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ABSTRACT  

Empirical modeling for the optimized operation and real-time 
control of coarse shredders for mixed commercial waste 

The European Union strives a transition towards a circular economy, hence requiring effec-

tive and efficient treatment processes for the recycling and thermal exploitation of produced 

waste. Mixed commercial waste presents a significant share of the produced waste, with 

around 1.1 million metric tons alone in Austria in 2016. It is usually first treated mechanically, 

with coarse shredders performing the first processing step of comminution and liberation 

while also functioning as the primary dosing devices. Despite their importance for waste pro-

cessing, the knowledge about the process behavior of coarse shredders and its dependence 

on their parametrization is limited. But understanding the influence of different configurable 

factors is essential for their optimized operation and enhanced processing, involving smart 

real-time control, in the context of the fourth industrial revolution. Physical numerical models 

are hardly applicable for understanding these machines’ behavior in real-scale operation. 

They require too detailed information about the always-changing condition of the heteroge-

neous input material: mixed commercial waste. Consequently, empirical modeling approach-

es are followed in this thesis. As a necessary precondition for successful experimentation, a 

procedure for material sampling was first established, based on the theory of sampling. The 

induced general estimation error was then determined based on a replication experiment. 

Subsequently, a 32 runs coarse-shredding experiment with mixed commercial waste was 

conducted, based on a fully randomized, D-optimal experimental design. It aimed at investi-

gating the influences of the radial gap width, the shaft rotation speed, and the cutting tool 

geometry on a shredder’s throughput behavior, its energy demand, and the particle size dis-

tribution it produces. Significant models were successfully derived, applying (multivariate) 

multiple linear regression. For doing so, the particle size distribution was described as iso-

metric log-ratio-transformed mass shares of three particle size classes (>80 mm, 30–80 mm, 

0–30 mm). The models show significant effects of all three factors on throughput behavior 

and energy demand. But only the cutting tool geometry significantly influenced the shares of 

the particle size classes. Based on the models, conclusions on the optimized operation of 

coarse shredders were drawn, which contradict common operation settings. Finally, investi-

gations on the sensor-based real-time measurement of particle size distributions, as defined 

by drum screening, were conducted: partial least squares regression models, based on ge-

ometric descriptors, obtained from two-dimensional RGB images of the particles, turned out 

to be a promising approach. 

 



 

 

KURZFASSUNG  

Empirische Modellierung für den optimierten Betrieb und die 
Echtzeit-Regelung von Vorzerkleinerern für gemischte 

Gewerbeabfälle 
Die Europäische Union strebt eine Kreislaufwirtschaft an. Dafür sind effektive und effiziente 

Behandlungsprozesse für das Recycling und die thermische Nutzung von Abfällen nötig, von 

welchen gemischte Gewerbeabfälle einen relevanten Anteil darstellen. Sie werden üblicher-

weise zunächst mechanisch behandelt. Vorzerkleinerer übernehmen dabei den ersten Pro-

zessschritt – Zerkleinerung und Aufschluss – und fungieren zugleich als primäre Dosierein-

richtung. Trotz ihrer Bedeutung für die Abfallbehandlung ist bisher nur wenig über den Ein-

fluss der Vorzerkleinerer-Parametrierung auf deren Prozessverhalten bekannt. Diesen Ein-

fluss zu kennen ist aber essenziell für die Verbesserung der mechanischen Abfallbehandlung 

und für intelligente Industrie 4.0-Echtzeitregelungen. Physikalische, numerische Modelle sind 

kaum geeignet, um das Verhalten dieser Maschinen im Industriemaßstab zu verstehen, da 

sie zu detaillierte Informationen über das sich ständig ändernde Inputmaterial, den Abfall, 

erfordern. Daher werden in dieser Arbeit empirische Modellierungsansätze verfolgt. Vorberei-

tend wurden zunächst ein Probenahme-Prozedere, basierend auf der Theorie der Proben-

ahme erarbeitet und verbleibende Probenahmeeinflüsse experimentell quantifiziert. In weite-

rer Folge wurde ein Vorzerkleinerungsexperiment mit gemischten Gewerbeabfällen, mit 32 

Durchläufen, basierend auf einem vollständig randomisierten D-optimalen Versuchsplan 

durchgeführt. Damit wurden die Einflüsse des radialen Schnittspalts, der Rotordrehzahl und 

der Zerkleinerungsgeometrie auf das Durchsatzverhalten, den Energiebedarf und auf die 

erzeugte Korngrößenverteilung untersucht. Unter Anwendung (multivariater) multipler linea-

rer Regression konnten aus den Daten signifikante Modelle abgeleitet werden. Dafür wurde 

die Korngrößenverteilung durch isometrische Logarithmenverhältnisse der Massenanteile 

dreier Kornklassen (>80 mm, 30–80 mm, 0–30 mm) beschrieben. Die Modelle zeigen signifi-

kante Einflüsse aller drei untersuchter Faktoren auf das Durchsatzverhalten und den Ener-

giebedarf, wohingegen die Korngrößenverteilung nur von der Zerkleinerungsgeometrie signi-

fikant verändert wurde. Basierend auf den Modellen konnten Schlussfolgerungen bezüglich 

des optimierten Betriebs von Vorzerkleinerern gezogen werden, welche der gängigen Para-

metrierung widersprechen. Abschließend wurden Untersuchungen zur sensorgestützten 

Echtzeitmessung von Korngrößenverteilungen durchgeführt. Dabei stellt sich eine Partial 

Least Squares Regression (partielle kleinste Fehlerquadrate Regression), angewandt auf 

geometrische Deskriptoren der Partikel, welche aus zweidimensionalen RGB-Bildern ge-

wonnen wurden, als vielversprechender Ansatz heraus.  
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1 INTRODUCTION 
In the European Union, around 5.2 metric tons of waste per capita were generated in 2018 

(Eurostat, 2020) – as much as ten years before (Schrör, 2011), despite the priority of reduc-

tion and preparation for re-use, according to the waste hierarchy, which was first published in 

2008 in the Waste Framework Directive (European Union, 2008). These significant amounts, 

which correspond to 2.3 billion metric tons in total in 2018, encourage the European Union’s 

efforts concerning a transition towards a circular economy. Hence, the treatment and espe-

cially the recycling of waste has become a priority – which is demonstrated, for example, 

through the recycling targets set in the Circular Economy Package, requiring the recycling of 

65% of municipal waste by 2035 (European Union, 2018).  

Besides municipal waste, also considerable amounts of mixed commercial waste are pro-

duced each year, requiring efficient and effective treatment processes to enable its partial 

recycling and thermal exploitation. In Austria, it is classified under the waste code 91101 

“municipal waste and similar commercial waste” (BMK, 2020), together with mixed municipal 

solid waste. According to Weißenbach et al. (2019), 1.1 million metric tons of mixed com-

mercial waste were produced in Austria and 5.9 million metric tons in Germany in 2016, for 

example, leading to an increased awareness of their potential concerning the transition to-

wards a circular economy. This awareness is demonstrated, for instance, by the German 

“Regulation on the management of commercial municipal waste and of certain construction 

and demolition waste” (German Federal Government, 2017), which demands the recycling of 

30% of mixed commercial waste since 2019. 

At the same time, the fourth industrial revolution, which is referenced with various terms like 

“industry 4.0”, “internet of things,” or “digitalization,” is ongoing. According to Sarc et al. 

(2019), it describes the “widespread introduction of information and communication 

technology (ICT) as well as its connection to an Internet of Things, Services and Data with 

the goal of real-time control of production and value chain networks”. An obvious question 

that arises is what this fourth industrial revolution can contribute to the transition towards a 

circular economy. Even more, considering that the “digital readiness” of waste management 

companies in German-speaking countries is only about 30%, according to Berger (2016), as 

cited by Sarc et al. (2019). 

Consequently, the Austrian Research Promotion Agency (Österreichische Forschung-

schungsförderungsgesellschaft, FFG) funded a four-year research program, with a total 

budget of around 4.9 million Euros, called “Recycling and Recovery of Waste 4.0” 

(ReWaste4.0), involving two research institutions and eight industry partners. It has started in 

April 2017 and is the framework within the research described in this thesis has been con-

ducted. ReWaste4.0 targets the development and integration of digitalized approaches, con-
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sidering the vision of smart future treatment plants, focusing on the mechanical treatment of 

non-hazardous mixed solid waste. It targets enhancing the efficiency of processing plants 

and the share of waste that is either recycled or thermally utilized. 

1.1 Status quo 
Mixed solid waste – commercial or municipal – is commonly first treated in mechanical pro-

cessing plants (see, e.g., Müller and Bockreis, 2015). And coarse-shredding is usually the 

first step of this mechanical treatment (cf. Gundupalli et al., 2017; Möllnitz et al., 2021; 

Pomberger, 2008). Besides coarse shredders’ role in terms of comminution and liberation of 

the particles, they are the primary dosing devices of most plants, according to Feil and Pretz 

(2018), and hence a major influence factor on the overall subsequent process behavior. 

Considering that screens are also commonly used machines in mechanical waste processing 

plants, the shredder’s influence on the particle size distribution of the waste moreover affects 

the path particles take through the plant, and thereby also the machines and related process 

steps they pass through. 

Despite its importance for waste treatment, there is only little literature on coarse-shredding 

of mixed solid waste. Existing studies, include the works of Luo et al. (2010) and Luo et al. 

(2011): they examine the performance of a novel shredder in a lab-scale, using prepared 

model material, focusing on the comminution of organic fractions – hence, their results can-

not be transferred to industry-scale shredding of mixed solid waste.  

Zhang et al. (2019) study the particle size distributions produced by a variety of comminution 

machines for mixed municipal solid waste at different machine settings. But since they ana-

lyze the waste at the interface from mechanical to biological treatment, and consequently 

after more processing steps than just shredding, no conclusions on the distribution of the 

shredded, unsorted waste can be drawn. Furthermore, while they repeated some measure-

ments, no statistical analyses of the results were performed.  

Feil and Pretz (2018) compare the throughput steadiness of a single-shaft and a two-shaft 

coarse shredder in a standard operation, discussing its impact on the performance of subse-

quent machines. But they do not vary machine parameters, and hence do not discuss the 

optimality of their settings. 

Eventually, to the best of the doctoral candidate’s knowledge, no quantitative studies that 

investigate the influence of shredder parameters on their real-scale behavior, proving the 

results either by explaining them with physical models, or based on statistical tests, have 

been published yet. 

Interviews with experts from industry showed, that also in industrial performance tests for 

machine purchases, machines are mostly compared based on limited data, lacking statistical 
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validity. And the machines are tested with fixed parameter settings: for coarse shredders, the 

radial gap is usually completely closed, while the shaft rotation speed is set to the maximum 

– a setting whose optimality needs to be questioned, based on the results of this thesis.  

Besides machine tests, coarse shredders are also operated statically in operating plants. In 

practice, shaft rotation speeds are adjusted by hand, from time to time, and the programming 

of the shredders incorporates some dynamic behavior – like reversing in regular time inter-

vals for cleaning or when some particle gets stuck. Nonetheless, the shredders do not react 

to the waste, despite its influence on the throughput and the plant’s overall performance. 

Hence, a non-controlled, highly significant unsteadiness of the processes, as visible in the 

measurements of Curtis et al. (2021), for example, is accepted in the absence of counteract-

ing strategies. 

Physical numerical models of mechanical processing of particulate materials are usually 

based on the Discrete Element Method (DEM). Published examples include the works of 

Pieper et al. (2016) on optical belt sorting and Lee et al. (2008) on the impact breakage of 

concrete waste. But at present, the models in literature are not capable of reflecting the vari-

ability of mixed commercial waste and the resulting complex material-material interactions 

and material-machine interactions. And it remains questionable whether physical models, 

which require detailed data on the geometry and the properties of the processed particles, 

are a promising choice for investigating the industry-scale behavior of processing machines 

for mixed solid waste. Hence, the focus and novelty of the present thesis is the empirical 

modeling of real-scale coarse shredding, including the produced non-scalar particle size dis-

tributions, using polynomial regression models.  

1.2 Problem formulation 
While regression modeling is a standard procedure, at first glance, doing so turns out to be 

quite complex in detail in the context of mixed solid waste shredding. Generating the data 

involves industry-scale experiments, in which the highly variable feed – mixed commercial 

waste – adds significant distortion to the data (Khodier et al., 2020). And the extent to which 

this distortion can be counteracted by a high number of experimental runs is limited due to 

the high costs of such experiments. 

Furthermore, concerning analyses of the product material, sampling is involved, since in 

each experiment in this thesis up to about 40 metric tons of waste were processed. While 

there are sampling standards, which provide advice, these often deviate from sampling theo-

ry for practical purposes, without reporting expectable magnitudes of introduced sampling 

errors (e.g., ÖNORM S 2127: Austrian Standards Institute, 2011). Therefore, they are not 

immediately applicable to scientific purposes, but rather an in-depth understanding of sam-

pling theory is needed to enable a critical evaluation of the standards’ directions.  
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Finally, modeling scalar process properties, like throughput or energy demand, can be done, 

applying standard (despite not necessarily simple) statistics. Modeling particle size distribu-

tions, on the other hand, is far from trivial: depending on the chosen descriptive technique, 

these are either continuous functions or compositional vectors of particle size classes – con-

strained to a vector space, called the simplex (cf. Pawlowsky-Glahn et al., 2015), which is 

represented by the well-known ternary diagram for three dimensions. As a result, the validity 

of many standard statistical procedures is harmed. Consequently, how to model the pro-

duced particle size distributions empirically is one of the research questions of this thesis. 
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2 CONCEPT OF THE THESIS 
The targeted real-time process control with the potential inclusion of smart algorithms re-

quires three essential elements (see Figure 1), as discussed by Khodier et al. (2019): real-

time metrology, for measuring the actual state of the system to be controlled (e.g., through-

put, particle size distribution), actuators that allow a controller to change the process some-

how (physical actuators like rotation speed of a drum screen, as well as software actuators 

like a classification threshold of a sensor-based sorter), and control algorithms, that control 

the change of actuators to improve a target value, that is based on the data from metrology, 

but also potentially other data, like actual market prices.  

 

Figure 1: Trinity of real-time process control 

Classical or smart control algorithms are already being applied in different industries and are 

therefore state of the art. But many potential actuators in solid waste processing plants are 

not digitally controllable (if at all) nowadays due to the lack of knowledge on their influence 

and a lack of economical usefulness of doing so, considering the state of the art. Further-

more, the plants are only poorly equipped with metrology, in particular regarding material 

quality, due to technical and economical limitations.  

2.1 Objective 
This thesis aims to gather, develop, and document empirical modeling methodologies that 

allow drawing significant and therefore trustworthy conclusions concerning machine parame-

ter influences on solid waste processing, despite the disturbance caused by the heterogenei-

ty of waste. It furthermore targets contributing to the online measurability of particle-size dis-

tributions in real-time. Concerning parameter influences, it particularly examines their kind 

and magnitude regarding coarse-shredding of mixed commercial waste, with shredding being 

the most sophisticated mechanical treatment step to investigate, since the shredded material 

cannot be re-used in the experiments. Concretely, the influences of the radial shredder gap 

width and the shaft rotation speed and – to provide a meaningful relation – also the cutting 
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tool geometry, on the throughput behavior (total and steadiness), energy demand, and on the 

produced particle size distributions, is examined.  

2.2 Research gap 
While experience and engineering intuition provide rough estimates concerning the influ-

ences of the parameters above (see section 2.1), no quantitative information on their impact 

on process parameters and material qualities is available. Furthermore, published literature 

on waste comminution lacks documenting techniques to draw statistically significant conclu-

sions on parameter influences from real-scale experiments with mixed solid waste. Addition-

ally, modeling influences on particle size distributions poses mathematical challenges. These 

distributions are describable as continuous probability density functions, or more usual, as 

compositions of discrete particle size classes, covering different particle size ranges. Hence, 

the modeled dependent variables are non-scalar with interdependent dimensions. Thus, 

methods for considering their special properties need to be found. 

Furthermore, sensor-based online measurement of particle size distributions is only per-

formed based on counting pixels of the projected area, without questioning the relation of the 

determined particle sizes to particles’ behavior in screens. Hence, methods that reflect the 

particle sizes, according to screening, need to be found.  

2.3 Research questions 
Considering the objective of this thesis, the discussed challenges, and the status quo con-

cerning modeling mechanical processing of mixed commercial waste, the following research 

questions were defined: 

1. How can the processing products be representatively sampled in coarse-shredding 

experiments with mixed commercial waste, and how large are the remaining sampling 

errors? 

2. How can reliable conclusions about machine influences on waste shredding be 

drawn, despite sampling errors and inter-experimental differences in the waste? 

3. How can particle size distributions be empirically modeled? 

4. How big is the influence of the radial gap width, the shaft rotation speed, and the cut-

ting tool geometry of an industry-scale coarse shredder on the throughput behavior, 

the energy demand, and the particle size distribution of shredded mixed commercial 

waste? 

5. How can the particle size distribution of coarsely shredded mixed commercial waste, 

according to a screen, be determined in real-time, using state-of-the-art two-

dimensional sensor data? 
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2.4 Methodology  
Methodologically, the work in this thesis is based on three major elements: research on the 

state of the art, research on and application of mathematical methods for experimentation 

and analysis, and planning and execution of real-scale experiments for data acquisition. 

2.4.1 Research on the state of the art 

Before conducting own practical research, it is indispensable to gain a comprehensive over-

view of the state of the art and science. Hence, extensive research was carried out to gather 

knowledge on the state of mechanical waste processing in general, digitalization in the waste 

industry in particular, and modeling of mechanical processing of mixed solid waste. This 

knowledge was achieved through literature and patent research, expert interviews, planning 

and leading a workshop in cooperation with the Styrian Green Tech Cluster, and visiting fairs 

and industrial plants. 

2.4.2 Research on mathematical methods 

The efficient and reliable performance and analysis of waste shredding experiments need a 

deep understanding of many basic as well as more exotic mathematical and statistical con-

cepts. Within this thesis, comprehensive knowledge on especially the following fields was 

established to enable proper and profound planning, execution, and analysis of the per-

formed experiments: theory of sampling, design and analysis of experiments, univariate and 

multivariate multiple linear regression, including (multivariate) analysis of variance, as well as 

modeling and analysis of compositional data. 

2.4.3 Industry-scale experiments 

In many research fields – including chemical and process engineering – it is usual practice to 

first experiment in lab-scale, then move on to pilot-scale, and finally progress to industry-

scale. While this is resource-efficient and facilitates fundamental research, it is hardly appli-

cable for mixed solid waste processing, mainly for one reason: the feed material (the waste) 

cannot properly be down-scaled. Hence, to understand mechanical processing (and espe-

cially shredding) of real waste, the experiments must be executed in real-scale. Therefore, 

numerous industry-scale experiments were conducted within this thesis, mostly using indus-

try-scale mobile machinery and real waste. The core experiment of this thesis is a 32 runs 

experiment on the shredding of mixed commercial waste, including material analysis. Due to 

its scale, it consumed enormous resources in terms of machinery (occupation of six industry-

scale machines for many weeks) and manpower (approximately 3500 working hours in total) 

while shredding about 700 metric tons of waste. Consequently, it required thorough project 
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and resources management, including machine and staff availability, staff training, as well as 

the clarification of legal requirements for that scale of waste processing. 

2.5 Structure of the thesis 
The overall structure of the thesis is shown in Table 1. It is divided into three main parts. In 

the first part, “Introduction and concept,” a general introduction into the field of research and 

the topic of the thesis is given. The ensuing chapter presents the concept of this work, includ-

ing the presentation of the research gap and the research questions, and the structure of the 

document.  

Table 1: Structure of the thesis (Ch. 1–Ch. 5 stand for the chapters of the thesis and P I–P IV 

stand for the research papers) 

Introduction 
and concept 

Ch. 1 Introduction 

Ch. 2 Concept of the thesis 

Practical part Ch. 3 Results 
Empirical modeling and shredder parametrization  
(P I, P II, P III) 

Online particle size measurement (P IV) 

Conclusive 
part 

Ch. 4 Summary and discussion 

Ch. 5 Conclusions and outlook 

The second part of the thesis is the practical part, which consists of the documentation of 

performed research activities in research papers. It is subdivided into two sections. The first, 

“Empirical modeling and shredder parametrization,” contains the core research activities of 

the doctoral candidate. These include an extensive study on sampling quality (publication I): 
the theory of sampling is explained and applied on coarsely shredded mixed commercial 

waste, followed by a practical evaluation of the general estimation error caused by sampling 

and analytics, determined through a so-called replication experiment. Ensuing, a research 

paper on the derivation of significant results from mechanical waste processing experiments 

is presented (publication II), covering the question of how to extract trustworthy conclusions 

on the behavior of scalar dependent variables, despite the variability of the waste used in the 

experiments. Concretely, it investigates the influence of the radial gap width, the shaft rota-

tion speed, and the cutting tool geometry of coarse shredders on their throughput, throughput 

steadiness, and specific energy demand. The last paper of this section (publication III) 
deals with extending the methods presented in publication II on multivariate compositional 

dependent variables, more precisely: particle size distributions, which are described by a set 

of discrete particle size classes, determined through sieve analyses. It applies the methods 

to the question of how the shredders’ parametrization influences the quality of the shredding 

product in terms of the total particle size distribution. 
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The second section of the practical part, “Online particle size measurement,” deals with the 

real-time measurement of the particle size distributions of coarsely shredded mixed commer-

cial waste, according to a drum screen, from visual and near-infrared sensor-data of single 

particles. This approach aims at providing the first online method for particle size measure-

ment of such waste (publication IV). The allocation of the four described research papers to 

the different elements of the trinity of real-time process control (as shown in Figure 1) is 

shown in Figure 3. 

 

Figure 2: Allocation of the publications to the elements of the trinity of real-time process con-

trol 

In the “Conclusive part” of the thesis, the research questions are answered and discussed, 

based on the publications at hand, in the chapter “Summary and discussion”. In the final 

chapter, conclusions are drawn, and suggestions for further research and an outlook on fu-

ture research activities are given. 
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3 RESULTS 
3.1 Empirical modeling and shredder parametrization 
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Sampling and analysis of coarsely shredded mixed commercial waste. Part I: 
procedure, particle size and sorting analysis 
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Abstract
Performing experiments with mixed commercial waste, sampling is unavoidable for material analysis. Thus, the procedure 
of sampling needs to be defined in a way that guarantees sufficient accuracy regarding the estimation of the examined ana-
lytes. In this work, a sampling procedure for coarsely shredded mixed commercial waste, based on the Austrian Standard 
ÖNORM S 2127, the horizontal sampling standard DS 3077 and the theory of sampling, was established, described and 
examined through a replication experiment determining the relative sampling variability. The analytes are described through 
a matrix of nine (9) material classes and nine (9) particle size classes. It turns out that the typical threshold value of 20% can 
be reached for some fractions of the particle size–material matrix (for example, wood 20–40 mm and cardboard 60–80 mm) 
but gets as bad as 231% (wood 200–400 mm) for others. Furthermore, a decrease in the relative sampling variability with 
the mass share of a fraction is observed. Part of the observed variability is explainable through the fundamental sampling 
error, while contributions of other types of sampling errors are also evident. The results can be used for estimating confi-
dence intervals for experimental outcomes as well as assessing required sample sizes for reaching a target precision when 
working with mixed commercial waste.

Keywords Theory of sampling · Relative sampling variability · Commercial waste · Coarse shredder · Increment mass · 
Sample mass

List of symbols
𝐀v  Binary matrix for combining adjacents of v parti-

cle size fractions [–]
𝐁w  Binary matrix for combining 1 to w material 

classes [–]
c  Constitutional parameter [kg/m3]
CV  Coefficient of variance [–]

d05  5th percentile particle size [mm], [cm]
d95  95th percentile particle size [cm]
dmax  Maximum particle diameter [mm]
f   Particle shape parameter [–]
fred  Mass reduction factor [–]
f ∗
red

  Real mass reduction factor [–]
f ∗
red,r

  f ∗
red

 when reducing the fine fraction of the (r − 1) 
th screening step [–]

g  Particle size parameter [–]
HIlot  Heterogeneity invariant of the lot [g]
𝐌  Particle size–material matrix (masses) [kg]
mc  Average particle mass of the constituent c [g]
mdisc  Mass discarded during mass reduction [kg]
mij  Mass of the ith particle size fraction and jth mate-

rial class in the primary sample [kg]
m∗

ij
  Weighed mass of the ith particle size fraction and 

jth material class [kg]
minc  Minimum increment mass [kg]
mk  Average particle masses of the constituents k [g]
mlot  Mass of the lot to be sampled [g]
mpart  Mass of sample part [kg]
mpres  Mass preserved during mass reduction [kg]
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msam  Minimum sample mass [g]
msam,k  Mass of the kth sample [kg]
n  Number of samples [–]
p  Fraction of particles with a specific characteristic 

[–]
q  Number of constituents [–]
RSV  Relative sampling variability [%]
s  Standard deviation [conc. u.]
tinc  Increment extraction time [s]
V̇   Volume flow [kg/m3]
v  Number of particle size fractions [–]
𝐖  Particle size-material matrix (mass shares) [kg/kg]
𝐖mp  Matrix of all regarded particle size fraction and 

material class combinations (mass shares) [kg/kg]
w  Number of material classes [–]
wc  Mass share of the constituent c [g]
wij  Mass share of the ith particle size fraction and jth 

material class in the primary sample [kg/kg]
wk  Mass shares of the constituents k [g]
x̄  Weighted arithmetic mean [conc. u.]
xk  Concentration of a specific analyte according to 

sample k [conc. u.]
𝛽  Liberation parameter [–]
𝜌  Bulk density [kg/m3]
𝜎2

FSE
  Variance caused by the fundamental sampling 

error [–]

Introduction

Coarse shredding followed by one or more screening stages 
is often the first step when processing mixed commercial 
waste (MCW). Besides size reduction and definition, this 
combination contributes to the concentration of different 
materials as well as their contained chemical elements in 
different fractions. Reasons for this are the different particle 
size distributions of the material classes in the original mate-
rial, as well as differences in comminution behaviour—e.g. 
brittle fracturing of glass and passing through or tearing of 
plastic foils.

Aiming at systematically steering this concentration 
process, optimal shredder and screen parametrization are 
intended to be found through empirical regression mod-
els for the particle size–material matrix as well as for the 
distribution of the concentrations of contained elements 
over particle sizes, based on experimental results. Because 
of the high inherent inhomogeneity of MCW, performing 
such experiments demands processing of large amounts of 
material to homogenize the variability of the input stream 
regarding composition and particle size between the single 

runs. These high amounts of material cause the infeasibility 
of analysing the complete shredding product so that samples 
need to be taken.

Various standards and recommendations concerning 
sampling of MCW are available, giving guidelines on sam-
ple extraction, increment sizes, sample numbers and sizes, 
and sample processing for different applications. Regarding 
masses, they aim at ensuring that the amount of analyte con-
tained in the sample is sufficient to keep the effect of single 
particles ending up in the sample—or not—at an insignifi-
cant level. This is, for example, done through average par-
ticle masses and shares of sorting fractions by Felsenstein 
and Spangl (2017). In contrast, the technical report CEN/
TR 15310 (European Committee for Standardization 2006) 
for uses inhomogeneity descriptors in combination with the 
cubic diameter of the largest particles, as well as bulk den-
sity, as an estimate for maximum particle contributions to 
the analyte.

In Austria, the Austrian Standard ÖNORM S 2127—
Basic characterization of waste heaps or solid waste from 
containers and transport vehicles (Austrian Standards Insti-
tute 2011)—is usually applied, demanding a minimum 
increment mass minc [kg] according to Eq. (1)—where d95 
is the 95th percentile particle size [mm]—and a minimum 
number of 10 increments per (representative) sample. Fur-
thermore, at least one sample per 200 t of waste investigated 
is required. Multiplying these requirements leads to a mini-
mum for the total sample mass.

However, the standard does not give information about the 
statistical significance of the sampling result. Furthermore, 
the linear consideration of the diameter for the resulting 
sample mass is very likely to underestimate the masses 
required to get reliable information about coarse fractions. 
It is a compromise between reliability and practicability in 
terms of comprehensibility and economically feasible (sort-
ing) analyses of the resulting sample masses. According to 
Wavrer (2018), a comparable practically oriented approach 
called MODECOM™ is used in France.

The technical report CEN/TR 15310—characterization of 
waste—sampling of waste materials (European Committee 
for Standardization 2006) is another available reference. It 
defines the minimum increment mass minc [kg] according to 
Eq. (2), where 𝜌 [kg/m3] is the bulk density of the material.

The equation describes the resulting mass, when using a 
sampling device which is at least three times as long as the 

(1)minc [kg] ≥ 0.06 ⋅ d95[mm]

(2)minc [kg] ≥ 2.7 ⋅ 10−8
⋅ 𝜌[ kg

m3

]
⋅ d95 [mm]
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maximum particle diameter (practically determined through 
d95 ) in each dimension, as demanded by the report. This 
shall ensure that all particles can easily enter the sampling 
device. The resulting increment mass is about 50 times the 
maximum particle mass, according to the report. It further-
more suggests a minimum sample mass msam [g], calculated 
according to Eq. (3), where p [m/m] is the fraction of the 
particles with a specific characteristic, g [–] is the correc-
tion factor for the particle size distribution of the material 
to be sampled, and CV [–] is the desired coefficient of vari-
ation caused by the fundamental error.

The value of g depends on the quotient of the 95th and 5th 
percentile particle sizes ( d95∕d05 ), according to Eq. (4). 0.1 
is suggested as a well-accepted value for CV, and p needs 
to be determined from knowledge about waste consistency.

While the report also provides formulae for calculat-
ing the significance of the analytical results, determining it 
requires a priori knowledge about the material, as does the 
determination of minimum increment and sample masses.

Another reference is the Guidelines for statistical evalua-
tion of sorting and particle gravimetric analyses from Vienna 
University of Technology (TU Wien) and the University of 
Natural Resources and Life Sciences in Vienna (BOKU) 
(Felsenstein and Spangl 2017). It provides theory-based 
instructions on required sample masses for different signifi-
cance levels, while mainly addressing the sampling of the 
total mixed municipal waste of Austrian federal provinces 
and demanding prior particle weight analyses for calculating 
sample masses.

Gy (2004a), the founder of the theory of sampling (TOS), 
also provides formulae supporting the determination of 
required sample masses by calculating the minimum possi-
ble sampling error—the fundamental sampling error (FSE). 
It is calculated according to Eq. (5), where 𝜎2

FSE
 [–] is the 

variance caused by the FSE, msam [g] and mlot [g] are the 
masses of the sample and of the lot to be sampled and HIlot 
[g] is the heterogeneity invariant of the lot (Gy 2004a). HIlot 
can be calculated through Eq. (6), which contains the fol-
lowing parameters:

(3)

msam [g] ≥
1

6
⋅ 𝜋 ⋅

(
d95 [cm]

)3
⋅ 𝜌[ g

cm

]
⋅ g[−] ⋅

(
1 − p[m∕m]

)

CV2
[−]

⋅ p[m∕m]

(4)g =

⎧
⎪
⎨
⎪
⎩

0.25 if 4 < d95∕d05

0.50 if 2 < d95∕d05 ≤ 4

0.75 if 1 < d95∕d05 ≤ 2

1 if d95∕d05 = 1

• c [g/cm3]: constitutional parameter, which can vary from 
values lower than 1, up to millions

• 𝛽 [–]: liberation parameter with 0 ≤ 𝛽 ≤ 1

• f  [–]: particle shape parameter with 0 ≤ f ≤ 1 and com-
mon values near 0.5

• g [–]: size range parameter with 0 ≤ g ≤ 1

• d95 [cm]: 95th percentile particle size

While Gy states that values for these parameters can be 
found for different materials in literature, no references 
were found for MCW. Furthermore, according to Gy 
(2004a), no satisfactory formula is known yet for deter-
mining f  . Hence, the heterogeneity invariant needs to be 
evaluated experimentally.

However, according to Wavrer (2018), a simplified for-
mula exists for “simple particles,” meaning cases where 
the particles are assumed to consist either of 0% or 100% 
of an analyte—as is typically the case for waste sorting 
analyses, where each particle is assigned to a sorting 
fraction. In that case, the FSE can be calculated through 
Eq. (7), where mc and mk are the average particle masses 
of the constituent of interest c and the other constituents k , 
and wc and wk are their mass shares, respectively. q stands 
for the number of constituents.

Still, a priori knowledge is needed in terms of average 
particle masses and assumptions about the composition of 
the constituents, as is the case in Felsenstein and Spangl’s 
(2017) guideline. Moreover, applying the formulae for the 
FSE does not provide information about the real sampling 
error beyond the contribution of the fundamental one.

In conclusion, no satisfactory guidance was found for 
a priori determination of required increment masses or 
sample masses for achieving a certain level of significance 
when sampling MCW. Furthermore, the general estimation 
error (GEE) for the elements of the particle size–material 

(5)𝜎2
FSE [−]

=

(
1

msam [g]
−

1

mlot [g]

)
⋅ HIlot [g]

(6)HIlot [g] = c[ g

cm3

]
⋅ 𝛽[−] ⋅ f[−] ⋅ g[−] ⋅ d3

95 [cm]

(7)

𝜎2
FSE [−]

=

(
1

msam [g]
−

1

mlot [g]

)

⋅

(
mc [g]

1 − 2 wc[−]

wc[−]

+

q∑
k=1

wk[−] ⋅ mk[g]

)
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matrix as well as for the distribution of chemical elements 
throughout particle sizes is the result of several processing 
steps and subsampling steps. Thus, to evaluate analytical 
data quality for modelling purposes, as well as for inter-
preting experiments, the total error of the data acquisi-
tion process, from primary sampling to chemical analysis 
(which is the GEE), needs to be determined experimen-
tally. This is done through a replication experiment (REx) 
as described in the Danish standard DS 3077, which is a 
horizontal sampling standard based on the TOS (Danish 
Standards Foundation 2013).

Even though the other described references may deliver 
more profound statements regarding necessary sample 
masses, the Austrian standard ÖNORM S 2127 was chosen 
for the REx in this work for multiple reasons: the neces-
sary information about the material (which is only d95 ) was 
available and analysing the resulting masses was expected 
to be feasible in practice. Furthermore, the REx offered 
the opportunity to evaluate this standard, which is widely 
applied in Austria.

The investigation to be presented will be published in two 
parts. In part I (i.e. the present contribution), a procedure for 
sampling MCW-shredding experiments is developed, based 
on TOS, DS 3077 and ÖNORM S 2127. Furthermore, the 
applied steps of sample processing from the primary sample 
to the particle size–material matrix are described. Finally, 
the results of a REx are presented, providing information 
about data quality when applying the described procedure. 
The corresponding experimental work was conducted from 
October to December 2018 in Allerheiligen im Mürztal, 
Styria, Austria.

Part II, presented by Viczek et al. (2019), deals with the 
distribution of several chemical elements, especially heavy 
metals, in different grain size fractions of coarsely shredded 
MCW. Post-sorting processing of the material for analysing 

the concentrations of these elements is described. Further-
more, the GEE is evaluated for the concentrations in differ-
ent particle size classes through the REx. Ultimately, the 
distribution of the chemical elements throughout particle 
sizes, as well as correlations to the results of sorting analysis 
are presented.

Materials and methods

Theory of sampling

According to Esbensen and Wagner (2014), the theory of 
sampling is a universal, scale-invariant fundamentum for 
understanding sampling and the potential errors caused by 
it. It is based on the fundamental sampling principle, requir-
ing all increments of the lot to have the same likelihood of 
ending up in the (representative) sample. It describes all 
errors contributing to the total sampling error (TSE). The 
GEE consists of this TSE in addition to the, often well-deter-
mined, total analytical error (TAE) (Esbensen and Wagner 
2014). Its components are shown in Fig. 1.

Gy (2004b) divides the contributions to the TSE into cor-
rect sampling errors (CSE) and incorrect sampling errors 
(ISE). The first are caused by constitutional and distribu-
tional heterogeneities of the material to be sampled and are 
unavoidable, whereas the latter come from avoidable sam-
pling mistakes and should, therefore, be avoided as far as 
possible.

CSE consists of two kinds of errors, the FSE and the 
grouping and segregation error (GSE). The FSE is caused 
by the constitutional heterogeneity, which describes chemi-
cal and physical differences between fragments of the lot—
in the case of MCW: particles—and can only be altered 

Fig. 1  Contributions to the 
general estimation error GEE 
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through physical interventions like comminution. The GSE, 
on the other hand, is present due to the distributional hetero-
geneity, meaning the spatial distribution of different parti-
cles, e.g. through segregation, or regarding MCW because 
of compositional differences of different, joined but not 
homogenized, waste sources (Esbensen and Julius 2009). 
The distributional heterogeneity is the reason why samples 
need to consist of a number of increments spaced around the 
lot to achieve acceptable levels of GSE.

ISEs are the sum of incorrect delimitation errors (IDEs), 
incorrect extraction errors (IEEs) and incorrect processing 
errors (IPEs). The IDEs describe errors in defining geometri-
cal domains to be potentially taken as a sample. According 
to Gy (2004b), they can be avoided when collecting materi-
als of a stream using equal time intervals. The IEEs appear, 
when the delimited domain (including all particles whose 
centre of mass is contained) cannot be precisely extracted, 
meaning particles end up in the sample that should not have 
and vice versa. Finally, IPEs mean all errors caused by incor-
rect processing of the sample after extraction and consist 
of six elements: contamination by foreign material, loss of 
material (e.g. dust), alteration in chemical and alteration in 
physical composition, involuntary operator faults and delib-
erate faults for manipulating results (Gy 2004b).

Replication experiment

The GEE manifested as the variability of repeated sam-
pling can be quantified through a REx as described in 
DS 3077 (Danish Standards Foundation 2013). It is per-
formed by extracting and analysing replicate samples of 
the same lot. The variability in analytical results obtained 
for these repeated samples is then expressed through the 
relative sampling variability (RSV), giving a measure for 
sampling quality evaluation. It is calculated according to 
Eq. (8), where s [arbitrary concentration unit (conc. u.)] 
is the standard deviation and x̄ [conc. u.] is the arithmetic 
mean of the concentrations of a specific analyte in the 
repeated samples—functioning as an estimate for the true 
value.

In this investigation, the single samples cover equal 
time spans in which material falls from the conveyor belt. 
Hence, for calculating x̄ , the contribution of each sample 
needs to be weighted by sample mass, as time spans with 
lower throughputs contribute less to the concentrations 
in the total lot. Therefore, x̄ is calculated according to 
Eq. (9), where msam,k is the sample mass [kg] of the kth 

(8)RSV[%] =
s

x̄
⋅ 100[%]

replicate sample and xk [conc. u.] is the concentration of 
a specific analyte according to sample k . As each of the 
samples is equally likely to be taken, s is calculated with-
out weighting, according to Eq. (10), where n [–] is the 
number of samples.

According to DS 3077, the absolute minimum number 
of replicates for performing a REx is 10 (Danish Standards 
Foundation 2013). Due to the enormous amount of man-
ual work needed in waste sorting analytics, this minimum 
number of samples is chosen for this work. Furthermore, 
the standard gives guidance for RSV interpretation, stating 
that 20% is a consensus acceptance threshold. This value 
is to be understood as a rough indication—the threshold 
applied in practice needs to be defined based on the poten-
tial impacts of analytical uncertainties.

Shredding experiment and primary sampling

Experimental set-up

The shredding experiment in this investigation was per-
formed using a mobile single-shaft coarse shredder Termi-
nator 5000 SD with the F-type cutting unit from the Austrian 
company Komptech (Fig. 2). It was fed using an ordinary 
wheel loader. The shredding product was discharged using 
the conveyor belt included in the machine, forming a 
windrow.

The experiment was performed operating the machine on 
60% of the maximum shaft rotation speed (18.6 rpm) and 
with the cutting gap completely closed. The waste used was 
MCW from Styria in Austria.

Sample and increment mass

For defining the total sample mass to be taken, in this work 
the Austrian standard ÖNORM S 2127 was considered as a 
reference. Multiplying the minimum increment mass from 
Eq. (1) with the minimum number of increments, which is 
10, and considering that the expected amount of waste to be 
processed in the experiment is less than 200 t, the minimum 
sample mass msam is calculated according to Eq. (11). With 

(9)x̄ =

∑
k xk ⋅ msam,k
∑

k msam,k

(10)s =

√
1

n − 1
⋅

∑
k

(
xk − x̄

)2
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400 mm being a conservative estimate for d95 from prior 
experiments, a minimum sample mass of 240 kg is defined.

As a rising number of increments forming a sample of a 
mass msam leads to better spatial coverage of the lot, it is very 
likely that dividing this mass into more than 10 increments—
resulting in values for minc lower than defined by Eq. (1)—does 
not negatively influence sampling quality, but rather improve 
it while keeping the total mass to be analysed constant. For 
practical reasons consisting of the manageable sample device 
volume and increment mass when sampling by hand, as well as 
the maximum practicable sampling frequency and the target of 
keeping the experimental duration as short as possible because 
of the high throughput, 20 was chosen as the number of incre-
ments, resulting in a minimum increment mass of 12 kg.

Practical implementation of primary sampling

For reasons of practical implementation, sampling during 
the shredding experiments was performed by hand. This was 
done by holding a suitable open container into the falling 
stream at the end of the product conveyor belt, allowing pref-
erable one-dimensional sampling. The container was held 
by two people standing at each side of the conveyor belt. At 
certain times, they received a starting signal to introduce the 
container into the stream. After a defined time (determina-
tion described below), the container was removed, contain-
ing one increment. To guarantee the accessibility of the belt, 
it was kept low during sampling intervals, needing the shred-
der to keep moving in the opposite direction of the output 
material stream, forming a long windrow.

According to CEN/TR 15310, each dimension of the 
sampling device should be at least three times as long as 
d95 , to allow the entry of all particles (European Commit-
tee for Standardization 2006). For the described sampling 
method, a container of (1.2 m)3 would have been unman-
ageable. The inner dimensions of the sampling device 
used (built from two mortar buckets) are 1.17 × 0.37 × 0.30 

(11)msam [kg] ≥ 0.6 ⋅ d95[mm]

(length × width × depth in m), which corresponds to a vol-
ume of 0.13 m3. With the width of the conveyor belt being 
1 m and holding the device very close to the belt, it was 
observed that all falling material entered the container.

For determining the duration of each sampling step, the 
mass flow was estimated at the beginning of the experiment. 
To do so, the mean volume flow on the conveyor belt was 
measured for a duration of 3 min using a laser triangulation 
measurement bar above the end of the belt. The REx was 
part of an experimental series: prior to the experiment, a 
calibration experiment was performed, processing a total 
mass of 3.5 t for linking volume flows to mass flows. It 
showed a bulk density of 161.8 kg/m3. At the end of the 
three minutes, the sampling duration for the extraction of an 
increment, tinc was calculated from the average volume flow 
V̇  , the bulk density estimate 𝜌 and the target increment mass 
minc of 12 kg, according to Eq. (12), rounding up to time 
intervals of 0.5 s. This resulted in a tinc value of 4 s.

The first sample was taken after an operation time of 
5 min, three for averaging mass flow and two for perform-
ing the corresponding calculation and for instructing the 
sampling teams.

Having four sampling teams of two people each and four 
sampling devices, a sampling interval of 30 s was feasible. 
The assignment of the increments to the ten samples was 
alternated, leading to a sampling interval of 5 min for each 
sample. After a total time of 107 min, the experiment was 
completed.

Sample processing

Each sample taken was collected in seven waste disposal 
bins of 220  l each. From there, the path to the particle 
size–material matrix is a sequence of mass reduction, 
screening and sorting, as shown in Fig. 3. The single steps 
are described in the following subchapters.

Mass check and mass reduction

The lower the sample mass, the lower the efforts for screen-
ing and sorting. Thus, the primary samples, as well as fine 
fractions produced through screening, are subject to a mass 
check. There, it is evaluated whether mass reduction is 
applicable. Reasons for masses higher than needed are high 
momentary throughputs during primary sampling time inter-
vals, as well as low coarse fraction shares, while minimum 
fine fraction masses are recalculated with the new maximum 
particle diameter, according to Eq. (11). In this work, it was 

(12)tinc [s] = 0.5 ⋅

⌈
2 ⋅

minc [kg]

V̇[m3∕s] ⋅ 𝜌[kg∕m3]

⌉

Fig. 2  Feeding of Komptech Terminator 5000 SD
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decided to apply mass reduction, when at least 30% of the 
material can be discarded while adding a safety buffer of 
10% of the minimum mass to be kept. This is the case if the 
inequality shown in Eq. (13) is true for the mass of the evalu-
ated sample part mpart , the maximum particle diameter dmax , 
as defined by the preceding screening step (400 mm for the 
primary sample), and a mass reduction factor fred [–] of 0.7. 
Discarding less material was considered as not being feasi-
ble due to the needed effort for mass reduction. The mass 
reduction factor defines the fraction of the sample that is 
preserved. Three possible values for fred were defined, being 
0.5, 0.6, and 0.7, respectively. The lowest valid one accord-
ing to Eq. (13) is chosen. Lower values were not applied, 
to support spatial coverage of the sample part by taking at 
least five increments when applying mass reduction, which 
is a process of subsampling. Being such, it needs to be kept 
in mind, that all of the described potential sampling errors 
also apply to subsampling and are added to the primary sam-
pling error. On the other hand, the latter is smaller for these 
fractions than for coarse ones, due to lower average particle 
masses, leading to more contained particles per mass.

(13)mpart [kg] ≥
0.66 ⋅ dmax [mm]

fred [−]

Various implementations of mass reduction were 
described and evaluated by Petersen et al. (2004). Most 
of them, like riffle splitters, revolver splitters or Boerner 
dividers are not applicable, as they require the material to 
be pourable. This is not the case with coarse MCW, which 
has a high agglomeration tendency. Others, like alternate 
or fractional shovelling (Petersen et al. 2004) or coning and 
quartering (Wagner and Esbensen 2012), which are often 
used for waste mass reduction, show high sampling errors 
according to the references. Therefore, a mass reduction pro-
cedure based on the method of bed blending as described by 
Wagner and Esbensen (2012) was applied—a comparable 
approach was used by Pedersen and Jensen (2015) while 
sampling impregnated wood waste in Denmark.

The sample to be reduced was emptied onto a plastic foil 
to avoid contamination from the floor or possible loss of 
material. On this foil, it was spread out, forming an evenly 
distributed windrow of a length of 5 m (Fig. 4). Using ran-
dom numbers from 1 to 10 a number of 5–7 segments (0.5 m 
each)—depending on fred—was chosen for preservation. The 
other segments were extracted from the windrow and pushed 
to the floor beside the plastic foil, using a broom. To sup-
port this, lines with a distance of 0.5 m were drawn on the 

Fig. 3  Sample processing 
flowsheet
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floor next to the foil and on the foil in advance for increment 
delimitation. The material to be preserved as well as the 
material to be discarded was shovelled into containers to be 
weighed. From these masses (i.e. preserved: mpres , discarded: 
mdisc ) the real reduction factor f ∗

red
 [–] is calculated accord-

ing to Eq. (14).

Screening

The samples were screened into nine different particle size 
classes, using screen plates with circular holes of eight dif-
ferent diameters. Screening was performed using a batch 
drum screen, which has the shape of an equilateral octago-
nal prism formed by the screen plates. The dimensions are 
shown in Fig. 5. Screen plates with the following hole diam-
eters were used (in mm): 200, 100, 80, 60, 40, 20, 10, and 
5. The screen was operated using material batches of 75 l 

(14)f ∗
red

=
mpres

mpres + mdisc

for screen cuts of 20–200 mm. The volumetric batch size 
was reduced by 50% for the smaller ones, as the high mass 
of the material, caused by the higher bulk density of finer 
fractions, would have overworked the motor of the screen. 
Screening times were chosen based on experience, ensuring 
mass constancy: 180 s for screen cuts of 40–200 mm and 
270 s for the smallest three screen cuts. The rotation speed 
of the screen was set to 5 rpm.

Sorting and mixing

Coarse fractions produced in the screening steps that have 
particle sizes larger than 20 mm (i.e. in total six fractions), 
were hand-sorted into nine different material classes. Finer 
material (i.e. three fractions having particle sizes smaller 
than 20 mm) was not sorted due to infeasibility, consider-
ing the immense amount of work needed to sort such fine 
materials. Furthermore, finer materials are rarely sorted in 
practical analyses, as processing them in treatment plants 
for extracting valuable materials is often disproportionately 
costly. The material classes were chosen in regard to poten-
tial valuables (i.e. from the waste management point of view) 
contained in the waste, they are: metals (ME), wood (WO), 
paper (PA), cardboard (CB), plastics 2D (2D), plastics 3D 
(3D), inert materials including glass (IN), textiles (TX), and 
a residual fraction (RE). Fractions finer than 20 mm were 
assigned to the residual fraction. After weighing the sorted 
fractions, they were joined again, as the subsequent chemical 
analysis was performed for each particle size class, but not 
for individual sorting fractions.

Weighing

The weighing was carried out using two different scales. 
The bigger scale was used for containers with a filled weight 
higher than 30 kg. With a maximum container weight of 
about 16  kg, this corresponds to partial samples with 
a weight of up to 14 kg. The uncertainty of this scale is 
100 g. Lighter containers were weighed using a scale with 
an uncertainty of 0.1 g.

In practice, this means that screening fractions and mass 
reduction fractions were usually weighed using the big scale. 
Sorting results were always weighed using the more precise 
small scale.

Calculations

Particle size–material matrices

The particle size–material matrices regarding masses 𝐌 are 
v × w matrices, where the elements mij represent the mass of 

Fig. 4  Windrow for mass reduction
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the ith of v particle size classes and the jth of w material 
classes in an original sample. The assignment of the indices 
to the classes is shown in Table 1. For calculating the masses 
in the original sample, mass reduction steps must be consid-
ered mathematically. Thus, the mass mij is calculated accord-
ing to Eq. (15), where m∗

ij
 is the mass weighed in the sorting 

analysis and f ∗
red,r

 is the real mass reduction factor (according 
to Eq. 14), when reducing the fine fraction produced in the 
(r − 1) th screening step. r = 1 stands for the original material 
(0–400 mm) and f ∗

red,r
 is 1 if no mass reduction was 

performed. 

The elements wij of the particle size–material matrices 
regarding mass fractions 𝐖 represent the shares of masses 
mij of the total sample mass and are calculated according to 
Eq. (16):

(15)mij =
m∗

ij

∏i

r=1
f ∗
red,r

As the definition of material classes as well as the choice 
of screen cuts is arbitrary, further classes can be defined and 
evaluated by summing up the masses of specific fractions. 
This allows calculating standard deviations and RSV values 
for the mass shares of larger fractions, up to the total mate-
rial. To calculate all different combinations of materials, a 
binary matrix 𝐁w containing all possible combinations of 
ones and zeros for w digits is needed. To generate it, the j 
column of the matrix contains the w-digit binary representa-
tion of the number j , while each of the w rows contains one 
digit. For w digits, the matrix has (w2 − 1) columns. For the 
actual data, w is 9. Equation (17) shows the matrix 𝐁4 as an 
example.

Regarding particle size, only adjacent classes are com-
bined, corresponding to an alternating choice of screen cuts. 
For v particle size classes a binary matrix 𝐀v is needed, con-
taining all possible combinations of zeros and 1 to v adjacent 
ones in its rows. The matrix has v columns and (v ⋅ (v + 1)∕2) 
rows. For the present data, v is 9. Equation (18) shows the 
matrix 𝐀4 as an example.

The matrices 𝐖mp , containing the weight fractions of all 
possible combinations of materials and adjacent particle sizes, 
are calculated according to Eq. (19) and have 45 rows and 511 
columns.

(16)wij =
mij

∑v

i=1

∑w

j=1
mij

(17)𝐁4 =

⎡
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

⎤
⎥
⎥
⎥
⎦

(18)𝐀4 =

⎡
⎢
⎢
⎢
⎣

0 0 0 1 0 0 1 0 1 1

0 0 1 0 0 1 1 1 1 1

0 1 0 0 1 1 0 1 1 1

1 0 0 0 1 0 0 1 0 1

⎤
⎥
⎥
⎥
⎦

T

(19)𝐖mp = 𝐀9 ⋅𝐖 ⋅ 𝐁9

Fig. 5  Dimensions of the screening drum

Table 1  Assignment of indices 
to particle size classes (i) and 
materials classes (j)

index i/j 1 2 3 4 5 6 7 8 9

Size class [mm] 200–400 100–200 80–100 60–80 40–60 20–40 10–20 5–10 0–5

Material class ME WO PA CB 2D 3D IN TX RE
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Results and discussion

Process and material analysis and primary sampling 

mass

The mean throughput—determined at the end of the experi-
ment—was 25.2 t/h or 71.8 m3/h, resulting in a total mass 
of 45.0 t, a total bulk volume of 128.1 m3 on the product 
conveyor belt and thus a bulk density of 351.4 kg/m3. This 
means that the bulk density of the shredded material of the 
REx is much higher than the expected density of 161.8 kg/
m3. Still, the target primary sample masses were approxi-
mately achieved, with a mean of 241 kg, a standard devia-
tion of 22 kg, a minimum of 215 kg, and a maximum of 284 

kg. The weighted mean values of the particle size–material 
matrix as well as of the sums of size classes and material 
classes are shown in Table 2.

Sampling error

The relative sampling variabilities related to the material 
classes in Table 2 are shown in Table 3. Beyond that, Fig. 6 
shows the RSV values as well as the standard deviations s 
for all 22,995 classes in the matrices 𝐖mp , plotted against 
the correspondent weighted mean values. The grey triangles 
mark the data corresponding to the original matrices 𝐖.

Table 2  Weighted means of particle size–material fractions’ mass shares

a Particle size fraction was not sorted: complete material was assigned to the residual fraction with: metals (ME), wood (WO), paper (PA), card-
board (CB), plastics 2D (2D), plastics 3D (3D), inert material (IN), textiles (TX) and residual fraction (RE)

Particle class [mm] ME (%) WO (%) PA (%) CB (%) 2D (%) 3D (%) IN (%) TX (%) RE (%) Sum (%)

0–5 0.0a 0.0a 0.0a 0.0a 0.0a 0.0a 0.0a 0.0a 17.1a 17.1

5–10 0.0a 0.0a 0.0a 0.0a 0.0a 0.0a 0.0a 0.0a 6.5a 6.5

10–20 0.0a 0.0a 0.0a 0.0a 0.0a 0.0a 0.0a 0.0a 11.0a 11.0

20–40 0.7 1.4 0.8 2.1 0.4 2.3 2.1 0.1 2.2 12.1

40–60 0.8 1.8 0.9 2.5 0.5 2.0 1.0 0.1 2.2 11.8

60–80 1.0 2.0 1.0 2.1 0.7 2.3 0.5 0.5 2.2 12.3

80–100 0.7 1.0 0.7 1.3 0.6 1.7 0.2 0.4 1.4 7.9

100–200 1.0 0.9 0.9 4.7 2.2 3.3 0.4 1.7 2.6 17.6

200–400 0.1 0.0 0.0 0.2 1.1 0.7 0.0 1.1 0.7 3.8

Sum 4.4 7.1 4.3 12.8 5.5 12.2 4.1 3.9 45.8 100.0

Table 3  RSV values

Particle class [mm] ME (%) WO (%) PA (%) CB (%) 2D (%) 3D (%) IN (%) TX (%) RE (%) Sum (%) 

0–5 - - - - - - - - 12.3 12.3 
5–10 - - - - - - - - 12.3 12.3 
10–20 - - - - - - - - 10.4 10.4 
20–40 41.4 17.7 24.3 39.3 18.4 17.1 19.7 29.3 22.7 11.6 
40–60 47.3 21.5 16.8 25.6 14.2 8.7 37.2 43.4 16.4 8.8 
60–80 39.4 23.3 22.9 18.1 17.7 10.0 49.9 30.4 8.9 8.1 
80–100 62.0 34.7 38.0 14.2 19.3 17.5 210.7 43.4 17.2 7.7 
100–200 74.0 47.7 69.0 21.6 28.9 35.2 131.8 40.9 40.0 10.9 
200–400 153.0 230.9 203.9 126.2 38.3 39.8 - 42.9 52.2 28.8 
Sum 16.4 18.3 10.5 15.0 16.6 12.1 31.2 26.6 3.6 0.0 

RSV < 20% 20% ≤ RSV < 50% RSV ≥ 50% 
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Incorrect sampling errors

Primary sampling

Increment delimitation is done by defining time intervals 
during which all material falling from the product conveyor 
belt of the shredder is collected. Therefore, no IDEs are 
expected.

Correct increment extraction, on the other hand, turns 
out to be challenging: some increments could not be taken 
at the defined time, because the end of the conveyor belt was 
too high. The reason for this was the wheel loader feeding 
material into the shredder, not allowing the latter to move 
forward. Because of this, the belt had to be elevated, produc-
ing a higher heap. In these situations, increment extraction 
started as soon as it was possible again. Furthermore, com-
munication between the samplers and the person responsible 
for timing was difficult during sampling, due to the loudness 
of the machine. Because of this, the end of the defined 4 s 
of sampling was determined by the samplers through count-
ing. Considering the real mass flow of 25.2 t/h, the average 
sample mass with 20 increments of 4 s each would have been 
560 kg, while the observed average was less than half of that, 
i.e. about 241 kg. Consequently, it can be assumed that the 
real sampling time was less than 2 s, because of the subjec-
tive sense of time, which might also have been influenced by 
the weight of the increments taken. Nonetheless, this did not 
negatively affect the target sample mass of 240 kg. Further-
more, all samples fulfil Eq. (11) as the empirical value for 
d95 is 194 mm (calculated through linear interpolation from 
Table 2). Still, the deviation from the defined sampling time 

of 4 s is not very likely to be uniform, leading to scattering 
of real sampling time and thus to IEE.

Regarding IPE, it cannot be assured that all particles 
of the taken increments reached the final samples, as han-
dling the bulky sampling device, which is also heavy when 
filled, might have led to unintentional falling out of some 
particles.

Mass reduction

Mass reduction is a subsampling process. Consequently, all 
potential sampling errors might as well occur at this step. 
Regarding increment delimitation, drawing the equidistant 
lines on the foil is a quite exact process. So—if IDEs occur 
at all—the order of magnitude should be negligible com-
pared to IEE:

Extracting the increments correctly turned out to be prob-
lematic, especially for coarse fractions. This is because of 
material wedging, impeding pourability. Because of this, 
when pushing the segments to be discarded from the foil, it 
was unavoidable to extract material from the neighbouring 
segments as well. Therefore, IEE could not be completely 
avoided with the mass reduction method applied.

Regarding increment preparation, the main expectable 
error is loss of dust blown away when handling the material.

Screening and sorting

As screening and sorting are not sampling operations, IDE 
and IEE cannot occur. IPE, on the other hand, are expected 

Fig. 6  RSV and standard devia-
tion versus weighted mean of 
mass shares
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due to blowing away of dust, as well as the loss of particles 
falling from the sorting table unnoticed.

Loss of water

The samples taken were processed during several weeks. 
Although stored in closed disposal bins, loss of humidity is 
possible as the bins are not hermetical, leading to IPE.

The total loss of material, calculated comparing the sum 
of the individual fraction masses according to Eq. (14) to 
the primary sample masses, shows a mean value of 5.6% and 
ranges between 4.6 and 7.2%.

Container and equipment contamination

For practical reasons, before reusing containers, and equip-
ment like the screen or shovels, they could only be cleaned 
using hand brushes. Thus, cross-contamination of different 
samples and subsamples cannot be completely excluded, 
leading to further potential IPE. These contaminations are 
expected to be low, due to small contact areas in relation to 
sample masses.

Sampling quality

Applying an RSV of 20% as a threshold for good sampling, 
Table 3 shows that the applied procedure only produces 
good results for some of the examined fractions. Figure 6 
further shows that RSV tends to be better for large fractions, 
indicating that small fractions require better sampling and 
analytics for achieving acceptable relative errors. This is 
the case, although the absolute standard deviation seems to 
increase with mass share, reaching a maximum for fraction 
ratios of 50%.

Figure 7 shows the RSV contribution of the FSE over 
the mass share (according to Eq. 7) of a constituent c for 
different average particle masses mc for the present lot mass 
and target primary sample mass, assuming a two-component 
composition. For the average particle mass of the other con-
stituent mk a value of 0.1 kg was chosen. mk has little influ-
ence on 𝜎FSE , as long as it is significantly smaller than the 
sample mass msam . Comparing Figs. 6 and 7, it is apparent 
that the general trend of the empirical RSV shows similari-
ties to the trend of the FSE’s contribution to the sampling 
error. Especially for coarse particles which are either heavy 
(e.g. metal 100–200), have very low mass shares (e.g. paper 
200–400), or both (e.g. metal 200–400), the FSE explains 
very well why RSVs far beyond 20% were observed.

However, keeping in mind that only few particle size-
material fractions—if any—have average particle masses 
as high as 1 kg, the figures show that primary sampling 
FSE only explains part of the observed sampling errors. For 
example, for a fraction with a mass share of 0.1 𝜎FSE is 3.4% 
in Fig. 7, while the RSV values in Fig. 6 range somewhere 
between 5 and 25%. Therefore, other sampling errors obvi-
ously also show significant contributions. Wavrer (2018) 
highlights the high distributional heterogeneity of munici-
pal solid waste. For MCW, it is known to be even higher, 
therefore the GSE is likely to significantly contribute to the 
sampling error. Furthermore, the described ISEs, as well 
as CSEs and ISEs from subsampling also contribute to the 
observed RSVs. These contributions, along with the differ-
ent average particle masses and numbers of subsampling 
stages for the different data points, as well as errors in esti-
mating RSV due to the low number of 10 taken samples, 
also explain the scattering of the data in Fig. 6 along the 
ordinate axis.

Knowing the standard deviation, confidence intervals for 
estimated concentrations can be calculated as a corresponding 

Fig. 7  Relative standard error 
caused by FSE versus mass 
share of a constituent c of a 
two-component composition, 
according to Eq. (7), for differ-
ent average particle masses m

c
 

of constituent c with a lot mass 
of 45,000 kg, a sample mass of 
240 kg and an average particle 
mass for the other constituent k 
of 0.1 kg
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measure. But doing so, care has to be taken for very large 
RSVs: the high relative errors indicate a positively skewed 
distribution of the values (and therefore not a normal distribu-
tion), as commonly used confidence intervals like 95% would 
otherwise include negative percentages. Ultimately, the quality 
of sampling needs to be rated dependent on the analytical target.

Conclusion

A sampling and sample processing procedure for screening 
and sorting analysis of shredded mixed (i.e. commercial) 
solid waste was established and is reported, based on the 
TOS, the Danish horizontal sampling standard DS 3077 and 
the Austrian standard ÖNORM S 2127. Assessment of sam-
pling quality, rated through the relative sampling variability, 
shows that the procedure gives good results for some values 
of the particle size-material matrix (at a threshold of 20%) 
but not for all of them—it gets as bad as 231%. It is further 
shown that the RSV is better for larger fractions. In conclu-
sion, especially when analysing small fractions, a reduction 
in the occurring sampling errors is necessary. Regarding the 
CSEs, in a first step, it should be assured that the sample 
mass suffices to keep the FSE within a reasonable range. 
For this, building a database of typical particle masses, as 
suggested by Wavrer (2018), is highly encouraged. Equa-
tion (7) then provides a (necessary, but not sufficient) mini-
mum sample mass.

As it was shown that FSE only contributes a part of the 
observed RSVs, compensating the high distributional hetero-
geneity of the waste by increasing the number of increments 
might also significantly improve sampling quality by reduc-
ing GSE. To handle the resulting higher sampling frequen-
cies, automated primary sampling, e.g. using a reversible 
conveyor belt, is encouraged.

Such automated sampling might as well contribute to 
reducing ISEs, i.e. IEEs, as it allows to extract samples 
exactly in time, while still preserving the benefits of sam-
pling from a falling stream (one-dimensional sampling and 
good separation of agglomerated particles). Moreover, IEEs 
during mass reduction (caused by agglomerations, especially 
for coarse fractions) could as well be reduced by (automatic) 
subsampling from a falling stream. Furthermore, the analyti-
cal error can be decreased by using a more precise big scale.

Finally, when evaluating very small fractions through 
screening and sorting, increasing sample masses will be una-
voidable for reliable analyses. In addition to the discussed 
estimation of the FSE, the determined values for the RSV 
help to estimate them in advance.
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a b s t r a c t

Deriving significant experiment-based conclusions on mechanical processing of mixed solid waste is
challenging: the input material cannot be downscaled in a way that enables drawing transferable conclu-
sions from lab-scale experiments. Hence experiments need to be conducted in industry-scale, using real
waste. Besides the enormous resulting experimental efforts and costs, which economically limit the num-
ber of experimental runs, identifying and quantifying significant effects is complicated by the distortion
of the data introduced by the waste’s variability. The distortion is particularly high for cases where sam-
pling is necessary and in experiments where material cannot be re-used from one run to the next. In the
latter case, inter-experimental differences of the waste add to the distortion of the data. In this work, a
systematic approach for deriving representative and significant results at the minimum possible effort is
described and evaluated, based on the method of Design of Experiments. It is applied to a 32 runs D-
optimal industry-scale coarse-shredding experiment with mixed commercial solid waste, based on a
reduced cubic design model, examining the influence of the gap width, shaft rotation speed, and cutting
tool geometry on the throughput behavior and energy demand. The resulting models are highly signifi-
cant (model p-values < 0.0001), proving the ability to extract reliable information from industry-scale
waste processing experiments. Concerning commercial waste shredding, the models provide new
insights into process behavior, for example, the quadratic dependence of the mass flow on the shaft rota-
tion speed, with the highest hourly mass flows at 84% of the maximum shaft rotation speed.
� 2020 The Authors. Published by Elsevier Ltd. This is an open access article under theCCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Mixed solid municipal and commercial wastes represent a sig-
nificant share of the total waste produced each year, with 13.5 mil-
lion metric tons (163 kg/inhabitant) alone in Germany in 2018, for
example (Umweltbundesamt, 2020). Hence, efficient and effective
mechanical treatment processes are needed to enable recycling or
energy recovery. This topic’s relevance is emphasized by the
European Union’s recycling targets (2018) of the circular economy
package – demanding a recycling rate of 65% for municipal waste
by 2035.

For improving the performance of the corresponding treatment
processes, it is essential to establish reliable knowledge about the

influences of machine parameters. Such understanding is not only
relevant for the classical (stationary) operation of processing
plants, but even more for their dynamic operation in industry
4.0-based smart processing plants (see Khodier et al., 2019; Sarc
et al., 2019a). For preparation for recycling, but also the production
of waste fuel (refuse-derived fuels – RDF), mixed solid waste
(MSW) is usually first treated mechanically (e.g. Müller and
Bockreis, 2015). Deriving the desired knowledge on the parameter
influences of the corresponding machines is challenging: There are
many studies in lab-scale (e.g. Luo et al., 2010 on feed moisture’s
influence on the shredding of municipal solid waste; Kaufeld
et al., 2017 on the impact of two-dimensional materials on waste
screening), but these use synthetic feed or examine very fine mate-
rials and are therefore not directly transferable on real conditions
and often even lack statistical analyses of the results. There are also
numerous numerical studies (e.g. Sinnott and Cleary, 2015 on

https://doi.org/10.1016/j.wasman.2020.12.015
0956-053X/� 2020 The Authors. Published by Elsevier Ltd.
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crushing of minerals; Lee et al., 2008 on impact-breakage of con-
crete waste; Pieper et al., 2016 on optical belt-sorting; Dong
et al., 2017 on sieving). But none of the models described there
incorporates the variability of mixed solid waste particles, their
interactions, and the different behavior of, for example, plastic
films in the processing machines yet. The process feed – the waste
– cannot be down-scaled and is too variable for current particle-
scale models. Hence, real-scale experimental investigations, using
real waste, are needed to enable the direct transfer of results on
industry-scale processes. The variability of the waste further limits
the extent to which results from single experiments can be gener-
alized. When material analyses are involved, the waste’s variability
influences the experimental results even more due to the necessity
of sampling and thereby introduced errors (see Khodier et al.,
2020).

The issue of waste variability gets even more challenging when
the examined process significantly changes the waste particles’
condition: for shredding, for example, the waste cannot be re-
used in other experimental runs. Hence, inter-experimental
changes in the waste distort the data and the conclusions drawn
from them.

Considering the efforts and costs associated with real-scale
experiments, the number of conductible experiments is limited
in practice. Therefore, efficient experimental methods are needed
that ensure the significance of results, despite the limited number
of possible experimental runs and the influence of the variable
waste input.

The method of Design of Experiments (DoE, e.g. Siebertz et al.,
2010; Dean et al., 2017) allows the efficient derivation of empirical
multilinear models and consequent findings on the examined pro-
cesses from experiments. It also involves tests on statistical signif-
icance and the calculation of confidence intervals. While the
method has been applied on lab-scale waste processing experi-
ments (e.g. Qin et al., 2009 on the electrostatic separation of
printed circuit boards; Kazemi et al., 2016 on composting of
municipal solid waste), no literature was found showing its appli-
cation on industry-scale experiments with real waste. Conse-
quently, examining its ability to derive information from such

experiments with acceptable experimental effort is a relevant
research question.

Such an evaluation is performed in this work, based on
coarse-shredding of mixed commercial waste – to cover all dis-
cussed hurdles and contribute insights on the treatment of a
waste stream that has hardly been examined in the technical lit-
erature yet.

Shredders usually perform the first process step in mechanical
treatment plants for MSW (see e.g. Müller and Bockreis, 2015;
Pomberger, 2008; Sarc et al., 2016), which is a step of comminution
and therefore also of liberation. In addition to the shredder’s task in
material processing, it is usually the primary dosing device (Feil
and Pretz, 2018) and a significant energy consumer. Hence, it sig-
nificantly influences the subsequent process and the economic effi-
ciency of the waste’s mechanical treatment.

Consequently, the energy demand and the throughput were
chosen as dependent variables to be examined. Concerning the
throughput, it is considered in terms of mass, which is the basis
for billing, as well as volume, as machine performance is usually
more influenced by the volume flow (drum screens, for example,
are limited by the volumetric degree of filling, according to
Coskun et al., 2017). Since machine performance is moreover influ-
enced by momentary throughputs, and not just their average (as
discussed, e.g., by Feil et al. 2019 and confirmed by the works of
Küppers et al. 2020; Curtis et al. 2020), the steadiness of the
throughput is also examined.

While the produced material quality – in terms of particle sizes
– is also essential, it is not considered for the following reason: par-
ticle size distributions are described as continuous functions or as
compositions of discrete particle size fractions. Their resulting
non-scalar and constrained character requires treatment through
sophisticated multivariate statistical methods, such as multiple
multivariate linear regression (e.g. Johnson and Wichern, 2007),
multivariate analysis of variance (e.g. Hand and Taylor, 1987),
and compositional data methods (e.g. Greenacre, 2019), and would
burst the scope of this work. For the results’ interpretation, some
experimental data on this are nevertheless provided where
necessary.

Nomenclature

ANOVA analysis of variance
c cutting tool geometry
c1, c2 coded representation of the cutting tool geometry
dfmod degrees of freedom of the model
dfres degrees of freedom of the residuals
DFFITS difference in fits
DFBETAS difference in coefficients
DMFMS digital material flow monitoring system
DoE Design of Experiments
E mass-specific energy demand
i number of the actual run
j factor exponent
k factor exponent
K rð Þ
jkmn model constant for the factor or interaction wjskcm1 c

n
2

and the response r
m factor exponent
_m normalized mean mass flow during an hour of operation
_m10 10th percentile of the momentary mass flow
_m90 90th percentile of the momentary mass flow
n factor exponent
N number of runs
p empirical significance
plof empirical significance of the lack-of-fit

pmod empirical significance of the model
r arbitrary response variable
R2 coefficient of determination
R2
adj adjusted coefficient of determination

s shaft rotation speed
SSmod sum of squares of the model deviation from the mea-

sured mean
SSres sum of squares of the residuals
_V normalized mean volume flow during an hour of opera-

tion
_V10 10th percentile of the momentary volume flow
_V90 90th percentile of the momentary volume flow
w gap width
x
*

vector of the factors (i.e. w, s, c1, c2)
y rð Þ measured value of the response r
y
� rð Þ mean measured value of the response rby rð Þ model prediction of the response rby rð Þ
i model prediction of the response r for the factor settings

of run i
a threshold for type I errors
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Concerning the independent variables – the parameters – the
influences of the radial shredder gap width and the shaft rotation
speed were chosen for investigation. Also, different cutting tools
were used to relate the order of magnitude of observed effects to
the cutting tool geometry’s influence and demonstrate the han-
dling of nominal (categorical) parameters.

Based on the experimental results of a 32 runs experiment, it is
finally targeted to derive significant and trustworthymodels on the
influence of the described independent variables on the dependent
ones. Thereby it is shown whether reliable information can be
drawn from such an industry-scale experiment with real mixed
commercial waste, applying DoE. The investigation shows that this
type of method and analysis is suitable for gaining essential con-
clusions to develop mechanical waste processing further.

2. Materials and methods

First, the experimental setup is described, including the process
flow and the description of the used shredders and measurement
equipment. Then, the experimental design is presented, explaining
the choice of the number of runs and the design. Finally, the meth-
ods applied for evaluating the results are described.

2.1. Experimental setup

2.1.1. Material
The feed material used in the experiments was waste declared

as solid mixed commercial waste from Styria in Austria in October
2019 (photo: Fig. S1; composition: Fig. S2 in the supplementary
material). Analyses of similar waste have been published recently:
e.g., Möllnitz et al. (2020) with a focus on plastic types; analyses on
a particle level by Weissenbach and Sarc (2020), and the sieving
and sorting analyses and physical-chemical analyses of RDF, pro-
duced in plants which process mixed commercial waste, by Sarc
et al. (2019b).

Due to the substantial heterogeneity of this kind of waste
(shown e.g. by Khodier et al., 2020), it was attempted to keep its
similarity high to decrease the distortion of results, e.g., by limiting
the number of collection sources.

2.1.2. Flow chart
Fig. 1 shows the experimental setup. The waste was directly fed

into the shredder using a wheel loader. To minimize other machine

influences, caused, for example, by the strength of the motor or the
geometry of the feeding bunker of the shredder, the same basic
type of shredder was used in all cases: a Terminator 5000 SD,
which is a single-shaft shredder from the Austrian company Komp-
tech GmbH, that is a research partner within the funded project
ReWaste4.0. From the shredder’s output belt, the waste was passed
to a digital material flowmonitoring system (DMFMS), which mea-
sures momentary throughput in terms of volume and mass. The
waste leaving the device was collected on a product heap.

There are different possible reasons for the potential occurrence
of momentary zero-throughputs throughout the experiment.
While reversing the shaft is an inherent characteristic of the pro-
cess, prior experiments showed that the wheel loader sometimes
cannot keep up with the shredder at higher throughputs. As these
experiments intend to evaluate the shredder parametrization’s
influence without considering feeding conditions, a camera that
shows the inside of the shredder’s feeding bunker was installed.
The recordings were synchronized with the throughput measure-
ments to evaluate the reasons for periods with zero-throughputs
and discard them if they are caused by the absence of material,
as proposed by Aarne Vesilind et al. (1980).

2.1.3. Cutting tool geometry
Three different cutting tool geometries of the Terminator 5000

SD were used in the experiments, called ‘‘F”, ‘‘XXF”, and ‘‘V” (see
Fig. 2), demonstrating the consideration of nominal factors. The
geometry is described through a rotating shaft systemwith the pri-
mary cutting tools and a counter comb, which functions as the
counter cutting edge. The examined systems differ regarding the
geometry and the number of cutting tools, and the axial and radial
cutting gap width. The latter can be adjusted continuously. The
technical data of the three geometries are summarized in Table 1.

The F-type cutting tool has 32 cutting teeth on the shaft,
arranged as a double helix. The counter comb contains 17 teeth,
which are all positioned at the same height. The cutting process
takes place only on the left side of the teeth, which is the reason
for the different left-side and right-side cutting gaps.

Unlike the F-type, the XXF-type cutting tool has only 22 teeth
on the shaft, arranged as a V-pattern, also called ‘‘chevron pattern”.
The counter comb contains 23 teeth, which are all positioned at the
same height as well. Same as with the F-type, the process of cutting
takes place only at the left side, but with a much smaller axial gap
width.

Fig. 1. Experimental setup: photo and flow chart.

K. Khodier, C. Feyerer, S. Möllnitz et al. Waste Management 121 (2021) 164–174

166



The V-type has 32 cutting teeth on the shaft that are arranged as
a chevron-pattern as well. As shown in Fig. 2, the shape of the teeth
is different from the other two types. Also different is that cutting
takes place at both sides of the teeth, resulting in a smaller number
of 17 counter comb teeth. These are positioned at alternating
heights to facilitate large particles’ comminution through the
higher bending tensions that are achieved at the larger gap
between two of the upper teeth. Additionally, the V-type has a
comb-system (see Fig. 2), which supports the production of defined
particle sizes and leads to some secondary comminution.

2.1.4. Digital material flow monitoring system (DMFMS)
The throughput is measured using a DMFMS. It incorporates

two different measurement systems: the mass flow is measured
through an integrated belt scale. The volume flow is determined
using a laser triangulation measurement bar above the belt.

The belt scale delivers updated values every 3 s (with an accu-
racy of ±2% in the range of 25–100% for throughput rates of 5–
100 t/h). These values represent the arithmetic average of the mass

flow during this period. The laser triangulation system measures
the material stream’s height profile with a frequency of 200 Hz,
delivering updated values every 2 s, representing the arithmetic
mean of the volume flow during this time.

2.2. Experimental design

The experiments are performed based on DoE. It aims at effi-
ciently performing experiments to maximize the gained informa-
tion per experimental run. Unlike traditional experimentation,
instead of varying one factor at a time while keeping all others con-
stant, factors are changed simultaneously, enabling a more robust
identification of factor influences and the identification of factor
interactions (Siebertz et al., 2010). The design is chosen, and the
results are interpreted based on an empirical regression model –
usually a polynomial multilinear model.

Dean et al. (2017) describe some fundamental principles of DoE:
Replication of experimental runs is essential to determine the ran-
dom variation between single runs, to differentiate between signif-
icant effects and random noise, caused, for example, by the
differences of the waste input from one experiment to the other.
Blocking means to divide the experimental runs into groups of
more similar conditions, then achievable for the overall investiga-
tion. In terms of waste processing, these groups could be defined
by different wheel loader drivers or waste collection sources, for
example. Furthermore, randomization is an essential concept in
DoE: experiments are preferably performed in random order – so
after designing the experiment, the runs’ order is shuffled. Thereby,
the random spreading of systematic changes over time – e.g., wear
of the shredder’s cutting tool – over the examined factor ranges
and the random spreading of disturbances like waste composition
is incorporated.

In the terminology of DoE, according to Siebertz et al. (2010),
properties that influence the experimental system (i.e. the shred-
der) are called parameters (not to confuse with parameters in
terms of process parametrization). Some of these can be set on pur-
pose, while others (e.g. the random waste composition) cannot.
Those parameters that are chosen to be deliberately set during

Fig. 2. Cutting tool geometries.

Table 1
Technical data of the cutting tool geometries.

type F XXF V

number of cutting teeth (shaft) [pcs.] 32 22 32
position of cutting teeth (shaft) [–] double

helix
chevron chevron

width of cutting teeth (shaft) [mm] 70 70 42/85*
height of cutting teeth (shaft) [mm] 124 124 183
width of cutting teeth (counter comb)

[mm]
64 54 81/100*

height of cutting teeth (counter comb)
[mm]

142 136 202

cutting circle [mm] 1070 1070 1170
length of shredding-shaft [mm] 3000
right side cutting gap (axial) [mm] 3.5 2 3
left side cutting gap (axial) [mm] 39 2 3
minimum cutting gap (radial) [mm] 0
maximum cutting gap (radial) [mm] 33 35 30/38*
comb-system [–] no no yes

* bottom/top of the teeth.
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the experiment are called factors. The outputs of the system, like
the mass throughput of the shredder, are called responses. A
change of the magnitude of a factor’s effect on a response, with dif-
ferent settings of one or more other factors, is called an interaction
and is described through these factors’ products in the regression
model.

2.2.1. Duration and number of experimental runs
The choice of the duration of each experiment is based on a rea-

sonable compromise between the following: maximizing the inter-
experimental homogeneity of the used waste by maximizing the
experimental durations and minimizing the experimental duration
to increase the number of experiments that can be feasibly con-
ducted, to allow more complex regression models and increase
the statistical robustness of the results – in particular, in consider-
ation of the distortion of the data caused by the waste’s
heterogeneity.

In this study, the maximum practicable number of experiments
was also influenced by the effort for material analyses for each
experimental run, as material sampling and sieving and sorting
analyses were also performed. Ultimately, balancing these argu-
ments, an experimental duration of one hour was chosen while
allowing 32 experimental runs.

2.2.2. Factor types and ranges
The experiments investigate the influence of three factors: gap

width (w), shaft rotation speed (s), and cutting tool geometry (c).
The gap width is a numeric factor. It was described in percent of
the maximum aperture, setting the lower limit to 0% and the upper
limit to 100%. The gap width is set by hand using an analog display,
which does not allow high accuracy. Hence, the factor was defined
as discrete, only allowing steps of 10%, resulting in 11 different fac-
tor levels.

The shaft rotation speed is a numeric factor as well. It was
described in percent of the maximum rotation frequency, which
is 31 rpm. 100% of this maximum frequency was defined as the
upper limit, while 60% was chosen as the lower limit, based on
the manufacturer’s recommendations. The software of the machi-
nes only allows setting the shaft rotation speed in steps of 10%.
Therefore, the factor was also defined as a discrete factor, resulting
in 5 possible factor levels.

The cutting tool geometry is a nominal factor. As three types of
geometries were examined, it is a nominal factor with three levels
more precisely.

In DoE, factors are coded according to Siebertz et al. (2010),
using, for example, a range from �1 to 1 for numeric factors. There-
fore, a gap width of 0% corresponds to �1, while a gap width of
100% corresponds to 1. For the shaft rotation speed, �1 stands
for 60%, while 1 equals a speed of 100%. Nominal factors are coded
using one of several versions of so-called contrast matrices. In this
work, the cutting tool geometry is represented by two variables c1
and c2, based on sum contrasts (see e.g. Chambers and Hastie,
1993). Consequently, the F-type cutting unit is represented by
c1; c2ð Þ ¼ 1;0ð Þ. For the XXF unit c1; c2ð Þ ¼ �1;�1ð Þ, while for the
V-type cutting tool, c1; c2ð Þ ¼ 0;1ð Þ. The sum contrasts result in
mean values of 0 for c1 and c2, which is desirable for the analysis
of the results.

2.2.3. Design model
The regression model used to design the experiment is a

reduced cubic design, according to Equation (1), where by rð Þ x
*

� �
is

the model value of an arbitrary response r (e.g. the specific energy

demand), K rð Þ
jkmn is the model constant for the coded factor or inter-

action wjskcm1 c
n
2 and the considered response r, and x

*
is a vector of

all factors. The model corresponds to the full quadratic model for
every factor level of the nominal factor c and therefore for every
cutting tool geometry.

by rð Þ x
*

� �
¼

X2
j¼0

X2�j

k¼0

X1
m¼0

X1�m

n¼0

K rð Þ
jkmnw

jskcm1 c
n
2

� �
ð1Þ

The choice was made based on the following considerations:
Nominal factors can only appear linearly in the regression model,
as no factor levels between them exist. Therefore, a more elaborate
definition of a curve shape between factor levels does not make
any sense. Hence the exponents m and n of the factors c1 and c2
do not exceed the value 1. The linear nominal factor terms can still
appear as part of higher-order factor interaction terms.

The order of the numeric factors w and s is not limited mathe-
matically. Additionally, it is unknown whether the influence of
these factors is linear. Therefore, including higher-order terms
might make sense. Conversely, considering the physics of the
investigated process, it was assumed to be likely for the considered
responses’ correlations with numeric factors to be strictly mono-
tonic – no turning points were expected. However, single ones
would be covered by the model as well. To avoid an unfeasible
extent of the experiment by using the full cubic model, it was fur-
ther necessary to assume that no inflection points appear. A quad-
ratic model should then suffice to approximate the data well. These
hypotheses are later validated through a test for lack-of-fit.

2.2.4. Design and parametrization
There are many standard designs for performing experiments.

Examples are Fractional Factorial or Central Composite (Dean
et al., 2017). But none of the standard designs is well suited for
the specific case described, mainly for the following reasons: The
design must consider the limitation that only discrete factor levels
can be chosen. Moreover, the chosen model (reduced cubic) is not a
standard model. The design should consider it without increasing
the number of runs to the level needed to fit, for example, a full
cubic model.

In conclusion, an optimal design was chosen for this experi-
ment. This class of designs iteratively optimizes one of various sta-
tistical criteria while considering constraints of the design space
and arbitrary design models.

To generate the design, the software Design Expert� 11 was
used. It offers three of many available different optimization crite-
ria: I-, D- or A-optimal designs. According to the documentation of
Design Expert� (Stat-Ease, 2018), as well as Siebertz et al. (2010),
D-optimal designs perform best at estimating the effects of factors.
They minimize the volume of the coefficients’ confidence ellipsoid
and therefore give the most robust factor estimations. Conse-
quently, a D-optimal design was used since determining factor
strengths is the aim of the experiment.

For generating a D-optimal design, some more parameters must
be chosen: the candidate points define the points that the algo-
rithm may choose from when generating the model. Having
defined discrete levels for all factors, all points are regarded as cat-
egoric ones, resulting in 165 candidate points for the model. Fur-
thermore, the number of blocks must be specified. Potential
blocking parameters for this experiment are the batches of waste
delivered by every truck and the wheel loader driver feeding the
shredder – two drivers supported the experiments. As these
parameters’ assignment to individual runs was not projectable,
no blocking was used, so the number of blocks was set to 1.

The number of replicate points was set to 5. These are used to
calculate the pure error. The number of lack-of-fit points was also
set to 5. They are used to perform lack-of-fit tests, which evaluate if
the chosen kind of model can sufficiently approximate the
experimental data. These default settings ensure a powerful test
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for lack-of-fit. Four additional model points were used, other than
the 18 required model points, to exploit the allowed number of
runs since prior experiments indicate that a high number of runs
is needed to obtain significant results when performing this kind
of experiment with this kind of material. Therefore, the additional
model points are expected to increase the reliability of the results
significantly.

2.3. Analysis of the results

Analysis and modeling of the results are performed using
Design Expert� 11, completing the steps described in the
following:

2.3.1. Model reduction
The factors and interactions shown in Equation (1) were chosen

before the experiment, aiming at providing a comprehensive math-
ematical regression model to describe these future observations.
Consequently, it was not known at that moment which of these
terms significantly influence the responses to be investigated.
Hence, model reduction is applied to eliminate non-significant fac-
tors, simplifying the model, and facilitating interpretation. It also
increases the significance of conclusions drawn, as more degrees
of freedom (generated through experimental runs) can be assigned
to the residual errors.

In this work, forward selection based on the empirical signifi-
cance (p-values), choosing a threshold of a ¼ 0:1 for type I errors
(see Wasserman, 2013) is applied. The algorithm starts from the

most basic model (Equation (2), where y
� rð Þ is the arithmetic mean

of the observed responses y rð Þ
i ). It then keeps adding terms one after

the other, always choosing the most significant design model term
that was not included yet, as long as terms with the empirical sig-
nificance p < a remain. According to Siebertz et al. (2010), it is also
essential to ensure model hierarchy. Therefore, after applying for-
ward selection, any lower-order terms included in selected higher-
order terms are also included.

by rð Þ ¼ K rð Þ
0000 ¼ y

� rð Þ ð2Þ

2.3.2. Analysis of variance
The analysis of variance (ANOVA, see e.g. Siebertz et al., 2010)

shows some measures used to evaluate the model. The following
of these are reported in this work:

The coefficient of determination R2 determines howmuch of the
variation of the data around the mean is explained by the model. It
is calculated according to Equation (3). SSres is the sum of squares of

the residual errors according to Equation (4), where y rð Þ
i is the

observed response r at the ith run, by rð Þ
i is the predicted response

for the factor settings of the ith run, and N is the number of runs.
SSmod (Equation (5)) is the sum of squares of the deviations of the
model’s predictions from the mean response (Siebertz et al., 2010).

R2 ¼ 1� SSres
SSres þ SSmod

� �
ð3Þ

SSres ¼
XN
i¼1

by rð Þ
i � y rð Þ

i

� �2
ð4Þ

SSmod ¼
XN
i¼1

by rð Þ
i � y

� rð Þ
� �2

ð5Þ

The adjusted coefficient of determination (R2
adj) is also a mea-

sure of the share of the data’s variation around the mean value
explained by the model. But it is adjusted by the number of terms

in the model so that it decreases compared to R2 with an increasing
number of terms. Consequently, it is a measure of the model’s effi-
ciency in terms of explained variance per term. It is calculated
according to Equation (6), where dfmod is the number of degrees
of freedom consumed by the model (which is equal to the number
of terms in the model) and dfres is the number of degrees of free-
dom of the residuals (which is equal to N � dfmod) (Siebertz et al.,
2010).

R2
adj ¼ 1� SSres=dfres

SSres þ SSmodð Þ= dfres þ dfmodð Þ
� �

ð6Þ

The p-value of the model pmod describes the probability of
observing the effects that the model describes due to noise rather
than real effects. The lower it is, the more significant is the model.

The p-value of the lack-of-fit plof is desired to be non-significant
and therefore larger is better. It describes the probability of observ-
ing the present lack-of-fit due to noise.

2.3.3. Model diagnostics
Siebertz et al. (2010) describe different plots that are used to

evaluate models. The ‘‘Full normal plot” is used to examine the dis-
tribution of the residuals, which are the differences between mea-
sured responses and the corresponding model values. Their
distribution is relevant because the Fisher F-test used in the
ANOVA for calculating the p-values requires normally distributed
residuals.

There are three more plots, which are used for examining the
model predictions according to Siebertz et al. (2010): ‘‘Predicted
vs. Actual”, ‘‘Residual vs. Predicted”, and ‘‘Residual vs. Run”. They
are used to visually examine the data for systematic trends of
the residuals (which are not desired) concerning the predicted
value, the run number, and each factor’s values. Another relevant
plot to examine is the ‘‘Residual vs. Factor” plot, which supports
identifying systematic relations between the factor settings and
the prediction errors.

Furthermore, three measures for the influence of single runs are
used for outlier analysis: Cook’s distance, DFFITS (difference in
fits), and DFBETAS (difference in coefficients, which are often called
betas). They calculate changes of the model when not considering a
certain point for its calibration: Cook’s distance is a measure for
changes of the predictions for all design factor settings. DFFITS is
a measure for changes in the predictions of the very points that
are not considered. DFBETAS are calculated separately for each
model coefficient and show changes of its estimate.

After defining the model through model reduction and perform-
ing the coefficients’ calibration, all these plots are examined. If any
of them shows undesired behavior, it is further analyzed and trea-
ted, e.g., through transformations of the response variables (for
example, logit-transformation or power transformation) or outlier
investigation and possible elimination. If any such treatment
appears to be necessary, the model finding starts again frommodel
reduction.

3. Results and discussion

3.1. Experimental design and results

The experimental design created by Design Expert� is shown in
Table S1 in the supplementary material. Furthermore, it presents
the measured mean of the volume flow ( _V) and the mass flow
( _m) over the experimental duration of one hour, the ratio of the
10th and 90th percentile of both ( _V10= _V90 and _m10= _m90), and the
mass-specific energy demand (E). For reasons of confidentiality,
the values of _V and _m in this work were normalized (division by
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the arithmetic average observation of all runs). Furthermore, there
are two columns, ‘‘run plan” and ‘‘run actual”. The first of the two
shows the run order, which resulted from the randomization per-
formed by Design Expert�. Throughout the experiments, it was
found out that the V-shredder’s motor rotation speed had been
unintentionally changed from its standard configuration before
the planned run number 16, which affected the planned runs 16,
18, and 19. Hence, these runs were dismissed and repeated after
discovering the issue. Due to the tight timescale and the time con-
sumed when switching shredders, it was unfortunately impossible
to re-randomize the remaining runs, including these three. Conse-
quently, the runs were repeated right after the planned run 24,
accepting the resulting impairment of randomness caused by this.

3.2. Modeling of the responses

Table 2 shows the resulting models and coefficients and the
reported ANOVA results for all examined responses.

The pmod-values show that highly significant models were found
for all responses, with probabilities of less than 0.01% of observing
such experimental results due to random noise. The models also
show non-significant lack-of-fits at a standard threshold of 0.05
(see e.g. Siebertz et al. 2010), although it is close to critical for
the mean volume flow, with a value of 0.0507. The R2-values are
all in a similar range, with values ranging from 0.73 to 0.87. Con-
sidering the high expected residual errors caused by the highly
variable nature of the waste (see e.g., throughput fluctuations
described by Curtis et al., 2020; intra-experimental waste variabil-
ity described by Khodier et al., 2020), these values indicate that the
models explain the observed results quite well.

For E, a significant model with non-significant lack-of-fit was
found, containing only the intercept and the cutting tool, but
showing a lower R2 value of 0.6938 compared to the other models
and some deviation from normality for the residuals. The model
could be improved by introducing a transformation, applying the
natural logarithm to the specific energy demand. The new model,
which is presented in Table 2, shows the desired normality of the
distribution of the residuals and a larger share of observed variance
explained by the model. As the displayed R2 value for the ln Eð Þ-
model is calculated, considering ln Eð Þ as a response, the R2 for
the response E, based on the resulting exponential model was also
calculated, for comparison with the R2 obtained before the

transformation. It has a value of 0.75 and therefore confirms the
claimed model improvement.

3.3. Factor influences

Fig. 3 shows the factors’ effects (and their corresponding confi-
dence bands) on the modeled responses, setting the two other fac-
tors to the average level (coded 0) for every subplot. The models for
the mean mass flow and the specific energy demand contain no
interaction terms. Changing the corresponding other two factors
from the average level consequently only changes the effect plots’
absolute location, but not their slope. For the other three
responses, the effect of the interactions is shown in Fig. 4. In the
following sections, the response values at w; s; c1; c2 ¼ 0 are called
‘‘intercept-value”, while the responses for average gap width and
shaft rotation speed settings (w; s;¼ 0) for the different cutting
tools are denoted as ‘‘F-intercept” (c1 ¼ 1; c2 ¼ 0), ‘‘V-intercept”
(c1 ¼ 0; c2 ¼ 1) and ‘‘XXF-intercept” (c1 ¼ �1; c2 ¼ �1).

3.3.1. Gap width
As shown in Fig. 3, a linear influence of the gap width on the

mean volume flow was observed. It increases by about 24% of
the intercept-value when increasing the gap width from 0% to
100%. The main reason for this increase is presumably the resulting
higher available flow area for the waste, which is the major influ-
ence on crushers’ throughput, according to Cleary and Morrison
(2021). Furthermore, the larger gap increases the maximum
dimensions of particles that may pass through without being com-
minuted. Though, the model shows an interaction of the gap width
and the cutting tool geometry so that the effect strength can and
must be evaluated separately for the three cutting tool types. As
shown in Fig. 4, the effect is very small, far from significant, for
the V-type cutting tool. In addition to the unlikelihood of a
decreasing throughput at increasing gap width, considering
domain knowledge, the confidence bands let assume that there is
hardly any effect of the gap width for the V-type unit.

On the contrary, for the F and XXF cutting tools, much more sig-
nificant and similar influences of the gap width were observed.
They show an expected increase of 28% of the F-intercept for the
F-shredder and 42% of the XXF-intercept for the XXF-type cutting
tool. The V-type geometry’s different behavior may be explained
by the lower increase of the available flow area at larger gaps,
due to the conical shape of its teeth, compared to the other
geometries. Moreover, the effect of the gap width is most likely

Table 2
Model coefficients and ANOVA results.

coded model coefficients

Factor _V �½ � _m �½ � _V10= _V90 �½ � _m10= _m90 �½ � ln E L=t½ �ð Þ

1 0.999 1.290 0.270 0.281 0.701
w 0.120 0.112 �0.009 �0.004 �0.111
S 0.135 0.151 �0.039 �0.037 �0.007
c1 0.274 0.090 �0.074 �0.043 �0.210
c2 �0.324 �0.215 0.141 0.080 0.420
wc1 0.056 – 0.013 0.009 –
wc2 �0.159 – �0.011 �0.004 –
w2 – – 0.014 �0.008 –

s2 – �0.353 – – 0.193

w2c1 – – 0.023 �0.012 –

w2c2 – – 0.069 0.095 –
ANOVA and diagnostics results

R2 0.79 0.73 0.87 0.84 0.76

R2
adj

0.74 0.6723 0.81 0.77 0.72

pmod <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
plof 0.0507 0.6254 0.4173 0.8102 0.3095
removed outliers (Run actual) – 4, 7 21 – 4
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significantly weakened by the comb system of this unit, in analogy
to the influence of the grid size influence on the throughput of a
battery cell crusher, that was reported by Wuschke et al. (2019).

A linear influence was found regarding the mean mass flow, but
no significant interactions were observed. Considering the propor-
tionality of volume and mass in average (linked through the aver-
age bulk density), it is reasonable to assume that there is also an
interaction with the cutting tool geometry for the mass flow, which
was not detected due to higher noise in the mass flow data. Conse-
quently, the much wider confidence bands for the influence of the
gap width on the mass flow, compared to its impact on the volume
flow, result from a combination of higher noise, potential effects on
material density, and variation caused by the geometry, that is not
explained by the model. Finally, according to the model, the
expected value for the increase of the mass flow, when changing
the gap width from minimum to maximum, is 17% of the
intercept-value.

The models for the influences on throughput steadiness in
terms of volume and mass both show quadratic effects with cut-
ting tool geometry-interactions for the gap width. The effect, on

average of the three cutting tools, is not very significant, according
to Fig. 3. Fig. 4, on the other hand, shows more significant influ-
ences, particularly for the V and XXF cutting tools.

Remarkably, a turning point was observed, close to the average
gap width of 50%, with increasing values for smaller and bigger
gaps for the V-type and decreasing values for the F- and XXF-
type shredder. For the F- and XXF-types, a possible interpretation
is that for small gap widths, it is harder for the shredders to pull
some materials through, leading to fluctuations. In contrast, for
large gaps, the ease of passing through the gap might lead to
instantaneous passing of large amounts of material from time to
time. Still, an in-depth analysis is subject to further research, espe-
cially concerning the V-type shredder’s behavior, where no expla-
nation for the observed trend was found yet.

As for the specific energy demand, the shape of the curve,
resulting from the logarithmic model, shows an almost linear
expected decrease (without any interactions) of 0.45 Lt�1 when
changing the gap width from minimum to maximum. The main
explanation for this is the attribution of the idle energy demand
per time to a larger amount of waste because of the increased

Fig. 3. Effect plots with confidence bands for the influence of gap width, shaft rotation speed, and cutting tool geometry on throughput, throughput steadiness, and specific
energy demand, at the average setting of the respective other factors.
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mass-throughput. Furthermore, a potentially increasing share of
particles that pass through without comminution, as discussed
above, may also contribute. The energy demand for breaking parti-
cles, on the contrary, is not expected to change, as it mainly
depends on the axial distance between the teeth of the counter
comb, according to Feyerer (2020).

3.3.2. Shaft rotation speed
For the shaft rotation speed, no significant interactions were

observed. Consequently, the following observations are all related
to average effects.

When increasing the shaft rotation speed from 60% to 100%, a
linear increase of the volumetric throughput was observed, with
an expected value of 14% of the intercept-value.

Regarding the mean mass flow, a quadratic influence of the
shaft rotation speed was observed, showing the lowest throughput
for the minimum chosen shaft rotation speed of 60%, increasing up
to a rotation speed of 84%, and then decreasing again with increas-
ing rotation frequency. A reason could be the material intake
behavior at high rotation speeds. The difference between the max-
imum and minimum expected value is about 40% of the intercept-
value, and therefore comparatively high.

In addition to the observed curve’s quadratic nature, especially
the difference in its trend compared to the mean volume flow
raises questions in terms of interpretation. It was examined
whether the difference results from the different drawn conclu-
sions during outlier detection, as shown in Table 2. This consider-
ation showed a partial explanation but did not fully explain the
observed differences. Removing runs 4 and 7 when modeling the
volume flow leads to a significant but weaker quadratic term in
the model. On the contrary, considering them in the mass flow
model does not remove the quadrature but weaken it. Another
interpretation is that the shaft rotation speed might influence the
mean density of the product material. But an intent to model such
an effect from density data, calculated from the mass and volume

flows in Table S1, failed to show an explanatory significance. Even-
tually, the potentially critical plof -value of the volume flow model
might indicate, that the mass flow curve is more trustworthy,
while more data is needed to validate the trend of the volume flow
curve. After all, a confident interpretation is subject to further
research.

Regarding throughput steadiness, a negative linear effect of
increasing the shaft rotation speed from 60% to 100% was observed
for the volume flow (29% of the intercept-value) and the mass flow
(26% of the intercept-value). In general, the two curves are very
similar, qualitatively, and regarding the absolute values, despite
the slightly different update intervals of the sensors, which lead
to different smoothing of the curves. The observations are reason-
able, as – irrespective of the effect of density fluctuations – volume
and mass flow should be linked to each other.

Regarding the specific energy demand, a quadratic influence of
the shaft rotation speed was observed, which is close to symmetric,
relating to the average speed of 80%, reaching its minimum at that
point. A possible partial explanation is the attribution of the idle
energy demand (as explained above), considering the mass flow
curve’s shape. Also, faster rotation leads to an increase in the idle
energy consumption caused, for example, by tribological effects.

3.3.3. Cutting tool geometry
Considering the mean effects, as shown in Fig. 3, the F-type and

XXF-type cutting tools show very similar values, for all investi-
gated responses, except for the mean volume flow, indicating very
similar behavior, with differences in the density of the produced
material. This interpretation seems feasible, as the XXF cutting-
tool was designed to produce a finer product than the F-type tool
and is emphasized by the particle size data, shown in Fig. S3 in
the supplementary material. Nonetheless, Fig. 4 shows additional
differences between the two regarding throughput steadiness for
minimum and maximum gap widths. While it is hardly affected
by the F-type cutting tool’s gap width, it decreases as gap width
increases or decreases from the average. As a result, a (not neces-
sarily significantly) more stable throughput was observed for the
F-type compared to the XXF-type at the extremes of the gap width.

On the other hand, the V-type tool shows a significantly differ-
ent behavior compared to the other two. So a change from the F or
XXF tool to the V tool has the most substantial observed effect of
all factors, independent of the investigated response (except for
the shaft rotation speed’s influence on the mean mass flow).

While the strength of the effect is affected by the gap width,
according to Fig. 4, for the volume flow (increasing strength with
increasing gap width) and the throughput steadiness (minimum
strength at 50% gap width), the trends are consistent. The V-type
shredder has a significantly lower throughput in terms of volume
flow (68% of the intercept-value at 50% gap width) and mass flow
(83% of the intercept-value). The two values indicate an increase in
material density, which is consistent with the optical evaluation of
the product, the data in Fig. S3, and the potential effect of the comb
system and may partially explain the significantly higher energy
demand of the V-shredder (in addition to the lower mass flow).

Moreover, the V-type teeth are higher than those of the other
geometries, and the minimum axial gap between the counter comb
teeth is smaller. Consequently, higher forces and resulting torques
are needed to break particles, according to Feyerer (2020), which
increases the required comminution energy and may contribute
to lower throughputs due to slowing down of the shaft to raise
these higher forces. The findings on the specific energy demand
confirm those of Savage et al. (1981), who reported increasing
energy demands with decreasing product sizes.

Contrary to the non-favorable observations concerning
throughput and energy demand, the V-type has a significantly

Fig. 4. Interaction plots for the influence of the factors gap width and cutting tool
geometry on the mean volume flow and the volume-related and mass-related
throughput at different settings of the other factor.
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higher throughput steadiness than the F and XXF cutting tool. The
differences are of a similar order of magnitude, as those reported
by Feil and Pretz (2018) between single-shaft and double-shaft
shredders. Consequently, the transfer of their observations on dif-
ferent types of shredders than they used needs experimental
validation.

The V-type’s significant differences can be explained by its
unique properties compared to the other two. These are particu-
larly the different shape of its teeth, the larger cutting circle, and
the comb system. Most of all, the comb system is expected to con-
tribute to the desirable higher throughput steadiness and the finer
material quality, but at the cost of decreasing the mean
throughput.

3.3.4. Summary
The derived models provide valuable insights into the influ-

ences of shredders’ parametrization, which can be directly trans-
ferred to industry-scale plants. Based on the cited literature, also
assumptions on the physical explanation of the observed effects
were discussed. For a more detailed understanding of the effects
and for designing new cutting tools, the development of numerical
physical models that incorporate solid wastes’ specific characteris-
tics is a worthwhile target for future research.

The observations show a high similarity between the F-type and
XXF-type cutting tools concerning throughput behavior and energy
demand. The observations for the V-type tool, on the other hand,
were quite different, with stronger effects than the radial gap
width and the shaft rotation speed for almost all responses. The
V-type has a more stable but lower throughput, produces finer
material, and has a higher specific energy demand.

A larger gap width is favorable in terms of mean throughput
and specific energy demand. Regarding throughput steadiness, a
medium gap width seems to be best for the XXF tool and worst
for the V tool, with hardly any effect on the F tool.

For shaft rotation speed, a turning point was observed regarding
mean mass flow, showing the best value at 84%, close to the best
value for the specific energy demand at about 80%. Regarding
throughput steadiness, lower gap widths are better.

4. Conclusions

Significant models were found concerning the investigated
parameters’ influence on all regarded responses, with empirical
significances < 0.0001. The high plof (>0.3) additionally confirm
the suitability of the used models for describing the trends of the
curves, except for the model for the volume flow (plof -value of
0.0507).

Consequently, it is shown that DoE-based experimentation and
analysis is suitable for drawing reliable conclusions from industry-
scale mechanical processing experiments with real MSW, despite
the wastes’ variability. The example case of commercial waste
shredding, which was used to demonstrate the method, proves
that this is even true for very sophisticated cases, where the waste
from one run cannot be re-used in another.

Concerning the shredding of commercial waste, it was shown
that the choice of the cutting tool geometry plays an important role
when designing mechanical treatment plants for mixed commer-
cial waste. Its influence can hardly be compensated by changing
the gap width and shaft rotation speed.

In practice, many additional influences must be considered to
find the optimal parametrization of the shredder. For example,
the economic optimum depends on processing fees, product and
energy prices, the legally approved plant capacity, the capacity of
subsequent machines, and the quantitative impact of throughput
fluctuations on the overall process’s performance.

Ultimately, what was only marginally discussed in this study is
the effect of the factors on the produced material’s quality in terms
of grain size. However, it is highly relevant for the performance of
downstream machinery, product quality, and the technical and
economic evaluation of, particularly, the high differences regarding
mean throughput and energy demand of the V cutting tool, com-
pared to the others. The data for this evaluation were collected
during the described experiment, and first insights were provided
in the appendix. But a detailed analysis requires extending the
method that was successfully demonstrated in this work to
responses that are compositional vectors and is subject to future
research.
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Abstract: Particle size distributions (PSDs) belong to the most critical properties of particulate
materials. They influence process behavior and product qualities. Standard methods for describing
them are either too detailed for straightforward interpretation (i.e., lists of individual particles), hide
too much information (summary values), or are distribution-dependent, limiting their applicability
to distributions produced by a small number of processes. In this work the distribution-independent
approach of modeling isometric log-ratio-transformed shares of an arbitrary number of discrete
particle size classes is presented. It allows using standard empirical modeling techniques, and the
mathematically proper calculation of confidence and prediction regions. The method is demonstrated
on coarse-shredding of mixed commercial waste from Styria in Austria, resulting in a significant
model for the influence of shredding parameters on produced particle sizes (with classes: >80 mm,
30–80 mm, 0–30 mm). It identifies the cutting tool geometry as significant, with a p-value < 10−5,
while evaluating the gap width and shaft rotation speed as non-significant. In conclusion, the results
question typically chosen operation parameters in practice, and the applied method has proven to be
valuable addition to the mathematical toolbox of process engineers.

Keywords: particle size distribution; compositional data analysis; simplex; isometric log-ratios; multi-
variate multiple linear regression; mechanical processing; waste treatment; commercial waste; shredder

1. Introduction

The size distribution belongs to the most critical properties of solid particulate materi-
als, and particularly mixed solid waste, for example: The quality classes of solid recovered
fuels (SRF) demand specific maximum particle sizes [1]. The particle size distribution (PSD)
of the organic fraction of municipal waste impacts its anaerobic digestion [2]. The particle
sizes of municipal solid waste influence the yields of dry gas, char, and tar in fixed bed
reactor pyrolysis [3]. And the PSD influences the mass throughput of robotic sorters, which
are limited by picks per hour [4]; hence, smaller particle sizes (and the corresponding
smaller weights) decrease the possible mass throughput.

Concerning mixed commercial waste, besides the PSD’s relevance as a technical quality
criterion for processing products (e.g., SRF [5]), and its influence on the performance of
reactors and processing machines (e.g., wind sifters [6]), different types of materials also
concentrate in different particle size ranges (e.g., sorting analysis by Khodier et al. [7]
and the size distribution of different plastic types according to Möllnitz et al. [8]). Hence,
beyond influencing the shares of a plant’s throughput that pass specific machines (due to
material flow separation by screens), the PSD also determines the kinds of materials that
pass through these machines.

Therefore, beneficial PSDs increase the effectiveness, as well as economic and ecologic
efficiency of mixed solid waste treatment. Consequently, the PSD of mixed solid waste is

Processes 2021, 9, 414. https://doi.org/10.3390/pr9030414 https://www.mdpi.com/journal/processes
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deliberately influenced during mechanical processing, which is usually the first treatment stage
for this kind of material, mainly through a combination of shredding and sieving [1–3,7,9–13].

1.1. Describing Particle Size Distributions

Strictly speaking, the PSD of a collective is described as a list of the individual particles’
sizes. But the representation as such a list is not suitable for analyzing and comparing
PSDs. Consequently, various more useful methods for describing PSDs exist, which were
summarized by Polke et al. [14]: Collectives of particles are often described through average
equivalent diameters. An example is the Sauter diameter dS, which gives information
on the specific surface of the collective (Equation (1), where Vt is the total volume of all
particles, and At is the total surface area of all particles).

dS = 6Vt/At (1)

Often, information on the width of the distribution is also essential. Consequently,
measures of this width are frequently provided. Examples are the sample standard de-
viation S (Equation (2), where di is the size of the ith particle, d is the arithmetic average
size, and N is the number of particles), or distribution-independent measures of the width,
as shown, for example, in Equation (3) (where W is the width, and db is the bth percentile
particle size).

S =

√√√√∑N
i=1

(
di − d

)2

N − 1
(2)

W =
d75 − d25

d50
(3)

Considering the described influence of the PSD on the path individual particles take
through a plant, it is essential in mechanical waste processing to have more detailed
knowledge on it than just summary values. Hence, the results of a PSD analysis are often
reported graphically: the frequency density is shown in a histogram [15], where particle
sizes are summarized into particle size classes (PSCs)—which is also the level of information
obtained from sieve analyses (Figure 1a). Another representation, which is more suitable
for comparing PSDs, is the sum distribution (Figure 1b) [14].

Figure 1. Representation of the overall particle size distribution (PSD) of a mixed commercial waste according to Refer-
ence [7]: (a) frequency density; (b) cumulative frequency density.
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These graphical representations correspond to an empirical distribution [15]. As the
sample size approaches infinity and the class width approaches zero, the histogram’s
representation becomes a continuous function: the probability density function (PDF). This
PDF can also be approximated from analyses, where only summary information on discrete
PSCs is available (e.g., sieve analyses), for example, through cubic splines [16] or Kernel
density estimation [17].

Sometimes, the PDF can be approximately described by an analytical expression. In
such cases, reporting the momentums of such an analytical distribution is sufficient to
describe the PSD. So, for example, reporting the arithmetic mean particle size d of the
sample and its standard deviation S, usually implies the underlying assumption of a
normal distribution, according to Equation (4), where q(d) is the probability density or
frequency density for particles of size d, μ is the arithmetic average of the population, which
is estimated through d, and σ is the population’s standard deviation, which is estimated
through S [18].

q(d) =
1√

2πσ2
· exp

(
− (d − μ)2

2σ2

)
(4)

Three further analytical PDFs, are reported as being relevant to the description of
PSDs [14]: The log-normal distribution describes materials, where the logarithm of the
particle size follows a normal distribution. It is a positively skewed distribution, which—in
contrast to the normal distribution—only includes positive and, therefore, meaningful
particle sizes. It is shown in Equation (5), where μ and σ are estimated by the arithmetic
average and the sample standard deviation of the logarithm of the particle sizes.

q(d) =

⎧⎨
⎩

0 if d < 0
1

d
√

2πσ2 · exp
(
− (log(d)−μ)2

2σ2

)
otherwise

(5)

The Gates-Gaudin-Schuhmann (GGS) distribution [19] is an empirical approximation
that is often suitable for describing products of coarse comminution processes. Its param-
eters are the maximum particle size dmax and the uniformity parameter mu. Its PDF is
shown in Equation (6).

q(d) =

{
0 if d< 0 or d >dmax

mu
dmax

(
d

dmax

)mu−1
otherwise

(6)

The Rosin-Rammler-Sperling-Bennet (RRSB) distribution [20] is also an empirical
approximation. Its first parameter d′ is equal to the particle size, where the cumulative
frequency density reaches the value 1 − 1/e ≈ 0.632, and its second parameter nu is a
uniformity parameter. Its PDF is shown in Equation (7). The RRSB distribution is often
used for describing products of fine comminution and dusts. Examples of the discussed
distributions are shown in Figure 2.

q(d) =

{
0 if d < 0

nu
d′
(

d
d′
)nu−1

exp
[
−
(

d
d′
)nu]

otherwise
(7)
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Figure 2. Frequency density (a) and cumulative frequency density (b) of a normal, log-normal, Gates-Gaudin-Schuhmann
(GGS), and Rosin-Rammler-Sperling-Bennet (RRSB) distribution.

1.2. Modeling Particle Size Distributions

Products’ PSDs result from their original condition and the kinds and parameters
of machines that process them. Hence, to beneficially influence PSDs through process
design and the choice and parametrization of machines, modeling and predicting them
is desirable.

The most sophisticated and advantageous models are physical models, which provide
an in-depth understanding of the phenomena that influence PSDs. Simulations based on
such models are usually implemented using the discrete element method (DEM). Examples
in literature are the works of Sinnott and Cleary [21] on the particle flows and breakage in
impact crushers, Lee et al. [22] on breakage and liberation behavior of recycled aggregates
from impact-breakage of concrete waste, and Dong et al. [23] on particle flow and separation
on vibrating screens.

While DEM-based models improve process understanding, they also require high
amounts of computational resources and detailed models and data on the processing
machines and the materials to be comminuted, which limits their applicability in practice in
many cases [24]: no published models, for example, incorporate the variability of materials,
geometries and particle interactions for real mixed solid waste.

When physical models cannot be used, empirical regression models can deliver basic
insights on machine and parameter influences on PSDs. For ensuring the reliability of the
results, it is essential to involve statistical analyses for finding and interpreting the models.
For scalar target values, the procedure has been thoroughly described by Khodier et al. [24],
based on the example of the parametrization-dependent energy demand and throughput
behavior of coarse shredders for mixed commercial waste.

PSDs are non-scalar: they are either described as PDFs, which are continuous functions,
or as compositions of PSCs and, therefore, as multivariate vectors. Analytical PDFs, as
those presented in Section 1.1., are defined by a set of momentums, which can also be
treated as multivariate vectors. Consequently, modeling PSDs requires extensions of the
methods used by Khodier et al. [24] to multivariate dependent variables.

The most widely applied variation of regression modeling is linear regression. It relates
one or more dependent variables to one or more independent variables based on a set of
linear regression coefficients. Its most general form—which is relevant to this work—is
multivariate multiple linear regression, which involves multiple independent variables
and multivariate dependent variables. Its model Equation is shown in Equation (8) [25].
The matrix Y (Equation (9)) is the P × R matrix of P observations of the R-variate vector
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of the dependent variable, with elements yp,r. ε (Equation (12)) is also a P × R matrix and
shows the corresponding model residuals εp,r. X (Equation (10)) is a P × (Q + 1) matrix of
the settings xp,q of the Q independent variables corresponding to the P observations. Its
first column (which is indexed with 0) is a column of ones, corresponding to constant terms
in linear regressions. And the matrix β (Equation (11)) contains the (Q + 1)× R regression
coefficients βq,r.

Y = X·β + ε (8)

Y =

⎡
⎢⎢⎢⎣

y1,1 y1,2 · · · y1,R
y2,1 y2,2 · · · y2,R

...
...

. . .
...

yP,1 yP,2 · · · yP,R

⎤
⎥⎥⎥⎦ (9)

X =

⎡
⎢⎢⎢⎣

x1,0 x1,1 x1,2 · · · x1,Q
x2,0 x2,1 x2,2 · · · x2,Q

...
...

...
. . .

...
xP,0 xP,1 xP,2 · · · xP,Q

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 x1,1 x1,2 · · · x1,Q
1 x2,1 x2,2 · · · x2,Q
...

...
...

. . .
...

1 xP,1 xP,2 · · · xP,Q

⎤
⎥⎥⎥⎦ (10)

β =

⎡
⎢⎢⎢⎣

β0,1 β0,2 · · · β0,R
β1,1 β1,2 · · · β1,R

...
...

. . .
...

βQ,1 βQ,2 · · · βQ,R

⎤
⎥⎥⎥⎦ (11)

ε =

⎡
⎢⎢⎢⎣

ε1,1 ε1,2 · · · ε1,R
ε2,1 ε2,2 · · · ε2,R

...
...

. . .
...

εP,1 εP,2 · · · εP,R

⎤
⎥⎥⎥⎦ (12)

The resulting model is obtained by minimizing the sum of squares of the residuals
εp,r. It is shown in Equation (13), where Ŷ is the matrix of the P × R model predictions ŷp,r

for the dependent variable, corresponding to the observations in Y, and β̂ is the matrix of
the (Q + 1)× R least-squares estimates β̂q,r of the regression coefficients in β.

Ŷ = X·β̂ (13)

For linear regression models, it is necessary to describe the dependent variable as a
vector of a fixed length. In the case of analytical PDFs, this is the vector of the momentums.
So, the immediate result of a model for these momentums is the vector of their expected
values, and the corresponding confidence bands. From there, the PDF and its confidence
region can be calculated.

Theoretically, β̂ can also be calculated from Q univariate linear regressions. The
resulting values β̂q,r are identical. But multivariate methods, involving multivariate linear
regression and multivariate analysis of variance (MANOVA, e.g., Reference [26]), are
preferable: they allow a more accurate calculation of confidence regions, considering
correlations between the momentums. Moreover, the evaluation of parameter’s significance
should be based on multivariate considerations to find coherent models for the resulting—
interdependent—distribution of the particle sizes.

Analytical PDFs are practical, as they allow a detailed description of PSDs with a
small number of variables—the momentums. However, only few processes produce PSDs
that follow analytical functions, according to Polke et al. [14]. Consequently, methods for
distribution-independent modeling of PSDs are also needed, which is especially true for the
mechanical processing of mixed solid waste, considering the variety of processing machines
used there: e.g., shredders, screens, magnetic separators, and sensor-based sorters [10].
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Empirical distributions allow the distribution-independent description of PSDs: par-
ticle sizes are amalgamated to D discrete PSCs. As a result, the PSD is described as a
composition—a D-dimensional vector of the shares of those PSCs.

Mathematically, the compositional nature of the vector of PSCs has wide-reaching
consequences: D-dimensional compositions are constrained to a vector space called the D-
dimensional simplex S(D), which is a sub-space of the D-dimensional real space R(D) [27].
Compositions, being simplicial vectors, have specific common properties: Their D parts
are not linearly independent. This results from a summation constraint: their parts sum up
to a fixed constant, e.g., 1 or 100%. Furthermore, parts may only have positive values or
zero. So, more precisely, S(D) is a sub-space of R+(D)

0 . The most well-known representation
of a simplex is the ternary diagram (see, e.g., Reference [28]), which shows the three-
dimensional simplex.

When modeling simplicial vectors, the constraints of the simplex and the interdepen-
dence of the compositional parts must be considered. While Khodier et al. [29] report the
empirical observation that the constraints are automatically fulfilled for the prediction
values Ŷ, if all observations in Y are valid compositions, this does not apply to correspond-
ing confidence regions. Hence, different methods were developed in the past decades to
handle and model simplicial data.

The most widely applied approach for handling compositions is transforming data
using log-ratios, as suggested by Aitchison [30]. There are many kinds of such log-ratios,
but the state of the art approach in the compositional data community is the application of
so-called isometric log-ratios (ilr) (as proposed by Egozcue [31]), according to Reference [32].
These are bijective projections of the D-dimensional Simplex onto a (D − 1)-dimensional
real-space with an orthonormal basis [27]. The resulting ilr-coordinates are unconstrained,
linearly independent coordinates. Hence, standard statistics can be applied in the projected
log-ratio space, as demonstrated, for example, by Edjabou et al. [33] for waste composition
analysis. Consequently, the use of ilr-transformations allows the application of standard
multivariate multiple linear regression to predict PSDs, described as empirical distributions.

In this work, the approach of modeling influences on empirical PSDs using mul-
tivariate multiple linear regression and ilrs is applied on particle size data, using the
programming language R. The data was obtained within Khodier et al.’s [24] industry-scale
coarse-shredding experiments with real mixed commercial waste. Based on this example,
this work aims at presenting the method to the process engineering and waste processing
communities, enabling the distribution-independent empirical modeling of particle size
distributions, while preserving all relevant information. Moreover, the method’s suitability
for PSD modeling and its limitations and potential pitfalls in the interpretation of the
results are discussed. And, finally, insights on the influences of coarse shredders’ param-
eters on the PSDs of mixed commercial waste are presented, complementing findings of
Khodier et al. [24] on their effects on shredders’ throughput behavior and energy demand.

2. Materials and Methods
2.1. Experimental Design and Setup

The choice of the experimental design and the shredding experiment setup have
been explained in detail by Khodier et al. [24]. Hence, they are only summarized in the
following. The extension of the experiment with material sampling and particle size
analysis are described in detail.

2.1.1. Experimental Design

The shredding experiment examines the influence of three independent variables on
the throughput behavior and energy demand of a Terminator 5000 SD, which is a single-
shaft shredder from the Austrian company Komptech GmbH (Frohnleiten, Austria)—a
research partner in the funded project ReWaste 4.0. These independent variables are the
radial gap width w, the shaft rotation speed s, and the cutting tool geometry c. The factor
range of w was defined from 0% to 100% of the maximum gap width, with discrete levels
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at a step size of 10%. The minimum of the factor range of s was chosen at 60% and the
maximum at 100% of the maximum shaft rotation speed of 31 rpm, again width discrete
10% steps. Concerning c, three different geometries are examined, called “F”, “XXF”, and
“V” (for more details, cf. Reference [24] and Figure A1 and Table A1 in the Appendix A).

The factors are coded for the design and analysis of the experiment: for the numerical
factors s and w, their range is adjusted to −1 to 1, representing the minimum and maximum
factor settings. Concerning the nominal factor c, it is represented by two variables c1 and c2,
based on sum contrasts (cf. Reference [34]). The values of these variables that correspond
to the cutting tool geometries are shown in Table 1.

Table 1. Contrast matrix for the cutting tool geometry.

Cutting Tool Geometry c1 c2

F 1 0
XXF −1 −1

V 0 1

The experimental design settings of the independent variables were chosen based on
a statistical Design of Experiments (cf. Reference [35]). A 32 runs, completely randomized
D-optimal design (cf. Reference [36]) was chosen, with no blocking (cf. Reference [37]) and
with five replicate points and five lack-of-fit points. It is based on the reduced-cubic design
model, shown in Equation (14), where ŷ(r) is the model prediction for the rth (univariate)
response (=dependent variable),

⇀
x is a vector of the factors’ settings, and K(r)

jkmn is the model

coefficient for the rth response and the factor or interaction (=multiplication of factors)
wjskcm

1 cn
2 .

ŷ(r)
(
⇀
x
)
=

2

∑
j=0

2−j

∑
k=0

1

∑
m=0

1−m

∑
n=0

(
K(r)

jkmnwjskcm
1 cn

2

)
(14)

Equation (14) can easily be extended to multivariate responses; therefore, the design
is also valid for multivariate multiple linear regression. To extend it, ŷ(r) equals ŷp,r in
Equation (13): the rth univariate response becomes the rth dimension of the multivariate
response, and p indexes the corresponding vector of factor settings

⇀
x , which is simply a

row of X. Each factor or interaction wjskcm
1 cn

2 is represented by a column of X, and each

coefficient K(r)
jkmn corresponds to a coefficient β̂q,r.

2.1.2. Setup of the Shredding Experiment

The flowchart of the experiment is shown in Figure A2 in the Appendix A: The feed
material is waste, declared as mixed commercial waste (cf. Reference [24] for more details),
collected in Styria in Austria in October 2019. It is fed into the shredder’s feeding bunker
using a wheel loader. From the shredder’s output belt, the material is passed to a digital
material flow monitoring system (DMFMS), consisting of a belt-scale and optical sensors
(cf. Reference [11]). The material leaving the DMFMS is collected on a product heap. Each
experimental run has a total duration of one hour.

2.1.3. Sampling

For analyzing the PSD of the shredded waste, samples must be taken. The design of
the sampling process in this experiment is based on Pierre Gy’s Theory of Sampling (TOS),
as described in the Danish standard DS 3077 [38] and the work of Khodier et al. [7] on its
application on coarsely shredded mixed commercial waste.

According to TOS, the fundamental sampling principle must be considered: each
particle must have the same probability of ending up in the sample. The most beneficial
sampling situation is a one-dimensional sampling [39], e.g., taking the samples from
a falling stream. Furthermore, a sample should spatially cover the whole lot, which is
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achieved by composite sampling: the sample is a composite of so-called increments (the
sampled material from one individual sampling step).

In this work, the sample for each experimental run consisted of 40 such increments.
They were taken from a falling stream, swiveling the output conveyor belt of the DMFMS
back and forth over a sampling box, elevated by a forklift (see Figure 3), every 3 min-
utes, taking two increments. The inner dimensions of the box were 115 × 915 × 565
(length × width × height in mm). For ensuring that all desired material ends up in the
box, the height of the back-side wall of the box was increased by placing 1.5 m-long wood
boards inside. The box was changed after every ten increments. Based on the share of the
samples in the total processed mass, each increment covered approximately 0.61 seconds
of throughput. For intermediate storage, the samples were finally transferred to 1 m3

big bags.

 

Figure 3. Sampling setup.

2.1.4. Particle Size Analysis

The PSDs of the samples were analyzed using a Komptech (Frohnleiten, AT) Nemus
2700 drum screen and five screening drums that have square holes with side lengths of 80,
60, 40, 20, and 10 mm. The geometries of the drums are shown in Figure A3 and Table A2
in the Appendix A.

First, one big bag of a sample was evenly distributed in the feeding bunker of the
screen, which has a length of 4033 mm in the direction of the material flow, and a width of
1035 mm. Then, the drum was started with a rotation speed of 11.5 rpm, and the conveyor
belt of the feeding bunker was operated at 0.026 m/s. The drum screen was only stopped
after all material had passed. The produced fine fraction was then screened with the
subsequent finer drum. The scale used for measuring the masses of the fraction has an
uncertainty of 10 g.

2.2. Analysis of the Results

The analyses of the results, which are explained in this section, were performed in R
version 4.0.2, based on the work of van den Boogaart and Tolosana-Delgado [40]. The imple-
mentation is attached as an HTML export of a jupyter notebook (see Supplementary Material).

For the analyses in this work, the six particle size fractions from the particle size
analysis are aggregated to three PSCs for easier visualization. To ensure the relevance of
the findings for mechanical waste processing, the PSCs were chosen, based on the particle
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size limits of SRF premium quality (30 mm) and SRF medium quality (80 mm) [1]. Since
none of the used screen drums had a mesh width of 30 mm, equal shares of the screening
fraction 20–40 mm are assigned to the particle size fractions 0–30 mm and 30–80 mm, which
corresponds to linear interpolation.

2.2.1. Isometric Log-Ratios

The ilr transformation (denoted as a function ilr()) is an isometry of the vector spaces

SD and RD−1 [27], which means that the distance between two compositions
→
y
(1)

and
→
y
(2)

is preserved in the transformation. For interpretation, it is essential to understand
that the distance referred to is not the Euclidian distance ΔE (Equation (15), where yi is
the ith element of a R-dimensional composition

→
y ), but rather the Aitchison distance ΔA

(Equation (16), where ilri() is the function for the ith ilr dimension) (cf. Reference [27]).
Consequently, the preserved distance is of a relative, multiplicative nature and not an
absolute, additive nature. Hence, the least-squares minimization of the model residuals in
ε, when calculating the coefficients’ estimates β̂, is also based on the Aitchison distance
when applying the ilr transformation. Considering this is particularly important when the
order of magnitude of the parts’ shares differs significantly since small absolute differences
become very significant on a relative scale for very small shares (cf. Reference [41]).

ΔE

(
→
y
(1)

,
→
y
(2)
)
=

√√√√ R

∑
i=1

(
y(1)i − y(2)i

)2
(15)

ΔA

(
→
y
(1)

,
→
y
(2)
)
=

√√√√√ 1
2R

R

∑
i=1

R

∑
j=1

⎡
⎣ln

⎛
⎝y(1)i

y(1)j

⎞
⎠− ln

⎛
⎝y(2)i

y(2)j

⎞
⎠
⎤
⎦

2

=

√√√√R−1

∑
i=1

[
ilri

(
→
y
(1)
)
− ilri

(
→
y
(2)
)]2

(16)

Furthermore, the ilr transformation is not defined if any part has a value of zero. While
there are different approaches to handling such values, they complicate the application of
the transformation [27].

In the following, ilr-transformed coordinates are marked with “∗” so that Y∗ = ilr(Y).
The back-transformation function is denoted “ilr−1()”. For calculating ilr coordinates, the
compositional parts are sequentially grouped: first, each component is assigned to a group
+1, or −1. For subsequent ilr coordinates, the elements of one group are again assigned
to new groups +1 or −1, and the parts of the other group are assigned to group 0. Each
ilr coordinate is then calculated according to Equation (17), where ai,r is the scaling factor
for the rth compositional part and the ith ilr coordinate. The calculation of ai,r is shown in
Equation (18), where t is the number of parts in group +1, and v is the number of parts in
group −1 [31].

ilri

(→
y
)
=

R

∑
r=1

[ai,r ln(yr)] (17)

ai,r =

⎧⎪⎪⎨
⎪⎪⎩
+ 1

t

√
tv

t+v for parts of group + 1

− 1
v

√
tv

t+v for parts of group − 1

0 for parts of group 0

(18)

Greenacre [42] documents concerns regarding the interpretation of ilr-transformed
data since it incorporates the geometric means of compositional parts. Consequently, in
this work, results are interpreted based on graphical representations of back-transformed
data. Hence, the exact choice of groups is arbitrary, and the standard grouping of the
“ilr()” function of the “compositions” package version 2.0-1 in R [43] is used. In this work,
r = 1 stands for the fraction > 80 mm, r = 2 for the fraction 30–80 mm, and r = 3 for the
fraction 0–30 mm (see Supplementary Material). Resulting from the standard grouping,
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the ilr-transformed representation
→
y
∗

of a particle size composition
→
y (corresponding to a

row of Y) is calculated according to Equation (19).

→
y
∗
= ilr

(→
y
)
=

⎛
⎜⎜⎜⎜⎝

ln

[(
y2

y1

)√
0.5
]

ln

[
y3

√
2/3

(y1y2)
√

1/6

]
⎞
⎟⎟⎟⎟⎠ (19)

2.2.2. Model Reduction: MANOVA

To obtain a final, reliable model, the factors and interactions in Equation (14) must
be checked on their significance, eliminating non-significant ones, but retaining model
hierarchy (cf. Reference [24]). For univariate dependent variables, this is done through F-
tests in an analysis of variance (ANOVA) (cf. Reference [35]). The multivariate character of
the compositional dependent variable in this work requires a multivariate extension of the
ANOVA: the MANOVA. Different from the ANOVA, there is more than one definition of
the F-statistic in the MANOVA. The most commonly used definitions are the Pillai-Barlett
trace, Wilk’s lambda, the Hotelling-Lawley trace, and Roy’s largest eigenvalue statistic,
according to Hand and Taylor [26]. These are also the ones implemented in the “regr”
package, version 1.1 [44], used for the MANOVA in this work.

For the analyses at hand, the Pillai-Barlett trace was chosen, based on the recommen-
dation of Olson [45] as cited in Reference [26]. Model reduction is performed applying
backward selection: the least significant term, which can be removed without violating
model hierarchy, is eliminated, as long as removable non-significant factors or interactions
are present (cf. Reference [40]). Analogous to Reference [24], 0.1 is chosen as the threshold
so that factors and interactions with an empirical significance (p-value) higher than that
threshold are discarded. The relevant p-values are calculated using the “drop1()” function
from the “regr” package (version 1.1).

For evaluating the final model, three performance values are calculated: The coefficient
of determination R2 calculates how much of the variance of the data is explained by the
model. The adjusted coefficient of determination R2

adj is a measure similar to R2. But it is
adjusted by the terms in the model and thereby evaluates the model’s efficiency [35]. Both
are calculated using the “R2()” function in R.

The prediction coefficient of determination R2
pred determines the share of variance,

which is explained by models fitted without considering the very point which is evaluated.
High differences between R2

pred and R2
adj indicate overfitting. R2

pred is calculated according
to Equation (20), where PRESS is the prediction residual sum of squares and SStot is the
total sum of squares [46]. PRESS is calculated, using the “PRESS()” function from the
“MPV” package version 1.56 [47]. And SStot is calculated, according to Equation (21). y∗p,r

is the pth observation of the rth of (R − 1) coordinates of the ilr-transformed dependent
variable. And y∗r is the arithmetic mean of the observations of the rth ilr coordinate (see
Equation (22)).

R2
pred = 1 − PRESS

SStot
(20)

SStot =
P

∑
p=1

R−1

∑
r=1

(
y∗p,r − y∗r

)2
(21)

y∗r =
1
P

P

∑
p=1

y∗p,r (22)

2.2.3. Analysis of the Residuals

The tests in the MANOVA require multivariate normality of the (ilr-transformed)
residuals ε∗. Hence, to validate the final model, the distribution of the residuals must be
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examined. Each coordinate of variables, which follow a multivariate normal distribution,
also follows a univariate normal distribution [48]. Hence, a quantile-quantile plot for each
coordinate is examined as a first visual step. Since the individual coordinates’ univariate
normality is a necessary, but not sufficient condition for multivariate normality, multivariate
tests are also applied, particularly Mardia’s Skewness and Mardia’s Kurtosis [49]. Both
tests are part of the “mvn()” function in “MVN” package version 5.8 [50], which also tests
the univariate normality of the individual coordinates using the Shapiro-Wilk test.

2.2.4. Confidence and Prediction

The resulting model Equation shows the most likely prediction value. Two regions
express the uncertainty of this prediction: the confidence region and the prediction region
(cf. Reference [40]). The confidence region covers the uncertainty of the model parameter
estimation. The region reflects likely average PSC distributions (on an ilr scale) for specific
parameter settings, for extended operation times, on a chosen confidence level. The pre-
diction region adds the residual variability around the expected value. Hence, it shows
likely PSC distributions for one hour of operation (since this is the experimental duration
the data is based on).

Due to the required multivariate character of the ilr-transformed residuals, the result-
ing confidence and prediction regions are equipotential-ellipses (resulting from the PDF
of the multivariate normal distribution) on an ilr-scale. Van den Boogaart and Tolosana
Delgado [40] provide R-code for calculating these regions and visualizing their back-
transformed representation in ternary diagrams. This code is used in this work (see
Supplementary Materials).

3. Results and Discussion
3.1. Data and Model

The experimental design and the resulting shares of the PSCs are shown in the Sup-
plementary Materials. Their order corresponds to the order in which the experimental runs
were performed. Originally, a completely randomized order was planned. As reported
by Khodier et al. [24], due to an unintentional change of the motor rotation speed of the V
cutting tool during the experiments, three runs had to be repeated. Since the tight timescale
did not allow re-randomizing all remaining runs, considering the time consumed when
switching shredders, the randomness is slightly impaired.

A significant model was found based on the experimental data. It is visualized in

Figure 4 and shown in Equation (23), where
→̂
y is a vector showing the model predictions

of the mass shares of the three PSCs. Its first element corresponds to the coarse fraction
(>80 mm), its second element to the medium fraction (30–80 mm), and the third element
shows the fine fraction (0–30 mm). As shown in the Equation, the only significant factor (at
a threshold of p = 0.1) is the cutting tool geometry c.

→̂
y = ilr−1

[(
0.137
0.047

)
−
(

0.307
0.178

)
c1 +

(
0.344
0.145

)
c2

]
=

⎧⎪⎨
⎪⎩

(
0.39 0.31 0.30

)T for c = “F”(
0.30 0.35 0.35

)T for c = “XXF”(
0.21 0.42 0.37

)T for c = “V”

(23)

The analysis of the ilr-residuals proves a multivariate normal distribution, with p-
values of 0.67 and 0.89 for the Shapiro-Wilk test on univariate normality of each coordinate
and p-values of 0.89 and 0.71 for Mardia’s Skewness and Mardia’s Kurtosis, respectively.

R2 for the model is 0.57 and R2
adj is 0.54. These values are noticeably lower than those

of the models for the throughput behavior and energy demand (see Reference [24]), which
range from 0.73 to 0.87 for R2 and from 0.67 to 0.81 for R2

adj.
The lower coefficients of determination are reasonable since material fluctuations are

likely to influence the material quality more than the process behavior, and sampling adds
random noise (cf. Reference [7]). Considering the high expectable noise in processing
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experiments with real waste, and especially in shredding experiments (cf. Reference [24]),
the model performance is satisfactory.

 
Figure 4. Prediction values and confidence and prediction regions for the particle size class distributions resulting from
different cutting tool geometries.

3.2. Discussion of the Method

The data from the particle size analyses were amalgamated to three discrete PSCs
and then freed from the restrictions of the simplex by applying an ilr-transformation. The
resulting model, the multivariate normal distribution of its residuals, and the consequent
successful calculation of confidence and prediction regions prove the potential of this
approach in terms of distribution-independent, mathematically correct empirical modeling
of particle size distributions.

It is another potential application of ilr-transformations in the context of waste man-
agement, besides the application on waste compositions, in terms of sorting fractions
(cf. Reference [33]). The method is a notable extension to the toolbox of chemical and
process engineers in general, besides familiar approaches, like equivalent diameters or
certain analytical distributions (see Section 1.1).

The discussed restriction of the method concerning zero-values is not an issue for
the present data. When data include zeros, the potential impact of zero-handling tech-
niques must be considered. These include amalgamations of compositional parts or zero-
replacement (cf. Reference [42]).

Furthermore, the impact of the relative scale of ilr-transformed data must be kept in
mind. Concerning the aim of the present work, it cannot be ignored, since the absolute
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values of the PCSs’ shares result in absolute waste masses, which are of interest. But the
effect of the relative scale is low when the shares of all parts are of similar orders of
magnitude, as is the case in this work (see Equation (23)). For other cases, calculations of
weighted variances (cf. Reference [42]), for example, can be used to counteract the impact
of the relative scale, if necessary. The relative scale can also be beneficial in other cases (as
explained by Pawlowsky-Glahn et al. [27]), for example, where the share of trace elements
in a chemical composition has a high impact.

The discussed issue of interpreting ilrs, is solved by graphical representation in this
work. While this is a straightforward approach for three or fewer fractions, the question of
how to represent more fractions arises. Graphic solutions include sets of ternary diagrams
of two specific fractions and amalgamations of the others (cf. Reference [40]) and area
plots (for the expected values, but not for confidence and prediction regions). Some other
approaches include: The application of easier interpretable log-ratios (e.g., additive log-
ratios or log-ratios incorporating amalgamations, cf. Reference [42]) at the cost of the exact
representation of the variance structure in the data, or modeling non-transformed data,
while incorporating potential issues with the restrictions of the simplex, particularly for
calculating confidence and prediction regions.

Finally, the results in Figure 4 confirm the decision of Khodier et al. [24] to perform a
Design of Experiments-based investigation, with multiple runs: the 95% prediction regions
overlap even for the F and V unit. Hence, conclusions that contradict the findings in this
work could be drawn when comparing only single runs of one hour.

3.3. Discussion of the Modeling Results

For the gap width and shaft rotation speed, no significant impacts on the produced
PSDs were identified. In conclusion, either no such effects exist, or they are too small,
compared to the residual variance in the data, to be detected based on the data at hand
(resulting in so-called type II or β error). According to Biemann [51], no matter how small,
any effect becomes significant if the amount of data is big enough. Hence, the order of
magnitude of potential, non-identified effects is of interest. For the chosen limit p-value of
0.1 in the MANOVA, linear effects are preserved in the model if the 90% confidence regions
of their extreme settings (which get smaller with more data) do not overlap. And potential
effects are likely not to exceed the maximum distance of the borders of these regions.

Consequently, the confidence regions for the minimum and maximum settings of
w and s at factor setting 0 for the other variables were plotted (see Figure 5), based on a
linear model (see Equation (24)), to give a visual impression of potential type II errors. The
residuals of these models also follow a multivariate normal distribution. Figure 5 shows,
that w influences the allocation to PSCs of 0 to about 13% of the product material, and s
influences 0 to about 9%, for average settings of the other factors.

→̂
y = ilr−1

[(
K(1)

0000

K(2)
0000

)
+

(
K(1)

1000

K(2)
1000

)
w +

(
K(1)

0100

K(2)
0100

)
s +

(
K(1)

0010

K(2)
0010

)
c1 +

(
K(1)

0001

K(2)
0001

)
c2

]
(24)

Differences in the PSD, caused by the shaft rotation speed, would most likely be based
on differences in the breakage of brittle materials in the waste, caused by the impact speed
of the shaft’s teeth. Since the used machines are slow running shredders, the non-existence
of such effects appears feasible. Furthermore, since potential impacts of this kind are
most likely relatively small, the low share of brittle materials in mixed commercial waste
(cf. Reference [7]) complicates their identification.

Concerning the gap width, considering the geometry of the cutting tools, a slight
increase of the coarse fraction (>80 mm) would be reasonable due to falling through of
uncomminuted particles between the teeth of the counter comb. But the non-significance
of potential effects makes sense, considering that the breakage situation, according to
Feyerer [52], does not change with the gap width for the F and XXF geometry and only
slightly for the V geometry.
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The influence of the cutting tool geometry is highly significant, with a factor p-value
<10−5. As Figure 4 shows, it is largest, comparing the PSDs produced by the F and the V
geometry. But the F and XXF geometries also differ significantly on a 95% confidence level.
The results confirm expectations, considering the geometries (cf. Figure A1 and Table A1
in the Appendix A): The smaller axial gap between the counter comb teeth of the XXF
geometry leads to a finer product, compared to the F unit. To be more precise, the share of
the coarse fraction decreases in favor of the two other fractions.

Concerning the V geometry, the gap between the counter comb teeth is smaller than
the gap of the F geometry. It is larger than the XXF geometry’s gap close to the shaft but gets
much smaller with increasing distance. This smaller gap, combined with a comb system
(cf. Reference [24]), leads to the finest product among the examined geometries—again,
mainly in terms of an even lower share of coarse material compared to the XXF geometry.

Relating the results to the findings of Khodier et al. [24], the choice of a cutting
tool geometry depends on the requirements of the process: The V tool produces the
finest material of the three but at the cost of higher energy demand and smaller but
steadier throughput.

Concerning the gap width and the shaft rotation speed, the standard operation with
minimum gap widths and maximum shaft rotation speeds must be questioned: increasing
the gap width is beneficial for the throughput and energy demand and hardly affects
the throughput steadiness, according to Reference [24]. The shares of the PSCs chosen in
this work (typical for SRF production) are not or only a little affected, with a maximum-
likelihood influence on only about 3% of the material.

For the shaft rotation speed, the maximum likelihood influence of this non-
significant factor on the PSD only concerns about 2% of the material, while the mass
flow and energy demand show an optimum at about 84% and 80% of the maximum
shaft rotation speed, respectively.

 
(a) (b) 

Figure 5. Ninety percent confidence regions for the minimum (−1) and maximum (+1) settings of w (a) and s (b), at factor
setting 0 for the corresponding other factors of w, s, c1 and c2, based on the linear model from Equation (24).

4. Conclusions

Multivariate multiple linear regression modeling was applied in this work on ilr-
transformed PSC data from a Design of Experiments-based 32 runs coarse-shredding
experiment with mixed commercial waste. A significant model, with an R2 of 0.57 was
found, identifying the cutting tool geometry as a highly significant influence on the PSD.

The gap width and shaft rotation speed were found not to be significant, with
maximum-likelihood influences on 3% and 2% on the material, respectively. If the discussed
potential type II errors are rated as economically relevant or other particle size classes are
of interest, further data should be generated and analyzed. Otherwise, the PSD can be
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treated as invariant to these factors when optimizing the throughput and energy demand.
Consequently, based on the new insights from this work, a much more efficient operation
of mechanical waste processing plants can be reached. The influence of the cutting tool, on
the contrary, is highly significant. Its choice depends on process requirements.

What was not investigated are selective influences on specific material fractions,
e.g., metals or wood. The investigation of the PSDs of such fractions may give more
detailed insights and lead to different conclusions on process parametrization. It is
subject to further research, which can make use of the presented modeling methods.

Using the presented method requires an in-depth understanding of the implications of
applying the ilr transformation. It is essential to avoid wrong interpretations, caused by the
introduced relative scale or by zero-replacement practices, where necessary. Nonetheless,
establishing such understanding is rewarding: in conclusion, the method has proven to
be suitable for the distribution-independent modeling of PSDs. Hence, it is a valuable
addition to the toolkit of engineers, dealing with particulate materials.

Supplementary Materials: The following is available online at https://www.mdpi.com/2227-9717/
9/3/414/s1, Supplementary Material: an HTML print of the jupyter notebook which contains the
used code.
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Abbreviations

ai,r scaling factor for the rth compositional part and the ith ilr coordinate
ANOVA analysis of variance
At total surface area of all particles
c cutting tool geometry
c1, c2 coded representation of the cutting tool geometry
d particle size
d arithmetic average particle size
d′ characteristic particle size of the RRSB distribution
db bth percentile particle size
di size of the ith particle
dmax maximum particle size
dS Sauter diameter
D number of particle size classes
DEM discrete element method
DMFMS digital material flow monitoring system
GGS Gates-Gaudin-Schuhmann
ilr isometric log-ratios
ilri ith ilr dimension
j factor exponent
k factor exponent
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K(r)
jkmn model constant for the factor or interaction wjskcm

1 cn
2 and the response r

m factor exponent
mu uniformity parameter of the GGS distribution
MANOVA multivariate analysis of variance
n factor exponent
nu uniformity parameter of the RRSB distribution
N number of particles
p empirical significance
P number of observations
PDF probability density function
PRESS prediction residual sum of squares
PSC particle size class
PSD particle size distribution
q(d) frequency density for particles of size d
Q number of independent variables
R number of dimensions of the dependent variable
R2 coefficient of determination
R2

adj adjusted coefficient of determination
R2

pred prediction coefficient of determination

R(D) D-dimensional real space

R+(D)
0 D-dimensional positive real space, including 0

RRSB Rosin-Rammler-Sperling-Bennet
s shaft rotation speed
S sample standard deviation
S(D) D-dimensional simplex
SRF solid recovered fuel
SStot total sum of squares
t number of parts in group +1
TOS Theory of Sampling
v number of parts in group −1
Vt total volume of all particles
w radial gap width
W width of a distribution
xp,q pth setting of the qth independent variable
X matrix of settings of the independent variables
→
y compositional vector
→
y
∗

ilr-transformed compositional vector
→̂
y model prediction of the shares of the particle size classes
yi ith element of

→
y

yp,r pth observation of the rth dimension of the dependent variable
y∗p,r pth observation of the rth dimension of the ilr-transformed dependent variable
ŷp,r model prediction for yp,r

ŷ(r) model prediction of the response r
y∗r arithmetic mean of the rth ilr coordinate
Y matrix of the dependent variable
Y∗ matrix of the ilr-transformed dependent variable
Ŷ matrix of model predictions of the dependent variable
β matrix of the regression coefficients
β̂ matrix of least squares estimates of the regression coefficients
βq,r qth regression coefficient for the rth dimension of the dependent variable
β̂q,r least squares estimate of βq,r
ΔA Aitchison distance
ΔE Euclidian distance
ε matrix of the model residuals
ε∗ matrix of the ilr-transformed residuals
εp,r model residual corresponding to yp,r
μ arithmetic average of a population
σ standard deviation of a population



Processes 2021, 9, 414 17 of 20

Appendix A

 

Figure A1. Cutting tool geometries [24].

Table A1. Technical data of the cutting tool geometries [24].

Type F XXF V

number of cutting teeth (shaft) [pcs.] 32 22 32
position of cutting teeth (shaft) [-] double helix chevron chevron
width of cutting teeth (shaft) [mm] 70 70 42/85 *
height of cutting teeth (shaft) [mm] 124 124 183

width of cutting teeth (counter comb) [mm] 64 54 81/100 *
height of cutting teeth (counter comb) [mm] 142 136 202

cutting circle [mm] 1070 1070 1170
length of shredding-shaft [mm] 3000

right side cutting gap (axial) [mm] 3.5 2 3
left side cutting gap (axial) [mm] 39 2 3

minimum cutting gap (radial) [mm] 0
maximum cutting gap (radial) [mm] 33 35 30/38 *

comb-system [-] no no yes
* bottom/top of the teeth.



Processes 2021, 9, 414 18 of 20

 
Figure A2. Experimental setup: photo and flow chart [24].

Figure A3. Screening drum geometry.

Table A2. Data of the screening drums.

side length of the square-shaped holes (mm) 80 60 40 20 10
total hole area (m2) 16, 61 17, 06 17, 14 17, 96 14, 55
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a b s t r a c t

To optimize output streams in mechanical waste treatment plants dynamic particle size control is a
promising approach. In addition to relevant actuators – such as an adjustable shredder gap width – this
also requires technology for online and real-time measurements of the particle size distribution. The
paper at hand presents a model in MATLAB� which extracts information about several geometric descrip-
tors – such as diameters, lengths, areas, shape factors – from 2D images of individual particles taken by
RGB cameras of pre-shredded, solid, mixed commercial waste and processes this data in a multivariate
regression model using the Partial Least Squares Regression (PLSR) to predict the particle size class of
each particle according to a drum screen. The investigated materials in this work are lightweight fraction,
plastics, wood, paper-cardboard and residual fraction. The particle sizes are divided into classes defined
by the screen cuts (in mm) 80, 60, 40, 20 and 10. The results show assignment reliability for certain mate-
rials of over 80%. Furthermore, when considering the results for determining a complete particle size dis-
tribution – for an exemplary real waste – the accuracy of the model is as good as 99% for the materials
wood, 3D-plastics and residual fraction for each particle size class respectively as assignment errors par-
tially compensate each other.
� 2020 The Authors. Published by Elsevier Ltd. This is an open access article under theCCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

The concept of a Smart Waste Factory Network 4.0 (SWFN4.0) is
a research vision for mechanical waste treatment plants. According
to the definition from (Sarc et al., 2019a), Smart Waste Factory Net-
work means:

‘‘The SWFN4.0 describes a system consisting of several waste treat-
ment plants, which perform different tasks in the waste manage-
ment system and are interconnected via data streams and
logistics systems (e.g. sorting plants, production plants for Solid
Recovered Fuels, etc.). The individual processes and machines
within the plants as well as the individual plants are digitally

connected with each other. This connection of the individual
machines and systems and the real-time analysis of the waste
streams enable dynamic process control and various actuator sys-
tems actively intervene in the processes. In addition, people can
cooperate interactively with the technology around them.”.

Such Smart Waste Factory concepts and plants will support fur-
ther waste management developments and the reaching of higher
sorting and recycling rates for valuable waste particles available in
mixed non-hazardous waste streams. The recycling status in Euro-
pean municipal waste management is given in Pomberger et al.
(2017) and as it can be seen, that technical developments are
required to reach the high recycling targets set up by the European
Commission within the ‘‘Circular Economy Package 2018”
(European Commission, 2018).

In mechanical waste treatment plants, a shredder is usually the
first machine for the treatment of solid municipal and commercial
waste (Sarc et al., 2019b; Sarc et al., 2014; Sarc and Lorber, 2013).
Together with the properties of the input material it affects the
particle sizes of the materials and thus influences the efficiency

https://doi.org/10.1016/j.wasman.2020.11.003
0956-053X/� 2020 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Abbreviations: NIR, near-infrared; pa, paper-cardboard; PLS(R), Partial Least
Squares (Regression); re, residual fraction; RD, realistic distribution; RGB, red-
green-blue; SWFN4.0, Smart Waste Factory Network 4.0; UD, uniform distribution;
wo, wood.
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of all subsequent machines, such as screens, magnetic separators,
or sensor-based sorting machines. To beneficially influence the
particle sizes in real-time – e. g. to keep them as constant as pos-
sible regardless of the variability of the input material – three
things are required according to Khodier et al. (2019): optimization
algorithms (for example based on artificial neural networks), con-
trollable actuators such as the gap width or the speed of the shaft
rotation of the shredding unit, as addressed for example by Khodier
et al. (unpublished), as well as real-time measurements of the par-
ticle size distribution, where the latter being the focus of this work.

For an output stream characterisation in waste treatment
plants, material composition and particle size distribution are
basic information. The present situation in real plants is, that
this data is determined when the material has already left the
plant, which does not allow further manipulation of the quality.
Peddireddy et al. (2015) investigated an image analysis tool for
characterising the composition of waste-derived fuels in a test
set-up. Additionally, methods that use 3D laser triangulation
and special techniques of image analysis to detect objects on
a conveyor or from bulk (Flamme et al., 2018; Kontny, 2017;
Zhang et al., 2013) give information regarding particle measure-
ments, however, neither of the mentioned authors used the
methods on mixed (non-hazardous) waste materials. Another
approach for the characterisation of material streams is to
determine measurements and descriptors of particles – such
as projected area/circumference, Feret diameters, shape factors,
bounding shapes – from two-dimensional images which is pre-
sented in this contribution. This approach was also tested on
coal particles by Zhang et al. (2013).

To enable particle size analysis in real-time, machines must be
equipped with the necessary sensors/cameras to record image
data. It is necessary to create prediction models for particle sizes
that use for example image analysis, mathematical or statistical
methods to evaluate image data by software. In order to evaluate
the effect on the particle size distribution the models must be com-
bined with the information regarding individual particle weights.
Krämer (2017) already investigated material-specific surface
weights for Solid Recovered Fuels. This approach could be used
in combination with the prediction models to produce true screen-
ing lines.

To describe the size and shape of irregularly formed objects dif-
ferent options are possible. On one hand, projected area and cir-
cumference are common measurements, whereas the indication
of meaningful lengths or diameters due to the irregularity of the
outlines often turns out to be problematic. For example, in the field
of process engineering equivalent diameters are often used (e.g.
diameter of a circle of the same area, Sauter diameter, Martin
diameter (Yang, 2003)). Additionally, it is possible to describe a
two-dimensional object through geometrical shapes (e.g. circle, tri-
angle, rectangle), which enclose the particle with the smallest pos-

sible area. A special type of diameter, which is often used for
screening, is the Feret diameter, which is defined by the distance
between two parallel tangents that fully enclose the particle (prin-
ciple of a calliper) (Yang, 2003). Also, dimensionless coefficients
like roundness or ratios between the projected area of the object
and the areas of bounding shapes are possible options to describe
particle shapes and sizes (Dunnu et al., 2006; Hentschel and Page,
2003; Olson, 2011; Podczeck, 1997; Zhang et al., 2013;
Zimmermann, 1998; Zlatev, 2005). Another approach to describe
shapes is by applying Elliptical Fourier Transformation. This
method has been in use for decades and uses Fourier descriptors
to describe ellipses to approximate the closed contour of a shape
based on a chain-code (Kuhl and Giardina, 1982).

This paper presents results which were gained by using the
regression method partial least squares (PLS). Here, this method
was chosen because multiple, correlated variables are present to
predict the corresponding particle size class of each particle. PLS
extracts orthogonal factors that further allow building a regression
model and identifies latent variables that are linear combinations
from the original variables. These latent variables fulfil the crite-
rion of maximal covariance between the explanatory (X) and
response (Y) variables and allow modelling Y as a function of X.
If Y consists of a single vector of data, the method is known as
PLS1 if it represents a table of data with two or more variables
PLS2 can be applied as well, but might not lead to better results
in all cases (Vandeginste et al., 1998a). PLS enables one to find a
small number of factors to fit the data. Here, the choice of the con-
sidered number of components affects the ability of prediction of
the model and must be chosen individually for each investigation.
(Massart et al., 1998) A high number of components will usually
benefit the prediction of the data, but increases the risk of overfit-
ting (fitting the model to the noise in the data). Therefore, the ratio
of components to data points must be well considered. To examine
for overfitting, k-fold cross-validation (Vandeginste et al., 1998a) is
a proposed method for choosing the correct number of compo-
nents, which doesn’t use the same data for the calibration of the
model and the error prediction. Here, the data set is randomly split
into k calibration steps ð5 < k < 15Þ, where each subset of data is
tested on the model that was built from the remaining sets. k is
often chosen to be five or ten, which is based on experience
(Kuhn and Johnson, 2016).

The paper at hand presents methods to generate image material
of individual objects with known particle size- and material class,
and software that was developed in MATLAB� 2019 to process and
analyse the image data. The software calculates particle descrip-
tors from binary images, which were transformed from RGB
images, to predict the particle size class through a regression
model. The outcomes of the regression model are combined with
a theoretical approach applied to a realistic waste composition to
show the accuracy of the model.

Nomenclature

APart Projected area of the particle
PPart Length of the perimeter of the polygon of the projected

particle
B Matrix of PLS-Regression coefficients
C Y-weight matrix
E Matrix of X-residuals
F Matrix of Y-residuals
k Amount of calibration steps in cross-validation
l Number of components in a PLS model
m Number of X-variables

n Number of objects (particles)
p Number of Y-variables
P Loading matrix
sfi Shape factor of form i (rectangle, triangle, circle)
T Score matrix
X Explanatory variable
Y Response variable
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2. Materials and methods

Here, the methods to generate binary image data from particles
with assigned information regarding material and particle size are
described. Additionally, the used ways to calculate particle descrip-
tors, as well as the applied regression models, are presented. A
visualisation of the individual steps is shown in Fig. 1.

2.1. Preparation of material

The work subsequently presents results that are obtained from
images of individual particles from coarsely shredded solid mixed
commercial waste which was collected in Styria (AUT) in October
2019. The processing of the material was performed with industri-
ally sized machinery from the company Komptech and included a
shredding step with following particle size classification through a
screening process and additional manual sorting into six material
classes. In total, 32 individual, representative samples were used
to generate fractions with defined particle size and material class.

The shredding process was performed through single-shaft shred-
ding units (Komptech Terminator 5000 SD with cutting units F, V
and XXF, described in detail by Khodier et al. (unpublished)) with
different settings regarding shaft rotation speed and width of the
radial cutting gap. This ensured the influence of different settings
to be considered in the results. The screening was carried out with
a drum screen (Komptech Nemus 3000), where cylindrical drums
with 2 m in diameter and 5.5 m in length were used. All used
drums had round holes with the diameters (in mm) 80, 60, 40,
20 and 10. To approximate ideal screening, a maximum volume
of 1 m3 of material was used per batch. This amount was spread
out on the conveyor belt of the feeding bunker of the screen over
a length of 4 m. The speed of the conveyor was set to 0.026 m/s,
while the rotation speed of the drumwas set to 10 rpm. The sorting
process involved the assignment for each particle to one of the fol-
lowing material classes: lightweight fraction (e. g. foils, 2D-
plastics), plastics (3D-plastics), wood, metal, paper-cardboard and
residual fraction.

To reduce the effort for manual sorting due to the large number
of samples, machine-aided separation was used to gain the light-

Fig. 1. Schematic layout of the individual applied steps with an overview of the used MATLAB� functions (*) for the image-processing step.
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weight fraction. Here, a perforated tube with air nozzles was
attached in the expansion cover of a sensor-based sorting machine.
The tube was of the length of the working width of the sorting
machine and fed via compressed air. The lightweight fraction
was separated from the rest of the material stream based on the
principle of an air classifier. Due to this, the lightweight fraction
contained mainly two-dimensional material like plastic foils, but
also light objects of styrofoam and foamed plastic. Manual post-
sorting of the material was carried out after the separation to make
sure each object was assigned to the correct fraction. Hence, a
manual evaluation was still the final criterion for sorting decisions.

2.2. Image acquisition and processing

The developed software requires images of single objects. In
this work, this criterion was met by photographing each object
individually. Due to technical and time limitations, two different
approaches (image acquisition methods) for the recording of the
images were applied. Particles assigned to particle sizes �40 mm
were recorded by an RGB-camera in *.png format from the
sensor-based sorting machine Redwave 2i. Depending on the par-
ticle size, the images were roughly 200x250 pixels in size with a
resolution of 2.403 mm2/pixel. Here, the camera was mounted over
the accelerating conveyor and able to photograph each particle on
the conveyor individually, as long as near-infrared (NIR)-spectra
were detected from the particle (as NIR information is used by
the machine for defining objects). Also, it must be noted that an
individual particle was defined as a cluster of material-pixels, sur-
rounded by a defined background, which was the conveyor belt.
Therefore, overlapping or touching particles were detected as one
object in an image and sorted out manually in the image-
processing step. Images from objects smaller than 40 mm were
taken with an ordinary digital camera. This size threshold was cho-
sen because the small objects would have been difficult to handle
in the experimental setup of the sensor-based sorting machine,
because of the large-scale equipment with several transfer points
on conveyor belts where the objects might have been lost during
the process. The images were saved in *.jpg format, where each
particle was photographed manually. Here, the resolution of the
images for the software was originally set to 6,000x4,000 pixels,
but later downsized and cropped to size in the software to roughly
400x500 pixels for faster processing. Despite the downsizing of the
images, a resolution of 0.0511 mm2/pixel was reached. In both
cases of image acquisition, the cameras were mounted parallel to
the surface where the objects were placed, and the position of
the cameras was fixed to ensure a consistent distance between
particle and camera lens. For manual image recording, this can
be achieved using a tripod or similar. Additionally, LED-lights were
used to ensure the high visibility of the particles and a well-lit area
for the recording of the images. High contrast between the back-
ground and the particle itself helps to obtain images with sufficient
quality for the further processing steps. In this case, all images
were taken using a black background, which leads to the discard-
ing of dark objects in the investigation, which were also not
recorded by the sorter due to missing NIR-signal of black particles
(Gundupalli et al., 2017). Due to the use of different methods for
image acquisition, several steps were considered to ensure compa-
rability between all images. Firstly, two (one for each image acqui-
sition method) individual scaling factors – which allow the
transformation between the pixel and metric measurements –
were calculated as well as a distortion factor to remove the elonga-
tion which was detected on the images taken from the RGB-camera
in the sorting machine due to the used combination of conveyor
belt speed and imaging frequency of the line-camera. The scaling
and distortion factors were calculated from images of objects with

known measurements and stored in variables in the software for
later access.

The software evaluates calculated measurements of objects in
binary images, which were converted from the RGB-photos. In
MATLAB� this was achieved through transforming the original
image (with the distortion factor considered, if required by the
method of image acquisition) over a greyscale image (function ‘‘rg-
b2gray”) to a binary data set (function ‘‘imbinarize”), where back-
ground information was indicated with zero (black) and pixels of
the particle with one (white). The individual steps are shown in
Fig. 2. Additionally, Table 1 gives an overview of all the used func-
tions with a short description as well as additional information
regarding in- and output data of each function. To receive the best
results, several steps for image improvement were applied. These
involve transforming the image to a negative image or enhancing
the colours, where all entered parameters must be matched with
the colour of the chosen background and/or particle. In MATLAB�

the functions ‘‘imcomplement”, ‘‘imreducehaze” and ‘‘imadjust”
were used for these steps. Latter considered a ‘‘gamma factor” of
0.2, for the transformation to a binary image a global threshold
according to Otsus Method (Otsu, 1979) was calculated (function
‘‘graythresh”), to achieve the best results.

Due to the image processing, small holes were detected in the
binary data of the objects. In this context, holes are identified as
regions indicated as background within the particle. To ignore fal-
sely identified holes, all pixels of holes with a size smaller than 1%
of the total image size were relabelled in the binary image from
background to particle. Holes bigger than the chosen threshold
were ignored in this step. Mechanical stressing from the sorting
process of the material led to the separation of dust and fine parti-
cles, which were detected in the images. To ignore these objects in
the evaluation only the biggest region of connected pixels was
detected as the particle and displayed in the final binary image.
The mentioned steps for identification and relabelling of holes as
well as identifying the biggest region were achieved with the func-
tions ‘‘bwareaopen”, ‘‘imfill” and ‘‘regionprops”.

To assure that the software only considers images where the
binary data represents an object correctly (no overlapping, no
cropped images due to missing contrast or NIR data) a manual
check was necessary, where the best of three options was chosen.
The first option considered the steps for image improvement as
well as the gamma factor, which is stated in the text above. In
the second option, the methods for colour improvement and the
gamma factor are not applied. If the binary image was wrongly
transformed, the third option allowed to not consider the image
in the following analysis. The model here works with images of
individual particles only, but research shows that the extraction
of individual particles (no touching/overlapping) from one image
is possible (Dunnu et al., 2006). MATLAB� allows this with the
function ‘‘regionprops”.

2.3. Calculation of particle descriptors

With the correctly displayed binary images available the next
step was to calculate individual particle descriptors based on the
binary data. To calculate the area of the particles, simply the num-
ber of pixels of the projected area was counted. The perimeter of
the object was calculated with the option ‘‘bwboundaries”. Due
to the high image quality, the edge of the particles was displayed
comparatively unevenly, and the length of the perimeter would
have been wrongly calculated for the use here. To even out the
irregular edge of the objects the perimeter was formed by a sur-
rounding polygon with a shrink factor of 0.5 (see Fig. 3, left), which
was achieved by applying the MATLAB� function ‘‘boundary”. This
resulted in the overall best approximation of the particle outline. It
must be pointed out as well, that especially for objects with a low
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number of pixels (small objects and/or low-resolution images), the
squared shape of the pixels (resulting in a stair-like boundary) may
affect the calculation of parameters. Since in this work, all relevant
objects were far over a few hundred pixels in size ðAPartÞ, this was
not considered here. The Feret diameters were calculated with
software-codes from (Eddins, 2018a, 2018b, 2017) (function
‘‘feretProperties”). This work considers the maximal as well as
the minimal Feret diameter (see Fig. 3 (left)) because they are also
successfully used in other works for particle description (Dražić
et al., 2016; Olson, 2011; Podczeck, 1997).

The aim of using bounding shapes was to describe irregularly
shaped particles more simply. In the work the following forms
were determined: Smallest circumscribing rectangle (bounding
box) of the particle, smallest circumscribing circle of the particle
(bounding circle), largest circle in the circumscribing polygon (in-
scribed circle of the polygon) as well as the maximum inscribing
circle of the particle (incircle) and the smallest circumscribing tri-
angle of the particle. Of all the mentioned shapes, the dimensions
that are needed to describe the shape (edge lengths, radius) were
calculated and used to determine the circumference and area of
the shape. Later these values were used to compare the measure-
ments of the particle with the assigned bounding shapes. Fig. 3
(right) shows an example of some of the mentioned bounding
shapes. In the software, functions from D’Errico (2014) (‘‘min-
boundrect”, ‘‘minboundcircle”, ‘‘incircle”, ‘‘minboundtri”) and
Birdal (2011) (‘‘max_inscribed_circle”) were used for the
calculation.

Shape factors sfi are dimensionless factors and show the ratio
between different particle descriptive areas. Here, the following
sf are considered: bounding box, bounding circle, bounding trian-
gle, inner circle polygon and incircle. Additionally, the circularity
was considered as a shape factor as well, which explains the differ-
ence of the particle from a circle. This factor was defined through
Eq. (1) according to Hentschel and Page (2003), where APart is the
projected area of the particle and PPart is the perimeter of the cir-
cumscribing polygon, and was defined in a way, so that it becomes
1 for a circle.

Circularity ¼ 4 � p � APart

P2
Part

ð1Þ

The descriptors with additional information regarding particle
size and material were calculated for each image and stored in
table form, resulting in a data table containing the information
regarding each particle in one row and the values for the individual
descriptors in columns. All measurements were calculated in the
unit pixel and were transformed in millimetre measurements.
Here, the previously evaluated scale factor for the respective parti-
cle size class was considered in addition to the dimension of the
unit of the descriptor (two dimensions for e. g. areas, one dimen-
sion for e.g. lengths, diameters and zero dimensions for shape fac-

tors). In the whole software the material fractions are examined
separately, which leads to five individual data tables. These were
used as input for the regression models, where one for each mate-
rial class was considered.

2.4. Regression model

Prior investigations from this work show that the prediction
performance of the particle sizes based on only one parameter per-
forms poorly, because of the broad scattering of the values and
collinearity between the variables (Kandlbauer, 2020). Therefore,
the regression was performed with PLS1, where all the information
of particle descriptors was used as predictor variables, and the
information regarding particle size class was used as the one-
dimensional response variable. The PLS method was chosen
because it offers solutions for highly collinear or linearly depen-
dent predictors (de Jong, 1993), which were determined in this
case. The basic concept of PLS is stated with the following explana-
tions and formulae from de Jong (1993), Massart et al. (1998) and
Vandeginste et al. (1998a, 1998b).

The idea of PLS is to find a regression model for multivariate
data for predicting purposes of new data by a small number of rel-
evant factors. Here, the matrix of explanatory variables X is decom-
posed in a set of orthogonal factors which are used for fitting the
matrix of response variables Y . In PLS latent variables (cannot be
measured directly) are built that account for as much of the man-
ifest variable (can be measured directly) variation as possible and
are represented as linear combinations of the manifest variables.
The final regression model is in the linear form of Y ¼ XB, with B
being regression coefficients which are calculated over the PLS fac-
tors between the explanatory and the response variables. The gen-
eral model that underlies the PLS is given in Matrix form in
equation (2) and (3) from Vandeginste et al. (1998b) as

X ¼ TPT þ E ð2Þ

Y ¼ TCT þ F ð3Þ
where X is an n�m matrix of predictors, Y is an n� p matrix of
responses. T is an n� l matrix containing projections of X (X-
score, component or factor matrix). P is an m� l orthogonal loading
matrix, C is an m� l matrix and contains the regression coefficients
which relate T to the variables in Y . The residuals are collected in
the matrices E and F which are the error terms. PLS allows a variable
reduction where the available variables are combined through lin-
ear combinations to fewer ones with more significance. Addition-
ally, the method allows finding certain variables, that are
essential for the description of the data and identify the ones that
don’t provide additional information. This can be done by interpret-
ing the values of the weights w, which can be identified through the
scores T.

Fig. 2. RGB image (left), greyscale image (middle), and binary image (right) of singlified waste particle.
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To evaluate the models properly the available data tables were
split into two separate groups, one containing 90% of the data from
each particle size class, which was randomly picked. This data is
later called the calibration data. The remaining data is used to test
the quality of the developed model and is therefore called test data.
In MATLAB� the function ‘‘plsregress” was applied, which is based
on the algorithm from de Jong (1993). Additionally, the MATLAB�

function ‘‘zscore” was used to standardize the variables in a way

that each column in the data set had a mean of 0 and a standard
deviation of 1. A list of the used predictor variables and their expla-
nation is given in Table 2. Due to the chosen methods of material
preparation and image acquisition an unequal amount of images
in each material-particle size class was available. To consider this
fact in the regression model and avoid the more precise modelling
of particle size classes with a higher number of images a way to
compensate this factor was necessary. This was done by adding a

Table 1
Overview of the used functions in the software with given source references. Note: if no information regarding In- and Output data is given in the Table, the function was
automatically called from another function in the process.

Name of function Description Input Output Source
reference

antipodalPairs called by the function ‘‘feretProperties’’ Eddins
(2017)

boundary boundary of a set of points coordinates of the
perimeter

point indices representing a single
conforming 2-D boundary around the
given points

MathWorks
(2020a)

bwareaopen remove small objects from binary image binary image binary image without small objects MathWorks
(2020b)

bwboundaries traces the exterior boundaries of objects, as well as
boundaries of holes inside these objects, in the
binary image

binary image pixel locations for boundaries MathWorks
(2020c)

feretDiameter called by the function ‘‘feretProperties’’ Eddins
(2018a)

feretProperties calculation of Feret diameters binary image of
(perimeter of) object

tables with edge lengths, endpoint
coordinates, position (angles) of min. and
max. Feret diameter

Eddins
(2018a)

graythresh global image threshold using Otsu’s method greyscale image global threshold MathWorks
(2020d)

imadjust adjust image intensity values or colormap greyscale image greyscale image with adjusted colour
values

MathWorks
(2020e)

imbinarize binarize 2D greyscale image greyscale image binary image MathWorks
(2020f)

imcomplement complement image image data complement image MathWorks
(2020g)

imfill fill image regions and holes binary image filled binary image MathWorks
(2020h)

imreducehaze reduce atmospheric haze colour or greyscale image dehazed image MathWorks
(2020i)

incircle compute the maximal inner circle of the polygonal
convex hull of a set of points in the plane

coordinates of the
perimeter

radius and centre coordinates of the circle D’Errico
(2014)

inpoly called by the function ‘‘max_inscribed_circle” Birdal
(2011)

max_inscribed_circle compute the centre coordinates and radius of the
maximum inscribed circle of a given object

Binary image of the
particle outline

radius and centre coordinates of the circle Birdal
(2011)

maxFeretDiameter called by the function ‘‘feretProperties’’ Eddins
(2018a)

minAreaBoundingBox called by the function ‘‘feretProperties’’ Eddins
(2018a)

minboundcircle compute the minimum radius of the enclosing circle
of a set of points in the plane

coordinates of the
perimeter

radius and centre coordinates of the circle D’Errico
(2014)

minboundrect compute the minimal bounding rectangle of points
in the plane

coordinates of the
perimeter

coordinates that define the rectangle, area
and perimeter of the rectangle

D’Errico
(2014)

minboundtri compute the minimum area bounding triangle of
points in the plane

coordinates of the
perimeter

coordinates that define the triangle D’Errico
(2014)

minFeretDiameter called by the function ‘‘feretProperties’’ Eddins
(2018a)

pixelHull called by the function ‘‘feretProperties’’ Eddins
(2018c)

plsregress plsregress(X,Y,ncomp) computes a partial least-
squares (PLS) regression of Y on X, using ncomp PLS
components

predictor and response
variable, amount of PLS
components

predictor and response loadings and
scores, PLS regression coefficients

MathWorks
(2020j)

regionprops measure properties of image regions binary image measurements for the set of defined
properties for each 8-connected
component in the binary image

MathWorks
(2020k)

rgb2gray convert RGB image or colourmap to truecolour RGB image or
colourmap

grayscale image MathWorks
(2020l)

signedTriangleArea called by the function ‘‘feretProperties’’ Eddins
(2018a)

triangleHeight called by the function ‘‘feretProperties’’ Eddins
(2018a)

zscore returns the z-score for each element such that
columns are centred to have mean 0 and scaled to
have standard deviation 1

data with non-
standardized values

data with standardized values MathWorks
(2020m)
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weighting factor, which is defined as the inverse value of the num-
ber of available images in each material-particle size class, respec-
tively. Since the PLS is a method that allows the reduction of
dimensions and eliminates noise in the data, the number of consid-
ered dimensions was chosen to be four. This was evaluated as the
best option for the regression models, without under- and overfit-
ting the data based on k-folds cross-validation with k being chosen
to be 10, where at least 94% of the explained variance in Y was con-
sidered in the models.

The result of the models were regression coefficients for the
predictor variables based on the calibration data, which were later
applied to the test data sets to predict the particle size. Based on
the fact that in this work five different particle size classes are pre-
sent, the classification for the values to the particle size classes was
implemented by considering a limit value for each particle size
class. This limit value was calculated as the mean value between
the predicted values of the 80th percentile of the lower particle
size class and the 20th percentile of the higher particle size class
(e. g. the limit value to divide particle size class 40–60 mm from

60–80 mm was the mean from the 80th percentile of the predicted
values of the 40–60 mm particles and 20th percentile of the pre-
dicted values of the 60–80 mm particles).

3. Results and discussion

In this investigation in total over 11,000 particles were charac-
terised with the chosen descriptors listed in Table 2. The break-
down according to particle size class and material fraction are
shown in Table 3. Here, the values show the number of particles
that were used for the regression models due to the manual selec-
tion of the binary images. The values in brackets show the share
from the total amount of images that were taken from the cameras
that is represented through the number of characterised particles.
It can be detected that less than half of the amount of the available
pictures in total were used in the regression. The following differ-
ent factors explain the issue for particles �40 mm. Firstly, espe-
cially large objects were cropped and not fully displayed on one
image, but on two or even more. This was also detected on parti-
cles with a very small expansion in one dimension, which often
led to the detection of two or more individual objects. Additionally,
images were often cropped when objects consisted of several dif-
ferent materials (composite materials) and the material was partly
not reflecting NIR-signals, and therefore not detected by the sen-
sor. Further, the surface condition was an important factor for
image quality from particle size classes. If the particle was too dark
in colour, see-through, too shiny, or had a reflective surface the
image was often not properly transformed into a binary image
and was not suitable for the regression model. These factors
explain the significantly lower number of particles in the residual
fraction when compared to the other materials, where e.g. glass,
metal-coated plastics, composite materials and dark textile fibres
and fabrics accounted for a high number of particles. Due to the
composition and structure of the lightweight and the residual frac-
tion (fluffy material that was tangled up with other particles) no
photos were taken for these two material fractions in the particle
size 10–20 mm. Also, it should be noted that the metal fraction
was not considered in the evaluation. Here, a low number of
objects was initially found in the samples. A significant amount

Fig. 3. Left: Particle with polygon perimeter (solid line), max. Feret diameter (dashed line) and min. Feret diameter (dotted line); right: Particle outline with exemplary
bounding shapes (bounding box, bounding triangle, bounding circle (dashed line), inscribed circle of the circumscribing polygon (dash-dotted line)).

Table 2
Overview of the considered variables (descriptors) and their explanation.

Descriptor Definition

Area particle ðAPartÞ projected area of the object
Perimeter ðPPartÞ length of the perimeter of the polygon of the

projected area
Area bounding box area of the smallest rectangle, which surrounds the

object
Area bounding

triangle
area of the smallest triangle, which surrounds the
object

Shape factora ratio between the area of the object and area of the
respective (bounding) shape

Circularity explains difference from a circle and is defined
through Eq. (1)

Diameter incircle diameter of the largest inscribed circle of the particle
Feret diameter

(maximal,
minimal)

maximal/minimal distance between two parallel
tangents, which fully enclose the object (principle of
a calliper)

a Bounding box, bounding circle, inscribed circle of polygon, incircle, bounding
triangle.
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of these metallic objects were wires, which were often not cor-
rectly displayed on the images due to the one-dimensional appear-
ance, flat metallic objects were often too shiny. Therefore, only an
exceedingly small number of usable image files (less than 40
images in all particle size classes combined) was available and
forced the fraction to be taken out from the investigation.

The given regression coefficients from the regression models
were applied to the test data sets for each material fraction. The
results were values that were assigned to a particle size class based
on the classification method explained in the previous chapter.
Because the size of the test data sets was dependent on the number
of available images some material-particle size specific fractions
held less than ten images. To evaluate the regression models in a
way that even a small number of available objects gives meaning-
ful information regarding the accuracy of the models the results
presented here are calculated as a mean of 1,000 individual runs.
In more detail, this means that 1,000 calibration data sets with
data from randomly selected particles were used to generate the
regression models. Each of the models was then tested by applying
the resulting regression coefficients to the respective test data set
and calculate the falsely and correctly assigned particles for each
size class. These values can be seen as instant results from the
regression models and are used for the prediction of the particle
size. The mean results from 1,000 runs for the individual materials
are presented in Table 4 as a significant result to show the accuracy
of the method. Overall, the models for the materials wood and
residual fraction show the best results regarding the correct

classification of the particles. However, the fraction paper-
cardboard shows a very low correct classification of particles
between the sizes 20–60 mm. To better evaluate the effects of
the wrongly classified objects, the results from Table 4 are applied
on particle size distributions. As no information regarding the indi-
vidual particle weights was examined during this investigation, for
this first approach it was assumed that each object in the same
material-particle size class has the same weight. Two different
options were investigated here.

Firstly, a uniformly distributed (UD) composition of the individ-
ual particle size classes within the material fractions was consid-
ered. Since five different particle classes were examined, each
class was considered with a 20% mass fraction. For the material
groups lightweight and residual fraction no images in the particle
size class 10–20 mm were available, which is why these could not
be included in the regression. In these cases, the particle size
classes were each taken into account with 25% of the mass fraction.

Additionally, a realistic distribution (RD) of particle size classes
within individual material fractions in mixed solid commercial
waste according to Khodier et al. (2020) was considered. This dis-
tribution was chosen because it deals with the same input mate-
rial, similar individual material fractions and similar particle size
classes. The individual fractions are split up in more detailed mate-
rial classes as in the present paper, but their combination allows
the representation of the investigated fractions in this contribu-
tion. For this, the individual fractions ‘‘paper” and ‘‘cardboard”
were summed up for the representation of the paper fraction. For

Table 4
Mean accuracy of the PLS-classification for 1,000 individual randomly picked test data sets in shares for the individual material fractions (wo: wood, 3D: 3D plastics, pa:
paper&cardboard, 2D: lightweight fraction, re: residual fraction). Bold numbers represent the share for correctly classified objects.

to
10–20 mm

[%]

to
20–40 mm

[%]

to
40–60 mm

[%]

to
60–80 mm

[%]

to
>80 mm

[%]

absolute number
of particles [–]

wo from 10–20 mm 100 0 0 0 0 22
wo from 20–40 mm 0 99 1 0 0 35
wo from 40–60 mm 0 1 88 11 0 41
wo from 60–80 mm 0 0 12 71 17 45
wo from >80 mm 0 0 2 16 82 49
3d from 10–20 mm 100 0 0 0 0 24
3d from 20–40 mm 0 100 0 0 0 41
3d from 40–60 mm 0 0 57 39 4 100
3d from 60–80 mm 0 0 38 51 11 75
3d from >80 mm 0 0 1 12 87 142
pa from 10–20 mm 100 0 0 0 0 12
pa from 20–40 mm 0 18 38 44 0 36
pa from 40–60 mm 0 72 15 13 0 23
pa from 60–80 mm 0 4 8 88 0 27
pa from >80 mm 0 0 0 0 100 206
2d from 20–40 mm 0 72 27 1 0 29
2d from 40–60 mm 0 29 65 6 0 111
2d from 60–80 mm 0 0 7 65 28 23
2d from >80 mm 0 0 2 25 73 20
re from 20–40 mm 0 100 0 0 0 24
re from 40–60 mm 0 0 100 0 0 13
re from 60–80 mm 0 0 0 96 4 7
re from >80 mm 0 0 0 6 94 6

Table 3
Number and share of characterised particles regarding particle size class and material fraction. The numbers in brackets give the share of successfully analysed particles for each
material-particle-size fraction.

>80 mm 60–80 mm 40–60 mm 20–40 mm 10–20 mm Total

Plastics 1,422 (0.28) 748 (0.46) 998 (0.45) 409 (0.61) 241 (0.56) 3,818 (0.38)
Wood 495 (0.58) 452 (0.66) 409 (0.59) 350 (0.62) 225 (0.49) 1,931 (0.59)
Lightweight fraction 204 (0.19) 231 (0.36) 1,113 (0.45) 291 (0.57) – – 1,839 (0.39)
Paper-cardboard 2,061 (0.44) 266 (0.60) 232 (0.66) 363 (0.64) 119 (0.52) 3,041 (0.49)
Residual 61 (0.19) 70 (0.30) 133 (0.24) 237 (0.40) – – 501 (0.30)
Total 4,243 (0.35) 1,767 (0.49) 2,885 (0.46) 1,650 (0.57) 585 (0.52) 11,130 (0.42)
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the residual fraction the values from the ‘‘inert material” and ‘‘tex-
tiles” were added to the ‘‘residual fraction”. The used values for the
further calculations are presented in the supplementary material
(see Table S1 in Appendix). Since in that study no data according
to material-specific composition in fractions smaller 20 mm was
investigated, the particle size class 10–20 mm was not considered
in the results presented here.

The aforementioned assumption regarding particle masses
combined with the two options of particle size distributions allows
to constitute the impacts of the regression models and compare
the original particle size distribution with the one predicted
through the respective model. The extent of incorrectly assigned
particles on the particle size distribution is shown, considering
the partially compensating effect of wrong classifications. The
results of the according hypothetical sensor-based screening anal-
ysis in form of the percentual error of the mass fractions between
the predicted values and the original particle size distribution is
shown in Table 5. Furthermore, the errors of the models can be
given by calculating the mean error in terms of mass share for all
particle size classes, which are also presented in Table 5. Here, it
is shown that the approach of uniformly distributed (UD) material
regarding particle size classes shows overall better results than
considering the realistic particle size distribution (RD). Neverthe-
less, the accuracy of the predicted particle size distribution for
the fractions wood, plastics (3D) and residuals was at least 99%
for each particle size class respectively. It is also shown that the
error between UD and RD for each material is in the same range,
except for lightweight material. Here, the difference in error can
be interpreted by the difference between the particle size shares
in the distributions, where RD considers approx. 70% of
particles > 80 mm, while UD just 25%.

4. Conclusions

The presented methodology, which predicts the particle size
based on parameters from 2D images, shows promising results
for measuring the particle size distribution of the investigated
material fractions. Considering a realistic particle size distribution
with the approach of identical particle weights in each particle size
class the regression model led to a correct prediction of at least 99%
the individual particle size classes for wood, plastics (3D) and
residual fraction. The fractions paper-cardboard and lightweight
materials showed significant errors but were still over 96% accu-
rate for each particle size class respectively. Nevertheless, the fol-
lowing points should be noted as a limitation of the stated method.

For the recording of images by the RGB sensor of the sensor-
based sorting machine a detected NIR-signal was crucial. This fac-
tor mainly caused dark (especially black and grey) objects not to be
considered in the evaluation. Additionally, certainly shaped objects
(one-dimensional) were recorded on multiple separate images and
therefore not useable in the investigation. The chosen way of
image processing in the software requires a manual check of the
binary images. This is not feasible for a practical application and

could not be implemented due to the real-time request in a plant.
Hence, a software extension is necessary, by which this this control
can be carried out automatically to eliminate the manual effort.

Another point of criticism is that large objects were often
cropped on the images due to the limiting size of the images. This
led to missing particle information in bigger particle size classes.
The fine fraction below 10 mm was not considered in the investi-
gation at all but is crucial information when evaluating particle
size distributions.

The lightweight fraction was classified by the air classifier and
consisted mostly of plastic foils. Additionally, the whole material
stream was checked by hand as well to avoid wrongly classified
objects (e. g. foils wrapped up with wires). In this paper, an
approach to evaluate the material-specific particle size class from
the whole (mixed) material stream was investigated. Especially
the differentiation between the materials lightweight fraction
and 3D plastics based only on the information from a NIR-sorting
machine is very limited in a real plant, since both fractions include
objects from the same materials (Möllnitz et al., 2020). Also, an
efficient singlification of the material stream on a conveyor for suf-
ficient detection of particle shapes is not always possible due to
limited space and upkeeping of the mandatory throughput of the
plants. Here, a bypass for smaller quantities could be used as a
technical solution for material analysis. Additionally, the image
recording must be tested when the particle size classes are not sep-
arately recorded by the cameras. Here, especially large foils
>80 mm would probably cover up smaller particles on the con-
veyor belt, so that a screening step might be necessary. Neverthe-
less, although further research is needed to develop a Smart Waste
Factory, the presented approach shows high potential to be used as
an automated method to measure particle size distributions of
solid, mixed waste streams to process large amounts of data.

Besides, particle weights must be examined and combined with
the models to evaluate the effect of the wrongly classified particles
for more realistic information regarding particle size distribution. I.
e. waste management will become particle-, sensor- and data-
based-management and information from every single particle will
become increasingly relevant in the future, especially because of
higher recycling rates set up by the EU Circular Economy Package.

Further, approaches regarding machine learning could be inves-
tigated to evaluate if additional information about particle shapes
can be extracted based on the chosen particle descriptors, or other
information in the images. The images (true colour or greyscale)
can also be processed over Convolutional Neural Networks, which
can detect characteristic shapes and edges of objects and may lead
to better identification of shapes.

Ultimately, it must be mentioned that the results are based on
material that is classified by a drum screen. If the method should
be applied on other screen types or drum screens with different
screen perforations, the efficiency of the respective screen on
material fractions and particle size classes must be investigated
separately but could give information about particle sizes when
combined with the presented method here.

Table 5
Material-specific error (in %) between the mass share of the predicted regression model and the mass share of the considered distribution (UD, RD) for each particle size class, as
well as the mean error per particle size class (wo: wood, pa: paper&cardboard, 3D: 3D plastics, re: residual fraction, 2D: lightweight fraction, UD: uniformly distributed, RD:
realistic distribution).

particle size [mm] wo
UD

wo
RD

pa
UD

pa
RD

3D
UD

3D
RD

re
UD

re
RD

2D
UD

2D
RD

10–20 0 – 0 – 0 – 0 – 0 –
20–40 0 0 �1 1 0 0 0 0 0 1
40–60 1 1 �8 �9 �1 1 0 0 0 1
60–80 �1 �1 9 8 0 2 0 2 0 14
>80 0 0 0 0 1 �3 0 �2 0 �16
Error per particle size class 0.2 0.25 1.8 2.25 0.2 0.75 0 0.5 0 4
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4 SUMMARY AND DISCUSSION 
Here, each research question (see Section 2.3) is answered in detail and complemented with 

a summary of explanatory results and findings from own investigations. 

4.1 Answer to research question 1 
How can the processing products be representatively sampled in coarse-shredding 

experiments with mixed commercial waste, and how large are the remaining 
sampling errors? 

In accordance with the theory of sampling, coarse-shredding products can be representative-

ly sampled by forming a composite sample from multiple increments, taken from the 

stream, falling from the output conveyor belt during defined time intervals. Calculating 

the total sample mass, based on the Austrian standard ÖNORM S 2127, the reaming 

sampling errors for various particle size-material classes in a coarse-shredding experi-

ment with mixed commercial waste were quantified through a so-called replication ex-

periment (see Table 2). They are expressed as relative sampling variabilities (RSV): 

the standard deviations of the shares’ classes divided by their estimated true values.  

Table 2: Relative sampling variabilities (RSV) for various particle size classes and for 

the material classes metal (ME), wood (WO), paper (PA), cardboard (CB), 2D plastics 

(2D), 3D plastics (3D), inert materials including glass (IN), textiles (TX), and a residual 

fraction (RE) (publication I: Khodier et al., 2020) 

Particle class [mm] ME (%) WO (%) PA (%) CB (%) 2D (%) 3D (%) IN (%) TX (%) RE (%) Sum (%) 

0–5 - - - - - - - - 12.3 12.3 

5–10 - - - - - - - - 12.3 12.3 

10–20 - - - - - - - - 10.4 10.4 

20–40 41.4 17.7 24.3 39.3 18.4 17.1 19.7 29.3 22.7 11.6 

40–60 47.3 21.5 16.8 25.6 14.2 8.7 37.2 43.4 16.4 8.8 

60–80 39.4 23.3 22.9 18.1 17.7 10.0 49.9 30.4 8.9 8.1 

80–100 62.0 34.7 38.0 14.2 19.3 17.5 210.7 43.4 17.2 7.7 

100–200 74.0 47.7 69.0 21.6 28.9 35.2 131.8 40.9 40.0 10.9 

200–400 153.0 230.9 203.9 126.2 38.3 39.8 - 42.9 52.2 28.8 

Sum 16.4 18.3 10.5 15.0 16.6 12.1 31.2 26.6 3.6 0.0 

 
         

 

 RSV < 20% 20% ≤ RSV < 50% RSV ≥ 50%  

This research question is addressed in detail in publication I. 

Pierre Gy’s theory of sampling provides the theoretical basis for thoroughly understanding 

representative sampling. Its central requirement is accordance with the fundamental sam-

pling principle: each particle must have the same probability of ending up in the final sample. 

According to the theory of sampling, there are intrinsic, and avoidable sampling errors. The 

latter – which are called incorrect sampling errors – are divided into three kinds of errors: 

increment delimitation errors, increment extraction errors, and incorrect processing errors.  
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Increment delimitation refers to the subdivision of the lot into segments of constant volume, 

building the potential increments for extraction. For coarse-shredding, the material leaves the 

shredder through an output conveyor belt. Hence, a practicable approach for increment de-

limitation, which is in accordance with the fundamental sampling principle, is defining seg-

ments of time for sampling from the stream falling from the conveyor belt. 

Increment extraction refers to correctly extracting the chosen delimited increments. In the 

replication experiment in this thesis, increment extraction was implemented by catching ma-

terial from the falling stream with a sampling bucket covering the stream’s whole cross-

section during defined periods. Practice showed that this is a suitable but not perfect ap-

proach: the manual procedure leads to variations in sampling duration. Hence, machine-

assisted methods (as applied in publication III, for example) are preferable. 

Incorrect processing errors are – more precisely – errors introduced after sampling and not 

during sampling itself. There are six kinds of such errors: contamination by foreign material, 

loss of material, alteration in chemical and alteration in physical composition, involuntary op-

erator faults, and deliberate faults for manipulating results. These kinds of errors are not spe-

cific to coarse-shredding but depend on the subsequent processing of the samples. 

Besides the incorrect sampling errors, there are two kinds of so-called correct sampling er-

rors, which are unavoidable due to the nature of sampling: the fundamental sampling error 

and the grouping and segregation error. The first is caused by the material’s constitutional 

heterogeneity, which describes chemical and physical differences between fragments of the 

lot. While it affects the precision of the data, it does not harm representativeness. The fun-

damental sampling error can only be reduced by either increasing the sample mass or 

changing the physical condition of the particles through comminution. For the case of so-

called simple particles, it can be calculated with Equation (7) in publication I. Simple particles 

are such, of which 100% is assigned to a particular analyte, as is the case in particle size 

class analyses and waste sorting analyses.  

The grouping and segregation error is caused by the distributional heterogeneity, which re-

fers to the spatial distribution of different particles. It can be faced by mixing the lot or by in-

creasing the number of increments that form a sample, and thereby the spatial coverage of 

the lot. 

The equation for calculating the fundamental sampling error requires assumptions on the 

composition and average particle weights of the material and only covers one out of two cor-

rect sampling errors. Consequently, in this thesis, the sample mass was defined based on 

the Austrian standard ÖNORM S 2127 (see Equation (11) in publication I), which incorpo-

rates a linear dependence of the sample mass on the 95th percentile particle size. This linear-

ity assures feasible sample masses in terms of practicability. Still, it neglects that a quadratic 
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to cubic correlation would be necessary to consider the particles’ dimensionality, according to 

the theory of sampling. The performance of the established procedure, combined with the 

sample mass retrieved from the standard, was hence evaluated based on a replication ex-

periment. In such a replication experiment, the whole procedure of sampling and analysis is 

performed in parallel at least ten times, to quantify the variation of the analyses’ results. 

The overall procedure for sampling, and screening and sorting analysis established in this 

thesis is shown in Fig. 3 in publication I. The resulting sampling errors (Table 2) range from 

3.6% for the total content of a residual fraction to about 231% for the content of wood from 

the particle size class of 200–400 mm. They show reasonable errors with a maximum of 

31.2% when investigating either the overall composition or the overall particle size distribu-

tion of the waste and get much worse when the level of detail is increased, analyzing particle 

size-material classes.   

This observation is in accordance with the dependence of the detected sampling errors on 

the share of the analyte, as shown in Figure 3. The Figure also visualizes the trend of the 

fundamental sampling error over the analyte’s share. Considering typical average particle 

weights – which are much lower than 1 kg for most particle size-material classes – it shows 

that for the chosen procedure significant errors beyond the fundamental sampling errors are 

present – most likely grouping and segregation errors.  

 

Figure 3: Relative sampling variability (RSV) for the concentration of a component 𝑐 versus 

its share: experimental results, and theoretical fundamental sampling errors (FSE) for two 

different average particle masses 𝑚𝑐 of component 𝑐, a lot mass of 45,000 kg, a sample 

mass of 240 kg, and an average particle mass of 0.1 kg for other components (combined 

from Fig. 6 and Fig. 7 in publication I – Khodier et al., 2020) 
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4.2 Answer to research question 2 
How can reliable conclusions about machine influences on waste shredding be drawn, 

despite sampling errors and inter-experimental differences in the waste? 

Reliable conclusions about machine influences on waste shredding require distinguishing 

between real effects and apparent effects caused by the distortion introduced by the 

waste’s heterogeneity. The real effects can be identified in an analysis of variance 

(ANOVA), based on polynomial regression models, calibrated with a sufficiently large 

amount of data from randomized, Design of Experiments-based investigations. 

This research question is addressed in detail in publication II. 

Sampling errors and inter-experimental differences contribute to the distortion and thereby 

introduced residual variance of the data that is not explainable by models on factor influ-

ences. In the presence of high residual errors, the detection of effects requires a sufficiently 

large amount of data so that real effects become significant in suitable statistical tests. Fur-

thermore, a randomization of the order of the runs is desirable since it randomly spreads the 

influence of the waste’s condition over different factor settings. 

The method Design of Experiments allows choosing factor settings for experimental runs that 

maximize the efficiency of the experiment in terms of extractable information per run.  In this 

thesis, a D-optimal design was selected from the various existing designs – the numerically 

built family of optimal designs allows the efficient combination of nominal (cutting tool geome-

try) and numerical (gap width and shaft rotation speed) factors and is flexible concerning the 

chosen underlying design model.  

An ANOVA subsequently distinguishes between significant, real, and non-significant, appar-

ent effects. Finally, the obtained model is validated by checking the data for outliers and ana-

lyzing the residuals on the normality of their distribution and non-desired trends regarding 

runs, model values, and factor settings. 

In this thesis, a coarse-shredding experiment with mixed commercial waste and 32 runs of 

one hour was performed, investigating the influence of the radial gap width, the shaft rotation 

speed, and three cutting tool geometries on the throughput behavior and energy demand. It 

was performed and analyzed, using the described methods, applying a D-optimal design with 

a reduced cubic design equation (see Equation (1) in publication II). Significant models for 

the influence of these factors on the examined process parameters were successfully de-

rived, with 𝑝-values <0.0001. They explain between 73% (hourly mass flow) and 81% (vol-

ume flow steadiness) of the variation in the experimental data. These results prove the capa-

bility of the method for drawing trustworthy conclusions on machine influences on waste 

shredding. 
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4.3 Answer to research question 3 
How can particle size distributions be empirically modeled? 

Particle size distributions can be empirically modeled by describing them as isometric log-

ratio-transformed shares of particle size classes, applying multivariate multiple linear 

regression modeling, and identifying significant factors based on a multivariate analysis 

of variance (MANOVA). 

This research question is addressed in detail in publication III. 

Particle size distributions are a non-scalar property of particulate materials. Consequently, 

answering the research question concerns two issues: how to describe the particle size dis-

tribution and how to handle this kind of description as a dependent variable.  

Common descriptive approaches consist of three classes, with distinct advantages and dis-

advantages: Lists of particles’ sizes preserve detailed information on each particle. But this 

level of detail gets in the way of straightforward interpretation and does not summarize any 

trends in a suitable form for empirical modeling. Summary values, like the Sauter diameter, 

aggregate the information to a small number of values or even to a single scalar value. While 

this aggregation is favorable for modeling, it does not always preserve all relevant infor-

mation on the size distribution of the particles. And analytical probability density functions 

provide detailed information on the distributions while describing them by a small number of 

momentums – but they are only applicable to particle size distributions produced by a small 

number of processes. 

Hence, in this thesis, a distribution-independent approach that allows preserving a deliberate 

choice of information was searched for: a description through isometric log-ratios of a selec-

tion of particle size classes allows summarizing the distribution, maintaining exactly the rele-

vant information for the specific case, while satisfying the mathematical constraints, intro-

duced by the compositional nature of shares of particle size classes. 

Modeling the isometric log-ratio-transformed shares of particle size classes can be per-

formed by extending the methods presented in publication II to multivariate dependent varia-

bles: the result is a multivariate multiple linear regression model obtained from a MANOVA. 

Applying the proposed approach, a significant and validated model for the particle size distri-

bution of mixed commercial waste, comminuted by coarse shredders (see the experiment, 

described in section 4.2), was found, confirming the suitability of the method. For three parti-

cle size classes >80 mm, 30–80 mm, and 0–30 mm, the model identifies the cutting tool ge-

ometry as the only significant factor, explaining 57% of the variance in the data.  
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4.4 Answer to research question 4 
How big is the influence of the radial gap width, the shaft rotation speed, and the cut-

ting tool geometry of an industry-scale coarse shredder on the throughput be-
havior, the energy demand, and the particle size distribution of shredded mixed 
commercial waste? 

For the investigated machine (a Komptech Terminator 5000 SD) and within the examined 

design space, the maximum influences of changing the radial gap width, shaft rotation 

speed, or cutting tool geometry on the throughput, throughput steadiness, and specific 

energy demand at average settings of the corresponding other two factors are shown 

in Table 3. 

Table 3: Maximum changes of the throughput (mass flow and volume flow), throughput 

steadiness, and energy demand caused by changes of the gap width, shaft rotation 

speed, and cutting tool geometries at average settings of the other two factors 

 Gap width Shaft rotation 
speed 

Cutting tool ge-
ometry 

Volume flow 
[m3/h] 38 43 95 

Mass flow [t/h] 4.6 10.8 7.1 
Volume flow 
steadiness [-] 0.02 0.08 0.22 

Mass flow steadi-
ness [-] 0.01 0.07 0.12 

Specific energy 
demand [L/t] 0.45 0.45 1.43 

Concerning the volume flow, the volume flow steadiness, and the mass flow steadi-

ness, the influences of the gap width and the cutting tool geometry are interdependent. 

Consequently, individual considerations of the three cutting tools (F, XXF, and V) show 

that changes of the gap width influence the volume flow by up to 71 m3/h (XXF), the 

volume flow steadiness by up to 0.10 (V), and the mass flow steadiness by up to 0.10 

as well (V and XXF). And when regarding the whole range of examined radial gap 

widths, the maximum effects of the choice of the cutting tool geometries are 129 m3/h 

for the volume flow (changing between F and V at maximum gap width), 0.38 for the 

volume flow steadiness (changing between XXF and V at minimum gap width), and 

0.30 for the mass flow steadiness (changing between XXF and V at maximum gap 

width).  

Regarding the particle size distribution, in terms of the examined size classes >80 mm, 

30–80 mm, and 0–30 mm, it is only significantly affected by the cutting tool geometry, 
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with a maximum effect when switching between F and V (which changes the size class 

of 18% of the comminution product). 

Publications II and III address this research question in detail.  

The discussed effects refer to the expected model values, according to the empirical models, 

which were derived, using the methods addressed in sections 4.2 and 4.3. Their documented 

maximum magnitudes concern the examined design space, which covers the three cutting 

tool geometries F, XXF, and V, radial gap widths from 0% (0 mm) to 100% (33 mm for F, 

35 mm for XXF, and 30 mm at the bottom of the teeth and 38 mm at the top of the teeth for 

V), and shaft rotation speeds of 60% to 100% (of a maximum of 31 rpm).  

The trends of the detected significant average effects on the throughput behavior and energy 

demand are plotted in Figure 4. They refer to the average settings of the corresponding other 

factors, i.e., a gap width of 50%, a shaft rotation speed of 80%, and average observations of 

all three cutting tool geometries. The interactions between the radial gap width and the cut-

ting tool geometry are visualized in Figure 5. Finally, Figure 6 shows the confidence and pre-

diction regions of the composition of the three examined particle size classes, depending on 

the choice of the cutting tool geometry.  

Figure 4 demonstrates that increasing the gap width leads to a linear increase of the volume 

flow, with strong effects for the F and XXF geometries and a non-significant (negative) influ-

ence for the V geometry (Figure 5). The mass flow also linearly increases with the gap width, 

while the specific energy demand decreases almost linearly. And the throughput steadiness 

is hardly affected in average of the three cutting tool geometries (Figure 4), and also at indi-

vidual consideration of the F geometry (Figure 5), while the volume flow steadiness and 

mass flow steadiness show extrema at a gap width of around 50% for the other two geome-

tries – a maximum for XXF and a minimum for V. 

As for the shaft rotation speed, Figure 4 shows that raising it results in a linear increase of 

the volume flow and a quadratic change of the mass flow, with a maximum at about 84% of 

the maximum rotation speed – a discrepancy that is discussed in detail in publication II. The 

volume flow steadiness and mass flow steadiness decrease linearly, with increased shaft 

rotation speeds. And the quadratic dependence of the energy demands’ logarithm on the 

shaft rotation speed results in an almost symmetrical curve with a minimum specific energy 

demand at around 80% of the maximum shaft rotation speed. 

Concerning the cutting tool geometry, the F tool and XXF tools behave quite similarly in 

terms of the mass flow, specific energy demand, and throughput steadiness (Figure 4), with 

a slight dependence of the latter on the gap width (Figure 5). The volume flow is lower for the 

XXF geometry than for the F geometry (Figures 4 and 5), which is coherent with the finer 

material it produces, according to Figure 6. The most significant differences, though, are 
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those between the V geometry and the other two: it produces the finest material of the three 

(Figure 6), at the cost of higher specific energy demand, and lower but steadier throughput, 

in terms of volume and mass (Figures 4 and 5).  

 

Figure 4: Effect plots with confidence bands for the influence of gap width (𝑤), shaft rotation 

speed (𝑠), and cutting tool geometry (𝑐) on throughput, throughput steadiness, and specific 

energy demand, at the average setting of the respective other factors (redesigned version of 

Fig. 3 in publication II – Khodier et al., 2021 – with absolute volume flows and mass flows) 
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Figure 5: Interaction plots for the influence of the factors gap width (𝑤) and cutting tool ge-

ometry (𝑐) on the mean volume flow and the volume-related and mass-related throughput at 

different settings of the other factor (redesigned version of Fig. 4 in publication II – Khodier et 

al., 2021 – with absolute volume flows) 
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Figure 6: Prediction values and confidence and prediction regions for the particle size class 

distributions resulting from different cutting tool geometries (publication III: Khodier and Sarc, 

2021) 

4.5 Answer to research question 5 
How can the particle size distribution of coarsely shredded mixed commercial waste, 

according to a screen, be determined in real-time, using state-of-the-art two-
dimensional sensor data? 

Partial least squares regression models, based on geometric descriptors for the particles, 

calculated from two-dimensional RGB images, turn out to be a promising approach for 

determining the particle size distribution of coarsely shredded mixed commercial waste, 

according to a screen. Separate models are needed for each material class, requiring 

material identification, e.g., through near-infrared sensors. Databases on typical area-

specific particle masses can contribute the link from a distribution of particle counts to 

the usual presentation in terms of mass shares.  
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This research question is addressed in detail in publication IV. 

Particle size distributions – in the context of waste processing – usually refer to the mass 

shares of particles of a specific size. Hence, two elements are necessary for their sensor-

based determination: identifying a particle’s size and its weight. For measurements of the 

individual particles, they must be present as a monolayer of single particles. An approach for 

obtaining the masses of the particles, in literature, consists of identifying a particle’s material 

(e.g., using a near-infrared sensor) and multiplying average area-specific weights for this 

material with the particle’s area, which is easily determined as a count of numbers of pixels. 

This thesis addresses the other component: calculating the particle size, as defined by a 

drum screen, from two-dimensional sensor data.  

The applied approach is based on RGB images of the particles. It comprises three steps: 

First, the images are processed, using several optimizations and transformation algorithms, 

resulting in clear binary images, from which the contours of the particles can be identified. 

Next, a variety of geometric descriptors is calculated based on these outlines, including, for 

example, the minimal and maximal Feret diameters and the area of the smallest surrounding 

triangle. Considering these descriptors, and training data, containing the correct size class of 

the particles according to a drum screen, a partial least squares regression model is built. 

For characterizing new particles, their images are again processed, and the descriptors are 

calculated. Then, the model can be used to calculate the particle sizes from the descriptors. 

In this thesis, the method was applied to particles of the fractions lightweight, and residual 

fraction, with the particle size classes 20–40 mm, 40–60 mm, 60–80 mm, >80 mm, and parti-

cles of the fractions wood, 3D-plastics, and paper and cardboard, of the same particle size 

classes, and additionally a class 10–20 mm.  

The average share of correctly classified particles per size class by material ranges between 

64.2% for paper and cardboard and 97.5% for the residual fraction. When determining the 

complete particle size distribution, some of the classification errors compensate each other – 

an effect that depends on the underlying present distribution. The resulting shares of the par-

ticle size classes were calculated, considering the size classes wrongly classified particles 

were assigned to, once assuming a uniform distribution, and once based on the particle size 

distribution of an actual mixed commercial waste, as analyzed in publication I. For the real 

distribution, the best results get as good as a maximum deviation of 1% for the shares of the 

size classes of wood, and the maximum average error per particle size class is 4% for the 

lightweight fraction. 
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5 CONCLUSION AND OUTLOOK 
The thesis at hand aims to contribute to the methodological knowledge for performing and 

evaluating coarse-shredding experiments and mechanical waste processing experiments in 

general. Furthermore, it seeks to identify and quantify significant factor influences on these 

processes. It targets the optimized operation and real-time control of coarse shredders for 

mixed commercial waste, gaining insights into the effects of potential actuators. Moreover, it 

aims at presenting promising approaches for the sensor-based measurement of particle size 

distributions. The drawn conclusions and arisen future research questions are documented in 

the four following sections, divided into sampling, empirical modeling, the influence of shred-

ding parameters, and sensor-based particle size measurement. Finally, a short presentation 

of the approved follow-up research program “Recycling and Recovery of Waste for Future” 

(ReWaste F), which will start in April 2021, is given. 

5.1 Sampling  
A procedure for sampling coarsely shredded mixed commercial waste was established, 

based on the theory of sampling and the Austrian standard ÖNORM S 2127. And for the first 

time, such a procedure was comprehensively evaluated theoretically and empirically – quan-

tifying the general estimation error through a replication experiment. This combination pro-

vides novel insights on the nature of mixed commercial waste’s heterogeneity, the corre-

sponding sampling errors, and potential strategies for improving waste sampling. 

Concluding from the theoretical evaluations, the defined procedure eliminates incorrect sam-

pling errors almost completely. As for the correct sampling errors, the performed replication 

experiment indicates a high contribution from grouping and segregation errors, caused by a 

high level of distributional heterogeneity. Hence, dividing the target sample mass into more 

increments is likely to have a larger beneficial effect than raising the mass of the composite 

sample – an encouraging finding since an increased number of increments at a constant total 

mass does not affect the efforts for analyzing the composite sample.  

Nevertheless, experimental validation of this conclusion is subject to future research. Finally, 

a database of typical weights of particles from specific particle size-material fractions was 

identified as a desirable target, providing a reference for the assumptions needed to predict 

the fundamental sampling error. 

5.2 Empirical modeling 
The behavior of a coarse shredder for mixed commercial waste was successfully modeled, 

applying univariate and multivariate multiple linear regression on data from a 32 runs Design 

of Experiments-based investigation, and describing the particle size distribution as isometric 
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log-ratio-transformed shares of a choice of particle size classes. The experiment is the first 

industry-scale parameter study on mechanical waste processing that uncompromisingly in-

corporates statistical principles on experimentation and analysis from the initial planning of 

the study to the final interpretation of the results. It seeks to function as a guide and bench-

mark for the scientific execution of mechanical waste processing experiments – demonstrat-

ing the extent of data distortion caused by the heterogeneity of the mixed waste while also 

proving the capability of the applied methods for nevertheless drawing reliable conclusions.  

The applied approach has proven to be suitable for identifying and quantifying significant 

factor influences and calculating corresponding confidence and prediction regions, despite 

the difficult conditions introduced by the required industrial scale of the experiments, the het-

erogeneity of the waste, and the residual variance caused by sampling. 

Concerning the modeling of particle size distributions, a distribution-independent, mathemati-

cally profound descriptive approach was found, suitably summarizing the data for regression 

modeling while preserving exactly the necessary level of information: for modeling purposes, 

the particle size distribution was described as isometric log-ratio-transformed shares of parti-

cle size classes. Limitations of the use of isometric log-ratios, caused by them introducing a 

relative scale, and not being defined, in case of the appearance of zero values, were found 

not to affect the specific case investigated in this thesis. Evaluating whether this is also the 

case for other particle size data from waste processing experiments and, if not, correctly ap-

plying existing approaches for handling these limitations, or developing new ones where 

necessary, are future research topics. 

5.3 Influence of shredding parameters 
The radial gap width, the shaft rotation speed, and the cutting tool geometry of a coarse 

shredder for mixed commercial waste were examined on the significance and magnitude of 

their influence on the average throughput and the throughput steadiness in terms of mass 

and volume, and on the specific energy demand, and the particle size distribution of the 

comminuted waste. The latter was summarized as the particle size classes >80 mm, 30–80 

mm, and 0–30 mm.  

The performed experimental study is the first of its kind, evaluating the influences of the three 

factors from 32 fully randomized runs of one hour, shredding and sampling around 700 met-

ric tons of mixed commercial waste, while recording time-resolved mass flow and volume 

flow data of the comminution product. 

All factors were identified as significant concerning the throughput behavior and energy de-

mand. But only the cutting tool geometry significantly affected the shares of the defined parti-

cle size classes, which are relevant for producing solid recovered fuels. Consequently, the 
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results indicate optimal factor settings, which deviate from common practice: a larger gap 

width, for example, hence increases the throughput while decreasing the specific energy 

demand (which is both favorable), without negatively influencing the product quality.  

The findings on the particle size distribution may, of course, differ for other choices of particle 

size classes. So further investigations may be needed, depending on the relevant particle 

size classes for a specific process. Moreover, the effects of the examined factors on materi-

al-specific particle size distributions were not investigated yet. They may provide more differ-

entiated insights that are potentially relevant for the parametrization of shredders. 

The observed effects are based on average values of an hour of operation. Concerning the 

self-adjustment of a smart processing plant to the waste, making the gap width and shaft 

rotation speed available for digital control appears promising. As for beneficially influencing 

the short-term behavior of shredders, for example, for smoothening their throughput, future 

research must show whether a dynamic adjustment of the same factors is a successful ap-

proach. 

5.4 Sensor-based particle size measurement 
Partial least squares regression models, based on geometric descriptors derived from two-

dimensional images of single particles, were examined as an approach for the online meas-

urement of the particle size distribution of shredded mixed commercial waste, according to 

drum screening.  

The evaluation contributes the first work on the real-time measurement of mixed solid 

wastes’ particle size distributions, defined in a way that reflects the particles’ real process 

behavior. To the best of the doctoral candidate’s knowledge, combining a variety of geomet-

ric descriptors of the projected surface for doing so is also a novelty. 

The performance of the chosen method varies for different material classes. While it is quite 

promising for a residual fraction (classification accuracy of about 98%), the results for paper 

and cardboard are far from satisfactory (about 67% of the particles were correctly classified).  

The suggested approach has proven to be promising. Still, several issues need to be ad-

dressed in future research: While classification errors partially cancel out, when measuring 

the total particle size distribution, this effect is distribution-dependent. Hence, enhancing the 

classification accuracy is necessary, particularly for those materials where the applied meth-

od performed poorly, potentially by replacing the regression with more sophisticated models, 

e.g., from machine learning. 

Furthermore, not all kinds of materials were examined. For metals, for example, this was an 

issue of the contrast and quality of the images: the shapes of the particles could not be suffi-

ciently identified. Therefore, further investigations on the determination of the shape are nec-
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essary. These concern the fields of sensor technology and image processing, as well as 

considerations regarding the color and material of used conveyor belts, which constitute the 

background of the images.  

Moreover, in this thesis, only particles with a minimum size of 10 mm (for wood, paper and 

cardboard, and 3D-plastics) or 20 mm (for the lightweight fraction and the residual fraction) 

were examined. For finer particles, the two following challenges must be addressed in future 

research activities: the sensor-based detection of the particles as objects, and the real-time 

computational handling of the tremendous number of single particles in such fine fractions.  

Finally, investigations on the practicability of the approach for real-time measurements must 

also address the question of needed computational resources in general, considering the 

high number of particles per time and the number of subsequent steps of image processing 

and calculations. An approach for reducing the computational effort is digital “sampling”, only 

evaluating a particular share of the detected particles. 

5.5 Follow-up research program ReWaste F 
The success of the ReWaste4.0 research program led to the application for and approval of 

funding for a follow-up research program entitled “Recycling and Recovery of Waste for Fu-

ture.” The consortium consists of four research institutions and fourteen industry partners, of 

which seven were also involved in ReWaste4.0. The approval of the four-year program, with 

a total budget of about 4.9 million Euros, ensures the continuation of the investigations, tar-

geting the digitalized, smart, more effective and more efficient processing of solid waste, aim-

ing to contribute to the transition towards a circular economy. 
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Figure S1: Exemplary photo of the used waste   14 
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Figure S2: Box and whisker plot, showing the results of the sorting analyses of samples from runs 1-31. LW is a lightweight 16 
fraction, obtained through wind-sifting of all material >10 mm and mainly consists of plastic films and foams. The heavyweight 17 
fraction was then sorted into ME (metal), PL (plastic), WO (wood), PC (paper and cardboard), RE (residual fration). Material 18 
<10 mm was also assighned to RE. The analyses were performed without prior drying. 19 
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Table S1: Experimental design (non-coded) and results 21 

Design Results 

Run 
actual 

Run 
planned 

𝒘[%] 𝒔[%] 𝒄[−] �̇�[−] �̇�[−] �̇�𝟏𝟎/�̇�𝟗𝟎[−] �̇�𝟏𝟎/�̇�𝟗𝟎[−] 𝑬[𝐋𝐭−𝟏] 

1 1 0 60 XXF 0.61 0.71 0.21 0.16 2.5 

2 2 100 100 XXF 1.19 1.27 0.07 0.14 1.9 

3 3 0 60 V 0.49 0.57 0.45 0.45 4.4 

4 4 50 80 V 0.41 0.34 0.31 0.29 8.9 

5 5 0 100 XXF 0.92 0.92 0.06 0.08 2.6 

6 6 100 60 V 0.54 0.55 0.44 0.39 4.2 

7 7 50 80 F 0.99 0.89 0.17 0.21 2.3 

8 8 100 60 F 1.14 0.91 0.19 0.19 1.8 

9 9 0 100 F 1.15 1.03 0.18 0.14 2.1 

10 10 100 100 F 1.63 1.15 0.18 0.16 1.8 

11 11 100 60 XXF 1.02 1.18 0.15 0.14 1.4 

12 12 20 70 V 0.67 0.60 0.44 0.42 4.2 

13 13 0 100 XXF 0.94 1.15 0.10 0.21 1.9 

14 14 0 60 F 0.92 0.65 0.25 0.28 2.8 

15 15 20 70 F 1.00 1.15 0.24 0.27 1.7 

16 17 50 60 XXF 0.93 0.91 0.26 0.32 2.0 

17 20 40 80 XXF 1.19 1.32 0.24 0.27 1.9 

18 21 70 70 F 1.21 1.02 0.23 0.26 1.8 

19 22 0 80 F 1.48 1.48 0.31 0.28 1.5 

20 23 50 60 F 1.29 0.82 0.24 0.29 2.1 

21 24 30 90 V 0.51 0.76 0.09 0.33 4.4 

22 16 0 80 V 0.96 1.18 0.58 0.45 2.3 

23 18 100 100 V 0.79 1.02 0.41 0.40 3.2 

24 19 100 100 V 0.78 0.88 0.49 0.47 4.0 

25 25 100 60 F 1.35 1.26 0.35 0.35 1.4 

26 26 50 100 XXF 1.23 1.33 0.11 0.14 1.9 

27 27 50 60 V 0.57 0.67 0.46 0.43 3.5 

28 28 70 70 V 0.76 1.11 0.57 0.46 2.3 

29 29 0 100 V 0.89 0.93 0.54 0.48 3.5 

30 30 100 80 XXF 1.49 1.66 0.13 0.15 1.4 

31 31 100 100 F 1.81 1.42 0.23 0.20 1.6 

32 32 0 100 F 1.13 1.18 0.13 0.11 2.0 
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Figure S3: Particle size distributions (mass share) of the products of the three cutting tool geometries 24 
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In this document, the code for the data analysis is provided, and the process of finding and
analyzing the model of the multivariate multiple linear regression is documented.

Preparations

Preparing the Environment
The required packages are loaded:

compositions: provides many tools for handling compositional data
regr: is needed for calculating the significances of factors and interactions during model
finding
MPV: is used for calculating PRESS, to calculate 

MVN: is used for testing on multivariate normality

Welcome to compositions, a package for compositional data analysis. 
Find an intro with "? compositions" 

Attaching package: 'compositions' 

The following objects are masked from 'package:stats': 

    cor, cov, dist, var 

The following objects are masked from 'package:base': 

    %*%, norm, scale, scale.default 

R2
predict

In [1]: library(compositions) 



Loading required package: plgraphics 

Registered S3 methods overwritten by 'plgraphics': 
  method       from     
  nobs.survreg survival 
  nobs.coxph   survival 

Registered S3 methods overwritten by 'regr': 
  method         from  
  add1.default   stats 
  add1.mlm       stats 
  drop1.default  stats 
  drop1.mlm      stats 
  drop1.multinom nnet  

Warning message: 
"package 'MPV' was built under R version 4.0.3" 
Loading required package: lattice 

Loading required package: KernSmooth 

KernSmooth 2.23 loaded 
Copyright M. P. Wand 1997-2009 

Registered S3 methods overwritten by 'car': 
  method                          from 
  influence.merMod                lme4 
  cooks.distance.influence.merMod lme4 
  dfbeta.influence.merMod         lme4 
  dfbetas.influence.merMod        lme4 

Registered S3 method overwritten by 'GGally': 
  method from    
  +.gg   ggplot2 

sROC 0.1-2 loaded 

The versions of R and the loaded packages are printed, for the purpose of documentation:

R version 4.0.2 (2020-06-22) 
Platform: x86_64-w64-mingw32/x64 (64-bit) 
Running under: Windows 10 x64 (build 17134) 

Matrix products: default 

locale: 
[1] LC_COLLATE=German_Austria.1252  LC_CTYPE=German_Austria.1252    
[3] LC_MONETARY=German_Austria.1252 LC_NUMERIC=C                    
[5] LC_TIME=German_Austria.1252     

attached base packages: 
[1] stats     graphics  grDevices utils     datasets  methods   base      

other attached packages: 
[1] MVN_5.8            MPV_1.56           KernSmooth_2.23-17 lattice_0.20-41    

In [2]: library(regr) 

In [3]: library(MPV) 

In [4]: library(MVN) 

In [5]: sessionInfo() 



[5] regr_1.1           plgraphics_1.1     compositions_2.0-1 

loaded via a namespace (and not attached): 
  [1] minqa_1.2.4           colorspace_1.4-1      mvoutlier_2.0.9       
  [4] modeltools_0.2-23     ellipsis_0.3.1        class_7.3-17          
  [7] rio_0.5.16            mclust_5.4.6          IRdisplay_0.7.0       
 [10] pls_2.7-3             base64enc_0.1-3       rstudioapi_0.11       
 [13] cvTools_0.3.2         MatrixModels_0.4-1    flexmix_2.3-15        
 [16] mvtnorm_1.1-1         ranger_0.12.1         xml2_1.3.2            
 [19] sROC_0.1-2            splines_4.0.2         leaps_3.1             
 [22] mnormt_2.0.2          robustbase_0.93-6     knitr_1.29            
 [25] IRkernel_1.1.1        jsonlite_1.7.1        nloptr_1.2.2.2        
 [28] robCompositions_2.2.1 kernlab_0.9-29        cluster_2.1.0         
 [31] rrcov_1.5-5           compiler_4.0.2        httr_1.4.2            
 [34] Matrix_1.2-18         htmltools_0.5.0       quantreg_5.61         
 [37] tools_4.0.2           gtable_0.3.0          glue_1.4.2            
 [40] dplyr_1.0.2           Rcpp_1.0.5            carData_3.0-4         
 [43] cellranger_1.1.0      zCompositions_1.3.4   vctrs_0.3.4           
 [46] sgeostat_1.0-27       nlme_3.1-148          conquer_1.0.2         
 [49] fpc_2.2-7             psych_2.0.8           lmtest_0.9-38         
 [52] tensorA_0.36.1        xfun_0.17             laeken_0.5.1          
 [55] stringr_1.4.0         openxlsx_4.1.5        lme4_1.1-23           
 [58] rvest_0.3.6           lifecycle_0.2.0       statmod_1.4.34        
 [61] DEoptimR_1.0-8        MASS_7.3-51.6         zoo_1.8-8             
 [64] scales_1.1.1          VIM_6.0.0             hms_0.5.3             
 [67] parallel_4.0.2        SparseM_1.78          RColorBrewer_1.1-2    
 [70] curl_4.3              NADA_1.6-1.1          ggplot2_3.3.2         
 [73] reshape_0.8.8         stringi_1.4.6         nortest_1.0-4         
 [76] pcaPP_1.9-73          e1071_1.7-3           energy_1.7-7          
 [79] boot_1.3-25           zip_2.1.1             truncnorm_1.0-8       
 [82] chron_2.3-56          repr_1.1.0            prabclus_2.3-2        
 [85] rlang_0.4.7           pkgconfig_2.0.3       moments_0.14          
 [88] matrixStats_0.56.0    evaluate_0.14         purrr_0.3.4           
 [91] tidyselect_1.1.0      GGally_2.0.0          plyr_1.8.6            
 [94] magrittr_1.5          R6_2.4.1              generics_0.0.2        
 [97] pbdZMQ_0.3-3.1        pillar_1.4.6          haven_2.3.1           
[100] foreign_0.8-80        survival_3.1-12       abind_1.4-5           
[103] sp_1.4-2              nnet_7.3-14           tibble_3.0.3          
[106] bayesm_3.1-4          crayon_1.3.4          car_3.0-9             
[109] uuid_0.1-4            tmvnsim_1.0-2         rmarkdown_2.3         
[112] grid_4.0.2            readxl_1.3.1          data.table_1.13.0     
[115] forcats_0.5.0         diptest_0.75-7        vcd_1.4-7             
[118] digest_0.6.25         webshot_0.5.2         tidyr_1.1.2           
[121] stats4_4.0.2          munsell_0.5.0         viridisLite_0.3.0     
[124] kableExtra_1.2.1     

Loading the Data
The matrix of the independent variables  is loaded into a variable "X" from a .csv file. The file
contains three columns, which contain the settings for the gap width ( ), and the shaft rotation
speed ( ) in coded form. The third column contains the cutting tool geometry ( ) in non-coded
form. The rows are ordered according to the order the runs were performed.

The matrix of the dependent variable  is loaded into a variable "Y" from a .csv file. The file also
contains three columns. They contain the shares of the fractions >80 mm, 30-80 mm, and 0-30
mm, which are named "gr80", "y30-80", "y0-30".

      w    s   c 
1  -1.0 -1.0 XXF 
2   1.0  1.0 XXF 
3  -1.0 -1.0   V 
4   0.0  0.0   V 

X

w

s c

Y

In [6]: X<-read.table(file="X.csv", header=TRUE) 
print(X) 



5  -1.0  1.0 XXF 
6   1.0 -1.0   V 
7   0.0  0.0   F 
8   1.0 -1.0   F 
9  -1.0  1.0   F 
10  1.0  1.0   F 
11  1.0 -1.0 XXF 
12 -0.6 -0.5   V 
13 -1.0  1.0 XXF 
14 -1.0 -1.0   F 
15 -0.6 -0.5   F 
16  0.0 -1.0 XXF 
17 -0.2  0.0 XXF 
18  0.4 -0.5   F 
19 -1.0  0.0   F 
20  0.0 -1.0   F 
21 -0.4  0.5   V 
22 -1.0  0.0   V 
23  1.0  1.0   V 
24  1.0  1.0   V 
25  1.0 -1.0   F 
26  0.0  1.0 XXF 
27  0.0 -1.0   V 
28  0.4 -0.5   V 
29 -1.0  1.0   V 
30  1.0  0.0 XXF 
31  1.0  1.0   F 
32 -1.0  1.0   F 

     gr80 y30-80  y0-30 
1  0.3210 0.3490 0.3300 
2  0.2898 0.3135 0.3968 
3  0.1833 0.4431 0.3735 
4  0.2840 0.4602 0.2558 
5  0.2866 0.3496 0.3638 
6  0.1646 0.4424 0.3930 
7  0.3993 0.3057 0.2950 
8  0.4137 0.2843 0.3020 
9  0.2616 0.3067 0.4317 
10 0.5029 0.2482 0.2489 
11 0.2482 0.3208 0.4310 
12 0.2469 0.4088 0.3442 
13 0.4023 0.3048 0.2929 
14 0.4837 0.2942 0.2221 
15 0.2878 0.3306 0.3815 
16 0.2517 0.3942 0.3541 
17 0.2816 0.3392 0.3792 
18 0.3844 0.3247 0.2908 
19 0.3013 0.3277 0.3711 
20 0.4958 0.3088 0.1954 
21 0.1985 0.4200 0.3815 
22 0.2086 0.4076 0.3839 
23 0.2471 0.4021 0.3508 
24 0.1781 0.3951 0.4268 
25 0.4348 0.3002 0.2650 
26 0.3067 0.3767 0.3166 
27 0.2657 0.3908 0.3434 
28 0.1834 0.3470 0.4697 
29 0.1744 0.4266 0.3990 
30 0.3232 0.3498 0.3270 
31 0.4719 0.3012 0.2269 
32 0.3086 0.3207 0.3707 

Preparing the Data

In [7]: Y<-read.table(file="Y.csv",header=TRUE) 
names(Y)<-c("gr80","y30-80","y0-30") 
print(Y) 



For the purpose of simplicity, the data from X is extracted into individual variables. The gap
width  and the shaft rotation speed  are saved as "w" and "s". Their squares are also saved as
variables "w2" and "s2" for easier handling in modeling. The cutting tool geometry  is saved as
a variable "c", defining, that it contains factor levels. Furthermore, it is defined, that sum
contrasts are used for coding c. Finally, the contrast matrix of c is printed.

A matrix: 3 × 2
of type dbl

F 1 0

V 0 1

XXF -1 -1

Next, it is defined, that Y contains compositional data. Then, the isometric log-ratio
transformations of Y are saved as "Y.ilr", using the default ilr base. The names of the columns of
Y.ilr are then named "ilr1" and "ilr2". Finally, the ilr base of Y.ilr is printed.

A matrix: 3 × 2 of type dbl

1 -0.7071068 -0.4082483

2 0.7071068 -0.4082483

3 0.0000000 0.8164966

Data Analysis

Visualization
To get a first impression, dependencies of the compositional and ilr-transformed data on , ,
and  are visualized.

Warning message in .S3methods(generic.function, class, envir): 
"generic function 'panel' dispatches methods for generic 'plot'" 

w s

c

In [8]: w<-X$w 
w2<-w^2 
s<-X$s 
s2<-s^2 
c<-factor(X$c) 
contrasts(c)<-"contr.sum" 
contrasts(c) 

In [9]: Y<-acomp(Y) 
Y.ilr<-ilr(Y) 
names(Y.ilr)<-c("ilr1","ilr2") 
ilrBase(Y) 

w s

c

In [10]: pairwisePlot(cbind(w,s,c),Y) 



Warning message in .S3methods(generic.function, class, envir): 
"generic function 'panel' dispatches methods for generic 'plot'" 

Based on the plot, dependencies on the cutting tool geometry are visible. Their significance is
subject to further analyses. No immedeately visible dependencies on the gap width and shaft
rotation speed can be seen.

Model Choice

In [11]: pairwisePlot(cbind(w,s,c),Y.ilr) 



A proper model is chosen, starting with the reduced cubic design model, according to Equation
(14) in the paper:

The model is saved in a variable "model".

In the following, the significance of all factors and interactions, which can be dismissed without
violating the model's hierarchy is evaluated. This is done using the function "drop1()" from the
"regr" package, which calculates each dropable factors' p-value, for the case where all other
factors are kept. Since "drop1()" does not identify s2 and w2 as higher order terms of s and w,
the hierarchy must additionally be checked manually. As long as dropable factors or interactions
with a p-value higher than p=0.1 are present, the term with the highest p-value is droped, and
the p-values are re-calculated.

A data.frame: 4 × 5

Pillai F.stat dfnum dfden p.value

<dbl> <dbl> <dbl> <dbl> <dbl>

c:w2 0.3565918 1.5188817 4 28 0.2236688

c:s2 0.2486506 0.9938361 4 28 0.4272063

w:s:c 0.1884995 0.7283999 4 28 0.5801124

<total> 1.4072946 2.3743574 28 28 0.0127443

All printed terms are dropable, considering hierarchy. Hence "w:s:c" is dropped, as it has the
highest p-value.

A data.frame: 6 × 5

Pillai F.stat dfnum dfden p.value

<dbl> <dbl> <dbl> <dbl> <dbl>

w:s 0.3103325 3.3748064 2 15 0.06163082

w:c 0.3102038 1.4685975 4 32 0.23477507

s:c 0.1634753 0.7121070 4 32 0.58974894

c:w2 0.3436120 1.6595724 4 32 0.18366090

c:s2 0.2045822 0.9115748 4 32 0.46905331

<total> 1.3549123 2.1003536 32 32 0.01971546

"w:c" and "s:c" must be kept for the model's hierarchy. "c:s2" is the remaining term with the
highest p-value and is therfore dropped.
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∑
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∑
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jskcm1 c

n
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In [12]: model<-lm(cbind(ilr1,ilr2)~w+s+c+w2+s2+w:s+w:c+s:c+w2:c+s2:c+w:s:c,data=Y.ilr) 

In [13]: drop1(model,test="Pillai") 

In [14]: model<-lm(cbind(ilr1,ilr2)~w+s+c+w2+s2+w:s+w:c+s:c+w2:c+s2:c,data=Y.ilr) 
drop1(model,test="Pillai") 

In [15]: model<-lm(cbind(ilr1,ilr2)~w+s+c+w2+s2+w:s+w:c+s:c+w2:c,data=Y.ilr) 
drop1(model,test="Pillai") 



A data.frame: 6 × 5

Pillai F.stat dfnum dfden p.value

<dbl> <dbl> <dbl> <dbl> <dbl>

s2 0.02908321 0.2546122 2 17 0.77812093

w:s 0.25141769 2.8547968 2 17 0.08531713

w:c 0.31387435 1.6753610 4 36 0.17704982

s:c 0.14499921 0.7034999 4 36 0.59473494

c:w2 0.35409505 1.9362330 4 36 0.12549707

<total> 1.29160622 1.8232885 36 36 0.03783630

"w:c" must be kept for the model's hierarchy. "s2" is the remaining term with the highest p-value
and is therefore dropped.

A data.frame: 5 × 5

Pillai F.stat dfnum dfden p.value

<dbl> <dbl> <dbl> <dbl> <dbl>

w:s 0.2445743 2.9138119 2 18 0.08011723

w:c 0.3285391 1.8673012 4 38 0.13623036

s:c 0.1422602 0.7274817 4 38 0.57873901

c:w2 0.3504631 2.0183844 4 38 0.11136184

<total> 1.2763102 1.7636150 38 38 0.04218230

"w:c" must be kept for the model's hierarchy. "s:c" is the remaining term with the highest p-value
and is therefore dropped.

A data.frame: 4 × 5

Pillai F.stat dfnum dfden p.value

<dbl> <dbl> <dbl> <dbl> <dbl>

w:s 0.1935762 2.400428 2 20 0.11631433

w:c 0.3285402 2.063868 4 42 0.10273368

c:w2 0.3416119 2.162898 4 42 0.08980521

<total> 1.2264776 1.585575 42 42 0.06966111

"w:c" must be kept for the model's hierarchy. "w:s" is the remaining term with the highest p-
value and is therefore dropped.

A data.frame: 4 × 5

In [16]: model<-lm(cbind(ilr1,ilr2)~w+s+c+w2+w:s+w:c+s:c+w2:c,data=Y.ilr) 
drop1(model,test="Pillai") 

In [17]: model<-lm(cbind(ilr1,ilr2)~w+s+c+w2+w:s+w:c+w2:c,data=Y.ilr) 
drop1(model,test="Pillai") 

In [18]: model<-lm(cbind(ilr1,ilr2)~w+s+c+w2+w:c+w2:c,data=Y.ilr) 
drop1(model,test="Pillai") 



Pillai F.stat dfnum dfden p.value

<dbl> <dbl> <dbl> <dbl> <dbl>

Pillai F.stat dfnum dfden p.value

<dbl> <dbl> <dbl> <dbl> <dbl>

s 0.0488256 0.5389851 2 21 0.5911962

w:c 0.2731460 1.7399305 4 44 0.1583155

c:w2 0.2965543 1.9149992 4 44 0.1247918

<total> 1.1477190 1.3466439 44 44 0.1636184

"w:c" must be kept for the model's hierarchy. "s" is the remaining term with the highest p-value
and is therefore dropped.

A data.frame: 3 × 5

Pillai F.stat dfnum dfden p.value

<dbl> <dbl> <dbl> <dbl> <dbl>

w:c 0.2734450 1.821325 4 46 0.1409107

c:w2 0.2834389 1.898883 4 46 0.1267175

<total> 1.1337923 1.308915 46 46 0.1823114

"w:c" must be kept for the model's hierarchy. "c:w2" is the remaining term with the highest p-
value and is therefore dropped.

A data.frame: 3 × 5

Pillai F.stat dfnum dfden p.value

<dbl> <dbl> <dbl> <dbl> <dbl>

w2 0.1009006 1.346689 2 24 0.2790568

w:c 0.2374396 1.683911 4 50 0.1684308

<total> 1.0880683 1.193147 50 50 0.2673526

Both terms are dropable, considering model hierarchy. "w2" is dropped, being the term with the
highest p-value.

A data.frame: 2 × 5

Pillai F.stat dfnum dfden p.value

<dbl> <dbl> <dbl> <dbl> <dbl>

w:c 0.235857 1.738034 4 52 0.1556973

<total> 1.009897 1.019993 52 52 0.4716869

"w:c" is the only dropable term. Since its p-value is higher than 0.1 it is dropped.

In [19]: model<-lm(cbind(ilr1,ilr2)~w+c+w2+w:c+w2:c,data=Y.ilr) 
drop1(model,test="Pillai") 

In [20]: model<-lm(cbind(ilr1,ilr2)~w+c+w2+w:c,data=Y.ilr) 
drop1(model,test="Pillai") 

In [21]: model<-lm(cbind(ilr1,ilr2)~w+c+w:c,data=Y.ilr) 
drop1(model,test="Pillai") 

In [22]: model<-lm(cbind(ilr1,ilr2)~w+c,data=Y.ilr) 



A data.frame: 3 × 5

Pillai F.stat dfnum dfden p.value

<dbl> <dbl> <dbl> <dbl> <dbl>

w 0.0948458 1.4145858 2 27 2.604682e-01

c 0.8619933 10.6044255 4 56 1.817275e-06

<total> 0.8666652 0.7647036 56 56 8.408135e-01

"w" is the term with the higher p-value. Since its higher than 0.1, it is dropped.

A data.frame: 2 × 5

Pillai F.stat dfnum dfden p.value

<dbl> <dbl> <dbl> <dbl> <dbl>

c 0.8479475 10.672464 4 58 1.501489e-06

<total> 0.8479475 0.736032 58 58 8.769300e-01

The remaining term "c" is highly significant, with a p-value much smaller than 0.1. Hence, the
final model is found:

Model Analysis
First, three different coefficients of determinations are calculated. The regular coefficient of
determination  ("R2"), the adjusted coefficient of determination  ("R2.adj"), and the

prediction coefficient of determination  ("R2.pred"), which is calculated, based on Allen's 
, using the "PRESS" function from the "MPV" package, and the total sum of squares

("SST").

0.571286609899341

0.541720169202744

0.482605122103295

The model covers 57% of the observed variance, with an adjusted coefficient of determination of
0.54. While these values do not seem very high at a first glance, they are not bad, considering
the expectable residual error due to changes in the waste. The prediction coefficient of
determination is close to the adjusted coefficient of determination. Consequently, overfitting is

drop1(model,test="Pillai") 

In [23]: model<-lm(cbind(ilr1,ilr2)~c,data=Y.ilr) 
drop1(model,test="Pillai") 

ŷ (r) = K0000 + K0010c1 + K0001c2

R2 R2
adj

R2
pred

PRESS

In [24]: (R2<-R2(model, adjust=FALSE)) 

In [25]: (R2.adj<-R2(model, adjust=TRUE)) 

In [26]: SST<-sum((Y.ilr-mean(Y.ilr))^2) 
PRESS<-PRESS(model) 
(R2.pred<-(1-(PRESS/SST))) 



not very likely. This makes sense, as the number of data is considerably higher than the number
of model coefficients.

Next, the residuals are analyzed. Fist the residuals of each ilr-coordinate are saved as "ilr1.resid"
and "ilr2.resid". Then, they are grahpically checked for their univariate normality, using quantile-
quantile-plots.

The plot for ilr1:

The plot does not indicate deviations from normality, which is good. The plot for ilr2:

In [27]: ilr1.resid<-resid(model)[,1] 
ilr2.resid<-resid(model)[,2] 

In [28]: qqnorm(ilr1.resid) 
qqline(ilr1.resid) 

In [29]: qqnorm(ilr2.resid) 
qqline(ilr2.resid) 



The plot also does not show deviatios from normality. Finally, the residuals are tested on
multivariate normaility, based ond Mardia's Skewness and Mardia's Kurtosis. The used function
"mvn" from the MVN package also tests the residuals on univariate normality, based on the
Shapiro-Wilk test.

$multivariateNormality A data.frame: 3 × 4

Test Statistic p value Result

<chr> <fct> <fct> <chr>

Mardia Skewness 1.1144290431284 0.891976172305813 YES

Mardia Kurtosis -0.3772196099597 0.706010408281269 YES

MVN NA NA YES

$univariateNormality A data.frame: 2 × 5

Test Variable Statistic p value Normality

<I<chr>> <I<chr>> <I<chr>> <I<chr>> <I<chr>>

1 Shapiro-Wilk ilr1 0.9759 0.6739 YES

2 Shapiro-Wilk ilr2 0.9834 0.8905 YES

$Descriptives A data.frame: 2 × 10

n Mean Std.Dev Median Min Max

<int> <dbl> <dbl> <dbl> <dbl> <dbl> <

ilr1 32 4.445229e-
18 0.1610418 -0.01293467 -0.3292027 0.2825931 -0.127

ilr2 32 -5.421011e-
19 0.2193393 0.02178508 -0.4741227 0.4746113 -0.128

In [30]: mvn(resid(model)) 



The tests confirm univariate and multivariate normality. Hence, the tests from the MANOVA are
valid and consequently the model is accepted.

Model Representation
In the following, the confidence and prediction bands for the model will be visualized, based on
the code described by van den Boogaart and Tolosana-Delgado [40]. First, a function
"getModelMatrix" is defined, which outputs the X matrix of the model in a representation that
consideres applied contrasts.

Next, the prediction value and the confidence and prediction ellipses for the F cutting tool are
calculated and represented in the back-transformed Euclidian space. For doing so, first, new data
is defined:

Then, the prediction values are calculated, using the "predict" function, and backtransforming
the results using the "ilrInv()". The results are saved as "F.prediction".

     gr80    y30-80     y0-30  
0.3934214 0.3092926 0.2972859  
attr(,"class") 
[1] acomp

Afterwards, the residual variance "varEpsilon" is calculated:

A matrix: 2 × 2 of type dbl

ilr1 ilr2

ilr1 0.02772303 0.02857064

ilr2 0.02857064 0.05142765

Finally, the parameter estimation variance "F.varEst" is calculated:

A matrix: 2 × 2 of type dbl

0.002310252 0.002380887

0.002380887 0.004285638

The steps for calculating the prediction and the parameter estimation variance are repeated for

In [31]: getModelMatrix<-function(object,newdata=NULL,na.action=na.pass) { 
  if(is.null(newdata)) 
    return(model.matrix(object)) 
  Terms<-delete.response(terms(object)) 
  mf<-model.frame(Terms,newdata,na.action=na.action,xlev=object$xlevels) 
  if(!is.null(cl<-attr(Terms,"dataClasses"))) 
    .checkMFClasses(cl,mf) 
  model.matrix(Terms,mf,contrasts.arg=object$contrasts) 
} 

In [32]: F.newdata<-data.frame(c="F") 

In [33]: (F.prediction<-ilrInv(predict(model,newdata=F.newdata),orig=Y)) 

In [34]: (varEpsilon=var(model)) 

In [35]: F.X<-getModelMatrix(model,F.newdata) 
F.XX<-kronecker(diag(ncol(predict(model))),F.X) 
(F.varEst=F.XX %*% vcov(model) %*% t(F.XX)) 



the V and XXF units:

     gr80    y30-80     y0-30  
0.2105087 0.4154923 0.3739990  
attr(,"class") 
[1] acomp

A matrix: 2 × 2 of type dbl

0.002520275 0.002597331

0.002597331 0.004675241

     gr80    y30-80     y0-30  
0.3001922 0.3452792 0.3545285  
attr(,"class") 
[1] acomp

A matrix: 2 × 2 of type dbl

0.003080336 0.003174515

0.003174515 0.005714183

Next, the confidence level for the condidence and prediction regions is defined:

Finally, the plot is drawn: First, the grid of the plot is drawn. Next the measured data is plotted.
Then, the predictions are plotted. Last, the corresponding confidence ellipses and the prediction
ellipses are plotted. They are eliptical in the ilr-space. Hence, the deviation from ellipses results
from the back-transformation to the Euclidian space. Finally, the legend is added.

In [36]: V.newdata<-data.frame(c="V") 
(V.prediction<-ilrInv(predict(model,newdata=V.newdata),orig=Y)) 

In [37]: V.X<-getModelMatrix(model,V.newdata) 
V.XX<-kronecker(diag(ncol(predict(model))),V.X)
(V.varEst=V.XX %*% vcov(model) %*% t(V.XX)) 

In [38]: XXF.newdata<-data.frame(c="XXF") 
(XXF.prediction<-ilrInv(predict(model,newdata=XXF.newdata),orig=Y)) 

In [39]: XXF.X<-getModelMatrix(model,XXF.newdata) 
XXF.XX<-kronecker(diag(ncol(predict(model))),XXF.X) 
(XXF.varEst=XXF.XX %*% vcov(model) %*% t(XXF.XX)) 

In [40]: alpha=0.05 

In [41]: # plot preparation grid 
plot(acomp(c(0.2,0.6,0.2)),pch='.',col='grey',cex=0.5,
     labels=c(">80 mm","30-80 mm","0-30 mm"),axes=TRUE) 
myTicks<-1:9/10 
for (i in myTicks){ 
    x1<-i 
    x2<-1:9999/10000*(1-x1) 
    x3<-1-x1-x2 
    x1<-1-x2-x3 
    x<-acomp(cbind(x1,x2,x3)) 
    plot(x,pch='.',col='grey',add=TRUE) 
     
    x2<-i 
    x3<-1:9999/10000*(1-x2) 
    x1<-1-x2-x3 
    x2<-1-x1-x3 
    x<-acomp(cbind(x1,x2,x3)) 
    plot(x,pch='.',col='grey',add=TRUE) 



     
    x3<-i 
    x1<-1:9999/10000*(1-x3) 
    x2<-1-x3-x1 
    x3<-1-x1-x2 
    x<-acomp(cbind(x1,x2,x3)) 
    plot(x,pch='.',col='grey',add=TRUE) 
} 
 
# plotting 
my.lwd<-3 
plot(Y[X$c=="F",],pch=6,add=TRUE,col="red",lwd=my.lwd) 
plot(Y[X$c=="V",],pch=4,add=TRUE,cex=0.5,col="green",lwd=my.lwd) 
plot(Y[X$c=="XXF",],pch=1,add=TRUE,cex=0.5,col="blue",lwd=my.lwd) 
 
plot(F.prediction,pch=17,add=TRUE,col="red",lwd=my.lwd) 
plot(V.prediction,pch=15,add=TRUE,col="green",lwd=my.lwd) 
plot(XXF.prediction,pch=19,add=TRUE,col="blue",lwd=my.lwd) 
 
ellipses(F.prediction,ilrvar2clr(F.varEst),r=ConfRadius(model,1-alpha), 
         col="red",lwd=my.lwd) 
ellipses(F.prediction,ilrvar2clr(varEpsilon),r=ConfRadius(model,1-alpha), 
         col="red",lty=3,lwd=my.lwd) 
 
ellipses(V.prediction,ilrvar2clr(V.varEst),r=ConfRadius(model,1-alpha), 
         col="green",lwd=my.lwd) 
ellipses(V.prediction,ilrvar2clr(varEpsilon),r=ConfRadius(model,1-alpha), 
         col="green",lty=3,lwd=my.lwd) 
 
ellipses(XXF.prediction,ilrvar2clr(XXF.varEst),r=ConfRadius(model,1-alpha), 
         col="blue",lwd=my.lwd) 
ellipses(XXF.prediction,ilrvar2clr(varEpsilon),r=ConfRadius(model,1-alpha), 
         col="blue",lty="dotted",lwd=my.lwd) 
 
legend(0,1, legend=c("F data","V data", "XXF data", "F prediction", "V prediction", 
                     "XXF prediction", "confidence region", "prediction region"), 
       col=c("red", "green", "blue", "red", "green", "blue", "black", "black"),  
       lty=c(0,0,0,0,0,0,1,3), 
       pch=c(6,4,1,17,15,19,NA,NA),cex=0.8) 



Reference
40. van den Boogaart, K.G.; Tolosana-Delgado, R. Analyzing Compositional Data with R;
Springer: Dordrecht, 2013, ISBN 978-3-642-36809-7.
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