure of the JSON) is utilized. The advantage of using a custom de-/serializer is the

ability to control which data gets into the system, and how the data evolves. For instance,

if a new field is added to our JSON messages, our system would recognize that it does

not comply with the existing schema. Consequently, we can update our schema, so the

system knows that the messages look different now. Without a schema, we would not

know that the message structure changed. Upon deserialization we would be greeted with

an additional field, not knowing what to do with the data. This means that in order

to de-/serialize JSON messages while controlling evolving data, we require some schema

that describes how our messages are structured. For this purpose we utilize a popular tool

called JSON schema[96]. Alternatively, Kafka also offers support for Apache Avro[97], and

Protobuf [98]. However, as we will work exclusively with JSON, it is reasonable to select a

JSON schema that has been specifically developed for this purpose.

In order to use a schema for de-/serialization it must be stored in a place where it is

available to all consumers and producers. One possibility is to attach the schema to

each message. In this way, it is available throughout the whole data flow. However, this

creates an additional storage overhead because the schema is included in each message

96JSON Schema 2023.
97Apache Avro 2023.
98Protocol Buffers 2023.

Montanuniversität Leoben 43 Daniel Pfisterer

DSMS approach in U-space Chapter 4. System architecture and dataflow

that is sent to Kafka. So if we send 1000 messages we have to save the same schema a

thousand times. For this reason we use the schema registry for storing one schema upon

serialization. When one component (e.g. a consumer) reads data from Kafka it simply

retrieves the same schema and re-uses it for deserialization. How the schema registry can

be utilized is exemplified in Figure 4.2. We can see that upon producing a message, first,

the schema is sent to the schema registry. If the same schema already exists in the registry,

nothing happens, otherwise the updated schema is saved as a new version. In this way, we

only have to store one schema for each version of a message. Next, the serialized data, in

the form of a byte representation, is then sent to Kafka. From Kafka the serialized data

is read by a consumer, who retrieves the schema from the schema registry to deserialize

the data for further use.

Producer ConsumerKafka
Cluster

Schema registrySend schema Get schema

Validate schema

Data serialized
with schema

Data serialized
with schema

Figure 4.2.: Illustration of the schema registry’s functionality

We note that it is also possible to upload a pre-defined schema to the schema registry

to have more control over the schema uploaded by the producer. Moreover, in case the

structure of the message should change at some point, it is possible to evolve the schema

while maintaining backwards compatibility with older schemas. Regarding fault tolerance,

the schema registry (basically) is a Kafka topic for storing schemas. Consequently, it is

possible to apply the same replication techniques as for ordinary topics (i.e. define a

replication factor RF ≥ 2).

4.1.2. Kafka Connect

In order to get data from external databases into Kafka, and from Kafka into external

databases in a scalable manner Kafka Connect[99] can be utilized. Kafka Connect uses

so-called connectors (for source or sink) to define where the data comes from and goes

to. An instance of a connector can be viewed as a logical job for the exchange of data

between Kafka and an external storage system. Depending on our database schema we

can start multiple instances of the same or different connectors (i.e. we require at least

one connector instance for each table in our database). Because we are working with

a widely applied framework like PostgreSQL we can choose between numerous existing

99Kafka Connect | Confluent Documentation 2024.

Montanuniversität Leoben 44 Daniel Pfisterer

DSMS approach in U-space Chapter 4. System architecture and dataflow

connectors that can be installed as plug-ins. In our case we can use a JDBC-connector

(Java Database Connectivity)[100] for source and sink that is compatible with PostgreSQL.

If however a more customized database solution is implemented it is also possible to

develop a customized connector. Each connector instance is divided in to a set of tasks.

By defining a maximum number of tasks we can determine how many tasks are available

for load balancing; i.e., for tables where we expect a high number of consecutive writes

(or reads) we allow more tasks. Of course, the tasks are fault-tolerant as their state is

stored in Kafka topics. In order to execute connectors and tasks Kafka Connect utilizes

processes called workers. Thereby it is possible to execute workers either in standalone

or distributed mode. In standalone mode one worker executes all connectors and tasks.

However, this does not allow for any scalability. Consequently, we work in distributed

mode where many worker processes execute tasks and connectors. In order to handle the

de-/serialization between Kafka and Kafka Connect, Kafka Connect provides converters

that are compatible with the schema registry. In cases where small changes must be

applied to a message, Kafka Connect provides a series of simple transformations (e.g.

replace the existing key with fields from the record value). However, the possibilities

of these transformations are limited and should not be viewed as substitute for Kafka

Streams (cf. Section 3.3).

We note that all information from this subsection is sourced from the official Kafka Con-

nect documentation from Confluent[101].

4.2. Deployment

Deploying Kafka brokers natively on one or more servers is a (presumably) long and

intensive process. Because time and resources are limited, it does not make sense to set

up a native broker deployment for testing the prototype. For this reason we require a

technology that enables Kafka brokers to run on a local machine for development, while

also allowing to easily switch to a different machine (i.e. a server) for performance testing.

A popular option for this purpose is Docker [102], a platform that can be used to build

and run containerized applications. Here, a container can be described as an isolated

entity that includes everything required to run an application. In order to prepare a

container for running an application it can be set up manually, or existing image-files

can be downloaded from the Docker-hub[103]. In general, a container is similar to a

virtual machine, yet a container does not have its own OS kernel, therefore it requires

less resources, thus simplifying the development process and testing. Moreover, when

switching to a different machine, we require only a Docker installation on that machine to

100JDBC Connector (Source and Sink) for Confluent Platform 2024.
101Kafka Connect | Confluent Documentation 2024.
102Docker 2022.
103Docker Hub 2023.

Montanuniversität Leoben 45 Daniel Pfisterer

DSMS approach in U-space Chapter 4. System architecture and dataflow

run all containerized applications without having to apply any changes. Applications with

multiple containers can be defined in a single Docker-compose file (with the file ending

.yaml or .yml). The communication between the different containers is managed through

ports (how all containers are connected is defined in Section 4.2.1). In our case, we only

need one Docker-compose file to define containers for all components such as brokers,

schema registry, monitors, etc.

Of course, preparing Docker containers alone is not enough as we still need to implement

our own coding logic in Java (an overview of all applications implemented is given in

Section 4.2.2). All our producers and Kafka stream processors are Java programs written

in an Integrated Development Environment (IDE). Within this IDE we can initialize all our

containers, and run our Java programs. Like the interaction between different containers,

the interaction between our Java producers/processors and containers is done through

ports (cf. Section 4.2.1). Because the Java programs rely on the containers it is important

to start the containers before the programs. We note that producers and processors are

not the only applications that interact between Docker and Java programs. Other typical

use cases include an admin client that can create new topics, a schema uploader for the

schema registry, or a customized consumer.

In general, the process of developing, and testing our prototype within an IDE can be

described as follows:

1. The first step is to define containers for all components in a Docker-compose .yaml-

file. It is important to correctly specify in which sequence the containers are started

(e.g. you must start zookeeper before the broker; cf. Section 4.2.1), which ports are

open, and to define the properties accordingly. Of course, to prepare the container

for running the application, the correct images must be downloaded. The specified

image is downloaded automatically upon starting the container.

2. The next step is to write all Java programs required (e.g. stream processors, pro-

ducers, admin client, ...). Moreover, .properties files must be defined to specify the

settings for the producers, processors, as well as topic names, ports etc. Defining

properties in external files greatly simplifies the change process for settings that are

re-used for multiple Java applications (e.g. broker connection, schema registry). If

they were defined directly in the Java applications, every small change would require

to manually adapt all Java applications to the new setting.

3. After the preparation of all containers and Java programs, the containers are started.

Upon the first start of a container instance the image is pulled from the Docker-

hub. If no settings are changed container instances can be stopped and started

effortlessly. Albeit, the dependencies between the containers have to be considered.

If, however, settings for a container are updated, it is necessary to delete the old con-

tainer instance (and all depended instances of other containers) before re-building

Montanuniversität Leoben 46 Daniel Pfisterer

DSMS approach in U-space Chapter 4. System architecture and dataflow

it. We note that the images are not downloaded again after deleting an instance of

a container, as images are stored in a separate directory.

4. Finally, all Java programs can be started. Again, it is important to stick to the

right sequence (e.g. do topic creation and schema registration before producing and

processing data).

4.2.1. Docker set-up

All communication between components within Docker and components external to Docker

is done via ports. However, because of numerous different components in our set-up (cf.

Figure 4.1) it is difficult to keep track of all connections. For this reasons, an overview of

our Docker set-up with an exemplary external connection is illustrated in Figure 4.3.

We can see that the broker is the most important component, as every external component

and many of the Docker-internal components connect to it. In order to allow external and

internal connections we provide two different ports. In our case, port 19092 is used for

external, 9092 for internal connections. Furthermore, we open port 9997 to provide access

to the Java Management Extension (JMX) metrics which can be utilized for monitoring

Java applications.

In general, to establish connections with Docker, externally localhost:port-number and

internally container-name:port-number must be accessed. Of course, instead of container-

name and port-number we have to enter the values defined in Docker.

Another component that has internal and external connections is the schema registry. As

it is essential for de-/serialization, it is reasonable to connect it externally to producers,

stream processors, and internally to Kafka Connect, and the broker. Yet, unlike the

broker due to technical specifications the schema registry can operate with only one open

port for internal and external connections.

The last component in Docker with external connections is Prometheus[104]. We require

Prometheus to gather all data from the open JMX ports of our components for monitoring.

In order to make metrics available at the ports we require a JMX-exporter [105] that is

executed together with the Java applications we want to monitor. Without a jmx-exporter

Prometheus would not be able to collect any data at the specified ports. Because the

jmx-exporter runs together with the Java applications, it is not illustrated in Figure 4.3.

However, it would be possible to run the jmx-exporter within Docker. Yet, for reasons

of simplicity, the jmx-exporter is executed together with the Java applications. Finally,

to visualize our metrics, we utilize a tool called Grafana[106]. Grafana takes the data

gathered by Prometheus and visualizes it in customized dashboards. One big advantage

104Prometheus 2023.
105Prometheus/Jmx_exporter 2023.
106Grafana 2023.

Montanuniversität Leoben 47 Daniel Pfisterer

DSMS approach in U-space Chapter 4. System architecture and dataflow

of Grafana is the availability of many pre-designed dashboards. Of course, if required,

it is possible to design dashboards that are entirely customized. However, to create a

customized dashboard, it is essential to have an overview of all available metrics. It is

possible to view all metrics available by accessing the JConsole[107] (this tool is included

in Java and does not require further steps of installation). As the JConsole is used only

in the beginning to examine available metrics, it is not illustrated in Figure 4.3.

The rest of the components in our Docker-compose set-up are related to the interaction

with Kafka and our relational database. In order to interact with all our components

we utilize the tool Kafka UI [108] which is connected directly to nearly all internal com-

ponents. As explained in Section 3.2, we use PostgreSQL for implementing a relational

database that stores our historical data. The content of this PostgreSQL database can

be accessed with the help of PgAdmin4 [109]. Because it is mandatory to define user-name

and password, some generic placeholders are entered.

We note that graphical user interfaces (GUIs) for Prometheus, Grafana, Kafka UI, and

PgAdmin4 can be accessed through any web-browser in the same network by calling

localhost:port-number. For instance, Grafana is available on port 3000, so the GUI can be

accessed by entering localhost:3000 in a browser on our machine. Of course, all the other

components can be accessed the same way. However, they do not have a dedicated GUI.

Components start sequence

All Docker containers must be started in the right sequence to comply with different con-

tainer dependencies. The correct start sequence for all our components from Figure 4.3

running in Docker containers is illustrated in Figure 4.4. We can see that we have three

(mostly) independent start sequences: Kafka, database, and monitoring. This is reason-

able, as we do not want our database, monitoring service, and Kafka set-up to depend on

each other. By running them independently we (try to) evade complete system failures.

For instance, if Kafka fails it is important that our monitoring service is still up and

running to detect the failure immediately.

The individual start sequences themselves are pretty straightforward. In Kafka brokers

depend on Zookeeper (cf. Section 3.1.1), which is why Zookeeper must be started first.

The schema registry stores schemas in Kafka topics, therefore it requires a working broker.

Similarly, Kafka Connect requires a schema for de-/serialization; consequently it is started

after the schema registry. Because Kafka UI interacts with all these components, it is

started last. For the database sequence, Postgres must be started before PgAdmin4 (you

cannot use the database viewer without a database). Finally, Grafana requires data from

Prometheus to create visualizations, so Prometheus must be started first.

107Using JConsole - Java SE Monitoring and Management Guide 2023.
108Kafka UI Provectus 2023.
109pgAdmin4 2023.

Montanuniversität Leoben 48 Daniel Pfisterer

DSMS approach in U-space Chapter 4. System architecture and dataflow

Broker
open ports:

- 19092
- 9092
- 9997

zookeeper:
- 2181

Database connection

Zookeeper
open ports:

- 2181

Schema-registry
open ports:

- 8081
broker:

- 9092

Kafka UI
open ports:

- 8080
broker:

- 9092

schema-registry:
- 8081

kafka connect:
- 8083

jmx:
- 9997

Kafka Connect
open ports:

- 8083
broker:

- 9092
schema-registry:

- 8081

Postgres
open ports:

- 5432
user:

- postgres
password:

- password

pgAdmin4
open ports:

- 5050
user:

- postgres
 @test.com

password:
- kafka

Producer
broker:
 localhost:19092

schema-registry:
 localhost:8081

Stream processor
broker:
 localhost:19092

Input topic
broker:
 localhost:19092

Output topic
broker:
 localhost:19092

Java programs

user:
- grafana
 @test.com

password:
- kafka

Grafana
open ports:

- 3000
prometheus:

- 9090

Docker-compose

schema-registry:
 localhost:8081

jmx:
- 5556

jmx:
- 5557

jmx processor:
- 5556

jmx producer:
- 5557

Prometheus
open ports:

- 9090
jmx broker:

- 9997 Monitoring

Figure 4.3.: Illustration how all components from the prototype are connected through
ports

We note that despite the independence of the different sequences, it is recommendable to

start all of them before executing any Java applications for producers, stream processors,

or consumers. Even if the most important sequence is Kafka itself, the simultaneous start

of all sequences before the execution of Java applications helps to reduce the susceptibility

to errors.

Montanuniversität Leoben 49 Daniel Pfisterer

DSMS approach in U-space Chapter 4. System architecture and dataflow

Zookeeper

Broker

Schema-registry

Kafka Connect

Kafka UI

Postgres

PgAdmin4

Prometheus

Grafana

1

2

3

4

5

1

2

1

2Da
tab

ase

M
on

ito
rin

g

Ka
fka

Figure 4.4.: Start sequence dependencies of all components running in Docker containers

4.2.2. Java applications

As mentioned in the previous sections, the logic for our producers, stream processors,

and consumers is implemented in Java applications. An overview of all classes and their

methods is given in Appendix A. These class diagrams do not include any information

about the simulator used (cf. Section 4.2.3), except for the interface it is connected to. In

general, our prototype includes Java packages for producers (cf. Appendix A.3), stream

processors (cf. Appendix A.4), and one for a variety of tools (e.g., uploading a schema,

creating a new topic; cf. Appendix A.1). In addition to our main, we use two supporting

classes; one for the simulator and one for starting Kafka with all connectors and topics

(cf. Appendix A.2). Each package contains all the relevant classes associated with the

given task. We are not giving an explanation for each package with all its classes, as the

comments in the code should suffice to understand the coding logic.

At this point we want to note that ChatGPT is used extensively throughout the devel-

opment process to create simple scripts or get a general idea for how to structure Java

programs that are created with previously unknown frameworks. However, the structure

of the files, the design of the dataflow, in general, all decision that concern the design of

the system are made without ChatGPT.

4.2.3. Simulator

In order to test the prototype it is connected to a simulator. With this simulator we can

create any number of drones, operators, missions, and telemetry messages based on the

requirements of our tests. The interaction with this simulator is managed through an

interface that includes function calls to our Kafka producers and our connected database.

For instance, if a new telemetry message is created by the simulator, it is handed to the

Kafka producer through the interface, which produces the message to the target topic.

Similarly, if the simulator creates, updates, or deletes a mission, we send an SQL-statement

to our database which executes the update on the corresponding row in the table.

Montanuniversität Leoben 50 Daniel Pfisterer

DSMS approach in U-space Chapter 4. System architecture and dataflow

In general, any interaction between the prototype and the simulator is managed via the

interface. Apart from the settings controlling e.g. the number of telemetry messages no

changes are made to the simulator. As designing a simulator is not part of this thesis’

scope, neither the simulator nor any of its modules are described in more detail.

4.3. Stream processing

The first part of this section describes the general design of the dataflow between the data

sources, Kafka, and the stream processors. This part offers an overview of the created

topics and their relation with the respective stream processors. Also, the dependencies

between the different stream processors are highlighted. The second part focuses on

the implementation of the stream processors, describing the general processing logic,

encountered difficulties, and how they are solved.

We note that the first subsection describes the whole system, whereas the second part

describes only the tasks that are actually implemented (i.e. C1, C2, and C3) for the tests

in Chapter 5. The reason behind this is that the implementations of C1, C2, and C3 are

considered to provide enough evidence for the feasibility of our prototype, as the require us

to deal with stateless and stateful operations, data partitioning, source and sink database

connections etc.

4.3.1. Stream processing data flow

Our prototype has to provide five stream processing tasks (C1 enrich telemetry data, C2

FP correlation, C3 conformance monitoring, C4 conflict detection, C5 spatial clustering;

cf. Section 2.1.2). Knowing that these five tasks receive data from four different sources (a

telemetry data stream, as well as geofence, flight plan, and unregistered UAS databases),

we can construct an abstraction of our streaming dataflow within Kafka. In Figure 4.5

we can see an illustration of the dataflow centered around Kafka. The general procedure

for processing always remains the same: the initial data is produced to topics, a stream

processor reads data from one or more topics, processes it, and writes it to one or more

new topics.

Although the general design of the dataflow cannot be altered, there are two possible

variations that could lead to different results in performance (something that remains to

be tested).

1. The output from C1 is written to the topic Enriched telemetry. Because the only con-

sumer for this topic is C2 it would be possible to combine C1 and C2 into one stream

processing application that is executed by the same threads (cf. Section 3.3.1). The

way it is sketched in Figure 4.5 C1 and C2 are two distinct stream processing appli-

cations, which means that they are executed by different threads. If running these

Montanuniversität Leoben 51 Daniel Pfisterer

DSMS approach in U-space Chapter 4. System architecture and dataflow

tasks as separate threads is advantageous can only be shown by performance tests.

The same idea applies to C4 and C5, because the output topic from C5 is consumed

only by C4.

2. The second alternative is not so much related to the dataflow, but to the partitioning

of the telemetry data stream. As explained in Sections 3.1.1 and 3.3.1, the question

of how to partition data in Kafka is an essential one. Depending on the data at

hand there are different options for the initial partitioning available (e.g. based

on ID, operator, spatial partitioning). Of course, the initial partitioning can be

modified by stream processing, yet for some tasks it might be beneficial to apply

a certain partitioning strategy right from the beginning. Our default partitioning

will be based on a unique UAS identification number. However, which partitioning

strategy is ideal (or if we require more than one strategy) for our prototype remains

to be tested.

UFP

Flight plan (FP)

Geofences

Telemetry

UFP

Flight plan

Geofences

UFP correlation

Alerts C3

Telemetry

Enriched telemetry

Alerts C4

Stream
processor

C1

FP correlation Stream
processor

C2

Stream
processor

C3

Stream
processor

C5
Clustered telemetry

Stream
processor

C4

Kafka topics

C1 ... Enrich telemetry
C2 ... FP correlation
C3 ... Conformance monitoring
C4 ... Conflict detection
C5 ... Clustering

Kafka producers

Kafka
streams

1

1

2

Figure 4.5.: Illustration of the streaming dataflow centered around Kafka

Montanuniversität Leoben 52 Daniel Pfisterer

DSMS approach in U-space Chapter 4. System architecture and dataflow

An alternative illustration of the dataflow can be seen in Figure 4.6. Here, the dataflow

is not built around Kafka, but illustrated as a directed acyclic graph (DAG). A DAG is a

graph consisting of nodes and edges, where all nodes are connected through edges with a

given direction. Furthermore, a DAG does not allow any cycles (i.e. it is not possible to

find a directed path where the start and end node are the same). The illustration as DAG

emphasizes the flow of data in a single direction; it is not feasible that a stream processor

consumes data from and writes data to the same topic. Similarly, no stream processor

consumes data from any downstream stream processors. Moreover, this illustrations shows

more clearly, how the different processing tasks depend on each other. For instance, the

processing tasks C3 and C4 depend on the results from C2, which in turn depends on the

results from C1.

We note that for this illustration we distinguish between three kinds of nodes. This,

however, serves only the purpose of highlighting similarities with Figure 4.5; all kinds of

nodes are to be considered equivalent.

PRegistry

PFP

PTelem.

PGeofences

TRegistry

TFP

TTelem.

TGeofences

SPC1

SPC5

SPC2

SPC3

SPC4

TEnriched

TCluster

TAlerts C4

TAlerts C3

TFP

TTracking

SP ... Stream processor
P ... Producer
T ... Topic

Figure 4.6.: Illustration of the streaming dataflow as DAG

4.3.2. Stream processor implementations

Kafka Streams offers two levels of API (Application Programming Interface). At a high-

level API, the Kafka Streams DSL (Domain Specific Language) provides a series of com-

mon functions (e.g. map, filter, join) that are easy to implement, but do not offer a lot of

customization options. At a low-level API, the Processor API offers more flexibility than

the Kafka Streams DSL, especially for working with state (cf. Section 2.3.3). Because the

Processor API is the basis for the Kafka Streams DSL it is possible to use a combination

of both[110]. This is ideal for our prototype which requires standard functions for simple

110Apache Kafka Documentation 2023.

Montanuniversität Leoben 53 Daniel Pfisterer

DSMS approach in U-space Chapter 4. System architecture and dataflow

processing operations like C1 , but needs to handle state for more complex operations like

C2 and C3:

• C1 Enrich telemetry data

Updating the altitude for each telemetry message individually is a stateless trans-

formation that can be implemented with the high-level Kafka Streams DSL. The

stream is read from the topic that is fed with telemetry messages from the simulator.

This stream is then processed into a new stream with updated messages that are

saved to a new topic for downstream use. All messages are updated via a module

from an external library.

We note that all modules from the external library used for the computations of

either C1, C2, or C3 are not developed as part of this thesis.

• C2 FP correlation

In order to correlate FPs with telemetry messages we need to connect an existing

database that contains all FPs. We save all FPs in a PostgreSQL database and keep

a copy of the whole database in a Kafka topic. To get the data into Kafka we utilize

Kafka Connect. Because we have to perform a look-up for a corresponding FP for

each telemetry message we save the whole topic in a state store which can be queried

by our stream processor. This state store keeps only the most recent key-value pairs;

in our case the ID of the FP (key) and the FP itself (value). To access the state

store during processing we have to use a customized processor implemented with

the Processor API. In this customized processor we access the current state of our

FP database and call the external module to perform the correlation between a FP

and a telemetry message based on the ID.

We note that it is also possible to query a Kafka topic directly without using a state

store. A popular option besides Kafka Streams that allows to query a data stream

with SQL-like syntax is ksqlDB[111]. However, in our case this implementation

would not be feasible as we are bound to an existing module through an interface.

This interface explicitly demands a Java Collection<E>[112] of FPs as input. Yet,

when querying from a topic we cannot create collections easily, as this is not the

intended way of using streaming queries. Queries of streams are usually executed

continuously as new messages of a potentially unbounded stream arrive. Turning

them into a Collection is possible, but requires a work-around. We could take the

topic as input and turn it into a stream. We filter this stream and save the results

to another topic; then we consume this topic with a different stream processor that

saves each message into our Collection. This method is overly complicated and not

sustainable for large numbers of UAS as it would create lots of one-use-only topics in

111ksqlDB: The Database Purpose-Built for Stream Processing Applications. 2024.
112Collection (Java Platform SE 8) 2024.

Montanuniversität Leoben 54 Daniel Pfisterer

DSMS approach in U-space Chapter 4. System architecture and dataflow

Kafka. Consequently, we have to work with a customized solution that is compatible

with the existing module. For future iterations of the system it is recommendable

to consider implementing the external modules natively using the API provided by

Kafka Streams.

The second task performed by C2 is checking for a loss of signal. In order to do

this we have to keep the latest message received from each UAS in a state store.

When a new message arrives, we access the state store to check when the latest

message was received. We compare the times of the latest and the current message

(tlatest and tcurrent) to see if t∆max ≥ tcurrent − tlatest. If so we mark the signal of

the current message as reset, so we know it is either the first message received, or

there was a loss of signal. Moreover, we have to check the state store regularly to

automatically send a warning if for some period of time t (which does not have to

equal t∆max necessarily) no signal is received. By implementing a Punctuator we

schedule automatic monitoring of our state store based on the system time. If an

old message with a correlated FP is received the Punctuator sends a message to the

corresponding topic in Kafka. Like performing a look-up for a FP, checking for a

loss of signal is performed through a customized processor with a state store. It

would be possible to perform both computations with one processor, but for the

sake of modularity two separate processors are implemented.

One difficulty with using a state store in combination with a schema registry is that

the first access to the state store must be a write because schemas are registered

upon the first write. If we try to read from a state store without writing to it

first the serialization fails because the serializer cannot find a schema in the schema

registry. For cases where it is not possible to write to the state store first a schema

must be registered in the schema registry manually.

• C3 Conformance monitoring

Checking if telemetry messages are in conformance with an existing FP requires to

keep the flown trajectory for each UAS in state. Similar to the implementation of

C2, the interface for the module for C3 requires a the flown trajectory as Collection

as input. Consequently, we use the Processor API to create another customized pro-

cessor. This processor reads only from the topic with correlated telemetry messages

to check the adherence. For each correlated telemetry message another message is

written to a different topic to see for each message if adherence exists. In order to

automatically create alerts this topic can be monitored by another processor to send

an alert if adherence is lost.

Montanuniversität Leoben 55 Daniel Pfisterer

DSMS approach in U-space Chapter 4. System architecture and dataflow

4.4. Database connections

The prototype can connect tables in our PostgreSQL database as source or sink for Kafka

through Kafka Connect (cf. Section 4.1.2). An overview of all tables in our database

can be seen in Figure 4.7. All tables are created automatically upon the initialization

process of PostgreSQL when a script with SQL commands is executed. For each table

in our database we require a JDBC-connector from Kafka Connect (cf. Section 4.1.2);

in our case we can use multiple instances of the same connector, as all our tables are in

PostgreSQL. In the source tables we store all FPs and UFPs; geofences are not included,

as they are not implemented in the simulator. In the sinks we store all telemetry messages

that are correlated with FPs, and any alarms (i.e. adherence with the FP, loss of signal)

sent by the system (cf. Section 2.1.2). Also, all telemetry messages that cannot be

correlated with a FP are saved because of regulatory requirements (cf. Section 2.1.1).

The content of the tables is based on the attributes of the Java objects that are provided

by the simulator. Our table for the correlated telemetry includes references to the FP or

UFP, as well as an information about the signal (i.e. if we receive a message after a signal

loss we set signal_reset to true). For the signal loss table we store references to the FP or

UFP and the signal boolean which is false as soon as no signal has been received for some

time. In the adherence table we keep only the reference for the FP as we cannot check the

adherence for an uncorrelated UAS. For each telemetry message with a correlated FP we

check if it has adherence, if not we calculate the delay. It is essential that the structure

of these objects matches the tables’ columns exactly. This also applies to the data types;

if structure and data types do not match Kafka Connect cannot save any data in the

table. This is where the schema registry (cf. Section 4.1.1) comes in handy, as it allows

us to define schemas for the structures and data types of all our objects. If, however,

the schema from the registry does not match the object or the table in the database, the

de-/serialization fails immediately. Neither Kafka Connect nor PostgreSQL provides a lot

of flexibility for altering objects or schemas (except for e.g. changing the primary key).

The only way to correct any mismatch between objects, schemas, or tables is to transform

the objects via stream processing. In order to evade this inconvenience, it is important

to have consistently defined objects, schemas, and tables along the whole dataflow from

source to sink.

We note that in order to use foreign keys with PostgreSQL and Kafka correctly the design

of the dataflow is important; the parent table with the original data must be populated

before the child tables that hold the references.

Montanuniversität Leoben 56 Daniel Pfisterer

DSMS approach in U-space Chapter 4. System architecture and dataflow

timestamp
uas_serial_number
longitude
latitude
altitude
state

...

uas_registration_id
uas_tracking_id

Telemetry
BIGINT
VARCHAR
DOUBLE
DOUBLE
DOUBLE
VARCHAR
VARCHAR
VARCHAR
...

id_ufp
uas_serial_number
uas_registration_id
uas_tracking_id
data

UFPs
BIGINT
VARCHAR
VARCHAR
VARCHAR
TEXT

id_fp

request_time
duration
data

uas_registration_id
uas_serial_number

uas_tracking_id

FPs
BIGINT
VARCHAR
VARCHAR
VARCHAR
TIMESTAMP
INT
TEXT

timestamp
uas_serial_number
signal_reset
fp_id
ufp_id

Correlated telemetry
BIGINT
VARCHAR

BIGINT
BIGINT

BOOLEAN

fp_id

signal

Signal loss
INT

BOOLEAN

fp_id
timestamp
has_adherence
delay

Adherence
BIGINT
BIGINT
BOOLEAN
INT

ufp_id

id_signal_loss

BIGINT
BIGINT

Figure 4.7.: Overview of all tables (source and sink) in our PostgreSQL database

Montanuniversität Leoben 57 Daniel Pfisterer

DSMS approach in U-space Chapter 5. System implementation tests

5. System implementation tests

In this chapter the results from testing the prototype with data provided by a simulator

are described and discussed. First, the environment and the machine that the prototype

is running on are described. Next, the test scenarios and settings from the simulator are

elaborated, before the results are presented. Finally, the results are discussed and an

overview of the limitations of the implementation is given.

5.1. Runtime environment

All tests are conducted on an Apple MacBook Pro 14" 2021 with a 8-core M1 Pro chip,

and 16GB unified memory [113] . The operating system running on this machine is macOS

Sonoma 14.2.1. However, as most of our components are executed as Docker containers, it

is possible to run the same tests on any other operating system (i.e. Linux and Windows)

that has an installation of Docker-desktop. In Docker it is possible to adjust the maximum

resource allocation for the number of CPU-cores, unified memory, swap memory, and

memory of the virtual disk. Because we do not yet know how this resource allocation

affects our results, we have to try different configurations, especially for the number of

CPU-cores and the unified memory. We refrain from allocating all resources to Docker

by default, as our stream processors are running as Java applications that are not part of

any Docker containers.

5.2. Test procedure, settings, and scenarios

The tests for our prototype focus mostly on the stream processing, as it is the core of our

system. However, before testing the stream processing logic, we have to ensure that our

dataflow in Kafka is handled correctly. In order to control that topics are created correctly,

messages are produced to the right topic etc. we can use Kafka UI (cf. Section 4.2.1).

Kafka UI allows us to interact with our Kafka cluster through a GUI running in a web-

browser. With this GUI we can view all our brokers, topics, consumers, Kafka Connect

113Unified memory is a marketing term used by Apple. It describes a combination of RAM and VRAM
that is soldered directly on the CPU, which, in theory, should greatly reduce memory accessing speeds.
We do not assume that this difference in architecture has a big impact on performance, yet, for the
sake of completeness, this information is included.

Montanuniversität Leoben 58 Daniel Pfisterer

DSMS approach in U-space Chapter 5. System implementation tests

connectors, and the schema registry. Moreover, we can inspect topics more closely by

viewing all partitions and the messages in them individually. It is also possible to observe

all schemas created in the schema registry. For consumers and connectors there is an

overview of all stable connections; so we know when e.g. a connector fails to write to

our database. Of course, we also have to check that our data gets from Kafka into our

PostgreSQL database (or from PostgreSQL into Kafka). Here, we can use PgAdmin4,

which, like Kafka UI, provides a GUI through a web-browser. This GUI allows us to

interact with our database in order to control that all tables are created correctly, and

that all events from our Kafka topics arrive in the correct tables. By inspecting the

stability of the connectors and the events that arrive in the database we can control that

the de-/serialization with the schema registry works correctly (if it does not work the

connector would fail immediately).

Two things that are difficult to test with our prototype are fault-tolerance and scalability.

For fault-tolerance it is easy to simulate failures, like by stopping and restarting the broker

to see if any events are lost. However, we do not have a multi-broker set-up running across

multiple servers that would allow us to simulate more complex failures. The mechanisms

provided by Kafka to provide fault-tolerance are discussed throughout this thesis (cf.

Section 3.1.1), yet in order to say the system is fully faul-tolerant more extensive testing

of a native implementation would be necessary. For scalability we would require more

computational resources (e.g. CPU and RAM) that we can add to see how the system

scales. For now we want to establish a basis of what kind of performance to expect from

Kafka and Kafka Streams running on a machine that is not very powerful. Due to the

scaling mechanisms available (cf. Sections 3.1.1 and 3.3.1) we are certain that a more

powerful system would lead to better results in performance.

The first set of tests to run for our Kafka Streams implementation concern the function-

ality. Testing the functionality includes verifying for each stream processor individually

if the messages are transformed according to the requirements (cf. Section 2.1.2) and

stored in the right topic(s) (cf. Section 4.3.1). This verification can be done easily with

Kafka UI and PgAdmin4. The second set of tests is concerned with the performance of

the stream processors using different parameter settings. We want to know if our proto-

type can deliver all services (C1, C2, and C3) within 1Hz. If yes, we want to know how

many UAS can be simulated in parallel before the threshold of 1Hz is exceeded. Because

Kafka and all other components offer an extensive amount of configuration options, we

refrain from changing and discussing all of them. Also, most configurations deliver the

desired results with the default settings. Yet, the partitioning of data and the number of

tasks possible for the stream processors greatly influence scalability, therefore we will test

different options to see how the results change.

Montanuniversität Leoben 59 Daniel Pfisterer

DSMS approach in U-space Chapter 5. System implementation tests

Kafka set-up

The following tables offer an overview of the most important topics (cf. Table 5.1),

producers (cf. Table 5.2), connectors (cf. Table 5.3), and stream processors (cf. Table 5.4)

created and utilized by our prototype. In Table 5.1 we can see a list of all topics that we

create manually. This table does not include any topics that are created automatically to

e.g. store log numbers or when using Kafka Connect. The maximum number of partitions

we assign is 3. Partitions are important for scaling the system, yet if we have too many

partitions we could create an unnecessary overhead for coordinating these partitions. For

our tests we align the number of partitions with the maximum number of stream threads

from our stream processors (cf. Table 5.4). We will only change the number of partitions

for the topics where we expect the most traffic (i.e. telemetry, enrichedTelemetryMessage,

correlated, adherence). To all other topics we assign only one partition; we will not change

this, unless we discover a bottleneck because of these topics. Because we are working with

a single broker set-up, the replication factor (RF) is set to 1 for all topics. This means

that the only replication we keep is the original topic. Consequently, the number of in-

sync replicas (ISR) is set to 1 as well, because only the original topic is synchronized.

We note that for a typical multi-broker set-up RF = 3 and ISR = 2. A set-up like this

could tolerate the failure of RF − ISR = 1 brokers. In order to get more information

on the available configurations for topics in Kafka and their meaning we refer to the

documentation from Confluent[114].

Topics

topic_names replication factor (RF) partitions in-sync replicas (ISR)
telemetry 1 3 1

jdbc-source-fps 1 1 1
ufps 1 1 1

enrichedTelemetryMessage 1 3 1
correlated 1 3 1

uncorrelated 1 1 1
signal 1 1 1

adherence 1 3 1

Table 5.1.: Overview of all manually created topics in Kafka

As we can see in Table 5.2, we require three different producers in our Kafka set-up. The

TelemetryProducer produces a stream of messages from the simulator to our telemetry

topic; the UfpProducer creates a new UFP in our topic when an uncorrelated UAS is

discovered; the SignalLossProducer produces a message to our signal topic if for some

time no messages are received. Except names and key serializers, the settings for all pro-

ducers are identical. The listed configurations indicate that our producers send messages

114Kafka Topic Configuration Reference | Confluent Documentation 2024.

Montanuniversität Leoben 60 Daniel Pfisterer

DSMS approach in U-space Chapter 5. System implementation tests

immediately, are idempotent (cf. Section 2.3.3), and that schemas are created automat-

ically. For our tests we leave these settings at their default values. We will not change

any producer settings in our test scenarios, as the scaling for the producer depends on the

number of available partitions for the topics. To get more information on the available

configurations for Kafka producers and their meaning we refer to the documentation from

Confluent[115].

Producers

producer_names key_serializer value_serializer
TelemetryProducer uas_serial_number (String) KafkaJsonSchema

UfpProducer id_ufp (Long) KafkaJsonSchema
SignalLossProducer id_signal_loss (Integer) KafkaJsonSchema

configurations equal for all producers
linger.ms default (0)
batch.size default (16384)

compression snappy
idempotence true

auto.register.schemas true
retries default (2147483647)

buffer.memory default (33554432)

Table 5.2.: Overview of all producers and their settings in Kafka

In Table 5.3 we can see a list of all source and sink connectors utilized (this list matches

the tables given in Section 4.4). The most important configurations are the key and value

converters and the maximum number of tasks. For the key and value converters it is

important that they match the tables in the database (cf. Section 4.4). For instance,

in our adherence table, fp_id and timestamp form the primary key. Consequently, we

have to set the same key in our connector and serialize it as String. As explained in

Section 4.1.2, the maximum number of tasks is important for scaling the connectors.

However, we do not plan to change this number for any connector, unless we discover

there is a bottleneck that decreases the performance of the whole system.

In Table 5.4 we can see a list of the three stream processors that are implemented to

provide C1, C2, and C3 (cf. Section 4.3.2). The key and value de-/serializer [116] settings

are not that important here, as they are just default settings and can be configured

manually during the stream processing. However, the number of threads is essential for

the parallelization of our stream processing (cf. Section 3.3.1). For our tests we can

allocate up to eight physical CPU-cores. We favor C2 and C3 over C1 for core allocation,

because they are more computationally intense.

115Kafka Producer Configuration Reference | Confluent Documentation 2024.
116A common abbreviation for a combination of a serializer and a deserializer is serde.

Montanuniversität Leoben 61 Daniel Pfisterer

DSMS approach in U-space Chapter 5. System implementation tests

Connectors (consumers)

connector_name key_converter value_converter tasks
sink-adherence fp_id + timestamp (String) JsonSchema 1
sink-correlated timestamp + uas_serial_number (String) JsonSchema 1

sink-raw-telemetry timestamp + uas_serial_number (String) JsonSchema 1
sink-signal id_signal_loss (Integer) JsonSchema 1
sink-ufps id_ufp (Long) JsonSchema 1
source-fps id_fp (Long) JsonSchema 1

Table 5.3.: Overview of all connectors from Kafka Connect

Stream processors

stream_processor_name key_serde value_serde threads
C1_EnrichTelemetry uas_serial_number (String) telemetrySerde 2
C2_FPCorrelation uas_serial_number (String) correlatedSerde 3

C3_ConformanceMonitoring uas_serial_number (String) correlatedSerde 3

Table 5.4.: Overview of all stream processors implemented with Kafka Streams

We note that the schemas used for the value serializers of the producers, the value con-

verters of the connectors, and the serdes of the stream processors must be equal and

match design of the tables in our database (cf. Section 4.4). For instance, our Teleme-

tryProducer utilizes a telemetry-message-schema for the KafkaJsonSchema serializer, the

same schema must be used for the sink-raw-telemetry connector with the JsonSchema

converter, and the telemetrySerde of the C1_EnrichTelemetry stream processor.

Test scenarios

At first we will run some test scenarios to determine the best Kafka set-up for our machine.

Once the best set-up is established we will run a more extensive test scenario with this

set-up. For our initial tests we use two different Docker resource allocations. In our Full

Docker (FD) scenario (cf. Table 5.5) we allow Docker to access all eight CPU-cores and

up to 12GB of memory. In our Limited Docker (LD) scenario (cf. Table 5.6) we limit

the CPU-cores to four and cap memory at 8GB. We want to see if the performance of

the prototype changes if Kafka has more computational resources available. For each

Docker scenario we run two tests. One of the tests sets the number of partitions for all

topics to 1 and only one stream thread is used per stream processor. The other test

allows parallelization of producers and stream processors by creating three partitions for

the topics with the most traffic (i.e. telemetry, enrichedTelemetryMessage, correlated,

adherence). For all test scenarios that can be seen in Tables 5.5 and 5.6 we use the same

simulator settings where the simulator gradually creates new UAS until a total of 50 UAS

is reached and 50 operations are started. Although the simulated routes can differ, the

Montanuniversität Leoben 62 Daniel Pfisterer

DSMS approach in U-space Chapter 5. System implementation tests

total number of messages produced to our system remains approximately the same for

each simulation run. When all UAS are created we let the simulator run a while longer to

see how it performs. The duration for each test run is 400s. The metric we use to compare

the scenarios is the latency ∆txi = txi − ti between the different topics x. Here, txi is the

timestamp when a record i is created in a topic x and ti is the original timestamp when

the same record i is created by the simulator; ti is equal for all topics x. That way we can

calculate our ∆txi for all available topics x and records i and see how ∆txi progresses.

After the best set-up is established, we use this set-up to run the same test again. This

time, however, we create up to 100 UAS and use a longer simulation time of 600s.

Full Docker (FD) scenario

Scenario Nr. of UAS Partitions C1_threads C2_threads C3_threads
FD_1 50 1 1 1 1
FD_2 50 3 2 3 3

Table 5.5.: Test configurations for the a Docker set-up where all CPU-cores and more
memory are available to Docker

Limited Docker (LD) scenario

Scenario Nr. of UAS Partitions C1_threads C2_threads C3_threads
LD_1 50 1 1 1 1
LD_2 50 3 2 3 3

Table 5.6.: Test configurations for the a Docker set-up where memory and CPU resources
are limited

We note that in order to create comparable results it is absolutely necessary to delete any

previous files from PostgreSQL or offset storages from the C2 and C3 stream processors

before restarting the Docker container. Moreover, it does take some time for each stream

processor to start and to assign the partitions from the topics they consume. Conse-

quently, all stream processor Java applications must be started first and the logs must be

checked. As soon as the logs indicate that the partitions are assigned the simulator can

be started.

Hypothesis

In general, we expect our prototype to provide functionally correct services within the

required latency for somewhere between 10 to 100 UAS operating in parallel. For a higher

number we still expect correct results, but an increased latency due to the limited perfor-

mance of the machine available. Moreover, we expect the latency to increase gradually

with each stream processing step. For our initial test scenarios we expect the scenarios

Montanuniversität Leoben 63 Daniel Pfisterer

DSMS approach in U-space Chapter 5. System implementation tests

with parallelization (i.e. FP2 and LD2) to outperform the ones without (i.e. FP1 and

LD1), because of better CPU utilization. Also, the two LD scenarios should outper-

form the FP scenarios, because more computational resources are free for the stream

processing.

5.3. Results

After each test run we check the current state of our set-up to see if the results are correct.

By inspecting the created topics, messages, stream processors, databases etc. with Kafka

UI we can say that the data distribution and the stream processing work correctly most

of the time. The only problem is that in the beginning, when new UAS are started

regularly, some messages are not correlated with FPs although it is defined explicitly in

the simulator to send only known UAS. Storing the data in our tables works flawlessly,

as all data is stored in the right table with the correct primary keys, foreign keys, and

datatypes.

Initial test scenarios

In Figure 5.1 we can see a comparison of the mean latency for all the different test scenarios

and topics. Each mean latency is calculated from more than 10000 records (raw, enriched,

or correlated telemetry messages, and adherence records) in the respective topic. The

results show that the values for all test scenarios are in a similar range (between 450 and

700ms) and follow the same pattern. The biggest increase in latency comes from ingesting

the date from the simulator into the telemetry topic. The subsequent processing of C1 for

the enriched topic and C2 for the correlated topic do not impact the latency at all. The

final spike in latency comes from executing the stream processing of C3 and saving the

data to the adherence topic. We can see that LD1 outperforms all other topics for the final

latency, although it has the highest latency for all other topics. Moreover, both scenarios

with parallelization (LD2 and FD2) offer a better latency for the first three topics, while

the scenarios without parallelization (LD1 and FD1) deliver better performance for last

topic.

In the Tables 5.7 and 5.8 we can see a more detailed overview of the results with min/max

values, the median, and the standard deviation. The results indicate that our latency

values are not stable. For instance, for FD2 in the adherence topic we have a difference

of 2696 − 26 = 2670ms between the min and max value with a standard deviation of

311.725. Also, we observe that the max values for LD2 and FD2 in the adherence topic

are more pronounced than for the other two scenarios. As we can see in Table 5.8, for

all other topics the difference between min and max is not as striking. The values for

the standard deviation are similar across all topics and test scenarios. However, LD1 is

Montanuniversität Leoben 64 Daniel Pfisterer

DSMS approach in U-space Chapter 5. System implementation tests

telemetry enriched (C1) correlated (C2) adherence (C3)

Topic name

500

550

600

650

L
at
en
cy

[m
s]

Mean latency comparison of the initial scenarios for all topics

LD1

LD2

FD1

FD2

Figure 5.1.: Mean value comparison for the latency of LD1, LD2, FD1, and FD2 for the
topics with the highest throughput

an exception, here the standard deviation is about 50ms lower compared to the other

scenarios. Finally, comparing mean and median values shows that the outliers do not

distort the latency results strongly. We note that the results for the topics telemetry,

enriched, and correlated are equal, which is why we include only Table 5.8 here.

Adherence topic

Test_scenario Mean Median Min Max Std
LD_1 587.160 567 154 1223 244.064
LD_2 625.552 581 75 1391 302.370
FD_1 612.812 624 28 1224 304.119
FD_2 662.825 602 26 2696 311.725

Table 5.7.: Comparison of the results from the initial tests for the adherence topic

Telemetry, enriched, and correlated topic

Test_scenario Mean Median Min Max Std
LD_1 503.345 482 2 999 241.547
LD_2 470.690 442 0 1001 294.690
FD_1 494.505 461 1 999 301.247
FD_2 486.468 441 0 1000 299.692

Table 5.8.: Comparison of the results from the initial tests for telemetry, enriched, and
correlated topic

Based on these results it is difficult to make a decision about the best configuration, as

they all perform similarly, but neither offers perfect results. Consequently, we do not

Montanuniversität Leoben 65 Daniel Pfisterer

DSMS approach in U-space Chapter 5. System implementation tests

expect vastly different results for running our extensive test with either configuration.

Ultimately, our configuration of choice is the one from LD2, because it offers the lowest

mean latency for the first three topics.

Extensive test

For the extensive test the prototype does not deliver entirely correct results, as the stream

processor for C3 fails after about seven minutes and cannot be restarted. Also, like for

the initial tests, some messages are not correlated with a FP as expected. The rest of

the system works as expected and C1 and C2 continued to provide correct services even

after C3 is failed. In Figure 5.2 we can see a comparison of the mean latency values over

the run time of the whole simulation between the correlation and the adherence topic.

For this plot the mean latency is calculated for each second runtime of the simulator for

all active drones. We can see that the latency is not constant, but does vary strongly

throughout the whole simulation. About four minutes into the simulation we can observe

the lowest mean latency, from this point on the latency continues to increase linearly for

about four minutes as more drones are started. It is during this time when the processing

for C3 fails. Another observation to make is that the latency is higher in the beginning

than in the end.

11
:
16

11
:
17

11
:
18

11
:
19

11
:
20

11
:
21

11
:
22

11
:
23

11
:
24

11
:
25

11
:
26

Timestamp

200

400

600

800

1000

1200

A
ve
ra
ge

la
te
n
cy

[m
s]

Mean latency comparison between correlated and adherence topic

Correlated

Adherence

Figure 5.2.: Mean comparison over the run time of the simulation between the correlated
topic and the adherence topic

For the topics telemetry, enriched, and correlated we also get similar results as for the

Montanuniversität Leoben 66 Daniel Pfisterer

DSMS approach in U-space Chapter 5. System implementation tests

initial test scenarios. As illustrated in Figure 5.3, there is no difference in latency between

telemetry, enriched, or correlated. There are only two latency spikes. One occurs, when

the message is first produced to Kafka by the simulator, and then when it is processed

for C3.

telemetry enriched correlated adherence

Topic

0

200

400

600

800

1000

1200

L
at
en
cy

[m
s]

249.00

448.00

719.00

0.00

1004.00

249.00

448.00

719.00

0.00

1004.00

249.00

448.00

719.00

0.00

1004.00

374.00

541.00

769.00

44.00

1241.00

Box plots for the latencies of each topic

Figure 5.3.: Box plots for the topics telemetry, enriched, correlated, and adherence

Looking at the differences between the creation times from the telemetry and the enriched

topic (cf. Figure 5.4) and the enriched and correlated topic (cf. Figure 5.5) shows that

for all 30000 messages processed, not a single one has even a slight difference in creation

time between these topics.

0 5000 10000 15000 20000 25000 30000

Message count

−0.05

0.00

0.05

D
iff
er
en
ce

[m
s]

Record creation time difference between telemetry and enriched topic

Figure 5.4.: Calculating the difference in creation time between the telemetry and the
enriched topic for all more than 30’000 messages

Montanuniversität Leoben 67 Daniel Pfisterer

DSMS approach in U-space Chapter 5. System implementation tests

0 5000 10000 15000 20000 25000 30000

Message count

−0.05

0.00

0.05

D
iff
er
en
ce

[m
s]

Record creation time difference between enriched and correlated topic

Figure 5.5.: Calculating the difference in creation time between the enriched and the cor-
related topic for all more than 30’000 messages

5.4. Discussion

As expected, our prototype delivers correct results for all initial tests, with the exception

of some uncorrelated messages. However, this can be explained by viewing the logs of

the simulator. The problem here is that, occasionally, the creation of a FP and the start

of the UAS mission happen at nearly the same point in time. Because we ingest our

FPs through an external database, the interface of the simulator must write the FP to

the database before it is synchronized with the Kafka topic that backs our state store.

Meanwhile, the received telemetry message is sent to the topic for processing directly. So,

when the processing starts, the topic state store with the FPs does not contain the FP

yet, so the message is not correlated. In order to fix this it would require to redesign the

interface by defining a short waiting period between submitting a FP and starting the

mission in the simulator.

Knowing that all data is stored correctly in our database tables proves that our de-

/serialization logic works correctly and that the correct schemas are created and registered

in the schema registry. If there were any incompatibilities the Kafka Connectors would

fail immediately and no data would be stored in the tables. Also, if an incompatible

schema were registered, Kafka would throw an error.

For our initial tests, the LD scenarios outperform the FD scenarios, conforming our

hypothesis that more computational resources for the stream processing helps to improve

performance. However, the differences are not as big as expected and it is unreasonable

to state that the LD scenarios perform better in any case. The fact that the latency for

the first three topics is a little bit lower for the partitioned scenarios when compared to

the unpartitioned scenarios is in accordance with our expectations. It is interesting to

see that more threads do not help to improve the performance of the adherence topic and

the C3 stream processor. For the adherence topic both unpartitioned scenarios perform

better. The only explanation we can think of is that backing up a partitioned state store

introduces an overhead that results in a worse performance than for an unpartitioned

Montanuniversität Leoben 68 Daniel Pfisterer

DSMS approach in U-space Chapter 5. System implementation tests

state store. A point from our hypothesis we cannot confirm is the gradual increase in

latency for each stream processing step. We see a steep increase for the ingestion of the

data and when doing the C3 processing, but no increase at all for C1 and C2. This shows

that the ingestion of data into Kafka and the way the state store is handled have the

biggest impact on the overall latency in our prototype.

The results from the extensive performance test indicate some problems in our prototype.

Most notably, the stream processor of C3 fails before the simulation finishes. Inspecting

the error logs shows that the failure is related to our state store. Each state store has

a topic in Kafka which contains the log of all changes applied to the state store. If the

system fails the state store can be restored from this topic. For our state store we keep a

list of the flown trajectories (i.e. all received telemetry messages) for each UAS. However,

as some operations have long durations, the lists in the state store can get very long, so the

message size exceeds the allowed maximum of 1MB. To evade this error we must redesign

our state store by either not saving complete trajectories in one list (maybe start a new

list before 1MB of size is exceeded) or by using a stronger compression for our state store.

The other big problem is the behavior of the latency. The latency is not constant at all

and we cannot find a pattern or reasons behind it. It is not the number of UAS operating

in parallel that is responsible for the behavior of the latency, as the lowest point of latency

is reached at about four minutes into the simulation when more then 30 operations are

already started. Also, we cannot say it is the fault of the simulator, because when we stop

creating new UAS one minute before ending the simulation, we still do not see a stable

latency. Assuming that Kafka requires some time in the beginning to rebalance the load

is also wrong, as we see more drops of latency in the last two minutes of the simulation.

We conclude that the data ingestion is an important part of the system’s design and that

more thought must be put into designing the ingestion of data into Kafka. We assume

that a standardized interface could be the solution to our problem, as our customized

interface does not seem to be optimized. For future iterations of the prototype more

research on how the data gets into Kafka needs to be done.

Although these results show some strong limitations of our prototype, there are also some

points the highlight why Kafka and especially Kafka Streams is the right tool to provide

U-space services. In our results we can see that there is no latency increase from the

ingestion to the enriched telemetry and from the enriched telemetry to the correlated

telemetry. This means that once the data is ingested into Kafka there is hardly any

latency for providing our services, no matter if we starte one UAS or 100. It hints that

Kafka and Kafka Streams are highly scalable frameworks used to build systems that

handle far bigger amounts of data that are not in the hundreds of concurrent operations

but in the thousands or millions. However, it is in contrast to the expectations from our

hypothesis, as we expected the latency to increase gradually the more UAS operations are

started. Moreover, the services for C1 and C2 are provided within the 1Hz goal (except for

Montanuniversität Leoben 69 Daniel Pfisterer

DSMS approach in U-space Chapter 5. System implementation tests

a few outliers at the beginning of the simulation). For C3 we have way more outliers, but

the average value is still way below 1Hz. These results are impressive, considering that

our prototype runs on a not very powerful machine. In order to make a future iteration of

our prototype production-ready we need to work on the ingestion to have a more constant

latency and work on the state store of C3 to evade failures due to the message size.

In summary we can say that the dataflow within our prototype works as expected and

provides the required results, with the exception of some design issues regarding the state

store and optimization issues with the interface. As soon as we get the data into Kafka,

Kafka Streams offers a lot of possibilities to flexibly process the messages without a big

increase in latency. However, any stateful computations must be designed carefully to

not exceed parameters like the maximum message size of 1MB. At its current state our

prototype is not ready for production, but it shows a lot of potential. If the aforementioned

problems with the ingestion and the state store are resolved we have a powerful, scalable,

fault-tolerant system at our hands, capable of providing U-space services in real-time.

5.5. Limitations

We note that our prototype does not have the claim to be a production-ready implemen-

tation of Kafka, but a means for testing the feasibility of such a system concerning the

problem setting. For this reason a few simplifications must be considered when viewing

the results explained in the previous sections.

The biggest limitation is that our prototype is tested only in a controlled environment

that eliminates potential sources for failures (e.g. connectivity issues, incompatibility),

or places them on purpose through the simulator (e.g. time delay to create a loss of

adherence). Moreover, our prototype is not running natively on a server, but within a

Docker container. Of course, this set-up does not allow us to fully test the performance

capabilities of our implementation, yet the advantages of a greatly simplified development

process cannot be denied (cf. Section 4.2). In our set-up we do not have multiple brokers

up and running to replicate the data between different brokers to create a fault tolerant

system. Setting up multiple brokers in our test environment would require to work with

yet another framework called Kubernetes[117]; a framework that can be used to orchestrate

different container applications. Thus, any settings regarding fault tolerance must be

revised for a production-ready implementation. Also, the replication between different

brokers introduces a delay that is not considered throughout any tests. Any replication

must be viewed as a potential source for failures (e.g. if the replication is interrupted due

to network problems).

Concerning the database, like Kafka, our implementation of PostgreSQL runs in a Docker

container. Here, all data is stored in a local folder, not a dedicated database. A dedicated,

117Kubernetes 2024.

Montanuniversität Leoben 70 Daniel Pfisterer

DSMS approach in U-space Chapter 5. System implementation tests

fault tolerant database that can deal with old data vs new data and implements useful

data compression mechanisms would require a lot of additional work that is not within

the scope of this thesis.

Because the prototype is tested in a controlled environment with non-critical data, for

reasons of simplicity, no safety mechanisms (e.g. encryption) are implemented. However,

for any production-ready implementation of Kafka a proper implementation of safety

mechanisms is indispensable.

In general, our prototype must cover a lot of different functionalities. Because the time-

frame for this thesis is limited, the main focus is on designing the system as a whole. Due

to the large number of components it is difficult to fully develop each component equally.

For this reason a lot of pre-defined and pre-build frameworks are used as placeholders

for components that require more customization. For any production-ready implementa-

tion it is necessary to evaluate the needs and replace the components step-by-step with

production-ready, customized versions.

Montanuniversität Leoben 71 Daniel Pfisterer

DSMS approach in U-space Chapter 6. Conclusion

6. Conclusion

In order to continue to provide safe operations of UAS in a growing market, further

development of regulations and technologies is necessary. U-space services like flight

tracking and reporting should facilitate a save and efficient access to the common airspace.

However, these services must be provided in real-time, which requires the handling of vast

amounts of continuous data. Handling continuous data in real-time is challenge in itself

and demands purpose-built systems. Through the application of open-source frameworks

like Apache Kafka it is possible to develop a DSMS that in theory can handle data streams

and provide insights in real-time. This poses the question if and how a prototype of a

DSMS can be fit to provide U-space services in real-time.

Before designing the system it is essential to evaluate the specifications and get a better

understanding for the requirements of our system. Our specifications are based on a mix

of regulatory, problem-specific, and general requirements. The regulatory requirements

specify the direction of our problem-specific requirement, which in turn describe the U-

space services that should be provided by our prototype. The general requirements are

mostly concerned with the fault-tolerance and the scalability of our system. These are two

very important characteristics of a DSMS. We need fault-tolerance, as we cannot evade

all faults from happening. Without scalability our prototype would not be able to adjust

to the potential load increase that comes with the growing UAS market.

Implementing a prototype with these specifications introduces a series of technical chal-

lenges. These challenges can be categorized in three groups: Ingestion, processing, and

storage. For the ingestion it is essential to correctly deal with the order in which events

arrive. This order must be kept through the use of a log in order to provide deterministic

results if events have to be re-processed in cases of failures. The processing is concerned

with transforming streams through stream processors. Thereby it is important to main-

tain the current state of the processing. To evade losing the state due to a failure we

require a changelog of the state for recreation. During re-processing it must not happen

that results are affected twice. With the log from the ingestion we can make our com-

putations idempotent and guarantee that each message is processed exactly once. We

must not lose messages or provide wrong results due to the regulatory requirements. For

the storage we distinguish between cold storage use for long-term legal recordings and

hot memory used during stream processing that is accessible immediately after a failure

Montanuniversität Leoben 72 Daniel Pfisterer

DSMS approach in U-space Chapter 6. Conclusion

to restore e.g. the state. In order to get some general guidance for selecting a database

framework we classify frameworks with the CAP-theorem. Although CAP has its limita-

tions, it is enough to get an overview of the vast amounts of different database frameworks

available.

In order to develop our prototype we have to select numerous different frameworks for

deployment, as there exists no single framework that provides all the required functional-

ities. The most important framework at the core of our prototype is Apache Kafka. It is

selected based on the big community behind it for support and its log-based approach for

message distribution. Additionally, fault-tolerance can be guaranteed through message

replication and the system is highly scalable due to its possibilities for distributed com-

puting through partitioning. Also, as the different components of Kafka are decoupled,

we have a lot of options to flexibly shape our system and add and remove components as

we require. Finding a framework for the database technology proved to be more difficult,

as there are lots of very specialized solutions available. Without any prior experience it

is difficult to select one for the problem at hand. Consequently, the choice is made for

PostgreSQL, an established, flexible framework with a big community behind it called.

Finally, for the stream processing we opt for Kafka Streams. Technically, it is not a stand

alone framework, but its tight integration with Kafka and the rich feature set for stream

processing with state support our choice.

Applying these frameworks to develop our prototype demands additional components.

Most importantly, a schema registry has to make sure that we control the form of all

JSON data that gets into and out of our system. Without a JSON schema we would

run into compatibility issues between the different components, because data in Kafka is

always serialized as byte-representation. Now, to get data from Kafka into an external

database or vice versa we require Kafka Connect. Kafka Connect in combination with

the schema registry are the two key components of our prototype to get the data from

source to sink. In order to comfortably test and debug our prototype we implement all our

components in Docker-containers. This limits our possibilities for extensive performance

tests, but greatly reduces the workload compared to a native implementation of Kafka

and all other components. However, all stream processors are executed as native Java

applications that do not run as part of Docker. They communicate with the Docker set-

up through ports, but are mostly independent. Designing the dataflow for the stream

processing is crucial for a successful implementation, as it is invaluable to understand

where the data comes from and where it is going to. For the implementation dealing with

customized state is the most challenging part, as it requires the use of the lower level

Processor API. Implementing the database connection is not difficult if the schema of the

data and the data types are handled consistently throughout the whole system, otherwise

Montanuniversität Leoben 73 Daniel Pfisterer

DSMS approach in U-space Chapter 6. Conclusion

it is not possible to save data to the tables in our database.

As the results from the tests suggest, our prototype is not ready for production yet. The

latency for ingesting the data into Kafka may not be too high, but is not linear either,

and one of the stream processors has problems with the maximum message size due to

a design issue of the customized state store. However, for two of the three implemented

stream processors, no latency is measured for processing, indicating the potential of Kafka

Streams if applied correctly. Moreover, the results for the average latency are way below

the threshold of 1Hz and outliners are sparse. Considering that these test results are from

a laptop with limited computational resources, not a dedicated server, it is fair to say that

a DSMS built around Kafka can be capable of providing U-space services in real-time.

Research outlook

For a production-ready implementation of Kafka more thought has to be put into the

data ingestion into Kafka. For now we are working with a simulator running in Java,

but in a real UAS network data is received from many IoT devices that are connected

through standardized protocols like MQTT. For future iterations of the prototype this

is the best starting point for improvements, as our results suggest that the ingestion

introduces the biggest latency. Concerning the latency, we definitely require more insight

into why the latency is not constant, or why it does not follow a clear pattern. Now that

a basic implementation exists it is possible to try different variations for the ingestion.

From an economical point of view it should not remain unmentioned that lots of paid,

highly-scalable, mostly cloud-based services for DSMS are available in the web. Of course,

trusting an external party with sensitive data is always critical and should be done only

with utmost care. However, compared to the effort it takes to deploy a production-ready

version of Kafka it should be evaluated when it is reasonable to develop a complex system

internally, or if there are options for relying on external providers.

To summarize, we see two possible ways to continue research in the area of DSMS built

around Kafka. On the one hand, it is possible to dive deeper into the technical part of

the implementation and explore Kafka’s behavior with different ingestion interfaces, state

stores etc. On the other hand, it is possible to examine the economic aspect related to

the costs of developing this system as opposed to paying for existing solutions; a point

that is not discussed in this thesis. Either way Kafka is a powerful framework with a lots

of fields of application. It has proven its capabilities across many industries and most

certainly will find more adopters in the future.

Montanuniversität Leoben 74 Daniel Pfisterer

DSMS approach in U-space Bibliography

Bibliography

Books

Fowler, Martin (01/01/2002). Patterns of Enterprise Application Architecture. Addison-

Wesley Professional. isbn: 0-321-12742-0

Hueske, Fabian and Vasiliki Kalavri (04/11/2019). Stream Processing with Apache Flink.

First Edition. O’Reilly Media, Inc. isbn: 978-1-4919-7429-2

Kleppmann, Martin (05/2016). Making Sense of Stream Processing. O’Reilly Media, Inc.

isbn: 978-1-4919-3728-0

– (03/01/2017). Designing Data-Intensive Applications. O’Reilly Media, Inc. isbn: 978-

1-4493-7332-0

Kreps, Jay (09/2014a). I Heart Logs. First Edition. O’Reilly Media, Inc. isbn: 978-1-4919-

0933-1

Marz, Nathan and James Warren (02/2015). Big Data: Principles and Best Practices of

Scalable Realtime Data Systems. 1st ed. USA: Manning Publications Co. 425 pp. isbn:

978-1-61729-034-3

Reis, Joe and Matt Housley (07/2022). Fundamentals of Data Engineering. First Edition.

O’Reilly. isbn: 978-1-09-813980-3

Shapira, Gwen et al. (11/2021). Kafka: The Definitive Guide, 2nd Edition. O’Reilly Media,

Inc. isbn: 978-1-4920-4308-9

Articles

Akidau, Tyler et al. (08/01/2015). “The Dataflow Model: A Practical Approach to Balanc-

ing Correctness, Latency, and Cost in Massive-Scale, Unbounded, out-of-Order Data

Montanuniversität Leoben XII Daniel Pfisterer

DSMS approach in U-space Bibliography

Processing”. In: Proceedings of the VLDB Endowment 8, pp. 1792–1803. doi: 10 .

14778/2824032.2824076

Chandy, K. Mani and Leslie Lamport (02/01/1985). “Distributed Snapshots: Determining

Global States of Distributed Systems”. In: ACM Transactions on Computer Systems

3.1, pp. 63–75. issn: 0734-2071. doi: 10.1145/214451.214456.

https://dl.acm.org/doi/10.1145/214451.214456

(Visited on 08/24/2023)

Fox, Armando, Steven D. Gribble, et al. (10/01/1997). “Cluster-Based Scalable Network

Services”. In: ACM SIGOPS Operating Systems Review 31.5, pp. 78–91. issn: 0163-

5980. doi: 10.1145/269005.266662.

https://dl.acm.org/doi/10.1145/269005.266662

(Visited on 11/14/2023)

Golab, Lukasz and M. Tamer Özsu (06/01/2003). “Issues in Data Stream Management”.

In: ACM SIGMOD Record 32.2, pp. 5–14. issn: 0163-5808. doi: 10.1145/776985.

776986.

https://doi.org/10.1145/776985.776986

(Visited on 08/08/2023)

Haerder, Theo and Andreas Reuter (12/02/1983). “Principles of Transaction-Oriented

Database Recovery”. In: ACM Computing Surveys 15.4, pp. 287–317. issn: 0360-0300.

doi: 10.1145/289.291.

https://dl.acm.org/doi/10.1145/289.291

(Visited on 11/14/2023)

Helland, Pat (04/01/2012). “Idempotence Is Not a Medical Condition”. In: Queue 10,

pp. 30–46. doi: 10.1145/2181796.2187821

Isah, Haruna et al. (10/10/2019). “A Survey of Distributed Data Stream Processing

Frameworks”. In: IEEE Access 7, pp. 1–1. doi: 10.1109/ACCESS.2019.2946884

Kleppmann, Martin (09/17/2015). “A Critique of the CAP Theorem”. In

Motwani, Rajeev et al. (12/14/2002). “Query Processing, Resource Management, and

Approximation in a Data Stream Management System”. In

Montanuniversität Leoben XIII Daniel Pfisterer

DSMS approach in U-space Bibliography

Nasiri, Hamid, Saeed Nasehi, and Maziar Goudarzi (06/11/2019). “Evaluation of Dis-

tributed Stream Processing Frameworks for IoT Applications in Smart Cities”. In:

Journal of Big Data 6. doi: 10.1186/s40537-019-0215-2

Van Dongen, Giselle and Dirk Van den Poel (06/28/2021). “A Performance Analysis of

Fault Recovery in Stream Processing Frameworks”. In: IEEE Access PP, pp. 1–1. doi:

10.1109/ACCESS.2021.3093208

Reports

CORUS XUAM Consortium (12/23/2022). Advanced U-space Definition

European Commission (04/22/2021). COMMISSION IMPLEMENTING REGULATION

(EU) 2021/664 of 22 April 2021 on a Regulatory Framework for the U-space. Official

Journal of the European Union

Gray, J. (12/1995). Queues Are Databases.

https : / / www . semanticscholar . org / paper / Queues - Are - Databases - Gray /

d6ba65fa74469cef98fbbe342465034cb5108301

(Visited on 08/21/2023)

SESAR Joint Undertaking (2017a). European Drones Outlook Study Unlocking the Value

for Europe.

https://www.sesarju.eu/sites/default/files/documents/reports/European_

Drones_Outlook_Study_2016.pdf

(Visited on 08/08/2023)

– (06/09/2017b). U-Space Blueprint.

www.sesarju.eu

(Visited on 08/08/2023)

Walter Heimerdinger, Charles Weinstock (1992). A Conceptual Framework for System

Fault Tolerance. CMU/SEI-92-TR-033. Software Engineering Institute, Carnegie Mellon

University.

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=11747

(Visited on 08/16/2023)

Montanuniversität Leoben XIV Daniel Pfisterer

DSMS approach in U-space Bibliography

Conference papers

Babcock, Brian et al. (06/03/2002). “Models and Issues in Data Stream Systems”. In: Pro-

ceedings of the Twenty-First ACM SIGMOD-SIGACT-SIGART Symposium on Princi-

ples of Database Systems. PODS ’02. New York, NY, USA: Association for Computing

Machinery, pp. 1–16. isbn: 978-1-58113-507-7. doi: 10.1145/543613.543615.

https://doi.org/10.1145/543613.543615

(Visited on 08/08/2023)

Breivold, Hongyu Pei, Ivica Crnkovic, and Peter J. Eriksson (07/2008). “Analyzing Soft-

ware Evolvability”. In: 2008 32nd Annual IEEE International Computer Software and

Applications Conference, pp. 327–330. doi: 10.1109/COMPSAC.2008.50

Feick, Martin, Niko Kleer, and Marek Kohn (2018). “Fundamentals of Real-Time Data

Processing Architectures Lambda and Kappa”. In: Gesellschaft für Informatik e.V.

isbn: 978-3-88579-448-6.

https://dl.gi.de/handle/20.500.12116/28983

(Visited on 09/25/2023)

Fernandez, Raul Castro et al. (06/19/2014). “Making State Explicit for Imperative Big

Data Processing”. In: Proceedings of the 2014 USENIX Conference on USENIX Annual

Technical Conference. USENIX ATC’14. USA: USENIX Association, pp. 49–60. isbn:

978-1-931971-10-2

Fox, Armando and Eric Brewer (03/28/1999). “Harvest, Yield, and Scalable Tolerant

Systems”. In: Hot Topics in Operating Systems, pp. 174–178. isbn: 978-0-7695-0237-3.

doi: 10.1109/HOTOS.1999.798396

Li, Jin et al. (06/14/2005). “Semantics and Evaluation Techniques for Window Aggregates

in Data Streams”. In: Proceedings of the 2005 ACM SIGMOD International Conference

on Management of Data. SIGMOD/PODS05: International Conference on Management

of Data and Symposium on Principles Database and Systems. Baltimore Maryland:

ACM, pp. 311–322. isbn: 978-1-59593-060-6. doi: 10.1145/1066157.1066193.

https://dl.acm.org/doi/10.1145/1066157.1066193

(Visited on 08/29/2023)

Moseley, Ben and Peter Marks (2006). “Out of the Tar Pit”. In: Software Practice Ad-

vancement (SPA).

https : / / www . semanticscholar . org / paper / Out - of - the - Tar - Pit - Moseley -

Montanuniversität Leoben XV Daniel Pfisterer

DSMS approach in U-space Bibliography

Marks/41dc590506528e9f9d7650c235b718014836a39d

(Visited on 08/17/2023)

Zaharia, Matei et al. (06/12/2012). “Discretized Streams: An Efficient and Fault-Tolerant

Model for Stream Processing on Large Clusters”. In: Proceedings of the 4th USENIX

Conference on Hot Topics in Cloud Computing. HotCloud’12. USA: USENIX Associa-

tion, p. 10

Internal documents

Carbone, Paris et al. (06/29/2015). “Lightweight Asynchronous Snapshots for Distributed

Dataflows”. doi: 10.48550/arXiv.1506.08603. arXiv: 1506.08603 [cs].

http://arxiv.org/abs/1506.08603

(Visited on 08/24/2023)

Internet sources

ActiveMQ (2023).

https://activemq.apache.org/

(Visited on 11/08/2023)

Apache Avro (2023). Apache Avro.

https://avro.apache.org/

(Visited on 12/04/2023)

Apache Cassandra (2023).

https://cassandra.apache.org/_/index.html

(Visited on 11/15/2023)

Apache Flink — Stateful Computations over Data Streams (2023).

https://flink.apache.org/

(Visited on 08/09/2023)

Apache Kafka (2023). Apache Kafka.

https://kafka.apache.org/

(Visited on 08/09/2023)

Montanuniversität Leoben XVI Daniel Pfisterer

DSMS approach in U-space Bibliography

Apache Kafka Documentation (2023). Apache Kafka.

https://kafka.apache.org/documentation/

(Visited on 11/10/2023)

Apache Kafka Powered By (2023). Apache Kafka.

https://kafka.apache.org/powered-by

(Visited on 08/09/2023)

Apache Spark - Unified Engine for Large-Scale Data Analytics (2023).

https://spark.apache.org/

(Visited on 08/09/2023)

Apache ZooKeeper (2023).

https://zookeeper.apache.org/

(Visited on 11/13/2023)

Archer Brown, Seth (2023). The Two Generals Problem.

https://haydenjames.io/the-two-generals-problem/

(Visited on 08/25/2023)

Collection (Java Platform SE 8) (2024).

https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html

(Visited on 01/29/2024)

Dean, Alex (09/15/2015). Improving Snowplow’s Understanding of Time. Snowplow.

https://snowplow.io/blog/improving-snowplows-understanding-of-time/

(Visited on 08/23/2023)

Docker Hub (2023).

https://hub.docker.com/

(Visited on 12/05/2023)

Docker (05/10/2022). Docker: Accelerated Container Application Development.

https://www.docker.com/

(Visited on 12/05/2023)

Fault Tolerance via State Snapshots (2023).

//nightlies.apache.org/flink/flink-docs-master/docs/learn-flink/fault_

Montanuniversität Leoben XVII Daniel Pfisterer

DSMS approach in U-space Bibliography

tolerance/

(Visited on 08/24/2023)

Find the Top Drone Application |Drone Industry Insights 2022 (04/27/2022).

https://droneii.com/top-drone-applications

(Visited on 08/07/2023)

Grafana (2023). Grafana: The Open Observability Platform. Grafana Labs.

https://grafana.com/

(Visited on 12/18/2023)

Group, PostgreSQL Global Development (2023). PostgreSQL. PostgreSQL.

https://www.postgresql.org/

(Visited on 11/15/2023)

Industry Leading Drone Market Analysis 2022-2030 | Droneii (09/20/2022).

https://droneii.com/drone-market-analysis-2022-2030

(Visited on 08/07/2023)

InfluxDB | Real-time Insights at Any Scale (Sat, 15 Jan 2022 15:32:09 +0000). InfluxData.

https://www.influxdata.com/home/

(Visited on 11/15/2023)

Introducing Stream-Stream Joins in Apache Spark 2.3 (Tue, 03/13/2018 - 07:59).

Databricks.

https://www.databricks.com/blog/2018/03/13/introducing-stream-stream-

joins-in-apache-spark-2-3.html

(Visited on 08/31/2023)

JDBC Connector (Source and Sink) for Confluent Platform (2024).

https://docs.confluent.io/kafka-connectors/jdbc/current/

(Visited on 01/31/2024)

JSON Schema (2023).

https://json-schema.org/

(Visited on 12/04/2023)

Montanuniversität Leoben XVIII Daniel Pfisterer

DSMS approach in U-space Bibliography

Kafka Connect | Confluent Documentation (2024).

https://docs.confluent.io/platform/current/connect/index.html

(Visited on 01/31/2024)

Kafka Producer Configuration Reference | Confluent Documentation (2024).

https://docs.confluent.io/platform/current/installation/configuration/

producer-configs.html

(Visited on 02/05/2024)

Kafka Streams Documentation (2023). Apache Kafka.

https://kafka.apache.org/36/documentation/streams/

(Visited on 11/16/2023)

Kafka Topic Configuration Reference | Confluent Documentation (2024).

https://docs.confluent.io/platform/current/installation/configuration/

topic-configs.html

(Visited on 02/05/2024)

Kafka UI Provectus (2023).

https://docs.kafka-ui.provectus.io/overview/readme

(Visited on 12/05/2023)

KIP-500: Replace ZooKeeper with a Self-Managed Metadata Quorum (2023).

https://cwiki.apache.org/confluence/display/KAFKA/KIP-500%3A+Replace+

ZooKeeper+with+a+Self-Managed+Metadata+Quorum

(Visited on 11/13/2023)

Kreps, Jay (07/02/2014b). Questioning the Lambda Architecture.

https://www.oreilly.com/radar/questioning-the-lambda-architecture/

(Visited on 09/25/2023)

ksqlDB: The Database Purpose-Built for Stream Processing Applications. (2024).

https://ksqldb.io/

(Visited on 01/29/2024)

Kubernetes (2024).

https://kubernetes.io/

(Visited on 01/07/2024)

Montanuniversität Leoben XIX Daniel Pfisterer

DSMS approach in U-space Bibliography

Matternet Launches World’s Longest Urban Drone Delivery Route Connecting Hospitals

and Laboratories in Zurich, Switzerland (12/12/2022).

https://www.businesswire.com/news/home/20221212005097/en/Matternet-

Launches-World%E2%80%99s-Longest-Urban-Drone-Delivery-Route-Connecting-

Hospitals-and-Laboratories-in-Zurich-Switzerland

(Visited on 08/07/2023)

MongoDB (2023). MongoDB. MongoDB.

https://www.mongodb.com/de-de

(Visited on 11/15/2023)

pgAdmin4 (2023).

https://www.pgadmin.org/download/

(Visited on 12/05/2023)

PostgreSQL ++ for Time Series and Events (2023).

https://www.timescale.com

(Visited on 11/15/2023)

Prometheus (2023). Prometheus - Monitoring System & Time Series Database.

https://prometheus.io/

(Visited on 12/18/2023)

Protocol Buffers (2023).

https://protobuf.dev/overview/

(Visited on 12/04/2023)

Publish-Subscribe - Intro to Pub-Sub Messaging (2023). Confluent.

https://www.confluent.io/learn/publish-subscribe/

(Visited on 11/23/2023)

RabbitMQ: Easy to Use, Flexible Messaging and Streaming — RabbitMQ (2023).

https://www.rabbitmq.com/

(Visited on 11/08/2023)

RocksDB | A Persistent Key-Value Store (2023). RocksDB.

http://rocksdb.org/

(Visited on 11/16/2023)

Montanuniversität Leoben XX Daniel Pfisterer

DSMS approach in U-space Bibliography

Samza - State Management (2023).

https : / / samza . apache . org / learn / documentation / 0 . 10 / container / state -

management.html

(Visited on 08/31/2023)

Structured Streaming Programming Guide - Spark 3.4.1 Documentation (2023).

https://spark.apache.org/docs/latest/structured-streaming-programming-

guide.html

(Visited on 08/24/2023)

Treat, Tyler (03/25/2015). You Cannot Have Exactly-Once Delivery. Brave New Geek.

https://bravenewgeek.com/you-cannot-have-exactly-once-delivery/

(Visited on 08/28/2023)

Using JConsole - Java SE Monitoring and Management Guide (2023).

https : / / docs . oracle . com / javase / 8 / docs / technotes / guides / management /

jconsole.html#

(Visited on 12/18/2023)

Montanuniversität Leoben XXI Daniel Pfisterer

DSMS approach in U-space Appendix A. Java class diagrams

A. Java class diagrams

This part of the appendix offers an overview of all Java classes implemented for the

prototype. Each section contains the Java class diagram of an individual package in the

Java class path. Below each class diagram there are lists of the methods where the input

variables are not clearly described in the diagram.

A.1. Tools Java class diagram

GeneralPropertiesCreator

+ createGeneralProperties
ForProducer(): Properties
+ createGeneralProperties
ForProcessor(): Properties
+ createGeneralProperties
ForConsumers(): Properties

ConfluentSchemaRegistration

+ registerSchema(String, String,
String): void
+ createdParsedSchema
FromFile(String): ParsedSchema

PropertyLoader

+ loadPropertiesFromFile (String): Properties

KafkaAdminClient

+ createAdminClient(): Admin
+ createNewTopics(String, Integer,
Short): void
+ checkTopicExists(String): Boolean

JdbcConnectors

+ startJdbcConnector(String, String, Boolean):
void
+ connectorNotRunning(String, String):
Boolean
+ convertJsonToString(String): String

HandleResults

+ appendTelemetryToCsvFile(String, long, long,
String): void
+ appendAdherenceToCsvFile(long, long, long,
String): void
+ appendStartTimesToCsvFile(String, int, String):
void
+ clearContentsOfCsvFilesInFolder(String): void
+ truncateFile(File): void

AdherenceConsumer

<<Interface>>
Consumer

+ consumeCreationTimesToCsv(): void
+ closeConsumer(): void

CorrelatedTelemetryConsumer

EnrichedTelemetryConsumer

TelemetryConsumer

UncorrelatedTelemetryConsumer

Figure A.1.: Java class diagram of all tools that were implemented for the prototype

Montanuniversität Leoben XXII Daniel Pfisterer

DSMS approach in U-space Appendix A. Java class diagrams

KafkaAdminClient:

• createNewTopics(String topicName, int partitions, short replicationFactor): void

• checkTopicExists(String topicName): Boolean

ConfluentSchemaRegistration:

• registerSchema(String subject, String pathToSchema, String schemaRegistryUrl,

String compatibility): void

• createParsedSchemaFromFile(String pathToSchema): ParsedSchema

PropertyLoader:

• loadPropertiesFromFile(String filePath): Properties

JdbcConnectors:

• startJdbcConnector(String kafkaConnectUrl, String pathToConnectConfig,

Boolean source): void

• connectorNotRunning(String kafkaConnectUrl, String connectorName): Boolean

• convertJsonToString(String filePath): String

HandleResults:

• appendTelemetryToCsvFile(String uasSerialNumber, long timestamp, long cre-

ationTimestamp, String filePath): void

• appendAdherenceToCsvFile(long fp_id, long telemetry_timestamp, long creation-

Timestamp, String filePath): void

• appendStartTimesToCsvFile(String uasSerialNumber, int timestamp, String

filePath): void

• clearContentsOfCsvFilesInFolder(String directoryPath): void

• truncateFile(File file): void

Montanuniversität Leoben XXIII Daniel Pfisterer

DSMS approach in U-space Appendix A. Java class diagrams

A.2. Main Java class diagram

main

 - DURATION: Integer
- PATH_RESULTS: String
- PATH_KAFKA_PROPERTIES: String
- PATH_CONNECT_SOURCE_
CONFIGURATION_FPS: String
- PATH_CONNECT_SINK_
CONFIGURATION_RAW_TELEMETRY. String
- PATH_CONNECT_SINK_
CONFIGURATION_CORRELATED_TELEMETRY:
String
- PATH_CONNECT_SINK_
CONFIGURATION_SIGNAL_LOSS: String
- PATH_CONNECT_SINK_
CONFIGURATION_ADHERENCE: String
- PATH_CONNECT_SINK_
CONFIGURATION_UFPS: String

+ main(String[]): void

PrepareSimulator

 - simulator: DronAS_Event_Simulator
- producerEventListener: ProducerEventListener

+ startAndStopSimulator(Integer): void
+ createGeneratorAlgorithm(): Algorithm_Generator

KafkaSetup

 - uspaceProperties: Properties
 - jdbcConnectors: JdbcConnectors

+ KafkaSetup(Properties)
+ createTopicsInKafka()
+ startKafkaConnectSourceConnectors(String):
void
+ startKafkaConnectSinkConnectors(String,
String, String, String, String): void

Figure A.2.: Java class diagram of the main class and the set-up classes used for Kafka
and the simulator

KafkaSetup:

• startKafkaConnectSourceConnectors(String pathFP): void

• startKafkaConnectSinkConnectors(String pathUfps, String pathRawTelemetry,

String pathCorrelatedTelemetry, String pathSignalLoss, String pathAdherence):

void

PrepareSimulator:

• startAndStopSimulator(int duration): void

Montanuniversität Leoben XXIV Daniel Pfisterer

DSMS approach in U-space Appendix A. Java class diagrams

A.3. Producers Java class diagram

<<Interface>>
Producer<T>

+ getProducerConfigurations():
Properties
+ produceMessage(T): void
+ endProducer(): void

TelemetryProducer
<BO>

MissionProducer
<BO>

UfpProducer
<SerializableUFP>

ProducerEventListener

<<Interface>>
EventListener

+ onMissionPlanned(BO): void
+ onMissionUpdate(BO): void
+ onMissionRemove(BO): void
+ onGeofenceCreate(BO): void
+ onGeofenceUpdate(BO): void
+ onGeofenceRemove(BO): void
+ onOperatorCreated(BO): void
+ onOperatorUpdate(BO): void
+ onOperatorRemove(BO): void
+ onDroneCreated(BO): void
+ onDroneUpdate(BO): void
+ onDroneRemove(BO): void
+ onPilotCreated(BO): void
+ onPilotUpdate(BO): void
+ onPilotRemove(BO): void
+ onRawTelemetryMessage(BO): void

SignalLossProducer
<SerializableNoSignal>

Figure A.3.: Java class diagram of all producer classes and the interface that communi-
cates with the simulator

Montanuniversität Leoben XXV Daniel Pfisterer

DSMS approach in U-space Appendix A. Java class diagrams

A.4. Stream processing Java class diagram

C1_EnrichTelemetry

+ getStreamConfigurations
(KafkaJsonSchemaSerde,
Properties): Properties
+ createStream(String,
String, StreamsBuilder): void
+ main(String[]): void

C2_FPCorrelation

+ getStreamConfigurations
(KafkaJsonSchemaSerde,
Properties): Properties
+ createC2Stream(String,
String, String, String, String,
String, String, String
StreamsBuilder): void
+ main(String[]): void
+ performLookUpFP(
TelemetryMessage):
List<SerializableFP>
+ performLookUpUFP(
TelemetryMessage):
List<SerializableUFP>

C3_ConformanceMonitoring

+ getStreamConfigurations
(KafkaJsonSchemaSerde,
Properties): Properties
+ createC3Stream(String,
String, String,
StreamsBuilder): void
+ main(String[]): void

<<Interface>>
CustomSerde<T>

+ getSerde(Properties):
KafkaJsonSchemaSerde<T>
+ getSerde(Properties,
SchemaRegistryClient):

 KafkaJsonSchemaSerde<T>
 + getSerdeConfiguration
 (Properties): Map<String, String>

CorrelatedTelemetryMessageSerde
<CorrelatedTelemetryMessage>

TelemetryMessageSerde
<TelemetryMessage>

FPSerde<SerializableFP>

UFPSerde<SerializableUFP>

NoSignalSerde
<SerializableNoSignal>

SerializableLossOfAdherenceSerde
<SerializableLossOfAdherence>

<<Interface>>
Processor<KIn, VIn, KOut, VOut>

+ init(ProcessorContext<KOut, VOut):
void
+ process(Record<KIn, VIn>): void
+ close(): void

C2Processor<String,
TelemetryMessage, String,

CorrelatedTelemetryMessage>

 + C2Processor(UfpProducer)

C3Processor<String,
CorrelatedTelemetryMessage, String,

SerializableLossOfAdherence>

ControlStreamingApplication

+ startStreamingApplication
WithShutdownHook(
StreamsBuilder, Properties):
void

InactivityMarker<String,
CorrelatedTelemetryMessage, String,

CorrelatedTelemetryMessage>

 + InactivityMarker(SignalLossProducer,
SecureRandom)

<<Interface>>
Punctuator

+ punctuate(long): void

SignalPunctuator

Figure A.4.: Java class diagram of the Kafka Streams implementation with all de-
/serializers (serdes) and processors

Montanuniversität Leoben XXVI Daniel Pfisterer

DSMS approach in U-space Appendix A. Java class diagrams

C1_EnrichTelemetry:

• createC1Stream(String inputTopic, String outputTopic, StreamsBuilder builder,

C1_EnrichTelemetry_module c1): void

C2_FPCorrelation:

• createC2Stream(String inputTelemetry, String inputSerializedFP, String inputSeri-

alizedUFP, String outputCorrelated, String outputUncorrelated, String stateStore-

LatestMessage, String stateStoreSerializableFP, String stateStoreSerializableUFP,

StreamsBuilder builder): void

C3_ConformanceMonitoring:

• createC3Stream(String inputTopic, String outputTopic, String flownTrajectoryS-

tateStore, StreamsBuilder builder): void

Montanuniversität Leoben XXVII Daniel Pfisterer

	MA_Pfisterer_14022024_A
	Titlepage
	Eidesstattliche_signiert

