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Kurzfassung

Diese Masterarbeit verfolgt einen experimentellen Ansatz, um ein auf akustischen Oberflächenwel-
len basierendes Sensorkonzept zur Tiefenmessung von Oberflächenrissen zu evaluieren. Der Fokus
der vorliegenden Arbeit liegt hierbei auf einer möglichen Anwendung zur Überwachung von
Rissen in Schienen. Aktuell ist kein Messverfahren bekannt, das sowohl die Risstiefe soge-
nannter Head Checks an der Fahrkante der Schiene genau erfassen kann als auch eine perma-
nente Installation der notwendigen Messausrüstung erlaubt. Eine solche Methode verspricht, einen
wesentlichen Beitrag zur kontinuierlichen Zustandsüberwachung von Eisenbahninfrastruktur zu
leisten und somit zu einem sicheren und kosteneffizienten Betrieb von Schienennetzen beizutra-
gen. Das Hauptziel dieser Masterarbeit besteht darin, zu analysieren, ob die Risstiefe von Head
Checks mit akustischen Oberflächenwellen quantitativ bestimmt werden kann. Hierfür wurde der
Transmissionskoeffizient als Schlüsselcharakteristikum zur Bewertung der Risstiefe ausgewählt.

Im Rahmen dieser Masterarbeit wurde ein Messaufbau zur experimentellen Bestimmung des
Transmissionskoeffizienten entworfen, mit dem Schienenproben mit verschiedenen Head Check
Tiefen untersucht wurden. An die Schienenproben angebrachte piezoelektrische Transducer wur-
den zum Anregen der akustischen Oberflächenwellen verwendet. Ein Laser-Doppler-Vibrome-
ter wurde eingesetzt, um die dadurch hervorgerufenen Schwingungen der Bauteiloberfläche zu
messen. Es wurden repräsentative Messsignale im Zeit- und Frequenzbereich analysiert sowie ein
Algorithmus entwickelt und implementiert, der zur Extraktion der Amplitude von einfallender und
übertragener Oberflächenwelle dient. Basierend auf diesen Werten konnten die Transmissionsko-
effizienten berechnet werden. Schließlich konnte durch die hohe Anzahl an durchgeführten Mes-
sungen die Bestimmungsgenauigkeit der Transmissionskoeffizienten bewertet werden.

Anhand der erzielten Resultate lässt sich, unter der Voraussetzung von geringer Tiefe der
Head Checks und hoher Anregungsfrequenz der akustischen Oberflächenwellen, ein linearer
Zusammenhang zwischen Risstiefe und Transmissionskoeffizienten vermuten. Daher erscheint
unter diesen Umständen eine Risstiefenbestimmung mit dem Transmissionskoeffizienten mach-
bar. Zusätzlich wurden mögliche Gründe identifiziert, die eine quantitative Bewertung tiefer Head
Checks erschweren. Im Hinblick auf eine mögliche Anwendung des evaluierten Sensorkonzepts im
Gleis sind jedoch zahlreiche Fragestellungen bezüglich der rauen Umgebungsbedingungen noch
zu klären.
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Abstract

This master’s thesis employs an experimental approach to evaluate the feasibility of a surface
acoustic wave (SAW) based monitoring concept for depth assessment of surface cracks. The focus
of this work is on a potential application for monitoring of rail cracks. To date, no measurement
principle has been found that offers both precise sizing of gauge corner cracks in rails, commonly
termed head checks, and compatibility with permanent rail installation. Such a technique holds
the potential to be the key to continuous in-situ condition monitoring of railway infrastructure,
ensuring a cost-efficient, yet safe operation of rail tracks. The primary objective of this thesis is
to determine if surface acoustic waves can be used for a quantitative assessment of head check
depth. The SAW transmission coefficient was selected as the representative wave feature for crack
examination.

Rail samples that exhibit varying degrees of head check damage were collected. An experi-
mental setup was established to determine the SAW transmission coefficient for different crack
depths. A Laser Doppler vibrometer was used to measure the out-of-plane displacement of the
propagating SAWs, which were excited by piezoelectric transducers affixed to the rail specimens.
Characteristic measurement signals were analyzed in both time and frequency domains. A signal
processing algorithm was developed and implemented to extract the amplitudes of the incident and
transmitted SAW. Subsequently, the transmission coefficients were calculated from these values.
The extensive number of measurements allowed for an evaluation of the statistical scatter of the
obtained transmission coefficients.

Based on the obtained results, a linear correlation between head check depth and transmission
coefficient is hypothesized for low crack depth and high-frequency surface acoustic waves. Con-
sequently, sizing head checks using the SAW transmission coefficient is deemed potentially feasi-
ble under these specific conditions. Moreover, mechanisms impeding a quantitative assessment of
deeper head checks have been identified. To apply the evaluated sensor concept in railway tracks,
many challenges still need to be overcome, given the prevailing harsh environment.
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Chapter 1

Introduction

This thesis employs an experimental approach to evaluate a sensor concept based on surface acous-
tic waves for condition monitoring of cracks. Features extracted from measurement signals are
correlated with the depth of rail surface cracks.

1.1 Motivation

In recent decades, rails have seen escalating demands due to faster passenger trains and freight
trains with higher axle loads. These increased loads have resulted in the formation of previously
unseen types of damage on standard rail grades. Among them, especially the so-called head checks
cause major concern to railway network operators worldwide. When not detected and removed on
time, these surface cracks can even lead to derailment and thereby to devastating accidents, such as
the infamous Hatfield rail crash [1, 2]. Therefore, track operators are faced with a decision: either to
routinely inspect rails using instrumented vehicles or to adopt a preventive maintenance approach
through grinding the rails at regular intervals [2, 3]. In practice, this can lead to the grinding of
undamaged rails, given the challenges of predicting crack growth rates [4]. In contrast, condition-
based maintenance, which is enabled by continuous condition monitoring of railway assets, offers
the dual benefit of reducing downtime and extending asset lifetime, since maintenance actions
are executed only as needed. Such targeted monitoring paves the way for efficient maintenance
planning and reduces the number of necessary inspections dramatically, leading to potential cost
savings [3].

However, many of the relevant parameters in railway condition monitoring cannot be measured
directly. This is often due to high equipment costs or the lack of suitable technology [5]. While
wayside condition monitoring provides significant advantages by not obstructing the track dur-
ing the rail inspection process, it is challenging because a permanent installation of the sensing
equipment is necessary. In fact, given the complex crack configuration of head checks, no crack
monitoring setup that offers both precise sizing and compatibility with permanent rail installation
has been found to date.

1



1.2 Structure of the Thesis 2

Nonetheless, surface acoustic waves (SAWs), which belong to the class of ultrasonic testing
methods, have recently emerged as an auspicious technique for detecting surface defects. This is
because of their propagation characteristics on a structure’s surface. They also facilitate the anal-
ysis of components with complex geometries. Yichao presents in [6] a concept for assessing rail
head surface cracks by means of SAWs. However, the described measurement equipment has to be
removed from the rail after the measurement, since the wave generating electromagnetic acoustic
transducer (EMAT) is positioned directly on the rail head. Gruber et al. found a qualitative influ-
ence of head check damage on the SAW transmission coefficient [3]. Yet, the comb transducers
they used are not suitable for a permanent installation. A detailed review of the state-of-the-art in
railway condition monitoring is provided in Section 2.3. Moreover, surface acoustic waves also
hold promise in detecting and monitoring cracks in other safety-critical engineering components.
Previous studies have already examined this technique’s capability to gauge crack depths in inte-
gral parts of aircraft [7] or in turbine rotors [8, 9].

The primary contribution of this thesis is to evaluate whether a specific feature, namely the SAW
transmission coefficient, can be exploited for a quantitative assessment of cracks on the surfaces
of geometrically complex components. An experimental approach was taken by investigating six
different rail samples with varying crack depths. Measurements were conducted on these rail spec-
imens, simulating a potential permanent sensor installation on actual rails. A signal processing
routine was developed to derive the wave amplitudes and, subsequently, the transmission coeffi-
cient from the acquired data.

1.2 Structure of the Thesis

As this thesis predominantly adopts an experimental approach, the emphasis is placed on the exper-
imental work. Nevertheless, for the benefit of all readers, the initial chapters discuss fundamental
concepts to ensure a basic understanding before delving into the application.

This introduction is followed by a review of the current state-of-the-art in railway condition
monitoring. It also outlines prevalent rail damage types and highlights selected non-destructive
testing methodologies.

In Chapter 3, the reader is introduced to the fundamental physics of surface acoustic waves, also
termed quasi-Rayleigh waves. This chapter closes with a literature-based identification of the most
promising wave feature for crack assessment.

Selected signal processing concepts are provided in Chapter 4. In contrast, Chapter 5 focuses
on the practical application of signal processing techniques on captured measurement data. The
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latter section of this chapter showcases the developed signal processing algorithm, which was
implemented in the Python programming language.

Chapter 6 begins with an introduction to the laboratory measurement equipment. To eliminate
potential biases caused by the used instruments, preliminary measurements were executed. In ad-
dition, the wave propagation speed and attenuation over distance were investigated. The design
and evaluation of these experiments are detailed.

In Chapter 7, the focus shifts to measurements carried out on the provided rail samples with dif-
ferent crack depths. A rigorous analysis of data obtained from these tests is presented, accompanied
by an in-depth description of the experimental setup. Additionally, a comprehensive discussion on
the acquired results is undertaken.

Finally, the concluding Chapter 8 synthesizes the key findings and suggests possible directions
for forthcoming research in this domain.



Chapter 2

State-of-the-art

This chapter begins with a brief introduction to the most relevant rail damage types. In particular,
the damage type of rolling contact fatigue (RCF) is described. Additionally, common techniques
for non-destructive evaluation of rail damage are detailed. Finally, an overview of state-of-the-art
technologies for railway condition monitoring is provided.

2.1 Types of Rail Damage

In general, the endurance of a rail is primarily determined by three effects: defects, wear, and plas-
tic flow [10]. Although defects can initiate and propagate in a rail for various reasons, the most
common cause for cracks in the rail head is rolling contact fatigue (RCF). RCF can manifest in
different damage patterns, including head checks and squats. The occurrence of a specific damage
pattern depends on the loading conditions and track geometry. In curved tracks, rolling contact fa-
tigue typically leads to surface breaking cracks on the rail’s gauge corner. A schematic illustration
of these cracks, which are termed head checks, is given in Figure 2.1(a). Head checks are consid-
ered as the biggest issue in modern rails [1]. As uncontrolled growth of head checks can eventually
result in rail breakage, it is crucial to detect and remove them in time [10]. Brief descriptions of
the damage patterns of head checks and squats are provided in the following subsections.

Wear refers to the removal or displacement of material from the rail’s running surface due to
wheel contact [1]. Although this type of degradation is observed on all rails, in particular sharp
curves lead to a higher wear rate because of increased contact forces [10]. Figure 2.1(b) depicts
cross-sections of both a new and a worn rail. Wear itself might not directly result in failure. Still, it
does contribute to increased contact forces and poor dynamics, which can accelerate crack growth
from other rail damage mechanisms [1]. In extreme cases, it can even diminish the rail’s stiffness.
Another consequence of wear is the development of periodic irregularities on the rail head, referred
to as rail corrugations [2]. To reduce wear, harder and, thereby, more wear-resistant rail grades are
gaining popularity [1].

4



2.1 Types of Rail Damage 5

A special relationship exists between rail wear and head check growth. While the head checks
are growing deeper, wear simultaneously strips material from the rail head. Consequently, this
leads to a reduced crack propagation rate compared to a hypothetical scenario without any wear.
If the material removal rate is higher than the crack propagation rate, cracks cannot grow at all.
Consequently, modern rail grades with increased wear resistance tend to be more susceptible to
RCF damage [1].

Plastic flow occurs if the contact stresses exceed the yield strength of the rail material [10].
Therefore, the running band on the rail head is affected and ultimately rail corrugations can de-
velop. However, due to the higher hardness of modern rail grades, plastic flow no longer poses a
challenge for track operators [1]. In addition to the most grave types of rail damage introduced in
this section, other types of rail defects are also observed [10].

(a) Schematic representation of head checks.
These are surface breaking cracks on the
rail’s gauge corner. Adapted from [1].

(b) Schematic representation of cross-sections from a new
rail and from a rail with vertical and lateral wear. Adapted
from [11].

Fig. 2.1: Illustration of selected types of rail damage.

2.1.1 Head Checks

Head checks emerge due to repeated plastic deformation in the rail material. As highlighted in
Figure 2.1(a), head checks appear on the outer rail’s gauge corner. This is why they are sometimes
referred to as gauge corner cracks (GCC). Typically, they evolve in networks and form a continuous
head check band [1, 4]. This type of RCF is particularly prevalent in the curved sections, where
the wheel contacts the gauge corner of the curve’s external rail [12]. This results in a reduction of
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wheel/rail contact area. Additionally, in such sections, the lateral force interacts with the longitu-
dinal friction force caused by the train’s drive mechanism [4].

Head check growth can be subdivided into three phases. During the first phase, the cracks initiate
on the rail head surface. In the following phase, head checks grow at a constant rate under a shallow
angle α to the rail surface. After eventually reaching a certain depth, the third phase begins which
is characterized by a fast crack growth and a change in the propagation direction. The cracks start
to form vertical or horizontal branches [1, 4]. Figure 2.2 gives a schematic illustration of a head
check and depicts its geometric parameters. The depth a of a head check is defined as the normal
distance between the crack tip and the rail surface.

From a theoretical viewpoint, the crack propagation rate can be calculated based on traffic load,
rail grade, curve radius, and wheel/rail profile pairing. However, track operators often do not have
access to some of these parameters, such as the wheel/rail profile pairing. Indeed, empirically
found head check depths show a substantial deviation from calculated values [4]. As a result,
models for predicting head check depth exhibit significant uncertainty. Preventive maintenance
action plans are fundamentally influenced by the highest observed crack initiation and propagation
rates. Therefore, following a preventive maintenance strategy results in grinding many undamaged
rails.

Fig. 2.2: Schematic illustration of a head check and its crack depth a. The depth of a head check is
defined as the normal distance between the crack tip and the rail surface. Adapted from [12].

Since head checks typically appear in a continuous band, monitoring selected cross-sections
located at predefined hotspots should, in theory, be sufficient to assess the condition of the entire
curve. However, sizing the depth of head checks remains a challenging task due to the narrow
spacing between cracks. After reaching a certain length, head checks can overlap.

2.1.2 Squats

In contrast to head checks, squats develop on the top of the rail head, where they appear as dark
spots. Typically they emerge on tangent tracks or in heat-affected zones close to welded rail joints
[13]. Squats either originate from pre-existing head checks or initiate from so-called white etch-
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ing layers on the rail head’s surface. These layers are hard and brittle and can easily be removed
by grinding or milling the affected surface layer [10]. In the initial phase, squats grow at a nar-
row angle to the surface. After reaching a certain depth, they eventually change their direction of
propagation and begin to grow towards the inside of the rail [2].

While squats seldom lead to rail breakage compared to other rail damage types, they are a
significant driver for maintenance costs. This is because regular rail grinding or milling is essential
to prevent their emergence [2].

2.2 Non-Destructive Testing Techniques for Rails

In general, non-destructive testing techniques are applied before putting safety-relevant structural
parts into service or during periodic inspections of these components. Their aim is to detect faults
inside a component or on its surface. According to Bargel and Schulze [14], non-destructive testing
techniques can be categorized into:

• visual testing;
• electromagnetic testing;
• ultrasonic testing;
• radiographic testing.

However, additional methods for the non-destructive evaluation of materials and structures exist,
with some of them currently receiving a lot of scientific attention [13, 15]:

• acoustic emission testing;
• infrared thermography;
• magnetic testing;
• testing using fibre optic sensors.

Recent research highlights the potential of acoustic emission testing [13, 16] and infrared ther-
mography [17] for assessing rail surface cracks. Nonetheless, for years eddy current testing, which
belongs to the group of electromagnetic methods, has been successfully applied to detect and char-
acterize flaws in rails [1, 12]. Besides eddy current technology, conventional ultrasonic methods
are crucial to verify potential faults [4, 18]. The following subsections provide detailed descrip-
tions of ultrasonic and eddy current testing. A measurement setup for online condition monitoring
needs to be suitable for permanent installation. Therefore, it must be emphasized that the standard
measurement devices for both conventional ultrasonic testing and eddy current testing do not fulfill
this requirement.
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2.2.1 Ultrasonic Testing

In conventional ultrasonic testing, two primary methods exist: the pulse-echo method and the pitch-
catch method. For the pulse-echo method, only one probe is needed. Typically placed on the work-
piece’s upper surface, this probe sends ultrasonic pulses and receives reflections from the lower
surface or potential flaws. Due to the difference in the time-of-flight, reflections caused by flaws
can be distinguished from surface reflections. As ultrasonic waves cannot propagate in air, a liquid
couplant is usually used to ensure that the transducer excites ultrasonic waves in the specimen [9,
19].

The pulse-echo method is illustrated for a flawless workpiece and for a workpiece containing a
flaw in Figure 2.3(a) and Figure 2.3(b), respectively. In the case of the flawless specimen, its wall
thickness can be determined from the transit time of the ultrasonic pulse. As Figure 2.3(b) suggests,
the orientation of the flaw is crucial for the intensity of the wave’s back-scattering. However, by
exciting the ultrasonic wave in a direction that is not perpendicular to the surface, vertical defects
can also be detected [19].

(a) Ultrasonic testing of a flawless work-
piece: The ultrasonic wave is reflected at
the specimen’s lower surface. The wall
thickness can be determined from the time-
of-flight [20].

(b) Ultrasonic testing of a workpiece with
a flaw: The ultrasonic wave is reflected by
the flaw, leading to a shorter time-of-flight
compared to the flawless specimen [20].

Fig. 2.3: Pulse-echo method in conventional ultrasonic testing.

In contrast to the pulse-echo setup, the pitch-catch method relies on two transducers. One trans-
ducer is placed on the upper surface and the other one is positioned on the lower surface of the
specimen. Although the pitch-catch mode facilitates testing of materials with low sound conduc-
tivity, it has many disadvantages compared to the pulse-echo setup. For instance, with a pulse-echo
setup the actual depth of a flaw can be calculated. Additionally, pulse-echo is more sensitive to
small defects. Therefore the pulse-echo setup is preferred in practice [19].
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When conventional ultrasonic methods are applied to gauge rail defects, a minimum vertical depth
of the defect a = 3mm is required for reliable detection [13]. In contrast to conventional ultrasonic
testing, which employs ultrasonic bulk waves, the measurement concept evaluated in this thesis is
based on ultrasonic surface waves. These surface acoustic waves (SAWs) allow for an earlier de-
tection of cracks, as the wave’s energy is concentrated in the near-surface area. In addition, a SAW
can propagate along a curved surface if the curve radius is significantly larger than the wavelength.
Moreover, ultrasonic surface waves can also propagate over sharp edges without a phase jump of
λ/2 and without conversion to another wave mode. Still, a smooth surface is a prerequisite for
employing SAW measurements [9].

2.2.2 Eddy Current Testing

Eddy current testing is based on the physical phenomenon of electromagnetic induction and can be
employed when testing conductive materials. The working principle of this non-destructive testing
technique is highlighted in Figure 2.4. A primary coil is driven by an alternating current, which
generates a magnetic field. Due to this magnetic field, eddy currents are induced in the close-by
specimen and lead to a secondary magnetic field. This secondary magnetic field superposes with
the initial magnetic field. The resulting magnetic flux can either be measured with a second coil
or with the primary coil by continuously switching between excitation and receive modes. If eddy
currents encounter a defect in the specimen, the secondary magnetic field is affected. A change in
amplitude or phase of the magnetic field is detected with the measurement equipment and used for
a qualitative defect assessment [13].

Fig. 2.4: Working principle of eddy current testing. An alternating current in the coil generates a
magnetic field. Eddy currents are induced in the specimen by this field and lead to a secondary
magnetic field. Defects affect the induced eddy currents [18].

In contrast to conventional ultrasonic testing, the probe does not need to be in contact with the
specimen. This allows for an increased inspection speed [13, 18]. Although eddy current testing is
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considered to be capable of detecting surface and near-surface flaws [15], a quantitative assessment
of the crack depth is hard to obtain. In particular, sizing closely spaced cracks, such as head checks,
with high crack depth is a challenging task, leading to an inaccurate measurement of crack depth
[13, 19].

Eddy current testing can be carried out manually or automatically. For automatic inspection,
typically special measurement trains are used. Nevertheless, also maintenance trains can be instru-
mented with the corresponding equipment to monitor the grinding process [12].

2.3 State-of-the-art in Condition Monitoring of Railways

In railway condition monitoring, track operators have to choose between two primary approaches:
either they deploy instrumented vehicles that routinely survey the entire track network or they
install measurement devices at specific spots known to be susceptible to rail damage. This station-
ary method is often termed wayside condition monitoring [3]. While track operators seek faster
inspection methods [16], wayside condition monitoring offers the significant advantage of not ob-
structing the track during the rail inspection process.

Most condition monitoring applications in the railway industry face the challenge that many
parameters cannot be measured directly. This can be due to different reasons, like high implemen-
tation costs or the absence of adequate technology [5]. However, Lewis and Olofsson introduce
wayside condition monitoring concepts in [1] that were implemented on US railroads as early as
2009. These methods primarily target the detection of damaged wheels. Techniques for monitoring
rails are not mentioned. Still, they emphasize that in the future rail condition measurements will
aid in the planning of preventive maintenance schedules.

Ngini et al. [5] provide an overview of various concepts for monitoring the structural integrity of
rolling stock with track-based sensors. For instance, wheel defects can be detected by measuring
the force, which is exerted by the wheel on the rail. Additionally, concepts for identifying track
irregularities, for example in the track cross level, with vehicle-based equipment are presented [5].
Recent research underlines the potential of acoustic emission testing for online monitoring of both
rolling stock [21] and rails [6, 13]. However, this concept is very prone to unwanted noise. There-
fore, sophisticated signal processing algorithms are needed to retrieve reliable information about
the asset’s condition [13]. In contrast, it has already been demonstrated that ultrasonic surface
waves can be used to detect the presence of head checks in rails [3, 6]. Yet, no published studies
have confirmed the capability of a wayside condition monitoring concept to quantitatively evaluate
head check depth.
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Most commercially available track monitoring systems are vehicle-based. The company Plasser
und Theurer, for example, offers measurement trains with optical or mechanical systems to quan-
tify track gauge and inspect track geometry [22]. Enterprises such as Vossloh and RailMeasurement
produce cars and trolleys which exploit visual techniques to assess the wear of the rail profile [23,
24]. Additionally, these vehicles use eddy current testing to characterize surface defects and in case
of Vossloh even conventional ultrasonic testing to detect flaws inside the rail.

In contrast, D-RAIL presents a sensor system adaptable to any train. They assert that their in-
struments can detect cyclic faults and even RCF damage. While they have not specified the sensor
type, it is inferred that their system primarily uses acceleration data, as the sensors are mounted to
structural components of bogies. These acceleration measurements are combined with an accurate
GPS-based positioning system [25].

The Austrian firm voestalpine Railway Systems provides monitoring technologies for both
rolling stock and for railway infrastructure. Their portfolio includes systems to monitor switches
and capture environmental data. The required sensors are installed permanently [26].



Chapter 3

Introduction to Ultrasonic Rayleigh Waves

This chapter provides an introduction to the fundamental physics of Rayleigh waves, covering
wave velocity and propagation mechanisms. The decay of the Rayleigh wave amplitude is then
theoretically derived as a function of the distance from the wave-exciting transducer. Additionally,
a review of various ultrasonic wave characteristics for fault detection is given, and the selection of
the transmission coefficient as the characteristic wave feature is discussed.

3.1 The Physics of Rayleigh Waves

In solid materials, two types of bulk waves can propagate: longitudinal (pressure) waves and
transversal (shear) waves [27]. These modes of wave propagation are typically utilized in conven-
tional ultrasonic testing methods [9]. However, under specific circumstances, surface wave modes
such as Rayleigh waves [6] can also exist. These surface acoustic waves (SAWs) offer a special
potential for the surface inspection of structural components, as the wave’s energy is concentrated
in the near-surface area [6, 9]. Several pieces of literature, for instance [27, 28, 29], demonstrate
the derivation of the Rayleigh wave equations by the method of potentials, assuming a plane wave
and an isotropic medium. While strictly speaking, the Rayleigh wave equations are only valid for
an ideal half-space with infinite thickness, quasi-Rayleigh waves can still propagate on a mechan-
ical component’s surface as long as the wavelength λR is significantly smaller than the thickness
t of the component, λR≪ t [3]. The Rayleigh wave velocity vR is only dependent on the material
properties, including the Poisson’s ratio µ , the shear modulus, and the density. It can be calculated
using the following equation introduced in [27, 28, 29]:

η
6−8η

4 +8η
2(3−2ξ

2)+16(ξ 2−1) = 0, (3.1)

whereby the dimensionless variables η and ξ have been introduced:

η =
vR

vT
; ξ =

vT

vL
=

√︄
1−2µ

2(1−µ)
. (3.2)
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vT and vL denote the velocities of the transversal and longitudinal waves in the examined material,
respectively. It can be shown that Equation 3.1 has only one root, since µ only varies in the range
from 0 to 0.5 for any real solid material [28]. An approximation of this root is given by [28]:

η =
0.87+1.12µ

1+µ
. (3.3)

An estimation of the Rayleigh wave velocity vR based on Equation 3.2 and Equation 3.3 yields
vR = 2991m/s, with the literature values of µ = 0.29 and vT = 3230m/s given in [3] and [27],
respectively. Moreover, Rayleigh waves are nondispersive, as their velocity is not a function of the
acoustic wave’s frequency [27].

It can be shown that a Rayleigh wave is basically a linear combination of a pressure and a shear
wave [29]. Therefore, a Rayleigh wave propagates by material particles oscillating concurrently in
longitudinal and transversal directions. Consequently, a certain particle follows an elliptical motion
[27, 28, 29]. The propagation of a plane Rayleigh wave is schematically illustrated in Figure 3.1.

Fig. 3.1: Schematic illustration of the propagation of a plane Rayleigh wave. Material particles
follow an elliptical motion as they oscillate in in-plane and in out-of-plane direction [30].

Furthermore, certain texts demonstrate [28, 29] that for a Rayleigh wave propagating in an ideal
half-space, the ratio of the in-plane displacement u to the out-of-plane displacement w of a particle
u/w at a specific depth is solely dependent on the Poisson’s ratio µ of the material. As there is a
fixed ratio u/w for a plane surface, the amplitude of the out-of-plane displacement is adequate to
determine the amplitude of the SAW. During the experiments conducted in this thesis, presented
in Chapters 6 and 7, a Laser Doppler vibrometer (LDV) was used to measure the out-of-plane
displacement of the surface caused by the propagating SAW. It is important to note that the ratio
u/w may be affected by curved surface geometry. Hence, during the conducted experiments, the
SAW amplitude is measured at the plane surfaces of the rail head, maintaining a specific minimum
distance from the rail head edges.
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3.2 Attenuation of Surface Acoustic Waves

The amplitude of any wave excited by a point source gets attenuated due to purely geometrical
reasons, as the wave beam diverges with increasing geometrical distance d from this source. The
geometrical amplitude decay of a Rayleigh wave propagating at a plane surface is proportional to
1/
√

kRd, where kR denotes the wave number of the Rayleigh wave [27, 28]. In contrast to bulk
waves, which decay with 1/kl,td, the geometrical attenuation of SAWs is lower. kl and kt represent
the wave numbers of the longitudinal and transversal waves, respectively. This lower geometrical
decay enables a measurement over larger distance ranges [9, 28]. The purely geometrical attenua-
tion of a SAW’s amplitude AG(d) can be formalized as a function of distance by

AG(d) = AG0
1√
kRd

. (3.4)

The constant AG0 is computed from the amplitude AG(d) at a certain position d. It has to be em-
phasized that Equation 3.4 is only a reasonable model for d ≫ 0, since a function f (x) of type
f (x) = 1/x→ ∞ if its argument x→ 0+.

In addition to the geometrical decay, SAWs propagating in steels are attenuated due to physical
reasons such as internal absorption or scattering at grain boundaries [9, 28]. As with ultrasonic
longitudinal and transversal waves, the sound pressure P(d) of a Rayleigh wave follows an expo-
nential function, when assuming a plane wave that is attenuated through scattering and absorption
[9]:

P(d) = P0e−αd. (3.5)

P0 denotes the sound pressure of the incident SAW. The attenuation coefficient α can be split into
the attenuation coefficient due to absorption αa and the attenuation coefficient due to scattering αs:
α = αa + αs. However, for a SAW propagating at the surface of a steel component, the attenuation
due to scattering can be neglected if the size of the grains is much smaller than the wavelength of
the ultrasonic wave [9]. The examined rail grades satisfy this criterion. The attenuation coefficient
due to absorption αa increases linearly with the excitation frequency of the ultrasonic wave fx

[9]. Since the displacement amplitude A(d) is proportional to P(d) for a specific combination of
material and fx, Equation 3.5 can be rewritten to

AS(d) = AS0e−αd, (3.6)

where AS0 denotes the amplitude of the incident SAW. Combining the geometrical decay with the
attenuation due to absorption and scattering yields

A(d) = A0
e−αd
√

kRd
. (3.7)
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The final model function for the attenuation of a SAW is obtained by aggregating all constant
factors into a single constant C. Consequently, Equation 3.7 results in

A(d) =C
e−αd
√

d
. (3.8)

This function is used in Section 6.3 for fitting the attenuation curves.

3.3 Evaluation of Wave Features for Crack Assessment

After the propagation over an open crack, the transmitted SAW still maintains a significant part
of the incident wave’s energy. However, the crack also causes reflections and mode conversions,
which lead to the generation of bulk waves [31]. Besides the loss of energy due to reflection and
mode conversion, the transmitted surface wave is also affected in various other ways, depending
on the actual configuration of the crack. In previous research, different surface wave features have
already been exploited for the assessment of surface defects. Fundamentally, it has to be differenti-
ated between linear and non-linear wave attributes. While linear wave attributes are typically used
for the characterization of macro-scale defects, non-linear features are promising for assessing
early grades of degradation and micro-scale defects [32, 33, 34].

3.3.1 Linear Wave Features

The most frequently exploited linear wave features for the evaluation of an open structural crack
include the transmission and reflection coefficients, the degree of mode conversion, and the de-
lay in the time-of-flight (TOF) [32]. The transmission coefficient CT is defined as the ratio of the
transmitted wave’s amplitude to the incident wave’s amplitude [28, 35]. Its theoretical trend over
the depth d of an open crack normalized by the wavelength of the Rayleigh wave λR is depicted
in Figure 3.2(a). The transmission coefficients for different angles of incidence between the prop-
agation direction of the SAW and the crack are provided. In any case, the transmission coefficient
CT exhibits an almost linear and monotonic decrease until a/λR ≈ 0.3. Consequently, CT is a bi-
jective function of a/λ for a/λ < 0.3. Therefore, the transmission coefficient promises a unique
and precise determination of the crack depth up to this threshold. Although the coupling condi-
tions may have an impact on the recorded amplitudes [6], this issue is considered minor since the
piezoelectric transducers remain attached to the cross-section of the rail during a potential in-track
application.

Similarly to the transmission coefficient, the reflection coefficient CR is given by the ratio of the
reflected wave’s amplitude to the incident wave’s amplitude [28, 35]. The plot of the reflection co-
efficient across normalized crack depth, which is shown in Figure 3.2(b), reveals a non-monotonic
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increase of CR with a/λR. In order to characterize the transformation to bulk waves, both the trans-
mission and the reflection coefficient have to be measured [28].

An open surface crack results in a delay in a SAW’s TOF compared to the undamaged specimen.
Although this approach can be employed in the characterization of fatigue cracks under tensile load
for a wide range of a/λR, it is not applicable for partially closed cracks [8]. Consequently, the TOF
cannot be used to assess head checks. An evaluation of a crack’s impact on a propagating SAW in
the frequency domain is put forward in [29] by investigating the shift in the center frequency of
the SAW pulse, but only a non-monotonic trend was found.

(a) Theoretical trend of the transmission coeffi-
cient CT over normalized crack depth a/λR. Dif-
ferent angles of incidence are illustrated. Adapted
from [35].

(b) Theoretical trend of the reflection coefficient CR
over normalized crack depth a/λR. Different angles of
incidence are illustrated. Adapted from [35].

Fig. 3.2: Theoretically computed transmission coefficient CT and reflection coefficient CR of a
SAW propagating over an ideal surface breaking crack.

3.3.2 Non-linear Wave Features

The mechanical interaction of a SAW with defects in the specimen’s microstructure causes a non-
linear propagation behavior of the SAW. These defects exhibit a non-linear stress-strain relation
and can therefore lead to non-linear ultrasonic phenomena, such as the generation of higher-order
and subharmonics [33, 36]. Exploiting the generation of higher-order harmonics offers the poten-
tial for assessing micro-scale defects. Non-linear damage indices computed from the amplitude of
the second-order harmonic have already been applied in laboratory experiments to evaluate stress
corrosion cracks [37] and fatigue damage [32]. When assessing closed cracks, the evaluation of
subharmonic amplitude in a phased array setup comprising multiple transducers provides superior
performance compared to that of higher-order harmonics. However, for both approaches, high-
amplitude ultrasonic waves and therefore high-power signal generators are required [33]. Other
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non-linear ultrasonic characteristics, for instance non-linear frequency-mixing, and their applica-
tion for damage detection are described in [33].

Non-linearity is to a certain extent inevitable in any measurement setup, as noise, coupling
media, and the instruments might have non-linear responses. Features like the second-order har-
monic amplitude are dependent on the propagation distance of the wave, while these ambient
non-linearities are not [36]. Consequently, the non-linearity due to the microstructure can be de-
termined by measuring the second-order harmonic amplitude at different distances or by using
different excitation frequencies [37].

3.3.3 Selection of the Wave Feature for the Assessment of Head Check Depth

During the selection of the wave feature to assess head check depth, a simple measurement setup
was sought to ensure the evaluation methodology’s applicability in the track. Furthermore, the
complex crack configuration, caused by partially closed and overlapping cracks, was taken into
account. It is an open question whether wave features which have already been deployed for the
sizing of open cracks are applicable to head checks given the complex geometry. However, a qual-
itative effect of partially closed head checks on the transmission coefficient was previously found
in [3]. Motivated by this discovery and recognizing the transmission coefficient’s simplicity and
robustness, this master’s thesis examines the potential of the SAW transmission coefficient to quan-
titatively assess crack depth.



Chapter 4

Selected Concepts of Signal Processing

The aim of this chapter is to introduce the reader to selected principles of signal processing, such
as cross-correlation and autocorrelation. These techniques are extensively used in the evaluation
of the measurement data characteristics. Furthermore, the Hilbert transform and the so-called ana-
lytic signal are presented, since the developed signal processing algorithm relies heavily on these
methods. Finally, an introduction to model-based signal processing is provided. The theoretical
background of other signal processing concepts relevant for this thesis, including analog-to-digital
conversion, digital filters, and the Fourier transform, can be found in [38, 39, 40].

4.1 Cross-Correlation and Autocorrelation

The degree of similarity between signals can be ascertained using the well-established mathemat-
ical technique of correlation. The correlation ρx,y(τ) of two complex continuous-time signals x(t)
and y(t) is defined as

ρx,y(τ) =
∫︂

∞

−∞

x(t + τ)y∗(t)dt, (4.1)

where y∗(t) signifies the complex conjugate of y(t) [38]. Similarly, the correlation between two
complex discrete-time signals x[n] and y[n] evaluates to

ρx,y[l] =
∞

∑
n=−∞

x[n+ l]y∗[n]. (4.2)

Again y∗[n] denotes the complex conjugate of y[n]. In a visual representation, x[n] undergoes a
step-wise shift across y[n], and the overlap is computed at each lag l. If the functions x[n] and y[n]
differ from each other, the result of this operation, ρx,y[l], is termed the cross-correlation func-
tion. Conversely, if the functions are identical, the correlation function ρx,x[l] is designated as the
autocorrelation function, signifying that the signal x[n] is correlated with itself [38].

Certain authors [41, 42] introduce a normalization term for the correlation Rx,y[l] of power sig-
nals, extending Equation 4.2 to

18
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Rx,y[l] = lim
N→∞

1
2N +1

N

∑
n=−N

x[n+ l]y∗[n]. (4.3)

However, for the practical signal analysis detailed in Section 5.1, the definition as per Equation 4.2
will be used, given that all recorded signals share a consistent sample length and frequency.

Autocorrelation stands as a powerful instrument in the analysis of stochastic signals. Techniques
akin to deterministic linear systems theory are applicable to the autocorrelation of such random
signals. In fact, the autocorrelation signal and the power spectral density (PSD) jointly form a
Fourier transform pair, mirroring the relationship between a deterministic signal and its spectrum.

Consequently, the discrete-time Fourier transform (DT FT ) is used to calculate the PSD [43].
Given a random signal x[n], its PSD Sx,x( f ) can be computed according to the Wiener-Khintchine
theorem [41, 43], which is formalized as

Sx,x( f ) = DT FT{x[n]}=
∞

∑
l=−∞

ρx,x[l]e−i2π f k. (4.4)

In simple words, the PSD illustrates the contribution of each frequency to the total power of the
signal [38].

4.2 Hilbert Transformation and Analytic Signal

Given a signal x(t), its Hilbert transform h(t) is defined as

h(t) = x(t)
p.v.
∗ 1

πt
=

1
π

∫︂
∞

−∞

x(τ)
t− τ

dτ. (4.5)

This convolution integral cannot be computed by conventional means, since 1/πt exhibits a jump
discontinuity at t = 0. Hence, h(t) is specified using its Cauchy principal value p.v. [44, 45].
Considering the definition in the frequency domain yields

H(ω) = X(ω)FT

[︃
1
πt

]︃
, (4.6)

with FT denoting the Fourier transform.
It is demonstrated in the related literature, such as [45], that the Fourier transform of the Signum

function sgn(t) evaluates to

FT[sgn(t)] =
2

iω
. (4.7)

For a Fourier transform pair x(t)←→ X(ω), the Duality theorem of the Fourier transform is for-
malized as X(t)←→ 2πx(−ω) [38, 46]. Applying the Duality theorem to the Fourier transform of
the Signum function given in Equation 4.7 leads to
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FT

[︃
2
it

]︃
= 2π sgn(−ω) (4.8)

and subsequently to

FT

[︃
1
πt

]︃
=−i sgn(ω). (4.9)

Substituting this result back into Equation 4.6 yields

H(ω) =−i sgn(ω)X(ω). (4.10)

From Equation 4.10, it becomes evident that the Hilbert transform only shifts the phase of the
given signal by 90 degrees but does not affect its magnitude. Specifically, for ω > 0, the Hilbert
transform h(t) of a signal x(t) leads to a phase delay of 90 degrees, as illustrated in Figure 4.1.

The analytic signal A(t) computed from a real-valued signal x(t) is a complex-valued signal
defined to have x(t) and h(t) as its real and imaginary components: A(t) = x(t)+ ih(t) [40]. The
value of the absolute magnitude |A(t)| can be calculated using |A(t)|=

√︁
x2(t)+h2(t). This value

provides the so-called instantaneous amplitude, which forms the envelope of x(t) [45]. As shown in
Figure 4.1, the instantaneous amplitude |A(t)| of a sinusoidal signal x(t) with a constant amplitude
is constant.

Fig. 4.1: The instantaneous amplitude |A(t)| provides the envelope of a given signal x(t). The
Hilbert-transformed signal h(t) has a phase delay of 90 degrees compared to x(t) and forms the
imaginary part of the analytic signal A(t).
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4.3 Principles of Model-Based Signal Processing

If a signal is predictable, e.g., repeating a measurement multiple times results in exactly the same
measurement signal, then the signal is said to be deterministic. However, in reality, most signals
obtained from measurements are subject to extraneous variations, such as electronic noise. They
are not repeatable as the extraneous variations lead to varying output signals when measuring
continuously. These non-repeatable signals are referred to as random signals [43]. While it is not
possible to precisely predict random signals, they can be described using statistical parameters [38,
46].

The principal aim of signal processing is to extract the relevant information from a signal and
reject the extraneous variations [43]. The required complexity of a signal processing approach is
mainly determined by the inherent noise in the measurement signal. A simple approach may be suf-
ficient for signals that are hardly contaminated with noise and therefore have a high signal-to-noise
ratio (SNR). However, the lower the SNR of the incident signal, the higher the required complexity
of a signal processing approach to achieve a satisfactory SNR of the processed signal. Model-based
signal processing is considered to be the most powerful, yet the most complex signal processing
strategy. It enables the embedding of a priori knowledge about the physical phenomenon and the
measurement principle into the signal processor by the use of mathematical models. An increasing
physical understanding of the system under study facilitates the embedding of more accurate mod-
els in the signal processor, leading to a higher quality of the signal processing results. Obviously, a
correct analytical or numerical model of the physical phenomenon is a prerequisite for employing
a model-based approach [43].

The measurement Ymeas of the true value Strue of a physical quantity with an ideal measurement
device is given by [43]

Ymeas = Strue +Nnoise, (4.11)

where the noise Nnoise may be modeled by a Gaussian distribution with mean µ = 0 and variance
σ2 = Rnn: Nnoise ∼N (0,Rnn). Therefore, the estimation error (S̃ = Strue− Ŝ) variance is equal to
Rnn for the ideal measurement device. Ŝ represents the estimate of Strue.

A more realistic model for the measurement process can be obtained by introducing the mea-
surement system function C(Strue) [43]:

Ymeas =C(Strue)+Nnoise, Nnoise ∼N (0,Rnn). (4.12)

If the measurement is performed with a voltmeter, for example, the measurement can simply be
modeled by an amplification gain K, thus resulting in the measurement system function C(Strue) =

KStrue [43]. The associated estimation error variance for this model of a real measurement device
may be denoted by R̃.
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Ultimately, knowledge about the physical process can be incorporated into the signal processor.
In this case, the estimation error variance may be represented by P̃. It is intuitively expected that
with increasing model complexity, the estimation error variance will decrease as more aspects of
the system under study are included in the model. Indeed, it can be shown mathematically that
P̃ < R̃ < Rnn [43]. This demonstrates the core concept of model-based signal processing: The more
physical knowledge is incorporated through mathematical models, the smaller the error of the esti-
mate Ŝ. The estimation Ŝ of the true quantity Strue from the measured value Ymeas based on models
for the physical process and the measurement instrument is schematically illustrated in Figure 4.2.

Fig. 4.2: Schematic illustration of a model-based signal processor used to obtain an estimate Ŝ of
the true value Strue of a physical quantity based on the measurement Ymeas. This signal processor
incorporates models for the physical process and the measurement instrument, as well as the asso-
ciated uncertainties of both. Adapted from [43].

Another significant advantage of model-based signal processing is the ability to integrate pa-
rameters that cannot be directly measured as unknown parameters in the model. Given the mea-
surement, the unknown parameters of these adaptive models are then determined by solving the
joint estimation problem [47].

A model-based approach for structural health monitoring (SHM) of plate-like structures using
Lamb waves is presented in [48]. The proposed method employs adaptive analytical models with
crack position and depth as unknown parameters. The Levenberg-Marquardt algorithm [48, 49] is
applied to solve the optimization problem. In contrast to plate-like structures, rails have a much
more intricate geometry. Wave propagation in rails can only be numerically modeled, e.g., with
a finite element model. However, this strategy requires that all relevant material parameters are
known in advance to obtain an applicable model [47]. Furthermore, the computational time for
complex finite element models is significant. Consequently, the implementation of a model-based
signal processing approach is beyond the scope of this thesis due to these challenges.



Chapter 5

Data Characteristics and Applied Signal Processing

The aim of this chapter is to give an overview of the characteristics of the recorded signals. In
addition, the signal processing algorithm developed for extracting the surface acoustic wave (SAW)
feature from the measurement signals is presented.

5.1 Investigations on the Characteristics of Recorded Signals

In a first step, it was evaluated how the recorded signals change with increasing distance from
the piezoelectric transducer that excited the surface acoustic wave. Another focus was on signal
quality.

Measurements were conducted on the surface along the rail head. This plane surface ensures
a fixed ratio of the surface wave’s in-plane and out-of-plane displacement. When generating the
SAW, the transducer was driven by a voltage signal composed of five sinusoidal pulses, also re-
ferred to as 5-pulse burst, with an excitation frequency of fx = 1.0MHz. A Laser Doppler vi-
brometer (LDV) was employed to gauge the surface’s out-of-plane displacements. Additionally,
the distance dk from the source was adjusted with a precision of 0.1mm. The exact measurement
setup is detailed in Section 6.3.

The signals considered for this investigation are denoted by sk with k ∈ {1, . . . ,5}, as they are
recorded at a specific distance dk from the source. dk varies in the range from d1 = 20mm to
d5 = 100mm with steps of ∆dk = 20mm. Figure 5.1 displays the recorded signals. It is evident
that the actual number of peaks in the recorded signals exceeds the number of five. This implies
that the surface at a given point continues to oscillate slightly longer due to inertia. As anticipated,
the burst’s arrival time increases with distance, while the wave amplitude decreases. From Figure
5.1, it becomes also evident that these measurements are affected by noise.

23
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Fig. 5.1: Signals sk with k ∈ {1, . . . ,5} recorded by a Laser Doppler vibrometer at different dis-
tances dk from the source. dk varies in the range from d1 = 20mm to d5 = 100mm with steps of
∆dk = 20mm. Measurements were performed on the plane surface along the rail head.

5.1.1 Time Domain Analysis Based on Cross-Correlation

As already mentioned in Section 4.1, cross-correlation is an excellent operation for measuring sim-
ilarity between two signals. In fact, it can be used to find a given reference signal in a measured
signal [38]. The time delay between the investigated signals can be determined by computing cross-
correlation. Indeed, the calculation of the surface acoustic wave’s velocity, conducted in Section
6.3.1, is based on time delays determined by means of cross-correlation.
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Furthermore, cross-correlation can be employed to assess the signal quality, as measurements
were captured at different distances from the source. For this purpose, cross-checks of arrival times
can be used. The notation ρsi,s j represents the cross-correlation of two signals si and s j. The cor-
relations ρsi,si+1 of spatially consecutive signals si and si+1 with i ∈ {1, . . . ,4} were computed.
Additionally, signal s1 was selected as the reference and all other signals s j with j ∈ {2, . . . ,5}
were cross-correlated with this reference. The computed cross-correlations are illustrated in Fig-
ures 5.2 and 5.3, respectively. The computation was executed with numpy’s correlate function. The
peaks in the correlation signals are indicated by red crosses.

Fig. 5.2: Cross-correlations ρsi,si+1 of spatially consecutive signals si and si+1. From top to bottom,
i increments by 1, starting with i = 1 in the topmost diagram. Peaks are indicated by red crosses.
The peaks appear approximately at the same lag across all cross-correlations. Table 5.1 lists the
exact lags of the peaks in ρsi,si+1 and provides the cumulative sum of these peak lags.

When correlating two ideal 5-pulse burst signals, a correlation signal with 9 peaks is expected.
However, as both Figure 5.2 and Figure 5.3 illustrate, the correlation of the measured signals results
in more than 9 peaks. This is caused by post-pulse oscillations, but also by systematic patterns in
the noise. The surface wave’s amplitude decays with distance, due to geometrical and physical
reasons. This means that the signal-to-noise ratio (SNR) decreases with increasing distance from
the source. Consequently, the peaks in the correlation signal become less distinct as the distance
from the source increases.

The geometrical distances between consecutive measurement positions are equal. Therefore, it
is anticipated that the peaks in the cross-correlations of spatially consecutive signals consistently
appear at the same lag. Moreover, the sum of peak lags from the correlation of spatially consecutive
signals is expected to match the position of the peak in the correlation of the reference signal with
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Fig. 5.3: Cross-correlations ρs1,s j of the reference signal s1 with all other recorded signals s j.
From top to bottom, j increments by 1, starting with j = 2 in the topmost diagram. Peaks are
indicated by red crosses. The lags of the peaks in ρs1,s j are listed in Table 5.1. These peak lags
align with the accumulated peak lags from the cross-correlations ρsi,si+1 of spatially consecutive
signals, indicating good signal quality.

the last signal considered during the sequential evaluation. For example, it is expected that

argmax(ρs1,s3) = argmax(ρs1,s2)+ argmax(ρs2,s3). (5.1)

The respective lag of the peak for each cross-correlation illustrated in Figure 5.2 and Figure 5.3
is provided in Table 5.1. Additionally, the sum of peak lags obtained from correlating spatially
consecutive signals is given. These accumulated peak lags align with the actual peak lag in the
correlation calculated with the reference signal. This is regarded as an indicator of good signal
quality.

Table 5.1: Lags of peaks in investigated cross-correlations. For the correlation ρsi,si+1 of spatially
consecutive signals, the actual peak lag and the accumulated peak lags are given. For the correlation
ρs1,s j with the reference signal s1, the actual peak lags are displayed.

i 1 2 3 4

argmax(ρsi,si+1) -169 -167 -167 -167

∑
i
n=1 argmax(ρsn,sn+1) -169 -336 -503 -670

argmax(ρs1,si+1) -169 -336 -503 -669
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Autocorrelation is an effective method for analyzing signals in the time domain. It filters out
ideal white noise, thereby reducing the inherent randomness in captured signals [43]. For illustra-
tion, Figure 5.4 depicts the autocorrelation ρs1,s1 of signal s1. The resulting autocorrelation signal
manifests symmetry, exhibiting a prominent peak when the lag l is zero. A subsidiary peak is ob-
served at a lag of l≈ 1500. Given a sampling frequency fs = 25MHz, this lag corresponds to a time
delay of ∆ t = 60 µs. When observing signal s1 in Figure 5.1, it becomes evident that a reflection of
the surface wave occurs approximately 60 µs after the detection of the actual SAW. Consequently,
autocorrelation offers the capability to identify reflections in a given signal.

Fig. 5.4: Autocorrelation ρs1,s1 of signal s1. The subsidiary peak at a lag of l ≈ 1500 is caused by
a reflection of the surface acoustic wave. Its lag l aligns with the time delay ∆ t = 60 µs, which is
observed in s1 between the arrival of the actual SAW and its reflection.

5.1.2 Frequency Domain Analysis Based on Power Spectral Density

The power spectral density (PSD) Sx,x can be computed from a given autocorrelation signal ρsx,sx

by means of the discrete-time Fourier transform [39, 42, 43]. The PSD of each of the signals s1 to
s5 is illustrated in Figure 5.5. Sometimes the power spectral density is also referred to as the power
spectrum.

The observed overall pattern is consistent across all power spectra in Figure 5.5. These spectra
exhibit an asymmetric shape. As expected, there is a diminishing power content in the signals as
the distance from the wave source increases. Despite a fixed excitation frequency of fx = 1.0MHz,
peaks are observed at slightly higher frequencies. One potential cause for the asymmetry could be
the system’s unknown impulse response. Every linear time-invariant system is completely char-
acterized by its impulse response h(t) [38]. When the frequency domain representation of the
system’s impulse response, H(ω), is asymmetric, the resulting output signal Y (ω) will also be
skewed in the frequency domain, even if the input signal X(ω) is symmetric.
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Fig. 5.5: Power spectral densities Ss1,s1 to Ss5,s5 for the investigated signals s1 to s5. These spectra
exhibit an asymmetric shape. As anticipated, the power content in the signals diminishes with
increasing distance from the wave source. Sharp subsidiary peaks are observed. The frequencies at
which these peaks occur are consistent across all PSDs.

Additionally, subsidiary peaks can be identified in each signal’s PSD. Notably, these peaks
emerge at similar frequencies across all spectra. This observation suggests that every captured
signal is superimposed with systematic disturbances occurring at certain specific frequencies. Al-
though they have a small power content compared to the main peak at the excitation frequency,
these subsidiary peaks were examined more thoroughly.

Specific segments of the signals s3, s4, and s5 were isolated to investigate the power spectrum of
their noise. Only those parts of the measurement signals recorded at time t > 50 µs were taken into
account. The PSD was recalculated for these cropped measurements, with the outcomes for the
signals s3 to s5 depicted in Figure 5.6. Signals s1 and s2 were excluded from the analysis, because
they contain reflections of the actual surface wave.

Instead of being evenly distributed, the power in the noise is concentrated at certain frequen-
cies. In fact, all peaks in the power spectra displayed in Figure 5.6 align with a frequency of
f = 0.31MHz or its integer multiples. The spectrogram of signal s5 is presented in Figure 5.7 to
further underscore the dominance of these frequencies.
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Fig. 5.6: Power spectral densities of segments from signals s3 to s5 to illustrate the power content
of recorded noise. Peaks are indicated by red crosses; the respective frequencies are printed in the
plots. The frequencies of the peaks in the background noise align with a frequency of f = 0.31MHz
or its integer multiples. This suggests that every captured signal is superimposed with systematic
perturbations occurring at particular frequencies.

Fig. 5.7: Spectrogram of signal s5. This visualization provides insight into how the spectrum
evolves with time. The power content corresponding to frequencies that are integer multiples of
f = 0.31MHz remains almost constant over time. This finding supports the hypothesis that all
recorded signals contain systematic disturbances. Additionally, the arrival of the actual SAW burst
with excitation frequency fx = 1.0MHz at a time t ≈ 40 µs is clearly visible.
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The spectrogram is calculated using the short-time Fourier transform (STFT) and reveals how
the power spectrum changes over time. There is an inherent trade-off between time and frequency
resolution; greater time resolution results in diminished frequency resolution, and vice versa. The
spectrogram depicted in Figure 5.7 clearly indicates that the power content corresponding to fre-
quencies that are integer multiples of f = 0.31MHz remains almost constant over time. This find-
ing supports the hypothesis that all recorded signals contain systematic disturbances. Additionally,
the arrival of the actual SAW burst with the excitation frequency fx = 1.0MHz at a time t ≈ 40 µs
is clearly visible in the spectrogram.

The PSD of the recorded signal still shows spikes at multiples of f = 0.31MHz even if no
cables are connected to the measurement device and a measurement is initiated. This suggests that
the origin of these disturbances lies within the device itself, eliminating acoustic reflections on the
rail surface as a potential cause. Presumably, electromagnetic interference is the reason, although
this theory is not conclusively verified in this thesis. Given their consistent presence across all
measurements, a strategy to address these systematic disturbances has been defined.

5.2 Processing of Recorded Signals

Since all recorded measurement signals contain unwanted disturbances at certain characteristic
frequencies, it was necessary to remove them from the signal. Thus, a digital bandpass filter was
used during the processing of the signals. Although the application of a comb filter would be an
alternative for diminishing systematic disturbances, a bandpass filter also reduces stochastic noise.
Moreover, when choosing the excitation frequencies for the sent SAW, it was ensured that they did
not overlap with the frequencies of the disturbances. In fact, for the experiments examining the
influence of head check depth on the SAW transmission coefficient, the excitation frequency of the
generated burst signals was varied in a range from fx = 0.7MHz to fx = 1.9MHz with steps of
∆ fx = 0.3MHz. A thorough description of the experimental setup is presented in Chapter 7.

The intent of this section is to provide an insight into the design and testing of the desired filter.
Additionally, the defined signal processing routine is presented. This routine was applied to all
measurements recorded during the experiments detailed in Chapter 6 and Chapter 7.

5.2.1 Filter Design

A Bessel-Thomson type filter was selected, because this type of filter is known for its linear phase
response [38]. Moreover, these filters have little overshoot. This property was verified by comput-
ing the step response of a Bessel-Thomson lowpass filter.
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To mitigate the perturbations observed at all harmonics of f = 0.31MHz, the bandwidth B of
the bandpass filter needs to be B < 0.31MHz. Additionally, it must be considered that the lower
cutoff frequency fL and the upper cutoff frequency fU depend on the excitation frequency of the
sent burst signal fx. These cutoff frequencies can be calculated from fx by adding constant values
∆ fL and ∆ fU , respectively. By empirical testing, it was determined that ∆ fL = −0.05MHz and
∆ fU = 0.15MHz allow for a maximum bandwidth while still effectively filtering out all pertur-
bations. So, for example, for a burst sent with fx = 1.0MHz the cutoff frequencies evaluate to
fL = 0.95MHz and fU = 1.15MHz. The constant frequency offsets ∆ fL and ∆ fU ensure effective
filtering regardless of the chosen excitation frequency fx of the pulse.

Given the filter type and cutoff frequencies, an appropriate filter order was determined. Python’s
scipy package can compute a filter’s transfer function using the filter type, cutoff frequencies, and
filter order. The frequency responses of Bessel-Thomson bandpass filters of different orders were
examined. The frequency responses are shown in Figure 5.8. The frequency response includes both
amplitude and phase responses. These characterize the amplitude decay and phase shift introduced
by the filter. For a filter order of 1, the bandwidth remains expansive. However, the bandwidth
reduces as the filter order increases. It should be noted that the uneven amplitude response in the
fifth-order filter is not the result of numerical errors. From observing the phase response, it is ev-
ident that the fifth-order filter has the most significant phase shift spread between low and high
frequencies.

In the final signal processing algorithm, highlighted in Section 5.2.3, the designed filter is ap-
plied forwards and backwards to the signal. Given the impulse response of the filter h(t) and
the input signal x(t), the output y f (t) from the forward filtering procedure can be computed by
y f (t) = h(t) ∗ x(t), with the symbol ∗ denoting the convolution of h(t) and x(t). Reversing y f (t)
yields yR

f (t), where the superscript R indicates the reversal of the original signal. The final output
y f b(t) from applying the filter forwards and backwards is obtained by again reversing the result
after the filter is applied on yR

f (t): yR
f b(t) = h(t)∗yR

f (t). Thereby, the amplitude response is squared
and the time delay is canceled out [50, 51]. Thus, the filter’s time delay due to its phase response
can be neglected. Nonetheless, it must be emphasized that this procedure can only be implemented
offline when the signal has been fully captured in advance.
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Fig. 5.8: Frequency response for Bessel-Thomson type bandpass filters of different orders with
cutoff frequencies of fL = 0.95MHz and fU = 1.15MHz. The filter’s frequency response char-
acterizes its steady state behavior. The bandwidth decreases and the phase delay increases with
ascending filter order.

Typically, a filter’s steady state behavior is evaluated by determining its frequency response. Yet,
when the filter is applied to signals containing sudden changes, the filter’s transient behavior plays
a vital role. In simple terms, an abrupt variation in a signal represents a transient. Such transients
in the input signal disrupt the stable operation of a filter, leading to a transient response in the
filter’s output [50]. A filter’s transient behavior can be assessed by its impulse response or its step
response. Figure 5.9 depicts the step responses for Bessel-Thomson bandpass filters of different
orders. From this figure, it becomes evident that higher-order filters exhibit a significant time delay.
These filters respond slowly when encountering a step function input. Hence, higher-order filters
might struggle with rapid amplitude changes in input signals. Furthermore, as seen in Figure 5.9,
bandpass filters eliminate long-term trends from signals as their step responses trend towards zero
over time.

Setting the filter order to three was considered to be a reasonable trade-off between rise-time
and effective removal of unwanted frequencies. This decision completed the filter’s definition.
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Fig. 5.9: Step response for Bessel-Thomson type bandpass filters of different orders. The filter’s
step response characterizes its transient behavior. Higher-order filters only respond slowly to tran-
sient changes in the input signal.

5.2.2 Testing of the Designed Filter

To test the filter, it was applied to a set of recorded signals, and the resulting filter output was
analyzed. These signals stemmed from measurements of the incident wave amplitude, which are
presented in Chapter 7. In contrast to the signals showcased in the previous Section 5.1, the ex-
perimental setup was different. The Laser Doppler vibrometer still gauged the out-of-plane dis-
placement on the rail head’s side, but the piezoelectric transducer was positioned on the rail head’s
bottom side. For a detailed description of the setup used to generate these signals, please refer to
Section 7.1.

The output signal obtained when applying the filter forwards and backwards to a signal with an
excitation frequency fx = 1.6MHz is illustrated in Figure 5.10. This particular excitation frequency
was chosen due to its proximity to the systematic disturbance at f = 1.54MHz. Both the time
domain representation and the PSD of the output and input signals are displayed. The PSD reveals
that the filter effectively removes all disturbances, including the one at f = 1.54MHz. As a result,
the designed filter was regarded as effective in removing disturbances from all recorded signals.
Additionally, the time domain representation highlights that the recorded signal’s amplitude varies
significantly from peak to peak. The bandpass filter stabilizes the output signal’s amplitude relative
to the input, while it diminishes the amplitude.
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Fig. 5.10: Application of the designed Bessel-Thomson filter to a recorded signal. Results are
depicted in both time and frequency domains. The burst’s excitation frequency is fx = 1.6MHz.
All disturbances, including the one at f = 1.54MHz, are effectively eliminated.

5.2.3 Signal Processing Algorithm

This section describes the developed signal processing algorithm. After its implementation in
Python, the algorithm was applied to most signals recorded during the experimental work of this
master’s thesis. However, for the wave velocity determination discussed in Section 6.3.1, a strategy
based on cross-correlation was employed. Figure 5.11 illustrates the overall working principle of
the designed signal processing algorithm. It shows step-by-step how the peak in the instantaneous
amplitude is obtained from the raw measurement signal. The main steps are:

1. Averaging of multiple measurements: Calculate the average over 32 recorded signals at
each point in time to improve the total signal-to-noise ratio (SNR). The measurement device
automatically performs this calculation, and only the averaged signal is saved.

2. Extraction of signal sequence for evaluation: Discard the first 10 µs of the averaged signal
as the receiving channel of the measurement device experiences interference from the send-
ing channel. Additionally, the time channel is capped at tmax = 100 µs. This means the last
40 µs of the averaged signal, which typically has a tmax = 150 µs, are omitted. This selected
signal sequence is referred to as the recorded signal throughout this thesis.
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3. Filtering: Apply a Bessel-Thomson filter both forwards and backwards to eliminate system-
atic disturbances and noise.

4. Calculating instantaneous amplitude: Determine the analytic signal using the Hilbert
transformation. Obtain the instantaneous amplitude from the analytic signal.

5. Peak detection: Calculate the expected arrival time interval of the SAW based on the known
distance from the source and the identified wave velocity. Detect the peak in the instan-
taneous amplitude within this interval. Save both the peak amplitude and time for further
evaluations.

Fig. 5.11: Application of the developed signal processing algorithm to a measurement signal. The
top diagram shows the averaged output from the measurement device. Only the relevant segment
of this signal, termed the recorded signal, is evaluated. Using the known distance from the source
and the wave velocity, an expected arrival time interval is determined. The peak is then detected in
the filtered signal’s instantaneous amplitude within this interval.

The developed signal processing algorithm is considered capable of extracting the desired fea-
ture from recorded signals in a reliable manner. In addition, other approaches for feature extraction
were also identified during the design process. For example, the processing of recorded signals
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could be based on cross-correlating them with software-generated bursts. The desired amplitude
peaks are then detected in the correlation signal. In fact, this approach has the significant advantage
that no filter is needed. However, it turned out that the coefficient of variation for the computed peak
values is higher for this approach compared to the filter-based procedure. This can be explained by
the influence of noise and perturbations. In particular, perturbations that occur at frequencies close
to the set excitation frequency are only insufficiently attenuated.

Another potential method for determining a signal’s envelope involves quadrature demodulation,
also termed I-Q demodulation. Following this approach, the captured signal is simultaneously mul-
tiplied with a sinusoidal signal at the known carrier frequency and with its 90-degree phase-shifted
counterpart. By employing an appropriate filter to extract the desired frequency components, the
in-phase (I) and quadrature (Q) components of the signal are obtained [52, 53]. These components
facilitate the calculation of the signal’s envelope. Also, in this approach, deliberate filter tuning is
necessary to obtain good results.



Chapter 6

Preliminary Investigations

This chapter begins with a brief overview of the laboratory measurement equipment. In addition,
the conducted preliminary investigations are presented. Among the most crucial findings during
these preliminary investigations was the necessity to gauge the surface acoustic wave (SAW) am-
plitude at multiple longitudinal positions to mitigate the influence of the rail surface on the signal
amplitude. Furthermore, the velocity of the SAW when propagating through the examined rail
grade was ascertained, facilitating the calculation of the interval for the expected time of arrival.
Moreover, the attenuation of the SAWs was characterized.

6.1 Laboratory Measurement Setup

The measurement equipment that was used during all laboratory experiments consisted of a
custom-made signal generation and measurement device, a piezoelectric transducer for exciting
surface acoustic waves, and a Laser Doppler vibrometer (LDV) to determine the out-of-plane dis-
placement induced by the propagating SAW. For simplicity, the signal generation and measurement
device is hereafter referred to as the measurement device. Coaxial cables with BNC connectors
served to connect the measurement device with the transducers and with the LDV. A detailed de-
scription of the laboratory measurement setup, illustrated in Figure 6.1, is provided in the following
subsections.

6.1.1 Signal Generation and Measurement Device

For all measurements conducted during the experimental work of this thesis, a custom-made sig-
nal generation and measurement device was used. At its core is the commercially available USB
Oscilloscope Analog Discovery 2, which is manufactured by the company Digilent. This oscillo-
scope is displayed in Figure 6.2(a). It features two input channels with a maximum sampling rate
of fS = 100MHz, along with a resolution of 14 bits, enabling the simultaneous capture of both the
excited and received signals. Additionally, this oscilloscope is equipped with a signal generator

37
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Measurement device

Piezoelectric transducer

LDV

Fig. 6.1: The measurement equipment for the investigations on the influence of the crack depth
on the SAW transmission coefficient includes a custom-made signal generation and measurement
device, piezoelectric transducers attached to the bottom side of a sample’s rail head, and a Laser
Doppler vibrometer (LDV) to gauge the out-of-plane displacement.

capable of generating signals of arbitrary form [54]. Besides the oscilloscope, the measurement
device incorporates electronic circuits to amplify the sending channel as well as the receiving
channels [55]. A schematic overview of the amplification circuits is depicted in Figure 6.2(b).

(a) Image of the USB oscilloscope, Ana-
log Discovery 2, which forms the core of
the measurement device [54].

(b) Amplification circuit inside the measurement device. The
output signal is amplified by a non-inverting operational ampli-
fier. The receiving circuit consists of a buffer amplifier and an
inverting operational amplifier [55].

Fig. 6.2: Employed hardware in the custom-made signal generation and measurement device.
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Voltage signals generated with the USB oscilloscope are amplified by a non-inverting opera-
tional amplifier. The maximum output voltage of the Analog Discovery 2 was set to U = 2.0V when
performing the measurements. Based on theoretical calculations, a total output gain A of A = 20.2
was expected. The experimentally measured gain for an excitation frequency of fx = 1.0MHz was
slightly lower. A changing gain, dependent on the frequency, was recognized. The receiving circuit
consists of a buffer amplifier to decouple the signal source from the measurement circuit and an
inverting operational amplifier. Its gain was found to be A = −18. Amplification of the received
signal is necessary since the output voltage of the LDV is very low [55]. However, the actual values
of the amplification gains are of minor importance as the transmission coefficient is defined as the
ratio of the transmitted wave amplitude to the incident wave amplitude.

The Analog Discovery 2 has an interface to Python for code implementation. As a result, mea-
surements can easily be executed automatically with the measurement device. The collected data is
stored in hdf5 files along with the metadata associated with the measurement. For the experiments
presented in the following sections and in Chapter 7, a 5-pulse burst was used to avoid overlapping
between surface wave oscillations and bulk wave oscillations. This is a signal consisting of five
sinusoidal pulses. It was found that this signal shape offers a reasonable trade-off between high
magnitude of excited SAWs in the time domain and a narrow bandwidth in the frequency domain.

6.1.2 Piezoelectric Transducers

The piezoelectric effect describes the electrical field which is generated by certain crystals when
mechanical stresses are applied to them. This effect is also reversible as applying a voltage to
these crystals causes them to deform. In principle, piezoelectric crystals facilitate the conversion
between mechanical and electrical energy. Therefore, piezoelectric transducers can serve both as
actuators and sensors [9, 56, 57].

Piezoelectric transducers of type P-876.SP1, manufactured by PI Ceramic, were employed for
all conducted laboratory experiments. These transducers are based on lead zirconate-lead titanate
material, a soft piezoceramic that contracts laterally when a voltage is applied [57]. This lateral
contraction is highlighted in Figure 6.3. Throughout the experiments presented in this thesis, piezo-
electric transducers were solely used to excite SAWs, while an LDV was employed to receive them.
In contrast, any potential in-track installation of the measurement equipment would involve a dual-
transducer setup to both excite and sense the SAWs.
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Fig. 6.3: The employed piezoelectric transducers of type P-876.SP1, manufactured by PI Ceramic,
are contracting in lateral direction when a voltage is applied [57].

The piezoelectric transducers were affixed to the rails’ surfaces with HBM Z70 cold curing su-
perglue. This type of adhesive is commonly used in engineering for attaching strain gauges [58]. A
setup featuring a piezoelectric crystal oscillating in a lateral direction is elucidated in [9]. The au-
thor emphasizes that when coupled through a solid or highly viscous medium, such transducers in-
duce shear bulk waves in addition to SAWs. The practical experience confirms this literature-based
expectation. Indeed, it was observed that glued transducers also generate ultrasonic bulk waves in
the specimens. The distinction between ultrasonic bulk waves and ultrasonic surface waves in the
recorded signals was made based on time-of-flight, considering the different propagation veloci-
ties of these wave modes and the fact that bulk waves propagate through the material. Figure 6.4
illustrates a piezoelectric transducer that has been glued to the bottom side of a rail head.

Fig. 6.4: Piezoelectric transducer glued to the bottom side of a laboratory specimen’s rail head.

6.1.3 Laser Doppler Vibrometer

A Laser Doppler vibrometer (LDV) relies on a laser beam to measure motions or vibrations such as
the displacement caused by a propagating SAW [59]. Its measurement principle is fundamentally
based on the physical phenomenon of the Doppler effect. According to the Doppler effect, the
frequency of a wave gets shifted if the wave is reflected at a moving target. The shifted frequency
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f ′ of the reflected wave can be calculated for the case of a target which is moving away from the
fixed observer with velocity v by

f ′ =
f

1+ v
c
, (6.1)

where the frequency of the incident wave is f . The wave velocity is denoted by c, which is equal
to the speed of light in the case of a laser beam. Consequently, the velocity v of the object can be
calculated from the measured frequency f ′, the known excitation frequency f , and the speed of
light [56]. Although the frequency shift is marginal, as v is very small compared to the speed of
light, it is still significant. Typically, an interferometer is deployed to quantify this minimal shift
in practice. This method contrasts in a differential setup the reflected laser beam with an internal
laser beam, whose frequency is known, enabling a very precise determination of the frequency
shift. LDVs are employed in various engineering applications to gauge motions and vibrations, for
example, in the modal analysis of automotive parts [56].

When propagating on a plane surface, a SAW’s out-of-plane displacement is proportional to
its in-plane displacement [28, 29]. Therefore, it is sufficient to measure only the out-of-plane dis-
placement with an LDV to characterize the wave’s amplitude.

For the laboratory experiments, a Laser Doppler vibrometer of type OptoMET Nova Master
with velocity decoder D-VD-5N was used. This device was already shown in Figure 6.1. The LDV
assessed the velocity of surface vibrations, induced by the SAW, rather than the actual surface dis-
placement. However, the amplitudes from displacement and velocity deviate from each other by
only a constant factor. Subsequently, this factor cancels out during the computation of the trans-
mission coefficient when dividing the amplitude from the transmitted wave by the amplitude of the
incident wave. Additionally, measuring the velocity amplitude is more precise, as it is by several
orders of magnitude higher than the displacement amplitude. During the executed measurements,
the measurement device was sampling from the analog signal output of the LDV. Before starting a
new series of measurements, the LDV needs to be refocused.

6.2 Laser Doppler Vibrometer Measurement Error

It was already described in previous research, such as [60], that rail surface characteristics can exert
a notable impact on laser-based measurements of the out-of-plane displacement of the surface.
During preliminary experiments, two potential sources of systematic measurement errors were
identified and investigated. The identified causes are as follows:

1. Influence of refocusing: After initial focusing of the LDV on the rail surface, which estab-
lishes a baseline signal level, subsequent refocusing at the same position can alter this level,
either increasing or decreasing it. These variations were considered as a potential source of
systematic measurement errors.
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2. Influence of the rail surface: It was observed that the rail head outside of nearly all rail
samples exhibited a slightly corroded surface. In contrast to the outside of the rail, the rail
head’s surface on the inside of the rail was still close to the initial as-rolled state. Figures
6.5(a) and 6.5(b), respectively, illustrate the surface on the inside and the outside of the
rail head through photographs. The condition of the surface was suspected to influence the
amplitude of the detected SAW.

(a) The rail head’s surface on the inside of the rail
was mostly close to the initial as-rolled state.

(b) The rail head’s surface on the outside of the rail
was mostly in a slightly corroded state.

Fig. 6.5: Surfaces on the inside and outside of the rail head. Discrepancies in surface conditions
were observed across most examined rail specimens.

6.2.1 Influence of Refocusing

To examine the error due to LDV refocusing, SAWs were excited with a piezoelectric transducer
affixed to the plane surface on the rail head inside. The LDV was focused on the rail head outside
for gauging the surfaces’ out-of-plane displacement caused by the propagating SAWs. With an
excitation frequency of fx = 1.0MHz, n = 100 measurements were executed before the LDV was
refocused. The measurement procedure was repeated two more times with another refocusing of
the LDV in between. In total, N = 300 measurements were conducted to obtain three samples
of peaks in the instantaneous signal amplitude, termed S1, S2, and S3. These peak values were
extracted from the measurement signals with the signal processing algorithm presented in Section
5.2.3. The histograms of these samples are illustrated in Figures 6.6 to 6.8. These figures also
provide statistical parameters of the samples including the sample mean x, the sample median
Mdn, and the standard deviation σ . In addition, the sample mean x and median Mdn are indicated
by vertical lines. The number of bins k was calculated according to Sturges’ rule,

k = 1+3.322logN. (6.2)
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N is the total number of items in the sample [61]. The range and the bin width were set to be equal
for all samples.

Fig. 6.6: Sample S1 of peaks in the instantaneous signal amplitude, with statistical parameters
including sample mean x, median Mdn, and standard deviation σ provided. Vertical lines indicate
the sample mean x and median Mdn.

Fig. 6.7: Sample S2 of peaks in the instantaneous signal amplitude.
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Fig. 6.8: Sample S3 of peaks in the instantaneous signal amplitude.

As seen in Figures 6.6 to 6.8, x and Mdn remain largely unaffected when refocusing the LDV.
Moreover, x and Mdn do not deviate significantly from each other for each sample. However, the
standard deviation σ of the samples and the shape of the obtained frequency distributions vary
slightly. To compare the samples, non-parametric statistical tests were applied as they do not pre-
suppose that the samples come from a normal distribution. A Mood’s median test was conducted.
This test, which does not depend on the variances and shapes of the sampled distributions, is appli-
cable to three samples concurrently [62]. The test hypothesis H0 is defined as follows: The medians
of the distributions from which the samples were drawn are identical [63]. The P-value of the test
is provided in Table 6.1. H0 is not rejected at a significance level α = 0.05.

Table 6.1: Results from Mood’s median test. H0: The medians of the distributions from which the
samples were drawn are identical. H0 is not rejected at a significance level α = 0.05.

Involved samples S1, S2, S3

P-value 0.5273

In addition to the median test, a Kruskal-Wallis test was performed to compare not only the me-
dians but the overall distributions of the obtained values. The non-parametric Kruskal-Wallis test
is similar to the Mann-Whitney U-test but allows for a comparison of three or more independent
samples. Its test hypothesis H0 states: The samples were drawn from identical distributions [64].
If equal shapes and variances of the sampled distributions are assumed, this test can also be used
to test for different medians. Under the presumption of constant variances, the Kruskal-Wallis test
has higher statistical power than Mood’s median test [63].

The analysis was carried out collectively for all three samples, as well as individually for every
possible combination of two samples. Although varying variances can significantly impact the
Kruskal-Wallis test, the computed P-value for comparison of all three samples exceeds the P-value
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of Mood’s median test. In each case, H0 is not rejected at a significance level α = 0.05. The
outcomes of the test procedure are summarized in Table 6.2.

Table 6.2: Results from Kruskal-Wallis tests. H0: The samples were drawn from identical distribu-
tions. In each case, H0 is not rejected at a significance level α = 0.05.

Involved samples S1, S2, S3 S1, S2 S1, S3 S2, S3

P-value 0.7617 0.4430 0.7919 0.6886

To conclude, through the conducted non-parametric tests no statistical evidence was found to
suggest that the distributions from which the samples were taken are not identical. Consequently,
the supposed influence of LDV refocusing on the signal amplitude was not confirmed.

6.2.2 Influence of the Rail Surface

To examine the surface in initial condition on the inside of the rail head, a piezoelectric trans-
ducer was affixed to the plane surface on the rail head outside. The longitudinal reference position,
z = 0.0mm, was defined to align with the center plane of the piezoelectric transducers. The SAW
excited with fx = 1.0MHz was sensed by the LDV on the rail head inside after its propagation
across the rail head. Measurements were performed at several slightly different longitudinal po-
sitions by varying z in z ∈ {−2.0mm,−1.0mm,−0.5mm,0.0mm,0.5mm,1.0mm,2.0mm}. At
each position m = 30 measurements were conducted. The developed signal processing algorithm
was applied to extract the peak in the instantaneous amplitude from the measurement raw data.
Figure 6.9 depicts the histograms obtained for the selected measurement position. Since the travel
distance dSAW of the SAW propagating across the rail head dSAW > 90mm, a longitudinal variation
of the measurement distance d = 2mm results in ∆dSAW ≪ 1mm. Therefore, the increase in dSAW

can be neglected.

The bin parameters of the histograms in Figure 6.9 were set to be equal to those of Figure 6.10.
It was found that the signal amplitude may deviate significantly from the overall average at certain
z-positions. In particular, for measurements at z = 0.0mm, amplitude peaks with a considerably
reduced mean but increased variance were observed. Moreover, the sample means were slightly
higher than the overall average for z = 0.5mm and z = 1.0mm. Therefore, the conclusion was
drawn that even the rail surface in initial state can have a significant influence on the signal am-
plitude. Consequently, it is necessary to measure the SAW amplitude at a set of slightly different
longitudinal positions to compensate for this influence.
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Fig. 6.9: Peaks in the instantaneous amplitudes from measurements at different z-positions on the
rail head inside, representing a surface in its initial state, are shown. The SAW bursts were excited
at a frequency of fx = 1.0MHz. At each z-position, n = 30 measurements were executed. Notably,
the amplitudes for z = 0.0mm are significantly lower compared to all other z-positions, while the
amplitudes for z = 0.5mm and z = 1.0mm are slightly elevated in contrast to the overall average.
These observations underscore that the rail surface can influence the measured SAW amplitude,
necessitating measurements at multiple nearby longitudinal positions to mitigate this effect.

To obtain the overall distribution of observed instantaneous amplitude peaks on the inside of the
rail head, the results from the individual measurement positions were combined. Figure 6.10 shows
the histogram of this collective sample on the rail head inside. Despite the proximity between the
mean x and the median Mdn, this experimentally determined frequency distribution is evidently
asymmetrical, attributed to its extended left tail. Additionally, a Shapiro-Wilk test for normality
was performed. The test’s P-value, displayed in Figure 6.10, also indicates a deviation from a
Gaussian distribution even at significance level α = 0.01.
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Fig. 6.10: Histogram of instantaneous amplitude peaks obtained from measurements at different
z-positions on the rail head inside, representing a surface in its initial state. The SAW bursts were
excited at a frequency of fx = 1.0MHz. It is evident from the histogram that the samples were not
drawn from a Gaussian distribution. The P-value from a conducted Shapiro-Wilk test for normality,
which is provided in the diagram, underlines this conclusion even for α = 0.01.

The same procedure as for the surface in the initial state was applied to examine the slightly
corroded surface on the rail head outside. Again, the signal amplitude was analyzed with n = 30
measurements at each of seven slightly different longitudinal positions. The overall distribution of
the observed SAW amplitudes on the surface in slightly corroded state is depicted in Figure 6.11.
This frequency distribution deviates only moderately from an ideal Gaussian from a purely visual
point of view. In addition, the performed Shapiro-Wilk test reveals that this sample is not signifi-
cantly different from a normal distribution at significance level α = 0.05.

Fig. 6.11: Histogram of instantaneous amplitude peaks obtained from measurements at different
z-positions on the rail head outside, representing a surface in a slightly corroded state. The SAW
bursts were excited at a frequency of fx = 1.0MHz. From a visual inspection, this frequency dis-
tribution only moderately deviates from an ideal Gaussian. The performed Shapiro-Wilk test re-
veals that this sample is not significantly different from a normal distribution at significance level
α = 0.05.
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While the frequency distribution of signal amplitudes leans towards a normal distribution when
measuring the SAW on the slightly corroded surface, the results obtained on the surface in its initial
state are clearly not normally distributed. An ideal normal distribution for the measurement results
cannot be assumed in all cases. Furthermore, it was noted that measurements at certain exceptional
positions on the rail surface can yield extraordinarily high or low SAW amplitudes. Therefore,
measuring the SAW amplitude at several nearby positions is necessary to mitigate this effect.

6.3 Velocity and Attenuation of Surface Acoustic Waves
Along the Rail Head

To characterize the velocity v and the attenuation behavior of SAWs propagating on the rail heads
of the examined rail samples, measurements were conducted at the plane surface along rail head.
An additional aim was to compare the inside and the outside of the rail head in terms of SAW
velocity and attenuation. Consequently, two piezoelectric transducers were affixed to the head of
the rail sample, with one positioned on the plane surface on the inside and the other on the plane
surface on the outside of the rail. The SAW amplitude was measured at certain distances d from the
edge of the transducers with the LDV. d was varied manually with a hand wheel in the range from
dmin = 20mm to dmax = 300mm with steps of ∆d = 20mm. The analyzed sample was of the same
rail grade as the rail samples examined for the evaluation of the SAW transmission coefficient in
Chapter 7. Figure 6.12 shows the piezoelectric transducer mounted at the inside of the rail head,
with the LDV focused on the initial position d = 0mm.

The excitation frequency range was from fx = 0.7MHz to fx = 2.4MHz, with increments of
∆ fx = 0.1MHz. The entire fx range was evaluated since the velocity determination is based on the
arrival times of the SAW. Therefore, the amplitude height is of minor importance for the velocity
determination. However, only measurements with fx ∈ {0.7MHz,1.0MHz,1.3MHz,1.6MHz,
1.9MHz,2.2MHz} were taken into account for the characterization of the attenuation curve to
avoid interference of the actual signal amplitude with the systematic perturbations described in
Section 5.1. For each combination of fx and d, n = 3 measurements were executed. Only for the
rail head inside and d > 180mm, the number of repetitions was reduced to n = 2. The influence of
the rail surface was neglected during these preliminary investigations.
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Fig. 6.12: Experimental setup to characterize the velocity v and the attenuation behavior of SAWs
propagating on the rail head: The piezoelectric transducer was affixed to the inside of the rail head.
A green laser indicates the LDV’s sensing position at the time the photograph was captured. The
illustrated setup represents a distance d from the edge of the piezoelectric transducer d = 0mm.
Measurements were performed within the distance range from dmin = 20mm to dmax = 300mm
with increments of ∆d = 20mm.

6.3.1 Velocity Determination

The calculation of the SAW velocity v on the rail head relied on detecting the arrival times of the
SAW at specific distances d. To determine the surface waves’ arrival times, the cross-correlation
of the recorded signals si with a software-generated 5-pulse burst termed sG was computed. This
procedure yields more distinct peaks in the correlation signals compared to those obtained by
computing the cross-correlation with another measurement signal. Computing the cross-correlation
with this ideal sinusoidal signal eliminates most perturbations from the resulting cross-correlation
signals. Given the lag of the cross-correlation peak, the time interval of si to have the maximum
overlap with reference signal sG can be determined. The arrival time ti of the SAW burst recorded
in signal si has been defined to be centered in this interval. Figure 6.13 illustrates this method for
extracting the SAW arrival time t1 from the signal s1, recorded at a distance d1 = 20mm from the
transducer.

Subsequently, the velocity v of the SAW was computed based on the arrival times t of the SAW at
certain distances d from the piezoelectric transducer. In addition, the time offset t0 was determined.
This time offset was caused by delays in the measurement electronics and by the cropping of the
recorded signals.
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Fig. 6.13: The upper diagram depicts the recorded signal s1. To determine the SAW’s time of arrival
in signal s1, it is cross-correlated with a software-generated signal sG consisting of five sinusoidal
pulses. The cross-correlation signal ρs1,sG is illustrated in the lower chart. A red cross indicates the
peak in the cross-correlation signal. The time interval of maximum cross-correlation is computed
from this peak. The arrival time of the SAW burst is centered in this interval.

Using this applied procedure, arrival times ti were identified at fixed distances di. As a result,
d was regarded as the independent and t as the dependent variable. Therefore, a simple linear
regression model was deployed, which is defined as

t = β0 +β1d + ε. (6.3)

In this context, the model parameter β1 represents the reciprocal value of the velocity, 1/v. β0

is the sum of the time offset t0 and the half duration of the SAW pulse, 0.5 tPulse, resulting in
β0 = t0 +0.5 tPulse. The random error of a certain measurement is denoted by ε . The determined
arrival times t of the SAWs with fx = 0.8MHz have been plotted over the distance d from the piezo-
electric transducer in Figure 6.14. In addition, the regression line is illustrated and the computed
values for v and t0 are provided.
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Fig. 6.14: Arrival times t of SAW pulses excited with fx = 0.8 MHz plotted against the distance
d from the exciting piezoelectric transducer on the inside of the rail head. Linear regression was
applied to compute the SAW velocity v and the time offset t0. The slope of the regression line
β1 represents the reciprocal value of the velocity, 1/v. It is important to note that the intercept β0
corresponds to the sum of t0 and the half duration of the SAW pulse, 0.5 tPulse.

In general, it was observed that bulk wave reflections tend to interfere more significantly with
the SAW for low fx and high d, resulting in a less accurate determination of the arrival times.
Consequently, only measurements conducted at d ≤ 220mm were considered for the computation
of the SAW velocity. Figure 6.15 displays the trend of the Rayleigh wave velocity v across the ex-
citation frequency fx, while Figure 6.16 depicts the trend of the time offset t0 across the excitation
frequency fx. These trends were evaluated on both the rail head inside and on the rail head outside.
The 95% confidence intervals (CI) on the best fit values of v and t0 for a certain fx are displayed.

Fig. 6.15: Trend of the SAW velocity v over the excitation frequency fx on the inside and the
outside of the rail head. The 95% confidence intervals (CI) on v for a certain fx are provided.
Although v exhibits unsystematic variations with fx on the outside of the rail head, the deviation
of the highest computed velocity vmax from the lowest velocity vmin is below 3%.
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Fig. 6.16: Trend of the time offset t0 over the excitation frequency fx on the inside and the outside
of the rail head. Different constant time offsets for the inside and the outside can be explained
by small variations in the initial measurement position. t0 exhibits unsystematic variations on the
outside of the rail head, similar to the determined trend of the velocity.

Overall, the measured velocities align well with the estimation of the Rayleigh wave velocity
computed in Section 3.1. The SAW velocity v is approximately constant on the inside of the rail
head for fx > 0.8MHz. This corresponds to the anticipation of a frequency-independent SAW ve-
locity v. Contrary to the inside of the rail head, v exhibits unsystematic variations with fx on the
outside of the rail head. An explanation for this finding still remains to be found. However, the devi-
ation of the highest computed velocity vmax = 3017m/s from the lowest velocity vmin = 2948m/s
is below 3%, which is still regarded as a reasonable precision. These velocities were determined
on the outside of the rail head for fx = 1.6MHz and fx = 2.3MHz, respectively.

As seen in Figure 6.16, an outlier in the time offset t0 on the rail head inside is identified for
fx = 0.8MHz. This can be explained by the fact that the rail surface keeps oscillating for a sig-
nificantly longer duration at low fx compared to high fx. Therefore, less distinct peaks are found
in the cross-correlation signal, which affects the accuracy of the determined values for v and t0.
Nonetheless, the time offset t0 on the inside of the rail head is nearly perfectly constant besides
this outlier. Similar to the determined trend of the velocity, a constant offset time t0 was observed
on the rail head outside in the range from fx = 0.8MHz to fx = 1.2MHz and from fx = 1.7MHz
to fx = 2.2MHz. These different constant time offsets for the inside and the outside can result
from small variations in the initial measurement position. Outside of these fx ranges, also t0 on the
rail head outside shows unsystematic variations. If the described outlier on the rail head inside is
neglected, the maximum deviation ∆ t0 is smaller than 1.5 µs.

The developed signal processing algorithm presented in Section 5.2.3 relies on a time interval
centered at the computed expectation of the arrival time to detect the peaks in the instantaneous
amplitude of the SAW. v and t0 were determined with sufficient precision to guarantee reliable
identification of the SAW in the measurement signals.
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6.3.2 Fitting the Attenuation Curve

The signals used for the velocity determination were also assessed to characterize the SAW atten-
uation behavior. In this context, the developed signal processing algorithm was applied to extract
the peaks from the instantaneous amplitude of the recorded signals. Given these amplitude peaks
of the SAW at specified distances from the transducer, a non-linear least squares fit was employed
to approximate these amplitudes with the model function

A(d) =C
e−αd
√

d
, (6.4)

as derived in Section 3.2. Figure 6.17 illustrates the peaks obtained in the instantaneous amplitude
for fx = 1.0MHz across the examined distance range, together with the fitted function.

Fig. 6.17: Peaks in the instantaneous amplitude plotted over the distance d from the transducer for
the full range of d. The measurements were performed on the rail head inside with fx = 1.0MHz.
The function A(d) provided in Equation 6.4 was fitted to these amplitude values. The fitted function
deviates significantly from the measured values for d < 60mm and d > 240mm.

Figure 6.17 clearly indicates that the fitted function deviates significantly from the measured
values for d < 60mm and d > 240mm. Potential reasons for this deviation could be the near-
field effects for low d or that the employed model was derived for SAWs propagating at an ideal
plane surface. As a result, the evaluated distance was limited to the range of dmin = 60mm to
dmax = 240mm. However, even when taking only this limited distance range into account, the 95%
confidence interval on the model parameter α for the measurements conducted on the rail head
inside at fx = 1.0MHz evaluated to

−1.16×10−4mm−1 ≤ α ≤ 1.61×10−4mm−1.

Based on this confidence interval, it was concluded that α is poorly conditioned as it is not signifi-
cantly different from zero. Therefore, the model function was modified by excluding the exponen-
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tial term. Additionally, the fixed exponent of d was replaced by a model parameter b to characterize
the rate of the amplitude decay. In contrast to a theoretical surface wave propagating at a plane sur-
face where b = 1/2, b evaluates for an ideal bulk wave to b = 1. The model function ultimately
employed is given by

A(d) =C
1
db . (6.5)

The final attenuation model function allows for a straightforward interpretation. The model pa-
rameter C specifies the initial wave amplitude, since A(d) at d = 1mm evaluates to A(d = 1) =C
for any b. Thus C represents the energy of the excited SAW. In addition, for a particular C, the
model parameter b determines the rate at which the amplitude of the SAW diminishes as distance
d increases. Subsequently, the distance d beyond which the amplitude has been attenuated by a
specific percentage is dependent on b. It is important to note that Equation 6.5 is considered as an
appropriate model only for d≫ 0mm.

Taking the natural logarithm of Equation 6.5 leads to

lnA = lnC−b lnd, (6.6)

which is basically the same type of mathematical function as the general linear regression model

y = β0 +β1x+ ε. (6.7)

Consequently, as a first approximation, the logarithmic attenuation curve can be fitted to the log-
arithmized peaks in the instantaneous amplitude by employing linear regression. This approach
facilitates the simple calculation of confidence intervals for both the regression line and the obser-
vation [65, 66]. However, it is important to note that the computed results can only be regarded
as an approximation since the assumptions of linear regression analysis, such as independent and
identically normally distributed errors, are only partially satisfied [65].

The trend of the peaks in the instantaneous amplitude over distance d for fx = 1.0MHz is pro-
vided in Figure 6.18 as a chart with a logarithmic scale on both axes. In this representation, the
obtained signal amplitudes appear to lie on a straight line, thereby enabling the application of lin-
ear regression. The computation was performed with Python’s statsmodels package, which fits the
linear model by using the ordinary least squares method. The 95% confidence interval and the 95%
prediction interval are illustrated.

Although the function described in Equation 6.5 is regarded as the best conceivable physics-
based model for the attenuation of a SAW on a plane surface, slight systematic errors are suspected.
For instance, at d = 120mm and d = 140mm, five out of six measurement values are significantly
higher than the mean of the regression line at the respective d. Systematic errors cannot be excluded
as the number n of conducted measurements at each d is not sufficiently high. To characterize the
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Fig. 6.18: Plot of peaks in the instantaneous amplitude versus distance d for fx = 1.0MHz with a
logarithmic scale on both axes. The model function for attenuation, as described in Equation 6.5,
was fitted to the amplitude peaks using linear regression. Both the 95% confidence interval and the
95% prediction interval are illustrated.

mean and the standard deviation at each specific d value, approximately n ≈ 25 measurements at
each measurement position would have been necessary [67]. Nonetheless, the developed model
A(d) for the attenuation curve can still be deployed for a qualitative comparison of the attenuation
at different excitation frequencies fx.

6.3.3 Evaluation of the Attenuation Curve

The linear scale fit of the attenuation curve depicted in Figure 6.19 was obtained by taking the
antilog of the regression line which had been fitted to the logarithmized signal amplitudes. The
same procedure was applied to both the confidence interval and the prediction interval to quantify
the uncertainty of the fitted curve.

To investigate the influence of the excitation frequency fx on the SAW’s attenuation, the curve
fitting procedure was applied to measurements on the inside and on the outside of the rail head
with fx ∈ {0.7MHz,1.0MHz,1.3MHz,1.6MHz,1.9MHz,2.2MHz}. The 95% confidence inter-
vals (95% CI) on the parameters C and b of the attenuation model were computed explicitly by
means of non-linear fitting with the lmfit package. The best fit values of C and the respective 95%
CI on C are plotted across the evaluated excitation frequencies fx in Figure 6.20. It was found that
the systematic errors of the model function described in the previous subsection are particularly
pronounced for fx < 1.0MHz. This leads to a high uncertainty of the model parameters C and, in
particular, b for these fx.
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Fig. 6.19: Linear scale plot of peaks in the instantaneous amplitude versus distance d for
fx = 1.0MHz. The model function for the attenuation, as described in Equation 6.5, was fitted
to the amplitude peaks using linear regression. Both the 95% confidence interval and the 95% pre-
diction interval are illustrated.

Fig. 6.20: Trend of the model parameter C across the evaluated excitation frequencies fx. Dots
mark the computed values of C. Linear interpolation was applied between these discrete fx val-
ues. The 95% confidence intervals on C are provided. This model parameter represents the initial
SAW’s amplitude and can therefore be interpreted as the energy input to the system. A maximum
is observed in the range from fx = 1.0MHz to fx = 1.3MHz.

In general, the trend of C over fx on the inside of the rail head aligns well with the one determined
for the rail head outside. The highest amplitude of the initial SAW, which is represented by C, was
identified in the range from fx = 1.0MHz to fx = 1.3MHz. However, the exact location of the
maximum can vary from one transducer to another. This difference is presumably caused by the
piezoelectric transducers themselves or the glue used for affixing them. C, and thereby the energy
of the excited SAW, continuously decreases with fx for fx > 1.3MHz. Consequently, the excitation
frequency fx cannot be increased arbitrarily with the measurement device and transducers used.
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Indeed, the examination of the experiments on the SAW transmission coefficient, presented in
Chapter 7, reveals that fx ≤ 1.6MHz is necessary to achieve a sufficiently high signal amplitude at
the receiver when measuring across the rail head.

To compare the attenuation of the SAW at different fx, the model parameter b was normalized
with the respective best fit value of C due to the frequency dependency of C. The trend of b/C over
fx is displayed in Figure 6.21. Linear interpolation was applied between the computed values of
b/C, which are marked by dots. Additionally, the 95% confidence intervals on b/C are provided.

Fig. 6.21: Trend of the model parameter b normalized with the respective best fit value of C across
the evaluated excitation frequencies fx. Dots mark the computed values of b/C. Linear interpo-
lation was applied between these discrete fx values. The 95% confidence intervals on b/C are
provided. This model parameter indicates how fast the amplitude fades with distance. In general,
the attenuation of the SAW is increasing with rising fx. The bulk waves interfere significantly with
the SAWs for fx = 0.7MHz, explaining the high uncertainty at this fx.

As seen in Figure 6.21, b/C shows tremendous uncertainty for fx = 0.7MHz. This is, as already
explained, because the used model function exhibits a systematic error for this fx. Nonetheless, for
fx ≥ 1.0MHz, b/C smoothly increases with rising fx, which corresponds well with the frequency
dependency of the attenuation described in certain literature, such as [9]. The increased attenuation
on the rail head outside is potentially due to the slightly corroded surface on this side of the rail
head.



Chapter 7

Experimental Determination of the Transmission
Coefficient

This chapter describes the measurements performed to determine the transmission coefficient of
the surface acoustic wave (SAW) on the rail samples being examined. This is done for varying head
check depth a to investigate the correlation between the SAW transmission coefficient and the head
check depth. Based on the obtained results, the SAW transmission coefficient can be potentially
employed for quantitative depth assessment of head checks with a depth a up to a = 590 µm.
Furthermore, the mechanisms that impede accurate determination of the depth of more pronounced
head checks are identified.

7.1 Experimental Setup

Six different rail samples were examined, each of the same pearlitic steel grade and with a length
l = 40cm. The cross-section of these specimens corresponded to the standard rail profile 60E1
[68]. These rail samples varied only in terms of the number of load cycles N they had been sub-
jected to: N ∈ {20000,50000,75000,125000,200000,300000}. In Figure 7.1, the rail sample with
N = 125000 is depicted. The rail specimens were obtained after test runs on a full-scale rail wheel
test rig designed to investigate the emergence of head check damage. The loading conditions dur-
ing the test runs may have varied for each specimen. The test rig design is described in detail in
[69].

In the initial stages of a new test run, significant alterations occur in the surface roughness of a
rail’s running band since the wheel is in contact with this area during the test run. SAWs are known
to be sensitive to changes in surface conditions, as evidenced by both the available literature [9]
and practical experience. Consequently, a rail sample with N = 20000 was used as the undamaged
reference instead of an entirely new rail. The specimen with N = 50000 exhibited only a few head
checks, which were identified by means of thermography. All specimens subjected to N ≥ 75000
load cycles showed continuous head check bands, which were clearly visible. The head check
damage of the specimen with N = 125000 is displayed in Figure 7.2.

58
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Fig. 7.1: Rail sample subjected to N = 125000 load cycles, exhibiting clearly visible head check
damage.

The depth of the head checks was determined by metallographic examination after the measure-
ments of the SAW transmission coefficient had been finished. It turned out that a rising number of
load cycles N does not necessarily lead to an increase in the maximum crack depth a.

Fig. 7.2: Head check damage on the rail sample subjected to N = 125000 load cycles. A continuous
head check band was observed.

For surface acoustic waves propagating over a surface breaking crack, the transmission coeffi-
cient CT is defined as

CT =
AT

AI
, (7.1)

where AT and AI denote the amplitude of the transmitted surface wave and the incident surface
wave, respectively [29, 35]. The theoretical trend of the transmission coefficient for an ideal sur-
face breaking crack was already illustrated in Figure 3.2(a) in Section 3.3. It was decided to mea-
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sure the amplitude of the transmitted wave with the Laser Doppler vibrometer (LDV), because this
was considered as the most reliable method available. Additionally, the amplitude of the incident
wave was also gauged with the LDV, as the adhesive and the geometric positioning of the piezo-
electric transducer can influence the amplitude of the incident wave. In contrast to these laboratory
experiments, one cross-section with permanently installed transducers would experience increas-
ing damage in a possible in-track application. Therefore it has to be emphasized that a slightly
varying incident wave amplitude from one transducer to another is not considered as problematic
for in-track applications, if the aging process of the adhesive used is well understood.

The piezoelectric transducers were placed on the bottom side of the rail head as the SAW arrives
separately from the bulk waves at the measurement positions for this configuration. In contrast to
the laboratory setup, the transducers need to be affixed to the rail’s web to avoid being destroyed
while tamping in a potential in-track application. However, the goal of this thesis was to evaluate
the fundamental correlation between the SAW transmission coefficient and the head check depth.
Therefore, an installation on the bottom side of the rail head was preferred, since this configuration
also leads to an increased signal-to-noise ratio (SNR).

As illustrated in Figure 7.3, the LDV was focused at a vertical distance dv = 10mm from the
lower edge of the rail head when measuring the transmitted wave amplitude. The incident wave
amplitude was determined at a vertical distance dv = 15mm from the lower edge to increase the
geometrical distance from the SAW exciting transducer. In both cases, the laser’s axis was perpen-
dicular to the rail surface. The surface acoustic wave had to propagate over a distance dI = 21mm
from the transducer’s edge to reach the measurement position for the incident wave amplitude.
Moreover, the SAW had to travel across the rail head for a distance dT = 125mm to arrive at the
measurement position for the transmitted wave amplitude. The developed signal processing algo-
rithm computes the SAW burst’s expected time of arrival based on these geometrical distances.

The transducers were affixed to the inside of the rail head, as seen in Figure 7.3, for the conducted
experiments. While it is also possible to position the transducer on the outside of the rail head, this
would inevitably result in measuring the amplitude of the transmitted wave only shortly after the
SAW has been affected by the head checks. As a result, the influence of the head check near-field
may be significant. This theoretical argumentation was confirmed by preliminary measurements,
which revealed that this hypothetical setup leads to a substantially wider range for the measured
transmission coefficients compared to the employed setup with the transducers on the rail head
inside.

At this point, a coordinate system is introduced to provide a precise description of the employed
measurement setup. The z-axis aligns with the longitudinal direction of the rail. The position z = 0
is defined to coincide with the affixed piezoelectric transducers’ center plane. This position is also
referred to as the reference position. For most specimens, the transducers were positioned exactly
in the longitudinal center plane of the rail itself. Consequently, the rail’s longitudinal center plane
aligned with z = 0 and the distance from the reference position to the left and the right side face of
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Fig. 7.3: Schematic illustration of the experimental setup for investigating the correlation between
the SAW transmission coefficient CT and the head check depth a. The amplitudes of the incident
and the transmitted wave are gauged by the LDV. Measurements were conducted at proximate yet
distinct positions along the rail’s z-axis to compensate for the influence of the rail surface.

the rail was equal. Only for the rail sample with N = 50000, the piezoelectric transducer was not
placed in the center plane of the rail, as this specimen did not show a continuous head check band.
The transducer was affixed to this rail sample with its center plane having a distance s to the rail’s
side plane of s = 52mm. This position was chosen in order to avoid an overlap of the SAW burst
with bulk waves reflected at the rail’s side plane.

The amplitude measured at a certain position can be significantly influenced by the surface at this
position, as already pointed out in Section 6.2. To compensate for this influence of the surface struc-
ture, both the incident wave amplitude and the transmitted wave amplitude were measured at m= 7
different, yet close-by, positions. The lateral coordinate zI of the measurement position was var-
ied in zI ∈ {−1.0mm,−0.5mm,−0.2mm,0.0mm,0.2mm,0.5mm,1.0mm} when measuring the
incident wave amplitude. zT was varied in zT ∈ {−2.0mm,−1.0mm,−0.5mm,0.0mm,0.5mm,

1.0mm,2.0mm} when measuring the transmitted wave amplitude. The x- and y-coordinates of the
measurement positions were left unchanged. At each of these m= 7 measurement positions, j = 20
measurements were conducted for each combination of specimen and excitation frequency fx. In
total, n= 140 measurements were performed on each side of the rail head for a given specimen and
fx. Only for the rail sample with a number of load cycles N = 20000, the amplitudes were measured
at a reduced set of measurement positions: zI ∈ {−1.0mm,−0.5mm,0.0mm,0.5mm,1.0mm};
zT := zI . Consequently, n = 100 measurements were conducted for each fx on each side of the rail
head for this single specimen.
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The excited SAW burst consisted of 5 sinusoidal pulses. This voltage signal was generated by
the measurement device, described in Section 6.1.1, and excited via the piezoelectric transducers.
The excitation frequency of the generated burst signals varied in a range from fx = 0.7MHz to
fx = 1.9MHz with steps of ∆ fx = 0.3MHz. The measurements were performed sequentially with
one LDV. After the measurements of the incident wave amplitude were finished, the specimen was
rotated by 180 degrees around its y-axis and the measurements of the transmitted wave amplitude
were initiated.

7.2 Evaluation

All recorded measurement signals were processed with the developed signal processing algorithm,
which is highlighted in Section 5.2.3. This algorithm extracts the peak in the SAW’s instantaneous
amplitude from the measurement signals. n = 140 measurements were performed for each com-
bination of rail sample and excitation frequency. The histograms of the amplitudes of the incident
and transmitted waves are depicted in Figure 7.4 and Figure 7.5, respectively. These distributions
of observed values were obtained on the specimen with N = 75000 and an excitation frequency
fx = 1.0MHz. The bin count was determined using Sturges’ rule, as provided in [61]. Further
details on its definition can also be found in Section 6.2.1. Moreover, these figures contain statis-
tical parameters of the observed samples, including the sample mean x, the sample median Mdn,
the standard deviation σ , and the coefficient of variation CV , which is computed by CV = σ/x.
In addition, the sample mean x and median Mdn are indicated by vertical lines. It is preferred to
characterize these samples by Mdn rather than x as they are non-symmetric and do not follow a
Gaussian distribution.

The experimentally determined distribution of the transmitted wave amplitude has a significantly
lower median than that of the incident wave. Indeed, only a part of the energy of the incident SAW
is transmitted as a SAW when hitting a surface breaking crack [31]. Additionally, the propagation
across the rail head results in an attenuated SAW amplitude due to absorption and geometrical
decay. Notably, the coefficient of variation CV is substantially higher for the amplitude of the
transmitted wave. Presumably, this is due to the slightly corroded state of the surface on the rail
head outside.

Determining the empirical distribution of the transmission coefficient, as provided in Equation
7.1, requires dividing the experimentally determined distribution of the transmitted amplitude by
that of the incident amplitude. However, from a statistical point of view, even the division of two
Gaussian distributions is not a favorable operation, since the calculation of the ratio leads to the
heavy-tailed Cauchy distribution if the random variables are uncorrelated and follow a zero-mean
Gaussian distribution [70]. If these conditions are not met, the resulting distribution may also have
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Fig. 7.4: Histogram of the peaks in the instantaneous amplitudes of the incident waves from mea-
surements conducted on the rail specimen with N = 75000 at an excitation frequency fx = 1.0MHz.
The statistical parameters including the sample mean x, the sample median Mdn, the standard de-
viation σ , and the coefficient of variation CV are given. In addition, x and Mdn are indicated by
vertical lines.

Fig. 7.5: Histogram of the peaks in the instantaneous amplitudes of the transmitted waves
from measurements conducted on the rail specimen with N = 75000 at an excitation frequency
fx = 1.0MHz.

a bimodal and asymmetric shape. In contrast, the result of adding or subtracting two Gaussian
distributions is also Gaussian, if the respective random variables are uncorrelated [67, 71, 72].

As Figure 7.4 and Figure 7.5 demonstrate, the distributions of observed values for the incident
wave amplitude and the transmitted wave amplitude are not Gaussian. An empirical method was
therefore employed, approximating the distribution of the transmission coefficient by individually
dividing each obtained value of the transmitted amplitude by each value of the incident ampli-
tude. This methodology aligns with techniques applied in Monte-Carlo simulations [73]. Figure
7.6 showcases the experimentally determined distribution of the transmission coefficient for the
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rail specimen with N = 75000 and an excitation frequency fx = 1.0 MHz. Using this procedure, a
sample size of n = 19600 for the transmission coefficient was achieved. It is noteworthy that the
CV is only marginally higher for the computed values of the transmission coefficient compared to
the sample of the transmitted wave amplitudes.

Fig. 7.6: Histogram of the transmission coefficient CT on the rail specimen with N = 75000 at
an excitation frequency fx = 1.0 MHz. This distribution of observed values was obtained by indi-
vidually dividing each obtained value of the transmitted amplitude by each value of the incident
amplitude.

Intrinsic factors, such as internal absorption and diffraction at grain boundaries, in addition to
geometrical decay, attenuate the SAW besides the scattering at cracks. This affected the ascer-
tained transmission coefficients as the transmitted wave amplitude was not measured directly after
the crack. Consequently, all experimentally determined distributions of the transmission coefficient
were normalized using the computed median from the undamaged specimen, which evaluated as
Mdn = 0.4248V for the excitation frequency fx = 1.0MHz. This normalization facilitates a com-
parison between the transmission coefficients obtained at different fx values. Figure 7.7 displays
the histogram depicting the normalized transmission coefficient values observed on the rail speci-
men subjected to N = 75000 load cycles and at an excitation frequency of fx = 1.0MHz.

Following the SAW measurements, the rail samples were subjected to a detailed microstruc-
tural examination to determine the maximum depth a of the head checks. Micrographs were cap-
tured at the position z = 0, which corresponded to the rail sample cross-sections where the SAW
transmission coefficients had been measured in advance. Figure 7.8 displays illustrations of the
microstructure, captured using an optical microscope. Figure 7.8(a) shows the head check found
in the cross-section of the rail sample with a load cycles count of N = 50000. This specimen only
exhibited a single head check with a depth a = 394 µm. In contrast, the specimen with N = 300000



7.2 Evaluation 65

Fig. 7.7: Histogram of the normalized transmission coefficient CT on the rail specimen with
N = 75000 at an excitation frequency fx = 1.0MHz.

revealed k = 3 cracks in the analyzed cross-section, as shown in Figure 7.8(b), with a maximum
crack depth a = 592 µm. All results from the metallographic examination including the maximum
crack depth a of the head checks and the number of head checks k are provided in Table 7.1. The
specimens are sorted by the number of load cycles N. The specimen with N = 200000 exhibited
the highest maximum crack depth a = 852 µm. The largest number of cracks, k = 5, was identified
in the specimens with N = 75000 and N = 125000.

(a) Micrograph of the rail specimen subjected to
N = 50000 load cycles, showing the identified
head check, captured at 100x magnification. This
specimen exhibited only a single head check with
a depth a = 394 µm.

(b) Micrograph of the rail specimen subjected
to N = 300000 load cycles, showing the identi-
fied head checks, captured at 25x magnification.
This specimen exhibited three head checks, with
a maximum crack depth a = 592 µm.

Fig. 7.8: Micrographs captured using an optical microscope during the metallographic examination
of the rail samples.

It was ascertained that a rising number of load cycles N does not necessarily lead to an increase
in the maximum crack depth a or in the number of cracks k. This finding arises from the fact that
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the specimens were obtained from different test runs at the rail-wheel test rig, each with varying
loading conditions. Through thermographic analysis, it was determined that other crack param-
eters, such as length, angle, and crack spacing, did not exhibit significant deviations across all
specimens with a load cycle count of N ≥ 75000.

Table 7.1: Results from the metallographic examination of the investigated rail samples. The spec-
imens are sorted by the number of load cycles N. The table provides the maximum crack depth a
of the head checks and the number of head checks k.

Specimen number Load cycles N Maximum crack depth a [µm] Number of cracks k

1 20000 0 0

2 50000 394 1

3 75000 777 5

4 125000 660 5

5 200000 852 4

6 300000 592 3

7.3 Results and Discussion

In Figure 7.9 the evolution of the transmission coefficient CT in relation to maximum crack depth a
is shown for the evaluated excitation frequencies fx. These trends were identified by evaluating all
measurements taken at each excitation frequency for each specimen, following the methodology
outlined in the preceding subsection. However, measurements at fx = 1.9MHz were excluded
due to the low Signal-to-Noise Ratio (SNR) at this frequency. The medians of the experimentally
determined transmission coefficient distributions are denoted by dots, and vertical lines indicate
the interquartile range (IQR) of the distributions of observed transmission coefficient values.

The observed high-level trends conform to the theoretically computed transmission coefficient
for a single, ideal surface-breaking crack, as depicted in Figure 3.2(a). The overall pattern reveals
a gradual decline in the transmission coefficient, succeeded by a sharp decrease, and ultimately
leading to a saturation phase where CT stabilizes.
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Fig. 7.9: Medians of the experimentally determined transmission coefficient distributions plotted
over maximum head check depth a for the investigated excitation frequencies fx. The interquartile
range (IQR) is indicated by horizontal lines.

For excitation frequencies fx = 0.7MHz and fx = 1.0MHz, the transmission coefficient main-
tains near-constant values up to a crack depth a = 394 µm. This is equivalent to a ratio of
crack depth to wavelength a/λ ≈ 0.13 for fx = 1.0MHz and wave velocity c = 2980m/s. For
these low excitation frequencies, the transmission coefficient starts to decrease substantially from
a = 394 µm to a = 592 µm. For larger values of a, a non-monotonic descending trend is observed
in the medians.

For higher excitation frequencies, such as fx = 1.3MHz and fx = 1.6MHz, there is a consistent
decrease in the transmission coefficient, even for low a. At a = 394 µm, the transmission coef-
ficients at these frequencies deviate significantly from the undamaged specimen’s transmission
coefficients. Consequently, it is concluded that the transmission coefficient of higher fx is more
sensitive to lower crack depths a. This aligns with the studied literature, as surface waves with
high fx have a low λ . A rapid decline of the transmission coefficient is observed as a increases
from 592 µm to 660 µm, particularly at fx = 1.6MHz. For a > 660 µm, there is a slight tendency
for the medians of the high-frequency transmission coefficients to increase.

However, the transmission coefficients obtained at fx = 1.6MHz deviates partially from the
expected trend. From a = 394 µm to a = 594 µm, a minor decrease is observed, even though a
significant decrease is expected based on the theoretical solution [35]. Moreover, the reason be-
hind the transmission coefficient leaning towards an increasing trend for a > 660 µm cannot be
explained.

In previous studies, the effect of varying head check arrangements on CT was explored using
elastodynamic finite integration technique (EFIT) simulations. The impact of the number of head
checks, referred to as kS, was investigated in [3]. Specifically, the influence of the number of head
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checks kS was examined by simulating the transmission coefficient for kS = 1 and kS = 3 at two
different ratios of crack depth a to wavelength λ . For comparison with the measurement results of
this thesis, the ratio a/λ from the simulation was multiplied with the λx corresponding to a certain
fx to obtain the maximum crack depth a. Figure 7.10 compares the results obtained in [3] with
the transmission coefficient values observed during the measurement. The simulated transmission
coefficients, indicated by blue and orange dots for kS = 1 and kS = 3 respectively, are included for
reference. Exponential functions were employed to fit the simulation results. The experimentally
determined transmission coefficient distributions are characterized by their median and their IQR.
The number of cracks k in each rail sample is provided in the top line of each diagram. Regions
featuring different k values are separated by dashed vertical lines.

Overall, the measured transmission coefficients align well with the simulations. The simulation
model presented in [3] is based on open cracks, whereas actual head checks are partially closed
cracks. Therefore, it is expected that the measured transmission coefficients will exceed the simu-
lated ones. This expectation is confirmed upon comparing the results from the simulation and the
measurement, as shown in Figure 7.10. For the sample with k = 1, the medians of all transmission
coefficients are greater than the simulated reference curve for kS = 1. As both a and k increase,
the measured transmission coefficients decrease. However, in most cases, the medians of the ex-
perimentally determined transmission coefficients remain above the simulated reference curve for
kS = 3. This corroborates the results obtained by measurement.
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Fig. 7.10: Comparison of measured transmission coefficients with results from simulation in [3].
The simulated transmission coefficients are indicated by blue and orange dots for kS = 1 and kS = 3,
respectively. Exponential functions were employed to fit the simulation results. The experimentally
determined transmission coefficient distributions are characterized by their median and their IQR.
The number of cracks k in each rail sample is provided in the top line of each diagram. Regions
featuring different k values are separated by dashed vertical lines.
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Up to this point, Figure 7.9 and 7.10 have only shown the medians and the IQRs of the trans-
mission coefficients. In contrast, the distributions of observed values are displayed in Figure 7.11.
Horizontal lines indicate the minimum and maximum of these distributions, while the median is
depicted as a white dot. Moreover, the IQR is represented by thick vertical lines.

Fig. 7.11: Violin plots of the normalized transmission coefficients. The shown silhouettes represent
the distributions of observed values of the transmission coefficient. Horizontal lines indicate the
minimum and maximum of these distributions, while the median is depicted as a white dot. More-
over, the IQR is represented by thick vertical lines. Different widths of the experimentally deter-
mined distributions were observed: The narrowest transmission coefficient distributions emerged
for fx = 1.0MHz. The reason for the substantially increased range of CT at fx = 0.7MHz and
a = 394 µm still remains to be found.

Most experimentally determined transmission coefficients distributions are evidently non-Gaus-
sian. Additionally, a significant portion of these distributions of observed values exhibits a sec-
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ondary peak. One can observe a significant diversity in the distribution widths, and conse-
quently in the corresponding standard deviations σ . Specifically, the transmission coefficient
distributions for the undamaged specimen are noticeably wider compared to other distributions
found for the same fx. In general, the narrowest transmission coefficient distributions were
found for fx = 1.0MHz. The experimentally determined transmission coefficient distribution for
fx = 0.7MHz and a = 394 µm was multipeaked and particularly wide. An individual crack was
noticed at the measurement location on the corresponding specimen, instead of a continuous head
check band. It is worth repeating that the z position of the LDV was slightly varied during the mea-
surements for a given fx. Apparently, some wave paths were significantly affected by the presence
of the crack, while others were only slightly impacted. This effect seems to be more pronounced
for SAWs with a higher wavelength λ , such as those at fx = 0.7MHz. An explanation for this
observation still remains to be found. Overall, the transmission coefficient distributions with the
highest standard deviation were found for fx = 0.7MHz.

According to the theoretical solution for a single crack, a rapid decrease of CT would be expected
until a/λ = 0.35 [35]. This ratio corresponds to a≈ 800 µm for fx = 1.3MHz and to a≈ 650 µm
for fx = 1.6MHz. The measured transmission coefficients agree well with the expectations based
on the theoretical solution for an ideal surface-breaking crack for these high fx. The experimentally
determined transmission coefficient distributions decline until a = 660 µm for these frequencies.
However, the medians tend to increase slightly for a ≥ 660 µm, and the distribution width also
rises. Therefore, these increasing medians have less statistical significance. In fact, for a≥ 660 µm,
the observed transmission coefficient distributions are partially overlapping.

At lower excitation frequencies, such as fx = 0.7MHz and fx = 1.0MHz, there is a deviation
from the theoretical solution found in [35]. This is in contrast to the higher frequencies discussed.
For fx = 1.0MHz, for instance, a steep decrease of the transmission coefficient until a≈ 1040 µm
would be expected. However, already for a ≥ 592 µm, the clearly decreasing trend of the trans-
mission coefficient stops, the experimentally determined distributions start to overlap, and only a
slightly decreasing non-monotonous trend is observed. Moreover, the measured transmission co-
efficients at the highest maximum crack depth, a = 852 µm, show nearly consistent values for all
excitation frequencies fx. This crack depth corresponds to an a/λ ≈ 0.20 for fx = 0.7MHz and
to an a/λ ≈ 0.46 for fx = 1.6MHz. Contrary to the observation, a significant dependence of the
transmission coefficient on the excitation frequency would be expected according to the analyti-
cally computed transmission coefficient, which is depicted in Figure 3.2(a). A possible explanation
for these deviations from the theoretical trend might be the varying surface roughness on the rail
head. The rail samples were obtained from different test runs with varying loading conditions at
the rail/wheel test rig and from different production batches; thus, significant variations in surface
roughness among the specimens cannot be ruled out.
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At this stage, it should be recalled that as the maximum crack depth a increases, the number
of cracks k also rises. For instance, k rises from k = 1 to k = 3 as a grows from a = 394 µm to
a = 592 µm. Similarly, from a = 592 µm to a = 660 µm, k increases from k = 3 to k = 5. It is
concluded that the transmission coefficients of low excitation frequencies, such as fx = 0.7MHz
and fx = 1.0MHz, are heavily influenced by overlapping head checks, as these transmission co-
efficients decline substantially with k rising from k = 1 to k = 3. As seen in Figure 7.11, these
excitation frequencies would only offer the potential for a qualitative assessment of head check
damage. For a ≥ 592 µm, the experimentally determined transmission coefficient distributions
at fx = 0.7MHz and fx = 1.0MHz deviate substantially from the transmission coefficients for
a ≤ 394 µm. Visually speaking, the transmission coefficient appears to follow a descending step
function between these crack depths. Consequently, fx = 0.7MHz and fx = 1.0MHz do neither
offer the potential for quantitative crack sizing nor can these fx be employed for the detection of
head checks with small crack depth.

For high excitation frequencies, such as fx = 1.3MHz and fx = 1.6MHz, a steadily decreasing
trend of the transmission coefficient until a = 592 µm is observed. This leads to the hypothesis
of a linear relationship between maximum head check depth and transmission coefficient. In a
first approximation, a linear regression analysis was performed, although, strictly speaking, the
assumptions for the linear regression, such as normally distributed errors with constant variance,
are violated. A simple linear function of the type

CT = β0 +β1a+ ε (7.2)

was used to model the suggested linear dependency of the transmission coefficient CT on the max-
imum crack depth a. The intercept and the slope of the model function are denoted by β0 and β1,
respectively. ε is the random error of a specific measurement [65]. The results from the linear re-
gression analysis of the transmission coefficients at fx = 1.3MHz and fx = 1.6MHz are depicted
in Figure 7.12. In addition to the regression lines, both the 95% confidence intervals on the regres-
sion lines’ means and the 95% confidence intervals for a single observation, commonly termed
prediction interval, are illustrated. Due to the large number of samples n = 49200 for both fx, the
95% confidence intervals for the means nearly coincide with the regression lines. The computation
of these ordinary least squares fits was performed with the statsmodels module [74] in Python.
From a data-driven perspective, a different model function, such as a quadratic polynomial, may
provide a better fit to the data. Nevertheless, the linear regression approach was preferred, as the
theoretically computed SAW transmission coefficient at an ideal surface crack decreases almost
linearly with increasing crack depth a within the corresponding range of a/λ [35].
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Fig. 7.12: Regression line fitted to the experimentally determined distributions of the transmission
coefficients at fx = 1.3MHz and fx = 1.6MHz. Only the transmission coefficients for a≤ 592 µm
were taken into account. The 95% confidence interval does not deviate visibly from the regression
line. Additionally, the 95% prediction interval is displayed.

The 95% confidence interval on the slope β1 of the computed regression line for the excitation
frequency fx = 1.3MHz is

−7.699×10−4
µm−1 ≤ β1 ≤−7.646×10−4

µm−1.

At fx = 1.6MHz, the 95% confidence interval on β1 is given by

−4.825×10−4
µm−1 ≤ β1 ≤−4.780×10−4

µm−1.

These intervals suggest that the regression line is gradually but significantly decreasing for both
excitation frequencies. Due to this gentle slope and the wide 95% prediction interval, the maximum
crack depth a cannot be determined precisely with a single measurement of the transmission co-
efficient. Nevertheless, a permanent installation of the piezoelectric transducers on the rail would
facilitate the execution of multiple measurements in a short time. According to the law of large
numbers, the uncertainty of the sample mean decreases as the number of measurements increases
[73]. Therefore, measuring the transmission coefficient several times and taking the mean from
these samples would theoretically offer the chance for a more precise determination of a.



7.3 Results and Discussion 74

Ultimately, additional laboratory experiments on rail samples with a < 592 µm are required to
prove the anticipated linear relationship between the maximum head check depth and the trans-
mission coefficients of high excitation frequencies for a ≤ 592 µm. For values of a that exceed
a > 660 µm, it appears that a quantitative determination of a is not feasible even with the excita-
tion frequencies fx = 1.3MHz or fx = 1.6MHz. This is due to the absence of a clear trend in the
measured transmission coefficients.

To conclude, two potential effects that impede a quantitative assessment of high crack depths
have been identified:

1. Overlapping head checks: After reaching a certain length, head checks start to overlap.
With multiple head checks overlapping, the SAW transmission coefficient is significantly
influenced by the number of cracks k. Thus, for high crack depths, a precise quantitative
prediction of the maximum crack depth seems infeasible without knowing the actual number
of overlapping head checks.

2. Varying surface roughness: A variation of the surface roughness on the rail head from one
specimen to another cannot be excluded, as the samples stem from different experiments on
the rail/wheel test rig. Since SAWs propagate in the near-surface area, their amplitude is very
sensitive to the surface roughness. However, with regard to an in-track application, this issue
is considered minor, as the surface roughness on the rail head of a given cross-section does
not change significantly after some initial vehicle crossings.

These effects inhibit quantitative crack sizing altogether for fx = 0.7MHz and fx = 1.0MHz.
Based on the experimentally determined distributions of the transmission coefficients at fx = 1.3MHz
and fx = 1.6MHz, a quantitative assessment of the head check crack depth a is potentially feasible
for depths up to a = 590 µm. However, additional laboratory experiments are necessary to confirm
this assumption. Severe head check damage with depths above a = 660 µm can only be detected
qualitatively with the employed setup.



Chapter 8

Summary, Conclusion and Future Work

In this thesis, a systematic approach has been adopted to investigate the correlation between the sur-
face acoustic wave (SAW) transmission coefficient and the head check depth. Potential systematic
measurement errors, inherent to the experimental setup, were thoroughly examined. The research
conducted in this thesis has confirmed the previously observed qualitative impact of head checks
on the SAW transmission coefficient. Additionally, the effects of various excitation frequencies
were evaluated. It was found that the SAW transmission coefficient does not allow for a precise
sizing of head checks with high crack depths. This is due to the unfavorable combination of the
complex crack configuration and the undefined surface roughness of the rail. In particular, the fact
that head checks start to overlap after reaching a certain length complicates a precise prediction
of crack depth. Nonetheless, based on the results from this study, a quantitative assessment of the
head check crack depth a with the SAW transmission coefficient seems potentially feasible up to a
crack depth of a = 590 µm with certain SAW excitation frequencies fx, such as fx = 1.3MHz and
fx = 1.6MHz. However, additional laboratory experiments are necessary to prove this hypothesis.

Ultimately, the undefined surface roughness could be addressed by adopting an approach that
does not rely on the wave’s amplitude. Possible alternative procedures could be based on non-linear
ultrasonic characteristics, for example, which potentially enable the detection of surface cracks at
an early stage. A model-based approach to signal processing promises the highest potential for
accurate crack sizing. This approach could be based on a finite element model, for instance. Still,
it remains an open question whether these methodologies facilitate a quantitative crack depth as-
sessment given the complex crack configurations of head checks.

For the deployment within tracks, numerous challenges related to the measurement equipment
must be overcome given the prevailing harsh environment. A signal generation and measurement
device specifically designed for in-track implementation is required to drive the piezoelectric trans-
ducers. Investigations into the aging of the used adhesive have to be conducted, and methods to
assess its condition have to be developed. For example, gauging the reflections of bulk waves
could offer a possible approach for examining the condition of the adhesive, as the amplitude of
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bulk waves does not degrade with rail head damage. Additionally, robust housings for the trans-
ducers need to be designed.

The insights from this thesis and the non-destructive testing method using SAWs have wider
applications. Beyond railways, the SAW transmission coefficient is promising for assessing cracks
in mechanical components with well-defined surfaces, like wheelset axles or turbine blades. This
technique allows for scanning large areas with a single measurement. Furthermore, this thesis has
demonstrated the capability of surface acoustic waves to detect surface breaking cracks at an early
stage.
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