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Abstract 

 

ABSTRACT 

The introduction of new technologies and processes, particularly the adoption of renewable 
energy sources, brings increased volatility into the dynamic relationship between 
manufacturing industries and their counterparts in the energy markets. To address this 
challenge, industrial energy research is dedicated to bringing forth dynamic, holistic and more 
straightforward solutions. One of these solutions involves the development of load and 
generation profiles, which allows for a detailed examination of how individual industries 
consume and generate energy over time. These valuable insights enhance the collaboration 
among key stakeholders, including grid operators, energy suppliers, and industrial players. As 
a result, it significantly improves decision-making processes, fostering advancements in the 
industrial sector. 

Throughout an extensive literature research, it can be concluded that a holistic solution on 
synthetic load and generation profiles in industry has not been developed yet. State-of-the-
art works either rely on vast amounts of data or focus solely on selected applications such as 
generating electricity load profiles for specific industrial subsectors. Recognizing this research 
gap, this thesis presents novel developments for generating load (and generation) profiles 
(LPs) and waste heat profiles (WHPs) of the entire industrial sector encapsulated in an all-in-
one software solution named “Ganymed”. 

Overall, the industrial sector is divided into energy-intensive and non-energy-intensive 
subsectors. As the energy-intensive subsectors exhibit a limited product and process variety, 
a bottom-up methodology starting with data on the process level is applied. Throughout the 
enhancement of the simulation method of discrete event simulation, these processes can be 
accumulated to whole production routes, which offers the basis for generating LPs and WHPs 
for energy-intensive subsectors. It can be stated that processes must contain data on energy-
relevant and time-resolved properties to achieve LP and WHP generation. Here, the most 
energy-intensive processes influence the resulting LPs and WHPs of individual industries to 
the greatest extent. Especially batch-operated processes make up for main shares in peak 
loads. Non-energy-intensive subsectors exhibit more complex production routes, deeming a 
top-down approach to be the more suitable methodology for depicting them. Various 
industrial databases form the basis for novel findings within these energy system analyses, 
which are further deployed to generate LPs and WHPs for these subsectors. For example, this 
thesis uncovers subsector-specific “economy of scale” effects for industrial energy systems, 
correlations of shift models and deployed employees at the plant, calculations for maximum 
outlet temperatures of industrial waste heat etc.  

Both methodological approaches are embedded into the software environment “Ganymed”, 
being the first-of-its-kind of software for generating synthetic LPs and WHPs of the industry. 

 



Kurzfassung 

 

KURZFASSUNG 

Neue Technologien und Entwicklungen wie der Ausbau von erneuerbaren Energiequellen 
erhöhen die Volatilität im Energieverbund aus produzierender Industrie und anderen 
Energiemarktteilnehmern. Im Lichte dieses Spannungsfelds ist es die industrielle 
Energieforschung, die sich im höheren Maß auf die Entwicklung von dynamischen und 
ganzheitlichen Lösungen fokussieren muss. Ein Teilbereich dieser Lösungsansätze sind 
zeitbezogene Last- und Generationsprofile. Mit Hilfe dieser Methoden können die 
zeitbezogenen Energieverbräuche und -umwandlungen von industriellen Standorten 
generiert und untersucht werden. Diese Entwicklungen unterstützen unterschiedliche 
Zielgruppen wie Netzbetreiber, Energieversorger oder Industrieunternehmen, indem sie das 
Zusammenspiel am Energiemarkt maßgeblich fördern und somit den strategischen 
Entscheidungsprozess langfristig verbessern. 

Um Zuge einer umfassenden Literaturrecherche zeigte sich, dass ganzheitliche 
Lösungsansätze für zeitbezogene, synthetische Last- und Generationsprofile im industriellen 
Kontext noch nicht entwickelt wurden. Derzeitige Forschungsbemühungen benötigen 
entweder große Datenmengen oder behandeln nur ausgewählte Fragestellungen wie die 
Entwicklung von reinen Stromlastprofilen für spezielle Industriestandorte. Im Kontext dieser 
Forschungslücke zeigt diese Arbeit neueste Fortschritte für die Generierung von synthetischen 
Last- und Erzeugungsprofilen (LPs) sowie Abwärmeprofilen (WHPs) für den gesamten 
industriellen Sektor gebündelt in einer einzelnen Softwarelösung genannt „Ganymed“.  

Im Allgemeinen kann der industrielle Sektor in energieintensive und nicht-energieintensive 
Subsektoren eingeteilt werden. Da die energieintensiven Subsektoren eine geringere Produkt- 
und Prozessvielfalt aufweisen, wurde zunächst ein Bottom-Up Ansatz entwickelt, der an der 
Prozessebene der einzelnen Industrien ansetzt. Durch diskrete Ereignissimulation können 
Prozesse zu Produktionslinie verbunden werden. Dies ist die Basis für die Generierung von 
energiebezogenen Profilen. Hierbei müssen die hinterlegten Prozesseigenschaften sowohl 
Bezug zu Energie- als auch zu Zeitabläufen aufweisen. Des Weiteren zeigte sich, dass nur ein 
kleiner Teil an Prozessen für den Hauptteil des Energieverbrauches verantwortlich ist. Nicht-
energieintensive Subsektoren weisen eine erhöhte Komplexität auf. Durch den Einsatz 
unterschiedlicher Datenbanken werden im Rahmen dieser Arbeit neue Erkenntnisse für den 
Bereich der Energiesystemforschung generiert. Hierbei wurden zum Beispiel die Tragweite 
wirtschaftlicher Skaleneffekte für industrielle Energieverbräuche, Korrelationen zwischen 
Schichtmodellen und Mitarbeiteranzahlen, neue Kalkulationsarten für die Ermittlung von 
maximalen Rauchgastemperaturen etc. erfolgreich untersucht und aufgedeckt.  
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NOMENCLATURE 

LP Load (and generation) profile 

WHP Waste heat profile 

GHG Greenhouse-gas 

DSM Demand side management 

EEX European Energy Exchange 

CHP Combined heat and power 

PV Photovoltaic 

EAF Electric arc furnace 

ORC Organic Rankine cycle 

IEA International Energy Agency 

NACE Nomenclature statistique des activités économiques dans la 
Communauté européenne 

P1-4 Papers 1 to 4 

C1-2 Conference proceedings 1 to 2 

EOS Economy of scale 

EMAS Eco-Management and Audit Scheme 

ETS Emission Trading System 

IAC Industrial Assessment Centre 

LF Load factor 

WHF Waste heat fraction 

DES Discrete event simulation 

GUI Graphic user interface 

RES Renewable energy sources 

DFT Discrete Fourier transformation 
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HEX Heat exchanger 

WH Waste heat 
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1 INTRODUCTION 

Technological advancements are the key solution against the rising challenges of the climate 
crisis [1]. Digitalisation forms the basis for future developments of energy efficiency measures, 
new processes, renewable energies, advancing energy infrastructure etc. along the path to 
climate neutrality [2]. These developments afflict all parts of the global economic landscape, 
although their respective state of implementation varies extensively. 

Especially the manufacturing industry plays a crucial role throughout this transformational 
process [3], when investigating its considerable shares of 21% of greenhouse gas (GHG) 
emissions [4] and 20% of the total energy consumption in Europe in 2022 [5]. Company 
internally, the transformation process calls for new processes, new business models and 
managerial change. Externally, policy regulations and customer demand change in a fast-
moving pace creating a constantly alternating channel for the industry to navigate through. 
This interplay unfolds new areas for energy research to bring forth advancements and assist 
the industrial landscape in securing its economic value. 

Digital energy system models support the industry for those present and future challenges. 
These models range in their application as they can be deployed for depicting the current 
status of the industry, assessing other technologies and trends and evaluating their impact on 
the physical energy system [6]. An integral part of energy system models is the subject of 
depicting the time-resolved energy generation or consumption behaviour of a respective 
consumer or consumer groups within dedicated profiles [7]. Such profiles bear significant 
advantages as they can quickly identify specific issues in the energy systems of manufacturing 
industries as well as energy grids and help to derive strategies for adapting measures such as 
demand side management (DSM) or enhancing grid capacities [8]. These time-resolved 
methods are developed for various applications and systems, however, often tend to be 
progressively complex in their development and deployment when their respective scope 
enlarges [9]. Thus, state-of-the-art concepts are mostly either bound to extensive data 
availability or limit themselves to smaller fields of application. 

As the industry has to nevertheless take part in the energy transition, this thesis suggests a 
new uniform solution for generating synthetic load and generation profiles, by approaching 
the industrial sector in a standardised manner and investigating similarities and distinctions in 
its functionalities. Different methods for these examined specific manifestations are then 
combined into an all-in-one software as the combined interface for the end user.   
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2 CONTEXT AND RESEARCH NEED 

The following chapter describes the context in which this study is embedded as it firstly 
establishes a sound and standardised definition of underlying research work, secondly 
processes the latest state-of-the-art regarding the subject of industrial load and generation 
profiles and thirdly defines the scope and application of developed research studies, which 
answer still open research questions and hereby create a holistic contribution to the field of 
digital energy systems.  

2.1 Load and Generation Profiles in Theory 

2.1.1 Energy Systems in a Time-Resolved Context 

Overall, consumers and suppliers regarding holistic energy systems are interlinked via 
dedicated structures [10], as Figure 1 shows. 

 

Figure 1: Involvements and stakeholder groups within the time-resolved energy-related environment. 

The most elementary depiction of the energy supply route contains energy suppliers, energy 
transmission and distribution and consumers. All participants generate, transmit and consume 
energy in an alternating, time-resolved manner. The energy supplier generates or obtains 
energy, like electricity or natural gas. Then, the energy transmission system, maintained by 
e.g. grid operators, transports this energy across long distances through power lines or 
pipelines. Finally, consumers, like households and industries, rely on this energy supply to 
meet their daily needs. The cooperation among these participants is crucial for a dependable 
and sustainable energy supply and, in e.g. Europe, is mainly handled through the liberalized 
energy markets. [11] 

Energy (system) related research acts as a cross-functional role to observe, analyse and 
develop new measures, which improve the interplay between the other actors.  
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2.1.2 Definition of Load and Generation Profiles 

 

Figure 2: Definition of loads and generation profiles: (a) a weekly LP of an industrial company and (b) the 

results of the DFT analysis of this LP 

Overall, load (and generation) profiles (LPs) depict the fluctuating energy demand (or 
generation respectively) of single consumers or consumer groups within a defined period of 
time, as shown in Figure 2 (a) [12]. Within the context of this work, LPs refer to the time-
resolved energy demand of single consumers (e.g. single production processes like an electric 
arc furnace) or consumer groups (e.g. whole production routes). Furthermore, industrial 
waste heat profiles (WHPs) are a subgroup of LPs and resemble time-resolved (generated or 
consumed) waste heat.  

Energy consumption is regarded as energy supplied and used (e.g. converted from final energy 
to useful energy categories like mechanical drive) over a certain period of time, stated in 
watthours e.g. [kWh], and demand as the time-resolved load at every single point in time, in 
watt e.g. [kW]. The integral of an LP (the area under a profile), standardly defined as energy 
demand [kW] over a period of time [h], expresses the energy consumed [kWh]. Both energy 
consumption and demand are mathematically declared as positive if a process is supplied with 
energy, or negative if a process supplies energy (e.g. generation of waste heat). These 
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definitions correspond to the definitions in common literature [13]. Moreover, the resulting 
profiles can be divided into a constant and variable section, shown as peak and base load 
within Figure 2 (a). Base load represents the minimum level of energy demand in the load 
profile persisting throughout the depicted time. This is often associated with the consumption 
of essential services and processes that run continuously, such as lighting, ventilation or 
appliances on standby. Peak loads are elevated from the base loads and include the peak 
demand, which is the highest point in the LP. 

A discrete Fourier transformation (DFT) analysis of individual LPs offers the advantage of 
investigating periodically occurring fluctuations in profiles [14]. This analysis decomposes the 
input signal (e.g. LP) into a sum of periodic sine and cosine components and therefore depicts 
the amplitudes of all variant fluctuations in the profile. This analysis oftentimes finds its use in 
estimating short-, mid- and long-term energy storage for individual energy systems. Figure 2 
(b) shows the DFT amplitudes of the decomposed LP over a weekly period range exemplarily. 
A strong dominance of daily (1 d) and weekly (1 w) fluctuations can be observed. This can be 
confirmed by investigating Figure 2 (a) and concluding that daily fluctuations occur regularly 
in the first five days and the overall LP spans over one week. The DFT analysis also gives 
insights into the magnitude of short-term fluctuations located at smaller periodicities. For 
example, if an LP appears smoother (meaning variations in the LP are reduced) the 
corresponding amplitudes in the DFT are decreased. [14] 

The share of base and peak loads in an LP depends on the underlying, depicted consumer and 
consumer groups. The simultaneity factor is an insightful value in designing (energy) supply 
systems as it describes the share of simultaneously occurring loads of individual consumers in 
a consumer group [15]. The simultaneity factor is 1 if just one consumer is supplied with 
energy and decreases with the rising number of individual consumers in a group. If load peaks 
of individual consumers are accumulated, the resulting LP will exhibit the superimposition of 
these single loads. Naturally, if more consumers are depicted in the group, their individual 
peak demands, occurring at different times, will be balanced out in the resulting LP. As the 
cumulative peak load of the consumer group shrinks, the resulting LP will appear more even 
and the simultaneity factor decreases. Thus, the decomposed LP within a DFT analysis will 
exhibit reduced amplitudes, especially in areas of smaller periodicities. 

In the context of generating LPs, corresponding profiles are obtained through different 
methodologies. Overall and alongside scientific literature, this work divides these profiles into 
standard load (and generation) profiles, synthetic load (and generation) profiles and profiles 
from the time-resolved modelling of individual consumers [16]. Figure 3 outlines the results 
from these methodologies and their implications on their properties. 
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Figure 3: Comparison between standard LPs, synthetic LPs and time-resolved modelling of consumers. From 

left to right, the complexity of the applied methodology increases, demanding a more extensive amount of 

reliable data. However, the flexibility of the methodology decreases, limiting the possibility of easily shifting 

and applying this methodology to other energy consumers. 

2.1.2.1 Standard Load (and Generation) Profiles 

A standard LP refers to a representative profile that is used as a benchmark or reference for a 
selected group or category of consumers [17]. These high aggregated profiles are quick to 
obtain as they result from mathematical functions from data analysis of measured consumer 
groups and can be allocated to targeted consumers via equivalence factors from these 
normalized profiles. They oftentimes find their application in grid and energy market 
management to grasp possible energy demands of consumer groups beforehand and to 
initiate measures for the to-be-foreseen implications on the energy system. Standard LPs are, 
for example, well-fitted for the sector of buildings to depict loads of multiple households. 
However, they are not applicable anymore for smaller consumer groups or even individual 
consumers as they are not able to depict LPs with higher simultaneity factors and DFT 
amplitudes with smaller periodicities. [18] 

2.1.2.2 Synthetic Load (and Generation) Profiles 

Synthetic LPs can depict individual consumers and small consumer groups [19]. While 
standard LPs are created through cluster analysis and extrapolation of measured data, 
synthetic LPs are typically generated through deterministic and stochastic algorithms. 
Synthetic LPs rely more on a sound understanding of the depicted energy system rather than 
on measured profiles and target a successful depiction of the main load characteristics of a 
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approach is that the underlying methodology for synthetic LPs is generally more complex than 
for standard LPs. To reduce complexity, residual loads or uncertainties regarding the to-be-
depicted energy system are bridged with stochastics (e.g. loads with small periodicities 
depicted by Gaussian distribution). This thesis aims for the depiction of synthetic profiles (LPs 
and WHPs) for the entire industrial sector. 

2.1.2.3 Time-resolved Modelling of Individual Consumers 

The optimization of individual energy systems grants an efficient interplay of individual 
consumers, integrates new processes resourcefully and aims to cut down energy costs [20]. 
Especially for larger and more complex energy consumers like industrial locations, energy 
optimization measures bear fruitful solutions for optimal energy use. Time-resolved modelling 
of individual energy consumers (e.g. industrial processes) can act as a precursor for the 
development of these optimization algorithms. The developed model is based on real-life data 
and is therefore limited to the application of the individual, local energy system only. It aims 
to resemble the time-resolved loads and generation including all occurring periodicities and 
fluctuations of the processes as accurately as possible through mathematical simulation [20]. 
The generated LPs act as a base for the investigations of further optimization measures and 
new process integration. These tailor-made models are, however, unfit to be flexibly applied 
to other consumers or consumer groups and require a soundproof data pool in the beginning. 

2.1.3 Fields of Application of Load and Generation Profiles 

By depicting the load and generation time-resolved, valuable insights into the behaviour of 
the energy system of consumers and suppliers can be derived. As energy systems are typically 
investigated statically, time-resolved energy analyses bear more detailed information as they 
reveal at which points in time deviations from the statically cumulative demand (e.g. load 
peaks) occur [21]. The depiction of this volatile behaviour is an important factor in the overall 
energy system. Overall, LPs impact the following partaking roles in a holistic energy system. 
As the research aim of this work especially targets the manufacturing industry, the following 
fields of application particularly emphasize the consideration of this economic sector: 

2.1.3.1 Implications for Energy Suppliers 

In recent years, the role of energy suppliers, besides conservative power plants, was 
increasingly attributed to other participants in the overall energy systems as well. 
Technological advancements and renewable energy sources brought more and more energy 
suppliers to the table. This circumstance ranges from e.g. big wind and solar farms, to 
individual households and industrial sites [22]. The latter can provide the public energy system 
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not only with electricity but also excess heat from thermal energy-related production 
processes [23]. The development of energy generation profiles for these categories can reveal 
further potentials to be tapped and investigate their impact on the overall energy system, 
especially in the context of dedicated measures like redispatch (see subsection 2.1.3.3 below). 

2.1.3.2 Implications on Energy Markets 

As the rising implementation of renewable energies in recent years further afflicts the energy 
system with demanding volatility, energy market operations face increasing movement within 
day-ahead and intraday trading [24]. However, especially for industrial consumers, dedicated 
time-resolved energy system analyses are only scarcely developed. Oftentimes, the highly 
aggregated, standard LPs are the first and only option for these applications, which are not 
sufficiently designed for short-term trading, especially for smaller consumer groups or even 
individual consumers, as described above [25]. Thus, continuously further developed and 
industry-specific synthetic LPs fulfil the need for cost and energy-efficient trading as they 
provide more detail. 

2.1.3.3 Implications on Energy Grids and System Operators 

Within the context of energy volatility, physical energy transmission is limited to the grid’s 
capacity [26]. With increasing renewable generation capacities these limits are reached 
sooner than later, demanding either to upgrade existing grid infrastructure or to 
intermittently and locally latching-in existing, often inefficient and with fossil energy-powered 
plants [27]. The latter option is additionally not only responsible for increasing CO2 emissions 
but also cost-intensive [28]. For example, the costs of these so-called “redispatch” measures 
in Austria amounted up to 100 Mio. € in 2021 [29]. Thus, the spatial introduction of synthetic 
LPs within the overall energy systems provides a more precise identification of infrastructural 
hot spots for local expansion of the energy transmission system efficiently. Industrial sites play 
a vital role in this consideration following their energy-intensive production.  

2.1.3.4 Implications for Energy Consumers 

The role of all economic sectors of building, transport and manufacturing industry in reaching 
the climate goals is accompanied by medium and long-term investment projects. New and 
existing technologies and business cases are to be implemented in their respective energy 
systems to provide efficient energy and CO2 emission reduction. As this work especially aims 
at the manufacturing industry, the generation of synthetic LPs of these industries can help to 
investigate the impacts of all planned measures. For example, the implementation of 
microgrids is a key technology for optimizing the energy loads and reducing grid fees of 
individual industrial plants [30]. To assess the impact of this technology before its installation, 
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the generation of location-specific, synthetic LPs forms an easier-to-obtain base of 
information compared to the installation of a real-life metering concept on site.  

2.2  State-of-the-art for Load and Generation Profiles 

State-of-the-art methodologies are investigated in the next step. This bridges the gap to still 
open research areas, which were identified and closed within this study. 

 

Figure 4: Classification of selected, state-of-the-art methodologies from the recent years in the context of LP 

and WHP generation in industry: A: Hernández et al. [31], B: Valdes et al. [32], C: Dedic et al. [33], D: Richard 

et al. [34], E: Jesper et al. [35], F: Starke et al. [36], G: Sandhaas et al. [19], H: Binderbauer et al. [37], I: 

Binderbauer et al. [38], J: Binderbauer et al. [39], K: Dietmair et al. [40], L: Lecompte et al. [41], M: Dock et al. 

[20], N: Thiede et al. [42] 

The European Commission states a concise classification of economic units as “buildings”, 
“energy industries”, “transport” and “manufacturing industry” [43], which is shown in Figure 
4. For all units, respective methods for investigating time-resolved energy systems (and their 
load and generation patterns) were developed in the past. In the next chapters, firstly, the 
advancements within other economic units are outlined, secondly, recent methodologies for 
industrial consumers with the highest impact in scientific literature are described (as also 
shown in Figure 4) and thirdly these studies are put into context with this work.  

The taxonomy table in the Appendix compares the selected studies for industrial application 
from Figure 4 in more detail along their objectives, LP types, aggregation levels, systemic 
approach, solving methods, constraints and potentials. 

 

Buildings 
(e.g. Households, …) TransportManufacturing Industry

(Aim of This Thesis)

Energy Industries

Recent Literature on Industrial Load (and Generation) Profiles

Standard Load (and 
Generation) Profiles

Synthetic Load (and 
Generation) Profiles
(Aim of This Thesis)

Time-Resolved Modelling of
Individual Consumers

Electric Energy System

Thermal Energy System 
(also Waste Heat)

Multi Energy Systems F

E

DA B

M

L

I

C

J N

H

E
co

no
m

ic
U

ni
ts

G K



Context and Research Need 

 PAGE | 14 

 

2.2.1 Buildings 

The classification of buildings contains residential households and tertiary services. To assess 
the impact of the load and generation of these energy consumers, standardised LPs are the 
first point of application. As described above, they are easy to obtain for different consumer 
groups, however, are not able to depict smaller consumer groups or individual consumers due 
to their high aggregated character [16]. Generally, standard electricity LPs are calculated for 
groups of more than 400 single households under 100 MWh [44]. Esslinger and Witzmann [18] 
state that the application of standard electricity LPs for consumer groups under 150 
households does not provide representative results anymore. In light of increasing 
decentralised energy generation, the authors propose a method to depict LPs of smaller 
consumer groups. These calculations are mainly based on probabilistic methods for standard 
LPs and result in valid approximations to real-life selected single consumers.  

Especially for depicting natural gas consumption, the seasonal influence strongly alters the 
resulting LPs due to heating appliances. Winter seasons result in both higher base and peak 
loads than compared to summer [45]. This effect is particularly present in the sector of 
households and tertiary services. In these cases, standard LPs are further advanced to ambient 
temperature-dependent profiles based on the “SigLinDe” function. Here, the ambient 
temperature T"#$  acts as a scaling factor for an underlying LP correction to calculate the 
corresponding hourly demand E&'(  as formula I shows below. For a T"#$  = 8 °C, h(T"#$) 
equates to 1. h(T"#$) is larger than 1 for ambient temperatures under 8 °C and smaller than 
1 for temperatures above 8 °C. The mathematical regression of this correlation is developed 
through a mixed linear and Sigmoid function. [46] 

E&'( = E	 ∙ h(T"#$) ∙ F01 I 

Formula I further includes E as average, not corrected natural gas consumption [kWh] per 
hour and a scaling factor F01  incorporates the respective influence of weekends and 
weekdays on the energy consumption.  

Overall short-term variabilities (amplitudes at smaller periodicities following DFT analysis) 
within the respected natural gas LPs are less distinct than for electricity. This is because natural 
gas consumption for heating purposes within buildings expresses itself rather steadily (e.g. 
water heating or room conditioning) [47]. However, because “SigLinDe” is not bound to end-
use appliances (e.g. a water boiler) but external ambient temperatures, certain inaccuracies 
cannot be excluded to a full extent. LPs from ambient temperature correcting formulas like 
“SigLinDe” can be allocated to the group of synthetic LPs as they do not aggregate existing 
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data like for standard LPs but trace back to properties (in this case, the time-resolved ambient 
temperature gradient) for individual consumers. 

Pflugradt et al. [48] created a holistic approach to generate synthetic LPs of households for 
electricity, natural gas and other energy carriers. Unlike the others mentioned above, this 
methodology focuses on the lowest level of aggregation, thus, the load pattern of energy-
consuming appliances within residential homes. Moreover, this method is interlinked with 
further information like the time-dependent behaviour of the residents. The corresponding 
calculations combine the individual consumers to depict the entire energy system via a 
bottom-up approach. This offers more advanced LPs in terms of accuracy and detail. However, 
the methodology’s comprehensiveness limits the accessibility for easy and swift evaluations. 
This trade-off is common throughout all examined fields of time-resolved energy system 
analysis. 

2.2.2 Transport 

Analyses of the load and generation within the mobility sector mainly refer to the interaction 
of E-mobility and the local electricity distribution grid. The aim of generating electricity LPs is 
to assess the impact of electric vehicle charging on the local grid and the development of 
further advancements for its respective integration e.g. vehicle-to-grid [26]. Vopava et al. [26] 
evaluate various approaches of methods for simulating the time-resolved charging of E-
vehicles for examining grid reinforcement needs. The authors found that LP methods are 
typically developed within two categories:  

The first group synthesizes the charging loads based on probabilistic correlations, e.g. the 
driver’s behaviour: For example, within the spatial model of Fischer et al. [49] an extensive 
data analysis shows that parameters like household type and economic status influence the 
number of vehicles per household and occupation of the driver impacts the time-resolved 
utilisation of mobility infrastructure (e.g. parking time, charging time, …). A developed, 
probabilistic Markovian model then outputs the electricity LPs based upon these correlations 
above and evaluates the impact on the local distribution grids.  

The second category validates data directly measured at vehicle charging stations and derives 
models from revealed correlations. For example, Neaimeh et al. [50] applied real-life 
electricity LPs from charging processes to model their spatial and time-resolved impact on 
generic distribution grids. The authors’ findings suggest the implementation of new measures, 
e.g. DSM, to support the grid stability in the next step. 

 



Context and Research Need 

 PAGE | 16 

 

2.2.3 Energy Industries 

Energy industries refer to economic units, which are principally set at the beginning of the 

energy conversion chain. They are responsible for the production and distribution of grid-

bound (e.g. electricity, natural gas, …) or grid-unbound (e.g. coal, fuel oil, …) energy carriers 

based on primary energy and resources [43]. Production factors influence the temporal 

availability of generated energy carriers. On this matter, especially electricity generation is 

driven by various factors ranging from internal (e.g. maintenance, …) to external (e.g. daytime, 

season, …). These uncertainties within time-resolved energy production heavily impact the 

economic units downstream and their determination is therefore of major importance.  

Throughout investigations of real-life plants (e.g. nuclear power, wind farms, hydroelectric, 

PV, …) derived capacity factors subject to the temporal availability of produced electricity [51]. 

For individual points in time capacity factors state the ratio of generated electricity to the 

theoretical maximum output, which is defined to be reached at continuous and full operation: 

CF3 = 	
E456,3
C	 ∙ 	∆t 

II 

Formula II states the mathematical formulation of the time-resolved capacity factor CF3 [-] 

based upon the generated electricity E456,3 [kWh], overall maximum capacity C [kW] within a 

defined period of time ∆t [h]. 

Like standard LPs for the sector of buildings, capacity factors tend to be afflicted by 

uncertainties attributed to their cumulative, high-aggregated calculation. Especially for 

depicting highly volatile, renewable energy generation like PV or wind other approaches bear 

clearer advantages. Exemplarily, the following resources can be named: 

“Renewables.ninja” [52] is a web-based tool which provides energy generation profiles from 

PV and wind generation for timely resolutions of hours and above. The profiles are synthesized 

based on location information, weather data, forecasts and characteristic generation curves.  

The “Global Wind Atlas” [53] is also a web solution which generates time-resolved generation 

data from wind sources based on spatial and historical weather data. The depiction of a heat 

map outlines the top potential areas for increased power yield. However, this tool only 

provides daily profiles from these data sources.  

The “PVGIS tool” [54], developed by the European Commission, provides hourly generation 

data from PV, also based on georeferenced and characteristic generation curves. Moreover, 

the selection of individual PV technologies provides more evaluation options for generated 

profiles. 
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A series of other studies investigate the simulation of energy generation profiles from 
renewable sources, however, this cannot be covered to this extent in this thesis. The 
mentioned tools outline the importance of evolving research methodologies into concrete 
software applications providing usability and scalability of the developed approaches. 

2.2.4 Manufacturing Industry 

The industrial sector lies within the aim of energy-related research of this study. As this 
sector's properties and classification are described more thoroughly in the methodology 
section below, this study emphasizes that the applied industrial energy system surpasses the 
other sector’s systems in regard to its comprehensiveness: For example, besides electricity, 
the significant share of high-temperature end-use applications/processes (e.g. smelting 
ovens) within this sector makes process heat related, time-resolved analyses an essential 
instrument for gathering insightful information [38]. Moreover, process heat, which can 
potentially be converted from various energy carriers, can also be recovered within or outside 
the plant (e.g. as waste heat) for further utilisation [23]. Supplied fuels can also be utilised as 
feedstock in production processes [55], which contributed further to the complexity of the 
sector when conducting energy system analyses.  

Figure 4 shows selected works from literature in recent years, which target the examination 
of the time-resolved behaviour of energy systems of industrial subsectors and plants and, by 
that, generated respective impacts in the context of energy-related research. Here, the 
distinction between methodologies for developing standard LPs, synthetic LPs and time-
resolved models of individual sites is outlined. Especially for the latter, various studies have 
been developed in recent literature, but this thesis only describes four selected works as they 
specifically outline the importance of LP generation in their respective research. 

Through the depicted classification it can be observed that recent studies already heavily 
investigated the development of standard LPs for industries. In the studies by e.g., Valdes et 
al. [32] or Jesper et al. [35] “k-means” cluster analyses of electricity and heat profiles 
respectively reveal prominent, reoccurring features in the LPs. This leads to the derivation of 
mathematically formulated equations, which make a standardised approximation to real-life 
energy demand of industrial consumer groups possible.  

Similar to the development of standard LPs in other economic units, studies for industrial 
applications also tend to develop their methodologies in a top-down manner. This means that 
data is generally gathered and analysed on a high aggregated level of e.g. an entire industrial 
subsector, to then depict smaller consumer groups downstream [31]. Since standard LPs do 
not apply to individual consumers (as described in the sections above), the application of these 
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methodologies is limited to a certain extent. However, the focus of recent literature 
increasingly lies on revealing LP variations between e.g. industrial subsectors or working and 
weekend days [31]. These efforts for more detailed system analyses could potentially provide 
better applicability of industrial, standard LPs in the future. The comparison of further 
depicted literature studies for standard LPs in Figure 4 is outlined in the taxonomy table in the 
Appendix. 

Time-resolved modelling of individual consumers like industrial plants requires a tailor-made 
methodology and a profound knowledge and database of the to-be-depicted energy system. 
As described in section 2.1.2.3, the development of LPs is here oftentimes regarded as the first 
step and necessary tool to investigate the application and impact of systemic measures (like 
DSM) or new technologies and processes in the existing industrial site. For example, Thiede et 
al. [42] developed a model based on generic energy flow-oriented manufacturing simulation. 
The aim is to assess real-life facilities and the impact of energy reduction measures. The overall 
methodology is conducted via multiple steps and requires extensive data from the respective, 
to-be-investigated plant. Analyses regarding factory internal or external waste heat recovery 
are not explicitly stated within the work. Dock et al. [20] further exploited multi energy system 
analyses for a selected steel mill applying the electric arc furnace (EAF) route to generate LPs 
and WHPs based upon plant-specific measurements and application of Markov models. This 
multi energy analysis does not differentiate between plant internal or external waste heat 
usage but offers insights on still untapped potentials regarding energy flow and waste heat 
utilisation for the respective facility. Lecompte et al. [41] deployed a model which solely 
generates WHPs of a real-life steel mill for investigating the implementation of waste heat 
recovering organic Rankine cycle (ORC).  

All the above literature works of time-resolved models investigate individual plants in a 
bottom-up manner. This approach is initiated at the lowest aggregation level (e.g. single 
industrial processes) and assembles the facility and underlying production by investigating the 
systemic combination at these levels. This, however, results in a higher degree of complexity 
for the situated method and the need for specific data from the lowest aggregation level. 

In conclusion, it can be stated that, while standard LPs (deployed by top-down calculations) 
offer wider flexibility in their reproducible application but lack the depiction of individual 
consumers and their features, time-resolved models (deployed by bottom-up calculations) 
specifically aim for detailed industrial sites, however, require extensive data and tailor-made 
models to be initiated. This leads to the question, of whether the nature of both categories 
can be combined sufficiently by developing a methodology for generating synthetic LPs, which 
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offer representative results of individual consumers and still manage the flexibility to be 
applicable for a broader range of industrial subsectors at the same time. 

Merely Sandhaas et al. [19] were found in recent literature to step into this question by 
depicting synthetic electricity LPs. The authors combined top-down standard LPs with bottom-
up models, distinguishing shares of useful energy categories in their LPs (e.g. process heating 
and cooling, lighting, mechanical drive, …). The bottom-up models solely depict periodical 
fluctuations in the energy consumption of continuous and batch/discontinuous mechanical 
drives. The authors apply their methodology for three IEA subsectors.  

2.3 Research Need and Scope of This Work 

Time-resolved energy system analyses to generate LPs are already well developed within the 
economic sectors of buildings, transport and energy industries, as outlined above. Within the 
scope of these methodologies, the main aim is to provide a better understanding and 
improved integration within electricity grids and infrastructure. Manufacturing industries 
exhibit more complex energy systems and single consumers like individual plants are 
responsible for high shares of energy consumption. Thus and in the context of intrinsic 
boundaries set by traditional economic (e.g. cost, quality or time) and environmentally driven 
objects (e.g. reduction of energy and CO2 emissions) and extrinsic impacts from regulations 
and society, industry is increasingly obliged to deploy and gather more knowledge on the most 
detailed subareas of their production system [56].  

The literature review shows that methodologies to generate industrial LPs have been 
developed in recent literature studies for different use cases. Here, especially the focus lies 
on the generation of standard LPs or concrete time-resolved modelling of individual 
manufacturing sites, as described above.  

The findings from the literature review can be condensed to the following aspects, which 
present still unanswered research gaps:  

• Lack of synthetic LPs of the entire industrial sector: Developed standard LPs of the 
manufacturing industry offer valid approximations to whole consumer groups. 
However, they do not sufficiently depict individual or more complex energy 
consumers. Throughout the development of concrete time-resolved modelling 
methodologies, this aim can be reached. However, these require tailor-made 
approaches, an extensive (real-life) data basis and longer development times. A gap 
between these two variants can be filled by synthetic LPs, which firstly offer better 
flexibilities for applying different use cases and secondly are able to depict major 
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characteristics of individual or complex energy consumers as well. In overall, holistic 
methodologies for generating these synthetic LPs in industry have not been thoroughly 
developed in recent literature yet. 

• Lack of thoroughly investigated impacts on LPs: There is no holistic study, which 
investigates and reasons the multitude of factors influencing the time-resolved energy 
demand and generation behaviour of industrial plants. For example, top-down studies 
(e.g. for standard LPs) solely examine the common characteristics of LPs but do not 
further document the underlying origins of these patterns. Bottom-up studies (e.g. in 
the context of time-resolved models of individual plants) largely reason these impacts 
only on process level. 

• Lack of multi energy system approach: As Figure 4 shows, the main share of literature 
studies investigates the development of LPs for electricity. While this is a valid 
consideration for other economic units like buildings or transport, the industry is 
afflicted by significant shares of high-temperature applications and process heat, as 
described above [57]. The depiction of heat and fuels for thermal useful energy can be 
deemed as a still neglected field within this context. 

• Lack of depicting energy generation and conversion in LPs (especially waste heat): 
Standard LPs purely cover the load behaviour of the industry. Time-resolved models 
also manage the investigation of energy conversion and generation within the selected 
manufacturing plant, especially for the subject of waste heat generation and 
utilisation. However, no study in the latest research advances to generate specifically 
WHPs of different industrial plants on a more holistic level.  

In conclusion, a holistic approach for generating synthetic, industrial LPs for different energy 
carriers should be embedded into a standalone software as a definitive solution for the 
industrial sector. This can assure a user-friendly methodology as the complexity is stripped 
away by the nature of the software environment, but still put time-resolved multiple energy 
system analysis into practice by combining top-down and bottom-up methods. To realise this 
goal, this work is put together by interlinked research studies and conference proceedings. 
Through this, the identified research gap left open within the mentioned bullet points above 
can be closed by bundling these findings and developments and concentrating them under 
the following research questions: 

• R1: Is the depiction of synthetic load and generation profiles for individual industrial 
sites of different subsectors of the entire industrial sector possible?  
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• R2: What underlying factors and conditions like subsector characteristics, process 
properties, methodological approaches (e.g. bottom-up and top-down calculations) 
and data availability influence synthetic load and generation profiles? 

• R3: Can the developed methodologies for generating synthetic load and generation 
profiles be adapted to also depict industrial waste heat profiles? 

To sufficiently answer these research questions, the next chapters discuss and present the 
developed methodology in this work interlinked with corresponding publications.  



Methodology 

 PAGE | 22 

 

3 METHODOLOGY 

This chapter unveils the underlying, common basis which was put into practice for the 
individual investigations and developments for answering the overarching research questions 
from above. These individually developed methods are then further outlined in the published 
works. This chapter also describes their respective connections and contributions to this 
overall study. 

3.1 Classification of Manufacturing Industry 

Within the development of a holistic approach for generating synthetic LPs and WHPs of 
industrial consumers, the concise classification of the industrial sector is key. Due to the great 
heterogeneity of the industry in terms of processes, products and further characteristics, the 
sector is to be investigated by introducing standardised parameters and descriptions.  

 

Figure 5: Level of detail and aggregation in the context of industrial classification schemes 

The basis for investigating the structure of the industrial sector is represented through a set 
of three interlinking classifications (Figure 5): 

1. Energy-intensive / non-energy-intensive subsectors: This definition states two groups 
regarding the subsectors’ respective energy consumption. The allocation of subsectors 
to these two groups varies depending on legislators, institutions and countries. The 
European Commission discloses energy-intensive subsectors based on the application 
of selected production processes. These processes can for example be electrolysers, 
metallurgic processes, chemical reduction processes, processes for glass fabrication 
etc. [58]. 

2. IEA (International Energy Agency) classification [59]: The IEA constitutes individual 
industrial subsectors based on their produced goods e.g. iron & steel, pulp & paper, 
machinery etc. These subsectors can be allocated to energy-intensive and non-energy-
intensive groups from above.  

Energy-Intensive / 
Non-Energy-Intensive IEA Classification

(e.g. Iron & Steel, Pulp & 
Paper) NACE Classification

(e.g. C 25.5.0 – Forging, 
pressing, stamping and

roll-forming of metal)N
um

be
ro

f
D

is
tin

gu
is

ha
bl

e
C

la
ss

es

+

-

Ec
on

om
ic

an
d

Sy
st

em
ic

Ag
gr

eg
at

io
n2

11

214



Methodology 

 PAGE | 23 

 

3. NACE (Nomenclature statistique des activités économiques dans la Communauté 
européenne) classification [60]: Regarding the economic classification, the European 
Commission further utilises NACE codes within a graduated system. The first level 
describes the economic units themselves. Here, the class “C - Manufacturing” equals 
the industrial sector in its entirety. NACE codes including two digits are aligned with 
the aggregation level of the IEA classification, e.g. “C 24 – Manufacture of basic metals” 
and iron & steel. Two additional lower aggregation levels state more detailed 
classifications, e.g. NACE-3 class “C 24.4 – Manufacture of basic precious and other 
non-ferrous metals” and NACE-4 class “C 24.4.2 – Aluminium production”.  

All three classification schemes can be interlinked with each other and describe the structure 
of the industrial sector via different aggregation levels.  

3.2 Systematic Approach for Methodologies 

Due to the high heterogeneity of the industrial sector, the classifications above are to be 
applied to support the development of holistic methodologies.  

The need for a holistic and definitive solution for the outlined research aim calls for 
standardised approaches in accordance with the specific subsectors’ properties. The most 
prominent definition of energy-intensive and non-energy-intensive subsectors (according to 
IEA) offers a good basis to put the development of overall methodological approaches into 

Figure 6: Comparison of energy-intensive and non-energy-intensive subsectors in regard to total energy 

demand, total greenhouse gas (GHG) emissions, gross value added, number of employees, number of 

enterprises and number of NACE-4 classes in Europe. 
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practice in the first place. Figure 6 shows the comparison of both subsector groups and the 
allocation of IEA subsectors respectively. All compared parameters originate from the 
European Commission (Eurostat) [4] sources. It can be observed that the energy-intensive 
subsectors exceed non-energy-intensive industries regarding total energy consumption and 
GHG emissions. However, this is not the case when considering gross value added, number of 
employees, enterprises and number of NACE-4 classes. These results reason for a separate 
development of methodological approaches for depicting energy-intensive and non-energy-
intensive subsectors respectively. 

Overall, the limited number of varying products and production processes of energy-intensive 
subsectors, which can be indicated through the low number of NACE-4 classes, benefits the 
development of bottom-up methods. The advantage of this approach, as already mentioned, 
lies in its highly detailed calculations as they are executed at the lowest aggregation level (e.g. 
process level). Especially for energy-intensive production routes, data and information on 
single processes are widely available in literature or originate from dedicated research 
projects (e.g. time-resolved modelling of individual industrial plants). This fact further 
supports the application of bottom-up methods.  

For non-energy-intensive industrial subsectors, where process-specific data is rather sparse, 
top-down methods might be more advantageous. Here, high-aggregated data from industrial 
surveys and databases can be utilised to examine selected correlations, where conclusions for 
individual industrial plants can be derived. Based on these conclusions, LPs and WHPs can be 
generated stochastically. 

The methodology for generating synthetic LPs and WHPs varies in accordance with the 
depicted systemic aggregation level. Standardised aggregation levels in industry are process, 
manufacturing, plant and subsector levels, as Figure 7 shows [42]. Between these levels, 
energy can be generated/converted/consumed as a function of the selected systemic level. 
Figure 7 additionally states the implication of bottom-up and top-down methods within this 
system.  

The prominent touch point of the two selected approaches lies at plant level as the main aim 
of this work is to generate dedicated profiles for this level. This satisfies the needs of the 
identified stakeholders like grid operators, energy-related research and energy suppliers (see 
Figure 1). To further broaden the field of application for the developed methodology, the 
bottom-up methods also allow the generation of LPs and WHPs at manufacturing level. 
Dynamic profiles of single processes based on physical or thermodynamic calculations or 
standardised subsector profiles are not within the scope of this work. 
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Figure 7: Systemic aggregation levels of the industrial sector including applied methodological approaches 

and aim of this thesis. Internal recovery cycles (e.g. from waste heat or excess energy like steam) are not 

depicted. 

3.3 Development of Methodologies 

The structure of this thesis can be divided into four partaking methodologies, illustrated in 
Figure 8. Appendices B and C give more information on the individual studies. 

 
Figure 8: Methodologies of this work and their respective connections as well as contributing scientific papers 

and conference proceedings. 

For depicting synthetic LPs of energy-intensive industries, a bottom-up approach supported 
by stochastic top-down methods was developed. Paper 1 (P1) [38] as well as conference 
proceeding 1 (C1) [61] contributed to this development. In this context and as declared above, 
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the bottom-up approach aims to generate synthetic LPs of individual production routes or 
whole industrial plants (manufacturing and plant level in Figure 7), starting from process level. 
The individual processes are combined following subsector and plant-specific production 
logics. The underlying data is gathered at process level and on default contains information 
on e.g. process specific runtimes, specific energy consumption, unit and batch sizes, etc. (see 
section 4.1.2). The time-resolved interaction between these processes is the backbone for 
generating the respective LP and is managed by discrete event simulation. To bridge the gap 
of uncertainties (e.g. unknown production times, buffer times, …) individual assumptions are 
formed and supported by stochastic methods such as Gaussian distributions and Markov 
chains.  

The LP generation of non-energy-intensive subsectors is achieved through a top-down 
approach supported by a process-specific bottom-up method. The top-down approach is 
initiated at subsector or plant level (Figure 7) and employs different industrial databases. 
These databases contain datasets like yearly energy consumption and demands, production 
capacities, number of employees, etc. of individual plants from Europe and the U.S. 
Correlation analyses of these datasets are utilised to develop individual regression models. 
These models are interlinked to generate LPs similar to standard LPs. To further enhance the 
LPs, a developed bottom-up method incorporates data on the most energy-intensive 
processes into the LPs via Markov chains. Paper 2 (P2) [39] describes this and paper 4 (P4) [62] 
covers a partaking novel finding in regard to “economy of scale” of industrial energy systems 
from this approach. 

WHPs are a subgroup of LPs, as declared in the sections above. Because the conducted 
literature review revealed a clear lack of WHPs, the already executed methodologies of both 
subsector groups (energy-intensive and non-energy-intensive) were developed further to 
depict synthetic WHPs. For energy-intensive subsectors, the process-specific data was 
extended to cover properties relevant to waste heat-specific calculations (e.g. operating 
temperatures, outlet temperatures, waste heat energy carriers, …). This in combination with 
heat exchangers within the methodology provides the successful generation of synthetic 
WHPs from LPs via the same bottom-up approach. For non-energy-intensive industries, 
literature research on waste heat fractions from individual production plants and subsectors 
was conducted. These waste heat fractions are then superimposed on the already generated 
synthetic LPs. Paper 3 (P3) [37] outlines these enhanced methodologies. 

All developed methodologies are embedded into a software environment called “Ganymed” 
as their underlying connection. “Ganymed” was developed based on the programming 
language “Python” and is publicly available. Conference proceeding 2 (C2) [63] describes the 
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applied architecture of “Ganymed” and the solution for combining all methodologies via the 
development of this standalone application. 
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4 RESULTS 

This section presents the joint results of the mentioned publications and studies from above 
as well as answering the research questions, which were initially stated. The main anchor point 
for this discussion is formed around Figure 9. Firstly, the impact factors, which are found to 
influence the development and manifestations of synthetic LPs in industry, are presented. 
Additionally, these impact factors are allocated to the different systemic aggregation levels, 
shown in Figure 7, outlining where these factors are occurring. Lastly, the implications of these 
impact factors are combined through the developed methodologies for generating the 
targeted profiles for the plant and manufacturing level. 
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Figure 9: Systemic approach for generating LPs in industry: Individual impact factors are combined either top-down or bottom-up to generate representative synthetic LPs on 
plant or manufacturing level. 
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4.1 Impact Factors for Generating Load and Generation Profiles in 
Industry 

4.1.1 Impact Factors for Top-Down Methodologies from Subsector to Plant 
Level 

Data on subsector level is oftentimes regarded as the first basis for holistic energy system 
analyses [38]. This aggregation level also sometimes plays a role in the development of 
standard LPs, where alternative or more detailed information on lower levels is scarce (e.g. in 
the economic sector of buildings) [64].  

The industrial subsectors vary highly regarding their deployed processes and production 
routines. However, within the individual studies of this thesis, certain effects from these 
varieties were successfully investigated on subsector level. These impact variables were found 
to have a distinct influence on the generation of LPs in individual industrial energy systems. 
This data – generated (stochastically or deterministically) on subsector level – is further 
combined and facilitated top-down to develop a more comprehensive understanding of 
generating synthetic LPs and WHPs on plant level. This improves the level of detail for 
individualising the properties of generated profiles for the to be depicted industrial plant 
accordingly.  

4.1.1.1 Economy of Scale and Load Factor 

“Economy of scale” (EOS) is an effect, which typically finds its application in microeconomics 
to express specific cost reduction in correlation to a higher production output/capacity [65]. 
Through this paradigm, areas of cost-optimised production and reasons for declining cost 
efficiency in operation can be assessed. 

Within the studies in P2 and P4, industrial databases of the programme “Industrial Assessment 
Centre” (IAC) [66], funded by “U.S. Department of Energy”, the “European Eco-management 
and Audit Scheme” (EMAS) and the “European Emission Trading System” (ETS) were analysed. 
These databases contain surveys of plant and NACE subsectors specific data on number of 
employees, energy demand and consumption, production hours, capacity etc. amounting to 
around 25 000 data points. Throughout correlation analyses, it was found that the energy 
consumption of individual industrial plants is characterised by the EOS effect, outlined in 
Figure 10. However, this effect (namely “energy of scale”) differs from subsector to subsector, 
again, emphasizing the heterogeneity in industrial energy systems.  
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A very small amount of studies practically identify this “energy of scale” effect and only for 
the economic sectors of energy industries and buildings [67]. Especially for the manufacturing 

industry, no literature sources were found. Through the development of NACE-specific fit 
functions, the corresponding electricity and natural gas consumption of individual industrial 
plants can be assessed top-down.  

For the generation of industrial LPs, the average energy consumption of a single industrial 
plant (see Figure 2) without process-specific information is thus acquired as a first step 
through data from real-life plants. This provides insights regarding the before mentioned, 
distinct energy variances of facilities of the same subsector. These novel consumption-related 
findings are to be facilitated further top-down to generate plant-specific and major LP 
influencing load factors (LFs) [68] to describe the plant's energy demand: 

LF sets in a range from 0 to 1 and is typically calculated for electricity systems [68], however, 
can be applied in the context of natural gas too (see P2).  

LF = 	 EP	 ∙ t 
III 

In general, the LF is calculated (see formula III) from the ratio of energy consumption E [kWh] 
to peak demand P [kW] within a time interval t [h] of a respective energy consumer. Thus, the 
LF represents the shape of individual LPs as the load of consumers with lower LFs is generally 
characterised by higher shares of peak loads (or in comparison by minorly expressed base 
loads) than consumers with higher LFs. DFT analysis shows stronger amplitudes at high 
periodicities in these cases. This can be observed in Figure 11, which shows a comparison of 
two generated industrial electricity LPs from the mentioned studies.  

0

5000

10000

15000

20000

0 10000 20000 30000 40000 50000 60000

Sp
ec

. E
le

ct
ric

ity
 C

on
su

m
pt

io
n 

[k
W

h/
t]

Production Capacity [t]

U.S.
Europe
Fit All

1

10

100

1000

10000

100000

10 100 1000 10000 100000 1000000

Sp
ec

. E
le

ct
ric

ity
 C

on
su

m
pt

io
n 

[k
W

h/
t]

Production Capacity [t]

U.S.
Europe
Fit U.S.
Fit Europe
Fit All

Figure 10: Energy-related EOS effect within the sector NACE 25 for electricity based upon industrial data points from 
U.S. and Europe; Left: normal plot, Right: logarithmic plot 



Results 

 PAGE | 32 

 

 

Figure 11: Comparison of LFs of two generated electricity LPs of industrial plants with similar load peaks 

Regarding LP generation, the energy consumption and peak demand of a single industrial site 
can be retrieved stochastically from the previously mentioned EOS fit functions. The 
corresponding LF is then deployed as a major impact factor on the properties of the generated 
LPs and is utilised to improve existing synthetic LPs in accordance with “energy of scale”. 
About LFs for natural gas consumption, the ambient temperature dependency of the 
respective plant has to be considered (see next section). 

4.1.1.2 Energy Statistics and Ambient Temperature Dependency 

Jesper et al. [35] state that the ambient temperature dependency of the heat demand in 
industry is a driving factor for respective LPs and WHPs. P2 describes that – unlike in residential 
buildings – the heat demand in industry is divided into two segments: The first segment is 
ambient temperature independent as the heat demand is provided to supply the facility with 
process heat. The second segment is ambient temperature-dependent to supply the facility 
with space heating, as this demand is naturally higher during winter months than during 
summer [69]. This influences the generation of LPs of (heat generating) energy carriers and 
WHPs extensively as the share of the two segments varies subsector specifically, evidentially 
proven in P2 and P3. Publicly available data of energy statistics like the “Useful energy 
statistic” by “Statistics Austria” [70] bears information on applied quantities of final energy 
carriers to supply useful energy categories (e.g. process heat, room conditioning and water 
heating, etc.) subsector resolved. The share of ambient temperature-dependent and 
independent demand can therefore be acquired. It can be stated that the ambient 
temperature dependency in energy systems of subsectors which are energy-intensive and 
deploy high-temperature applications (e.g. iron & steel industry, non-metallic minerals 
industry, …) is less distinct than for non-energy-intensive industries (e.g. machinery industry, 
textiles & leather industry, …). 
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To depict the influence of ambient temperature on the LP of (heat generating) energy carriers 
at plant level, the calculated shares between process and ambient temperature-dependent 
heat demand are further processed. Figure 12 shows these shares additionally. While process 
heat is regarded to remain constant throughout the year on average, the ambient 
temperature dependency of room conditioning calls for an adjustment to meet seasonal 
influences [35]. In P2, the "SigLinDe" function is deployed, which utilises a mixed linear and 
Sigmoid regression function to compute an adjusting factor for the heat demand, as stated in 
the sections above [46]. Figure 12 shows the average, adjusted demand when implementing 
a monthly temperature variance. This can be further disaggregated into weeks or days, 
according to the data availability of the temperature gradient (see P2). Through this 
adjustment in combination with the beforehand calculated LFs, the overall ambient 
temperature dependency in LPs can be assessed. 

 

Figure 12: Yearly dependency within yearly LP of heat generating energy carriers in the machinery subsector 

including share of ambient temperature dependent and process specific heat lead from “Useful energy 
statistic” and adjusted load sum with “SigLinDe” 

4.1.1.3 Plant Employees Distributions and Shift Model Analysis 

Besides data from energy-related databases, another impact factor of generating synthetic 
LPs can be located in the discrete number of employees at the to-be-depicted plant. According 
to the outcomes of the analyses in P2, this is because the number of employees correlates to 
the deployed shift model at the plant and therefore to the energy consumption pattern itself 
(e.g. peak loads at weekday production, base loads at weekends non-production etc.). As 
stated in P2, the development of subsector-specific distributions to stochastically assess the 
number of employees of individual facilities, for which the information on employees is not 
publicly available, deploys further knowledge regarding the generation of LPs and WHPs. 
Figure 13 shows the developed probability density function for the distribution of number of 
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employees of the subsector NACE 25.6.1 from P2 respectively. The data originates from the 
“Austrian Herold business database” [71]. Through the resulting data fit (exponential function) 
in Figure 13, the number of employees for the selected subsector can be derived 
stochastically. 

 

Figure 13: Exemplary probability density function from P2 for the subsector NACE 25.6.1 

The type of shift model, likely to be applied at a respective industrial plant, is the next major 
impact factor for the corresponding LPs which utilises the subsector-specific stochastic 
functions from above [72]. The shift model dependency of LPs and WHPs can for example be 
observed in Figure 11 on the left. During production times, the peak loads are generally higher 
than during times off-shift (in Figure 11 on weekends). In conclusion, under the circumstance 
of a known shift model type (e.g. 80 h/week as of two shifts), the occurrence of production 
and non-production times and therefore the shape of the generated LPs and WHPs can be 
estimated [72].  

It was found that the number of employees at the plant correlates to different types of applied 
shift models: P2 describes that the IAC database is used to retrieve basic information on 
production hours and number of employees of single industrial plants for all NACE subsectors. 
Figure 14 top describes the process of the generation of derived probability densities as 
functions of production hours and employees of different shift model types. After generating 
these probability density functions, they are applied to determine the shift model with the 
highest probability for the input parameter of a selected number of employees and NACE 
subsector (Figure 14Figure 14 bottom).  

0%

2%

4%

6%

8%

10%

12%

0 5 10 15 20 25 30 35 40 45
0

2 0

4 0

6 0

8 0

1 00

1 20

1 40

1 60

Number of Employees [-]

Pr
ob

ab
ilit

y 
D

en
si

ty
 [%

] Histogram Analysis

Probability Density Function



Results 

 PAGE | 35 

 

 
Figure 14: Generation and application of probability density functions for assessing industrial shift models. 

Figure 15 shows the result of generated probability density functions of the NACE subsector 
“C 16.1.0 – Sawmilling and planing of wood”. In P2, five groups of weekly production hours, 
for which specific shift models can be allocated, were defined [73]. For example, 80 h/week 
indicate a two-shift model with 16 productive daily hours over five working days. 120 h/week 
can indicate either three shifts with 24 h over five working days or two shifts with 20 h over 
six working days. It can be observed that for up to 200 employees in this sector, the stochastic 
evaluation of data shows that a single-shift model has the highest probability of being applied, 
followed by the two-shift model. Limitations to this approach can be seen at high numbers of 
employees (in Figure 15 >600) as a clear derivation between the probability densities can no 
longer be assessed since data for such big plants is rare. For these special cases, the 
methodology in P2 outlines that a systemic disaggregation of the individual plant into 
production divisions might be advisable. 
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Figure 15: Generated probability density functions of different production hours of the NACE subsector “C 

16.1.0 – Sawmilling and planing of wood” 

4.1.1.4 Waste Heat Fractions and Excess Waste Heat Potentials 

The methodology for the generation of WHPs on plant level top-down does not include 
process-specific information. Here, the aim is to solely generate WHPs of waste heat rejected 
from the plant, either for supplying a nearby district heating grid or for depicting the remaining 
unused heat at a specific (elevated) maximum temperature for subsequent internal use. In 
combination with LPs for heat-generating energy carriers, it was found that waste heat 
fractions (WHFs) offer an interesting option when process-specific waste heat data is sparse. 
WHFs from literature sources are developed based on plant-specific measurements or 
retrieved from CO2 emission data. They are generally stated on subsector level and for a 
chosen reference temperature (as stated in P3) [74]. Regarding the energy density of derived 
WHPs, formula IV describes the calculation of waste heat flows for each time step based on 
the respective LP for heat-generating energy carriers: 

Q̇+,-,/ = 	f+, ∙ Q̇1-,/ IV 

With Q̇+,-,/ as waste heat from the plant at time step t, f+, the subsector specific WHF and 

Q̇1-,/ the heat load at time step t. 

In combination with the observations of ambient temperature dependencies from section 
4.1.1.2, it can be stated that the energy density Q̇+,-,/ is only slightly influenced by seasonal 
changes due to the minor waste heat potential of energy for room conditioning application. 

Following the calculation of waste heat flows, the assessment of heat transfers to e.g. district 
heating grids demands information on the specific maximum temperature of the generated 
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heat in WHPs [23]. In P3 it is stated that the information of WHFs including reference 
temperature from literature can be applied to calculate the maximum temperature based 
upon the assumption that the generated heat originates from natural gas combustion. Figure 
16 shows this method. Following the assumption of adiabatic combustion of natural gas, an 
overall function in dependency on the rated thermal input can be depicted. The rated thermal 
input can be divided into useful energy (plant internal use), WHF (plant external potential) and 
losses. Subsector-specific reference temperatures (Tmin) from literature and their respective 
WHFs can therefore be located in this graph to assess the maximum/outlet temperature Tmax. 
In combination with EOS and shift model analysis, the plant-specific generation of waste heat 
at a specific Tmax can be facilitated. P3 describes this approach methodologically.  

 
Figure 16: Allocation of WHFs and reference temperatures from literature (Tmin) to calculate maximum outlet 

temperatures (Tmax) of the waste heat. 

4.1.2 Impact Factors for Bottom-Up Methodologies from Process to 
Manufacturing Level 

P1 situates that the level of detail and granularity in generating synthetic LPs and WHPs via 
bottom-up approaches is solely influenced by the scope and quality of underlying data of the 
lowest systemic level. Furthermore, P1 and P3 describe that process-specific information is 
available to a greater extent, especially for well-documented production routes of energy-
intensive subsectors. On the one hand, this enables the opportunity to investigate the time-
resolved behaviour of industrial plants in higher detail from the process level to the 
manufacturing level, however, on the other hand, demands more complex methodologies 
handling these extensive datasets.  

Within this thesis the lowest aggregation level of the developed bottom-up approach is 
located at individual processes (see Figure 7) e.g. electric arc furnace (EAF) of the iron & steel 
industry or pulp cookers/digesters of the pulp & paper industry [55]. By accumulating these 
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processes to overall production routes on manufacturing level, the desired LPs and WHPs can 
be generated in a bottom-up way.  

4.1.2.1 Processes and Production Routes for Generating LPs 

P1 states the finding that a concise standardisation of production processes in regard to their 
properties is of major importance when firstly conducting literature research and secondly 
developing suitable methodologies. Concerning the generation of LPs, the process properties 
are divided into time-resolved and energy-relevant properties, as Figure 9 shows. The first 
contributes to the timely offset/variance of loads in the LP, while the last is responsible for the 
magnitude of the process-specific energy demand itself. Exemplarily, time-resolved properties 
cover batch or continuous operations. Both can be further detailed, as batch involves not only 
operating times, but also loading, halting and discharging periods, and continuous as the main 
contribution to base loads without specific discontinuities. Regarding energy-relevant 
properties, the methodology uses the application of either process-specific energy 
consumption or single load profiles – both in [kWh/t] – as an easy and efficient solution. The 
information on both time-resolved and energy-relevant properties relies on the underlying 
data from literature. This dynamic approach also makes the implementation of new 
technologies possible, which inflict more energy-efficient use e.g. biological pre-treatment in 
mechanical pulp digesters [75]. Moreover, the flexible use of this methodology enables first 
steps in concrete time-resolved modelling of individual industrial plants if the underlying real-
life data of the facility is provided to a sufficient extent. This means that, following the 
classification of LPs from Figure 3, this bottom-up approach not only allows to it generate 
synthetic LPs, but also comparable synthetic LPs of real-life plants. 

The design of individual production routes from the implemented processes heavily influences 
the generated LPs. For example, industrial processes can be aligned in series or parallel [76]. 
The methodology applies the paradigm of discrete event simulation (DES) to generate LPs of 
the selected production route within this bottom-up approach. P1 and C1 cover this 
methodology in detail. It was found that DES is a suitable approach for handling and depicting 
the timely interactions between the produced products and production processes to depict 
their most prominent load characteristics in synthetic LPs [77]. Through the application of DES, 
it is possible to calculate individual production routes as long as a logical connection (flow of 
products) between the processes is given. Figure 17 shows the developed advancement of the 
DES paradigm for industrial production logic, which was undertaken in this thesis. Here, the 
production route is defined between a discrete start and end point. In between these two 
objects, processes can be aligned individually. When the simulation is initiated, discrete 
products (e.g. tonnes of steel) are moved in the indicated direction of the material flow, 
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generating single LPs along the way, when interacting with production processes. It is to be 
stated that this steady-state approach is only applicable to generate synthetic LPs. DES in this 
thesis does not include modelling of dynamic process operations (e.g. load peaks of process 
ramp-ups or operational states of the process overall). 

A precise definition of system boundaries supports the characterisation of the LP generation 
[78]. When setting the system boundaries according to Figure 17 (a), an individual load pattern 
in correspondence to the time-resolved and energy-relevant properties of process 1 is 
generated. Figure 17 (b) shows the contributions of individual processes in an LP for the case 
of a broader system boundary. Depending on the processes’ individual time-resolved and 
energy-relevant properties, single process-specific shares make up the overall LP.  

The combination of this rather deterministic simulation approach with stochastic methods is 
an advisable option to further alter and diversify the resulting LPs. Besides the nominal 
process parameters from the literature, fluctuations in their time-resolved and energy-
relevant properties can be included stochastically. The mean energy consumption or process 
can be altered by stochastic distribution of the respective properties, resulting in small 
periodical fluctuations. This is shown in Figure 17 (c). The shaping parameters (µ and σ2) of the 
stochastic distribution were retrieved from deviations in the properties of the processes in 
different literature studies if stated. It was assumed that these deviations are distributed along 
Gaussian distribution. 
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Figure 17: Individual production route including simple LP generation form separate system boundaries for 

(a) single process, (b) accumulated processes and (c) single process with stochastic fluctuations. 

4.1.2.2 Waste Heat Production and Allocation for Generating WHPs 

When generating WHPs, the underlying impact variables are – besides the already mentioned 
definition of system boundaries on manufacturing level and the energy-relevant and time-
resolved process properties on process level – the quantity and source of generated waste 
heat as well as its thermodynamic (plant internal or external) allocation [79]. 

The generated waste heat density and outlet temperature of processes can be assessed 
throughout literature research, which is described in P3. Although the methodology for 
generating synthetic WHPs for energy-intensive subsectors solely depicts the manufacturing 
level, the major advantage of the bottom-up approach is that waste heat originating from 
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following the logic of DES. In “Ganymed”, this is realised via the implementation of heat 

exchanging units (HEXs) to generate WHPs. Figure 18 shows this method. The generated waste 

heat Q̇+,,-234566,7  can be allocated to processes within the depicted production route 

according to their thermo-technical properties of operating temperature and process-specific 

heat demand. The latter is already defined throughout the generation of synthetic LPs (see 

section above), while the information on operating temperatures inflicts the need for an 

overall temperature curve of the depicted production route.  

In the case of Figure 18, the thermo-technical properties of process x allow the supply of Q̇,89 

via a dedicated HEX to reduce its overall (heat-generating) energy demand. The heat transfer 

can be depicted in a corresponding Q̇/T diagram (see Figure 18 right). In this case, the entire 

heat demand of process x can be substituted by Q̇+,,-234566,7. A fraction of Q̇+,,-234566,7 is 

discharged as Q̇5<4566+,  at T,89, which could potentially be further applied within or outside 

the plant in e.g. district heating grids. By setting the system boundary according to Figure 18,  

the WHP of Q̇5<4566+,  is to be generated from the given process-specific information. 

 

Figure 18: HEX configuration for heat transfer between process y and process x 

4.2 Development of “Ganymed” and Implementation of 
Methodologies 

The developed top-down and bottom-up methodologies present themselves with a range of 

input parameters and varying encapsulated methods. The software environment "Ganymed" 
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methodologies into the software and improving its usability via the deployed graphic user 
interface (GUI) as described in C2. 

Figure 19 shows the implementation and workflow of the developed methodologies within 
the software environment of “Ganymed” which is described in the following. White boxes are 
encapsulated in the software and are not accessible to the user. Grey boxes allow user 
interaction through the GUI. 

 
Figure 19: Inner workflow of “Ganymed”; Grey boxes indicate where the user can actively interact with the 

software. 

All process-relevant data from prior literature research is incorporated into the database of 
“Ganymed”. The user can load these processes into the GUI on the process canvas, where they 
can be altered and aligned to an overall production route as shown in Figure 20. System 
boundaries and busbars for energy carriers can be additionally inserted. In the case of Figure 
20, a predefined template of the blast furnace route was loaded into “Ganymed” by the user. 
After the user finishes the alteration of the production route and underlying processes, the 
simulation can be initiated and the resulting synthetic LPs and/or WHPs can be obtained from 
the calculations and results sheet (see Figure 21). The according profiles can be exported as a 
“.csv” file.  
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Figure 20: Process canvas including blast furnace production route and process properties menu for coking 

plant. 

 

 

Figure 21: Generated synthetic LPs in the calculations and results sheet. 
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An industry macro contains the top-down methodology for generating synthetic LPs and 
WHPs of non-energy-intensive industries and is realised as a plugin (see Figure 22). The macro 
itself is handled like a standard process object on the process canvas but deploys the top-
down methodology within its specific properties. Hence this methodology is more complex in 
terms of heterogeneity of databases and impact variables, the generation of LPs and WHPs is 
executed in a traceable step-by-step manner. Within this sequenced approach the synthetic 
LPs and/or WHPs of the selected industry are generated and thereafter act like single profiles 
of this specific macro. After the user runs through this macro, the route on the process canvas 
can be simulated following the DES paradigm and the profiles are shown in the calculations 
and results sheet again. This enables that the industry macro can be combined with other 
macros (e.g. when depicting individual divisions of large production facilities) or interlinked 
with up- or downstream additional production processes from the mentioned bottom-up 
methodology for energy-intensive industries on the same process canvas. 

 
Figure 22: Appearance of the industry macro and implementation in the GUI 

“Ganymed” is an .EXE software realised with the programming language Python, executable 
for Windows-based systems with >8GB RAM and Intel i5 core or equivalent. Software licenses 
or the utilisation of programming languages are not mandatory. “Ganymed” is accessible via 
“www.evt-unileoben.at”. 
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5 CONCLUSIONS 

5.1 Discussion 

The industry progresses to cleaner technologies and transitions its production to GHG-neutral 
and more energy-efficient variants. As a result, energy suppliers and energy grids are obliged 
to comply with this movement, accelerating volatile renewable energy production and 
distribution [13]. To investigate these impacts and support this energy transition, novel 
solutions from energy research cannot only be developed statically but rather examine the 
behaviour and interaction of respective energy systems at different points in time, 
represented through load (and generation) profiles (LPs). This provides better insights for the 
application of volatile energy sources, demand on future energy grids and current as well as 
future consumption processes. [13] 

Overall, LPs of the industry can assume three manifestations: Standard LPs, LPs from time-
resolved modelling of consumers and synthetic LPs. While easy-to-handle standard LPs are 
only applicable to whole groups of consumers, time-resolved modelling approaches aim for a 
distinct representation of an individual energy system through mathematical simulation. 
Synthetic LPs take up the space in between these two groups, depicting the main load 
characteristics of individual consumers, while offering a holistic application for different 
consumers. [19] 

Throughout this thesis, the topic of synthetic LPs for the entire industry was studied and 
developed. Within this chapter, the results from above are concluded and key take-away 
messages in the context of the initial research questions from section 2.3 are formulated: 

The presented literature analysis showed that methodologies for developing LPs are widely 
developed within economic sectors apart from the industry (section 2.2). Recently developed 
methodologies for industrial consumers are described in section 2.2.4 in more detail. It is 
outlined that methodologies for industrial application have mostly been created in the context 
of standard LPs and individual time-resolved models in recent literature. This however limits 
the scope of application and thus does not sufficiently support holistic energy system analyses 
of an already intricate sector. In conclusion, the development of synthetic LPs, which are 
capable of grasping the industrial sector in its entirety, has been identified as a still 
unanswered, but necessary field for energy system research.  

The high heterogeneity of the industrial energy system is to be met with standardised 
classifications first. Here, the classification system of energy-intensive and non-energy-
intensive subsectors and definitions of IEA and NACE to these two groups were applied 
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(section 3.1). Throughout literature research and analyses of energy and economic statistics, 
it can be formulated that energy-intensive subsectors are part of the basic material industry 
producing only a limited amount of varying products by underlying production processes. 
Non-energy-intensive industries are responsible for a broader process and product variety. 
This fact is to be respected in developing LP methodologies. 

Throughout the literature research for this thesis within other economic units of transport, 
energy industries and buildings it was also found that the focus of LP methodologies lies on 
depicting the electricity demand of consumers. The main aim here is to provide robust time-
resolved forecasts for energy consumers within day-ahead and intraday trading and therefore 
assess cost-saving measures [10]. Investigations on electricity LPs were also developed for the 
manufacturing industry, but again only for selected industrial locations (in case of time-
resolved modelling), as declared above, or only on high aggregation levels (in case of standard 
LPs). Besides the requirement for generating (synthetic) electricity LPs on a more detailed but 
holistic level, another subject still left unanswered can be identified: Industrial consumers 
employ high-temperature applications to a greater extent than in other economic sectors. This 
inflicts the need for generating multi energy LPs and corresponding waste heat profiles 
(WHPs). LP methodologies should therefore not be limited to electricity LPs only as potentials 
for future research endeavours in industry heavily lies in multi energy analyses.  

In alignment with both key take-away messages above, this thesis describes the developed 
bottom-up methodology for energy-intensive industries and a top-down methodology for 
non-energy-intensive industries respectively (section 3.2). Alongside these approaches, this 
thesis concludes that the development of standardised system boundaries for allocating the 
generated synthetic LPs and WHPs is of high importance. Section 3.2 depicts the 
characteristics of system boundaries as standardised aggregation levels. It can be stated that 
the definition of system boundaries has to be regarded as the basis for the calculation of LPs 
and WHPs because not only energy but also time-resolved properties of the generated profiles 
are altered accordingly. This is also reasoned in section 4.1.2.1 specifically for waste heat 
calculations in this context. To fulfil the respective aim, the joint methodologies generate 
profiles for the manufacturing and plant levels. 

 

The developed top-down methodology handles the generation of synthetic LPs and WHPs 
based on impact variables developed from subsector to plant level by the systemic 
aggregation levels (section 4.1.1). Within this thesis, impact variables which exhibit 
pronounced effects on the generation of LPs and WHPs were identified. The most prominent 
findings are described followingly: 
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Throughout the investigation of industrial databases, it was found that the cost-reducing 
effect of “economy of scale” (EOS) also applies to electricity and fuel consumption in industry. 
It was furthermore proved that this effect varies depending on the subsector which is 
represented by the subsector-specific fit functions. Through this analysis, the overall energy 
consumption of single industrial plants can easily be derived and thus can be declared as an 
underlying effect influencing the generation of LPs and WHPs. The same fit functions can be 
utilised for describing industrial facilities in the U.S. and in Europe [62]. This could potentially 
mean, that the EOS effect is independent of economic locations with similar technological 
progress. To prove this hypothesis, the analysis needs to be extended to other geographical 
regions like Asia or Australia.  

LPs and WHPs from heat-generating energy carriers are not only driven by process-specific 
heat consumption. The heat and fuel consumption in industry is also partially afflicted by 
ambient temperature, as state-of-the-art studies already proved [35]. To cope with this, 
energy statistics were applied to investigate the share of useful energy categories for ambient 
temperature-dependent applications (e.g. room conditioning) and ambient temperature-
independent process heat. Therefore, ambient temperature-dependent applications are 
responsible for a yearly alteration in LPs and WHPs on top of supplied process heat, which is 
rather constant throughout the year. As high aggregated energy statistics were utilised to 
prove this point top-down, future research activities may develop a more plant-specific 
analysis. This could potentially reveal industries with the highest potential for technologies 
like seasonal heat storage. 

Working shift models contain key information on production and non-production times in 
industrial plants and influence the shape of LPs and WHPs accordingly. However, industries 
apply shift models varyingly. By disaggregating data on employees and on yearly production 
hours to standardised shift models it was found that shift models can be linked to the number 
of employees at the respective industrial plant. Through this finding, the temporal allocation 
of production times and therefore higher peak demands within a week can be assessed. In 
terms of advancing synthetic LP and WHP generation, more extensive analyses of shift models 
can potentially lead to higher levels of detail within the profiles. [39] 

Waste heat fractions (WHF) offer condensed insights on industrial waste heat potentials. 
WHFs of industrial subsectors and different literature sources were combined with 
thermodynamic analyses to calculate the average outlet temperature of all subsectors [37]. 
The WHFs and the corresponding outlet temperature can be applied to generate synthetic 
WHPs from already existing LPs. In this approach, internal heat storage is neglected. However, 
throughout this finding, it can be stated that peaks of waste heat can be assessed through 
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occurring peak times of heat-generating energy carriers such as fuels. When additionally 
including thermal inertia effects, this could theoretically support analyses on external waste 
heat utilisation (e.g. district heating) at last. 

 

The bottom-up methodology for generating synthetic LPs and/or WHPs for energy-intensive 
industries relies on process-specific data. By interconnecting processes to production routes, 
an underlying steady-state simulation logic generates material flows and therefore LPs and 
WHPs.  

As the process level is the lowest level of aggregation in these studies, standardisation of 
industrial processes is a mandatory topic. Two groups of process-specific properties have a 
distinct impact on the generated LPs: Energy-relevant properties (e.g. spec. energy 
consumption, …) are responsible for the magnitude of the loads, while time-resolved 
properties (e.g. process times, …) exhibit the temporal occurrences of loads in the profiles 
[38]. Analysing these two properties separately (e.g. by summing up process-specific energy 
consumption) delivers erroneous results of the energy system. For generating synthetic LPs 
and WHPs, energy-relevant and time-resolved properties have to be combined to generate 
accurate results.  

Especially regarding time-resolved properties, it was found that the classification of batch and 
continuous working processes is helpful. While continuous processes make up for base loads, 
batch-operated processes have a lasting impact on peak loads. This is especially essential in 
the case that selected batch processes are energy-intensive in the respective facility such as 
smelting ovens. Concerning energy-relevant properties, it can be stated that only a small 
amount of production processes are responsible for the main share of energy peak demands. 
As this finding is of major importance to synthetic LP and WHP generation, energy-intensive 
processes were also included through bottom-up calculations in the mainly top-down 
methodology for non-energy-intensive subsectors. 

Concerning waste heat calculations for generating WHPs, both waste heat sources and 
(internal as well as external) sinks are to be defined accordingly. Especially internal waste heat 
sinks/utilisation require information on process-specific temperature gradients [37]. This 
means that – besides the thermodynamic definition of waste heat sources –the temperature 
curve of the entire production route has to be regarded as the basis for the allocation of waste 
heat and therefore generating WHPs. 
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Overall, the developed methodologies are adjusted to energy-intensive and non-energy-
intensive industries. To conclude, bottom-up approaches require more detailed and specific 
data, top-down approaches may easier slide off into inaccurate results due to their higher 
aggregation levels (see Figure 23). Considering these facts, the methodologies in this thesis 
were arranged in a way to also benefit from single opposing methods in both variants: In the 
bottom-up methodology, stochastic top-down calculations to generate individual fluctuations 
were included in the generated LPs and WHPs. The top-down methodology for non-energy-
intensive industries includes bottom-up Markov chains for integrating the most energy-
intensive processes into the calculations, as mentioned above. Through this alteration, top-
down approaches generate better applicable results and bottom-up approaches require less 
detailed amount of underlying data. 

 

 
Figure 23: Combination of bottom-up and top-down approaches in this thesis to improve flexibility of 

methodologies and accuracy of results. 

As both approaches still vary from each other in terms of structure in calculations and required 
databases, the design of user interaction is a key feature when developing a holistic solution. 
Therefore, the software “Ganymed” was developed to incorporate the created methodologies 
and enhance user interaction. In conclusion, it can be stated that the application of standalone 
software environments including GUIs has to be considered as a go-to solution for complex 
energy system analyses. 

5.2 Uncertainties and Limits of Methodologies 

The generation of all variants of LPs and WHPs is a trade-off between accuracy in results, 
applicability of the methodology and its complexity. Especially regarding the aim of this thesis, 
the generation of synthetic LPs and WHPs for the entire industrial sector demands a maximum 
degree of applicability by depicting the majority of industrial consumers to a sufficient level 
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and minimizing the degree of the methodology’s complexity. However, this is inevitably 
accompanied by uncertainties which limit aspects of the methodology and which originate 
from purposely made decisions while developing this research task.  

The methodology for non-energy-intensive subsectors generates synthetic LPs and WHPs for 
a representative week. Although the application and definition of different shift models allow 
variances in the LPs, individual days (e.g. in case of public holidays or vacation days) cannot be 
altered and are not incorporated in the methodology yet. Furthermore, cases of part-time 
work (e.g. part-time production on Saturdays) were also neglected in this methodology. 
Alongside this statement, the application of shift models from data originating from sole U.S. 
databases has to be questioned critically. As production routines will certainly be handled 
differently between the U.S. and Europe, more data from European plants can only be 
beneficial to further enhance the generated profiles. However, industrial data from Europe is 
scarcely available, which should be taken into consideration.  

To provide a more flexible methodology for non-energy-intensive subsectors, production 
processes are incorporated via Markov chains in a bottom-up approach. Like energy-intensive 
subsectors, the properties of these processes were surveyed and identified from literature. 
These processes are responsible for the main share of energy (as already concluded in the 
section above). The residual of the LP is scaled to a representative level based on the effect of 
“economy of scale”. Oftentimes, energy-intensive processes could not be assessed thoroughly 
enough as underlying data from literature was missing. This problem was coped with by 
assuming similar production processes from related subsectors. For example, the subsectors 
of “Manufacture of electric motors, generators and transformers” and “Manufacture of 
batteries and accumulators” were assumed to have similar production processes. 

The underlying simulation paradigm of the methodology for energy-intensive subsectors is 
discrete event simulation (DES). This method was deemed suitable for generating synthetic 
LPs as it is initiated on the detailed enough process level but does not require complex 
alterations to apply to different subsectors at once. Additionally, this approach allows to make 
certain simplifications and standardization, e.g. when only specific energy consumption of 
individual processes was available from literature. This methodology is a steady-state 
approach, meaning that dynamic or transient patterns of the processes (e.g. load peaks from 
process ramp-ups) were neglected to cope with the trade-off of covering all energy-intensive 
subsectors with a single methodology. More detailed investigations would require additional 
extensive amounts of data and would shift the generated LPs from synthetic to the group of 
time-resolved modelling, which was not in the scope of this study. 
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Extensive literature research was conducted to provide the necessary process-specific data 
for the methodology and for DES. Oftentimes, documents of best available technologies (BAT) 
were found to contain the needed data. BAT documents typically feature state-of-the-art 
processes. However, the industry applies also more dated production processes, which would 
express changes in energy intensity and production patterns compared to their more 
advanced counterparts. 

Individual processes form production routes through logical interconnection. The information 
on production routes mainly focuses on the most prominent designs from literature studies. 
Major uncertainties were naturally identified in the alterations of the literature production 
route compared to real-life production. To cope with this problem, “Ganymed” allows the user 
to alter production processes individually. Additionally, DES limits the application of auxiliary 
processes or other production logics. Non-production times (e.g. at weekends or outside of 
production shifts like in the methodology for non-energy-intensive subsectors) can yet only 
be roughly depicted through buffering points as DES executes the production logic until all 
batches/products are processed. As a result, the methodology for energy-intensive subsectors 
is still more centred around the manufacturing level itself than around the overall plant level.  

Both methodologies (for energy-intensive and non-energy-intensive subsectors) were further 
enhanced to generate synthetic WHPs. In alignment with the statement above, waste heat 
calculations from DES do not cover heat storage and dynamic/transient heat transfer 
processes. This means that all generated excess heat is either utilized again or emitted in the 
same time period within the simulation without any time-resolved shifts of the energy.  

For non-energy-intensive subsectors, WHFs were applied to generate WHPs from synthetic 
LPs. The high-aggregated character of the surveyed WHFs from literature should be deemed 
worth further investigation. The current status only depicts and gathers subsector-
specific/averaged WHFs from international studies due to the lack of more detailed waste 
heat analyses on lower aggregation levels. Waste heat recovery technologies are certainly 
matured differently within the studies of surveyed countries. Their comparability is therefore 
to be questioned. Furthermore and like above, the assumption was made that waste heat is 
emitted in that moment, when the plant is supplied with energy for thermal application as 
depicted in the LPs. 

 

All methodologies are incorporated in “Ganymed” to provide a single solution of this thesis. 
The industry macro of non-energy-intensive industries acts like an individual process on the 
GUI of “Ganymed”. Through this, the user can handle and generate all synthetic LPs and WHPs 
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of all industrial subsectors by interacting just on the process canvas. However, the 
methodology for energy-intensive subsectors is closer located on manufacturing level and the 
methodology for non-energy-intensive subsectors is solely on plant level. This means that 
individual production processes on the process canvas have to be designed in a way that they 
comply with the weekly generated interval of the industry macro. This variance is to be 
considered when merging individual processes with the industry macro via the DES logic. 
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6 OUTLOOK 
“Ganymed” is a concrete advancement into a holistic solution, generating synthetic, multi 
energy LPs and WHPs for the entire industrial sector. By pinpointing areas where “Ganymed” 
is to be improved and by identifying future applications, LP and WHP generation of the 
industry can be further propelled. Future developments are discussed in this section along the 
industrial, systemic aggregation levels of this work (see Figure 7): 

• From process to manufacturing level: The current methodology for energy-intensive 
subsectors generates synthetic LPs and WHPs on a steady-state basis via stepwise 
calculation of time-resolved loads from individual process-specific properties. Because 
of the holistic aim of this study, these properties were simplified and standardised to 
a certain extent to cope with the level of detail from literature studies (e.g. specific 
energy consumption). Future developments should focus on enhancing the view of 
how processes in "Ganymed" are handled. If also the transient and dynamic character 
of a production process (e.g. process ramp-up peak loads, transient waste heat 
exchange, …) can be depicted in a more standardised manner in “Ganymed”, also their 
interconnection can be studied more thoroughly. This means that additional auxiliary 
technologies and measures like energy storage and demand side management could 
be successfully incorporated and their LPs analysed. This is also of special importance 
in the light of novel production processes and routines, which might arise in the future 
and are to be implemented in "Ganymed". Therefore, the methodology moves away 
from its steady-state character, also the application of DES in its current state should 
be questioned and further enhanced. These developments would transition the 
methodology into time-resolved modelling. However, the trade-off to rising 
complexity in the approach should be considered carefully. 

• From manufacturing to plant level: An improved interaction of the energy-intensive 
and non-energy-intensive methodologies should be of increased interest for future 
developments. The merging of the most positive aspects of both methodologies into 
one holistic approach between manufacturing and plant levels should be considered 
as a valid option. The corresponding LPs and WHPs of energy-intensive subsectors 
could be lifted to plant level in a reproducible manner by developing more 
extrapolative methods similar to the scaling effects of the non-energy-intensive 
subsectors which cope with not depicted auxiliary processes with lower energy 
intensities or even base loads. The view on non-energy-intensive subsectors would 
certainly benefit from analyses of real-life profiles of their manufacturing level. 
Hereby, the impact of the production on non-energy-intensive plants can be 
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investigated more deeply. Regarding this, it should be contemplated that some 

subsectors are stronger driven by underlying (energy-intensive) processes (e.g. EAF) 

than others. Figure 23 in the conclusion section states the convergence of both 

methodologies. When fully merging the two methodologies, individual subsectors 

could be allocated on a range stating the extent of the application of process-specific 

(or manufacturing) methods and extrapolative methods. Figure 24 shows this merged 

range for three NACE subsectors exemplary as a progression to Figure 23. The shares 

of process bound/specific methods and extrapolative methods would differ from 

subsector to subsector, making room for incorporating subsectors with more energy-

intensive processes as well as bridging uncertainties of – process wise – rather 

unknown subsectors by extrapolative methods in a flexible way.  

 

 

Figure 24: Range of applying process-specific and extrapolative methods for three suggested NACE 
subsectors. The allocation of the three subsectors in this range is based on assumptions. 

• From plant to subsector level: Following the argumentation above, it can be stated 

that industrial energy system analyses on subsector level offer important insights 

when information on lower aggregation levels like real-life LPs, process data etc. is 

scarcely available. Especially for these subsectors, high aggregated data is the first 

entry point for further analyses and development of extrapolative methods like stated 

above. This work has shown that various correlations on subsector and plant level of 

the industrial energy system (e.g. EOS, WHFs, shift model correlations) have not been 

examined thoroughly enough in literature yet. Future research endeavours should 

focus on further strengthening these methods. Especially in the context of industrial 

waste heat, WHFs should be refined more and combined with waste heat potentials 

from real-life data. This provides better approximations when assessing waste heat 

potentials of different subsectors. Overall, global energy system research should be 

screened regularly to profit from the most recent databases and thereby continuously 

advancing the generation of synthetic, industrial LPs and WHPs in “Ganymed”. 
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APPENDIX A: TAXONOMY TABLE 
Table 1: Taxonomy table and comparison of selected literature sources in the context of LP and WHP generation in industry 

 Source Objective 
Variety 
Energy 
Flows 

LP Type Approach Aggregation 
Level Solving Method Constraints Potentials 

A Hernández et 
al. [31] 

Data processing and validation 
for generating clustered LPs of 

industrial parks Si
ng

le
 

St
an

da
rd

 

To
p-

D
ow

n 

Su
bs

ec
to

r 
Le

ve
l 

- k-means clustering of measured data from 
individual plants of different subsectors and 
application of self-organizing mapping 
- Generation of standard LPs and validation 
via real measured LPs 

- The definition of industrial 
parks does not allow further 
disaggregation to individual 
plants 
- Thermal LPs not in scope 

- Verification of the 
influence of all 
weekdays and 
holidays on LP 
generation 

B Valdes et al. 
[32] 

Clustering of measured yearly 
LPs and derivation of 
standardised loads Si

ng
le

 

St
an

da
rd

 

To
p-

D
ow

n 

Pl
an

t t
o 

Su
bs

ec
to

r 
Le

ve
l 

- Identifying data clusters from measured 
yearly LPs of the food and paper industry 
- Derivation of standard LPs based on 
clustered data 

- Only limited access to the 
methodology of this study 
- Only limited scope in terms of 
industrial subsectors and multi 
energy flows 

- Examination of 
yearly profiles 
advantageous for 
future energy system 
research  

C Dedic et al. 
[33] 

Data clustering and generation 
of representative, standard LPs Si

ng
le

 

St
an

da
rd

 

To
p-

D
ow

n 

Pl
an

t t
o 

Su
bs

ec
to

r 
Le

ve
l - Fuzzy c-means data clustering of measured 

LPs of selected industrial subsectors 
- Generation of representative electricity LPs 

- Clustered data inflicts strong 
resemblance to standard LPs 
- Only limited scope in terms of 
industrial subsectors and multi 
energy flows 

- High potential due 
to a two-year-long 
observation period 

D Richard et al. 
[34] 

Identifying DSM measures for 
medium-sized enterprises Si

ng
le

 

St
an

da
rd

 

To
p-

D
ow

n 

Pl
an

t L
ev

el
 

- Clustering of measured data from individual 
plants of different subsectors 
- Specific customer-oriented derivation of 
flexibility potentials 

- Methodology not exploitable 
for further LP generation on top 
of the specific application 

- Verification of the 
influence of working 
and weekend days on 
LPs 

E Jesper et al. 
[35] 

Developing new methods for 
analysing heat demand of 
industrial and commercial 

facilities 

Si
ng

le
 

St
an

da
rd

 

To
p-

D
ow

n 

Pl
an

t t
o 

Su
bs

ec
to

r 
Le

ve
l 

- Data analysis of k-means clustering and 
regression of real measured thermal LPs 
- Derivation of reproducible shape factors for 
thermal LPs for every investigated LPs 

- Sole top-down approaches 
could potentially disregard 
underlying process-specific 
effects 
- Only nine industrial subsectors 
included 

- Examination of 
seasonal fluctuations 
in industrial sectors 
noticeable 

F Starke et al. 
[36] 

Deriving and comparing 
flexibility potentials of all 

industrial subsectors M
ul

tip
le

 

St
an

da
rd

 

Bo
tt

om
-

U
p/

To
p-

Do
w

n  

Pl
an

t t
o 

Su
bs

ec
to

r 
Le

ve
l 

- Iteration of standard LP to meet subsector-
specific load factor 
- Integration of single LPs of most energy-
intensive processes 
- Derivation of flexibility potentials and DSM 
measures 

- Partial integration of thermal 
consumers and respective 
thermal LP generation 
- Time resolution at one hour 

- Load factor iteration 
as an efficient and 
simple solution for LP 
generation, where 
data is scarce 
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 Source Objective 
Variety 
Energy 
Flows 

LP Type Approach Aggregation 
Level Solving Method Constraints Potentials 

G Sandhaas et 
al. [19] 

Generation of synthetic 
electricity LPs for three 

industrial subsectors Si
ng

le
 

Sy
nt

he
tic

 

Bo
tt

om
- U

p/
To

p-
Do

w
n 

Pr
oc

es
s 

to
 

Su
bs

ec
to

r L
ev

el
 

- Dividing synthetic electricity LPs into useful 
energy categories 
- Top-down method applies standard LPs for 
useful energy categories apart from 
mechanical drive 
The bottom-up method applies to model 
continuous and discontinuous mechanical 
drive 

- Assumption that only 
mechanical drive is subdued to 
short-term fluctuations 
- Thermal LPs not in scope 
- No ambient temperature 
dependency on useful energy 
categories of heating 

- Good 
reproducibility 
- Main load 
characteristics 
depicted with easy-
to-apply 
methodology 

H Binderbauer 
et al. [37] 

Generation of synthetic WHPs 
for the industrial sector Si

ng
le

 

Sy
nt

he
tic

 

Bo
tt

om
-

U
p/

To
p-

Do
w

n 

Pr
oc

es
s 

to
 

Su
bs

ec
to

r 
Le

ve
l 

- Process-specific waste heat data in 
combination with discrete event simulation 
paradigm generates profiles for energy-
intensive subsectors 
- Literature survey of waste heat fractions of 
non-energy-intensive subsectors 

See sections 4 and 5 See sections 4 and 5 

I Binderbauer 
et al. [38] 

Establishing synthetic LP 
generation for single sites of 
energy-intensive industries M

ul
tip

le
 

Sy
nt

he
tic

 

Bo
tt

om
-U

p 

Pr
oc

es
s 

to
 

Pl
an

t L
ev

el
 - Establishment of a database regarding 

industrial processes 
- Adaption of discrete event simulation for 
industrial application and bottom-up LP 
generation 
- Development of a standalone application 

See sections 4 and 5 See sections 4 and 5 

J Binderbauer 
et al. [39] 

Establishing synthetic LP 
generation for single sites of 

non-energy-intensive 
industries M

ul
tip

le
 

Sy
nt

he
tic

 

Bo
tt

om
-U

p/
To

p-
Do

w
n  

Pl
an

t L
ev

el
 

- Investigations on industrial databases and 
examination of correlations 
- Development of stochastic algorithms based 
on findings 
- Integration of most energy-intensive single 
processes 
- Generation of overall stochastic 
methodology 

See sections 4 and 5 See sections 4 and 5 

K Dietmair et al. 
[40] 

Developing a model for 
optimisation of energy 

efficiency measures in the 
manufacturing industry 

Si
ng

le
 

Ti
m

e-
re

so
lv

ed
 

M
od

el
s 

Bo
tt

om
-U

p 

Pr
oc

es
s 

to
 

M
an

uf
ac

tu
rin

g 
Le

ve
l 

- Describing the states of individual processes 
with statistical discrete event formulation 
- Comparison of generated electricity profiles 
with real-life machine profiles 
- Derivation of use scenarios for the 
processes and depicting energy saving 
potentials 

- Only applicable for specific 
production processes with that 
configuration of production 
states 

- Moderate use of 
highly detailed data 
in combination with 
stochastic methods 
improves 
reproducibility 

L Lecompte et 
al. [41] 

Examination of thermal waste 
heat potentials for physical 

implementation of ORC 
process M

ul
tip

le
 

Ti
m

e-
re

so
lv

ed
 

M
od

el
s 

Bo
tt

om
-U

p 

Pl
an

t L
ev

el
 - Measurements of processes on site and 

development of a model for evaluation of 
thermal waste heat flows on site 
- Scenario development for integration of 
ORC process 

- Complexity of methodology 
could be disadvantageous if the 
case study is to be reproduced 
- Application for other plants is 
only partly possible 

- Novel and detailed 
insights into ORC 
waste heat recovery 
process and 
modelling for future 
simulation works 
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 Source Objective 
Variety 
Energy 
Flows 

LP Type Approach Aggregation 
Level Solving Method Constraints Potentials 

M Dock et al. 
[20] 

Modelling of real-life EAF steel 
mill for optimised time-

resolved operation M
ul

tip
le

 

Ti
m

e-
re

so
lv

ed
 

M
od

el
s 

Bo
tt

om
-U

p 

Pr
oc

es
s 

to
 

Pl
an

t L
ev

el
 - Conducting measurements at the real-life 

steel mill to be modelled 
- Examining correlations and developing time-
resolved models based on Markov chains 
- Derivation and validation of LPs for electric 
and thermal loads and flexibility options 

- Bottom-up modelling requires 
extensive real-life data 
- Developed energy system 
model only applicable at the 
respective plant 

- Novel and detailed 
insights into EAF steel 
mill processes and 
modelling for future 
simulation works 

N Thiede et al. 
[42] 

Developing an energy flow-
oriented manufacturing 

simulation including economic 
investigations e.g. DSM and 
energy efficiency measures 

M
ul

tip
le

 

Ti
m

e-
re

so
lv

ed
 

M
od

el
s 

Bo
tt

om
-U

p 

Pr
oc

es
s 

to
 

Pl
an

t L
ev

el
 - Analysis and measuring of process-specific 

energy flows 
- Modelling of the respective plant 
- Validation of generated LPs  
- Derivation of DSM potentials 

- Bottom-up modelling requires 
extensive real-life data 
- Complexity of methodology 
could be disadvantageous if 
case study is to be reproduced 

- Detailed 
methodology for 
bottom-up 
calculations in all 
industrial subsectors 
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APPENDIX B: PEER-REVIEWED SCIENTIFIC ARTICLES 

Article P1 

P. J. Binderbauer, T. Staubmann, T. Kienberger, Synthetic load profile generation for 

production chains in energy intensive industrial subsectors via a bottom-up approach, Journal 
for Cleaner Production (2022) 130024, https://doi.org/10.1016/j.jclepro.2021.130024 

Submitted:  21st September 2021 

Published:  10th January 2022 

Table 2: Author contribution statement for article P1. 

Activity  Contributing authors 

Conceptualization Binderbauer, P.J., Kienberger, T. 
Methodology Binderbauer, P.J., Staubmann, T., 

Kienberger T. 

Data curation Binderbauer, P.J., Staubmann, T. 
Software development and validation Binderbauer, P.J., Staubmann, T. 

Modelling Binderbauer, P.J., Staubmann, T., 

Investigation and analysis Binderbauer, P.J., Staubmann, T., 
Visualization Binderbauer, P.J. 

Writing (original draft) Binderbauer, P.J.; 
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Synthetic load profile generation for production chains in energy intensive 
industrial subsectors via a bottom-up approach 

Paul Josef Binderbauer a,*, Thomas Kienberger a, Thomas Staubmann b 

a Chair of Energy Network Technology, Montanuniversitaet Leoben, Franz-Josef Straße 18, A-8700, Leoben, Austria 
b Dietrich-Keller-Straße 20, 6. OG, A-8074, Raaba/Graz, Austria   

A R T I C L E  I N F O   

Handling Editor: Panos Seferlis  

Keywords: 
Load profile 
Industry 
Energy model 
Load profile generation 
Simulation 

A B S T R A C T   

Iron & Steel, Pulp & Paper, Non-Metallic Minerals and Chemical & Petrochemical are the most energy intensive 
subsectors, even though they utilise only a limited range of production processes compared to other sectors like 
Machinery or Food & Beverages. To support future efforts for decarbonising the European industry, this study 
aims to develop a methodology to correctly and dynamically depict all relevant production processes of the 
mentioned subsectors and to generate synthetic load profiles (LP)1 based upon their consumption and generation 
behaviour. In a first step, the energy intensive subsectors and their main production processes are identified. A 
standardised research approach is used to correctly depict their characteristics e.g. runtime, energy consumption 
and generation, unit sizes etc. Next, a methodology for modelling the timely behaviour of these production 
processes and for generating synthetic LPs is developed. This method is based upon the bottom-up approach of 
discrete-event simulation combined with stochastics. The developed methodology is then implemented into the 
simulation software Ganymed. Finally, the results of this methodology are validated via a case study, modelling 
the primary steel production route of an Austrian steel mill. In overall, the synthetic electricity LP shows good 
approximations to the measured one with a mean absolute percentage error of 6.08% for the simulated five days 
in total. However, a stronger deviation of the generated LP compared to the measured counterpart can be noted 
at the last two days. This deviation results from a reduction of the capacity during the real life production. This, 
however, can be taken into account in the synthetic generation given a more extensive data basis. Consequently, 
Ganymed can be deemed as a suitable software for generating energy consumption and generation behaviour of 
processes and production chains of energy intensive industries.   

1. Introduction 

The European industry accounts for 21% of greenhouse gas (GHG) 
emissions (energy and process related) (European Commission, Statis-
tical Office of the European Commission, 2021) and 20% of the gross 
inland energy consumption in 2020 (European Environment Agency, 
2021). Thus, this sector undoubtedly has to take part in the energy 
transition. In addition, efforts to decarbonise the industry are even 
higher when compared to other sectors: This is due to its process di-
versity, technological complexity, varying GHG emission sources (e.g. 
process specific emissions) and use of energy carriers from different 
feedstock (Fleiter et al., 2018). 

The development of comprehensive energy system models may help 

to overcome these challenges and align the industrial sector with the 
European net-zero GHG emission goals (European Commission, 2019). 
The dynamic character of simulation models allows to get hold of fast 
changing trends and technologies, evaluate their impacts on the physical 
energy system efficiently and, therefore, support the strategic 
decision-making for the energy transition. 

To integrate this sector into such models, technological and systemic 
characteristics of the industry have to be taken into account. This can be 
achieved by structuring the industrial sector throughout a standardised 
approach and applying suitable calculation methodologies. Due to 
increasing volatility of the energy system, models further examine future 
grid capacities and demands for energy suppliers (Böckl, 2020). Here, 
the calculation of timely resolved behaviour of energy consumption and 
generation of industrial consumers in terms of load profiles (LP) play a 
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key factor. The generation of such LPs will be discussed in detail in this 
paper. 

1.1. State of research 

In recent years, numerous studies and models on analysing the in-
dustrial energy system have been developed. Mostly, the main aim of 
these are to investigate long-term emission reduction, higher energy 
efficiencies and implementation of renewables or future technologies 
(Fais et al., 2016). The results of these studies are then integrated into 
model-based decarbonisation strategies for either the whole industrial 
sector (Fais et al., 2016), individual subsectors (Bajpai, 2016) or 
breakthrough technologies (e.g. by investigating the impact of these 
technologies like PV plants or electrolyser) (Rootzén, 2015). In most of 
them, the development of an emission or energy reduction pathway is 
statically calculated and determined. 

In regard to timely resolved energy consumption, a range of studies 
and models on the dynamic characteristics of consumer structures of the 
energy system can be found in literature. Especially for the mobility and 
private sector, various models were developed: 

In the mobility sector, models for simulating the energy consumption 
of electric vehicles at charging stations were developed to determine the 
effects on the power grid. These approaches are established either based 
on measured data or accurate modelling of the driver’s behaviour 
(Iversen et al., 2014). The mentioned data origins from measurements at 
charging stations (Neaimeh et al., 2015) or from statistical data (Leou 
et al., 2014). Vopava et al. (2020) examined these approaches in detail. 

In the residential and private sector, standard load profiles for 
electricity are calculated for groups of more than 400 single consumers 
under 100 MWh (e-Control AT). However, the accuracy of the standard 
load profiles strongly decreases with a decreasing number of single 
consumers due to the stronger variation of the cumulative loads. Pflu-
gradt and Muntwyler (2017) developed a holistic model for simulating 
synthetic profiles of single residential consumers in low-voltage grids 
without utilising standard load profiles. The bottom-up calculations 
within this method include various parameters, e.g. behaviour of the 
residents, consumptions of household appliances etc. A similar meth-
odology was developed by Müller et al. (2020). Esslinger and Witzmann 
(2012) created an energy demand model for generating LPs of smaller 
consumer groups, entirely based on probabilistic calculations. Both 
bottom-up approaches exhibit valid approximations to the behaviour of 
the selected consumer categories and groups. 

However, only a small number of studies on generating load profiles 
of consumers in the industrial sector can be found in literature. Starke 
et al. (2013) examined synthetic LPs of various industrial subsectors via 
probabilistic, mixed bottom-up and top-down approaches. The study 
identifies energy intensive manufacturing processes and typical 

production hours of various industrial subsectors to calculate a range of 
load factors adjusted to the individual sector. Via genetic algorithms a 
standardised LP is created. Based on the identified load factors, the 
standard LP is adapted according to the selected subsector in terms of 
fluctuating energy demand and overall consumption. The results of this 
approach are hourly-resolved electricity LPs, for which analysis of de-
mand response possibilities for the chosen subsector are conducted. 

Other studies simulate LPs for selected production plants (Dock and 
Kienberger, 2019) or industrial parks (Hernández et al., 2012) by e.g. 
analysing and clustering of measured data and identifying consumption 
patterns. Measures for optimising production processes or implementing 
new technologies at the plant site can be derived from these analyses. 
However, these approaches require a large scaled data basis. 

Throughout this literature research it was found that a holistic 
framework for generating detailed, synthetic LPs for various energy 
carriers of all industrial subsectors has not been developed yet. How-
ever, for investigating the future energy system and requirements for 
grid operators and suppliers such models are crucial. Based on this 
knowledge, the comprehensive simulation software Ganymed (Bind-
erbauer, 2021) was developed. The aim of this paper is to present the 
methodology and results of this tool. 

1.2. Open research questions and structure of this paper 

In context of the industrial sector, only a small amount of method-
ologies for the generation of synthetic LPs was found in literature, as 
concluded above. This leaves unanswered research questions and space 
for developing novel LP generation methods, which will be covered 
throughout this paper: 

• Which approach shall be applied to develop a simulation method-
ology covering energy intensive, industrial subsectors? In what way 
shall industrial processes be standardised for integrating into the 
investigated methodology? Which simplifications have to be used? 
Which limitations and assumptions (e.g. system boundaries) have to 
be respected?  

• How can individual process properties and conditions (e.g. batch/ 
continuous operations, various material streams, parallel/serial 
process alignment, …) be depicted accurately? How can determin-
istic and stochastic simulation methods be combined? 

Within this paper, the development of the proposed and underlying 
methodology of the software Ganymed is presented, answering the 
questions above. After outlining the main results of an extensive liter-
ature research in Section 1.1, a comprehensive methodology description 
follows in Section 2. Therefore, the European industrial landscape is 
divided into subsectors by IEA (International Energy Agency, 2021) and 

List of acronyms 

LP Load Profile 
GHG Greenhouse Gas Emissions 
PV Photovoltaic 
kWh Kilo Watt Hours 
MWh Mega Watt Hours 
TWh Tera Watt Hours 
e.g. Exempli Gratia 
NACE Nomenclature statistique des activités économiques dans 

la Communauté européenne 
IEA International Energy Agency 
PVC Polyvinyl Chloride 
P Power 
t Tonnes 

min Minutes 
h Hour 
EAF Electric Arc Furnace 
GUI Graphical User Interface 
CHP Combined Heat & Power 
SIP Sintering Plant 
COP Coke Oven Plant 
BF Blast Furnace 
DS Desulphurisation Unit 
BOF Basic Oxygen Furnace 
LF Ladle Furnace 
VOD/VD Vacuum (Oxygen) Degasser 
HR Hot Rolling 
MAPE Mean Absolute Percentage Error 
TV Total Variability  
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classified into groups regarding their energy consumption. (Section 2.1). 
The characteristics, typical production chains and processes of these 
subsectors were researched and are structured in Section 2.2. As a next 
step, a methodology based upon discrete-event simulation was devel-
oped and enhanced (Section 2.3). To prove the functionality of the 
developed methodology, Section 3 presents and discusses a selected case 
study of an existing production plant of the Iron & Steel sector in Austria. 

2. Methods 

2.1. Methodological research, approach and classification of the 
industrial landscape in Austria 

To develop a comprehensive solution for generating LPs of various 
production chains of different industrial subsectors, an overall meth-
odology approach was developed. This approach includes the following 
steps:  

1. Division and classification of the industrial landscape  
2. Research on characteristics of subsectors and processes  
3. Development of a suitable methodology for generating synthetic LPs 

of researched industries 
4. Integration of the developed methodology into the simulation soft-

ware Ganymed 

Industrial subsectors are defined by the International Energy Agency 
(IEA) (International Energy Agency, 2021) as depicted in Fig. 1. These 
sectors exhibit a good basis for further investigations. Additionally, 
other product specific classifications like NACE (Statistics Austria, 2008) 
were assessed. However, they were deemed as non-suitable for overall 
simulation approaches due to their higher level of complexity and 
sectioning. 

Sejkora et al. (2020) assessed the primary energy consumption for all 
IEA subsectors in Austria with 139 TWh, as their shares are shown in 
Fig. 1. This study aims to depict the most energy intensive subsectors 
Iron & Steel, Pulp & Paper, Chemical & Petrochemical and Building 
Materials/Non-Metallic Minerals. Based on extensive literature research 
on these subsectors and their processes following key characteristics can 
be defined:  

• Energy intensive subsectors are part of the primary production or 
industry and either extract and process raw or produce basic mate-
rials (European Economic, 2009). 

• These subsectors exhibit a limited range of varying production pro-
cesses and principles. Therefore, product variety is smaller than in 
other manufacturing subsectors, e.g. Machinery (Lechtenböhmer 
et al., 2016). The production processes can be described as 
homogenous.  

• Only a few of the production processes account for the main share of 
energy consumption within a subsector (Johansson et al., 2012). 

Due to these characteristics, production chains and their underlying 
processes can be depicted throughout a bottom-up approach. The gen-
eration of LPs of energy intensive subsectors are the main subject of this 
study. 

2.2. Research on characteristics of industrial subsectors and processes 

Fig. 2 depicts the method for researching various production chains 
and processes of the selected energy intensive subsectors. 

Throughout an extensive literature research regarding the 
mentioned industries, typical production chains and their characteristics 
were identified. These characteristics were then studied and the most 
energy intensive and commonly operated processes within these pro-
duction chains were further investigated. An overview of these selected 
production chains can be seen in Table 1. Certain product specific pro-
cesses are operated in every subsector at the end of production in order 
to guarantee characteristics of the product to be produced (e.g. coating 
of high-quality paper). 

In a next step, the scope of investigated production chains for further 
analyses was defined. Extraction, mining and transportation activities 
were excluded from the analyses as they are often located outside of the 
production/manufacturing plant border. Individual product refinement 
steps like coating of paper or special surface treatments of finished steel 
billets were not considered further as they exhibit lower energy de-
mands compared to the main processes and are difficult to depict via a 
bottom-up analysis due to their variety and complexity. However, 
Ganymed enables user-defined process individualisation and system 
boundaries, which make an implementation of said processes possible, 
provided a sound data basis is given. 

The identified processes were examined in more detail in a next step. 
Parallel and serial subproduction chains are implemented to meet the 
individual needs in different industrial plants. For example, regarding 
the Pulp & Paper sector, discontinuously working pulp digesters are 
operated in parallel and alternating to ensure a steady flow of pulp for 
the continuous follow-up processes (Paul Binderbauer, 2021). In the 

Fig. 1. Share of primary energy consumption of industrial subsectors by IEA in Austria.  
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Iron & Steel sector large process units like the electric arc furnace (EAF) 
are mostly implemented as a single process (Heinen, 1997). The 
follow-up processes are then operated in parallel and alternating to cope 
with the according batch sizes efficiently (Degner, 2009). 

For generating synthetic, industrial LPs, detailed information on 
batch and continuous processes are essential. Fig. 3 shows the stand-
ardised approach, which defines the researched process characteristics. 
Continuous working equipment (e.g. paper calendar) is characterised by 
a steady throughput (e.g. material flow in t/h). Batch processes (e.g. 
EAF) are loaded with a certain quantity of material (e.g. in tonnes) and 
operate for individual durations (e.g. in hours, minutes, …). Typical 
ranges of energy consumption or generation can be determined for both 
process operations. These energy related characteristics are assessed for 
the energy carriers Electricity and Direct Fuel as well as for the useful 
energy categories Steam and Thermal Heating (see Section 2.3). 

The results of this methodology heavily depend on the quality of the 
presented data in literature. It was found that mostly consumption and 
generation is issued in average, specific energy consumption. For 
example, a batch working pulp digester consumes electricity in a range 
from 44 to 170 kWh/tAir_Dried_Pulp (Bajpai, 2016) and steam from 700 to 
1370 kWh/tAir_Dried_Pulp (Jacobs GreenvilleInstitute of Paper Science and 
Technology, 2006). To calculate process specific LPs based on specific 
energy consumption, as described above, these values are multiplied by 
the process throughput for continuous and by capacity per operating 
time for batch processes. The resulting LPs can be described as an 
average load profile for this process (Fig. 3 (a)/(c)). However, in some 
cases, singular, process specific LPs were found in literature (see Section 
3). These LPs are then implemented into the simulation framework 
(Fig. 3 (b)/(d)). Additionally, the user can modify the process’ properties 
freely within Ganymed. 

2.3. Methodology for the generation of synthetic load profiles 

2.3.1. General methodology 
Table 2 shows the target categories Electricity, Direct Fuel, Steam 

and Thermal Heating for which LPs can be generated. Direct Fuel refers 
to energy carriers, which transfer heat directly onto the product during 
energy conversion (e.g. oil, gas, coal, biomass, etc.). The distinction 

Fig. 2. Standardised approach for researching characteristics of industrial 
subsectors and processes. 

Table 1 
Main production chains of energy intensive subsectors, which were researched 
and analysed throughout this study.  

Iron & Steel Pulp & Paper Non-Metallic 
Minerals 

Chemical  

• Blast Furnace 
Route 
(Corradini 
et al., 1999; 
Degner, 
2009; Ecker, 
2013; 
European 
Steel 
Association, 
2007; Remus 
et al., 2013)  

• Electric Arc 
Furnace 
Route 
(Aichinger, 
2015; 
Heinen, 
1997; Messer 
Group)  

• (Product 
Specific 
Processes (e. 
g. Alloying, 
Design of 
Final Product 
e.g. Rails, …) 
(Corradini 
et al., 1999; 
Degner, 
2009))  

• Pulp Production via 
Kraft, Sulphite, 
Thermomechanical 
or Mechanical 
Processes (Bajpai, 
2016; Chan and 
Kantamaneni, 2015; 
Jacobs Greenville 
and Institute of 
Paper Science and 
Technology, 2006; 
Rahnama 
Mobarakeh et al., 
2021; Suhr et al., 
2015)  

• Paper Production 
(Bajpai, 2016; Chan 
and Kantamaneni, 
2015; Jacobs 
Greenville and 
Institute of Paper 
Science and 
Technology, 2006; 
Rahnama 
Mobarakeh et al., 
2021; Suhr et al., 
2015)  

• (Product Specific 
Processes (e.g. 
Coating, Sizing, …) 
(Bajpai, 2016))  

• Cement 
Production 
(Fleiter et al., 
2013; 
Gruber)  

• Lime 
Production 
(Schimmel, 
2019; 
Szednyj and 
Brandhuber, 
2017)  

• Glass 
Production 
(Fleiter et al., 
2013; Moser 
et al., 2017)  

• Brick and 
other 
Ceramic 
Production 
Routes 
(Fallmann 
and Weiß, 
2018; Moser 
et al., 2017)  

• Oxygen 
Production 
(Brown et al. 
Messer Group; 
Shen and 
Wolsky, 1980)  

• Ammonia 
Production 
(Brown et al.; 
European 
Commission, 
2007)  

• Chlorine 
Production 
(Brown et al.; 
Resource 
Dynamics 
Corporation, 
2002)  

• Ethylene 
Production 
(Brown et al. 
Gaines and 
Shen)  

• Polyethylene 
Production 
(Brown et al.)  

• Polypropylene 
Production 
(Meyers)  

• (Further 
Processing 
Routes (e.g. 
Fertiliser, Urea, 
PVC, …) 
(Fleiter et al., 
2013))  
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between Direct Fuel, Steam and Thermal Heating was made due to 
applied temperature ranges. 

As mentioned above, energy intensive subsectors utilise a limited 
amount of processes, which can be depicted effectively throughout a 
bottom-up approach. For generating the desired LPs discrete-event 
simulation was found to be the most promising bottom-up methodol-
ogy. This method was implemented via object-oriented programming in 
Python and further improved to adequately depict industrial processes, 
as described in the following sections. 

Discrete-event simulation depicts a sequence of interactions of i 
active components (e.g. tonnes of steel) with m resources (e.g. industrial 
processes like blast furnace, etc.) via time-proceeding events as 
described by Banks (2003). This simulation principle was then 
embedded into the standalone application Ganymed. 

Fig. 4 describes the adapted discrete-event environment in terms of 
generating LPs for industrial processes. 

As depicted in Fig. 4, the environment needs to be set up (c) before 
initiating the simulation (d) through Ganymed’s graphical user interface 
(GUI) (b). The user controls both actively by defining a production chain 
from an amount of individual processes as well as a number i of active 
components at first, which shall then be processed during the 
simulation. 

During setup, the simulation environment (a) receives all needed 
information from outside its boundaries (e). This information contains a 
blueprint for a generic process class including default literature data (e. 
g. the process’ name, its operating type (batch/continuous), unit size, 
capacity, throughput, energy consumption and generation, information 
on energy fluctuations, …). Based on this blueprint n specific process 
resources (e.g. pulp digester containing default values) are created (f). 

Based on the user’s input, a certain amount m of processes of the 
same resource n involved in the production chain are created in the 
software interface (e.g. two blast furnaces operating in parallel). The 
derived m objects (g) inherit the default information of the corre-
sponding class resource. However, their characteristics can be adapted 
via the software interface before initiating the simulation (h). This en-
ables a dynamic process individualisation by the user on top of the 
included default data from literature. 

The user then establishes the order in which the created processes are 
aligned by defining a coordination matrix (see Section 2.3.2.2). 
Furthermore, processes can run in serial or parallel. These simulation 
specific features are explained in the following sections. Through the 
system preferences, the user can specify a number i of active components 
as a main product, e.g. i = 100 tonnes of steel per total runtime. This 

Fig. 3. Description of Continuous and Batch Processes: (a) Resulting LP based upon specific energy consumption of continuous processes; (b) Predefined singular LP 
of continuous processes from literature or measurements; (c) Resulting box-like LP based upon specific energy consumption of batch processes; (d) Predefined 
singular LP of batch processes from literature or measurements. 

Table 2 
Target categories of the LP generation in reference to useful energy categories 
and application temperature ranges.  

Energy Carriers/Useful Energy Categories 
(European Commission, Statistical Office of the  
European Commission, 2021) 

Application & Temperature 
Range in Ganymed 

Electricity – 
Direct Fuel High-Temperature Range 
Steam Medium-Temperature Range 
Thermal Heating Low-Temperature Range  
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amount will then be passed through the user-defined process order 
sequentially. 

Throughout the process order, resources are occupied by a number of 
active components sequentially according to their capacity. The corre-
sponding events (i), which occur at different times over the simulation, 
halt the resource/process for the defined operating time, while active 
components not involved in the processing are aligned in a queue in 
front of this resource. During these process durations, singular LPs for 
the individual process steps are calculated. After the simulation has 
finished, the LPs of the object resources are summed up to represent the 
total LP of the defined production chain (j). 

Fig. 5 shows a simplified generation of the overall LP based on 
summation of two individual process consumptions. In this example, 
two serial processes operate two active components (one tonne per 
component each) during the simulation (i = 1, 2). Both resources vary in 
regard to their runtime and consumption. The coloured rectangles in the 
depicted overall LP present the singular, average profiles of the corre-
sponding processes. As the first tonne (i = 1) is processed in resource 1 
over an operating time of 2.7 min, the associated singular LP is added 
into the chart. The second tonne (i = 2) waits in the queue of resource 1. 
After the processing is finished, the first tonne is passed onto the second 
resource, which creates the first blue share of the total LP at t = 2.7 min 
to 4.7 min. At the same time, the second active component (i = 2) is 
processed in resource 1. This component then occupies the second 
resource after the finished operation in process 1. Thus, a total LP 
(yellow line) of the electricity demand of this production chain can be 

depicted. 

2.3.2. Application for industrial processes 
Due to the large amount of variations of industrial processes and 

their operation, the basic discrete-event simulation approach needs to be 
enhanced extensively. Certain features and topics, which ensure a valid 
approximation to real production chains, are included in the simulation 
software Ganymed. The underlying methodology is explained in the 
following sections. 

2.3.2.1. Behaviour of batch and continuous processes. To realise batch 
and continuous operating types, the smallest functional unit of one 
tonne of the finished product is specified as active component, as 
described above. Therefore, the capacity attribute of continuous pro-
cesses is set to 1. The operating time of these occupied processes for one 
tonne of the finished product is defined by the reciprocal of the 
throughput (t/h). Continuous processes don’t contain idle times like 
charging or discharging activities. A constant flow of active components 
and/or long enough queues for every continuous working resource is 
required. Short timely offsets of arriving active components in long 
production chains in the simulation (resulting in idle times and fluctu-
ating energy demand) are bridged. Thus, a continuous LP is calculated as 
described in Section 2.2. 

The capacity of batch operating processes is defined by literature 
data or the user, e.g. 65 tonnes of steel. The resource is loaded with the 
active components over a certain period of time until the capacity is met. 

Fig. 4. Adaption of discrete-event simulation in Ganymed.  

Fig. 5. (a) Resulting LP of a simplified production route (resource 1 and resource 2); (b) Process flow diagram for resource 1 and resource 2 as well as 
their properties. 
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This duration, as part of the overall process’ runtime, is defined as the 
charging phase and results in a null line in the corresponding LP (Fig. 3 
(d)). The processing with its specific energy consumption starts as the 
event of the batch resource is halted for the defined operating time. After 
this time has elapsed, the active components are forwarded to the next 
process in the order of arrival for a defined discharging time. For the 
period of the operating time, a singular LP is calculated. 

2.3.2.2. Alignment of processes. As described above, processes of pro-
duction chains can be aligned freely by the user through the GUI of 
Ganymed. This also includes serial and parallel operating subchains. 
However, this requires boundaries, which define the start and end point 
for the flow of active components, as well as attributes, which depict the 
direction of the flow in between the processes. 

For this purpose, a coordination matrix is applied, which contains all 
directional vectors including the individual addresses of the created 
resource objects. The overall production chain operates between a start 
and end object, defined by the user. Fig. 6 (b) shows a coordination 
matrix for the directional vectors of the depicted process chain (a). The 
first column in the coordination matrix contains the address of the ob-
ject, where the active components are transferred from. The address in 
the second column describes the target object. At the beginning of the 
simulation, the algorithm searches the first column for the defined start 
object. On that basis, the following processes can be aligned and trig-
gered sequentially according to the items in the coordination matrix. 

As shown in Fig. 6 (a), processes can also be aligned in parallel by the 
user. In this case, the first column of the coordination matrix contains 
the address of the object, where the active components departure, 
multiple times (see (b) line 3 and 4). Therefore, the allocation of the 
components to the following processes has to be managed in a way, 
which depicts real operations sufficiently. Table 3 gives an overview of 
possible allocations for parallel processes, resulting from literature 
research (Máté Hegyháti and Ferenc Friedler, 2010). For example, the 
user can select individual objects, which are scheduled primarily (Object 
Preferences). Batch processes can be loaded consecutively considering 
the chosen degree or depending on their operating time. 

2.3.2.3. Auxiliary material consumption and production. As the produc-
tion of the main product progresses, various auxiliary materials are 
consumed and produced, e.g. production of black liquor in a pulp pro-
duction plant (Rahnama Mobarakeh et al., 2021). These additional 
materials can affect the energy consumption and generation of the 
overall production plant. 

As described in sections above, the main production route processes 
the main product. A total LP is generated through specific energy con-
sumption assigned to tonnes of the main product, e.g. 100 kWh/tPulp. 
Fig. 7 shows this main production line indicated by black, directional 
arrows. 

The resulting coordination matrix for the main product is presented 
in Fig. 7 (b). Additionally, auxiliary material (green arrows) is processed 
in resource 3 and then added into resource 1. For this material stream, 
Fig. 7 (c) shows the associated extension to the coordination matrix. In 
this case, the process characteristics of resource 3, for example capacity, 

energy consumption/generation, etc. are referenced to the actual 
auxiliary material, e.g. 200 kWh/tWoodChips. To prevent inconsistencies 
in the overall material flow, mass conversion values are introduced to 
convert the auxiliary material to the main product. For example, the 
mass conversion ratio for wood chips to pulp in a Kraft production chain 
is about 2 (Rahnama Mobarakeh et al., 2021). For processes, which 
operate auxiliary material streams, the mass conversion is multiplied 
with the process’ characteristics to reference to the main product: 

200 kWh
tWoodChips

*
2
1

tWoodChips

tPulp
= 400 kWh

tPulp
(I) 

At resource 1, the previously explained ratio can be taken into ac-
count. The methodology coordinates the chronological order in accor-
dance to the implemented mixing and mass conversion ratios. Auxiliary 
material can also be produced as a by-product, e.g. black liquor (Fig. 7 
(a) light-blue directional arrows). The resulting extension to the coor-
dination matrix is shown in Fig. 7 (d). There, mixing and mass conver-
sion ratios are also taken into account. 

2.3.2.4. Implementation of stochastic methods. Singular LPs of stand-
alone consumers can alternate over a vast range (Esslinger and Witz-
mann, 2012). Furthermore, the implemented data for selected processes, 
e.g. specific energy values like 100 kWh/tPulp (see Fig. 3 (a)), depict only 
their average consumption and generation behaviour. To bypass certain 
insecurities and gaps in the data pool and in order to avoid box-like, 
unrealistic LPs, the bottom-up methodology is supported by stochastic 
methods, as suggested by Gao et al. (2018). 

The first approach of implementing stochastic methods into the 
methodology is based on Gaussian distribution. This is already discussed 
in literature regarding LP generation for private households (Probst 
et al., 2011). Other references describe the application of Markov chains, 
e.g. for the simulation of big consumers like the EAF (Dock and Janz, 
2020) or evaluation of lighting demand patterns in households (Widén 
et al.). 

Fig. 8 (a) shows the application of Gaussian distribution. For a given 
standard deviation σ, a distribution for fluctuating the energy con-
sumption or generation from μ can be calculated for every time step t of 
the load profile. 

Both μ, and the standard deviation σ for selected process units are 
defined by literature data or the user. Based on this information, a cu-
mulative distribution function F(P) is calculated at t, as shown in Fig. 8 
(a): 

F(P)= 1
2

(
1+ erf

(
P − μ̅̅̅̅̅̅̅

2σ2
√

) )
(II) 

Fig. 6. Alignment of processes in serial and parallel manner; (a) Showing a possible production chain along with its coordination matrix in (b).  

Table 3 
Implemented types for decision process of allocating product flows to follow-up 
parallel process subchains.  

Allocation for All Process Types Allocation for Batch Process Types Only  

• Random Allocation  
• Consistent Allocation  
• Object Preferences  

• Allocation based upon the degree of loading  
• Allocation based upon the operating time  

P.J. Binderbauer et al.                                                                                                                                                                                                                         



Journal of Cleaner Production 331 (2022) 130024

8

For the time step t, a random distribution factor z between 0 and 1 is 
drawn. This factor acts as a result of the cumulative distribution function 
F(P). The associated power level P is calculated through cubic interpo-
lation. The resulting fluctuations of energy consumption and generation 
is shown in Fig. 8 (b), for batch working processes, and Fig. 8 (c), for 
continuous processes, respectively. 

Additionally, Gaussian distribution is also applied for alternating 
charging/discharging durations of batch processes (see Fig. 8 (b)). 

2.3.2.5. Implementation of system boundaries. Calculations of energy 
flow balances can be performed for various system dimensions. For this, 
user-defined system boundaries were introduced into the methodology, 
which represent an essential calculation basis for LP generation of the 
defined production chain. 

As energy flows intersect system boundaries, their timely behaviour 
can be assessed to generate LPs. To achieve this, these energy flows, 
representing the target categories in Table 2, were introduced into the 

methodology, as depicted in Fig. 9 with bold arrows. 
Object resources/processes can take part in the production itself and, 

therefore, consume final energy (e.g. electricity for wood debarker) or 
transform energy carriers within or outside the industrial plant (e.g. 
CHP-plant, blast furnaces, etc.), which are defined as “autoproducers” 
by the United Nations (United Nations, 2017). 

As Fig. 9 shows, the integrated custom boundaries for generating LPs 
can be defined for system dimensions starting from single processes ((b) 
and (c)) to the overall plant (a). The resulting LPs are attributable to 
these different system levels. Fig. 9 (b) shows the defined boundary for a 
single production process, which consumes electricity only. The gener-
ated LP will only depict the consumption behaviour of this process. This 
also applies for the autoproducer in Fig. 9 (c). However, here, the 
resulting LPs of the produced categories steam and electricity will be 
negative. Because discrete-event simulation needs to handle specified 
mass flows, the mass flow of natural gas (depicted in light green direc-
tional arrows) has to be taken into account, while the energy input and 

Fig. 7. Production chain with auxiliary material routes; (a) Depicted production chain along with its coordination matrix (b) and its extensions in (c) and (d).  

Fig. 8. Application of Gaussian distribution in LP generation of Ganymed: (a) Cumulative distribution function generating the deviation from μ at t; (b) Resulting 
fluctuation of energy demand and charging/discharging phases of batch processes; (c) Resulting fluctuation of energy demand of continuous processes. 
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output of this transformation process has to be defined accordingly via 
bold arrows. Fig. 9 (a) will only generate a LP for direct fuel as all other 
energy carriers are handled inside the boundary. 

This range of user-defined system boundaries enables the generation 
of LPs for various system dimensions and included processes. For 
example, all final energy consuming processes can be depicted effec-
tively. Through minor adaptions autoproducers within the plant border 
can be included in the calculation to generate LPs of the overall facility. 
Through this, not only the plant’s consumption but also the generation 
of excess heat or electricity supply to the public energy system can be 
calculated respectively. 

These key adaptions of discrete-event simulation represent the 
overall methodology of Ganymed. 

3. Load profile validation case study 

3.1. Overview 

In the following section a selected case study is presented to validate 
the functionality of the developed simulation software Ganymed (Case 
study and software available at ganymed.ga) and its presented meth-
odology. Therefore, the Blast Furnace route of Voestalpine GmbH in 
Donawitz in Austria is investigated. Vital information of the production 
chain design (Degner, 2009) and the processes’ capacities (Ecker, 2013) 
originate from literature and open accessible platforms (e.g. Voestalpine 
Website). Consumption and generation behaviour of all unit operations 
are either based on measured singular LPs or averaged consumption 
characteristics. Ecker (2013) presents a measured electricity LP for the 
plant in Donawitz for a self-defined system boundary. The generated 

Fig. 9. Application of system boundaries in Ganymed; (a) Overall production plant boundary including (b) single production processes and (c) trans-
formation processes. 

Fig. 10. Overall production chain of selected case study.  
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synthetic LP will be compared to this measured profile in Section 3.3. 
Fig. 10 shows the overall production chain for producing steel billets 

in Donawitz from cradle to gate. Processes outside the shown system 
boundary defined by Ecker (2013) are not included in the LP generation. 
It is noted, that Fig. 10 doesn’t present the quantity of process units 
involved, which are shown in Fig. 11. Since the presented LP only de-
picts electricity, the system boundary is set accordingly to intersect with 
the electricity consumption flows in Fig. 10. Process gases (e.g. Coke 
oven gas, blast furnace gas, converter gas, …), natural gas and steam 
flows will not be respected within the simulation. The coke oven is 
excluded from the system boundary since coke is directly transported to 
the site in Donawitz. It is included in the overall production process 
nevertheless to depict a coherent Blast Furnace route. Additionally, the 
installed power plant in Donawitz is excluded from the calculation. 
However, Ganymed would be able to determine LPs for all energy cat-
egories as depicted in Fig. 10. 

3.2. Model description 

Based on the information above, a block flow chart (Fig. 11) for the 
implementation in Ganymed has been developed. The pig iron produc-
tion in Donawitz is performed with one blast furnace (BF), which re-
ceives input materials (sintered iron ore and coke) from a sintering plant 
(SIP) and an external coke oven plant (COP, excluded from calculation). 
From literature data an average production output of raw steel of 180 t/ 
h was determined. It is assumed, that the BF is operated continuously. 
The product batches for DS, BOF, LF and VD of 65 t result from the 
tapping process. This quantity is aligned with the continuous output of 

180 t/h. It was found, that this ensures a steady flow of products within 
the defined production chain. The primary steel production includes two 
desulphurisation units (DS) and two basic oxygen furnaces (BOF) with a 
capacity of 65 t, which represents the size of one batch originated from 
the BF. This capacity is also assumed for the installed lade furnaces (LD) 
and the vacuum (oxygen) degasser/decarboniser units (VD). The 
following operating units, continuous casting (CC) and hot rolling (HR), 
are operated continuously and are aligned with the production output of 
the BF. 

Fig. 11 shows that the main batch processes are aligned in parallel. 
To ensure a steady flow of active components even through alternating 
processing times, the following processes can receive products from 
either two of the preceding units. This is realised through overlapping 
directional arrows in the coordination matrix. The two vacuum degasser 
units are installed to meet the required steel product specifications 
(Schröcker, 2014). Because these specifications can vary, both VD units 
are assumed to operate with a probability of 50%. 

The main product route (black directional arrows) utilises “tonnes of 
steel” as active components. All corresponding processes characteristics 
are referred to these components. The system also includes the auxiliary 
material coal/coke, which is simulated as active component for the COP. 
The characteristics of COP are also referred to tonnes of steel. According 
to literature, the mass conversion factor is set to 1 (Degner, 2009). 

Energy related consumption and generation of the processes 
involved were extracted from literature sources. All continuous pro-
cesses are specified with averaged consumption values. The behaviour 
of batch operated processes, except the VD units, are characterised by 
predefined time series as of literature data (Fruehan, 1998). With regard 

Fig. 11. Implementation scheme of production chain in Ganymed.  

Fig. 12. Singular LP of the ladle furnaces from literature.  
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to this, Fig. 12 shows the singular LP for electricity of a lade furnace unit 
as an example. The consumption behaviour results from different 
heating phases of the furnace for one ladle (65 t). 

3.3. Results and discussion 

The electricity LP of Ecker (2013) was measured within five working 
days (Monday – Friday). A synthetic LP for the production chain 
mentioned above with a depicted time of total 7200 min was generated 
respectively. 

Fig. 13 presents the generated synthetic electricity LP in comparison 
to the measured profile by Ecker (2013) of the existing production site. 

For the analysis and comparison of the synthetic LP to the measured 
profile, the average electricity consumption, total variability and the 
mean absolute percentage error (MAPE), following the depicted equa-
tion, were assessed: 

MAPE = 1
n
∑n

t=1

⃒⃒
⃒⃒Pm − Ps

Pm

⃒⃒
⃒⃒*100% (III) 

As n = 7200 represents the total number of data points/minutes, Pm 
constitutes the measured and Ps the electricity demand of the synthetic 
LP at the time t. 

Table 4 presents the overall results and the deviation of the measured 
and synthetic LP. As the mean average percentage error of around 6.08% 
shows, the synthetic profile exhibits good approximations to the 
measured data in terms of average electricity consumption. The total 

variability per day (TV) presents the difference of maximum and mini-
mum electricity demand for one day: 

TV =Maximum Electricity Demand − Minimum Electricity Demand (IV) 

For the second day, the maximum variability of the measured LP is 
slightly higher than the synthetic profile, resulting in a mean average 
percentage error of 13.17%. 

Fig. 14 shows the percentage error (PE) of all compared data points 
following the equation: 

PE=
⃒⃒
⃒⃒Pm − Ps

Pm

⃒⃒
⃒⃒*100% (V) 

A strong deviation can be examined within the last two days. This is 
due to a noticeable fluctuation in the measured LP, resulting in a 
decreased electricity demand. Ecker (2013) reasoned this varied con-
sumption in his work with an unexpected reduction of the production 
capacity and a partly shutdown of selected processes in Donawitz at that 
time. A polynomial fit (4th degree) shows the resulting fluctuation of the 
percentage error in Fig. 14. In this case, the fitted deviation rises to 30%. 
It is noted, that, under known circumstances regarding the alternating 
production capacity, a reduction of the percentage error within the last 
two days is possible. 

Regarding the performance of Ganymed, the generation of the pre-
sented LP was completed in a runtime of 12.5 seconds. An examination 
of maximum queue lengths of active components for every process 
during this calculation shows lengths of 75 tonnes steel on average. This 
is in accordance to the chosen batch sizes (65 t) of batch operated pro-
cesses (e.g. DS, BOF, LF, VD). The synthetic production chain exhibits no 
major idle times for the active components. Thus, the performance of 
Ganymed can be described as satisfactory. The performance will 
decrease when implementing further processes to the overall chain or by 
increasing the number of active components and runtime. 

The mentioned altering production capacity or more detailed sin-
gular LPs of all involved process can heavily reduce the remaining 
percentage error. This requires a sound basis of information and data. 
However, the dynamic and adaptable characteristics of Ganymed allows 
the simulation of synthetic industrial LPs based on the user’s data on top 
of the underlying default data. Missing or undetailed information could 

Fig. 13. Results of selected case study, comparing measured LP (Blue) to generated synthetic LP (Brown) for 5 working days. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 4 
Analysis and comparison of generated LP, covering the MAPE of mean electricity 
consumption and the TV of a representative day.  

Mean Electricity Consumption 

Measured Load Profile: 24061.58 kW  
Synthetic Load Profile: 25525.66 kW  
MAPE: 6.08%  
Total Variability (TV) of Day 2 
Measured Load Profile: 11023.21 kW  
Synthetic Load Profile: 9571.21 kW  
MAPE: 13.17%   
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be improved by reinforced implementation of stochastic methods. 

4. Conclusions & outlook 

Throughout this paper, a comprehensive methodology for generating 
synthetic load profiles (LP) for the industrial landscape is presented. 
This approach involves energy intensive subsectors, which are charac-
terised by homogenous process chains. It was found, that because of the 
limited amount of process and product variety of these raw material 
processing subsectors, the bottom-up methodology of discrete-event 
simulation is a suitable method for generating LPs for various energy 
carriers. This method was combined with basic stochastic models and 
improved to meet the depiction of industrial processes. A following case 
study modelling an existing Iron & Steel production chain proved the 
functionality of the established software. 

In conclusion, the results of the presented methodology exhibit 
satisfactory approximations in depicting existing production chains and 
their timely resolved consumption. Thus, Ganymed, as discrete-event 
simulation is applied, adjusted to industrial processes and principles, 
can be deemed as a suitable software for generating synthetic load 
profiles of production chains of the selected subsectors. This approach 
requires a sound basis of information, which was created throughout 
this study and will be extended continuously. Furthermore, the meth-
odology shall be improved further throughout future research. The 
presented case study shows the need for implementing variable pro-
duction capacities. This can be achieved, for example, by introducing 
shift models or daytime-depending capacities into Ganymed. Shift 
models can, for example, incorporate non-producing times like week-
ends into the generated LPs. If this detailed information is not available, 
stochastic methods can be improved further by e.g. fluctuating the 
operating times or batch sizes of involved processes. For example, in the 

Iron & Steel industry batches are often subject to alternating sizes. These 
alternating factors can be addressed via stochastics. 

As described in Section 2.2, further processing steps like rail rolling 
mills or coating processes were not taken into account yet. This is due to 
the vast variety of possible processes involved, which is a disadvanta-
geous factor for developing bottom-up simulation approaches. However, 
the development of a top-down simulation of other industrial subsectors 
can take these further processing steps into account. The implementa-
tion of this simulation approach will be the main topic of a follow-up 
study. 
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Appendix 

The GUI of Ganymed was developed via the Python library “Tkinter”. A screenshot of the software interface is shown in Fig. 15. The process canvas 
enables the creation of various process objects and their user-defined arrangement via drag and drop. This ensures the specification of dynamic and 
flexible production chains during user setup. The alignment of processes is consistent with the mentioned methodology explained above. 

Fig. 14. Percentage error and polynomial fit of all compared data points between measured and generated LP.  
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Fig. 15. Ganymed GUI Process Canvas and Preference Window of selected process.  

The visual representation of a process object contains its consecutive number, a type symbol (batch/continuous), a process properties button, 
which opens the preference window (see Fig. 15), and four anchor points. The anchor points are the basis for incoming and outgoing material and 
energy flow arrows. The preference window displays the properties of the selected process object. These properties are the key information for the 
simulation framework and can be adapted by the user. 

As mentioned above, the production chain operates within the defined start and end objects. After the user finished the arrangement of the overall 
production line, including start and end objects, the simulation can be initiated. A loading bar indicates the simulation’s progress. 

After completion of the simulation, the user can switch to the calculation and results sheet as shown in Fig. 16. Here, the overall simulated load 
profile is displayed. This load profile includes the user defined simulation time as well as start-up and shutdown operations of the entire production 
chain. Via “Data Handling” the user can manipulate the simulated load profile, e.g. copy and paste representative parts of the load profile or cut 
statistical outliers or faulty boundary effects. Based on this, the user can generate and export a defined weekly load profile for the specific target values 
and energy carriers.

Fig. 16. Ganymed GUI Calculation & Results Sheet.  
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Austria, Statistics, 2008. ÖNACE 2008 - Classification of Economic Activity in Austria. 

http://www.statistik.at/KDBWeb/kdb_VersionAuswahl.do?NAV=DE&F 
AM=WZWEIG&VersID=10438&EXT=J&KDBtoken=?. 

Bajpai, P., 2016. Pulp and Paper Industry: Energy Conservation. Elsevier Inc., 
Amsterdam, Boston, p. 268. 

Banks, J. (Ed.), 2003. Encyclopedia of Information Systems: Discrete Event Simulation. 
Elsevier. 

Binderbauer, P., 2021. Ganymed Website: Ganymed Software. www.ganymed.ga. 
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Hegyháti, Máté, Friedler, Ferenc, 2010. Overview of Industrial Batch Process Scheduling. 
1974-9791 21, pp. 895–900. https://doi.org/10.3303/CET1021150. 

Heinen, K.-H., 1997. Electric Steel Production. 
Hernández, L., Baladrón, C., Aguiar, J., Carro, B., Sánchez-Esguevillas, A., 2012. 

Classification and clustering of electricity demand patterns in industrial parks. 
Energies 5, 5215–5228. https://doi.org/10.3390/en5125215. 

International Energy Agency, 2021. Industry Classification. https://www.iea.org/topics 
/industry. (Accessed 18 May 2021). 

Iversen, E.B., Morales, J.M., Madsen, H., 2014. Optimal charging of an electric vehicle 
using a Markov decision process. Appl. Energy 123, 1–12. https://doi.org/10.1016/ 
j.apenergy.2014.02.003. 

Jacobs Greenville, Institute of Paper Science and Technology, 2006. Report for. 
American Institute of Chemical Engineers (Pulp and Paper Industry - Energy 
Bandwidth Study).  
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a b s t r a c t

The heterogeneous nature of the industrial sector in terms of process and product variety often hinders
assessments of its energy consumption. The generation of synthetic load profiles (LPs) however offers
a key instrument to support energy suppliers, grid operators and industries themselves by quickly
evaluating the impacts of energy efficiency measures, fuel switch, new technologies etc. Currently,
such LP generators are only developed for single real-life industry plants or require comprehensive
beforehand data. Within this study, we propose a new model for generating synthetic LPs of industrial
process chains without the need for extensive, plant-specific data. This solution includes a series
of bottom-up and top-down approaches. We analyse different data sources and develop algorithms
based on underlying data science methods and technical and economical modelling paradigms like
Markov chains or Economy of Scale. Here, we describe novel findings e.g., a method that proves the
prediction of industrial shift models from a top-down perspective or effects on the energy demand of
industrial plants for rising production capacities. Furthermore, we prove that only some production
processes in industrial facilities are responsible for the main share of their energy demand, as the
residues can be modelled by numerical analyses. We validate the developed approach by generating
synthetic electricity LPs of different real-life industrial plants and comparing the results to measured
LPs. This study contains five case studies, of which we found valid approximations of our synthetic
LPs to the measured, real-life plants. However, our model’s results differ from measured LPs, especially
when depicting lower energy demands (< 200 kW). Furthermore, long-term periodicities e.g., part-time
working hours on Saturdays have not been incorporated into our model yet, which leads to certain
inaccuracies. We quantified these effects within this study. This, nevertheless, leaves open areas for
future research work.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The modern energy system is confronted with significant chal-
lenges. The climate crisis presents itself as one of the most fun-
damental humanitarian crises. However, the fast-increasing rate
of the implementation of renewable energies heavily influences
the volatility of supplied energies and therefore the stability of
the overall energy system [1].

In the age of digitalisation, we can deem ourselves lucky
enough to hold the needed means to develop fruit-bearing so-
lutions for solving these challenges. Energy system models play
a vital role in this context, especially for energy suppliers and
grid operators. These instruments support the strategic decision-
making for the energy transition by incorporating topical trends

⇤ Corresponding author.
E-mail addresses: paul.binderbauer@unileoben.ac.at (P.J. Binderbauer),

thomas.kienberger@unileoben.ac.at (T. Kienberger).

and technologies and swiftly evaluating their impact on the phys-
ical energy and grid system [2].

As the European industry is accountable for around 20% of
the gross inland energy consumption [3], it has to take a ma-
jor part in the energy transition. Whereas the development of
energy models in the mobility and residential sectors is well
underway, industrial models are lagging behind in terms of their
dynamic and comprehensive character [4]. To accelerate this
process, our motivation lies in proposing novel approaches to
depict the dynamic demand and generation behaviour of single
industrial sites in terms of timely high-resolved load profiles (LPs)
as we therefore can introduce new aspects and improvements
to global energy system models. As we already demonstrated a
model for energy intensive industries in our preceding study [5],
we now want to address the depiction of the more complex, non-
energy intensive industries like Machinery, Food & Beverages etc.
The generation of LPs for the mentioned industries will therefore
be the main topic of this study.

https://doi.org/10.1016/j.segan.2023.101078
2352-4677/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.segan.2023.101078
https://www.elsevier.com/locate/segan
http://www.elsevier.com/locate/segan
http://crossmark.crossref.org/dialog/?doi=10.1016/j.segan.2023.101078&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:paul.binderbauer@unileoben.ac.at
mailto:thomas.kienberger@unileoben.ac.at
https://doi.org/10.1016/j.segan.2023.101078
http://creativecommons.org/licenses/by/4.0/


P.J. Binderbauer, A. Keuschnig and T. Kienberger Sustainable Energy, Grids and Networks 35 (2023) 101078

List of Acronyms

LP Load Profile
DSM Demand Side Management
IAC Industrial Assessment Center
kWh Kilo Watt Hours
MWh Mega Watt Hours
TWh Terra Watt Hours
e.g. Exempli Gratia
NACE Nomenclature statistique des activités

économiques dans la Communauté eu-
ropéenne

IEA International Energy Agency
PVC Polyvinyl Chloride
P Power/Energy Demand
E Energy Consumption
t Tonnes
min Minutes
h Hour
SEC Specific Energy Consumption
EOS Economy Of Scale
LF Load Factor
MAPE Mean Average Percentage Error
DFT Discrete Fourier Transformation
GUI Graphic User Interface

1.1. State of research

In our preceding study [5], we discussed recent develop-
ments in modelling methodologies, which allow the depiction of
dynamic consumption patterns and therefore generation of LPs
of consumers and consumer groups in the mobility [4] and
residential sectors. In the latter, for example, a comprehensive
model by Pflugradt and Muntwyler [6] was developed, generating
LPs of single households based on residential behaviour and con-
sumption of household appliances. This bottom-up methodology
can be applied to design local energy systems, for which simple
standardised LPs are deemed too inaccurate [7].

Our findings show that several models for the industrial sec-
tor have been developed to statically determine their energy
consumption [5]. This allows the investigation of e.g. long-term
emission reduction or the utilisation of renewable energies [8].
However, timely high-resolved synthetic LP generation repre-
sents a key solution for evaluating future grid demands, schedul-
ing energy supply, or implementing demand-side management
(DSM) measures.

Based on the literature research in our preceding study, we
further investigated existing modelling approaches for generating
LPs of industrial sites. We found only a few, which we classified
in Fig. 1 depending on their systemic application (thermal LP,
electric LP, multi-energy LP) and methodology (bottom-up, top-
down). We also assessed how many industrial subsectors can be
depicted by the proposed approach without relying on additional,
external data (user-wise) or real-life measurements.

Sandhaas et al. (A) [9] developed a top-down methodology,
to model electricity LPs based on normalised daily LPs of five
industrial subsectors. These normalised LPs were divided into
eight end-use applications (useful energy categories) such as
mechanical drive, lighting, heating etc. The fraction of allocation
of the useful energy categories to the resulting electricity LP
was defined by investigating industrial databases. LP fluctuations
were introduced via the application of stochastics. The generation

of thermal LPs was not covered within this work, which certainly
is another major field of application due to the high rate of
industrial, thermal consumers [16].

Jesper et al. (B) [10] created a methodology for generating
thermal LPs by analysing real measured data from more than 6
industrial subsectors via k-Means clustering and regression anal-
ysis. They found strong evidence that – unlike electricity loads
– industrial, thermal LPs are partly following ambient tempera-
tures. This effect can also be observed for residential homes in
the private sector. Similar analysis methods like Jesper et al. were
conducted by Richard et al. (C) [11] to identify DSM measures and
by Dedi¢ et al. (E) [13] for small and medium-sized enterprises.
The latter study also includes examinations on working days
(distinction of different working days and holidays) and their
implications on LPs. Valdes and Camargo (D) [12] also investi-
gated real measured LPs, however, they did not utilise k-Means
clustering.

Dock et al. (F) [14] developed a bottom-up method for gen-
erating electrical and thermal LPs of production lines of the Iron
& Steel subsector. Their model is based upon real-life measure-
ments of major process units like the electric arc furnace or the
ladle furnaces. The corresponding LPs are generated by using
Markov chains.

Thiede et al. (G) [15] offer a generic energy flow-oriented
manufacturing simulation. Through this bottom-up approach,
DSM and energy efficiency measures on factory level can be
derived. This model can be applied to different industrial sites and
incorporates detailed process control schemes and economic as-
sessments. However, the applied methodology relies on compre-
hensive measurements and production chain knowledge on-site
beforehand.

Within our preceding study (H) [5] we developed a method-
ology for depicting LPs of energy intensive subsectors. We found
that energy intensive industries ‘‘exhibit a limited range of vary-
ing production processes and principles’’ [5]. Based on this find-
ing, we developed a bottom-up approach supported by top-down
algorithms incorporating the simulation of production lines via
discrete event simulation. Throughout this study, we covered the
main production lines of the subsectors Iron & Steel, Paper & Pulp,
Chemical and Non-Metallic Minerals, defined by the International
Energy Agency (IEA) [17].

A summary table compares the investigations of this study to
the mentioned past research works in more detail, see Appendix.

1.2. Research hypotheses and structure of this paper

Based on the literature review above, we conclude that the
first important groundwork for generating LPs of selected indus-
trial subsectors has been laid out successfully. However, we found
major open research areas, especially regarding the methodol-
ogy’s comprehensiveness and scope for covering the entire in-
dustrial sector and more than one energy carrier. The goal of
this study is to extend our existing approach by developing a
methodology for covering the more complex, non-energy inten-
sive subsectors like Machinery or Food & Beverages as well. To
reach this goal we situate the following hypotheses:

• Non-energy intensive industries apply a wider range of pro-
duction paradigms and processes compared to energy in-
tensive industries. Sole bottom-up models will fail to reach
the mentioned goal because of the great scope of vital data
while the results of sole top-down models are too unde-
tailed. The conducted literature review, as the main results
are stated above and in Fig. 1, supports this hypothesis
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Fig. 1. Assessment of developed models for generating industrial LPs: (A) Sandhaas et al. 2022 [9], (B) Jesper et al. 2021 [10], (C) Richard et al. 2017 [11], (D) Valdes
and Camargo 2021 [12], (E) Dedi¢ et al. 2022 [13], (F) Dock et al. 2021 [14], (G) Thiede et al. 2022 [15], (H) Binderbauer et al. 2022 [5] ; See summary table in
Appendix for more details of these literature studies.

by demonstrating that either single energy carriers are in-
cluded in the shown top-down methodologies or multi-
energy carrier methodologies are developed by incorporat-
ing extensive databases for a bottom-up approach. A com-
bined bottom-up and top-down approach will adequately
depict these industrial subsectors without relying on ex-
tensive process-specific data but covering multi-energy sys-
tems, nevertheless.

• The applied shift models at real industrial sites influence the
energy demand and generation pattern of industrial sites
strongly. Hernández et al. [18] investigate the impact of
working days and weekends or holidays on electrical LPs,
however, did not examine the fluctuating behaviour during
working days (production and non-production times) for
other energy carriers as well.

• The energy consumption behaviour of industries during
peak times can be traced back to a limited amount of energy
intensive process units. We assume that this behaviour
already determined the energy demand in energy intensive
industries [5], which can also be seen in the non-energy
intensive sectors as well.

• The microeconomics paradigm of Economy of Scale can
be applied to assess the energy consumption of industrial
plants.

We will prove these hypotheses throughout this study as we thor-
oughly assess the non-energy intensive subsectors in Section 2.
Therefore, an overview of the developed methodology will be
presented first and explained in a detailed manner in the fol-
lowing subsections. Of these, Section 2.1 includes the handling of
input variables for the model, followed by the explanation of our
shift model calculator (Section 2.2). Regarding the bottom-up ap-
proach within this study, we developed a dynamic Markov-chain
model for integrating the energy-consuming behaviour of en-
ergy intensive production processes (Section 2.3). In Section 2.4,
our approach for assessing weekly consumption and demand
of industrial plants based upon Economy of Scale is described.
These models are complemented by a load factor analysis and

a comprehensive iterative algorithm in Section 2.5. To evalu-
ate the functionality of our approach, Section 3 contains five
conducted case studies, which are described and analysed exten-
sively. Finally, Section 4 concludes this study, by reflecting on the
hypotheses stated above.

2. Methodology

The distinction between energy intensive and non-energy in-
tensive industrial subsectors varies slightly depending on legisla-
tors and their systemic interpretation. The European Commission
denotes subsectors as energy intensive if certain processes are
included within the production line. Such processes are for exam-
ple electrolyser units, chemical reduction processes, processes for
metal production or glass fabrication etc. [19]. In our preceding
study, we pointed out the characteristics of these subsectors.
However, this developed approach finds its limitations when it
comes to non-energy intensive subsectors:

Fig. 2 shows that non-energy intensive subsectors account for
around 28% of the total energy consumption in Austria of 135
TWh [16]. Even though this share is rather small compared to en-
ergy intensive industries, further analysis in terms of employment
and gross value-added shows that non-energy intensive subsec-
tors take a bigger role within the overall industrial landscape,
as illustrated in Fig. 2. Additionally, we can conclude that the
product and process variety of these subsectors is much more
comprehensive than in energy intensive industries. This can eas-
ily be derived when examining the European NACE classification,
which categorises the IEA-defined subsectors in more detail by
introducing a graduated system [21] : For example ‘‘C 16.2.1 –
Manufacture of veneer sheets and wood-based-panels’’ is a part
of ‘‘C 16 – Manufacture of wood and of products of wood and
cork’’, which can be assigned to the IEA subsector ‘‘Wood & Wood
Products’’. While non-energy intensive industries make up 149
of the product-specific 4-digit NACE classes, energy intensive
subsectors only account for 65 [20]. It can be reasoned that these
products’ extensive subsectors can be covered either by deploying
new simulation methodologies or providing a comprehensive
database, even larger than for energy intensive industries. Our
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Fig. 2. Comparison of energy intensive and non-energy intensive industrial subsectors regarding total energy consumption [16], the total number of employees and
gross value added for 2019 [20] ; *Non-Ferrous Metals is part of the energy intensive industry, however, due to the small share of primary non-ferrous metal
production in comparison to secondary in Austria, we classified this sector as non-energy intensive.

motivation however lies in the depiction of LPs for industrial sites
via an efficient and user-friendly methodology without the need
for individualised, beforehand data (e.g., measurements on site).

Prominent industrial databases along these classifications
utilised in this study are for example ETS (Emission trading
system) database, EMAS (Eco Management and Audit Scheme)
database, EuroStat and IAC database.

Our literature review shows that top-down methodologies
mainly cover the generation of LPs for single energy carriers
(see Fig. 1). Bottom-up methods depict more than one energy
carrier, however, require a more extensive, site-specific database.
We conclude that top-down models rely on the site’s sole elec-
tricity or natural gas metering for energy suppliers but manage
to cover more industrial subsectors, while bottom-up models
build up on underlying processes and consumption of various
and internally produced energy carriers like steam. Thus, our
developed methodology incorporates both top-down approaches
to maximise the number of targeted subsectors and bottom-
up approaches to increase the LP depiction of selected energy
carriers.

Fig. 3 depicts the developed methodology for generating rep-
resentative synthetic LPs of fictitious and non-fictitious industrial
sites of selected non-energy intensive subsectors. The methodol-
ogy can be divided into five partaking algorithms which we will
discuss in the following chapters in detail.

The following databases are incorporated into the methodol-
ogy:

• Herold Business Database [22] : This database contains in-
formation on site and NACE subsector-specific employment
of companies in Austria including over 400 000 data points.

• Industrial Assessment Center (IAC) Database [23] : This
database involves surveys of site and NACE
subsector-specific information on employment, energy de-
mand, production hours and capacity in the U.S. containing
around 20 000 data points. The programme IAC is funded by
the US Department of Energy (DOE).

• Useful Energy Analysis by Statistics Austria [24] : This clas-
sification lists the final energy demand on the IEA subsector
level in Austria.

For generating synthetic LPs for fictitious or non-fictitious sites
of non-energy intensive industries, the number of employees,
selection of a specific NACE subsector and the production capacity

act as primary input parameters by the user (a). By determining
the employment information and NACE classification the most
probable deployed shift model is identified (b). To generate the
production activity during the defined shift model, we developed
a dynamic Markov model (c). The result is an unscaled LP reflect-
ing the most energy intensive processes from the Markov model.
This LP is then scaled within an iterative algorithm to meet the
statistically determined plant characteristics from an Economy of
Scale model (d).

We incorporated this methodology in an open access, free-
to-use software called Ganymed, where we already implemented
the generation of LPs of energy intensive industries from our
preceding study [5].

2.1. Methodology input factors

The first part of the proposed methodology, as shown in Fig. 3
(a), covers the initial input information for setting up an indus-
trial site. This information contains the selected NACE industrial
subsector, to which the site can be assigned, the production
capacity (e.g., t/h) and the number of production employees of
the site. The number of employees can be either defined by the
user deterministically or via stochastic distribution of analysed,
single companies from Herold Business Database [22]. For the
latter option, we developed a dedicated fit algorithm, which ap-
proximates the subsector-specific data by a power function. The
probability densities of all considered data points from Herold
Business Database act as regression points for the fit as depicted
in Fig. 5 (b).

When the user chooses the stochastic option for determining
the number of employees in the selected NACE subsector, the
algorithm draws a random number z as a result of the cumulative
distribution function. This random number z is outputted by a
pseudo-random number generator, which is developed based on
the logic of Mersenne-Twister. Through determining z, a possi-
ble number of employees for the manufacturing plant can be
calculated stochastically as the yellow arrow indicates.

Fig. 4 shows an exemplary application of this stochastic as-
sessment for the subsector ‘‘NACE 25 – Manufacture of fabricated
metal products’’. The Herold Business Database presents 1314
individual Austrian industrial plants with their respective number
of employees for this sector. We calculated an average employ-
ment number of 21 employees per plant. The Structural Business
Statistics by Statistic Austria [20] also states the average number
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Fig. 3. Overall LP generation methodology: (a) Input variables, (b) Algorithm to calculate the applied shift model with the highest probability, (c) Bottom-up model
of dynamic Markov chains incorporating most energy intensive processes, (d) Regression model based upon Economy of Scale, (e) Iteration algorithm for scaling
generated LPs, (f) Generated LPs.

Fig. 4. (a) Cumulative density and (b) Probability density functions NACE subsectors: NACE 25.6.1 - Treatment and coating of metals.
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of employees for all subsectors. Thus, the calculated average can
be justified by the report by Statistic Austria, which reveals 20
employees for the mentioned subsector. This can be deemed as
the first satisfactory correspondence of our investigations. The
histogram analysis in Fig. 4 (b) presents the probability densities
of the collected 1314 data points. We limited the x-axis of the
figure to 48 employees. The corresponding fit function for the cu-
mulative density function from Fig. 4 (a) is given by the following
formula:

x = e
⇣
f (x)�0.0227

0.2385

⌘

(1)

In this formula, f(x) equals the randomly drawn number z be-
tween 0 and 1 (0% and 100%) as the input parameter to calculate
the number of employees x based upon the regression function.

To prove an adequate regression fit of assumed normally dis-
tributed data points, we conducted a statistical t-test [25]. Here,
we transferred the probability densities from (b) into a logarith-
mic plot. The corresponding fit can now be investigated on a
linear relationship, for which we set a significance level ↵ of ↵ =
0.05. The test shows a P-value of P = 0.02, which is lower than
the significance level ↵. The hypothesis of normally distributed
data points around the linear fit function in the logarithmic plot
and, thus, correlation in Fig. 4 (b) can be accepted. We note that
we investigated every NACE subsector on statistical significance.

2.2. Shift model algorithm

Based on real-life measurements and the analysis of industrial
LPs, Dehning et al. [26] found a dependency of plant-specific
LPs on the implemented shift models at the site. The authors
classified phases, where the main production during the daily
shift takes place, as ‘‘production times’’ and phases outside of
shift times as ‘‘non-production times’’. We reason that during
the phase of production, energy consumption is higher than dur-
ing non-production. In conclusion, the knowledge of the shift
model being used is vital for generating LPs of the corresponding
industrial site.

In the first step, we assumed that the applied real-life shift
model depends on the specific NACE subsector and company size.
Sen [27] examined this on yearly production hours from the IAC

Database [23] via a histogram analysis. The author found elevated
peaks of yearly production hours directly corresponding to the
mean value of weekly working hours of major shift model groups.
Furthermore, the study defined upper and lower working hour
limits for these proposed shift model groups. We identified these
shift model groups to be also sufficient for depicting European
shift models. However, we altered some of the proposed working
hour limits to meet European standards e.g. according to statu-
tory vacation days or maximum amount of working hours per
week [28]. The defined shift model groups are listed in Table 1.

Next, Sen [27] concluded and proved that industrial subsectors
apply these shift models varyingly. Based on these findings we
examined each NACE subsector by the proposed working hours
and related shift models from Table 1. Fig. 5 (b) shows a scatter
plot of the number of employees and applied production hours of
real-life industrial plants of the subsector NACE 16.1.0 in the IAC
Database. We marked the working hour ranges of identified shift
model groups with different colours accordingly and analysed the
data points within these ranges via probabilistic analyses. The re-
sults of these analyses are probability density functions as shown
in Fig. 5 (a). These subsector-specific density functions enable
the determination of the most probable applied shift model for
a certain company size or selected number of employees. For
example, in the subsector NACE 16.1.0 the probabilistic analysis,
as depicted in Fig. 5, show that a company with 100 production
employees will apply shift model A of 40 h/week followed by
shift model B of 80 h/week. For higher numbers of employees,
the application of shift model B becomes more likely. For over,
in this case, 600 employees, a stochastic determination is not
possible anymore due to the small number of representative
data points at these values. For these special cases, the to-be-
depicted industrial site should be divided into production areas
(e.g., assembling, coating, etc.), which are then treated as single
sites. As the information of the number of employees is generated
out of the approach, we have discussed in Fig. 3 (a), typical
production and non-production times based upon shift models
for generating the according LP can be assessed.

Fig. 5. Examination of ‘‘NACE 16.1.0 – Sawmilling and planing of wood’’: (a) Probability density functions of all shift model groups, (b) Scatter plot showing
employment and applied production hours of industrial plants along with defined working hour ranges of defined shift model groups. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 1
Classification of shift models via shift model groups including their applied working hours and limits.

2.3. Dynamic Markov model

Our previously presented algorithms are the sole top-down
approaches. These algorithms allow the generation of generic in-
formation in a disaggregated way. However, they do not support
the depiction of typical energy demand fluctuations in the LPs
in any form. Furthermore, to thoroughly integrate possibilities
to individualise and probabilistically diversify the depicted sites
we developed a bottom-up algorithm complementing the other
approaches.

Similar to our preceding study, typical characteristics of pro-
duction processes like energy consumption per unit, production
times etc. were assessed. Due to the mentioned process diversity
of the non-energy intensive industries our research is only limited
to the most energy intensive and (production-wise) dominating
processes. Typically, we included three to four processes per
NACE subsector in this algorithm.

Markov chains describe sequences of discrete states over time
for single processes [29]. A Markovian transition matrix contains
probabilities for the process to pass from a current state to the
next one. Dock et al. [14] applied Markov chains for modelling an
electric arc furnace for 40 different states resulting in a 40 by 40
transition matrix. The demand of all states was based on real-life
load measurements.

Because our approach relies on process information from lit-
erature, we established 7 standardised states which we describe
within dedicated Markovian transition matrices: Off, Ramp-up,
Processing, Shutdown, Service, Failure and Stand-by. Swiderski
et al. [30] similarly classify process states to evaluate machinery
readiness and reliability and to identify optimisation measures.
Our assessed processes can operate within these states by a
predefined 7 by 7 transition matrix. However, the entries of this
transition matrix are subject to change because the likelihood
of a process to pass from state 1 (Off) to state 2 (Ramp-Up)
varies depending on the current phase (e.g. non-production or
production), which we described in Section 2.2. Therefore, the
Markov model is not determined statically, but dynamically as
a function of time as also described by Sandholtz et al. [31] for
another field of application.

Fig. 6 explains the overall applied, dynamic Markov model and
corresponding states for a selected process and for the most basic
shift model (40 h/week). We added a transition phase (Fig. 6 (b)
and (c) in yellow) to the existing production and non-production
phases. This is because not all production processes are usually

turned on or off at the same time. Fig. 6 (b) shows that the
production capacity during the production phase is at 100%, while
during the non-production phase at 0%. To correctly model this
behaviour, the states of all corresponding processes must be
managed via four different transition matrices ↵, � , � and � Fig. 6
(a). Each of these matrices contains different transition probabili-
ties for the processes, applied at different phases. For example,
the probabilistic transition from Off to Ramp-Up in matrix ↵
during non-production times is always 0%. However, in matrix
� this probability is near 100%, because of a production start
(other states during production start can be Failure and Service).
Additionally, the model avoids forbidden state transitions like
from Off to Shut down. It is noted that we applied this paradigm
for production processes which are operated by personnel and
therefore correlated to the given shift models. We found that
processes like kilns, operated to dry woodchips or veneer wood
over a longer period (NACE 16.1.0), operate mainly without per-
sonnel during non-production times [32]. These processes do not
correlate to the given shift model, are continuously running and
are therefore modelled with a single transition matrix which is
equivalent to matrix � . In both cases, shift-model independent
and dependent, the matrix � defines the production dynamic
of the processes. The underlying data is based upon the overall
operating time of each process in relation to the length of the
production phase as well as Failure and Service probabilities
from literature [30]. Regarding the transition between processes,
we applied the simulation paradigm of discrete event simula-
tion [33]. Here, a logical sequence of the production stream can
be simulated. For example, in the subsector NACE 16.1.0, a typical
energy intensive process sequence would be starting from wood
logging, wood sawing and finishing of wood planks.

Fig. 6 (c) shows an example of the specific energy consumption
(SEC) of a shift model correlated process over time. All other
transitions in ↵ are at 0% except for Off to Off, Off to Failure or
Off to Service. In each of these cases, the SEC of this process is
0 kWh/t. In the first transition phase (yellow), the matrix � is
applied which is for turning on the process. We assumed that
the timely length of the transition phase is 30 min which, how-
ever, can be adapted freely by the user. During the production
phase, the matrix � is applied, while the second transition phase
involves mainly Shutdown or Service states.

In conclusion, this applied Markov model contains four 7 by
7 transition matrices. For other, more complex shift models this
number increases. Furthermore, when including shift breaks as
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Fig. 6. (a) Transformation of the applied transition matrix according to the current production phase; (b) Plant production capacity as a function of time and current
production phase; (c) Specific energy consumption of a selected process during different production phases. Here the process takes up various states (d) in accordance
with the current transition matrix from (a). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

transition or non-production phases, more transition matrices
must be added. This functionality is included in the software
Ganymed.

2.4. Economy of scale - Regression model

The dynamic Markov model is applied to depict energy de-
mand fluctuations of industrial processes. However, this does not
finally constitute the finished LP. It is necessary to expand the
resulting fluctuations’ profile by the average energy consumption,
which is typical for industrial sites in the chosen NACE subsector
and with this size.

The IAC database provides information on electricity and di-
rect fuel (e.g., natural gas, coal, oil etc. for thermal application)
consumption of the investigated single sites. These energy car-
riers are termed final energy carriers at the plant border. Addi-
tionally, the IAC database contains the electricity peak demand
for one selected month of the given fiscal year respectively.
Both average consumption and peak demand are vital infor-
mation to further refine the generated process-specific profile
from Section 2.3 to a synthetic, site-specific LP as described in
Section 2.5.

To correctly assess the average energy consumption of the
generated site, the dependent variable must be linked to given,
explanatory variables. As also production capacity of the single
sites is given by the IAC database, we utilise the effect of Economy
of Scales (EOS) to reason a correlation between the specific energy
consumption (SEC) and the production capacity. EOS describes
the dependency of applied production input factors on the pro-
duced output [34]. It mainly finds its use as an instrument in

microeconomics to express cost reduction effects when increas-
ing production. Only a very small amount of studies practically
apply this effect for assessing SEC: For example, Ironmonger
et al. [35] show that EOS is applicable for residential households,
where the SEC depends on the number of residents.

Fig. 7 shows the evaluated data for the subsector NACE 16.1.0
for production-specific electricity (a) and direct fuel (c) consump-
tion. The observed data resembles the single industrial sites in
the IAC database. The corresponding fit lines indicate the EOS
effect [36]: A higher specific energy consumption can be observed
at small production volumes. When the capacity increases, pro-
duction becomes more efficient in terms of input consumption,
which is energy in our case. This result is especially interesting as
it can be observed for the different industrial sites of the specific
subsectors in general. We further evaluated the fit functions by
generating a corresponding double logarithmic plot of Fig. 7 (a)
and (c) in (b) and (d). The observed linearity is a common proof
to identify EOS in microeconomics [37]. The linear dependency
of both logarithmically scaled variables can be expressed via the
following function:

Log (c) = a � b Log(Q ) (2)

c represents the input factor per unit of capacity (e.g. cost [=C/m3]
or energy in our case [kWh/m3]) and Q the production capacity
[m3] [37]. The production capacity can also be referred to as
tonnes [t] or other units.

To thoroughly prove the statistical correlation of these EOS
parameters in Fig. 7, we investigated the depicted relationship
further by examining statistical indicators underlying the hy-
pothesis of correlation between specific energy consumption and
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Fig. 7. EOS effect of the subsector ‘‘NACE 16.1.0 – Sawmilling and planing of wood’’ for (a) specific electricity consumption, (b) double logarithmic plot of electricity
consumption, (c) specific direct fuel consumption, (d) double logarithmic plot of direct fuel consumption.

production capacity [38]: Fig. 8 shows these evaluations for the
depicted EOS correlations from Fig. 7 for electricity and direct fuel
respectively. As the linearity of logarithmic data can clearly be
observed in Fig. 7, the independence of residuals is investigated
in Fig. 8(a) and (c) to prove that no relationship between the pre-
dicted values from the linear regression and its errors is existent.
The hypothesis is met when the correlation factor r and the aver-
age of included residuals x is approximately 0 [25]. For residuals
of electricity data points these indicators equal r = 0.000218
and x = 0.000055, for residuals of direct fuel data points r =
�0.081 and x = �0.360 respectively. It can be observed that
these indicators of direct fuel data points deviate stronger from 0
than electricity data points. Besides the independency of errors,
the normality of these residuals is further proof of a statistical
linear relationship: Here, a normal probability plot includes the
residuals of all data points in comparison to the z-value, which
equals the multiplication factor of the standard deviation from
the mean average of all residuals. The assumption of linearity is
met, when the distribution of residuals is approximately normal,
indicated by a linear relationship in these plots (as shown in Fig. 8
(b) and (d)). For both sets of data points (electricity and direct
fuel), the last method indicates normal distribution successfully.
At last, we investigated our hypothesis of normality by conduct-
ing a t-test, investigating the significance of the shown data for a
significance level ↵ of ↵ = 0.05. The test shows a P-value of P =
5.608 ⇤ 10�48 for electricity consumption and P = 3.712*10�31

for direct fuel consumption, which are both significantly lower
than the significance level ↵. In conclusion, the assumption of
the linear relationship between specific energy consumption and
production capacity in a logarithmic context is proven, hence all
relevant statistical indicators demonstrate satisfactory results.

Via these fit curves for each NACE subsector from Fig. 7, a
typical specific electricity and direct fuel consumption for every
industrial site with a specified size and sector can be assessed.
The user-defined production capacity of the site (see Fig. 3 (a))
for which a synthetic LP should be generated, acts as an input
parameter for the fit curves to calculate the corresponding SEC.

2.5. Load factor iteration algorithm & generation of final load pro-
files

In this last step of our proposed LP method, we combine
the time-resolved energy demands reached from the dynamic
Markov model and the determined real-life plant-specific energy
consumptions and demands from the EOS model, as Fig. 9 shows.
The main goal is to calibrate the baseload of the energy demand
profiles from the Markov model (Fig. 9 (a)), mainly covering the
energy intensive process demands during production phases. We
managed this by utilising the stochastically determined industry
and site-specific energy consumptions and demands from the EOS
regression model (Fig. 9 (b)), as described in Section 2.4.

The backbone of this calibration step is the calculation of an
underlying load factor (LF) for the site, which origins from the EOS
regression model. The LF ranges from 0 to 1 and is typically cal-
culated for electricity, but can be applied for direct fuel too [39].
It, therefore, offers important insights into the assumed shape of
LPs as the energy demand of consumers with lower load factors
fluctuates stronger than that of consumers with higher ones. The
load factor is calculated through:

LF = E
P · t (3)

As the ratio is calculated of E as energy consumption [kWh] to
P as peak demand [kW] in the time frame t [h].

The peak demand for both electricity and direct fuel is to be
determined in the next step. However, the calculation of both
parameters varies. While monthly industrial electricity consump-
tion is rather constant throughout the year, monthly direct fuel
consumption presents itself as a function of ambient tempera-
ture [10]. However, the demand for both electricity and direct fuel
fluctuates, as already explained in Section 2.3, due to changing
process states.

2.5.1. Determination of the scaled electricity peak
In terms of electricity, the IAC database contains information

on the peak demand for a selected month in the given fiscal
year of all surveyed sites. Because consumption is measured
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Fig. 8. Statistical proof of assumptions of EOS correlation of the subsector ‘‘NACE 16.1.0 – Sawmilling and planing of wood’’: (a) Residual plot of electricity consumption,
(b) Normal probability plot of electricity consumption data points, (c) Residual plot of direct fuel consumption, (d) Normal probability plot of direct fuel consumption
data points.

Fig. 9. Workflow of the combination of dynamic Markov model (a) and EOS
regression model (b) within load factor iteration (c).

in kWh and peak demand in kW, a linear relationship of both
parameters is given. Ganymed generates linear fit functions for all
observed data points of the corresponding NACE subsectors. By
determining the electricity consumption from the EOS model in
the first step, the peak demand can be assessed next, by applying
the following linear equation:

E = m · P + b (4)

With E as energy consumption [kWh],m as slope [h], P as peak
demand [kW] and b as intercept [kWh].

For determining the electricity peak, we neglect ambient tem-
perature variations, unlike direct fuel peaks (see the section be-
low).

2.5.2. Determination of the scaled direct fuel peak
Direct fuel demand is not constant over a year. Unlike the

electricity demand, a share of the direct fuel demand of industrial
sites is influenced by ambient temperature. Jesper et al. [10]
proved this through an extensive industrial LP analysis. This
ambient temperature-dependent share mainly originates from
space heating or air conditioning appliances and is more dis-
tinctive during winter months, as Fig. 10 (a) and (b) show. The
other part of direct fuel demand is attributable to thermal en-
ergy for process heat and is therefore rather constant through-
out the year [40]. Statistic’s Austria [24] states these shares of
non-ambient temperature-dependent and ambient temperature-
dependent thermal energy for each industrial subsector. Through-
out this information, the assessed direct fuel consumption from
the EOS model can be separated accordingly.

The non-ambient temperature-dependent demand is calcu-
lated similarly to the assessment of the electricity peak, see 2.5.1.
Regarding the share of direct fuel demand, which is ambient
temperature dependent, we utilised the SigLinDe function for the
calculation [41]. Here, the ambient temperature TAmb. acts as an
input for SigLinDe to calculate a multiplication factor h for the
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Fig. 10. Yearly direct fuel demand, divided into ambient temperature-dependent consumption and process-specific consumption.

Fig. 11. Iteration of unscaled LP from the Markov model to generate the finished (scaled) LP.

corrected direct fuel consumption. For an ambient temperature
of 8 �C the multiplication factor is set to 1 on default. The factor
is larger than 1 for temperatures under 8 �C and smaller than 1
for temperatures above 8 �C. The underlying regression function
of SigLinDe is a mixed linear and Sigmoid function [41] . We
implemented an hourly-resolved temperature profile of Austria
for one year. However, Ganymed also allows the implementation
of other temperature profiles as well as the selection of the
month, for which the LP shall be generated. The adapted direct
fuel consumption ESLD per hour can then be calculated via

ESLD = E · h (TAmb.) · FWT (5)

with E as average natural gas consumption [kWh] per hour, which
is the share subtracted as explained above, and FWT as a factor
of the associated day of the week in correlation with the shift
model. The overall direct fuel peak demand is calculated via the
sum of both hourly peaks (ambient temperature dependent and
non-ambient temperature dependent). With this information, the
direct fuel LF from equation (3) can be assessed.

2.5.3. Load factor iteration
Based on the given information, Ganymed calculates the load

factor for electricity and direct fuel to scale the given LPs from the
Markov model. These LPs mainly contain information on the main
contributions to the energy demand, originating from selected
processes. However, these still show a certain grade of deviation
compared to the finished LP. This is because smaller units and

general base loads (e.g., ventilation, lighting, base loads from
smaller appliances and processes, . . . ) are neglected in the Markov
model. By iterating the LPs from the Markov model to meet the
assessed load factors (see Sections 2.5.1 and 2.5.2) this lack of
information can be bypassed. As we mentioned in Section 1.1, a
similar method is applied by Starke and Alkadi [42] for electricity
demands. In this study, however, the unscaled load profile is
based on standardised LPs.

Fig. 11 shows a simplified, iterative scaling of an LP with n
iterative steps. The target LF can either be smaller or higher
than the LF from the Markov model. Our algorithm fixates the
established peak (determined according to Sections 2.5.1 and
2.5.2) and lowers or raises the residual demands to be in ac-
cordance with previously determined LF (and therefore overall
energy consumption) in the considered time period. To do so,
after each iterative step, an integral is calculated to assess the
new area under the LP, which is equivalent to the energy con-
sumption. If the current consumption corresponds to the assessed
consumption (in other words, when LFunscaled == LF scaled) from
the EOS model, the iteration is ended. Furthermore, the user can
specify a different load factor instead of the one from the EOS
model through the Ganymed GUI at any time.

Throughout this chain of algorithms, an LP for electricity
and/or direct fuel can be generated. The Ganymed GUI offers a
simple step-by-step menu to synthesise a fictitious or existing
industrial plant quickly and efficiently.
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Table 2
Information on the selected five case studies. This input data is applied in the developed algorithm in Ganymed.
Case number NACE subsector Number of employees Production capacity
Case 1 10.8.5 – Manufacture of prepared meals and dishes 36 0.9 t/h
Case 2 22.2.2 – Manufacture of plastic packing goods 49 1.8 t/h
Case 3 27.1.1 – Manufacture of electric motors, generators and transformers 7 0.05 t/h
Case 4 31.0.1 – Manufacture of office and shop furniture 4 0.08 t/h
Case 5 25.5.0 – Forging, pressing, stamping and roll-forming of metal; powder metallurgy 21 0.5 t/h

Table 3
Underlying energy intensive processes and literature sources in each case
study.
Case number Energy intensive production process Literature sources
Case 1 • Grading unit

• Grinding unit
• Cooking tunnel

[44–46]

Case 2 • Raw material shredder
• Forming unit
• Extruder

[47–49]

Case 3 • Wiring process
• Forming unit
• Assembling process

[50]

Case 4 • Vacuum unit
• Side spindle
• Assembling process

[51,52]

Case 5 • Heating unit
• Forging process
• Deburring process

[53,54]

3. Validation of developed method

3.1. Case descriptions

We validated the developed methodology by conducting vari-
ous case studies, of which five will be presented in this study. The
presented data for this study’s validation process is published by
Braeuer [43]. Each case represents a real-life manufacturing plant
from Germany and contains information on its industrial sub-
sector, company size and production capacity as well as real-life
measured, 15-min resolved yearly electricity LPs. The validation
of direct fuel LPs is not part of this publication, because of data
protection regulations of partaking companies.

Through personal correspondence, further information on the
industrial plants was assessed as shown in Table 2. This data
acts as input for the developed method. The LPs generated with
Ganymed are validated by comparison with the real measured
LPs of each corresponding NACE subsector. We selected these
five cases to represent the broadest possible application for all
non-energy intensive industries.

The information on energy intensive production processes as
input for the dynamic Markov model, specific for all selected
cases, was based upon different literature sources as Table 3
shows.

Overall, Fig. 12 gives an overview of the data flow for the
conducted five case studies starting from input parameters in
Tables 2 and 3 to the outputted LPs and follow-up evaluation
and analysis. The utilised databases are not shown in this figure.
Overall, the selected industrial subsector and the defined number
of employees from Table 2 act as input parameters for the shift
model calculator. Data of energy intensive production processes
from Table 3 in combination with the identified shift model
initiate the generation of the unscaled LPs. The Economy of Scale
regression model calculates representative load factors based on
the information on production capacity from Table 2. These load
factors then scale the already generated LP to bridge the gap of
unknown additional processes in each case.

3.2. Results and discussion

We modelled each case in Ganymed along the outlined data
flow described in Fig. 12: Because the number of employees for
each case is given deterministically in Table 2, the stochastic cal-
culation via power function fit from Section 2.1 was not executed.
The algorithm determined the most applicable shift model as
described in Section 2.2 for cases 1 to 5 as follows: A 8 h/day
(40 h/week) shift for cases 1, 3 and 4, a 24 h/6 days (144 h/week)
shift for case 2 and a 16 h/5 days (80 h/week) shift for case 5.
We generated electricity LPs for all five case studies based on the
identified shift models and the information on energy intensive
processes to feed the dynamic Markov model.

As mentioned in Section 2.5 the yearly electricity demand
for an industrial plant can be described as mostly independent
of ambient temperature. Thus, we overlaid 52 weekly LPs (52
weeks/year) from each of the measured plants for validating the
synthetic LP. Fig. 13 shows these 52 weekly LPs in blue as well
as their average LP in red for the selected case 1. The generated,
synthetic LP is shown in black. The demand is depicted in 675
single 15-min values per LP. Furthermore, we deemed this in-
terval as suitable due to the correlation with the energy market,
as intraday trading is conducted at a minimum of quarter-hour
intervals [55].

We validated the deviation of the synthetic LP from the mea-
sured ones by generating boxplots and calculating the mean-
average-percentage-error (MAPE) for each case. We used each
boxplot diagram in Fig. 14, corresponding to each case study, to
evaluate the deviation of the synthetic LP (shown as single line
indicators) to the measured data in the boxes. Through this, the
magnitude of the deviation can be analysed. In overall, the middle
line of the single boxes indicates the median of all values. The
bottom and top edges of the boxes show the lower and upper
quartiles of all data points. Thus, 50% of all data points lie within
the box. Both whiskers of every box indicate the last data point,
which is not declared as an outlier anymore (<1.5 times the
interquartile range/box length starting from the boxes’ edge).

The grey boxes exhibit the overall average demands for each of
the 52 measured LPs. We compare this with the average demand
of the synthetic LP, shown as single line indicators to the right
of the grey boxes. The following boxes (light yellow, green, blue,
red) in each boxplot contain the 52 data points during a selected
time. We agreed upon selecting four chronological 15-min time
stamps: the 10th hour in the week, the 37.5th hour in the week,
the 75th hour in the week and the 105th hour in the week. In the
examination of the results, we focus on the most prominent time
of production, which is the weekdays from Monday to Friday. For
this, we evenly distributed the marked time stamps as described
above within the weekdays and neglected the distinct evaluation
during weekends. Each of the coloured boxes is then compared to
the corresponding point-in-time in the synthetic LP, again shown
as single line indicators. Additionally, Fig. 13 shows these time
stamps.

Regarding the mean-average-percentage-error (MAPE) based
analysis, we applied the following equation:

MAPE = 1
n

nX

t=1

����
Pm � Ps

Pm

���� ⇤ 100% (6)
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Fig. 12. Data flow from input parameters to outputted LPs for all case studies.

Fig. 13. Comparison of weekly measured electricity LPs of one year (blue) and averaged measured LP (red) with synthetic, generated LP (black). The marked time
stamps (light yellow, green, blue, red) correspond to the boxplot in Fig. 14. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

As n = 675 represents the total number of data points per LP,
Pm constitutes the measured and Ps the electricity demand of the
synthetic LP at each time stamp (hour of the week) t.

The resulting MAPEs are included in Table 4. Additionally, we
evaluated the deviation of the maximum peak and minimum

demand between the average (measured) and the synthetic LP
similarly to formula (5).

The synthetic LPs in cases 1 and 2 show on average a good
approximation to the measured LPs, especially regarding the de-
viation of minimum demand. The peak demand varies slightly
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Fig. 14. Boxplot diagrams for evaluating the deviation of the synthetic LPs (single line indicators) compared to the measured data (boxes). All boxes include 52 data
points (as of 52 weeks per year) for different times in the LP. For all five boxplots case 1 is shown in (a), case 2 in (b), case 3 in (c), case 4 in (d) and case 5 in (e).

Table 4
Resulting MAPEs, deviation of maximum peak and minimum demand between
average (measured) and synthetic LP for all five cases.
Case number MAPE Deviation peak

demand
Deviation minimum
demand

Case 1 19% 11% 2%
Case 2 11% 30% 4%
Case 3 35% 17% 7%
Case 4 644% 345% 57%
Case 5 29% 26% 49%

more, possibly because the average (measured) LPs fluctuate less
due to the arithmetical calculation, which can also be observed
for case 1 from the red curve in Fig. 13. Case 1 exhibits a sufficient
approximation with low deviation at different time stamps too,
which is shown in Fig. 14 (a). The overall data point variance
is higher in case 2. Nevertheless, all synthetic time stamps align
with the boxes satisfactorily (Fig. 14 (b)).

Case 3 shows a higher MAPE, however, slightly less deviation
regarding maximum and minimum peak, possibly due to higher
fluctuations of the synthetic LP. This can also be observed in
Fig. 14 (c) as the demand during each of the four single time
stamps lies outside the boxes of the boxplot. This variance prob-
ably results from generating the LP at very low power levels. We
will explain this effect in the following paragraph for case 4.

The modelled and measured results of case 4 vary dramatically
with an overall MAPE of 644%. During the execution of our case
studies, we experienced major deviations between measured and
synthetic LPs at low energy peak demands under 200 kW. We
found that the linear relationship between peak demand and con-
sumption (as we indicated in Section 2.5.1) exhibits large error
rates in some NACE subsectors at these low demands. Often, the
linearity remains inconclusive in these areas. This leads to the fact
that the algorithm estimates higher peak demands. This results in
major deviations between the measured and synthetic LPs. We
originally found this incidence in cases 3 and 4. We modified
the algorithm to process a non-linear fit, when the variation of
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Fig. 15. DFT stem plots and corresponding amplitudes for (a) synthetic LP and (b) average (measured) LP of case 1. The following segments are highlighted in (a)
and (b): (I) – Higher fluctuations of the synthetic LP in a short-term manner, (II) – Strong dominance of the signal with 24 h periodicity, (III) – Higher amplitude for
a weekly fluctuation in measured LP. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

the linearity increases at low demand levels. Based on this non-
linear fitting function the adjusted peak demand is forwarded to
LP generation. This modification exhibits valid results in case 3.
However, case 4, which is located in another NACE subsector, is
not afflicted by these changes. Case 4 shows the limitations of
our model. For these cases, the execution of a sole bottom-up
approach, which we developed in our previous work [5], may be
more advisable.

Case 5, again, exhibits acceptable results. The minimal de-
mands of the synthetic LP are slightly lower than in the measured
LPs, which can also be observed in Fig. 14 (e).

In cases 1, 3, 4 and 5, where the applied shift model indicates a
significantly lower or no production during weekends, the mea-
sured LPs nevertheless show a slight increase in the electricity
demand during Saturdays. We could not assume the reason for
this.

In the next step, we performed a Discrete Fourier Transforma-
tion (DFT) analysis of the average (measured) and the synthetic
LPs of all cases to evaluate these mentioned and further periodical
features. The DFT decomposes any given input signal into a sum
of periodic sine and cosine components, for which frequency,
amplitude and phase can be assessed. Groiß [56], for example, ex-
amined yearly electricity residual loads by conducting a DFT with
the means of analysing their periodical potential for i.e. long-,
mid- or short-term storage.

Fig. 15 shows the DFT analysis for case 1 of (a) the synthetic
LP and (b) the average (measured) LP. We highlighted three
comparable segments. The first segment (I), representing short-
time fluctuations, exhibits higher DFT amplitudes of the synthetic
LPs indicating stronger fluctuations with those periodicities. As
we already mentioned, due to the arithmetic calculation, the

average (measured) LP tends to show less rapidly alternating
fluctuations. This can also be seen in Fig. 13 by comparing the
red and black coloured LPs, especially during non-production
phases. Overall, the definition of 15-min intervals tends to inflict
less strong fluctuations within the overall LP than for smaller
intervals (e.g. 1- or 10-min) [57]. This is due to the calculated
average within these intervals. A strong dominance of a daily
periodicity can be observed in both plots in the second segment
(II). The observed amplitudes reach very similar values. This also
exemplifies the applied 8 h/day (40 h/week) shift model as a high
changing rate of the LP during working days is present. The most
distinctive difference between measured and modelled LPs can
be noted in the third segment (III). Here, the amplitude of the
measured LP at weekly periodicity is significantly higher than in
our synthetic model. This underlines the presence of weekend
loads (especially Saturday), which we can currently not depict
within our model. As we also evaluated the results from DFT for
cases 3, 4 and 5, we found the same weekly, long-term dominance
in the DFT amplitude being more thoroughly developed in the
measured LPs.

4. Conclusions & outlook

As we established a well-functioning, bottom-up model for
generating load profiles (LPs) for energy intensive industries in
our preceding study [5] , we now present a combined top-down
and bottom-up algorithm to cover the remaining non-energy
intensive subsectors. Through this, we are closing the gap by
incorporating the whole industrial sector to create, to our knowl-
edge, the first comprehensive software for generating timely
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high-resolved, synthetic energy demand and generation profiles,
called Ganymed.

To conclude our study, we reflect on our hypotheses stated in
Section 1.2:

• The non-energy intensive industrial subsectors outnum-
ber the energy intensive industries regarding employment,
gross value added and produced products as we showed
in Section 2. These more comprehensive subsectors de-
mand a wider range of implemented methods for generating
LPs rather than a sole bottom-up approach. Also, existing
methodologies lack the assessment of multi-energy carri-
ers without the need for extensive databases. In our first
hypothesis in Section 1.2, we situated that a combined
bottom-up and top-down approach will adequately depict
the non-energy intensive industries on a multi-energy level
without extensive process-specific data. We, therefore, de-
veloped a mixed methodology with top-down methods in-
corporating real-life plant data and a bottom-up algorithm
for implementing the timely resolution of process energy
demands into the overall methodology.

• To prove our second hypothesis, we built on the exper-
tise of Hernández et al. [18], who outlined the dependency
between working days, weekends and holidays in industry
and electrical LPs. We showed that production and non-
production times during working days need to be inter-
linked for the generation of multi-energy LPs in form of
concrete, well-defined shift models. Moreover, thermal LPs
are not only influenced by the hour of the day but also by
the ambient temperature, which needs to be considered in
LP generation. We showed this dependency in Section 2.5.2.

• The consideration of the most energy intensive processes
within a non-energy intensive plant will suffice for gener-
ating industrial LPs. As we already stated this finding in our
preceding study [5], we now apply this fact in our devel-
oped methodology. A representative LP can be generated
by calibrating the remaining peak demand and the base
load via existing real-life plant data. This also changes the
need to gather extensive process-specific data for depicting
multi-energy carriers within bottom-up approaches.

• From a top-down point of view, the dependency between
the specific energy consumption of industrial plants and
production capacity can clearly not be described linearly.
It constitutes itself via a logarithmic function. Thus, this
effect indicates that the microeconomics’ paradigm of Econ-
omy of Scale practically affects the energy system as well.
Therefore, we described the specific energy consumption of
industrial plants of different subsectors as logarithmic fit
functions in relationship to the production capacity.

At last, the results of the presented methodology exhibit satis-
factory approximations in depicting real-life production facilities
with an overall mean percentage error of around 20% for plants
with weekly peak demand higher than 200 kW. However, we
found that the demand of smaller consumers (< 200 kW) often
differs from the results in our approach, even after corrections
in our algorithm have been made. We assume that this devia-
tion results from a higher heterogeneity of the daily work and
included processes in small facilities. As we described in our pre-
ceding study, a sole bottom-up approach might be more advisable
here. When analysing the periodicities of the synthetic LPs, we
found more fluctuations with higher frequencies and a weaker
dominance of weekly periodicities when compared to measured
LPs. The first feature is probably due to the comparison with an
average, measured LP. The second one reveals the necessity of
including load behaviour on weekends in the algorithm, which
could not have been approached until now due to limited access
to information on industrial shift models.

As we strive for developing our model further, we will opti-
mise certain features and algorithms in the future. Firstly, we will
enlarge our existing, incorporated databases. Secondly, we will
enhance our EOS model and the iterative load factor algorithm to
assess peak demands more thoroughly. In this regard, energy eco-
nomic paradigms like time-of-use can potentially further improve
the generation of LPs in this methodology.
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Appendix

Table 5
Summary table comparing current study with past research.

Objective Subsectors (IEA) Energy
carrier

Approach Solving method Constraints

[9] Generating synthetic
industrial LPs

5 (Food, Beverages &
Tobacco; Machinery;
Iron & Steel;
Non-Ferrous Metals;
Non-Metallic Minerals)

Electricity Top-Down • Based upon normalised LPs
from literature
• Divided into energy end uses
• Applying fluctuation to
generated LPs

• Solely based upon normalised
profiles
• No process-specific data
available

[10] Investigating the
dependency
between heat
profiles and
ambient
temperature

6 (Food, Beverages &
Tobacco; Chemical &
Petrochemical; Iron &
Steel; Machinery;
Automotive;
Non-Metallic Minerals)

Natural
gas/Heat
load

Top-Down • Normalising the data
• k-means clustering of
measured LPs
• Regression analysis

• Extensive data necessary
• High aggregation level

(continued on next page)
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Table 5 (continued).
Objective Subsectors (IEA) Energy

carrier
Approach Solving method Constraints

[11] DSM measures for
medium-sized
industries

3 (Iron & Steel;
Chemical &
Petrochemical; Food,
Beverages & Tobacco)

Electricity Top-Down • k-means clustering of
compartments of measured LPs
• Investigating similarities
• Derivation of operating and
scheduling modes

• Extensive data necessary
• High aggregation level

[12] Investigating DSM
potential of paper
and food industries

2 (Pulp & Paper; Food,
Beverages & Tobacco)

Electricity Top-Down • Normalising the data
• k-means clustering of
measured LPs

• Extensive data necessary
• High aggregation level
• Limited subsectoral
investigation

[13] Generating synthetic
industrial LPs for
market-oriented
operation of power
systems

2 (Machinery; Food,
Beverages & Tobacco)

Electricity Top-Down • Statistical analysis and
derivation of load shape factors
of measured LPs
• Fuzzy c-means clustering of
monthly generated LPs
• Combining the clustering
results in general LPs

• Utilisation of data from only
18 different industrial plants

[14] Modelling of
synthetic LPs of real
life production plant

1 (Iron & Steel) Electricity,
Natural
gas/Heat
load

Bottom-Up • Measurement at site
• Modelling of measured LP via
Markov chains

• Only applicable at the specific
site
• Measurements necessary

[15] Optimisation of
manufacturing
scheduling and DSM
potential

3 (Pulp & Paper;
Machinery; Chemical &
Petrochemical)

Electricity,
Natural
gas/Heat
load

Bottom-Up • Energy system assessment at
site
• Modelling of singular
processes
• Generating LPs on various
systemic levels
• Integration in further
economic investigations

• Extensive data necessary
• Complex methodology
including various parameters

[5] Generating synthetic
industrial LPs of
energy intensive
subsectors

5 (Iron & Steel; Pulp &
Paper; Chemical &
Petrochemical;
Non-Metallic Minerals;
Non-Ferrous Metals)

Electricity,
Natural
gas/Heat
load

Bottom-Up • Collection of process-specific
literature data
• Integration in discrete event
simulation

• Only applicable for production
route itself

This
Study

Generating synthetic
industrial LPs of
non-energy
intensive subsectors

7 (Wood & Wood
Products; Machinery;
Food, Beverages &
Tobacco; Mining &
Quarrying; Automotive;
Textiles & Leather;
Non-Ferrous Metals)

Electricity,
Natural
gas/Heat
load

Top-Down
and
Bottom-Up

• Stochastic analyses of
industrial databases
• Fits for employee number,
energy demand and production
shifts
• Energy intensive processes
depicted by Markov model
• Combination of top-down and
bottom-up approaches

• Limited to databases
• Outliers of daily shifts
possible
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Regarding the generation of time resolved industrial waste heat profiles 
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A B S T R A C T   

The timely transient energy supply or insufficient temperature levels of industrial waste heat (IWH) hinders the 
full exploitation of its energy and CO2 emission reduction potentials. This outlines the necessity for investigating 
IWH in a time resolved manner, which, however, is still widely disregarded, especially in generalized industrial 
energy system analyses and research. Within this study, we present our developed first-of-its-kind approach, 
which addresses this topic from a holistic system perspective and enables the generation of time resolved IWH 
profiles for all industrial subsectors. The backbone of our approach is the distinction of energy-intensive sub-
sectors (e.g. Non-Metallic Minerals) and non-energy-intensive subsectors (e.g. Food & Beverage Production), as 
both vary in regard to their underlying process designs, production routines and data accessibility. Concerning 
the first group we found that time resolved IWH profiles can be generated by combining process specific data in a 
bottom-up manner with temperature gradients of the whole production route throughout the paradigm of 
discrete event simulation. We investigated further that IWH profiles of non-energy-intensive subsectors are 
depicted by examining existing subsector resolved waste heat fractions and combining this information with 
plant-specific load profiles in a top-down manner. We practically prove our findings for both groups within (1) a 
case study of generating IWH profiles of a real-life cement production mill as part of energy-intensive subsectors 
and (2) outline the analysis of waste heat fractions for the non-energy-intensive subsector of food production 
exemplarily. Both cases reflect the above findings successfully and with satisfactory results, which can therefore 
be regarded as basis for future research work concerning time resolved IWH.   

1. Introduction 

The exploitation of industrial waste heat (IWH) is regarded as a go-to 
solution for reducing the energy consumption and CO2 emissions of 
industrial plants [1]. From a systemic point of view, IWH is utilized 
internally for site-specific heating and/or externally within district 
heating grids for further usage off-site (e.g., in residential buildings). 
The International Energy Agency (IEA) foresees the exploitation of the 
maximum economic potential of IWH to be achieved by 2030 [2]. The 
current deployment status is still far off this maximum. For example, 
energy system analyses of the European industrial sector estimate cur-
rent unused technical potentials to still amount to up to 817 TWh/a [3]. 
From a technical point of view, besides temperature issues, a major 
limiting factor concerning the utilization of these untapped potentials is 
caused by the fluctuating, timely instability of generated waste heat [4]. 
This hinders a constant supply of thermal energy for consumers and 
therefore requires additional efforts to be considered by e.g., energy 

system development, deployment of demand side management (DSM) 
and storage measures. 

A solution for bridging the challenges of unstable IWH on a holistic 
energy system level lies in the generation of time resolved IWH profiles. 
As a result, future analyses of industrial energy systems can easily assess 
the potential of IWH for internal or external utilization for different 
industries, production sizes and time frames. Following this context, our 
goal within this study is to present an approach, which covers the gen-
eration of IWH profiles for manufacturing sites and for the entirety of the 
industrial sector. 

1.1. State of research 

Within the context of our research aim of time resolved IWH analysis 
and generation, we conducted an extensive literature review of current 
studies also dedicated in adjacent research fields of industrial energy 
systems. In general, we found that existing studies mainly cover two 
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areas:  

1. Studies, which quantify waste heat spatially as a source for e.g., 
external use in district heating grids on a high aggregated level. This 
research mainly applies low aggregation time frames like months or 
years for their respective assessments.  

2. Studies on individual process and technology level, which examine 
novel technological advancements into e.g., existing industrial de-
signs for more efficient site own use. This research generally applies 
detailed data on a high timely resolution in e.g., seconds or minutes 
to assure the technology’s system integration. 

To provide a better overview of both fields, we allocated these cat-
egories to industrial aggregation levels in Fig. 1. Followingly, we pro-
vide a more detailed description of both categories and outline the 
resulting research gap, which we address in this study. 

For the first category, as an example, McKenna et al. [5] present an 
energetic and exergetic analysis-based model for assessing waste heat 
loads and their technical recovery potentials for the entire industrial 
sector in the UK. Therefore, the authors calculate the respective heat 
load of various sites of several industrial subsectors based on emission 
trading system (ETS) reports. The IWH recovery potentials are then 
assessed via heat recovery fractions from measured manufacturing 
plants from other sources. These analyses bear important information on 
the cross-sectoral industry-to-heating-grid IWH potentials, however, do 
not consider detailed time resolved behaviour as they solely incorporate 
yearly data. Persson et al. [3] and Brueckner et al. [6] conduct similar 
analyses for Europe and Germany respectively for different years. 

The second category of research studies involves heat recovery 
technologies and site-specific recovery opportunities on individual 
process and technology level. Here, the focus lies on the industrial 
implementation of novel technologies and assessing their economic and 
technical feasibility for recovering IWH for e.g., internal usage. To 
thoroughly proof a successful system integration of the respective 
technology, the time resolved generation of IWH on-site is significant. 
Within this context, Lecompte et al. [7], for instance, conduct a case 
study for incorporating an organic Rankine cycle (ORC) for recovering 
IWH within an electric arc furnace (EAF) mill. Because the EAF is 
operated batch-wise, IWH is only generated time varyingly. The authors 
state the challenges in implementing IWH recovery technologies for 
timely unstable production behaviour and point out the necessity of 
examining the time resolved generation of IWH in terms of IWH profiles. 

In another example, Dock et al. [8] present a model for investigating 
energy and CO2 emission reduction in an EAF mill. Here, the time 
resolved energy consumption in terms of load profiles (LPs) forms the 
basis of the study. Dock et al. further generate IWH profiles to investi-
gate the time resolved IWH generation, internal recovery and process 
integration on-site to reach their desired aim. 

In general, the consensus within state-of-the-art studies seizes the 
challenges caused by the characterizing influence of the time-dependent 
production and process behaviour on IWH generation in industry [4]. 
The usage of waste heat potentials – internally as well as externally – 
must be subordinated to the production design. Thus, the time resolved 
supply from IWH does in general not resemble the time resolved heat 
demand – internally and externally. This is especially true when inves-
tigating batch processes that are not operated continuously and there-
fore strongly influence the fluctuation of IWH supply. Literature studies 
above state that it is necessary to thoroughly examine the fluctuation of 
IWH to fully exploit its energy consumption and CO2 emission reduction 
potential. 

As a result from our literature research, we conclude that subsector 
specific, high aggregated analyses and concrete technological studies on 
low aggregation levels are already well developed. However, we 
investigated that – to our knowledge – no studies connected both groups 
and transferred their generated knowledge onto plant level in a time 
resolved context. Within this study, we, therefore, investigate time 
resolved IWH generation and utilization on plant level for the entire 
industrial sector by the generation of IWH profiles. This will bridge the 
gap between both already addressed categories and brings potentials to 
more detailed holistic energy system analyses e.g., developing decar-
bonization scenarios, or for embedding individual technological ad-
vancements into more comprehensive energy systems (e.g., heating 
grids). This interconnection is shown in Fig. 1 and forms the research 
gap, we address with our work. 

1.2. Research hypotheses and structure of this paper 

Information on cross-sectoral spatial IWH utilization and process 
specific waste heat data is already put in place by various studies, as 
shown above. We found that the time resolved behaviour of IWH gen-
eration and utilization on plant level is not examined thoroughly yet. 
However, to fully exploit the whole potential industry internal and 
external IWH utilization might bear, this issue is a mandatory research 
area to be handled. As the generation of IWH profiles shall be examined 

Fig. 1. Comparison of current research areas regarding IWH utilization in industry and aim of this study: Spatial models, which investigate external use within 
district heating grids on a high aggregated level and low time resolution or technology-based analyses for internal, on-site use with high level of detail in time 
resolution. Research gap for time resolved IWH generation and utilization on plant level is still unaddressed. 

P. Josef Binderbauer et al.                                                                                                                                                                                                                    



Applied Thermal Engineering 232 (2023) 120969

3

for the entire industrial sector, the following situated hypotheses are to 
be validated within this study: 

• H1: System boundaries are crucial when investigating IWH utiliza-
tion. The adaption of system boundaries will alter the corresponding 
IWH profiles in terms of both time and temperature-resolved 
patterns. 

• H2: The generation of IWH profiles demands data regarding oper-
ating temperatures and time resolved properties of all process steps 
within the to-be-investigated single processes or overall production 
routes.  

• H3: IWH is subject to specific time resolved fluctuations. Therefore, 
industrial energy systems require a timely assessment and optimi-
zation to thoroughly exploit the full IWH recovery potential. 

We will prove these hypotheses throughout this study. To initiate our 
investigations, a precise definition of IWH (section 2.1) and applicable 
industrial system boundaries (section 2.2) is crucial within our devel-
oped study. After classifying the industrial sector as energy-intensive 
and non-energy-intensive, the respective IWH assessment methodolo-
gies are described in sections 2.3 and 2.4. We furthermore conduct a 
case study generating synthetic IWH profiles and validating the selected 
results in section 3. Finally, section 4 concludes this study by reflecting 
on the hypotheses stated above. 

2. Methodology 

To kick-off our methodology, we split the industrial sector into 
energy-intensive and non-energy-intensive subsectors, defined by the 
IEA [9]. Within our prior study [10] we found that the first group ex-
hibits higher energy consumption but relies on a smaller number of 
production processes, while non-energy-intensive subsectors produce 
more complex products via a large number of varying production 
principles. For both groups, their respective shares of primary energy 
consumption in Austria are outlined in Fig. 2 exemplarily. We show that, 
although energy-intensive subsectors exhibit higher shares of energy 
consumption, non-energy-intensive subsectors exceed regarding their 
number [11]. Due to their different characteristics and underlying het-
erogeneity concerning products, processes and production routines, 
both groups are to be approached via different methodologies. 

Within our prior studies [10], we developed a methodology for 
generating load profiles (LPs) for energy-intensive and non-energy 
intensive subsectors. Regarding the first, the methodology for gener-
ating IWH profiles is tightly interlinked with the existing bottom-up 
approach of the sequencing and process execution logic of discrete 
event simulation for generating synthetic LPs. We extended the classi-
fication of all involved processes within these subsectors by waste heat 
data such as intake, operating and outlet temperature, thermal energy 
flow rate, the waste heat energy carrier, etc. We retrieved these data 
from literature studies, which examine IWH on process level and tech-
nical recovery potentials on the low aggregated level outlined in Fig. 1. 
These process specific parameters present in combination the technical 

Fig. 2. Share of primary energy consumption of non-energy-intensive and energy-intensive industrial subsectors in Austria; Developed methodologies for 
both groups. 
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recovery potentials of the process. The utilization of this IWH is realized 
within our methodology via sensible or latent heat transfer within 
dedicated HEXs. The time resolved operation of the processes is then 
interlinked with waste heat generation, internal waste heat recovery/ 
consumption, and external waste heat utilization. In combination with 
the also generated LPs, IWH profiles are generated. 

The methodology for non-energy-intensive subsectors does not 
incorporate process specific information hence the subsectors’ 
complexity of processes and production routines. Here, we conducted 
extensive literature research on subsector-specific data regarding output 
IWH recovery fractions, determined based on measurements and plant- 
specific emissions on high-aggregated level as also outlined in Fig. 1. The 
combination of these recovery fractions with existing LPs allows for the 
calculation of synthetic IWH profiles. 

2.1. Definition and classification of generated IWH 

For the development of a comprehensive methodology, which en-
ables the generation of synthetic time resolved IWH profiles for different 
systemic boundaries and industrial subsectors, a concise definition of 
IWH is a crucial factor. Within our study, we define IWH as energy that is 
rejected by industrial processing units, which operate at temperatures 
above ambient temperature [12]. The excess energy is carried by a waste 
heat energy carrier, whose thermal energy flow rate Q̇IWH [W] is driven 
by either sensible or latent heat transfer. Sensible heat transfer ther-
modynamically applies, when a system remains in one phase and the 
heat from or to the system is depicted via a temperature difference as 
formula (1) explains: 

Q̇IWH = ṁCarrier × cp,Carrier × ΔT with ΔT = Toutlet − Tambient (1) 

with ṁCarrier [kg/s] as the mass flow of the waste heat energy carrier, 
cp,Carrier [J/(kg K)] specific heat capacity of the waste heat energy carrier 
and ΔT the temperature difference [K] between process outlet temper-
ature Toutlet (hot-end at heat transfer) and reference / minimum use 
temperature Tmin or Tambient (cold-end at heat transfer), which we refer 
to the ambient temperature in this study [13]. Per the principle of en-
ergy conservation, the process outlet temperature has to be equal to or 
lower than the operating temperature of the process itself. 

Latent heat transfer applies for systems within phase transition (e.g., 
steam generation). The heat absorbed or emitted is directly involved in 
this transitional process, which is driven under constant temperature. 
The corresponding waste heat is calculated through formula (2): 

Q̇IWH = ṁCarrier × hCarrier (2) 

with ṁCarrier [kg/s] as the mass flow and hCarrier [J/kg] as specific latent 
heat of the of the waste heat energy carrier. 

Fig. 3 shows these definitions together with a respective Q̇/T dia-
gram of the rejected energy flow of process P1 as sensible or latent heat 
transportation. 

Depending on the energy flow rate and technical feasibility, a frac-
tion of this rejected energy can be recovered for useful purposes either 
internally within the industrial plant itself and/or externally as input for 
district heating grids [14]. The method for generating the utilization of 
these IWH potentials is also conducted via sensible or latent heat 
transfer. 

This recovery process, in general, is deployed by incorporating a 
closed or open heat exchanging network with a respective carrier me-
dium e.g., thermal oil, hot water, etc. Different technologies can be 
applied for this recovery. Brueckner et al. [6] divide these technologies 
in direct and indirect categories according to their planned usage. Direct 
systems recover IWH and utilize it as the same form of energy, while 
indirect technologies convert the heat into other energy forms. Thus, 
heat pumps, heat exchangers, boilers, thermal heat storages and 
refrigeration cycles are direct heat recovery technologies, whilst ther-
moelectric generators, ORC, Kalina cycles, etc. transform the collected 
waste heat into electric or mechanical power [15]. Throughout both 
categories, input energy consumption, which would require a conser-
vative energy supply, can be reduced. We outline novel technological 
developments in both groups: Within direct technologies, especially 
high temperature heat pumps are in focus in recent research endeavours 
as e.g., Jiang et al. [16] present the low global warming potentials of 
centrifugal heat pumps supplied with IWH for temperature ranges above 
100 ◦C with new refrigerant components. In another example, Jouhara 
et al. [17] show the application of heat pipe heat exchangers in energy- 
intensive industries via a theoretical model and practical implementa-
tion. The authors outline the importance of novel recovery technologies 
in high-temperature industries like energy-intensive subsectors and 
present a scalable guideline for implementing heat pipes in other loca-
tions. For indirect recovery technologies, Miao et al. [18] examined 
recently the impact of unstable IWH generation on thermoelectric gen-
erators and concluded that certain patterns of IWH instability can also 
lead to improvement in thermoelectric power generation. Piri et al. [19] 
combine compressed-air energy storages with a multiple-step Kalina 
recovery cycle and outline the future potential of its system integration. 

To thoroughly assess the accumulated IWH for both single processes 
and overall production routes in industry, we introduced an exergetic 
classification of the rejected and recovered energy. Table 1 shows the 
classification of exergetic levels of the IWH, separated into different 

Fig. 3. Process P1 specific waste heat; Definitions of temperatures and energy flows as well as Q̇/T diagrams for (a) sensible or (b) latent heat generation.  
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temperature ranges. The recovery potential rises with increasing IWH 
grading [15]. 

The rejected energy is carried by waste heat energy carriers. These 
vary regarding their properties like composition, material, state, etc. We 
agreed upon classifying four waste heat energy carriers: “Flue Gas”, 
“Exhaust/Cooling Air”, “Waste/Cooling Water” and “Steam and Air with 
Condensable Water”, as shown in Table 2. We disregarded changes in 
the material composition and overall system pressure. We furthermore 
assumed that steam is saturated and utilized at 12 bars within industrial 
energy systems. Superheated steam is not included in our calculations. 
For “Flue Gas”, “Exhaust/Cooling Air” and “Waste/Cooling Water” we 
apply sensible heat transfer in line with formula (1). “Steam and Air with 
Condensable Water” refers to phase transitional processes like described 
above and applies latent heat transfer within our IWH calculations. 

All waste heat analyses conducted in this study are regarded as 
theoretical technical potentials as defined by Panayiotou et al. [20]. As 
part of the technical potential, the theoretical technical potential is 
calculated by applying theoretical or generic process specific analyses. 
The deployed calculations deliver time resolved IWH potentials, which 
can be recovered by extracting the heat from the waste heat energy 
carrier and utilizing it again. 

Within our study, we restrict our methodology to depict the poten-
tials of time resolved IWH and its utilization via latent and sensible heat 
transfer within the direct technology of general heat exchangers (e.g., 
heat pipes). We do not depict other recovery technologies like thermal 
energy storage, ORC, etc. yet. 

Furthermore, we conduct no optimization measures within time 
resolved IWH generation (e.g. pinch point analysis, loss limitation, …) 
as our research goal is to generate synthetic IWH profiles for holistic 
energy system analyses. Via the application of synthetic IWH profiles, 
impacts of industrial plants on the overall energy system via e.g. district 
heating can be assessed more thoroughly and with an improved timely 
resolution. 

2.2. System boundaries of industrial plants 

Due to the diverse utilization of generated IWH within or outside 
industrial plants, we introduced system boundaries for adequate allo-
cated calculations in our methodology. These system boundaries act as a 
holistic template and can be superimposed for every manufacturing 
plant for each industrial subsector. 

Fig. 4 shows the defined system boundaries for an industrial plant in 
general. The system consists of units for energy conversion and 

consumption. Furthermore, we introduced two systemic levels into this 
scheme. The plant level acts as the plant’s border. The public grid is 
located outside this boundary and all units outside this perimeter are not 
owned by the manufacturing plant [21]. The conservative energy supply 
route corresponds to the energy flow into and within the plant, which 
does not include IWH recovered flows. The energy distribution unit 
receives energy from outside the plant from the grid e.g., electricity or 
gas. This unit is responsible for supplying all other units within the 
plant-level border. However, the energy distribution unit can also 
receive energy from within the border, e.g., in case of on-site energy 
generation via PV or CHP plants or in case of recovered thermal energy. 
The latter can then be submitted to the public grid, e.g., within district 
heating networks. The manufacturing level lies within the plant border 
and contains all processes which are directly involved in value-creating 
production. Production auxiliary units like ventilation, lighting, etc. are 
located outside the manufacturing level. Within this border final energy, 
e.g., electricity or gas, is converted to useful energy, e.g., heat or me-
chanical drive. IWH can be generated within the plant at different units 
and recovered by deployed direct recovery technologies of heat ex-
changers as described in section 2.1. Within our definitions, IWH is 
generated within energy converting units like the on-site energy gen-
eration, final energy transformation or process own useful energy con-
sumption. The energy recovery system applies heat exchangers to 
recover IWH internally (via the loop back into the manufacturing level) 
or utilize IWH externally within local district heating grids. 

In general, the developed system boundaries can be allocated either 
to the manufacturing level, which results in IWH profiles of all pro-
duction processes, or the plant level, which contains IWH profiles for 
waste heat leaving the facility, which meets our initial research aim. 

2.3. Methodology for energy-intensive subsectors 

As mentioned above, due to homogeneous production schemes of 
energy-intensive subsectors, we extended the already developed 
bottom-up approach for generating synthetic LPs to include IWH 
calculations. 

We present a standardized process through which the time resolved 
IWH potentials of any user- or pre-defined production route can be 
allocated for recovery within or outside the facility. Its chronological 
order is shown in Fig. 5. At first, the potentials of generated IWH for the 
user- or pre-defined production processes are assessed via literature 
surveys. In the second step, the IWH recovery can be depicted via sen-
sible or latent heat transfer. The excess, time resolved IWH, which is not 
recovered within the facility, is then calculated for external or additional 
internal utilization in terms of exploiting its technical potential. All re-
sults offer time resolved IWH profiles at the end of this depicted meth-
odology. Analyses of economic feasibility are not included within the 
calculations but can be done in an additional post-processing step. 

2.3.1. Assessment of technical IWH potentials 
The backbone of IWH profile generation for energy-intensive sub-

sectors is discrete event simulation. This simulation paradigm depicts 
the timely interaction of discrete products (e.g. tonnes of steel) with 
individual production processes [22]. The sequence of interactions is 
defined by designed production routes containing these processes. When 
an interaction with a process takes place, a corresponding process spe-
cific energy consumption profile is generated. As a result, a cumulative 
LP of the respective energy carrier is created. We developed this 
approach in our preceding study to generate synthetic LPs of energy- 
intensive industries [10]. 

This time resolved energy demand analysis acts as the basis for 
further IWH generation and consumption calculations, because these 
time resolved profiles are tightly interlinked with the production 
behaviour and energy input of each process [4]. This means, that a 
process cannot generate waste heat if it’s currently not in a producing 
state, e.g., turned off. As our aim is to generate time resolved IWH 

Table 1 
Exergetic levels of IWH for different temperature ranges.  

Exergetic Level Temperature Range/Level 

Low-grade IWH Tambient − 50 ◦C 
Medium-grade IWH 50 ◦C − 100 ◦C 
High-grade IWH 100 ◦C − 400 ◦C 
Very High-grade IWH >400 ◦C  

Table 2 
Classification of waste heat energy carriers and their descriptions.  

Waste Heat Energy Carrier Description 

Flue Gas Carrier of sensible heat which originates from 
combustion processes 

Exhaust/Cooling Air Waste heat potentials from hot or warm products from 
production (e.g., product puffer), plant indoor exhaust 
air or machine cooling 

Waste/Cooling Water Water based waste heat potentials which leave 
production processes and originates from cleaning or 
cooling purposes 

Steam and Air with 
Condensable Water 

Steam as energy carrier or condensation of water 
within flue gas from/for evaporation or drying 
purposes  
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profiles on higher aggregated plant level, any thermal inertia effects are 
already included in the averaged IWH potentials from individual pro-
cesses or in the process state of ramp-down. In conclusion, the time 
resolved behaviour of energy demand and generating waste heat for 
each process has to follow the same pattern of process states e.g., off, 
ramp-up, producing, etc. 

Within our methodology, we defined a process classifying system 
(see Table 3). All properties are pre-defined with process specific values 
from literature research and can be adapted freely by the user. 

Regarding the collection of IWH properties of processes, we con-
ducted an extensive literature review for standardised production 
routes, which we originally defined in our prior study [10]. This 
approach is practically outlined in our developed case study in section 3. 
In general, process and subsector specific studies present data on oper-
ating temperatures. For example, Feng et al. [23] investigate the con-
servative iron and steel production route via blast furnaces and outline 
the operating temperature of the sintering plant to be around 1300 ◦C. 
Besides this, we retrieved the data on technical IWH potentials (outlet 
temperatures, thermal energy flows, waste heat energy carriers) either 
through own calculations or literature survey again: Regarding the 
latter, we investigated recent (heat exchanger) direct recovery tech-
nologies for the respective production routes in literature. For example, 
Caputo et al. [24] present data for the technical IWH potential of radiant 
heat exchangers for rotary kilns in cement production routes. The 

authors conclude that a maximum of 34.7 % of the total fuel input can be 
technically recovered from housed-in heat exchangers. This data is 
applicable to thermal energy flow of exhaust air within our methodol-
ogy. For processes which bear technical IWH recovery potentials but 

Fig. 4. Overall industrial system boundary for allocation of IWH flows within and outside a fictitious industry plant.  

Fig. 5. Process of assessing time resolved IWH for the selected production routes in our methodology.  

Table 3 
Process classification in our methodology, divided into existing process prop-
erties for generating synthetic LPs and adapted IWH properties.   

Batch Operated Process Continuous Operated 
Process 

Standard Process 
Properties  

• Unit Size [t]  
• Turnover Time [min]  
• Operating Time [min]  
• Specific Energy Consumption 

[kWh/t]  
• Energy Consumption Time 

Series [kWh/t per min]  
• Material Stream Reference 

Stochastic Settings  

• Throughput/Capacity 
[t/h]  

• Specific Energy 
Consumption [kWh/t]  

• Material Stream 
Reference  

• Stochastic Settings 

IWH Properties  • Intake Temperature [◦C]  
• Operating Temperature [◦C]  
• Outlet Temperature of IWH [◦C]  
• Thermal Energy Flow [kWh/t] or Mass Flow [kg/s] and 

Specific Thermal Capacity [kJ/ (kg K)] of Waste Heat Energy 
Carrier  

• Waste Heat Energy Carrier  
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lack underlying data in literature, we applied thermodynamic calcula-
tions on heat transfer from fuel input for retrieving their theoretic po-
tentials. In a next step, we estimated efficiency factors for depicting their 
technical potential. 

Fig. 6 explains the overall methodology for IWH-generating pro-
cesses for energy-intensive industry sectors and the generation of 
simplified, time resolved profiles. Here, a production route with two 
processes (P1, P2) – aligned sequentially – is supplied with specific en-
ergy flows. P1 is operated as a batch process and P2 is continuously 
working. These operational behaviours inflict the pattern of generated 
LPs. The respective singular LPs of both processes are then summed up to 
represent the overall LP of the depicted production route. The literature 
data categorized in Table 3 is used for the calculation of the accumulated 
IWH profiles. As previously mentioned, the time resolved pattern of the 
generated IWH is interlinked with the time resolved energy demand. 
Thus, the processes’ behaviour – originating from the paradigm of 
discrete event simulation – can be adapted accordingly. The cumulative 
IWH profile is then again, the sum of all singular, process specific IWH 
profiles. We note that, within this example, thermal inertia effects are 
already included on average in the IWH profile of P1 energy-wise. Due to 
lack of underlying data their time resolved impact on the generated IWH 
profile cannot be depicted yet. Additionally, we like to outline that 
thermal inertia effects do not impact the generated IWH profiles on a 
holistic energy system level to that extent, which we aim for in this study 
(see section 2.1). Therefore, we like to outline again that the generation 
of IWH profiles via our methodology does not model individual pro-
cesses explicitly but depicts their average energy consumption and 
generation time resolved and this may limit the application of our 
methodology. 

2.3.2. Plant internal IWH recovery via heat exchangers 
We showed in the previous section that waste heat potentials of all 

involved processes of a specific production route can be defined via the 
quantitative, time resolved parameters of the temperature difference 
and energy flow rate [25]. 

Following the definition of selected production routes and its 
maximum technical IWH potentials (Step 1 in Fig. 5), we investigate its 
technical recovery within heat exchangers next. In case of cumulating 
more than one IWH flow from different processes, resulting parameters 
from Table 3 are to be generated: The corresponding quantitative pa-
rameters for cumulative, mixed IWH flows from i out of m processes are 
calculated via formulas (3), for sensible heat transfer (4) and latent heat 
transfer (5): 

Q̇IWH,m =
∑m

i=0
Q̇IWH,i (3)  

TIWH,m =

∑m
i=0

((
1

kIWH,i

)
× Toutlet,i

)

∑m
i=0

(
1

kIWH,i

) with kIWH,i =
1

ṁCarrier,i × cp,Carrier,i
(4)  

TIWH,m =
∑m

i=0
(
Toutlet,i

)

m (5) 

The corresponding HEX for recovering the technical IWH potentials 
time resolved is either set as operating in counter-current or co-current 
flow. Furthermore, a minimal temperature difference due to technical 
functionality and structural limits is defined within our methodology. 
We disregarded the options to specify HEX efficiency losses and cross- 

Fig. 6. Order of simplified IWH profile calculation. Thermal inertia effects, as indicated, are averaged in the following summation of IWH profiles. The timely 
resolution of thermal inertia effects is neglected. 
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current flow. 
Furthermore, we note that the generation of IWH profiles through 

our methodology does not include optimization analyses for the most 
efficient waste heat utilization. Therefore, we disregarded pinch point 
analyses and the construction of composite curves hence these calcula-
tions require time resolved optimization. Along this, we also like to note, 
that the possibility of including thermal energy storage is not part of the 
methodology yet. As energy storage is not specifically bound to the 
timely production behaviour of the production route (unlike currently 
involved production processes), a besides developed methodology for 
solely depicting time resolved charging and discharging profiles should 
be developed in the future. To incorporate this in the presented meth-
odology, firstly, a classification of currently developed thermal storage 
solutions is to be made, secondly, a method for generating IWH profiles 
of energy storages on the basis of discrete event simulation is to be 
developed and thirdly, this method is to be incorporated in the existing 
solutions along different use case scenarios (e.g. application of thermal 
peak shifting, etc.). 

Fig. 7 shows the allocation of IWH from process P2 to P1 within a 
counter-current operated HEX for either sensible (a) or latent heat 
transfer for e.g., steam supply (b). The externally supplied energy de-
mand Q̇in,P1 of P1 is to be reduced by the recovery process. Q̇IWH is the 
overall waste heat potential of P2, Q̇HEX is defined as the maximum heat 
flow to be recovered and utilized in P1. To successfully transfer heat, the 
operational state of P1 requires a temperature difference, which is given 
through the difference of intake (cold-end) Tintake,P1 and operating 
temperature (hot-end) Top,P1. This is well-defined by the second law of 
thermodynamics as heat only flows from a hot to a cold state as the 
entropy of an isolated system always increases [26]. A corresponding Q̇/
T diagram (Fig. 7) enables the graphical evaluation of heat transfer from 
P2 to P1 within the HEX. Within the Q̇/T diagram, the top line (hot 
curve) indicates the heat discharged from P2, and the bottom line (cold 
curve) the required heating demand. The marked area shows the 

transferred heat from P1 to P2 in total. Within this example, the mean 
conservative energy demand Q̇in,P1 can be substituted through the IWH 
recovery as the entire heating demand line in the Q̇/T diagram can be 
covered by the hot curve without violating the minimal temperature 
difference TPP (pinch point), which is given through the technical 
feasibility of heat conduction. Furthermore, the remaining heat flow 
Q̇excessIWH of the hot curve (grey line) is to be discharged outside the 
manufacturing level at a temperature of THEX. 

Fig. 8 shows an example of special cases of IWH Q̇/T diagrams which 
can be depicted throughout our developed methodology. For all special 
cases, the minimal temperature difference is set to TPP. We note that 
these examples outline analyses from a general, geometrical point of 
view for intersecting cold and hot curves in the context of assessing THEX 

or Q̇HEX. These analyses apply for sensible and latent heat transfer 
curves. For the latter, the slope of the curves is zero as shown in Fig. 3 (c) 
and (f). 

Fig. 8 (a) resembles a counter-current flow HEX in which the oper-
ating temperature (hot-end) of the cold curve exceeds the outlet tem-
perature (also hot-end) of the hot curve. In this case, only a fraction of 
the IWH can be internally recovered in P1. The remaining energy de-
mand which lies between the temperatures Top,P1 and Toutlet,P2 cannot be 
substituted entirely. Waste heat for external use remains. 

Fig. 8 (b) shows a counter-current flow with a cold-end temperature 
of the hot curve above ambient temperature. Furthermore, the energy 
demand of the cold curve exhibits a smaller slope due to higher mass 
flows or a higher specific heat capacity compared to the hot-curve flow. 
Throughout this configuration, the generated IWH of P2 can be inter-
nally utilized for substituting a fraction of the energy demand of P1. No 
IWH for external use remains. 

Fig. 8 (c) shows a counter-current flow- for latent heat transfer to the 
cold curve. Here, only a part of the required latent heat can be provided 
through the heat transfer. 

Fig. 8 (d) resembles a co-current flow. Here, the cold curve intersects 

Fig. 7. Waste heat recovery between processes P1 and P2 via counter-current flow for (a) sensible or (b) latent heat transfer.  
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the hot curve. As a result, only a fraction of the generated IWH can be 
internally recovered. Furthermore, the substitution of the energy de-
mand of P1 can only be executed partially. Waste heat for external use 
remains. 

Fig. 8 (e) is a co-current operated HEX of which the desired operating 
temperature of P1 lies above the cold-end temperature of the IWH 
generating P2 and the ambient temperature. This case allows the in-
ternal recovery of the entire generated IWH. However, because of the 
temperature configuration of the cold curve, only a fraction of the total 
energy demand of P1 can be substituted. No IWH for external use 
remains. 

Fig. 8 (f) shows a co-current flow for latent heat transfer to the cold 
curve. Here, only a part of the required latent heat can be provided 
through the heat transfer. 

To allocate recovered IWH internally, all involved processes (serial 
or parallel) are to be connected logically as retrieved from literature 
review and from our prior publication [10]. Excess heat can only be 
transferred if the intake temperature of an individual process equates 
(minus TPP) the operating temperature (the outlet temperature) of the 
corresponding preceding process. Fig. 9 shows this approach for a 

simplified serial production route in general. 
Within our developed methodology, buffer units to depict process 

route integrated storage and stock items are implemented. For example, 
in the Iron & Steel industry, hot coils are often placed in storage [27] 
before being further processed. In the meantime, these products cool 
down and emit heat. As this energy is recoverable under our described 
theoretical technical potential [28], the buffer units can be declared as 
IWH potentials. The data of this technical potential is again retrieved in 
the same manner as already mentioned in section 2.3.1. Because of the 
lack of underlying data from literature for this special case, we apply a 
theoretical calculation first. Here, the overall heat content of the buff-
ered items (e.g., 1 tonne of steel coils) is calculated through the tem-
perature of the items (above ambient), the specific heat capacity of steel 
and mass (or mass flow) of the coils. An estimated loss term adjusts this 
theoretical potential to represent the technical potential. This energy is 
then emitted through thermal convection as the waste heat carrier of 
exhaust/cooling air. Furthermore, all buffer units operate at ambient 
temperature by default. Thus, these units can be placed within the 
production route to disrupt the temperature gradient if necessary. 

Fig. 8. IWH recovery special cases: (a) Counter-current flow with a hot-end temperature of the cold curve above the hot-end temperature of the hot curve (sensible 
heat transfer)), (b) Counter-current flow with a smaller slope and smaller cold-end temperature of the cold curve (sensible heat transfer), (c) Counter-current flow 
with no slope and smaller temperature level of the cold curve (latent heat transfer), (d) Co-current flow with the intersection between hot and cold curve (sensible 
heat transfer), (e) Co-current flow with the hot-end temperature of the cold curve above the cold-end temperature of the hot curve (sensible heat transfer), (f) Co- 
current flow with the smaller temperature level of cold curve (latent heat transfer). 

Fig. 9. Temperature gradient of an exemplary production chain.  
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2.3.3. Calculation of excess IWH leaving the plant 
The calculation of IWH which is currently not utilized internally 

within the plant can be specified as excess IWH potentials. These po-
tentials can be either used by an enhanced plant’s own IWH utilization 
or discharged from the plant for external use. The latter indicates the 
possibility for district heating application if the required conditions like 
timely behaviour, temperature range, etc. [4] are met. 

The calculation of excess IWH potentials (Q̇excessIWH) depends on the 
definition of implemented system boundaries, as we introduced in sec-
tion 2.2. Fig. 10 (a) and (b) depict the developed approach for calcu-
lating time resolved profiles through the application of different system 
boundaries. This simplified example contains a counter-current flow 
HEX configuration with intersecting hot and cold curves within the 
respective Q̇/T diagram (sensible heat transfer). The minimal tempera-
ture difference TPP is set accordingly. The intersection of energy flows 
with the specific system boundary defines the time resolved profile to be 
calculated. In this case, Fig. 10 (a) shows the result LP, when the system 
boundary is set to cover the energy demand Q̇in,P1 of P1. By defining the 
specific configuration of the implemented HEX, the fraction of the en-
ergy demand of P1 is substituted by Q̇HEX resulting in an adapted LP with 
reduced demands (see Fig. 10 (a)). 

To calculate the respective excess IWH Q̇excessIWH, the system 
boundary is to be implemented as shown in Fig. 10 (b). As the boundary 
intersects both Q̇IWH and Q̇HEX, their mathematical difference resembles 
Q̇excessIWH resulting in a – based upon the continuous behaviour of P2 – 
static profile. 

With more than one HEXs implemented in a production route, the 
corresponding excess IWH profile is calculated by the sum of all 
Q̇excessIWH profiles. 

2.4. Methodology for IWH profile calculation for non-energy-intensive 
subsectors 

The increased process and product variety in non-energy-intensive 
subsectors hinders bottom-up energy system analyses as applied in 
energy-intensive industries [10]. In our preceding study [10] we 
developed a new top-down approach to generate synthetic LPs (elec-
tricity and direct fuel) for non-energy-intensive subsectors. We now 
combine IWH calculations with the beforehand generated LPs to 
generate IWH profiles. Due to the nature of top-down calculations, all 
LPs and IWH profiles are simulated again in reference to the plant-level 
system boundary, as also described by our research aim (see Fig. 4). 

Here, we apply waste heat fractions (WHF) to generate IWH profiles 
in combination with the existing synthetic LPs. The WHF fIWH [-] is 
defined by formula (6): 

fIWH = Q̇excessIWH
Q̇in

(6) 

As Q̇excessIWH [W] is the rejected heat left unused within the plant 
border and Q̇in [W] the cumulative energy flow into the plant, which is 
responsible for generating IWH which is assumed to be e.g., natural gas. 

2.4.1. Data collection 
We conducted extensive literature research to identify WHFs for all 

industrial subsectors. We found that, because of their higher potential of 
IWH, a significant share of WHFs refers to energy-intensive subsectors. 
Although we apply the WHFs to determine the IWH profiles for non- 
energy-intensive subsectors mainly, we included the WHFs of energy- 
intensive industries in our investigation to complement and validate 
the WHFs of non-energy-intensive subsectors at the same time. 

All included studies address excess IWH potentials, which are under 
current circumstances not recovered on site and therefore correspond to 
our definition of WHFs (see formula (6)). The studies vary regarding 

Fig. 10. Application of system boundaries for a simplified production route, (a) expressing the results for energy demand after IWH recovery and (b) remaining 
excess IWH potentials. 
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their implemented data sources (e.g., via measurements at real-life in-
dustrial plants, via combustion equations from data from the EU Emis-
sion Trading System (ETS), via conducting cross-sectoral surveys, etc.), 
systemic applications (e.g., country, industrial subsector, etc.) and 
calculation approaches (e.g. reference temperature, etc.). In overall, the 
reference or minimum use temperature of the excess IWH is defined as 
the lower limit as part of the temperature difference, which accounts for 
the recoverable excess heat flow. We apply this information to examine 
cross-sectoral IWH potentials. 

Helgerud et al. [29] conducted a study for assessing the IWH po-
tentials of Norwegian industries. Within this study, the authors examine 
72 physical manufacturing plants, which make up 63 % of the overall 
energy demand of the industrial sector in Norway. The plant’s IWH 
potentials, which are not further used internally, are investigated and 
classified by temperature levels. The reference temperature of the 
respective IWH potentials is 0 ◦C. 

McKenna et al. [5] published a study investigating IWH and their 
technical recovery potentials via a spatial model for the UK. One of the 
aims of the study is to quantify IWH and its utilization. The authors, 
therefore, gathered WHFs from literature themselves. These sources are 
not included in our research. The corresponding reference temperature 
of all WHFs is set to 0 ◦C. 

Hammer et al. [30] assessed the IWH potentials of industrial plants 
by applying bottom-up calculations for energy-intensive industries and 
top-down approaches for non-energy-intensive subsectors. For the first 
approach, the process configuration and respective waste heat proper-
ties of real-life manufacturing plants are examined. Subsequent calcu-
lations yield the estimation of WHFs. We utilized some of the process 
specific waste heat data within our methodology for energy-intensive 
subsectors, see section 2.3. Regarding non-energy-intensive subsectors, 
the heat demand of all industrial subsectors can be identified based on 
the ETS reports. The authors then apply combustion equations for 
known energy carriers of these subsectors to calculate the expected IWH 
potentials. The reference temperature for these calculations is set to 
0 ◦C. 

Pellegrino et al. [31] conducted a study on the overall industrial 
sector in the US. The centrepiece of their study is the evaluation of en-
ergy usage and loss patterns of single industrial sites from different in-
dustrial subsectors. Energy-related industry surveys form the basis for 
the calculations. The collected energy losses, which are not further 
utilized within the plant, are classified as excess heat leaving the plant 
and referenced to the ambient temperature of 25 ◦C. 

Papapetrou et al. [32] based their work on a study, which originally 
assessed WHFs for the UK in 2003 [33]. The authors further adjusted 
these fractions to apply to the European industry of 2015. They did this 
by incorporating the evolution of energy efficiency, technological ad-
vancements and conditions of the European industry in these twelve 
years. All waste heat calculations are referred to the ambient tempera-
ture of 25 ◦C. 

Persson et al. [3] assessed the IWH availabilities in Europe on plant 
level and allocated these potentials to regional and national heat con-
sumptions of the building sector to investigate the required capacities of 
a future European heating grid. The basic WHFs needed for these ex-
aminations originate from 410 European real-life manufacturing plants, 
grouped and averaged by their industrial subsector classification and are 
referred to the ambient temperature of 25 ◦C. 

Brueckner et al. [6] investigated the IWH potentials of the entire 
industrial sector in Germany. The calculations are based on emission 
data surveys of all states in Germany. The waste heat potentials are then 
calculated via combustion equations and are checked for plausibility by 
conducting selected surveys and measurements on-site. Only waste heat 
within flue gas is considered within this study and the reference tem-
perature is set to 35 ◦C. The author reasons the definition of this refer-
ence temperature due to the limited economic feasibility of IWH 
recovery and its overall low potential below 35 ◦C. 

Pehnt et al. [34] calculated the remaining waste heat potentials of 

the German industry for temperatures above 140 ◦C. To meet their goal, 
the authors also incorporated the WHFs from Helgerud et al. [29] for the 
subsectors of Iron & Steel, Chemical and Non-Metallic Minerals, but 
expanded the calculation of WHFs on other subsectors via top-down 
calculations of national energy balances. 

To complement this literature survey, we included our own WHF 
calculations. We utilized the database Industrial Sites: Industrial Database 
for EU28 + Norway by Manz et al. [35] stating the referred subsector 
(NACE classification), the energy consumption and the IWH of >1000 
single industrial sites in Europe. The data originates from different 
sources like the ETS, the European Pollutant Release and Transfer 
Register (E-PRTR), etc. as the retrieved information on site-specific 
emissions is used to adjust the mentioned parameters above. Only 
IWH above 100 ◦C is included in this database. We found 160 data points 
for the subsector Iron & Steel (NACE C24.1), 295 for Cement (NACE 
C23.5), 195 for Glass (NACE C23.1) and 410 for Pulp & Paper produc-
tion (NACE C17) to be suitable for our calculations. By applying formula 
(6) we calculated the respective WHFs for these subsectors. 

All surveyed WHFs are shown in Table 6 in the Appendix section. 

2.4.2. Data analysis and calculation of maximum use temperature 
We calculate the IWH profiles for non-energy-intensive industries by 

multiplying the corresponding WHFs (according to Table 6) with the LPs 
of the depicted manufacturing plant, generated according to the meth-
odology described in [10]. To also successfully examine the exergetic 
potential (as described in section 2.1), the temperature level of the 
generated IWH flow is to be determined as well. The goal of our further 
investigations regarding the surveyed WHFs, depicted in Table 6, is 
therefore to compute IWH profiles together with the subsectors’ aver-
aged maximum excess temperature (hot-end) of the rejected IWH 
together with the defined reference / minimum use temperature (cold- 
end), which originates from stated literature sources from section 2.4.1. 

The maximum excess temperature of IWH (Tmax) rejected from the 
industrial plant is generally not given in literature. Therefore, we apply 
further theoretical calculations including the given WHFs and reference 
/ minimum use temperatures (Tmin) from the investigated literature 
studies to compute Tmax for every NACE subsector. We again conduct 
these evaluations within a respective Q̇/T diagram, see Fig. 11, as Tmax 
can be determined from linear regression of the literature studies’ Tmin 
values and corresponding assumptions of utilized thermal energy con-
tent within the plant. 

In Fig. 11, the x-axis shows the relative rated thermal input based on 
the lower calorific value of the employed fuel. The y-axis shows the 
temperature in ◦C. For supplying useful energy to industrial end-use 
applications, the share of employed natural gas in comparison to all 
applied fuels in e.g. Austria accounts for around 54 % [36]. Here, 

Fig. 11. Rated thermal input in contrast to adiabatic flame temperature and 
location of respective WHFs. 
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biogenic gases are excluded, but approximately make up for the same 
heat content as natural gas. Subsequently, we assume that natural gas, as 
the main employed fuel in industrial use, is to be incinerated at a stoi-
chiometric air-to-fuel ratio of 1, whereas the condensation of involved 
water is disregarded (no involvement of latent heat transfers). Under 
these considerations, the respective adiabatic flame temperature is 
1950 ◦C for natural gas [37]. This maximum value would be achieved 
within a theoretical system of no losses [38] or no heat transferred to 
other systems. Through this assumption, an additional datapoint next to 
the mentioned temperature values above (Tmax and literature values of 
Tmin) is included, additionally reinforcing the linear function in the Q̇/T 
diagram. As Fig. 11 indicates, the total rated thermal input can be 
divided into the following three compartments:  

1) The fraction of site-own internal heat use between temperatures of 
Tadiabatic and Tmax in Fig. 11 

2) The fraction of heat rejected but technical recoverable (WHF) be-
tween temperatures of Tmax and Tmin in Fig. 11  

3) The fraction of heat “lost” or no longer considered as a result of the 
definition of reference / minimum use temperature Tmin 

As mentioned above, for each NACE subsector listed in Table 6, the 
corresponding WHFs from literature are referred to different reference / 
minimum use temperatures Tmin: 0 ◦C, 25 ◦C, 35 ◦C, 100 ◦C, 140 ◦C, if 
available. The WHF externally utilized (e.g., in district heating) is a 
function of the reference temperature Tmin as e.g., higher Tmin equates to 
smaller shares of heat flows for properties of natural gas, while Tmax is 
fixed by the cumulative IWH generation of industrial processes. In this 
case, Tmin can also be referred to as the supply temperature of the given 
district heating system. 

By incorporating the data point Tmin and the corresponding WHF into 
the linear Q̇/T function/plot shown in Fig. 11, we can calculate the 
respective Tmax. Hence our literature survey states different Tmin values 
with varying WHFs based on individual methods, we averaged the 
resulting Tmax. Fig. 12 shows the exemplary case of this calculation for 
the subsector “NACE C10 – Manufacture of food products”: The litera-
ture survey (see Table 6) states WHFs for the three reference tempera-
tures 0 ◦C, 25 ◦C and 35 ◦C. These data points are incorporated in the 
linear function disclosed by the rated thermal input [%] and Tadiabatic of 
1950 ◦C for natural gas, as described above. All three data points yield 
individual Tmax values, of which we calculated the average to be 215 ◦C. 
As the WHFs of literature sources originate from different methodologies 
and databases, an underlying deviation within the calculation of Tmax 
cannot be excluded definitively. 

Naturally, more data regarding the WHFs of a corresponding sub-
sector causes a more robust calculation of Tmax. Thus, our top-down 
approach finds in limitations in the depiction of Tmax for data sets 
with only one or two data points (e.g., “NACE C13 – Manufacture of 
textiles”). Additionally, there are also difficulties when examining IWH 
parameters of whole subsectors which are extremely heterogeneous in 

terms of the product and process variety. We, therefore, made plausi-
bility checks for these calculated Tmax values. For example, the calcu-
lation of Tmax of “NACE C13 – Manufacture of textiles” based upon just 
one value, results in a staggering 600.5 ◦C. Panayiotou et al. [20] state 
that, even though the subsector employs mainly low to medium- 
temperature processes, manufacturing plants also might deploy dirt 
removal and oxidation units, which operate at high temperature ranges 
up to 1200 ◦C. This underlines that our calculations of Tmax are subsector 
averaged examinations, heavily depending on the quality of the 
literature-based WHF. 

3. Validation of developed bottom-up methodology 

3.1. Overview 

The functionality of the developed methodology is incorporated in a 
case study describing a simplified energy system of a real-life cement 
production plant in Austria, which directly corresponds to the explained 
methodology for energy-intensive industries of section 2.3. The goal of 
this case study is to depict the production route of the physical plant as 
accurately as possible via a bottom-up approach and generate synthetic 
LPs for electricity and fuel demands and internal and external IWH 
profiles of the site. Here, the focus especially lies on the generation of 
IWH profiles of cumulative IWH potentials, which leave the facility at 
plant level as excess IWH potentials. This practically employs the 
developed default scheme for industrial system boundaries from Fig. 4. 
All generated profiles are then compared to yearly energy demands and 
technical IWH potentials for validation since measured IWH profiles are 
not accessible. The yearly energy demands and technical IWH potentials 
of the site are a result of prior investigations conducted by Hammer et al. 
[30], which are not publicly available, but are to be described in the 
following section. 

Fig. 13 depicts the overall process of IWH profile generation for this 
case study in line with our methodology described above. As declared, 
steps 1 and 2 are partly conducted by Hammer et al. [30] combined with 
additional data from literature and will be described in the following 
section. Step 3 contains the set-up of the to-be-depicted production line 
according to the logic of Fig. 5 from section 2.3. 

Through publicly available company sources, the overall clinker 
production of the cement mill can be estimated at 78 t/h at full opera-
tion hours of 8000 h per year [30]. The reference temperature is set to 
25 ◦C. 

3.2. Calculation of yearly technical IWH potentials 

Prior investigations on the real-life cement mill included the calcu-
lations of its yearly IWH potentials. These potentials are investigated as 
excess heat potentials, which could be further tapped from a technical 
point of view but are currently disregarded and rejected from the plant 
level. Regarding investigating these potentials, Hammer et al. [30] 
applied corresponding calculations to production units with the highest 
IWH potential as of cyclone preheater, rotary kiln and clinker cooler, 
shown in Fig. 14. 

To accumulate a better understanding of heat flows within this 
usually closed system, we inserted sectional boundaries for those units 
into the overall production route, providing the opportunity to examine 
all processes as differentiated production steps. 

Initial raw material mills grind the input materials (limestone, clay, 
…) to meet the required particle size. Within these mills, the raw input 
material is preheated from waste heat Q̇IWH,Cyc originating from the 
cyclone preheater. Here, the raw material is further heated until 
reaching the desired material temperature of around 900 ◦C [39]. The 
following calcinatory endothermically decomposes the limestone 
(CaCO3) into carbon dioxide (CO2) and lime (CaO) as basis material for 
cement clinker production at this temperature level [40]. The energy 

Fig. 12. Exemplary Q/T diagram and included WHFs of 0 ◦C, 25 ◦C and 35 ◦C 
of the subsector “NACE C10 – Manufacture of food products”. 
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demand of the calcinatory is covered by waste heat from downstream 
cooling units Q̇IWH,Cool,a, hot flue gas Q̇IWH,Kiln,a at around 1050 ◦C from 
the rotary kiln and auxiliary firing of fuels (e.g. alternative fuels) [41]. 
The rotary kiln sinters the incoming material to compact clinker gran-
ules at elevated temperatures of 1500–2000 ◦C [42]. The main burners 
inflicting the required heating demand are located at the far end of the 
rotary kiln. Thus, not only hot flue gas is generated (Q̇IWH,Kiln,a) but also 
thermal radiation heat of the kiln itself (Q̇IWH,Kiln,b). The hot clinker 
leaves the kiln at 1450 ◦C and is cooled to temperatures of around 120 ◦C 
in a subsequent clinker cooler [43]. This cooling process is carried out by 
the utilization of intake cooling air. 70 % of the hot cooling air leaving 
the clinker cooler is recovered for covering the heating demand in the 
calcinatory (Q̇IWH,Cool,a) while the residue (Q̇IWH,Cool,b) is discharged to an 
electrostatic precipitator [44]. 

As we already mentioned, Hammer et al. examined the technical 
IWH potentials of this plant statically. We utilize their process and mass 
specific IWH content values for our IWH profile generation. As this 
production line generally applies IWH in counter-current flow HEXs, we 
flowingly describe the calculations by Hammer et al. backward, starting 
at the process of clinker cooling: 

Based on the temperature difference of the cooled-down clinker 
(1450 ◦C to 120 ◦C) and its mass flow of 78 t/h, the overall cooling 
demand (Q̇IWH,Cool,a + Q̇IWH,Cool,b) is calculated as 8.56 MW or 109.56 
kWh/t by Hammer et al. The respective cooling air/residue flue gas 
leaves the clinker cooler at 275–300 ◦C [45]. As mentioned above and by 
Hammer et al., 70 % of this hot gas together with the flue gas from the 
rotary kiln Q̇IWH,Kiln,a preheats the calcinatory. Q̇IWH,Kiln,a is calculated 
based on combustion equations for firing alternative fuels. Q̇IWH,Kiln,b 

describes the thermal radiation of the kiln. Through correspondence 
with personnel from the cement plant, Hammer et al. estimated the heat 
content of the thermal radiation at around 29.25 kWh/t at 300 ◦C. The 
cyclone preheater and the calcinatory are considered as one process to 
calculate the generated heat flow Q̇IWH,Cyc, which consists of three 
fractions stated by Hammer et al.:  

1) The heat content of the hot CO2 share within the flue gas mass flow, 
resulting from the decomposition of limestone  

2) Hot flue gas share, resulting from firing direct fuels as auxiliary 
burners within the calcinatory  

3) The heat content of 70 % recovered cooling air from the clinker 
cooler 

The sum of the heat content of all three fractions is around 134.01 
kWh/t. The thermal radiation of both units is disregarded due to their 
small energy content. The temperature of this mixed gaseous flow is 
calculated by applying formula (6) again and can be estimated at 300 ◦C, 
which is confirmed by literature (250–300 ◦C) [46]. 

3.3. Model description and simulation 

Based on the calculations by Hammer et al. above, the IWH profiles 
of the production route are simulated, which is to be described follow-
ingly. The full production route of this case is shown in Fig. 15. 

Due the complexity of the examined production route and its un-
derlying energy system, certain assumptions and simplifications had to 
be made: The residual heat content of the cooled-down clinker at 120 ◦C 
is generally removed in a follow-up post-cooling process step. This re-

Fig. 13. Process of conducting the selected case study.  

Fig. 14. Production units included in IWH potential calculations (Energy demands e.g., based on main and auxiliary firing not depicted).  
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duces the thermal stress of the material before further processing in 
clinker/cement mills [47]. We investigated 14.19 kWh/t to be cooled off 
within the post-cooling units but disregarded the implementation of this 
unit hence its general low energy consumption within the overall energy 
system. Alternatively, we attributed the IWH content to the follow-up 
cement mills as Q̇IWH,CM. Through personal correspondence, we found 
out that two cement mills are deployed at the real-life production fa-
cility. We, thus, divided the production flow of 78 t/h equally to both 
parallel processes, see Fig. 15. 

The clinker cooler, rotary kiln and calcinatory are operated contin-
uously. We placed the HEX 2 (Fig. 15) in counter flow operation 
recovering Q̇IWH,Cool, a and Q̇IWH,Kiln,a. 

Hammer et al. [30] did not further investigate the exhaust air leaving 
the cyclone preheater because of its general low IWH potential. In the 
real-life plant and within literature reviews, the exhaust air from the 
cyclone preheater is led into the raw material mills to early initiate the 
water removal process and to also precipitate gaseous SO2 in the exhaust 
air [48]. We, therefore, included this IWH recovery within HEX 1 
(Fig. 15), which reduces the excess technical IWH potential. 

Overall, the IWH flows Q̇IWH,RMM, Q̇IWH,Kiln,b, Q̇IWH,Cool, b and Q̇IWH,CM 
contribute to the total amount of technical excess IWH potentials, which 
will be time resolved within the simulation. The heat flows crossing the 
process specific system boundaries in Fig. 15 are calculated accordingly. 

The corresponding operating temperatures of each process are taken 
from literature research [48]. The overall temperature chart of this 
production route is also depicted in Fig. 15. We note, that – as declared 
in section 2.3.2 – the intake temperatures for process specific allocation 
of waste heat flows originate from the operating temperatures of the 
preceding processes. 

All incorporated IWH flows are summarised in Table 4. For example, 
Q̇IWH,RMM is neither known from literature nor calculated by Hammer 
et al. [30]. Therefore, this energy flow is not stated but can be investi-
gated within our simulation: Q̇IWH,RMM is to be constituted by 

Fig. 15. Design of the selected production route for simulation. Left: Production route with associated IWH flows, allocated HEXs and system boundaries, Right: 
Temperature chart as of intake and operating temperature of each process. 

Table 4 
Implemented IWH flows including their respective waste heat energy carrier, 
upper temperature limit (hot-end) and prior calculated energy content.  

IWH Flow Waste Heat 
Energy Carrier 

Upper Temperature 
(Hot-End) [◦C] 

Energy Content 
[kWh/tClinker] 

Q̇IWH,RMM Exhaust Air >58 ◦C To be calculated 

Q̇IWH,Cyc Exhaust Air 250–300 ◦C 134.01 kWh/t 

Q̇IWH,Kiln,a Flue Gas 1050 ◦C 210.50 kWh/t 

Q̇IWH,Kiln,b Exhaust Air 251 ◦C 29.25 kWh/t 

Q̇IWH,Cool,a Flue Gas 275–300 ◦C 76.70 kWh/t 

Q̇IWH,Cool,b Exhaust Air 275–300 ◦C 32.86 kWh/t 

Q̇IWH,CM Exhaust Air 120 ◦C 14.19 kWh/t  
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determining certain degrees of freedom:  

1) Q̇IWH,RMM is a fraction of the recovered Q̇IWH,Cyc.  
2) The overall specific thermal capacity of raw material cp,RawMaterial for a 

temperature range of 25–58 ◦C is given.  
3) The upper temperature limit of the exhaust air shall exceed 58 ◦C as 

the raw material is fully heated throughout this IWH recovery. 

The minimum temperature difference TPP at both HEXs is set to a 
minimum of 10 ◦C. All further process specific properties are based upon 
our prior examinations regarding load profile generation [10]. 

3.4. Case study results and discussion 

By designing all dedicated IWH flows in Table 4, HEX 1 (between 
cyclone/calcinatory and raw material mill) and HEX 2 (between clinker 
cooler, rotary kiln and cyclone/calcinatory) can be defined accordingly. 
Based on the three points of configuration the transferred heat flow in 
HEX 1 can be depicted by a corresponding Q̇/T diagram, shown in 
Fig. 16: Q̇IWH,Cyc represents the overall heat flow of the hot curve, the 
heating demand of the raw material mill the cold curve. The marked 
area is the overall energy recovered through HEX 1. As it can be 
observed in Fig. 16, the entire heating demand of the raw material mill 
can be covered by recovery of Q̇IWH,Cyc. 

The marked square indicates the outlet temperature of HEX 1 THEX 1. 
The share of the hot curve which is not recovered in HEX 1 equals the 
unused IWH potential, which we associate to Q̇IWH,RMM in this case. 
Therefore, the average heat flow of Q̇IWH,RMM can be estimated at around 

105 kWh/t at 221 ◦C. 
HEX 2 is defined in an according manner, however, is not explicitly 

explained in this study. 
All not recovered heat flows like the internally unused potential of 

the plant shown in Fig. 16 are calculated time resolved, based upon the 
paradigm of discrete event simulation as described in section 2.3. 

Fig. 17 shows the results of the IWH calculations of this case study for 
a time frame of 24 h. The black curve indicates the overall IWH profile as 
a sum of the dedicated exergetic levels according to Table 1, which we 
obtained through the calculations. 

There is no IWH share of the higher exegetic level >400 ◦C, which 
can also easily be derived from the information of upper temperatures of 
heat flows crossing the system boundary of the depicted production 
route, which are all set at <400 ◦C (see Table 4). The main share of the 
IWH potential can be found at the high-grade exergy level of 
100–400 ◦C, which corresponds to the processes’ upper temperatures in 
Table 4. In comparison, medium- and low-grade exergy IWH flows are 
lower affiliating to smaller temperature differences in these levels (25 ◦C 
and 50 ◦C) leading to smaller absolute heat flow values. 

In regard to the time resolved pattern, it can be observed, that the 
overall IWH profile exhibits high fluctuations. As can be investigated in 
Fig. 15, three out of five processes generating unused IWH potentials are 
operated batch-wise. This operating condition includes standstill and 
loading times causing a timely fluctuating behaviour, which, thus, ex-
plains the dominance of the generated fluctuations. 

The area under the profiles represents the accumulated energy-wise 
IWH potential within the time frame of 24 h. We calculate the area under 
the curves and scale the time frame further up to meet the full operation 
hours of 8000 h per year. This enables the comparison to the calculated 
static and technical IWH potentials by Hammer et al. [30]. As the data 
regarding specific IWH flows is based on their prior calculations, the 
deviation of our IWH profiles is expected to be minor. We furthermore 
generated electricity and direct fuel LPs throughout our prior developed 
methodology and compare the corresponding energy consumption to 
the static calculations by Hammer et al. 

Table 5 shows the results of these evaluations. It can be observed that 
the overall deviation of yearly IWH potentials is – as expected – in an 
acceptable deviation range of 7 %, resulting from 150.15 GWh from our 
simulation and 160.94 GWh from Hammer et al. [30]. This deviation 
also corresponds well to the results within the three exergetic levels and 
is in general lower than the results from Hammer et al. [30]. This can be 
reasoned as we further implemented a HEX 1, which recovers IWH for 
the raw material mill, reducing the overall potential by 29 kWh/t or 18 
GWh on average. 

Table 5 
Finale comparison of IWH potentials and energy consumption, including the 
results from this case study and the calculations of Hammer et al.   

Our Calculations 
[GWh] 

Hammer et al.  
[30] [GWh] 

Deviation 
[%] 

IWH potential 25–50 ◦C 17.13 GWh 18.37 GWh 7 % 
IWH potential 50–100 ◦C 34.27 GWh 35.77 GWh 4 % 
IWH potential 100–400 ◦C 98.75 GWh 106.80 GWh 7 % 
Sum IWH potential 150.15 GWh 160.94 GWh 7 % 
Electricity consumption 66.67 GWh 78.13 GWh 15 % 
Direct fuel consumption 624.30 GWh 610.76 GWh 2 % 
Sum energy consumption 690.97 GWh 688.89 GWh 1 % 
Share of IWH potential to 

energy consumption 
21.7 % 23.3 % 7 %  

Fig. 16. Q/T diagram of HEX 1.  
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As we utilized process specific data from literature further on top of 
the calculations by Hammer et al. these deviations could additionally be 
reasoned. 

In regard to the generation of LPs for the calculation of electricity 
and direct fuel consumption, we employed our already existing meth-
odology. This bottom-up methodology uses process specific energy 
consumption data from literature sources. Hammer et al. [30] utilize 
top-down approaches for calculating the energy consumption of the 
plant by investigating ETS databases. We like to note the small deviation 
between the two different calculation approaches. The maximum de-
viancy of 15 % can be observed within electricity consumption. 

In this study, the share of technical IWH potential compared to the 
calculated energy consumption equals 21.7 %. This means that within 
our case study, we investigated almost a quarter of the yearly energy 
demand of the plant to be left unused as recoverable IWH potential. 
There are still various possibilities for utilizing this fraction: For 
example, this potential can be employed further within the plant for 
preheating purposes (as we demonstrated within HEX 1). The excess 
heat could also be potentially stored in seasonal heat storages for resi-
dential buildings or employed as steam in site-specific power generation 
[49]. Because the IWH potentials are still generated at high-temperature 
levels, current studies and investigations propose a direct thermal 
linkage with other industrial plants in the vicinity of the IWH producer 
to reduce the energy consumption of the targeted plant [50]. Further-
more, applicable incorporation within district heating systems might be 
advisable as well as long as its limitations (e.g. flow temperature range) 
are not violated [14]. 

In conclusion, the investigated case study exhibits acceptable results 
in terms of deviation from the preceding examinations of Hammer et al. 
[30]. 

4. Conclusion 

Industrial waste heat (IWH) forms a central point of contact for 
future decarbonization measures in industry. In the context of time 
resolved IWH, we found that current studies either investigate single 
technology and process implementation for recovering IWH on a highly 
detailed level minute-wise or spatial on subsector level on a monthly or 
yearly basis. We concluded that no solution has been developed yet, 
which enables the generation of time resolved IWH on plant level for the 
entire industrial sector. As this establishes our research aim, we have 
developed two methodological approaches for energy-intensive and 
non-energy-intensive industrial subsectors which cover this research 
gap: Energy-intensive subsectors are well documented in literature and 
deploy only a limited amount of different production processes and 
principles [10]. We therefore developed a bottom-up approach, which 

connects individual processes to production routes and simulates the 
generated IWH based upon discrete event simulation. Non-energy- 
intensive subsectors deploy a vast range of different production pro-
cesses and are thus to be investigated top-down. Here, we surveyed 
waste heat fractions from different literature sources and analysed them 
along thermodynamical calculations. The resulting fractions can then be 
employed with already generated load profiles to calculate time 
resolved IWH of individual industrial plants. For both approaches, we 
presented practical examples to constitute their functionality. In line 
with both methodological approaches, we now reflect on the hypotheses 
raised in section 1.2:  

• H1: The implementation of system boundaries can be regarded as the 
basis of calculations for generating time resolved IWH profiles. 
Depending on the defined system boundaries, energy flow calcula-
tions vary regarding their results. This was practically proven by 
applying the standardized system boundaries of section 2.2 in the 
shown case study of section 3. The outlined example demonstrates 
the practical implementation of boundaries and their implications. 
As a result, it can be stated that system boundaries inflict the 
generated IWH profiles in terms of both time and temperature- 
resolved patterns.  

• H2: In both proposed methodological approaches (for energy- 
intensive subsectors – see section 2.3 – for non-energy-intensive 
subsectors – see section 2.4) we found that the combination of en-
ergy flows and operating or waste heat temperatures is needed to 
correctly depict the timely resolution of generated IWH. This is in 
line with our theoretical definition of waste heat in section 2.1 and 
our practical investigations within the case study in section 3 proving 
this hypothesis. 

• H3: While investigations in our shown Q̇/T diagrams handle math-
ematically averaged loads, the simulated IWH flows of time resolved 
profiles within internal heat exchangers or outside the plant can be 
subject to significant fluctuations. This, however, poses a major 
challenge for holistic energy system analyses. Especially, batch 
operated production processes inflict unstable IWH generation pat-
terns to the overall time resolved profiles. This means that time 
resolved IWH assessments are required for exploiting the full po-
tential of IWH, especially for timely unstable production processes. 

The investigation of time resolved IWH offers novel insights for 
exploiting the whole potential this measure might bear. As a first step, 
our study examines this field of research successfully uncovering the 
complexity of this topic. This compels us to point out the necessity of 
examining this field of research even further. As the optimization of 
production routes is not a topic of this current study, it might be an 

Fig. 17. Time resolved IWH profiles including exergetic classification of defined temperature levels.  
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important factor in future research. For example, alternative IWH re-
covery technologies like ORC, thermoelectric generators etc. (as 
explained in section 2.1) shall be incorporated in the methodology. 
Furthermore, e.g., pinch point analyses in also time resolved Q̇/T dia-
grams within optimization frameworks could potentially unravel these 
problem areas and give opportunities to utilize IWH potentials further. 
Also, our investigations can feed into holistic system analyses by e.g., 
combining spatial resolutions with IWH profiles to develop national 
decarbonization scenarios. Furthermore, our future work can also 
benefit from more detailed technological analysis, also incorporating e. 
g., thermal inertia effects or thermal energy storage applications into the 
methodology if the required data is available to a sufficient extent. 
Regarding thermal energy storage, next research steps can be taken by 
analysing the literature on current storage solutions and incorporating 
them along selected use case/scenarios (e.g. thermal peak shaving) in 
the existing methodology on the basis of discrete event simulation. 
Concerning the methodology for non-energy-intensive subsectors, more 
data on waste heat fractions can impact the overall approach in a 
beneficial way. This also provides room for further investigations like 
incorporating other energy carriers or water condensation within flue 
gas into the presented fit function. Regarding this, our study can be 

employed as the basis for the following, more complex investigations. 
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Appendix  
Table 6 
Summary of literature research regarding WHFs [–] of NACE classified industrial subsectors; Maximum Use Temperature from our calculations.  

NACE- 
2 

NACE- 
3 

Description Helgerud 
et al. [29] 

McKenna 
et al. [5] 

Hammer 
et al. 
[30] 

Pellegrino 
et al. [31] 

Papapetrou 
et al. [32] 

Persson 
et al. [3] 

Brueckner 
et al. [6] 

Pehnt 
et al. 
[34] 

Own 
IWH 
Calc- 
ulations 

Calculated 
Max. Use 
Temperature 
Tmax [◦C] 

10  Manufacture of 
food products 

0.15 0.1   0.05 0.1 0.1   215 ◦C 

11  Manufacture of 
beverages 

0.15 0.1   0.05 0.1 0.14   241 ◦C 

12  Manufacture of 
tobacco products     

0.05  0.12   195,75 ◦C 

13  Manufacture of 
textiles       

0.29   600,5 ◦C 

14  Manufacture of 
wearing apparel       

0.06   152 ◦C 

15  Manufacture of 
leather and 
related products    

0.27   0.2   488,25 ◦C 

16  Manufacture of 
wood and of 
products of wood 
and cork       

0.1   230 ◦C 

17  Manufacture of 
pulp and paper 
products   

0.18 0.2 0.19 0.25 0.09   0.09 319,5 ◦C 

18  Printing and 
reproduction of 
recorded media     

0.06  0.03   117,75 ◦C 

19  Manufacture of 
coke and refined 
petroleum 
products    

0.28      571 ◦C  

19.2 Manufacture of 
refined 
petroleum 
products    

0.28  0.25    541,75 ◦C 

20  Manufacture of 
chemicals and 
chemical 
products  

0.1  0.1 0.04 0.25 0.09  0.08  245 ◦C 

21  Manufacture of 
basic 
pharmaceutical 
products and 
pharmaceutical 
preparations       

0.08  0.03  194,75 ◦C 

(continued on next page) 
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Table 6 (continued ) 

NACE- 
2 

NACE- 
3 

Description Helgerud 
et al. [29] 

McKenna 
et al. [5] 

Hammer 
et al. 
[30] 

Pellegrino 
et al. [31] 

Papapetrou 
et al. [32] 

Persson 
et al. [3] 

Brueckner 
et al. [6] 

Pehnt 
et al. 
[34] 

Own 
IWH 
Calc- 
ulations 

Calculated 
Max. Use 
Temperature 
Tmax [◦C] 

22  Manufacture of 
rubber and 
plastic products       

0.17  0.03  282,5 ◦C 

23  Manufacture of 
other non- 
metallic mineral 
products 

0.4 0.1  0.25 0.24 0.25 0.15   440,3 ◦C  

23.1 Manufacture of 
glass and glass 
products 

0.4 0.2 0.57 0.25   0.15  0.03  0.19 471,45 ◦C  

23.2 Manufacture of 
refractory 
products 

0.4  0.32 0.25   0.15   514 ◦C  

23.3 Manufacture of 
clay building 
materials 

0.4  0.36 0.25   0.15   527 ◦C  

23.5 Manufacture of 
cement, lime and 
plaster 

0.4 0.15 0.21 0.25   0.15   0.15 421,87 ◦C 

24  Manufacture of 
basic metals 

0.3      0.19   495,25 ◦C  

24.1 Manufacture of 
basic iron and 
steel and of 
ferro-alloys 

0.3  0.19  0.33 0.25 0.19  0.3  0.33 563,75 ◦C  

24.2 Manufacture of 
tubes, pipes, 
hollow profiles 
and related 
fittings, of steel 

0.3  0.18    0.19   436,75 ◦C  

24.4 Manufacture of 
basic precious 
and other non- 
ferrous metals 

0.12 0.1   0.06 0.25 0.19  0.03  271 ◦C 

25  Manufacture of 
fabricated metal 
products       

0.19  0.03  302 ◦C 

26  Manufacture of 
computer, 
electronic and 
optical products       

0.18   386 ◦C 

27  Manufacture of 
electrical 
equipment       

0.31   639,5 ◦C 

28  Manufacture of 
machinery and 
equipment       

0.16  0.03  272,75 ◦C 

29  Manufacture of 
motor vehicles, 
trailers and semi- 
trailers       

0.12  0.03  233,75 ◦C 

30  Manufacture of 
other transport 
equipment       

0.38   776 ◦C 

31  Manufacture of 
furniture       

0.12   269 ◦C 

32  Other 
manufacturing       

0.08   191 ◦C 

Reference / Minimum Use 
Temperature Tmin from literature 
[◦C] 

0 ◦C 0 ◦C 0 ◦C 25 ◦C 25 ◦C 25 ◦C 35 ◦C 140 ◦C 100 ◦C   
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A B S T R A C T   

This study investigates the concept of “energy of scale“ in industrial energy systems, focusing on the reduction of 
specific energy consumption as production capacity increases. Using data from more than 25 000 industrial 
plants in Europe and the United States (U.S.), we develop fit functions for different industrial subsectors to 
validate the “energy of scale” effect. Our findings confirm that “energy of scale” exists in industrial energy 
systems and varies across subsectors. The effect is consistent between Europe and the U.S. We identify that 
energy-consuming units involved in value creation within production chains have the most significant influence 
on the scaling effect. This discovery has important implications for policy makers, facility managers, and energy 
researchers, providing new avenues for promoting energy efficiency and supporting the transition to cleaner 
energy sources.   

1. Introduction 

The field of energy system analyses is thriving within the realm of 
energy-related research, decision-making policies, and business 
consulting. Particularly in light of current events, these methods offer a 
valuable tool to swiftly evaluate energy systems and grasp the rapid 
changes in trends and technologies (Kebede et al., 2022). By conducting 
spatial and time-resolved analyses, novel solutions can be derived to 
address unanswered challenges in achieving climate neutrality, 
benefiting stakeholders across various levels (Fleiter et al., 2018). 

Although energy system analyses have made significant progress in 
the residential and mobility sectors, their application to industrial an-
alyses is still in its early stages (Vopava et al., 2020). The industrial 
sector presents unique challenges due to its diverse processes, technol-
ogies, and products (Binderbauer et al., 2022). Furthermore, this sector 
is a major contributor to energy consumption and greenhouse gas 
emissions (GHG) (European Environment Agency, 2021). Consequently, 
energy research is increasingly compelled to develop new approaches 
for assessing the industrial sector from both economic and technical 
perspectives. Furthermore, the establishment of cross-sectoral in-
struments is crucial to enable comprehensive energy system analyses 
(Nagovnak et al., 2022). 

Within this context, it is beneficial to incorporate economy-based 
concepts into the analysis of industrial energy systems to drive 

progress towards climate neutrality. When economic factors are 
considered alongside technical aspects, a more comprehensive under-
standing of the energy landscape of the industrial sector can be obtained. 
This integration allows for the identification of cost-effective strategies 
and incentives that promote sustainable practices and investments in 
cleaner technologies. Economic considerations help align climate goals 
with financial viability, making it more attractive for industries to adopt 
greener alternatives. Therefore, within this study we want to shed light 
on the connection between economic scaling effects and energy con-
sumption of industrial plants and underline our investigations with 
practical, real-life data. 

1.1. Economy of Scale 

As we investigate the impact of the microeconomic concept of 
“economy of scale” (EcOS) on industrial energy systems, we first 
describe EcOS and its economic magnitude. 

EcOS is a fundamental microeconomic concept that plays a crucial 
role in economic analysis and business strategy. It explains the rela-
tionship between the average unit costs of producing a specific good or 
service and the scale of production. As production output increases, 
there is a correlation of decreasing average unit costs. However, if the 
average unit costs increase with higher production output, the indica-
tion of “diseconomy of scale” is present, as depicted in Fig. 1 (Besanko 
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et al., 2013). 
A closely related concept is “economy of scope”, which examines the 

impact of producing a variety of goods or services together rather than 
separately. When a company expands its range of products, there is a 
decrease in average unit costs, indicating economy of scope (Panzar and 
Willig, 1975). 

In economic-related investigations, two types of average cost curves 
are commonly used to illustrate the effects of EcOS. The first type ex-
hibits a U-shaped curve, suggesting that as production output increases, 
manufacturing plants initially experience EcOS. This leads to a decline 
in average unit costs. However, there is a plateau at the minimum effi-
cient scale, where average unit costs remain constant. Beyond this point, 
“diseconomy of scale” emerges, which causes average unit costs to in-
crease in large quantities of production (see Fig. 1). The curve depicts 
this initial cost reduction, followed by a flattening and subsequent in-
crease in average costs due to impacts such as limited resource dupli-
cation, land or managerial skills, and increasing coordinational 
complexity (Silvestre, 2018). 

The second type of average cost curve is L-shaped, assuming a 
decrease in average costs to a minimum efficient scale followed by a 
plateau of constant average unit costs. It does not exhibit “diseconomy of 
scale” at higher output levels (Besanko et al., 2013). Existing studies for 
various industrial subsectors (Johnston, 1956) indicate that real-life 
manufacturing plants typically show L-shaped unit cost regression 
rather than U-shaped. The strategic significance lies in determining the 
minimum efficient plant size (MEPS), which represents the point of 
minimum production capacity for optimal cost efficiency (see Fig. 2). 
MEPS depends on the capital intensity of the industrial location (Panzar 
and Willig, 1975) and serves as an indicator of market size and the 
market share held by the plant owner. A high MEPS-to-market size ratio 
implies increased market power (Pratten, 1972). 

EcOS originates from two main factors of spreading of fixed costs and 
the physical properties of production. Fixed costs, resulting from in-
divisibilities in the production process, can be spread over a larger 
volume of output as production increases, leading to a decrease in 
average unit costs. The physical properties of production, such as the 
cube-square rule, also contribute to EcOS by allowing production ca-
pacity to increase at a faster rate than costs. Other factors, such as 

inventory management, density economics and division of labor, also 
contribute to EcOS. The experience curve, on the other hand, relates to 
cost reduction through accumulated knowledge and experience over 
time. Although closely related, the experience curve and EcOS are 
distinct concepts (Yelle, 1979). 

1.2. Energy-related Investigations in Literature 

The connection between EcOS and its impact on industrial energy 
systems has not been thoroughly investigated in the existing literature. 
However, studies have explored the concept of “economy of scale” in the 
context of residential buildings and electricity generation: 

Ironmonger et al. (Ironmonger et al., 1995) examined energy use in 
residential households with a focus on EcOS per capita. They analyze 
real data from the Australian Bureau of Statistics, considering household 
sizes ranging from one to five residents. Through a comprehensive de-
mographic study, the authors observed a consistent decrease in 
Australian household sizes over the past 80 years. As a result, they 
predict that the energy consumption of residential housing per capita 
will increase exponentially if the trend of decreasing household size 
continues in the future. 

Browning et al. (Browning et al., 2010) employ the concept of EcOS 
to model residential households' energy consumption. Their study 
evaluates expenditure patterns for various household scenarios, such as 
individuals living alone or married couples with income disparities. 

Nowakoski et al. (Nowakoski and Loomis, 2023) investigate the 
impact of EcOS on the wind industry in the United States since 1980. The 
authors analyze the trend towards larger wind turbines and wind farms, 
examining the economic performance and future potential of onshore 
and offshore wind turbine industries. The study demonstrates how the 
wind industry has successfully utilised EcOS to reduce electricity pro-
duction costs significantly, making wind energy competitive with con-
ventional fossil-fuel power generation alternatives. 

Although these studies shed light on the application of EcOS to en-
ergy consumption in buildings and to energy generation of wind farms, 
there is still a need for research exploring the direct link between EcOS 
and industrial energy systems. Further research is needed to understand 
the potential implications and benefits of EcOS in the industrial sector. 
Within our work in industry- and energy-related research, we discovered 
that industrial energy systems strongly correspond to the economic 
paradigm of EcOS. To our knowledge, this is the first study that prac-
tically proves the correlation between industrial energy consumption 
and production capacity by examining extensive amounts of data orig-
inating from European and American manufacturing locations. We 
namely denote this effect as “energy of scale” (EnOS). 

1.3. Research Hypotheses and Structure of this Paper 

By investigating >25,000 individual georeferenced manufacturing 
plants from Europe and the U.S., our goal is to find new correlations of 
the application of scaling production capacities regarding energy con-
sumption for industrial energy systems. To envelop our examinations, 
we formulate the following scientific research question:  

Q1: Can a scaling effect for energy consumption in the industry be 
practically identified based on the existing paradigm of EcOS?  

Q2: What methods and classifications must be deployed to investigate 
the effect of EnOS? Which limitations and scope of application 
arise from these examinations? What underlying effects impact 
the formation of EnOS? Are there interlinks to the existing 
paradigm of EcOS?  

Q3: What potential fields of applications does the discovered effect of 
EnOS have? Which stakeholder groups can benefit from these 
investigations? 

Throughout this study, we answer the research questions proposed 

Quantity
of output

Economy of
scale

Minimum
efficient scale

Diseconomy of
scale

Average costs
per unit

Fig. 1. The EcOS effect areas in a U-shaped pattern.  

Average costs
per unit

Quantity
of output

Economy of
scale

Minimum
efficient scale

MEPS

Fig. 2. The EcOS effect areas in an L-shaped pattern including the point of 
minimum efficient plant size (MEPS). 
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above. In Section 2, we describe the overall methodology of this study. 
Firstly, we classify the industrial subsector by already developed clas-
sification schemes by the European Commission (Section 2.1). In Section 
2.2, we introduce a universal definition of industrial energy systems, to 
which we refer our following investigations of plant-specific energy 
consumption and origins of EnOS. Section 2.3 describes the overall data 
handling methods when generating fit functions of EnOS and verifying 
their statistical significance via dedicated tests. These methods are 
practically outlined in Section 3 as we demonstrate the EnOS paradigm 
and its statistical testing (Section 3.2) for a selected industrial subsector. 
We discuss these results and describe possible fields of application of 
EnOS in Section 4. We conclude our study with finishing statements in 
Section 5. At last, the appendix furthermore includes the fitted param-
eters for electricity and natural gas consumption of all investigated in-
dustrial subsectors as well as the graphic representation of EnOS of an 
additional subsector. 

2. Methodology 

In this section, we describe the applied standardised methodology of 
approaching the paradigm of EnOS. As a basis for our investigations, we 
first classify the industrial sector and the industrial energy system. 
Subsequently, we illustrate the data handling methods we utilised in our 
work. 

2.1. Industry Classification 

Within this study, we approach the industrial energy system from a 
top-down point of view. A top-down methodology generally examines 
highly aggregated data that is combined and analysed to gather corre-
lations and insights on functionalities of more detailed aggregation 
levels (Widén et al., 2009). Compared to bottom-up calculations, this 
approach offers the advantage of deriving cross-sectoral conclusions and 
strategies with a limited amount of data available. As we encounter the 
industrial sector in terms of energy consumption and economic behavior 
such as production capacities, etc., a concise classification of the cor-
responding energy system is a mandatory field of action. 

We divided the industry into energy intensive and non-energy 
intensive subsectors (International Energy Agency, 2022). Fig. 3 shows 
the respective comparison of these two groups (Rieseberg and Wörlen, 
2012). Energy intensive industries exceed in terms of overall energy 
consumption and greenhouse gas (GHG) emissions (European Com-
mission, Statistical Office of the European Union, 2021). Therefore, they 
are often the central topic in energy-related research areas. However, 
when examining both groups more thoroughly, it can be derived that 
non-energy intensive industries are, in fact, of high relevance in terms of 
their involvement in the overall economic landscape. This can be 
explained by the higher shares of gross value added, number of em-
ployees and enterprises (European Commission, Statistical Office of the 
European Union, 2021). Thus, we conclude that energy system analyses 
and their impact on strategic decision-making processes should not be 
exclusive to energy intensive industries, but also include non-energy 
intensive subsectors to derive holistic solutions for inducing climate 

neutrality in industry and sustaining the economic landscape. 
Besides the definition of energy intensive and non-energy intensive 

subsectors, other classification schemes have been developed, which 
classify the industry on different aggregation levels in further detail. The 
most prominent classifications are based upon the work of the Interna-
tional Energy Agency (IEA) (International Energy Agency, 2022) and the 
European “Nomenclature statistique des activités économiques dans la 
Communauté européenne” (NACE). The corresponding association be-
tween all groups is shown in Table 1. The NACE classification itself 
categorises all manufacturing activities further by introducing a grad-
uated digit-based system. For example, “C24 – Manufacture of basic 
metals” (NACE-2) can be further disaggregated to “C24.4 – Manufacture 
of basic precious and other non-ferrous metals” (NACE-3) and “C24.4.2 – 
Aluminum production” (NACE-4). Within this study, we apply only the 
overall sector and NACE classification. 

2.2. Industrial Plant Boundaries 

Fig. 4 shows the definition of the systemic boundaries and included 
energy conversion units for industrial plants in general (Binderbauer 
et al., 2022). The plant boundary marks the inclusion of plant-owned on- 
site units (for both energy transformation and final energy utilisation) 
and the exclusion of off-site energy generation and grid systems. The 
public grid can supply the plant with energy, as the latter can also supply 
the grid (e.g. in case of waste heat or excess electricity production). 

0% 20% 40% 60% 80% 100%

NACE-4 Classes
Enterprises
Employees

Gross Value Added
Total GHG Emissions

Total Energy Consumption

Energy Intensive Subsectors Non-Energy Intensive Subsectors

Fig. 3. Comparison of energy intensive and non-energy intensive industries by 
total energy consumption, total GHG emissions, gross value added, number of 
employees, enterprises in Europe and subsectoral classification. 

Table 1 
Comparison of industrial classification schemes.  

Overall sector 
classification 

IEA classification NACE-2 classification 

Energy intensive Iron & Steel (& Non- 
Ferrous Metals) 

C24 – Manufacture of basic metals 
C25 – Manufacture of fabricated 
metal products, except machinery and 
equipment 

Pulp & Paper C17 – Manufacture of paper and paper 
products 
C18 – Printing and reproduction of 
recorded media 

Chemical & 
Petrochemical 

C19 – Manufacture of coke and 
refined petroleum products 
C20 – Manufacture of chemicals and 
chemical products 
C22 – Manufacture of rubber and 
plastic products 

Non-Metallic 
Minerals 

C23 – Manufacture of other non- 
metallic mineral products 

Non-energy 
intensive 

Wood & Wood 
Products 

C16 – Manufacture of wood and of 
products of wood and cork 

Machinery C26 – Manufacture of computer, 
electronic and boards 
C27 – Manufacture of electrical 
equipment 
C28 – Manufacture of machinery and 
equipment 

Food, Beverages & 
Tobacco 

C10 – Manufacture of food products 
C11 – Manufacture of beverages 
C12 – Manufacture of tobacco 
products 

Mining & Quarrying B – Mining and quarrying 
Automotive C29 – Manufacture of motor vehicles, 

trailers and semi-trailers 
C30 – Manufacture of other transport 
equipment 

Textiles & Leather C13 – Manufacture of textiles 
C14 – Manufacture of wearing apparel 
C15 – Manufacture of leather and 
related products 

Other C21 – Manufacture of basic 
pharmaceutical products and 
preparations 
C31 – Manufacture of furniture 
C32 – Other manufacturing  
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Within the plant boundary, the energy from the grid is distributed to 
different energy-converting/consuming units, which can either be 
directly or indirectly involved in the value creation process. 

Autoproducers or transformation units (e.g. CHP plants, blast fur-
naces, power plants, …) convert energy from outside the plant or within 
(e.g. from other auto producers) and output the respective transformed 
energy for final energy application (e.g. electricity from power plants) or 
to the public grid (e.g. waste heat from blast furnaces). Within the final 
energy boundary, final energy is consumed (e.g. electricity or fuel de-
mand of processes or lighting and room conditioning utilities) and 
converted to applicable useful energy (e.g. process heat, lighting, room 
conditioning and heating, …). Along this way, energy can be recovered 
or stored and applied for internal (e.g. waste heat recovery) or external 
(e.g. district heating) applications. 

Units directly involved in value creation are processes which are 
mainly responsible for creating a product, e.g. the production route it-
self, and therefore directly correspond with the production output. 
Accompanying units, which are indirectly involved in value creation, 
support the production process, for example, by providing light or 
storing excess energy (Thiede, 2012). 

Our following examinations of EnOS correspond to the plant 
boundary and therefore involve all on-site energy conversion units. 

2.3. Methods for Exploring EnOS 

As our goal within this study is to prove the significance of the 
discovered EnOS effect, we extensively enhance our databases and 
methodology by incorporating data curation and statistical tests. This 
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Directly Involved in Value Creation

Indirectly Involved in Value Creation
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Fig. 4. A standardised definition of the energy system of industrial plants.  

U.S.

Industrial Assessment 
Center (IAC) Database
(ca. 20 000 data points)

European Emission Trading 
System (ETS) Database

(ca. 5 000 data points)

Europe

Eco-Management and Audit 
Scheme (EMAS) Register

(ca. 400 data points)

Europe

Data Curation and
Classification

Data Evaluation and
Statistical Test

Deriving Correlations and
Conclusions
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b

c

Fig. 5. The overall methodology for investigating the effect of EnOS on the European and American industrial landscape; Three georeferenced databases are included 
in our analysis as we (a) align and curate the data to meet corresponding comparability, (b) develop and evaluate fit functions, as well as statistically test our 
hypotheses, and (c) derive correlations from our mathematical findings. 
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enables the investigation of EnOS and its specific impact on every in-
dustrial subsector as well as the derivation of conclusions for finding the 
correlation to economic effects and its cause. 

Fig. 5 explains the overall methodology to investigate EnOS in the 
industry. The basis of our study forms three dedicated databases and 
sources, which state plant-specific information from Europe and the U. 
S.:  

• European Emission Trading System (ETS) database (European 
Commission, 2023a): The ETS database is a crucial tool for moni-
toring and managing carbon emissions in the European Union (EU). 
It acts as a central hub to keep track of emissions allowances, verified 
emissions reports, and the companies involved. The database enables 
companies to trade emissions permits, which encourages them to 
reduce their greenhouse gas emissions. This market-based approach 
promotes the adoption of cleaner technologies and helps the EU meet 
its climate goals. The ETS database ensures transparency and 
accountability through regular monitoring and reporting, making 
emissions trading an effective tool for promoting environmental 
sustainability in Europe. Pezzutto et al. extracted around 5000 in-
dividual data points from this database and included auxiliary data 
from other sources like E-PRTR (European Pollutant Release and 
Transfer Register), VDeH Steel database, RISI Pulp and Paper etc. We 
incorporate this data set into our method. The dataset is accessible 
through: https://gitlab.com/hotmaps/industrial_sites/industrial_sit 
es_Industrial_Database.  

• Eco-Management and Audit Scheme (EMAS) register (European 
Commission, 2023b): The EMAS register database is a valuable 
resource for monitoring and recording environmental performance 
within the EU. It serves as a central repository for companies and 
organizations that have voluntarily implemented EMAS, providing 
information on their environmental management systems, achieve-
ments, and audits. The database promotes transparency and 
accountability by offering public access to environmental data, 
allowing stakeholders to assess the ecological impact of registered 
entities. EMAS register database encourages continuous improve-
ment and sustainable practices by recognizing and rewarding orga-
nizations that demonstrate commitment to environmental 
stewardship, ultimately contributing to a greener and more sus-
tainable Europe. We extracted data from around 400 individual re-
ports covering information from single manufacturing facilities like 
in the ETS database above. The dataset is accessible through: 
https://webgate.ec.europa.eu/emas2/public/registration/list  

• Industrial Assessment Center (IAC) database (Industrial Assessment 
Center, 2022): The IAC is a programme formed around 31 technical 
universities in the U.S. and is funded by the U.S. Department of 
Energy (DOE). The objective of the programme is to support indus-
trial companies in reducing energy use and cost, as well as imple-
ment new technological advances such as waste heat recovery, 
electrification, etc. The IAC conducts energy audits and assessments 
in participating sites and proposes plant-specific improvements for 
the energy system. All evaluations and recommendations of anony-
mous sites are accumulated within the IAC database. Here, plant- 
specific data like sectoral allocation, production capacity, energy 
consumption, etc. is listed within over 20,000 data points. The 
dataset is accessible through: https://iac.university/#database 

The main contributions from all mentioned databases are data points 
from individual real-life manufacturing plants containing their respec-
tive subsector allocation, electricity consumption, natural gas con-
sumption, production capacity and fiscal year. To achieve valid 
comparability of this data from the three databases, corresponding 
alignment measures must be taken into account (Fig. 5 (a)): Regarding 
the IAC database, all subsectoral data is referred to SIC (Standard In-
dustrial Classification) codes (Fertuck, 1975). These are manufacturing 
classification codes utilised in the U.S. and are to be converted to NACE 

codes in the first step. Concerning the production capacity, the corre-
sponding unit is varyingly disclosed as tonne, kilograms, pieces, square 
or cubic metres etc. for different industrial subsectors. As the unit of 
pieces is deceptive, we agreed to convert this unit into tonnes by 
surveying the average weight of manufactured products within the 
selected NACE subsector. For example, in “C28.3.0 – Manufacture of 
agricultural and forestry machinery” the weight of a respective product 
can be estimated to be around 20 t (Horn et al., 2004). Overall, the unit 
of production capacity targeted for our studies is tonnes. This data 
classification process is interlinked with a follow-up data curation, 
which sorts out raw data outliers above 95 % or below 5 % of production 
capacity and energy consumption for each subsector. 

In the next step, the curated and subsector-resolved data is evaluated 
and fit functions for EnOS are derived (Fig. 5 (b)). The development of 
these functions to the raised energy data for individual NACE subsectors 
in correspondence to EcOS is the main part of our analysis within this 
work. In the next step, we prove the statistical significance of the EnOS 
functions developed by conducting statistical t-tests and linearity tests 
(Verma and Abdel-Salam, 2019). Thus, we can reason the mathematical 
significance of EnOS. We note that data availability varies depending on 
the NACE subsector. Our first approach is to generate fit functions for 
the NACE-2 codes. If the number of data points is high enough to derive 
these correlations at a lower aggregation level, the NACE-3 or NACE-4 
subsectors are additionally examined. We set a threshold of 75 data 
points per subsector. In this case, if the subsector exhibits <75 data 
points at a respective NACE level, we moved up to a higher NACE level 
to include other subsectors in this class as well. We present the devel-
opment of fit functions and the conduction of statistical tests for a 
representative subsector in Section 3. 

Table 2 shows the design of the joint dataset out of the individual 
three databases above. The output parameters after our analysis are 
shown in Table 5 in the appendix. 

Finally, we discuss the paradigm discovered by EnOS and its possible 
impact and potential in the future analysis of the energy system (Fig. 5 
(b)). Additionally, we derive possible origins of EnOS by establishing 
comparisons with EcOS in Section 4. 

3. Results of EnOS 

3.1. Data Evaluation for Selected NACE Subsector 

When investigating the parameters of electricity consumption, nat-
ural gas consumption and production capacity of single real-life 
manufacturing plants within all databases, a correlation of the pro-
nounced EnOS effect can be clearly assessed between the specific energy 
consumption (SEC) e [kWh/t] and the production capacity C [t]. 

Fig. 6 to Fig. 9 show exemplary results of this data extraction and 
evaluation for the sector “C25 – Manufacture of fabricated metal prod-
ucts, except machinery and equipment”. We conducted data evaluation 
for electricity and natural gas consumption respectively. Although 
Figs. 6 and 7 indicate EnOS within a linear plot similar to Fig. 1, we also 
included double-logarithmic versions for both energy carriers to enable 
a more transparent evaluation. 

All drawn scatter points resemble the data of single manufacturing 
facilities from the U.S. and Europe, consistent with the before mentioned 
databases. Due to the smaller data sets of European databases, the 
number of individual data points is reduced. In the case of the selected 
subsector, 351 data points are overall included in the corresponding 
plots after data curation, of which 24 originate from Europe. 

We conducted data fits via power functions (see the linear plots in 
Figs. 6 and 7) following the formula (1): 

e = b⋅Cm (1) 

Such power functions appear as linear relationships in the double- 
logarithmic plots of Figs. 8 and 9. From a mathematical point of view, 
the observed linearity resembles the effect of EcOS (Berthouex, 1972), 
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Table 2 
Design of joint database and included parameters.  

NACE 
subsector 

Number of 
locations / 
datapoints 

Yearly electricity 
consumption [kWh] 

Yearly natural gas 
consumption [kWh] 

Yearly 
production 
capacity [t] 

Slope 
electricity m 
[kWh/t2] 

Intercept 
electricity b [log 
(kWh/t)] 

Slope natural 
gas m [kWh/ 
t2] 

Intercept natural 
gas b [log(kWh/ 
t)]  

Input parameters Output parameters 
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Fig. 6. NACE 25 - EnOS effect of electricity (linear plot).  
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Fig. 7. NACE 25 - EnOS effect of natural gas (linear plot).  
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which can be deemed as the first concrete point of proof for EnOS (see 
Section 1.1). The linear correlation of both logarithmic variables (in the 
case of EnOS: the dependent variable of SEC and the explanatory vari-
able of production capacity) can be expressed by applying formula (2): 

log(e) = b − m⋅log(C) (2) 

In formulas (1) and (2), e represents SEC [kWh/t] and C represents 
the production capacity [t] in our case. The values b and m equal the 
intercept and slope of the linear fit accordingly. By applying the double- 
logarithmic approach, the accumulation of data points in areas of high 
density (the near of the origin in the linear plots) can be evaluated in 
more detail. 

Figs. 8 and 9 furthermore include fits of the U.S. and European data 
points and the overall fit of the entire data. The parameters of these 
exemplary fitted plots are shown in Table 3. 

The major observations can be declared as follows:  

1. All data points follow a linear regression within the double- 
logarithmic plots. This corresponds to the mathematical formula-
tion of EcOS. Within the linear plots, the scaling effect is shown as 
power functions. The specific energy reduction effect gets increas-
ingly weaker at higher production capacities (around >20,000 t for 
electricity and > 3000 t for natural gas), indicating the existence of a 
possible optimum point for subsector-specific facility system size and 
production output. 

2. Natural gas consumption data appears to be subject to higher fluc-
tuations compared to electricity. This can be seen by examining the 
residuals of the data points in Fig. 9 compared to the shown fit curve. 
We experienced this result in all investigated NACE subsectors.  

3. It can be observed that the fits of the American data correspond well 
to the European data. In all evaluations, the fitted European slope is 
reduced minimally. 

We discuss and reason these observations in the interpretation and 
discussion part of this study (Section 4) accordingly. Furthermore, the 
fitted parameters of all investigated industrial subsectors as well as 
additional double-logarithmic plots of the EnOS effect for the sector 
“C23 – Manufacture of non-metallic mineral products” are included in 
the appendix part of this study. The observations described above 

(except for capacity specifications) apply to all other investigated 
subsectors. 

3.2. Statistical Testing 

By conducting tests, we verify the statistical significance of the ob-
servations made above. We mainly validate the corresponding applica-
tion of linear fits within the double-logarithmic plots of specific 
electricity and natural gas consumption to confirm the correlation be-
tween SEC and production capacity (Montgomery et al., 2021). We 
check our assumptions and observations by investigating the correlation 
within EnOS via four evaluations for cumulative fits (see Figs. 10 and 
11) (Verma and Abdel-Salam, 2019):  

1. Check on linearity and calculation of Pearson correlation factor r  
2. Independence of residuals and calculation of the respective 

correlation  
3. Normality of residuals  
4. Conducting t-tests on linear slopes 

We already observed a linear relationship between SEC e and pro-
duction capacity C through the corresponding figures and, as also stated 
above. The Pearson correlation factor r indicates the strength of the 
correlation as absolute values >0.7 generally describe a strong rela-
tionship between dependent and explanatory variables (Verma and 
Abdel-Salam, 2019): 

r =
∑

(Ci − C)(ei − e)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
(Ci − C)2(ei − e)2

√ (3) 

Within formula (3), Ci and ei represent the single samples of pro-
duction capacity and SEC, C and e the mean of the samples respectively 
over the sum of all included data points. 

Table 4 shows the results of the calculation of r for the respective 
graphs in Section 3.1. As we already declared in the above observations, 
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Fig. 9. NACE 25 - EnOS effect of natural gas (double-logarithmic plot).  

Table 3 
Fitted parameters of subsector “C25 – Manufacture of fabricated metal products, 
except machinery and equipment”.  

Energy carrier Slope m [kWh/t2] Intercept b [log(kWh/t)] 

Electricity  0.68  5.12 
Natural gas  0.70  5.33  

Table 4 
Results of the calculation of Pearson correlation factor for all data sets of sub-
sector “C25 – Manufacture of fabricated metal products, except machinery and 
equipment”.  

Energy carrier Employed data set |r| 

Electricity Data Europe  0.72 
Data U.S.  0.81 
Data All  0.80 

Natural gas Data Europe  0.53 
Data U.S.  0.70 
Data All  0.69  
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the overall correlation for natural gas tends to be weaker compared to 
that for electricity. In general, all correlation factors exhibit a satisfac-
tory result, except for the relationship within the European data points 
for natural gas. We reason this deviation due to the small amount of 
representative data points in this sector-specific data set. However, 
because of the overall reduced correlation within the analysed natural 
gas data sets, it can be assumed that a stronger underlying effect in-
fluences the specific consumption, which we cannot identify at this 
stage. 

Overall, both data sets from Europe and U.S. exhibit a moderate to 
strong correlation to the overall fits. We can therefore prove the 
mentioned observation that the effect of EnOS is actually independent of 
the economic location, namely Europe and the U.S. This could poten-
tially show the presence of a global effect of EnOS. However, more 
georeferenced data, e.g. from Asia, is needed to confirm this hypothesis. 

To further validate the data fits to be non-biased within their cor-
relation of variables, we present correspondent plots of residuals for 
electricity and natural gas for the selected NACE subsector in Figs. 10 
and 11. 

All residuals are defined as the mathematical difference between the 
fitted data points and the corresponding fits. The correlation factor for 
both residual data sets should be approximately 0 to verify the inde-
pendence of the data points from other underlying and biasing effects 
(Verma and Abdel-Salam, 2019). 

In the case of the selected NACE subsector, the correlation factors are 
7.054⋅10−5 for electricity and − 0.589 for natural gas respectively. Both 
factors can be deemed satisfactory, although again the natural gas data 
exhibits a weaker correlation. As we have already stated, this data set 
seems to be influenced by another underlying effect. 

Within the third evaluation, the distribution of residuals is tested as 
statistically significant linear fitting demands a normal distribution of 
errors around the fit lines (Verma and Abdel-Salam, 2019). Therefore, 
we plotted the normal probability values Z on the y-axis and the loga-
rithmic residuals of the data sets on the x-axis of Figs. 12 and 13. The Z- 
values of the probability correspond to the standard normal probability 
distribution calculated with the respective residuals by applying the 
following formula: 

Z = X − μ
σ (4) 

Mean μ and standard deviation σ are derived from the set of residuals 
and X represents the individual residuals. Both mean μ lie at −0.003 for 
electricity and 0.014 for natural gas. Furthermore, we plotted the indi-
vidual function of formula (4) as a black line to indicate the deviation of 
all data points in more detail. 

It can be seen that the data points are largely distributed normally. 
For both plots, the tails of data points at higher residuals deviate farther 
from the black-coloured linear fit. This result could potentially indicate 
the existence of more outliers below the 95 % deviation limit we 

removed within data curation. However, we did not observe this devi-
ation in all examined NACE subsectors. 

We support these graphical evaluations by conducting a t-test on the 
slopes of the linear regression fits, which is a common evaluation tool for 
linear regressions. We stated a null hypothesis in which SEC and pro-
duction capacity do not correspond, since the true slope m equals 
0 (Verma and Abdel-Salam, 2019). The respective alternative hypothesis 
indicates a relationship between both parameters: 

H0 : m = 0 versus HA : m ∕= 0 at α = 0.05 (5) 

The t-test is a two-sided variable test applying a confidence level of α 
= 0.05 as indicated in formula (5). The resulting P-value for electricity 
was calculated to be 7.193⋅10−41 and for natural gas 2.200⋅10−29. Both 
values are significantly lower than α. This implies that the null hy-
pothesis is to be rejected and the relationship can be proven as statis-
tically significant. 

4. Discussion 

4.1. Discussion of Results 

As visualised above, all fit functions indicate the scaling effect of 
EnOS, practically demonstrated for energy consumption (electricity and 
natural gas) of industrial plants. Moreover, data fit functions for Europe 
and the U.S. are largely coherent. Despite the differing cost structures of 
electricity and natural gas on both continents, the mechanism of energy 
scaling in the industry appears to be quite conformable. The weight of 
this observation increases in light of recent developments in global en-
ergy markets. 

We have indicated in the previous section that stronger, plant- 
specific alterations in natural gas consumption per output can be 
observed as slightly stronger than for electricity. We state two possible 
reasons for this observation: For one, natural gas is largely involved in 
heat generation for end-use applications. While electricity demand is 
rather constant throughout the year, heating demand increases during 
cold weather seasons (Jesper et al., 2021). Moreover, real-life industrial 
plants within the databases may not require consistent heating demand. 

As, furthermore, a wider range of alternative sources for substituting 
natural gas (e.g. biogas, etc.) is available, and deviations of yearly nat-
ural gas consumption in independent industry samples will occur 
naturally (Pucker et al., 2012). Furthermore, the deviation of natural gas 
may indicate oversized or undersized heat-producing equipment in 
single industrial plants. For example, Bukurov et al. (Bukurov et al., 
2016) state that gas boiler sizing for heating applications is often 
designed incorrectly resulting in inefficient energy consumption. On the 
contrary, electricity-consuming units can be adjusted more accurately 
with regard to energy end-use. 

The observed L-shape of our EnOS results mathematically displays 
the close correlation of the observed paradigm with the already deeply 
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Fig. 10. NACE 25 - residual fit for electricity data set.  
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investigated EcOS in the literature. As already described above, EcOS 
also includes areas where unit-specific costs at growing production rates 
increase once more. An equivalent of this “diseconomy of scale” effect 
cannot be observed within our data sets of EnOS. We reason the non- 
existence of this effect in EnOS because of our chosen approach of 
using a large sample size of individual real-life industrial plants: The 
corresponding facility managers are encouraged to operate the plant to 
increase revenue. While single production processes may have to run at 
alternating efficiencies from time to time, managers of industrial loca-
tions will build up total capacity only to the point where production is 
still economically beneficial. This is also proven by studies by John 
Johnston (Johnston, 1956) for EcOS as we described in Section 1.1. 

The strong correlation of specific energy consumption and produc-
tion capacity of EnOS can best be compared to the EcOS driving factors 
considering the production with regard to decreased overhead/fixed 

costs per produced output. Although variable costs directly apply to 
single products, increased overhead costs are evenly distributed on the 
production capacity, resulting in decreased unit-specific costs. In par-
allel, this means that energy systems are also to be divided into “over-
head and variable energy consumers”. We already outlined this 
hypothesis in Fig. 4 as energy-consuming units, which are directly 
involved in value creation (e.g. production processes), are responsible 
for variable shares, and units indirectly involved in value creation (e.g. 
lighting, HVAC, etc.) are responsible for overhead shares of consumed 
energy. Moreover, overhead/fixed costs are affected by step-fixed in-
creases with rising production output as we described in Section 1.1. 
Similarly, in value creation indirectly involved units are related to the 
size of the plant and thus their energy consumption can also be 
considered as step-fixed. 

Another resemblance in EnOS driving factors in comparison to EcOS 
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origins is the physical properties of the involved processes (see Section 
1.1). While EcOS employs the square-cube rule to assess unit-specific 
cost reduction for increased machine sizes, unit-specific energy reduc-
tion as a function of increased production capacity could potentially be 
traced back to the theory of similarity (Moschoudis et al., 2014-1014). 
Assuming that the size of production units increases with increasing 
production capacity, the theory of similarity expresses the growth of 
electrical efficiency η and reduction of electrical losses PV by formula (6) 
and (7): 

η ∼ 1− l0
l1

(6)  

PV ∼
(l1

l0

)3
(7) 

As l0 indicates the original unit length, and l1 the increased unit 
length (Grabner, 2007). Similar investigations can be conducted for 
thermal efficiency losses. 

As an additional driving factor, the application of learning curves 
might also support the effect of EnOS as described above in Section 1.1. 
Learning curves are described as unit cost-reducing effects derived from 
qualitative performance gains as a function of production capacity 
(Yelle, 1979). This can in parallel be deployed for energy-related sub-
jects as well. Additionally, the skill set of employees is increased by e.g. 
employee training courses concerning energy-saving measures at the 
plant. 

Another analogy to EcOS can potentially be found regarding the 
point of minimum efficient plant size (MEPS), see Section 1.1. While 
MEPS, derived from EcOS, indicates the most cost-efficient production 
capacity, our developed fit curves can express subsector-resolved 
benchmarks on optimum points of production capacity and energy ef-
ficiency respectively. 

4.2. Fields of Application 

The discovery of EnOS can potentially serve different fields of 
application for different stakeholders, as illustrated in Fig. 14. Here, we 
disaggregated potential applications from cross-country/global level to 
single facility levels in correspondence to energy-related research, in-
dustrial stakeholder groups, and policy makers. 

At the national or global level, policy makers can take advantage of 
the insights into plant sizes and specific energy consumption provided 
by EnOS to design effective industrial financing programmes focused on 
energy efficiency for manufacturing plants. This allows governments to 
develop tailored decarbonisation pathways for industries with higher 
production rates, optimising energy consumption per gross value added 
and accommodating the unique needs of industrial subsectors. 

Additionally, the impact of emerging technologies such as high- 
temperature heat pumps, hydrogen, and industry-specific technologies 
(e.g. electric arc furnace in the steelmaking process) can be thoroughly 
investigated within the context of overall industrial energy systems. 
These findings inform the modeling of energy scenarios and facilitate 
more fitting decision-making by policy makers. 

Inclusion of industry-specific characteristics also fosters collabora-
tion and incentivises regional stakeholders, both politically and 
economically, to cluster production locations within industrial parks 
based on EnOS-derived benchmarks. However, the decision-making 
process should consider the potential additional value gained through 
specialised workforce and equipment at different sites. Georeferencing 
industrial parks by connecting subsector-specific EnOS data with 
geographic information further enhances regional policies and planning. 

At the company or plant level, EnOS findings help identify bench-
mark values for plant and company managers, both within and across 
subsectors. By comparing specific energy consumption with the identi-
fied optimum for the respective subsector, plant managers can evaluate 
their company's energy performance. The large sample size used to 
establish the EnOS paradigm enables the identification of general trends 
in plant-specific production, reducing the risk that managers are relying 
on misleading assumptions. 

Furthermore, the research community, at both national and supra-
national levels, can benefit from EnOS findings. The extensive sample 
size allows for the assessment of general trends and the identification of 
specific areas of interest within subsectors. This knowledge proves 
invaluable in efforts to improve energy efficiency and achieve climate 
neutrality in the industrial sector. By comparing general plant parame-
ters with subsector-specific energy consumption per production output 
at the onset of research projects, researchers can save time and resources 
by focusing on the most critical areas for improvement. 

Overall, the “energy of scale” effect offers significant implications 
and potentials across different system levels and for various stake-
holders. It provides valuable insights for policy makers, encourages 
cooperation and incentives among regional stakeholders, helps plant 
and company managers assess energy performance, and supports 
research efforts to advance energy efficiency and climate neutrality in 
the industrial sector. 

5. Conclusions 

Scientific literature on scaling effects in manufacturing industries has 
been limited to the economic side of production. Several mechanisms of 
“economy of scale” (EcOS) have been investigated that provide impor-
tant information on cost-saving potentials. However, scaling effects for 
energy systems have been widely neglected in the literature up to now. 
As we have thoroughly proven the existence of “energy of scale” (EnOS) 
for industrial energy systems, we now conclude this study by reflecting 
on the research questions from Section 1.2: 

Q1: By investigating 25,000 georeferenced industrial locations from 
Europe and U.S., an EnOS effect correlating production-specific energy 
consumption (for electricity and natural gas) and production capacity 
has been shown successfully. By dividing the industrial sector into 
aggregated subsectors, we furthermore demonstrate that the scaling 
effect alternates depending on the subsector by deriving subsector- 
specific fit functions from the involved databases (see Appendix). 
Moreover, we state that the investigated subsector-specific correlations 
from Europe and U.S. are coherent, seemingly outlining a potential 
global effect. 

Q2: To thoroughly investigate the industrial energy system, we apply 
subsectoral classification schemes of IEA and NACE. On this basis, we 
evaluate the data originating from three different databases (two from 
Europe and one from the U.S.) to demonstrate EnOS. We furthermore 
then retrieve fit functions from our analysis. Conducted t-tests underline 
the stochastic significance of the findings. We reason the existence of 
EnOS by comparing its origins to EcOS. The most prominent hypothesis 
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for EnOS is that industrial energy systems must be divided into energy- 
consuming units, which are directly and indirectly involved in value 
creation such as production processes and lighting and HVAC units. 
When decreasing the production capacity, the energy consumption of 
units indirectly involved in value creation is more strongly influenced by 
the output-specific energy consumption, practically following power 
functions. 

Q3: The EnOS effect provides a broad tool for better understanding 
system inefficiencies, both on a regional or national level, as well as on 
plant level. Although the investigation of EnOS is only at its beginning, 
several areas for potential application can be identified on a multitude of 
stakeholder levels. Most importantly, the application of EnOS findings 
per subsector can facilitate the identification of important areas of ac-
tion regarding the energy consumption of production facilities due to the 
applied robust sample size. Such indications can be of interest to both 
decision-makers on a wider geographic level (e.g. policy makers or 
system researchers) and company managers on plant level. All of these 
stakeholder groups profit from an independent and solid benchmarking 
basis in their work of moving their industrial focus group towards sus-
tainable growth. 

To leverage the potential of EnOS, expanding research on the iden-
tified paradigm is necessary. Most importantly, additional data points, 
both from Europe and the U.S. as well as other continents and entities 
can increase the weight of the proposed paradigm and improve the ac-
curacy and applicability of subsectoral results. On the basis of the 
already available and investigated databases, existing economic 

systems, both on a plant level and regional or national level, should be 
investigated for correlation. This step will be crucial to the further 
benefit of the identified concept with respect to efforts to achieve 
climate neutrality and resource efficiency. 
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Appendix  
Table 5 
Interpolation data for all investigated industrial subsectors by formula (2); statistical tests were conducted for these subsectors along the described significance testing 
in Section 3.2.  

NACE code Slope electricity m 
[kWh/t2] 

Intercept electricity b [log(kWh/ 
t)] 

Slope natural gas m [kWh/ 
t2] 

Intercept natural gas b [log(kWh/ 
t)] 

Number of locations / 
datapoints 

C10  0.5929  11.3993  0.6210  12.2615  321 
C10.11  0.3044  8.9571  0.4834  11.2831  80 
C10.13  0.5869  11.5851  0.5425  11.3628  78 
C10.3  0.5705  11.3404  0.5491  12.1134  76 
C10.51  0.6529  11.9753  0.6956  13.1133  80 
C10.6  0.7874  13.5443  0.8719  14.2599  124 
C10.71  0.6672  12.0794  0.6507  12.7649  132 
C10.85  0.4447  9.7555  0.4693  10.7484  93 
C10.9  0.7289  11.9573  0.7053  12.4465  101 
C11  0.5766  9.2152  0.6038  10.3886  320 
C11.05  0.5957  10.3652  0.5674  11.0345  79 
C11.07  0.5576  8.0652  0.6402  9.7426  82 
C12  0.5766  9.2152  0.6038  10.3886  166 
C13  0.4889  10.9233  0.6075  10.4074  275 
C13.1  0.0810  8.3518  0.2080  5.0871  72 
C13.2  0.5530  12.4848  0.8553  15.3264  79 
C13.9  0.8328  11.9333  0.7593  10.8086  135 
C14  0.6873  9.7597  0.8104  11.4839  121 
C15  0.6873  9.7597  0.8104  11.4839  95 
C16  0.8473  13.4725  0.8616  14.2580  412 
C16.1  0.8343  13.3855  0.8487  14.0943  86 
C16.21  0.8965  14.6745  0.8541  15.6349  76 
C16.23  0.8112  12.3575  0.8820  13.0449  123 
C17  0.9852  6.5232  0.9912  6.2441  91 
C18  0.9852  6.5232  0.9912  6.2441  77 
C19  0.9812  6.4339  1.0121  6.4143  111 
C20  0.9910  6.4982  1.0222  6.4784  99 
C21  1.0407  15.5050  0.9393  15.7362  176 
C21.1  1.0407  15.5050  0.9393  15.7362  75 
C22  0.6339  12.4199  0.8302  13.4126  378 
C22.1  0.6775  12.7546  0.7482  13.4256  101 
C22.21  0.5142  11.4198  0.7886  12.3529  81 
C22.22  0.7100  13.0852  0.9539  14.4593  86 
C23  0.7211  5.39189  0.6270  5.45799  171 
C24  1.0678  7.0335  1.0121  6.5098  102 
C25  0.6812  5.1245  0.7035  5.3323  351 

(continued on next page) 
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Table 5 (continued ) 

NACE code Slope electricity m 
[kWh/t2] 

Intercept electricity b [log(kWh/ 
t)] 

Slope natural gas m [kWh/ 
t2] 

Intercept natural gas b [log(kWh/ 
t)] 

Number of locations / 
datapoints 

C25.11  0.6886  11.5488  0.7887  12.3043  106 
C25.12  0.9568  13.9456  0.9466  14.2112  92 
C25.5  0.6801  12.3737  0.7488  13.6044  96 
C25.61  0.7927  12.8888  0.7177  13.6255  75 
C26  0.9673  14.5831  0.9971  13.9151  303 
C26.11  1.0149  15.4412  1.0243  14.5664  77 
C26.12  0.9596  14.5338  1.0596  14.3907  103 
C26.51  0.9276  13.7743  0.9075  12.7882  94 
C27  0.8739  13.1759  0.9849  14.2369  102  
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Fig. 15. NACE 23 – EnOS effect of electricity (double-logarithmic plot).  
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Fig. 16. NACE 23 – EnOS effect of natural gas (double-logarithmic plot).  
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Kurzfassung/Abstract: The generation of synthetic load profiles offers the possibility to easily 
and efficiently depict the dynamic energy consumption and generation of single consumers. 
Therefore, it is vital for evaluating future challenges for the physical energy system, support 
the forecast models of grid operators and energy suppliers and improve deriving demand side 
management measures for consumers. In this paper, we present Ganymed as a suitable 
software for assessing energy consumption and generation behaviour of production chains in 
energy intensive industrial subsectors. A dynamic user interface allows a swift and easy 
application and adaption of processes and production routes. The underlying methodology is 
based upon discrete-event simulation as a case study is applied to prove the functionality of 
Ganymed. Within this case study, we modelled a part of a production chain of an existing 
cement plant and compared the generated load profiles to measured ones. The results show 
good approximations to the measured load profile with an average deviation of 4.1%. 

Keywords: Industry, Load Profile, Software, Energy Model 

 

1 Introduction 
The industrial sector is accountable for 37% of the overall primary energy demand in Austria 
[1]. Therefore, the industry undoubtedly has to take part in the energy transition [2]. The 
development of comprehensive energy system models may help therewith and align the 
industrial sector with the European net zero greenhouse gas (GHG) emission goals. Energy 
system simulations allow to get hold of fast changing trends and technologies, evaluate their 
impacts on the physical energy system and support the strategic decision making for the 
energy transition. Due to increasing volatility within the energy system, various models 
incorporate analysis of future grid demands and for energy suppliers [3]. Hence, the calculation 
of timely resolved behaviour of energy consumption and generation of industrial consumers in 
terms of load profiles (LP) play a key factor. 

1.1 State of Research and Scope of the Work 

The goal of most energy system models is to efficiently depict long-term GHG emission 
pathways, the impact of increased energy efficiencies or the implementation of future 
technologies and renewable energy sources [4]. A number of these models investigate the 
mentioned factors in a coarsely time-resolved way. The impact of these factors on the finely 
resolved energy consumption patterns (e.g. hourly resolved values) of consumers is often 
disregarded because of the extensive and detailed scope of this task. However, the 
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development of such models is crucial for grid operators and energy suppliers to adequately 
improve their forecast models or for industrial sites themselves to support their demand side 
management. 

Throughout an extensive literature research, we found that such models were developed for 
the mobility and residential sector. Vopava et al. [5] examined approaches in the mobility sector 
simulating the energy consumption of electric vehicles at charging stations. These models are 
either based on modelling of the driver’s behaviour [6] or measured data [7]. In the private 
sector, behavioural characteristics of residents were also investigated by Pflugradt and 
Muntwyler [8] to synthesize corresponding load profiles (LP) of the single households.  

Models for LP generation for the industrial sector were not developed in a such far reaching 
scope yet [9]. We reasoned this because the industrial sector holds a more heterogeneous 
nature in terms of energy consuming or generating factors than compared to mobility and 
residential. Some studies like Starke et al. [10] or Thiede et al. [11] investigate the industrial 
sector nevertheless. However, their models require a deep base of data before being applied. 

Therefore, our overall goal is to develop a methodology for generating synthetic LPs for various 
energy carriers like electricity, direct fuel or steam of production chains of all industrial 
subsectors and provide an extensive database within the user-friendly software environment 
Ganymed [12]. The default data can be applied to instantly depict the consumption and 
generation behaviour of real or fictitious industrial sites and can be extended with new data 
anytime. The software can be downloaded via ganymed.ga.  

2 Methodology of Ganymed 
We divided this chapter into two parts covering the overall model and simulation paradigm first. 
Afterwards we describe the application of the base model for industrial processes which was 
developed throughout our studies. 

In a first step, we applied the classification of the International Energy Agency (IEA) to divide 
the industrial sector into energy intensive and non-energy intensive subsectors [13]. We 
integrated the energy intensive subsectors Iron & Steel, Pulp & Paper, Chemical and Non-
Metallic Minerals into Ganymed first, since we concluded that these sectors only exhibit a 
limited range of different and energy demanding production processes and principles. The 
product variety is smaller compared to other non-energy intensive subsectors [9]. Therefore, a 
bottom-up approach can be applied to depict those subsectors. 

Throughout a standardised research approach, we investigated all four subsectors and their 
underlying processes and production chains extensively. We characterised the processes in 
regard to their runtime, operating type (e.g. continuous or discontinuous), specific energy 
demand or time series etc. The other non-energy intensive subsectors will also be introduced 
into the system. 

2.1 Overall Model Paradigm 

After building up a sound database of the included industrial subsectors, we developed a 
calculation approach based upon discrete-event simulation. Via this paradigm, a sequence of 
interactions of i active components (e.g. tonnes of steel) with m resources (e.g. industrial 
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processes like blast furnace etc.) can be depicted [14]. Therefore, a logical production route 
can be designed and its timely resolved energy demand evaluated. We enhanced the 
simulation paradigm extensively to meet the necessary requirements for depicting industrial 
process routes of the mentioned energy intensive industrial subsectors. 

Figure 1 shows the overall functionality and the adaption of discrete-event simulation in 
Ganymed. We defined the backend of Ganymed as the simulation environment (a), while its 
graphical user interface (GUI) (b) takes the role of the frontend. The user defines or sets the 
desired production chain with its containing processes and the amount of components, which 
shall be processed, within the GUI (c). The classes of all included processes (f) in the default 
database (e) create m specific object resources (e.g. three pulp digesters in one production 
route). Via drag and drop the user can then dynamically design the desired route and interlink 
all processes with each other (h).  

When this setup is finished, the user initiates the simulation (d). All included processes operate 
within the defined production route and sequence via timely events (i). The energy consuming 
(or generating) behaviour of the processes is added up to depict a general LP (j). 

 
Figure 1: Functionality and simulation operation of Ganymed 

2.2 Ganymed’s Application on Industrial Processes and Production Routes 

As we described above, the paradigm of discrete-event simulation is applied to adequately 
depict industrial processes and their operational behaviour.  

For one, all depicted processes are divided into discontinuous (batch) and continuous 
processes. Continuous processes are characterised by throughput (e.g. in t/h), batch-wise 
ones by unit size (e.g. in t) and operating times including charging and discharging durations.  
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The alignment of these processes to a production route can be performed freely and 
dynamically by the user as mentioned above. To successful communicate this structure from 
the GUI to the simulation environment, a coordination matrix is applied. Figure 2 (a) shows a 
possible production route in Ganymed, whose start and end point is defined accordingly. The 
coordination matrix (b) of the main product route (indicated by black directional arrows) 
contains the address of each dispatching and receiving process. Furthermore, subproduction 
chains can be aligned in serial or parallel. 

Figure 2 also shows the application of different materials streams besides the main product in 
Ganymed. For example, the main product can be defined as pulp (in Figure 2 (a) indicated by 
black arrows). A possible auxiliary material could be recycled paper as indicated by green 
arrows. A by-product of chemical pulp production is black liquor [15] (see blue arrows in Figure 
2 (a)), which can also be depicted in Ganymed. The coordination matrix for recycled paper and 
black liquor model implementation is extended accordingly (Figure 2 (c) and (d)).  

 
Figure 2: (a) Possible production route in Ganymed with a according coordination matrix for the main product in (b) 
and the auxiliary material streams in (c) and (d) 

All calculations of energy flow balances can be performed for various system dimensions. 
Therefore, we introduced user-defined, variable system boundaries into Ganymed. 

A production route typically contains several production related processes as shown in Figure 
3 (a). These processes either take part in the production itself and consume final energy (e.g. 
electricity for pulp digester) or transform energy carriers within or outside the industrial site 
(e.g. CHP plants, electrolysers, blast furnaces…). The latter are defined as “autoproducers” by 
the UN Energy Statistics regime [16].  

The bold arrows in Figure 3 indicate the energy streams/carriers. When defining the balance 
border as shown in (a), Ganymed will only generate synthetic direct fuel LPs due to the 
intersection of this energy carrier with the system boundary. Electricity and steam is generated 
and consumed within the border. However, the user can adapt the boundary to just depict the 
electricity LP of e.g. object resource 1 (b). Additionally, the energy consumption and generation 
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behaviour of the included autoproducer can be assessed, when the boundary is defined 
accordingly in (c). The dynamic system boundaries are therefore capable of depicting the 
energy consumption and generation of single processes, parts of the manufacturing route or 
the overall industrial site. 

 
Figure 3: System boundaries in Ganymed: (a) Overall production plant boundary including (b) single production 
processes and (c) autoproducers 

3 Case Study 
We evaluated the functionality of Ganymed via various case studies modelling the 
consumption behaviour of real industrial sites. In a preceding study [9] we investigated an iron 
& steel mill in Austria and found good approximations of our results to the measured data.  

For this paper, we’d like to present a case study modelling the electricity demand of an existing 
cement plant based upon the work and measurements of Lidbetter et al. [17]. In this study the 
most energy intensive part of the cement production route is described and its underlying real 
electricity demand is published. Lidbetter et al. derived DSM measures from their analysis and 
improved the energy efficiency at the real production site. 

We implemented the given process layout of this study shown in Figure 4 in Ganymed. The 
main part of the process chain consists of two parallel sub-production routes, which are 
designed similarly. However, the starting crusher unit as implemented in all cement mills is not 
included in the route. Two roller mills process the raw meal to meet the specific grain size for 
the finished product and are operated batch-wise. After this step two raw meal silos act as a 
buffer for the incoming raw meal and its further processing. We calculated the mean time of 
storage based upon the mentioned study as 5 minutes per tonne main product. Two follow up 
rotary kilns burn the raw meal continuously. These units are excluded from the energy balance 
because they are responsible for just a small share of the overall electricity consumption. 
However, they are nevertheless part of the sequential simulation to depict the real production 
flow as accurate as possible. The following clinker silo stores excess material and therefore 
buffers any fluctuations of material flow. The two remaining ball mills (cement mills) refine the 
clinker to the finished product. 
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Figure 4: Process layout of Lidbetter et al. [17] as implemented in Ganymed 

The electricity consuming behaviour of raw mill 1, raw mill 2, cement mill 1 and cement mill 2 
will be assessed throughout this case study. Further information on the included process units 
are shown in Table 1 as they are classified as either batch (blue) or continuous (orange) 
processes in accordance to Figure 4. We implemented the corresponding throughput, unit 
sizes and durations from Lidbetter et al. in our model, while the corresponding electricity 
consumption origins from the Ganymed database. Furthermore, we altered the mean 
consumption slightly because the underlying literature data from our database lists these 
demands in ranges. 

Table 1: Characterisation of processes in this case study 

Name Throughput 
[t/h] 

Unit 
Size [t] 

Duration 
[min] 

Charging 
and 

Discharging 
Time [min] 

Specific 
Electricity 

Consumption 
[kWh/t] 

Raw Mill 1 - 240 60 10 15 

Raw Mill 2 - 150 45 15 17 

Kiln 1 120 - - - - 

Kiln 2 80 - - - - 

Cement Mill 1 130 - - - 29 

Cement Mill 2 180 - - - 25 

The simulation was conducted in 6.2 seconds with a production of around 200 tonnes cement 
per hour over a course of 5 days. 
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Figure 5 shows the comparison of the generated synthetic LP of the shown system in Figure 
4 and the measured LP from Lidbetter et al. It is noted that we excluded downtimes due to 
repair, which mainly occurred at raw mill 1 during time of measurement and result in null lines 
in the measured LP, because these influences could not have been predicted. Additionally, 
due to the summation of just four process units these sudden downtimes of one unit would 
have caused an unrealistic impact on the overall LP. 

 
Figure 5: Comparison of synthetic LP in Ganymed to real measured LP 

It can be observed that Ganymed provides a good approximation to the measured LP. The 
mean electricity demand of the synthetic LP lies at 12341.03 kW, of the measured LP at 
12867.52 kW, which results in a deviation of around 4.1%. The overall fluctuation of the 
synthetic LP is more present because the range of the data points varies slightly as the 
histogram analysis in Figure 6 indicates. It can be observed that the electricity demand of the 
synthetic LP is influenced by normal distribution to a greater extent than the measured 
counterpart, which is more biased in the direction of higher demand values. 

 
Figure 6: Histogram analysis of data points from both LPs 
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4 Discussion & Outlook 
Energy system models with higher times resolutions (e.g. 15 min/1 h) provide the necessary 
means to evaluate future challenges of the physical energy system. This includes all partaking 
bodies from energy suppliers and grid operators to consumers. Generation of synthetic load 
profiles (LP) support this process by swiftly calculating demands on the energy grid and reveal 
areas where counteractions have to be taken.  

In our study, we apply Ganymed as a user-friendly and highly adaptive solution for designing 
new or existing industrial production chains and evaluate their energy consumption and 
generation behaviour. The derived LPs can be generated for various energy carriers and 
system boundaries. 

Within the applied case study, modelling an existing cement production plant we found good 
approximations to the overall electricity consumption and fluctuation range. The data density 
of the synthetic LP varies slightly compared to the measured LP. However, given the existing 
data from literature, we deem this case study as sufficient enough to prove the functionality of 
Ganymed. 

Future work will introduce a more extensive application of data analysis to also depict other 
energy extensive industrial subsectors. Furthermore, shift models and economic sciences will 
be taken into account to enlarge the provided algorithms and database in Ganymed. 
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Abstract: The rising volatility of industrial energy systems bears new challenges for all energy 
related research endeavours. The transition of physical energy systems into the digital world 
can bring forth new solutions by swiftly evaluating trends and changes and their implications. 
One of these solutions lies in the generation of synthetic industrial load profiles, which majorly 
support the strategic decision making for energy suppliers, grid operators and industrial plants 
itself when implementing new technologies or renewable energies at industrial sites. However, 
due to the heterogeneity of the industrial landscape in terms of processes and production route 
structures, there are still solutions missing for depicting all industries in a standardised and 
user-friendly way. We therefore developed the simulation software Ganymed and implemented 
methodologies and data bases for generating the LPs of user-defined production routes as 
well as for synthetic industrial sites. These methodologies consist of the time based simulation 
paradigm of discrete event simulation for evaluating the energy intensive industrial subsectors 
and of stochastic algorithms handling open accessibly databases for analysing non-energy 
intensive subsectors. These approaches are encapsulated within the software framework and 
are controllable via a graphic user interface. 
 
Keywords: Industry; Load Profile; Simulation; Energy System; Generation; Software; 
Interface; Ganymed 

1 INTRODUCTION 
Rapidly changing environmental and socio-economic influences confront the modern 

energy system with significant challenges. However, the rising digitalisation offers novel 
solutions for solving these problems. Energy system models play a vital role within this topic, 
especially in terms of assessing external impacts and developing optimisation measures.  

The industry acts as a major part of the global energy system. In Europe, the industrial 
landscape is accountable for around 20% of the gross domestic energy consumption [1]. 
However, compared to other energy consuming sectors like residential and mobility, 
assessments and models for the industrial sector exhibit to be more challenging in their 
development due to the industry’s heterogeneous nature in process and product variety [2]. 
Therefore, there are still vast open research areas to cover in energy research activities. One 
of these areas is the development of approaches to depict the dynamic demand and generation 
behaviour of industrial sites [3]. Because of major technological advancements in the recent 
and upcoming years and the increasing implementation of renewable energies, knowledge of 
the dynamic energy demand of consumers offers important insights for grid operators, energy 
suppliers and industries themselves [4]. We therefore present Ganymed, a developed software 
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for generating synthetic load profiles (LPs) of industrial sites. This software is, to our 
knowledge, the first of its kind for the industrial sector. 

2 DEVELOPING GANYMED 

2.1 Overall Industry Classification 
To develop an approach covering the entire industry, the sector needs to be classified 

in a standardised way. We conducted this classification via researching certain characteristics 
of the industrial energy system e.g. energy consumption, gross value added, number of 
employees, applied processes, products etc. According to the EU commission, the industrial 
sectors can be structured in energy intensive and non-energy intensive, of which the first one 
– as part of the primary industry – “exhibits a limited range of varying production processes 
and principles” [2]. Figure 1 shows the share of primary energy consumption and distribution 

by subsectors of these two groups [5]. For the latter we apply the classification according to 
IEA [6] which is the basis for our further investigations. 

2.2 Establishing Methodologies 
As our main research goal is to generate LPs for single industrial plants, we developed 

and applied different methodologies based on the subsector classification above. We utilised 
the programming language Python to create a software environment combined with a graphical 
user interface (GUI). By developing Ganymed we embedded these simulation methodologies 
into this environment. Here, we want to give a short overview over the approaches for 
generating LPs for the energy intensive and non-energy intensive subsectors.  

2.2.1 Load-profiles for Energy Intensive Subsectors 
As we declared above, because of the limited process and product variety of energy 

intensive subsectors, information and data on process level can be gathered through literature 
research and measurements in a straightforward way. We applied a bottom-up approach for 
handling this data and generating LPs from process to plant level. The approach is based upon 
the paradigms of object oriented programming (OOP) and discrete event simulation (DES) [7]. 

Figure 1: Shares of primary energy consumption 2019 of industrial subsectors in Austria 
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Figure 2 shows the developed methodology for energy intensive subsector. We published a 
detailed description of this work in Binderbauer et al. [2]. 

When the user creates a new process step as e.g. a pulp digester, etc. on the GUI, 
Ganymed searches through its database for the according process information (1). The 

resulting dataset contains information on the process’ capacity, operating times, single energy 
consumption times series or specific energy consumption operating type etc. An overall 
process class (2) contains functions, which determine how the process is handled in the GUI 
and during simulation. With this standard process, various industrial processes with similar 
functionalities can be depicted in an efficient manner. By receiving data from the overall 
database, process objects are created (3). The processes’ properties contain the default data 
and can be overwritten independently by the user. In a next step, the user aligns all considered 
processes in the GUI to meet the desired overall production chain via drag and drop (4). The 
user then connects the processes from a defined start and end object by connecting all 
involved objects via product material streams. Alternatively, the user can “load in” predefined 

Figure 2: Methodology for generating industrial LPs for energy intensive industries 
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production chain templates e.g. integrated pulp & paper production via Kraft process etc., 
which already contain a predesigned production route. After conducting the desired adaptions, 
the user then initiates the simulation (5). Here, we utilised the approach of DES, which we 
adapted to meet industrial characteristics. Via DES, a predefined amount of discrete batches 
(e.g. tonnes of pulp or steel) is created at the start object. These batches are then send through 
the aligned production route in a sequential order. When a batch is operated in a process, the 
sequence before the simulation is halted until the process finished the operation of the current 
batch. During this stop-and-go processing, single process energy demand pattern at certain 
times during simulation. After all batches are finished, these single energy demand profiles are 
summed up to generate the resulting production route LP (6). 

2.2.2 Load profiles for Non-Energy Intensive Subsectors 
Even though, the non-energy intensive subsectors make up for less than a third of 

primary energy consumption in industry (Figure 1), they exceed the energy intensive 
subsectors in regard to number of employees, added value and varying products [8]. Thus, 
these subsectors are to be involved in energy system and LP analyses as well. However, 
because of the high number of different processes and production routes a sole bottom-up 
approach for generating LPs like in section 2.2.1 will reach its limits [9]. This is because the 
required database will be far greater compared to the energy intensive subsectors, regardless 

if the information can be acquired in a satisfactory way. We therefore developed a more top-
down methodology for depicting these subsectors, which is shown in Figure 3. 
We utilized various databases for revealing correlations between number of employees, 
annual and product specific energy demand, production hours etc. of single plants and their 
corresponding LPs (1). The databases are the Industrial Assessment Center database [10], 
Herold Business database [11] and Useful Energy Analysis by Statistics Austria [12]. Based 
on the data from (1) we investigated various correlations e.g. between shift models and LPs. 
[13]. In (2) we developed algorithms to predict necessary target values based upon these 
correlations e.g. stochastically determining possible shift models for defined number of 
employees or assessing the specific energy consumption based upon production capacity and 
the microeconomic effect of economy of scale. Information of known most energy intensive 
processes in these subsectors are handled within dynamic Markov chains and make up for the 
peak demand in the LPs. These LPs are then further scaled by utilizing load factors based 

Figure 3: Methodology for generating LPs for non-energy intensive subsectors 



Proceedings of the 2nd NEFI Conference 2022 

 83 

upon the data from the databases (3). We described the developed approach more in detail in 
our recent publication [14]. 

2.3 Combination of all Industrial Subsectors within Ganymed 
We created the software environment Ganymed as a framework for implementing all 

developed approaches for generating industrial LPs. From a programming point of view, the 
architecture of Ganymed is divided into several scripts, which are handled by the core script 
“Main Code”, see Figure 4. The “Main Code” also contains a master class, which operates the 

GUI and the remaining software environment. 
All other classes in Ganymed inherit from this master class and are encapsulated from 

direct access of the user. Because the software is built around the depiction of energy intensive 
subsectors, the corresponding scripts are the main pillars of Ganymed’s architecture (key 
scripts in Figure 4). Within the process canvas in the GUI, processes are created, aligned and 
adapted by the user. The black arrows in Figure 4 indicate the chain of effects which is also 
depicted in Figure 2.  
The implementation of non-energy intensive subsectors was achieved by developing a so-
called “Industry Macro”. We designed this macro to act as a process, however including the 
full range of approaches for depicting non-energy intensive processes as outlined above. 
Through this, the macro can still be part in the process canvas and be included in the simulation 
without the need of introducing major changes into the programme’s architecture. Here, the 
Industry Macro is an external script, which is loaded into Ganymed on user’s requirement. A 
similarly handled script is the data on production route designs (“Production Templates”). 
In an upcoming study, the generating of waste heat profiles for both energy intensive and non-
energy intensive sectors will be made possible within Ganymed. This will also act as an 

Figure 4: Ganymed's architecture and implementation of key scripts and extended plugins 
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external script. 

2.4 Single Process depiction on the Process Canvas 
The creation and configuration of processes on process canvas takes an important role 

within Ganymed. Figure 5 shows a visual representation of an exemplary process on the 
canvas as well all process dependent preferences, to be freely adjusted by the user. The 
square which depicts 1 of n process objects can be moved freely by the user via drag and 
drop. The material in- and outflows are indicated by thin arrows, which are to be aligned by the 
user or predefined in the production route templates. These material routes pass the created 
batches from DES from on process to another. 

 
Figure 5: Process representation on GUI and accompanying properties 

Also the visual representation of energy flows of different implemented energy carriers 
in and out of the process are to be established in the same way. Additionally, the user can 
create movable system boundaries on canvas. With these, the LPs of singular parts of the 
overall production chain can be depicted without the need of changing the whole route. For 
energy system research these boundaries can be applied for evaluating LPs on different 
systemic levels, e.g. plant border, final energy, useful energy, etc. The eligible energy flows 
have to intersect the system boundary accordingly. 

Within the script “Process Objects” (see Figure 4), a template of the shown process 
properties is created and filled with the respective default process data from the database. 
These datasets are stored in arrays. Ganymed classifies processes in regard to their operating 
characteristics in batch and continuous working processes. The specific properties are defined 
according to this classification. Furthermore, batch working processes can either apply specific 
energy consumption or energy consumption time series (e.g. singular processes’ LPs). The 
latter can be imported via .CSV-sheets (see Figure 5). 
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The process properties of throughput, unit size, turnover time, operating times and 
energy consumption directly correspond to DES and the generation of LPs. Operating 
temperature and product intake temperature are datasets for generating waste heat profiles 
and are handled by waste heat algorithms in Ganymed. 

2.5 Production route depiction on the Process Canvas and Ganymed’s GUI 
The interface between the user and the main code is established through a GUI. The 

script is based upon the Python library Tkinter [15]. The GUI is separated in three 
compartments: Menu, process canvas and calculation & results sheet.  
Figure 6 shows the process canvas in Ganymed. In the “General” section the user can initiate 
the simulation, save, open current files or create a new process canvas. Also, the global 
settings like overall stochastic fluctuations, labelling of flows, overall production capacity, etc. 
can be adapted throughout this menu.  
The menu for “Set & System Objects” enables the creation of all start and end points for the 
production route. Furthermore, through this menu new energy carriers and material flows can 
be established. Also, system boundaries and the non-energy intensive industry macro can be 
created on canvas. 
All single processes can be accessed through the “Process menu”. Here, the processes are 
divided into mechanical, thermal, chemical and special (e.g. CHP, buffer points, etc.) 
processes. 
The “Templates menu” allows the user to insert the already mentioned predefined production 
routes for Pulp & Paper, Iron & Steel, Chemical or Non-metallic Minerals industries. 
When a mentioned process or production route is chosen, the corresponding visual 
representation of the objects are created on the process canvas. Each process consists of the 
process’ name, continuous/batch symbol, consecutive object number, preferences’ button and 
four anchor points, see Figure 7. Through clicking on the anchor points, material and energy 
flows to other processes and busbars can be established. By clicking on the process square 
itself, the process can be moved freely on the canvas via drag and drop. 
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Figure 7: Visual representation of a process on process canvas 

After the simulation is finished, the user can switch to the calculation & results sheet to 
view the generated LPs and export them, see Figure 8. On this frame, the user can also select 
and cut out representative parts of the LP to generate a weekly LP. The export is done via 
.CSV-format. On this sheet, the user also can view the evaluations on waste heat profiles and 
longest queue lengths of batches for single processes. 
 

Figure 6: Ganymed's GUI: Process canvas and preferences of process 
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Figure 8: Ganymed's GUI: Calculation & results sheet 

3 CONCLUSION 
By utilising the idea of object oriented programming e.g. encapsulation, inheritance, 

classes and objects, industrial processes can be handled systemically adequate and accurate. 
In combination with simulation paradigms like discrete event simulation and with data bases 
for stochastically analysing non-energy intensive industries, load profiles for the overall 
industrial sector can be depicted thoroughly. To wrap these methodologies in a user-friendly 
way, we embedded the approaches in a standalone application framework to create the 
software Ganymed. This software is executed as an .EXE file and is based upon the Python 
library Tkinter. All processes within Ganymed’s GUI can be aligned via drag and drop. They 
consist of default information e.g. spec. energy consumption, capacity, etc. from literature 
review, which can be adapted freely by the user. Ganymed consists of five key scripts, one of 
which acts as the main component for connecting all methods in the software framework. Three 
additionally scripts e.g. methodology for non-energy intensive industries are built in as plugins 
and are called on user command. The software is free to use and downloadable via 
ganymed.ga [16]. 
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5 FURTHER INFORMATION 
Ganymed is an .EXE software, executable for Windows® based systems with > 8GB RAM and 
Intel i5 core or equivalent. Extra licenses or the utilisation of programming languages is not 
mandatory. Ganymed is accessable via www.ganymed.ga. 
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