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Abstract

Abstract

Diffusion plays an important role in the properties of solids, which governs the kinetics of

microstructural changes and processes of mass transport. The diffusional phenomena are

most widespread in metals, alloys, and metastable and chemically complex solid solutions,

mainly at elevated temperatures. For instance, the kinetics in metastable phases, such as

oxidation, mixing, intermixing, thermal decompositions, and phase formation, are attributed

to the diffusional rearrangement of atoms.

Atomistic simulations have provided unprecedented insight into various material properties,

with ab initio calculations, in particular, being highly successful in raising the level of un-

derstanding close to that of experimental observations. However, diffusion dynamics have

been challenging due to the time scale limitation of ab initio molecular dynamics for the in-

frequent event of jump processes. In contrast, the nudged elastic band method (NEB) based

on the transition state theory (TST) can be employed to overcome this shortcoming. This

method can calculate the 0 K migration energy barrier of a diffusion process from a static

density functional theory (DFT) calculation and the finite temperature diffusion quantities

by considering the free energy contribution from phonon. However, the model of an amorph-

ous system, considering the size limitation of ab initio methods to a few hundred atoms, is

not large enough to represent real materials. Hence, one needs to consider the large-scale

atomistic simulations to predict the properties accurately.

In the present thesis, we present the mass transport-related phenomena in B1 nitride coatings

using the diffusion migration barriers by the 0 K NEB calculations. In part of the thesis,

we use phonon thermodynamics to extend the 0 K calculations to quantify the diffusion of

the finite temperatures and pressures (pre-exponential coefficients and activation energies).

Further, we train a machine learning interatomic potential (MLIP) and use it in large-

scale molecular dynamics to study the structural and elastic properties of amorphous silicon

nitrides. Many chemical environments in B1 nitride solid solutions provide a different value

of vacancy formation energy and migration energy barriers, namely an “envelope”. We
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Abstract

use the envelope method to predict phase formation in ternary nitrides. Furthermore, we

establish a relation between lattice distortion and sluggish diffusion in high-entropy nitrides

(HEN) using the envelope methods.
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Kurzfassung

Kurzfassung

Diffusion spielt für viele Eigenschaften eines Festkörpers eine wesentliche Rolle. Sie bestimmt

die Kinetik mikrostruktureller Veränderungen und die Stofftransportprozesse. Am weitesten

sind Diffusionsphänomene in Metallen, Legierungen sowie metastabilen und chemisch kom-

plexen festen Lösungen verbreitet, vor allem bei erhöhten Temperaturen. So wird beispiels-

weise die Kinetik von Prozessen in metastabilen Phasen wie Oxidation, Vermischung, Durch-

mischung, thermische Zersetzung und Phasenbildung auf die diffusionsbedingte Neuanord-

nung von Atomen zurückgeführt.

Atomistische Simulationen ermöglichen einen noch nie dagewesenen Einblick in verschiedene

Materialeigenschaften, wobei insbesondere ab initio Berechnungen sehr erfolgreich dazu bei-

getragen haben, das Verständnis auf ein mit experimentellen Beobachtungen vergleichbares

Niveau zu heben. Die Betrachtung von Diffusionsdynamiken ist jedoch aufgrund der be-

grenzten erfassbaren Zeitskala der ab initio-Molekulardynamik-Simulationen eine Heraus-

forderung. Als Alternative kann die auf der Theorie des Übergangszustands (TST) basier-

ende Nudged-Elastic-Band-Methode (NEB) eingesetzt werden, um diese Einschränkungen

zu überwinden. Mit dieser Methode kann die Migrationsenergiebarriere eines Diffusion-

sprozesses bei 0 K aus einer statischen Berechnung mittels Dichtefunktionaltheorie (DFT),

während Diffusionsgrößen bei endlicher Temperatur erhalten werden, indem der Beitrag der

freien Energie von Phononen berücksichtigt wird. Allerdings ist das Modell eines amorphen

Systems angesichts der Beschränkung von ab initio Methoden auf Systemgrößen von eini-

gen hundert Atomen nicht groß genug, um reale Materialien darzustellen. Daher muss man

groß angelegte atomistische Simulationen in Betracht ziehen, um die Eigenschaften genau

vorherzusagen.

In der vorliegenden Arbeit stellen wir die mit dem Massentransport verbundenen Phänomene

in B1-Nitrid-Dünnschichten unter Verwendung der mittels NEB-Berechnungen bei 0 K er-

mittelten Diffusionsmigrationsbarrieren dar. Weiterhin werden diese Berechnungen bei 0 K

mittels Phononenthermodynamikansätzen erweitert, um die Diffusion bei endlichen Temper-
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aturen und Drücken quantifizieren zu können (präexponentielle Koeffizienten und Aktivier-

ungsenergien). Darüber hinaus trainieren wir ein interatomares Potenzial mittels maschinel-

len Lernens (MLIP) zur Anwendung in großskaligen Molekulardynamik-Simulationen, um die

strukturellen und elastischen Eigenschaften von amorphen Siliziumnitriden zu untersuchen.

Viele lokale chemische Umgebungen in B1-Nitrid-Mischkristallen liefern einen unterschied-

lichen Wert für die Leerstellenbildungsenergie und die Migrationsenergiebarrieren, d. h.

einen ”Envelope”. Wir verwenden die Envelope-Methode, um die Phasenbildung in ternären

Nitriden vorherzusagen. Außerdem stellen wir mit Hilfe der Envelope-Methode eine Bez-

iehung zwischen Gitterverzerrung und träger Diffusion in hochentropischen Nitriden (HEN)

her.
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Chapter 1

Introduction

1.1 Wear Protection in Operation Condition

The constant demand for the enhancement of materials properties steers both industrial

and academic research to maintain the requirements of modern production and applications.

In practical use of the components, the surface has to go through extreme conditions and

withstand severe environmental impacts. For example, metal cutting operations, including

turning, milling, drilling, and other methods for shaping metals, generate large mechanical

forces and high temperatures at the point of contact between the cutting tool and material

workpiece [1]. The severe service conditions sooner or later lead to substantial damage to

the cutting tool, after which it has to be replaced as it cannot produce the desired product

at the target tolerances [1]. To improve their lifetime, hard coatings with a thickness of a

few microns are widely applied, for example, application in cutting/forming tools, casting,

aerospace, and the automotive industry. The numerous techniques and conditions for the

deposition of protective hard coatings lead to the formation of countless varieties of micro-

structures among materials w.r.t. the phase composition, lattice defects, texture, surface

morphology, grain size, surface and bulk diffusion, and crystallographic orientation [2].

Nitride-based hard coatings, particularly transition metal nitride (TMN), exhibit high hard-

ness, moduli, good thermal and electrical conductivities, outstanding corrosion- and wear res-

istance, chemical stability, and high melting point. For these reasons, TMNs have been used

as diffusion barriers, tribological behavior, wear-resistant, and anti-corrosion coatings [1, 3–

7]. The unique properties of ceramic nitrides can be traced to a mixture of ionic, covalent,

and metallic bonding [8–10]. They are typically used as protective coatings for structural

components operating in extreme environments and on cutting tools.

In this thesis, we investigate two types of nitride systems from the structure point of view,

i.e., cubic B1 type with space group Fm3̄m (NaCl prototype) and amorphous. For the

13



1.2 Synthesis of Protective Hard Coating

B1 structures, we considered the changes only in the metal sublattice and populated with

different metals, Al and Si, to study properties using atomistic simulations. However, only

vacancies were considered in the N sublattice. Though all the systems investigated attributed

to the application of the protective coatings, we divide them into three categories: (i) solid

lubricant coating (Ti(Si)N/a-Si3N4) system, (ii) alloying of d-elements in TiN, and (iii)

metastable solid solution and multicomponent nitrides.

1.2 Synthesis of Protective Hard Coating

Most of the applied hard coatings deposition originally started with thermally activated

chemical vapor deposition (CVD), plasma-assisted chemical vapor deposition (PACVD),

and different methods have been developed, including physical vapor deposition (PVD) and

laser-assisted methods such as pulsed laser deposition. The material’s microstructure can

be designed during growth or post-deposition treatments in plasma-assisted vapor-deposited

thin films. The preferable and most used PVD methods for depositing hard coatings include

cathodic arc, magnetron sputtering, pulsed laser deposition, and electron beam evapora-

tion. Magnetron sputtering methods (balanced, radio frequency, reactive, and high-power

impulse) are the most widely used techniques for fabricating hard coatings, among many

PVD methods, on account of the ease of controlling the defects, highly dense, stoichiometry,

microstructure, mechanical properties, uniform structure of the coatings by controlling vari-

ous processing parameters, such as ion energy, substrate bias, substrate temperature, gas

flow rate, ion flux, sputtering power, and partial pressure [11].

1.3 State-of-the-art of Hard Ceramic Nitride Coatings

A wide range of nitride coatings obtained by PVD improves the functional properties of metal

and non-metal materials [12], used in machine- tooling [13] and aerospace industries [14].

The prototype hard coating materials are mono-nitrides such as TiN [15], ZrN [16], CrN [17],

etc. The hardness of such coatings reaches 20–25 GPa [18] and high wear resistance but

relatively low oxidation resistance (up to ∼550–600◦C) [19]. The transition from mono-

nitrides to multicomponent nitrides by adding metals is one of the approaches to improve

oxidation resistance, thermal stability, and mechanical and tribological characteristics [20].

For example, the addition of transition metals, such as Cr or Al or Si or both (e.g., CrAlN [17],

TiAlN [21], TiSiN [22], TiAlSiN [23] or TiAlCrYN [24]), can remarkably improve physical

and mechanical properties of the coatings w.r.t. TiN. Usually, a binary or ternary nitride

of Al and/or transition metals (groups IV-VI of the periodic table) with carefully selected

concentrations of elements are used to ensure optimal performance [20, 25–28]. In this

section, we provide the state-of-the-art and motivation for the three studied classes of nitrides

14



1.3 State-of-the-art of Hard Ceramic Nitride Coatings

as categorized at the end of Sec 1.1.

1.3.1 Solid Lubricant Coatings

Effective lubrication and wear protection at high temperatures and in cyclic environments

are continuing challenges crucial for energy efficiency in turbomachinery, machining tools,

and aerospace applications [29, 30]. Traditional solid lubricant coatings (such as diamond-

like carbons, DLCs [5], or transition metal dichalcogenides (TMDs) [31]) degrade at elevated

temperatures due to their low oxidation resistance. To overcome this shortcoming, self-

lubricant coatings have been developed by combining the intrinsic properties of some binary

or ternary nitride films (CrN, TiN, CrAlN, TiAlN, etc.), that are very hard and resistant

to oxidation with specific elements that diffuse to the surface and formed a low friction tri-

bolayer [5, 30, 32, 33]. Such lubricious films have been deposited in single- or multi-layered

configurations and include metals that diffuse to the surface. Three different compound

families are used as high-temperature solid lubricants: (i) soft metals (Ag, Cu, Au, etc.);

(ii) fluorides (CaF2, BaF2, and CeF3); and (iii) metal oxides (V2O5, Ag2Mo2O7). Vanadium

is very popular since it forms an oxide at the coating surface, which reduces friction, and

it melts at relatively low temperatures (below 700◦C at atmospheric pressure), providing

liquid lubrication. Several studies deal with the tribological properties of vanadium oxide

coatings [34] and nitride coatings containing vanadium as a doping element [35]. In general,

vanadium oxide and the aforementioned compounds reduce friction. However, such improve-

ments are of short duration due to the rapid release of the metal, its quick depletion from

the entire volume of the coating, and the consequent loss of the low-friction tribolayer after

short operating periods [30, 36]. Thus, as many studies have pointed out, the key challenge is

adequately controlling the lubricant transport rate to allow for low friction and wear over the

long term [30]. A promising approach for controlling the diffusion of the lubricant element is

using a diffusion barrier layer. This has been demonstrated in the case of Yttria-stabilized

zirconia (YSZ)–Ag–Mo multilayer composite coatings [37], a Mo2N/MoS2/Ag system [33],

and a CrN–Ag composite coating [38], where a few-nanometers-thick cap barrier layer is

applied on the top of coatings, or as layered structure, to delay the release of the lubricious

agent. Nevertheless, the top cap layer is easier to remove due to its much lower thickness than

the entire base coating. In the case of a multilayer structure, the accumulation of lubricious

metal at the layer interface compromises cohesion and the structural integrity of the coating.

Therefore, controlling the metal out-diffusion is now a major challenge in designing mater-

ials with suitable long-duration wear and friction properties. Moreover, there are several

issues to overcome when considering operating temperatures of 600◦C and higher. For such

a sliding environment, a coating must be hard, though thermally stable and oxidation res-

istive. Moreover, diffusion control through nanostructural diffusion barriers must not hinder

the functional properties of the coating. Nanocomposite (nc) coating with hard nanograins
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embedded into quasi-amorphous tissue (e.g., nc-TiN/SiNx) has successfully combined these

desirable characteristics [39].

To explore the benefits of nanocomposite structure and exploit the high density of inter-

faces as a tool to control the diffusion of vanadium, we need to understand the structure

of interface nc-TiN/SiNx. In particular, the effect of Si content and defects in TiN, the

related change in lattice parameters, and various deposition partial pressures. Also, the

structure and mechanical properties of amorphous (a) SiNx are crucial to understanding the

quasi-amorphous tissue phase in nc-TiN/SiNx. Furthermore, the quantification of vanadium

diffusion rate in TiN and SiN nanocomposite structure on diffusion is relevant to understand-

ing the out-diffusion form vanadium oxide and the tribological properties; the only viable

tools are atomistic simulations.

SiN phases in TiN/SiNx Nanocomposites

Motivated by experimental reports on superhard TiN/SiNx nanocomposites, a number of

works have previously focused on the SiN phases and their impact on these multilayers.

In most previous theoretical works, they consider crystalline phases of SiN with various

stoichiometries (SiN or Si3N4). Alling et al. [40] suggested that the stoichiometric SiN phases

with cubic rock-salt and zinc-blende structures are dynamically unstable but form a basis

for metastable superstructures with stoichiometry Si3N4. Zhang et al. [41] reported that one

monolayer (ML) of SiN sandwiched between B1-TiN(001) is also dynamically unstable, but

lowering its symmetry by local distortions leads to its stabilization. On the contrary, 1 ML of

SiNx sandwiched between B1-TiN(111) was dynamically stable [42, 43]. These interfaces were

reported to have higher cohesion than the corresponding SiNx bulk phases [41, 44], ascribed

to bond strengthening due to the charge transfer caused by so-called Friedel oscillations [45].

The Friedel oscillations effects have also been previously reported in TiN/AlN, TiN/VN,

and VN/AlN multilayers, which were correlated with interface-induced alternating lattice

spacing [46], a phenomenon previously reported for e.g., a VN/MgO interface [44]. Since the

amorphous phases have the lowest symmetry, the stabilization through lowering symmetry

by local distortion can be achieved by the amorphous phase of SiNx. Nevertheless, the

assessment of structural characterization (composition, structure) and mechanical properties

of a-SiNx interlayers interfaced with TiN, as of interest for the current thesis, has never been

done using first-principles methods.

Si-content of Ti(Si)N in TiN/SiNx Nanocomposites

In TiN/SiNx nanocomposites, the face-centered cubic (fcc) B1 TiN phase becomes Ti(Si)N

when embedded in an a-SiNx tissue phase. This TiSiN has been reported to exhibit many

excellent properties [47–52]. In such microstructure, the various research focused on the
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influence of Si content on the different properties. For instance, there is an increase in

oxidation stability with high Si content [53–55]. This stability is attributed to the shielding

of nanocomposite TiN by a-SiNx [53, 55]. Improving thermal stability in TiSiN (up to

∼1300◦C) is also found due to retarded grain coarsening in the presence of a-SiNx[11]. The

hardness value > 40 can be achieved due to the hindering of grain growth and grain boundary

sliding by the a-SiNx [47, 56, 57]. The microstructure and phase composition, with a special

focus on the accommodation of Si in Ti(Si)N coatings and different defects under different

deposition conditions, e.g., different pressure and gas mixtures, are yet to be unraveled.

1.3.2 TiN with Alloying d-elements

The reactive magnetron co-sputtering can be used to synthesize various substitutional cu-

bic B1 (NaCl prototype) solid solution alloys in a definite compositional range, depending

on the alloying element. As we discussed in the previous sections, the refractory TiN is a

pronounced technologically important compound due to its excellent properties (both phys-

ical and chemical). However, as time passed, the alloying trends with different alloying

elements in this compound made this promising for different applications. For example,

as we discussed above the alloying of Si leads to forming of nanocomposite structure and

their properties. Similarly, an alloying element is Al, which has been added to forming the

titanium aluminum nitride (TiAlN) ternary system, which improves the oxidation behavior

of TiN [58]. This alloying trend in TiN has been exploited by choosing different alloying

elements, particularly the TMNs. We will provide a combination of properties exploited in

different applications considering different alloying elements in TiN.

TiMN, M = Sc, Cu, V, Y, Mo, W, Nb, Ta, Zr, Fe, Ni, Ag, Cr coatings

The addition of transition metals, in particular into TiN, can significantly tune the chem-

ical, electrical, and mechanical properties. For example, the B1 structure of TiN has been

added with different alloying elements in various content to exhibit different properties.

Heavy-element (W) alloying shows hardening, ductility, and toughening effects by enhan-

cing metallic bonds and promoting a high valence electron [59–62]. On the other hand, the

microhardness, oxidation resistance, and can be enhanced by the addition of Cr, Zr, and

Ta, Mo, V, Hf, Nb [61–67]. The wide range of compositional and mechanical properties of

thin films of (Ti,Fe)Nx shows that the deformation process of film is influenced by thickness,

substate properties, and mechanical properties [68]. Adhikari et al. [69] investigated that

the alloying of Sc and Y in TiN display increased and weakened hardness. There is a strong

exothermic and endothermic mixing due to lattice similarity in ionic radii and electroneg-

ativities of Ti and Sc and the large lattice mismatch between Ti and Y, respectively. The

composite films alloyed with silver have high bonding strength, better friction lubrication,

and improved toughness than TiN, as shown by greater retting fatigue life [70]. Adding Cu

17



1.3 State-of-the-art of Hard Ceramic Nitride Coatings

in TiN films increases the hardness and significantly improves the wear resistance [71, 72].

The strengthening effect of TiNiN can be attributed to the coherent interface between Ni

interfacial layers and TiN crystallites [73].

1.3.3 Metastable Solid Solutions: VAlN

In the development of the alloying trend, Ti is replaced by V in TiAlN to enhance the thermal

decomposition temperature [74]. Metastable transition metal nitrides with aluminum incor-

poration, e.g., aluminum in titanium nitride [75, 76], chromium and vanadium nitride [76]

evidence outstanding mechanical properties. All these structures are the cubic crystal struc-

ture (B1 structure NaCl prototype), and evidence that the mixture of covalent, ionic, and

metallic bonds in such structure induce the mechanical properties [77]. The enhancement of

elastic properties in Ti0.5Al0.5N and V0.5Al0.5N can be understood by ab initio calculations

with the decrease in metal-nitrogen bond length from 2.13 Å (Ti–N) to 2.06 Å (V–N), re-

spectively, showed by Holec et al. [78]. Another study of V1−xAlxN, with x =0 to 0.75 by

density functional theory, shows the enhancement of the elastic modulus caused by sp3d2

hybridization and formation of covalent between aluminum and nitrogen [79]. The compos-

ition with x = 0 [80] and x = 0.52 [81] with huge changes of elastic modulus of 254 GPa

and 599 GPa, respectively, has been reported experimentally. Other factors such as residual

stress state, impurities, and N-content also affect the elastic properties apart of Al-content

in V1−xAlxN [79]. However, the above elastic properties are measured at room temperature

by experiment or 0 K by ab initio calculations. The metastable solid solution phase must

be maintained at elevated temperatures because the thermal decomposition is possible by

spinodal decomposition [82, 83] or nucleation and growth of wurtzite AlN. This has been

evidenced in (Ti,Al)N with the formation of wurtzite AlN which results in degradation of

mechanical properties [84]. The (V,Al)N spinodal decomposition or formation of wurtzite

AlN still need to be tested at elevated temperature.

1.3.4 High Entropy Nitride Coatings

The concentration of multiple additional metal elements on the metal sublattice leads to

another class of materials in nitrides often known as high-entropy nitride (HEN). The

concept of HEN originally came from alloys which are one of the possible ways to improve

the properties of multicomponent coatings associated with the concept of high-entropy alloys

(HEA). Typically, HEAs are alloys constituting at least five main components; each species

can vary from 5 to 35 at.% [85]. A stable single-phase solid solution can be expected to

form in these alloys, due to the high entropy of mixing (which increases with the number of

elements) [86]. HEAs have a single-phase solid solution structure in only a limited number of

systems [87]. Some HEAs show very good hardness, strength, heat- and corrosion-resistance

18



1.3 State-of-the-art of Hard Ceramic Nitride Coatings

combinations compared to dilute alloys [88–90].

The structure of the HEN coatings can also have single-phase and include properties such

as oxidation resistance [91], thermal stability [92], hardness [93], and wear resistance [94],

which can exceed significantly those of simpler (e.g., binary, ternary) nitride systems [89, 95–

100]. However, it does not guarantee improved properties with increasing the number of

components compared to various binary [101–103] and ternary [55, 104, 105] nitrides. Hence

in this context, the structure of HEN coatings can be more complex than random solid

solutions [106, 107], since factors influencing can have pronounced effects on the structure

and properties of the coatings. These factors are the choice of the constitutive elements

and/or deposition method and process parameters etc. [106–110].

High-entropy, the Four Core-effects, and HEN

The high-entropy class of materials began in 2004 with a material class of HEAs [85, 111].

According to the compositional-based definition, they are characterized by five or more

(upper limit is arbitrarily set to 13) principal elements [85] with their concentrations vary-

ing between 5 and 35 at.% [111]. The random distribution of five or more elements in

(near-)equiatomic composition on the same crystal lattice yields high configurational entropy

Sconfig ≥ 1.5R with R being the universal gas constant. We note that the exact threshold

value of the configurational entropy and its evaluation are subjects of scientific discussions,

e.g., Refs. [112, 113]. This class of alloys exhibits some exceptional properties such as high

hardness [114], high corrosion resistance [115], high-temperature oxidation resistance, or ex-

cellent friction resistance [116]. These are commonly assigned to four core effects [117, 118]

(Fig. 1.1):

• High Configurational Entropy of Mixing: an increase of configurational entropy

compared to the conventional alloys (beneficial for thermal stability),

• Lattice Distortion: distortion of lattice due to the distribution of atoms with differ-

ent radii in the crystal lattice (beneficial for increased strength and slower kinetics),

• Sluggish Diffusion: atoms in HEAs move slower than in the corresponding pure

metals and conventional alloys,

• Cocktail Effect: the properties of which can be achieved only in a mixture (e.g., high

hardness of the system X and high corrosion resistance of system Y results in high

hardness and high corrosion resistance in the system XY system).

The original concept of HEAs was developed for metallic alloys. Recently, this design prin-

ciple has also been applied to ceramic materials [119], with different species (usually metal)
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Figure 1.1: The core effects in HEAs as identified over the years. The relation between
lattice distortion and the sluggish diffusion effect is demonstrated with the red letters.

sitting on one sub-lattice and other sub-lattice filled with O, B, C, and N to form ox-

ides [120, 121], borides [122], carbides [123], nitrides [124, 125] etc. and a mixture of any

two [126, 127]. In these cases, however, the high configurational entropy is restricted to only

one sub-lattice, fulfilling Sconfig ≥ 1.5R only per formula unit [97, 113]. Therefore, Kirnbauer

et al. [128] coined the term high-entropy metal sub-lattice ceramics (HESC). Many of these

materials were also synthesized in the form of thin films. Due to their high hardness and

good thermal stability [112, 124, 126, 129–133], HESCs are being extensively researched for

protective coating applications.

Structure of HEN Coatings

HEN coatings are mostly hinged on interstitial nitrides, a complex combination of covalent

(nitrides of Al and Si [134]) and metallic bonds, of groups IV–VI metals [135]. Unless the

metal with a low tendency for formation nitrides (i.e., Mn, Fe, Co, Ni, Cu show poor mechan-

ical properties and a tendency to form an amorphous or bcc structure [136–139]), transition

metals of groups IV–VI in the coatings contribute higher strength of the metal–nitrogen

bonds, a tendency to form a crystal structure of the NaCl type and high hardness. In multi-

component coatings, both Al and Si stimulate the formation of additional phases with an

hcp [140] or amorphous [141] structure, despite forming strong covalent bonds with nitro-

gen [135].

Matenoglou et al. [62] calculated the structure, stability, and electronic properties of a very

wide range of ternary nitrides of the form TaxM1−xN and TixM1−xN (M =Ti, Zr, Hf, Nb, Ta,

Mo, W). The configurations of valence electrons significantly affect the bond with nitrogen
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in these ternary compounds despite the similar crystal structure. This also applied to the

charge density, Ti50Zr50N exhibits metal-like features, as in TiN or ZrN, while a directional

bond between Ti and Ta atoms rather characterizes Ti50Ta50N, suggesting covalent bonds

and higher material hardness. In this work, a stronger covalent bonding is suggested by

incorporating Ta in Ti1−xTaxN and Ta1−xZrxN because of the shift of the bonding state

region away from the Fermi level, which results in significantly higher bulk modulus of

TaN in comparison with TiN or ZrN [142]. Contrary to interstitial nitrides, the atomic

size between nitrogen and another element in covalent nitrides is small, the difference in

electronegativity, and their bond is essentially covalent [135]. These parameters are very

much responsible for the determination of the structure of HEN.

Commonly, the fcc nitrides of groups IV–V transition metals form an octahedron cavity (i.e.,

M6N) with a nitrogen atom in the center [143]. The change in the value of the ratio of the

radii of nitrogen and metal atoms (i.e., rN/rM) decides the stability of the octahedron, as

this value result in transformation into trigonal prismatic group M6N. The fcc structure of

nitrides systematically destabilizes with an increase in the group number or with an increase

in the periodic number within the group, in the case of structural elements other than the

M6N octahedron formation. For example, group IV nitrides (TiN, ZrN, and HfN), group V

all three metals (V, Nb, Ta) form a NaCl-type structure. However, fcc nitrides gradually

become less stable for group VI (Cr, Mo, W).

The NaCl-type phase with a disordered metal fcc sublattice is predominantly formed [119]

in the case of multicomponent nitride coatings. In HEN coatings, adding to the metal

sublattice of various metallic elements with different atomic radii and electronic structures

causes local distortions in lattices, the same as that of HEAs [144], and influences mechanical

properties. Furthermore, the local lattice distortions lead to the retardation of the kinetics

in such materials, and it is necessary to establish a correlation between them.

1.4 Outline

In the following section, we will briefly outline the topics of the present thesis. The material

properties are estimated by implementing three major computational techniques, i.e., density

functional theory (DFT), molecular dynamics (MD), and machine learning. We use 0K

diffusion migration energy barriers in almost all chapters to explain different mass transport-

related phenomena in the proposed material systems. Apart from that, we also calculated

finite temperature properties using phonons, elastic, and structural properties. Hence, the

thesis is divided into four parts, composed of several chapters.

In the first part, we assigned two chapters, Chapters 2 and 3, to describe the underlying

theory and methodology for calculating the properties of the proposed materials systems,
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respectively. In most of our results chapter, we quantified the energy related to diffusion and

defect. Therefore, we start the discussion with the theory of quantifying defects, diffusion,

and elastic constants. We estimated the free energy to estimate the temperature-dependent

diffusion parameters (Q(T ), D0(T )). To achieve the desired temperature by phonon for such

calculations, we also discussed the procedure of lattice dynamics followed by the quasi-

harmonic approximation (QHA). In Chapter 3, we discussed the principal theories of the

used computational state-of-art of the DFT, the MD, and machine-learning interatomic

potentials (MLIPs).

The second part of the thesis, which is the start of the results chapters, tackles the properties

of TiN/a-Si3N4 nanocomposites by attributing it to the solid lubricant coatings class with va-

nadium (V) as a possible lubricant. The knowledge of the diffusion rate of V is crucial for this

application condition, as described above. Hence, Chapter 4 starts with quantifying V diffu-

sion in a single crystal model of B1-TiN. Within the scope of this chapter, we use the DFT

to evaluate defects (point defects and grain boundaries) and diffusion using 0K, and various

finite temperature thermodynamic quantities using phonon calculations. In Chapter 5, we

use the DFT calculations to shed some light on the effect of deposition parameter on change

in lattice parameter in the formation of Ti1−xSixN solid solution. The quantities used for

the argumentation are lattice parameter, enthalpy of formation, vacancy formation energy,

and diffusion migration barrier using 0K calculations. Chapter 6 continues with the struc-

tural, elastic, and diffusion properties of a-Si3N4. The DFT is not representative enough

(w.r.t. real materials) for amorphous materials due to the system size limitations. Hence,

we trained an machine learning interatomic potential (MLIP) using a moment tensor poten-

tial (MTP) [145] method to simulate the above properties by Large-scale Atomic/Molecular

Massively Parallel Simulator (LAMMPS) [146].

In the third part of the thesis, Chapter 7, we extend the calculation of diffusion-related

energies with various impurities in TiN by the 0K DFT. We created a database of the

energetics such as impurity formation energies, solubilities, vacancy-impurity binding en-

ergies, diffusion migration barriers of impurity, and activation energy for B1-TiN. We use

Crystal Orbital Hamiltonian Population (COHP) to show that the diffusion process can be

significantly altered by the d-states of d-impurity in the B1 type of structure.

The fourth and last part of the thesis consists of two chapters (Chapters 8 and 9) and deals

with the so-called “envelope method” to study the diffusion in the crystalline solid solution

and multi-component systems with B1 structure. In Chapter 8, we use this method to

discuss the diffusion behavior to elaborate experimentally observed thermal decompositions

in V1−xAlxN. Finally, we use this method to demystify the correlation of sluggish diffusion

and lattice distortion in HEN in Chapter 9.
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Chapter 2

Theoretical Background

This chapter is devoted to the theories behind all the calculations, such as defects, diffusion,

elastic constants, and phonon and thermodynamics quantities. We describe in detail the

methods used to calculate the properties of materials in this thesis.

2.1 Defects

Thermodynamic defects in materials are inevitable, and they form due to processes that are

beyond 0 K, i.e., the finite non-zero temperature of the lattice. In alloys and ceramics, the

defect content is a deciding factor for properties such as mechanical properties, control of the

kinetics (diffusion mechanisms) in materials, thermal and electrical conductivity, influence

on microstructure, etc. This thesis only looks at two kinds of defects, i.e., point defects and

grain boundaries (as plannar defects).

2.1.1 Point Defects

Lattice vacancies are present in all structures, such as fcc, hcp, bcc, diamond structure,

etc., in different concentrations depending on many parameters, including the type of the

alloy and/or constituting species. The theory of point defect concentration emerges purely

from statistical mechanics consideration. According to the Gibbs phase rule in equilibrium

statistical mechanics, temperature and pressure are adequate to determine all macroscopic

thermodynamic properties of a single component system [147, 148]. By using the constant

pressure ensemble (introduction of point defects alters the volume), the defect concentra-

tion formulae can be derived by means of statistical mechanics. Hence, defect concentration

formulae are typically expressed with reference to the Gibbs free energy for which temper-

ature and pressure are the thermodynamic independent variables [148]. Formulating defect

concentration formulae will be easy, starting from the simplest cases. Hence, treating the
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monoatomic system is considered first, followed by a dilute substitutional binary alloy and

the influence of impurities on defect concentrations.

Vacancy in Pure Metals

Let us consider an ensemble with i indexing the states of a crystal having the same number

of N identical atoms. The probability that a crystal exists in a state with certain values of

Vi, Nv, and Ej, considering each crystal can have any volume Vi and any number of vacancies

Nv and can exist in any states with energy Ej (with constant pressure P ), is given as [148]

f(Nv, Ej, Vi) =
1

Zp

w(Nv)Ω(Nv, Ej, Vi)e
(Ej+PVi)/kBT , (2.1)

where Zp = e−G/kBT is the partition function, G being the Gibbs free energy of the system,

and w(Nv)Ω(Nv, Ej, Vi) is the degeneracy of the system with a set of macrostates (Nv, Ej, Vi)

for the crystal. Here, w(Nv) is the number of ways to distribute N atoms and Nv vacancies

over (N + Nv) lattice sites. The configurational entropy of statistical mechanics is a con-

sequence of the atomic distribution factor, w(Nv), via Boltzmann’s formula, S = kB lnw(Nv).

The remaining term, Ω(Nv, Ej, Vi), is the degeneracy of the crystal system with Nv vacancies

without the contribution of configurational entropy, S. Therefore, Ω in Eq. (2.1) does not

depend on the distribution of the vacancies over the lattice; rather, it only depends on the

number of vacancies for a given volume and energy. Hence, the probability of having Nv

vacancies in a crystal can be achieved by taking a summation over all energies and volumes

in Eq. (2.1),

f(Nv) =
1

Zp

w(Nv)
∑︂

Ej ,Vi

Ω(Nv, Ej, Vi)e
(Ej+PVi)/kBT . (2.2)

In such a case, the distance between vacancies is independent of the energy and volume,

assuming all lattice sites are equivalent. Let us introduce the free energy G{Nv} by

e−G{Nv}/kBT =
∑︂

Ej ,Vi

Ω(Nv, Ej, Vi)e
(Ej+PVi)/kBT . (2.3)

The free energy defined in Eq. (2.3) does not include the configurational entropy term arising

from the configurational statistical count w(Nv). This fact is identified by braces for the

argument of this free energy. By inserting Eq. (2.3) into Eq. (2.2) yields,

f(Nv) =
1

Zp

w(Nv)e
−G{Nv}/kBT . (2.4)

Now performing summation over all values of Nv, Eq. (2.4) has the form with free-energy,

e−G/kBT =
∑︁

Nv
w(Nv)e

−G{Nv}/kBT , where G and G{Nv} are the total Gibbs free energy

and Gibbs free energy of crystal with Nv vacancies, respectively. One should note that the

configurational contribution of the vacancies has not been considered yet.
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The most probable value of Eq. (2.4), will provide the equilibrium value of Nv, from which

the following condition can be obtained

[︃
∂ ln f(Nv)

∂Nv

]︃

Nv=Nv

= 0, (2.5)

where N v is the equilibrium number of vacancies. Now applying the condition of Eq. (2.5)

to Eq. (2.2) and using Eq. (2.3) the relation is the following,

[︃
∂ lnw(Nv)

∂Nv

]︃

Nv=Nv

=
1

kBT

[︃
∂G{Nv}
∂Nv

]︃

Nv=Nv

. (2.6)

However, one should be aware that the amount of atoms is constant during the above differ-

entiation. Thus, vacancies can be formed by moving atoms to the crystal surface from the

bulk lattice sites. In Eq. (2.6), free energy is increased on the right-hand side by adding a

single vacancy to the crystal; however, this does not include the contribution from configur-

ational entropy. Hence, this is defined as the vacancy formation free energy, Gv
f ,

Gv
f =

(︃
∂G{Nv}
∂Nv

)︃

Nv=Nv

. (2.7)

Again the quantity w(Nv) in Eq. (2.6) is the combination of ways that N atoms and Nv

vacancies can be distributed among the (N +Nv) lattice sites, given as

w(Nv) =
(N +Nv)!

N !Nv!
. (2.8)

By taking logarithm on both sides, using the Stirling formula lnx! ≈ x lnx, and differenti-

ating both sides, then inserting ∂ lnω(Nv)/∂Nv and Eq. (2.7) into Eq. (2.6), one obtains the

expression for the vacancy concentrations, Cv,

Cv =
N v

N +N v

= e−Gv
f/kBT . (2.9)

The vacancy concentration varies and increases with T , i.e., via a Boltzmann factor of the

vacancy formation free energy. In this equation, N v can be neglected in the denominator

because the number of occupied sites in a lattice is much larger than vacant sites. This results

from Gv
f , which is generally much larger than kBT , even close to the melting temperature.

Now, adding the configurational entropy contribution of the vacancies to the configuration-

less Gibbs free energy G{Nv} (formulated before), the total Gibbs free energy of a crystal,

G(Nv), can be written as G(Nv) = G{Nv} − kBT lnω(Nv). Then, one can obtain the

equilibrium concentration of vacancies by ∂G(Nv)/∂Nv. We note that this is an analogous

situation to the previously discussed scenario, that amount of atoms is kept constant in the

crystal, and atoms get transferred to the surface upon the formation of vacancies. The defect
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concentration for other types of point defects such as divacancies, self-interstitials, etc., can

be formulated by generalizing the expression G(Nv) = G{Nv}− kBT lnω(Nv), and it can be

generalized as [148],

Cx = ge
−

Gx
f

kBT , (2.10)

where Gx
f is the formation Gibbs free energy of a defect x and g is the factor that depends

upon the crystal’s geometry and accounts for the number of equivalent defect configurations.

Vacancies in Dilute Substitutional Binary Alloy

A dilute binary alloy is defined as the number of atoms X is much larger than the number

of atoms Y for an alloy of species X and Y. Hence, X is the solvent or matrix atoms, and

Y is the impurity or solute atoms. In a substitutional alloy, atoms X and Y and vacancies

occupy the same lattice sites.

An alloy’s vacancy formation Gibbs free energy differs from the pure solvent; hence, impurity

modifies vacancy energetics. Formulating the vacancy formation Gibbs free energy in a pure

solvent, Gv
f (X), from the one close to the impurity atom, Gv

f (Y), is possible by considering

impurity-vacancy interaction only in the first coordination sphere. The impurity-vacancy

Gibbs free binding energy, Gbind, can be introduced as:

Gbind ≡ Gv
f (X)−Gv

f (Y). (2.11)

If the sign of Gbind is negative, there is an attractive interaction between the vacancy and the

impurity, while the interaction is repulsive for the positive impurity-vacancy binding energy,

Gbind. Then, the total vacancy concentration in a dilute substitutional binary alloy, Ctot
v ,

can be written as [149],

Ctot
v = exp

(︃
−
Gv

f (X)

kBT

)︃[︃
1− ZCY + ZCYe

−Gbind
kBT

]︃
, (2.12)

where Z is the coordination number and CY is the solute fraction. The first factor in

Eq. (2.12) represents the equilibrium vacancy concentration in the pure solvent. The second

factor in square brackets decides the attractive/repulsive impurity-vacancy interaction de-

pending upon its value larger/smaller than the unity, and thus, the total vacancy content

in the alloy is higher/lower than in the pure solvent. Hence, the probability of finding a

vacancy in the vicinity of an impurity atom can be defined as

p = Cvexp

(︃
−Gbind

kBT

)︃
. (2.13)

This formulation is extremely interesting for studying the vacancy mechanism of impurity

diffusion.
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2.1 Defects

Point Defects in Non-dilute Alloys

The binary alloy is called non-dilute when the number of atoms Y is comparable to that

of matrix X. The vacancy concentration derived in Eq. (2.12) is invalid in such a case, and

one needs to formulate an alternative approach. The dilute solution model (DSM) [150, 151]

approach, based on the statistical mechanics formalism of low-temperature expansion [152]

with the grand-canonical ensemble, can serve the purpose. The formulation of DSM only

applies to the dilute concentration of defects [150]. Both alloy composition and temper-

ature can be considered input in this formalism to calculate the equilibrium point defect

concentration.

Consider a crystalline compound of N lattice sites, with Ni being the number of sites occu-

pied by a chemical species i, and Ni =
∑︁

p ci(p) of the site–occupation numbers ci(p) over

lattice sites p. If the lattice site p is occupied by species i, then ci(p) = 1 and ci(p) = 0

otherwise. The thermodynamic potential for a grand-canonical ensemble, Ω(µi, T, V,N),

with temperature, T , volume, V , chemical potential, µi of species i, and a grand canonical

partition function Z can be defined as:

Ω = −kBT lnZ, (2.14)

with Z

Z =
∑︂

σ

exp

[︄
−
(︄
Eσ −

∑︂

i

µiN
σ
i

)︄
/kBT

]︄
. (2.15)

All possible orderings σ of atoms over N -lattice sites have been summed, where energy and

number of sites occupied by species i is denoted as Eσ and Nσ
i , respectively, for configuration

σ. By putting Eq. (2.15) in Eq. (2.14) and using a Taylor series expansion for the logarithm,

we obtain

Ω =

(︄
E0 −

∑︂

i

µi

∑︂

p

c0i (p)

)︄
− kBT

∑︂

p

∑︂

ϵ

exp

[︄
−
(︄
δEϵ(p)−

∑︂

i

µiδc
ϵ
i(p)

)︄
/kBT

]︄
.

(2.16)

Here, E0 and c0i (p) refer to the energy and composition of species i at site p of the ground

state configuration. In the second term of the above equation, the summation is over different

possible changes, ϵ, of chemical identity at a given lattice site p. The change in energy and

site compositions w.r.t. the ground state configuration due to the change, ϵ, at site p in

Eq. (2.16) are by the variable δEϵ(p) and δcϵi(p). Thus, δEϵ(p) = Eσ − E0 for a change at

the site p. Nσ
i =

∑︁
p c

σ
i (p) as given above, and then δcϵi(p) = cσ(p)i − c0i (p) for a species

i at the site p, with a value of 0, −1, and +1 depending upon the species was unchanged

or removed or added, respectively. Hence, (δEϵ(p) −∑︁i µiδc
ϵ
i(p)) is the defect formation

energy, and this sum runs over all kinds of defects, and all sites to consider for the changes

upon a defect is introduced.
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2.1 Defects

On the lattice site p, the average concentration of species i, ⟨ci(p)⟩, can be formulated by

Eq. (2.16):

⟨ci(p)⟩ =
∂Ω

∂µi(p)
= c0i (p) +

∑︂

ϵ

δcϵi(p)exp

[︄
−
(︄
δEϵ(p)−

∑︂

j

µjδc
ϵ
j(p)

)︄
/kBT

]︄
. (2.17)

This formulation is the defect concentration with reference to the chemical potentials. The

chemical potential values at a given temperature are fixed by specifying the n − 1 relative

compositions Ni/Nj (with j being different species than i, e.g., a different sublattice) for an

alloy with n chemical species (excluding vacancies). Also, there is an additional requirement

arising from conditions for point defect equilibrium: Ω should vanish at zero pressure. From

these n constraints, the chemical potentials at a given alloy composition and temperature

are determined. Thus, the sublattice concentrations of point defects can be computed from

Eq. (2.17).

The formulation in Eq. (2.17) is mostly expected to be precise for defects with dilute con-

centrations (≤ 1%), considering only first-order terms in the expansion of the logarithm

when deriving Eq. (2.16). The higher terms beyond the first-order expansion of Ω must be

considered for further interaction between defects for higher concentrations [153].

2.1.2 Grain Boundary

The grain boundaries are inherent defects and one of the prime constituents of the micro-

structure. Hence, their density, structure, and character are crucial for determining their

impact on the corresponding microstructure’s physical, chemical, and mechanical properties.

Significant enhancement of material properties as a ramification of optimum grain bound-

ary structure has uncovered a new vista in materials design. The geometry of the grain

boundary can be described by five rotational degrees of freedom in the continuum length

scale of a grain (crystallite). Among five, three degrees of freedom are considered for the

relative misorientation between the two grains, and the remaining two are considered for the

direction of the grain boundary plane normal [154].

Orientation Matrix

Let us consider the two sides of the grain boundary with two different crystallites, A and

B. The misorientation of two crystallites in the above case can be identified in several ways.

The three rotational degrees of freedom with angular variables ψ, θ, and ϕ can uniquely

define the rotation from crystal A to B. The convenient way of specifying this rotation is via

a 3× 3 orientation matrix.
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2.2 Diffusion in Solids and Atomistic Picture

The orientation matrix is the dot product between the axes of two coordinate systems, with

one coordinate system fixed on crystal A and the other one on B, and is given as [154]

GBAB =

⎡
⎢⎣
(ex̂.ex′ˆ ) (ex̂.ey′ˆ ) (ex̂.ez′ˆ )

(eŷ.ex′ˆ ) (eŷ.ey′ˆ ) (eŷ.ez′ˆ )

(eẑ.ex′ˆ ) (eẑ.ey′ˆ ) (eẑ.ez′ˆ )

⎤
⎥⎦ (2.18)

where ex̂, eŷ, and eẑ are the unit vectors along the [100], [010], and [001] directions of crystal

A, respectively. The coordinate system with unit vectors ex′ˆ , ey′ˆ , and ez′ˆ are fixed on the

crystal B along the [100], [010], and [001] directions after the rotation, respectively.

Coincidence Site Lattice (CSL) and Σ number

Among various grain boundaries, one particular type of special grain boundaries is called

coincidence site lattice (CSL) grain boundary, which is one of the topics treated in this thesis.

When a finite fraction of atomic lattice sites of one grain coincides with another, these special

atomic sites are called coincidence sites. These extended periodically all around the whole

superposition of the two grain lattices and create a supercell known as CSL [155, 156]. The

CSL grain boundaries contain a high density of lattice points, and they are accepted as

low energy compared to the random grain boundaries because of good atomic fit [157–160].

A rotation can link the misorientation of the two grains, which can be characterized by

the rotation angle of the orientation matrix given in Eq. (2.18). In the CSL theory, the

grain boundary geometry is characterized by an integer, Σ, which is known as coincidence

index [161],

Σ =
coincidence unit cell volume

conventional unit cell volume
=

1

ρ
(2.19)

where ρ is the density of common nodes between two grains in the formulation of the CSL

lattice. For a cubic crystal, the indices Σ are always odd, and their relation to the rotation

angle θ and ⟨uvw⟩ is given as [161]

tan

(︃
θ

2

)︃
=
m

n
(u2 + v2 + w2)1/2 (2.20)

with

Σ = [n2 +m2(u2 + v2 + w2)2]α (2.21)

where α = 1, 2, 3 and m,n are positive integers. This thesis treats only the Σ5 grain bound-

aries, where θ = 36.9◦.

2.2 Diffusion in Solids and Atomistic Picture

The thermal motion/transport of atoms and molecules from one point to another is known

as diffusion. Diffusion takes a key role in various processes such as the evaporation of
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liquids, intermixing of liquids and gases, permeation of molecules or atoms across membranes,

transport of thermal neutrons in nuclear power reactors, and silicon wafers doping to produce

semiconductor devices. It is usually fast in gases, slow in liquids, and very slow in solids.

One possible limiting factor for how fast chemical reactions proceed is diffusion, which can

bring reactants together or deliver them to reaction sites on other catalysts or enzymes, etc.

Diffusion in solids is a fundamental topic of solid-state physics, materials science, physical

metallurgy, and physical chemistry. Diffusion and related processes are necessary for mater-

ials’ preparations and their kinetics of microstructural changes, processing, heat treatment,

etc. Typical examples are diffusive phase transformations, precipitation, nucleation of new

phases, dissolution of a second phase, homogenization of alloys, high-temperature creep, re-

crystallization, and thermal oxidation. One can compare closely the diffusion and electrical

conduction in ionic conductors. The phenomena such as doping during solid electrolytes

for batteries, the fabrication of microelectronic devices, fuel cells, diffusion bonding, surface

hardening of steel through carburization or nitridation, and sintering are direct technological

applications of diffusion.

The significant diffusion in solids mainly occurs at temperatures well above room temper-

ature. Hence, the design of materials for elevated temperatures, operation, and machining

processes at such temperatures, requires the knowledge of diffusion. The information on the

positions and movement of atoms in solids is important for studying diffusion. One of the

many important factors, the defects, mostly mediate the atomic mechanisms of diffusion in

crystalline solids. The simplest point defects such as vacancies or interstitials often medi-

ate crystal diffusion. Among other defects such as free surfaces, (some) phase boundaries,

grain boundaries, and dislocations also mediate diffusion in crystals; they serve as diffusion

highways or high diffusion pathways due to atoms’ faster mobility than point defects in the

lattice. The defect concept is no longer useful in materials such as glasses or crystals with

highly disordered sublattices, i.e., particularly solids with structural disorders. Neverthe-

less, diffusion is fundamental for matter transport and ionic conduction also in disordered

materials. Here we provide a general description of the diffusion.

2.3 The Equations Governing Diffusion

The diffusion processes are described by Fick’s laws [162] first introduced by Adolf Fick in

1855. Fick’s laws portrayed a continuum description and were first posited based on largely

experiment results. Fick’s first law (generalized in three dimensions) for an isotropic medium

is defined as

JJJ = −D∇∇∇C (2.22)
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2.4 Diffusion Jump as a Random Walk

Here the gradient vector, ∇∇∇, by operating the concentration field C(x, y, z, t) gives the

concentration-gradient field, ∇∇∇C, which is directed opposite to the vector of the diffusion

flux JJJ . They are related through a proportionality coefficient, D, the so-called diffusivity or

diffusion coefficient of the considered species. In the usual scenario, the number of diffusing

particles during the diffusion process is conserved, and the continuity equation for a diffusing

species that obeys this conservation law of equation of continuity can be written as [149]:

−∇∇∇ · JJJ =
∂C

∂t
(2.23)

By combining Eqs. (2.22) and (2.23), the Fick’s second law can be formulated as

∂C

∂t
=∇∇∇ · (D∇∇∇C) , (2.24)

and is called the diffusion equation. In the case of diffusion in the ideal solid, the diffusivity

is independent of the concentration, and Eq. (2.24) simplifies to

∂C

∂t
= D∆C. (2.25)

This equation is also called the linear diffusion equation. The diffusion equation of this form

is a linear second-order partial differential equation, and its solution provides the spatial and

temporal distribution of the concentration [163]. The diffusion coefficient can be estimated

by solving the Eq. (2.25) with experimentally measured concentration [164]. Arrhenius

relation accounted for the temperature dependence of the diffusion coefficient as measured

by experiment:

D = D0e
− Q

kBT , (2.26)

where D0 is known as the pre-exponential factor and Q is the activation energy, supposed to

be independent of temperature. Plotting the experimental dependence D(T ) in the coordin-

ates ln (D) vs. 1/T , one obtains D0 and Q. D0 and Q are very important in describing the

properties quantitatively influenced by diffusion, such as the atomic transport, ionic con-

ductivity, etc., of the materials. The diffusion in a lattice of crystalline solids occurs through

atomic jumps, considering that most solids exist in the crystalline phase. The macroscopic

diffusion process results from the succession of steps in the elementary jump between neigh-

boring lattice sites separated by time scales of diffusion species between neighboring lattice

sites. Diffusion in solids results from many individual displacements (jumps) of the diffusing

species, including single-atom jumps, usually in the order of the lattice parameter. A deeper

physical understanding of diffusion jumps in solids can be explained based on the random

walk theory of diffusion.

2.4 Diffusion Jump as a Random Walk

The equations in Sec. 2.3 do not provide any information about the discrete nature of

diffusion or jump process, despite its practical importance. However, the random microscopic
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2.4 Diffusion Jump as a Random Walk

discrete jump of atomic motion in the lattice can be described through Einstein’s theory of

Brownian motion, and the diffusion coefficient can be estimated [165, 166]. According to

Einstein’s theory, let us consider the motion of a single particle among N diffusing particles

at position x moving along yz-plane. An x-coordinate of a single particle changes by δ, i.e.,

either increase or decrease of δ, in a time interval τ . If ϕ(δ) the probability distribution that

a particle displacement lies between δ and δ + dδ in a time interval τ then the number of

particles, dN , can be given as

dN = Nϕ(δ)dδ (2.27)

where ∫︂ +∞

−∞
ϕ(δ)dδ = 1, (2.28)

and

ϕ(δ) = ϕ(−δ), (2.29)

With Eq. (2.29), ϕ fulfills the requirement that the particle can shift to both “left” or “right”

(of yz-plane here). Let ρ be the number of diffusing particles per unit volume, which is only

the function of x and t. If we consider the balance for the diffusing particles, i.e., ρ, then ρ

located in the plane at x at time t+ τ were located in the planes at x+ δ at time t. Thus,

one can write,

ρ(x, t+ τ) =
∑︂

δ

ρ(x+ δ, t)ϕ(δ), (2.30)

where the summation must be carried over all values of δ. If the δ is infinitely small, then

the above equation can be written as,

ρ(x, t+ τ) =

∫︂ +∞

−∞
ρ(x+ δ, t)ϕ(δ)dδ. (2.31)

The rate at which the number of diffusing particles per unit volume (ρ(x, t)) is changing can

be found by expanding ρ(x, t + τ), and ρ(x + δ, t) around the change in position (δ) and

change in time (τ) by the Taylor series. Now Eq. (2.31) can be written as

ρ(x, t) + τ
∂ρ(x, t)

∂t
+ .... =

∫︂ +∞

−∞

[︃
ρ(x, t) + δ

∂ρ(x, t)

∂x
+
δ2

2

∂2ρ(x, t)

∂x2
+ .....

]︃
ϕ(δ)dδ. (2.32)

The above equation’s first line neglects the higher terms on the left-hand side because τ is

extremely small. Again, the distribution function, ϕ(x), becomes more and more localized

around x = 0 (considering the choice of origin is independent) when τ is small. Hence, for

small τ , the higher-order terms on the right-hand side can also be neglected. Then Eq. (2.32)

becomes,

ρ(x, t) + τ
∂ρ(x, t)

∂t
= ρ(x, t)

∫︂ +∞

−∞
ϕ(δ)dδ +

∂ρ(x, t)

∂x

∫︂ +∞

−∞
δϕ(δ)dδ

+
∂2ρ(x, t)

∂x2

∫︂ +∞

−∞

δ2

2
ϕ(δ)dδ.

(2.33)

32



2.4 Diffusion Jump as a Random Walk

Again, the first term on the right-hand is unity (c.f. Eq. (2.28)) and cancels with the first

term on the left-hand side. Furthermore, the second term on the right-hand side vanishes

through the condition in Eq. (2.29). Hence, only the third term on the right-hand side of

the Eq. (2.33) and by denoting

D =
1

τ

∫︂ +∞

−∞

δ2

2
ϕ(δ)dδ (2.34)

Eq. (2.33) transforms to,
∂ρ

∂t
= D

∂2ρ

∂x2
. (2.35)

This differential equation is equivalent to Eq. (2.25) if considered in one dimension and

considering D as a diffusion coefficient. By the initial condition, at t = 0, for N particles at

x = 0 moving mutually independent, the solution of the diffusion equation is given by

ρ(x, t) =
N√
4πDt

e−
x2

4Dt . (2.36)

From the solution of the above diffusion equation, the mean squared displacement (MSD)

in one direction can be evaluated as

⟨︁
x2
⟩︁
= 2Dt.. (2.37)

An expansion to three dimensions for an isotropic medium can be written as,

⟨︁
x2
⟩︁
=
⟨︁
y2
⟩︁
=
⟨︁
z2
⟩︁
=

1

3
R2, (2.38)

where RRR is the total displacement vector of a particle. Thereby, Eq. (2.37) can be written

as,

D =
⟨R2⟩
6t

(2.39)

This relation and Eq. (2.37) is popularly known as Einstein’s relation, and both allow eval-

uating the diffusion coefficient of the particle if the MSD of the system is known.

Let us project the above formulation of total displacement, RRR, on a scenario where a particle

is moving randomly on a lattice, as shown in Fig. 2.1, which consists of a series of many

individual nearest-neighbor jumps of distinct length d. The probability of each distinct

jump has a probability 1
Z
, given by the coordination number of the lattice, Z. According to

Fig. 2.1, the total displacement, RRR, of an individual particle in a sequence of n jumps, is

RRR =
n∑︂

i=1

ri, (2.40)

where rrri are individual jump vectors. Then, the square of the total displacement is

R2 =
n∑︂

i=1

r2i + 2
n−1∑︂

i=1

n∑︂

j=i+1

ri · rj, (2.41)
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1

2

3

n− 1

n

RRR =
∑n

i=1 rrri

Figure 2.1: Schematic illustration for a random walk of a particle on a lattice

and averaging the total displacement over an ensemble gives,

⟨︁
R2
⟩︁
=

n∑︂

i=1

⟨︁
r2i
⟩︁
+ 2

n−1∑︂

i=1

n∑︂

j=i+1

⟨ri · rj⟩ , (2.42)

The above equation contains an average of the individual jump lengths (first term on the

right-hand side) plus the averages between ith-jump and all subsequent jth-jumps (second

term on the right-hand side) of diffusing particle. The second term vanishes if each sub-

sequent jump is completely independent of all previous jumps because statistically, there

will be two pairs of rrri ·rrrj always equal and opposite in sign in the ensemble [167]. This kind

of jump sequence is an uncorrelated random walk or a Markov sequence. Hence Eq. (2.42)

shrinks to
⟨︁
R2
⟩︁
=

n∑︂

i=1

⟨︁
r2i
⟩︁
, (2.43)

Again, putting additional constraints, i.e., only particular jump vectors can be included in a

lattice, where jumps can only take place to the nearest neighbors, Eq. (2.43) reduces further

to ⟨︁
R2
⟩︁
= ⟨n⟩ d2, (2.44)

where ⟨n⟩ is the average number of particle jumps. By inserting the Eq. (2.44) into Eq. (2.39),

the diffusion coefficient can be formulated as

D =
⟨n⟩ d2
6t

. (2.45)
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2.5 Diffusion Jump as a Migration Over an Energy Barrier

We can bring in the quantity Γ, which is designated as the jump rate and is defined as

the average number of jumps performed by a particle per unit of time into one of its Z

neighboring sites,

Γ ≡ ⟨n⟩
Zt

. (2.46)

By putting this in Eq. (2.45), the diffusion coefficient derived with the random walk model

is given as

D =
1

6
d2ZΓ. (2.47)

There are cases of diffusion mechanism in which the jump of diffusion particle is not com-

pletely independent but carries a memory of previous jump(s), e.g., a vacancy-mediated

mechanism of diffusion, which we will discuss in detail in Sec. 2.6.2. Then, the double sum-

mation in Eq. (2.42) does not vanish due to vacancy, and the vacancy controls the successive

jump in the reverse direction. This reverse jump effect can be accounted for by introducing

the correlation factor, f [168],

f ≡ D

Drandom

, (2.48)

whereD is the diffusivity from correlated diffusion, whileDrandom is the hypothetical diffusion

coefficient from uncorrelated jump sequences. Using Eq. (2.47), the generalized expression

of the diffusion coefficient reads:

D =
1

6
fd2ZΓ. (2.49)

Herein, f = 1 for uncorrelated diffusion and f < 1 for the correlated process. The exact

value of the correlation factor depends on the crystal structure and the diffusion mechanism.

The calculation of this parameter will be discussed in more detail in Sec. 2.6.2.

2.5 Diffusion Jump as a Migration Over an Energy Barrier

To estimate the diffusion coefficient by the random walk model in Eq. (2.49), it is essential

to know the jump rates in which atomic jumps occur. This can be realized by the theory

of absolute reaction rates, originally derived for calculating chemical reaction rates [169].

According to this theory, the system, while moving on a potential energy surface (PES) along

the reaction coordinates from an initial state (IS) to a final state (FS), should overcome

some critical configuration at which the probability of reaching the final state is certain.

This critical configuration between the IS and FS is called a transition state (TS) or an

activated complex and refers to a saddle point on the PES. According to the assumption

of this theory, a special type of equilibrium reaches at any time between the IS and the TS

configurations [170].

This idea was adopted by Wert and Zener [172, 173] to estimate the jump rate in the case of

diffusion of a single atom in a crystal. As demonstrated in Fig. 2.2, consider an atomic species
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x0 x′ x1

∆E

Figure 2.2: Atom migration in a crystalline solid from the initial configuration (at left )to the
final configuration (at right) passing through the transition state configuration (at middle-
top). The red circles illustrate the change in atomic configuration during migration, while the
curve shows the corresponding change in the free energy of the system [171]. For simplicity,
both E(x0) and E(x1) have been shown as equivalent, which is not always true in practice.

going through a jump in a lattice of a crystalline solid in the x-direction, from configuration

IS assigned the coordinate as x0 to the FS as x1 passing through configuration TS as x′. If

the atomic species have three vibrational degrees of freedom in the IS and FS, then TS has

two degrees of freedom in the plane perpendicular to the jump direction. Let us consider

the potential energy of the system with the interaction of jumping species with other species

in the crystal is ϕ(x, y, z, qi), which depends on the position of the jumping species (x, y, z)

and the positions of other species (q1, q2, q3, ...). Let N be the number of particles in the

configuration x0 and with linear density n (number of particles per unit length). If ⟨vx⟩ is the
mean velocity of all species at x′ crossing TS while the system is changing from configuration

x0 to x1, then the (jump) rate, Γ, at which the species cross (jump) x′ can be represented

as

Γ = αn′ ⟨vx⟩ , (2.50)

where n′ is the linear density species at x′, and α is the transmission coefficient, which is

assumed to be unity. Since before the jump (at x0), the linear density is n, the jump rate of

a single atom can be given as,

ω =
Γ

n
= α

n′

n
⟨vx⟩ . (2.51)

The mean velocity distribution, ⟨vx⟩, according to Boltzmann’s formulation, is given as

⟨vx⟩ =
∫︁∞
−∞ vx exp

(︂
− mv2x

2kBT

)︂
dvx

∫︁∞
−∞ exp

(︂
− mv2x

2kBT

)︂
dvx

=

(︃
kBT

2πm

)︃1/2

, (2.52)

where m is the mass of the atomic species. Let us consider the partition functions of the

particles vibrating in the IS and TS as P(3) and P
′
(2), respectively, where subscripts represent
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the number of degrees of freedom, and in both states the species attend equilibrium. Then

we can write,
n′

n
=
P ′
(2)

P(3)

. (2.53)

The vibrational degree of freedom in TS is replaced with translational. The argument is the

following: at TS, the diffusing species is confined to moving in the normal direction to the

plane passing through the division separating x0 and x1 and along the line joining them. In

IS, there is no constraint placed upon diffusing species.

Assuming that kinetic energies of the species at x0 and x
′ are equal, only the potential energy

ϕ stays in P giving

n′

n
=

∫︁∞
−∞ ...

∫︁∞
−∞ exp [−ϕ(x′, y, z, qi)/kBT ] dydz

∏︁
i dqi∫︁∞

−∞ ...
∫︁∞
−∞ exp [−ϕ(x, y, z, qi)/kBT ] dxdydz

∏︁
i dqi

, (2.54)

In the expansion of the potential energy function ϕ(x, y, z, qi) at x = x0 and keeping it

restricted to harmonic approximation (with the height of the energy barrier assumed to be

large compared to kBT ), only the first two terms are given as,

ϕ(x, y, z, qi) = ϕ(x0, y, z, qi) +
K

2
(x− x0)

2 , (2.55)

where K =
(︂

∂2ϕ
∂x2

)︂
x=x0

, and
(︁
∂ϕ
∂x

)︁
x=x0

= 0. Now putting all those values in Eq. (2.54) and

integrating with one degrees of freedom (dx), yields,

n′

n
=

√︃
K

2πkBT

∫︁∞
−∞ ...

∫︁∞
−∞ exp [−ϕ(x′, y, z, qi)/kBT ] dydz

∏︁
i dqi∫︁∞

−∞ ...
∫︁∞
−∞ exp [−ϕ(x0, y, z, qi)/kBT ] dydz

∏︁
i dqi

=

√︃
K

2πkBT

P ′
(2)

P(2)

,

(2.56)

where P ′
(2) and P(2) are the partition functions of the system with the species moving in the

yz plane at x′ and x, respectively. Putting Eq. (2.52) and Eq. (2.56) into Eq. (2.51) and

with the expressions for the Gibbs free energy

G = −kBT lnP, (2.57)

the relation for jump frequency can be formulated

ω = νe

(︂
−∆Gb

kBT

)︂
, (2.58)

where the attempt rate (the rate at which the atomic species tries to overcome the barrier)

is given by the frequency of small oscillations about x0, ν = 1
2π

√︂
K
m
, and ∆Gb = G′ − G is

known as migration free energy, which is the difference between the free energy of the species

at x′ and x0, oscillating in the yz plane.
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2.5 Diffusion Jump as a Migration Over an Energy Barrier

The fundamental restriction in this theory is that the TS has to be stable long enough

compared to the thermal relaxation time of the lattice in the saddle point surrounded region

in order to define the thermodynamic properties of the TS (as the Gibbs free energy is used

in the formulation). This means the atomic species should ascend to the energy barrier

steady enough to keep the system in equilibrium at every intermediate stage, including

the transition state. Additionally to the above restriction, the derivation of Eq. (2.58)

has adopted several other assumptions: (i) Only the harmonic approximation of potential

energy is considered; at the saddle point, the critical displacement amplitude attains about

half of the entire jump length and exceeds the harmonic limit (in reality, atoms in crystal

vibrates independently in the TS and can exceed the harmonic limit and can have many-

body anharmonic effect). (ii) Only the classical approach is used; the formulation of ⟨vx⟩
uses a classical Boltzmann distribution, and hence the quantum effects are ignored, which

are important at low temperatures or light atom diffusion [174]. (iii) Single atom jumps are

considered; the potential, ϕ, has information of all other atoms contained.

Hence, Vineyard introduced an uncompromising many-body approach [175] instead of an

isolated atom model. He derived the following relation for the jump frequency ω:

ω = ν∗e

(︂
−∆Eb

kBT

)︂
, (2.59)

which is similar to Wert and Zener’s approach, except he considered all N atomic species

having 3N vibrational degrees of freedom in the crystal instead of a single species jump

that happens if the energy fluctuation is large enough. Here, ∆Eb is the potential energy

difference between the system in the TS and in the IS instead of the free energy difference

in the result of Wert and Zener (Eq. (2.58)). Another difference arises in the definition of

effective frequency ν∗,

ν∗ =

∏︁3N
i=1 νi∏︁3N−1

i=1 ν ′i
. (2.60)

νi and ν
′
i are (non-imaginary) frequencies of normal vibrational modes corresponding to the

IS and the TS (saddle point), respectively, and 3N is the number of degrees of freedom in

the configurational space with N number of atomic species.

The Vineyard’s theory has no thermodynamic arguments like Wert and Zener’s approach,

for example, Eq. (2.53) and Eq. (2.57), hence no equilibrium of the system is required

during all stages of migration. Now in the TS, there will be an increase in the potential

energy (the highest point on the free energy curve) corresponding to the special atomic

configuration in the crystal due to the migration of atomic species. Nevertheless, in this

special configuration, Vineyard introduced a new group of frequencies (νi, ν
′
i) for atomic

species, which are absolutely mathematical formulations and would not surface in unstable

TS of real crystal, leading to the emergence of ν∗. Nonetheless, they can be calculated using

the first-principles methods.
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2.6 Diffusion Mechanisms and Correlation

The relation of νi and ν
′
i [148] can be used to rewrite the Eq. (2.59)

3N∏︂

i=1

νi =

(︃
kBT

h

)︃3N

exp

[︄
3N∑︂

i=1

ln

(︃
hνi
kBT

)︃]︄
,

3N∏︂

i=1

ν ′i =

(︃
kBT

h

)︃3N−1

exp

[︄
3N−1∑︂

i=1

ln

(︃
hν ′i
kBT

)︃]︄
.

(2.61)

In the high-temperature limit (kBT ≫ hν, for a given ν), the vibrational entropy of a

harmonic system can be written as

S = 3NkB − kB

3N∑︂

j=1

ln

(︃
hνj
kBT

)︃
, (2.62)

hence the Eq. (2.61) given as Eq. (2.62) can be rewritten as

N∏︂

i=1

νi =

(︃
kBT

h

)︃3N

exp

(︃
− S

kB

)︃
,

N∏︂

i=1

ν ′i =

(︃
kBT

h

)︃3N−1

exp

(︃
− S ′

kB

)︃
.

(2.63)

Here, S and S ′ are the vibrational entropies of the IS and the TS, respectively. Now Eq. (2.59)

can be represented as

ω =
kBT

h
exp

(︃
−∆Eb − T∆Sb

kBT

)︃
, (2.64)

where ∆Sb = S ′ − S is the entropy of the migration barrier. Now the Gibbs free energy

can be defined differently than Eq. (2.58), which is ∆Gb = ∆Eb − T∆Sb, an alternative

expression for the jump frequency becomes

ω =
kBT

h
exp

(︃
−∆Gb

kBT

)︃
. (2.65)

Again, the missing degree of freedom of the system is connected to the TS of the system

(one less than in its normal state) and behind the factor kBT/h in the formulae for the jump

frequency [172].

2.6 Diffusion Mechanisms and Correlation

In a crystalline solid involving lattice jumps, the migration pathways, and related atomic

configurations depend on specific restrictions. A simple description of the diffusion process

helps to identify these mechanisms. Hence, it is crucial to understand the diffusion mechan-

ism and various related parameters that enter Eq. (2.49) in order to estimate the diffusion

coefficient. Understanding the diffusion mechanism will help describe the correlation effect

39



2.6 Diffusion Mechanisms and Correlation

Figure 2.3: Schematic illustration of the interstitial diffusion mechanism in the B1 structure.

considered in Sec. 2.4 and quantify the correlation factor f . Several diffusion mechanisms

discussed in the literature might take place in crystalline solids [149, 167, 174]. Here, we

consider only two important mechanisms for this work: interstitial and vacancy-mediated

(VM) diffusion.

2.6.1 Interstitial Mechanism

In the interstitial mechanism, an atom jumps from one interstitial site (i.e., IS) to another

equivalent neighboring site (i.e., FS) without displacing the surrounding matrix atoms bey-

ond what an interstitial atom does to a perfect lattice. As shown in Fig. 2.3, an interstitial

atom pulls apart surrounding atoms in the TS to move from IS to FS. In most cases of in-

terstitial mechanism, the interstitial species are weakly bonded; hence, breaking bonds with

neighbors does not require any significant energy. However, the contribution to energy from

these interactions can not be fully neglected. We will discuss this in detail in Chapter 7.

Hence, the diffusion energy barriers in the case of the interstitial mechanism are mainly

because of the elastic lattice distortion during changing sites of the diffusion species.

The fraction of interstitials is usually small compared to the empty sites in common defective

crystals, normally a fraction of occupied lattices. Hence, the jump of an interstitial atom

to all possible directions of adjacent interstitial sites is equally probable and independent of

the previous jumps. Furthermore, if an interstitial atom exists in the crystal, it does not

wait for empty sites or previous jumps; hence, events are uncorrelated, f = 1. Hence no

defect concentration term enters the diffusivity (CI = 1), the jump rate Γ in Eq. (2.49) is
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2.6 Diffusion Mechanisms and Correlation

Figure 2.4: Schematic illustration of the vacancy-mediated diffusion mechanism in the B1
structure.

determined by Eq. (2.65). Therefore, the diffusion coefficient, DI , of an atom diffusing via

an interstitial mechanism is obtained as

DI =
kBT

h

Z

6
d2 exp

(︃
−∆Gb

kBT

)︃
. (2.66)

The interstitial mechanism is mostly active in interstitial alloys with elements with atomic

radii smaller than the atomic voids, such as boron, carbon, or nitrogen (e.g., C in α- and

γ-iron). It may also occur in radiationally damaged substitutional alloys.

2.6.2 Vacancy-mediated Mechanism

Vacancy-mediated mechanisms are predominant for self-diffusion and diffusion of substitu-

tional impurities in metals or alloys [163]. In this mechanism, atoms move via a series of

sequence jumps with vacancies in the crystals (see Fig. 2.4), which are present due to various

processes, e.g., the deposition conditions or thermodynamic reasons.

In the case of vacancy-mediated diffusion, usually, the atomic species sit on the lattice sites,

making a bond with the neighboring atoms (covalent, metallic, etc.); hence, the energy needs

to be supplied to break these bonds. Nevertheless, the distortion caused by the movements

compared to an interstitial atom is very small; hence, the contribution mostly arises from

chemical bonds. Since in this mechanism, the process is correlated (the atom has to wait for

a vacancy to be available), the process is slower than the interstitial diffusion process. Thus,

if the probability of finding a vacancy in the vicinity of a diffusing atom is p, the jump rate
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2.6 Diffusion Mechanisms and Correlation

Γ of an atom exchange with an available neighboring vacant site can be given as

Γ = ωvp, (2.67)

with ωv being the jump frequency (by Eq. (2.64)) of the atom jumping to a vacant site or

exchange rate between a vacancy and an atom. The probability p is the vacancy concen-

tration, Cv = exp
(︁
∆Gv

f/kBT
)︁
[148], with ∆Gv

f being the vacancy formation free energy,

discussed in detail in Sec. 2.1.1. The formulation of the correlation effect for the vacancy

mechanism is the following: (i) an atom must hold up for the appearance of a vacant site

to the adjacent sites to continue an exchange with a vacancy, (ii) the reverse jump is also

possible immediately after the first vacancy-atom exchange jump; hence there is a finite and

high probability that diffusing atom can jump backward. Hence, the diffusion coefficient

for the vacancy-mediated diffusion as per Eq. (2.49) with an additional term for vacancy

concentration can be written as:

D =
Z

6
d2Cvfω =

kBT

h
fd2 exp

(︃
−∆Gb

kBT

)︃
exp

(︃
−
∆Gv

f

kBT

)︃
. (2.68)

The correlation factor is constant in the case of self-diffusion for a given crystal structure.

For instance, for an fcc lattice f = f0 = 0.7815, [176, 177]. Thus, the self-diffusion coefficient

D0 via vacancy mechanism in a fcc lattice has the following form.

Dself,vac =
kBT

h
f0
a2

2
exp

(︃
−∆Gself

b

kBT

)︃
exp

(︃
−
∆Gv

f

kBT

)︃
. (2.69)

Here, d = a/
√
2 for the fcc, and ∆Gself

b is the migration-free energy of the atom-vacancy

exchange jump in case of self-diffusion [1].

Next, we consider vacancy-mediated impurity diffusion. In the case of impurity diffusion,

the situation is additionally complicated because the jump frequencies of the matrix atoms

surrounding the impurity are different compared with that in the pure system [1]. In this

case, finding a vacancy at an impurity atom’s nearest-neighbor site differs from that in the

pure solvent. Le Claire [178, 179] related impurity diffusion Dimp,vac in dilute fcc alloys

with dilute vacancy concentration to the self-diffusion Dself,vac using five jump frequencies

(described in Fig. 2.5) as [1]:

Dimp,vac = Dself,vac
f2
f0

ω4

ω0

ω1

ω3

ω2

ω1

(2.70)

f2 is the correlation factor for impurity diffusion and ωi(i = 0, 1, ..., 4) are jump frequencies of

the five non-equivalent vacancy jumps (Fig. 2.5) [1]. ω2 corresponds to the impurity–vacancy

exchange jump, ω1 is the rate of vacancy–solvent jumps to the nearest neighbor site of an

impurity, ω3 is the rate of vacancy jumps from the first-nearest-neighbor positions of an im-

purity atom to more distant sites, while ω4 is the rate of jumps reversing those corresponding
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Solvent
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Figure 2.5: Schematic representation of the “five-frequency” model in an fcc lattice. Gray
and white balls depict the solvent atoms in the different (100) planes, the black ball is the
impurity atom, and the squares illustrate the vacancies. The figure is taken from the Ref. [1].

to ω3 [1]. ω0 corresponds to the solvent–vacancy exchange jump in the pure solvent, i.e., in

the absence of impurity (self-diffusion) [1]. In the experiment, Dimp,vac is always compared

with Dself,vac [1]. When it comes to the impurity diffusion coefficient in dilute alloys, it is

important to describe the variation of solvent diffusion coefficient (present in Eq. (2.70) in

the presence of impurity atom (or impurity atom concentration) [1]. This is done by in-

troducing the quantities called solvent enhancement factors [180], which are the function of

five-frequencies. For fcc crystals these ratios are ω2/ω1, ω1/ω3, and ω4/ω0 [178, 180], hence

Eq. (2.70) is the formulation of these ratios in [178], where both in the denominator and

numerator ω1 exists [1].

The impurity diffusion correlation factor, f2, is related to the probability of the impurity atom

making a reverse jump back to its previous position (or, moreover, the diffusion coefficient(s)

of vacancies will also be included) and can be described as follows [1, 181]

f2 =
ω1 + 3.5ω3F (ω4/ω0)

ω1 + ω2 + 3.5ω3F (ω4/ω0)
, (2.71)

which includes the probability (function F ) of the vacancy returning to its position after

dissociation by an ω3 jump. There are finite probabilities that the vacancy can return from

different distant sites, e.g., second, third, and fourth nearest neighbors to its original position

(first-nearest-neighbor) [1]. F (α) for an fcc lattice was derived as [181]:

F (α) = 1− 10α4 + 180.5α3 + 927α2 + 1341α

7(2α4 + 40.2α3 + 254α2 + 597α + 436)
. (2.72)

It varies between 2
7
and 1 when the ratio α = ω4/ω0 changes from infinity to zero. The

correlation factor f2 depends on all vacancy-atom exchange rates. It, therefore, also depends

on temperature, unlike the correlation factor f for the self-diffusion. We note that the

numerical factors in Eqs. (2.71) and (2.72) are results of rigorous derivations without any

empirical fittings. The ω4 jump is a process reverse to the ω3 jump; they share the same

transition state, hence [1, 178]:

ω4

ω3

= exp

(︃
∆Gbind

kBT

)︃
(2.73)
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where the impurity–vacancy binding energy, ∆Gbind, can be calculated as [181, 182]:

∆Gbind = Gvac,imp −Gimp +Gbulk −Gvac. (2.74)

In this equation, Gvac,imp denotes the Gibbs free energy of the system containing the impurity

atom with a vacancy in its nearest-neighbor site, Gimp is the Gibbs free energy of the system

with the impurity atom (only), Gbulk is the free energy of the pure bulk system, and Gvac

is the free energy of the system containing only a vacancy (no impurity). The difference is

due to the interaction between a vacancy and the solute, which can be expressed in terms

of the Gibbs free energy of binding ∆Gbind. In this formulation, negative binding energies

correspond to attractive interactions between the vacancy and the impurity, whereas positive

binding energies correspond to repulsive interactions [1].

Inserting Eqs. (2.65), (2.69) and 2.73 to (2.70) yields

Dimp,vac =
kBT

h
f2
a2

2
exp

(︄
−∆Gimp

b

kBT

)︄
exp

(︃
−
∆Gv

f

kBT

)︃
. (2.75)

with d = a/
√
2.

2.7 Theory of Elastic Constants of Materials

The elastic constants are crucial to understanding the mechanical response of both isotropic

and anisotropic materials. In isotropic materials, e.g., amorphous materials, the material’s

properties are independent of the direction of the principal axis frame. Particularly, one can

observe the same stiffness no matter the direction of an applied external force. The material

is subject to applied external forces (stress tensors) to obtain elastic constants, which lead

to deformations described by a strain tensor.

In general, there are two different methods to calculate the elastic constants. The first

approach is the stress-strain method originating from Hooke’s law, and its differential form

is given as,

Cij =
∂σi
∂εj

, (2.76)

which represents the change in stress with applied strain, and i, j represents the different

components in Voigt’s notation (will be discussed in the following section). The second is

the total energy approach that involves the expansion of total energy, E, w.r.t. strain, εεε,

about the equilibrium state of volume, V0,

E(εεε) = E(0) + εi
∂E

∂εi
+

1

2!
εiεj

∂2E

∂εi∂εj
+ ..... (2.77)
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By considering a stress-free equilibrium system, the linear term vanishes, and the above

equation yields

Cij =
1

V0

∂2E

∂εi∂εj

⃓⃓
⃓⃓
ε=0

. (2.78)

In Eqs. (2.76), (2.77) and (2.78), Einstein’s summation notations are used, i.e., repeated

subscripts can be seen in a component, which means summing the subscripts. One can

employ the above equation to calculate the full elasticity matrix from energy vs. strain

curves. This thesis uses the stress-strain method; hence, we will discuss the method in

detail.

2.7.1 Hooke’s Law and Elastic Matrix

Here, the stress-strain relation to calculate elastic constants is discussed in the form of

generalized Hooke’s law, given as

σij = Cijklεkl (2.79)

with σij being the stress tensor, εkl is the strain tensor and Cijkl is the stiffness tensor or

stiffness matrix. The indices i, j, k, l are 1,2,3, referring to a system of axes fixed in space.

The strain also can be expressed in terms of stress by calculating the inversion of the Cijkl

in Eq. (2.79) given as,

εij = Sijklσkl (2.80)

where Sijkl = C−1
ijkl is the compliance tensor. The Cijkl contains 81 elastic coefficients. The

given matrices of σij and εij are symmetric [183]. Therefore, both the matrices Sijkl and Cijkl

in Eq. (2.80) and Eq. (2.79) must fulfill the symmetry conditions as,

Cijkl = Cjikl, Cijkl = Cijlk,

Sijkl = Sjikl, Sijkl = Sijlk,
(2.81)

which reduces the elastic coefficients from 81 to 36 and is conveniently represented by the

so-called Voigt’s notation [184] where the Cijkl is given by a 6× 6 matrix Cij, i, j = 1, ..., 6.

Cij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.82)

This matrix is symmetric; hence, the maximum number of independent components of the

elastic constants matrix is further reduced to 21. Below is a brief description of the elastic
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coefficient matrices of selected crystal structures. The most general form is for a triclinic

lattice structure [183],

Cij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

C56

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.83)

However, for isotropic materials such as amorphous materials, the elasticity tensor is reduced

to two independent components, i.e., C11 and C12. With these two elastic constants, the

stiffness matrix, Cij, will appear as [185]

Cij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C12 0 0 0

C11 C12 0 0 0

C11 0 0 0

C44 0 0

C44 0

C44

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.84)

where, C44 =
1
2
(C11 − C12). Hence, we can define the different elastic moduli as

• Shear Modulus, G:

G =
1

2
(C11 − C12) ·

• Bulk Modulus, B:

B =
1

3
(C11 + 2C12) ·

• Hence, the Young’s modulus, E, given by:

E =
9BG

3B +G
·

.

2.8 Lattice dynamics and Thermodynamics

The vibrations of the atoms in a crystal at high temperatures (usually higher than room

temperatures) are known as lattice dynamics. The propagation of sound waves in crystals is

a perfect and realistic example of the role of lattice dynamics. The atoms vibrating within

crystals are held in static positions through stiff chemical bonds. Thus, the understanding of
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2.8 Lattice dynamics and Thermodynamics

lattice dynamics in both amorphous and crystalline materials [186, 187] is crucial for many

key applications. Lattice dynamics also determines properties such as thermodynamics,

superconductivity, phase transitions, thermal conductivity, and thermal expansion [187]. In

this discussion, we will show how the formal description allows for practical computations

based on models for the forces between atoms.

2.8.1 Phonons

A combined vibration of atoms at the same frequency leads to the quasi-particle picture,

mostly in a crystalline solid, known as phonons. The phonons are normal vibration modes

with momentum h̄qqq and energy h̄ω(qqq). For a system with M atoms in its primitive cell,

3M phonon modes are associated with each wavevector, qqq. The three lowest energy modes

with zero frequency at qqq = 0 are called acoustic modes, and all other branches are known as

optical phonons.

Lattice Dynamics

Let us consider the position of the nucleus in a crystal, RRRI , then in crystalline periodic

lattice, it can be given as the sum of unit cell lattice vector (RRRl) and an additional vector

describing nucleus position within the unit cell (τττ s),

RRRI = RRRl + τττ s, (2.85)

where I = (l, s) labels the nucleus in the order (unit cell, atom). The nuclei and corres-

ponding atoms are assumed to be relaxed and vibrate with only very small displacements

from their equilibrium positions. In this approximation, the time-dependent position of each

atom can be expressed as,

RRRI(t) = RRR0
I + uuuI(t), (2.86)

with RRR0
I is the time-independent equilibrium position of the nucleus I and uuuI(t) is the

instantaneous displacement of that atom. Using Newton’s equations of motion by assuming

the nucleus as classical particles (see Sec. 3.2 for detailed discussion), each nuclear motion

can be written as,

MIü̈üuI = −∂U(RRRI)

∂uuuI
. (2.87)

The partial derivatives are estimated at the equilibrium positions in the above formalism,

RRR0
I . By approximation up to second order in the Taylor expansion of exact crystal potential

energy surface (with Born-Oppenheimer approximation [188]) represented in Fig. 2.6 w.r.t

the atomic displacement provides,

U(RRRI) = U(RRR0
I) +

∑︂

Iα

uIα
∂U

∂RIα

+
1

2

∑︂

Iα,Jβ

uIαuJβ
∂2U

∂RIα∂RJβ

, (2.88)
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Figure 2.6: The traditional interatomic potential energy curve.

with Cartesian coordinates α and β. The second-order partial derivatives of the equation

evaluated w.r.t. the equilibrium nuclear positions are called the interatomic or Born-von-

Karman force constants [189],

Clsα,l′s′β =
∂2U

∂(Rlα + τsα)∂(Rl′β + τs′β)
= Csα,s′β(RRRl −RRRl′). (2.89)

The Eq. (2.88), with the total energy of nuclei, U0 at RRR
0
I , considering the forces on the nuclei

are FI = −∂U/∂RIα = 0 at RRR0
I , and with the expression in Eq. (2.89), can be rewritten as,

U(RRR) = U0 +
1

2

∑︂

lsα,l′s′β

ulsαul′s′βClsα,l′s′β. (2.90)

In the above expression, the terms beyond the second order have been neglected, considering

the harmonic vibrations of crystals. The higher-order terms are more important at higher

temperatures and are known as anharmonic contributions. In this thesis, we only deal

with the phonon calculations for the quasi-harmonic approximation (QHA), and hence, our

discussion is limited to harmonic contributions. By combining this equation with Eq. (2.87),

Newton’s equation for the nuclei in the harmonic approximation can be obtained,

Msülsα = −
∑︂

l′s′β

Clsα,l′s′βul′s′β (2.91)

The instantaneous displacement of atom s within unit cell l along Cartesian direction α can

be described as a solution of the above equation in the form of a propagating wave,

ulsα(t) = u0sαe
i[qqq.RRRl−ωt], (2.92)

where u0sα is the amplitude of the propagating wave. Substituting Eq. (2.92) into Eq. (2.91),

the obtained an eigenvalue equation,
∑︂

s′β

Dsα,s′β(qqq)vs′β = ω2vsα, (2.93)
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with the dynamic matrix

Dsα,s′β(qqq) =
1√

MsMs′

∑︂

l′

eiqqq.RRRl′eiqqq.(τττs′−τττs)Clsα,l′s′β (2.94)

and mass-scaled vibrational modes

vsα =M
1
2
s u

0
sα, (2.95)

Small Displacements and the Supercell Method

The basis of solving the eigenvalue equation for the phonon modes and related properties is

to obtain the dynamic matrix. One of the methods to calculate the dynamic matrix is the

small displacement method in a supercell. To calculate the dynamic matrix, one needs the

input of the constant matrix defined in Eq. (2.89). These components of the force constants

matrix describe the pair interaction of an atom (s′, β) with an atom (s, α) in the crystal.

Here, we drop the index, l, because all the atoms exist in the same unit cell and are given

as

Csα,s′β =
∂2U

∂Rsα∂Rs′β
=

∂Fsα

∂Rs′β
. (2.96)

If we write the above equation in terms of finite displacements, then,

Csαs′α =
∂Fsα

∂Rs′β
=
Fsα(Rs′β +∆Rs′β)− Fsα(Rs′β)

∆Rs′β
. (2.97)

This indicates that to obtain the force constants matrix of the primitive cell. Hence, one

needs to create the distortions of atoms non-symmetrically (symmetry in-equivalent) in the

unit cell and estimate the forces acting on the atoms. By applying a Fourier transform,

we get the dynamic matrix, already introduced in Eq. (2.94). Evaluation of the eigenvalue

equation (Eq. (2.93)) provides the phonon modes at the Γ-point. One must use the supercell

approach to calculate the phonon dispersion at all symmetry points.

2.8.2 Quasi Harmonic Approximation

In the previous sections, the theory of describing lattice dynamics and phonons was intro-

duced. In part of this thesis, we focused on estimating the coefficient of thermal expansion.

To do so, we used the quasi-harmonic approximation (QHA), which is a volume-dependent

(model uses different volumes as input) approach to describe the thermal effects based on

the harmonic phonon model of lattice dynamics. In the formulation of QHA, one needs

the description of vibrational Helmholtz free energy as the central quantity to explain the

equilibrium thermodynamics of the crystalline system.
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2.8 Lattice dynamics and Thermodynamics

Vibrational Helmholtz Free Energy

The canonical ensemble (V, T,N = const.) is the most convenient for thermodynamic func-

tions when evaluating equilibrium properties from the first principles. Now, the Helmholtz

free energy, F , is the difference between internal energy, U , and all entropy contributions

TS with the finite temperature to the energy and is given as,

F ≡ U − TS (2.98)

However, the (canonical) partition function determines the statistical properties and the

complete description of a system in thermodynamic equilibrium,

Z =
∑︂

i

e
− ϵi

kBT , (2.99)

where the summation is performed over all possible energy states ϵi. Now, the entropy can

be defined as

S = −kB
∑︂

i

pi ln pi, (2.100)

where pi is the occupation probability of state i with energy ϵi. pi for a given temperature,

T , is defined as

pi =
1

Z
e
− ϵi

kBT . (2.101)

By putting Eq. (2.101) in Eq. (2.100) and using the relation
∑︁

i pi = 1 and
∑︁

i ϵi = U (sum

of energy of all states is internal energy), the entropy becomes,

S =
U

T
+ kB lnZ. (2.102)

Now Eq. (2.98) can be rearranged as

F = U − TS = −kBT lnZ. (2.103)

The partition function Z is Zvib for vibrational free energy. The energy of vibrational state,

n, with ions in a harmonic oscillator, which is the ith normal mode of vibration is ϵi,n =

h̄ωi(qqq)
(︁
n+ 1

2

)︁
. The partition function for lattice vibrations then becomes,

Zvib =
3N∏︂

i=1

∞∑︂

n=0

e
− h̄ωi(qqq)(n+1

2 )

kBT =
3N∏︂

i=1

e
− h̄ωi(qqq)

2kBT

1− e
− h̄ωi(qqq)

kBT

(2.104)

where N is the number of atoms in the crystal. Inserting the vibration partition function,

Zvib, into Eq. (2.103) provides the expression of the vibrational contribution to the free

energy

Fvib (V, T ) =
3N∑︂

i

[︃
h̄ωi(qqq)

2
+ kBT ln

(︃
1− exp

(︃
− h̄ωi(qqq)

kBT

)︃)︃]︃

⏞ ⏟⏟ ⏞
fi(V, T )

.
(2.105)
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Figure 2.7: The free energy vs. volume curves within the quasi-harmonic approximation
plotted for TiN.

Quasi-Harmonic Approximation

In the formulation of quasi-harmonic approximation, considering only the second-order terms

of the frequency shift leads to volume-dependent phonon frequencies and, hence, an implicit

temperature dependence owing to the solid’s thermal expansion (or contraction). The idea

of QHA behavior energy vs. volume is schematically shown in Fig. 2.7.

The change in frequency due to a change in volume is generally expressed by the so-called

Grüneisen parameter, which is defined as the volume derivative of the logarithmic value of

phonon frequency, ωi,

γi (qqq, V ) = −∂ lnωi(qqq, V )

∂ lnV
(2.106)
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2.8 Lattice dynamics and Thermodynamics

This relation is, specifically, very important for cubic systems. However, it can also be

defined for the non-cubic systems, where the derivative is performed with respect to strain

components [190]. To establish a relation with the macroscopic thermodynamic properties

such as the coefficient of thermal expansion (CTE), an averaging procedure is carried out

which provides [191],

γ̄ =

∑︁
i,qqq C

V
i (qqq)γi(qqq)∑︁

i,qqq C
V
i (qqq)

(2.107)

where CV
i (qqq) is the heat capacity at constant volume for a specific phonon mode (i, qqq) defined

as

CV
i (qqq) = −T

(︃
∂2fi(qqq, V, T )

∂T 2

)︃

V

(2.108)

where fi(qqq, V, T ) is the vibrational free energy of a phonon in state i defined in Eq. (2.105).

Within the quasi-harmonic approximation, CV
i then becomes

CV
i (qqq) =

h̄2ω2
i

kBT 2

e
h̄ωi(qqq)

kBT

(︃
e

h̄ωi(qqq)

kBT − 1

)︃2 . (2.109)

The averaged Grüneisen parameter shows a temperature dependence because of the different

occupancy of phonon modes at different temperatures.
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Chapter 3

Computational State of Art

This chapter summarizes all the computational approaches used in the present thesis to sim-

ulate the material properties employing the theories described in Chapter 2. The underlying

methods treated here are well-established and have been thoroughly described or reviewed

in the literature. The machine learning-based interatomic potentials description in Sec. 3.4

is an exception.

We start with first-principles calculations, which include general many-body problems, dif-

ferent approximations, and finally, the DFT. Following this, we discussed MD, beginning

with ab initio and then classical methods with general MD algorithms. Finally, we discussed

the interatomic potential based on the moment tensor machine learning model.

3.1 First-principles Calculations

The calculations that derive physical or chemical properties from the basic principles, e.g.,

Coulomb law and quantum mechanics (QM) are known as first-principle calculations. In

the formalism of the QM, negatively charged electrons and positively charged nuclei interact

with electromagnetic forces to accurately describe the material’s properties. Therefore, the

methods based on the QM do not use any fitting parameters from the experimental data and

solely depend on the basic laws of physics; hence can be categorized as first-principles or ab

initio methods. In the QM, the particle interaction is described by the wave function method

and, in its stationary state, is given by the time-independent wave Schrödinger equation,

ĤΨ = EΨ, (3.1)

with Ĥ, Ψ, and E are the Hamiltonian operator, wave function, and energy of the system,

respectively.
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3.1 First-principles Calculations

3.1.1 Wave Function Methods

Many Electron Problem

The complete Hamiltonian in Eq. (3.1) of a real system can be given as,

Ĥ = − h̄2

2me

∑︂

i

∇2
i

⏞ ⏟⏟ ⏞
Tê

−
∑︂

I

− h̄2

2MI

∇2
I

⏞ ⏟⏟ ⏞
Tn̂

+
1

4πϵ0

∑︂

i ̸=j

e2

|ri − rj|
⏞ ⏟⏟ ⏞

Veeˆ

+
1

4πϵ0

∑︂

I ̸=J

e2ZIZJ

|Ri −Rj|
⏞ ⏟⏟ ⏞

V̂ nn

− 1

4πϵ0

∑︂

i,I

e2ZI

|ri −RI |
⏞ ⏟⏟ ⏞

V̂ ext

,

(3.2)

which consists of Ne interacting electrons and NI nuclei. The position of ith electron and

Ith nucleus are given as ri and RI , respectively, and MI and ZI are mass and charge of

the Ith nucleus, and me is the mass of the electron. The reduced Plank constant and the

electron charge are h̄ and e, respectively. The above equation is known as the many-body

Hamiltonian, in which all relevant classical interactions in a crystal have been indicated

separately with the individual term (T̂ e → kinetic energy of electrons, T̂ n → kinetic energy

of the nuclei, V̂ ee → potential energy of the electron–electron interaction, V̂ nn → potential

energy of the nucleus–nucleus interaction, V̂ ext → potential energy of the electron–nucleus

interaction). The wave function corresponding to the many-body system and the set of

corresponding eigenenergies of the interacting system of electrons and ions in Eq. (3.1) is

Ψ ≡ Ψ({ri}, {RI}) and E respectively. The exact solution of the many-body Hamiltonian

in Eq. (3.2), is a tedious task considering the interaction of Ne electrons and NI nuclei with

corresponding 3(Ne +NI) spatial degrees of freedom, even using state-of-the-art supercom-

puting facilities. Therefore, reasonable approximations are needed to deal with the degrees

of freedom to reduce the computational effort.

Born-Oppenheimer Approximation

We start the discussion with the Born-Oppenheimer approximation, which proposes the de-

coupling of electrons from nuclei, considering the conditionsMI ≫ me (me/MI ∼ 10−4) [188].

Moreover, the thermal de Broglie wavelength such that, Λn =
√︂

h̄2

2πMIkBT
≪
√︂

h̄2

2πmekBT
= Λe,

which allows to treat ions classically. Hence, considering the heavy electron, the Born-

Oppenheimer approximation is developed solely on the assumption that the full wavefunction

Ψ({ri}, {RI}) can be written as:

Ψ({ri}, {RI}) ≡ ψ({ri}, {RI})χ({RI}) (3.3)

where ψ({ri}, {RI}) describes the electrons. Electronic wavefunctions and energies only

parametrically depend on the fixed set of nuclei (or ion) positions. Whereas, χ({RI}) de-
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3.1 First-principles Calculations

scribes the nuclei with the amplitude that it found at positions {RI}, and can be regarded

as expansion coefficients of the electronic wavefunctions [192]. Hence, the interaction of

electron–nucleus can be described by Vext(r), i.e., electrons are moving in a static external

potential formed by the fixed geometry of the nuclei. With this approximation, Eq. (3.2)

can be separated into electronic and nuclear parts. The electronic Hamiltonian is given as,

Ĥ
(e)

BO = − h̄2

2me

∑︂

i

∇2
i

⏞ ⏟⏟ ⏞
Tê

+
1

4πϵ0

∑︂

i ̸=j

e2

|ri − rj|
⏞ ⏟⏟ ⏞

V̂ ee

− 1

4πϵ0

∑︂

i,I

e2ZI

|ri −RI |
⏞ ⏟⏟ ⏞

V̂ ext

(3.4)

with the electronic Schrödinger equation provides the parametric dependence of the electronic

eigenvalues with specific configurations of nuclei’s, {RI}, given as,

Ĥ
(e)

BOψ({ri}, {RI}) = Ee({RI})ψ({ri}, {RI}). (3.5)

The solution of the electronic part with the addition of inter-nuclear interaction of fixed

{RI} with the constant shift in energy results in the adiabatic potential hypersurface,

V̂ ({RI}) = Ee({RI}) +
1

4πϵ0

∑︂

I ̸=J

ZIZJe
2

|RI −RJ |
⏞ ⏟⏟ ⏞

V̂ nn

(3.6)

This potential V̂ ({RI}) referred to as the potential energy surface (PES). Hence, the nuclei

Hamiltonian can be given as,

Ĥ
(n)

BO = − h̄2

2MI

∑︂

I

∇2
I

⏞ ⏟⏟ ⏞
Tn̂

+ V̂ ({RI})⏞ ⏟⏟ ⏞
V̂ n

, (3.7)

and for the motion of the nuclei can be obtained from nuclear Schrödinger equation,

Ĥ
(n)

BOχ({RI}) = Enχ({RI}). (3.8)

Hence, the spatial degrees of freedom of Eq. (3.5) have been reduced to 3Ne because of the

adiabatic approximation. Despite the significant reduction of spatial coordinates, the scaling

of the computational demand is still huge and remains in the order of N4
e for the electron

wavefunction. For this reason, the formulation of independent electron approximation is

described in the following sections.

Independent Electron Approximations

According to this approximation, the many-body Schrödinger equation can be decomposed

to a set of independent one-electron Schrödinger equations by neglecting the interaction

between the electrons, given as,

Ĥ0ψi(ri) = ϵiψi(ri), (3.9)
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3.1 First-principles Calculations

with the Hamiltonian,

Ĥ0 = − h̄2

2me

∇2
i + V̂ ext(r), (3.10)

and the decomposed many-electron wavefunction as,

Ψ(r1, r2, ..rN) = ψ1(r1)ψ2(r2)...ψN(rN). (3.11)

These “non-interacting” one electron Schrödinger equations are much simpler to solve than

the previously formulated BO-Hamiltonian in Eq. (3.4). Despite these advantages and ex-

cellent scaling of computational demand, the missing electron–electron interaction produces

the same energy state for each equation and is not meaningful for real scenarios.

Hartree Approximation

To improve the independent-electron approximation, in 1982, Hatree introduced an average

potential by taking the electron charge density into account, known as the Hartree potential,

VH [193]. Hatree potential satisfies Poisson’s equation, and it acts on each electron given by,

∇2VH(r) = −4πn(r), (3.12)

and the electronic charge density, n(r), can be easily evaluated in this case, as

n(r) =
∑︂

i

ψ∗
i (r)ψi(r) =

∑︂

i

|ψi(r)|2 , (3.13)

which is the sum of the probabilities of finding the electron in each state with the same

description of the wavefunction as in Eq. (3.11). The solution of Eq. (3.12) is given by,

V̂ H(r) =
1

4πϵ0

∫︂
n(r′)

|r− r′|dr
′. (3.14)

The many electronic Schrödinger from BO approximation can split into a single-electron

Schrödinger equation presented in Eq. (3.10) now becomes

ĥ(r)ψi(r) =

[︃
− h̄2

2me

∇2
i + V̂ ext(r) + V̂ H(r)

]︃
ψi(r) = ϵiψi(r). (3.15)

This description is different than in the Eq. (3.9) with additional implementation of Hatree

potential that represents the Coulomb repulsion. Also, the electron-electron interaction has

a mean-field description. Now solving the 3Ne-dimensional Born-Oppenheimer many–body

Schrödinger equation (Eq. (3.4)) has reduced to solving N coupled 3-dimensional Eq. (3.15).

However, in this method, the total wavefunctions (Eq. (3.11)) are symmetric, but to describe

the indistinguishable fermionic system, e.g., electrons. Hence, the electronic wavefunctions

have to be antisymmetric upon permutations.
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Hartree-Fock Approximation

To deal with the indistinguishable nature of electrons, the wave function in the Hatree-Fock

approximation is written so that they remain antisymmetric upon permutations [194]. This is

done by following the same step as the Hatree method and using a Slater determinant, which

changes signs when the coordinates of two electrons are interchanged. The representation of

Slater determinant of a many–electron wave function is given as,

Ψ(r1, r2, r3, ...) =
1√
N !

⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓

ψ1(r1) ψ1(r2) . . . ψ1(rN)

ψ2(r1) ψ2(r2) . . . ψ2(rN)
...

...
. . .

...

ψN(r1) ψN(r2) . . . ψN(rN)

⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
. (3.16)

Now the single-electron Schrödinger equation presented in Eq. (3.15) is modified as

[︃
− h̄2

2me

∇2
i + V̂ ext(r) + V̂ HF (r)

]︃
ψi(r) = ϵiψi(r). (3.17)

where the Hatree potential is replaced by the Hatree-Fock potential, given as,

V̂ HF (r) =
1

4πϵ0

∑︂

i

(︂
Ĵi(r)− K̂i(r)

)︂
, (3.18)

with

Ĵi(r) =
∑︂

j ̸=i

[︃∫︂
ψ∗
j (r

′)ψj(r
′)

|r− r′| dr′
]︃
ψi(r) =

[︃∫︂
n(r′)

|r− r′|dr
′
]︃
ψi(r), (3.19)

and

K̂i(r) =
∑︂

j ̸=i

[︃∫︂
ψ∗
j (r

′)ψi(r
′)

|r− r′| dr′
]︃
ψj(r). (3.20)

The operators Ĵi and K̂i are so-called Coulomb and exchange operators resulting from the

interaction of orbitals forming the Slater determinant. The physical interpretation of the

earlier one is straightforward, which describes the interaction of an electron with all other

electrons situated in all other single-particle orbitals. This Coulomb repulsion is the same as

the Hatree potential. However, the latter is purely a quantum mechanical effect and has no

classical explanation caused by the antisymmetric nature of wavefunction. The Eq. (3.17)

can be written as,

f̂(r)ϕi(r) =

[︄
− h̄2

2me

∇2
i + V̂ ext(r) +

1

4πϵ0

∑︂

i

(︂
Ĵi(r)− K̂i(r)

)︂]︄
ψi(r) = ϵiψi(r). (3.21)

The operator f̂(r) is called the Fock operator. Despite the quite good approximation, HF

approximation has a serious shortcoming. The problem has to be solved in an iterative

method with self-consistent electron density (same as the Hatree equation). However, even
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if there is an infinitely large number of single-particle wavefunctions in the so-called HF

limit, a single determinant is not able to represent the electron density accurately. Hence,

one can never reach the exact energy. To solve this, additional determinants via perturbation

scheme are used, moving away from the HF description. One such description is the theory

by Møller and Plesset [195].

3.1.2 Density Functional Theory

The formulation of density functional theory (DFT) is similar to the formulation in the

preceding section with uniquely defined external potential, Vext(r), acting on an interacting

electronic system. In the fundamental distinction to the theoretical approaches described in

the previous sections, the DFT utilizes the electron density, n(r), rather than the mean-field

model or independent electron model. The basis of DFT lies in Hohenberg-Kohn Theorems,

according to which n(r) determines the ground state properties of the many-body system.

The Hohenberg-Kohn Theorems

Hohenberg and Kohn in 1964 [196] published two theorems which can be summarised as

follows:

• The non-degenerate ground-state density, nGS(r), of a bound system of interacting

fermions determines the external potential Vext(r) of the system uniquely (except an

arbitrary additive constant).

• For any particular Vext(r), the ground state and its energy (EGS) can be exactly de-

termined by systematically varying electron density according to a variational principle,

i.e., EGS is minimized by and only by true ground state density n(r) = nGS(r). Thus,

the ground state energy can be written as the functional of true ground state density,

EGS = EGS[nGS]. For all other densities, n(r), the inequality

EGS = EVext(r)[nGS] < EVext(r)[n]

holds.

Hence, there exists a universal functional F [n], defined as,

EVext(r)[n] = F [n] +

∫︂
Vext(r)n(r)d

3r. (3.22)

The universal functional, F [n], is independent of the external potential, Vext(r). The conven-

tional definition of F [n], by considering the wavefunction, Ψ, that provides a given density,

is well known,

F [n] = ⟨Ψ[n]| T̂ + Û e |Ψ[n]⟩ = T [n] + Ue[n], (3.23)
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so that the Rayleigh-Ritz variational principle obtains the ground state density as

EGS[nGS] = min
n(r)

(︃
F [n] +

∫︂
Vextn(r)d

3r

)︃
= min

n(r)

(︃
T [n] + Ue[n] +

∫︂
Vextn(r)d

3r

)︃
. (3.24)

The constraint is the total number of electrons in the system, Ne, is preserved, for calculating

nGS by minimization of EGS[n(r)],

Ne =

∫︂
n(r)dr, (3.25)

and performing the minimization with the above constraint (in Eq. (3.25)), by using Euler-

Lagrange multipliers formalism

δ

[︃
EGS[n]− µ

(︃∫︂
n(r)dr−Ne

)︃]︃
=

∫︂
δn(r)

{︃
δEGS[n]

δn
− µ

}︃
dr = 0. (3.26)

The ground state functional can be represented as,

EGS[n] = E[n] = T [n] + Ue[n] + Eext[n]. (3.27)

T [n] and Ue[n] are the energy functionals related to the kinetic energy and electron-electron

interaction, respectively. However, the exact expressions of these functionals are unknown,

and so is the E[n]. The functional Eext is related to the external potential Vext(r),

Eext[n] =

∫︂
Vext(r)n(r)dr. (3.28)

Nevertheless, Eq. (3.27) can be rewritten using known quantities as,

E[n] = Ts[n] + EH [n] + Eext[n] + T [n]− Ts[n] + Ue[n]− EH [n]⏞ ⏟⏟ ⏞
Exc[n]

, (3.29)

where Ts[n] is the exact kinetic energy functional of the non-interacting electron system as

described in Eq. (3.10) with density n(r). Furthermore, all of the unknown contributions

related to many-body interaction, i.e., T [n] and Ue[n] along with known single-electron terms,

i.e., Ts[n] and EH [n] are incorporated into Exc[n] known as exchange-correlation functional.

EH [n] is the Hatree energy derived from the Hatree potential in the Eq. (3.14).

Kohn-Sham Equations

Now, according to the construction of Kohn and Sham [197], the minimization as per the

formalism of Eq. (3.26) of the ground state energy functional in Eq. (3.29) is given as

∫︂
δn(r)

{︃
δTs[n]

δn(r)
+
δEext[n]

δn(r)
+
δEH [n]

δn(r)
+
δExc[n]

δn(r)
− µ

}︃
dr = 0

∫︂
δn(r)

{︃
δTs[n]

δn(r)
+ Vext + VH + Vxc − µ

}︃
dr = 0

(3.30)
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Initial Guess, n(r)

Generate Effective Potential,
Veff [n] = Vext[n]+VH [n]+Vxc[n]

Solve Kohn-Sham equations,[
h̄2

2me
∇2 + Veff

]
ψi = ϵiψi

calculate the density,
n(r) =

∑Ne

i=1 |ψi|2

Converged n(r)?

Output: nGS(r),
EGS [nGS(r)], Forces, Stresses

Construct
new n(r)

and update

yes

no

Figure 3.1: The self-consistent cycle of Kohn-Sham equation for the calculation of ground
state electron density, nGS, and corresponding energy, EGS[nGS] with an initial guess of the
n(r).

with

Vxc(r) =
δExc[n]

δn(r)
(3.31)

is the exchange-correlation potential. From the Eq. (3.30), the mathematical construction of

Schrödinger equation is obtained for a non-interacting (electron) system similar to Eq. (3.10)

with electron density which minimizes the ground-state energy functional in terms of single-

particle wave-functions, ψi(r). This system is known as the Kohn-Sham (KS) equation,

ĤKSψi(r) =

[︃
− h̄2

2me

∇2
i + Veff (r)

]︃
ψi(r) = ϵiψi(r) (3.32)

with ϵi are the single-particle KS energies and an effective potential given by,

Veff (r) = Vext(r) + VH(r) + Vxc(r). (3.33)

The electron density for the KS one-electron formalism is the same as the Eq. (3.13). The

effective potential, Veff (r), is also the functional of the electron density. The one-particle

KS equation in Eq. (3.32) is solved self-consistently, as described in Fig. 3.1.
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3.1.3 Exchange-Correlation Functionals

The complexity of the many-body problem has been reduced by formulating a set of in-

dependent single-particle equations by the Kohn-Sham approach. In such formulation, the

formal definition of the exchange-correlation energy, Exc, and hence the corresponding po-

tential, Vxc, in Eq. (3.18) are not straightforward for the practical application. Since there is

no hint from DFT (KS equations) on how to construct the exchange-correlation functional,

its approximation is necessary.

Local Density Approximation

The simplest form of all functionals is the local density approximation (LDA) originally

proposed by the Kohn and Sham [197], with a uniformly varying electron density n(r),

which can be shown that [196],

ELDA
xc [n(r)] =

∫︂
eunifxc (n(r))n(r)dr (3.34)

where eunifxc (n(r)) is the exchange-correlation energy per electron of a spatially varying uniform

electron gas. The eunifxc (n(r)) term can be split into separate components exchange and

correlation, eunifxc (n(r)) = eunifx (n(r)) + eunifc (n(r)). eunifx (n(r)) can be evaluated in a simple

analytical form as,

eunifx (n(r)) = −3

4

(︃
3

π
n

)︃ 1
3

= − 3

4π

(9π/4)
1
3

rs
= −0.458

rs
(3.35)

where rs is the Wigner-Seitz radius given as (4π/3)r3s = n−1. An expression of correlation

part, eunifc (n(r)), of eunifxc is given as [198]

eunifc (n(r)) = −2c0(1 + α1rs)ln

(︄
1 +

1

2c0(β1r
1/2
s + β2rs + β3r

3/2
s + β4r2s)

)︄
, (3.36)

where

β1 =
1

2c0
exp

(︃
− c1
2c0

)︃
, (3.37)

β2 = 2c0β
2
1 . (3.38)

However, the analytical expressions of the Eq. (3.36) is known exactly in case of rs → 0 (high

density limit) [199] and in rs → ∞ (low density limit) [200]. All the coefficients are known

from the perturbation theory in high-density limit [199], and by accurate quantum Monte

Carlo correlation energies [201]. With this approximation, DFT can practically use LDA to

predict the properties. However, the LDA is useful only for the systems with slowly varying

density, i.e., homogeneous electron gas, beyond which other approximations are needed.

61



3.1 First-principles Calculations

General Gradient Approximation

The generalized gradient approximation (GGA) functionals have been brought upon for the

DFT simulations to improve further approximation. The expression for the GGA exchange-

correlation energy can be written as,

EGGA
xc [n(r)] =

∫︂
exc(n(r),∇n(r))n(r)dr. (3.39)

The additional incorporation of gradient corrections of density, ∇n(r), and higher spatial

derivatives is adapted to accurately treat the inhomogeneities of the real density. GGA

functional predicts better certain properties than LDA, such as bond lengths and binding

energies in the systems [198, 202]. Several GGA functionals have been developed in this

regard with many different variants of GGA [202–205].

3.1.4 Plane Wave Basis set

The Kohn-Sham wavefunctions can be expanded in various forms of the basis sets, e.g.,

atomic, Gaussian, plane wave, etc. The calculations of this thesis are considered with the

plane wave basis sets only, which are given as,

ψik(r) =
1√
Ω

∑︂

G

ci,k(G)ei(k+G).r, (3.40)

with G and Ω being the reciprocal lattice vector and unit cell volume, respectively, and

ci,k(G) are coefficients of plane waves, usually complex numbers. k is the wave vector which

satisfies the periodic boundary condition such that.

ψik(r) = ψi(k+G)(r) (3.41)

In practice, a sum over the reciprocal lattice vectors in Eq. (3.40) is not possible because they

are infinite in number. Nevertheless, the wavefunctions in realistic systems vary smoothly

at small scales, and hence for the largest G-vectors, the plane wave components become

negligible. Keeping this criterion, the larger G-vectors can be choosen within a specific

cutoff radius, and hence the sum can be truncated. This radius can be described regarding

the corresponding energy cutoff, Ecut,

Gcut =

√︃
2m

h̄2
√︁
Ecut (3.42)

It is, therefore, crucial to determine a suitable cutoff energy for the calculations with plane

wave basis sets, which is, in practice, system-dependent. Usually, a convergence test is

performed with the system’s total energy vs. increasing cutoff energy, Ecut, until the total

energy saturation is reached. In practice, the cutoff energies are 250-1000 eV depending on

the system and the type of pseudopotential used.
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Another quantity that needs to be treated is accurately sampling the Brillouin zone with

the finite number of k-points (as wave vector k is confined to the Brillouin zone). This finite

point sampling is always justified if the wavefunctions (plane wave basis sets) vary smoothly

w.r.t. wavefunctions. Like the cutoff energy, the number of k-points is also system-dependent

and must be determined via a convergence test.

3.1.5 Pseudopotentials

To deal with the rapid oscillations of electronic wavefunctions while interacting with the

nucleus at the origin (near the nucleus), the solving of the Kohn-Sham equation requires

very short wavelengths (shown wavefunction with dotted lines in Fig. 3.2). This results in a

very large cutoff energy of plane-wave basis and is computationally demanding. Apart from

the origin, the wavefunctions for the rest of the calculation cells do not oscillate rapidly;

hence, the computational power is pointless. Hence, the DFT code that uses a plane-wave

basis also uses pseudopotentials in contrast to all-electron calculations.

The pseudopotential method is formulated solely on the concept that the valence electrons

are responsible for the chemical bond while core electrons are relatively inert, for most of

the elements [206]. A new ionic pseudopotential has been constructed, considering inert core

electrons as the frozen state (confined in a closed shell) and combining with their nucleus.

Thus electronic wavefunctions are expanded with a set of pseudo wavefunctions (plane-

waves) of the valence electrons rather than the true wavefunction (see Fig. 3.2). There

are exceptional cases, such as Li or Na, where valence contains only a few electrons. In

such cases, it is essential to include semi-core electrons in the valence (or non-linear core

correction) to capture the interaction more realistically.

The transferability of the pseudopotentials must be reasonable and accurate enough to main-

tain the properties of pseudo wavefunctions. Figure 3.2 shows a schematic representation

of the transfer of all-electron wavefunctions and potential to the pseudo wavefunctions and

pseudopotential, where outside of the core radius, rc, the pseudo wavefunctions are identical

to the true wavefunctions (single particle all-electron). However, inside rc the all-electron

wavefunctions have been made smoother. Furthermore, with no nodes and fewer plane-

waves in pseudo wavefunction compared to true wavefunction, the computational demand

would reduce significantly. The core radius must be choosen small enough so that it does

not coincide with the region of the wavefunctions involved in chemical bonding. Thus, the

transferability of the wavefunction requires the following condition to hold within the core

region, ∫︂ rc

0

dr
⃓⃓
ψAE
i (r)

⃓⃓2
=

∫︂ rc

0

dr
⃓⃓
ψPS
i (r)

⃓⃓2
, (3.43)

which establishes that the total charge within the core region remains unchanged, despite

the corrections. Pseudopotentials formulated using this construction are known as “norm-
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Figure 3.2: The schematic plot represents the correction of the wavefunction and potentials
to convert them from all-electron (dashed-blue lines) to pseudo (solid red lines) forms [207].

conserving” pseudopotentials.

In the case of elements with relatively smaller core regions, they may have sharply peaked

orbitals by norm-conserving (hard) way of pseudopotentials formulation. Thus, the proper

convergence of a DFT calculation requires many plane-waves with such pseudopotentials.

This problem was addressed by the development of ultrasoft pseudopotentials by Vanderbilt

[208], with the relaxation of norm-conserving conditions inside the core region keeping the

condition outside of the core region the same as norm-conserving pseudopotentials. However,

despite the great flexibility, the charge deficit is a concern in such a formulation. This is

dealt with by the incorporation of an augmentation term localized in the core region, which

is added up to the density and given as,

n(r) =
∑︂

n

[︄
|ψn|2 +

∑︂

ij

Qij(r) ⟨ψn|βj⟩ ⟨βi|ψn⟩
]︄
, (3.44)

where Qij(r) are the augmentation functions localized in core, and βi are core-localised

projector functions.

Blöchl [209] developed the Projector Augmented Wave (PAW) method in 1994. The wave-

function in this formulation is reconstructed in the core region, rc, near to nucleus, which is

expanded in terms of the all-electron wavefunctions up to rc. Simultaneously, the all-electron

wavefunctions and pseudo-wavefunctions are added and subtracted, respectively, in the core

region, which needs corrections. The weights for the superposition localized within rc are
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determined by projectors. The full all-electron wavefunctions are stated as a combination

of the sum of smooth functions expanding through space plus the term corresponding to

localized contributions,

⃓⃓
ψAE
i

⟩︁
=
⃓⃓
ψPS
i

⟩︁
+
∑︂

i

(
⃓⃓
ψAE
i

⟩︁
−
⃓⃓
ψPS
i

⟩︁
)
⟨︁
0i|ψPS

i

⟩︁
(3.45)

where
⃓⃓
ψAE
i

⟩︁
and

⃓⃓
ψPS
i

⟩︁
are the all-electron wavefunctions and the pseudo wavefunctions,

respectively. |0i⟩ is a projector for each pseudo wavefunction localized within rc.

3.2 Molecular Dynamics: Quantum to Classical

Considering the computational demand, the computer simulation of an N -particle (ionic)

system to understand the characteristics of a physical system has a fundamental drawback.

This applies to limited accessibility of correlation lengths and relaxation times considering

the 6N classical degrees of freedom. The electronic degrees of freedom are decoupled by

separating the electron and nuclei motion using the adiabatic approximation (Sec. 3.1.1).

This section will give an overview of molecular dynamics (MD) by deriving the equation of

motion from the time-dependent Schrödinger equation. Thus, the detailed description of ab

initio molecular dynamics and classical molecular dynamics as a limiting case of the QM [210]

will be discussed. This formulation will help us understand the fitting of interatomic potential

in the later section to simulate the physical system classically using ab initio molecular

dynamics.

We start the discussion with the time-dependent Schrödinger equation,

ih̄
∂

∂t
Ψ({ri}, {RI}, t) = ĤΨ({ri}, {RI}) , (3.46)

in its position representation in concurrence with the standard many-body Hamiltonian as

represented in Eq. (3.2), by considering adiabatic approximation (as described in Sec. 3.1.1),

can be rewritten as,

Ĥ = −
∑︂

I

h̄2

2MI

∇2
I −

h̄2

2me

∑︂

i

∇2
i + V̂ n−e({ri}, {RI})

= −
∑︂

I

h̄2

2MI

∇2
I + Ĥe({ri}, {RI}).

(3.47)

This equation consists of the electronic part of Hamiltonian, Ĥe, with the clamped nuc-

lei. Hence, the potential terms can be written all together as V̂ n−e = V̂ ee + V̂ nn + V̂ ext.

The exact solution of this electronic Schrödinger equation is given by the Eq. (3.5) with

{RI} as a parameter in the equation by separating the electron and nuclei equations. The
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eigenfunctions of Ĥe are discrete and satisfies the orthonormality relation as
∫︂

· · ·
∫︂
ψ∗
k({ri}, {RI})ψl({ri}, {RI})d{ri} = δkl. (3.48)

The total wavefunctions from Eq. (3.3) w.r.t. every nuclear configuration and electronic

configuration can be expanded in terms of the complete set of eigenfunctions as [211],

Ψ({ri}, {RI}, t) =
∞∑︂

n=0

ψn({ri}, {RI})χn({RI}, t), (3.49)

where {χn} can be considered as the time-dependent expansion coefficients of electronic

wavefunctions, i.e., the amplitude with which nuclei are found at positions {RI} and time

t [192]. By separating the nuclear and electronic contributions and imposing the classical

limit on the nuclei, the dynamics of a quantum mechanical system can be treated [212] with

the formalism

Ψ({ri}, {RI}, t) ≈ ψ({ri}, t)χ({RI}, t)exp
[︃
i

h̄

∫︂ t

t0

dt′Ẽe(t
′)

]︃
, (3.50)

where the Ẽe in the phase factor is given as,

Ẽe =

∫︂
d{ri}d{Ri}ψ∗({ri}, t)χ∗({RI}, t)Ĥeψ({ri}, t)χ({RI}, t). (3.51)

In this case, the wavefunctions for nuclei and electrons are normalized separately to unity

at every instance of time t, i.e., ⟨ψ; t|ψ; t⟩ = 1 and ⟨χ; t|χ; t⟩ = 1 (so that at every instance

of time
∑︁∞

n=0 ⟨ψn; t|ψn; t⟩ = Ne and
∑︁∞

n=0 ⟨χn; t|χn; t⟩ = NI).

Now, inserting this total wavefunction in Eq. (3.50) into Eq. (3.46), multiplying by ψ∗

and χ∗ (from the left), and imposing the conditions for conservation of the total energy

d
⟨︂
Ĥe

⟩︂
/dt ≡ 0 yields,

ih̄
∂ψ

∂t
= −

∑︂

i

h̄2

2me

∇2
iψ +

{︃∫︂
dRχ∗({RI}, t)V̂ n−e({ri}, {RI})χ({RI}, t)

}︃
ψ,

ih̄
∂χ

∂t
= −

∑︂

I

h̄2

2MI

∇2
Iχ+

{︃∫︂
drψ∗({ri}, t)Ĥe({ri}, {RI})ψ({ri}, t)

}︃
χ.

(3.52)

This pair of coupled equations explain the fundamentals of the time-dependent self–consistent

field (TDSCF) method or a mean-field description of the system [213]. In this formulation,

the quantum mechanical expectation values over spatial degrees of freedom using wave-

functions of electrons and nuclei provide time-dependent effective potentials in which both

electrons and nuclei move quantum–mechanically. The formulation of classical mechanics

from quantum mechanics can be done by rewriting the corresponding wavefunction using

quantum fluid dynamics representation [214],

χ({RI}, t) = A({RI}, t) exp
[︃
iS({RI}, t)

h̄

]︃
, (3.53)
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with the real quantities, i.e., an amplitude factor A(> 0) and a phase, S. The Eq. (3.52)

can be rewritten for the nuclei with Eq. (3.53) after separating the real and imaginary parts

as [214],

∂S

∂t
+
∑︂

I

1

2MI

(∇IS)
2 +

∫︂
drψ∗({ri}, t)Ĥe({ri}, {RI})ψ({ri}, t) = h̄2

∑︂

I

1

2MI

∇2
IA

A

∂A

∂t
+
∑︂

I

1

MI

(∇IS)(∇IA) +
∑︂

I

1

2MI

(∇2
IS)A = 0.

(3.54)

In the classical limit h̄→ 0,

∂S

∂t
+
∑︂

I

1

2MI

(∇IS)
2 +

∫︂
drψ∗({ri}, t)Ĥe({ri}, {RI})ψ({ri}, t) = 0. (3.55)

The Eq. (3.55) is isomorphic to equations of motion in the Hamilton–Jacobi derivation [215]

∂S

∂t
+H({RI},∇IS) = 0. (3.56)

of classical mechanics with the classical Hamilton function, H({RI}, {pI}) = T ({pI}) +
V ({RI}), with potential influencing the movement of nuclei,

pI ≡ ∇IS, (3.57)

and with the Newtonian equation of motion ṗI = −∇IRI referring to Eq. (3.55) is written

as
dpI(t)

dt
= −∇I

∫︂
drψ∗({ri}, t)Heψ({ri}, t),

MI
d2RI(t)

dt2
= −∇IV

E
e ({RI(t)}).

(3.58)

Consequently, the effective potential, V E
e , derived from the quantum mechanical expectation

values, ⟨ψ|He|ψ⟩ (averaging He over the electronic degrees of freedom), and the function

of only the nuclear positions at time t is known as Ehrenfest potential. The quantities

V E
e represent the PES (similar as in Eq. (3.5)) and is the principal quantity to formulate

machine learning for material science. However, the motion of nuclei corresponds to the

equation of motion formulated by classical mechanics. In the above formulation, this opens

to a hybrid or mixed process because only the nuclei behave like classical objects, whereas

the electrons are still treated as quantum particles. This formulation is the basis of the

different types of ab initio molecular dynamics (AIMD). For example, in the limit of the

ground state energy formulation, i.e., V E
e ≡ E = min(⟨ψ|He|ψ⟩), the Ehrenfest potential

is the Born-Oppenheimer potential, and thus it is known as Born-Oppenheimer molecular

dynamics (BOMD).
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3.3 Classical Molecular Dynamics

The Newtonian equation of motion in Eq. (3.58) is solved for a global potential energy surface

with various initial conditions producing a bunch of classical trajectories. However, the exact

global potential energy surfaces in Eq. (3.58) derived from the electronic expectation value of

the QM can be approximated by truncation of the expanded many-body contributions [216,

217] for purely classical interaction,

V E
e ({RI}) ≈ V FF

e ({RI}) =
N∑︂

I=1

v1(RI)+
N∑︂

I<J

v2(RI ,RJ)+
N∑︂

I<J<K

v3(RI ,RJ ,RK)+ ... (3.59)

With the above formulation of global potential energy surfaces to V FF
e , a set of different in-

teraction potentials, {vn} given in Eq. (3.59), replaces the electronic degrees of freedom and

hence they are not treated explicitly in equations of motion anymore. Furthermore, the com-

bined quantum/classical approach has been reduced to solely classical mechanics, provided

the {vn} are determined. This potential is also called a forcefield (FF) or interatomic poten-

tial. Hence the idea of classical molecular dynamics (CMD) lies in the equation of motion

as in Eq. (3.58) with replaced potential as

MI
d2RI(t)

dt2
= −∇IV

FF
e ({RI(t)}) = FI (3.60)

where FI is the force acting on the Ith particle.

3.3.1 Algorithms of Molecular Dynamics

The basis of CMD’s simulation of a physical system is Newton’s equation of motion in

Eq. (3.60). However, implementing the MD simulation requires a series of algorithms such

as integration, boundary condition, consideration of appropriate ensemble and thermostat,

minimization procedure, and appropriate forcefield. In the following section, we discussed

the necessary procedures.

Phase Space and Ensembles

Unlike the QM, classical molecular dynamics need a different space for the description of

the conjugate momenta, pI , and the positions, RI , to describe the system in terms of clas-

sical Hamiltonian function, H({RI}, {pI}). The notion of phase space [218], under which

the positions and momenta (microscopic states of the system), are pictured as an axis of

a multidimensional space. Statistical mechanics plays an important role in describing the

phenomena of the system consisting of N particles that accommodate in 6N dimensions

of phase space. In equilibrium statistical mechanics, the phase space is partitioned by a

so-called partition function connected with the macroscopic conditions and appropriate av-

erages over the accessible states. The assembly of accessible states to the system by a given
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partition function represents an ensemble [218]. There exist various types of ensembles with

particular properties controlled and kept fixed, which are temperature (T ), pressure (P ),

volume (V ), total number of particles (N), total energy (E), or chemical potential (µ). The

MD simulations in this thesis were performed using either the (NV T )-ensemble with fixed

variables N , V , and T or the (NPT )-ensemble with fixed variables N , P , and T . These

ensembles are frequently used in MD simulations because they resemble typical experimental

conditions.

Numerical Integration and Timestep

To determine the force acting on each particle, the Eq. (3.60) can be numerically integrated.

The numerical integration schemes update the velocities and positions of the particles in the

system. An often used integration scheme for Eq. (3.60) was proposed by Verlet [219, 220].

It starts with updating velocities as,

vI

(︃
t+

∆t

2

)︃
= vI(t) +

1

2
aI(t)∆t (3.61)

where aI(t) = FI(t)/MI is the acceleration of particle I at time t. Then the new positions

at timestep t+∆t will be calculated as

RI(t+∆t) = RI(t) + vI(t+
1

2
∆t)∆t. (3.62)

Now, the force on the atoms at the position RI(t+∆t) will be calculated from the potential

energy and hence the aI(t+∆t). And finally, the velocities at t+∆t will be calculated as

vI(t+∆t) = vI(t+
∆t

2
) +

1

2
aI(t+∆t)∆t (3.63)

After this step, the kinetic and potential energy of the system will be calculated.

The most important consideration to be taken care of during the numerical integration

is to set a proper timestep (∆t), which determines the accuracy and convergence in MD

simulations. In practice, a smaller timestep ensures the higher accuracy of the simulations;

however, the computational costs are also higher. Conversely, the large timestep causes

instabilities in the simulation due to increased sampling of the configurational space. Thus,

to select the time step, a critical assessment is needed between instability and computational

costs, which can be achieved by the NV E simulation with a minimum energy fluctuation

w.r.t. different ∆t.

Boundary Conditions

Three kinds of boundary conditions can be considered in MD simulations: (i) vacuum, (ii)

reflecting wall, and (ii) periodic boundary condition (PBC). The boundary condition vacuum
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is the simplest one among all and imitates the gaseous phase, and it does not reproduce

the properties of condensed phase [221], i.e., the particles interact with the environment.

When the particle crosses a given wall value, it immediately reflects in a reflecting wall-type

condition, i.e., it is put back inside with the delta of the same wall value, and the sign of the

corresponding momentum component is flipped. Both of the above can be categorized under

non-periodic boundary conditions. The PBC refers to the infinitely many images in space for

the system placed in a simulation box [222]. In such a case, there are 26 nearest neighbors

for each simulation domain in three dimensions. PBC conserves the number of particles by

creating an image of the particle on the opposite side when it crosses the boundary of the

simulation box on one side. All simulations in this thesis employed the PBC.

Potential Energy or Force Field

As discussed earlier, Eq. (3.59) represents the pure classical interaction and replaces the

electronic degrees of freedom depending upon the {vn} values. The force fields depend

upon different properties and assumptions such as bond oscillations, bond angle, bonding

and non-bonding interaction, bond rotation (dihedral angles or torsional rotations), van

der Walls interaction, dipole interaction, surface interaction, repulsive interaction, magnetic

interaction, etc. All the above properties can be captured by a force field which is either

parametric or non-parametric. For instance, various force field models can be formulated

on different parameterization schemes, which depend upon the truncation of Eq. (3.59). If

the truncation is up to two orders, then this is known as two-body potential, and similarly,

three-body, angular many-body, etc., can be formulated by parameterization schemes of

the force field. In general, the non-parametric potential has no defined functional form to

parameterize; instead, it has a non-parametric mathematical form of descriptors/mapping,

which is systematically improvable using fitting optimization. The machine learning force

field is one of the examples of non-parametric techniques; they were used in this thesis to

simulate the material’s properties.

3.4 Machine Learning Interatomic Potential

With the increasing power and accessibility of computing resources together with precise

interaction models, MD simulations have become routine for large-scale simulations. A huge

computational cost is required to optimize the PES of the atom’s geometrical coordinates,

which can be explicated as an energy landscape in multi-dimensional space that directs the

kinetic evolution of atomistic systems and determines their properties. One key method of

accurately estimating the properties is through computationally demanding quantum mech-

anics. Thus, developing an appropriate force field for large-scale simulation with an effective

computational cost has been a keystone for chemistry and materials science. Furthermore,
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Rmin

Rmax

Figure 3.3: Representation of the cut-off radius to include the atoms of the neighbors from
atom i. The Rmin and Rmax are the cut-offs to add neighbor atoms at a minimum and
maximum radius

the transferability of the force field needs to be reasonably good, unlike the empirical (para-

metric) interatomic force field.

Though the simulation of materials with QM is computationally demanding, the input of

atomic coordinates, forces, and stresses to fit a systematically improved force field by machine

learning (ML) model has become a trend in the community. One of the first development

and usage of an ML approach to extract PES from the QM calculations, and thereby to

efficiently perform MD simulation by incorporating quantum effects was done by Behler and

Parrinello [223] and followed by many others [145, 224–233].

3.4.1 Moment Tensor Potential

Among all developed ML-based potentials, moment tensor potential (MTP) [145] are known

for their computational efficiency as they are local, and the system’s energy is represented as

a sum of atomic contributions. It describes the interatomic interactions accurately due to its

very flexible functional form. MTP-based machine learning interatomic potential (MLIP) is

based on the basis that the total interaction energy of a configuration can be defined as the

sum of all atomic contributions. Let us consider an atom i and ri=(ri,1....,ri,n) is a set of

many vectors from i to its neighbors inside the potential cut-off sphere (see Fig. 3.3), then

V (ri) is given as the linear characterization of each atomic contributions as [234],

V (ri) =
m∑︂

j=1

θjBj(ri) (3.64)
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θj is the set of adjustable coefficients found in the training stage, Bj are basis functions

defined in a certain functional form and constructed with a linear combination of moment

tensors, Mµ,ν(ri) [145, 235] and m is the number of functions in the basis. The construction

of the moment tensor descriptor, Mµ,ν(ri), is given as,

Mµ,ν(ri) =
N∑︂

j=1

fµ (|rij| ,Zi,Zj) r
⊗ν
ij (3.65)

where fµ (|rij| ,Zi,Zj) is the radial part of the MTP, which only depends on the distance

between atoms and i and j. Zi and Zj are the atomic types and “⊗” is the outer product. A

set of radial basis functions, φβ (rij), expands the radial part multiplied by a smooth factor

(Rcut − |rij|)2 as,

fµ (|rij| ,Zi,Zj) =
∑︂

β

c
(β)
µ,Zi,Zj

φβ (|rij|) (Rcut − |rij|)2 , (3.66)

where c
(β)
µ,Zi,Zj

is the radial coefficients of expansion of radial part. If the potential over N

atoms of the system, V (ri), is known, then the corresponding total energy can be given as,

E({RI}) =
N∑︂

i=1

V (ri) =
N∑︂

i=1

m∑︂

j=1

θjBj(ri), (3.67)

where {RI} is the configuration. Now, with the energy of the system, one can calculate the

force on jth atom, fj({RI}), as usual formulation,

fj({RI}) = −∇jE({RI}), (3.68)

along with the viral stresses, σ({RI}) w.r.t. the lattice vectors L,

σ({RI}) =
1

|det(L)| (∇LE({RI}))L

⊥

(3.69)

Quantum mechanical calculations, such as static DFT and/or AIMD, can be performed to

achieve the configurations, {RI}. Consider x is a set such collected configurations from

these calculations, denoted as a training set. For each {RI} in x contain the exact energy

(EQM({RI})), forces per atoms (fQM
j ({RI})), and components of stress tensor (σQM

j ({RI}))
derived from QM. These energy, forces, and stresses for a given configuration, {RI}, are
determined from Eq. (3.64)–(3.69) by a set of basis functions and the adjustable coefficients,

θj. Hence, the MTP energy error of fitting QM data for given configurations, {RI}, is given
by:

∆E({RI}) =
⃓⃓
E({RI})− EQM({RI})

⃓⃓
(3.70)

The minimum error, the fitting protocol of the MTP, is good enough to capture the AIMD

properties. The errors of forces and stresses can also be given in a similar way to Eq. (3.70).
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Then the values of θj and c
(β)
µ,zi,zj can be found through the minimization of the func-

tional [234]:

∑︂

{RI}∈x

[︄
C2

E∆E({RI})2 + C2
f

Ni∑︂

j=1

∆fj({RI})2 + Cs∆σ({RI})2
]︄
→ min, (3.71)

where CE, Cf , and Cs are the weigh factors (fitting weights) that allow one to determine

the relative importance of energy, force, and stress, respectively, and x is the entire training

set. The quality of MTPs is very sensitive to the nature of configurations in the training

set. The high flexibility of the MTPs limits their ability to extrapolate accurately; hence,

the training sets should cover the relevant phase space without any gaps.
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Chapter 4

Thermodynamic Properties and

Vanadium Diffusion in TiN

In this chapter, we have performed first-principles calculations to investigate the diffusion

of vanadium (V) and titanium (Ti) in the TiN matrix. The knowledge of the diffusion

behavior of V in TiN coatings is crucial for quantifying the rate at which V diffuses to form

a low friction contact layer (as V2O5) in tribological applications. We have employed a well-

known five-frequency model for fcc crystals to study the diffusion coefficient and hence the

activation barrier energies of V in TiN for the first time. Along with V diffusion, Ti self-

diffusion was also addressed. Innovatively, we explored the change in diffusion with applied

compressive external pressure, achievable in the machining process in which this class of

protective coatings is often employed. The results presented here are published in Surface

and Coatings Technology as our original work [1] and are reproduced below.

4.1 Introduction

The starting point for selecting particular coating material systems is often high hard-

ness [236]. TMNs are frequently used because of their excellent intrinsic properties, among

which good conductivity, high melting point, chemical stability, wear resistance, and high

hardness are notable. For these reasons, TMNs have been used as diffusion barriers, tribolo-

gical behavior, wear-resistant, and anti-corrosion coatings [3–7]. Titanium nitride (TiN) is

a hard and versatile ceramic material known to crystallize in the B1 structure, in which the

nitrogen mole fraction typically ranges between 0.37 and 0.50 [237]. Here, vanadium (V) has

a very prominent role since it forms an oxide (V2O5) at the coating surface, which reduces

friction and melts at relatively low temperatures, providing liquid lubrication [34, 35]. How-

ever, such improvements are of short duration due to the rapid release of the V, its quick

depletion from the entire volume of the coatings, and a consequent loss of the low-friction
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tribolayer after short operating periods [5, 30, 31, 34–36, 66]. Thus, it is desirable to control

the lubricant (i.e., V) transport rate to allow for low friction and wear over long operation

times [30].

Since the working conditions involve high temperatures and the nanostructured coatings

are often of a metastable nature, diffusion-driven processes become a crucial building block

that cannot be neglected in the coating design. There are a few studies on the diffusion of

ternary species in TiN, such as aluminum [238], silicon [239], copper [240–242], Ni [243], N

self-diffusion [244–246], and Ti self-diffusion [247, 248].

In this work, we calculated the V diffusion using a detailed ab initio study. In addition, we

also report data for Ti self-diffusion as a benchmark for comparison with literature data.

Moreover, since the protective coatings are exposed to high mechanical loads at the point of

contact during the operation (where the elevated temperature appears and, therefore, where

diffusion predominantly happens), we also address the impact of pressure on the diffusion

rate. Knowing such material data will allow accurate, knowledge-based optimization of the

coating microstructure for the close-to-application conditions and possibly controlling the

lubricant kinetics. By applying state-of-the-art quantum-mechanical calculations, we show

that a few GPa of compressive pressure decreases the diffusion rate similarly to a temperature

drop of ∼ 100 K.

4.2 Computational Details

The calculations in this work were carried out using the DFT as implemented in the Vienna

Ab Initio Simulation Package (VASP) [249, 250]. We used Perdew-Burke-Ernzerhof (PBE) [251]

parametrization of generalized-gradient functional (GGA) approximation for the electron–

electron exchange and correlation interactions. The pseudo-potentials used for each of the

elements, Ti, V, and N, treat any semi-core states as valence (Ti sv: 3s2 3p6 4s1 3d3; V pv:

3p2 4s1 3d4; N: 2s2 2p3). The ion–electron interactions were described using the projector

augmented-wave (PAW) method [209], with a plane-wave energy cut-off of 500 eV. Migration

barrier (see below) differences in diffusion of V in case of vacancy-mediated from supercells

with 64 and 216 lattice sites were below 10−2 eV, a value considered sufficiently accurate for

the present purposes, and hence a cell containing 64 atomic sites and representing 2× 2× 2

supercell of a conventional cubic B1 structure was used for all calculations. The correspond-

ing Brillouin zone was sampled with a 10 × 10 × 10 Monkhorst–Pack k-point mesh [252].

The Monkhorst–Pack k-point mesh of 5× 5 × 1 was used for grain boundaries. The Meth-

fessel–Paxton [253] smearing of 0.2 eV was applied. A convergence criterion of 10−6 eV (per

supercell) was used for the total energy during the electronic self-consistency cycles and for

ionic relaxations during structural optimizations, the total energy convergence of 10−4 eV

(per supercell) was applied.
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The thermodynamic properties of a diffusion jump’s initial and transition states must be

determined to calculate the jump frequencies, ωi (described in Sec. 2.6.2). Each initial

(stable) state is completely relaxed with respect to internal coordinates, volume, and shape.

The transition state corresponding to the saddle point along the minimum energy diffusion

path was determined using the nudged elastic band (NEB) [254] method implemented in

the VASP. The asymmetry arises for the jumps ω1, ω3 and ω4 between the initial and final

states (in the case of ω0 and ω2, both the states are equivalent and symmetrical in jump

geometry); hence it is important to optimize the number of images. We tested five images

versus three images versus single image NEB calculations for the migration barriers and

found the resulting barriers do not vary up to four decimal points. Considering the heavy

phonon calculations that needed to be performed, we eventually settled on using single-image

calculations for the rest of our calculations.

Vibrational free energies for all structures were employed to obtain temperature and pressure-

dependent free energy. The phonon frequencies were calculated using the finite displacement

method implemented in the Phonopy package [255]. In the interstitial calculations of V and

Ti, 5 and 9 volumes were considered, respectively, with 25 and 114 displacements for each

IS and TS. On the other hand, for vacancy-mediated cases of Ti and V, each used 9 volumes

with 114 displacements in IS, while TS had yielded, based on its actual symmetry, either 59,

114, or 220 displacements. The amplitude of displacements was 0.01 Å.

To compute the vacancy-mediated diffusion coefficients, the equilibrium metal vacancy con-

centration as a function of temperature was calculated with the DSM [150] as implemented

in the modified PyDII code [256], which uses the 0 K ground-state energies in the present

formulations of the code. The segregation energy of impurity inside a GB is calculated by

Eseg = Eimp
GB − Eimp

bulk (4.1)

where Eimp
GB and Eimp

bulk are the energies of impurity segregated at the GB and in the middle

of the grain (in the same supercell), respectively. The procedure to calculate the pressure-

dependent diffusion coefficient of the vanadium as an impurity atom and the Ti self-diffusion

coefficient in TiN was as follows: (i) We calculated the thermal lattice expansion of TiN us-

ing the QHA, fitted to the Birch-Murnaghan equation of state [257] for a dense mesh of

temperatures starting from 0 to 1500 K. This way, we could estimate for each temperat-

ure equilibrium volume (pressure of 0 GPa) as well as volumes corresponding to different

compressive pressures P (5, 10 and 15 GPa). The calculations of diffusion coefficients were

performed for 6 temperatures, namely 650, 800, 950, 1100, 1250, and 1400 K. (ii) At each

respective lattice parameter (different T , different P ), the total energy was calculated both

with and without defects. Those were vacancies on the Ti-sublattice, a V impurity atom,

and pairs of an impurity atom and a vacancy. Here, we have considered the effect of a defect

formation volume, i.e., after creating the above-mentioned vacancy, we structurally optim-
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ized each structure. This introduces a slightly different volume w.r.t. the pure bulk. The

lattice parameter and the free energy from these structures have been taken as the reference

of pure bulk structure from the Birch-Murnaghan fit. (iii) The thus obtained structures

were used as IS in the NEB method to find the TS. (iv) Vibrational part of the free en-

ergy, Fvib(T, V (P )), calculated using the harmonic approximation was added for each of

those structures by applying finite-displacement method (Phonopy [255]) on each of those

IS and TS, thus finally leading to temperature- and pressure-dependent Gb and Gbind (for

convenience we drop ∆, so that ∆G→ G), where the Gibbs free energy in Gi, i = b, bind, is

defined by Eq. (4.3). The procedure of estimating the diffusion coefficient for self-diffusion

and impurity diffusion using these free energies is described in Sec. 2.6.2.

VESTA [258] and pymatgen [259] packages were used to visualize and process the structures.

4.3 Results and Discussions

We employ ab initio calculations to study several key processes for bulk diffusion of V (im-

purity) and Ti (self-diffusion) through the TiN matrix in equilibrium and under compressive

isotropic stress, i.e., pressure. The pressure range (up to 15 GPa) is achievable, e.g., in ma-

chining processes at the contact point of work-pieces with material during cutting operations.

We start with discussing the barriers of individual processes at 0 K (Sec. 4.3.2), followed

by calculating Gibbs free energy surfaces G(T, V (P )) for various configurations (Sec. 4.3.3)

which finally lead to estimation of the bulk diffusion coefficients as functions of temperature

and pressure.

4.3.1 Defects

Point Defects

The vacancy concentration of Ti (vacTi) as a function of temperature was calculated using

the DSM method. This takes into account various point defects, such as vacTi and vacN,

anti-sites (TiN and NTi), and interstitials (IN and ITi). It has been shown before that the

concentration of vacancies (Ti or N vacancies depending on the off-stoichiometry x in TiNx)

is remarkably higher than the other defects [241]. Our motivation is to study metal diffusion

(Ti and V). Both Ti and V atoms in N-sublattice create enormous strain and hence exhibit

large formation energy (Ef ≫ 0). Therefore, we further consider only metal sublattice for

the vacancy-mediated mechanism.

Figure 4.1 represents the vacancy concentration on Ti and N sublattices calculated for the

temperature range 300–1500K. Here, we represent the N-vacancies to discuss the structural

and thermodynamical vacancies. The amount of Ti and N vacancies is identical. Based on the

comparison with data presented by Bochkarev et al. [242] for stoichiometric and N-deficient
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Figure 4.1: Concentrations of Ti (vacTi) and N (vacN) vacancies and Ti (ITi) and V (IV)
interstitials in TiN is calculated for the temperature range 300–1500K. The figure is repro-
duced from our original work [1].

TiN, we conclude that this indicates temperature effects generate the vacancies in the present

case. Here, we are not interested in the dependence of TiN stoichiometry on diffusion, which

was studied by Bochkarev et al. [242]. Instead, we use defect concentrations for stoichiometric

TiN to calculate the diffusion coefficient as a function of the applied pressure. To compare

the diffusion with the effect of defect concentration for different mechanisms (especially

vacancy-mediated (VM) on Ti sublattice and interstitial (I)), the defect concentrations also

of interstitial defects (both V and Ti) were calculated. The interstitial concentrations were

calculated using explicit formulae (CI = exp(−GI
f/kBT )) employing the formation energy

of respective interstitial defect. This simplification is justified by the fact that we deal with

a dilute limit of V solutes, which do not depend on other defect concentrations.

Since one of the objectives of this chapter is to estimate the change in diffusion, the results

discussed in Fig. 4.1 may depend upon the pressure as well. Hence, there will be different Cv

in the estimation of diffusion coefficient, D. To verify the following, let us take an example

of Cv(Ti) and elaborate on it in more detail. Since Cv is for the stoichiometric TiN in our

study, we would need to use formation energy of Schottky defects, Evac
f (Ti+N) for calculating

Cv(Ti) as:

Cv(Ti) = exp

(︃
−
Evac

f (Ti + N)

2kBT

)︃
. (4.2)

For 0K we get Ef (P = 0GPa) = 11.85 eV and Ef (P = 15GPa) = 11.97 eV for the Schottky

defect. Using these energies, Cv leads to order of 10−100 and 10−101 respectively for 0GPa

and 15GPa for 300K. For higher T , where the vacancy concentration becomes prominent,
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Figure 4.2: The relative change of Ti vacancy concentration w.r.t. pressure (i.e., Cv(0
GPa)/Cv(15 GPa)) as a function of T . The green line corresponds to Ti vacancies realized
by Schottky defects calculated using their 0K formation energy, orange and blue lines are
Ti vacancies (without stoichiometry constraints) calculated using 0K formation energy and
temperature-dependent Gibbs free energy, respectively.

e.g., 1500K, we get the same order of Cv, namely 10−21. The relative differences, i.e.,

Cv(P = 0GPa)/Cv(P = 15GPa), are plotted in Fig. 4.2.

In the above formula, Evac
f (Ti + N) should have been free energy of formation dependent

on pressure and temperature. Sadly, we do not have the data for temperature-dependent N

vacancy formation energies, which would require additional phonon calculations. To estimate

the error in neglecting the temperature dependence, we compare the concentration of Ti

vacancies calculated with 0K value of Evac
f (Ti) and with Gibbs free energy of formation of

Ti vacancy. At temperatures likely to be relevant for diffusion, e.g., above 800K, no matter

which of the above-mentioned estimations we take, the pressure-induced variation in Cv(Ti)

between 0 and 15GPa is less than an order of magnitude. Eqs. 2.69 and 2.75 from the

Sec. 2.6.2 (Chapter 2) suggest that this would result in a maximum one order of magnitude

difference for the diffusion coefficient, which is negligible in the light of variations shown for

the diffusion coefficient.

V Segregation at the GBs

To compute the segregation of V, various positions of the lattice have been inserted in only

Ti-sublattice for Kingery and Duffy-Tasker type Σ5 GBs (Fig. 4.3). We use the same lattice

constant as bulk, and the details of the construction of GBs are described elsewhere[260].

Popov et al. [260] showed by the DFT calculations that in the TiN GB slab, the Ti vacancies
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Figure 4.3: The relaxed supercells of two Σ5 grain boundaries with vacuum 10 Å (not shown
in the figure), (a) the Duffy-Tasker type, (b) the Kingery type. In both cases, the different
positions of V from bulk to grain boundaries can be identified by Z-axis labeling.

are the most stable as compared to nitrogen vacancies as well as Frenkel and Schottky defects

in the stoichiometric limit; hence, V is considered in Ti-sublattice only. Figures 4.4a and

4.4b show the segregation energy, Eseg, (calculated by Eq. (4.1)) for the V atom at different

sites for Duffy-Tasker and Kingery GBs. In Duffy-Tasker type GB, the segregation energy

became negative when the V atom gradually moved towards the GB region from the bulk.

For Duffy-Tasker and Kingery type GB, the region of GB from bulk is separated by the

blue-colored region in Fig. 4.4 and represented by the relaxed structure in Fig. 4.3. Since

the negative segregation energy provides the preferable segregation of V at the GB, i.e., V

prefers GB over the bulk in the Duffy-Tasker case. A similar trend can also be seen in the

Kingery-type GB for segregation energy. Unlike the Duffy-Tasker type GB, the Kingery

type has some positive values for Eseg near GB. However, the V prefers GB over the bulk in

the Kingery type as well (for Z-position between 18–19 Å in Fig. 4.4b). Fig. 4.6 shows the

equilibrium position of the interstitial predicted by the energy minimization of the structure

with different possible sites along GB (for both Duffy-Tasker and Kingery-type), which is

simillar to the predicted equilibrium position of Cu-interstitial by Tsetseris et al. [261]. This

equilibrium position and its symmetry equivalent were later used as the IS and FS of the

migration mechanism to find the diffusion migration energy along GB (see Sec. 4.3.2). For

both cases, the segregation of V is preferred in GB over bulk. The migration barriers for

both bulk and GB will be discussed in Sec. 4.3.2 to compare the preferable pathways of V
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Figure 4.4: Segregation profile of vanadium in grain boundaries, (a) the Duffy-Tasker type
and (b) the Kingery type.

diffusion in TiN.

4.3.2 Migration Barriers

The diffusion processes thoroughly investigated in this work are the interstitial (I) mechanism

the vacancy-mediated (VM) mechanism on the Ti-sublattice. However, there may also exist

other scenarios. For example, we also studied a number of migration pathways that involved

the exchange of positions of the trapped V atom with the neighboring N atoms and Ti atoms

(i.e., a direct pair exchange). However, those have been ruled out from any further analysis

primarily due to having extremely large migration barriers, Eb (values of > 12 eV). As per

the discussion in Sec. 4.3.1, the diffusion of V in N-sublattice is not possible. Frenkel pairs

with Ti or V atoms next to a metal vacancy represent unstable configurations and lead to

a spontaneous (barrier-less) recombination. Consequently, below, we report exclusively on

the VM and I mechanisms.

Let us start with discussing the interstitial diffusion mechanism for vanadium and titanium.

The most stable configuration for a V (and Ti) interstitial atom in an otherwise defect-

free TiN matrix—a center of a TiN void with the fractional coordinates (1
4
, 1
4
, 1
4
) in the

conventional unit cell—is shown in Fig. 2.3. An interstitial atom usually introduces local

lattice distortions by displacing surrounding atoms from their equilibrium positions. For

example, interstitial V displaces the neighboring N and Ti atoms by 0.035 Å and 0.412 Å,

respectively, whereas interstitial Ti causes even higher displacements of 0.087 Å and 0.478 Å,

respectively. Migration from one to a neighboring interstitial position proceeds through the

transition state (TS, semi-transparent atom in Fig. 2.3), i.e., the position in one of {100}
crystallographic planes with respect to which the initial and final positions are mirrored.

Distance of V in TS to the vicinal N and Ti atoms is 1.837 Å and 2.040 Å, respectively, and
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Figure 4.5: The Energy barrier for migration of V and Ti as an interstitial and vacancy-
mediated atom in TiN, each uses a single image to calculate the migration barrier. The path
of transitions for interstitial and vacancy-mediated mechanisms are described in Sec. 2.6.1,
respectively. The figure is reproduced from our original work [1].

that of Ti is 1.860 Å and 2.157 Å, respectively. The thus calculated (interstitial) diffusion

migration barrier (EI
b (P = 0, T = 0)) for V atom is 1.74 eV while for Ti atom one gets

1.41 eV (Fig. 4.5). Therefore, EI
b for the interstitial diffusion of V is slightly larger (0.3 eV)

than for the Ti atom.

The diffusion barrier equals the energy difference between the solute atom at the interstitial

site (minimum energy position along the interstitial diffusion pathway) and at the saddle

point (energy maximum). It consists of chemical and elastic strain contributions, whereas the

elastic energy due to the difference between local strains in these two lattice configurations

(i.e., vicinal Ti and N atoms are pulled apart by passing of the diffusing species) is presumably

dominant for interstitials. The difference in the strain magnitude is directly linked to the

change in the interatomic distances. The atomic radius of Ti (176 pm) is slightly larger

than V (171 pm) [262]. Results in Fig. 4.5 suggest that the larger the atomic radius, the

smaller the EI
b is in the case of the interstitial mechanism, which is somewhat counter-

intuitive: a hard-sphere model would suggest that a larger atom induce larger strain and

hence would lead to a higher diffusion barrier. However, the electronic structure (namely

the d states) plays an important role here: V has higher d-states occupancy compared with

Ti, which presumably leads to its lower compressibility and thus to a higher diffusion energy

barrier, a trend which was also observed in other systems [263–265]. But looking at the

results of certain other d-elements (Bochkarev et al. [242] describes ICu diffusion in TiN),

the I diffusion mechanism is likely to fall somewhere in-between the hard-sphere model and
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affected by electronic structures.

The second mechanism considered in this work is vacancy-mediated diffusion, and since we

are interested in metal species diffusion, we study diffusion on the Ti-sublattice. During

vacancy-mediated impurity diffusion (V) and self-diffusion (Ti), the “jumping” atom (V or

Ti) exchanges its position with an existing neighboring vacancy. The minimum energy path

for the migration on the Ti-sublattice is presented in Fig. 4.5. The barriers are higher than

in the interstitial case, and additionally, their relative magnitude is inverted: Evac
b = 4.31 eV

(Ti) which is 0.49 eV lower than Evac
b = 3.82 eV (V). As in the previous case, the migration

barrier arises from the same origins as explained above for the interstitial mechanism –

chemical energy and strain energy. In this case, however, the chemical part includes also a

penalty for breaking the bonds with the nearest neighbors. We speculate that the Ti–N bond

is stronger than V–N in the TiN matrix, corresponding to the fact that Ti is energetically

preferred on the Ti-sublattice over V. This is in line with the vacancy formation energies

at 0K: Evac
f (Ti) = 3.33 eV and Evac

f (V) = 1.87 eV. Therefore, to move a V atom (which

includes breaking V–N bonds) on the Ti sublattice is easier than moving a Ti atom (which

involved breaking Ti–N bonds), and consequently, the Ti diffusion barrier is higher than that

of V.

Overall, we report a higher diffusion migration barrier in the case of a vacancy-mediated

mechanism compared with the interstitial one. Therefore, one would tend to conclude that

the interstitial mechanism is dominantly based solely on the migration barriers. Nevertheless,

the complete energy account has to include also the energy needed to create a particular

defect, Gf . The energy of formation of an interstitial V atom is 6.87 eV, which is significantly

higher than the V vacancy formation energy, which is 3.14 eV (energies per single defect in a

2×2×2 supercell). Additionally, in the case of the VM impurity mechanism, also impurity-

vacancy binding energy needs to be considered. Therefore, discussing the migration barriers

alone may be misleading.

We also investigated the V migration along the GBs using the NEB method for Kingery

and Duffy-Tasker types. The distorted atomic structure of GBs after the introduction of

vanadium is expected, and it also alters the local migration pathways and associated energy

barriers for V jumps. We did not consider the jumping of the V atom from one GB channel

to another neighboring one, which causes a significant lattice distortion by pushing apart

Ti and N atom [260]. In both cases, the diffusion pathways are 1-D channels parallel to

the GB plane (interstitial positions) only. The migration pathways of the Duffy-Tasker and

Kingery type GB are shown in Fig. 4.6. As discussed above, V in the IS of the Duffy-Tasker

type GB alters the shape as shown in Fig 4.6a(II) when compared to Fig 4.6a(I). However,

in the TS state of the Duffy-Tasker, no distortion arises (see Fig 4.6a(III)). Similarly, in

the Kingery type GB, the stable IS structure does not introduce the shape change upon
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Figure 4.6: The lowest energy geometry of the GB (I) before insertion of V (II) IS of the V
diffusion, and (III) TS of the V diffusion, with front view and side view, for (a) Duffy-Tasker
type and (b) Kingery type

V insertion; however, it distorts by pushing apart the Ti atom (shown in Fig. 4.6b(II)).

The energy migration barriers of Duffy-Tasker and Kingery types are shown in Fig. 4.7.

The V insertion changes the shape of Duffy-Tasker, but the void of the GB remains almost

equivalent to the original. Conversely, the V insertion in Kingery-type costs energy in terms

of distortion. Hence, the migration barrier of V in the Duffy-Tasker type is lower than that of

the Kingery type (see Fig. 4.7). This indicates that the V atoms move faster in Duffy-Tasker

GBs compared to the Kingery type. This trend has also been shown for Ag atoms diffusion

in TiN elsewhere where [266].

In line with the motivation for this chapter, we further focus on the dependence of diffu-

sion barriers on applied pressure. Fig. 4.8a shows the pressure-dependent diffusion energy

barrier for the interstitial mechanism. Trends observed for EI
b as a function of pressure are

consistent with our previous discussion: since Ti has a larger atomic radius and higher com-

pressibility [264] compared with V, lattice stain has a vital impact on the EI
b of Ti, which

increases by ≈ 0.2 eV with increasing pressure from 0 to ≈ 23GPa. On the other hand,

there is hardly any impact on the EI
b of V interstitial diffusion. The migration barrier of the

VM-mechanism (Fig. 4.8b) increases with the pressure for both species, and the magnitude

of the increase is higher than in the interstitial diffusion case. This can be related to the fact

that Evac
b has a dominant contribution from bond-breaking and not from the energy that

arises from lattice strain. Obviously, the bonds stiffen with increasing pressure.

85



4.3 Results and Discussions

0.0 0.2 0.4 0.6 0.8 1.0
Reaction Coordinate

0.0

0.5

1.0

1.5

2.0

2.5

3.0
E b

 [e
V/

at
om

]

Duffy-Tasker
Kingery

Figure 4.7: The energy barrier for migration of V along the GB atom in TiN each uses a
single image to calculate the migration barrier. The path of transitions for each GB is shown
in Fig. 4.6.

4.3.3 Thermal properties

To calculate the diffusion coefficient, we need to estimate the temperature dependence of the

migration barrier, in addition to its pressure dependence. To do so, we first calculate the

temperature and pressure-dependent lattice constant, i.e., a(P, T ), and the corresponding

free-energy of both, the initial/final as well as transition state for a given a(P, T ) is used to

obtain Gb(P, T ).

The Gibbs free energy G(P, T ) is evaluated in the framework of the QHA:

G(T, V (P )) = E0(V ) + Fvib(V, T ) + PV , (4.3)

where E0(V ) is the total energy at 0K as a function of specific volume V , Fvib(V, T ) is

the vibrational Helmholtz free energy [267], and the PV term corresponds to the constant

hydrostatic pressure condition. The V (P ) expression in G(T, V (P )) highlights the fact that

we use volume to “control” pressure.

To benchmark our calculations, we discuss the (linear) lattice expansion coefficient (TEC),

α, as a representative of the thermal properties. The predicted values of linear TEC are sum-

marized in Tab. 4.1 for two reference temperatures, 0K and 300K. Also, the temperature-

dependent the TEC (Fig. 4.9a) exhibits excellent agreement with previously published ex-

perimental and theoretical values. Given that the obtained results for the TEC reproduce

the experimental data quite well, we use the corresponding theoretical lattice constants in

all subsequent calculations of defect formation, migration, and binding energies, as well as in
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Figure 4.8: Pressure dependent migration barriers of V (orange) and Ti (blue) for (a) in-
terstitial and (b) vacancy-mediated mechanisms in bulk TiN calculated using NEB at 0K.
Apart from V interstitial diffusion, all other cases exhibit significant variation of migration
barrier w.r.t. pressure increase. The figures are reproduced from our original work [1].

the calculations of vibrational frequencies at finite temperatures described in the Sec. 4.3.4.

To investigate the impact of pressure on diffusion, we also need pressure-dependent TEC,

shown in Fig. 4.9b.
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Figure 4.9: Thermal expansion of TiN. (a) Our calculated the TEC for equilibrium pressure
is shown to be in good agreement with previously published experimental [268, 269] as well
as calculated values [242, 270–272]. (b) The TEC decreases with increasing compressive
pressure. The figures are reproduced from our original work [1].

4.3.4 Diffusion Coefficient

This sub-section is devoted to predicting the impact of pressure on the diffusion coefficient

of solute-diffusion (V) and self-diffusion (Ti) in TiN with the two considered mechanisms.

We use the lattice parameters, free energies, correlation factors, and vacancy-concentrations

88



4.3 Results and Discussions

Table 4.1: Linear lattice thermal expansion, α, calculated for two different reference tem-
peratures (α1 at 300K and α2 at 0K). Comparison with the experimental values suggests
that α2 belonging to the reference temperature 0K provides better values.

P (GPa) α1 (10−5K−1) α2 (10−5K−1) Ref, α(10−5K−1)

0 1.1665 1.0620 0.935 [246, 273],
1.024 [274]

5 1.0125 0.9241
10 0.8958 0.8191
15 0.8055 0.7375

Cv, for a series of temperatures of 650, 800, 950, 1100, 1250, and 1400K to calculate the

diffusion coefficient corresponding to 4 values of pressures, namely 0, 5, 10 and 15GPa.

Figures 4.10 and 4.11 show the temperature variation of the diffusion coefficients computed

for different pressures for interstitial V diffusion (Fig. 4.10a), vacancy-mediated V diffusion

(Fig. 4.10b), interstitial (Fig. 4.11a) and vacancy-mediated Ti (Fig. 4.11b) self-diffusion in

TiN. To analyze our results, we use an Arrhenius equation for the diffusion coefficient D:

D = D0 exp

(︃
− Q

kBT

)︃
. (4.4)

Here, D0 and Q are the pre-exponential factors and diffusion activation energy, respectively,

determined from the linear fit of the ln(D) as a function 1/T . The Arrhenius parameters

corresponding to the various diffusion mechanisms are listed in Tab. 4.2 for pressures ranging

from 0 to 15GPa.

Finally, we plot the net-diffusion coefficient (see Fig. 4.12) by combining the two processes to

identify the dominant mechanism. The two mechanisms, interstitial and vacancy-mediated

mechanisms described above are active at the same time. The net diffusion coefficient is

then obtained by summing them up with respective weights [178]

Dnet = ΩvacDvac + ΩIDI , (4.5)

where Dvac and DI represent the diffusion coefficients of the vacancy-mediated diffusion and

interstitial diffusion, respectively. Ωvac and ΩI are Boltzmann weight factors of the diffusing

species via the vacancy-mediated (on Ti sublattice) and interstitial mechanisms, respectively,

defined as:

Ωj =

exp

(︃
−∆Gj

f

kBT

)︃

∑︁
k exp

(︂
−∆Gk

f

kBT

)︂ =
Cj∑︁
k Ck

, (4.6)

where j and k represent the two mechanisms (vacancy-mediated and interstitial), ∆Gj
f and

Cj are formation free energy and concentration of diffusing species j (substitutional impurity
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(a) Interstitial V diffusion
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(b) Vacancy-mediated V diffusion
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Figure 4.10: Arrhenius plot of the calculated diffusion coefficient for (a) interstitial V diffu-
sion and (b) vacancy-mediated V diffusion, as a function of temperature and applied external
compressive pressure. The figures are reproduced from our original work [1].
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(a) Interstitial Ti self-diffusion
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(b) Vacancy-mediated Ti self-diffusion
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Figure 4.11: Arrhenius plot of the calculated diffusion coefficient for (a) interstitial Ti self-
diffusion and (b) vacancy-mediated Ti self-diffusion in bulk TiN, as a function of temperature
and applied external compressive pressure. The figures are reproduced from our original
work [1].
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Table 4.2: Pre-exponential diffusion parameter, D0, and activation energy, Q, obtained from
the Arrhenius fit to the calculated diffusion coefficient D(T ) for various mechanisms and
applied compressive pressures, P .

Mechanism P (GPa) D0 (m2s−1) Q (eV)
Interstitial V 0 2.49× 10−2 0.86

5 2.14× 10−3 0.83
10 2.62× 10−4 0.79
15 5.16× 10−5 0.77

Vacancy-mediated V 0 0.34× 10−7 2.02
5 0.61× 10−7 2.09
10 1.13× 10−7 2.17
15 2.02× 10−7 2.25

Interstitial Ti 0 15.9× 10−6 0.81
5 4.91× 10−6 0.79
10 2.56× 10−6 0.78
15 1.75× 10−6 0.78

Vacancy-mediated Ti 0 1.83× 10−6 2.25
5 2.07× 10−6 2.32
10 2.18× 10−6 2.38
15 2.23× 10−6 2.44

for j =vac or interstitial atom for j = I). We note that in the case of Ti self-diffusion,

∆Gvac
f = 0.

4.4 Discussion

Let us start with discussing the different diffusion mechanisms active for V and Ti bulk

diffusion (Figs. 4.7, 4.10, and 4.11) and corresponding data in Tab. 4.2. At first sight, all

the values in Tab. 4.2 agree with the expected trends based on the migration barriers (cf.

Figs. 4.8a and 4.8b). The data suggest that the pressure-related trend in diffusion coefficients

for interstitial mechanisms (both Ti and V) is primarily determined by the pre-exponential

factor D0; activation energy Q is only weakly pressure–dependent, which reflects the trends

valid for the migration barriers (Figs. 4.8a and 4.8b). Consequently, the linear fits in the

Arrhenius plots exhibit very similar slopes, and external pressure causes mostly the vertical

shift of lnD as a function of 1/T . Contrarily, in the case of the VM mechanism, both D0 and

Q contribute to decreasing the diffusion rate with increasing pressure. Similarly to the 0 K

migration barriers (Eb) (cf. Figs. 4.8a and 4.8b), the activation energy (Q) (from Tab. 4.2)

increases with pressure, i.e., the effect of temperature on the diffusion process becomes more

pronounced.

In agreement with the trends in migration barrier (Sec. 4.3.2), VM-V diffusion is faster than
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(a) Net diffusion coefficient of V impurity diffusion.
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(b) Net diffusion coefficient of Ti self-diffusion.
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Figure 4.12: A comparison of net diffusion coefficients with its contributions related to
interstitial and vacancy-mediated mechanisms both for (a) V impurity diffusion and (b) Ti
self-diffusion in bulk TiN at P = 0GPa. The vacancy-mediated mechanism dominates the
diffusion rate. The figures are reproduced from our original work [1].

VM-Ti self-diffusion, and I-Ti is faster than I-V. Both Ti and V have radii almost identical

with the voids in the TiN host matrix. and interstitial species (V and Ti) are rarely affected

in terms of bonding mechanism. Hence the pressure does not much impact the activation

energy Q, whose contribution comes from breaking and forming bonds, in contrast to the

VM mechanism. Still, there remains a small contribution from stain energy. However, that
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is not the case for D0 as the rate of diffusion is dependent upon the available space, and

hence, with applied pressure, the space inside the lattice reduces gradually.

To identify the dominant mechanism (VM or I) for V, we plotted the net diffusion coefficient.

Considering the several orders of magnitude difference in D for those two mechanisms, it

becomes obvious that the net diffusion (Eq. (4.5)) is dominated by the vacancy-mediated

mechanism (Fig. 4.12). This is explicitly shown for P = 0GPa external pressure in Fig. 4.12.

To rationalize this observation, it is important to realize the weight factors in Eq. (4.6),

which depend exponentially on the defect formation energy of the solute atom (interstitial

or substitutional on Ti sublattice).

For example, the formation energy of the V substitution atom in Ti sublattice is by 3.61 eV

(at room temperature) smaller than that of interstitial V, eventually leading to many orders

of magnitude lower concentrations of interstitials than vacancies (Fig. 4.1), and hence making

the V interstitial a very rare defect. The same holds true also for Ti interstitials and vacancies

(there is no binding energy factor in the case of Ti self-diffusion). This huge difference in

the availability of the defects, which facilitate the individual diffusion mechanisms, leads to

the fact, that Dnet is almost identical to the D of the vacancy-mediated mechanism.

From the defects point of view, the interstitial is ruled out due to the argument of their

availability in the microstructure. However, the GBs can be inevitable in such cases. The

migration energy of the VM for V is 3.82 eV, and that of GB (for Duffy-Tasker) is 1.46 eV.

The GBs possess large spaces and do not need additional vacancies for diffusion. Hence,

comparing the VM and GB migration energies can provide a basis for the preferred mech-

anism as GBs. However, due to computational demand, the diffusion coefficient of the GBs

is not presented here.

Finally, it is useful to compare our results for V or Ti self-diffusion in TiN with experimental

findings and/or previous theoretically reported values in the literature. In the experiment,

the value of D depends directly on the concentration of point defects, which is considered in

our simulation. However, no experimental value of the Ti self-diffusion rate is available in the

literature. Theoretically, the value of Ti self-diffusion as a vacancy-mediated case has been

reported by Gambino et al. [247]. To assess the plausibility of their results, they compare

the results with N self-diffusion in TiN from Ref. [246]. They validated their findings by the

argument that the Ti jump rate was lower than that of N, i.e., the metal vacancies in TMNs

are known to be less mobile than N vacancies. Sangiovanni [248] also reported the N and Ti

vacancy migration, which agree well with our results: they obtained 3.83 eV and 4.26 eV for

N and Ti vacancy, respectively, clearly showing the faster N vacancy migration than that of

Ti. However, their reported value of the activation energy (3.78 eV) is different from that

of ours (2.25 eV). This mismatch is likely to arise from the following: (i) the equilibrium

vacancy concentration which was in both previous cases fixed to ∼ 1% [247], [246] unlike the
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Figure 4.13: (a) High-angle annular dark field (HAADF) transmission electron microscopy
(TEM) cross-section of the sample after vacuum annealing at 700◦C for 30 min. The layer
compositions of the as-deposited sample are indicated on the left. Contrast is mainly Z-
sensitive and shows areas of higher density in brighter shades. Arrows indicate potential
N-rich grains/regions. (b) electron energy loss spectroscopy (EELS) elemental maps of Ti,
V, Si, and N in the region outlined in (a)

temperature-dependent Cv in our case, and (ii) the temperature range for their study is close

to the melting temperature, whereas we study up to a maximum of 1400K. Nevertheless, if

we compare 0K migration barriers (from NEB), similar values are obtained both by Gambino

et al. [247] and Sangiovanni [248] (4.26 eV) as well as by the present study (4.30 eV).

Not only are there no data for V, but there are practically no data on the diffusion in

TiN available in the literature to compare. Also, for the Ti interstitial mechanism, we end

up with the same problem. However, there are a few results available for other elements

(e.g. Al [238] and Si [239]) as well as for the same 3d group element, e.g., Cu diffusion

in TiN [240–242] which allow for extracting general trends of the activation energy and

the diffusion coefficient as in our study. For instance, the energy barrier obtained (for

equilibrium cases) for interstitial-Ti, V, and VM-Ti, V in this work are 1.41, 1.74, 4.31,

3.82 eV, respectively. Likewise, the barrier for the interstitial Cu diffusion has the value

1.52 eV and that of VM-Cu diffusion on Ti sub-lattice 2.81 eV [242]. Looking at the VM

mechanisms (where impurity atom has proper bonding with host), 0K migration barrier has

a pattern in decreasing order with increasing in atomic radius and hence decreasing d-shell

(Cu: [Ar]3d104s1, V: [Ar]3d34s2, Ti: [Ar]3d24s1). Although such analysis can be performed

using electronic structure calculations, it is beyond the scope of this study. Again the

pre-exponential factor, D0 of Cu bulk diffusion in Ti sub-lattice reported by Bochkarev

et al. [242] is 3.8 × 10−4m2s−1. In the present work, D0 reported for 0GPa are 1.83 ×
10−6m2s−1 and 0.34 × 10−7m2s−1 for Ti and V in Ti-sublattice respectively. The value
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Figure 4.14: EELS elemental concentration profiles in film thickness direction for Ti, V, Si,
and N for the elemental maps presented in Fig. 4.13(b). Some artifacts originating from
quantitative EELS analysis have been removed from the profiles for better clarity.

of comparison for only vacancy-mediated mechanism is the consequence of dominance of

the mechanism in the plot of net coefficient. From the following comparison of the pre-

exponential factor (see also Tab. 4.2), migration barrier (see Fig. 4.5), and the diffusion

coefficient (see Figs. 4.10, 4.11), V and Ti is slower in diffusion than Cu in TiN. Though, no

diffusion study of V in TiN by experiment is performed, Muehlbacher et al. [240], for instance,

have performed a detailed study combining high-resolution TEM, atom probe tomography

(APT), and numerical calculations, reporting on Cu diffusion across different thin TiN films.

They show that the GBs of a film exhibiting a nanocrystalline columnar microstructure are

the preferred diffusion pathways for Cu, while diffusion across a monocrystalline film could

not be detected. Our observations of the V/TiN interface using TEM (shown in Fig. 4.13)

and EELS (shown in Fig. 4.14) bring a similar picture, as V was only seen to migrate into

TiN along GBs, while the TiN grains remained free of V. This is along our calculations, along

with the high diffusion coefficient of, D, of the vanadium. Also, the compressive pressure

impacts diffusion, which is, however, less significant in comparison to temperature.

4.5 Conclusions

The main conclusions can be summarized as follows:
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• Vanadium diffuses preferably through the GBs of TiN.

• The Interstitial mechanism exhibits much smaller migration barriers than the vacancy-

mediated mechanism.

• However, the interstitial diffusion leads to much smaller mass transport than the

vacancy-mediated one, as a consequence of the high abundance of vacancies compared

with the interstitial defects. This is a consequence of the different formation energies

of those two defects.

• Vanadium impurities diffuse much faster than titanium matrix atoms.

• Compressive pressure generally decreases the diffusion rate. This effect is much weaker

than the impact of temperature, and primarily for the interstitial mechanism, com-

pressive pressures up to 15GPa have negligible effect.

Apart from the fundamental (methodological) message, our results also provide basic mater-

ial data that will be used for the knowledge-based design of novel tribological coatings with

controlled vanadium out-diffusion.
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Chapter 5

Unravelling the Change in Lattice

Parameter in TiSiN due to Deposition

Pressure by DFT calculations

This chapter provides an overview of the DFT calculations explaining an experimentally

derived hypothesis regarding the variation of lattice parameters with deposition pressure

in TiSiN solid solution. The observed phenomenon has three possible explanations: (i)

different at.% of Si in metal sublattice, (ii) formation of a nanocomposite, (iii) formation of

vacancies in either sublattice. We employed 0 K DFT calculations and analysis to unravel this

hypothesis. Our co-workers performed all the deposition and characterization experiments.

The theoretical contribution of the joined work is reproduced here in detail. We only use the

experimental results to justify the motivation of this chapter. The work will be submitted

as a peer-reviewed article by our coworker with our contribution.

5.1 Introduction

Due to their beneficial properties, such as high hardness and excellent thermal and oxidation

stability [47, 48, 53, 54, 56, 57, 81, 275–280], Ti1−xSixN coatings are commonly used for severe

cutting applications [281]. The excellent properties of Ti1−xSixN coatings originate from their

nanocomposite structure, consisting of a nanocrystalline fcc-Ti(Si)N phase embedded in an

amorphous (a) SiNx tissue phase [47–52].

No stable ternary phase of Ti1−xSixN appears in the phase diagram [282], hence fulfilling the

prerequisites for the formation of a nanocomposite (nc). The self-organized nanocompos-

ite results from thermodynamically driven segregation of constituents with limited solubil-

ity [283], proposed for designing materials with high hardness by Vepřek and Reiprich [49].

This is proved by Vepřek et al. [49, 50, 284, 285] by selecting Ti1−xSixN as a model coating.
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They used PACVD to synthesize Ti1−xSixN coatings and observed a nanocomposite struc-

ture of nanocrystalline TiN in an a-Si3N4 matrix, which showed remarkably high hardness.

However, the nc-TiN/a-Si3N4 was even reported in earlier works with both by CVD (nano-

crystalline TiN dispersed in an a-Si3N4 matrix) [286] and by applied magnetron sputtering

deposition (nanocrystalline TiN embedded in an a-SiNx) [47, 278, 287–290] However, Vaz

et al. [278] observed a significant influence of the deposition parameters on the structure.

They observed the fcc-Ti1−xSixN solid solution phase along with the Si-free fcc-TiN phase.

For high Si contents, they noted the formation of a-SiNx grain boundary phase. Moreover,

they found only fcc-Ti1−xSixN solid solution grown without additional ion bombardment

and low mobility of the coating forming species. Again, they found evidence of coating with

high hardness (up to ∼ 54 GPa) synthesized at higher deposition temperatures, ascribed

to more efficient phase segregation (NC-TiN and a-Si3N4) at higher temperatures. Bartosik

et al. [275] suggested a metastable solid solution fcc-Ti1−xSixN (solubility limit of 10 at.%

Si) along with Si-free nanocrystalline TiN (similar to Vaz et al. [278]) at room temperature

and a low bias voltage (in the sputter deposition of TiSiN coatings with Si contents between

5 and 13.8 at.%). They even claimed the nc-TiN/a-SiNx in higher Si contents. The kinetic

limitations during growth in combination with ion bombardment result in the formation of

a metastable Ti1−xSixN solid solution, with hardness values up to 45 GPa, are shown by

cathodic arc evaporation (CAE) [52]

The investigation of the CAE (Ti1−xSix)Ny coatings with 0 ≤ x ≤ 0.20 and 0.99 ≤ y ≤
1.13 showed both single phase fcc solid solution and nanocomposite structure [291]. The

composition limit of the coatings with x ≤ 0.09 has shown a single-phase solid solution,

whereas x > 0.09 exhibits nc-TiN bundles separated by (semi-)coherent metastable SiNx.

They only observed an a-SiNx phase fraction after annealing. With the CAE TiSiN coatings

(with Si contents between 3.3 and 6.0 at.%), the nanocomposite structure is observed for

even lower Si contents [291]. Several studies [48, 280, 292, 293] report the presence of

a nanocomposite structure consisting of nanocrystalline Ti(Si)N and a-SiNx for the CAE

TiSiN coatings; however, the elemental compositions and deposition parameters in all these

studies are different. Despite the investigation of the influence of the bias voltage [293] and

the N2 partial pressure [292] on the structure and properties of the CAE TiSiN coatings,

the effect of the variation of deposition parameters on the nanostructure and corresponding

phase composition in detail is unclear.

Since the influence of the deposition pressure on the microstructure and phase composition

is unclear, in this chapter, we, by DFT calculation and analysis, explained the effect of

N2 partial pressure on the experimentally deposited coatings (grown in pure N2 atmosphere,

using different partial pressures also grown in N2 and Ar atmosphere), and derived hypothesis

of the variation of lattice parameters due to incorporation of Si into a Ti(Si)N solid solution

and the vacancies. The calculated quantities are compared with relevant experimental results
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for prove the hypothesis.

5.2 Computational Details

The structures for which the vacancy formation energy (Ef ) and lattice parameters calcu-

lations is the fcc B1 structure with metal- and N-sublattices, each having 32 atoms. In all

the structures, the composition of (Ti,Si)N has been achieved by a random distribution of Si

atoms on the metal sub-lattice by the SQS method to simulate random solid solutions [294].

The (mono-)vacancy formation energy, Ef , is estimated by,

Evac
f = Ei − E0 + µi (5.1)

where E0 is the energy of the initial structure (i.e., starting configuration), and Ei is the

total energy of the final structure (initial structure with one Ti- or Si- or N-vacancy). The

energy of the formation of the system from its elements is calculated by,

∆Ef (Tin1Sin2Nn3) =
Etot(Tin1Sin2Nn3)− n1µTi − n2µSi − n3µN

n1 + n2 + n3

(5.2)

where Etot(Tin1Sin2Nn2) is the total energy per formula unit of a given compound, n1, n2, n3

are the number of Ti, Si, and N atoms in the supercell, and µi, in both Eqs. 5.1 and 5.2,

is the chemical potential of the elements, Ti, Si, and N in their elemental reference phase

(their stable solid structure, i.e., hcp-Ti, fcc-Si, molecular-N2), which is conventionally set

equal to the energy-per-atom. In case of vacancy, µi correspond to missing atoms.

The calculations in this work were carried out using the DFT as implemented in the VASP [249,

250]. We used the PBE [251] parametrization of the GGA for the electron-electron exchange

and correlation interactions. The pseudo-potentials used for each of the elements, Ti, Si,

and N, treat any semi-core states as valence (Ti sv: 3s2,3p6,4s1,3d3; Si: 3s2,3p2; N: 2s2,2p3).

The ion-electron interactions are described using the PAW method [209], with a plane-wave

energy cut-off of 500 eV. The corresponding Brillouin zone was sampled with a 10× 10× 10

Monkhorst-Pack k-point mesh [252]. The Methfessel-Paxton [253] smearing of 0.2 eV was ap-

plied. A convergence criterion of 10−6 eV (per supercell) was used for the total energy during

the electronic self-consistency cycles, and for ionic relaxations during structural optimiza-

tions, the total energy convergence of 10−4 eV (per supercell) was applied. The cells were

relaxed regarding size, shape, and atomic positions for defect-free structures and structures

containing vacancies. All our calculations are treated as non-magnetic.

5.3 Results and Discussions

The elemental compositions of TiSiN coatings determined by elastic recoil detection ana-

lysis (ERDA) (see Table 5.1) have been deposited by cathodic arc deposition from powder
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Deposition gas Total pressure Ti[at.%] Si[at.%] N[at.%] Si/(Si+Ti)
N2 0.7 Pa 40.3 6.6 52.5 0.14
N2 3.5 Pa 39.5 7.6 52.3 0.16
N2 7.0 Pa 39.0 7.7 52.8 0.16

N2/Ar 3.5 Pa 42.9 7.3 49.3 0.15

Table 5.1: The elemental compositions of the four TiSiN coatings as determined by
ERDA/RBS. The coatings grown in pure N2 atmosphere are slightly overstoichiometric
concerning N, which is not the case for the coating grown in mixed N2/Ar atmosphere.
The

N2 7.0 Pa

N2 3.5 Pa

N2 0.7 Pa

N2/Ar 3.5 Pa

N2 3.5 Pa

Figure 5.1: X-ray diffractograms comparing the TiSiN coatings synthesized (a) in pure N2

atmosphere at different pressures and (b) in pure N2 and mixed N2/Ar atmosphere at the
same total pressure of 3.5 Pa. Our co-workers do these measurements.

metallurgically produced targets. The coatings grown in pure N2 are slightly overstoichiomet-

ric in N and slightly higher in Ti content for the coating grown in mixed N2/Ar atmosphere.

Fig. 5.1(a) shows the X-ray diffractograms of powders (the coated mild steel foils were dis-

solved to obtain coating powders) of the three coatings grown in a pure N2 atmosphere, with

peak positions that can be assigned to fcc-TiN, shown as dashed lines. Moreover, no crys-

talline TiSix or SiNx phases can be detected, and this means that Si has to be incorporated

in a TiSiN solid solution and/or forms an amorphous phase. Furthermore, a higher lattice

parameter is observed for the coating grown at a total pressure of 3.5 Pa in mixed N2/Ar

atmosphere than in comparison to pure N2, shown in Fig. 5.1(b).

We used the DFT calculations to unravel the decrease in lattice parameters (4.23 → 4.21 Å)

with increasing N2 partial pressure (0.7 → 7.0 Pa) and higher lattice parameters in N2/Ar.

The lattice parameters of all TiSiN coatings are lower than the standard literature value

for TiN (4.24 Å [295]). This leads to a hypothesis, which might indicate the formation of

a TiSiN solid solution but could also stem from the presence of defects, such as vacancies.

Hence, the vacancies were also introduced to test this hypothesis along with the different

at.% of Si.
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Figure 5.2: Lattice parameter as a function of the Si/(Si+Ti) ratio for TiSiN determined
by DFT calculations. With the introduction of vacancies, the lattice parameter decreases,
where “vac single” stands for one Ti vacancy out of 64 atoms (32 on the metal sublattice),
“vac double” means two Ti vacancies out of 64, and so on. The red-shaded regions are
experimentally determined lattice parameters.

5.3.1 Lattice Parameters

To verify the experimentally derived hypothesis, we discussed the calculated lattice para-

meters of structures with a different at.% of Si atoms. The blue curve, in Fig. 5.2, shows

the effect of Si incorporation into bulk TiN to form Ti1−xSixN solid solutions (without any

defects). With increasing at.% of Si, there is a decrease in the lattice parameter. This means

that in TiN, the Ti sublattice is gradually occupied by the Si, causing the contraction of the

lattice parameter due to the smaller atomic radius of Si as compared to Ti. This might be

the indication in forming a TiSiN solid solution as the lattice parameter of calculated results

with high Si content (in TiN) is compared with the experiment-measured lattice parameters.

The experiment confirms the lower lattice parameters (4.23 Å) than fcc-TiN (4.24 Å) in the

as-deposited state. Hence, to describe a further decrease in the lattice parameter, defects

were introduced. This will also provide a clear picture of whether the formation of TiSiN solid

solution is a reason for the decrease in lattice parameters. The curves (except the blue line,

i.e., stoichiometric defect-free phase) in Fig. 5.2 show the evolution of the lattice parameter

with increasing Si/(Si+Ti) fraction considering up to 4 Ti vacancies out of 64 atoms (32 on

the metal sublattice). Only metal (Ti) vacancies were considered since the ERDA results
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5.3 Results and Discussions

(Tab. 5.1) do not indicate any N deficiency. For completeness, N interstitials and Frenkel

pairs, both in Si and Ti environments, were considered but were not added to Fig. 5.2.

However, these defects will not provide insight into our understanding of decreasing lattice

parameters since they all resulted in a significantly increased lattice parameter. For example,

our calculation reveals the lattice parameters for Si, Ti, and N with Frenkel pairs formed in

a Si-environment are increased by 2.02%, 2.14%, and 1.22%, respectively, compared to the

perfect phase. There is a further decrease (w.r.t. bulk) in the lattice parameter with the

introduction of vacancies, which remains true for the Si/(Si+Ti) ratio with vacancies.

The experimentally determined lattice parameters of the four TiSiN coatings (Fig. 5.1) and

the Si/(Si+Ti) ratios of the coatings (Tab. 5.1) lie within the red shaded region parallel to

y-axis and x-axis, respectively, in Fig. 5.2. The calculations indicate that only the defect-free

phase significantly lies within the red-shaded experimental region. Hence, the presence of

vacancies is very unlikely in the structure and is ruled out as a possibility for variation of

lattice parameters. Hence, for the variation of lattice parameter, either Si must be present in

the as-deposited state as a TiSiN solid solution, or there is a formation as a nanocomposite

TiN/a-SiNx.

5.3.2 Influence of Si-incorporation

The energy of formation (calculated according to Eq. (5.2)) provides the information for the

stability of the TiSiN system. All the compositions related to Si/(Si+Ti) ratio will only

be stable if the energy of formation is negative, providing the exothermic condition of the

structure formation (∆Ef < 0). Figure 5.3 shows the energy of formation of the system

TiSiN, ∆Ef , considering perfect (no vacancy) and structure with a single vacancy, plotted

over the Si/(Si+Ti) ratio for different N2 availabilities. This can differ depending upon

specific experimental conditions, e.g., higher or lower N2 partial pressure. In the Eq. (5.2),

considering the condition of upper limits, µN − µN(N2) ≤ 0 with µN = 1
2
EN2 , is called the

N-rich condition and more negative values of µN is the N-poor conditions [296–298]

The situation of N2 availabilities in Fig. 5.3 is to simulate the difference between deposition

in pure N2 (N-rich) and mixed N2/Ar (N-poor) atmosphere. For N-rich conditions (lower-

most curves in Fig. 5.3), the relative stability of the TiSiN system gradually decreases (less

negative ∆Ef ) with an increase in Si-content, with a similar trend for both the structures

with or without vacancies. This indicates increased Si contents (Si incorporation), and the

system stability decreases, i.e., less Si content is more stable. This means the more the Si

incorporation may lead to phase separation, which can only be estimated by the mixing

enthalpy. We do not consider the mixing enthalpy in our calculations. The separation of

the solid solution to Ti(Si)N and a-SiNx regions is detected from the scanning electron mi-

crograph shown in Fig. 5.4. The above trend of formation energy vs. Si/(Si+Ti) fraction
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Figure 5.3: Energy of formation for bulk TiSiN and considering a single Ti vacancy for
different N2 availability.

is similar to any amount N2 availabilities, i.e., all the lines in Fig. 5.3 have a similar slope.

However, for all these cases, the bulk systems with a lower value of the Si/(Si+Ti) ratio are

relatively more stable than the systems with vacancy, which is indicated by the decoupling

of the red and blue curves. This becomes more prominent in the case of N-poor conditions,

even in the higher range of the Si/(Si+Ti) fraction. The Ti-vacant TiSiN systems can be

a) N2 3.5 Pa b) c) N2/Ar 3.5 Pa

Figure 5.4: (a) Higher magnification of the coating grown at 3.5 Pa in pure N2, showing
crystalline and amorphous regions. (b) Fast Fourier transformation (FFT) and inverse FFT
of the region marked in (a). (c) Higher magnification of the coating grown at 3.5 Pa in a
mixed N2/Ar atmosphere, also showing crystalline and amorphous regions.

compositionally considered Si-rich and N-rich compared to bulk TiSiN. The relative stability

of bulk TiSiN compared to Ti-vacant TiSiN can be attributed to the following: (i) fcc-TiN

prefers the N-poor (leads to the formation of fcc-Ti(Si)Nx) condition, and (ii) Si prefers
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N-rich conditions (Si3N4 phase). At the uppermost curves (N-poor/Ar-rich condition) in

Fig. 5.3, the energy of formation, ∆Ef , becomes positive at ∼ 0.075 of Si/(Si+Ti), indicat-

ing the instability of the TiSiN system. This refers to the system with less Si-incorporation

being stable in N-poor conditions. Hence, with the high Si content at N-poor condition, the

solid solution Ti1−xSixN is not stable anymore. This leads to separation of Ti1−xSixN solid

solution (shown in Fig. 5.4).

5.3.3 Insight from the Mobility
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Figure 5.5: (a) The vacancy formation energies, (b) migration energy barriers, and (c) the
activation energies of the species Si, Ti, and N in the system (Ti0.94Si0.06)N.

To test the experimentally derived hypothesis of Si-incorporation, we calculated the vacancy

formation energy (Ef ), diffusion migration energy barrier (Eb), and activation energy (Q) of

all the species of TiSiN. The system for these calculations is chosen with a lower Si/(Si+Ti),

with which the lattice parameter and stability are calculated in the previous sections. The
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structures with a higher Si/(Si+Ti) ratio will have a higher tendency to decompose, as

described in the previous section. Hence, we select the TiSiN system with 30 Ti, 2 Si, and

32 N, i.e., Si/(Si+Ti) fraction of 0.06, to calculate the Ef , Eb, and the activation energy, Q,

will be estimated from Ef and Eb using the formulation in Eq. (7.7).

(a) Coating deposited in pure N2

coo
ling

hea
ting

N2 3.5 Pa

(b) Coating deposited in mixture N2/Ar

coo
ling

hea
ting

N2/Ar 3.5 Pa

Figure 5.6: Evolution of the lattice parameters of the different TiSiN coatings during heating
and cooling as determined from the HT-X-ray diffractograms.

Figure. 5.5a and 5.5b show the calculated Ef and Eb, respectively, for the species Si, Ti,

N. Among all species, Si has the lowest vacancy formation energy, Ef , which means upon

annealing (since vacancy formation is a thermodynamic process), it is easy to create the Si

vacancy compared to Ti and N. During annealing, the lattice parameter increases due to the

thermal expansion. Simultaneously, Si vacancies will be generated due to thermodynamic

reasons during annealing, attributed to their low formation energy, and will diffuse away (low

Eb, Q). After cooling, the structure has almost the same lattice parameter as TiN (pure TiN

or with very low Si content), and lattice parameters should be larger than the Ti1−xSixN

solid solution. The lower migration barrier of Si, Eb, which is fairly low compared to Ti, is an

added factor for its diffusion out of the microstructure to the surface. The activation energy,

Q, of the above process is summarised in Fig. 5.5c, which is reasonably less than Ti and

N and forms the TiN after cooling. The experimental lattice parameter evolution with the

temperature proves the above speculation made by our calculation. Figures 5.6a and 5.6b

show the experimental evolution lattice parameter deposited in N2 and Ar partial pressure.

In both cases, the lattice parameter in the as-deposited state was lower, which increases

after the evolution upon annealing up to 1200◦C and cooling to 0◦C due to annihilation of

vacancies and Si out-diffusion out of the solid solution.
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5.4 Conclusions

The following conclusions can be derived from the prediction of this study of the experiment-

ally derived hypothesis of decreasing lattice parameter with increasing N2 partial pressure,

• The decrease in lattice parameters can be associated with the Si incorporation, and

the vacancies in the metal sublattice have no role in its variation.

• The formation energy of the system and hence the relative stability decreases with

the Si/(Si+Ti) ratio, which corresponds to the relative instability of the TiSiN and

forming of phase separation Ti(Si)N and a-Si3N4 as supported by the experiment.

• The presence of Si in the as-deposited state can also be seen from an increase in lattice

parameters after the annealing and cooling experiment, attributed to its out-diffusion,

shown by its lower vacancy formation energy, migration energy barriers, and activation

energy in our calculations.

This work lets us understand the formation of metastable TiSiN solid solution.
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Chapter 6

Machine-Learning-Assisted ab initio

Prediction of Structural, Mechanical,

and Diffusion Properties of a-Si3N4

In this chapter, we outline the dependence of system size on the isotropic response (by elastic

properties) of the amorphous material (by silicon nitride as the material system). To do so,

we combine the ab initio and the MD simulation tools. To describe the interactions in the

MD simulations, we train a machine-learning interatomic potential (MLIP). The training

data set for the MLIP is generated using the ab initio molecular dynamics (AIMD). The

elastic properties are calculated by both the ab initio and the MD with trained MLIP.

Finally, properties from both methods are benchmarked against experimental values. The

results presented here are our original work and will be submitted to a peer-reviewed journal.

6.1 Introduction

Silicon nitride is a ceramic material of great technological interest with diverse applications

owing to its good mechanical and electrical properties [39, 299–306]. Sintered Si3N4 com-

ponents exhibit high density, high melting temperature, low mechanical stress, high thermal

strength, strong resistance against thermal shock, and fracture toughness, and are used

in many engineering applications [307, 308]. For example, it has been used as a material

for engine components and cutting tools due to its superior mechanical properties at high

temperatures [301, 302].

SiNx in the nanocomposite TiN/SiNx opens the possible area of application as a protective

coating due to its high hardness and excellent wear-resistance [303–306]. Incorporating

Si3N4 as a second phase has been proposed to improve the tribological performance while

keeping the other wear properties intact [39, 306]. Several previous studies have focused on
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the TiN/SiNx nanocomposites reporting the structure and strength of the interfaces [40–

44]. Yet all these studies consider only crystalline stoichiometric Si3N4 structures and a few

other specific stoichiometries of SiN. However, understanding the structural and mechanical

properties of the amorphous (a) film of stoichiometric Si3N4 is relevant for its usefulness in

nanocomposite structures.

Additionally, the amorphous phase of silicon nitride (a-Si3N4) is also technologically relevant.

Amorphous Si3N4 thin films exhibit a high dielectric constant, a high-energy barrier for

impurity diffusion, high resistance against radiation, and show oxidation resistance up to

1500◦C, making them ideal candidates for several microelectronic applications [309–315] and

as a gate dielectric in thin-film transistors [314, 315]. Thick films of Si3N4 are promising

candidates for non-linear optical applications [316, 317]. The above properties together with

the bio-compatibility of a-SiN also make it an exceptional candidate for bearings in hip and

knee joint replacements [318].

Si3N4 is synthesized using various processes such as sputtering, chemical vapor deposition,

and glow-discharge decomposition [319]. As depicted by the above discussions, a-Si3N4 is

material to serve the next-generation coating industry, especially forming composites with

the transition metal nitride, e.g., TiN/SiNx. Furthermore, as electronic devices become

smaller, higher-quality films are required for their application as electronic devices. There-

fore, understanding the relationships between structure and mechanical properties of Si3N4

becomes essential to tune the film properties during fabrication. However, the mechanical

properties of a-Si3N4 are not yet known. Again, given TiN/Si3N4 in a tribological applica-

tion, vanadium is a potential candidate, which diffuses to the surface to form a lubricious

film to reduce friction, as discussed in Sec. 1. The diffusion of V in TiN is discussed in

Chapter 4; however, the diffusion of V in a-Si3N4 has not yet been studied. Computational

techniques may provide a way to predict these properties accurately.

The accuracy of the results depends on the computational method. Ab initio electronic

structure methods are extremely accurate, yet limited to a few hundred atoms owing to

the computational cost. However, the model of the amorphous system, considering the size

limited to this few hundred atoms, is not large enough to be representative w.r.t. real ma-

terials. Certain properties, such as the elastic response of amorphous materials, require a

more complex description as they are not independent of the system size. Hence, one must

resort to larger-scale methods such as molecular dynamics simulations to obtain properties

comparable to experiments. The accuracy of such simulations depends on the interatomic

potential that defines the system’s interactions. Two such empirical models that are avail-

able in the literature [320, 321] have been used to identify several structural properties of

silicon nitride [320, 322, 323]. However, they are not transferable to a wide range of temper-

atures and densities, and neither of these models has been employed to simulate the elastic
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properties of a-Si3N4. A possible solution are the recently developed MLIPs for atomistic

simulations [145, 223, 232, 233, 324]. MLIPs can accredit simulations with accuracy compar-

able to DFT at a computational cost of orders of magnitude lower than DFT. The MLIPs

are highly accurate and robust even for complex systems, making them much more suit-

able than the previous empirical models. Moreover, most models often yield linear scaling

behavior with the system size [325].

In this chapter, we employed a MTP–a class of the MLIPs [145]. MTP has been used

to study several material systems ranging from unaries [326, 327], alloys [328], and multi-

components [329–331] for the efficient prediction of the properties such as diffusion, mechan-

ical properties, vibrational free-energies, dislocation mobility, magnetism, etc. Nevertheless,

they have not been trained to model an amorphous structure. We train an MLIP-based

potential using the MTP and simulate the structural and mechanical properties of a-Si3N4.

Moreover, we use this MTP-fitted potential to prepare structural models to study the dif-

fusion migration energy barriers of V in a-Si3N4. To validate the prediction of the trained

MTP and the ab initio results, we directly compare them to the experimental measurements.

6.2 Methods and Model Constructions

This work employs a combination of computational methods, including the DFT, AIMD,

and MD. We explain the procedure of ab initio calculations and MD simulations assisted

by the MTP to estimate the desired properties. Initial AIMD calculations are performed to

predict mass density, which serves as the basis for deciding the appropriate system size for

further simulations. This includes the generation of training data sets for MTP fitting and

estimation of properties by ab initio.

6.2.1 Ab initio Calculations

Prediction of Equilibrium Mass-Density

An AIMD-based workflow is used to generate amorphous structures for a-Si3N4 according

to a ‘melt-quench’ methodology that was previously demonstrated for several amorphous

systems [332, 333]. The workflows for generating amorphous structures are constructed using

the pymatgen software packages [334]. The different system sizes, which vary by the number

of atoms in the simulation box, are expected to achieve the equilibrium mass density. The

procedure to reach the equilibrium mass density is discussed in the respective result section

(Sec. 6.3.1).
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Data Generation for MTP Training

The convergence of the density w.r.t. system size (in Fig. 6.2) is the reference point for

generating training sets for the MTP. For this purpose, we have choosen simulation boxes

containing 224 atomic. The training data sets must contain boxes with sufficiently large

volumes according to the thermal expansion, preferably up to the liquid phase (relevant

when the melting state is achieved in the melt-quench process). To achieve the volume

related to the melting state, we heat the structure in an NPT ensemble up to 6000 K to

achieve the transition from the solid to the liquid phase. It can be seen in Fig. 6.1 that a

sudden discontinuous jump in box volume at ≈3500 K signifies the beginning of the liquid

phase (melting state). The volume at which the liquid phase occurs is considered along

with the other volumes. Therefore, we apply positive and negative strains at the volume

with equilibrium mass density. The magnitude of the strains goes maximum up to ±3%

given in one lattice orientation. We continue with NV T ensembles of five volumes, each

with a temperature of 1800 K, i.e., the temperature limit of interested properties. For each

ensemble, we perform 1500 AIMD steps to generate input data for the training of the MTP.

Elastic Response

The elastic response of a-Si3N4 is calculated with a stress-strain approach. A set of strains

is applied by modifying the unit cell lattice vectors (R). Given the original (R) matrix the

new lattice vectors are given by Eq. (6.1) [335, 336], where εi are different strain components

in Voigt’s notation [183].

R = R

⎛
⎜⎝
1 + ε1 ε6/2 ε5/2

ε6/2 1 + ε2 ε4/2

ε5/2 ε4/2 1 + ε3

⎞
⎟⎠ (6.1)

The strains were scaled such that the maximum component of each strain was 2.0%. As

a result, a set of 12 linearly-independent strains gives upon a matrix of elastic constant

Cij [335]. The unit cell with 224 atoms is used to compute the elastic response. We carefully

relaxed the atom position and cell size of the initial structure (before introducing strain)

until an internal pressure of 0 bar was realized. The a-Si3N4 structure after this relaxation is

nearly cubic. We plot the directional dependence of Young’s modulus for isotropic materials,

Eξ, which is related to the elastic compliances (Sij) = (Cij)
−1 [183],

1

Eξ

= S11 − 2

(︃
S11 − S12 −

1

2
S44

)︃(︁
l21l

2
2 + l22l

2
3 + l21l

2
3

)︁
(6.2)

where l1, l2, l3 are different coordinate axis and Cij = C11, C12 (see Sec. 2.7 in Chapter 2).

The isotropic elastic tensor calculated is projected on the cubic symmetry, which has an

additional elastic constant than isotropic materials, i.e., C44, to visualize the elastic response

in the 2D plot.
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Migration Barrier Estimation

To calculate the diffusion migration barrier of vanadium in a-Si3N4, we used the NEB [254].

We used MTP to prepare structures with different system sizes (and densities) for the migra-

tion barrier calculations. To do so, we use the melt-quench process with the NV T ensemble

by the LAMMPS-MD simulation using the fitted MTP potentials. We calculated this in two

stages: (i) We chose a single structure that contained 112 atoms. Hence, the voids to place

a V atom for each point (image) of the diffusion migration path were selected. In this case,

we adopted the adiabatic approximation of barrier calculations [337]. Therein, we assumed

that at each point (image) of the V diffusion path, the surrounding Si and N atoms have

enough time (and are allowed to move) for a complete ionic relaxation up to equilibrium w.r.t

to (by keeping fixed) the V atom. (ii) We chose structures with different system sizes and

densities. In this case, we applied the inverse of the first case, where we kept the surrounding

atoms (Si and N) fixed and allowed the V atom to move to its equilibrium state during ionic

relaxation at each point of the diffusion path. In both the cases of (i) and (ii), the additional

volume/atom for the V atom was added to the initial structures (at each image). We used

Voronoi tessellation to select the images for the diffusion path. Hence, we chose the sites

with the largest Voronoi volumes as initial and final configurations. The sites where the V

atom fits in resemble the connecting images. In all cases, the Voronoi volume of voids is

compared to the V atomic radius [338] to ensure it fits into the voids properly for the initial

run of the DFT ionic relaxations.

Computational Details

The VASP [249, 250] carried out the AIMD workflow and all first-principles calculations in

the present work. We used PAW potentials [209] along with PBE parametrization of the

GGA [251]. In all the calculations, a plane-wave cutoff of 500 eV was used. The Brillouin

zone was sampled with Monkhorst–Pack k-point mesh [252]. All the AIMD calculations

for the generation of training sets for MTP and the density convergence used a single Γ-

centered k-point mesh to reduce the computational cost. Both elastic constant and the DFT

optimization in density convergence calculations used 6×6×6 of the k-point scheme. Simillar

k-points mesh was used to calculate the radial distribution function (RDF) and structure

factor (S(Q)) with AIMD simulations. The AIMD simulations were performed with the

NV T ensemble as implemented in VASP using a time-step of 2 fs. The NEB method to

calculate migration energy barriers is implemented in VASP. Both the RDF and S(Q) are

calculated using the spatial correlation function between two atoms with properties P1 and

P2, C(r) = ⟨P1(0)P2(r)⟩, implemented in ovito [339]. If the properties are the position of the

particles and are fixed in space, C(r) returns the radial distribution function. The reciprocal

space representation is then the S(Q).
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6.2.2 MTP and Classical MD

To perform MD calculations on a-Si3N4, we trained an accurate MLIP using the MTP. The

MTP is trained on configurations generated by AIMD as explained in Sec. 6.2.1. An optimal

training set is crucial to determine the accuracy and robustness of the AIMD. Therefore, we
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Figure 6.1: The fitting condition for the MTP potential, with the data sets 224 atoms with
NPT ensemble, shows the melt of the amorphous with the transition of solid to the liquid
phase. The fitting data sets include the temperature and volume of the liquid and solid
phases.

carefully chose the volume and temperature (explained in Sec. 6.2.1) and optimal training

set, which spans a large area of the relevant phase space. The argument is that the training

set should represent sufficient volume variation. These selected five AIMD runs have been

performed independently. The total number of data sets considered is 5000, excluding the

first 500 initial AIMD steps for each simulation corresponding to the initial equilibration

processes. Various approximation levels have been used to define the functional form of

initial potentials. Depending on the highest number of basis functions used in the analytic

description of the MTP, we have used the so-called 24g MTPs. Initial potentials have been

derived by fitting the MTPs to training sets using the Broyden-Fletcher-Goldfarb-Shanno

method [340] with 2000 iterations and 1.0, 0.01, and 0.001 weights for total energy, stresses,

and forces for the loss functional. The MTP estimates the deviations as the mean absolute

error between both calculation methods. The predicted energies and forces yielded errors of

4.5 meV/atom and 0.27 eV/Å, respectively.

The elastic constants (Cij) of a-SiN were calculated using the averaged stresses and strains.
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We extracted them from the distortions given by the distortion matrix in Eq. (6.1) with

±2% strain. The final elastic tensor was calculated by employing the symmetrization tech-

nique [341] to account for the disorder present in the supercell. The symmetrization technique

is carried out using 3000 MD steps. Before that, classical MD simulations (melt-quench)

with the trained MTP are carried out using the LAMMPS [146] with a 0.25 fs time step and

performing 50246 steps. We now focus on a system size of 7000 atoms in the cell.

6.2.3 Experimental Details

The a-SiN films have been sputtered with a thickness of 1–3 µm to measure the composition,

density, radial distribution function, and mechanical properties. The deposition was on a

single-crystalline Si substrate and at a temperature 200◦C. The composition measurement

reveals the Si:N ratio of is approximately 3:1 and 3:4, among which Si:N=3:4 would be

simulation equivalent composition. All the measurements (mass density, RDF/structure

factor, nanoindentation) were performed at RT, i.e., 20–25◦C. The X-ray-based measurement

was done by X-ray reflectometry (XRR). XRR has a monochromatic X-ray beam with the

size of 100× 10 µm (horizontal×vertical) and wavelength of 0.1695 Å. The X-ray detector

is a flat panel 2D-detector situated at a distance of 1065.4 mm from the sample, 2048×2048

pixel resolution, 200 µm pixel size. The images are captured with isolated scattering from the

amorphous film; hence, the bad detector regions are masked. To calculate the RDF/structure

factor, the integration is done from the beam center, with low-r cutoff (1.1 Å), low-Q, and

high-Q cutoffs (0.6 and 8.651/ Å). We have used two different indenters to perform the

nanoindentation measurements: the UMIS nanoindenter and the Hysitron T950 Tribometer.

The sample is not homogenous; its surface is imperfect, and each system has slightly different

diamond tips, electronics, etc.

6.3 Results and Discussions

We first report on ab initio predictions of structural properties of a-SiN in addition to the

elastic properties. Later, the predicted properties from MTP-assisted MD are benchmarked

against the ab initio prediction of properties of amorphous a-Si3N4. Finally, both models

are validated against measurement results from the experiment.

6.3.1 Structural Properties

The routine and widely used method for generating the amorphous structure is simulated

quenching from the melt. We start with a liquid and progressively lower the temperature,

and “freeze in” an amorphous structure. The initial structure to create this liquid in such

a melt-quench can be varied. For example, for our system of interest, a-Si3N4, one could
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6.3 Results and Discussions

start to melt α-, β-, or γ-SiN crystal which all have composition Si3N4. On the contrary, one

could start with a structure generated by randomly distributing atoms in a box optimized

by density. We need a system size representative enough, w.r.t. the real material, with

reasonable computational cost for a-Si3N4. The main motivations are (i) to determine the

initial density and appropriate box size to obtain optimal training set, (ii) to predict the as

accurately as possible structure in terms of box size and short-range order interactions for

further estimation of properties to compare with MTP. Hence, we optimize the required

system size for ab initio calculations against mass density by varying the system sizes.

Therefore, we picked the latter method for the initial structure generation.
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Figure 6.2: The convergence of appropriate system size achieved by the mass density and
energy statistics by melt-quench method with AIMD followed by a DFT optimization. The
statistics have been done for the series of system sizes with the stoichiometric composition
Si3N4.

The workflow to obtain appropriate system size against mass density convergence is as

follows: (i) atoms are randomly distributed in cubic simulation cells of different system

sizes with 15% larger volume than crystalline compounds of Si3N4 (estimated with lattice

parameter taken from Ref. [342]), (ii) the structures are melted upto a liquid state (see

fig. 6.1) and quenched to 0 K with NPT ensemble with AIMD, (iii) from both the melting

and quenching process 6 structures have been chosen after with appropriate interval of

AIMD steps by removing initial 1000 steps, (iv) each of the structures undergoes a full

relaxation of ionic positions, cell shape and volume such that the stress component on the

box reduced to nearly zero. Fig. 6.2 represents the results of the process, in which the mass
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6.3 Results and Discussions

density and energy/atom of all 6 structures/(system sizes) are shown. The mass density of

the systems with a size between 56 and 98 atoms is scattered, and all 6 structures do not

converge to a single value. In the system size of 112 atoms (and 126 atoms), all data points

converge to a single value (except for one). However, after the system size of 140 atoms, no

further significant change is observed, and all 6 data points converge to a single value. This

improvement is even better for the systems with a size of 168 and 182 atoms. Moreover, this

indicates an improvement in short-range interaction for systems with more atoms. Hence,

we chose the system size with 224 atoms, which should be large enough for the representative

a-Si3N4, to generate the training set for MTP and elastic calculations. However, we chose

the system with 112 atoms for further structural analysis to reduce computational costs (as

high k-points are used). The resulting mass density is 3.19 g/cm2.

0 300 600 900 1200 1500 1800 2100 2400 2700
T [K]

10.186

10.336

10.486

10.636

10.786

10.936

11.086

11.236

11.386

11.536

11.686

11.836

Vo
lu

m
e 

[Å
3 /a

to
m

]

Initial Volume

Annealing Curve

Equilibration

Quenching Curve

Figure 6.3: The MD trajectory of melt, equilibration, and quench of the fastest-quenching
(1015 K/s) of the amorphous structure with 7000 atoms.

After the appropriate system size is known from the mass density convergence of the ab

initio prediction, we use it to generate training sets for fitting the MTP potential. The

fitting procedure is well explained in Sec. 6.2.2. First, the structure is generated after the

melt-quench process by the MTP. Fig. 6.3 shows the smooth expansion and compression

of the box in the annealing, equilibration, and quenching process along with the starting

(initial) volume, where the structure is heated up to 2500 K and quenched to 300 K. We

note that the simulation (expansion) is smooth up to 2500 K, although the training data sets

only have 1800 K. This is because we carefully chose the optimal training set with sufficient

volume expansion. We perform the structural analysis regarding the RDF, structure factor,
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and bond distribution to verify the MTP properties with AIMD. In this process, we started

comparing the structural evolution with the different quenching rates of the simulation. We

found no significant structural changes during the different quenching rates measured by

RDFs. Fig. 6.4 shows the calculated and measured RDFs for amorphous a-SiN, with the

MTP’s 1015 K/s quenching rate. Consistency between the calculated MTP and ab initio

is achieved considering the major features of the RDFs. As can be seen, the RDF from

the MTP retains similar accuracy to the ab initio, despite the different system sizes of the

DFT and the MTP. Both agreed well with the experimental measured the RDF. Some

minor deviations between them may, at least in part, be because the reciprocal lattice vector

dependence of the X-ray atomic scattering factors (only atomic numbers were considered)

was neglected during the calculation of the theoretical RDF. Therefore, all these models

seem to structurally represent a-Si3N4.
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Figure 6.4: The comparison of the total radial distribution function of a-Si3N4 from the
MTP-based MD obtained by analyzing a 3D structural model of 7000 atoms, and a similar
model with 700 and 112 atoms, ab initio-based model of 112 atoms, and the RDF measured
by experiment.

In Fig. 6.5, we showed the computed structure factors, S(Q), which can be compared qualit-

atively to the diffraction experiment structure factor. The ab initio and the MTP calculated

S(Q) are qualitatively consistent with the measured S(Q). S(Q) calculated by the MTP

is very well in agreement with the ab initio, corroborate the accuracy of the fitted MTP

model. However, for the measured S(Q), there is a slight shift of the first peak to the left (∼
1.5–2.5 Å−1). The deviation among the S(Q) could be the finite-size effects. In finite-size
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systems, S(Q) could be affected by the errors in the Fourier transform by producing relative

errors in the asymptotic region of the N-particle function gN(r) [343]. Consequently, the first

MTP-based calculated S(Q) peak has slightly shifted to the left compared to ab initio. On

the contrary, the interactions are most likely averaged and weighted by scattering power (for

measured case); therefore, the interactions are mostly the Si-Si and Si-N bond lengths and

only the N-N bonds to a lesser degree. The missing N-N bonds comprise the S(Q) lower

part (∼ 0.5 Å−1).
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Figure 6.5: Computed structure factor S(Q) ab initio, MTP, and measured X-ray diffraction
data for a well-annealed sample of a-Si3N4.

6.3.2 Bonding and Elastic Properties

In a-Si3N4, the bonds are distributed around the ideal tetrahedral, Si being the center of

the tetrahedron [344, 345]. We compare the structures in Fig. 6.6 using three types of bond

distribution. First, we report the number of coordination and defects that is a deviation

from tetrahedron geometry. To achieve the coordination of Si, we consider the maximum

value of the Si–N interaction in the first nearest neighbors as a cutoff derived from the RDF.

The ab initio simulated structure consists of 95% of the tetrahedron geometry, with 3- and

5-coordinated atoms of 2% each. The MTP simulated structure almost mimics the ab initio

having 92.8% of the tetrahedron, 1.9% of 3-coordinated, and 5.3% of the 5-coordinated. This

results from the structure having a quenching rate of 1013 K/s. We have realized from the

RDF and S(Q) that the quenching rate has little impact on the structural changes. However,

as the quenching rate becomes faster, there is a chance of getting structural defects. This can
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Figure 6.6: A comparison of structural models reproduced by the MTP in comparison ab
initio data regarding (a) bond-length and (b) bond angle distribution. The distribution is
fitted with the Gaussian distribution.

be realized in the percentage of deviation from tetrahedron geometry for different quenching

rates listed in Tab. 6.1. Nevertheless, this has little impact on the properties, but preferably
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Quenching Rate (K/s)
Coordination 1013 1014 1015

3-fold 1.9% 1.9% 2.7%
4-fold 92.8% 91.6% 90.0%
5-fold 5.3% 6.5% 7.3%

Table 6.1: The different N-coordinated Si atoms. The structural defects appear with an
increased quenching rate and deviate from the tetrahedral geometry.

slow quenching brings an increase in 4-coordinated Si atoms. The structures with the highest

4-coordinated Si-atoms may be considered close to defect-free as the valency of Si is four. We

then measure the bond length and angle distribution by fitting the Gaussian distributions

shown in Figs. 6.6a and 6.6b, respectively. The MTP well reproduces the calculated mean

bond length, which is (1.755 ± 0.054) Å, and that of ab initio is (1.754 ± 0.057) Å. Hence,

the calculated mean bond angle of MTP and ab initio is (108.9± 10.3)◦ and (108.8± 13.3)◦.

After the good agreement of structural properties of a-Si3N4, we shifted our attention to the

elastic properties. Like the previous cases, we predicted the elastic response of the a-Si3N4

by ab initio in the first place. The calculated elastic constants are as follows: C11 = 264

GPa, C12 = 131 GPa and C44 = 59 GPa. Amorphous materials are elastically isotropic.

The degree of anisotropy of a solid can be estimated by the formula 1/2(C11 − C12) − C44,

where a perfect isotropic corresponds to zero, i.e., 1/2(C11 − C12) = C44 [346]. In case of

ab initio, estimation of the value 1/2(C11 − C12) = 66 GPa, which is not equal/identical to

C44. Hence, the elastic response of a-Si3N4 simulated with the ab initio is not fully isotropic.

Moreover, polycrystalline Young’s modulus estimated from the ab initio calculated elastic

constants is 220, 205, and 212 GPa for Voigt, Reuss, and Hill limits, respectively. Similarly,

bulk modulus values are 183, 179, and 181 GPa for Voigt, Reuss, and Hill, respectively, also

pointing toward the elastic anisotropy of our model. Fig 6.7a shows the ab initio simulated

directional Young’s modulus, which should have identical values in all directions. This

provides further evidence of elastic anisotropy in the case of ab initio.

Despite the full relaxation (forces on each atom become zero) in the a-Si3N4 system size of

atom 224 atoms, the anisotropy can not be neglected. This is the crucial and valid reason

to take the larger system to simulate amorphous material. Considering the computational

cost, the alternative is large-scale simulation like classical MD simulation. One can simulate

a large system size and temperature-dependent elastic properties can be easily estimated.

The trained MTP is advantageous in producing the isotropic elastic properties and verifying

our assumption of isotropic with a large system size. Fig. 6.7c represents the directional

Young’s modulus calculated from the MTP-assisted MD. As a result of the isotropic re-

sponse, Young’s modulus of different directions overlaps, providing an identical value. Apart
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(c) MTP:7000 atoms
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Figure 6.7: Directional Young’s modulus from 0 K plotted along all the directions from
(a) ab initio with 224 atoms, MTP-assisted MD simulation with (b) 224 atoms and (c) 7000
atoms. This shows the elastic response becomes isotropic with the increase in system size.

from that, if we follow the same procedure to test isotropic nature as we estimated in ab

initio, then 1/2(C11 − C12) = 88 GPa and C44 = 87 GPa. The values are almost identical,

which suggests an isotropic response in larger systems. Again, we calculated the polycrystal

Young’s and bulk moduli by the Voigt, Reuss, and Hill methods to verify the same. Each

produces Young’s modulus of 226 GPa and bulk modulus of 174 GPa. This shows the MTP-
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(a) Young’s Modulus vs Density
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Figure 6.8: Efficient prediction and transferability of the MTP-based potential: (a) Young’s
modulus for different mass densities and (b) variation of Young’s and Bulk modulus for
different temperatures.

based elastic response is isotropic. The separate case of a small box with the LAMMPS has

been tested to verify the effect of system size, providing the anisotropic elastic response (see

Fig. 6.7b). Hence, simulation accessing the large system size is crucial for elastic and other

properties. Therefore, one needs to be particular while considering the system size for the

study’s material class (e.g., amorphous-like) and properties (dependent upon the isotropic

response of the materials).

It should also be mentioned that the MTP has reproduced the ab initio predictions of

elastic properties very well. For instance, despite the anisotropy, the polycrystal averaging

of Young’s modulus by the Voigt method is 220 GPa, and that of MTP is 226 GPa. On the

contrary, the maximum value of Young’s modulus plotted in Fig. 6.7a is 220 GPa. The Hill

polycrystal averaging method provides an average of the Voigt and Reuss averaging method.

Hence, the ab initio and MTP compare well, by Hill polycrystal averaging, with Young’s

modulus 213 GPa and 226 GPa, respectively. Similarly, bulk modulus from the ab initio and

MTP have a good comparison with 181 GPa and 174, respectively. Hence, the fitted MTP

is very good at recovering the training data. We also tested the MTP against transferability.

Fig. 6.8 shows the calculated elastic properties in different conditions. Firstly, we calculated

bulk and Young’s modulus for a series of mass densities in Fig. 6.8a. The elastic moduli of

the amorphous structure increase with the increase of mass density because of the decreasing

void space. As a result, the density of the covalent bond increases in the vicinity [347], which

makes the material stiffer. Secondly, the elastic modulus is calculated with the temperature

variation in Fig. 6.8b. The calculated Young’s modulus of the a-SiN decreases with increasing

temperature, i.e., the materials seem to get softer with temperature.
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6.3.3 Diffusion of V in a-Si3N4

Along the lines of the motivation for this chapter, the vanadium diffusion in a-Si3N4 has been

investigated by estimating the 0 K diffusion migration energy barriers. Figure 6.9 shows the

migration barriers calculated with the multiple images describing the diffusion path as per

the case-(i) described in the Sec. 6.2.1 for the system’s size of 112 atoms. Here, we report
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Figure 6.9: Potential energy profiles for the migration of V atom in a-Si3N4 from multi-image
NEB calculations. Each point of the diffusion path shown here is after the ionic relaxation
chosen according to the procedure explained in Sec. 6.2.1.

the migration barriers of two randomly chosen pathways with the highest diffusion barriers,

giving values of 7.92 and 7.57 eV. This suggests the V diffusion in a-Si3N4 is very slow. In

this consideration, each point (image) of the diffusion path has the adiabatic approximation

together with the multiple images in one calculation imposes huge constraints. Hence, we

separated the multiple-image diffusion path into single images by keeping the adiabatic

approximation.

Therefore, now we use the case-(ii), explained in Sec. 6.2.1 with the different system’s sizes

and densities to calculate migration energy barriers from single-image NEB calculations of

two nearby (≤ 2 Å) initial and final configurations. This calculation, however, provides us

with a statistical picture of the energy migration barriers, where all types of voids will be

considered. Figure 6.10 shows the migration energy barriers of the different system size with

the number of atoms 112, 252, and 300, which has mass densities 2.94, 3.0, and 3.15 g/cm3,

respectively. The mass densities have been intentionally set to different values to achieve

the different void sizes and hence its impact on the barriers. All configurations produced

similar mean values of migration barriers with simillar standard deviations, which are given
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Figure 6.10: Potential energy profiles for migrating V atom in a-Si3N4 from single-image
NEB calculations of two nearby (≤ 2 Å) initial and final configurations. Each point of the
diffusion path shown here is after the ionic relaxation chosen according to the procedure
explained in Sec. 6.2.1.

by (3.53 ± 2.88) eV, (3.61 ± 2.66) eV, and (3.53 ± 2.34) eV for systems 112, 252, and 300

atoms, respectively.

6.3.4 Experiment and Validation

The MTP predicted results are in good agreement with the AIMD simulated results. Apart

from that, the properties are also experimentally measured for validation. Finally, we com-

pare elastic constants calculated by the AIMD, the MTP-assisted MD, and the experiment

value achieved from the nanoindentation measurements.

The properties such as RDF (see Fig. 6.4), and the structure factor (see Fig. 6.5) are in

reasonably good agreement with our calculated value and are presented in the respective

sections. The predicted density by ab initio is 3.19 g/cm3 (described in Sec. 6.3.1), well

agreed with our measured value of 3.14 g/cm3 by XRR. The Young’s modulus measured

from nanoindentation is (222±7) GPa for the UMIS nanoindenter and (211±2) GPa for

the Hysitron T950 nanoindenter. For efficient comparison, we refer to our simulated room

temperature Young’s modulus (as the experimental measurement is from room temperature).

Young’s calculated room temperature modulus is 220 GPa, shown in Fig. 6.8b. Therefore,

our ab initio and the MTP simulated Young’s modulus agree well with the measured Young’s

modulus and fall in the range of results from these two experiment methods.

The mean diffusion migration barriers of V in a-Si3N4 in our single-image calculations are
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∼ 3.5 eV. If we compare this value with the vanadium diffusion in bulk-TiN in Chapter 4,

they are very similar (with a value of 3.82 eV). Figure 4.13 shows the HAADF TEM cross-

section of the sample after vacuum annealing at 700◦C for 30 mins after deposition, and EELS

elemental maps of Ti, V, Si, and N in the region outlined in HAADF TEM cross-section.

Hence, as shown in Fig. 4.13 the only diffusion in TiN is through the grain-boundary channel.

This fact is well aligned with our migration barrier of vanadium in the grain boundary (which

is 1.46 eV). This also shows no diffusion through the a-Si3N4 and bulk TiN, which is justified

by the similar migration barrier value for the bulk TiN and a-Si3N4 through our calculations.

6.4 Conculsions

In conclusion, we have shown that moment tensor-based machine-learning interatomic po-

tential can lead to an accurate prediction of the properties like structural, mechanical, and

diffusion properties of amorphous materials. The MTP-assisted MD has simulated the struc-

tural model of a-Si3N4 containing 7000 atoms to predict these properties. All tested prop-

erties agree with the ab initio predicted and the experimentally measured properties. These

findings will have implications for future research on disordered and amorphous materials,

opening the door for quantitatively accurate atomistic modeling with direct links to experi-

ments for a-SiNx and beyond. The main conclusions can be summarized as follows:

• The MTP can predict the accurate model of amorphous materials.

• The simulation of a larger system size is necessary in case of disorder materials.

• By increasing the system size, one can design the precise short-range order interactions

in the disordered materials.

• The vanadium diffusion in a-Si3N4 from the adiabatic diffusion migration barrier es-

timation is relatively high, equivalent to the vacancy-mediated diffusion in bulk TiN.

Additionally, the estimation of vanadium diffusion in TiN and a-Si3N4 provides an overview

of the usage of the microstructure TiN/a-SiNx towards tribological applications. Both in

bulk TiN and a-Si3N4 the V attains very slow kinetics and TiN grain boundary only diffusion

path, which makes the TiN/a-SiNx a potential candidate for tribological application unless

the estimation of V diffusion at the interface TiN/a-SiNx is known.
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Chapter 7

Impact of d-states on Transition Metal

Impurity Diffusion in TiN

In this chapter, we have performed first-principles calculations to investigate the diffusion of

transition metal impurity (TMI) in TiN. The knowledge of the diffusion behavior of TMIs is

crucial in spinodal decomposition, high-T diffusion in, e.g., self-lubricant coatings, diffusion

in the high-entropy (HE) alloys, etc. We have created a database of various diffusion-related

database of various TMIs, such as solubilities, solute-vacancy binding energies, diffusion

migration barriers of impurity, and activation energy, in the host TiN alloy by applying 0 K

DFT calculation. The thus calculated migration barriers and activation energies uncover the

impact of d-states on the diffusion of various TMIs: a bigger TMI atom can diffuse faster

due to the altered d-states compared to a smaller one. The results presented in this chapter

are published in Scientific Reports as our original work [348] and are reproduced below.

7.1 Introduction

With the basic building block of TiN ceramic, the additional and suitable transition metals

with adjusting ratios offer various possibilities to tune the different properties, especially

structural, mechanical, electrical, lubricant, etc. The growth and processing parameters

are optimized to control stoichiometry, microstructure, and texture. For example, alloying

element Mo, W [349] in TiN are reported in the supertoughening process in ordered B1.

And also, the impurity alloy Ta and Nb [350] in TiN has been reported recently. Similarly,

Yttrium has shown enhanced oxidation resistance, and hardness [351], alloying of Zr has

significantly improved the adhesive strength of TiN-based coatings to the substrate [352], Cr

and Hf have emerged as alloying elements for the higher wear resistance, and hardness [353–

355], alloying of V is a possible candidate for self-lubricant coatings [1],

Here, we are more interested in the diffusion process of the above-discussed alloying element
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in different circumstances. The circumstances may mimic the spinodal decomposition, high

T diffusions such as self-lubricant coatings, or diffusion in the high-entropy (HE) based

alloys, etc., where the diffusion is crucial. Particularly, we are interested in quantifying the

diffusion barriers of single TMI in the B1 TiN single crystal model. Two important factors

motivate us to conduct this study: (i) a database of diffusion-related quantities of TMIs in

TiN and (ii) d-states effect of TMIs on their diffusion in TiN.

The quantities of the diffusion-related database of various TMIs in the host TiN alloy are

impurity formation energies, solubilities, vacancy-impurity binding energies, diffusion mi-

gration barriers of impurity, and activation energy. Understanding various physical and

chemical factors influencing these quantities is vital for developing and designing new TiN-

based ternaries. Such data is available for many technologically important host alloys such

as Al, Mg, Cu, Co, and Ni [263, 264, 356–365]. Nonetheless, all these diffusion-related data

fill the database as a single metal host lattice, even though most are the fcc structures. How-

ever, the B1-TiN structure contains one sub-lattice of Ti and another one of N; the diffusion

behavior of TMIs could possibly be different than a single metal host lattice. There are

studies on diffusion on Ti in TiN [1, 349, 366], Ti in AlN [367], V in TiN [1], V in VAlN [74],

Ni in TiN [243], Cu in TiN [240–242], but this is not the whole picture of TMIs diffusion

database in energies.

Another perspective of this work is the d-states effect on the diffusion of TMIs. In the

chapter 4, we studied the V-impurity and Ti-self diffusion in the same B1-TiN single crystal

model; we quantified not only the 0 K migration barriers but also the activation energy and

pre-exponential using finite temperature by quasi-harmonic approximation. The contradic-

tion arises in our study in diffusion value of V and Ti; a smaller atom yields higher migration

or activation energy and hence a lower diffusion coefficient. A common expectation is that

the smaller atom has a larger diffusion rate and lower activation energy. On the other hand,

Janotti et al. [264] claims that the trend in diffusion is such that the larger atom can move

faster irrespective of metallic host lattices. And they justified this phenomenon as compress-

ibility of d-states of metallic bonding directionality. But in our case, we are more concerned

about the ceramic host and/or the host having a mixed bonding character (ionic, metallic,

and covalent). Hence, we start moving toward interpreting the d-orbitals effect of the con-

sidered d-impurity on the diffusion in TiN (a ceramic host). In this type of host, apart from

compressibility, we presume the bondings for different d-orbitals and charge transfer have a

major role in such a phenomenon.

The present work aims to quantify and create a database for the diffusion energy migration

barriers (Eb) of different group transition impurities in B1 TiN, along with the energy af-

fecting or related to the diffusion. This study gives insight into the diffusion phenomena in

coating systems with d-impurity alloying elements. On the contrary, this study perceives the

128



7.2 Methodology

effect of d-orbitals correlation on the diffusion-related energies while coming to the migration

of d-impurities. This can lead us to a conclusion about whether the misfit lattice–strain plays

the key role in the rise of diffusion migration barriers in TiN or whether there is a significant

role of d-orbitals in such materials.

We employed 0 K Density Functional Theory (DFT) calculations to estimate the energies

and perform bond analysis for bulk diffusion of all 3d, a few 4d, and 5d impurities in TiN.

We discuss the energetics of the single d-impurity in TiN and relate them to the atom size

in section 7.3.1. Section 7.3.2 contains the representative analysis of the impact of d-states

on the electronic structure and bonding.

7.2 Methodology

7.2.1 Energy Estimation

The study is purely related to the d-impurity diffusion in the TiN. One needs to know how

much energy they cost while alloying with TiN. Hence, we attempt to calculate the impurity

formation energy in a dilute limit, i.e., a single impurity in bulk TiN. This is the energy

spent/released when an impurity is placed in a bulk host lattice, which will help us better

understand TMIs’ behavior as an alloying element. Hence, we plot the formation energy of

an impurity in the host lattice, and we define this as,

Eimp
f = Eimp − Ebulk + µvac − µimp (7.1)

Where Eimp and Ebulk are the energies of bulk with a single impurity replacing a host atom

(here Ti) and bulk defect-free supercells, respectively, and µvac is the chemical potential of

vacant (removed) species where additionally µimp is the chemical potential of the impurity

atom placed in the place of vacant species. The µvac and µimp (the energies per atom of the

metal) are calculated in their respective ground-state structure 0 K (e.g., HCP-Ti, BCC-V,

etc.).

Point defects and their energy in solids play a central role in materials physics and are key

to understanding diffusion in solids. In a VM diffusion process, one adjacent site should be

vacant to accommodate the migrating atom. Hence it’s crucial to know the probability of

the vacancy site. The probability of finding an adjacent vacancy to an impurity,

p = C0e

(︂
Ef
kBT

)︂
(7.2)

where C0 is the lattice coordination, kB is the Boltzmann constant, and Ef is the formation

energy of a single host atom. The enthalpy of formation (Gf ) is a characteristic of vacancies

that governs the equilibrium concentration at any given temperature, which later enters

the diffusion coefficient (D). But here, our calculation is restricted to 0 K, and we are not
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looking to estimate D. Since, in our case, we are only interested in the diffusion in the Ti

sub-lattice, Ef will be the vacancy formation energy of a single Ti-vacancy. This is given as,

Ef = Evac − Ebulk + µvac (7.3)

where Evac is the energy of a supercell with vacancy. The formation energy of interstitial

impurities in TiN is calculated as:

Ef = Einter − Ebulk − µinter (7.4)

where Einter is the energy of the supercell with one additional interstitial atom.

However, when the impurity is accommodated adjacent to the vacancy, the interaction of

the impurity and vacancy gives rise to additional energy. This energy is known as the

vacancy–impurity binding energy and is defined as the following [181, 182]:

Ebind = Evac,imp − Eimp + Ebulk − Evac (7.5)

In this equation, Evac,imp denotes the total energy of the supercell containing the impurity

atom with a vacancy in its nearest-neighbor site. Here the energy Ebind is determined as the

difference between the vacancy formation energy near the impurity atom and the pure bulk,

which can be seen in the formula.

From the above equations and analysis, it is clear that when the impurity diffusion is con-

sidered, the energy associated with it impacts the process. For example, Ef determines the

probability of vacant space, i.e., vacancy concentration. And from the definition, Ebind is

the additional vacancy formation energy when an impurity atom is present with a vacancy

in the neighborhood. So the migration or jump to happen, at least one adjacent vacancy

should be available. Hence, both energy will add up to the net formation energy and will be

given as,

Enet
f = Ef + Ebind (7.6)

When calculating the diffusion coefficient for vacancy-mediated impurity diffusion, this net

formation energy enters the exponent in the Arrhenius equation as a contribution to the

activation energy [1] along with the Eq. (7.2).

Since we did not consider temperature-dependent contributions to free energy in our calcu-

lations, the net formation energy, Enet
f , along with migration energy, Eb, should contribute

to the activation energy (Q),

Q = Enet
f + Eb (7.7)

The Eb is the migration energy barrier achieved from the energy change of the system between

IS and TS along the diffusion minimum energy path (MEP) calculated from 0 K DFT.
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7.2.2 Computational Methods

The DFT calculations reported herein were performed with similar packages and parameters

(k-points, cutoff, energy convergence, NEB, supercell size, etc.) explained in Chapter 4.

Additionally, we calculated the charge density of crystal structures in real space using 256

× 256 × 256 grid points. This technique of charge density calculations entails mapping

the difference between charge density derived from a non-self-consistent calculation of a

superposition of atomic charge densities and self-consistent charge densities derived for the

whole system. This is thus useful in identifying the impurity atom’s charge distribution in

crystals by tracing the charge transfer from initially non-interacting atomic orbitals into the

chemical bonds of the final atomic configurations.

The electronic structures directly related to the chemical bonding involving the lattice, i.e.,

Ti and N species, were analyzed using the Crystal Orbital Hamiltonian Population (COHP).

The relative magnitude of the chemical bonding is obtained based on the overlap population

analysis of two chemical species used to investigate the binding character of chemical bonds

in a crystal [368]. The COHP was calculated by using the package LOBSTER [369, 370].

Sangiovanni et al. [350] stated a comparison and fine accuracy of VASP-PAW methods with

full potential methods for a similar system and study. The basis sets used [369] for all the

chemical species in the LOBSTER analysis were presumed by the recommendation of the

LOBSTER package initial run. Using this recommendation, we reduced the absolute charge

spilling values below 1% for the non-magnetic systems, whereas below 3% for magnetic

systems.

7.3 Results and Discussions

7.3.1 Energies

The B1-TiN structure has two sub-lattices, one belonging to Ti and another to N. We focus

on Ti substitutions on the metal sublattice. The impurity atoms under consideration in this

article include the complete 3d row (including magnetic Co, Cr, Fe, Mn, Ni, and all other

non-magnetic species), and selected examples of 4d and 5d substituents.

The calculated energy values are listed in table 7.1. The single impurity formation energy,

Eimp
f (Eq. (7.1)), signifies the amount of energy needed to supply to remove the impurity atom

from the TiN-host matrix. The positive energy corresponds to the unfavorable nature of such

substitution (w.r.t. the chosen reference states). Eimp
f of d-impurity follows the increasing

trend with the atomic number in each row. For example, among the 3d-impurities, the

Sc-atom shows a favorable nature in TiN (negative Eimp
f ), and starting from Ti to Cu, the

energy gradually increases to positive values. Interestingly, Cu to Zn does not fit this trend,
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i.e., Zn is a more stable substitution than Cu, possibly because of the filling of having a fully

filled d-orbital shell. Among the studied 4d and 5d impurities, only Zr and W, respectively,

seem to be outliers from the trend. We will discuss origins for such out-of-the-trend behavior

by performing a bond analysis in section 7.3.2.

In Chapter 4, we showed that V and Ti diffusion in TiN is dominated by the VM mechanism

over interstitial one, which was also studied earlier by Glicksman [371]. Besides, bonding

analysis of both the initial state (IS) and transition state (TS) can be performed in the

VM mechanism. For instance, the impurity atom perfectly sits in the lattice site in IS and

provides insight into the bonding character. On the other hand, in the TS, the correlation

of d-states also can be analyzed. The vacancy formation energy, Ef , of a single Ti-vacancy,

is 3.11 eV/atom in TiN (Eq. (7.3)). Since we are about to form a vacancy–impurity pair

for the VM migration mechanism as elaborated in section 7.3.1, additional energy Ebind will

contribute to the formation of energy calculated through the Eq. (7.5). We then sum up

the Ef and Ebind to get Eimp
f . All of the values are listed in table 7.1. Additionally, Eimp

f

is plotted in Figs. 7.1b, 7.2b, and 7.3b for impurity 3d, 4d, and 5d, respectively. There

is no particular trend observed for the Enet
f for any d-impurity series. However, Eimp

f is

the Ebind shifted by the Ti-vacancy formation energy, Ef . This signifies that the different

impurities bound with the vacancy very differently. We note that such binding modification

will impact both the diffusion and mechanical properties of a solid. The contribution mainly

comes from the misfit of the atom in terms of d-states bonding. In this formulation, negative

Ebind correspond to attractive interactions of the vacancy–impurity, whereas positive Ebind

correspond to the repulsive interactions. For example, the highest binding energy in the 3d-

series is for V, while the lowest is predicted for Ni. Interestingly, Ni has the most negative

Ebind of all investigated impurities here, and hence, vacancy acts as the strongest binder in

this case.

To complete our database for discussing the diffusion, we estimated the diffusion migration

barriers, Eb, through minimum energy path (MEP) and activation energy, Q, with the help

of Eq. (7.7). The values are also listed in table 7.1. The Eb is calculated by displacing

an impurity atom towards the adjacent vacancy along the ⟨110⟩ direction in the fcc Ti

sub-lattice of B1-TiN. The values of Eb are plotted in Figs. 7.1, 7.2, and 7.3 along with the

Goldschmidt radii (atomic radii) [338] and covalent radii (with errorbar) [372] for 3d, 4d, and

5d respectively. While estimating the Eb, one should deal with the energy difference between

the impurity atom at the lattice site or IS and at the saddle point or TS. The bigger atomic

radius refers to a bigger atom and hence a larger misfit or amount of contraction/expansion

in the host lattice (w.r.t host Ti atom), producing a larger strain and thereby contributing

to (strain) energy increase in both IS and TS. One acknowledges the difference in strain will

be evident in the change in inter-atomic distances.
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Table 7.1: The calculated values of all the energies related to diffusion and forming of an
impurity atom in B1-TiN for all 3d and selected 4d and 5d impurities. Note that the impurity
formation energy, Eimp

f , is in eV/(impurity atom), Ebind and Enet
f in eV/(vacancy-impurity

pair). And the Enet
f for all the species is Ebind, scaled by the formation energy of single Ti

vacancy (Ef ) as per the Eq. (7.6). The value calculated for Ef is 3.11 eV/atom.

impurity Eimp
f (eV) Ebind (eV) Enet

f (eV) Eb (eV) Q (eV)

3d Sc −0.27 −1.63 1.48 3.68 5.17
Ti 0.00 0.00 3.11 4.03 7.14
V 1.50 2.60 5.72 3.77 9.48
Cr 2.86 −1.31 1.81 2.76 4.57
Mn 3.74 −3.67 −0.55 1.47 0.92
Fe 3.92 0.03 3.15 1.53 4.68
Co 4.03 −2.61 0.50 0.74 1.25
Ni 4.60 −9.04 −5.92 0.39 −5.53
Cu 4.63 −0.07 3.04 0.29 3.34
Zn 4.14 −2.29 0.82 0.90 1.73

4d Y 1.40 −1.42 1.69 3.32 5.00
Zr 0.36 −2.48 0.64 4.37 5.00
Nb 1.33 11.90 15.02 4.82 19.84
Mo 2.88 8.66 11.78 4.60 16.38
Pd 6.28 −7.84 −4.73 0.45 −4.28
Ag 6.93 −0.21 2.90 0.48 3.39

5d Hf 0.07 14.05 17.17 4.63 21.80
Ta 1.41 2.15 5.27 5.12 10.39
W −3.19 −0.31 2.81 4.95 7.75
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Figure 7.1: Comparison of the size of the atom and the energy in 3d-impurities (a) the
Goldschmidt radii (i.e., atomic radii) [338] and covalent radii [372] of the corresponding
impurity in TiN (b) Migration barriers (Eb), formation energies (Ef , E

net
f ), and the activation

energy (Q) for the vacancy-mediated process of all the impurities and that of interstitials of
selected impurities. The figures are reproduced from our original work [348].
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Figure 7.2: Comparison of the size of an atom and the energy in 4d-impurities. (a) The
Goldschmidt radii (i.e., atomic radii) [338] and covalent radii [372] of the corresponding
impurity in TiN (b) Migration barriers (Eb), net formation energy (Enet

f ), and activation
energy (Q). The figures are reproduced from our original work [348].

The results suggest a qualitative correlation between the impurity sizes and their diffusion

energy barriers, Eb (see Figs. 7.1b, 7.2b, 7.3b). This is particularly true for the Goldsmitdt

radius. Nevertheless, the agreement is also decent between Eb and the covalent radii when

considering the low-spin configurations, reflecting that TiN bonds exhibit a partially covalent

character [373]. The results are thus rather straightforward in the 3d-series, i.e., the bigger

the atom larger the energy barriers; a clear outlier from this trend seems to be Mn and

possibly also Sc.

However, 4d and 5d-series do not show any clear correlation between the impurity size and

the energies, Eb or Q. In particular, the moment binding energy enters the picture, all the

trends for all impurities drastically change. Since the Q is the sum of Eb and Enet
f , with

the former exhibiting a rather smooth trend, Q takes the shape of Enet
f in most cases. This

means primarily that the energy Ebind impacts Q. To elaborate on the trends in Ebind, which

is strongly related to the bonding, an analysis of the electronic structure will be needed (see

section 7.3.2). Nevertheless, here we emphasize the significance of negative values of Q (see

tab. 7.1), formed of two contributions. The negative value of Enet
f is directly related to the

stability of different d impurity–vacancy pairs. The negative binding energies correspond

to attractive interactions between the vacancy and the impurity, whereas positive binding

energies correspond to repulsive interactions. Hence pairs with negative values are easier to

diffuse via vacancy-mediated mechanism as compared to those with positive Enet
f .

Regarding the barriers Eb, however, we cannot ignore some degree of their correlation with

atomic size. For instance, in 4d, and 5d (see figures 7.2 and 7.3) suggest that larger impurity

radius results in lower Eb. This trend is less prominent in 3d metals (see Fig. 7.1). However,
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when it comes to the pairs Sc–Ti, Cr–Mn, and Mn–Fe, the trend can be seen clearly again(see

Fig. 7.1b). These pairs have the same trend of Q as Eb, but in the case of 4d and 5d, the

trends for Q change. We note that the major contribution to the variation of the Q across

the periodic table rows comes from the variation of the Ebind and is inconsistent for different

d-series of impurity. The results also reveal that an increasing atom size can lead to a

decrease in Eb and Q in TiN, but not always. On the other hand, Q for Ni and Pd has a

negative value, which is contributed from their Enet
f . This indicates the instability of the

system with these alloying elements in it. The decomposition of such a system has previously

been studied both for Ni [374–376] and Pd [377, 378] with rich N environment, and nitride

of both (Ni, Pd) has been recognized as a metastable compound.
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Figure 7.3: Comparison of the size of the atom and the energy in 5d-impurities. (a) The
Goldschmidt radii (i.e., atomic radii) [338] and covalent radii [372] of the corresponding
impurity in TiN (b) Migration barriers (Eb), net formation energy (Enet

f ), and activation
energy (Q). The figures are reproduced from our original work [348].

7.3.2 Bonding Characteristic Affecting Energies

We propose that the origin of the diffusion trends lies in the characteristics of the occupied

d-states of impurities. Therefore, to shed some light on the puzzling relations between atom

sizes and the migration energetics, we examine the bonding characteristics of the impurity

atoms in the host lattice. In the case of the TMI series in the particular group, the smaller

radius is coupled with poor shielding capacity, especially for the midrow elements [379]. 4d

and 5d impurities have a larger radius than the 3d impurities due to better shielding. As a

result, the nuclear charge strongly influences the directional bonding of 3d atoms. Hence,

to amplify the effects, 3d impurities are chosen for the critical assessment of directional

bonding. Namely, we exemplify our analysis on Sc–Ti and Mn–Fe pairs from the 3d-series

impurities for which trends of Q (and to a smaller extent also of) Eb anti-correlate with
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atomic radius. Additionally, these two pairs differ in the magnetic state of the interaction,

i.e., non-magnetic Sc–Ti and magnetic Mn–Fe.

The activation energy Q has two major components: (i) the energy contributed from the

directional bond or charge distribution (enters to Q in the form of Enet
f ) and (ii) from

the energy difference between IS and TS (enters to Q in the form of Eb). Hence, the

activation energy should reflect the bonding characteristics in the IS and the degree of

bonding directionality of the impurity near TS.
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Figure 7.4: DOS (upper panel) and COHP (lower panel) analysis for bulk B1-TiN resolved in
first nearest neighbor (1NN) Ti-N and second nearest neighbor(2NN) Ti-Ti orbital interac-
tions. The zero energy level corresponds to the Fermi energy, EF . The figure is reproduced
from our original work [348].

Let us first look at the difference between non-directional and directional bonds in the IS

and their contributions to Ebind. Before introducing impurities into bulk TiN, we thoroughly

analyzed its electronic structure, DOS, and COHP. This will help us to identify the changes

due to introducing vacancy and impurity together. The analysis shown in Fig. 7.4 confirms

the mixed covalent Ti–N and metallic Ti–Ti bonding nature in TiN, in line with similar

previous results by Yu et al. [373]. They claim the covalent bond density increases with the

increase of N content (i.e., covalent interactions become stronger). In summary, the TiN

host is metallic as Ti-Ti contributes to the metallic character; additionally, the overlap of
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the Ti-N orbitals increases (hence the covalent bond becomes stronger) in the presence of a

single Ti-vacancy (as needed for the VM diffusion) [373].

Bonding of 3d Non-magnetic Impurities
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Figure 7.5: The interactions comparison of migrating(m) atom with surroundings 2NN Ti
atoms, and 1NN N-atoms in the for the IS of Sc and Ti impurity with a vacancy at the 2NN
in TiN. The zero energy level corresponds to the Fermi energy. The figures are reproduced
from our original work [348].

Fig. 7.5 shows the DOS and COHP, which manifest a qualitative comparison of the strength

of bonding interactions of non-magnetic pair Sc and Ti in TiN with a vacancy adjacent to

them. This argument helps us to understand the lower Q in the case of Sc than for Ti. In

comparison to bulk TiN (see Fig. 7.4), the bonding interaction between the migrating Ti

atom (m(Ti)) with its nearest neighbors (both Ti and N) in the TiN with vacancy has clearly

changed (see Fig. 7.5b). For instance, an additional peak (labeled as (1) in Fig. 7.5b) appears

near the EF , strengthening the metallic bonding interaction between m(Ti)–NN(Ti) (in

comparison to the Ti–Ti interaction in bulk TiN, Fig. 7.4). This is caused by an increased

overlap of the d-states because m(Ti) is displaced towards the formed Ti-vacancy in its

2NN (see Fig. 7.6a). This can be realized from a distance between m(Ti) and NN(Ti)

atom opposite to vacancy in 2NN, which decreases by 0.07 Å w.r.t pure TiN (see Fig. 7.6b).

However, the covalent bonding of m(Ti)–NN(N) is weakening in comparison to bulk TiN,

as one can be observed from a pronounced decrease of the peak height of the COHP curve

in the energy range −5.0 to −2.5 eV and broadening to higher energy (labeled as (2) in

fig. 7.5b). The reason is again displacing m(Ti) towards the vacancy, as reflected in the

shortening of Ti–N bonds near vacancy and elongating on the opposite side by 0.05 Å. The

change in overlap interaction of m(Ti) and NN(N) is demonstrated in the Fig. 7.6c.
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Figure 7.6: The schematic representation of the TiN system (a) with shifting of NN (Ti)
atoms in the presence of a vacancy in (100) direction, (b) change in the interaction of m(Ti)
with surroundings 2NN Ti atoms in (100)-plane, adjacent to vacancy-plane, and (c) change
in the interaction of m(Ti) with surroundings 1NN N-atoms in (100)-plane, adjacent to
vacancy-plane. The figures are reproduced from our original work [348].

In the case of m(Ti), there is a slight weakening of the covalent bond but a strengthen-

ing of the metallic bond w.r.t bulk TiN. However, no evidence exists of forming (occupied)

antibonding states compared to bulk TiN. Regarding Sc in TiN in the IS, there is a substan-

tial destabilizing character in both covalent and metallic bonding. This is because of the

pronounced shifting of d-states to the higher energy. This can be seen in the energy range

between −7.5 and −5.0 eV of the COHP curve (labeled as (2) in Fig. 7.5a). These changes

are also reflected in integrated COHP (ICOHP) values: −2.98 eV for Ti–N and −2.65 eV for

Sc–N, pointing towards a stronger interaction with surrounding N in the case of the Ti atom.

The ICOHP values for Ti–N in bulk TiN are −2.98 eV as well, which indicates the Sc–N

covalent interaction is weaker. The above-discussed weaker bonding of m(Sc) compared to

m(Ti) in the IS reveals the electronic origin of lower Q in the case of Sc migration compared

to Ti.

Not only the IS but also bonding in the TS state significantly impacts the migration behavior.

Figures 7.7a, 7.7b show the charge density difference maps (between superposition of atomic

charges and charge density of real interacting atoms) for Sc and Ti in TS. In the case of Sc,

the charge accumulates on surrounding N atoms, presumably suggesting an ionic character

of the bonds. Electrons are also redistributed into the areas perpendicular to the Sc–N

direction, hence not participating in the bonding. On the contrary, there is a large charge

accumulation between Ti and N atoms (Fig. 7.7b), suggesting a covalent character of the

Ti-N bond even in the TS. Consequently, the migration barrier of Ti is larger than that of

Sc.
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e/Å3

ScN N

TiTi

(b)

TiN N

TiTi

(c)

0.0

0.4
e/Å3
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difference map for the (a) Sc and (b) Ti in their TS (in the (101) plane) for VM mechanisms.
The charge density plot for interstitial (c) Mn and (d) Zn in their TS, in the (100) plane.

All plots are described in the unit of e−/ Å
3
. The figures are reproduced from our original

work [348].

In contrast to the VM mechanism, the migrating atoms are more squeezed in the void of

TS during interstitial diffusion and hence are presumably more correlated (form bonding)

due to charge overlap. Hence, we have calculated the migration barriers for the interstitial

mechanism for selected cases and show them with open circles in Fig. 7.1b. This data suggests

that Zn has a higher Eb than Mn despite having a smaller covalent radius (although their

Goldsmitdt’s radius is the same). Moreover, Mn has an exact half-filled 3d shell while Zn has

a fully-filled 3d orbitals. Figs. 7.7c, and 7.7d represent the electron distribution of Mn and

Zn in their respective TS of the interstitial mechanism. The presence of (smaller) Zn-atom

pushes the NN -Ti to a farther distance compared to Mn. Measured by the distances of

surrounding Ti-N bonds, their lengths are 2.68 and 2.8 Å for Mn and Zn, respectively. We

propose that this repulsion is a demonstration of the Pauli repulsion due to the fully-filled

d-orbitals. Clearly, there is minimal overlap (and hence bonding) between Zn and Ti, unlike

in the case of Mn and Ti.
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Impact of Magnetism

(a) Manganese

2

1

0

1

2

DO
S 

[s
ta

te
s/

eV
] NN(Ti)-d

m(Mn)-d
m(Mn)-p
NN(N)-p

10 5 0 5 10
Energy [eV]

0.4

0.2

0.0

0.2

0.4

-C
OH

P 
[a

rb
. u

ni
ts

] m(Mn)-NN(Ti) up
m(Mn)-NN(Ti) dn
m(Mn)-NN(N) up
m(Mn)-NN(N) dn

(b) Iron

2

1

0

1

2

DO
S 

[s
ta

te
s/

eV
] NN(Ti)-d

m(Fe)-d
m(Fe)-p
NN(N)-p

10 5 0 5 10
Energy [eV]

0.4

0.2

0.0

0.2

0.4

-C
OH

P 
[a

rb
. u

ni
ts

] m(Fe)-NN(Ti) up
m(Fe)-NN(Ti) dn
m(Fe)-NN(N) up
m(Fe)-NN(N) dn

Figure 7.8: The interactions comparison of migrating atom with surroundings 2NN Ti atoms,
and 1NN N-atoms in terms of DOS (upper panel) and COHP (lower panel) for the IS of Mn
and Fe impurity with a vacancy at the 2NN in TiN. The lower and upper regions of DOS
are divided into minority-spin (dn) and majority-spin (up). The figures are reproduced from
our original work [348].

Let us verify the correlations between migration energetics and bonding drawn in the previous

section based on the electronic structure analysis of the IS also for magnetic systems. We

choose the 3d (magnetic) impurities Mn and Fe, neighbors in the periodic table. For a

magnetic system, the occupancy of majority and minority spin states plays a role in the

bonding separately. Figure 7.8 presents DOS and COHP of majority (up) and minority (dn)

spins. Foremost, we note that the Mn COHP and its DOS show no magnetic splitting, and

hence, no separate contributions come from the minority and majority spin components.

This is not the case for Fe: there is a shifting of minority spin states towards EF and partly

to the conduction band. This means some of the metallic state electrons start filling the

valence states. This stabilizes the covalent and metallic interaction, which also appears in

the bonding states. This is absent in the case of Mn. The d states of majority spin shift

towards lower energies for Fe in comparison to Mn. As a result, Fe interaction with NN(Ti)

is stabilized. This is evident by the bonding states close to ≈ −2.5 eV shown in the COHP

plot. On the other hand, the minority spin states shift towards the EF , and only a small

fraction of these states are actually occupied (i.e., below EF ). Due to the minority state

shifting towards the higher energy, the antibonding covalent states formed in Fe withNN(N).

However, the minority spin states also stabilized the bonding metallic states near EF . This

is accompanied by a stabilizing interaction between m(Fe)-NN(Ti), as revealed by COHP as

a small peak near to EF . Nevertheless, due to magnetic state splitting, the covalent bonding
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states in Fe splits into two in the COHP. The green curve in the lower panel in Fig. 7.8b

comes from the majority spin states, whereas the red one corresponds to the minority spin.

Comparing Mn and Fe, we, therefore, conclude that the magnetic splitting of Fe leads to a

stabilization of its IS state and hence contributes to the Q.

Final Note

From the above-presented electronic structure analysis of magnetic and non-magnetic cases,

it is evident that the migration energetics are significantly influenced by the d-states correla-

tion of the migrating species with the matrix atoms. This applies not only to the IS, but also

to the TS, as demonstrated with the example of bonding directionality in the VM-(Sc–Ti)

and interstitial-(Mn–Zn) migration case, we also showed the contribution from TS has a

finite contribution from the directionality of d-states and its correlation. This evidence is

clear from the difference in interatomic distances of NN (N). Both in IS and TS of Sc and

Ti in TiN is 0.07 Å, which is a very weak dependence between the two structures. Janotti

et al. [264] elaborated this as the larger d-impurity atoms have more compressibility and

give rise to lower barriers. However, the host material in their study was a metallic system.

Unlike that, we discussed an example of ceramic TiN, where ionic, covalent, and metallic

bonds are in the play, and hence an orbital compressibility argument alone does not suffice.

7.4 Conclusions

In this chapter, we have discussed the created database of energy contributions to the activ-

ation energy of transition metal (d-states) impurity diffusion in TiN [348]. The obtained res-

ults were rationalized regarding the density of electronic states and crystal orbital Hamilto-

nian population (COHP). The main conclusions drawn from this work are summarised as

follows:

• Smaller atom does not necessarily move faster (does not have small activation energy),

and vice-versa. The faster or slower migration of d-states metal atoms sensitively

depends on the bonding and anti-bonding interactions with the environment. In the

TiN case, they are affected by host N and Ti atoms.

• Migration barriers are affected by both the initial and the transition states of the

migration. The IS contributes by the different bonding arrangements of impurity’s

d-states. In the TS, the energy is affected by the d-states directionality and correlation

with the orbitals of the host atoms.

• The impurity-vacancy binding energy, and hence the activation energy, strongly de-

pends on the bonding of the TMIs in the matrix.
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7.4 Conclusions

The results will provide a knowledgebase for understanding and designing diffusion-related

behavior of d-impurities in TiN, such as spinodal decomposition, phase formation, etc. It

also provides an insight into the interactions among the d-states in alloyed ceramic TiN.
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Chapter 8

Prediction of Al-segregation and thermal

decomposition by DFT-based energy

envelope method

This chapter provides an overview of the energy envelope method to study the diffusion

originally proposed to study (Ti,Al)(O,N) [380]. The method is based on the diffusion

migration energy barriers and vacancy formation energies calculated from the 0 K DFT.

We employed this method to predict the experimentally determined spinodal decomposition

and formation of the Al-rich region. The work is published [74] with our contribution and

described here in detail.

8.1 Introduction

Transition metal aluminum nitrides (TMAlN) of the cubic B1 NaCl type structure are ex-

tremely useful as hard coatings on cutting and forming tools due to wear and corrosion

resistance. The reported hard coatings are Ti0.5Al0.5N, C0.5Al0.5N, and V0.5Al0.5N with bulk

modulus values of approximately 261, 234, and 280 GPa, respectively [76]. Based on these

calculations, along with the prediction of higher fracture toughness of (V,Al)N compared to

(Ti,Al)N [381], VAlN thin films could replace the other TMAlN. Furthermore, the thermal

decomposition, nucleation, and growth of wurtzite AlN results in performance enhancement,

such as the hardness of (Ti,Al)N coatings [2], and need to be verified for the other TMAlN.

Evidence of degradation of mechanical properties is shown in (Ti,Al)N [84]; however, spinodal

decomposition has no negative impact on its mechanical properties [382].

Hans et al. [383] have recently illustrated the spinodal decomposition and the nucleation and

growth of wurtzite AlN in metastable cubic (V0.64Al0.36)0.49N0.51 thin film by vacuum anneal-

ing at 900◦C and based on the thermodynamic considerations of compositional variations.
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They discussed the thermal decomposition of VAlN thin film by thermodynamic instability

with respect to small compositional fluctuations, which reduce the Gibbs free energy ∆G of

the system. Since there is no investigation of different annealing temperatures, particularly

lower temperatures, the systematic study of kinetic counterpart could unravel the forming

Al-rich region and hence nucleation of AlN.

In this work, we predicted using DFT calculations the formation of Al-rich regions and

hence the initiation of thermal decompositions of experimentally grown single-phase meta-

stable cubic-(V0.64Al0.36)0.49N0.51 thin films with columnar microstructure by considering only

a single crystalline structure. We presented a statistical evaluation of each chemical envir-

onment’s vacancy formation energy and diffusion migration energy in V1−xAlxN, x = 0.0,

0.25, 0.50, 1.0. The evaluation is calculated such that the atoms with each chemical envir-

onment in the structure have a different value of migration energy and formation energy,

providing an envelope of energy (so-called “envelope” method), provides insight into the

experimental studied thermal decomposition upon vacuum annealing from 600 to 900◦C and

characterized by X-ray diffraction, the TEM, the APT, nanoindentation as well as resistiv-

ity measurements. This study provides a theoretical-methodological development and its

successful validation by describing the decomposition process in VAlN.

8.2 Computational Details

The computational methodology here is reproduced from our contribution in the work [74].

Density functional theory, implemented in VASP [249, 250], was used to estimate the bar-

riers for diffusion during decomposition. The GGA implemented by the PBE [251] was

employed for the electron-electron exchange and correlation potential. The pseudopotentials

used for the elements treat semi-core states of V ([Ne]3s23p64s13d4 ), Al([Ne]3s23p1 ) and

N(1s22s22p3) as valence states. Ion-electron interactions were described using the projector-

augmented wave method [209] with a plane-wave energy cutoff of 500 eV. A 2×2×2 supercell

(space group Fm3̄m, NaCl prototype) with 64 atoms was used as a base model for defect-

free V1−xAlxN, x = 0.0, 0.25, 0.5 and 1.0. Hence, the simulation box had a length below

∼0.9 nm. Test calculations on the established TiN system were done, and it was found that

larger simulation boxes (4× 4× 4 supercell) do not significantly affect the results. The x =

0.25 and 0.5 compositions were modeled with the special quasi-random structures [294]. For

these cubic supercells, a Monkhorst-Pack mesh [252] of 3× 3× 3 k-points was used for the

Brillouin zone sampling with a Methfessel-Paxton [253] smearing of 0.2 eV.

To quantify the compositional effect on the activation energy for bulk diffusion, we calcu-

lated energy barriers for jumps between stable and transition states for all species. All the

considered barriers for the jumps were between the first nearest neighbors on the respect-

ive sublattice (32 metal and 32 nitrogen atoms), i.e., their separation was a/2 ⟨110⟩, with
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a being the conventional cubic lattice parameter creating an envelope of energy (see next

paragraph). Each state (with vacancy) was completely relaxed with respect to internal de-

grees of freedom (ionic coordinates). The volume and shape for each defected state were

kept unchanged and fixed to the values corresponding to a fully relaxed defect-free parent

supercell without any vacancy. The energy of the transition state (saddle point) along the

minimum energy diffusion path, connecting the initial and final states, was determined by

the NEB [254] method, as implemented in VASP, with single image calculations.

The envelope approach is designed so that the procedure starts by removing atoms one at

a time, creating a set of 64 supercells, each containing one vacancy. Each of these calcu-

lations provides a separate energy value, producing a packet of formation energy for the

same parent supercell. Hence, the envelope for the diffusion migration energy is such that

the migrating atom diffuses to another vacant site only if the same species in the parent

supercell (vacancy-free) occupies that site. Although this is a strong constraint, it allows

for a computationally efficient implementation where all configurations are derived from the

same parent supercell [384]. Each 64-atom supercell yields 32 ·12/2 = 192 jumps for N atoms

(each site has 12 nearest neighbors on the same sublattice (fcc for the B1 structure); factor

2 is to avoid double-counting), or statistically 32 · 12/(2 · 2) = 96 jumps for each metallic

species in for instance ternary (X0.5Y0.5N). For X0.75Y0.25N, all possible initial and final jump

states were identified for the migration barrier jumps, and performed the NEB calculation

to create an envelope.

8.3 Results and Discussions

To unravel the formation of the Al-rich region (the precursor for nucleation and growth of

wurtzite AlN) and thermal decomposition in (V,Al)N, we present here the envelope method

of calculations of diffusion migration barriers (Eb) and the vacancy formation energy (Ef ).

The calculation procedure of this method is described in detail in section 8.2. The physical

significance of this method is solely based on the dependence of local chemistry on the Eb

and Ef . As it is known, the Ef is the energy required to remove a single atom in metals or

alloys, and Eb is the energy required to migrate a single atom from the initial state (IS) to

the final state (FS). However, removing or migrating atoms from each lattice site in a solid

solution does not cost simillar energy due to the local chemistry difference given by the type

of nearest neighbors. This energy difference is reflected in separate points in the Ef and Eb

envelope of (V,Al)N because of the different local chemistry, which signifies that the atoms

have different activation energy of the diffusion process given by the different temperatures.

145



8.3 Results and Discussions

(a) Vacancy formation
energies

N V
0.6

0.7

0.8

0.9

1.0

1.1

1.2

E f
 [e

V/
at

om
]

N
V

(b) Migration energies

0.0 0.2 0.4 0.6 0.8 1.0
Reaction Coordinate

0

1

2

3

4

E b
 [e

V/
at

om
]

N
Al
V

Figure 8.1: (a) The vacancy formation energies of V and N, and (b) migration energy barriers
of the Al, V, and N in V1−xAlxN, x = 0.0.

8.3.1 Density Functional Theory Predictions

We start with our discussion with VN and AlN (i.e., V1−xAlxN, x = 0.0 and 1.0, respectively),

where the local chemistry of every atom’s neighborhood is identical. The Ef and Eb have a

single point value for each species (see Fig. 8.1 and 8.4). However, this does not remain true

for the V1−xAlxN, x = 0.25 and 0.5 (see Fig. 8.2 and 8.3). The composition dependence is

summarized in the figure 8.5. In both cases, a fraction of the total Al in the structure has

much lower Eb than the V. Hence, the diffusion process for these Al atoms will be activated

much earlier than V, which leads to the formation of an Al-rich region. Again, with the supply

of further energy (upon annealing) to the system, the rest of Al and V will be activated to

diffuse. Since the kinetics is governed mostly by temperature, with appropriate temperature

(so that kBT = Eb), one can realize the current discussion. As the Ti1−xAlxN has been

reported to be decomposed into cubic TiN and wurtzite AlN [382], similar phenomena happen

in the case V1−xAlxN. However, the composition plays an important role in this. Moreover,

if there is more Al in the structure, the structure tends to form wurtzite AlN; otherwise,

cubic VN would be prominent.

The transport of aluminum and vanadium has been evaluated by the mean value of this

“envelope” method bulk diffusion migration barriers, Eb(Fig. 8.5b). The mean values for Ef

and Eb are taken over all the respective values species-wise. The significance of individual

values has a deeper meaning, as explained in the preceding section; however, the mean

value will provide an absolute measure of the leading diffusion species in V1−xAlxN and its
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Figure 8.2: The vacancy formation energies (left) and migration energy barriers (right)
plotted as a function of the fraction of Al atoms in the 1st nearest neighbors and next-
nearest neighbors (ζAl) for all common species in the V1−xAlxN, x = 0.25. The shaded
regions represent the standard deviation of the energies.

compositional dependence on the formation of Al-rich region. The diffusion rate of individual

species, obtained from Eb, strongly depends on the composition, and already at x = 0.25,

aluminum exhibits a 25% lower Eb for bulk diffusion than vanadium. The Eb for aluminum

is systematically smaller than vanadium (and nitrogen), suggesting that the diffusion rate

of aluminum is larger than that of vanadium and nitrogen. Again, the migration barriers,

Eb, of all the species increase monotonically with increasing aluminum content. This can

be explained by the increasing x in V1−xAlxN and the smaller radius of Al than that of

V. Due to the increase in Al content, the lattice constants get smaller, hence less space for

the migration of atoms. However, the change in (mean) Eb of aluminum with x is smaller

compared to vanadium and nitrogen. This can be observed from the small change in mean

Eb from x = 0.0 to x = 1.0 of Al, i.e., ∆ ⟨Eb⟩Al = 0.78 eV, ∆ ⟨Eb⟩V = 2.14 eV, and

∆ ⟨Eb⟩N = 1.87 eV This implies that the activation of aluminum diffusion at a higher value

of x (in V1−xAlxN) is easier with annealing temperature as compared to V and N, and the

Al-rich region is easily formed compared to lower x. One can realize this trend from the

lowest values among the envelope of Eb are N:1.65 eV, Al:1.73 eV, and V:1.84 eV for the

composition x = 0.25 (Fig. 8.2) and N:1.65, Al:1.27, and V:2.35 eV for the composition

x = 0.5 (Fig. 8.3). Hence, for the composition x = 0.25, the diffusion activation for all

species starts nearly at the same energy in the unit of Eb (slightly lower for Al), but for

x = 0.5, this difference between Al and V (or N) is significant. Thus for the composition

x = 0.5, aluminum diffuses much earlier than vanadium.

The transport in the structures is also partly driven by the vacancy formation on the sub-

lattices. In the migration barrier envelope for both x = 0.25 and x = 0.5, the range of N-Eb
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Figure 8.4: (a) The vacancy formation energies of Al and N, and (b) migration energy
barriers of the Al, V, and N in V1−xAlxN, x = 1.0.
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is distributed around the Al and V. Moreover, in all the cases, the Eb of N is higher than

Al and V. Both cases imply that the mass transport of metals is responsible for the decom-

position and formation of the Al-rich region. The vacancies on metal sublattice can exist in

the case of nitrogen overstoichiometry [385] and the formation of Frenkel pairs [386]. Hence,

the concentration of metal vacancies (i.e., sites where vanadium and aluminum can jump)

is related to the ratio of vanadium and aluminum atoms on the metal sublattice and the

respective vacancy formation energies, Ef . Additional vacancies will be generated thermally.

Their amount, in turn, depends on the vacancy formation energies, Ef (Fig. 8.5a). Lower Ef

of vanadium than aluminum vacancies implies a higher amount than aluminum vacancies.

Nevertheless, estimating their amount using exp (−Ef/kBT ) leads to values on the order

10−8 and lower, i.e., more than six orders of magnitude smaller than the number of struc-

tural vacancies. This is estimated by assuming the formation of metal vacancy (unoccupied

metals sites) in the presence of the higher amount of N2 (nitrogen overstoichiometry) in

the sputtered industrial (Ti,Al)Nx systems [385]. This is because, during PVD, nitrogen is

present in different states, such as molecules, atoms, and excited and ionic nitrogen, showing

a larger chemical potential and hence an increase of metal vacancy. Therefore, it is reas-

onable to assume that the overall mass transport is dominated by bulk diffusion barriers,

favoring the mobility of aluminum over vanadium.

(a) Vacancy formation energies

0.0 0.2 0.4 0.6 0.8 1.0
x in V1 xAlxN

0

1

2

3

4

5

6

7

8

Va
ca

nc
y 

fo
rm

at
io

n 
en

er
gy

(E
f) 

[e
V/

at
om

]

Al
N
V

(b) Migration energies

0.0 0.2 0.4 0.6 0.8 1.0
x in V1 xAlxN

2.0

2.5

3.0

3.5

4.0

4.5

M
ig

ra
tio

n 
ba

rri
er

s(
E b

) [
eV

/a
to

m
] Al

N
V

Figure 8.5: The summarized plot of (a) the vacancy formation energies of Al, V, and N, and
(b) the migration energy barriers of the Al, V, and N in V1−xAlxN. The shown data were
obtained as mean values and corresponding standard deviations of all possible scenarios in
the respective supercells. The figures are reproduced from the original work [74].
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8.3.2 Experimental Validation

The predictions of the formation of Al-rich regions by DFT calculations coincide with the

experimental prediction in this work [74]. Here, we discussed the agreement of our prediction

with the experiment compiled with a few images of constructions of APT, microstructure,

and HAADF and scanning transmission electron microscopy (STEM)-energy-dispersive X-

ray spectroscopy (EDX) elemental maps shown in Fig. 8.6.
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V AlV Al

Al 
diffusion
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700°C 800°C

Figure 8.6: Atom probe tomography (APT), microstructure, and HAADF and STEM-EDX
elemental maps showing the gradual formation of Al-rich regions after cyclic annealing at
different temperatures. The figures are reproduced from the original work [74].

The local chemical composition analysis of (V,Al)N thin films provides evidence for the

homogeneous distribution of vanadium as well as aluminum atoms at the nanometer scale in

the as deposited state (see top left APT figure in Fig. 8.6) as well as after cyclic annealing at

600◦C (see top middle APT figure in Fig. 8.6). However, this homogeneous distribution gets

affected upon cyclic annealing at 700◦C. The formation of Al-rich regions can be seen in plan-

view microstructural characterization (lamella extracted at < 500 nm from the film surface

shown in the bottom left image in Fig. 8.6), providing evidence for aluminum diffusion
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to the triple junctions via grain boundaries. The chemical composition analysis at the

nanometer scale from APT data (see top right APT figure in Fig. 8.6) is most likely from a

triple junction at columnar grain boundaries, showing an Al-rich region. There is also the

formation of a V-rich region, but the Al-rich region is more prominent. This can be seen

in the microstructure for 700◦C in Fig. 8.6, where both Al and V start diffusing. However,

the amount of Al segregation is larger than V, indicating that the Al starts diffusing earlier

than V, as shown by our calculations. These compositional variations are significantly larger

than the count rate statistics and can be interpreted as the onset of spinodal decomposition

in agreement with the significant peak broadening identified by X-ray diffraction. After

cyclic annealing at 800◦C, there is evidence of the wurtzite AlN phase formation, which

corresponds to aluminum enrichment as well as vanadium depletion at the grain boundaries.

This is shown by a combination of HAADF images and elemental maps in the bottom right

of Fig. 8.6, where the Al-rich region has significantly grown, consistent with nucleation

and growth of wurzite AlN. Thus, an increase in the annealing temperature from 700 to

800◦C causes segregation of aluminum at the grain boundaries, while vanadium exhibits

local agglomerations in the grain boundary region. Since the nitrogen is homogeneous for

the whole lamella, it can be inferred that the formation of VN-rich regions occurs after

wurtzite AlN formation and is induced by aluminum diffusion and followed by vanadium

diffusion, as predicted by our envelope calculation.

8.4 Conclusions

The following conclusions can be drawn from the work of this chapter, which is analyzed

by calculating the diffusion migration energy barriers and vacancy formation energies of

V1−xAlxN:

• The envelope method used here based on calculating energies with different local chem-

istry by density functional theory can unravel the properties related to kinetics, such

as decomposition.

• The formation of Al-rich regions can be understood by the lowest activation energy

barrier of Al in the energy envelope and the more than 25% lower activation energy

barriers for bulk diffusion of aluminum compared to vanadium in the mean estimation

of this envelope.

This method can be useful in predicting many diffusion-related properties. We use this

method to unravel the sluggish diffusion in high entropy ceramics in the following chapter.
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Chapter 9

On correlations between local chemistry,

distortions and kinetics in high entropy

nitrides: an ab initio study

In this chapter, we have performed first-principles calculations to investigate the long-

debated topic of sluggish diffusion in high-entropy-based materials. The sluggish diffusion is

often related to the chemically disordered local environments in high entropy materials. We

have applied a statistical envelope approach, introduced in Chapter 8, to DFT-based migra-

tion barriers to demystify diffusion retardation in high-entropy sublattice nitrides (HESNs).

The retardation is addressed with correlations of two different types of lattice distortion in

the system. Here, we propose a new method to quantify the local lattice distortions consid-

ering the complete structural information of a relaxed simulation box. The results presented

here are published in Acta Materialia as our original work [384] and are reproduced below.

9.1 Introduction

The high entropy materials are acknowledged by their four core effects (discussed in Chapter 1),

and in many cases, some of these effects are subjected to verification by rigorous study. In

their recent reviews, Miracle and Senkov [387] and Pickering and Jones [388] questioned

the central role of the core effects. Multiple studies (experimental and theoretical) have

shown the overestimation results on stabilizing effect of configurational entropy [389–392],

on lattice distortion [393, 394], on cocktail effect alloys [387, 395, 396], as well as on sluggish

diffusion [397].

The first in-depth study on sluggish diffusion in HEA was conducted by Tsai, Tsai, and

Yeh [398]. The authors used a quasi-binary approach for the system Co-Cr-Fe-Mn-Ni, to

show significantly lower diffusivity than in pure metals and Fe-Cr-Ni alloys. However, Paul

153



9.1 Introduction

[399] later questioned the correctness of this work because the system is characterized by

relatively low enthalpies of mixing for binary subsystems, and the author treated the system

as an ideal system to obtain the intrinsic diffusivities as tracer ones. The additional flaw

stems from the fact that from each quasi-binary couple, two different interdiffusivities could

be extracted. Nevertheless, the important conceptual basis given by Tsai, Tsai, and Yeh

[398] is the difference between the diffusion in HEA and that in conventional alloys. The

surrounding atoms of each lattice site in the solid solution phases of HEA have a much

greater variety than those in conventional ones, so no species dominates the composition,

and HEA has variety in terms of species. There are other investigations by the other authors

which both align with [400–402] and are skeptical about [390, 403, 404] the true state of

“sluggishness”.

Besides bulk metallic HEAs, the sluggish diffusion effect has rarely been investigated in high-

entropy ceramics. Kumar and Avasthi [405] investigated iron diffusion in the AlCrTaTiZrN

system and reported a lower value of activation energy and hence a higher diffusion coef-

ficient than in TiN. Li et al. [406] suggested (thermally stable) AlCrTaTiZrMoN film as a

diffusion barrier for Cu. Retardation of (self-)diffusion upon growing chemical complexity

may, on the one hand, lead to increased thermal stability, and on the other hand, to alloys

developing nanocrystalline or even amorphous structures. Such systems are promising dif-

fusion barriers in the interconnect structures. Therefore, understanding the extent of the

diffusional sluggishness and its linking with the system chemistry and structure is crucial for

designing novel high-performance materials.

Kretschmer et al. [125] employed two parameters to quantify the lattice distortion in a large

set of multinary nitrides. Importantly, they concluded that there was no clear trend for

higher distortion by increasing the number of components in the correlation, suggesting that

the distortion is directly related to the differently sized metals rather than purely to the

number of components (high configurational entropy). Therefore they postulated that the

lattice distortion (and the possibly corresponding sluggish diffusion) should not be taken

for granted in high configurational entropy sublattice nitride (and presumably in HEAs in

general).

In this work, we employ ab initio calculations to study the relation between the sluggish

diffusion and high entropy or severe lattice distortion effects. We will show that in certain

systems, increasing chemical complexity leads to lower migration barriers and not the other

way around, as the HEA core effects suggest. Next, we focus on systems with the same

chemical complexity but different degree of lattice distortions. We will advocate for using

the width of the bond-length distribution as a measure of the lattice distortions instead of the

often used (and easily accessible) lattice mismatch between the forming species. Finally, we

will demonstrate that the lattice distortions correlate with the diffusion activation energies
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rather than only the migration barriers.

For demonstration purposes, we use nitride ceramic systems crystalizing in rock-salt B1

structure, which find numerous applications as thin protective films. Moreover, the recently

published extensive theoretical study by Kretschmer et al. [125] conveniently serves as a base

for selecting cases for the present analysis.

9.2 Methodology and Computational details

9.2.1 Energetics of Migration

Several quantities obtained through 0 K static calculations are used to discuss diffusion. We

consider only the vacancy-mediated process, i.e., the moving atom exchanges its position with

a neighboring vacancy. Previous literature showed that this is the dominant mechanism for

metal atoms migration in transition-metal nitrides [1, 407].

We present here a statistical evaluation (previously introduced as the “envelope” method [408])

for discussing the diffusion migration barriers. The structure considered here for migration

barrier calculations and the distortion analysis are the face-centered cubic (fcc) B1 structure

with metal and N sublattices, each having 32 atoms. We started by creating a vacancy

at each of the 64 sites (32 metal, 32 N) separately, and calculating the vacancy formation

energy, Ef , as

Ef = Ei − E0 + µi (9.1)

where Ei and E0 are the total energy of the supercell with and without the vacancy, respect-

ively, and µi is the chemical potential of the species i. The latter was conventionally set

equal to the energy-per-atom of the corresponding element in its stable solid structure. The

influence of the actual value of µi in pure bulk versus in an alloy was found to be insigni-

ficant [409, 410]. Thereby, a total of 64 calculations (vacancy positions) for each considered

system were obtained. The resulting spread of Ef values for the same type of vacancy reflects

its sensitivity to the local atomic environment.

Subsequently, we calculated migration barriers, Eb, using the nudged elastic band (NEB)

method [254], see section 9.2.3; they provide an insight into how energetically difficult it is

to move an atom from one site to another. We used the envelope approach, explained in

section 8.2, to estimate the diffusion behavior in this work. Each 64-atom supercell yields

32 ·12/2 = 192 jumps for N atoms (each site has 12 nearest neighbors on the same sublattice

(fcc for the B1 structure); factor 2 is to avoid double-counting), or statistically 32·12/(2·2) =
96 and 32 · 12/(2 · 5) = 38.4 jumps for each metallic species in ternary (X0.5Y0.5N) and 5-

component high configurational entropy sublattice nitride (HESN), respectively. Moreover,

in the present case, a reasonable dataset is obtained owing to the equiatomic compositions.
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Finally, activation energy is defined as

Q = Ef + Eb . (9.2)

9.2.2 Lattice Distortions

We use two parameters to quantify the local distortion.

The lattice mismatch between HESN and the forming binary nitrides, δ, [125, 411] is a

parameter easily accessible experimentally as it works only with the bond lengths (lattice

parameters) of the forming phases

δ =

⌜⃓
⎷⃓

N∑︂

i=1

Xiδ2i (9.3)

where

δi = 1− ri
r
. (9.4)

Xi is the mole fraction of the ith component (binary MiN), ri the nearest neighbor N-

metal bond length of the ith metal (half of the cubic lattice parameter in our case), and r

the average nearest neighbor N-metal bond length, i.e., a
√
2/2 where a is the HESN cubic

lattice parameter. We note that introducing δi in Eq. (9.4) will allow discussing species-

specific effects in terms of the lattice mismatch.

As a second parameter, we employ lattice distortion, σ, defined in the following way. Since

our atomistic model provides direct access to all M–N bond lengths in the whole (relaxed)

supercell, we consider the whole distribution of bond lengths in the relaxed structures. Sub-

sequently, we fitted it with a Gaussian distribution; its variance defines the σ parameter, i.e.,

σ =
√
variance. Similarly, Gaussian-fitting of only a subset of all bond lengths correspond-

ing to a particular species Mi on the metallic sublattice provides a partial (species-resolved)

σi. This definition is somewhat different from Ref. [125], where the authors directly fitted

the radial distribution function instead of the bond-length distribution. Nevertheless, the

resulting values are similar and provide the same trends.

9.2.3 Computational Details

In this work, we used the DFT as implemented in VASP [249, 250]. GGA-PBE [251] paramet-

rization has been used to describe the electron-electron exchange and correlation interactions.

The pseudo-potentials used for each element in the calculations treat any semi-core states as

valence, and the recommended potential is used per the VASP website recommendation. The

ion-electron interactions were described using the projector augmented wave method [209],

with a plane-wave energy cut-off of 500 eV. The corresponding Brillouin zone was sampled
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with a 6×6×6 Monkhorst–Pack k-point mesh [252]. The Methfessel–Paxton [253] smearing

of 0.2 eV was applied. A convergence criterion of 10−6 eV (per supercell) was used for the

total energy during the electronic self-consistency cycles and ionic relaxations during struc-

tural optimizations, and the total energy convergence of 10−4 eV (per supercell) was applied.

All our calculations were non-magnetic. The σ parameters result from the bond distribution,

and bond arrangement arises from the overlap of the band structure and/or charge transfer.

Hence, to correlate σi, we estimate charge transfer among atoms in HESN by Bader charge

analysis [412]. Bader analysis is done by partitioning real space using the electron density

gradient to define where one atom boundary ends, and the next begins in the framework of

the atoms-in-molecules [413].

The transition state corresponding to the saddle point along the minimum energy diffusion

path was determined using the NEB [254] method implemented in VASP. We tested five

images versus three images versus single image NEB calculations for the migration barriers

and found that the resulting barriers do not vary up to 4-decimal points. Considering the

extensive calculations that needed to be performed, we eventually settled on using single-

image calculations for the rest of our study. We tested the migration barrier differences

from supercells with 64 and 216 lattice sites in our previous work [1], where these differences

were below 10−2 eV, and hence a cell containing 64 atomic sites and representing 2× 2× 2

supercell of a conventional cubic B1 structure was used for all calculations.

In all six structures (ternary and hexinary), the metals were distributed on the metal sub-

lattice by the special quasi-random structure (SQS) method to simulate random solid solu-

tions [294]. Since 32 metallic sites do not allow for equimolar 5-component alloys, the

migration barrier and distortion analysis were obtained by nearly equimolar in which the

metals were permuted over the 7+7+6+6+6 sites in hexinaries. On the ternary nitrides,

metals, however, are distributed as 16+16 sites on the metal sub-lattice. The cells were

relaxed regarding size, shape, and atomic positions.

9.3 Results and Discussions

We present DFT-based calculations and a detailed analysis of the local lattice distortion,

diffusion migration barriers, and corresponding activation energies related to the vacancy

formation energies for several selected nitride systems. We focus especially on the correlation

between local distortions and diffusion retardation. The recent work of Kretschmer et al.

[125] served as a basis for choosing three hexinary high-entropy sublattice nitrides (HESNs)

and three ternary nitrides.

Below, we separate our results into two cases. The first aspect is the impact of complex-

ity accompanied by lattice mismatch δ while keeping the lattice distortions σ comparable,
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whereas the second part investigates the impact of the local distortions σ for constant en-

tropy, and similar δ. Thereby, we can disentangle the impact of configurational entropy and

local distortions. The here calculated total δ and σ quantifying the lattice mismatch and

distortion, respectively, agree well with values reported in Ref. [125].

9.3.1 High Entropy and Lattice Mismatch Effect

We start our discussion with the effect of complexity and lattice mismatch. To do so, we

choose two systems with increasing chemical complexity, i.e., (i) a ternary AlTiN and (ii)

a hexinary AlHfTaTiWN. We analyze their vacancy formation energies and, subsequently,

the diffusion migration barriers. Both systems are “well-behaved” B1 systems (i.e., exhib-

iting only marginal local relaxations), characterized by similar and minimized values of the

bond length distribution widths (σ(i) ≈ σ(ii) → min). The increased chemical complexity

(ternary→hexinary) is coupled with increased lattice mismatch (δ(i) < δ(ii)), cf. Tab. 9.1.

Figure 9.1a shows vacancy formation energy, Ef , of all the sites occupied by the common

species, i.e., Al, Ti, N, in the ternary AlTiN and hexinary AlHfTaTiWN systems. The Ef

is plotted as a function of the fraction of Al neighbors, ζAl, which occupy the 1st nearest

neighbor (1NN) sites of N atoms and 2NN for the metals. The reader is referred to figs 9.2a,

9.3 for the complete data (other species and other ζi). The data is color-coded according

to species; the horizontal dotted lines represent each species’ mean Ef value, whereas the

color-shaded region denotes the corresponding standard deviation. To qualitatively examine

the influence of the local chemistry on the vacancy formation energies, a species-wise linear

regression analysis of Ef as a function of ζAl was conducted (solid lines with species-matching

color).

Ef exhibits wide distributions for both systems, ranging from 2.42 to 3.54 eV (Al), from

1.35 to 2.81 eV (Ti), and from 3.09 to 3.82 eV (N) with an averaged value of 1.88, 2.94, and

3.49 eV, respectively, in AlTiN, and from 0.15 to 0.96 eV (Al), from 0.92 to 1.86 eV (Ti),

and from −0.46 to 3.52 eV (N) with a mean value of 0.37, 1.42, and 2.19 eV, respectively,

in AlHfTaTiWN. The energy spread of N vacancies is significantly larger in the HESN

compound with 3.98 eV. This is possibly due to a larger lattice mismatch (cf. δ in Tab. 9.1).

Table 9.1: The calculated values of the lattice distortions, σ, and lattice mismatch, δ, for
systems with different chemical complexity. The two systems exhibit similar (total) σ but
different (total) δ.

lattice distortion lattice mismatch

σ [ Å] δ [%]
AlTiN 0.067 2.245
AlHfTaTiWN 0.071 3.678
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(a) Vacancy formation energies
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(b) Migration energies
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Figure 9.1: (a) The vacancy formation energies and (b) migration barriers plotted as func-
tions of the number of Al atoms in the 1NN/2NN (ζAl) for all common species in the
AlTiN (left) and AlHfTaTiWN (right) systems. The figures are reproduced from our original
work [384].

However, all species’ mean values are consistently lower when comparing HESN with AlTiN.

This may imply an easier formation of thermal vacancies in the HESN case, potentially

suggesting easier mass transport (of Al, Ti, and N); this would, however, contradict one of

the HEA core effects, namely the sluggish diffusion.

An interesting insight can be obtained from the local chemistry analysis. In both systems, N

is the 1NN of Al, and its Ef increases with the increase in Al content (ζAl) in its neighborhood.

This trend confirms that Al has an affinity towards N, which was shown before in bulk

AlN/Ti1−xAlxN [414–416]: N vacancies are not preferred (are energetically costly) in the fcc

B1 AlN. This, of course, means that the trend of Ef w.r.t. ζTi = 1− ζAl (see Fig. 9.2a) is the

opposite in AlTiN; N vacancies are more easily created in TiN than in AlN, although they

are energetically still not preferable (Ef > 0). Interestingly, the Ef trends for N vacancies
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(a) Vacancy formation energies
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(b) Migration energies
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Figure 9.2: (a) The vacancy formation energies and (b) migration barriers plotted as func-
tions of the number of Al atoms in the 1NN/2NN (ζTi) for all common species in the
AlTiN (left) and AlHfTaTiWN (right) systems. The figures are reproduced from our original
work [384].

in the neighborhood of ζAl and ζTi in HESN are qualitatively similar (Ef increases with

the amount of both, Al and Ti in the N neighborhoods). Thereby, the Ef (ζTi) dependency

is opposite compared with ternary AlTiN. Apart from that, the other metal neighborhood

(ζi) are independent of each other regarding the Ef of N vacancies trends. This qualitative

change in behavior is due to the HE effect (complex chemistry).

Ef of Al and Ti vacancies increases in both systems as a function of ζAl (now 2NN). Con-

sequently, metal vacancies become more energetically demanding for Al-rich local environ-

ments. Again, the trend is obviously opposite as function of ζTi = 1 − ζAl in AlTiN case.

Interestingly, unlike the N vacancies, the metal vacancy formation energies keep this trend

also in the HESN case. In addition to Ti-local environments, Hf local environments exhibit

the same trend, i.e., lower metal vacancy Ef for the Hf-rich environment (see Fig. 9.3). This
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Figure 9.3: Complete data of formation energy (Ef ) for each species of HESN-AlHfTaTiWN
system, along with all the metal’s local environment as 1NN/2NN (ζi, i = Al, Hf, Ta, Ti,
W) and the mean and standard deviation value. The linear fit helps to understand the trend
with the increase and decrease of species’ content in the local environment.
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Figure 9.4: Complete data of migration barriers (Eb) for each species of HESN-AlHfTaTiWN
system, along with all the metal’s local environment as 1NN/2NN (ζi, i = Al, Hf, Ta, Ti,
W) and the mean and standard deviation value. The linear fit helps to understand the trend
with the increase and decrease of species’ content in the local environment. The figures are
reproduced from our original work [384].

could result in metal vacancies being preferably generated in Ti- and Hf-rich local envir-

onments, possibly speeding up mass transport once local compositional fluctuations appear
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(e.g., after the onset of spinodal decomposition [125])
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Figure 9.5: The activation energy defined by Eq. (9.2) of all the species of the systems AlTiN
and AlHfTaTiWN and their correlation with the δ parameter of individual species, i.e., δi.
The left bar of each species indicates the Q, in which the upper region represents Eb, the
lower region is Ef , and the corresponding right bars with hatch indicate δi. The figure is
reproduced from our original work [384].

Let us move to the migration barriers now. Each jump connects two states (arbitrarily

labeled as initial (IS) and final (FS) states) via a transition state (TS). Thereby, each jump

corresponds to two barriers, Eb,1 = E(TS) − E(IS) and Eb,2 = E(TS) − E(FS). Since in

our treatment, we do not distinguish between the diffusion direction, both of those barriers

were included in the statistical analysis (the “envelope” method). Figure 9.1b shows the

mean values (number and dashed lines) and standard deviations (color bars) of migration

energies Eb for single atom jumps to their neighboring vacancy in a 2NN distance. Clearly,

the migration barriers of the ternary AlTiN (2.37 eV, 3.94 eV and 4.02 eV for Al, Ti, and

N, respectively) are higher than their counterparts in the hexinary AlHfTaTiWN (2.11 eV,

3.68 eV and 2.80 eV for Al, Ti and N, respectively). Lower barriers signify the ease of migra-

tion of the corresponding species in comparison to a higher one. This result contradicts the

accepted notion (core effect) of sluggish diffusion in multi-component high entropy systems.

We note that the overall migration barrier for metal species remains higher in the HESN

system (3.72 ± 0.61 eV) compared to the ternary one (3.15 ± 0.48 eV) when all species are

averaged based on their molar fraction. This is caused by high migration barriers of some

of the alloyed species; instead of discussing the alloying impact on the overall migration, we

will keep our focus on the high-entropy effect and compare the same species in low and high

entropy scenarios.
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The higher barriers in the ternary compound compared to the hexinary compound are also

counterintuitive to the lattice mismatch values (Tab. 9.1): higher barriers are obtained in

the case of smaller lattice mismatch δ. Instead of the total lattice mismatch, let us consider

the species-resolved counterparts δi (Eq. (9.4)). Since Al and Ti have the smallest and

second smallest bond length in their fcc nitrides (2.035 Å, 2.128 Å, 2.269 Å, 2.214 Å and

2.187 Å for AlN, TiN, HfN, TaN and WN, respectively [125]), Al-N and Ti-N bonds are

expected to be (on average) longer in the HESN than in the ternary. This is signified by

corresponding δi being larger in the hexinary than in the ternary compound (0.066 vs. 0.025

for Al and 0.023 vs. −0.019 for Ti, see Fig. 9.5). The physical significance of increasing δi

while going from the ternary to the hexinary compound (even changing its sign in the case

of Ti) is the pronounced change in lattice parameter (AlTiN: 4.175 Å → HESN: 4.355 Å)

since it is a measure of the lattice strain from binary nitrides to ternary or hexinary nitrides.

Therefore, the local environments around Al are more expanded in the HESN than in the

ternary TiAlN w.r.t. binary AlN. In the case of Ti, the local environments turn from being

compressed in TiAlN w.r.t. binary TiN to being expanded in HESN. With this in mind, the

easier mass transport of Al and Ti in HESN compared to ternary TiAlN can be qualitatively

correlated with more internal space. We, therefore, propose that the relation of migration

barrier heights is strongly related to the distribution of atomic sizes forming the system

under consideration.

Additionally, a linear-regression analysis has been done w.r.t. the local environment of the

stable state (IS or FS) for each barrier. For brevity, we only discuss the local Al content

(ζAl); complete results are given in Figs. 9.3 and 9.4. Although there seem to be weak trends

(e.g., the migration barrier decreases with increasing local Al content), the large spreads for

each fixed ζAl suggest that the dependence on the local chemistry is much more complex.

The amount of atomic jumps (and hence the mass transport) depends on the activation

energy, Q, which is the sum of the Eb and Ef . Here, Eb governs the probability of a jump

of the migrating atom, while Ef controls the number of available vacancies, i.e., the final

positions where the atom migrates. In Fig. 9.5 we plot species-resolved Q (as composed of Ef

(lower part) and Eb (upper part) of each bar) and δi as defined by Eq. (9.4). The Q decreases

with the increase in δi for Al and Ti from the ternary TiAlN to HESN, as a consequence of

the same qualitative trend for both vacancy formation energies, Ef , and migration barriers,

Eb.

In summary, our selected example demonstrates that a sole increase in chemical complexity

and, thereby, the configurational entropy does not necessarily point towards less mass trans-

port (sluggish diffusion), as quantified by the migration barriers, vacancy formation energies,

and activation energies.
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9.3.2 Impact of Disorder

In the previous section, we discussed the impact of configurational entropy (chemical com-

plexity). The systems were purposely chosen so that the higher entropy one also had higher

total lattice mismatch parameter δ since Kretschmer et al. [125] showed that this parameter

is reasonably well correlated with the internal distortions measured by σ. Moreover, the δ

parameter is based only on lattice parameters and hence easily accessible for experimental

quantification. However, already the data presented in Ref. [125] suggested that this correl-

ation is not perfect: there is a relatively large spread of σ values (width of the bond-length

distribution) for almost identical δ values (lattice mismatches). Therefore, in this section,

we focus on the impact of the lattice distortions. To do so, we chose systems of the same

chemical complexity (hence the same configurational entropy), chemically as similar as pos-

sible (differing only in 1 species) and exhibiting similar lattice mismatch (δ(i) ≈ δ(ii)) but as

different as possible σ values (|σ(i) − σ(ii)| → max).

Hexinary Systems

Table 9.2: The calculated values of the net lattice distortion, σ, and the net lattice mismatch,
δ of the two HESN systems having similar δ parameters but maximizing the difference in σ
values.

label system lattice distortion lattice mismatch

σ [ Å] δ [%]
Zr-HESN ZrAlHfMoNbN 0.072 4.084
Cr-HESN CrAlHfMoNbN 0.109 4.079

We choose two hexinary nitrides, ZrAlHfMoNbN (Zr-HESN) and CrAlHfMoNbN (Cr-HESN).

Since they are composed of almost the same elements (only differ by one), their lattice para-

meter mismatch after Eq. (9.3) is very similar. However, the lattice distortions, as measured

by the bond distribution width, are significantly different (cf. Tab. 9.2). Figure 9.6 presents

the Ef and Eb of two systems, Zr-HESN and Cr-HESN. Similarly to Sec. 9.3.1 also, here we

plot all quantities as functions of the local composition ζAl; other environment analyses are

provided in the Figs. 9.7, 9.8, 9.9, and 9.10.

The mean Ef values of all the common metal components are smaller in Zr-HESN (char-

acterized by a smaller σ) than in Cr-HESN. Due to similar chemical complexity and δ

parameters, there are no significant differences in the standard deviation or minimum-to-

maximum value ranges of the calculated Ef . Only the formation of N-vacancy is easier in

the case of Cr-HESN, which can be understood in the variation of Ef (N) w.r.t. ζZr or ζCr:

Cr prefers the N vacancies, whereas Zr does not (see Figs. 9.7, and 9.8 for details). This

is also consistent with the reported trends of formation energies of N vacancies in binary

nitrides [417]. Moreover, binary ZrN has more negative formation energy than CrN in the
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Figure 9.6: The energies plotted as a function of the number of 1NN/2NN of Al atoms
(ζAl): (a) the vacancy formation energy of all sites in the supercell and (b) the diffusion
migration energies barriers in migrating of species having a similar site, of common species
in the systems ZrAlHfMoNbN (left) and CrAlHfMoNbN (right). The figures are reproduced
from our original work [384].

B1 structure [418], thus stabilizing the Zr-HESN w.r.t. Cr-HESN. This is also reflected by

a wider bond-length distribution in the Cr-HESN system (cf. Tab. 9.2).

The Ef of all the components of both systems increases with the increase in ζAl. This confirms

our argument for the affinity of Al to N, and Al contributes to the thermodynamic stability

(in terms of thermally generated vacancies) of all components except for Cr. This reflects the

genuine thermodynamic driving force for separating Al and Cr atoms, thus destabilizing the

Cr-HESN system and eventually leading to its decomposition. Such behavior was reported

for another Cr-containing HESN system, AlCrNbTaTiN [125], and it is generally known for

the ternary AlCrN system [419]. Although these results may point to the correlation between

Ef and σ, i.e., the larger the lattice distortion in terms of the bond-length distribution width,
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Figure 9.8: Complete data of formation energy (Ef ) for each species of HESN-AlZrHfMoNbN
system, along with all the metal’s local environment as 1NN/2NN (ζi, i = Al, Hf, Cr, Mo,
Nb) and the mean and standard deviation value. The linear fit helps to understand the trend
with the increase and decrease of species’ content in the local environment. The figures are
reproduced from our original work [384].

the larger the Ef , we warn against generalizing this relation. Instead, our data show that this

relation is strongly system-dependent, reflecting the genuine bonding character of individual
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Figure 9.6b shows the diffusion migration barrier envelopes. The Eb of the Zr-HESN system

is higher for each common element except for the Hf (Eb(Mo)) is almost the same in both

systems). Likewise, also the total mean Eb of the system decreases (2.97 ± 0.68) eV for

Zr-HESN and (2.82 ± 0.86) eV for Cr-HESN) with increasing lattice distortion σ. This

seems somewhat counterintuitive as one may expect that larger lattice distortions (lattice

imperfections) would retard the diffusion. However, we should be careful before making any

conclusion based solely on the Eb of the system: in addition to Eb, we need to consider also

the number of available sites for atomic jumps related to the vacation formation energy, Ef .

The activation energy, Q = Eb + Ef , increases (except for Nb) from the system Zr-HESN

to Cr-HESN, see Fig. 9.11. In particular, the mean metal-species activation energies follow

this trend: (4.04± 1.02) eV for Zr-HESN and (3.49± 1.23) eV for Cr-HESN. In other words,

less lattice distortion leads to higher expected mass transport. Hence, diffusion retardation

correlates with σ but needs to be justified with rigorous study.

As presumed, the lattice distortion difference between the two systems arises mainly from

the Cr and Zr. We calculated the species-wise σi, contribution of each species to the total σ.

The estimation of σ, and σi are shown in Fig. 9.12 Figure 9.11 shows the correlation of σi

with the mean Qi. One can clearly discern that the σCr contributes most significantly to the

total σ of the Cr-HESN system. Comparing the Zr-HESN to the Cr-HESN system, all the
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Table 9.3: The calculated values of the net σ of the system are similar to what was calculated
by Kretschmer et al. [125]. The chosen system possesses a similar δ and a different σ which
we needed to compare the Eb of the systems and the σi.

system lattice distortion lattice mismatch

σ [ Å] δ [%]
MoZrN 0.060 2.366
CrMoN 0.112 2.586

common atoms have almost identical σi values. Let us recall that the physical significance

of the σ or σi is the width of the total or partial distribution, respectively, of M–N bond

lengths over the whole structure. If σM is large, then the M produces a large variety of the

bond lengths in its surroundings. Consequently, there will also be spacious voids through

which atoms can move easily, and hence the barrier (Eb) is expected to decrease. This

argument seems to hold mostly true when comparing the individual Eb and σi in Fig. 9.11.

Still, it is not general and likely misleading: in addition to creating larger voids, large lattice

distortions also lead to many shorter-than-average M-N distances which should be effectively

blocking the migration.

Instead of Eb alone, let us focus on the activation energy. For each species i, Qi is always

higher when σi is higher. Moreover, the species responsible for larger σ (those with larger

σi) would create a lot of distortion. As a result, diffusion will be difficult for these species.

In summary, our results in Fig. 9.11 suggest that an increase in local lattice distortions (σi,

σ) would hinder the mass transport, as quantified by the increased activation energies (Qi,

Q).

Ternary Systems

To generalize the results of the previous section, we perform once more the same analysis

but on chemically simpler systems. We have chosen two ternary systems following the

requirements of Sec. 9.3.2, i.e., with δ(i) ≈ δ(ii), the difference in σ as large as possible and

differing in only one species. Therefore, we studied two ternary nitride systems, CrMoN and

ZrMoN.

Figure 9.13 shows Ef and Eb for all species, and this time plotted as functions of the

composition of a common metal, Mo. An increase in ζMo leads to a decrease in the Ef

for each system and each species (Fig. 9.13a). This shows that all vacancy types favor Mo-

rich neighborhoods in the structures. Such behavior is consistent with the intrinsic driving

force for vacancy creation in cubic MoN [420]. The trends of Ef are the same as those of

HESN: with increasing lattice distortion in terms of σ, Ef (N) decreases whereas Ef (Mo)

increases. The affinity of Cr and Zr towards the N has the same trend in these hexinary
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Figure 9.12: The estimation of σ and σi represents the highest distorted system, Cr-HESN,
in terms of bond-width distributions. σ for all other systems are estimated in a similar
procedure. The figures are reproduced from our original work [384].

nitrides as well (the linear fitting has the same slope as in the hexinary compound).

Regarding the migration barriers Eb, the ternary systems behave the same way as the hex-

inaries: increasing lattice distortion, σ, leads to a decrease in migration barriers. This
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Figure 9.13: The energies plotted as a function of the number of 1NN/2NN of Mo (ζMo):
(a) the vacancy formation energy of all sites in the supercell and (b) the diffusion migration
energies barriers in migrating of species having a similar site, of common species in the
systems ZrMoN (left) and CrMoN (right). The figures are reproduced from our original
work [384].

seemingly counterintuitive behavior can be rationalized by considering the activation ener-

gies Q. Here, however, the comparison can be made only for a single common metal species,

Mo: its local distortion σMo is (slightly) larger in ZrMoN, which also exhibits higher activa-

tion energy QMo. We note that this correlation holds only for the species-resolved quantities;

the total distortion σ is larger in CrMoN owing to extremely large distortions caused by Cr

(σCr = 0.138 Å. In contrast, Zr stabilizes the B1 structure, and hence the total σ is smaller

for ZrMoN than for CrMoN.

In summary, our analysis of the systems with the same chemical complexity shows that

species-resolved local distortions (σi) correlate with the activation energies and thus with

the mass transport (larger distortions↔ less mobility). However, such correlations cannot be
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Figure 9.14: The activation energy of all the species of the systems ZrMoN and CrMoN and
their correlation with the σ parameter of individual species, i.e., σi. The left bar of each
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Ef . The corresponding right bars with hatch indicate σi. The figure is reproduced from our
original work [384].

generalized to total quantities (averaged over all species in the system). But in this study,

the quantification of σi yields similar correlations with Ef , Eb, and Q for both ternary

and hexinary compounds. Hence, we believe the quantification of σi can reveal system-

independent mechanisms of lattice distortion, but this hypothesis needs to be tested by

rigorous investigations of other systems.

9.3.3 Charge Analysis

To fully use the DFT data, we now attempt to quantify the role of electron density in the

local distortion of the HESN systems. To exemplify our statements, we choose the Cr-

HESN system, which exhibits higher total local distortions (σ) than the Zr-HESN system,

including most of its components (σi) as shown clearly in Fig. 9.11. Here, the unrelaxed

state implies running the self-consistent ab initio cycle without atomic movement; in the

relaxed state, the atoms were then allowed to move freely. There is a clear rearrangement of

the electron density after the structural relaxation, which drives this relaxation. Comparing

the (converged) charge density maps in unrelaxed and relaxed states (Figs. 9.15a and b) two

effects become clear. (i) While some metal atoms exhibit charge accumulation (reddish area),

others lose some charge (blueish regions) for the unrelaxed configuration. In contrast, all N

atoms clearly exhibit charge accumulation in the relaxed state, where also the metal atoms

consistently lose their charge. This corresponds to the formation of ionic bonds between
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Figure 9.15: Electronic density map slices from DFT simulations for a (100) plane of the
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The numbers mark standard deviations (in e) for the individual species. The figures are
reproduced from our original work [384].

metal and N atoms in conjunction with the local structural relaxations. In other words,

preventing the local distortions prohibits charge transfer and hence the formation of ionic

bonds. (ii) Secondly, the charge redistribution around transition metals clearly corresponds

to the depletion of some d-orbitals; consequently, other d-orbitals become populated and

lead to a formation of the metal-metal d bonding [421].

The former point is also nicely visualized by the Bader charge (Fig. 9.15c and d). The Bader

charges are strongly scattered in the unrelaxed state due to charge density topology, which

does not correspond to any clearly formed bonds in the chemical sense (cf. Fig. 9.15a). In
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the relaxed state, the highest charge transfer among the metals is from Al. As a result, Al-N

bonds have strong ionic components, and the bond length of Al-N is thereby reduced (see

supplementary information of Ref. [125]). This electron redistribution to the surrounding

N atoms is very similar for each Al atom, leading to similar bonding conditions and thus

resulting in less distortion, i.e., σAl. Hf also has a strong transfer of charge. However, the

distribution of charge to nearest N neighbors is not uniform as d-valence states of Hf are

also involved in the metal-metal bonding (cf. Fig. 9.15b). This is strongly dependent on the

actual configuration of the 2nd nearest neighbors (atoms on the metal sublattice) of the Hf

atoms. Consequently, there is a wide spread of bonds, thereby contributing to the larger

value of σHf (cf. Fig. 9.11). Similarly, Nb and Mo have widespread distribution because of

analogous reasons. It is worth mentioning that the concept of linking HEA distortions to

the charge distribution has been previously proposed by Casillas-Trujillo et al. [422].

9.4 Conclusions

In this chapter, we explored the relationships between chemical complexity (configurational

entropy), local distortions, and mass transport. Therefore, we performed ab initio analysis

of structural properties and migration barriers on several carefully selected transition-metal

nitride systems. The main conclusions can be summarized as follows:

• Quantification of the bond length distribution (e.g. in terms of its width σ) is a more

appropriate way of measuring the lattice distortion than the nominal bond length

difference, δ.

• The high (configurational) entropy (in ceramics) does not necessarily yield the retard-

ation of kinetics in the system.

• The diffusion retardation of the system depends on the difference in lattice distortion:

large σi correlates with larger activation energy (Qi).

• Quantification of lattice distortions and activation energies should be done species-wise.

The examples presented in this work are intended to help demystify the relationships between

the core effects in HESNs (which thus become more of tenets), and, therefore, to stimulate

further deep system-specific analyses needed for the knowledge-based design of novel chem-

ically complex materials.
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Chapter 10

Summary and Outlook

In this work, we explained the different mass transport-related phenomena for two types of

hard protective nitride coatings from a structure point of view, i.e., crystalline with cubic

B1 structure (NaCl prototype) and amorphous. In addition, structural, thermodynamic,

and elastic properties have been estimated to support the proposed material systems to-

wards desired applications. To do so, we used three different computational methodologies:

density functional theory, molecular dynamics (both ab initio and classical), and machine

learning approach. The thesis was divided into three parts: (i) solid lubricant nitride coat-

ings (Ti(Si)N/a-Si3N4), (ii) alloying of d-elements in TiN, and (iii) metastable solid solution

and multicomponent systems. These are summarised below.

In the first part (consists of Chapter 4, 5, 6), the quantification of vanadium diffusion is

estimated separately for TiN (both bulk and grain boundaries) and a-Si3N4 with the motiv-

ation to use Ti(Si)N/a-Si3N4 as a tribological application. The idea was the vanadium would

diffuse to the surface to form V2O5, which would reduce friction, providing liquid lubrica-

tion at elevated temperatures. However, the vanadium should have controlled out-diffusion

via material design to avoid quick depletion from the volume of the coatings. From our

calculations, we found that vanadium has higher migration barriers in the case of bulk TiN

and a-Si3N4 and lower in the case of TiN grain boundaries. Hence, the most feasible path-

ways for vanadium diffusion are grain boundaries, consistent with experimental findings. In

Chapter 5, we unraveled the experimentally observed effect of deposition partial pressure on

the change in lattice parameters of Ti1−xSixN by our calculations. Finally, in Chapter 6, we

achieved the isotropic elastic response of a-Si3N4, which required a large system to represent

real materials by employing machine-learning-assisted molecular dynamics.

The focus of the second part of this thesis in the second category (Chapter 7) was placed

on evaluating the electronic structure origin of the trends in diffusion migration barriers

and the energies affecting the diffusion processes of d-impurities with the inspiration of their

alloying trends in TiN (a ceramic host). We revealed in TiN the diffusion of d-impurites is
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significantly affected by their d-states depending upon bonding and anti-bonding interactions

with the environment. This could arise from non-magnetic or magnetic contributions or both

based on the choice of the impurity. Hence, the atom with the smaller radius may move

slower than that of the larger radius or vice-versa. We also found the contribution from the

d-states of transition states is significant to migration barriers, while, in general notion, only

the strain energy contributes to the transition state.

The final part (Chapter 8, 9) focuses on the understanding of the local chemical environment-

dependent diffusion migration barriers to explain the diffusion-related phenomena in meta-

stable nitride solid solution and multicomponent nitride systems. Unlike the alloys, the

local chemical environment of the solid solutions or multicomponent systems is not identical.

Hence, the single-point diffusion migration barrier can not explain the full scenario. There-

fore, we proposed to use the migration barriers in many chemical environments as a repres-

entative of a complete ensemble. We predicted the phase formation of vanadium aluminum

nitrides using the envelope calculations of vacancy formation energy and migration energy

barriers, which is confirmed by the experiment. Again, we used the envelope method to

calculate the diffusion migration barrier and establish a relation between the long-debated

sluggish diffusion and lattice distortion in multicomponent nitrides by considering three tern-

ary and three hexinary nitrides. We revealed that the more appropriate way to quantify the

lattice distortion is the species-wise bond length distribution rather than the nominal bond

length difference.

The calculated results and computational methods used in this thesis will provide a know-

ledgebase understanding of diffusion-related phenomena in B1 nitrides, such as alloying,

thermal decompositions, phase formation, etc. Further, we revealed that for the simulation

of elastic properties (or any isotropic properties), the amorphous model should be repres-

entative enough, and machine-learning-assisted large-scale simulation is a reliable and viable

tool to open the door for such simulations.

Our work showed us that large-scale simulation is necessary to reach the accuracy level of the

experiment particularly in disorder materials. In such case, the ab initio simulations w.r.t.

system size may lead to unrealistic properties, e.g., as the shown anisotropic elastic response.

We will explore the options for the machine-learning models (both passive and active learn-

ing) to deal with the properties such as: (i) diffusion in amorphous materials/disordered

materials/grain boundaries (ii) oxidation mechanism and thermal stability using diffusion.

Recently, Gehringer et al. [423] from our research group developed QM/MM and showed us

a new possibility to combine quantum mechanics and molecular mechanics for the simulation

of a large-scale model. Alternatively, we will also explore this methodology to achieve our

goal.
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A B S T R A C T   

We present a first-principles study of pressure- and temperature-dependent diffusion barriers and coefficients for 
vacancy-mediated and interstitial V impurity and Ti self-diffusion in TiN. The thus obtained diffusion coefficients 
were fitted with an Arrhenius-type relation yielding pre-exponential coefficients and activation energies. Our 
results suggest that (i) V diffuses faster than Ti, (ii) vacancy-mediated mechanism is dominating over the 
interstitial one, and (iii) impact of pressure is much weaker than the impact of temperature.   

1. Introduction 

Metal cutting operations, including turning, milling, drilling, and 
other methods for shaping metals, generate large mechanical forces and 
high temperatures at the point of contact between the cutting tool and 
material workpiece. The severe service conditions sooner or later lead to 
substantial damage to the cutting tool, after which it has to be replaced 
as it cannot produce the desired product at the target tolerances. To 
improve their lifetime, the cutting tools are protected by coatings that 
are specifically designed to prevent specific damage modes that occur 
during particular applications [1]. 

The starting point for selecting particular coating material systems is 
often high hardness [2]. Transition metal nitrides (TMNs) are frequently 
used because of their excellent intrinsic properties, among which good 
conductivity, high melting point, chemical stability, wear-resistance, 
and high hardness are notable ones. For these reasons, TMNs have 
been used as diffusion barriers, tribological behavior, wear-resistant, 
and anti-corrosion coatings [3–7]. Titanium nitride (TiN) is a hard and 
versatile ceramic material known to crystallize in the B1 NaCl structure, 
in which the nitrogen mole fraction typically ranges between 0.37 and 
0.50 [8]. In 1980, it became the first PVD coating to be applied indus-
trially [9] and has established itself as one of the prototype protective 
hard coatings. Its high strength-to-weight ratio, high hardness (>25GPa 
[10,11]), high melting point (≈3220K [12]), good wear and corrosion- 
resistant properties [3,13] and excellent chemical inertness against 
many workpiece materials [14] make it a perfect candidate to protect 
underlying surfaces on cutting tools in order to increase their lifespan. 

Another aspect of TMNs is their potential to act as self-lubricating sys-
tems through releasing species that form a lubricious surface layer. 
Thereby, components working in extreme conditions combining high 
temperature and contact pressure get additional functional protection, 
crucial for energy efficiency in e.g. turbomachinery, machining tools, 
and aerospace applications [15,16]. Traditional solid lubricant coatings 
(such as diamond-like carbons, DLCs [5], or transition metal dichalco-
genides, TMDs [17]) degrade at elevated temperatures due to their low 
oxidation resistance. To overcome this shortcoming, self-lubricating 
coatings have been developed by combining the intrinsic proper-
ties—high hardness and oxidation resistance—of some binary or ternary 
films, especially transition metal nitrides (CrN, TiN, CrAlN, TiAlN, YSZ, 
etc.), with specific elements that diffuse to the surface and form there a 
low friction tribolayer [5,16,18,19]. Here, vanadium (V) has a very 
prominent role since it forms an oxide (V2O5) at the coating surface, 
which reduces friction and melts at relatively low temperatures (below 
700∘C at atmospheric pressure) providing liquid lubrication [20,21]. 
However, such improvements are of short duration due to the rapid 
release of the V, its quick depletion from the entire volume of the 
coatings, and a consequent loss of the low-friction tribolayer after short 
operating periods [5,16,17,19–22]. Thus, it is desirable to control the 
lubricant (i.e., V) transport rate to allow for low friction and wear over 
long operation times [16]. A promising approach for controlling the 
diffusion rate is implementation of a diffusion barrier layer. 

Since the working conditions involve high temperatures and the 
nanostructured coatings are often of a metastable nature, diffusion- 
driven processes become a crucial building block that cannot be 
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The results in Chapter 4, except vanadium segregation and diffusion in the grain boundaries,
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a b s t r a c t 

Mechanical properties of nanoscale multilayer coatings are to a large extent governed by the number of 

interfaces and their characteristics. While for a reduced layer thickness, increasing strength and toughness 

values have been reported, properties degrade for layer thicknesses of just several nanometers. Here, we 

report on an entirely overlooked phenomenon occurring during the indentation of nanolayers, presum- 

ably explaining the degradation of properties. Nanoindentation, commonly used to determine properties 

of hard coatings, is found to disrupt and intermix the multilayer structure due to the deformation im- 

posed. Detailed electron microscopy studies and atomistic simulations provide evidence for intermixing 

in an epitaxial transition metal nitride superlattice thin film induced by nanoindentation. The formation 

of a solid solution reduces the interfacial density and leads to a sharp drop in the dislocation density. Our 

results confirm that plastic deformation causes the microstructure instability of nitride multilayer, which 

may further improve our understanding of multilayer strength mechanisms. 

© 2021 The Author(s). Published by Elsevier Ltd on behalf of Acta Materialia Inc. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

It is well-established that the intrinsic length scales of materi- 

als determine their performance [1] . In multilayer thin films, re- 

ducing the thickness of a single layer can increase the number 

of interfaces and enhance their hardness and toughness. Accord- 

ing to this, numerous efforts have been devoted to design novel 

multilayers with a small bilayer thickness in order to acquire su- 

perior mechanical properties for potential applications. In general, 

multilayer structures with a bilayer-period thickness of just a few 

nanometers showed the best combination of hardness, toughness, 

and elastic modulus [2-9] . For instance, the results of Kim and Lin 

et al . indicate that TMN (transition metal nitride) CrN/AlN super- 

lattice coatings with several nanometer bilayer periods exhibit a 

1.6 times higher hardness value compared to their single-layered 

counterpart coatings [ 10 , 11 ]. Among the multilayer coatings, the 

combination of rs -TMN (rock-salt transition metal nitride)/ rs- TMN 

with an epitaxial superlattice structure shows excellent mechani- 

cal properties [ 5 , 11 , 12 ]. The outstanding mechanical properties of 

∗ Corresponding author 

E-mail address: zaoli.zhang@oeaw.ac.at (Z. Zhang). 

the epitaxial superlattice coating are attributed to different effects, 

including interface coherency strains and the modulus difference 

[ 2 , 5 , 13 , 14 ]. 

However, the beneficial effect of reduced bilayer thicknesses on 

mechanical properties is not observed for any layer spacing. It has 

been reported that, similar to nanocrystalline metals [15-20] , the 

hardness and toughness of the multilayer coating decrease again 

when the bilayer-period thickness is reduced below a certain crit- 

ical value, being on the order of a few nanometer [ 2-9 , 11 ]. For 

TMNs multilayer, the current understanding for this degradation 

of properties is that component intermixing already occurs during 

the thin film deposition and annealing process [ 3 , 21-24 ]. Thereby 

the interface density, coherent stress fields and differences in shear 

modulus diminish, explaining the reduced strength levels mea- 

sured. This explanation actually suggests that the thin film synthe- 

sis process limits the maximum achievable mechanical properties. 

However, large-scale component intermixing can be frequently 

observed also by severe plastic deformation [25-28] . One may 

thus ask whether the deformation of the multilayer coating during 

nanoindentation, usually used to evaluate the mechanical proper- 

ties of multilayers (hardness and elastic modulus, etc.) may also 

trigger component intermixing and decrease of the mechanical 

https://doi.org/10.1016/j.actamat.2021.117004 

1359-6454/© 2021 The Author(s). Published by Elsevier Ltd on behalf of Acta Materialia Inc. This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

Contribution: In this work, we performed the ab initio calculation to estimate the vacancy

formation energy and diffusion migration barriers to understand the intermixing process

in TiN/AlN multilayer. In these findings, we revealed in the low-pressure conditions, the

vacancy-mediated process dominates the Al diffusion to the TiN layer, while it changes

to the interstial process with an increase in pressure. Both contribute to the diffusion

during intermixing. The value of migration barriers of Ti in AlN, along with the high-value

vacancies, the diffusion of Ti in AlN is very unlikely.
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A B S T R A C T   

Single-phase metastable cubic (V,Al)N thin films with columnar microstructure were grown by high power 
pulsed magnetron sputtering at 440 ◦C and the thermal decomposition mechanisms were systematically inves-
tigated by post-deposition vacuum annealing from 600 to 900 ◦C. The onset of spinodal decomposition into 
isostructural V- and Al-rich cubic nitride phases is demonstrated after cyclic vacuum annealing at 700 ◦C. 
Moreover, at this temperature, evidence for aluminum diffusion to grain boundaries and triple junctions is 
provided by correlation of transmission electron microscopy and atom probe tomography data. The formation of 
Al-rich regions can be understood by the more than 25% lower activation energy for bulk diffusion of aluminum 
compared to vanadium as obtained from ab initio calculations. It is reasonable to assume that these Al-rich 
regions are precursors for the formation of wurtzite AlN, which is unambiguously identified after annealing at 
800 ◦C by microscopy and tomography. The significantly larger equilibrium volume of wurtzite AlN compared to 
the cubic phase explains its initial formation exclusively at triple junctions and grain boundaries. In contrast, 
twin boundaries are enriched in vanadium. Interestingly, the formation of the wurtzite phase at grain boundaries 
and triple junctions can be tracked by resistivity measurements, while X-ray diffraction and nanoindentation data 
do not support an unambiguous wurtzite phase formation claim for annealing temperatures <900 ◦C. Hence, it is 
evident that previously reported formation temperatures of wurtzite AlN in transition metal aluminum nitrides, 
determined by other characterization techniques than chemical and structural characterization at the nanometer 
scale and/or resistivity measurements, are overestimated.   

1. Introduction 

The incorporation of aluminum in titanium nitride in 1986 [1] paved 
the way for the application of wear-resistant thin films on tools and 
components [2]. Metastable transition metal aluminum nitrides with 
cubic crystal structure (space group Fm3m, NaCl prototype) exhibit 
excellent mechanical properties, induced by the mixture of covalent, 
ionic and metallic bonds [3]. The bond strength is significantly affected 
by the transition metal: bulk modulus values of approximately 261, 280 
and 234 GPa were predicted for Ti0.5Al0.5N, V0.5Al0.5N and Cr0.5Al0.5N, 
respectively [4]. Enhancement of elastic properties from Ti0.5Al0.5N to 

V0.5Al0.5N can be understood based on the electronic structure as the 
length of transition metal‑nitrogen bonds is reduced from 2.13 Å (Ti-N) 
to 2.06 Å (V-N) [5]. 

Recently, systematic variations of the aluminum content in V1-xAlxN 
were studied by density functional theory: incorporation of x = 0 to 0.75 
caused 26% enhancement of the elastic modulus from 388 to 488 GPa 
and was explained by strong sp3d2 hybridization between aluminum and 
nitrogen, inducing the formation of covalent bonds [6]. Experimentally, 
a large range of elastic modulus values has been reported between 254 
GPa (x = 0) [7] and 599 GPa (x = 0.52) [8]. Hence, it is evident that 
besides the aluminum content, also the residual stress state, nitrogen 
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Contribution: We have proposed a new approach so-called energy envelope method using

DFT to predict the formation of Al-rich region and thermal decomposition in (V,Al)N. The

proposed method here described in Chapter 8 is based on this publication.
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A B S T R A C T
High entropy alloys (HEAs) have triggered significant scientific interest due to their unusual structural stabilitycombined with excellent mechanical and other functional properties. Recently, the high-entropy concept hasalso been applied to the field of protective coatings. We use ab initio calculations to provide an unbiased insightinto their behavior at the atomic level. Namely, we focus on the interplay between high entropy (chemicalcomplexity), sluggish diffusion, and (local) lattice distortions in the example of high configurational entropysublattice nitride (HESN) ceramics. We show that the high entropy itself is not a guarantee for the sluggishnessof diffusion (as quantified by migration barriers). Next, we propose a relation between the local distortions(measured by the width of lattice bond length distributions) and activation energies. The presented resultsprovide examples that the core effects, characterizing the exceptional properties of HEAs, are system-specificand hence highlight the need for analyzing each system of interest individually.

1. Introduction
The year 2004 marks the beginning of a new material class calledhigh-entropy alloys (HEAs) [1,2]. According to the compositional-baseddefinition, they are characterized by five or more (upper limit isarbitrarily set to 13) principal elements [1] with their concentrationsvarying between 5 and 35 at.% [2]. The random distribution of five ormore elements in (near-)equiatomic composition on the same crystallattice yields high configurational entropy 𝑆config ≥ 1.5𝑅 with 𝑅being the universal gas constant. We note that the exact thresholdvalue of the configurational entropy and its evaluation are subjects ofscientific discussions, e.g., Refs. [3,4]. This class of alloys exhibits someexceptional properties such as high hardness [5], high corrosion resis-tance [6], high-temperature oxidation resistance, or excellent frictionresistance [7]. These are commonly assigned to four core effects [8,9](cf. Fig. 1):
• high entropy effect: an increase of configurational entropy com-pared to the conventional alloys (beneficial for thermal stability),
• severe lattice distortion: distortion of lattice due to the distribu-tion of atoms with different radii in the crystal lattice (beneficialfor increased strength and slower kinetics),
• sluggish diffusion effect: atoms in HEAs move slower than in thecorresponding pure metals and conventional alloys,

∗ Correspondence to: Materials Chemistry, RWTH Aachen University, Kopernikusstraße 10, Aachen 52074, Germany.E-mail addresses: nayak@mch.rwth-aachen.de (G.K. Nayak), david.holec@unileoben.ac.at (D. Holec).

• cocktail effect: the properties of which can be achieved only ina mixture (e.g., high hardness the system X and high corrosionresistance of system Y results in high hardness and high corrosionresistance in the system XY system).
The original concept of HEAs was developed for metallic alloys.Recently, this design principle has also been applied to ceramic materi-als [10], with different species (usually metal) sitting on one sub-latticeand other sub-lattice filled with O, B, C, and N to form oxides [11,12],borides [13], carbides [14], nitrides [15,16] etc. and a mixture ofany two [17,18]. In these cases, however, the high configurationalentropy is restricted to only one sub-lattice, fulfilling 𝑆config ≥ 1.5𝑅 onlyper formula unit [4,19]. Therefore, Kirnbauer et al. [20] coined theterm high-entropy metal sub-lattice ceramics (HESCs). Many of thesematerials were also synthesized in the form of thin films. Due to theirhigh hardness and good thermal stability [3,15,17,21–25], HESCs arebeing extensively researched for protective coating applications.In their recent reviews, Miracle and Senkov [26] and Pickering andJones [27] questioned the central role of the core effects. Multiplestudies (experimental and theoretical) have shown the overestimationresults on stabilizing effect of configurational entropy [28–31], onlattice distortion [32,33], on cocktail effect [26,34,35], as well as onsluggish diffusion [36].

https://doi.org/10.1016/j.actamat.2023.118951Received 23 November 2022; Received in revised form 6 April 2023; Accepted 14 April 2023

The results in Chapter 9 are based on this publication.
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Impact of d‑states on transition 
metal impurity diffusion in TiN
Ganesh Kumar Nayak 1,3*, David Holec 1 & Martin Zelený 2

In this work, we studied the energetics of diffusion‑related quantities of transition‑metal impurities in 
TiN, a prototype ceramic protective coating. We use ab‑initio calculations to construct a database of 
impurity formation energies, vacancy‑impurity binding energies, migration, and activation energies 
of 3d and selected 4d and 5d elements for the vacancy‑mediated diffusion process. The obtained 
trends suggest that the trends in migration and activation energies are not fully anti‑correlated with 
the size of the migration atom. We argue that this is caused by a strong impact of chemistry in terms 
of binding. We quantified this effect for selected cases using the density of electronic states, Crystal 
Orbital Hamiltonian Population analysis, and charge density analysis. Our results show that the 
bonding of impurities in the initial state of a diffusion jump (equilibrium lattice position), as well as 
the charge directionality at the transition state (energy maximum along the diffusion jump pathway), 
significantly impact the activation energies.

Diffusion plays an important role in the properties of solids which governs the kinetics of microstructural 
changes and processes of mass transport. Titanium nitride (TiN) and its alloys with various impurities have 
proved promising in the  market1–4. Several diffusional processes can arise in these alloys and thus influence 
their mechanical performance, mainly at elevated temperatures. Especially diffusional phenomena are most 
widespread in metallic and ceramic systems. For example, creep deformation occurs at a rate dependent upon 
diffusional rearrangement of atoms at dislocation cores, e.g., changes in the composition of the inter-granular 
phase due to oxidation and grain-boundary  diffusion5–7. Especially in TiN, the diffusional creep is suggested as a 
creep-controlling mechanism, and in this diffusion within the grains allow the ceramic to yield an applied  stress5. 
 Oxidation8 and  intermixing9 with protective coatings are other examples of diffusional phenomena relevant to 
the operation of these compounds.

TiN is a widely used ceramic material that crystallizes in the face-centered cubic (fcc) B1 structure. Com-
position-wise, it has nitrogen content typically between 37 and 50 at.%10. Its high strength-to-weight ratio, 
high hardness (>25  GPa11,12), high melting point ( ≈ 3220  K13), good wear and corrosion-resistant  properties14 
and excellent chemical inertness against many workpiece materials make it a perfect prototype protective hard 
coatings candidate to protect underlying surfaces on cutting tools. However, with time and emerging materials 
development, the scientific effort has been accomplished in TiN-based ternaries. With the basic building block 
of TiN ceramic, the additional and suitable transition metals with adjusting ratios offer various possibilities to 
tune the different properties, especially structural, mechanical, electrical, lubricant, etc. The growth and pro-
cessing parameters are optimized to control stoichiometry, microstructure, and texture. For example, alloying 
element Mo,  W1 in TiN are reported in the supertoughening process in ordered B1. And also, the impurity 
alloy Ta and  Nb2 in TiN has been reported recently. Similarly, Yttrium has shown enhanced oxidation resist-
ance, and  hardness15, alloying of Zr has significantly improved the adhesive strength of TiN-based coatings to 
the  substrate16, Cr and Hf have emerged as alloying elements for the higher wear resistance, and  hardness17–19, 
alloying of V is a possible candidate for self-lubricant  coatings4,

Here we are more interested in the diffusion process of the above-discussed alloying element in different cir-
cumstances. The circumstances may mimic the spinodal decomposition, high T diffusion such as in self-lubricant 
coatings, or diffusion in the high-entropy (HE) based alloys, etc., where the diffusion is crucial. Particularly, 
we are interested in quantifying the diffusion barriers of single transition metal impurity (TMI) in the B1 TiN 
single crystal model. Two important factors motivate us to conduct this study: (i) a database of diffusion-related 
quantities of TMIs in TiN and (ii) d-states effect of TMIs on their diffusion in TiN.

There is a gap in the literature for a diffusion-related database of various TMIs in the host TiN alloy. The 
various quantities are impurity formation energies, solubilities, vacancy-impurity binding energies, diffusion 
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[5] N. Fateh, G. Fontalvo, G. Gassner, and C. Mitterer, Wear 262, 1152 (2007).

[6] H. Ichimura and A. Kawana, Journal of Materials Research 8, 1093 (1993).

[7] M. Kwak, D. Shin, T. Kang, and K. Kim, Thin Solid Films 339, 290 (1999).
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[121] B. L. Musicó, D. Gilbert, T. Z. Ward, K. Page, E. George, J. Yan, D. Mandrus, and

V. Keppens, APL Materials 8, 040912 (2020).

[122] J. Gild, Y. Zhang, T. Harrington, S. Jiang, T. Hu, M. C. Quinn, W. M. Mellor,

N. Zhou, K. Vecchio, and J. Luo, Scientific Reports 6, 37946 (2016).

[123] J. Zhou, J. Zhang, F. Zhang, B. Niu, L. Lei, and W. Wang, Ceramics International

44, 22014 (2018).

[124] S.-Y. Chang, S.-Y. Lin, Y.-C. Huang, and C.-L. Wu, Surface and Coatings Technology

204, 3307 (2010).

[125] A. Kretschmer, D. Holec, K. Yalamanchili, H. Rudigier, M. Hans, J. M. Schneider,

and P. H. Mayrhofer, Acta Materialia 224, 117483 (2022).

[126] S.-Y. Lin, S.-Y. Chang, Y.-C. Huang, F.-S. Shieu, and J.-W. Yeh, Surface and Coatings

Technology 206, 5096 (2012).

[127] A. Kretschmer, A. Kirnbauer, E. Pitthan, D. Primetzhofer, K. Yalamanchili, H. Rudi-

gier, and P. H. Mayrhofer, Materials & Design 218, 110695 (2022).

[128] A. Kirnbauer, A. Kretschmer, C. M. Koller, T. Wojcik, V. Paneta, M. Hans, J. M.

Schneider, P. Polcik, and P. H. Mayrhofer, Surface and Coatings Technology 389,

125674 (2020).

[129] C.-H. Lai, S.-J. Lin, J.-W. Yeh, and S.-Y. Chang, Surface and Coatings Technology

201, 3275 (2006).

[130] S.-Y. Chang, S.-Y. Lin, and Y.-C. Huang, Thin Solid Films 519, 4865 (2011).

[131] A. Kirnbauer, C. Spadt, C. M. Koller, S. Kolozsvári, and P. H. Mayrhofer, Vacuum
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[264] A. Janotti, M. Krčmar, C. Fu, and R. Reed, Physical Review Letters 92, 085901

(2004).

201

http://dx.doi.org/ 10.1103/PhysRevB.91.054301
http://dx.doi.org/ 10.1103/PhysRevB.91.054301
http://dx.doi.org/10.1103/PhysRevB.96.104306
http://dx.doi.org/10.1103/PhysRevB.96.104306
http://dx.doi.org/10.1016/j.tsf.2019.05.016
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/ 10.1103/PhysRevLett.100.136406
http://dx.doi.org/10.1103/PhysRevB.13.5188
http://dx.doi.org/10.1103/PhysRevB.40.3616
http://dx.doi.org/10.1063/1.2841941
http://dx.doi.org/10.1063/1.2841941
http://dx.doi.org/10.1016/j.scriptamat.2015.07.021
http://dx.doi.org/ 10.1016/j.cpc.2015.03.015
http://dx.doi.org/ 10.1016/j.cpc.2015.03.015
http://dx.doi.org/10.1103/PhysRev.71.809
http://dx.doi.org/10.1107/S0021889811038970
http://dx.doi.org/ 10.1016/j.commatsci.2012.10.028
http://dx.doi.org/ 10.1016/j.commatsci.2012.10.028
http://dx.doi.org/10.1016/j.actamat.2017.11.005
http://dx.doi.org/10.1016/j.actamat.2017.11.005
http://dx.doi.org/10.1103/PhysRevB.76.224107
http://dx.doi.org/10.1103/PhysRevB.76.224107
http://dx.doi.org/10.1063/1.1733573
http://dx.doi.org/ 10.1016/j.actamat.2005.01.044


BIBLIOGRAPHY

B
IB

L
IO

G
R
A
P
H
Y

[265] R. Swalin, Acta Metallurgica 5, 443 (1957).

[266] V. Lenzi, A. Cavaleiro, F. Fernandes, and L. Marques, Applied Surface Science 556,

149738 (2021).

[267] A. Van De Walle and G. Ceder, Reviews of Modern Physics 74, 11 (2002).

[268] K. Aigner, W. Lengauer, D. Rafaja, and P. Ettmayer, Journal of Alloys and Com-

pounds 215, 121 (1994).

[269] V. Bogdanov, V. Neshpor, Y. D. Kondrashev, A. Goncharuk, and A. Pityulin, Soviet

Powder Metallurgy and Metal Ceramics 21, 412 (1982).

[270] K. Liu, X.-L. Zhou, H.-H. Chen, and L.-Y. Lu, Journal of Thermal Analysis and

Calorimetry 110, 973 (2012).

[271] A. Seifitokaldani, A. E. Gheribi, M. Dollé, and P. Chartrand, Journal of Alloys and
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[283] S. Vepřek and M. Jilek, Vacuum 67, 443 (2002).
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[308] K. Mörgenthaler, H. Bühl, and M. Hoffmann, “Tailoring of mechanical properties of

Si3N4 ceramics,” (1994).

[309] I. G. Talmy, J. A. Zaykoski, and M. M. Opeka, Journal of the American Ceramic

Society 91, 2250 (2008).

[310] C.-E. Morosanu, Thin Solid Films 65, 171 (1980).

[311] M. Gupta, V. Rathi, S. Singh, O. Agnihotri, and K. Chari, Thin Solid Films 164, 309

(1988).

[312] T. Ma, IEEE Transactions on Electron Devices 45, 680 (1998).

[313] J. T. Milek, Silicon Nitride for Microelectronic Applications: Part 2 Applications and

Devices (Springer Science & Business Media, 2013).

[314] M. Powell, B. Easton, and O. Hill, Applied Physics Letters 38, 794 (1981).

[315] K. Niihara and T. Hirai, Journal of Materials Science 12, 1243 (1977).

[316] T. Ning, H. Pietarinen, O. Hyvärinen, J. Simonen, G. Genty, and M. Kauranen,

Applied Physics Letters 100, 161902 (2012).

204

http://dx.doi.org/ 10.1088/0022-3727/49/37/375303
http://dx.doi.org/ 10.1088/0022-3727/49/37/375303
http://dx.doi.org/10.1111/j.1151-2916.2000.tb01182.x
http://dx.doi.org/10.1016/0927-796X(94)90006-X
http://dx.doi.org/10.1016/0927-796X(94)90006-X
http://dx.doi.org/10.1126/science.208.4446.841
http://dx.doi.org/10.1103/PhysRevB.41.10727
http://dx.doi.org/ 10.1016/S0043-1648(99)00243-4
http://dx.doi.org/ 10.1016/S0955-2219(03)00263-2
http://dx.doi.org/ 10.1016/S0955-2219(03)00263-2
http://dx.doi.org/ 10.1115/1.3261254
http://dx.doi.org/ 10.1115/1.3261254
http://dx.doi.org/10.1016/S0955-2219(00)00294-6
http://dx.doi.org/10.1016/S0955-2219(00)00294-6
http://dx.doi.org/10.1111/j.1551-2916.2010.03839.x
http://dx.doi.org/10.1007/978-94-011-0992-5
http://dx.doi.org/10.1007/978-94-011-0992-5
http://dx.doi.org/10.1111/j.1551-2916.2008.02420.x
http://dx.doi.org/10.1111/j.1551-2916.2008.02420.x
http://dx.doi.org/10.1016/0040-6090(80)90254-0
http://dx.doi.org/ 10.1016/0040-6090(88)90154-X
http://dx.doi.org/ 10.1016/0040-6090(88)90154-X
http://dx.doi.org/10.1109/16.661229
http://dx.doi.org/10.1063/1.92166
http://dx.doi.org/10.1007/BF02426863
http://dx.doi.org/ 10.1063/1.4704159


BIBLIOGRAPHY

B
IB

L
IO

G
R
A
P
H
Y

[317] D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, Nature Photonics 7, 597

(2013).

[318] B. S. Bal and M. Rahaman, Acta Biomaterialia 8, 2889 (2012).

[319] J. T. Milek, in Silicon Nitride for Microelectronic Applications: Part 1 Preparation

and Properties , edited by J. T. Milek (Springer US, Boston, MA, 1971) pp. 5–34.

[320] N. Umesaki, N. Hirosaki, and K. Hirao, Journal of Non-Crystalline Solids 150, 120

(1992).

[321] P. Vashishta, R. K. Kalia, J. P. Rino, and I. Ebbsjö, I, Physical Review B Condensed
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[404] W. Kucza, J. Dabrowa, G. Cieślak, K. Berent, T. Kulik, and M. Danielewski, Journal

of Alloys and Compounds 731, 920 (2018).

[405] P. Kumar and S. Avasthi, Journal of Alloys and Compounds 814, 151755 (2020).

[406] R. Li, M. Li, C. Jiang, B. Qiao, W. Zhang, and J. Xu, Journal of Alloys and Com-

pounds 773, 482 (2019).

[407] A. S. Bochkarev, M. N. Popov, V. I. Razumovskiy, J. Spitaler, and P. Puschnig,

Physical Review B Condensed Matter 94, 104303 (2016).
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