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Kurzfassung

Diese Masterarbeit untersucht die Erkennung von Anomalien in multivariaten Zeitreihen-Daten
mit Sprachmodellen aus der Computerlinguistik. Die Grundlage bildet die Umwandlung der nu-
merischen Maschinendaten in tokenisierte Daten, ähnlich zu Text. Der Prozess der Tokenisierung
wird durch Diskretisierung der Daten und Zuweisung eindeutiger Token zu den diskreten Werten
realisiert. Die so erhaltenen symbolischen Zeitreihen wurden dann mit zwei unterschiedlichen
Ansätzen auf Anomalien untersucht.

Der erste Ansatz basiert auf N-Gramm Sprachmodellen. Ein N-Gramm ist eine Sequenz von
Wörtern der Länge n. Die Anzahl der N-Gramme im Datensatz wird berechnet und mit einem
statistischen Maß zur Beurteilung der Relevanz von Termen in einem Textkörper, dem Tf-idf-
Maß, gewichtet. Dieses Maß dient als Grundlage zur Erkennung von Anomalien. Die Idee dahinter
ist, dass N-Gramme, welche selten im gesamten Textkorpus vorkommen, auf außergewöhnliches
Verhalten hindeuten.

Der zweite vorgestellte Ansatz nutzt maschinelles Lernen für die Erkennung von Anomalien
im tokenisierten Datensatz. Dafür wurde ein Transformer-Modell programmiert, welches nor-
malerweise zur Sprachmodellierung benutzt wird. Das Modell erhält eine Symbolsequenz, in
der zufällige Einträge durch einen Masken-Token ersetzt werden, und versucht, die originalle
numerische Sequenz wiederherzustellen. Weicht die Rekonstruktion stark vom Original ab, sind
Anomalien im Datensatz zu erwarten. Beide Methoden wurden erfolgreich an einem Datensatz, der
von Sensoren einer Maschine zur Verbesserung der Bodenbeschaffenheit für Gebäudefundamente
stammt, angewandt. Die Auswertung der Ergebnisse hat gezeigt, dass eine Anomalieerkennung
mit den entwickelten Ansätzen möglich ist und rechtfertigt besonders die Weiterentwicklung des
künstlichen neuronalen Modells.
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Abstract

This thesis is an exploratory work of unsupervised anomaly detection in multi-variate time-series
machine data with methods originating from natural language processing. The foundation is laid by
tokenizing the time-series data, i.e., converting the numeric machine data into symbolic data similar
to textual data. The process of tokenization is realized by discretizing the data and assigning unique
tokens to the discrete values. The symbolic sequences obtained are then inspected for anomalies
with two different approaches.

The first method is based on word n-gram language models. A n-gram is a sequence of words of
length n. The counts of those n-grams in the data set are computed and weighed with a measure for
the importance of a word to a document, the term frequency-inverse document frequency measure,
to derive anomaly scores for each sequence.

The second approach presented utilizes a machine learning model, more specific a masked lan-
guage model with a transformer architecture at its core. Random tokens in the input sequences
get masked and the transformer is trained to recreate the numeric sequences. When an input se-
quence that has not been used for training outputs a diverging numeric sequence, anomalies in this
sequence are expected.

Both anomaly detection methods were programmed and successfully applied to an unlabeled
data set originating from instrumented machinery used for ground improvement of building foun-
dations. The results indicate that both approaches are principally functional and strongly justify
continued work in this area, especially on the machine learning model.
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Chapter 1

Introduction

This thesis is an exploratory work of detecting anomalies with linguistic methods in multi-variate
time-series (MVTS) data. The basis of this work is laid by converting the numeric values of a
time-series into symbols. The symbolic data is than handled with two natural language processing
(NLP) approaches.

The first one is based on a rather classic bag-of-ngrams model. A n-gram is a sequence of n
adjacent words. Put them in an unordered collection and you get a bag-of-ngrams. Earlier language
models were purely based on the statistical probabilities of the occurrence of such n-grams[1]. So
the idea is, if we create symbolic sequences, we can also create a bag-of-ngrams for each sequence.
Furthermore, we can use the frequencies of the n-grams to derive anomaly scores. A n-gram that
is rarely seen across all sequences is likely to indicate an anomaly in the data set. A very useful
measure in this context is the term frequency-inverse document frequency (TF-IDF) measure[2].

Word n-gram models were outperformed almost 20 years ago by deep learning models[3]. These
machine learning models use multiple layers of artificial neurons to mimic the architecture of the
human brain. Machine learning models have evolved over time and today the transformer is con-
sidered to be the state-of-the-art architecture for NLP tasks. A key component of the transformer
model is the attention mechanism. This invention allows the model to pay attention to multiple in-
puts at once and therefore understand complex relationships in the data[4]. A very famous example
for a transformer is the Generative Pre-Trained Transformer (GPT) series from OpenAI[5].

The second approach presented utilizes a transformer model that is very similar to BERT, a lan-
guage model presented by Google in October 2018. Its training strategy manages to learn without
any labeled data. This fact comes in very handy, because the model is applied to an unlabeled
multi-variate time-series data set. That means the model shall learn to detect anomalies in an un-
supervised manner without providing any information how an anomaly looks like or where it is
found in the provided data[6].

The data for the application of both models originates from a ground improvement process. It
is composed of 9 different channels, each corresponding to a different sensor record sampled at 1
Hz. Previous research performed by the Chair of Automation in Leoben to detect anomalies in this

1



1 Introduction 2

data set was mainly based on long short-term memory (LSTM) networks[7]. This work is breaking
new ground.



Chapter 2

Machine Learning Basics

This chapter provides a brief overview of fundamental concepts used in machine learning (ML).
Over a century before programmable computers where even built, Ada Lovelace contemplated

the possibility of machines achieving intelligence [8]. Another milestone dealing with these ques-
tions was published by Alan Turing in 1950 in his essay ”Computing Machinery and Intelligence”.
He introduced the concept of the Turing Test, which is a test of a machine’s ability to mimic hu-
man communication skills. Rather than addressing the question of whether machines can think,
he focuses on a more practical question: Can a machine imitate human intelligence well enough
to pass for a human in a conversation? This imitation game forms the basis of the Turing test. He
also explores the limitations and potential of artificial intelligence and touches the idea of machine
learning and adaption over 70 years ago [9]. Machine learning is a subset of artificial intelligence
(AI). A broadly used definition for machine learning was coined by Tom Mitchell in 1997:

A computer program is said to learn from experience E with respect to some class of tasks T and
performance measure P, if its performance at tasks in T, as measured by P, improves with experience
E [10, p.2].

My personal opinion is that the term experience is used rather sloppy in this context. Human
experience involves our senses and our mind, whereas machine learning is mostly based on data
sets. For example, how would you share your experience of eating a banana with someone who has
never eaten a banana before. You can describe your experience with words, but the person you are
sharing your experience with hasn’t automatically made the experience himself. However, where
machine learning models really excel is in the generalization of data.

2.1 Tasks

For instance, consider a computer program assigned with the task T of playing chess. Its perfor-
mance P could be measured by the percentage of games it wins against its opponent. Training
experience E is gained by playing practice games against itself. This example was not only chosen
because I really enjoy the game of chess, rather because computers outperformed humans in this

3



2.1 Tasks 4

task already more than two decades ago. In 1996 an IBM supercomputer called Deep Blue was the
first machine to beat the then-reigning world chess champion Garry Kasparov in a game of chess.
One year later in a rematch it won a 6-game match against Kasparov, being the first defeat of a
reigning world chess champion by a computer under tournament conditions [11]. However, play-
ing chess is just one of the possible tasks machine learning can master. It has become a common
tool in almost any task that requires information extraction from large data sets [12].

In the following, common machine learning tasks are presented. Note that machine learning has
been applied in far more applications, but to mention them all would go beyond the scope of this
thesis. The tasks are separated into two main groups, supervised and unsupervised learning. How-
ever, there have been methods developed where both labeled and unlabeled data is used is called
semi-supervised learning. There are different concepts, for example minimum entropy regulariza-
tion, allowing the incorporation of unlabeled data into standard supervised learning.[13].

Reinforcement learning presents a different approach. Unlike supervised and unsupervised
learning, reinforcement learning algorithms learn by interacting with an environment rather than a
fix data set. In this paradigm, an agent learns to make decisions by taking actions in an environ-
ment and receiving rewards or penalties in return. The agent’s objective is to learn a policy, which
is a mapping from states to actions that maximizes the cumulative reward over time. This involves
a balance between exploration, where the agent tries out new actions to gather information, and
exploitation, where the agent makes the best decision based on current knowledge. It’s particularly
suitable for tasks where the optimal solution can only be found through trial-and-error and where
delayed rewards are involved. Chess engines are a good example of reinforcement learning[14].

2.1.1 Supervised Learning

Machine learning tasks can differ significantly in the data they are provided with and in the way
they are trained. The most straightforward and widely used tasks are based on supervised learning.
Algorithms are exposed to a data set that includes not only features, but also associated labels
or targets. Take the iris data set[15], a typical test set for many classification techniques, as an
example. Each iris plant in the set is labeled with its species. A supervised learning algorithm
can analyze this data set and learn how to categorize iris plants into three distinct species using
their measurements. This task is called classification. Together with regression they form the most
common tasks in supervised machine learning [8].

2.1.1.1 Classification

A classification task learns to map inputs to one of k categories. Usually the learning algorithm is
asked to output a function [8]:
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f : Rn →{1, . . . ,k}. (2.1)

If y = f (x), the input described by vector x creates a numeric code y that maps to a category. Other
variants, for example, output probability distributions over classes, that describe how probable it is
that an input belongs to each of the categories [8].

An important step for classification is feature extraction. Mostly this is done by a human, but it
can also be done by an algorithm. Take the iris plant classification task mentioned in the beginning
of this section for example. Features of the plants have already been extracted by botanists. In this
case sepal length and width, and petal length and width [16].

In a more difficult problem of classifying images directly, the data is most likely not prepro-
cessed by a human. The task might be to classify the image as a whole, e.g., does it contain a dog
or not? This is called image classification. If the images contains hand-written numbers and letters
to classify, its called handwriting recognition. Even harder problems deal with object detection or
object localization in images. A special case of this is face detection for example. If a face is found
in an image, one can then possibly estimate the identity of the person by face recognition [16].

2.1.1.2 Regression

In contrast to classification tasks, which assign an input to a specific class, regression tasks predict
a numerical value when given some input. To accomplish this task, the learning algorithm is asked
to produce a function [8]:

f : Rn → R. (2.2)

Regression tasks include the forecasting of time-series and can for example be used by insurance
companies to predict the expected claim amount that an insured person will make and therefore set
insurance premiums. Another example is the prediction of future prices of securities. [8].

2.1.2 Unsupervised Learning

In contrast to supervised learning stays unsupervised learning. This learning method is termed
unsupervised because the input data doesn’t come with predefined labels. Clustering is typically
used to identify distinct groups within the data. For instance, consider an unsupervised learning
technique that processes a collection of images depicting handwritten digits. It might identify 10
unique clusters in the data, which could potentially correspond to the 10 individual digits from
0 through 9. However, since the training data lacks labels, the model can’t provide any semantic
interpretation of the clusters it has identified [17].
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2.1.2.1 Clustering

Clustering describes the process of grouping a set of objects into different groups so that similar
objects end in the same group and dissimilar objects are separated into different groups[12].

A widely used clustering algorithm is k-means clustering. It directly decomposes a data set χ =

{x1,x2, . . . ,xn} into a set of k disjoint clusters C = {c1,c2, . . . ,ck}. Each cluster has a representative,
the centroid, which is computed as the mean vector of all objects assigned to the corresponding
cluster. The goal of the clustering operation is to reduce the distortion between the data objects and
the centroids. If distortion is measured using Euclidean distance, the objective is the minimization
of the sum-of-squared error between the objects and the centroids, µ = {µ1, . . . ,µk}[18]:

SSE(C) =
k

∑
c=1

∑
xi∈Cc

∥xi −µc∥2 where µc =
∑xi∈Cc xi

|Cc|
. (2.3)

A similar version of k-means clustering where an object is not bound to one cluster, but receives
probabilities for each cluster is called fuzzy clustering. Other clustering methods include hierar-
chical clustering, kernel clustering and spectral clustering to name a few[18].

2.1.2.2 Anomaly Detection

Anomaly detection is the type of task, where the algorithm sifts through the data with the goal of
finding patterns that do not confirm with the expected behaviour. Finding anomalous data can be of
critical interest in various application domains, such as fraud detection for credit cards, health care,
insurance, intrusion detection for cyber-security, and fault detection in safety critical systems[19].

2.2 Evaluation Metrics

To train a machine learning algorithm, its performance has to be evaluated. In practice this is
done by choosing a loss function that measures the difference between the predicted and the actual
output. The loss can then be minimized by adjusting the algorithms parameters. It is important
to choose a loss function that is suitable for the task at hand. Some metrics for designing a loss
function for classification and regression tasks are presented in the following[20].

2.2.1 Metrics for Classification

Let us assume we have a binary classification problem. There are four possible outcomes as shown
in the confusion matrix in Table 2.1. If the predicted class is positive and the true class is also
positive, we call it a true positive - T P. If the true class is negative, it is a false positive - FP.
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In the case of a negative predicted class and a negative true class, we speak of a true negative -
T N. If it would have been a negative predicted with a positive true class, it would be called a false
negative - FN. Note that the false negative and false positive test results are not always equally as
bad. Consider an authentication task, where a user wants to log into a private system by voice. A
false negative, when an authorized person is denied access to the system, could potentially cause
less harm, than a false positive, when an unauthorized person is granted access to the system[21].

Predicted Class
positive negative

Actual Class
positive true positive false negative

negative false positive true negative

Table 2.1: A binary confusion matrix.

The concept of confusion matrices can be expanded in the case of K > 2 classes, to a K×K class
confusion matrix. The test entries (i, j) contain the instances that belong to Ci, but were assigned
to C j. Table 2.2 shows a 5× 5 confusion matrix. Like in the binary case, the off-diagonal entries
are ideally 0[21].

Predicted Class
1 2 3 4 5

A
ct

ua
lC

la
ss

1

2

3

4

5

Table 2.2: A mutli-class confusion matrix with 5 different classes.

Different classification measures can be derived from the test results:

1. Error: The error is the number of total false classifications over the number of total classi-
fications N. We can also say it is the rate of false classifications[21]:

error = (FP+FN)/n. (2.4)

2. Accuracy: The proportion of total true classifications over the number of total classifications
is the accuracy. A good classifier has an accuracy near 1[21]:

accuracy = (T P+T N)/n = 1− error. (2.5)
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3. Recall: The recall, also known as the sensitivity or true positive-rate, is a measure of how
many of the actual positives are classified right[21]:

recall = T P/(T P+FN). (2.6)

4. False positive-rate: The false positive rate or short FP-rate is the rate at which a classifier
predicts a positive class when it actually wasn’t[21]:

FP-rate = FP/(FP+T N). (2.7)

5. Precision: The precision measures the ratio of true positives to the total number of positive
predictions. A model with high precision has fewer false positives and is therefore accurate
in predicting positive classes[21]:

precision = T P/(T P+FP). (2.8)

6. Specificity: The proportion of true negatives to the total number of negative predictions is
called specificity. A classifier with high specificity has fewer false positives, which means it
is more accurate in predicting negative classes[21]:

speci f icity = T N/(T N +FP) = 1−FP-rate. (2.9)

7. Receiver operating characteristics: Most classifying models calculate class probability
scores before assigning an input to a class. Assume the classifier returns the probability
P̂(C1 | x) for a given input x to belong to the positive class C1 and P̂(C2 | x) = 1− P̂(C1 | x)
to belong to the negative class. We can classify to the positive class if P̂(C1 | x) ≥ θ . If we
choose θ close to 1, we will rarely have false positives, but also a small number of true pos-
itives. By increasing θ to increase the number of true positives, the risk of introducing false
positives also increases. If we evaluate the true positive and the false positive rate values
for different values of θ , we get the receiver operating characteristics (ROC) curve[21] An
exemplary ROC curve of the iris classification task is shown in Figure 2.1.
The ROC-curve allows a quick visual interpretation of the classifier. An ideal curve is close
to the upper-left corner. If we want a single value for the performance, we can calculate the
area under the curve (AUC). Ideally the value for AUC is 1[21].

8. F-score: The F-score in its origin formulation F1 is the harmonic mean of precision and
recall[23]:

F1 =
2

recall−1 + precision−1 =
2T P

2T P+FP+FN
. (2.10)

A derivation of the F-measure has been developed by implementing the parameter β , which
controls the balance between precision and recall[24]:
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setosa (AUC = 1)
setosa Model Operating Point
versicolor (AUC = 0.9636)
versicolor Model Operating Point
virginica (AUC = 0.9636)
virginica Model Operating Point
Micro-average (AUC = 0.9788)

Fig. 2.1: The receiver operating characteristics (ROC) curve from a multiclass iris plant classifier.
The area under the curve values for the classes can be seen in the legend. The model operating
points are also plotted. Note the AUC score for the setosa class, indicating a perfect true positive
and false positive-rate[22].

Fβ =
(β 2 +1) · precision · recall

β 2 · precision+ recall
. (2.11)

When β > 1, the F-measure becomes more recall-oriented, if β < 1 more precision-oriented,
for example F0 = precision[25].

2.2.2 Metrics for Regression

In the following common regression loss measures are presented. All of them are based on func-
tions of the residuals, the difference between the observed value y and the predicted value ŷ. The
number of samples is denoted with N[26].

1. Mean Absolute Error: A computationally cheap loss function is the mean absolute error
(MAE). It is not sensitive to outliers, which can be useful in some applications. MAE is
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simply the aggregation of all absolute residuals[26]:

MAE =
1
N

N

∑
i=1

|yi − yî|. (2.12)

2. Mean Squared Error: A loss that is more sensitive to outliers is mean squared error (MSE).
The calculation is similar to MAE, but the residuals get squared before summation[26]:

MSE =
1
N

N

∑
i=1

(yi − yî)
2. (2.13)

3. Mean Bias Error: In contrast to MAE and MSE, the mean bias error (MBE) can also be
negative. If so, it indicates that the predictions are underestimated, if positive the predictions
are overestimated. It’s important to be cautious because positive and negative biases can
cancel each other out[27][26]:

MBE =
1
N

N

∑
i=1

(yi − yî). (2.14)

4. Relative Absolute Error: Relative errors are independent of scale, and can therefore com-
pare models that are measured in various units. The relative absolute error (RAE) is calcu-
lated by dividing the absolute error by the difference between the mean of all actual values
yî and the actual value[26]:

RAE =
∑

N
i=1|yi − yî|

∑
N
i=1|yi − yi|

with y =
1
N

N

∑
i=1

yi. (2.15)

5. Relative Squared Error: An error that is not affected by varying scale of the prediction
targets is the relative squared error (RSE). It calculates as the sum of total squared errors
over the sum of the actual values minus the mean of all actual values[26]:

RSE =
∑

N
i=1(yi − yî)

2

∑
N
i=1(yi − yi)2

with y =
1
N

N

∑
i=1

yi. (2.16)

6. Mean Absolute Percentage Error: A metric often used to assess the accuracy of a forecast
system is the mean absolute percentage error (MAPE). It is calculated as the average of
absolute residuals divided by the actual values as percentage[26]:

MAPE =
1
N

N

∑
i=1

|yi − yî|
yi

with y =
1
N

N

∑
i=1

yi. (2.17)

7. Root Mean Squared Error (RMSE) Is useful as a loss function, when huge errors in the
system want to be cancelled out. It is the root of the MSE[26]:
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RMSE =

√︄
1
N

N

∑
i=1

(yi − yî)2. (2.18)

2.3 Artificial Neurons

2.3.1 Perceptrons

McCulloch and Pitts laid the foundation for machine learning with Artificial Neural Networks
(ANN) in 1943. They analysed how networks of neuron process information and how they can be
coupled together to create logical functions[28]. The development of McCulloch and Pitts neuron
models led to the invention of perceptrons. The term was coined by F. Rosenblatt in 1958. [29]

Fig. 2.2: The architecture of the perceptron.

Each perceptron has d inputs, xi, with i = {1, . . . ,d}. The inputs that are either coming from
the environment or from the outputs of other perceptrons are weighted via a connection weight,
w j ∈ R. In the simplest case the output y is a weighted sum of the inputs[21]:

y =
d

∑
j=1

w jx j +w0. (2.19)

The concept of a bias is implemented here with the intercept value w0. Augmented vectors,
w = [w0,w1, . . . ,wd]

T and x = [1,x1, . . . ,xd]
T , are implemented to allow writing the output, y, of

the perceptron as a dot product [21]:
y = wT x. (2.20)

When d = 1 we obviously get the equation of a line with slope w and w0 as the intercept[21]:
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y = w1x+w0. (2.21)

This means, that such a perceptron could be used to create a linear fit. If there are two inputs, we
create a plane; if there are more than two inputs we create a hyper plane. This can be used to divide
the input space into two half-spaces. To do so a binary step function, also called Heaviside step
function is used[21]:

H(y) =

⎧⎨⎩1 if y ≥ 0

0 otherwise
(2.22)

If the function generates s = 1, the input belongs to class 1; otherwise it is assigned to class 2[21].
By using K ≥ 2 outputs, there are K parallel perceptrons, each of them has a weight vector

wi. This model performs a linear transformation from a d-dimensional space to a K-dimensional
space[21].

2.3.2 Gradient Descent

In 1986, Rumelhart et. al. demonstrated that parallel perceptrons could be trained using gradient
descent when the error function is differentiable. This method involves iteratively adjusting the
connection weights between neurons to minimize output errors[30]. The gradient of a differentiable
convex function f : Rn → R is represented by ∇ f (w) = ∂ f (w)

∂w[1]x , . . . ,
∂ f (w)
∂w[d]x , which is the vector of

partial derivatives of f . Gradient descent is an iterative optimization algorithm used to find the
local minimum of a differentiable function. The algorithm starts with an initial value of w. At each
iteration, we take a step in the negative direction of the gradient at the current point. The formula
for an update step is [31]:

w(t+1) = w(t)−η∇ f (w(t)) (2.23)

The learning rate η is a hyperparameter that defines how strong weights are adapted. If the
learning rate is set too high, the algorithm tends to oscillate around the search space. In the other
case of η being too low, we risk of remaining in a local optimum[21].

Learning often starts with randomly initialized weights. Iteration for iteration the weights adapt
to minimize the error function. When the error function is not performing over the whole data
set, but on instances of it, it is called online learning. A full traversal of the training set is called
an epoch. A different training strategy is batch learning, where the weights are not updated after
each instance, instead the data is divided into mini-batches that decide the iterative change of
weights[21].
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2.3.3 Activation Functions

The perceptron output function is always a binary step function. In modern neural networks dif-
ferent output functions, called activation functions, are mostly used. A perceptron with any other
activation function than the binary step function is defined as artificial neuron. Activation func-
tions act as a limiter of the amplitude of a neuron squashing the output into the range from 0 to +1
or -1 to +1[32]. To exploit the benefits of a deep neural network, non-linear activation functions
have to be used. This is due to the fact that compositing linear functions always generates some
new linear function. But a very complex non-linear function can be created by the composition of
relatively simple non-linear functions. So stacking non-linear layers allows the model to make use
of more complex features in the data and therefore enhance the power for its given task[32].

Let us introduce another very common used activation function, the sigmoid function σ with
its typical ”s-shape”. An example of the sigmoid function is the logistic function shown in Figure
2.3a. Given an input x and the slope parameter a, it computes as follows[32]:

σ(x) =
1

1+ e−ax = 1−σ(−x). (2.24)

Note its symmetry property at the end of the equation. When a = 1, we call it the standard logistic
function. The derivative of it computes as follows[32]:

d
dx

σ(x) =
ex

(1+ e−x)2 = σ(x)(1−σ(x)). (2.25)

The hyperbolic tangent function tanh also has a sigmoid shape (Figure 2.3b) and the same symme-
try property as the standard logistic function:

tanh(x) =
e2x −1
e2x +1

=
ex − e−x

ex + e−x = 1−σ(−x). (2.26)

The derivative of the tanh function ranges from zero to one, making it very suitable for back-
propagation by reducing the vanishing gradient problem. It is plotted in Figure 2.3b. It computes
as one minus the tanh function squared:

d
dx

tanh(x) = 1− (ex − e−x)2

(ex + e−x)2 = 1− tanh2 (x). (2.27)

The ReLu function shown in Figure 2.3c assigns zero to all negative input values and outputs its
input values for all other values:

ReLu(x) =

⎧⎨⎩x if x ≥ 0

0 otherwise
. (2.28)



2.3 Artificial Neurons 14

The derivative of the ReLu function plotted in Figure 2.3f is the same as the Heaviside step func-
tion:

d
dx

ReLu(x) =

⎧⎨⎩1 if x ≥ 0

0 otherwise
. (2.29)

(a) The standard logistic function (b) The tanh function (c) The ReLu function

(d) The derivative of the standard
logistic function

(e) The derivative of the tanh
function

(f) The derivative of the ReLu
function

Fig. 2.3: Different activation functions and its derivatives used in neural networks.



Chapter 3

Deep Learning

3.1 Artifical Neural Networks

Artificial Neural Networks (ANN) are machine learning models that are inspired by the architecture
of the human brain. The networks use highly idealized neuron models, but the principle stays the
same[33]. Many neurons in parallel are called a layer. A single layer of neurons can only model
linear functions. This limitation can be overcome by stacking layers of neurons to create artificial
neural networks[8].

3.1.1 Feedforward Networks

The name feedforward network (FFN) originates from the flow of information in the network. In
contrast to recurrent networks, as presented in 3.1.3, where output from the model is fed back to
itself, FFNs only pass information to forward layers[8][21]. A FFN is designed to approximate a
function ŷ = f ∗(x;δ ). An input vector,

x = [x1,x2, . . . ,xm]
T , (3.1)

is mapped to a predicted output
ŷ = [ŷ1, ŷ2, . . . , ŷnl]

T . (3.2)

The network learns the optimal value of the parameters δ that result in the best function approxi-
mation. Learnable parameters of a FFN are the bias vectors,

bi = [bi
1,b

i
2, . . . ,b

i
ni]

T , (3.3)

and the weight matrices,

W i =

⎡⎢⎢⎣
wi

1,1 . . . wi
1,ni−1

... . . . ...
wi

ni,1 . . . wi
ni,ni−1

⎤⎥⎥⎦ . (3.4)

15
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of all the neurons[8]. Figure 3.1 shows a fully connected FNN. This indicates that all nodes of a
layer are connected to all nodes of the forward adjacent layer in the network. If there are missing
connections the net is said to be partially connected[32].

Hidden
layer 1

Hidden
layer 2

Input
layer

Output
layer

Fig. 3.1: An examplary graph of a fully connected feedforward neural network with two hidden
layers and a width of six. The network processes an input vector x of dimension 8 and outputs a
vector ŷ of dimension 3. Adapted from[34].

The non-learnable parameters, the hyperparameters, define the structure and characteristics of a
network and have to be defined before training. For example, the depth of the model is the number
of layers of the FFN. A FFN has to have at least an input and an output layer. The layers inbetween
are called hidden layers, because the training data does not show the desired outputs, the hidden
layer values, for any of these layers. A neural network with at least one hidden layer is considered
to be deep. Machine learning with deep networks is called deep learning. Finally, the width of the
model is determined by the dimensionality of the hidden layers[8].

Training a FFN is similar to training a single perceptron. The biggest difference between the
linear model of the perceptron and a FFN is that the loss-function becomes non-convex. This
means that convergence is not guaranteed anymore[8].
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3.1.2 Back-Propagation

We know that the input of hidden layer i is the output of hidden layer i− 1. This results in the
functions being chained together. We can evaluate the loss gradients of the individual weights and
biases using the Leibniz chain rule. Given f (x) = g(h(x)), the derivative of f (x) computes as:[30]

d f (x)
dx

=
dh(x)

dx
dg(z)

dz
|z=g(x) (3.5)

It is easy to calculate the derivatives of the error for the final layers, and once they are estimated,
the error derivatives for the previous layers can also be calculated. By going from end to beginning
of the network, gradients are calculated layer by layer in a process called back-propagation[30].
When we use the network to predict an output y from an input x it is called forward propagation[8].

Hidden
layer 1

More hidden
layers

Input Output
layer

Hidden
layer 2

Hidden
layer m-1

Forward pass

Back propagation

Output

Fig. 3.2: A thin feedforward network with one neuron in each layer.

In order to better understand the back-propagation algorithm and its difficulties, consider the
network depicted in Figure 3.2, a very deep FFN with a single neuron in each layer. Assume
that there are m hidden layers and 1 non-computational input layer. The weights for the edges of
the corresponding layers are represented by w1,w2, . . .wm. Let x be the input; h1,h2, . . .hm be the
hidden values and y be the final output. As an activation function φ we choose the sigmoid function
σ to be applied in each hidden layer. We define φ ′(ht) to be the derivative of the activation function
in hidden layer t. With a loss function L; ∂L

∂ht
becomes the derivative of the loss function with respect

to the hidden activation ht . We now see that the output of each hidden layer is defined from the
previous layer as follows[35]:

ht+1 = φ(wt+1ht) (3.6)

Now we can formulate[35]:
∂ht+1

∂ht
= φ

′(wt+1ht)wt+1 (3.7)

Finally, applying the chain rule gives us[35]:
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∂L
∂ht

=
∂L

∂ht+1

∂ht+1

∂ht
= φ

′(wt+1ht)wt+1
∂L

∂ht+1
(3.8)

From equation 2.25 and Figure 2.3d we can see that the derivative of a sigmoid takes on its max-
imum value 0.25 at σ = 0.5, resulting in φ ′(wt+1ht) to be less or equal than 0.25. Assuming that
the weights are initialized from a standard normal distribution, which is common practice, the ex-
pected average magnitude of each wt is 1. Therefore, we can assume that typically the value of ∂L

∂ht

is less than 0.25 that of ∂L
∂ht+1

. After propagating by r layers, this value will typically be smaller
than 0.25r. If we set r = 8, the gradient update magnitudes drop to 10−5 of their original values.
This means that the earlier layers will get very small weight updates compared to the later ones.
This phenomena is called the vanishing gradient problem. When you use a function with a bigger
derivative, the gradients can explode. [35]:

3.1.3 Recurrent Networks

As mentioned before, Recurrent neural networks (RNNs) differ from FFNs by allowing feedback
loops. This has a far-reaching impact on the sequence learning capability of such neural networks.
Instead of just mapping from input to output vector it can map from a history of previous inputs
to each output. The quintessence is that the recurrent connections act as a kind of memory of
previous inputs in the internal states of the network. This allows the handling of sequenced data
like real-valued time-series or symbolic text.[36].

A time-series has an ordered value sequence. The information in the time series is completely
distorted when the temporal order of values is changed. A crucial observation is that a time series’
value at time t bears a strong correlation to its values from the previous window.[35]

Lets focus on the architecture. Figure 3.3 shows the simplest recurrent network possible, a net-
work with a single self-recurrent unit performing self-feedback[32].

A sequence χ = {x(1), . . . ,x(τ)} of input vectors x(t), each associated with an indexing variable
t = {1, . . . ,τ}[8],

x(t) = [x1(t),x2(t), . . . ,xm(t)]T , (3.9)

produces a corresponding sequence ϒ̂ = {ŷ(1), . . . , ŷ(λ )} of output vectors, indexed by t =

{1, . . . ,λ}[8],
ŷ(t) = [ŷ1(t), ŷ2(t), . . . , ŷn(t)]

T . (3.10)

Note that the length of the input and the output vector don’t have to be necessarily the same. The
output can be smaller as well as greater in dimensionality. Furthermore, many recurrent networks
are able to process varying sequence lengths. The neurons feed back its output to the input of itself.
This changes the hidden states[8],

hi(t) = [hi
1(t),h

i
2(t), . . . ,h

i
k(t), ]

T , (3.11)
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unfold

Fig. 3.3: Unfolding a recurrent network with one layer and a single recurrent unit. The recurrent
unit stores information from the previous time step in a hidden state vector h. With every time step
of the input vector the hidden state vector gets updated.

of the neurons of layer i after each item of a sequence is propagated through the network. This
hidden state vector is a function of the current input xi(t) of layer i and the hidden state vector of
the previous time step hi(t −1)[8]:

hi(t) = φ
i
h(W

i
hxi(t)+Ri

hhi(t −1)+bi
h). (3.12)

Additionally to the bias vector bi
h and a weight matrix W i

h for the input layer, a recurrent weight
matrix Ri

h for the hidden state hi(t − 1) is introduced. Finally, to obtain the outputs an activation
function, e.g. hyperbolic tangent, is applied to the weighted sum[8]:

ŷ(t) = φ
i
y(R

i
yhi(t)+bi

y). (3.13)

Training of RNNs is done with a process called back-propagation through time (BPTT). It is ba-
sically the same concept as in feed-forward networks. But some difficulties arise when dealing
with complex recurrent network models. First, the temporal layering of the sequences is input de-
pendent, which makes long sequences very hard to train. Second, the problems of exploding or
vanishing gradients even gets worse with very deep neural networks, which limits their effective-
ness of long-term relationships.[35]

3.1.3.1 Long short-term memory

A special type of recurrent network that tackles this problems is the long short-term memory
(LSTM) network proposed by Sepp Hochreiter and Jürgen Schmidhuber in 1997 [37]. They intro-
duced the cell state, that acts as a memory, storing information about past time steps. It is updated
via gate units that decide which information is important to keep. Figure 3.4 shows a widely used
improved architecture of a single LSTM-cell. It uses an input, a forget, a candidate and an output
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gate to control the information flow into the and out of the cell. This allows to bridge long connec-
tions and model long term dependencies, while also minimizing the risk for vanishing or exploding
gradients. There have been plenty of adaptions from the basic LSTM architecture developed. For

Forget gate Input gate Candidate gate Output gate

Addition Hadamard Product Sigmoid Hyperbolic tangent

Fig. 3.4: A single LSTM-cell with a forget, input, candidate and output gate.

example, the bidirectional LSTM, or biLSTM, is a model that consist of two LSTMs. One working
in the forward direction, and the other in the backward direction. This allows the model to improve
its context of the sequence by knowing what items immediately follow and precede an item in a
sequence.

3.2 Transformers

Before the introduction of the transformer in 2017 by Vaswani et al., RNNs used to be the state-
of-the-art architecture for neural machine translation and language related machine learning tasks.
Modern processing hardware such as Graphics Processing Units (GPUs) and Tensor Processing
Units (TPUs) rely on parallel computing. The sequential computing nature of RNNs precludes
parallelization within training examples, which becomes critical at longer sequence lengths, as
memory constraints limit batching across examples. Transformer architectures inherently compute
in parallel, because they take the whole sequence at once[4].
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3.2.1 Vanilla Architecture

The original (vanilla) model shown in Figure 3.5 consists of an encoder and a decoder, each com-
posed of a stack of 6 identical layers. The encoder maps an input sequence of symbol repre-
sentations (x1, . . . ,xn = to a sequence of continuous representations z = (z1, . . . ,zn). The decoder
receives z and generates an output sequence (y1, . . . ,ym) of symbols one element at a time. The
model consumes the previously generated symbols as additional input when generating the next in
an auto-regressive manner[4].

Fig. 3.5: The vanilla transformer model architecture[4].

Each layer in the encoder has two sub-layers. The first is a multi-head attention mechanism and
the second a fully connected feed-forward network. Both have residual connections around each of
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the two sub-layers, followed by a layer normalization. In the proposed architecture all sub-layers
in the model, as well as the embedding layers, produce outputs of dimension dmodel = 512. The
decoder has three sub-layers, including a sub-layer that performs multi-head attention over the
output of the encoder stack. The decoder sub-layers also have residual connections followed by a
layer normalization. Additionally the self-attention sub-layer in the decoder stack is modified to
prevent positions from attending to subsequent positions. This is done by masking and offsetting
the output embeddings by one position[4].

3.2.2 Attention

The attention mechanism has become a key part of competitive natural language modeling tasks,
allowing the modeling of dependencies regardless of their distance in the input or output sequence.
In general it calculates weight matrices for each embedding in the context window. It can do so
either in parallel in transformer architectures or sequentially in recurrent neural networks[38].

Fig. 3.6: Scaled Dot-Product Attention[4].

3.2.2.1 Scaled Dot-Product Attention

The transformer architecture uses scaled dot-product attention units as building blocks. The atten-
tion function takes three inputs: query Q, key K and value V . First, the dot-product of the queries
and keys is calculated. The result is scaled by the square root of the number of key dimensions,
dk, producing the attention scores. They are then fed into a softmax function, obtaining a set of
attention weights. Finally, the weights are used to scale the values in a weighted multiplication
operation[4]:
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Attention(Q,K,V ) = softmax(
QKT
√

dk
)V . (3.14)

3.2.2.2 Multi-Head Attention

The transformer repeats its attention computations multiple times in parallel according to the num-
ber of heads h. The independent attention outputs are then concatenated and linearly projected into
the expected dimension[4]:

MultiHead(Q,K,V ) = Concat(head1, . . . ,headh)W O

where headi = Attention(QW Q
i ,KW K

i ,VWV
i )

(3.15)

And where the projections are parameter matrices W Q
i ∈ Rdmodel×dk , W K

i ∈ Rdmodel×dK , WV
i ∈

Rdmodel×dV and , W O ∈ Rhdv×dmodel [4].

Fig. 3.7: Multi-Head Attention consists of several attention layers running in parallel[4].

3.2.2.3 Positional Encoding

Since the transformer model has no recurrence nor convolution, a positional information of the
tokens in the sequence has to be injected. In the original paper positional encodings are added to
the input embeddings at the bottoms of the encoder and decoder stacks. The dimensions of the
input embedding and the positional encodings have to be equal in order to be sum up[4]:
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PE(pos,2i) = sin
pos

10000
2i

dmodel

(3.16)

PE(pos,2i+1) = cos
pos

10000
2i

dmodel

(3.17)



Chapter 4

Natural Language Processing

Natural language processing (NLP) is an interdisciplinary sub-field of computer science and lin-
guistics. It is primarily concerned with giving computers the ability to manipulate unstructured,
natural language data. A classic approach when dealing with text or speech corpora is the use of
bag-of-words representations and word n-gram models. These methods are based on counting fre-
quencies of occurrences of short symbol sequences of length up to N. However, these approaches
seem to be rather limited and not capable of dealing with state-of-the-art language tasks, such
as document summarization or machine translation, the conversion of a word, text, document or
corpus from one into another language. Another task could be classifying an article into different
topics or analyse the sentiment of a document. We humans are good users of language in terms
of producing and understanding language. However, it turns out that we have serious problems in
describing the rules and formalities that govern language[39].

4.1 Brief Linguistics

Linguistics is the scientific study of language and its structure. It is divided into several subfields,
each of which focuses on a specific aspect of language. These sub-fields include phonetics, phonol-
ogy, morphology, syntax, semantics, and pragmatics. Phonetics is the study of the physical prop-
erties of speech sounds. It deals with the production, transmission, and perception of sounds in
human language. Phonology, on the other hand, is concerned with the abstract representation of
sounds in a language. It examines how sounds are organized and used in a particular language.
Morphology is the study of the internal structure of words and how they are formed. It deals with
the smallest units of meaning in a language, called morphemes. Syntax is the study of sentence
structure and how words are combined to form phrases and sentences. Semantics is the study of
meaning in language. It examines how words and sentences convey meaning and how meaning
can be interpreted in different contexts. Pragmatics is concerned with how people use language
in context to achieve their goals. It examines how context affects meaning and how people use
language to communicate effectively[40].

25
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Fig. 4.1: Major levels of linguistic structure[41].

4.1.1 Challenges in Language Processing

English language is symbolic and discrete. The letters as well as the words are discrete symbols.
Consider the two words ”elephant” and ”giraffe”. In our mind we know that there are certain re-
lationships of these words. Both being animals for example. But this information can never be
derived from the symbols themselves. Language is compositional. The building blocks of English
language are characters that form words, and words form phrases and sentences. The meaning of a
phrase can be bigger than the words that compromise it. Language is changing and evolving. There
will be words in the future that don’t exist today, for example, slang words, technical terms or par-
ticular names of persons or corporations. Most languages are also highly ambiguous and variable.
Words can be synthesized in an enormous number of different ways as well as meaning can be
conveyed in seemingly endless possible ways. Some of these properties lead to data sparseness in
NLP tasks[39].

The nature of language makes natural language processing very challenging. NLP models often
require features which can describe and generalize its textual data. The mapping from textual
data to real valued vectors is called feature extraction and is done by a feature extraction function.
Examining the linguistic structure can be beneficial in exploiting better features and improve model
results[39]. Some selected textual features are presented in subsection 4.1.3.
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4.1.2 Lexical Resources

To perform most NLP tasks usually huge textual data is needed for training to create reasonable
and grammatically correct models. Although it is beneficial to use data from the same domain as
working in, pre-training can be performed using a more general data set. Lexical resources in the
form of machine-readable text, dictionaries or thesaurus provide a good starting point. They can
contain linking to other words or provide additional information. Selected resources are mentioned
in the following[1].

The Brown Corpus is one of the most widely known corpora in English language. It is an elec-
tronic collection of about one million words published in 1967 at Brown University. Every single
word is labeled with a Part-of-Speech (POS) tag (article, adverb, preposition, determiner, etc.). It
is balanced in the way that an attempt was made to create a representative corpus of American
English[42]. The British pendant is the Lancaster-Oslo-Bergen corpus[1].

WordNet can be interpreted as a combination of a dictionary and a thesaurus, a ”synonym dictio-
nary”. It links words into semantic relations including synonyms, meronyms and hyponyms. There
is a hierarchy of organization of words. Each node consists of a synset of words with identical
or similar meanings. WordNet is free and can be accessed or downloaded from the internet[43].
Googles NLP model, ”BERT”, was pretrained on the BooksCorpus with 800 million words and
English Wikipedia, excluding lists, tables and headers with 2,500 million words[6].

4.1.3 Features for Textual Data

Extracting features from textual data is a key concept in NLP. The features can sometimes be
used for machine learning models, but play a more significant role in statistical NLP models. A
vast number of features has been explored and documented in literature. Finding suitable features
mainly depends on the NLP task. Take for example a classification task of news articles. A very
basic approach is finding the words with the highest frequencies in the article. These could be
linked to topics, allowing classification without having to read the whole text. We can also just
count the length of sentences, or count words with specific affixes. The ratio of short to long words
in a document. The position of a word in a document or sentence, e.g. within the first or last n
words. Or the context it often appears in, for example find words that often surround a specific
word. Or the mean distance of a word pair and common words between them. Note that most
features can both be applied to words or tokens[1].

Features can also require a lot of syntactic and semantic understanding. A good example for this
is part-of-speech tagging. The ambiguity of language often requires to take the context of a word
in a sentence or document into account. For example, the word ”book” can be used as a noun or a
verb. But it can get even more ambiguous. The word ”well” can be used as an adjective, adverb,
interjection and as noun[1]:
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I was ill last week, but now I am well again.

She slept well in the comfortable bed.

Well, the strategy was less effective than we hoped.

The village sources its drinking water from a well.

POS is an important concept in NLP, because it allows a better understanding of the actual meaning
of the words used. The main approaches are rule-based or stochastic[1].

4.2 Tokenization of Textual Data

One of the first processing steps of a NLP task is usually the tokenization of the textual data.
That involves breaking down a piece of text into smaller units called tokens. These tokens are then
usually assigned an unique ID, that is used for further handling[39]. There are different approaches
of tokenization techniques available in NLP presented in the following.

4.2.1 Word-Based Tokenization

The most common technique used is word-based tokenization, splitting a text into words based
on white-space or punctuation. This sounds trivial in English language, but in other languages,
things can become much trickier. For example, in Arabic and Hebrew some words attach to the
next one without white-spaces, and in Chinese there are no white-spaces at all. However, also in
English language this is not straightforward, as there are some special cases we need to handle.
Take abbreviations (I.B.M.) and titles (Dr.) for example. These probably doesn’t need to be split.
Also the word ”don’t”, isn’t it actually two words, ”do” and ”not”? More interestingly take words
like ”North Africa”, ”New York” or ”ice cream”. It would probably make sense to create one token
for those, but a white-space based algorithm will split them into two. We also have to define how to
deal with upper and lower case. We could convert the whole text to lower-case beforehand probably
on the cost of losing some information[39].

In NLP systems, there is a trade-off between the vocabulary size and the system’s performance.
Most systems only cover the most frequently used words and leave out rare ones. The words that
don’t make it into the vocabulary are usually called out-of-vocabulary (OOV) and are assigned a
unique token, ”UNK”. This saves computational costs, but worsens the tasks performance, because
the information for the word assigned an OOV token is completely lost[44].
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4.2.2 Character-Based Tokenization

A different approach that doesn’t really have to deal with these problems is character-based tok-
enization. The raw text is split into its individual characters. The logic behind it is that languages
usually have way more words in their vocabulary than characters to represent them. There is no
definite number of words in the english vocabulary. The number also highly depends on how to
count and which words to include or not. Often only word families are counted, but there is no
standard testing method for calculating the vocabulary size of a language. According to a study
by Trefers-Daller and Milton, the vocabulary size of monolingual English speakers varies consid-
erably, with an average of about 10,000 English word families for university entrants[45]. Don’t
foget that this number will significantly increase in a text corpus written from multiple people of
different ages and cultures. Compare that to the size of 256 different characters (letters, numbers,
special characters) in the English language. Reducing the vocabulary size by using characters has
also a huge trade-off with the sequence length. Splitting the relatively short word ”neuron” into its
characters will create six tokens instead of one[40].

4.2.3 Subword-Based Tokenization

A solution between word and character-based tokenization is subword-based tokenization. A com-
mon principle is to keep frequently used words, and split rare words into smaller meaningful
subwords. We could split the word ”undo” into its prefix ”un” and its stem ”do”. Or the word
”unboxing” into its prefix ”un”, stem ”look” and suffix ”ing”. We can see that the vocabulary
size will shrink in this way, because some affixes and stems will be used in the same syntactic
situations. Another benefit of this method is that words that were not trained before can possibly
be represented by sub-words. Usually sub-word algorithms add special symbols, e.g. ”##”, to the
start of the tokens when words are split, to indicate which is the start (”un”) and which token is the
completion of the word (”##do”)[40].

The large language model GPT-2 uses a subword tokenization algorithm called Byte-level
BPE.[46] It is a modification of the byte pair encoding (BPE) algorithm first described in 1994.
The algorithm compresses data by finding the most frequently used pairs of adjacent bytes and
replaces all instances of the pair with a byte that was not in the original data. It does so till the
defined token limit size is reached[47]. Here is a basic example of BPE applied to a string:

1. The input is ”aaabdaaabacaa”.
2. The byte pair ”aa” occurs most often and is replaced with a new byte ”Z”.
3. The converted string is now ”ZabdZabacZ”.
4. Then the process is repeated with byte pair ”ab”, replacing it with ”Y”.
5. We now get ”ZYdZYacZ”.
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6. The process could continue with recursive byte pair encoding, replacing ”ZY” with ”X”.
7. This would result in ”XdXacZ”.

Byte-level BPE is a variation of the original BPE algorithm that uses bytes as the basic unit of
segmentation instead of characters. GPT-2 has a vocabulary size of 50,257, which corresponds to
the 256 bytes of base character tokens, a special end-of-text token and the symbols learned with
50,000 merges[46]. Googles NLP model, ”BERT”, has a vocabulary size of 30,000 tokens using
the subword-based tokenization algorithm wordpiece. In contrast to BPE, it does not merge the
most frequent symbol pair, but the one that maximizes the likelihood of the training data once
added to the vocabulary[6][48].

4.3 N-Gram Language Models

N-gram language models are purely statistical and are based on assigning a probability to each
possible next word. A n-gram in NLP is a series of n adjacent words or tokens. Other domains,
for example biology uses n-grams for adjacent base pairs extracted from genomes. A n-gram of
sequence length 1 is called a unigram. If n = 2 we refer to bigrams, if n = 3 trigrams and so on.
Word n-gram language models are based on the idea that the probability of a word occuring in a
text depends on the previous n− 1 words. Obviously, if n = 1 then n− 1 = 0, meaning there are
no preceding words. However, we can still gain information on the texts from these models called
bag-of-words models.

4.3.1 Bag-of-Words

A bag-of-words is a model of text represented as an unordered collection of words. It involves two
things, a vocabulary of known words and a measure of the presence of known words. The measures
are the counts of each word or the frequencies of each word out of all the words in the document.
So basically it is a histogram of words within a text. Let us see how the bag-of-words looks like
for an example sentence[1]:

The lion chased the deer.

It can be combined with a weighting scheme called term frequency-inverse document frequency
to extract more information.
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Sentence 1 #

the 2

deer 1

lion 1

chased 1

Table 4.1: Bag-of-words for the sentence, ”The lion chased the deer.”[49].

4.3.2 Term Frequency-Inverse Document frequency

The term frequency-inverse document frequency is a measure of importance of a word to a docu-
ment in a set of documents. It actually consists of two measures multiplied, the term frequency T F
and its inverse document frequency IDF . The term frequency T F of term t within document d is
computed as[2]:

T F(t,d) =
nt(t,d)
n(d)

, (4.1)

whereas nt(t,d) is the number of times that term t occurs in document d. And n is the total number
of terms in document d. It is a relative measure of how often a term occurs in a document. The
inverse document frequency IDF is a measure of how significant a term t is to a document d, or
more precise how often it is used among all documents D[2]:

IDF(t,D) = log10
N(D)

Nd(t,D)
, (4.2)

with Nd(t,D), the number of documents where the term t occurs, sometimes called document
frequency DF , and N(D), the total number of documents in the collection. There are different
variants of scaling in literature. A common is applying a log-function to the IDF. Combining both
measures we can calculate the term frequency-inverse document frequency for a term t in document
d from the document collection D as[2]:

T FIDF(t,d,D) = T F(t,d) · IDF(t,D). (4.3)

Summarizing, if a TFIDF is high for a specific term in a specific document of a collection it is
important and could represent the document. This can come in very handy in information retrieval
or keyword extraction, as well as classification tasks. Let us see how this works in practice[49].

A word like ”the” is very common in English text and will likely have a high term frequency for
any document. Because of that, its inverse document frequency is going to be very low compared
to other words, resulting in a relative low TFIDF measure. Now lets say we examine a corpus of
37 Shakespeare plays. The term Romeo will only occur in one of those, whereas good and sweet
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occurs in all 37 of them. So the term Romeo is gonna be very discriminative for the Romeo and
Juliet play[49].

Word DF IDF

Romeo 1 1.57

salad 2 1.27

Falstaff 4 0.967

forest 12 0.489

battle 21 0.246

wit 34 0.037

fool 36 0.012

good 37 0

sweet 37 0

Table 4.2: Document frequency and inverse document frequency for selected words of a corpus of
37 Shakespeare plays[49].

4.3.3 Bag-of-n-grams

The bag-of-n-grams representation allows to save some information of the sequential ordering of
words in a text. At least to a window size of n. This can help to gain deeper semantic insights and
improve the model accuracy. Let’s examine the two following sentences[35]:

1. The lion chased the deer.
2. The deer chased the lion.

The bag-of-words representation would look exactly the same for both sentences. However, both
of them convey a completely different information and the second sentence is considered rather
unusual. But if we allow to store n-grams with n ≥ 2 we can see that the representations start to
differ. The bag-of-bigrams are visualized in table 4.3. The order of the bigrams is messed up to
show, that these model don’t save any information of the original position in the text[35].

4.4 Neural Language Models

Till 2003 n-gram models were considered state-of-the-art for language modeling. This changed
with the publication of a neural probabilistic language model from Y. Bengio et al. The shear ad-
vantage of neural model lies in the learning of distributed representations for words, which allow



4.4 Neural Language Models 33

Sentence 1 # Sentence 2 #

the lion 1 the lion 1

the deer 1 the deer 1

chased the 1 chased the 1

lion chased 1 deer chased 1

Table 4.3: Bag-of-bigrams for the sentences, ”The lion chased the deer.”, and ”The deer chased the
lion.”[49].

generalization. This means a sequence that has never been seen before can get a high probabil-
ity if it is made of words that are similar to words forming an already seen sentence. The team
used a RNN in their model[3]. Further development of RNN architectures lead to the invention of
LSTMs (see subsection 3.1.3.1 for details), which are able to capture the dependencies of longer
sequences compared to basic RNN models[37]. The combination of LSTMs with the word2vec
word embedding algorithm published in 2013 came to dominate tasks like part-of-speech tagging,
named entity recognition and a few more. In short, Word2vec can represent semantic similarities
among words and map them to a vector space of typically several hundred dimensions with the use
of a feed-forward network. It is described in detail in subsection 4.4.1.2[50]. The use of LSTMs
as encoder-decoder model raised the bar again for many common NLP tasks[51]. Today, a mech-
anism called attention (subsection 3.2.2) is used for handling long-term dependencies. It was first
developed by Graves in the context of handwriting recognition[52]. But soon later it was applied
to machine translation with astonishing results[38]. Finally, by extending the idea of attention to
self-attention and completely discarding recurrent connections the transformer was developed[4].
As of today it is considered to be the state-of-the-art architecture for several NLP tasks, such as
machine translation, document summarization and question answering to name a few[49].

4.4.1 Word Embedding

In NLP word embedding is a technique for representing words as vectors. There are different
approaches to get word embeddings and we will not cover all of them, but focus on one very
popular called Word2Vec in subsection 4.4.1.2. But before applying Word2Vec one usually has to
one-hot encode the tokens. This process is covered in the following subsection. The ultimate goal
of word embeddings is to create vector representations that allow similar words to have similar
representations[49].
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4.4.1.1 One-Hot Encoding

Neural networks need numerical vectors as input. One-hot encoding is a technique used in ML to
convert categorical data into numerical data. In NLP it is used to represent text data or tokens in a
numerical form using a one-hot vector. The vector is binary and has size 1×N, whereas N is the
vocabulary size. Only one unique row is 1 for each token and the rest is 0. With large vocabularies,
one-hot vectors tend to have a huge number of dimensions, which can take a lot of space. Also
transfer learning with a different vocabulary is a bit difficult to implement. It is considered a sparse
encoding.

4.4.1.2 Word2Vec

Word2Vec is among the most popular algorithms for word embedding in NLP. In contrast to one-
hot it is a dense encoding. It is used to create a numerical representation from words or tokens.
Word2Vec is able to capture semantics and relationships among words. We can demonstrate the
relationship of words in a simple example. The relationship from Italy to Rome is similar to the
one from France to Paris. A good representation can result in[49]:

vec(Italy)− vec(Rome)+ vec(Paris)≈ vec(France)

The original paper from T. Mikolov published in 2013 mentions two approaches for Word2Vec.
The continuous bag-of-words (CBOW) and the skip-gram architecture. The CBOW method is
based on predicting a center word from the surrounding context with context width m in both
directions. This can be achieved by creating a very simple neural network with an input layer, a
projection layer and an output layer. We first generate our one-hot encoded vectors for the input
context window. These are then averaged in the projection layer. This means the position in the
context does not make a difference. The projection layer has the size N ×D, whereas N is the
vocabulary size and D is the embedding dimension. The projection layer has similarities to a lookup
table and the dimension D is the number of features in the embedded vector. The model tries to
predict the target words by outputting a vector of the size of our one-hot vectors. To create entries
of the predicted vector in the range from 0 to 1 and set it’s magnitude to 1. We calculate the
probabilities of each word by a softmax function[50]:

σ(z)i =
ezi

∑
K
j=1 ez j

(4.4)

for i = 1, . . . ,K and z = (z1, . . . ,zK) ∈ RK , a function often used as the last activation function for
normalization of the output. It is a generalization to multiple dimensions of the logistic function
defined in equation 2.24[39].
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Input Projection Output Input Projection Output

CBOW Skip-gram

Fig. 4.2: Continuous-bag-of-words and Skip-gram models for Word2Vec learning[49].

The skip-gram method does kind of the inverted operation, given a word, try to predict the
neighbouring words in the defined window size. It is slower in computation, but also performs
well on words that are rare in the training corpus[50].

Due to the very long vector representation of one-hot encoding, the weights matrices tend to get
very big and training tends to be very slow. To address these issues the authors of Word2Vec pre-
sented two innovations in their second paper. The first is subsampling frequent words to decrease
the number of training examples. For example a word like ”the” is going to occur very often in any
English corpus, therefore we can just delete a bunch of those from the corpus at random positions.
The probability for a word wi in the training set to be discarded is calculated as[53]:

P(wi) = 1−
√︃

t
f (wi)

, (4.5)

where f (wi) is the frequency of word wi and t is a chosen threshold, typically 10−5[53].
The second improvement presented is negative sampling. It aims to reduce the number of neuron

weight updating operations to reduce training time and have a better prediction result. Instead of
updating the whole corpus’ neuron weights, just the ones from the context window and the target
are updated[53].

4.4.2 RNN Models

In simple RNNs sequences are processed one element at a time, with the output of each neural unit
at a time t based both on the current input at t and the hidden layer from time t −1. The basic prin-
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ciples were covered in subsection 3.1.3, we will only cover some applications and the architectures
used to achieve these tasks. Figure 4.3 shows four RNN architectures used for different NLP tasks.
Common language-based applications for RNNs include[49]:

1. Probabilistic language modeling: assigning a probability to a sequence, or to the next element
of a sequence given the preceding words. The process is depicted in Figure 4.3b.

2. Auto-regressive generation using a trained language model.
3. Sequence labeling like part-of-speech tagging, where each element of a sequence is assigned

a label. See Figure 4.3a.
4. Sequence classification, where an entire text is assigned to a category, as in spam detection,

sentiment analysis or topic classification. Shown in Figure 4.3c.
5. Encoder-decoder architectures, where an input is mapped to an output of different length or

alignment. Architecture depicted in Figure 4.3d.

RNN

(a) Sequence labeling

RNN

(b) Language modeling

RNN

(c) Sequence classification

Decoder-RNN

Encoder-RNN

Context

(d) Encoder-decoder

Fig. 4.3: Four RNN architectures for NLP tasks[49].
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4.4.3 Large Language Models

Large Language Models (LLMs) are language models that are pre-trained on a large amount of
text with billions of learnable parameters to achieve a general-purpose language understanding and
generation. They are mainly transformer architectures based on self-attention (Figure 4.4) and are
trained using self-supervised and semi-supervised learning. To achieve a specific task they usually
have to be fine-tuned especially for their intended purpose. However, models such as GPT-3 can
be prompt-engineered to achieve similar results[49].

Self-Attention
Layer

Fig. 4.4: Information flow in a self-attention model[49].

4.4.3.1 Causal Language Models

Causal Language Models (CLMs) are large language models that are pre-trained in an uni-
directional autoregressive manner. They predict the next word or token in a sequence by using
the previous words or tokens as a context. They can only attend to tokens to the left of the current
token being generated. CLMs are useful for generating text and completing sentences.

The Generative Pre-Trained Transformer (GPT) series from the AI research and deployment
company ”OpenAI” is an example of a CLM. Unlike the vanilla transformer architecture the model
only uses the unidirectional decoder portion. The name indicates the causal training mechanism
of unlabeled data. To perform a specific task, the model uses discriminative fine-tuning on a task
relevant data set to update its parameters. Version 3 has a parameter count of 175 billion. Their
most recent model GPT-4 has an estimated number of over 1 trillion parameters, but the official
count is undisclosed[5].

4.4.3.2 Masked Language Models

Masked Language Models (MLMs) are large language models that are pre-trained in an auto-
encoded manner by masking the input sequence to recreate the unmasked sequence. They are better
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suited for contextual understanding than causal language models. The ratio of masked tokens is
defined with a masking rate. It is usually set to 15, but some researches suggest that especially large
models with huge amounts of training data achieve better results with higher masking rates[54].

A notable example for a MLM is the Bidirectional Encoder Representations form Transformers
(BERT) introduced in 2018 by researchers at Google. As the name implies, this architecture only
uses the bidirectional encoder part of the vanilla transformer architecture. It is actually trained on
two tasks simultaneously. Firstly, the one mentioned above. And secondly, with Next Sentence Pre-
diction (NSP). NSP has the advantage of learning the relationship between two sentences. The data
for NSP training can be trivially generated from any monolingual corpus. In 50% of the training
data the sentences are actually consecutive and labeled with ”IsNext”, the other 50% consist of ran-
domly merged sentences that are labeled ”NotNext”. BERT can be fine-tuned with one additional
layer for specific tasks like question answering and language inference. [6].



Chapter 5

Application on Multi-Variate Time-Series Data

In this chapter two main approaches for the application of anomaly detection on multi-variate ma-
chine data from a ground improvement process are presented. The data set used consists of 272
time-series composed of 9 channels. The process is described in detail in section 5.1. The basic
idea is to experiment with techniques from natural language processing. Therefore, the numeri-
cal time-series is converted into tokens to enable a word like processing of the data. That means
the numerical time-series data is binned and labeled, resulting in a discrete set of symbols. The
complete code for all tasks mentioned is written in MATLAB R2023b from Mathworks.

The first approach presented in section 5.3 is a statistical evaluation based on n-grams of the
symbols. N-grams of different lengths are created and then weighted by their occurrence with term
frequency-inverse document frequency measures. The higher the tf-idf score of an n-gram, the
more unique it is among the different time-series, indicating an anomalous sub sequence in the
data.

The second approach described in section 5.4 makes use of a state-of-the-art neural network,
the transformer model. The data is split into a training and a test set. For training, the model
receives a masked input sequence and the unmasked output sequence of tokens. After sufficient
training the model is given a masked sequence it hasn’t seen before and tries to reconstruct it.
A bad reconstruction can potentially indicate unexpected behaviour in the time-series, therefore,
indicating anomalous sequences.

The n-gram method is expected to work well on point anomalies, whereas the transformer ap-
proach should take the complete context of the time-series into account.

5.1 Underlying Process

The multi-variate time-series data used in this thesis was captured from a ground improvement
process called vibro compaction performed by Keller UK Ltd. It is mainly used for[55]:

1. Reduction of foundation settlement.
2. Increase in bearing capacity, allowing reduction in foundation size or width.

39
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3. Increase in stiffness.
4. Increase in shear strength.
5. Reduction of permeability.

As shown in Figure 5.1 the process can be split into three phases. The initial phase were gravel
or sand is filled into a skip that loads into the inside of the cylindrical penetrator. The penetrator
has an eccentric weight that is powered by an electric motor causing vibrations. In the penetration
phase the vibrator is lowered till a hard rock layer is hit. The process continues with the compaction
phase were the vibrator is raised in lifts and the gravel is unloaded into the pit to compensate for
any decrease in soil volume. Lift by lift the energy of the vibrator compacts the back-fill and the
surrounding soil till ground level is reached, resulting in a dense and compact column[55].

Fig. 5.1: Overview of the phases of the ground improvement process[34].

The columns often provide a stable foundation for the construction of buildings. A fault in the
process can have fatal consequences. Imagine if the soil bearing capacity for a foundation is not
as high as expected. Foundation settlements can not only cause an enormous financial damage, but
also mean a serious safety hazard.

The machines are instrumented with n = 9 sensors that record a multi-variate time-series of each
column at a sampling rate of fs = 1Hz. An example is plotted in Figure 5.2. The 9 channels capture
the following features:

1. Depth in metres
2. Feedrate in metres per minute
3. Pulldown force in kilo Newtons
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4. Amperage in Ampere
5. Frequency in Hertz
6. Vibrator temperature in degree Celsius
7. Weight loaded in tons
8. Inclination in X-direction in degrees
9. Inclination in Y-direction in degrees

In the past the quality of the columns was ensured by Key-Performance-Indicators (KPI) derived
from the data of the instrumented rigs. Usually, an installation report is created for every column,
building the basis for quality control to this day. Geotechnical experts have to evaluate the safety of
each column manually based on the reports. This can be tedious and also prone to errors[56]. The
Chair of Automation in Leoben has done research over the last years to come up with improved
methods to ensure the quality of the columns[57][58]. A Hybrid Machine Learning (HML) tool
has been designed for the detection of anomalous multi-variate time-series. This novel approach
combines the classic method based on approximately 50 physics-motivated KPIs and an unsuper-
vised variational autoencoder with long short-term memory layers. The machine learning models
were further improved by research and works in hyperparameter optimization based on different
methods, for example genetic algorithms[34][59]. The idea of combining both methods enhances
the classification safety by providing redundancy. A bad foreseen column could potentially be
indicated by the machine learning model[60][7].

5.2 Tokenization of MVTS Data

We refer to tokenization as the conversion from a sequence of data into tokens. The sequence data
can for example be of textual or numerical nature. The tokens have symbolic character. That means
they can be represented in any symbolic way, may it be a character, numbers or emojis. The labels
don’t make a difference for the information represented by a token. But, it is important that they are
unique to identify to ensure their separateness. At the beginning of this thesis, ”American Standard
Code for Information Interchange” (ASCII) characters were used to label different tokens, but it
turned out that numbers work a lot better. The problem with characters is that they have a limited
pool to choose from. The ASCII set contains 95 printable characters. We could solve this problem
by using two symbols to describe one token, resulting in 9,025 possible combinations. But in the
end all this symbol representations don’t benefit the anomaly detection and make the data more
confusing to handle, so it was discarded and we just enumerate the different tokens.
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Fig. 5.2: Example time-series plot of all 9 channels of the vibro ground improvement process.
The process is segmented into an initial phase (grey), a penetration phase (pink) and a compaction
phase (yellow).
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5.2.1 Time domain of MVTS Data

Additionally, the time domain can be preprocessed. Firstly, it had to be decided if the time domain
gets re-sampled to create a sequence with less data points. This was tested with a method called
piece-wise aggregate approximation (PAA). It is a simple dimension reduction method based on
the mean values of intermediate time-steps. However, in order to not loose valuable information
from the time domain no resampling was chosen.

A segmentation of the penetration and compaction phase was also taken into account. Segment-
ing those turned out in not really benefiting the process in most cases, but rather making it more
confusing to handle the sequences. However, the initial phase was discarded in the final approach,
because it is not of significant meaning for the quality of the process.
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Fig. 5.3: The depth of the 9 longest sequences without the initial phase before reduction of the data
set.

Lets have a look on the distribution of sequence lengths of the complete site data. We can see that
most of the sequences have a length of around 500 time steps. But there are also a few outliers with
a few thousand time steps. These could be straight away considered to be anomalous compared to
the rest of the sequences. Mostly, they consist of very long idle times, which are not valuable to us
in this analysis. They also make it different to handle the complete data set, especially in machine
learning, where we have to build the model based on the longest sequence in the data set. So we
exclude them from the data set by setting a maximum sequence length threshold of 650.
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5.2.2 Discretization of MVTS Data

The discretization process is one of the key steps of this thesis, because the discrete sequences are
the basis for both, the n-gram model and the transformer model. The discretizer takes a numeric
input and assigns it to a number of discrete classes. The discretization process for each channel
can be split into the following steps:

1. Define the cardinality, the number of bins.
2. Choose the distribution of bins: linear, exponential or equiprobable.
3. Normalize the data of the depth channel.
4. Evaluate the minimum and maximum values across all sequences in the data set.
5. Calculate the edges for all bins ranging from min to max.
6. Assign bin numbers according to data point values and edges.

The maximum depth reached in the process differ a bit from sequence to sequence. This is
visualised in Figure 5.8. This is nothing anomalous, but rather due to the geology of the ground at
the process site. The penetration phase is stopped when hard rock is hit, resulting in the maximum
depth of the sequence. Naturally, the solid rock depth is not equal for different locations.

If we apply the discretization without normalizing of the depth channel, some sequences with a
higher maximum depth get assigned bins, which others never reach. This results in higher anomaly
scores for the n-gram model and might also do the same for the machine learning approach. That
is why the depth channel has to be normalized before binning. Other channels don’t have this
characteristics.

There are some channels that range in both positive and negative direction. For example the
feedrate or inclination. In general, it is likely that these follow a normal distribution with mean
around zero. If we choose uniform distributed edges for the bins. We can see that there are at least
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Fig. 5.5: Histograms of the token counts for all 9 channels.

10 times more values for the mid zero bin than for the others. To compensate a bit, the middle
edges got shrink by a shrinking factor in an exponential manner.

5.2.3 Wording of MVTS Data

We want to capture inter-dimensional anomalies, therefore we have to somehow combine the sym-
bols from the different channels into multi-variate tokens. One way of doing this is to just con-
catenate the symbols to create words of length of the number of channels. In our case, we have 9
channels, and therefore 9 sequences of symbols of equal length. However, this also has some draw-
backs. When using neural network models for language processing there is the challenge of dealing
with out-of-vocabulary (OOV) tokens. These are tokens that are fed to the model but haven’t been
seen during training. So the model has absolutely no information how to process them without
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Fig. 5.6: Penetration phase of the raw sequence(blue) and its discrete representation(pink).
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Fig. 5.7: Compaction phase of the raw sequence(blue) and its discrete representation(yellow).
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Fig. 5.8: Maximum reached depth during vibro ground improvement at different GPS coordinates
of a site and its inferred surface below. Reprinted from [60].

some work-arounds. In conclusion, if we create inter-dimensional tokens the chances of OOV to-
kens occuring during testing rise significantly, because the possible combinations of tokens and
therefore the vocabulary size increases exponential with the number of channels combined. There
is no problem with OOV tokens in the n-gram-based anomaly detection, but we also don’t nec-
essarily improve the models performance by combining different channels. It should though be
beneficial if we would have a huge amount (>1000) of sequences to analyse.

5.3 N-Gram-based Anomaly Detection

An anomaly detection based on n-grams and term frequency-inverse document frequency is pre-
sented. A n-gram is a sequence of n adjacent symbols, words or tokens. A thorough explanation to
n-grams is given in subsection 4.3.3. Term frequency - inverse document frequency (TF-IDF) is a
measure of importance of a word to a document in a collection. It is used in information retrieval,
for example in text-based recommender systems in digital libraries. For details see subsection
4.3.2. The analogy to this data is as follows. A document represents a time series and the terms are
the tokens created. A high term frequency indicates that a term can be found often in a particular
time series. A high inverse document frequency means a token occurs only in a few documents.
This signalizes a unique token in the corpus and therefore anomalous behaviour. If we combine
both measures by multiplication, we get a TF-IDF score for each token in each time-series.
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5.3.1 Process Description

The n-gram-based anomaly detection consists of the following steps:

1. Create the token sequences as desribed in subsection 5.2.2.
2. Create a bag-of-n-grams for each channel and n-gram length from 1 to the maximum n-gram

length defined.
3. Compute the term frequency-inverse document frequency matrices for each bag-of-n-grams.
4. Sum up the frequencies of each token sequence to get a sequence anomaly score.
5. The sequences with an anomaly scores above a defined threshold are classified as anomalous.

In the application a maximum n-gram length of 12 was chosen. Longer n-gram lengths resulted in
almost every sequence being classified as anomalous. The problem here is that if the number is set
to high, too many unique tokens are created. Consider the extreme case where the n-gram length
is the sequence length, every sequence would have a unique n-gram and therefore, every sequence
would get the same anomaly score, unless some tokenized sequences are exactly the same. This is
not very likely in a complex real world data set. However, a larger data set would probably benefit
longer n-gram lengths.

The 9 (number of channels) TF-IDF score matrices for each n-gram length have dimensions
that are defined by the vocabulary size of the bag-of-n-grams and the number of sequences. The
vocabulary size of a bag-of-n-grams results from the number of unique n-grams in the bag.

5.3.2 TF-IDF Scores

Figure 5.9 visualizes the anomaly measures for each channel and sequence for n-gram lengths
from 1 to 6. High anomaly scores for short n-gram lengths were mostly found for values that are
out of the usual range. For example, some sequences have a higher maximum amperage than the
average. These get assigned tokens, that are not occurring in other sequences. The TF-IDF measure
assigns high IDF scores to those, resulting in a high sequence anomaly score. The same applies to
the inclinations. It can also be seen that the vibrator temperatures get significantly higher anomaly
scores compared to other channels in short n-gram lengths. This phenomena was also detected for
the depth channel before normalizing. More details on the normalization of the depth channels
were covered in subsection 5.2.2.

Longer n-gram lengths from 7 to 12 are depicted in Figure 5.10. It can be seen that the longer
the n-gram lengths, the higher are the anomaly scores for the pulldown force and the amperage.
A deeper insight is given in Figure 5.11 where anomalous tokens of different n-gram lengths are
highlighted. In the unigram graphic 5.11a, we can see that the very low and the very high values
are highlighted. This indicates, that they can not be found in every sequence.
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(a) 1-gram anomaly heatmap.
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(b) 2-gram anomaly heatmap.
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(c) 3-gram anomaly heatmap.
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(d) 4-gram anomaly heatmap.
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(e) 5-gram anomaly heatmap.
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(f) 6-gram anomaly heatmap.

Fig. 5.9: Anomaly heatmaps for short n-gram lengths of 1 to 6.
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(a) 7-gram anomaly heatmap.
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(b) 8-gram anomaly heatmap.
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(c) 9-gram anomaly heatmap.
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(d) 10-gram anomaly heatmap.
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(e) 11-gram anomaly heatmap.
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(f) 12-gram anomaly heatmap.

Fig. 5.10: Anomaly heatmaps for long n-gram lengths of 7 to 12.
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(a) Highlighted unigram anomalies for the pulldown force channel of the compaction phase.
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(b) Highlighted 2-gram anomalies for the pulldown force channel of the compaction phase.
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(c) Highlighted 3-gram anomalies for the pulldown force channel of the compaction phase.
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(d) Highlighted 4-gram anomalies for the pulldown force channel of the compaction phase.
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(e) Highlighted 5-gram anomalies for the pulldown force channel of the compaction phase.
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(f) Highlighted 6-gram anomalies for the pulldown force channel of the compaction phase.
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(g) Highlighted 8-gram anomalies for the pulldown force channel of the compaction phase.

Fig. 5.11: Highlighted anomalies for the pulldown force channel of a compaction sequence. The
colors are normalized and do not represent the absolute value of the anomalies.
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5.4 Transformer-based Anomaly Detection

In the second method for anomaly detection a transformer model is used. More specific, the en-
coder block of the vanilla transformer architecture described in subsection 3.2.1. The inspiration
for the use of this model came from the Google NLP model BERT, the Bidirectional Encoder Rep-
resentations from Transformers, and its clever unsupervised learning method. BERT learns from a
large corpus of text inter alia by feeding the input a sequence with randomly masked tokens and the
output the unmasked sequence. In this way the model can learn the structure of natural language
without the need of any labeled data. Normally the model is fine-tuned for specific tasks[6].

Because the data used for this application has no labels to indicate where the anomalies are lo-
cated, this approach is very promising. Furthermore, the transformer architectures are well known
for handling complex long term dependencies. In general, neural networks are very good in gen-
eralizing. This sentence may sound odd, but it has a profound meaning. Generalization is a crucial
aspect of machine learning models and it refers to the performance of handling unseen data. This
implies that a model can be trained on a large data set to learn its structure and meanings or in the
context of NLP its syntax and semantics. In the context of anomaly detection this is a huge benefit,
because the model can potentially detect anomalies it has not been trained on.

5.4.1 Transformer Model

An encoder block consist of a self-attention, an addition, a layer normalization, a fully connected
another addition and another layer normalization layer. These can be stacked multiple times. Con-
figurations ranging from 2 to 8 blocks were tested. Figure 5.12 depicts a tested network with 3
encoder blocks and a total of 734.000 learnable parameters.
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Fig. 5.12: A summary of the transformer encoder applied for anomaly detection printed from
the Matlab network analyser. It has 3 encoder blocks totaling 30 layers and 734.000 learnable
parameters.

5.4.2 Data Preprocessing for Machine Learning

Before the data is fed to the transformer some preparations of the data have to be done. The same
tokenized sequences used for the n-gram model are also used for the transformer. The exclusion of
very long sequences is also essential, because the model structure is based on the longest sequence
in the data. And the longer the longest sequence the harder the model is to train due to increasing
complexity. The model can only take input vectors of equal size, therefore shorter sequences have
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to be padded. Padding is usually realized by inserting a padding token. Some models can make use
of padding masks to have information which elements in the sequence got padded. In this way the
model doesn’t pay attention to those while optimizing. Unfortunately, because of lack of detailed
documentation in the Matlab self-attention layer no padding masks were used.

Different padding directions were tested. If padding tokens were added at the beginning of the
sequence strong oscillations were found in the predicted sequence. This could be solved by chang-
ing the padding direction to the right. The model was mainly tested on the depth channel of the
data set. The characteristics of this time-series with padding is way smoother if padding is added
at the end, because normally the penetration process has a steep curve, whereas compaction has
a rather flat descent. This oscillatory characteristics is similar to the gibbs phenomena occuring
in fourier transformations. For the masked training approach random tokens have to be masked.
Therefore, a masking ratio has to be defined. Initially this was set to a value of 0.15, like in the
BERT model[6]. But a recent paper states, that higher values do benefit the model[54].

Because random tokens are masked and the number of time-series in the data set is rather small
for a machine learning model, a little trick was tested to enlargen the data set. A multiplier integer
m was defined that duplicates each sequence m times before masking random positions.

5.4.3 Training

The model was run on a dedicated graphical processing unit with 8 gigabyte of dynamic random
access memory. Training time heavily depends on the hyperparameters, but ranged from 15 min-
utes to eight hours for one run. Some hyperparameters of the model and are listed below:

1. Number of encoder blocks
2. Number of attention heads
3. Number of hidden units in the feedforward layers
4. Dimension of the word embedding layer
5. Training ratio
6. Number of epochs
7. Mini-batch size
8. Loss function
9. Solver

10. Initial learn rate
11. Learn rate drop factor
12. Learn rate drop period

The encoder blocks are stacked multiple times. Configurations ranging from 2 to 8 blocks were
tested. The number of attention heads was set to 2, but up to 10 heads were tested. The number
of hidden units in the feedforward layer was set between 20 and 200. the dimension of the word
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embedding layer from 10 to 200. The training ratio defines the portion of the data used for training.
It was set between 0.4 and 0.8. The total passes of the complete data set was set from 30 to 500.
A mean square error loss function was used and a stochastic gradient descent with momentum as
well as an an adaptive moment estimation optimizer was mainly used as a solver. Both solvers are
available out of the box in Matlab. And an adaptive learning rate with an initial learn rate around
0.1 and a learn rate drop factor of around 0.9 was used.

The targets for the predictions were tested with the actual values as well as the mean values of
the discrete bins. There could not be found a significant difference in the results of both.

5.4.4 Validation

Because of the unlabeled nature of the data set, a numeric validation proved to be very difficult.
The goal of this thesis was not to solve the anomaly detection problem for this data set, rather
it should be an exploratory task to see if NLP approaches can be applied to anomaly detection.
However, we can evaluate the quality of the reconstructed sequences.
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Fig. 5.13: The original depth sequence(blue) and its reconstruction(orange) from a left padded to-
kenized sequence. The model was trained on 100 epochs with the adam solver and a mean squared
error loss function. There are 3 encoder blocks and 4 attention heads used in this particular model.

Figure 5.13 and Figure 5.14 show the reconstructions of a depth channel sequence from two
different models. Figure 5.13 uses a left padded approach indicated by the zero values at the start
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of the sequence. The original input sequence in blue is a rather anomalous one. The operator has
lifted the penetrator completely out of the column during the compaction phase. The reconstruction
somehow tried to compensate, but there are big deviations to the original sequence. Figure 5.14
uses padding tokens in the end of the sequence. This graph of the normalized depth could be
considered rather normal compared to the other one. This model creates a closer reconstruction
than the one mentioned before. There is definitely a lot of room for improvement here. Machine
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Fig. 5.14: The normalized depth sequence(blue) and its reconstruction(orange) from right padded
tokenized sequence. Training was performed over 150 epochs with the adam solver and a mean
squared error loss function. There are 3 encoder blocks and 4 attention heads used in this particular
model.

learning models are very complex and setting up a new architecture isn’t a straightforward task
if you don’t have a lot of experience in this field. At some point a line had to be drawn where a
conclusion had to be made.



Chapter 6

Summary and Conclusion

This thesis investigated the use of natural language processing methods to identify quasi-linguistic
patterns in multi-variate machine data for unsupervised anomaly detection. The basis for this task
was laid by converting numerical data into tokenized data in a discretization process. The tokens
are utilized to mimic the symbolic character of natural language.

Further, the tokens were concatenated to a length of n to create so called n-grams. These n-grams
were then collected in an unordered bag-of-n-grams. The counts of the n-grams were weighed with
a term frequency - inverse document frequency measure. This allowed statistical reasoning of the
distributions of small sub-sequences across the complete data set.

The evaluation of this method on data for a ground improvement gave an insight of its possibili-
ties and limits. Short n-gram lengths are useful for detecting values that are out of the usual range.
In general, short-term anomalies can be detected with this approach. To ensure a reliable detection
of longer anomalies the data set inspected would have to consist of a lot of very similar sequences.
Improvements could be made by also taking other features into account, e.g., the n-gram occurs
k times in the first half of the sequence, or specific pairs often have another n-gram in between.
Another possible approach is to exchange n-grams to skip-grams.

The token sequences derived from the machine data was also used in a machine learning model.
Training methods originating from natural language processing were applied. Random tokens in
the input sequences got masked and the transformer was trained to recreate the numeric sequences.
The idea behind it is to make use of the generalization abilities of machine learning models by com-
paring the reconstruction with the original sequence. The greater the difference between them, the
more likely an anomalous sequence has been found. The results from the application of this imple-
mentation indicated that this method is principally functional. However, the model has to be further
optimized to exploit its full potential and allow reliable anomaly detection. Future improvements
of the model could be made by optimizing it with hyperparameter optimization and the generation
of interdimensional tokens.
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