v

MONTAN

UNIVERSITAT
M LEOBEN m

Chair of Automation

Master's Thesis

Classification of Multivariate Time Series
Data using Machine Learning and System
Redundancy Analysis

Elliot Lang, BSc

January 2024

- ; www.unileoben.ac.at

EIDESSTATTLICHE ERKLARUNG

Ich erklare an Eides statt, dass ich diese Arbeit selbstdndig verfasst, andere als die angegebenen
Quellen und Hilfsmittel nicht benutzt, und mich auch sonst keiner unerlaubten Hilfsmittel bedient habe.

Ich erklare, dass ich die Richtlinien des Senats der Montanuniversitat Leoben zu "Gute
wissenschaftliche Praxis" gelesen, verstanden und befolgt habe.

Weiters erklare ich, dass die elektronische und gedruckte Version der eingereichten
wissenschaftlichen Abschlussarbeit formal und inhaltlich identisch sind.

Datum 29.01.2024

)

Unterschrﬁt ‘&erfaéér/in
Elliot Lang

il

Acknowledgement

I would like to acknowledge and thank eSENSIAL Data Science for providing the data, which

forms the basis of this work.

iii

Kurzfassung

Diese Arbeit untersucht das Mafl an Redundanz innerhalb von Chargen von Sensorsignalen. Das
explizite Ziel besteht darin, die Reaktion des Systems auf die Inaktivitit einer oder mehrerer
Sensor-Einheiten zu bewerten. Dariiber hinaus erforscht diese Arbeit die Anwendbarkeit und
Machbarkeit verschiedener maschineller Lernalgorithmen zur Klassifizierung des Zustands der
analysierten Maschine auf der Grundlage von Chargen von Beschleunigungsdaten. Die Redun-
danz in den Daten wird durch die Quantifizierung der inhdrenten Dimensionsabdeckung gemessen
Basierend auf dem Ergebnis kann die Dimensionalitédt der Daten reduziert werden. Mogliche Per-
mutationen des Verlusts einer oder zwei der sechs verfiigbaren Sensor Einheiten werden im Zusam-
menhang mit der verbleibenden Dimensionsabdeckung analysiert. Dies gibt einen Hinweis darauf,
mit welcher Sicherheit Analysen auf Grundlage der reduzierten Daten bewertet werden konnen.
Dariiber hinaus werden mehrere mogliche iiberwachte maschinelle Lernalgorithmen identifiziert,
die zur Mehrklassenklassifizierung in der Lage sind, und deren Anwendbarkeit auf die gelabel-
ten Datenchargen bewertet wird. Eine Reihe vielversprechender Klassifikationsmethoden wurden
identifiziert und auf jede Datencharge angewendet. Die erfolgreiche Klassifizierung wird durch die
Messung der Vorhersagegenauigkeit jeder Methode, der Anzahl der korrekt identifizierten Maschi-
nenzustinde und der Trainingszeit jeder Methode einschlieBlich der Optimierung ihrer Hyperpa-
rameter quantifiziert.

Die Ergebnisse beider Prozesse zeigen eine Robustheit gegeniiber dem Verlust von Sensoren in-
nerhalb des Systems, unabhiingig von deren rdumlicher Lage, sowie einige vielversprechende
maschinelle Lernklassifikationsalgorithmen, die in der Lage sind, den Zustand der Maschine zu

identifizieren.

v

Abstract

This thesis investigates the level of redundancy within batches of sensor data; the explicit goal of
which being to evaluate the system’s reaction to the inactivity of one or more sensor units. More-
over, this thesis explores the applicability and viability of different machine learning algorithms
for classifying the state of the analysed machine based on batches of acceleration data. The redun-
dancy within the data is measured by quantification of the inherent dimensional coverage; based on
the result, the data dimensionality can be reduced. Possible permutations of the loss of one or two
of the six available sensor units are analysed in the context of the remaining dimensional coverage.
This gives an indication of the certainty with which analyses based on the reduced data can be
evaluated.

Furthermore, several possible supervised machine learning algorithms, capable of multi-class clas-
sification, are identified and their applicability to the labelled data batches is assessed. An array
of promising classification methods were identified and applied to each batch of data. The suc-
cessful classification is quantified by measuring each method’s predictive accuracy, the number
of correctly identified machine states, and the training time each method requires including the
optimization of its hyperparameters.

The results of both of these processes show a robustness to the loss of sensors within the sys-
tem, independent of spatial location, as well as some promising machine learning classification

algorithms, capable of identifying the machine’s state.

Contents

1

Introduction e 1
L1 Goals ..o e 2
L2 SHrUCHUIE . ..ottt e e e e e e 2
Machine Learning Background 3
2.1 Applications of Machine Learning i 3
2.2 Types of Machine Learning Tasks 4
2.3 Typesof Learning.ottt e 4
2.4 Interpretability 5
2.5 Applicability e 5
Data Quality and Data Mining 6
3.1 Data Quality DIMensionsuuneieieie e 6
311 ACCUIACY . . vttt e e e 6
3.1.2 COmMPIBLENESS . . o o oottt et 7
3.1.3 Time-Related Dimensionst eiiniinennn... 7
3.1.4 CONSISIENCY . .\ vttt ettt e e e e e e e e e e e e 7
3.2 Data MINING .. oottt e e e 7
3.2.1 The Standard Process of DataMining.................coviiiinennann.. 8
3.2.2 The Data Mining Wisdom Pyramid 8
3.3 Relevance forthis Thesis. e 9
Data Exploration 10
4.1 Data StUCIUIE . . . o vttt ettt e e e e e e e e et ettt 10
4.2 Industrial CoONeXtottt e e e e e e 11
4.2.1 The States of the System. e, 11
4.3 Data Ingestion.t e 11
4.4 Issueswiththe Datao e 12
4.4.1 NaNsintheData e 12

Contents vi

4.4.2 Time DISCrepancies oottt e 13

4.5 Dimensionality Reduction. i 14
4.5.1 Singular Value Decomposition (SVD) 14
4.5.2 Principal Component Analysis (PCA)........ 16
4.5.3 Checking the dimensional coverage after PCA 17

4.6 Dimensional Coverage when Losing Sensorsc.iiiiiiien.... 19
4.6.1 Choosing 50utof 6 SENSOrs. ..ot 19
4.6.2 Choosing 4 out of 6 SeNSOTS ov vttt 20

4.7 RedundancCiesouuiiunnt it e 20
5 Exploration of different Machine Learning Algorithms 22
5.1 Binary Decision Treesot e 22
5.1.1 Typesof Decision Treesttt 23
5.1.2 Impurity Measures.ovt ettt ettt e et 24
5.1.3 Tree Pruning.ot 26
5.1.4 The CART Decision Tree Algorithm. 27

5.2 Linear Discriminant Analysis (LDA) i 27
5.2.1 Mathematical Definition i 28
5.2.2 Suitability of Discriminant Analysis for Classification Tasks............... 29

5.3 k-Nearest Neighbours (KNN) e 29
5.3.1 Mathematical Definition i 30
5.3.2 Suitability of kNN for Classification Tasks 32

5.4 Artificial Neural Networks (NIN) e e 33
5.4.1 Types of Neural Networks, 34
5.4.2 Feed-Forward Network 34
5.4.3 Mathematical Definition i 34
5.4.4 Suitability of Neural Networks for Classification Tasks 36

5.5 Ensemble Classification. ottt 36
5.5.1 Bagging (Bootstrap Aggregation)uuueineineinennennn.. 36
5.52 BOOSHNE . . oottt ettt e 36
5.5.3 Suitability of Ensemble Methods for Classification Tasks 37

5.6 Naive Bayes Classification (NB) i, 37
5.6.1 Mathematical Definition i 37
5.6.2 Suitability of Naive Bayes Classification 38

6 Example Applicationand Results L. 39
6.1 APProacho 39
6.1.1 Hyperparameter OptimiSationuueunernernennennennennn.. 41

6.2 Computational Limitation e 41

Contents vii

6.3 APPLCAtION e 41

6.3.1 Binary Decision Treesouii e 41

6.3.2 Linear Discriminant Analysis.o ittt 42

6.3.3 k-Nearest Neighbours i 44

6.3.4 Neural Networkst e e 45

6.3.5 Ensemble Classification Methods 46

6.3.6 Naitve Bayest 47

6.4 Comparison of Results. e 48

6.5 Results With 5 SENSOrs i 49

7 Conclusion, Summary and Outlook 51
Bibliography

A Appendix A: Dimensionality Reduction Code 57

B Appendix B: Machine Learning ApplicationCode 67

List of Figures

3.1

4.1

4.2

4.3

4.4

5.1

5.2

This figure, inspired by [17], shows the hierarchical structure inherent in a data
set, which is extracted by data mining methods. A raw data set starts out at the
bottom level of the pyramid. Through progressively transforming, cleansing,
applying predictive methods and visualising, the pyramid culminates in wisdom
being extracted fromthedata.

This figure shows the raw acceleration data from each sensor unit. Three
acceleration dimensions are attained from each unit, resulting in 18 channels. The

data is unprocessed at this point, apart from the interpolation of all NaN values

within the dataset and the replacement of NaNs at the beginning and end with zeros.

This plot displays the dimensional coverage of the data set as a function of the
number of dimensions, as described in the previous equation. If all 18 dimensions
of acceleration data are considered, 100% coverage of the information within the
data setis assumed. o
This figure displays the primary principal component from each of the six sensor
units over the time contained within an exemplary data file. The data here has
been made mean-free and shows some clear correlations between the principal

eT0) 101810741 1L P
This visualisation shows the data coverage after the application of principal
component analysis plotted against the number of active sensors. This clearly
shows an improvement due to the applied transformations and indicates, that the

loss of one or two sensors still results in significant dimensional coverage.

This figure shows an example structure of a binary decision tree, starting from the
root down to the leaf nodes, inspired by [25].
This figure compares the three most significant impurity measures for decision
trees, used in classification tasks. The figure is taken from [25]. The y-axis shows
the impurity, which lies between 0 and 1. The closer this value gets to 0, the better.

The x-axis displays the proportion p of a specific class in a specific node. [25].

13

15

17

18

23

viii

List of Figures ix

53

54

6.1

6.2

6.3

6.4

6.5

6.6

This graph, taken from [11], illustrates the difference between the projection

onto the connecting line between the class means (left) and projecting onto a

line obtained from Fisher linear discriminant analysis. This comparison clearly
displays some class overlap in the projected space in the left graph contrasted with
greatly improved class separation due to the application of LDA on the right. [11] . 28
This illustration, taken from [44], displays a general example of a multilayer

neural network. The weighted inputs x; are fed into the layer of input nodes. The

input nodes, feed into two hidden layers, which perform computations that cannot

be seen by the user. Finally, the hidden layers feed into the output layer, which
provides the output value y [44]. 33

This figure shows an example of a confusion matrix, calculated for each data

batch. This example is from a decision tree classifier, applied to processed data
obtained on 08.03.2023. 40
This figure shows the cumulative classification of test data, using a binary decision

tree, in all available data files with all six sensors functioning. This represents a
stacking of the confusion matrices of all data files in absolute values, meaning the
closer to a perfectly diagonal distribution, the better the classification result. 42
This figure shows the cumulative classification of test data, using linear

discriminant analysis, in all available data files with all six sensors functioning.

This represents a stacking of the confusion matrices of all data files in absolute

values, meaning the closer to a perfectly diagonal distribution, the better the
classification. it 43
This figure shows the cumulative classification of test data, using the k-nearest
neighbours classifier, in all available data files with all six sensors functioning.

This represents a stacking of the confusion matrices of all data files in absolute

values, meaning the closer to a perfectly diagonal distribution, the better the
classification. 44
This figure shows the cumulative classification of test data, using artificial

neural networks as the classification algorithm, in all available data files with

all six sensors functioning. This represents a stacking of the confusion matrices

of all data files in absolute values, meaning the closer to a perfectly diagonal
distribution, the better the classification. 45
This figure shows the cumulative classification of test data, using ensemble

methods as the classification algorithm, in all available data files with all six

sensors functioning. This represents a stacking of the confusion matrices of

all data files in absolute values, meaning the closer to a perfectly diagonal

distribution, the better the classification., 46

List of Figures X

6.7 This figure shows the cumulative classification of test data, using naive Bayes

as the classification algorithm, in all available data files with all six sensors

functioning. This represents a stacking of the confusion matrices of all data files

in absolute values, meaning the closer to a perfectly diagonal distribution, the

better the classification. i 48
6.8 This scatter plot compares the six applied machine learning algorithms in terms of

their predictive accuracy and the training time throughout the available data files.

Each small dot represents a single data batch and the larger dots show the median

value for each algorithm. 49
6.9 This figure shows the results from the application of each machine learning

algorithm on the two data files with five active sensor units, collected in heatmaps.. 50

List of Tables

4.1

4.2

4.3

4.4

4.5

6.1

6.2

6.3

6.4

This table displays all considered machine states, which form the basis for the
machine learning classification task discussed in thiswork. 11
This table lists the names of the sensors and the corresponding abbreviations. Each

of the listed sensors contains three accelerometers, one for each axis, meaning e.g.

OL, refers to the sensor on the left of the outlet and the accelerometer in direction x. 12
This table contains the percentage of information in the data, covered when

activating each sensor, one after the other, starting with a single sensor in the first

line of the table until all six are active and 100 % coverage is reached. 18
This table contains the coverage for each instance, when any one of the six sensors

is inactive in relation to the total available information. The coverage for any
permutation of the loss of a single sensor remains very consistent, indicating that

it is not of great importance which of the six sensorsislost. 19
This table contains the coverage for each instance, when any two of the six sensors

are inactive in relation to the total available information. The consistency among

the resulting coverage across different combinations of lost sensors indicates, that

the coverage does not depend on which pair of sensors is deactivated. 20

This table shows the accuracy and training time per data point when applying a
decision tree classifier to each available file and optimizing its hyperparameters,

with all six sensors functioning.oiuiiniinininenenenn.n. 42
This table shows the accuracy and training time per data point when applying

a linear discriminant analysis classifier to each available file and optimizing its
hyperparameters, with all six sensor functioning. 43
This table shows the accuracy and training time per data point when applying

a k-nearest neighbours classifier to each available file and optimizing its
hyperparameters, with all six sensor functioning. 44
This table shows the accuracy and training time per data point when applying

an artificial neural network classifier to each available file and optimizing its

hyperparameters, with all six sensors functioning. 45

X1

List of Tables Xii

6.5 This table shows the accuracy and training time per data point when applying
ensemble classifiers to each available file and optimizing its hyperparameters,
with all six sensors functioning. ittt 46
6.6 This table shows the accuracy and training time per data point when applying
naive Bayes classification methods to each available file and optimizing its
hyperparameters, with all six sensors functioning. 48
6.7 This table lists the median predictive accuracy and median training times per data
point for each of the applied machine learning classification methods across the
individual data files. 49

Chapter 1

Introduction

This thesis addresses two issues related to machine condition monitoring using batch data from
multiple sensors; an analysis of the level of redundancy within the data and the application of ma-

chine learning algorithms in order to identify the state of the machine.

The evaluation of the redundancy within the data is achieved by applying dimensionality re-
duction methods to the data set in the form of principal component analysis and investigating the
correlation between available data channels and informational coverage within the data set. This
is done to quantify the impact of the loss of data, due to damage or loss of sensor units, on the
information contained within the data set and consequently on the certainty with which the clas-
sification process can take place. A comprehensive analysis of different permutations of inactive
sensors will be conducted in order to gain an insight into the spatial redundancies present in the
distribution of sensors. The investigation of this property within the data is of great significance,
due to industrial environments in which the sensor units are mounted, which makes the possibility
of sensor failure relevant.

An aspect, on which research on redundancy within sensor system is often focused is redundancies
within systems of heterogeneous sensors for anomaly detection [1]. Another feature, often focused
on is sensor redundancy analysis to ensure the maintenance of long lifetimes in sensor networks
[2] or to improve a system’s energy efficiency [3]. All these aspects view redundancy in sensor sys-
tems as an overlap of what is measured by different sensors. In contrast, the nature of the system
redundancy analysed here deals with the loss of data, which is not replaced by any other sensor

within the network and thus the spatial redundancy on the machine must be investigated.

The second aspect focussed on within this thesis is the classification of the machine state through
the application of machine learning algorithms. The aim here is to explore suitable and applicable
machine learning algorithms, which can be trained with labelled input data and are capable of
multi-class classification. This can offer the basis on which a condition monitoring system for the
machine can be based. A challenging element of this is presented by the lack of any previous

insights into data produced by the machine, due to the lack of any condition monitoring solutions

1.2 Structure 2

being present, prior to the sensor system analysed here. Consequently, there has been no previous
insight into the data analysed here.

When the application of machine learning techniques for condition monitoring is discussed, it
is often in the context of “Industry 4.0” and “Internet of Things” (IoT) applications [4, 5]. The
application investigated within this thesis stands in contrast to this, focussing on the applications of
sensors for condition monitoring on a machine, which was not designed with condition monitoring

or predictive maintenance in mind.

1.1 Goals

The aim of the work conducted in this thesis is two-fold. The first goal within the project is to anal-
yse the level of data redundancy present in a multi-sensor machine condition monitoring system,
in order to quantify the impact a partial loss of data would have on the information, that can be
extracted from the sensor data. This will be achieved by applying dimensionality reduction tech-
niques to the data and investigating the dimensional coverage present as a function of the available
data channels. The second objective contained within this project is to exploring the application of
different machine learning algorithms for the classification of the machine state based on batches of
sensor data. The approach employed to accomplish this will entail the partitioning the data batches
into training data and testing data. Following this, various machine learning algorithms suitable
for multi-class classification problems will be trained using the training data and then tested on
the portion of the data reserved for testing. The results will be compared based on the accuracy of

prediction and the time taken to train each algorithm.

1.2 Structure

This work is structured as follows: Part 2 will give some background information on the principles
of machine learning and provide some important definitions. Part 3 will the definition and the
impact of data quality and the principles of data mining. In Part 4 the data exploration phase of
the project will be presented, which begins with the data from its raw form and end with the data
ready to be worked with, while in Part 5 each of the applied machine learning algorithms will be
described in detail. Part 6 will show and compare the application process and the results for each

algorithm and Part 7 summarizes and concludes this project.

Chapter 2
Machine Learning Background

The term Machine learning (ML), describes the computational capacity of machines to gain in-
sights from historical datasets, subsequently enabling the formulation of predictive models. This
process entails the derivation of mathematical models reflective of patterns and structures inherent
in the training data. Central to the establishment of a robust predictive system is the discernible
influence of data volume and quality, as these factors significantly impact the system’s ability to
generate accurate and reliable predictions. The ever-increasing importance of machine learning is
underscored by its unique capability to undertake intricately convoluted tasks that can generally

not be performed by humans, thereby increasing operational efficiency [6].

2.1 Applications of Machine Learning

Nowadays, machine learning is quite broadly known and widely used. Consequently, there are
many examples for the application of machine learning algorithms. Some examples of areas in

which machine learning is applied are:

1. Image and Speech Recognition
The possibility of using machine learning, in this case mainly deep learning algorithms, has
been vital for speech and image recognition tasks used in virtual assistants, automated image

tagging or facial recognition systems.[7]

2. Natural Language Processing (NLP)
NLP uses machine learning to interpret and understand language and for generative language
systems. This is probably one of the most widely known uses for machine learning, as it is

implemented in chat bots, language translation or for extracting information from text. [§8]

3. Predictive Analytics
Machine learning can also be very useful for making predictions. This can be applied, for

example, in predictive maintenance in industry for optimizing maintenance schedules and to

2.3 Types of Learning 4

minimize the risk and costs of machine failure. Further usage of predictive analytics are in

health care for disease prediction, diagnostic imaging and optimizing treatment plans. [9]

2.2 Types of Machine Learning Tasks

Machine learning techniques can be utilised in a wide array of different tasks, the most common
of which are listed here [6, 10]:

1. Clustering
Clustering aims to find groups of similar data points within a set based on certain characteris-
tics without pre-defined labels. This is done in order to find previously undetected structures
and features within the dataset.

2. Classification
Classification is the task of assigning data to pre-defined categories based on certain charac-
teristics. This process works with a labelled input data set with the goal of finding a decision

boundary, which separates different classes.

3. Anomaly Detection
Anomaly detection specifically focuses on data points, which significantly deviate from the

norm, indicating unusual events or behaviour of the systems.

4. Regression
Regression represents a task, which involves the prediction of a continuous output variable
based on one or more input features. The aim is to gain insights about the relationship be-
tween input and output.

2.3 Types of Learning

Another important aspect, which needs to be considered regarding machine learning is the variety
of different learning types [6, 11].

1. Supervised Learning
In supervised learning, the machine learning model is trained on a labelled data set, where
the input is paired with the corresponding output. The information learned about the rela-
tionship between input and output is then mapped onto the training data set and the deviation

from the known labels gives a measure for the accuracy of this method.

2.5 Applicability 5

2. Unsupervised Learning
In unsupervised learning, the model is trained with unlabelled data and therefore with no
information about the system output. Here, the algorithm explores the inherent structure and

patterns in the data without knowing the output.

3. Reinforcement Learning
In reinforcement learning, the system receives “rewards” or “penalties” based on the actions
it takes. The aim is for it to learn a strategy, which allocates states to actions in order to

maximize the “reward” over time.

4. Ensemble Learning
Ensemble learning combines multiple machine learning models in order to improve the over-

all performance and system robustness.

2.4 Interpretability

In machine learning, there still exists a trade-off between a model’s accuracy and its interpretabil-
ity. Many basic models can be understood and interpreted well, whereas more complex models
lack intelligibility. However this increase in difficulty of understanding more complex models is
accompanied by increasing predictive accuracy [12]. For this reason, this thesis will be focussed
on an experimental approach to understanding the types of machine learning algorithms, which are
applicable and useful.

2.5 Applicability

The task, which is the focus of this thesis will be analysed through the lens of a machine learning
classification task, using supervised learning. This is due to the nature of the task at hand, the aim
of which is to sort each instance within the data into a class, denoting the state the machine was in
for that time. Furthermore, the existence of labelled data, showing the state of the machine, makes

a supervised learning approach useful and efficient.

Chapter 3
Data Quality and Data Mining

Analysing sensor data has become ubiquitous in most industries in order to reduce downtime by
improving maintenance strategies and increasing overall efficiency. However, this can only be
effectively applied, when the data used is of sufficient quality. Problems with the quality of data
can lead to wrong conclusions being drawn, even if the applied analysis is correct.

A data set can be deemed to be of sufficient quality if it meets the specifications of the task it
will be used for [13]. This definition by Olson (2003), includes the intended use of the data in the
assessment of data quality.

3.1 Data Quality Dimensions

When attempting to quantify the quality of a data set, there are numerous aspects, which need to
be considered. Depending on the task, these may vary in importance.

3.1.1 Accuracy

Ensuring the data set is of sufficient accuracy is vital in order to prevent incorrect analyses and
consequently erroneous decision-making based on an inaccurate data set. Accuracy in this context
refers to the correctness of the individual data points within the set. Some influencing factors for
the accuracy of a data set include the reliability of the data source itself and the data entry process,
as well as the precision of measurements. [14] Generally, accuracy of a data set can be defined as

the extent to which the data set is able to reflect reality. [15]

3.2 Data Mining 7

3.1.2 Completeness

Completeness with regard to data quality, refers to the extent to which all required data points
are actually present within the set. Incomplete data can introduce unintended biases or incorrect

conclusions. [15]

3.1.3 Time-Related Dimensions

The way in which data set changes over time is a vital aspect, which needs to be considered
when judging its quality. In [15], three types of time related dimensions are considered: currency,
timeliness and volatility. Currency refers to how promptly data is updated, which can be very
relevant in many applications, such as status monitoring. A data set’s volatility describes the rate at
which a data set varies over time. Lastly, timeliness refers to how current the information within the
data set is in relation to the task at hand. This means, that the data may be updated and therefore
current, and yet outdated for the task at hand if the frequency of updates does not match the

timeliness requirements of a task [15].

3.1.4 Consistency

Consistency, in this context refers to how well data from different sources is combined and in-
tegrated. A data set of high quality displays a consistency of units, formats and data types [13,
15].

3.2 Data Mining

Data mining is defined as the automatic extraction of new information from large data sets. Its ori-
gin can be traced to the fields of statistics, probability theory and artificial intelligence [16]. When
talking about the term data mining, a distinction must be made between scientific data mining for
the purpose of scientific research, which exists in contrast to market-driven data mining and is
distinct from the latter due to the nature of the data sets it is applied to [16].

3.2 Data Mining 8
3.2.1 The Standard Process of Data Mining

The standard process of data mining begins with the gathering of data in order to form the initial
raw data set. This is followed by data cleansing, preprocessing and transforming a sub-set of the
initial data set into a flat file. Once the relevant data has been moulded into a workable and clean
form, one or more methods to extract information from the data set are applied. Examples of these
are predictive methods, clustering methods or visualisations of the data. The last step in the process
is the interpretation of the results of the methods applied in the previous step to actually extract
knowledge from the data set [16].

3.2.2 The Data Mining Wisdom Pyramid

An alternative way of representing the process of data mining is the data mining wisdom pyramid,
also known as the DIKW-Pyramid, as shown in figure 3.1. f

Knowledge

Fig. 3.1: This figure, inspired by [17], shows the hierarchical structure inherent in a data set, which
is extracted by data mining methods. A raw data set starts out at the bottom level of the pyramid.
Through progressively transforming, cleansing, applying predictive methods and visualising, the
pyramid culminates in wisdom being extracted from the data.

3.3 Relevance for this Thesis 9

The exact meaning of each layer is disputed among sources but there is generally some common
ground within various definitions. The different levels of the pyramid describe the following states
of the data set:

1. Data
A data set is considered this level of the pyramid, when it is uncategorised, unprocessed and
unorganized. The raw data set itself has no value or meaning, as it is missing any context and

is just the direct product of observation. [17, 18, 19]

2. Information
This level generally refers to data, which has been structured and organized in some way.
The processing step applied to create this structure within the data, gives the data set context
and thereby increases its value and usability [18].

3. Knowledge
The concept of knowledge in this context is typically defined as adding understanding, expe-
rience and skills to to learn more about the data set [18]. Knowledge can thus be described as
a property of the people or systems working with the data set, rather than a property inherent
to the data set itself [20].

4. Wisdom
Wisdom in this context, requires the judgement of the person working with the data set and

refers to an ability to increase effectiveness [19].

3.3 Relevance for this Thesis

When analysing and processing the data sets within the scope of this thesis, the dimensions of data
quality is used to judge the data’s quality and usability. Moreover the processing and extracting of

information from the data is guided the concept of data mining.

Chapter 4
Data Exploration

This chapter documents the data exploration phase of this thesis, from some initial analyses up to
the point at which the data is ready for the application of machine learning algorithms.

This is an essential step in the early stages of any data science project in order to understand
the quality of the data and to discover potential issues or challenges, which could affect the way
the data can be used and to make sure the right conclusions can be drawn upon completion of the
project.

Another aspect described in this chapter is the level of redundancy within the data, analysed
by evaluating the dimensional coverage. This is done to investigate the correlation between the

retention of functionality and reduction of certainty by losing sensor units.

4.1 Data Structure

The data used for this work was attained from 6 sensor units, mounted symmetrically along a waste
processing machine. The data was measured in 8 batches recorded between the 6th of March 2023
and the 5th of April 2023, with each batch being stored in a JSON file. The files vary in length from
the smallest file containing 209 samples, covering a time period of approximately 4.5 hours up to
the largest file, containing 1439 samples, spanning 24 hours with each providing a timestamp for
each sample. Crucially, for each timestamp, the state of the machine has been manually labelled,
meaning the data is suitable for training and testing purposes. In addition to the manually added
state variable, the file contains 144 channels, 24 per sensor. However, for this work, only the three
acceleration measurements per sensor were analysed, leaving 18 data channels, three acceleration
channels per sensor.

After the recording of the data batches, one of the six sensor units failed and was consequently lost.
After this incident, two additional batches of data were recorded analogous to the 8 original data
batches but with only 15 data channels. These will be evaluated separately in the later chapters of
this thesis.

10

4.3 Data Ingestion 11

4.2 Industrial Context

The industrial context from which the data sets for this thesis originate is within a metal-waste
treatment facility. Specifically, the sensor units are mounted on a metallic waste separation ma-
chine. Said machine works by receiving both metal scraps and carrying fluid on a conveyor belt.
The function of the fluid is to suspend the smaller parts of the metal scrap, in order to facilitate the
flow of material. The conveyor belt leads to a vibrating sieve, which is meant to separate the metal

scraps by size.

4.2.1 The States of the System

The labels added to the data specify the state the machine was in at a specific time stamp. There is

a distinction made between four different states the machine can be in.

State Number|State Description
0 In state O, the machine is switched off.
1 State 1 describes the machine running idly with no waste or fluid on the machine.
2 In state 2, there is only fluid but no waste running across the machine.
3 State 3 describes the machine working fully with both waste and liquid.

Table 4.1: This table displays all considered machine states, which form the basis for the machine
learning classification task discussed in this work.

These four different states form the basic class structure for the classification task analysed in
this thesis.

4.3 Data Ingestion

The data analysed in this work originates from six sensor units mounted on different parts of the
machine. In the ingestion process, the data is mapped to a set of objects, which are collected in a
timetable with attached metadata. This implicitly introduces time into the system. The sensor units
are positioned symmetrically at the inlet, middle and outlet of the machine, each on the left and

right side of the machine. They are abbreviated in the following way throughout this document.

4.4 Issues with the Data 12

Sensor Position|Abbreviation
Inlet Left IL

Middle Left ML

Outlet Left OL

Inlet Right IR

Middle Right (MR

Outlet Right |OR

Table 4.2: This table lists the names of the sensors and the corresponding abbreviations. Each of
the listed sensors contains three accelerometers, one for each axis, meaning e.g. OL, refers to the
sensor on the left of the outlet and the accelerometer in direction x.

Each contains three accelerometers; these are the measurements on which this project is focused.
The channels are henceforth denoted with the sensor abbreviations, as listed in 4.2 and the axis, e.g.
IR, referring to the sensor on the right side of the machine’s inlet and the accelerometer measuring
the y axis. The data analysed is batch data, with the addition of manually created labels, describing
the state the machine was in at each time stamp.

Throughout this chapter, an exemplary data set, recorded on the 5th of April 2023, is used to
visualise the progress of the data exploration and preparation phase.

4.4 Issues with the Data

4.4.1 NaNs in the Data

One issue, which requires immediate attention before proceeding is the prevalence of "Not a num-
ber” (NaN) entries in the dataset. These are especially present at the beginning and end of the data,
when the machine is turned off, and sometimes such entries occur throughout the dataset. Two
different approaches were selected in order to remove the NaN entries in the data set. For the be-
ginning and end of the data set, the NaNs are replaced with zeros, due to the machine being turned
off at that time. These artificially created zeros are necessary for the machine learning algorithms
but are not taken into account when performing calculations, such as calculating the mean of the
data, as they would cause potential problems. The NaNs contained within the measurements are

linearly interpolated based on the values preceding and following the NaN value(s).

4.4 Issues with the Data 13

40

ML X o] '7 ‘ ' ' ‘ i
1] | | | |

C [I [| i
ML y .o

ML_Z[]“.‘i B

E T f f
IL xa01 .
0 | 'V | | | ‘
0.6 | | |
- 2 WWW |
40 | :

-
I
1

OR_x94_ F W "
0 | | | |

= | I I |
()R_y[]“'_ —

e MWWWW]
0 | |

Apr 05, 00:00 Apr 05, 06:00 Apr 05, 12:00 Apr 05, 18:00
Time 2023

Fig. 4.1: This figure shows the raw acceleration data from each sensor unit. Three acceleration
dimensions are attained from each unit, resulting in 18 channels. The data is unprocessed at this
point, apart from the interpolation of all NaN values within the dataset and the replacement of
NaNs at the beginning and end with zeros.

4.4.2 Time Discrepancies

Another issue, which must be kept in mind throughout this project, is the potential for small time
shifts between the machine data and the manually created labels. These are primarily due to the
very nature of manual labelling, which can incur latency in comparison to the machine switching

states. This does not require immediate correction, however it must be kept in mind for contextu-

4.5 Dimensionality Reduction 14

alising the results and can offer an explanation for minor differences in predicted data and labelled
data.

4.5 Dimensionality Reduction

The next step in preparing the data for processing, is to check the dimensional coverage of the
sensors. This is done, in order to discern, whether portions of the data add little to no extra infor-
mation and don’t need to be considered further. Reducing the volume of data required will increase
the efficiency of working with the data set. If there are redundancies in the data, one can consider
whether or not sensors can be removed without significantly impacting the certainty with which
this data can be used to identify the state of the machine. Furthermore, this will show whether the
application of dimensionality reduction measures is possible without a significant loss of informa-

tion.

4.5.1 Singular Value Decomposition (SVD)

To achieve a reduction in data dimensionality, principal component analysis (PCA) is applied. This
is done to identify the main direction of vibration and to adjust the frame of reference accordingly,
in order to identify the main vibration axis.
In order to be able to implement PCA in a later step, as well as check the inherent dimensional
coverage prior to the application of reduction measures, singular value decomposition (SVD) is
performed. This yields a coefficient matrix U, a singular value matrix S and a rotational matrix V.
[21]

The data can be represented as an m x n matrix D = [dy, ..., d,| with dj being column vectors,
which contain the individual data points for each time stamp. In order to normalise the impact of

each data channel, the data must first be made mean-free.

~ 1
dio = di— Y d; 1)
i

Using SVD, D can be represented as:

D = UsVT (4.2)

with

UTu =1 (4.3)

and

15
VIV =| (4.4)

4.5 Dimensionality Reduction

The matrix S is an n x n diagonal matrix consisting of n scalar values oy, where o; > 0y, ;. The

values in S are collected in vector form in:
s=|: 4.5)

Having defined these parameters, the dimensional coverage of the raw data, before the applica-
tion of any processing, can be calculated as follows:
23'71 Oj
Ci= o (4.6)
C X0
The value of ¢; represents the percentage of the data, which is covered cumulatively by all

dimensions up to i. This can be visualised in the following figure.

Total Data Coverage

" T | | T
g 601\ -
> \
&40\ -
Fool N\ -
. 0 | T e | ! | I |
2 4 §] 8 10 12 14 16 18
0.6 T T T T T T T T =
g |\
= M\
2, N
Szl O\ e
&
0 | e | ! | I I
2 4 1§ 8 10 12 14 16 18
1 T P —— . T T T
) L —
o e
g |
g 0.50 =
3
0 | | ! | | | ! |
2 4 6 8 10 12 14 16 18
Nr dimensions

Fig. 4.2: This plot displays the dimensional coverage of the data set as a function of the number
of dimensions, as described in the previous equation. If all 18 dimensions of acceleration data are
considered, 100% coverage of the information within the data set is assumed.

4.5 Dimensionality Reduction 16

4.5.2 Principal Component Analysis (PCA)

Next, PCA is be applied, in order to improve the dimensional coverage shown in 4.2. PCA is a
commonly used tool in data science, which is used to identify the ideal base for the data, in order
to gain new insights, reveal previously unseen structures in the data and to filter out noise. [22] In
this case, PCA 1is applied to each sensor individually and the main principal component is extracted
from each. The primary principal component represents the direction in which the most significant
acceleration takes place. This step will yield six principal components, one from each sensor. The

principal components can be computed as follows:

P,=US =DV 4.7

where the columns of P represent the most significant principal components of the sensor and U
and S are matrices attained from applying singular value decomposition to each sensor.

The Visualisation of the principal components suggests a correlation between data channels.
This correlation gives an indication that there might be redundancies in the data and the dimension-

ality could be reduced without significant losses in accuracy and only minor sacrifices of certainty.

4.5 Dimensionality Reduction 17

0 . . e e e e e e e
PCsl
20— | | |
PCs2 10l |
g i I I '
PCs3
-10F —
20— | | |
PCsd 10 |
i | = s e P e
PCsh
=10 —
20— | | |
PCs6 10 _
0 e T T e e T e T T e ey |

i
Apr 05, 00:00 Apr 05, 06:00 Apr 05, 12:00 Apr 05, 18:00
Time 2023

Fig. 4.3: This figure displays the primary principal component from each of the six sensor units
over the time contained within an exemplary data file. The data here has been made mean-free and
shows some clear correlations between the principal components.

4.5.3 Checking the dimensional coverage after PCA

The same process as in 4.6 can be applied to the principal components, in order to determine the
coverage of the data set after the applied transformations.

The result of this can be seen in the following figure.

4.5 Dimensionality Reduction 18

Coverage after applying PCA to each Sensor

= ~— T T T T T
= B0 T~ .
= =
= 40 P -
[.
= 201 S -
o ——
0 | | | Tt el | |
1 15 2 2.5 3 3.5 1 1.5 5 5.5 6
1 T T T T T T T T T
5
SR —— -
& %
0 l I] 1 | l
1 1.5 2 2.5 3 3.5 4 4.5 5] 5.5 6
1 I ___I____I__——}——I_ — 1 T I I
. o e
£n
&
2 0o |
O
0 | | | | | | ! | |
1 1.5 2 2.5 3 35 4 4.5 5 5.5 6
Nr Sensors

Fig. 4.4: This visualisation shows the data coverage after the application of principal component
analysis plotted against the number of active sensors. This clearly shows an improvement due to the
applied transformations and indicates, that the loss of one or two sensors still results in significant

dimensional coverage.

The results shown in 4.4 indicate that there are redundancies in the data. The graph shows, that
when only four out of the six sensors are present, a coverage of 95% can be achieved and that even
with only one sensor present, 57% is already covered. The reduction in coverage caused by the

loss each further sensor is can be seen in the following table:

Nr. Active Sensors|Coverage [%]
1 76.649
88.89
95.41
98.77
99.50
100.00

NN kAW

Table 4.3: This table contains the percentage of information in the data, covered when activating
each sensor, one after the other, starting with a single sensor in the first line of the table until all

six are active and 100 % coverage is reached.

4.6 Dimensional Coverage when Losing Sensors 19

4.6 Dimensional Coverage when Losing Sensors

In this section, we will analyse the effect of choosing any number k out of the total of n sensors
and calculate the resulting dimensional coverage. This will be done for each possible combination

of sensors. The number of possible combinations 7. is calculated by the following binomial:

¢c= (Z) (4.8)

For each possible combination, the same methods as described in 4.5 and 4.6 are applied. For
quantifying the coverage in comparison to using all six sensors, a measure is created. This measure
uses QR decomposition to calculate a matrix R. In QR decomposition a matrix A is decomposed
into an orthogonal matrix Q and an upper-triangular matrix R. The relationship between these three
matrices is A = QR. [23]
QR decomposition is applied to both the overall matrix containing all six primary components of
the system will all six sensors being operational and to each combination of working sensors.

The measure r. is then defined as the ratio between the norm of the upper-triangular matrix of

the active sensors with the deactivated sensor(s) Ry and the upper-triangular matrix of all sensors
R:.

_ [Rill2
IR 2

Te

4.9)

4.6.1 Choosing S out of 6 Sensors

The first case analysed here is when only one of the six sensors is removed, leaving any com-
bination of the remaining five sensors. The results for each of the six cases are collected in the

following table:

Combination of Sensors| 7. [%]
1,2,3,4,5 91.3969
1,2,3,4,6 91.3308
1,2,3,5,6 90.9947
1,2,4,5,6 91.6765
1,3,4,5,6 91.6956
2,3,4,5,6 91.0005

Table 4.4: This table contains the coverage for each instance, when any one of the six sensors is
inactive in relation to the total available information. The coverage for any permutation of the loss
of a single sensor remains very consistent, indicating that it is not of great importance which of the
six sensors is lost.

4.7 Redundancies 20

The results of the analysis of the dimensional coverage when one of six sensors is lost in table
4.4 shows significant consistency across each permutation of sensor loss. This indicates that the
impact on the dimensional coverage achievable when one sensor is deactivated is not dependant

on which of the six sensors is lost.

4.6.2 Choosing 4 out of 6 Sensors

The second case analysed in this section involves any two of the six sensors being inactive, leaving
any combination of the remaining four sensors. All 15 such cases are represented in the following
table:

Combination of Sensors| r. [%]
1,2,3,4 81.696
1,2,3,5 81.480
1,2,3,6 81.396
1,2,4,5 82.362
1,3,4,6 82.069
1,2,5,6 81.797
1,3,4,5 82.144
1,3,4,6 82.304
1,3,5,6 81.796
1,4,5,6 82.298
2,3,4,5 81.454
2,3,4,6 81.395
2,3,5,6 80.992
2,4,5,6 81.789
3,4,5,6 81.854

Table 4.5: This table contains the coverage for each instance, when any two of the six sensors are
inactive in relation to the total available information. The consistency among the resulting coverage
across different combinations of lost sensors indicates, that the coverage does not depend on which
pair of sensors is deactivated.

The results listed in table 4.5 indicate, that which pair of sensors is lost does not have a significant

impact on the remaining dimensional coverage, which can be expected.

4.7 Redundancies

The examination carried out in this chapter demonstrates, that even in scenarios where one or two

sensors are omitted, there remains a considerable likelihood of obtaining accurate results from

4.7 Redundancies 21

the dataset. Building on this observation, the next phase of the investigation will extend into the
realm of applying machine learning algorithms. The goal is to comprehensively understand the
repercussions, or lack thereof, stemming from the absence of certain sensors in regard to the clas-
sification of the machine state. By incorporating machine learning methods, the study aims to
discern the robustness and adaptability of the chosen algorithms in accommodating missing sensor
data, thus enhancing the overall understanding of the system’s resilience to sensor failure sce-
narios. This strategic progression in the research design will contribute valuable insights to the
broader discourse on the reliability and effectiveness of machine learning approaches in real-world
applications with potential sensor irregularities.

Chapter 5
Exploration of different Machine Learning Algorithms

This chapter will explore a selection of different machine learning algorithms, all of which have
the potential to be useful in the classification problem investigated in this thesis. For each method,
the fundamental working mechanisms, different variations and hyperparameters, as well as the

suitability for application will be discussed.

5.1 Binary Decision Trees

Decision trees represent a simple, yet powerful supervised classification approach. Decision Trees
offer a clear graphical representation made up of a root, nodes, branches and leaves. Starting from
the root node, the tree is generally drawn from the top down and from right to left and ending
in leaf nodes at the bottom of the tree. Each node represents a certain characteristic within the
tree and the nodes are connected by branches, representing a range of values, acting as partition

points for the data set. In a binary decision tree, each node splits into exactly two branches. [24, 25]

22

5.1 Binary Decision Trees 23

Root Node

Fig. 5.1: This figure shows an example structure of a binary decision tree, starting from the root
down to the leaf nodes, inspired by [25].

5.1.1 Types of Decision Trees

Decision tree algorithms are primarily used for regression or classification problems. Some of the
main types of decision tree algorithms are listed here:

1. ID3 (Iterative Dichotomiser 3):
ID3 was one of the first formulations of a decision tree algorithm, developed by Ross Quinlan
in [26]. It literately creates the tree from the top down by recursively choosing the optimal

attribute for splitting the data based on the gaining of information or entropy. [26].

2. C4.5 (Classification and Regression Trees) :
C4.5 represents an improvement of the ID3 algorithm, also developed by Ross Quinlan in
[27]. It again uses information gain for attribute selection but handles both discrete and con-
tinuous attributes. Moreover, C4.5 is characterised by its ability to handle missing data points
well. [27]

3. CART (Classification and Regression Trees):
CART is a decision tree algorithm, which can be both used for classification and regression.
It was developed by Leo Breiman in [28] and is implemented in the binary decision tree
classifier in MATLAB . CART constructs binary trees by recursively splitting the data set

5.1 Binary Decision Trees 24

into two subsets, either based on the Gini Impurity for classification tasks or mean squared

error reduction for regression tasks. [28].

4. CHAID (Chi-squared Automatic Interaction Detection):
CHAID is mainly employed for categorical data. The algorithm recursively splits the data
set based on statistical testing, using tests such as the chi-squared test for independence. The

main aim of CHAID is to find relevant relationships between different variables. [29]

5.1.2 Impurity Measures

Decision tree algorithms require impurity measures for their decision-making process, in order
to evaluate how well particular attributes or features separate the data into classes. The impurity
measure guides the process of constructing an optimised decision tree. Decision trees have the
aim of maximizing the homogeneity of the resulting subsets, where impurity measures play an
important role in quantifying this subset purity. [28, 25]. Moreover, impurity measures play an
important role in selecting the optimal features for splitting the tree by evaluating the potential
splits in terms of how they would reduce the overall impurity. The reduction in impurity is often
expressed as information gain, which in turn is used to quantify the improvements achieved by a
specific split. Therefore, potential splits can be ranked by the information that can be gained. Lastly,
impurity measures are crucial for the tree pruning process. For classification tasks in decision trees,
there are three main impurity measures: Misclassification Error, Gini Index and Cross-entropy (or
Deviance) [22].

5.1.2.1 Mathematical Definition

Let m describe a node within a decision tree, which represents the region R,,, which contains N,
observations. Each observation NV; exists an input variable x; and a corresponding response variable
vi, which for classification tasks represents the assigned class. The proportion of observations from

class k within node m can be defined as:

X 1
Pk =~ Y #{yi=k} (5.1)
m x;eRy,

The observations in node m are classified to class k(m) = argmax; p,x, which describes the
majority class in node m [30].

The measures for node impurity Q(7') can consequently be defined as follows [30]:

5.1 Binary Decision Trees 25

1. Misclassification error:

1 R
N L #Hyi A km)} = 1= pui(m) (52)
m X;€ER,,
2. Gini Index:
K
Y PPt = Y, Puk(1 = Pouk) (5.3)
k#k' k=1
3. Cross-entropy or Deviance:
K
- Z Pk 108 Pk (5.4)
k=1

How these impurity measures compare can be visualised in the following figure 5.2:

Fig. 5.2: This figure compares the three most significant impurity measures for decision trees, used
in classification tasks. The figure is taken from [25]. The y-axis shows the impurity, which lies
between 0 and 1. The closer this value gets to 0, the better. The x-axis displays the proportion p of
a specific class in a specific node. [25]

5.1 Binary Decision Trees 26
5.1.3 Tree Pruning

An essential step in the construction of decision trees with the goal of refining the tree structure
is tree pruning. This step is essential to prevent overfitting of trees. When overfitting occurs, the
tree structure becomes so complex, that noise in the training data is picked up instead of general
patterns in the data, which is detrimental to the trees predictive capabilities. [28, 30] The process

of tree pruning can be described in the following steps:

1. Full Tree Construction
Initially, the entire tree is constructed up to the defined stopping criterion. The stopping cri-
terion is usually set as a maximum tree depth or making sure each leaf node includes a

minimum number of instances.

2. Node Evaluation
When the whole tree has been constructed, each leaf node can be analysed, gauging the
impact each node has on the predictive prowess of the tree. This is usually quantified by

applying validation techniques.

3. Tree Pruning
The pruning process identifies the parts of the tree, which don’t significantly contribute to its

predictive capabilities to prevent overfitting.

4. Subtree Removal
Once the non- or low-contribution sections of the tree have been identified, they are system-
atically removed.

5. Stopping Criterion
Lastly, the pruning process terminates when a stopping criterion is reached. This can involve

achieving a desired predictive accuracy or optimal tree complexity.

5.1.3.1 Cost-Complexity Pruning

One of the most commonly employed methods for tree pruning is cost-complexity pruning. This
can be defined as [30]:
Ny =#{x; €Ry} (5.5)

with N, referring to the number of observations N, at node m in the region R,,. Each single obser-
vation N; is described by (x;l,y;), fori=1,2,...,N.

5.2 Linear Discriminant Analysis (LDA) 27

. 1
Cn=" 2 Vi (5.6)

m x;eRy,

(5.7)

Here, index m denotes a specific node, N,, represents the number of observations at node m in
region R,. Moreover, x; and y; describe a specific observation N within the data set. The calcu-
lated parameter Q,, represents the impurity measure for the analysed node, which is discussed in
equations 5.2, 5.3 and 5.4. [30] The complexity criterion for a tree 7', with the number of terminal
nodes |T|, can thus be defined as:

7|
Coa(T) =Y NuQn(T)+|T| (5.8)
m=1

The parameter o represents a tuning parameter, which can be adjusted to find the balance between
the size of the tree and how well it fits the data. In cost-complexity pruning, the aim is, for each
value of «, finding a subtree Ty, C Tj to minimize the value of Cy (7). [30]

5.1.4 The CART Decision Tree Algorithm

The specific algorithm employed within this thesis, and implemented in MATLAB is the Classifi-
cation and Regression Trees (CART) algorithm, which is capable of both regression and classifi-
cation tasks. The tree construction process works by recursively splitting the data set into subsets,
based on feature selection optimisation. To quantify the homogeneity of subsets in classification
tasks, the algorithm uses the Gini Impurity index, previously defined in 5.3.

The CART algorithm was applied, not only due to its wide availability in various machine learn-
ing libraries, but also due to its consistent performance [31], its systematic pruning strategy, as

discussed in the previous paragraph, and its robustness to outliers and noise in the data [30].

5.2 Linear Discriminant Analysis (LDA)

Discriminant Analysis describes a statistical technique employed for classification tasks and di-
mensionality reduction, first introduced by R.A. Fisher in [32]. In this case, linear discriminant
analysis (LDA) is used as opposed to e.g. quadratic or pseudo-quadratic discriminant analysis, due
to it yielding the best results in trial applications for this data set.

Generally, the aim of LDA is to find the optimal linear combination of features for separating the

data set into a given number of classes. This is achieved by dimensionality reduction, through the

5.2 Linear Discriminant Analysis (LDA) 28

projection of the data onto a lower-dimensional subspace while preserving the separability of the
classes. [33]

LDA works under the assumption, that the data’s features are normally distributed within each
class. If this holds true in the data set, this algorithm will work well. [34] Moreover, LDA handles
multi class problems very efficiently and provides insights into the importance of different features
for the separation of classes. [30]

Some drawbacks, which can come with the application of LDA include a significant sensitivity to
outliers in the data and the inherent assumption that the covariance matrices of different classes
are equal. [33, 35] In addition, LDA inherently assumes linear decision boundaries. If this is not
reflected in the reality of the data, LDA may deliver suboptimal results and either quadratic dis-
criminant analysis or other non-linear models, such as support vector machines, may be better
suited. [30]

4 oo 4 .-
.'-.:-°:_~-- * ’-:'" s, .-
.:::“-::.:-':i: : .. \ e N ":':;‘_.'.:'__l'-' -'::_; A
2 oA e ETR
Tt f i
~ . 33 \ W
O \.'I 0 "/
o ©
el \
.
_7 Al
) a,, ,
| , ~\\

Fig. 5.3: This graph, taken from [11], illustrates the difference between the projection onto the
connecting line between the class means (left) and projecting onto a line obtained from Fisher
linear discriminant analysis. This comparison clearly displays some class overlap in the projected
space in the left graph contrasted with greatly improved class separation due to the application of
LDA on the right. [11]

5.2.1 Mathematical Definition

Let there be a data set with N samples and D different features and the aim is to classify the data
set into K classes. The first step would be to create an in-class scatter matrix Sy,. This is done by

calculating an individual scatter matrix for each class k, which is defined as: [11, 30]

Sk = Z (a:z — mk,)(a:, — mk,)T (5.9)

ieCy

5.3 k-Nearest Neighbours (kNN) 29

with Cy representing the number of samples within class &, ; being a single sample and 1y the

mean vector of class k. The total in-class scatter matrix is then computed as follows:

K
Sw=Y Sk (5.10)
k=1

The next required parameter is the scatter matrix between classes S,,. For this calculation, one must
first compute the mean vector for the entire data set & and the mean vector for each class my. The
calculation is defined as follows:
K
Sb =Y. Ne(my — &) (my, —)" (5.11)
k=1
with Ny being the number of samples in class k.

The matrices Sy, and S, can be used to formulate the following eigenvalue problem:

Sw ISV = AV (5.12)

This needs to be solved for the matrix V of eigenvectors and A\ of eigenvalues. Finally, the
eigenvectors corresponding to the top C — 1 eigenvalues must be chosen to form the transformation
matrix W.

The linear discriminant function for classifying a new sample x into one of the K defined classes

is consequently given as:

y(x) =Wk (5.13)

5.2.2 Suitability of Discriminant Analysis for Classification Tasks

Some key reasons, why linear discriminant analysis is relevant for the application discussed in this
thesis, is its probabilistic framework for the approximation of classes, robustness to imbalances

between different classes and its inherent feature selection. [36, 11]

5.3 k-Nearest Neighbours (kKNN)

Another algorithm, which was considered for the classification task at hand is the k-nearest neigh-
bours algorithm, first introduced by T. Cover and P. Hart in [37]. The algorithm works by setting
a point x, which will represent the centre of a sphere. The radius of this sphere will be continually
increased until £ number of data points are contained within it. [11]

KNN offers the advantages of being quite simple and straightforward to implement and to un-

5.3 k-Nearest Neighbours (kNN) 30

derstand and offers very good adaptability to decision boundaries that are non-linear in nature.
However, its effectiveness wanes as the size of the data set increases, due to the computational
cost incurred. Furthermore, kNN is quite sensitive to outliers and struggles with noise within the
data, due to every data point being considered equally. Lastly, the choice of the hyperparameter
k is essential. If the chosen value of k is too small, overfitting can occur and the algorithm might
capture noise. If & is set too large, this can cause an oversmoothing the decision boundaries, which

can lead to missing certain patterns. [11] [37]

5.3.1 Mathematical Definition

The first step for explaining the mathematical background of the kNN algorithm is to define a
feature space X which is made up of individual samples X; = (x;1,X;2,...,X;4) Withi =1,2,....N
and D representing the training data set consisting of N samples and d features.

A key aspect of the KNN algorithm is the choice of distance measure, which can have an impact
on the efficiency and applicability. Some significant distance measures will be discussed in the

following list:

1. Euclidean Distance

d
d(X;,X;j) = Z Xige — X)

The euclidean distance is the simplest distance metric discussed, as it describes a straight

line between two points in the euclidean space. [11]

2. Hamming Distance [38]

d
XHX Z xlkax]k

With 6 being the Kronecker delta function, which returns 0 if x;; = x jk or otherwise 1. [38]
In its traditional form, hamming distance is designed to work with binary data. A modified
version, referred to as mismatch distance, can be used for applications with non-binary data.

The mismatch distance counts the non-matching elements between two vectors. [11]

3. Mahalanobis Distance

d(Xi,X;) = \/(Xi—Xj)Tz_l (Xi —Xj),

5.3 k-Nearest Neighbours (kNN) 31

where X is the covariance matrix for the points X;.
This distance metric takes the correlation between variables into account, making it very

useful in applications with non-independent dimensions in the data. [39]

4. City Block (Manhattan) Distance

d
d(Xi,Xj) = Z]xik—xjk\
k=1

City Block or Manhattan distance is defined as the absolute sum of differences for each fea-
ture. It measures the distance akin to travelling in a city grid, only moving horizontally and
vertically. [40]

5. Spearman Rank Correlation Distance

d
d(X;,X;) Z (rank; (xi) rankj(xjk))2

The Spearman rank correlation distance is based on Spearman rank correlation coefficient
and represents a metric for the differences in rank between the variables. It is very robust to

outliers and can be useful for different distributions present in the data. [41]

6. Minkowski Distance

1
d(Xi,X;) = <Z |xlk_x]k|p>

The Minkowski distance represents a generalization of the euclidean and Manhattan dis-
tances by including both cases. Euclidean distance can be measured by setting p = 2 and
the Manhattan distance can be attained by setting p = 1. These represent special cases for
the Minkowski distance. Another significant speciality concerning the Minkowski distance
is given by the fact, that the greater the value of p, the closer it comes to the Chebyshev
distance. For p = o it is equal to the Chebyshev distance. [30]

7. Cosine Similarity

Zk 1 XikX jk

\/Zk 1 (xik) \/):k 1 ()2

Cosine similarity measures and compares the cosine angle between two vectors in a high

d(Xi, X;)

dimensional space. As this is a similarity measure, it returns 1 if X; = X; and —1 if their dif-

ference is maximised. It is especially useful for high-dimensional data but can also be very

5.3 k-Nearest Neighbours (kNN) 32

8.

10.

effectively applied to data of lower dimensionality. [38]
Correlation Distance

d(XhXj) =1- C(Xi7Xj)’

with ¢ being the correlation coefficient of points X; and X;.
This metric quantifies the dissimilarity between two vectors, i.e. how vectors deviate from

being prefectly correlated, by the use of the correlation coefficient. [42]
Chebyshev Distance

d
d(Xi,X;) = max |xi — x|
The Chebyshev distance measures the maximum absolute difference between two data
points. [40]
Jaccard Distance

|XiﬂXj|

d(Xi,X;)=1—

The Jaccard distance is classically applied to binary data sets. For non-binary tasks, a mod-
ified version, the generalized Jaccard similarity, can be applied. It quantifies the intersection

and union of two data sets. [43]

5.3.2 Suitability of KNN for Classification Tasks

The choice of numerous different distance measures, as mentioned in the previous section, is a

key reason, as to why kNN classification seems suitable to the classification task discussed in this

thesis. The different distance measures make the algorithm well-suited to handle different types of

data, making it especially key when dealing with several batches of data.

An additional reason, which makes kNN useful in this project is its non-parametric nature, which

means that no assumptions about the underlying distribution in the data are made. This adds to the

algorithm’s flexibility in multi-class classification problems [11, 30].

5.4 Artificial Neural Networks (NN) 33

5.4 Artificial Neural Networks (NN)

Artificial neural networks are a widely used type machine learning algorithm, the idea of which is
to mimic the neural networks of biological organisms. Instead of an interconnected web of neu-
rons, connected by nerves, an artificial neural network is made up of a number of input nodes,
which feed weighted inputs into a computational output node. When training a neural network,
the network receives data, along with a data label, defining what a correct prediction based on the
values would be. How correctly the system is able to predict the result provides feedback as to
how well-balanced the input weights were. The input weights are thereafter continuously adjusted
until the prediction matches the label of the training data [44]. Generally, a neural network used in
machine learning consists of a number of interconnected computational nodes, organised in layers
and is thus referred to as a multilayer neural network. In a classification task, the input layer typ-
ically receives all the data features as information and the output layer delivers the classification
result. Between the input and output layers, several hidden computational layers exist, which are
not visible to the user. [11, 44]

INPUT LAYER

HIDDEN LAYER

@ (N
V:“\’/ | OUTPUT LAYER

- > Y

Xg

Fig. 5.4: This illustration, taken from [44], displays a general example of a multilayer neural net-
work. The weighted inputs x; are fed into the layer of input nodes. The input nodes, feed into two
hidden layers, which perform computations that cannot be seen by the user. Finally, the hidden
layers feed into the output layer, which provides the output value y [44].

5.4 Artificial Neural Networks (NN) 34

5.4.1 Types of Neural Networks

Some of the most important and commonly used types of neural networks include:

1. Feed-Forward Neural Networks
Feed-forward neural networks are the most basic type, where information travels in one di-
rection only, from the input through to the output without any loops or cycles [44]. This type
of neural network is typically used for simple classification tasks [11] and will therefore be

utilised for the classification task, discussed within this work.

2. Recurrent Neural Networks
When employing a recurrent neural network, information is able to be either fed forward
or fed back to a previous network layer, allowing for a system memory. This type of neural
network is commonly used in natural language processing [10, 45]. A special version of a
recurrent neural network, which improves the handling of long term dependencies in data
is a long short-term memory network (LSTM). LSTM networks are particularly useful for

language translation tasks [45].

Some other types of artificial neural networks, which will not be discussed in more detail in-
clude: Convolutional Neural Networks, Generative Adversarial Networks, Radial Basis Function
Networks, Autoencoders and Self-Organizing Maps. They are generally not used for classification

tasks and therefore not applicable to the task, focussed on in this thesis.

5.4.2 Feed-Forward Network

For classification and pattern recognition tasks, the feed-forward network, or "multilayer percep-
tron” is generally considered the most important model due to its architectural simplicity, making
it the simplest network type to implement and train [10]. Furthermore, feed-forward networks are
very effective at feature learning because the hidden layers are able to automatically learn hierar-
chical representations within the input data [11] and feed-forward networks are easily scaled by

adding more hidden layers to work with data sets differing in complexity [10].

5.4.3 Mathematical Definition

This section will provide some mathematical insight into how the computations within a multilayer
neural network can be defined.

Let L be the total number of layers present in the multilayer neural network with layers [=

5.4 Artificial Neural Networks (NN) 35

0,1,2,...,L—1. The input layer X is made up of the neurons xi,x3,...,Xx, with n being the num-
ber of input features.

The hidden layers are defined as X (1) , X (2), X (L=1) each with neurons a(ll) , ag), ey a,(fl) in layer /
with n; being the total number of neurons in layer /.

Finally, the output layer is defined as X (L), with neurons Y1,¥2, ..., Ym With m being the total number

of output classes.

5.4.3.1 Activation Functions

Next, let f(!) be the activation function for layer /. The activation function operates as a non-linear
element, introduced into the network in order to enable it to learn more complex patterns in the
data. It is applied to the weighted sum of the inputs for each neuron. Commonly used examples for
activation functions are [10, 44]:

1. Sigmoid Activation (0)
A sigmoid activation function scales the input values to range between 0 and 1, making it

well suited to binary classification tasks.

2. Hyperbolic Tangent Activation (tanh)
Hyperbolic tangent activation functions work in a similar way to sigmoid functions but in

the range between -1 and 1, which results in a output centred around O.

3. (Leaky) Rectified Linear Unit ((Leaky)ReLU)
A rectified linear unit, will directly return the received input if the input is positive and will
return O if the input is negative. A variation on ReL U is called leaky ReLLU, which allows for

a slight negative slope for negative inputs, preventing non-contributing neurons.

4. Softmax Activation
In softmax activation, the raw output values are converted to probability distributions, mak-

ing it very useful for multi-class classification problems.

()

Having defined the activation function, the output for each neuron g; ’ is calculated as follows:

n—i
af) = 10 (Z wya) " +b§l)> (5.14)
b=

where wg) denotes the weight assigned to the connection between neuron j in layer [— 1 and
(1)

neuron i in layer / and b, referring to the bias term for neuron i in layer /.

5.5 Ensemble Classification 36
5.4.4 Suitability of Neural Networks for Classification Tasks

The applicability of feed-forward neural networks is concisely described by the universal approx-
imation theorem. The theorem states, that, due to the non-linearity introduced by the activation
functions, a multilayer feed-forward neural network with at least one hidden layer can be used to

approximate functions of unlimited complexity [44].

5.5 Ensemble Classification

Ensemble classification algorithms refer to techniques in machine learning, which combine aspects
of different prediction models in order to achieve a better overall result than any of the individual
methods. Key to this is to aim for diversity in choosing learning models to be included in the
ensemble, in order to improve the models’ predictive prowess and robustness. There is a wide
array of different types of ensemble classification algorithms, the most important of which are

bagging and boosting [31, 30]

5.5.1 Bagging (Bootstrap Aggregation)

Bagging in ensemble classification refers to the process of training multiple instances of the same
base learning algorithm on different, randomly selected, subsets of the training data and combining
their predictions. The randomly selected samples are referred to as bootstrap samples, which are
individually trained on a base learning algorithm (e.g. a decision tree). The predictions from the
individually trained models are combined through a voting system. Voting in this case, means
the classification is achieved by a majority decision [46, 31]. A popular example for a bagging
ensemble algorithm is a random forest, which uses decision trees as base learning algorithms [46,
30].

5.5.2 Boosting

Contrary to the parallel training in the bagging algorithm, when using a boosting ensemble clas-
sification method, basic machine learning models are trained sequentially. The reason for the se-
quential training procedure is, that a learning algorithm gives greater weight to the instances, which
were misclassified by the learner immediately preceding it. The final model is comprised of a com-
bination of the sequence of basic training models, with a greater weight assigned to the training
models with lower error rates. Popular versions of a boosting ensemble classification method in-
clude AdaBoost (Adaptive Boosting), which refers to the general boosting method described in this

5.6 Naive Bayes Classification (NB) 37

section and Gradient Boosting, which aims to minimize a loss function by adding weaker learning

models in a gradient descending manner. [47, 30]

5.5.3 Suitability of Ensemble Methods for Classification Tasks

Due to the fact, that the ensemble classification methods implemented within MATLAB use deci-
sion trees, k-nearest neighbours and discriminant analysis methods as base training methods, the
possibility of improving upon the result of any of the individually applied algorithms, the applica-

tion of ensemble classification for this task makes sense.

5.6 Naive Bayes Classification (NB)

A very simple machine learning classification technique, which will be analysed in this section
is the naive Bayes classification. The term naive Bayes refers to a group of classifiers, based on
Bayes’ theorem while assuming independence among the features of the data set. In spite of the
fact, that this algorithm is comparatively simple, it has proven quite effective for some tasks, espe-
cially text classification problems (e.g. spam filtering or document classification) [30, 38].

The term “naive” stems from the algorithms assumptions about feature independence, which gen-
erally doesn’t reflect the reality of the data, but does not stop the method from performing well
in some cases. Even though the algorithm produces class density estimates, which are biased, the
introduced bias might not significantly affect the posterior probabilities [11, 30].

5.6.1 Mathematical Definition

Naive Bayes classification models are generally based on Bayes’ theorem, which relates the con-
ditional and marginal probabilities of random events. When applied to a classification task, the

theorem can be expressed as [11]:

PX|C)P(C)

PICK) = =5

(5.15)

Where [11]:

. P(C|X) is the probability of class C, given observation X
. P(X|C) is the probability of observing X, given class C

. P(C) is the probability of class C

. P(X) is the probability of observation X

5.6 Naive Bayes Classification (NB) 38

Another relevant definition concerns the “naive” aspect of the naive Bayes theorem. It assumes
that the all features in the data set, used to describe a specific instance within it, are condition-
ally independent when given the class label. This means, that the existence or non-existence of a

specific feature has no bearing on any of the other features. This can be described as [11]:

P(X|C) = P(x1|C)P(x2|C)...P(x,|C) (5.16)

Where class X consists of features x, ..., x,. The parameters P(x;|C) of the training are estimated
using maximum-likelihood estimation. When applied to discrete functions, this involves the count-
ing of feature-value pairs, whereas for the application in continuous functions, a distribution (e.g.
Gaussian) is assumed [11].

The actual prediction is defined by [48]:

P(X|C))P(C;) > P(X|Cj)P(Cj)forl < j <m,j#i (5.17)

where m denotes the number of classes required in the classification task it is applied to.
The equation 5.17 seeks to predict the class label for feature X. The value P(X|C;)P(C;) is calcu-
lated for each class C; and the class C; is predicted when the condition in equation 5.17 is met,

meaning, when P(X|C;)P(C;) is the maximum of all values.

5.6.2 Suitability of Naive Bayes Classification

Due to the simple nature of naive Bayes classification along with its ability to perform multi-class
classification, it is definitely suitable to the classification task within this thesis. Whether the naive
assumptions of feature independence hold true when applying the algorithm, or have a detrimental

impact on the result, must be tested.

Chapter 6
Example Application and Results

In this chapter, the application of each algorithm is presented and discussed. Moreover the resulting

classifications are compared and evaluated.

6.1 Approach

Of the machine learning algorithms, introduced earlier within this thesis, five relevant methods
were applied to each batch of data separately. Each batch of data was partitioned randomly to
create 90% training data and to reserve 10% of data points for testing. For each batch of data,
the results of one application of an algorithm is a confusion matrix showing the correctly classified
test data points along the diagonal and each deviation outside the matrix diagonal. Additionally, the
accuracy of the procedure is calculated and the time taken for training the algorithm, normalised to
the number of instances contained within a data batch, in order to make it comparable, is measured

and documented. An example for a confusion matrix is visualised in the following figure 6.1:

39

6.1 Approach 40

Confusion Matrix

T
@
@
=
= 2
3 100.0%
0 1 2 3

Predicted Class

Fig. 6.1: This figure shows an example of a confusion matrix, calculated for each data batch. This
example is from a decision tree classifier, applied to processed data obtained on 08.03.2023.

The accuracy for each iteration is calculated by defining the following terms. Let:

1. TP be the number of true positives (meaning correctly predicted states)
2. TN be the number of true negatives
3. FP be the number of false positives

4. FN be the number of false negatives.
The accuracy measure m, in % can now be calculated as:

B TP+TN y
 TP+TN+FP+FN

100 (6.1)

mg

The confusion matrix (in absolute values, unlike the example shown in 6.1) for a machine learn-
ing algorithm and for each data batch is collected in a hypermatrix, with each layer being a two
dimensional confusion matrix, stacked in the third dimension. Additionally, the accuracy values
and training time values for each algorithm are averaged and collected in a single value for each
algorithm.

6.3 Application 41
6.1.1 Hyperparameter Optimisation

For each individual application of an algorithm, the automated hyperparameter optimisation, im-
plemented in MATLAB, is used to attain the best result per data batch. Each time an algorithm
is applied, each file is evaluated 30 times in order to optimise various hyperparameters, e.g. for
kNN-Classification, different values for hyperparameter k and the different types of distance mea-
sures are evaluated by the system before the best combination is selected. This makes the training
process a lot more time consuming and offers a clear possibility for increasing the efficiency, if the

algorithm is selected for real world application.

6.2 Computational Limitation

A caveat, which needs to be considered when evaluating the results of the application of the ma-
chine learning algorithms and the hyperparameter optimisation is the available computational ca-
pacity. For this thesis, the maximum number of iterations for the hyperparameter optimization is
limited to 30. This limitation is set due to the computational power, which is privately available to
process the data. For industrial applications, the optimization procedure can be expanded, which

might yield an improvement in the results.

6.3 Application

This section will show the results from each of the five applied machine learning algorithms with

all six initially mounted sensors being available.

6.3.1 Binary Decision Trees

The first algorithm to be applied is a binary CART decision tree with hyperparameter optimisation.
The numerical results for the classification procedure are shown in figure 6.2. The measures for

accuracy and time for each data batch are also displayed in table 6.1.

6.3.1.1 Optimised Hyperparameters

When applying the binary decision tree algorithm in MATLAB , the hyperparameter optimization
features, incorporated in MATLAB were applied. In this case, this refers to finding the optimal

minimal leaf size per file and pruning the tree to the optimal size.

Labelled State

6.3 Application 42

Binary Decision Tree

100

File |Accuracy [%]|Training Time [s/point]

0 ” 1 94.3820 0.0308
2 96.5035 0.0122

’ 3 91.5663 0.0206
j 60 4 95.4955 0.0143

5 95.4545 0.0352

2 40 6 88.5714 0.0250
7 92.1053 0.0150

20 8 95.0000 0.0795

3 Median 94.6910 0.0228

Predicted State

Fig. 6.2: This figure shows the cumulative clas- Table 6.1: This table shows the accuracy and training
sification of test data, using a binary decision time per data point when applying a decision tree clas-
tree, in all available data files with all six sen- sifier to each available file and optimizing its hyperpa-
sors functioning. This represents a stacking of rameters, with all six sensors functioning.

the confusion matrices of all data files in abso-

lute values, meaning the closer to a perfectly di-

agonal distribution, the better the classification

result.

The results displayed in the heatmap in 6.1 and table 6.2 clearly show how well this algorithm
is suited to the classification task at hand. The diagonal nature of the visualisation of the predicted
system states against the labelled system states clearly illustrates what the accuracy measure tells
us numerically, which is that misclassification by this algorithm is quite rare. The most common
classification error occurs between states 2 and 3 i.e. the most common issue in this case is the
distinction between the machine only carrying fluid and carrying fluid and material mixed together.
Furthermore, the training time required for this algorithm indicates that it would be scalable to

greater training data volumes without the time taken for training the system becoming a concern.

6.3.2 Linear Discriminant Analysis

The results of the application of linear discriminant analysis are shown in visual form in 6.3 and
numerically, displaying the training time including hyperparameter optimization and the accuracy
of the classification in 6.2.

Labelled State

6.3 Application 43

6.3.2.1 Optimised Hyperparameters

When applying linear discriminant analysis in MATLAB , the hyperparameter optimization fea-
tures, incorporated in MATLAB were applied. The hyperparameters optimized by MATLAB in
this case are the parameters gamma and delta. Gamma refers to the amount of regularization used
to adjust the covariance matrix. This will result in a scalar value between 0, meaning no regulariza-
tion being applied and 1, where maximum regularization is applied to the covariance matrix. The
parameter delta specifies the linear coefficient threshold. If a coefficient in the model is smaller
than the value of delta, it is set to 0 and the corresponding predictor is eliminated from the model.

The higher the value of delta is set, the more predictors are eliminated.

Discriminant Analysis

File |Accuracy [%]|Training Time [s/point]
1 84.2697 0.0245
2 65.0350 0.0131
3 74.6988 0.0263
4 79.2793 0.0162
5 86.3636 0.0427
6 80.0000 0.0254
7 69.298 0.0159
8 75.0000 0.0871
Median 77.1396 0.0249

Predicted State

Fig. 6.3: This figure shows the cumulative clas- Table 6.2: This table shows the accuracy and training time
sification of test data, using linear discriminant per data point when applying a linear discriminant analy-
analysis, in all available data files with all six sis classifier to each available file and optimizing its hy-
sensors functioning. This represents a stacking perparameters, with all six sensor functioning.

of the confusion matrices of all data files in ab-

solute values, meaning the closer to a perfectly

diagonal distribution, the better the classifica-

tion.

The results displayed in 6.3 and 6.2 show very poor results throughout all states. Only the pre-
diction of state 3 seems reliable, however the misclassification of most other states as being state 3
suggests that this correct classification is by coincidence and perhaps questionable.

Labelled State

6.3 Application 44
6.3.3 k-Nearest Neighbours

The results of the application of the k-nearest neighbours algorithm are shown in visual form in
6.4 and numerically, displaying the training time including hyperparameter optimization and the

accuracy of the classification in 6.3.

6.3.3.1 Optimized Hyperparameters

When applying the k-nearest neighbours classification algorithm in MATLAB, the hyperparameter
optimization features, inherent to MATLAB were applied. In this case, this refers to optimizing the
value for k, meaning the number of neighbours and the type of distance measure applied (e.g.

Jaccard-Distance, Chebyshev-Distance, etc.).

K-Nearest Neighbours

File |Accuracy [%]|Training Time [s/point]
0 1 96.6292 0.0210
2 98.6014 0.0143
1 3 93.9759 0.0232
4 97.2973 0.0182
5 05.4545 0.0422
2 6 05.7143 0.0277
7 92.1053 0.0173
8 95.0000 0.091
3 Median 95.5972 0.0221

Predicted State

Fig. 6.4: This figure shows the cumulative clas- Table 6.3: This table shows the accuracy and training time
sification of test data, using the k-nearest neigh- per data point when applying a k-nearest neighbours clas-
bours classifier, in all available data files with all sifier to each available file and optimizing its hyperpa-
six sensors functioning. This represents a stack- rameters, with all six sensor functioning.

ing of the confusion matrices of all data files

in absolute values, meaning the closer to a per-

fectly diagonal distribution, the better the clas-

sification.

The results displayed in the heatmap in figure 6.3 and the table 6.3 show both very good clas-
sification accuracy as well as short training times. This suggests, that the k-nearest neighbours
algorithm is well suited to the classification task and can be upscaled to greater data volumes

without the required training time becoming a hindrance to the application.

Labelled State

6.3 Application 45
6.3.4 Neural Networks

The results of the application of artificial neural networks are shown in visual form in 6.5 and
numerically, displaying the training time including hyperparameter optimization and the accuracy

of the classification in 6.4.

6.3.4.1 Optimised Hyperparameters

When applying the neural network classification algorithm in MATLAB , the hyperparameter op-
timization features, native to MATLAB were applied. In this case, this refers to optimizing the
layer sizes for each layer of the generated multi-layer network, optimizing the activation function
between layers (e.g. sigmoid activation, tanh activation or no activation function) and the term
A, which refers to a regularization function, which controls the amount of regularization applied
to the network. In addition, the hyperparameter optimization process assesses whether or not to
standardize the predictor data. If standardization is active, then the system centres and scales the

numeric predictor variable by the mean and standard deviation.

Neural Network

File |Accuracy [%]|Training Time [s/point]
1 94.3820 0.5861
2 97.9021 0.2467
3 98.7952 0.8566
4 95.4955 0.1826
5 97.7273 0.3513
6 97.1429 0.6271
7 92.1053 0.2721
8 100.000 0.5849
Median 97.4351 0.4681

Predicted State

Fig. 6.5: This figure shows the cumulative clas- Table 6.4: This table shows the accuracy and training time
sification of test data, using artificial neural per data point when applying an artificial neural network
networks as the classification algorithm, in all classifier to each available file and optimizing its hyper-

available data files with all six sensors func- parameters, with all six sensors functioning.
tioning. This represents a stacking of the confu-

sion matrices of all data files in absolute values,

meaning the closer to a perfectly diagonal dis-

tribution, the better the classification.

The results displayed in the figure 6.5 show exceptional classification accuracy, however the
training times, collected in table 6.4 indicate that the amount of data provided in the batches anal-

Labelled State

6.3 Application 46

ysed causes very long training times and significantly calls this algorithm’s suitability to larger

tasks into question.

6.3.5 Ensemble Classification Methods

The results of the application of ensemble classification methods are shown in visual form in
6.6 and numerically, displaying the training time including hyperparameter optimization and the

accuracy of the classification in 6.5.

6.3.5.1 Optimized Hyperparameters

When optimizing the hyperparameters for ensemble classification in MATLAB, the algorithm
automatically optimizes the type of ensemble used. There are several types of bagging and boosting
algorithms, suited for multiclass classification implemented. A second aspect that is optimized in
each iteration, which is dependant on the type of ensemble learning method used, is the type of base
learning algorithm. In MATLAB this will either be discriminant analysis, k-nearest neighbours or

a decision tree.

Ensemble Clustering

100

File |Accuracy [%]|Training Time [s/point]

0 1 94.3820 0.0618
% 2 97.2028 0.0360

’ 3 96.3855 0.0829
j 60 4 96.3964 0.0652

5 93.1818 0.1171

2 40 6 91.4286 0.0538
7 91.2281 0.1273

20 8 95.0000 0.4595

3 Median 94.6910 0.0740

Predicted State

Fig. 6.6: This figure shows the cumulative clas- Table 6.5: This table shows the accuracy and training time
sification of test data, using ensemble methods per data point when applying ensemble classifiers to each
as the classification algorithm, in all available available file and optimizing its hyperparameters, with all
data files with all six sensors functioning. This six sensors functioning.

represents a stacking of the confusion matrices

of all data files in absolute values, meaning the

closer to a perfectly diagonal distribution, the

better the classification.

6.3 Application 47

The results displayed in the figure 6.5 and the table 6.5, show very good classification capa-
bilities for this algorithm, however the accuracy does not significantly exceed previously applied
algorithms, while the training time is significantly longer. This suggests, that, in this case, the pro-
cess of using several base learning algorithms does not yield better classification results, than the

base algorithms on their own.

6.3.6 Naive Bayes

The results of the application naive Bayes classification methods are shown in visual form in
6.7 and numerically, displaying the training time including hyperparameter optimization and the

accuracy of the classification in 6.6.

6.3.6.1 Optimized Hyperparameters

When applying the naive Bayes multiclass classification techniques, inherent to MATLAB, two
hyperparameters where iteratively optimized. The first being the type of assumed distribution.
The classifier can be set to assume multinomial distribution, multivariate multinomial distribution,
normal (Gaussian) distribution or kernel smoothing. The second optimized hyperparameter is the
assumed kernel-width.

6.4 Comparison of Results

Naive Bayes

100

80

60

40

Labelled State

20

Predicted State

48
File |Accuracy [%]|Training Time [s/point]
1 91.0112 0.0358
2 86.0140 0.0311
3 79.5181 0.0473
4 93.6937 0.0336
5 95.4545 0.0624
6 85.7143 0.0431
7 79.8246 0.0254
8 95.0000 0.1359
Median 88.5126 0.0394

Fig. 6.7: This figure shows the cumulative clas- Table 6.6: This table shows the accuracy and training time
sification of test data, using naive Bayes as per data point when applying naive Bayes classification
the classification algorithm, in all available data methods to each available file and optimizing its hyper-
files with all six sensors functioning. This repre- parameters, with all six sensors functioning.

sents a stacking of the confusion matrices of all
data files in absolute values, meaning the closer
to a perfectly diagonal distribution, the better the
classification.

The results displayed in the figure 6.6 and the table 6.6, show good classification accuracy

and acceptable training times. However both these measures are significantly worse than those

previously discussed algorithms have yielded.

6.4 Comparison of Results

This section will compare the results from the application of each of the six different machine

learning algorithms displayed in the previous section.

Accuracy [%]

6.5 Results with 5 sensors 49

i Comparison of Training Time and Accuracy

be e
90 ¢ °
R Algorithm Acc. [%][Time [s/point]
Bl K Decision Trees 94.6910 0.0228
‘ R ——— Discriminant Analysis| 77.1396 0.0249
701 8 Dicndming k-Nearest Neighbours | 95.5844 0.0221
KNN) Neural Networks 97.4351 0.4681
60 | ot N“‘:“*” Network ‘ Ensemble Methods 94.6910 0.0740
= i‘;j’j:‘};{:y:“'“’d*’ Naive Bayes 88.5126 0.0394
50

0 100 200 300 400 500 600 700
Training Time |[s]

Fig. 6.8: This scatter plot compares the six ap- Table 6.7: This table lists the median predictive accu-
plied machine learning algorithms in terms of racy and median training times per data point for each
their predictive accuracy and the training time of the applied machine learning classification meth-
throughout the available data files. Each small ods across the individual data files.

dot represents a single data batch and the larger

dots show the median value for each algorithm.

The numerical results in 6.7 show, that maximum predictive accuracy for the task was achieved
by using artificial neural networks. However the achievement of these exceptional high values for
accuracy come at the cost of the significantly longest time required to train the algorithm.

The visual representation of the results in figure 6.8 clearly displays two methods in the upper
left corner of the graph which excel in both predictive capabilities and boast short training times;

Binary decision trees and k-nearest neighbours classifiers.

6.5 Results with 5 sensors

Two data files were recorded after one of the six sensor units failed. These are analysed separately
in this section in order to compare whether the results are comparable to those attained from the
application with all six active sensors discussed in the previous section. The resulting heatmaps
from each application are collected in 6.9.

The results displayed in 6.9 show clear similarities to the results achieved with all six sensors
active, presented in the previous section. The certainty, with which these results can be utilised is
given by the analysis in chapter 4. The combination of this and the fact, that the same algorithms
as for all six sensors show promise of performing well in data classification lead to the conclusion,
that even with five sensors, the machine state can be reliably classified.

6.5 Results with 5 sensors

Binary Decision Tree

Labelled State

0 1 2 3
Predicted State

K-Nearest Neighbours

0
2
@M
& 1
=]
&
2
o2
—
3
0 1 2 3
Predicted State
Ensemble Clustering
0
o
©
5 1
=]
o
2
Q 2
—

Predicted State

50

Discriminant Analysis

Labelled State

Predicted State
Neural Network

Labelled State

Predicted State

Naive Bayes

-

Labelled State

Predicted State

Fig. 6.9: This figure shows the results from the application of each machine learning algorithm on
the two data files with five active sensor units, collected in heatmaps.

Chapter 7
Conclusion, Summary and Outlook

This thesis investigated the levels of redundancy within batches of sensor data from six sensor
units, applied to an industrial machine, in order to learn about the amount of information still
available when one or two of the six sensor units fail. Moreover, an analysis of the applicability of
several supervised machine learning algorithms was applied to batches of labelled sensor data in
order to assess their viability for condition monitoring purposes in industrial applications.

The redundancy level within the data is quantified by analysing the inherent dimensional coverage
within the data. This is achieved by the application of singular value decomposition, which yields
the proportional coverage of information within the data as a function of the number of consid-
ered dimensions. The resulting calculated coverage gives an indication, whether dimensionality
reduction measures can viably be applied. Dimensionality reduction methods are applied in order
to reduce the amount of data required to still be able to extract the necessary information and thus
streamline the data processing. The chosen dimensionality reduction method applied is principal
component analysis, which identifies the major vibrational axis of the system and realigns the sys-
tem accordingly. Consequently, only the primary principal component of each sensor needs to be
considered and the dimensionality of the data has been reduced from 18 data channels, three ac-
celeration measurements per sensor unit, to only six principal components, one per sensor unit.

A major reason for analysing the system’s redundancy is to be able to gauge the impact on the
amount of information contained within the data that losing a sensor would have. This is analysed
by systematically calculating the dimensional coverage of every permutation of one or two sensors
being inactive. The results of this evaluation show that when one of six sensors is inactive, the
system still has 91% of the original coverage and when any two sensors are inactive, about 81%
coverage remains. The outcome from this evaluation shows that whatever specific combination of
sensor units is inactive has little to no bearing on the remaining dimensional coverage. The conclu-
sion, which can be drawn at this point is, that when any one or two of the six sensor units fail, the
certainty with which results of analyses applied to the data can be interpreted remains very high.
The second aspect that this thesis is focused on is the applicability of machine learning algorithms
for the classification of the machine state based on the provided batches of labelled sensor data.

Several types of machine learning algorithms suited to classification tasks and capable of multi-

51

7 Conclusion, Summary and Outlook 52

class classification are analysed and applied. Each selected algorithm is applied to each data batch
separately, the results of each being collected and interpreted. Prior to each application, the data
set is randomly split into 90% training data and 10% testing data. Moreover, the hyperparameters
for each applied algorithm are optimized automatically, in an effort to achieve the best possible
result for each. Generally, the aim here is to identify promising machine learning methods capable
of classifying the machine state, purely from acceleration data. The suitability of any of the applied
algorithms is quantified in two metrics: the predictive accuracy and the required average training
time.

The results from the application process show several well suited algorithms for the classification
task at hand. Two algorithms in particular stand out given the accuracy and training time metrics:
Binary Decision Trees and k-Nearest Neighbours classification. The applicability of these algo-
rithms represent the conclusion from the application process and comparison performed within
this thesis.

Based on the work presented within this thesis, further investigations into different types of clas-
sification, such as binary classification algorithms (e.g. support vector machines), which can be
applied to multi-class classification by error-corrective output codes can be conducted. Moreover,
the possibility of applying unsupervised learning algorithms to continuous data streams instead
of supervised learning methods to labelled data batches represents a possible avenue for further

research.

REFERENCES 53

References

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Tianjia He et al. “Exploring Inherent Sensor Redundancy for Automotive Anomaly De-
tection”. In: 2020 57th ACM/IEEE Design Automation Conference (DAC) (2020), pp. 1-6.
URL: https://api.semanticscholar.org/CorpusID:221134703.

Yong Gao, Kui Wu, and Fulu Li. “Analysis on the Redundancy of Wireless Sensor Net-
works”. In: Proceedings of the 2nd ACM International Conference on Wireless Sensor Net-
works and Applications. WSNA ’03. San Diego, CA, USA: Association for Computing
Machinery, 2003, pp. 108—114. 1SBN: 1581137648. DOI: 10.1145/941350.941366.
URL: https://doi.org/10.1145/941350.941366.

Bogdan Carbunar et al. “Redundancy and Coverage Detection in Sensor Networks”. In:
TOSN 2 (Feb. 2006), pp. 94-128.D0O1: 10.1145/1138127.1138131.

Karolina Kudelina et al. “Trends and challenges in intelligent condition monitoring of elec-
trical machines using machine learning”. In: Applied Sciences 11.6 (2021), p. 2761.
Minh-Quang Tran et al. “Machine learning and IoT-based approach for tool condition mon-
itoring: A review and future prospects”. In: Measurement 207 (2023), p. 112351.

Shaveta. “A review on machine learning”. In: International Journal of Science and Research
Archive (IJSRA) (May 2023). ISSN: 2582-8185.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Classification with
Deep Convolutional Neural Networks”. In: Commun. ACM 60.6 (May 2017), pp. 84-90.
ISSN: 0001-0782. DOI: 10.1145/3065386. URL: https://doi.org/10.1145/
3065386.

Dan Jurafsky and James H. Martin. “Speech and Language Processing”. In: 2000. URL:
https://api.semanticscholar.org/CorpusID:5073927.

Ziad Obermeyer and Ezekiel J. Emanuel. “Predicting the future—big data, machine learn-
ing, and clinical medicine”. eng. In: N Engl J Med 375 (Sept. 2016), pp. 1216—-1219. ISSN:
0028-4793.D0I1: 10.1056/nejmpl606181.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http: //www .
deeplearningbook.org. MIT Press, 2016.

Christopher M.Bishop. Pattern Recognition and Machine Learning. Springer Science+Business
Media, 2006.

Rich Caruana et al. “Intelligible Models for HealthCare: Predicting Pneumonia Risk and
Hospital 30-day Readmission”. In: Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (2015). URL: https://api.
semanticscholar.org/CorpusID:14190268.

Jack E. Olson. Data Quality: The Accuracy Dimension. Elsevier, 2003. ISBN: 978-1-55860-
891-7.

https://api.semanticscholar.org/CorpusID:221134703
https://doi.org/10.1145/941350.941366
https://doi.org/10.1145/941350.941366
https://doi.org/10.1145/1138127.1138131
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://api.semanticscholar.org/CorpusID:5073927
https://doi.org/10.1056/nejmp1606181
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://api.semanticscholar.org/CorpusID:14190268
https://api.semanticscholar.org/CorpusID:14190268

REFERENCES 54

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Richard Y. Wang and Diane M. Strong. “Beyond Accuracy: What Data Quality Means to
Data Consumers”. In: Journal of Management Information Systems 12.4 (1996), pp. 5-33.
ISSN: 0742-1222.

Carlo Batini and Monica Scannapieco. Data Quality: Concepts, Methodologies and Tech-
niques (Data-Centric Systems and Applications). Berlin, Heidelberg: Springer-Verlag, 2006.
ISBN: 3540331727.

Mark J. Embrechts, Boleslaw Karol Szymanski, and Karsten Sternickel. “Introduction to
Scientific Data Mining: Direct Kernel Methods and Applications”. In: Computationally In-
telligent Hybrid Systems. 2004. URL: https : / /api . semanticscholar . org/
CorpusID:63656646.

Sasa Baskarada and Andy Koronios. “Data, Information, Knowledge, Wisdom (DIKW): A
Semiotic Theoretical and Empirical Exploration of the Hierarchy and its Quality Dimen-
sion”. In: Australasian Journal of Information Systems 18.1 (Nov. 2013). DOI: 10.3127/
ajis.v18i1.748.URL: https://journal.acs.org.au/index.php/ajis/
article/view/748.

Jennifer Rowley. “The Wisdom Hierarchy: Representations of the DIKW Hierarchy”.
In: J. Inf. Sci. 33.2 (Apr. 2007), pp. 163-180. 1SSN: 0165-5515. por: 10 . 1177 /
0165551506070706.URL: https://doi.org/10.1177/0165551506070706.
R. L. Ackoff. “From Data to Wisdom”. In: Journal of applied systems analysis 16 (1989),
pp- 3-9. URL: https://api.semanticscholar.org/CorpusID:86409890.
D. Boddy, A. Boonstra, and G. Kennedy. Managing Information Systems: Strategy and
Organisation. Prentice Hall/Financial Times, 2008. ISBN: 9780273716815. URL: https:
//books.google.at/books?id=geYcjeqwb_wC.

Takio Kurita. “Principal Component Analysis (PCA)”. In: Computer Vision: A Reference
Guide. Cham: Springer International Publishing, 2019, pp. 1-4. ISBN: 978-3-030-03243-2.
URL: https://doi.org/10.1007/978-3-030-03243-2_649-1.

S.M. Rafizul Haque. “Singular Value Decomposition and Discrete Cosine Transform Based
Image Watermarking”. MA thesis. School of Engineering, Blekinge Institute of Technology,
2008.

David Fuertes Roncero. “A study of QR decomposition and Kalman filter implementa-
tions”. MA thesis. KTH Stockholm, 2014.

Nasir Ahmad Jehad Ali Rehanullah Kahn and Imran Masqsood. “Random Forests and Deci-
sion Trees”. In: International Journal of Computer Science Issues (IJCSI) 9.3 (Sept. 2012).
ISSN: 1694-0814.

Adnan Mohsin Abdulazeez Bahzad Taha Jijo. “Classification Based on Decision Tree Algo-
rithm for Machine Learning”. In: Journal of Applied Science and Technology Trends (2021).
J.R. Quinlan. “Induction of Decision Trees”. In: Machine Learning 1. Centre for Advanced
Computing Sciences, New South Wales Institute of Technology, Sydney. 1986, pp. 81-106.

https://api.semanticscholar.org/CorpusID:63656646
https://api.semanticscholar.org/CorpusID:63656646
https://doi.org/10.3127/ajis.v18i1.748
https://doi.org/10.3127/ajis.v18i1.748
https://journal.acs.org.au/index.php/ajis/article/view/748
https://journal.acs.org.au/index.php/ajis/article/view/748
https://doi.org/10.1177/0165551506070706
https://doi.org/10.1177/0165551506070706
https://doi.org/10.1177/0165551506070706
https://api.semanticscholar.org/CorpusID:86409890
https://books.google.at/books?id=geYcjeqwb_wC
https://books.google.at/books?id=geYcjeqwb_wC
https://doi.org/10.1007/978-3-030-03243-2_649-1

REFERENCES 55

[27]

[28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Steven L. Salzberg. “Book Review: C4.5: Programs for Machine Learning by J. Ross Quin-
lan. Morgan Kaufmann Publishers, Inc., 1993”. In: Machine Learning 16 (1994), pp. 235—
240. URL: https://api.semanticscholar.org/CorpusID:17414427.

L. Breiman et al. “Classification and Regression Trees”. In: Biometrics 40 (1984), p. 874.
URL: https://api.semanticscholar.org/CorpusID:29458883.

G. V. Kass. “An Exploratory Technique for Investigating Large Quantities of Categorical
Data”. In: Journal of the Royal Statistical Society. Series C (Applied Statistics) 29.2 (1980),
pp. 119-127. 1SSN: 00359254, 14679876. URL: http://www. jstor.org/stable/
2986296 (visited on 12/06/2023).

Jerome Friedman Trevor Hastie Eobert Tibshirani. The Elemenets of Statistical Learning.
Springer, 2008.

Leo Breiman. “Bagging Predictors”. In: Machine Learning 24 (1996), pp. 123-140.

R.A. Fisher. “The Use of Multiple Measurements in Taxonomic Problems”. In: The Annals
of Eugenics v.7 (1936), pp. 179-188.

Richard Duda, Peter Hart, and David G.Stork. “Pattern Classification”. In: vol. xx. Jan.
2001. 1SBN: 0-471-05669-3.

Geoffrey J. McLachlan and Thriyambakam Krishnan. “The EM algorithm and extensions”.
In: 1996. URL: https://api.semanticscholar.org/CorpusID:122530182.
Hubert, Rousseeuw, and Branden. “ROBPCA: A New Approach to Robust Principal Com-
ponent Analysis”. In: 47 (2005). DOI: 10.1198/004017004000000563.

Richard A. Johnson. Applied Multivariate Statistical Analysis. Ed. by Linda Mihatov
Behrens Petra Recter Debbie Ryan. 6th ed. Pearson Education Inc., 2007. 1SBN: 978-0-
13-187715.

T. Cover and P. Hart. “Nearest neighbor pattern classification”. In: IEEE Transactions on
Information Theory 13.1 (1967), pp. 21-27. DOI: 10.1109/TIT.1967.1053964.
C.D. Manning, P. Raghavan, and H. Schiitze. Introduction to Information Retrieval. Cam-
bridge University Press, 2008. ISBN: 9780511573361. URL: https://books.google.
at/books?id=4DgZywEACAAJ.

P.C. Mahalanobis. “On the generalized distance in statistics”. In: vol. 2. National Institute
of Science of India, 1936, pp. 49-55.

Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim. “On the surprising behavior
of distance metrics in high dimensional space”. In: Lecture Notes in Computer Science.
Springer, 2001, pp. 420-434.

Sidney Siegel. “Nonparametric statistics for the behavioral sciences”. In: 1956. URL:
https://api.semanticscholar.org/CorpusID:146286676.

S.S. Wilks. “The Large-Sample Distribution of the Likelihood Ratio for Testing Composite
Hypotheses™. In: The Annals of Mathematical Statistics 9 (1938), pp. 60-62.

https://api.semanticscholar.org/CorpusID:17414427
https://api.semanticscholar.org/CorpusID:29458883
http://www.jstor.org/stable/2986296
http://www.jstor.org/stable/2986296
https://api.semanticscholar.org/CorpusID:122530182
https://doi.org/10.1198/004017004000000563
https://doi.org/10.1109/TIT.1967.1053964
https://books.google.at/books?id=4DgZywEACAAJ
https://books.google.at/books?id=4DgZywEACAAJ
https://api.semanticscholar.org/CorpusID:146286676

REFERENCES 56

[43]

[44]

[45]

[46]

[47]

[48]

Jaccard, Paul. “Etude comparative de la distribution florale dans une portion des Alpes et
du Jura”. In: (1901). DOI: 10 .5169/ SEALS—-266450. URL: https://www.e—
periodica.ch/digbib/view?pid=bsv-002:1901:37::790.

Charu C. Aggarwal. Neural Networks and Deep Learning. 2nd ed. Springer Cham, June
2023. 1SBN: 978-3-031-29641-3.

Christopher Olah. “Understanding Istm networks”. In: (2015).

Leo Breiman. “Random Forests”. In: Machine Learning 45.1 (2001), pp. 5-32. 1SSN: 1573-
0565. DOI1: 10.1023/A:1010933404324. URL: https://doi.org/10.1023/
A:1010933404324.

Yoav Freund and Robert E Schapire. “A Decision-Theoretic Generalization of On-Line
Learning and an Application to Boosting”. In: J. Comput. Syst. Sci. 55.1 (Aug. 1997),
pp. 119-139. 1SSN: 0022-0000. po1: 10 . 1006/ jcss . 1997 .1504. URL: https :
//doi.org/10.1006/jcss.1997.1504.

J.PeiJ. Han M.Kumber. Data MiningConcepts and Techniques. Third. Elsevier, 2012. ISBN:
978-0-12-381479-1.

https://doi.org/10.5169/SEALS-266450
https://www.e-periodica.ch/digbib/view?pid=bsv-002:1901:37::790
https://www.e-periodica.ch/digbib/view?pid=bsv-002:1901:37::790
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1006/jcss.1997.1504

Appendix A
Appendix A: Dimensionality Reduction Code

57

Dimensionality Analyis and Data Processing
Author: Elliot Lang

E-Mail: elliot.lang@stud.unileoben.ac.at
© 2023, Elliot Lang

This script shows the steps and methods used for processing the raw sensor data. The goal of this script
is to apply dimensionality reduction measures and investigate how the informational coverage behaves when
sensors are lost.

close all;
clear;

Load the training data file

trainDir = [cd, "\TotalData\TrainingData'];
trainFile = '2023-04-05_combined_data.mat';

fullFileRef = fullfile(trainDir, trainFile);
load(fullFileRef);

Select only the required channels

requiredNames = {'State', ' Acceleration'};
stateTT = TTSelectPartialName(DataTT, {'State'});
accelTT = TTSelectPartialName(DataTT, {'_Acceleration'});

D = accelTT{:,:};

Deal with the NaNs by finding the Nan Range and replacing/interpolating them.

d = sum(D,2);

inds = find(~isnan(d));
range = inds(1):inds(end);
D(1:inds(1), :) = ©;
D(inds(end):end, :) = ©;
D = patchColumnNaNs(D);

Perform linear interpolation for NaNs, which don't occur at the beginning or end of the data.

D = patchColumnNaNs(D);
accelTT{:,:} = D;

Visualise all the channels with the adjusted data.

figRaw = figureGen(18,30);
rawData = TTStackedPlot(figRaw, accelTT);

saveas(rawbData, 'C:\Users\ellio\OneDrive\Dokumente\Uni\Master\Master
Thesis\Writing\LatexVorlageMA v2.0\LatexVorlageMA_v2.0\chapters\Chapters\05_ Data
Preparation\figures\trimmed.jpg');

Warning: Error updating Text.
Al
Al String scalar or character vector must have valic
£ MitteLinks_Acceleration_x

T |

\htteRELht “Ecceleration % AQ Fae it L ==
MitteRechts “Acceleration ¥ 0.8 I I

MitteRechts_Acceleration” z g §
AuslanfRechts” Acceleration x 50
AuslaufRechfE_Acceleratioh ¥y ()

%u:.lau%echta _i._celeratl::m ZG _._M%_n_

inlaufRechts” Acceleration” x -
EinlaufRechts lLcLelezfatiDr: ¥ L]
EinlaufRechifs_Acceleration 93

P e kg —
Apr 05, 00:00 Apr 05, 12:00
Time 2023

Process data

At this point we have valid data without NaNs

Make the data mean free.

[myn] = size(D);
for k=1:n

D(inds(1):inds(end),k) = D(inds(1):inds(end),k) - mean(D(inds(1):inds(end),k));
end

Fillter the data as little as possible, applying a small amount of smoothing.

filterData = true;
1s = 3;
if filterData
[md,nd] = size(D);
for k=1:nd
D(inds(1):inds(end),k) = movmean(D(inds(1):inds(end),k), 1s);
end
end

Apply PCA to the complete Data Set and calculate the dimensional coverage.

[Ut,St,Vt] = svd(D, ©);

= diag(St);
portion_ t = st / sum(st) ;
Coverage_total = cumsum(portion_t);

Visualize the singular values attained from the SVD, the proportion and the dimensional coverage.

figPCA total = figureGen(8,15);
tiles = tiledlayout(3, 1, 'TileSpacing', 'tight', 'Padding', 'tight');

Ax(1) = nexttile(tiles);
plot(st);

ylabel('Singular vals');

grid on;

title('Total Data Coverage');
Ax(1).XLim = [1,18];

Ax(2) = nexttile(tiles);
plot(portion_t);
ylabel('Proportion');

grid on;

Ax(2).XLim = [1,18];

Ax(3) = nexttile(tiles);
plot(Coverage total);
xlabel('Nr dimensions');
ylabel('Coverage');

grid on;
Ax(3).XLim = [1,18];
Ax(3).YLim = [0,1];

saveas(figPCA_total, 'C:\Users\ellio\OneDrive\Dokumente\Uni\Master\Master
Thesis\Writing\LatexVorlageMA v2.0\LatexVorlageMA v2.0\chapters\Chapters\05 Data
Preparation\figures\PCA total data.jpg');

= Total Data Coverage
; 50 :\ T T T T
Eﬂ 0 \%"———._ "
5] 2 4 6 8 10 12 14 16 18
=
2 0SK
=
=) 0 — L
= 2 4 6 8 10 12 14 16 18
@ 1 —— .
S 05F
E 0 | | | ! !
2 4 6 g 10 12 14 16 18

Nr dimensions

Apply PCA in groups of three

The application occurs for each sensor containing three acceleration dimensions each. Begin by defining the
number of groups.

nr = 3;
range = l:nr;
nrGroups = round(n / nr);

Create space to save the resulting principal components in a matrix.

PCs = zeros(m,nrGroups);

Cycle through each sensor and apply PCA.

for k=1:nrGroups

ks

cut = nr*(k-1) + range;

Cut = D(:,cut);

[Us,Ss,Vs] = svd(Cut, 0);
ss = diag(Ss);

ss = cumsum(ss / sum(ss));

Check if one channel is mirrored.

detVs = det(Vs);
if mod(k,2) == ©

ps = Us(:,1) * Ss(1,1);
else

ps = -Us(:,1) * Ss(1,1);
end

PCs(:,k) = ps;

end

0.8083
0.9591
1.0000
2

0.8680
0.9837
1.0000
3

0.7139
0.9509
1.0000
4

0.8741
0.9630
1.0000
5

0.8576
0.9755
1.0000
6

0.8155
0.9414
1.0000

Make each principal component mean free.

[mp,np] = size(PCs);

for k=1:np

PCs(inds(1):inds(end),k) = PCs(inds(1):inds(end),k) -
mean(PCs(inds(1):inds(end),k));
end

Convert the result back into a timetable with the corresponding row times and visualize it.

PCsTT = array2timetable(PCs, 'RowTimes', accelTT.Properties.RowTimes);

figPCs = figureGen(8,15);

PCA_PLOT = TTStackedPlot(figPCs, PCsTT);

saveas(PCA_PLOT, 'C:\Users\ellio\OneDrive\Dokumente\Uni\Master\Master
Thesis\Writing\LatexVorlageMA v2.0\LatexVorlageMA v2.0\chapters\Chapters\05 Data
Preparation\figures\PCA Plot.jpg');

HBIJR» r

2-20
PC20]

pcs3 O
10}
420
PC 0]

0
55
PCSS o]

20
PCs6 70t
0

Apr 05, 00:00 Apr 05, 12:00
Time 2023

destDir = 'C:\Users\ellio\OneDrive\Dokumente\Uni\Master\Master Thesis\PCA Data';
fName = 'PCA 05.04.23";

dataTTFileName = fullfile(destDir, [fName,'.mat']);

save(dataTTFileName, 'PCsTT', 'stateTT');

Check the Coverage applying PCA to each Sensor seperately

The process is the same as above.

[Ui,Si,vi] = svd(PCs, @);

si = diag(Si);

portion_i = si / sum(si) ;
Coverage_individual = cumsum(portion_i);

Visualize the coverage, the singular values and the portion.

figPCAPCs = figureGen(8,15);
tiles = tiledlayout(3, 1, 'TileSpacing', 'tight', 'Padding', 'tight");

Ax(1) = nexttile(tiles);

plot(si);

ylabel('Singular vals');

grid on;

title('Coverage after applying PCA to each Sensor');

Ax(2) = nexttile(tiles);
plot(portion_i);
ylabel('Proportion');

grid on;

Ax(2).YLim = [0,1];

Ax(3) = nexttile(tiles);
plot(Coverage individual);
xlabel('Nr Sensors');
ylabel('Coverage');

grid on;
AX(3).XLim = [0,6];
Ax(3).YLim = [0,1];

saveas(figPCAPCs, 'C:\Users\ellio\OneDrive\Dokumente\Uni\Master\Master
Thesis\Writing\LatexVorlageMA v2.0\LatexVorlageMA v2.0\chapters\Chapters\05_Data
Preparation\figures\PCA individual sesor.jpg');

Coverage after applying PCA to each Sensor

|

(5]
s
41 &=
LA
=4

=
a

Coverage Proportion Singular vals
=]
= LA

Nr Sensors

Define the number of sensors and create a table, which displays the coverage per sensor.

(1:6)°;
table(NrSensors, Coverage_individual*100);

NrSensors
coverageT

Coverage when dropping Sensors
Now the remaining coverage when any two sensors are dropped is determined.

NrSensors = 6;
NrUsed = 4;

Here we create a matrix C, containing all the possible combinations of choosing 4 out of the six sensors.

C = nchoosek(1:NrSensors,NrUsed);
[mC, nC] = size(C);

Coverage = zeros(NrUsed , mC);

for k=1:mC
inds = C(k,:);

[Uc,Sc,Vc] = svd(PCs(:,inds), ©);

sc = diag(Sc);

portionc = sc / sum(sc) ;

Coverage c(:,k) = cumsum(portionc);
end

SelCov = [C'; Coverage c];
coverageT = table(SelCov);
%table2latex(coverageT);

Correlation Analysis and QR Decomposition
Here we can now check how strong the correlation between individual sensors is for each combination.

We start by normalizing the data.

[myn] = size(PCs) ;

for k=1:n
PCs(:,k) = PCs(:,k) / norm(PCs(:,k));
end

We then pick a specific combination from C, our combinations matrix, and extract the principal components
from the PCs matrix in accordance with that combination from C and then calculate the correlation between the
sensor selection C and the PCs matrix.

K = PCs(:, C(1,:));
Co = K' * PCs

Co =
1.0000 -0.9720 0.9648 -0.9955 0.9822 -0.9759
-0.9720 1.0000 -0.8767 0.9623 -0.9714 0.9229
0.9648 -0.8767 1.0000 -0.9677 0.9312 -0.9702
-0.9955 0.9623 -0.9677 1.0000 -0.9840 0.9823

We can also generate a general complete correlation matrix by multplying the inverse of PCs with PCs.

Call = PCs' * PCs

Call =
1.0000 -0.9720 0.9648 -0.9955 0.9822 -0.9759
-0.9720 1.0000 -0.8767 0.9623 -0.9714 0.9229
0.9648 -0.8767 1.0000 -0.9677 0.9312 -0.9702
-0.9955 0.9623 -0.9677 1.0000 -0.9840 0.9823
0.9822 -0.9714 0.9312 -0.9840 1.0000 -0.9350
-0.9759 0.9229 -0.9702 0.9823 -0.9350 1.0000

Next we can apply QR decomposition to the total PCs matrix, which yields the orthogonal matrix Q and the
upper triangular matrix R. Of this matrix R we need the norm value for comparison. Additionally the condition
value is computed to check the rank deficiancy of the matrix.

[Qt,Rt] = qr(PCs, @);
Rt;

normRt
condRt

norm(Rt);
cond(Rt);

We can then apply QR decomposition to each of the combinations in C. A comparison between the norm of the
resulting matrix R and the matrix from the analysis of the QR decomposition of the total matrix Rt gives us a
measure to quantify and compare the different combinations.

for k=1:mC
inds = C(k,:);

[Q,R] = gr(PCs(:,inds), @);
normR = norm(R)/norm(Rt);
NormR(k) = normR;

condR = cond(R)/cond(Rt);
CondR(k) = condR;

Combinations = zeros(mC, 1);

theta = subspace(Qt,Q);

end
norms = table(C, 100*NormR');

Canonical Correlation Analysis

X = PCs;

for i = 1:mC
Y = PCs(:, C(i,:));
[A,B,r,U,V,stats] = canoncorr(X,Y);
cor = corr(U,V);

end

function cleanedData = replaceNaNWithZero(data)
% Input:
% data: Input dataset with NaN entries
% Output:
% cleanedData: Dataset with NaN entries replaced by ©

% Find the indices of NaN entries in the data
nanIndices = isnan(data);

% Replace NaN entries with ©
data(nanIndices) = 9;

% Return the cleaned data
cleanedData = data;
end

Appendix B
Appendix B: Machine Learning Application Code

67

Processing Time Series Data using Machine Learning
Author: Elliot Lang

E-Mail: elliot.lang@stud.unileoben.ac.at
© 2023, Elliot Lang

This file aims to apply different machine learning techniques for classification to time-series sensor data and
compare the outcomes of each algorithm.

clear all;
close all;
setLiveScriptDir;

Set the file directory and create the empty matrices used for collecting the results.

fileDir = 'C:\Users\ellio\OneDrive\Dokumente\Uni\Master\Master Thesis\PCA
Data_6_sensors';

files = dir(fileDir);

files = files(find(~[files.isdir]==true));

nrFiles = numel(files);

Define an empty hypermatrix for each algorithm

hyp BT = zeros(4,4,nrFiles);
hyp DA = zeros(4,4,nrFiles);
hyp KNN = zeros(4,4,nrFiles);
hyp NN = zeros(4,4,nrFiles);
hyp_En = zeros(4,4,nrFiles);
hyp_NB = zeros(4,4,nrFiles);
hyp ECOC = zeros(4,4,nrFiles);

Create an empty accuracy vector for each algorithm

acc_BT = zeros(nrFiles, 1);
acc_DA = zeros(nrFiles, 1);
acc_KNN = zeros(nrFiles, 1);

acc_NN = zeros(nrFiles, 1);
acc_En = zeros(nrFiles, 1);
acc_NB = zeros(nrFiles, 1);

acc_ECOC = zeros(nrFiles, 1);
Create an empty time vector for each algorithm

time BT = zeros(nrFiles,1);
time DA = zeros(nrFiles,1);
time_KNN = zeros(nrFiles,1);
time_NN = zeros(nrFiles,1);
time En = zeros(nrFiles,1);
time_NB = zeros(nrFiles, 1);

time_ECOC = zeros(nrFiles, 1);
Set the dimensions as variables.

[n,m,p] = size(hyp_BT);

Binary Decision Tree
The first method to be applied will be a binary decision tree.

This will be evaluated by cycling through all data batches.

for i = 1:numel(files)
%Load file i from the folder
fileName = fullfile(files(i).folder, files(i).name);
load(fileName);
%Extract the state vector
state = stateTT.State;
%Extract the Principal COmponent Data
D = PCsTT{:,:};
%Create a random 90/10 Partition for Training and Test Data
rng('default');
Partition_States = cvpartition(state, 'Holdout', 0.10);

%Seperate the training and testing Ids
trainingIds = training(Partition_States);
DTrain = D(traininglds, :);

stateTrain = state(trainingIds);

testIds = test(Partition_States);
DTest = D(testIds, :);
stateTest = state(testlIds);

Begin measuring the time this algorithm will take

tBT = tic;

train the decsion tree classifier

trainedClassifier = fitctree(DTrain, stateTrain, 'OptimizeHyperparameters’,

‘auto');
end the time measurement
timeBT = toc(tBT);
optimize and prune the tree
[~, ~, ~, bestLevel] = cvLoss(trainedClassifier, 'SubTrees',

'min');
BT = prune(trainedClassifier, 'Level', bestlLevel);

'All',

'TreeSize',

use the tree to predict the test states

TestModel BT = predict(BT, DTest);

measure the accuracy

accuracy_BT

sum(stateTest == TestModel BT)/length(stateTest);

% if i ==

% conFig = figureGen(9,12);

% conCh = confusionchart(stateTest, TestModel BT, 'Normalization’', 'row-
normalized');

% title('Confusion Matrix');

% saveas(conCh, 'C:\Users\ellio\OneDrive\Dokumente\Uni\Master\Master

Thesis\Writing\LatexVorlageMA v2.0\LatexVorlageMA v2.0\chapters\Chapters\07_Results\
figures\conMat.jpg');
% end

Create a confusion matrix

[C_BT, order] = confusionmat(stateTest, TestModel BT);
%titleStr BT = strrep([fName,' Binary Tree'],' ','-');
% title(titleStr BT);

save the confusion matrix as one layer of the hypermatrix and the accuracy and measured time in vector form

hyp BT(:,:,i) = C_BT;

acc_BT(i) = accuracy_ BT;

time BT(i) = timeBT/length(D);
end

Warning: One or more of the unique class values in GROUP is not present in one or more folds. For
classification problems, either remove this class from the data or use N instead of GROUP to obtain
nonstratified partitions. For regression problems with continuous response, use N.

| Tter | Eval | Objective | Objective | BestSoFar | BestSoFar | MinLeafSize |
| | result | | runtime | (observed) | (estim.) | |
| e =mmnn =mmmmmmmmmmmmmmmnmmmmmmmm e |
1	Best	9.19259	1.9944	9.19259	9.19259	187
2	Best	9.11358	9.24342	9.11358	9.12363	36
3	Best	0.037037	0.09817	0.037037	0.037048	7
4	Best	©.028395	©.075565	0.028395	©.028391	1
5	Accept	9.033333	9.17852	9.028395	0.030478	2
6	Accept	0.028395	9.051327	0.028395	0.028413	1
7	Accept	9.028395	9.042342	0.028395	0.028406	1
8	Accept	0.028395	0.040589	0.028395	0.028402	1]
9	Accept	0.034568	0.04788	0.028395	0.028399	4
10	Accept	9.037037	0.040345	9.028395	0.028398	13

| 11 | Accept | 0.046914 | 9.042511 | 0.028395 | 0.028397 | 19 |
| 12 | Accept | 9.19259 | 0.044174 | 9.028395 | 0.028398 | 405

| 13 | Accept | 9.14321 | 0.047025 | 0.028395 | 0.028397 | 80 |
| 14 | Accept | 0.035802 | 9.05159 | 0.028395 | 0.028397 | 3

| 15 | Accept | 9.039506 | 0.048885 | 9.028395 | 9.028397 | 10 |
| 16 | Accept | 0.035802 | 9.042121 | 0.028395 | 0.028396 | 5

| 17 | Accept | 0.074074 | 0.038295 | 0.028395 | 0.028396 | 25

| 18 | Accept | 0.18025 | 0.040552 | 0.028395 | 0.028397 | 120
| 19 | Accept | 0.15062 | 0.04103 | 0.028395 | 0.028397 | 54
|

20 | Accept | 9.19259 | 0.042295 | 0.028395 | 0.028397 | 285
[——
| Iter | Eval | Objective | Objective | BestSoFar | BestSoFar | MinLeafSize
| | result | | runtime | (observed) | (estim.)
= e e e oo
| 21 | Accept | 0.04321 | ©.041982 | ©.028395 | 0.028397 | 16
| 22 | Accept | 0.037037 | 0.04427 | 0.028395 | 0.028397 | 6
| 23 | Accept | 0.046914 | 0.041032 | 0.028395 | 0.028431 | 8
| 24 | Accept | 0.039506 | 9.042992 | 0.028395 | 0.028423 | 11
| 25 | Accept | 9.19259 | 0.040515 | 0.028395 | 0.028419 | 150
| 26 | Accept | 0.08642 | 0.037479 | 0.028395 | 0.028427 | 30
| 27 | Accept | 0.037037 | 0.038295 | 0.028395 | 0.028423 | 14
| 28 | Accept | 9.19259 | 0.034025 | 0.028395 | 0.028421 | 345
| 29 | Accept | 9.13951 | 0.046529 | 0.028395 | 0.028423 | 66
| 30 | Accept | 0.058025 | 9.03924 | 0.028395 | 0.02842 | 21

TVND. IMUNLNINTT VI TdIeLwa

L L L O
.10 L 304130
:JUdet;llVB uncuon mow

D.

18 W
516
14
B12

g 10° ,,.19" .10

Optimization completed.

MaxObjectiveEvaluations of 30 reached.

Total function evaluations: 30

Total elapsed time: 25.8809 seconds

Total objective function evaluation time: 3.6574

Best observed feasible point:
MinLeafSize

Observed objective function value = 0.028395
Estimated objective function value = 0.02842
Function evaluation time = 0.075565

Best estimated feasible point (according to models):
MinLeafSize

Estimated objective function value = 0.02842
Estimated function evaluation time = 0.056303

Warning: One or more of the unique class values in GROUP is not present in one or more folds. For
classification problems, either remove this class from the data or use N instead of GROUP to obtain

nonstratified partitions. For regression problems with continuous response, use N.
o
| Iter | Eval | Objective | Objective | BestSoFar | BestSoFar | MinLeafSize |
| | result | | runtime | (observed) | (estim.) | |
|mmmmmmmmmmmmmmmmmmssmemsmmemmmmmmeneenee =====mmmmssssssssssssssmmmesssssee-|
1	Best	0.13812	0.064582	0.13812	0.13812	168
2	Best	0.070988	0.046815	0.070988	0.076502	13
3	Best	0.041667	0.046301	0.041667	0.041672	1
4	Accept	0.40586	0.042112	0.041667	0.14747	609
5	Accept	0.041667	0.045218	0.041667	0.041674	1
6	Best	0.040895	0.043003	0.040895	0.04167	2
7	Accept	0.10262	0.046053	0.040895	0.041671	47
8	Accept	0.049383	0.049467	0.040895	0.04167	5
9	Accept	0.043981	0.042618	0.040895	0.040907	3
10	Accept	0.040895	0.045617	0.040895	0.040901	2
11	Accept	0.040895	0.042076	0.040895	0.040899	2
12	Accept	0.040895	0.042925	0.040895	0.040898	2
13	Accept	0.092593	0.046722	0.040895	0.040895	87
14	Accept	0.080247	0.041781	0.040895	0.0409	23
15	Accept	0.0625	0.044603	0.040895	0.040904	8
16	Accept	0.21605	0.041071	0.040895	0.040898	314
17	Accept	0.04784	0.042289	0.040895	0.040887	4
18	Accept	0.078704	0.054036	0.040895	0.040891	32
19	Accept	0.10108	0.046616	0.040895	0.040891	118
20	Accept	0.072531	0.050491	0.040895	0.040892	17
====sssmmmssseec						
Iter	Eval	Objective	Objective	BestSoFar	BestSoFar	MinLeafSize
	result		runtime	(observed)	(estim.)	
B ======mmmmmssssssssssssmmmeessssee-						
21	Accept	0.053241	0.045651	0.040895	0.040892	6
22	Accept	0.099537	0.043925	0.040895	0.040892	64
23	Accept	0.064815	0.10413	0.040895	0.040892	10
24	Accept	0.14352	0.038637	0.040895	0.040894	231
25	Accept	0.32716	0.041454	0.040895	0.040894	443
26	Accept	0.090278	0.04657	0.040895	0.040894	38
27	Accept	0.059414	0.05815	0.040895	0.040894	7
28	Accept	0.077932	0.041962	0.040895	0.040894	27
29	Accept	0.099537	0.040031	0.040895	0.040894	101
30	Accept	0.068673	0.042788	0.040895	0.040894	15
TVND. ITUINIVTTE VI TUuLeuwn
~POREE
1
\
...l .30 .30

:JUgEUlIVE ancuon mouw
B4

Optimization completed.
MaxObjectiveEvaluations of 30 reached.

Total function evaluations: 30
Total elapsed time: 16.5871 seconds
Total objective function evaluation time: 1.4277

Best observed feasible point:
MinLeafSize

Observed objective function value = 0.040895
Estimated objective function value = 0.040894
Function evaluation time = 0.043003

Best estimated feasible point (according to models):
MinLeafSize

Estimated objective function value = 0.040894
Estimated function evaluation time = 0.04663

I

| Tter | Eval | Objective | Objective | BestSoFar | BestSoFar | MinLeafSize
| | result | | runtime | (observed) | (estim.)
|==s=========s=====s==========s=s======ss======
| 1 | Best | 0.10743 | 0.072714 | 0.10743 | 0.10743 | 5
| 2 | Best | 0.087533 | 0.049609 | 0.087533 | 0.090084 | 1
| 3 | Accept | 0.1817 | 0.046566 | 0.087533 | 0.087538 | 75
| 4 | Accept | 0.25332 | 0.036304 | 0.087533 | 0.091072 | 236
| 5 | Accept | 0.087533 | 0.046159 | 0.087533 | 0.087537 | 1
| 6 | Accept | 0.092838 | 0.046642 | 0.087533 | 0.087526 | 2
| 7 | Accept | 0.087533 | 0.04728 | 0.087533 | 0.087529 | 1
| 8 | Accept | 0.087533 | 0.042757 | 0.087533 | 0.08753 | 1
| 9 | Accept | 0.12732 | 0.041318 | 0.087533 | 0.087525 | 17
| 10 | Accept | 0.25332 | 0.034242 | 0.087533 | 0.087535 | 377
| 11 | Accept | 0.1565 | 0.049899 | 0.087533 | 0.087535 | 33
| 12 | Accept | 0.11936 | 0.039458 | 0.087533 | 0.087536 | 9
| 13 | Accept | 0.098143 | 0.040771 | 0.087533 | 0.087536 | 3
| 14 | Accept | 0.1061 | 0.040555 | 0.087533 | 0.087537 | 4
| 15 | Accept | 0.2878 | 0.036582 | 0.087533 | 0.088592 | 124
| 16 | Accept | 0.092838 | 0.056465 | 0.087533 | 0.088459 | 2
| 17 | Accept | 0.16446 | 0.040808 | 0.087533 | 0.087535 | 49
| 18 | Accept | 0.13528 | 0.040713 | 0.087533 | 0.087535 | 12
| 19 | Accept | 0.14191 | 0.038673 | 0.087533 | 0.087535 | 24
| 20 | Accept | 0.11406 | 0.046111 | 0.087533 | 0.087535 | 7
|= I S ———
| Tter | Eval | Objective | Objective | BestSoFar | BestSoFar | MinLeafSize
| | result | | runtime | (observed) | (estim.)
|==s============s==s============ss======s======
| 21 | Accept | 0.25332 | 0.036117 | 0.087533 | 0.088267 | 174
| 22 | Accept | ©.25332 | 0.039434 | 0.087533 | 0.088217 | 310
| 23 | Accept | 0.16976 | ©.041636 | ©0.087533 | 0.087535 | 61
| 24 | Accept | 0.13926 | 0.042711 | 0.087533 | 0.087535 | 20
| 25 | Accept | 0.24801 | 0.038653 | 0.087533 | 0.087535 | 95
| 26 | Accept | 0.11936 | 0.041521 | 0.087533 | 0.087535 | 6
| 27 | Accept | ©.16313 | 0.043252 | ©0.087533 | 0.087535 | 40
| 28 | Accept | ©.13263 | 0.041119 | ©0.087533 | ©.087535 | 14
| 29 | Accept | 0.15252 | 0.048086 | 0.087533 | 0.087535 | 28
| 30 | Accept | 0.11538 | 0.040195 | 0.087533 | 0.087535 | 8

¥V, IMUINIWNGD Wi TdlleLwi

0 RBREN

0. ne: 20 L 2010 300
5Ugecuve uncuon mow

3. in

o[T
@.2 ! mum feasil
B15

D1

505

s 10° ,,.1p" .10

Optimization completed.

MaxObjectiveEvaluations of 30 reached.

Total function evaluations: 30

Total elapsed time: 16.3456 seconds

Total objective function evaluation time: 1.3063

Best observed feasible point:
MinLeafSize

Observed objective function value = 0.087533
Estimated objective function value = 0.087535
Function evaluation time = 0.049609

Best estimated feasible point (according to models):
MinLeafSize

Estimated objective function value = 0.087535

Estimated function evaluation time = 0.046091

Warning: One or more of the unique class values in GROUP is not present in one or more folds. For
classification problems, either remove this class from the data or use N instead of GROUP to obtain
nonstratified partitions. For regression problems with continuous response, use N.

| ITter | Eval | Objective | Objective | BestSoFar | BestSoFar | MinLeafSize |
| | result | | runtime | (observed) | (estim.) | |
| SRR S — e
| 1 | Best | 0.066933 | 0.069441 | 0.066933 | 0.066933 | 1|
| 2 | Accept | 9.20779 | 0.036403 | 0.066933 | 9.073951 | 421 |
| 3 | Accept | 0.068931 | 9.041912 | 0.066933 | 0.066936 | 5

4	Accept	0.16384	0.043256	0.066933	0.066928	66
5	Accept	9.070929	0.042285	9.066933	9.067298	2
6	Accept	9.070929	0.041829	9.066933	9.066971	2
7	Accept	0.066933	0.042608	0.066933	0.06695	1
8	Accept	©.071928	©.041594	0.066933	©.066949	8
9	Accept	0.066933	0.053995	0.066933	0.066943	1
10	Accept	0.066933	0.044695	0.066933	9.06694	1
11	Accept	9.10589	0.042043	0.066933	9.066939	20
12	Accept	0.066933	0.04326	0.066933	0.066942	3]

| 13 | Accept | 0.066933 | 0.042461 | 0.066933
| 14 | Best | 0.065934 | 0.047021 | 0.065934
| 15 | Accept | 0.065934 | 0.040919 | 0.065934
| 16 | Accept | 0.065934 | 0.04799 | 0.065934
| 17 | Accept | 0.065934 | 0.045737 | 0.065934
| 18 | Accept | 0.21678 | 0.038498 | 0.065934
| 19 | Accept | 0.1039 | 0.043842 | 0.065934
| 20 | Accept | 0.080919 | 0.041235 | 0.065934
|= S S
| Iter | Eval | Objective | Objective | BestSoFar
| | result | | runtime | (observed)
|= S S U
| 21 | Accept | 0.20779 | 0.036667 | 0.065934
| 22 | Accept | 0.16484 | 0.038701 | 0.065934
| 23 | Accept | 0.06993 | 0.043447 | 0.065934
| 24 | Accept | 0.066933 | 0.041115 | 0.065934
| 25 | Accept | 0.20779 | 0.034204 | 0.065934
| 26 | Accept | 0.11089 | 0.037901 | 0.065934
| 27 | Accept | 0.11089 | 0.041871 | 0.065934
| 28 | Accept | 0.094905 | 0.041052 | 0.065934
| 29 | Accept | 0.070929 | 0.038164 | 0.065934
| 30 | Accept | 0.17882 | 0.040101 | 0.065934
V. IMULNIWTI VI 1Tdulivuwvi
0.07
N 0.08
Sovecs-sessensnsd() O
0.0€

O a0 L 2010 300
:JUdEUlIVB uncuon mow
L=

w

=
ho

[[=Fy=iw g Wﬁmlmﬁ T
cooPdLLLn

a0 = M O

Optimization completed.

MaxObjectiveEvaluations of 30 reached.

Total function evaluations: 30

Total elapsed time: 15.064 seconds

Total objective function evaluation time: 1.2842

Best observed feasible point:
MinLeafSize
4
Observed objective function value = 0.065934

Estimated objective function value = 0.066806
Function evaluation time = 0.047021

Best estimated feasible point (according to models):

MinLeafSize

0.066941
0.066295

0.06611
0.066045
0.066013
0.066033
0.065958
0.065948

(estim.)

0.065952
0.067138
0.06715
0.067106
0.0671
0.06708
0.066866
0.066721
0.066629
0.066806

131

Estimated objective function value = 0.066806

Estimated function evaluation time = 0.043477

Warning: One or more of the unique class values in GROUP is not present in one or more folds. For
classification problems, either remove this class from the data or use N instead of GROUP to obtain
nonstratified partitions. For regression problems with continuous response, use N.

| Tter | Eval | Objective | Objective | BestSoFar | BestSoFar | MinLeafSize |
| | result | | runtime | (observed) | (estim.) | |
| <mm=mmmmmmmm m mmmmm e |
1	Best	9.1596	0.063424	9.1596	9.1596	56
2	Accept	9.16958	0.054618	9.1596	9.16178	198
3	Best	0.067332	0.038827	9.067332	0.067342	4
4	Accept	0.067332	0.040805	0.067332	0.067331	1
5	Accept	9.067332	0.040644	9.067332	9.067126	2
6	Accept	9.072319	9.037261	9.067332	0.067284	3
7	Accept	9.067332	0.037401	9.067332	0.067495	1
8	Accept	0.067332	9.039734	0.067332	0.067331	1
9	Accept	0.077307	0.036087	0.067332	0.067335	8
10	Accept	9.067332	9.036978	9.067332	9.067331	1
11	Best	0.062344	0.03645	0.062344	0.062422	5

| 12 | Accept | 0.062344 | 0.035843 | 0.062344 | 9.062381 | 5

| 13 | Accept | 0.062344 | 0.036484 | 0.062344 | 0.062368 | 5

| 14 | Accept | 0.062344 | 0.035904 | 0.062344 | 0.062361 | 5

15	Accept	9.067332	9.036477	9.062344	9.062382	6
16	Accept	0.089776	0.038363	0.062344	9.06238	17
17	Accept	9.10973	0.036667	0.062344	0.062384	29
18	Accept	0.16958	0.03352	0.062344	0.062399	112
19	Accept	9.0798	9.039631	0.062344	9.062387	12
20	Accept	9.10723	9.037259	9.062344	0.065448	39
D e						
ITter	Eval	Objective	Objective	BestSoFar	BestSoFar	MinLeafSize
	result		runtime	(observed)	(estim.)	
<mmmmmmmmmmmnm mmmm i e e e e						
21	Accept	9.16958	9.035784	0.062344	9.065307	150
22	Accept	9.16958	0.03417	0.062344	9.062353	79
23	Accept	9.11222	0.03569	0.062344	0.065313	22
24	Accept	0.067332	0.035516	0.062344	0.065195	10
25	Accept	0.084788	0.040248	9.062344	9.065142	14
26	Accept	9.077307	9.035594	0.062344	0.066061	7
27	Accept	9.072319	0.036472	0.062344	9.066371	3
28	Accept	0.064838	0.035227	0.062344	0.06608	9
29	Accept	0.13217	0.036846	0.062344	0.065971	47
30	Accept	9.16958	9.035283	9.062344	9.065819	94

P ITMINIRTL W ll.llllel.l\..'lI

L h i

Optimization completed.

MaxObjectiveEvaluations of 3@ reached.

Total function evaluations: 30

Total elapsed time: 14.8024 seconds

Total objective function evaluation time: 1.1532

Best observed feasible point:
MinLeafSize

Observed objective function value = 0.062344
Estimated objective function value = 0.065819
Function evaluation time = 0.03645

Best estimated feasible point (according to models):

MinLeafSize
5
Estimated objective function value = 0.065819
Estimated function evaluation time = ©.03809

Warning: One or more of the unique class values in GROUP is not present in one or more folds. For
classification problems, either remove this class from the data or use N instead of GROUP to obtain
nonstratified partitions. For regression problems with continuous response, use N.

| Tter | Eval | Objective | Objective | BestSoFar | BestSoFar | MinLeafSize |
| | result | | runtime | (observed) | (estim.) | |
e el
1	Best	0.28368	0.057932	0.28368	0.28368	150
2	Best	0.091918	0.042894	0.091918	0.1016	1
3	Accept	0.10618	0.046544	0.091918	0.098179	13
4	Accept	0.10143	0.040518	0.091918	0.09193	3
5	Accept	0.10935	0.040417	0.091918	0.091921	7
6	Accept	0.095087	0.042804	0.091918	0.091916	2
7	Accept	0.091918	0.052379	0.091918	0.091917	1
8	Accept	0.091918	0.052886	0.091918	0.091917	1
9	Accept	0.091918	0.041309	0.091918	0.091917	1
10	Accept	0.17591	0.038389	0.091918	0.091918	40
11	Accept	0.43265	0.034213	0.091918	0.091919	315

| 12 | Accept | 0.13629 | 0.042077 | 0.091918 | 0.09192 | 22 |
| 13 | Accept | 0.22504 | 0.037295 | 0.091918 | 0.09192 | 75

| 14 | Accept | 0.10618 | 0.040797 | 0.091918 | 0.091917 | 5

15	Accept	0.10618	0.040728	0.091918	0.091917	10
16	Accept	0.1046	0.047206	0.091918	0.091917	4
17	Accept	0.1046	0.057899	0.091918	0.091919	16
18	Accept	0.22504	0.041235	0.091918	0.091967	54
19	Accept	0.095087	0.040511	0.091918	0.091962	2
20	Accept	0.35024	0.034712	0.091918	0.091951	225

| ==ssmssmmsssooooscee Syl
| Tter | Eval | Objective | Objective | BestSoFar | BestSoFar | MinLeafSize |
| | result | | runtime | (observed) | (estim.) | |
O e
21	Accept	0.25674	0.035605	0.091918	0.091946	106
22	Accept	0.14422	0.04006	0.091918	0.091953	30
23	Accept	0.11886	0.040122	0.091918	0.091974	8
24	Accept	0.10935	0.039462	0.091918	0.091968	6
25	Accept	0.12837	0.038659	0.091918	0.091971	19
26	Accept	0.10301	0.039823	0.091918	0.09197	11
27	Accept	0.28368	0.037054	0.091918	0.092005	183
28	Accept	0.13788	0.038697	0.091918	0.092	26

10

| 29 | Accept | 0.22979 | 0.036142 | 0.091918 | 0.092003 | 89 |
| 30 | Accept | 9.15372 | 0.039822 | 0.091918 | 0.092009 | 35

TV D. IMUNLNINTT VI TdIeLwa

0.2
. 0.1
Sorcososessossosrersassass 0.4
— . g

o :1Q .30 .:.30
JRIECLIVE TUncuomn mow
548 .

D.4W ints g
S
0.3 \] i wheasi

Optimization completed.

MaxObjectiveEvaluations of 30 reached.

Total function evaluations: 30

Total elapsed time: 16.7892 seconds

Total objective function evaluation time: 1.2582

Best observed feasible point:
MinLeafSize

Observed objective function value = 0.091918
Estimated objective function value = 0.092009
Function evaluation time = 0.042894

Best estimated feasible point (according to models):
MinLeafSize

Estimated objective function value = 0.092009
Estimated function evaluation time = 0.042357

Iter | Eval | Objective | Objective | BestSoFar | BestSoFar | MinLeafSize
| result | | runtime | (observed) | (estim.)

I

|

I

I

| 1 | Best | 0.24537 | 0.071515 | 0.24537 | 0.24537 | 70
| 2 | Best | 0.15579 | 0.043157 | 0.15579 | 0.17758 | 17
| 3 | Best | 0.12658 | 0.049875 | 0.12658 | 0.1394 | 2
| 4 | Accept | 0.43427 | 0.039494 | 0.12658 | 0.12659 | 405
| 5 | Best | 0.12074 | 0.052899 | 0.12074 | 0.12081 | 1
| 6 | Accept | 0.12074 | 0.051064 | 0.12074 | 0.12077 | 1
| 7 | Accept | 0.12074 | 0.059655 | 0.12074 | 0.12076 | 1
| 8 | Accept | 0.12074 | 0.050578 | 0.12074 | 0.12075 | 1
| 9 | Accept | 0.12366 | 0.052265 | 0.12074 | 0.12076 | 6
| 10 | Accept | 0.12561 | 0.047452 | 0.12074 | 0.12075 | 4
| 11 | Accept | 0.1334 | 0.052198 | 0.12074 | 0.12075 | 9
| 12 | Accept | 0.19085 | 0.047018 | 0.12074 | 0.12075 | 33

11

| 13 | Best | 0.11879 | 0.049415 | 0.11879 | 0.121 | 3
| 14 | Accept | 0.11879 | 0.044853 | 0.11879 | 0.12106 | 3
| 15 | Accept | 0.11879 | 0.046139 | 0.11879 | 0.12098 | 3
| 16 | Accept | 0.11879 | 0.049097 | 0.11879 | 0.12061 | 3
| 17 | Accept | 0.31061 | 0.040861 | 0.11879 | 0.11888 | 191
| 18 | Accept | 0.27556 | 0.039171 | 0.11879 | 0.1189 | 114
| 19 | Accept | 0.14703 | 0.042722 | 0.11879 | 0.11889 | 12
| 20 | Accept | 0.18014 | 0.045612 | 0.11879 | 0.11884 | 24
| = S N —
| Iter | Eval | Objective | Objective | BestSoFar | BestSoFar | MinLeafSize
| | result | | runtime | (observed) | (estim.)

| = S [S e —
| 21 | Accept | 0.43427 | 0.03441 | 0.11879 | 0.11884 | 513
| 22 | Accept | 0.22493 | 0.040047 | 0.11879 | 0.11883 | 48
| 23 | Accept | 0.12366 | 0.043699 | 0.11879 | 0.11884 | 5
| 24 | Accept | 0.12561 | 0.04127 | 0.11879 | 0.11885 | 7
| 25 | Accept | 0.3408 | 0.04395 | 0.11879 | 0.12049 | 265
| 26 | Accept | 0.12658 | 0.044957 | 0.11879 | 0.12116 | 2
| 27 | Accept | 0.14995 | 0.041931 | 0.11879 | 0.12116 | 14
| 28 | Accept | 0.27556 | 0.038417 | 0.11879 | 0.11881 | 89
| 29 | Accept | 0.31061 | 0.039522 | 0.11879 | 0.12087 | 148
| 30 | Accept | 0.20935 | 0.039974 | 0.11879 | 0.12092 | 40
TND. ITUINIVTTE VI TUuLeuwa

. :1Q .30 .30
:Jugel;uve TUncLon mouwu
b4

il

Optimization completed.

MaxObjectiveEvaluations of 30 reached.

Total function evaluations: 30

Total elapsed time: 16.3431 seconds

Total objective function evaluation time: 1.3832

Best observed feasible point:
MinLeafSize

Observed objective function value = 0.11879
Estimated objective function value = 0.12092
Function evaluation time = 0.049415

Best estimated feasible point (according to models):
MinLeafSize

12

Estimated objective function value = 0.12092

Estimated function evaluation time = 0.047901

Warning: One or more of the unique class values in GROUP is not present in one or more folds. For
classification problems, either remove this class from the data or use N instead of GROUP to obtain
nonstratified partitions. For regression problems with continuous response, use N.

| Tter | Eval | Objective | Objective | BestSoFar | BestSoFar | MinLeafSize |
| | result | | runtime | (observed) | (estim.) | |
| <mm=mmmmmmmm e mmmm i e e |
| 1 | Best | 0.14815 | 9.058929 | 9.14815 | 0.14815 | 15

| 2 | Best | 9.10582 | 9.038212 | 9.10582 | 0.10829 | 1|
| 3 | Accept | 9.32275 | 0.032263 | 0.10582 | 9.11773 | 75

| 4 | Accept | 0.10582 | 0.03491 | 0.10582 | 0.10582 | 3

| 5 | Accept | 9.10582 | 9.033152 | 9.10582 | 9.10576 | 6 |
| 6 | Best | 9.079365 | 9.03405 | 9.079365 | 9.09424 | 4 |
| 7 | Accept | 9.10582 | 0.034006 | 9.079365 | 9.096907 | 3
8	Accept	0.079365	9.035755	0.079365	0.092943	4
9	Accept	0.079365	0.035732	0.079365	0.090245	4
10	Accept	9.18519	9.032944	9.079365	9.079378	31
11	Accept	0.084656	9.035281	9.079365	9.079375	5

12	Accept	9.079365	0.042704	9.079365	9.079372	4
13	Accept	©.10582	©.038093	0.079365	0.07938	2
14	Accept	0.13757	0.037204	0.079365	0.079379	10
15	Accept	9.2381	9.033742	9.079365	9.079384	a7
16	Accept	0.14286	0.038615	9.079365	9.079377	21
17	Accept	0.34392	9.035691	9.079365	0.079387	94
18	Accept	0.13228	0.044311	0.079365	0.079392	8
19	Accept	0.14815	9.033912	9.079365	9.07939	12
20	Accept	0.1746	9.034258	9.079365	9.079373	25
=m=mcmsmmmmmsmmmcscmsmmssscesmmssemssmsascmssmezsessmsssssssmesesemmssessssesssseses						
ITter	Eval	Objective	Objective	BestSoFar	BestSoFar	MinLeafSize
	result		runtime	(observed)	(estim.)	
e ——						
21	Accept	9.2328	0.033098	9.079365	0.082078	38
22	Accept	9.24339	9.033019	9.079365	9.079368	59
23	Accept	0.14286	9.034193	0.079365	0.079368	18
24	Accept	0.1164	0.034074	0.079365	0.079366	7
25	Accept	9.13757	9.035514	9.079365	9.079366	9
26	Accept	0.14815	9.035077	9.079365	9.079366	13
27	Accept	9.18519	9.034679	9.079365	0.079366	28
28	Accept	0.24339	9.031725	0.079365	0.079366	53
29	Accept	0.14815	0.033987	0.079365	0.079366	16
30	Accept	9.13757	9.04023	9.079365	9.079366	11
TN Re ITUHINIRTL W T Lwl

=P33R

e 10 . 30 20
ZRIECLIVE TUncLuomn mow
4

e

mgggpasn

13

Optimization completed.

MaxObjectiveEvaluations of 3@ reached.

Total function evaluations: 30

Total elapsed time: 15.8995 seconds

Total objective function evaluation time: 1.0894

Best observed feasible point:
MinLeafSize

4

Observed objective function value = 0.079365
Estimated objective function value = 0.079366
Function evaluation time = 0.03405

Best estimated feasible point (according to models):
MinLeafSize

4

Estimated objective function value = 0.079366

Estimated function evaluation time = 0.036027

Warning: One or more of the unique class values in GROUP is not present in one or more folds. For
classification problems, either remove this class from the data or use N instead of GROUP to obtain
nonstratified partitions. For regression problems with continuous response, use N.

Decision Tree visualisation

The results of every layer of the hypermatrix are summed up and visualised in a heatmap. Additionally the mean
accuracy and time taken is calculated and used as a comparison metric between methods.

BT = zeros(m,n);
for j = 1:n

for k = 1:m

BT(Jj,k) = sum(hyp_BT(j,k,:));

end
end
figBT = figureGen(7,10);
heat BT6 = heatmap(BT, "XDisplaylLabels", [0,1,2,3], "YDisplayLabels", [0,1,2,3],
"ColorMethod", "mean", "ColorLimits", [©,100])

heat_BT6 =
HeatmapChart with properties:

XData: {4x1 cell}
YData: {4x1 cell}
ColorData: [4x4 double]

Show all properties

heat BT6.Colormap = parula(64);
xlabel("Predicted State");
ylabel("Labelled State");
average_acc_BT = median(acc_BT)

average_acc_BT = 0.9469

14

avergage_time_BT = median(time_BT)
avergage_time_BT = 0.0228

heat BT6.Title = "Binary Decision Tree";

saveas(heat_BT6, 'C:\Users\ellio\OneDrive\Dokumente\Uni\Master\Master
Thesis\Writing\LatexVorlageMA_ v2.0\LatexVorlageMA_v2.0\chapters\Chapters\07_Results\
figures\6 BT.jpg');

2iinal LTLIDIVIE HITT

10

Discriminant Analysis
The next method to be applied will be linear Discriminant Analysis.

for i = 1:numel(files)
%Load file i from the folder
fileName = fullfile(files(i).folder, files(i).name);
load(fileName);
%Extract the state vector
state = stateTT.State;
%Extract the Principal COmponent Data
D = PCsTT{:,:};
%Create a random 90/10 Partition for Training and Test Data
rng('default');
Partition_States = cvpartition(state, 'Holdout', ©.10);

%Seperate the training and testing Ids
trainingIds = training(Partition_States);
DTrain = D(trainingIds, :);
stateTrain = state(trainingIds);
testIds = test(Partition_States);
DTest = D(testIds, :);
stateTest = state(testIds);
Begin measuring the time this algorithm will take
tDA = tic;
train the decsion tree classifier

classifierDA = fitcdiscr(DTrain, stateTrain, 'OptimizeHyperparameters', 'auto');

end the time measurement

15

timeDA = toc(tDA);
use the tree to predict the test states

TestModel DA = predict(classifierDA, DTest);
measure the accuracy

accuracy DA = sum(stateTest == TestModel DA)/length(stateTest);
%figure;
%confusionchart(stateTest, TestModel BT, 'Normalization', 'row-normalized');

Create a confusion matrix

[C_ DA, order] = confusionmat(stateTest, TestModel DA);
%titleStr BT = strrep([fName,' Binary Tree'],' ','-');
% title(titleStr BT);

save the confusion matrix as one layer of the hypermatrix and the accuracy and measured time in vector form

hyp DA(:,:,i) = C_DA;

acc_DA(i) = accuracy_ DA;

time _DA(i) = timeDA/length(D);
end

Warning: One or more of the unique class values in GROUP is not present in one or more folds. For
classification problems, either remove this class from the data or use N instead of GROUP to obtain
nonstratified partitions. For regression problems with continuous response, use N.

| Iter | Eval | Objective | Objective | BestSoFar | BestSoFar | Delta | Gamma |
| | result | | runtime | (observed) | (estim.) | | |
| e — =mm=mmmmmmmm = mmmmm e |
| 1 | Best | 9.19259 | 9.52463 | 9.19259 | 9.19259 | ©.00037316 | 9.31422 |
| 2 | Accept | 9.19259 | 9.11454 | 9.19259 | 9.19259 | 1.4362e-06 | 9.98178 |
| 3 | Accept | 9.19259 | 0.093996 | 9.19259 | 9.19259 | 23.476 | 0.87075

| 4 | Accept | 0.19259 | 0.15437 | 0.19259 | 0.19259 | 446.49 | 0.10992 |
| 5 | Accept | 9.19259 | 9.053893 | 9.19259 | 9.19259 | 0.0053024 | 0.61306 |
| 6 | Accept | 9.19259 | 0.046354 | 9.19259 | 9.19259 | 3.0904e-06 | 0.4555

| 7 | Accept | 9.19259 | 0.047203 | 9.19259 | 9.19259 | 983.22 | 0.99483

| 8 | Accept | 9.19259 | 0.048573 | 9.19259 | 9.19259 | 0.14184 | 9.61255

9	Accept	0.19259	0.045562	0.19259	0.19259	0.0065701	0.27321
10	Accept	0.2	0.058266	9.19259	9.19259	0.072013	0.00014954
11	Accept	9.19259	0.048925	9.19259	9.19259	9.0036119	9.1722
12	Accept	9.19259	0.043029	9.19259	9.19259	0.42724	0.74356
13	Accept	9.19259	©.053537	9.19259	9.19259	21.556	0.53186
14	Accept	9.19259	0.049238	9.19259	9.19259	449.13	0.80618
15	Accept	9.19259	0.045072	9.19259	9.19259	3.6769e-05	0.67684
16	Accept	9.19259	0.047843	9.19259	9.19259	945.53	0.18126
17	Accept	0.19259	0.046733	0.19259	0.19259	739.74	0.38971
18	Accept	0.19259	0.046592	0.19259	0.19259	844.8	0.13767
19	Accept	9.19259	9.051116	9.19259	9.19259	0.002001	9.92174
20	Accept	9.19259	0.040225	9.19259	9.19259	©.00036112	9.22734
=m==em=mmcmscmmocsomssmcmacmsmncsemssmssscmsmscsemssmsssssssmesememsssessmssessmsssemssmezems=es							
Iter	Eval	Objective	Objective	BestSoFar	BestSoFar	Delta	Gamma
	result		runtime	(observed)	(estim.)		

16

| 21 | Accept | 0.19259 | 0.043047 |
| 22 | Accept | 0.19259 | 0.047855
| 23 | Accept | 0.19259 | 0.038572 |
| 24 | Accept | 0.19259 | 0.051439 |
| 25 | Accept | 0.19259 | 0.042235
26	Accept	0.19259	0.040998
27	Best	0.19136	0.052494
28	Best	0.17407	0.047215
29	Accept	0.19012	0.05524
30	Accept	0.18889	0.052232
Objective function model
@
©
-
§ 0.195
",—'\;__}
£ 019
] S
= e
& 0.185 %
©
T 0.18
= ® Observed points
= -~ || Model mean
w 0.1756 4 .
L 4 @ Nextpoint
1 % Model minimum feasible 0
75 ——— 10
0
Gamma Delta

OO OO0

.19259
.19259
.19259
.19259

19259

.19259
.19136
.17407
.17407
.17407

Optimization completed.

MaxObjectiveEvaluations of 30 reached.

Total function evaluations: 30

Total elapsed time: 20.8123 seconds

Total objective function evaluation time: 2.131

Best observed feasible point:
Delta Gamma

3.9984e-06 0.0077154

Observed objective function value = 0.17407
Estimated objective function value = 0.18906
Function evaluation time = 0.047215

Best estimated feasible point (according to models):

Delta Gamma

17

OO OO0

.19259
.19258
.19258
.19258
.19258
.19259
.19136
.17408
.18959
.18906

NP WEROOUVO

.00022188

1.0731
313.06

.00047227
.2843e-06
.8228e-05
.1762e-06
.9984e-06
.7569e-06
.6674e-06

0.57158
0.49186
0.35337
0.71026
0.83813
0.12291
0.0012063
0.0077154
0.0015563
0.055492

3.9984e-06 0.0077154
Estimated objective function value = 0.18906
Estimated function evaluation time = 0.056475
|= S S S
| Tter | Eval | Objective | Objective | BestSoFar
| | result | | runtime | (observed)
| I T I
| 1 | Best | 0.40355 | 0.053845 | 0.40355
| 2 | Accept | 0.40586 | 0.045284 | 0.40355
| 3 | Accept | 0.40355 | 0.044171 | 0.40355
| 4 | Best | 0.39275 | 0.061214 | 0.39275
| 5 | Best | 0.38117 | 0.054997 | 0.38117
| 6 | Accept | 0.38194 | 0.049647 | 0.38117
| 7 | Accept | 0.40355 | 0.041612 | 0.38117
| 8 | Accept | 0.38889 | 0.044509 | 0.38117
| 9 | Accept | 0.39198 | 0.048688 | 0.38117
| 10 | Accept | 0.38194 | 0.049621 | 0.38117
| 11 | Best | 0.37346 | 0.046356 | 0.37346
| 12 | Accept | 0.37577 | 0.049216 | 0.37346
| 13 | Accept | 0.37423 | 0.042163 | 0.37346
| 14 | Accept | 0.37423 | 0.045013 | 0.37346
| 15 | Accept | 0.375 | 0.051912 | 0.37346
| 16 | Accept | 0.37423 | 0.042159 | 0.37346
| 17 | Accept | 0.37346 | 0.050822 | 0.37346
| 18 | Accept | 0.37423 | 0.04995 | 0.37346
| 19 | Accept | 0.40355 | 0.044103 | 0.37346
| 20 | Accept | 0.40355 | 0.049635 | 0.37346
|= S S S
| Iter | Eval | Objective | Objective | BestSoFar
| | result | | runtime | (observed)
| S S S
| 21 | Accept | 0.40586 | 0.082025 | 0.37346
| 22 | Accept | 0.3912 | 0.040822 | 0.37346
| 23 | Accept | 0.40586 | 0.042502 | 0.37346
| 24 | Accept | 0.40586 | 0.06142 | 0.37346
| 25 | Accept | 0.40355 | 0.083912 | 0.37346
| 26 | Accept | 0.40586 | 0.050123 | 0.37346
| 27 | Accept | 0.40355 | 0.042463 | 0.37346
| 28 | Accept | 0.40355 | 0.04057 | 0.37346
| 29 | Accept | 0.40586 | 0.058239 | 0.37346
| 30 | Accept | 0.37346 | 0.052674 | 0.37346
Min objective vs. Number of function evaluat&e‘%sé
| —=—Min observed aobjective
Estimated min objective 104
10.395 -
=
] ©
0.39 3
S
10.385 =
=
10.38
10.375
: : : 0.37
0 10 20 30

Function evaluations

18

BestSoFar
(estim.)

COPOO0OOPOOOOOOOO®
w
©
)
N
N

0.37403
0.37387
0.37393
0.37393
0.37393

(estim.)

OO OO0

0.55597
955.78
0.013686
.0024534
.0026356
.0029045
.0027544
.0027259
.0012312
.0072485
.0080333
0.037492
0.0029421
0.012255
0.004117
0.0064046
0.007314
0.0076869
1.1182e-06
1.2854e-06

OO0

999.43
0.015901
967.49
999.95
1.1044e-06
995.32
1.0072e-06
1.0407e-06
904.04
0.0043597

0.49649
0.13282
0.94477
0.059148
0.082952
0.12144
0.87097
0.14804
0.15973
0.1222
0.099683
0.096972
0.10221
0.10292
0.097535
0.10233
0.102
0.10269
0.28114
0.68274

0.36371
.0031529
0.75413
0.60993
0.41271
0.24723
0.573
.78156
.99934
0.10295

[ORN)

Estimated objective function value

0.38

0.3

0.37

0.395 -

0.39 4

-

2

8

-

o

Objective function model

*

@® Observed points
[Model mean
4 @ Nextpoint

Madel minimum feasible

Gamma

0.5

T

10°

Delta

Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 17.8078 seconds
Total objective function evaluation time: 1.5197

Best observed feasible point:
Delta

Gamma

0.0080333

0.099683

Observed objective function value =
Estimated objective function value =
Function evaluation time = 0.046356

0.37346
0.37396

Best estimated feasible point (according to models):
Delta

Gamma

0.007314

0.102

Estimated objective function value = 0.37386

Estimated function evaluation time = 0.049797
Iter | Eval | Objective | Objective | BestS
| result | | runtime | (obse

1 | Best | 0.25332 | 0.05904 |

2 | Accept | 0.25464 | 0.039244 |

3 | Accept | 0.25464 | 0.042758 |

4 | Best | 0.24801 | 0.045427 |

5 | Accept | 0.2878 | 0.045933 |

6 | Accept | 0.25464 | 0.041313 |

7 | Accept | 0.25332 | 0.045183 |

8 | Accept | 0.25332 | 0.042153 |

9 | Accept | 0.25332 | 0.039942 |

OO OO0

oFar
rved)

| (estim.)

| Delta | Gamma
| |

| 3.8247 | 0.93251
| 2.3298e-05 | 0.99245
| 1.0451 | 0.30776
| 3.7299e-06 | 0.082337
| 1.8029e-06 | 0.0085473
| 0.85333 | 0.68771
| 993.56 | 0.9993
| 993.51 | 0.61299
| 997.97 | 0.99962

O OO0
N
U
w
w
N

Objective |

Min objective vs. Number of function evaluati

10	Accept
11	Accept
12	Accept
13	Accept
14	Accept
15	Accept
16	Accept
17	Accept
18	Accept
19	Accept
20	Accept
= e

| Tter | Eval |
| | result |
| R

21	Accept
22	Accept
23	Accept
24	Accept
25	Accept
26	Accept
27	Accept
28	Accept
29	Accept
30	Accept

OO OO
N
Ui
w
w
N

(]
N
Ul
w
w
N

I
I
I
I
I
.25464 |
I
I
I
I

——— Min observed objective
Estimated min objective

0.03868 | 0.24801
0.041857 | 0.24801
0.051721 | 0.24801

0.04128 | 0.24801
0.044194 | 0.24801
0.046176 | 0.24801
0.038542 | 0.24801
0.041739 | 0.24801
0.053325 | 0.24801

0.04284 | 0.24801
0.040114 | 0.24801

Objective | BestSoFar

| runtime | (observed)
0.050415 | 0.24801
0.045934 | 0.24801
0.045932 | 0.24801
0.051444 | 0.24801
0.048628 | 0.24801
0.071911 | 0.24801
0.051917 | 0.24801
0.039178 | 0.24801
0.049424 | 0.24801
0.047152 | 0.24801

ons

0.26

10.258
10.256 2
©
@
10.254 &
(&
=
10.252 =

10.25
+ 0.248
20 30

10

Function evaluations

20

.25663
.25633
.25619
.25607
.25597
.25579
.25564
0.2555
0.25538
0.25534
0.25531

OO OO0

BestSoFar
(estim.)

OO OO0
N
U1
Al
(o)
v

| 946.78 | 0.010881
| 996.62 | 0.40952
| 1.0526e-06 | 0.99852
| 5.4025e-05 | 0.62406
| 0.044394 | 0.99879
| 997.72 | 0.30162
| 975.76 | 0.58415
| 970.49 | 0.010069
| 984.19 | 0.99947
| 7.5787e-05 | 0.26452
| 0.0025943 | 0.55079
| Delta | Gamma
| |

| 1.0051e-06 | 0.34586
| 0.049149 | 0.1298
| 29.78 | 0.70997
| 1.0053e-06 | 0.78301
| 4.3429 | 0.29593
| 0.012399 | 0.59793
| ©.00013918 | 0.99787
| 1.2601e-05 | 0.41316
| 21.653 | ©.00029419
| 997.58 | 0.20937

Objective function model

@ Observed points

_ [Model mean
Sy @® Next point
0.28 * Model minimum feasible

0.275
0.27 4
0.265
0.26
0.255
0.25

Estimated objective function value

Gamma : Delta

Optimization completed.

MaxObjectiveEvaluations of 30 reached.

Total function evaluations: 30

Total elapsed time: 21.0914 seconds

Total objective function evaluation time: 1.3834

Best observed feasible point:
Delta Gamma

3.7299%e-06 0.082337

Observed objective function value = 0.24801
Estimated objective function value = 0.25531
Function evaluation time = 0.045427

Best estimated feasible point (according to models):

Delta Gamma

997.97 0.99962

Estimated objective function value = 0.25531
Estimated function evaluation time = 0.045664

| Tter | Eval | Objective | Objective | BestSoFar

| | result | | runtime | (observed)

| 1 | Best | 0.2048 | 0.058713 | 0.2048
| 2 | Accept | 0.20779 | 0.047236 | 0.2048
| 3 | Best | 0.2038 | 0.059953 | 0.2038
| 4 | Accept | 0.2038 | 0.047458 | 0.2038
| 5 | Accept | 0.2038 | 0.046402 | 0.2038
| 6 | Best | 0.2018 | 0.043534 | 0.2018
| 7 | Best | 0.19081 | 0.094233 | 0.19081
| 8 | Accept | 0.20779 | 0.042022 | 0.19081
| 9 | Accept | 0.2038 | 0.044221 | 0.19081

21

| BestSoFar
| (estim.)

I

| 0.2062
| 0.20546
| 0.2038
| 0.2038
| 0.2018
| 0.19081
| 0.19157
| 0.19081

0.00013458
209.45
0.76615
1.2056e-06
0.00087401
0.00035527
0.01795
569.56
0.025985

0.7962
0.76078
0.35544
0.42941
0.38774
0.18223

0.00014427
0.0013827
0.63853

OO0
iy
[o]
w
(o]
N

Objective |

Min objective vs. Number of function evaluati

e

10	Best
11	Best
12	Accept
13	Accept
14	Accept
15	Accept
16	Accept
17	Best
18	Accept
19	Best
20	Accept
= e

| Tter | Eval |
| | result |
| R

21	Accept
22	Accept
23	Best
24	Accept
25	Accept
26	Accept
27	Accept
28	Accept
29	Accept
30	Accept

[SENO RO RO RO RO RO RO RN
[y
N
Ul
(o]
N

()
[y
©
o
[o1]
N

I
I
I
I
I
.17682 |
I
I
I
I

0.078076 | 0.18681
0.043313 | 0.18182
0.044236 | 0.18182
0.045901 | 0.18182
0.044957 | 0.18182
0.040124 | 0.18182
0.05126 | 0.18182
0.043906 | 0.17682
0.039895 | 0.17682
0.049868 | 0.17582
0.041398 | 0.17582
Objective | BestSoFar
| runtime | (observed)
0.04074 | 0.17582
0.049726 | 0.17582
0.037888 | 0.17483
0.038141 | 0.17483
0.057116 | 0.17483
0.041821 | 0.17483
0.040391 | 0.17483
0.047366 | 0.17483
0.049842 | 0.17483
0.039039 | 0.17483
ons
0.21
———— Min observed objective
Estimated min objective
10.2
2
©
@
1019 &
[s
=
=
10.18
: 0.17
20 30

10

Function evaluations

22

BestS
(esti

OO OO

OO OO0

oFar
m.)

| 0.04373 | 0.0014032
| 0.081794 | 0.0018521
| 0.14855 | 0.0017505
| 0.16617 | 0.036605
| 0.14499 | 0.0028772
| 0.13974 | 0.002416
| 0.13172 | ©.00096085
| 0.14004 | 0.0061366
| 0.1177 | 0.0077275
| 0.10309 | 0.0089792
| 0.14032 | 0.010619
| Delta | Gamma
| |

| 0.11681 | 0.010236
| 0.13749 | 0.0098105
| 0.18696 | 0.0096641
| 0.30462 | 0.010157
| 0.26104 | 0.010177
| 0.26281 | 0.010406
| 1.159e-05 | 0.0073337
| 9.0319e-05 | 0.013411
| 4.809e-06 | 0.013355
| 0.011674 | 0.015436

Objective function model

[|
@
€ 0.205
5
f; 0.2 4
< 0.195 -
)
=)
= 0194 I 1
Q0
© 0.185
Eﬁ |
g 0.18 4| @ Observed points
= T Model mean
$; 0175] @ Next point
1 % Model minimum feasible
0.5
0
Gamma Delta

Optimization completed.

MaxObjectiveEvaluations of 30 reached.

Total function evaluations: 30

Total elapsed time: 16.9684 seconds

Total objective function evaluation time: 1.4488

Best observed feasible point:
Delta Gamma

0.18696 0.0096641

Observed objective function value = 0.17483
Estimated objective function value = 0.17603
Function evaluation time = ©.037888

Best estimated feasible point (according to models):
Delta Gamma

0.18696 0.0096641

0.17603
0.047215

Estimated objective function value
Estimated function evaluation time

Warning: One or more of the unique class values in GROUP is not present in one or more folds. For
classification problems, either remove this class from the data or use N instead of GROUP to obtain
nonstratified partitions. For regression problems with continuous response, use N.

| Iter | Eval | Objective | Objective | BestSoFar

| | result | | runtime | (observed)
= e e mmmmee

| 1 | Best | 0.16958 | 0.047149 | 0.16958
| 2| Best | 0.13965 | ©.044379 | 0.13965
| 3 | Accept | 0.16958 | 0.043932 | 9.13965
| 4| Accept | 0.16459 | 0.036387 | 9.13965
| 5 | Accept | ©.13965 | 0.044981 | 9.13965
| 6| Best | 9.10224 | 0.036506 | 0.10224
| 7| Best | ©0.099751 | ©.040716 | ©.099751

23

| (estim.)

.10225
0.099754

| Delta | Gamma
| |

| 7.7979 | 0.080071
| 0.00025202 | 9.19538
| 713 | 0.38354
| 0.02855 | 9.93936
| 2.8619e-05 | 0.20402
| 7.4681e-05 | 0.001821
| 4.8871e-06 | 0.0013396

| 8 | Accept | 0.14464
| 9 | Accept | 0.099751
| 10 | Accept | 9.099751
| 11 | Accept | 0.099751
| 12 | Accept | 0.16209
| 13 | Accept | 0.16958
| 14 | Accept | 0.16459
| 15 | Accept | 0.16209
| 16 | Accept | 0.16958
| 17 | Accept | 0.16958
| 18 | Accept | 9.099751
| 19 | Accept | 0.16209
| 20 | Accept | 0.16209
|= N

| Iter | Eval | Objective

| | result |

= e oo
| 21 | Accept | 0.16209
| 22 | Accept | 0.16209
| 23 | Accept | 0.16958
| 24 | Accept | 0.16958
| 25 | Best | 9.097257
| 26 | Accept | 0.16708
| 27 | Accept | 0.16459
| 28 | Accept | 0.17207
| 29 | Accept | 0.16958
| 30 | Accept | 0.099751

Min objective vs. Number of function evaluations

——— Min observed objective
Estimated min objective

10

| 0.044859 | 0.099751
| 0.03706 | 0.099751
| 0.038844 | 0.099751
| 0.046687 | 0.099751
| 0.046169 | 0.099751
| 0.037315 | 0.099751
| 0.043397 | 0.099751
| 0.039621 | 0.099751
| 0.03929 | 0.099751
| 0.051466 | 0.099751
| 0.037489 | 0.099751
| 0.055148 | 0.099751
| 0.03653 | 0.099751
| Objective | BestSoFar
| runtime | (observed)
| 0.039857 | 0.099751
| 0.043929 | 0.099751
| 0.040983 | 0.099751
| 0.045316 | 0.099751
| 0.04114 | 0.097257
| 0.046616 | 0.097257
| 0.040125 | 0.097257
| 0.037544 | 0.097257
| 0.049555 | 0.097257
| 0.039783 | 0.097257
10.16
10.15
@
10.14 =
3
1013 &
o
=
0.12 -
10.11
10.1
: 0.09
20 30

Function evaluations

24

0.12759
0.11743
0.11232

0.1091
.10949
.10974
.10868
.10862
.10842
.10824
.10898
.10843

OO0 OO0

(estim.)

0.10824
0.10792
0.10774
0.10759
0.10726

0.1071
0.10694
0.10656
0.10661
0.10394

| 7.7337e-06 | 0.03372
| 3.4659e-06 | 0.0013082
| 1.2349e-06 | 6.619e-05
| 1.085e-06 | 0.0011123
| 1.0156e-06 | 0.58259
| 967.11 | 0.99835
| 1.016e-06 | 0.99741
| 0.047812 | 0.5378
| 995.32 | 0.70074
| 986.88 | 0.000475
| 0.0092659 | 0.00012409
| 1.0066e-06 | 0.37751
| 1.0463e-06 | 0.80032
| Delta | Gamma
I I

| 0.004429 | 0.7426
| 0.0031856 | 0.35411
| 10.096 | 0.8374
| 54.551 | 0.55061
| 0.37808 | ©.00011606
| 2.1095 | 0.99987
| ©.00020879 | 0.99966
| 1.8478 | 0.30043
| 999.93 | 0.21598
| 0.079909 | ©.00026921

Objective function model

@® Observed points

01 . [Model mean
4 @ Nextpoint

Estimated objective function value

Gamma Delta

Optimization completed.

MaxObjectiveEvaluations of 30 reached.

Total function evaluations: 30

Total elapsed time: 18.2712 seconds

Total objective function evaluation time: 1.2728

Best observed feasible point:
Delta Gamma

0.37808 0.00011606

Observed objective function value = 0.097257
Estimated objective function value = 0.1188
Function evaluation time = 0.04114

Best estimated feasible point (according to models):
Delta Gamma

7.4681e-05 0.001821

Estimated objective function value = 0.10394

Estimated function evaluation time = 0.039587

| S N S S S S S
| Iter | Eval | Objective | Objective | BestSoFar | BestSoFar | Delta | Gamma

| | result | | runtime | (observed) | (estim.) | |

| — S S === S S S—
| 1 | Best | 0.38035 | 0.051885 | 0.38035 | ©.38035 | 2.5188e-06 | 0.065374

| 2 | Accept | 0.43265 | 0.052146 | 0.38035 | 0.383 | 231.04 | 0.91873

| 3 | Accept | 0.41997 | 0.042331 | 0.38035 | 0.38035 | 0.3466 | 0.5673

| 4 | Accept | 0.42155 | 0.04523 | 0.38035 | 0.38035 | 0.023209 | 0.94379

| 5 | Best | 0.3233 | 0.040942 | 0.3233 | 0.3624 | 1.014le-06 | 0.00655

| 6 | Best | 0.26307 | 0.039812 | 0.26307 | 0.30729 | ©0.00019929 | ©.00012093

| 7 | Best | 0.2599 | 0.045569 | 0.2599 | 0.26009 | 0.01795 | ©0.00014427

| 8 | Accept | 0.43265 | 0.038901 | 0.2599 | 0.25993 | 657.55 | ©0.00015686

| 9 | Accept | 0.35499 | 0.038682 | 0.2599 | 0.25993 | 0.0024998 | 0.013569

25

Min objective vs. Number of function evaluati

| 10 | Accept | 0.27892
| 11 | Accept | 0.2599
| 12 | Accept | 0.26307
| 13 | Accept | 0.2599
| 14 | Accept | 0.26783
| 15 | Accept | 0.37084
| 16 | Accept | 0.43265
| 17 | Accept | 0.38193
| 18 | Accept | 0.43265
| 19 | Accept | 0.37718
| 20 | Accept | 0.38193
|= e mmmm——ee
| Iter | Eval | Objective

| | result |

| R S
| 21 | Accept | 0.27892
| 22 | Accept | 0.26307
| 23 | Accept | 0.26149
| 24 | Accept | 0.38193
| 25 | Accept | 0.2599
| 26 | Accept | 0.43265
| 27 | Accept | 0.2599
| 28 | Accept | 0.26149
| 29 | Accept | 0.26307
| 30 | Accept | 0.26307

——— Min observed objective
Estimated min objective

| 0.060405 | 0.2599
| 0.04371 | 0.2599
| 0.045747 | 0.2599
| 0.052633 | 0.2599
| 0.037213 | 0.2599
| 0.049853 | 0.2599
| 0.056832 | 0.2599
| 0.042451 | 0.2599
| 0.051082 | 0.2599
| 0.042272 | 0.2599
| 0.041101 | 0.2599
| objective | BestSoFar
| runtime | (observed)
| 0.038032 | 0.2599
| 0.049418 | 0.2599
| 0.040215 | 0.2599
| 0.037346 | 0.2599
| 0.050003 | 0.2599
| 0.037697 | 0.2599
| 0.043236 | 0.2599
| 0.047259 | 0.2599
| 0.041712 | 0.2599
| 0.044052 | 0.2599
ns
0.4
10.35 &
©
AU
0
(&
=
103 =
: 0.25

10

20

Function evaluations

30

26

.27034
.26268
.26093
.26109
.26078
.26079
0.2608
0.26081
0.26082
0.26083
0.26083

[OINO RO RO RN

BestSoFar
(estim.)

O OO0
N .
o))
(o)
v
N

| 0.002505 | 0.0014879
| 0.0010491 | 0.00017245
| 0.0008762 | 6.5107e-05
| 1.0139e-06 | 0.0001651
| 6.7592e-06 | 0.00042201
| 1.3832e-06 | 0.027812
| 501.69 | 0.028388
| 1.3115e-06 | 0.085849
| 822.22 | 0.075029
| 1.1081e-06 | 0.047797
| 1.9844e-06 | 0.10443
| Delta | Gamma
| |

| 1.0183e-06 | 0.0016473
| 0.0063956 | 1.0119e-05
| 1.0546e-06 | 5.8133e-05
| 1.0255e-06 | 0.13498
| 1.3574e-06 | 0.0001758
| 191.34 | 0.12367
| 4.6121e-05 | ©0.00018415
| 0.056895 | 5.589e-05
| 1.0729e-06 | 4.2521e-05
| 3.257e-05 | 6.5448e-05

Objective function model

@
©
=
S 044
©
=
@
2 0.35 4
[&]
Q0
©
Eg 0.3 4
g @® Observed points
= [Model mean
4 1l @ Nextpoint
1 * Model minimum feasible
0.5 -
0
Gamma Delta

Optimization completed.

MaxObjectiveEvaluations of 30 reached.

Total function evaluations: 30

Total elapsed time: 16.9835 seconds

Total objective function evaluation time: 1.3478

Best observed feasible point:
Delta Gamma

0.01795 0.00014427

Observed objective function value = 0.2599
Estimated objective function value = 0.26122
Function evaluation time = 0.045569

Best estimated feasible point (according to models):
Delta Gamma

1.0729e-06 4.2521e-05

Estimated objective function value = 0.26103

Estimated function evaluation time = 0.04455

| ====== ====== =======

| Tter | Eval | Objective | Objective | BestSo
| | result | | runtime | (obser
| — I S

| 1 | Best | 0.40993 | 0.052685 | 0.
| 2 | Best | 0.40506 | 0.042611 | 0.
| 3 | Best | 0.36709 | 0.038914 | 0.
| 4 | Accept | 0.40117 | 0.044464 | 0.
| 5 | Accept | 0.43427 | 0.047332 | 0.
| 6 | Best | 0.36611 | 0.045039 | 0.
| 7 | Best | 0.31743 | 0.053739 | 0.
| 8 | Accept | 0.41091 | 0.04206 | 0.
| 9 | Accept | 0.32035 | 0.043911 | 0.

Far
ved)

| (estim.)

| Delta | Gamma
| |

| 0.011344 | 0.51472
| 6.6266e-05 | 0.89526
| 0.36144 | 9.052903
| 2.2178e-06 | 09.26921
| 8.0904 | 0.057235
| 9.36022 | 9.04957
| 9.32556 | 0.010707
| 0.30909 | 0.23282
| 0.31404 | 0.00577

Min objective vs. Number of function evaluati

| 10 | Best | 0.31646
| 11 | Best | 9.31451
| 12 | Accept | 0.38754
| 13 | Best | 0.30964
| 14 | Best | 0.30769
| 15 | Accept | 0.31743
| 16 | Accept | 0.31256
| 17 | Accept | 0.3184
| 18 | Accept | 0.32522
| 19 | Accept | 0.3223
| 20 | Accept | 0.3184
|= e mmmm——es
| Iter | Eval | Objective

| | result |

| R S
| 21 | Accept | 0.32619
| 22 | Accept | 0.32132
| 23 | Accept | 0.31743
| 24 | Accept | 0.3184
| 25 | Accept | 0.3408
| 26 | Accept | 0.31938
| 27 | Accept | 0.32327
| 28 | Accept | 0.3223
| 29 | Accept | 0.33982
| 30 | Accept | 09.32327

)

—— Min observed objective
Estimated min objective

S

10

| 0.048948 | 0.31646
| 0.03896 | 0.31451
| 0.044421 | 0.31451
| 0.050084 | 0.30964
| 0.041438 | 0.30769
| 0.048083 | 0.30769
| 0.047818 | 0.30769
| 0.042505 | 0.30769
| 0.042337 | 0.30769
| 0.051077 | 0.30769
| 0.05594 | 0.30769
| objective | BestSoFar
| runtime | (observed)
| 0.052076 | 0.30769
| 0.051302 | 0.30769
| 0.062769 | 0.30769
| 0.046287 | 0.30769
| 0.05733 | 0.30769
| 0.038398 | 0.30769
| 0.044654 | 0.30769
| 0.046422 | 0.30769
| 0.047354 | 0.30769
| 0.037043 | 0.30769
ons
0.42
104
10.38 &
©
<]
1036 &
(&
=
10.34 =
10.32
: 0.3
20 30

Function evaluations

28

O OO0

BestSoFar
(estim.)

OO OO0

| 0.40518 | 0.0078749
| 0.48469 | 0.013205
| 1.2895 | 0.0068434
| 0.42374 | 0.015953
| 0.41879 | 0.018619
| 0.47266 | 0.022711
| 0.30988 | 0.022333
| 0.11593 | 0.019158
| 0.081522 | 0.0026678
| 0.053134 | 0.024103
| 0.023231 | 0.0064547
| Delta | Gamma
| |

| 0.014334 | 0.025623
| 0.0080446 | 0.0016286
| 0.003095 | 0.020141
| 0.0013095 | 0.0053539
| ©.00088282 | 0.031719
| 0.0026934 | 0.0049827
| ©0.00028624 | 0.0040369
| 4.6013e-05 | 0.0024003
| 5.4067e-05 | 0.03021
| 8.5269e-06 | 0.0042039

Objective function model

@ Observed points

[Model mean
@® Nextpoint
0.42 - * Model minimum feasible

Estimated objective function value

0.5

Gamma Delta

Optimization completed.

MaxObjectiveEvaluations of 30 reached.

Total function evaluations: 30

Total elapsed time: 17.1307 seconds

Total objective function evaluation time: 1.406

Best observed feasible point:
Delta Gamma

0.41879 0.018619

Observed objective function value = 0.30769
Estimated objective function value = 0.31072
Function evaluation time = 0.041438

Best estimated feasible point (according to models):
Delta Gamma

0.41879 0.018619

Estimated objective function value = 0.31072

Estimated function evaluation time = 0.046508

| mmmee mmme I e mmmmmmmmm———o e mmmmeee
| Iter | Eval | Objective | Objective | BestSoFar | BestSoFar | Delta | Gamma

| | result | | runtime | (observed) | (estim.) | |

| mmmmmeo mmmmmme- e e mmmmmm——m—m—os - mmmmmmoeo
| 1 | Best | 9.33862 | 9.041928 | 9.33862 | 0.33862 | 0.0022289 | 9.13592

| 2 | Accept | 9.34392 | 0.039416 | 0.33862 | 9.33925 | 0.0060645 | 9.96052

| 3 | Accept | 0.34392 | 9.035584 | 0.33862 | 0.34148 | 108.95 | 0.43057

| 4| Accept | ©.34392 | 0.043906 | 0.33862 | 0.33862 | 33.883 | 0.85661

| 5 | Best | 0.28042 | 0.046799 | 0.28042 | 9.33016 | ©.00040883 | 0.0074982

| 6 | Accept | 9.28042 | 0.048077 | 0.28042 | 9.28043 | ©.00038293 | 09.0075241

| 7 | Accept | 9.32275 | 0.041306 | 0.28042 | 0.28043 | 1.5291 | 9.024516

| 8 | Accept | 0.28042 | 9.037126 | 0.28042 | 0.28042 | 9.39212 | 0.0032281

| 9| Best | 0.26984 | 0.044257 | 0.26984 | 0.26987 | 3.5191e-05 | ©.0054045

OO0
N
o]
v
~N
iy

10	Accept
11	Accept
12	Accept
13	Accept
14	Accept
15	Accept
16	Accept
17	Accept
18	Accept
19	Accept
20	Accept
= e

| Tter | Eval |
| | result |
| R

21	Accept
22	Accept
23	Accept
24	Accept
25	Accept
26	Accept
27	Accept
28	Accept
29	Accept
30	Accept

P00 OOO®O®®
N
[N
O
©
>

(]
w
(o]
()]
o]
o]

Min objective vs. Number of function evaluations

—— Min observed objective
Estimated min objective

10

| 0.04447 | 0.26984
| 0.037361 | 0.26984
| 0.06543 | 0.26984
| 0.039905 | 0.26984
| 0.0574 | 0.26984
| 0.050285 | 0.26984
| 0.033946 | 0.26984
| 0.040821 | 0.26984
| 0.040641 | 0.26984
| 0.042949 | 0.26984
| 0.039673 | 0.26984
| objective | BestSoFar

| runtime | (observed)
| 0.037275 | 0.26984
| 0.044432 | 0.26984
| 0.037216 | 0.26984
| 0.036096 | 0.26984
| 0.043384 | 0.26984
| 0.037084 | 0.26984
| 0.037903 | 0.26984
| 0.047102 | 0.26984
| 0.040053 | 0.26984
| 0.036899 | 0.26984

10.34

10.32
E
©
@
103 o
(&
=
=

10.28

: 0.26

20 30

Function evaluations

30

O OO0

BestSoFar
(estim.)

OO OO0

0.22374
4.9415
0.00034528
5.023e-06
0.039401
0.10819
0.052218
9.8796e-06
2.5251e-05
0.00025739
0.0026429

(<]
(4]
5.

OO0

0.11066
0.0089434
0.001118
0.00077956
0.0012192
8.8847e-05
7.1723e-05
0.0035445
1.1472e-06
1.3825e-06

[OINO RO RE

.0050596
.0053231
3442e-05
.0063372
.0059593
.0080731
.0041905
.0038047
.0066652
.0050902
.0054412

.0055036
.0062126
.0048185
.0054664
.0052386
.0057142

0.00516
.0047984
0.010461
0.016468

Objective function model

0.28 - @® Observed points
[Model mean

Estimated objective function value

027 4| @ Nextpoint
1 * Model minimum feasible
- 10!
0.5
0
Gamma Delta

Optimization completed.

MaxObjectiveEvaluations of 30 reached.

Total function evaluations: 30

Total elapsed time: 17.2267 seconds

Total objective function evaluation time: 1.2687

Best observed feasible point:
Delta Gamma

3.5191e-05 0.0054045

Observed objective function value = 0.26984
Estimated objective function value = 0.2699
Function evaluation time = 0.044257

Best estimated feasible point (according to models):
Delta Gamma

0.0012192 0.0052386

0.26969
0.041849

Estimated objective function value
Estimated function evaluation time

Discriminant Analysis Visualisation

The results of every layer of the hypermatrix are summed up and visualised in a heatmap. Additionally the mean
accuracy and time taken is calculated and used as a comparison metric between methods.

DA = zeros(m,n);
for j = 1:n
for k = 1:m
DA(J,k) = sum(hyp_DA(J,k,:));
end

31

end

figDA = figureGen(7,10);

heat DA6 = heatmap(DA, "XDisplaylLabels", [0,1,2,3], "YDisplayLabels", [0,1,2,3],
"ColorMethod", "mean", "ColorLimits", [©,100])

heat_DA6 =
HeatmapChart with properties:

XData: {4x1 cell}
YData: {4x1 cell}
ColorData: [4x4 double]

Show all properties

heat_DA6.Colormap = parula(64);
xlabel("Predicted State");
ylabel("Labelled State");
average_acc_DA = median(acc_DA)

average_acc_DA = 0.7714
avergage time_DA = median(time_DA)
avergage_time_DA = 0.0249

heat_DA6.Title = "Discriminant Analysis";

saveas(heat DA6, 'C:\Users\ellio\OneDrive\Dokumente\Uni\Master\Master
Thesis\Writing\LatexVorlageMA v2.0\LatexVorlageMA v2.0\chapters\Chapters\07_Results\
figures\6_DA.jpg');

Discriminant Analysis

100

80

80

40

Labelled State

20

Predicted State

K-Nearest Neighbors (KNN)
The next method to be applied will be KNN.

for i = 1:numel(files)
%Load file i from the folder
fileName = fullfile(files(i).folder, files(i).name);
load(fileName);

32

%Extract the state vector

state = stateTT.State;

%Extract the Principal COmponent Data

D = PCsTT{:,:};

%Create a random 90/10 Partition for Training and Test Data
rng('default');

Partition_States = cvpartition(state, 'Holdout', ©.10);

%Seperate the training and testing Ids
trainingIds = training(Partition_States);
DTrain = D(traininglIds, :);
stateTrain = state(trainingIds);
testIds = test(Partition_States);
DTest = D(testIds, :);
stateTest = state(testIds);
Begin measuring the time this algorithm will take
tKNN = tic;
train the decsion tree classifier
classifierkKNN = fitcknn(DTrain, stateTrain, 'OptimizeHyperparameters', 'auto’,...
'"HyperparameterOptimizationOptions',...
struct('AcquisitionFunctionName', 'expected-improvement-plus'));
end the time measurement
timekKNN = toc(tKNN);
use the tree to predict the test states
TestModel KNN = predict(classifierkKNN, DTest);
measure the accuracy
accuracy_KNN = sum(stateTest == TestModel KNN)/length(stateTest);
%figure;
%confusionchart(stateTest, TestModel BT, 'Normalization', 'row-normalized');
Create a confusion matrix
[C_KNN, order] = confusionmat(stateTest, TestModel KNN);
%titleStr BT = strrep([fName,' Binary Tree'],'_','-");

% title(titleStr BT);

save the confusion matrix as one layer of the hypermatrix and the accuracy and measured time in vector form

33

hyp_KNN(:,:,i) = C_KNN;
= accuracy_KNN;
time_KNN(i) = timeKNN/length(D);

acc_KNN(i)

end

Warning: One or more of the unique class values in GROUP is not present in one or more folds. For
classification problems, either remove this class from the data or use N instead of GROUP to obtain
nonstratified partitions. For regression problems with continuous response, use N.

Iter | Eval | Objective | Objective | BestSoFar
| result | | runtime | (observed)
1 | Best | 0.07037 | 0.075873 | 0.07037
2 | Accept | 0.18642 | 0.11671 | 0.07037
3 | Accept | 0.19259 | 0.057523 | 0.07037
4 | Accept | 0.19259 | 0.072936 | 0.07037
5 | Accept | 0.19259 | 0.077503 | 0.07037
6 | Accept | 0.07284 | 0.09767 | 0.07037
7 | Best | 0.059259 | 0.056069 | 0.059259
8 | Best | 0.05679 | 0.05973 | 0.05679
9 | Best | 0.046914 | 0.051057 | 0.046914
10 | Accept | 0.066667 | 0.050546 | 0.046914
11 | Best | 0.023457 | 0.058626 | 0.023457
12 | Accept | 0.034568 | 0.045444 | 0.023457
13 | Accept | 0.19259 | 0.069966 | 0.023457
14 | Accept | 0.033333 | 0.05245 | 0.023457
15 | Accept | 0.023457 | 0.049425 | 0.023457
16 | Accept | 0.023457 | 0.045351 | 0.023457
17 | Accept | 0.82346 | 0.055979 | 0.023457
18 | Accept | 0.064198 | 0.055954 | 0.023457
19 | Accept | 0.19259 | 0.065963 | 0.023457
20 | Accept | 0.19259 | 0.063021 | 0.023457
Iter | Eval | Objective | Objective | BestSoFar
| result | | runtime | (observed)
21 | Accept | 0.19383 | 0.059932 | 0.023457
22 | Accept | 0.19259 | 0.075177 | 0.023457
23 | Accept | 0.19259 | 0.071871 | 0.023457
24 | Accept | 0.19259 | 0.12262 | 0.023457
25 | Accept | 0.84444 | 0.054395 | 0.023457
26 | Accept | 0.048148 | 0.057132 | 0.023457
27 | Accept | 0.049383 | 0.047401 | 0.023457
28 | Accept | 0.046914 | 0.063418 | 0.023457
29 | Accept | 0.046914 | 0.051088 | 0.023457
30 | Accept | 0.069136 | 0.052189 | 0.023457

34

| BestSoFar
| (estim.)

0.07037
0.074985
0.070504
0.070673
0.076231
0.07042
.059281
.056836
.046923
.046923
.023514
.023619
.023594
.028914
.027065
.023542
.027027
.027011
.027025
.027005

(ORI RE R R R R R R R RN]

| (estim.)

0.026986
0.026968
0.026951
0.026997
0.026314
0.026351
0.026384

0.02641
0.026432
0.026461

| NumNeighbors | Distance
| |

| 6 | cosine
| 1| spearman
| 137 | seuclidean
| 321 | chebychev
| 403 | cosine
| 7 | cosine
| 2 | cosine
| 1| cosine
| 1| euclidean
| 29 | euclidean
| 3 | euclidean
| 5 | euclidean
| 403 | euclidean
| 2 | euclidean
| 3 | euclidean
| 3 | euclidean
| 2 | hamming
| 1 | correlation
| 398 | correlation
| 137 | minkowski
| NumNeighbors | Distance
| |

| 137 | mahalanobis
| 323 | cityblock
| 404 | jaccard
| 401 | spearman
| 1| jaccard
| 1 | cityblock
| 1| chebychev
| 1 | seuclidean
| 1| minkowski
| 1 | mahalanobis

Min objective vs. Number of function evalua_ti(?gg

\ 10.06 _%
©
@
10.056 &
@]
E
—=—— Min observed objective 10.04 =
Estimated min objective
10.03
' ' ' 0.02
0 10 20 30

Function evaluations

Objective function model

® Observed points

[Model mean
® Next point
* Model minimum feasible

0.8 o

0.6 -

Estimated objective function value
(=)
.

102

26
Q%1
454
5

%,
o
o
(;_EJ %
5,
3

%
&L
O
=)

g N :
AN K&Q,\\\-@ NumNeighbors

Distance

Optimization completed.

MaxObjectiveEvaluations of 3@ reached.

Total function evaluations: 30

Total elapsed time: 17.8376 seconds

Total objective function evaluation time: 1.933

Best observed feasible point:
NumNeighbors Distance

3 euclidean
Observed objective function value = 0.023457
Estimated objective function value = 0.026461
Function evaluation time = 0.058626

Best estimated feasible point (according to models):
NumNeighbors Distance

35

Estimated objective function value =
Estimated function evaluation time =

euclidean

Iter | Eval | Objective
| result |
1 | Best | 09.73611
2 | Best | 0.50231
3| Best | 0.076389
4 | Best | 0.050926
5 | Accept | 0.060185
6 | Accept | 0.51235
7 | Best | 0.03858
8 | Best | 0.033951
9 | Best | 9.033179
10 | Accept | 0.091821
11 | Accept | 0.30401
12 | Accept | 0.037809
13 | Accept | 0.40123
14 | Accept | 9.0933179
15 | Accept | 0.084877
16 | Accept | 0.068673
17 | Accept | 0.23071
18 | Accept | 0.40586
19 | Accept | 9.0939352
20 | Accept | 0.73611
Iter | Eval | Objective
| result |
21 | Accept | 9.033179
22 | Accept | 0.10494
23 | Accept | 0.40586
24 | Accept | 0.039352
25 | Accept | 0.40586
26 | Accept | 0.29552
27 | Accept | 0.5
28 | Accept | 0.48688
29 | Accept | 0.042438
30 | Accept | 0.50077

0.026461
0.051361

| Objective | BestSoFar

| runtime | (observed)

| 0.082437 | 0.73611
| 0.10319 | 9.50231
| 0.070171 | 0.076389
| 0.063759 | 0.050926
| 0.065211 | 0.050926
| 0.090115 | 0.050926
| 0.054509 | 0.03858
| 0.058668 | 0.033951
| 0.060254 | 0.033179
| 0.058439 | 0.033179
| 0.063148 | 0.033179
| 0.056498 | 0.033179
| 0.13941 | 9.033179
| 0.062436 | 9.033179
| 0.057015 | 0.033179
| 0.065421 | 0.033179
| 0.08685 | 9.033179
| 0.11356 | 9.033179
| 0.054725 | 9.033179
| 0.058283 | 0.033179
| Objective | BestSoFar

| runtime | (observed)

| 0.053829 | 0.033179
| 0.054553 | 9.033179
| 0.11459 | 0.033179
| 0.064929 | 0.033179
| 0.21453 | 9.033179
| 0.057237 | 0.033179
| 0.10224 | 9.033179
| 0.097134 | 0.033179
| 0.054122 | 0.033179
| 0.23486 | 9.033179

36

| BestSoFar
| (estim.)

| 0.73611
| 0.51161
| .098449
| .071681
| .050817
| .050964
| .038588
| .033985
| .033204
| .0933199
| 0.0332
I
I
I
I
I
I
I
I
I

OO0

.033198
.033202
.033196
.033195
.033193
.033194
.033196
.033194
.033197

OO0

| (estim.)

.033193
.033192
.033194
.033191
.033192
.033193
.033201
.033204
.033203
.033226

OO OO0

| NumNeighbors | Distance
| |

| 62 | hamming
| 639 | chebychev
| 20 | seuclidean
| 11 | chebychev
| 14 | chebychev
| 614 | seuclidean
| 3 | seuclidean
| 1| chebychev
| 1 | cityblock
| 31 | cityblock
| 1 | correlation
| 4 | cityblock
| 1 | spearman
| 1| minkowski
| 29 | minkowski
| 2 | mahalanobis
| 131 | mahalanobis
| 641 | cosine
| 4 | minkowski
| 1| jaccard
| NumNeighbors | Distance
| |

| 1| euclidean
| 42 | euclidean
| 646 | correlation
| 4 | euclidean
| 627 | spearman
| 1| cosine
| 636 | minkowski
| 641 | cityblock
| 3 | chebychev
| 644 | euclidean

Min objective vs. Number of function evalua!i%%s

——— Min observed objective
| Estimated min objective
1 10.6
l- o)
=
| ©
EI Q
| 104 &
I! O
1 c
\ =
10.2
: : ' ' ' ' 0
0 5 10 15 20 25 30
Function evaluations
Objective function model
@ ® Observed points
= 0.7 [Model mean
z ' @ Next point
2064 #* Model minimum feasible
505
=
204
"(J—_:'
f_% 0.3 A
So02/
2
@ 0.1
S =
”J 69»@ . 102
rQe \}e\(&' N2 C’Q-&é\ 270 ok 0
FOL TEFOHFSE 10 -
& Y TSR NumNeighbors
< RN
[gV
G
Distance

Optimization completed.

MaxObjectiveEvaluations of 3@ reached.

Total function evaluations: 30

Total elapsed time: 19.2149 seconds

Total objective function evaluation time: 2.5121

Best observed feasible point:
NumNeighbors Distance

1 cityblock
Observed objective function value = 0.033179
Estimated objective function value = 0.033226
Function evaluation time = 0.060254

Best estimated feasible point (according to models):
NumNeighbors Distance

37

Estimated objective function value =
Estimated function evaluation time =

cityblock

Iter | Eval | Objective
| result |
1 | Best | 0.25066
2 | Best | 0.2122
3 | Best | 0.20424
4 | Best | 0.066313
5 | Accept | 0.067639
6 | Accept | 0.084881
7 | Accept | 0.25332
8 | Accept | 0.083554
9 | Accept | 0.083554
10 | Accept | 0.2321
11 | Accept | 0.071618
12 | Accept | 0.25332
13 | Accept | 0.071618
14 | Accept | 0.20557
15 | Accept | 0.25332
16 | Accept | 0.24801
17 | Accept | 0.078249
18 | Accept | 0.25332
19 | Accept | 0.071618
20 | Best | 0.062334
Iter | Eval | Objective
| result |
21 | Accept | 0.25066
22 | Accept | 0.068966
23 | Accept | 0.079576
24 | Accept | 0.25332
25 | Accept | 0.25332
26 | Accept | 0.064987
27 | Accept | 0.12865
28 | Accept | 0.25332
29 | Accept | 0.074271
30 | Accept | 0.067639

0.033226
0.060255

| Objective | BestSoFar

| runtime | (observed)

| 0.097298 | 0.25066
| 0.12398 | 0.2122
| 0.056849 | 0.20424
| 0.049112 | 0.066313
| 0.047256 | 0.066313
| 0.052149 | 0.066313
| 0.059772 | 0.066313
| 0.044898 | 0.066313
| 0.0502 | 0.066313
| 0.059005 | 0.066313
| 0.05909 | 0.066313
| 0.049092 | 0.066313
| 0.051558 | 0.066313
| 0.051841 | 0.066313
| 0.061228 | 0.066313
| 0.03985 | 0.066313
| 9.052912 | 0.066313
| 0.063999 | 0.066313
| 0.048972 | 0.066313
| 0.044369 | 0.062334
| Objective | BestSoFar

| runtime | (observed)

| 0.049076 | 0.062334
| 0.043249 | 0.062334
| 0.063609 | 0.062334
| 0.11109 | 0.062334
| 0.051415 | 0.062334
| 0.052777 | 0.062334
| 0.050229 | 0.062334
| 0.064425 | 0.062334
| 0.060362 | 0.062334
| 0.058106 | 0.062334

38

| BestSoFar
| (estim.)

0.25066
0.21685
0.20668
0.066484
0.066402
0.066354
0.066381
0.066338
0.066342
0.066337
0.066342
0.066346
0.066342
0.066338
0.066334
0.066335
0.066338
0.066339
0.066337
0.062344

| BestSoFar
| (estim.)

0.062356
0.062385
0.062389

0.0624
.063145
.062511
.062498
.062504
.062496
.062503

(OO RO RN RN

| NumNeighbors | Distance
| |

| 77 | seuclidean
| 2 | spearman
| 53 | cosine
| 1 | chebychev
| 1| cityblock
| 1 | correlation
| 376 | chebychev
| 2 | chebychev
| 12 | cityblock
| 91 | correlation
| 3 | cityblock
| 1| jaccard
| 1 | euclidean
| 42 | euclidean
| 376 | cityblock
| 1| hamming
| 2 | euclidean
| 376 | mahalanobis
| 1| minkowski
| 7 | minkowski
| NumNeighbors | Distance
| |

| 87 | minkowski
| 3| minkowski
| 4 | correlation
| 373 | spearman
| 367 | hamming
| 5 | minkowski
| 1 | mahalanobis
| 377 | jaccard
| 1 | cosine
| 3 | cosine

Min objective vs. Number of function evaluati(?gss

Min observed objective
\ Estimated min objective
| 10.2
| o)
| =
©
@
1015 &
[
E
=
10.1
' ' ' 0.05
0 10 20 30

Function evaluations

Objective function model

<

=

-

S 0254

2 024 @ Observedpoints

_g [Model mean

5 e @® Nextpoint ;

L U9 % Model minimum feasible [

3 Miicy

o 0.1+

(1]

= iy i

T O a = s .
2C LT L O o T
VG SO NumNeighbors

Fx¥ o

Distance

Optimization completed.

MaxObjectiveEvaluations of 3@ reached.

Total function evaluations: 30

Total elapsed time: 18.4849 seconds

Total objective function evaluation time: 1.7678

Best observed feasible point:
NumNeighbors Distance

7 minkowski
Observed objective function value = 0.062334
Estimated objective function value = 0.062503
Function evaluation time = 0.044369

Best estimated feasible point (according to models):
NumNeighbors Distance

39

Estimated objective function value =
Estimated function evaluation time =

7

minkowski

Iter | Eval | Objective
| result |
1 | Best | 0.043956
2 | Accept | 0.20779
3 | Accept | 0.14486
4 | Accept | 0.043956
5 | Best | 0.041958
6 | Accept | 0.043956
7 | Accept | 0.13886
8 | Accept | 0.93307
9 | Accept | 0.14885
10 | Best | 0.038961
11 | Accept | 0.20779
12 | Accept | 0.042957
13 | Accept | 0.20779
14 | Accept | 0.045954
15 | Accept | 0.20779
16 | Accept | 0.20679
17 | Accept | 0.080919
18 | Accept | 0.20779
19 | Accept | 9.20779
20 | Accept | 0.20779
Iter | Eval | Objective
| result |
21 | Accept | 0.20779
22 | Accept | 0.20779
23 | Accept | 0.94505
24 | Accept | 0.048951
25 | Accept | 0.047952
26 | Accept | 0.043956
27 | Accept | 0.043956
28 | Accept | 0.043956
29 | Accept | 0.046953
30 | Accept | 0.098901

0.062503
0.047683

| Objective | BestSoFar

| runtime | (observed)

| 0.074626 | 0.043956
| 0.07001 | 0.043956
| 0.06512 | 0.043956
| 0.048928 | 0.043956
| 0.060107 | 0.041958
| 0.044661 | 0.041958
| 0.055377 | 0.041958
| 0.055783 | 0.041958
| 0.057752 | 0.041958
| 0.059211 | 0.038961
| 0.078694 | 0.038961
| 0.049971 | 0.038961
| 0.072716 | 0.038961
| 0.049701 | 0.038961
| 0.070897 | 0.038961
| 9.11513 | 0.038961
| 0.080533 | 0.038961
| 0.081174 | 0.038961
| 0.066186 | 0.038961
| 0.088443 | 0.038961
| Objective | BestSoFar

| runtime | (observed)

| 0.081046 | 0.038961
| 0.14711 | 0.038961
| 0.049229 | 0.038961
| 0.051628 | 0.038961
| 0.053904 | 0.038961
| 0.051185 | 0.038961
| 0.056161 | 0.038961
| 0.065102 | 0.038961
| 0.070386 | 0.038961
| 0.070167 | 0.038961

40

BestSoFar
(estim.)

0.043956
0.053649
0.050716
0.048254

0.04196
0.041905
0.041909
0.041976

0.04195

0.03898
0.038996
0.038993
0.038993
0.038991

0.03899
0.038989
0.038988
0.038988
0.038987
0.038988

BestSoFar
(estim.)

.038988
.038988
.038984
.038946
.038941
.038939
.039402
.039427
.039414
0.03944

OO OO0

| NumNeighbors | Distance
| |

| 4 | minkowski
| 313 | minkowski
| 58 | euclidean
| 1 | euclidean
| 3 | minkowski
| 1| minkowski
| 1 | cosine
| 1| hamming
| 1 | correlation
| 1| chebychev
| 500 | chebychev
| 1| cityblock
| 499 | cityblock
| 1| seuclidean
| 496 | seuclidean
| 1| spearman
| 1 | mahalanobis
| 501 | mahalanobis
| 499 | jaccard
| 499 | cosine
| NumNeighbors | Distance
| |

| 498 | correlation
| 500 | spearman
| 1| jaccard
| 6 | chebychev
| 6 | cityblock
| 6 | seuclidean
| 2 | chebychev
| 3 | seuclidean
| 2 | cityblock
| 9 | mahalanobis

Min objective vs. Number of function evaluations

——— Min observed objective
Estimated min objective
10.05
o)
=
©
fo!
o
10.045 ©
=
\ =
10.04
0 10 20 30
Function evaluations
Objective function model
@ ® Observed points
= [Model mean
z @ Next point
© 0.8 1 * Model minimum feasible
2
[
=
"l:—"j
o
©
2
(]
._.g
W 102
&
: NumNeighbors

Distance

Optimization completed.

MaxObjectiveEvaluations of 3@ reached.

Total function evaluations: 30

Total elapsed time: 19.2263 seconds

Total objective function evaluation time: 2.0409

Best observed feasible point:
NumNeighbors Distance

1 chebychev
Observed objective function value = 0.038961
Estimated objective function value = 0.03944
Function evaluation time = 0.059211

Best estimated feasible point (according to models):
NumNeighbors Distance

41

Estimated objective function value = 0.03944

chebychev

Estimated function evaluation time = 0.058911
Warning: One or more of the unique class values in GROUP is not present in one or more folds. For

classification problems, either remove this class from the data or use N instead of GROUP to obtain
nonstratified partitions. For regression problems with continuous response, use N.

Iter | Eval | Objective
| result |
1 | Best | 0.16958
2 | Best | 0.14214
3 | Accept | 0.16958
4 | Best | 9.052369
5 | Accept | 0.16958
6 | Accept | 0.054863
7 | Best | 0.049875
8 | Accept | 0.049875
9 | Accept | 0.097257
10 | Accept | 0.049875
11 | Best | 0.027431
12 | Accept | 0.054863
13 | Accept | 9.094763
14 | Accept | 0.042394
15 | Accept | 0.16958
16 | Accept | 0.047382
17 | Accept | 0.077307
18 | Accept | 9.099751
19 | Accept | 0.16958
20 | Accept | 0.17207
Iter | Eval | Objective
| result |
21 | Accept | 0.16958
22 | Accept | 9.092269
23 | Accept | 0.047382
24 | Accept | 0.062344
25 | Accept | 0.16958
26 | Accept | 0.11721
27 | Accept | 9.034913
28 | Accept | 0.14464
29 | Accept | 0.82045
30 | Accept | 0.094763

| objective | BestSoFar

| runtime | (observed)

| 0.066126 | 0.16958
| 0.062467 | 0.14214
| 0.054734 | 0.14214
| 0.052775 | 0.052369
| 0.064799 | 0.052369
| 0.04886 | 0.052369
| 0.047861 | 0.049875
| 0.044897 | 0.049875
| 0.04119 | 0.049875
| 0.049547 | 0.049875
| 0.047785 | 0.027431
| 0.050054 | 0.027431
| 0.045036 | 0.027431
| 0.044557 | 0.027431
| 0.047984 | 0.027431
| 0.073037 | 0.027431
| 0.049083 | 0.027431
| 0.053975 | 0.027431
| 0.055776 | 0.027431
| 0.079613 | 0.027431
| objective | BestSoFar

| runtime | (observed)

| 0.050977 | 0.027431
| 0.047934 | 0.027431
| 0.048094 | 0.027431
| 0.046358 | 0.027431
| 0.046779 | 0.027431
| 0.05174 | 0.027431
| 0.044981 | 0.027431
| 0.053652 | 0.027431
| 0.044647 | 0.027431
| 0.041554 | 0.027431

42

| BestSoFar
| (estim.)

0.16958
0.14847
0.14639
0.053011
0.058834
0.052452
0.049869
0.049618
0.049569
0.049584
0.027444
0.027449
0.027452
0.027474
0.027469
0.027466
0.027466
0.027464
0.027468
0.027471

| (estim.)

| 0.027474
| 0.027471
| 0.02747
| 0.027472
| 0.027472
| 0.027471
| 0.02747
| 0.02747
| 0.033238
| 0.033239

| NumNeighbors | Distance
| |

| 58 | chebychev
| 4 | correlation
| 184 | euclidean
| 14 | seuclidean
| 201 | seuclidean
| 15 | seuclidean
| 7 | seuclidean
| 10 | seuclidean
| 1| seuclidean
| 9 | seuclidean
| 3 | minkowski
| 13 | minkowski
| 1| minkowski
| 5 | minkowski
| 60 | minkowski
| 4 | mahalanobis
| 12 | mahalanobis
| 1 | mahalanobis
| 195 | mahalanobis
| 5 | spearman
| NumNeighbors | Distance
| |

| 4 | jaccard
| 1 | cityblock
| 7 | cityblock
| 20 | cityblock
| 133 | cityblock
| 1 | cosine
| 3 | cityblock
| 21 | cosine
| 1| hamming
| 1| euclidean

Min objective vs. Number of function evaluations

——— Min observed objective

Estimated min objective 10.16
10.14
*E 10.12

!!! 10.1
10.08
LA 10.06
T 10.04
. "““““T“““‘WO.M

0 10 20 30

Function evaluations

Objective function model

® Observed points

0.8 + [Model mean
® Next point
* Model minimum feasible

0.6

0.4 4

U _Estimated objective function value

Min objective

(\ B
g el
S 10
K <5 X
KON TS SO F 10°
OR SRR oNS NumNeighb
X RPCAR umNeighbors
P
&)
Distance

Optimization completed.

MaxObjectiveEvaluations of 3@ reached.

Total function evaluations: 30

Total elapsed time: 17.8658 seconds

Total objective function evaluation time: 1.5569

Best observed feasible point:
NumNeighbors Distance

3 minkowski
Observed objective function value = 0.027431
Estimated objective function value = 0.037622
Function evaluation time = 0.047785

Best estimated feasible point (according to models):
NumNeighbors Distance

43

minkowski

Estimated objective function value = 0.033239
Estimated function evaluation time = 0.047235

Iter | Eval | Objective
| result |
1 | Best | 9.0729
2 | Accept | 0.42631
3 | Accept | 0.99683
4 | Accept | 0.10935
5 | Best | 0.064976
6 | Accept | 0.23455
7 | Accept | 0.19176
8 | Accept | 0.43265
9 | Best | 0.063391
10 | Accept | 0.17274
11 | Accept | 0.064976
12 | Accept | 0.33597
13 | Accept | 0.064976
14 | Accept | 0.15848
15 | Accept | 0.18542
16 | Accept | 0.43265
17 | Accept | 0.064976
18 | Accept | 0.14897
19 | Accept | 9.90333
20 | Accept | 0.10935
Iter | Eval | Objective
| result |
21 | Accept | 0.33597
22 | Accept | 0.43265
23 | Accept | 0.068146
24 | Accept | 0.0729
25 | Accept | 9.071315
26 | Accept | 0.0729
27 | Accept | 0.071315
28 | Accept | 0.063391
29 | Accept | 09.063391
30 | Accept | 0.15214

| Objective | BestSoFar

| runtime | (observed)

| 0.067449 | 0.0729
| 0.059711 | 0.0729
| 0.04988 | 0.0729
| 0.056417 | 0.0729
| 0.054858 | 0.064976
| 0.050395 | 0.064976
| 0.056303 | 0.064976
| 0.062958 | 0.064976
| 0.048093 | 0.063391
| 0.049023 | 0.063391
| 0.045875 | 0.063391
| 0.097434 | 9.063391
| 0.050401 | 0.063391
| 0.064571 | 9.063391
| 0.056991 | 0.063391
| 0.065876 | 0.063391
| 0.05017 | 0.063391
| 0.051477 | 0.063391
| 0.047983 | 0.063391
| 0.051249 | 0.063391
| Objective | BestSoFar

| runtime | (observed)

| 0.065403 | 0.063391
| 0.10983 | 0.063391
| 0.052975 | 0.063391
| 0.057374 | 0.063391
| 0.082725 | 0.063391
| 0.054846 | 0.063391
| 0.051078 | 0.063391
| 0.05017 | 0.063391
| 0.045313 | 0.063391
| 0.051224 | 0.063391

44

BestSoFar
(estim.)

0.0729
.086952
.098855
.090753
.064965
.064962
.064968
.064972
0.06342
.070852
.064972
.064974
.064975
.064973
.064974
.064975
.064976
.064974
.064966
.064967

[ORNO RO RN R R

OO0

(estim.)

0.064968
0.064968
0.065035
0.065048
0.065058
0.063367
0.063368

0.06338
0.063384
0.063382

| NumNeighbors | Distance
| |

| 1| chebychev
| 210 | seuclidean
| 35 | jaccard
| 16 | seuclidean
| 1| seuclidean
| 73 | chebychev
| 1 | correlation
| 316 | correlation
| 1 | cityblock
| 41 | cityblock
| 1| seuclidean
| 1| spearman
| 1 | minkowski
| 36 | minkowski
| 1| cosine
| 316 | cosine
| 1| euclidean
| 29 | euclidean
| 1| hamming
| 1 | mahalanobis
| NumNeighbors | Distance
| |

| 169 | mahalanobis
| 315 | spearman
| 3 | seuclidean
| 3 | minkowski
| 3 | cityblock
| 3 | euclidean
| 3 | chebychev
| 1 | cityblock
| 1 | cityblock
| 5 | mahalanobis

Min objective vs. Number of function evalugtgqlns

——— Min observed objective
Estimated min objective
10.09
[
=
©
@
10.08 &
[
E
=
10.07
N S
' ' ' 0.06
0 10 20 30

Function evaluations

Objective function model

® Observed points

[Model mean
: ® Next point
* Model minimum feasible

0.8 |

0.6

U _Estimated objective function value
(]
.

i :{§§§—l N3 |
- NumNeighbors
QO§\® o)
Distance

Optimization completed.

MaxObjectiveEvaluations of 3@ reached.

Total function evaluations: 30

Total elapsed time: 18.4623 seconds

Total objective function evaluation time: 1.758

Best observed feasible point:
NumNeighbors Distance

1 cityblock
Observed objective function value = 0.063391
Estimated objective function value = 0.063382
Function evaluation time = 0.048093

Best estimated feasible point (according to models):
NumNeighbors Distance

45

cityblock

Estimated objective function value = 0.063382
Estimated function evaluation time = 0.05431

Iter | Eval | Objective
| result |
1 | Best | 9.75949
2 | Best | 0.079844
3 | Accept | 0.18987
4 | Accept | 0.18598
5 | Accept | 0.20351
6 | Best | 0.062317
7 | Accept | 0.43427
8 | Accept | 0.20643
9 | Accept | 0.43427
10 | Accept | 0.48588
11 | Accept | 0.069133
12 | Best | 0.06037
13 | Accept | 0.23953
14 | Accept | 0.064265
15 | Accept | 0.24051
16 | Accept | 0.10321
17 | Accept | 0.40798
18 | Accept | 0.75949
19 | Accept | 0.064265
20 | Accept | 0.23856
Iter | Eval | Objective
| result |
21 | Accept | 0.43427
22 | Accept | 0.071081
23 | Accept | 0.074002
24 | Accept | 0.074002
25 | Accept | 0.075949
26 | Accept | 0.06037
27 | Accept | 0.06037
28 | Accept | 0.06037
29 | Accept | 0.43427
30 | Accept | 0.43427

| Objective
| runtime

BestS
(obse

0.069123
0.060435
0.061658

0.06064
0.057146
0.055345
0.079917
0.059579
0.079727
0.11857
.048857
.053622
.066152
.048658
.062185
.056088
.089333
.047775
.055804
.060604

OO OO0

| Objective
| runtime

0

OO0 OO0

BestS
(obse

| 0.17357
| 0.057961
| 0.051561
| 0.047602
| 0.053629
| 0.046762
| 0.05167
| 0.049267
| 0.068818
| 0.062365

OO0

OO OO

oFar
rved)

.75949

.079844
.079844
.079844
.079844
.062317
.062317
.062317
.062317
.062317
.062317

.06037
.06037
.06037
.06037
.06037
.06037
.06037
.06037

oFar
rved)

46

| BestSoFar
| (estim.)

0.75949

0.10687

0.09589
0.092078
0.10234
.062221
.062253
.062268
.062287
.062295
.062279
.060395
.060408
.060405
.060403
.060401
.060399
.060407
.060405
.060404

OO0 OO0

| (estim.)

.060405
.060322
.060317
.060315
.060313
.060342
.060351
.060356
.060358
.060364

OO OO0

| NumNeighbors | Distance
| |

| 17 | hamming
| 4 | seuclidean
| 47 | chebychev
| 1 | cosine
| 49 | seuclidean
| 1| seuclidean
| 513 | cosine
| 1 | correlation
| 513 | correlation
| 1| spearman
| 1| chebychev
| 1| cityblock
| 82 | cityblock
| 1| minkowski
| 86 | minkowski
| 1 | mahalanobis
| 221 | mahalanobis
| 1 | jaccard
| 1| euclidean
| 85 | euclidean
| NumNeighbors | Distance
| |

| 511 | spearman
| 3| cityblock
| 3 | euclidean
| 3 | minkowski
| 3 | chebychev
| 1| cityblock
| 1| cityblock
| 1| cityblock
| 514 | jaccard
| 514 | hamming

Min objective vs. Number of function evalua!ig%s

——— Min observed objective
Estimated min objective

o
=y
Min objective

' ' ' ' 0
10 15 20 25 30

Function evaluations

Objective function model

® Observed points

[Model mean
® Next point
* Model minimum feasible

Estimated objective function value

o

g N :
AN K&Q,\\\-@ NumNeighbors

Distance

Optimization completed.

MaxObjectiveEvaluations of 3@ reached.

Total function evaluations: 30

Total elapsed time: 18.7807 seconds

Total objective function evaluation time: 1.9544

Best observed feasible point:
NumNeighbors Distance

1 cityblock
Observed objective function value = 0.06037
Estimated objective function value = 0.060364
Function evaluation time = 0.053622

Best estimated feasible point (according to models):
NumNeighbors Distance

47

Estimated objective function value =
Estimated function evaluation time =

cityblock

Iter | Eval | Objective
| result |
1 | Best | 0.068783
2 | Accept | 0.26455
3 | Accept | 0.34392
4 | Accept | 0.18519
5 | Accept | 0.068783
6 | Accept | 0.079365
7 | Accept | 0.068783
8 | Accept | 0.074074
9 | Accept | 0.2381
10 | Accept | 0.18519
11 | Accept | 0.49735
12 | Accept | 0.8254
13 | Accept | 0.2381
14 | Accept | 9.34392
15 | Accept | 0.34392
16 | Accept | 0.14286
17 | Accept | 0.079365
18 | Accept | 0.079365
19 | Accept | 0.34392
20 | Accept | 0.34392
Iter | Eval | Objective
| result |
21 | Accept | 0.85714
22 | Accept | 0.079365
23 | Accept | 0.079365
24 | Accept | 0.084656
25 | Accept | 0.089947
26 | Accept | 0.068783
27 | Accept | 0.34392
28 | Accept | 0.084656
29 | Accept | 0.089947
30 | Accept | 0.079365

0.060364
0.051003

| Objective | BestSoFar

| runtime | (observed)

| 0.063802 | 0.068783
| 0.081923 | 0.068783
| 0.045817 | 0.068783
| 0.050805 | 0.068783
| 0.043495 | 0.068783
| 0.054392 | 0.068783
| 0.039395 | 0.068783
| 0.042147 | 0.068783
| 0.051541 | 0.068783
| 0.068829 | 0.068783
| 0.069736 | 0.068783
| 0.047703 | 0.068783
| 0.052165 | 0.068783
| 0.042238 | 0.068783
| 0.048162 | 0.068783
| 0.046826 | 0.068783
| 0.047182 | 0.068783
| 0.047842 | 0.068783
| 0.054129 | 0.068783
| 0.068589 | 0.068783
| Objective | BestSoFar

| runtime | (observed)

| 0.043258 | 0.068783
| 0.057236 | 0.068783
| 0.046803 | 0.068783
| 0.046451 | 0.068783
| 0.054265 | 0.068783
| 0.047749 | 0.068783
| 0.067842 | 0.068783
| 0.047541 | 0.068783
| 0.046317 | 0.068783
| 0.044392 | 0.068783

48

| BestSoFar
| (estim.)

0.068783
0.076567
0.078351
0.12332
0.068793
0.068852
0.071528

0.0715
.071518
.071531
.071493
0.07146
.071463
.071467
.068921
.068946
.068965
.068982
.068984
.068986

[OIN)

OO0

| (estim.)

.068971
.069023
.068999
.069047
.072655
.073442
.073761
.074557
.074665
.074396

OO OO0

| NumNeighbors | Distance
| |

| 5 | chebychev
| 7 | spearman
| 58 | euclidean
| 45 | seuclidean
| 5 | chebychev
| 6 | chebychev
| 1| chebychev
| 1 | cityblock
| 1 | correlation
| 46 | minkowski
| 46 | mahalanobis
| 1| hamming
| 1 | cosine
| 95 | jaccard
| 94 | chebychev
| 20 | cityblock
| 1| minkowski
| 1 | seuclidean
| 95 | cosine
| 95 | correlation
| NumNeighbors | Distance
| |

| 1| jaccard
| 4 | minkowski
| 1| euclidean
| 4 | seuclidean
| 2 | chebychev
| 3 | cityblock
| 95 | spearman
| 2 | cityblock
| 2 | minkowski
| 3 | chebychev

Min objective vs. Number of function evalua_ti(??:?

——— Min observed objective
Estimated min objective 10.12

10.11

10.1

10.09

Min objective

10.08

3 0.07

: : 0.06
0 10 20 30

Function evaluations

Objective function model

® Observed points

[Model mean
® Next point
* Model minimum feasible

0.8 A

0.6 |

0.4 4

Estimated objective function value

o
7,

NumNeighbors

Distance

Optimization completed.

MaxObjectiveEvaluations of 3@ reached.

Total function evaluations: 30

Total elapsed time: 18.2943 seconds

Total objective function evaluation time: 1.5686

Best observed feasible point:
NumNeighbors Distance

5 chebychev
Observed objective function value = 0.068783
Estimated objective function value = 0.074396
Function evaluation time = 0.063802

Best estimated feasible point (according to models):
NumNeighbors Distance

49

5 chebychev

0.074396
0.049582

Estimated objective function value
Estimated function evaluation time

K Nearest Neighbours (KNN) Visualisation

The results of every layer of the hypermatrix are summed up and visualised in a heatmap. Additionally the mean
accuracy and time taken is calculated and used as a comparison metric between methods.

KNN = zeros(m,n);
for j = 1:n

for k = 1:m

KNN(J,k) = sum(hyp_KNN(J,k,:));

end
end
figkNN = figureGen(7,10);
heat_KNN6 = heatmap(KNN, "XDisplaylLabels", [0,1,2,3], "YDisplaylLabels", [0,1,2,3],
"ColorMethod", "mean", "ColorLimits", [©,100])

heat_KNN6 =
HeatmapChart with properties:

XData: {4x1 cell}
YData: {4x1 cell}
ColorData: [4x4 double]

Show all properties

heat_KNN6.Colormap = parula(64);
xlabel("Predicted State");
ylabel("Labelled State");
average_acc_KNN = median(acc_KNN)

average_acc_KNN = 0.9558
avergage time_KNN = median(time_KNN)
avergage_time_KNN = 0.0221

heat_KNN6.Title = "K-Nearest Neighbours";

saveas(heat KNN6, 'C:\Users\ellio\OneDrive\Dokumente\Uni\Master\Master
Thesis\Writing\LatexVorlageMA v2.0\LatexVorlageMA v2.0\chapters\Chapters\07_Results\
figures\6_KNN.jpg');

50

K-Nearest Neighbours

— 100
0
{80
o
1]
ol ! 60
©
ks
3
40
22
—

20

0 1 2 3
Predicted State

Neural Network (NN)
The next method to be applied will be NN.

for i = 1:numel(files)
%Load file i from the folder
fileName = fullfile(files(i).folder, files(i).name);
load(fileName);
%Extract the state vector
state = stateTT.State;
%Extract the Principal COmponent Data
D = PCsTT{:,:};
%Create a random 90/10 Partition for Training and Test Data
rng('default');
Partition_States = cvpartition(state, 'Holdout', ©.10);

%Seperate the training and testing Ids
trainingIds = training(Partition_States);
DTrain = D(traininglIds, :);
stateTrain = state(trainingIds);
testIds = test(Partition_States);
DTest = D(testIds, :);
stateTest = state(testIds);
Begin measuring the time this algorithm will take
tNN = tic;

train the decsion tree classifier

classifierNN = fitcnet(DTrain, stateTrain, 'OptimizeHyperparameters', 'auto');

51

end the time measurement

timeNN = toc(tNN);
use the tree to predict the test states

TestModel NN = predict(classifierNN, DTest);
measure the accuracy

accuracy NN = sum(stateTest == TestModel NN)/length(stateTest);
%figure;
%confusionchart(stateTest, TestModel BT, 'Normalization', 'row-normalized');

Create a confusion matrix

[C_NN, order] = confusionmat(stateTest, TestModel NN);
%titleStr BT = strrep([fName,' Binary Tree'],' ','-");
% title(titleStr BT);

save the confusion matrix as one layer of the hypermatrix and the accuracy and measured time in vector form

hyp NN(:,:,i) = C_NN;

acc_NN(i) = accuracy_NN;

time_NN(i) = timeNN/length(D);
end

Warning: One or more of the unique class values in GROUP is not present in one or more folds. For
classification problems, either remove this class from the data or use N instead of GROUP to obtain
nonstratified partitions. For regression problems with continuous response, use N.

52

| Iter | Eval | Objective | Objective | BestSoFar | BestSoFar | Activations | Standardize |
| | result | | runtime | (observed) | (estim.) | | |
|= s mmmmes mmmmmes e mmmmm—mmm————ooo e oo
1	Best	9.11975	7.9942	9.11975	9.11975	relu	false
2	Accept	0.19259	0.23739	0.11975	0.12265	none	false
3	Best	0.028395	18.868	0.028395	9.033588	tanh	true
4	Accept	9.15185	30.909	9.028395	9.031436	none	false
5	Accept	9.19259	9.1329	0.028395	9.028535	tanh	true
6	Accept	9.041975	4.1734	0.028395	0.028426	tanh	true
7	Best	0.028395	7.7141	0.028395	0.028361	tanh	true
8	Accept	0.19259	0.41766	0.028395	0.028365	relu	false
9	Accept	9.11728	10.153	9.028395	0.028382	tanh	true
10	Accept	9.037037	5.1763	0.028395	9.028391	relu	true
11	Accept	9.02963	75.697	0.028395	0.028395	relu	true
12	Accept	0.19259	0.10471	0.028395	0.028389	relu	true
13	Best	9.023457	29.837	9.023457	0.023447	relu	true
14	Accept	9.033333	4.7453	9.023457	9.023449	sigmoid	true
15	Accept	0.10741	35.329	9.023457	0.02345	sigmoid	true
16	Accept	0.039506	14.354	0.023457	0.023449	sigmoid	true
17	Accept	0.10988	0.88318	0.023457	0.023458	sigmoid	true
18	Accept	0.082716	8.7304	9.023457	9.023459	sigmoid	true
19	Accept	9.10617	8.978	9.023457	0.023458	relu	true
20	Accept	9.19259	9.12778	0.023457	0.0248	relu	true

5.3123e-0:
23.90
1.2517e-0
0.00017
73.02
2.8677e-01
4.0709%e-0
0.6763
0.003366
1.2475e-0
2.3609e-0
0.171
2.3613e-0
1.4727e-01
0.0002223
1.4239e-0:
2.1181e-0
4.9696e-0
0.0005893.
38.66

| Tter | Eval | Objective | Objective | BestSoFar | BestSoFar | Activations | Standardize | Lambd

| | result | | runtime | (observed) | (estim.) | | |
| s============s============s=s====s=s=s=s=s==s=sms=s=ssssscmsmsmszszss=e= ======== S —
| 21 | Accept | 0.030864 | 28.822 | 0.023457 | 0.025136 | tanh | true | 2.8086e-0
| 22 | Accept | 0.030864 | 48.081 | 0.023457 | 0.025364 | relu | true | 1.4889e-0
| 23 | Accept | 0.11852 | 1.3476 | 0.023457 | 0.023918 | relu | true | 2.9387e-0
| 24 | Accept | 0.028395 | 5.6723 | 0.023457 | 0.026666 | tanh | true | 4.6041e-0
| 25 | Accept | 0.19259 | 0.15763 | 0.023457 | 0.026156 | sigmoid | true | 0.001398
| 26 | Accept | 0.067901 | 32.223 | 0.023457 | 0.026355 | sigmoid | true | 1.5146e-0
| 27 | Accept | 0.059259 | 4.6058 | 0.023457 | 0.026497 | tanh | true | 1.3805e-0
| 28 | Accept | 0.035802 | 69.953 | 0.023457 | 0.026459 | relu | false | 4.8368e-0
| 29 | Accept | 0.15556 | 1.4279 | 0.023457 | 0.026439 | none | false | 1.7883e-0
| 30 | Accept | 0.02716 | 40.867 | 0.023457 | 0.023232 | relu | true | 5.3696e-0
Min objective vs. Number of function evaluatié:?f
——— Min observed objective
- Estimated min objective 1012
|
1
! 101 2
S
@
10.08 &
o
=
10.06 =
10.04
l—&—- - o °
: : : 0.02
0 10 20 30
Function evaluations
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 516.294 seconds
Total objective function evaluation time: 497.7204
Best observed feasible point:
Activations Standardize Lambda LayerSizes
relu true 2.3613e-06 46 229
Observed objective function value = 0.023457
Estimated objective function value = 0.025199
Function evaluation time = 29.8372
Best estimated feasible point (according to models):
Activations Standardize Lambda LayerSizes
relu true 5.3696e-07 130 48 240
Estimated objective function value = 0.023232
Estimated function evaluation time = 40.8768
|= S —=—===s=s==——=======—==s======sss===—==s=======s==s=============== s=======s=sss——====oo=s
| Tter | Eval | Objective | Objective | BestSoFar | BestSoFar | Activations | Standardize | Lambd
| | result | | runtime | (observed) | (estim.) | | |
| s=========================s====sms=s=s==s=ssmsms=s=ssssscssms=s=ssssss=sss=s=ssss=s=sss=s=ssss=s=s=s=s=ssssmsms=s=s
| 1 | Best | 0.043981 | 5.2411 | 0.043981 | 0.043981 | sigmoid | true | 1.6294e-0

53

| 2 | Accept | 0.40509 | 1.1021 | 0.043981 | 0.22449
| 3 | Accept | 0.044753 | 13.839 | 0.043981 | 0.16448
| 4 | Accept | 0.40586 | 0.094129 | 0.043981 | 0.22111
| 5 | Accept | 0.048611 | 4.4723 | 0.043981 | 0.044831
| 6 | Accept | 0.40586 | 0.1368 | 0.043981 | 0.044831
| 7 | Accept | 0.40586 | 0.12889 | 0.043981 | 0.044774
| 8 | Accept | 0.40586 | 0.11831 | 0.043981 | 0.044778
| 9 | Accept | 0.40586 | 0.10457 | 0.043981 | 0.04478
| 10 | Accept | 0.40586 | 0.10917 | 0.043981 | 0.044788
| 11 | Accept | 0.40586 | 0.23979 | 0.043981 | 0.044793
| 12 | Accept | 0.40586 | 0.11358 | 0.043981 | 0.044813
| 13 | Accept | 0.068673 | 13.582 | 0.043981 | 0.044817
| 14 | Accept | 0.40586 | 0.18141 | 0.043981 | 0.044815
| 15 | Accept | 0.091049 | 6.5249 | 0.043981 | 0.044805
| 16 | Accept | 0.083333 | 5.0183 | 0.043981 | 0.044798
| 17 | Best | 0.033179 | 10.394 | 0.033179 | 0.033172
| 18 | Best | 0.032407 | 27.314 | 0.032407 | 0.032439
| 19 | Accept | 0.3696 | 0.76678 | 0.032407 | 0.03244
| 20 | Accept | 0.059414 | 28.101 | 0.032407 | 0.032447
| S — s======= — ===s==================
| Tter | Eval | Objective | Objective | BestSoFar | BestSoFar
| | result | | runtime | (observed) | (estim.)
| s============s========s=s=s==smsms=s=ssssmsmsmszszssssmsmszszssssmsmsas
| 21 | Accept | 0.054784 | 86.896 | 0.032407 | 0.032435
| 22 | Best | 0.031636 | 51.98 | 0.031636 | 0.031667
| 23 | Accept | 0.054784 | 8.0809 | 0.031636 | 0.031679
| 24 | Accept | 0.044753 | 11.612 | 0.031636 | 0.03168
| 25 | Accept | 0.40586 | 0.33883 | 0.031636 | 0.031682
| 26 | Accept | 0.1088 | 41.312 | 0.031636 | 0.031674
| 27 | Accept | 0.40201 | 0.44635 | 0.031636 | 0.031668
| 28 | Accept | 0.3804 | 1.9471 | 0.031636 | 0.031669
| 29 | Accept | 0.40586 | 1.4299 | 0.031636 | 0.031658
| 30 | Accept | 0.40586 | 0.16673 | 0.031636 | 0.031668
Min objective vs. Number of function evaluatiggg
——— Min observed objective
Estimated min objective
10.2
g
10.15 Ei
O
o
101 <
=
10.05
: : : 0
0 10 20 30
Function evaluations
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 339.4879 seconds
Total objective function evaluation time: 321.7917
Best observed feasible point:
Activations Standardize Lambda LayerSizes

54

| none | true
| tanh | true
| tanh | false
| sigmoid | true
| tanh | false
| tanh | false
| sigmoid | false
| relu | false
| relu | true
| none | false
| tanh | true
| sigmoid | true
| sigmoid | true
| relu | false
| sigmoid | false
| sigmoid | true
| tanh | false
| none | false
| relu | true
| Activations | Standardize
| |

| sigmoid | false
| relu | false
| tanh | true
| tanh | false
| none | true
| tanh | true
| tanh | true
| none | false
| sigmoid | true
| relu | true

(<]
3

.0003835!
.8369e-0:
42 . 38!
1.646e-0
44,69
37.05.
76.89!
70.76.
0.1990
76.67
75.48:
.7514e-0!
65.34
.9864e-0!
.8107e-0!
.9359%e-0
.1589e-0!
.7489%e-0
.8267e-0!

.0001022!
.0001025:
.0002420.
.9035e-0
76.89.
.9041e-00
0.02260.
0.002555¢
0.0129
75.16

relu false 0.00010254 166 121 56
Observed objective function value = 0.031636
Estimated objective function value = 0.031668

Function evaluation time = 51.98

Best estimated feasible point (according to models):

Activations Standardize Lambda LayerSizes
relu false 0.00010254 166 121 56

Estimated objective function value = 0.031668

Estimated function evaluation time = 51.4712

| S S S S —— S S —
| Tter | Eval | Objective | Objective | BestSoFar | BestSoFar | Activations | Standardize | Lambd
| | result | | runtime | (observed) | (estim.) | | |

|= R oo oo m oo oo oo ——————————————————————————cccocoooc mm———m————coooooooooeo
| 1 | Best | 0.1061 | 21.236 | 0.1061 | 0.1061 | tanh | true | 2.992e-0
| 2 | Accept | 0.25332 | 0.15785 | 0.1061 | 0.11345 | relu | false | 128.7
| 3 | Accept | 0.25332 | 2.8684 | 0.1061 | 0.11414 | sigmoid | false | 0.005035:
| 4 | Accept | 0.21485 | 4.0572 | 0.1061 | 0.11325 | none | true | 2.643e-0
| 5 | Accept | 0.11671 | 20.244 | 0.1061 | 0.10677 | tanh | true | 6.9377e-0
| 6 | Accept | 0.27056 | 0.76765 | 0.1061 | 0.10764 | relu | false | 1.773e-0
| 7 | Accept | 0.25332 | 3.9697 | 0.1061 | 0.10616 | tanh | true | 0.0102
| 8 | Accept | 0.25332 | 0.36761 | 0.1061 | 0.10613 | tanh | true | 118.5
| 9 | Accept | 0.25332 | 0.26378 | 0.1061 | 0.10612 | tanh | true | 89.2
| 10 | Accept | 0.14324 | 23.645 | 0.1061 | 0.10613 | tanh | true | 8.7342e-0
| 11 | Best | 0.051724 | 53.565 | 0.051724 | 0.051764 | tanh | true | 8.1897e-0
| 12 | Accept | 0.25332 | 0.11628 | 0.051724 | 0.051764 | relu | false | 84.01.
| 13 | Accept | 0.25332 | 11.43 | 0.051724 | 0.051776 | relu | false | 0.0101-
| 14 | Accept | 0.12865 | 14.43 | 0.051724 | 0.051757 | tanh | true | 4.6424e-0
| 15 | Best | 0.050398 | 74.874 | 0.050398 | 0.050421 | tanh | true | 8.1107e-0
| 16 | Accept | 0.066313 | 67.464 | 0.050398 | 0.050422 | tanh | true | 1.2377e-0
| 17 | Accept | 0.071618 | 94.309 | 0.050398 | 0.050412 | sigmoid | true | 1.5534e-0
| 18 | Accept | 0.25332 | 0.49149 | 0.050398 | 0.050417 | sigmoid | true | 13.31
| 19 | Accept | 0.25332 | 0.32393 | 0.050398 | 0.050418 | relu | true | 118.0
| 20 | Accept | 0.21751 | 2.6397 | 0.050398 | 0.050419 | relu | true | 4.0989e-0
| S S S S —— S S —
| ITter | Eval | Objective | Objective | BestSoFar | BestSoFar | Activations | Standardize | Lambd
| | result | | runtime | (observed) | (estim.) | | |

|= R oo oo oo oo oo e ——————————————————————cocoocooc mm———m————coooooooooeo
| 21 | Accept | 0.05305 | 72.472 | 0.050398 | 0.050478 | tanh | true | 2.0142e-0
| 22 | Accept | 0.25332 | 0.29038 | 0.050398 | 0.050476 | tanh | false | 85.64
| 23 | Accept | 0.2122 | 49.166 | 0.050398 | 0.050473 | none | false | 1.3557e-0
| 24 | Accept | 0.24934 | 4.1606 | 0.050398 | 0.050449 | sigmoid | true | 7.3623e-0
| 25 | Accept | 0.059682 | 53.647 | 0.050398 | 0.050469 | tanh | true | 2.4842e-0
| 26 | Accept | 0.27851 | 0.55856 | 0.050398 | 0.050469 | tanh | false | 2.4656e-0
| 27 | Accept | 0.25332 | 0.092422 | 0.050398 | 0.050468 | none | true | 132.5.
| 28 | Accept | 0.070292 | 25.357 | 0.050398 | 0.050478 | sigmoid | true | 1.3455e-0
| 29 | Accept | 0.17905 | 37.404 | 0.050398 | 0.050422 | sigmoid | true | 1.6862e-0
| 30 | Accept | 0.06366 | 36.618 | 0.050398 | 0.050423 | sigmoid | true | 1.5014e-0

55

Min objective vs. Number of function evalua_ti(?!g

10.11
10.1 -
=
: O
——— Min observed objective 0.09 Q.
Estimated min objective 8
10.08 =
S
10.07
10.06
: : — hetbottetaer 0.05
0 10 20 30
Function evaluations
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 697.7894 seconds
Total objective function evaluation time: 676.9864
Best observed feasible point:
Activations Standardize Lambda LayerSizes
tanh true 8.1107e-05 158 243 196
Observed objective function value = 0.050398
Estimated objective function value = 0.050423
Function evaluation time = 74.8745
Best estimated feasible point (according to models):
Activations Standardize Lambda LayerSizes
tanh true 8.1107e-05 158 243 196
Estimated objective function value = 0.050423
Estimated function evaluation time = 74.3266
| ===s==== ===s==== =s==s==== Mttt -ttt =s==s==== Bttt -ttt -ttt
| Tter | Eval | Objective | Objective | BestSoFar | BestSoFar | Activations | Standardize | Lambd
| | result | | runtime | (observed) | (estim.) | | |
| —=—————=s———————=s=sss———====————=s====———======———=====——======== S O
| 1 | Best | 0.05994 | 23.402 | 0.05994 | 0.05994 | tanh | true | 2.4649e-0
| 2 | Accept | 0.18581 | 0.51216 | 0.05994 | 0.066176 | sigmoid | false | 1.2693e-0
| 3 | Best | 0.048951 | 10.168 | 0.048951 | 0.05212 | relu | false | 1.487e-0
| 4 | Accept | 0.20779 | 0.20815 | 0.048951 | 0.064396 | relu | true | 0.6870
| 5 | Accept | 0.052947 | 7.7139 | 0.048951 | 0.049112 | relu | false | 2.1285e-0
| 6 | Accept | 0.20779 | 0.11135 | 0.048951 | 0.049207 | relu | true | 0.6044
| 7 | Accept | 0.20779 | 0.1008 | 0.048951 | 0.050969 | relu | true | 0.1799.
| 8 | Accept | 0.20779 | 0.10557 | 0.048951 | 0.050973 | tanh | false | 95.08
| 9 | Accept | 0.21179 | 0.81048 | 0.048951 | 0.049274 | none | true | 7.8425e-0
| 10 | Accept | 0.21479 | 1.0249 | 0.048951 | 0.050973 | tanh | false | 1.3546e-0
| 11 | Accept | 0.20779 | 0.12699 | 0.048951 | 0.049284 | sigmoid | true | 93.43
| 12 | Accept | 0.15485 | 7.8519 | 0.048951 | 0.051036 | relu | false | 1.0236e-0
| 13 | Accept | 0.20779 | 0.34331 | 0.048951 | 0.051045 | tanh | false | 96.51
| 14 | Accept | 0.20779 | 0.19951 | 0.048951 | 0.049102 | relu | true | 4.286

56

| 15 | Accept | 0.18282 | 0.99214 | 0.048951
| 16 | Accept | 0.20779 | 0.10409 | 0.048951
| 17 | Accept | 0.10889 | 32.174 | 0.048951
| 18 | Accept | 0.073926 | 2.6732 | 0.048951
| 19 | Accept | 0.20779 | 0.12222 | 0.048951
| 20 | Accept | 0.20779 | 0.71495 | 0.048951
|= S I S
| Tter | Eval | Objective | Objective | BestSoFar
| | result | | runtime | (observed)
|= ======= ======== =======
| 21 | Accept | 0.050949 | 9.4044 | 0.048951
| 22 | Accept | 0.068931 | 7.2585 | 0.048951
| 23 | Accept | 0.19081 | 0.95891 | 0.048951
| 24 | Accept | 0.085914 | 5.3374 | 0.048951
| 25 | Accept | 0.061938 | 12.904 | 0.048951
| 26 | Accept | 0.16484 | 14.473 | 0.048951
| 27 | Accept | 0.18182 | 0.474 | 0.048951
| 28 | Accept | 0.11988 | 5.5051 | 0.048951
| 29 | Accept | 0.052947 | 6.8483 | 0.048951
| 30 | Accept | 0.062937 | 30.897 | 0.048951
Min objective vs. Number of function evaluatg Dl}s
—e——Min observed objective
Estimated min objective
10.065
o
=
10.06 F
L
ie)
[
10.055 ¢
=
10.05
: : : 0.045
0 10 20 30
Function evaluations
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 200.4643 seconds
Total objective function evaluation time: 183.5202
Best observed feasible point:
Activations Standardize Lambda LayerSizes
relu false 1.487e-05 160
Observed objective function value = 0.048951

Estimated objective function value = 0.062342

Function evaluation time = 10.1676

Best estimated feasible point (according to models):
Activations

Standardize

Lambda

LayerSizes

relu

false

2.1285e-05

66

57

0.051048
0.049085
0.049744
0.049043
0.051074
0.049919

BestSoFar
(estim.)

0.050481
0.050804

0.04897
0.048973
0.048973
0.048966

0.04897
0.062259
0.062433
0.062762

| relu | true
| relu | false
| relu | false
| tanh | true
| tanh | false
| tanh | true
| Activations | Standardize
| |

| tanh | true
| tanh | true
| tanh | true
| tanh | true
| tanh | true
| relu | false
| tanh | true
| tanh | true
| relu | false
| tanh | true

9.8202e-0:
97.67
4.0346e-0!
0.0001351
0.6098

5.3273e-01
8.7674e-0
1.0582e-01
1.3821e-0
2.9488e-0

0.001065.
5.7331e-0
0.0002490
2.0321e-00

1.079e-0

Estimated objective function value = 0.062762
Estimated function evaluation time = 7.7318
Warning: One or more of the unique class values in GROUP is not present in one or more folds. For

classification problems, either remove this class from the data or use N instead of GROUP to obtain
nonstratified partitions. For regression problems with continuous response, use N.

Iter | Eval | Objective | Objective | BestSoFar
| result | | runtime | (observed)
1 | Best | 0.16958 | 0.1282 | 0.16958
2 | Best | 0.10723 | 2.7631 | 0.10723
3 | Accept | 0.16708 | 8.0677 | 0.10723
4 | Best | 0.0798 | 4.269 | 0.0798
5 | Accept | 0.11222 | 14.892 | 0.0798
6 | Best | 0.057357 | 5.1362 | 0.057357
7 | Accept | 0.16958 | 0.093941 | 0.057357
8 | Accept | 0.16958 | 0.095268 | 0.057357
9 | Accept | 0.16958 | 0.085448 | 0.057357
10 | Accept | 0.10723 | 2.0976 | 0.057357
11 | Accept | 0.089776 | 7.7525 | 0.057357
12 | Best | 0.042394 | 4.5566 | 0.042394
13 | Accept | 0.097257 | 1.129 | 0.042394
14 | Best | 0.022444 | 4.3491 | 0.022444
15 | Accept | 0.16958 | 0.14405 | 0.022444
16 | Accept | 0.037406 | 4.583 | 0.022444
17 | Accept | 0.064838 | 8.6558 | 0.022444
18 | Accept | 0.032419 | 4.1103 | 0.022444
19 | Accept | 0.034913 | 4.3639 | 0.022444
20 | Accept | 0.044888 | 4.3893 | 0.022444
Iter | Eval | Objective | Objective | BestSoFar
| result | | runtime | (observed)
21 | Accept | 0.029925 | 4.3063 | 0.022444
22 | Accept | 0.027431 | 4.0777 | 0.022444
23 | Accept | 0.032419 | 4.1803 | 0.022444
24 | Accept | 0.027431 | 4.5089 | 0.022444
25 | Accept | 0.042394 | 4.2473 | 0.022444
26 | Accept | 0.027431 | 4.3127 | 0.022444
27 | Accept | 0.029925 | 4.2564 | 0.022444
28 | Accept | 0.029925 | 4.3835 | 0.022444
29 | Accept | 0.029925 | 16.574 | 0.022444
30 | Accept | 0.027431 | 5.0674 | 0.022444
Min objective vs. Number of function evaluations
¥ ——— Min observed objective
| Estimated min objective 10.16
\ 10.14
o>
10.12 2
3
101 &
[
b - E
\ 0.08 -
*1\ 10.04
: : . 5 0.02
0 10 20 30

Function evaluations

58

BestSoFar
(estim.)

0.16958

0.11152

0.10885
0.082684
0.080101
0.059403
0.057381
0.070184
0.06975
.070228
.071474
.044693
.053213
.022442
.023579
.028855

0.0314
0.03086
0.031604

OO OO0

0.031699

BestSoFar
(estim.)

.031108
.030208
.029699
.029084
.030275
.029561
.029755
.029729
.027893
0.02752

OO OO0

| Activations | Standardize | Lambd:
| | |

| sigmoid | true | 4.820
| none | true | 4.4757e-0
| tanh | false | 0.008629
| relu | false | 7.0581e-0
| sigmoid | true | 2.5913e-0
| relu | false | 8.4524e-0
| sigmoid | true | 5.359
| sigmoid | true | 16.01
| sigmoid | true | 9.194
| relu | false | 0.002597
| relu | false | 2.5914e-0
| relu | false | 1.2324e-0
| relu | false | 2.7912e-0
| relu | false | 8.7706e-0
| relu | false | 35. 34
| relu | false | 3.4409e-0
| relu | false | 3.2149e-0
| relu | false | 2.0271e-0
| relu | false | 7.2988e-0
| relu | false | 6.775e-0
| Activations | Standardize | Lambd:
| | |

| relu | false | 1.2738e-0
| relu | false | 1.7131e-0
| relu | false | 3.5835e-0
| relu | false | 1.8825e-0
| relu | false | 6.9636e-0
| relu | false | 6.7775e-0
| relu | false | 3.8084e-0
| relu | false | 2.8348e-0
| relu | false | 4.9995e-0
| relu | false | 1.5799%e-0

Optimization completed.

MaxObjectiveEvaluations of 30 reached.

Total function evaluations: 30

Total elapsed time: 154.6454 seconds

Total objective function evaluation time: 137.5771

Best observed feasible point:
Activations Standardize Lambda LayerSizes

relu false 8.7706e-06 9

Observed objective function value = 0.022444
Estimated objective function value = 0.030292
Function evaluation time = 4.3491

Best estimated feasible point (according to models):
Activations Standardize Lambda LayerSizes

relu false 1.5799e-05 17

Estimated objective function value = 0.02752
Estimated function evaluation time = 4.7994

| Iter | Eval | Objective | Objective | BestSoFar | BestSoFar | Activations | Standardize | Lambd
| | result | | runtime | (observed) | (estim.) | | |

|= N R R R —— N S ——
| 1 | Best | 9.052298 | 154.35 | 9.052298 | 9.052298 | tanh | false | 7.0048e-0
| 2 | Accept | 0.2187 | 5.4838 | 0.052298 | ©.058914 | none | true | 1.8692e-0
| 3 | Accept | 0.43265 | 0.11203 | 0.052298 | 0.066872 | relu | true | 0.2453
| 4 | Accept | 0.28526 | 6.0682 | 9.052298 | 9.054014 | none | true | 6.9046e-0
| 5 | Accept | 0.077655 | 76.675 | 9.052298 | 9.052314 | relu | true | 4.8415e-0
| 6 | Accept | 9.1141 | 2.9428 | 9.052298 | 0.063503 | tanh | false | 5.0685e-0
| 7 | Accept | 0.24089 | 2.0885 | 9.052298 | 0.068392 | tanh | false | 0.002359
| 8 | Accept | 0.43265 | 0.12469 | 0.052298 | 0.052315 | relu | true | 0.4096
| 9 | Accept | 0.099842 | 5.313 | 9.052298 | 9.052342 | relu | true | 1.5993e-0
| 10 | Accept | 9.18225 | 3.902 | 9.052298 | 9.052339 | relu | true | 8.812e-0
| 11 | Accept | ©.063391 | 4.8509 | ©.052298 | ©0.052433 | tanh | false | 3.4042e-0
| 12 | Accept | 0.11252 | 11.954 | 0.052298 | 0.052416 | tanh | false | 3.0609e-0
| 13 | Accept | 0.43265 | 0.24279 | 0.052298 | 0.052438 | relu | true | 157.1
| 14 | Accept | 9.29952 | 5.6862 | 9.052298 | 9.05231 | relu | true | 7.5281e-0
| 15 | Accept | 0.31062 | 9.70533 | 9.052298 | 9.052318 | relu | true | 1.5968e-0
| 16 | Accept | 0.22821 | 7.6473 | ©0.052298 | 0.052317 | tanh | false | 0.001038.
| 17 | Accept | 0.43265 | 0.085792 | 0.052298 | 0.05955 | relu | true | 4.2
| 18 | Accept | 0.063391 | 5.5687 | 0.052298 | 0.058312 | tanh | false | 1.0536e-0
| 19 | Accept | 9.066561 | 5.8606 | 9.052298 | 9.052336 | tanh | false | 3.5992e-0
| 20 | Accept | 0.43265 | 9.10542 | 9.052298 | 9.052336 | tanh | false | 93.10
|s===========c=====c—=c=cccoss=—mmss————ss==—mss——mmss=s===ss—==—ss=—=—=s=====ss=====s===mmss=====s==m=ss==mm=oc.
| Iter | Eval | Objective | Objective | BestSoFar | BestSoFar | Activations | Standardize | Lambd
| | result | | runtime | (observed) | (estim.) | | |

|= N R R N — N S ——
| 21 | Accept | 9.21712 | 10.706 | 9.052298 | 9.052323 | tanh | false | 1.16e-0
| 22 | Accept | 0.43265 | 0.14217 | 9.052298 | 9.052328 | tanh | false | 116.2
| 23 | Accept | 0.066561 | 5.9603 | 0.052298 | 0.052328 | tanh | false | 3.715e-0
| 24 | Accept | 0.34548 | 6.6595 | 9.052298 | 9.052339 | relu | true | 2.564e-0
| 25 | Accept | 9.052298 | 36.446 | 9.052298 | 9.052281 | tanh | false | 3.1848e-0
| 26 | Accept | 0.07607 | 17.79 | 9.052298 | 9.052281 | relu | true | 2.4448e-0
| 27 | Accept | 0.060222 | 4,291 | 0.052298 | ©.052295 | tanh | false | 1.0232e-0
| 28 | Accept | 0.12203 | 5.3399 | 0.052298 | 0.061427 | tanh | false | 3.8167e-0
| 29 | Accept | 9.063391 | 13.881 | 9.052298 | 0.062078 | tanh | false | 6.7913e-0
| 30 | Accept | 0.068146 | 19.049 | 9.052298 | 0.057408 | tanh | false | 1.1282e-0

59

Min objective vs. Number of function evalugtg%l}s

10.065
o
=
©
@
10.06 =
@]
=
——— Min observed objective =
Estimated min objective 10.055
' : : 0.05
0 10 20 30

Function evaluations

Optimization completed.

MaxObjectiveEvaluations of 30 reached.

Total function evaluations: 30

Total elapsed time: 437.1436 seconds

Total objective function evaluation time: 420.0343

Best observed feasible point:
Activations Standardize Lambda LayerSizes

tanh false 7.0048e-05 233 277 297

Observed objective function value = 0.052298
Estimated objective function value = 0.05847
Function evaluation time = 154.3522

Best estimated feasible point (according to models):
Activations Standardize Lambda LayerSizes

tanh false 1.0536e-05 50

Estimated objective function value = 0.057408
Estimated function evaluation time = 5.8397

|

| Tter | Eval | Objective | Objective | BestSoFar | BestSoFar | Activations | Standardize | Lambd
| | result | | runtime | (observed) | (estim.) | | |

| @E oo oo e o e oo e m oo m oo m e mmm—mmmmmm—————m——e - e mmm—mmmmm———moos
| 1 | Best | 0.43427 | 0.14667 | 9.43427 | 0.43427 | sigmoid | false | 19.98
| 2 | Best | 0.22687 | 5.4307 | 9.22687 | 0.2405 | tanh | true | 1.998e-0
| 3 | Best | 9.054528 | 8.5394 | 9.054528 | 0.070484 | sigmoid | false | 1.5826e-0
| 4 | Accept | 0.43427 | 2.0316 | 0.054528 | 0.074426 | sigmoid | true | 0.003741
| 5 | Accept | 0.057449 | 8.7897 | 0.054528 | 0.055777 | sigmoid | false | 2.025e-0
| 6 | Accept | 9.43427 | 9.79555 | 9.054528 | 9.055743 | sigmoid | false | 9.001329
| 7 | Accept | 0.087634 | 26.651 | 9.054528 | 9.055834 | sigmoid | false | 7.0685e-0
| 8 | Accept | 0.25706 | 5.0229 | 9.054528 | 0.054987 | sigmoid | false | 8.5049e-0
| 9 | Accept | 0.15969 | 5.3281 | 0.054528 | 0.054563 | sigmoid | false | 9.8337e-0
| 10 | Accept | 0.12074 | 7.319 | 0.054528 | 0.054642 | sigmoid | false | 1.6783e-0
| 11 | Accept | 0.43427 | 9.30059 | 9.054528 | 9.054887 | sigmoid | false | 26.6
| 12 | Accept | 9.43427 | 0.14408 | 9.054528 | 0.054836 | sigmoid | false | 45.29
| 13 | Accept | 0.27945 | 9.53704 | 9.054528 | 0.054672 | sigmoid | false | 1.6418e-0
| 14 | Accept | 0.43427 | 0.53863 | 0.054528 | 0.05472 | sigmoid | false | 0.00195

60

| 15 | Accept | 0.43427 | 0.20275 | 0.054528 | 0.054712
| 16 | Accept | 0.40993 | 6.2262 | 0.054528 | 0.054964
| 17 | Accept | 0.24245 | 5.093 | 0.054528 | 0.054672
| 18 | Accept | 0.43427 | 0.34071 | 0.054528 | 0.054674
| 19 | Accept | 0.088608 | 7.6048 | 0.054528 | 0.05489
| 20 | Accept | 0.063291 | 9.2953 | 0.054528 | 0.054934
|= ======== ======== ======== S —
| ITter | Eval | Objective | Objective | BestSoFar | BestSoFar
| | result | | runtime | (observed) | (estim.)
|= — s======= S — S —
| 21 | Accept | 0.43427 | 0.30286 | 0.054528 | 0.054927
| 22 | Accept | 0.058423 | 8.0428 | 0.054528 | 0.054947
| 23 | Accept | 0.43427 | 0.22262 | 0.054528 | 0.054865
| 24 | Accept | 0.063291 | 10.232 | 0.054528 | 0.054917
| 25 | Accept | 0.057449 | 7.896 | 0.054528 | 0.054567
| 26 | Accept | 0.06816 | 9.3084 | 0.054528 | 0.054794
| 27 | Accept | 0.28724 | 0.94717 | 0.054528 | 0.054706
| 28 | Accept | 0.090555 | 25.225 | 0.054528 | 0.056128
| 29 | Best | 0.051607 | 20.759 | 0.051607 | 0.051222
| 30 | Accept | 0.06037 | 102.91 | 0.051607 | 0.051081
Min objective vs. Number of function evaluations
| —=—— Min observed objective
i Estimated min objective 104
} 10.35
| o
103 2
O
@
1025 &
[
102 £
=
10.15
1 0.1
L l—oﬂ—l—l—-— —o—s —o— —p——a—o—p — O] 0 5
0 10 20 30
Function evaluations
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 305.0343 seconds
Total objective function evaluation time: 286.1818
Best observed feasible point:
Activations Standardize Lambda LayerSizes
sigmoid false 7.2686e-06 27 124 24
Observed objective function value = 0.051607
Estimated objective function value = 0.051081
Function evaluation time = 20.7586
Best estimated feasible point (according to models):
Activations Standardize Lambda LayerSizes
sigmoid false 7.2686e-06 27 124 24

Estimated objective function value = 0.051081

61

| sigmoid | false
| sigmoid | false
| sigmoid | false
| sigmoid | false
| sigmoid | false
| sigmoid | false
| Activations | Standardize
| |

| sigmoid | false
| sigmoid | false
| sigmoid | false
| sigmoid | false
| sigmoid | false
| sigmoid | false
| sigmoid | false
| sigmoid | false
| sigmoid | false
| tanh | true

51.57:
0.0009889¢
2.295e-0
41.3
3.3518e-0
1.2363e-0

95.36
3.5324e-01

85.24!
4.1303e-0i
6.7716e-0
3.3336e-0
5.8824e-0
1.0978e-0:
7.2686e-0
2.5943e-0

Estimated function evaluation

| Iter | Eval | Objective

| | result |

| N S
| 1| Best | 09.34392
| 2 | Accept | 0.34392
| 3| Best | 0.084656
| 4 | Accept | 0.34392
| 5 | Accept | 0.34392
| 6 | Accept | 0.34392
| 7 | Accept | 0.095238
| 8 | Best | 0.079365
| 9 | Accept | 0.084656
| 10 | Accept | 0.079365
| 11 | Accept | 0.24339
| 12 | Accept | 0.10053
| 13 | Accept | 0.14815
| 14 | Accept | 0.084656
| 15 | Accept | 0.34392
| 16 | Accept | 9.095238
| 17 | Accept | 0.34392
| 18 | Accept | 0.10053
| 19 | Accept | 9.34392
| 20 | Accept | 0.34392
| Iter | Eval | Objective

| | result |

| ===s==== ========
| 21 | Accept | 0.34392
| 22 | Accept | 0.15344
| 23 | Accept | 0.34921
| 24 | Accept | 0.089947
| 25 | Accept | 0.34392
| 26 | Accept | 0.34392
| 27 | Accept | 0.34392
| 28 | Accept | 0.22222
| 29 | Accept | 0.34392
| 30 | Accept | 0.34392

time = 20.7432

| objective | BestSoFar

| runtime | (observed)

| 0.22621 | 0.34392
| 0.22172 | 0.34392
| 8.6852 | 0.084656
| 0.10752 | 0.084656
| 0.26968 | 0.084656
| 0.11258 | 0.084656
| 4.2901 | 0.084656
| 11.012 | 0.079365
| 8.5845 | 0.079365
| 13.006 | 0.079365
| 2.3386 | 0.079365
| 4.2001 | 0.079365
| 5.3506 | 0.079365
| 11.002 | 0.079365
| 0.13788 | 0.079365
| 4.1461 | 0.079365
| 0.11927 | 0.079365
| 3.7092 | 0.079365
| 0.11039 | 0.079365
| 0.68274 | 0.079365
| objective | BestSoFar

| runtime | (observed)

| 0.10817 | 0.079365
| 4.032 | 0.079365
| 3.1022 | 0.079365
| 13.831 | 0.079365
| 0.10305 | 0.079365
| 0.21635 | 0.079365
| 0.083886 | 0.079365
| 1.6823 | 0.079365
| 0.067397 | 0.079365
| 0.098023 | 0.079365

Min objective vs. Number of function evalua_tigagSs

——— Min observed objective
Estimated min objective

10.3

10.25

o
]
Min objective

10

20

Function evaluations

0.05
30

Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30

62

| BestSoFar
| (estim.)

0.34392
0.34392
0.10177
0.085229
0.084905
0.084682
0.084679
0.079379
0.079376
0.079376
0.079376
0.079375
0.079374
0.079373
0.079374
0.079374
0.079375
0.079374
0.079375
0.079375

| (estim.)

.079376
.079376
.079377
.079376
.079376
.079376
.079377
.079378
.079378
.079376

OO OO0

| Activations | Standardize
| |

| tanh | true
| none | false
| sigmoid | false
| tanh | false
| sigmoid | false
| sigmoid | false
| tanh | false
| tanh | false
| relu | false
| tanh | true
| none | false
| relu | true
| relu | true
| sigmoid | true
| none | true
| none | true
| relu | false
| none | true
| sigmoid | true
| sigmoid | true
| Activations | Standardize
| |

| relu | true
| sigmoid | false
| relu | false
| relu | false
| none | false
| none | true
| tanh | true
| none | true
| none | true
| tanh | false

0.487
0.08246
5.8137e-0
49,82
5.667
461.5
.0001278:
.0495e-0:
.3108e-0
.3652e-0:
.3417e-0
.4407e-0
0.005327-
5.3208e-0:
500.3
4.873%e-0
522.2
5.5189e-0:
522.0
0.004161

uuvuubhoo

528.7:
5.3981e-0:
0.01747
5.2995e-0:
527.2.
0.0352
516.5
1.0305e-0!
0.8055!
0.3375.

Total elapsed time: 119.3387 seconds
Total objective function evaluation time: 101.6366

Best observed feasible point:
Activations Standardize Lambda LayerSizes

tanh false 6.0495e-08 15 161

Observed objective function value = 0.079365
Estimated objective function value = 0.079376
Function evaluation time = 11.0122

Best estimated feasible point (according to models):
Activations Standardize Lambda LayerSizes

tanh false 6.0495e-08 15 161

Estimated objective function value = 0.079376
Estimated function evaluation time = 11.011

Neural Network Visualisation

The results of every layer of the hypermatrix are summed up and visualised in a heatmap. Additionally the mean
accuracy and time taken is calculated and used as a comparison metric between methods.

NN = zeros(m,n);
for j = 1:n

for k = 1:m

NN(J, k) = sum(hyp_NN(3j,k,:));

end
end
figNN = figureGen(7,10);
heat NN6 = heatmap(NN, "XDisplaylLabels", [0,1,2,3], "YDisplayLabels", [0,1,2,3],
"ColorMethod", "mean", "ColorLimits", [©,100])

heat_NN6 =
HeatmapChart with properties:

XData: {4x1 cell}
YData: {4x1 cell}
ColorData: [4x4 double]

Show all properties

heat NN6.Colormap = parula(64);
xlabel("Predicted State");
ylabel("Labelled State");
average_acc_NN = median(acc_NN)

average_acc_NN = 0.9744
average_time_ NN = median(time_NN)
average_time_NN = 0.4681

heat NN6.Title = "Neural Network";

63

saveas(heat_NN6, 'C:\Users\ellio\OneDrive\Dokumente\Uni\Master\Master
Thesis\Writing\LatexVorlageMA v2.0\LatexVorlageMA_v2.0\chapters\Chapters\07_Results\
figures\6_NN.jpg');

Neural Network

— 100

180

Labelled State

Predicted State

Ensemble Classification
The next method to be applied will be Ensemble Classification.

for i = 1:numel(files)
%Load file i from the folder
fileName = fullfile(files(i).folder, files(i).name);
load(fileName);
%Extract the state vector
state = stateTT.State;
%Extract the Principal COmponent Data
D = PCsTT{:,:};
%Create a random 90/10 Partition for Training and Test Data
rng('default');
Partition_States = cvpartition(state, 'Holdout', ©.10);

%Seperate the training and testing Ids
trainingIds = training(Partition_States);
DTrain = D(traininglds, :);
stateTrain = state(trainingIds);
testIds = test(Partition_States);
DTest = D(testIds, :);
stateTest = state(testlIds);
Begin measuring the time this algorithm will take

tEn = tic;

train the decsion tree classifier

64

%template = templateTree('MinLeafSize', 2);
classifierkEn = fitcensemble(DTrain, stateTrain, 'OptimizeHyperparameters’,
‘auto');

end the time measurement

timeEn = toc(tEn);
use the tree to predict the test states

TestModel En = predict(classifierEn, DTest);
measure the accuracy

accuracy_En = sum(stateTest == TestModel En)/length(stateTest);
%figure;
%confusionchart(stateTest, TestModel BT, 'Normalization', 'row-normalized');

Create a confusion matrix

[C_En, order] = confusionmat(stateTest, TestModel En);
%titleStr BT = strrep([fName,' Binary Tree'],'_','-");
% title(titleStr BT);

save the confusion matrix as one layer of the hypermatrix and the accuracy and measured time in vector form

hyp_En(:,:,i) = C_En;

acc_En(i) = accuracy En;

time_En(i) = timeEn/length(D);
end

Warning: One or more of the unique class values in GROUP is not present in one or more folds. For
classification problems, either remove this class from the data or use N instead of GROUP to obtain
nonstratified partitions. For regression problems with continuous response, use N.

| Iter | Eval | Objective | Objective | BestSoFar | BestSoFar | Method | NumLearningC- | LearnRat
| | result | | runtime | (observed) | (estim.) | | ycles |
| s===================================s==ssssss==sss=sssssss=ssssss=ssssmsas S S ——
| 1 | Best | 0.19259 | 11.476 | 0.19259 | 0.19259 | AdaBoostM2 | 487 | 0.2155
| 2 | Accept | 0.73457 | 1.0189 | 0.19259 | 0.2288 | RUSBoost | 19 | 0.007133
| 3 | Best | 0.030864 | 13.029 | 0.030864 | 0.031108 | Bag | 421 |
| 4 | Accept | 0.11111 | 0.59359 | 0.030864 | 0.030939 | AdaBoostM2 | 18 | 0.3947
| 5 | Best | 0.02963 | 1.0498 | 0.02963 | 0.029562 | AdaBoostM2 | 35 | 0.9998:
| 6 | Accept | 0.066667 | 0.42642 | 0.02963 | 0.080423 | AdaBoostM2 | 10 | 0.001051
| 7 | Accept | 0.058025 | 0.39116 | 0.02963 | 0.031962 | AdaBoostM2 | 10 | 0.8346
| 8 | Accept | 0.030864 | 0.43992 | 0.02963 | 0.032172 | AdaBoostM2 | 10 | 0.7614
| 9 | Accept | 0.030864 | 0.36674 | 0.02963 | 0.028404 | AdaBoostM2 | 10 | 0.9729
| 10 | Accept | 0.96667 | 0.68402 | 0.02963 | 0.028394 | RUSBoost | 22 | 0.999
| 11 | Accept | 0.066667 | 0.44582 | 0.02963 | 0.029094 | AdaBoostM2 | 10 | 0.004038:
12	Accept	0.19259	0.39721	0.02963	0.029129	Bag	10
13	Best	0.025926	0.45475	0.025926	0.02561	Bag	10
14	Accept	0.032099	0.44534	0.025926	0.028828	Bag	10
15	Accept	0.02963	0.68163	0.025926	0.028855	AdaBoostM2	22
16	Accept	0.030864	0.44873	0.025926	0.029073	Bag	10

65

AdaBoostM2	10
AdaBoostM2	11
AdaBoostM2	12
AdaBoostM2	12
Method	NumLearningC-
	ycles
AdaBoostM2	11
AdaBoostM2	10
RUSBoost	80
AdaBoostM2	10
AdaBoostM2	11
AdaBoostM2	10
RUSBoost	10
AdaBoostM2	10
AdaBoostM2	10
AdaBoostM2	12

0.14
0.2745
0.3125.

0.245:

0.2733
0.3340.
0.0010471
0.001002
0.9153
0.1076:
0.9767
0.001001
0.2421
0.001014.

| 17 | Accept | 0.028395 | 0.45248 | 0.025926 | 0.029081
| 18 | Accept | 0.02716 | 0.40802 | 0.025926 | 0.027502
| 19 | Accept | 0.025926 | 0.4543 | 0.025926 | 0.026848
| 20 | Accept | 0.02716 | 0.39274 | 0.025926 | 0.026961
|— sS=E=s==== FrErrrrrrrrrrrrrrrrrrrrrrrrrrerrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrre
| Tter | Eval | Objective | Objective | BestSoFar | BestSoFar
| | result | | runtime | (observed) | (estim.)
| s=========================s====s=s=s=s==s=ssmsms=s=ssssssmsms=s=ssss=sss=s=s=ssssssssss=s=ssssssss=s=s=ssss=s=s=s=s
| 21 | Accept | 0.02716 | 0.36658 | 0.025926 | 0.026971
| 22 | Accept | 0.02963 | 0.33758 | 0.025926 | 0.027417
| 23 | Accept | 0.96667 | 2.2546 | 0.025926 | 0.02744
| 24 | Accept | 0.19259 | 0.32936 | 0.025926 | 0.023065
| 25 | Accept | 0.02963 | 0.42985 | 0.025926 | 0.027423
| 26 | Accept | 0.030864 | 9.35155 | 0.025926 | 0.027431
| 27 | Accept | 0.79753 | 0.36197 | 0.025926 | 0.027453
| 28 | Accept | 0.04321 | 0.39176 | 0.025926 | 0.027456
| 29 | Accept | 0.030864 | 0.38954 | 0.025926 | 0.02739
| 30 | Accept | 0.060494 | 0.3905 | 0.025926 | 0.027375
Min objective vs. Number of function evaluati&:gg
——— Min observed objective
Estimated min objective
10.2
o
=
1015 5
@
=
o
101 £
=
i 10.05
L i i O
0 10 20 30
Function evaluations
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 54.5319 seconds
Total objective function evaluation time: 39.6599
Best observed feasible point:
Method NumLearningCycles LearnRate MinLeafSize
Bag 10 NaN 1
Observed objective function value = 0.025926
Estimated objective function value = 0.029185
Function evaluation time = 0.45475
Best estimated feasible point (according to models):
Method NumLearningCycles LearnRate MinLeafSize
AdaBoostM2 12 0.2454
Estimated objective function value = 0.027375
Estimated function evaluation time = 0.42826

66

|
| Tter | Eval | Objective | Objective | BestSoFar | BestSoFar | Method | NumLearningC- | LearnRat
|

| result | | runtime | (observed) | (estim.) | | ycles |
| s=================s=ssssoossossoossosssossosssossosssossssssosssossoses S e ——
| 1 | Best | 0.15664 | 7.8008 | 0.15664 | 0.15664 | RUSBoost | 254 | 0.02146
| 2 | Best | 0.033951 | 10.924 | 0.033951 | 0.038829 | Bag | 358 |
| 3 | Accept | 0.15355 | 0.48845 | 0.033951 | 0.033975 | RUSBoost | 12 | 0.04523
| 4 | Accept | 0.08642 | 2.9071 | 0.033951 | 0.034052 | AdaBoostM2 | 109 | 0.006226
| 5 | Accept | 0.40586 | 0.39772 | 0.033951 | 0.033969 | Bag | 11 |
| 6 | Accept | 0.033951 | 0.42142 | 0.033951 | 0.033935 | Bag | 10 |
| 7 | Accept | 0.73611 | 0.4215 | 0.033951 | 0.033956 | RUSBoost | 12 | 0.04521
| 8 | Accept | 0.051698 | 0.55641 | 0.033951 | 0.033872 | Bag | 14 |
| 9 | Accept | 0.03858 | 0.43436 | 0.033951 | 0.034026 | Bag | 10 |
| 10 | Accept | 0.1466 | 3.1244 | 0.033951 | 0.033981 | RUSBoost | 9% | 0.001974
| 11 | Accept | 0.40586 | 0.34009 | 0.033951 | 0.033964 | AdaBoostM2 | 10 | 9.5732:
| 12 | Accept | 0.064043 | 0.35418 | 0.033951 | 0.033962 | AdaBoostM2 | 10 | 0.001123
| 13 | Accept | 0.046296 | 0.39505 | 0.033951 | 0.033974 | AdaBoostM2 | 10 | 0.7243:
14	Accept	0.03858	0.43567	0.033951	0.036163	Bag	10
15	Accept	0.042438	0.47587	0.033951	0.036226	Bag	11
16	Accept	0.037037	0.44655	0.033951	0.03636	Bag	10
17	Best	0.030093	0.47874	0.030093	0.034634	Bag	10
18	Accept	0.037037	0.44334	0.030093	0.035144	Bag	10
19	Accept	0.10494	0.42136	0.030093	0.034998	Bag	10
20	Accept	0.074846	0.41288	0.030093	0.035046	Bag	10
R — R S ——— R S							
Iter	Eval	Objective	Objective	BestSoFar	BestSoFar	Method	NumLearningC-
	result		runtime	(observed)	(estim.)		ycles
= S S —— S e ——							
21	Accept	0.064043	0.37745	0.030093	0.035053	AdaBoostM2	10
22	Accept	0.73611	0.36782	0.030093	0.034966	RUSBoost	10
23	Accept	0.073302	0.37693	0.030093	0.034969	AdaBoostM2	11
24	Accept	0.042438	0.39085	0.030093	0.034973	AdaBoostM2	11
25	Accept	0.10957	0.3539	0.030093	0.034963	AdaBoostM2	10
26	Accept	0.067901	0.40826	0.030093	0.034969	AdaBoostM2	11
27	Accept	0.32485	0.39947	0.030093	0.03496	RUSBoost	10
28	Accept	0.14275	0.41016	0.030093	0.034947	Bag	10
29	Accept	0.033951	0.40441	0.030093	0.034896	Bag	10
30	Accept	0.041667	0.45004	0.030093	0.034976	Bag	10
Min objective vs. Number of function evaluatig!?g
——— Min observed objective
Estimated min objective 10.14
: 0.12 .%
g 10.1 .g
! o)
- o
g 10.08 =
! =
g 10.06
|
Lo) 10.04
: ' ' 0.02
0 10 20 30

Function evaluations

Optimization completed.

MaxObjectiveEvaluations of 30 reached.

Total function evaluations: 30

Total elapsed time: 50.9581 seconds

Total objective function evaluation time: 35.6195

67

Best observed feasible point:
Method NumLearningCycles LearnRate MinLeafSize

Bag 10 NaN 2
Observed objective function value = 0.030093
Estimated objective function value = 0.034976

Function evaluation time = 0.47874

Best estimated feasible point (according to models):

Method NumLearningCycles LearnRate MinLeafSize
Bag 10 NaN 2

Estimated objective function value = 0.034976
Estimated function evaluation time = ©.43985
|= m————o—= —————o—= m————o—= e m————————————————ooo=
| Tter | Eval | Objective | Objective | BestSoFar |
| | result | | runtime | (observed) |
| ==============================s=s=mssosmssmssmsmssmssmssssmssmssmsmosas
1	Best	0.25332	3.5018	0.25332
2	Best	0.057029	13.611	0.057029
3	Accept	0.87931	2.6591	0.057029
4	Accept	0.98408	5.7604	0.057029
5	Accept	0.087533	0.37156	0.057029
6	Accept	0.14191	0.36518	0.057029
7	Accept	0.14324	8.5234	0.057029
8	Accept	0.25332	0.34561	0.057029
9	Accept	0.061008	0.43039	0.057029
10	Accept	0.071618	0.41833	0.057029
11	Accept	0.086207	0.42789	0.057029
12	Accept	0.070292	0.44414	0.057029
13	Accept	0.062334	0.4393	0.057029
14	Accept	0.058355	0.47593	0.057029
15	Accept	0.25332	0.34442	0.057029
16	Accept	0.30239	0.76464	0.057029
17	Accept	0.067639	0.80451	0.057029
18	Accept	0.14058	0.47271	0.057029
19	Accept	0.058355	0.41063	0.057029
20	Accept	0.98408	0.40574	0.057029
= m————o—= —————o—= m————o—= e m————————————————ooo=				
ITter	Eval	Objective	Objective	BestSoFar
	result		runtime	(observed)
================================s==ssosmssmssmsmssmssmssssmssmssmsmsas				
21	Accept	0.082228	0.38432	0.057029
22	Best	0.055703	1.1379	0.055703
23	Accept	0.16446	0.35054	0.055703
24	Accept	0.1313	0.3843	0.055703
25	Accept	0.26923	0.42391	0.055703
26	Accept	0.32891	0.39982	0.055703
27	Accept	0.058355	2.4565	0.055703
28	Accept	0.067639	1.7986	0.055703
29	Accept	0.057029	1.8075	0.055703
30	Best	0.055703	2.1885	0.055703

68

(estim.)

0.25332
0.067182
0.090659
0.057993
0.058236

0.05715
0.057194
0.079121
0.05861
.059224
.059453
.062177
.061202
.061916
.062051
.057197
.059728
.060679
0.06003
0.059751

OO OO0

BestSoFar
(estim.)

0.060086
0.058985
0.059135
0.059624

0.05969
0.055888
0.057303
0.057374
0.056655
0.056054

Method	NumLearningC-
	ycles
Bag	133
Bag	462
RUSBoost	95
RUSBoost	226
AdaBoostM2	11
AdaBoostM2	11
AdaBoostM2	358
AdaBoostM2	11
Bag	11
Bag	11
AdaBoostM2	11
Bag	11
Bag	11
Bag	12
AdaBoostM2	10
RUSBoost	22
AdaBoostM2	29
AdaBoostM2	15
Bag	10
RUSBoost	11
Method	NumLearningC-
	ycles
AdaBoostM2	10
Bag	34
AdaBoostM2	10
Bag	10
RUSBoost	10
RUSBoost	10
Bag	77
AdaBoostM2	70
Bag	53
Bag	69

0.9103:
0.00254
0.58160:
0.001053!
0.005162:
0.8538

0.7697

0.001072
0.001014.

0.9942
0.001293

0.8895
0.9180

0.5907
0.00100

0.9223

Min objective vs. Number of function evalua_tié:gs

——— Min observed objective
Estimated min objective
10.25
g
. 102 FH
{ E
| 0
| @]
} 1015 c
] S
'!
10.1
L SG—O—=—g
: : : 0.05
0 10 20 30
Function evaluations
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 68.0393 seconds
Total objective function evaluation time: 52.3085
Best observed feasible point:
Method NumLearningCycles LearnRate MinLeafSize
Bag 69 NaN 2
Observed objective function value = 0.055703
Estimated objective function value = 0.056054
Function evaluation time = 2.1885
Best estimated feasible point (according to models):
Method NumLearningCycles LearnRate MinLeafSize
Bag 69 NaN 2
Estimated objective function value = 0.056054
Estimated function evaluation time = 2.1903
| ======= ======== ======= ===================== ======= ======================:
| Tter | Eval | Objective | Objective | BestSoFar | BestSoFar | Method | NumLearningC- | LearnRat
| | result | | runtime | (observed) | (estim.) | | ycles |
|= ======= =======s=s======s=s=s====s=s==s=s=ss=sms=s=s=ss==s= ======= S —
| 1 | Best | 0.051948 | 7.6845 | 0.051948 | 0.051948 | AdaBoostM2 | 277 | 0.04302
| 2 | Accept | 0.1019 | 4.3292 | 0.051948 | 0.055545 | AdaBoostM2 | 184 | 0.09588
| 3 | Accept | 0.20779 | 0.66799 | 0.051948 | 0.052239 | Bag | 21 |
| 4 | Accept | 0.93307 | 0.45174 | 0.051948 | 0.052328 | RUSBoost | 12 | 0.001827
| 5 | Best | 0.044955 | 14.079 | 0.044955 | 0.045121 | Bag | 500 |
| 6 | Accept | 0.068931 | 0.38727 | 0.044955 | 0.047123 | AdaBoostM2 | 10 | 0.02709
| 7 | Accept | 0.044955 | 0.3969 | 0.044955 | 0.044657 | Bag | 10 |
| 8 | Accept | 0.048951 | 0.38783 | 0.044955 | 0.039683 | AdaBoostM2 | 11 | 0.9435
| 9 | Accept | 0.053946 | 0.39346 | 0.044955 | 0.048678 | Bag | 10 |
| 10 | Accept | 0.047952 | 0.38857 | 0.044955 | 0.048484 | AdaBoostM2 | 11 | 0.9520
| 11 | Accept | 0.050949 | 0.39336 | 0.044955 | 0.044991 | Bag | 10 |
| 12 | Accept | 0.048951 | 0.77472 | 0.044955 | 0.046212 | AdaBoostM2 | 28 | 0.9137
| 13 | Best | 0.043956 | 1.6731 | 0.043956 | 0.042818 | AdaBoostM2 | 66 | 0.9785
| 14 | Accept | 0.043956 | 4.8913 | 0.043956 | 0.04265 | AdaBoostM2 | 206 | 0.9807

69

| 15 | Best | 0.042957 | 0.41852 | 0.042957 | 0.043301
| 16 | Accept | 0.047952 | 0.40622 | 0.042957 | 0.043659
| 17 | Accept | 0.043956 | 5.4939 | 0.042957 | 0.043884
| 18 | Accept | 0.12787 | 0.4487 | 0.042957 | 0.044094
| 19 | Accept | 0.053946 | 0.37944 | 0.042957 | 0.043932
| 20 | Accept | 0.054945 | 0.38827 | 0.042957 | 0.044061
|= ======== ======== ======== S —
| Iter | Eval | Objective | Objective | BestSoFar | BestSoFar
| | result | | runtime | (observed) | (estim.)
|= — s======= S — S —
| 21 | Accept | 0.21379 | 0.43491 | 0.042957 | 0.044044
| 22 | Accept | 0.091908 | 0.3945 | 0.042957 | 0.043004
| 23 | Accept | 0.20779 | 0.37851 | 0.042957 | 0.042793
| 24 | Best | 0.041958 | 0.36263 | 0.041958 | 0.043338
| 25 | Accept | 0.055944 | 0.34048 | 0.041958 | 0.043099
| 26 | Accept | 0.056943 | 0.38726 | 0.041958 | 0.042594
| 27 | Accept | 0.088911 | 0.42268 | 0.041958 | 0.04262
| 28 | Accept | 0.041958 | 3.2578 | 0.041958 | 0.042282
| 29 | Accept | 0.05994 | 0.41655 | 0.041958 | 0.042199
| 30 | Accept | 0.048951 | 5.2768 | 0.041958 | 0.043538
Min objective vs. Number of function evaluations
——— Min observed objective 10.055
Estimated min objective
1005 2
©
: i
| o
| o
| =
ey 10.045 =
_\D—O—H—H—H-—ﬁ
\—0—0—0—0—0—-
. . . 10.04
0 10 20 30
Function evaluations
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 70.8801 seconds
Total objective function evaluation time: 56.1067
Best observed feasible point:
Method NumLearningCycles LearnRate MinLeafSize
AdaBoostM2 11 0.88961
Observed objective function value = 0.041958
Estimated objective function value = 0.047047
Function evaluation time = 0.36263
Best estimated feasible point (according to models):
Method NumLearningCycles LearnRate MinLeafSize
AdaBoostM2 206 0.98071

70

AdaBoostM2	12
AdaBoostM2	13
AdaBoostM2	234
RUSBoost	12
AdaBoostM2	11
Bag	10
Method	NumLearningC-
	ycles
RUSBoost	12
AdaBoostM2	12
AdaBoostM2	11
AdaBoostM2	11
AdaBoostM2	10
Bag	10
Bag	11
AdaBoostM2	135
AdaBoostM2	12
AdaBoostM2	222

0.8831.

0.964!
0.9711
0.8792.
0.1927

LearnRat

0.001037-
0.001025°
0.5098
0.8896:
0.91!

0.9708
0.8934
0.9913

Estimated objective function value = 0.043538
Estimated function evaluation time = 4.9583
Warning: One or more of the unique class values in GROUP is not present in one or more folds. For

classification problems, either remove this class from the data or use N instead of GROUP to obtain
nonstratified partitions. For regression problems with continuous response, use N.

Iter | Eval | Objective | Objective | BestSoFar
| result | | runtime | (observed)
1 | Best | 0.92269 | 6.957 | 0.92269
2 | Best | 0.13716 | 3.6551 | 0.13716
3 | Best | 0.074813 | 7.5026 | 0.074813
4 | Accept | 0.10973 | 1.0301 | 0.074813
5 | Accept | 0.094763 | 0.32057 | 0.074813
6 | Best | 0.049875 | 0.37564 | 0.049875
7 | Accept | 0.16958 | 0.94096 | 0.049875
8 | Accept | 0.16958 | 0.94672 | 0.049875
9 | Accept | 0.05985 | 0.9767 | 0.049875
10 | Accept | 0.057357 | 0.35458 | 0.049875
11 | Accept | 0.16958 | 0.32621 | 0.049875
12 | Best | 0.034913 | 0.80992 | 0.034913
13 | Accept | 0.037406 | 0.50816 | 0.034913
14 | Accept | 0.16958 | 0.30855 | 0.034913
15 | Accept | 0.057357 | 0.3011 | 0.034913
16 | Accept | 0.0399 | 0.3024 | 0.034913
17 | Accept | 0.0399 | 0.49268 | 0.034913
18 | Accept | 0.037406 | 6.0309 | 0.034913
19 | Accept | 0.037406 | 0.34689 | 0.034913
20 | Accept | 0.037406 | 0.51331 | 0.034913
Iter | Eval | Objective | Objective | BestSoFar
| result | | runtime | (observed)
21 | Accept | 0.042394 | 0.3838 | 0.034913
22 | Accept | 0.92269 | 0.35056 | 0.034913
23 | Accept | 0.14713 | 0.388 | 0.034913
24 | Accept | 0.17456 | 0.42347 | 0.034913
25 | Accept | 0.067332 | 0.31489 | 0.034913
26 | Accept | 0.05985 | 0.33269 | 0.034913
27 | Accept | 0.17207 | 0.41853 | 0.034913
28 | Accept | 0.057357 | 0.32064 | 0.034913
29 | Accept | 0.054863 | 0.30957 | 0.034913
30 | Accept | 0.92269 | 0.37787 | 0.034913
Min objective vs. Number of function evaluati?ns
——— Min observed objective
Estimated min objective
. 10.8
|
| E
1 10.6 “a
| sl
|I _D
- o
104 <
=
10.2
—— e e,
: : : : : : 0
0 5 10 15 20 25 30

Function evaluations

71

BestSoFar
(estim.)

0.92269
0.1793
0.098513
0.075263
0.07838
.052006
.051993
.049878
.049877
.049777
.049811
.035375
.034924
.034937
.035169
.035118
.035211
.036456

OO OO0

0.03666
0.036742

BestSoFar
(estim.)

.036733
.036795
.036845
.036638
.036642
.036638
0.03674
0.036487
0.036515
0.036391

Method	NumLearningC-
	ycles
RUSBoost	298
RUSBoost	145
Bag	325
AdaBoostM2	43
Bag	10
Bag	10
AdaBoostM2	43
AdaBoostM2	43
AdaBoostM2	43
Bag	10
Bag	11
AdaBoostM2	35
AdaBoostM2	19
AdaBoostM2	11
AdaBoostM2	10
AdaBoostM2	10
AdaBoostM2	19
AdaBoostM2	290
AdaBoostM2	12
AdaBoostM2	19
Method	NumLearningC-
	ycles
AdaBoostM2	12
RUSBoost	11
RUSBoost	10
RUSBoost	11
AdaBoostM2	10
Bag	10
RUSBoost	12
AdaBoostM2	10
AdaBoostM2	10
RUSBoost	10

0.7165.
0.06136

0.002799

0.001894
0.01435
0.001365:

0.9168
0.5817
0.9414
0.009189
0.8329:
0.9129
0.9460
0.9444.
0.9633

0.947.
0.01566
0.001856(
0.001012
0.001375

0.7947
0.1172
0.897
0.001013¢

Optimization completed.

MaxObjectiveEvaluations of 30 reached.

Total function evaluations: 30

Total elapsed time: 51.316 seconds

Total objective function evaluation time: 36.6201

Best observed feasible point:
Method NumLearningCycles LearnRate MinLeafSize

AdaBoostM2 35 0.91686 1

Observed objective function value = 0.034913
Estimated objective function value = 0.036391
Function evaluation time = 0.80992

Best estimated feasible point (according to models):
Method NumLearningCycles LearnRate MinLeafSize

AdaBoostM2 35 0.91686 1

Estimated objective function value = 0.036391
Estimated function evaluation time = 0.8254

| Iter | Eval | Objective | Objective | BestSoFar | BestSoFar | Method | NumLearningC- | LearnRat
| | result | | runtime | (observed) | (estim.) | | ycles |

| s============================ S S —— S S ——
| 1 | Best | 0.098257 | 3.8028 | 0.098257 | 0.098257 | AdaBoostM2 | 165 | 0.001675!
| 2 | Best | 0.088748 | 0.44006 | 0.088748 | 0.089228 | AdaBoostM2 | 15 | 0.81.
| 3 | Accept | 0.13788 | 3.7011 | 0.088748 | 0.090994 | AdaBoostM2 | 174 | 0.6780
| 4 | Accept | 0.16323 | 0.31037 | 0.088748 | 0.092119 | AdaBoostM2 | 10 | 0.008892:
| 5 | Accept | 0.095087 | 0.38937 | 0.088748 | 0.088819 | AdaBoostM2 | 13 | 0.8351
| 6 | Accept | 0.095087 | 0.39159 | 0.088748 | 0.088771 | AdaBoostM2 | 13 | 0.6640
| 7 | Accept | 0.098257 | 0.67042 | 0.088748 | 0.088767 | AdaBoostM2 | 26 | 0.003178
| 8 | Accept | 0.10777 | 0.49573 | 0.088748 | 0.093359 | AdaBoostM2 | 18 | 0.005134
| 9 | Accept | 0.090333 | 0.36104 | 0.088748 | 0.090338 | AdaBoostM2 | 10 | 0.9536
| 10 | Accept | 0.10618 | 0.33646 | 0.088748 | 0.090143 | AdaBoostM2 | 10 | 0.07133
| 11 | Accept | 0.10618 | 0.33412 | 0.088748 | 0.090178 | AdaBoostM2 | 10 | 0.001244
| 12 | Accept | 0.091918 | 0.41348 | 0.088748 | 0.090527 | AdaBoostM2 | 13 | 0.6613
| 13 | Accept | 0.091918 | 0.31808 | 0.088748 | 0.090895 | AdaBoostM2 | 10 | 0.7034
| 14 | Accept | 0.090333 | 0.33169 | 0.088748 | 0.090832 | AdaBoostM2 | 10 | 0.9721
| 15 | Accept | 0.091918 | 0.38171 | 0.088748 | 0.090788 | AdaBoostM2 | 11 | 0.7401
| 16 | Accept | 0.1046 | 0.3169 | 0.088748 | 0.090648 | AdaBoostM2 | 10 | 0.002347
| 17 | Accept | 0.10935 | 0.43009 | 0.088748 | 0.09069 | RUSBoost | 11 | 0.5756
| 18 | Accept | 0.1458 | 0.53147 | 0.088748 | 0.090735 | RUSBoost | 12 | 0.2911
| 19 | Accept | 0.12678 | 0.38051 | 0.088748 | 0.09079 | RUSBoost | 10 | 0.00151
| 20 | Accept | 0.096672 | 0.3701 | 0.088748 | 0.091307 | AdaBoostM2 | 12 | 0.8146
| ==ss=ss===ss==ssssss==sss=sss===ss==ssssss=s=ss==ssssss=s=ss==ss=s=sss===sssss=s=ss=s=s=s=ss
| Iter | Eval | Objective | Objective | BestSoFar | BestSoFar | Method | NumLearningC- | LearnRat
| | result | | runtime | (observed) | (estim.) | | ycles |

| s============================ S S —— S S ——
| 21 | Accept | 0.090333 | 0.4294 | 0.088748 | 0.091098 | AdaBoostM2 | 15 | 0.9055.
| 22 | Accept | 0.090333 | 0.36462 | 0.088748 | 0.090994 | AdaBoostM2 | 11 | 0.6797
| 23 | Accept | 0.093502 | 0.35037 | 0.088748 | 0.091302 | AdaBoostM2 | 10 | 0.9893
| 24 | Accept | 0.90333 | 0.33513 | 0.088748 | 0.090647 | RUSBoost | 10 | 0.0534
| 25 | Accept | 0.13788 | 0.39614 | 0.088748 | 0.09068 | Bag | 10 |

| 26 | Accept | 0.093502 | 0.36722 | 0.088748 | 0.090689 | Bag | 10 |

| 27 | Accept | 0.43265 | 0.32024 | 0.088748 | 0.090695 | Bag | 10 |

| 28 | Best | 0.087163 | 4.2735 | 0.087163 | 0.090673 | Bag | 160 |

| 29 | Accept | 0.43265 | 0.32695 | 0.087163 | 0.087151 | AdaBoostM2 | 10 | 0.7281.
| 30 | Accept | 0.10143 | 0.35715 | 0.087163 | 0.087174 | Bag | 10 |

72

Min objective vs. Number of function evalugtgqlns

——— Min observed objective
Estimated min objective 10.098
| 10.096 -
= =
| E O
] 0.094.gl
i! —8
a 10.092 =
=
10.09
i
\ | 10.088
: : : 0.086
0 10 20 30
Function evaluations
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 36.1439 seconds
Total objective function evaluation time: 22.2278
Best observed feasible point:
Method NumLearningCycles LearnRate MinLeafSize
Bag 160 NaN 6
Observed objective function value = 0.087163
Estimated objective function value = 0.087174
Function evaluation time = 4.2735
Best estimated feasible point (according to models):
Method NumLearningCycles LearnRate MinLeafSize
Bag 160 NaN 6
Estimated objective function value = 0.087174
Estimated function evaluation time = 4.2632
| ===s==== ===s==== =s==s==== Mttt -ttt =s==s==== Bttt -ttt -ttt
| Tter | Eval | Objective | Objective | BestSoFar | BestSoFar | Method | NumLearningC- | LearnRat
| | result | | runtime | (observed) | (estim.) | | ycles |
| —=—————=s———————=s=sss———====————=s====———======———=====——======== S O
| 1| Best | 0.75949 | 0.53045 | 0.75949 | 0.75949 | RUSBoost | 16 | ©.005060
| 2 | Best | 0.30867 | 0.36572 | 0.30867 | 0.32659 | Bag | 10 |
| 3 | Best | 0.12366 | 3.4997 | 0.12366 | ©.14808 | AdaBoostM2 | 141 | 0.009513:
| 4 | Accept | 0.13924 | 6.6316 | 0.12366 | ©.12493 | AdaBoostM2 | 275 | 0.2617
| 5 | Accept | 0.16845 | 0.3601 | 0.12366 | 0.14445 | AdaBoostM2 | 11 | 0.001388
| 6 | Accept | 0.27556 | 0.31434 | 0.12366 | ©.12354 | AdaBoostM2 | 10 | 0.7801
| 7 | Best | 0.076923 | 15.072 | 0.076923 | 0.07697 | Bag | 496 |
| 8 | Accept | 0.083739 | 0.43595 | 0.076923 | 0.077678 | Bag | 11 |
| 9 | Accept | 0.111 | 0.37207 | 0.076923 | 0.077606 | AdaBoostM2 | 10 | 0.9454.
| 10 | Accept | 0.15579 | 0.48036 | 0.076923 | 0.076954 | AdaBoostM2 | 16 | 0.02543
| 11 | Accept | 0.092502 | 0.38899 | 0.076923 | 0.076957 | Bag | 10 |
| 12 | Accept | 0.085686 | 11.616 | 0.076923 | 0.077 | AdaBoostM2 | 484 | 0.9978
| 13 | Accept | 0.10516 | 0.43395 | 0.076923 | 0.077268 | AdaBoostM2 | 12 | 0.951
| 14 | Accept | 0.088608 | 0.41986 | 0.076923 | 0.077191 | Bag | 10 |

73

15	Best	0.074976	3.5435	0.074976
16	Accept	0.082765	9.1567	0.074976
17	Accept	0.30574	0.55259	0.074976
18	Accept	0.089581	9.4589	0.074976
19	Accept	0.074976	12.368	0.074976
20	Accept	0.075949	15.909	0.074976
= S — S S				

| Tter | Eval | Objective | Objective | BestSoFar |
| | result | | runtime | (observed) |
|= S N S

21	Accept	0.32619	0.53235	0.074976
22	Best	0.073028	2.5377	0.073028
23	Accept	0.073028	3.1464	0.073028
24	Accept	0.074976	3.4623	0.073028
25	Accept	0.073028	3.5976	0.073028
26	Accept	0.43427	0.34868	0.073028
27	Accept	0.75949	12.532	0.073028
28	Accept	0.75949	0.3554	0.073028
29	Accept	0.13632	0.41447	0.073028
30	Accept	0.089581	8.7446	0.073028

Min objective vs. Number of function evalua!ig%s

—=—— Min observed objective
Estimated min objective

o
.
Min objective

10.2
$+o—
L ! ! ! ! ! O
0 5 10 15 20 25 30
Function evaluations
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 143.6949 seconds
Total objective function evaluation time: 127.5805
Best observed feasible point:
Method NumLearningCycles LearnRate MinLeafSize
Bag 74 NaN 1

Observed objective function value = 0.073028

Estimated objective function value = 0.074069

Function evaluation time = 2.5377

Best estimated feasible point (according to models):

Method

NumLearningCycles

LearnRate

MinLeafSize

Bag

Estimated objective function value = 0.073528

109 NaN

74

.076997
.079112
.079402
.076381
.075431
.075552

(estim.)

OO OO0

.074869
.073044
.072803
.073365
.073255
.073312
.073397
.073581
.073548
.073528

Bag	114
Bag	308
RUSBoost	16
AdaBoostM2	382
Bag	360
Bag	487
Method	NumLearningC-
	ycles
RUSBoost	14
Bag	74
Bag	o
Bag	103
Bag	109
AdaBoostM2	10
RUSBoost	493
RUSBoost	10
Bag	10
AdaBoostM2	341

0.9691
0.9829

0.001087

0.001231
0.9530
0.001028

0.997

Estimated function evaluation

| Iter | Eval | Objective

| | result |

= N S
| 1 | Best | 9.22751
| 2| Best | 0.10053
| 3 | Accept | 0.24339
| 4 | Accept | 0.10582
| 5 | Accept | 0.10053
| 6 | Accept | 0.8254
| 7 | Accept | 0.1164
| 8 | Best | 0.095238
| 9 | Accept | 0.1164
| 10 | Accept | 0.34392
| 11 | Accept | 0.095238
| 12 | Accept | 0.095238
| 13 | Accept | 0.8254
| 14 | Accept | 0.10582
| 15 | Accept | 0.34392
| 16 | Accept | 0.095238
| 17 | Accept | 0.10582
| 18 | Accept | 0.095238
| 19 | Accept | 9.095238
| 20 | Accept | 0.10053
| Iter | Eval | Objective

| | result |

= S S
| 21 | Accept | 0.095238
| 22 | Accept | 0.095238
| 23 | Accept | 0.14815
| 24 | Accept | 0.1164
| 25 | Accept | 0.10582
| 26 | Accept | 9.095238
| 27 | Best | 0.084656
| 28 | Accept | 0.089947
| 29 | Accept | 0.089947
| 30 | Accept | 0.089947

time = 3.5955

Min objective vs. Number of function evaluations

——— Min observed objective

Estimated

10

| objective | BestSoFar
| runtime | (observed)
| 9.35078 | 9.22751
| 2.4634 | 0.10053
| 1.769 | 0.10053
| 3.5043 | 9.10053
| 9.33263 | 9.10053
| 0.34747 | 9.10053
| 0.40319 | 0.10053
| 0.36652 | 0.095238
| 0.33304 | 0.095238
| 9.31597 | 9.095238
| 9.35154 | 9.095238
| 0.36737 | 0.095238
| 0.37402 | 9.095238
| 0.33983 | 0.095238
| 9.34711 | 9.095238
| 0.33665 | 0.095238
| 12.924 | 0.095238
| 1.1396 | 9.095238
| 9.57315 | 9.095238
| 9.35622 | 9.095238
| objective | BestSoFar
| runtime | (observed)
| 11.389 | 9.095238
| 0.34651 | 0.095238
| 0.32898 | 9.095238
| 0.34953 | 0.095238
| 9.31368 | 9.095238
| 9.36952 | 0.095238
| 6.7947 | 0.084656
| 11.748 | 0.084656
| 11.505 | 0.084656
| 6.3582 | 0.084656
min objective 10.22
10.2
o
10.18 =
8
10.16 &
[
-
0.14 =
10.12
R 10.1
: '0.08
20 30

Function evaluations

Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30

75

BestSoFar
(estim.)

0.22751
0.11676
0.10054
0.10054
0.10051

0.1005
0.10055
.095254
.095249
.095244
.095191
.095021
.094885
0.09517
0.095219
0.095119
0.095133
0.095141
0.095208

0.09519

(OO R RN]

BestSoFar
(estim.)

0.095199
0.095027
0.094814
0.094876
0.094939
0.094907
0.084864

0.08527
0.085794
0.085951

Method	NumLearningC-
	ycles
AdaBoostM2	10
RUSBoost	83
AdaBoostM2	84
AdaBoostM2	169
AdaBoostM2	10
RUSBoost	10
RUSBoost	10
Bag	10
Bag	10
Bag	10
Bag	10
Bag	10
RUSBoost	10
AdaBoostM2	10
Bag	11
AdaBoostM2	10
RUSBoost	499
RUSBoost	40
AdaBoostM2	23
RUSBoost	10
Method	NumLearningC-
	ycles
Bag	489
AdaBoostM2	10
AdaBoostM2	11
Bag	10
AdaBoostM2	10
Bag	11
Bag	278
Bag	498
Bag	493
AdaBoostM2	298

0.1228
0.07208.
0.00817

0.4922

0.1758

0.56
0.001599

0.03223
0.009500

0.4418
0.00396
0.4490
0.8116
0.9697

0.6330:
0.001249

0.001041.

0.9754

Total elapsed time: 94.0259 seconds
Total objective function evaluation time: 76.7993

Best observed feasible point:
Method NumLearningCycles LearnRate MinLeafSize

Bag 278 NaN 4

Observed objective function value = 0.084656
Estimated objective function value = 0.085951
Function evaluation time = 6.7947

Best estimated feasible point (according to models):
Method NumLearningCycles LearnRate MinLeafSize

Bag 278 NaN 4

Estimated objective function value = 0.085951
Estimated function evaluation time = 6.7967

Ensemble Clustering Visualisation

The results of every layer of the hypermatrix are summed up and visualised in a heatmap. Additionally the mean
accuracy and time taken is calculated and used as a comparison metric between methods.

En = zeros(m,n);
for j = 1:n

for k = 1:m

En(3,k) = sum(Chyp_En(3,k,:));

end
end
figEn = figureGen(7,10);
heat En6 = heatmap(En, "XDisplaylLabels", [0,1,2,3], "YDisplayLabels", [0,1,2,3],
"ColorMethod", "mean", "ColorLimits", [©,100])

heat_En6 =
HeatmapChart with properties:

XData: {4x1 cell}
YData: {4x1 cell}
ColorData: [4x4 double]

Show all properties

heat En6.Colormap = parula(64);
xlabel("Predicted State");
ylabel("Labelled State");
average_acc_En = median(acc_En)

average_acc_En = 0.9469
average _time_En = median(time_En)
average_time_En = 0.0740

heat En6.Title = "Ensemble Clustering";

76

saveas(heat_En6, 'C:\Users\ellio\OneDrive\Dokumente\Uni\Master\Master
Thesis\Writing\LatexVorlageMA v2.0\LatexVorlageMA_v2.0\chapters\Chapters\07_Results\
figures\6_En.jpg');

Ensemble Clustering

— 100
0
{30
o
1]
a1l 1 60
©
ks
>
40
52
-

20

0 1 2 3
Predicted State

Naive Bayes (NB)
The next method to be applied will be NB.

for i = 1:numel(files)
%Load file i from the folder
fileName = fullfile(files(i).folder, files(i).name);
load(fileName);
%Extract the state vector
state = stateTT.State;
%Extract the Principal COmponent Data
D = PCsTT{:,:};
%Create a random 90/10 Partition for Training and Test Data
rng('default');
Partition_States = cvpartition(state, 'Holdout', ©.10);

%Seperate the training and testing Ids
trainingIds = training(Partition_States);
DTrain = D(trainingIds, :);
stateTrain = state(trainingIds);
testIds = test(Partition_States);
DTest = D(testIds, :);
stateTest = state(testlIds);
Begin measuring the time this algorithm will take

tNB = tic;

train the decsion tree classifier

77

classifierNB = fitcnb(DTrain, stateTrain, 'OptimizeHyperparameters', 'auto');
end the time measurement

timeNB = toc(tNB);
use the tree to predict the test states

TestModel NB = predict(classifierNB, DTest);
measure the accuracy

accuracy NB = sum(stateTest == TestModel NB)/length(stateTest);
%figure;
%confusionchart(stateTest, TestModel BT, 'Normalization', 'row-normalized');

Create a confusion matrix

[C_NB, order] = confusionmat(stateTest, TestModel NB);
%titleStr BT = strrep([fName,' Binary Tree'],' ','-');
% title(titleStr BT);

save the confusion matrix as one layer of the hypermatrix and the accuracy and measured time in vector form

hyp NB(:,:,i) = C_NB;

acc_NB(i) = accuracy_NB;

time_NB(i) = timeNB/length(D);
end

Warning: One or more of the unique class values in GROUP is not present in one or more folds. For
classification problems, either remove this class from the data or use N instead of GROUP to obtain
nonstratified partitions. For regression problems with continuous response, use N.

Warning: It is recommended that you first standardize all numeric predictors when optimizing the Naive Bayes
'Width' parameter. Ignore this warning if you have done that.

|

| Iter | Eval | Objective | Objective | BestSoFar | BestSoFar | Distribution-| Width |
| | result | | runtime | (observed) | (estim.) | Names | |
B e
| 1 | Error | NaN | 0.33295 | NaN | NaN | normal | -

| 2 | Error | NaN | 0.049535 | NaN | NaN | normal | -

3	Best	9.19259	1.1775	9.19259	9.19259	kernel	1.7088
4	Best	9.15926	0.34816	9.15926	0.16101	kernel	7.9523e-07
5	Best	0.077778	9.33735	0.077778	0.08596	kernel	©.00048114
6	Error	NaN	0.065728	0.077778	0.08596	normal	-

| 7 | Error | NaN | 0.051445 | 0.077778 | 0.08596 | normal | -

| 8 | Error | NaN | 0.044473 | 0.077778 | 0.08596 | normal | -

| 9 | Accept | 9.15926 | 0.31474 | 0.077778 | 0.077787 | kernel | 2.2959e-07 |
| 10 | Accept | 0.098765 | 9.37116 | 0.077778 | 0.077797 | kernel | ©.00014123

11	Best	0.059259	©.3356	0.059259	9.05929	kernel	0.001946
12	Best	0.049383	0.33924	0.049383	0.049452	kernel	0.0052596
13	Accept	0.055556	9.35022	0.049383	0.050874	kernel	0.010814
14	Accept	0.050617	0.37425	0.049383	0.050219	kernel	0.0053264
15	Accept	0.050617	0.41049	0.049383	0.050298	kernel	0.0054211
16	Accept	©0.050617	0.40885	©.049383	0.05036	kernel	0.0054392
17	Accept	9.12593	0.38595	0.049383	0.05032	kernel	0.091821

78

| 18 | Accept | 0.19259 | 0.34959 | 0.049383 | 0.050322 | kernel | 20.332
| 19 | Accept | 0.15926 | 0.36952 | 0.049383 | 0.050315 | kernel | 1.074e-05
| 20 | Accept | 0.15926 | 0.33407 | 0.049383 | 0.050317 | kernel | 9.6766e-08

| Iter | Eval | Objective | Objective | BestSoFar | BestSoFar | Distribution-| Width
| | result | | runtime | (observed) | (estim.) | Names |

| = S S S e — S—— S
| 21 | Accept | 0.069136 | 0.34635 | 0.049383 | 0.050302 | kernel | 0.027783
| 22 | Best | 0.046914 | 0.31562 | 0.046914 | 0.049827 | kernel | 0.0044556
| 23 | Accept | 0.046914 | 0.34145 | 0.046914 | 0.04697 | kernel | 0.0045559
| 24 | Accept | 0.048148 | 0.35392 | 0.046914 | 0.047878 | kernel | 0.0035726
| 25 | Best | 0.045679 | 0.3441 | 0.045679 | 0.046823 | kernel | 0.0038925
| 26 | Accept | 0.045679 | 0.31975 | 0.045679 | 0.046482 | kernel | 0.0038409
| 27 | Accept | 0.045679 | 0.32014 | 0.045679 | 0.046277 | kernel | 0.0038526
| 28 | Accept | 0.14444 | 0.30182 | 0.045679 | 0.046309 | kernel | 3.8557e-05
| 29 | Accept | 0.15926 | 0.30499 | 0.045679 | 0.046355 | kernel | 2.8851e-06
| 30 | Accept | 0.19136 | 0.41287 | 0.045679 | 0.04636 | kernel | 0.30725

Min objective vs. Number of function evalua_tiéags

——— Min observed objective
Estimated min objective

Min objective

T 10.05
0 10 20 30
Function evaluations

Objective function model

® Observed points

@
= 0.2 | Model mean
e @® Next point
g * Model minimum feasible
< 0.15 4
=)
@
=
4\'._‘.;'
@
= 014
[e}
=
@
©
E =
E 0.05 N
(%)
10% &
NL
iy
- <
Width <g§

DistributionName

Optimization completed.

79

MaxObjectiveEvaluations of 30 reached.

Total function evaluations: 30

Total elapsed time: 30.8638 seconds

Total objective function evaluation time: 10.1118

Best observed feasible point:
DistributionNames Width

kernel 0.0038925

Observed objective function value = 0.045679
Estimated objective function value = 0.04636
Function evaluation time = 0.3441

Best estimated feasible point (according to models):
DistributionNames Width

kernel 0.0038925

Estimated objective function value = 0.04636

Estimated function evaluation time = 0.3389

Warning: It is recommended that you first standardize all numeric predictors when optimizing the Naive Bayes
'Width' parameter. Ignore this warning if you have done that.

I

| Tter | Eval | Objective | Objective | BestSoFar | BestSoFar | Distribution-| Width |
| | result | | runtime | (observed) | (estim.) | Names | |
| ==ssssmssmesmosmooe- m=ssssmsmssmssmesmssmoosoososeooe- =====es =====ss=-]
| 1 | Best | 0.14275 | 0.36547 | 0.14275 | 0.14275 | kernel | 8.4941e-11 |
| 2 | Accept | 0.14275 | 0.3514 | 0.14275 | 0.14275 | kernel | 5.0721e-19 |
| 3 | Accept | 0.36651 | 0.08854 | 0.14275 | 0.14275 | normal | -

| 4 | Accept | 0.36651 | 0.066177 | 0.14275 | 0.14275 | normal | -

| 5 | Accept | 0.14429 | 0.36157 | 0.14275 | 0.14327 | kernel | 5.0348e-22 |
| 6 | Accept | 0.40586 | 0.54823 | 0.14275 | 0.14272 | kernel | 20.473

7	Accept	0.14275	0.33036	0.14275	0.14267	kernel	4.1677e-14
8	Accept	0.14275	0.32944	0.14275	0.14231	kernel	3.0381le-12
9	Accept	0.14275	0.33659	0.14275	0.14224	kernel	1.0815e-16
10	Accept	0.14429	0.3132	0.14275	0.14223	kernel	2.4898e-20
11	Accept	0.14275	0.32566	0.14275	0.14241	kernel	6.8019e-12
12	Accept	0.14275	0.35659	0.14275	0.14241	kernel	1.176le-17
13	Accept	0.14275	0.33449	0.14275	0.14242	kernel	1.3255e-15

14	Accept	0.14275	0.32613	0.14275	0.14251	kernel	8.208e-12
15	Accept	0.14275	0.31843	0.14275	0.14252	kernel	1.6295e-17
16	Accept	0.14275	0.31471	0.14275	0.14257	kernel	1.0106e-11
17	Accept	0.14275	0.35108	0.14275	0.14257	kernel	8.239%e-16
18	Accept	0.14275	0.33615	0.14275	0.14257	kernel	3.6308e-13

| 19 | Accept | 0.14275 | 0.37931 | 0.14275 | 0.14283 | kernel | 3.5943e-05

| 20 | Accept | 0.14275 | 0.49232 | 0.14275 | 0.14271 | kernel | 3.6218e-07 |
s B ===sss=ssssmssoooeoooe-|
| Tter | Eval | Objective | Objective | BestSoFar | BestSoFar | Distribution-| Width |
| | result | | runtime | (observed) | (estim.) | Names | |
| ==ssssmssmmsmosmooe- m=sssssmsmssmssmesmoomossoosoeooe- ======s ========-|
21	Accept	0.14275	0.40199	0.14275	0.14274	kernel	4.9039e-06
22	Accept	0.14275	0.37741	0.14275	0.14275	kernel	4.405e-09
23	Accept	0.14275	0.34858	0.14275	0.14232	kernel	7.6667e-06
24	Accept	0.14275	0.41595	0.14275	0.14232	kernel	5.7028e-10
25	Accept	0.14275	0.40177	0.14275	0.14233	kernel	2.8365e-08
26	Accept	0.14275	0.34348	0.14275	0.14245	kernel	8.6637e-06
27	Accept	0.14275	0.56162	0.14275	0.14245	kernel	2.2304e-18
28	Accept	0.14275	0.97247	0.14275	0.14246	kernel	9.439e-15

| 29 | Accept | 0.14275 | 0.46253 | 0.14275 | 0.14252 | kernel | 9.2713e-06 |
| 30 | Accept | 0.14352 | 0.59072 | 0.14275 | 0.14275 | kernel | 0.041037 |

80

Min objective vs. Number of function e\.;ralIu_a(t":i(%!;g4

10.1432
—— Min observed objective

Estimated min objective 10.143 2
5]
@
10.1428 &
[e
E
10.1426 =

10.1424

: ' ' 0.1422

0 10 20 30

Function evaluations

Objective function model

@

= 0.4

[

=

§ 0354

< 0.3+ @ Observed points
< I Model mean

S 0.25 @ Next point

% * Model minimum feasible
S 02

&

©

£ 0.15

W

w .

Y
(=]
[

Width &

DistributionName

Optimization completed.

MaxObjectiveEvaluations of 30 reached.

Total function evaluations: 30

Total elapsed time: 34.4256 seconds

Total objective function evaluation time: 11.5024

Best observed feasible point:
DistributionNames Width

kernel 8.4941e-11
Observed objective function value = 0.14275
Estimated objective function value = 0.14275

Function evaluation time = 0.36547

Best estimated feasible point (according to models):
DistributionNames Width

81

kernel 6.8019e-12

Estimated objective function value = 0.14275

Estimated function evaluation time = ©.3895

Warning: It is recommended that you first standardize all numeric predictors when optimizing the Naive Bayes
'Width' parameter. Ignore this warning if you have done that.

|

| Iter | Eval | Objective | Objective | BestSoFar | BestSoFar | Distribution-| Width |
| | result | | runtime | (observed) | (estim.) | Names | |
| == e |
| 1 | Best | 0.25464 | 9.50896 | 0.25464 | 0.25464 | kernel | 10.748 |
| 2 | Error | NaN | 0.065932 | NaN | 0.25464 | normal | -

| 3 | Best | 9.22944 | 0.40502 | 9.22944 | 9.23106 | kernel | 4.3182e-05

| 4 | Error | NaN | 0.057881 | 0.22944 | 0.23106 | normal | -

| 5 | Error | NaN | 0.05263 | 0.22944 | 0.23106 | normal | -

| 6 | Error | NaN | 0.047102 | 0.22944 | 0.23106 | normal | -

| 7 | Error | NaN | 0.056093 | 0.22944 | 0.23106 | normal | -

8	Best	9.19894	0.44106	9.19894	0.20833	kernel	0.002637
9	Accept	9.2374	0.45076	9.19894	9.19894	kernel	3.2299e-06
10	Accept	9.22944	0.47631	0.19894	0.22801	kernel	0.010168
11	Best	0.18302	0.4164	0.18302	0.18493	kernel	0.00163

12	Accept	9.18568	0.43809	9.18302	0.18304	kernel	0.0010132
13	Best	9.18302	9.41833	9.18302	9.1828	kernel	9.0013536
14	Accept	9.19496	0.35466	9.18302	9.1842	kernel	©.00033291
15	Accept	0.18568	0.45658	0.18302	0.18297	kernel	0.0010184
16	Accept	0.2374	0.34323	0.18302	0.18297	kernel	9.4924e-08
17	Accept	0.187	0.52794	0.18302	0.18465	kernel	0.0014872
18	Accept	9.18966	9.37164	9.18302	9.18551	kernel	0.0011808
19	Best	9.18037	0.34418	9.18037	9.18437	kernel	©.00097689
20	Accept	0.18037	0.35085	0.18037	9.18369	kernel	©.00090058
e S ——							
Iter	Eval	Objective	Objective	BestSoFar	BestSoFar	Distribution-	Width
	result		runtime	(observed)	(estim.)	Names	
== i							
21	Accept	9.32095	0.4357	0.18037	9.18375	kernel	0.32661
22	Accept	0.25332	0.43465	0.18037	0.18374	kernel	41.088
23	Accept	9.2374	9.32674	9.18037	9.1838	kernel	5.135e-07
24	Accept	9.28117	9.3711	9.18037	9.18381	kernel	0.054948
25	Accept	9.25597	0.40938	0.18037	0.1836	kernel	2.0719
26	Best	0.17905	0.37489	0.17905	0.18277	kernel	©.00082651
27	Accept	0.18037	0.36364	0.17905	0.18216	kernel	©.00078698
28	Accept	9.2374	0.34541	9.17905	9.1822	kernel	1.1803e-05

| 29 | Accept | 9.22944 | 9.36109 | 9.17905 | 9.18194 | kernel | ©.00011906 |
| 30 | Accept | 9.1817 | 0.36983 | 9.17905 | 0.18164 | kernel | ©.00072613

82

Min objective vs. Number of function evalua_tié:gg

——— Min observed objective
Estimated min objective
10.24
E
g
10.22 ‘&
[
E
=
10.2
. TN, 10.18
0 10 20 30

Function evaluations

Objective function model

[
o ® Observed points
S 0.32 [Model mean
= @ Next point
g 0.3 ~ * Model minimum feasible
S 0.28 4
=]
o 0.26
=
_Ei 0.24
© 0.22
@
= 0.2
Z 0.18 4
] -)
10" N
o
s
- &
Width &
AN

DistributionName

Optimization completed.

MaxObjectiveEvaluations of 30 reached.

Total function evaluations: 30

Total elapsed time: 38.5691 seconds

Total objective function evaluation time: 10.3761

Best observed feasible point:
DistributionNames Width

kernel 0.00082651
Observed objective function value = 0.17905
Estimated objective function value = 0.18164

Function evaluation time = 0.37489

Best estimated feasible point (according to models):
DistributionNames Width

83

kernel 0.00082651

Estimated objective function value = 0.18164

Estimated function evaluation time = ©.3989

Warning: It is recommended that you first standardize all numeric predictors when optimizing the Naive Bayes
'Width' parameter. Ignore this warning if you have done that.

|

| Iter | Eval | Objective | Objective | BestSoFar | BestSoFar | Distribution-| Width |
| | result | | runtime | (observed) | (estim.) | Names | |
|=mmmmm e ====mssmmmssmoooooe- smmmmmssmmmmsmmonon- |
| 1 | Best | 0.10875 | 0.11319 | 0.10875 | 0.10875 | normal | -

| 2 | Accept | 0.13986 | 0.47838 | 0.10875 | 0.11108 | kernel | 3.6134e-05

| 3 | Accept | 0.14086 | 0.42708 | 0.10875 | 0.10878 | kernel | 6.3222e-15

| 4 | Accept | 0.10875 | 0.085533 | 0.10875 | 0.10875 | normal | -

| 5 | Accept | 0.10875 | 0.068815 | 0.10875 | 0.10875 | normal | -

| 6 | Accept | 0.10875 | 0.071951 | 0.10875 | 0.10875 | normal | -

| 7 | Accept | 0.14286 | 0.63422 | 0.10875 | 0.10875 | kernel | 1.7882e-23

| 8 | Accept | 0.20779 | 0.50761 | 0.10875 | 0.10875 | kernel | 20.585

| 9 | Accept | 0.14186 | 0.37426 | 0.10875 | 0.10875 | kernel | 3.1424e-05

10	Best	0.090909	0.42417	0.090909	0.090914	kernel	0.0015524
11	Best	0.060939	0.51573	0.060939	0.12364	kernel	0.0074296
12	Accept	0.14086	0.44963	0.060939	0.12508	kernel	1.737e-10
13	Accept	0.14186	0.44186	0.060939	0.12637	kernel	2.9023e-19
14	Accept	0.14086	0.35681	0.060939	0.1274	kernel	4.4068e-08
15	Accept	0.14086	0.47524	0.060939	0.1283	kernel	8.9683e-13

16	Accept	0.14286	0.38471	0.060939	0.12921	kernel	2.1277e-21
17	Accept	0.14086	0.36889	0.060939	0.1299	kernel	4.2605e-17
18	Accept	0.1978	0.50393	0.060939	0.13367	kernel	0.63624
19	Accept	0.10875	0.079992	0.060939	0.060951	normal	-

| 20 | Accept | 0.063936 | 0.47566 | 0.060939 | 0.060956 | kernel | 0.012267 |
| m====m=m=m=sssmsmsssmsmemsssssmemesssssmemssssememssssooee- —==m=- —=======-|
| Iter | Eval | Objective | Objective | BestSoFar | BestSoFar | Distribution-| Width |
| | result | | runtime | (observed) | (estim.) | Names | |
R ====== o ====sssmmmssmoooooe- e ====mmeee|
21	Accept	0.060939	0.73482	0.060939	0.06092	kernel	0.0082645
22	Best	0.05994	0.54244	0.05994	0.060575	kernel	0.0080064
23	Accept	0.05994	0.54048	0.05994	0.060414	kernel	0.008108
24	Accept	0.060939	0.43643	0.05994	0.060517	kernel	0.0082866
25	Accept	0.14086	0.36764	0.05994	0.060517	kernel	8.2607e-07
26	Accept	0.14086	0.42056	0.05994	0.060519	kernel	2.6649e-09
27	Accept	0.14086	0.35668	0.05994	0.06052	kernel	1.1878e-11
28	Accept	0.060939	0.42011	0.05994	0.060586	kernel	0.0076825

| 29 | Accept | 0.14086 | 0.2901 | 0.05994 | 0.060588 | kernel | 5.2708e-16 |
| 30 | Accept | 0.14086 | 0.33316 | 0.05994 | 0.06059 | kernel | 7.6013e-14 |

84

Min objective vs. Number of function evalual_ti(?ﬁ

10.12
2
- : — 3
——— Min observed objective 2
Estimated min objective 10-1 e
=
=

10.08

' ' ' 0.06

0 10 20 30

Function evaluations

Objective function model

st
® Observed points

[Model mean
0.2 4 @® Nextpoint
#* Model minimum feasible

Estimated objective function value

r A
Width \\o‘

DistributionName

Optimization completed.

MaxObjectiveEvaluations of 30 reached.

Total function evaluations: 30

Total elapsed time: 36.3922 seconds

Total objective function evaluation time: 11.6801

Best observed feasible point:
DistributionNames Width

kernel 0.0080064
Observed objective function value = 0.05994
Estimated objective function value = 0.06059

Function evaluation time = 0.54244

Best estimated feasible point (according to models):
DistributionNames Width

85

kernel 0.0080064

Estimated objective function value = 0.06059

Estimated function evaluation time = 0.48346

Warning: One or more of the unique class values in GROUP is not present in one or more folds. For
classification problems, either remove this class from the data or use N instead of GROUP to obtain
nonstratified partitions. For regression problems with continuous response, use N.

Warning: It is recommended that you first standardize all numeric predictors when optimizing the Naive Bayes
'Width' parameter. Ignore this warning if you have done that.

|=
| ITter | Eval | Objective | Objective | BestSoFar | BestSoFar | Distribution-| Width |
| | result | | runtime | (observed) | (estim.) | Names | |
| SRR S— A— SO - S— SR
| 1 | Best | 9.092269 | 9.35928 | 9.092269 | 9.092269 | kernel | 2.7842e-18 |
| 2 | Accept | 9.31153 | 9.070311 | 9.092269 | 0.20184 | normal | -

| 3 | Accept | 0.092269 | 0.33347 | 0.092269 | 0.092277 | kernel | 4.6755e-12 |
| 4 | Accept | 0.31153 | 0.069698 | 0.092269 | 0.092277 | normal | -

| 5 | Accept | 9.16958 | 9.39223 | 9.092269 | 9.092252 | kernel | 20.574 |
| 6 | Accept | 9.092269 | 9.29506 | 9.092269 | 9.091843 | kernel | 4.2778e-15

7	Accept	9.094763	0.31388	9.092269	0.091603	kernel	6.3441e-20
8	Accept	0.092269	0.37719	0.092269	0.091912	kernel	1.7643e-14
9	Accept	9.092269	9.32098	9.092269	9.092038	kernel	4.2551e-14
10	Accept	9.092269	9.31244	9.092269	9.09206	kernel	2.1169e-16
11	Accept	9.092269	9.29794	9.092269	9.092112	kernel	1.082e-13

| 12 | Accept | 0.092269 | 0.36126 | 0.092269 | 0.092128 | kernel | 2.5372e-16 |
| 13 | Accept | 0.092269 | 0.29318 | 0.092269 | 0.092154 | kernel | 1.2612e-13

| 14 | Accept | 0.092269 | 0.28677 | 0.092269 | 0.092169 | kernel | 2.257e-16 |
| 15 | Accept | 9.092269 | 0.28822 | 9.092269 | 9.092184 | kernel | 1.5082e-05

16	Accept	9.092269	0.28872	9.092269	9.092264	kernel	5.5484e-08
17	Accept	0.092269	0.30138	0.092269	0.091763	kernel	1.1275e-06
18	Accept	0.092269	0.29565	0.092269	0.091954	kernel	1.2661e-06
19	Accept	9.092269	9.29238	9.092269	9.091966	kernel	3.057e-10
20	Accept	9.092269	9.31391	9.092269	9.092051	kernel	1.3293e-06
=m==em=mmcmscmmocaomssmcmscssmmcsemssmssacmsmsesomssmssssssmmesemesmsssesemessssssssemsmesemeses							
ITter	Eval	Objective	Objective	BestSoFar	BestSoFar	Distribution-	Width
	result		runtime	(observed)	(estim.)	Names	
SR S — - SE— SR							
21	Accept	9.092269	0.31408	9.092269	9.092053	kernel	1.6248e-17
22	Accept	9.092269	9.35191	9.092269	0.092056	kernel	2.0584e-11
23	Accept	0.092269	9.29142	0.092269	0.092102	kernel	1.5588e-06
24	Accept	0.092269	0.3614	0.092269	0.092106	kernel	2.1439e-09
25	Accept	9.092269	9.31427	9.092269	9.092108	kernel	2.0104e-17
26	Best	9.057357	9.3513	9.057357	9.057437	kernel	9.023599
27	Best	0.054863	9.29875	0.054863	0.054985	kernel	0.008381
28	Accept	©.054863	©.31494	©.054863	0.054919	kernel	©.0080243
29	Accept	0.054863	0.30308	0.054863	9.054899	kernel	0.0082181
30	Accept	0.054863	9.31964	9.054863	9.054889	kernel	0.0082078

86

Min objective vs. Number of function evaluations

——— Min observed objective
Estimated min objective
10.15 2
©
@
o
[
E
101 =
: : : 0.05
0 10 20 30

Function evaluations

Objective function model

02 ® Observed points
= [Model mean
® Next point
0.15 4 #* Model minimum feasible

Estimated objective function value

r A
Width \\o‘

DistributionName

Optimization completed.

MaxObjectiveEvaluations of 30 reached.

Total function evaluations: 30

Total elapsed time: 26.7465 seconds

Total objective function evaluation time: 9.0847

Best observed feasible point:
DistributionNames Width

kernel 0.008381
Observed objective function value = 0.054863
Estimated objective function value = 0.054889
Function evaluation time = 0.29875

Best estimated feasible point (according to models):
DistributionNames Width

87

kernel 0.008381

Estimated objective function value = 0.054889

Estimated function evaluation time = 0.32103

Warning: It is recommended that you first standardize all numeric predictors when optimizing the Naive Bayes
'Width' parameter. Ignore this warning if you have done that.

|

| Iter | Eval | Objective | Objective | BestSoFar | BestSoFar | Distribution-| Width |
| | result | | runtime | (observed) | (estim.) | Names | |
|=m=memsmmcm=cmmoczomssmcsssssmmczemssmssscmsmnesesssmssssssmesessmsssemsmcsesssmossemssmesemsmes |
| 1 | Best | 0.45166 | 0.091019 | 0.45166 | 0.45166 | normal | -

| 2 | Best | 0.3122 | 0.42133 | 0.3122 | 0.32101 | kernel | 0.29069 |
| 3 | Accept | 9.33756 | 9.38779 | 9.3122 | 9.31226 | kernel | 2.9322e-09 |
| 4 | Accept | 0.45166 | 9.070794 | 9.3122 | 9.31223 | normal | -

5	Accept	0.43265	0.44432	9.3122	0.38095	kernel	20.374
6	Accept	0.34073	0.3366	0.3122	0.36692	kernel	3.6561e-22
7	Accept	0.34073	0.32401	0.3122	0.3598	kernel	3.6802e-22
8	Accept	9.34073	9.33545	9.3122	9.35312	kernel	3.6555e-22
9	Accept	0.34073	0.30005	9.3122	0.34841	kernel	3.6511e-22
10	Accept	9.33756	0.30449	9.3122	0.34756	kernel	1.0511e-15

11	Accept	0.33756	0.36037	0.3122	0.34488	kernel	9.5736e-14
12	Accept	9.33756	9.30389	9.3122	0.34226	kernel	1.2554e-10
13	Accept	9.33756	9.30612	9.3122	9.33992	kernel	1.5919e-07
14	Accept	9.33756	9.34532	9.3122	9.33812	kernel	3.6006e-06
15	Accept	0.33439	0.3051	0.3122	0.33679	kernel	2.6813e-05

16	Best	0.27417	0.31705	0.27417	0.27418	kernel	0.00011114
17	Best	9.23296	9.33074	9.23296	9.23299	kernel	©.00021708
18	Best	9.21236	9.37073	9.21236	9.21236	kernel	0.0004719
19	Best	9.17908	9.32695	9.17908	9.17912	kernel	9.0017581
20	Best	0.16482	9.33428	0.16482	0.16484	kernel	0.0048222
mmmmmmmememmmmmemeemocmmeeeoommooeeeoooooee- —-- S—							
Iter	Eval	Objective	Objective	BestSoFar	BestSoFar	Distribution-	Width
	result		runtime	(observed)	(estim.)	Names	
=m==em=mmcmecmmmcsomesmcsscmsmmczemssmesscmsmmesemssmssssssmesessmsssessmessssmsssemssmesessses							
21	Best	0.15214	9.38138	0.15214	9.15223	kernel	0.010469
22	Best	0.15055	0.33929	0.15055	0.15062	kernel	0.017688
23	Accept	9.15055	9.33819	9.15055	9.15022	kernel	0.014497
24	Accept	9.15055	9.32161	9.15055	9.15032	kernel	0.014748
25	Accept	9.15055	9.33521	9.15055	9.15037	kernel	0.014871
26	Accept	0.33756	9.36792	9.15055	0.15037	kernel	7.8801e-19
27	Best	0.14897	0.32924	0.14897	0.15009	kernel	0.014445
28	Accept	9.33756	0.34896	0.14897	9.15009	kernel	3.3867e-12
29	Accept	9.33756	9.30959	0.14897	9.15009	kernel	2.8127e-17
30	Accept	0.34073	0.31627	0.14897	9.15009	kernel	2.4212e-20

88

Min objective vs. Number of function evalual_tié:gs

——— Min observed objective
Estimated min objective
\ 10.4
| oy
=
\ ;
: @
‘\ 103 &
o
E
=
10.2
: : : 0.1
0 10 20 30

Function evaluations

Objective function model

Estimated objective function value

0.2 4 ® Observed points
[IModel mean
0.1 94| @ Nextpoint L3
10° * Model minimum feasible 6-\\‘
\%‘
>
Width &

DistributionName

Optimization completed.

MaxObjectiveEvaluations of 30 reached.

Total function evaluations: 30

Total elapsed time: 29.2026 seconds

Total objective function evaluation time: 9.704

Best observed feasible point:
DistributionNames Width

kernel 0.014445
Observed objective function value = 0.14897
Estimated objective function value = 0.1501

Function evaluation time = 0.32924

Best estimated feasible point (according to models):
DistributionNames Width

89

kernel 0.014748

Estimated objective function value = ©0.15009

Estimated function evaluation time = 0.34627

Warning: It is recommended that you first standardize all numeric predictors when optimizing the Naive Bayes
'Width' parameter. Ignore this warning if you have done that.

|

| Iter | Eval | Objective | Objective | BestSoFar | BestSoFar | Distribution-| Width |
| | result | | runtime | (observed) | (estim.) | Names | |
|=m=memsmmcm=cmmoczomssmcsscssmnczemssmssscmsmmesesssmssssssmesesemmssemsmcsesssmsssemssmesessmes |
| 1 | Best | 0.37683 | 0.089353 | 0.37683 | 0.37683 | normal | -

| 2 | Accept | 0.37683 | 0.06456 | 0.37683 | 0.37683 | normal | -

| 3 | Best | 9.33982 | 9.35098 | 9.33982 | 9.33983 | kernel | 1.5517e-19 |
| 4 | Accept | 9.37683 | 9.073196 | 9.33982 | 9.33983 | normal | -

| 5 | Accept | 9.33982 | 9.36372 | 9.33982 | 9.33983 | kernel | 1.176e-20 |
| 6 | Accept | 0.43427 | 0.50104 | 0.33982 | 0.33982 | kernel | 20.694 |
| 7 | Best | 0.33788 | 0.31392 | 0.33788 | 0.33789 | kernel | 9.0705e-15

| 8 | Accept | 9.33788 | 9.31251 | 9.33788 | 9.33787 | kernel | 2.9787e-16 |
| 9 | Accept | 9.33788 | 9.32013 | 9.33788 | 9.33777 | kernel | 1.6093e-15

| 10 | Accept | 9.33788 | 9.3368 | 9.33788 | 9.3378 | kernel | 1.7104e-15

| 11 | Accept | 0.33788 | 9.32001 | 0.33788 | 9.33782 | kernel | 1.7815e-15

12	Accept	9.33788	0.36865	9.33788	9.33788	kernel	1.916e-07
13	Accept	9.33788	0.36474	9.33788	9.33785	kernel	4.714e-10
14	Accept	9.33788	9.32693	9.33788	9.33786	kernel	1.414e-08
15	Accept	0.33788	0.33062	0.33788	0.33786	kernel	2.5214e-12
16	Accept	0.33788	0.30902	0.33788	0.33786	kernel	4.0364e-08
17	Accept	0.33788	0.35067	0.33788	0.33786	kernel	3.0706e-11
18	Accept	9.33788	9.32302	9.33788	9.33786	kernel	1.5729e-13

| 19 | Accept | 9.33788 | 9.35489 | 9.33788 | 9.3378 | kernel | 4.04e-08 |
| 20 | Accept | 0.33788 | 0.37683 | 9.33788 | 9.3378 | kernel | 8.7066e-12 |
| B —-- S—
| Iter | Eval | Objective | Objective | BestSoFar | BestSoFar | Distribution-| Width |
| | result | | runtime | (observed) | (estim.) | Names | |
|=m=mem=mmcmecmmmcsomesmcsscmsmmczemssmssscmsmmesemssmssssssmesessmsssessmesessmsssessmssessses |
| 21 | Accept | 0.33788 | 9.32226 | 0.33788 | 0.33782 | kernel | 4.3957e-08 |
| 22 | Accept | 0.33788 | 0.30009 | 0.33788 | 0.33782 | kernel | 4.8155e-13

23	Accept	9.33788	9.31157	9.33788	9.33782	kernel	3.2083e-14
24	Accept	9.33788	9.29445	9.33788	9.33782	kernel	8.9693e-11
25	Best	9.20253	9.35151	9.20253	9.20254	kernel	0.0027181
26	Best	0.19474	0.44938	0.19474	0.19485	kernel	0.005611
27	Best	0.18111	0.3807	0.18111	0.18138	kernel	0.01394
28	Accept	9.19961	9.43557	9.18111	9.18148	kernel	0.04606
29	Best	9.18111	0.44785	9.18111	9.18111	kernel	9.017032
30	Accept	9.18111	9.3915	9.18111	0.18112	kernel	0.016734

90

Min objective vs. Number of function evalual_ti(?gs

——— Min observed objective
Estimated min objective
10.35
o
>
103 FH
@
=
[
10.25 c
=
10.2
' ' ' 0.15
0 10 20 30

Function evaluations

Objective function model

@ Observed points
0.2 - [Model mean

Estimated objective function value

N .
. o ext point. N
10 * Model minimum feasible &
K3
N
<é>
Width &

DistributionName

Optimization completed.

MaxObjectiveEvaluations of 30 reached.

Total function evaluations: 30

Total elapsed time: 27.8803 seconds

Total objective function evaluation time: 9.8374

Best observed feasible point:
DistributionNames Width

kernel 0.017032
Observed objective function value = 0.18111
Estimated objective function value = 0.18114

Function evaluation time = 0.44785

Best estimated feasible point (according to models):
DistributionNames Width

91

kernel 0.016734

Estimated objective function value = 0.18112

Estimated function evaluation time = 0.41282

Warning: It is recommended that you first standardize all numeric predictors when optimizing the Naive Bayes
'Width' parameter. Ignore this warning if you have done that.

|

| Iter | Eval | Objective | Objective | BestSoFar | BestSoFar | Distribution-| Width |
| | result | | runtime | (observed) | (estim.) | Names | |
| =mmmmm e ===mmmsmmmssmmooooe- smmmmmssmmmmsmmonon- |
| 1 | Best | 0.56291 | 0.074793 | 0.56291 | 0.56291 | normal | -

| 2 | Accept | 0.56291 | 0.063593 | 0.56291 | 0.56291 | normal | -

3	Best	0.1746	0.35421	0.1746	0.17463	kernel	9.2214e-12
4	Best	0.079365	0.32959	0.079365	0.079448	kernel	0.016104
5	Accept	0.34392	0.30224	0.079365	0.079395	kernel	20.608
6	Accept	0.079365	0.30089	0.079365	0.079381	kernel	0.016081
7	Accept	0.084656	0.27907	0.079365	0.07934	kernel	0.046042
8	Accept	0.1746	0.37763	0.079365	0.079312	kernel	1.3795e-06
9	Accept	0.1746	0.2878	0.079365	0.079311	kernel	1.0305e-15

10	Accept	0.17989	0.28688	0.079365	0.07932	kernel	6.3649e-21
11	Accept	0.1746	0.36127	0.079365	0.079285	kernel	2.155e-18
12	Accept	0.13757	0.28063	0.079365	0.079377	kernel	©.00050848
13	Accept	0.1746	0.28311	0.079365	0.079392	kernel	3.1841e-09
14	Accept	0.079365	0.31302	0.079365	0.079206	kernel	0.019665

15	Accept	0.079365	0.30086	0.079365	0.079243	kernel	0.019874
16	Accept	0.1746	0.33087	0.079365	0.079259	kernel	9.3401e-14
17	Accept	0.17989	0.29663	0.079365	0.079271	kernel	9.6916e-20
18	Accept	0.1746	0.28836	0.079365	0.079283	kernel	6.5641e-08
19	Accept	0.1746	0.29814	0.079365	0.079296	kernel	5.2849e-17
20	Accept	0.1746	0.31828	0.079365	0.079308	kernel	1.5218e-10
T —==m=- —=======-							
Iter	Eval	Objective	Objective	BestSoFar	BestSoFar	Distribution-	Width
	result		runtime	(observed)	(estim.)	Names	
R ====m= ====m= ===smmsmmmmcomooooe- e el							
21	Accept	0.34921	0.33185	0.079365	0.078934	kernel	0.95913

| 22 | Accept | 0.089947 | 0.308 | 0.079365 | 0.078977 | kernel | 0.004486 |
| 23 | Accept | 0.079365 | 0.33671 | 0.079365 | 0.079102 | kernel | 0.026302 |
| 24 | Accept | 0.1746 | 0.30914 | 0.079365 | 0.079089 | kernel | 2.6497e-05

| 25 | Accept | 0.079365 | 0.2969 | 0.079365 | 0.079156 | kernel | 0.02493

| 26 | Accept | 0.079365 | 0.31932 | 0.079365 | 0.079197 | kernel | 0.024127 |
| 27 | Accept | 0.1746 | 0.31138 | 0.079365 | 0.079189 | kernel | 8.6366e-13

| 28 | Accept | 0.1746 | 0.33084 | 0.079365 | 0.079181 | kernel | 9.0971e-15

| 29 | Accept | 0.1746 | 0.30949 | 0.079365 | 0.079173 | kernel | 1.0512e-17 |
| 30 | Accept | 0.1746 | 0.29542 | 0.079365 | 0.079166 | kernel | 2.9603e-07 |

92

Min objective vs. Number of function evalua!ig%s

——— Min observed objective
Estimated min objective los
104 @
©
@
103 &
[
E
102 =
10.1
' : ' ' ' ' 0
0 5 10 15 20 25 30

Function evaluations

Objective function model

!}\\lllll||||;|.-.-- i

|
@ Observed points
[Model mean
034 @ Nextpoint
Mode!l minimum feasible

0.4 -

Estimated objective function value

Width &

DistributionName

Optimization completed.

MaxObjectiveEvaluations of 30 reached.

Total function evaluations: 30

Total elapsed time: 27.4206 seconds

Total objective function evaluation time: 8.8769

Best observed feasible point:
DistributionNames Width

kernel 0.016104
Observed objective function value = 0.079365
Estimated objective function value = 0.079613
Function evaluation time = ©.32959

Best estimated feasible point (according to models):
DistributionNames Width

93

kernel 0.019874

0.079166
0.31108

Estimated objective function value
Estimated function evaluation time

Naive Bayes Visualisation

The results of every layer of the hypermatrix are summed up and visualised in a heatmap. Additionally the mean
accuracy and time taken is calculated and used as a comparison metric between methods.

NB = zeros(m,n);
for j = 1:n

for k = 1:m

NB(Jj,k) = sum(hyp_NB(j,k,:));

end
end
figNB = figureGen(7,10);
heat_NB6 = heatmap(NB, "XDisplaylLabels", [0,1,2,3], "YDisplaylLabels", [0,1,2,3],
"ColorMethod", "mean", "ColorLimits", [©,100])

heat_NB6 =
HeatmapChart with properties:

XData: {4x1 cell}
YData: {4x1 cell}
ColorData: [4x4 double]

Show all properties

heat_NB6.Colormap = parula(64);
xlabel("Predicted State");
ylabel("Labelled State");
average_acc_NB = median(acc_NB)

average_acc_NB = 0.8851
average _time_NB = median(time_NB)
average_time_NB = 0.0394

heat NB6.Title = "Naive Bayes";

saveas(heat NB6, 'C:\Users\ellio\OneDrive\Dokumente\Uni\Master\Master
Thesis\Writing\LatexVorlageMA v2.0\LatexVorlageMA v2.0\chapters\Chapters\07_Results\
figures\6_NB.jpg');

94

Naive Bayes

100

0
80
o
1]
ol 60
©
ks
3
40
22
—
20
3

0 1 2 3
Predicted State

Comparison Accuracy and Time
Here we will now compare the average time and accuracy of each method.

accuracy = [average_acc_BT, average_acc_DA, average_acc_KNN, average_acc_NN,
average_acc_En, average_acc_NB];

trainingTime = [avergage_time BT, avergage_time DA, avergage time_ KNN,
average_time_ NN, average time_En, average_time_NB];

classifierMethods = categorical(["Binary Decision Tree", "Discrement Analysis",
"KNN","Nerual Network","Ensemble Methods", "Naive Bayes"]);

fig = figureGen(7,10);

% gscatter(trainingTime,accuracy*100,classifierMethods)

% hold on;

scatter(trainingTime(1l), accuracy(1l)*100, [], [2/255 93/255 249/255], 'filled');
hold on;

scatter(trainingTime(2), accuracy(2)*100, [], [249/255 2/255 6/255], 'filled');
hold onj;

scatter(trainingTime(3), accuracy(3)*100, [], [249/255 142/255 2/255], 'filled');
hold on;

scatter(trainingTime(4), accuracy(4)*100, [], [0 @ @], 'filled');

hold on;

scatter(trainingTime(5), accuracy(5)*100, [], [216/255 2/255 249/255], 'filled');
hold on;

scatter(trainingTime(6), accuracy(6)*100, [], [51/255 135/255 22/255], 'filled');
hold on;

scatter(time BT, acc BT*100, [], [2/255 93/255 249/255], '.');

hold on;

scatter(time_DA, acc_DA*100, [], [249/255 2/255 6/255], '.');

hold on;

scatter(time KNN, acc KNN*100, [], [249/255 142/255 2/255], '.');

95

hold on;
scatter(time_NN, acc_NN*100, [], [0 @ @], '.');

hold on;
scatter(time_En, acc_En*100, [], [216/255 2/255 249/255], '.');
hold on;
scatter(time_NB, acc_NB*10@, [], [51/255 135/255 22/255], '.');
hold on;

legend("Binary Decision Tree", "Discrement Analysis"™, "KNN","Nerual
Network","Ensemble Methods", "Naive Bayes")
legend("Position", [0.48997,0.17366,0.39797,0.34595])

ylabel('Accuracy [\%]');
xlabel('Training Time [s/instance]');
ylim([50,100]);

x1lim('auto"');

grid on;

title('Comparison of Training Time and Accuracy');

Comparison of Training Time and Accuracy

100 .
W e * * ® -
L% -,
L . L]
90 + °
o1
X 80ls.
e ®
i *t
8 7ol ® Binary Decision Tree
- : ® Discrement Analysis
: @ KNN
6o b ® Nerual Network
® Ensemble Methods
® Naive Bayes
50 ! L 4 L Il
0 0.2 04 0.6 0.8 1

Training Time [s/instance]

saveas(fig, 'C:\Users\ellio\OneDrive\Dokumente\Uni\Master\Master
Thesis\Writing\LatexVorlageMA v2.0\LatexVorlageMA_v2.0\chapters\Chapters\07_Results\
figures\6_Comparison.jpg');

96

	Introduction
	Goals
	Structure

	Machine Learning Background
	Applications of Machine Learning
	Types of Machine Learning Tasks
	Types of Learning
	Interpretability
	Applicability

	Data Quality and Data Mining
	Data Quality Dimensions
	Accuracy
	Completeness
	Time-Related Dimensions
	Consistency

	Data Mining
	The Standard Process of Data Mining
	The Data Mining Wisdom Pyramid

	Relevance for this Thesis

	Data Exploration
	Data Structure
	Industrial Context
	The States of the System

	Data Ingestion
	Issues with the Data
	NaNs in the Data
	Time Discrepancies

	Dimensionality Reduction
	Singular Value Decomposition (SVD)
	Principal Component Analysis (PCA)
	Checking the dimensional coverage after PCA

	Dimensional Coverage when Losing Sensors
	Choosing 5 out of 6 Sensors
	Choosing 4 out of 6 Sensors

	Redundancies

	Exploration of different Machine Learning Algorithms
	Binary Decision Trees
	Types of Decision Trees
	Impurity Measures
	Tree Pruning
	The CART Decision Tree Algorithm

	Linear Discriminant Analysis (LDA)
	Mathematical Definition
	Suitability of Discriminant Analysis for Classification Tasks

	k-Nearest Neighbours (kNN)
	Mathematical Definition
	Suitability of kNN for Classification Tasks

	Artificial Neural Networks (NN)
	Types of Neural Networks
	Feed-Forward Network
	Mathematical Definition
	Suitability of Neural Networks for Classification Tasks

	Ensemble Classification
	Bagging (Bootstrap Aggregation)
	Boosting
	Suitability of Ensemble Methods for Classification Tasks

	Naive Bayes Classification (NB)
	Mathematical Definition
	Suitability of Naive Bayes Classification

	Example Application and Results
	Approach
	Hyperparameter Optimisation

	Computational Limitation
	Application
	Binary Decision Trees
	Linear Discriminant Analysis
	k-Nearest Neighbours
	Neural Networks
	Ensemble Classification Methods
	Naive Bayes

	Comparison of Results
	Results with 5 sensors

	Conclusion, Summary and Outlook
	Bibliography
	Appendix A: Dimensionality Reduction Code
	Appendix B: Machine Learning Application Code

