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Kurzfassung 

Effizienzsteigerung von sensorgestützten Sortierprozessen für kunststoffhaltige Abfallströme 

Das Ziel dieser Doktorarbeit ist die Validierung neuer Methoden, die zu Effizienzsteigerung in 
der sensorgestützten Sortierung von kunststoffhaltigen Abfällen führen. Die Abgrenzung 
dieser Arbeit ist die Aggregatebene, die Anlagenebene wird nicht berücksichtigt. Bei dem 
verwendeten Aggregat handelt es sich um den Versuchstand für sensorgestützte Sortierung 
am Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben. 
Die verwendete Sensortechnologie ist Nahinfrarotspektroskopie. 

Eine Steigerung der Sortiereffizienz kann entweder durch eine Optimierung der Erkennung 
oder des mechanischen Partikelaustrags erfolgen. Als eine Lösung wird die Datenanalytik 
aufgezeigt, daher liegt ein Schwerpunkt auf der Verwendung statistischer Methoden. 

Zur Optimierung der Identifizierung von Partikeln werden Forschungsarbeiten in den folgenden 
Bereichen durchgeführt: 

 Einfluss der Oberflächenrauheit 
 Einfluss von Reflektoren als Hintergrundmaterial 
 Einsatz maschineller Lernansätze 

Zur Optimierung des mechanischen Austrags von Partikeln werden Forschungsarbeiten in 
den folgenden Bereichen durchgeführt: 

 Korrelationen zwischen den Input-Parametern (Input-Zusammensetzung, 
Durchsatzrate) und den Output-Parametern (Reinheit, Ausbringung, 
Wertstoffausbringung, fehlerhaft ausgeschleuste Partikel) eines sensorgestützten 
Sortierprozesses 

 Mathematische Ansätze zur Beschreibung des optimalen Betriebspunkts einer 
sensorgestützten Sortiermaschine zur Erzielung eines bestimmten 
Sortierergebnisses 

Als zentrales Ergebnis lässt sich festhalten, dass es einer Sortieranlage möglich ist, die 
Reinheit zu erhöhen, indem sie Ansätze des maschinellen Lernens zur Optimierung der 
Erkennung nutzt oder die Anlage im optimalen Betriebspunkt betreibt - Beides ohne 
wesentliche Modifikationen der Anlage. Diese Lösungen tragen dazu bei, die Menge an 
recyceltem Kunststoff zu erhöhen, sodass weniger Kunststoffabfälle thermisch behandelt 
werden müssen. 

Schlagwörter 

Sensorgestützte Sortierung, Sortiereffizienz, NIR-Sortierung, Datenanalytik, 
Maschinelles Lernen, Regressionsmodell, Optimaler Betriebspunkt, Durchsatz, 
Transflektion, Oberflächenrauigkeit 



 

 

Abstract 

Increasing Efficiency in Sensor-Based Sorting Processes for Waste Streams consisting of 
Plastics 

This doctoral thesis aims to validate new methods that increase the efficiency of sensor-based 
sorting processes for waste streams consisting of plastics. It deals with set boundaries on 
aggregate level; the plant level is not considered. The used equipment is the experimental 
sensor-based sorting setup at the Chair of Waste Processing Technology and Waste 
Management at Montanuniversität Leoben and the used sensor technology near-infrared 
spectroscopy. 

Increasing the sorting efficiency can be done by optimizing the identification of the mechanical 
discharge of particles. Data analytics is shown as a solution to achieve optimization, therefore 
this thesis focuses on using data-analytics-related methods. 

For optimizing the identification of particles, research is conducted in the fields: 

 Influence of surface roughness 
 Influence of reflectors as background material 
 Usage of machine learning approaches 

For optimizing the mechanical discharge of particles, research is conducted in the fields: 

 Correlations between the input parameters (input composition, throughput rate) and 
the output parameters (purity, recovery, yield, incorrect discharged particles) of a 
sensor-based sorting process 

 Mathematical approaches to describe the optimal operation point of a sensor-based 
sorting machine to achieve a specific sorting result 

It is stated that this outcome allows a sorting plant to increase purity by using machine learning 
approaches to optimize the identification or running the plant on the optimal operation point, 
both without substantially adapting the plant. Superordinate considered these solutions help 
to increase the amount of recycled plastic so that less plastic waste is thermally treated. 

Keywords 

Sensor-Based Sorting, Sorting Efficiency, NIR-Sorting, Data Analytics, 
Machine Learning, Regression Model, Optimal Operation Point, Throughput Rate, 
Transflection, Surface Roughness 
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1 Compilation of the doctoral thesis 
In this chapter, the organization of this doctoral thesis, "Increasing efficiency in sensor-based 
sorting processes for waste streams consisting of plastics", is the first part. The second part 
consists of the complied publications and the scope of investigations. All publications of this 
doctoral thesis are available "Open access". A graphical abstract (Figure 1-1) at the end of 
chapter 1.1 of this doctoral thesis visualizes the compilation and content. 

1.1 Thesis organization 

The thesis starts with an "Introduction" to sensor-based sorting and corresponding 
regulations for recycling plastic waste with Publication I, Review Article, "Sensor-based and 
Robot Sorting Processes and their Role in Achieving European Recycling Goals - A Review". 
Further, the superordinate research questions in increasing the efficiency in sensor-based 
sorting for plastic waste streams are defined in Publication II, Mini Review Article, 
"Challenges to Increase Plastic Sorting Efficiency". 

 

Environmental Analysis 

After the State-of-the-Art is evaluated in Publication I and the overall scientific imperative is 
elucidated, it is necessary to perform two environmental analyses. The first is to discover which 
qualities of sorted plastic waste are required for recycling processes of different plastic types 
in Austria. The corresponding environmental analysis is done in Publication III, Original 
Article, "Benchmark Analysis for Plastic Recyclates in Austrian Waste Management". 

Furthermore, suitable solutions need to be found on how it can be possible to increase the 
plastic sorting efficiency in sensor-based waste sorting plants. The evaluation if data analytics 
is a suitable option for increasing plastic sorting efficiency and how this can be done is 
performed in Publication IV, Original Article, "Assessment of Technological Developments 
in Data Analytics for Sensor-Based and Robot Sorting Plants Based on Maturity Levels to 
Improve Austrian Waste Sorting Plants". 

 

Experimental Design 

Since the required qualities to be achieved in a plastic sorting process and the possibilities of 
implementing data analytics to increase the plastic sorting efficiency are known, the next steps 
are to develop experimental designs to achieve this goal. 

At the beginning of the chapter "Experimental Design", the equipment and the physical 
principles of sensors used in this thesis is introduced. The used equipment for (most of) the 
trials is the experimental sensor-based sorting setup at the Chair of Waste Processing 
Technology and Waste Management, Department of Environmental and Energy Process 
Engineering, Montanuniversitaet Leoben. This setup, the used method near-infrared 
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spectroscopy, as well as the parameter throughput rate, purity, recovery, yield and incorrectly 
discharged particles are introduced in Publication V, Method Article, "Qualitative analysis of 
post-consumer and post-industrial waste via near-infrared, visual and induction identification 
with experimental sensor-based sorting setup". 

Sensor-based sorting is mainly based on two steps: the identifying of particles and the 
mechanical discharge of particles. For this reason, the chapter experimental design is split up 
into two subchapters, "Identification" and "Mechanical Discharge". 

 

Experimental design: Identification 

Increasing the sensor-based sorting efficiency by improving the identification of plastic 
particles or getting plastic particles identified, which are unable to be recognized in a sensor-
based sorting machine yet, is the goal of this chapter. This is evaluated in the following three 
publications. 

Publication VI, Original Article, "Influences and consequences of mechanical delabelling on 
pet recycling", deals with whether surface modification influences the identification of particles. 

Publication VII, Original Article, "Influence of reflective materials, emitter intensity and foil 
thickness on the variability of near-infrared spectra of 2D plastic packaging materials", covers 
the use of transflection, the combination of light reflection and transmission, to identify thin foils 
which are currently difficult to be identified by sensor-based sorting machines. 

Publication VIII, Original Article, "Evaluation of Improvements in the Separation of 
Monolayer and Multilayer Films via Measurements in Transflection and Application of Machine 
Learning Approaches", shows the possibility of improving the identification of mono- and 
multilayer films with machine learning approaches. 

 

Experimental design: Mechanical discharge 

Optimizing the mechanical discharge of a sensor-based sorting machine is the second step to 
increase plastic sorting efficiency. Target plastic particles, which are overlapping or running 
too fast through the sorting machine, are lost instead of sorted. Running a sensor-based sorting 
machine on the optimal operation point for mechanical discharge of the target plastic particles 
maximizes the quality and quantity of sorted material. This is evaluated in the following two 
publications. 

Publication IX, Original Article, "Influence of material alterations and machine impairment 
on throughput related sensor-based sorting performance", analyses the influences of several 
properties and parameters on the sensor-based sorting efficiency in mechanical discharge. 



Chapter 1 - Compilation of the doctoral thesis 4 
   

 

Publication X, Original Article, "Feasibility study for finding mathematical approaches to 
describe the optimal operation point of sensor-based sorting machines for plastic waste", 
relates to finding the optimal operation point for mechanical discharge with mathematical 
approaches. 

 

The doctoral thesis is closed with the chapters "Conclusions" to summarise the findings of 
all publications and "Outlook and further research" to forecast how results can be 
implemented and what further research needs to be done to implement them in the industry. 
The graphical abstract, which visualizes the compilation of the doctoral thesis is shown in 
Figure 1-1. 

 
Figure 1-1: Graphical abstract of the doctoral thesis "Increasing efficiency in sensor-based 
sorting processes for waste streams consisting of plastics" 
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1.2 Compiled publications 

This chapter gives an overview about the compiled publications within this doctoral thesis. The 
item numbers point to those sections where the publications are shown. 

Introduction 

2.1 Publication I, Review Article 
Friedrich, K., Koinig, G., Fritz, T., Pomberger, R., Vollprecht, D. (2022). Sensor-based and 
Robot Sorting Processes and their Role in Achieving European Recycling Goals - A Review. 
In AJOP 5 (4). DOI: 10.19080/AJOP.2022.05.555668. 

2.2 Publication II, Mini Review Article 
Friedrich, K., Koinig, G., Tschiggerl, K., Pomberger, R., Vollprecht, D. (2021). Challenges to 
Increase Plastic Sorting Efficiency. In Int J Eng Tech & Inf. 2021;2(4):114‒118. 
DOI:10.51626/ijeti.2021.02.00023. 

 

Environmental Analysis 

3.1 Publication III, Original Article 
Friedrich, K., Möllnitz, S., Holzschuster, S., Pomberger, R., Vollprecht, D., Sarc, R. (2019). 
Benchmark Analysis for Plastic Recyclates in Austrian Waste Management. Detritus, 9, 105–
112. DOI: 10.31025/2611-4135/2019.13869. 

3.2 Publication IV, Original Article 
Friedrich, K., Fritz, T., Koinig, G., Pomberger, R., Vollprecht, D. (2021). Assessment of 
Technological Developments in Data Analytics for Sensor-Based and Robot Sorting Plants 
Based on Maturity Levels to Improve Austrian Waste Sorting Plants. Sustainability 2021, 13, 
9472. DOI: 10.3390/su13169472. 

 

Experimental Design: Methods 

4.1 Publication V, Method Article 
Friedrich, K., Koinig, G., Pomberger, R., Vollprecht, D. (2022). Qualitative analysis of post-
consumer and post-industrial waste via near-infrared, visual and induction identification with 
experimental sensor-based sorting setup. In MethodsX 9, p. 101686. DOI: 
10.1016/j.mex.2022.101686. 
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Experimental Design: Identification 

4.2 Publication VI, Original Article 
Küppers, B., Chen, X., Seidler, I., Friedrich, K., Raulf, K., Pretz, T., Feil, A., Pomberger, R., 
Vollprecht, D. (2019). Influences and consequences of mechanical delabelling on pet 
recycling. Detritus, Volume 06-June 2019(0), 1. DOI: 10.31025/2611-4135/2019.13816. 

4.3 Publication VII, Original Article 
Koinig, G., Friedrich, K., Rutrecht, B., Oreski, G., Barretta, C., Vollprecht, D. (2022). 
Influence of reflective materials, emitter intensity and foil thickness on the variability of near-
infrared spectra of 2D plastic packaging materials. In Waste management (New York, N.Y.) 
144, pp. 543–551. DOI: 10.1016/j.wasman.2021.12.019. 

4.4 Publication VIII, Original Article 
Koinig, G., Kuhn, N., Barretta, C., Friedrich, K., Vollprecht, D. (2022). Evaluation of 
Improvements in the Separation of Monolayer and Multilayer Films via Measurements in 
Transflection and Application of Machine Learning Approaches. In Polymers 2022, 14(19), 
3926. DOI: 10.3390/polym14193926. 

 

Experimental Design: Mechanical Discharge 

4.5 Publication IX, Original Article 
Küppers, B., Schlögl, S., Friedrich, K., Lederle, L., Pichler, C., Freil, J., Pomberger, R., 
Vollprecht, D. (2021). Influence of material alterations and machine impairment on 
throughput related sensor-based sorting performance. Waste Management & Research. 
2021;39(1):122-129. DOI: 10.1177/0734242X20936745. 

4.6 Publication X, Original Article 
Friedrich, K., Kuhn, N., Pomberger, R., Koinig, G. (2023). Feasibility study for finding 
mathematical approaches to describe the optimal operation point of sensor-based sorting 
machines for plastic waste. In Polymers 2023, 15(21), 4266. DOI: 10.3390/polym15214266. 

 

1.3 Scope of Investigations 

This chapter describes the boundaries of the doctoral thesis, the research publications and the 
research questions to be answered in respective publications. 

Boundaries 

The scope of investigations in waste processing technology and waste management is mainly 
set by the waste processing technology, the waste to be processed and the waste processing 
technology's "Technology Readiness Level" (TRL). Table 1-1 shows the scope of investigation, 
which are waste streams consisting of plastic, sensor-based sorting and TRL 2 to TRL 4. 
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Table 1-1: Scope of investigations for the doctoral thesis "Increasing efficiency in sensor-
based sorting processes for waste streams consisting of plastics" 

Waste processing technology Sensor-based sorting 

Waste to be processed Waste streams consisting of plastics 

TRL 2 to 4 

 

TRL 1 means "Fundamental Research", while TRL 2 to 4 means "Industrial Research". In 
Figure 1-2, the TRL definitions in dependence on European Commission (2012) are 
transformed into "TRL definitions in sensor-based sorting" to be brought into relation to the 
boundaries of this doctoral thesis. It aims to increase the efficiency of sensor-based sorting 
machines from TRL 2 to TRL 4. TRL 1 means that "Physical principles in sensor-based sorting" 
are examined; for TRL 2 to 4 "Technology concept for sensor-based sorting machines 
approved on laboratory scale". According to these boundaries, the doctoral thesis ends with 
approving the found opportunities on the aggregate level - the sensor-based sorting machine 
as a stand-alone equipment. Basic research on TRL 1 is seen as approved for starting at 
TRL 2. 

 
Figure 1-2: TRL definitions in dependence on European Commission (2012) are transformed 
in "TRL definitions in sensor-based sorting" 

 

TRL 5 to TRL 8 meaning, "Technology concept for sensor-based sorting machines approved 
on industrial plant scale", are not in the doctoral thesis's scope. These levels would approve 
new technology concepts on industrial plant scale. The set boundary of this doctoral thesis 
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related to TRL are marked as a blue area for the scope and as a blue line for the border in 
Figure 1-2. The categories “Experimental Development” and “Market Launch” (TRL 9) are not 
part of this thesis’ focus. 

Publications and research questions 

Within this chapter, the research questions, which are answered in each of the ten research 
publications, are expressed. 

Introduction 

Publication I, Review Article, "Sensor-based and Robot Sorting Processes and their Role in 
Achieving European Recycling Goals - A Review" 

The topic of sensor-based sorting and robot sorting, as well as current technological and 
political developments in the waste management sector, are introduced in this publication. As 
a review paper, it outlines not only an introduction to the topic, it gives detailed information 
about the application possibilities, best-practice examples and how these technologies 
potentially help achieving the European recycling goals. The overview outlines which 
technologies are mainly used for the sensor-based sorting of waste streams consisting of 
plastics to choose the sensor technology for this doctoral thesis. 

Research question 1 (RQ 1): What is the State-of-the-Art in sensor-based sorting of 
waste streams consisting of plastics? 

 

Publication II, Mini Review Article, "Challenges to Increase Plastic Sorting Efficiency" 

Finding the current challenges to increase plastic sorting efficiency is the topic of this 
publication. The found challenges are obligatory to define the current necessity of research to 
increase the plastic sorting efficiency in sensor-based sorting plants. The found research gaps 
in this publication are formative to define the research questions and develop the experimental 
design of this doctoral thesis. 

Research question 2 (RQ 2): What are the current research gaps for increasing the 
sorting efficiency of plastic waste streams? 

 

Environmental Analysis 

Publication III, Original Article, "Benchmark Analysis for Plastic Recyclates in Austrian Waste 
Management" 

The correlation between different quality features and how they affect the pricing policy for 
recyclates is the focus of this publication. Therefore, quality parameters for the sorted plastic 
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waste as an input for plastic waste recycling companies and manufactured recyclates are 
included. This environmental analysis shows that purities of sorted waste are expected from 
recycling plants for different types of waste. This doctoral thesis outlines the threshold values 
for the purities of sorted waste, defining the least sorting result to be achieved in sensor-based 
sorting of waste streams consisting of plastics. 

Research question 3 (RQ 3): What are the expected sorted waste qualities for different 
types of plastic? 

 

Publication IV, Original Article, "Assessment of Technological Developments in Data 
Analytics for Sensor-Based and Robot Sorting Plants Based on Maturity Levels to Improve 
Austrian Waste Sorting Plants" 

This publication aims to give novel insights into the degree of implementation of data analytics 
in the Austrian waste management sector. The degree of implementation is defined in maturity 
models developed for stakeholders, referred to sensor-based sorting. Furthermore, the 
interviewed stakeholders were asked about their appraisal of data analytics usage in sensor-
based sorting. This leads to the decision to research methods for more efficient data analatics 
in sensor-based sorting methods. 

Research question 4 (RQ 4): Can data analytics be seen as a solution to make sensor-
based sorting processes more efficient? 

 

Experimental Design: Methods 

Publication V, Method Article, "Qualitative analysis of post-consumer and post-industrial 
waste via near-infrared, visual and induction identification with experimental sensor-based 
sorting setup" 

This publication describes the experimental sensor-based sorting setup applied in upcoming 
publications of this doctoral thesis and details all installed sensors and their specifications. 
Moreover, the selected method, near-infrared spectroscopy, used in further publications of this 
doctoral thesis, is outlined in detail. The parameters throughput rate, purity, yield and recovery 
– which outline the efficiency of a sensor-based sorting process – are defined. 

Research question 5 (RQ 5): Which parameters define the efficiency of a sensor-based 
sorting process? 
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Experimental Design: Identification 

Publication VI, Original Article, "Influences and consequences of mechanical delabelling on 
pet recycling" 

Whether the use of mechanical delabelling of polyethylene terephthalate (PET) bottles 
influences near-infrared identification is examined in this publication. With the change in 
surface roughness of the PET bottles in the label scratching process of the delabeler, it is 
assumed that the identification changes as well. For the doctoral thesis, this publication finds 
out if the surface roughness influences near-infrared identification, which increases the 
efficiency of sensor-based sorting. 

Research question 6 (RQ 6): Does surface roughness influence the near-infrared 
identification of sensor-based sorting processes? 

 

Publication VII, Original Article, "Influence of reflective materials, emitter intensity and foil 
thickness on the variability of near-infrared spectra of 2D plastic packaging materials" 

For thin 2D plastic packaging, near-infrared spectroscopy often brings fluctuating spectra and 
some particles cannot be recognized by the sensor. This paper aims to improve the spectral 
quality, which can be achieved by installing reflectors behind the material made up of copper 
or aluminium. This setup enables identification in transflection – a combination of transmission 
and reflection - rather than only reflection mode. In addition to that, the influence of the emitter 
intensity and the foil thickness is further evaluated. The use of transflection to increase the 
identification and continuative sorting efficiency is the part considered to be found in this 
doctoral thesis. 

Research question 7 (RQ 7): Is the usage of transflection for near-infrared 
spectroscopy for 2D plastic packaging enhancing the identification in sensor-based 
sorting processes? 

 

Publication VIII, Original Article, "Evaluation of Improvements in the Separation of Monolayer 
and Multilayer Films via Measurements in Transflection and Application of Machine Learning 
Approaches" 

Machine learning approaches are developed for sorting monolayer and multilayer materials 
without requiring manual adaption of the near-infrared sorting model. The amount of correctly 
identified particles can be enhanced automated by machinal adaption of the sorting model. 
Supplementary frequency analysis methods increase spectral information by eliminating 
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spectral noise. For the doctoral thesis, the validation to use machine learning for getting 
sensor-based sorting processes more efficient is the main output of this publication. 

Research question 8 (RQ 8): Is the usage of machine learning algorithms suitable to 
enhance correct identification of particles in sensor-based sorting processes? 

 

Experimental Design: Mechanical Discharge 

Publication IX, Original Article, "Influence of material alterations and machine impairment on 
throughput related sensor-based sorting performance" 

The sorting efficiency of a sensor-based sorting setup using near-infrared technology in 
dependence on throughput rate and various input compositions is studied with four 
parameters: purity, yield, recovery and incorrectly discharged share of reject particles. The aim 
is to find the dependency of the sensor-based sorting input parameters throughput rate and 
input composition on the output results purity, yield, recovery and incorrectly discharged 
particles. The influences on the parameters of 2D particles in the input of a sorting stage and 
failing air valves were evaluated for various input compositions at different throughput rates. 
The resulting graphs correspond to this doctoral thesis since they show the dependence of the 
input parameters of a sensor-based sorting process on the sorting efficiency in the output 
parameters. 

Research question 9 (RQ 9): How do the input parameters of a sensor-base sorting 
process (throughput rate and input composition) depend on the sorting efficiency in 
the output parameters (purity, yield, recovery, incorrect discharged particles)? 

 

Publication X, Original Article, "Feasibility study for finding mathematical approaches to 
describe the optimal operation point of sensor-based sorting machines for plastic waste" 

The optimal operation point of sensor-based sorting machines is mostly not occupied; 
machines are either overrun or underrun depending on the availability of waste streams. 
Mathematical approaches in regression models define the dependence on the input stream 
composition and the throughput rate on the sorting result. Four hypotheses are validated, 
whether the same mathematical approaches can be transferred to different types of waste, 
whether they can be transferred individually to further sensor-based sorting machines or 
whether there are other limitations. For a sensor-based sorting plant, the main effort of 
validated mathematical approaches in their area of validity would be to increase the sorting 
efficiency, e.g. enhance the purity without substantially adapting the sorting plant. The 
validation of the area of validity for mathematical approaches describing the sorting efficiency 
is the main result of this doctoral thesis. This defines how and under what conditions a sensor-
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based sorting plant can run automated on the optimal operation point depending on the 
throughput rate and the input composition. 

Research question 10 (RQ 10): In what area of validity can mathematical approaches 
be used so that sensor-based sorting machines can run automated on the optimal 
operation point? 
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2 Introduction 
The "Introduction" chapter consists of two peer-reviewed publications. These two publications 
are presented below. 

2.1 Publication I, Review 

"Sensor-based and Robot Sorting Processes and their Role in Achieving European 
Recycling Goals - A Review" 

Review Article 
Friedrich, K., Koinig, G., Fritz, T., Pomberger, R., Vollprecht, D. (2022). Sensor-based and 
Robot Sorting Processes and their Role in Achieving European Recycling Goals - A Review. 
In AJOP 5 (4). DOI: 10.19080/AJOP.2022.05.555668. 

The annotation on the doctoral candidate's contribution to this publication is listed in Table 2-1. 

Table 2-1: Annotation on the doctoral candidate's contribution to Publication I 

Conceptualization Friedrich, K., Vollprecht, D. 

Methodology Friedrich, K. 

Software - 

Validation Friedrich, K., Fritz, T., Koinig, G. 

Formal Analysis Friedrich, K., Koinig, G. 

Investigation Friedrich, K., Fritz, T., Koinig, G. 

Resources - 

Data Curation Fritz, T., Friedrich, K. 

Writing: 
Original Draft Preparation 

Friedrich, K., Fritz, T., Koinig, G. 

Writing: 
Review and Editing 

Friedrich, K., Koinig, G. 

Visualization Friedrich, K., Fritz, T., Koinig, G. 

Supervision Vollprecht, D., Pomberger, R. 

Project Administration Pomberger, R. 

Funding Acquisition - 
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Abstract  

A circular economy is the stated aim of current technological and political developments in the waste management sector. Achieving the goal of a circular economy requires significant improvements in waste treatment technologies. For this reason, this paper summarises the relevant technologies, detailing the developments in the significant sensor-based sorting technologies. This review analyses the key spectral analysis methods like Near-Infrared Spectroscopy, Visual Spectroscopy, X-ray transmission, X-ray fluorescence analysis and Laser-Induced Breakdown 
Spectroscopy. This study further contains a detailed analysis of the standard sensor-based sorting construction types chute sorter, belt sorter and robot-aided sorting. Further insights in the branch of sensor-based sorting are permitted by describing the key players and stakeholders in sensor-based sorting, detailing the area of expertise and current fields of study for primary sensor and sorting machine suppliers. A convenient lookup table detailing the capabilities of these significant suppliers is provided. The last chapter summarises relevant trends and developments in digitalisation and Industry 4.0 in the waste and recycling sector, elaborating on relevant technology like digital waste management, sorting 
robots in waste management, smart villages and recyclable materials scanners. The reviewed data portrays the waste management industry’s substantial developments. While new technologies, like machine learning, convolutional neural networks and robot sorting, are increasingly 
implemented, a substantial discrepancy exists between technological capabilities and the current State-of-the-Art.

Keywords:   Sensor-based Sorting; Robot Sorting; Recycling Goals; Digitalisation; Circular Economy 

Introduction

This study aims to research developments in sensor-based 

sorting and robotics and their effects on waste management. The 

implementation and further development of sensor-based sorting 

and robotics has great potential to change waste management over the long term. In addition, research is performed on the technologies currently available on the market to determine their 
future potential. Furthermore, possible solutions are derived from achieving the circular economy package’s new European resource efficiency targets. Developments in waste technology and 
management are based on solving technical problems within the given legal framework. In the following, the essential regulations guide the waste management sector, cause trends and significantly influence their developments by changing parameters.
Circular Economy Package 

The Circular Economy Action Plan of the European Union 

(EU) was introduced in December 2015 and it is intended to lead to a more resource-efficient future. In Europe, there has been a  

 

continuous growth of recycled materials to total raw materials 

from 2008 to 2016. However, secondary raw materials only 

account for 12 % of the total demand for raw materials in the EU, 

which provides a broad basis for innovation in waste management. 

A new legal basis came into force in July 2018, requiring, among other things, recycling rates of 70 % for packaging waste by 2030 and 65 % for municipal waste by 2035. In addition, the landfilling 
of municipal waste hass to be reduced to 10 % [1]. Furthermore, the harmonisation of definitions and calculation methods for 
recycling rates and new requirements for the separate collection of the waste types defined in the Waste Framework Directive 
(WFD) are included. These new regulations strengthen the market for secondary raw materials and create a uniform system to ensure their quality and make them comparable. The basis for this is always the most efficient waste separation and sorting 
possible [1]. Central objective is increasing the recycling quota by 

overcoming the plethora of challenges opposing this development 

[2].
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Plastics strategy

The strategy for plastics, adopted in 2018, states that from 2020 onwards, all plastic packaging on the EU market must be 
recyclable and the consumption of single-use plastics should be 

reduced. The EU states that about 150,000 to 500,000 tonnes of plastic waste ends up in the sea every year. In order to prevent 
this, the plastics strategy aims at setting the path towards a 

circular economy of plastics. An important factor is the cost efficiency of recycling plastic waste, which can be achieved through changes in production and the design of packaging and products. Close cooperation between packaging manufacturers 
and the recycling industry as well as communication between the waste management and chemical industries is required to find a broader field of applications for recycled packaging waste. The 
EU expects a fourfold increase in demand for recycled plastics 

when the Plastics Strategy is fully implemented, which reduces 

the dependence on imported fossil raw materials. The resulting 

carbon dioxide (CO
2
) savings are expected to help meet the targets of the Paris Agreement [3]. 

For the waste management sector, this means opportunities 

for innovation, growth and new business models based on the circular economy. The expected increase in the market value of 
recycled plastics is based on evaluations of the automotive and 

construction industries, and economic incentives from the EU are 

also currently under discussion. Furthermore, increasing volume and better separate collection are expected to make recycling more lucrative. In order to achieve these goals, investments in 
infrastructure and innovation, which the EU estimates at 8,4 

to 16,6 billion Euros, are needed. The strategy of plastics as an ambitious vision can become a job provider if the main actors take 
concrete actions towards a circular economy (“Towards a Circular Economy”) [3].
Single-Use Plastics Directive 

The directive on reducing the impact of certain plastic 

products on the environment was designated as part of the 

Plastics Strategy only eight months after it was presented and 

came into force on 2 July 2019. The directive is based on a census 

that traced the pollution of European beaches to 15 products. 

According to litter counts, the main component of marine litter is 

plastics, at around 80-85 %, and these consist of 50 % single-use plastic and 27 % fishing gear. The single-use plastic problem can also be illustrated very well by measured numerical data. Between 
1950 and 2015, more than one tonne of plastic was produced per 

capita of the world’s population, of which not even ten per cent 

was recycled. Half of the plastic ever produced worldwide has been produced since 2000. The market restrictions imposed by this directive mainly affect single-use plastic items. Unlike bio-
based and biodegradable plastics, this directive does not cover 

microplastics, glass and metal beverage containers. The aim is 

to reverse the trend, as consumption is expected to increase 

from single use items to more sustainable alternative items. The 

member states should set as ambitious measures as possible to comply with the waste hierarchy. It is also essential to consider 
the product life cycle and a harmonised standard in product 

design, which the waste management industry has demanded for a long time. In addition to increased producer responsibility, 
consumer decisions are also to be steered in a more sustainable 

direction to achieve a measurable quantitative reduction in the 

consumption of single-use plastics in the EU by 2026 compared to 2022. The directive focuses on marketing restrictions, product 
requirements, labelling requirements, extended producer 

responsibility, separate collection and consumer awareness measures. Further specifications concern the coordination of 
measures, guidelines on single-use plastic articles, information systems and reporting and finally, sanctions as well as evaluation and review. In principle, the directive’s contents must be complied with by 3 July 2021, although individual articles will not come into force until later. Market restrictions on products will come into 
force by the end of 2024 and the increased recycled content in beverage bottles by 2030 [4,5].
Sensor-based sorting as a key player

Developing a sustainable circular economy would be unthinkable without sensor-based sorting technology, especially 
if the ambitious EU targets shall be achieved. For example, solutions already exist for almost all industrial waste sorting tasks 
in polymer materials, which the actors in the recycling chain have 

also adopted [6].

Sensor-based sorting: Sensor technologies

Sensor-based sorting technology can automatically sort 

materials according to various material properties to divide the material flow into different product groups [6]. The upswing in 
sensor-based sorting is due to the rapid development in non-

contact sorting technology, which has opened up new areas of 

application in recent years. This development, which continues to be dynamic, leads more efficient devices and thus to new areas 
of application in waste management [7]. Due to the increasingly 

complex requirements for the quality of the end products, the 

more valuable fractions and higher recovery of these fractions’ 

materials, sensors with different measuring principles are being 

combined more frequently to meet the prevailing trends in this 

direction [8]. The complexity of the technical design and the number 

of sensors is decisive for the possible applications. Especially in 

dry sorting, this technology has led to redesigns of processing 

methods and new application possibilities. Comparisons with the 

still widespread manual sorting showed that human eyesight was often insufficient to identify the properties of waste components and that machine systems were more efficient in this respect [9].
The learning ability of modern sensor-based systems, which 

is achieved through software-controlled data processing, is seen 

as an unique advantage, especially in changing the feed material’s 

composition or quality requirements. The decoupling of the 

sorting criterion from the actual separation process reduces the 
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risk of false outputs due to mutual interference and the carry-over 
of different components. The units are very compact and can also be used in mobile plants. In addition, materials can be separated, 
which would otherwise be impossible to separate, such as 

minerals of the same density and magnetic properties in the coarse range. In addition, multiple sorting criteria like e.g. wettability or 
conductivity can be used in one process stage to achieve better separation efficiency. Due to considerable savings in water, energy 
and reagents compared to other separation methods, non-contact sorting can make the recovery of previously uneconomic deposits 
economical. Possible pre-enrichment by sensor technology also 

helps, which saves resources and, since it can already be used on-

site, also space and transport costs [9,10].

However, good separation results can only be achieved by suitable preconditioning of the feed material. Pre-classification 
to the narrowest possible particle size range and separation of fine and coarse material that cannot be sorted is essential 
for achieving a certain separation accuracy, depending on the 

performance of the sorting system. The material mixture to be 

processed must be pre-treated so that the concentration of the 

material to be separated is as high as possible. At the same time, 

disturbing components such as easy dispersible particles with 

low densities are separated beforehand. Particularly important 

in preparing the feed material is separating the particles to 

create at least a monolayer. This means that the individual 

particles do neither touch nor overlap each other. Some sensor 

types require clean surfaces, which are generally produced by a 

washing process. This requirement leads to a certain amount of 

water consumption in the dry technique, which is less than wet separation methods. In addition to very light, flyable materials, 
composites and agglomerates also present particular challenges [9,10]. In principle, it is possible to use all non-contact physical 
measurement methods as separation methods. Factors such as resolution, measuring speed and environmental influences 

determine the possible applications, and so there is still potential 

for optimisation even with the sensor types already in use [10].

Sensors are differentiated according to whether they can detect superficial properties or “look inside” the material. The 
essential types belong to the former group and include the optical 

(colour) line scan cameras, which measure colour, brightness, transparency, reflection and shape. Fluorescent materials can also be detected after UV excitation [10]. 3D sensors, which function 
via laser triangulation, can consider the shape and structure 

of the material [6]. The wavelengths of the sensors, which are installed for sensor-based sorting, explain different fields of 
application. The terahertz range in the electromagnetic spectrum, 

as shown in Figure 1, is a part that is not yet fully exploited [11]. 

The sensors’ non-contact detection of object properties and 

characteristics consists of an object feeder, a separation system, 

and intelligent sensor technology consisting of an emitter, a 

detector, an evaluation and a discharge unit [12]. Table 1 presents 

an overview of the typical sensor types installed in waste management [13]. Near-infrared spectroscopy (NIR) for detecting material properties works via a light source placed above the 
conveyor belt that irradiates the material with infrared light. The irradiated molecules are excited to vibrate by specific wavelengths corresponding to the resonance frequency and reflect the other 
wavelengths diffusely. The respective spectrum is compared with 

a database and each one is assigned a material class as shown in Figure 2; this is called classification. The absorption lines 
important for plastic recognition are between 1,200 and 2,000 nm [14]. Spectroscopy works analogously to NIR spectroscopy in the visual (VIS) frequency range for colour sorting. Digital images 
are assigned different numerical values per pixel, exactly one 

for grey-scale images and three numerical values per pixel (red, green, blue) for colour images. In contrast to these red-green-blue (RGB) cameras, several hundred numerical values are assigned to a pixel in hyperspectral imaging  (HSI) [15]. 

Figure 1: Embedding the terahertz range in the electromagnetic spectrum [11].



Academic Journal of Polymer science

How to cite this article:  Friedrich K, Koinig G, Fritz T, Pomberger R, Vollprecht D. Sensor-based and Robot Sorting Processes and their Role in 

Achieving European Recycling Goals - A Review. Academ J Polym Sci. 2022; 5(4): 555668. DOI: 10.19080/AJOP.2022.05.555668
004

Figure 2: Polypropylene (PP) (pink) and High-Density-Polyethylene (HDPE) (grey), Non-Classified (yellow) and Polyethylene-Terephthalate 
(PET) (green) - Particles coloured according to their material [14].

Table 1: Overview of sensor technologies [8,13].

Sensor technology Material property Measurement principle Waste stream

Electromagnetic Induction Electrical 
Conductivity

• Generation of an electromagnetic field
• If a metal passes through the elec-tromagnetic area, the field is chan-ged in a substance-specific manner
• Detection of this change and assig-

nment to a type of metal

• Scrap processing
• Electronic waste
• Construction site mixed waste
• Commercial waste
• Waste glass

Laser-Induced-Breakdown-Spectroscopy (LIBS) Elemental
Composition

• By heating a sample surface with a 
pulsed laser, sample portions are 
converted into a so-called plasma

• The plasma light spectrum assigns 
the material type

• Differentiation and sorting 
           according to metal alloys
• Sorting of aluminium scrap

Near-Infrared Spectroscopy(NIR) Molecular
Composition

• Molecular excitation by near-infra-
red radiation

• Absorption of specific wavelength ranges by the molecules, a reflec-
tion of the remaining wavelength 
ranges

• A spectrum of reflected radiation 
can be assigned to a substance

• Packaging waste
• Household waste
• Waste paper
• Commercial waste
• Pre-sorting of recyclables
• End-of-life vehicle recycling
• Mixed construction waste

Visual Spectroscopy(VIS) Colour (reflection
and transmission);

Shape

• Imaging sensor
• Separation of the sample accor-ding to colour, brightness, reflecti-

on and transparency

• Waste paper
• Pre-sorted recyclables
• Chipboard
• Construction site mixed waste

X-ray Fluorescence Spectroscopy (XRF), Laser
Elementary

Composition;
Colour;

Fluorescence;
Scattering;

• X-rays excite atoms in a sample, resulting in substance-specific flu-
orescence.

• The spectrum of the emitted flu-
orescence provides information 
about the material’s elemental 
composition.

• Copper from iron scrap
• Glass sorting
• Compost processing

X-ray Transmission (XRT) Atomic Density

• X-rays shine through the sample
• Absorption of part of the radiation, 

depending on sample density and thickness
• Comparison of the non-absorbed 

rays with a given initial value for 
the density

• Scrap processing
• End-of-life vehicle recycling
• Electronic waste
• Household waste
• Commercial waste
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The spectral decomposition of the signal happens before 

the detector and results in a complete spectrum for each pixel. However, the passband wavebands of an RGB colour camera are 
much wider for the three colours red, green and blue. Combining 

both principles, the entire wavelength range from 400 to 1,000 nm can be covered, in that the HSI camera can represent parts of the VIS and the NIR range, and the RGB camera can cover the VIS range from 400 nm to 700 nm, at least in three bands. Figure 3 shows the transmittance curves of an RGB colour camera  equipped with a filter for wavelengths above 650 nm and the HSI 
camera equipped with a passband of a bandpass from 600 to 1,000 nm to avoid ambiguous information [15]. Typical HSI cameras 
can operate between 250 to a maximum of 2500; an example for 

waste management imaging is shown in Figure 4 [15,16]. Hard 

plastics, paper, films, wood, biomass or fuels are separated with this method. In order to achieve the quality requirements for 
higher-quality recycling, multi-stage sorting is more frequently used than positive and negative sorting combinations. In positive 
sorting, the recyclable material is enriched in the discharged 

product, and in negative sorting, interfering components are separated. By switching between these two types of sorting, it is possible to react to the waste sector’s often highly fluctuating input compositions. NIR or VIS spectroscopy are increasingly 
used in commercial waste, electrical and electronic scrap, bulky waste, biowaste and mineral waste. The secondary raw materials industry is a significant development driver, demanding 
innovations with more complex sorting requirements and higher 

quality standards [8,9].

Figure 3: Transmittance curves of an RGB colour camera as well as a 9-band HSI camera for the range of 630 to 920nm [15].

Figure 4: HSI detection on a conveyor belt in waste management and recycling [16].
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The second large group is electromagnetic sensors. These 

sensors are located transversely to the belt’s direction under the 

conveyor belt. Each generates a high-frequency electromagnetic field through a coil, which is changed by introducing conductive 
materials. The coil induces eddy currents in the material, which extract energy from the emitting field. The energy is detected 
by the electromagnetic sensor and leads to metal detection. For 

this reason, electromagnetic sensors are often used in shredder 

plants and electronic scrap processing. After using classic 

metal separators such as magnetic separators and eddy current 

separators, up to 10% of metals can still be contained in the 

material stream. These can be recovered with additional sensors. It is also helpful for sorting construction waste or incineration ashes, especially with digital image processing. In addition to metal recovery, purification of metallic fractions is also possible, 
for example, in PET bottle sorting [8]. 

The third large group of sensor types is relevant for recycling work with X-ray radiation. Here, a distinction is made between X-ray transmission and X-ray fluorescence.X-ray transmission (XRT) divides the material according to 
density differences by measuring the degree of absorption of the X-ray radiation. The degree of absorption depends on the thickness and density of the material. The influences of the material size and thickness are compensated to determine the material-specific 
absorption of the individual parts with the help of software. For this purpose, the X-ray source is placed below the material flow 
and the scanner area for determining the residual radiation is placed above. Based on the information from the scanner and the sorting specifications, two products result [6].X-ray fluorescence analysis (XRF) divides the material stream based on its atomic composition. The scanner unit and the X-ray 
source sit above the material stream, passing through a low-energy X-ray field. The chemical elements are excited to emit element-specific energy by shell jumps of the electrons. The 
evaluation software outputs energy spectra that can be used to 

separate different product groups [6]. 

The use of laser technology is suitable for cleaning compost/

structural material by removing glass and plastics. Due to the 

‘scattering’ effect, which occurs depending on the degree of 

hardness and water content, laser technology is particularly 

applicable in this area. Depending on the wavelength range of the 

laser, different properties such as colour, structure or, for example, fluorescence can be detected together or separately [8]. LIBS is shorthand for Laser-Induced Breakdown Spectroscopy, 
and this technology is used to determine the elemental composition of the specimen. LIBS uses high-focused light amplification by 
stimulated emission of radiation (laser) to remove the surface of 

the specimen [12]. It causes the electronic excitation of atoms, which form a plasma. As these fall decay back into their original state, they emit light of specific wavelengths. These wavelengths are characteristic of the 

element composition in question, forming a “fingerprint” used for 
qualitative and quantitative evaluation. The detection technology 

in collecting waste is less widespread and less researched than 

sorting waste. Reasons for this are the high decentralisation of waste accumulation and the influences of weather, vibrations, and 
dirt. An example of a waste stream that requires high purity for 

recycling is biowaste for composting plants. The German company 

Maier & Fabris has developed a metallic value or contaminant 

detection system based on eddy current induction directly on the collection vehicle. Further development is an automatic feedback 
system for citizens to inform them directly about the analysis result and, in the worst case, to block emptying at the collection vehicle. In addition to imaging techniques, research is currently 
being done on a detection method for odour, using ‘electronic noses’. Although significant progress can be seen, this technology 
is not yet employed commercially. However, data generation has 

new possibilities, such as weighing waste bins [12].

Sensor-based sorting: Construction type

Generally, a distinction can be made between the two systems of material feeding, namely feeding by chute and by belt. Both types 
are used in recycling and they differ according to their material 

feed. As shown in Figure 5, the chute machines are used mainly in the fine-grain range and with bulk materials that flow well. An 
oscillating conveyor trough (A) ensures uniform distribution over the entire width of the conveying chute and sufficient separation. 
The feed is then transferred to an inclined chute for further separation and acceleration. A detection device (B) inspects the feed material below the chute by a detection device (B) in free fall. 

With the help of a computer, a real-time image of the material flow is classified according to various properties such as colour 
information, position and size. This image activates compressed 

air valves of a nozzle bar (C), which discharge the detected 

components (D). This type of construction is often combined with 

a colour line scan camera with an associated illumination unit and 

can distinguish colours in a vast spectrum [9]. With two or three 

sorting paths, the chute system is designed for the raw materials 

industry and the recycling industry to sort used glass, plastics, 

used electrical appliances, incineration ash, and construction and 

demolition waste [9].As exemplified in Figure 6, belt sorters were developed for 
coarse and irregular feed material and can be used in combination with a NIR wavelength range detector. The feed material is again 
fed via an oscillating conveyor trough (A) and is pre-collected by 

continuously increasing conveyor speeds. Above the belt conveyor is an NIR sensor (B) which monitors the entire belt width and 
compares the characteristic spectrum of the objects with those in a computer database. Classification is also done according to size 
and position. The actual sorting is done using an air nozzle bar (C), 

which targets and separates the object (D) under investigation 

with one or more nozzles [9]. The belt sorting systems are used in 

the recycling industry to sort paper, plastics, RDF, and household 
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and commercial waste with two sorting paths [17]. Various 
companies,  also offer multiway sorting systems, which provide 

up to six sorting paths. Areas of application are packaging waste 
from household and commercial waste [17].

Figure 5: Principle sketch of chute sorters (authors’ depiction).

Figure 6: Principle sketch of belt sorters (authors’ depiction).

RoboticsThe Robotic Industries Association (RIA) defines robots as follows (Inc 2020): “A robot is a reprogrammable, multifunctional 
manipulator designed to move material, parts, tools or 

specialised devices through variable programmed motions for the performance of a variety of tasks. Recently, however, the 

industry’s current working definition of a robot has come to be 
understood as any piece of equipment that has three or more 

degrees of movement or freedom.” [18]. Many industries have been using robotics and automated work processes for many years to take over physically demanding tasks from humans and make processes more efficient and more manageable. Especially 
in the industrial sector, collaborative robots, i.e. robots built to 
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work with and alongside humans, are becoming increasingly 
important [19]. Human-robot collaborations refer to humans and machines working simultaneously on the same object, and cooperation refers to working reciprocally. Without the protective 
concepts such as nets or grids, it requires a unique design of the 

robot arms, which do not have sharp edges and rigid material. 

This concept combines the hand-eye coordination, force dosage 

and independent problem-solving ability of humans with the advantages of robotics such as freedom from fatigue, path fidelity and precision [20].  Table 2 shows a classification of common 
robot types including their functions [21].

Table 2: Classification of robot types [21].

Robot type Characteristics and field of applicationIndustrial robots Industrial robots have a wide range of applications in manufacturing and carry out various processes. They are used as welding 
robots, painting robots, palletising robots, assembly robots, etc.

Service robots

Service robots provide services to humans in various forms, which is the reason why they must be able to move autonomously in 
a wide variety of environments. Another feature of these robots is the easy-to-use user interface. Since the robots move close to 
people, human safety must be guaranteed at all times. Examples are as hoover robots, lawnmower robots, pool cleaning robots, assistance robots for persons with walking disabilities, etc.

Mobile robots
Mobile robots can move independently in their environment without human assistance and have many similarities with service 

robots. See service robots or driverless transport robots for application areas for logistics systems, toy robots, exploration 
robots, etc.Micro- and Nan-

orobots

Microrobots are only a few millimetres in size and can move autonomously in small structures and carry out actions there, e.g. inside the body. Another development direction aims to let many microrobots acts as swarms, e.g. for exploration. Nanorobots 
are autonomous machines and structures down to the size of molecules.

Humanoid 
robots

Humanoid robots have a human-like appearance and are programmed or equipped with actuators that enable them to commu-nicate or act directly with humans. They are used as a multifunctional working machine, assistant for humans etc.Roughly categorised, industrial robots can take on tasks in the 
areas of production (robot carries tool), assembly and handling (robot carries gripping system), as well as checking and measuring 
(robot carries measuring device). They consist of arm parts 

connected by joints and can vary in size and number depending 

on the type of application. The entire robot arm is referred to 

as the manipulator, the foremost part as the effector, to which a 

wide variety of tools and grippers can be attached. Most systems 

for waste management fall under mechanical separators using 

grippers (pneumatically, electrically or hydraulically controlled), 

use suction pads or vacuum cups. The former robotic systems sort, 

for example, construction waste and the latter are used for sorting packaging.  An important part is the control system, through which 
connected sensors can also be used in some circumstances. The 

robotic system also includes safety devices if needed, for example, to protect labourers. The kinematics (spatial relationship between the workpiece or tool and the manufacturing device) determines the design of the robot, which influences the working area, the 
load-bearing capacity, speed and repeatability [22].Industrial robots usually have six degrees of freedom, which 
allow them to grasp objects independently of their positioning. The term kinematics describes the movement axes resulting from the degrees of freedom. Two types of kinematics are distinguished: serial kinematics, where the robot arm gets its mobility from 
joints but is connected to the base at one point (drives in the joints are also moved), and parallel kinematics, where several arms are connected to a fixed drive and can be moved simultaneously. Depending on the task, fewer degrees of freedom can be achieved 
using rotational, linear and translational joints, leading to the 

goal. The joints determine the operating range, shown in Figure 

7 [22,23]. According to the kinematics, the following classification 
of industrial robots in Figure 8 is suggested.According to the IFR - International Federation of Robotics 
statistics, an average of 106 new robots were installed per 10,000 employees in Europe in 2017. The record year 2017 saw a 30 % 
increase worldwide compared to the previous year  [25]. One 

reason for the increased use of robotics is undoubtedly the rapid development in artificial intelligence, i.e. the ability of robots to 
perform so-called ‘deep learning’. Deep learning uses a particular type of information processing that functions via artificial neural networks. Using artificial neural networks and large amounts of data, machines can imitate the human brain in its decision-making 
processes and thus independently improve their abilities without 

human assistance. The more data is available and combined with 

the progress already made, the more complex the problems and 

the machine’s approaches to solving them. The use of robotics has 

limitations in that material can be heterogeneous, dirty and have 

different properties such as structure, size and shape. Limitations of the technique include non-optimised material flow, position 
changes between detection and gripping of the robot, poor pre-

sorting, sensor failures, and limitations of the robotic arm such 

as size, reaction speed and the number of parts selected per hour 

[19].

Challenges for the use of robotic systems are also currently still unclear legal obligations in the event of damage. In some cases, 
existing laws, such as waste management laws, further hinder the progress of digitalisation. Lack of acceptance, for example, due 
to quality problems, is not to be expected because of the rapidly 

developing technology [26]. The fear of job losses can be calmed 
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by the fact that robotics is accompanied by a reduction of stresses 

and dangers in manufacturing and that new professions are 

constantly being created in automation and data processing. At 

present, it is mainly menial labour, or tasks that are monotonous, 
heavy or hazardous to health that have been lost [22].

Figure 7: Positioning axes of robot systems in the industry including working range [23].

Figure 8: Classification of robots according to kinematics (authors depiction according to Induux 2021 [24]).

Materials and methodsIn order to achieve the objectives of this study, several 
methods described below were used to provide the most 

comprehensive possible picture of waste management and its 

future developments. The scope of this study ranges from the description of the legal and technological framework conditions 
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to a comprehensive analysis of future technologies and trend 

developments.

Evaluation of the stakeholders and current development 
projects in waste management

After extensive research on the most crucial technology, 

sensor-based and robot sorting suppliers are found and 

divided into the categories sensor suppliers, sorting machine manufacturers, and sorting robot manufacturers. In addition to 
the descriptions of the interest groups, some current projects in the field of sensor-based sorting and robotics are presented.
Deriving the effects of trend developments

Literature research on future developments in waste 

management serves as the basis for deriving the trends. After the 

subsequent evaluation, trend developments are deduced.

Results and DiscussionAt first, the technology supplier’s market study results are reflected, and it is described which technology suppliers make a significant contribution to today’s developments in sensor-based 
sorting and robotics and the essential products in their portfolio.

Sensor suppliersIn the following, two companies are presented that have 
contributed to the numerous advances in sorting technology in the field of waste management and recycling (list in alphabetical 
order):

EVK DI Kerschhaggl GmbHIn addition to applications in the pharmaceutical industry, 
food processing and mining, this company based in Raaba near 

Graz also offers sensors for the recycling industry. Sensors are 

offered for polyethene terephthalate (PET) separation, RDF sorting, bulk material separation in heterogeneous waste and material flows, plastic flake sorting with hyperspectral imaging systems and conductivity imaging technologies. The EVK product 

portfolio includes colour, hyperspectral and inductive sensor 

systems. Hyperspectral imaging systems are intelligent camera 

systems of the ‘Helios’ product range that use spectral ranges adapted to the application (VIS, VIS/NIR, NIR and short-wave infrared “Short Wavelength Infrared” (SWIR)). These systems classify objects according to their chemical composition. EVK 
offers the possibility of combining this technology with inductive 

sensors or colour camera systems for sorting, inspection or 

monitoring purposes [27].

SLOC GmbH

The company has gained a foothold in waste management 

through cooperation with Saubermacher Dienstleistungs AG in level sensors. In addition to the initial level sensors, information 
on the location, movement patterns, lid positions, container/bin openings and fire warnings are also possible in the context 
of a smart waste bin and rubble bin. The sensors are equipped 

with computer, power and storage systems independent of the 

manufacturer. The product portfolio also offers solutions for intralogistics in which forklifts are digitised and smart load carriers are made possible. Lifting height, usage profile, amount 
counts and load status are information that can be called up [28].

Sorting machine manufacturersIn the following chapter, companies acting worldwide in the 
manufacture of sensor-based sorting machines are presented and their sensor technologies for waste management sorting tasks 
are described. Meanwhile, it is reserved for a few established companies to dominate the world market for sensor technologies in the circular economy. Some offer ‘complete packages’ as system 
planners, whereas the individual components do not necessarily 

come from the same company. The list below does not claim to be exhaustive as there are other manufacturers on the market. The 
excluded manufacturers were not mentioned since they only offer a few units (e.g. LIBS) for waste management. Table 3 shows the sensor technologies of the various companies in 2018  [13].

Table 3: Selected manufacturers of sensor-based sorting machines [13].

Manufacturer Binder+Co Pellenc REDWAVE Sesotec Steinert TOMRAElectromagnetic Induction x x x x x xLaser-Induced-Breakdown-Spectroscopy (LIBS)     x  Near-Infrared Spectroscopy (NIR) x x x x x xVisual Spectroscopy (VIS)   x  x  X-ray Fluorescence Spectroscopy (XRF)  x   x xX-ray Transmission x x x x x x

Binder+Co

The machine manufacturer located in Gleisdorf, Austria, offers 

various processing units and sensor-based sorting machines. 

These include the CLARITY product line, which sorts  recyclable from non-recyclable waste, and the MINEXX line, which is primarily 
used to process raw materials  [29]. Sensor fusion allows sorting by material type and colour simultaneously through a link with 
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specially developed software. In this way, more individual tasks 
can be solved than simply by combining different sensors [17].

Pellenc

Pellenc Selective Technologies (ST) is part of the Pellenc group. 

The optical sorters for household and commercial waste are 

manufactured at the company’s headquarters in Pertuis, France, and sold under the product name MISTRAL+. These systems use NIR, VIS and induction sensors [30].
REDWAVE

Another company that offers sensor-based sorting machines is REDWAVE, a division of BT Wolfgang Binder, located in Gleisdorf, Austria. In addition to sorting plastics, glass and paper, the sorting of minerals is also offered. As a company, REDWAVE is active as a machine supplier and provides system planning [31].
Sesotec

The development and production of the sorting systems of the company founded in 1976 still takes place in Schönberg, Germany, 
although it now operates globally with seven subsidiaries. 

Modular sorting systems for plastics, electronic waste, glass, 

household waste and metal are offered, which combine different 

sensors, detectors and separators in one device depending on 

the application. Up to three combined sensors can be used in 

the recycling systems: a high-resolution line scan camera, near-

infrared sensors and inductive metal detectors. The units are offered with a conveyor belt or a chute [32].
Steinert

The subsidiary Steinert Unisort bundles the resources for the 

sorting technologies for the waste management of the Steinert Group. The Steinert Group has been based in Köln, Germany, since 
it was founded in 1889, although there are subsidiaries in the USA, Australia and Latin America [33]. The product range for recycling with NIR is called ‘Unisort’. There is the option of a combination 
system of up to four sensors in one unit, called the Steinert KSS. The Steinert KSS contains 3D, colour and induction recognition. The fourth installed sensor is either a near-infrared, an X-ray transmission or an X-ray fluorescence sensor.  Typical application 
areas would be separating heavy metal concentrates into copper, brass and grey metals [34].
TOMRA Systems

The company, based in Mülheim-Kärlich, Germany, offers 

sensor-based sorting solutions for various industries. Formerly 

TOMRA Sorting was called TiTech, till it was integrated in the Norwegian company TOMRA Systems in 2004. The AUTOSORT product range, which covers almost all waste streams, uses NIR, VIS or induction sensors or a combination of these. Furthermore, 
besides waste sorting machines and waste collection automats, 

TOMRA Sorting offers sorting systems for different applications in food or mining [35].”

Sorting robot manufacturers

The future of robotics in waste management has not yet been defined and offers room for innovative ideas. The following is a 
brief overview of the leading robotics manufacturers in the waste 

management sector and their current products.

Apple Inc.Apple revealed their first dismantling robot in 2016. Apple 
claimed that this robot, called ‘Liam’, could dismantle 1.2 

million iPhones 6 per year in eleven seconds each. The further 

development of ‘Daisy’, which replaced ‘Liam’ in 2018, can 

dismantle 200 iPhones per hour and differentiate between nine models [36,37]. Although there was a lot of media attention, it must be mentioned that Apple knows the location of recyclables in their devices and how they can be dismantled. This knowledge is 
usually absent in the everyday waste management business, which 

struggles with heterogeneity and variable degrees of pollution. The first waste sorting robot entered the market in 2011 from ZenRobotics and uses optical systems [37]. Since then, there have 
been attempts to use haptic because the sense of touch gives the 

operator much additional information. Therefore, a robot called ‘RoCycle’ was equipped with capacitive sensors by the Artificial Intelligence (AI) Lab at the Massachusetts Institute of Technology (MIT). It measures size and stiffness by touch. It is not yet a real 
competition to optical systems because of its low throughput, but combining the sensor systems would be conceivable [38].
OP TeknikThe waste sorting system from OP Teknik specialises in the 
fully automatic separation of construction and industrial waste 

into metals, plastic, wood, construction waste, stones and paper. 

With six robots used, as recommended by the manufacturer, up to 14,400 picks per hour are possible, selected by sensors and 
cameras in real-time according to material type, colour, size and shape. A single-arm can handle 2,400 picks per hour. For 
comparison, various manufacturers stated that a person could manage 20 to 40 picks per minute, correspondingly 1,200 to 2,400 picks per hour [39,19].
ZenRoboticsFounded in 2007 and based in Helsinki, Finland, the company was the first to focus on robotics sorting by launching its Heavy Picker in 2009. The robot system with up to three arms contains various detection units such as NIR, VIS and 3D sensors, metal detectors and an RGB camera. The Heavy Picker is designed for heavy and unwieldy objects weighing up to 30 kg. Therefore, it 
can simultaneously separate up to four different fractions with 

one arm without extensive pre-sorting or shredding. The various material flows for which it can be used are: commercial and 
industrial waste, construction and demolition waste, wood, inert 

materials, plastics, metals (scrap) and different coloured “plastic bags” collected from household waste. The Heavy Picker manages up to 2,000 picks per hour on a conveyor belt controlled by the 
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robot. The AI software that ZenRobotics combines with their 
products is called Zenbrain [19,40]. The ZenRobotics Fast Picker has a maximum speed of 4,000 picks per hour and consists of an arm with a gripper that works via 
suction and a sensor unit for the software. This robot is designed for light materials such as packaging waste, dry mixed recyclable materials and household waste with a maximum weight of 1 kg  
[19,40].

AMP Robotics

The AMP Robotics company from Colorado achieves up to 3,600 picks per hour with its sorting system Cortex. The Cortex system introduced in 2017 uses VIS sensors and machine learning to sort mainly packaging waste. Sorting plants that use this system 
are mainly found in the USA. Figure 9 shows the basic functional principle: The vision system records data processed using AI-
based learning and then sorted by the robot arm [19,41].

Figure 9: AMP Cortex [41].

Sadako in cooperation with BHSSince it was founded in 2012, the Spanish company Sadako has focused on artificial intelligence and robotics. Together with BHS - Bulk Handling Systems, their waste sorting system, Max-AI, was used for the first time in California in 2017. Max-AI uses 
deep learning and an optical system to act as quality control. 

Using suction mechanisms, up to six different fractions can be 

recognised simultaneously and sorted with the gripper arm. According to the manufacturer, the system can reach up to 3,900 picks per hour [19,42].
Bollegraaf Recycling SolutionsThe company from the Netherlands has been providing waste sorting systems for 55 years and has installed over 3,500 recycling systems in Europe, North America, Mexico and Canada. In 2013, the artificial intelligence-provided waste sorting robot RoBB-AQC was presented, separating recyclable materials in the final sorting step. The system is equipped with NIR sensors, an RGB camera and laser units for height detection and separates the 
detected materials automatically with a suction head. Up to four 

materials can be sorted out simultaneously per unit at a very high rate of 12,000 picks per hour if an installation with four vacuum 
grippers is available. However, the materials are mainly paper/cardboard and various plastics made from mixed waste [19,43]. The Bollegraaf Cogni was presented in 2018 which uses the same technologies as RoBB-AQC and is also mounted on a portable 
overbelt construction. The suction head is on a delta robotic arm [19,43].
Machinex

The sorting robot from the Canadian company Machinex called SamurAI has been available since 2018 and operates with artificial intelligence from AMP. With one of its four suction heads on four robot arms, it can lift up to 6 kg and manage up to 4,000 picks per hour. SamurAI sorts plastics positively and negatively for 
quality control or separates from mixed waste. The system is used 

in nine plants in the USA and Canada and is mainly used to sort plastics. The manufacturer offers software called ‘MACH Vision’. It can create databases for material identification in advance, 
receive software updates and also use the ‘MACH Cloud’, which 

can obtain optimisations from other systems [19,44].
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Relevant Trends and DevelopmentsThis chapter describes the influence of digitalisation and Industry 4.0 on the waste and recycling industry and elaborates 
on robotics and the sensors used in this industry.

Digital Waste ManagementThere are various definitions of the term digital transformation. In sum, it can be said that the networking of individual stakeholders 
(companies, customers, products, etc.) succeeds through using the 

latest technologies (computers, internet, etc.) and the processing, collection and analysis of information. The so-called 4th Industrial Revolution - better known as Industry 4.0 - thus involves using IT 
and automation to pass on real-time information to all actors in the value chain and network them  [45].

These developments do not stop at the waste management industry. They offer great opportunities, as 63 % of the companies 
surveyed in a study by the Montanuniversitaet Leoben in cooperation with HTL Leoben confirm. Of the 400 companies surveyed in the green tech sector in German-speaking countries, 
75 % said they were involved in digital transformation and 84 % of 

the companies that were not yet involved said they planned to do 

so in the future. Moreover, the global circular economy and waste management market volume is expected to rise from around 100 billion euros in 2013 to 170 billion euros by 2025, further 
encouraging becoming involved in the digital transformation 

[26,46]. This conclusion is supported by another recently published survey in which 83 % of all surveyed companies 
announce that they have implemented a company strategy for managing data and 75 % make efforts to ensure high qualities in 
their transaction data [47].

At the same time, companies in the green tech sector must face new challenges summarised by Roland Berger in 2016 for the German market in five areas. One challenge is securing 
customer access, as traditional trade is losing importance 

and sales platforms are becoming increasingly important for customer contact. In order not to lose touch, it is recommended 
for companies to initiate their platforms and to integrate value-

added partners for system solutions [48].

An example is the ‘Daheim’ app of Saubermacher 

Dienstleistungs AG, which is available individually designed for 230 municipalities. It implements information and reminder 
functions for collection calender, which is a Austrian calender that states on which days specific waste streams like light-weight packaging, paper or biological waste are collected by the waste 
collection system. Furthermore, it is a free communication 

platform for associations, schools and it offers e-car rental or 

swap [49].In order to keep up, the need to increase flexibility and 
agility to follow the fast innovation cycles is mentioned. One 

characteristic of agility is to involve customers in the early phases of new developments and to obtain feedback. A further challenge 

is the development of digital competence. Digital transformation is a cross-sectional undertaking in many areas and does not stop at established processes and structures. In order to exploit the full potential of existing skills, interdisciplinary teams and cloud 
solutions for rapid information exchange are advantageous. Another recommendation is to adapt financing along the entire 
value chain. The digital economy relies on intangible assets such as employee know-how, digital strategies and data, whose monetary value is hard to estimate. It is essential to design 
individual solutions and evaluate the feasibility of renting, leasing, and pay-per-use options. The final challenge of digital 
transformation is developing the digital mission statement. That means not looking at the challenges individually but developing a 
comprehensive digitalisation strategy. The digitalisation strategy 

should be constant evaluation and adaptation to remain proactive 

[48]. Disruptive innovations in the waste and circular economy are currently taking place and will take place in the future in four identified areas. Collection and logistics face a revolution through 
‘smart waste bins’ and intelligent route optimisation. Generally speaking, the customer is coming into focus, with more and more 
personalisation in terms of collection cycles, for example, which 

should increase recycling rates  [50].

Sensor technology in waste management

With the increased demand for recycled material and increased 

demands on the quality and purity of this, the pressure on waste 

management to innovate towards real-time quality control is 

growing. The goal in the future will undoubtedly be digitised 

waste treatment, with individual treatment plants communicating 

with each other and various sensors providing real-time data. For 

example, to run conveyor belts at the right speed and in turn, 

adjust pre-treatment equipment such as shredders. Robotics will play a significant role in sorting in combination with real-time 
statistical modelling, improved object recognition and perpetual optimisation for tasks too dangerous or strenuous for human workers [26].Quality plays a significant role in recycling plastics for energy 
use as RDF. Up to now, controls have mainly been carried out 

manually or by automated sampling. This approach became 

increasingly impractical due to the delay in the results, as the product had already been manufactured. Various sensors (e.g. NIR sensors) can remedy this situation and determine parameters 
in the waste stream such as degree of contamination, moisture content, etc. If these parameters are compared with the material group-specific properties in a database or additional parameters such as calorific value, chlorine or ash content are collected, the production line can be adapted in real-time. This fast influence 
offers the possibility of intervening in the process and optimising the plant to market-specific requirements [19]. In addition to 
ensure the quality of the  RDF, increasing focus is being placed on 

the recovery of metals to identify and quantify valuable alloying elements [13].
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Sorting robots in waste managementIn Germany, only 30 % of waste management companies 
state that they are ready for digital transformation, following 

the global trend towards green technologies and digitisation [48]. Digitisation and automated processes should help make 
processes run faster and more precisely by exchanging human work for machine work. In addition, robotics is widely used to 
reduce human effort. For waste management, only robots for industrial use are considered. Robots differ significantly in their 
properties, such as speed, gripping system, and the size of their working area or range of the gripper [19]. In the field of waste 
sorting, collaborative robots (so-called “cobots”) would be 

conceivable. However, compared to other branches of industry, 

such as the automotive industry, their use has not yet arrived in 

waste management. Mechanically separating structures such as fences, light barriers, or laser networks can separate work areas. 
The latest concepts are based on cooperation and collaboration 

between man and machine without such restrictions, so robots 

can directly support employees [20].With the introduction of Industry 4.0 and the rapidly 
developing digitisation, more and more applications of robotics 

technology are emerging. The learning ability of robotic systems means that sorting can be carried out more efficiently. One 
application of this learning ability is the use of the case-dependent 

speed of the conveyor belt. Regulating the speed of conveyor 

belts is a big issue in waste management as the heterogeneity 

of waste in type, size, and shape has presented a challenge for automated systems. In addition, waste streams have the problem of surface pollution, which impedes detection by sensors. The task 
for sorting robots includes the need to grasp objects of various 

shapes and sizes that occur in randomly distributed locations and quantities in the waste stream. Error-free work is also made more difficult by the change in position of objects due to vibrations 
of the conveyor belt, centrifugal forces or drafts. The computed inverse kinematic of the robotic arm has become wrong since the 
presumed position of the object has been altered. The failure to 

grab the object results in misthrows or loss of valuables, which poses the need for continuous monitoring and tracking of objects 
to be ejected [19]. If the software is connected to the appropriate hardware and artificial intelligence is stored, a robotic system can perform 
several operations simultaneously and thus perform different sorting tasks. Of course, new waste streams to be sorted out can also be teached in, which makes this technology fundamentally 
promising, because of the possibility of separating a wide variety 

of fractions. Figure 10 shows the detection of different materials 

by the AMP sorting robot Cortex. Robots are used to replace 

manual sorting or to sort for areas that were previously not 

sortable [19]. Furthermore, these technologies allow an automatic quality recording and increase sorting efficiencies (e.g. plastics), 
if necessary. Manual sorting is limited by weight, size and the extension of work environment that robotics is not [19].

Figure 10: Classification of the material flow of a sorting robot [41,51].

The developers do not see robotics as the only future solution for waste treatment and sorting, but especially in packaging 
and residual waste combined with other technologies such as 

optical sensors with pneumatic separation. Automated systems 

are often seen as a quality guarantee at the discharge of a plant. 

Another topic of utmost importance during the discourse about 

digitalisation is the protection against cybercrime. The stored 

software for detecting objects and the associated algorithms are 

essential and must be adequately protected against manipulation 

and exploitation. Adequately protecting intellectual property and shielding networks against attacks demands financial resources and know-how [19]. 
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Smart Waste

The circular economy targets stated by the EU and 90 % of the German population agree that waste separation significantly 
impacts environmental protection. From the consumer’s point 

of view, the producers or manufacturers of goods substantially influence establishing a well-functioning recycling system. Assuming that these findings can be transferred to Austria, this 
could explain why the proportions of recyclable materials in the 

residual waste bin in Styria have hardly changed in the last 20 years. In order to meet the recycling quotas of the EU, citizens 
must be involved additionally to the expansion of the sorting technology in plants  [52,53]. The smart garbage bin, for example, with level measuring sensors from SLOC leads to less traffic, traffic jams, noise and CO

2
 emissions through dynamic route 

planning. Austria Glas Recycling expects a potential saving of up to 30 % of the costs and the effort of the collection through the 
high-tech sensors in public glass containers after the pilot project 

with Saubermacher in December 2018 in the municipality of Horn 

in Lower Austria  [54]. This example is intended to show that the 

detection options using sensors, in addition to level measurement, 

can determine location, movement pattern, several lid openings 

and a temperature increase of a barrel and thus enable a need-

based collection tour planning in addition to increasing comfort for the citizens [12,53].

Recyclable materials scannerIn 2018, the Saubermacher Dienstleistungs AG presented the 
‘recyclable material scanner’, a multisensor, multi-spectral image 

recording system that detects the empty contents of a residual 

waste bin on the collection vehicle. The generated visual output 

is displayed in Figure 11. The system evaluates the collected waste in real colours, 3D, and various spectral channels to classify 
the material.  A waste bag opener is used to further increase the visibility of the waste for the convolutional neural network.  
Test runs have shown that the announcement of the use of this procedure led to a significant reduction in missed throws. Before 
this announcement, incorrect throws were detected in 65 % 

of the garbage cans; after the project was publicised, the rate immediately fell to 38 % and could be further reduced through direct feedback. The supplementary resource scanner portal can 
display and evaluate the detection results and can thus be used as a feedback portal for citizens. The citizens communicate with the 
disposal company and vice versa via SMS or Saubermacher’s app 

‘Daheim’. The proportion of incorrect throws in the municipalities’ 

residual waste could be reduced by up to 80 %; on average, 

incorrect throws were halved. The technologies developed in 

Austria are to be used in another larger region in 2020 [55,56,57].

Figure 11: Classification of waste using the recyclable material scanner [58].

Smart Villages

The recyclable material scanner and the intelligent waste bin are part of the “Smart Village” project. Energie Steiermark 
and Saubermacher Dienstleistungs AG included around 150 households in the communities of Riegersburg and Feldkirchen. In addition to the measurements necessary for generating key figures 
to quantify correct waste separation, street lights were equipped 

with sensors and vehicles of the road service in winter with GPS 

route recording and ice sensors. The project was presented in mid-2018, and the first positive results were presented in July 
2019, which suggest an expansion of smart technologies in the 

municipal waste sector [56,57].

Conclusion

The presented data depicts the waste management industry’s rapid developments. While new technologies, like machine learning and convolutional neural networks and robot sorting, 
are increasingly implemented, a substantial discrepancy exists 

between technological capabilities and the current State-of-the-Art. Stakeholders in the industry expressed their willingness 
to adapt their current approaches and implement emerging 

technologies into their current approaches; these developments take time. Further investments must be made to acquire the knowledge, technology, and human resources needed for such a 
transmission. These investments need a dependable political and 
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economic foundation to be made, and further political guidelines 

will be needed to ensure the sustainability of these investments. The increasing attention lawmakers and political institutes 
currently give to the waste management industry are a welcome 

enticement to facilitate the implementation of improved sorting 

technologies in the sector. 

When combined with these new emerging technologies, the 

existing technologies mentioned in this study applied to sensor-

based sorting can substantially impact the feasibility of reaching 

the goal of a circular economy. The active participation in the studies mentioned in this survey reflects the consumers’ and 
manufacturers’ interest in enhancing current waste management 

techniques and implementing and adapting to technologies like robotic sorting and applying neural networks for the classification in waste collection. These changes were shown to increase the efficiency of the collection of post-consumer 
waste by announcement alone. However, while these results 

motivate further research and these technologies see widespread 

employment in the automotive and pharmaceutical industry, the operating conditions in this field differ significantly from 
those in waste management. More comprehensive employment of technologies like robot sorting, live in-line sensor-based 
measurements of manufacturing and machine learning 

approaches need to be evaluated in their adaptability to the 

inherent problems their application in waste management entails. 

The employment of these new technologies will need coherent legal and political guidelines. This lack of coherent legal 
guidelines extends not only to the sector of waste management 

but to the industrial application of robotics, data science and 

machine learning in general. Without legal guidelines regulating the liability issues arising from human labourers sharing working space with machines and defining safety regulations adapted to 
this new development, further growth of this technology will be stunted. It is further to be expected that the emergence of these new technologies will significantly impact the existing labour market, as the need for menial labour is decreasing, and arduous and dangerous jobs may soon be undertaken by machinery. The labour market’s needs will increasingly shift to skilled technicians, 
able to maintain, program and control the machines substituting the human workforce. Since digitisation and digitalisation are 
comparable new topics in the waste industry, there is great 

potential for improvements. The rising interest in this topic is also reflected by the increased market volume of products affiliated 
with green production and the circular economy, prompting all significant stakeholders in the manufacturing of sorting systems to 
become involved in applying these emerging technologies in their 

product portfolio to be on the leading edge of these developments.
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Introduction

Plastics are an indispensable part of everyday objects of use and 
application, both in households and in industry, where they are 
a central raw material for a wide variety of areas - from packaging 
material, in medical care, to electronic components, to construction 
and Transportation Industry - Represent [1]. Around 8.3 billion tons 
of plastic have been produced globally since 1950. Only nine percent 
have been recycled; twelve percent were incinerated, and the majority 
(79%) ended up in landfills or the environment [2]. In 2015, 322 
million tons of plastic were produced worldwide [3], and this amount 
is expected to double by 2035 and quadruple by 2050 [4].

It is undisputed that the resulting plastic waste is an enormous burden 
for the public and the environment - keyword microplastics in the 
oceans. Consequently there is an endeavour by business, politics 
and society to force the recycling of raw materials and to increase 
the proportion of recovered valuable materials. In this context, 
recycling rates have the task of providing statistical information on 
the proportion of waste recycled and fulfilling legal requirements 
within the framework of national and European sustainability policy. 
In addition to ecological intentions, economic aspects of recycling 
must also be considered from a business point of view - the issues 
of resource efficiency and life cycle considerations in particular, are 
becoming increasingly important. Bunge [5] states that the usefulness 

of recycling has to be judged through an economic as well as an 
ecological perspective. As a recycling rate approaches the 100 percent 
mark, recycling becomes more and more inefficient in terms of costs/
benefits. The ecological yield from recycling increases linearly with 
the degree of recycling, while the ecological recycling effort increases 
exponentially [5].

Against this background, questions and hitherto unsolved problems 
arise concerning the determination and collection of recycling 
rates, including the extent to which these contribute to sustainable 
development goals. For example, in plastics recycling, the aim is 
to show the consequences of rate regulations along the value chain 
and whether the implementation of such rate can contribute to the 
recovery of processed material flows. Further, the inherent potential 
of rate implementation needs to be evaluated. 

Framework Conditions for the Definition of 

Recycling Rates

The Austrian Waste Management Act [6] defines recycling as “any 
recovery process through which waste materials are processed into 
products, things or substances, either for their original purpose or 
other purposes. It includes the processing of organic materials, but not 
energy recovery and processing into materials that are intended for 
use as fuel or for backfilling." Accordingly, recycling is recovery, not 
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reuse. Waste is considered completely recycled if it is fed into a process 
recognized as recycling. No distinction is made between which parts 
are actually recovered for use as secondary raw materials [7].

Based on the definition mentioned, specific proportions of the reusable 
or recycling rates are determined but the method of calculating of 
these rates is open to interpretation, this can yield different outcomes 
- even within the same material fractions. Further, no specifics for 
determining the total amount of waste and partial amount of recycling 
are stated, this leads to different measuring points for each different 
group of waste, hampering the comparability of results. This lack of 
definition is further evident in the interchangeable use of the terms 
“recovery” and “recycling” in official and legal documents, showing 
the confusion present when discussing the subject.

Recycling Rate – Definition of the Term

In waste management, the recycling targets are based on rates. The 
essential requirement for calculating a rate is knowledge of the 
population of the recyclable material available on the market. Uniform 
definitions and calculation methods are not available at the national 
level (e.g. differences in federal states) or European Union level. From 
a global perspective, this raises considerable problems concerning 
collecting and determining recycling rates against the background of 
exports (e.g. through packaging materials) [8]. In this context, Bothe 
[9] states about the dual systems that "a calculation that compares 
only a mixture ‘x’ with an unknown composition and only partially 
known whereabouts to a mixture ‘y’ of another and also unknown 
composition as a reference variable is not even a rate.”

There are two main distinctions to be made when defining recycling 
rates [7]:

a. Production-related recycling rate (input-related): Indicates the 
recycling rate in the material input of a production process;

b. Waste-related recycling rate (output-related): Refers to the 
proportion of materials or valuable materials recycled from the 
waste during disposal.

It must be considered that a high waste-related recycling does not 
necessarily lead to a high production-related recycling rate since the 
import and export of waste also enable the secondary material to be 
used in other economies [7].

The following distinction is also essential in this context: While the 
recovery rate includes the thermal recovery of valuable materials from 
waste (i.e. the incineration of the same, including their processing into 
fuel), the recycling rate excludes this type of recovery. Therefore, the 
recovery rate is greater than the reuse or recycling rate [10].

European and National Case Law on the Rate 
Regulation for Plastics Recycling

At the European Union level, plastic waste is dealt with through 
several legal provisions, but none specifically designed for plastic. 
Plastics are indirectly addressed by the following directives: Waste 
Framework Directive (2008/98/EC) [11], Directive on waste electrical 
and electronic equipment (2012/19/EU) [12], Directive on end-of-life 
vehicles (2000/53/EC) [13], and in the Packaging and packaging waste 
directive (94/62/EC) [14].

The target for the reuse and recycling of municipal waste is set in Article 
11 of the Waste Framework Directive at 50% by 2020 (preparation 
for reuse and recycling). The rate for preparation for reuse, recycling 
and another material recovery will be increased to 70% by 2020. The 
only plastic-specific target in European waste legislation concerns the 
recycling rate of 22.5% for plastic packaging waste [15].

At the national level, plastic is specifically dealt with in the AWG 
2002 or the AWG Amendment Packaging (2013) and the Austrian 
Packaging Regulation (2014) [16]. In the latter, the recycling rate 
for plastic packaging is also defined as 22.5% to comply with the EU 
requirement.

The new amendments to the European waste package came into force 
on July 4, 2018. The essential elements of the new EU waste law set 
new binding targets, including an increase in the target rates for the 
recycling of municipal waste and packaging waste and an adjustment 
of definitions [17]. Furthermore, new calculation methods for the 
recycling rate of municipal waste are used to measure the actually 
recycled waste and make the data comparable. However, these rates 
mainly relate to quantity and not to quality [8].

Table 1 gives an overview of current and planned recycling rates for 
plastic packaging material. According to this (EU and national), 22.5% 
of the mass of plastic packaging placed on the market must be brought 
into a recycling plant.

Table 1: Overview of current and planned recycling rates for plastic packaging material.
 EU Austria

 
Packaging Directive 

Article 6

Change Policy of Packaging Directive (2018) 

Article 1

Packaging Regulation 

§ 5

Year 2009 2025 2030 2014

Recycling rate in % 22,5 50 55 22,5

The currently implemented recycling rate for plastic packaging are less 
than 30% at the EU level in 2018 [18]; 31% are landfilled, 39% are 
incinerated [19]. According to the Austrian Waste Management Plan 
(2017) 33.6% of plastic packaging was recycled in 2015, the recovery 
rate was 100% [20].

Sustainable Recycling of plastic Recyclates

Thermal recovery should only be considered if qualitative plastic 
processing is no longer possible, it is essential to focus on the recycling 
of plastics.

Looking at the value-added lifecycle of plastics recycling in Figure 1, 
it can be seen that this begins with the consumer as a waste producer 
(1) and is then treated (2), sorted (3) and recycled (4). In the following 
steps, the recyclate is fed into a production process (5) by the producer 
and used by the plastic consumer (6) before the cycle closes with waste 

generation (1). According to Wilts et al. [7], with the definition of the 
recycling rate for the waste-related recycling rate (output-related), 
those plastics available as valuable or materials after the recycling 
process will contribute to the rate fulfilment.

Due to the lack of a uniform legal definition of the recycling rate, a 
“non-closing” value chain can nevertheless contribute to positive 
fulfilment. If a recycler processes a material flow from a plastic 
collection in his plant, the completion of the processing would be 
sufficient to contribute to the recycling rate. At the end of the recycling 
process, plastic granules are obtained to be used for processing into 
new products. It is currently not legally stipulated in what quality the 
resulting recyclate should be.

The quality assessment of recyclates shows that the sole focus on 
recycling rates cannot be expedient to close the value chain. The 
usability of a manufactured recyclate has to be ensured to guarantee 
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sustainable recycling. Recycling rates that are not specific to the 
material flow contrast the usability of the recovered recyclate, which 
means that the proportion of primary new plastics in products is a 
multiple of the proportion of recycled material [20].

This means that every generated recyclate that can be fed into a 
production process can positively contribute to the recycling rate. 
Whether the use of a given recyclate results in the production of high-
quality or low-quality product is not regulated. Neither is the required 
proportion of new and recycled plastics fed into a production process 

regulated. When a small proportion of low-quality recyclate is mixed 
with a high proportion of new plastics the quality for the production 
of plastic products can usually be maintained, but without having to 
guarantee sustainable recycling. Another problem that arises from 
the poor quality and the volatility of the recyclates is that it is more 
difficult to find buyers for the secondary raw material produced. 
Forming a market for plastic recyclates or prices based on the quality 
of the recyclate also proves to be difficult without statutory quality 
specifications.

Figure 1: Value-added lifecycle of plastics recycling.

According to Treder [8], the following core requirements must be met 
in order to solve the rate problem: (1) The definitions of terms and valid 
data must be standardized, (2) a uniform calculation of rates must be 
defined. The current procedure for recycling is not appropriate, as it 
does not consider "high-quality recycling", which can counteract the 
spread of pollutants. Finally, (3) rates are used to achieve the target 
if the population (the amount of waste) is known, which is currently 
not always the case. In addition, it would make sense to adopt rates to 
dynamic market conditions - e.g. by specifying strategic raw materials 
- and considering the eco-efficiency of alternative scenarios over the 
entire life cycle.

Furthermore, an integrated view of economic and ecological aspects 
over the entire life cycle and the entire supply chain of plastics - from 
product design to treatment with intermediate sorting and processing 
systems - is necessary in order to achieve sustainable, resource-efficient 
waste management and use the possibilities of plastic recycling in an 
ecologically and economically sensible way.

The Influence of the Sorting Rate on the Recycling 

Rate

Following Figure 1 it can be seen that there are three types of 
losses, which negatively influence the output-related recycling rate 
technologically or socially:

• The collection rate is negatively influenced by the losses through 
incorrect disposal of waste into other waste collection streams 
like municipal waste or the losses through waste disposal into the 
environment, mainly known as littering.

• The sorting rate is decreased by the losses during the waste sorting 
process. This includes reject in the last sorting step, wastage, and 
materials that are unusable for recycling. The lost material during 
the plastic sorting process is incinerated.

• The recycling process rate is reduced by the losses during 
the recycling process itself based on the wastage and unusable 
materials for recycling.

Losses caused by exports and incineration are not part of this 
evaluation because these are regulated politically and are not as 
affected by technological innovations or social research as other losses 
mentioned above.

Expecting a collection rate R
WC

 of 70 % for lightweight packaging 
waste, there are still further losses of 40 % during sorting, which is 
known as a typical value for the sorting rate R

WS
 and further 40%, 

which is known as a typical value for the recycling process rate R
WR

 
these results in a recycling rate of 25,2% (Formula 1). When the 
recycling rate of 55 % for lightweight packaging has to be reached by 
2030, many steps have to be set.

Since this paper covers only the increase of the sorting rate R
WS

, it will 
be expected that a feasible collection rate R

WC,
 for Austria in 2025 is 85 

%. The recycling process rate R
WR

 is expected to reach 75 % because of 
increased process efficiency. This would mean that by 2030, Austria 
has to increase its sorting rate to 90 % to reach the European goal of 
a 55 % recycling rate for lightweight packaging waste (Formula 1). 
Increasing the sorting efficiency to raise the sorting rate is obligatory 
to achieve this target value.Status quo: R

WC
 * R

WS
 * R

WR
 = 0.7 * 0.6 * 

0.6 = 25.2 %

Requirement: R
WC

 * R
WS

 * R
WR

 = 0.85 * 0.9 * 0.75 = 57.4 %

Formula 1: Calculation of the recycling rate: Status quo and 
requirement

Challenges and Research Question to be Answered 
to Increase the Sorting Efficiency

Regardless of the significant, as yet unused secondary raw material 
potential, there are currently few incentives on the plastics market to 
increasingly redirect recyclable plastics (mainly polyolefin packaging) 
from thermal utilization to recycling. Soon, based on the European 
Union in preparation for the circular economy package [21], a new 
dynamic in plastics recycling is to be expected. In addition to a gradual 
increase in the recycling targets for plastic waste, which is currently 
at 22.5 % should reach 50 % in 2025 and will increase incrementally 
over the next decade to reach 65 % in 2035. (2020 22.5% | 2025 50% 
| 2030 55% | 2035 65%, [18]. In addition to the gradual increase of 
recycling targets, the calculation of the recycling rate will be changed 
to be based on output related considerations rather than input related 
considerations.

Increasing the flexibility of the processing technology, concerning the 
input quality and a growth in the recovery of valuable materials can 
improve the value-added lifecycle of plastics and the recycling rate. 
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Challenges to Increase Plastic Sorting Efficiency
Additionally, the economic risk in the field of plastic sorting can be 
reduced.

Fluctuations in the waste stream composition resulting from changes in 
the collection can be better cushioned with a more flexible processing 
technology. Furthermore, increased added value can be realized with 
alternative plastic input streams beyond the packaging plastic.

Through direct processing in the plastics recycling companies after 
sorting, the value chain can be extended accordingly, or an integration 
of the value chain of plastic waste sorting and plastic recycling can be 
achieved.

Challenge: Necessity to Achieve Purities with 
Possibly Poorer Input Quality

The requirements of the secondary plastics market tend to be higher 
with the increasing volume of secondary plastics, as is to be expected 
based on environmental and resource policy requirements. This is 
due to additional products to be developed for the use of secondary 
plastics. At the same time, it can be assumed that the quality of the 
collected plastic waste (input flows for the sorting) becomes worse due 
to the quantitative goals to be achieved. This development has to be 
offset by improved sorting technology.

Research question: How can sensor-based sorting processes be 
improved regarding the identification of known material types?

Challenge: Lack of Structured Knowledge of 
Complex Products/Material Combinations

Due to a lack of knowledge concerning complex products / material 
combinations, there are currently no approaches to a differentiated 
licensing policy based on the recyclability of the system operators of 
plastic collection and recycling systems. Through a structured gain in 
knowledge, legislators and manufacturers can be influenced, on the 
one hand, under the aspect of EcoDesign and, on the other hand, 
the system operators of plastic collection and recycling systems can 
establish a differentiated licensing tariff scheme with the corresponding 
steering effects in the direction of increasing recyclability.

Research question: Which products or material combinations are 
problematic to be detected, and what are possible solutions to identify 
them correctly in sensor-based sorting?

Challenge: Increase in the Yield of Recyclable 
Materials and Purity with Feedback Loops between 
the Sorting Result to the Plant Operation

The flexibility concerning the sorting input while increasing the 
recovery of recyclable materials and ensuring the quality of the 
recyclates required by the secondary raw material market requires the 
combination of different sorting criteria and their linking within the 
scope of the sorting decision at a property level. An input-dependent 
system operation can also ensure that the potential of valuable 
materials is optimally exploited.

One challenge is the coordinated, clear identification of the signal 
values   provided by various sensors. For clear material identification, 
signals that sensors can detect must be correlated with specific 
material properties, which require extensive material investigations 
on the relevant material systems and access to the sensor-based data. 
By implementing a feedback loop between the quality of the input 
and the plant operation, it is possible to adapt the plant operation 
to the potential of recyclable materials and optimize the recovery of 
recyclable materials. Such approaches have not yet been implemented.

Research question: How can the sorting efficiency be improved by 
implementing feedback loops between the sorting result and the plant 
operation?

The main task for the future is to answer all these research questions 
with innovative solutions to increase the sensor-based sorting efficiency 
and further increase the sorting rates to achieve the threshold values of 
the European recycling goals.
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ABSTRACT
Plastic recyclates are granulates which are produced by the processing of plastic 
wastes. The circular economy package of the EU, especially the amendment of the 
Waste Framework Directive, sets a new goal for the use of different types of these 
recyclates. Corresponding primary raw materials can assure reliable qualities with 
respect to stable physical and chemical properties. Besides, the production of re-
cyclates is often even more expensive than the production of primary raw material 
granulates. Several quality assurance measures are carried out along the value chain 
from plastic waste to final plastic products. Recyclates are evidently priced based 
on the price of primary raw material granulate. Pricing also correlates with differ-
ent quality parameters, however, such as degree of mixing, degree of degradation 
and presence of impurities. This paper examines the correlation between different 
quality features and how they affect the pricing policy for recyclates. Experts and 
Stakeholders along the value chain of plastic recycling in Austria and Germany have 
been interviewed about the most important quality assurance parameters and how 
they (would) affect prices of recyclates. Therefore, quality parameters for the sorted 
plastic waste as an input for plastic waste recycling companies and manufactured 
recyclates are included in this paper. Experts from the plastic waste recycling indus-
try confirmed that there is a profound correlation between price and quality that is 
presented and discussed in the paper: The higher the quality of the recyclates, the 
lower the level of impurities and the purer the recyclates, the higher the price.

1. INTRODUCTION

The European plastic strategy presented by the Europe-
an Commission, to be implemented in the Recycling Sector 
Package, poses an enormous challenge for the European 
waste management and the plastics processing industry. 
The circular economy package sets a recycling rate of 55 
wt.% by 2030 for plastic packaging waste (European Union, 
2018). The European Commission has not stipulated a 
compulsory percentage of recycled plastics in the manu-
facturing process of new consuming products, i.e. substi-
tution rate on a primary raw material level. Moreover, the 
Commission appeals to the responsibility of manufactur-
ers to achieve its objectives regarding circular economy.

Currently, recyclates are applied with a content lower 
than 10% in new plastic packaging products (Reitz, 2019). 
This suggests that recyclates are either too expensive or of 
too low quality. Although scientific studies (Klumpp & Su, 
2018; Martel, 2018; Pauwels & D’Aveni, 2014; Voros, 2019; 
Zhe Gin & Kato, 2010) have already focused on the correla-

tion of quality and price for other goods, this paper does 
not only examine such correlations but also includes qual-
ity parameters for the sorted plastic waste and recyclates 
to provide a practical guideline for quality assurance. In the 
course of the applied survey for this paper, experts gave a 
comprehensive overview of how quality is assessed in the 
field and which parameters are significant for high quality 
material. Furthermore, this data will support assessing the 
economic feasibility of certain stages of plastic packaging 
waste treatment (European Committee, 2019).

Wide range of composited materials and problematic 
additives can lead to sales difficulties for recyclates too, 
since recycled materials from “older” waste plastics may 
still contain substances that are no longer permitted in new 
plastics due to their negative effects on the environment 
and health (Wilts et. al., 2014). Plastic recycling is also lim-
ited by a lack of quality and constant supply of raw mate-
rials required by the industry (Vilaplana & Karlsson, 2008). 
Quality criteria for recyclates for the final plastic process-
ing companies are not standardised but defined individu-
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ally by the recycling and processing companies. Criteria 
include exceptionally pure colour and low content of con-
taminations (Vilaplana & Karlsson, 2008). Besides the lack 
of quality, the poor image of recycled plastics in the public 
also impairs plastic recycling (Moser et. al., 2016). As a re-
sult, recyclates are not used in new plastic products to the 
desired extent or not at all.

Despite the number of obstacles, however, recyclates 
are increasingly applied by the industry to pursue a sustain-
able strategy (Polymer Comply Europe, 2017). The market 
for primary raw plastics is characterized by:

• A close correlation with the price of crude oil, resulting 
in comparatively high volatility of prices. As a result, 
when the price of primary raw plastic significantly de-
creases, recyclates will be increasingly substituted by 
primary raw material granulate, as well as

• Easy substitutability of products of different suppliers 
and also by oligopolistic market structures, inspiring 
strategic behaviour of suppliers (Rothgang et. al., 2017).

The main question raised by this paper is based on 
these two findings and seeks to establish a correlation 
between the price and the quality of plastic recyclates. In 
addition, the quality requirements for sorted plastic waste 
and produced recyclates are examined. The importance 
of quality assurance and its practical implementation are 
treated in a separate section. Furthermore, the market for 
primary raw plastics and recyclates is examined in detail 
and pricing developments are analyzed.

2. MATERIALS AND METHODS

2.1 Materials

The following plastic types are being investigated in the 
study as they represent 57% of the demand for the plastic 
packaging waste processing industry in Austria (Stoifl et. 
al., 2017):

• High-density polyethylene (HDPE) foils and hollow bo-
dies (emptied);

• Low-density polyethylene (LDPE) foils and hollow bo-
dies (emptied);

• Polypropylene (PP) foils and dimensionally stable PP 
(bucket, canister, emptied);

• Polyethylene terephthalate (PET) bottles (emptied);
• Polystyrene (PS) foils (thermoforming film).

This paper mainly discusses recyclates since regrind 
materials do not undergo extensive quality assurance and, 
frequently, only the impurity content is of importance.

2.2 Methods

All relevant stakeholders along the value chain from 
plastic wastes to the finished products are shown in Figure 
1. This figure also shows all the terms used in this paper 
along the presented value chain.

A market analysis of secondary plastic granulates was 
conducted to identify the quality benchmark in plastic recy-
clates, performed by observing the development of pricing, 
identifying drivers to the increase or decrease of value and 
verifying whether the value depends on recyclate quality or 
on other economic features.

To analyse the correlation between price and quality, 
several packaging plastic waste processing companies 
and plastic waste recycling companies were provided 
with a specially designed assessment guide. In addition to 
personal discussion with plastic waste recyclers and the 
plastic waste processing industry in Austria, the plastics 
recyclers and the plastics processing industry in Germany 
was approached with short and targeted e-mail questions. 
Altogether, 19 different stakeholders responded. Six phone 
calls were made, reaching two plastic recyclers, three plas-
tics processing companies and one association. In addi-
tion, about 80 e-mails were sent to plastic waste collectors, 
plastics recyclers and plastics processing companies, re-
sulting in a return rate of approximately 20%. Four plastics 
recyclers, five plastic processing companies and four other 
stakeholders responded. Figure 2 shows the distribution 
of the consulted companies by industry. 32% of plastic re-

FIGURE 1: Stakeholders along the value chain from plastic waste to final plastic products.
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cyclers, 42% of plastic processing companies and 26% of 
other stakeholders along the plastic value chain participat-
ed the survey. The other stakeholders are cluster, associ-
ations, societies or research institutions operating in the 
field of plastics processing.

3. RESULTS AND DISCUSSION

The following section is divided into five subsections. 
First, the quality requirements for the sorted plastic waste 
and the plastic recyclates are shown. Second, the section 
"Quality Control" is describing, which parameters are signif-
icant for reliable quality control for the sorted plastic waste 
and manufactured recyclates. Additionally, price develop-
ment for the polymer types mentioned above has been 
done. Furthermore, the most relevant questions of this 
study are answered in a separate section. Finally, to fulfil 
the titles of this paper, the quality benchmark in plastics 
recyclates are described.

3.1 Quality Requirements

Requirements for sorted plastic waste qualities:

In Germany, quality standards for sorted plastic waste 
applied in the plastic waste recycling companies have 
evolved within the plastic industry (Grüner Punkt, 2019), 
summarized in Table 1.

Quality requirements for produced recyclates:
Provided specification sheets or datasheets of pro-

duced recyclates include limit ranges (see Table 2) for the 
following properties:

• The density of non-cellular plastics (DIN EN ISO 1183-1)
• Melt volume-flow rate (MVR), melt-mass flow rate 

(MFR) and flow rate ratio (DIN EN ISO 1133-1)
• Tensile properties, in particular, modulus of elasticity 

(E-Modul) (DIN EN ISO 527-1)
• Notch impact strength (DIN EN ISO 179/1eA)

3.2 Quality assurance

3.2.1 Quality assurance of plastic waste

The key competence in the quality assurance pro-
cess of the delivered mixed plastic waste material to the 
plastic waste sorting plant is found with the material ac-
ceptance staff. Based on their experience, the quality of 
supplied plastic waste bales can be assessed by visual 
inspection. Attention is paid to coarse impurities. The 
collective experience of the stuff is decisive. An essential 
part of the input control is the colour distribution of the 
bale because a majority of pure plastics is a requirement 
for the production of high-quality recyclates and their use 
in new products.

Furthermore, the origin of waste affects the assess-
ment of the sorted plastic waste quality. Hence, the materi-

Sorted plastic 
wastes

Metal items
[wt.%]

Other plastic 
particles

[wt.%]

Other 
residues 1)

[wt.%]

Dimensional-
ly stable PE 

articles
[wt.%]

Foamed 
plastics incl. 

EPS*
[wt.%]

Plastic Foils
[wt.%]

PVC
[wt.%]

Dimensional-
ly stable PP

[wt.%]

Plastic Foils 
(mostly LDPE)

< 0.5 < 4.0 < 4.0 - - - - -

Plastic hollow body 
(mostly HDPE)

< 0.5 < 3.0 < 3.0 - - - - -

PP < 0.5 - < 3.0 < 1.0 < 0.5 < 2 - -

PET bottles < 0.5 < 2.0 < 2.0 - - - < 0.1 -

PE < 0.5 - < 3.0 - < 0.5 < 5.0 - < 3.0

PS < 0.5 < 4.0 < 2.0 - < 1.0 - - -

Compostable waste (foods, garden rubbish). * EPS: expanded polystyrene

TABLE 1: Quality standards for sorted plastic wastes for recycling (Grüner Punkt, 2019).

FIGURE 2: Distribution of the consulted companies by industry.



K. Friedrich et al. / DETRITUS / Volume 09 - 2020 / pages 105-112108

al flow can be assessed using empirical values depending 
on the origin.

There are interesting arguments why deliveries of sort-
ed plastic waste bales are rejected. Cartridges for sealing 
compounds repeatedly lead to rejection. The moisture of 
bales is another argument. Increased moisture can affect 
the surface of the particles and foaming processes during 
injection moulding may occur. Basically, however, non-con-
formity with quality requirements usually leads to a price 
reduction. If the content of contaminants is too high, the 
processing is impaired (material variations).

3.2.2 Quality control of recyclates

The quality of random samples of recyclates is con-
trolled in a laboratory. The physical, rheological and me-
chanical properties of the recyclates are of great interest. 
The following characteristics are analysed in the course of 
a random sample inspection:

1. Physical properties
 a. density determination (DIN EN ISO 1183-1)
2. Rheological properties
 a. melt-mass flow rate (MFR) (DIN EN ISO 1133-1)
3. Mechanical properties
 a. tensile properties, especially modulus of elasticity  
 (DIN EN ISO 527-1)
 b. notch impact strength DIN EN ISO 179/1eA

Frequently, further parameters of the recyclates are de-
termined. These include:

• Melting temperature
• Colour distribution and colour composition
• Size and form of the granulated material (e.g. lenses, 

cylinder)
• Moisture content
• Filtration fineness 
• Ash content
• Heavy metal content

In addition, there is often a continuous control of recy-
clates and an inspection for any specks, gas emissions, 
mechanical values and the colour of the recyclates.

The hardness of recyclates allows initial prediction of 
the foreign plastic content, the shape of the granulates 
and the bulk density indicating potential gas inclusions or 
vacuoles. The colour and odour of granulates may indicate 
previous thermal degradation of the material. The follow-
ing devices or test methods are frequently used in quali-
ty assurance refers to the previously mentioned standard 

specifications: Melt index testers, differential scanning 
calorimetry (DSC), ash furnaces, residual moisture scales, 
density analysers, capillary rheometers, tensile testing and 
notched-bar impact test machine.

3.3 Price Development

The plastic trading market is currently shifting and, as 
mentioned before, increasingly developing into a buyer's 
market. A high dollar exchange rate (1,1008 $/€ on 24-
Sept-2019) (Wallstreet-online, 2019) and weak crude oil 
prices (62.90 $/barrel on 24-Sept-2019) (Tecson, 2019) 
result in a preference for primary raw material over recy-
clates. Moreover, the European plastic market has changed 
due to the ban of exports to China that has previously been 
one of the largest importers of European plastic waste.56% 
of all plastic waste worldwide and 87% of all European 
plastic waste has been sent to China in recent years (Uken, 
2018). The plastic waste streams, which are heavily con-
taminated and poorly sorted are most seriously affected. 
As a result, there is an oversupply of this plastic wastes in 
the European plastic recycling market. It follows that the 
plastics processing industry will favour high quality of plas-
tics available.

Plastic wastes with low extraneous and pollutant con-
tents and lower humidity are demanded. This oversupply 
of polluted plastic waste enables customers to select high-
est-quality plastic waste, ultimately affecting the pricing. 
Low-quality plastic waste losing market shares used to a 
great extent for thermal treatment or recovery (Sarc et. al., 
2019).

3.3.1 Price development for sorted plastic waste

The price developments for HDPE and LDPE (A), PP (B), 
PET (C) and PS (D) regrinds and bales over the last years 
are shown in Figure 3. The average selling price for re-
grinds of commodity plastics (e.g. PE, PP, PET, PS) is about 
538 €/t, varying by 92 €/t (Plasticker, 2019).

For the PE types, it is stated that the average regrind 
price is very similar for HDPE and LDPE with approximately 
0.6 €/kg (Plasticker, 2019). The HDPE regrind price fluc-
tuated significantly more than LDPE in the years 2014 to 
2017. The LDPE regrind price is on average three times 
higher than the prices for the LDPE bales. This can also be 
observed for PP and PET. At 0.56 €/kg, the average regrind 
price for PP is 2.5 times higher than for PP bales, and at 
0.37 €/kg, the average regrind price for PET is 1.9 times 
higher (Plasticker, 2019). The reason for this is the higher 
processing depth and the associated higher costs for the 
production of regrinds compared to bales. The different 

Properties LDPE HDPE PP PET PS

Density [g/cm³] 0.920 - 0.945 0.940 - 0.970 0.895 - 0.920 1.360 - 1.390 1.050 - 1.290

Melt-mass flow rate (MFR)
[g/10 min]

0.5 – 0.9(1) 0.1 - 30.0(1) 0.1 - 30.0(2) 20.0 - 30.0(3) 2.3 - 8.2(4)

Tensile properties (modulus of elasticity) 
[MPa]

220 - 380 1 170 - 1 350 850 - 1 450 3 400 - 3 700 3 000 - 3 400

Notch impact strength [kJ/m²] 8.00 - 15.00 4.85 - 5.15 3.00 - 5.50 2.00 - 4.00 8.0 - 12.0

(1) 190°C | 2,16 kg (2) 230°C | 2,16 kg (3) 280°C | 5,00 kg (4) 200°C | 5,00 kg

TABLE 2: Physical, chemical and rheological properties of the investigated recyclates (Grüner Punkt, 2019).
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price differences between regrinds and bales of the plastic 
types can be explained by the different processing costs.

3.3.2 Price development for recyclates

The price developments for LDPE (A), HDPE (B), PP (C) 
and PS (D) granulates of primary raw materials and recy-
clates are shown in figure 4. No reliable price development 
could be collected for PET. The average selling price in July 
2019 of primary raw material granulates of standard plas-
tics (e.g. PE, PP, PS, PET) was around 1.17 €/t and 0.537 
€/t (Plasticker, 2019) was the average selling price of re-
cyclates of standard plastics. This means that granulates 
produced of primary raw material are on average twice as 
expensive as recyclates.

A comparison of the price developments of the primary 
raw materials with those of recyclates shows that there is 
a certain dependency between both price developments. If 
the price of a primary raw material rises or falls, the recy-
clate price of this plastic type also reacts with a price rise 
or fall. This fact can be seen for example well for LDPE in 
Figure 4 (A).

3.4 Market Study

The following section provides a summary of the most 
important statements:

Is there a correlation between price and quality of the 

sorted plastic waste?

First, the general market balance of supply and demand 
is pointed out. This provides the basis for any pricing. 
Where supply and demand meet, a corresponding market 
for goods develops.

The respondents ‘affirm’ the question, though. There is 

indeed a strong correlation between the quality and price 
of the sorted plastic waste. In addition, better application 
options are made accessible by purer sorted plastic waste, 
higher-priced. Surveyed plastic processing companies also 
reported the dependence of co-payments, i.e. a negative 
price for recyclates. If the sorted plastic waste can be pur-
chased for a higher additional price, then the recyclates 
may be offered for less. When co-payments decline, how-
ever, the prices in sales have to rise. Additional payments 
depend primarily on the quality of the sorted plastic waste. 
If the material is dirty and includes high amounts of extra-
neous plastic, additional payments are higher. It the ma-
terial is clean, on the other hand, and has a low level of 
extraneous plastics, additional payments will be lower.

It was also mentioned that the quality of the sorted 
plastic waste is primarily defined by its colour. The higher 
its purity, the higher the price that can be achieved on the 
plastic trade market. This is mainly due to its broader ap-
plication range, say, in subsequent colouring, foil thickness 
and mechanical properties.

As mentioned above, the staff is crucial for sorted plas-
tic waste price. They ultimately control the quality and their 
wealth of experience facilitates a reliable quality level and, 
accordingly, adequate pricing.

Is there a correlation between price and quality of the re-

cyclates?

Regarding this question, there is again a general agree-
ment on a higher quality of recyclates leading to higher 
prices. It is backed by the argument that higher quality of 
the recyclate reduces the risk of failures or bad batches 
from contamination for final plastic processing compa-
nies. Furthermore, it was mentioned that the quality of the 

FIGURE 3: Price development for regrinds and bales of PE types (A), PP (B), PET (C) and PS (D) (Plasticker, 2019).
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sorted plastic waste strangely affects the quality of the 
produced recyclates.

Pricing of recyclates
Basically, the market mechanisms of supply and de-

mand apply. In addition, the following criteria were identi-
fied for pricing recyclates:

• Purity: the purer a material, the broader its range of ap-
plication and the higher the price potentially achieved;

• Colour purity: the purer the colour of recycled material, 
the broader its range of application and the higher the 
price potentially achieved;

• A function of the primary raw material prices: Pricing 
polymer types is a function of the respective commodi-
ty price. If the price of primary raw material decreases, 
the price of polymers will drop as well. Recyclate prices 
are usually following the trend.

Other pricing contributors are melt filtration in the con-
text the lower the melt filtration (measured in µm), the 
higher the quality and cost supplement for masterbatches. 
When plastic is dyed, a certain amount will be charged for 
this procedure, raising the price.

3.5 Quality benchmark in plastics recyclates

Market analysis has not produced any evidence for 
plastics recyclate benchmark. Therefore, producers of re-
cyclates were asked to give one.

The surveys indicated that the quality standards for 
recyclates from Grüner Punkt (2019) are considered as a 
benchmark in the industry. For the recyclate quality, two 
levels are distinguished: mean quality for standard prod-
ucts like flower pots or buckets in ‘standard plants’ and 

high quality surpassing defined threshold values from 
Grüner Punkt (2019).

The demand for plastic recyclates is higher now than 
the recycling market is able to provide. For this reason, pri-
mary raw plastic granulates are mostly about 40 to 60% 
(see Figure 4) more expensive than plastic recyclates com-
pared by the market data. The quality of recyclates is below 
that of primary raw plastic granulates regarding material 
properties but the consumers would tolerate it for the sake 
of sustainability. Better recyclability of plastics might re-
duce the market value of plastic recyclates. As best plastic 
recyclate quality, i.e. the benchmark, is met by plastic recy-
clates applied to food packaging like ‘cap-to-cap’ or ‘bot-
tle-to-bottle’ production referring to the surveyed plastic 
processing companies.

4. CONCLUSIONS

The essential question was whether a correlation be-
tween price and quality of plastics recyclates is perceived. 
Experts from the plastics product manufacturing compa-
nies and plastics recyclers confirmed it unequivocally: The 
higher the quality of the material, the lower the impurities 
and the purer the material, the more applications for the 
material exist.

For sorted plastic waste, the plastic waste recycling 
companies quality standards defined by Grüner Punkt 
(2019) are considered a benchmark while recyclates appli-
cable as food packaging (like cap-to-cap or bottle-to-bot-
tle) constitute a benchmark for plastic recyclates.

In addition to the general market mechanisms of supply 
and demand, the pricing of secondary plastics is mainly a 
function of the purity of the recyclate, the purity of the co-

FIGURE 4: Price development for primary raw material and recyclates of LDPE (A), HDPE (B), PP (C) and PS (C) (Plasticker, 2019).
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lour and the respective price of raw materials. The purer 
and the cleaner the material, the higher the price that can 
be achieved on the market. The impact of respective com-
modity prices is also linked to the crude oil price and the 
dollar exchange rate.

Furthermore, the key competence of the staff in terms 
of quality control must be underlined. Their experience 
allows fast and reliable control, essential for successful 
further processing. For the quality control of recycled ma-
terial, physical, rheological and mechanical properties are 
identified. In addition to density and melt flow rate, tensile 
properties and impact strength are identified to assure the 
required quality.

Plastic waste recycling companies would very much 
welcome a stipulation of minimum requirements for sorted 
plastic waste and recyclates by legislation.

Finally, it can be stated that, although the use of re-
cyclates is facing some obstacles, many plastic product 
manufacturing companies are using plastic recyclates in 
their spite. There is a need for further changes at the polit-
ical level (note: very positive example is “plastic strategy” 
of the EU) to help achieve a breakthrough. Many stake-
holders along the plastic value chain would favour the 
further international introduction of quality standards. In 
addition, raising public awareness of the value of plastic 
waste is of key importance for further developments in 
the use of recycled plastic. Therefore, a package of mea-
sures and tools is needed to reduce obstacles and to pro-
mote high-quality plastics recycling as well as the use of 
recyclates.
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Abstract: Sensor-based and robot sorting are key technologies in the extended value chain of many

products such as packaging waste (glass, plastics) or building materials since these processes are

significant contributors in reaching the EU recycling goals. Hence, technological developments and

possibilities to improve these processes concerning data analytics are evaluated with an interview-

based survey. The requirements to apply data analytics in sensor-based sorting are separated

into different sections, i.e., data scope or consistency. The interviewed companies are divided

into four categories: sorting machine manufacturers, sorting robot manufacturers, recycling plant

operators, and sensor technology companies. This paper aims to give novel insights into the degree

of implementation of data analytics in the Austrian waste management sector. As a result, maturity

models are set up for these sections and evaluated for each of the interview partner categories.

Interviewees expressed concerns regarding the implementation such as a perceived loss of control and,

subsequently, a supposed inability to intervene. Nevertheless, further comments by the interviewees

on the state of the waste management sector conveyed that data analytics in their processes would

also be a significant step forward to achieve the European recycling goals.

Keywords: sensor-based sorting; robot sorting; data analytics; maturity model; recycling; waste

treatment; waste management

1. Introduction

Sensor-based sorting, being one of the newest technologies for the recycling industry,
is hoped to improve waste sorting enough to lead the way into a digitalized future and
subsequently help meet the goals presented by the EU in 2018. These are 70% for packaging
by 2030 and municipal waste in 5-year steps to a minimum of 65% by 2035. In addition,
landfilling of municipal waste must be ensured to decrease to a maximum of 10% [1].

In recent years sensor-based sorting became increasingly popular due to the numerous
possible applications and advancements in sensor technology as micro technologies enabled
mass production of low cost and high-reliability sensors [2,3]. Sensor-based sorting is a
contactless automated separation of particles based on specific features. Applications of this
method can vary depending on the complexity of the technical design and the number of
sensors. The detected features include color, composition, density, and conductivity, and the
detection units, while following similar principles, vary in their construction. Comparisons
with the still widely applied manual sorting show that sensor-based systems can identify
characteristics of waste components more accurately [4–6]. An additional advantage
related to mechanical waste sorting is the reduced health risk for workers [7]. The option to
combine sensors with different characterization principles [8] especially results in a better
quality of the final product, higher product yield and improved valuable recovery [9],
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which are aspects that can correlate directly with a recycling plant’s revenue [10,11]. Due to
the dynamic development of sensor-based sorting in recent years, new areas for use were
and still are found [12–14]. Some sensors detect the superficial properties of the material,
others give information about internal characteristics [15]. Visible spectroscopy (VIS)
and near-infrared-sensors (NIR) belong to the first group and the other group comprises
X-ray-transmission, X-ray-fluorescence, and inductive sensors [16].

Industry 4.0, the IoT, and rapidly increasing digitalization will enable the individual
stakeholders (companies, customers, products, among others) to share valuable information
amongst themselves in real time [17]. At the same time, the use of IT and automation will
ensure the processing, analysis, and collection of vast amounts of information [18].

Implementing Industry 4.0 into the existing value chain of producers and stakehold-
ers, though necessary for remaining responsive and adaptive to increasingly dynamic
markets [19], comes with its own set of challenges and demands. When implementing
Industry 4.0 technologies, challenges such as implantability, embedment, flexibility, and,
especially in the field of waste management, robustness need to be considered [20].

Among the four dimensions of Big Data, namely, the variety of data, the velocity of
generation and analysis of new data, the value of data, and the volume of data [21], one of
the most pressing issues when adapting an existing plant to an Industry 4.0 approach is
the emergence of vast amounts of data that must be processed and transmitted.

Transmission under the current industrial wireless network protocol is infeasible due
to the limited bandwidth, which is unsuited to the necessary transmission rates for large
scale Industry 4.0 applications [19]. Industry 4.0 needs transmission protocols able to
handle the expected increase in data transmission volume.

In addition to the transmission issue, data processing needs to be implemented in a
manufacturing-specific manner to ensure high quality and fidelity in the processed data
and cohesion among different data acquisition models has to be ensured to allow for big
data analytics [22].

Lastly, Industry 4.0 calls for standardized communication protocols and interconnec-
tivity. This increase in connectivity and ease of access through standardized connections
leads to issues concerning cybersecurity. The need to protect critical infrastructure, sensi-
tive manufacturing data, and classified information stored in local servers or cloud-based
IT platforms [23] increase dramatically with the use of Industry 4.0 settings [24].

The central aspect of Industry 4.0, apart from gaining insight into current industry
procedures, is determining the differences in handling data [25] along the sensor-based
sorting value chain in waste management. This value chain starts with the sensor manufac-
turer, which produces the sensor. Next comes the sorting machines manufacturer or the
sorting robot manufacturer who installs the sensor in his equipment. At the end of this
value chain, the sorting plant operator shows up and installs the sorting machine or sorting
robot in his plant.

The definition of data as well as the perceived important aspects and usages may vary
between individual stakeholders, thus resulting in unrealized potential concerning the
possibilities and advantages of a sound data analytics strategy. Therefore, this study aims
to explore the different approaches to and goals of the data handling part of digitalization
in each of the four stakeholder categories.

The scientific research questions that are answered in this paper are:

1. How mature is the sensor-based and robot sorting area in Austrian waste management
in the use of data analytics?

2. Where are the current limitations in technologies or in the willingness to be able to
use data analytics in sensor-based or robot sorting in Austria?

3. What are the risks and chances in the specific area of sensor-based and robot sorting
in the Austrian waste management sector?

Scientific literature reviews were performed to find a suitable evaluation method,
searching for approaches to similar overarching questions.
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Graninger executed an interview-based survey in his master’s thesis to monitor the
current status of the interpretation, implementation and obstacles for Industry 4.0 in
Austria’s industrial sector. In Graninger´s study, 34 companies out of over 300 participated
in an email-based survey, so the return rate was approximately 10%. Furthermore, only 26
of them filled out this survey completely. The expert interviews were evaluated with bar
charts and key figures such as a score factor or the weighted average [26].

Another analogical study was brought up by the German federal ministry of eco-
nomics and technology in 2013. An online survey to evaluate the innovation potentials of
big data was created and sent out to companies over decision makers, providers, users and
scientists. It is not stated how many surveys were sent or where the contacted companies
are located, but it is mentioned that 185 assessments were returned. The evaluation was
done with percentages in bar charts [27].

Schuhmacher et al. created a study for an Industry 4.0 maturity model with expert
interviews, practitioner workshops, and literature research. It was evaluated with spider
diagrams and weighing of influence factors [28]. A maturity level is a step with predefined
characteristics, with each level having more advanced characteristics on the way toward
a mature process. In the case of this study, a data analytics strategy embracing all later
specified aspects was used.

The last reference study was published by Gonçalves et al. and evaluates the readiness
for Industry 4.0 of manufacturing companies. An online self-check tool was created and sent
to an unknown number of companies, of which a total of 602 companies responded [29].

All these studies only consider Industry 4.0 in general but do not consider sensor-
based sorting as a special technology within Industry 4.0. Therefore, in this study, for the
first time ever, a maturity level assessment for sensor-based sorting in waste treatment is
carried out with a focus on the Austrian waste sorting sector.

2. Materials and Methods

The state-of-the-art in waste sorting plants compared with a literature review revealed
that a lot of information on sensor-based sorting in waste treatment is not accessible in
the literature and is only known and traded by industrial experts in this field. For this
reason, instead of a literature review, expert interviews were selected as an appropriate
methodology.

After analyzing the previous stated four studies [26–29], it was decided that an
interview-based survey would fit best since more information may be gathered in a personal
conversation than from evaluating answers to predefined survey questions alone.

The interview-based survey consisted of questions regarding data analytics in general
and in sensor-based/robot sorting. Due to COVID-19, all the interviews were conducted
via video calls from March 2020 until May 2020.

The interviewed stakeholder experts were separated into four categories along the
sensor sorting value chain: sensor manufacturers, sorting machine manufacturers, sorting
robot manufacturers, and sorting plant operators. These categories were selected because
only they can provide original data, whereas other stakeholders such as public authorities
or research institutions could only provide secondary data obtained from the same group
of experts. According to the working hypothesis, the highest maturity level should occur
at the sensor technology sector, and at every step of utilization it will decrease, i.e., the
sorting robot manufacturer is technologically behind the sensor producer, and so on.

Twenty-eight stakeholder experts were contacted, but due to reduced working hours
in many companies, 12 interviews were held. The interview length varied from 45 min to
2.5 h. These 12 interviewed stakeholder experts cover mainly the whole Austrian waste
sorting sector, although the companies are located all in Europe, because their equipment
is the most commonly installed in Austrian waste sorting plants. The interviewed stake-
holder experts were two sensor manufacturers located in Europe, four sorting machine
manufacturers located in Europe, two sorting robot manufacturers located in Europe, and
four sorting plant operators located in Austria.
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In this section, it has to be stated that two sensor manufacturers cover the Austrian
waste sorting sector because some sorting machine manufacturers produce their own
sensors for their sorting machines. The two sorting robot manufacturers also cover the
Austrian waste sorting sector since there are only a few sorting robots installed currently.

At the beginning of the interviews, the interviewers introduced themselves (the Chair
of Waste Processing Technology and Waste Management), the research area of sensor-based
sorting in the industry, as well as the aim and the focus of the survey. Next, the interviewee
introduced himself, described his job and responsibilities in his company, and had the
opportunity to bring in some questions of interest for the study. An example for such a
question would be how the acquired data in the assessment is processed, which was in
most of the interviews as the first open question. After it was agreed that the acquired data
is only allowed to be published in an anonymous way—which was the precondition for
each of the companies to participate—the survey questioning itself started. In some cases,
one answer flipped to another question, but it was decided to follow the survey strictly and
discuss topics twice instead of assuming the risk of missing any information. Nevertheless,
when additional questions came up for some answer, they were discussed and appended
to the study’s results.

The evaluation of the data acquired in the study is done with individual critical
analysis for each of the expert interviews and graphically visualized with bar charts since
the number of participants is straightforward and enables going into details with each of
the interviewees.

The data analytics survey was primarily based on the doctoral thesis of Bernerstät-
ter [30]. It consisted of general questions, a self-evaluation, and detailed questions, i.e.,
concerning the consistency and amount of data needed to calculate the degree of data
analytics maturity [30]. Bernerstätter stated that a maturity for the use of data analytics
cannot be determined with one overall maturity level that is detailed enough because
the maturity for data analytics consists of many sectors which need to be determined
individually to calculate an overall maturity level. These sectors are data collection, data
provision and transfer, data formats, data encoding and presentation, data scope, data
consistency, and data usage [30]. In his models, the maturity level 1 is the lowest level and
the maturity level 4 the highest, which is also the basis for this study [30]. For this study
there was also a new sector considered, which is the commitment to change, to bring in a
perspective on whether applying data analytics is not a technical problem but a mental one
when employees fear losing their jobs with increasing digitalization.

The first set of introductory questions covers data of sensor-based sorting systems,
namely, which data are collected and where they are stored, and aims to determine a degree
of occupation with the topic of the data in general Table 1.

The averaged data analytics maturity level is calculated via the summation of the
answers divided by the number of questions, with a possible 0.5 gradation if the partici-
pants felt that the company was on the way to a higher level but not quite there yet. The
self-assessment, which is an estimation of the overall maturity level based on the four
possibilities given (Table 2) was done prior to the detailed questions which were used
to calculate an average data analytics maturity level with all of the data analytic sectors
(Table 3) to compare. Lastly, it was inquired if the industry experts trusted their
recorded data.
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Table 1. Questions concerning data collection by the sensor-based sorting system and the general
approach to data.

What Data is Collected by the Sensor-Based Sorting System?

Production data 83% (10/12)
Maintenance data 75% (9/12)

Quality data 58% (7/12)
Machine data 83% (10/12)

Other data 8% (1/12)

Where is the data recorded?

Right at the plant 92% (11/12)
Measuring room 50% (6/12)

Not on site 8% (1/12)
Others 0% (0/12)

Has the company implemented a strategy for managing data? 83% yes (10/12)

Are data owners assigned for data governance? 50% yes (6/12)

Are efforts made as well to ensure high quality of transaction data? 75% yes (9/12)

Table 2. Self-assessed data analytics maturity level.

How Would You Assess the Degree of Maturity of Data Analysis for Sensor-Based Sorting or
Robot

Sorting in Your Company Using the Following Scale?

Hardly any digitization in data analysis has been implemented.
There is no actual concern about the subject.

1

An analysis of interrelationships has been implemented
showing the reasons for an incident.

2

Partially automated recording and specific formatting standards have been
implemented. However, there is no consistency across data sources.

3

Continuous data and information management have been implemented based on
established standards. In addition, prescriptive analysis helps the system act

autonomously and appropriately.
4

Table 3. Detailed data analytics maturity level to portray a more accurate state of the art.

Data Collection

Data collection does not adhere to any standards and objectives
and, in addition, is incomplete.

Paper-recording predominates, the amount of data collected is generally relatively small.
1

Digital data collection is triggered manually or irregularly. Fault remedy measures and
logic connecting

the process generated and collected data are available.
2

Irregular predefined triggers constitute automated data collection.
Manual records are regularly digitized.

3

No more manual data input, only confirmation of values is required.
Automated data acquisition is made in regular intervals.

4

Data provision and transfer

Data is not available in any format utilizable by analysis tools, so substantial data
aggregation is not ensured.

1

Local server systems cause interface and compatibility problems.
Manual transmission is sparse due to high effort and not in real-time.

2
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Table 3. Cont.

Data provision and transfer

A centralized database system prevents interface problems and enables real-time analysis.
Unstructured data from measurement processes are immediately reduced to

relevant characteristics.
3

Pre-processing steps are provided to immediately present data in a structured manner
ready for analysis.

Data is stored in a Data Warehouse.
4

Data formats

It takes high effort to convert the data into a standard format. 1

Standard data formats are used (xls, PDF, . . . ) but not consistently,
so that compilation takes a lot of time and effort.

2

Data formats do not limit the common data stock.
Large amounts of data can be stored.

3

Data formats are irrelevant because the file transfer passes through an interface straight to
an analysis tool. Alternatively, file formats suitable for Big Data are available.

4

Data encoding and presentation

Text-only or incomprehensible codes characterize this unstructured
form of data collection.

1

Codes can be interpreted clearly and entries are comparable. 2

Unambiguous interpretability is standard; essential attributes are scaled metrically,
enabling transformation into nominally scaled values.

3

Metadata facilitates the automatic interpretation of the standardized codes
from all data sources.

4

Data scope

Data collected is unstructured, partly irrelevant, and too little in number.
Spreadsheet software is sufficient.

1

The amount of data collected is too large to be interpreted by staff.
The recording period is at least nine months.

2

The recording period is at least one year. 3

For at least 1.5 years, data has been entirely recorded and its relevance checked
by precise allocation to the relevant observation units.

4

Data consistency

Manual recordings provide inadequate or no consistent time reference. 1

Consistent time reference cannot be ensured across data sources
but can be achieved using time stamps.

2

Diagnostic purposes can be satisfied by a defined reliable interval between surveys (to
provide forecasts). Consistent time reference is ensured even across data sources.

3

A consistent system ensures time stamp integrity and traceable quality
by association with ID data (e.g., order numbers).

4

Data usage

Data is not used, i.e., records are kept without interpretation, or no adjustments are
performed after interpretation.

1

Individual records are converted into a format ready for interpretation.
Problems with data quality/consistency are known but not remedied in a standardized

way. The IT department is solely responsible.
2
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Table 3. Cont.

Data usage

Data is interpreted to remedy faults and to make decisions on a regular basis.
Data management processes are documented and discussed

with data protection and security.
Data is considered a resource.

3

Both an archiving strategy and a disposal strategy are implemented.
The use and expense of data can be financially evaluated.

Data-based systems intervene in the process.
4

Commitment to change

Staff and/or management resist real-time digital measurements,
preferring paper-based recording or simultaneous digital and paper-based data
recording. New technologies are faced with skepticism and no serious measures

are taken to overcome resistance.

1

Individuals or mid-level management are voicing a desire for change.
Change management is not systematic,

but the relevance of data used as a resource is discussed.
2

Easy data access and fast interpretation, as well as automated process tracking, are key
elements. Handling of data loss or insufficient data is improved.

The entire management supports change projects and embraces new technologies.
3

New digital systems are embraced to support staff and to maintain and optimize
the process. Change projects can be initiated top-down and bottom-up.

4

2.1. Types of Data Recorded

During the interviews, additional information about the nature of the data collected
has been gathered. Despite varying amongst the different stakeholders, similar types of
data are being collected across all participating companies. These types of recorded data
and a detailed description to them is listed in Table 4. The data will be categorized into
four groups, namely machine, production, maintenance, and quality data.

Table 4. Types of data collected across all participating companies.

Production Data

Occupation density
Since the sorting efficiency is highly dependent on the occupation density (quote), many
stakeholders opt to record the occupation density. The calculation is done by dividing the number
of pixels detected by the area of the specific sorting aggregate.
Throughput rate

The throughput rate is defined as the amount of material in kg or m3 passing through the sorting
aggregate in a specified amount of time. Recording the throughput rate can help calibrate the
sorting process to reach the ideal trade-off between yield and purity, highly dependent on the
throughput rate [31].

Maintenance data

Operating hours
Currently, the operating hours of the sorting equipment are being recorded. Nevertheless, so far,
none of the interviewees intend to use this data set for advanced maintenance techniques such as
prospective or predictive maintenance.

Quality data

Purity and Yield
Purity is the quotient of valuables in the ejected material. This value, along with yield, is the
defining factor for the evaluation of separation success. The yield is defined as the quotient
material fraction mass (e.g., PET) in eject multiplied with the related eject concentration and
divided by input mass, which is first multiplied with the concentration of the material fraction
mass in the input (e.g., PET) [25].
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Table 4. Cont.

Machine data

Object statistics
The number of objects recognized by the sensor-based sorting setup defines the object statistics.
Objects are defined as areas of coagulated pixels of a specified minimum area.
Pixels statistics
The number of pixels detected for each specified material. This statistic yields the basis for more
advanced statistics such as area density or occupation density.
Bad pixel replacement
Sensors may exhibit defective pixels caused by production. Many sorting software packages come
with the ability to exclude or filter those pixels to minimize their effect on the sorting efficiency.
However, in most cases, the number of these faulty pixels is not recorded or not available to the
software’s user.
Areal density
By calculating the average mass of an object and correlating this with the average amount of
pixels detected per object, e.g., a given PET bottle, the areal density of said material can be
calculated. This measurement can be used to estimate the number of valuables in the input
without the necessity of costly hand sorting or input analysis.
Detection rate
The detection rate defines the number of correctly identified pixels and objects with a custom
sorting model relative to the standard settings of the given sorting aggregate.
Valve activity
According to the questioned stakeholders, the activation statistics of the pressurized air valves are
being saved in most machine statistics. These may be used to recognize one-sided loading of the
sorting aggregate in addition to the pixel statistics.

Other data

When the customer wants to record individual data in his sensor-based sorting machines, this
option can be additionally enabled. This data could be, e.g., the used spare parts or how many
remote maintenance accesses have been performed since the commissioning of the sensor-based
sorting machine.

2.2. Validation of Results

In order to validate the answers of the companies, site visits were conducted at every
second company. During these site visits, selected sorting machines and sensors were
conducted to confirm the given maturity level.

3. Results

Since 28 stakeholder experts were contacted and 12 interviews were held, a return
rate of 43% could be achieved. As not all the 12 participants own a sensor-based sorting
system directly, some answers refer to industry partners or customers. Most of the data
collected regards the production and machine data, and nearly all of it is collected right at
the plant. The introductory questions showed that most of the surveyed companies have a
data managing strategy implemented, but only half have a designated person responsible
for it. Transaction data, meaning the continual evaluation of data quality, was important to
75% of the participants. Questions and answers are listed in Table 1.

The self-assessed data analytics maturity level compared to the calculated average
for each sector is shown in Figure 1. Sensor manufacturers have estimated their overall
maturity level approximately one degree lower than the assessment resulted, and the
same was true of the sorting plant operators. The sorting machine manufacturers’ self-
assessed maturity level is lower than calculated for two stakeholders and higher for another
two stakeholders. In contrast, the sorting robot manufacturers self-assessed themselves
higher than the calculation result. The average for all of the stakeholders would be an
overall data maturity level between 2.0 and 3.0, which would also be the similar to the
self-assessed average.
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Figure 1. Data analytics maturity level split up into the individual answers of all participants and comparison to
the self-assessment.

It was mentioned by the stakeholder experts that smaller and younger companies often
do not have the means to build a data management strategy yet and, in addition, presently do
not need it. However, all the questioned companies found data analytics to be an important
topic that cannot be overlooked in the future and pledged to improve their approach to data
handling. The following text will go into detail about which maturity level was calculated
for each sector from the overall calculated data analytics maturity level. Figure 2 shows the
results for each data analytics sector split up for each stakeholder expert.

Primarily following the data analytics maturity assessment of Bernerstätter [24], the
first question for the calculated data analytics maturity level concerns data collection. Most
of the participants were identified as being on the third step or higher. The area of data
collection was generally considered to be the most digitized, especially for three sorting
machine manufacturers and one sorting robot manufacturer, which reached level 4. Table 3
contains detailed descriptions of all maturity levels for each sector. The third level for data
collection is described as ‘Irregular predefined triggers constitute automated data collection.
Manual records are regularly digitized’. Data use is evidently not automated in plants to
optimize efficiency. It is only used manually to optimize the sorting machine efficiency in
periodic maintenance or troubleshooting when sorting machines face problems.
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Figure 2. Comparison of the stakeholder answers in maturity levels from one to four in each data analytics category.

Question 2 concerns data provision and transfer and was estimated to be a level 4 for
half of the interviewed stakeholder experts through the sensor-based sorting value chain.
The description of the fourth level is ‘Pre-processing steps are provided to immediately
present data in a structured manner ready for analysis. Data is stored in a Data Warehouse’.

Data formats, as a sector of data analytics, show similar results to data provision
and transfer instead of sorting machine manufacturer 2, which faces a maturity level of
2.5. The fourth maturity level, which is the dominant one, is defined as ‘Data formats are
irrelevant because the file transfer passes through an interface straight to an analysis tool.
Alternatively, file formats suitable for Big Data are available’.

Generally, there is no visible trend seen for all four stakeholder categories in data
encoding and presentation. The most established maturity level in this sector was level
3 (four times), which is defined as ‘Unambiguous interpretability is standard; essential
attributes are scaled metrically, enabling transformation into nominally scaled values’.

On the data scope, half of the participated stakeholders are on the fourth step with
the description ‘For at least 1.5 years, data has been entirely recorded and its relevance
checked by precise allocation to the relevant observation units’. The maturity level 3 could
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not be achieved by any interviewed stakeholder, and all of them had either a lower or a
higher level.

Regarding data consistency, four participants are on the fourth level. The sensor
manufacturers are both on second step, defined by the following statement: ‘Consistent
time reference cannot be ensured across data sources, but can be achieved using time
stamps’. An interesting result is that the maturity level of all four interviewed sorting plant
operators varies from the lowest level to the highest level.

Consistent with the other maturity levels, the data usage also strongly depends on
each interviewed stakeholder individually. The most determined maturity level was level
3 at five stakeholders. The definition for this level is ’Data is interpreted to remedy faults
and to make decisions on a regular basis. Data management processes are documented
and discussed with data protection and security. Data is considered a resource’.

The last maturity level deviates from the work of Bernerstätter [24] but is also con-
sidered to be of interest and concerns the commitment to change. This maturity level
does not deal with data but is essential to be considered on the way to a digitized future
that does not start and stop at the IT department. Most of the participating stakeholder
experts took a second to think about this part and changed their answers at least once. Only
sensor manufacturer 1 found himself on the fourth maturity level and sorting machine
manufacturer 1 was on the way to the fourth. The other stakeholder experts consider
themselves to be on the way to the third, at the second level, or in between. Maturity level
3 is described as follows: ‘Easy data access and fast interpretation, as well as automated
process tracking, are key elements. Handling of data loss or insufficient data is improved.
The entire management supports change projects and embraces new technologies.’

The last question, “Do you trust the recorded data?”, received positive answers for
11 out of 12 interviewees (92%), emphasizing the need to verify data permanently. Con-
sidering the different maturity levels for each sector and each stakeholder, it cannot be
claimed to determine a trend for each sector. However, advancement can be attempted
for the whole European waste management industry as the interviewed stakeholders in
the categories of sorting machine manufacturers and sorting robot manufacturers hold a
considerable share of the market in Europe. Nonetheless, of interest, Figure 2 shows the
individual sectors of data analytics in sensor-based sorting and the commitment to change
for each stakeholder.

Finally, as a supplementary question, it was asked where there are currently still
barriers to the use of data analytics in sensor-based sorting. Ten out of 12 participants
stated that, currently, no mathematical relationships or models between the recorded
data had been investigated. Whether there can be mathematical models, e.g., describing
the influence of the processed data on one another, would first have to be examined.
Furthermore, the area of validity for newly found relationships in the recorded data is still
not exactly known. Since these mathematical relationships in recorded data are still not
investigated on an industrial level, these 10 participants see the use of data analytics as a
risk, which can either be a chance or a hazard to a machine and, in the end, may weaken
its performance instead of optimizing it. It would be a significant step to investigate the
mathematical relationships in the recorded sensor-based sorting machine data to handle
this industry’s risk correctly.

Furthermore, although the influences of different machine settings are known, they
have not yet been investigated on a level that a sensor-based sorting machine can auto-
matically adapt its sorting settings to the material flow to achieve the best sorting results.
These settings would be, e.g., the illuminance of the used emitter(s), the used pressure for
ejecting, the minimum object area and object height that is discharged, or the delay time
for the activation of the compressed air nozzles.

At last, the stakeholders are interested in making sensor-based and robot sorting pro-
cesses more efficient, either by improving the identification to characterize more particles
correctly or by improving sorting efficiency with, e.g., mathematical models.
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4. Discussion

The introductory questions generally show high interest in keeping the quality of
data high with a minimal tendency to monitor machine and production data in contrast to
data concerning the maintenance and quality of the product. In this chapter, the research
questions of the study are discussed and interpreted.

4.1. How Mature Is the Sensor-Based and Robot Sorting Area in Austrian Waste Management in
the Use of Data Analytics?

In Figure 1, the comparison between the self-assessed and averaged data analytics
maturity level, sensor manufacturers and sorting plant operators have estimated their
overall maturity level lower than it was calculated in the assessment. Two sorting machine
manufacturers self-assessed lower than the results of the assessment and two self-assed
higher than the results. Sorting robot manufacturers tend to self-assess themselves a bit
higher than the calculated maturity level. The overall average data maturity level for
all stakeholders would be between 2.0 and 3.0, which would also be the similar to the
self-assessed average.

The maturity levels of each stakeholder in each data analytics sector differ from each
other with slight to no correlations, and there is no derivable trend, as can be seen in
Figure 2. The maturity level of each data analytic sector strongly depends on the company
itself, so the stakeholder categories need to be analyzed individually.

4.1.1. Sensor Manufacturers

Sensor manufacturer 1 has been in the market for waste sorting sensors for years and
has a broader product portfolio than the sensor manufacturer 2. Sensor manufacturer 2
has a slighter product portfolio, which might be the reason that the data analytic sectors
are in the scope and the usage higher for 1. In provision and transfer, as well as for the
formats, the maturity level might be higher for sensor manufacturer 2 since all their sensor
portfolio is new and they have already thought about the relevance of these sectors in their
product development. Meanwhile, sensor manufacturer 2 still has also “older” sensors in
their equipment, which are not supplied with functions of the higher maturity levels. It can
be said that new developed sensors are mostly supplied with the opportunity to provide
data so that they can be used in sorting plants to develop a smart waste sorting plant.

4.1.2. Sorting Machine Manufacturers

For the sorting machine manufacturers, it can be seen that number 1 and number 4
are the leaders for all of the technical categories. The reason for this might be that these
two companies are far older than the other two, so the global size of the companies as well
as the amount of sold sorting machines result directly in a high maturity level for using
data analytics in sensor-based sorting.

Sorting machine manufacturers 2 and 3 are in the lower maturity levels for the sectors,
especially sorting machine manufacturer 3, which has the maturity level of 1 in data
usage: ‘Data is not used, i.e., records are kept without interpretation, or no adjustments
are performed after interpretation’. Taking a closer look on the company itself, it can be
determined that this company supplies mostly smaller plants with their equipment, which
might be the reason for their lower level: that customers do not favor this option was one
of the answers that was given during the interviews. If the customer would have a demand
for these options, they would of course integrate such opportunities in their new sorting
machine generations. This leads to the next statement, which is that larger sorting machine
manufacturers are on a higher data analytics maturity level in nearly all of the sectors than
the smaller ones.

4.1.3. Sorting Robot Manufacturers

For the sorting robot manufacturers, the same statement as for the sensor manufactur-
ers is valid, but in the other way around. Sorting robots are quite new technologies in the
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waste management branch, so they are developed in a way that data analytics can be used
in smart waste sorting plants. The main difference between sorting robot manufacturer 1
and sorting robot manufacturer 2 is that manufacturer 1 developed his robots so that it can
be easily integrated in a plant and all of the data can be elected and used by other plant
equipment. That is not the intention of sorting robot manufacturer 2: he does not want to
share all the data from the robot with other machines, he only provides predefined selected
data, which are mostly only finished calculations of objects and pixel statistics. It can be
stated that sorting robots are able to provide data so that it can be used in sorting plants
to develop a smart waste sorting plant, but this depends—as is also valid for the sensor
manufacturers and the sorting machine manufacturers—on which data and how far the
supplier is willing to hand over the access to his customer/sorting plant operator.

4.1.4. Sorting Plant Operators

The maturity level results of the category of the sorting plant operators shows that
sorting plant operators 3 and 4 are further developed than the others. Sorting plant operator
4 is one of the largest waste sorting plants in Austria, which leads to this high maturity
level in each category. Sorting plant operator 3 is has new sorting lines and old sorting
lines installed and is also much bigger compared to the other sorting plants in Austria. The
two smaller sorting plant operators 1 and 2 are not sorting fractions. They only sort out
contaminants for waste, which is thermally treated after the sorting. A high maturity level
of the data analytic sectors is not required for them since the sorting task is not to obtain
a maximized pure sorted output product. They focus is on the legal threshold values for
contaminants, which requires, in the worst case, a second sorter to reach the threshold
values, but no intelligent plant, which works with cascade connections, uses intelligent
circuits or scavenger concepts. In the case of the smaller sorting plants, the investment in a
high digitalization level is not required since the tasks are different. For the sorting plant
operators, it can be said that there are two main factors: one is the goal of the sorting tasks
(high purity of output product or depose contaminants) and the size of the plant, measured
in the yearly throughput rate.

In summary, it can be said that new developed sensors are able to provide all require-
ments to use data analytics in sensor-based and robot sorting. In any case, whether all of
these options can be used depends strongly on the knowledge and willingness to share data
of the sorting machine or sorting robot manufacturer. Here, as it can be seen in Figure 2,
the data analytics sector’s commitment to change will be most important for the future.
When these two criteria are fulfilled, the last criterion is whether the sorting plant operator
wants or needs new innovations to achieve better sorting results as well as the plant size.

4.2. Where Are the Current Limitations in Technologies or in the Willingness to Be Able to Use
Data Analytics in Sensor-Based or Robot Sorting in Austria? What Are the Risks and Chances in
the Specific Area of Sensor-Based and Robot Sorting in the Austrian Waste Management Sector?

Supplementary questioning discovered the unused potential for further use of data
analytics by developing mathematical models and the use of machine learning algorithms.
However, the realization of this potential is inhibited by concerns about the reliability of
these machine learning technologies. In addition, interviewees voiced their concerns about
diminishing control over their machinery, which could lead to adverse effects on the sorting
success without them being able to intervene promptly to alleviate the problem. These are
viable concerns and must be dealt with in further evaluation of the applicability of machine
learning based on mathematical models in the waste processing industry. Simultaneously,
further studies have to be conducted to assess the essential machine parameters, e.g., the
intensity of the emitters, the used pressure for ejecting, the minimum object area and
object height that is discharged or the delay time for the activation of the compressed
air nozzles to be controlled. Integrating data analysis systems and intelligent machinery
control algorithms backed by mathematical models successfully into the processes would
be a significant step into the future for the waste processing industry. The main objective
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of all stakeholders is to make sensor-based and robot sorting processes more efficient by
improving either the identification or the mechanical operation with mathematical models.
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4 Experimental Design 
The chapter "Experimental Design" describes the experiments performed in this doctoral 
thesis. It is divided into three parts consisting of three publications: 

 Publications 5 presents the methods and equipment used. 
 Publications 6, 7, and 8 present experiments on optimizing the identification of particles 
 Publications 9 and 10 present the optimization of mechanical particle discharge. 

4.1 Publication V, Methods 

"Qualitative analysis of post-consumer and post-industrial waste via near-infrared, 
visual and induction identification with experimental sensor-based sorting setup" 

Method Article 
Friedrich, K., Koinig, G., Pomberger, R., Vollprecht, D. (2022). Qualitative analysis of post-
consumer and post-industrial waste via near-infrared, visual and induction identification with 
experimental sensor-based sorting setup. In MethodsX 9, p. 101686. DOI: 
10.1016/j.mex.2022.101686. 
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MethodsX 

j o u r n a l h o m e p a g e: w w w . e l s e v i e r . c o m / l o c a t e / m e x 

Method Article 

Qualitative analysis of post-consumer and 

post-industrial waste via near-infrared, visual and 

induction identification with experimental 
sensor-based sorting setup 

K. Friedrich 
∗, G. Koinig , R. Pomberger , D. Vollprecht 

Chair of Waste Processing Technology and Waste Management, Department of Environmental and Energy Process 

Engineering, Montanuniversitaet Leoben, Franz Josef-Strasse 18, 8700 Leoben, Austria 

a b s t r a c t 

Sensor-based sorting in waste management is a method to separate valuable material or contaminants from a 
waste stream. Depending on the separation property different types of sensors are used. Separation properties 
and their corresponding sensors are e.g. molecular composition with near-infrared sensors, colour with visual 
spectroscopy or colour line scan cameras, or electric conductivity with electromagnetic sensors. 

The methods described in this paper deal with the development of sorting models for a specific near- 
infrared, a visual spectroscopy and an induction sensor . For near-infrared and visual spectroscopy software is 
required to create sorting models, while for induction only machine settings have to be adjusted and optimized 
for a specific sorting task. These sensors are installed in the experimental sensor-based sorting setup at the 
Chair of Waste Processing Technology and Waste Management located at the Montanuniversitaet Leoben. This 
sorting stand is a special designed machine for the university to make experiments on sensor-based sorting in 
lab scale. It can be used for a variety of waste streams depending on the grain size and the pre-conditioning 
for the sensor-based sorting machine. In detail the methods to create these sorting models are described and 
validated with plastic, glass and metal waste. 

• Near-infrared spectroscopy measures the molecular composition of near-infrared-active particles. 
• Visual spectroscopy measures the absorption of visible light by chemical compounds. 
• Induction sensors use induced currents to detect nearby metal objects. 

© 2022 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

Abbreviations: ALU, Arbitrary light units; AVAW, Chair for Waste Processing Technology and Waste Management; HDPE, 
High density polyethylene; HSB, Hue-saturation-brightness; HSI, Hyperspectral imaging; HSV, Hue-saturation-value; LDPE, Low 

density polyethylene; LLDPE, Linear low density polyethylene; MMI, Man-Machine-Interface; NIR, Near-infrared spectroscopy; 
PET, Polyethylene terephthalate; PLC, Programmable logic controller; PMMA, Polymethylmethacrylate; PP, Polypropylene; RDF, 
Refuse derived fuel; RGB, Red-green-blue; SBS, Sensor-based sorting; TPU, Thermoplastic polyurethane; VIS, Visual spectroscopy. 
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E-mail address: karl.friedrich@unileoben.ac.at (K. Friedrich). 
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( http://creativecommons.org/licenses/by/4.0/ ) 
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a r t i c l e i n f o 

Method name: Qualitative analysis of post-consumer and post-industrial waste via near-infrared, visual and induction 
identification with experimental sensor-based sorting setup 
Keywords: Sensor-based sorting, Identification model, Near-infrared sorting (NIR Sorting), Visual-spectroscopy sorting (VIS 
Sorting), Induction sorting 
Article history: Received 26 November 2021; Accepted 29 March 2022; Available online 2 April 2022 

Specifications table 

Subject Area; Environmental Science 
More specific subject area; Sensor-based Sorting 

Method name; Qualitative analysis of post-consumer and post-industrial 

waste via near-infrared, visual and induction identification 

with experimental sensor-based sorting setup 

Name and reference of original method; 
• Near-Infrared Spectroscopy: Ozaki, Y.; Huck, C.; 

Tsuchikawa, S.; Engelsen, S.B. Near-Infrared Spectroscopy: 

Theory, Spectral Analysis, Instrumentation and Applications, 

1st Edition, Springer, Singapore, 2021, ISBN: 

978-981-15-8648-4. 
• Visual-Spectroscopy: Perkampus, H.-H. UV-VIS Spectroscopy 

and Its Applications, 1st Edition, Springer, Berlin, 

Heidelberg, 1992, ISBN: 978-3-642-77477-5. 
• Electromagnetic Induction: Morris, N.M. Electrical Principles 

II, 1st Edition, Palgrave, London, 1977, ISBN: 

978-0-333-22062-7. 

Resource availability; • Hardware, Main Configuration: CLARITY Sorting System 

MONTANUNI-01, custom-made product constructed by 

Binder + Co AG 
• Software, Control Cabinet: M a n-Machine-Interface (MMI) 

by Binder + Co AG 
• Hardware, Near-Infrared Technology: EVK HELIOS NIR 

G2-320 by EVK DI Kerschhaggl GmbH 
• Software, Near-Infrared Technology: EVK Helios Optimizer; 

Version 3.4.2017.1 by EVK DI Kerschhaggl GmbH , 08-2017 
- Hardware, Induction Sensor: MESEP FS3 by Pulsotronic 

Anlagentechnik GmbH 
• Hardware, Visual Spectroscopy: AViiVA® SC2 CL Camera 

Link® Color Linescan Camera by e2v 
• Software, Visual Spectroscopy: FraunhoferICC by Fraunhofer 

IOSB, Version 2.5.0.0 by Fraunhofer IOSB, 2012 

Method details 

Sensor-based sorting is used in waste management for sorting and analysing waste streams and 
bulk materials. It is a non-contact, non-destructive process that offers a great deal of flexibility to 
cope with a wide variety of tasks. The Chair for Waste Processing Technology and Waste Management 
(AVAW) has an experimental sensor-based sorting setup for university and industrial research projects 
designed as a two-way machine. A grain size range from 5 to 300 mm can be processed. The feed 
takes place via a vibrating conveyor (1) followed by a glass chute (2) (see Fig. 1 ). The experimental 
sensor-based sorting (SBS) setup contains three sensors (referred to Fig. 1 ) that can be used for 
different waste streams: 

- Near-infrared sensor (NIR) (5): waste glass, paper and cardboard, plastics, electronic scrap as well 
as construction and demolition waste. 

- High-resolution colour line scan camera with the measurement principle of visual spectroscopy 
(VIS) (5): plastics, wood, paper and cardboard, waste glass as well as construction and demolition 
waste. 

- Electromagnetic induction sensor (3): electric conductors, e.g. metallic waste. 
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Fig. 1. Functional schematic of the experimental sensor-based sorting setup at AVAW [3] . 
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Table 1 

Technical Parameters of the EVK Helios NIR G2-320 
Near Infrared Sensor. 

Technical Data Value 

Spectral Range 930 – 1700 nm 

Scan Rate 500 Hz full frame 
Spectra Resolution 9 nm 

Spectral Sampling 3.1 nm 

Spatial Resolution 312 Pixels 
Pixel Size 30 × 30 μm 

Optical Coupling C-mount lens 
Slit 100 μm (80 μm optionally) 
Interfaces GigE Vision, CamLink 2 
Trigger Input RS-485 

Table 2 

Key Technical Properties of the AViiVA® SC2 CL Camera Link® Color Linescan Camera VIS Sensor. 

Technical Data Value 

Sensor Characteristics at Maximum Pixel Rate 

Resolution 1365 
Red-Green-Blue 
(RGB) patterns or 
4096 pixels 

Pixel pitch 10 μm 

Maximum line rate 14 kHz 
Anti-blooming X 100 
Radiometric Performances (Maximum Pixel Rate, T amb = 25 °C) 

Output Format 12 bits (also 
configurable in 8 
bit or 10 bit) 

Linearity (G = 0) < 2 % 
Gain range (steps 
of 0.035 dB) 

G min 
-2 dB 

G nom 
0 dB 

G max 
22 dB 

Peak response 
(1)(2) 
Blue 
Green 
Red 

16.6 LSB/(nJ/cm ²) 
24.4 LSB/(nJ/cm ²) 
31.3 LSB/(nJ/cm ²) 

21.5 LSB/(nJ/cm ²) 
31.5 LSB/(nJ/cm ²) 
41 LSB/(nJ/cm ²) 

263 LSB/(nJ/cm ²) 
383 LSB/(nJ/cm ²) 
496 LSB/(nJ/cm ²) 

Dynamic Range 66 dB 64 dB 42 dB 
Photo Response 
Non-Uniformity 

± 4 % ( ± 15 % max) 

It is also possible to combine several sensors to solve complex tasks with so-called sensor fusion. 
Currently, norms are existing how to interpret NIR spectra with standard test methods like ASTM 

D 1925 Determination Yellowness Index or ASTM D 1003 Haze and Luminous Transmittance of 
Transparent Plastics, but none how to record all the data (VIS, NIR, induction, senor fusion) for such 
a setup, which is the focused method in this research paper [ 1 , 2 ]. 

In order to reproduce all applicable methods with the experimental SBS setup, the specifications 
of the sensors are listed. The first of the sensors used for classification via NIR Spectroscopy is the 
EVK Helios NIR G2-320, a high-speed hyperspectral imaging system. The main specifications of the 
EVK Helios NIR G2-320 are listed in Table 1 . 

The second sensor in application for the separation and classification trials conducted with the SBS 
setup explained above is the sensor for visual spectroscopy, the AViiVA® SC2 CL Camera Link® Color 
Linescan Camera. In the following, the essential key specifics of the sensor are depicted. The main 
specifications of the EVK Helios NIR G2-320 are listed in Table 2 . 

The third sensor used during trials at the sensor-based sorting stand is an induction-based sensor 
to detect metallic objects. It delivers a sensitive and accurate detection of small metal fragments. It 



K. Friedrich, G. Koinig and R. Pomberger et al. / MethodsX 9 (2022) 101686 5 

Table 3 

Technical Properties of the Induction Sensor MESEP FS3. 

Technical Data Value 

Interface Ethernet RJ45; 10/100Mbit, RS485; 57.600 - 6.000.000 Baud; CAN; EtherCAT ∗∗

Sample rate 1 kHz 
Resolution 12 - 100 mm 

Protocol UDP; HTTP(Ethernet); ASCII(RS485) 
Number of Channels 4 - 124 

delivers the detection results in real-time via Ethernet to a PC or a programmable logic controller 
(PLC), where the data can be evaluated. This way, the sensor’s data can be coupled with the data 
delivered by other sensors like the NIR or VIS sensor to achieve complex sorting tasks. The main 
specifications of the Induction Sensor MESEP FS3 are listed in Table 3 . 

Since correct illumination is vital for the detection with NIR, a halogen lamp is employed since 
halogen lamps deliver a flat spectrum in the NIR range. This specific illumination device, the Helen 
Dr. Fischer 15026Z with reflector, delivers a maximum illumination output in the detection area of 6.5 
mW/mm ² and is adjustable. It means the illumination setting allows dimming the lamp. 

The complete data sheets of all employed sensors are found in the chapter “Additional Information”
for further reference. 

Tasks and applications that have been worked on in research projects on the experimental SBS 
setup are: 

• Sample characterisation and determination of the composition, 
• Creation of a digital grain size distribution, 
• Discharge of contaminants, 
• Enrichment of valuable substances, 
• Sorting of bulk goods according to substance groups and 
• Validation of sorting/separation results. 

All of these tasks require the same method of qualitative analysis for sensor-based sorting, but the 
objective of the task is different. 

Requirements to get respectively good sorting results 

Sorting results are influenced by internal and external factors, which have an impact on the 
process control. The internal factors are based on the construction of the sensor-based sorting setup, 
adjustments and settings on the machine: 

• Belt velocity: throughput rate, relative velocity 
• Air pressure: to blow out objects according to the sensor signal with the compressed air nozzle bar 
• Valve diameter: influences the compressed air flow rate through one valve 
• Valve distance: defines possible grain ranges to be sorted 
• Splitter position: influences the sorting because of object weight and flight characteristics 
• Position of the compressed air nozzle bar: influences the sorting because of object weight and 

ejection trajectories 

The external factors which influence the sorting result are based on the properties of the material 
stream to be sorted: 

• Grain size distribution: should be between 3 to 4 referred to the smallest and the biggest object in 
the fraction. 

• Content of valuable material: the more valuable material in the input, the lower the influence of 
object overlapping. 

• Grain form: agglomerates or objects, which are deformed, influence the sorting result either 
positively or negatively. 
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• Area density: too low can lead to incorrect sorting because of bad flight characteristics and too high 
can lead to incorrect sorting because the air pressure is not able to push the object over the splitter 
and into the reject fraction. 

• Dust or steam between sensors and emitters can influence the identification of objects negatively; 
either objects are not identified, not recognised or the dust/steam cloud is identified as an object, 
which leads to an incorrect sorting result. 

• Surface contamination: contaminations on the objects can cause that objects are incorrectly 
identified and wrongly sorted. 

• Reflective surfaces: influence the transfer of the sensors light beam, it can cause positive or negative 
effects in the sorting result depending on the application. Positive: Reflective bands behind the 
specimen can enable measurement in transflection. Negative: Reflective materials can cause direct 
reflection into the sensor ́s lense, causing misclassification or since direct reflection cannot be used 
by the NIR detector. 

Further parameters, which influence the sorting result, can be set up on the man-machine- 
interface (MMI). For the correct identification of various materials, the correct calibration of the 
illumination is necessary. This is achieved by three illumination parameters in the MMI, namely the 
background light, in incident light and the intensity of the NIR emitters. These parameters can be set 
in a range of 0 - 100, corresponding with the percentage of the maximum intensity. 

The background light is used for detecting the particles for ejection. Decreasing the background 
illumination can allow for the ejection of transmissive materials such as glass or clear PET bottles. 
This is necessary since excessive intensity may cause these materials to be ignored since the high 
intensity does not cause sufficient shadows for them to be identified. The background illumination 
should not be set higher than 20 %, because this leads to an overexposure of light which results in 
incorrect material identification. 

Similarly, the identification for the VIS sensor can benefit from manipulation the incident 
illumination intensity in correlation to the surface properties of the material. Materials which absorb 
light very well may need a higher intensity than reflective materials whose glare can become an issue 
with excessive illumination. 

The third illumination source to be calibrated is the NIR emitters intensity. Here a similar problem 

arises. Distinct materials can cause glare when illuminated with sufficient intensity, e.g. smooth 
PS containers. Here a reduction in NIR intensity can improve classification. Other materials with 
worse reflective properties, e.g. thin foils and multi-layered plastic packaging materials, benefit from 

increased NIR intensity. The reason for this is their thin material thickness, which limits the amount of 
radiation that can be reflected. With thin materials like plastic packaging foils most of the radiation 
emitted by the NIR illumination is lost to transmission because of the low material thickness. An 
increase in emission intensity can increase the overall radiation arriving at the specimen and therefore 
increase the amount of radiation reflected by the material, overall improving the detectability of these 
materials. 

Some sorting tasks require the prioritisation of distinct materials over others present in the waste 
stream. In these applications, purity takes priority over yield. Here, the ejection of a particle that 
might be contaminated of wrongly classified is treated as more severe than the loss of a valuable 
particle. To achieve this prioritisation the sorting software allows for a weighing of material class 
pixels. This allows the user to multiply material pixels in the detection. Through this, the number of 
pixels of a contaminant might be counted tenfold, therefore ensuring the ejection of a contaminated 
or misclassified particle or an agglomerate containing a valuable particle, that might otherwise be 
ejected, reducing the purity of the valuable fraction. 

Further parameters which have to be optimized for maximized sorting efficiency are: 

• Delay time [ms]: Defines the time from the sensors object detection to the activation of the valve 
and needs to be set up so that the sorted objects can be blown out efficiently. It is mainly depended 
on the sorted objects weight. 

• Minimum blow-out time [ms]: Defines how long the valve are minimum opened 
• Minimum object width [mm]: Defines the minimum width of an objects, it can be set from 1 to 

100 mm 
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• Valve activity [%]: Defines how far an object has to reach in a path so that the associated valve is 
activated, it can be set from 10 to 100 %. 

In order to understand the principle for the explained methods in sensor-based sorting there are 
some definitions and statistics, that are mandatory to be understood: 

• Pixel: A pixel is the smallest unit of recognition by the detector, determined by the detector ́s 
resolution. These pixels make up the spectral image and are the basis for spectral evaluation. 
Each pixel contains information about its location and the intensities inherent at its location in 
all evaluated wavelengths. With this information each pixel is assigned a material class, which is 
then used to create objects for separation. 

• Object: An object is a cluster of pixels. Whether an object is assigned to material class A or material 
class B is determined by the abundance of pixels making up the object. E.g. if an object consists of 
49 % pixels classified as A and 51 % pixels classified as B, then the object is assigned to material class 
B. For separation purposes only, the objects classification is considered, therefore correct weighing 
of material classes is important in order to achieve a given sorting task at hand. 

• Pixel statistics: Pixel statistics are the distribution of pixels between material classes, i.e. if an object 
consists of 50 pixels of material class A and 8 pixels of material class B, these proportions are 
assigned to the relevant classes separately. 

• Material statistics: Material statistics are the classification of objects according to the dominant 
material class, e.g. if an object consists of 50 pixels of material class A and 8 pixels of material 
class B, the object is evaluated as material class A and all pixels (here 58 pixels) are assigned to 
material class A. 

• Object statistics: The object statistics are the distribution of objects between material classes. If 
58 pixels of class A are assigned to the object in the material statistics, this object is counted in 
material A ́s object statistic, raising the object count by one. 

The most crucial parameter in terms of plant settings from an operator’s point of view is the 
throughput-rate ˙ m . This parameter influences the economic performance of the sorting plant. The 
throughput rate determines the amount of material passing the experimental SBS setup during a 
specific time. The chute has a width of 0.5 m. The following formula is used to calculate the 
throughput-rate ˙ m [4] : 

˙ m 

[

kg 

h ∗ m 

]

= 
m input [ kg ] 

t [ s ] / 3600 
[

s 
h 

]

∗ 0 . 5 [ m ] 

where m input is the mass of the input material, and t the time of the sorting experiment. Additionally, 
four quality parameters should be determined to evaluate the performance of the sorting trial [4] : 

• The purity is the quality of the product fraction (ejected fraction) and is calculated according to the 
following formula: 

P urity [ % ] = 
m target f raction, e ject [ kg ] 

m e ject [ kg ] 
∗ 100% 

• The yield determines the efficiency of the ejection process and is calculated according to the 
following formula: 

Y ield [ % ] = 
m e ject [ kg ] ∗ c target f raction, e ject [ % ] 

m input [ kg ] ∗ c target f raction, input [ % ] 
∗ 100% 

• Recovery is the mass of ejected material relative to the mass of input material and calculated 
according to the following formula: 

Recov ery [ % ] = 
m e ject [ kg ] 

m input [ kg ] 
∗ 100% 

• Incorrect discharges are material pieces, which are wrongfully ejected and their share is calculated 
according to the following formula: 

Incorrect [ % ] = 
m e ject [ kg ] ∗ c non −target f raction, e ject [ % ] 

m input [ kg ] ∗ c non −target f raction, input [ % ] 
∗ 100% 
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where m input is the input mass, t is the time of the experiment, m target fraction,eject is the mass of the 
target material in the ejected material, m eject is the mass of ejected material, c target fraction,eject is the 
percentage of the target material in the ejected material, c target fraction,input is the percentage of the 
target material in the input material, c non-target fraction,eject is the percentage of the non-target material 
in the ejected material and c non-target fraction, input is the percentage of the non-target material in the 
input. 

Sorting with VIS technology 

Method principle 

With the assistance of VIS-based sorting, materials can be sorted according to their colour. VIS- 
based sorting is the oldest sensor-based sorting technique, which was previously used mainly for 
waste glass. In polymer recycling, this sensor technology is often used for polyethylene terephthalate 
(PET). Its primary operating principles are well understood and thoroughly explained [5] . Nowadays, 
it is mainly used in combination with other sorting techniques. 

The method is based on the interaction of electromagnetic radiation from the visible range 
(380 nm - 750 nm) with the sample. The colour of an object is determined by the absorption or 
reflectance of light in the visible range. The absorption of a specific wavelength is based on the 
excitation of valence electrons. The excitation of the valence electrons causes electron transitions 
between the energy orbitals of different energy. The resulting energy difference leads to the 
absorption of specific wavelengths according to the following equation: 

λ = 
h · c 

�E 

where λ is the wavelength, E is the energy, h is the Planck constant (6,626 ∗10 −34 J ∗s) and c is the 
speed of light [6] . The smaller the energy difference, i.e. the easier it is to excite the electrons, the 
longer the wavelengths of light absorbed. 

In the sorting process, the sample is exposed to electromagnetic radiation from a light source. 
Part of the light is absorbed and other parts are diffusely reflected on the surface of the object. 
These reflected parts are directed onto a detector. In this detector, the incident light is split into its 
components. The result is a spectrum of wavelengths as a function of intensity. With this sorting 
technique, only the range of visible light is analysed [7] . The colours can be defined either according 
to the red-green-blue (RGB) method or the hue-saturation-brightness (HSB) method. The RGB method 
defines the colour by parts of the primary colours red, green, and blue. 

In comparison, the HSB method defines colour by hue saturation and brightness. The hue is 
displayed in a 360 ° circle representing a colour wheel, with each degree representing a specific colour. 
A saturation of 100% is the most intense version of the colour, regardless of the hue selected. In 
comparison, a saturation of 0 % represents the grey version of that colour. Brightness is also expressed 
as a percentage. A brightness of 0 % is black, no matter the hue or saturation. A brightness of 100 % 
means the light is at full strength [8] . 

With the VIS-based sorting technique, manual sorting by colour can be replaced. Compared to 
manual sorting, smaller grain sizes can be sorted with a higher throughput rate. The technique also 
enables the sorting of materials that are only slightly different in colour and would no longer be 
distinguishable by the eye (e.g. different shades of blue). However, successful sorting requires much 
preparatory work in defining the various colour classes and configuring the system correctly (lightning 
settings) [9] . The lighting settings must be adapted correctly, as they react very sensitively to external 
influences. When creating the colour classes, it must be ensured that no reflections occur in the 
picture of the reference material or that these are not considered when defining the colour class. The 
method works very well with materials that differ significantly in colour. When the colour differences 
are minor, the effort required to create the colour classes is very high [ 10 , 11 ]. 

Since materials vary in their ability to transmit visible light, the setup consists of two individual 
illumination arrangements. They are split up into two separate lighting modes, incident light and 
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Fig. 2. Colour cylinder for creating the VIS sorting model according to the colour sector (Hue, H), the brightness level (Value, 
V) and the saturation circle (Saturation, S) (authors depiction). 

background light. Incident light is used with materials whose density does not permit light to be 
transmitted. The illumination source, therefore, needs to be on the same side as the detector. These 
materials include building materials like bricks which need to separate from the mortar according 
to their colour. The other category includes materials like glass, which are highly reflective and 
translucent. Their high reflectivity can inhibit the incident illumination by reflecting light directly 
into the detector lenses, causing glare. This glare can prohibit the detector from gathering sufficient 
information about the colour of the particle. Illuminating the particles from behind using background 
illumination can circumvent and alleviate these problems. Through background illumination, the 
particles tendency to cause glare is reduced and finer differentiation in the material’s colour can be 
made. This allows good separation between different shades of the same colour, e.g. separating light 
blue glass from blue glass. 

Method description 

The first two steps of a VIS sorting trial are typically adjusting the lighting settings and 
determining the white calibration and the black calibration to ensure optimal light that allows an 
equally good identification of the different colours and does not lead to overexposure. 

White and black calibration aims to adjust and determine the spectroscope’s colour response to 
a known colour composition under experimental circumstances like artificial light in the laboratory. 
It is done by taking an image of a standard colour before the experiments and calibrating the 
sensor’s response. The object used for this is a white ceramic plate provided by the manufacturer 
specifically for this purpose. An image of this ceramic plate is taken which serves as a benchmark 
for what the sensor and the post-processing software regard as pure white or all detectable colours’ 
similar composition in the visible wavelength range. Similarly, the black calibration is performed by 
shielding the detectors lense with a non-permissive plate, prohibiting stray light from entering the 
lens. This state sets the lower boundaries of brightness. These calibrations need to be performed 
before every measurement since changes in the ambient light due to changes in the daytime, weather 
and similar conditions can alter the colour of the specimen and render the prepared sorting model 
worse. 

In order to separate and differentiate plastic parts by colour, the VIS sensor needs to be trained in 

a third step through creating a basic classification program. This program is developed by registering 
different colour types according to the Hue-saturation-value (HSV) system. Therefore, the HSV system 

settings need to be configured: The hue component, which represents the colour variations on a pie 
chart of 360 °C, is divided into 48 units to differentiate between colours. The saturation parameter 
depicts the richness of the colour, and the brightness component defines how bright the colour is [8] , 
as seen in Fig. 2 . Both parameters are measured on a scale from 0 % to 100 % and divided into 200 
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saturation units and 250 brightness units, respectively. The more subdivisions into units of the HSV, 
the better is the resolution of the sorting trial, but the more complex and time-consuming the sorting 
system is capturing the different colours and training. 

Fourth , some pieces of each chosen material – in the current example, a red low density 
polyethylene (LDPE), a white LDPE and a grey high density polyethylene (HDPE) – are inserted 
separately into the experimental SBS setup to picture the material. The picture allows the classification 
of the colour and consequently the detection and sorting using the VIS sensor for the sorting trial. The 
material stream, which goes through the chute, is classified by the colour of the targeted fraction in 
the HSV system in step five . 

The software depicted and used to create the colour separation model is Teachin ICC. A teachin 
file defines the mapping of colours to specific classes. The file is read in by the sorting system so that 
during sorting it can be decided which colour classes are present for the pixels of an object detected 
in the camera image, in order to determine which material is to be assigned to the object based on 
the majority of colour classes present. 

Fig. 3 shows exemplarily this procedure for the white LDPE fraction. After loading the picture 
(or a part of it) into the software Teachin ICC, a range of pixels is selected (A), which fits the 
material’s colour. It shows little reflections and it is not situated at the edge of the material to avoid 
transparency. The hue pie then locates the colour in the respective segments (B). It also indicates other 
segments where previous materials have been localised. For example, the orange section in the pie 
represents the segments and saturation where the grey HDPE material is situated. By clicking on the 
different segments, the saturation (x-axis) and brightness (y-axis) diagram for the respective segment 
opens (C), showing where the corresponding area of the target material is located for the different 
selected pixels. In order to classify this range, the area is selected and saved for the respective colour. 
This procedure has to be repeated for all relevant hue segments (in the picture according to the 
segments, where the "x" is located). 

In order to have an effective classification, in a sixth step, it needs to be verified to what extent the 
selected HSV parameters can serve to detect and ultimately eject the targeted material by determining 
the coverage rate of the registered classification with the original picture of the material. These 
coverage ratios for three materials are visible in the following Fig. 4 . 

It is visible that the coverage ratio for red is optimal as it covers almost the whole surface of 
the three different material pieces. In contrast, the white and grey materials have a lower coverage 
ratio due to reflections and different exposure to the lighting system. The VIS sensor’s inability to 
identify the material needs to be remedied. For this reason, the coverage ratio is optimised by adding 
more pixel and HSV ranges to the material classification in iterative procedure by repeating step five. 
Additionally, the parts that were successfully identified can be weighted with a higher factor. In this 
trial, grey and white are both being weighed twice as much as the other colours. 

Step seven: After finishing the setup and configuration of the classification program, the program 

is transferred to the man-machine interface (MMI) of the experimental SBS setup and the target 
material for sorting is selected. The MMI is connected to the VIS sensor and ultimately controls the 
air nozzles that mechanically eject the selected material pieces through an air blast. The pressure 
applied as air blast from the valves in the air nozzle bar is defined, reflecting sufficient pressure to 
move the target material pieces over the splitter. The time delay between detection and ejection, �t, 
is defined to consider the distance between the classification area on the chute and the air nozzle bar 
and reflect on the density and falling behaviour of the material. For the trials the white LDPE material 
is the target material for ejection. 

In step eight , the actual sorting trial is conducted by inserting the test fraction into the 
experimental SBS setup, thus, putting it on the vibration conveyor and running the system. The pieces 
fall down the chute where the VIS sensor detects the targeted fraction, which activates a specific valve 
in the air nozzle bar according to the position of the targeted material piece. This airflow ultimately 
sorts the material detected as white over the splitter into the target box, whereas the non-target 
fraction falls into the reject box. 

As the final and ninth step , the two sorted fractions are manually sorted and weighed per target 
and non-target material content to determine the performance parameters of the sorting trial. 
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Fig. 3. Creating the classification program in Teachin ICC by configuring the colour parameters according to the HSV system, here exemplary for the white LDPE material (authors 
depiction). 
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Fig. 4. Verification of the coverage ratio for three different materials in Teachin ICC (left picture colour "grey" marked in orange, 
centred picture colour "red" marked in red, right picture colour "white" marked in turquoise) (authors depiction). 

Table 4 

Material and corresponding colour of the 
feed material components. 

Material Colour 

LDPE red 
LDPE white 
LLDPE green 
HDPE grey 
PP purple 
TPU yellow 

PET clear 

Method application 

The feed material is a mixed fraction of different plastic components with a corresponding colour, 
see Table 4 . A high-resolution line scan camera (VIS technology) is used as the sensor. The aim is 
the purest possible extraction of white material from the feed material. Following Fig. 1 , the material 
is separated using a vibration conveyor (1) and moved into the sensor’s exposure area via a slide or 
chute (2). 

This sensor assembly (4 - 5) consists of an emitter (4) and a detector (5). In this case, halogen 
lamps, fluorescent tubes, or LED strips are usually chosen as emitters. The emitter’s radiation is 
partially reflected by the individual pieces of plastic and measured by the detector. The detector is 
connected to a computer that records the detected colour in the “colour cylinder”. In terms of the 
colour sector (Hue, H), the brightness level (Value, V) and the saturation circle (Saturation, S) in a 
previously created colour cylinder model (see Fig. 2 ) are compared and thereby assigned to a defined 
group. 

According to the task, if a piece of plastic belonging to the “white” group is recognised, it must 
be separated from the remaining fragments. That is done using a compressed air blast. A valve strip 
(6) downstream of the sensor opens one or more valves when the white piece is in front of the 
valve strip. The piece is "shot out" over the separating edge (7). All different coloured plastics are 
deliberately not ejected. 
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Fig. 5. Feed material (left), separated white LDPE – Eject (centre) and coloured plastic – Reject (right) (Trial 2 in Table 5 ) 
(authors depiction). 

Table 5 

Data of the VIS experiments. 

Unit Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 

Time of experiment s 34 38 42 42 42 40 42 41 40 38 
Input mass kg 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 
Mass of eject kg 0.16 0.16 0.18 0.17 0.17 0.16 0.15 0.17 0.15 0.17 
Mass of reject kg 0.93 0.93 0.91 0.92 0.92 0.93 0.93 0.92 0.93 0.92 
Target material in eject kg 0.15 0.15 0.16 0.16 0.17 0.16 0.14 0.16 0.14 0.16 
Target material in reject kg 0.02 0.02 0.01 0.01 0.00 0.01 0.02 0.01 0.03 0.01 
Non-target material in eject kg 0.01 0.01 0.02 0.01 0.00 0.01 0.01 0.01 0.02 0.01 
Non-target material in reject kg 0.91 0.92 0.90 0.91 0.92 0.91 0.92 0.91 0.91 0.91 

Table 6 

Results of the VIS experiments. 

Unit Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 

Throughput-rate kg/(h ∗m) 230,6 206,3 186,7 186,7 186,7 196,0 186,7 191,2 196,0 206,3 
Purity % 93.8 96.8 86.6 93.9 97.7 94.5 94.1 93.6 90.3 92.0 
Yield % 90.5 89.2 92.3 93.9 100.0 92.3 88.9 95.2 83.7 95.2 
Recovery % 14.9 14.1 16.4 15.2 15.8 15.1 14.0 15.7 14.1 16.0 
Incorrect discharges % 1.1 0.5 2.6 1.1 0.4 1.0 1.0 1.2 1.6 1.5 

Method validation 

The validation use-case is to separate “white” as target fraction from the feed material described 
in Table 4 and the left picture of Fig. 5 . 

Table 5 sums up the data from the trials in the VIS experiment. The white LDPE material was 
targeted for ejection in all sorting trials. Table 6 provides the consequent sorting trial results in terms 
of plant and quality performance parameters. The resulted fractions from the trial are shown in the 
centred and right picture of Fig. 5 . 

Sorting with NIR technology 

Method principle 

Nowadays, near-infrared (NIR) sorting systems are state-of-the-art in plastic waste sorting plants 
[4] . The basic working principles of NIR spectroscopy were the subject of a plethora of scientific 
studies, so they are well understood and can be used and modified to achieve a variety of tasks 
[12] . The NIR spectroscopy is based on the partial absorption of light in the NIR region (750 – 2500 
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nm) by the molecules in a material. Other than photons of UV and visible light, IR photons lead to 
vibrational and rotational movements of molecules or molecule parts. Suppose the frequency of the 
incident IR light correlates with the resonance frequency of molecular vibration. In that case, the IR 
light is absorbed, resulting in the molecule’s or functional groups’ vibrations. However, IR light can 
only be absorbed if the vibration changes the dipole moment in the molecule or functional group. 
By detecting the reflected or transmitted light of the irradiated material, absorption bands in specific 
spectral regions can be located. Based on these bands’ position and intensity, the functional groups 
within the material and, therefore, the material itself can be identified [13] . 

Methods based on NIR spectroscopy are characterised by the fast, non-destructive and non-invasive 
principle. Additionally, they are more suitable for in-line use than the mid-range infrared systems 
because of their lower price and higher robustness [ 14 , 15 ]. 

The basic principle behind NIR systems in sorting plants is irradiating the objects with NIR light 
and detecting the reflected light by a sensor. For successful sorting, the system has to be trained 
beforehand with the spectra of different materials. The detected spectrum is then pre-processed, 
which entails normalisation and derivation to emphasize their specific characteristics. These processed 
spectra are then compared with the spectrum of the previously defined material to be ejected. If the 
similarity is high enough, the respective object is identified as the defined material and ejected. The 
similarity necessary for assigning the material to an existing class can be defined by the user via 
the threshold parameter in EVK SQALAR. In most cases, specific wavelength regions in the spectra 
are defined for comparison rather than the entire spectrum. In this way, the computing time can be 
reduced. 

This sorting method also has its disadvantages as it is a binary sorting system that can only target 
one fraction to be sorted out. Thus, several NIR systems have to be connected in series or cascades 
to sort out multiple fractions. Another point that should be kept in mind is that moisture, dirt, or 
other residues can influence the NIR-spectra, leading to mis-sorting [4] . Furthermore, it is impossible 
to sort black or very dark plastics as they show high absorbance and, therefore, low reflectance [16] . 
An alternative to NIR sorting systems are tracer-based or water-mark sorting systems, which can sort 
a waste stream into several fractions in one step. Nevertheless, these two technologies also have their 
challenges, e.g. in technical feasibility and economic performance. 

Method description 

Similar to the proceeding in the VIS experiment, the NIR sorting trial starts with classifying the 
different tar get materials for the program’s configuration. As for the VIS experiment, the light settings 
and the white calibration and black calibration for the NIR experiment are set up for the sorting task. 

Before a measurement can take place, the sensor’s white and black calibration needs to be 
performed. The reasoning behind this calibration is that the software needs to know the maximum 

and minimum radiation intensity to expect, setting the upper and lower boundaries for spectral 
evaluation. The white calibration is performed as follows. Firstly, a reflective material is placed on the 
chute, a white ceramic plate provided by the manufacturer for this purpose. Then the user sets the 
white calibration target in the EVK SQALAR software, in this case, 20 0 0 Arbitrary Light Units (ALU), 
which is the unit for radiation intensity used by EVK in all their software and detection applications. 
This target correlates to the reflected intensity by the ceramic plate. The software will use this 
calibration target as a reference to order the detected radiation according to its intensity. If any pixels’ 
reflected radiation exceeds this threshold, its intensity will be capped to the white calibration setting. 

After the white calibration has been performed, the black calibration follows. All incoming light 
into the detector must be blocked with a non-NIR permissive shielding, usually made from black 
polymers, coloured with carbon. Then the user starts the black calibration process in EVK SQALAR, 
defining the bottom threshold, 0 ALU, of incoming light. After both processes, black and white 
calibration, have been completed, the intensity range under the given experimental circumstances 
has been defined. This intensity range is used to plot and evaluate the spectral information of the 
evaluated materials. 

In addition, the background ́s reflection intensity needs to be defined in SQALAR. The glass chute (2 
in Fig. 1 ) is transmissive, leading to low reflected intensity if no object is present to reflect the incident 
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NIR radiation. This lack of reflection is exploited by defining a lower boundary of intensity under 
which all pixels are classified as background. All background pixels are omitted from classification. 

The next step is the setup of the system. In this case, three materials for creating the classification 
program are chosen: Polypropylene (PP), PET and thermoplastic polyurethane (TPU). Several pieces 
are taken and inserted into the experimental SBS setup to acquire an image and the corresponding 
NIR-spectra for each material. From the images of the pieces, several pixels are selected over which 
the respective NIR-spectrum is averaged. Fig. 6 shows the spectra of five selected pixels of a PP 
specimen. It can be seen that the spectra vary amongst those pixels although it is the same material. 
When selecting the areas of the particles, areas with reflections and edges should be avoided. The 
received spectrum is then assigned to the respective material. For the following comparison between 
the materials, the first derivative of the spectrum is used. The scattering of the spectra of the three 
materials is shown in Fig. 7 and Fig. 8 . As visible in the Fig.s, PET exhibits a relatively high scattering 
compared to the other two plastics. However, due to its characteristic peak in the area of 1650 nm, 
PET is usually easy to detect, especially in this case compared to PP and TPU. 

The spectra can be evaluated using their depiction in a cartesian coordinate plane. The x-axis 
of this plane depicts the relevant wavelength in nanometres. This relevant wavelength represents 
the wavelengths the detector acquires, in this case, 930 nm - 1700 nm. This label does not change, 
regardless of the post-processing, the spectra undergo. The y-axis depicts the intensity of the reflected 
radiation acquired by the sensor. The y-axis’ unit is the arbitrary light unit (ALU). As mentioned, 
this unit is used by all operating systems created by EVK and represents the detected intensity in 
relation to the white and black calibration. The range of this is set by the user or the manufacturer 
when setting the target for white calibration. In the case of this study, the white calibration target 
is set to 20 0 0 ALU, representing the maximum intensity of the radiation reflected by the specimen 
used for white calibration. In this case, the background used for the calibration was a white ceramic 
plate supplied explicitly by the manufacturer for white calibration. As mentioned, the label of 
the x-axis does not change with progressing processing of the spectral data, e.g. derivation. It is 
not applicable for the y-axis, as its label changes with processing the spectral data, depicting the 
relevant information for the current processing application, e.g. the gradient of the raw spectra 
when displaying the first derivative. In this example, the unit of the y-axis changes to depict the 
change in intensity over the given wavelength, represented as arbitrary light units per nanometre 
(ALU/nm). However, this is not represented in the current version of the used classification software. 
The representation of the y-axis increases the range to permit the representation of the derivatives 
of the raw spectra. This part of the software can confuse when interpreting the spectra and needs 
to consider when preparing spectra for publication and use compared to other spectra, taken under 
different circumstances and with different levels of processing applied to them. With knowledge of 
this peculiarity in the analysis software, caused complications can be successfully circumnavigated. 
E.g., by using external software to analyse and compare spectra, a MATLAB script translates the raw 

spectral hyperspectral imaging (HSI) cube into a spectral image. Out of this cube, suitable spectra can 
be selected, processed, evaluated and plotted. 

The code used in the comparison of spectra takes the HSI Cube, exported as a .mat file. This 
HSI cube’s dimensions represent the size of the spectral image taken and the number of spectral 
evaluation points linearly spaced over the relevant wavebands. In this case, the detector can assess 
220 spectral points in the detectable range from 930 nm - 1700 nm. Therefore, the dimensions of this 
HSI cube are [Width of the spectral image in pixels x Height of the spectral image in pixels x 220]. 
The code converts this HSI Cube into a black and white image, representing the average reflected NIR 
intensity at every recorded pixel. This average produces an interpretable representation of the spectral 
information contained in the HSI Cube from which pixels for spectral evaluation can be selected. This 
selection process is depicted in Fig. 9 , which shows the representation of a spectral recording taken 
of seven PP specimens. 

After selection, the user can process the spectral information as needed. For example, apply 
smoothing, normalisation and derivation, enabling the user to exert more control over the data 
processing. An example of three evaluated pixels from the spectral image mentioned above is depicted 
in Fig. 10 . This Fig. depicts three PP spectra of the specimen after applying the first derivative, 
gaussian smoothing with a smoothing interval of 10 and normalisation using the z-score method, 
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Fig. 6. Scattering of the first derivative of the NIR-spectrum of PP amongst different Pixels (evaluation performed in MATLAB, authors depiction). 
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Fig. 7. Scattering of the first derivative of the NIR-spectrum of PET (blue) (evaluation performed in MATLAB, authors depiction). 
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Fig. 8. Scattering of the first derivative of the NIR-spectrum of yellow TPU (evaluation performed in MATLAB, authors depiction). 
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Fig. 9. Selection of pixels for evaluation from the visualised HSI Cube in SQALAR (authors depiction). 

which normalises the data to have a mean of 0 and a standard deviation of 1. A smoothing 
interval of 10 means the smoothing was applied taking the median over a ten-element sliding 
window. 

These spectra are used as labelled input for the machine learning algorithm underlying the spectral 
classification. These spectra serve as the training data for the supervised machine learning approaches 
used to label new spectra or in other words, to classify materials into pre-defined groups. In order to 
achieve this, partial least square regression is used. This approach allows the classification of material 
without the need to explicitly program every spectrum which could likely be encountered when 
sorting materials. The rigor, with which spectra which deviate from the training set are discarded, 
or counted as “not classified”, can be determined by the user via the previously mentioned threshold 
parameter. 

Once the spectra have been successfully assigned to the materials, the wavelength range is selected 
in SQALAR for usage in the following sorting process to select specific ranges in which the spectra 
differ significantly. Fig. 11 shows the chosen wavelength ranges in the left side of the Figure (1 ). The 
images on the right side of the Figure (2 ) show the pieces and the classified material type, visualised 
by the respective colour. It is shown that PP is covered best. PET is also well covered, except for some 
small areas at the edges assigned to unclassified material (yellow). The yellow lines in the frames can 
be attributed to dirt on the chute. The third image shows TPU, which has larger misclassified edge 
areas identified either unclassified or PP. Since the coverage ratio is greatly exceeding 50%, sorting 
should be feasible. The higher weighting of the successfully identified parts can further improve the 
sorting. 

After finishing the classification program and transferring it to the MMI, the settings of the air 
nozzles are adjusted as described previously for VIS technology. For the sorting experiment, PP is the 
target material for ejection. 

The sorting trial is started by putting the test fraction on the conveyor and running the system. 
The principle of the sorting process is the same as for the VIS sorting. After the sorting is finished, 
the two separated fractions are manually sorted by target and non-target material and then weighed 
to evaluate the sorting process’s quality. 

Method application 

The feed material is a mixed fraction of different plastic components with a corresponding colour, 
see Table 4 . NIR spectroscopy is used as sorting technology. The aim is to achieve the purest possible 
output of PP (following Fig. 1 ). 

The material is separated using a vibration conveyor (1) and moved into the sensor’s exposure area 
via a slide or chute (2). 
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Fig. 10. Spectral evaluation of PP pixels after processing (evaluation performed in MATLAB, authors depiction). 
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Fig. 11. Creating the classification program in SQALAR for the NIR experiment: 1) selecting three wavelength sections visualised by the red areas, 2) coverage ratios of the used pieces (PP 
purple, PET white, TPU orange) (authors depiction). 
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Table 7 

Data of the NIR experiment. 

Unit Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 

Time of experiment s 41 41 36 38 38 40 38 40 37 38 
Input mass kg 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 
Mass of eject kg 0.11 0.02 0.11 0.13 0.10 0.11 0.12 0.10 0.14 0.14 
Mass of reject kg 0.98 0.98 0.98 0.96 1.00 0.98 0.97 0.99 0.95 0.95 
Target material in eject kg 0.10 0.01 0.10 0.10 0.09 0.10 0.10 0.09 0.10 0.10 
Target material in reject kg 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 
Non-target material in eject kg 0.01 0.01 0.01 0.03 0.01 0.01 0.02 0.01 0.04 0.04 
Non-target material in reject kg 0.98 0.98 0.98 0.96 0.99 0.98 0.97 0.98 0.95 0.95 

Table 8 

Results of the NIR experiment. 

Unit Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 

Throughput-rate kg/(h ∗m) 191.2 191.2 217.8 206.3 206.3 196.0 206.3 196.0 211.9 206.3 
Purity % 91.7 66.7 90.8 76.3 93.9 89.4 84.9 92.2 69.9 74.1 
Yield % 100.0 100.0 100.0 100.0 92.1 100.0 100.0 93.1 100.0 100.0 
Recovery % 10.0 1.4 10.0 12.0 9.1 10.4 10.9 9.4 13.1 12.4 
Incorrect discharges % 0.9 0.5 1.0 3.1 0.6 1.2 1.8 0.8 4.4 3.5 

Modern NIR sensors (5) cover a wavelength range from around 10 0 0 to 2500 nm. Halogen lamps, 
for example, can be used as emitters (4). This spectrum contains information that allows conclusions 
about the chemical composition of the investigated objects. 

NIR technology makes it possible to recognise different types of plastic based on specific molecule 
groups - in the application example PP. Fig. 12 shows the spectra of PET (blue) and PP (red) and 
the differences between the two materials which are used to separate them from each other. These 
waves are excited to vibrate by the incident radiation. The wave oscillation energy is split in the 
reflected and transmitted radiation so that a corresponding absorption band results in the resulting 
spectrum. The detected spectrum is converted into an electrical signal and processed in an associated 
evaluation unit. The measured spectrum is compared with several reference spectra from a database. 
If the spectrum matches one of these spectra, the particle is recognised as the related material and 
can be sorted. The detection of dark (soot-blackened) materials is a limiting factor that plays a role in 
plastic processing in particular. These particles usually do not reflect a spectrum detected by the NIR 
sensor of a sensor-based sorting machine [17] . 

According to the task, if packaging from the "PP" group is recognised, it must be separated from 

the rest of the fraction. That is done using a compressed air blast. A valve bar (6) downstream of the 
sensor opens one or more valves when the PP is in front of the valve bar. The PP is ejected over the 
separating edge (7). All other types of plastic are deliberately not ejected. 

Method validation 

The validation use-case is to separate PP as target fraction from the feed material described in 
Table 4 and Fig. 13 . 

The throughput rate and the quality parameters are evaluated according to the equations shown for 
VIS technology. In Table 7 , the data from the NIR sorting trial are summarised, where the PP material 
fraction was targeted for ejection. Table 8 provides the consequent results of the sorting trial in terms 
of plant and quality performance parameters. Both trials were performed with a different amount of 
input stream out of the same input fraction. The resulted fractions from the trial are shown in the 
centred and right picture of Fig. 13 . 
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Fig. 12. Recorded spectra using NIR technology on the experimental sensor-based sorting setup and further evaluated in MATLAB: The blue line represents the characteristic PET spectrum 

while red represents the characteristic PP spectrum (authors depiction). 
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Fig. 13. Feed material (left), separated PP – Eject (centre) and coloured plastic – Reject (right) (Trial 10 of Table 7 ) (authors depiction). 
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Fig. 14. Typical working schemata of induction sorting with compressed air bar and sorting screen (authors depiction). 

Induction Sorting 

Method principle 

The principal workings of induction sorting are well explained and understood. Therefore, the 
following will be a summary of the methods working principles [18] . Valuable metal content can 
be separated from the non-metallic waste stream by deploying three different methods. One of those, 
apart from eddy current sorting and magnetic sorting, are induction sorting systems. These sensors 
identify metallic objects in the waste stream via magnetic induction. Coils in the sensor generate 
a magnetic field, which, once a metallic object, or, in broader terms, a conductive object, moves 
past, it induces an electric current. According to the programming, this electronic signal is sent to 
a computing unit that activates an ejector mechanism, usually in the form of a compressed air nozzle 
array. This compressed air pushes the detected metal objects over a diverting screen, separating them 

from the material flow and generating a metallic fraction. 
The size of the coils depends on the grain size of the material to be sorted and has to be chosen 

accordingly. Fig. 14 shows the working principle of an induction separating unit. 

Method description 

In contrast to develop sorting models for the VIS and NIR sensor, the sorting model for induction 
consists only on the setup of parameters for the induction sensor. These parameters can be set on the 
man-machine-interface (MMI) of the experimental sorting setups control cabinet. These parameters 
are the follows: 

• Delay time [ms]: Defines the time from the sensors object detection to the activation of the valve. 
• Minimum blow-out time [ms]: Defines how long the valve are minimum opened. 
• Minimum object size [mm]: Minimum size of an object that the valves from the air nozzle bar 

opens. 
• Scaling [%]: Object scaling can either stretch or compress the object, it can be set from 50 to 100 %. 
• Edge valve: A button to be activated, when the edge valves of the compressed air nozzle bar should 

be activated. 
• Sensitivity: Defines the threshold value when the metal sensor should detect metal objects as metal 

objects, this threshold can be set from 5 to 750. 
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Table 9 

Data of the induction experiment. 

Unit Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 

Time of experiment s 52 53 52 55 47 53 53 49 57 55 
Input mass kg 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
Mass of eject kg 0.27 0.27 0.26 0.26 0.25 0.24 0.24 0.26 0.24 0.24 
Mass of reject kg 0.73 0.73 0.74 0.74 0.75 0.76 0.76 0.74 0.76 0.76 
Target material in eject kg 0.19 0.2 0.19 0.2 0.2 0.19 0.18 0.19 0.18 0.19 
Target material in reject kg 0.06 0.05 0.06 0.05 0.05 0.06 0.07 0.06 0.07 0.06 
Non-target material in eject kg 0.08 0.07 0.07 0.06 0.05 0.05 0.06 0.07 0.06 0.05 
Non-target material in reject kg 0.67 0.68 0.68 0.69 0.70 0.70 0.69 0.68 0.69 0.70 

Table 10 

Results of the induction experiment. 

Unit Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 

Throughput-rate kg/(h ∗m) 138.5 135.8 138.5 130.9 153.2 135.8 135.8 146.9 126.3 130.9 
Purity % 70.4 74.1 73.1 76.9 80.0 79.2 75.0 73.1 75.0 79.2 
Yield % 76.0 80.0 76.0 80.0 80.0 76.0 72.0 76.0 72.0 76.0 
Recovery % 27.0 27.0 26.0 26.0 25.0 24.0 24.0 26.0 24.0 24.0 
Incorrect discharges % 10.7 9.3 9.3 8.0 6.7 6.7 8.0 9.3 8.0 6.7 

Method application 

The induction sorting system complements magnetic sorting and eddy current separation for 
recovering residual metals from a mix of materials. It is particularly suitable for stainless steel and 
composite materials such as cables or circuit boards. It can be used to focus on the production of 
recoverable metal concentrates, such as a stainless-steel fraction. However, the goal of processing can 
also be to produce a metal-free residual fraction with less than 1% metal to meet acceptable qualities 
and purities, e.g. in the production of residue derived fuels. Both tasks are the core applications of 
induction sorting systems. 

Metallised foils can be separated from their unmetalled counterparts because the detection 
sensitivity of the induction sensor can be increased until the minute amount of metallisation can 
be detected. This approach allows the detection of metallised 2D materials and permits their ejection. 
Metallised foils are inherently difficult to be detected with a NIR sensor. There is a high probability 
that the metallised layer will be the side facing the NIR detector, prohibiting any form of NIR detection 
since the NIR inactive metal layer reflects most radiation. It is, therefore, useful to detect those 
metallised particles by induction sorting. Further, the reaction time between detection and ejection 
can be modified to account for the aerodynamics of the material. Metallised foils drop comparatively 
slowly, so the reaction time could be increased while sensitivity and reaction time had to be decreased 
when separating refuse derived fuel (RDF) from metallic contaminants. 

Method validation 

The induction sensor settings for the following trial are a delay time of 65 ms, a minimum blow- 
out time of 15 ms, a minimum object size of 3 mm, a scaling of 100 %, activated edge valves 
and a sensitivity of 35. The throughput rate and the quality parameters are evaluated according to 
the equations shown for VIS technology. In Table 9 , the data from the induction sorting trial are 
summarised, where the metals in a refuse-derived fuel stream were targeted for ejection. Table 10 
provides the consequent results of the sorting trial in terms of plant and quality performance 
parameters. The resulted fractions from the trial are shown in the centred and right picture of Fig. 15 . 
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Fig. 15. Feed material (left), separated metal – Eject (centre) and refuse-derived fuel – Reject (right) (Trial 4 of Table 9 ) (authors depiction). 
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Fig. 17. Feed material (left), separated white glass – Eject (centre) and residuals – Reject (right) (Trial 5 of Table 12 ) (authors depiction). 
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Table 11 

Input composition of sensor fusion trial. 

Input Material Unit Mass 

PP kg 0.01 
HDPE kg 0.01 
TPU kg 0.02 
LLDPE kg 0.01 
LDPE - Red kg 0.03 
LDPE - White kg 0.04 
PMMA kg 0.04 
White Glass kg 0.63 
Wire Glass kg 0.31 
Coloured Glass kg 0.46 
Ceramics kg 0.02 
Metals kg 0.03 

Table 12 

Data of the sensor fusion experiment. 

Unit Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 

Time of experiment s 57 47 54 50 52 56 50 53 48 50 
Input mass kg 1.66 1.66 1.66 1.65 1.65 1.65 1.65 1.65 1.65 1.65 
Mass of eject kg 0.63 0.62 0.61 0.63 0.63 0.63 0.60 0.61 0.61 0.60 
Mass of reject kg 1.02 1.04 1.09 1.02 1.02 1.02 1.05 1.04 1.04 1.05 
Target material in eject kg 0.63 0.62 0.61 0.62 0.63 0.63 0.60 0.61 0.61 0.60 
Target material in reject kg 0.02 0.04 0.04 0.02 0.02 0.01 0.05 0.03 0.03 0.04 
Non-target material in eject kg 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 
Non-target material in reject kg 1.00 1.00 1.05 1.00 1.00 1.00 1.01 1.00 1.01 1.01 

Table 13 

Results of the sensor fusion experiment. 

Unit Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 

Throughput-rate kg/(h ∗m) 209.1 253.5 220.7 237.9 228.7 212.1 237.9 224.0 247.1 237.5 
Purity % 100.0 100.0 100.0 98.9 100.0 100.0 100.0 100.0 100.0 100.0 
Yield % 97.4 93.9 93.8 96.9 97.4 97.8 92.7 94.7 95.9 93.8 
Recovery % 38.3 37.3 36.7 38.2 38.1 38.2 36.0 36.9 37.1 36.6 
Incorrect discharges % 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 

Sensor fusion 

Method principle and method description 

In principle, all separation characteristics that can be measured without contact using sensors, 
such as shape, color, gloss, molecular composition, density or electrical conductivity are used. 
Today, various detection methods are mostly used combined to ensure simultaneous detection of 
multiple material properties, this is called multi-sensor technology or sensor fusion [ 17 , 19 ]. This 
approach is useful for sorting material compositions. An example is the fusion of previously described 
technologies NIR, VIS and induction, to eject white glass from a mixed waste fraction composed of 
plastics, mixed coloured glas, wire glass and metals). 

Further sensor fusion techniques currently employed and under development, like X-Ray or 
marker-based sorting can further increase the efficiency of sensor fusion by increasing the number 
of physical and chemical properties and manmade markers by which sorting of refuse can be 
undertaken. 
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Method application 

The method described here utilises the aforementioned technologies, NIR, VIS and induction 
combined to generate a valuable product of pure white glass from an input consisting of LDPE, HDPE, 
PP, TPU, linear low density polyethylene (LLDPE), polymethylmethacrylate (PMMA), mixed coloured 
glass, wire glass and metals ( Table 11 and Fig. 16 ). In one trial, NIR combined with VIS spectroscopy 
is used to eject only the valuable white glass by combining detection of the characteristic plastic 
NIR fingerprints to sort out plastics with the inclusion of the respective VIS model for white glass. 
Further, induction classification of the particle is set up negative, assuring the white glass fraction is 
not polluted by wire glass particles which would be ejected alongside the white glass. This sensor 
fusion ensures, that only white glass is ejected. 

Method validation 

The validation use-case is to sort white glass as target fraction from the feed material described in 
Table 11 and Fig. 17 . 

The throughput rate and the quality parameters are evaluated according to the equations shown for 
VIS technology. In Table 12 , the data from the sensor fusion trials are summarised, where the white 
glass was targeted for ejection. Table 13 provides the consequent results of the sorting trial in terms 
of plant and quality performance parameters. Both trials were performed with a different amount of 
input stream out of the same input fraction. The resulted fractions from the trial are shown in the 
centred and right picture of Fig. 17 . 

Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal 
relationships that could have appeared to influence the work reported in this paper. 

Supplementary materials 

Supplementary material associated with this article can be found, in the online version, at doi: 10. 
1016/j.mex.2022.101686 . 

References 

[1] ASTM D 1925: Standard Test Method for Determination Yellowness Index, 70th Edition, May 1977. 
[2] ASTM D 1003: Standard Test Method for Haze and Luminous Transmittance of Transparent Plastics, Edition 2021. 
[3] B. Küppers , S. Schlögl , K. Friedrich , L. Lederle , C. Pichler , J. Freil , R. Pomberger , D. Vollprecht , Influence of material 

alterations machine impairment on throughput related sensor-based sorting performance, Waste Manag. Res. (2020) DOI: 
527 10.1177/0734242X20936745 . 

[4] B. Küppers, S. Schloegl, G. Oreski, R. Pomberger, D. Vollprecht, Influence of surface roughness and surface moisture 
of plastics on sensor-based sorting in the near infrared range, Waste Manag. Res. 37 (2019) 843–850, doi: 10.1177/ 
0734242X19855433 . 

[5] H.-H. Perkampus , UV-VIS Spectroscopy and Its Applications, 1st Edition, Springer, Berlin, Heidelberg, 1992 ISBN: 
978-3-642-77477-5 . 

[6] P.A. Tipler , Physik: für Wissenschaftler und Ingenieure (Physics: For scientists and engineers), 7th Edition, Springer, 
Heidelberg, 2019 ISBN 978-3-642-54166-7 . 

[7] S.P. Gundupalli, S. Hait, A. Thakur, A review on automated sorting of source-separated municipal solid waste for recycling, 
Waste Manag. 60 (2017) 56–74, doi: 10.1016/j.wasman.2016.09.015 . 

[8] Kennedy, E.D. The HSB Colour System: A Practitioner’s Primer. Learn UI Design Blog, 2021, updated 01 May 2020. https: 
//learnui.design/blog/the- hsb- colour- system- practicioners- primer.html#hsb- in- practice (accessed 28 October 2021). 

[9] H. Wotruba, Stand der Technik der sensorgestützten Sortierung (State-of-the-Art in sensor-based sorting), Berg 
Huettenmaenn Monatsh 153 (2008) 221–224, doi: 10.10 07/s0 0501-0 08-0379-0 . 

[10] H. Martens , D. Goldmann , Recyclingtechnik: Fachbuch für Lehre und Praxis (Recycling: Reference book for education and 
practice), 2nd Edition, Springer Fachmedien Wiesbaden, Wiesbaden, 2016 ISBN: 978-3-658-02786-5 . 

[11] F. Corradini, H. Bartholomeus, E. Huerta Lwanga, H. Gertsen, V. Geissen, Predicting soil microplastic concentration using 
vis-NIR spectroscopy, Sci. Total Environ. 650 (2019) 922–932, doi: 10.1016/j.scitotenv.2018.09.101 . 

[12] Y. Ozaki , C. Huck , S. Tsuchikawa , S.B. Engelsen , Near-Infrared Spectroscopy: Theory, Spectral Analysis, Instrumentation and 
Applications, 1st Edition, Springer, Singapore, 2021 ISBN: 978-981-15-8648-4 . 



32 K. Friedrich, G. Koinig and R. Pomberger et al. / MethodsX 9 (2022) 101686 

[13] H. Günzler, H.-U. Gremlich, IR-Spektroskopie: Eine Einführung (IR spectroscopy: An introduction), 4th Ed., Wiley-VCH, 
Hoboken, NJ, Weinheim, 2003, doi: 10.1002/9783527662852 . 

[14] C. Pasquini, Near Infrared Spectroscopy: fundamentals, practical aspects and analytical applications, J. Braz. Chem. Soc. 14 
(2003) 198–219, doi: 10.1590/S0103-505320 030 0 020 0 0 06 . 

[15] A. Kulcke, C. Gurschler, G. Spöck, R. Leitner, M. Kraft, On-line classification of synthetic polymers using near infrared 
spectral imaging, J. Near Infrared Spectrosc. 11 (2003) 71–81, doi: 10.1255/jnirs.355 . 

[16] A. Feil, E. Coskun, M. Bosling, S. Kaufeld, T. Pretz, Improvement of the recycling of plastics in lightweight packaging 
treatment plants by a process control concept, Waste Manag. Res. 37 (2019) 120–126, doi: 10.1177/0734242X19826372 . 

[17] H. Beel , Sortierung von schwarzen Kunststoffen nach ihrer Polymerklasse mit Hyperspectral-Imaging-Technologie (Sorting 
of black plastics to their polymer types with hyper-spectral-imaging-technology), in: K.J. Thomé-Kozmiensky, D. Goldmann 
(Eds.), Recycling und Rohstoffe Band 10, Proceedings of Recycling und Rohstoffe, Neuruppin, Germany, TK-Verlag, 2017, 
pp. 175–191. ISBN 978-3-944310-34-3 . 

[18] N.M. Morris , Electrical Principles II, 1st Ed., Palgrave, London, 1977 ISBN: 978-0-333-22062-7 . 
[19] T. Pretz, J. Julius, Stand der Technik und Entwicklung bei der berührungslosen Sortierung von Abfällen (State-of-the-Art and 

development in contactless sorting of waste). Österr Wasser- und Abfallwirtschaft 60, ÖWAV: Vienna, Austria, pp 105-112. 



Chapter 4 - Experimental Design 96 
   

 

4.2 Publication VI, Identification, Surface Roughness 

"Influences and consequences of mechanical delabelling on pet recycling" 

Original Article 
Küppers, B., Chen, X., Seidler, I., Friedrich, K., Raulf, K., Pretz, T., Feil, A., Pomberger, R., 
Vollprecht, D. (2019). Influences and consequences of mechanical delabelling on pet 
recycling. Detritus, Volume 06-June 2019(0), 1. DOI: 10.31025/2611-4135/2019.13816. 

The annotation on the doctoral candidate's contribution to this publication is listed in Table 4-2. 

Table 4-2: Annotation on the doctoral candidate's contribution to Publication VI 

Conceptualization Küppers, B., Chen, X., Friedrich, K., Raulf, K., Pretz, T., 
Feil, A., Pomberger, R., Vollprecht, D. 

Methodology Küppers, B., Chen, X., Friedrich, K. 

Software Chen, X. 

Validation Küppers, B., Chen, X., Seidler, I., Friedrich, K. 

Formal Analysis Küppers, B., Chen, X., Seidler, I. Friedrich, K., Raulf, K., 
Pretz, T., Feil, A., Pomberger, R., Vollprecht, D. 

Investigation Küppers, B., Chen, X., Seidler, I., Friedrich, K., Pretz, T. 

Resources - 

Data Curation Küppers, B., Chen, X., Seidler, I., Friedrich, K. 

Writing: 
Original Draft Preparation 

Küppers, B., Seidler, I., Friedrich, K. 

Writing: 
Review and Editing 

Küppers, B., Seidler, I., Friedrich, K. 

Visualization Küppers, B., Seidler, I., Friedrich, K. 

Supervision Raulf, K., Pretz, T., Feil, A., Pomberger, R., 
Vollprecht, D. 

Project Administration Küppers, B. 

Funding Acquisition Raulf, K., Pretz, T., Feil, A., Pomberger, R., 
Vollprecht, D. 

 

 



* Corresponding author: 
Bastian Küppers
email: bastian.kueppers@unileoben.ac.at

Detritus / Volume 06 - 2019 / pages 39-46
https://doi.org/10.31025/2611-4135/2019.13816 
© 2019 Cisa Publisher. Open access article under CC BY-NC-ND license

INFLUENCES AND CONSEQUENCES OF MECHANICAL DELABELLING 
ON PET RECYCLING
Bastian Küppers 1,*, Xiaozheng Chen 2, Irina Seidler 1, Karl Friedrich 1, Karoline Raulf 2, 
Thomas Pretz 2, Alexander Feil 2, Roland Pomberger 1 and Daniel Vollprecht 1

1 Montanuniversitaet Leoben, Chair of Waste Processing Technology and Waste Management, Austria
2 Rheinisch Westfalische Technische Hochschule Aachen, Department of Processing and Recycling, Germany

Article Info:
Received: 
17 January 2019
Revised: 
26 April 2019
Accepted: 
3 May 2019
Available online:
24 May 2019

Keywords:
PET recycling
Sensor-based sorting
Label
Roughness
NIR Spectroscopy

ABSTRACT
The recycling of polyethylene terephthalate (PET) is an important issue of today’s so-
ciety. Mechanical recycling makes more sense from an ecological point of view than 
chemical PET recycling. However, mechanical recycling still is highly susceptible to 
defilements. Therefore, intensive pre-treatment is necessary to ensure the mechan-
ical production of high-quality recycled PET. An important step in this process is to 
separate the PET bottles from their labels/sleeves. For this purpose, a newly devel-
oped label remover was studied. In this study, it was found that the machine had a 
delabelling efficiency of 90 w%. The PET bottles that were not sufficiently delabelled 
(10 wt.%) on average had a significantly smaller bottle size. This means that a sharp 
screening step, prior to delabelling, could improve the delabelling efficiency further-
more. Additionally, the applicability of near-infrared sorting technology was tested to 
find out, whether it can be used for quality control. Tests showed that state-of-the-art 
technology could differentiate between labelled and delabelled PET bottles, enabling 
separation of labelled PET bottles from delabelled bottles via sensor-based sorting. 
Hence, the proportion of contaminated PET bottles could be reduced furthermore 
with additional processing steps.

1. INTRODUCTION

Polyethylene terephthalate (PET) is one of the most 
common and prevalent thermoplastic polymers in today’s 
society. It is used for the production of beverage bottles, fi-
bres, moldings, sheets and other packaging material. Espe-
cially its worldwide usage as a container for beverages can 
be explained by the, in comparison to other plastic types, 
superior properties such as chemical, physical, mechani-
cal, oxygen and carbon dioxide barrier features. The high 
clarity of PET constitutes a major advantage in compari-
son to many other packaging polymers. These properties 
contributed to the increased consumption of PET since the 
1950s (Shen et al., 2010; Burat et al., 2009; Welle, 2011). 

Due to the high quantities of PET bottles, this material 
presents a significant amount of today’s waste. Since PET 
is not degradable under normal conditions and therefore 
occurs in aged waste excavated during landfill mining, ex-
pensive procedures would be needed in order to degrade 
PET biologically. In contrast, recycling processes consti-
tute a relatively cost-effective method to reduce landfilling 
or incineration of PET waste. Therefore, its recycling is driv-
en forward constantly (Awaja and Pavel, 2005).

Usually for recycling, first, mechanical pre-processing 

steps are applied to generate PET flakes that can be recy-

cled chemically via depolymerisation or mechanically via 

extrusion. Chemical recycling offers the advantage that 

the recycled PET (RPET) has better properties than me-

chanically recycled PET, enabling a wide-ranging variety of 

possible applications. These superior properties come at 

the cost of a worse environmental profile of the chemical 
recycling process. During this process, the PET polymer is 

stripped down into monomers or oligomers using depo-

lymerisation, resulting in an economically inferior process 

(Shen et al., 2010). 

To receive better product qualities of mechanically 

manufactured recycled PET (RPET), the quality of their PET 

flakes must be improved. One of the main influencing fac-

tors on quality is the number of contaminants that enter 

RPET. These contaminants can be reduced by sorting out 

other materials, such as polyethylene (PE), polypropylene 

(PP) as well as metals. In order to separate PE and PP that 

are used for labels and sleeves from PET, pre-conditioning 

in form of delabelling can be necessary. (Awaja and Pavel, 

2005).

Especially due to marketing requirements, labels and 

sleeves become more popular and their size is often in-
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creased for promotional actions like enhancing packaging 
decoration. The variety of labels used on PET bottles is 
significant. Mainly low-density polyethylene (LDPE) and/
or polyvinyl chloride (PVC) labels are used. Nevertheless, 
also labels and sleeves made out of 2-phenylphenol, poly-
propylene, and polystyrene can be found on the market. 
Such labels cannot only have an enormous effect on the 
quality of RPET but also affect the mechanical processing 
and sorting of PET bottles resulting in decreased machine 
efficiencies and recycling rates. If labels and sleeves are 
successfully removed from the PET bottles, they can be 
sold as by-products or be incinerated. The separation of 
labels/sleeves and bottles can also be accomplished by a 
washing process (Shen et al. 2010; Cotrep, 2012).

In this work, the separation efficiency of an innovative 
delabelling stage is tested and assessed at the pilot scale. 
Furthermore, its intelligent utilization in combination with 
sensor-based sorting machines is discussed. At last, the 
effects of the delabelling stage on the efficiency of down-
stream sensor-based sorting machines, applying near-in-
frared (NIR) technology, are studied.

2. PET RECYCLING - AN OVERVIEW

In order to recycle PET bottles, they have to be collected 
first. In Europe, this usually happens under schemes which 
follow the rule of producer responsibility. In some coun-
tries, PET bottles are collected within the household waste 
or via deposit-refund systems like in Germany. Either way, 
the collection of PET bottles is carried out on a local scale 
to transport the PET bottles to separation centres (Arena 
et al., 2003).

In waste separation centres, the bottles undergo sev-
eral mechanical processing steps. Since the bottles often 
arrive in bales, a bale opener is used to disperse the bot-
tles. Afterwards, either pre-washing or delabelling is nec-
essary to remove labels and sleeves, enabling successful 
and efficient sorting of the bottles. In case of a washing 
step, an 80°C hot solution with 2% NaOH can be used. In 
the dry mechanical delabelling step, assessed in this study, 
mechanical friction is applied to tear the label or sleeve of 
the PET bottles (Awaja and Pavel, 2005).

The sorting of the material is often conducted via sen-
sor-based sorting machines but can also be done manu-
ally. Magnetic and eddy current separators can be used to 
separate ferrous and non-ferrous metals. After separating 
undesirable materials and contaminants, the bottles can 
be sorted, e.g. according to their colour. At last the bottles 
are shredded into flakes, washed and have to be dried care-
fully. For the final washing step of the PET flakes, solvent 
washing with tetrachloroethylene is suitable. Since the 
minimization of the moisture content is most important to 
reduce hydrolytic degradation, the drying stage is essential 
after washing. Usually drying temperatures between 140 
and 170°C, with a retention time between 3 and 7 hours are 
chosen in order to reach < 50 ppm water in PET flakes. To 
ensure the required purity of the PET flakes, a sensor-based 
sorting step might be necessary (Shen et al., 2010; Kranert, 
2017; Awaja and Pavel, 2005; Assadi et al., 2004).

In this way, about 75 w.% of the baled PET bottles are 

processed to PET flakes and can be used for mechanical 
or chemical recycling. Losses occur during mechanical 
treatment, e.g. in the form of defilements, plastic and pa-
per labels/sleeves, PE-/PP-caps and metals. 11-14 w.% of 
these fractions can be sold as by-products (PE caps, PVC/
LDPE sleeves, etc.) while 14-18 w.% resemble solid waste 
and have to be treated furthermore (Shen et al., 2010).

The described mechanical pre-processing steps are 
necessary to prepare the PET for its further processing. 
Especially the quality characteristics of PET flakes must be 
achieved to ensure successful mechanical recycling. In Ta-
ble 1, the minimum requirements for RPET flakes are given. 

The degradation of RPET is increased by contaminants 
such as polyolefins or PVC, causing a reduction of the mo-
lecular weight and intrinsic viscosity of PET. This leads to a 
deterioration of the RPET properties. Reinforcing fillers and 
toughening modifiers then have to be applied to counteract 
the drop in molecular weight. (Srithep et al., 2011; Awaja 
and Pavel, 2005)

Once the minimum requirements for RPET flakes are 
met, they can be converted to granules or finished products 
at 280°C via melt extrusion. In comparison to chemical re-
cycling, extrusion is a relatively simple, environmentally 
friendly and cost-effective process. However, to reduce 
the main disadvantage of mechanical recycling (reduction 
of molecular weight), mechanical processing must be im-
proved (Shen et al., 2010).

In accordance with the topic of this study, a special 
focus lies on the influence of labels and sleeves on the 
recycling process of PET bottles despite their negative im-
pact on RPET quality. During the sorting stage, labels and 
sleeves often remain on the PET bottles and can end up in 
the PET stream as well as in the PE or waste stream. De-
pending on the type of plastic used for the labels/sleeves, 
their thickness and size, PET bottles might not be identified 
correctly as PET and could be sorted out wrongly as unde-
sirables. In this case, the PET yield would be significantly 
decreased since e.g. all full-sleeve PET bottles might be 
lost. Because of this reduction of the PET yield Cotrep (the 
technical committee for recycling of plastic packaging in 
France) recommends the use of partial labels and sleeves 
(Cotrep, 2012).

PVC labels are classified as unfavourable because PVC 
has a significant negative impact on RPET. It decomposes 

Property Value

Viscosity [η] > 0.7 dl g-1

Melting point [Tm] > 240°C

Water content < 0.02 wt.%

Flake size 0.4 mm < D < 8 mm

Dye content < 10 ppm

Yellowing index < 20

Metal content < 3 ppm

PVC content < 50 ppm

Polyolefin content < 10 ppm

TABLE 1: Minimum requirements for post-consumer-PET flakes to 
be reprocessed (Awaja and Pavel).
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during extrusion, clogs extruder fillers and causes further 
quality problems. Hence, if a PVC flake is detected in the 
PET flake stream, the separation of PVC has to be ensured. 
For a singular separated PVC flake up to 100 flakes are 
ejected. Because of this, more losses are generated and the 

amount of waste to be disposed of is rising (Cotrep, 2012). 

Cotrep recommends that labels and sleeves that are made 

out of polystyrene (PS) and PET-G should be substituted 

because they tend to deteriorate, form impurities (PS) and 

create yellowing (PS and PET-G) in RPET. Shrink LDPE la-

bels are classified as favourable since they do not disrupt 
the recycling process significantly (Cotrep, 2012).

3. MATERIAL AND METHODS

PET bottles from a public collection system were ob-

tained as input material for the delabelling trials. To gen-

erate reliable data, only empty bottles with fully attached 

labels were chosen for the trials. In total 98 kg of PET bot-

tles with labels or sleeves were handpicked. An exemplary 

picture of the handpicked PET bottles is given in Figure 1. 

One can be seen that most of the bottles are deformed or 

crushed. The samples had a bulk density of around 50 kg/

m³. 

Delabelling trials were conducted with the “STADLER 

label remover” (max. throughput 8 t/h, dimensions 

2,733 × 1,862 × 2,317 mm (L x W x H) stator diameter of 
1,600 mm and drive power of 37 kW, rotor speed of 200 

rpm) at the Stadler Technology Centre in Krško, Slovenia. 

As can be seen in Figure 2, the label remover is equipped 

with rotating arms that have jagged knives made from 

high-tensile steel. The length of these arms can be adjust-

ed via slot holes. So, the distances between the knives on 

the rotating arms and the knives on the inner wall can be 

adjusted to fit the size of the input material. The general 
principle is that less space between the knives causes 

more delabelling at the risk of bottles being torn. Two types 

of knives are mounted to the inner wall:

• Vertically mounted knives

• Knives with an adjustable angle

The knives with adjustable angle enable the machine 

operator to modify the retention time of the input material: 

the more obtuse the angle, the longer the retention time.

For the trials, the input material was divided into two 

equally sized samples each weighing 49 kg. Two trials 

were run at a throughput of about 4 t/h. In the first and last 
seconds of each round, a continuous feed into the label re-

mover could not be ensured. Particles at the beginning and 

the end of a round could falsify the results due to higher 

retention times. Therefore, only the delabelled product that 

was generated while a steady feed of the machine could be 

ensured was further studied. As a result of this approach, 

of the 49.0 kg input material per trial, 33.2 kg and 34.9 kg 

could be analysed respectively. It has to be mentioned, that 
FIGURE 1: Input material for delabelling trials - PET bottles from 
the public collection system.

FIGURE 2: Scheme of the grinding chamber and picture of the “STADLER label remover”.
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the separated labels were not weighed after the trials since 
too many of them would remain in the delabeller or be lost 
throughout the trials to make sufficiently sound conclu-
sions. 

To evaluate the influence of the delabelling process, 
samples were taken before as well as after the trials and 
screened with a laboratory polygonal drum sieve. These 
screenings were conducted at a mesh size of 80 mm for 90 
seconds since this is the typical screening time of packag-
ing material in a technical drum screen of 10 m length (Go 
et al., 2018). The mesh size of 80 mm was chosen because 
this screen cut is used industrially to enrich PET bottles in 
the coarse fraction. PET bottles with a volume of 0.5 l and 
less can be lost into the fines. Therefore, the number of 
bottles in the coarse and fine fraction provides information 
about the predominant bottle size in the screened sample 
and potential shredding effects of the delabeller. Addition-
ally, the delabelled bottles were sorted manually after the 
trials and divided into three different categories:

• Good: > 98% of the labels/sleeves were separated from 
the respective bottles (sufficient)

• Middle: 90-98% of the labels/sleeves were separated 
from the respective bottles (sufficient)

• Bad: < 90% of the labels/sleeves were separated from 
the respective bottles (insufficient)

The allocation of the delabelled bottles to these three 
categories was carried out by manual separation after the 
trials. Bottles that ended up in category 1 either contained 
no label at all or only small label pieces at the joins. Cat-
egory 2 mainly contains bottles with label pieces on the 
joins. Bottles in category 3 primarily showed labels that 
were ripped open or sleeves that were sliced in pieces but 
not separated from the bottle. After the delabelling trials, 
samples of each category were taken and a screening anal-
ysis was conducted with a mesh size of 80 mm.

Before and after the delabelling process, samples of 
bottles were taken for further investigations with NIR (near 
infrared) technology. For these analyses, a sensor-based 
sorting machine from Binder+Co AG, equipped with a hy-
perspectral imaging (HIS) NIR sensor from EVK (HELIOS 
NIR G2 320) with a wavelength range from 950 nm to 1700 
nm was used. Pictures of the samples, taken before and af-
ter the delabelling trials, were captured to analyse the raw 
spectra of the samples and to classify the different mate-
rials contained in the samples using state of the art algo-
rithms. These algorithms consist of the processing steps 
given in Table 2.

For a classification of each object pixel, the y-values of 
each spectral band (width of one band is approx. 3.2 nm) 

were compared with the material specific spectral informa-

tion implemented in the algorithm. This way, each pixel can 

be provided with a false colour and less computing power 

for the evaluation of each particle is necessary. Hence, the 

classification of each bottle can be performed.

4. RESULTS AND DISCUSSION

The delabelling efficiency results from the composition 
of the output of the delabelling trials. The results are given 

in Table 3. 

After visual inspection of the output, it could be found 

that about 90 wt.% of the bottles were delabelled sufficient-
ly (60 wt.% Good, 30 wt.% Middle), meaning, the number 
of labels on PET bottles was reduced drastically. About 10 

wt.% of the bottles were not delabelled successfully. The 
visual result can also be withdrawn from Figure 4.

An apparently large number of small bottles was sorted 

into category 3 (Figure 3). The visual observation can be 

confirmed with the results of the screening analyses pre-

sented in Figure 4. It can be seen, that compared to the 

Preprocessing Spectral Processing

Spatial correction 1st Derivative

Bad pixel replacement Normalization

Intensity Calibration Smoothing

Noise suppression

TABLE 2: Preprocessing and spectral processing steps of spectra 
for classification.

 Good Middle Bad

Trial 1 62 wt.% 29 wt.% 9 wt.%

Trial 2 59 wt.% 33 wt.% 8 wt.%

TABLE 3: Output composition - label remover.

FIGURE 3: Output fraction of the delabeller - from left to right: cat-
egory 1 (Good), category 2 (Middle), category 3 (Bad).

FIGURE 4: Results of screening analyses before and after delabel-
ling.
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input analysis, bottles in categories 1 and 2 (Good and Mid-

dle) show smaller amounts of material <80 mm (less than 

10 wt.%) while category 3 contains more than 20 wt.% of 
bottles <80 mm.

It must be stated, that no shredded or compacted bot-

tles were found. This suggests that most small bottles 

were delabelled insufficiently while most big bottles (>0.5 
l) were processed successfully. The inverse conclusion of 

this is that a sieving step prior to the delabelling step would 

increase the efficiency of the delabeller furthermore, which 
is in accordance with findings of Go et al., 2018. Additional-
ly, it must be mentioned that the input for the above-shown 

trials consisting of 100% labelled bottles is not the case in 
reality. This affects the quality of the output positively by 

increasing the percentage amount of label-free bottles in 

the output of the delabelling stage. Besides that, fully af-

fixed paper labels underwent little to no change during the 
treatment. An example is given in Figure 5.

To determine the impact of labels and of the delabeller 

on the detection as well as classification of PET bottles, 
HSI NIR pictures of the bottles, prior and after delabelling, 

were taken. The different average spectra that were used 

to distinguish PET from PET covered with a label (PETL) 

and bottle caps are given in Figure 6. Significant differenc-

es between HDPE and the other spectra can be registered. 

To distinguish PET from PETL pixels, two different spectra 

for PETL had to be included due to variations concerning 

the intensity of the peaks, typical for PETL. Therefore, a FIGURE 5: Impact of delabeller on the fully affixed paper label.

FIGURE 6: Qualitative spectral course (first derivative, normalized) of PET, PET with label type 1, PET with label type 2 and HDPE.
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classificator with four different spectra was developed to 
distinguish between PET, PET with label and HDPE.

Examples for classified bottles are given in Figure 7. It 
can be seen that PET, HDPE and PETL can be distinguished 

from each other very well. It should be noted that even 

though some pixels of the fifth bottle were wrongly clas-

sified due to the influence of water, in this trial, all labelled 
bottles could be correctly classified as such.

To double-check the functionality of the created classi-

ficator, pictures of delabelled bottles were taken and clas-

sified as well. The result can be seen in Figure 8. All bottles 
are classified as not labelled PET and the caps (on bottles 
1 and 4) are also correctly classified as HDPE. Only a few 
pixels on the edges of objects in Figure 7 and 8 are false-

ly classified as PETL due to edge effects. The amount of 
incorrectly classified pixels is insignificant and differenti-
ation between PET bottles with and without labels can be 

expected.

Additionally, the extent of the PET spectrum before 

and after delabelling was analysed as well as the signal-

to-noise ratio. In total 60,096 spectra were analysed for 

this purpose. The results are given in Figures 9 and 10. The 

spectra before and after delabelling are displayed. Apart 

from outliers (grey), it can be seen that 90% of the derived 
spectra (interquantile deviation) show significantly higher 
extents and marginally higher averaged standard devia-

tions after the delabelling process than before. Prior to de-

labelling, the characteristic and most important absorption 

for classification of PET at a wavelength of about 1650 nm 
is barely noticeable let alone smaller peaks, e.g. between 

1110 nm and 1180 nm. This complicates the classification 
significantly because the spectra have to be normalized 
for consistent sorting efficiency, which results in enhanced 
background noise.

Despite the fact that correct classification before and 
after delabelling is possible, mechanical treatment during 

label removal simplifies the classification and therefore en-

hances sorting of PET bottles. The trials showed that the 

differentiation between labelled and delabelled PET bottles 

is possible. This can be used for processes aiming for high 

product purities by installing a downstream sensor-based 

sorting unit after the delabelling step. The downstream 

sensor-based sorting unit separates the remaining labelled 

PET bottles from the delabelled bottles to recirculate them 

as input for the delabelling step once again.

5. CONCLUSION

For mechanical recycling of PET bottles with the aim of 

high-quality RPET production, the reduction of defilements 
is of utmost importance. An important part of this process 

is the separation of the labels and sleeves from the PET 

FIGURE 7: Comparison of live picture (upper row) and classified picture with false colours (lower row) of labelled PET bottles; red=PET, 
green=PETL, orange=HDPE.

FIGURE 8: Comparison of live picture (upper row) and classified picture with false colours (lower row) of delabelled PET bottles; red=PET, 
green=PET with label, orange=HDPE.
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bottles. This can be achieved by the application of a me-

chanical delabelling step. 

The studied “STADLER label remover” showed a dela-

belling efficiency of 90% at a throughput of about 4 t/h. It 
was found that the number of bottles unsuccessfully treat-

ed was strongly affected by the number of small bottles, 

<0.5 l filling volume. Therefore, in an industrial process, a 
screening step prior to delabelling would improve the effi-

ciency of the delabeller furthermore. 

Findings showed that the bottles were neither shredded 

nor significantly deformed during delabelling, enabling high 
efficiencies of downstream machinery, e.g. sensor-based 
sorting units. It was found that PET bottles with and with-

out labels/sleeves could be classified and separated when 
applying HSI NIR technology. A sensor-based sorting unit 

could be installed downstream a delabeller to sort out PET 

bottles still containing labels, improving the purity of the 

PET stream. Additionally, it was found that the mechanical 

treatment roughens the bottle surface, resulting in an en-

hanced peak extension and, consequently, improved PET 

bottle classification.
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A B S T R A C T   

Most two-dimensional plastic packaging materials are thermally recovered, which does not add to the recycling 
quota of 50 % required by EU legislation for all lightweight packaging until 2025. Furthermore, the separation 
processes for 2D materials cannot reach the same level of accuracy, which is possible in the sorting of rigid plastic 
packaging. 

This study proposes new adaptations to existing sorting aggregates to increase the near-infrared spectral 
quality of two-dimensional materials. It aims to improve the spectral quality, which was defined by the deviation 
of the spectra from a reference spectrum and the variability of the recorded spectra, which can be achieved by 
installing reflectors behind the material made up of copper or aluminium. This setup enables detection in 
transflection rather than reflection mode. 

The variability could be reduced by a factor of 6 through the use of a reflective background. Meanwhile, the 
spectral fidelity to the reference spectrum could be enhanced, in some cases decreasing the deviation from the 
reference spectrum by 30 %, which means enhancing a spectrum from unrecognisable to useable. Apart from 
using reflective materials, the effects of emitter intensity, material and thickness were evaluated.   

1. Introduction 

The material recycling of plastics requires substantial innovation in 
the next five years to achieve the environmental policy goals set by the 
EU. Including a recycling quota of 50 % for all lightweight packaging 
and an obligation for all lightweight plastic packaging material to be 
recyclable in a cost-efficient manner as stated in the Waste Framework 
Directive (2008/98/EC). For this reason, projects aim at identifying two- 
dimensional (2D) films in plastic sorting to increase the material recy-
cling of packaging film waste. However, multilayer films are challenging 
to be mechanically recycled according to the current state of the art and 
negatively affect the quality of the other recycled plastics by polluting 
the recyclates if they enter the material stream. 

Currently, mono- and multilayer packaging is recycled into low- 
value products as part of the downcycling process or are used as 
refuse-derived fuel (RDF) (Kaiser et al., 2018). This kind of treatment of 
flexible packaging is especially problematic since (co–)incineration does 
not reduce the CO2 footprint to a degree like recycling would do. 

Mono- and Multilayer sorting techniques are necessary to prepare 
collected lightweight plastic packaging material for further processing 

in recycling plants. According to Niaounakis (2020), the different 
technologies to recycle flexible packaging can be subdivided: Films can 
be collected in groups of identical materials or geometry either by 
manual or automated sorting systems. Workers and robots can pick and 
differentiate many polymers and geometries given a sufficiently low 
throughput rate of the material stream. Vacuum suction systems, air 
sifters and different screens, such as the vibrating screen or the ballistic 
separator, sort particles according to their respective geometries and 
free the material from contaminants. 

Marking systems, like identification codes or fluorescent additives, 
enable material identification but are currently not adequate or 
economically feasible for widespread industrial application. These sys-
tems may change once further research increases their deployability 
soon (Woidasky et al., 2018). 

Several chemical and physical experimental methods have been 
developed to separate multilayer films. Among these is the CreaSolve 
process developed by Fraunhofer IVV and the Creacycle GmbH. The 
CreaSolve process is a solvent-based operation that is theoretically 
capable of sorting post-industrial and post-consumer multilayer plastic 
packaging (MPP) (Frauenhofer IVV, 2021). So far, it has been implanted 
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in one plant, separating only post-industrial waste to recover PE (Uni-
lever, 2020). The common denominator amongst all industrial processes 
currently employed to recycle MPP is the need for a feedstock with 
specific and known material combinations (Chen et al., 2021). 
Currently, there is no solution to generate this kind of feedstock from 
post-consumer MPP to improve these MPP recycling processes. This lack 
is the difficulty of recognising post-consumer MPP in the sorting process 
because of the vast array of materials used in MPP (Chen et al., 2020; 
Niaounakis, 2020). 

This paper aims to improve optical separation systems’ capabilities 
to deliver this feedstock by improving MPP detectability in optical 
systems. 

Optical systems stand out due to their ability to detect and eject 
various polymers at high throughput rates compared to other sorting 
methods, for example, manual sorting. Optical sorters use either visible 
(VIS) or near-infrared (NIR) spectroscopy or a combination thereof. 
However, they are sensitive to interfering influences and need specific 
material properties and controlled operating conditions to maximise 
efficiency (Burns and Ciurczak, 1992). 

As there is no stand-alone solution to separate plastic into different 
polymer fractions, plant engineering uses established sorting technolo-
gies combined with optical or electrical systems to achieve the necessary 
output quality. The application of sorting cascades is standard in current 
lightweight packaging plants (Kaiser et al., 2018). 

Though widely applicable, the sensor-based sorting technology is 
limited by various inherent problems in its operation principle. One is 
the need for sufficiently reflective material to gain necessary informa-
tion for separation, which is often problematic with thin 2D materials. 

Studies have shown the penetration depth of NIR radiation to be 
highly dependent on sample material and wavelength. Evaluations on 
NIR analysis of fruits have shown the penetration depth to vary from 2 −
3 mm in the spectral range of 900–1900 nm to 4 mm in the range of 
700–900 nm (Lammertyn et al., 2000). Other studies examining the 
penetration depth of NIR in bone structures and cartilage have shown 
the penetration depth to vary between 6.3 and 8.5 mm and 0.5–5 mm, 
respectively depending on wavelength and material (Faris et al., 1991; 
Padalkar and Pleshko, 2015). This discrepancy between penetration 
depth and sample thickness can lead to problems when examining 
samples of 30 µm thickness or less in reflectance mode due to a loss of 
radiation to transmission and with that a loss of spectral information. 

Preliminary analysis by Masoumi et al. (2012) has shown an increase 
in spectral information with growing material thickness. This effect is 
based on a rise in reflectivity. It leads to more pronounced spectra since 
differences in the spectral curve can be more easily identified with high 
reflectivity (Masoumi et al., 2012). This effect of reflectivity depending 
on material thickness can have detrimental impacts when measuring the 

spectra of very thin 2D materials. This paper explores methods to gather 
valuable spectra even from very thin materials. 

Though the recognition of thin plastic packaging is possible on a 
laboratory scale, very thin materials, especially PP with a thickness of 
15–50 µm and PET with a thickness of 12–50 µm, were troublesome to 
identify because the materials were prone to the exhibition of sine wave 
spectra. These wave-like spectra complicated the identification of those 
materials (Chen et al., 2020). 

This phenomenon of wave-like spectra in thin materials was studied 
by Jeszenszky et al. in 2004. It has been postulated that the wave-like 
spectra are caused by destructive interference due to the thin mate-
rials. This effect can lead to sine wave spectra, which are unusable for 
classification without further processing like fast Fourier transformation 
(Jeszenszky et al., 2004). 

NIR sorting requires diffuse reflection for classification. If a material 
tends to direct reflection, the sorting becomes difficult or impossible. 
Rougher surfaces that tend to diffuse reflection are more accessible to 
separate than glossy and smooth surfaces prone to direct reflection 
(Küppers et al., 2019). 

This paper explores possibilities to enhance the spectral information 
gathered from materials that tend to direct reflection, like PP foils. 

Special attention in this paper is paid to the chute material and the 
illumination intensity. The thesis by Yu Xing Cui (2011), postulated that 
certain materials have particularly good NIR reflective properties. 
Likewise, preliminary experiments have shown the illumination in-
tensity to have a positive influence on the sensor system. In this study, 
the hypothesis is tested whether and how both parameters influence the 
sorting result and whether one or both parameters are suitable for 
improving the spectra used to identify and separate packaging films. 

The hypothesis tested in this study is which effect material thickness 
has on material identification via NIR spectroscopy. Further, this study 
aims to evaluate if there can be an optimum illumination setting for the 
identification of plastic packaging films and evaluate the influence of 
different reflective materials on the films’ NIR spectra. 

2. Materials and methods 

A sensor-based sorting system serves as an experimental site to 
examine which adaptations can be made to the sorting set-up to facili-
tate the detection and separation of 2D materials. Therefore, in this 
paper, the technical limits of near-infrared sorting are investigated and 
explored. A novel measuring geometry is presented to shift these limits. 

The sensor-based sorting aggregate used is an experimental NIR/VIS 
sorting setup provided by Binder + Co AG, representing the industrial 
standard. The material is manually applied over a vibrating chute with a 
width of 0.5 m, transporting it to the downstream sensors. The setup 
includes a NIR line scan sensor (EVK Helios – G2 – NIR 1), which was 
applied to record spectral images. NIR Sorting requires an infrared 
emitter. 

For this purpose, an infrared lamp is utilised, which can supply 6.5 
mW/mm2 of light output in the detection area at 170 VDC, as measured 
with a Thorlabs S470C sensor. This sensor is sensitive to a wide range of 
wavelengths, making it suitable for measuring the intensity of NIR 
radiation. 

The emitted radiation interacts with the particles and is reflected, 
transmitted, or absorbed depending on the material’s molecular 
composition (Pasquini, 2003). If the measurements are taken in reflec-
tance mode, only the dispersed reflected radiation can be detected by 
the NIR sensor and used for classification. The radiation is converted 
into a digital signal and stored in a hyperspectral imaging (HSI) cube 
with two spatial coordinates displaying the analysed area and a third 
coordinate representing the reflected intensity at each pixel (Manley, 
2014; Reich, 2005). 

In the utilisation of near-infrared technologies the measurement 
principles of transflection, reflection and transmission are distinguished. 
Fig. 1 shows the principle of transflection measurement schematically. 

Fig. 1. Scheme of the transflection measurement principle.  
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First, an incident NIR beam is emitted to the sample, then the 
entrance angle changes and gets more acute for the transmission pass 
one. At the point of transflection on the reflector surface, the weakened 
NIR beam is reflected and passes through the sample at the transmission 
pass two with an acute reflection angle. Next, the reflection angle gets 
more obtuse at the sample surface, and this signal is sent to a computer, 
where the data is processed and analysed. Finally, the reflected signal 
and the transmitted signal at the sample surface before the transmission 
pass one are combined to a transflection signal. The transflection signal 
is analysed at the end of the experiment. The application of transflection 
increases the amount of information gained by the sensor since little to 
no radiation is lost to transmission. That is critical when applying near- 
infrared spectroscopy to thin materials. Measurements in transflection 
circumvent this problem. 

The material consisted of two groups. Group A, the reference mate-
rial, was specifically crafted to be used as a reference. This group con-
sists of white LDPE and purple PP tiles, with a length of 5 cm, a width of 
3 cm and a thickness of 3 mm. These materials were used to create a 
reference spectrum for later comparison to the 2D materials. 

Group B consisted of the 2D foil materials to be evaluated. Eight 
samples of two different materials were selected. These samples were 
transparent to the human eye and showed varying thickness, as shown in 
Table 1. 

Initial trials have shown that the spectra of group A and B are similar, 
barring minor differences attributable to the difference in thickness. 
Fig. 2 shows the comparison between the spectra of a PE reference 
material (orange) and the recorded spectra of a PE specimen (blue). 
Though the spectra show similarities in the minima and maxima at 1200 
nm, 1230 nm and 1380 nm, a significant loss of information can be 
observed. This discrepancy between the reference spectrum is expected 
considering the difference in thickness. 

Samples with varying thickness were chosen to evaluate the effect 
increasing material thickness has on the spectral images. Further, 
transparent samples were selected to eliminate the effect colourants 
have on the samples ́ spectra and the image quality. 

Fig. 3 shows all specimens selected for the evaluation. In (A), all PE 
samples can be seen, while in (B) all PP samples are shown. It can be seen 
that some areas of the samples were printed in order to advertise the 
products they contained. These areas were omitted during the analysis 
of the spectra. 

Transparent sample objects were chosen to enable the comparison of 
the specimen’s spectra, which enabled the comparison of thinner sam-
ples to thicker samples of the same material without the spectral changes 
different colourants would introduce. This way, the effect increasing 
thickness has on the spectra could be analysed. Since the material con-
sists of authentic household waste, coloured sections occur in the 
specimen. However, these were excluded in the pixel selection for 
analysis to prevent colourants from interfering with the spectral 
analysis. 

2.1. FTIR spectra of materials 

In addition to the recycling marks present on most post-consumer 
packaging waste, FTIR spectra analysis of the foils was conducted in 
transmittance mode to create a reliable classification of the 2D mate-
rials. Thus, a material database was created, which served as the foun-
dation for the following analysis on the experimental sensor-based 
sorting setup since knowledge of the materials composition was needed 
to choose the correct reference spectrum for comparison with the 
recorded NIR spectra. 

2.2. Material preparation 

Preliminary tests have shown that the effect of different reflective 
materials is more pronounced the closer the contact of material and 
reflector is. Therefore, to achieve maximum contact with the 

Table 1 
Testing Material and the corresponding thickness.  

Material Thickness 
Reference LDPE White 3 mm 
Reference PP Purple 3 mm 
PCW 55 – PE 20 µm 
PCW 33 – PE 25 µm 
PCW 56 – PE 50 µm 
PCW 90 – PE 75 µm 
PCW 45 – PP 30 µm 
PCW 38 – PP 35 µm 
PCW 41 – PP 45 µm 
PCW 153 – PP 60 µm  

Fig. 2. Comparison between the PE reference spectrum (orange) and a PE foil 
spectrum (blue). 

Fig. 3. Depiction of all Samples, A) PE B) PP.  
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background and eliminate trajectory effects, each specimen was encased 
between two glass plates, one of which was covered with the respective 
background materials. This method ensured the same circumstances for 
every recording of spectral data. In addition, the known NIR inactivity of 
glass due to its high transmittance was tested during preliminary studies, 
which showed no substantial impact of the glass plates on the speci-
men’s spectra. 

2.3. Changes of emitter intensity 

Preceding experiments have shown that increasing the emitter in-
tensity has positive effects on spectral quality. Preliminary spectral ex-
aminations show the correlation of mean spectral quality with 
increasing emitter intensity. The spectral range from 1200 − 1400 nm, 
which contains one of the typical PP spikes explained by Küppers et al. in 
2019, becomes more pronounced with increasing intensity. The spectra 
at low-intensity lack discernible patterns useable for classification. 
Taking spectral images without sufficient illumination leads to random 
spectral intensity values. These random spectra lack any regularity and 
are therefore not suitable for classification. Preliminary evaluations to 
find the correct intensity range have shown that decreasing the emitter 
intensity increases spectral variability. Therefore, low emitter intensities 
are included in the trials, reducing the emitter intensity to further 
evaluate the effect of low NIR intensity on spectral quality. 

However, it is not necessarily the case that maximum emitter in-
tensity is always beneficial since a change in background material causes 
a change in reflectivity. Furthermore, because only dispersed reflections 
can be used for classification, increasing the emitter intensity exces-
sively can lead to direct reflections and overexposure, which render the 
affected pixels and their spectra unusable. Therefore, every reflector 
material was evaluated using the emitter intensities 70 %, 80 %, 90 % 
and 100 % of the maximum intensity, or 4.55 mW/mm2, 5.20 mW/mm2, 
5.85 mW/mm2, 6.50 mW/mm2 of light output in the detection area 
respectively, to analyse the effect changing intensity has on the spectral 
quality. 

Background Material 
Gold, copper, silver, glass, aluminium and a black polymer, coloured 

with carbon, were considered as background materials due to their op-
tical properties in the relevant wavelengths. All materials, except black 
polymer, chosen as the negative benchmark, are promising to be usable 
as a reflector because of their high reflectivity in the near-infrared 
wavebands. The black polymer was chosen as a background to present 
a negative benchmark to which the metal backgrounds could be 
compared. Coincidentally, the black polymer reflector represents the 
common conveyor belts used in most sorting aggregates whose top 
covers are usually made of black polymers. The respective reflectance of 

the materials is shown in Fig. 7. These reflectance values were taken via 
FTIR spectroscopy. 

The materials used as background were a copper plate with 99.9 % 
copper content, black PP polymer and rolled 100 % aluminium. The 
reflector materials were applied to the sample holder behind the 
respective sample. 

2.4. Data evaluation 

A Matlab R2021a script was used to extract the spectra from the 
Hyper Spectral Imaging Cube to gauge the quality of the spectral images 
taken of the materials. 

This Matlab script enables the user to choose viable pixels for eval-
uation. It then computes the normalised first derivative of the spectra 
and presents a smoothed graph of the data points, using a Gaussian 
smoothing algorithm with a 10-datapoint interval. The image quality is 
defined as the variability of the spectra in its spectral range for a specific 
material. For this reason, the variability was computed by calculating 
the difference between the area integral using trapezoidal numerical 
integration of the spectra with the maximum intensity and the spectrum 
with minimum intensity. 

The sensor measures the spectral intensity in Arbitrary Light Units 
(ALU), which is a unit used by the sensor provider EVK, and the spectral 
wavelength is measured in nanometres; the integration of the first de-
rivative also yields the area in ALU. The y-axis is denominated as ALU/ 
nm since it is the gradient of the raw spectrum. 

This calculated area between the spectrum with the lowest intensity 
and the spectrum with the highest intensity indicates the variability, 
suggesting the spectral image’s viability. Since the image’s quality de-
pends on the parameters under which the image was recorded, a small 
area between the two spectra indicates a recording of high fidelity with 
beneficial parameters. 

Because not all wavebands are equally crucial for the classification, 
this computation was limited to those, which hold relevant spectral data 
for classification. Those wavebands were selected by evaluating the first 
derivative of the raw spectral intensity data. Wavelengths, in which the 
first derivative deviates substantially from zero, indicate the interaction 
of the material’s molecules with the NIR radiation. This interaction re-
sults in a unique spectrum that can be used to classify the given material. 
This classification is the basis for separation using pressurised air. 

Since a spectrum can exhibit low variability but still deviate from the 
benchmark spectra, rendering it unfit for classification, a second spectra 
quality criterion was needed. For this purpose, the deviation of the mean 
spectra from the benchmark was used. Initial trials showed that recorded 
spectra increasingly approached the reference spectrum with increasing 
background reflectivity. This effect is depicted in Fig. 4, which shows the 

Fig. 4. Increasing fidelity to the PE reference spectrum of two spectral images taken without reflective background[A] and with a reflective copper background [B]  
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increasing fidelity of the recorded PE spectrum to the PE reference 
spectrum. It can be seen that the spectra recorded without a reflective 
background (A) do not follow the reference spectrum as well as the 
spectra recorded with a reflective copper background (B) do. The 
amount of deviation shown in the figure is the sum of the differences 
between the recorded spectrum and the reference spectrum. 

This difference, or deviation, is calculated with the Euclidian (2- 
norm) by subtracting the mean spectra of the selected pixels from the 
benchmark spectra. This calculation yields a numeric value that in-
dicates the deviation of the HSI spectra from the benchmark spectrum, 
with low values indicating high fidelity to the benchmark spectrum. 
With that, an estimation of the usability for the classification of the 
material can be made. 

Normalisation was applied to every spectrum using the ‘z-score’ 

method to enable the comparison. The ‘z-score’ method centres and 
scales the data to have a mean zero and standard deviation one. 

Zscore(ei) = ei −
E

std(E)

std(E) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1

n − 1
*
∑n

i=1
(ei − E)22

√

E =
1

n
*
∑

n

i=1

ei 

Equation 1: Calculation of Z-Score Normalization 
To create spectra for evaluation each recording was repeated five 

times. For each of those recording, nine pixels for spectral evaluation 
were selected. Here, care was taken to avoid overexposed pixels and 
pixels on the edge of the material and coloured portions of the material. 
This approach yields 45 suitable pixels per setting for evaluation. 

In order to evaluate whether a relevant correlation between the 
examined experimental variables and the spectral quality exists, 
regression curves were fitted to the experimental data. The goodness of 
fit of those regression curves was evaluated by calculating the coefficient 
of determination (R2) for each fit. 

3. Results and discussion 

The first results are the decrease of variability and deviation with the 
increase in material thickness, which was further examined based on the 
assumption that the increase in spectral quality is different for the 
chosen materials. Subsequently, the effect the reflecting backgrounds 
and increased illumination intensity had on the variability was 

Fig. 5. Influence of spectral variability depending on thickness and material.  

Fig. 6. Difference in average variability depending on specimen material.  

Fig. 7. Reflectance of chosen reflector materials.  
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quantified. 

3.1. Influence of thickness 

With 2D materials, a rise in material thickness decreased spectral 
variability. The intensity of this effect is correlated to the material used. 
While PE spectra exhibited comparatively low variability even in spec-
imens with low thickness and had limited room for improvement, PP 
spectra reacted strongly to the increased material thickness with 
improved spectral quality. 

Fig. 5 shows a box and whisker chart displaying the comparatively 
high variability of PP spectra compared to PE spectra. While increasing 
the thickness of PE specimens lead to a small decrease in variability, 
increasing the thickness of PP specimens lead to a more pronounced 
decrease in variability. 

Examination of PP materials with a thickness of under 35 µm yielded 
spectra in sine waveform. So far, these cannot be used for classification 

since the occurrence of sine wave spectra is currently not precisely 
attributed to a specific chemical or physical property of a specific resin. 
It is related to the thickness of a foil and occurs below a certain threshold 
thickness. This thickness is material-specific. However, it has been 
postulated that the sine wave effect occurs because of destructive in-
terferences if a given correlation of the material thickness and wave-
length is present. These interferences can be removed by applying fast 
Fourier transformation (Jeszenszky et al., 2004). It can further be 
confirmed that this phenomenon occurs below a certain thickness and 
the novel information that the threshold thickness is between 30 and 60 
µm for PP can be added. 

3.2. Influence of material 

The PE specimen showed on average spectra with less variability, 
even in specimen with low thickness, while PP materials produced 
spectra with high variability. With PP expressing on average 28 % more 

Fig. 8. Reduction in spectral variability due to increased reflectivity of background material and subsequent measurement in transflection. A) No reflector B) 
Copper reflector. 
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variability from the mean spectrum. It can be seen in Fig. 6 that the PP 
specimens exhibit overall higher variability than the PE specimens. 

PE yielded more useable recordings due to the higher reflectivity of 
the PP materials, which leads to more direct reflection instead of the 
useable diffuse reflection. This direct reflection yields overexposed 
pixels, which cannot be used for spectral analysis. Overexposed pixels 
cannot be used for classification due to the detectorś inherent limitation 
to processing very bright pixels. This limitation is handled by capping 
the maximum intensity value. If the intensity of a pixel exceeds this 
limit, it is simply reduced to this pre-set value. If all spectral values of 
this pixel are set to this value, the spectrum contains neither maxima nor 
minima and is a straight line instead. So, no further evaluation by 
derivation or other forms of processing can yield any valuable infor-
mation for classification other than classifying this pixel as overexposed. 

Since NIR detection uses the interaction of radiation and the material 
for classification, the molecular composition and material thickness 
heavily influence the detection outcome. This effect is especially pro-
nounced when analysing thin materials like monolayer packaging, 
which routinely exhibit material thickness under 100 µm. While they 
yield similar spectra, due to resemblances in their chemical makeup, PE 
and PP, two common materials for monolayer packaging, exhibit dif-
ferences in spectral quality when used for spectral analysis. These dif-
ferences become increasingly pronounced with decreasing material 
thickness. 

3.3. Influence of reflector and reflectance 

Spectral images were recorded with different reflector materials 
behind the 2D specimen to facilitate the interaction of the 2D foils with 
the NIR radiation. This approach yielded improved spectral with 
decreased variability. This effect depended on the reflectivity of the 
given background material in the relevant wavebands from 900 nm to 
2000 nm. Fig. 7 shows the reflectivity values of the various backgrounds 
as taken in FTIR spectroscopy. 

Backgrounds with little to no reflectivity, e.g., black polymers or 
glass, had no improving effect on the recorded spectra. Increasing the 
reflectivity of the background material decreased their variability and 
enhanced the spectra’s fidelity to the reference spectrum, as shown in 
Figs. 4 and 5, respectively. While aluminium showed promising results 
in preliminary examinations when virgin aluminium foils were used, the 
increasing formation of an aluminium oxide layer on the reflector’s 
surface impaired its reflectivity, reducing the possible improvement of 
spectra recorded with this particular reflector. This reduction in reflec-
tivity compared to virgin aluminium is shown in Fig. 7. Copper reaches 
approximately 10–20 % higher reflectivity than aluminium. Copper 
lends itself to the application as a reflector since it reaches the highest 
reflectivity of any material evaluated. Although not encountered during 
this study, the formation of copper verdigris on the reflector may 
become an issue. 

The data analysis shows that spectral variability could be reduced by 
the use of copper and aluminium reflectors. This reduction renders a 
spectral image useable for classification since the pixel of the image 
deliver similar spectra. However, spectral analysis relies on creating a 
reference spectrum from the average of multiple pixels’ spectra to 
determine to which material class a specific specimen belongs. There-
fore, high variability of spectral information due to optical effects and 
imperfect reflection of near-infrared radiation in the images renders 
them unfit for classification. 

It was shown that spectral images of 2D materials taken without a 
reflector exhibit a wide variation in the spectra extracted from viable 
pixels. Meanwhile, spectral images recorded using a reflector minimise 
the variability in the respective image. This reduction in variability 
around the mean, especially in the spectral ranges relevant for classifi-
cation, is depicted in Fig. 8, showing the same material recorded under 
identical NIR intensity. In addition, the variability is reduced by a factor 
of 6 by using a reflective background. 

Further, the spectral fidelity to the reference spectrum could be 
enhanced, in some cases decreasing the deviation from the reference 
spectrum from 13 to 8.5. This decrease in deviation from the reference 
spectrum entails that the spectrum of the specimen matches the refer-
ence spectrum more closely with increasing background reflectivity. 

This increased fidelity to the reference spectrum combined with 
decreased variability means enhancing a spectrum from unrecognisable 
to useable. This reduction in deviation heeds from eliminating unwanted 
optical interferences and increased near-infrared intensity through 
transflection. 

This elimination of optical interferences facilitates detecting the 
materials’ inherent spectra, which lends itself to usage in separation 
processes. The comparison between the two spectra is depicted in Fig. 9, 
which shows the mean spectra of evaluated pixels in an image taken 
without a reflector compared to an image taken with an aluminium 
reflector of a PE film material. 

3.4. Influence of emitter intensity 

While increasing the emitter intensity did not change the deviation, 
increasing the intensity decreased spectral variability from 16.78 at 70 
% emitter intensity to 13.68 at 100 % intensity. Although interesting, 
the effect increased intensity has is minuscule compared to the 
improvement obtained by increasing the reflectivity of the background. 
It has to be noted that an increase in intensity is comparable easy to 

Fig. 9. Reduction in spectral deviation from the reference spectrum due to the 
effect of reflector material, A) No reflector B) Aluminium reflector. 
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achieve, needing no further adaptions to the sorting setup other than to 
increase the emitter intensity in the given control software. The increase 
in spectral quality heeds from the simple effect increasing the intensity 
has on the sensor-based sorting setup. With increasing intensity of the 
incident NIR radiation, more useful disperse reflection can occur, which 
is then detected by the near-infrared sensor for evaluation. This simple 
principle can improve the sorting result in recycling plants with relative 
ease if the hardware permits changing emitter intensity. 

3.5. Discussion of statistical relevance of correlations 

Fig. 10 shows the summary of the spectral evaluations and the effects 
the parameters had on the variability of spectral recordings. It shows the 
effects of different changes in the experimental setup on the spectral 
variability. Further, the regression curves for the evaluated data with 
their goodness of fit values R2 and the root mean squared error (RMSE) 
are displayed. 

The data points shown in the figure correlate to the average vari-
ability of the spectra and the given experimental settings. 

It can be seen that no correlation between increasing thickness of the 
PE specimen and the spectral variability could be established. The PE 
specimen started with relatively low variability, even with a thickness of 
20 µm and the variability did not decrease with increasing thickness. 
This lack of correlation is further supported by the R2 value of 0.08 of the 
fit, which indicates that over 90 % of the variation is unexplained by the 
model. 

Increasing thickness of the PP specimen showed a decrease in spec-
tral variability during the study. It can further be seen in the regression 
curve for the PP specimen, which shows an R2 value of 0.79. The PP 
specimen had an inherently higher variability and improved noticeably 

when material thickness increased. This effect is also caused by the 
decrease of sine wave spectra encountered with thicker specimens. 

A rise in emitter intensity showed a slight decrease in spectral vari-
ability, improving the spectral recordings, which is supported by the 
regression curve. Though not as noticeable an effect as the increase in 
thickness, raising the emitter intensity improved all spectral recordings. 
The regression shows an R2 value of 0.91, which indicates a good fit for 
the given data. 

During the trials, increasing the background material’s reflectance 
showed the most significant influence on spectral quality, with 
aluminium showing promising results and the more reflective copper 
reflector improving the spectral recordings further. This effect showed 
to improve the spectral quality of all specimens, regardless of thickness 
or material type. Further, this effect is supported by the regression curve 
for the spectral variability and the reflectivity of the respective back-
ground yielding an R2 value of 0.99. 

Increasing the reflectivity of the background material to enable 
measurement in transflection yielded the best results for improving 
spectral quality. 

4. Conclusions 

The key findings of these trials were the effects reflective back-
grounds have on the spectral quality of plastic films with a thickness of 
under 100 µm, which are mainly used in the packaging of goods. The 
spectral variability decreased substantially when using a reflector made 
of copper or aluminium as background. Implementing a reflective 
background enables the measurement to be taken in transflection rather 
than sole reflection, which circumvents the problematic low reflectivity 
of thin-film materials. While introducing a reflector decreased 

Fig. 10. Statistical evaluation of the effect changing various parameters has on the spectral variability.  
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variability and deviation from the reference spectra in PE and PP ma-
terials, spectra of the latter showed more significant improvements as PP 
spectra displayed lower spectral quality without changes in the 
measuring geometry. 

Apart from reflectors, increasing the emitter intensity in a sensor- 
based sorting rig increased spectral quality and fidelity to a reference 
spectrum. This method seems to be a convenient way of improving the 
sorting success of a lightweight packaging sorting operation by simply 
adapting the existing hardware to 2D materials by increasing the in-
tensity setting for the near infra-red emitters. Presupposed the specific 
machinery design permits this technical modification and all safety 
concerns are addressed. 

Coherent with existing findings, an increase in thickness improves 
the spectral quality of both PE and PP specimens, with PP showing more 
considerable improvements with increasing thickness, partly due to the 
sine wave phenomenon occurring less frequently with increasing ma-
terial thickness. However, increasing the thickness of packaging is not 
the solution to the increasing demand for recyclable 2D packaging since 
the comparative lightness of these packaging materials renders them 
competitive. 

A way to increase the recycling quota of 2D materials is to adapt 
existing sorting setups to use measurements in transflection, whose 
viability was shown in this examination, to improve the mechanical 
recycling of 2D materials. 

Further studies are needed to examine the effect reflective back-
grounds have on the sorting success of 2D materials on an existing 
sorting rig with the adaption of reflective backgrounds made of copper 
or aluminium, which have shown the most significant potential for use 
as reflective backgrounds. 
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Abstract: Small plastic packaging films make up a quarter of all packaging waste generated annually

in Austria. As many plastic packaging films are multilayered to give barrier properties and strength,

this fraction is considered hardly recyclable and recovered thermally. Besides, they can not be

separated from recyclable monolayer films using near-infrared spectroscopy in material recovery

facilities. In this paper, an experimental sensor-based sorting setup is used to demonstrate the effect

of adapting a near-infrared sorting rig to enable measurement in transflection. This adaptation

effectively circumvents problems caused by low material thickness and improves the sorting success

when separating monolayer and multilayer film materials. Additionally, machine learning approaches

are discussed to separate monolayer and multilayer materials without requiring the near-infrared

sorter to explicitly learn the material fingerprint of each possible combination of layered materials.

Last, a fast Fourier transform is shown to reduce destructive interference overlaying the spectral

information. Through this, it is possible to automatically find the Fourier component at which to

place the filter to regain the most spectral information possible.

Keywords: 2D plastic packaging; near-infrared spectroscopy; sensor-based sorting; transflection;

monolayer; multilayer films; machine learning; small film recycling

1. Introduction

Currently, around 300,000 t of plastic waste are annually produced in Austria, of which
32% are recycled mechanically [1]. Small films with an area below 1.5 m2 account for
69,000 t, of which 10,260 t, or 14%, are multilayer films with at least two polymers [2].
These films are separated during the beneficiation of the waste and are almost exclusively
used as alternative fuel sources, incinerated or downcycled into low-value products [3].
The substantial potential is latent in the recycling of packaging films since neither co-
incineration nor other thermal recovery adds to the recycling quota [2]. According to the
amended EU Waste Framework Directive, municipal solid waste recycling must reach 60%
by 2030 [4]. Additionally, the new EU guidelines require a recycling rate of packaging
waste of 50% in 2025, with a further increase to 55% in 2030 [4]. This quota can only be
reached through a mix of measures such as higher collection rates, design for recycling,
and improving existing and new sorting techniques. Besides, a recycling system capable
of economically handling a feedstock which accounts for 17 wt.% of all plastic packaging
materials produced, requires additional research. [3].

The reason for the widespread use of multilayer packaging lies in its convenience
for producers, retailers and consumers: The plethora of functions such as UV protection,
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handleability, printability, limited gas permeability, and attractive haptics require only a
minimum of packaging material.

In turn, these inherent properties, the thin layer thickness and the combination of
different polymers impede the separation process. In most sorting plants, near-infrared
(NIR) sorters are used for plastics separation. This technology is based on the interaction
of NIR radiation with the molecular structure of solid materials resulting in distinctive
spectral fingerprints for each polymer type [5]. Thin-film packaging inhibits the separation
by NIR sorting because only a limited amount of radiation is reflected [6]. This lack of
spectral information limits the sorter’s ability to generate a useable spectrum because
the low thickness of the material allows a large amount of radiation to be transmitted [7].
Additionally, the thin layered construction of these packaging films introduces disturbances
in the spectral fingerprint. Due to destructive interferences, sine wave pattern noise may
overlay the spectra, masking its information and thus disfiguring an otherwise applicable
spectrum [8]. Fast Fourier transformation (FFT), which is also used in laboratory-based
infrared spectroscopy, can reduce these overlaying interferences. Though finding the correct
cut-off point has proven to be both time-consuming and tedious if carried out manually [8].

The resulting lack of spectral information can lead to misclassified particles, which
in turn could contaminate an otherwise clean feedstock. This contamination impedes the
recyclability of the recyclate by altering its mechanical properties. This alteration may result
in the need for additional compatibilisers and other additives for the intended recycling
process. [9].

As NIR-based sorters are most widely used in sorting plants, but their potential has
not yet been fully exploited, the aim of this research was to improve their material detection.
Additionally, the decoupling of the material properties from the mechanical separation
enables not only a change of the hardware configuration, in this case the measurement in
reflectance mode, but also the software of the evaluation unit.

Given that a simple adaptation of existing sorter may improve their capability to
separate thin, flexible packaging material, substantial increases in recycling quota with
a limited investment are feasible. Preliminary studies have shown the possibility of sep-
arating monolayer from multilayer materials on a laboratory scale using a NIR-active
background in an experimental setup [7]. Further examinations of these findings on an
industrial scale NIR Sorter have proven to increase the spectral quality of flexible packaging
films by implementing a metal reflector to the sorting geometry [2]. Implementing a NIR
inactive metal sheet as a reflector enabled the sorter to measure in transflectance rather
than the usual reflectance mode [2].

Apart from the low material thickness, another prevalent advantage of multilayer
films has proven problematic during separation and recycling: the continuously changing
types of polymer types, thickness and sequence to ensure the best product protection.
Hence, the resulting combination possibilities further complicate the creation of separation
models.

Whenever completing a complex task without explicitly programming every conceiv-
able variation of this task, machine learning becomes the tool of choice. The application
of machine learning methods in NIR spectroscopy has been successfully implemented
in various fields. It has been used to assess the quality of beer from given features [10],
the rapid assessment of water pollution [7] or the prediction of soil total nitrogen, organic
carbon and moisture [11].

This paper investigates the effects of adding a reflective chute material to a state-of-
the-art near-infrared sorting unit. This modification allows 2D plastic packaging material
consisting of single and multi-layer films to be more effectively detected via transflection
and subsequently separated. In addition, an automatic method for applying the FFT to
spectra obtained in this transflection configuration and affected by interference is examined.
This method is an alternative to manually determining the correct cut-off point in the
Fourier deconstruction of the spectra. Based on these improved spectra, a principal compo-
nent analysis is performed to evaluate whether there are predominant spectral differences
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between spectra of mono- and multilayer materials. This characteristic difference can be
used to train machine learning algorithms to separate the two fractions.

Machine learning algorithms are then evaluated based on their prediction performance
and calculation speed. These metrics result in a hierarchy gauging their capability to
produce correct predictions in a reasonable time. This examination is necessary to gauge
whether this approach is feasible for inline applications, categorising spectra generated
in an industrial environment. Finally, an integrated method is discussed, using improved
spectral recognition with mechanically adapted NIR sorter, improved spectra rid of sine
wave interferences and separated into mono- and multilayer materials via supervised
machine learning classification algorithms.

The presented information creates a stepping stone for integrating recyclable resources
to increase the effectiveness of mechanical recycling. This increase in effectiveness further
creates a value-adding raw material source for multilayer recycling processes currently in
development, thus improving the circular economy of polymers [12,13].

2. Materials

All experiments were executed with material obtained directly from the input of an
Austrian material recovery facility. This waste was collected under the Austrian lightweight
packaging collection scheme. Under this scheme, lightweight packaging made of polymers,
aluminium or beverage carton is collected. For plastic packaging, the collection includes
both 3D and 2D material. From this material, the film specimen for this research paper
were sampled.

2.1. Film Specimens

A total of 103 specimens of post-consumer waste were taken directly from a sorting
plant’s input fraction in Austria. The input fraction is delivered in yellow bags, and these
bags were collected and the lightweight packaging therein was used for further evalua-
tions. The samples were neither cleaned, smoothed or otherwise exposed to preparatory
conditioning before the sorting trials were conducted. The samples’ dimensions ranged
from 10 mm × 10 mm to 210 mm × 297 mm and included printed and transparent samples.
Figure 1 shows the small film fraction for reference.

 

Figure 1. Fraction of small films waste.
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An examination with Fourier transform infrared (FTIR) spectroscopy yielded the
material composition of the experimental samples. The spectrometer used was a Spectrum
Two FTIR spectrometer (Perkin Elmer, Waltham, MA, USA) equipped with a Zn/Se crystal
with a diamond tip. The spectrometer measures in the range of 650 cm−1 to 4000 cm−1 and
has a spectral resolution of 4 cm−1.

2.1.1. Classification with FTIR Spectroscopy

The exact measurement method is explained in greater detail in a paper published
by Koinig et al. in 2022, which examined the composition of Austrian lightweight pack-
aging waste using FTIR measurements. The method is therefore described in short in the
following.

Fourier-transform infrared spectroscopy (FTIR) in attenuated reflectance (ATR) mode
was used to classify the film specimen into their respective material classes.

Samples on which the results differ for the front and back are defined as multilayer
films, while samples with identical results for the front and the back are defined as mono-
layer films. However, the FTIR-ATR characterisation method is limited to identifying the
polymeric material on the sample’s surface and penetrates only a few micrometres of the
sample thickness. In case of uncertainties in assigning a sample to the mono- or multilayer
category, additional FTIR measurements were performed in transmission mode to investi-
gate the material composition over the entire sample thickness to ensure reliable results.

According to the FTIR spectral analysis, the specimens were categorised into different
groups of mono- and multilayer materials. The materials represented by the selection of
samples are represented in Table 1.

Table 1. List of mono- and multilayer materials used in the sorting trials.

Materials Recycling Label Share

Polyethene PE 9 wt.%

Polypropylene PP 31 wt.%

Polyethene + polyethylene terephthalate PE/PET 28 wt.%

Polyethylene + polyamide PE/PA 6 wt.%

Polyethylene + polypropylene PE/PP 16 wt.%

Polypropylene + polyethylene terephthalate PP/PET 9 wt.%

Polypropylene + polyamide PP/PA 1 wt.%

2.1.2. Experimental Sensor-Based Sorting Setup

The trials were conducted with an experimental sensor-based sorting (SBS) setup.
The NIR sensor, an EVK-Helios-G2-NIR1, was used for the trials. This sensor detects the
reflected NIR radiation emitted by a halogen lamp on a sample. The emitted radiation is
reflected, absorbed, or transmitted depending on the specimen and interacts with near-
surface molecules [14]. The spectral resolution of the sensor is 3.18 nm with a frame rate
of 476 Hz and an exposure time of 1800 µs. Each spatial pixel is 1.60 mm wide, owing to
the geometrical setup of the testing rig. The waveband evaluated during the trials was
991 nm to 1677 nm, split into 220 discrete measuring points. After detection, the radiation
is analysed with EVK SQALAR to classify the respective spectra.

The function principle of the sorting rig is depicted in Figure 2.
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Figure 2. Experimental sensor-based sorting setup with the use of near-infrared spectroscopy.

2.1.3. Reflectors

The sorting experiments, which were the basis for the data evaluated in this paper,
were conducted with two reflective chutes made of aluminium and copper. These adapta-
tions had to be made to the existing sorting setup to allow for measurement in transflection.
Two variants of the reflective chute were manufactured by laser cutting the metal plates.
The specific shape of the reflector was chosen so as not to cover the illumination of the
sorter, which is necessary to detect objects for ejection. Copper and aluminium were used
as reflective materials because they are highly promising due to their high reflectivity of
NIR radiation [15].

3. Methods

The described experimental sensor-based sorting setup was used to classify the 2D
materials during the trials. This chapter explains the preparations to complete the sorting
model generation and separation of materials. Further, the measurements in transflection
mode are explained. Finally, the methods used in creating the machine learning approaches
and the spectra improvement methods are explained.

3.1. Measurements in Transflection Mode

One of the defining characteristics of NIR sorting is the interaction of material and
NIR radiation. During this interaction, the incident radiation energy is partially converted
into kinetic energy of molecular vibrations, while other parts of the radiation’s intensity
are transmitted and reflected [16]. Only sufficient interaction between the molecules of
the specimen and the incident NIR radiation creates useable NIR spectra for classification.
Material with insufficient thickness causes most of the incident radiation to be lost to
transmission. Additionally, the minuscule amount of reflected radiation has not interacted
sufficiently with the material to cause alterations in the spectra. Preliminary studies
have shown that the minor signal alterations caused by the low material thickness in
reflectance mode can be alleviated by adapting the experimental sensor-based sorting setup
for measurements in transflectance mode [7,17].

Placing a reflective background plate onto the chute allows measurements to be taken
in transflection mode. This way of measuring thin films alleviates the problem caused by
the low thickness of the material. The radiation is reflected after its first pass through the
specimen. This approach enhances the interaction of radiation and material because of
the lengthened path the radiation takes through the material: First, the incident NIR beam
enters the sample and a small proportion of its intensity is immediately reflected. However,
a significant proportion is transmitted through the specimen and consequently reflected
by the reflective material placed behind the sample. Hence, it passes again through the
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material and can be detected through the NIR sensor. This additional pass through the
material increases the spectral quality and enables the creation of a sorting model to classify
film materials.

Through this process, the variability of the spectra is decreased. This variability is
defined as the absolute difference between pixels of the same specimen [2].

Only if the pixels of a given specimen exhibit similar spectra, a specimen be classified
correctly. Figure 3 compares the spectra of a PE film measured in transflectance mode (left)
and the standard reflectance mode (right). The depiction shows the mean spectra of ten
pixels, normalised via the “zScore” method and smoothed by Gaussian smoothing with
a 10-point floating smoothing window. It can be seen that the characteristic PE peak at
1150 nm becomes more pronounced when measured in transflection.

 

Figure 3. Comparison of spectral variability and characteristic peaks of a PE film when measured in
transflection (left) and measured in reflectance (right).

3.2. Preparations for Sorting Trials

The trials were conducted with teaching and testing fractions. The specimens were
separated into a teaching set to create the model containing 80% of the materials and a
separate testing set to check the model prior to the sorting trials containing 20% of the
specimen. A train test split of 80:20 is one of the most effective ways to train models [18].
The train set consisting of known composition mono- and multilayer materials was used
to create a sorting model. The second class was the test set consisting of monolayer and
multilayer materials not used for teaching the sorting model. With the teaching and test sets
created, the reflective background was installed, and the sorting model, which is necessary
to classify and eject the multilayer materials, was created.

Model Creation Using EVK SQALAR

The sorting model for separating the individual materials was created using EVK
SQALAR.

A sorting model for NIR sorting defines the criteria for which the experimental sensor-
based sorting setup sorts fractions based on reference spectra. These spectra are taken from
known composition materials, and these benchmark spectra are compared to the unknown
materials’ spectral information during the sorting trials. If an unknown pixel’s spectrum
shows sufficient similarities to a reference, it is classified as this material class.

Apart from the reference spectra, the sorting model defines the pre-processing and
spectral processing methods applied to the spectral information. Here, the upper and
lower limits of spectral intensity in which viable pixels for evaluation lie, are considered.
Concessions were made to create a sorting model that can use reflective backgrounds.
Firstly, the white calibration with the reflective background was completed, allowing the
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existing white calibration algorithm to adapt to the increased intensity of reflected radiation
due to the adapted chute material. Secondly, the illumination intensity had to be lowered
to prevent overexposed pixels. This was performed despite the results of previous research
stating that increased illumination intensity improves the spectral quality [17].

Table 2 shows the pre-processing and spectral processing methods used in preparing
the spectral information for classification. These methods were described in the literature
as ideal for separating post-consumer waste as they enhance the subtle differences in each
spectrum, facilitating the differentiation between similar spectra, for example, between PE
or PP monolayer and PE–PP multilayer [19,20].

Table 2. List of pre-processing and spatial-processing.

Pre-Processing Spectral-Processing

Bad pixel replacement Calculation of the first derivative
Intensity calibration Smoothing
Noise suppression Normalisation
Spatial correction

This procedure for creating a sorting model was undertaken with the standard con-
figuration for measurements in reflectance while the aluminium and the copper reflectors
were used for measurements in transflectance. This approach yielded an individual sorting
model for reflective surfaces and the non-reflective original chute.

3.3. Sorting Trials

The sorting trials were performed with every specimen in the test set. Each attempt
was repeated five times to eliminate random factors, such as the trajectory of the film
specimen. The sorter was set to eject multilayer materials.

A particle was considered to be classified correctly when the high-pressure nozzles
were activated and the particle was ejected. Through this approach the number of correctly
separated specimens for the respective configuration.

3.4. Principal Component Analysis to Determine the Possibility of the Application of Machine
Learning Approaches

Even with increased fidelity to the material’s spectral fingerprint in the available
spectra, the overabundance of available multilayer material combinations poses a problem
in creating a sorting model. It is infeasible to implement a sorting routine with spectral
information to correctly recognise all available multilayer material to differentiate it from
monolayer material, and neither is it feasible to include all existing monolayer materials in
the sorting model. Therefore, it is necessary to adopt a sorting mechanism that achieves the
task of detecting multilayer materials without explicitly implementing a vast number of
multilayer spectra. For this, a supervised learning approach was chosen. In order to achieve
this, common identifying characteristics of multilayer materials must be present. If they
influence the spectra enough to enable classification, the existence of these characteristics
would enable the separation of multilayer materials without the need to gather the spectra
of each material. A principal component analysis (PCA) was applied to the 17,569 spectra
recorded from the multilayer and monolayer specimens. The PCA was used to reduce the
220-dimensional spectral information into principal components to analyse if sufficient
differences are present in the data to explain the variance of the data set with principal
components.

Since the PCA indicated differences between multilayer and monolayer spectra, a com-
parison of the average of the multilayer material and monolayer material spectra was
conducted. This comparison was used to evaluate the spectral range in which the two
classes differ most. This comparison was made by taking the mean of all multilayer and
monolayer spectra used in this trial. The two resulting spectra were compared by taking
the two-norm of the distance of each spectral point of the monolayer spectra from its
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corresponding spectral point of the multilayer spectra. This yielded in the wavelengths at
which monolayer spectra and multilayer spectra differ substantially from each other.

3.5. Evaluation of Machine Learning Approaches to Classify Spectral Data

With the information gathered via the PCA, an array of machine learning approaches
was applied to the spectral information gathered from the thin film specimen. First, the
17,569 spectra gathered from the specimen were randomly separated into a training and
a test set. This is required to enable holdout validation to train the machine learning
approaches. The test set contained 20% (3513) of the spectra, while the training set consisted
of the remaining 80% (14,056) of spectra, again utilising the recommended 80/20 split.

Cross-validation allows training and testing on a given number of data splits and thus
permits an estimate of how well a given model will perform on unseen data. Holdout
validation depends on splitting the data set according to the given ratio between the
training and test set. Even with cross-fold validation potentially increasing the prediction
success by 0.1–3%, the time trade-off on large data sets is substantial [21]. The machine
learning approach was repeated using cross-fold validation with five cross-validation folds.
One of the selected groups is used as a test set, while the other is used as a training set.
After grouping, the model is trained on the training set and tested and scored using the
test set. This process is repeated until all sets have been used as the test set. The holdout
validation was chosen after preliminary tests resulted in a high prediction success when
using holdout validation while requiring less training time.

Each NIR spectrum consists of 220 spectral data points. Every spectral point contains
the radiation intensity detected by the NIR sensor and is a feature used for predicting
the material class in this context. The first derivative of every spectrum was taken to
enhance differences inherent in the spectral data, and no further feature engineering, e.g.,
feature selection, was performed. Thus, the machine learning approach initially used all
220 spectral points equally spaced over the NIR spectral region of 930–1700 nm. After
these preliminary trials, a PCA was conducted, reducing the number of features from 220
to 3. These three features explained ~80% of the variance in the model. This approach
tripled the number of observations per second the models were capable of and increased
the prediction accuracy in one case.

All necessary computations were conducted running MATLAB by The MathWorks
(Natick, MA, USA) Version 9.10.0.1710957 (R2021a) Update 4 on a Windows 10 computer
equipped with an Intel® UHD Graphics 630 and an Intel ® Core ™ i5-9400H CPU clocked
at 2.50 GHz.

3.5.1. Used Machine Learning Algorithms

Supervised learning approaches were used to differentiate between mono- and multi-
layer materials. The selection process for the correct algorithm yielded several different
machine learning approaches to be tested. Since the problem at hand is a clustering problem
with three possible clusters, the following algorithms were chosen and evaluated for their
performance.

Decision Tree

Decision Trees are known as Classification and Regression Algorithms since they can
perform classification and regression. Decision trees follow along their edges or branches
and decide at the nodes which branch to follow to label a new input. A condition is queried
at every node to decide which branch to follow [22]. When categorising whether a given
material is a multilayer film or not, the prime features to be evaluated are the intensity of the
given pixel at a specific wavelength. Figure 4 shows an example of a simple decision tree.
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Figure 4. Example of a decision tree.

k-Nearest Neighbour

The k-nearest neighbour (kNN) algorithm works by analysing the distance between a
new data point and its k-nearest neighbours. The user determines the number of neighbours
evaluated, k, influencing the algorithm’s outcome. The new data point is then assigned the
label of the majority of its neighbours. The Euclidian distance between neighbouring data
points is used as a decision criterion. [23].

Figure 5 shows an example; if k = 5 and 3 neighboring points are classified as multilayer
while two are classified as a monolayer, the new data point will be labeled multilayer. In this
example, the dimensionality has been reduced from 220 to 2 by a prior PCA. This reduction
in dimensions is usually made in preparation of a kNN approach to avoid the effects of the
curse of dimensionality, which plagues many machine learning algorithms [24]. In kNN,
the Euclidian distance becomes useless as a metric in higher dimensions since all vectors
are equidistant to the search query vector.

 

Figure 5. Example for k-nearest neighbour classification using k = 5 neighbours.
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k-Means

The k-means algorithm is well suited to classification problems. It works by defining a
number, k, of clusters. Then a set of centres for those clusters is randomly selected. All data
points are then labeled according to their distance to these clusters. After this clustering,
the new centres of those clusters are calculated, and the algorithm begins anew, again
clustering the data around the new cluster centres. With every iteration of the algorithm,
the change of the centres becomes smaller. The procedure is repeated until a threshold
number of iterations is reached. The classification is then complete, and the model can
be used to classify new data according to the k-clusters. The success of this approach
dramatically depends on the selection of the initial centres. It is therefore advisable to create
various k-means models with different starting parameters. Apart from relying on the
starting conditions, the k-means approach’s low computational and memory requirements
are its advantages. Figure 6 shows a completed clustering using the k-clusters approach.

 

Figure 6. Example of a k-clusters clustering problem.

Support Vector Machine

Support vector machines (SVM) separate the given data set by a hyperplane that
maximises the empty area between different data sets. This area is called the margin.
The solution offering the maximum margin separating the given data sets is considered
the optimum and chosen to classify new data. These separating lines, or hyperplanes, are
generated by support vectors, thus the name. A sample showing the classification process
of an SVM is shown in Figure 7. These hyperplanes can be linear and not linear, rendering
the SVM able to classify most data sets of natural features where a linear separation is
impossible [25].
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Figure 7. SVM classification using a nonlinear hyperplane and the classification result an
Figure 7. SVM classification using a nonlinear hyperplane and the classification result and the used
support vectors to create the hyperplane.

Neural Net

The application of neural networks for classification differs from traditional machine
learning algorithms. A classification task requires the input of labeled data, and this
supervised learning approach can be used to classify all data that humans can label. Neural
networks are commonly applied to text classification, fraud detection, voice identification,
or video analysis. A shallow neural network (SNN) with one connected layer has been
applied to the input. The input consisted of the first derivative of the spectra contained
in the spectral image. The classification yielded three classes for the evaluated pixels:
multilayer, monolayer and background.

3.5.2. Feature Engineering

Before classification, the raw spectral data was normalised using the “zScore” method,
which ensures a mean value of zero and a standard deviation of one. The spectra were
smoothed using a Gaussian smoothing algorithm with a ten-element sliding mean window.
Additionally, the first derivative of the spectral data has been taken to make the differences
inherent in the spectral data more prominent.

3.6. Use of Fast Fourier Transformation to Improve Spectra

Fast Fourier transformation (FFT) was applied to improve spectral quality. This ap-
proach enabled overlying sine wave-like spectral abnormalities to be reduced. This reduc-
tion in overlying sine wave-like spectral abnormalities made the analysis of previously
obscured spectral information possible.

The fast Fourier transformation algorithm of MATLAB is used to achieve the original
spectrum’s discrete Fourier transformation (DFT). The DFT of a signal decomposes the
original spectrum into a series of harmonic sinewave parts and represents a frequency
spectrum. Figure 8 shows a representation of a generic noisy signal. Here it can be seen
that any signal composes itself of a series of overlying frequencies. The underlying signal
is overlaid with noise, making it difficult to determine the original signal. The noise could
be eliminated by manipulating the signal in this representation, making the signal clearer.
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Figure 8. Spectral and Fourier depiction of a noisy signal.

By manipulating the representation of the original spectrum, unwanted noise, for ex-
ample, the aforementioned sine wave abnormalities, can be omitted in the inverse Discrete
Fourier transformation (iDFT). The iDFT is used to recreate the signal. To generate a usable
spectrum, the placement of this filter has to be evaluated, and the resulting spectrum has
to be compared to a suitable reference spectrum. This computation takes the two-norm
of the difference between the new spectrum and the reference spectrum. An algorithm
evaluates the resulting spectrum concerning the reference spectrum and places the filter
in the position that yields the optimum spectrum, which facilitates this evaluation. This
way, manual experimentation of filter placement, which previously took considerable
time, can be automated [8]. The deviation from the reference spectrum is plotted over
the corresponding filter position for visual inspection to evaluate the correct positioning.
The result of this process is shown in Figure 9, which depicts the evaluated placement point
for the low pass filter and the resulting deviation. The point in the search with the lowest
deviation is marked. This placement point was then used for further processing.

 

Figure 9. Progress of the optimisation over the deviation of the resulting spectrum from the reference
spectrum.
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The original spectrum is represented in 220 Fourier coefficients. These coefficients
correspond with the camera’s spectral resolution with which the spectrum was recorded.
Figure 10 shows the representation of the spectrum after the FFT was applied. Further,
the location of the deep pass filter is visualised.

 

Figure 10. Fourier representation of the original spectrum.

Summary of Applied Methods

In summary, three methods were used to solve problems in sorting films. Firstly, the
spectra quality was insufficient for separating the material. This issue was remedied by
applying measurement in transflection. The second problem was that after the inclusion of
reflective backgrounds for measurement in transflection, sine wave-like disturbances were
still occurring in the spectra. These in turn were reduced with FFT. Because finding the
correct cut-off point for the low pass filter by hand is time-consuming, an algorithm is used
which finds the cut-off point that results in the best spectra after reconstruction.

The third problem was the abundance of material compositions in multilayer films,
which impeded the creation of a sorting model that recognises multilayer materials. PCA
and the comparison of multilayer film and monolayer film spectra evaluated the viability
of applying machine learning methods to solving this problem. With these methods,
characteristic differences in the spectra were found, which promised a successful application
of machine learning methods. These methods were used to classify film spectra into two
groups and were compared to each other’s prediction accuracy and computation speed to
find the best machine learning method suited for the task. Figure 11 shwos a summary of
encountered problems when sorting films and the applied solutions.
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Figure 11. Summary of encountered problems when sorting films and the applied solutions.

4. Results

All results are assessed based on the number of correct ejections. The first sorting trials
were conducted without adaptations to the sorting rig. These results are used as reference
values to compare the effect of introducing a reflective background on sorting multilayer
and monolayer films.

4.1. Detection Rate without Reflector (Glass Chute)

In summary, 46% of all materials were correctly sorted using no reflective surface as a
background for classification. The lack of useable spectral information explains this low
sorting success. Given the lack of spectral information to base the classification, creating
the sorting model proved difficult.

Figure 12 depicts the detection rate for all materials using no reflective background.

 

Figure 12. Detection rate with different reflectors concerning different materials.

4.2. Detection Success with Aluminium Reflector

The second trial was conducted with the use of an aluminium reflector.



Polymers 2022, 14, 3926 15 of 28

Due to the optical properties of aluminium, it reflects near-infrared radiation and per-
mits measurements in transflection mode. Since less radiation is lost to transmission, more
pixels contain useable spectral information for classification. This effect permits the detec-
tion of the 2D materials, independent of their thickness and coloring. Optically transparent
materials are detectable and, therefore, sortable with a reflective surface. This improved
sortability is shown in Figure 12, which depicts the detection rate for all materials using an
aluminium reflector and compares it to the initial results without a reflector. After the trial,
74% of all multilayer materials were ejected correctly, which is 61% more compared to the
measurement in reflection.

The aluminium reflector showed great promise as a reflective surface, although its
tendency to accrue an oxide layer that diminishes its reflective capabilities needs to be
considered.

4.3. Detection Success with Copper Reflector

The third trial was conducted using a copper plate as a reflective surface. The high
reflectivity of copper facilitated the model creation. Due to the high reflectivity, the number
of useable spectra for model creation was increased. The copper’s reflectivity enabled a
sorting model that successfully distinguished the majority of mono and multilayer materials
used in the trials. Figure 12 shows a comparison between all three setups.

4.4. Comparison of the Detection Experiments

In addition to its inherent higher reflectivity in the NIR spectrum compared to alu-
minium, copper does not tend to create an oxide layer, and this property may make it
more viable as a reflector despite its higher cost relative to aluminium. Figure 12 shows
the overall detection rate for all materials on all reflectors as a comparison and the total
percentage of detected objects. The formation of verdigris was not encountered during the
trials but will most likely pose an issue when using the reflective surface in an industrial
setting and must be included in planning.

4.5. Evaluation of Differences in Ejection Rate between Polymer Types

This chapter explains the differences in detection and subsequent ejection between
the polymer types. The spectral differences causing this lack of uniformity in ejection
are explored. For this purpose, spectra were taken in each measurement mode (RAW),
standard measurement without reflector, transflectance with aluminium reflector (AL-TR),
and transflectance with copper reflector (CU-TR), are shown and compared with each other.
In addition to the mean spectrum of the specimen, the variability of the spectrum is shown.
The lower this spectra variability is, the easier the specimen can be assigned to one material
group. In Table 3, the results of the trials are presented in tabular form for ease of reference
in the comparison.

Table 3. Ejection rates with different reflectors.

Film Material
Ejection Rate
Copper Reflector [%]

Ejection Rate
Aluminium [%]

Ejection Rate
No Reflector [%]

Average Ejection Rate
[%]

PE 93 93 60 82
PP 77 90 83 83
PET/PE 76 71 24 57
PE/PA 100 100 40 80
PP/PET 53 20 27 33
PE/PP 76 72 40 63
PP/PA 100 80 60 80
Total 78 74 46 66
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4.5.1. PE

It can be seen that 40% of PE films were falsely classified as multilayer materials and
ejected when using no reflector. Figure 13 shows the spectra of a PE specimen used in the
trials and shows that the variability of the spectrum taken without a reflector is comparably
high. Especially in the area of 1200 nm, the second characteristic PE section is absent and
diffuse. The spectra recorded using the copper reflector show very sharp characteristic
sections at 1200 nm and 1400 nm with little variability. The spectra are shown in Figure 13.

 

Figure 13. Comparison PE spectra, left: no reflector, middle: aluminium reflector, right: copper
reflector.

4.5.2. PP

PP was recognised much better than other plastics in the trials. Without a reflector,
83% of the specimen were correctly sorted. Implementing an aluminium reflector raised
this to 90% while implementing a copper reflector reduced the result to 77%. The answer to
this abnormal behavior can be found in the spectral analysis. Examining the spectra taken
in AL-TR, it can be seen that three characteristic peaks are present, namely at 1300 nm,
1400 nm and 1550 nm. In RAW, only one of those characteristics is present. In CU-TR, two
of these three sections are present and can be used for classification, with the dip at 1550 nm
absent. Irrespective of the used reflector, the quality of the PP spectra is more susceptible to
the thickness of the specimen. PP specimens exhibit sine wave-like noise disturbances of
the spectra at a higher thickness than other polyolefins such as PE [8,17]. The spectra are
shown in Figure 14.

 

Figure 14. Comparison of PP spectra, left: no reflector, middle: aluminium reflector, right: copper
reflector.

4.5.3. PE/PA

PE/PA showed a slight improvement in spectral quality. The characteristic regions at
1200 nm and 1400 nm are present without or with the reflector. The dismal ejection rate
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without the reflector was due to misclassification as a monolayer since the PE is dominant
in the PE/PA spectrum. It can be seen that an aluminium reflector alters the spectrum in
the region of 1200 nm by extending the peak in comparison to measurements without a
reflector or with a copper reflector. The spectra are shown in Figure 15.

 

Figure 15. Comparison of PE/PA spectra, left: no reflector, middle: aluminium reflector, right:
copper reflector.

4.5.4. PE/PET

PE/PET had the worst detection rate, with an average of 33% of all specimens correctly
ejected in all trials. The cause is that PE makes up the central part of PE/PET composites.
Since the intensity of any spectral component is proportional to the material’s thickness,
what little spectral information is detected resembles PE [26]. This dominance of the PE
spectrum leads to the misclassification of the multilayer material as PE monolayer and,
subsequently, the low sorting accuracy. These spectra can be seen in Figure 16. In the spectra
recorded in RAW, the characteristic PET dip at 1500 nm is blurred by the variance. Measured
with AL-TR, the characteristic PE peak is blurred, and the PET dip is diminished while the
dip at 1400 is present. In CU-TR, all characteristic features of the PE PET multilayer are
sharp and easily distinguishable, leading to the correct results.

 

Figure 16. Comparison PE/PET spectra, left: no reflector, middle: aluminium reflector, right: copper
reflector.

4.5.5. PP/PET

PP/PET was one of the films with the lowest ejection rate. It can be seen in Figure 17
that the characteristic PET peak at 1650 nm only starts to appear when a copper reflector
is used. The spectra recorded without a reflector exhibit no spectral information and are
unsuitable for classification. The inclusion of an aluminium reflector improves the spectra
to a limited extent. More pronounced improvements are reached after a copper reflector was
installed. After this installation, the characteristic peaks of PP and PET become apparent,
reducing the risk of misclassifying the films as PP. The spectra are shown in Figure 17.
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Figure 17. Comparison PP/PET spectra, left: no reflector, middle: aluminium reflector, right: copper
reflector.

4.5.6. PE/PP

PE/PP multilayer specimens were sorted out without a reflector 40% for the time, and
the introduction of AL-TR raised this to 72%, and CU-TR further increased this result to
76%. PE PP multilayer is especially susceptible to high variability in the spectrum since it
is a composition of two materials exhibiting similar NIR spectra. All peaks overlap the PE
and PP spectra and are present in CU-TR; thus, the material can correctly be classified as a
multilayer film. The spectra are shown in Figure 18.

 

Figure 18. Comparison PE/PP spectra, left: no reflector, middle: aluminium reflector, right: copper
Reflector.

4.5.7. PP/PA

PP/PA was comparatively well separable without a reflector. The spectra taken in
RAW exhibit the material’s characteristic peaks and minimal variability. The sharpness
of the characteristic peaks and the variability of the spectra were further improved when
measuring in AL-TR or CU-TR, mirrored by the improved results in the sorting trials.
The spectra are shown in Figure 19.
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Figure 19. Comparison PP/PA spectra, left: no reflector, middle: aluminium reflector, right: copper
reflector.

4.6. Application of Machine Learning Algorithms to Classify Film Spectra into Multilayer and
Monolayer Categories Results

As a precursor to the classification via machine learning algorithms, a PCA and
a comparison between the mean spectra of monolayer and multilayer materials were
conducted to determine whether discernible differences between the two material groups
exist, which can be exploited for their differentiation into the classes monolayer and
multilayer material.

The application of PCA onto the spectral information yielded three clear clusters.
The evaluation of the PCA showed that the first principal components could explain
approximately 80% of the variance. This result successfully classified multilayer, monolayer,
and the sorter’s background into the three categories by machine learning algorithms.
Figure 20 shows the result of this PCA. Here the three clusters can be seen. Green represents
monolayer spectra, red represents multilayer spectra, and black represents the background
material used in the trials. The monolayer and multilayer materials variance is described in
dominant parts by the first principal component, further shown in the Pareto distribution
diagram in the lower right corner. The first three principal components correspond with
the spectral wavelengths of the separately examined spectra of 1038 nm, 1187 nm and 1309
nm that correspond to the second overtone of CH vibrations typical of CH2, CH3 and C=C
chemical structures [27].

The evaluation of the spectral differences in the mean spectra taken from the mono-
layer and multilayer fraction yielded three spectral regions in which the mean spectra of
monolayer and multilayer materials differ significantly. The comparison is visualised in
Figure 21, which shows the mean multilayer spectrum in yellow, the mean monolayer spec-
trum in red and the three most pronounced differences. The first region where significant
spectral differences can be seen is 1230 nm, corresponding to the second overtone of the CH
bond [27]. Here the multilayer spectrum exhibits a more prominent peak than the mono-
layer fraction, possibly because of a different CH content within the two fractions. A similar
difference can be observed at 1380–1410 nm, where the monolayer spectrum experiences
a more pronounced dip than the multilayer fraction. This spectral region corresponds to
the stretching and deformation vibrations of the CH bond of CH2 structures [27]. While
these two differences expressed a similar characteristic, namely a dip or a peak, the third
difference sees the two spectra deviating strongly from each other [27]. Between 1410 nm
and 1440 nm, the multilayer spectrum exhibits a wave-like pattern while the monolayer
spectrum rises until a peak is reached. This spectral region can be associated with vibrations
of several chemical bonds as the first overtone of OH stretching vibrations, stretching and
deformation vibrations of CH in CH2 and aromatic structures and the first overtone of NH
vibrations. In particular, the shape of the spectra for the multilayer material would suggest
that multiple peaks are present, and they might correspond to vibrations of aromatic or NH
bonds typical of PET and PA, respectively. The spectra of the monolayer material would
suggest possible vibration of one chemical bond type.
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Figure 20. Result of the principal component analysis of approximately 17,000 spectra of monolayer,
multilayer and background material to discern their sortability.

 

Figure 21. Differences in the mean spectra of multilayer and monolayer materials.

While the comparison of mean spectra of different materials cannot determine whether
the differentiation of individual materials into the categories monolayer and multilayer is
possible, it shows that differences between the two materials exist, which may be used to
classify them accordingly.

After these preliminary examinations, the respective machine learning algorithms
were used to classify the spectral data. Table 3 shows the success rate of each respective
algorithm in correctly classifying the material into the classes multilayer, monolayer and
background. All used algorithms show promising results apart from the k-means algorithm.
This algorithm could not correctly identify the material, reaching an accuracy of only 60%.
Amongst the others, the SVM and the SNN reached the highest accuracy.
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Prediction Speed

The NIR sorter can achieve a refresh rate of approximately 500 Hz, which can effec-
tively be halved without substantial loss of information while recording 320 spatial pixels
with a spectral resolution of 220 points. This recording speed means that approximately
80,000 spectra must be evaluated every second. A machine learning algorithm’s prediction
speed is given as the number of observations processed per second, and its inverse would
be the time taken for one prediction in seconds. The fastest examined machine learning
algorithms were capable of prediction speeds of 83,000 observations per second, which
would be fast enough to classify every pixel the spectral imaging camera recorded. It has
to be noted that no pre-processing steps and additional computing time were considered
for this calculation, reducing the number of spectra processable per second.

After evaluating the prediction speed and accuracy, a hierarchy of machine learning
algorithms was established. Table 4 shows the percentage of correctly identified pixels and
respective machine learning algorithm. With a PCA leaving three principal components
for classification, the SVM outperformed the other algorithms regarding prediction speed
and accuracy. This comparison is shown in Figure 22, which compares the examined
algorithms and their success in classifying the test set. On the left, the prediction accuracy
is presented. Here it can be seen that while all algorithms were able to label the spectra
correctly in at least 80% of cases, the SVM, after PCA using the one versus one approach,
could predict the material in 93% of cases correctly. Because these examinations aim to
evaluate the algorithms for their applicability in a sorting operation, accuracy without
prediction speed is irrelevant. Figure 22 shows on its right the comparison of the machine
learning approaches concerning their time requirements per correct prediction. It can be
seen that the introduction of a PCA prior to model generation decreased the time necessary
to predict the label of a spectrum. Further, the PCA did not decrease accuracy. Therefore,
the fastest algorithm was the SVM and the SNN with prior PCA using three principal
components for prediction.

Table 4. Correctly identified pixels and respective machine learning algorithm.

Algorithm Correctly Identified Pixels

Decision tree 98.15%
k-nearest neighbour 98.17%
Neural net 99.47%
Support vector machine 99.63%
Shallow neural network 99.90%
k-means ~60%

 

Figure 22. Comparison of the different machine learning algorithms used for classifying monolayer
and multilayer materials in the test set.
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4.7. Visualisation of the Classification Results of the Shallow Neural Network

The comparison of the applied machine learning tools yielded two methods especially
well suited to the classification of films. The SVM and the SNN were almost identical
in prediction accuracy and speed when presented with unknown data. Though both
methods are on equal footing on these metrics, the SNN is superior in terms of training
time. The SVM took 260 s to train, while the SNN only took 16 s. While these specific times
are highly dependent on the hardware used for training, the ratio between the training
times is independent of the hardware used for training. It took almost 18 times longer to
train the SVM. Due to this advantage of the SNN, it was used to classify film specimens.
In the following, the classification results of the SNN are shown.

The following figures show the classification results of the films. Each pixel identified
in the evaluated rectangle as monolayer is displayed in green, multilayer pixels are shown
in red and pixels identified as background are black.

Figure 23 shows the classification of a PE monolayer film. The SNN correctly identified
most of the material. Areas with low spectral intensity were classified as background and
are shown in black. A small number of pixels was wrongly classified as multilayer material.
This issue is caused by the close resemblance of PE monolayer material´s spectra with
PE/PP multilayer films, which can lead to misclassification.

 

Figure 23. Classification of a PE monolayer film with the SNN.

Figure 24 illustrates the classification result of a PE/PET multilayer film. The specimen
in question had an elongated form and some overexposure occurred, as shown by the
bright sections in the image. The model had issues classifying the overexposed pixels,
which can be seen by the red and green pixels, misclassified as mono- and multilayer
film. Concerning classifying the specimen itself, the model was successful, shown by the
resulting classification in red and the small number of misclassified pixels in green.

 

Figure 24. Classification of PE/PET multilayer film with the SNN.

Figure 25 shows the classification result of a PE/PP multilayer packaging film. PE/PP
multilayer materials challenge the classification model due to the close resemblance of
the PE/PP multilayer spectrum and the corresponding monolayer spectra of PE and PP
monolayer materials. The result is a rather large proportion of misclassified pixels, as shown
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in the figure. Despite these unfavourable circumstances, the model managed to classify
most of the specimens correctly as multilayer material.

 

Figure 25. Classification of PE/PP multilayer film with the SNN.

Figure 26 shows the unclassified specimen and the classification result of the multilayer
cheese packaging. The neural network had issues with the low intensity of the recording
in some areas, shown by the large proportion of pixels classified as background in black.
The neural network correctly classified most of the specimen´s pixels where the intensity
was sufficient for classification. Only a minuscule number of pixels were wrongly classified
as monolayer pixels, shown by the green pixels in the classified image.

 

Figure 26. Classification of a cheese packaging film not used in training and testing with the SNN.

4.8. Application of FFT and Elimination of Frequencies

The application of FFT and subsequent elimination of interfering spectral abnormali-
ties yielded improved spectra. These spectra regained their specific form used to categorise
the respective materials. Figure 27 visualises the original spectrum before applying FFT
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and the following elimination of overlaying wave patterns. It can be seen that the spectrum
exhibits almost no discernible patterns which could be used for classification. The character-
istic peak at 1350 nm is insinuated but not pronounced. Contrarily, the characteristic peaks
at 1150 nm and 1410 nm, expressed by the reference spectrum, are absent. After eliminating
the overlying sine wave-like patterns, the fidelity of the spectrum to the reference spectrum
improves. Although the peak expressed by the reference spectrum at 1150 nm could not be
reproduced, the peak at 1350 nm becomes more pronounced and a second peak at 1410 nm
becomes apparent. Further, the sine wave begins to form in the original spectrum at around
1390 nm and becomes less pronounced.

 

Figure 27. Difference between the raw spectrum (blue) and an improved spectrum (red) and their
comparison to a reference spectrum (yellow).

The deviation from the reference spectrum could be reduced by up to 30%. This way,
the information contained in PP spectra which were unuseable for the classification and
generation of a separation model, could be extracted.

Finding the correct place for the filter has been automated, significantly reducing the
workload for finding the correct filter placement.

4.9. Spectral Library of Film Materials

During the creation of the machine learning tests and the sorting trials, an abundance
of spectral information of film materials has been recorded. This spectral information
has been stored in MAT-files. MAT-files are binary files that store workspace variables.
This spectral library contains the spectral data of over 130 film specimens. These spectra
and the necessary MATLAB code library to visualise the spectral images and to extract
spectra from these files have been organised into a repository. This repository and the data
therein may be used to create proprietary film sorting models for further trials. This spectral
library expands the existing TrashNet-NIR library by adding film spectra. For access to the
repository, the corresponding author may be contacted.

5. Discussion

The sorting trials, the application of FFT and the machine learning approaches are
discussed in the following. Further, the limitations of using a chute sorter to separate film
specimens are evaluated and the possibility of incorporating the shown procedure in an
integrated film separation process is elaborated upon.
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5.1. Discussion of Sorting Trials

The sorting results indicate that the success rate of film sorting increases when reflect-
ing backgrounds are used. The detection rate with a traditional non-reflecting glass chute
did not reach 50%. With the introduction of a reflective chute, the detection rate reached
over 70%, with better sorting results in every material category. This result supports the
findings of previous experiments, which showed the improvement of film spectra using
measurements in transflectance [2].

The increase in the detection rate is due to better useable spectra when the measure-
ments are taken in transflectance mode. Furthermore, adding a reflective surface decreases
the amount of radiation lost to transmission and enhances the spectral data quality available
for classification and model creation.

The transflection mode was only evaluated with a chute sorter. However, in material
recovery facilities, belt sorters are usually used for their higher throughput and the contin-
uous speed of the particles. The specimen´s speed depends on its density and shape on
a chute sorter. While in this case the input material is film, it is not so much the particle
density as the particle shape that is a problem. Films, in particular, are difficult to sort, as
their low weight and large surface area make them prone to gliding, making their ballistics
hard to predict and their ejection difficult. Though the improvement in spectral quality
and sorting of films using the transflection mode could be shown, further evaluation of
transflectance measurements with a belt sorter would be advisable.

In addition, some material classes have been underrepresented due to a lack of avail-
able specimens owing to low occurrence in the waste stream.

Finally, the created monolayer fraction could be further sorted into the respective
monolayer materials, PE and PP. Out of this monomaterial feedstock, recyclate and subse-
quently test pieces for mechanical examinations could be produced. These tests, for exam-
ple, tensile tests or Charpy tests, could then be used to assess the mechanical properties of
the recyclate.

5.2. Discussion of the Application of Machine Learning Approaches

Implementing machine learning algorithms such as an SVM or a deep neural network
showed great promise in classifying monolayer and multilayer materials. The prediction
speed without a preliminary dimension reduction was insufficient to even theorise about
their feasibility in an industrial setting. After implementing a dimension reduction using
principal component analysis, the prediction speed increased substantially. In addition to
an increase in prediction speed, prediction accuracy also saw an incremental increase.

The correct classification of multilayer material without creating a specific model for
each material class can be achieved by using common patterns among multilayer material.
This is because machine learning methods can use these shared properties to detect multi-
layered particles which can subsequently be ejected. Hence, machine learning is suited to
be used for this purpose.

5.3. Discussion of the Application of FFT to Improve Spectra Overlain by Sine Wave Abnormalities

Because the implementation of reflective background materials only reduced the
occurrence of sine wave noise, this issue still needed attention. The tedious search for the
ideal cut-off point was replaced by a simple algorithm that finds the optimal position where
the reconstructed spectrum comes closest to a reference spectrum.

The main problem with this approach is that it depends on knowledge of the polymer
type of the material. Its purpose was to elaborate on the possibilities of using FFT to
improve film spectra. Further research is needed to ensure that the system can improve a
spectrum without prior knowledge of its polymer type by having generic reference spectra
of polymers to compare the improved spectra against. It is not necessarily the case that
the recreated spectrum needs to adhere to a spectrum of the same material class. Instead,
the goal of the FFT process is to reduce or eliminate overlaying sine wave spectral noise.
So, comparing the spectra with an adroitly chosen generic reference spectrum exhibiting
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no sine wave disturbances could be sufficient. The improved spectrum could then be used
for the actual classifying process. Further, only the application of a low pass filter has been
described in this article as it extraordinarily improved the spectral quality. Additional trials
may show that a supplementary implementation of a high pass filter may improve the
spectral quality further though this has not been evaluated.

5.4. Discussion of an Integrated Process

Combining all processes shown in this work may be used to classify film spectra. First,
the spectral image is taken in transflection and evaluated. The spectra used for classification
are then classified either as suitable or unsuitable. If a spectrum is unsuitable for further
classification due to sine wave noise caused by destructive interferences, the spectrum
is improved via the shown FFT. Based on the spectra, the material is then classified by
an SVM or neural net. Depending on the classification result, monolayer or multilayer
film, the material is subsequently handled accordingly. In the case of monolayer material,
further classification into the respective material groups via NIR is undertaken to create
a monomaterial input stream for supplementary recycling processes. Two options are
available for discussion if the material is classified as a multilayer. The material can either
be thermally utilised or used as a feedstock for chemical recycling. Figure 28 shows a
flowchart for this method.

Figure 28. Integrated film recycling process.

6. Conclusions

NIR sorting success depends on the availability of high-quality spectral information.
Traditional approaches struggle to provide spectra with high fidelity, as shown in the
sorting trials lacking reflective backgrounds. Introducing reflecting backgrounds enables
measurements in transflection, permitting the separation of monolayer and multilayer
materials. This approach yielded an increase in detection rate from 46% to 74% with an
aluminium reflector. Implementation of a copper reflector improved the detection rate
further to 78%. Apart from an increase in the average detection rate, the recognition
of every individual material increased with the introduction of reflective backgrounds.
These findings support existing results that by increasing the reflectivity of the background
material and the coinciding measurements in transflection, the sorting success of 2D
materials can be increased.

Existing findings regarding the application of FFT to improve the spectral quality
further were deepened. We proposed a method to apply FFT to spectra in order to eliminate
destructive interference which in turn reduces the (manual) time demand. The improved
spectra can then be used in machine learning methods to separate monolayer from mul-
tilayer materials. This adoption of machine learning methods was performed after the
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applied PCA showed characteristic differences between the spectra of mono- and multilayer
films, regardless of their material composition. These overarching differences were used
to train machine learning models. The trained machine learning models could correctly
categorise mono and multilayer materials without the need to include every combination
of multilayer materials in the training set. The computation times were low enough to con-
sider the applicability of these methods for inline classification. Here, additional research is
needed with more potent hardware.
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Introduction

The amended EU Waste Framework Directive sets new require-

ments for waste management to improve sustainability and 

resource efficiency. To target the implementation of an enhanced 

circular economy specific recycling rates for municipal waste 

were announced. By 2030 the recycling of municipal waste must 

be increased to a minimum of 60 wt% (Directive (EU) 2018/851, 

The European Parliament and the Council of the European 

Union (2018b)). Additionally, the required recycling rate for 

plastic packaging waste (PPW) by 2030 will be 55 wt% 

(Directive (EU) 2018/852, The European Parliament and the 

Council of the European Union (2018a)). In 2016 an average of 

just 42 wt% of 16.3 million tonnes of European PPW was recy-

cled. Germany reached 48 wt% and Austria 34 wt% (Eurostat, 

2019). Besides these conditions, the DKR (Deutsche Gesellschaft 

für Kreislaufwirtschaft und Rohstoffe mbH) sets further quanti-

tative and qualitative specifications in some countries, such as 

Germany and Austria. Amongst others this concerns minimum 

amounts of recyclables, as well as the nature and limit for impu-

rities (Feil et al., 2017).

To attain these required recycling goals significant improve-

ments, not merely concerning the collection but rather the treat-

ment of waste, are necessary. The modern recycling of 

post-consumer PPW is carried out in automatic sorting facili-

ties. The use of sensor-based sorting (SBS) machines for this 

material is state of the art and enables the separation of various 

types of plastic. Normally a cascade of near-infrared (NIR) 

units follows pretreatment steps such as bag opening and metal 

and film removal to guarantee the demanded quality of products 

(Jansen et al., 2015). The separation of different types of plas-

tics is crucial for a successful circular economy. If certain impu-

rities remain in the sorting product special treatment (e.g. the 

forming of polymer blends using compatibilizers) is necessary 

for the regeneration of plastic. Otherwise the recycling products 

will be of lower quality (‘downcycling’) (Ragaert et al., 2017). 

As a consequence, not only the quantity but also the quality 

assurance of PPW recycling products is important.

According to technical literature and manufacturer specifica-

tions for SBS machinery the performance of such technologies is 
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subject to the load put on a respective unit. This load can be 

defined by the throughput rate (either volumetric or mass spe-

cific), material properties (e.g. particle size distribution) and the 

composition of the input material for a sorting unit (e.g. share of 

material that is supposed to be ejected via air shocks) (Cord-

Landwehr, 2010; Redwave, 2019; Steinert, 2019).

To increase the performance of a sorting plant, not only the 

used technology in an SBS unit is relevant. The operation mode 

of the machine (e.g. the classification algorithm) as well as the 

functioning of prior processing and sorting units can have a 

severe influence on the sorting performance (Feil et al., 2016).

Generally speaking, there are two main external factors which 

determine the performance of an SBS machine: the throughput 

rate and the input composition (Feil et al., 2019). These factors 

are influenced by various aspects of a sorting plant. Besides oth-

ers, the following are crucial:

1. Fluctuations of input quantity and quality (Feil et al., 2019; 

Martens and Goldmann, 2016)

- Waste heterogeneity and seasonal or regional fluctuations

- Batch-feeding of the continuously working sorting plant 

evokes mass flow peaks, for example through use of 

mobile loading technology (wheel loaders)

- Inconsistent material discharge of processing machinery 

can result in under- or overfilling of aggregates (fluctua-

tions throughout the week or day)

2. Screening efficiency (e.g. drum screen) (Feil et al., 2019)

- Varying particle size distribution of heterogeneous waste

- Low bulk density of plastics

- Screen mesh size

- Inclination and rotational speed (calibrated to achieve the 

residence time for a certain material flow rate)

- Degree of filling (under- or overfilling)

3. Operation mode of other aggregates (Feil et al., 2016, 2017; 

Jansen et al., 2015)

- Air classifier: air velocity defines which materials (films, 

beverage cartons, etc.) are separated

- Feeding hopper: mechanical stress performed on the 

material might change the bulk density and therefore the 

throughput.

The aforementioned factors determine the mass flow (short and 

long term) and composition of the input into downstream SBS 

stages. In addition to the sensor performance, which can depend 

on the surface conditions of particles (e.g. moisture and rough-

ness influence the classification) (Küppers et al., 2019), there are 

other influences which determine the efficiency of SBS:

•• Number of sorting stages: rougher, scavenger and cleaner 

units. One step can either focus on yield or product quality 

(Feil et al., 2019).

•• Singling of particles versus monolayer for spatial delimita-

tion: basis for particle identification and selective separation 

(Feil et al., 2019).

A precise knowledge of possibilities and limits of the different 

units in a recycling plant is fundamental for operating ecologi-

cally and economically (Feil et al., 2017). The current research at 

the Chair of Waste Processing Technology and Waste Management 

of the Montanuniversität Leoben aims to quantify the impact of 

input composition and throughput rate (occupation density) on 

SBS. Küppers et al. (2020) found the following systematic effects 

from prior SBS trials:

•• With increasing throughput rate the yield, recovery and prod-

uct purity decrease while the product quantity increases.

•• With increasing eject share in the input the yield, recovery 

and product purity increase as well as the product quantity.

This study focuses on input specific effects of varying particle 

sizes and two-dimensional (2D) disturbing material (e.g. from 

poorly functioning air classification) in the input and the influ-

ence of failing air valves on the sorting performance of an SBS 

machine.

Materials and methods

In the conducted series of tests, the separation of post-consumer 

polyethylene terephthalate (PET) from polyolefin (PO) was stud-

ied. In all experiments PET was intended to be discharged via air 

shocks while PO was intended to be rejected (no ejection through 

air shock).

Materials

The examined material originates from a shredded (<30 mm) air 

classifier heavy fraction of separately collected PPW material. 

Films, metal particles and other impurities were removed to gen-

erate a defined initial state, ensuring correct classification of all 

particles in the test material. This way the uncertainty factor ‘sen-

sor’ was excluded from the study, which meant that all observed 

variations were due to sorting and not to sensing errors. Both the 

PET and the PO fractions were sorted and analysed multiple 

times with the SBS test stand in advance to ensure that both mate-

rials had 100% purity before the start of the experiments.

To generate a 2D fraction with assured correct recognition as 

reject material, standard paper (80 g m-2) was cut into pieces of 

approximately identical size. The side length of the squares was 

about 5.2 cm (in the range of 4.5–5.5 cm).

Equipment

The experimental SBS setup, engineered by Binder+Co AG, is 

used to separate material according to different sorting criteria via 

a compressed air nozzle bar. As shown in Figure 1 a colour line 

scan sensor (VIS), an induction sensor and the employed NIR line 

scan sensor (EVK Helios-G2-NIR1) are part of the test stand but 

only the NIR line scan sensor was used for the experiments. An 

upstream vibrating conveyor with an optional feeding hopper was 
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used to feed the sample material to the chute sorter. The working 

width and length are 500 mm and 455 mm, respectively.

An infrared lamp is utilized as the emitter for the setup. The 

emitted radiation interacts with the near-surface molecules of the 

particles and is reflected, absorbed and/or transmitted depending 

on the chemical composition of these particles. The dispersed 

reflected radiation strikes the NIR sensor and is detected. 

Subsequently, this radiation (wavelength range: 1000–1700 nm) is 

converted into an electrical signal. A spatial pixel is 1.60 mm wide 

due to the geometry of the experimental setup. Depending on the 

sliding speed of the particle on the chute, the length of the pixel 

may vary but is always smaller than 1.60 mm. The frame rate of the 

line scan sensor is always 476 Hz with an exposure time of 1800 μs.

The sorting algorithm of the test stand digitally segments 

objects >35 mm in conveying direction. Every object is then 

classified individually as the material whose false colour pixels 

dominate the object. This is especially relevant for overlapping 

particles of different material. Figure 2 shows different scenarios 

depending on the particle height and the composition of a 

detected and segmented object.

A built-in data acquisition software from Binder+Co AG 

recorded the material specific number of detected objects after 

digital processing and classification.

Methods

In the course of the investigations, 204 experiments were carried 

out in total. These were organized in three phases, which in turn 

consisted of several test series for each generated input composi-

tion (Table 1):

Phase 1: reference trials

Phase 2: simulation of a failing block of air valves (on 20% of 

the working width)

Phase 3: simulation of poorly functioning upstream air clas-

sification (added paper)

The results from phase 1 constituted the baseline for the maxi-

mum machine efficiency depending on the respective throughput 

rate and input composition. The scenario of a failing block of air 

valves (phase 2) represented a tangible reference value to assess 

the effect of other factors on the sorting performance. In phase 3 

the influence of 2D material, classified as reject (PO), was inves-

tigated. The number of experiments for the three phases and 

respective test series can be seen in Table 1. Trials for each test 

series (different mixing ratios) were conducted at varying 

throughput rates in the range of 5–350 kg h-1. The exact rerun of 

a certain throughput rate was not possible, as the focus was to 

ensure a steady material feed. Accordingly, all trials in each test 

series were conducted with different throughput rates. Specific 

mixing ratios of PO and PET, e.g. 95/5 = 95 wt% PO and 5 wt% 

PET, were created as input materials. The mixing ratio 95/5 rep-

resented the base mix. Further PET particles were added to create 

the other mixing ratios. Depending on the mixing ratio, approxi-

mately 18,500–34,500 PET and PO particles were used for each 

experiment, according to the data acquisition software. For the 

Figure 1. Experimental setup for sensor-based sorting trials.

Figure 2. Classification mechanism depending on particle height (h).
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trials in phase 3 paper was added to the mixture. To each mixing 

ratio 5 wt% of the existing total mass were added on top.

Experimental procedure

For each test series a different mixing ratio of PET and PO was 

generated to investigate the influence of varying reject and eject 

shares in the input and interdependencies with other factors. The 

mass of each input mixture was recorded. Prior to every trial the 

mixture was thoroughly mixed ensuring even distribution of the 

different materials in the feed. The mixture was fed with the 

vibrating conveyor. For each trial, the test time was recorded 

resulting in the throughput rate of each experiment based on the 

ratio of input mass to test duration. The PET particles were clas-

sified as ‘eject’ material and discharged via compressed air. False 

classification mainly occurred due to the overlapping of reject 

and eject particles, potentially evoking the discharge into the 

wrong output. The composition of the respective eject fraction 

was subsequently analysed using the same SBS machine. For 

trials with paper in the input material all paper particles were 

removed prior to analysis, enabling assessment of its effect on 

incorrect discharge of PO and yield of PET only.

Statistical evaluation

For the online analysis of both the input material of each experi-

ment and the eject fraction a data acquisition software was used. 

The number of detected objects for each material (PET, PO, 

paper and ‘unknown’) was recorded. The number of detected 

objects in the input material allows conclusions concerning the 

sorting performance. The number of detected objects during the 

analysis of the eject fraction provides information on recovery, 

yield, purity and incorrectly discharged PO particles. The analy-

ses of the eject fractions were conducted at low throughput rates 

to ensure particle separation, thus reliable data.

The results were evaluated with respect to recovery (R), yield 

(Rw), purity (Pm) and incorrect PO discharges (POEject). For the 

calculation of each assessment factor the equations in Table 2 

Table 1. Number of experiments for the different trial phases.

Mixing ratio (PO/PET) Phase 1: reference trials Phase 2: failing block of air valves Phase 3: failing air classifier

95/5 10 21 6
90/10 11 23 -
80/20 11 20 6
70/30 10 19 6
60/40 12 17 6
50/50 10 17 5
Total 64 117 23

PET: polyethylene terephthalate; PO: polyolefin.

Table 2. Assessment factors for trial assessment (Feil et al., 2016).
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were used. The variable m ̇ describes the mass flow (input, output, 

recyclable material or impurities) in tonnes per hour while the 

concentration c in input or output is given as mass percentage.

All results presented in this study were evaluated on the basis 

of particle related recovery, yield, purity and incorrect PO dis-

charges as this is most suitable for the assessment of an SBS unit. 

Hence, in the aforementioned calculations the mass flow com-

plies with the number of objects in a defined time range. As a 

result, the assessment factors are given in particle percentage 

(p%) instead of mass percentage. The particle-related informa-

tion can be converted into mass specific data by using material 

specific correction factors, taking into account the particle spe-

cific average grammages of eject and reject fractions.

Results and discussion

All experimental results are assessed on the basis of yield, purity, 

recovery and the share of incorrectly discharged PO particles. 

The first experimental results are those of the reference trials, 

quantifying the effects of different eject and reject shares in the 

input composition as well as the influence of the throughput rate 

on sorting efficiency. Subsequently the impact of the 2D material 

on the performance of an SBS stage is quantified and compared 

with the effect a defective block of air valves has on the sorting 

efficiency.

Reference trials

At throughput rates under 15 kg h-1, yields >97 p% were achieved 

independent of the input composition. The yield was found to 

decrease in a linear fashion for increasing throughput rates. This 

decrease is caused by the overlapping or contact of PET and PO 

particles resulting in wrong classification of PET particles due to 

unfavourable digital segmentation.

For input compositions 95/5 and 90/10 the gradient is 

steeper than for more balanced input mixtures reaching about 

50 p% yield at approximately 270 kg h-1. The different gradi-

ents can be due to the fact that the experiments with PET shares 

>10 wt% had to be conducted by using the hopper to handle 

the input material, thus causing better deagglomeration, while 

trials with PET shares of 5 wt% and 10 wt% were conducted 

with the vibrating conveyor only. Additional experiments sup-

port this theory, showing that the input composition had no 

impact on the yield.

However, trials with coarser, rectangular particles created an 

exponential decrease in yield (Küppers et al., 2020). The form of 

the respective yield function might be dependent on the particle 

size distribution of the input material (Figure 3) in dependence of 

the sorting algorithm. This bears potential for further research, 

for example experiments regarding the effects of object versus 

pixel cluster classification on sorting performance in various par-

ticle size ranges.

The incorrect PO discharge (Figure 3) increases in the form of 

a saturation curve for all input compositions. As correct classifi-

cation of PET and PO pixels was ensured, only two reasons for 

incorrect PO discharge persist:

•• Overlapping or contact of PET and PO particles resulting in 

wrong classification of PO particles due to unfavourable digi-

tal segmentation

•• Entraining of nearby PO particles via air shocks that are sup-

posed to only eject PET particles

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250 300

P
u

ri
ty

 [
p

%
]

Throughput [kg h-1]

Purity

50/50
60/40
70/30
80/20
90/10
95/5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250 300

R
e

c
o

v
e

ry
 [

p
%

]

Throughput [kg h-1]

Recovery

50/50
60/40
70/30
80/20
90/10
95/5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250 300
In

c
o
rr

e
c
t 

P
O

-d
is

c
h

a
rg

e
s
 [
p
%

]

Throughput [kg h-1]

Incorrect PO-discharges

50/50

60/40

70/30

80/20

90/10

95/5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250 300

Y
ie

ld
 [

p
%

]

Throughput [kg h-1]

Yield

50/50

60/40

70/30

80/20

90/10

95/5

Figure 3. Effects of input composition (PO/PET) and throughput rate on yield, incorrect PO discharges, purity and recovery.
p%: particle percentage; PET: polyethylene terephthalate; PO: polyolefin.
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The latter reason is directly linked to the pressure that is used for 

the separation of eject particles with the air valves.

The forms of purity and recovery functions arise from the 

form of the saturation curve of the incorrectly discharged PO par-

ticles and from the linear decrease of the yield. The latter func-

tions dictate the course of purity and recovery functions in 

dependence of the throughput rate.

The limit for each saturation curve of incorrectly discharged 

PO particles is always a multiple of the PET share in the 

respective input composition. This factor ranges from 2 for 

mixture 95/5 to 1.1 for mixture 50/50. The decreasing slope of 

the curve of incorrect PO discharges can be attributed to the 

differing numbers of PO particles that are entrained at specific 

throughput rates, reducing the probability that more PO parti-

cles are incorrectly discharged if the throughput rate is 

increased furthermore.

The share of entrained reject particles is of importance 

because firstly it determines the eject purity and secondly the 

entrained reject particles might consist of lost recyclable mate-

rial that otherwise could be separated in downstream sorting 

stages. To know how much of this material is lost per time unit, 

the share of PO particles entrained into the eject fraction must 

be related to the total quantity (kilograms per hour) of input 

material for a respective sorting stage and not to the relative 

share of PO particles in the input material. Figure 4 shows the 

amount of PO particles (with regard to the total input) that is 

entrained into the eject fraction at a specific throughput rate, in 

this example 200 kg h-1, for different input compositions under 

the assumption that PO and PET particles have the same 

weight. The maximum value of this function varies in depend-

ence of the ratio of reject and eject material in the input 

composition.

Two variables affect the quantity of entrained PO:

The share of eject particles causing a respective number of air 

shocks per time unit that could potentially entrain reject parti-

cles – the higher the share of eject particles the more air 

shocks are triggered.

•• The share of reject particles in an input mixture that could be 

incorrectly discharged – the higher the share of reject parti-

cles the more reject particles could be entrained.

In industrial applications usually the material fraction that domi-

nates a mixture is rejected, while the minor fraction is ejected. 

Accordingly, no trials were conducted with eject shares >50 p% 

(Figure 4). If no PO was present in the input (100% PET content) 

the amount of entrained PO would be 0 kg h-1. On the contrary, at 

0% PET content no air shocks would be triggered resulting in 

0 kg h-1 of incorrect PO ejection, if no false classification of PO 

as PET is presumed.

The right-skewed distribution function indicates that the 

maximum amount of losses occurs for an input mixture that 

comprises one-third eject and two-thirds reject material (parti-

cle and not mass related). Accordingly, neither the share of 

incorrectly discharged PO particles nor the eject purity are 

directly correlated to the entrained reject share. As a result of 

this observation the highest loss of reject material into the eject 

fraction is to be expected for mixtures with one-third eject 

material particle percentage and two-thirds reject material par-

ticle percentage. This maximum can be explained by the fact 

that one eject particle bears the chance of entraining multiple 

reject particles into the eject fraction and not vice versa.

Influence of increased 2D material share 
(paper) and a failing block of air valves

Figure 5 shows that a failing block of air valves decreases the 

eject yield in accordance to the working width it covers (in this 

case 20 p% ±5 p% as the block of valves also covers 20% of the 

working width) independent of the input composition or through-

put rate.

The decrease of entrained PO is throughput dependent and 

reaches approximately 4–10 p%. The respective maximum 

decrease is reached at moderate throughput rates of 60 kg h-1 (PET-

rich input mixtures) and 150 kg h-1 (PO-rich input mixtures).

As incorrect PO discharge is reduced to a lesser degree than 

PET yield the purity of the eject fraction showed a slight overall 

decrease of <5% due to the failure of the air valves. This can be 

attributed to the fact that PO particles, sliding over the area that is 

covered by the inactive block of air valves, can still be entrained 

by air shocks from working air valves nearby. Accordingly, it is 

presumed that the failure of multiple blocks of air valves has a 

bigger effect on the product purity if the blocks are not directly 

adjacent to one another.

The results show that the presence of 2D material in the feed 

of an SBS stage at low throughput rates has little to no effect on 

the yield but leads to a decrease of approximately 20 p% in yield 

for high throughput rates. A similar trend is apparent for incor-

rectly discharged reject material whose share decreases by 

approximately 10%. Accordingly, the presence of 2D material 

(5 wt% added) and inactive air valves (covering 20% of the work-

ing width) had a similar repercussion on the sorting process.
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Figure 5. Influence of failing air valve blocks and 2D material on sensor-based sorting as functions of the throughput rate for 
various input compositions (PO/PET: 60/40, 80/20 and 95/5).
PET: polyethylene terephthalate; PO: polyolefin.

Conclusion

Quantitative investigations allow for particle specific assertions 

concerning the sorting performance of an SBS stage with regard 

to recovery, yield, purity of the eject fraction and share of incor-

rectly discharged reject particles. To transfer such information to 

mass specific statements the average grammage of eject and 

reject particles must be known. The given results show system-

atic effects of various factors that were investigated: input com-

position, throughput rate, presence of 2D material in the input 

material and malfunction of air valves on the machine perfor-

mance. Further factors, either material or machine specific, are of 

vital relevance for the sorting performance; these are principle of 

the sorting algorithm (e.g. segmentation of particles), particulate 

weight, feeding method (e.g. type of vibration conveyor) and par-

ticle shape. Additionally, the influence of the particle surface 

condition (e.g. organic defilements, labels and adherent particles) 

on the classification must be taken into consideration to deter-

mine the overall sorting performance.

The following assertions can be made based on the conducted 

trials:

•• Yield is not affected by the share of eject and reject particles 

in the input. Yield decreases with rising throughput rate.

•• Incorrect discharge of PO particles increases in the form of a 

saturation curve with rising throughput rate. The limit for the 

maximum incorrect discharge is a multiple (factor 1.1–2) of 

the PET share, thus dependent on the input composition. The 

absolute quantity of entrained reject particles is highest for 

approximately one-third eject share although the relative loss 

of PO particles is highest for 50 wt% PO share in the input.

•• Purity of the eject fraction decreases with increasing through-

put rate. Purity of the eject fraction decreases with decreasing 

eject share in the input composition, whereby the influence of 

the eject share is enlarged with increasing throughput rate. 

Purity and recovery are functions of yield and incorrectly dis-

charged reject particles.

•• 2D material (classified as reject) in the input of a sorting stage 

proved to reduce the yield and incorrect reject discharge at 

increased throughput rates. For low throughput rates the 

influence of 2D material on sorting performance was negligi-

ble. A 5 wt% of 2D material had a similar effect on the sorting 

performance at high throughput rates as the failure of a block 

of air valves covering 20% of the working width of the SBS 

setup, whereas the effect of the failing air valves affected the 

sorting efficiency also at moderate throughput rates: incorrect 

PO discharge was reduced by 4–10 p%, peaking at high 

throughput rates for all input compositions. The yield was 

reduced by 20 p%, independent of the input composition.

To attain more comprehensive knowledge on interdependencies 

and the relevance of various machine and material specific influ-

ence factors, further trials with regard to the effects of e.g. 

machine design (chute versus belt sorter), air nozzle design, 

applied air pressure and particle properties should be conducted. 

Such information can enable the modelling and optimized con-

figuration of throughput rate and machine settings to attain opti-

mal machine and plant performances.
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Abstract: At present, sensor-based sorting machines are usually not operated at the optimal operation

point but are either overrun or underrun depending on the availability of waste streams. Mathematical

approaches for predefined ideal mixtures can be found based on the input stream composition and

the throughput rate. This scientific article compares whether and under what conditions these

approaches can be applied to sensor-based sorting machines. Existing data for predefined ideal

mixtures are compared with newly generated data of real waste on three sensor-based sorting setups

in order to make significant statements. Five samples of 3D plastics at regular intervals were taken in

a processing plant for refuse-derived fuels. With the comparison of all these results, four hypotheses

were validated, related to whether the same mathematical approaches can be transferred from

ideal mixtures to real waste and whether they can be transferred to sensor-based sorting machines

individually or depending on the construction type. The developed mathematical approaches are

regression models for finding the optimal operation point to achieve a specific sensor-based sorting

result in terms of purity and recovery. For a plant operator, the main benefit of the findings of

this scientific article is that purity could be increased by 20% without substantially adapting the

sorting plant.

Keywords: sensor-based sorting; NIR sorting; optimal operation point; throughput rate; input

composition; purity; recovery; regression model

1. Introduction

Increasingly strict governmental guidelines for the efficiency of recycling plants and
growing demands for recycling rates require state-of-the-art plant management to fulfil
all obligations regarding the purity of product and tonnage of waste processed while still
operating profitably. The new European Waste Framework Directive [1] requires a recycling
rate for all municipal solid waste of 60% by 2030. Furthermore, in 2020, 34.6 kg per capita
of plastic packaging waste had been generated per capita in the European Union with as
little as 13.0 kg per capita being recycled [2]. Stricter legal requirements combined with the
rising consumption of plastic packaging makes new innovative technologies necessary to
increase the efficiency of existing waste-sorting plants to sort plastic waste and plastic from
municipal solid waste.

One of the primary concerns regarding sorting plastic waste is the dichotomy of
meeting both requirements, namely output with sufficient purity while maintaining a high
yield and throughput rate to process sufficient amounts of plastic waste. The dichotomy
lies in the effects of increasing throughput rate on sensor-based sorting (SBS) machines
commonly used to sort plastic waste [3]. It has been shown that diminishing purity is
expected with the increasing throughput rate [4].

Polymers 2023, 15, 4266. https://doi.org/10.3390/polym15214266 https://www.mdpi.com/journal/polymers
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Plastic waste can be sorted using optical sensors in SBS, triboelectrostatic forces
or density separation with hydrocyclones [3]. However, the most applied technology
for sorting post-consumer plastic waste is near-infrared (NIR) spectroscopy applying
hyperspectral imaging [5]. NIR technology is a fast non-contact and non-destructive
SBS method in waste management [6,7]. The NIR region covers a wavelength range
between 750 to 2500 nm [8] and allows the differentiation of various materials based on
the vibration of molecules excited by radiation. The emitted light leads to vibrational
and rotational movements of molecules or parts of molecules of the material. As a result,
the corresponding absorption bands can be captured with an optical sensor in form of a
spectrum [9]. This spectrum provides information about the chemical composition of the
sorting material and enables the detection of measurable separation properties of a material
stream [10].

Two NIR sorting construction types are commonly used in waste processing plants,
which differ in how the waste material is moved past the sensor. The movement is based
either on gravity, when the material slides down a chute, or on mechanical forces using a
conveyor belt. While granular material is usually sorted using a chute, bulky materials are
sorted using conveyor belt machines [11]. The latter systems are also a focus of this study.

SBS plants are susceptible to changes in input quantity and quality (composition), with
surface conditions significantly affecting sorting success [12] and plants being frequently
overrun or underrun, reducing sorting efficiency [4].

Finding the optimal operation point for these SBS aggregates is paramount for the
success and profitability of any waste processing plant. Empirical averages can perform
this optimization and provide an acceptable approximation, but it is time-consuming and
assumed to be repeated for every aggregate [4].

Developing a mathematical approach to optimize the throughput rate of a specific
NIR sorting setup can save valuable time and increase the profitability of existing sorting
setups. Moreover, it can reduce the energy amount for the process by operating the system
at the optimal operation point.

2. Degree of Novelty and Industrial Relevance

Referring to the existing findings in the correlation of input composition, the through-
put rate and the SBS results (purity, yield, recovery) from Küppers [4], we know that there is
a correlation within these parameters in mathematical approaches for ideal self-composed
plastic fractions with a defined mixing ratio (ideal mixtures).

The research novelty of this paper is to determine whether these mathematical ap-
proaches can be extended to real plastic waste and its input compositions because this is
still unknown. Furthermore, when the same mathematical approach cannot be used for
real waste, it is a point of interest how similar mathematical approaches would look for
real plastic waste when the same sorting task is performed.

When a mathematical approach for real plastic waste can be developed, it raises the
research question of what level of precision can be reached for a mathematical approach
that covers input composition, throughput rate, SBS result purity, yield and recovery and,
lastly, in which ranges or threshold values for these parameters the mathematical approach
can work.

If a mathematical approach like that described above can be developed for real plastic
waste, the waste treatment branch can be progressively improved. Friedrich [13] investi-
gated this in an assessment of how sophisticated the waste-sorting industry is in using data
analytics to improve their sorting processes.

The goal in waste-sorting plants is to achieve a required minimum threshold value
for purity and to stay below threshold values for impurities, which differ between the
several types of waste streams. These threshold values are regulated by law or the recycling
process after sorting, e.g., for cullets in the container glass industry, the threshold values
are regulated in Austria in the ”Quality requirements for cullets to be used in the container
glass industry” guideline T 120 from Bundesverband Glas e.V. [14], while the threshold
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values for sorted plastic waste are defined in ”Quality standards for sorted plastic wastes
for recycling” [15].

The main interest of a sorting plant operator is to achieve these qualities so that a
recycling plant buys their produced sorted waste fraction but with a throughput rate as
high as possible to have the maximum possible amount of waste treated and sold per year.
Considering these facts, there is an optimal operation point for achieving a specific SBS
result related to the input stream composition, throughput rate, purity, yield and recovery.
For a plant operator, this means that purity could be increased by 20% without substantially
adapting the sorting plant with the plant at optimal operation point.

The yield was not evaluated in this study since it is only relevant for optimization
when the results in purity and recovery are sufficient. For this reason, this study is focused
on purity and recovery.

For the mathematical approaches to find the optimum operation point, which is the
result after the evaluation and processing of the created data, there are four hypotheses to
be confirmed or negated in this study:

Hypothesis 1: It is possible to create mathematical approaches for SBS machines, which mainly
depend on the input composition of waste and the throughput rate.

Hypothesis 2: It is possible to create a generic mathematical approach for all SBS machines related
to input composition, purity, recovery and throughput rate.

Hypothesis 3: It is possible to create a construction-type-specific (chute or belt sorter) mathematical
approach for all SBS machines related to input composition, purity, recovery and throughput rate.

Hypothesis 4: It is possible to create a machine-specific mathematical approach for all individual
SBS machines related to input composition, purity, recovery and throughput rate.

3. Materials and Methods

Sorting efficiency is commonly analyzed based on recovery (R), yield (RW) and purity
(Pm), three mass-specific (m%) indicators. These were previously reported by Friedrich [10],
as defined in the following paragraphs.

Recovery (R) is the quotient of product mass or mass of ejected material (meject) and
total mass of input (minput) over a given period. Recovery indicates the product produced
per unit of time or a given throughput rate.

R =
meject

[ t
h

]

minput
[ t

h

] × 100%

Yield (Rw) is defined by the quotient of the product produced in the output
(meject × ceject) and valuable materials in the input (minput × cinput). With the mass flow of
the output material (meject) and the calculated recyclable material concentration in the out-
put fraction (ceject), the quantity of valuable material generated in the output is calculated.

Rw =
meject

[ t
h

]

× ceject[%]

minput
[ t

h

]

× cinput[%]
× 100%

Feil proposed a further quality indicator with the calculation of purity Pm [16]. The
percentage of correctly ejected input material—purity—is calculated as follows.

Pm =
mrecyclable material

[ t
h

]

mimpurity
[ t

h

]

+ mrecyclable material
[ t

h

] × 100%
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3.1. Materials

Since there are many different plastic types, the first step is to define a plastic waste
stream which is quite similar to the ideal materials Küppers [4] used. As these were washed
and dried polyolefin plastic flakes, it was decided to use refuse-derived fuel (RDF) sampled
in a waste treatment plant where an SBS machine can be installed to sort mixed plastic
waste into separate plastic fractions.

The next step was to repeat the trials of Küppers [4] on the same experimental SBS
setup to determine the similarity of the mathematical approaches depending on the plastic
waste stream. Then, RDF trials were further performed on two SBS setups with different
construction types to evaluate whether the found mathematical approaches are generally
valid for SBS setups, depending on the construction type or individually on the SBS setup.
In the end, the optimal operation point for achieving a specific sensor-based sorting result
could be described with mathematical approaches. The material was not further processed
after the sampling; it was used directly in the sampled condition for the trials.

3.2. SBS Setups

The trials to be compared were performed on three different SBS setups, the exper-
imental SBS setup at Montanuniversitaet Leoben, the sensor-based chute sorting setup
for technical facilities from an SBS machine provider and the sensor-based belt sorting
setup for technical facilities from another SBS machine provider. All setups are designed as
two-way systems for SBS.

The basic concept of a two-way system can be seen in Figure 1: The input fraction is
passed through a vibration conveyor (1) to either a chute or a belt (2), an optional induction
sensor (3) to detect metals, emitters (4) to detect the particles with signals from imaging
sensors (5) and a compressed air nozzle bar (6), which separates the particles into an eject
and a reject fraction. Both output boxes are separated through a splitter (7).

 

Figure 1. Experimental SBS setup at Montanuniversitaet Leoben [4].

1. Experimental SBS setup

The experimental SBS setup is located at the Chair for Waste Processing Technology
and Waste Management at Montanuniversitaet Leoben. It is a chute sorter manufactured
with an open design to allow simple conversions to be carried out for deriving process influ-
ences. The setup is equipped with three common sensors for waste sorting (Figure 1) [10]:

• An NIR sensor to determine the molecular composition of NIR active particles;
• A color line scan camera to determine the visible light absorbance of elementary

components used for sorting by color;
• An induction sensor to identify metallic components/particles.
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The present research uses the NIR sensor Helios NIR G2-320 provided by EVK DI
Kerschhaggl GmbH, Raaba, Austria [17]. The chute width of the system is 0.5 m. Further
details of the setup can be found in [11].

2. Sensor-based chute sorting setup for technical facilities

The provider of the used sensor-based chute sorting setup (Figure 2) has a technical
facility where the trials are conducted. It is designed as a two-way system, which can be set
up with different sensors like visual spectroscopy (VIS) transmission/reflection, NIR and
metal detection. In the present feasibility study, the NIR sensor Photonfocus MV3-D640I-CL
was used. The system is endowed with a chute width of 0.4 m.

 

Figure 2. Sensor-based chute sorting setup for technical facilities (own depiction).

3. Sensor-based belt sorting setup for technical facilities

The sensor-based belt sorting setup used (Figure 3) was prepared by another provider
with a technical facility where the trials were conducted. The machine was built up as a
two-way machine and can be set up with different sensors like an RGB line scan camera for
VIS sorting, an NIR sensor and a metal detection sensor. The NIR sensor Inno-Spec RedEye
1.7 was used in the present feasibility study. The system is endowed with a belt width of
1.2 m, although the belt was split in the middle for the trials so that the working width for
the trials was 0.6 m.

Table 1 overviews the different NIR sensors installed in the used SBS systems: Helios
NIR G2-320 [17], Photonfocus MV3-D640I-CL [18] and Inno-Spec RedEye 1.7 [19].

The statistical evaluation software of the identification result works on each of the SBS
setups in the same way. All of them prepare the pixel statistic, the material statistic and the
object statistic. These values are used to calculate the purity of the sorted fractions to be
compared for the SBS setups.
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Figure 3. Sensor-based belt sorting setup for technical facilities (own depiction).

Table 1. NIR sensor specification overview of the different types installed in the used SBS
systems [17–19].

Sensor-Based
Sorting Setup

Experimental Sensor-Based
Sorting Setup

Sensor-Based Chute Sorting
Setup for Technical Facilities

Sensor-Based Belt Sorting
Setup for Technical Facilities

NIR Sensor Helios NIR G2-320 Photonfocus MV3-D640I-CL Inno-Spec RedEye 1.7

Technology n.a.
Ingas with CMOS
read out circuit

InGaAs

Resolution n.a. 649 × 512 320 × 256
Pixel size 30 µm × 30 µm 15 µm × 15 µm 30 µm × 30 µm
Spectral range 930 to 1700 nm 930 to 1700 nm 950 to 1700 nm
Line scan rate 500 Hz full frame n.a. n.a.
Spectral resolution 9 nm n.a. 9 nm
Spectral sampling 3.1 nm n.a. n.a.
Spatial resolution 312 pixels n.a. rms spot radius < 35 µm
Slit width 100 µm n.a. 80 µm
Frame rate n.a. 300 fps 330 fps

3.3. Methods

The methodology and the experimental design to confirm or negate the four hypothe-
ses are structured as follows:

1. Phase

The first phase was developing an NIR sorting model to compare the SBS setup
performance. Sample 1 was used as a reference sample (“sorting model creation sample”)
to record the raw spectra to be taught and is not included in the trials. This procedure was
chosen to have the material classes of the creation samples available as identical fractions
for further test series on all used sensor-based sorting setups for comparability.

In order to ensure comparability, the same raw spectra from PET and PP, which were
published by Küppers [4], were used in the NIR sorting model for the RDF fraction on the
experimental SBS setup. Further spectra must be recorded first in order to be added to the
NIR sorting model.

Using the same raw spectra files for the sensor-based chute sorting setup and the
sensor-based belt sorting setup is impossible since the software does not allow the files to
be imported from the experimental SBS setup. In these setups, all of the raw spectra have
to be newly recorded and new NIR sorting models developed.
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2. Phase

The second phase was performing trials with four RDF fractions with at least three
different throughput rates to obtain mathematical approaches for each SBS setup. In sum,
at least 108 trials were performed. The number of further trials depends on each setup’s
time availability and the recorded data’s plausibility.

3. Phase

Expected results were predicted with regression algorithms in machine learning. The
input parameters were used to predict the respective output parameters using regression.
Regression helps define the relationship between the target variable to be predicted and
created data points. It is a type of supervised learning in machine learning that helps map a
predictive relationship between target values and data points. The regressions used in this
study are gaussian process regression (GPR) and a regression neuronal network (RNN) for
finding the best-fitting regression model in a mathematical approach. The input parameters
(regressors) are the input composition and the throughput rate, the output parameters
(regressands) are purity and recovery.

MATLAB code was developed to evaluate the trial results in regression models and
principal component analysis for finding mathematical approaches. All computation
was carried out using MATLAB by MathWorks (Natick, MA, USA) using “9.13.0.2105380
(R2022b) Update 2” on a Windows 10 computer equipped with an Intel® UHD Graphics
630 GPU and an Intel ® Core ™ i5-9400H CPU clocked at 2.50 GHz.

A ranking of features for regression using the MRMR algorithm was performed to
determine which of the following parameters influence the sorting result:

• Input composition based on the purity of the input fraction: amount of target material
to be ejected of the input fraction (m%);

• Throughput rate: amount of mass per hour through the sorting setup (kg/h);
• Target material: material class, which is ejected, depending on the NIR sorting

model (-);
• Aggregate: type of SBS setup to be used (-).

MRMR algorithms were used to find an optimal set of features that is dissimilar and
represents the response variable effectively. The parameters listed above were evaluated
according to their influence in the sorting result in a predictor ranking with a predictor
importance score.

Then, a statistical evaluation was carried out with RMSE and R2; the regressions
were performed with GPR and the RNN. The results are shown in 3D and 2D diagrams
depending on which fits better for visualization.

The models, GPR and the RNN, were trained on a training set comprising 70% of the
data. The testing set consisted of the remaining 30% of the collected data in compliance with
existing findings depicting the ideal training/test split. The statistical values mentioned
above were calculated from the model’s performance on the test set. A short introduction
to the underlying methods of GPR and the RNN is given in the following section.

The task at hand can be defined as a regression task. This initial distinction is necessary
to evaluate the feasible machine learning tools. Regression is a type of supervised machine
learning task where the goal is to predict a continuous numeric output (a real-valued
number) based on input data. Supervised machine learning implies that the prediction
algorithm is trained on labeled data consisting of input–output pairs (X, y), where X
represents the input data, and y represents the corresponding output values. The model
aims to learn to capture the underlying relationships.

A GPR (gaussian process regression) model is a probabilistic, non-parametric machine
learning algorithm used for regression tasks. It is a powerful tool for modeling and
predicting continuous data, particularly when dealing with uncertainty. GPR is based on the
principles of gaussian processes, which are a method of obtaining probability distributions
over functions. GPR as a non-parametric model is well suited for the underlying data as it
does not make strong assumptions about the functional form of the data. This is a stark
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contrast to parametric models like linear regression, which assumes a fixed functional form
(e.g., a linear relationship), As such, GPR can capture a wide range of functions by learning
from data.

Regression neural networks (RNNs) are a type of artificial neural network (ANN)
specifically designed for solving regression problems. RNNs are powerful tools for model-
ing complex relationships between input features and continuous target variables. RNNs
consist of multiple layers of interconnected neurons, organized into an input layer, one or
more hidden layers and an output layer. Each neuron is associated with a weight and a
bias, which are adjusted during training to optimize the network’s predictive capability.

4. Phase

The found regression models were used to test the four hypotheses of this study re-
garding finding an SBS machine’s optimal operation point. The hypotheses were confirmed
or negated. Each confirmed hypothesis can help in finding the optimal operation point and
describing it depending on the result and the number of confirmed hypotheses.

4. Results and Discussion

The investigated materials were sampled in an RDF processing plant. The plant
processes 16 to 17 t/a input waste streams. These waste streams consist of 70 to 80% residue
from sorting processes in several waste-sorting plants for lightweight packaging waste. Of
this waste, 20 to 30% comprises high caloric fractions. The waste is comes from commercial
waste collection. The output fractions of the plant are 2D and 3D RDF fractions.

After PVC and metal separation of the mixed plastic fractions, the fraction was shred-
ded to a grain size > 100 mm. Next, the material was passed through a fluted screen before
a two-stage centrifugal separator was used to obtain 2D and 3D RDF fractions. The fraction
relevant to this work is the 3D RDF fraction. For this reason, the material for this paper
was sampled after the second centrifugal separator (Figure 4).

 

Figure 4. Second centrifugal separator in the RDF processing plant (own depiction).

For sampling, the flap at the side of the second centrifugal separator was opened, and
the samples were taken during the fall of the conveyor belt. Since the samples must be
representative to indicate the material stream, the sampling was carried out with a bucket
moving slowly from left to right at the fall point of the conveyor belt. This procedure was
performed five times over several days so that the five samples represented the variability
of the RDF processing plants’ waste streams after the second centrifugal separator.



Polymers 2023, 15, 4266 9 of 18

Sample 1 from 17 August 2020 was used as the reference fraction for creating an NIR
sorting model of the five samples taken. Sample 1 was chosen because it has a higher
mass than the other four samples and thus represents a larger range of particles for the
sorting model creation. Sample 2 is presented in Figure 5 as an example of how the sorted
samples look.

 

Figure 5. Sample 2, sampled on 19 August 2020, mass 4.102 kg (own depiction).

In the first step, the sampled RDF fractions must be prepared before starting the trials.
Metal particles were separated from all fractions with the induction sensor of the exper-
imental SBS setup at the Chair of Waste Processing Technology and Waste Management
of Montanuniversitaet Leoben. Metals have a higher density than plastics in the RDF
fraction, which requires different setup parameters due to the delay time for the material
discharge or the discharge pressure setting. Furthermore, Furthermore, the SBS is installed
in plants after the metal separation in plants after the metal separation, which means the
mathematical approaches may be used with a material flow already decontaminated from
metal. Table 2 shows the sample composition of metals and metal-free fractions in their
mass and percentage distribution.

Table 2. Sample composition divided into metals and metal-free fractions.

Sample 1 2 3 4 5
Sampling Date 17.08.2020 19.08.2020 02.10.2020 06.10.2020 20.10.2020

Unit (kg) (m%) (kg) (m%) (kg) (m%) (kg) (m%) (kg) (m%)

Metal-free 6.33 86.8 2.88 70.3 3.88 74.3 3.82 85.4 3.86 90.0
Metal 0.96 13.2 1.22 29.7 1.34 25.7 0.66 14.6 0.43 10.0

Sum 7.29 100.0 4.10 100.0 5.22 100.0 4.48 100.0 4.29 100.0

Next, the components of the metal-free fractions were analyzed in detail based on
visual inspection followed by NIR characterization on the experimental SBS setup at
Montanuniversitaet Leoben. For the characterization, the NIR sorting model used by
Küppers [4] was applied for PET, PE and PP and extended with further new material
classes, as shown in Table 3. Materials not listed in Table 3, such as textiles, are included in
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the rest “MC” (material class) category. A further breakdown of the classes is not required
since individual large particles are responsible for the high mass fraction. Furthermore,
particles could not be assigned to increased fine grain fraction (>2 mm), or the masses were
too low to assign them to another new fraction.

Table 3. Sample composition of the metal-free fraction from selected individual fractions considered.

Sample 1 2 3 4 5
Sampling Date 17.08.2020 19.08.2020 02.10.2020 06.10.2020 20.10.2020

Unit (kg) (m%) (kg) (m%) (kg) (m%) (kg) (m%) (kg) (m%)

PP 0.94 14.9 0.38 13.3 0.46 11.8 0.46 12.1 0.44 11.5
PET 1.68 26.5 0.73 25.2 0.85 22.0 1.17 30.5 1.23 32.0
PVC 0.25 3.9 0.14 4.9 0.26 6.8 0.17 4.4 0.11 3.0
Wood/Foam 0.97 15.3 0.43 14.8 0.94 24.2 0.70 18.4 0.70 18.0
TPU 0.06 1.0 0.01 0.3 0.02 0.4 0.02 0.4 0.01 0.3
HDPE 0.18 2.8 0.06 2.0 0.05 1.2 0.04 1.0 0.11 2.9
LDPE 0.52 8.2 0.30 10.4 0.41 10.5 0.45 11.7 0.55 14.2
PS 1.00 15.8 0.72 25.0 0.64 16.4 0.54 14.3 0.57 14.8
Rest “MC“ 0.74 11.6 0.12 4.1 0.26 6.7 0.28 7.2 0.13 3.2

Sum 6.33 100.0 2.88 100.0 3.88 100.0 3.82 100.0 3.86 100.0

For the trials, PET, PP and PVC were considered due to their abundance in the waste
composition (Table 3). LDPE consists of many small 2D films, for which sorting is not
effectively possible with the same machine settings as for 3D plastics due to their ability
to fly and low density. PVC was considered because it is not desirable in RDF due to its
chlorine content and must be discharged anyway. All other material classes were summed
up as the Rest category. Table 4 shows the material classes considered for this study.

Table 4. Sample composition used for the trials.

Sample 1 2 3 4 5
Sampling Date 17.08.2020 19.08.2020 02.10.2020 06.10.2020 20.10.2020

Unit (kg) (m%) (kg) (m%) (kg) (m%) (kg) (m%) (kg) (m%)

PP 0.94 14.9 0.38 13.3 0.46 11.8 0.46 12.1 0.44 11.5
PET 1.68 26.5 0.73 25.2 0.85 22.0 1.17 30.5 1.23 32.0
PVC 0.25 3.9 0.14 4.9 0.26 6.8 0.17 4.4 0.11 3.0
Rest 3.46 54.7 1.63 56.6 2.31 59.5 2.03 53.0 2.07 53.5

Sum 6.33 100.0 2.88 100.0 3.88 100.0 3.82 100.0 3.86 100.0

After each trial, the results included the calculated purity and recovery. Next, the
four hypotheses developed in this study were either confirmed or negated. In the end, the
industrial outreach of the findings was predicted.

Hypothesis 1: It is possible to create mathematical approaches for SBS machines, which mainly
depend on the input composition of waste and the throughput rate.

The input parameters of each sorting trial were the waste stream’s input composition
and the sorting process’s throughput rate. A feature evaluation was carried out to ascertain
the influence on the sorting results of the parameters input composition (based on the
purity of the input fraction), throughput rate, target material to be sorted and aggregate
(SBS setup).

Intuitively, one would expect the input composition and throughput rate to be the
dominant input variables for predicting the output’s purity and the recovery of valuable
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materials. This is because neither the target material nor aggregate change in response to the
input material and thus only allow for a rough estimate of achievable purity and recovery.

The performed feature selection supports this intuition. The results of ranking features
for regression using MRMR algorithms (Figure 6) show that two of the four evaluated
parameters mainly influence the sorting result. The target material to be sorted and the
selected aggregate (SBS setup) have low prediction value. This means the sorting result
mainly depends on the purity of the input material and the throughput rate. The purity of
the input has a predictor importance score of 0.13, while the throughput rate has a score
of 0.08.

 

Figure 6. Ranking of features for regression using MRMR algorithm.

The performed analysis of models trained on all four input variables in comparison to
models trained on input composition and throughput further supports this. Models trained
on all available input variables performed as well as or worse than their counterparts that
adhered to the MRMR feature selection.

Table 5 shows the results of the preliminary sensitivity analysis to gauge the model
response to the inclusion of aggregate type and target material in addition to input compo-
sition and throughput. The gain is minute as the model performance on the testing set did
not improve when including aggregate type and target material in the training data set.

Table 5. Results of input variable sensitivity analysis for all aggregates using two or four of the
available input variables.

Model R2 (-) RMSE (%) Target

Used Parameters 2/4 4/4 2/4 4/4

RNN for Purity 0.29 0.22 10 11 Purity

GPR for Purity 0.57 0.59 8 8 Purity

RNN for Recovery 0.48 0.5 15 15 Recovery

GPR for Recovery 0.59 0.48 14 15 Recovery



Polymers 2023, 15, 4266 12 of 18

In consideration of Figure 6, Hypothesis 1 can be confirmed.

Hypothesis 2: It is possible to create a generic mathematical approach for all SBS machines related
to input composition, purity, recovery and throughput rate.

In order to find a mathematical approach which describes the relation between input
composition, throughput rate, purity and recovery for all trials, these data is used to create
regression models.

Figure 7 shows the deviation of predicted and observed values for purity and recovery
in regression models. An ideal prediction of the sorting result related to purity or recovery
was considered a low deviation between prediction and observation.

  

  

Figure 7. GPR and RNN process regressions for purity and recovery for all aggregates (SBS setups).

For purity, both of the regressions—GPR and RNN—do not allow the development of
a mathematical approach that might work for a significant prediction. The RMSE with 11
and 12% and the R2 with 0.34 and 0.094 indicate that a mathematical approach related to the
input composition and the throughput rate, valid for all SBS setups, cannot be developed.

For recovery, the regression models work well up to 40 m%; from then on, only
sporadic data points are available. The model works in the areas depicted by the data, as
expected. The values for RMSE with 15 and 18% are far too low, as is the R2 of 0.42945 and
0.33202, to develop the desired mathematical approach.

In consideration of Figure 7, Hypothesis 2 can be negated.
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Hypothesis 3: It is possible to create a construction-type-specific (chute or belt sorter) mathematical
approach for all SBS machines related to input composition, purity, recovery and throughput rate.

According to the result for all aggregates in Figure 7, it can be predicted that a math-
ematical approach which describes purity and recovery related to input composition
and 439 throughput rate machine type-specific cannot be developed. The deviations be-
tween the 440 prediction and the observations are severe—as described in the previous
hypothesis 2—441 to get suitable mathematical approaches for predicting sorting results.

In consideration of Figure 7, Hypothesis 3 can be negated.

Hypothesis 4: It is possible to create a machine-specific mathematical approach for all individual
SBS machines related to input composition, purity, recovery and throughput rate.

For the data of trials with ideal mixtures on the experimental SBS setup, the RNN
developed a better regression model. For the RDF trials on the experimental SBS setup,
the sensor-based chute sorting setup and the sensor-based belt sorting setup for technical
facilities, GPR developed the superior model.

According to the analysis of the experimental SBS setup data, the regression models
differ from the type of waste to be sorted for purity and recovery. This means it is not the
target material itself that influences the sorting result, as proven in hypothesis 1, but rather
the condition of the waste type to be sorted. The ideal mixture was created from plastic
packaging waste shredded to a grain size >30 mm, while the RDF was shredded to a grain
size >100 mm. It can be stated that the pretreatment and condition of the waste influence
the regression models.

The regression models on the used SBS setups for RDF differ from setup to setup,
although the material is the same. This indicates that when regression models are used
to describe the correlation between the input and output parameters of a sorting process,
these models have to be created separately for each SBS setup.

Figure 8 visualizes an example depiction of model predictions on test sets with losses
calculated on model prediction vs. true value with a 3D fitted curve. It shows the trend of
the actual data related to the purity of input and throughput rate on the sensor-based belt
sorting setup (A) and the sensor-based chute sorting setup (B) including R2 and RMSE for
the underlying prediction model.

 

A

Figure 8. Cont.
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B 

Figure 8. Example depiction of model predictions on test sets with losses calculated on model
prediction vs. true value with a 3D fitted curve: trend of the actual data related to the purity of input
and throughput rate on the sensor-based belt sorting setup (A) and the sensor-based chute sorting
setup (B) including R2 and RMSE for the underlying prediction model.

For interpreting the findings of each SBS setup, a statistical evaluation of the regression
models was carried out with RMSE and R2. The results are listed in Table 6.

Table 6. Statistical evaluation results of the regression models with RMSE and R2.

SBS Setup Sample Regression Model Purity Recovery

Statistical Value
RMSE

(%)
R2

(-)

RMSE
(%)

R2

(-)

Experimental SBS setup Ideal mixtures RNN 7 0.84921 3 0.95786
Experimental SBS setup RDF GPR 5 0.50306 2 0.96956
Sensor-based chute sorting setup RDF GPR 3 0.75158 2 0.92686
Sensor-based belt sorting setup RDF GPR 5 0.87458 1 0.95461

For purity, the values for R2 are between 0.50306 for GPR with RDF on the experimental
SBS setup and 0.87458 for GPR with RDF on the sensor-based belt sorting setup, which is
a difference that does not allow a general statement. What needs to be considered is that
the experimental SBS setup was designed for analyzing and sorting flakes, which led to
a higher scattering of the output data and deteriorated the regression model. The RMSE
was between 3% for GPR with RDF on the sensor-based chute sorting setup and 7% for the
RNN with ideal mixtures on the experimental SBS setup, which is distinctly good.

The R2 for the recovery regression models varies between 0.92686 for GPR with RDF
on the sensor-based chute sorting setup and 0.96956 for GPR with RDF on the experimental
SBS setup. RMSE resides between 1% for GPR with RDF on the sensor-based belt sorting
setup and 3% for the RNN with ideal mixtures on the experimental SBS setup. This
means that the mean variation is low, and the regression models suitably describe the
recovery result.

Comparing the regression models, excluding the experimental SBS setup with RDF,
the models describe the sorting result behavior regarding the input parameters (input
composition, throughput rate) sufficient to regulate an SBS setup when a specific sorting
result in terms of purity and recovery can be achieved.
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Considering Figure 8 and Table 6, Hypothesis 4 can be confirmed for the scope of

applied data.

Industrial Outreach

The added value for the industrial waste-sorting plants can be derived from the
outcome of the four hypotheses. The optimal operation point is the maximum possible
throughput rate with the expected purity of sorted waste. In short, the sorted waste mass
with an expected result is maximized for a specific time frame.

The regression models for purity and recovery make it possible to predict a sorting
result with the knowledge of the input composition and throughput rate with the calculated
deviation range. This in turn means that the sorting result should be a specific expected
purity. The regression models deliver the maximum possible throughput rate (within the
model deviation range) to reach the postulated purity.

An explanation is shown in Figure 9. When a purity of 75% is required, an RNN re-
gression model for the experimental SBS setup with RDF can reach a maximum throughput
rate of 100 kg/h.

 

Figure 9. “Goldilocks point” and optimal operation point with RNN regression related to a purity of
75% and throughput rate of 100 kg/h of the experimental SBS setup.

Furthermore, Figure 9 shows the Goldilocks point for the regression model. This
principle appears when there is a clear optimum for a value. The Goldilocks point is
reached when the highest calculated purity hits the model’s predicted purity for the
maximum possible throughput rate. As the Goldilocks point for that model can only be
reached for an unacceptably low throughput rate, the scenario in Figure 9 is not realistic for
running a plant.

Another option for using the regression models is to simulate circuit operation in
sorting plants or stepwise sorting with more SBS machines. The idea is to utilize a first
sorting step to enrich concentrates of a specific plastic type and sort them into recyclates
in a second or third sorting step. For example, in Figure 9 the first sorting step achieves a
purity of 75%; with the second sorting step, the concentration of the target material starts at
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75% so that a higher purity can be achieved with the same throughput rate. This principle
can be used especially in small sorting plants, which can run circuit operation, or in larger
sorting plants, which have either the opportunity for circuit operation or have more sorting
machines that run stepwise in sequence.

Using these findings allows for a sorting plant to increase purity by running the
plant on the optimal operation point without substantially adapting the plant. The only
requirement is to create regression models with recorded production data to find the
optimal operation point for several waste input compositions of the sorting process. Input
compositions can easily be recorded by installing an NIR input characterization before the
SBS machine with the same NIR sorting model selected on the SBS machine.

5. Conclusions

Sorting plant operators want to achieve specific levels of recyclate purity so that a
recycling plant buys their produced sorted waste fraction, but with the maximum possible
throughput to ensure the maximum possible amount of waste treated and sold within a
year. This leads to an interest in finding the optimal operation point for achieving a specific
SBS result related to the input stream composition, the throughput rate, the purity and
the recovery.

The research task of this study was to find mathematical approaches in regression
models which cover input composition, throughput rate, the SBS results in purity and
recovery and, lastly, in which ranges or threshold values these parameters can be used. For
the regression models, with the results of 108 trials on three sensor-based sorting setups,
with ideal mixtures and five RDF samples, four hypotheses were confirmed or negated in
this study.

Hypothesis 1: It is possible to create mathematical approaches for SBS machines, which mainly
depend on the input composition of waste and the throughput rate.

This hypothesis is confirmed. The sorting result mainly depends on the purity of
the input, which means the amount of target material to be sorted consists of the input
fraction. Furthermore, according to the feature ranking, the type of material sorted has a
weak influence on the result.

Hypothesis 2: It is possible to create a generic mathematical approach for all SBS machines related
to input composition, purity, recovery and throughput rate.

Developing a regression model that works for a significant sorting result prediction is
not feasible. The statistical results indicate that developing a mathematical approach related
to the input composition and the throughput rate, valid for every SBS setup, is impossible.

Hypothesis 3: It is possible to create a construction-type-specific (chute or belt sorter) mathematical
approach for all SBS machines related to input composition, purity, recovery and throughput rate.

This hypothesis is negated according to the results of hypothesis 2.

Hypothesis 4: It is possible to create a machine-specific mathematical approach for all individual
SBS machines related to input composition, purity, recovery and throughput rate.

The regression models indicate that the sorting result behavior regarding the input
parameters (input composition, throughput rate) is sufficient in their scope of applied data
to regulate an SBS setup when a specific sorting result in terms of purity should be achieved.
Furthermore, the waste pretreatment or condition before the SBS machine influences the
sorting result. The findings of this scientific article demonstrate that regression models
with a sufficient number trials to ensure an acceptable prediction accuracy in RMSE and
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R2 can enable a sorting plant to automatically regulate its throughput to achieve a specific
purity in the sorting process.

This leads to automatic plant operation and maximizes the mass sorted in the plant
with expected purity. The only requirement is the installation of an NIR input characteriza-
tion device before the SBS machine to determine the input composition and to record the
production data. Furthermore, the regression models can also simulate circuit operation in
sorting plants or stepwise sorting with more SBS machines. After the first sorting step to
enrich concentrates of a specific plastic type, the recyclates are sorted in a second or third
sorting step.

In summary, the findings of this scientific article can be utilized to enable a sorting
plant to increase purity by running at the optimal operation point without substantial
adaptation. Superordinate considered, this helps to increase the amount of recycled plastic
so that less plastic waste is thermally treated without substantial investments in adapting
current plant designs.
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5
This doctoral thesis consists of ten publications, which cover the introduction (Publications I 
and II), the environmental analysis (Publications III and IV) and the experimental design 
structured in methods (Publication V), identification (Publication VI, VII and VIII) and 
mechanical discharge (Publication IX and X). The research questions defined in Chapter 1.3, 
"Scope of Investigations", are answered in the corresponding publications and concluded in 
this chapter. 

5.1 Introduction 

Literature research was done in the "Introduction" of this thesis to get detailed knowledge in 
sensor-based sorting of plastic waste and to find research gaps to be dealt with. 

Publication I, Review Article, "Sensor-based and Robot Sorting Processes and their Role in 
Achieving European Recycling Goals - A Review" 

This review publication lines out the State-of-the-Art in sensor-based and robot sorting 
processes in waste management. It gives an overview of the legal regulations in waste 
management on the European level for waste streams consisting of plastics: the Circular 
Economy Package, the Plastic Strategy and the Single-Use Plastics Directive. Next, the waste 
treatment process sensor-based sorting and its importance in achieving the European 
recycling goals is exemplified. Used sensor technologies for different types of waste streams 
are introduced, as well as the construction types chute sorter and belt sorter. After that, robot 
sorting, the types of robots, their characteristics and their field of application are elucidated. 
Further trend developments in waste management are derived from the literature and market 
research for sensor-based and robot sorting. The review is used to choose the most seminal 
sensor technology for sensor-based sorting of waste streams consisting of plastics. 

Research question 1 (RQ 1): What is the State-of-the-Art in sensor-based sorting of 
waste streams consisting of plastics? 

Mainly used sensor technologies for sorting waste streams consisting of plastics are near-
infrared and visual spectroscopy. Visual spectroscopy is used to sort plastic particles by colour 
or shape according to brightness, reflection and transparency. Near-infrared spectroscopy is 
physically based on molecular excitation by radiation in the near-infrared range from 1.200 to 
2.000 nm for sorting plastic according to the different types. Irradiated molecules vibrate by 
specific wavelengths to resonance frequency and reflect diffusely other wavelengths, 
producing characteristic near-infrared spectra of the material. Plastic waste needs to be sorted 
by plastic type or freed from contaminants in the first step; for this reason, near-infrared 
spectroscopy was selected as sensor technology to be applied in this doctoral thesis. 
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Publication II, Mini Review Article, "Challenges to Increase Plastic Sorting Efficiency" 

This mini review article deals with current challenges in increasing and opportunities to 
increase plastic sorting efficiency. It handles the formation of the recycling rate consisting of 
collection rate, sorting rate and recycling process rate. It shows an example calculation 
highlighting the importance of increasing plastic sorting efficiency. The found challenges are a 
declined input quality of waste for sorting plants, the lack of structured knowledge for complex 
products and material combinations, and increasing the sorting efficiency parameters purity 
and yield. These research gaps help defining detailed research questions out of superordinate 
ones. 

Research question 2 (RQ 2): What are the current research gaps for increasing the 
sorting efficiency of plastic waste streams? 

The assumption is that the input quality for waste sorting plants gets worse. Quantitatively 
achieving the European recycling goals leads to an increasing volume of secondary plastic. 
This indicates that identifying particles in sensor-based sorting plants needs to be improved, 
because different qualities of secondary plastic need to be identified in the future. Some plastic 
particles in waste streams cannot be identified correctly or are not identifiable. Lack of 
structured knowledge about complex products or material combinations needs to be improved. 
Optimizing the identification of particles in sensor-based sorting is a main task for achieving 
the European recycling goals. 

Moreover, increasing the sorting efficiency in the parameter purity and yield is challenging. The 
fluctuating input quality of waste to be sorted while increasing these parameters is a challenge 
in the mechanical discharge of particles. Feedback loops between the input quality and the 
plant operation in throughput rate are mentioned as a possible solution for running a sorting 
plant on the optimal operation point. Using such feedback loops is a suitable option to optimize 
the mechanical discharge of particles in sensor-based sorting of plastic waste. 

 

5.2 Environmental Analysis 

After the "Introduction", research gaps for increasing the sensor-based sorting efficiency for 
waste streams consisting of plastics were found in two sections, the identification and the 
mechanical discharge. Next, an "Environmental Analysis" is done to know what qualities of 
sorted plastic waste are expected by a sorting plant and the current state for using data 
analytics in sensor-based sorting. 
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Publication III, Original Article, "Benchmark Analysis for Plastic Recyclates in Austrian Waste 
Management" 

This publication covers the topic of benchmark quality for plastic recyclates in Austrian Waste 
Management. In the plastic value chain, there are different quality requirements from the 
collection, to the sorting, to recycling and final plastic product manufacturing companies 
existing. The quality assurance for each company type focuses on different parameters and 
threshold values. Plastic packaging waste needs to fulfil specific requirements in sorted plastic 
waste for plastic waste recycling companies and in recyclates for the final plastic product 
manufacturing companies. Furthermore, the expected required qualities differ predominantly 
between the different types of plastic. 

The market mechanisms of supply and demand set the pricing of recyclates. The purer the 
recyclates, the higher the potential price caused by the broader range of applications. Another 
criterium is colour purity. For colour purity, the same statement as for material purity is valid. 
The raw material price is mainly responsible for the recyclates total price; the recyclates price 
rises or falls with raw material price. At the end of the publication, the benchmark for quality 
requirements in the different positions in the plastic value chain are determined. 

Research question 3 (RQ 3): What are the expected sorted waste qualities for different 
types of plastic? 

For sorted plastic waste, the stakeholders of the plastic value chain consider the quality 
standard defined by Grüner Punkt (2023) as the benchmark. The minimum expected purities 
for sorted plastic waste vary from 96 to 98 %. For some impurities, further separate limits are 
set. This expectation in purity is too high to be currently exceeded in one single sorting step. 
Moreover, the stakeholders would welcome a stipulation of minimum requirements or quality 
standards for sorted plastic waste and recyclates on an international level by legislation. 

 

Publication IV, Original Article, "Assessment of Technological Developments in Data 
Analytics for Sensor-Based and Robot Sorting Plants Based on Maturity Levels to Improve 
Austrian Waste Sorting Plants" 

This publication aims to determine how mature Austria's sensor-based and robot sorting sector 
is positioned. Companies through four categories were interviewed, sorting machine 
manufacturers, sorting robot manufacturers, recycling plant operators, and sensor technology 
companies. The appliance of data analytics in sensor-based sorting is also set up in different 
sections like data collection, data provision and transfer, data format, data encoding and 
presentation, data scope, data consistency, data usage and commitment to change within the 
company. The maturity levels are ranked from one, the worst, to four, the highest. It is not only 
sufficient to be good in one section; some maturity levels are linked to other sections. 
Ultimately, the current technological limitations and the willingness to use data analytics in 
sensor-based sorting are asked. In addition, it was asked which data is recorded on the sensor-
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based sorting machines in production, maintenance, quality, machine, or other data. Further 
questions regarding possible future trends and possibilities to implement data analytics in 
sensor-based sorting were inquired at the end of the survey. 

As a result, twelve companies out of four sectors are evaluated for their maturity levels in nine 
categories and the data recorded in the companies is known. At last, their suggestions on how 
data analytics can increase sensor-based sorting efficiency are obtained. 

Research question 4 (RQ 4): Can data analytics be seen as a solution to make sensor-
based sorting processes more efficient? 

Ten out of twelve surveyed companies stated that they have not explored their recorded data 
to find mathematical relationships or models. When mathematical models can be developed, 
e.g. to describe the influences of process parameters on each other, the area of validity for 
newly found relationships in the recorded data is unknown. Finding mathematical relationships 
in the recorded sensor-based sorting data might be a significant step in optimizing the sorting 
process. Stakeholders are interested in increasing the sensor-based sorting efficiency by 
improving the identification to characterize more particles correctly or by improving the 
mechanical discharge with, e.g. mathematical models. Although the parameters of a sorting 
process are known, they are not examined in such a way that a sensor-based sorting machine 
can automatically adapt to the optimum throughput rate to achieve an expected sorting result. 

 

5.3 Experimental Design 

After the "Environmental Analysis", it is known which qualities are expected for sorted plastic 
waste to be treated in recycling processes and the current developments in the use of data 
analytics in sensor-based sorting. The chapter "Experimental Design" deals with the practical 
trials performed in this doctoral thesis to increase the sensor-based sorting efficiency for waste 
streams consisting of plastics. It is structured into three subchapters: 

 Methods, which explain the used setup and the sorting technology, 
 Identification, which deals with increasing the number of identified particles and 
 Mechanical discharge, which deals with increasing the number of correctly ejected 

particles and decreasing the number of incorrect ones. 

 

Experimental Design: Methods 

The subchapter "Methods" describes the sensor-based sorting setup and the used sorting 
technology near-infrared spectroscopy, which was used in all experimental trials of this 
doctoral thesis. 
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Publication V, Method Article, "Qualitative analysis of post-consumer and post-industrial 
waste via near-infrared, visual and induction identification with experimental sensor-based 
sorting setup" 

This publication presents the experimental sensor-based sorting setup at the Chair of Waste 
Processing Technology and Waste Management at Montanuniversitaet Leoben. This 
equipment was used in all publications of this doctoral thesis for the experimental trials. It is 
designed as a two-way system with three sensors installed with different sorting technologies. 
Visual spectroscopy is used to sort particles by colour, near-infrared according to the 
characteristic spectra and the induction sensor to sort metal particles. The parameters for the 
sorting process to be set up and the statistical definitions pixel, object, pixel statistics, material 
statistics and object statistics are explained. These - in sensor-based sorting machines 
automated recorded - statistical data is relevant to calculate the sorting efficiency values 
throughput rate, purity, yield, recovery and incorrectly discharged particles. The method 
publication closes by explaining how the sensors must be set up for respective trials with trial 
examples. Ultimately, a trial example of sensor-fusion - when sensors are used in combination 
- is performed. 

Research question 5 (RQ 5): Which parameters define the efficiency of a sensor-based 
sorting process? 

The goal of a sorting process mainly defines the sorting efficiency of a sensor-based sorting 
process. If the goal is getting a pure sorted plastic fraction to be treated in a recycling plant, 
the parameter to be focused on is purity. Purity is the amount of correctly ejected material in 
the ejected fraction in percent. The parameter incorrect, which stands for incorrectly 
discharged particles, stands for the opposite. It describes the amount of incorrect ejected 
material in percent. When the goal is to get a concentrate of specific material, the yield is the 
most important parameter because it is the amount of material to be sorted in the output divided 
by the amount of material to be sorted from the input. The quotient between the ejected 
material's mass and the input's total mass is recovery. 

In the end, for all sorting processes, the definition of efficiency is based on the sorting goal; it 
could be defined only by one parameter, but when another is too low, a process optimization 
will have to be done anyway to run a plant economically. According to the sorting goal, these 
parameters are decisive in finding the optimal operation point of a sensor-based sorting plant 
for a specific expected sensor-based sorting result in one of them. 

 

Experimental Design: Identification 

Since the used sensor-based sorting setup, the used sensor technology and the parameters, 
which define the efficiency of a sensor-based sorting process, are introduced, the experimental 
trials start. The first experiments outlined are the ones on increasing the efficiency in sensor-
based sorting processes by optimizing the identification of particles. 
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Publication VI, Original Article, "Influences and consequences of mechanical delabelling on 
pet recycling" 

This original article outlines and presents the influences of mechanical delabelling on the 
recycling of PET bottles. The labels, mostly polyethene (PE), are recognized in near-infrared 
light as well as the PET bottles so that specific model setup with scaling factors is required in 
some cases to be sorted to PET. The PE is undesirable in a PET fraction for mechanical PET 
recycling. The delabelling process shows a delabelling efficiency of 90 %, which means 90 % 
of labelled PET bottles are delabeled after one trial. The bottles delabeled inefficiently have < 
0.5 litre filling volume, or a sticker is used as a label. The process might work more efficiently 
with a screening step before the delabeler. 

Furthermore, the delabelling process does not shred or deform the PET bottles. This is 
welcomed for sensor-based PET bottle sorting since the grain size is not reduced and the 
particle amount does not increase. After delabelling, not only the PET bottles are label-free, 
but the surface of the PET bottles has also changed in roughness. The change in surface 
roughness extends peaks in the derived near-infrared spectrum of PET and improves the PET 
bottle classification. 

Research question 6 (RQ 6): Does surface roughness influence the near-infrared 
identification of sensor-based sorting processes? 

The roughness of the surface influences near-infrared identification significantly. 90 % of 
derived spectra indicate crucial higher extents and minor higher averaged standard deviations 
after delabelling. The characteristic PET peak in the derived spectra is at about 1.650 nm. 
Surface roughness influences near-infrared identification since the reflection and transmission 
of the light change. Especially material with such a high transmission that near-infrared light is 
not or marginally reflected shows better near-infrared identification results since reflection is 
favoured more on rougher surfaces. 

 

Publication VII, Original Article, "Influence of reflective materials, emitter intensity and foil 
thickness on the variability of near-infrared spectra of 2D plastic packaging materials" 

According to the finding of Publication VI, it is assumed that enhancing the reflection of near-
infrared light improves the identification of particles, which are nearly or completely transmitting 
the light and increases the identification of thin 2D plastic packaging. Near-infrared 
spectroscopy often results in fluctuating spectra and some cannot be recognized by the 
sensor. For this reason, this publication focuses on improving the spectral quality by installing 
reflectors under the 2D plastic packaging material stream. Modifying the sensor-based sorting 
setup by installing metal plates made of copper and aluminium allow the identification in 
transflection mode. Transflection means the combination of reflection and transmission and 
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increases the identification of films significantly. Since the transmitted light is going through the 
particle again because it is reflected at metal plates under the 2D packaging waste, the near-
infrared identification improves significantly by decreasing the spectral variability. Further, the 
influence of the emitter intensity and foil thickness are evaluated. Enhancing the thickness 
improves the identification as well as enhancing the illumination intensity. 

Research question 7 (RQ 7): Is the usage of transflection for near-infrared 
spectroscopy for 2D plastic packaging enhancing the identification in sensor-based 
sorting processes? 

The use of transflection increases the identification of thin 2D plastic packaging significantly. 
Replacing the standard transparent background with a reflective one leads to spectra with low 
variability reduces the spectral noise and brings stable characteristic spectra. The foil thickness 
and the illumination intensity are relevant factors for the success in the identification. Low 
thickness indicates low spectral quality; the same is valid for the illumination intensity. Higher 
intensity leads to higher spectral qualities. 

 

Publication VIII, Original Article, "Evaluation of Improvements in the Separation of Monolayer 
and Multilayer Films via Measurements in Transflection and Application of Machine Learning 
Approaches" 

2D plastic packaging is either designed as monolayer or as multilayer film. The complexity in 
identifying multilayer films lies in their high number of material combinations and the thickness 
of the different material layers. Every material combination shows another characteristic 
spectrum, making it challenging to manually create a sorting model covering all types of 
multilayer films. For this reason, this publication deals with the question of whether machine 
learning approaches can be developed which can integrate unintegrated material 
combinations of multilayer films in the near-infrared sorting model automated. Frequency 
analysis methods are validated to increase the spectral information and eliminate the overlying 
noise to make this process more efficient. In the end, it is established that machine learning 
approaches can be used for the applied data to sort 2D plastic packaging without adding 
material combination spectra manually to the sorting model. 

Research question 8 (RQ 8) Is the usage of machine learning algorithms suitable to 
enhance correct identification of particles in sensor-based sorting processes? 

For the used 2D plastic packaging fraction, there is enough material-independent information 
in the spectral data available to implement machine learning approaches. Suitable machine 
learning algorithms for this approach are k-Nearest Neighbor a, Support Vector Machines and 
Neural Network. The derived spectra are processed with Gaussian Smoothing algorithm 
normalization, and preliminary tests are performed to assign the correct feature engineering. 
The development of the machine learning model started and the data was imported. The 
created algorithms were tested with spectra not used for developing the machine learning 
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model. Neural Network derived the most accurate prediction in a short training time and 
performed well on the test spectra and is the most suitable one for classifying 2D plastic 
packaging material to monolayer or multilayer. Summing up, it can be stated that it is possible 
to enhance the identification of particles in sensor-based sorting processes with machine 
learning algorithms suitable for the available spectral data. 

 

Experimental Design: Mechanical Discharge 

Next, experiments on increasing the efficiency in sensor-based sorting processes by 
optimizing the mechanical discharge are performed. These experiments' results shall help to 
find the optimal operation point for a specific sorting result. 

Publication IX, Original Article, "Influence of material alterations and machine impairment on 
throughput related sensor-based sorting performance" 

This publication presents particle-specific assertions for sorting efficiency to the output 
parameters purity, yield, recovery and incorrect discharged particles. It is tested how these 
parameters are affected by the input parameters input composition and throughput rate. 
Furthermore, the influence of 2D material in the input and the malfunction of air valves for the 
mechanical discharge was examined. Additionally, it has to be stated that other factors like the 
sorting algorithm (e.g. segmentation of particles), the particulate weight, the feeding method 
(e.g. type of vibration conveyor), the particle shape and the particle surface condition (e.g. 
organic defilements, labels and adhesive particles) have influence in the sorting result and 
hence on the sorting efficiency. Results for the experimental trials are 2D plots, which show 
the influence of the input parameters to the output parameters, the influence of 2D material in 
the input and the malfunction of air valves. 

Research question 9 (RQ 9): How do the input parameters of a sensor-base sorting 
process (throughput rate and input composition) depend on the sorting efficiency in 
the output parameters (purity, yield, recovery, incorrect discharged particles)? 

Dependence on the input parameters to the output parameters is valid according to the results 
with assertions. Yield is not affected by the input composition; it depends on the throughput 
rate and decreases with increasing throughput rate. Incorrectly discharged particles show the 
behaviour of a saturation curve. It increases with an increasing throughput rate. Purity 
decreases with increasing throughput rate. Both purity and recovery are mathematically related 
to yield and incorrectly discharged particles. 

2D material in the input reduces yield and incorrect discharged particles at increased 
throughput rates, while it shows only marginal influence on the sorting efficiency for lower ones. 
The malfunction of one air valve block, which covers 20 % of the sorting bands' width, affects 
the sorting efficiency at moderate and high throughput rates. 
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Publication X, Original Article, "Feasibility study for finding mathematical approaches to 
describe the optimal operation point of sensor-based sorting machines for plastic waste" 

Publication IX states in the last paragraph that more knowledge about the relation of the input 
to the output parameters of a sensor-based sorting process can be created by further trials 
concerning various machine and material-specific influence factors. This can bring up the 
ability to model and optimize a sensor-based sorting process with throughput rate and machine 
settings to achieve the optimal operation point for a specific sensor-based sorting result. 

For this reason, Publication X finds mathematical approaches to describe the optimal operation 
point of sensor-based sorting machines for plastic waste. Mathematical approaches in 
regression models which underlie the input parameters input composition, throughput rate and 
the output parameter purity and recovery as sensor-based sorting results are developed. Yield 
is not considered since it depends only on the throughput rate and is not influenced by the 
waste input composition of a sorting process. Four respective hypotheses are proved for the 
regression models based on 108 trials on three sensor-based sorting setups and as materials 
ideal mixtures and five RDF samples. Afterwards, it is defined how a sensor-based sorting 
plant can run automated on the optimal operation point depending on the throughput rate and 
the input composition to achieve a specific sorting result. 

Research question 10 (RQ 10) In what area of validity can mathematical approaches be 
used so that sensor-based sorting machines can run automated on the optimal 
operation point? 

The regression models describe the sorting result behaviour regarding the input parameters 
(input composition, throughput rate) sufficient in their scope of applied data to regulate a 
sensor-based sorting setup when a specific sorting result in purity should be achieved. As the 
main result of this publication, regression models with enough trials to have an acceptable 
prediction accuracy in RSME and R² make it possible that a sorting plant can automated 
regulate its throughput to achieve a specific purity in the sorting process. 

This leads to an automatic plant operation and maximizes the mass sorted in the plant with 
expected purity. The requirement is to record the production data before the sensor-based 
sorting machine. This can be done either with installing a near-infrared input characterization 
to know the input composition or with implementing feedback loops from the previous sorting 
result to the input parameter setup of the next sorting step. Furthermore, the regression models 
can also simulate circuit operation in sorting plants or stepwise sorting with a few sensor-based 
sorting machines. After the first sorting step to enrich concentrates of a specific plastic type, 
the recyclates are sorted in a second or third sorting step to exceed the expected result in 
purity. In the end, it can be stated that this outcome allows a sorting plant to increase purity by 
running the plant on the optimal operation point without substantially adapting it. Superordinate 
considered, this helps to increase the amount of recycled plastic so that less plastic waste is 
thermally treated without main adapting investments in current plant designs. 
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6
This doctoral thesis aims to increase the efficiency of sensor-based sorting processes for 
waste streams consisting of plastics. The doctoral thesis is set up so that each publication or 
each chapter brings results that help define necessities to be researched within the next 
publication or chapter. 

Publication I defines the State-of-the-Art in sensor-based sorting with a literature review, while 
Publication II outlines the research gaps of the thesis topic. After knowing the State-of-Art 
and the research gaps and environmental analysis is performed to know which qualities of 
sorted plastic waste are expected by recycling processing plants (Publication III) and whether 
the usage of data analytics is a suitable solution for achieving increased efficiency in sensor-
based plastic sorting (Publication IV). Results of these four publications in the State-of-the-
Art, research gaps and environmental analysis are the base for developing the doctoral thesis's 
experimental design to achieve the thesis goal. 

The most suitable sensor technology for sorting plastic waste is near-infrared spectroscopy, 
so that this sensor technology will be used in the experimental design. The research gaps are 
superordinately defined in increasing the identification of particles and optimizing the 
mechanical discharge by running the sensor-based sorting process on the optimal operation 
point to achieve a specific expected sensor-based sorting result. The minimum purities for 
sorted plastic waste, which a recycling processing plant expects, vary from 96 % to 98 %. For 
some impurities, further limits are set for the different types of plastic. Mathematical 
approaches in the recorded sensor-based sorting input and output data might be a significant 
step forward to optimize the sorting process in identification and mechanical discharge and get 
it automated. 

Taking into consideration these findings, the experimental design is set up. In Publication V, 
the method of near-infrared spectroscopy as used sorting technology and the experimental 
sensor-based sorting setup, which is used in all publications of this thesis for trials, is 
introduced. Further, the experimental design is divided into two chapters for increasing the 
sensor-based sorting efficiency for waste streams consisting of plastics: the identification and 
the mechanical discharge. 

 

Identification 

First, the influence of surface roughness is examined in Publication VI. It focuses on the 
influence of mechanical delabelling in PET recycling. After delabelling, not only the PET bottles 
are label-free, but the surface of the PET bottles has also changed in roughness. The change 
in surface roughness extends peaks in the derived near-infrared spectrum of PET and 
improves the PET bottle classification. 
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Publication VII focuses on using transflection for an optimized identification of 2D films by 
installing a metal plate as background material in the sensor-based sorting process. This 
follows from Publication VI, which shows that the extended reflection in particles leads to an 
optimized particle identification in the near-infrared spectrum. Reflection and transmission 
combined are referred to as transflection. Transflection results in light being reflected off 
background materials like metal plates and with this reflection transmitting light through the 
particle twice. This configuration reduces the spectra fluctuation, which enhances near-infrared 
identification. The influence of thickness and emitter intensity are also assessed; for 2D plastic 
packaging particles, a thicker layer enhances the particle identification as well as the 
illumination intensity. 

Publication VIII combines the outcomes of Publication VII, the use of transflection and 
Publication II, the use of data analytics. Mathematical approaches can help optimize the 
identification and automate this process in sensor-based sorting devices. The near-infrared 
sorting model is assessed if machine learning methods can be developed to incorporate new 
material combinations of multilayer films. For designing this development efficiently, spectral 
information is improved by validating frequency analysis techniques and by removing the 
overlying noise. Neural networks have demonstrated the best performance on test spectra and 
the most accurate classification of 2D plastic packaging into monolayer or multilayer in a short 
training time. Using available spectral data, the Neural Network machine learning approach 
demonstrated that improving 2D particle identification in sensor-based sorting processes can 
be automated for the used input data. 

 

Mechanical discharge 

Particle-specific claims for sorting efficiency to the output parameters purity, yield, recovery, 
and incorrect discharged particles are presented in Publication IX. The impact of the input 
parameters, input composition and throughput rate, on these parameters is evaluated. 
Additionally, the impact of 2D input material and the malfunction of air valves for mechanical 
discharge are explored. 

According to the findings and assertions, dependence on the input parameters to the output 
parameters is valid. The input composition does not impact yield; yield is influenced by the 
throughput rate and declines as the throughput rate rises. Incorrectly discharged particles 
exhibit a saturation behaviour. It rises with the throughput rate. Purity declines as the 
throughput rate rises. Mathematically stated, purity and recovery are functions of yield and 
incorrectly discharged particles. 

At higher throughput rates, 2D material in the input reduces yield and incorrectly discharged 
particles. At moderate and high throughput rates, the malfunction of one air valve block, which 
accounts for 20 % of the sorting bands' width, decreases these parameters as well. 
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The sorting algorithm (e.g., segmentation of particles), particulate weight, the feeding 
technique (e.g., type of vibratory conveyor), particle shape, and particle surface condition (e.g., 
organic defilements, labels, and adhesive particles) are additional factors that must be 
considered as they affect the sorting result and, consequently, the sorting efficiency. 

Publication X, which deals with identifying mathematical approches to define the optimal 
operation point of sensor-based sorting machines for plastic waste, validates the major 
discovery of this doctoral thesis. Mathematical approaches using regression models that 
support the input parameters input composition, throughput rate, and output parameters purity 
and recovery as results of sensor-based sorting process. Since yield is only dependent on 
throughput rate and is unaffected by the waste input composition of a sorting process, yield is 
not considered. Based on 108 trials using three sensor-based sorting setups, ideal mixtures 
and five RDF samples, four theses are proved for the regression models. 

When a specific sorting result in purity has to be achieved, the regression models define the 
sorting result behaviour concerning the input parameters (input composition, throughput rate) 
enough in their scope of applicable data to control a sensor-based sorting setup. A sorting 
plant can automated regulate its throughput rate to reach a specific purity in the sorting process 
using regression models. The development of such regression models require enough trials to 
have an acceptable prediction accuracy in RSME and R2. 

Mathematical approaches, which are set up to work in an acceptable prediction, can lead to a 
fully automated plant operation and increase the mass sorted with the desired purity. The 
criteria include capturing the production data and 

 Either to implement feedback loops from the sorting result to the input parameter 
configuration of a sorting process 

 Or to install a near-infrared input characterization before the sensor-based sorting 
machine to know the input composition. 

The regression models can also indicate stepwise sorting with more sensor-based sorting 
machines or circuit functioning in sorting facilities. With these configurations recyclates are 
processed in a second or third sorting phase to achieve more purity after a first sorting stage 
to enrich concentrations of a particular plastic type. 

Summing up, it can be stated that this result enables a sorting plant to boost purity by operating 
the system at its optimal operating point. This enhances the amount of recycled plastic - so 
that less plastic waste must be thermally processed - without significantly modifying existing 
plant designs. 
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7
Referring to the findings of the doctoral thesis in the previous chapter, "Conclusion", the 
opportunities for further research are predicted within this chapter. 

According to chapter 1.3, "Scope of investigations", the boundaries of this doctoral thesis were 
set in Table 1-1 with "Sensor-based sorting" as waste processing technology, "Waste streams 
consisting of plastics" as waste to be processed and TRL 2 to 4. The opportunities for further 
research can be predicted by going beyond these boundaries in vertical or horizontal 
integration. 

Horizontal integration beyond the boundaries 

In the context of this doctoral thesis, horizontal integration beyond boundaries means getting 
broader with the found results. For all of the results, the set boundaries are to increase 
efficiency in sensor-based sorting processes for waste streams consisting of plastics. When 
getting broader with these results, the same efficiency-increasing opportunities can be 
validated for waste streams without plastics. Of course, the research questions would differ for 
other waste streams in detail. Still, the superordinate research questions of this doctoral thesis 
can be transferred, as well as the methodology and the experimental design. For the transfer 
of the methodology of this thesis to further research on other waste streams, the superordinate 
research questions are: 

1. What is the State-of-the-Art for sensor-based sorting of the corresponding waste? 
2. What might be suitable solutions to increase sensor-based sorting efficiency? 
3. What methods can be used for sorting the corresponding waste? 
4. How can the identification for sorting the corresponding waste be optimized? 
5. How can the mechanical discharge for sorting the corresponding waste be optimized? 

Considering these superordinate research questions, other waste streams to be sorted can be 
optimized with further research; examples of such waste streams would be cullets, paper or 
metals. 

Vertical integration beyond the boundaries 

Taking into consideration Figure 1-2, which describes the TRL of this doctoral thesis, vertical 
integration means performing further research to bring the results to higher TRL. For all the 
results, the set boundaries were done on TRL 2 to TRL 4 "Industrial Research". The research 
within this doctoral thesis is on an aggregate level, with the sensor-based sorting machine as 
a stand-alone equipment. 

New research would be how and under what circumstances the results on aggregate level can 
be brought to plant level to integrate the results and validate them in industrial prototypes in 
the first steps with "Experimental Development" (TRL 5 to TRL 8) till they can be integrated 
into the operational environment of sensor-based sorting plants for "Market Launch" (TRL 9). 
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This vertical integration process, how to go beyond the boundaries from aggregate level to 
plant level, is visualized in Figure 7-1. 

 
Figure 7-1: Research potential in vertical integration with extending the findings from 
industrial research on the aggregate level to experimental development on the plant level 

 

Summing up, for all further research in sensor-based sorting on the plant level, which focuses 
on optimizing the sorting efficiency, the results of this doctoral thesis can be seen as a 
knowledge base (on a pre-industrial level or laboratory scale). Feedback loops of the sensor-
based sorting results for regulating the input or an installation of a near-infrared sensor for 
getting to know the input composition before the sorting process help to build and validate this 
doctoral thesis's findings in industrial prototype demonstrators. 
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