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Abstract

The mechanical response of micron and sub-micron sized, single crystalline metallic

samples strongly depends on their size. A fact which is neither expected, nor fully

understood, but also a fact which has been proven by several studies during the last

decade. The reasons for this size dependency are numerous: On the one side there is a

clear transition from a collectively controlled to a stochastic dislocation behavior. On

the other side the size of a dislocation is naturally restricted by the sample size, which

requires higher stresses for dislocation multiplication.

For a thorough understanding of plasticity in small dimensions it is inevitable to

observe dislocations in situ during plastic deformation, i.e. during multiplication, slip

and annihilation. Besides Transmission Electron Microscopy (TEM), which enables

the observation of single dislocations, synchrotron based micro-diffraction techniques

(as for instance μLaue-diffraction) can provide insights into the collective behavior

of dislocations. The aim of this thesis is to contribute to the understanding of size

dependent plasticity by μLaue diffraction experiments.

The thesis is devided in three parts: (i) Post mortem μLaue diffraction on samples

which have been deformed in situ in the Scanning Electron Microscope (SEM); (ii) De-

sign of a straining device able to perform in situ μLaue experiments on micron sized

samples under tension; (iii) In situ compression and tensile experiments on micron

sized single slip oriented Copper samples during μLaue diffraction.

The results show (i) the unpredicted activation of a slip system at low strains and

allow for the estimation of schematic slip mechanism maps; (ii) A device which is able

to perform tension, compression and bending, as well as bending fatigue experiments,

for samples at the micron scale with an accuracy of approximately 10μN and 1nm;

(iii) Tensile experiments on approximately 6μm sized samples which show expected

and unexpected plastic behavior at the micron scale. Furthermore, the impact of

experimental constraints and imperfections on the dislocation structure is shown by in

situ compression tests.
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Kurzfassung

Die Fließgrenze von einkristallinen Metallen unter uniaxialer, monotoner Bean-

spruchung ist größenabhängig. Ein Faktum welches weder erwartet noch vollständig

verstanden ist, aber ebenso durch dutzende Versuche innerhalb des letzten Jahrzehnts

bestätigt wurde. Plastische Verformung in diesen Dimensionen wird – so wie im

makroskopischen Bereich – durch die Bewegung von Gitterdefekten, sogenannten Ver-

setzungen, ermöglicht. Es ist daher naheliegend, dass das Verhalten von Versetzungen

größenabhängig ist und zu einem Wechsel von kontinuierlicher zu stochastischer Ver-

formung mit abnehmender Probengröße führt.

Aus diesem Grund ist es auch unausweichlich, Versetzungen während der

plastischen Verformung in situ zu beobachten. Dies kann einerseits – im Falle ein-

zelner Versetzungen – durch ein Transmissions Elektronen Mikroskop (TEM) geschehen,

andererseits kann das kollektive Verhalten von Versetzungen mit Hilfe von μLaue-

Diffraktion studiert werden. Ziel dieser Arbeit ist, mit Hilfe von μLaue-Diffraktion

zum Verständnis der Plastizität in kleinen Dimensionen beizutragen.

Die Arbeit teilt sich in drei Abschnitte: (i) Post mortem Untersuchung von Zug-

proben die in situ in einem Rasterelektronenmikroskops (REM) verformt wurden.

(ii) Entwicklung einer Zugapparatur die in situ μLaue Experimente an Mikrometer

kleinen Proben ermöglicht und (iii) die Durchführung von in situ Zug- und Druck-

versuchen an wenige Mikrometer kleinen, einkristallinen Proben während μLaue-

Diffraktion.

Die Ergebnisse zeigen (i) die unerwartete Aktivierung eines Gleitsystems mit

niedrigem Schmid-Faktor. Weiters ermöglichen die ex situ Experimente die

Erstellung schematischer Abgleit-Mechanismen Karten. (ii) Eine Testapparatur, welche

Mikrometer kleine Proben in situ ziehen, drücken, biegen und ermüden kann wurde

entwickelt. Die dabei erreichte Auflösung beträgt ungefähr 10μN beziehungsweise

1nm. (iii) Zugversuche an circa 6μm großen Proben, die einerseits erwartetes, makros-

kopisches Verhalten, andererseits aber unerwartets Verhalten zeigen, wurden in situ am

Synchrotron durchgeführt. Schlussendlich zeigen in situ Druckversuche den Einfluss

von instrumentellen Randbedingungen und Fehlern bei der Versuchsdurchführung auf

die Versetzungsstruktur miniaturisierter Proben.
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1
Introduction

Plastic deformation sets in at the yield point, the point where a permanent change in

shape is caused by an applied stress. From a rather technical point of view the yield

point at constant temperatures and strain rates inherently depends on the material,

i.e. the chemical composition and the micro-structure, also including the density and

type of lattice defects. The validity of this observation has never been doubted. How-

ever, the ongoing trend for a miniaturization of devices for Micro-Electro-Mechanical

Systems (MEMS) and the ability to perform uniaxial compression tests on micron or

even sub-micron sized samples revealed an unexpected size effect on the yield stress:

Smaller crystalline metals tend to exhibit a significant higher yield stress than their

macroscopic counterparts. Uchic and co-workers were the first to report this paradigm

in 2004 [1] and still, scientists worldwide are attracted to this phenomenon. The aim

of this thesis is to contribute to the understanding of size dependent plasticity by in

situ μLaue diffraction. For a deeper understanding it is inevitable to learn more about

the nature of plasticity, which will be briefly reviewed in chapter 2.
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2
Fundamentals of Plastic Flow in FCC

Metals

2.1 The Dislocation

Plastic deformation in face centered cubic (FCC) metals at moderate temperatures and

strain rates is mainly governed by the movement of dislocations [2, 3]. These are line

defects in the crystal caused by the insertion of extra half planes as shown in Fig. 2.1.

For a more practical treatment, a dislocation is characterized by two parameters: the

line element u and the Burgers vector b. The line element is a unity vector tangential

to the dislocation line, the line along imperfections of the crystal can be observed.

The definition of the Burgers vector is based on the Burgers circuit [4], a rectangular

circuit with an discrete number of steps in horizontal and vertical direction. In a

dislocation free crystal the end of the Burgers circuit coincides with the start of it (see

Fig. 2.1a). This does not occur if a dislocation is present and an additional vector,

the Burgers vector b, is necessary to close the Burgers circuit (Fig. 2.1b)1. In fact,

this Burgers vector represents the direction and magnitude of the smallest imaginable

plastic deformation. It has to be pointed out that the dislocation line can individually

proceed through the crystal, whereas the Burgers vector is fixed for a dislocation (see

Fig.2.2).

The Burgers vector b can take any angle to the line element u, nevertheless, two

important cases have to be mentioned: If the Burgers vector b is perpendicular to the

line element u, the dislocation is called an edge dislocation (see Fig. 2.2). Dislocations

with vectors b and u being in line (Fig.2.2) are called screw dislocations. Without

proof, the general character of a dislocation defined by b and u can always be split in

an edge and a screw character.

1Different definitions of closing the Burgers circuit are possible (see for instance [5, 6]).

3



2 Fundamentals of Plastic Flow in FCC Metals

Figure 2.1: Side view on a crystal without (a) and with (b) a dislocation. Additionally the Burgers

circuit with the resulting Burgers vector b is shown in (b).

Figure 2.2: Three dimensional sketch showing a crystal penetrated by a dislocation. The projection

of the slip plane at the bottom shows that the dislocation line is curved and hence, u

changes along the dislocation line, whereas b is fixed. This leads to a screw, a mixed

(also called general) and an edge character in one and the same dislocation at different

positions.

2.2 Stress Field of a Dislocation

In the vicinity of a dislocation the crystalline lattice is distorted and – according to

Hooke’s law – stress arises. The stress field of an edge respectively screw dislocation

can be described by a tensor as shown in Eq. 2.1 and Eq. 2.2. The magnitude of

the single components reciprocally depends on the distance to the dislocation core and

further on the Cartesian x and y coordinate. The stress field of an edge dislocation is

shown in Fig. 2.3.

4



2.2 Stress Field of a Dislocation

It is worth to note that the single components of the stress tensors σ of edge and

screw dislocations do not affect each other and, hence, a dislocation including both,

screw and edge components, does not split up.

σe =

⎛
⎜⎝σxx τxy 0

τxy σyy 0

0 0 σzz

⎞
⎟⎠ (2.1)

σs =

⎛
⎜⎝ 0 0 τxz

0 0 τyz
τxz τyz 0

⎞
⎟⎠ (2.2)

Figure 2.3: Stress field of an edge dislocation with b = [1 0 0] and u = [0 0 1]. (a) σxx; (b) σyy;

(c) σzz for restricted dimensions with sample size equals 104b; (d) τxy; (e) van Mises

Stress σV and (f) σzz for a crystal with a Poisson’s ratio ν equal to zero. Red contours

indicate compressive, blue lines tensile stresses.

As a consequence of crystal distortion elastic energy is stored, which can be estimated

via Eq. 2.3, where E(u) is the line energy per unit length and G is the shear modulus.

Due to the quadratic dependency of the energy, short Burgers vectors are favored.

This limits the number of naturally observable Burgers vectors in FCC metals to

b = 1/2〈1 1 0〉 or even split into, for instance b = a/2[1 1̄ 0] = a/6[2 1̄ 1̄] + a/6[1 2̄ 1],

with a being the lattice constant. For a thorough review on the elastic energy of a

dislocation the reader is referred to [7–9].

E(u) ≈ Gb2

2
(2.3)
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2 Fundamentals of Plastic Flow in FCC Metals

Dislocation interaction is based on their stress field. Reducing the stress field gener-

ally leads to a decrease of the total elastic energy and hence, mobile dislocations tend

to move towards a state of minimal configurational energy. The thereby acting forces

on a dislocation i can be described by the Peach-Koehler-Equation 2.4. Note that the

origin of the stress field σ in Eq. 2.4 can either be a second dislocation, or simply an

externally applied stress.

F = (σ bi)× ui (2.4)

The interaction of two identical dislocations A and B with b in [1 0 0] and u in

[0 0 1] is shown as an example. Dislocation A causes a stress field σA with components

according to Eq. 2.1. The Peach-Koehler-Force F is acting on dislocation B with two

non-zero components (Eq. 2.5, Eq. 2.6). One of these components τAxyb
B
x u

B
z acts in

a plane spanned by b and u and is called gliding component. The second component

acts perpendicular to this plane and is called climbing component. Since the resistance

of a FCC metal2 to dislocation glide is considerably smaller than the resistance to

dislocation climb3, the force component in gliding direction s plays a crucial role for

the plastic deformation. The plane spanned by b and u is called slip or glide plane and

gliding of edge dislocations will take place here. In contrast, the parallel vectors b and

u of a screw dislocations do not form a plane and screw dislocations can cross-slip.

F =

⎛
⎜⎝
⎛
⎜⎝σA

xx τAxy 0

τAxy σA
yy 0

0 0 σA
zz

⎞
⎟⎠

⎛
⎜⎝bBx

0

0

⎞
⎟⎠
⎞
⎟⎠×

⎛
⎜⎝ 0

0

uBz

⎞
⎟⎠ (2.5)

F =

⎛
⎜⎝σA

xxb
B

τAxyb
B
x

0

⎞
⎟⎠×

⎛
⎜⎝ 0

0

uBz

⎞
⎟⎠ =

⎛
⎜⎝ τAxyb

B
x u

B
z

−σA
xxb

B
x u

B
z

0

⎞
⎟⎠ (2.6)

Fig. 2.4 visualizes the Peach-Koehler-Force caused by dislocation A onto a second

dislocation B at position (x, y). It is useful to split F into gliding and climbing com-

ponents. The gliding component attracts each equally signed dislocation in the upper

and lower quadrant and repulses identical dislocations in the other two quadrants.

As a consequence dislocations form regular patterns: Attracted dislocations are being

aligned one below the other and form a tilt sub-grain boundary.

2.3 Schmid’s Law

A mobile dislocation will move on its glide plane due to the Peach-Koehler-Force

given in Eq. 2.4 when a critical limit is exceeded. This limit inherently depends on

the material4 as well as on the crystallographic plane and is called the critical shear

2at moderate temperatures
3Climbing requires a sufficient degree of diffusion and is therefore limited to a temperature of

T ≥ 0.5Tm, with Tm being the melting temperature.
4in case of body centered cubic (BCC) crystals it depends also strongly on the temperature
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2.3 Schmid’s Law

Figure 2.4: Peach-Koehler-Force caused by the stress field of dislocation A in the center is acting

on dislocation B at position (x, y). (a) Vector field and magnitude of F ; (b) direction

and magnitude of the gliding component; (c) direction and magnitude of the climbing

component. Red contours indicate repulsive forces, blue contours denote attraction.

stress τc. The crystallographic plane with the lowest possible critical shear stress

(Peierls stress) is generally the closest packed plane, which is (1 1 1) in case of FCC

metals. This is essentially the main finding of Erich Schmid5 and co-workers [10].

Assume an uniaxially stressed rod: The shear stress acting on one slip plane depends,

according to Fig. 2.5, on the angle between the tensile axis Z and the slip plane normal

vector n, as well as on the angle in between Z and the gliding direction. The slip (or

gliding) direction s is hereby always along b. This leads to the better known formulation

of Schmid’s law (2.7-2.9):

Figure 2.5: Uniaxially stressed rod: Z direction of applied force; n slip plane normal vector; s slip

direction (corresponds to b); λ angle in between Z and s; κ angle in between Z and n.

τ =
F

A
cosκ cosλ ≥ τc (2.7)

5In honor of this early work the Austrian Academy of Sciences named its institute for Material Science

after Erich Schmid.
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2 Fundamentals of Plastic Flow in FCC Metals

τ =
F

A

n.Z

|n||Z|
s.Z

|s||Z| ≥ τc (2.8)

τ =
F

A
m = σm ≥ τc (2.9)

Whereas m is the Schmid factor which is ranging from 0.0 − 0.5, A represents the

cross-sectional area and F equals the applied force. Consequences of Schmid’s law onto

the deformation behavior of uniaxially loaded samples will be discussed in the next

section.

For a general stress state the entire Schmid tensor needs to be calculated, which is

given by the dyadic product of the slip direction s(α) and the slip plane normal n(α)

for each slip system (α) according to Eq. 2.10. The resolved shear stress τ (α) can then

be calculated (2.11):

P (α) =
1

2

(
s(α) ⊗ n(α) + n(α) ⊗ s(α)

)
(2.10)

τ (α) = σ.P (α) (2.11)

2.4 Single and Multiple Slip

The findings of the previous section allow for a deeper discussion of single crystal

plasticity under uniaxial load. Twelve {1 1 1}〈1 1 0〉 slip systems are available in a

FCC lattice [11]. Depending on the orientation of the straining axis in the crystal

coordinate system, the slip system exhibiting the highest resolved shear stress (and

therefore also the highest Schmid factor) will be activated. The magnitude of the

highest available Schmid factor is shown in the positive hemisphere of the orientation

space in Fig. 2.6a.

The highly symmetric pattern in Fig. 2.6a is caused by the crystal symmetry of the

FCC lattice and allows for a generalization of orientation dependencies of the Schmid

factor by a projection into a unit triangle, a spherical triangle with corner-points at

the [0 0 1], [0 1 1] and the [1 1 1] pole. Note that in a unit triangle – also called

inverse pole figure [12] – the crystal coordinate system is fixed and the straining axis is

plotted as a certain direction. The Schmid factor of the primary slip system m(1) – the

system exhibiting the highest Schmid factor – is shown in the unit triangle presented

in Fig. 2.7a. In maximum the Schmid factor is 0.5, appearing at a straining axis of

approximately 〈9 2 20〉. In minimum m(1) is 0.27 if the straining axis coincides with

the 〈1 1 1〉 axis in this case. Therefore, the 〈1 1 1〉 axis is called “hard direction”.

The unit triangle representing the second highest available Schmid factor m(2) is

shown in Fig. 2.7b. Here, the actual slip-system exhibiting m(2) changes within the

plot. Depending on the position in the unit triangle, three different slip systems can

attain m(2) making the unit triangle inappropriate to use for m(2). More important

is Fig. 2.7c, showing the difference in Schmid factor of the primary compared to the

secondary slip system according to Eq. 2.12.

8



2.4 Single and Multiple Slip

Figure 2.6: (a) The magnitude of highest available Schmid factor is plotted in the positive hemisphere

of the orientation space. Dark contours indicate a high Schmid factor. (b) Difference of

the highest and the second highest available Schmid factor according to Eq. 2.12. Black

regions indicate multiple slip.

Δm(1−2) =
m(1) −m(2)

m(1)
(2.12)

Inside the unit triangle a non-zero difference Δm(1−2) exists, favoring dislocation

slip on just one slip system. These are single slip orientations, whereas the ideal

single slip orientation with Δm(1−2) = 27.5% is not a simple crystallographic axis and

approximately equals the 〈5 3 8〉 axis. In contrast, the difference Δm(1−2) equals zero

at the borderlines of the unit triangle and therefore, at least two equally favored slip

systems exist and multiple slip will take place. In fact, the number of coexisting slip

systems with the same Schmid factor equals the number of adjacent unit triangles. A

good overview on single and multiple slip orientations is given in Fig. 2.6b.

9



2 Fundamentals of Plastic Flow in FCC Metals

Figure 2.7: Standard triangles representing (a) the highest available Schmid factor m(1); (b) the

second highest Schmid factor m(2) and (c) the difference between the highest and the

second highest Schmid factor m(1−2).

These fundamental findings however require (i) an uniaxial stress state (ii) a slip

plane independent τc and (iii) the availability of mobile dislocations. (i) is influenced

by experimental constraints and imperfections. (ii) is most likely to be fulfilled, except

the dislocation population acting as friction force is not randomly distributed over

all slip systems of the crystal. (iii) strongly depends on the dislocation population,

especially when small dimensions are reached. Hence, the downscaling of this concept

will be part of the experiments presented in this work.

2.5 Dislocation Multiplication

So far the movement of a mobile dislocation has been discussed, assuming that a

sufficient number of mobile dislocations is stored in the deformed volume. Experiences

show that this assumption is simplifying and only applicable with a limited scope.

As a second key mechanism dislocations need to multiply during plastic deformation.

The multiplication of a dislocation takes place at a dislocation source. This can either

be a nucleation site at the surface or a source dislocation, such as the later discussed

Frank-Read-Source [13].

The multiplication of a dislocation at the sample surface is scarce in case of metals,

since other sources require much less stress to multiply [14]. It is assumed that such

a heterogeneous multiplication only takes place if no other dislocation sources were

present. However, the multiplication at the sample surface is self-explanatory (see

Fig. 2.2).

Much more important is the multiplication within a Frank-Read-Source (FRS) as

shown in Fig. 2.8. A mobile dislocation is pinned at two points. A force F proportional

to the applied stress τ acts on the dislocation according to Eq. 2.4 and the dislocation

will bow out in between the two fixed points. The line tension of the dislocation

counteracts the bow out and tries to reduce the length of the dislocation segment. At

a radius r = 1/2L an instable configuration is reached: The applied force equals the

line tension ∝ 2Gb2. Any further increase of τ leads to a spontaneous increase of the

dislocation length, as long as the two segments forming a spiral around the pinning

10



2.6 Dislocation Annihilation

Figure 2.8: Frank-Read-Source: (a) stable bow-out with acting Peach-Koehler-Force and line tension;

(b) an instable state is reached when the line tension is in opposition to the acting Peach-

Koehler-Force; (c) annihilation due to the opposite dislocation character; (d) all stages

during the multiplication, including the initial and the produced dislocation.

points meet. Due to their opposite character the dislocation annihilates (see next

section): The old dislocation source is being rebuilt and the new, circular dislocation

is expanding. As long as the new dislocation is able to freely move away it will not

affect the dislocation source, which can restart again. If the new dislocation is not

able to move away a stress (called a back-stress) in opposition to the applied shear

stress τ arises which might shut down the dislocation source. The maximum required

stress during the multiplication process appears at the point of the instable dislocation

configuration. A simple force equilibrium can be used to estimate this shear stress; L

equals the distance of the two pinning points (see Eq. 2.13).

τFRS =
2Gb

L
(2.13)

Essential for the operation of the FRS is the fixation of the dislocation line at the

two fixing points (see Fig.2.8), which can either be a second dislocation or any other

obstacle. A variation of the FRS is the Koehler source with pinning points developed

during the cross slip of an initially straight screw dislocation. This is believed to be

the dominant multiplication mechanism in crystals with low dislocation density, for

instance in LiF [15]. A thorough discussion on dislocation based pinning points is

given by Nix and co-workers in [16].

2.6 Dislocation Annihilation

Dislocations of opposite sign attract each other due to the Peach-Koehler-Force and

– if they are situated on the same slip plane – annihilate. This direct annihilation is

serendipity. But in fact, even if the dislocations are not situated on the same slip plane,

11



2 Fundamentals of Plastic Flow in FCC Metals

they attract each other, align one below another and form an immobile arrangement6.

A much easier and more likely way for dislocation annihilation is simply the escape

to the sample surface. This process routinely takes place in crystals of each size and is

evidenced by the formation of slip steps on the surface. This can be used to identify the

activated slip plane. In Fig.2.9 an example of micron sized samples exhibiting single

and multiple slip is presented, where dislocations of one respectively two different slip

systems escaped to the sample surface.

Figure 2.9: Scanning Electron Microscopy (SEM) image of single crystalline copper samples exhibit-

ing (a) single and (b) multiple slip.

This process does not necessarily need an externally applied stress: All stress com-

ponents perpendicular to the surface must vanish at the surface and, though, cause an

asymmetric stress field which pushes the dislocation to the surface. The thereby acting

force can – at least in case of screw dislocations – be easily estimated. Assume two

screw dislocations A and B, whereas the magnitude of the Burgers vector of dislocation

A is |bA| which equals |bB|, with bA and bB having opposite directions. Dislocation

A is situated inside of the material with a distance d to the surface. Dislocation B is

a virtual dislocation situated outside of the material, again with a distance d to the

surface, which means that the surface is exactly in between the two screw dislocations.

The Peach-Koehler-Force acting on dislocation A caused by the virtual dislocation B

leads to an attracting component towards the surface and furthermore to a vanishing

component in the surface. This special force is called the Image Force [17] of a dis-

location. A fundamental consequence of the image force is, that mobile dislocations

close to the sample surface automatically escape at the surface, which might lead to a

dislocation free crystal in nanometer length scale dimensions.

6In this case only the Peach-Koehler-Force in gliding direction vanishes. Provided that the tem-

perature is sufficiently high for diffusion, the dislocation cores will converge due to the climbing

component and annihilate with time.
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3
Size Dependent Single Crystal Plasticity

3.1 Size Dependent Strengthening Effects

Size dependent plasticity attracted scientists since plastic deformation has been ex-

plained by the collective movement of dislocations. A prominent example for this is

the Hall-Petch [18, 19] relation interlinking the grain size with the increase in flow

stress σy according to Eq. 3.1, where σ0 is the friction stress for materials without

grain-boundaries, K is the grain boundary resistance and d is the average grain diam-

eter.

σy = σ0 +
K√
d

(3.1)

The concept of Hall and Petch is based on the internal barrier imposed by grain-

boundaries. To break through a grain boundary a certain stress has to act on the

dislocation, leading to a pile-up. The density and structure of the grain boundary

determines the resistance to dislocation motion and the mechanical response of the

material. The density of grain-boundaries enters Eq. 3.1 with the average grain di-

ameter, which is an internal length scale. Similar size effects based on internal length

scales are given by Arzt in [20]. Size effects based on an internal length scale are not

within the focus of this work and will not be discussed here.

Non-uniform deformation can also cause an increase of flow stress due to the storage

of Geometrically Necessary Dislocations (GNDs) as defined in Eq. 3.2, with ρGND

equalling the density of GNDs, γ being the shear on a slip system and x pointing in

the direction of the gradient.

ρGND =
1

b

∂γ

∂x
(3.2)
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3 Size Dependent Single Crystal Plasticity

The GNDs thereby have to accommodate non-uniform deformation and are propor-

tional to a strain gradient ∂γ/∂x. The GNDs are necessary to keep the integrity of an

non-uniformly deformed crystal1. The GNDs affect the strength of the material similar

to Statistical Stored Dislocations (SSDs) which can be described by a Taylor equation

(Eq. 3.3). Here, τy is the shear yield strength and α is a numerical constant in the

range of 1/2.

τy = αGb
√
ρSSD + ρGND (3.3)

As written in Eq. 3.3, the size dependency of the flow-stress is not obvious. How-

ever, strain gradient plasticity models can be used to explain the thickness effects as

described by Fleck et al. [21] and Stölken and Evans [22]. Another interesting size

effect, called Indentation Size Effect (ISE) [23] which occurs during nano-indentation,

can partly be explained by strain gradient plasticity [24]. However, size effects based on

strain gradients are not within the focus of this work, but might result in a contribution

to size dependent flow-stress phenomenons due to experimental imperfections.

Today, there is a global understanding of size effects caused by internal length scales –

as manifested in different models which describe the influence of defects on the strength

of materials. This led to the knowledge that not only the chemical composition but

rather the defect densities, and hence the internal length scales, influence the strength

of a material.

3.2 Size Effects Under Uniaxial Loading

If all internal barriers2 are excluded and an uniaxial test is being performed ideally, the

yield point tends to increase significantly when the sample size is being reduced [1].

This is not expected, since single crystal plasticity theories do not include any size

dependencies. However, several studies followed the pioneering work of Uchic and

proofed the “smaller is stronger” paradigm for different FCC [1,25–30] and BCC [31–35]

metals. This forced material scientists to reconsider the classical theories of plasticity.

The sample size dependency is characterized by different features [36–38]. As men-

tioned above, the yield point increases with smaller sample diameters. Furthermore,

the yield point measured for different, equally sized samples scatters a lot. The stress-

strain response exhibits a different behavior compared to macroscopic dimensions man-

ifested by a serrated flow and the observed hardening rates differ from macroscopic

values.

3.3 The Current Interpretation of Plasticity in Small

Dimensions

Similar to macroscopic dimensions plasticity at the micron and sub-micron scale is

governed by dislocations. This is proofed by the formation of distinct slip steps [1,30]

1Other possibilities are cracks or twins.
2Except dislocations, which are indeed also responsible for an internal length scale.
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3.3 The Current Interpretation of Plasticity in Small Dimensions

and also shown in Fig. 2.9. Furthermore, dislocation free single crystals – so called

whiskers – do not show any size dependency as experimentally proofed by Brenner [39]

and Bei [40, 41].

In macroscopic dimensions plasticity was triggered by the movement of dislocations.

However, at the micron scale the number and size of dislocation sources is limited.

This leads to a transition from a movement controlled to a multiplication controlled

regime [42]. In fact, the size of a dislocation source is limited by the half sample

diameter, which leads to a size dependency of the flow stress according to Eq. 2.13.

Here, the flow strength would scale with a power law according to Eq. 3.4 with d

being the sample diameter and m being the power law exponent. In case of a purely

source size controlled regime the power law exponent m equals -1. This has not been

experimentally observed yet. However, the sample dimensions naturally introduce a

source size cut off. The differences in m document that this Dislocation Source Size

Truncation is not the only influence.

σy ∝ dm (3.4)

In macroscopic dimensions the number of dislocations – and also the dislocation

line length – is very high. Assuming a well annealed single crystal with a size of one

centimeter cubed. The dislocation density is in the order of 1012m−2. This leads to

a dislocation line length of 106m. If we now take just one cube micron sized sam-

ple, which is exactly the dimension we are talking about, the length of dislocations

present in the crystal reduces to 10−6m, which is exactly one dislocation penetrating

through the micron sized sample. Obviously, the collective behavior of the disloca-

tions in macroscopic dimensions has to become stochastic at the micron scale and the

assumption, that a sufficient number of dislocations is able to multiply is not auto-

matically fulfilled. The dislocations do not have to “sit” on the primary slip system,

which might lead to the activation of lower ranked slip systems [43]. Furthermore, in

the deep sub-micron regime, a high probability exists that no dislocation is present at

all, which then would lead to the observation of the theoretical strength τth. Generally,

such a state will be reached when the dislocation multiplication is slower than the dis-

location escape at the sample surface. This behavior has been proposed by W.D. Nix

and co-workers in [29, 44] and is called Dislocation Starvation.

In a fully dislocation starved specimen the theoretical stress should be observable,

except dislocation nucleation as described by Nix and Lee [14] takes place at the sample

surface. This is probably promoted by the imperfect surface, but anyhow, should only

happen in the deep nanometer regime and is therefore not within the focus of this

work.

Both concepts presented, i.e. dislocation starvation [44] and dislocation source trun-

cation [42], are expected to be responsible for the observed size effect. Today, there is

still an ongoing discussion on the validity and the size regime of these models, which

is mainly caused by the fact that experimental observations do not fully validate any

of these concepts. This might be caused by several additional influences which will be

thoroughly discussed in the next section.
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3 Size Dependent Single Crystal Plasticity

3.4 Influences on Quantitatively Measured Size Dependent

Strengthening Effects

In Fig. 3.1 influences on the size dependency of single crystals proofed by the literature

presented in Tab. 3.1 is schematically presented. Both presented models, i.e. disloca-

tion starvation and dislocation source truncation, are based on a specific distribution of

dislocations and dislocation lengths, which is of course depending on time and strain.

Major influences on the dislocation density are the number and the stability of pinning

points, which are themselves partly controlled by the stacking fault energy. This are,

in principle, material dependent influences, which should be described by any appro-

priate model. Unfortunately, real samples show imperfections such as initial strain

gradients [45, 46], grain boundaries [45] and surface defects like a focused ion beam

(FIB) damage layer [47] or a native oxide layer. These sample imperfections strongly

alter the evolution of the dislocation density, the stability of pinning points and result

in a different number of mobile dislocations. The evolution of mobile dislocations with

time will determine the stress-strain behavior of the sample.

Further influences on the stress-strain behavior are caused by the test conditions,

namely if the experiment is performed in real displacement controlled mode (such as

done in [30, 48]) or in force controlled mode [1, 26], if there are any vibrations of the

setup and if the sample is not properly aligned [49]. In addition, the aspect ratio alters

the free volume which allows dislocations to move and, hence, strongly influences the

hardening behavior [49–51]. Similar effects are caused by a lateral stiff testing setup

which hinders the lateral movement of the sample with respect to the flat punch top

and causes an additional stress component, also resulting in hardening. In summary,

a lot of imperfections coming from the real sample and the experiment itself blur the

stress-strain response of one single sample.

Unfortunately, the above described influences on the stress-strain response have to be

extended when a “yield point vs. sample-size” plot is made. It is inevitable to question

the definition of the yield point in a general manner, which is indeed much more than

answering only a philosophical question. (Plastic) flow leads to an enduring change in

the shape of the material. A simple bow out of a dislocation – as presented in Fig. 2.8a

– is (almost) reversible if the metastable configuration presented in Fig. 2.8b is not

exceeded. Hence, to overcome the elastic (or pseudo-elastic) limit, the dislocation needs

to multiply. The elastic limit is well below the resolution of typical instruments used in

micro-compression and micro-tension experiments and would further only be noticed

when unloading cycles are included3. To overcome this problem a technical yield point

is defined, which is macroscopically taken at 0.2% plastic strain. Unfortunately, the

strain where the yield stress is taken is not standardized and strongly varies (0.2%,

0.5%, 1.0%, 5.0%, 10%, or even 15%). This is clearly above the elastic limit and

leads to an intermixing of different aspects of size dependent plasticity, namely the

size dependency of the yield point and size dependent hardening effects.

3The experiments by Dunstan and Bushby are able to measure the elastic limit on long wires under

torsion as shown in [52].
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3.5 Open Questions

Furthermore, it has to be taken into account that the strength of a material at the

micron scale is a statistical property which requires a sufficient number of samples

to determine not only the mean values of strength, but also the upper and the lower

bound. Unfortunately the mean value does neither describe the lower bound model

(dislocation source truncation) nor the upper bound model (dislocation starvation).

Hence, influences caused by real (imperfect) samples, due to test conditions and by

data evaluation vary the size dependent response of the material, which prevents a

quantification of both models.

3.5 Open Questions

The previously described models, namely dislocation starvation4 and dislocation source

truncation need to be validated. Hereby it is necessary to go beyond measuring solely

the stress strain response of a material. It is inevitable to interlink the mechanical

behavior to the underlying micro-structure. Methods allowing for this are Transmis-

sion Electron Microscopy (TEM) [54, 61, 68] and X-ray μLaue diffraction [48, 69, 70].

In the near future, also coherent X-ray diffraction [71–73] may be able to interlink the

mechanical behavior with the corresponding dislocation structure. But even when the

models are validated and interlinked to different initial dislocation structures funda-

mental questions in (size dependent) plasticity remain.

The effect of the stacking fault energy onto the dislocation mobility is still not fully

understood. This effect is based on the possible split up of a dislocation into partial-

dislocations which are unable to cross-slip [74]. Also, the stability of pinning points

strongly depends on the stacking fault energy [16], but experimental work is lacking.

One further question is also to identify dislocation interactions during strain harden-

ing. Unfortunately – as pointed out in the last section – hardening is often caused by

experimental constraints and imperfections, which obscures the material behavior. It

seems to be more advisable to study hardening phenomenons on intrinsic constraints,

such as grain or twin boundaries. If the intrinsic constraints surpass the instrumen-

tal ones reproducible, inherently material dependent hardening will be observed. The

above described in situ methods are required to go beyond a continuum mechanical

description – which is well known [18, 19] – and describe the discrete interaction of

dislocations with obstacles.

4Currently there is no mechanism based formalism which can be quantified.
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3 Size Dependent Single Crystal Plasticity
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Figure 3.1: Influence of material properties, instrumental constraints and imperfections as well as

data analysis on the measured size dependency.
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3.5 Open Questions

Table 3.1: Literature focusing on different aspects of the sample size effect.

Influence Experiment Simulation

Dislocation Density S.S. Brenner [39]

H. Bei et al. [40]

H. Bei et al. [41]

D.M. Norfleet et al. [53]

S.H. Oh et al. [54]

R. Maaß et al. [55]

H. Tang et al. [56]

H. Tang et al. [57]

C. Motz et al. [58]

J. Senger et al. [51]

Pinning Points S.W. Lee et al. [16]

Surface Nucleation W.D. Nix et al. [14]

Strain Gradients J. Zimmermann et al. [59]

R. Maaß et al. [45]

R. Maaß et al. [46]

C. Motz et al. [60]

FIB-damage D. Kiener et al. [47]

Z.W. Shan et al. [61]

H. Bei et al. [41]

Native Oxide C.A. Volkert et al. [26]

J.R. Greer et al. [27]

J.R. Greer et al. [62]

Instr. Imperfections H. Zhang et al. [63]

Y.S. Choi et al. [64]

C. Kirchlechner et al. [49]

J. Senger et al. [65]

Boundary Conditions D. Kiener et al. [66]

D. Kiener et al. [50]

C. Kirchlechner et al. [49]

J. Senger et al. [51]

F. Roters et al. [67]
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4
μLaue Diffraction: a Tool to Probe

Imperfect Crystals

4.1 Laue Diffraction

Laue diffraction is the oldest X-ray diffraction method [75] and has been suggested

by Max von Laue in order to answer two fundamental questions in modern physics:

(i) What is the nature of X-rays and (ii) does a crystal really consist of periodically

arranged atoms. Max von Laue was therefore awarded with the Nobel Prize for Physics

in 1914. Since then, Laue diffraction has been widely used in Material Science to

analyze single crystalline materials.

The sphere of reflection, today known as Ewald Sphere [76], allows for the pre-

diction of constructive interference at different lattice planes. If a reciprocal lattice

point intersects the Ewald sphere, constructive interference will be observed. In the

monochromatic case (powder diffraction, Fig. 4.1a) the Ewald Sphere is very thin

and the reciprocal lattice points do not necessarily intersect the sphere. However, by

rotating the sample (performing a rocking scan), the reciprocal lattice can be rotated

with respect to the incident beam k0 and at a certain crystal orientation (see Fig.

4.1a) constructive interference will be observed. This time-consuming process leads

to additional problems at the micron scale, which will be discussed later. In contrast

Laue diffraction uses a broad energy band pass1. Thus, the Ewald sphere extends to a

finite volume with radii ranging from k0max to k0min (see Fig. 4.1b). Several reciprocal

lattice points are lying within this volume and all of those will lead to constructive

interference as long as their structure factor is not zero2.

1Also called White X-ray beam.
2In case of FCC crystals the structure factor is unequal zero if h, k, l are all even or all odd, but

equals zero if h, k, l is mixed [77].
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4 μLaue Diffraction: a Tool to Probe Imperfect Crystals

Figure 4.1: Schematic Ewald Sphere (a) of a monochromatic and (b) of a Laue experiment.

A fundamental consequence is, that no sample rotation is required to cause construc-

tive interference, which allows for very fast measurements. Furthermore, all illuminated

crystals will automatically contribute to the pattern. This is of major interest in the

case of single crystalline, micro-mechanical samples [78] since all sub-grains or even all

unexpected, but nevertheless, also present grains will definitely be noticed [45].

However, using a white X-ray beam has a major drawback: The energy of a Laue

spot is unknown and, hence, the Laue pattern can not be used to calculate the lattice

spacing. This leads to a superposition of Laue spots which stem from parallel lattice

planes.

How to Index a Laue Pattern

Fig. 4.2a shows a Laue pattern recorded with an energy ranging from 5-25keV (λ ≈
0.05− 0.25nm) on a copper single crystal. Analyzing the Laue pattern can be divided

in the following steps:

• background subtraction

• choose a set of n Laue spots (see Fig. 4.2b) and measure the angles αij between

the reflections (Fig. 4.2c). Typically n is ranging from 4-7 [79].

• calculate angles between all possible Laue spots. The number of observable spots

is hereby limited by the structure factor and the used energy range.

• compare measured and calculated angles and find the combination with the low-

est error

• check whether Laue spots that are not included in the starting set also match

the solution

In the underlying work indexing was performed by the software package X-ray Micro-

diffraction Analysis Software (XMAS) [81]. The informations obtained from an in-

dexed pattern are manifold: (i) all Laue spots can be assigned to a lattice plane3, as

3Note that there is an superposition of parallel Laue spots, for instance (1 1 1),(2 2 2)...
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4.1 Laue Diffraction

Figure 4.2: (a) Measured Laue pattern; (b) Set of taken Laue spots; (c) Measured angles αij between

the spots; (d) Indexed Laue pattern. The pattern has been measured at the French Beam-

line CRG-IF (BM32) [80] of the European Synchrotron Source (ESRF), the background

is not subtracted.
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4 μLaue Diffraction: a Tool to Probe Imperfect Crystals

for instance shown in Fig. 4.2d. (ii) A rotation matrix CtoS transforming the crystal

coordinate system into the sample coordinate system. (iii) By analyzing the difference

off the measured peak position to the ideal position the deviatoric strain tensor4 could

be derived from the Laue pattern. To analyze also the hydrostatic part it is necessary

to determine the lattice spacing of selected reflections, which can be done by insert-

ing a tunable monochromator into the primary beam. However, this requires a well

calibrated setup.

Limitations of Classical Laue Diffraction and the Need for Small Beam
Sizes

The above described procedure cannot be applied in cases where more than approxi-

mately 10 grains contribute to the Laue pattern [81]. This is simply based on the fact,

that the starting set of spots has to increase (at least four spots per grain) which is

very time-consuming. It is not only a question of computing time, but also a way to

allocate a spot to a specific grain has to be found, which turns out to become almost

impossible if a critical number of grains is present. For instance, in case of copper,

being a FCC structure which shows a low number of reflections, at least 30 Laue spots

are observed in a typical Laue diffraction setup5. If 10 grains are being assumed in

the illuminated volume, the number of observed Laue spots increases to approximately

300, which also leads to overlapping spots as presented in Fig. 4.3c-d. Hence, the use

of Laue diffraction is limited to problems where the grain size is in the range of the

primary beam size (see Ref. [83] and Fig. 4.3a-b).

Figure 4.3: (a,b) Primary beam size in the range of the grain size; (c,d) Primary beam size approxi-

mately 10 times larger then the grain size.

This limits the application of Laue diffraction in Material Science to simple orienta-

tion analysis and to structural investigations6 of single crystals. Real materials are –

4Using the elastic constants of the material allows for the calculation of the stress tensor, as for

instance done in [82]
5Energy is ranging from approximately 5-25keV , 2θcenter = 90◦ [48, 81]
6mostly used in Geology
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4.2 μLaue: The Impact of Dislocations on the Laue Pattern

in most cases – polycrystalline, which led to a diminishing demand of Laue diffraction

during the last three decades. However, the ongoing trend to produce smaller and

smaller X-ray beams at synchrotron sources allows one to study single grain proper-

ties of polycrystalline materials, leading to a renaissance of Laue diffraction: So called

μLaue diffraction.

Using Laue Diffraction at the Micron Scale

μLaue offers several benefits at the micron scale in comparison to monochromatic

diffraction. These advantages are based on the fact that Laue diffraction does not

require any sample rotation as necessary in case of monochromatic experiments. The

center of rotation should – in the monochromatic case – always coincide with the region

of interest (Fig. 4.4), which is very hard to control at the micron scale. Otherwise the

primary synchrotron beam moves on the sample. Furthermore, due to the non-zero

depth of information, it is impossible to stay at a constant illuminated volume. Hence,

rotating the sample always leads to a different illuminated volume, which hinders a

quantitative analysis, except for the case that the entire grain is smaller than the

primary beam size. This disadvantage does not occur with Laue diffraction.

Figure 4.4: The footprint of the primary beam moves on the sample if the rotation axis does not

coincide with the region of interest.

Laue diffraction is routinely used to analyze the orientation of single grains [84, 85]

and measuring the strains in thin metallic films [82, 86]. Using a differential scanning

aperture [87, 88] can further provide three-dimensional strain and orientation distri-

butions with micrometer resolution [89]. This differential scanning method allows for

a depth resolved analyzes of the dislocation density and type, as shown for shock

deformed samples [90] or in the vicinity of interfaces [91–93].

4.2 μLaue: The Impact of Dislocations on the Laue Pattern

It is known that dislocations cause changes in the diffraction peak shape [94]. In

contrast to powder diffraction, where this influence mainly stems from micro-strains,

Laue diffraction is also sensitive to crystal rotations, which is mainly caused by the

storage of GNDs. In this section, the influence of both, SSDs and GNDs will be

discussed. Fig. 4.5 shows two different Laue patterns, (a) containing only SSDs and

(b) containing both, SSDs and GNDs.
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Figure 4.5: (a) Laue pattern of a crystal containing only SSDs and (b) containing both, SSDs and

GNDs.

Geometrically Necessary Dislocations (GNDs)

Geometrically necessary dislocations7 are characterized by a nonzero net-Burgers vec-

tor over a large Burgers circuit. This leads to long range strain fields, which are

responsible for a lattice curvature, such as shown in Fig. 4.6. The lattice curvature

can be interlinked directly to the dislocation density tensor8, as shown by Pantleon [95]

(Eq. 4.1):

κki = ρik − 1

2
δkiρmm (4.1)

where κ is the curvature tensor, ρ is the dislocation density tensor and δ is the

Kronecker-Delta. Since the illuminated volume is of finite size, the diffracting volume

exhibits an orientation gradient leading to an elongated Laue spot9. In Fig. 4.7 a

typical Laue spot shape of a GND-free crystal (a), a crystal containing one type of

GNDs (b) and containing a dislocation wall consisting of one type of dislocations (c)

is shown. Note that for Laue diffraction experiments, where a broad energy band pass

is used, Braggs law is fulfilled for a lattice plane independent of the plane orientation

and though the entire orientation spread will be projected to the detector.

The elliptical Laue spot exhibits two axes: The natural streak axis ξ and the direction

ν perpendicular to it [96]. ξ can be calculated using the Eq. 4.2:

ξ =
u×Ghkl

|u×Ghkl | (4.2)

7At the micron scale better called excess or unpaired dislocations
8The elastic strain tensor is neglected in this case
9A rudimental comparison is the reflection of a circular beam on a bent mirror, which also leads to

an elliptical image of the beam.
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Figure 4.6: (a) Perfect, dislocation free crystal; (b) Crystal containing randomly distributed GNDs on

one slip system; (c) Crystal where GNDs form a sub-grain boundary. Red lines indicate

inserted half-planes which are responsible for forming the dislocation.

Figure 4.7: Laue spot of a (a) perfect, GND-free crystal; (b) of a crystal containing randomly dis-

tributed GNDs on one slip system; (c) of a crystal, where GNDs form a sub-grain bound-

ary.

The direction of the measured streaks can be used to analyze the type of stored

GNDs [96]. If pronounced streaking occurs, i.e. if the peak width in streaking direction

is large compared to the width perpendicular to it (σξ 	 σν), the density of GNDs

can be calculated according to Eq. 4.3 [96],

FWHM ξ = ρGND bp |Ghkl | L
√(

1− u
Ghkl

|Ghkl |
)2

(4.3)

with FWHM ξ being the measured Full Width at Half Maximum (FWHM) of the

peak in direction ξ, ρGND being the density of GNDs, bp being the projection of the

Burgers vector on the primary beam path, Ghkl being the diffraction vector and L the

length of the primary beam path.

Statistical Stored Dislocations

If – in contrast to the above described case – the peak exhibits a symmetric shape, the

number of GNDs can be neglected. However, in both cases, the total stored dislocation

density is proportional to the peak width in the direction ν according to Eq. 4.4.

FWHM ν =
|b| |Ghkl |
8(1− ν)

√
ρ l

π
(4.4)
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with |b| being the magnitude of the Burgers vector, ρ being the total stored disloca-

tion density and l being a constant in the order of unity. If no peak streaking occurs,

FWHM ν is proportional to the SSD density [96].

Dislocation Boundaries

Due to the Peach-Koehler-Force (see Eq. 2.1) dislocations form patterns, resulting in

regions with high dislocation density and regions with low dislocation density. Accord-

ing to Ice and Barabash [96] GNDs can be organized either individually, as inciden-

tal dislocation boundaries, as geometrically necessary boundaries or even in lamellar

bands. However, it should be noted that such boundaries can be detected by split in-

tensities. Probably the easiest dislocation boundary is a sub-grain boundary as shown

in Fig. 4.6c resulting in two well separated Laue spots as shown in Fig. 4.7c. In fact, to

observe two separated maxima the misorientation θ between two different cell blocks

needs to exceed a critical angle. This angle depends not only on the instrumental

resolution, but also on the averaged peak width of the cell blocks (cb). A criterion for

split intensities is given in [96]:

K =
θ

FWHM cb
(4.5)

According to Ice and Barabash: “If K < 1, the intensity distribution of white beam

reflection is continous. If K > 1 the white beam reflection is discontinous and the

intensity profile along the streak consists of discrete spikes.” [96]

A Critical Discussion on Experimental Limitations

Besides GNDs elastic strains can also contribute to the lattice curvature, which can

be neglected in most cases. The elastically caused lattice curvature ÿ is proportional

to the momentum M , which scales according to Eq.4.6, Eq.4.7 and Eq.4.8 reciprocally

with the height h of the sample (E being the Elastic Modulus, I is being the Area

Moment of Inertia, W being Elastic Section Modulus and bb being the width of the

bending beam):

ÿ = −MB

EI
(4.6)

σ =
MB

W
=

MB

I
e =

6MB

bbh2
(4.7)

ÿ = − σ

E

2

h
(4.8)

Thus, the contribution of the elastic curvature to the entire curvature increases with

decreasing sample sizes and increases with the ratio σ/E. In contrast, the peak width

caused by GNDs is linearly proportional to the density of GNDs (see Eq. 4.3), which

is independent of the sample size.

The plot presented in Fig. 4.8 estimates the influence of elastically caused lattice

curvature with assumptions given below:
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4.3 μLaue Diffraction and the Size Effect

• only one type of GNDs is assumed: b equals the sample x axis; u is parallel to y

• a momentum is applied at both ends of the bending beam (= sample), leading

to a lattice curvature purely caused by elastic strains

• the primary beam size is 1μm in each case

• the instrumental broadening was measured at BM32 [80] of the ESRF syn-

chrotron source using a Ge-wafer

Figure 4.8: Contribution of elastic curvature tensor (red) and GNDs (blue) to the diffraction peak

width. Red curves are calculated for different ratios of σ/E with the ratio given next to

the line. In addition, the black curves are calculated for Cu (200MPa stress) and Mo

(2000MPa stress), which are typical values obtainable in micro-compression experiments.

Blue lines represent different GND densities given on the right side in m−2. A peak width

below the resolution limit (measured on a Ge-wafer) can not be measured (gray area).

The plot can be used to estimate the influence of the elastic curvature at different

stress levels. For instance, copper micro samples with a diameter of 3μm typically

exhibit – depending on the orientation – a flow stress of 100MPa-200MPa (see the

lower black curve in Fig. 4.8). Since the stress in the sample is always lower than

the yield stress, the elastically caused curvature needs to be smaller than described by

the black line. Since the instrumental resolution (0.06◦) is higher than the maximum

elastically caused curvature of a 3μm thick sample, the elastic curvature can always

be neglected in these dimensions. In contrast in Molybdenum – which is able to

sustain much more stress [40] – the critical diameter where an elastic curvature can be

neglected is much higher.

4.3 μLaue Diffraction and the Size Effect

R. Maaß et al. [69] presented the first μLaue experiments in the year 2006, focusing

on the defect structure in micron sized compression samples. With their studies, they
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impressively proved that Laue diffraction can contribute to the understanding of size

dependent plasticity. The main findings are the presence of peak streaking in FIB-

milled compared to Deep Reactive Ion Etched (DRIE) Si pillars with a diameter of

2.7μm and 1μm respectively and the fact that the investigated Au and Al pillars are

far from being perfect single-crystals.

The next milestone in the understanding of size dependent plasticity was the imple-

mentation of an in situ μLaue testing equipment at the Swiss Light Source (SLS) [97],

which allows for interlinking the defect structure with the stress strain response. It has

been found, that the Ni micro-pillars with a diameter of 10μm containing a small-angle

grain boundary exhibiting according to R. Maaß et al. “... a strength higher or within

the upper bounds of previously published values” [46].

Further in situ experiments by Maaß et al. [97] showed – for the first time – a

couple of deformation features, which can not only be related to the FIB-milling of the

samples. All five observed Laue spots10 indicate strain gradients (peak streaking) in a

2μm sized FIB-milled Au pillar. This continuous streaking increases during straining,

but: “During the first strain burst the peak sharpens and a satellite peak is formed,...”

[97]. The origin of the initial strain gradient is questionable and still under debate.

However, the increase of peak width during straining with an abrupt formation of a

sub-grain is the major finding of this study. A 10μm thick pillar shows less pronounced

streaking in the initial state, but nevertheless also the formation of a satellite peak at

relatively low strains and stresses.

Due to the findings in [46] additional studies, summarized in the publication “On the

initial microstructure of metallic micropillars” [45], were performed. Micro-structural

features, such as strain gradients, sub-grain boundaries and twins were found in virgin

pillars, especially in pillars of small dimensions. The authors concluded that these

features are partly responsible for the huge scatter in the observed yield stress values.

A.S. Budiman et al. [70] showed that the diffraction peak width of a 580nm sized

Au pillar did not significantly increase during deforming to 0.35 strain. Furthermore,

Budiman et al. found no evidence of lattice rotations and concluded: “... plasticity

here is not controlled by strain gradients, but rather by dislocation source starvation,

...” [70]. This is in contradiction to the observations of Maaß et al. [46, 97].

Recently, Maaß et al. suggested a Laue diffraction based criterion for the definition

of yield, the Laue yield [55] . The definition is based on observations made during their

numerous experiments: Each Laue spot continuously moves in any direction during

the first part of loading, but abruptly changes the moving-path and, then, follows the

predicted direction. The stress measured at the point where the Laue spot changes

its moving direction is called Laue yield. This is somehow expected: The position

of each Laue spot depends on the deviatoric strains (shape of the unit cell) and the

orientation of the crystal. The peak movement during the first loading part might be

addressed to deviatoric strains. The instrumental constraints during the test can then

lead to a sample rotation, which would be responsible for changes in peak movement.

10Due to using Laue in transmission geometry, the number of observable Laue spots is very low for

experiments by Maaß and co-workers [97].
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Table 4.1: μ Laue experiments contributing to the understanding of size dependent plasticity

Material Main Findings Mode

R. Maaß et al. [69] Si, Au, Al FIB-damage present; Initially

not perfectly single crystalline

ex situ

R. Maaß et al. [46] Ni Increase of yield stress due to a

low-angle grain boundary

ex and

in situ

R. Maaß et al. [97] Au [46̄3] Slip on unpredicted slip system

for small pillar-diameters and on

a predicted system for larger di-

ameters

in situ

R. Maaß et al. [98] Cu ≈ [001] Stress is inhomogeneous along

the sample height; Comparison

of μLaue and Electron Backscat-

ter Diffraction (EBSD)

in situ

R. Maaß et al. [45] Au, Cu,

Ni, Ni-Ti,

sput-

tered Au

Micro-structural features: strain

gradients, sub-grains, twins

ex situ

A.S. Budiman et al. [70] Au No peak broadening; Experi-

ments fit to dislocation starva-

tion model

ex situ

R. Maaß et al. [55] Au Substructures form well below

0.05 strain

in situ

R. Maaß et al. [99] Au Definition of the Laue yield;

Strain hardening

in situ

C. Kirchlechner et al. [48] Cu 〈234〉 Early activation of unpredicted

slip system; Schematic slip

mechanism maps

ex situ

J. Zimmermann et al. [59] Mo-

whiskers

Peak broadening due to FIB-

milling

ex situ

C. Kirchlechner et al. [78] Cu 〈234〉 Instrumental setup; Misaligned

sample

in situ

C. Kirchlechner et al. [49] Cu 〈234〉 Impact of instrumental con-

straints and misalignment on the

peak shape

in situ

C. Kirchlechner et al. [100] Cu 〈234〉 μLaue tensile test; Dislocation

structure gets into a steady state

in situ
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4 μLaue Diffraction: a Tool to Probe Imperfect Crystals

The peak movements during the elastic part should be minor and should, according

to Hooke’s law increase linearly with the applied stress. However, this did not occur.

Furthermore, the experiments performed on single slip oriented Cu (C. Kirchlechner

unpublished results and [49]) show that the Laue yield is a measure for the perfection

of a compression experiment.

To summarize, μLaue experiments show that samples at the micron scale, which

were expected to be single crystalline, showed features like strain gradients, sub-grains

and twins [45], all known to change the strength of a material. The continuous increase

of the strain gradients (streaks) typically leads to the formation of a satellite peak [97],

evidencing the formation of a sub-grain. This is in contradiction to other experiments

[70], which did not reveal significant changes of the diffraction peak shape. Studies

focusing on size effects of plasticity are summarized in Tab. 4.1.
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The flow stress of micron sized single crystalline samples depends on the sample size,

which is not reflected in classical theories. Prominent models explaining this phe-

nomenon, i.e. dislocation starvation and dislocation source truncation, have not been

validated yet. This is mainly due to the fact that instrumental constraints and ex-

perimental imperfections obscure the mechanical response of single crystalline micro-

pillars. For a thorough understanding it is necessary to link the stress-strain response

to the initial and evolving micro-structure, which requires appropriate in situ meth-

ods. The aim of this thesis is to provide a new insight into size dependent plasticity

processes by combining two novel methods, namely constraint free micro-tensile exper-

iments with in situ μLaue diffraction. In the following short summary the experimental

work performed during this thesis is presented.

5.1 Dislocation storage in single slip oriented Cu micro-tensile

samples: New insights by X-ray microdiffraction

Main focus of this work1 is on the type of stored GNDs in micron sized tensile samples

which were produced using the FIB workstation Zeiss 1525XB similar to Kiener et

al. [30]. The samples were oriented for single slip with a nominal straining axis parallel

to the [2 3 4] crystal axis. The tensile tests have been performed in the new in situ

SEM Zeiss 9822 using the ASMEC UNAT micro-indenter. Sample A was strained up

to 0.04 engineering strain, sample B and C up to 0.25 engineering strain.

The μLaue diffraction experiments have been carried out at the French beamline

CRG-IF [80] at the exit of the BM32 bending magnet synchrotron source. Hereby, the

1Philosophical Magazine 91 (7): 1256-1264 (2011)
2The SEM was modified by mounting an additional vacuum chamber.
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samples were post mortem raster scanned with a step size of 1μm.

The findings of this study are:

• The observed stress strain behavior in 3μm sized tensile samples is reproducible

with a constant yield stress up to 0.18 strain, where hardening sets in.

• The hardening rates at strains higher than 0.18 are identical for sample B and C3.

• The sample strained for 0.04 engineering strain showed peak streaking corre-

sponding to a lower ranked slip system in the sample center, and no peak streak-

ing in the vicinity of the sample base and head.

• The samples strained to 0.25 strain showed the storage of GNDs on the primary

slip system in the vicinity of the sample base and head and a more complicated

peak shape in the sample center, which is characterized by the formation of

sub-grains and by the activation of more than just the primary slip system.

• The sample rotations are in agreement with Schmid’s predictions for single slip.

• Based on these observations a schematic slip mechanism map can be drawn.

It can, therefore, be concluded, that at low strains a lower ranked (classically unpre-

dicted) slip system is activated. This might well be possible since not only the Schmid

factor, but also the product given by the Schmid factor times the dislocation source

lengths determines the activated system. Furthermore, the complicated dislocation

structures in the sample center at higher strains are a direct micro-structural evidence

for the observed hardening. However, in situ μLaue diffraction is required to observe

and quantify the evolving dislocation structure.

5.2 In situ μLaue: Instrumental setup for the deformation of

micron sized samples

The need for in situ μLaue experiments requires an appropriate straining device for

BM32. In this work4 we present a novel, customer designed straining device which

fulfills several requirements. These are:

• The device has to fit to the instrumental stage of the beamline [80].

• The primary and secondary beam must not be obstructed.

• Sample and counter-body must be independently aligned with one optical mi-

croscope.

• Vibrations coming from the ground have to be damped.

• Force and displacement have to be recorded simultaneously.

3Sample A was strained to only 0.04 engineering strain.
4Advanced Engineering Materials doi: 10.1002\adem.201000286
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The device works in displacement controlled loop mode. Force is measured using the

eigenfrequency of a 30μm thick tungsten wire with a resolution of approximately 10μN .

Displacement is measured and controlled at the fixed body joint of the Piezo Pu-38

(piezosystems Jena) and allows for positioning in the nm range. Fluorescence scans,

μLaue image (raster) scans and in situ deformation are presented in the manuscript.

Furthermore, concepts for analyzing the diffraction data and an example of a com-

pression pillar (single slip oriented, 7× 7× 21μm3) is presented showing the formation

of huge streaks and sub-grains due to misalignment. Finally, the impact of the “tail”

of the the primary synchrotron beam on the applicability of μLaue diffraction in sub-

micron dimensions is discussed.

5.3 Impact of Instrumental Constraints and Imperfections on

the Dislocation Structure in micron sized Cu Compression

Pillars

Several studies (e.g. [1,26,27]) reported the increase of the yield stress during uniaxial

compression experiments with decreasing sample size, whereas the power law exponent

m as introduced in Eq. 3.4 differs from tensile experiments. This might be caused by

instrumental constraints, as already discussed in [66].

In this study5 the impact of instrumental constraints and imperfections – mainly

misalignment – has been analyzed using in situ μLaue diffraction. Three initially

identical compression pillars with a size of 7 × 7 × 21μm3 have been tested at BM32

of the ESRF synchrotron source, using the previously described straining device [78].

During straining the primary beam has been placed in the sample center. The μLaue

experiments are complemented with post mortem SEM analysis. The main findings

are:

• In the misaligned sample streaking is already observed at low strains, which then

further increases. Streaking was, most likely, caused by edge-type GNDs on the

slip system with the fifth highest Schmid factor. These dislocations are stored

at low strains to accommodate the inclination between flat punch indenter and

pillar top surface, and further hinder dislocation movement on the primary slip

system. This leads to a polygonization of the lattice curvature forming several

subgrains, evidenced by streak splitting into satellite peaks.

• In the case of an ideally aligned compression sample no excess dislocations are

stored at low strains. This observation holds true for a region close to the sample

center and for engineering strains lower than 0.18.

• In all cases GNDs are stored in the vicinity of the sample top surface and the

sample bottom. These GNDs cannot penetrate through these surfaces and are

evidence of a geometrical constraint. Furthermore, these dislocations confine the

5Acta Materialia submitted manuscript (2011)
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volume which is able to freely glide and results in additional hardening (solely

caused by the sample geometry).

Additional evidence for the constraint deformation has been found in the stress

strain curve: The stress necessary to re-initiate plastic deformation after unloading

is lower than before unloading. This behavior is caused by the lateral stiff testing

equipment. This causes the formation of a lateral force which increases with ongoing

plastic deformation, but vanishes when an unloading cycle is included [49].

In summary, instrumental constraints and imperfections in micron sized compression

samples hinder dislocation movement and affect the stress strain response of a material,

especially the hardening behavior. It is therefore questionable if micro-compression

experiments on single crystalline pillars are a suitable tool to explore plasticity in

small dimensions.

5.4 Expected and Unexpected Plastic Behavior at the Micron

Scale: An in situ μLaue Tensile Study

In macroscopic dimensions compression tests are avoided, since undefined boundary

conditions (e.g. friction, limited aspect ratio6) obscure the stress-strain behavior. The

impact of the test conditions can – at least for the better part – be avoided when

uniaxial tensile experiments are performed. In this study7 instrumental constraints

were excluded by performing tensile tests in order to unravel processes during the

plastic deformation in confined volumes.

The samples have been produced using a hammer-like sample shape allowing for an

accurate alignment in an optical microscope. During straining the primary X-ray beam

has been placed in the sample center and load, displacement and diffraction images

have been recorded simultaneously using the previously described straining device [78].

Furthermore, the samples have been raster-scanned before and after deformation.

Three different behaviors have been observed:

• Misaligned behavior: A high certainty exists that a sample is misaligned. This

leads to a disastrous misinterpretation of the underlying plasticity, but fortu-

nately can be quantified with μLaue diffraction techniques [49].

• Expected, bulk like behavior: The sample deforms on the primary slip system.

No slip steps or peak streaking of an secondary slip system has been observed.

The diffraction peak shape in the sample center is circular.

• Unexpected behavior: A secondary slip system is activated and stores GNDs at

low strains. The streaking – and therefore the GND density – increases during

straining, but is instantly reduced in a first load drop. During subsequent defor-

mation the peak streaking reduces and the GND density in the sample center is

6Otherwise buckling occurs.
7in preparation
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reducing due to the escape of GNDs at the sample surface. The sample center is

ending up with approximately the same peak width as in the initial state.

In the case of the unexpected and the expected behavior the orientation changes

of the sample center predominately follow the predictions of Schmid [101]. However,

a slight deviation of this ideal rotations can be seen indicating the activation of a

secondary slip system well before the geometrical predictions (see Fig. 2.7).

Both – the expected and the unexpected behavior – are ending up with a nearly

GND free sample center. In the vicinity of the sample head and base edge-type GNDs

are stored.8 These dislocations are responsible for the observed rotation of the sample

center and are evidence of the laterally stiff testing equipment. However, since the

sample aspect ratio is 1:5 the influence of this border region to the stress-strain behavior

can be neglected. The assumption that instrumental constraints do not significantly

influence the material behavior is valid.

Finally, the observations in this study document that each yield criterion at low

strains probes the initial dislocation structure. The yield point varies from the Peierls

stress to the theoretical stress at low strains. Since a steady state GND density is

reached it can be concluded that a steady state dislocation structure might be reached

in the observed stress plateau and then a technical yield criterion defined in the regime

of the stress-plateau is valid and feasible at the micron scale.

8Post mortem TEM analysis of this region proofed the described μLaue observations. The TEM

analysis have been performed by P.J. Imrich in [102].
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6
Conclusion

The yield point of single crystalline, micron sized samples is size dependent, but the

validation of the two most promising models – namely dislocation source size truncation

[42] and dislocation starvation [29,44] – is hindered by imperfections and instrumental

constraints during compression tests. This was proven using a novel in situ μLaue

testing equipment established at the French beamline CRG-IF at the BM32 bending

magnet synchrotron source of the European Synchrotron Radiation Facility (ESRF).

Even though μLaue diffraction allows for excluding misaligned (imperfect) samples it

is impossible to avoid the applied constraints during compression tests.

To avoid any instrumental constraints tensile tests have to be performed. If so, two

inherently material dependent behaviors have been observed: (i) Expected, bulk like

behavior where slip takes place on the primary slip system and no GNDs are stored

at all. (ii) Unexpected behavior, where an unpredicted slip system is activated at low

strains and stores GNDs. These GNDs pile-up, most likely at a native oxide layer or

a FIB-damaged surface zone, but break through the layer and escape at the sample

surface when a sufficiently high stress is applied. In both cases a stress plateau – which

does not depend on the behavior but only on the size of the specimen – is formed. A

technical yield criterion defined at these strains is valid and feasible at the micron scale

and most likely probes a steady state dislocation structure.
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[11] H.P. Stüwe. Einführung in die Werkstoffkunde, chapter Plastische Verformung,

page 106. B.I. Wissenschaftsverlag, 1978.

[12] G. Gottstein. Physikalische Grundlagen der Materialkunde, chapter Der atom-

istische Aufbau der Festkörper, pages 36–41. Springer, 2001.

[13] F. C. Frank and W. T. Read. Multiplication processes for slow moving disloca-

tions. Phys. Rev., 79(4):722–723, 1950.

[14] W. D. Nix and S.W. Lee. Micro-pillar plasticity controlled by dislocation nucle-

ation at surfaces. Philosophical Magazine, 91(7):1084–1096, 2011.

45



References

[15] J. Weertmann and J. R. Weertmann. Elementary Dislocation Theory, chapter

Dislocation Multiplication, pages 123–126. Oxford University Press, 1992.

[16] S.W. Lee and W.D. Nix. Geometrical analysis of 3D dislocation dynamics sim-

ulations of fcc micro-pillar plasticity. Materials Science and Engineering: A,

527(7-8):1903 – 1910, 2010.

[17] J. Weertmann and J. R. Weertmann. Elementary Dislocation Theory, chapter

Image Forces, pages 168–173. Oxford University Press, 1992.

[18] E. O. Hall. The deformation and ageing of mild steel .3. discussion of results.

Proceedings of the Physical Society of London Section B, 64(381):747–753, 1951.

[19] N. J. Petch. The cleavage strength of polycrystals. Journal of the Iron and Steel

Institute, 174(1):25–28, 1953.

[20] E. Arzt. Size effects in materials due to microstructural and dimensional con-

straints: A comparative review. Acta Materialia, 46(16):5611 – 5626, 1998.

[21] N.A. Fleck, G.M. Muller, M.F. Ashby, and J.W. Hutchinson. Strain gradient

plasticity: Theory and experiment. Acta Metallurgica et Materialia, 42(2):475 –

487, 1994.

[22] J. S. Stölken and A. G. Evans. A microbend test method for measuring the

plasticity length scale. Acta Materialia, 46(14):5109 – 5115, 1998.

[23] J. G. Swadener, E. P. George, and G. M. Pharr. The correlation of the in-

dentation size effect measured with indenters of various shapes. Journal of the

Mechanics and Physics of Solids, 50(4):681 – 694, 2002.

[24] W.D. Nix and H. Gao. Indentation size effects in crystalline materials: A law

for strain gradient plasticity. Journal of the Mechanics and Physics of Solids,

46(3):411 – 425, 1998.

[25] D.M. Dimiduk, M.D. Uchic, and T.A. Parthasarathy. Size-affected single-slip

behavior of pure nickel microcrystals. Acta Materialia, 53(15):4065 – 4077, 2005.

[26] C. A. Volkert and E. T. Lilleodden. Size effects in the deformation of sub-micron

Au columns. Philosophical Magazine, 86:5567–5579, 2006.

[27] J.R. Greer, W.C. Oliver, andW.D. Nix. Size dependence of mechanical properties

of gold at the micron scale in the absence of strain gradients. Acta Materialia,

53(6):1821 – 1830, 2005.

[28] J.R. Greer, W.C. Oliver, and W.D. Nix. Corrigendum to size dependence in me-

chanical properties of gold at the micron scale in the absence of strain gradients

[Acta Mater 53 (6) (2005) 1821-1830]. Acta Materialia, 54(6):1705 – 1705, 2006.

[29] J. R. Greer and W. D. Nix. Nanoscale gold pillars strengthened through dislo-

cation starvation. Physical Review B, 73(24):245410, 2006.

46



References

[30] D. Kiener, W. Grosinger, G. Dehm, and R. Pippan. A further step towards an

understanding of size-dependent crystal plasticity: In situ tension experiments

of miniaturized single-crystal copper samples. Acta Materialia, 56(3):580 – 592,

2008.

[31] A.S. Schneider, C.P. Frick, B.G. Clark, P.A. Gruber, and E. Arzt. Influence of

orientation on the size effect in bcc pillars with different critical temperatures.

Materials Science and Engineering: A, 528(3):1540 – 1547, 2011.

[32] A.S. Schneider, B.G. Clark, C.P. Frick, P.A. Gruber, and E. Arzt. Effect of

orientation and loading rate on compression behavior of small-scale Mo pillars.

Materials Science and Engineering: A, 508(1-2):241 – 246, 2009.

[33] A.S. Schneider, B.G. Clark, C.P. Frick, P.A. Gruber, and E. Arzt. Corrigen-

dum to effect of orientation and loading rate on compression behavior of small-

scale mo pillars [Mater. Sci. Eng. a 508 (2009) 241-246]. Materials Science and

Engineering: A, 527(4-5):1280 – 1280, 2010.

[34] J.Y. Kim, D. Jang, and J.R. Greer. Tensile and compressive behavior of tung-

sten, molybdenum, tantalum and niobium at the nanoscale. Acta Materialia,

58(7):2355 – 2363, 2010.

[35] J.Y. Kim and J.R. Greer. Tensile and compressive behavior of gold and molyb-

denum single crystals at the nano-scale. Acta Materialia, 57(17):5245 – 5253,

2009.

[36] M.D. Uchic, P.A. Shade, and D.M. Dimiduk. Plasticity of micrometer-scale single

crystals in compression. Annual Review of Materials Research, 39(1):361–386,

2009.

[37] G. Dehm. Miniaturized single-crystalline fcc metals deformed in tension: New

insights in size-dependent plasticity. Progress in Materials Science, 54(6):664 –

688, 2009.

[38] O. Kraft, P. A. Gruber, R. Mönig, and D. Weygand. Plasticity in confined

dimensions. Annual Review of Materials Research, 40(1):293–317, 2010.

[39] S.S. Brenner. Growth and properties of whiskers. Science, 128(3324):569–575,

1958.

[40] H. Bei, S. Shim, E.P. George, M.K. Miller, E.G. Herbert, and G.M. Pharr.

Compressive strengths of molybdenum alloy micro-pillars prepared using a new

technique. Scripta Materialia, 57(5):397 – 400, 2007.

[41] H. Bei, S. Shim, G.M. Pharr, and E.P. George. Effects of pre-strain on the

compressive stress-strain response of Mo-alloy single-crystal micropillars. Acta

Materialia, 56(17):4762 – 4770, 2008.

47



References

[42] T. A. Parthasarathy, S. I. Rao, D. M. Dimiduk, M. D. Uchic, and D. R. Trinkle.

Contribution to size effect of yield strength from the stochastics of dislocation

source lengths in finite samples. Scripta Materialia, 56(4):313 – 316, 2007.

[43] K.S. Ng and A.H.W. Ngan. Breakdown of Schmid’s law in micropillars. Scripta

Materialia, 59(7):796 – 799, 2008.

[44] W. D. Nix, J. R. Greer, G. Feng, and E.T. Lilleodden. Deformation at the

nanometer and micrometer length scales: Effects of strain gradients and disloca-

tion starvation. Thin Solid Films, 515(6):3152 – 3157, 2007.

[45] R. Maaß, S. Van Petegem, J. Zimmermann, C.N. Borca, and H. Van Swygen-

hoven. On the initial microstructure of metallic micropillars. Scripta Materialia,

59(4):471 – 474, 2008.

[46] R. Maaß, S. Van Petegem, D. Grolimund, H. Van Swygenhoven, and M.D. Uchic.

A strong micropillar containing a low angle grain boundary. Applied Physics

Letters, 89, 2007.

[47] D. Kiener, C. Motz, M. Rester, M. Jenko, and G. Dehm. FIB damage of Cu and

possible consequences for miniaturized mechanical tests. Materials Science and

Engineering: A, 459(1-2):262 – 272, 2007.

[48] C. Kirchlechner, D. Kiener, C. Motz, S. Labat, N. Vaxelaire, O. Perroud, J. S.

Micha, O. Ulrich, O. Thomas, G. Dehm, and J. Keckes. Dislocation storage

in single slip-oriented Cu micro-tensile samples: new insights via x-ray microd-

iffraction. Philosophical Magazine, 91(7):1256–1264, 2011.

[49] C. Kirchlechner, J. Keckes, W. Grosinger, M.W. Kapp, J.S. Micha, O. Ulrich,

and G. Dehm. Impact of instrumental constraints and imperfections on the

dislocation structure in micron sized Cu pillars. Acta Materialia, submitted

manuscript, 2011.

[50] D. Kiener, C. Motz, and G. Dehm. Micro-compression testing: A critical discus-

sion of experimental constraints. Materials Science and Engineering: A, 505(1-

2):79 – 87, 2009.

[51] J. Senger, D. Weygand, C. Motz, P. Gumbsch, and O. Kraft. Aspect ratio and

stochastic effects in the plasticity of uniformly loaded micrometer-sized speci-

mens. Acta Materialia, In Press:–, 2011.

[52] A. J. Bushby and D. J. Dunstan. Size effects in yield and plasticity under uniax-

ial and non-uniform loading: Experiment and theory. Philosophical Magazine,

91(7):1037–1049, 2011.

[53] D.M. Norfleet, D.M. Dimiduk, S.J. Polasik, M.D. Uchic, and M.J. Mills. Dis-

location structures and their relationship to strength in deformed nickel micro-

crystals. Acta Materialia, 56(13):2988 – 3001, 2008.

48



References

[54] S.H. Oh, M. Legros, D. Kiener, and G. Dehm. In situ observation of dislocation

nucleation and escape in a submicrometre aluminium single crystal. Nat Mater,

8(2):95–100, 2009.

[55] R. Maaß, Van Petegem S., Ma D., Zimmermann J., Grolimund D., Roters F.,

Van Swygenhoven H., and Raabe D. Smaller is stronger: The effect of strain

hardening. Acta Materialia, 57(20):5996 – 6005, 2009.

[56] H. Tang, K. W. Schwarz, and H. D. Espinosa. Dislocation escape-related size

effects in single-crystal micropillars under uniaxial compression. Acta Materialia,

55(5):1607–1616, 2007.

[57] H. Tang, K. W. Schwarz, and H. D. Espinosa. Dislocation-source shutdown

and the plastic behavior of single-crystal micropillars. Physical Review Letters,

100(18):185503, 2008.

[58] C. Motz, D. Weygand, J. Senger, and P. Gumbsch. Initial dislocation structures

in 3-D discrete dislocation dynamics and their influence on microscale plasticity.

Acta Materialia, 57(6):1744 – 1754, 2009.

[59] J. Zimmermann, S. Van Petegem, H. Bei, D. Grolimund, E.P. George, and H. Van

Swygenhoven. Effects of focused ion beam milling and pre-straining on the mi-

crostructure of directionally solidified molybdenum pillars: A laue diffraction

analysis. Scripta Materialia, 62(10):746 – 749, 2010.
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