
Use and limitations of various metrics to assess the quality of
extreme sparse datasets in geotechnics

February 13, 2023

Matthias Hahn*1, Alla Sapronova2 and Marlene Villeneuve1

1Chair of Subsurface Engineering, Monatnuniversität Leoben, Austria
2Institute of Rock Mechanics and Tunneling, TU Graz, Austria

*presenting author (email: mattthias.hahn@stud.unileoben.ac.at)

Abstract

In data science and statistics, metrics are the measures of a quantitative assessment of
dataset(s). In machine learning (ML), metrics are used to monitor the performance of a model
during training and testing (therefore sometimes called “performance metrics”) by calculating
a distance between predicted and true outputs. All ML models need a metric to access the
model’s accuracy in mapping the inputs X to the outputs y. So for different algorithms one
metric describe a comparable value. Most supervisors use common metrics, but which metric
is use able for which algorithm with respect to geotechnic/geology. The following chapter
discuss this relation for different algorithm and metrics considering a variation of data sets.

1 Introduction

Like all models, machine learning algorithms have errors and can not predict the output exact. To
get an idea how well an applied algorithm works, performance measuring is needed [6]. This inves-
tigation focus on regressors and classifiers. An example for classification in geoscience is labeling
rocks into lithologies, based on different geotechnical parameters. For regression, instead of label-
ing lithology, the predictor calculate the uniaxial compressive strength or the vertical tension. The
metrics for this two tasks show different aims. Regressor metrics show the performance based on
the distance between predicted and supervised output data [3]. Classifiers metrics compare, how
many predicted values are in the right/positive class [9]. So different metrics are developed for
comparing the algorithms. The question is: in geoscience, are all metrics useful and trust-able for
all algorithms and data sets? If not, what are the limitations? The knowledge of this topic is little
in the geoscience community [8]. The following paper is structured: First, we describe the used
methodologies, predictors and metrics. Next we describe the used data sets and the preparation.
Third we present and discuss the results for the used methodologies. Last a recommendation is
given for the usefulness of the different algorithm-metric relations.
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2 Methodology, Predictors, Metrics

2.1 Methodology

For giving a recommendation of an algorithm-metric relation, the idea is to train and measure the
performance for several hundred similar data sets. So a statistical statement can be given for how
stable the algorithm-metric perform. This repeated training and performance measuring fading out
the subjective influence of the supervisor. Every algorithm and metric need input parameters, like
the used solver. Many of these parameters have no strict criteria for use, so the experience of the
supervisor is needed. In this case, for the same data set different metric results are possible and the
recommendation for the algorithm-metric relation is subjective. For our investigation, the needed
amount of eligible data sets is not given. Eligible data sets are sets, where the classes are not too
imbalanced or the regression has only training data for a small intervall. Also comparable data sets,
for example different SPT measurement for soft clays, are not available for this research. So the
question rises, how to perform the training and performance measuring in respect for a statistical
approach? The idea was to repeat the training and performance measuring several times. Every
repeated training the data set is splitted randomly into training and testing part. This was done
with the train_test_split() command of the sklearn package[7] of python [2]. 30% was the test
part of the data set. The training-testing loop was performed 300 times. The result is a distri-
bution of how often a algorithm-metric result is calculated. Figure 1 shows the histogram of the
K-Nearest Neighbor with the accuracy metric. It shows also the fitted probability distributions,
this is explained later. How to evaluate the stability of the algorithm-metric relation? The distribu-
tion shows some kind of probability distribution. Every probability distribution can be described
by different parameters like mean, median, standard deviation,... For evaluating the stability we
decided to use the normalized standard deviation. A small standard deviation describes a distribu-
tion with less variation. The idea is, that such an algorithm-metric relation implicates stability for
different data sets and the subjectivity of the supervisor parameters have only small impact. In the
end, it would be use-able for the similar variation of data sets in geoscience. The package Fitter [1]
fits the available probability distribution of SciPy [10] for a given distribution. Figure 1 shwos the
fitted probability distributions by package Fitter. The distributions are ordered by the Kolmogorow-
Smirnow-Test p-value. For a given hypothesis H0 the KS-pvalue tells how good the data can be
described by the probability distribution. If the p-value < 0.05, H1 hypothesis is favorable, so the
data can be described better by another distribution [5].
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Figure 1: Histogram for the accuracy of KNN predictor

2.2 Predictors and Metrics

Table 1 summarize the used predictors and metrics for the regression. As few as possible algorithm
parameters are used. The value for random_state = 42. For metrics no parameters are needed.
Table 2 is the same like before, only for classifier.

short cut predictor parameters short cut metric
lir LinearRegression() mer max_error()
las Lasso() random_state mae mean_absolute_error()
svr svm.SVR() mse mean_squared_error()
rid Ridge() random_state msle mean_squared_log_error()
enc ElasticNetCV() recompute=’auto’, random_state mee median_absolute_error()

mlp MLPRegressor()
max_iter = 2000,

random_state
r2 r2_score()

dtr DecisionTreeRegressor() random_state
rfr RandomForestRegressor() random_state
knn KNeighborsRegressor()
gpr GaussianProcessRegressor() random_state

Table 1: Regression predictors and metrics. Right side: Short cut, sklearn command of the predic-
tor and the used parameters. Left side: short cut and sklearn command of the used metrics.
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short cut predictor parameters short cut metric
rfc RandomForestClassifier() random_state acc accuracy_score()
knn KNeighborsClassifier() f1 f1_score()

svm SVC()
random_state,
probability=True

fb fbeta_score()

dtc DecisionTreeClassifier() hamming hamming_loss()
gnb GaussianNB() jaccard jaccard_score()
lda LinearDiscriminantAnalysis() log log_loss()
abc AdaBoostClassifier() random_state prec precision_score()
qda QuadraticDiscriminantAnalysis() rec recall_score()

mlp MLPClassifier()
random_state,
max_iter = 4000

zero zero_one_loss()

lrc LogisticRegression()
random_state,
solver=’sag’, max_iter=4000

Table 2: Classification predictors and metrics. Right side: Short cut, sklearn command of the
predictor and the used parameters. Left side: short cut and sklearn command of the used metrics.

3 Data and Results

The link to the Github server can be found here: https://github.com/rmttugraz/MatthiasHann.
git

3.1 Data

16 data sets are used from the website of the TC304 Engineering Practice of Risk Assessment &
Management of the International Society of Soil Mechanics and Geotechnical Engineering (ISS-
MGE). Finish soft clays, Cone Penetration Test, mixed rocks, CPT in clays and cohesive subgrade
soils, volcanic rocks, Shanghai clays and coarse grained soils are the data sets used for regression.
Here different features are used for predicting geotechnical parameters. Some of the regression data
sets are also used for classification and visa versa. Here sandy/clayes soils, igneous-sedimentary-
metamorphic rocks and finnish fine grained soils complete the data. Most of the predicted values
are rock classes or geotechnical classes. Nine data sets for regression and seven data sets for clas-
sification result in 1170 algorithm-metric histograms. This histograms can be found at the Github
server stated before. Also the description and data preparation of every data set can be found in the
server.

3.2 Results

For every algorithm, one probability distribution over all metrics is chosen, so the metrics are
comparable for one predictor. The result is for every data set a table with the normalized standard
deviation sn for each algorithm-metric relation. Table 3 shows an example of one of these tables,
of normalized standard deviation for undrained finish clay [4]. The green values have a p-value <
0.05. The red cell background show that the sn is > 0.5. Beside the mer, the results are based on
positive p-value criteria. The only negative sn criteria is not trustful because of negative p-value
criteria. The recommendation of the data mainly based on the sn criteria. This evaluation can be
found for every sn table at a document at the Github server.
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standard deviation mer mae mse msle mee r2
lir 0.29052 0.101738 0.278022 0.190694 0.147567 0.153469
las 0.273824 0.10394 0.28964 0.185631 0.141102 0.152112
svr 0.343976 0.123824 0.361241 0.183287 0.138341 0.135582
rid 0.290826 0.101739 0.27803 0.190691 0.147563 0.153468
enc 0.268392 0.103862 0.269121 0.187971 0.158204 0.144488
mlp 0.407687 0.124194 0.380329 0.368882 0.145088 0.275252
dtr 0.394177 0.125707 0.370739 0.189699 0.15982 0.866403
rfr 0.387491 0.114617 0.345816 0.205218 0.128553 0.161104
knn 0.36286 0.106496 0.335057 0.192267 0.136249 0.111909

Table 3: The normalized standard sn deviation for undrained finish clay [4]. Green: sn with p-
value<0.05. Red: sn>0.5.

4 Interpretation and Recommendation

The results discussed in subsection 3.2 are the basics for the recommendation, which algorithm-
metric relation is useful in geotechnic. First an over-all recommendation is given, where the sum
of all negative p-value criteria and negative sn criteria gives the hint for the decision. In a second
step every type of data set is discussed separately.

Table 4 is the recommendation for regessors. The criteria for green (+; use-able for all data
sets), orange (∼; depends on data set), red (- not use-able for all data sets) is based on the p-value
and sn. For regression, results of nine data sets are available. First the negative p-value criteria is
summed up. The negative sn criteria counts double if it is not based on a negative p-value criteria,
else it will not be summed into the recommendation. The sum is refered to the number of data sets.
Equation 1 shows the summation criteria for the regressor. If the value reaches >30% the over-all
recommendation is ∼. For values > 50% it is −.

Regressorcrit =
∑ pvalueneg +2∗ sn(pvaluepos)

ndatasets
∗100 (1)

The results show for mer a negative over-all recommendation. This is based on the negative
p-value criteria, for mer between 7-9 times of the cycle. mse is mostly acceptable, but for LIR,
RID and DTR not use-able. Here the 1-2 negative sn criteria have an impact. The same is for r2,
but here the p-value has more impact. MEE and mae are over-all metrics use-able. The SVR-mee
and MLP-mee shows a ∼ criteria because of one time negative p-value and sn criteria. LIR-msle
and RID-msle is based on three p-value criteria, LAS-msle one sn and two p-value, ENC-msle one
sn and three p-value criteria.
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recommendation mer mae mse msle mee r2
lir - + - ~ + -
las - + ~ ~ + ~
svr - + ~ + ~ -
rid - + - ~ + ~
enc - + ~ - + ~
mlp - + ~ + ~ ~
dtr - + - + + -
rfr - + ~ + + ~
knn - + ~ + + ~

Table 4: Recommendation for the relationship algorithm-metric of the regressor. + (use-able for
all data sets), ∼ (depends on data set), - (not use-able for all data sets).

Table 5 is the recommendation for the classification task. Here the results of seven data sets
are summed up. The same criteria for +, ∼ and − are given. The Equation 1 is also the summation
criteria for the classification. Only six out of ninety algorithm-metric relations are not rated with
+. ABC-hamming, -log, and -zero, SVM-prec and MLP-rec are all based on three negative p-value
criteria. MLP-prec is grouped by four negative p-value criteria.

recommendation acc f1 fb hamming jaccard log prec rec zero
rfc + + + + + + + + +
knn + + + + + + + + +
svm + + + + + + ~ + +
dtc + + + + + + + + +
gnb + + + + + + + + +
lda + + + + + + + + +
abc + + + ~ + ~ + + ~
qda + + + + + + + + +
mlp + + + + + + - ~ +
lrc + + + + + + + + +

Table 5: Recommendation for the relation algorithm-metric of the classifier. + (use-able for all
data sets), ∼ (depends on data set), - (not use-able for all data sets).

A recommendation for every data set can be found in the document at the Github server.

5 Conclusion

In summary most of the algorithm-metric relations are recommendable. For different data sets,
this recommendation varies strongly. Repeated training and testing of the algorithms with a finite
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number of data sets gives a first idea, how future recommendations of the algorithm-metric recom-
mendation can look like. In the sklearn package, a lot of other metrics and algorithm are available.
Here more investigation must be done. Also with more different data sets, one can give a better and
more detailed recommendation. The question is, if the scientific community is interested in such
recommendations. Most supervisors use standard metrics and algorithm. If there is a need, the first
step should be to check, which algorithm-metrics are mostly used by the geotechnical/geological
community. One problem is, that in this field the ML is a young science and not widely known or
applied. So investigation for recommendation of algorithm-metric relations will grow step by step
with the growing knowledge and application of this scientific domain. Another future investigation
could be the impact of the size of the data sets, especially for classification. Imbalanced classes
can be a problem for training the algorithm and so the recommendation of the algorithm-metric
could be not precise enough. In the end, all statements in section 4 are recommendations with a
subjective influence, although trying to minimize these impacts. So by furthermore investigation,
it could be that there will be never a clear decision criteria for choosing the right algorithm-metric
pair for ones special data set case.
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