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Abstract

In injection molding, the properties of rubber compounds, and the manu-
facturing conditions themselves are subject to fluctuations, which impact

the quality of the finished rubber parts negatively. To detect such fluctua-
tions and to keep part quality constant, process monitoring systems are used
in a wide range of industrial applications. For this purpose, a data-driven
statistical monitoring system for rubber injection molding needs to be devel-
oped. By employing multivariate statistics, faulty parts can be detected and,
once a fault database is present, fault types can be identified. To develop the
system, first a dynamic compression testing methodology is presented, which
is able to determine the relevant dynamic quality parameters of rubber parts
in a way that is fast enough for on-line implementation and 100 % quality
control. Second, the temperature of the rubber, the most important factor
influencing the final part quality, is determined at every stage of the rubber
injection molding process. By employing ultrasound and thermography, the
rubber temperature resulting from the processing conditions can be modeled.
On this base, the data-driven process monitoring system is built.

This process monitoring system detects fluctuations causing faults by
using a Principal Component Analysis (PCA) based approach. As a result,
all available process signals can be evaluated simultaneously, even linear
dependent ones. Additionally, by Fisher Discriminant Analysis (FDA), the
type of fault can be automatically identified. Compared to other methods
of process monitoring available for rubber injection molding, the presented
data-driven system eliminates the need for any preliminary material tests,
modelling or data selection. It is therefore much more straightforward and
cost-efficient in implementing in smart manufacturing facilities.
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Kurzfassung

Beim Kautschukspritzgießen können Schwankungen der Verarbeitung-
seigenschaften und -bedingungen auftreten, welche die Qualität der

hergestellten Bauteile negativ beeinflussen. Um solche Fluktuationen zu
erkennen, und Gegenmaßahmen treffen zu können, werden in vielen indus-
triellen Anwendungen Prozessmonitoringsysteme eingesetzt. Deswegen wird
in dieser Arbeit ein datenbasiertes System zur statistischen Prozessüberwachung
des Kautschukspritzgießprozesses entwickelt. Durch den Einsatz multivari-
ater Statistik können fehlerhafte Bauteile detektiert, und die Art des Fehlers
kann automatisch identifiziert werden. Zur Entwicklung des Systems wird
zuerst eine dynamische Testmethode vorgestellt, welche die relevanten dy-
namischen Parameter eines Elastomerbauteils schnell genug bestimmen kann,
um für den on-line Einsatz geeignet zu sein. Weiters wird die Temperatur
des Kautschuks im Verarbeitungsprozesses bestimmt, da diese den wichtig-
ste Faktor für die finale Bauteilqualität darstellt. Durch den Einsatz von
Ultraschall und Thermographie konnten Modelle für die Abhängigkeit der
Kautschuktemperatur von den Verarbeitungsbedingungen erstellt werden.
Diese Messungen bilden die Basis für die Entwicklung des datenbasierten
Monitoringsystems. Dieses erkennt Fluktuationen, welche Fehler verur-
sachen, durch den Einsatz von Hauptkomponentenanalyse (PCA). Dadurch
können alle verfügbaren Prozesssignale gemeinsam zur Überwachung ver-
wendet werden. Zusätzlich kann das Monitoringsystem mit Hilfe von Fisher
Discriminant Analysis (FDA) Fehlerarten automatisch identifizieren. Das
in dieser Arbeit entwickelte Prozessmonitoringsystem verlangt keine Vor-
abuntersuchungen, Modellierung oder Datenverarbeitung. Es ist dadurch
einfacher und kosteneffizienter in Industrie 4.0 Fertigungsanlagen zu inte-
grieren als andere für das Kautschukspritzgießen verfügbare Systeme.
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1 Introduction and current state of technology

In this work, a data-driven statistical process monitoring system for
rubber injection molding will be developed. It will enable automatic

fault detection and identification based on processing data readily available
on modern rubber injection molding equipment. Thus, abnormal process
fluctuations are detected on-line and machine operators are advised on
the possible causes of the deviation. While a large body of work can be
found on data-driven approaches for monitoring the thermoplastic injection
molding process, and some methods are already implemented into the
operating systems of modern injection molding machines, no statistical
process monitoring approach has been reported on rubber injection molding
in literature outside of what has been done in this work.

Rubber goods are found in a wide range of consumer and industrial
applications, whenever excellent damping, sealing, and friction capabilities
are needed for a system’s intended operation. A large portion of those are
manufactured by injection molding, as this technology is most economically
sensible when manufacturing lots exceed 10000 parts [1]. Due to global
competition, market saturation effects and ever-increasing performance
requirements, part manufacturers are forced to increase the complexity of
their products by -for example- optimizing part weight or increasing function
integration [2–4]. Consequentially, the complexity of the manufacturing
processes has to rise as well, which can only be done by increasing automation.
In conjunction, costs need to be cut, and to do so, reducing the scrap rate
is a very effective measure, because it brings ecological advantages with it
as well.

To meet these customer demands, manufacturing equipment suppliers
constantly increased the capabilities of their injection molding machines to

1



1 Introduction and current state of technology

levels, where repetition accuracy of temperatures and machine movements
is not an issue any longer. However, even perfectly operating injection mold-
ing equipment can not prevent process disturbances from outside sources,
especially property variations of the raw material. Such variations become
ever more critical as the limits of the processes and parts are pushed further.
Since modern injection molding equipment is able to collect massive amounts
of processing data, and fitting additional sensors to the mold has become
more common, process monitoring systems are of major interest both to
academia and industry [5–10]. The prime goal of all monitoring systems is
to reliably detect process fluctuations and adapt the process accordingly
without human intervention to keep the part quality within specification
boundaries at all times. While there have been significant successes for this
approach in thermoplastic injection molding (which will be discussed in sec-
tion 1.3), little has been done for controlling or even monitoring the rubber
injection molding process [11, 12]. This is surprising, as rubber compounds
are complex mixtures of physically and chemically active ingredients, which
only increases their susceptibility to exhibit variations of their properties
batch-to-batch or even within-batch.

Machine learning methods will be applied in this work to develop a
process monitoring system for rubber injection molding, which detects
critical material property variations without the need for any prior testing.
Furthermore, classification methods will be applied to predict the type of
fault, when certain types occur repeatedly.

To start, after revisiting the basic principles of process monitoring and
methods for generating knowledge from data, a current state of technology
on process monitoring in injection molding both for thermoplastic materials
and rubber is given.

1.1 Principles of process control

Modern devices are able to capture far more data about their current state
than can ever be translated into information. Suppliers of manufacturing
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1.1 Principles of process control

equipment have implemented full electronic closed-loop control of every
feature of their machines to meet the ever-increasing demands of their cus-
tomers in process and part quality [13]. To enable closed-loop control, every
modern tempering unit, handling robot, or injection molding machine has
built-in sensors providing real-time actual values to the operating system
about every actuator position, cooler temperature, or motor power con-
sumption. The aim of this work is to gather relevant information from
these data streams and establish a process control, monitoring and fault
identification system for rubber injection molding that is able to recognize
faulty rubber parts before they exit the mold and provide insight into the
type of fault that occured. Many of the basic principles of quality control
systems that accompany modern manufacturing processes have been laid
down by Shewhart in his book "Economic control of quality of manufactured
product", which was originally published in 1931 and has been re-issued
ever since [14]. There, he defines the aspect of quality in a broader sense
than is common in more recent literature, where quality is often considered
the goodness of a thing [15]. To Shewhart, quality is a set of measurable
attributes which make up an object and also clearly distinguish it from
other, similar objects. When objects (products) are made repeatedly, not
one of these objects is completely identical to any other, thus the quality of
a process output (product) is subject to variability. Variability is inherent to
every process, natural or artificial, because a process is always the results of
many contributing factors which do not possess a singular state but rather
follow some probability density function. Thus, the magnitude of quality
attributes of a product is also a statistical distribution and not a fixed value
[16]. The aim of any process control system is to be able to measure the
current value of the statistical contributors and, based on past observations,
infer the quality of the product manufactured under the measured conditions.
To design process monitoring systems effectively, two types of variablity
need to be identified [14, 15]:

1. Variablity from Assignable Causes are disturbances introduced
by sources which can be named, and thus measures to counter vari-
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1 Introduction and current state of technology

ability caused by them have to be set. Such assignable causes may
be non-stationary process temperatures, wear, or -specific to rubber
injection molding- batch-to-batch variations. In best practice, possible
assignable causes should be considered from the earliest conception
phase of the product and its related processes, as design flaws lead
to not being able to eliminate these causes of variability in the pro-
duction phase. In the second half of the 20th century, the mindset of
a more complete approach to quality engineering was made popular
by Taguchi [17]. He also popularized the application of Design of
Experiments (DoE) outside of academia, even though this method-
ology was already around since the beginning of the century. By
DoE methodology, the response of the product quality to changes of
the process can be systematically investigated. By evaluating a DoE,
a robust process can be set up, of which variation lies well within
specification limits and inherent variability does not cause the product
to be outside specification immediately.

2. Inherent Variability incorporates the variations when all adjustable
factors are set to their desired values, equipment is working as expected,
and product fluctuations are well within confidence limits. Hence, the
process is in control. The true sources of Inherent Variability can
not be determined easily, and variations of the measurement systems
used to control the process contribute to perceived product quality
fluctuations. It is in this scenario, where process monitoring and
control come into effect. By Statistical Process Monitoring (SPM),
trends and shifts which affect the process capability negatively are
detected before the process is outside the specification limits. With
the fault detection and identification methods used in this work, such
events can be analysed and assignable causes can be determined. By
taking countermeasures, the process capability can then be increased
again. Inherent variability specific to rubber injection molding is for
example, small differences in storage maturation or control-based mold
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1.2 Gathering knowledge from data

temperature fluctuations.

With ever-increasing complexity, harsher application conditions and envi-
ronmental regulations, quality standards of technical parts are also steadily
increasing. In conjunction with rising requirements for part performance,
manufacturing equipment was fitted with more sophisticated mechanical
components but also with far more capable electronic control systems [7, 15,
18]. These systems also drastically increased the amount of data available
for monitoring in modern manufacturing equipment, considering digital
controllers need measurements of actual values of every variable that has
to be controlled [7, 19, 20]. For about two decades, much work has been
done to use injection molding machine and sensor data to transfer quality
fluctuations from Inherent Variability into the realm of Variability from
Assignable Causes. When additional sources of error can be eliminated and
the range of process variability can be reduced further, more complex parts
can be manufactured and higher part performance can be expected from
those parts. [7, 8, 18, 19, 21].

1.2 Gathering knowledge from data

Artificial intelligence (AI) is the megatrend of the 21st century, so it has
found applications in almost every aspect of modern life such as finance,
security, entertainment or manufacturing [19, 22, 23]. For process control
purposes, it has to be understood that AI in itself is only one method that
can be used in the process of Knowledge Discovery in Databases (KDD).
According to Fayyad, KDD is a "nontrivial process of indentifying valid,
novel, potentially useful and ultimately understandable patterns in data"
[19, 21, 24].

As shown in Figure 1.1, first a database has to be created, for example
by data collection from external sources, or as in this work, by conducting
extensive experiments. In the experiments, factor level settings should
cover a setpoint range as wide as possible, to ensure data are generated in
which possible patterns are represented fully. Only if this is true, they can
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1 Introduction and current state of technology

later be identified by the KDD. Once the database exists, data which are
promising in their information content need to be selected. For industrial
applications, the first two steps already require high level knowledge of the
experimental process, since experiments need to be conducted in a way that
creates useful data. When the experiments are designed improperly, they
may obscure patterns, and the KDD has to be restarted [24]. Furthermore,
data have to be selected with consideration of the investigated phenomena,
and ideally, only data from independent variables with high information
content are retained. The selected data then need to be preprocessed, which
is facilitated by extensive computer libraries that offer automated routines
for many important preprocessing steps, such as capturing outliers, cleaning
missing data, and centering and scaling [25].

Database

Selected
data

Pre-
processed
data

Trans-
formed
data

Patterns

Knowledge

Preprocessing

Transformation

Data M
ining

Interpretation

Selection

Abstraction

In
fo

rm
at

io
n

Figure 1.1: The Knowledge Discovery in Databases (KDD) process is a
multi step procedure aimed to generating an understanding of
underlying patterns of data in large data bases [19]

Literature on the KDD is consistent in treating the subsequent steps of
transformation, and data mining as separate steps [19, 21, 24]. However,
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1.3 Process control in injection molding

transformation as performed by some auto-encoder methods, for example
PCA, can already extract the basic patterns in the data, not necessitating
additional data mining methods [26]. Today, from the preprocessed data
onward, much of the KDD process is performed by artificial intelligence
methods, and, especially considering deep learning methods, patterns may
remain inconceivable to humans [22]. If knowledge is even discovered by
humans in such situations is up to debate. Whenever the KDD process should
be employed in industrial environments, deep learning can be non-viable to
many manufacturers, because emerging patterns and their interpretation
is not accessible to them. Thus, they are not able to deduct process
improvement steps when faults occur, even worse, have any direct control
on the decision logic of the process monitoring system.

1.3 Process control in injection molding

For industrial applications, specific knowledge is of great importance to
draw correct conclusions from the KDD process and thus, machine learning
methods other than AI are commonly more popular. These methods can
present emerging patterns in a way humans can more easily understand and
check for their validity [27–34]. To model any given process, three basic
approaches are commonly mentioned in literature [7]:

1. First principle model based methods

2. Knowledge-based methods

3. Data-driven methods

The main difference between first principle model/knowledge-based meth-
ods and data-driven methods are the in- and outputs of the systems. In first
principle model based methods, rules about the process’ behavior are estab-
lished upon fundamental physical principles of the process components. The
most prominent application of such methods in injection molding is injection
molding simulation software [35–37]. There, the laws of thermodynamics
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1 Introduction and current state of technology

Answers

First principle model/
knowledge-based
monitoring method

Data-driven monitoring
method

Rules

Data
Answers

Rules

Data

Figure 1.2: Model/knowledge-based monitoring methods differ from data-
driven ones mainly on what their inputs and outputs are [22]

and motion (chapter 2) are used to predict, for example the filling pattern,
energy consumption, and reaction kinetics during injection molding of plastic
and rubber parts. To work properly, injection molding simulation needs
precise and accurate data on the thermodynamic and rheologic behavior of
the plastic or rubber of which filling should be modeled. Much effort has
been made by academia and industry to measure the true material behavior
in experiments, and success is still not guaranteed, especially for industrial
rubber compounds [38–42].

Monitoring the injection molding process of rubber based on first-principal
models is done very rarely, and only the works of Berkemeier et al., can
be found [11, 12]. This research culminated in the commercially available
Jidoka PM101 III (CAS GmbH & Co KG, Reinbek, Germany) process
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1.3 Process control in injection molding

monitoring system. With this system, Berkemeier et al. calculate the full
energy input into a volume of rubber as it enters the injection molding
machine until it is molded into a part. Their calculations are of course not
dissimilar to the methods of injection molding software, although they also
try to incorporate the dosing process and dwell time of the rubber [43].

Similar to injection molding simulation software, issues arise with the
determination of correct material parameters. To adjust for batch-to-batch
variations and differences in storage maturations, rheological and chemical
parameters need to be measured for every batch, which can be a factor of
cost and time that is able to outweigh any benefits of a quality-focus process
control system. Furthermore, measurement devices of material parameters in
themselves rely on samples taken from the batches, reducing the effectiveness
of the approach to adapt to within-batch variations of material properties.

Knowledge-based approaches conceptually work in the same way as model-
based ones, but differ in the origin of the rules they are based on. Knowledge-
based approaches empirically derive rules from operator experiments and
experimental setups, which employ industrial manufacturing equipment.
Of course, these empirical rules are rooted in the true physical behavior
of the manufacturing components and raw materials, but describe the
phenomena they evoke in the respective application. Such models are most
prominently used in process monitoring and control of injection molding, and
especially pressure demand during filling has been investigated extensively.
The following methods also rely on training data to monitor the injection
molding process, but the exact models - while not disclosed publicly - seem
to rely on empirical relationships found in extensive experiments by the
respective suppliers, thus they are considered knowledge-based [7, 20].

As a primary supplier of in-mold pressure sensors, Kistler Group (Win-
terthur, Switzerland) offers process control and monitoring software for
injection molding in conjunction with their sensors. Of interest for this
work is their ComoNeoPREDICT package. The software assists operators
in creating the training data by proposing an appropriate DoE. After mea-
suring the quality-specific parameters of the part, the software can be used
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1 Introduction and current state of technology

to link injection pressure curves and quality. After this modelling step is
completed, live in-mold pressure curves can be analysed on-line to predict
the part quality and monitor the injection molding process [44].

ENGEL Austria GmbH (Schwertberg, Austria) offers a wide range of
software tools to be used in connected manufacturing environment. The
software solution iQ weight control, for example, measures the pressure
signal at the mount of the screw during injection [45]. For iQ weight control
to work as intendend, training data need to be generated, but, in contrast to
Kistler’s solution, they do not need to be generated by a DoE. Rather, the
part weight of twenty shots during production has to be measured for model
training. Subsequently, the system can not only predict the part quality
based on the actual injection signal, but also take actions to keep part
weight constant as it detects deviations in the early stages of the injection
phase. The system distinguishes between three fault types: (1) A time shift
of the actual injection pressure signal compared to the training data, (2)
relative variations in slope of the injection pressure and (3) shape deviations
of the injection pressure signal. When cases (1) or (2) are detected, the
switch point between volumetric and pressure controlled filling is adapted
in a way that ensures a constant filling of the cavity at the switch. If (3) is
detected, a warning is sent to the operator that a fault of unspecified causes
occurred [20]. The iQ clamp control system is another process monitoring
system available for ENGEL injection molding machines [46]. It is able to
measure how much the mold, which is compressed by the clamping force,
relaxes during injection due to the buoyancy of the part. This phenomenon
is called mold breathing and is a function of the strength of the mold, the
part geometry, and most importantly the pressure in the mold. While by
design, the iQ clamp control system is intended for process optimization
by assisting in setting the optimal clamping force, it can also be used for
process monitoring since it also provides information on the pressure in the
cavity. In section 6.3, the iQ clamp control system will be incorporated into
the multivariate statistical process monitoring system.

Besides these, there are many commercially availabe solutions for moni-
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1.3 Process control in injection molding

toring the injection molding process of thermoplastic parts based on process
signals[2, 9, 47]. However, most solutions not specifically mentioned here do
not provide any built-in modelling or fault detection besides a reference curve
for the monitored signal. Thus, their monitoring capabilities are limited to
the knowledge and experience of the personnel operating the machine or
overseeing the plant. Furthermore, all commercially available systems only
provide univariate monitoring. While the information in the signals these
systems track for monitoring (most of them track the injection pressure) is
also high, the probability of missing faults by omitting other information
is high. This is especially surprising given that every major manufacturer
of injection molding machines offers database solutions for storing process
data cycle-by-cycle from every component added to the manufacturing cell.

In academic research, data-driven approaches have risen to the spotlight.
A very high number of papers are published on the possibilities of such
monitoring methods for a wide range of manufacturing processes [48–52].
Due to the peculiarities of the injection molding process mentioned in
section 2.2, however, many of them cannot be directly transferred. A short
overview of approaches specific to injection molding is given instead.

Chen et al., propose a system of three pressure transducers mounted at
the injection nozzle, the runner and the cavity to calculate relative viscosity
changes during molding experiments. Placing multiple sensors downstream
in the flow path augments monitoring by enabling a pressure drop calculation.
Thus, their setup resembles a high-pressure capillary viscosimeter. From
the pressure curves, they calculate features such as the integral or the peak
of each sensors signal, and many of the features correlate well with changes
in the barrel or mold temperature. However, they do not apply methods of
multivariate statistics in their approach, even though linear independence
of pressures measured along a flow path is highly unlikely [28].

Gordon et al. present a multivariate sensor, which is capable of measure-
ing the pressure, temperature and velocity of thermoplastic melt passing
by. They mount the sensor in the cavity alongside commercially available
temperature and pressure sensors. From the sensor’s signals, they also

11



1 Introduction and current state of technology

extract manually defined characteristic features such as slopes, maxima and
characteristic times. By applying multivariate methods, they are able to
increase the sensor’s signal correlation with quality parameters including
mass and even tensile strength [53].

Zeaiter et al. also use multivariate modelling to predict the part quality
from pressure and temperature data gathered in a injection molding DoE.
They employ partial least squares, which enables them to model multiple
linearly dependent quality indicators in their multivariate model. Similar to
some process signals (e.g. injection and in-mold pressure), quality features
can also show interdependencies. For example, sink marks are related to
holding pressure efficacy, which also determines the part weight [29].

To sum up, these works show how additional signals and multivariate
methods are powerful tools for process monitoring and quality prediction in
injection molding. However, they do not apply their methods to monitor
manufacturing lots where machine setpoints stay constant but only perform
testing with data from the DoEs used for model building. To develop process
monitoring systems, DoEs are necessary tools for model building, but they
often vary factors which drastically change variable relationships, for instance
altering the injection volume flow rate. Furthermore, the spacing between
factor steps is commonly much higher than it is when fluctuations occur
in continuous manufacturing. Control algorithms for closed-loop setpoint
control of modern injection molding machines, such as model predictive
controllers, are extremely powerful in controlling machine movements even
when disturbances occur [7]. As a result, for the objectives of this work,
which include primarily catching small-scale process fluctuations, it is not
optimal to train a monitoring model by changing setpoints by high amounts.
For instance, varying injection velocity would be counterproductive, because
the machine will most likely be able to keep it constant even when the
viscosity of the rubber is subject to variations. Also, whenever the material
viscosity changes to a magnitude at which the machine motors are no longer
able to reach their set points, complex monitoring systems are not needed
for fault detection [53].
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Still there are reports where the focus was set on monitoring process
fluctuations with advanced methods: Woll et al., trained two artificial neural
nets differing in design (feed-forward and back-propagating respectively) to
detect if too much reground Polyamide, which can cause faulty parts, is fed
into the injection unit. Most notably, they compare model performance of
two different inputs: In one training run, they used discrete data features
including, but not limited to maxima and integrals as input for the networks,
and in another training run, they feed complete time-domain trajectories
of the pressure during injection to the networks. It turned out that the
networks trained on trajectories are far more capable of monitoring the
injection molding process [30, 54].

The research group of Gao started in the early 2000s to publish work on
injection molding process control and monitoring. At first, they presented a
capacitor, which can be monunted in injection molds to monitor the filling
process [55]. Furthermore, univariate data from this sensor type can be
used to predict various quality parameters [7, 10]. Later, by employing
multivariate methods, they published significant improvements in statistical
process monitoring of the injection molding process. By employing recurrent
neural nets and discrete feature data from standard machine sensor, the
flow length could be estimated. Consecutively, they developed a method to
apply PCA-based monitoring to injection molding [7, 32]. This method does
not rely on features, which have to be calculated in advance and can lead
to information loss, it is sensitive to the process characteristics of injection
molding and needs few training data compared to most neural nets. Thus,
in this work, the PCA monitoring approach presented in the book by Yang
et al. will be transferred to rubber injection molding. However, while it is
very capable for fault detection, fault identification is challenging with PCA
based methods. To counter this, Fisher Discriminant Analysis (FDA) will
be added to discern between different types of faults that can occur in the
rubber injection molding process [7, 13].
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1 Introduction and current state of technology

1.4 Quality of injection molded rubber parts

Except the works of Berkemeier et al., none of the systems and methods
discussed so far were developed for rubber injection molding, but rather for
injection molding of thermoplastic parts. However, while the equipment
needed for each of these classes of material is similar, the operating points
-especially the thermal conditions- are very dissimilar. This is rooted in
a basic and drastic difference between the two materials: The quality of
thermoplastic parts is determined by physical processes, but the quality of
rubber parts is determined by chemical reactions. It was shown in numerous
works that the degree of cure (xc) is by a large margin the most important
factor of a rubber part’s mechanical, physical and chemical properties [11,
40, 56, 57]. Thus, to keep the quality of injection molded rubber parts
constant, it is paramount to keep the xc constant for every manufactured
part as it is removed from the mold. To reach a specific degree of conversion
in endothermic chemical reactions, a specific amount of energy has to be
brought into the reactive system. In rubber injection molding, the primary
source of energy is thermal energy, which is transferred into the rubber either
by dissipation or thermal conduction [1, 56, 58–60]. The xc of an isothermal
curing reaction is determined by a first order differential equation:

dxc

dt
= kc(T )f(xc), (1.1)

where the kinetic constant of curing (kc) is a function of temperature (T ) and
also specific to the compound ingredient fractions, and f(xc) is a compound
specific function of the current degree of cure. For sulphur cured rubbers,
an n-th order reaction function is common and the temperature dependence
of the kinetic constant of curing is determined by an Arrhenius approach
[56, 61, 62]:

f(xc) = (1 − xc)nc , (1.2)
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Figure 1.3: From entering the screw to demolding, thermal energy is put
into rubber during the injection molding process [11].

kc(T ) = kc(T0)e
EA
RT . (1.3)

In these equations, nc is the curing reaction exponent, T0 is the reference
temperature, EA is the activation energy, and R is the universal gas constant.
Thus, the differential equation describing the sulphur curing reaction is

dxc

dt
= kc(T0)e

EA
RT (1 − xc)nc . (1.4)

In rubber injection molding, temperature conditions are strongly non-
isothermal, as is outlined in Figure 1.3. There, the temperature of a volume
element of rubber is plotted over time, from entering the barrel of the
injection molding machine until being demolded within a finished part. Four
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1 Introduction and current state of technology

cycles of dwell time are chosen, because this is a common value, although
this is entirely dependent on the manufacturing equipment. It is evident,
that the rubber spends two cycles in the barrel until it reaches the screw
antechamber and subsequently is injected into the mold. When the screw
rotates to convey rubber into the screw antechamber, the rubber temperature
rises sharply, and in addition to thermal conduction, dissipational heating
occurs. Kerschbaumer investigated the temperature increase of rubber
compounds during injection molding extensively and could calculate the
temperature increase when the pressure loss is known [63]. For the remaining
time of each cycle, the screw does not spin, allowing the rubber temperature
to approach equilibrium with the barrel temperature (Tb). In cycle three,
the sample rubber volume has reached the screw antechamber and is thus
injected into the mold in cycle 4. The high shear rates present in the
runner system and gate cause immense shear dissipation, heating the rubber
much faster than would be possible just by thermal conduction across the
mold/rubber interface. For the remaining cure time, the rubber reaches
thermal equilibrium with the mold temperature (Tm) solely by thermal
conduction. In an ideal setup, in which machine setpoints are matched
exactly all the time and the rubber is a perfect compound, the energy input
in this process remains constant, and thus the degree of cure of the finished
part remains constant. When considering Equation 1.4, the energy input
(E) of such a temperature trajectory can be determined as [64]:

E = kc(T0)
∫ td

0
e

EA
R

(
1

T (t) − 1
T0

)
dt, (1.5)

where continuous time (t) is the curing time, td is the time of demolding,
and T (t) is the curing time dependent temperature in non-isothermal con-
ditions. It is clearly visible from both Figure 1.3 and Equation 1.5, that
the higher temperatures present in the mold make up the majority of the
energy input of the rubber during injection molding, and are thus much
more critical to process consistency.

In real world settings, a high number of factors can be named which
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Figure 1.4: Numerous factors both from the compound and the process
influence the degree of cure of a rubber part upon demolding
[56, 57, 65].

alter both the energy input or kc, causing the actual xc to deviate from the
required xc, even though the injection molding equipment’s operating point
stayed constant. Figure 1.4 shows the most important sources of fluctuations
for rubber injection molding purposes. On the compound side, variations
in recipe, activity of fillers, the reactivity of the curing system, and mixing
homogeneity show a direct impact on the amount of energy that is needed
to reach the desired degree of cure. For example, if there are less inhibitors
in a batch, or their reactivity is reduced, the activation energy (EA) for the
curing reaction will be increased. Also, if variations alter the flow behaviour
of the compound, the energy input by dissipation in the injection molding
machine will be different. The mixing time, packaging (extruded strips,
bulk) and transport conditions will add to the total amount of energy input
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1 Introduction and current state of technology

into the rubber compound, which is not accounted for in the injection
molding process. Further sources of variability can be introduced by the
manufacturing process: During storage, physical and chemical processes
take place which can change the rubber’s flow behaviour and reduce scorch
time. The rate at which these take place is strongly dependent on storage
climate [65–67]. Handling, process timing, machine temperatures, and shop
floor environment again contribute to the total energy input into the rubber
compound. In addition, component wear, for instance degradation of the
non-return valve, has severe impacts on process stability, as the injected
volume can not be kept constant and holding pressure can not be applied
properly.

1.5 A data-driven process control approach

To manufacture rubber parts by injection molding, which are cured exactly to
the required amount and thus meet the set quality requirements, variations
from all these influences need to be minimized. To 100 % ensure this, great
efforts have to be taken by part manufacturers. Thus, manufacturers wish
for the injection molding machine to detect deviations in the state of the
material and adapt its process settings accordingly. As the approaches
discussed in section 1.3 are either developed for thermoplastic injection
molding or require extensive amounts of testing prior to injection molding,
a data driven-monitoring and fault identification system for rubber injection
molding will be developed in this work. When parts are manufactured from
thermoplastic materials, the plastic itself is commonly developed by the
material supplier. OEMs and component suppliers then search the market
for a grade that suits their mechanical, chemical, or other requirements. As
a result, while there are many grades on offer, their variety is limited to a
certain degree. Rubber compounds, on the other hand, are almost always
developed in-house by the part suppliers or part manufacturers, and rubber
compound recipes tailor the materials properties exactly to the application
requirements. Therefore, there is an almost unlimited amount of rubber
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1.5 A data-driven process control approach

compounds in use, which all differ in their processing properties such as flow
behavior, curing characteristics or storage maturation. One compound, for
example, could show an increase in viscosity and accelerated curing when
stored, while another compound’s viscosity and curing rate decreases during
storage [65, 68].

First principle and knowledge-based monitoring methods require the
knowledge of rules (models for the material behavior) before they can
work successfully, which is shown in Figure 1.2(page 8), As there is so much
variation in rubber compounds, manufacturing equipment suppliers wouldn’t
be able to supply a satisfying amount of models with the operating system of
their equipment. Moreover, rubber goods manufacturers are also unwilling
to establish those models for their own compounds, as this would require a
significant amount of resources [11]. In this work, a data-driven approach
to process monitoring was taken, since it does not require any a-priori
knowledge of the material behavior to be implemented [7]. Rather, as long
as a sufficient amount of training data can be provided, no preliminary tests
need to be performed with the rubber compound.

To develop this approach, first the rubber temperature will be determined
throughout the injection molding process with new methods, which increase
the reliability of the gathered temperature data. Common sources of error
such as temperature differences or variations in storage history of the same
Acrylonitrile-butadiene rubber (NBR) rubber compound will be investigated
and their impact on the temperature of the rubber will be quantified (chap-
ter 5). Furthermore, a data-driven PCA-based monitoring approach will be
implemented. This monitoring approach takes into account process signals
readily available on commercial machines to automatically detect changes
in the material state without any need for prior testing. Finally, a fault
identification approach is presented, which is able to discern between the
types of faults that are introduced to the process.
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Manufacturing high quality rubber parts requires considerations in
multiple engineering areas. First, the material properties of rubber

compounds and the chemical and physical structure that determines them
need to be understood. Second, the process needs to be designed and set
up in a way that ensures technical and economic optimality. Third, process
monitoring needs to be established to ensure variations in the boundary
conditions (batch to batch variations, environment, machine wear), which
may lead to defective parts being detected automatically so the operating
point of the process can be adapted to the new conditions. In this chapter,
an engineering background on these subjects shall be given to (1) back
up assumptions made about the flow behavior of rubber compounds with
known material laws and (2) give insights on the methods used to detect
faults in the process and determine the type of these faults.

2.1 Flow behavior of highly filled rubber compounds

When an incompressible fluid (its density does not change with pressure)
flows through a constant control volume, which has no sources or sinks, the
conservation of mass can be written in its simplest form:

∇v = 0, (2.1)

where the velocity vector (v) describes the velocity components in each
dimension. Also, the conservation of momentum applies, which can be
written as [43, 69, 70]. When steady state and isothermal flow are assumend
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and gravitational forces are omitted, it reads as

−∇p + ∇τ = 0. (2.2)

In this expression, p is the vector of the pressure present in every dimen-
sion, and τ ∈ R3×3 is the stress tensor. However, for the flow of rubber
through cylindrical flow channels (e.g. the runner of injection molds), Equa-
tion 2.1 and Equation 2.2 can be reduced to a two dimensional problem,
thus:

dv

dx
= 0, (2.3)

and
dp

dx
= τ

r

dτ

dr
, (2.4)

where p = p1, τ = τ 1,2 = τ 2,1, and r is the radius of the flow channel.
Integration along the direction of flow (x) for the entire length (L) of the
channel yields: ∫

dp =
∫ L

0

(
τ

r

dτ

dr

)
dx, (2.5)

and its definite integral is:

∆p

L
= τ

r
+ dτ

dr
. (2.6)

Solving the differential equation (Equation 2.5) and using it to express τ

leads to
τ = ∆p

L

r

2 . (2.7)

This shows that in the case of circular flow channels, the shear stress is
a linear function of the radius (r). To obtain expressions for the radial
distributions of the shear rate (γ̇), and the velocity (v), τ of Equation 2.7
is to be replaced with empirical laws mapping shear rate to shear stresses
for different fluid types (e.g.: Newton’s law, Power law or Carreau-WLF)
[43, 69, 71, 72]. However, rubber compounds are suspension liquids with
potentially very high amounts of filler loadings (commonly exceeding 100
parts per hundred rubber (phr)), which allows the fillers to form continuous
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Figure 2.1: The dynamic viscosity of EPDM filled with N220 carbon black
increases sharply when shear stress is low. Modeled after [79].

networks when no or little shear is applied.
Furthermore, many rubber compounds - including grades in this work

(section 3.1) - use carbon black as a reinforcing filler, which is widely used
for its very strong interactions with the polymer molecules [73–79].

As a consequence, rubbers compounds show characteristics of Bingham
fluids, where τ needs to surpass the yield stress (τ0) for the compound to
start flowing. To model the radial γ̇ and v profiles of such suspensions, a
more general flow model, introducing a term for τ0 has to be used [43, 80]:

γ̇ = −dv

dr
=
(

τ − τ0

k

) 1
n

. (2.8)

In this equation, n is the flow exponent, characterizing the amount of
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Figure 2.2: When the shear stress is lower than τ0, the velocity profile of
carbon black filled rubbers forms a plug with radius r0 [43].

shear thinning of the flowing medium and k is the consistency index. As a
result, when the shear stress is lower than τ0 towards the center of the flow
channel, the rubber develops a kind of plug flow, illustrated in Figure 2.2.
This limits the level of temperature control that can be applied by varying
the volume flow rate during injection, as shear heating will be large where
r > r0, but does not exist at r < r0. Experimental evidence for this shall be
discussed in section 5.2.

2.2 Statistical Process Monitoring

Many industrial processes are considered to be steady state processes, where
the relationship between the process input matrix (X) and process output
matrix (Y ) is given by a linear relationship [7, 8, 81]:

Y = AX + E, (2.9)

where the Y ∈ RI×M contains all M output features determined for all
I batches, X ∈ RI×J contains measurements of all J process variables
(signals). A ∈ RJ×M is the process parmeter matrix mapping X onto Y , and
E ∈ RI×J represents normally distributed noise with zero mean, which is
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independent of the X. For example, Y could be the collection of part quality
attributes such as physical and mechanical characteristics. The X matrix
would then consist of features from process variables such as maximum
injection pressure (pi), the maximum in-mold pressure (pm) etc. Thus, X

can be written as a matrix containing all variable vectors:

X = [x1, x2, . . . , xJ ]T , (2.10)

where each process signal vector (x) contains the measurements of process
signal J at each batch. Commonly, each xj is treated as being normal
distributed with a mean value µj and a variance σ2

j [8]:

xj ∼ N
(
µj, σ2

j

)
. (2.11)

2.2.1 Exponentially Weighted Moving Average

As already discussed in chapter 1, univariate control charts are widely used in
industrial production to monitor the quality of processes, detect fluctuations
or process drifts, which negatively influence the quality of the product. The
most important methods are the Shewhart-chart, Cumulative Sum (CUSUM)
charts and the Exponentially Weighted Moving Average (EWMA) [14, 82,
83]. As they are used for model comparison in section 6.2, the construction
of EWMA charts shall be discussed briefly. It is important to note that one
EWMA chart has to be constructed for each xj in Equation 2.10. One key
difference between EWMA and other control charts it is consideration of
past measurements when calculating the present monitoring statistic. The
EWMA monitoring statistic (z) of a signal j is calculated by:

zj,i = λ
i−1∑
n=0

(1 − λ)n xj,i−n + (1 − λ)izj,0 (2.12)

where i = 1, 2, . . . , I is the number of the batch, and λ (0 ≤ λ ≤ 1) is the
memory factor and zj,0 is the control statistic of signal j at the beginning
of monitoring. λ has to be chosen empirically, as its value determines the
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impact of past values on the statistic of the latest measurement. The test
statistic at the beginning of the monitoring, zj,0 is, in this work, chosen to be
the sample mean of the training set µ(xj,train). As always, which data belong
to the training set is chosen during model building. To perform process
monitoring, control limits for each zj need to be calculated. When EWMAj,i

is outside of these limits, the process is considered to be out-of-control. The
upper control limit of the EWMA chart (UCL) is calculated by [82]:

UCLj = zj,0 + 3σ

√
λ

2 − λ
(1 − (1 − λ)2i, (2.13)

where σ is the standard deviation of the train data xj,train. In analogy, the
lower control limit of the EWMA chart (LCL) is calculated as:

LCLj = zj,0 − 3σ

√
λ

2 − λ
(1 − (1 − λ)2i. (2.14)

To visualize the effect of different values for memory factor of EWMA (λ),
I = 50 instances of a randomly generated variable X are monitored with
EWMA charts. The variable was sampled from the following distributions:

⎧⎪⎨⎪⎩i < 30 =⇒ X ∼ N (µ = 0, σ = 1)

i > 30 =⇒ X ∼ N (µ = 3, σ = 1) .

It is clearly visible, that in Figure 2.3 a), where λ = 0.2, z values are
smoothed and the shift in distribution mean is detected with a significant
delay. However, once the shift is detected, all samples are recognized as
out-of-control. The exact opposite can be seen in Figure 2.3 b). Thus,
the value of λ needs to be chosen with the requirements of the monitoring
system and the expected fault behavior of the process in mind.
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Figure 2.3: A change of sample distribution mean from 0 to 3 at cycle 30 is
detected differently by plotting the EWMA with a) λ = 0.2 and
b) λ = 0.8

2.2.2 Principal Component Analysis

Univariate monitoring (monitoring each xj independently) is only effective
when the x are linearly independent of each other, which is almost never
true for industrial processes.

In injection molding for example, pi and pm can not be independent of
each other, as the pressure of the same fluid is measured, just at different
locations in its flow path. Figure 2.4 shows the limits of monitoring dependent
variables. All 3 faults (marked red) can not be detected by calculating the
control bounds at 3σ from the mean, but are clearly outside the elliptical
control bound obtained by multivariate methods.

Monitoring two or more dependent variables needs additional methods,
and a number of them do exist [8, 13, 29, 53, 85, 86]. In this work, for
fault detection purposes, a PCA-based monitoring approach is implemented,
which takes into account (1) the linear dependent relationship of process
variables of the injection molding process, and (2) process properties unique
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to injection molding [7].
PCA can be thought of as an autoencoding method being able to represent

high dimensional data in a lower dimensional subspace without losing
information. As most modern manufacturing equipment provides a high
number of monitorable signals, it can be challenging to separate signals with
high information density from signals with low information density. PCA
accomplishes this automatically. It decomposes the data matrix X into a
set of matrices with special properties.

X = TP T =
J∑

j=1
tjpT

j = t1pT
1 + t2pT

2 + · · · + tJpT
J , (2.15)

where tj ∈ RI×1 is the score vector which contains the coordinate of each
batch in the j-th principal component dimension, and pj ∈ RJ×1 is the
loading vector, which transforms the original data into the principal com-
ponent space. T ∈ RI×J and P ∈ RJ×J are the corresponding score and
loading matrices [7, 8, 13]. The most straightforward way to compute P is
by singular value decomposition (SVD) of the covariance matrix (Σ) of X:

ΣX = 1
I − 1XT X, (2.16)

ΣX = PΛP T . (2.17)

Because ΣX is symmetric and positive semi-definite (if none of the signals
xj are exactly collinear or zero), SVD directly computes the eigenvalues
(λj) in Λ = diag(λ1, λ2, . . . , λJ), where λ1 > λ2 > · · · > λJ . X can now be
decomposed as:

T = XP. (2.18)

Dimensionality reduction in PCA is achieved by only selecting the first L
dimensions of which the corresponding eigenvalues satisfy

∑L
j=1 λj∑J
j=1 λj

≥ 0.8, (2.19)
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which means reducing P to Ppc ∈ RJ×L by keeping only the first L columns
and is equal to retaining 80 % of data variance. This value is empirically
chosen as it presents a good balance between data reduction and information
loss [7, 13].

2.2.3 PCA-based process monitoring

When PCA modelling is performed on I batches which are considered
to be in-control (the training set), it can be used for monitoring future
batches of which the values of the process variables are stored in a vector
xnew = [x1, x2, . . . , xJ ]. In analogy to Equation 2.18

tnew = xnewPpc, (2.20)

the score tnew can be determined. It is important to note that calculating
the score of a new batch by a loading matrix that was determined without
xnew existing is only viable when the underlying variable relationships did
not change and Ppc still is a relatively good estimate for the real loading
matrix of xnew [7, 8, 13]. Almost certainly, a small error will be made in this
calculation, and this error proves to be very useful for process monitoring
purposes. If Equation 2.20 is possible, then:

x̂new = tnewPpc
T , (2.21)

enew = xnew − x̂new, (2.22)

where x̂new is the vector of process variable values estimated by the PCA
model, and enew is the residual vector which captures the prediction error of
the PCA model. Two control statistics, which work in tandem to determine
whether xnew belongs to a batch which can be considered in-control or
out-of-control. First, Hotelling’s T2 statistic (T 2) can be calculated as [7,
87]

T 2
new = tnewΛ−1

pc tT
new, (2.23)
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where Λpc is Λ reduced in the same way as Ppc to feature only the M largest
eigenvalues. It can be seen that the T 2 statistic is closely related to the
squared generalized distance of the multivariate normal distribution, as it
measures the distance from the center of the training data’s T matrix to
tnew [88, 89]. It does not indicate changes in the process signals correlation,
therefore the Squared Predictive Error (SPE), also known as the Q-statistic
is also calculated [7, 8, 13]:

SPEnew = eneweT
new. (2.24)

As the SPE is more sensitive to changes in varying signal relationships, it
should always be used in conjunction with T 2. To detect faults with either
of these statistics, the confidence bounds T 2

t and SPEt respectively need to
be calculated at a specified significance level (α).

T 2
t = M(I2 − 1)

I(I − M) Fα,M,I−M (2.25)

Fα,M,I−M is the (1 − α) · 100 % percentile of the F distribution (F) with the
degrees of freedom L and I-L [13]. The critical value SPEt can be determined
by

SPEt = θ1

(
cα

√
θ2h2

0

θ1
+ 1 + θ2h0(h0 − 1)

θ2
1

) 1
h0

, (2.26)

with
θi =

M∑
j=A+1

λi
j (i = 1, 2, 3), (2.27)

and
h0 = 1 − 2θ1θ3

3θ2
2

. (2.28)

In Equation 2.26, cα is the deviation of the upper (1 − α) · 100% percentile
of the gaussian distribution.
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X2 misses many faults, while multivariate control can increase
fault detection rate significantly [84].
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2.2.4 Challenges of monitoring the injection molding process

At the beginning of section 2.2, it was stated that X may contain process
signal features. However, in injection molding and many manufacturing
processes, process signals are sampled at a number of instances during one
batch, and feature extraction reduces these time series to a single value.
Consider the injection pressure pi. When only its maximum value is used
for monitoring, faults that present themselves more clearly in other features,
such as kurtosis or skewness, can easily be missed. To establish more
reliable process monitoring methods for injection molding, the nature of the
injection molding process has to be pictured as in Figure 2.5. A single cycle
(batch) of the injection molding process presents itself can be considered as
a non-stationary dynamic process, where each process signal is a discrete
time series vector. Each batch can be imagined as a 2-dimensional matrix
of size J × K, containing all J process signals and all K samples captured
of each cycle by the monitoring system. These matrices can then be stacked
batch-wise for all I batches, to form a tensor of shape I × J × K as it is
done in Figure 2.5 a) [7]:

i
=

1,
2,

3,
..
.,

I

j = 1, 2, 3, ..., J k = 1, 2, 3, ...,
K

i
=

1,
2,

3,
..
.,

I

j = 1, 2, 3, ..., J k = 1, 2, 3, ...,
K

X(k)

a) b)

Figure 2.5: An injection molding process can either be viewed as a) a se-
quence of dynamic instationary process batches or b) stationary
single point values containing one measurement of each process
signal taken at sample k [7].
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The process can then be also viewed at each sample k (sample-wise),
as a discontiuous process, which -after startup- operates in a steady state.
Equation 2.18 can be applied to each X(k) of the training set. When new
batches occur, monitoring as in Equation 2.20 to Equation 2.22 can be
performed for every xnew(k). Programmatically, cycling through every k
(sampling rate is commonly between 100 Hz and 1000 Hz and an injection
molding cycle can take up to one minute without curing) can also be replaced
by stacking the X(k) in 2 dimensions. Details on this can be found in [7,
26].

More important are injection molding’s phase characteristics. A typical
injection molding process consists of a number of different phases, with
the most important to monitoring being injection, packing, curing, and
dosing. Within each of these phases, the variable correlations are similar.
For example, during injection, both pi and pm rise, while V̇i >> 0. During
packing however, pi stays constant, while pm varies depending on the process
and V̇i is very small. These phase-dependent correlations are depicted in
Figure 2.6 with normalized process data from experiments discussed in
chapter 6.

The major implication for monitoring a multi-phase process with PCA is
that for all X(k) belonging to a specific phase c = 1, 2, . . . , C, the Σ should
be similar. Thus, instead of using separate loading matrix (P ) matrices to
calculate statistics from xnew(k), one can determine a representative phase
loading matrix (Pc) as:

Pc = 1
Ic

Kc∑
k

P (k), (2.29)

where Ic and Kc are the number of batches and samples in the training
data set for the specific phase and P (k) is the loading matrix of X(k)
[7]. Performing PCA monitoring with separate P (k) for every k leads to
a high False Alarm Rate (FAR) as hyper local deviations are detected.
Using Pc improves the monitoring performance, as it provides smoothing
to the statistics calculated from the process signal vector (xnew). Process
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Figure 2.6: Different phases in the rubber injection molding process exhibit
different variable correlations. 1: mold closing, 2: injection
phase, 3: packing phase, 4: curing.

monitoring is thus performed by calculating:

T 2
new(k) = tnew(k)Λ−1

c tT
new(k), (2.30)

and
SPEnew(k) = enew(k)eT

new(k), (2.31)

which means that Equation 2.23 and Equation 2.24 are calculated at
each sample point k. Λc is defined in analogy to Equation 2.29 as Λc =
1
Ic

∑Kc
k=1 Λpc(k).

Lastly, the control bounds from Equation 2.25 and Equation 2.26 have to
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be adapted [7]:

T 2
c = MI(Kc − 1)

I(Kc − 1) − M
Fα,M,I(Kc−1)−A, (2.32)

and
SPEc(k) ∼ g(k)X 2

h(k),α. (2.33)

where g(k) = v(k)
2m(k) and h(k) = 2m(k)2

v(k) . m(k) is the mean SPE value at
sample k and v(k) is the variance of SPE a the same k. While the form
of T 2

c stays similar to standard PCA based monitoring, SPEc changes and
becomes a trajectory with k elements. Yang et. al. apply a very strict logic,
where a batch is marked out-of-control when at any k, SPEc(k) < SPEnew(k)
[7]. However, this has proven to be too strict for the processes monitored
in this work, yielding an unacceptable FAR. A low false alarm rate was
achieved by a more lenient approach, which averages the detections for each
phase:

∆SP E = 1
Kc

Kc∑
k=1

SPEnew(k) − SPEt(k). (2.34)

Monitoring based on the SPE statistic can now be done by a simple
decision logic for each process phase:

⎧⎪⎨⎪⎩∆SP E > 0 =⇒ fault (out−of−control)

∆SP E < 0 =⇒ no fault (in−control).
(2.35)

As the threshold for the T 2 statistic, T 2
t the decision logic is:

⎧⎪⎨⎪⎩T 2
t < any(T 2

new(k)) =⇒ fault (out−of−control)

T 2
t > all(T 2

new(k)) =⇒ no fault(in−control).
(2.36)

2.3 Fault identification with Fisher Discriminant Analysis

PCA based multivariate process monitoring is able to reliably detect fluctua-
tions and faults in industrial processes with many linearly dependent process
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variables, but on its own, it does not provide insight on the causes of the
fault or the type of the fault. A simple method to outline the signals that
are most responsible for causing an out-of-control state (∆SP E > 0) in the
SPE statistic is to calculate the mean value of enew(k) for each phase c. This
is called the error contribution of signal j [7]. For shop floor personnel, this
can be valuable information, as they possess a high amount of knowledge on
which faults manifest themselves in which signals. There are also methods
for calculating contributions for t, however, as values are still transformed
in principal component space, their real-world use is limited [13, 90].

In injection molding manufacturing setups different types of faults will
occur repeatedly over time. When these are detected by process monitoring,
it is possible to create databases with the process variables labeled by the
fault type. When such databases are present, FDA is a powerful method
to automatically identify the fault type as it occurs, granting maintenance
personnel advice on how to get the process back to an in-control state
quickly [8, 13]. FDA is, just as PCA, an autoencoder. However, unlike
PCA its learning step has to be supervised and a labelled dataset has to be
used as the training data. Given the data matrix X from section 2.2, when
the data are labelled, each row xi is linked to one of W classes. FDA then
projects the train data into a new subspace, where the distances between the
centroids of individual classes is maximized, while the distance between the
measurements of class w, xi,w are minimized. To do this, metrics quantifying
the scatter within a class, between different classes and the total scattering
of the train data need to be calculated [13, 91, 92]. The total scatter
matrix (St) is given by

St =
I∑

i=1
(xi − x)(xi − x)T , (2.37)

where x is the total mean vector

x = 1
n

I∑
i=1

xi. (2.38)
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For each subset of vectors xi ∈ w, the within-class scatter matrix (Sw) has
to be calculated as

Sw =
W∑

w=1

∑
xi∈w

(xi − xw)(xi − xw)T , (2.39)

where xw is the mean vector of each class w. Finally, the between-class
scatter matrix (Sb) is determined with

Sb =
W∑

w=1
nw(xw − x)(xw − x)T . (2.40)

The optimization of distances is then carried out by calculating

max
u̸=0

uSbu
uSwu

, (2.41)

with u ∈ RJ acting as the transformation vectors. It was shown that
this maximization step can be done by solving the generalized eigenvalue
problem [91]:

SbΩ = SwΩΛ. (2.42)

Similar to Equation 2.17, Λ is a diagonal matrix containing the eigenvalues
λj, and the FDA transformation matrix (Ω) contains the FDA vectors ωj

as Ω = [ω1, ω2, . . . , ωJ ]. The projected values ζ i of the data vectors xi can
then be determined by

ζ i = ΩT xi. (2.43)

As FDA is an autoencoding method, dimensionality reduction should be
performed as a subsequent step. In FDA, the optimal number of remaining
dimensions L is best determined by cross-validation, reducing Ω ∈ RI×J to
Ω ∈ RI×L [22]. When transformation is successful, classification is performed
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by calculating the discriminant function for each class w:

gw(x) = −1
2(x − xj)T ΩL

( 1
nw

ΩT
LSwwΩL

)−1
ΩT

L(x − x) + ln(nw)

− 1
2 ln

[
det

( 1
nw

ΩT
LSwwΩL

)]
,

(2.44)

where ΩL is the reduced FDA transformation matrix and Sww is the first
sum in Equation 2.39: ∑xi∈ω(xi − xw)(xi − xw)T . When Equation 2.44 has
been calculated for every class w, the values can be summarized in a vector
of scores gi = [g1, g2, . . . , gW ], from which class probabilities are obtained
by applying the softmax function [22]:

s(gw) = egw∑
W egw

(2.45)

2.4 Method testing

While PCA and FDA are standard multivariate data analysis methods,
they are very rarely used for injection molding, especially rubber injection
molding [7, 31, 32, 85]. Thus, the expected monitoring and classification
performance is estimated by applying these methods on simulated data.
The necessary data were generated by CADMOULD injection molding
simulation software (simcon kunststofftechnische Software GmbH, Germany)
in conjunction with custom Python routines. More specifically, injection
molding simulation of the mold and part detailed in chapter 3 was done by
taking the material property data of the NBR used in the experiments of
chapter 6, and boundary conditions in simulation listed in Table 2.1 are
also chosen to be similar to chapter 6. The process signals were generated
by placing sensor nodes on the part’s mesh on positions equivalent to the
measurement points of the real-world setup. Thus, a pressure signal was
recorded at the nozzle entry (similar to pi), with another sensor at the exact
location of the in-mold sensor, where pm and Tp are recorded.

To generate fault-free and faulty data, the following procedure was imple-
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Table 2.1: Boundary conditions of the injection molding simulation runs for
method testing

Simulation parameter Set point

Cure time (tc) in s 254
Mold tempperature (Tm) 160
Initial rubber temperature in ◦C 80
Injection volume flow rate (V̇i) in cm3 s−1 15
Packing pressure (ph) in bar 150

mented:

1. Set up the simulation and use real material properties of NBR.

2. Extract pressure and temperature calculations trajectories at positions
equivalent to the machine setup.

3. Repeat 1 and 2 with a 5 % increased viscosity of NBR.

4. With Python routines, apply randomized noise, offset and sensor
drift similar to real world phenomena to create fault-free and faulty
datasets.

5. Perform monitoring and classification with generated datasets.

It is challenging for injection molding simulation software to correctly
estimate the pressure loss of flowing rubber [41], thus simulated pressure
and temperature values at the sensor location are incorrect. Also, their
information content is greatly reduced, as they follow the pressure value
at the nozzle entry exactly. However, for model performance evaluation
simulated data are valuable, as the models do not assume specific variable
trajectories or values to work. Variable relationships are learned entirely
from training data, which in this case were 15 randomly selected samples
of the fault-free data for PCA monitoring. For FDA analysis the entire
dataset was taken into account. For reference, the maximum value and
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Table 2.2: Mean and standard deviation of process signal maximum values
from simulated fault-free and faulty batches

mean standard deviation

fault-free fault fault-free fault
Maximum of pi in bar 956 723 57 22
Maximum of pm in bar 647 488 39 17
Maximum of Tp in ◦C 103 9 100 9

scattering of the maximum of each signal is detailed in Table 2.2. Pressures
show stark differences between faulty and fault-free data, while scattering of
temperature peak height (Tp) is higher than the distance of the respective
means. Thus, the monitoring methods should be capable of discerning
between the two data classes.
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Figure 2.7: ∆SP E and T 2 statistics are capable of detecting faulty simulated
process data.

Fault-free and faulty cycles were stacked to follow each other block wise,
and the data structure was analysed as if they were recorded in a temporal
succession. Figure 2.7 shows the ∆SP E and the T 2 statistic for the simulated
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Figure 2.8: In FDA space, fault-free and faulty simulated data can be dis-
tinguished clearly.

process data at a level of significance of 95 %. It can be seen that both
statistics perform well for detecting the increased viscosity of the NBR. For
fault classification, FDA modelling was used to separate the two classes
efficiently. Figure 2.8 shows a clear separation between fault-free and
faulty batches in FDA space. From these results, it can be said that the
performance of both methods is high, and they should be able to detect
changes in data from real-world specimen manufacturing runs. Thus, they
should be able to be applied to data from real-world injection molding
experiments, where the ∆SP E and T 2 statistic can be used to detect faults
and the FDA method can detect the type of fault once a fault-type database
is present.
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In this work, the injection molding process is investigated with regards
to the transient material state, its stability cycle to cycle, and the part

quality resulting from specific manufacturing conditions. Thus, diverse
equipment is needed, of which short overviews shall be given.

3.1 Rubber compound

Every injection molded part investigated in this work is manufactured
from an NBR based rubber compound. In cooparation with SKF sealing
solutions Austria (Judenburg, Austria), a compound which does not cause
large process fluctuations in industrial manufacturing environments was
chosen. Thus, the effects of specific kinds of fluctuations and faults are more
likely to be separable by process monitoring systems and less likely to be
overpowered by randomly caused disturbances. While disturbances should
be detected by process monitoring systems in application, for development,
a controlled way of introducing them should be possible. The acrylonitrile-
butadiene base polymer for this grade is compounded with carbon black
as an active filler and silica as a passive one. It is vulcanized by sulphur
based vulcanization agents. For the investigations of this work, the most
important material properties of the unvulcanized NBR compound are its
flow and curing characteristics.

3.1.1 Curing characteristics of Nitrile-Butadiene Rubber

In this work, degree of cure (xc) was determined by oscillatory shear experi-
ments according to DIN 53529-1 and DIN 53529-2 for multiple temperatures
which are relevant to the experiments [93, 94]. The Rubber Process An-
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alyzer (RPA) used for testing in this work was of type D-MDR 3000 by
Montech Werkstoffprüfmaschinen GmbH (Buchen,Germany). The test was
conducted with an angular frequency (ω) of 10.5 rad s−1 and an amplitude of
5°. The strong temperature dependence of kc can be seen prominently in the
distance between isothermal plots, as kc commonly doubles with every in-
crease of the curing temperature (Tc) by around 10 K [56]. Figure 3.1 shows
plots of the xc obtained by RPA measurements at two different isothermal
curing temperatures. The test was done for NBR stored for one month at
5 ◦C in a refrigerator, and at room temperature (RT). It can be seen that
for this specific rubber compound, storing at room temperature does not
significantly alter the isothermal reaction kinetics, although for other com-
pounds such behavior could be shown [95] For industrial purposes, a single
value for describing the curing kinetics is the time until 90 % cured (tc90),
which is marked for Tc = 160 ◦C in Figure 3.1. It is the time needed to
reach an xc of 0.9, which is the the target xc after manufacturing for many
technical rubber parts.

In the experiments reported in chapter 5, and chapter 6, the impact of
storing NBR for 1 month at RT on the material condition as well as the
process stability and output of the rubber injection molding process was
investigated. During storage of industrial rubber compounds containing
active fillers and curing agents, storage maturation can occur. The term
storage maturation sums up a number of physical and chemical phenomena
which change the flow properties due to physical processes and also, as
mentioned in section 1.4, environmental conditions also contribute to the
total energy input of rubber. [65, 66, 68, 96].

3.1.2 Flow properties of NBR

The oscillatory shear flow properties of the NBR compound were determined
partially in accordance with ASTM 6204:2007. Both the conditioning step
and the measurement step were carried out at 100 ◦C required for this
compound. For other compounds, optimal measurement temperatures may
differ significantly [42]. Additionally, oscillatory shear flow properties were
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Figure 3.1: The tc90 of vulcanization of sulphur curing NBR is highly depen-
dent on the temperature.

measured at 80 ◦C do show temperature dependencies. The conditioning
step breaks down filler networks, which develop due to filler-filler interactions
when rubber compounds rest [74, 97]. The ω range of the measurement step
is augmented to measure at 20 ω settings from 0.5 rad s−1 to 300 rad s−1.
Figure 3.2 shows the complex viscosity (η∗) of the NBR compound measured
at 80 ◦C and 100 ◦C. When the rubber is stored at RT instead of in a
refrigerator at 5 ◦C for 1 month, its viscosity increases by around 10 %. Such
effects of storage maturation for this specific NBR compound have also been
reported by Fasching et. al, where they also briefly explore the consequences
of increased viscosity on the material energy input during injection [98]. In
chapter 5, and chapter 6, the rubber condition and process stability of RT
stored NBR will be investigated in greater detail.
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Figure 3.2: Storage maturation increases η∗ of the NBR compound slightly
both at 80 ◦C and 100 ◦C measurement temperature.

3.2 Mechanical testing

The degree of cure of rubber parts is the most important factor on the
mechanical properties besides the compound formulation. As the degree
of cure is actively influenced by the process operating point, hitting the
desired degree of cure every cycle is critical for stable part quality across
long production runs. To determine the degree of cure in manufacturing
environments, multiple standardized mechanical testing routines are common
with manufacturers. In this work, two methods are employed for experiment
analysis: The Compression Set (CS) measurement according to DIN ISO 815-
1:2016-09 and a custom dynamic testing setup in reference to Kerschbaumer
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Figure 3.3: The clamping plates are designed to fit 21 CS specimens at once.

[42, 99]. All CS specimens were cut from the location indicated in Figure 3.14
(page 63) and dynamic testing was performed on the same part location,
with no need for cutting out specimens.

3.2.1 Standardized Compression Set tests

CS measurements were conducted strictly according to DIN ISO 815-1:2016-
09 and the chosen test conditions can be seen in Table 3.1. 21 specimens
were clamped in each testing rig outlined in Figure 3.3 and subsequently
placed in a lab oven for the required amount of time. The specimen thickness
before and after clamping and heating was measured with a digital gauge
with an accuracy of 0.01 mm (Käfer Messuhrenfabrik GmbH & CO. KG,
Villingen-Schwenningen, Germany).

3.2.2 Testing of dynamic mechanical properties

To test the local quasi-static and dynamic properties of injection molded
rubber parts, an Instron E3000 (Illinois Tool Works, IL, USA) testing
machine with electrical actuation was used. It was fitted with a custom
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Table 3.1: Testing conditions for CS tests [99]

Specimen Type A
Specimen preparation rotational cutting
Test temperature in ◦C 100 ± 1
Test duration in h 24 0

−2

Compression in % 15 ± 2

sample holder and a cylindrical test probe shown in Figure 3.4. In this setup,
entire parts can be fitted, eliminating the need for extracting specimens
at the desired location. In the method building experiments reported in
chapter 4, the dynamic properties of compression molded plates shown in
Figure 3.5 were measured. To determine the influence of the sample shape,
dynamic tests were done using the entire plate (outline marked green), a
cuboid specimen (outline marked orange), and a CS style specimen (outline
marked blue).

In the experiments discussed in section 6.3, the mold depicted in Fig-
ure 3.15 on page 64 was used. The dynamic properties of the parts manufac-
tured in these experiments were measured by applying load on the part area
marked "CS specimen" in Figure 3.15. The testing routine is designed to
measure the quasi-static and dynamic material parameters static spring stiff-
ness (Cs), relaxation force (Fr), dynamic spring stiffness (Cd), and the loss
angle (δ) respectively the loss factor (tan(δ)). These parameters correlate
well with the degree of cure of rubber parts, as Kerschbaumer et al. showed
in a similar setup [42, 100]. The displacement (ϵ) and force (F ) signals were
recorded and analysis was performed in custom Python software, which also
incorporated raw data pretreatment such as offset correction and filtering.
In this setup, ϵ is actively closed-loop controlled by the testing machine and
F is the response signal troughout the routine. Prior to a measurement run,
the PID controller of the machine needs to be tuned to a rough estimate of
the stiffness of the part to ensure ϵ setpoints are accurately met at all times.
To illustrate the measurement routine, sample ϵ and F response trajectories
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Figure 3.4: The Instron E3000 testing machine was fitted with a custom
sample holder and test stamp to perform dynamic testing

are depicted in Figure 3.6. There, five different displacement control phases
are marked:

1. To zero the displacement on the surface, the testing probe is pushed
against the part with a force of 3 N for 5 s.

2. The probe compresses the part by 20 % at 1 mm s−1.

3. The compression is held constant for 120 s.

4. A dynamic displacement amplitude of 60 µm is applied for 100 cycles
at frequency(f) = 1 Hz.

5. The probe retracts away from the part to end the test.
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Figure 3.5: The centermost area of compression molded plates was used for
dynamic property characterization

In phase 2, Cs is calculated by

Cs = dF1

dϵ
, (3.1)

where Fi, i = 1, 2, . . . , 5 is the force signal of the respective displacement
control phase. Cs at small displacements corresponds with the compression
modulus, which is evaluated in standardized compression tests and common
in rubber quality control [56, 101].

The relaxation force (Fr) is another important parameter in rubber testing,
used in compound development, material comparisons and quality control
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[56, 102–104]. In this setup it is calculated as

Fr = max(F3) − min(F3). (3.2)
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Figure 3.6: The testing routine is a five phase (marked 1 to 5) process de-
signed to measure quasi-static and dynamic material parameters.
In phase 1, the displacement is zeroed at the part surface. In
phase 2, the part is compressed 20 %, and the compression is
held for relaxation testing in phase 3. In phase 4, dynamic
testing is conducted and phase 5 is the unloading phase.

In phase 4, the dynamic property parameters of the part are calculated.
The evaluation follows the most widely used procedures for analysis of forced
oscillation dynamic tests. There, the F is plotted against ϵ instead of time
as in Figure 3.7. For ideal elastic materials following Hooke’s law, this plot
would be a line at an angle of 45° [56]. Rubber can not be considered an
ideal-elastic material but rather a visco-elastic one. The molecular level
background on this can be found in [43, 56, 69, 70, 104] and many more.
For visco-elastic materials, the F -ϵ plots form ellipses, as F is not in phase
with the forced ϵ. If ϵ is applied as a sinusoidal function

ϵ = ϵ0 sin(ωt), (3.3)
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where t is the time, ω = 2πf and ϵ0 is the displacement at zero angle, the
force follows with

F = F 0sin(ωt + δ). (3.4)

Thus, δ is the angle at which the F response is out of tune with ϵ. When
the force response is treated as a complex number

F ∗ = F ′ + iF ′′, (3.5)

where F ′ is the real part with no phase shift and F ′′ is the complex part at
90° shift, δ results as

tan(δ) = F ′′

F ′ . (3.6)

In material testing, tan(δ) is often the preferred dynamic mechanical pa-
rameter, as it directly tells which deformation phenomenon -elastic behavior
indicated by F ′, or dissipation loss indicated by F ′′- dominates within the
material.

In Figure 3.7, the hysteresis ellipsis present in phase 5 of the measurement
routine is plotted schematically. The features of this hysteresis curve,
the maximum displacement (ϵ0), the maximum force (F m), the force at
maximum displacement (Fϵ0), and the force at zero displacement (F l) are
the basis for calculating the dynamic material parameters evaluated in this
work: Cd follows as [104]:

Cd = Fm

ϵ0
, (3.7)

and tan(δ) as:
tan(δ) = Fl

Fϵ0
. (3.8)
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Figure 3.7: All features necessary to calculate dynamic material parameters
can be determined from a F -ϵ plot [104].

3.3 On-line rubber temperature measurement

Determining accurate temperature values for the rubber during injection
molding is a challenging but necessary task when the process should be
optimized further. The mechanical properties of rubber parts -the domi-
nating aspect of their quality- is mainly influenced by their degree of cure,
with the curing time being primarly determined by the temperature of the
material [56, 105–107]. Thus, there are many setups proposed for measur-
ing the tempature during injection molding and even determining spatial
and trainsient temperature distributions [42, 108–110]. In this work, two
approaches were used to accurately measure the temperature of the rubber
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in each processing stage and investigate the impact of process setpoints on
the relative temperature changes.

3.3.1 Ultrasound based temperature measurement setup

The amount of heating by dissipation during the dosing phase of NBR
rubber was measured by a setup based on ultrasound. This setup is adapted
from Praher et. al., who used it to measure the tempeature of thermoplastic
materials in the barrel of an injection molding machine and it is outlined in
Figure 3.8 [108, 111]. Its core principle is the measurement of variances in
the time of travel (tt) of sound through a body of rubber, caused by different
temperatures of the rubber. tt is given by

tt =
∫

s

ds

c + v⊥
, (3.9)

where c denotes the velocity of sound in the medium it travels through and
v⊥ is the velocity of the medium flowing perpendicular to the distance s
between the emitter and the reciever. c itself can be determined by

c =
[

1
ρκ

] 1
2

, (3.10)

where ρ denotes the density of the medium and κ its adiabatic compressibility.
ρ = f(T, p) and κ = f(T, p), thus if tt,v⊥, and p are known, the temperature
T of the medium can be calculated.

While pvT data are available for the NBR compound (and thus κ is
known, enabling calculations according to Equation 3.9 and Equation 3.10),
calibration steps as shown in Figure 3.8 were done prior to the experiments
to reduce errors and facilitate the temperature analysis.

3.3.2 Thermal imaging based measurement setup

The temperature of the rubber after passing through the nozzle was mea-
sured with a thermal imaging camera equipped with a macro lens. In the
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a) b)

c)
emitter

reciever
Figure 3.8: An ultrasound based setup determines the temperature of rubber

after dosing. a) dosing with settings from the DoE (Table 5.1)
b) calibration with thermal probe (marked green) c) ejection
under constant pressure and measurement of sound travel time

experiments, two nozzles differing only in orifice diameter and angle of the
reduction cone, as shown in Figure 3.9, were used.

The rubber strand was cut off after ejection into air and the temperature
of the new cut surface at the orifice was measured by the thermal imaging
system. The mean cross-section temperature was evaluated by processing
the images with a custom made Matlab®(The MathWorks Inc., Natick
MA, USA) script which also allows batch processing. The thermal imaging
camera was a handheld system of the type RevealPRO (seek thermal, Santa
Barbara CA, USA). The camera was fitted with a macro lens setup built
according to Prutchi [112], as shown in Figure 3.10. Its main component
is a plano-convex Germanium lens, which decreases the minimum focusing
distance from about 31 cm to ≤ 1 cm. The entire setup was tested for its
accuracy and precision with regards to common sources of error found in
literature [113]. In particular, the temeperature of camera calibration tape
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Figure 3.9: The nozzles used to compare dissipation during injection only
differ in orifice diameter and angle of the reduction cone.

mounted on the calibration block of a thermocouple calibration unit Profi
Cal II (Gräff GmbH, Troisdorf, Germany) was determined with and without
the macro lens fitted at different angles to the surface.
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Germanium
plano-convex
lens element

320 by 240 pixel thermal sensor

Figure 3.10: A macro lens was fitted to a thermal imaging camera to allow
the measurement of the cross section temperature of rubber
strands 3.5 mm in diameter.

3.4 Injection molding equipment

In this section, a brief descriptions of the injection molding machines, the
monitoring equipment and molds used for part and specimen manufacturing
is given.

3.4.1 Injection molding machines

Injection molding experiments have been conducted unsing two different
injection molding machines, which feature differing specifications. They are
given in Table 3.2. Both machines are supplied by ENGEL Austria GmbH
(Schwertberg, Austria) and feature hydraulically actuated clamping units and
electrically actuated injection units. The injection units of both machines
were reciprocating-screw types, where the screw performes a backwards
motion during dosing and acting as a piston during injection [56]. Machine
1 is used for experiments in section 5.2, section 5.3, and section 6.2. All
other injection molding experiments were conducted with machine 2.
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Table 3.2: Two different injection molding machines were used for experi-
ments

Machine number Type Clamping force maximum pi Barrel diameter
in kN in bar in mm

1 VC 940/130 130 2400 50
2 e-victory 740/220 220 2400 45

3.4.2 Monitoring equipment

The machine control software of both machines puts out cycle-to-cycle
statistics of machine signals and signal time series data, the latter being
used for process monitoring with PCA and FDA. A summary of all signals
used in this work together with their source and machine availability is given
in Table 3.3. Software of both injection molding machines allows the output
of any variable of the entire system, however, for monitoring purposes, only
non-controlled-material related variables are of use. For data structuring
and pretreatment however, it is also preferential to output certain variables
controlled by the closed-loop machine control.

Besides built-in capture methods, machine 1 was equipped with eight
analog ports, which can be configured to output any process variable in a
range from 0 V to 10 V. To enable online process monitoring, signals were
fed to a PC via LucidControl (deciphe it GmbH, Kaufbeuren,Germany) USB
IO modules acting as analog/digital converters. By means of a programming
interface, signal values can be read from the modules by the monitoring
system, which is implemented in the Python programming language.

The mold detailed in Figure 3.13 also features a pressure-temperature (p-T)
sensor (shown in Figure 3.11) manufactured by Kistler Group (Winterthur,
Switzerland). This sensor measures the in-mold pressure via a piezo electric
crystal, while temperature readings are obtained with a thermocouple of
type K. Both signals provided by this sensor are used as input signals for the
process monitoring system when this mold is used on machine one. Machine
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Figure 3.11: The Kistler pressure-temperature sensor mounted in a way that
ensures direct contact with the rubber in the cavity. Pressure
and temperatures are measured at the surface of the sensor.
Modeled after [114]

2 did not feature analog output ports, allowing only network storage of
process variable files. Thus, experiments conducted with machine 2 were
only analyzed after they were finished. However, when process monitoring
systems are implemented into machine control software, online monitoring
would also be possible on machine 2. This injection molding machine is also
equipped with ENGEL iQ weight control and iQ clamp control monitoring
systems, which are part of the inject 4.0 suite of smart manufacturing
systems [45] in addition to the signals available from the machine control of
machine 1. iQ weight control is designed to keep part weights constant by
detecting deviations in dosed volume and viscosity, consecutively adjusting
the machine setpoints accordingly. It does so by comparing the injection
pressure signal of the current cycle to a reference signal and calculating
error values from this comparison [20]. The error values can then be used as
inputs to the closed-loop control of the screw. iQ clamp control in its design
is meant to work as a process optimization feature rather than being used for
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Table 3.3: For monitoring and pretreatment, a number of process signals
are essential

Signal Usage Source Availability

Injection pressure (pi) monitoring machine machine 1 and 2
Torque (D) monitoring machine machine 1 and 2
In-mold pressure (pm) monitoring mold sensor machine 1
Mold temperature (Tm) monitoring mold sensor machine 1
Injection volume flow rate (V̇i) pretreatment machine machine 1 and 2
Injection trigger signal (Di) pretreatment machine machine 1 and 2
iQ weight control monitoring machine machine 2
iQ clamp control monitoring machine machine 2

process monitoring. But, as was mentioned in section 1.3, in this work it is
used for monitoring purposes, as it measures mold buoyancy. Buoyancy (F b)
is strongly dependent on the pressure in the cavity (pm) and the projected
area of the cavitys perpendicular to the opening axis (Ap) [46, 115].

Thus, the ability of the iQ clamp control signal trajectory to replace an
in-mold pressure sensor for process monitoring is investigated in section 6.3.

3.4.3 Molds

All injection molded parts in this work have been manufactured with molds
each used exclusively on machine 1 or 2 respectively. An overview of the
main parts of the mold used on machine 1 is given in Figure 3.12, also the
location of the cross-section detailed in Figure 3.13 is marked. A special
feature of this mold is its movable jaw, which changes the direction of the
opening motion to a vertical one. As most rubber injection molding setups
feature vertical injection molding machines for easier handling, this mold
emulates this type of part handling. The thermal control setup of this mold
features both channels for temperature control with liquids and electrical
heater pads made from ceramic.
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Part

Movable jaw

Jaw guides

Fixed platen

Movable platen

Feed bushing

Fixed jaw cut for Figure 3.13

Figure 3.12: The mold used for experiments on machine 1 features a movable
jaw which changes the opening direction to vertical, more in
line with the majority of rubber injection molding setups

Figure 3.13 shows a cut through the closed jaws to outline the cooling
channel and heater plate arrangement inside the mold block. With this
setup, the mold is able to be dynamically temperature controlled: During
filling, the heater pads are not active to prevent a premature start of the
curing reaction and once the cavity is filled, the heater pad temperature
can be set to temperatures higher than in conventional rubber injection
molding, as no filling has to take place during curing. Each heater pad is
equipped with a thermocouple for individual closed-loop control. All heaters
are connected to a custom designed central control unit built by NET-
automation GmbH (Zeltweg, Austria) utilizing an m-tron T control unit
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Part Electrical heaters Liquid temperature
control channels

p-T sensor

Figure 3.13: Electrical heaters and cooling channels are located close to the
cavity to improve temperature control reliability

(JUMO Mess- und Regelgeräte GmbH, Wien, Austria). In the experiments
in this work, the temperature of the ceramic heaters was kept constant
at all times for method development. The possibilities and challenges of
dynamic mold temperature control in rubber injection molding have been
reported in [110]. The part which can be manufactured with this mold is
detailed in Figure 3.14. A T-shaped runner leads to two cavities which
can be blocked off individually, and for better control of the flow, the two
different cavities are used mutually exclusive. For the experiments in this
work, flat parts are manufactured, as they are better suited for monitoring
and mechanical testing. Their advantage for monitoring experiments are
the filling patterns, which do not exhibit jetting, causing random jetting
related faults to overlap process monitoring results. They are also better
suited for mechanical testing, as CS specimens can be easily extracted at
the location marked in Figure 3.14 by cutting and the entire part can be
mounted on the dynamic testing setup subsection 3.2.2.
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Figure 3.14: Parts manufactured with the dynamically temperature con-
trolled mold are designed to enable easy specimen extraction

The wall thicknesses of the flat part are chosen to be 6.3 mm in order to
be in line with the requirements of the standard for CS testing [99], and
2 mm to be in line with the standard for tensile testing [116]. Thus, no
further cutting along the thickness of specimens needs to be done, reducing
a common source of error.

The mold used for manufacturing parts with machine 2 is of much simpler
design and it is outlined in Figure 3.15 a). Most notable, its parting plane
and larges part dimension is parallel to the mounting platens of the machine.
Thus, the clamping force and buoyancy act in the same direction, which
is needed for the iQ clamp control sensors to measure correctly. Further
increasing the projected part area of this mold is its double-cavity design,
with two identical cavitys for manufacturing flat parts similar to the parts
manufactured with the dynamically temperature controlled mold. The
dimensions of the parts are given in Figure 3.15 b). While the footprint of
the part was decreased in comparison to the part design of the dynamically
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Figure 3.15: The cavities of the mold are arranged in a way to maximize
the projected area of the parts to increase the resolution of the
iQ clamp control signal

temperature controlled mold, the thicknesses were kept to allow for equally
straightforward testing, and the spot for dynamic testing and CS specimen
extraction retained its relative position on the part. Lastly, this mold
does not feature active temperature control elements but rather is designed
to be mounted on generic electrical heater plates which are mounted on
machine 2 prior to the mold being installed. Due to its uniform shape and
relatively narrow construction, good temperature control and uniformity is
still expected from this setup.
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4 Non-destructive dynamic part testing for part
quality monitoring

The dynamic testing setup detailed in subsection 3.2.2 offers an alterna-
tive to CS tests for quality control of injection molded rubber parts.

It offers two key advantages over commonly used methods to determine
the dynamic properties of cured rubber parts such as CS testing, Dynamic
mechanical analysis (DMA), or Differential Scanning Calorimetry (DSC).
First, it eliminates the need for extracting specimens from parts, facilitat-
ing measurement preparation and startup. By being destruction-free it
could also be incorporated into quality control routines in serial production.
Second, the testing time is only around 240 s compared to the multiple
hours that are needed for CS testing, or around one hour, as is common
in DMA testing. This allows, although only with further optimization, to
implement a 100 % testing strategy for suitable injection molded rubber
parts. As of now, the methods most prominent disadvantage is that it is
not a standardized testing setup. Yet, similar tests have been performed
by Kerschbaumer et al., which showed good correlation of the measured
parameters with the degree of cure [100] and also CS values, which are
the most wide spread means of quality control in rubber injection molding.
Furthermore, isothermal cyclic dynamic tests have been reported to be a
viable mean of determining dynamic rubber part properties [56, 104, 117].

4.1 Method evaluation

In the experiments of this section, the dynamic testing method is validated
and its ability to provide material quality data for use with multivariate
statistical process monitoring is evaluated.
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Table 4.1: Sample parts for dynamic tests were cured at 160 ◦C at nine
different tc.

tc in s 120 150 180 210 240 270 300 600 900

For method validation, sample parts were manufactured from NBR by
compression molding. Compression molding was chosen instead of injection
molding for verifying the dynamic testing method, since it minimizes the
probability of manufacturing-related effects of part performance such as
molecular orientations or mold temperature fluctuations. The geometry of
the compression molded plate-shaped parts is outlined in Figure 3.5. The
temperature of the mold was kept constant at 160 ◦C, and the tc was set
in nine steps from 120 s to 900 s, shown in Table 4.1. All samples were
quenched in ice water after demolding to minimize post curing, which would
increase the degree of cure of the samples in an uncontrolled way, possible
reducing the response of the tests. Comparing the set cure times with the
curing kinetics of this NBR grade (section 3.1, page 43), it can be seen
that the range should span from a degree of cure which is just enough for
demolding to almost fully cured. At each setpoint, 6 sample parts were
manufactured, three of which to be tested by the dynamic setup and three
to be CS tested. CS values were used for verification, as its correlation with
the degree of cure is well-established [100, 118–120].

The first question to be raised is how many parameters are needed to
capture the curing process in the parts sufficiently. In Figure 4.1 a), every
parameter calculated from the dynamic testing setup is normalized from
0 to 1 and plotted over the cure time. It is clear that every parameter
responds in a nonlinear way to the increase in cure time. This is to be
expected, as the curing reaction is not linear in time domain. Also, all
parameters related to the elastic behavior of the rubber are increasing with
cure time, while tan(δ), which is the ratio of viscous to elastic behavior
(Equation 3.8, autopagerefeq:tand), decreases. Also, Figure 4.1 a) shows
that the measurement scattering is higher at lower cure times. The reason
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Figure 4.1: The degree of cure of the parts can be detected a) by every
parameter calculated from the dynamic tests b) by PCA.

for this can be found in the curing kinetics of sulphur cured rubbers. At the
lower curing time and thus low reaction conversion rate, the reaction rate
is much higher, amplifying any timing inconsistencies in sample handling
or temperature variation during quenching. As all parameters show similar
response shapes, PCA was performed to reduce the dimensions of this
multivariate problem.

As shown in Equation 2.15 to Equation 2.18, PCA takes a high number of
input dimensions and encodes them in a new space, which is optimal in the
information captured in each dimension. Then, by evaluating the magnitude
of the eigenvalue (λ) in Equation 2.19, the number of dimensions absolutely
needed to avoid losing information can be determined. In this case, retaining
only one dimension proved to be sufficient, which is equivalent to stating
that there is no need for a combination of parameters to measure differences
in the degree of cure of the sample. This is underlined by plotting the
first score vector t1 over time in Figure 4.1 b), which shows the same kind
of response as all other parameters. It is preferable to use a parameter
originally determined from the tests, instead of the more abstract PCA

67



4 Non-destructive dynamic part testing for part quality monitoring

0.2 0.4 0.6 0.8 1.0
280

300

320

340

360

380

400

420

440

460

C
d

in
N

m
m

−
1

Degree of cure (RPA) in 1

R2(adj.) = 0.987

Figure 4.2: Cd linearly fits the degree of cure obtained from RPA measure-
ments with a high coefficient of determination.

score value t1. Ideally, the parameter which correlates best with the degree
of cure is chosen. To find out which material parameter best correlates
linearly with the degree of cure of the part, mechanical parameter values
are compared with the degree of cure obtained from RPA measurements
(section 3.1) at corresponding times. To do so, the adjusted Coefficient of
determination (R2) of all material parameters evaluated in this work is given
in Table 4.2. It can be seen that among the obtained parameters, Cd obtains
the highest score, and it is plotted against the degree of cure obtained from
RPA measurements in Figure 4.2. As a result, it will be used in further
experiments as the sole reported mechanical material parameter.

In further experiments, the part geometry will differ strongly from the
compression molded samples used for method evaluation. Especially, while
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Table 4.2: The dynamic spring stiffness linearly correlates best with the de-
gree of cure from RPA measurements compared to other material
parameters

Parameter R2(adj.)

Cs 0.979
Fr 0.971
Cd 0.987
tan(δ) 0.941
CS 0.902

the compression molded plates are circular and their borders are concen-
tric to the setup’s test probe, the outline of parts manufactured with the
dynamic temperature controlled mold (Figure 3.12, page 61) is rectangular.
Thus, waves propagated from the tested area to the edges are not reflected
evenly. As shown in Figure 3.5, specimens were cut from the center of
the compression molded plates, one with rectangular edges to match the
thicker area of the injection molded parts as close as possible. Another type
of specimen was cut with the equipment used for CS measurements. The
Cd values measured from each of the specimen geometries are depicted in
Figure 4.3. It can be seen that Cd of cuboid specimens is equal to the circu-
lar plates. This hints that there is no noticable measurement disturbance
by waves reflected at the specimen borders, and part dimensions can be
seen as infinite compared to the measured area. The dynamic stiffness of
much smaller compression set style specimens is much lower and scattering
is higher, while the shape of the response curve remains similar. As no
surrounding rubber blocks the measured area of the latter specimens, the
compressed material is able to bulge outward, reducing the resistance to
compression. As the dynamic tests are only used for relative comparisons
to a self-established baseline, specimen geometry is not a primary concern
for method applicability.
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Figure 4.3: Cd is almost equal between complete compression molded plates
and cuboids cut from them. As no surrounding rubber supports
CS style specimens, their Cd is lower.

4.2 Conclusions to dynamic method building

The investigations detailed in chapter 4 aimed to develop a setup, that
is suitable for measuring dynamic properties of injection molded rubber
parts at a pace similar to the manufacturing process. Such a test setup
is needed to obtain readings of part quality during serial production to
assist the development of a fault detection system. The results presented in
this chapter indicate that, in a controlled environment, the custom setup
is able to measure the relative degree of cure accurately and with high
repeatability. This setup is also able to be incorporated into production
lines, as it does not require specimen extraction. Furthermore, it operates
at room temperature, which eliminates the need to inserting parts into
closed-off tempering cells in contrast to DSC and DMA, where specimen
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temperature control is an important source of operator error, increasing
the ease of handling dramatically [56, 104]. Therefore, this setup should be
well suited for quality control of process monitoring experiments, as it is
able to resolve the dynamic part behavior precise enough to not oversee any
effects of process fluctuations induced by scattering from the testing method
itself. Furthermore, compared to the setup presented by Kerschbaumer,
no specialized testing device is needed, and the method should be able
to be transferred to other general-purpose dynamic testing machines in a
straightforward fashion [100].
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5 Measuring dissipation heating of rubber in all
injection molding stages

During dosing, when flowing through the nozzle and the runner of
the mold, the rubber temperature increases not only due to thermal

conduction, but also due to dissipation. As was detailed in chapter 1,
the time and temperature of each injection molding phase contributes to
the cumulative energy input into the rubber during injection molding (see
Figure 1.3). Hence, variations in the energy input throughout the rubber
injection molding process could cause critical deviations of the product’s
actual degree of cure to the required degree of cure. This has led to efforts
being made to measure and control the amount of energy input in these
processing stages [11, 60, 63, 121, 122]. However, it is surprisingly challenging
to remove sources of error such as the temperature of the surrounding steel
from the temperature readings. Furthermore, when thermocouples are used,
of which the thermal capacity is not neglectable and measurement times are
short, the contact temperature is determined rather than the temperature
of surface which is of relevance to the investigations.

In this chapter, the focus is set on determining the energy input into the
rubber prior to curing in a more exact way than previously done. This
shall be achieved by applying a number of methods designed to deliver
accurate readings of the actual rubber temperature in every stage of the
injection molding process. The aim is creating a better understanding of
how process setpoints and fluctuations impact the energy input into the
rubber, aiding the operator in setting up more stable processes. Also, the
development of process monitoring methods in chapter 6 is facilitated, as
the effect of artificially introduced process faults on the rubber temperature
can be determined with increased accuracy. Thus, the magnitude of the
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monitoring system’s response to changes in the state of the rubber can be
judged more accurately.

5.1 Rubber temperature measurements by ultrasound

During the dosing phase, in addition to the rubber being heated by ther-
mal conduction through the barrel walls, the rotating screw causes shear
dissipation in the rubber as it is conveyed into the screw antechamber [115].
Obtaining the correct mean temperature of the rubber after dosing, but
before injection, continues to be challenging due to the enclosed nature of
the screw antechamber. The ultrasound-based method used in the present
experiments mitigates limitations of the more common method of inserting
thermocouple probes radially or axially. It does not influence the rubber
temperature by thermal conduction along the probe and it provides mean
cross-sectional temperature values instead of punctual radial measurements.
Thus, the impact of storage maturation and dosing conditions on the heating
of the rubber caused by dissipation could be investigated with an accuracy
that has not been reported outside of what has been published in conjunction
with this work [110].

The experiments follow a DoE that was designed to investigate three factor
levels of vs and two for the conditions, in which the NBR compund was stored
prior to the investigations. Values for the most important fixed experimental
process settings are shown in Table 5.1. Figure 5.1 a) and b) show that for
the NBR compound, increasing vs during dosing also increases the mean
temperature of the rubber. The ultrasound based method is also able to
show that rubber temperature is not homogenous along the longitudinal
axis of the screw antechamber. Instead a characteristic temperature profile
occurs. Such a temperature profile is intrinsic to the operation principle of
reciprocating screw injection units (section 3.4): From close to the nozzle
(at 75 mm stroke) to about 30 mm the number of turns of the screw the
rubber has to go through increases, but as the screw moves back during
dosing, the effective screw length (number of turns between the feed and
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Figure 5.1: A higher vs increases the mean temperature of NBR in the
screw antechamber and leads to a higher curtosis of the axial
temperature profile both for a) NBR stored at 5 ◦C and b) NBR
stored at RT [123].

the screw tip) decreases, causing falling temperatures between 30 mm and 0
mm at the nozzle tip. However, the amplitude of the temperature profiles in
Figure 5.1 a) and b) remains in the range of under 6 K, and no effect of the
axial temperature profile on process stability could be proven in successive
experiments chapter 6.

The mean temperature of the NBR stored at RT (Figure 5.1 b)) is lower
at the same settings than the temperature of the NBR stored at 5 ◦C.
This may seem contrary to the increase in viscosity, that is detected by
RPA measurements in rubber stored at RT, which are given in section 3.1.
However, an increased viscosity also causes less pressure induced backflow
during dosing at the same back pressure settings, and thus reduces dosing
time and dissipation heating, as shown in Figure 5.2.

75



5 Measuring dissipation heating of rubber in all injection molding stages

Table 5.1: DoE for determining the rubber temperature with ultrasound

Rubber compound NBR
Barrel inner diameter in mm 35
Barrel temperature in ◦C 80
Back pressure in bar 100
Ejection pressure in bar 600
Cycle time in s 600
Circumferential screw speed in m s−1 0.1 0.2 0.3
Storage condition 5 ◦C 1 month RT
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Figure 5.2: Dosing time decreases at every setpoint of vs when NBR is stored
at RT compared to NBR stored at 5 ◦C
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5.2 Rubber temperature measurements by thermal
imaging

After the dosing phase, the rubber is injected into the mold, where it passes
through the nozzle of the injection unit. Most industrial nozzles feature
a contraction zone, where the flow diameter is reduced, so the rubber is
not only subject to shear but also elongation and compression forces. As a
result, the work input of the axial screw movement is not only translated
into motion, but also causes material heating due to dissipation [41, 59, 121,
122, 124, 125] Using the thermographic setup presented in subsection 3.3.2,
the temperature of NBR at the orifice was determined. Again, processing
parameters were set to different factor levels, shown in Table 5.2, to highlight
the impact of the processing conditions on the heating of the rubber. Lastly,
effects were analyzed for two levels of storage maturation of the NBR in use.

Figure 5.3 shows the temperature of NBR at the orifice which is 7 mm
in diameter and it is clear that the barrel temperature has by far the most
impact on the measured temperature. Especially notable is that while at
Tb = 60 ◦C, temperatures range from 66 ◦C to around 70 ◦C, which is
higher than the barrel temperature. At Tb = 80 ◦C, measured temperature
values scatter close to the setpoint and at Tb = 100 ◦C, temperatures
are consistently lower than 100 ◦C. As already shown in Figure 5.1, the
temperature of NBR in the screw antechamber is lower than the Tb for cycle
times of 600 s (which was set in both experiments).

When conditions are transferable, it can be seen that the effect of in-
creasing the temperature of NBR by injection is reduced with increasing Tb.
Furthermore, for every setting of Tb, Figure 5.3 shows a plateau behavior
of the temperature when increasing the injection volume flow beyond 20
cm3 s−1. This is in good accordance with general flow theories for non-
newtonian fluids and highly filled fluids (section 2.1) and measurements
found in literature [41, 43, 69, 73, 74, 79, 80, 126]. Here, increasing injection
volume flow rate (V̇i) mainly affects shear dissipation in the outer layers
of the rubber , while the plug section shown in Figure 2.2 is not affected
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Table 5.2: DoE settings for determining the rubber temperature with ther-
mal imaging

Rubber compound NBR
Screw speed in m s−1 0.1
Cycle time in s 600
Orifice diameter in mm 3.5 7
Barrel temperature in ◦C 60 80 100
Volume flow in cm3 s−1 5 12.5 20 40
storage maturation refrigerator 1 month RT
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Figure 5.3: The temperature of NBR after ejection can be increased by
increasing both the barrel temperature (Tb) and the injection
volume flow.
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ature of the rubber at the nozzle orifice.

by shear. A temperature increase in the plug section is only possible by
dissipation through elongation flow.

In Figure 5.1, the impact of changing the setting of vs on the temperature in
the screw antechamber can clearly be seen. If this temperature difference can
be carried into the mold, it could prove valuable for controlling fluctuations.
In Figure 5.4, the impact of vs on the temperature at the orifice was
investigated for an orifice diameter of 7 mm and two V̇i setpoints. One can
clearly see that for T b > 80 ◦C, any temperature increase caused by increasing
vs has vanished. Flowing through the nozzle has a smoothing effect on the
rubber temperature, as warmer rubber is subject to less dissipation due to
its lower viscosity and the opposite is true for cooler rubber. Unfortunately,
this means that smaller temperature differences introduced during dosing
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will not be present any more as the rubber reaches the cavity, as they are
overpowered by dissipation occuring in the nozzle and the runner.

Further evaluation of the factors controlling the NBR temperature at
the nozzle orifice was done via three-way Analysis of Variance (ANOVA).
Means were compared pairwise by Tukey’s test at a significance level of
95 %. Figure 5.5 shows the effect of each factor set in the DoE. It can
be seen that at a Tb of 100 ◦C, each effect is not statistically significant.
First, this means that adjusting the injection volume flow to counter quality
fluctuations is only viable at lower Tb settings. However, influences such as
different levels of storage maturation also do not alter the temperature of
the rubber greatly, which can facilitate setting up more stable processes.

The impact of storage maturation on scorch behavior was not investigated
here, but it was found that sulphur curing NBR can show reduced scorch
time when stored at RT for longer periods of time [6]. Thus, while higher
Tb settings can help stabilize the rubber injection molding process, it also
limits the meaningful possibilities to (automatically or manually) adapt the
process setpoints to counter unwanted quality fluctuations.
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Figure 5.5: Injection volume flow, storage maturation and orifice diameter
significantly impact the temperature after ejection only at Tb =
60 ◦C.

5.3 Rubber temperature estimation in the mold

When being injected, the rubber flows through the runner system which
directs it into the cavity or cavities. As mentioned in chapter 3, the mold used
in all experiments is equipped with a combined pressure and temperature
sensor in the runner. Thus, it is possible to set the results of subsection 3.3.1
and section 5.2 in context with the temperatures measured at the in-mold
sensor. First, the shape of the sensor signal and features derived from it
need to be discussed. Figure 5.6 shows a temperature signal recorded during
an injection molding cycle with NBR rubber.

The graph shows that the rubber touches the sensor at about 60 s, and
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determined from the in-mold temperature sensor signal of each
cycle. The data shown is gathered by injecting NBR with V̇i set
to 20 cm3 s−1, Tb to 100 ◦C, and the temperature of the fluid to
150 ◦C

before, the temperature measured is that of the steel surrounding the sensor.
As the sensor is located in a dead end (Figure 3.14), no further rubber flows
past the sensor, causing the surrounding volume of the sensor(rubber and
steel) to cool down to Tm over time. Two characteristic features of the peak,
the Tp and wh can thus be evaluated. Tp, in this case is closely related to
the contact temperature and to the temperature of the outer layers of the
rubber while wh is a better measure for the thermal energy of the rubber
volume and thus more in line with its mean temperature.

This statement is substantiated by the plots in Figure 5.7. Plot a) shows
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that Tp is highly dependent on V̇i but not on Tb. In other words, it is a
function of shear dissipation but not the mean temperature of the rubber.
In contrast, plot b) shows wh is not a function of V̇i, but only of Tb, which
is the most important influence on the mean temperature of the rubber in
injection molding (Figure 5.3).

It is notable, that in Figure 5.3 no measured temperature is higher than
the mold temperature (Tm), but Tp can be as high as 10 K. Thus some
effects must have occured, which raise the contact temperature well above
Tm.

5.4 Conclusions

As mentioned at the beginning of this chapter, being able to track the
temperature evolution of rubber as it is injection molded can provide valuable
insights into the possibilities and limits of automatic process control. Such a
process monitoring system could use data collected from these experiments
to adapt process setpoints to ensure constant part quality even in a changing
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process environments. However, as shown in Figure 5.1, and Figure 5.4,
temperature differences lower than 10 K achieved by altering the dosing
speed are not carried through the nozzle. In other words, actively controlling
the rubber temperature by altering the setpoint of vs may not be the best
lever to control part quality.

Furthermore, Figure 5.6 shows that in the mold, the effect of Tb on the
bulk temperature of NBR is still present, while in the outer layers, V̇i is the
only temperature controlling factor. This renders it extremely challenging to
balance detected fluctuations in the process with controlling the temperature
by injection unit settings. Perko showed, that by using runners with conical
or hyperbolic flow path crosssections, the temperature of the rubber could
be increased significantly across the entire diameter [59]. By incorporating
such runners in mold designs, the lever of injection settings on part quality
can be greatly increased.

At this point, there is no known way to reliably measure the temperature
of a rubber part just when filling is completed, let alone resolve the cross-
sectional temperature profile. Furthermore, only set-point changes which
show quick response are suitable for adaptive control, which is not true for
Tb, as will be discussed in chapter 6. To conclude, options to control the
rubber temperature with fast responding process setpoint changes are very
limited. Thus, being able to monitor the process, detect fluctuations and
automatically detect the type of fault is the best case scenario that can be
achieved for now.
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6 Monitoring the injection molding process

Experiments presented in this work up to this point aimed at closely
examining the effect of manufacturing conditions and property fluc-

tuations of the uncured rubber on the quality of vulcanized rubber parts.
Knowledge of these effects is important to achieve the primary goal of this
work, which is to develop a process monitoring system for rubber injection
molding capable of detecting such fluctuations during manufacturing lots
spanning extended periods of time. A number of approaches to perform
process monitoring of thermoplastic injection molding or other industrial
processes have been discussed in section 1.3. Among those, data-driven
approaches present the greatest potential for industrial applications, as they
do not require any testing or model tuning prior to the start of production.
However, for rubber injection molding, no data-driven SPM approaches have
been developed as of yet.

In chapter 2, an approach relying on PCA and FDA to perform multivari-
ate statistical process monitoring has been presented. To test this method
on its response to fluctuations peculiar to rubber injection molding, in this
chapter, extensive injection molding experiments were conducted. These
experiments were set up similar to what is typical on the shop floor of rubber
part manufacturers, and artificial sources of fluctuations were introduced
to the experiment runs, such as changing the mold temperature (Tm), the
barrel temperature (Tb), or feeding a rubber compound with differing storage
maturation.
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6 Monitoring the injection molding process

6.1 SPM method schematics

The flow chart of Figure 6.1 displays the routine followed in all monitoring
experiments: When the manufacturing process is started, process signals
(variables), for instance the injection pressure (pi) or dosing torque torque (D)
are captured as trajectories with K sampling points, and the cycle number
they belong to is used as a tag. When the process has reached stable
operation and the quality of the parts is deemed to be OK by visual
inspection, the cycle number is marked to start the training. Multiple cycles,
15 cycles in these experiments, need to be recorded to form a full training set.
When the training set is completed, the data are structured by PCA and
parameters essential for process monitoring are calculated. More specifically,
the parameters are:

1. The representative phase loading matrix (Pc) of each process phase is
calculated according to Equation 2.29.

2. The control bound of the T 2 statistic T 2
t as in Equation 2.32.

3. The control bound of the SPE statistic SPEc(k) for every sampling
point k according to Equation 2.33.

With these parameters, the subsequent cycles can be monitored on-line.
For the full trajectories of all captured signals, the statistics SPEnew and
T 2

new are calculated. They are then compared to the respective control
bounds by applying the decision logic of Equation 2.35 and Equation 2.36
to detect critical deviations of the process stability from the training data.
Also, at this stage, FDA can be performed to identify the type of deviation
or fault that occured. However, since FDA is a supervised learning method,
the fault types need to be labelled before training this method. Due to
constraints of the lab setup used for model development, labelling could not
be done during monitoring and FDA classification was calculated off-line.
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Figure 6.1: The process monitoring approach follows a straight forward
decision logic.

6.2 Baseline experiments for PCA-based process
monitoring

To create an understanding how the multivariate statistical monitoring
methods perform when they are used to detect faults in a rubber injection
molding setup, baseline experiments need to be performed. There, reliable
training data have to be generated by manufacturing NBR parts which are
deemed to be of target quality regarding their state of cure, their dimensions
and mechanical properties. To do this, an operating point for the process
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Table 6.1: Operating point of the training data generated in first experiments
to test PCA based process monitoring

Process parameter Set point

Curing time (tc) in s 254
Mold temperature (Tm) in ◦C 160
Barrel temperature (Tb) in ◦C 80
Cirumferential screw speed (vs) in m s−1 0.1
Back pressure (pb) in bar 50
Injection volume flow rage (V̇i) in cm3 s−1 15
Packing pressure (ph) in bar 150

was determined in preliminary trial runs, and the resulting parameter set-
points are given in Table 6.1. With these settings, the part is cured to
around 80 % in the mold, with the remainder of the curing reaction taking
place after the part is demolded. However, reliable methods (chapter 3) for
determining the part properties are not able to be applied in-line, thus, on-
line part quality assessment was done visually. In first experiments, 23 parts
were manufactured in this way and the process data were stored (8 cycles
for startup and 15 as a training set). From this training set Pc, SPEt(k),
and T 2

t are calculated. One base assumption taken in subsection 2.2.4 for
calculating Pc is that variable correlation is similiar within a process phase
and dissimilar between phases. Whether this holds true for monitoring
the rubber injection molding process is a powerful indicator of the PCA
monitoring system working as intended. To visualize the similarities and
dissimilarities of different process phases, the first three entries of each
loading matrix P (k) of the training data are plotted in Figure 6.2. Even
visually, a clear distinction between different clusters can be made, proving
the assumption of P capturing within-phase similarities to be true. Yang
et al. [7] use a k-means algorithm to find the clusters and distinguish each
phase. However, molding equipment used in this work provides digital
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Figure 6.2: The P matrices of different process phases are spatially clustered.

signals inidicating which phase the machine control has initiated. It is
notable that clustering differs from machine control in phase recognition.
For example, clustering recognizes a pre-injection phase which covers the
amount of time until the rubber has reached the inmold sensor, while this is
grouped with the main injection phase by the machine control. Nevertheless,
it is clearly visible that the distances between individual clusters is high,
which underlines the need for treating every process phase separately. Once
the phase loading matrices P c are known, the control bounds SPEt(k), and
T 2

t (Equation 2.33, and Equation 2.32 respectively) are determined. In this
work, we set the significance level to 95 % (α = 0.95), which is common in
many engineering applications of statistics [7, 8].
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After completing the training data set, we introduced artificial process
deviations to test the monitoring system. These changes are shown in
Table 6.2. Between those different types of deviations, the process parameters
were set back to the main operating point for 10 cycles to let the process
return to an in-control state. This is done to verify if the monitoring system
responds to the artificial change and not recognize every cycle that is not
part of the training set as a fault. The artificial changes were each selected
to be introduced for specific reasons.

First, by altering the rotation speed of the screw during dosing vs, the total
work of dosing changes. Consequentially, as shown in Figure 5.1 (page 75),
the temperature of the rubber prior to injection is different. This has two
important effects: First, η changes, affecting the pressure needed for filling
the cavity and second, the curing kinetics change, altering the optimal cure
time and thus part properties.

Second, variations in the storage maturation of NBR are common sources
of error in industrial setups. The impact of the storage conditions on
kinetic constant of curing (kc) has been shown to be minimal in RPA
testing conditions (section 3.1). Yet, its impact in application has not been
investigated broadly [97]. Furthermore, as was shown in Figure 3.2, storage
at RT increases the η of the NBR used in the experimexents.

Third, changing the setpoint of the barrel temperature Tb mimics fluc-
tuations of the temperature control in industrial setups. Although Tb is
treated like it was the true temperature of the injection units’ barrel, it is
the setpoint of the temperature control unit of the water flowing through
the tempering channels. This simplification is also true for most other
temperatures recorded in injection molding. The change of seasons brings
variations of air humidity and temperature of the environment, which affects
the efficiency of central cooling systems commonly found in production
plants.

All artificial changes introduced in the experiments do not directly affect
monitored signals, which of course would be trivial for the monitoring system
to detect. Rather, all changes affect processing-relevant properties of the
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Table 6.2: Three types of artificial deviations were introduced in the first
experiments

Setpoint changed Magnitude Cycles

vs ×3 23-30
Rubber Store 1 month at RT 43-52
Tb −20 K 62-end

NBR which are then picked up by machine and mold sensors.
The PCA monitoring approach in this work differs from other reported

work in its fault detection logic (subsection 2.2.4 [7, 8, 13]). It detects
faults only if the mean difference between the SPE statistic and the control
bound SPEt is positive, instead of detecting a fault if at any sample k the
SPE is above its control bound. Thus, the detection logic in this work
is more lenient than reported approaches. To illustrate the necessity for
this more lenient appraoch, Figure 6.3 visualizes SPE trajectories of cycles
representative of their class for the first 60 s of each batch of the experiments.
Every sampling point of each curve is calculated as in Equation 2.33 and
Equation 2.31. Process parameters in cycle 58 were set to their normal
operating conditions, thus the cycle should be classified as in-control. It
also is not part of the training set, and thus assumes the role of belonging to
a control group. The SPE values of cycle 32, where vs was tripled, are also
not entirely above SPEt, but both investigated cycles are correctly identified
as in- and out-of control respectively. Furthermore, it can be seen that
when looking at Figure 2.6, SPE values posess information across all process
phases, and are not limited to a single one, for instance the injection phase
or the dosing phase. This again solidifies the applicability of multivariate
statistics to monitor rubber injection molding processes.

Consecutively, ∆SP E was calculated for all cycles and is plotted in Fig-
ure 6.4 a). The T 2 statistic is plotted in b). Every artificially introduced
fault can be detected in most of the cycles and it is detected by both statis-
tics. When conditions are brought back to the normal operating point, both
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statistics mostly show a return to in-control operation as well. Some cycles,
however, are either false positives or false negatives.

These misclassifications occur consistenly when process parameters are
changed and highlight the lagged nature of some fault types. When vs is
tripled before dosing of cycle 23, the rubber that gets injected in this cycle
is already subject to increased dissipation, being immediatly detected as
a fault by the process monitoring system. The same is true for cycle 30,
where vs is set back to normal operation. On the other hand, a change in

SPEc

SPE of cycle 58 (in-control)
SPE of cycle 32 (increased vs)
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Figure 6.3: In the first 60 s of the injection molding process, in-control and

out-of-control cycles can be discerned easily by their SPE values.

storage maturation of the rubber can only be detected with a time delay of
about three to four cycles, which approximately matches the dwell time of
the injection unit in use: NBR stored at RT is fed in cycle 43, but a volume
of around four cycles of rubber is contained within the injection unit. Thus,
process variables are effected by the changed rubber properties only when
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Figure 6.4: Artificially introduced faults are detected a) by the ∆SP E statis-
tic and b) by the T 2 statistic as reported in [84].

the amount of NBR stored at RT surpasses a critical amount in the screw.
Similarly, when NBR stored at 5 ◦C is fed again (cycle 53), out-of-control
states are still detected for 3 cycles after the event.

A delayed response is also present when Tb is lowered to 60 ◦C. Thus,
increasing ∆SP E and T 2 values are recorded while the rubber in the barrel
cools gradually with passing time. These delayed responses pose challenges to
the correct performance evaluation of monitoring results. For example, when
feeding an incorrectly stored NBR, only very little of this rubber portion
reaches the mold in the first cycles after feeding it, not affecting part quality.
In the subsequent cycles, D may already change and a fault is detected even
if still very little of the new rubber portion reaches the screw antechamber.
Fortunately, every time such transitions appeared, PCA monitoring gives
a conservative estimate, resulting in false alarms rather than undetected
faults, which is preferable in industrial application. However, precision,
recall, and false alarm rate may still be reduced by those uncertainties and,
as will be discussed in subsection 6.2.2, FDA training can also be influenced
negatively. As multivariate monitoring is not commonly used by rubber part
manufacturers to monitor their processes, the experiments of section 6.2
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should also be monitored by more widespread univariate methods.

6.2.1 Comparison to EWMA

For method comparison, data from the same experiments are also evaluated
by plotting EWMA charts from the data. Before z-values (Equation 2.12)
can be calculated, a feature which contains the most information on the
process state has to be determined for every process variable (as mentioned
in subsection 2.2.4). Based on common knowledge, the maximum value of
each cycle was calculated for pi, pm and D [56, 127]. Furthermore, λ needs
to be chosen empirically and was in this case set to λ = 0.8, as lower values
tend to smooth results too much. The confidence bounds were calculated as
in Equation 2.13 and Equation 2.14.

When comparing Figure 6.5 to Figure 6.4, it is visible that the monitoring
capabilities of EWMA charts are far inferior to multivariate monitoring
by the PCA-based approach, and precision and recall values in Table 6.3
for each method underline this intuition. EWMA charts also feature two-
sided control bounds, giving information if signals belonging to faults were
comparatively lower or higher than those beloging to in-control cycles. In
this special application, this proves to be a disadvantage to fault detection, as
drifts from one fault to another (visible in Figure 6.5 a), cycle 35 to 45) may
cross the confidence region, thus generating false "in-control" cycles. However,
when EWMA charts are evaluated off-line by personnel which understands
the correlation of the specific manufacturing setup, these double sided
confidence bounds provide more information without performing additional
analysis. Still, when multivariate fault detection is coupled with multivariate
fault identification (e.g. by performing FDA) in the present investigations,
it outperforms EWMA in every aspect.

6.2.2 Application of FDA

In the current experiments, all three artificially introduced faults can be
detected with PCA-based methods. However, the ∆SP E and T 2 statistics do
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Figure 6.5: Fault detection accuracy is greatly reduced when a) pi, b) D or
c) pm are monitored seperately.

not provide information on what kind of fault has occured. To differentiate
between the different types of faults which cause the out-of-control process
states, FDA is applied. As already discussed in section 2.3, FDA is a
supervised learning method, and data from every class that should be
identified needs to be present in the training data set. Thus, data from each
cycle of the manufacturing run needs to be labelled with their respective
fault class (no fault also being one class). This is only possible after the
experiments have passed (off-line), because when PCA training finishes, no
fault has yet occurred. Only when FDA training has been completed with
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Table 6.3: Precision and recall values for univariate EWMA charts and PCA
based process monitoring

Precision Recall

EWMA of pi 0.51 0.78
EWMA of D 0.42 0.72
EWMA of pm 1.00 0.18

PCA 0.81 0.89

the most common fault types presented to the optimization algorithm, it
can be used for detecting and classifying new faulty cycles.

Furthermore, in this work, FDA is not performed with every X(k) but
rather a matrix X ∈ RI×J , containing process feature vectors xj for each
signal j. Thus, each batch is represented by a feature vector xi rather than
by a matrix of signal trajectories. In Figure 6.6 a), FDA transformed data
from the first experiments are plotted. They are colorized to represent the
real class strictly taken from Table 6.2. In Figure 6.6 b), the color represents
the predicted class by FDA classification.

Visually, it is obvious that the accuracy of classification is high, and this
is underlined by a precision score of 0.74 and a recall of 0.80. The labelling
of the data was done by not taking into account lagged effects discussed in
section 6.2. The challenge to correctly labelling cycles is also apparent in
FDA space, as borders between fault types are very close together. The true
class of samples in these border areas are also not determined definitely, so
strict labelling always introduces errors. Especially distinguishing between
the fault vs × 3 and normal operation causes a high percentage of the total
confusion of the FDA model.
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6.2.3 Eliminating mold sensors

Suppliers of injection molded parts rarely tie one single mold to a single
machine, but rather use various molds on different compatible injection
molding machines. This is even more common when technical rubber parts
are injection molded, as lot sizes tend to be smaller than with commodities.
Setting up process monitoring systems which rely on specific kinds of mold
sensors or simply on mold sensors being present at all is not optimal, as
different molds may be equipped with different sensors or molds do not
feature sensors at all. Even when the correct sensors are mounted on different
molds, reconnecting them with the setup after mold swaps costs time and
introduces additional complexity. Thus it is preferable to perform process
monitoring only with signals available from the injection machine control
itself. The mayor drawback of doing so is of course the loss of information,
such as the pressure gradient during injection and temperature increase due
to dissipation. In this current injection molding setup, the only available not-
controlled signals are pi and D. The range of available signals is expanded in
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Figure 6.7: Monitoring the experiments without sensors installed in the mold
reduces the reliability of the a) ∆SP E and b) T 2statistics.

section 6.3 by experiments done with an injection molding machine, which
features additional monitoring systems. Figure 6.7 shows ∆SP E and T 2

statistics with only pi and D as variables. Multivariate monitoring is still
applied even when univariate monitoring is easily feasible with only two
signals, as both signals cannot be considered to be linearly independent. It
is apparent that the artificially introduced faults still cause their respective
monitoring systems to be above the control bounds. Surprisingly, while
faults can still be detected, the majority of control cycles where setpoints are
returned to normal operation are detected as out-of control. This reduces
the precision and recall of the system to 0.66 for both measures and shows
that more signals can not only increase a multivariate monitoring system’s
response to faults, but also its tolerance to minor fluctuations and reduce
its false alarm rate.

98



6.3 Expanding the monitoring system with advanced machine systems

M
ol

d
br

ea
th

in
g

in
µm

Time in s

p i
in

ba
r

pi

Mold breathing
1

2

0 10 20 30 40 50 60
0.0

2.5

5.0

7.5

1.0

0

400

800

1200

1600

2000

3

Figure 6.8: The mold breathing captured by the iQ clamp control system
shows distinctive trajectories in the injection phase (1), the
packing phase (2) and the curing phase (3).

6.3 Expanding the monitoring system with advanced
machine systems

The rubber injection molding machine ENGEL e-victory 740/220 detailed
in section 3.4, which is equipped with the iQ clamp control system for
measuring mold breathing (section 1.3) was used for the experiments in
this section. The iQ clamp control signal can be incorporated into the
PCA-based monitoring approach without need for large-scale adaptions, as
the system is not sensitive to the source or type of information used as
input.

Figure 6.8 puts the trajectory of the mold breathing captured by iQ clamp
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Table 6.4: Operating point of the training data generated in first experiments
to test PCA based process monitoring

Process parameter Set point

tc in s 254
Tm in ◦C 160
Tb in ◦C 80
vs in m s−1 0.16
pb in bar 50
V̇i in cm3 s−1 7.5
ph in bar 300

control in context with the trajectory of pi for the first 60 s of a sample cycle
of the experiments. In the injection phase (1), the packing phase (2) and
the curing phase (3), each signal shows distinct trajectories. In the injection
phase the signal rises (the side peak could be caused by an imbalance in
filling of the two cavities) as the pressure in the cavities builds. In the
packing phase, a slight rise in the mold breathing signal can be caused by
temperatures of the rubber and the mold creeping back to balance. In the
curing phase, all external forces (from the screw) are removed, and the
rubber in the cavity can relax to atmosphere pressure.

The experiments discussed in this section are chosen to be as similar as
possible to section 6.2, in order to allow a certain degree of comparability,
even though machine and mold are dissimilar. First, train data were
generated by manufacturing parts at an operating point (Table 6.4), where
stable conditions can be achieved and the part quality is optimal.

After enough training data were generated, artificial changes of the same
type as in section 6.2 were introduced and the cycles at which the changes
to the operating conditions were made are shown in Table 6.5. On this
setup, the range of signals available from the injection molding machine
is expanded from only pi and D to also incorporate the iQ clamp control
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Table 6.5: Two types of artificial deviations were introduced in the advanced
monitoring experiments

Setpoint changed Magnitude Cycles

Rubber Store 1 month at RT 20-35
Tb −20 K 54-end
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Figure 6.9: When advanced monitoring signals are used for PCA based
monitoring, the ∆SP E statistic performs better for fault detection
than the T 2 statistic.

value. While this is still a limited amount of signals, the mold breathing
represented by the iQ clamp control value shows good correlation with the
in-mold pressure [46].

Figure 6.9 shows the ∆SP E and T 2 results of all cycles recorded during
the experiments. It is notable that the ∆SP E statistic clearly detects the
warm-up phase as well as the reduction of the Tb setpoint. The change in
storage maturation of the NBR compound, however can not be detected. As
already shown in section 2.4 and section 6.2, all monitoring methods operate
well with simulated and real world data. In comparison to PCA, FDA also
has access to a posteriori knowledge about data classes and its separation
accuracy is generally higher [13]. In Figure 6.10, cycles where NBR was
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Figure 6.10: FDA can not completely separate cycles of the normal operating
point from cycles where NBR storage maturation was changed.

stored at RT for one month are spatially grouped together, which is an
improvement over PCA monitoring. However, there is no sharp distinction to
cycles conducted in normal operation and as a result, misclassifications occur.
When both monitoring methods are not able to fully seperate these two fault
types, it can be concluded that this specific change in storage maturation
did not impact available signals enough to be detected as out-of-control
states.

6.3.1 Part quality control by mechanical testing

The purpose of process monitoring is of course to detect changes that
are detrimental to the quality of the resulting products. For technical
rubber parts, mechanical performance is the most important measure of part
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quality. To characterize the impact of the artificially introduced changes on
part quality, the CS and Cd of the parts were determined as described in
section 3.2. Test results of both parameters are plotted in Figure 6.11 a)
and b) respectively. Data points are again color coded to match the fault
class that should be present at the current cycle, and the control bounds
were calculated as the standard deviation of cycles deemed in control by
the ∆SP E statistic to illustrate overall scattering and shifts from artificial
disturbances. It can be seen that both parameters do not respond to any
artificial change in a consistant way. Rather, in a wide interval of cycles from
the process start to around cycle 17, values of both parameters are outside
the control bounds. This can be accounted to the mold still heating up
during manufacturing, as both the CS and Cd indicate a rising degree of cure
as manufacturing moves on. This mold heat up is also detected by the ∆SP E

values shown in Figure 6.9. Also, as the PCA based online monitoring and
FDA fault identification are able to detect the artificial change to Tb = 60 ◦C,
there is evidence that the degree of cure of injection molded parts is robust
against fluctuations which manifest themselves during dosing and injection,
and the process monitoring system is more cautious than it needs to be. It
is, however sensitive to changes in the mold temperature. This indicates
that for the NBR used in the investigations, the mold temperature is the
most important factor determining the degree of cure of the parts. This
could also be found by Fasching et al. [128].
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Figure 6.11: Mechanical parameters of rubber parts are not affected by
artificial process disturbances.

6.4 Conclusions to process monitoring experiments

In this chapter, methods of multivariate statistics were successfully applied
to rubber injection molding. When fluctuations were introduced to the
process, the PCA-based online monitoring system strongly outperformed
univariate monitoring methods such as EWMA charts in fault detection.
In rubber injection molding, many injection molding process signals are
not linear independent, as most of them measure phenomena which are
all rooted in the rubber’s intrinsic physical and chemical properties. This
linear dependence can be used by multivariate methods both to reduce the
false alarm rate and increase the detection accuracy of true faults. For
example, by calculating a one-sided confidence bound instead of an upper
and a lower control limit, no traversing of the in-control signal region occurs
when the fault type changes. With FDA, the different types of faults could
be identified automatically, which is of great benefit for the operator as it
can play a guiding role in trouble shooting. However, limitations of this
approach are still evident:
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6.4.1 Limits of SPM in rubber injection molding

In the experiments presented in this work, no significant quality problems
resulted from the artificially introduced fluctuations, as the temperature fluc-
tuations at low levels during dosing and injection proved to be overpowered
by the energy input during curing. This was evident before investigations
started, and counteractions were set from the beginning. To maximize the
contrast between in-control and out-of-control cycles, the artificially intro-
duced faults of the monitoring system building experiments were carefully
chosen, as they clearly altered the temperature of the NBR in preliminary
investigations. Yet, as is shown in Figure 6.11, these temperature fluc-
tuations do not manifest in the mechanical properties of the parts. An
estimation of the energy contributions of the phases of the injection molding
phases according to Equation 1.5 can provide insights. To perform this
estimation, a dwell time of the rubber in the barrel of three dosing cycles is
assumed. In Table 6.6, temperatures and dwell times for each phase of the
rubber injection molding process to estimate the relative energy input are
listed. Also in this table, the relative energy is stated. The contribution of
the curing phase overpowering the contribution of other phases is clearly
visible, it is around 40 times greater than the relative energy input of the
900 s (3 cycles), when the rubber is in the barrel. As a result, temperature
fluctuations caused by variations of the rubber viscosity can be measured
with the measurement methods presented in chapter 5, but their effect on
the degree of cure after demolding is very limited.

To correctly predict the curing reaction, the system would need to be
expanded with sensors specifically measuring the chemical conversion. While
this has been proven to be possible for thermosets, little work has been found
on methods for inline rubber cure measurements. Curing of thermosets
can be measured in-line by optical sensors, as many resins are transparent
in their uncured state, or by capacitive setups measuring the change in
dielectric properties [129–131]. Because many industrial rubber compounds
are highly filled with carbon black, these methods can not be transferred,
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Table 6.6: Time, temperature and estimated energy contribution of the
injection molding phases of the experiments discussed in subsec-
tion 6.3.1

Temperature Dwell time Relative energy input
◦C s 1

dosing 80 300 3.8
injection 100 14 0.4
curing 160 254 480.4

as the carbon black amount and type is the determining factor for the
optical and electrical characteristics of the rubber compound [132]. More
promising approaches for monitoring the curing reaction of rubber prove
to be dynamic mechanical analysis and ultrasound based methods. While
oscillatory dynamic measurements with the RPA device are already state
of the art, Jaunich et al. successfully determined the degree of cure by an
ultrasound setup [133]. To transfer both of these approaches into injection
molds, a high amount of additional research will be necessary, as the re-
spective measurement setups would need to be minituarized and tested for
their applicability in highly non-isothermal conditions. Even then, fitting
molds with such systems would increase mold design and manufacturing
costs dramatically and also would require far more frequent maintenance.
Thus, in-line cure measurements for quality prediction will most likely only
be economically reasonable for the highest-end technical products. Still,
when looking at other works, it remains unclear how measuring the actual
degree of cure would improve results. In these papers, possibilities to alter
the temperature of the rubber before it enters the mold were shown, but no
conclusive results on the effects on the degree of cure after curing could be
proven. Only curing time and mold temperature remain as significant factors
for influencing the final degree of cure of injection molded rubber parts [40,
60, 97]. It can be concluded that, the only viable option to counteract when
quality problems do occur during manufacturing, is to adapt curing time or
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temperature. But for many industrial applications, adjusting the time or
temperature of the curing phase is not a viable mean of automatic quality
control. For one, adjusting the process timing can reduce productivity and
downstream manufacturing steps can become out of tune. Second, the time
constant of temperature changes of injection molds commonly far exceeds a
cycle, thus any change would not come into effect the cycle it is needed.

6.4.2 Strenghts of SPM in rubber injection molding

The multivariate statistical process monitoring system presented in this
work is capable, in all experiments, to reliably discern artificially introduced
fluctuations from normal operation. As it is a data-driven system, one of
its key advantages is its adaptability to different manufacturing equipment
setups, process operation points and material setups. This adaptability
is especially important for rubber injection molding, as industrial rubber
compounds are almost always tailored to the product that is made from
them. For example, while the NBR compound used in this work tends
to show increased viscosity and accelerated curing rates when stored at
increased temperatures (section 3.1), other compounds may show exactly
opposing effects [96, 134]. The SPM system developed in this does not
require any a-priori input of curing characteristics, flow behavior or other
material parameters to function. As such, it can be much more readily
applied than other, first principle based monitoring systems for rubber
injection molding, which require extensive material testing prior to being
used for monitoring manufacturing lots [11, 12].

Like all data-driven monitoring systems, the PCA based monitoring
approach requires training data to learn the relationships between process
variable values. In this work, mainly for development purposes, training
was conducted off-line, but on-line training functions are possible to be
implemented in the system, further increasing its real-time capabilities.
During training, the fault detection system does not require to be fed data
from out-of-control injection molding cycles to learn, and can be thus set
up fully at the beginning of the manufacturing lot. When the parameters of
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the process are changed, simple retraining can be performed without the
need for extensive off-line hyperparameter adaptions.

As the transition to smart manufacturing facilities is made by rubber injec-
tion molded part manufacturers, online process monitoring systems become
a necessity to be implemented into new manufacturing setups. According
to Hermann et. al., a smart manufacturing facility should be designed to
follow the principles of interoperability, virtualization, decentralization, and
real-time capability [135]. The PCA-based process monitoring system can
increase device interoperability. Besides being not limited to specific kinds
of rubber compounds, it is not bound to specific kinds of data, as shown
in subsection 6.2.3. There, a signal from an in-mold pressure sensor could
be swapped for a mold breathing signal provided by the ENGEL iQ clamp
control technology. Eliminating the need for sensors in the injection mold
greatly reduces complexity for part manufacturers, as sensor placement is
increasingly difficult when moving mold elements are present or the part
features visible surfaces in application. Thus, the presented SPM system
can be preferable to systems strongly relying on specific data obtained by
additional sensor equipment. Furthermore, fault detection is not strictly
limited to the injection molding equipment itself. In future applications,
for example, process variables from peripheral injection molding equipment
such as temperature control and handling devices can be readily included.
If peripheral equipment is included, FDA fault detection can also be ex-
panded to indicate malfunction of up- or downstream devices. Also, if faults
are detected, the system could instruct handling devices to dispose parts
automatically.
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This work aimed at developing a statistical process monitoring system
for rubber injection molding, which can detect unwanted process

fluctuations detrimental to the product quality, on-line and without human
interaction. Also, the causes of the fluctuations should be automatically
identified by the system to facilitate process adaptions and allow the manu-
facturer to return to optimal quality production faster and easier.

To do so, first, a fast and robust method for testing the dynamic prop-
erties of rubber parts as a measure of their quality was developed. The
measurement procedure as well as an analysis of the method’s capabilities is
presented in chapter 4. This method successfully provides a fast and reliable
solution to determine various mechanical quality parameters, especially the
dynamic spring stiffness and loss factor without any need for extracting
specimens from the injection molded parts.

Second, fluctuations that are critical to the quality of the rubber parts were
singled out. Such fluctuations commonly manifest themselves in variations
of the rubber temperature while process setpoints are kept constant. In
chapter 5, the transient material temperature throughout the entire injection
molding process was measured with high accuracy by employing inline
temperature measurement technologies such as ultrasound transmission and
thermography. It was shown that for example, storage maturation is a source
of process fluctuations that alter the temperature after dosing. Also, various
dosing and injection set points were tested for their ability to significantly
impact the quality of rubber parts.

Lastly, a data-driven process monitoring system was developed. This
monitoring system detects faults automatically by using a Principal Compo-
nent Analysis (PCA) based method, which takes into account all available
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process signals at every sample of each process cycle. Therefore, as was
shown in chapter 6, it offers superior fault detection performance compared
to conventional statistical process monitoring methods such as Exponentially
Weighted Moving Average (EWMA) charts. Furthermore, the process moni-
toring system can identify the type of disturbance that occured, once enough
instances of a specific fault have occured and were labelled correctly by the
manufacturing related personnel. By Fisher Discriminant Analysis (FDA),
this fault type classification operates in a similar manner to PCA and in-
creases the information the system is able to provide to the manufacturer
significantly. In chapter 6, the system is tested on two different rubber
injection molding setups, and it is able to correctly detect and identify the
artificially introduced fluctuations in the experiments.

Consecutively, my data-driven fault detection and identification system
for rubber injection molding processes provides a viable way of implementing
process monitoring in smart rubber part manufacturing facilities. It is readily
adaptable to any type of input signal, and does not require any a-priori
assumptions on the process. Thus, it does not require large scale adaptions
when the setup is changed, or rely on any specific type of equipment fitted
to the injection mold. The tradeoff for its flexible design is its inabilty to
predict the product quality as a continuous variable. Yet, it provides binary
decisions between in-control and out-of control process states and a fault
type prediction for operator guidance.

In future work, a data-driven Statistical Process Monitoring (SPM) system
that is able to predict the part quality could be developed based on the results
of this work. For one, manufacturers may use rubber compounds which
exhibit a different curing behavior, where process fluctuations and storage
maturation do alter the degree of cure of the final part more significantly.
Also, for other applications, the most important aspects of quality, the
ones which shall be predicted by the monitoring system, may be strongly
dependent on storage maturation or batch-to-batch variations. An example
of such is the strength of weld lines, which are more influenced by premature
scorch than overall degree of cure. As soon as one can gather quality data
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that show significant responses to process fluctuations, and enough data
are present, training non-linear models, whether they are built by Artificial
intelligence (AI) systems or regression will be feasible. Thus, quality aspects
may be predicted from PCA score values, enabling the process control
system to adapt the process settings accordingly.

However, implementing a quality-based closed-loop control necessitates
determining the controller parameters specific to the machine setup and
rubber compound in use. These can only be found, when quality functions
can be retrieved, either by first-principle modelling or learning. Regardless,
the system’s complexity increases, demanding more resources and knowledge
from part manufacturers. This again negates the key advantage of the
multivariate SPM approach presented in this work, which requires minimal
preparation and can be trained when parts are already manufactured. It
remains questionable if such systems would find widespread application in
the industry in the near future, as for injection molding of thermoplasts,
they already existed for around 10 years and adoption rates stay well below
expectations.

In the shift to build smart manufacturing facilities, the straightforward
nature of the PCA and FDA-based SPM approach (for injection molding
of thermoplastics and rubbers alike), combined with its fault detection and
identification capabilities, can offer manufacturers considerable economical
benefits. Especially since setting up such systems in smart manufacturing
facilities does not require a great amount of resources, they are much more
likely to find widespread adoption than their model- or knowledge based
counterparts.
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Acronyms

A Area

A process parameter matrix

AI Artificial intelligence

ANOVA Analysis of Variance

α significance level

c normal distribution

c velocity of sound

Cd dynamic spring stiffness

CS Compression Set

Cs static spring stiffness

CUSUM Cumulative Sum

X 2 Chi squared distribution

D torque

Di Injection trigger signal

DMA Dynamic mechanical analysis

DoE Design of Experiments

DSC Differential Scanning Calorimetry
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Acronyms

∆SP E delta SPE value

δ loss angle

E process error matrix

e prediction error vector

EA activation energy

EWMA Exponentially Weighted Moving Average

ϵ displacement

η dynamic viscosity

F F distribution

FAR False Alarm Rate

FDA Fisher Discriminant Analysis

F force

f frequency

Fr relaxation force

γ̇ shear rate

k consistency

kc kinetic constant of curing

KDD Knowledge Discovery in Databases

κ adiabatic compressibility

L length

LCL lower control limit of the EWMA chart
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Acronyms

Λ matrix of eigenvalues

λ eigenvalue

λ memory factor of EWMA

µ mean

n flow index

NBR Acrylonitrile-butadiene rubber

nc curing reaction exponent

Ω FDA transformation matrix

ω FDA vector

ω angular frequency

P loading matrix

p scalar pressure value

p pressure vector

p loading vector

PCA Principal Component Analysis

Pc representative phase loading matrix

phr parts per hundred rubber

pi injection pressure

pm in-mold pressure

Ppc loading matrix containing the first m principal components

pvT pressure-specific volume-temperature
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Acronyms

R universal gas constant

r radius

r0 radius of plug flow region

R2 Coefficient of determination

RPA Rubber Process Analyzer

RT room temperature

ρ density

Sb between-class scatter matrix

SPE Squared Predictive Error

SPM Statistical Process Monitoring

St total scatter matrix

SVD singular value decomposition

Sw within-class scatter matrix

Σ covariance matrix

σ variance

T score matrix

T temperature

t continuous time

t score vector

T0 reference temperature

T 2 T2 statistic
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Acronyms

tan(δ) loss factor

Tb barrel temperature

Tc curing temperature

tc cure time

tc90 time until 90 % cured

Tm mold temperature

Tp temperature peak height

tt time of travel

τ scalar shear stress value

τ stress tensor

τ0 yield stress

u transformation vectors for FDA analysis

UCL upper control limit of the EWMA chart

v velocity

v velocity vector

V̇i injection volume flow rate

v⊥ velocity of perpendicular flow

vs circumferential screw speed

wh width at half height

Y process output matrix

X process input matrix

117



Acronyms

x process signal vector

xc degree of cure

z EWMA monitoring statistic

ζ FDA transformed coordinate vector
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Source code

Evaluation script of dynamic tests

import pandas as pd
import numpy as np
import matplotlib .pyplot as plt
from scipy import signal
import os

def Maschinenberechnungen (loadpath ,file , versuch ):
#This function extracts the parameter

calculations done by the testing machine

rohdaten = pd. read_csv ( loadpath + versuch + "\\
" + versuch + file , delimiter =’;’, header =0,

decimal =’,’)

k_stern = rohdaten [’DMA - Berechnung :k* (N/mm)’
][ -5:]. mean ()

tand = rohdaten [’DMA - Berechnung :Tan Delta ’
][ -5:]. mean ()

out = k_stern , tand

return out
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def Hysterese_eigen (loadpath ,file ,versuch , ploton=
False):

#This function evaluates the dynamic parameters

from the hysteresis loop

rohdaten = pd. read_csv ( loadpath + versuch + "\\
" + versuch + file , delimiter =’;’, header =0,

decimal =’,’)
segment = rohdaten [’Schritt ’]. values
zeit = rohdaten [’Gesamtzeit (s)’]. values
kraft = rohdaten [’Kraft(Linear:Kraft) (N)’].

values
weg = rohdaten [’Verschiebung (Linear: Digitale

Position ) (mm)’]. values
zyklenzahl = rohdaten [’Gesamtzyklenzahl (Linear

Wellenform )’]. values

zeit_dynamisch = zeit[ segment == 6] # ab

nummer 2000, weil die ersten zwanzig Zyklen

die Auslenkung nicht erreicht wurde

zeit_dynamisch = zeit_dynamisch -
zeit_dynamisch [0]

kraft_dynamisch = kraft[ segment == 6]
weg_dynamisch = weg[ segment == 6]
zyklenzahl_dynamisch = zyklenzahl [ segment == 6]

Y = abs(np.fft.fft( kraft_dynamisch ))
N = int(len(Y) / 2 + 1)
fvec = np. linspace (0, 50, N)

b, a = signal.butter (2, 2 / 50)
kraft_smoothed = signal. filtfilt (b, a,

kraft_dynamisch )
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# Nur drei runden fuer die Auswertung heran

ziehen

C_dyn = []
tand = []
for i in range (95 ,100):

auswertezyklus = ( zyklenzahl_dynamisch >= i
) * ( zyklenzahl_dynamisch < i+1)

kraft_auswertung = kraft_smoothed [
auswertezyklus ]

weg_auswertung = weg_dynamisch [
auswertezyklus ]

C_dyn.append(
(np.max( kraft_auswertung ) - np.min(

kraft_auswertung )) / (np.max(
weg_auswertung ) - np.min(
weg_auswertung )))

# C_dyn.append(np.max(kraft_auswertung/np.

max(weg_auswertung)))

kraftmax = np.argmax( kraft_auswertung )
kraftmin = np.argmin( kraft_auswertung )
wegmax = np.argmax( weg_auswertung )
wegmin = np.argmin( weg_auswertung )

delta = 2 * np.pi * (wegmax - kraftmax ) /
100

tand.append(np.tan(delta))

if ploton:
plt.plot( weg_auswertung ,

kraft_auswertung )
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plt.plot( weg_auswertung [wegmax],
kraft_auswertung [ kraftmax ], ’o’)

plt.plot( weg_auswertung [wegmin],
kraft_auswertung [ kraftmin ], ’o’)

plt.show ()

C_final = np.mean(C_dyn)
tand_final = np.mean(tand)

out = C_final , tand_final
return out

def Relaxation (loadpath ,file ,versuch ,ploton=False):
#This function evaluates the relaxation part of

the test routine

rohdaten = pd. read_csv ( loadpath + versuch + "\\
" + versuch + file , delimiter =’;’, header =0,

decimal =’,’)
segment = rohdaten [’Schritt ’]. values
zeit = rohdaten [’Gesamtzeit (s)’]. values
kraft = rohdaten [’Kraft(Linear:Kraft) (N)’].

values
weg = rohdaten [’Verschiebung (Linear: Digitale

Position ) (mm)’]. values

zeit_relaxation = zeit[ segment == 5]
zeit_relaxation = zeit_relaxation -

zeit_relaxation [0]
kraft_relaxation = kraft[ segment == 5]
weg_relaxation = weg[ segment == 5]
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max_kraft = -(np.min( kraft_relaxation ))
relax_kraft = -( kraft_relaxation [ -1])

if ploton:
plt.plot( zeit_relaxation , kraft_relaxation )
plt.show ()

out = max_kraft , relax_kraft

return out

def Statisch (loadpath ,file ,versuch , ploton = False)
:

#This function evaluates the quasi -static

portion of the testing routine

rohdaten = pd. read_csv ( loadpath + versuch + "\\
" + versuch + ’.steps. tracking .csv ’,
delimiter =’;’, header =0,

decimal =’,’)
segment = rohdaten [’Schritt ’]. values
zeit = rohdaten [’Gesamtzeit (s)’]. values
kraft = rohdaten [’Kraft(Linear:Kraft) (N)’].

values
weg = rohdaten [’Verschiebung (Linear: Digitale

Position ) (mm)’]. values

kraft_indent = kraft[ segment == 4]
weg_indent = weg[ segment == 4]

start = np.argmax( kraft_indent )
kraft_start = np.max( kraft_indent )
ende = np.argmin( kraft_indent )
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kraft_ende = np.min( kraft_indent )
weg_start = weg_indent [start]
weg_ende = weg_indent [ende]

if ploton:
plt.plot(weg_indent , kraft_indent )
plt.plot(weg_start ,kraft_ende , ’o’)
plt.plot(weg_ende ,kraft_ende ,’o’)

C_stat = ( kraft_ende - kraft_start ) / ( weg_ende
- weg_start )

return C_stat

#File names

maschinen_file = ’.steps.trends.csv ’
relax_file = ’.steps. tracking .csv ’
hysterese_file = ’.stop.csv ’
projekt = """ 20191218 _8mm20pro_T1 """

#Paths for loading files

loadpath = ("""P:\\ Rohdaten \\AG Hutterer \\

Praktische_Experimente \\20190826

_ClampControlEngel \\ Werkstoffpruefung \\ Jidoka \\

"""

+ projekt + """\\""") #Das ist der

Pfad an dem die Messfile Ordner

liegen muessen , wichtig: \\ fuer

ebenen trennen und am ende \\

savepath = ("""P:\\ Rohdaten \\AG Hutterer \\

Praktische_Experimente \\20190826

_ClampControlEngel \\ verarbeitete_Daten \\ Jidoka \\
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""") # Das ist der Pfad wo du deine csvs hin

haben willst

dateien = os. listdir ( loadpath )

Ausgabedaten = []

#Main loop over all files calling all evaluation

functions

for item in dateien :
print(item)

kstern , tand = Maschinenberechnungen (loadpath ,
maschinen_file ,item)

max_kraft , relax_kraft = Relaxation (loadpath ,
relax_file ,item)

keig , tandeig = Hysterese_eigen (loadpath ,
hysterese_file , item)

kstat = Statisch (loadpath ,relax_file , item)

Ausgabedaten .append ([item , kstern , tand ,
max_kraft , relax_kraft , keig , tandeig , kstat
])

#Cleanup and save outfile

cols =("Name", " Cdyn_inst ", " tand_inst ", " Max_Force "
, " Relax_Force ", " Cdyn_eig ", " tand_eig ", ’Cstat ’
)

out = pd. DataFrame . from_records (Ausgabedaten ,
columns = cols)

out.to_csv( savepath + projekt + " _results .csv", sep=
’\t’)
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Functions shared by other routines

import numpy as np
import scipy.signal as scs

class dataprocessing (object):

def interp_messdaten (self ,fsample ,xdaten ,
ydaten):

#Data collected with Lucid IO devices need

to be brought to even sampling rates

a = int(np.floor(xdaten [ -1]))
x = np. linspace (0,a,a* fsample +1)
sampled_data = np.interp(x,xdaten ,ydaten)
return [x, sampled_data ]

def filt_messdaten (self ,daten ,par1 ,par2):
#Data collected with Lucid IO devices need

to be filtered

filtdata = scs. symiirorder1 (daten ,par1 ,par2
)

return filtdata

def timeslice_pca (self ,daten , batchrange ):
#This function takes a numpy array with

required shape: axis0 = batches

#Axis1 = process variables

#Axis2 = samples

#Returned arrays are eigenvalues , and P and

T trajectories
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eigenwerte = []
loadings =[]
w_loadings = []
for ii in range(daten [0 ,0 ,:]. shape [0]):

X = daten[ batchrange [0]: batchrange
[1],:,ii] #Take a timeslice

S = 1 / float(X.shape [0] - 1) * np.
matmul(X.T , X) # Calculate its

covaraiance

V, D, Vt = np.linalg.svd(S) # SVD

Dnorm = np.diag(D / np.sum(D)) #

Reshape of D to be diag and 0,1

scaled

Pweighted = np.matmul(V,Dnorm) #

Calculate the weighted loadings

eigenwerte .append(D)
loadings .append(Vt)
w_loadings .append( Pweighted )

eigenwerte = np. asarray ( eigenwerte )
eigenwerte = np. swapaxes (eigenwerte ,0 ,1)
loadings = np. asarray ( loadings )
loadings = np. swapaxes (loadings ,0 ,2)
w_loadings = np. asarray ( w_loadings )
w_loadings = np. swapaxes (w_loadings ,0 ,2)

return eigenwerte , loadings , w_loadings

def normalize (self , gesamtdaten , starttrain ,
endtrain , batches , signals , samples ):

#This function normalizes the process

variable array batch -wise
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batchmw = np.mean( gesamtdaten [ starttrain :
endtrain , :, :], axis =0)

batchmw = np. broadcast_to (batchmw , (batches
,

signals
,
samples
))
#

Broadcasting

batchnorm = gesamtdaten - batchmw # Zero

mean

batchstd = np.std(np.std( batchnorm [
starttrain :endtrain ,:,:], axis =2) ,axis =

0) #Standard deviation is calculated

from the trajectory

batchstd = np. broadcast_to (batchstd , (
samples , batches , signals )) #

Broadcasting

batchstd = np. swapaxes (batchstd , 0, 1)
batchstd = np. swapaxes (batchstd , 1, 2)
batchnorm = batchnorm / batchstd #

Normalize to unit variance

return batchnorm ,batchmw , batchstd

Phase detection

import numpy as np
import data_processing
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from os import listdir
from sklearn . cluster import KMeans
import matplotlib .pyplot as plt

#Preparation and loading

dpc = data_processing . dataprocessing ()
#Number of expected samples

anz_datenpunkte = 35000
#Sampling frequency

fsample = 100
’Loading ’
loadpath = ’P:\\ Rohdaten \\AG Hutterer \\

Praktische_Experimente \\20190826
_ClampControlEngel \\ verarbeitete_Daten \\
Prozesssignale \\ Dienstag \\’

savepath = ’P:\\ Rohdaten \\AG Hutterer \\
Praktische_Experimente \\20190826
_ClampControlEngel \\ verarbeitete_Daten \\ PCA \\’

#Loop preparations

datenliste = listdir ( loadpath )
moddaten = []
gesamtdaten = []
n = 0

#Looping over raw data

for daten in datenliste :

#Reading data

n+= 1
rohdaten = np. genfromtxt (( loadpath + daten),
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delimiter = ’\t’)
rohdaten = rohdaten [0: anz_datenpunkte ,:]
moddaten = []#alle 2d matrizzen zu 3d matrix

machen axis0 = batches axis1 = datenpunkte

axis2 = variablen

#Filtering and Interpolation

for ii in range(1, rohdaten .shape [1]):

zeit , yinterp = dpc. interp_messdaten (
fsample , rohdaten [:,0], rohdaten [:,ii]) #

Interpolieren auf 100 Hz

yinterp = dpc. filt_messdaten (yinterp
,0.01 ,0.9) #Filtern

moddaten .append( yinterp [zeit <110]) #in

liste speichern: listeneintraege sind

datenstream

interpdaten = np. asarray ( moddaten ).T #alle

daten in 2d matrix speichern. axis0 =

datenpunkte axis1 = datenstrems

dpinj = np. gradient ( interpdaten [: ,4])
start = np. nonzero (dpinj > 0.25)
interpdaten2 = interpdaten [start [0][0]: start

[0][0] + 9000 , :]
gesamtdaten .append( interpdaten2 )

#Combine data into array

gesamtdaten = np. asarray ( gesamtdaten )
gesamtdaten = np. swapaxes (gesamtdaten ,0 ,1)

#Normalize data time -wise
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timemw = gesamtdaten -np.mean(gesamtdaten ,axis =0) #

abziehen der Trajectory mittelwerte

timenorm = timemw / np.std(gesamtdaten , axis = 0)
timenorm = np. nan_to_num ( timenorm )
timenorm = np. swapaxes (timenorm ,0 ,1)
timenorm = np. swapaxes (timenorm ,1 ,2)

#PCA

eigenwerte , loadings , w_loadings = dpc.
timeslice_pca (timenorm ,(30 ,40))

#Clustering

clusters = 4
loadings_unfold = w_loadings . reshape ( loadings .shape

[0]* loadings .shape [1], loadings .shape [2]).T #

loadings aufklappen zu Zeilenvektor

kmeans = KMeans( n_clusters = clusters , random_state
=0).fit( loadings_unfold )

phasen = kmeans. labels_

#Output preparation

gesamtdaten = np. swapaxes (gesamtdaten ,0 ,1)
gesamtdaten = np. swapaxes (gesamtdaten ,1 ,2)

#Saving

np.save (( savepath +’gesamtdaten .npy ’), gesamtdaten )
np.save (( savepath +’eigenwerte .npy ’), eigenwerte )
np.save (( savepath +’loadings .npy ’), loadings )
np.save (( savepath +’w_loadings .npy ’), w_loadings )
np.save (( savepath +’phasen.npy ’), phasen)
np.save (( savepath +’timenorm .npy ’), timenorm )
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Off line process monitoring routine for development

import numpy as np
import data_processing
from sklearn . cluster import KMeans
import matplotlib .pyplot as plt
from scipy.stats import f
from scipy.stats import chi2

path = ’P:\\ Rohdaten \\AG Hutterer \\
Praktische_Experimente \\20190826
_ClampControlEngel \\ verarbeitete_Daten \\ PCA \\’

dpc = data_processing . dataprocessing ()
#Read data from phase separation

gesamtdaten = np.load(path+’gesamtdaten .npy ’)
phasen = np.load(path+’phasen.npy ’)
timenorm = np.load(path+’timenorm .npy ’)

#Reduce the number of signals

gesamtdaten = gesamtdaten [: ,0:5 ,:]

ges_batches = 58#Number of batches

start_train = 0 #Begin of training

end_train = 15 #Stop training

no_samples = 9000 #Number of samples

no_signals = 5 #Number of signals

numberofPCs = 2 #PCs to be kept

untersuchtePhase = 3 #Phase detected by

phaseseparation , which is of interest
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# Empty lists for later use

Prepreds = [None ]*4
eigenwerterepreds = [None ]*4
eigenwertereprests = [None ]*4
evrepredinvs = [None ]*4
SPE_batches = []

#Normalization

batchnorm , trainmw , trainstd = dpc. normalize (
gesamtdaten ,start_train ,end_train ,ges_batches ,
no_signals , no_samples )

#Put the phases in timewise order

phasen [-2] = 100 #To detect final phase

log = phasen [0: -2] != phasen [1: -1] #Detect phase

change

log = np. nonzero (log)
phasenabfolge = phasen[np. subtract (log ,1)]

for ii in range(0, phasenabfolge .shape [1]):
actphase = phasenabfolge [0,ii] #Call only

samples from specific phase

normphase = batchnorm [:,:, phasen == actphase ]

phase_eigenwerte , phase_loadings , phase_wloadings
= dpc. timeslice_pca (normphase ,( start_train ,

end_train )) #PCA

Prep = np.mean( phase_loadings ,axis = 2) #Phase

representative loadings

eigenwerterep = np.mean( phase_eigenwerte ,axis
=1). reshape (1,-1) #Phase representative
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eigenvalues

Prepred = Prep [:,: numberofPCs ] #Dimensionality

reduction

Prepreds [ actphase ] = Prepred #Put

representative loadings on their phase’s

respective list slot

eigenwerterepred = np.diag( eigenwerterep .
reshape (-1)[: numberofPCs ])#Reshape to diag

eigenwertereprest = eigenwerterep . reshape (-1)[
numberofPCs :]#Dimensionality reduction

# Match list spot of respective phase

eigenwerterepreds [ actphase ] = eigenwerterepred
eigenwertereprests [ actphase ] =

eigenwertereprest
evrepredinv = np.linalg.inv( eigenwerterepred )
evrepredinvs [ actphase ] = evrepredinv

#Calculate the 95% control bound of the Tsquared

statistic

n_batches = end_train - start_train
len_phase = np. asarray (np. asarray (np. nonzero (phasen

== untersuchtePhase )).shape [1])
Tc = ( numberofPCs * n_batches *( len_phase -1))/(

n_batches *( len_phase -1) -numberofPCs )*f.ppf (0.95 ,
numberofPCs , n_batches *( len_phase -1) -numberofPCs )

#Set up variables

Xpred_gesamt = []
T_gesamt = []
T2_gesamt = []
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SPE_gesamt = []
E_gesamt = []
for ii in range(0, ges_batches ): #All batches are

now evaluated separately

#Set up more variables

Xkpred_trajectory = []
T_trajectory = []
T2_trajectory = []
E_trajectory = []
SPE_trajectory = []
batchdaten = batchnorm [ii ,: ,:] #Grab normalized

timeslices

print(ii +1)
for nn in range(0, batchdaten .shape [1] -2): #time

-slice wise calculation

Xk = batchdaten [:,nn] #grab single

timeslice

Tred = np.matmul(Xk , Prepreds [phasen[nn ]])
#Calculate score

Xkpred = np.matmul(Tred , Prepreds [phasen[nn
]].T) #Calculate predicted signal values

Xkpred_trajectory .append(Xkpred) #Form

predicted trajectory

Tred = Tred. reshape (-1, 1)
E = Xk - Xkpred #Calculate the prediction

error

SPE = np.matmul(E.T, E) #Calculate SPE

T2= np.matmul(Tred.T,np.matmul( evrepredinvs
[phasen[nn]], Tred)) #Calculate the

Tsquared statistic

#Form statistics trajectories
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T_trajectory .append(np. squeeze (Tred))
T2_trajectory .append(np. squeeze (T2))
E_trajectory .append(E)
SPE_trajectory .append(SPE)

#Array formation

Xkpred_trajectory = np. asarray (
Xkpred_trajectory )

T_trajectory = np. asarray ( T_trajectory )
SPE_trajectory = np. asarray ( SPE_trajectory )
T2_trajectory =np. asarray ( T2_trajectory )
SPE_gesamt .append( SPE_trajectory )
E_trajectory = np. asarray ( E_trajectory )
E_gesamt .append( E_trajectory )
T_gesamt .append( T_trajectory )
Xpred_gesamt .append( Xkpred_trajectory )
T2_gesamt .append( T2_trajectory )

Xpred_gesamt = np. asarray ( Xpred_gesamt )
T_gesamt = np. asarray ( T_gesamt )
E_gesamt = np. asarray ( E_gesamt )
SPE_gesamt = np. asarray ( SPE_gesamt )
T2_gesamt = np. asarray ( T2_gesamt )

#SPE control limit calculation at 95%

SPE_gesamt = np. asarray ( SPE_gesamt )
mean_SPE = np.mean( SPE_gesamt [ start_train :end_train

, :], axis = 0)
std_SPE = np.var( SPE_gesamt [ start_train :end_train ,

:], axis = 0)
gk = std_SPE /(2* mean_SPE )
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hk = 2*( mean_SPE )**2/ std_SPE
SPE_c = gk*chi2.ppf (0.95 , hk)

#Variable setup

badbatch = np.zeros (( ges_batches ,1))
deltaspe = np.zeros (( ges_batches ,1))
t_goodness = np.zeros (( ges_batches ,1))
contribution = []
phasen = phasen [: -2]

#Calculate Delta SPE , contributions and T2 values

of each batch

for ww in range(0, ges_batches ):
print(ww)
deltaspe [ww] = np.mean( SPE_gesamt [ww , phasen ==

untersuchtePhase ][: -100] - SPE_c[phasen ==
untersuchtePhase ][: -100])

fi = np.mean( E_gesamt [ww , phasen ==
untersuchtePhase ,:], axis = 0)

contribution .append(fi)
ti = (np.max( T2_gesamt [ww ,phasen ==

untersuchtePhase ]))
t_goodness [ww] = ti

contribution = np. asarray ( contribution )

#Saving data

np.save(path + ’Xp_gesamt .npy ’, Xpred_gesamt )
np.save(path + ’T_gesamt .npy ’,T_gesamt )
np.save(path + ’E_gesamt .npy ’, E_gesamt )
np.save(path + ’SPE_gesamt .npy ’, SPE_gesamt )
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Source code

np.save(path + ’deltaspe .npy ’, deltaspe )
np.save(path + ’contribution .npy ’, contribution )
np.save(path + ’t_goodness .npy ’, t_goodness )

FDA analysis

import numpy as np
import matplotlib .pyplot as plt
import data_processing
from sklearn . model_selection import

train_test_split

dpc = data_processing . dataprocessing ()

#Import the data

Xdata = np.load(’Einspritzdaten20190319 .npy ’)
ydata= np. genfromtxt (’Klassen201903 .txt ’)

#Split the data set in Test and train data

Xtrain , Xtest , ytrain , ytest = train_test_split (
Xdata , ydata , test_size =0.1)

#Normalize

Xtrain_norm , Xtrain_mw , Xtrain_std = dpc. normalize (
Xtrain ,0, Xtrain.shape [0] ,64 ,4 ,600)

#Loop across multiple timeslices for stability

farbe = [’b’, ’r’, ’k’, ’g’]
startslice = 300
w_trajectory = []
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Source code

for k in range(0, Xtrain_norm .shape [2]):
#Grab timeslice

xtrain = Xtrain_norm [:,:,k]

#Calculate class mean

mu_c = []
for i, c in enumerate(np.unique(ytrain)):

l = ytrain ==c
mu_c.append(np.mean(xtrain[l],axis = 0))

mu_c = np.array(mu_c)

single_SW = []
Nc = []

#Calculate the scatter matrices

for i, c in enumerate(np.unique(ytrain)):
l = ytrain == c
a = xtrain[l]-mu_c[i]
single_SW .append(a.T@a)
Nc.append(np.sum(l == True))

SW = np.sum(single_SW , axis = 0)
SB = Nc * mu_c.T @ mu_c

#Eigenvectors

eigval , eigvec = np.linalg.eig(np.linalg.inv(SW
) @ SB)

#Find eigenvector -eigenvalue pairs

eigen_pairs = [[np.abs(eigval[i]), eigvec [:, i
]] for i in range(len(eigval))]
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Source code

eigen_pairs = sorted(eigen_pairs , key=lambda k:
k[0], reverse =True)

w = np.hstack (( eigen_pairs [0][1][: , np. newaxis
].real , eigen_pairs [1][1][: , np. newaxis ].
real)) # Select the 2 largest

w_trajectory .append(w)

#Calculate the mean transformation matrix

w_trajectory = np. asarray ( w_trajectory )
w_mu = np.mean(w_trajectory , axis = 0)

#Transform the data

Y = Xtrain_norm [:,:, startslice ] @ w_mu

m = [’x’, ’s’, ’o’, ’1’, ’p’]
for i in range(0, Y.shape [0]):

plt. scatter (Y[i, 0], Y[i, 1], marker=m[int(
ytrain[i])], color= ’k’)

#Testing

Itest = Xtest.shape [0]
Xtest_norm = (Xtest - Xtrain_mw [: Itest ,: ,:])/

Xtrain_std [: Itest ,: ,:]
Ytest = Xtest_norm [:,:, startslice ] @ w_mu
plt. scatter (Ytest [0,0], Ytest [0,1], marker = m[int(

ytest [0])], color = ’orange ’)
plt.show ()

#saving

ausgabe1 = np.hstack ((Y,ytrain. reshape (-1,1)))
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Source code

ausgabe2 = np.hstack (( Ytest ,ytest. reshape (-1,1)))
ausgabe = np.vstack (( ausgabe1 , ausgabe2 ))
np.save(’FDA_transformed .npy ’,ausgabe )
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