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Abstract

This thesis investigates methods and architectures for machine learning that are particularly

suited for the analysis of data emerging from the observation of physical processes and systems.

In this context, two main areas have been addressed. The first area is centered around techniques

for the detection and characterization of anomalies occurring in a physical process for multi-

channel sensor data acquired in real-time. These techniques generalize to the detection of

anomalies in multivariate time-series data; secondly, new mathematical approaches, together

with a new machine learning architecture, are presented that enable the embedding of a-priori

knowledge about the system behavior. This ensures that the solutions obtained are consistent

with the physics of the system being observed. This resolves the issue that purely data-driven

systems can only make statements about the data; however, to make statements about a system

from data, it is necessary to embed a-priori knowledge about the behavior of the system.

The second major issue addressed is combining the Rayleigh-Ritz method with machine

learning. This required the development of new synthesis algorithms for admissible functions

that ensure a hard fulfillment of constraints.

The Rayleigh-Ritz Autoencoder embeds the admissible functions in the decoder portion

of an autoencoder enabling the hard fulfillment of generalized constraints. This removes the

necessity for an additional regularizing term in the cost function. In turn, this permits the

learning of the solutions to problems modeled via the calculus of variations, whereby the cost

function corresponds directly to the functional that needs to be minimized.

Both parts are supported by a hybrid architecture for hyperparameter optimization based

on a genetic algorithm. All the above concepts are presented as a collection of peer-reviewed

publications and supported by code published in the form of toolboxes.
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Chapter 1

Introduction

This thesis presents a set of methods on the topic of hybrid machine learning, with a particular

focus on modeling real-time sensor data recorded in physical processes and incorporating physical

knowledge into machine learning models. The methods are presented in a collection of peer-

reviewed papers. The thesis consists mainly of two parts. The first part of the thesis focuses on

outlier detection in a high-risk industrial process.

This was done using hybrid machine learning algorithms, which are a combination of key

performance indicator computation and autoencoders. The second part deals with the embedding of

physical constraints as hard constraints in machine learning architectures, in particular autoencoders,

using the theory of admissible functions. Both parts are supported by the task of hyperparameter

optimization, which is the task of finding the best settings for the machine learning algorithms with

respect to some metric. The papers are grouped into two main chapters according to their nature:

1. Anomaly detection methods, mainly based on variations of autoencoders,

2. Rayleigh-Ritz Machine Learning, a new architecture for scientific machine learning.

In addition to the theory, a Matlab framework has been developed to support and ease the

implementation of the above theory.

The results presented in the papers were obtained by providing implementations of the techniques

and methods described in this thesis. In order to allow further research on this topic, the code has

been made available to the public, packaged in two toolboxes, where the first one can be used to

implement autoencoders and the second one provides the hyperparameter optimization using a

genetic algorithm for the aforementioned models.

1.1 Motivation

The increased computing power available in recent years has made it possible to rediscover and

re-invent techniques developed before the AI winter and almost forgotten in recent decades. The
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problems that machine learning (ML) algorithms tackle today were solved analytically in the past.

When the research proposal was presented in October 2022, physics-based machine learning was

considered a so-called innovation trigger. This can be seen in the annual Gartner Hype Cycle

(see Figure 1): physics-informed machine learning is still at the beginning of research and work

in this area brings both - great opportunities for development and a high risk of failure. In 2023,

physics-based machine learning was also mentioned in the hype cycle (see Figure 2), but the name

was changed to First Principal AI. To get solutions which are aligned with the physics of the system,

the idea is to incorporate known physical properties into machine learning architectures to provide

a lower dimensional problem to the learning process and enforce compliance with physical laws.

First principles AI is defined in the context of the hype cycle as a synonym for physics-informed

Figure 1: Hype Cycle for Artificial Intelligence, 2022 [1.1]

AI [1.2]. Not only the hybridized machine learning architectures need to be developed, but also

classical machine learning architectures that can handle data from physical systems, which in

many cases will be large, multivariate, with varying sampling lengths and frequencies, containing

erroneous samples caused by errors in the measurement device or data processing.

10



Figure 2: Hype Cycle for Artificial Intelligence, 2023 [1.2]

In addition, the machine learning architectures should, in the best case, be self-adapting to

new environmental characteristics and have high reliability with low re-calibration effort. In many

areas of machine learning, good performance with some performance fluctuations, e.g. translations

between different languages, product recommendations in online shopping are tolerable, but in

safety-relevant applications this can lead to severe repercussions.

1.2 Scope

This dissertation explores the question of applying machine learning to the analysis of real-time data

recorded during the observation physical processes. It presents a collection of methods related to

this topic of hybrid machine learning in the context of physical systems. The aim of all the methods

presented is to model the data coming from physical systems more accurately and to incorporate

a-priori physical knowledge into the hybrid machine learning. The methods are demonstrated
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through a series of peer-reviewed papers and published code packaged in toolboxes.

The focus of the research is on hybrid machine learning for the analysis of possibly multivariate

time-series from systems with strong physical relevance. The thesis relates to the combination of

algebraic and statistical techniques with machine learning for time-series data. The scope of the

thesis was limited to autoencoder-like models. There are different depths at which the proposals for

hybrid machine learning are made:

1. A modified cost function of the autoencoder that more accurately reflects the characteristics

of the system behavior that needs to be evaluated.

2. Anomaly detection in large amounts of real-time serial data collected during the execution of

industrial production processes. In particular, the automatic decomposition of the multivariate

time-series into segments corresponding to the sub-processes that, as a composite, represent

the whole physical process to be monitored.

3. Combining constrained discrete orthogonal basis functions with ML techniques to implement

a generalized discrete calculus od variations approach for boundary value problems (BVP)

and inverse BVP.

4. Combining genetic algorithms for hyperparameter optimization with all the above mentioned

ML techniques for machine learning suitable for multivariate data from physical systems.

With respect to the cost function and learning procedures for multivariate time-series, a new method

has been developed that is suitable for training models on data with highly variable time series

lengths. It reduces the amount of information added during resampling. The channels in multivariate

time-series may have different levels of information. To address this issue, a new distribution-free

regularization was proposed and tested.

In machine learning from real industrial processes, in most cases no ground truth is available. In

these cases, unsupervised learning is the only option. New methods for training set construction

based on additional a-priori knowledge of the process were investigated and compared to random

training set construction. This was tested and evaluated in combination with hierarchical training

methods that decompose the time series into segments and sub-processes and perform the anomaly

detection for the decomposed time-series. The results are in the end reassembled, which leads to an

additional level of redundancy.

The effect of hyperparameters and random seeds on the performance of machine learning

models was shown and discussed in terms of robustness. A genetic algorithm was developed for the

hyperparameter optimization of all the above machine learning architectures, which should lead

to a better coverage of the search space due to the hybridization of two crossover functions. The

hyperparameter optimization was used in all other hybrid architectures mentioned in this text.

Finally, a novel hybrid architecture for scientific machine learning was developed, which

combines all the developments discussed above. It allows, based on admissible functions, the

12



fulfillment of a large class of linear constraints. It is called a Rayleigh-Ritz autoencoder because it

is based on the Rayleigh-Ritz method of calculus of variations. It allows the implementation of the

constraints and subsequently the admissible functions directly in the machine learning architecture.

This architecture is presented together with the synthesis algorithms for the admissible functions

used in the decoder and opens a new research field called Rayleigh-Ritz Machine Learning.
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Chapter 2

Hybrid Machine Learning for Multivariate

Time-Series

This chapter presents a comprehensive survey of the literature available. Due to the diverse range of

topics covered, the literature reviews pertaining to specific subtopics are incorporated within the

relevant papers included in this dissertation.

2.1 How It All Started

The first computational model for neurons [2.1] was published in 1943 by McCulloch and Pitts and

formed the basis for today’s research on artificial neural networks.

As described in cite [2.2], there are three main problems in using neural networks:

1. the optimal feature set,

2. the architecture of the neural network,

3. the method for setting the optimal parameters of the neural network.

The automation of these tasks is also known as Automated Machine Learning [2.3].

This section aims to give an overview of the available literature on these subproblems. Since

this topic covers a wide variety of approaches, this section will be limited to unsupervised and

semi-supervised neural network approaches that are suitable for multivariate time-series data.

2.2 Properties of Machine Learning for Time-Series from Phys-

ical Systems

When applying machine learning techniques to data recorded during the observation of industrial

processes, the time sequence of the recordings should also be maintained during the machine
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learning process. Data recorded from physical systems have temporal dependencies and are in

general multi-channel [2.4]. When recording real data from physical processes, the recordings are

almost always noisy [2.4]. Moreover, in data recorded in industrial processes there is in many cases

no possibility to establish ground truth and as consequence a lack of labels. A class of anomalies is

not known before it is observed for the first time, using supervised learning techniques additional

biases and assumptions are added to the system [2.5]. In semi-supervised approaches, the ML model

is trained on a subset of the data that is assumed to contain a small number of unknown anomalies,

and the known anomalies are excluded [2.5]. Therefore, unsupervised and possibly semi-supervised

machine learning techniques are investigated.

Machine learning in physical systems must be reliable because the costs and consequences of

false results are significant, especially in safety-relevant applications. For this reason, (parallel)

hybrid models are used to reduce the risk of missing faulty elements and incorporating redundant

mechanisms. Furthermore, anomalies are not known before being observed first; consequently,

the hybrid models are combined with a knowledge discovery process to derive new detection

mechanisms for anomalies not flagged by both parts.

2.3 Encoder-Decoder-Based Architectures

Autoencoders are the non-linear machine learning counterpart to principal component analysis [2.6],

both techniques extract the features that capture most of the variance of the data by performing

dimensionality reduction [2.7]. Autoencoders consist of two coupled parts: an encoder and a

decoder. Each of these parts performs a mapping; the encoder maps the input to the ML architecture

in most applications to a lower dimensional latent representation and the decoder tries to reconstruct

the input signal as well as possible from this lower dimensional coding [2.8]. In general, the

mapping performed by the encoder is the mapping from observation to parameter space, an inverse

problem, and the mapping learned by the decoder, from parameter to observation space, can be

described as a forward problem [2.9]. The loss function of an autoencoder is a functional to be

minimized, most commonly based on the reconstruction error. which is the difference between the

input passed to the encoder and the reconstructed representation obtained by the decoder [2.10].

Another member of the autoencoder class is the variational autoencoder (VAE) [2.11, 2.12], which

differs from the classical autoencoder by its loss function, which is a regularized version of the

reconstruction error and incorporates learning probabilities in the latent space, the space of lower

dimensional encodings. For this reason, variational autoencoders are classified as generative models.

2.3.1 Autoencoders for Anomaly Detection

Anomaly detection using autoencoders relies on the assumption that anomalies/outliers contain

non-representative features and therefore are not encoded in a lower dimensional space [2.13, 2.14].

In [2.15], a variation of VAEs is presented that detects outliers in the training dataset during training
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and reduces their contribution to learning. Autoencoders were used in a supervised setting [2.16] as

well as in an unsupervised setting for outlier detection. The disadvantage of training supervised

autoencoders is that only known defects/anomalies are detected [2.16].

For time-series data; however, it may be beneficial to add layers with special properties to

the networks; one possibility is to add long-short term memory (LSTM) layers [2.14, 2.17, 2.18]

- yielding an LSTM autoencoder, convolutional neural network (CNN) layers [2.14] - yielding a

CNN autoencoder, or mixtures of these to the encoder and/or decoder. However, CNNs have been

shown to have the disadvantage of poorly capturing the spatial context of the data. To overcome

this limitation of CNNs, capsule networks (CapsNet) [2.19] have been developed [2.20], primarily

for image classification, and have also been hybridized to an LSTM CapsNet autoencoder [2.20].

The choice of layers is discussed in more detail in Section 2.3.3.

In the area of time series data, the datasets are small compared to vision applications or language

learning; several hundred compared to several thousand available datasets. The general trend in

machine learning architecture is towards deeper and deeper networks with an increasing number

of learnable parameters. However, when using generative models, e.g. variational autoencoders

and time-series, because of this comparatively small number of training samples, the following

phenomena can occur: most of the information is stored in the decoder, this is known as posterior

collapse [2.21] and is thought to be caused by the Kullback-Leibler divergence used in the regular-

ization term of the cost function of VAEs. Because of this drawback of using the Kullback-Leibler

(KL) divergence in latent space and the fact that it is not a symmetric measure, other measures

of distribution similarity have been investigated; the distribution-free similarity index can also

be used from a Bayesian perspective [2.22], or the Wasserstein distance in so-called Wasserstein

autoencoders [2.23], or using the β divergence [2.24], which is a regularized version of the KL

divergence, this type of VAE is also known as β -VAE [2.25].

Assumptions about the learned data are also made when variational autoencoders are used: an

a-priori distribution of the learned data must be assumed. To simplify the computations, a Gaussian

distribution is often chosen; the approach presented in [2.26] relaxes this assumption, although this

approach requires labeled data to be available.

Most industrial processes rely on inferring information from the available data, since in most

cases there is no ground truth. Almost all physical systems are governed by differential equations

and are subject to constraints. For example, a bending beam that is clamped at one end and has

no bending moment at the other end. The solution obtained by system identification must exactly

satisfy these constraints, otherwise it is not a valid solution. In classical analysis, the mapping

performed by an encoder can be seen as an inverse problem and the second mapping performed by

the decoder as a forward problem. Because of this analogy, encoder-decoder structures, especially

autoencoders, have been successfully used to solve forward and inverse problems [2.9].
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2.3.2 Physics and Machine Learning

Classical neural networks do not employ a-priori knowledge of the physics of the system. Physics-

informed neural networks [2.27] are a hybridization of classical neural networks and mathematical

models that enforce physical laws. As these networks are trained, available information about the

physics of the network is incorporated into the learning process. However, the disadvantage of

purely data-driven models is that they may fit the observation very well, but the predictions may still

contain physical inconsistencies and produce implausible solutions. In most of the physics-based

approaches, presented so far, the physics are inferred from the observations [2.27]. When using

autoencoder-like architectures the goal is that the latent space is the parameter space; the encoder

learns the parameters of the equation governing the physical system. However, the work presented

in [2.9, 2.28] does not enforce the fulfillment of constraints, which is a crucial property in modeling

physical systems, since if these constraints are not fulfilled, the solution obtained is not valid.

Solving inverse problems brings additional difficulties since the solutions of inverse problems are

not guaranteed to be unique and stable [2.29].

In [2.30] an overview is given of the known techniques for solving differential equations with

neural networks, most of the techniques presented are based on multilayer perceptrons (MLP)

and radial basis functions (RBF). In one of the approaches that combines both MLP and RBF,

the authors conclude that their method could solve the differential equation in a way that exactly

satisfies the boundary condition, hard enforcement of constraints, but it is computationally too

expensive. With this limitation, they choose to solve the system of equations approximately and

exclude solutions that don’t fulfill the conditions [2.30]. Other approaches to solving the constraint

problems are also presented, using genetic algorithms, the Nelder-Mead simplex method and many

others. The paper published in [2.31] lists three ways of solving partial differential equations with

neural networks, one of which is physics-informed neural networks, but constrained systems are not

treated separately in this paper. [2.32] gives an overview of recent developments in physics-based

neural networks. In most of the recent literature, e.g. [2.33, 2.34], the physical constraints are

incorporated into the loss function of the neural networks as a penalty term, which is also referred

to as soft boundary constraint enforcement in the literature on physics-informed neural networks.

The other approach is known as hard enforcement and the physical constraints are encoded into the

network architecture [2.32].

More recently, the field of Scientific Machine Learning [2.35] has emerged. In contrast to

physics-based neural networks, this term covers a broader set of concepts related to scientific

applications. Examples of scientific machine learning dealing with solving differential equations

and satisfying constraints can be found in [2.36, 2.37].

2.3.3 Machine Learning Architectures for Time-Series

This section discusses the architectural choice of including ML layers with special properties and

their suitability for handling the properties of time-series data. For neural networks, the universal
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approximation theorem [2.38] holds: given appropriate weights, neural networks can approximate

any regular function with arbitrary accuracy; in theory with one layer, although this layer may have

an infeasible large number of neurons [2.38], hence more than one layer is often used in a neural

network architecture.

When dealing with time-series, the sequence of the data must be preserved. A common choice for

dealing with sequential data are Recurrent Neural Networks (RNN), but when RNN are applied to

long data sequences, such as those found in industrial processes, they face numerical difficulties,

namely exploding and vanishing gradients. As a solution to this problem of gradient computation,

another type of recurrent architecture; Long Short-Term Memory Layer (LSTM) [2.39], has been

introduced. LSTMs have been successfully used to predict time series in [2.14,2.40–2.42]. However,

LSTMs are complex models with a large number of hyperparameters, and it has been shown that they

have an impact on performance [2.43] and need to be optimized simultaneously due to dependencies

between hyperparameters [2.44–2.46]. Indeed, [2.47] suggests that the performance of generative

models, such as variational autoencoders or generative adversarial networks, is determined by the

choice of hyperparameters. LSTMs are a common choice for inclusion in generative networks

(see section 2.3.1). Another approach to solving the vanishing and exploding gradient problem is

to partition the hidden layer into shorter models with different temporal granularities [2.48] and

also models with a reduced number of connections between layers and neurons, known as skip

connections [2.49].

In natural language processing, transformers are considered to have reached state-of-the-art

performance [2.50, 2.51]. These attention-based architectures [2.52, 2.53] have emerged in ML for

time-series analysis in recent years [2.54, 2.55], although pre-training can be unsupervised, most

approaches require supervised fine-tuning [2.53]. Classical transformers are considered be recurrent

networks and therefore suffer from the same limitations as feed-forward networks, i.e. they can only

access representations from downstream layers but not from upstream layers. This limitation has

been addressed e.g. by [2.56]. It has been shown that recurrent networks, in particular LSTMs, are

better suited for modeling hierarchical relationships [2.57, 2.58] and have decreasing performance

when dealing with long sequences [2.58]. In addition, the literature suggests that transformers

have difficulty generalizing to input of lengths not seen during training, which can be a problem

when dealing with time-series with widely varying time-series lengths [2.51]. Transformer-based

architectures claim to have shorter training times than autoencoders with recurrent layers, e.g.

LSTM, because they rely on transfer learning in most cases and are only fine-tuned to the desired

problem [2.59].

Instead of using recurrent neural networks, some approaches use convolutional layers, known

from machine vision applications for their ability to extract features, have also been applied to time-

series problems [2.14, 2.60]. Alternative pre-trained architectures have also been presented in the

recent past [2.61]. There are also approaches that combine both convolutional and recurrent features

in one architecture, e.g. ConvLSTM [2.4]. According to [2.4], clustering methods, SVM and density

estimation methods may not perform well due to their inability to capture temporal dependencies
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in the data; however, these methods combined in a hybrid machine learning architecture may be

beneficial.

2.4 Hybridizations of Neural Networks

Hybrid machine learning is defined as systems that combine at least two different techniques, one

of which is a machine learning model. There are several ways to hybridize machine learning; some

of the most important techniques for this dissertation project are described in the following section.

One of the most popular hybridization in time-series analysis is the combination of classical

techniques, i.e. Autoregressive Integrated Moving Average (ARIMA), with machine learning

models. In [2.62] the combination of ARIMA to model the linear part and support vector machines

for the non-linear part is shown.

In the M4 competition [2.63] in 2020, a competition on time-series forecasting comparing classical

and machine learning methods with pure statistical and pure ML approaches, it was shown that

hybrid models outperformed the other competing approaches. Combining at least two methods,

statistical and/or ML, also increased numerical accuracy [2.63]. The authors point out that this

is consistent with previous M-competitions; it is believed that no single method can adequately

capture the patterns in time series data [2.63]. The subsequent M-competition, M5, was the first in

the series of M-competitions where all the top performing methods were based on machine learning

approaches [2.64]. However, all such comparisons of methods need to be taken with a pinch of salt.

According to [2.65], most of the benchmark datasets available for time-series anomaly detection

may be unreliable. Also, many papers published on time-series ML use private data and do not

show a sample plot of the data analyses [2.65].

Hyperparameter Optimization

Another way to hybridise machine learning models with another type of algorithm is to use some

kind of optimization technique to determine the architecture and initial settings [2.2]. This is

known as hyperparameter optimization or hyperparameter tuning and can be done, for example,

using meta-heuristics, genetic algorithms [2.41, 2.66–2.69] or particle swarm optimization [2.70].

Hyperparameter optimization is particularly important for adapting systems to changing data

properties as they occur in practical problems. It not only makes systems adaptable, but also allows

fair comparison of different architectures and improves their performance in general [2.71].

Hyperparameters are parameters of machine learning models that determine the architecture

and tuning of the optimization algorithm used for learning. In many applications, hyperparameters

are set manually by trial and error or with an approach that performs an exhaustive search, the grid

search [2.72]. However, the number of required evaluations of architectures grows exponentially

with the number of hyperparameters to be optimized. Additionally, it should be mentioned that

machine learning does not provide a unique solution in most cases, as it is highly overdetermined
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and the random initialization of the weights and biases adds another source of uncertainty to the

system. Evaluating the hyperparameter setting by training a model may not be sufficient due to this

performance fluctuations.

Another class of hyperparameter optimization methods are Bayesian approaches [2.72, 2.73],

which are especially recommended for smaller hyperparameter search spaces [2.71]. Furthermore,

not all hyperparameters contribute equally to the performance [2.46, 2.74]. In addition, it was found

that hyperparameters have regions of stable performance and therefore meta-heuristics [2.75] may

be fit for purpose [2.44].
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[2.24] H. Akrami, A. A. Joshi, J. Li, S. Aydöre, and R. M. Leahy, “A robust variational autoencoder

using beta divergence,” Knowledge-Based Systems, vol. 238, p. 107886, Feb. 2022.

[2.25] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and

A. Lerchner, “beta-VAE: Learning basic visual concepts with a constrained variational

framework,” in International Conference on Learning Representations, 2017. [Online].

Available: https://openreview.net/forum?id=Sy2fzU9gl

[2.26] M. Barlaud and F. Guyard, “A Non-Parametric Supervised Autoencoder for discriminative

and generative modeling,” in ICASSP, Toronto, Canada, 2022. [Online]. Available:

https://hal.archives-ouvertes.fr/hal-02937643

[2.27] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang, “Physics-

informed machine learning,” Nature Reviews Physics, vol. 3, no. 6, pp. 422–440, 2021.

[2.28] P. Peng, S. Jalali, and X. Yuan, “Solving Inverse Problems via Auto-Encoders,” IEEE Journal

on Selected Areas in Information Theory, vol. 1, no. 1, pp. 312–323, Mar. 2020.

[2.29] N. Levashova, A. Gorbachev, R. Argun, and D. Lukyanenko, “The Problem of the Non-

Uniqueness of the Solution to the Inverse Problem of Recovering the Symmetric States of a

Bistable Medium with Data on the Position of an Autowave Front,” Symmetry, vol. 13, no. 5,

p. 860, May 2021.

[2.30] N. Yadav, A. Yadav, and M. Kumar, An Introduction to Neural Network Methods for

Differential Equations. Dordrecht, The Netherlands: Springer Netherlands, 2015. [Online].

Available: https://link.springer.com/book/10.1007/978-94-017-9816-7

[2.31] J. Blechschmidt and O. G. Ernst, “Three ways to solve partial differential equations with

neural networks — A review,” GAMM-Mitteilungen., vol. 44, no. 2, p. e202100006, June

2021.

22



[2.32] S. Cuomo, V. S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi, and F. Piccialli, “Scientific

machine learning through physics-informed neural networks: Where we are and what’s next,”

arXiv preprint arXiv:2201.05624, 2022.

[2.33] Y. Xiong, R. Zuo, Z. Luo, and X. Wang, “A Physically Constrained Variational Autoencoder

for Geochemical Pattern Recognition,” Math. Geosci., vol. 54, no. 4, pp. 783–806, May 2022.

[2.34] X. Meng, Z. Li, D. Zhang, and G. E. Karniadakis, “PPINN: Parareal physics-informed

neural network for time-dependent PDEs,” Comput. Methods Appl. Mech. Eng., vol. 370, p.

113250, Oct. 2020.

[2.35] N. Baker, F. Alexander, T. Bremer, A. Hagberg, Y. Kevrekidis, H. Najm, M. Parashar,

A. Patra, J. Sethian, S. Wild, K. Willcox, and S. Lee, “Workshop report on basic research

needs for scientific machine learning: Core technologies for artificial intelligence.” [Online].

Available: https://www.osti.gov/biblio/1478744

[2.36] N. Saad, G. Gupta, S. Alizadeh, and D. M. Robinson, “Guiding continuous operator

learning through physics-based boundary constraints,” in ICLR 2023, 2023. [Online].

Available: https://www.amazon.science/publications/guiding-continuous-operator-learning-

through-physics-based-boundary-constraints

[2.37] D. Hansen, D. M. Robinson, S. Alizadeh, G. Gupta, and M. Mahoney, “Learning

physical models that can respect conservation laws,” in ICML 2023, 2023. [Online].

Available: https://www.amazon.science/publications/learning-physical-models-that-can-

respect-conservation-laws

[2.38] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal

approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, Jan. 1989.

[2.39] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9,

no. 8, pp. 1735–1780, 11 1997.

[2.40] A. Sagheer and M. Kotb, “Time series forecasting of petroleum production using deep

LSTM recurrent networks,” Neurocomputing, vol. 323, pp. 203–213, Jan. 2019.

[2.41] S. Bouktif, A. Fiaz, A. Ouni, and M. A. Serhani, “Optimal Deep Learning LSTM Model for

Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with

Machine Learning Approaches †,” Energies, vol. 11, no. 7, p. 1636, June 2018.

[2.42] D. Brezak, T. Bacek, D. Majetic, J. Kasac, and B. Novakovic, “A comparison of feed-

forward and recurrent neural networks in time series forecasting,” in 2012 IEEE Conference

on Computational Intelligence for Financial Engineering & Economics (CIFEr). IEEE, Mar.

2012, pp. 1–6.

23



[2.43] F. Hutter, H. Hoos, and K. Leyton-Brown, “An Efficient Approach for Assessing

Hyperparameter Importance,” in International Conference on Machine Learning. PMLR,

Jan. 2014, pp. 754–762. [Online]. Available: https://proceedings.mlr.press/v32/hutter14.html

[2.44] K. Greff, R. K. Srivastava, J. Koutnı́k, B. R. Steunebrink, and J. Schmidhuber, “LSTM: A

search space odyssey,” IEEE Trans. Neural Networks Learn. Syst., vol. 28, no. 10, Mar. 2015.

[2.45] S. L. Smith, P.-J. Kindermans, C. Ying, and Q. V. Le, “Don’t decay the learning rate, increase

the batch size,” arXiv preprint arXiv:1711.00489, 2017.

[2.46] P. Probst, A.-L. Boulesteix, and B. Bischl, “Tunability: Importance of hyperparameters of

machine learning algorithms,” The Journal of Machine Learning Research, vol. 20, no. 1, pp.

1934–1965, 2019.
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Chapter 3

Contributions

The main parts of the research carried out for this thesis have been presented in peer reviewed

publications: eight papers and two toolboxes publicly available on code servers. As this interdis-

ciplinary research bridges several scientific fields, the work has been interdisciplinary in nature

and has been in cooperation with a wide variety of people. As is the nature with interdisciplinary

research, it is difficult to quantify the significance of individual contributions to success and the

publication of new results; particularly, when - as is here the case - there is a combination of both

simultaneous and sequential contributions. Nevertheless, my main contributions to each publication

can be summarized as follows:

1. [3.1]: Implementation of the autoencoder architecture and the genetic algorithm, responsible

for the LSTM-VAE classifier, execution of the presented ML experiments and evaluation of

the results, literature research, main responsibility for the coordination of the paper preparation

and review process, presentation of the paper at the conference.

2. [3.2]: Mainly responsible for the preparation and conceptualization of the manuscript,

coordination of the writing process, implementation of the ML experiments, implementation

of the new preprocessing steps, data evaluation and visualization, carried out the main part of

the literature review, coordination of changes in the review process, presentation of the paper

at the conference.

3. [3.3]: Mainly responsible for drafting and conceptualizing the manuscript, implementing and

conceptualizing the improvements to the ML-based architecture, performing the experiments

presented and collecting and visualizing the data, coordinating the review process.

4. [3.4]: Implementation of the Rayleigh-Ritz autoencoder and embedding the a-priori con-

straints into the architecture, as well as performing the experiments presented in the form

of a case study, performing and writing the literature review on physics-informed machine

learning, responsible for the sections on the Rayleigh-Ritz autoencoder, coordinating changes

throughout the writing and review process, presenting the paper at the conference.
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5. [3.5]: Assisting with manuscript preparation and derivation, mainly on the topics of incorpo-

rating permissible functions into the machine learning architecture, proofreading, participating

in rewrites after each stage of the review process.

6. [3.6]: Main person responsible for the ML part, performing the experiments for the ML parts,

draft of the literature review for the ML part, assisting the first author with the preparation of

the manuscript, providing all necessary data evaluation and interpretation, and preparing all

necessary figures.

7. [3.7]: Main person responsible for coordinating the writing process, performing ML experi-

ments, implementing and conceptualizing the new distribution-free loss function and training

procedure, producing ML results and literature review on physics-informed ML, coordinating

the submission process

8. [3.8]: Conceptualizing and writing the main part of the introduction, supporting activities

throughout the paper, proofreading, contributing to the derivation and formalization of the

concepts used, coordinating the submission.

In addition to the above publications, two toolboxes (see [3.9] and [3.10]) have been programmed

by me and made available for further research. These two toolboxes have been used as a basis for

the research described in the aforementioned publications and are also a result of the research work

carried out for this thesis.
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Chapter 4

Anomaly Detection in Multivariate

Time-Series

This chapter addresses methods for detection of anomalies, based on machine learning, during

analyzing multivariate time-series, as well as the additional challenges occurring when dealing with

multivariate batch-data, in contrast with univariate streaming data. The research question posed on

this topic were answered with the following papers:

1. Hybrid Machine Learning for Anomaly Detection in Industrial Time-Series Measurment

Data,

2. Quality Monitoring in Vibro Ground Improvement - A Hybrid Machine Learning Approach,

3. Detecting Anomalous Multivariate Time-Series via Hybrid Machine Learning,

4. Application of Hybrid Machine Learning Based Quality Control in Daily Site Management,

5. Instrumentation and Signal Processing for Verification of Directional Drilling.
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Abstract

This paper presents a parallel hybrid machine learning system for the identification of

anomalies in large sets of multivariate time-series (MVTS) measurement data. The goal is to

achieve a more reliable detection of anomalies in safety relevant applications. Key performance

indicators (KPI) are used as a measure for predicted possible sources of error. Whereas, a

long short-term memory (LSTM-VAE) variational autoencoder is used to model the system

behavior; the variational portion ensures the statistical uncertainty of the data is taken into

account during training of the network. Combined in a parallel hybrid manner this provides a

more reliable anomaly detection. The proposed structure is validated with a case study relating

to a ground improvement process for building foundations. The data consists of large sets of

real-time multi-variate time-series sensor data, emanating from the instrumented drilling rig.

The performance of the LSTM-VAE is optimized using a genetic algorithm to select the optimal

values for the hyperparameters. The implemented framework will also support future research

into hybrid learning systems applied to real-time machine data analysis.

Index Terms - Hybrid Learning, Outlier Detection, Time Series

1 Introduction

This paper addresses the issue of hybrid machine learning as a means of improving the detection of

anomalies in multivariate time-series, emanating from sensors on heavy machinery. The particular
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focus here is on the evaluation of real-time machine data in safety relevant applications. A parallel

hybrid system is implemented, combining classically computed key performance indicators and

a machine learning classifier, as two independent means of identifying anomalies in MVTS. The

developed methods are generic in nature and applicable to time-series evaluation in general. Here a

specific case-study is used as a demonstrator and to validate the proposed methods.

Figure 1: Schematic of the vibro-replacement ground improvement process. A) corresponds to the

penetration process, B) to the compaction process and C) to a surface completion. The phases A

and B are monitored in this work.

The vibro-replacement ground improvement process is used to create a large number of stable

sub-surface columns for foundations of buildings. A schematic for the creation of a single column

is shown in Figure 1. The process consists of two phases: a penetration phase during which the high

power vibration head penetrates the ground; and the compaction phase where gravel is introduced

concentrically and compacted in a vertical oscillating process.

The approach is to instrument the machine and analyze the multivariate sensor data in a manner

that permits the automatic detection of a column that had anomalous characteristics. This is a

safety relevant task, since the repercussions of having an instable foundation are both dangerous

and very costly to rectify. This task is complicated by the fact that the subsurface conditions are

non-uniform within a site and vary greatly from site to site. Furthermore, the process is manually

performed by humans with different behavior and operation skills. Consequently, it is necessary

to identify metrics for the process which are independent of a specific site characteristics or, are

relative within a site. The machine has been instrumented with sensors for ns = 16 channels,

sampled at ts = 1s. A time-series of sensor data is created for each foundation-column. A site will

typically have k = 400 . . .1000 columns; whereby, the time required to create a column may vary

from tc = 6 . . .30min. Consequently, there are hundreds, if not thousands, of MVTS, with strongly

varying lengths, associated with each building site.

The main contributions of this paper are:
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1. A hybrid machine learning architecture for the detection of anomalous data sets in large

numbers of multi-variate real-time machine data.

2. The identification and validation of long short-therm memory variational autoencoder as

a machine learning approach suitable for handling real time data with uncertainty in the

temporal patterns.

3. The thorough analysis of the proposed method in a safety relevant case study. This includes

the validation of the proposed methods on large volumes of real time machine data acquired

in the field.

Figure 2: Example of the GPS referenced KPI for a specific building site. Each point corresponds to

a foundation-column and has a MVTS associated with it. The color of the point is used to represent

one KPI, while the radius of the point corresponds to a different KPI. Note: the systematic variation

if the KPI from top to bottom and left to right.

2 Anomaly detection and machine learning.

The task of identifying anomalous foundation-columns, from the machine data, is currently per-

formed manually. Manual inspection of hundreds of time-series is both error prone and costly. The

goal now is to investigate a combination of key performance indicators with machine learning (ML)

to automatically detect anomalous MVTS. KPI are used to determine systematic changes in the

time-series data across the building site, e.g., see Fig. 2.

The machine learning classifier should be in the position to detect non-linear relationships

between the sensor channels that are not considered by the KPI, but are relevant in the classification

of the data. Furthermore, the ML-classifier may detect anomalies that were not addressed by the

KPI directly, e.g., sources of errors that were not considered. Note: The ML-classifier is considered

as augmenting the KPI not as a replacement, essentially a parallel hybrid system.
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The aim is to have an ML-method that identifies anomalous time-series in an unsupervised

manner, since this alleviates the necessity of labeling data. More importantly, it removes the

assumption that labeling produced on one building site is valid when applied to another building

site. It is necessary to verify the ML-classifier on multiple building sites.

3 Proposed machine learning architecture

There are a number of issues that need to be considered for the design of the ML-architecture:

1. The architecture must be suited to model MVTS.

2. The ML-architecture must have a mechanism to perform a regularization to deal with the

uncertainty in the data.

3. Some means of optimizing the hyperparameters of the ML-method are required.

4. To define a method of classifying a data set as anomalous requires both a measure and

thresholds.
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Figure 3: LSTM-VAE architecture

An autoencoder implements an unsupervised dimensionality reduction by identifying a compact

representation to approximate the MVTS [4.1]. This ML-architecture consist of an encoder, which

maps the input signals to a set of latent variables [4.2, 4.3] and a decoder which reconstructs an

approximation. LSTM [4.4] has been selected for the encoder and decoder portions as a means of

capturing the time dependencies within the time-series data, without being restricted to a specific

convolution length [4.5]. A schematic of the LSTM-VAE is shown in Fig. 3.

A good representation of the data achieves a high dimensionality reduction [4.6]; that is, it

requires only a low number of latent variables to create a good approximation of the data. The latent

variables are akin to the coefficients of a classical model. In this analogy the encoder corresponds

to solving the inverse problem and the decoder to the forward problem [4.7].

The variational autoencoder learns the joint distribution over all the latent variables and so aims

to discover a generalization of the data generation process [4.2]. A common implementation of
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variational autoencoders is to model the latent variables as Gaussian distributions described by

their mean and standard deviation [4.8]. With this, the latent space can be considered to have a

multidimensional probability density function (PDF).

Combining autoencoders, especially variational autoencoders, with LSTM layers (LSTM-VAE)

is a quite recent evolution in machine learning. It has been implemented for outlier detection, see

e.g. in [4.4,4.9]. Another variation of this technique using a LSTM-VAE with generative adversarial

network is shown in [4.10].

An LSTM-VAE requires a set of hyperparameter values to enable training of the network;

their values have a significant influence on performance; the exact mechanisms are still not fully

understood [4.11]. As a result it is necessary to use some computational technique to determine an

optimal set of hyperparameter values.

4 Hybrid anomaly detection

The hybrid classifier implemented here, uses both KPI and the LSTM-VAE to independently classify

an MVTS as anomalous or not. Then the results of both classifications are combined. The results

are combined as follows:

1. Any column that is classified as anomalous by either of the methods is considered to be

anomalous. Augmenting the KPI classification with the ML-classifier leads to a more reliable

detection of produced foundation-columns which are anomalous.

2. The MVTS associated with foundation-columns classified by the LSTM-VAE as anomalous,

but not by the KPI, are used in an extended knowledge discovery process. Hereby, a process

expert analyzes the data manually to determine as to why this classification has occurred.

The goal is to establish better knowledge and understanding of the results obtained via the

ML-classifier.

5 KPI classifier

Currently there are n = 49 different KPI defined for each foundation-column. Outlier detection

is performed for each sensor channel in each KPI, based on its value being outside the upper

bu = q75 + 1.5 IQR and lower bl = q25 − 1.5 IQR bounds; whereby q75,q25 refer to the 75% and

25% quantiles and IQR to the interquantile range. A measure for the outlierness1 of a specific

MVTS is obtained by summing up the number of KPI for which it has been determined to be an

outlier and normalizing by the number of KPI used, see Fig. 4.

1This is an artificial word, it refers to a quantification as to what degree must a produced element be considered to

be an outlier.
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Figure 4: Evaluation of the KPI for a building site with more than n = 400 foundation columns.The

point numbers are sorted according to execution time. Top: KPI represented as a heat-map. Bottom:

degree of outlierness.

6 LSTM-VAE classifier

Variational autoencoders have been successfully used for outlier detection in time series, see

e.g., [4.4, 4.9, 4.10, 4.12, 4.13]. The outliers are commonly detected in one of two ways:

1. In the latent space: The LSTM-VAE training yields a PDF for the latent space; see Fig. 5. The

PDF of the latent space is mapped to the model for the MVTS data via the decoder. However,

detection in the latent space tends to be more difficult, due to the high dimensionality reduction

performed by the encoder [4.4].

2. Via the reconstruction error [4.14]: this is numerically more expensive, since both the encoder

and decoder computations are required. However, it is a measure based on the quality of the

reconstruction.

6.1 Preselection for training the LSTM-VAE

In the type of application being considered here, the sensor data is handled as a MVTS; consequently,

for each produced foundation column there is an associated MVTS. There are many hundreds of

these MVTS available for training for any one site, e.g., Fig. 4 shows data for a building site with

n > 400 MVTS. Furthermore, the KPI computations are available prior to training the network.

As defined in Section 5, a measure for the outlierness can be computed from the KPI. This is

one of the very reasons for this piece of work: to determine how hybrid analytical and machine
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learning methods can best be combined. The framework established here enables the investigation

of different preselection strategies, with very little effort. Here we report on the results from the

first selected strategy.

The preselection strategy selected here is, to use data which the KPI determine to be certainly

non-anomalous. In this manner, the training process should identify the most compact PDF in the

latent space that generalizes the description of non-anomalous data.

6.2 Training

Stochastic gradient decent (SGD) is the method used to perform the nonlinear minimization during

training. The b MVTS, available for training, are grouped into mini-batches of size m using random

sampling. The batch size is a hyperparameter of the network training, its value has an effect on the

generalizing property of the SGD. The optimal selection of the value is addressed in Section 6.3.

If Yk is the matrix of the data, for the kth sample in a batch, and Ŷk the corresponding network

prediction, then the reconstruction cost function Er is computed as2,

Er =
m

∑
k=1

∥Yk − Ŷk∥
2
F . (4.1)

The cost function Et , minimized during training, is the evidence lower bound(ELBO) [4.2,4.15],

it is the reconstruction cost function Er regularized by the Kullback-Leibler divergence [4.2, 4.16,

4.17] with respect to a normal distribution N(0,1). In this manner the uncertainty in the data is

modeled by the joint probability density function (PDF) in the latent space. This regularization

ensures optimal PDF for the given data. If µ denotes the vector of the mean values of the latent

variables and σ the vector of their corresponding standard deviations, then Kullback-Leibler

divergence for all latent variables can be denoted as DKL{N(0,1)∥N(µ,σ)}

Et = Er −DKL{N(0,1)∥N(µ,σ)}. (4.2)

The Kullback-Leibler regularization influences the coefficients of the network during training, with

the aim of obtaining a latent space where the variables have equal variance. Consequently, given the

values of the latent variables and their respective variances, the Mahalanobis distance corresponds

to hyper-ellipsoids. However, with equal variance this becomes a hyper-sphere and the distances

are isotropic with respect to direction, i.e., the variables are of equal importance. It is similar to

covariance weighted averaging in the evaluation of measurement data [4.7].

The evidence lower bound is a lower bound on the log-likelihood of the data. The KL divergence

is a quantification3 of the similarity of two statistical distributions and is a good approximation for

the similarity between the true posterior distribution and the approximated posterior. With VAE it is

assumed that the latent variables are mutually independent.

2Note ∥A∥F denotes the Frobenius norm of the matrix A.
3The DKL does not fulfill the properties required to formally be a measure; consequently, we do not denote it as

measuring the similarity.
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6.3 Hyperparameter optimization (HPO)

A popular approach to hyperparameter optimization is a technique referred to as grid search [4.11]

which performs an exhaustive search on a fixed grid of candidate values. However, the dimen-

sionality of this problem increases exponentially with the number of hyperparameters. Greff et

al. showed in [4.18], that for LSTM structures, there are large regions of good performance for

the hyperparameters. Consequently, exhaustive searches of the space are not required and meta-

heuristics become applicable. Here a genetic algorithm4 has been selected as a meta-heuristic

to optimize the hyperparameters [4.19, 4.20]. It efficiently identifies good regions in the search

space [4.21, 4.22]. In comparison to grid search, genetic algorithms require fewer evaluations of the

objective function [4.22] to attain similar performance.

Figure 5: Example of the PDF of the latent space of the VAE-LSTM trained with the optimized

hyperparameters.

The hyperparameters can be split into: training and architecture parameters. The learning rate is

optimized simultaneously for the encoder and decoder. The quality of the training process is also

influenced by the number of epochs p the model is trained [4.1]. The third training parameter is the

mini-batch size m. Out of the set of architecture parameters the number of neurons of the LSTM

layer of the encoder nne and decoder nnd are also optimized. The constrained ranges for the training

of these parameters are:

1. trained epochs: p ∈ [1,100];

2. batch size: m ∈ [2,n];

4A detailed explication of the implementation of the genetic algorithm is beyond the scope of this paper, due to the

limited space available here. Details of the implementation can be found in [4.19].
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3. number of neurons encoder: nne ∈ [1,100];

4. number of neurons decoder: nnd ∈ [1,100];

5. learning rate: α ∈ [0.00005,0.01];

6. number of latent variables: nz = 2.

The choice of these ranges is bases on experience gained in previous research [4.23].

During optimization variations were investigated where additional LSTM layers could be

conditionally implemented; however, the genetic algorithm found optimal solutions where these

additional layers were not required. Consequently, they are not included in the final architecture.

7 Experiments and Results

The results presented here are based on data acquired at a building site where k = 272 foundation

columns were produced; this is real production data.

The data is preprocessed prior to training the network: each time-series is resampled to have the

same length, as required for the LSTM encoder. Resampling has been selected over padding due to

the statistical distribution of the MVTS lengths, see Fig. 6. There are a few very long sequences and

padding all others to this length would prove highly inefficient. This is followed by normalization,

to create unitless channels with defined magnitudes.
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Figure 6: Example histogram of the time-series lengths associated with one building site.

7.1 Training and optimization

A subset of n = 80 non-anomalous data sets were selected for the training and optimization process.

The evolution of the average performance of the LSTM-VAE as a function of generation in the
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Figure 7: Average fitness of the LSTM-VAE as it evolves with generations in the genetic algorithm.

genetic algorithm is shown in Figure 7. The performance converges exponentially, as one would

expect from a genetic algorithm [4.24].

In Figure 8 the spread of values for the hyperparameters p, nne, nnd , α and m within each

population as a function of generation is shown. It can be seen that, with the exception of α the

learning rate, all the values converge to stable distributions. This behavior is consistent with the

results reported in [4.18]. At this point we conclude that the learning and optimization process has

converged and proceed now to evaluate selected data.

7.2 Case study quasi-validation

In this application there is fundamentally no ground truth5 available. A quasi-validation set was

produced consisting of n = 10 anomalous and n = 10 non-anomalous. The 20 MVTS were classified

to the best of human ability; four people were involved in this process, including an expert in the

ground improvement process.

All time-series for the site we evaluated for their reconstruction error using the LSTM-VAE; this

was performed for both the non-optimized and optimized hyperparameters. The goal is to determine

if the hyperparameter optimization has improved the reliability of the classification.

The results of applying the LSTM-VAE to all the time-series available for the site are shown

in Figure 9: On the left the results prior to hyperparameter optimization and on the right after

optimization.

The reconstruction error from the LSTM-VAE is positive definite; as a result, it does not adhere

to a standard Gaussian distribution. Given this uncertainty, skewness adjusted outlier detection is

more appropriate [4.25–4.27]. Then the automatic and manual classifications are compared to see if

there are erroneous classifications by the LSTM-VAE.

5For this reason we have not called this section validation.
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Figure 8: Hyperparameters p, nne, nnd , α and m values as a function of generation. Blue: the value

for each member of the population in each generation. Red-circled: the best performing member of

the population at each generation. It can be seen that, with the exception of the learning rate α , all

the values converge to stable values. Whereas α converges to a region, this is consistent with there

being flat regions of performance with the hyperparameters [4.18].

The following observations can be made directly:

1. The reconstruction error over all the time-series for the site is significantly improved after hy-

perparameter optimization. This implies that the optimization is improving the representation

of the data.

2. The variance and IQR of the reconstruction error are also significantly reduced through

optimization. This is important since this will lead to tighter bounds for the detection of

outliers after skewness adjustment.

3. After optimization, the automatic and manual classifications agree to 100%; there are no false
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classification, all columns are correctly classified as anomalous or non-anomalous. This is

not the case prior to optimization.

This directly concluded results are also congruent with the statistical quantities which are

shown in Table 4.1. In Table 4.1 various measures related to the reconstruction error of a model

trained with optimized parameters are compared to a model with non-optimized parameters. The

statistical quantities were calculated for the manually labeled non-anomalous (normal) examples

and anomalous examples (outliers).
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Figure 9: Results of applying the LSTM-VAE to all the time-series available for the site. Left: prior

to hyperparameter optimization. Right: after optimization. The automatic classification as an outlier

or not is performed using the skewness-adjusted boxplot bounds.

The uncertainty in the data can be seen in the bivariate histogram of the KPI-based outlierness

and LSTM-VAE reconstruction error Er, for each of the n = 272 time-series, is shown in Fig. 10.

The two methods clearly identify a common set of MVTS, which have both low outlierness and

low reconstruction error; this is the dominant peak in the bivariate histogram. Given the bivariate

histogram thresholds can be computed based on the Mahalanobis distance and used to classify

anomalous MVTS.

Table 4.1: Statistical comparison

without HPO with HPO

statistical quantity normal outlier normal outlier

mean 137.38 243.80 52.04 164.85

median 142.58 186.12 49.88 125.97

σ 17.22 114.46 7.92 99.60

IQR 23.28 194.83 12.16 104.25

skewness 0.001 0.650 0.666 1.113

distance between means 106.43 112.82

distance between medians 43.55 76.10
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of the n = 272 time-series.

8 Conclusion

The proposed hybrid KPI - LSTM-VAE classifier for the multivariate time-series measurement data

has functioned as proposed. The machine learning portion has identified anomalous data sets which

were not detected by the KPI; i.e., there is anomalous behavior which was not detected by the KPI

proposed by the experts. The hybrid statistical outlier detection and the variational nature of the

encoder successfully modelled the uncertainty of the data.

It can be concluded that the application of the genetic algorithm to optimize the hyperparameters

is significant; since after optimization there is a lower variance in the LSTM-VAE reconstruction

error. This further permits the identification of tighter thresholds with the same confidence level as

prior to optimization.

The framework implemented here has been applied to an extensive case study and provides a

platform to perform further research on applying hybrid machine learning to multivariate measure-

ment data. Issues for further research: the preselection methods applied before training; use of

alternative loss functions in the autoencoder, e.g., test 1-norms rather than 2-norms and/or alternative

measures for divergence. Furthermore, with this framework the preselection of MVTS to be used

during training based on the KPI can be investigated; this would yield a serial hybrid system during

training and a parallel hybrid system during classification.
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Abstract

This article presents a new approach of quality control to vibro ground improvement tech-

niques based on hybrid machine learning (ML), i.e., a combination of classical analysis and ML

techniques. The process is monitored with an instrumented rig equipped with multiple sensors.

Key performance indicators (KPIs) are used to identify anomalous foundation columns. As the

foundation columns are sub-surface, there is no direct access to ground truth; consequently,

unsupervised ML is applied to the recorded time-series data. The risk of not detecting defective

elements is reduced by the combination of two independent methods for anomaly detection,

KPI- and ML-based classification. The ML is used to gain a deeper process understanding
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and to detect anomalies which were not considered in the design phase of the KPI. New pre-

processing techniques were derived from the insights gained from the ML classifier; this led to

a more robust classifier. It is shown how unsupervised ML, using a multi-channel variational

autoencoder (VAE) with long short-term memory (LSTM) layers, can be utilized in a knowledge

discovery process (KDP).

Keywords: vibro ground improvement; quality monitoring; hybrid learning; outlier detec-

tion; time-series; KPI analysis

Zusammenfassung

In diesem Fachbeitrag wird ein neuer Ansatz für die Qualitätskontrolle der Tiefenrüttelverfahren

mittels hybriden maschinellen Lernens vorgestellt. Als hybrides maschinelles Lernen wird die

Kombination von klassischen analytischen Methoden mit Methoden des maschinellen Lernens

beschrieben. Die Prozessüberwachung wird basierend auf einer instrumentierten Rütteltragraupe

durchgeführt. Durch Berechnung von Leistungskennzahlen werden Elemente mit abweichenden

Qualitätsmerkmalen identifiziert. Unüberwachtes maschinelles Lernen wird auf die aufgenom-

menen Zeitreihen angewandt, da keine Grundwahrheit für jedes Element ermittelt werden

kann. Durch die Kombination zweier unabhängiger Methoden, maschinelles Lernen und Klas-

sifizierung mittels Leistungskennzahlen, wird das Risiko ein fehlerhaftes Element nicht zu

erkennen, minimiert. Durch die Klassifizierung basierend auf maschinellem Lernen wird ein

tieferes Prozessverständnis erlangt und es werden dadurch Anomalien erkannt, welche bei

der Definition von Leistungskennzahlen nicht mit einbezogen wurden. Dadurch konnten neue

Datenvorverarbeitungsmethoden abgeleitet werden, welche zu einer robusteren Klassifizierung

führen. Es wird gezeigt wie unüberwachtes maschinelles Lernen mittels eines ”Variational

Autoencoders”mit mehreren Kanälen und ”Long-Short-Term Memory”Layern in einem Wis-

sensentdeckungsprozess verwendet werden kann.

Stichworte: Tiefenrüttelverfahren: Qualitätsüberwachung; Hybrides maschinelles Lernen;

Anomaliedetektion; Zeitreihenanalyse; Leistungskennzahlenanalyse

1 Introduction

Vibro ground improvement techniques are widely used to support buildings and infrastructure works.

This process was developed by the Johann Keller GmbH in the 1930s. Although this technique

has been used for almost 100 years, there is still no standardized, reliable method for performing

quality control [4.2]. Increasing economic pressure and a higher risk awareness—if a building

foundation fails, the value of damage may easily exceed the value of the foundation works—force

this traditional technique to change and upgrade the quality control processes significantly [4.3].

As the produced elements are sub-surface, there is no direct possibility for inspection after

execution. Consequently, the quality control is based on indirect methods. Starting in the 1990s,

some key parameters from the machine data were monitored as a means of quality control, e.g.,
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Figure 1: Geo-referenced view of the depth of two building sites. Each circle indicates an element;

a deeper maximum depth is indicated with a bolder shade of the circle

depth of execution, vibrator amperage, pull down force, etc. [4.4].This data is used in installation

reports as the basis for geotechnical as well as quality evaluations [4.5]. Unfortunately, except for a

few automated procedures, e.g., automatic recording of depth logs [5], the main part of the quality

control is still performed manually whereby geotechnical experts analyse installation reports. In

these reports, the time, depth, and compacting energy are logged [4.4, 4.6]. However, there is the

necessity to manually evaluate several hundred installation reports per site with limited human

resources. This creates the potential for oversights, or not all elements being evaluated with the

necessary due diligence. This can lead to unforeseen failures of the future buildings [4.4]. It is

very difficult to manually create an overview of the observed properties over a whole site from
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hundreds of installation reports and to identify changing process properties over the site. These

changes can be caused by the vibro soil improvement as it has an impact on the surrounding ground

of the executed element [4.4] or by changing geotechnical properties of the soil within a building

site. The understanding of the subsurface features, e.g., variations in the local bearing capacity, is

crucial to ensure stable foundations, to avoid structural failure and post-construction problems in

civil engineering [4.2, 4.4, 4.7]. As an indicator of changing subsurface properties within the site,

the maximal required depth to obtain a stable column can be used [4.2]. A georeferenced overview

of the maximum depth of the elements of two building sites is shown in Figure 1.

The results of site A (Figure 1b)1 are discussed in more detail in the following sections.

2 Hybrid anomaly detection framework

Figure 2 gives an overview of the used methodology which is described in more detail in the

following sections: Section 2.1 describes the systematic data collection and the calculation of the

key performance indicators (KPIs) based on expert knowledge. Section 2.2 explains the machine

learning (ML)-based anomaly detection, as well as the training set construction utilizing the

outlierness, which is the result of the KPI-based module.

2.1 Systematic data collection and KPI

The rig is instrumented with multiple sensors that enable the collection of real-time machine data

during performing the ground improvement process [4.8]. For each foundation column, the data

are collected and organized as a multivariate time-series (MVTS). These MVTS form the basis

for the knowledge discovery process (KDP). A series of KPI which capture expert knowledge,

are computed for each column [4]. These KPI can be represented as a heat map (see Figure 2b)

supporting the visual detection of anomalies. When fused with GPS coordinates, a georeferenced

view of the data is produced (see Figure 3). This is important because it permits the modelling of

systematic changes over a site. Furthermore, the statistics of the KPI are used to identify MVTS

which are anomalous and possibly point at poor quality of the elements [4.9, 4.10].

From the KPI, the outlierness is derived as a parameter of the degree of an MVTS being

anomalous. The outlierness is calculated as the number of KPI being an outlier, normalized by the

total number of KPI. This is done for all columns of a site [4.9, 4.11]. The KPI classification of an

MVTS into anomalous and non-anomalous is performed by determining a threshold based on the

standard method for determining outliers. The thresholds are determined using the interquartile

range (IQR), calculating an upper threshold Tu and lower threshold Tl:

Tl = q25− c IQR, (4.3)

1Due to confidentiality reasons, the data source is not disclosed.
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Figure 2: Overview of the used hybrid framework for anomaly detection. a) Schematic illustration

of the ground improvement process with the three phases penetration (A), compaction (B), and

surface completion (C). The recorded MVTS of the ground improvement process are used in the

b) KPI-based anomaly detection as well as in the c) VAE with LSTM layers. The results of the

KPI-based anomaly detection are utilized during training the ML model. d) The outcome of the

VAE-LSTM is used in a classification into anomalous or non-anomalous. e) The results of the two

means of anomaly detection are then visualized in a histogram and utilized in a KDP

Tr = q75 + c IQR, (4.4)

Where qp denotes the quantile containing p per cent of the samples. A common choice for

c = 1.5 [4.12].

2.2 AI for unsupervised anomaly detection

The goal of the ML classifier is to model repeating patterns in the data and to detect anomalies [4.13].

However, as the produced elements are sub-surface there is no possibility to establish ground truth.

The manual inspection of the columns by a geotechnical expert, e.g., using dynamic probing [4.8], is

time-consuming and costly; furthermore, this can only be applied after the process is finished [4.4].

As a result, no reliable labelling of the data can be performed during the production process. As a

consequence, an unsupervised ML approach has been chosen [4.11]. Additionally, it is desirable

that the ML-based classifier creates a generalization, which is valid, despite variations of properties

over a site and from site to site [4.4].
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Figure 3: The upper layer corresponds to the geo-referenced data, whereas the smoothed lower

layer is an inferred sub-surface model

The autoencoder (see Figure 2c) consists of a long shortterm memory (LSTM) encoder which

produces the latent variables and an LSTM decoder which takes the latent encoding as input and

produces the reconstructed signal ŷ. As the name suggests, the LSTM encodes the long- and

short-term relationships within the data. The residual is given by r = y− ŷ, where y corresponds

to the measurement and ŷ to the reconstructed signal [4.14]. The 2-norm of the residual is given

as ∥r∥2
2. The neural networks have a large number of learnable parameters n, i.e., weights and

biases; in this example, n≈ 40.000 . . .70.000. Consequently, there are more degrees of freedom

than required for a least squares optimum, i.e., the system is underdetermined. The variational part

refers to regularizing [4.15] the cost function with a term relating to the distributions of the latent

variables. The cost function C [4.14–4.17]

C = ∥r∥2
2−λ DKL(N(0,1)|N(µ,σ)) (4.5)

consists of two terms:

1. the reconstruction error: ∥r∥2
2,

2. the Kullback–Leibler divergence of the latent variables from the standard, normal distribution:

DKL(N(0,1)|N(µ,σ)).

The regularization factor λ is a hyperparameter. The optimization of hyperparameters is

discussed later in this section. For λ = 1, C is the cost function of a classical variational autoencoder
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(VAE), called the evidence lower bound (ELBO), as described in ref. [4.14]. The weights and biases

of the network are optimized during the learning process [4.14, 4.18].

Classification is simply the task of assigning a specific value to a category; for example,

an MVTS can be assigned to the category anomalous or non-anomalous [4.19]. This can be

performed in both a supervised and an unsupervised manner [4.20–4.23]. The ML-based classifi-

cation is performed by thresholding the reconstruction error using a threshold which is skewness-

adjusted [4.24, 4.25]. The probability distribution of the reconstruction error is fundamentally

skewed. Therefore, the single-sided skewness adjustment is needed when computing the thresh-

old [4.11, 4.26].

Hyperparameters

The hyperparameters are the parameters considered to be constant for any single training task. A

study on the impact of the hyperparameters on the network performance was performed. This

is still a topic of ongoing research. The results obtained so far suggest that the hyperparameter

optimization (HPO) has a major impact on the performance of the ML-based classifier. It determines

the dimensionality, i.e., the number of neurons in the encoder and decoder, number of layers used,

as well as the training settings of the VAE-LSTM. Here, a genetic algorithm has been used for the

HPO. More details on the obtained results can be found in refs. [4.11, 4.26, 4.27].

When applying different pre-processing techniques as described in the following sections or

using data from another site, it may be necessary to repeat the optimization of the hyperparameters.

Table 4.2 shows the hyperparameters used in the subsequent sections of this article.

Table 4.2: Results of the hyperparameter optimization used to train the ML models

Hyperparameter name HPO results

for data before

extended pre-

processing

HPO results

for data after

extended pre-

processing and

new sub-set of

channels

Neurons LSTM layer encoder 57 27

Neurons LSTM layer decoder 95 36

Learning rate 0.0109 0.0235

Mini-batch size 10 25

Number of epochs trained 154 154

Regularization factor 2 8

Latent dimension 3 2
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Training

The unsupervised training of the VAE-LSTM takes advantage of the statistics of the KPI to

perform an auto-selection of the MVTS with zero outlierness. Training with these improves the

discriminative power of the VAE-LSTM [4.28]. In this manner, the non-representative features of

the anomalous MVTS are not reconstructed accurately, leading to a higher reconstruction error and

a better distinction [4.29]. The trained VAE-LSTM is now applied to the complete data set [4.11].

3 Results of the hybrid classifier

Figure 4: Normalized bivariate histogram of the outcome of the outlierness and the reconstruction

error for all MVTS of a site

The bivariate histogram of the KPI outlierness and the reconstruction error of the VAE-LSTM

are shown in Figure 7. This provides a mechanism to establish a hybrid classification. In Figure 7,

it can be observed that the VAE-LSTM has samples with a high reconstruction error which have a

low outlierness. These samples could be anomalies which were not covered by the KPI.

3.1 KDP

The purpose of knowledge discovery is to improve both the understanding of the process and the

automatic detection of anomalies. The outlierness and the reconstruction error lead to a bivariate

classification with four classes. The interesting class is the case that creates discrepancies between

the KPI- and ML-based classification. These are used in a KDP to establish an understanding of the

data, to improve pre-processing and define new KPI. This improves the reliability of the anomaly

detection.
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3.2 Extended data pre-processing

There are a number of pauses in the vibration process, e.g., during these pauses gravel is filled into

the vibrator. There are a number of pauses in the vibration process, e.g., during these pauses gravel

is filled into the vibrator.

Figure 5: Example of a normalized depth profile of a drilling with marked idle time (red)

For instance, the VAE-LSTM identified MVTS as anomalous where there is a long waiting

period for the delivery of gravel as anomalous because it is a significant change in the time pattern.

An example of such a time-series is shown in Figure 5. As a result of this insight, the original

pre-processing which was based on z-norm is extended by removing the pauses (see Figure 6).

Removing the idle times yields a lower level of discrepancy between the KP Iand ML-based

classification without compromising quality by not flagging these columns as anomalous.

The bivariate histogram of the results of the classification after removing the idle time is shown

in Figure 7. Note the fewer discrepancies between the outlierness (KPI) and the reconstruction error

(VAE-LSTM).

Removing the pauses can, however, lead to discontinuities in some of the channels of the

recorded signals, e.g., the temperature of the vibrator (see Figure 6). In this example, the vibrator

is stationary. Removing the pauses in the depth signal leads to discontinuities in the temperature

signal. This is indicating that while filling gravel, despite the depth not changing, the temperature is

still rising. This could be caused by the vibrator left running during the filling of the gravel. The

quality of a foundation column is not influenced by this behaviour.

3.3 Impact of channels on reconstruction quality

The following channels were defined as having a direct impact on the quality of the foundation

column, depth, vibrator amperage, and pull-down force. These channels have been selected due to

their physical significance. From these channels, the work performed as a function of depth can be

calculated.

Training the ML-based classifier with these signals leads to the classification, as shown in

Figure 8. The described steps lead to an overall low reconstruction error of the non-anomalous
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Figure 6: Normalized depth and temperature (temp) signal a) before and b) after removing the idle

times. In the plots on the right, the portions with constant depth (idle times) are removed from

the depth and temperature signals. Constant depth with increasing temperature indicates that the

vibrator was still running while the drilling was not performed, hence the depth is not increasing.

The values with these constant portions are removed to detect outliers in terms of effectiveness and

not in terms of efficiency

Figure 7: Normalized bivariate histogram showing the outlierness and the reconstruction error after

incorporating the results from the knowledge discovery process

samples and a classification into MVTS being non-anomalous and anomalous. The MVTS which

have a reconstruction error beyond the threshold determined with the skewness-adjusted boxplot

[4.24] are classified as non-anomalous, and the MVTS with a reconstruction error greater than the

threshold as anomalous.

56



Figure 8: Classification of the ML-based classifier

4 Conclusions and further work

The combination of the KPI and ML modelling yields a higher certainty in the classification. This

reduces the risk of not detecting anomalous foundation columns. The hybrid approach has also

triggered a new KDP; since the VAE-LSTM indicated MVTS that the KPI – a capturing of expert

knowledge – did not detect. The insights gained from the ML-based model were used to redefine

the selection of channels and a modified pre-processing. The monitored process consists of two

sub-processes: penetration and compaction; it may be beneficial to train separate ML models for

the sub-processes and combine the results, which should be addressed in future work.
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Peter Auer2, Alexander Zöhrer3 and Vincent Winter3

1Chair of Automation,
2Chair of Information Technology,

Montanuniversität Leoben,

Leoben Austria

{anika.terbuch, paul.oleary, negin.khalilimotlaghkasmaei, peter.auer}

@unileoben.ac.at

3Keller Grundbau GesmbH

Vienna and Söding, Austria
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Abstract

This article 1 investigates the use of hybrid machine learning (HML) for the detection of

anomalous multivariate timeseries (MVTS). Focusing on a specific industrial use-case from

geotechnical engineering, where hundreds of MVTS need to be analyzed and classified, has

permitted extensive testing of the proposed methods with real measurement data. The novel

hybrid anomaly detector combines two means for detection, creating redundancy and reducing

the risk of missing defective elements in a safety relevant application. The two parts are: 1)

anomaly detection based on approximately 50 physics-motivated key performance indicators

1Manuscript received 17 September 2022; revised 5 December 2022; accepted 20 December 2022. Date of

publication 12 January 2023; date of current version 20 January 2023, The Associate Editor coordinating the review

process was Dr. Valentina Bianchi (Corresponding author: Anika Terbuch.)
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(KPIs) and 2) an unsupervised variational autoencoder (VAE) with long short-term memory

layers. The KPI captures expert knowledge on the properties of the data that infer the quality

of produced elements; these are used as a type of auto-labeling. The goal of the extension

using machine learning (ML) is to detect anomalies that the experts may not have foreseen.

In contrast to anomaly detection in streaming data, where the goal is to locate an anomaly,

each MVTS is complete in itself at the time of evaluation and is categorized as anomalous or

nonanomalous. The article compares the performance of different VAE architectures [e.g., long

short-term memory (LSTM-VAE) and bidirectional LSTM (BiLSTM-VAE)]. The results of

using a genetic algorithm to optimize the hyperparameters of the different architectures are also

presented. It is shown that modeling the industrial process as an assemblage of subprocesses

yields a better discriminating power and permits the identification of interdependencies between

the subprocesses. Interestingly, different autoencoder architectures may be optimal for different

subprocesses; here two different architectures are combined to achieve superior performance.

Extensive results are presented based on a very large set of real-time measurement data.

Keywords: Artificial intelligence in measurement and instrumentation, hybrid learning, key

performance indicator(KPI), long short-term memory (LSTM)-variational autoencoder (VAE),

outlier detection, timeseries.

1 Introduction

This article investigates the use of hybrid machine learning (HML) [4.1] to infer the quality of

industrially produced elements, for which final quality control is not possible. In the specific use-

case analyzed and presented here, underground foundation columns are being produced; however,

since they are sub-surface their final quality cannot be inspected directly. Consequently, the

quality must be inferred through the analysis of measurement data acquired in real-time from the

instrumented rig. This requires the analysis of large sets of multivariate real-time measurement

data (MVRTD), emanating from instrumented industrial equipment. This is a pertinent topic since

industrial IoT [4.2] is making ever-increasing volumes of measurement data available for analysis.

Furthermore, HML, for example, physics-informed neural networks [4.3], is an emerging research

topic and is considered the best approach to obtaining reliable results in conjunction with the analysis

of the measurement data from physical systems [4.4–4.6]. Although this article is focused on a

specific use-case, many of the results are relevant in other applications; in particular the examination

of different autoencoder architectures for the unsupervised analysis of multivariate time-series

(MVTS) data and the combination with a genetic algorithm to optimize the hyperparameters.

The importance of machine learning (ML) in the field of instrumentation and measurement [4.4,

4.7] is increasing with the growing volumes of measurement data recorded in industrial processes.

However, as shown in [4.5], the two communities, i.e., the machine learning and the instrumentation

and measurement community, use different terminologies. As a result, we feel it is important to

have interdisciplinary publications that bridge both the topics.

As described in [4.7] ML architectures should be chosen with care when applied in safety-
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Figure 1: Georeferenced data from an exemplary building site. Each point corresponds to the

location of an underground foundation column. The color of the point represents the value of some

specific KPIs; in the case shown here, it is the depth required to achieve a specific load-bearing

capacity. There is a real-time MVTS associated with each of these foundations, and for this site,

there are m = 637 points.

relevant applications, as is the case here. For this reason, an HML approach was chosen, which

augments an outlier detection technique based on multiple physics-based metrics, with unsupervised

ML.THe HML techniques were successfully applied in other fields related to instrumentation

and measurement, e.g., in [4.8] and [4.9]. Many ML approaches presented in literature use

publicly available datasets to perform ablation studies [4.10] and performance benchmarking of

different architectures. A survey on different methods for time-series forecasting [4.11] on publicly

available time-series data sets suggested that hybrid approaches are superior to pure statistical or ML

approaches. The same study concluded that more complex models do not necessarily lead to higher

accuracy. This is important, since high accuracy, in the field of instrumentation and measurement,

is a highly desirable feature [4.5, 4.6].

Especially in anomaly detection, benchmarks need to be treated with care, since most suffer

from one or all the following issues [4.12]: the problem is too trivial and can be solved in a few

lines of code; the anomaly density is too high; if supervised learning is used, the ground truth

is mislabeled and often there are no data available after the anomaly has occurred, and Wu and

Keogh [4.12] called this as run to failure bias. The study done on the comparison of the classical

pure ML methods, pure (deep) ML methods, and the combination of both, HML, suggests that there

is no pure ML method that can outperform a hybrid system [4.13].
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1.1 New Contributions

The initial results of this work were published in [4.14]; however, since then, significant modifica-

tions have been made and improved results obtained. This article presents these extensions and new

results:

1. An HML framework that captures a priori knowledge in the form of KPI, which is used

to implement auto-labeling, permitting a truly unsupervised learning. Furthermore, the

combination of two means for anomaly detection, key performance indicators (KPI) and ML,

is introduced; this leads to a redundant anomaly detection system and a higher likelihood for

detecting anomalies.

2. The conceptual framework for handling MVTS measurement data in an object-oriented

way is presented; covering all the tasks from data ingestion to outlier detection. The data

are handled together with the pertinent metadata, events, and segments. The concept that

industrial processes can be described as consisting of sub-processes is discussed. KPIs are

defined for the subprocesses separately and this leads to a hierarchical anomaly detection in

the subprocesses. Aggregating the results yields a more granular classification of anomalies

and reveals possible interactions between the subprocesses.

3. A clear definition and algorithmic implementation for the outlierness is provided, i.e., a metric

for the extent to which a time-series is considered to be an outlier by the KPI-based anomaly

detector.

4. The statistical analysis of the performance of autoencoders with LSTM and BiLSTM layers

for the sub-processes is presented.

5. The implementation of the autoencoder training has been modified, to significantly reduce

the amount of padding required within the mini-batches during training.

1.2 Organization of the Paper

This article is organized as follows: in Section 1, an introduction to the topic of HML for anomaly

detection in multivariate time-series is given; in Section 2, insights into the use-case are presented;

Section 3 discusses the structured data handling for large amounts of industrial real-time data.

The first part of the hybrid framework based on KPI is shown in Section 4, whereas the anomaly

detection based on ML can be found in Section 5, and the results of the comparison of architectures

are presented in Section 6. The article is concluded with insights gained and further work in Section

7.
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2 Use-Case and Nature of the Data

The vibro-ground improvement techniques are used for almost 100 years to support buildings and

infrastructure works, however there is still no standardized method for quality control for ground

improvement techniques [4.15]. The increasing economic pressure in the construction industry and

a higher risk awareness accelerated the change process of traditional, mostly manually performed

techniques, toward automated solutions for quality control [4.16]. The produced foundation columns

are subsurface, and therefore, the quality control needs to be based on indirect methods and reliable

labeling for supervised ML is not a feasible solution. For the last 30 years monitoring KPIs,

which were derived from the recorded data from instrumented production rigs built the basis for

geotechnical and quality evaluations of the process [4.17]. These data are also utilized in installation

reports which to this day are the core of quality control. For each foundation column, an installation

report is created, which needs to be manually evaluated by geotechnical experts [4.15]. However,

evaluating hundreds, if not thousands, of installation reports with limited human resources increases

the risk that the controls are not performed with the due-diligence required. For this reason, our

framework is used to support the geotechnical expert at this task and refining the KPI definitions

to cover as many anomalies as possible. The KPI refinement is driven by new process insights,

gained by the knowledge discovery process, performed after ML anomaly detection, to increase the

interpretability of the anomaly detection framework, which is essential in critical infrastructure and

safety-relevant applications [4.18]. The opportunity costs of false negative are much higher than of

false positive detection. Therefore, the two anomaly detection results are combined with a logical

or-if an MVTS is flagged by one of the means for anomaly detection as anomalous it is considered

as anomalous and undergoes further investigations by geotechnical experts.

Figure 2: Here a series of three instrumented rigs can be seen on a building site. This gives an

impression of the scale of operations and the relevance of location registered data.

In more detail. the use-case presented here is the vibro ground improvement process. The goal

is to improve the bearing capacity of the ground so that more stable foundations can be produced

for a building. However, this leads to a safety-relevant system, since failure to detect an anomalous
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foundation column can lead to a local instability of a building. The process consists of four phases:

run-in, process preparation is performed; penetration, whereby a rig penetrates the ground with a

large vibrator until a predefined bearing capacity is reached; compaction, is the repetitive process of

withdrawing the vibrator, introducing gravel into the ground and compacting with the vibrator; and

run-out finalizing the process.
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Figure 3: Example of the real-time data acquired from the rig while producing a single foundation

column. One such MVTS is acquired per foundation column. The four phases of the process

can be seen: run-in (white), penetration (red), compaction (green), and run-out (white). Only the

penetration and compaction phases are relevant for the quality of the foundation column.

A typical building site may have between 250f mf 1500 such foundation columns. Fusing

the location data with machine data enables the georeferenced viewing of the data associated with

the foundation columns. This supports the geotechnical experts in establishing an overview of the

geotechnical properties and enables an automatic detection of the changing subsurface properties.

An example of such a view is shown in Figure 1; this site has m = 637 foundation columns. The
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georeferencing permits the identification of systematic changes in the subsurface ground properties

over a site. This is important since reliable detection of anomalies requires the separation of

systematic changes from local anomalous behavior.

A series of instrumented rigs work in parallel on a single building site; see Figure 2, producing

the required foundation columns. The instrumented rigs have n = 9 sensor channels used in this

process. The sensor data acquired in real-time are sampled at fs = 1Hz. This yields an MVTS

for each foundation column; an example of such data can be seen Figure 3. Due to changes in

the subsurface properties, the time required to produce the foundation may vary significantly; as

a result, the time-series have strongly varying lengths. For the site data shown in Figure 1, there

is a median number of time-steps per foundation of tmed = 345 and an interquantile range (IQR)

of tIQR = 169. A tmed of 345 time-steps with 1 Hz sampling frequency corresponds to an average

lead time of 345 s. Consequently, the computational methods must be capable of analyzing, the

execution of the production process with strongly varying lead time, which leads to recordings of

the process with widely varying lengths. To summarize, there are approximately 1000 MVRTD

associated with a single building site, each of these time-series having n = 9 sensor channels and

several hundred time-steps recorded per sensor. Furthermore, there are multiple building sites to be

monitored.

3 Structured Handling of Data

A significant portion of this project is associated with managing such volumes of multivariate

measurement data, together with the corresponding metadata, in a systematic manner. There are

tens of thousands of MVRTD that need to be handled. Consequently, a systematic data ingestion

process has been defined. In this process, each of the MVTD is ingested. In the same step, events

and segments are determined by applying a rule-based system. By performing data fusion, the data

from computer-aided design (CAD) are merged with machine data for each of the foundations. This

provides for the georeferencing of the data and enables the comparison of planned versus executed

work. An object class for an MVTS has been defined. It provides a container for the MVRTD and

augments this with the respective metadata, events, and segments. In this manner, all data required

to segment and process the data from a specific foundation column are contained in a single MVTS

object. These objects are saved in binary HDF5 [4.19] format and made available via a standard

interface. This facilitates the exchange of data and fast loading into memory.

In addition, an index has been implemented with one column per foundation element and one

row per indexing value, e.g., KPI. This permits the identification of MVTS from either its metadata

or the values of the associated KPI or by an indexing value emanating from the ML evaluation of

the data.
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4 Key Performance Indicators

Given the collection of MVTS, the task now is to individually characterize them by a series of

metrics, called KPIs here. The goal of the technical KPI is to capture expert knowledge about the

process and physical properties that can be expressed in terms of scalar metrics computed from the

real-time machine data. These provide the physics-based side of the hybrid learning process.

The penetration and compaction phases are definitive for the quality of the executed foundation

column, whereas the complete process, including run-in and run-out, may be relevant for the effi-

ciency. Consequently, KPIa are defined for and categorized according to: penetration, compaction,

and complete element. The categorization is achieved via metadata and not hard coded. In previous

work [4.14], these phases were analyzed together. However, defining KPI in separate categories

provides the possibility of a more granular classification of the MVTS according to the subprocesses.

For example, the penetration phase may be anomalous, whereas the compaction is not. Currently,

there are more than p = 50 different KPIs computed.

4.1 Exemplary Technical KPI

Here, two new exemplary KPIs2 are presented. They are physics-based metrics and permit the

identification of certain types of anomalies. Furthermore, they can be computed using the map-

reduce paradigm [4.20], opening the door to parallel computation, if required.

The incremental work as a function of time w(t) is computed from the amperage a(t) multiplied

with the operating voltage (electrical work) and the product of force f (t) and penetration rate

dd(t)/dt (mechanical work). This computation has the same temporal resolution as the MVTS

data and corresponds to the map step in map-reduce. Then the total work W , required to perform

penetration, is the integral over w(t)

W =
∫ te

ts

w(t)dt, (4.6)

where by ts and te correspond to the start and end times for penetration, respectively, and this

aggregation corresponds to the reduce step. The total work required to complete penetration W is

used as a metric to characterize each MVTS.

The second KPI presented L is the ratio of the traversed length to the depth penetrated. Given

d(t) the depth as a function of time, L is computed as follows,

L =

∫ te
ts
|d(t)|dt∫ te

ts
d(t)dt

. (4.7)

Consider the exemplary MVTS shown in Figure 4: this corresponds to a straightforward

penetration of the ground and yields L = 1. In contrast, consider Figure 5: as can be seen, there

2It is not possible to present details on more of the KPIs due to the limited space available in this paper
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Figure 4: Depth d(t), force f (t) and amperage a(t) are the channels that form the MVTS of a single

foundation column. The work channel w(t), underlayed in blue, is a derived variable, computed

from the above three channels and has the same temporal resolution as the real-time data from the

machine. The integral over w(t) yields the total work required to perform penetration. This dataset

corresponds to the almost ideal process of creating a column. The L ratio, indicated in the header,

refers to the ratio of traversed distance to depth penetrated.

were difficulties penetrating the ground and the vibrator had to be retracted several times and the

process restarted. This behavior is considered anomalous; however, it has predictive value, since

together with the georeferencing it can be used to determine whether this is a local random anomaly,

or if the subsurface properties are changing systematically over a site.

4.2 Heat-Maps and Outlier Detection via KPI

Currently, more than p = 50 KPI are computed, in three categories, for each foundation column.

The KPI can be organized as a matrix T ( j,k), whereby each row j corresponds to a KPI and

each column k to a specific foundation point. Normalizing the KPI matrix T , using min-max

normalization, by row provides a uniform scaling for the graphical representation, e.g., in Figure 6

the KPI heat-map for the compaction phase and in Figure 7 the heat-map of the KPI relevant for all

phases is show.

In addition, the KPI matrix T is used to detect MVTS that are statistical outliers; this infers

the possibility of an anomalous foundation column. The foundation columns are subsurface, the

precludes access to the ground-truth, and consequently, an inference must be used at this point. The

term outlierness is coined here, and it is a relative measure of the degree to which the MVTS can

be considered to be an outlier. It is the number of KPI for which the column data are a statistical
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Figure 5: Data similar to Figure 4 but for an anomalous foundation column. This is an example

where the operator had difficulties penetrating the ground with the vibrator. Both the L ratio and the

total work performed are physics-relevant metrics and are suitable to identify this type of anomaly.

outlier divided by the total number of KPI being considered. The pseudo-code for the computation

of the outlierness is shown in Algorithm 1.

5 ML-based Anomaly Detection

As described in [4.18], autoencoders are a popular choice for anomaly detection in critical infras-

tructure. The task of identifying patterns that are not present in data from normal operations is

called anomaly detection [4.18]. Anomaly detection can also be described as a binary classification

problem with one class containing the anomalous data and one class containing the nonanomalous

samples [4.21]. Modeling the normal behavior in physical systems is often not a feasible solution, if

it is unknown or simply too complex. In ML approaches for anomaly detection, this normal behavior

is learned/inferred from provided data samples [4.21]. A simplified drawing of the architecture used

is shown in Figure 8.

Most of the lately invented architectures for anomaly detection in time-series data are designed

for streaming data for the multivariate [4.22, 4.23] or univariate case [4.24] using sliding window

approaches. The industrial use-case presented in this paper, however, deals with a high number of

multivariate time-series data files with recordings of varying length. Each MVTS is complete at

the time of evaluation. In this manner it is more closely related to boundary value problems, than

locating a changing pattern in streaming data.

To apply the autoencoder to the samples of varying length, a novel resampling approach was

developed (see Section 5.4), which reduces the effects of resampling to a minimum.
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Algorithm 1 Pseudo/Code for the computation of outlierness

procedure OUTLIERNESS(T )

▷ Given the matrix T of KPI compute the outlierness for each foundation column.

B← false(size(T )) ▷ Initialize binary matrix

[o, p]← size(T )

for j = 1, . . . ,o do

▷ For each row compute upper and lower bounds

t← T ( j, :) ▷ Extract row vector t

▷ q25(t) and q75(t)) refer to the 25% and 75% percentile of the vector t), whereas IQR refers to

the inter quantile range.

bu← q75(t)+1.5 IQR(t)

▷ Compute upper bound bu

bl ← q25(t)−1.5 IQR(t)

▷ Compute lower bound bl

for k = 1, . . . , p do ▷ For each column

▷ Detect individual outliers if v is outside the bounds

v← T ( j,k)

if not(bl f vf bu) then

B( j,k)← true

end if

end for

end for

▷ Sum up each column to obtain the result vector r

for k = 1, . . . , p do

r(k)← ∑
o
j=1B( j,k)

end for

return r ▷ The vector of outlierness values.

end procedure

This approach differs from the previously mentioned, since the goal is not to localize the position

of the occurrence of an anomaly, but to detect whether a built column, an MVTS, is anomalous as

a whole. In contrast to approaches (e.g., [4.25]) which apply ML on KPI data, in this framework

the KPI data are used as a separate mean for anomaly detection and for the unsupervised training

set construction. The learning algorithm, however, is applied on the recorded time-series data.

In additionally, the available process knowledge should be incorporated into the hybrid anomaly

detector to acquire explainable and physically consistent results.
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Figure 6: Heat-map and outlierness for the KPI relevant to the compaction phase of the process, and

the data are for all foundation columns on the building site. Top: Heat-map, whereby the horizontal

dimension refers to the number of the individual points shown in Fig. 1; the KPIs are mapped to the

vertical axes. The coloring of the elements on each row corresponds to the relative value of that

KPI at each point. Bottom: The outlierness for each foundation column.

5.1 Objective Based Pre-Processing

To meet different objectives, different preprocessing steps need to be performed to extract and

enhance the special characteristics of the data. The objective can also be dependent on the subprocess

monitored. In this section, the preprocessing steps regarding outlier detection in terms of the quality

of the foundation columns are shown.

Feature Selection

Using the whole set of channels is in most cases not beneficial for the ML performance. A higher

number of features used results in a higher number of learnable parameters, increased model

complexity, and training time. The goal is to reduce the number of features used while preserving

the relevant information and eliminating redundant features [4.26].

Despite using unsupervised ML, knowledge about the monitored system and the different

recorded channels should be used when deriving the subset of channels. In this approach, the

channels from which the work performed as function of time (see Figs. 4 and 5) can be derived

were chosen. Depending on the goal that should be archived with ML, a different subset of channels

may be required as input to the ML model. Two possible examples of goals that require a different
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Figure 7: Heat-map and outlierness for the KPI relevant to the complete element produced; see also

Fig. 6

channel selection are anomaly detection regarding the foundation column quality or anomaly

detection regarding the production efficiency of the ground improvement process.

Rule-Based Segmentation

Based on the definition of rules and events using expert knowledge, the MVTS are segmented into

sub-processes. This is done because separate ML models are trained for the separate phases. The

sub-processes are indicated in Figure 3 with different colors.

Data Trimming

The objective of anomaly detection for the case study is to detect anomalies in the sense of quality.

The ground improvement process contains process pauses, e.g., logistical difficulties in gravel

delivery. These pauses do not have an impact on the effectiveness of the performed process but

the process efficiency. To meet our objective, these pauses when no drilling is performed, are

removed from the MVTS used for ML. After trimming the data by removing the process pauses, in

MVTS with anomalous process behavior discontinuities can occur. These discontinuities caused

by operating errors and other process anomalies can be detected using appropriate techniques

[4.27, 4.28]. This is done to use these anomalous cases in a knowledge discovery process. This is

based on previous work published in [4.29].
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Figure 8: Interplay of the components of our hybrid framework. (a) Files are recorded at different

sites and mapped to a storage location. From these data, the KPIs are calculated as part of

the data-ingestion process. (b) From KPI visualizations—e.g., the heat-map is created and the

outlierness—rank of the MVTS—is calculated. Based on the outlierness, the files are separated in a

training and validation set. (c) Process of getting the autoencoder anomaly score for the data of the

validation set using a trained ML model. By passing the validation set through the autoencoder,

the reconstruction error can be calculated. In the end, the two anomaly scores per MVTS for the

KPI-based anomaly detection and the autoencoder-based anomaly detection are combined in a

bivariate histogram as a starting point for the knowledge discovery process.
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5.2 Architecture Selection

An autoencoder is an ML structure performing two mappings [4.30].

1. Encoder: Mapping Ψ from the original data to the latent variables in the latent space.

2. Decoder: Mapping Σ from the latent space to the reconstructed signal.

The goal is to extract latent variables that allow for a minimal amount of distortion in the

reconstructed signal [4.30, 4.31]. The dimension of the latent space nz is for anomaly detection

chosen to be nz < b, b being the dimension of the encoded data [4.32]. Autoencoders and variational

autoencoders (VAEs), which differ in the regularization of their cost function, were successfully

used for anomaly detection in time-series in the past [4.33]. A schematic representation of the ML

architecture is shown in Figure 9.

Figure 9: Schematic representation of an autoencoder with the encoder that encodes the input

features into latent variables and the decoder that reconstructs the lower dimensional representation

available in the latent space.

The assumption behind anomaly detection using VAEs is performing some kind of dimensional-

ity reduction and the assumption that anomalies contain non-representative features which cannot be

encoded into the lower dimensional space [4.34, 4.35]. As described previously, the three-channel

MVTS used for ML is converted into a lower dimensional latent representation. The degree of
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dimensionality reduction is determined by the dimension of the latent space, the latent dimension

nz, in this work nz = 1 was chosen to archive a sufficiently high degree of dimensionality reduction.

A recurrent neural network (RNN) was incorporated into both, the encoder and the decoder,

to handle the sequential data [4.36], namely a long-short term memory (LSTM) [4.37] layer.

Unidirectional LSTM is processing the input data in the forward direction, whereas bidirectional

LSTM (BiLSTM) is processing it in a forward and backward direction [4.38]. Bidirectional models

can only be used when the whole data sample that they are applied to is available [4.36]. This

condition is fulfilled in the use-case presented here, since the data analyzed are not streaming data.

BiLSTM performs well, especially when the value of time-step t depends on both, prior and past

time-steps [4.39]. This is the case in boundary value problems. The drilling process described in

this article can be seen as a (homogeneous) boundary value problem since the drilling starts at the

surface and ends at the surface.

5.3 KPI-Supervised Training

As described in Section 5, most of the data, gathered with physical systems, are unlabeled and

reliable labeling is hard to archive [4.21]. Because of these circumstances, an unsupervised anomaly

detection approach was chosen. Unsupervised anomaly detection is done under the assumption that

the training set Γ ¢ Φ, whereas Φ is the set of all available samples , contains mostly samples from

normal operations but could contain a small number of still unknown anomalies [4.13, 4.40]. This

training set is constructed using the outlierness calculated with the KPI [4.13] for this reason, and

we call it KPI-supervised training as the anomalous samples are excluded and autolabeled using

the outcome of the KPI classifier. This excludes the already known anomalies covered by the KPI

framework.

Figure 10: Process from ML-MVTS to trained ML-model incorporating HPO.

The training set is constructed using the outcome of the KPI anomaly detection. The proposed

framework does not require human labeling, since it uses the results gained with the KPI classifier

to construct a training set only consisting of MVTS which are considered to be non-anomalous. The

whole process of preprocessing and training is illustrated in Figure 10
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5.4 Length Preserving Training

The training procedure based on stochastic gradient descent was adjusted to apply on MVTS of

different time-series lengths and minimize the effects of resampling to a common length which is

required for gradient calculation. During training, the samples are sorted according to their time-

series length and only resampled to a common length, downsampled to the shortest length of the

samples forming a mini-batch; see Figure 11. After training the autoencoder in this new way it can

reconstruct samples while preserving their real length. This is desirable since an unusual time-series

length, the process length of an industrial process, can be a sign of anomalous process execution.

This avoids the necessity to resample the time-series to a common time-series length [4.41, 4.42] or

to pad the data with zeros to the length of the longest time-series [4.43,4.44], which adds information

and has an impact on the learning performance, especially when used with LSTM. [4.45].

Figure 11: Samples forming a mini-batch of the training dataset are downsampled to the shortest

time-series length of the mini-batch and the training dataset is not resampled to a common time-

series length.

The cost function optimized with stochastic gradient descent is a regularized [4.46] version of

the least-squares cost function minimizing the reconstruction error. Being Yk the k-th sample of a

mini-batch and Ŷk the reconstructed MVTS, i.e., the output of the autoencoder the reconstruction

error Er of a mini-batch of size m is given as3

Er =
m

∑
k=1

∥Yk − Ŷk∥
2
F . (4.8)

In the VAE the regularization is based on the Kullback-Leibler divergence4 between two

distributions Ω and Π given as DKL(Ω∥Π) [4.47, 4.48]. The loss function of a VAE can be written

as [4.47, 4.48]

Et = Er −β DKL(Ω∥Π), (4.9)

3∥A∥F denotes the Frobenius norm of the matrix A.
4The Kullback-Leibler divergence is not symmetric and therefore cannot be used as a measure.
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with Ω being a prior chosen by the user, often a multivariate Gaussian distribution with zero mean

and a diagonal covariance matrix. The second distribution Π is the learned distribution in the latent

space. In the formulation introduced by [4.48] λ = 1, in this case, the objective of the learning

algorithm is minimizing the evidence lower bound (ELBO) [4.47]. In our approach we use a

so-called β -VAE [4.49] where the Lagrangian multiplier β is a hyperparameter that is optimized

during hyperparameter optimization (HPO), described in Section 5.5, to ensure that the balancing

between the two terms of the loss function is optimal.

5.5 Hyperparameter Optimization

The hyperparameters have a significant impact on the performance of the network [4.50]. The opti-

mal performance of an ML architecture on a dataset is obtained by optimizing the hyperparameters.

The available hyperparameters depend on the architecture chosen and their optimal value on the

problem and the corresponding data. The search space of the HPO grows exponentially with the

number of parameters optimized. This combined with the long training times of ML architectures

mostly heuristics or meta-heuristics are used [4.36, 4.43].

In this framework, a genetic algorithm is used for the HPO and the following hyperparameters

were optimized,

1. Trained epochs: e ∈ [50,150]

2. Mini-batch size s ∈ [2,n]

3. Number of neurons encoder nne ∈ [10,100]

4. Number of neurons decoder nnd ∈ [10,100]

5. Learning rate α ∈ [0.003,0.1]

6. Regularization factor β ∈ [0,50].

The genetic algorithm adjusted for this framework is described in more detail in [4.51] and was

executed with the following settings: 15 individuals per generation, threefold cross-validation for

the fitness estimation, and a maximum of ten generations. Moreover, a combination of two crossover

functions was used to obtain a better exploration of the search space. 5

5.6 Anomaly Detection Using Autoencoders

The last step of anomaly detection using autoencoders is performing the binary classification task.

In this step, the model trained on the subset Γ is applied to the whole available dataset Φ.

5Further information on the genetic algorithm and implementation details can be found in [4.51].
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Table 4.3: Results of the HPO

Architecture sub-process e nne nnd α ∗105 s β

VAE-LSTM penetration 69 40 56 1998 11 5

VAE-LSTM compaction 132 39 47 3689 15 8

VAE-BiLSTM penetration 117 28 39 5987 17 9

VAE-BiLSTM compaction 132 39 47 3689 15 8

When using autoencoders, the output is the reconstructed signal from which the reconstruction

error can be derived [4.33,4.44,4.52]. From the reconstruction error, the anomaly score is calculated.

The anomaly score used here for the sample y with a time-series length t is calculated as:

Ea =
t

∑
c=1

∥y(c)− ŷ(c)∥F (4.10)

with y(c) denoting the measurement taken at time-step c and ŷ(c) the reconstructed measurement at

time-step c. Because of the changing time-series length, the anomaly score Ea is normalized by the

number of time-steps t, which leads to a normalized anomaly score En

En =
Ea

t
. (4.11)

To get the classification, a threshold u is needed to represent the boundary between the classes.

Since the distribution of reconstruction errors is positive semi-definite, a skewness adjustment needs

to be performed [4.53–4.55]. The MVTS with En < u get assigned to the class of nonanomalous

samples and MVTS with En g u are marked as anomalous.

6 Architecture Comparison and Results

The novel hybrid framework was applied to the case study introduced in Section 2. Separate

autoencoders were trained for the analyzed sub-processes, compaction, and penetration. The

following architectures were compared.

1. VAE-LSTM: VAE with one LSTM layer in the encoder and the decoder.

2. VAE-BiLSTM: VAE with one Bi-LSTM layer in the encoder and decoder.

6.1 Hyperparameter Optimization Results

The HPO was executed four times to cover all the two compared architectures; the two phases and

the results are shown in Table 4.3.
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6.2 Architecture Comparison

In this section, different architectures are evaluated phase-wise with metrics based on the anomaly

score which is derived from the reconstruction error of trained autoencoders. Because of the nature

of ML problems, random initialization of learnable parameters, and an overdetermined solution

space, their performance varies when executing them multiple times on the same dataset using the

same hyperparameters. These observations were previously described in [4.51]. The visualization

Figure 12: Visualization of the fluctuation in the anomaly scores Er of MVTS of a site when the

training procedure is repeated r = 125 times for the sub-processes compaction (left) and penetration

(right).

of the anomaly score of the trained architectures is shown in Figure12. The performance fluctuation

of the training on the same data with the same hyperparameters can be observed on the vertical

lines. The horizontal lines indicate that the sample was reconstructed with a similar anomaly score

in the majority of the t trained autoencoders.

To get an estimate of the performance of the architectures, r = 125 instances of each ML

architecture were trained and then an outlier detection was performed. The goal was to identify the

best architecture in terms of reliability, the variance of the outcome should be low, and at the same

time, the distance between the two groups should be maximized. The obtained results are shown in

Table 4.4. 6

6Enn indicates the normalized anomaly score of samples that are assigned to the class non-anomalous; correspond-

ingly, Ena indicates the normalized anomaly score of samples that are assigned to the class anomalous.
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Table 4.4: Subprocesswise ML architecture comparison

penetration compaction

statistical quantity VAE-LSTM VAE-BiLSTM VAE-LSTM VAE-BiLSTM

mean(mean(Enn)) 0.1997 0.2175 0.1986 0.2319

median(median(Enn)) 0.1883 0.1992 0.1966 0.2247

mean(mean(Ena)) 0.3918 0.4303 0.3161 0.2880

median(median(Ena)) 0.3821 0.4053 0.2353 0.2483

mean(distancemeans) 0.1921 0.2128 0.1251 0.0550

median(distancemedians) 0.1932 0.2110 0.0516 0.0275

The results of the comparison of the ML architectures as shown in Table 4.4 are interpreted as

follows.

1. The mean of the means of the reconstruction errors of samples classified by the autoencoder

architectures as nonanomalous is lower for VAE-LSTMs in both the subprocesses; the

corresponding results occur calculating the median of medians.

2. The mean of the means of the anomaly scores of samples classified by the autoencoder

architectures as anomalous is higher for BiLSTM in the penetration subprocess. This can

also be seen in the box-plot shown in Figure13. A higher mean of the distance between

nonanomalous and anomalous samples is desirable, since it makes the two groups better

distinguishable.

Based on the results, the following selection of architectures was made: for the two subprocesses,

different architectures were chosen; for penetration, autoencoders incorporating BiLSTM layers

outperformed autoencoders using LSTM layers; for compaction, the architectures using LSTM

layers performed significantly better.

6.3 Subprocesswise Anomaly Detection

The bivariate histogram shown in Figure 14 indicates that a high anomaly score in one of the two

phases does not correlate with a high anomaly score in the other phase. A correlation coefficient

r = −0.0628 << −0.3 indicates a very weak negative linear relationship [4.56] between the

anomaly scores of the two phases. This is consistent with the experts’ institution of this case study;

if the penetration phase is anomalous, this does not result in an anomalous compaction sub-process.

6.4 Results KPI-Supervised Training

As described in Section 5.3, the training sets were constructed using the outlierness. However,

when analyzing the distribution of the anomaly scores of both the groups, MVTS which are
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Figure 13: Box-plot showing the distance of the means of the two classes; nonanomalous and

anomalous; for the compared architectures.
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Figure 14: Bivariate histogram of the anomaly score En for the two sub-processes gained by training

a population of t = 125 autoencoders with optimized hyperparameters for each of the subprocesses.

considered, based on the KPI analysis, to be anomalous and those considered to be non-anomalous,

the distributions shown in Figure 15 of the anomaly score were obtained. It can be seen that the

outcome is two nearly identical probability density functions. Based on these results the KPI-

supervised training needs further refinement to produce meaningful, distinctive results. This could

be caused by the KPI covering all the sensor channels or by the fact that the KPI classifier and
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Figure 15: The probability density function of the reconstructions of a trained VAE-BiLSTM

architecture for the compaction phase; the two sets of MVTS were constructed using the KPI

classifier.
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Figure 16: Bivariate histogram of the anomaly score En for a trained VAE-BiLSTM and the KPI

outlierness for the penetration phase.

autoencoder anomaly detection cover other anomalies; see Figure 16.

However, summed up it can be said that a high reconstruction error of an optimized and trained

autoencoder does not lead to a high outlierness and vice versa. This can be seen in Figure16,

where the best performing architecture for compaction (VAE-BiLSTM) was trained with optimized

hyperparameters to obtain the anomaly score and the KPIs covering the penetration phase were

used to calculate the outlierness. As already reported in [4.14], the two methods identify a common

set of MVTS having both low anomaly scores and low outlierness. Based on these, two means

of anomaly detection two classifications can be derived and combined to cover a wider variety of

anomalies; since the application shown is safety-relevant, every additionally detected anomaly is

strengthening the process safety.
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7 Conclusion

A new framework for the handling of MVTS data recorded in industrial applications was presented.

The presented framework standardizes the data handling and makes the HML classifier applicable

to a wide variety of use cases. Multiple technical KPI that capture physical knowledge were

developed. Furthermore, additional refinements of (Bi-)LSTM autoencoders were performed to

make them better suitable for MVTS data with varying lengths. This permits the construction of

ML architectures that preserve the real length of the MVTS after applying ML.

A new approach of unsupervised training set construction using the outcome of the KPI anomaly

detection was investigated, which needs further refinement. A comparison of LSTM-VAE and

BiLSTM-VAE was performed and led to using different recurrent layers for the present subprocesses

of the investigated case study. It can be concluded that training separate ML models for the

subprocesses is beneficial since the anomaly scores of the two phases are not correlated and it also

gives insights into which of the subprocesses the recorded data is anomalous.

Further work should be done in the direction of unsupervised training set construction and evaluation

metrics for unsupervised ML architectures and training functions which are robust against outliers

in the training set. The comparison shows that different architectures of different sizes are optimal

for the different subprocesses. It should be noted that it is concluded after this study that due to

the extensive knowledge discovery process and the derived preprocessing techniques only a low

number of not excluded anomalies is still present in the compaction phase. One indicator for that is

the overall low number of detected anomalies and the overall low anomaly score of the subprocess.

Acknowledgment

This work was supported by the COMET Program within the K2 Center “Integrated Computational

Material, Process and Product Engineering (IC-MPPE)” (this program is supported by the Austrian

Federal Ministries for Climate Action, Environment, Energy, Mobility, Innovation and Technology

(BMK) and for Labor and Economy (BMAW), represented by the Austrian Research Promotion

Agency (FFG), and the Federal States of Styria, Upper Austria, and Tyrol) under Project 886385.

Bibliography

[4.1] C. Alippi, A. Ferrero, and V. Piuri, “Artificial intelligence for instruments and measurement

applications,” IEEE Instrumentation and Measurement Magazine, vol. 1, no. 2, pp. 9–17,

1998.

[4.2] A. Morato, S. Vitturi, F. Tramarin, and A. Cenedese, “Assessment of Different OPC UA In-

dustrial IoT Solutions for Distributed Measurement Applications,” in 2020 IEEE International

Instrumentation and Measurement Technology Conference (I2MTC), 2020, pp. 1–6.

86



[4.3] M. Raissi, P. Perdikaris, and G. Karniadakis, “Physics-informed neural networks: A deep

learning framework for solving forward and inverse problems involving nonlinear partial

differential equations,” Journal of Computational Physics, vol. 378, pp. 686 – 707, 2019.

[4.4] M. Khanafer and S. Shirmohammadi, “Applied AI in instrumentation and measurement: The

deep learning revolution,” IEEE Instrumentation & Measurement Magazine, vol. 23, no. 6, pp.

10–17, 2020.

[4.5] S. Shirmohammadi and H. Al Osman, “Machine learning in measurement part 1: Error

contribution and terminology confusion,” IEEE Instrumentation & Measurement Magazine,

vol. 24, no. 2, pp. 84–92, 2021.

[4.6] H. Al Osman and S. Shirmohammadi, “Machine learning in measurement part 2: uncertainty

quantification,” IEEE Instrumentation & Measurement Magazine, vol. 24, no. 3, pp. 23–27,

2021.

[4.7] A. Rashed and S. Shirmohammadi, “A novel method to estimate measurement error in

AI-assisted measurements,” in 2022 IEEE International Instrumentation and Measurement

Technology Conference (I2MTC). IEEE, 2022, pp. 1–5.

[4.8] O. Rippel, N. Schönfelder, K. Rahimi, J. Kurniadi, A. Herrmann, and D. Merhof, “Panoptic

segmentation of animal fibers,” in 2022 IEEE International Instrumentation and Measurement

Technology Conference (I2MTC). IEEE, 2022, pp. 1–6.

[4.9] P. Assumpção, C. Oliveira, W. Melo, and L. Carmo, “Sensors fingerprints using machine learn-

ing: a case study on dam monitoring systems,” in 2022 IEEE International Instrumentation

and Measurement Technology Conference (I2MTC). IEEE, 2022, pp. 1–6.

[4.10] P. R. Cohen and A. E. Howe, “How Evaluation Guides AI Research: The Message Still

Counts More than the Medium,” AI Magazine, vol. 9, no. 4, p. 35, Dec. 1988.

[4.11] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “The m4 competition: 100,000 time

series and 61 forecasting methods,” International Journal of Forecasting, vol. 36, no. 1, pp.

54–74, 2020.

[4.12] R. Wu and E. Keogh, “Current time series anomaly detection benchmarks are flawed and are

creating the illusion of progress,” IEEE Transactions on Knowledge and Data Engineering,

2021.

[4.13] J. Audibert, P. Michiardi, F. Guyard, S. Marti, and M. A. Zuluaga, “Do Deep Neural

Networks Contribute to Multivariate Time Series Anomaly Detection?” ArXiv e-prints, Apr.

2022.

87



[4.14] A. Terbuch, P. O’Leary, and P. Auer, “Hybrid machine learning for anomaly detection in

industrial time-series measurement data,” in 2022 IEEE International Instrumentation and

Measurement Technology Conference (I2MTC), 2022, pp. 1–6.

[4.15] P. Nagy and D. Adam, “Quality control of deep vibro compaction based on the vibrator move-

ment,” in Proceedings of the XVII European Conference on Soil Mechanics and Geotechnical

Engineering, Reykjavik, Island, 2019.

[4.16] R. S. Pugh, “Settlement of floor slabs on stone columns in very soft clays,” Proceedings of

the Institution of Civil Engineers - Geotechnical Engineering, Jan. 2017.

[4.17] K. Kirsch and F. Kirsch, Ground Improvement by Deep Vibratory Methods. Andover,

England, UK: Taylor & Francis, 2017.

[4.18] H. S. Mavikumbure, C. Wickramasinghe, D. Marino, V. Cobilean, and M. Manic, “Anomaly

Detection in Critical-Infrastructures using Autoencoders: A Survey,” in IECON 2022 – 48th

Annual Conference of the IEEE Industrial Electronics Society. IEEE, Oct. 2022, pp. 1–7.

[4.19] M. Folk, A. Cheng, and K. Yates, “HDF5: A file format and I/O library for high performance

computing applications,” in Proceedings of Supercomputing, vol. 99, 1999, pp. 5–33.

[4.20] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large clusters,”

Communications of the ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[4.21] I. Steinwart, D. Hush, and C. Scovel, “A classification framework for anomaly detection,”

Journal of Machine Learning Research, vol. 6, no. 8, pp. 211–232, 2005.

[4.22] L. Zhou, Q. Zeng, and B. Li, “Hybrid Anomaly Detection via Multihead Dynamic Graph

Attention Networks for Multivariate Time Series,” IEEE Access, vol. 10, pp. 40 967–40 978,

Apr. 2022.

[4.23] M. Munir, S. A. Siddiqui, M. A. Chattha, A. Dengel, and S. Ahmed, “FuseAD: Unsupervised

Anomaly Detection in Streaming Sensors Data by Fusing Statistical and Deep Learning

Models,” Sensors, vol. 19, no. 11, p. 2451, May 2019.

[4.24] Z. Ji, J. Gong, and J. Feng, “A Novel Deep Learning Approach for Anomaly Detection of

Time Series Data,” Scientific Programming, vol. 2021, Jul. 2021.

[4.25] Y. Zhao, X. Zhang, Z. Shang, and Z. Cao, “DA-LSTM-VAE: Dual-Stage Attention-Based

LSTM-VAE for KPI Anomaly Detection,” Entropy (Basel, Switzerland), vol. 24, no. 11, p.

1613., Nov. 2022.

[4.26] R.-C. Chen, C. Dewi, S.-W. Huang, and R. E. Caraka, “Selecting critical features for data

classification based on machine learning methods,” J. Big Data, vol. 7, no. 1, pp. 1–26, Dec.

2020.

88



[4.27] D. Ninevski and P. O’Leary, “A convolutional method for the detection of derivative dis-

continuities,” in 2020 21th International Carpathian Control Conference (ICCC), 2020, pp.

1–5.

[4.28] ——, “Detection of derivative discontinuities in observational data,” in International Sympo-

sium on Intelligent Data Analysis. Springer, 2020, pp. 366–378.

[4.29] A. Terbuch, A. Zöhrer, V. Winter, P. O’Leary, N. Khalili-Motlagh-Kasmaei, and G. Steiner,

“Quality monitoring in vibro ground improvement – A hybrid machine learning approach,”

Geomechanics and Tunnelling, vol. 15, no. 5, pp. 658–664, Oct. 2022.

[4.30] P. Baldi, “Autoencoders, unsupervised learning, and deep architectures,” in Proceedings

of ICML Workshop on Unsupervised and Transfer Learning, ser. Proceedings of Machine

Learning Research, I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D. Silver, Eds.,

vol. 27. Bellevue, Washington, USA: PMLR, 02 Jul 2012, pp. 37–49. [Online]. Available:

https://proceedings.mlr.press/v27/baldi12a.html

[4.31] D. E. Rumelhart and J. L. McClelland, Learning Internal Representations by Error Propa-

gation, ser. A Bradford book. MIT Press, 1987, pp. 318–362.

[4.32] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. Cambrige and London: MIT

Press, 2016.

[4.33] D. Park, Y. Hoshi, and C. C. Kemp, “A Multimodal Anomaly Detector for Robot-Assisted

Feeding Using an LSTM-Based Variational Autoencoder,” IEEE Robotics and Automation

Letters, vol. 3, no. 3, pp. 1544–1551, 2 2018.

[4.34] T. Kieu, B. Yang, and C. S. Jensen, “Outlier detection for multidimensional time series

using deep neural networks,” in 2018 19th IEEE International Conference on Mobile Data

Management (MDM). Aalborg: IEEE, 06 2018, pp. 125–134.

[4.35] T. Amarbayasgalan, V. H. Pham, N. Theera-Umpon, and K. H. Ryu, “Unsupervised Anomaly

Detection Approach for Time-Series in Multi-Domains Using Deep Reconstruction Error,”

Symmetry, vol. 12, no. 8, 08 2020.

[4.36] J. F. Torres, D. Hadjout, A. Sebaa, F. Martı́nez-Álvarez, and A. Troncoso, “Deep Learning
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Alexander Zöhrer1, Vincent Winter1, Anika Terbuch2,

Paul O’Leary2, Negin Khalili-Motlagh-Kasmaei2

1 Keller Grundbau GesmbH, Vienna and Söding, Austria
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Vienna and Söding, Austria

{alexander.zoehrer, vincent.winter}@keller.com

2Chair of Automation,

Montanuniversität Leoben,

Leoben, Austria

{anika.terbuch, paul.oleary, negin.khalilimotlaghkasmaei}@unileoben.ac.at

IEEE Transactions on Instrumentation and Measurement, Vol. 72, 2023

Digital Object Identifier 10.1109/TIM.2023.3236354

15th ISRM Congress 2023 & 72nd Geomechanics Colloquium. Schubert & Kluckner (eds) ©ÖGG

Abstract

This paper presents a system that combines KPI with autoencoders to implement a hybrid

machine learning system. The goal here is to investigate workflows which permit the site

manager to use the hybrid machine learning systems as a decision support tool. The workflows

are explained by means of case studies, demonstrating the application of the hybrid system to

detect both element as well as site related quality issues. In addition to that, the detection of

anomalies regarding execution efficiency assist the project manager to optimize the sequence of

work on site.

Keywords: ground improvement, quality control, machine learning, key performance

indicators
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1 Introduction

The evaluation and analysis of machine data to support project managers in their daily business was introduced

by Keller more than 10 years ago [4.1]. Improving of the quality assurance procedures was a focus right

from the start. Falk et al. [4.2] describe the development and challenges of machine data acquisition and

the geotechnical interpretation of this data. Key performance indicators (KPI) were introduced with goal of

characterizing soil and execution parameters; these can be calculated directly from the machine data. The tool

named “VibroScan” was the result of this work and it was made available to all of Keller’s project managers

and their clients.

The concept of a digital twin for vibro-ground improvement was later introduced [4.3] to improve

quality control. Then hybrid machine learning was added, i.e., a combination of classical analysis and

machine learning (ML), see [4.4]. The hybrid system computes a set of (KPI) for each element, based on

the corresponding multivariate time series data (MVTS), i.e., the real-time machine data. The KPI capture

the current status of expert knowledge relating machine data to process properties. The KPI are categorized

into groups corresponding to different aspects of the process being executed. The unsupervised machine

learning (U-ML) creates a data-model (MLDM) which corresponds to a generalization of the process and

influences of a specific site. The MLDM is then used to identify MVTS which are uncharacteristic for the

process and/or site. This infers the possibility that the corresponding point is anomalous.

2 Hybrid Learning

The hybrid architecture presented here is a refinement of previous work [4.3–4.6]. The focus was mainly on

variational autoencoders (VAE) [4.7]; however, literature suggests that more complex architectures do not

necessary lead to better accuracy [4.8]. Consequently, simpler autoencoders (AE), [4.9] are also considered

here. Due to the limited space for this paper, only the architecture with the best performance is presented.

The metrics for comparison of the architectures can be found in [4.6].

Figure 1: Normalized histogram of the reconstruction error and the outlierness. The ML results

were generated using the winning architecture - a VAE-LSTM for the penetration phase on the left

and a VAE-BiLSTM for the compaction phase on the right.

The goal of anomaly detection is to identify patterns in data which are not observed in normal operations

[4.10]. Hybrid machine learning combines functionalities and advantages of multiple techniques into one
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architecture [4.8]. Here a combination of KPI and an unsupervised machine learning approach, based on

autoencoders, has been selected. The combination of two independent and concomitant techniques adds a

layer of redundancy to the system. This reduces the risk of overseeing an anomaly.

The KPI capture the expert knowledge relating properties of the produced element to characteristics

that can be calculated directly from the machine data. The statistics of each KPI can be used to identify

outliers; subsuming the outliers for each point yields a measure of the outlierness; for convenience, this

value is normalized, see [4.6] for more details. An autoencoder architecture, implementing unsupervised

machine learning, has been selected here to combine with the KPI. The encoders and decoders include

recurrent networks; whereby, unidirectional Long-Short term memory (LSTM) [4.11], and bi-directional

LSTM (BiLSTM) [4.12] layers were considered.

Each MVTS is characterized by a set of lower dimensional latent variables computed by the encoder.

The decoder reconstructs an approximation for the MVTS from the latent variables [4.13]. The norm of

the difference between the original MVTS and its approximation, is called the reconstruction error. The

training phase of the ML aims to minimize this reconstruction error so as to identify an abstraction for the

process as a whole. The MVTS used for training are selected using the results of the KPI anomaly detection,

therefore it is called KPI-supervised training [4.6]. In this manner the network learns to reconstruct the data

corresponding to normal operation. Conversely, it will produce a higher reconstruction error for non-normal

data patterns [4.14, 4.15]. This approach is truly unsupervised, since the selection of training samples is done

fully automatically without any need of manually labelling data.

The vibro-ground improvement consists of two sub-processes: penetration and compaction. The MVTS

are segmented correspondingly. This enables separate, sub-process specific analysis; it also ensures the

correct temporal and spatial localization of the source of the anomaly. Different ML architectures [4.16] may

be beneficial for the different sub-process. A focus was placed on physics informed [4.17] hybrid learning.

For this reason, the signals: vibrator amperage, depth and pull-down force were selected, since they permit

the computation of work (in a physical sense) as a function of time and depth.

The hyperparameters for each architecture were optimized [4.18]. Training a network multiple times

often leads to differing performance; this is due to the random initialization of the network parameters.

Consequently, each architecture was trained 125 times and the stability of the performance was also considered

as a criterion for selection. The performance comparison suggested that: the penetration process was best

modelled using a BiLSTM-VAE; whereas, optimal performance was achieved for the compaction process

with an LSTM-VAE.

3 Application of the Improved Quality Assurance Procedure

During a manual comparison of hundreds of installation reports, the project manager can easily loose the

overview, especially if complex coherences need to be interpreted. Supported by the hybrid learning system

of the Digital Twin such tasks can be improved significantly. Typically, the first points on a site are used to

create an overview of expected site properties and machine behaviour. The corresponding MVTS can now

be used to initialize the hybrid system, establishing the MLDM and limit values for the KPI. Consequently,

there are no changes required to the current working procedures; nevertheless, the improvement of the level

of quality control is achieved. Furthermore, given the geo-referencing, a model for the systematic variations
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of the KPI over the site can be computed. This enables a prediction of behaviour at new locations and yields

a statistically more significant detection of anomalous data. It is important to note that the KPI capture expert

knowledge; consequently, decisions are not based solely on machine learning; i.e. the machine learning

serves as an additional mechanism to detect anomalies possibly overseen by the experts.

3.1 Case Studies

Detection of an element related quality issue

Figure 2: GPS references data: each point corresponds to a produced foundation column. The

elements that do not fulfil the quality criteria for compaction are marked with grey circles. These

are considered to be outliers require manual evaluation of the corresponding MVTS.

At the beginning, the project manager defines the minimum quality criteria for the compaction of the

columns. These are minimum values for amperage, pull-down force and the ratio of pulling and pushing

distances of the vibrator for each compaction step. A column is flagged as a quality outlier if it does not fulfil

all criteria and needs to be reviewed manually by the project manager (Figure 2).

In the current example, all but one, of the flagged outliers were classified as columns with sufficient

quality after the manual review. The installation report for the one exception is shown in Figure 3. Whereas

low Amperage and Pull-Down-Force values are recognized at a depth of 1-3 m, the pull-out and push-in

ratio of the Vibrator movement is within the range of the Quality-KPI (green in Figure 3). However, in the

upper meter the pull-push-ratio is also not fulfilled due to exceeding pullout distances (violet in Figure 3).

Consequently, the required execution quality of the column is not achieved. This was detected automatically

by the Digital Twin, showing red points at the concerned compaction steps. As a result, the upper part of the

column had to be reworked.
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Figure 3: Installation report of a single column in the compaction phase with the analysis of every

single compaction step regarding the compaction quality.

Detection of an efficiency issue

For the project illustrated in Figure 4 the estimated shift performance was not reached during execution,

however, the reason for the lower performance was not obvious.

The Digital Twin detected a correlation between the temperature of the vibrator and idle times during

the execution of the columns (Figure 5). It turned out, that the stiffness of the soil was higher than expected,

leading to a higher resistance against penetration and thus resulting in an overheating of the vibrator’s motor.

Idle time was required to avoid this overheating. This led to a loss in production time and a reduction in

process efficiency. This hidden lost time was identified reliably in all cases.

The penetration phases of two installation reports from the same site are shown in Figure 6, where the

achieved production rate was lower than expected. The evaluation of the KPI did not show any outliers or

other reasons for that behaviour. However, the machine learning algorithm identified several outliers. Review

of the corresponding installation reports revealed differences in the working behaviours during the penetration

phase. For correctly executed columns, the penetration into the bearable soil layer, i.e. when approaching the

maximum depth, took ca. 20 seconds (right in Figure 6). The outliers found by the ML showed a significant

longer penetration phase into the bearable soil of ca. one minute (left in Figure 6). That means that the rig

operator was overfulfilling the required penetration quality and therefore loosing time which was finally

leading to a reduced shift performance. As a consequence, a new KPI was defined to describe the quality of

the embedding of the column into the bearable soil layer. This can be regarded as a knowledge discovery

process.
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Figure 4: The coloured points correspond to foundation columns where unusual idle times were

detected. The machine learning detected that this is a result of overheating of the vibrator.

Figure 5: Example installation report exhibiting unplanned ldle time (violet). This was the result of

overheating of the vibrator.

4 Outlook

As a next step the new quality application will be fully integrated into Keller’s digital site management

system. It will enhance the daily site management routines and support the project and site managers to

detect potential quality issues both more reliable and efficient. Also, site or machine related deviations from

the planned working procedures, e.g. unusual idle times, will be displayed automatically.

In a next phase, the improved quality application will support the rig operator during execution of the

elements. KPI, either pre-defined by the project manager or automatically referenced to the parameters of

100



Figure 6: Segments of two installation reports for one and the same site. Left: abnormal case, the

operator has overfulfilled the penetration requirement. The required bearing capability of the soil

had been reached but penetration was nevertheless continued. Right: Normal operation where the

penetration is terminated when the require bearing capacity is reached.

already executed points, will define the quality criteria for each element. The operator will be informed, in a

timely manner, by the rig computer if one or several quality criteria are not -573-fulfilled. This will enable

the immediate adjustment of the working procedures. The timely detection of anomalous points permits

alleviating measures to avoid finishing a site with low quality issues.

Of course, the implementation of the improved quality application for deep vibro techniques will serve as

a role model to develop similar procedures for various other geotechnical techniques, e.g. jet grouting. For

any new technique the definition of meaningful KPI will be the biggest effort, but due to the hybrid approach

this step will be more and more supported by the results delivered by the ML algorithms.

Bibliography
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Abstract

This paper presents the development of a new instrument and signal processing algorithm

that enable the measurement of the trajectories of underground holes during directional drilling.

It uses gyroscopes and accelerometers to determine when the drill string is stationary and at

these locations to determine the local orientation of the trajectory with respect to Earth’s gravity.

Hierarchical indexing of the multivariate time-series data has been implemented to ensure

high numerical efficiency. The statistical behavior of the sensors is characterized to ensure the

correct application of least squares approximation to the reconstruction process. A differential

geometric approach is taken to the curve reconstruction from local gradients. The instrument

was tested on a full-scale drilling rig performing directional drilling. The goal is to acquire test

data under fully realistic operational conditions and to ensure that the sensors withstand the

harsh drilling conditions. The signal processing methods are demonstrated on the data acquired

during the real drilling process; yielding the trajectory of the test holes.

Keywords: Gyroscopes and accelerometers, differential geometry, directional drilling,

measurement while drilling
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1 Introduction

This paper presents a new instrumentation and measurement procedure for the monitoring of directional

drilling, the directional drill rig is shown in Figure 1 The task of monitoring borehole trajectories can be

described as calculating the drilled trajectory based on the data recorded while performing the drill. In

most cases, the data is only recorded at a limited number of discrete points and contains basic parameters

such as depth and inclination but does not provide the trajectory of the borehole [4.1]. Due to the high-risk

application, the execution of the planned trajectories needs to be ensured. This measurement task is often

performed by instrumented inclinometers, known as borehole inclinometers [4.2], which are a common choice

for geotechnical instrumentation [4.3]. One approach to instrumenting deep boreholes is using fiber-optic

gyros [4.4–4.6]. Another use-case of instrumentation in civil engineering is the a-posterior evaluation of the

drilling; to monitor soil improvement as presented in [4.7]. Directional drilling, which is the main technical

way in geological exploration also relies on trajectory prediction; in [4.8] an approach based on random

forests is presented. In measurement while drilling systems commonly magnetometers, more precisely

fluxgates are used, as described in [4.6]. However, their downside when performing measurements for

borehole trajectory using magnetometers is, that they are very sensitive to the external magnetic fields, e.g.,

the magnetic field of the earth.

The instrumentation approach presented in this paper was developed to simplify the measurement process.

The starting point was the following procedure: each time a series of measurements is performed, the drilling

needs to be stopped and the tool removed from the borehole. After the measurement is completed, the

measurement equipment is removed and the boring equipment re-inserted into the hole to continue the

drilling.

The problem with this approach is that it is time-consuming and loose stones can trickle into the borehole.

To eliminate the need to retract the boring equipment to perform the measurements at different depths, the

drilling head was instrumented.

In this work, the drilling head was instrumented with inclinometers and gyroscopes. Gyroscopes were

used to determine when the drilling was stopped to perform the measurement. For this task special hardware

was developed; including six sensors, see Figure 2.

Once the data has been collected, the drilling trajectory curve needs to be reconstructed. Curve recon-

struction for boreholes using polynomials was presented in [4.9] , however, this was used to model seismic

activities in glaciers. In [4.1] some of the commonly used methods for reconstructing the borehole are named:

minimum curvature method, cylindrical helix method, and natural curve method. It is also mentioned that

no ground truth for the borehole trajectory model is available and that the task of calculating the borehole

trajectory can also be seen as the task of calculating the coordinates in the space where the drilling takes

place. A trigonometric approach was chosen in [4.1]; with this, the trajectory at any point is modeled as a

cylindrical helix, similar to screw theory. Here an approach based on differential geometry (DG) [4.10] is

presented.
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Figure 1: Rig in operation during the drilling of test holes for the acquisition of representative data.

This should also verify the sensor’s capability to survive the harsh environment during drilling.
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Figure 2: Prototype instrument designed to be inserted in the drill string, to enable testing under

real operating conditions. Top: 3D rendering of the design. The three accelerometers and three

gyroscopic sensors are contained within the blue module, together with a processing unit and Li-Ion

batteries. The sensor module is autonomous. Bottom: physical prototype of the drill head used

during testing.

2 Instrumentation

A prototype instrumentation was designed and manufactured to enable the on-site testing of the concept under

real operating conditions. A rendering of the design and an image of the initial implementation are shown

in Figure 2. The measurement unit contains a TDK ICM-20948 MEMS device, an ARM Cortex-M3 CPU

with 512 MB RAM, a lithium-ion accumulator, and a wireless charging interface. Data is also transferred

in a wireless manner. This enables the device to be hermetically sealed, essential for operation in the harsh

environmental conditions encountered on underground drill rods.

In this application the accelerometers were parameterized to have a full-scale sensitivity of ±8g with

16-bit resolution; while, the gyroscopes were set to ±1000 d ps also with 16-bit resolution. The temperature

sensor is used to monitor the system and avoid misinterpretation of data when temperatures are too high.

A sampling frequency fs = 4500Hz was selected and the code separates the data into T = 1s segments

and saves these as separate JSON files, including the required metadata.
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Figure 3: Histograms for the perturbations of acceleration (top) and rotation (bottom), normalized

to yield probability density functions. This data is acquired while the drill string is stationary.

These are for m = 13500 samples, the respective standard uncertainties are σa = 0.11 m/s2 and

σr = 0.75 d ps. The red lines are the approximations by a normal distribution. Both cases pass the

Kolmogorov-Smirnov test.

2.1 Calibration and characterization

The newly developed instrument was mounted on the drill string and held in a vertical stationary position.

During this phase, the accelerometers and gyroscopes were calibrated and their noise behavior was char-

acterized. To ensure statistically relevant results m = 13500 samples were acquired from the sensors. The

corresponding histograms, normalized to yield probability density functions, are shown in Figure 3, together

with the approximations by a normal distribution: Both pass the Kolmogorov-Smirnov test [4.11] for being

Gaussian. Consequently, least squares minimization methods are appropriate during the computation of

approximations. The respective standard uncertainties [4.12, 4.13] are: for acceleration σa = 0.11 m/s2 and

σr = 0.75 d ps for the gyroscopes.

3 Test Measurements

Test drilling was performed on-site, see Figure 1, with a full-scale drilling rig. The goal is not only to test the

functionality of the sensors and analysis methods, but to also verify that the instrumentation withstands the

very harsh conditions experienced during drilling.

Several test holes were drilled; whereby, approximately every two meters the drilling was paused for

a few seconds, with the drill string in a reference orientation. The data for these pauses is automatically

identified during processing and used to compute the current position and orientation of the drill head.

During the first test campaign, a total of n f = 6278 data sets were collected, each with nc = 7 data
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Figure 4: Example of a single measurement time-series. The accelerations Ax, Ay and Az, together

with the gyroscope data Gx, Gy and Gz. The sensor ICM-20948 was used during these tests with the

settings: sensitivity-gyroscope sg = 1000 and -accelerometer sa = 8. Data acquired with sampling

frequency fs = 4.5kHz and there are m = 4500 samples per channel.

channels and each channel having m = 4500 samples. A single example of such a multivariate time-series

(MVTS) is shown in Figure 4. This data set has been chosen to illustrate the accelerations observed during

drilling. Large accelerations can be observed, these are due to interactions between the drill-head and

the underground geological structures. The complete data is separated into batches, each corresponding

to the drilling of a specific hole; typically containing 500 . . .600 MVTS. One such batch is used in this

paper to illustrate the data analysis methods. The interval between measurements resulting in an MVTS is

∆(t) = 4±20ms.

4 Data Handling and Preprocessing

The exemplary case chosen to illustrate the data handling and preprocessing contains n f = 525 MVTS and

corresponds to the drilling of a single hole. Each MVTS, has seven channels and m = 4500 samples per

channel, corresponding to T = 1s of measurement time. Hierarchical indexing was implemented to improve

numerical efficiency. Each entry in the index contains a time stamp indicating the time when the measurement

was performed; a reference to the respective MVTS; and a series of values that summarize the data. The

key values relevant in this paper are r̄ the mean rotation of the drill string, the mean accelerations āx, āy, āz;

together, with their respective standard deviations σx, σy and σz.
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Figure 5: A portion of the index data is used to identify the time intervals when the drill string is

stationary, these are underlayed in red. Note that the time required to traverse l = 2m is not constant

across the drill hole, this is due to local variations in the subsurface geo-mechanical properties.

The stationary state of the drill string is initially identified as |r̄| ≤ ε ; whereby, the value for ε is selected

to be consistent with the statistical data shown in Figure 3. Additionally it was observed that the vibration of

the drill rods may need a few seconds to abate. As defined for the drilling process there are seven stationary

segments in the data, they are characterized in Table 4.5. Each segment is defined by a start is and end ie index,

n the number of MVTS contained in the segment and the total number of samples available for that segment

m. There are a minimum of m = 63000 samples per segment where the drill rod is stationary; combined with

the measured standard uncertainty, shown in Figure 3, this ensures statistically relevant results.

5 Curve Reconstruction

The goal now is to reconstruct the trajectory of the hole, given the length of rod l in the hole at each

measurement location and the corresponding measurements, āx(l), āy(l) and āz(l) The drill hole can be

modeled as a cylindrical helix [4.9], see Figure 6; whereby, the sensor module glides along the trajectory

of the hole. In the stationary state, the accelerometers measure g the Earth’s gravitation. Assuming, that

gravity defines the vertical direction, implies that āx(l)/g, āy(l)/g and āz(l)/g correspond the portions in

the x, y and z directions respectively. This in turn, defines the components of the directional vector of the

tangent to the curve at each measurement location, i.e., dx/dl = āx(l)/g, similarly for y and z. The fact that
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Table 4.5: Segment table for the index data presented in Figure 5.

segment is ie n m

1 5 26 21 94500

2 61 76 15 67500

3 106 124 18 81000

4 162 176 14 63000

5 272 290 18 81000

6 391 406 15 67500

7 504 519 15 67500

for each location l the tangent directions are known, defines this as the problem of reconstructing curves from

gradients [4.14, 4.15]. Differential geometry [4.10], combined with matrix algebraic formulations for least

squares approximation provide an efficient numerical implementation.

z

y x

Figure 6: Drill hole modeled locally as a cylindrical helix. The black sphere indicates a measurement

point and the black line indicates a directional vector of the tangent at that point. The accelerometers

measure the components of the directional vector in x, y and z, i.e., red, green and blue respectively.
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6 Differential Curve Modeling

Bézier curves can be used to model trajectories in higher dimensional spaces [4.16]. They are formed from

linear combinations of the Bernstein polynomials [4.17]. That is, the Bézier curve G(u), in j dimensions is

obtained by evaluating,

G(u) =B(u)C. (4.12)

Where, B(u) has column vectors corresponding to the Bernstein basis and C, a (d +1)× j matrix, defining

the control points for polynomials of degree d in j dimensions. Each row in C defines a control point in j

dimensions.

The local tangents G′(u) to the curve G(u) can be calculated as, G′(u) =B′(u)C, where B′(u) are

the derivatives of the Bernstein polynomials. This makes the Bézier curves particularly amenable to curve

reconstruction from gradients.

6.1 Bernstein basis

The nth polynomial in u of degree d is defined as,

bn,d(u) :=

(
d

n

)
un (1−u)d−n

, n = 0, . . . ,d, (4.13)

given 0 f u f 1, otherwise bn,d(x) = 0. Additionally, their derivatives can be computed as a combination of

two polynomials of lower degree,

b′(n,d)(u) = d
{

b(n−1,d−1)(u)−b(n,d−1)(u)
}
. (4.14)

Consequently, given code to synthesize bn,d(u) it is possible to calculate b′(n,d)(u) with minimal additional

effort. Note these are the analytic derivatives of the polynomials and not finite difference approximations. This

yields the Bernstein bases B(u) = [b0,d(u), . . . ,bd,d(u)] and their derivatives B′(u). Note since rank(B(u)) =

d +1 the rank(B′(u)) = d. Consequently, B′(u) is rank-one deficient in terms of determining the matrix of

coefficients C.

There is the need for a coordinate transformation between the length of drill rod l in the hole and u, such

that,

l 7→ u =
l −min(l)

max(l)−min(l)
. (4.15)

The effects of this transformation on the derivatives must also be accounted for,

dx

dl
=

dx

du

du

dl
, (4.16)

similarly for y and z.

6.2 Constrained Bézier curve reconstruction from gradients

The location of the top of the hole is known and here the orientation of the drill rod is initially assumed to be

vertical. These can be formulated as constraints on the control points, i.e.,

B(1, :)C = 0, and (4.17)

B′(1, :)C = 0. (4.18)
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Figure 7: Example of the degree d = 3 Bernstein polynomials (top) and their first derivatives

(bottom).

Consequently, there is one value and one derivative constraint at the start of the hole trajectory. Defining the

constraining matrix K as,

K =

[
B(1, :)

B′(1, :)

]
, (4.19)

yields, KC = 0. Consequently, to fulfill these constraints C ∈ null(K).

The algorithm to reconstruct the curve proceeds as follows:

1. Given the lengths of rod l in the hole at each measurement point, map l 7→ u = (l−min(l))/(max(l)−

min(l)), this ensures 0 f u f 1.

2. Now given u compute the Bernsetin basis B(u) and its first derivative B′(u) according to equa-

tions 4.13 and 4.14.

3. Define the constraints, represented by the constraining matrix K defined in Eqn. 4.19, that need to be

observed at the start of the hole.

4. Apply singular value decomposition K =U SV T, and extract an ortho-normal basis set N for the

null space of K, i.e., N = V (:,r+1 : d +1) where r is the rank of K.

5. Compute the constrained Bernstein polynomials Bc(u) =B(u)N and their first derivatives B′
c(u) =

B′(u)N .

6. Assemble the column vectors of measured accelerations to form G′ = [āx, āy, āz].

7. Compute the matrix of control points C = {B′}+ (u)G′(u).

8. Since B′ is rank-one deficient there is still one degree of freedom. This is used to position the whole

curve so that it is consistent with the location of the start point of the drilling.
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Figure 8: Trajectory of the hole in x(l), y(l) and z(l) reconstructed from the measurement data.

9. Given C interpolate the curve at the locations ui.

The results of this process, applied to the previously presented data, is shown in Figure 8. The trajectory

of the curve is exactly fulfilled at the measurement points and the interstitial curve points are interpolated

using the Bernstein polynomials.

7 Conclusions

This paper has presented the development and testing of a new instrument for the measurement of hole

trajectories during directional drilling. The new approach permits measurement while drilling, that is, it is not

necessary to remove the drill string to perform a measurement. The new instrument was tested during two

days of directional drilling operations involving a full-scale drilling rig. The instrument withstood this long

period of very harsh conditions without any issues. The new signal processing methods were successfully

applied to the data acquired during these tests.

This simplifies the drilling process and shortens the time required to execute a drilling and grouting

process. The trajectory of the hole is modeled as a cylindrical helix and the sensors are used to measure local

gradients of the curve. A new approach to reconstructing a curve in multiple dimensions from gradients was

present. It takes advantage of the properties of Bernstein polynomials to obtain a set of equations that are

simple to solve using matrix algebra. The linear nature of these equations opens the door to an extension that

permits the computation of both confidence and prediction intervals for the trajectory.
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Chapter 5

Scientific Machine Learning

This chapter gives an overview of the architectures and synthesis algorithms developed for scientific machine

learning. The progress in the field of scientific machine learning, especially around the novel architecture

called Rayleigh-Ritz Autoencoder, is demonstrated with the following papers:

1. A Rayleigh-Ritz Autoencoder,

2. Automatic Synthesis of Admissible Functions for Variational Learning,

3. Extended Rayleigh-Ritz Autoencoder with Distribution-Free Statistics.
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Abstract

This paper presents a new architecture for unsupervised hybrid machine learning, called

a Rayleigh-Ritz Autoencoder (RRAE). It is suitable for applications in instrumentation and

measurement where the system being observed by multiple sensors is well modeled as a bound-

ary value problem. The embedding of the admissible functions in the decoder implements a

truly physics-informed machine learning architecture. The RRAE provides an exact fulfill-

ment of Neumann, Cauchy, Dirichlet, or periodic constraints. Only the encoder needs to be

trained; consequently, the RRAE is numerically more efficient during training than traditional

autoencoders.

The new Rayleigh-Ritz Autoencoder has been applied to an instrumentation and measure-

ment problem in structural monitoring. It involves the fusion of data from multiple sensors and

the solution of a boundary value problem.A 1-norm minimization has been chosen to minimize
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the effects of non-Gaussian perturbations and to demonstrate the non-linear abilities of the

RRAE. The results from the tunnel monitoring application over months of work are presented

in detail.

Index Terms - Physics informed machine learning, Rayleigh-Ritz, Sturm Liouville, Calculus

of Variations, Admissible functions, Structural monitoring

1 Introduction

This paper presents a new architecture for unsupervised hybrid machine learning applied to instrumentation

and measurement. The name Rayleigh-Ritz Autoencoder (RRAE), see Figure 1, has been selected, since it is

an autoencoder [5.1, 5.2] permitting unsupervised learning; admissible functions are used in the decoder to

ensure the exact fulfillment of the equations governing the behavior of the physical system. It is a form of

physics-informed neural networks [5.3]. The encoder is implemented as a neural network [5.4], this permits

the modeling of any well-behaved function [5.5]. The loss function, used during training, implements the

functional with its corresponding cost, as required in the calculus of variations (CoV). It is an autoencoder

that implements the Rayleigh-Ritz method, with exact fulfillment of the system’s physical constraints.

Figure 1: Schematic of the Rayleigh-Ritz Autoencoder structure. The encoder is implemented as a

neural network and maps the inputs to the latent variables α. The decoder uses admissible functions

A, that fulfill the constraints of the physical system in an exact manner, to generate ŷ =Aα.

Some key features of the Rayleigh-Ritz Autoencoder developed here are:

1. The a-priori physical constraints on the system are fulfilled exactly and not just approximated.

2. Constraints on the functional or its derivatives, i.e. f (x)(k) at arbitrary locations x are possible. They

are not limited to the boundaries of the system.

3. Relational constraints between different locations of the solution can be implemented, f (x1)
(k1) =

f (x2)
(k2).
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4. The admissible functions are automatically synthesized from the sensor locations x and the a-priori

constraints.

5. A key feature for instrumentation and measurement applications is that the RRAE provides a computa-

tion for error propagation.

6. Only the encoder needs to be trained, this improves the numerical efficiency and convergence during

the training of the network.

The focus here is on the solution of inverse problems which require the fusion of data from multiple

sensors and the embedding of the equations governing the physical system. Consider the example shown in

Figure 2: the task is to monitor the deformation of a tunnel during the construction of a new side access. The

new access is to be constructed while the primary tunnel is still in use; consequently, reliable monitoring is

important, since there is an immediate danger to life and limb. A finite element simulation was performed to

predict the deformations of the wall. The metal ribs supporting the tunnel, have each been instrumented with

five sensors, additionally, two fixed points are identified. A reliable and physically relevant measurement of

the deformation requires the fusion of the data from the sensors and the embedding of the equations for the

deformation of the beam. The two endpoints are defined so that they are fixed in both position and orientation.

The characteristics of such applications [5.6–5.8], are: there are multiple sources of data that need to be

merged, there are explicit constraints on the solution and the results must be consistent with the equations

governing the behavior of the system.

Figure 2: Left: Finite element simulation of the tunnel wall showing expected deformations. Center:

Schematic of the planned locations for the sensors; encircled in red. Right: Photograph showing the

locations of the individual sensors installed on the structural beams.

A number of approaches have been published addressing boundary value problems in a classical man-

ner [5.9]. The methods of shooting can be used where the constraints are limited to the boundaries of the
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system [5.10]. Solutions to more general cases for forward problems are also available [5.11, 5.12].

1.1 Calculus of Variations and Constrained ODE

The goal here is to investigate a new autoencoder [5.1, 5.2] architecture, that can take advantage of the

generalizing properties of machine learning, while fulfilling the requirements of a measurement system [5.13–

5.15]. Taking an approach based on the principle of least action [5.16][Ch. 19] is logical, since it has become

the standard approach to modeling systems in modern physics. The principle is generally formulated in terms

of the calculus of variations (CoV) [5.17]. The action S(y), i.e. the cost function, is formulated for continuous

systems as,

S(y) =
∫ xb

xa

f (x,y,y′) dx. (5.1)

whereby, f (x,y,y′) is the functional, i.e., the cost associated with a specific solution. The task is to find y(x),

here a curve, that corresponds to a stationary value of S(y), subject to a set of constraints. This is equivalent

to solving the Euler-Lagrange differential equation,

∂ f

∂y
−

d

dx

(
∂ f

∂y′

)
= 0, (5.2)

subject to the same constraints. The following types of constraints are considered here:

1. Constraints at specific locations:

y(x)(d) = w, (5.3)

i.e., the dth derivative of the curve y(x), at the location x has the constant value w.

2. Relational constraints,
m

∑
i=1

y(xi)
(di) = w. (5.4)

Neumann, Cauchy, Dirichlet and periodic constraints are all special cases of these two definitions. Note:

the constraints are not restricted to the boundaries of the system.

2 Neural networks and constrained differential equations

Neural network (NN) approaches have been used to solve differential equations [5.18] and constrained

differential equations [5.19, 5.20]. They take advantage of the denoising and generalizing properties of

machine learning. However, exclusively data-driven models have no embedded knowledge of the physical

system. Consequently, predictions may contain physical inconsistencies and produce implausible solutions.

Physics-informed neural networks [5.3] are a hybridization of classical NN and mathematical models

that enforce physical laws. In most approaches presented so far, the physics are inferred from the observa-

tions [5.21]. The goal is that the latent space is the parameter space; the encoder learns the parameters of

the equation by which the physical system is governed. However, the works presented in [5.22, 5.23] do

not enforce the fulfillment of constraints; this issue is crucial, since not fulfilling constraints exactly may

invalidate the results.
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Solving inverse problems brings additional difficulties since the solutions of inverse problems are not

guaranteed to be unique and stable [5.24]. Yadav et al. [5.25] provide a good overview of the known

techniques for solving differential equations with neural networks. Most of the presented techniques are

based on multilayer perceptrons (MLP) and radial basis functions (RBF). In one of the approaches which

combines both, MLP and RBF, the authors conclude that their method could solve the differential equation in

a manner that fulfills the boundary condition exactly; however, it is computationally too expensive. With this

limitation, they choose to solve the system of equations approximately and exclude solutions that don’t fulfill

the conditions [5.25].

The paper [5.26] states that the three approaches suitable for solving partial differential equations are:

physics-informed neural networks, methods based on the Feynman-Kac formulae [5.27] and methods based

on the solution of backward stochastic differential equations. A further overview of physics-informed neural

networks can be found in [5.28]. In most of the recently published literature, see e.g. [5.29–5.31,5.31,5.32], the

physical constraints are incorporated into the loss function as an additional penalty term, this is referred to as

soft boundary constraint enforcement; this is akin to weighted constraints in algebraic least squares [5.33,5.34].

The other approach is known as hard enforcement and the physical constraints are encoded into the network

architecture [5.28].

3 Rayleigh-Ritz Method

The Rayleigh-Ritz method starts from a set of admissible functions, here the columns of the matrix A, which

are assumed to be complete. These functions fulfill the constraints in a homogeneous manner. Consequently,

any linear combination is also an admissible function. Furthermore, A is complete, i.e., AA+ = I and with

this spans the complete space Ω of all admissible solutions. This ensures y ∈ Ω and y ∈ span(A). The model

is computed as ŷ =Aα, where α is the vector of coefficients, in ML parlance, these are the latent variables.

Given these conditions, there exists a set of values for α such that,

min
α

S(Aα) = min
y

S(y) given y ∈ Ω. (5.5)

The task at hand now is to compute a set of admissible functions and to determine α to ensure, S(Aα) is

stationary.

Some machine learning approaches have been presented to this task: in both [5.32, 5.35] a version

of Deep Ritz Method was used to learn the admissible functions. However, the constraints are taken into

account by adding a penalty term to the loss function. Consequently, the constraints are not fulfilled exactly.

Chen et al. [5.36] in their comparison of deep-Galerkin (DGM) and deep-Ritz methods (DRM) state that

the enforcement of boundary conditions in deep neural networks is highly nontrivial. The main difference

between DGM and DRM is the loss function. In both of these methods, the boundary conditions are treated

using the penalty method - adding a penalty term to the loss function. Only for the Dirichlet boundary

conditions a strategy was found to avoid the penalty term. The special case of periodic constraints was

solved [5.37] using the Fourier basis functions.

None of these methods support the exact fulfillment of generic constraints. As a result, the approaches

are not generally applicable.
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3.1 Synthesizing admissible functions

There are a number of properties that the admissible functions should have:

1. Constraints of the types defined in equations 5.3 and 5.4, should be fulfilled. The exact fulfillment

of the constraints is particularly important in structural monitoring, where it is necessary to detect

deformations that have a scale of milliliters over distances of meters.

2. The matrix of admissible functions should be unitary ATA = I . This will ensure optimal noise

behavior when approximating.

3. The admissible functions should be complete, i.e., span the space of all admissible solutions.

4. It is desirable to have the admissible functions ordered according to their number of zeros, as are the

eigenfunctions for all self-adjoint ODE. This is related to optimal regularization using truncated basis

functions.

In the following, we shall derive an algorithm that ensures the synthesis of admissible functions that fulfill

these properties. In addition to the admissible functions A, we shall also create a set of interpolating functions

AI that also fulfill the constraints exactly.

Step 1: Starting from the m×1 vector x, the locations of the points where the approximation is to be

performed, the Vandermonde matrix V is computed ordered from left to right according to increasing degree.

Step 2: Compute the QR decomposition of

V =QR (5.6)

Since R is upper triangular, its inverse R−1 must also be upper triangular. Consequently. Q = V R−1

maintains the ordering of the polynomials in Q according to degree. The columns of Q form a set of ordered

discrete orthogonal polynomials (DOP). The avoid confusion later we shall denote the DOP by B ≜Q. An

unconstrained approximation would be computed as ŷ =Bβ.

The matrix V can become poorly conditioned as the degree of the polynomial rises; this can be

determined from the condition number κ(R). This permits an estimate of the number of significant digits in

the computation. From Figure 3 it can be seen that single precision computations are possible with d ≈ 20,

which is compatible with the training performed on a GPU also using single precision computations.

Step 3: Compute the constraining matrix C, whereby each row corresponds to one of the k constraints,

such that Cβ = 0; this requires

β ∈ null(C). (5.7)

Derivatives are computed using a pseudo-spectral approach [5.38], since finite differences yield poor estimates

for derivatives when only a low number of points is available. Using singular value decomposition, a unitary

basis set N can be computed for the null(C). The matrix N has the dimensions m×m− k. The calculation

BN would lead to a set of admissible functions. However, at this point their ordering can not be guaranteed.

Step 4: Apply an RQ1 to N =RN QN , the notation RN and QN is used to differentiate wrt R and Q

used above. The matrix of ordered admissible functions A is obtained as,

A=BRN . (5.8)

1N.B.: this is an RQ decomposition and not a QR decomposition.
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Figure 3: Invertibility of the Vandermonde matrix V and the resulting number of significant digits

(NSD), left, due to the poor conditioning of κ(R), right.

They span the complete space of solutions given m locations and k constraints; they fulfill the constraints

exactly; ATA = I and they have the same ordering of zeros as would the corresponding eigenfunctions.

Consequently,

ŷ =Aα. (5.9)

Step 5: Given the vector of locations xI where the interpolation of the result is desired, compute VI

the corresponding Vandermonde matrix. The interpolating admissible functions AI are now obtained as,

AI = VI R
−1RN and the interpolated curve is computed as

ŷI =AI α. (5.10)

4 Rayleigh-Ritz Autoencoder

An autoencoder (AE) [5.1, 5.2] is a machine learning architecture suitable for unsupervised learning. The

mapping performed by an encoder can be seen as an inverse problem and the second mapping performed by

the decoder as a forward problem in classical analysis [5.22]. An AE can be described by the two mappings

it performs [5.39]:

1. The encoder: y 7→α, where y is the input vector α is the vector of latent variables.

2. The decoder: α 7→ ŷ, where ŷ is the model for the data.

The Rayleigh-Ritz Autoencoder proposed here uses the admissible functions presented above for the

decoder so that,

ŷ =Aα. (5.11)

This ensures that all mappings from the latent space create valid solutions for ŷ, consistent with the physics

of the problem. It is not possible to create an invalid solution. Additionally, this structure permits the explicit

calculation of error propagation. If the covariance of α, i.e. Λα is maintained during the progress of the

computations — this can be done numerically — then the covariance of the prediction is obtained as,

Λŷ =AΛαAT
. (5.12)
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Both the prediction and confidence intervals for the solution ŷ can be computed from the covariance Λŷ.

This is a surprising and very positive feature since it is highly unusual for autoencoders to provide error

bounds on a solution.

From the training process we have a means of estimating both α and its covariance Λα; consequently,

for each additional measurement, we can calculate the marginal likelihood of it belonging to the previous

observations. As a result, the proposed RRAE can also be used directly to implement a Gaussian Process

(GP). It is beyond the scope of this paper, due to lack of space, to go into more details on GP, see e.g., [5.40].

The encoder is implemented as a neural network [5.4], since neural networks are known to be capable of

representing any well-behaved function with arbitrary accuracy [5.5].

4.1 Cost function

The cost function to be minimized corresponds to the functional f (x,y,y′) as used in Eqn. 5.1. It is common

to have an additional regularizing term in the cost function, e.g., variational autoencoders [5.41] performs

regularization based on the Kullback–Leibler divergence DKL(Q ∥ P) of the distribution of the latent variables

P with respect to a standard Gaussian Q.

The admissible function method proposed here is particularly well suited to regularization via truncation

of the basis, i.e, removing the higher degree bases. The ordering of the DOP according to the number of

zeros in the function, ensures the same ordering as the eigenfunctions of mechanical systems. Consequently,

regularization via truncation of the basis, corresponds to approximating the response of the system by lower

order eigenfunctions2.

5 Example application

The exemplary application used to demonstrate the proposed method is shown in Figure 2 and briefly

presented in the introduction. The task is to reconstruct the deformation of the tunnel wall, given the

measurements from five sensors. The two additional fixed points provide four constraints,

y(xa) = 0, y′(xa) = 0, y(xb) = 0, and y′(xb) = 0. (5.13)

The metal beam forming the ribs ensures a Cn continuous deformation. Multiple ribs were instrumented;

however, only the data from one rib is presented here. Given, the locations of the five sensors and two fixed

points there are m = 7 nodes for the computation of the admissible functions. To ensure completeness, the

starting point is a set of degree d = 6 polynomials. The four independent constraints remove four degrees of

freedom. Consequently, there will be three admissible functions in A. These span the complete space of

valid solutions, for this constellation of the physical system. The admissible functions are shown in Figure 4.

The sensor data, see Figure 5, is split into three portions: for training, normal operation, and data with a

known anomaly. The box plot of the data used to train the network is shown in 6.

The functional selected here for minimization is the 1-norm of the reconstruction error,

S(y) = ∑ |y−Aα|. (5.14)

2Unfortunately, there is not sufficient space available here to elaborate on this any further here. It is an important

issue and justifies further investigation.
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Figure 4: The three valid admissible functions for the exemplary application shown in Figure 2.

The dots indicate the values of A that form the unitary admissible functions. The continuous lines

are the interpolated admissible functions AI at p = 100 points.
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Figure 5: Raw data from the five tilt sensors at the tunnel section SBP2, the tilt data is measured in

[mm/m]. The data has been segmented into three portions: (Green) The training data, with n = 779.

(Red) Normal operative region, n = 9159 and (Blue) data with a known anomaly, n = 1815; n refers

to the number of samples per sensor. Measurements was performed every ts = 10 mins over the

period from 23-Nov-2014 to 16-Feb-2015.

The 1-norm is selected, since they are less sensitive to outliers than 2-norm approximations, an important

aspect in this application. Explicit solutions to the 2-norm case have been developed [5.8]. However, they are

not easily extended to 1-norms, or other nonlinear-functionals, which require a non-linear optimization; here

the advantage of the Rayleigh-Ritz autoencoder comes into play.

The portion of the sensor data corresponding to the normal operation, with its n samples, is put through

the trained RRAE yielding a matrix of latent variables, L = [α1, . . .αn], whereby α j corresponds to the

vector of latent variables for the jth measurement. The homogeneously constrained polynomials form a
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Figure 6: Boxplot of the training data at their specific locations. Note the horizontal scale is in

meters, whereas the vertical is in millimeters. There are small variations that need to be computed.

vector space; consequently, it is permissible to compute distances in the latent space, i.e., wrt to polynomial

coefficients. The distance of α j from α1 in the vector space of the latent variables is shown in Figure 7,

this is a measure of the change in the latent variables as a function of time. The point in time where the

deformation of the wall is triggered by the tunneling process is clearly visible.
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Figure 7: Distance in the latent space from α1 to α j, i.e., a measure for the change in the latent

variables as a function of time.

Given the matrix of latent variables L and the interpolating constrained polynomials AI , it is now

possible to compute the interpolated reconstruction of the deformation of the surface ŶI =AI L. The result

of monitoring the deformation of the tunnel wall over the period of approximately three months is shown in

Figure 8. The critical time point where the deformation of the rib becomes significant is clearly visible. The

interpolation provides a representation for the shape of the complete deformation. Note that the deformation

is in millimeters, whereas the elevation is in meters. For computations to be reliable at this scale, it is essential

that the a-priori physical constraints are fulfilled exactly.
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Figure 8: Interpolated reconstruction of the deformation of the surface of the tunnel ŶI as a function

of time. Note that the deformation is in millimeters, whereas the elevation is in meters.

6 Conclusions

The new Rayleigh-Ritz Autoencoder has been presented. The constraints and behavior of the physical system

are embedded in the admissible functions used in the decoder. This ensures that modeling the system from

data yields the exact and full conformity of the solution with the a-priori knowledge about the behavior of the

system. This is truly a physics-informed machine learning architecture.

The new architecture has been applied to an advanced instrumentation and measurement problem;

involving the fusion of data from multiple sensors. The Rayleigh-Ritz Autoencoder was used to implement a

1-norm minimizing approximation of the deformations. The constraint consistent interpolation was used to

create a view of the complete surface deformation and not just the results at the sensor locations.
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Abstract

This paper presents a new algorithm for the automatic synthesis of admissible functions,

which fulfill generalized derivative constraints. The goal is to establish a generic approach to

hybrid machine learning based on the calculus of variations. This permits the embedding of

a-priori knowledge into the solutions involving measurement data. The approach is optimized

to be compatible with single precision as used on most GPUs. This supports the simple use of

common GPUs to accelerate the computations.

The new algorithm uses a two-step approach to synthesizing the subspace for the admissible

functions, ensuring the exact fulfillment of all constraints. The subspace approach avoids the

necessity for Lagrange multipliers and reduces the dimensionality of the space in which the

problem is solved. This approach achieves higher modes of admissible functions than past

methods, while maintaining single precision. This is due to the improved numerical stability.

The proposed methods are verified by synthesizing admissible functions for a Rayleigh-Ritz

approach to solving problems formulated as the calculus of variations. The brachistochrone

is solved to demonstrate the solution of a forward problem. This requires the minimization

of a cost function, that is an integral over an irrational function. The Zernike polynomials

are synthesized and applied to the approximation of measurement data on a circular disk by

a surface. This corresponds to using anisotropic bases to solve a partial differential equation

(PDE) on a circular disk.

Index Terms - Physics informed machine learning, Rayleigh-Ritz, Calculus of Variations,

Admissible functions
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1 Introduction

This paper presents a new algorithm for the synthesis of admissible functions (AF) which fulfill generalized

constraints. In [5.1] it is shown that admissible functions can be combined with machine learning techniques

to implement physics-informed learning [5.2] in measurement systems. It is known that hybrid machine

learning is an important approach when considering measurement systems [5.3]. The paper extends the

authors previous work in an effort to establish a generic approach to hybrid machine learning (hybrid-ML)

for the solution of problems in the calculus of variations (CoV), this we call Variational Learning (VL).

Special attention is paid to numerical accuracy so that the admissible functions are consistent with the single

precision computations common on GPUs. This work extends methods presented in [5.1] by improving

numerical behavior; additionally, here both forward and inverse problems are addressed.

Some valuable and important work was carried out in the 1980s on the use of polynomials as admissible

functions by Baht [5.4] and extended by others [5.5, 5.6]. They showed their potential and pointed at issues

relating to numerical stability and the difficulties of computing higher-order eigenfunctions. However, the

difficulties encountered are, to a large extent, associated with the approach taken and are not principally

associated with the use of polynomials.

It was standard practice in the analysis of vibrational modes in engineering mechanics [5.7, 5.8] to use

a coordinate system where 0 f x f 1, since this simplifies the analytic equations. However, this leads to

numerical instability of the polynomials. The use of the Gram nodes [5.9] xk :=−1+(2k−1)/m for k points

yields significantly better stability. Note: the end nodes are not exactly at x = [−1,1], but half an interval in;

this avoids potential end-point singularities.

In the papers [5.4–5.6], the initial polynomials are handcrafted to fulfill the boundary conditions. Unfor-

tunately, the combination with Gram-Schmidt orthogonalization, as used in [5.4–5.6], does not maintain the

fulfillment of derivative constraints. This was observed in [5.10] and the concept of complementary boundary

conditions was introduced to alleviate this issue. Furthermore, the Gram-Schmidt algorithm is known to be

numerically unstable [5.11]. This all leads to admissible functions that are poorly conditioned.

In this paper we wish to address more general cases of boundary value problems (BVP) and not just

vibrational modes. Classical approaches to general boundary value problems can be found in [5.12]. The

methods of shooting can be used where the constraints are limited to the boundaries of the system [5.13].

Solutions to more general cases for forward problems are also available [5.14, 5.15]. These approaches are

suitable for forward- but not for inverse problems.

BVP have also been addressed using machine learning, in particular Physics-informed neural networks.

In many previous studies, the underlying physics have been inferred from observations [5.16]. The ultimate

aim of these methods is for the latent space of an autoencoder to correspond to the parameter space, whereby

the encoder learns the parameters of the governing equation for the physical system. However, the works

presented in [5.17, 5.18] do not enforce the fulfillment of constraints; which is crucial, since failure to meet

these constraints precisely can render the results invalid.

A review of known techniques for solving differential equations with neural networks can be found

in [5.19]. In one of the approaches, which combines multilayer perceptrons and radial basis functions, the

authors conclude that their method could solve the differential equation in a manner that fulfills the boundary

condition exactly; however, it is computationally too expensive. With this limitation, they choose to solve the

system of equations approximately and exclude solutions which don’t fulfill the constraints [5.19].
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Another review of hybrid-ML can be found in [5.20]. In most cases, e.g. [5.21–5.23, 5.23, 5.24], the

physical constraints are incorporated into the loss function as an additional penalty term, called soft boundary

constraint enforcement; this is akin to weighted constraints in algebraic least squares [5.11, 5.25].

In [5.26] a new approach to synthesizing constrained discrete orthogonal polynomials was introduced;

this leads to unitary bases with excellent numerical stability. However, the implementation of derivative

constraints is limited to using co-locative finite differences. To be more general, interstitial derivative

constraints are required and pseudo-spectral definitions produce better results in sensor systems where a

limited number of sensors is available.

The main contributions of this paper are:

1. A new two-step algorithm with improved numerical stability for the automatic synthesis of admissible

functions with generalized derivative constraints. Exact fulfillment of the constraints is guaranteed

over all the admissible functions.

2. The improved numerical stability permits single precision accuracy, compatible with common GPU

formats while enabling higher-order admissible functions. This is part of the strategic decision to

optimize these methods for hybrid-ML.

3. Geometric polynomials have been selected, since they are sufficient for this context and offer a more

balanced computational effort than discrete orthogonal polynomials [5.27,5.28]. They are also simpler

when implementing interstitial constraints

4. A pseudo-spectral [5.29] approach to implementing the derivatives constraints was selected; since

this yields better approximations where there is only a modest number of x locations, as is the case in

sensor applications.

5. An application to a two-dimensional inverse problem in polar coordinates is presented involving the

use of Zernike polynomials and the Fourier basis.

The approach is verified on both forward and inverse problems. The paper extends and improves the work

presented in [5.30] and [5.1] yielding better numerical stability and suitability for use in hybrid-ML.

2 Calculus of variations

The focus of this paper is on general boundary value problems. The calculus of variations is defined in terms

of minimizing a functional S(y(x)),

S (y(x)) =
∫ x2

x1

L
(

x, y(x), y′(x) . . .y(p)(x)
)

dx, (5.15)

i.e. minimizing the integral over the Lagrangian L(·) between the boundary locations x1 and x2. Additionally,

there are boundary, and possibly isoperimetric, conditions that must be fulfilled. Consequently, the problem

can be formulated as,

min
y(x)

{∫ x2

x1

L
(

x, y(x), y′(x) . . .y(p)(x)
)

dx

}

subject to constraints on y(x),y′(x), . . .y(x)(p)
. (5.16)
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In the general case, the Lagrangian is a nonlinear function of y(x) and its derivatives. This precludes the use

of direct solution approaches, such as linear least squares.

2.1 Rayleigh Ritz method

The Rayleigh Ritz method computes an approximation ŷ to y as a linear combination of admissible functions,

i.e., ŷ =Aα, whereby A≜ [a1, . . . ,ak]. For a continuous system, there is an infinite set of AF that span the

complete space Ω of all feasible solutions.

Theorem 1. If the functional S(y) is continuous and the admissible functions are complete in Ω, then:

lim
k→∞

S(ŷ) = inf
y∈Ω

S(y). (5.17)

Problems for which there are no analytic solutions can be addressed with this method.

In discrete computations, with m distinct solution locations, there can be no more than m linearly inde-

pendent AF that span the discrete Hilbert space Ωd . If fewer AF are used, i.e., k < m then the approximation

lies within a subspace of Ω.

3 Polynomials as admissible functions

The Weierstrass approximation theorem states:

Theorem 2. Suppose f (x) is a continuous real-valued function defined on the real interval [a,b]. For every

ε > 0, there exists a polynomial p(x,α) such that for all x ∈ [a,b], we have, | f (x)−p(x,α)|< ε .

That is, from a theoretical perspective, polynomials fulfill the condition of Cn continuity and can achieve

arbitrary accuracy. Consequently, the use of polynomials as admissible functions is primarily a question of

computational methodology to achieve the required numerical stability.

3.1 Definition of constraints

Assuming the use of the Rayleigh-Ritz method Eqn. 5.16 can be rewritten as.

min
y(x)

{∫ x2

x1

L
(

x,Aα,A(1)α . . .A(p)α
)

dx

}

subject to constraints on Aα,A(1)α . . .A(p)α. (5.18)

This indicates that we require the admissible functions A and their generalized derivatives A(p). Polynomials

provide a simple and stable method of implementing this. If V is the Vandermonde matrix, then its

generalized derivatives, consistent with Eqn 5.18, are given by V (p) = V M p; using MATLAB notation

M = diag(1 : d,1), with d being the degree of the polynomial.

Each of the n located constraints1 is defined at a location xi with a derivative degree pi, such that

y(xi)
(pi) = 0 with i ∈ 1 . . .n. This is mapped to a row vector ci 7→ v(xi)M

pi and with this we obtain ci α = 0;

1Note: any non-homogeneous problem can be reformulated so that all constraints are homogeneous.
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whereby v(xi) corresponds to one row of the Vandermonde matrix evaluated at the xi. The vectors ci are

stacked to form the constraining matrix C. Computing the function y involves solving,

y = V α given Cα= 0. (5.19)

Classically, this is solved using Lagrange multipliers [5.31]. However, each constraint then adds an additional

dimension to the problem. Here we take a subspace approach; whereby, each constraint will reduce the

dimensionality of the subspace in which the solution must lie.

3.2 A subspace approach

Given a polynomial of degree d and n independent constraints, the matrix C has the dimensions (n×d +1)

and an orthonormal vector basis set N that spans the null(C) [5.11] has the dimensions (d +1×d +1−n).

Consequently, starting from a polynomial vector space of dimension d +1, there exists a subspace of V , i.e.,

admissible functions A= V N of dimension d +1−n, such that,

y =Aβ. (5.20)

The vector β now only has d + 1− n entries; whereas α had d + 1. However, direct computation in this

manner loses the ordering of the admissible functions. This can be rectified via an intermediate computation:

first applying an RQ decomposition2 to N =RQ, then computing,

A= V R, (5.21)

yields an ordered set of admissible functions, since R is upper triangular. The matrix, Q being orthonormal,

will not change the span of A and can be ignored. The required derivatives of the admissible functions A(p)

are computed as,

A(p) = V M pR. (5.22)

In this manner an ordered set of admissible functions A and their derivatives A(p) are obtained.

3.3 Two step algorithm

The subspaces proposed above can be calculated more efficiently and with better numerical stability using

a two-step approach. The constraints can be split into value and derivative constraints. In the first step, a

subspace B for all s value constraints is synthesized directly. This is equivalent to forcing the polynomials to

have a set of s roots ri, at the corresponding locations xi. Then, in the second step, the subspace approach,

from Section 3.2, is applied to B to implement the derivative constraints. In this manner two lower-degree

problems are solved rather than one higher-degree problem; this proved to be numerically more stable.

2This is an RQ and not a QR decomposition
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Step 1

A function yr(x), that fulfills the value constraints can be computed as,

yr(x) =
s

∏
j=1

(x− r j)
(d−s)

∑
k=0

γk xk
. (5.23)

This can be formulated in vector form by now evaluating,

xr =
s

∏
j=1

(x− r j), (5.24)

and defining the diagonal matrix Xr ≜ diag(xr), we obtain

yr =Xr V γ. (5.25)

Note: it is possible to directly synthesize a constrained Vandermonde matrix B =Xr V , using Horner form,

in a numerically efficient and stable manner [5.32], furthermore, B(p) =BM p.

Step 2

The derivative constraints are now applied to B, as done in Section 3.2 and we obtain,

A(p) =BM pR. (5.26)

Note: this two-step approach involves computing Vandermonde matrices of lower degrees. It is as a

consequence numerically more stable and efficient.

4 Numerical testing

The first test is to synthesize a set of admissible functions with three roots; one at each end and one in the

center of the support. Three versions of the admissible functions were synthesized: Y1(x) with m nodes

such that 0 f x f 1; Y2(x) using the Gram nodes x j =−1+(2 j−1)/m and Y3(x) using the Gram nodes but

synthesized using the two-step algorithm. The admissible functions Y1(x) and Y3(x) are shown in Figure 1;

note, the asymmetry of the AF for 0 f x f 1.

The quality of the respective admissible functions is quantified by estimating the number of digits of

accuracy that are achievable when inverting the bases. Ideally, G=A+A should correspond to the identity

matrix. Consequently, a matrix of errors can be computed as E = I−A+A. The Frobenius norm ε = ∥E∥F

is a measure over all the errors and − log10(ε) can be considered as the number of digits that are maintained.

The first derivatives of the admissible functions A(1) should be exactly rank-1 deficient. Otherwise, there are

additional null spaces, which will falsify inversion. We considered it necessary to maintain single precision

accuracy to be compatible with most common GPU calculations. The results of these calculations are shown

in Figure 2. As can be seen, the two-step algorithm on the Gram nodes yields the best results. It was possible

to synthesize polynomials of degree d = 27 while maintaining single precision. We considered it necessary

to maintain single precision accuracy to be compatible with most common GPU calculations.
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5 Application in Hybrid Machine Learning

5.1 Brachistochrone: A froward problem

The Brachistochrone problem [5.33, Page 324] has been chosen as a demonstration for the hybrid-ML for a

number of reasons:

1. This is a well-known problem first posed by Johann Bernoulli to the readers of Acta Eruditorum in

June, 1696 to which Newton [5.34] published a solution. The availability of parametric solutions

enables the comparison with the hybrid-ML approach.

2. The minimization problem involves the integral over an irrational function, see Eqn 5.27. This makes it

suitable for the non-linear optimization algorithms made available by machine learning environments.

3. It is a non-homogeneous forward problem, demonstrating the application of hybrid-ML to such cases.

4. A non-linear coordinate transformation is required wrt. the parametric solution, if good numerical

stability is to be achieved.

These features make it a suitable case to test the hybrid-ML. The equation for the action S(y) in the case of

the Brachistochrone is:

S(y) =
1

√
2g

∫ x2

x1

√
1+(dy/dx)2

y
dx (5.27)
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with the boundary conditions y(x1) = 0 and y(x2) = b. The endpoint solution is,

b =
2φB − sin(2φB)

1− cos(2φB)
, (5.28)

This is solved in a non-linear manner to obtain values of φB. Then for 0 f φ f φB the parametric solutions

for x and y are computed as:

x =
2φ − sin(2φ)

1− cos(2φB)
and y =

2φ − cos(2φ)

1− cos(2φB)
.

The parametric solution yields values for x which are highly non-uniform in their spacing. A dramatic

improvement in the numerical stability of the admissible functions is obtained by introducing the coordinate

transformation shown in Figure 3. These solutions will later be compared with the results from solving the

problem via hybrid-ML. The admissible functions are now synthesized on the nodes xn, the Gram nodes, and

then applied at the locations x. This points to a future area of research on optimized node placement for the

calculus of variations.

In this non-homogeneous problem, y is considered as consisting of a particular solution yp and a

homogeneous portion yh, i.e., y = yp +yh. Whereby, yp is the minimum degree polynomial that interpolates

the boundary constraints, in this example, simply a straight line; yh =Aα is the homogeneous solution [5.35].

The task now is to find α that minimizes the discrete equivalent of Eqn 5.35, i.e.,

min
α

S(y) =
1

√
2g

trapz

{√(
1+

(
y(1)

)2
)
◦/(y)

}
, (5.29)
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here trapz(·) indicates the trapezoidal equivalent to integration and the symbol ◦/ denotes the Hadamard

division, i.e., an element-wise division of the two vectors.

In the hybrid-ML solution S(y) is used as the loss function. In this example, it is an irrational function

of y(x) and its first derivative y(1). Machine learning offers efficient and stable solutions to such non-linear

tasks.

The comparison of the results obtained from the hybrid-ML and the known parametric solution is shown

in Figure 4. As can be seen, the hybrid-ML agrees with past solutions within an error of 10−14, this is beyond

single precision and can be considered as an exact solution in this context. That is, the hybrid-ML has

successfully learnt the solution to the boundary value problem.

5.2 Zernike polynomials: An inverse problem

The Zernike polynomials are applied in optics [5.36] to model and describe distortions of lenses, i.e.,

deformations on a spherical field. The even and odd Zernike polynomials are defined as:

Zm
n (r,φ) = Rm

n (r) cos(mφ) , (5.30)

Z−m
n (r,φ) = Rm

n (r) sin(mφ) , (5.31)

whereby the radial polynomials are given by,

Rm
n (r) =

(n−m)/2

∑
k=0

(−1)k (n− k)!

k! {(n+m)/2− k}! {(n−m)/2− k}!
rn−2k (5.32)

and fulfill the orthogonality condition,

∫ 1

0
Rm

n (r)R
m
n′(r)r dr =

1

2(n+1)
δn,n′ , (5.33)

where δp,q is the Kroneker delta. The specific selection of the polynomials in conjunction with a corresponding

cyclic mode ensures that the constraints required at zero to avoid discontinuities are fulfilled. The polynomials

for modes m = 0 . . .2 up to degree d = 6 are shown in Figure 5. These polynomials have different constraints

depending on the mode number: y(1)(0) = 0 for mode 0; y(1)(0) = 0 and y(0) = 0 for mode 1; y(2)(0) = 0,

y(1)(0) = 0 and y(0) = 0 for mode 2.

The polynomials are used here to model distortions of a disk. The measurement data was acquired on

nr = 6 concentric rings, with m = 298 samples per ring. The measurement data and the composite Zernike

surface model are shown in Figure 6; whereas, the individual mode m = 0 . . .3 approximations are shown in

Figure 7.

More details on applying the admissible functions in hybrid-ML can be found in [5.1], together with

additional examples.

6 Conclusions

The newly proposed two-step synthesis algorithm for synthesizing admissible functions is numerically more

stable than the past solutions. It provides a mechanism to automatically convert constraint definitions to
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admissible functions, via a subspace approach. The solution of the brachistochrone problem demonstrates

the successful use of hybrid-ML to solve a strongly non-linear forward problem. The Zernike approxima-

tions show the applicability to two-dimensional inverse problems. Future work will focus on identifying

optimal node placements for the synthesis process since this has been observed to offer order of magnitude

improvement in the numerical stability.
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Montreal, Canada,

matthew.harker@etsmtl.ca

3 Materials Center Leoben

Leoben, Austria

manfred.muecke@mcl.at

Abstract

This paper presents a detailed analysis of an extended Rayleigh-Ritz Autoencoder which

uses distribution-free statistics to achieve stability with respect to non-Gaussian data. This

provides consistent results for sensor data with both Gaussian and non-Gaussian perturbations.

The necessity for handling non-Gaussian data in sensor applications is documented by the

behavior of inclinometer sensors where the perturbations are characterized by Cauchy-Lorentz

distribution. In such cases variance does not provide a reliable measure for uncertainty;

consequently, 1-norm error measures are investigated thoroughly. Furthermore, the stability of

the basis functions is improved via a new synthesis approach; enabling the use of single precision

computations while achieving polynomials of higher degree. The concept of Lebesgue functions
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and constants is extended to constrained bases, yielding a theoretical upper bound on the

interpolation error of the autoencoder. The method is applied to a previously well-documented

set of real measurement data, this enables the object determination of the improvement obtained

by the new calculation approach.

Keywords: Physics-informed machine learning, Rayleigh-Ritz, Admissible functions,

Structural health monitoring, Measurement uncertainty, Distribution-free statistics, Lebesgue

constant

1 Introduction

The concept of the Rayleigh-Ritz Autoencoder (RRAE) was first presented at the I2MTC in 2023, see [5.1].

This paper presents the results of new research on extensions to the RRAE, a new architecture for physics-

informed machine [5.2–5.4]. A schematic diagram of the RRAE architecture is shown in Figure 1.

y Wi ReLU Wo

Encoder

,

Decoder

ŷ

C

x Basis synthesis

A

Figure 1: Schematic of the Rayleigh-Ritz autoencoder. The encoder is a neural network, its purpose

is to map the inputs y to the latent variables α. The rectified linear unit layer (ReLU) is used as

the non-linear element. The basis synthesis computes a set of admissible functions A, given the

vector of locations x and a matrix C defining the constraints. This is performed prior to training

the network. The decoder computes the approximation ŷ =Aα. The learnable parameters of the

encoder are denoted with Wi and Wo.

The first major extension is the introduction of distribution-free statistical methods [5.5] to achieve good

stability with respect to sensor data having non-Gaussian perturbations. In the context of the Guide to the

expression of uncertainty in measurement, also known as GUM [5.6] and the International vocabulary of

basic and general terms in metrology (VIM) [5.7] the term uncertainty is defined as non-negative parameter

characterizing the dispersion of the quantity values being attributed to a measurand, based on the information

used. Commonly, uncertainty is expressed in terms of standard deviation and referred to as standard

uncertainty. However, there are proposals, e.g. [5.8] that GUM should be revised. The current version of

GUM is strongly focused on standard deviation as a measure of variability which is implicitly a 2-norm

context.
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To document the necessity for the introduction of more general measures for uncertainty, consider data

measured with the Murata SCA103T 3D-mems based inclinometer: it uses two accelerators, delivering

the signals ax and ay respectively. The total acceleration is calculated as a = ax +ay and the inclination as

φ = ax −ay. The bivariate histogram for m = 183000 measurements is shown in Figure 2. The individual

histograms for a and φ are also shown in Figure 2. The large number of observations ensures that the results

are statistically significant.

The issue is that the perturbations of inclination φ are not Gaussian in nature. They are, however, correctly

modeled by a three-term Cauchy-Lorentz distribution,

f (x;xo,γ, Io) = Io

{
γ2

(x− x̄)2 + γ2

}
, (5.34)

with the values xo =−0.728, γ = 5.606 and Io = 0.061. In this real measurement case, the mean provides an

unstable measure for the central tendency of the data, and the standard uncertainty is a very poor measure

for the spread of the data. Non-Gaussian data is surprisingly common; in [5.9] it was documented that only

a small percentage (5.5%) of the data samples fulfilled the conditions for normality, due mainly to their

kurtosis or skewness [5.10].

Consequently, a thorough investigation of distribution-free statistical methods and 1-norms, in conjunction

with the RRAE is presented. The new approaches yield stable and consistent results for both Gaussian and

non-Gaussian perturbations.
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Figure 2: Left: Bivariate histogram for ax and ay. The color indicates the frequency and is

proportional to the probability p(ax,ay). Right: the histograms of the total acceleration a = ax +ay

and the inclination φ = ax − ay, together with their respective probability density functions. A

total of m = 183000 measurement samples were used for these statistics. Note the probability

distribution function for inclination φ is Cauchy-Lorentz, and not Gaussian.
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The second major extension is the utilization of a new approach [5.11] to synthesizing constrained

admissible functions; these are required for the Rayleigh-Ritz method [5.12]. The goal is to achieve improved

numerical stability, using single-precision computations, while calculating higher-order admissible functions.

This enables the use of GPU for high throughput applications without the loss of quality. Additionally,

the concept of Lebesgue functions and constants [5.13] is extended to constrained admissible functions.

This provides theoretical upper bounds on the interpolation error of the RRAE. It also provides a means

of numerically quantifying the improvement in possible uncertainty through the implementation of the

constraints.

The new approaches are verified using the same data set as presented in [5.1]. This enables an objective

evaluation of the improvements with respect to the previous RRAE implementation.

1.1 Distance and similarity

The goal of modeling is to maximize the similarity between the data y and the corresponding model ŷ,

while obtaining dimensionality reduction; consequently, measures of similarity are required. In addition to

minimizing some distance measure, we may also wish to minimize the spread of the model values across a

complete training set, i.e., to minimize the uncertainty of the model prediction.

Classically, the 2-norm distance [5.14] is used for autoencoders as a measure, i.e., the residual r is defined

r ≜ y− ŷ and the loss function is the |r|22. However, for non-Gaussian data, the 2-norm is not an appropriate

measure of similarity and often leads to unstable results. In this paper 1-norms, median, and inter-quantile

ranges (IQR) are thoroughly investigated as alternative measures for distance, central tendency, and spread of

distributions. Minimizing with respect to these measures is fundamentally non-linear; this is where the use

of the neural networks (NN) [5.15, 5.16] and modern training algorithms has its advantages. The proposed

measures are particularly interesting since they yield stable results for both Gaussian and non-Gaussian cases.

2 The Rayleigh-Ritz Method

A typical calculus of variations problem [5.17] can be formulated as

min
y

C(y) = min
y

∫ b

a
f (t,y,y′)dt (5.35)

Subject to a set of constraints.

Here the solution y is a function of time. The Rayleigh-Ritz method [5.12] is a direct approach to finding

approximate solutions to such problems; whereby, y is replaced by an approximation ŷ, a linear combination

of admissible functions ak, i.e.,

ŷ =
d

∑
k=0

ak(x)αk. (5.36)

or in matrix form ŷ = A(x)α; whereby α is the vector of coefficients. This requires all the admissible

functions, A(x), to fulfill the constraints exactly in a homogeneous manner, if the correspondence to the

physical system is to be maintained. Conversely, if this condition is fulfilled, the solution ŷ provided by the

RRAE, using the admissible functions, cannot violate the physical constraints defined by the system. The
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task has now been transformed to finding the values of the coefficient vector α that minimize C(ŷ). This will

be the task of the encoder portion of the RRAE.

A number of papers claim to implement the Ritz method; however, strictly speaking, the papers are

proposing an additional term in the cost functions to fulfill constraints [5.18–5.21]; this is undesirable, since

it is tantamount to modifying the functional. That is, they are redefining the problem to be solved and the

exact correspondence to the physics of the problem is lost. A further problem in these papers is that the trial

functions used are not strictly admissible in and of themselves. This leads to a further divergence between the

model solution on the physics.

2.1 The nature of constraints

Dirichlet, Neumann, Cauchy, or Robin constraints are the most common found in literature [5.22]. They can

be summarized as linear combinations of values ŷ and derivatives of the model ŷ(1) at the boundaries [a,b]

of the support:

k11 ŷ(a)+ k12 ŷ(1)(b) = c1 (5.37)

k21 ŷ(a)+ k22 ŷ(1)(b) = c2. (5.38)

Additionally, isoperimetric constraints must be considered, i.e., integrals over functions along the curve. For

example, the constraint on the catenary curve, is,

∫ b

a

√
1+ y′(x)2 dx = c (a constant). (5.39)

3 The Rayleigh-Ritz Autoencoder

The RRAE is in principle an autoencooder [5.14, 5.23], consisting of an encoder and decoder. The key issue

in the RRAE is the decoder, it is implemented as a pre-trained fully connected layer, in which the values of

A(x) are stored. These values are static and not modified during training. This ensures that the solution ŷ(x)

can not violate the constraints defined by the physics of the system, since ŷ =A(x)α and the admissible

functions A(x) fulfill the constraints exactly.

The loss function corresponds to a direct implementation of the functional defined by physics, see

Eqn 5.35; these is no need for additional terms to deal with constraints.

The encoder is implemented as a classical neural network [5.24, 5.25]. It is known that neural networks

can theoretically approximate arbitrary nonlinear functions [5.25]. The task of training is to determine the

weights and biases of the encoder that directly minimize the loss function.

3.1 Synthesizing admissible functions

The algorithmic synthesis of admissible functions for general constraints is considered to be one of the major

challenges [5.11] when implementing the Rayleigh-Ritz method. In the approach presented in [5.26] the goal

is to learn the continuous operator that fulfills the constraints. However, for the different groups of constraints

different algorithms are suggested; consequently, this approach does not generalize easily. In [5.27] penalty
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Figure 3: Two examples of orthonormal admissible functions synthesized using the proposed

technique. In each case the first three admissible functions are plotted, i.e., these are truncated

basis function sets. Case 1: Corresponds to a cantilever with an additional support, i.e., an internal

constraint at y(0.3) = 0. Case 2: Demonstrates a value constraint at the boundary, combined with

integro-differential constraint.

terms are added to the loss function; this is undesirable since the functional is modified and the one-to-one

relationship to the physics is lost.

Here, the hard enforcement of constraints is solved in a systematic manner using constrained discrete

orthogonal polynomials [5.28] and a new synthesis approach [5.11] that achieves better numerical stability

when computed in single precision, compatible with the use of GPUs. The approach enables the implementa-

tion of any constraint that can be modelled as a linear operator L applied to ŷ, i.e., Lŷ = 0, this includes all

the cases discussed in Section 2.1.

Two examples of the synthesis of admissible functions for such constraints are demonstrated here, see

Figure 3:

1. A cantilever with an additional support. This requires constraints on the function and the first two

derivatives, i.e., y(−1) = 0, y(1)(−1) = 0, y(2)(1) = 0, and an internal constraint y(0.3) = 0, which is

not located at the boundaries.

2. Implementing an isoperimetric integro-differential constraint of the form:

ŷ(2)(1)+
∫ 1

−1
ŷ(x)dx = 0. (5.40)

An in-depth description of the synthesis algorithm for the discrete orthogonal basis functions can be found

in [5.11].

3.2 A new approach to uncertainty in machine learning

Distribution-free statistical methods [5.5] provide a means of characterizing data without requiring a specific

probability distribution function (PDF). The metrics are valid for both Gaussian and non-Gaussian data. The
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key values here are the median as a measure for central tendency and inter-quantile range (IQR) for the spread

of the data. Additionally, 1-norm distances are used due to their lower sensitivity to outliers, compared to

2-norms.

In classical least squares approximation of data, with known covariance, Λ, the Mahalanobis dis-

tance [5.29] E2 = (y− ŷ)T Λ−1 (y− ŷ) is minimized, i.e. an inverse covariance weighted cost function.

This will yield a maximum likelihood predictor in the presence of Gaussian perturbations. However, this is

implicitly assuming the validity of a Gaussian PDF.

Here we introduce the concept of inverse IQR weighting. Given the diagonal matrix ∆, of IQR for each

sensor, the weighted 1-norm distance is defined as:

E1 =
∣∣∆−1 (y− ŷ)

∣∣
1
. (5.41)

The proposed approach is also consistent with the classical definitions for upper- Ub and lower-bounds

Lb to detect outliers [5.30], i.e.

Ub = q25 −1.5 IQR, Lb = q75 +1.5 IQR. (5.42)

Whereby, q25 and q75 correspond to the 25% and 75% quantiles respectively.

4 Exemplary application

The extended RRAE is demonstrated on the same application and data sets as presented in [5.1]. This

maintains the relevance to instrumentation and measurement, by using sensor data acquired in a real

application; while enabling a direct determination of the improvements achieved in comparison to previous

work.

The task is to measure the deformation of a tunnel wall during active tunneling in the vicinity. The

sensors are mounted on the tunnel struts; providing a physical interpolation of the deformations. It is now

necessary to implement mathematical interpolation to obtain the complete curve from the sensor values. The

physical and mathematical interpolations must be consistent. This is achieved here by applying constrained

polynomials to implement the interpolation; whereby, the constraints reflect the physics of the system being

measured. The spatial measurement has been extended on both ends to locations where no motion is to be

expected. Additional sensors are placed to ensure the fulfillment of this assumption. This has the additional

advantage of converting the measurement problem to a boundary value problem, for which the Rayleigh-Ritz

method provides an excellent solution approach.

4.1 Perturbed sensor data

A boxplot for the sensor data acquired during the training period is shown in Figure 4: the median, IQR

together with the upper and lower outlier bounds are shown for each sensor channel. This maintains

consistency with distribution-free statistics. The data is clearly heteroscedastic; furthermore, it is non-

Gaussian (see Figure 2). There was no construction activity during this period; consequently, this data

represents some fundamental uncertainty in the sensor data. This must be taken into account during training.
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This nature of the sensor data questions the general, and most times implicit, assumption in machine

learning that large data sets can be regarded as Gaussian [5.31–5.33]. Most work on machine learning and

statistical learning [5.31] assumes independent and identically distributed (iid) data [5.34]. This is a further

justification for the new approach taken here.
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Figure 4: Boxplots of the training data, the input to the RRAE during training, at their specific

locations. Note the horizontal scale is in meters, whereas the vertical is in millimeters. The boxplots

characterize the central tendency and variability of the sensor signals in a distribution-free manner.
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Figure 5: The tunnel is monitored along a number of struts, each with five sensors. Raw data

from one of the struts, the tilt data is measured in [mm/m]. The data has been segmented into two

portions separated by the red line: the training data, with n = 779 samples, and the normal operative

region, n = 9159 samples. Measurements were performed every ts = 10 mins over the period from

23-Nov-2014 to 4-Feb-2015.

The data was recorded using a total of seven tilt sensors. The first and last sensors measure points where

there should be no motion. These can be considered as boundary conditions; the two end sensors monitor the

fulfillment of these conditions. The measurement data is acquired from the remaining five sensors.
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4.2 Application specific constraints

Returning to the example application: the model has four constraints, two value constraints, y(−1) = 0

and y(1) = 0, together with two derivative constraints, y′(−1) = 0 and y′(1) = 0. These correspond to the

physical configuration of the system; additionally, the deformation of the struts is assumed to be continuous.

This permits the synthesis of the admissible functions for the decoder portion of the RRAE.

4.3 Neural network hyperparameters

The hyperparameters of the encoder, including the dimension of the network are optimized using a genetic

algorithm. This is a numerically time-consuming task since multiple instances of the same network need to

be trained to identify hyperparameter values that yield both optimal performance and stability with respect to

random initializations [5.32]. This is not discussed here in any further detail, due to the limited paper length.

A description of the genetic algorithm used can be found in [5.35, 5.36].

4.4 Network training and characterization

The sensor data acquired during the training and operation phases can be seen in Figure 5. Given the

architecture and the admissible functions discussed previously, together with the optimized hyperparameters,

the network was trained twice: First with a 1-norm distance metric for the loss function and a second time

with the inverse IQR weighted 1-norm metric. This enables an objective evaluation of the performance

difference. The results obtained with the inverse IQR weighting correspond more closely to the expectation

associated with the physics of the system, this is discussed in detail below.

4.5 Network training statistics
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Figure 6: The upper- Ub and lower- Lb bounds for the detection of outliers and the IQR, for the

training data when processed with the RRAE, trained using the 1-norm metric for the cost function.

The asymmetry in the figure emanates from the asymmetry in the sensor perturbations, see Figure 4.

This is not what would be expected from the physics of the system.

Given a trained network, it would ideally be expected that applying the RRAE to the training data once

again would deliver results that correspond exactly to the initial state of the structure. However, since the
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sensor data is perturbed there will be some uncertainty. Distribution-free statistical methods are being used

here, rather than standard uncertainty, this is to ensure that the non-Gaussian nature of the data is adequately

addressed.

The IQR, together with upper- Ub and lower-bounds Lb, for the detection of outliers are shown in Figure 6

when using the 1-norm metric for the loss function during training. A significant asymmetry is visible;

however, we would expect a perfectly left-right symmetry given the symmetric nature of the constraints. In

contrast, the results obtained using the inverse IQR weighted 1-norm are shown in Figure 7 and are now

symmetric. This is exactly what would be expected from the physics of the system being monitored. This

implies that the new distribution-free statistics and weighted metrics constitute a good approach and yields

results that are consistent with the objectives of physics-informed machine learning.
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Figure 7: Similar visualization as in Figure 6; however, here the inverse IQR weighting has been

applied to the 1-norm minimization. Note: this delivers left-right symmetric error bounds as the

physics of the system would predict.

4.6 RRAE in the monitoring phase
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Figure 8: Left: Finite element simulation to predict the tunnel deformation. Right: Monitoring

reconstruction of the tunnel deformation from the sensor data shown in Figure 5. The RRAE has

been trained using the inverse IQR weighted 1-norm as a metric. Note the symmetric prediction

and corresponding reconstruction.
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The results of applying the RRAE to the monitoring data are shown in Figure 8, together with a finite

element simulation (FEM) to predict the deformation of the tunnel as construction proceeds. The symmetries

predicted by the FEM are now also present in the monitoring reconstruction. Once again suggesting that the

new approach is delivering results that are much closer to the physical systems’ expected behavior. It should

be noted that deflections with a magnitude in millimeters are being reliably detected over ranges of several

meters, in a very harsh environment.

5 Constraints and Lebesgue Functions
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Figure 9: This figure shows the stability improvement when using constrained polynomials. The

values of x have been normalized such that (−1 f x f 1), while maintaining the relative sensor

positions. From left to right the bases with increasing constraints: 1. the set of unconstrained

polynomials; 2. the value-constrained polynomials and 3. the constrained polynomials with

both value and differential constraints. From top to bottom: the bases y(x), their corresponding

interpolating functions Pi(x) and the respective Lebesgue function Li(P) and Lebesgue constant lc.

The values of the respective Lebesgue constants indicate that the addition of constraints reduces the

error bound due to the Runge phenomena when interpolating by a factor of k ≈ 8.84.

It is now possible to put theoretical upper bounds on the interpolation error of the RRAE and to quantify

this via the Lebesgue constant. As mentioned in Section 4, it is necessary to implement a mathematical

interpolation to obtain the complete curve from the sensor values. Polynomial interpolation is subject to the

Runge phenomena [5.37] at the ends of the interval, due to the large derivatives of the polynomials at these

locations. The potential interpolation error can be quantified via the Lebesgue function lc(x) and -constant lc

for the interpolating functions [5.13]. Originally this was defined for Lagrange polynomials; however, its use

can be extended to constrained polynomials.
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The physical structure is characterized by four constraints: y(0) = 0, y′(0) = 0, y(1) = 0 and y′(1) = 0.

The use of constrained polynomials stabilizes the derivatives at the ends of the interpolation. This in turn

minimizes the Runge phenomenon.

The stabilizing effect of the constraints can be seen in Figure 9. Three different cases are shown to

demonstrate the addition of value and derivative constraints; whereby,the sensor locations are used as the

computational nodes for the polynomials. The unconstrained polynomial interpolation has a Lebesgue

constant of lc ≈ 19.18, adding the value constraints reduced this value to lc ≈ 2.97, and the derivative

constraint further reduced the value to lc ≈ 2.17. Consequently, the constraints reduce the interpolation error

by a factor of k ≈ 8.84.

6 Conclusions

An extended Rayleigh-Ritz autoencoder has been presented. Distribution-free statistical methods are used to

ensure that the results are reliable and more robust for both Gaussian and non-Gaussian perturbed data. The

extended approach has been tested on previously published sensor data. This has enabled a more objective

evaluation of the achieved improvements. The results indicate that the use of an IQR weighted 1-norm metric

during training leads to results that are more consistent with the predicted behavior of the physical system;

this was verified by comparison with FEM simulation of the tunnel wall. Finally, it has been possible to

compute theoretical upper bounds for the interpolation error of the RRAE based on Lebesgue functions. The

implementation of the constraints via admissible functions has improved this error by a factor k ≈ 8.84.

The improved statistical behavior, together with the exact fulfillment of generalized linear constraints

makes the RRAE and interesting architecture for physics-informed machine learning.
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