Inhaltsverzeichnis

1	Aufgabenstellung	1
2	Zusammenfassung	2
	2.1 Herkunft der Probe	2
	2.2 Rohgutanalyse	3
	2.3 Magnetscheidung	5
	2.3.1 Versuche am Institutsmagnetscheider	5
	2.3.2 Versuche am Magnetscheider der Fima IFE in Waidhofen	7
	2.3.3 Versuche am Magnetscheider der Fima IFE am Erzberg	8
	2.4 Entschwefelungsversuche	10
3	Rohgutanalyse	11
	3.1 Aufgabenstellung	11
	3.2 Probenbeschreibung	11
	3.3 Versuchsdurchführung	12
	3.3.1 Schwimm-Sink-Analyse	13
	3.3.2 Suszeptibiltätsanalyse mit Frantz-Isodynamikscheider	14
	3.4 Auswertung	15
	3.4.1 Schwimm-Sink-Analyse	15
	3.4.2 Suszeptibiltätsanalyse mit Frantz-Isodynamikscheider	17
	3.4.3 Chemische Analyse	18
	3.4.4 HR-Schaubilder	19
	3.4.4.1 HR-Schaubilder für Fe	20
	3.4.4.2 HR-Schaubild für SiO ₂	20
	3.5 Mineralzusammensetzung	20
	3.6 Diskussion	22
4	Magnetscheidung	24
	4.1 Aufgabenstellung	24
	4.2 Versuchsdurchführung	24
	4.2.1 Einfluss der Aufgaberate auf den Magnetscheidungserfolg	24
	4.2.1.1 Technische Beschreibung des Magnetscheiders	24
	4.2.1.2 Versuchsbeschreibung	26
	4.2.1.2.1 Probenbeschreibung	26
	4.2.1.2.2 Versuchsdurchführung	. 27
	4.2.1.2.2.1 Froude-Zahl	27
	4.2.1.2.2.2 Trennschneidenstellung	27
	4.2.1.2.2.3 Aufgabemassenstrom	28
	4.2.1.3 Versuchsauswertung	28
	4.2.1.4 Versuchsergebnisse	31
	4.2.1.5 Diskussion	31
	4.2.2 Versuche mit dem Magnetscheider der Firma IFE	32
	4.2.2.1 Technische Beschreibung	32
	4.2.2.1.1 Vermessung des Magnetfeldes	. 34
	4.2.2.1.1.1 Messung der Feldes über den Umfang	36
	4.2.2.1.1.2 Messung des Feldes in radialer Richtung	. 37
	4.2.2.1.1.3 Messung des Feldes über die Trommellänge	. 38
	4.2.2.1.2 Gewählte Einstellungen	. 38
	4.2.2.1.2.1 Froude-Zahl	38
	4.2.2.1.2.2 I rennschneidenstellung	. 39
	4.2.2.1.2.3 Autgabemassenstrom	. 39
	4.2.2.2 Versuchsbeschreibung	41
	4.2.2.2.1 Probebeschreibung	41
	4.2.2.2.2 Versuchsquirchtung	41
	4.2.2.5 Versuchsauswertung	43
	4.2.2.3.1 1 astversuche in waldholen an der Ybbs	43

4.2.2.3.2 Studenprobe 12^{00} - 13^{00} h (der Tastversuche)	45
4.2.2.3.3 Auswertung der Versuche am Erzberg	46
4.2.2.3.4 Vergleich der Ergebnisse der Stundenprobe 12 ⁰⁰ -13 ⁰⁰ h	48
4.2.2.4 Versuchsergebnis	49
4.2.2.5 Diskussion	50
5 Entschwefelung	52
5.1 Aufgabenstellung	52
5.2 Schwefeldioxid	52
5.2.1 Beschreibung des Schadstoffes Schwefeldioxid	52
5.2.2 Grenzwerte für SO ₂	53
5.3 Versuchsanlage zur Entschwefelung bei Raumtemperatur	54
5.3.1 Versuchsaufbau	54
5.3.1.1 Gaszusammensetzung	55
5.3.1.2 Verwendete Probe	55
5.3.1.3 Theoretische Berechnung des Druckverlustes im Festbettreaktor	56
5.3.1.4 Vorversuche mit Umgebungsluft	58
5.3.1.5 Durchströmungsversuche mit SO ₂	62
5.3.1.5.1 Berechnung der maximalen Schwefelaufnahme	62
5.3.1.5.2 Versuchsablauf	63
5.3.1.5.3 Auswertung der Versuche	65
5.3.1.5.4 Diskussion	65
5.4 Versuchsreaktor für höhere Temperaturen	66
6 Literaturverzeichnis	68

Verzeichnis der Schaubilder

Schaubild 3.1	GGS-Netz der Siebanalyse des Rohgutes 1,6/0mm
Schaubild 3.2	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Kornklasse 6300/4000µm Darstellung des der Masse des Sinkgutes über dem spez. Volumen
Schaubild 3.3	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Kornklasse 1600/1000µm Darstellung des der Masse des Sinkgutes über dem spez. Volumen
Schaubild 3.4	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Kornklasse 710/500µm Darstellung des der Masse des Sinkgutes über dem spez. Volumen
Schaubild 3.5	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Kornklasse 500/315µm Darstellung des der Masse des Sinkgutes über dem spez. Volumen
Schaubild 3.6	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Kornklasse 200/100µm Darstellung des der Masse des Sinkgutes über dem spez. Volumen
Schaubild 3.7	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Darstellung der summierten Schwimmgutanteile über der Trenndichte
Schaubild 3.7a	Darstellung des Sideroplesitgehaltes über der mittleren Dichte
Schaubild 3.8	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000, Teilprobe 1,6/0mm Kornklasse 710/500µm Suszeptibilitätsanalyse mit dem Frantz-Isodynamikscheider in den Dichtekl. Darstellung der Summenanteile der Masse über der Erregerstromstärke
Schaubild 3.9	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000, Teilprobe 1,6/0mm Kornklasse 500/315µm Suszeptibilitätsanalyse mit dem Frantz-Isodynamikscheider in den Dichtekl Darstellung der Summenanteile der Masse über der Erregerstromstärke

Schaubild 3.10	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000, Teilprobe 1,6/0mm Kornklasse 200/100µm Suszeptibilitätsanalyse mit dem Frantz-Isodynamikscheider in den Dichtekl. Darstellung der Summenanteile der Masse über der Erregerstromstärke
Schaubild 3.11	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000, Teilprobe 1,6/0mm Dichteklasse >3,30g/cm ³ Suszeptibilitätsanalyse mit dem Frantz-Isodynamikscheider in den Dichtekl. Darstellung der Summenanteile der Masse über der Erregerstromstärke
Schaubild 3.12	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000, Teilprobe 1,6/0mm Dichteklasse 2,84g/cm ³ bis 3,30g/cm ³ Suszeptibilitätsanalyse mit dem Frantz-Isodynamikscheider in den Dichtekl.Darstellung der Summenanteile der Masse über der Erregerstromstärke
Schaubild 3.13	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000, Teilprobe 1,6/0mm Dichteklasse <2,84g/cm ³ Suszeptibilitätsanalyse mit dem Frantz-Isodynamikscheider in den Dichtekl Darstellung der Summenanteile der Masse über der Erregerstromstärke
Schaubild 3.14	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Henry-Reinhardt-Schaubild für Eisen Kornklasse 6300/4000µm
Schaubild 3.15	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Henry-Reinhardt-Schaubild für Eisen Kornklasse 1600/1000µm
Schaubild 3.16	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Henry-Reinhardt-Schaubild für Eisen Kornklasse 710/500µm
Schaubild 3.17	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Henry-Reinhardt-Schaubild für Eisen Kornklasse 500/315µm
Schaubild 3.18	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Henry-Reinhardt-Schaubild für Eisen Kornklasse 200/100µm

Schaubild 3.19	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Verwachsungsgrundkurven für Eisen der Kornklassen 6300/4000µm, 1600/1000µm, 710/500µm, 500/315µm und 200/100µm
Schaubild 3.20	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Henry-Reinhardt-Schaubild für Kieselsäure Kornklasse 6300/4000µm
Schaubild 3.21	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Henry-Reinhardt-Schaubild für Kieselsäure Kornklasse 1600/1000µm
Schaubild 3.22	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Henry-Reinhardt-Schaubild für Kieselsäure Kornklasse 710/500µm
Schaubild 3.23	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Henry-Reinhardt- Schaubild für Kieselsäure Kornklasse 500/315µm
Schaubild 3.24	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Henry-Reinhardt-Schaubild für Kieselsäure Kornklasse 200/100µm
Schaubild 3.25	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Verwachsungsgrundkurven für Kieselsäure der Kornklassen 6300/4000µm, 1600/1000µm, 710/500µm, 500/315µm und 200/100µm
Schaubild 4.1	Darstellung von Gehalt über Inhalt des Eisens
Schaubild 4.2	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 21 ⁰⁰ -22 ⁰⁰ h Magnetscheidungsversuch mit Trommelscheider des Inst. f. Aufbereitung Darstellung des Gehaltes über dem Inhalt von SiO ₂ in den Magnetprodukten

Schaubild 4.3	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 21 ⁰⁰ -22 ⁰⁰ h Fraktionsmagnetscheidung am Trommelscheider des Inst. f. Aufbereitung Darstellung des Eiseninhaltsausbringen über dem Massenstrom bei Fr=0,8
Schaubild 4.4	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 21 ⁰⁰ -22 ⁰⁰ h Fraktionsmagnetscheidung am Trommelscheider des Inst. f. Aufbereitung Darstellung des Eiseninhaltsausbringen über dem Massenstrom bei Fr=1,0
Schaubild 4.5	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 21 ⁰⁰ -22 ⁰⁰ h Fraktionsmagnetscheidung am Trommelscheider des Inst. f. Aufbereitung Darstellung des Eiseninhaltsausbringen über dem Massenstrom bei Fr=1,25
Schaubild 4.6	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 21 ⁰⁰ -22 ⁰⁰ h Fraktionsmagnetscheidung am Trommelscheider des Inst. f. Aufbereitung Darstellung des Eiseninhaltsausbringen bei unterschiedlichen max. Flussdichteeinstellungen über dem gemittelten Massenstrom bei Fr=0,8
Schaubild 4.7	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 21^{00} - 22^{00} h Fraktionsmagnetscheidung am Trommelscheider des Inst. f. Aufbereitung Darstellung des Eiseninhaltsausbringen bei unterschiedlichen max. Flussdichteeinstellungen über dem gemittelten Massenstrom bei Fr=1,0
Schaubild 4.8	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 21^{00} - 22^{00} h Fraktionsmagnetscheidung am Trommelscheider des Inst. f. Aufbereitung Darstellung des Eiseninhaltsausbringen bei unterschiedlichen max. Flussdichteeinstellungen über dem gemittelten Massenstrom bei Fr=1,25

Schaubild 4.9	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 12^{00} - 13^{00} h Magnetscheidungsversuch mit Trommelscheider des Inst. f. Aufbereitung κ -Netz für Fe
Schaubild 4.10	Darstellung der radiale Flußdichte über dem Trommelumfang
Schaubild 4.11	Darstellung der radiale Flußdichte über dem Abstand von der Trommel
Schaubild 4.12	Darstellung der radiale Flußdichte über die Trommellänge
Schaubild 4.13	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 12 ⁰⁰ -13 ⁰⁰ h Magnetscheidungsversuch mit Trommelscheider des Inst. f. Aufbereitung GGS-Netz der Magnetscheidungsprodukte
Schaubild 4.14	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 12 ⁰⁰ -13 ⁰⁰ h Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg Ferromagnetische Komponente und Fe-Gehalt über der Dichte
Schaubild 4.15	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 12 ⁰⁰ -13 ⁰⁰ h Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg Ferromagnetische Komponente und Fe-Gehalt über dem Glühverlust
Schaubild 4.16	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 16 ⁰⁰ -17 ⁰⁰ h Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg Ferromagnetische Komponente und Fe-Gehalt über der Dichte
Schaubild 4.17	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 16 ⁰⁰ -17 ⁰⁰ h Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg Ferromagnetische Komponente und Fe-Gehalt über der Glühverlust
Schaubild 4.18	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 19 ⁰⁰ -20 ⁰⁰ h Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg Ferromagnetische Komponente und Fe-Gehalt über der Dichte

Schaubild 4.19	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 19 ⁰⁰ -20 ⁰⁰ h Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg Ferromagnetische Komponente und Fe-Gehalt über dem Glühverlust
Schaubild 4.20	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 12 ⁰⁰ -13 ⁰⁰ h Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg GGS-Netz der Aufgabe und der Produkte
Schaubild 4.21	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 16 ⁰⁰ -17 ⁰⁰ h Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg GGS-Netz der Aufgabe und der Produkte
Schaubild 4.22	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 19 ⁰⁰ -20 ⁰⁰ h Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg GGS-Netz der Aufgabe und der Produkte
Schaubild 4.23	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 12 ⁰⁰ -13 ⁰⁰ h Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg GGS-Netz der Aufgabe und der Produkte, glühverlustfrei
Schaubild 4.24	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 16 ⁰⁰ -17 ⁰⁰ h Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg GGS-Netz der Aufgabe und der Produkte, glühverlustfrei
Schaubild 4.25	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 19 ⁰⁰ -20 ⁰⁰ h Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg GGS-Netz der Aufgabe und der Produkte, glühverlustfrei
Schaubild 4.26	Darstellung der nom. Schütthöhe über dem Massenstrom

Schaubild 4.27	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 12 ⁰⁰ -13 ⁰⁰ h Magnetscheidungsversuch mit IFE/HGS I in Waidhofen und am St. Erzberg GGS-Netz der Aufgabe und des Magnetproduktes bei 3100kg/(mh) und 4300kg/(mh)
Schaubild 4.28	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 12 ⁰⁰ -13 ⁰⁰ h Magnetscheidungsversuch mit IFE/HGS I in Waidhofen und am St. Erzberg Durchgang über spez. Volumen des Magnetproduktes bei 3100kg/(mh) und 4300kg/(mh)
Schaubild 4.29	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 12 ⁰⁰ -13 ⁰⁰ h Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg Zusammenhang zwischen Fe-Gehalt und Dichte im Magnetprodukt
Schaubild 5.1	Kalibriergerade des Volumenstrommessers
Schaubild 5.2	Darstellung des Druckverlustes über dem Volumenstrom

Verzeichnis der Zahlentafeln

Zahlentafel 3.1	Siebanalyse des Rohgutes 1,6/0mm
Zahlentafel 3.2	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000, Teilprobe Grobgut 8/1,6mm und Feingut <1,6mm Ergebnisse der Schwimm/Sink-Analyse in den Kornklasse, der Stoffdichtebestimmung in den Dichtefraktionen sowie der Berechnung des spz. Vol.
Zahlentafel 3.3	Spateisensteingehalt im Schwergut der Kornklassen
Zahlentafel 3.4	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000, Feingut <1,6mm Frantz-Scheidung in den Kornklassen 710/500µm; 500/315µm und 200/100µm Ergebnisse der Suszeptibilitätsanalyse in den Dichteklassen der angegebenen Kornklassen
Zahlentafel 3.5	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Chem. Analyse der Kornklassen 6300/4000µm Bilanztafel mit Dichteklassen und chem. Analyse
Zahlentafel 3.6	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Chem. Analyse der Kornklassen 1600/1000µm Bilanztafel mit Dichteklassen chem. Analyse
Zahlentafel 3.7	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Chem. Analyse der Kornklassen 710/500µm Bilanztafel mit Dichteklassen, Frantzscheidungsklassen und chem. Analyse
Zahlentafel 3.8	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Chem. Analyse der Kornklassen 500/315µm Bilanztafel mit Dichteklassen, Frantzscheidungsklassen und chem. Analyse
Zahlentafel 3.9	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Chem. Analyse der Kornklassen 500/315µm Bilanztafel mit Dichteklassen, Frantzscheidungsklassen und chem. Analyse

Zahlentafel 3.10	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000, Teilprobe 8/1,6mm Kornklassen 6300/4000µm Zahlentafel zum Henry-Reinhardtschaubild (Schaubild 3.14) für Fe
Zahlentafel 3.11	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000, Teilprobe 1,6/0mm Kornklassen 1600/1000µm Zahlentafel zum Henry-Reinhardtschaubild (Schaubild 3.15) für Fe
Zahlentafel 3.12	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000, Teilprobe 1,6/0mm Kornklassen 710/500µm Zahlentafel zum Henry-Reinhardtschaubild (Schaubild 3.16) für Fe
Zahlentafel 3.13	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000, teilprobe 1,6/0mm Kornklassen 500/315µm Zahlentafel zum Henry-Reinhardtschaubild (Schaubild 3.17) für Fe
Zahlentafel 3.14	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000, Teilprobe 1,6/0mm Kornklassen 200/100µm Zahlentafel zum Henry-Reinhardtschaubild (Schaubild 3.18) für Fe
Zahlentafel 3.15	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000, Teilprobe 8/1,6mm Kornklassen 6300/4000µm Zahlentafel zum Henry-Reinhardtschaubild (Schaubild 3.19) für SiO ₂
Zahlentafel 3.16	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000, Teilprobe 1,6/0mm Kornklassen 1600/1000µm Zahlentafel zum Henry-Reinhardtschaubild (Schaubild 3.20) für SiO ₂
Zahlentafel 3.17	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000, Teilprobe 1,6/0mm Kornklassen 710/500µm Zahlentafel zum Henry-Reinhardtschaubild (Schaubild 3.21) für SiO ₂

Zahlentafel 3.18	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000, Teilprobe 1,6/0mm Kornklassen 500/315µm Zahlentafel zum Henry-Reinhardtschaubild (Schaubild 3.22) für SiO ₂
Zahlentafel 3.19	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000, Teilprobe 1,6/0mm Kornklassen 200/100µm Zahlentafel zum Henry-Reinhardtschaubild (Schaubild 3.23) für SiO ₂
Zahlentafel 3.20	Zahlenwerte für Suszeptibilität und Dichte der Reinminerale
Zahlentafel 3.21	Zahlenwerte der Gehalte der Reinminerale laut [10]
Zahlentafel 3.22	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Matrix zur Berechnung der Mineralzusammensetzung in der Dichteklass >3,30g/cm ³ der Kornklasse 6300/4000µm
Zahlentafel 3.23	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Matrix zur Berechnung der Mineralzusammensetzung in der Dichteklass >3,30g/cm ³ der Kornklasse 6300/4000µm
Zahlentafel 3.24	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Matrix zur Berechnung der Mineralzusammensetzung in der Dichteklass >3,30g/cm ³ der Kornklasse 6300/4000µm
Zahlentafel 4.1	die wichtigsten Daten und Einstellungen des Scheiders
Zahlentafel 4.2	phys. und chem. Eigenschaften der Probe
Zahlentafel 4.3	Trommeldrehzahl für die gewählten Froude-Zahlen
Zahlentafel 4.4	Stufe der Vibrorinne und Massenstrom des Röstproduktes
Zahlentafel 4.5	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 21 ⁰⁰ -22 ⁰⁰ h Magnetscheidungsversuch mit Trommelscheider des Inst. f. Aufbereitung Zahlenwerte zur Ermittlung der Aufgaberate bei Fr=0,8
Zahlentafel 4.6	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 21 ⁰⁰ -22 ⁰⁰ h Magnetscheidungsversuch mit Trommelscheider des Inst. f. Aufbereitung Zahlenwerte zur Ermittlung der Aufgaberate bei Fr=1,0

Zahlentafel 4.7	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 21 ⁰⁰ -22 ⁰⁰ h Magnetscheidungsversuch mit Trommelscheider des Inst. f. Aufbereitung Zahlenwerte zur Ermittlung der Aufgaberate bei Fr=1,25
Zahlentafel 4.8	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 21 ⁰⁰ -22 ⁰⁰ h Magnetscheidungsversuch mit Trommelscheider des Inst. f. Aufbereitung Zahlenwerte für Gehalte und Inhalte von Fe in den Magnetprodukten
Zahlentafel 4.9	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 21 ⁰⁰ -22 ⁰⁰ h Magnetscheidungsversuch mit Trommelscheider des Inst. f. Aufbereitung Zahlenwerte für Gehalte und Inhalte von SiO ₂ in den Magnetprodukten
Zahlentafel 4.10	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 21 ⁰⁰ -22 ⁰⁰ h Magnetscheidungsversuch mit Trommelscheider des Inst. f. Aufbereitung Bilanztafel der Magnetscheidung bei Fr=0,8 und Stufe 4 der Vibrorinne, mit und ohne Glühverlust
Zahlentafel 4.11	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 21 ⁰⁰ -22 ⁰⁰ h Magnetscheidungsversuch mit Trommelscheider des Inst. f. Aufbereitung Bilanztafel der Magnetscheidung bei Fr=0,8 und Stufe 6 der Vibrorinne, mit und ohne Glühverlust
Zahlentafel 4.12	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 21 ⁰⁰ -22 ⁰⁰ h Magnetscheidungsversuch mit Trommelscheider des Inst. f. Aufbereitung Bilanztafel der Magnetscheidung bei Fr=0,8 und Stufe 7 der Vibrorinne, mit und ohne Glühverlust

Zahlentafel 4.13	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 21 ⁰⁰ -22 ⁰⁰ h Magnetscheidungsversuch mit Trommelscheider des Inst. f. Aufbereitung Bilanztafel der Magnetscheidung bei Fr=1,0 und Stufe 4 der Vibrorinne, mit und ohne Glühverlust
Zahlentafel 4.14	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 21 ⁰⁰ -22 ⁰⁰ h Magnetscheidungsversuch mit Trommelscheider des Inst. f. Aufbereitung Bilanztafel der Magnetscheidung bei Fr=1,0 und Stufe 6 der Vibrorinne, mit und ohne Glühverlust
Zahlentafel 4.15	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 21 ⁰⁰ -22 ⁰⁰ h Magnetscheidungsversuch mit Trommelscheider des Inst. f. Aufbereitung Bilanztafel der Magnetscheidung bei Fr=1,0 und Stufe 7 der Vibrorinne, mit und ohne Glühverlust
Zahlentafel 4.16	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 21 ⁰⁰ -22 ⁰⁰ h Magnetscheidungsversuch mit Trommelscheider des Inst. f. Aufbereitung Bilanztafel der Magnetscheidung bei Fr=1,25 und Stufe 4 der Vibrorinne, mit und ohne Glühverlust
Zahlentafel 4.17	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 21 ⁰⁰ -22 ⁰⁰ h Magnetscheidungsversuch mit Trommelscheider des Inst. f. Aufbereitung Bilanztafel der Magnetscheidung bei Fr=1,25 und Stufe 6 der Vibrorinne, mit und ohne Glühverlust
Zahlentafel 4.18	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 21 ⁰⁰ -22 ⁰⁰ h Magnetscheidungsversuch mit Trommelscheider des Inst. f. Aufbereitung Bilanztafel der Magnetscheidung bei Fr=1,25 und Stufe 7 der Vibrorinne, mit und ohne Glühverlust
Zahlentafel 4.19	Zahlenwerte der mittleren spezifischen Massenströme und der dazugehörigen Standardabweichungen

Zahlentafel 4.20	Rückgerechnete Aufgabenanalyse und Standartabweichung
Zahlentafel 4.21	Zahlenwerte der Aufgaberaten am IFE-Scheider
Zahlentafel 4.22	phys. Eigenschaften der Probe
Zahlentafel 4.23	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 12 ⁰⁰ -13 ⁰⁰ h, 20 ⁰⁰ -21 ⁰⁰ h und 21 ⁰⁰ -22 ⁰⁰ h Magnetscheidungsversuch mit IFE/HGS I in Waidhofen/Ybbs Bilanztafel mit phys. und chem. Analyse, sowie der Verteilung
Zahlentafel 4.24	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 12 ⁰⁰ -13 ⁰⁰ h, 20 ⁰⁰ -21 ⁰⁰ h und 21 ⁰⁰ -22 ⁰⁰ h Magnetscheidungsversuch mit IFE/HGS I in Waidhofen/Ybbs Bilanztafel mit phys. und chem. Analyse, sowie der Verteilung, glühverlustfrei gerechnet
Zahlentafel 4.25	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 12 ⁰⁰ -13 ⁰⁰ h, Magnetscheidungsprodukte Magnetscheidungsversuch mit IFE/HGS I in Waidhofen/Ybbs Zahlenwerte der physikalischen Analyse der Kornklassen
Zahlentafel 4.26	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 12 ⁰⁰ -13 ⁰⁰ h, Magnetscheidungsprodukte Magnetscheidungsversuch mit IFE/HGS I in Waidhofen/Ybbs Zahlenwerte der physikalischen Analyse der Kornklassen, glühverlustfrei
Zahlentafel 4.27	Einstellungen und technische Daten zufolge der Tastversuche
Zahlentafel 4.28	Einstellungen und technische Daten zufolge der Tastversuche ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenproben 1100-1200h, 12 ⁰⁰ -13 ⁰⁰ h, 13 ⁰⁰ -14 ⁰⁰ h, 15 ⁰⁰ -16 ⁰⁰ h, 16 ⁰⁰ -17 ⁰⁰ h, 17 ⁰⁰ -18 ⁰⁰ h, 19 ⁰⁰ -20 ⁰⁰ h und 21 ⁰⁰ -22 ⁰⁰ h Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg Bilanztafel mit phys. und chem. Analyse, sowie der Verteilung
Zahlentafel 4.29	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenproben 1100-1200h, 12 ⁰⁰ -13 ⁰⁰ h, 13 ⁰⁰ -14 ⁰⁰ h, 15 ⁰⁰ -16 ⁰⁰ h, 16 ⁰⁰ -17 ⁰⁰ h, 17 ⁰⁰ -18 ⁰⁰ h, 19 ⁰⁰ -20 ⁰⁰ h und 21 ⁰⁰ -22 ⁰⁰ h Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg Bilanztafel mit phys. u. chem. Analyse, sowie der Verteilung, glühverlustfrei

Zahlentafel 4.30	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 12 ⁰⁰ -13 ⁰⁰ h
	Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg Bilanztafel mit phys. und chem. Analyse, sowie der Verteilung, das Ausbringen und das korngrößenbezogene Ausbringen
Zahlentafel 4.31	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 16 ⁰⁰ -17 ⁰⁰ h
	Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg Bilanztafel mit phys. und chem. Analyse, sowie der Verteilung, das Ausbringen und das korngrößenbezogene Ausbringen
Zahlentafel 4.32	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 19 ⁰⁰ -20 ⁰⁰ h
	Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg Bilanztafel mit phys. und chem. Analyse, sowie der Verteilung, das Ausbringen und das korngrößenbezogene Ausbringen
Zahlentafel 4.33	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 12 ⁰⁰ -13 ⁰⁰ h, glühverlustfrei gerechnet Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg Bilanztafel mit phys. und chem. Analyse, sowie der Verteilung, das Ausbringen und das korngrößenbezogene Ausbringen
Zahlentafel 4.34	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 16 ⁰⁰ -17 ⁰⁰ h, glühverlustfrei gerechnet Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg Bilanztafel mit phys. und chem. Analyse, sowie der Verteilung, das Ausbringen und das korngrößenbezogene Ausbringen
Zahlentafel 4.35	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 19 ⁰⁰ -20 ⁰⁰ h, glühverlustfrei gerechnet Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg Bilanztafel mit phys. und chem. Analyse, sowie der Verteilung, das Ausbringen und das korngrößenbezogene Ausbringen
Zahlentafel 4.36	Zahlenwerte zur Beurteilung der Magnetscheidung
Zahlentafel 5.1	Zahlenwerte der Analysen der Proben vor den Entschwefelungsversuchen

Zahlentafel 5.2	ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 12 ⁰⁰ -13 ⁰⁰ h; Teilprobe der Aufgabe Abschätzung des Druckverlustes eines Festbettes verschiedener Kornbänder laut [11]
Zahlentafel 5.3	Zahlenwerte der Volumenstrommessung zur Kalibrierung des Gasvolumenstrommessers
Zahlentafel 5.4	Zahlenwerte des gemessenen Druckverlustes des leeren Festbettreaktors bei verschiedenen Volumenströmen
Zahlentafel 5.5	Zahlenwerte zur Berechnung der spez. Oberfläche
Zahlentafel 5.6	Zahlenwerte der Schwefelanalyse der Schüttungen

Verzeichnis der Bilder

Bild 4.1	Fotografie des Schwachfeldtrommelmagnetscheiders
Bild 4.2	IFE-Scheider mit Staubschutz
Bild 4.3	IFE-Scheider mit Hall-Sonde
Bild 4.4	Der Aufgabestrom
Bild 4.5	Aufgabetrichter und Vibrorinne

Verzeichnis der Abbildungen

Abbildung 2.1	Fließschema der Aufbereitungsanlage am Steirischen Erzberg
Abbildung 2.2	Proben der Rohgutanalyse
Abbildung 2.3	Proben, Einstellungen und Produkte der Versuche am Institutsscheider
Abbildung 2.4	Proben, Einstellungen und Produkte der Tastversuche am IFE- Scheider in Waidhofen
Abbildung 2.5	Proben, Einstellungen und Produkte der Versuche am IFE- Scheider am Erzberg
Abbildung 3.1	Fließschema der Aufbereitungsanlage am Steirischen Erzberg
Abbildung 3.2	Ablauf der Frantz-Scheidung
Abbildung 4.1	Schematischer Ablauf eines Magnetscheideversuchs
Abbildung 4.2	Anordnung der Permanentmagnete unter der Trommel
Abbildung 4.3	Seitenansicht des Magnetscheiders
Abbildung 4.4	Frontansicht des Magnetscheiders
Abbildung 4.5	Vermessung der Trommel des Magnetscheiders
Abbildung 4.6	Homogenisierung des Magnetproduktes (MP)
Abbildung 5.1	Schematischer Aufbau der Versuchsanlage
Abbildung 5.2	Schematischer Aufbau zur Kalibrierung des Volumenstrommessers
Abbildung 5.3	Schematischer Aufbau temperierten Rohrreaktors
Abbildung 5.4	Skizze eines Festbettreaktors für Versuche zur Rauchgasentschwefelung mit temperiertem Festbett und temperiertem Gasstrom.

1 Aufgabenstellung

Die selektive magnetisierende Röstung von Spateisenstein des Steirischen Erzberges stellt eine Aufbereitungsalternative im Feinkornbereich dar.

Zur Klärung der Frage der Veränderung der Verwachsungsverhältnisse zwischen dem Wertmineral Sideroplesit und dem Begleitmineral Ankerit im Kornband <6,3mm soll eine objektiven Verwachsungsanalyse am unbehandelten Rohgut vorgenommen werden.

Magnetscheidungsversuche an teilentsäuerten Proben von Spateisenstein des Steirischen Erzberges am Labortrommelscheider des Institutes für Aufbereitung sollen den Einfluss der Aufgaberate auf den Magnetscheidungsprozess klären.

Versuche mit einem handelsüblichen Permanentmagnet-Trommelscheider im Pilotmaßstab stellen den nächsten Schritt in der Beurteilung der Magnetscheidbarkeit und der Auswahl des geeigneten Magnetscheiders dar. Besonderes Augenmerk bezüglich der Eignung ist dem Trennerfolg in den Korngrößen <100µm zu widmen. Eine Abschätzung der notwendigen Scheiderkapazität ist vorzunehmen.

Dem Fachschrifttum sind Berichte über die SO₂-Absorbtionsfähigkeit von Siderit zu entnehmen. In einem ersten einfachen Tastversuch soll bei Raumtemperatur die Aufnahmefähigkeit für SO₂ von teilentsäuerten Produkten aus der Magnetscheidung überprüft werden.

2 Zusammenfassung

Eines der besonderen Probleme der Aufbereitung des Spateisensteins des Steirischen Erzberges liegt in der engen Verwachsung des Wertminerals Sideroplesit (Fe,Mg,Ca)CO₃ mit dem Gangartmineral Ankerit Ca(Fe,Mg)(CO3)₂. Untersuchungen des Instituts für Aufbereitung und Veredlung zufolge beginnt der Aufschluß erst bei Korngrößen unter 1mm.

Ein mögliches Aufbereitungsverfahren zur Trennung von Sideroplesit und Ankerit ist die Schwachfeldmagnetscheidung nach einer selektiven magnetisierenden Röstung des Sideroplesit. Die Bildung von Ferriten und untergeordnet von Magnetit bei unterschiedlichen Entsäuerungsgraden führt zu einer kontinuierlichen Verteilung in der Magnetisierbarkeit der Röstprodukte.

2.1 Herkunft der Probe

Das Fließschema der Aufbereitung des Erzes des Steirischen Erzberg der Firma VA Erzberg ist in Abbildung 2.1 zu sehen. Am 13. Oktober 2000 wurde das Produkt der Nachbrech- und Siebanlage beprobt. Der Probenahmepunkt ist in Abbildung 2.1 rechts unten eingezeichnet.

Diese Probe des Fertigerzes <8mm wurde in einer technischen Siebung in die Klasse 8/1,6mm und 1,6/0mm geteilt. Die beiden Klassen wurden wiederum mittels Analysesieben in Kornklassen unterteilt.

2.2 Rohgutanalyse

Die Probe wurde wie in Abbildung 2.1 dargestellt genommen. Die Korngrößenklassen 6400/4000µm, 1600/1000µm, 710/500µm, 500/3150µm und 200/100µm der Absiebeprobe wurden einer Schwimm/Sink-Analyse und einer Suszeptibilitätsanalyse mit einem Frantz-Isodynamikscheider unterzogen.

Abbildung 2.2 gibt einen Überblick über alle hergestellten Analyseprodukte. Jene Proben, von denen genug Masse vorhanden war, wurden chemisch analysiert.

Sowohl die Darstellung der Masse Sinkgut über dem spezifischen Volumen (Schaubild 3.2 bis Schaubild 3.6) als auch die Darstellung der Masse Schwimmgut über der Trenndichte (Schaubild 3.7) ergeben keine signifikante Unterscheidbarkeit der untersuchten Kornklassen. Das heißt, die Masseverteilung über die Dichteklassen ist kornklassenunabhängig.

Die mittlere Dichte der Schwergutfraktion (ρ >3,30g/cm³) wird mit den kleineren Kornklassen immer höher. Eine vereinfachte Rechnung, nach der das Schwergut nur aus Ankerit und Siderit besteht, ergibt einen Sideritgehalt von 85% (der Kornklasse 6300/4000µm) bis 95% (der Kornklasse 200/100µm) für dieses. Dies weist auf einen beginnenden Aufschluss des Sideroplesit hin.

Der Zusammenhang zwischen der Dichte des Rohgutes und seiner Suszeptibilität ist eindeutig gegeben.

Die kleinste Kornklasse hat in seiner Schwergutfraktion den höchsten Anteil an magnetischem Gut und in seiner Leichtfraktion den geringsten Anteil an magnetischem Gut im Vergleich zu den anderen Kornklassen.

Kornklasse [µm]	Dichteklasse [g/cm ³]	Suszeptibilitätsklasse [m³/kg]]
	<2,85		
6400/4000	2,85/2,99		Von den hinterlegten Feldern
0-100/-1000	2,99/3,30		wurde eine chemische Analyse
	>3,30		durchgeführt.
	<2,84		
1600/1000	2,84/3,00	_	Von allen Dichteklassen wurde
	3,00/3,30		die mittlere Dichte bestimmt.
	>3,30		
		>9,966E-8	
		9,966E-8/4,936E-8	
	<2,84	4,936E-8/1,947E-8	
		1,947E-8/2,722E-9	
		<2,722E-9	
		>9,966E-8	
740/500	2.94/2.20	9,966E-8/4,936E-8	
/10/500	2,04/3,30	4,930E-8/1,947E-8	
		<2 722 0	
		>2,722L-9	
		9 966F-8/4 936F-8	
	>3.30	4 936E-8/1 947E-8	
	- 0,00	1.947E-8/2.722E-9	
		<2.722E-9	
		>9.966F-8	
	<2,84	9 966F-8/4 936F-8	
		4,936E-8/1,947E-8	
		1,947E-8/2,722E-9	
		<2,722E-9	
		>9,966E-8	
500/315	2,84/3,30	9,966E-8/4,936E-8	
		4,936E-8/1,947E-8	
		1,947E-8/2,722E-9	
		<2,722E-9	
		>9,966E-8	
		9,966E-8/4,936E-8	
	>3,30	4,936E-8/1,947E-8	
		1,94/E-8/2,/22E-9	
		<2,722E-9	
		>9,966-8	
	<2.95	9,966E-8/4,936E-8	
	~2,00	4,930E-8/1,947E-8	
		<2 722E-0	
		>9 966E-8	
		9.966E-8/4 936E-8	
200/100	2.85/3.30	4,936E-8/1,947E-8	
	2,00/0,00	1,947E-8/2.722E-9	
		<2,722E-9	
		>9,966E-8	1
		9,966E-8/4,936E-8	
	>3,30	4,936E-8/1,947E-8	
		1,947E-8/2,722E-9	
		<2,722E-9	

Abbildung 2.2: Proben der Rohgutanalyse

Das wichtigste Datum, der Fe-Gehalt beträgt in den 5 Kornklassen jeweils in der Dichteklasse >3,30g/cm³ von 38,42% bis 39,35%. Die Fe-Analyse ist den gleichen Dichteklassen der 5 Kornklassen ähnlich. Ebenso verhält es sich in den Suszeptilitätsklassen.

Das Henry-Reinhardt-Schaubild für Fe zeigt, dass sich die untersuchten Kornklassen in ihrem Fe-Ausbringen nicht signifikant unterscheiden.

2.3 Magnetscheidung

In Abbildung 2.3 bis Abbildung 2.5 sind alle Proben aufgelistet die verwendet wurden. Weiters sind die wichtigsten Einstellungen (Froude-Zahl und Aufgaberate, soweit bekannt) und die durch die Versuche erzeugten Produkte aufgestellt.

2.3.1 Versuche am Institutsmagnetscheider

Die Versuche am Institutsmagnetscheider dienten als Vorversuche für die technischen Versuche am Magntescheider der Firma IFE.

Die Darstellung des Gehaltes über dem Inhalt von Fe in Schaubild 4.1 zeigt die Möglichkeiten einer Schwachfeldmagnetscheidung. Eine Steigerung des Gehaltes an Fe im Konzentrat bis etwa 50% ist mit wenig Verlusten an Inhalt (ca. 15%) möglich. Darüber hinaus steigen die Verluste an Fe rapide an. Die Grenze der Anreicherung an Fe wurde mit 53,7% graphisch abgeschätzt.

In Schaubild 4.2 (Anhang) ist der Gehalt über dem Inhalt von SiO_2 dargestellt. Der Gehalt liegt im Röstprodukt zwischen 5% und 6% und kann durch die Magnetscheidung nicht unter 3% gedrückt werden.

In Schaubild 4.9 (Anhang) wurde ein κ -Netz (lt. [8]) erstellt. Dabei ist das Inhaltsausbringen des Fe im Magnetprodukt dem Inhaltsausbringen des gesamten nicht-Fe im Magnetprodukt gegenübergestellt. Liegt die aus den Punkten interpolierte Gerade nahe an der ersten Mediane, ist die Selektivität des Trennvorganges gering. Je weiter rechts die Gerade liegt desto besser funktioniert der Trennprozeß. Die Grenzen der Selektivität in dieser Anwendung liegen darin, daß der Ankerit auch Fe enthält und daher immer Fe in den Bergen bleiben wird. Weiters wird das Ausbringen an Bergen nie 0 werden, da die nicht-Fe-Bestandteile des gerösteten Sideroplesit auch zu den Bergen zählen.

Probe	Einstellungen	Fraktionen
		m _{P1}
	Fr=0,8	m _{P2}
	628kg/(mh)	m _{P3}
		m _{UM}
		m _{P1}
	Fr=1,0	m _{P2}
	611kg/(mh)	m _{P3}
		т _{им}
		m _{P1}
	Fr=1,25	m _{P2}
	420kg/(mh)	m _{P3}
		т _{им}
		m _{P1}
	Fr=0,8	m _{P2}
	2270kg/(mh)	m _{P3}
		т _{им}
		m _{P1}
21 ⁰⁰ -22 ⁰⁰ h	Fr=1,0	m _{P2}
1600/0µm	2285kg/(mh)	m _{P3}
		m _{UM}
		M _{P1}
	Fr=1,25	m _{P2}
	2354kg/(mh)	m _{P3}
		m _{UM}
		m _{P1}
	Fr=0,8	m _{P2}
	4510kg/(mh)	m _{P3}
		т _{им}
		m _{P1}
	Fr=1,0	m _{P2}
	4606kg/(mh)	m _{P3}
		т _{им}
		m _{P1}
	Fr=1,25	m _{P2}
	4399kg/(mh)	m _{P3}
		т _{им}

Abbildung 2.3: Proben, Einstellungen und Produkte der Versuche am Institutsscheider

Bei geringeren Flussdichten (hier: 15,2mT) beeinflusst der Massenstrom das Inhaltsausbringen, jedoch bei hohen magnetischen Induktionen (hier: 46,7mT) bleibt der Massenstrom in diesem Bereich (hier: bis ca. 4500 kg/(m*h)) effektlos.

Probe	Einstellungen	Fraktionen			
				1600/1000	
				1000/710	
			MP	710/500	
		MP		500/315	
		IVII		315/200	
				200/100	
				100/40	
	Fr=1			40/0	
	3100kg(mh)			1600/1000	
12°°-13°°h 1600/0µm		7P		1000/710	
		21		710/500	
			в	500/315	
			Б	315/200	
		UMP		200/100	
				100/40	
				40/0	
	Fr=2	M	>		
		ZP			
		UMP			
		M	D		
20°°-21°°h 63/0µm	Fr=2	ZP			
00/0µ111		UM	Р		
21 ⁰⁰ -22 ⁰⁰ h 1600/0µm		MP			
	Fr=1	ZP			
		UMP			
	Fr=2	MP			
		ZP			
		UMP			

2.3.2 Versuche am Magnetscheider der Fima IFE in Waidhofen

Abbildung 2.4: Proben, Einstellungen und Produkte der Tastversuche am IFE-Scheider in Waidhofen

Die Versuche in Waidhofen dienten dazu, die Einstellungen für die Hauptversuche mit dem gleichen Magnetscheider bei den Versuchen am Erzberg zu finden.

Die verschiedenen Stundenproben sind unterschiedlich stark durchröstet.

Jene Probe $(20^{00}-21^{00}h)$, die nur im Kornband <63µm vorlag, erzielte das beste Ergebnis im Sinne von Fe-Gehalt und Fe-Verteilung. Die ferromagnetische Komponente ist in dieser Probe mit 27,59% am höchsten, obwohl der Fe-Gehalt nur durchschnittlich (40,28%) ist. Obwohl der Anteil an Magnetprodukt dieser Probe mit 74,2% nur im Mittelfeld liegt, ist das Inhaltsausbringen an Fe mit 93,56% das Höchste. Feineres Korn ist also sowohl für die vollständige Durchröstung als auch für die bessere Magnetscheidung von Vorteil.

Die Variation der Froude-Zahl zwischen 1 und 2 ergab keinen signifikanten Unterschied im Trennerfolg. Die Masse an Magnetprodukt ist bei Fr=2 etwas geringer und der Gehalt höher.

Die Magnetscheidungsprodukte der Stundenprobe 12^{00} - 13^{00} h bei Fr=1 (erster Versuch in Abbildung 2.4) wurden einer Siebanalyse unterzogen. Die erhaltenen Kornklassen wurden auf Dichte, Glühverlust und ferromagnetische Komponente untersucht. Die ferromagnetische Komponente nimmt mit sinkender Kornklasse in der Aufgabe und noch stärker im Magnetprodukt zu. Die Magnetscheidung ist also auch für das Feinstkorn (unter diesen Bedingungen) geeignet.

2.3.3 Versuche am Magnetscheider der Fima IFE am Erzberg

Je nachdem, wie gut die Probe durchröstet wurde, ergab sich ein Fe-Gehalt von 39,4% bis 44,5%. Eine Korrelation der ferromagnetischen Komponente mit dem Fe-Gehalt ist nicht eindeutig zu erkennen. Der Gehalt an Fe im Magnetprodukt bewegt sich in einem engeren Band (50,06% bis 52,46%) und läßt keinen Zusammenhang mit dem Aufgabegehalt oder dem Anteil der ferromagnetischen Komponente erkennen. Das Ausbringen an Fe in das Magnetprodukt liegt durchschnittlich bei 82,90% und schwankt um etwa \pm 6%-Punkte in den Stundenproben.

Das Ausbringen an Magnetprodukt liegt je nach Stundenprobe zwischen 64% und 76%.

Im glühverlustfreien Zustand ergibt sich ein Fe-Gehalt von 50,5%. Dies ist die theoretische Obergrenze der Röstung.

Wie in Abbildung 2.5 zu sehen ist, wurden die Produkte von drei Stundenproben einer Siebanalyse unterzogen. Etwa 80% des Fe im Magnetprodukt enthält die Korngrößenklasse <500µm. Es erhärtet sich dadurch die Aussage, dass das Feinstgut besser durchröstet ist und einer besseren Trennung durch die Magnetscheidung unterliegt.

Probe	Einstellungen	Frakti	onen
4 4 00 4 000	=	MP	
11 ⁰⁰ -12 ⁰⁰ h	Fr=2,0	ZP	
τοσογομπ	4140Kg/(IIIII)	UMP	
			1600/1000
		MP	1000/500
			500/100
			100/0
			1600/1000
12 ⁰⁰ -13 ⁰⁰ h	Fr=2,0	70	1000/500
1600/0µm	4302kg/(mh)	28	500/100
			100/0
			1600/1000
			1000/500
		UNP	500/100
			100/0
4000 4400	E	MP	
13 - 14 h 1600/0um	3165kg/(mh)	ZP	
1000,000	e : e e :	UMP	
00 00.		MP	
15 ^{°°} -16 ^{°°} h 1600/0µm	Fr=2,0 3221kg/(mb)	ZP	
1000/0µ11	522 rkg/(mm)	UMP	
			1600/1000
			1000/500
		MP	500/100
			100/0
			1600/1000
16 ⁰⁰ -17 ⁰⁰ h	Fr=2,0	ZP	1000/500
1600/0µm	2385kg/(mh)		500/100
			100/0
			1600/1000
			1000/500
		UMP	500/100
			100/0
. 00 00.		MP	
17 ⁰⁰ -18 ⁰⁰ h	Fr=2,0	ZP	
τοσογομπ	5045kg/(IIII)	UMP	
			1600/1000
		MD	1000/500
		IVII	500/100
			100/0
			1600/1000
19 ⁰⁰ -20 ⁰⁰ h	Fr-2.0	70	1000/500
1600/0µm	r=2,0	ZP	500/100
			100/0
			1600/1000
			1000/500
		UIVIP	500/100
			100/0
0400 0000	F= 0.0	MP	
1600/0um	+r=2,0 3553ka/(mh)	ZP	
1600/0µm	3333Kg/(IIIII)	UMP	

Abbildung 2.5: Proben	, Einstellungen und	Produkte der	Versuche am	IFE-Scheider	am Erzberg
-----------------------	---------------------	--------------	-------------	--------------	------------

Wie aus Abbildung 2.4 und Abbildung 2.5 zu sehen ist, wurde die Stundenprobe 12⁰⁰-13⁰⁰h zweimal verwendet. Das GGS-Netz in Schaubild 4.37 (Anhang) zeigt, dass die unterschiedlichen Aufgaberaten und die unterschiedlichen Froude-Zahlen fast keinen Einfluss auf die Korngrößenverteilung im Magnetprodukt haben.

Die Magnetprodukte der einzelnen Stundenproben wurden vermischt und für fortführende Versuche vorbereitet.

Die Wechselpolanordung und die Magnetanordung auf 210° des Trommelumfanges bei Schwachfeldtrockentrommelscheider der Firma IFE wirkt sich günstig auf den Trennerfolg aus.

2.4 Entschwefelungsversuche

In einem Versuchsaufbau laut Abbildung 5.1 wurde die Aufnahmefähigkeit der Magnetscheidungsprodukte für SO_2 getestet. Der Versuch fand bei Raumtemperatur statt.

Es zeigte sich, dass vom Magnetprodukt 40,5% und vom unmagnetischen Produkt 12,2% des durchgeströmten Schwefels aufgenommen wurden.

Für höhere Temperaturen wird eine bessere Aufnahmefähigkeit erwartet. Dazu wurde ein prinzipieller Versuchsaufbau mit digitalem Temperaturregler entworfen (siehe Abbildung 5.3). Ein dazugehöriger Versuchsreaktor wurde ebenfalls konstruiert (siehe Abbildung 5.4, Anhang).

3 Rohgutanalyse

3.1 Aufgabenstellung

Für das Erz des Steirischen Erzberges ist die Verwachsung des Wertminerals Sideroplesit (Fe,Mg,Ca)CO₃ mit der Gangart Ankerit Ca(Fe,Mg)(CO₃)₂ charakteristisch. In [8] ist die Zusammensetzung des Rohgutes im Dreistoffsystem FeCO₃-MgCO₃-CaCO₃ beschrieben. Die Innigkeit der Verwachsung von Sideroplesit und Ankerit hat direkte Auswirkung auf den Aufwand zum Aufschluss der Wertminerale und damit die Anreicherung des Sideroplesit und kann bis zur Unwirtschaftlichkeit des Verfahrens führen.

Zur objektiven Analyse der Kornklassen auf ihre Verwachsungsverhältnisse hin, stehen die Untersuchung der paramagnetischen Eigenschaften mit dem Frantz-Isodynamikscheider und die Dichteuntersuchung mit Hilfe der Schwimm/Sink-Analyse zur Verfügung.

Es sollen dadurch mit Hilfe der Suszeptibilität und der Dichte als diskrete Merkmale Aussagen über die Veränderung der Verwachsungsverhältnisse über die Kornklassen hinweg gemacht werden.

Nach Bestimmung charakteristischer Stoffgehalte in den Fraktionen der Merkmalsklassenanalyse sollen im Henry-Reinhardt-Schaubild die Verwachsungsgrundkurve und die Summenkurven für Berge und Konzentrat dargestellt werden.

Aus den chemischen Analysen soll schließlich mit Hilfe mathematischer Methoden auf die Mineralzusammensetzung der Suszeptibiltäts- und Dichteklassen rückgeschlossen werden.

3.2 Probenbeschreibung

Das Rohgut entstammt einer Beprobung des Absiebungsversuches am 13.10.2000 durch die Mitarbeiter des Institutes für Aufbereitung. Die Aufgabe mit einer maximalen Korngröße von 8mm wurde einem Produktstrom der Nachbrech- und Siebanlage der Aufbereitungsanlage des Steirischen Erzberges entnommen. Der Trennschnitt der Absiebung auf dem Wahrscheinlichkeitssieb lag bei 1,6mm. Die Abbildung 3.1 zeigt schematisch die Produktströme und die Beprobungsstelle dieser Anlage.

Abbildung 3.1: Fließschema der Aufbereitungsanlage am St. Erzberg

3.3 Versuchsdurchführung

Eine Teilprobe des Feingutes 1,6/0mm mit einer Masse von etwa 2,5kg wurde mittels Siebanalyse in Kornklassen gegliedert (siehe Zahlentafel 3.1).

Rohgut-Siebanalyse		Rückstand	Durchgang
Kornklasse	Masse	Masse	Masse
[µm]	[%]	[%]	[%]
>1600	0,00	0,00	100,00
1600/1000	20,09	20,09	79,91
1000/710	14,37	34,47	65,53
710/500	11,09	45,55	54,45
500/315	12,20	57,75	42,25
315/200	9,53	67,28	32,72
200/100	12,15	79,43	20,57
100/40	10,34	89,77	10,23
40/0	10,23	100,00	0,00
Summe:	100,00		

Zahlentafel 3.1: Siebanalyse des Rohgutes 1,6/0mm

In Schaubild 3.1 ist die Korngrößenverteilung in einem GGS-Netz dargestellt.

Schaubild 3.1: GGS-Netz der Siebanalyse des Rohgutes 1,6/0mm

Aus der Siebanalyse einer Teilprobe des Grobgutes der Absiebungsprobe 13.10.2000 am Erzbergsizer 2000 stammt die Kornfraktion 6,3/4mm.

3.3.1 Schwimm-Sink-Analyse

Zur Analyse wurde die Schwereflüssigkeit in ein 250ml fassendes Becherglas gefüllt. Das zu analysierende Gut wurde in kleinen Mengen aufgegeben. Das Schwergut mit einer Dichte größer als jene der Schwereflüssigkeit, sank zu Boden. Das Leichtgut schwamm auf. Wenn optisch keine Sinkbewegung der Körner mehr feststellbar war, wurde mittels Löffel das Leichtgut abgeschöpft. Das Schwebegut wurde laut Vorschrift dem Leichtgut zugerechnet und durch Dekantieren vom Schwergut getrennt. Die Fraktionen wurden in einem mit Filterpapier ausgelegten Trichter über einer Glasflasche mit Aceton (a) oder Wasser (b) abgespült. Dadurch konnten die Dichtefraktionen gereinigt und die anhaftende Schwereflüssigkeit gesammelt werden, um sie einer Regeneration zuführen zu können.

(a) Dijodmethan und Bromoform

Das Gut wurde anschließend 3 mal mit Aceton ausgespült. Die dabei entstandene Lösung Schwereflüssigkeit/Aceton wurde ebenfalls über ein Papierfilter in Flaschen abgefüllt, um die Schwereflüssigkeit zurückgewinnen zu können.

(b) Natriumpolywolframatlösung

Diese Schwereflüssikeit hat den Vorteil, dass man die gewünschte Dichte durch Verdünnen mit H₂O_{dest} einstellen kann. Die in der Beschreibung des Lieferanten von Natriumpolywolframat (NaPW) angegebene Konzentration-Dichte-Kurve kann nicht verwendet werden, da die Abweichung von den gemessenen Werten zu groß ist. Die Dichte wird durch Versuche eingestellt und liegt bei $m_{NaPW} \approx 80\%$ bei den gewünschten 3,00g/cm³. Die mittels Araeometer kontrollierte Dichte der Lösung unterliegt Schwankungen. Dies liegt einerseits daran, dass Wasser aus der Flüssigkeit verdampft bzw. die beobachteten Ablagerungen von NaPW am Rand des Becherglases die Zusammensetzung der Flüssigkeit verändern. Die protokollierten Schwankungen erreichten ein Ausmaß von 2,98g/cm³ bis 3,00g/cm³.

Um übermäßige Schwerstoffverluste zu verhindern und korrekte Wägeergebnisse der erstellten Dichteklassen zu erzielen müssen sämtliche Gegenstände, die mit der Schwereflüssigkeit in Berührung kamen mit heißem Wasser gewaschen werden. Die Dichtefraktionen wurden in einer Filternutsche mit heißem Wasser 3 mal gespült um die Reste des NaPW zu entfernen.

Die Viskosität der Schwereflüssigkeit NaPW war sehr hoch, sodass bei Kornklassen unter 1mm auf diesen Dichtetrennschnitt verzichtet werden mußte. Der vollständige Absetzvorgang des Schwergutes dauerte bis zu 15 Minuten je Charge.

3.3.2 Suszeptibiltätsanalyse mit Frantz-Isodynamikscheider

Die Gliederung der Dichteklassen je Kornklasse in Suszeptibilitätsklassen erfolgte am Frantz Isodynamikscheider des Instituts für Aufbereitung.

Die Dichteklassen ρ <2,84g/cm³, ρ =2,84-3,30g/cm³ und ρ >3,30g/cm³ der Kornklassen 710/500µm, 500/315µm und 200/100µm wurden mittels analysenscharfer Magnetscheidung bei aufsteigender Erregerstromstärken nach der Suszeptibilität getrennt. Für die beiden Kornklassen über 1mm war das aufgrund der Spaltweite des Frantz-Scheiders nicht möglich. Für alle Klassen wurden die Stromstärken 0,2A, 0,3A, 0,5A und 1,4A ausgewählt. Aufgrund der Ergebnisse wurden dann die Schwergutfraktionen (ρ >3,30g/cm³) der drei Kornklasse noch einmal bei 0,15A magnetgeschieden. Ein Versuch bei 0,1A zeigte, dass bei dieser Stromstärke noch keine Abscheidung erfolgt. Der Versuchsablauf ist in Abbildung 3.2 dargestellt.

unnagheusenes i fouukt

Abbildung 3.2: Ablauf der Magnetscheidung am Frantz-Isodynamikscheider

3.4 Auswertung

3.4.1 Schwimm-Sink-Analyse

In Zahlentafel 3.2 sind die Dichteklassen in den 5 Kornklassen einander gegenübergestellt. Als maximale Dichte wurde 4,00g/cm³ angenommen. Wobei reiner Siderit (lt. [4] und [6]) eine Dichte von 3,9g/cm³ besitzt. Die Stoffdichten der Schwereflüssigkeiten waren leichten Schwankungen unterworfen. Es wurden daher die jeweils vor der Messung festgestellten Dichten in die erste Spalte eingetragen. In den Spalten sind neben den Trenndichten, bestimmt durch die Schwereflüssigkeit, auch deren Kehrwerte, die spezifischen Volumina dargestellt. Nach der Massenverteilung wurde die mittlere Stoffdichte der jeweiligen Dichteklassen gemessen und das spezifische Volumen bestimmt. Aus der Rückrechnung der Stoffdichtewerte und Masseanteile in den Fraktionen ergab sich die mittlere Stoffdichte der Aufgabe.

In den Schaubilder 3.2 bis 3.6 wurde das spezifische Volumen über dem Sinkgutanteil dargestellt. Die Linie, die in der Legende "Flächenausgleich" genannt wurde, stellt das

spez. Volumens zu einem bestimmten Sinkgutanteil dar. Diese Kurve wurde mittels Flächenausgleich aus den diskreten Werten der Schwimm/Sink-Analyse ermittelt, da die Fläche Summe-Masse-Sinkgut*spez.-Volumen die physikalische Größe "Volumen" ergibt, ist diese Vorgehensweise gerechtfertigt. Durch den stetigen Kurvenzug lassen sich Masseanteile für Dichteklasse abschätzen, die in der Merkmalsklassenanalyse nicht direkt hergestellt werden. Vergleicht man die Schaubilder, so erkennt man auch hier, dass die Abweichungen voneinander sehr gering sind.

Die starke Einheitlichkeit der einzelnen Kornklassen ist auch in Schaubild 3.7 zu erkennen. Hier wurde der Schwimmgutanteil über der Trenndichte aufgetragen, wobei auf die Punkte $(0_{[g/cm^3]}/0_{[\%]})$ und (max. Dichte $_{[g/cm^3]}/100_{[\%]})$ verzichtet wurde, da in diesen ja alle Kurven zusammenlaufen und eine Unterscheidung der einzelnen Kornklassen noch schwieriger wäre. In der größten Kornklasse (6300/4000mm) ist der Leichtgutanteil etwas höher. Eine charakteristische Eigenschaft des Grobgutes ist daraus allerdings nicht abzuleiten.

Eine Tendenz läßt sich beim Leichtgutanteil erkennen, welcher mit abnehmender Korngröße stetig steigt. Weiters steigt die Dichte der Schwergutfraktion zu den kleinen Kornklassen hin (siehe Zahlentafel 3.2). Mit der Annahme, dass im Schwergut nur mehr Sideroplesit und Ankerit vorhanden sind, kann man mit der mittleren Dichte dieser Fraktion und dem Wissen um die Dichte der beiden Reinminerale auf die Zusammensetzung des Schwergutes schließen. Die Dichte von Sideroplesit laut [8] konnte nicht verwendet werden, da die angegebene Dichte für "Spat II" (Spateisenstein, 3,67g/cm³) geringer als die Mischdichte im Schwergut ist. Wahrscheinlich ist die Zusammensetzung seit dieser Arbeit am Erzberg nicht konstant geblieben. Als Dichte wurde schließlich 3,80g/cm³ gewählt, da in der Literatur ([4], [6]) als Dichte nur das Band 3,7g/cm³ bis 3,9g/cm³ angegeben wurden. Der Anteil an Spateisenstein g_{Spat} ergibt sich daher als Gleichung mit der mittleren Dichte ρ_{ges} als Variable:

$$g_{Spat} = 100\% * \frac{\rho_{Spat}}{\rho_{ges}} * \frac{\rho_{ges} - \rho_{Ank}}{\rho_{Spat} - \rho_{Ank}}$$

Kornklasse	Dichte	g _{Spat}
[mm]	[g/cm ³]	[%]
6300/4000	3,678	85,05
1600/1000	3,712	89,31
710/500	3,718	90,06
500/315	3,746	93,50
200/100	3,759	95,08

In Zahlentafel 3.3 sind die Spateisensteinanteile der Kornklassen gegenübergestellt:

Zahlentafel 3.3: Spateisensteingehalt im Schwergut der Kornklassen

Stellt man den gerechneten Sideroplesitgehalt in den einzelnen Kornklassen in Abhängigkeit von der mittlere Dichte der Kornklasse dar (Schaubild 3.7a), so ergibt sich eine Kurve, die nahezu gerade verläuft.

Schaubild 3.7a: Darstellung des Sideroplesitgehaltes über der mittleren Dichte

Nach dieser Rechnung steigt der Spateisensteingehalt von 85% auf 95% von den groben zu den feinen Kornklassen der Dichteklasse über 3,30g/cm³.

3.4.2 Suszeptibiltätsanalyse mit Frantz-Isodynamikscheider

In Zahlentafel 3.4 sind die 3 Dichteklassen der 3 Kornklassen <710µm weiter in Suszeptibilitätsklassen gegliedert aufgestellt. In den Schaubildern 3.8 bis 3.10 sind die

Rohgutanalyse

Dichteklassen, die zu einer Kornklasse gehören dargestellt. Die Dichteklassen verhalten sich bezüglich ihrer Suszeptibilität so, dass man feststellen kann, dass im Schwergut bei einem Erregerstrom von 0,3A bereits das gesamte Aufgabegut in die Magnetfraktion gezogen wird. Gleichzeitig ist in der Leichtfraktion bei dieser Flußdichte noch keine Abscheidung erfolgt. Es besteht also ein klarer Zusammenhang zwischen Dichte des Rohgutes und seiner Suszeptibilität. Dieser Zusammenhang ist in allen 3 Kornklassen gleich. Die entsprechende Darstellung findet man in den Schaubildern 3.11 bis 3.13. Der Unterschied in den Kornklassen erscheint auch hier gering. Die kleinste Kornklasse 200/100µm hat dabei im Schwergut den höchsten und im Leichtgut den geringsten Anteil an magnetischen Gut. Dies könnte ein Hinweis für einen beginnenden Aufschluß der eisenreichen Phase sein.

3.4.3 Chemische Analyse

Die Zahlentafeln 3.5 bis 3.9 zeigen die chemische Analyse der einzelnen Dichte- und Suszeptibilitätsklassen der 5 Kornklassen. Die Kürzel "NC" und "RFA" stehen für naßchemische Analyse bzw. Röntgenfloureszenanalyse. Dabei ist zu beachten, dass die NC-Werte als wesentlich genauer angesehen werden können als die RFA-Werte. In der Folge sind auch die Auswertungen des SiO₂ kritischer zu betrachten als jene des Fe. Die hinterlegten Felder enthalten gerechnete Werte. Die freien Felder ergaben sich, weil in diesen Suszeptibilitätsklassen keine oder nur sehr geringe Abscheidung stattfand. Damit stand keine Probe für die chemische Analyse zur Verfügung. Die gerechneten Gesamtgehalte der Dichteklassen (hinterlegte Felder) ergeben sich aus den Werten der analysierten Suszeptibilitätsklassen wobei die nicht analysierten Klassen vernachlässigt wurden. Dabei werden 5% bis 15% der Aufgabemasse nicht berücksichtigt.

Das Fe²⁺ wurde über die Annahme gerechnet, dass der Fe³⁺-Gehalt (lt. Rohgutanalyse) konstant 0,47% beträgt. Die chemischen Analysen innerhalb der gesamten Kornklassen sind in einem relativ engen Bereich angesiedelt, so dass keine ernsthafte Unterscheidung derselben in chemischer Hinsicht erlaubt ist. Gleiches gilt auch für gleiche Dichteklassen in den verschiedenen Kornklassen. Das wichtigste Datum, der Fe-Gehalt beträgt in den 5 Kornklassen jeweils in der Dichteklasse >3,30g/cm³ von 38,42% bis 39,35%. Dabei fällt auf, dass die kleinste Klasse wieder einen etwas höheren Fe-Gehalt hat als die übrigen 4 Klassen, welche sich in einen Band von 0,18%-
Punkten bewegen. Dies ist vielleicht eine Erklärung für den etwas größeren Magnetgutanteil laut Frantz-Scheidung.

Für alle Dichteklassen standen einerseits chem. Analysen und andererseits die rückgerechneten Werte aus den Suszeptibilitätsklassenanalysen zur Verfügung. Zweitere wurden wiederum als gerechnete Werte in hinterlegten Zellen angeführt, um sie von den Messwerten zu unterscheiden. Der Vergleich zeigt keine großen Abweichungen von gerechnetem und analysiertem Wert. Er beträgt nur in einem einzigen Fall mehr als 1%-Punkt.

Die Bilanzen in den Zahlentafeln 3.5 bis 3.9 zeigen noch zusätzlich den Glühverlust jener Dichteklassen, von denen genug Probe für diese Bestimmung vorhanden war. Der Glühverlust ist in den gleichen Dichteklassen der verschiedenen Kornklassen annähernd konstant. Im Schwergut beträgt dieser 32,16% bis 32,52% und im Mittelgut 37,32% bis 38,37%.

3.4.4 HR-Schaubilder

In den Zahlentafeln 3.10 bis 3.19 sind die gerechneten Werte als Ausgangsdaten für die Summenkurven in den HR-Schaubildern festgehalten. Die HR-Schaubilder wurden für Fe und SiO₂ angefertigt. Bei den beiden groben Kornklassen konnte die Frantz-Scheidung, wie schon erwähnt, nicht durchgeführt werden. Umgekehrt mußte in den 3 feineren Kornklassen auf den Dichtetrennschnitt bei 3,00g/cm³ verzichtet werden.

Da nur in jeweils ein bis zwei Suszeptibilitätsklassen pro Dichteklasse so viel Masse abgetrennt wurde, dass eine chemische Analyse gemacht werden konnte, wurden die analysierten Klassen als 100% normiert und die restlichen Klassen mit 0% angenommen und vernachlässigt. Mit dieser Vereinfachung wurden (wie in 3.4.3. Chemische Analyse schon erklärt) in jeder Dichteklasse um 5% bis 15% Probe vernachlässigt.

Die Verwachsungsgrundkurve wurde mittels Flächenausgleich ermittelt. Die Summenkurven für die Berge und das Konzentrat wurden als Anpassungskurven zwischen den gerechneten Punkten realisiert.

3.4.4.1 HR-Schaubilder für Fe

Der Fe-Gehalt des Fe-reichsten Korns wurde mit dem eines reinen Sideroplesitkorns lt. [10] mit 42% angenommen. Diese Annahme geht davon aus, dass zumindest ein Korn unverwachsener Sideroplesit in der jeweils betrachteten Kornklasse vorliegt.

Die Schaubilder 3.14 bis 3.18 zeigen die Verwachsungsgrundkurve der einzelnen Kornklassen sowie die dazugehörigen Summenkurven der Berge und des Konzentrats. In Schaubild 3.19 sind nun die Verwachsungsgrundkurven der 5 Kornklassen übereinandergelegt. Es ist daraus keine Tendenz vom gröberen zum feineren Korn zu erkennen. Es zeichnen sich zwei "Stufen" in den Kurven ab, die bei allen Klassen ähnlich liegen. Optisch wurden diese mit der fett gezeichneten, stufigen Verwachsungskurve abgeschätzt. Dies ist zulässig, wenn man bedenkt, dass laut Zahlentafeln 3.5 bis 3.9 die Dichte des Schwergutes mindestens 3,678g/cm³ beträgt. Diese Dichte liegt bei einer Trenndichte von 3,30g/cm³ sehr nahe an der Dichte von reinem Sideroplesit (3,8g/cm³). Betrachtet man in den Schaubildern 3.7 bis 3.9 die Suszeptibilitätsklassen des Schwergutes, so sieht man, daß über 95% des Gutes eine Massensuszeptibilität von >9,966*10⁻⁸ m³/kg haben.

3.4.4.2 HR-Schaubild für SiO₂

Der maximal mögliche SiO₂-Gehalt ist durch jenen eines frei vorliegenden Quarzkorns festgelegt.

Das Übereinanderlegen der Verwachsungskurven (Schaubild 3.25) der 5 Kornklassen zeigt keine Tendenz von grobem zu feinem Korn. In allen Klassen ist ab etwa 10% Berge der Gehalt im Konzentrat auf 5% abgesunken und bleibt in dieser Größenordnung. Die kleinste Kornklasse (200/100µm) fällt wieder dadurch auf, dass der SiO₂-Gehalt im Konzentrat geringer wird als bei gröberem Korn.

3.5 Mineralzusammensetzung

Es sei vorausgeschickt, dass die angegebenen Ergebnisse nur Abschätzungen sind, da die Berechnungen unter starken Vereinfachungen stattfanden.

In Zahlentafel 3.20 sind die Daten der Reinminerale aus [10] gegenübergestellt.

		Dichto		Suszeptibilität	_
Minoral	Summen-	Dicitie	It. Messung*	lt. Literatur	Volumssusz.
Willera	formel	ρ	χ	χ	κ
		[kg/m³]	[10 ⁻⁹ m³/kg]	[10 ⁻⁹ m³/kg]	[10 ⁻⁵]
Sideroplesit	(Fe,Mg,Ca)CO ₃	3800	213	400 bis 1900**	80,94
Ankerit	Ca(Mg,Fe)CO ₃	3110	99,7		31,01
Kalzit	CaCO₃	2720	<2,7	-45	-12,24
Silikat	SiO ₂	2700	<2,7	-6	-1,62

* mit Frantz-Isodynamikscheider

** 1900 gilt für reinen Siderit FeCO3

Zahlentafel 3.20: Zahlenwerte für Suszeptibilität und Dichte der Reinminerale

In Punkt 3.4.1 wurde bereits der Sideroplesitgehalt im Schwergut aus der Dichte berechnet.

Verwendet man die Reinmineralzusammensetzung aus [10], wie sie in Zahlentafel 3.21 abgebildet ist, so kann man mit einem Gleichungssystem aus 4 Gleichungen und 4 Unbekannten auf die Rohgutzusammensetzung schließen.

		Sideroplesit	Ankerit	Kalkstein	Silikat
Fe	[%]	42	16	2	0
MgO	[%]	3	5	1	5
CaO	[%]	1	26	40	10

Zahlentafel 3.21: Zahlenwerte der Gehalte der Reinminerale laut [10]

Die vierte Gleichung ergibt sich aus der Massenbilanz. Die Lösung des Gleichungssystems ergibt negative Mineralausbringenswerte. Geht man davon aus, dass die Mineralzusammensetzung richtig ist, liegt der Grund in der Schwankungsbreite der RFA-Analyse. Mit Hilfe von Mehrfachoperationen des Rechenprogrammes Excel der Firma Microsoft wurden die MgO- und CaO-Analysen so verändert, dass eine brauchbare Lösung entstand und gleichzeitig die geringste Veränderung der beiden Werte gegenüber den chemischen Analysen gemacht wurde. Dies ergab wieder eine Sideroplesitgehalt von ca. 90% im Schwergut.

Exemplarisch ist in den Zahlentafeln 3.20 bis 3.22 das Datenblatt für die Berechnung der korrigierten Werte der Fraktion $6300/4000\mu m$, $\rho > 3,3g/cm^3$ abgebildet. In Zahlentafel 3.22 sieht man die Matrix des 4x4-Gleichungssystems. Nebenstehend die 4

Matrizen zur Berechnung der Unterdeterminanten. Links von "Ziel:" steht das Ergebnis der Auflösung des Gleichungssystems. Dabei beträgt der Kalzitgehalt –5,5%. In der darunter stehenden Matrix wurde mit Hilfe einer Mehrfachoperation der Ankeritgehalt bei Veränderung der MgO- und CaO-Analysenwerte berechnet. In Zahlentafel 3.23 noch einmal das Gleiche für Kalzit. Schließlich sind in Zahlentafel 3.24 die Summe der Beträge der Abweichungen der Testwerte von den Analysenwerten für CaO und MgO dargestellt. Diese aber nur in jenem Bereich in dem die mit diesen Testwerten gerechneten Mineralzusammensetzungen (aus Zahlentafel 3.22 und 3.23) positive Werte enthalten. Die geringste Summe der Abweichungen bei gleichzeitigem positiven Ergebnis ergibt sich demzufolge mit 0,62% bei [MgO]=3,16% und [CaO]=1,81%.

Mit diesem Werten wurde schließlich die Mineralzusammensetzung neu gerechnet und sie ergibt laut Zahlentafel 3.24 unten einen Sideroplesitgehalt von 91,6%.

Dies läßt sich für alle anderen Kornklassen des Schwergutes wiederholen. Die Werte bleiben in diesem Bereich. Für das Mittel- bzw. Leichtgut ist diese Methode nicht geeignet, da der Silikatanteil hoch ist, aber die Gleichung für Silikat fehlt. Die Unschärfe ist also bedeutend höher.

3.6 Diskussion

Vergleicht man die mittlere Dichte zwischen den Kornklassen, so sieht man, dass diese um maximal 0,08g/cm³ von einander abweichen. Also etwa

$$\Delta_{\max} = \frac{0.08g/cm^3}{3.550g/cm^3} * 100\% = 2.25\%.$$

Da über die Kornklassen keine Tendenzen der Dichteveränderung erkennbar ist, kann man davon ausgehen, dass sich die mittlere Dichte über den Kornklassen konstant ist.

Sowohl die hohe mittlere Dichte (nahe an der Dichte des reinen Sideroplesit) als auch die hohe Suszeptibilität sind ein Hinweis für einen sehr hohen Anteil an Sideroplesit im Schwergut. Man könnte dies in die Richtung interpretieren, dass das Gut schon aufgeschlossen ist.

Das stetige Steigen der Dichte von den groben zu den feinen Kornklassen hin ist ein Indiz für immer besseren Aufschluß des Sideroplesit. Ebenso steig die Suszeptibilität in den 3 betrachteten Kornklassen hin zu den feinen, was den gleichen Schluß zulässt.

In den HR-Schaubildern (Schaubild 3.14 bis 3.25) ist ein Kornklassenunterschied nicht erkennbar. Auffällig ist vielmehr die Gleichheit der Verläufe der Verwachsungsgrundkurve.

Bei den HR-Schaubildern für Fe (Schaubild 3.14 bis 3.19) sind deutliche eine "Treppe" zu erkennen. Die größere Stufe stellt aufgrund der physikalischen Merkmale (Suszeptibilität und Dichte) fast verwachsungsfreien Sideroplesit dar. Die kleinere Stufe ist verschliffener und setzt sich aus der Gangart zusammen. Ein günstiger Trennschnitt für hohes Fe-Ausbringen und hohen Gehalt liegt demnach bei etwa 25% Berge.

Die rechnerische Mineralanalyse bringt ebenfalls die Aussage, dass das Gut aufgeschlossen ist. Mit der Berücksichtigung, dass die Werte nur Schätzungen darstellen, kann man sagen, dass sich im Schwergut fast nur Sideroplesit und in der Mittelfraktion fast nur Ankerit und im Leichtgut Kalkstein und Silikat befinden.

4 Magnetscheidung

4.1 Aufgabenstellung

Es wird das Verhalten des Produktes der magnetisierenden Röstung des Rohgutes aus Kapitel 3 bei einer Schwachfeldmagnetscheidung untersucht. Mit Hilfe des Schwachfeldtrommelmagnetscheiders des Institutes für Aufbereitung wird der Einfluss der Aufgaberate im Labormaßstab untersucht.

Im folgenden Schritt sollen Tastversuche im Pilotmaßstab an einem Permanentmagnetwalzenscheider der Firma IFE mit Proben unterschiedlichen Durchröstungsgrades durchgeführt werden. Dabei wird auf das Verhalten des Feinkornes besonderes Augenmerk gelegt.

Aus den Versuchsergebnissen sollen Aussagen über die prinzipielle Einsetzbarkeit des Magnetscheiders und die notwendige Scheiderkapazität abgeleitet werden.

4.2 Versuchsdurchführung

4.2.1 Einfluss der Aufgaberate auf den Magnetscheidungserfolg

4.2.1.1 Technische Beschreibung des Magnetscheiders

Je nach Suszeptibilität des Kornes erfolgt eine Kraftwirkung im Magnetfeld auf das Korn. Dieser Kraft wirkt die Fliehkraft auf der sich drehenden Trommel entgegen. Da das Feld eines Trommelscheider in radialer Richtung exponentiell abnimmt, wird ein kleines Korn gleicher Suszeptibilität stärker angezogen als ein größeres. Die Trennung wird also – anders als im Isodynamikscheider – auch durch das Merkmal Korngröße beeinflusst.

Die Magnetscheidung wurde fraktionierend bei aufsteigender Erregerstromstärke bzw. Flußdichte durchgeführt.

Die Versuche wurden auf einem Schwachfeldtrockentrommelscheider (Bild 4.1), der am Institut für Aufbereitung und Veredlung der Montanuniversität zur Verfügung steht, durchgeführt. Das Magnetfeld ist mit 10 Polen in wechselnder Richtung, über einen Winkel von 120°, beginnend beim Scheitel der Trommel angeordnet. Die Pole werden durch Elektromagnete mit Gleichstrom erzeugt.

Bild 4.1: Fotografie des Schwachfeldtrommelmagnetscheiders

Die Drehzahl der Trommel (und damit die Froude-Zahl) ist über einen drehzahlregelbaren Elektromotor bzw. über verschieden große Riemenscheiben mit einem Keilriemen einstellbar. Die Aufgaberate wird über eine Vibrorinne eingestellt. Die wichtigsten Daten und Bereiche der Einstellungen für diese Versuche sind in Zahlentafel 4.1 zusammengefasst.

Trommeldurchmesser	[mm]	367
Trommelbreite	[mm]	148
Rinnenbreite	[mm]	49
Magnetfeldbereich entlang	٢٥٦	0 bis 120
des Trommelumfangs	LJ	0 018 120
Trennschneidenstellung	[°]	0 (senkrecht)
Froude-Zahl	[1]	0,8 bis 1,25
Massenstrom	[kg/(m*h)]	212 bis 5078

Zahlentafel 4.1: die wichtigsten Daten und Einstellungen des Scheiders

Die Beschreibung des Magnetsystems und der Flussdichteverteilung wurde aus [9] und [15] entnommen.

In diesem Versuch wurde die Stundenprobe 21⁰⁰-22⁰⁰h der Röstversuche bei abgestuften Aufgaberaten und aufsteigenden Froude-Zahlen magnetgeschieden, um

einen Zusammenhang der Einstellparameter mit der Qualität und der Quantität des Magnetproduktes herzustellen.

4.2.1.2 Versuchsbeschreibung

4.2.1.2.1 Probenbeschreibung

Es handelt sich um die Stundenprobe 21⁰⁰-22⁰⁰h des Röstproduktes der Probe 2322/1, Spateisenstein des Steirischen Erzberges.

Kornband	[µm]	1600/0	rel.
Probemasse	[kg]	1136 bis 1207	Steuung
Dichte	[g/cm ³]	3,76	±0,43%
Glühverlust	[%]	16,68	±1,27%
Ferromag. Komponente	[%]	22,41	±1,19%
Fe-Gehalt	[%]	39,73	±0,91%
Fe ²⁺ -Gehalt	[%]	7,85	±3,35%
SiO ₂ -Gehalt	[%]	5,42	±1,93%
MgO-Gehalt	[%]	5,00	±0,92%
CaO-Gehalt	[%]	8,93	±2,85%
Alkalien-Gehalt	[%]	0,380	

Zahlentafel 4.2 phys. und chem. Eigenschaften der Probe

Die phys. und chem. Eigenschaften wurden aus den Analysen der Fraktionen der Versuche auf die Aufgabe rückgerechnet (siehe Zahlentafel 4.10 bis 4.18). Da es sich um insgesamt 9 Versuche handelt, ergibt sich die Spanne in den Werten. Die größte Abweichung ergibt sich bei den Werten des Fe²⁺-Gehaltes mit $\pm 3,35\%$.

Der Alkaliengehalt wurde bei den Fraktionen dieser Versuche nicht analysiert. Der Wert stammt aus den Versuchen mit dem Scheider der Firma IFE in Waidhofen (siehe Zahlentafel 4.23). Für diesen Wert konnte die relative Streuung nicht ermittelt werden, da der notwendige Probenumfang nicht zur Verfügung stand.

Es wurden je Versuch etwa 1,2kg Probe aufgegeben, die mittels Riffelteiler aus der Gesamtprobe geteilt wurden.

4.2.1.2.2 Versuchsdurchführung

Abbildung 4.1: Schematischer Ablauf eines Magnetscheideversuchs

Die Versuchsdurchführung erfolgte fraktionierend bei den Erregerstromstärken 0,5A; 1,5A und 5,2A bzw. den korresponierenden maximalen radialen Flussdichten von 15,2mT; 30,0mT und 46,7mT.

4.2.1.2.2.1 Froude-Zahl

Die Berechnung der Fr-Zahl ist in Kapitel 4.2.2.1.2.1 erklärt. Die gewählten Fr-Zahlen und die zugehörigen Drehzahlen sind in Zahlentafel 4.3 dargestellt.

Fr, [1]	0,8	1,0	1,25
n, [min ⁻¹]	62	69	77

Zahlentafel 4.3: Trommeldrehzahl für die gewählten Froude-Zahlen

4.2.1.2.2.2 Trennschneidenstellung

Die Trennschneide zwischen den beiden Produkten "Magnetprodukt" (MP) und "unmagnetisches Produkt" (UMP) wurde senkrecht eingestellt und so belassen. Dies entspricht einem Abstand der Trennschneidenkante von der Trommelachse von 234mm.

4.2.1.2.2.3 Aufgabemassenstrom

Die Vibrorinne kann mittels Elektromotor in ihrer Vibrationsstärke in 8 Stufen eingestellt werden. Die Zahlentafel 4.4 stellt das Ergebnis eines Versuchs dar, indem der Massenstrom des Röstproduktes bei den verschiedenen Stufen gemessen wurde.

Stufe		1	2	3	4	5	6	7	8
Massen- strom	[kg/(m*h)]	30,6	56,2	154	212	937	2081	5078	5196

Zahlentafel 4.4: Stufe der Vibrorinne und Massenstrom des Röstproduktes

Diese Messung gilt für eine Probe laut Zahlentafel 4.2. Es wurden die Stufen 4, 6 und 7 ausgewählt.

4.2.1.3 Versuchsauswertung

Aufgrund 3 ausgewählter Froude-Zahlen (0,8; 1,0 und 1,25) und 3 ausgewählter Nennmassenströme (Stufe 4, 6 und 7) ergaben sich 9 Versuche. Diese sind in Zahlentafel 4.5 bis 4.7 zusammengefasst. Der tatsächliche Aufgabestrom ist in der Spalte "Massestrom" aus Aufgabemasse und Durchsatzzeit errechnet.

In Zahlentafel 4.10 bis 4.18 sind die physikalischen und chemischen Eigenschaften aller Fraktionen der Versuche mit und ohne Glühverlust bilanziert.

Wie aus der Abbildung 4.1 zu erkennen ist, wurde nicht jeweils die gesamte Probe bei jeder Flussdichte (Stromstärke) magnetgeschieden, sondern jeweils das "unmagnetische" Produkt als Aufgabe für die nächst höhere Flussdichteeinstellung verwendet. Es wurden also mehrere Zweiproduktentrennungen mit sinkendem Fe-Gehalt durchgeführt.

Um einzelne Trennschnitte des gesamten Röstproduktes zu erstellen, wurden die verschiedenen Fraktionen rechnerisch zusammengefasst. In Zahlentafel 4.8 und 4.9 sind die gerechneten Gehalte und Inhalte an Fe bzw. an SiO₂ aufgelistet. Die Ziffern 1 bis 4 symbolisieren die Fraktionen von jener mit hoher Suszeptibilität (1) zu jener mit niedriger (4). Der letzte Versuch (Fr=1,25; Stufe 7) konnte nicht ausgewertet werden, da die chemische Analyse eines Versuches nicht zur Verfügung stand.

Aus den insgesamt 32 (=8*4) Punkten wurde mittels einer Hüllkurve der Zusammenhang von erreichbarem Inhaltsausbringen zum Stoffgehalt hergestellt (Grenzkurve der Selektivität). Graphisch ist dies im Schaubild 4.1 für Fe und im Schaubild 4.2 für SiO₂ dargestellt.

Schaubild 4.1: Darstellung von Gehalt über Inhalt des Eisens

Der Fe-Gehalt des aufgegebenen Röstproduktes ist bei $I_{Fe}=100\%$ abzulesen und beträgt etwa 40%. Eine Steigerung des Gehaltes bis etwa 50% ist mit geringen Verlusten an Inhalt (ca. 15%-Punkte) möglich. Darüber hinaus steigen die Verluste an Fe stark an. Der maximal erreichbare Gehalt an Fe wurde mit 53,7% graphisch abgeschätzt.

Die gleiche Darstellung für Kieselsäure ist in Schaubild 4.2 zu sehen. Der Gehalt liegt gesamt zwischen 5% und 6% und kann durch die Magnetscheidung nicht unter 3% gedrückt werden.

Die Zahlentafel 4.10 bis 4.18 zeigen die Bilanzen der 9 Versuche. Neben den physikalischen und chemischen Analysen ist die Verteilung der analysierten Stoffe auf die Produkte berechnet und aufgelistet. Der Gehalt an 3-wertigem Eisen in der Hauptspalte "chem. Analyse" wurde aus der Differenz von Fe und Fe²⁺ ermittelt.

In den Schaubildern 4.3 bis 4.5 ist das Inhaltsausbringen der Einzelversuche über dem spezifischen Massestrom bei abgestufter Froude-Zahl bezogen auf die Eiseninhalte der Aufgabe im jeweiligen Fraktionierungsschritt dargestellt. Das Ausbringen ist jeweils auf die Aufgabe dieses einzelnen Versuchs bezogen. Zur Verdeutlichung sind die Gehalte der Aufgabe bei den betreffenden Punkten angeführt.

Die zusammenfassende Darstellung der Ausbringenswerte bei konstanter Flussdichte und Trommeldrehzahl in Abhängigkeit vom Parameter Massenstrom bezogen auf die Gesamtaufgabe gestaltet sich aufgrund der Schwankungen der Massenströme in den Einzelversuchen schwierig. Es wurde daher ein mittlerer Massenstrom für die zusammengehörenden Fraktionierungsstufen berechnet. Die Gehalte und Inhalte der Fraktionen wurden nicht korrigiert.

Der mittlere Massenstrom wurde aus einer durch den 0-Punkt gezwungenen Ausgleichsgerade "Summe Masse über der Zeit" berechnet.

Die teilweise recht beträchtlichen Standardabweichungen der spez. Massenströme in den einzelnen Versuchen wurden in Zahlentafel 4.19 dargestellt.

	Froude-Zahl	Fr	[1]	0,8	1,0	1,25
Stufe 4	spez. Massestrom		[kg/mh]	628	611	420
Stule 4	St´abweichung	σ	[kg/mh]	42	126	103
Stufe 6	spez. Massestrom	ṁ	[kg/mh]	2270	2285	2354
Stule 0	St´abweichung	σ	[kg/mh]	431	208	309
Stufe 7	spez. Massestrom		[kg/mh]	4510	4606	-
Stule /	St´abweichung	σ	[kg/mh]	1222	722	-

Zahlentafel 4.19: Zahlenwerte der mittleren spezifischen Massenströme und der dazugehörigen Standardabweichungen

Mit diesen Einschränkungen in der Genauigkeit sind die Schaubilder 4.6 bis 4.8 zu betrachten. Hierbei wurden die Inhaltsausbringen laut Zahlentafel 4.10 bis 4.18 summarisch und über den gemittelten spez. Massenstrom dargestellt.

In Schaubild 4.9 wurden die Versuchsergebnisse im κ -Netz nach Steiner dargestellt. Dabei ist das Inhaltsausbringen des Fe im Magnetprodukt dem Inhaltsausbringen des gesamten nicht-Fe im Magnetprodukt gegenübergestellt. Die verbundenen Punkte stellen eine graphische Ausgleichskurve der Messpunkte dar. Die Punkte sollen eine Gerade bilden. Dies ist nicht einwandfrei gegeben. Liegt die Gerade nahe an der ersten Mediane, ist die Selektivität des Trennvorganges gering. Je weiter die Gerade von der Mediane entfernt liegt, desto selktiver funktioniert der Trennprozeß. Die Grenzen der Selektivität in dieser Anwendung liegen darin, daß der Ankerit auch Fe enthält und daher immer Fe in den Bergen bleiben wird. Weiters wird das Ausbringen an Bergen in das Konzentrat nie 0 werden, da die nicht-Fe-Bestandteile des gerösteten Sideroplesit auch zu den Bergen zählen.

4.2.1.4 Versuchsergebnisse

Bei geringeren Flussdichten (hier: 15,2mT) beeinflusst der Massenstrom das Inhaltsausbringen an Eisen. Jedoch bei hohen magnetischen Induktionen (hier: 46,7mT) bleibt der Massenstrom in diesem Bereich (hier: bis ca. 4500 kg/(m*h)) effektlos.

Die Grenzen der Anreicherung von Fe für die untersuchte Probe wurden mit 53,7% graphisch ermittelt. Die Grenze der Abreicherung von SiO₂ liegt bei etwa 3%.

4.2.1.5 Diskussion

Aus den 9 Versuchen wurde jeweils die Zusammensetzung der Aufgabe aus den Analysen der Produkte gerechnet. Da die Aufgabe immer die gleiche war, kann man mit dem Vergleich der Rückrechnungen auf die Aufgabe die Summe der Fehler abschätzen. Dieser setzt sich aus dem Probenahme- und dem Analysefehler zusammen. In Zahlentafel 4.20 sind 8 der 9 Versuche gegenübergestellt die letzte Probe (Fr=1,25, Stufe 7) fehlt, da hier die Analysewerte eines Produktes fehlen.

		Fr =0,8 Stufe 4	Fr =0,8 Stufe 6	Fr =0,8 Stufe 7	Fr =1,0 Stufe 4	Fr =1,0 Stufe 6	Fr =1,0 Stufe 7	Fr =1,25 Stufe 4	Fr =1,25 Stufe 6	Mittel- wert	Standardab- weichung	Streuung in %- Punkten
Fe	[%]	39,66	39,64	39,60	39,32	39,56	40,40	39,52	40,17	39,73	0,361	0,91
Fe ²⁺	[%]	7,55	7,86	8,10	7,57	8,01	8,11	8,06	7,51	7,85	0,263	3,35
SiO_2	[%]	5,46	5,50	5,48	5,41	5,46	5,48	5,41	5,18	5,42	0,105	1,93
MgO	[%]	4,99	4,98	4,98	5,09	5,02	4,93	4,98	5,03	5,00	0,046	0,92
CaO	[%]	9,08	8,84	9,04	9,22	9,08	8,38	8,97	8,86	8,93	0,255	2,85

Zahlentafel 4.20: Rückgerechnete Aufgabenanalyse und Standartabweichung

Da der Verlauf und die Stärke des Magnetfeldes vom durchdrungenen Medium abhängt, hat das Vorhandensein der ferromagnetischen Fraktion auf der Trommel schon einen Einfluß auf die Flußdichte eben dort. Beispielhaft wäre zu sagen, daß die Vermutung nahe liegt, daß im Beisein von m_{P1} im zweiten Durchlauf (I_E=1,5A, B_{r,70°}=30,0mT) die abgeschiedene Fraktion m_{P2}' größer als die Addition von m_{P1} und m_{P2} (aus den tatsächlich durchgeführten Versuchen) ausfallen würde.

4.2.2 Versuche mit dem Magnetscheider der Firma IFE

Bild 4.2: IFE-Scheider mit Staubschutz

4.2.2.1 Technische Beschreibung

Die technischen Magnetscheidungsversuche wurden mit einem Trommelmagnetscheider Typ HG1 der Firma IFE durchgeführt. Die Abmessungen sind aus der Abbildung 4.3 und der Abbildung 4.4 zu entnehmen. Die Trommel ist mit einem 3mm Gummibelag beschichtet, um die Metalltrommel vor Verschleiß zu schonen, sowie die Magnetkraft zu reduzieren.

Das Wechselpolmagnetfeld wird durch 13 Permanentmagnete aus Neodym-B-Fe alternierender Polung erzeugt. Sie sind beim Scheitel der Trommel beginnend in Drehrichtung ohne Spalt bis zu einem Winkel von 210° angeordnet.

Abbildung 4.2: Anordnung der Permanentmagnete unter der Trommel

Die Drehzahl der Trommel und damit die Froude-Zahl ist einstellbar. Weiters kann die spezifische Aufgabemenge in kg/(h*m) über eine Vibrorinne eingestellt werden.

Das Aufgabegut wird mittels zweier Trennbleche in die 3 Fraktionen Magnetprodukt (MP), Zwischenprodukt (ZP) und unmagnetische Produkt (UMP) aufgeteilt. Die Aufteilung der Fraktionen UMP und ZP kann durch eine winkelverstellbare Schneide verändert werden.

Abbildung 4.3: Seitenansicht des Magnetscheiders

Abbildung 4.4: Frontansicht des Magnetscheiders

Die Schneidenstellung zwischen ZP und UMP gehorcht folgendem Zusammenhang:

$$s = \sqrt{(400 - 250 * \cos(\alpha))^2 + (225 + 250 * \sin(\alpha))^2}$$

Wobei s die Länge in mm vom Mittelpunkt (M) der Trommel bis zur Trennschneidenkante ist (siehe Abbildung 4.3). α ist der Winkel der Schneide, wobei die senkrechte Lage 0° entspricht und der Gegenuhrzeigersinn in der Abbildung 4.3 als die positive Richtung gilt. Der Winkel α wurde auf 10° eingestellt. Die Stecke s ergab damit den Wert 238mm.

4.2.2.1.1 Vermessung des Magnetfeldes

Die Messung erfolgt nach dem Prinzip der Kraftwirkung auf bewegte Ladungsträger im Magnetfeld (Lorenz-Kraft). Dabei entsteht senkrecht zur Bewegungsrichtung der Ladungen (elektrischer Strom) und zur magnetischen Flußdichte (durch das Permanentmagnetfeld) eine elektrische Spannung, deren Betrag wiederum ein Maß für die Flußdichte ist (Hall-Effekt).

Bild 4.3: IFE-Scheider mit Hall-Sonde

Entsprechend der Lage, in der die Sonde auf die Trommel geklebt war, wurde der radiale Anteil der Flussdichte (Formelbuchstabe: B_r) gemessen. Wobei das Auffinden des wahren Maximums, das genau in radialer Richtung vermutet wird, durch Drehen der Sonde um die Längsachse und gleichzeitiges Ablesen der Anzeige bewerkstelligt wurde.

Beim Meßinstrument handelte es sich um ein Fluxmeter der Firma Krupp Widia, bestehend aus einer Sondenversorgung, mit Anzeige und Meßbereichsumschalter sowie einen Hallsensor Fa 32e mit Übertragungskabel der Firma Siemens. Der Kalibrierwert betrug –0,937. Der Meßbereich wurde auf 2dT (=0,2T) eingestellt.

Der Scheitelpunkt der Trommel wurde mit 0° und die positive Zählrichtung des Winkels in Drehrichtung der Trommel festgelegt.

Es wurde die Flußdichte über den Umfang und in Abhängigkeit des Abstandes (an einem Maximum), sowie die Konstanz über die Trommellänge (an einem Maximum) gemessen.

Abbildung 4.5: Vermessung der Trommel des Magnetscheiders

4.2.2.1.1.1 Messung der Feldes über den Umfang

Dazu wurde die Trommel in 5° Schritte, also 72 Felder, unterteilt (siehe Abbildung 4.5). Die Sonde wurde auf Höhe der Mitte der Vibrorinne (siehe Bild 4.3), 220mm vom rechten Rand (siehe Abbildung 4.4), befestigt und mit der Trommel schrittweise weitergedreht. Die gemessene Flußdichte ist im untenstehendem Schaubild 4.10 dargestellt.

Schaubild 4.10: Darstellung der radiale Flußdichte über dem Trommelumfang

Die 13 Maxima der Flußdichte ergeben, dass es sich um eine Anordnung von 13 Permanentmagneten handelt, die alternierend gepolt aneinandergereiht sind.

Vom Scheitelpunkt (0°) gegen die Drehrichtung der Trommel war eine Messung mit der befestigten Hallsonde nicht möglich, da das Zuführblech eine zu kleinen Spalt zwischen Trommel und Blech ließ. Laut Firma IFE beginnt das Feld bei 0°.

Das Magnetfeld reicht also bis über den tiefsten Punkt der Trommel hinaus bis etwa 230°. Das bedingt, daß nicht nur die Fliehkraft sondern auch die Schwerkraft hilft, magnetisches und unmagnetisches Gut zu trennen. Aus dem Abstand der Maxima kann man schließen, daß die einzelnen Magnete ein Kreissegment von etwa 17° abdecken. Laut Firma IFE sind die Magnete spaltfrei nebeneinander angeordnet.

4.2.2.1.1.2 Messung des Feldes in radialer Richtung

Um die magnetische Kraftwirkung in radialer Richtung bestimmen zu können, bedarf es neben der Information der Flussdichte auch jener des Gradienten der selben. Dazu wurden zuerst die exakten Positionen der ersten 4 Maxima von B_r gesucht. Diese liegen bei 17°, 34°, 52° und 68° (vergleiche dazu Schaubild 4.11). Mit Hilfe von Abstandhaltern aus diamagnetischem Material (Papier) wurde dann millimeterweise die Flußdichte gemessen. Aufgrund der schlechten Reproduzierbarkeit der Meßanordnung in bezug auf Abstandeinstellung und Lage der Hall-Sonde ist das Ergebnis nur bedingt brauchbar. Die exponentielle Abnahme der Flußdichte mit dem Radialabstand ist erkennbar. Der Zusammenhang ist in Schaubild 4.11 dargestellt.

Schaubild 4.11: Darstellung der radiale Flußdichte über dem Abstand von der Trommel

4.2.2.1.1.3 Messung des Feldes über die Trommellänge

Es wurde auch überprüft, ob die Flußdichte des Magnetfeldes über die Breite des Aufgabestromes und darüber hinaus konstant ist. Dazu wurde am Maximum bei 34° in Axialrichtung der Trommel alle 10mm die Flußdichte an der Oberfläche gemessen. In Schaubild 4.12 ist die Veränderung der Flußdichte über der Axialrichtung beginnend bei der Mitte der Trommel hin zum Rand quer über die Aufgabebreite zu sehen.

Schaubild 4.12: Darstellung der radiale Flußdichte über die Trommellänge

Man kann die Flussdichte über die Länge der Trommel als konstant ansehen. Am Rand der Trommel ist ein rascher Abfall des Feldes festzustellen.

4.2.2.1.2 Gewählte Einstellungen

4.2.2.1.2.1 Froude-Zahl

Der Trommeldurchmesser (siehe Abbildung 4.3) beträgt 465mm. Zuzüglich des Gummibelages ergibt sich ein Durchmesser von 470mm (r=235mm).

Die Froude-Zahl ist als das Verhältnis von Fliehkraft zu Schwerkraft definiert und soll 2 betragen.

$$Fr = \frac{r * \omega^2}{g} = 2$$

Nach den Abmessungen der Trommel ergibt sich dadurch wie folgt die Drehzahl:

$$n = \frac{60}{2\pi} * \sqrt{\frac{g * Fr}{r}} = 87,25 \,\mathrm{min}^{-1}$$

Eingestellt und gemessen wurde schließlich eine Drehzahl von 86,75 min⁻¹. Dies ergibt wiederum: Fr=1,98.

Für anfängliche Versuche bei der Firma IFE in Waidhofen an der Ybbs wurde auch eine Froude-Zahl von 1 verlangt. Dies ergab eine Drehzahl von

$$n = \frac{60}{2\pi} * \sqrt{\frac{g * Fr}{r}} = 61,70 \,\mathrm{min}^{-1}.$$

Die Einstellung erfolgte auch hier wie oben mittels Drehzahlmesser.

4.2.2.1.2.2 Trennschneidenstellung

In Abbildung 4.3 ist die Stellung der Trennschneide zu sehen. Die Trennschneide wurde auf α =10° eingestellt, was einem Abstand von 238mm der Schneidenkante von der Trommelachse entspricht.

4.2.2.1.2.3 Aufgabemassenstrom

Der Aufgabemassenstrom wurde optisch beurteilt und nachgerechnet. Die jeweils mitgemessene Aufgaberate bewegt sich in einem Bereich von 2400kg/(mh) und 4300kg/(mh) und ist in der Bilanz (Zahlentafel 4.28) dargestellt. Die Berechnung erfolgt aus der gemessenen Zeit für die Aufgabe und der aufgegebenen Masse. Sie wird auf die Breite der Aufgaberinne (0,235m) bezogen, um eine allgemeine Vergleichbarkeit zu schaffen.

Die Formel lautet daher:

$$\dot{m} = \frac{m_{Aufgabe}}{t * b_{Rinne}}$$

Wobei die Zeit in Stunden, die Aufgabemasse in kg und die Rinnenbreite in m eingesetzt wird. Die Ergebnisse sind in Zahlentafel 4.21 angegeben.

Stundenprobe	Masse	Zeit	Massen- strom	lose Schütt- dichte	Volumen- Strom	nomin. Schütthöhe
Romkiasse	[g]	[s]	[kg/(mh)]	[kg/dm³]	[dm³/s]	[mm]
11 ⁰⁰ -12 ⁰⁰ 1,6/0 mm	33302	123	4148	1,770	0,153	0,287
12 ⁰⁰ -13 ⁰⁰ 1,6/0 mm	14306	52	4215	1,774	0,155	0,291
13 ⁰⁰ -14 ⁰⁰ 1,6/0 mm	31613	153	3165	1,753	0,118	0,221
15 ⁰⁰ -16 ⁰⁰ 1,6/0 mm	53610	255	3221	1,831	0,115	0,216
16 ⁰⁰ -17 ⁰⁰ 1,6/0 mm	37519	241	2385	1,757	0,089	0,166
17 ⁰⁰ -18 ⁰⁰ 1,6/0 mm	30371	121	3845	1,808	0,139	0,261
19 ⁰⁰ -20 ⁰⁰ 1,6/0 mm	32061	-	-	1,796	-	-
21 ⁰⁰ -22 ⁰⁰ 1,6/0 mm	19484	84	3553	1,854	0,125	0,235

Zahlentafel 4.21: Zahlenwerte der Aufgaberaten am IFE-Scheider

Bild 4.4: Der Aufgabestrom

4.2.2.2 Versuchsbeschreibung

4.2.2.2.1 Probebeschreibung

Nummer	Stunde-	Korn- band	Masse	Dichte	Glüh- verlust	Ferroma g. Komp.	Schütt- dichte
	probe	[µm]	[g]	[g/cm ³]	[%]	[%]	[g/cm ³]
1	11 ⁰⁰ -12 ⁰⁰	1600/0	33302	3,864	15,11	20,48	1,770
2	12 ⁰⁰ -13 ⁰⁰	1600/0	14306	3,915	13,11	24,64	1,774
3	13 ⁰⁰ -14 ⁰⁰	1600/0	31613	3,873	14,18	23,39	1,753
4	15 ⁰⁰ -16 ⁰⁰	1600/0	53610	3,827	17,20	18,88	1,831
5	16 ⁰⁰ -17 ⁰⁰	1600/0	37519	3,871	15,38	20,37	1,757
6	17 ⁰⁰ -18 ⁰⁰	1600/0	30371	3,878	13,75	23,50	1,808
7	19 ⁰⁰ -20 ⁰⁰	1600/0	32061	3,747	16,89	21,69	1,796
8	21 ⁰⁰ -22 ⁰⁰	1600/0	19484	3,735	16,53	22,82	1,854

Es wurden 8 verschiedene Stundenproben der gerösteten Probe 2322, Spateisenstein des Steirisches Erzberges aufgegeben. Das Gut umfasst ein Kornband von 1,6/0mm.

Zahlentafel 4.22: phys. Eigenschaften der Probe

Die Teilproben wurden mittels Riffelteiler hergestellt.

Durch einen nicht unbeträchtlichen Feinstkornanteil (ca. $20\% < 40\mu$ m) kam es zu einer hohen Staubbelastung der Luft. Daher wurde der Magnetscheider mit einer Kunststoffolie als Staubschutz abgedeckt. Dies ist in Bild 4.2 zu erkennen.

4.2.2.2.2 Versuchsdurchführung

Die Probe wurde zuerst in den Aufgabetrichter geschüttet.

Bild 4.5: Aufgabetrichter und Vibrorinne

Anschließend wurde die Trommel und die Vibrorinne eingeschaltet. Nach erfolgtem Durchlauf (ca. 2 Minuten) wurden die Fraktionen ZP und UMP gewogen und abgesackt. Zuvor zog man von allen Produkten (UMP, ZP und MP) eine Teilprobe von ca. 2 bis 4 kg mit dem Riffelteiler für die physikalische und chemische Analyse.

Abbildung 4.6: Homogenisierung des Magnetproduktes (MP)

Da für anschließende Sinterversuche die verschiedenen Magnetprodukte zusammengeführt und homogenisiert werden mussten, wurden sie nach dem Wägen lagenweise in 4 Wannen aufgeteilt. Anschließend wurde ein Riffelteiler mit den Wanneninhalten beschickt. Dabei wurde mittels einer Schaufel normal zu den Lagen abgenommen, um eine weitere Vermischung zu erreichen. Die Riffelteilproben wurden wieder lagenweise in 2 Fässer gefüllt. Diese beiden Fässer wurden dann wiederum in ein großes Faß vereinigt.

4.2.2.3 Versuchsauswertung

Diese Versuche wurden in 2 Etappen durchgeführt. Zuerst wurden 3 Proben bei der Firma IFE in Waidhofen an der Ybbs magnetgeschieden. Dabei wurden die Einstellungen für die weiteren Versuche festgelegt. Derselbe Versuchsscheider wurde dann der Firma VA Erzberg zur Verfügung gestellt. Dort wurde die zweite Versuchsreihe bestehend aus 8 Stundenproben magnetgeschieden.

Es soll die Eignung dieses Magnetscheiders in verschiedenen Korngrößenbereichen untersucht werden.

4.2.2.3.1 Tastversuche in Waidhofen an der Ybbs

Die Versuche wurden von einem Mitarbeiter der Firma IFE unter Vorgabe der Einstellwerte durch das Institut für Aufbereitung durchgeführt. Die Versuchsergebnisse wurde in Versuchsprotokoll 1 bis 3 im Anhang festgehalten.

3 Proben wurden in insgesamt 5 Versuchen untersucht. Die Proben 12^{00} - 13^{00} h und 21^{00} - 22^{00} h lagen in einem Kornband von 1,6/0 mm vor und wurden bei Fr=1 und Fr=2 aufgegeben. Von der Stundenprobe 20^{00} - 21^{00} h des Röstproduktes wurde die Kornklasse <63µm aufgegeben. In Zahlentafel 4.23 ist die Bilanz mit den physikalischen und chemischen Analysen sowie der Verteilung abgebildet.

Die Zellen mit "n.v." ("nicht verfügbar") bedeuten, daß hier keine Proben zur Analyse zur Verfügung standen.

Bei der Probe 12⁰⁰-13⁰⁰h und Fr=1 wurde das Zwischenprodukt mit dem unmagnetischen Produkt zu eine Bergeprodukt vereinigt und als "Berge" bezeichnet.

Dadurch stand von den einzelnen Proben (ZP, UMP) keine chemische und von der vereinigten Probe (B) keine physikalische Analyse zur Verfügung. Beim Zwischenprodukt der Probe 21⁰⁰-22⁰⁰h war die Probenmenge so gering, daß alles zur chemischen Analyse verwendet wurde.

In Zahlentafel 4.24 wurden die Ergebnisse auf den glühverlustfreien Zustand bezogen. Die Verteilung eines Stoffgehaltes der Aufgabe auf die Merkmalsklassen der Produkte bleibt unabhängig vom Bezugssystem.

Es läßt sich ein Unterschied im Fe-Gehalt der verschiedenen Magnetprodukte der Röstprodukte erkennen, der auf die unterschiedliche Durchröstung in Abhängigkeit von der Einstellung, zurückzuführen ist. Während in der Probe 12⁰⁰-13⁰⁰h der Fe-Gehalt in der Aufgabe höher ist als bei den anderen Proben, ist er im Magnetprodukt geringer. Diese Probe hat mit 13,11% den geringsten Glühverlust, mit 76,0% die größte MP-Fraktion und mit 88,59% das höchste Fe-Ausbringen in das Magnetprodukt. Die hohe Duchröstung (zu sehen am geringen Glühverlust) bewirkt, dass viel Gut in die Magnetfraktion gelangt und das Ausbringen dadurch steigt, aber der Gehalt sinkt.

Da das Polsystem so angeordnet ist, dass das Magnetfeld bis über den tiefsten Punkt (180°) hinaus bis 210° wirksam ist (sieh Abbildung 4.2), kann eine Trennung auch im Feinstkornbereich erzielt werden.

Jene Probe (20⁰⁰-21⁰⁰h), die nur im Kornband <63µm vorlag, erzielte das beste Ergebnis im Sinne von Fe-Gehalt und Fe-Verteilung. Dies hat zumindest 2 Ursachen. Einerseits kann man davon ausgehen, daß die feineren Körner besser durchröstet werden, also die Suszeptibilität mehr gesteigert wird als bei gröberen Körnern. Dies sieht man in Zahlentafel 4.23 daran, daß die ferromagnetische Komponente in dieser Probe mit 27,59% am höchsten ist, obwohl der Fe-Gehalt nur durchschnittlich (40,28%) ist. Andererseits ist die Magnetkraft näher an der Trommel höher, was bedeutet, daß kleinere Partikel besser angezogen werden. Obwohl der Anteil an MP dieser Probe mit 74,2% nur im Mittelfeld liegt, ist das Inhaltsausbringen an Fe mit 93,56% das Höchste. Feineres Korn ist also sowohl für die vollständige Durchröstung als auch für die bessere Magnetscheidung von Vorteil.

Die bessere Entsäuerung durch vollständige Durchröstung steigert auch den Fe-Gehalt im Produkt. Hier zeigt der Vergleich zum glühverlustfrei gerechneten Produkt die Auswirkung. Der Glühverlust der Feinkornprobe (20⁰⁰-21⁰⁰h) ist zirka um ein Drittel geringer als bei den anderen Proben. Dies bewirkt, daß der glühverlustfrei gerechnete Fe-Gehalt im Magnetprodukt nicht mehr der höchste im Vergleich zu den anderen ist. Gleichlaufend ist in dieser Probe auch die ferromagnetische Komopnente und die Dichte am höchsten sowie eben der Glühverlust am geringsten.

Die Variation der Froude-Zahl ergab keinen signifikanten Unterschied im Trennerfolg. Die Masse an Magnetprodukt ist bei Fr=2 etwas geringer und der Gehalt höher. Dies ergibt sich aus der höheren Fliehkraft, die wiederum para- und diamagnetische Partikel besser von der Trommel wegschleudert.

4.2.2.3.2 Studenprobe 12⁰⁰-13⁰⁰h (der Tastversuche)

Die Magnetscheidungsprodukte der Stundenprobe 12⁰⁰-13⁰⁰h bei Fr=1 (erster Versuch in Zahlentafel 4.23) wurden einer Siebanalyse unterzogen. Die erhaltenen Kornklassen wurden wiederum physikalisch auf Dichte, Glühverlust und ferromagnetische Komponente untersucht. In Zahlentafel 4.25 ist das Ergebnis mit Rückrechnung auf die Aufgabe in Form einer Bilanz dargestellt. Die ferromagnetische Komponente nimmt mit sinkender Kornklasse in der Aufgabe und noch stärker im Magnetprodukt zu. Die Magnetscheidung ist also auch für das Feinstkorn (unter diesen Bedingungen) geeignet. Die Verteilung der Masse innerhalb der Kornklassen im gerechneten glühverlustfreien Zustand ist in Zahlentafel 4.26 dargestellt.

Schaubild 4.13 zeigt nun das GGS-Netz für das Magnetprodukt (MP) und die vereinigte Fraktion aus Zwischenprodukt und unmagnetischem Produkt (UMP). Erneut zeigt sich die Charakteristik, daß der Anteil des Feingutes im MP am höchsten ist.

4.2.2.3.3 Auswertung der Versuche am Erzberg

Maximale Flussdichte	0,136T
Drehzahl	86,8min ⁻¹
Aufgaberate	3100kg/(mh) bis 4200kg/(mh)
Nutzbare Walzenbreite	248mm
Walzendurchmesser mit Gummiauflage	470mm
Trennschneidenstellung	238mm
Anzahl der Trennprodukte	3 (MP, ZP, UMP)

Einstellungen und technische Daten zufolge der Tastversuche:

Zahlentafel 4.27: Einstellungen und technische Daten zufolge der Tastversuche

Diese Versuche wurden nur mehr mit Fr=2 durchgeführt, da der erzielte Fliehkrafteffekt aus der obigen Erklärung durchaus erwünscht ist.

Es wurden 8 verschiedene Stundenproben (phys. und chem. Eigenschaften siehe Zahlentafel 4.22, Seite 41) in einem Kornband 1,6/0mm mit einer Masse von etwa 20kg bis 50kg auf dem Trommelscheider HGS I der Firma IFE aufgegeben. Die Gesamtbilanz über alle Proben ist in Zahlentafel 4.28 zu sehen. Zu den schon bekannten physikalischen Analysen wurde noch die Schüttdichte mittels Standzylinder ermittelt. Sie schwankt in einem engen Bereich um 1,8g/cm³. Weiters ist die berechnete Aufgaberate angegeben. Diese fehlt bei der Stundenprobe 19⁰⁰-20⁰⁰h, da bei diesem Versuch die Zeitnehmung fehlerhaft war. Die nominelle Schütthöhe bewegte sich in einem Bereich von 0,166mm bis 0,291mm.

Aus der chemischen Analyse wurden schließlich die Verteilungen des Fe-, SiO₂- und Alkaliengehaltes innerhalb des jeweiligen Röstprodukts berechnet und angeführt.

Je nach Durchröstungsgrad ergab sich ein Fe-Gehalt von 39,4% bis 44,5%. Eine Korrelation der ferromagnetischen Komponente mit diesem Gehalt ist nicht eindeutig zu erkennen. Der Gehalt an Fe im Magnetprodukt (MP) bewegt sich in einem engeren Band (50,06% bis 52,46%) und läßt keinen Zusammenhang mit dem Aufgabegehalt oder dem Anteil der ferromagnetischen Komponente erkennen. Beim höchsten

Masseausbringen (Stundenprobe 12^{00} - 13^{00} h) in das MP mit 76,0% ist auch das Fe-Ausbringen mit 88,59% am höchsten. Dabei liegt der Fe-Gehalt mit 51,87% im Mittelfeld. Das geringste Ausbringen an MP (Stundenprobe 21^{00} - 22^{00} h) mit 63,7% weist mit 52,46% den höchsten Fe-Gehalt auf. Hier liegt das Fe-Ausbringen mit 84,01% im Mittelfeld.

Die Verteilung der Kieselsäure (SiO₂) ist zwischen MP und UMP etwa gleich, wenn die MP-Fraktion nicht sehr hoch ist. Bei den höheren Anteilen an MP verschiebt sich die SiO₂-Verteilung in Richtung MP.

In Zahlentafel 4.29 wurde mit Hilfe des gemessenen Glühverlustes die Massenverteilung und die chemischen Analysen auf den glühverlustfreien Zustand umgerechnet. Es handelt sich also um rein rechnerische Werte. Die Verteilung ist ebenfalls angeführt, dient aber nur zur Probe, da sich diese ja gegenüber den glühverlustbehafteten Zustand nicht verändern darf.

Wenn das Rohgut vollständig geglüht würde, ergäbe sich ein Fe-Gehalt von etwa 50,5%. Dies kann als theoretische Obergrenze der Röstung angesehen werden.

Die Stundenproben 12⁰⁰-13⁰⁰h, 16⁰⁰-17⁰⁰h und 19⁰⁰-20⁰⁰h wurden zusätzlich noch in die Kornklassen 1600/1000µm, 1000/500µm, 500/100µm und 100/0µm aufgetrennt und erneut physikalisch und chemisch analysiert. Dies ist in den Zahlentafeln 4.30 bis 4.32 festgehalten. Die drei rechten Hauptspalten "Verteilung", "Ausbringen" und "korngrößenbezogenes Inhaltsausbringen" enthalten gerechnete Werte.

Die Verteilung des Elementes Eisens im Magnetprodukt (MP) bestätigt, daß der Hauptanteil (ca. 80%) des Fe vom Feinkorn (500/0µm) gestellt wird. Dies liegt vermutlich an den schon angeführten Gründen der besseren Durchröstung und Magnetscheidung der kleineren Partikel.

Dies bestätigt sich beim "Ausbringen" wieder: Über 70% des Fe kommen aus der Kornklasse 500/0µm. Im MP und in der Summenzeile sieht man, daß der Fe-Gehalt hin zu den kleinen Körnern steigt.

In Betrachtung der größten Kornklasse in der letzten Hauptspalte der Zahlentafel 4.30 bis 4.32 läßt sich umgekehrt sehen, daß das Fe-Ausbringen so verteilt ist, daß es eher den Charakter einer Probeteilung hat, als jenen einer Magnetscheidung. Es erfolgt also keine besonders gute Anreicherung des Fe aus der Klasse 1600/1000µm im MP.

In den Schaubildern 4.14 bis 4.19 wurde die ferromagnetische Komponente und der Fe-Gehalt über der Dichte einerseits und dem Glühverlust andererseits dargestellt. In einem Bild sind jeweils die Fraktionen der Magnetscheidung (aufgeteilt in je 4 Kornklassen) einer Stundenprobe dargestellt. Die verschiedenen Kornklassen wurden mit den Buchstaben A, B, C und D gekennzeichnet. Die ausgefüllten Punkte gelten für den Fe-Gehalt und die nicht ausgefüllten Punkte stellen die jeweilige ferromagnetische Komponente dar. Zwischen dem Fe-Gehalt und der Dichte ist ein linearer Zusammenhang zu erkennen. Dies gilt nicht für die ferromagnetische Komponente und die Dichte. Die beiden Kriterien (ferromagnetische Komponente und Fe-Gehalt) über dem Glühverlust ergeben keinen linearen Zusammenhang.

In den Schaubildern 4.20 bis 4.22 ist die Kornklassenverteilung in einem GGS-Netz dargestellt. Daraus ersieht man die obigen Überlegungen zusammengefaßt. Das MP hat den höchsten Feinkornanteil aller Fraktionen.

Die Zahlentafeln 4.33 bis 4.35 und die Schaubilder 4.23 bis 4.25 zeigen die gleichen Stundenproben noch einmal für den gerechneten glühverlustfreien Zustand. Die Aussagen bleiben dabei die gleichen wie oben.

Das Schaubild 4.26 zeigt die nominelle Schütthöhe über dem spezifischen Massestrom. Der Zusammenhang ist für dieses Gut und für Fr=2 gültig.

Schaubild 4.26: Darstellung der nom. Schütthöhe über dem Massenstrom

Die Werte für das Schaubild 4.26 sind in Zahlentafel 4.21 auf Seite 41 nachzulesen.

4.2.2.3.4 Vergleich der Ergebnisse der Stundenprobe 12⁰⁰-13⁰⁰h

Die Stundenprobe 12⁰⁰-13⁰⁰h wurde sowohl in der ersten (bei IFE in Waidhohen/Ybbs) als in der zweite Versuchsreihe (bei VA Erzberg in Erzberg) verwendet. Der Unterschied war durch die Aufgaberate (3100kg/(m*h)) und 4300kg/(m*h)) und die

Froude-Zahl (1 bzw. 2) gegeben. Das Schaubild 4.27 zeigt das GGS-Netz der beiden Aufgabeprodukte und der Magnetprodukte. Wenn man berücksichtigt, daß die Produkte in verschiedenen Kornklassen eingeteilt wurden, so kann man auch aus diesem Bild auf einen sehr geringen Einfluß der Aufgaberate schließen.

In Schaubild 4.28 wurde der Masseanteil der Kornklasse über dessen spez. Volumen aufgetragen. Der stetige Kurvenverlauf entstammt dem graphischen Flächenausgleich. Als zweite Beschriftung der Abszisse wurde der Fe-Gehalt angegeben der aus dem spezifischen Volumen mittels einer linearen Gleichung (siehe dazu Schaubild 4.29) errechnet wurde. Die höhere Aufgaberate zeigt eine einfache Charakteristik. Ab einem Durchgang von etwa 65% sinkt der Fe-Gehalt im Magnetprodukt stark ab.

Etwas schwieriger ist die Interpretation der Kurve für die geringere Aufgaberate. Der "Einbruch" des Fe-Gehaltes bei den kleinen Korngrößen kann so erklärt werden, daß für diese Partikel einerseits eine geringere Suszeptibilität ausreicht, um vom Feld angezogen zu werden (siehe exponentielle Abnahme des Flußdichtegradienten). Bei höherer Aufgabe ist die Trennung weniger scharf, da Mittel- und Feingut in das Magnetprodukt mitgerissen wird. Dadurch ist das spezifische Volumen bei kleinen Masseanteilen für die höhere Aufgaberate in Schaubild 4.28 höher.

Die Fläche links von den Kurven bildet jeweils den gesamten Fe-Inhalt. Es müssen also alle 4 Flächen (auch jene der Treppenkurven) gleich groß sein. Dies ist mit einer gewissen Unschärfe erfüllt.

4.2.2.4 Versuchsergebnis

Der Grad der Durchröstung wirkt sich eindeutig auf die Qualität der Magnetscheidung aus. Je feiner das Korn, um so besser ist die Durchröstung. Daher ist die Magnetscheidung auch für das Feinkorn (100/0 µm) gut anzuwenden.

Die Wechselpolanordung und die Magnetanordung auf 210° des Trommelumfanges wirkt sich günstig auf den Trennerfolg aus.

Die Froude-Zahl hat (wie im Vergleich der Versuche in Zahlentafel 4.23 zu sehen) im betrachteten Bereich (1 bis 2) keinen bedeutenden Einfluss auf das Trennergebnis.

4.2.2.5 Diskussion

In Zahlentafel 4.36 sind Richtwerte zur Beurteilung einer Magnetscheidung mit den Versuchsergebnissen der Magnetscheidung mit dem Scheider der Firma IFE gegenübergestellt.

	Richtwert	Durchschnittswert der Versuche
Masseausbringen MP:	>67%	69,1%
Fe-Ausbringen in das MP:	>50%	51,1%
SiO2-Ausbringein das MP:	<3,5%	3,35%

Zahlentafel 4.36: Zahlenwerte zur Beurteilung der Magnetscheidung

Die Magnetscheidung liefert demnach technisch brauchbare Resultate.

Abschätzung der Größe einer Anlage für 200.000t Röstprodukt pro Jahr:

In 220 Arbeitstage im Jahr läuft die Anlage in 2 Schichten 3520h. Die nutzbare Trommelbreite eines technischen Magnetscheiders der Firma IFE beträgt 1,5m.

Die Schüttdichte wird mit $\rho_s = 1.8 \frac{kg}{dm^3}$ angenommen. Die nominelle Schütthöhe soll h_n=0,2mm betragen.

Der Trommelradius ist gleich wie beim Versuchsapparat r=235mm.

Aus dem Massenstrom und der Schüttdichte ergibt sich der stündliche Volumenstrom:

$$\dot{V} = \frac{\dot{m}}{\rho_s} = \frac{200*10^6 \frac{kg}{a}}{1800 \frac{kg}{m^3} * 3520 \frac{h}{a}} = 31,6 \frac{m^3}{h}$$

Die Tangentialgeschwindigkeit der Trommel ergibt sich bei einer Drehzahl von 1,454s⁻¹ (Fr=2) zu:

$$v = 2 * \pi * r * n = 2 * \pi * 0,235m * 1,454s^{-1} = 2,147\frac{m}{s}$$

Daraus ergibt sich der Volumesnstrom eines Magnetscheiders mit der Trommelbreite und der nominellen Schütthöhe.

$$\dot{V} = h_n * v * b = 0.2mm * 2.147 \frac{m}{s} * 3600 \frac{s}{h} * 1.5m = 2.32 \frac{m^3}{h}$$

Es wären daher für diese Jahresleistung $n_{MS} = \frac{\dot{V}_{ges}}{\dot{V}_{MS}} = \frac{31.6 \frac{m^3}{h}}{2.32 \frac{m^3}{h}} \approx 14$ Magnetscheider

dieser Bauart erforderlich.

5 Entschwefelung

5.1 Aufgabenstellung

Es soll die Möglichkeit SO₂-hältiges Rauchgas mit Hilfe der verschiedenen Fraktionen des magnetgeschiedenen Röstproduktes aus Kapitel 4 zu reinigen, untersucht werden. Dies soll mit einem Versuchsaufbau mit einem Festbettreaktor bei Raumtemperatur durchgeführt werden.

In [14] wird ein Versuch beschrieben, bei dem bei verschiedenen Temperaturen (325°C und 385°C) gerösteter Siderit auf seinen Aufnahmefähigkeit für SO₂ untersucht wird. Eine Probe von 250 mg geröstetem Siderit wird auf eine Temperatur von 285°C erwärmt und mit 1cm³/s wassergesättigtem SO₂ umströmt. Dabei laufen laut [14] folgende Reaktionen ab:

$$\frac{3}{2}Fe_2O_3 + \frac{1}{2}SO_2 \rightarrow Fe_3O_4 + \frac{1}{2}SO_3$$

$$Fe_3O_4 + 2H_2O + 3SO_2 \rightarrow 3FeSO_4 + 2H_2$$

$$3FeSO_4 \rightarrow \frac{3}{2}Fe_2O_3 + \frac{3}{2}SO_2 + \frac{3}{2}SO_3$$

$$2SO_3 \rightarrow 2SO_2 + O_2$$

Man kommt zu dem Ergebnis, dass eine Massezunahme stattfindet. Die Probe die bei einer höheren Temperatur geröstet wurde, erreichte in 40 Minuten eine Massezunahme von ca. 38mg und jene mit der niedrigeren Rösttemperatur eine Massezunahme von ca. 35mg.

5.2 Schwefeldioxid

5.2.1 Beschreibung des Schadstoffes Schwefeldioxid

Schwefeldioxid (SO₂) entsteht in erster Linie als unerwünschtes Nebenprodukt bei der Verbrennung fossiler, schwefelhaltiger Energieträger (Kohle, Öl). Außerdem wird SO₂ bei verschiedenen industriellen Prozessen, wie der Eisen- und Stahlerzeugung, bei der Schwefelsäure- und Zellstoffproduktion sowie der Erdölverarbeitung freigesetzt. Bei geeigneten Wetterlagen kann SO₂ über mehrere 100 km fernverfrachtet werden.

SO₂ ist ein geruch-, und farbloses Reizgas, das vor allem auf die Schleimhäute der oberen Atemwege (Nase und Nebenhöhlen, Rachen, Kehlkopf und Luftröhre) wirkt. Es beeinträchtigt die Selbstreinigung des Atemtraktes und verzögert die Ausscheidung eingedrungener Staubteilchen und Mikroorganismen, wodurch eine erhöhte Anfälligkeit für verschiedene Infektionen besteht. SO₂ schädigt auch Pflanzen. Insbesondere Nadelbäume reagieren bereits auf relativ niedrige SO₂ Konzentrationen sehr empfindlich. Massive SO₂-Immissionen verursachten z.B. Mitte der 80er Jahre ein großflächiges Waldsterben im Erzgebirge.

5.2.2 Grenzwerte für SO₂

Aus den verschiedenen Verordnungen zum Betreiben von Anlagen (Kesselanlagen, Dampfkesselanlagen, Nichteisenmetallhütten, Eisenhütten, Sinteranlagen für Eisenerz, Gaserzeugungsanlagen, Gipserzeugungsanlagen, Zementerzeugungsanklagen sowie Anlagen zur Verbrennung gefährlicher Abfälle) ergeben sich Grenzwerte für SO₂ in der Abluft von 50mg/m³ bis 3000mg/m³. Die Grenzen sind aber nicht nur vom Anlagenzweck, sondern auch von der Feuerungsart (vom verwendeten Brennstoff) abhängig. Da die Grenzen auch auf verschiedene O₂-Gehalte bezogen sind, ist ein direkter Vergleich erst nach Umrechnung möglich.

5.3 Versuchsanlage zur Entschwefelung bei Raumtemperatur

5.3.1 Versuchsaufbau

Abbildung 5.1: Schematischer Aufbau der Versuchsanlage

Der Versuchsaufbau in Abbildung 5.1 gezeigt. Es wurden dazu einfachste Mittel verwendet, da es sich nur um eine erste Beurteilung des Festbettes und der Aufnahmefähigkeit des Röstproduktes für SO_2 handelte. Da der Versuch mit Unterdruck gefahren wurde genügten Gummischläuche als Gasleitungen. Dies ist in Bild 5.1 zu sehen.

Bild 5.1: Fotografie des Versuchsaufbaues
5.3.1.1 Gaszusammensetzung

Zur Darstellung eines Abgases steht ein Gas mit 999ppm SO_2 in N_2 zur Verfügung. Um den Gehalt des Gases mit den oben angegebenen Grenzwerten vergleichen zu können, muß dieser umgerechnet werden.

Die Daten zur Berechnung wurden aus [13] entnommen:

p=101,325 kPaT=273,15K V_{n,SO2}=21,8911/mol V_{n,N2}=22,4021/mol M_{N2}=28,0134g/mol M_{SO2}=64,0628g/mol

Die Konzentration an SO₂ ergibt sich aus Molmasse, Molvolumen und Volumenanteil so:

$$c_{SO_2} = \frac{m_{SO_2}}{V_{ges}} = \frac{M_{SO_2} * n_{SO_2}}{\frac{V_{SO_2}}{x_{SO_2}}} = x_{SO_2} * \frac{M_{SO_2} * n_{SO_2}}{V_{SO_2}} = x_{SO_2} * \frac{M_{SO_2} * n_{SO_2}}{V_{n,SO_2} * n_{SO_2}} = x_{SO_2} * \frac{M_{SO_2}}{V_{n,SO_2}} = x_{SO_2$$

Bei einem Volumenanteil von $x_{SO_2} = \frac{V_{SO_2}}{V_{ges}} = 999 ppm$ ergibt sich dadurch folgende

Konzentration an SO₂:

$$c_{SO_2} = x_{SO_2} * \frac{M_{SO_2}}{V_{n,SO_2}} = 999 * 10^{-6} * \frac{\frac{64,0628 \frac{g}{mol}}{21,891 * 10^{-3} \frac{m^3}{mol}} = 2,924 \frac{g}{m^3}$$

Dies ist eine realistische SO₂-Konzentration eines ungereinigten Abgases.

5.3.1.2 Verwendete Probe

Für die Versuche wurde die Stundenprobe 12⁰⁰-13⁰⁰h des Röstproduktes verwendet. Dazu wurde die bereits aus Kapitel 4 bekannten Fraktionen "Berge" und "magnetisches Produkt" der Schwachfeldmagnetscheidung eingesetzt. Da das Feingut aufgrund seiner großen Oberfläche zwar interessant ist, aber einen enormen Druckverlust im Festbett erzeugt, wurde eine Kornband von 1,6/0,1mm hergestellt. Diese Produkte wurden aus der vorhandenen Siebanalyse der Fraktionen massenäquivalent zusammengemischt. Diese beiden Proben wurden mit ihren Eigenschaften noch einmal in Zahlentafel 5.1 zusammengefaßt.

12 ⁰⁰ -13 ⁰⁰ 1600/100µm	Korn- klassen	Masse		physikalische Analyse					chemische Analyse			
				Dichto	Schüt	Schüttdichte		ferromag.	Fo	SiO	Alka-	S
				Dicitie	lose	gerüttelt	verlust	Komp	16	302	lien	RFA
	[µm]	[g]	[%]	[g/cm ³]	[g/cm ³]	[g/cm ³]	[%]	[%]	[%]	[%]	[%]	[%]
MP	1600/1000	47,68	9,5	3,914	-	-	18,26	13,90	44,04	5,03	0,456	0,04
	1000/500	129,09	25,8	3,962	-	-	15,70	17,40	15,77	4,38	0,431	0,04
	500/100	323,23	64,6	4,261	-	-	6,42	35,57	53,47	3,37	0,312	0,04
	gesamt	500,00	100,0	4,145	1,491	1,798	9,94	28,81	42,84	3,79	0,356	0,04
	1600/1000	185,12	37,0	3,496	-	-	30,90	1,00	32,55	7,12	0,527	0,06
UMP	1000/500	102,01	20,4	3,150	-	-	30,26	1,51	18,45	6,47	0,920	0,07
	500/100	212,87	42,6	3,014	-	-	29,84	0,56	11,40	6,35	0,866	0,12
	gesamt	500,00	100,0	3,206	1,672	1,947	30,32	0,92	20,67	6,66	0,752	0,09

Zahlentafel 5.1: Zahlenwerte der Analysen der Proben vor den Entschwefelungsversuchen

Auffällig ist, dass die unmagnetische Fraktion (UMP) eine höhere Schüttdichte als die magnetische Fraktion (MP) hat.

5.3.1.3 Theoretische Berechnung des Druckverlustes im Festbettreaktor

Die angeführte Berechnung wurde aus [11] entnommen und gilt für einen zylinderförmigen Reaktor. Folgende Daten sind bekannt:

- Geometrie des Reaktors
- Spez. Oberfläche a_v des Gutes
- Schüttdichte p_{ges} des Festbettes
- Feststoffdichte p_{Feststoff} des Gutes
- Masse m_{Feststoff} des Gutes
- Volumenstrom \dot{V} des Gases
- Dichte ρ_{Luft} des Gases
- Viskosität η_{Luft} des Gases

Als Gas gilt die Umgebungsluft bei Raumtemperatur.

Zuerst wird das relative Lückenvolumen ε berechnet.

$$\varepsilon = \frac{\rho_{ges}}{\rho_{Feststoff}}$$

Durch diesen Lückenraum strömt das Gas mit der effektiven Geschwindigkeit w_{eff} . Diese berechnet sich aus der Leerrohrgeschwindigkeit w_f und dem relativen Lückenvolumen ϵ :

$$w_f = \frac{\dot{V}}{A}$$

 $W_{eff} = \frac{W_f}{\mathcal{E}}$

$$d_{aq} = \frac{4 * \varepsilon}{a_v}$$

Aus diesen Werten läßt sich nun die Reynolds-Zahl des durchströmten Festbettes berechnen.

$$\operatorname{Re} = \frac{w_{eff} * d_{\ddot{a}q} * \rho_{Gas}}{\eta_{Gas}}$$

Liegt Re über 40, so ist die Strömung turbulent, liegt sie darunter, ist sie laminar. Der Widerstandsbeiwert λ zur Berechnung des Druckverlustes ergibt sich in Abhängigkeit der Art der Strömung zu:

Re<40 (laminare Strömung):
$$\lambda = \frac{140}{\text{Re}}$$

Re>40 (turbulente Strömung): $\lambda = \frac{16}{\text{Re}^{0,2}}$

Der längenspezifische Druckverlust im zylindrischen Rohrreaktor errechnet sich schließlich aus folgendem Zusammenhang:

$$\frac{\Delta p}{l} = \lambda * \frac{\rho_{Gas} * w_{eff}^2}{2 * d_{\ddot{a}a}}$$

Da die Höhe des Reaktors bekannt ist, kann man den Druckverlust leicht berechnen. In Zahlentafel 5.2 ist der Druckverlust für verschiedene Kornbänder berechnet.

5.3.1.4 Vorversuche mit Umgebungsluft

a) Kalibrierung des Gasvolumenstrommessers

Zur Messung des Gasvolumenstromes stand ein Volumenstrommesser nach dem Schwebekörperprinzip zur Verfügung. Die Skaleneinteilung von 0 bis 240 mußte einem entsprechenden Luftvolumenstrom zugeordnet werden. Hierzu diente der Versuchsaufbau laut Abbildung 5.2.

Prinzip: Schwebekörper

Abblidung 5.2: Schematischer Aufbau zur Kalibrierung des Volumenstrommessers

Mit Hilfe einer Klemme am Gummischlauch nahe der Wasserstrahlpumpe wurde ein bestimmter Gasvolumenstrom eingestellt. Mit einer Stoppuhr und einem Rotameter wurde das Volumen an durchströmender Luft in einem bestimmten Zeitraum gemessen. Daraus wurde der Volumenstrom für diese Skalenanzeige am Volumenstrommesser errechnet. Die Werte sind in Zahlentafel 5.3 aufgelistet. In Schaubild 5.1 sieht man, dass die Liniarität der Skala am Volumenstrommesser gut gegeben ist. Die Interpolationsgerade wurde durch den 0-Punkt gelegt.

Schaubild 5.1: Kalibriergerade des Volumenstrommessers

Aus der Geradengleichung der Ausgleichsgeraden ergibt sich der Zusammenhang zwischen Skalenteilung und Volumenstrom zu:

$$\dot{V}_{[l/h]} = 2,30 * \dot{V}_{[Skala-Einheiten]}$$

b) Druckverlust des leeren Reaktors

Für diesen Versuch wurde der Schlauch auf der Primärseite des Reaktors vor dem Volumenstrommesser (siehe Abbildung 5.1, Seite 54) offen gelassen, damit dieser Umgebungsluft ansaugt. Eine Schlauchklemme ermöglichte die Einstellung des Volumenstroms.

In Zahlentafel 5.4 ist der Druckverlust des leeren Reaktors den verschiedenen Volumenströmen gegenübergestellt. Die graphische Darstellung in Schaubild 5.2 zeigt, dass der Druckverlust keinen linearen Zusammenhang mit dem Volumenstrom hat. Der Druckverlust des Reaktors muß für jeden Volumenstrom abgelesen werden.

Druckverlust im leeren Reaktor (ohne Netz und Filter)

Schaubild 5.2: Darstellung des Druckverlustes über dem Volumenstrom

Theoretisch ist laut [11] der Druckverlust bei laminaren Bedingungen der Strömungsgeschwindigkeit und bei turbulenten Bedingungen dem Quadrat der Strömungsgeschwindigkeit proportional. Hier ergibt sich allerdings ein Zusammenhang höherer Ordnung.

Im Vergleich mit dem Druckverlust des Festbettes (siehe unten) ist der Druckverlust des leeren Reaktors gering.

c) Bestimmung der Reaktorgeometrie

Das Volumen des Reaktors wurde durch Befüllen mit Wasser und Wägung bestimmt. Es beträgt 107cm³. Der Innendurchmesser beträgt 34mm und die Höhe 118mm.

d) Druckverlust des Reaktors mit Festbett

Schließlich wurde auch der Druckverlust des Festbettes bei Luftdurchströmung gemessen. Dabei wurde der mit dieser Wasserstrahlpumpe maximal mögliche Luftstrom durchgesaugt. Die angegeben Massen im Vorversuch sind nicht mit denen des Begasungsversuches ident, da dazu der Reaktor neu befüllt wurde.

Unmagnetisches Produkt:

$$m=188,38g$$

 $\dot{V}=3861/h$
 $\Delta p=0,072bar$
Magnetisches Produkt:
 $m=156,09g$
 $\dot{V}=3951/h$
 $\Delta p=0,054bar$

Auffällig ist, dass die Schüttdichte des Magnetproduktes wesentlich geringer ist, als jene des unmagnetischen Produktes. Dies ergibt sich aus der unterschiedlichen Korngrößenverteilung der beiden Produkte. Folgerichtig ist der Druckverlust beim Magnetprodukt geringer als beim unmagnetischen Produkt.

Der Druckverlust setzt sich aus 3 Teilen zusammen. Aus dem des Reaktors selbst (vor allem der Anschlüsse), aus dem Filterpapier und aus dem Festbett. Die Differenz zwischen den Messungen des gesamten Festbettes und des leeren Reaktors beinhaltet also nicht nur die Schüttung selbst, sondern auch das Filterpapier zur unteren und oberen Begrenzung der Schüttung.

e) Spezifische Oberfläche des Feststoffes

Für diesen Versuch wurde die Stundenprobe 12^{00} - 13^{00} h verwendet. Mittels Blaine-Methode wurde die spez. Oberfläche der Kornklassen <40µm und 100/40µm bestimmt. Daraus wurde die spez. Oberfläche der anderen Kornklassen und in weiterer Folge der Kornbänder $a_{1600/i}$ berechnet.

k i	mi	D	n _{GGS}	K _{äq}	a _i	f	a _{1600/i}	ρι	P1600/i
[µm]	[%]	[%]		[µm]	[cm ⁻¹]		[cm ⁻¹]	[g/cm³]	[g/cm ³]
1600	0,00	100,00							
1000	13,46	86,54	0,31	1260,4	107	13,5	14	3,716	3,716
710	9,77	76,77	0,35	841,4	160	13,5	30	3,775	3,741
500	10,02	66,75	0,40	595,2	226	13,5	53	3,815	3,763
315	8,45	58,30	0,29	395,4	341	13,5	82	3,884	3,787
100	27,02	31,28	0,54	178,3	756	13,5	286	4,024	3,877
40	20,36	10,92	1,15	66,2	2037	13,5	700	4,022	3,909
0	10,92	0,00			7268	13,5	1494	4,032	3,922

Die Ergebnisse sind in Zahlentafel 5.5 dargestellt.

Zahlentafel 5.5: Zahlenwerte zur Berechnung der spez. Oberfläche

5.3.1.5 Durchströmungsversuche mit SO₂

5.3.1.5.1 Berechnung der maximalen Schwefelaufnahme

Für den Versuch stand eine Gasflasche mit 10dm^3 Volumen bei 150bar zur Verfügung. Sie enthielt (laut Flaschenetikette) 999ppm SO₂ in N₂. Die SO₂-Menge wurde zu gleichen Teilen auf die Festbetten der beiden Versuche (UMP und MP als Festbett) aufgeteilt.

Rechnerisch ergibt sich die maximal mögliche Aufnahme von Schwefel im Festbett wie folgt.

Voraussetzungen:

- Ideales Gas
- M_{N2}=28,0134g/mol
- M_S=32,064g/mol

Das Normvolumen an Gas in der Flasche beträgt

$$V_{Norm} = V_{Flasche} * \frac{p_{Flasche}}{p_{Norm}} = 10 dm^3 * \frac{150 bar}{1,01325 bar} = 1,48 Nm^3.$$

Je Versuch stehen also $V_{Norm,Versuch} = \frac{1,48Nm^3}{2} = 0,74Nm^3$ Gas zur Verfügung.

Durch den Volumenanteil von 999ppm SO₂ ergibt sich ein Volumen an reinem SO₂ so:

$$V_{SO_2} = V_{Norm, Versuch} * \frac{999}{10^6} = 0,739 * 10^{-3} m^3$$

In [13] ist für SO₂ das molare Volumen unter Normbedingungen angegeben: $V_{n,SO_2} = 21,891*10^{-3} m^3 / mol$

Daraus ergibt sich die Masse an SO₂:

$$m_{SO_2} = M_{SO_2} * \frac{V_{SO_2}}{V_{n,SO_2}} = 64,0628 \frac{g}{mol} * \frac{0,739 * 10^{-3} m^3}{21,891 * 10^{-3} \frac{m^3}{mol}} = 2,16gSO_2$$

Robert Neubauer

Die Masse an reinem Schwefel ergibt sich durch die Molmassen der Elemente:

$$m_{S,Angebot} = m_{SO_2} * \frac{M_S}{M_S + 2 * M_O} = 2,16g * \frac{32,064 \frac{g}{mol}}{32,064 \frac{g}{mol} + 2 * 15,9994 \frac{g}{mol}} = 1,08g$$

Es handelt sich hierbei um die Zunahme an Schwefel im Festbett, denn es kann ja schon vorher Schwefel in im Röstprodukt vorhanden sein.

5.3.1.5.2 Versuchsablauf

Der Versuchsaufbau ist in Bild 5.1 auf Seite 54 dargestellt. Die Festbetten für die beiden Versuche wurden neu eingewogen und unterscheiden sich daher von jenen aus den Vorversuchen in Kapitel 5.3.1.4d.

Der Gasvolumenstrom wurde konstant auf 120EH=276l/h gehalten. Daraus ergibt sich die Versuchsdauer zu:

a) Unmagnetisches Produkt

Die Masse des Festbettes hat um 0,17g zugenommen: m_{vorher}=190,81g m_{nachher}=190,98g

Die Temperatur im Festbett ist um 2,5°C gestiegen: $\vartheta_{vorher}=22,5°C$ $\vartheta_{nachher}=25,0°C$

Der Druckverlust betrug 287,5mm-221mm=66,5mm Wassersäule oder

7

$$\Delta p = \rho_{Wasser} * g * \Delta h = 1000 \frac{kg}{m^3} * 9,81 \frac{m}{s^2} * 0,0665m = 652Pa = 0,00652bar.$$

Der Druckverlust wurde alle 20 Minuten abgelesen und änderte sich nicht.

b) Magnetprodukt

Die Masse des Festbettes hat um 1,79g zugenommen:

 $m_{vorher} = 157,68g$ $m_{nachher} = 159,47g$

Die Begrenzung des Festbettes war mangelhaft, sodass es zu einem Austrag von Feingut kam. Weiters wurde die Schüttung während der Gasströmung leicht angehoben. Dadurch bildete sich ein Hohlraum im Festbett. Dieser ist in Bild 5.2 abgebildet.

Bild 5.2: Hohlraum im Festbett

Die Temperatur im Festbett ist um 3,0°C gestiegen: $\vartheta_{vorher}=23,0°C$ $\vartheta_{nachher}=26,0°C$

Der Druckverlust betrug 279mm-229,5mm=49,5mm Wassersäule oder

$$\Delta p = \rho_{Wasser} * g * \Delta h = 1000 \frac{kg}{m^3} * 9,81 \frac{m}{s^2} * 0,0495m = 486Pa = 0,00486bar.$$

Der Druckverlust wurde alle 20 Minuten abgelesen und änderte sich nicht. Es blieb ein Restdruck von ca. 10bar in der Gasflasche.

5.3.1.5.3 Auswertung der Versuche

Die Ausbeute an S ergibt sich nach folgender Formel:

$$m_{S,Ausbeute} = \frac{m_{S,nachher} * g_{S,nachher} - m_{S,vorher} * g_{S,vorher}}{m_{S,Angebot}}$$

Die beiden Proben wurden einer Leco-Analyse unterzogen. Die Ergebnisse sind in Zahlentafel 5.6 zusammengefasst.

1000 1000	Ma: Fest	sse bett	Leco S-Analyse		Aushauta	
12 -13 1600/100um	vor	nach	vor	nach	Ausbeule	
1000/100μΠ	Durchg	Jasung	Durchgasung			
	[g]	[g]	[%]	[%]	[%]	
MP	157,68	159,47	0,37	0,64	40,5	
UMP	190,81	190,98	0,052	0,121	12,2	

Zahlentafel 5.6: Zahlenwerte der Schwefelanalyse der Schüttungen

Die Leco-Analysenwerte der Zahlentafel 5.6 unterscheiden sich von den Werten der RFA (Zahlentafel 5.1, Seite 56) deutlich. Die Werte der Leco-Analyse sind genauer und wurden daher hier verwendet.

Die Leco-Analyse gibt den S-Gehalt der unbegasten und der begasten Probe an. Die Ausbeute stellt jenen Prozentsatz des Schwefels dar, der tatsächlich aufgenommen wurde.

5.3.1.5.4 Diskussion

Die Ausbeute liegt beim Magnetprodukt mit 40,5% deutlich höher als beim unmagnetischen Produkt. Aus der Ausbeute von 12,2% beim unmagnetischen Produkt erhärtet sich die Aussage, dass eine Schwefelaufnahme grundsätzlich möglich ist.

Die Masse der maximal möglichen Schwefelaufbnahme von 1,08g ist mit einer Unschärfe verbunden, da die Gasdurchströmung nur mittels Volumenstrom- und Zeitmessung bestimmt wurde. Auf die Fehlerhaftigkeit dieser Messung weist auch die Tatsache hin, dass der Restdruck in der Flasche etwa 10bar betrug, nach Volumenstrom- und Zeitmessung müßte die Flasche nach den beiden Versuche leer sein.

Die Höhe des Druckverlustes wird vor allem durch den Reaktor und das begrenzende Filterpapier bestimmt und nicht durch das Festbett selbst.

Der berechnete Druckverlust der Schüttung für das Kornband 1600/100µm des nicht magnetgeschiedenen Röstproduktes betrug (laut Zahlentafel 5.2) 0,0394bar. Im Versuch stellte sich ein Druckverlust von 0,072bar für das gesamte Kornband des unmagnetischen Produktes und 0,054bar für das Magnetprodukt ein. Der gemessene Druckverlust beinhaltet neben dem Druckverlust des Festbettes auch den Druckverlust Des Filterpapiers und des Reaktors. Die Berechnung gilt aber nur für das Festbett selbst. Der Druckverlust der Apparatur würde also

 $p_{Apparatur} = p_{gemessen,gesamt} - p_{gerechnet,Festbett} = \underline{0,015bar}$

betragen.

5.4 Versuchsreaktor für höhere Temperaturen

Um Versuche unter betreibsnahen Bedingungen fahren zu können, ist ein temperiertes Gas und ein temperiertes Festbett notwendig. Dazu wurde ein Versuchsaufbau für einen Rohrofen entworfen. Das SO₂-hältige Gas wird, wie in Abbildung 5.3 zu sehen ist, druckreduziert. Nach der Volumenstrommessung wird es im Rohrofen vorgewärmt und durch den ebenfalls temperierten Reaktorraum mit dem Röstprodukt geblasen. Auf der Saugseite wird es schließlich über eine Wasserstrahlpumpe abgezogen.

Abbildung 5.3: Schematischer Aufbau temperierten Rohrreaktors

In Abbildung 5.4 ist der Reaktor im Detail dargestellt. Der Reaktionsraum (das Festbett) wird von zwei Metalldrahtgeweben (z.B. eines ausgedienten Analysesiebes) begrenzt. Die Zu- und Abfuhr des Gases erfolgt über Messingleitungen. Im Rohr selbst soll wegen der Aggressivität des SO₂ nur rostfreier Stahl verwendet werden.

6 Literaturverzeichnis

[1]	Schubert, H.: Aufbereitung fester mineralischer Rohstoffe, Band I, VEB
	Deutscher Verlag für Grundstoffindustrie, Leipzig, 1964
[2]	Schubert, H.: Aufbereitung fester mineralischer Rohstoffe, Band II, VEB
	Deutscher Verlag für Grundstoffindustrie, Leipzig, 1977
[3]	Schulz, O.: Die Siderit-Lagerstätte Steirischer Erzberg: Einer
	geowissenschaftliche Studie, mit wirtschaftlicher und geschichtlicher
	Betrachtung. Archiv für Lagerstättenforschung der geologischen
	Bundesanstalt, Wien, 1997
[4]	Brauns, R.: Spezielle Mineralogie, Walter de Gruyter, Berlin, 1964
[5]	Nickel, E.: Grundwissen der Mineralogie 2, Ott Verlag, Thun, 1984
[6]	Matthes, S.: Mineralogie, Springer-Verlag, Berlin Heidelberg New York,
	1996
[7]	Heidenreich, H.: Die Erfolgsrechnung im Aufbereitungsbetrieb, Verlag
	Glückauf, Essen, 1954
[8]	Steiner, H.J.: Vorlesungsmitschrift: Erzaufbereitung und Kohletechnologie
[9]	Remp-Wassermayr, U.: Magnetscheidung und Charakterisierung thermisch
	behandelter Eisenerze als mögliches Einsatzprodukt zur
	Rauchgasentschwefelung. Diplomarbeit, Montanuniversität Leoben, 2001
[10]	Waldl, G.: Untersuchungen zur magnetisierenden Röstung von Spateisenstein
	in einem Zyklonwärmetauschersystem. Diplomarbeit, Montanuniversität
	Leoben, 1995
[11]	Adolphi, G.: Grundzüge der Verfahrenstechnik, Deutscher Verlag für
	Grundstoffindustrie, Leipzig, 1970
[12]	http://www.minerals.net
[13]	Küster, F.W.: Rechentafel für die chemische Analytik, de Gruyter, Berlin
	New York 1993
[14]	Jagtap, S.B.: Kinetics of thermal decomposition of siderite: effect of particle
	size, International Journal of Mineral Processing, 36, 1992
[15]	Theiss, J.: Projektstudie Nr. 18, Institut für Aufbereitung, Montanuniversität
	Leoben, 2001

Diplomarbeit Robert Neubauer
Schaubild 3.2

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Kornklasse 1600/1000 μm Darstellung des der Masse des Sinkgutes über dem spez. Volumen

Diplomarbeit Robert Neubauer

Kornklasse 710/500µm

ProbenNr: 2322/1 Spateisenstein St. Erzberg	Diplomarbeit
Versanderzprobe, Absiebungsprodukte vom 13.10.2000	Robert Neubauer
Kornklasse 710/500µm	
Darstellung des der Masse des Sinkgutes über dem spez. Volumen	Schaubild 3.4

Kornklasse 500/315µm

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000	Diplomarbeit Robert Neubauer
Kornklasse 500/315µm	
Darstellung des der Masse des Sinkgutes über dem spez. Volumen	Schaubild 3.5

Kornklasse 200/100µm

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000	Diplomarbeit Robert Neubauer
Kornklasse 200/100µm	
Darstellung des der Masse des Sinkgutes über dem spez. Volumen	Schaubild 3.6

ProbenNr: 2322/1 Spateisenstein St. Erzberg	Diplomarbeit
Versanderzprobe, Absiebungsprodukte vom 13.10.2000	Robert Neubauer
Darstellung der summierten Schwimmgutanteile über der Trenndichte	
	Schaubild 3 7

ld 3.7 laub

Anhang

Frantz-Scheider 710/500µm

ProbenNr: 2322/1 Spateisenstein St. Erzberg	Diplomarbeit
Versanderzprobe, Absiebungsprodukte vom 13.10.2000, Teilprobe 1,6/0mm	Robert Neubauer
Kornklasse 710/500µm	
Suszeptibilitätsanalyse mit dem Frantz-Isodynamikscheider in den Dichtekl.	Schaubild 3.8
Darstellung der Summenanteile der Masse über der Erregerstromstärke	

Anhang

Frantz-Scheider 500/315µm

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000, Teilprobe 1,6/0mm	Diplomarbeit Robert Neubauer
Kornklasse 500/315µm	
Suszeptibilitätsanalyse mit dem Frantz-Isodynamikscheider in den Dichtekl. Darstellung der Summenanteile der Masse über der Erregerstromstärke	Schaubild 3.9

Anhang

Frantz-Scheider 200/100µm

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000, Teilprobe 1,6/0mm	Diplomarbeit Robert Neubauer
Kornklasse 200/100µm	
Suszeptibilitätsanalyse mit dem Frantz-Isodynamikscheider in den Dichtekl.	Schaubild 3.10
Darstellung der Summenanteile der Masse über der Erregerstromstärke	

Anhang

Frantz-Scheider P>3,30g/cm³

ProbenNr: 2322/1 Spateisenstein St. Erzberg	Diplomarbeit
Versanderzprobe, Absiebungsprodukte vom 13.10.2000, Teilprobe 1,6/0mm	Robert Neubauer
Dichteklasse >3,30g/cm ³	
Suszeptibilitätsanalyse mit dem Frantz-Isodynamikscheider in den Dichtekl.	Schaubild 3.11
Darstellung der Summenanteile der Masse über der Erregerstromstärke	

Anhang

Frantz-Scheider P=2,84-3,30g/cm³

ProbanNr. 2322/1 Spataisanstain St. Frzharg	Diplomarbeit
1 roben 11. 2322/1 Spatersenstein St. Erzberg	Dipionarben
Versanderzprobe, Absiebungsprodukte vom 13.10.2000, Teilprobe 1,6/0mm	Robert Neubauer
Dichteklasse 2,84g/cm ³ bis 3,30g/cm ³	
Suszeptibilitätsanalyse mit dem Frantz-Isodynamikscheider in den Dichtekl.	Schaubild 3.12
Darstellung der Summenanteile der Masse über der Erregerstromstärke	

Frantz-Scheider P<2,84g/cm³

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000, Teilprobe 1,6/0mm	Diplomarbeit Robert Neubauer
Dichteklasse <2,84g/cm ³	
Suszeptibilitätsanalyse mit dem Frantz-Isodynamikscheider in den Dichtekl. Darstellung der Summenanteile der Masse über der Erregerstromstärke	Schaubild 3.13

Anhang

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Henry-Reinhardt-Schaubild für Eisen Kornklasse 6300/4000µm Diplomarbeit Robert Neubauer

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Henry-Reinhardt-Schaubild für Eisen Kornklasse 1600/1000μm Diplomarbeit Robert Neubauer

Anhang

HR-Schaubild 710/500µm

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Henry-Reinhardt-Schaubild für Eisen Kornklasse 710/500µm

Diplomarbeit Robert Neubauer

HR-Schaubild 500/315µm

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Henry-Reinhardt-Schaubild für Eisen Kornklasse 500/315μm Diplomarbeit Robert Neubauer

Anhang

HR-Schaubild 200/100µm

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Henry-Reinhardt-Schaubild für Eisen Kornklasse 200/100μm Diplomarbeit Robert Neubauer

Verwachsungsgrundkurven von 5 Kornklassen

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Verwachsungsgrundkurven für Eisen der Kornklassen 6300/4000μm, 1600/1000μm, 710/500μm, 500/315μm und 200/100μm Diplomarbeit Robert Neubauer

HR-Schaubild 6300/4000µm

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Henry-Reinhardt-Schaubild für Kieselsäure Kornklasse 6300/4000µm Diplomarbeit Robert Neubauer

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Henry-Reinhardt-Schaubild für Kieselsäure Kornklasse 1600/1000µm

Diplomarbeit Robert Neubauer

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Henry-Reinhardt-Schaubild für Kieselsäure Kornklasse 710/500μm

Diplomarbeit Robert Neubauer

HR-Schaubild 500/315µm

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Henry-Reinhardt-Schaubild für Kieselsäure Kornklasse 500/315µm Diplomarbeit Robert Neubauer
HR-Schaubild 200/100µm

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Henry-Reinhardt-Schaubild für Kieselsäure Kornklasse 200/100μm Diplomarbeit Robert Neubauer

Verwachsungskurven von 5 Kornklasse

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Verwachsungsgrundkurven für Kieselsäure der Kornklassen 6300/4000μm, 1600/1000μm, 710/500μm, 500/315μm und 200/100μm

Diplomarbeit Robert Neubauer

ProbenNr: 2322/1 Spateisenstein St. Erzberg	Diplomarbeit
Versanderzprobe, Absiebungsprodukte vom 13.10.2000	Robert Neubauer
Röstprodukt, Stundenprobe 21 ⁰⁰ -22 ⁰⁰ h	
Magnetscheidungsversuch mit Trommelscheider des Inst. f. Aufbereitung	Schaubild 4.2
Darstellung des Gehaltes über dem Inhalt von SiO2 in den Magnetprodukten	

Das Inhaltsausbringen über dem Massenstrom; Fr=0,8

ProbenNr: 2322/1 Spateisenstein St. Erzberg	Diplomarbeit
Versanderzprobe, Absiebungsprodukte vom 13.10.2000	Robert Neubauer
Röstprodukt, Stundenprobe 21 ⁰⁰ -22 ⁰⁰ h	
Fraktionsmagnetscheidung am Trommelscheider des Inst. f. Aufbereitung	Schaubild 4.3
Darstellung des Eiseninhaltsausbringen über dem Massenstrom bei Fr=0,8	

Das Inhaltsausbringen über dem Massenstrom; Fr=1,0

ProbenNr: 2322/1 Spateisenstein St. ErzbergDiplomarbeitVersanderzprobe, Absiebungsprodukte vom 13.10.2000Robert NeubauerRöstprodukt, Stundenprobe 21⁰⁰-22⁰⁰hSchaubild 4.4Fraktionsmagnetscheidung am Trommelscheider des Inst. f. AufbereitungSchaubild 4.4

Das Inhaltsausbringen über dem Massenstrom; Fr=1,25

ProbenNr: 2322/1 Spateisenstein St. ErzbergDiplomarbeitVersanderzprobe, Absiebungsprodukte vom 13.10.2000Robert NeubauerRöstprodukt, Stundenprobe 21⁰⁰-22⁰⁰hSchaubild 4.5Fraktionsmagnetscheidung am Trommelscheider des Inst. f. AufbereitungSchaubild 4.5

Das Inhaltsausbringen über dem Massenstrom; Fr=0,8

ProbenNr: 2322/1 Spateisenstein St. Erzberg	Diplomarbeit
Versanderzprobe, Absiebungsprodukte vom 13.10.2000	Robert Neubauer
Röstprodukt, Stundenprobe 21 ⁰⁰ -22 ⁰⁰ h	
Fraktionsmagnetscheidung am Trommelscheider des Inst. f. Aufbereitung	Schaubild 4.6
Darstellung des Eiseninhaltsausbringen bei unterschiedlichen max.	
Flussdichteeinstellungen über dem gemittelten Massenstrom bei Fr=0,8	

Das Inhaltsausbringen über dem Massenstrom; Fr=1,0

ProbenNr: 2322/1 Spateisenstein St. Erzberg	Diplomarbeit
Versanderzprobe, Absiebungsprodukte vom 13.10.2000	Robert Neubauer
Röstprodukt, Stundenprobe 21 ⁰⁰ -22 ⁰⁰ h	
Fraktionsmagnetscheidung am Trommelscheider des Inst. f. Aufbereitung	Schaubild 4.7
Darstellung des Eiseninhaltsausbringen bei unterschiedlichen max.	
Flussdichteeinstellungen über dem gemittelten Massenstrom bei Fr=1,0	

Das Inhaltsausbringen über dem Massenstrom; Fr=1,25

ProbenNr: 2322/1 Spateisenstein St. Erzberg	Diplomarbeit Robert Neubauer
Röstprodukt, Stundenprobe 21^{00} - 22^{00} h	Robert Neubauer
Fraktionsmagnetscheidung am Trommelscheider des Inst. f. Aufbereitung Darstellung des Eiseninhaltsausbringen bei unterschiedlichen max.	Schaubild 4.8
Flussdichteeinstellungen über dem gemittelten Massenstrom bei Fr=1,25	

ProbenNr: 2322/1 Spateisenstein St. ErzbergFVersanderzprobe, Absiebungsprodukte vom 13.10.2000HRöstprodukt, Stundenprobe 12^{00} - 13^{00} hHMagnetscheidungsversuch mit Trommelscheider des Inst. f. AufbereitungK-Netz für Fe

Diplomarbeit Robert Neubauer

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 12⁰⁰-13⁰⁰h Diplomarbeit Robert Neubauer Magnetscheidungsversuch mit Trommelscheider des Inst. f. Aufbereitung Schaubild 4.13 GGS-Netz der Magnetscheidungsprodukte

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 12⁰⁰-13⁰⁰h Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg Ferromagnetische Komponente und Fe-Gehalt über der Dichte Diplomarbeit Robert Neubauer

ProbenNr: 2322/1 Spateisenstein St. Erzberg	Diplomarbeit
Versanderzprobe, Absiebungsprodukte vom 13.10.2000	Robert Neubauer
Röstprodukt, Stundenprobe 12 ³⁰ -13 ³⁰ h Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg Ferromagnetische Komponente und Fe-Gehalt über dem Glühverlust	Schaubild 4.15

ProbenNr: 2322/1 Spateisenstein St. Erzberg	Diplomarbeit
Versanderzprobe, Absiebungsprodukte vom 13.10.2000	Robert Neubauer
Röstprodukt, Stundenprobe 16 ⁰⁰ -17 ⁰⁰ h	
Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg	Schaubild 4.16
Ferromagnetische Komponente und Fe-Gehalt über der Dichte	

ProbenNr: 2322/1 Spateisenstein St. ErzbergVersanderzprobe, Absiebungsprodukte vom 13.10.2000Röstprodukt, Stundenprobe 16 ⁰⁰ -17 ⁰⁰ hMagnetscheidungsversuch mit IFE/HGS I am St. ErzbergFerromagnetische Komponente und Fe-Gehalt über der Glühverlust	Robert Neubauer Schaubild 4.17
---	-----------------------------------

ProbenNr: 2322/1 Spateisenstein St. Erzberg	Diplomarbeit
Versanderzprobe, Absiebungsprodukte vom 13.10.2000	Robert Neubauer
Röstprodukt, Stundenprobe 19 ⁰⁰ -20 ⁰⁰ h	
Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg	Schaubild 4.18
Ferromagnetische Komponente und Fe-Gehalt über der Dichte	

ProbenNr: 2322/1 Spateisenstein St. Erzberg	Diplomarbeit
Versanderzprobe, Absiebungsprodukte vom 13.10.2000	Robert Neubauer
Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg	Schaubild 4.19
Ferromagnetische Komponente und Fe-Gehalt über dem Glühverlust	

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 12⁰⁰-13⁰⁰h Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg GGS-Netz der Aufgabe und der Produkte

Diplomarbeit Robert Neubauer

Korngrößenverteilung 16-17h

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 16⁰⁰-17⁰⁰h Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg GGS-Netz der Aufgabe und der Produkte

Diplomarbeit Robert Neubauer

Anhang

Korngrößenverteilung 19-20h

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 19⁰⁰-20⁰⁰h Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg GGS-Netz der Aufgabe und der Produkte

Diplomarbeit Robert Neubauer

Anhang

Korngrößenverteilung 12-13h, glühverlustfrei

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 12⁰⁰-13⁰⁰h Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg GGS-Netz der Aufgabe und der Produkte, glühverlustfrei Diplomarbeit Robert Neubauer

Korngrößenverteilung 16-17h, glühverlustfrei

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 16⁰⁰-17⁰⁰h Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg GGS-Netz der Aufgabe und der Produkte, glühverlustfrei

Diplomarbeit Robert Neubauer

Anhang

Korngrößenverteilung 19-20h, glühverlustfrei

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 19⁰⁰-20⁰⁰h Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg GGS-Netz der Aufgabe und der Produkte, glühverlustfrei Diplomarbeit Robert Neubauer

ProbenNr: 2322/1 Spateisenstein St. Erzberg	Diplomarbeit
Versanderzprobe, Absiebungsprodukte vom 13.10.2000	Robert Neubauer
Röstprodukt, Stundenprobe 12 ⁰⁰ -13 ⁰⁰ h	
Magnetscheidungsversuch mit IFE/HGS I in Waidhofen und am St. Erzberg	Schaubild 4.27
GGS-Netz der Aufgabe und des Magnetproduktes bei 3100kg/(mh) und	
4300kg/(mh)	

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt. Stundenprobe 12 ⁰⁰ -13 ⁰⁰ h	Diplomarbeit Robert Neubauer
Magnetscheidungsversuch mit IFE/HGS I in Waidhofen und am St. Erzberg Durchgang über spez. Volumen des Magnetproduktes bei 3100kg/(mh) und 4300kg/(mh)	Schaubild 4.28

ProbenNr: 2322/1 Spateisenstein St. Erzberg	Diplomarbeit
Versanderzprobe, Absiebungsprodukte vom 13.10.2000	Robert Neubauer
Röstprodukt, Stundenprobe 12 ⁰⁰ -13 ⁰⁰ h	
Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg	Schaubild 4.29
Zusammenhang zwischen Fe-Gehalt und Dichte im Magnetprodukt	

Trenn- schnitte	spez. Volumen			Sink- gut	Schwimm- gut	mittlere Dichte	mittl. spez. Volumen
Kornklasse	e 6300/400	0µm					
Dichte	1/Dichte	Masse	Masse	Masse	Masse	Dichte	1/Dichte
[g/cm ³]	[cm³/g]	[g]	[%]	[%]	[%]	[g/cm ³]	[cm³/g]
4,00	0,250	0,00	0,00	0,00	100,0	-	-
3,30	0,303	364,14	77,41	77,4	22,6	3,678	0,272
2,99	0,334	63,43	13,48	90,9	9,1	3,105	0,322
2,85	0,351	38,61	8,21	99,1	0,9	2,967	0,337
0,00	-	4,20	0,89	100,0	0,0	2,801	0,357
		470,38	100,00			3,512	0,285
Kornklasse	e 1600/100	0µm					
Dichte	1/Dichte	Masse	Masse	Masse	Masse	Dichte	1/Dichte
[g/cm ³]	[cm³/g]	[g]	[%]	[%]	[%]	[g/cm ³]	[cm³/g]
4,00	0,250	0,00	0,00	0,0	100,0	-	-
3,30	0,303	210,67	74,33	74,3	25,7	3,712	0,269
3,00	0,333	51,22	18,07	92,4	7,6	3,104	0,322
2,84	0,352	17,67	6,23	98,6	1,4	2,964	0,337
0,00	-	3,86	1,36	100,0	0,0	2,798	0,357
		283,42	100,00			3,517	0,284
Kornklasse	e 710/500µ	m					
Dichte	1/Dichte	Masse	Masse	Masse	Masse	Dichte	1/Dichte
[g/cm ³]	[cm³/g]	[g]	[%]	[%]	[%]	[g/cm ³]	[cm³/g]
4,00	0,250	0,00	0,00	0,00	100,0	-	-
3,30	0,303	200,69	73,11	73,11	26,9	3,718	0,269
2,84	0,352	68,80	25,06	98,18	1,8	2,950	0,339
0,00	-	5,00	1,82	100,00	0,0	2,732	0,366
		274,49	100,00			3,469	0,288
Kornklasse	e 500/315µ	m					
Dichte	1/Dichte	Masse	Masse	Masse	Masse	Dichte	1/Dichte
[g/cm ³]	[cm³/g]	[g]	[%]	[%]	[%]	[g/cm ³]	[cm³/g]
4,00	0,250	0,00	0,00	0,00	100,0	-	-
3,30	0,303	222,44	73,76	73,76	26,2	3,746	0,267
2,84	0,352	73,30	24,31	98,06	1,9	3,080	0,325
0,00	-	5,84	1,94	100,00	0,0	2,746	0,364
	. 000/400	301,58	100,00			3,535	0,283
Cornklasse	e 200/100µ	m				Diskts	4/D'-1-1-
Dichte	1/Dichte	Masse	Masse	Masse	Masse	Dichte	1/Dichte
[g/cm ³]		[g]	[%]	[%]	[%]	[g/cm³]	[cm³/g]
4,00	0,250	0,00	0,00	0,00	100,0	-	-
3,30	0,303	217,41	74,35	14,35	25,7	3,759	0,266
2,05	0,301	7 27	23,17	97,51 100 00	∠,⊃ ∩ ∩	2 760	0,324 0 361
0,00	-	1,21 202,12	∠, 4 9 100.00	100,00	0,0	2,709	0,301
		292,42	100,00			5,550	0,202

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000, Teilprobe Grobgut 8/1 6mm und Feingut <1 6mm	Diplomarbeit Robert Neubauer
Ergebnisse der Schwimm/Sink-Analyse in den Kornklasse, der Stoffdichte- bestimmung in den Dichtefraktionen sowie der Berechnung des spz. Vol.	Zahlentafel 3.2

Ko	ornklasse ρ<2,84	710/500µı lg/cm³	m	Ko	prnklasse ρ<2,84	500/315µı lg/cm³	m	Kornklasse 2 p<2,84			n
Strom	Masse	Masse	Σm	Strom	Masse	Masse	Σm	Strom	Masse	Masse	Σm
[A]	[g]	[%]	[%]	[A]	[g]	[%]	[%]	[A]	[g]	[%]	[%]
0,20	0,00	0,00	0,0	0,20	0,00	0,00	0,0	0,20	0,00	0,00	0,0
0,30	0,00	0,00	0,0	0,30	0,00	0,00	0,0	0,30	0,00	0,00	0,0
0,50	0,29	5,81	5,8	0,50	0,31	5,75	5,8	0,50	0,11	1,55	1,6
1,4	1,54	30,86	36,7	1,4	1,92	35,62	41,4	1,4	0,67	9,46	11,0
>1,4	3,16	63,33	100,0	>1,4	3,16	58,63	100,0	>1,4	6,30	88,98	100,0
Σ	4,99	100,00	-	Σ	5,39	100,00	-	Σ	7,08	100,00	-
Ko	prnklasse ρ=2,84-3	710/500µı ,30g/cm³	m	Ko	prnklasse ρ=2,84-3	500/315µı ,30g/cm³	m	Ko	rnklasse 2 ρ=2,84-3,	200/100µn 30g/cm³	n
Strom	Masse	Masse	Σm	Strom	Masse	Masse	Σm	Strom	Masse	Masse	Σm
[A]	[g]	[%]	[%]	[A]	[g]	[%]	[%]	[A]	[g]	[%]	[%]
0,20	0,04	0,38	0,4	0,20	0,03	0,22	0,2	0,20	0,14	0,95	0,9
0,30	3,72	35,00	35,4	0,30	5,80	42,40	42,6	0,30	9,45	63,89	64,8
0,50	6,23	58,61	94,0	0,50	7,15	52,27	94,9	0,50	4,95	33,47	98,3
1,4	0,63	5,93	99,9	1,4	0,70	5,12	100,0	1,4	0,25	1,69	100,0
>1,4	0,01	0,09	100,0	>1,4	0,00	0,00	100,0	>1,4	0,00	0,00	100,0
Σ	10,63	100,00	-	Σ	13,68	100,00	-	Σ	14,79	100,00	-
Ko	ornklasse ρ>3,30	710/500µı)g/cm³	m	Kornklasse 500/315μm ρ>3,30g/cm³				Kornklasse 200/100μm _P >3,30g/cm³			
Strom	Masse	Masse	Σm	Strom	Masse	Masse	Σm	Strom	Masse	Masse	Σm
[A]	[g]	[%]	[%]	[A]	[g]	[%]	[%]	[A]	[g]	[%]	[%]
0,10	0,00	0,0	0,0	0,10	0,00	0,0	0,0	0,10	0,00	0,0	0,0
0,15	1,50	9,2	9,2	0,15	1,27	7,3	7,3	0,15	15,92	96,6	96,6
0,20	13,57	83,3	92,5	0,20	15,92	91,4	98,7	0,20	0,39	2,4	99,0
0,30	1,21	7,4	99,9	0,30	0,22	1,3	99,9	0,30	0,14	0,8	99,8
0,50	0,01	0,1	100,0	0,50	0,01	0,1	100,0	0,50	0,03	0,2	100,0
1,4	0,00	0,0	100,0	1,4	0,00	0,0	100,0	1,4	0,00	0,0	100,0
>1,4	0,00	0,0	100,0	>1,4	0,00	0,0	100,0	>1,4	0,00	0,0	100,0
Σ	16,29	100,00	-	Σ	17,42	100,00	-	Σ	16,48	100,00	-

ProbenNr: 2322/1 Spateisenstein St. Erzberg	Diplomarbeit
Versanderzprobe, Absiebungsprodukte vom 13.10.2000, Feingut <1,6mm	Robert Neubauer
Frantz-Scheidung in den Kornklassen 710/500µm; 500/315µm und	
200/100µm	Zahlentafel 3.4
Ergebnisse der Suszeptibilitätsanalyse in den Dichteklassen der angegebenen	
Kornklassen	

Kornklasse 6300/4000µm											
Sch	wimm/Sink-/	Analyse		Stoffgehalt							
Dichte- klasse	mittlere Dichte	Masse	Glüh- verlust	Fe RFA	Fe ²⁺	FeO	CaO RFA	SiO ₂ RFA	MgO RFA		
ρ [g/cm³]	ρ _m [g/cm³]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]		
<2,85	2,801	0,89	-	3,46	2,99	3,85	21,71	42,03	2,89		
2,85-2,99	2,967	8,21	38,37	8,85	8,38	10,78	27,87	4,91	11,72		
2,99-3,30	3,105	13,48	38,13	16,32	15,85	20,39	24,55	3,21	7,20		
>3,30	3,678	77,42	32,16	38,50	38,03	48,93	1,47	3,41	3,44		
gesamte Kornklasse	3,512	100,00	-	32,76	32,29	41,55	6,93	3,85	4,62		

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Chem. Analyse der Kornklassen 6300/4000μm Bilanztafel mit Dichteklassen und chem. Analyse Diplomarbeit Robert Neubauer

Kornklasse 1600/1000µm											
Sch	،-wimm/Sink	Analyse			Stoffgehalt						
Dichte- klasse	mittlere Dichte	Masse	Glüh- verlust	Fe RFA	Fe ²⁺	FeO	CaO RFA	SiO ₂ RFA	MgO RFA		
ρ [g/cm³]	ρ _m [g/cm³]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]		
<2,84	2,798	1,36	_	4,25	3,78	4,86	19,12	48,40	3,19		
2,84-3,00	2,964	6,23	-	8,50	8,03	10,33	26,40	8,45	10,80		
3,00-3,30	3,104	18,07	37,77	16,19	15,72	20,22	24,69	3,95	7,02		
>3,30	3,712	74,34	32,52	38,42	37,95	48,82	1,65	3,36	3,50		
gesamte	2 5 1 7	100.00		32,07	31,60	40,66	7,59	4,40	4,59		
Kornklasse	3,317	100,00	-	31,48	31,01	39,89	8,46	4,88	4,74		

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Chem. Analyse der Kornklassen 1600/1000µm Bilanztafel mit Dichteklassen chem. Analyse

Diplomarbeit Robert Neubauer

Kornklasse 7	10/500µm											
Sch	wimm/Sink-	Analyse		Fra	ng			Stoffge	ehalt			
Dichte- klasse	mittlere Dichte	Masse	Glüh- verlust	Strom- stärke Suszep- tibilität		Masse	Fe RFA	Fe ²⁺	FeO	CaO RFA	SiO ₂ RFA	MgO RFA
ρ [g/cm³]	ρ _m [g/cm³]	[%]	[%]	I [A]	χ [m³/kg]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
				0/0,2	9,966E-08	0,00						
				0,2/0,3	4,936E-08	0,00						
-2.84	2 7 2 2	1 92		0,3/0,5	1,947E-08	5,81						
~2,04	2,752	1,02	-	0,5/1,4	2,722E-09	30,86	6,37	5,90	7,59	15,62	59,18	2,17
				>1,4	<2,722E-9	63,33	3,58	3,11	4,00	19,60	50,37	1,91
						100,00	4,49	4,02	5,18	18,30	53,26	2,00
				0/0,2	9,966E-08	0,38						
				0,2/0,3	4,936E-08	35,00	16,93	16,46	21,18	24,41	4,60	6,39
				0,3/0,5	1,947E-08	58,61	12,67	12,20	15,70	26,11	5,71	8,50
2,84-3,30	2,950	25,06	37,82	0,5/1,4	2,722E-09	5,93						
				>1,4	<2,722E-9	0,08						
						100.00	14,34	13,87	17,84	24,72	5,61	7,72
						100,00	14,26	13,79	17,74	25,47	5,29	7,71
				0/0,15	1,599E-07	9,20	39,24	38,77	49,88	1,91	2,14	3,82
				0,15/0,2	9,966E-08	83,30	38,85	38,38	49,38	1,45	3,17	3,54
				0,2/0,3	4,936E-08	7,40						
>3 30	3 719	73 1 2	32 50	0,3/0,5	1,947E-08	0,10						
~3,30	3,710	73,12	32,30	0,5/1,4	2,722E-09	0,00						
				>1,4	<2,722E-9	0,00						
						100.00	38,60	38,13	49,05	1,48	3,80	3,46
						100,00	38,89	38,42	49,43	1,50	3,07	3,57
				0/0,2	9,966E-08	67,73						
				0,2/0,3	4,936E-08	14,18						
				0,3/0,5	1,947E-08	14,87						
gesamte Kornklasse	3,469	100,00	-	0,5/1,4	2,722E-09	2,05						
				>1,4	<2,722E-9	1,17						
				kursiver,f	etter Wert	100.00	32,22	31,75	40,85	7,86	4,73	4,55
				aus NC-A	nalyse	100,00	32,09	31,62	40,68	7,81	4,54	4,58

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Chem. Analyse der Kornklassen 710/500μm Bilanztafel mit Dichteklassen, Frantzscheidungsklassen und chem. Analyse

Diplomarbeit Robert Neubauer

Kornklasse	500/315µm											
Sch	nwimm/Sink	-Analyse		Fra	ntz-Scheidu	ng			Stoffge	ehalt		
Dichte- klasse	mittlere Dichte	Masse	Glüh- verlust	Strom- Suszep- stärke tibilität		Masse	Fe RFA	Fe ²⁺	FeO	CaO RFA	SiO₂ RFA	MgO RFA
ρ [g/cm³]	ρ _m [g/cm³]	[%]	[%]	I [A]	χ [m³/kg]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
				0/0,2	9,966E-08	0,00						
				0,2/0,3	4,936E-08	0,00						
-2.94	0.746	1.04		0,3/0,5	1,947E-08	5,75						
~2,04	2,740	1,94	-	0,5/1,4	2,722E-09	35,62	2,72	2,25	2,89	13,14	69,08	2,22
				>1,4	<2,722E-9	58,63	3,38	2,91	3,74	20,21	49,65	1,84
					100,00	3,13	2,66	3,42	17,54	56,99	1,98	
				0/0,2	9,966E-08	0,22						
				0,2/0,3	4,936E-08	42,40	18,82	18,35	23,61	23,05	4,16	5,65
				0,3/0,5	1,947E-08	52,27	12,81	12,34	15,88	25,94	5,14	8,52
2,84-3,30 3,080	24,31	37,65	0,5/1,4	2,722E-09	5,11							
				>1,4	<2,722E-9	0,00						
						100.00	14,39	13,92	17,91	24,41	5,68	7,58
						100,00	15,50	15,03	19,34	24,65	4,70	7,23
				0/0,15	1,599E-07	91,10	39,26	38,79	49,90	1,15	2,91	3,51
				0,15/0,2	9,966E-08	7,30	34,05	33,58	43,20	6,95	2,11	4,78
				0,2/0,3	4,936E-08	1,50						
>3 30	3 746	73 75	32 37	0,3/0,5	1,947E-08	0,10						
- 0,00	5,740	10,10	52,57	0,5/1,4	2,722E-09	0,00						
				>1,4	<2,722E-9	0,00						
						100 00	38,55	38,08	48,99	1,98	3,01	3,75
							38,87	38,40	49,41	1,58	2,85	3,60
				0/0,2	9,966E-08	72,62						
				0,2/0,3	4,936E-08	11,41						
gagamta				0,3/0,5	1,947E-08	12,89						
Kornklasse	3,535	100,00	-	0,5/1,4	2,722E-09	1,93						
				>1,4	<2,722E-9	1,14						
			1	kursiver,fe	etter Wert	100 00	32,78	32,31	41,57	7,50	4,24	4,47
				aus NC-A	nalyse	.00,00	32,50	32,03	41,20	7,50	4,35	4,46

ProbenNr: 2322/1 Spateisenstein St. ErzbergDiplomarbeitVersanderzprobe, Absiebungsprodukte vom 13.10.2000Robert NeubauerChem. Analyse der Kornklassen 500/315µmBilanztafel mit Dichteklassen, Frantzscheidungsklassen und chem. AnalyseZahlentafel 3.8

Kornklasse	200/100µm											
Sch	nwimm/Sink	-Analyse		Fra	ntz-Scheidu	ng			Stoffge	ehalt		
Dichte- klasse	mittlere Dichte	Masse	Glüh- verlust	Strom- Suszep- stärke tibilität		Masse	Fe RFA	Fe ²⁺	FeO	CaO RFA	SiO ₂ RFA	MgO RFA
ρ [g/cm³]	ρ _m [g/cm³]	[%]	[%]	I [A]	χ [m³/kg]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
				0/0,2	9,966E-08	0,00						
				0,2/0,3	4,936E-08	0,00						
<2.05	2 760	2.40		0,3/0,5	1,947E-08	1,55						
~2,00	2,709	2,49	-	0,5/1,4	2,722E-09	9,46	11,89	11,42	14,69	17,43	40,71	4,32
				>1,4	<2,722E-9	88,99	3,53	3,06	3,94	17,15	52,39	1,81
						100,00	4,33	3,86	4,97	17,18	51,27	2,05
				0/0,2	9,966E-08	0,95						
				0,2/0,3	4,936E-08	63,89	16,93	16,46	21,18	23,15	4,73	6,67
				0,3/0,5	1,947E-08	33,47	11,80	11,33	14,58	24,94	7,23	8,54
2,85-3,30 3,091 23,17	37,32	0,5/1,4	2,722E-09	1,69								
				>1,4	<2,722E-9	0,00						
						100.00	15,07	14,60	18,78	23,29	5,47	7,22
						100,00	15,17	14,70	18,91	23,77	5,59	7,31
				0/0,15	1,599E-07	96,60	39,76	39,29	50,55	1,12	2,18	3,62
				0,15/0,2	9,966E-08	2,37						
				0,2/0,3	4,936E-08	0,85						
>3 30	3 750	7/ 3/	32 37	0,3/0,5	1,947E-08	0,18						
-0,00	5,755	74,34	52,57	0,5/1,4	2,722E-09	0,00						
				>1,4	<2,722E-9	0,00						
						100.00	39,35	38,88	50,02	1,48	2,22	3,69
						100,00	39,76	39,29	50,55	1,12	2,18	3,62
				0/0,2	9,966E-08	73,79						
				0,2/0,3	4,936E-08	15,44						
				0,3/0,5	1,947E-08	7,93						
Kornklasse	3,550	100,00	-	0,5/1,4	2,722E-09	0,63						
				>1,4	<2,722E-9	2,22						
				kursiver,fe	etter Wert	100.00	33,23	32,76	42,15	7,25	3,80	4,38
				aus NC-A	nalyse	.00,00	33,18	32,71	42,08	6,77	4,19	4,44

ProbenNr: 2322/1 Spateisenstein St. Erzberg	Diplomarbeit
Versanderzprobe, Absiebungsprodukte vom 13.10.2000	Robert Neubauer
Chem. Analyse der Kornklassen 200/100µm	
Bilanztafel mit Dichteklassen, Frantzscheidungsklassen und chem. Analyse	Zahlentafel 3.9

Ko	rnklass	o 6300//	1000um		Summenkurven						
	111111111111111111111111111111111111111	e 0300/-	ισοσμιιί			Berge Konze					
ρ	m	Σm	\mathbf{g}_{Fe}	li	Σm_i	/g _{Fe}	ΣI_i	Σm_i	//g _{Fe}	Σl_i	
[g/cm³]	[%]	[%]	[%]	[%*%]	[%]	[%]	[%*%]	[%]	[%]	[%*%]	
<2,84	0,89	0,89	3,46	3	0,89	3,46	3	99,11	33,03	3273	
2,84-3,00	8,21	9,10	8,85	72	9,10	8,32	75	90,90	35,21	3200	
3,00-3,30	13,48	22,58	16,32	219	22,58	13,10	295	77,42	38,50	2980	
>3,30	77,42	100,00	38,50	2980	100,00	32,76	3276	0,00	n.d.	0	
Σ	100,00	-	32,76	3276	-	-	-	-	-	-	

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000, Teilprobe 8/1,6mm Kornklassen 6300/4000μm Zahlentafel zum Henry-Reinhardtschaubild (Schaubild 3.14) für Fe

Diplomarbeit Robert Neubauer

K	vnklass	o 1600/	1000	Summenkurven						
		Berge		Konzentrat						
ρ	m	Σm	g _{Fe}	li	Σm _i	/g _{Fe}	ΣI_i	Σm_{i}	//g _{Fe}	$\Sigma \mathbf{I}_i$
[g/cm ³]	[%]	[%]	[%]	[%*%]	[%]	[%]	[%*%]	[%]	[%]	[%*%]
<2,84	1,36	1,36	4,25	5	1,36	4,25	5	98,64	32,46	3201
2,84-3,00	6,23	7,59	8,50	52	7,59	7,74	58	92,41	34,07	3148
3,00-3,30	18,07	25,66	16,19	292	25,66	13,69	351	74,34	38,42	2856
>3,30	74,34	100,00	38,42	2856	100,00	32,07	3207	0,00	n.d.	0
Σ	100,00	-	32,07	3207	-	-	-	-	-	-

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000, Teilprobe 1,6/0mm Diplomarbeit Kornklassen 1600/1000µm Zahlentafel zum Henry-Reinhardtschaubild (Schaubild 3.15) für Fe

Robert Neubauer

Kornklasso 710/500um							Summenkurven						
Konikiasse / 10/500µm							Berge		Konzentrat				
ρ	χ	М	Σm	g _{Fe}	li	Σm_i	/g _{Fe}	ΣI_i	Σm_i	//g _{Fe}	Σ_i		
[g/cm ³]	[m³/kg]	[%]	[%]	[%]	[%*%]	[%]	[%]	[%*%]	[%]	[%]	[%*%]		
<2,84	<2,722E-09	1,22	1,22	3,58	4	1,22	3,58	4	98,78	32,44	3204		
	2,722E-09	0,60	1,82	6,37	3	1,82	4,49	8	98,18	32,60	3200		
2,84-3,30	1,947E-08	15,69	17,51	12,67	198	17,51	11,82	206	82,49	36,39	3002		
	4,936E-08	9,37	26,88	16,93	158	26,88	13,60	365	73,12	38,89	2843		
>3,30	9,966E-08	65,85	92,73	38,85	2558	92,73	31,53	2923	7,27	39,24	285		
	1,599E-07	7,27	100,00	39,24	285	100,00	32,09	3209	0,00	n.d.	0		
Σ	_	100,00	-	32,09	3209	-	-	-	-	-	-		

Diplomarbeit											
ler											
12											
	Kornkla	SSO 500	/315um					Summenl	kurven		
----------------------	------------	---------	--------	------------------------	-------	----------------	------------------	--------------	--------------	-------------------	------------
	KUIIKIa	556 500	στομπ			Berge Konzentr				at	
ρ	χ	m	Σm	g _{Fe}	li	Σm_i	/g _{Fe}	ΣI_i	Σm_i	//g _{Fe}	Σ_i
[g/cm ³]	[m³/kg]	[%]	[%]	[%]	[%*%]	[%]	[%]	[%*%]	[%]	[%]	[%*%]
<2.84	<2,722E-09	1,21	1,21	3,38	4	1,21	3,38	4	98,79	32,85	3245
~2,04	2,722E-09	0,73	1,94	2,72	1	1,94	3,13	6	98,06	33,08	3243
2 84-3 30	1,947E-08	13,42	15,36	12,81	171	15,36	11,59	178	84,64	36,29	3071
2,04-0,00	4,936E-08	10,89	26,25	18,82	204	26,25	14,59	382	73,75	38,87	2866
>3 30	9,966E-08	68,28	94,53	39,26	2680	94,53	32,41	3063	5,47	34,05	186
>3,30	1,599E-07	5,47	100,00	34,05	186	100,00	32,50	3249	0,00	n.d.	0
Σ	-	100,00	-	32,50	3249	-	-	_	-	_	-

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000, teilprobe 1,6/0mm Kornklassen 500/315μm Zahlentafel zum Henry-Reinhardtschaubild (Schaubild 3.17) für Fe Diplomarbeit Robert Neubauer

Zahlentafel 3.13

	Kornkla	sso 200	/100.00			Summenkurven					
	Konikia	556 200	ποσμιι			Berge Konzentra				rat	
ρ	χ	m	Σm	g _{Fe}	li	Σm_i	/g _{Fe}	ΣI_i	Σm_i	//g _{Fe}	Σ_i
[g/cm ³]	[m³/kg]	[%]	[%]	[%]	[%*%]	[%]	[%]	[%*%]	[%]	[%]	[%*%]
<2.84	<2,722E-09	2,25	2,25	3,53	7	2,25	3,53	7	97,75	33,86	3310
~2,04	2,722E-09	0,24	2,49	11,89	2	2,49	4,33	10	97,51	33,92	3307
284330	1,947E-08	7,97	10,46	11,80	93	10,46	10,02	104	89,54	35,88	3213
2,04-3,30	4,936E-08	15,20	25,66	16,93	257	25,66	14,12	362	74,34	39,76	2955
>3,30	9,966E-08	74,34	100,00	39,76	2955	100,00	33,18	3317	0,00	n.d.	0
Σ	_	100,00	-	33,18	3317	-	-	-	-	-	-

ProbenNr: 2322/1 Spateisenstein St. ErzbergDipVersanderzprobe, Absiebungsprodukte vom 13.10.2000, Teilprobe 1,6/0mmRoberKornklassen 200/100μmZahlentafel zum Henry-Reinhardtschaubild (Schaubild 3.18) für FeZahlen

Diplomarbeit Robert Neubauer

Zahlentafel 3.14

K	vrnklass	o 6300//	4000um				Summe	nkurve	n	
	111111111111111111111111111111111111111	e 0300/-	τοοομιτι			Berge		ł	Konzent	rat
ρ	m	Σm	g _{SiO2}	li	Σm_i	/g _{SiO2}	ΣI_i	Σm_{i}	//g _{SiO2}	Σl_i
[g/cm ³]	[%]	[%]	[%]	[%*%]	[%]	[%]	[%*%]	[%]	[%]	[%*%]
<2,84	0,89	0,89	42,03	37	0,89	42,03	37	99,11	3,51	347
2,84-3,00	8,21	9,10	4,91	40	9,10	8,54	77	90,90	3,38	307
3,00-3,30	13,48	22,58	3,21	43	22,58	5,36	120	77,42	3,41	264
>3,30	77,42	100,00	3,41	264	100,00	3,85	384	0,00	n.d.	0
Σ	100,00	-	3,85	384	-	-	-	-	-	-

ProbenNr: 2322/1 Spateisenstein St. ErzbergDiplomarbeitVersanderzprobe, Absiebungsprodukte vom 13.10.2000, Teilprobe 8/1,6mmRobert NeubauerKornklassen 6300/4000μmZahlentafel zum Henry-Reinhardtschaubild (Schaubild 3.19) für SiO2Zahlentafel 3.15

K	vrnklass	o 1600/	1000			0	Summer	kurven		
	111111111111111111111111111111111111111		ισοσμιτι			Berge		K	onzentr	at
ρ	m	Σm	g _{SiO2}	li	Σm_i	/g _{SiO2}	ΣI_i	Σm_i	//g _{SiO2}	Σ_i
[g/cm ³]	[%]	[%]	[%]	[%*%]	[%]	[%]	[%*%]	[%]	[%]	[%*%]
<2,84	1,36	1,36	48,40	65	1,36	48,40	65	98,64	3,79	373
2,84-3,00	6,23	7,59	8,45	52	7,59	15,61	118	92,41	3,48	321
3,00-3,30	18,07	25,66	3,95	71	25,66	7,40	189	74,34	3,36	249
>3,30	74,34	100,00	3,36	249	100,00	4,40	439	0,00	n.d.	0
Σ	100,00	-	4,40	439	-	-	-	-	-	-

ProbenNr: 2322/1 Spateisenstein St. ErzbergDiplomarbeitVersanderzprobe, Absiebungsprodukte vom 13.10.2000, Teilprobe 1,6/0mmRobert NeubauerKornklassen 1600/1000μmZahlentafel zum Henry-Reinhardtschaubild (Schaubild 3.20) für SiO2Zahlentafel 3.16

	Kornkla	sso 710	/500um				S	Summen	kurven		
	Norrikia	556 / 10/	300µm			Berge Konzentrat				at	
ρ	χ	m	Σm	g _{SiO2}	li	Σm_i	/g _{SiO2}	ΣI_i	Σm_i	//g _{SiO2}	$\Sigma _i$
[g/cm ³]	[m³/kg]	[%]	[%]	[%]	[%*%]	[%]	[%]	[%*%]	[%]	[%]	[%*%]
<2.84	<2,722E-09	1,22	1,22	50,37	61	1,22	50,37	61	98,78	3,97	392
~2,04	2,722E-09	0,60	1,82	59,18	35	1,82	53,26	96	98,18	3,64	356
284330	1,947E-08	15,69	17,51	5,71	89	17,51	10,65	186	82,49	3,24	267
2,04-3,30	4,936E-08	9,37	26,88	4,60	43	26,88	8,54	229	73,12	3,07	224
N3 30	9,966E-08	65,85	92,73	3,17	208	92,73	4,73	438	7,27	2,14	15
>3,30	1,599E-07	7,27	100,00	2,14	15	100,00	4,54	453	0,00	n.d.	0
Σ	-	100,00	-	4,54	453	-	-	-	-	_	-

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000, Teilprobe 1,6/0mm Kornklassen 710/500μm Zahlentafel zum Henry-Reinhardtschaubild (Schaubild 3.21) für SiO₂ Diplomarbeit Robert Neubauer Zahlentafel 3.17

	Kornkla	asso 500	/315um					Summer	nkurver	ı	
	KOITIKI	1556 500	/515µm			Berge Konzentrat				rat	
ρ	χ	m	Σm	g _{SiO2}	li	Σm_i	/g _{SiO2}	ΣI_i	Σm_i	//g _{SiO2}	Σl_i
[g/cm ³]	[m³/kg]	[%]	[%]	[%]	[%*%]	[%]	[%]	[%*%]	[%]	[%]	[%*%]
<2.84	<2,722E-09	1,21	1,21	49,65	59	1,21	49,65	59	98,79	3,80	375
~2,04	2,722E-09	0,73	1,94	69,08	50	1,94	56,99	110	98,06	3,31	324
2 84 2 20	1,947E-08	13,42	15,36	5,14	68	15,36	11,69	179	84,64	3,02	255
2,04-3,30	4,936E-08	10,89	26,25	4,16	45	26,25	8,57	224	73,75	2,85	210
N3 30	9,966E-08	68,28	94,53	2,91	198	94,53	4,48	423	5,47	2,11	11
>3,30	1,599E-07	5,47	100,00	2,11	11	100,00	4,35	435	0,00	n.d.	0
Σ	-	100,00	-	4,35	435	-	-	-	-	-	-

ProbenNr: 2322/1 Spateisenstein St. Erzberg	Diplomarbeit
Versanderzprobe, Absiebungsprodukte vom 13.10.2000, Teilprobe 1,6/0mm	Robert Neubauer
Kornklassen 500/315µm	
Zahlentafel zum Henry-Reinhardtschaubild (Schaubild 3.22) für SiO ₂	Zahlentafel 3.18

	Kornklag	200/	100um					Summe	nkurve	n	
	Konnkias	536 200/	ισομιιι			Berge Konzentra				at	
ρ	χ	m	Σm	g siO2	li	Σm_i	/g _{SiO2}	ΣI_i	Σm_i	//g _{SiO2}	$\Sigma _i$
[g/cm ³]	[m³/kg]	[%]	[%]	[%]	[%*%]	[%]	[%]	[%*%]	[%]	[%]	[%*%]
<2.84	<2,722E-09	2,25	2,25	52,39	117	2,25	52,39	117	97,75	3,08	301
~2,04	2,722E-09	0,24	2,49	40,71	9	2,49	51,27	127	97,51	2,99	291
284330	1,947E-08	7,97	10,46	7,23	57	10,46	17,72	185	89,54	2,61	233
2,04-3,30	4,936E-08	15,20	25,66	4,73	71	25,66	10,02	257	74,34	2,18	162
>3,30	9,966E-08	74,34	100,00	2,18	162	100,00	4,19	419	0,00	n.d.	0
Σ	-	100,00	-	4,19	419	-	-	-	-	-	-

ProbenNr: 2322/1 Spateisenstein St. ErzbergDiplomarbeitVersanderzprobe, Absiebungsprodukte vom 13.10.2000, Teilprobe 1,6/0mmRobert NeubauerKornklassen 200/100µmZahlentafel zum Henry-Reinhardtschaubild (Schaubild 3.23) für SiO2Zahlentafel 3.19

	Sid	Ank	Kal	Sil	Analyse
Fe	42	16	2	0	385
МgО	3	5	1	5	34
CaO	1	26	40	10	14
MB	1	1	1	1	10

	D	1	
3850	16	2	0
344	5	1	5
147	26	40	10
100	1	1	1

D2										
42	3850	2	0							
3	344	1	5							
1	147	40	10							
1	100	1	1							

5

D3									
42	42 16 3850								
3	5	344	5						
1	26	147	10						
1	1	100	1						

	D4												
42	16	2	3850										
3	5	1	344										
1	26	40	147										
1	1	1	100										

Ziel: 89,2 7,3 -5,6 9,1

_														CaO												
	7,3	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204
	300	-4,9	-4,9	-4,8	-4,8	-4,8	-4,7	-4,7	-4,6	-4,6	-4,6	-4,5	-4,5	-4,5	-4,4	-4,4	-4,3	-4,3	-4,3	-4,2	-4,2	-4,1	-4,1	-4,1	-4,0	-4,0
	301	-4,6	-4,6	-4,5	-4,5	-4,5	-4,4	-4,4	-4,3	-4,3	-4,3	-4,2	-4,2	-4,1	-4,1	-4,1	-4,0	-4,0	-3,9	-3,9	-3,9	-3,8	-3,8	-3,7	-3,7	-3,7
	302	-4,3	-4,3	-4,2	-4,2	-4,2	-4,1	-4,1	-4,0	-4,0	-4,0	-3,9	-3,9	-3,8	-3,8	-3,8	-3,7	-3,7	-3,6	-3,6	-3,6	-3,5	-3,5	-3,4	-3,4	-3,4
	303	-4,0	-4,0	-3,9	-3,9	-3,8	-3,8	-3,8	-3,7	-3,7	-3,6	-3,6	-3,6	-3,5	-3,5	-3,4	-3,4	-3,4	-3,3	-3,3	-3,3	-3,2	-3,2	-3,1	-3,1	-3,1
	304	-3,7	-3,7	-3,6	-3,6	-3,5	-3,5	-3,5	-3,4	-3,4	-3,3	-3,3	-3,3	-3,2	-3,2	-3,1	-3,1	-3,1	-3,0	-3,0	-2,9	-2,9	-2,9	-2,8	-2,8	-2,7
	305	-3,4	-3,3	-3,3	-3,3	-3,2	-3,2	-3,2	-3,1	-3,1	-3,0	-3,0	-3,0	-2,9	-2,9	-2,8	-2,8	-2,8	-2,7	-2,7	-2,6	-2,6	-2,6	-2,5	-2,5	-2,4
	306	-3,1	-3,0	-3,0	-3,0	-2,9	-2,9	-2,8	-2,8	-2,8	-2,7	-2,7	-2,6	-2,6	-2,6	-2,5	-2,5	-2,4	-2,4	-2,4	-2,3	-2,3	-2,3	-2,2	-2,2	-2,1
-	307	-2,8	-2,7	-2,7	-2,7	-2,6	-2,6	-2,5	-2,5	-2,5	-2,4	-2,4	-2,3	-2,3	-2,3	-2,2	-2,2	-2,1	-2,1	-2,1	-2,0	-2,0	-1,9	-1,9	-1,9	-1,8
-	308	-2,5	-2,4	-2,4	-2,3	-2,3	-2,3	-2,2	-2,2	-2,2	-2,1	-2,1	-2,0	-2,0	-2,0	-1,9	-1,9	-1,8	-1,8	-1,8	-1,7	-1,7	-1,6	-1,6	-1,6	-1,5
	309	-2,2	-2,1	-2,1	-2,0	-2,0	-2,0	-1,9	-1,9	-1,8	-1,8	-1,8	-1,7	-1,7	-1,6	-1,6	-1,6	-1,5	-1,5	-1,4	-1,4	-1,4	-1,3	-1,3	-1,3	-1,2
оg	310	-1,9	-1,8	-1,8	-1,7	-1,7	-1,7	-1,6	-1,6	-1,5	-1,5	-1,5	-1,4	-1,4	-1,3	-1,3	-1,3	-1,2	-1,2	-1,1	-1,1	-1,1	-1,0	-1,0	-0,9	-0,9
Σ	311	-1,5	-1,5	-1,5	-1,4	-1,4	-1,3	-1,3	-1,3	-1,2	-1,2	-1,1	-1,1	-1,1	-1,0	-1,0	-1,0	-0,9	-0,9	-0,8	-0,8	-0,8	-0,7	-0,7	-0,6	-0,6
-	312	-1,2	-1,2	-1,2	-1,1	-1,1	-1,0	-1,0	-1,0	-0,9	-0,9	-0,8	-0,8	-0,8	-0,7	-0,7	-0,6	-0,6	-0,6	-0,5	-0,5	-0,4	-0,4	-0,4	-0,3	-0,3
	313	-0,9	-0,9	-0,9	-0,8	-0,8	-0,7	-0,7	-0,7	-0,6	-0,6	-0,5	-0,5	-0,5	-0,4	-0,4	-0,3	-0,3	-0,3	-0,2	-0,2	-0,1	-0,1	-0,1	0,0	0,0
	314	-0,6	-0,6	-0,5	-0,5	-0,5	-0,4	-0,4	-0,3	-0,3	-0,3	-0,2	-0,2	-0,1	-0,1	-0,1	0,0	0,0	0,0	0,1	0,1	0,2	0,2	0,2	0,3	0,3
	315	-0,3	-0,3	-0,2	-0,2	-0,2	-0,1	-0,1	0,0	0,0	0,0	0,1	0,1	0,2	0,2	0,2	0,3	0,3	0,4	0,4	0,4	0,5	0,5	0,6	0,6	0,6
	316	0,0	0,0	0,1	0,1	0,1	0,2	0,2	0,3	0,3	0,3	0,4	0,4	0,5	0,5	0,5	0,6	0,6	0,7	0,7	0,7	0,8	0,8	0,9	0,9	0,9
	317	0,3	0,3	0,4	0,4	0,5	0,5	0,5	0,6	0,6	0,7	0,7	0,7	0,8	0,8	0,9	0,9	0,9	1,0	1,0	1,0	1,1	1,1	1,2	1,2	1,2
	318	0,6	0,6	0,7	0,7	0,8	0,8	0,8	0,9	0,9	1,0	1,0	1,0	1,1	1,1	1,2	1,2	1,2	1,3	1,3	1,4	1,4	1,4	1,5	1,5	1,6
	319	0,9	1,0	1,0	1,0	1,1	1,1	1,2	1,2	1,2	1,3	1,3	1,3	1,4	1,4	1,5	1,5	1,5	1,6	1,6	1,7	1,7	1,7	1,8	1,8	1,9
-	320	1,2	1,3	1,3	1,3	1,4	1,4	1,5	1,5	1,5	1,6	1,6	1,7	1,7	1,7	1,8	1,8	1,9	1,9	1,9	2,0	2,0	2,0	2,1	2,1	2,2
	321	1,5	1,6	1,6	1,6	1,7	1,7	1,8	1,8	1,8	1,9	1,9	2,0	2,0	2,0	2,1	2,1	2,2	2,2	2,2	2,3	2,3	2,4	2,4	2,4	2,5

ProbenNr: 2322/1 Spateisenstein St. Erzberg	Diplomarbeit
Versanderzprobe, Absiebungsprodukte vom 13.10.2000	Robert Neubauer
Matrix zur Berechnung der Mineralzusammensetzung in der Dichteklass >3,30g/cm3 der Kornklasse 6300/4000µm	
	Zahlentafel 3.22

_														CaO												
_[-5,6	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204
	300	3,3	3,3	3,3	3,3	3,3	3,3	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,5	3,5	3,5	3,5	3,5	3,5
	301	3,1	3,1	3,1	3,1	3,1	3,2	3,2	3,2	3,2	3,2	3,2	3,2	3,2	3,2	3,2	3,2	3,2	3,2	3,3	3,3	3,3	3,3	3,3	3,3	3,3
	302	2,9	2,9	2,9	2,9	2,9	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,1	3,1	3,1	3,1	3,1	3,1	3,1
	303	2,7	2,7	2,7	2,7	2,8	2,8	2,8	2,8	2,8	2,8	2,8	2,8	2,8	2,8	2,8	2,8	2,8	2,9	2,9	2,9	2,9	2,9	2,9	2,9	2,9
	304	2,5	2,5	2,5	2,5	2,6	2,6	2,6	2,6	2,6	2,6	2,6	2,6	2,6	2,6	2,6	2,6	2,6	2,7	2,7	2,7	2,7	2,7	2,7	2,7	2,7
	305	2,3	2,3	2,3	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5
	306	2,1	2,1	2,1	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,3	2,3	2,3	2,3	2,3	2,3	2,3	2,3	2,3
	307	1,9	1,9	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,1	2,1	2,1	2,1	2,1	2,1	2,1	2,1	2,1	2,1
	308	1,7	1,7	1,8	1,8	1,8	1,8	1,8	1,8	1,8	1,8	1,8	1,8	1,8	1,8	1,8	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9
	309	1,5	1,6	1,6	1,6	1,6	1,6	1,6	1,6	1,6	1,6	1,6	1,6	1,6	1,6	1,7	1,7	1,7	1,7	1,7	1,7	1,7	1,7	1,7	1,7	1,7
0	310	1,3	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
Mg	311	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3
	312	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1
	313	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9
	314	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7
	315	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,6
	316	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,4
	317	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2
	318	-0,2	-0,2	-0,2	-0,2	-0,2	-0,2	-0,2	-0,2	-0,2	-0,2	-0,1	-0,1	-0,1	-0,1	-0,1	-0,1	-0,1	-0,1	-0,1	-0,1	-0,1	-0,1	-0,1	0,0	0,0
	319	-0,4	-0,4	-0,4	-0,4	-0,4	-0,4	-0,4	-0,4	-0,4	-0,3	-0,3	-0,3	-0,3	-0,3	-0,3	-0,3	-0,3	-0,3	-0,3	-0,3	-0,3	-0,3	-0,2	-0,2	-0,2
	320	-0,6	-0,6	-0,6	-0,6	-0,6	-0,6	-0,6	-0,6	-0,6	-0,5	-0,5	-0,5	-0,5	-0,5	-0,5	-0,5	-0,5	-0,5	-0,5	-0,5	-0,5	-0,5	-0,4	-0,4	-0,4
	321	-0,8	-0,8	-0,8	-0,8	-0,8	-0,8	-0,8	-0,8	-0,7	-0,7	-0,7	-0,7	-0,7	-0,7	-0,7	-0,7	-0,7	-0,7	-0,7	-0,7	-0,7	-0,6	-0,6	-0,6	-0,6
	322	-1,0	-1,0	-1,0	-1,0	-1,0	-1,0	-1,0	-1,0	-0,9	-0,9	-0,9	-0,9	-0,9	-0,9	-0,9	-0,9	-0,9	-0,9	-0,9	-0,9	-0,9	-0,8	-0,8	-0,8	-0,8

ProbenNr: 2322/1 Spateisenstein St. Erzberg	Diplomarbeit
Versanderzprobe, Absiebungsprodukte vom 13.10.2000	Robert Neubauer
Matrix zur Berechnung der Mineralzusammensetzung in der Dichteklass >3,30g/cm3 der Kornklasse 6300/4000µm	
	Zahlentafel 3.23

														CaO												
		18	0 18	1 18	2 183	3 184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204
	30	0																								
	30	1																								
	30	2																								
	30	3																								
	30	4																								
	30	5																								
	30	6																								
	30	7																								
	30	8																								
	30	9																								
0	31	0																								
Mg	31	1																								
	31	2																								
	31	3																								88
	31	4																79	80	81	82	83	84	85	86	87
	31	5								70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	31	6	6	2 6	3 64	4 65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85
	31	7				64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84
	31	8																								
	31	9																								
	32	0																								
	32	1																								
	32	2																								
	j						1		-			1					1					7				
		Sid	Ank	Kal	Sil	Analyse	4		D'		-				02	-			-	D3	-		<u> </u>	1	D4	1
F	e	42	16	2	0	3850)	3850) 16	2	2 0		42	2 385		2 ()	42	2 16	385	0 ()	42	16	2	3850
M	lgO	3	5	1	5	316	6	316	6 5		1 5			3 31	6	1 :	þ		3 5	5 31	6 5	þ	3	5	1	316
С	aO	1	26	40	10	181		181	26	4(0 10		<u> </u>	1 18	1 4	0 10)		1 26	5 18	1 10)	1	26	40	181
M	IB	1	1	1	1	100)	100) 1		1 1			1 10	0	1 .	1		1 -	1 10	0 1	1	1	1	1	100

Ziel: 91,6 0,0 0,2 8,1

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Matrix zur Berechnung der Mineralzusammensetzung in der Dichteklass >3,30g/cm ³ der Kornklasse 6300/4000μm	Diplomarbeit Robert Neubauer
	Zahlentafel 3.24

			Fr=0,8			
	Erreger- strom	Masse Magnet- produkt	Aufgabe- masse	Masse	Durchsatz- zeit	Masse- strom
	I _E	m	m	m	t	m
	[A]	[g]	[g]	[%]	[s]	[g/s]
	0,5	428,49	1170,97	36,6	142	8,2
	1,5	332,67	742,48	28,4	80	9,3
Vibro-Stufe 4	5,2	44,63	409,81	3,8	49	8,4
		365,18		31,2	MW:	8,5
		1170,97		100,0		
	0,5	445,48	1206,41	36,9	44	27,4
	1,5	337,68	760,93	28,0	19	40,0
Vibro-Stufe 6	5,2	55,61	423,25	4,6	12	35,3
		367,64		30,5	MW:	30,9
		1206,41		100,0		
	0,5	383,68	1177,21	32,6	22	53,5
	1,5	395,18	793,53	33,5	10	79,4
Vibro-Stufe 7	5,2	65,69	398,35	5,6	5	79,7
		332,66		28,3	MW:	61,4
		1177,21		100,0		

ProbenNr: 2322/1 Spateisenstein St. Erzberg	Diplomarbeit
Versanderzprobe, Absiebungsprodukte vom 13.10.2000	Robert Neubauer
Röstprodukt, Stundenprobe 21 ⁰⁰ -22 ⁰⁰ h	
Magnetscheidungsversuch mit Trommelscheider des Inst. f. Aufbereitung	Zahlentafel 4.5
Zahlenwerte zur Ermittlung der Aufgaberate bei Fr=0,8	

			Fr=1,0	0		
	Erreger- strom	Masse Magnet- produkt	Aufgabe- masse	Masse	Durchsatz- zeit	Masse- strom
	I _E	m	m	m	t	m
	[A]	[g]	[g]	[%]	[s]	[g/s]
	0,5	442,04	1151,38	38,4	285	4,0
	1,5	314,59	709,34	27,3	100	7,1
Vibro-Stufe 4	5,2	60,45	394,75	5,3	63	6,3
		334,3		29,0	MW:	8,3
		1151,38		100,0		
	0,5	350,43	1167,04	30,0	39	29,9
	1,5	369,98	816,61	31,7	23	35,5
Vibro-Stufe 6	5,2	78,48	446,63	6,7	14	31,9
		368,15		31,5	MW:	31,1
		1167,04		100,0		
	0,5	336,50	1168,89	28,8	20	58,4
	1,5	384,95	832,39	32,9	12	69,4
Vibro-Stufe 7	5,2	86,00	447,44	7,4	6	74,6
		361,44		30,9	MW:	62,7
		1168,89		100,0		

ProbenNr: 2322/1 Spateisenstein St. Erzberg	Diplomarbeit
Versanderzprobe, Absiebungsprodukte vom 13.10.2000	Robert Neubauer
Röstprodukt, Stundenprobe 21 ⁰⁰ -22 ⁰⁰ h	
Magnetscheidungsversuch mit Trommelscheider des Inst. f. Aufbereitung	Zahlentafel 4.6
Zahlenwerte zur Ermittlung der Aufgaberate bei Fr=1,0	

			Fr=1,2	5		
	Erreger- Strom	Masse Magnet- produkt	Aufgabe- masse	Masse	Durchsatz- zeit	Masse- strom
	I _E	m	m	m	t	m
	[A]	[g]	[g]	[%]	[s]	[g/s]
	0,5	428,51	1171,37	36,6	238	4,9
	1,5	298,59	742,86	25,5	93	8,0
Vibro-Stufe 4	5,2	87,98	444,27	7,5	65	6,8
		356,29		30,4	MW:	5,7
		1171,37		100,0		
	0,5	257,47	1149,12	22,4	40	28,7
	1,5	414,49	891,65	36,1	23	38,8
Vibro-Stufe 6	5,2	104,20	477,16	9,1	14	34,1
		372,96		32,5	MW:	32,0
		1149,12		100,0		
	0,5	183,27	1135,84	16,1	21	54,1
	1,5	459,05	952,57	40,4	14	68,0
Vibro-Stufe 7	5,2	129,50	493,52	11,4	7	70,5
		364,02		32,0	MW:	59,9
		1135,84		100,0		

ProbenNr: 2322/1 Spateisenstein St. Erzberg	Diplomarbeit
Versanderzprobe, Absiebungsprodukte vom 13.10.2000	Robert Neubauer
Röstprodukt, Stundenprobe 21 ⁰⁰ -22 ⁰⁰ h	
Magnetscheidungsversuch mit Trommelscheider des Inst. f. Aufbereitung	Zahlentafel 4.7
Zahlenwerte zur Ermittlung der Aufgaberate bei Fr=1,25	

	Fe										
Fr =0,8 628 kg/mh			(Fr = 611 kg	1,0 g/mh	4	Fr =1 420 kg	l,25 g/mh	Hüllkurve		
	g _{Fe}	I _{Fe}		g _{Fe}	I _{Fe}		g _{Fe}	I_{Fe}		g _{Fe}	I _{Fe}
1	53,7	49,5	1	51,1	49,9	1	53,4	49,4	1	53,66	0,0
2	51,3	84,0	2	49,9	83,5	2	50,5	79,3	2	53,66	50,0
3	50,2	87,1	3	48,7	87,9	3	48,8	86,0	3	53,48	59,1
4	39,7	100,0	4	39,3	100,0	4	39,5	100,0	4	52,59	76,8
Fr =0,8 2270 kg/mh			Fr =1,0 2285 kg/mh			Fr =1,25 2354 kg/mh			5	52,14	80,3
1	53,1	49,5	1	53,6	40,7	1	50,9	28,4	6	51,56	83,4
2	49,9	81,7	2	51,0	79,6	2	52,5	76,5	7	50,89	86,0
3	49,1	86,1	3	49,8	86,1	3	50,9	85,7	8	49,64	88,5
4	39,6	100,0	4	39,6	100,0	4	40,2	100,0	9	48,88	89,7
Fr =0,8 4510 kg/mh 4			Fr =1,0 4606 kg/mh			Fr =1,25 4399 kg/mh			40,40	100,0	
1	51,4	42,3	1	53 <u>,</u> 3	38 <u>,</u> 0	1					
2	48,8	81,5	2	51,1	78,0	2					
3	48,0	87,0	3	50,0	85,5	3					
4	39,6	100,0	4	40,4	100,0	4					

ProbenNr: 2322/1 Spateisenstein St. ErzbergIVersanderzprobe, Absiebungsprodukte vom 13.10.2000RoRöstprodukt, Stundenprobe 21⁰⁰-22⁰⁰hMagnetscheidungsversuch mit Trommelscheider des Inst. f. AufbereitungZahlenwerte für Gehalte und Inhalte von Fe in den MagnetproduktenZ

Diplomarbeit Robert Neubauer

Zahlentafel 4.8

	SiO ₂										
(Fr =0,8 Fr =1,0 628 kg/mh 611 kg/mh					Fr =1 420 k	l,25 g/mh	Hüllkurve			
	g siO2	I _{SiO2}		g siO2	I _{SiO2}		g siO2	I _{SiO2}		g _{SiO2}	I _{SiO2}
1	3,2	21,2	1	3,3	23,4	1	3,2	21,5	1	3,09	17,6
2	4,0	47,2	2	3,9	47,9	2	4,0	45,4	2	3,12	21,4
3	4,3	53,9	3	4,3	55,9	3	4,3	55,5	3	3,50	39,5
4	5,5	100,0	4	5,4	100,0	4	5,4	100,0	4	3,93	51,3
Fr =0,8 2270 kg/mh			2	Fr =1,0 2285 kg/mh			Fr =1,25 2354 kg/mh			5,18	100,0
1	3,3	22,4	1	3,2	17,6	1	4,3	18,7			
2	4,2	49,1	2	4,0	45,2	2	3,5	39,5			
3	4,5	56,6	3	4,3	54,3	3	3,9	51,3			
4	5,5	100,0	4	5,5	100,0	4	5,2	100,0			
Fr =0,8 4510 kg/mh			Fr =1,0 4606 kg/mh			4	Fr =1 399 k	1,25 g/mh			
1	3,6	21,5	1	3,4	17,7	1					
2	4,2	51,2	2	4,0	44,6	2					
3	4,5	58,9	3	4,3	53,6	3					
4	5,5	100,0	4	5,5	100,0	4					

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 21⁰⁰-22⁰⁰h Magnetscheidungsversuch mit Trommelscheider des Inst. f. Aufbereitung Zahlenwerte für Gehalte und Inhalte von SiO₂ in den Magnetprodukten

Diplomarbeit Robert Neubauer

Zahlentafel 4.9

Rös	phys. Analyse						
Fraktion	Masse	Korn- klasse	Masse	Masse	Dichte	Glüh- verlust	ferromag. Komp.
	[%]	[µm]	[g]	[%]	[g/cm ³]	[%]	[%]
		1600	0,00	0,0	-	-	-
		1000	96,51	6,6	3,902	18,58	13,18
		710	140,91	9,7	3,935	17,48	15,13
		500	140,51	9,6	3,990	14,61	18,57
Magnataradult	70.0	315	162,85	11,2	4,076	10,67	25,52
wagnetprodukt	79,8	200	172,38	11,8	4,232	6,66	34,57
		100	333,45	23,0	4,371	4,41	41,37
		40	277,21	19,0	4,429	3,46	42,55
		0	132,49	9,1	4,359	4,11	36,18
		Σ	1456,31	100,0	4,212	8,36	31,94
		1600	0,00	0,0	-	-	-
		1000	93,15	28,9	3,085	30,39	1,56
		710	32,74	10,2	3,285	28,90	2,66
		500	21,23	6,6	3,123	29,68	1,62
Unmagnetisches	00.0	315	23,43	7,3	3,042	29,14	0,99
Produkt	20,2	200	24,89	7,7	3,012	29,69	0,77
		100	42,39	13,2	3,025	28,69	0,68
		40	64,57	20,1	3,049	28,45	0,69
		0	19,45	6,0	3,086	26,33	1,13
		Σ	321,85	100,0	3,082	29,19	1,26
		1600	-	0,0	-	-	-
		1000	-	11,1	3,426	24,78	7,08
		710	-	9,8	3,778	19,88	12,51
		500	-	9,0	3,833	16,83	16,07
Aufgabe	100.0	315	-	10,4	3,889	13,28	22,05
(Rückrechnung)	100,0	200	-	11,0	4,002	9,93	29,77
		100	-	21,0	4,137	7,50	36,20
		40	-	19,2	4,044	8,72	33,73
		0	-	8,5	4,115	7,31	31,13
		Σ	_	100,0	3,922	12,56	25,74

ProbenNr: 2322/1 Spateisenstein St. Erzberg
Versanderzprobe, Absiebungsprodukte vom 13.10.2000
Röstprodukt, Stundenprobe 12 ⁰⁰ -13 ⁰⁰ h, Magnetscheidungsprodukte
Magnetscheidungsversuch mit IFE/HGS I in Waidhofen/Ybbs
Zahlenwerte der physikalischen Analyse der Kornklassen

Diplomarbeit Robert Neubauer

Zahlentafel 4.25

Röstprodukt 12 ⁰⁰ -13 ⁰⁰ h glühverlustfrei								
Fraktion	Masse	Korn- klasse	Masse					
	[%]	[µm]	[%]					
		1600	0,0					
		1000	5,9					
		710	8,7					
		500	9,0					
Magnaturadult	02.6	315	10,9					
Magnetprodukt	03,0	200	12,1					
		100	23,8					
		40	20,1					
		0	9,5					
		Σ	100,0					
		1600	0,0					
		1000	28,4					
		710	10,2					
		500	6,6					
unmagnetisches	16.4	315	7,3					
Produkt	10,4	200	7,7					
		100	13,3					
		40	20,2					
		0	6,3					
		Σ	100,0					
		1600	0,0					
		1000	9,5					
		710	8,9					
		500	8,6					
Aufgabe	100.0	315	10,3					
(Rückrechnung)	100,0	200	11,3					
		100	22,1					
		40	20,1					
		0	9,0					
		Σ	100.0					

ProbenNr: 2322/1 Spateisenstein St. Erzberg	Diplomarbeit
Versanderzprobe, Absiebungsprodukte vom 13.10.2000	Robert Neubauer
Röstprodukt, Stundenprobe 12 ⁰⁰ -13 ⁰⁰ h, Magnetscheidungsprodukte	
Magnetscheidungsversuch mit IFE/HGS I in Waidhofen/Ybbs	Zahlentafel 4.26
Zahlenwerte der physikalischen Analyse der Kornklassen, glühverlustfrei	

Röstprodukt diverse Stundenproben							phys. Analyse				chem. Analyse			Verteilung		
Stunden-	Aufgabe- rate	Masse	Fraktion	Masse	Masse	Dichte	Glüh- verlust	ferromag. Komp.	Schütt- dichte	Fe	SiO ₂	Alkalien	Fe	SiO ₂	Alkalien	
probe	[kg/(mh)]	[%]		[g]	[%]	[g/cm ³]	[%]	[%]	[g/cm ³]	[%]	[%]	[%]	[%]	[%]	[%]	
			MP	23494	70,5	4,161	9,60	28,03	-	50,06	3,28	0,31	82,31	56,47	54,59	
11 ⁰⁰ -12 ⁰⁰	4148	13.2	ZP	2431	7,3	3,480	24,64	6,28	-	31,60	5,11	0,52	5,38	9,10	9,47	
1,6/0 mm		- /	UMP	7377	22,2	3,243	29,53	1,13	-	23,85	6,37	0,65	12,31	34,43	35,94	
			Σ	33302	100,0	3,864	15,11	20,48	1,770	42,91	4,10	0,40	100,00	100,00	100,00	
			MP	10866	76,0	4,199	8,20	31,78	-	51,87	3,45	0,32	88,59	65,41	59,46	
12 ⁰⁰ -13 ⁰⁰	4302	5.7	ZP	815	5,7	3,421	24,70	6,07	-	28,80	4,95	0,59	3,69	7,04	8,20	
1,6/0 mm		- /	UMP	2625	18,3	3,170	29,82	0,85	-	18,71	6,02	0,73	7,72	27,55	32,34	
			Σ	14306	100,0	3,915	13,11	24,64	1,774	44,47	4,01	0,41	100,00	100,00	100,00	
			MP	23094	73,1	4,179	8,46	31,30	-	51,36	3,15	0,31	86,26	54,44	58,05	
13 ⁰⁰ -14 ⁰⁰	3165	12.5	ZP	1773	5,6	3,438	25,28	6,57	-	28,36	6,33	0,52	3,66	8,40	7,48	
1,6/0 mm	0100		UMP	6746	21,3	3,181	30,84	0,75	-	20,54	7,36	0,63	10,08	37,16	34,47	
			Σ	31613	100,0	3,873	14,18	23,39	1,753	43,49	4,23	0,39	100,00	100,00	100,00	
15 ⁰⁰ -16 ⁰⁰ 1,6/0 mm 3221			MP	34334	64,1	4,155	9,73	28,60	-	50,71	3,14	0,32	75,81	45,78	50,60	
	3221	21.3	ZP	3330	6,2	3,489	25,69	6,04	-	32,82	5,87	0,54	4,76	8,30	8,28	
	5221	21,5	UMP	15946	29,7	3,328	31,50	0,64	-	27,98	6,78	0,56	19,43	45,92	41,12	
			Σ	53610	100,0	3,827	17,20	18,88	1,831	42,84	4,39	0,41	100,00	100,00	100,00	
			MP	27304	72,8	4,137	10,40	26,99	-	50,76	3,05	0,31	84,49	55,95	55,26	
16 ⁰⁰ -17 ⁰⁰	2385	14.9	ZP	3019	8,0	3,538	25,20	6,06	-	33,40	5,61	0,53	6,15	11,36	10,35	
1,6/0 mm	2000	14,5	UMP	7196	19,2	3,213	30,16	1,25	-	21,32	6,77	0,74	9,36	32,69	34,39	
			Σ	37519	100,0	3,871	15,38	20,37	1,757	43,72	3,97	0,41	100,00	100,00	100,00	
			MP	22448	73,9	4,179	8,23	31,17	-	51,25	3,37	0,33	85,51	57,12	59,37	
17 ⁰⁰ -18 ⁰⁰	3845	12.0	ZP	1613	5,3	3,397	24,93	6,07	-	28,24	6,42	0,60	3,39	7,82	7,76	
1,6/0 mm	5045	12,0	UMP	6310	20,8	3,178	30,52	0,69	-	23,66	7,36	0,65	11,10	35,06	32,87	
			Σ	30371	100,0	3,878	13,75	23,50	1,808	44,30	4,36	0,41	100,00	100,00	100,00	
			MP	20544	64,1	4,209	7,22	33,47	-	51,83	4,01	0,32	84,35	47,90	58,59	
19 ⁰⁰ -20 ⁰⁰		10.7	ZP	1074	3,3	3,169	29,63	3,05	-	19,17	6,60	0,57	1,63	4,12	5,43	
1,6/0 mm	-	12,7	UMP	10443	32,6	3,129	34,61	0,43	-	16,95	7,91	0,39	14,02	47,98	35,98	
			Σ	32061	100,0	3,747	16,89	21,69	1,796	39,38	5,37	0,35	100,00	100,00	100,00	
			MP	12410	63,7	4,226	6,34	35,47	-	52,46	3,89	0,32	84,01	46,82	52,85	
21 ⁰⁰ -22 ⁰⁰	2552	77	ZP	513	2,6	3,197	28,17	3,87	-	20,63	7,78	0,64	1,37	3,87	4,37	
1,6/0 mm	3053	1,1	UMP	6561	33,7	3,095	34,89	0,38	-	17,27	7,75	0,49	14,62	49,31	42,78	
			Σ	19484	100,0	3,735	16,53	22,82	1,854	39,77	5,29	0,39	100,00	100,00	100,00	
			MP	174494	69,1	4,173	8,82	30,22	-	51,11	3,35	0,32	82,89	52,12	55,46	
Σ	-	100,0	ZP	14568	5,8	3,440	25,60	5,86	-	30,03	6,04	0,55	4,07	7,85	7,97	
			UMP	63204	25,1	3,209	31,75	0,73	-	22,20	7,11	0,58	13,04	40,03	36,57	
				Σ	252266	100,0	3,837	15,54	21,42	-	42,65	4,45	0,40	100,00	100,00	100,00

Legende:

MP Magnetprodukt

ZP Zwischenprodukt

UMP unmagnetisches Produkt

 $\Sigma\,$ Summe bzw. Durchschnitt

ProbenNr: 2322/1 Spateisenstein St. Erzberg	Diplomarbeit
Versanderzprobe, Absiebungsprodukte vom 13.10.2000	Robert Neubauer
Röstprodukt, Stundenproben 1100-1200h, 12 ⁰⁰ -13 ⁰⁰ h, 13 ⁰⁰ -14 ⁰⁰ h, 15 ⁰⁰ -16 ⁰⁰ h,	
16^{00} - 17^{00} h, 17^{00} - 18^{00} h, 19^{00} - 20^{00} h und 21^{00} - 22^{00} h	Zahlentafel 4.28
Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg	
Bilanztafel mit phys. und chem. Analyse, sowie der Verteilung	

dive	Ré erse Stunden	östprodukt proben, g	lühverlustfr	ei	chem. Analyse			Verteilung			
Stunden-	Aufgabe- rate	Masse	Fraktion	Masse	Fe	SiO ₂	Alkalien	Fe	SiO ₂	Alkalien	
pione	[kg/(mh)]	[%]		[%]	[%]	[%]	[%]	[%]	[%]	[%]	
				MP	75,1	55,38	3,63	0,34	82,31	56,47	54,59
11 ⁰⁰ -12 ⁰⁰	4148	13.3	ZP	6,5	41,93	6,78	0,69	5,38	9,10	9,47	
1,6/0 mm	- 1-0	10,0	UMP	18,4	33,84	9,04	0,92	12,31	34,43	35,94	
			Σ	100,0	50,55	4,83	0,47	100,00	100,00	100,00	
			MP	80,3	56,51	3,76	0,35	88,59	65,41	59,46	
12 ⁰⁰ -13 ⁰⁰	4302	5.8	ZP	4,9	38,24	6,57	0,79	3,69	7,04	8,20	
1,6/0 mm	4302	5,6	UMP	14,8	26,66	8,57	1,04	7,72	27,55	32,34	
			Σ	100,0	51,18	4,61	0,47	100,00	100,00	100,00	
			MP	77,9	56,11	3,44	0,34	86,26	54,44	58,05	
13 ⁰⁰ -14 ⁰⁰	3165	12,7	ZP	4,9	37,96	8,47	0,70	3,66	8,40	7,48	
1,6/0 mm			UMP	17,2	29,70	10,64	0,91	10,08	37,16	34,47	
			Σ	100,0	50,68	4,93	0,45	100,00	100,00	100,00	
			MP	69,8	56,18	3,48	0,35	75,81	45,78	50,60	
15 ⁰⁰ -16 ⁰⁰	3221	20.9	ZP	5,6	44,17	7,90	0,73	4,76	8,30	8,28	
1,6/0 mm	5221	20,3	UMP	24,6	40,85	9,90	0,82	19,43	45,92	41,12	
			Σ	100,0	51,73	5,30	0,49	100,00	100,00	100,00	
	2385		MP	77,1	56,65	3,41	0,35	84,49	55,95	55,26	
16 ⁰⁰ -17 ⁰⁰		14.0	ZP	7,1	44,65	7,50	0,71	6,15	11,36	10,35	
1,6/0 mm		14,9	UMP	15,8	30,53	9,69	1,06	9,36	32,69	34,39	
			Σ	100,0	51,66	4,69	0,49	100,00	100,00	100,00	
			MP	78,7	55,85	3,67	0,36	85,51	57,12	59,37	
17 ⁰⁰ -18 ⁰⁰	3845	12.3	ZP	4,6	37,62	8,55	0,80	3,39	7,82	7,76	
1,6/0 mm	3043	12,5	UMP	16,7	34,05	10,59	0,94	11,10	35,06	32,87	
			Σ	100,0	51,36	5,06	0,48	100,00	100,00	100,00	
			MP	71,6	55,86	4,32	0,35	84,35	47,90	58,59	
19 ⁰⁰ -20 ⁰⁰		12.5	ZP	2,8	27,24	9,38	0,81	1,63	4,12	5,43	
1,6/0 mm	-	12,5	UMP	25,6	25,93	12,09	0,60	14,02	47,98	35,98	
			Σ	100,0	47,38	6,46	0,43	100,00	100,00	100,00	
			MP	71,4	56,01	4,15	0,34	84,01	46,82	52,85	
21 ⁰⁰ -22 ⁰⁰	3553	7.6	ZP	2,3	28,72	10,83	0,89	1,37	3,87	4,37	
1,6/0 mm	3553	7,0	UMP	26,3	26,52	11,90	0,75	14,62	49,31	42,78	
			Σ	100,0	47,65	6,34	0,46	100,00	100,00	100,00	
-	1	1									
	1	1		1 7 4 7	50.00	0.00	0.05	00.00	50.40	55 10	

Σ		100,0	MP	74,7	56,06	3,68	0,35	82,89	52,12	55,46
	-		ZP	5,1	40,36	7,90	0,74	4,07	7,85	7,97
			UMP	20,2	32,52	10,41	0,85	13,04	40,03	36,57
			Σ	100,0	50,50	5,25	0,47	100,00	100,00	100,00

Legende:

 MP
 Magnetprodukt

 ZP
 Zwischenprodukt

 UMP
 unmagnetisches Produkt

 Σ
 Summe bzw. Durchschnitt

ProbenNr: 2322/1 Spateisenstein St. Erzberg	Diplomarbeit
Versanderzprobe, Absiebungsprodukte vom 13.10.2000	Robert Neubauer
Röstprodukt, Stundenproben 1100-1200h, 12 ⁰⁰ -13 ⁰⁰ h, 13 ⁰⁰ -14 ⁰⁰ h, 15 ⁰⁰ -16 ⁰⁰ h,	
16^{00} - 17^{00} h, 17^{00} - 18^{00} h, 19^{00} - 20^{00} h und 21^{00} - 22^{00} h	Zahlentafel 4.29
Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg	
Bilanztafel mit phys. u. chem. Analyse, sowie der Verteilung, glühverlustfrei	

Fr =0,8 Stufe 4	b	Versuch bedingur	hs- igen	Mass	se	р	hys. Ana	lyse		C	hem. A	nalyse					Ver	teilung			
Bezeich-	Ι _Ε	ṁ	ṁ/b	m	m	Dichte	Glüh- verlust	ferromag. Komp.	Fe	Fe ²⁺	Fe ³⁺	SiO ₂	MgO	CaO	ferromag. Komp.	Fe	Fe ²⁺	Fe ³⁺	SiO ₂	MgO	CaO
nung	[A]	[g/s]	[kg/mh]	[g]	[%]	[g/cm ³]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
m _{P1}	0,5	8,25	606	428,49	36,59	4,278	4,77	39,3	53,65	0,57	53,08	3,16	4,30	2,66	64,31	49,5	2,8	60,5	21,2	31,5	10,7
m _{P2}	1,5	9,28	682	332,67	28,41	4,047	11,28	26,6	48,19	7,49	40,70	5,01	4,01	2,92	33,80	34,5	28,2	36,0	26,1	22,8	9,1
m _{P3}	52	8 36	614	44,63	3,81	3,479	22,07	8,13	31,74	15,74	16,00	9,63	4,24	9,72	1,39	3,1	7,9	1,9	6,7	3,2	4,1
m _{um}	5,2	0,50	014	365,18	31,19	3,108	34,81	0,36	16,43	14,80	1,63	8,07	6,80	22,15	0,50	12,9	61,1	1,6	46,0	42,5	76,1
Σ	-	8,543	628	1170,97	100,00	3,745	16,65	22,36	39,66	7,55	32,10	5,46	4,99	9,08	100,00	100,0	100,0	100,0	100,0	100,0	100,0

Fr =0,8 Stufe 4	Masse GV-frei		chem	n. Analyse,	glühverlu	ıstfrei	
Bezeich-	m	Fe	Fe ²⁺	Fe ³⁺	SiO ₂	MgO	CaO
nung	[%]	[%]	[%]	[%]	[%]	[%]	[%]
m _{P1}	41,8	56,34	0,94	114,52	3,18	9,16	2,75
m _{P2}	30,2	54,32	10,20	78,56	5,42	6,76	3,07
m _{P3}	3,6	40,73	17,13	23,44	11,43	5,05	10,76
m _{um}	24,4	25,20	14,85	1,95	9,47	6,91	24,09
Σ	100,0	47,58	9,73	53,20	5,91	7,36	9,61

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000	Diplomarbeit Robert Neubauer
Röstprodukt, Stundenprobe 21 ⁰⁰ -22 ⁰⁰ h	
Magnetscheidungsversuch mit Trommelscheider des Inst. f. Aufbereitung	Zahlentafel 4.10
Bilanztafel der Magnetscheidung bei Fr=0,8 und Stufe 4 der Vibrorinne, mit und ohne Glühverlust	

Fr =0,8 Stufe 6	b	Versuc edingu	hs- ngen	Mas	se	p	hys. Ana	lyse		С	hem. A	nalyse					Ver	teilung			
Bezeich-	Ι _Ε	ṁ	ṁ/b	m	m	Dichte	Glüh- verlust	ferromag. Komp.	Fe	Fe ²⁺	Fe ³⁺	SiO ₂	MgO	CaO	ferromag. Komp.	Fe	Fe ²⁺	Fe ³⁺	SiO ₂	MgO	CaO
nung	[A]	[g/s]	[kg/mh]	[g]	[%]	[g/cm ³]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
m _{P1}	0,5	27,42	2015	445,48	36,9	4,262	5,58	38,4	53,14	1,20	51,94	3,34	4,29	2,85	63,99	49,6	5,6	60,4	22,4	31,8	11,6
m _{P2}	1,5	40,05	2942	337,68	28,0	3,991	9,60	26,3	45,66	7,69	37,97	5,25	4,26	4,63	33,22	32,2	27,4	33,4	26,7	23,9	14,3
m _{P3}	52	35 27	2501	55,61	4,6	3,633	19,93	11,1	37,17	15,39	21,78	8,96	3,98	6,56	2,31	4,3	9,0	3,2	7,5	3,7	3,3
m _{um}	5,2	00,21	2001	367,64	30,5	3,107	34,91	0,35	18,12	14,94	3,18	7,83	6,64	20,95	0,48	13,9	58,0	3,0	43,4	40,6	70,8
Σ	-	30,90	2270	1206,41	100,0	3,738	16,30	22,16	39,64	7,86	31,78	5,50	4,98	9,04	100,00	100,0	100,0	100,0	100,0	100,0	100,0

Fr =0,8 Stufe 6	Masse GV-frei		cher	n. Analyse,	glühverlı	ustfrei	
Bezeich-	m	Fe	Fe ²⁺	Fe ³⁺	SiO ₂	MgO	CaO
nung	[%]	[%]	[%]	[%]	[%]	[%]	[%]
m _{P1}	41,7	56,28	1,95	110,84	3,38	8,93	2,95
m _{P2}	30,2	50,51	10,43	69,87	5,69	6,87	4,89
m _{P3}	4,4	46,42	17,31	34,66	10,59	5,09	7,2′
m _{um}	23,7	27,84	14,99	3,88	9,21	6,86	22,73
Σ	100,0	47,36	10,09	52,65	5,97	7,31	9,56

ProbenNr: 2322/1 Spateisenstein St. ErzbergDiplomarbeitVersanderzprobe, Absiebungsprodukte vom 13.10.2000Robert NeubauerRöstprodukt, Stundenprobe 21⁰⁰-22⁰⁰hZahlentafel des Inst. f. AufbereitungMagnetscheidungsversuch mit Trommelscheider des Inst. f. AufbereitungZahlentafel 4.11Bilanztafel der Magnetscheidung bei Fr=0,8 und Stufe 6 der Vibrorinne, mit und ohne Glühverlust

Fr =0,8 Stufe 7	b	Versuc edingur	hs- ngen	Mas	se	p	hys. Ana	lyse		с	hem. A	nalyse					Ver	teilung			
Bezeich-	Ι _Ε	ṁ	ṁ/b	m	m	Dichte	Glüh- verlust	ferromag. Komp.	Fe	Fe ²⁺	Fe ³⁺	SiO ₂	MgO	CaO	ferromag. Komp.	Fe	Fe ²⁺	Fe ³⁺	SiO ₂	MgO	CaO
nung	[A]	[g/s]	[kg/mh]	[9]	[%]	[g/cm ³]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
m _{P1}	0,5	53,51	3931	383,68	32,6	4,199	6,49	37,0	51,36	1,82	49,54	3,62	4,33	3,53	54,24	42,2	7,3	51,2	21,5	28,4	13,0
m _{P2}	1,5	79,35	5830	395,18	33,5	4,020	10,62	27,9	46,31	6,52	39,79	4,85	4,31	4,74	42,13	39,3	27,0	42,4	29,7	29,1	18,0
m _{P3}	52	70.67	5853	65,69	5,6	3,715	19,40	12,4	38,86	15,85	23,01	7,54	3,88	5,45	3,11	5,5	10,9	4,1	7,7	4,4	3,4
m _{um}	5,2	19,01	5055	332,66	28,3	3,146	34,56	0,41	18,22	15,68	2,54	7,97	6,71	20,51	0,52	13,0	54,8	2,3	41,1	38,1	65,6
Σ	-	61,39	4510	1177,21	100,0	3,760	16,53	22,23	39,60	8,10	31,51	5,48	4,97	8,84	100,00	100,0	100,0	100,0	100,0	100,0	100,0

Fr =0,8 Stufe 7	Masse GV-frei		chen	n. Analyse,	glühverlı	ustfrei	
Bezeich-	m	Fe	Fe ²⁺	Fe ³⁺	SiO ₂	MgO	CaO
nung	[%]	[%]	[%]	[%]	[%]	[%]	[%]
m _{P1}	36,5	54,93	2,89	101,85	3,69	8,58	3,66
m _{P2}	35,9	51,81	9,04	74,11	5,19	7,16	4,98
m _{P3}	5,4	48,21	18,09	37,63	8,96	5,04	5,89
m _{um}	22,2	27,84	15,74	3,11	9,45	6,88	22,29
Σ	100,0	47,44	10,41	52,16	5,96	7,26	9,35

ProbenNr: 2322/1 Spateisenstein St. ErzbergDiplomarbeitVersanderzprobe, Absiebungsprodukte vom 13.10.2000Robert NeubauerRöstprodukt, Stundenprobe 21⁰⁰-22⁰⁰hZahlentafel 4.12Magnetscheidungsversuch mit Trommelscheider des Inst. f. AufbereitungZahlentafel 4.12Bilanztafel der Magnetscheidung bei Fr=0,8 und Stufe 7 der Vibrorinne, mit und ohne GlühverlustDiplomarbeit

Fr =1,0 Stufe 4	b	Versuc edingu	:hs- ngen	Mas	se	p	hys. Ana	lyse		с	hem. A	nalyse	!				Ver	teilung			
Bezeich-	Ι _Ε	ṁ	ṁ/b	m	m	Dichte	Glüh- verlust	ferromag. Komp.	Fe	Fe ²⁺	Fe ³⁺	SiO ₂	MgO	CaO	ferromag. Komp.	Fe	Fe ²⁺	Fe ³⁺	SiO ₂	MgO	CaO
nung	[A]	[g/s]	[kg/mh]	[g]	[%]	[g/cm ³]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
m _{P1}	0,5	4,04	297	442,04	38,4	4,245	5,37	38,5	51,07	1,21	49,86	3,30	4,51	3,99	65,17	49,8	6,1	60,2	23,4	34,0	16,6
m _{P2}	1,5	7,09	521	314,59	27,3	4,061	11,36	26,7	48,34	6,56	41,78	4,85	4,06	3,06	32,17	33,6	23,7	36,0	24,5	21,8	9,1
m _{P3}	52	6 27	461	60,45	5,3	3,511	23,31	9,33	33,45	14,90	18,55	8,20	4,28	9,22	2,16	4,5	10,3	3,1	8,0	4,4	5,3
m _{um}	5,2	0,27	401	334,3	29,0	3,159	35,10	0,39	16,36	15,60	0,76	8,21	6,97	21,93	0,50	12,1	59,9	0,7	44,1	39,8	69,0
Σ	-	8,31	611	1151,38	100,0	3,779	16,58	22,68	39,32	7,57	31,75	5,41	5,09	9,22	100,00	100,0	100,0	100,0	100,0	100,0	100,0

Fr =1,0 Stufe 4	Masse GV-frei		cher	n. Analyse,	glühverlı	ustfrei	
Bezeich-	m	Fe	Fe ²⁺	Fe ³⁺	SiO ₂	MgO	CaO
nung	[%]	[%]	[%]	[%]	[%]	[%]	[%]
m _{P1}	43,6	53,97	1,97	101,90	3,34	8,99	4,13
m _{P2}	29,0	54,54	8,95	80,87	5,19	6,97	3,22
m _{P3}	4,8	43,62	16,43	27,87	9,64	5,25	10,04
m _{um}	22,6	25,21	15,66	0,91	9,73	7,02	23,89
Σ	100,0	47,14	9,79	52,33	5,85	7,46	9,75

ProbenNr: 2322/1 Spateisenstein St. Erzberg	Diplomarbeit
Versanderzprobe, Absiebungsprodukte vom 13.10.2000	Robert Neubauer
Röstprodukt, Stundenprobe 21 ⁰⁰ -22 ⁰⁰ h	
Magnetscheidungsversuch mit Trommelscheider des Inst. f. Aufbereitung	Zahlentafel 4.13
Bilanztafel der Magnetscheidung bei Fr=1,0 und Stufe 4 der Vibrorinne, mit und ohne Glühverlust	

Fr =1,0 Stufe 6	b	Versuc edingur	hs- ngen	Mas	se	р	hys. Ana	lyse		C	hem. A	nalyse					Ver	teilung			
Bezeich-	Ι _Ε	ṁ	ṁ/b	m	m	Dichte	Glüh- verlust	ferromag. Komp.	Fe	Fe ²⁺	Fe ³⁺	SiO ₂	MgO	CaO	ferromag. Komp.	Fe	Fe ²⁺	Fe ³⁺	SiO ₂	MgO	CaO
nung	[A]	[g/s]	[kg/mh]	[9]	[%]	[g/cm ³]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
m _{P1}	0,5	29,92	2198	350,43	30,0	4,295	4,54	39,5	53,57	0,74	52,83	3,21	4,30	2,75	52,66	40,7	2,8	50,3	17,6	25,7	9,1
m _{P2}	1,5	35,50	2608	369,98	31,7	4,145	9,88	30,6	48,58	5,90	42,68	4,74	4,24	3,55	43,07	38,9	23,4	42,9	27,5	26,8	12,4
m _{P3}	52	31 00	2344	78,48	6,7	3,727	20,37	12,55	38,34	16,18	22,16	7,40	3,89	5,67	3,75	6,5	13,6	4,7	9,1	5,2	4,2
m _{um}	5,2	51,30	2044	368,15	31,6	3,134	34,81	0,37	17,41	15,31	2,10	7,92	6,72	21,40	0,52	13,9	60,2	2,1	45,8	42,3	74,3
Σ	-	31,10	2285	1167,04	100,0	3,772	16,85	22,52	39,56	8,01	31,55	5,46	5,02	9,08	100,00	100,0	100,0	100,0	100,0	100,0	100,0

Fr =1,0 Stufe 6	Masse GV-frei		chen	n. Analyse,	glühverlı	ustfrei	
Bezeich-	m	Fe	Fe ²⁺	Fe ³⁺	SiO ₂	MgO	CaO
nung	[%]	[%]	[%]	[%]	[%]	[%]	[%]
m _{P1}	34,5	56,12	1,22	113,78	3,23	9,12	2,84
m _{P2}	34,4	53,90	8,50	83,00	5,04	7,40	3,73
m _{P3}	6,4	48,15	18,50	35,94	8,83	5,00	6,12
m _{um}	24,7	26,71	15,37	2,54	9,35	6,86	23,24
Σ	100,0	47,57	10,34	52,19	5,94	7,33	9,61

ProbenNr: 2322/1 Spateisenstein St. Erzberg	Diplomarbeit
Versanderzprobe, Absiebungsprodukte vom 13.10.2000	Robert Neubauer
Röstprodukt, Stundenprobe 21 ⁰⁰ -22 ⁰⁰ h	
Magnetscheidungsversuch mit Trommelscheider des Inst. f. Aufbereitung	Zahlentafel 4.14
Bilanztafel der Magnetscheidung bei Fr=1,0 und Stufe 6 der Vibrorinne, mit und ohne Glühverlust	

Fr =1,0 Stufe 7	b	Versuc edingur	hs- ngen	Mas	se	p	hys. Ana	lyse		С	hem. A	nalyse					Ver	teilung			
Bezeich-	Ι _Ε	ṁ	ṁ/b	m	m	Dichte	Glüh- verlust	ferromag. Komp.	Fe	Fe ²⁺	Fe ³⁺	SiO ₂	MgO	CaO	ferromag. Komp.	Fe	Fe ²⁺	Fe ³⁺	SiO ₂	MgO	CaO
nung	[A]	[g/s]	[kg/mh]	[9]	[%]	[g/cm ³]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
m _{P1}	0,5	58,44	4294	336,50	28,8	4,280	5,14	38,3	53,28	1,44	51,84	3,37	4,24	2,59	48,48	38,0	5,1	46,2	17,7	24,8	8,9
m _{P2}	1,5	69,37	5097	384,95	32,9	4,127	10,11	32,1	49,11	4,66	44,45	4,48	4,23	3,67	46,49	40,0	18,9	45,3	26,9	28,2	14,4
m _{P3}	52	74 57	5470	86,00	7,4	3,790	18,91	13,7	41,37	15,06	26,31	6,72	3,89	4,38	4,43	7,5	13,7	6,0	9,0	5,8	3,8
m _{um}	5,2	74,57	5475	361,44	30,9	3,158	34,00	0,44	18,91	16,35	2,56	8,23	6,57	19,75	0,60	14,5	62,3	2,5	46,4	41,2	72,9
Σ	-	62,69	4606	1168,89	100,0	3,782	16,72	22,74	40,40	8,11	32,29	5,48	4,93	8,38	100,00	100,0	100,0	100,0	100,0	100,0	100,0

Fr =1,0 Stufe 7	Masse GV-frei		chen	n. Analyse,	glühverlı	ustfrei	
Bezeich-	m	Fe	Fe ²⁺	Fe ³⁺	SiO ₂	MgO	CaO
nung	[%]	[%]	[%]	[%]	[%]	[%]	[%]
m _{P1}	32,8	56,17	2,33	110,96	3,42	8,80	2,68
m _{P2}	35,5	54,63	6,86	87,35	4,70	7,61	3,84
m _{P3}	7,2	51,02	17,45	44,87	7,91	5,28	4,70
m _{um}	24,5	28,65	16,42	3,16	9,84	6,74	21,52
Σ	100,0	48,51	10,50	54,18	5,97	7,28	8,87

ProbenNr: 2322/1 Spateisenstein St. Erzberg	Diplomarbeit
Versanderzprobe, Absiebungsprodukte vom 13.10.2000	Robert Neubauer
Röstprodukt, Stundenprobe 21 ⁰⁰ -22 ⁰⁰ h	
Magnetscheidungsversuch mit Trommelscheider des Inst. f. Aufbereitung	Zahlentafel 4.15
Bilanztafel der Magnetscheidung bei Fr=1,0 und Stufe 7 der Vibrorinne, mit und ohne Glühverlust	

Fr =1,25 Stufe 4	b	Versuc edingu	chs- ngen	Mas	se	p	hys. Ana	lyse		C	hem. A	nalyse					Ver	teilung			
Bezeich-	Ι _Ε	ṁ	ṁ/b	m	m	Dichte	Glüh- verlust	ferromag. Komp.	Fe	Fe ²⁺	Fe ³⁺	SiO ₂	MgO	CaO	ferromag. Komp.	Fe	Fe ²⁺	Fe ³⁺	SiO ₂	MgO	CaO
nung	[A]	[g/s]	[kg/mh]	[g]	[%]	[g/cm ³]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
m _{P1}	0,5	4,92	361	428,51	36,6	4,266	5,99	39,1	53,38	0,75	52,63	3,18	4,31	2,85	65,06	49,4	3,4	61,2	21,5	31,7	11,6
m _{P2}	1,5	7,99	587	298,59	25,5	4,060	10,49	26,6	46,35	7,68	38,67	5,07	4,21	4,00	30,85	29,9	24,3	31,3	23,9	21,6	11,4
m _{P3}	52	6 83	502	87,98	7,5	3,599	20,72	10,5	35,14	15,42	19,72	7,25	4,19	8,23	3,59	6,7	14,4	4,7	10,1	6,3	6,9
m _{um}	5,2	0,00	502	356,29	30,4	3,131	34,72	0,36	18,22	15,35	2,87	7,91	6,62	20,69	0,50	14,0	57,9	2,8	44,5	40,4	70,1
Σ	-	5,72	420	1171,37	100,0	3,752	16,98	21,98	39,52	8,06	31,46	5,41	4,98	8,97	100,00	100,0	100,0	100,0	100,0	100,0	100,0

Fr =1,25 Stufe 4	Masse GV-frei		cher	n. Analyse,	glühverlı	ustfrei	
Bezeich-	m	Fe	Fe ²⁺	Fe ³⁺	SiO ₂	MgO	CaO
nung	[%]	[%]	[%]	[%]	[%]	[%]	[%]
m _{P1}	41,4	56,78	1,23	112,89	3,20	9,10	2,94
m _{P2}	27,5	51,78	10,46	72,08	5,49	6,86	4,21
m _{P3}	7,2	44,32	17,23	30,40	8,57	5,22	8,87
m _{um}	23,9	27,91	15,41	3,51	9,34	6,82	22,47
Σ	100,0	47,61	10,33	52,03	5,88	7,26	9,49

ProbenNr: 2322/1 Spateisenstein St. ErzbergDiplomarbeitVersanderzprobe, Absiebungsprodukte vom 13.10.2000Robert NeubauerRöstprodukt, Stundenprobe 21⁰⁰-22⁰⁰hZahlentafel 4.16Magnetscheidungsversuch mit Trommelscheider des Inst. f. AufbereitungZahlentafel 4.16Bilanztafel der Magnetscheidung bei Fr=1,25 und Stufe 4 der Vibrorinne, mit und ohne GlühverlustDiplomarbeit

Fr =1,25 Stufe 6	b	Versuc edingur	hs- ngen	Mass	se	р	hys. Ana	lyse		с	hem. A	nalyse	!				Ver	teilung			
Bezeich-	Ι _Ε	ṁ	ṁ/b	m	m	Dichte	Glüh- verlust	ferromag. Komp.	Fe	Fe ²⁺	Fe ³⁺	SiO ₂	MgO	CaO	ferromag. Komp.	Fe	Fe ²⁺	Fe ³⁺	SiO ₂	MgO	CaO
nung	[A]	[g/s]	[kg/mh]	[g]	[%]	[g/cm ³]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
m _{P1}	0,5	28,73	2111	257,47	22,4	4,332	4,43	40,1	50,85	4,06	46,79	4,32	4,22	2,89	39,82	28,4	12,1	32,1	18,7	18,8	7,3
m _{P2}	1,5	38,77	2848	414,49	36,1	4,216	7,65	33,8	53,58	1,23	52,35	2,99	4,27	2,48	54,03	48,1	5,9	57,8	20,8	30,6	10,1
m _{P3}	52	3/1 0.8	2504	104,20	9,1	3,755	19,47	13,8	40,70	14,93	25,77	6,74	3,90	4,86	5,55	9,2	18,0	7,2	11,8	7,0	5,0
m _{um}	5,2	54,00	2304	372,96	32,5	3,115	34,83	0,42	17,74	14,80	2,94	7,77	6,74	21,19	0,60	14,3	64,0	2,9	48,7	43,6	77,6
Σ	-	32,04	2354	1149,12	100,0	3,765	16,82	22,56	40,17	7,51	32,66	5,18	5,03	8,86	100,00	100,0	100,0	100,0	100,0	100,0	100,0

Fr =1,25 Stufe 6	Masse GV-frei		chen	n. Analyse,	glühverlı	ustfrei	
Bezeich-	m	Fe	Fe ²⁺	Fe ³⁺	SiO ₂	MgO	CaO
nung	[%]	[%]	[%]	[%]	[%]	[%]	[%]
m _{P1}	25,7	53,21	6,78	95,20	4,50	7,93	3,02
m _{P2}	40,1	58,02	1,86	112,77	3,03	8,96	2,56
m _{P3}	8,8	50,54	17,32	43,46	7,92	5,25	5,21
m _{um}	25,4	27,22	14,86	3,57	9,12	6,94	22,98
Σ	100,0	48,29	9,70	54,58	5,60	7,46	9,34

ProbenNr: 2322/1 Spateisenstein St. ErzbergDiplomarbeitVersanderzprobe, Absiebungsprodukte vom 13.10.2000Robert NeubauerRöstprodukt, Stundenprobe 21⁰⁰-22⁰⁰hZahlentafel der Nagnetscheidung sversuch mit Trommelscheider des Inst. f. AufbereitungBilanztafel der Magnetscheidung bei Fr=1,25 und Stufe 6 der Vibrorinne, mit und ohne GlühverlustZahlentafel 4.17

Fr =1,25 Stufe 7	t	Versuc edingui	hs- ngen	Mass	se	p	hys. Ana	llyse		cl	nem. Ar	alyse					Ver	teilung			
Bezeich-	Ι _Ε	ṁ	ṁ/b	m	m	Dichte	Glüh- verlust	ferromag. Komp.	Fe	Fe ²⁺	Fe ³⁺	SiO ₂	MgO	CaO	ferromag. Komp.	Fe	Fe ²⁺	Fe ³⁺	SiO ₂	MgO	CaO
nung	[A]	[g/s]	[kg/mh]	[g]	[%]	[g/cm ³]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
m _{P1}	0,5	54,09	3974	183,27	16,1	4,319	4,68	40,1	54,14	0,79	53,35	3,16	4,28	2,57	29,82	25,8	3,7	28,4	17,2	24,3	18,3
m _{P2}	1,5	68,04	4999	459,05	40,4	4,151	7,45	32,5	49,96	4,22	45,74	4,27	4,22	3,47	60,55	59,8	49,5	60,8	58,0	60,1	62,0
m _{P3}	52	70 50	5180	129,50	11,4	3,866	16,60	16,75	42,78	14,13	28,65	6,45	3,88	3,90	8,80	14,4	46,8	10,8	24,8	15,6	19,7
m _{um}	5,2	70,50	5100	364,02	32,1	3,146	34,73	0,56							0,83	0,0	0,0	0,0	0,0	0,0	0,0
Σ	-	59,88	4399	1135,84	100,0	3,758	16,79	21,69	33,80	3,44	30,36	2,97	2,84	2,26	100,0	100,0	100,0	100,0	100,0	100,0	100,0

Fr =1,25 Stufe 7	Masse GV-frei		chem	Analyse	, glühverlı	ustfrei	
Bezeich-	m	Fe	Fe ²⁺	Fe ³⁺	SiO ₂	MgO	CaO
nung	[%]	[%]	[%]	[%]	[%]	[%]	[%]
m _{P1}	18,5	56,80	1,32	116,33	3,19	9,17	2,65
m _{P2}	45,0	53,98	6,25	91,41	4,46	7,78	3,62
m _{P3}	11,4	51,30	16,97	50,07	7,51	5,44	4,17
m _{um}	25,1	-	-	-	-	-	-
Σ	100,0	40,63	4,40	45,86	3,08	4,08	2,33

ProbenNr: 2322/1 Spateisenstein St. ErzbergDiplomarbeitVersanderzprobe, Absiebungsprodukte vom 13.10.2000Robert NeubauerRöstprodukt, Stundenprobe 21⁰⁰-22⁰⁰hZahlentafel des Inst. f. AufbereitungMagnetscheidungsversuch mit Trommelscheider des Inst. f. AufbereitungZahlentafel 4.18Bilanztafel der Magnetscheidung bei Fr=1,25 und Stufe 7 der Vibrorinne, mit und ohne Glühverlust

divers	Röst se St	tprodukt undenprobe	en		p	hys. Ana	lyse	che	em. Ar	alyse		Verteilun	g
Stundenprobe	Fr	Fraktion	Masse	Masse	Dichte	Glüh- verlust	ferromag. Komp.	Fe	SiO ₂	Alkalien	Fe	SiO ₂	Alkalien
	[1]		[g]	[%]	[g/cm ³]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
		MP	1613	79,8	4,212	8,36	31,94	47,50	3,74	0,345	91,79	69,65	65,40
		ZP	91	4,5	n.v.	n.v.	n.v.	16,45	5,58	0,697	1,79	5,86	7,46
	1	UMP	318	15,7	n.v.	n.v.	n.v.	16,84	6,67	0,726	6,42	24,49	27,14
1000 1000		В	-	20,2	3,082	29,19	1,26	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.
1,6/0 mm		Σ	2022	100	3,921	12,57	25,73	41,28	4,28	0,421	100,00	100,00	100,00
		MP	1531	77,5	4,294	9,16	29,77	49,34	3,45	0,315	90,18	64,21	60,45
	2	ZP	98	5,0	3,062	27,48	2,51	22,07	6,18	0,641	2,58	7,36	7,88
	-	UMP	346	17,5	3,063	30,27	0,44	17,52	6,76	0,730	7,24	28,43	31,67
		Σ	1975	100	3,938	13,77	23,28	42,41	4,17	0,404	100,00	100,00	100,00
		MP	1792	74,2	4,410	4,97	37,03	50,79	2,74	0,240	93,57	59,46	57,55
20 ⁰⁰ -21 ⁰⁰	2	ZP	335	13,9	3,172	32,71	0,43	9,97	5,17	0,518	3,43	20,97	23,22
<63 µm	~	UMP	288	11,9	3,167	33,10	0,42	10,14	5,61	0,499	3,00	19,57	19,23
		Σ	2415	100	4,006	12,17	27,59	40,28	3,42	0,309	100,00	100,00	100,00
		MP	1317	65,9	4,225	6,58	34,93	50,01	4,13	0,313	85,91	51,13	54,93
	1	ZP	79	4,0	3,074	31,67	1,56	12,90	7,79	0,635	1,33	5,78	6,69
		UMP	600	30,1	3,123	34,83	0,30	16,30	7,64	0,480	12,76	43,09	38,38
21 ⁰⁰ -22 ⁰⁰		Σ	1996	100	3,769	16,06	23,20	38,41	5,33	0,376	100,00	100,00	100,00
1,6/0 mm		MP	1282	64,0	4,252	6,69	34,62	50,64	4,02	0,312	85,30	47,03	52,22
	2	ZP	52	2,6	n.v.	n.v.	n.v.	18,24	8,34	0,641	1,25	3,96	4,35
	-	UMP	668	33,4	3,117	34,72	0,40	15,33	8,04	0,498	13,45	49,01	43,43
		Σ	2002	100	-	-	-	38,02	5,47	0,383	100,00	100,00	100,00

Legende:

B Berge=ZWP+UMP (verfälscht durch Abzweigen der Proben für die chem. Analyse!) UMP unmagnetisches Produkt MP Magnetprodukt ZWP Zwischenprodukt

 Σ Summe bzw. Durchschnitt

ProbenNr: 2322/1 Spateisenstein St. Erzberg	Diplomarbeit
Versanderzprobe, Absiebungsprodukte vom 13.10.2000	Robert Neubauer
Röstprodukt, Stundenprobe 12^{00} - 13^{00} h, 20^{00} - 21^{00} h und 21^{00} - 22^{00} h	
Magnetscheidungsversuch mit IFE/HGS I in Waidhofen/Ybbs	Zahlentafel 4.23
Bilanztafel mit phys. und chem. Analyse, sowie der Verteilung	

R diverse Stunde	löstpro nprobe	odukt en, glühver l	lustfrei	ch	em. An	alyse	Verteilung						
Stundenprobe	Fr	Fraktion	Masse	Fe	SiO ₂	Alkalien	Fe	SiO ₂	Alkalien				
	[1]		[%]	[%]	[%]	[%]	[%]	[%]	[%]				
		MP	83,6	51,83	4,08	0,38	91,79	69,65	65,40				
		ZP	-	-	-	-							
	1	UMP	-	-	-	-	8,21	30,35	34,59				
		В	16,4	-	-	-							
121-1311,6/0 mm		Σ	100,0	47,22	4,90	0,48	100,00	100,00	100,00				
MP 81,6 54,32 3,80 0,35 90,18 64,21 60,													
	2	ZP	4,2	30,43	8,52	0,88	2,58	7,36	7,88				
	2	UMP	14,2	25,13	9,69	1,05	7,24	28,43	31,67				
		Σ	100,0	49,18	4,83	0,47	100,00	100,00	100,00				
		MP	80,3	53,45	2,88	0,25	93,55	59,46	57,55				
20 ⁰⁰ -21 ⁰⁰ <63 µm	2	ZP	10,6	14,82	7,68	0,77	3,43	20,97	23,22				
20 -21 -00 μΠ	2	UMP	9,1	15,16	8,39	0,75	3,00	19,57	19,23				
		Σ	100,0	45,86	3,89	0,35	100,00	100,00	100,00				
		MP	73,5	53,53	4,42	0,34	85,91	51,13	54,93				
	1	ZP	3,2	18,88	11,40	0,93	1,33	5,78	6,69				
	'	UMP	23,3	25,01	11,72	0,74	12,76	43,09	38,38				
21 ⁰⁰ -22 ⁰⁰ 1,6/0		Σ	100,0	45,76	6,35	0,45	100,00	100,00	100,00				
mm		MP	-	54,27	4,31	0,33	-	-	-				
	2	ZP	-	-	-	-	-	-	-				
	2	UMP	-	23,48	12,32	0,76	-	-	-				
		Σ	-	-	-	-	-	-	-				
Legende:	В	Berge=ZW	P+UMP (ve	erfälschi	t durch	Abzweigen	der Prot	pen für di	e chem				

·9 Analyse!) MP Magnetprodukt

UMP unmagnetisches Produkt

ZWP Zwischenprodukt

 Σ Summe bzw. Durchschnitt

ProbenNr: 2322/1 Spateisenstein St. Erzberg	Diplomarbeit
Versanderzprobe, Absiebungsprodukte vom 13.10.2000	Robert Neubauer
Röstprodukt, Stundenprobe 12^{00} - 13^{00} h, 20^{00} - 21^{00} h und 21^{00} - 22^{00} h	
Magnetscheidungsversuch mit IFE/HGS I in Waidhofen/Ybbs	Zahlentafel 4.24
Bilanztafel mit phys. und chem. Analyse, sowie der Verteilung, glühverlustfrei gerechnet	

	Röstprodukt mit Siebanalyse						phys. Analyse			cher	n. Ana	llyse	١	/erteilung)	А	usbringe	n	korngrößenbezogenes Inhaltsausbringen		
Stunden-	Fraktion	Masse	Masse	Kornklasse	Masse	Masse	Dichte	Glüh- verlust	ferromag. Komp.	Fe	SiO ₂	Alka- lien	Fe	SiO ₂	Alka- lien	Fe	SiO ₂	Alka- lien	Fe	SiO ₂	Alka- lien
probe		[g]	[%]	[µm]	[g]	[%]	[g/cm ³]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
				1600/1000	89,86	6,6	3,914	18,26	13,90	44,04	5,03	0,456	5,61	9,63	9,35	4,97	6,30	5,56	49,12	35,13	39,01
				1000/500	243,31	17,9	3,962	15,70	17,40	45,77	4,38	0,431	15,79	22,71	23,93	13,99	14,85	14,23	83,68	66,47	61,17
	MP	10866	75,95	500/100	609,22	44,8	4,261	6,42	35,57	53,47	3,37	0,312	46,18	43,74	43,38	40,91	28,61	25,79	95,54	72,06	64,61
				100/0	417,41	30,7	4,325	4,26	38,47	54,79	2,69	0,245	32,42	23,92	23,34	28,72	15,65	13,88	94,65	78,20	61,51
				Σ	1359,80	100,0	4,199	8,20	31,78	51,87	3,45	0,322	100,00	100,00	100,00	88,59	65,42	59,46	-	-	-
				1600/1000	212,84	26,2	3,664	23,64	7,48	37,72	5,94	0,525	34,36	31,48	23,19	1,27	2,21	1,91	12,52	12,35	13,37
				1000/500	265,90	32,8	3,592	23,99	7,63	36,11	5,96	0,552	41,09	39,46	30,46	1,52	2,78	2,50	9,07	12,42	10,76
	ZP	815	5,70	500/100	96,12	11,8	3,248	25,31	6,61	22,80	8,50	0,792	9,38	20,34	15,80	0,35	1,43	1,30	0,81	3,60	3,25
				100/0	236,62	29,2	3,134	26,20	2,82	14,99	1,48	0,622	15,18	8,72	30,55	0,56	0,61	2,51	1,85	3,07	11,13
12 ⁰⁰ -13 ⁰⁰				Σ	811,48	100,0	3,421	24,70	6,07	28,80	4,95	0,594	100,00	100,00	100,00	3,69	7,04	8,22	-	-	-
1,6/0 mm				1600/1000	362,47	29,0	3,496	30,90	1,00	32,55	7,12	0,527	50,28	34,20	21,00	3,88	9,42	6,79	38,35	52,53	47,62
				1000/500	199,75	15,9	3,150	30,26	1,51	18,45	6,47	0,920	15,71	17,12	20,21	1,21	4,72	6,53	7,25	21,11	28,07
	UMP	2625	18,35	500/100	416,82	33,2	3,014	29,84	0,56	11,40	6,35	0,866	20,25	35,07	39,69	1,56	9,66	12,83	3,65	24,33	32,14
				100/0	275,28	21,9	3,050	28,04	0,63	11,73	3,73	0,631	13,76	13,61	19,10	1,06	3,75	6,17	3,50	18,73	27,36
				Σ	1254,32	100,0	3,170	29,82	0,85	18,71	6,02	0,725	100,00	100,00	100,00	7,72	27,55	32,32	-	-	-
				1600/1000	-	11,8	3,685	24,61	7,30	38,08	6,08	0,497	10,12	17,93	14,25	10,12	17,93	14,25	100,00	100,00	100,00
				1000/500	-	18,4	3,768	18,86	13,88	40,45	4,87	0,521	16,71	22,35	23,26	16,71	22,35	23,26	100,00	100,00	100,00
	\sum	14306	100,00	500/100	-	40,8	3,993	10,23	29,86	46,68	3,90	0,403	42,82	39,71	39,92	42,82	39,71	39,92	100,00	100,00	100,00
				100/0	-	29,0	4,005	8,82	31,17	46,53	2,77	0,320	30,35	20,01	22,56	30,35	20,01	22,56	100,00	100,00	100,00
				Σ	-	100,0	3,915	13,11	24,64	44,47	4,01	0,412	100,00	100,00	100,00	100,00	100,00	100,00	-	-	-

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000	Diplomarbeit Robert Neubauer
Röstprodukt, Stundenprobe 12 ⁰⁰ -13 ⁰⁰ h	
Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg	Zahlentafel 4.30
Bilanztafel mit phys. und chem. Analyse, sowie der Verteilung, das Ausbringen und das korngrößenbezogene Ausbringen	

	Röstprodukt mit Siebanalyse						p	chem. Analyse			\	/erteilung)	А	usbringe	n	korngrößenbezogenes Inhaltsausbringen				
Stunden-	Fraktion	Masse	Masse	Kornklasse	Masse	Masse	Dichte	Glüh- verlust	ferromag. Komp.	Fe	SiO ₂	Alka- lien	Fe	SiO ₂	Alka- lien	Fe	SiO ₂	Alka- lien	Fe	SiO ₂	Alka- lien
probe		[g]	[%]	[µm]	[g]	[%]	[g/cm ³]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
				1600/1000	59,98	6,7	3,905	19,08	13,83	43,61	4,59	0,446	5,79	10,14	9,61	4,90	5,67	5,31	41,06	27,05	30,96
				1000/500	172,72	19,4	3,929	18,09	15,18	44,80	4,18	0,419	17,14	26,59	26,01	14,48	14,88	14,37	76,71	58,84	55,91
	MP	27304	72,77	500/100	401,63	45,2	4,179	8,85	30,33	52,03	2,92	0,300	46,29	43,19	43,30	39,12	24,16	23,93	94,36	67,74	65,15
				100/0	254,95	28,7	4,282	5,60	32,83	54,48	2,14	0,230	30,77	20,09	21,07	26,00	11,24	11,64	93,73	62,20	57,05
				Σ	889,28	100,0	4,137	10,40	26,99	50,76	3,05	0,313	100,00	100,00	100,00	84,50	55,95	55,25	-		
				1600/1000	231,98	30,6	3,695	24,54	6,90	39,85	5,27	0,466	36,45	28,72	26,93	2,24	3,26	2,78	18,79	15,55	16,20
				1000/500	289,59	38,0	3,743	24,66	6,88	38,47	5,43	0,500	43,93	36,94	36,08	2,70	4,20	3,72	14,30	16,59	14,49
	ZP	3019	8,05	500/100	80,87	10,7	3,328	25,45	7,06	27,41	8,09	0,662	8,74	15,37	13,34	0,54	1,75	1,38	1,30	4,89	3,75
				100/0	156,90	20,7	3,128	27,05	2,77	17,59	5,15	0,605	10,88	18,98	23,65	0,67	2,16	2,44	2,41	11,93	11,96
16 ⁰⁰ -17 ⁰⁰				Σ	759,34	100,0	3,538	25,20	6,06	33,40	5,61	0,529	100,00	100,00	100,00	6,15	11,36	10,32	-		-
1,6/0 mm				1600/1000	307,81	33,8	3,504	30,24	1,69	32,25	7,37	0,576	51,16	36,83	26,34	4,79	12,04	9,07	40,14	57,40	52,85
				1000/500	168,87	18,6	3,205	29,86	2,00	20,85	6,93	0,881	18,15	19,00	22,10	1,70	6,21	7,61	8,99	24,57	29,61
	UMP	7196	19,18	500/100	262,44	28,8	3,022	31,22	0,63	14,24	7,01	0,851	19,26	29,87	33,18	1,80	9,76	11,42	4,35	27,37	31,10
				100/0	170,77	18,8	3,059	28,71	0,69	12,99	5,16	0,724	11,43	14,31	18,37	1,07	4,68	6,32	3,86	25,87	30,99
				Σ	909,89	100,0	3,213	30,16	1,25	21,32	6,77	0,740	100,00	100,00	100,00	9,36	32,69	34,43			-
		\Box		1600/1000		13,9	3,671	25,28	6,92	37,62	6,01	0,510	11,92	20,97	17,16	11,92	20,97	17,16	100,00	100,00	100,00
				1000/500	_	20,8	3,756	21,08	11,69	39,76	4,84	0,510	18,88	25,28	25,70	18,88	25,28	25,70	100,00	100,00	100,00
	Σ	37519	100,00	500/100	-	39,2	3,944	12,36	25,64	46,17	3,61	0,386	41,46	35,67	36,73	41,46	35,67	36,73	100,00	100,00	100,00
				100/0	-	26,1	3,970	10,15	26,49	46,42	2,75	0,322	27,74	18,07	20,41	27,74	18,07	20,41	100,00	100,00	100,00
				Σ	_	100,0	3,871	15,38	20,37	43,72	3,97	0,412	100,00	100,00	100,00	100,00	100,00	100,00	-	-	-

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000	Diplomarbeit Robert Neubauer
Röstprodukt, Stundenprobe 16 ⁰⁰ -17 ⁰⁰ h	
Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg	Zahlentafel 4.31
Bilanztafel mit phys. und chem. Analyse, sowie der Verteilung, das Ausbringen und das korngrößenbezogene Ausbringen	

	Röstprodukt mit Siebanalyse							phys. Analyse			n. Ana	llyse	١	/erteilung)	А	usbringe	n	korngrößenbezogenes Inhaltsausbringen		
Stunden-	Fraktion	Masse	Masse	Kornklasse	Masse	Masse	Dichte	Glüh- verlust	ferromag. Komp.	Fe	SiO ₂	Alka- lien	Fe	SiO ₂	Alka- lien	Fe	SiO ₂	Alka- lien	Fe	SiO ₂	Alka- lien
probe		[g]	[%]	[µm]	[g]	[%]	[g/cm ³]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
				1600/1000	90,18	7,1	3,886	17,14	15,57	42,54	6,09	0,466	5,82	10,77	10,18	4,91	5,16	5,34	42,43	27,31	33,01
				1000/500	265,20	20,9	3,982	13,94	20,00	45,41	5,13	0,426	18,29	26,69	27,37	15,42	12,78	14,36	85,87	51,77	57,10
	MP	20544	64,08	500/100	579,17	45,5	4,313	4,49	39,05	54,64	3,89	0,307	48,05	44,20	43,07	40,53	21,17	22,60	91,19	53,63	58,27
				100/0	336,13	26,5	4,320	3,96	39,30	54,55	2,78	0,238	27,84	18,33	19,38	23,48	8,78	10,17	90,25	51,88	51,19
				Σ	1270,68	100,0	4,209	7,22	33,47	51,83	4,01	0,325	100,00	100,00	100,00	84,34	47,90	52,48	-	-	-
				1600/1000	73,61	13,8	3,492	23,87	6,92	32,99	9,13	0,615	23,78	19,11	14,71	0,39	0,79	0,72	3,35	4,17	4,43
				1000/500	76,65	14,4	3,369	24,34	6,59	29,02	9,43	0,735	21,78	20,55	18,31	0,36	0,85	0,89	1,98	3,43	3,55
	ZP	1074	3,35	500/100	61,64	11,6	3,093	27,80	3,68	17,51	9,55	0,876	10,57	16,74	17,55	0,17	0,69	0,86	0,39	1,75	2,21
				100/0	320,88	60,2	3,074	32,57	1,19	13,96	4,78	0,474	43,87	43,61	49,43	0,72	1,80	2,41	2,75	10,62	12,13
19 ⁰⁰ -20 ⁰⁰				Σ	532,78	100,0	3,169	29,63	3,05	19,17	6,60	0,578	100,00	100,00	100,00	1,63	4,12	4,88	-	-	-
1,6/0 mm				1600/1000	167,72	27,7	3,410	33,58	0,51	27,39	7,70	0,445	44,76	26,99	23,74	6,28	12,95	10,12	54,22	68,52	62,56
				1000/500	123,85	20,5	3,040	35,57	0,49	12,89	8,91	0,589	15,56	23,06	23,21	2,18	11,07	9,90	12,15	44,80	39,35
	UMP	10443	32,57	500/100	204,79	33,8	3,022	35,43	0,32	13,38	8,58	0,552	26,70	36,72	35,96	3,74	17,62	15,34	8,43	44,63	39,53
				100/0	108,95	18,0	3,048	33,59	0,43	12,23	5,81	0,493	12,98	13,23	17,09	1,82	6,35	7,29	7,00	37,50	36,68
				Σ	605,31	100,0	3,129	34,61	0,43	16,95	7,91	0,519	100,00	100,00	100,00	14,02	47,98	42,64	-	-	-
				1600/1000	-	14,0	3,554	27,93	5,60	32,48	7,23	0,457	11,58	18,90	16,19	11,58	18,90	16,19	100,00	100,00	100,00
				1000/500	-	20,5	3,604	21,21	13,35	34,46	6,46	0,486	17,96	24,70	25,15	17,96	24,70	25,15	100,00	100,00	100,00
	\sum	32061	100,00	500/100	-	40,7	3,852	13,11	28,20	43,09	5,22	0,379	44,44	39,48	38,80	44,44	39,48	38,80	100,00	100,00	100,00
				100/0	-	24,8	3,818	13,28	27,03	41,26	3,66	0,317	26,02	16,93	19,87	26,02	16,93	19,87	100,00	100,00	100,00
				Σ	-	100,0	3,747	16,89	21,69	39,38	5,37	0,397	100,00	100,00	100,00	100,00	100,00	100,00	-	-	-

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000	Diplomarbeit Robert Neubauer
Röstprodukt, Stundenprobe 19 ⁰⁰ -20 ⁰⁰ h	
Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg	Zahlentafel 4.32
Bilanztafel mit phys. und chem. Analyse, sowie der Verteilung, das Ausbringen und das korngrößenbezogene Ausbringen	

	Röstprod gl i	lukt mit Si ühverlust	ebanalyse frei		che	m. Anal	yse	١	/erteilunç	9	А	usbringe	n	korngrößenbezogenes Inhaltsausbringen			
Stunden-	Fraktion	Masse	Kornklasse	Masse	Fe	SiO ₂	Alka- lien	Fe	SiO ₂	Alka- lien	Fe	SiO ₂	Alka- lien	Fe	SiO ₂	Alka- lien	
probe		[%]	[µm]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	
			1600/1000	5,9	53,88	6,15	0,558	5,61	9,63	9,41	4,97	6,30	5,60	49,12	35,13	39,16	
			1000/500	16,4	54,29	5,20	0,511	15,79	22,71	23,82	13,99	14,85	14,17	83,68	66,47	61,14	
	MP	80,24	500/100	45,7	57,14	3,60	0,333	46,18	43,74	43,00	40,91	28,61	25,57	95,54	72,06	64,37	
			100/0	32,0	57,23	2,81	0,256	32,42	23,92	23,76	28,72	15,65	14,13	94,65	78,20	61,93	
			Σ	100,0	56,51	3,76	0,351	100,00	100,00	100,00	88,59	65,42	59,46	-	-	-	
			1600/1000	26,6	49,40	7,78	0,688	34,36	31,48	22,97	1,27	2,21	1,88	12,52	12,35	13,18	
			1000/500	33,1	47,51	7,84	0,726	41,09	39,46	30,35	1,52	2,78	2,49	9,07	12,42	10,74	
	ZP	4,94	500/100	11,7	30,53	11,38	1,060	9,38	20,34	15,76	0,35	1,43	1,29	0,81	3,60	3,25	
			100/0	28,6	20,31	2,01	0,843	15,18	8,72	30,93	0,56	0,61	2,54	1,85	3,07	11,12	
12 ⁰⁰ -13 ⁰⁰			Σ	100,0	38,24	6,57	0,789	100,00	100,00	100,00	3,69	7,04	8,20	-	-	-	
1,6/0 mm			1600/1000	28,5	47,11	10,30	0,763	50,28	34,20	21,07	3,88	9,42	6,81	38,35	52,53	47,66	
			1000/500	15,8	26,46	9,28	1,319	15,71	17,12	20,15	1,21	4,72	6,52	7,25	21,11	28,12	
	UMP	14,82	500/100	33,2	16,25	9,05	1,234	20,25	35,07	39,77	1,56	9,66	12,86	3,65	24,33	32,37	
			100/0	22,5	16,30	5,18	0,877	13,76	13,61	19,02	1,06	3,75	6,15	3,50	18,73	26,95	
			Σ	100,0	26,66	8,57	1,033	100,00	100,00	100,00	7,72	27,55	32,34	-	-	-	
			1600/1000	10,3	50,52	8,07	0,659	10,12	17,93	14,29	10,12	17,93	14,29	100,00	100,00	100,00	
			1000/500	17,2	49,85	6,01	0,642	16,71	22,35	23,17	16,71	22,35	23,17	100,00	100,00	100,00	
	Σ	100,00	500/100	42,1	52,00	4,34	0,449	42,82	39,71	39,72	42,82	39,71	39,72	100,00	100,00	100,00	
			100/0	30,4	51,03	3,03	0,351	30,35	20,01	22,82	30,35	20,01	22,82	100,00	100,00	100,00	
			Σ	100,0	51,18	4,61	0,474	100,00	100,00	100,00	100,00	100,00	100,00	-	-	-	

ProbenNr: 2322/1 Spateisenstein St. Erzberg	Diplomarbeit
Versanderzprobe, Absiebungsprodukte vom 13.10.2000	Robert Neubauer
Röstprodukt, Stundenprobe 12 ⁰⁰ -13 ⁰⁰ h, glühverlustfrei gerechnet	
Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg	Zahlentafel 4.33
Bilanztafel mit phys. und chem. Analyse, sowie der Verteilung, das Ausbringen und das korngrößenbezogene Ausbringen	

	Röstprod gli	lukt mit Si ühverlust	ebanalyse : frei		chem. Analyse			١	/erteilunç)	А	usbringe	n	korngrößenbezogenes Inhaltsausbringen		
Stunden-	Fraktion	Masse	Kornklasse	Masse	Fe	SiO ₂	Alka- lien	Fe	SiO ₂	Alka- lien	Fe	SiO ₂	Alka- lien	Fe	SiO ₂	Alka- lien
probe		[%]	[µm]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
			1600/1000	6,1	53,89	5,67	0,551	5,79	10,14	9,69	4,90	5,67	5,35	41,06	27,05	30,99
			1000/500	17,8	54,69	5,10	0,512	17,14	26,59	26,03	14,48	14,88	14,39	76,71	58,84	55,99
	MP	77,06	500/100	45,9	57,08	3,20	0,329	46,29	43,19	43,24	39,12	24,16	23,90	94,36	67,74	65,18
			100/0	30,2	57,71	2,27	0,244	30,77	20,09	21,04	26,00	11,24	11,63	93,73	62,20	57,10
			Σ	100,0	56,65	3,41	0,349	100,00	100,00	100,00	84,50	55,95	55,26	-	-	-
			1600/1000	30,8	52,81	6,98	0,618	36,45	28,72	27,06	2,24	3,26	2,80	18,79	15,55	16,21
			1000/500	38,4	51,06	7,21	0,664	43,93	36,94	35,94	2,70	4,20	3,72	14,30	16,59	14,47
	ZP	7,11	500/100	10,6	36,77	10,85	0,888	8,74	15,37	13,25	0,54	1,75	1,37	1,30	4,89	3,74
			100/0	20,2	24,11	7,06	0,829	10,88	18,98	23,75	0,67	2,16	2,46	2,41	11,93	12,07
16 ⁰⁰ -17 ⁰⁰			Σ	100,0	44,65	7,50	0,707	100,00	100,00	100,00	6,15	11,36	10,35	-	-	-
1,6/0 mm			1600/1000	33,8	46,23	10,56	0,826	51,16	36,83	26,52	4,79	12,04	9,12	40,14	57,40	52,80
			1000/500	18,6	29,73	9,88	1,256	18,15	19,00	22,08	1,70	6,21	7,59	8,99	24,57	29,54
	UMP	15,83	500/100	28,4	20,70	10,19	1,237	19,26	29,87	33,14	1,80	9,76	11,40	4,35	27,37	31,08
			100/0	19,2	18,22	7,24	1,016	11,43	14,31	18,27	1,07	4,68	6,28	3,86	25,87	30,84
			Σ	100,0	30,54	9,69	1,059	100,00	100,00	100,00	9,36	32,69	34,39	-	-	-
			1600/1000	12,2	50,35	8,05	0,683	11,92	20,97	17,27	11,92	20,97	17,27	100,00	100,00	100,00
			1000/500	19,4	50,38	6,13	0,646	18,88	25,28	25,70	18,88	25,28	25,70	100,00	100,00	100,00
	Σ	100,00	500/100	40,7	52,68	4,12	0,440	41,46	35,67	36,66	41,46	35,67	36,66	100,00	100,00	100,00
			100/0	27,7	51,66	3,06	0,358	27,74	18,07	20,37	27,74	18,07	20,37	100,00	100,00	100,00
			Σ	100,0	51,67	4,69	0,487	100,00	100,00	100,00	100,00	100,00	100,00	-	-	-

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13-10-2000	Diplomarbeit Robert Neubauer
Röstprodukt, Stundenprobe 16 ⁰⁰ -17 ⁰⁰ h, glühverlustfrei gerechnet	
Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg Bilanztafel mit phys. und chem. Analyse, sowie der Verteilung, das Ausbringen und das korngrößenbezogene Ausbringen	Zahlentafel 4.34

Röstprodukt mit Siebanalyse glühverlustfrei					chem. Analyse			Verteilung			Ausbringen			korngrößenbezogenes Inhaltsausbringen		
Stunden- probe	Fraktion	Masse	Kornklasse	Masse	Fe	SiO ₂	Alka- lien	Fe	SiO ₂	Alka- lien	Fe	SiO ₂	Alka- lien	Fe	SiO ₂	Alka- lien
		[%]	[µm]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
			1600/1000	6,3	51,34	7,35	0,562	5,82	10,77	10,32	4,91	5,16	6,04	42,43	27,31	88,33
			1000/500	19,4	52,77	5,96	0,495	18,29	26,69	27,76	15,42	12,78	16,26	85,87	51,77	63,15
	MP	71,53	500/100	46,9	57,21	4,07	0,321	48,05	44,20	42,29	40,53	21,17	24,78	91,19	53,63	56,18
			100/0	27,4	56,80	2,89	0,248	27,84	18,33	19,64	23,48	8,78	11,50	90,25	51,88	49,37
			Σ	100,0	55,86	4,32	0,350	100,00	100,00	100,00	84,34	47,90	58,59	-		
			1600/1000	14,9	43,33	11,99	0,808	23,78	19,11	14,70	0,39	0,79	0,80	3,35	4,17	11,67
			1000/500	15,5	38,36	12,46	0,971	21,78	20,55	18,57	0,36	0,85	1,01	1,98	3,43	3,92
	ZP	2,84	500/100	11,9	24,25	13,23	1,213	10,57	16,74	17,36	0,17	0,69	0,94	0,39	1,75	2,14
			100/0	57,7	20,70	7,09	0,703	43,87	43,61	49,37	0,72	1,80	2,68	2,75	10,62	11,51
19 ⁰⁰ -20 ⁰⁰ 1,6/0 mm			Σ	100,0	27,24	9,38	0,821	100,00	100,00	100,00	1,63	4,12	5,43	-		
			1600/1000	28,1	41,24	11,59	0,670	44,76	26,99	0,00	6,28	12,95	0,00	54,22	68,52	0,00
			1000/500	20,2	20,01	13,83	0,914	15,56	23,06	23,57	2,18	11,07	8,48	12,15	44,80	32,93
	UMP	25,63	500/100	33,4	20,72	13,29	0,855	26,70	36,72	51,09	3,74	17,62	18,39	8,43	44,63	41,69
			100/0	18,3	18,42	8,75	0,742	12,98	13,23	25,34	1,82	6,35	9,12	7,00	37,50	39,13
			Σ	100,0	25,93	12,09	0,794	100,00	100,00	100,00	14,02	47,98	35,98	-	_	
	Σ		1600/1000	12,2	45,07	10,03	0,635	11,58	18,90	6,84	11,58	18,90	6,84	100,00	100,00	100,00
		100,00	1000/500	19,5	43,74	8,20	0,617	17,96	24,70	25,75	17,96	24,70	25,75	100,00	100,00	100,00
			500/100	42,5	49,59	6,00	0,436	44,44	39,48	44,10	44,44	39,48	44,10	100,00	100,00	100,00
			100/0	25,9	47,58	4,22	0,366	26,02	16,93	23,30	26,02	16,93	23,30	100,00	100,00	100,00
			Σ	100,0	47,38	6,46	0,477	100,00	100,00	100,00	100,00	100,00	100,00	-	-	ı -

ProbenNr: 2322/1 Spateisenstein St. Erzberg	Diplomarbeit
Versanderzprobe, Absiebungsprodukte vom 13.10.2000	Robert Neubauer
Röstprodukt, Stundenprobe 19 ⁰⁰ -20 ⁰⁰ h, glühverlustfrei gerechnet	
Magnetscheidungsversuch mit IFE/HGS I am St. Erzberg	Zahlentafel 4.35
Bilanztafel mit phys. und chem. Analyse, sowie der Verteilung, das Ausbringen und das korngrößenbezogene Ausbringen	
ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 12⁰⁰-13⁰⁰h Magnetscheidungsversuch mit IFE/HGS I in Waidhofen/Ybbs

Diplomarbeit Robert Neubauer

Versuchsprotokoll 1

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 20⁰⁰-21⁰⁰h, <63µm Magnetscheidungsversuch mit IFE/HGS I in Waidhofen/Ybbs

Diplomarbeit Robert Neubauer

Versuchsprotokoll 2

ProbenNr: 2322/1 Spateisenstein St. Erzberg Versanderzprobe, Absiebungsprodukte vom 13.10.2000 Röstprodukt, Stundenprobe 21⁰⁰-22⁰⁰h Magnetscheidungsversuch mit IFE/HGS I in Waidhofen/Ybbs

Diplomarbeit Robert Neubauer

Versuchsprotokoll 3

fixe Daten						Reaktordater		
Т 20	°C					d	0,034	m
V' 120	EH =	275	l/h =	7,7E-05	m³/s	h	0,118	m
ρ _{Luft} 1,19	kg/m³					A	9,1E-04	m²
η _{Luft} 1,81E-05	Pas	$ρ_{Luft}$ und $η_{Luft}$	werden aus T	bei p=100kP	a berechnet			
Kornband	1600/0	1600/40	1600/100	1600/315	1600/500	1600/710	1600/1000	μm
m	0,18838	0,18838	0,18838	0,18838	0,18838	0,18838	0,18838	kg
variable Stoffdaten								
ρ _{Feststoff}	3922	3909	3877	3787	3763	3741	3716	kg/m³
a _v	149412	70045	28572	8152	5272	3004	1439	m⁻¹
rel. Lückenvolumen ε								
ρschütt	1758	1758	1758	1758	1758	1758	1758	kg/m³
з	0,55	0,55	0,55	0,54	0,53	0,53	0,53	
äg. Durchmesser d _{äg}								
d _{äq}	1,48E-05	3,14E-05	7,65E-05	2,63E-04	4,04E-04	7,06E-04	1,46E-03	m
Leerrohrgeschw. w _f								
W _f	0,0843	0,0843	0,0843	0,0843	0,0843	0,0843	0,0843	m/s
eff. Geschw. w _{eff}								
W _{eff}	0,1528	0,1532	0,1543	0,1574	0,1582	0,1591	0,1600	m/s
Reynold-Zahl Re								
Re	0,15	0,32	0,77	2,72	4,20	7,37	15,38	
Strömung (Re _{Grenz} =40)	laminar	laminar	laminar	laminar	laminar	laminar	laminar	
Widerstandsbeiw. λ								
λ	945	443	181	52	33	19	9	
Druckverlust ∆p								
∆p/l	886922	196527	33378	2884	1227	404	94	Pa/m
Δр	1,0466	0,2319	0,0394	0,0034	0,0014	0,0005	0,0001	bar

ProbenNr: 2322/1 Spateisenstein St. Erzberg	Diplomarbeit
Versanderzprobe, Absiebungsprodukte vom 13.10.2000	Robert Neubauer
Röstprodukt, Stundenprobe 12 ⁰⁰ -13 ⁰⁰ h; Teilprobe der Aufgabe	
Abschätzung des Druckverlustes eines Festbettes verschiedener Kornbänder	Zahlentafel 5.2
laut [11]	

V	t	Vabegelsen	Vgerechnet		
[I]	[S]	[EH]	[l/s]	[m³/h]	
4,50	246	32	0,018	0,066	
7,50	242	55	0,031	0,112	
12,05	258	79	0,047	0,168	
10,25	180	97	0,057	0,205	
17,30	240	120	0,072	0,260	
20,30	245	136	0,083	0,298	
24,40	246	159	0,099	0,357	
27,7	244	178	0,114	0,409	
31,4	244	199	0,128	0,463	
34,1	238	218	0,143	0,516	
38,4	241	242	0,159	0,574	

Zahlenwerte der Volumenstrommessung zur Kalibrierung des Gasvolumenstrommessers Diplomarbeit Robert Neubauer

Zahlentafel 5.3

	<i></i> <i>V</i>	Δр		
[EH]	[l/h]	[m³/s]	[mm]	[Pa]
17	39	1,1E-05	0,3	3
35	80	2,2E-05	0,4	4
48	110	3,1E-05	0,6	6
72	165	4,6E-05	1,0	10
96	220	6,1E-05	1,6	16
120	275	7,7E-05	2,2	22
140	321	8,9E-05	2,8	27
160	367	1,0E-04	3,6	35
180	413	1,1E-04	4,5	44
200	459	1,3E-04	5,6	55
220	505	1,4E-04	6,2	61

Zahlenwerte des gemessenen Druckverlustes des leeren Festbettreaktors bei verschiedenen Volumenströmen

Diplomarbeit Robert Neubauer

Zahlentafel 5.4

Skizze eines Festbettreaktors für Versuche zur Rauchgasentschwefelung mit temperiertem Festbett und temperiertem Gasstrom.	Diplomarbeit Robert Neubauer	
	Abbildung 5.4	