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ABSTRACT

In the course of this thesis, solid/liquid phase transformations in metallurgical slag
systems are investigated. A thermodynamic software package is developed that can
be used together with a thermodynamic database to calculate thermochemical equi-
librium conditions and simulate the kinetics of solid-liquid phase transformations in
multi-component, multi-phase systems. In order to gain a better understanding of the
rate-determining processes, key experiments using High-Temperature Confocal Scan-
ning Laser Microscopy (HT-CSLM) are performed. The experimental observations
are complemented and interpreted by numerical modelling. The dissolution kinetics
of various oxide particles in multi-component slags is predicted for the case that the
interdiffusivity matrix is known. The combination of thermodynamic modelling and
key experiments reveals the physical processes limiting the kinetics of the solid/liquid
phase transformations. The kinetics of the dissolution of solid particles in multi-
component slags appears to be diffusion controlled, where convection is considered
by a decreased boundary layer thickness.



ZUSAMMENFASSUNG

In dieser Arbeit werden Fest/Flüssig-Phasenumwandlungen in metallurgischen
Schlackensystemen untersucht. Es wird ein Softwarepaket entwickelt, das zusammen
mit einer thermodynamischen Datenbank verwendet werden kann, um thermochemis-
che Gleichgewichte in mehrkomponentigen, mehrphasigen Systemen zu berechnen und
die Kinetik von Fest-Flüssig-Phasenumwandlungen zu simulieren. Um ein tieferes
Verständnis für die ratenbestimmenden, dissipativen Prozesse zu erlangen, werden
experimentelle Untersuchungen mittels High-Temperature Confocal Scanning Laser
Microscopy (HT-CSLM) durchgeführt. Die experimentellen Beobachtungen werden
durch numerische Modellierung ergänzt und interpretiert. Die Kinetik von Auflö-
sungsprozessen verschiedener Oxidpartikel in mehrkomponentigen Schlacken kann bei
bekannter Interdiffusivitätsmatrix vorhergesagt werden. Durch die Kombination aus
thermodynamischer Modellierung und Schlüsselexperimenten können die physikalis-
chen Prozesse enthüllt werden, welche die Kinetik der Fest/Flüssig-Phasenumwandlungen
limitieren. Die Auflösungskinetik von Oxidpartikeln in mehrkomponentigen Schlack-
ensystemen weist einen diffusionskontrollierten Charakter auf, wobei konvektive Beiträge
zum Massetransport durch eine verringerte Grenzschichtdicke berücksichtigt werden.
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1 | Introduction

Steel is a fundamental pillar of modern society. The knowledge and ability to produce,
shape and manipulate the properties of steel has been considered essential in order
to accumulate wealth and prosperity throughout the beginning of the Iron Age. Still,
great efforts are undertaken to develop steels with enhanced properties and to improve
steelmaking processes.

1.1 Oxygen steelmaking

As of today, the oxygen steelmaking route is the dominating way of producing steel.
More than 70% of annually produced steel is currently produced via oxygen steelmak-
ing processes [1] in a refractory-lined furnace, i.e. the basic oxygen furnace (BOF)
or the LD-converter‡. Basically, pure oxygen is blown at high pressures (12-15 bar)
onto the surface of a liquid iron bath (hot metal), refining the metal and producing
liquid steel. A large number of chemical components and phases are involved in oxy-
gen steelmaking, and their interactions with each other must be considered for an
accurate understanding of the process:

• The gas phase consisting mainly of CO (≈ 90% in terms of total gas volume)
and also CO2 (their exact proportion is dependent on the processing tempera-
ture) as a product of the carbon oxidation during the blow.

• Liquid iron produced in the blast furnace typically containing (in relation to
the total mass of the phase) 4.0-4.5% C, 0.05-0.12% P, 0.03-0.06% S, 0.5-1.0%
Si, 1.0-6.0% Mn and potentially other impurities when entering the BOF. It
is the main source of iron and energy in BOF steelmaking [2]. During the
refining process, the amount of carbon and other impurities in the hot metal
decreases due to exothermic reactions with oxygen penetrating the liquid bath.
Due to these reactions, the temperature in the vessel rises rapidly and must
be controlled by cooling agents, such as steel scrap, lime, magnesia, dolomite

‡LD usually refers to the initials of the steel plants Linz and Donawitz
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Although the ionic nature of liquid slags is generally accepted, their constitution
is often represented formally by means of their comprising oxides, e.g. CaO,
MgO, MnO, SiO2 and FeOx. In metallurgical practice slags are typically clas-
sified by means of numerical values expressing the relation of network breaking
(or basic) oxides and network building (or acidic) oxides in the slag mixture.
This so called "slag basicity" is often defined as

B1 =
wCaO

wSiO2

, (1.1)

or
B2 =

wCaO + wMgO

wSiO2

, (1.2)

where wCaO, wMgO and wSiO2
are the mass fractions of CaO, MgO and SiO2 in

the liquid slag, respectively [4]. Although these simple ratios are often used,
they cannot completely reflect the actual constitution and properties of complex
phase mixtures. The representation of slag basicities in weight fractions is
common in metallurgical practice, but is unfavorable from a thermodynamic
point of view and does not directly allow a deeper insight into the relations of
the individual species to each other. Rather, a detailed study of the equilibrium
states at steelmaking conditions is required to capture the complex behavior of
multi-component slag systems and their interactions with the other substances
(fluxing agents, refractories, liquid iron, gases) present in the LD converter.
Slags perform a number of important tasks in metallurgical operations including
the following [5]:

– Slags are essential for the absorption of elements and non-metallic inclu-
sions that are removed from the liquid iron.

– They shield the metal bath from unwanted elements present in the atmo-
sphere, such as sulfur, hydrogen or nitrogen.

– They protect the liquid metal against heat losses by serving as a thermal
insulation layer.

– BOF slags might furthermore serve as a valuable resource after use in the
metallurgical aggregate. The valorization of steelmaking slags is a very
active research topic, see e.g. [6–14]

• Refractories shield the steel vessel from high temperatures (>1600°C) and cor-
rosive substances (especially the liquid slag) that occur in oxygen steelmaking.
Thus, a careful selection of the refractory material is mandatory in terms of
safety and economic efficiency. LD-converters are almost exclusively lined with
magnesia-carbon building materials of different qualities depending on the zone
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of operation in the vessel. In the slag line area pitch-bonded MgO-C bricks
containing additional antioxidants (Al, Si) are used [15]. During operation,
the refractory material is exposed to corrosive slag attack and dissolves par-
tially into the BOF slag. The dissolution of magnesia-based refractories can be
minimized by feeding MgO-containing fluxing agents into the vessel during the
oxygen blow and thus, saturating the liquid slag.

The main operational steps in oxygen steelmaking are schematically depicted in
Figure 1.2 and are shortly recapitulated in the following.

1. Charging scrap is usually the first operational step in oxygen steelmaking.
Scrap acts as a coolant and is charged before the hot metal to avoid splashing.
To that aim the converter is tilted by about 45° and scrap is charged by means
of a scrap carrier box manipulated by a charging crane.

2. Charging of hot metal is done by pouring the liquid metal from a transfer
ladle onto the scrap.

3. Before the start of the oxygen blow, the converter is tilted back into an upright
position with the mouth of the vessel being parallel to the floor. Then, oxygen is
blown through a water-cooled lance with supersonic speed and violently reacts
with the liquid metal bath via exothermic reactions. Thereby, carbon and other
unwanted impurities are removed from the metal and form oxides that leave the
converter in the form of gas (CO) or contribute to the formation of metallurgical
slag that stays in contact with the liquid metal.

4. After the blow, the converter is tilted again to enable sampling, where tem-
perature and chemistry of the metal are tested.

5. Once the target temperature and steel composition are reached, the converter
is tilted in a way to allow the liquid metal to flow through the tap hole. This
step is referred to as tapping.

6. Slagging is the last step in the oxygen steelmaking process. The remaining
slag is removed from the converter by dumping it into a slag pot and also slag
splashing is an option.

The intricacies of the individual steps will not be further elaborated and reference is
made to the related literature for further reading, e.g. [1,2,5,16]. Nevertheless, some
key elements in terms of slag formation during the oxygen blow will be highlighted in
the following in order to establish the context for the research undertaken in this work.
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to the hot spot is limited due to the insufficient mixing of the metal bath. Thus,
large amounts of Fe are oxidized, which is available in large quantities near the hot
spot. The formed iron oxides are flushed into the slag area in the converter; they
react with the fluxing agents to form a basic slag by enabling the dissolution of the
CaO- and MgO-containing additives. Rapid dissolution of fluxing agents such as lime
or dolime contributes significantly to the productivity of the converter process. A
precise understanding of the dissolution kinetics of the fluxing additives is required
to adjust the constitution of converter slags according to metallurgical requirements.
Key physical properties of BOF slags are their rheological behaviour, their liquid
range in the temperature-composition space; moreover, the amounts and constitu-
tions of potentially present solid phases, e.g. lime, tricalcium silicate (C3S) or di-
calcium silicate (C2S). Furthermore, slags must be able to take part in metallurgical
reactions, such as dephosphorization and desulfurization. In general, those thermo-
dynamic states (chemical activities and stable phases) that promote the absorption
of non-metallic inclusions and undesirable elements from the liquid metal are pre-
ferred. In order to meet these requirements, the properties of slags must be adjusted
through thermodynamically-informed control of temperature and composition during
processing.

1.3 Inclusion control during steelmaking

A second example, where the dissolution of oxide particles in steelmaking slags is
of paramount importance is inclusion control and steel cleanliness. In this regard,
the introduction and continuous improvement of ladle and tundish metallurgy have
significantly contributed to the development of high quality steels with minimum
amount of unwanted inclusions. The process of inclusion removal from the steel
usually happens in the ladle furnace, the tundish or even the continuous casting mold
and can be divided into the following three steps [18]:

1. The transport (flotation) of the inclusion to the slag-steel interface.

2. The separation across the slag-steel interface.

3. The dissolution of the inclusion in the molten slag.

In this context, the dissolution of oxide inclusions in molten slags is an invaluable
process in the secondary metallurgy of high quality steels, see e.g. [18–24], as a rapid
dissolution of unwanted oxides in optimized slags prevents from re-entrainment of
the non-metallic inclusions [24]. There is an increasing demand for thermodynamic
and kinetic models [25, 26] with predictive capabilities in order to contribute to the
understanding of these processes and enhance the quality of the final product.
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1.4 Scientific framework and objectives of this thesis

In the light of the above, it is of great interest to be able to predict the equilib-
rium phases in LD slags and the kinetics of the dissolution of oxides in steelmaking
slags. To address these challenges, the research of this thesis is organized into three
major parts in which the thermodynamics and the kinetics of solid-liquid phase trans-
formations in multi-component slag systems are investigated by means of numerical
modelling and experimental techniques:

• A thermodynamic software-package for the calculation of equilibrium phases in
BOF slags during oxygen steelmaking is developed in the first part of this thesis
that can be easily coupled to a comprehensive LD-process model [27–30].

• In the second part of this thesis, a physics-based sharp-interface model is devel-
oped for simulating the kinetics of solid-liquid phase transformations in multi-
component slag systems; the entanglement of equilibrium calculations with the
modelling of irreversible processes is discussed. The primary focus of this part
of the thesis is on modelling the reaction kinetics of oxide particles with vari-
ous slag systems with applications in the dissolution of additives during oxygen
steelmaking, but also with respect to inclusion control and steel cleanliness.

• Finally, the numerical results are compared to data from High Temperature
Confocal Scanning Laser Microscopy (HT-CSLM) experiments and conclusions
for the rate limiting steps in solid-liquid phase transformations in multi-component
slag systems are drawn.
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2 | State of the art

Various modelling approaches for describing or even predicting the kinetics of solid-
liquid reactions between (shrinking) oxide particles and molten oxides are discussed in
the open literature. In this chapter, an overview of the existing modelling approaches
is given starting from simple models to more and more physically meaningful models
with predictive capabilities. The discussion on the existing models will eventually lead
to a discussion on the requirements for a thermodynamics based multi-component
model, that is developed in this work.

2.1 Simple mass transfer models

Simple mass transfer models have been proposed in the literature [31–34] for inter-
preting experimental data of lime and dolime dissolution under forced convection

−dm
solid

dt
= kCaOAρliq

wsat
CaO − wCaO

wsolid
CaO − wCaO

(2.1)

where t denotes time, msolid is the mass of the solid with a mass fraction wsolid
CaO of

CaO dissolving in the liquid slag with mass fraction wCaO. The solubility limit of
CaO in the liquid phase is denoted wsat

CaO, A is the interaction area and the mass
transfer coefficient for CaO is kCaO. The simplified mass transfer model is normally
used only for quantitative evaluation of experimental results. It does not capture the
physical reality of the occurring irreversible processes and cannot be used to predict
the dissolution kinetics of oxides in liquid slags.

2.2 The classical shrinking-core model

The shrinking-core model has been applied extensively to interpret fluid-particle reac-
tions with a focus on oxide particle dissolution in metallurgical slags in previous works,
e.g., [35–40]. In the context of oxide particle dissolution, the model is often used to
discuss the rate determining steps of the dissolution process. Usually, a 1D-spherical
system is considered that consists of the shrinking oxide particle surrounded by a
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liquid film, which in turn is encompassed by the liquid bulk. In contrast to the liquid
bulk, the concentration gradients of the diffusing species in the liquid film adjacent
to the particle are non-zero. A representation of the geometrical situation is shown
in Fig 2.1. The rate of reaction for shrinking particles can be described by a three-
step process (see e.g. [41]), were the three sub-processes occurring simultaneously on
different time-scales are:

1. The diffusion of reactants from the liquid bulk to the solid-liquid interface
through a so called liquid film with non-zero concentration gradients.

2. One or multiple chemical reactions at the solid-liquid interface.

3. The diffusion of the reaction products from the solid-liquid interface into the
liquid bulk through the liquid film.

In general, any of these sub-processes can act as the rate-controlling mechanism for
the dissolution, and it is also conceivable that all three mechanisms contribute to the
reaction kinetics. In some cases, e.g. in the case of lime dissolution in silica-containing
slags, a product layer might form at the solid-liquid interface. In this case, a new
interface between the product layer and the shrinking particle is formed (see Fig 2.1
right) and two additional sub-processes occur:

4. The diffusion of reactants from the liquid film through the product layer to the
solid-solid interface of the unreacted particle and the product layer.

5. The diffusion of reaction products from the solid-solid interface through the
product layer into the liquid film.
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area. Assuming the chemical reaction kinetics to be of first-order, the rate of reaction
for a spherical particle can be written as

−dnA

dt
= 4πr2

︸︷︷︸

reaction area

k′cIA , (2.4)

where k′ is the rate of reaction (in s−1) for the interface reaction and cIA is the con-
centration of species A (in mol/m3) at the side of the interface averted from the core
of the solid particle. Combining Eq (2.3) and Eq (2.4) gives

−dnB

dt
= −ρB

dV

dt
, (2.5)

and

−�
��4πr2ρB

dr

dt
=�

��4πr2b k′cIA . (2.6)

The integration of the variables leads to the a relation between the original radius of
the particle R0, the dissolution time t̃ and the current radius R :

−ρB

∫ R

R0

dr = b k′cIA

∫ t̃

t̃0=0

dt = −ρB(R−R0) = b k′cIAt̃ , (2.7)

and accordingly
t̃ =

ρB

b cIAk
′

(R0 −R) . (2.8)

The total dissolution time t̃tot is the time elapsed when R = 0. Normalizing the time
by the total dissolution time leads to the characteristic linear equation of reaction
limited dissolution kinetics:

t̃

t̃tot
= (1− R

R0

) . (2.9)

The graphical representation of the evolution of the normalized radius R/R0 with
normalized time t̃/t̃tot is called the dissolution profile and is shown in Fig 2.2. Often,
rate limiting steps in solid-fluid reactions are identified by comparing experimentally
derived dissolution profiles to the characteristic dissolution profiles following from the
shrinking-core model, e.g. [38, 42].

2.2.2 Diffusion/mass transfer through liquid film

Although, this control mode is related to diffusion through the liquid film, the diffusion
equations are not applied. The diffusion problem is transformed into a mass-transfer
problem at the interface

−dnB

dt
= 4πr2 b km

(

cliquid
A − csolidA

)

, (2.10)
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where km is called the mass transfer coefficient and (cliquid
A − csolidA ) is the difference

of the concentrations of A in the liquid bulk and in the solid. It is worth noting
that formally Eq (2.10) agrees with Eq (2.4), hence actually describing the kinetics
of chemical reaction control. Combining Eq (2.3) with Eq (2.10) gives

−ρB
dr

dt
= b km

(

cliquid
A − csolidA

)

. (2.11)

The mass transfer coefficient km is often related to the diffusion coefficient D and the
particle radius r in the following form:

km =
D

r
. (2.12)

Substitution of Eq (2.12) into Eq (2.11) and integration gives

∫ R

R0

rdr = −
bD
(

cliquid
A − csolidA

)

ρB

∫ t̃

t̃0=0

dt = R2 −R2
0 = −

2bD
(

cliquid
A − csolidA

)

ρB

t̃ .

(2.13)
The time t̃ relative to the start of the dissolution process is

t̃ =
ρBR

2
0

2bD
(

cliquid
A − csolidA

)

(

1−
(
R

R0

)2
)

, (2.14)

and the total dissolution time t̃tot can be obtained by setting R = 0. The characteristic
equation for mass controlled dissolution is then

t̃

t̃tot

= 1−
(
R

R0

)2

. (2.15)

The dissolution profile for mass transfer controlled dissolution is shown in Fig 2.2.

2.3 Diffusion through a boundary layer

If a boundary layer forms around a shrinking particle, diffusion through this layer
might limit the dissolution kinetics. Strictly speaking, the boundary layer model is
only valid for solid-gas reactions where the shrinkage of the particle is much slower
than the flow rate of the components towards the solid-solid interface between the
unreacted particle and the boundary layer [41]. The rate of nA is determined by the
diffusive flux JA and is proportional to the reaction area

−dnA

dt
= 4πr2JA , (2.16)
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with the diffusive flux of A being

JA = D
dcA
dr

, (2.17)

resulting in

−dnA

dt
= 4πr2D

dcA
dr

. (2.18)

Integration across the boundary layer gives

−dnA

dt

∫ R̃

r=R0

dr

r2
= 4πD

∫ cliquid
A

cA=csolid
A

dcA = −dnA

dt

(
1

R̃
− 1

R0

)

= 4πD
(

cliquid
A − csolidA

)

.

(2.19)
It can be seen from the above relation, that the rate of nA is constant for constant

radius R̃. By applying Eq (2.3) and integrating over time and radius, the change of
the boundary layer thickness is considered:

−ρB

∫ R

R̃=R0

(
1

R̃
− 1

R0

)

R̃2dR̃ = bD
(

cliquid
A − csolidA

)∫ t̃

t̃0=0

dt (2.20)

giving

t̃ =
ρBR

2
0

6bD
(

cliquid
A − csolidA

)

(

1− 3

(
R

R0

)2

+ 2

(
R

R0

)3
)

(2.21)

and with the total time t̃0 being defined at R = 0:

t̃

t̃0
= 1− 3

(
R

R0

)2

+ 2

(
R

R0

)3

(2.22)

The characteristic dissolution profile for a boundary-diffusion limited process is
compared to liquid film diffusion control and chemical reaction control in Fig 2.2.
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Figure 2.2: The characteristic dissolution profiles for the shrinking core model.

Recently, an extended shrinking-core model has been suggested for the dissolu-
tion of lime in steelmaking slags by Sarkar et al. [43] by assuming a mixed-mode
mechanism. However, comparison with experimental data could only be achieved
with several empirical parameters and relations. Strictly speaking, the shrinking-core
model does only hold for binary systems. However, it is frequently used for modelling
multi-component problems by means of introducing the concept of effective binary
diffusion; the multi-component system is reduced to a binary system by selecting a
main diffusing species and reducing all other components in the system to a fictive
second component. However, significant couplings between the diffusive fluxes of the
individual components and the gradients of their chemical potentials leading to non-
linear diffusion paths and concentration peaks can not be studied by the effective
binary approximation, see e.g. [44]. Thus, the classical shrinking-core model should
be applied to ternary or higher order systems only with great care.
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2.4 Diffusion limited models based on approximate solutions of the cou-
pled diffusion-moving boundary problem

Experimental observations reveal in many cases that diffusion processes play a major
role in oxide particle dissolution [36–38, 42, 45–48]. However, the classical shrinking-
core model often does not compare well quantitatively or qualitatively with exper-
imental data. To fit a mathematical model to the experimental data various ap-
proximations to the moving boundary problem have been introduced [39, 42, 48, 49],
where either the position of the solid/liquid interface or the concentration profile do
not change with time. For relatively small dissolution rates, the interface has only
a minor influence on the concentration field [44]. The mass balance at the interface
(Stefan’s interface condition) is

[[c]]
dR

dt
= JR = D

∂c

∂r

∣
∣
∣
∣
r=R

(2.23)

where, [[c]] denotes the concentration jump at the interface between the spherical
particle and its surrounding (liquid) matrix. The mass balance at the interface is
combined with the solution of Fick’s second law for spherical systems:

c(r, t) = cS + (cR − cS)
R0

r
erfc

(
r −R0√
4Dt

)

, r ≥ R0 (2.24)

where cR and cS are the concentrations at the liquid side of the interface and infinitely
far away from the interface, respectively. Combination of Eq (2.23) and Eq (2.24)
results in the "quasi-static approximation"; the velocity of the interface dR/dt is
determined by Eq (2.23) and the diffusive fluxes JR are derived from Eq (2.24), i.e.
concentration field is treated as if the radius of the spherical particle remains constant.
The interface velocity becomes then

dR

dt
= −cR − cS

[[c]]

(

D

R
+

√

D

πt

)

. (2.25)

The quasi-static approximation fails to predict the kinetics of oxide particle dissolu-
tion in many cases and, thus, has been modified by introducing additional physically
meaningless parameters to fit numerical results to experimental observations [42,48].
However, the field of application for the quasi-static approximation could be defined
by comparing it to the analytical solution of the moving boundary problem.

Analytical solutions of the moving boundary problem exist only for special cases.
Such a special case is the shrinking/growing of spheres in infinitely large binary sys-
tems in the diffusion-limited case with a constant diffusion coefficient. Following
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Glicksman [44], a characteristic diffusion parameter Ksphere is introduced relating the
displacement of the spherical interface (R(t)−R0) and the time t in case of diffusion
controlled transformations:

Ksphere =
R(t)−R0√

4Dt
. (2.26)

The characteristic diffusion parameter Ksphere can be related to another key parame-
ter, the non-dimensional supersaturation Λ, representing the boundary conditions of
the diffusion problem:

2K2
sphere

(
1−

√
πKsphere exp

(
K2

sphere

)
erfc(Ksphere)

)
=
cR − cS
[[c]]

= Λ . (2.27)

Thereby, the thermodynamic contact conditions at the interface, namely the jump
condition [[c]], influences the evolution of the radius R(t) in Eq (2.27). Usually,
when it comes to studying diffusion-limited growth or shrinkage of particles, the
non-dimensional matrix supersaturation is chosen as the independent variable. Un-
fortunately, Eq (2.27) can not be inverted analytically [44] and, thus, must be inverted
graphically (using Fig 2.3) or solved for Ksphere numerically. In Fig 2.3 the analytical
solution of the moving boundary problem is compared to the quasi-static approxima-
tion. While for low values of Λ the two solutions agree well with each other, there
is a increasing discrepancy as Λ rises. At Λ ≥ 0.1 the results from the quasi-static
approximation become significantly unreliable. A critical evaluation of approximate
solutions is also given by Guo et al. [50].
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Figure 2.3: Comparison of the analytical solution of the moving boundary problem
to the quasi-static approximation, see also [44].

2.5 Lattice-Boltzmann models

Verhaeghe et al. [51, 52] proposed a 2D-lattice Boltzmann model for the dissolution
of solids of arbitrary shape in multi-component liquids and applied their model to the
dissolution of alumina particles in CaO-Al2O3-SiO2 slags [53, 54]. The lattice Boltz-
mann method (LBM) originates from statistical physics. It is a numerical method
commonly used to solve fluid mechanics problems. The key concept is describing
the current state of the system in terms of the discrete-velocity distribution function
fd(z, t), which is a function of the spatial-position z and time t, see e.g. [55]. The
discrete-velocity distribution function represents the density of particles with velocity
vd and is defined on a grid discretizing space and time. From the discrete-velocity
distribution function other quantities such as the mass density ρ and the momentum
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density ρu can be calculated:

ρ(z, t) =
∑

d

fd(z, t) (2.28)

and
ρu(z, t) =

∑

d

vdfd(z, t) . (2.29)

For each time step ∆t the discrete-velocity distribution function fd(z, t) is updated
via:

fd(z + vd∆t, t+∆t) = fd(z, t) + Jd(z, t) , (2.30)

where Jd(z, t) is the position and time dependent collision operator, which describes
the interactions of particles during one time step. These collisions result in a redis-
tribution of particles on the discretizing grid depending on the actual mathematical
form of the collision operator.

For diffusion controlled dissolution of solid particles in multi-component fluids
Verhaeghe et al [51] used lattice Boltzmann equations of the type:

f j
d(z + vd∆t, t+∆t) = f j

d(z, t) + J jj
d + J jk

d , (2.31)

where f j
d is the discrete-velocity distribution function for component j and the colli-

sion operator is split in two terms J jj
d and J jk

d . The first collision term J jj
d represents

the collision of particles of the same type. Hence, J jj
d is called the self-collision oper-

ator and is given by

J jj
d = − 1

τj
(f j

d − f
j(0)
d ) , (2.32)

where τj is the relaxation time and f
j(0)
d the equilibrium distribution function. The

collision of unlike particles is handled via the cross-collision term J jk
d :

J jk
d = − ρkf

j(eq)
d

τDρRjT
(vd − u) ·

(
uj − uk

)
, (2.33)

where ρk is the mass density of component k 6= j, Rj = kB/mj is the gas constant
of component j, with kB being the Boltzmann constant and mj the molecular mass
of component j; uj and uk are the flow velocities of component k and j, respectively.
The relaxation time τD is related to the effective-binary diffusion coefficient D, see
[56]. The collision operator relaxes the system towards the equilibrium distribution

f
j(0)
d =

(

1 +
1

RdT
(vd − u) · (ud − u)

)

f
j(eq)
d , (2.34)
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with

f
j(eq)
d = wdρj

(

1 +
vd · u
RdT

+
vd · u

2(RdT )2
− u · u

2RdT

)

. (2.35)

It can be seen that the equilibrium distributions f j(0)
d depend on the local quantities

ρ and u only, which are calculated from the local values of f j
d . The weight factors wj

introduced in Eq (2.35) depend on the choice of the discrete velocity set vd; details can
be found in [55]. Usually, lattice Boltzmann equations are solved in two subsequent
steps:

1. In the first step, the density ρ and the macroscopic velocity u are obtained using
Eq (2.28) and Eq (2.29), respectively, to calculate the equilibrium distribution
f
j(0)
d and post-collision distribution. This step is referred to as the collision or

relaxation step.

2. In the second step, the resulting distributions from the first step are subse-
quently streamed to all neighbouring nodes of the discretizing grid. This step
is usually called the streaming step.

It can be shown that the macroscopic equations solved by this model are diffusion-
convection equations of the form

∂ϕ

∂t
+ u · ∇ϕ =

1

ρ
∇ · (D∇ϕ+ F ) , (2.36)

with the force term F accounting for the pressure gradient and contributions from
external forces [56]; ϕ represents the difference of the mass fractions of components j
and k and is given by

ϕ =

(
ρj − ρk
ρj + ρj

)

. (2.37)

The details of the so-called Chapman-Enskog analysis, which deals with finding
macroscopic equations from Boltzmann collision operators, will not be elaborated
here. The interested reader is referred to the extensive further literature on statisti-
cal physics and the lattice Boltzmann method, e.g. [55–58].

Verhaeghe et al. [53,54] demonstrated the applicability of lattice Boltzmann mod-
els to predict the kinetics of oxide particle dissolution in metallurgical slags within
several limitations: The simulations performed are based on representative binary
systems for the dissolution of alumina in ternary slag systems. Effective binary dif-
fusion coefficients have to be introduced instead of taking multi-component diffu-
sion relations into account, thus treating the individual components as equal species.
This simplification leads to the unrealistic result of straight diffusion paths in multi-
component systems. For the prediction of multi-component diffusion paths, however,
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local thermodynamic calculations must also be taken into account. This will be fur-
ther elaborated in a later chapter. While LBM is a versatile and powerful tool, cal-
culations based on the LBM are computationally demanding, thus they are generally
not used as sub-routines in comprehensive models of metallurgical processes.

2.6 Models accounting for non-linear diffusion paths

The highly non-linear nature of diffusion paths in BOF slags during the dissolution
of alumina particles is evaluated by Tripathi et al. [59] via experimental observations
indicating that multi-component couplings between diffusive fluxes and their corre-
sponding thermodynamic forces should not be neglected. However, as implied above,
only few metallurgically related dissolution models presented in literature account
for multi-component phenomena. A phase field model for oxide melts accounting for
multi-component diffusion has been developed by Heulens et al. [60] and has been
applied to simulate the dissolution of alumina particles in ternary CaO-SiO2-Al2O3

slags by Liu et al. [61]. They assume multi-component diffusion in the bulk ma-
terial as the rate determining process and predict non-linear diffusion paths during
the transformation process. In their model they use thermodynamic computations
to calculate thermodynamic factors and chemical potentials of all diffusing species.
The thermodynamic approach to the kinetics of phase transformations distinguishes
the phase field model at a fundamental level from the previously mentioned models,
which only use thermodynamic calculations to predict solubility limits. Liu et al. [61]
use the commercial thermodynamic software package ChemApp [62] from FactSage
[63] as an external tool for their thermodynamic computations.
From what has been said so far, it can already be concluded that a model aiming
to describe the physics of solid-liquid phase transitions in metallurgical slag systems
must be capable of representing their multi-component nature in a suitable manner.
Furthermore, the ability to directly calculate the thermodynamic boundary condi-
tions might be advantageous; this aspect will be further elaborated. The calculation
of thermodynamic equilibria in complex chemical systems using state of the art al-
gorithms is part of the objectives in this work; a brief introduction to equilibrium
calculations with a focus on the method of Gibbs energy minimization is discussed in
the following.

2.7 Calculations of thermochemical equilibria

While metallurgical processes typically take place far from thermodynamic equilib-
rium, the kinetics of metallurgical reactions can be properly described only once the
equilibrium state of the system is known, see [64]. Knowing the global thermodynamic
equilibrium conditions is a key requirement for predicting the direction in which a
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process is going to evolve. Furthermore, as will be discussed in more detail later,
thermodynamics is inherently intertwined with the kinetics of irreversible processes
on a fundamental level.
Equilibrium calculations are often tackled by identifying the dominant chemical re-
action where a single equilibrium constant can be defined. While this procedure is
best applied to very simple systems (i.e. ideal homogeneous systems), equilibrium
calculations in multi-component and multi-phase systems demand numerically more
sophisticated approaches.

2.7.1 The stoichiometric approach

A thermochemical system may be classified by the vector n0 containing the molar
amounts ni of the N individual species i that can possibly exist in the system. The
thermochemical system can transform into an energetically more favourably state n
by means of C independent chemical reactions [65]

n = n0 +
C∑

κ=1

ν
κ
ξ
κ
, (2.38)

where ν
κ

is called the stoichiometric vector and ξ
κ

is the extent of reaction κ. The
equilibrium state of the system at constant temperature T and pressure P can be
calculated by minimizing the Gibbs energy in terms of the C extents of reaction ξ

κ

(
∂G

∂ξ
κ

)

T,P,ξκ 6=κ

= 0 , κ = 1, ..., C . (2.39)

By applying the chain rule one gets

(
∂G

∂ξ
κ

)

T,P,ξκ 6=κ

=
N∑

i=1

(
∂G

∂ni

)

T,P,nk 6=1

(
∂ni

∂ξ
κ

)

ξκ 6=κ

, κ = 1, ..., C . (2.40)

The chemical potential µi of a species i is defined as
(
∂G

∂ni

)

T,P,nk 6=i

= µi . (2.41)

Moreover, the change of the molar amounts ni with the progression of the chemical
reactions can be related to the stoichiometric vector via

(
∂ni

∂ξ
κ

)

ξκ 6=κ

= νi,κ . (2.42)

21



By combining Eqs (2.39), (2.41) and (2.42) the equilibrium conditions are given by
C equations of the form

N∑

i=1

νi,κµi = 0 , κ = 1, ..., C . (2.43)

The equilibrium values of the elements of n are obtained by solving the set of equations
of the form (2.43). Usually, Eq (2.43) is solved by introducing κ equilibrium constants
K

κ
. For the definition of the equilibrium constant, the chemical potentials are written

in the form
µi = µ◦

i +RT ln ai , (2.44)

where µ◦

i is the reference value of the chemical potential of species i, ai is the chemical
activity of species i in a solution phase (for stoichiometric phases ai = 1) and R is
the ideal gas constant. Combining Eqs (2.43) and (2.44) the equilibrium condition
becomes

N∑

i=1

νi,κµ
◦

i +RT

N∑

i=1

νi,κ ln ai = 0 . (2.45)

The first term is called the standard Gibbs free energy change ∆G◦

κ
of reaction κ

∆G◦

κ
=

N∑

i=1

νi,κµ
◦

i (2.46)

Eventually, the equilibrium constant K
κ

is defined by means of combining Eqs (2.45)
and (2.46)

−∆G◦

κ

RT
= ln

(
N∏

i=1

a
νi,κ
i

)

= lnK
κ
, (2.47)

where lnK
κ

is only dependent on temperature T and pressure P . The equilibrium
constant method is widely used for calculating thermochemical equilibria in simple
systems [66]. Eq (2.47) relates the activities ai of the products and reactants of the
chemical reaction; however, in general, the equilibrium amounts ni can not simply be
obtained from the activities ai.
A simple iterative algorithm based on the stoichiometric equilibrium condition Eq
(2.43) is suggested by Naphtali [67, 68]. Here, the equilibrium constants K

κ
are not

used; nontheless, the computability of the chemical potentials µi is required. At each
iteration ℵ the extents of chemical reactions ξℵ

κ
are updated by ∆ξℵ

κ
using

∆ξℵ
κ
=

(
∂G

∂ξ
κ

)
ℵ

= −∆Gℵ

κ
= −

N∑

i=1

νi,κµ
ℵ

i , κ = 1, ..., C . (2.48)
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The molar amounts ni are updated by

nℵ+1
i = nℵ

i +∆nℵ

i , (2.49)

with

∆nℵ

i =
C∑

κ=1

νi,κ∆ξ
ℵ

κ
, i = 1, ..., N . (2.50)

Although Napthtali’s algorithm is straight-forward and easy to implement, it is rarely
used, due to its bad convergence properties; however, there exist various generally
applicable numerical algorithms (see e.g. [65, 69–74]) based on the stoichiometric
equilibrium condition (2.43).

2.7.2 The non-stoichiometric approach

While the stoichiometric approach is physically justified, it requires that all indepen-
dent chemical reactions between the species in the system are known [64]. Typically,
in pyro-metallurgical processes a large number of chemical reactions occur simultane-
ously in a multi-component, multi-phase system. Thus, for metallurgical applications
the non-stoichiometric formulation is often preferred, where the equilibrium state is
found by minimization of the Gibbs energy subject to mass balance (and possibly
other) constraints. Mathematically speaking, Gibbs energy minimization (GEM) is a
constrained non-convex optimization problem and can be formulated as

minimize G =
N∑

i

niµi, (2.51a)

subject to (s.t.)
N∑

i=1

Aijni = bj , j = 1, ...,M (2.51b)

ni ≥ 0 i = 1, ..., N. (2.51c)

Here, Aij is the stoichiometric coefficient of a species i containing component j and
bj is the amount of component j in the system. The difficulty of solving non-convex
optimization problems arises from the following characteristics of non-convex prob-
lems:

• The possible existence of multiple local minima in the solution space.

• The existence of saddle points.
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• Flat regions that make it hard to identify distinct local search directions.

The minimization problem is usually approached using the method of Lagrange mul-
tipliers a technique used to find the extreme values of a function - the Lagrangian
L - subject to various constraints. The Lagrangian to be minimized considering the
mass balance is

L (n, χ) =
N∑

i

niµi +
M∑

j=1

χj

(

bj −
N∑

i=1

Aijni

)

, (2.52)

where χ is the set of unknown Lagrangian multipliers χj. The Lagrange multipliers
χj hold physical significance in that they correspond to the chemical potentials of the
system’s components. At equilibrium, these chemical potentials χj must be uniform
across all stable phases for every component. This relationship becomes evident by
examining the partial derivatives of the Lagrangian with respect to ni, as is evident
from Equation (2.53) below. The minimum of the Lagrangian L corresponds to the
minimum of the Gibbs energy G and is obtained by setting the derivatives in terms
of the variables ni and χj to zero

(
∂L

∂ni

)

nk 6=i,χ

= µi −
M∑

j=1

Aijχi = 0 , (ni > 0) , (2.53)

and
(
∂L

∂χj

)

n,χl 6=j

= bj −
N∑

i=1

Aijni = 0 . (2.54)

Solving the set of N + M equations of the forms (2.53) and (2.54), respectively,
usually requires an iterative procedure and various numerical procedures have been
suggested, e.g. [75–84]. It is important to note that the chemical potentials µi must be
computable from the intensive state variables temperature T , pressure P and molar
amounts n.

A selection of established commercial products is available [63, 85–87] that can
be obtained together with ready-to-use thermodynamic databases for the calculation
of thermochemical equilibria and even phase diagrams. The downside of commercial
software products is that for the user they are black-boxes, not giving any insight
into their inner workings; the same holds for the offered thermodynamic databases.
As will be shown later, commercial databases might not represent the best (or latest)
available assessments of a thermochemical system and because of its intransparent
documentation, users might not be able to comprehend the limits of the resulting
thermodynamic predictions. Furthermore, linking commercial products to other soft-
ware is often troublesome if possible at all. This may be because of technical hurdles
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or licensing problems.
In the following chapter, a non-stoichiometric algorithm for the calculation of ther-
mochemical equilibria of multi-component and multi-phase systems is developed in
detail that can be coupled directly to a recently developed comprehensive LD-process
model [27–30].
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3 | Calculation of thermochemical equi-
libria in multi-component and multi-
phase systems

In the following, the system of multi-variable transcendental equations that need to
be solved simultaneously in order to calculate the equilibrium state of a complex
chemical system is derived. Additionally, a numerical routine is elaborated in detail
that is used to solve this system of equations and find the equilibrium state of multi-
component and multi-phase slag systems. Moreover, subroutines for calculating the
driving forces for the addition of new phases and convergence criteria are outlined.

3.1 Basic Definitions

As a first step in the mathematical analysis of thermochemical equilibria, it is neces-
sary to begin with precise definitions of the used concepts:

• A phase is a structurally uniform region without any discontinuous jumps in
its chemical and/or physical properties.

• Chemical species are aggregates of chemical elements characterized by their
molecular formula, the specification of the phase in which they exist and, if
needed, their molecular/crystal structure [65].

• The components of a thermochemical system are its smallest independent
building blocks. Typically the chemical elements of the periodic table are cho-
sen as components of thermochemical systems. In some cases, however, it is
beneficial to define independent molecules as system components provided that
they will not disintegrate under the conditions considered.

• Following the definition given in [88], constituents are defined as "independent
entities to represent the constitution of a phase", e.g. substitutional atoms,
interstitial atoms and vacancies in a crystal or basic oxides in liquid slags.
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3.2 Minimization of Gibbs energy

As mentioned above, the Gibbs energy of a thermochemical system can be expressed
as

G =
N∑

i

niµi , (3.1)

where µi is the chemical potential of species i. In a closed thermochemical system
the mass is always contained. The conservation of mass can be expressed as

N∑

i=1

Aijni = bj , j = 1, ...,M , (3.2)

where Aij is the stoichiometric coefficient of a species i containing component j, ni is
the amount of species i and bj is the number of moles of component j in the system.
The number of distinguishable components and the number of distinguishable species
in the system are denoted M and N , respectively.
For multi-phase systems it is convenient to express the integral Gibbs energy G by
means of the constituents of the individual phases. For a Φ-phase system the Gibbs
energy of the system can be written as

G =
Φ∑

φ=1

Iφ∑

i=1

nφiµφi . (3.3)

The constitution of each individual phase φ is represented by its corresponding con-
stituents i of total number Iφ, where Iφ dependents on the individual phase. The
chemical potentials of the constituent can be generally defined as

µφi = µ◦

φi +RT ln aφi . (3.4)

In this relation µ◦

φi describes the chemical potential of the pure substance at tem-
perature T ; aφi is the chemical activity of the constituent i in the phase φ. Combining
Eqs (3.3) and (3.4) gives

G =
Φ∑

φ=1

Iφ∑

i=1

nφi

(
µ◦

φi +RT ln aφi
)
. (3.5)

Calculating the equilibrium composition of a multi-component, multi-phase sys-
tem at a given temperature and pressure is achieved by minimizing the Gibbs energy
of the system. For closed systems the Gibbs energy is minimized subject to mass
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balance constraints. Moreover, only solutions with non-negative molar quantities nφi

are considered physically meaningful. For ideal phases (e.g. ideal gases) or phases
without miscibility gaps, the Gibbs energy function is a convex function. In contrast,
silicate-containing melts (i.e. steelmaking slags) may exhibit miscibility gaps that can
only be accounted for by means of non-convex segments of the Gibbs energy function.
Hence, the minimization of the Gibbs energy of multi-phase systems with non-ideal
phases can be classified as a constrained non-convex optimization problem and can
be reformulated as

minimize G =
Φ∑

φ=1

Iφ∑

i=1

nφiµφi , (3.6a)

s.t.
Φ∑

φ=1

Iφ∑

i=1

Aφ
ijnφi = bj , j = 1, ...,M , (3.6b)

nφi ≥ 0 i = 1, ..., Iφ , φ = 1, ...,Φ . (3.6c)

It is not always known a priori which phases are stable under the given conditions.
Therefore, the set of equilibrium phases must be determined from all the phases that
should reasonably be taken into account when minimizing the Gibbs energy. The
Gibbs energy minimization problem can be addressed by formulating the Lagrangian
L of the following form (see e.g. [65, 75, 76,89])

L =
Φ∑

φ=1

Iφ∑

i=1

nφi

(
µ◦

φi +RT ln aφi
)
−

M∑

j=1

χj





Φ∑

φ=1

Iφ∑

i=1

Aφ
ijnφi − bj



−
∑

φ∈Sneq

Iφ∑

i=1

λφinφi ,

(3.7)
where χj and λφi are Lagrange multipliers and Sneq is the set of indices φ of all phases
that are not considered in the current phase assemblage [90]. The chemical composi-
tion at the minimum of the Lagrangian is equivalent to the chemical composition at
equilibrium.
By defining L = L /(RT ), µ◦

φi = µ◦

φi/(RT ), χj = χj/(RT ) and λφi = λφi/(RT ) the
Lagrangian can be converted into its dimensionless form

L =
Φ∑

φ=1

Iφ∑

i=1

nφi

(
µ◦

φi + ln aφi
)
−

M∑

j=1

χj





Φ∑

φ=1

Iφ∑

i=1

Aφ
ijnφi − bj



−
∑

φ∈Sneq

Iφ∑

i=1

λφinφi .

(3.8)
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The minimum of L can be obtained by locating the critical points of the La-
grangian [75,76,90]:

∂L

∂nφi

= µ◦

φi + ln aφi +

Iφ∑

k=1

nφk
∂ ln aφk
∂nφi

−
M∑

j=1

χjA
φ
ij = 0 , φ /∈ Sneq , (3.9)

∂L

∂χj

=
Φ∑

φ=1

N∑

i=1

Aφ
ijnφi − bj = 0 , j = 1, ...,M , (3.10)

∂L

∂λφi
= nφi = 0 , φ ∈ Sneq , (3.11)

∂L

∂nφi

= µ◦

φi + ln aφi +

Iφ∑

k=1

nφk
∂ ln aφk
∂nφi

−
M∑

j=1

χjA
φ
ij − λφi = 0 , φ ∈ Sneq . (3.12)

From the Gibbs-Duhem equation it follows that

Iφ∑

k=1

nφk
∂ ln aφk
∂nφi

= 0 . (3.13)

The equilibrium of the system can be obtained by solving Eqs (3.9) and (3.10) in
the following rewritten form:

µ◦

φi + ln aφi −
M∑

j=1

χjA
φ
ij = 0, φ /∈ Sneq (3.14)

Φ∑

φ=1

Iφ∑

i=1

Aφ
ijnφi = bj , j = 1, ...,M , (3.15)

for the equilibrium phases (φ /∈ Sneq) while respecting the non-negativity constraints.
From Eq (3.14) it can be seen that the Langrange multipliers χj correspond to the
chemical potentials of the components j defining the common tangent hyperplane of
the thermochemical system. The non-linear set of equations comprised of Eq (3.14)
and (3.15) is solved iteratively using a variation of the Newton-Raphson method.
Following [65, 75, 90], the equations for calculating a new solution nℵ+1

φi and χℵ+1
j

from a previous estimate are outlined in the subsequent discussion; the subscript ℵ
indicates the current iteration step.
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First, the chemical activities are revised for the solution phases in the system by
separating them into an ideal term and an excess term:

ln aφi = ln
nφi

Nφ
︸ ︷︷ ︸

ideal

+ ln γφi
︸ ︷︷ ︸

excess

, (3.16)

where γφi denotes the rational activity coefficient of constituent i in phase φ and Nφ

denotes the sum of the amounts nφi of all constituents contributing to the constitution
of phase φ, i.e.

Nφ =

Iφ∑

i=1

nφi . (3.17)

The separation into an ideal and a non-ideal term allows the use of an algorithm for
minimizing the Gibbs energy of ideal systems [65] by formally rewriting Eq (3.4) in
its dimensionless form

µφi = µ◦

φi + ln
nφi

Nφ

+ ln γφi = µ◦?
φi + ln

nφi

Nφ

. (3.18)

Thus, at each iteration ℵ the values from the ideal solution can be used for approxi-
mating the derivatives of the chemical potentials, while the non-ideal values are used
for the computation of the chemical potentials (see e.g. [91]). For the calculation of
a new solution for nℵ+1

φi and χℵ+1
j , the logarithmic term in Eq (3.18) is reformulated

as

ln
nℵ+1
φi

Nℵ+1
φ

= ln
nℵ+1
φi

nℵ

φi

− ln
Nℵ+1

φ

Nℵ

φ

+ ln
nℵ

φi

Nℵ

φ

. (3.19)

The first two terms at the right hand side of Eq (3.19) are expanded into a Taylor
series about an arbitrary point in the composition space [90]

ln
nℵ+1
φi

nℵ

φi

− ln
Nℵ+1

φ

Nℵ

φ

=

=

(

nℵ+1
φi

nℵ

φi

−
Nℵ+1

φ

Nℵ

φ

)

+

(

nℵ+1
φi

nℵ

φi

−
Nℵ+1

φ

Nℵ

φ

)[

1− 1

2

(

nℵ+1
φi

nℵ

φi

+
Nℵ+1

φ

Nℵ

φ

)]

+ ... (3.20)

Cancelling the Taylor expansion Eq (3.20) after the first term and combining Eqs
(3.14), (3.19) and (3.20) an updated value nℵ+1

φi of the constituent amounts can be
calculated

nℵ+1
φi = −Ψℵ

φi + nℵ

φi

(

Nℵ+1
φ

Nℵ

φ

+
M∑

j=1

χℵ+1
j Aφ

ij

)

, (3.21)
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with

Ψℵ

φi =

(

µ◦

φi + ln γℵφi + ln
nℵ

φi

Nℵ

φ

)

nℵ

φi , (3.22)

for every constituent i in solution phase φ. The rational activity coefficient γℵ+1
φi is

approximated by its value from the previous iteration, thus

ln
(
γℵ+1
φi

)
≈ ln

(
γℵφi
)
. (3.23)

The calculation of ln
(
γℵφi
)

is executed by means of a separate procedure and is de-
pendent on the model for the excess Gibbs energy of the individual phase (details are
discussed in section 3.3). For every solution phase φ summation of Eq (3.21) over all
constituents i gives

M∑

j=1

χℵ+1
j

Iφ∑

i=1

nℵ

φiA
φ
ij =

Iφ∑

i=1

Ψℵ

φi . (3.24)

At every iteration step the mass balance must be satisfied, hence

bℵ+1
j − bj = 0 , j = 1, ...,M (3.25)

must hold. Here, bℵ+1
j is the calculated amount of component j at iteration step

ℵ + 1, and bj is the actual amount of component j in the system (i.e. the input
value). Combination of Eq (3.15) together with Eqs (3.21) and (3.25) results in M
equations of the form

bj = −
Φ∑

φ=1

Iφ∑

i=1

Aφ
ijΨ

ℵ

φi +
Φ∑

φ=1

Iφ∑

i=1

nℵ

φiA
φ
ij

Nℵ+1
φ

Nℵ

φ

+
M∑

l=1

χℵ+1
l

Φ∑

φ=1

Iφ∑

i=1

nℵ

φiA
φ
ijA

φ
il , (3.26)

which can be reformulated to a more convenient form suggested by Eriksson [75]:

M∑

l=1

χℵ+1
l

Φ∑

φ=1

Iφ∑

i=1

nℵ

φiA
φ
ijA

φ
il+

Φ∑

φ=1

(

Nℵ+1
φ

Nℵ

φ

− 1

)
Iφ∑

i=1

nℵ

φiA
φ
ij =

Φ∑

φ=1

Iφ∑

i=1

Aφ
ij(Ψ

ℵ

φi−nℵ

φi)+bj .

(3.27)
If stoichiometric phases (i.e. pure compounds) are considered in the thermochem-

ical system, the set of equations is slightly modified. Pure compounds are phases
with only one constituent, hence their activity aω = 1 and, thus, Eq (3.16) becomes
zero for every stoichiometric phase ω

ln aω = 0 . (3.28)

31



Furthermore, for stoichiometric phases Eq (3.24) simplifies to

J∑

j=1

χℵ+1
j AΩ

ωj = µ◦

ω , (3.29)

where AΩ
ωj are the elements of the stoichiometric matrix of the pure compounds. If

Ω distinguishable stoichiometric phases are present in the current set of considered
phases in the phase assemblage, then Eq (3.27) is extended to

M∑

l=1

χℵ+1
l

Φ∑

φ=1

Iφ∑

i=1

nℵ

φiA
φ
ijA

φ
il +

Φ∑

φ=1

(

Nℵ+1
φ

Nℵ

φ

− 1

)
Iφ∑

i=1

nℵ

φiA
φ
ij +

Ω∑

ω=1

AΩ
ωjn

ℵ+1
ω

=
Φ∑

φ=1

Iφ∑

i=1

Aφ
ij(Ψ

ℵ

φi − nℵ

φi) + bj . (3.30)

The expressions (3.24), (3.29) and (3.30) comprise a set of (Φ+Ω+M) equations in

the unknowns χℵ+1
j ,

Nℵ+1

φ

Nℵ
φ

−1 and nℵ+1
ω that can be solved using a standard algorithm,

details on the numerical solver are given below in section 3.2.4.

3.2.1 Non-negativity constraints

For each iteration step ℵ the molar amounts nℵ+1
ω of the pure compounds in the system

are directly obtained from solving Eqs (3.24), (3.30) and (3.29) simultaneously. If the
number of moles nℵ+1

ω of a stoichiometric phase becomes less than or equal to zero
during the iteration loop it is removed from the current phase assemblage, i.e. its
phase index is added to the set Sneq. The amounts of the constituents nℵ+1

φi of the
solution phases φ are calculated in a second step using Eq (3.21). It is possible that
one or more values of nℵ+1

φi become negative during the minimization loop. In that
case, the step length (the difference between previous and newly calculated values)
has to be reduced retroactively. Eriksson [75] suggests the following procedure:
For all constituents where nℵ+1

φi < 0, an under-relaxation factor σφi is introduced:

σφi = −
(

nℵ

φi

nℵ+1
φi − nℵ

φi

)

. (3.31)

To ensure that all molar amounts become positive the minimum value of all σφi must
be determined and

nℵ+1,new
φi = nℵ

φi + 0.999 · σmin

(
nℵ+1
φi − nℵ

φi

)
, (3.32)
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where the newly obtained values nℵ+1,new
φi are used as estimates for the following

iteration cycle. Due to this procedure, solution phases are not directly removed
because of the non-negativity constraints. However, a solution phase is removed from
the current phase assemblage if its amount is less than a sufficiently small limiting
value, i.e.

(
∑M

j bj

)

· 10−14 mol, as suggested by Piro [92].

3.2.2 Driving force for addition of new phases to the system

During the iteration loop, it is possible that the Gibbs energy of a phase that is
not considered in the current (ℵ) phase assemblage lies below the current common
tangent hyperplane that is defined by the chemical potentials χℵ

j of the components
j. In this case, the addition of the phase leads to a lower total Gibbs energy of the
system. Such situations are detected using a single numerical value resulting from
the evaluation of the tangent plane distance function ∆fφ

∆fφ =

Iφ∑

i=1

(

µφi −
M∑

j=1

Aφ
ijχ

ℵ

j

)

. (3.33)

A new phase may be added to the current phase assemblage during the iteration
loop if its phase index φ ∈ Sneq and the tangent plane distance function ∆fφ becomes
negative. For stoichiometric phases the tangent plane distance function ∆fω is defined
as

∆fω = µω −
M∑

j=1

Aω
ωjχ

ℵ

j . (3.34)

In Fig 3.1 the addition step of a new phase β is represented graphically for a binary
system. The common tangent hyperplane (in a binary system simply a 1D-tangent
line) at iteration step ℵ is indicated in red. During this iteration ℵ only the α-phase
is considered in the current phase assemblage. However, as the Gibbs energy of the
β-phase (blue) lies below the current tangent plane (red), a negative value of ∆fℵ

β

occurs. This indicates that the β-phase should be added to the system for the next
iteration step ℵ+1. Hence, the tangent hyperplane at the following iteration step ℵ+1
needs to be adjusted in a way that the tangent plane distance function ∆fℵ+1

β becomes
zero (shown in purple). The tangent plane distance function can thus be interpreted
as a driving force for the addition of a new phase to the equilibrium system. Phases
that are not part of the equilibrium state are defined by positive values of the tangent
plane distance function whose numerical value indicates "how far" the stability limit
of the individual phase is from the current thermodynamic state. While the addition
of stoichiometric phases to the phase assemblage is straight forward, the addition of
a new solution phase to the phase assemblage is more complicated. Before a new
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minimize ∆fφ =

Iφ∑

i=1

(

µφi −
M∑

j=1

Aφ
ijχj

)

, (3.35a)

s. t.
Iφi∑

i=1

xφi = 1 . (3.35b)

To not interfere with the numerical convergence too much, new phases are added
to the phase assemblage with relatively small amounts, i.e.

(
∑M

j bj

)

· 10−3 mol.
At thermochemical equilibrium conditions the Gibbs phase rule holds; thus, a new
phase is only introduced to the phase assemblage if the Gibbs phase rule allows for
an additional phase

F =M − (Φ + Ω) + 2 , (3.36)

where F is the number of independent variables that can be varied while maintaining
the equilibrium state, M is the number of components and (Φ+Ω) is the total number
of solution and pure phases in equilibrium, respectively. Eq (3.36) determines the
maximum amount of phases that can be present at equilibrium. At constant pressure
and temperature the Gibbs phase rule becomes

F =M − (Φ + Ω) . (3.37)

3.2.3 Convergence Criteria

The convergence of the iterative procedure is characterized by a single numerical
value, the functional norm Fℵ of the Lagrangian [92], and is defined as

Fℵ =

√
√
√
√
√

M∑

j=1





Iφ∑

i=1

nℵ

φiA
φ
ij +

Ω∑

ω=1

AΩ
ωjn

ℵ

ω − bj





2

+

√
√
√
√

Iφ∑

i=1

(

µφi −
M∑

j=1

Aφ
ijχ

ℵ

j

)2

+

(

µω −
M∑

j=1

Aω
ωjχ

ℵ

j

)2

(3.38)

The functional norm Fℵ is a measure of how well the equilibrium conditions are
fulfilled at each iteration step ℵ. The iteration procedure stops when a value of
Fℵ ≤ 10−10 is reached.
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3.2.4 Outline of the iterative procedure

As the fundamentals of the Gibbs energy minimization algorithm are established, the
main calculation loop for minimizing the Gibbs energy and finding the equilibrium
values of nequi

φi and nequi
ω can now be outlined:

1. For a given input (i.e, the M amounts bj of the components, the temperature
T , and the pressure P ), a first guess about the stable phases that are present
at the equilibrium state, their amounts and their constitution defined by nφi

and nω, respectively, has to be made. In this first guess, the mass balance must
be respected. In the case of metallurgical slags at temperatures above 1200°C
the liquid phase is always considered. The first selection of phases together
with their individual composition can be automatized using numerical routines
[94,95]. However, this feature is not implemented in this work.

2. The iteration loop starts with the determination of the rational activity coef-
ficients γφi using the modified quasi-chemical model for the liquid phase (see
section 3.3).

3. The system of equations, consisting of (3.24), (3.29) and (3.30), is assembled
and solved by means of the LAPACK routine "_gesv" [96] called via the numpy-
Python interface [97] (numpy.linalg.solve). It is possible that during the itera-
tion procedure the linear solver is not able to solve the system of equations in
the case of a singular-matrix. In this case the system is solved (only for this
iteration) using a least-squares procedure (numpy.linalg.lstsq) to overcome nu-
merical difficulties. These cases are detected by the software and are reported
at the end of the minimization loop.

4. The amounts nℵ+1
φi of the constituents of the solution phases are calculated using

Eq (3.21) and corrected in the case of negative nℵ+1
φi by applying Eq (3.32).

5. Stoichiometric phases with a negative amount are removed from the set of con-
sidered phases. Solution phases with amounts smaller than

(
∑M

j bj

)

·10−14 mol
are removed from the system. Due to convergence considerations only one phase
is removed from the equilibrium phase assemblage per iteration step.

6. The driving force for the addition of a new phase is evaluated. A new phase
is only allowed to be introduced to the current set of considered phases if its
addition does not interfere with the Gibbs phase rule, Eq (3.36). Also, in order
not to compromise convergence too much, only one phase is added per iteration.
Also, adding a new phase is allowed only at every fifth iteration.
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7. The convergence criterion Eq (3.38) is evaluated at the end of the iteration loop.

8. The iteration steps 2.-7. are run successively until convergence is reached.

The iteration procedure is represented graphically via a flowchart in Fig 3.2.

37





3.3 Gibbs energy models

As mentioned above, the chemical potentials µφi of the individual constituents i com-
prising the phases φ considered in the Gibbs energy minimization routine need to
be computable at every iteration step. Following the CALPHAD (see e.g. [64, 88])
approach to thermodynamics the Gibbs energy of a phase φ is generally expressed as

Gφ = Gref
φ +Gid

φ +Gex
φ +Gphys

φ , (3.39)

where Gref
φ denotes the Gibbs energy of reference, Gid

φ is the contribution to the Gibbs
energy stemming from the ideal configurational entropy; Gex

φ and Gphys
φ are the excess

Gibbs energy stemming from non-ideal interactions and the Gibbs energy contribu-
tion from significant physical effects (e.g. magnetic contributions), respectively. In
the following discussion, the models used in this work providing expressions for the
individual contributions to the Gibbs energy are presented. Finally, it will be shown
how the chemical potentials µφi and especially the rational activity coefficients γφi
are calculated for the liquid phase.

3.3.1 Model for stoichiometric compounds

The Gibbs energies Gω of the stoichiometric compounds are expressed via the usual
temperature dependent function

Gω = C1 + C2T + C3T ln(T ) + C4T
2 + C5T

3 + C6T
−1 , (3.40)

where C1 contains the contribution to the Gibbs energy from the enthalpy of forma-
tion and the heat capacity of the individual compound, C2 contains contributions of
the absolute entropy and the heat capacity. The coefficients C3, ..., C6 are directly
determined from the polynomial representing the heat capacities of the individual
compounds. Similar equations are used to calculate the reference Gibbs energies for
the constituents in the liquid phase.

3.3.2 Model for the liquid phase

In this work, the Gibbs energy of the liquid slag phase is derived by means of the
modified quasi-chemical model [98–101], where atoms forming the liquid solution are
distributed over the sites of a formal quasi-lattice. A characteristic of oxide melts
is their tendency to short-range ordering. This holds especially for molten oxides
containing considerable amounts of silica. The modified quasi-chemical model ad-
dresses short-range ordering by means of interactive nearest-neighbor pairs. It should
be noted that the modified quasi-chemical model is far from being the only model
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capable of describing the Gibbs energy of liquid oxides. Other models worth mention-
ing are the ionic two-sublattice model [102–104] and the non-ideal associate model
[105–107]. Here, the modified quasi-chemical model is preferred since most of the
assessments using this model are available for the thermodynamic system of interest.
In this work the modified quasi-chemical model is used in the pair approximation for
short-range ordering between species on a single sublattice. An extended approach
to the modified quasi-chemical model is its development in a quadruplet approxi-
mation, which applies in particular to solutions with two sublattices. This extended
model enables the simultaneous consideration of both inter- and intrasublattice short-
range ordering phenomena [101,108]. The derivations necessary for implementing the
modified quasi-chemical model in the quadruplet approximation in a thermodynamic
software is provided in [109]. It is worth noting that in the case where one of the
sublattices is either occupied by only a single species or remains empty, the equations
of the quadruplet approximation are simplified to exactly match the equations of the
single-sublattice modified quasi-chemical model.

Binary Solutions

In a binary solution - consisting of species A and B - pair-exchange reactions are
defined in the form of

(A − A) + (B − B)⇀↽ 2 (A − B) ∆gAB = (∆hAB − T∆sAB) . (3.41)

The non-configurational Gibbs energy change for the formation of two moles of
(A − B) pairs is given by ∆gAB [98] and can be extended as a polynomial in the
coordination equivalent fractions YA and YB. Pelton and Blander [98,110] suggest to
expand ∆gAB as a polynomial in the coordination equivalent fractions in the following
form

∆gAB = ∆g◦AB +
∑

p,q

Lpq
ABY

p
AY

q
B p ≥ 0 , q ≥ 0 , (3.42)

where ∆g◦AB and Lpq
AB are (possibly temperature-dependent) model parameters that

are fitted to experimental data and/or data from first-principles calculations. The
more negative the Gibbs energy change ∆gAB is, the more favoured becomes the
formation of (A − B) pairs. The phase becomes an ideal solution if the value of ∆gAB

approaches zero.
It is convenient to introduce the nearest-neighbor pairs (A − A), (B − B) and (A − B)
as "subordinated-constituents" of the solution phase. Following the definition given
above, the species A and B qualify as the constituents of the phase, while the amounts
of the nearest-neighbor pairs determine the (non-physical) structure of the phase on
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a formal level. To relate the amounts of the nearest-neighbor pairs to the amounts
of the species A and B the coordination numbers ZA and ZB are introduced. The
coordination number ZA represents formally the number of nearest-neighbor bonds
of species A in the solution. However, in the context of the modified quasi-chemical
model it should be viewed as a fitting parameter. The mass balances can then be
written in the amounts of the nearest-neighbor pairs nAA, nBB:

ZAnA = 2nAA + nAB , (3.43a)

ZBnB = 2nBB + nAB . (3.43b)

The pair fractions are then defined as

xAA =
nAA

nAA + nBB + nAB

, (3.44a)

xBB =
nBB

nAA + nBB + nAB

, (3.44b)

xAB =
nAB

nAA + nBB + nAB

, (3.44c)

and the overall mole fractions are

xA =
nA

nA + nB

, (3.45a)

xB =
nB

nA + nB

. (3.45b)

Additionally, the coordination equivalent fractions YA and YB are introduced

YA =
ZAnA

ZAnA + ZBnB

= xAA + xAB/2 , (3.46a)

YB =
ZBnB

ZAnA + ZBnB

= xBB + xAB/2 . (3.46b)

The introduction of the coordination equivalent fractions allows for more flexibility
in terms of the composition of maximum ordering. The composition of maximum
ordering in a solution is not necessarily xA = xB = 0.5; however, the parameters
ZA and ZB can be chosen so that YA = YB = 0.5 corresponds to the composition at
maximum ordering [110].

The Gibbs energy of the binary solution is given by

Gφ = (nAµ
◦

A + nBµ
◦

B)− T∆Sconfig
φ + (nAB/2)∆gAB . (3.47)

As no mathematical expression for the configurational entropy ∆Sconfig
φ in three di-

mensions is known, it is usually approximated by

∆Sconfig
φ = −R (nAA ln xAA + nBB ln xBB + nAB ln xAB)

+R
(
nAA lnY 2

A + nBB lnY 2
B + nAB ln 2YAYB

)
−R (nA ln xA + nB ln xB) .

(3.48)
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The equilibrium values of the pair fractions of the nearest-neighbor pairs are de-
rived by minimizing the internal Gibbs energy of the phase at constant overall com-
position (

∂Gφ

∂nAB

)

nA,nB

= 0 , (3.49)

which results in the following relation

n2
AB

nAAnBB

= 4exp
(

−∆gAB

RT

)

. (3.50)

Multi-component solutions

The mathematical relations for modelling the Gibbs energy of binary phases by means
of the modified quasi-chemical model can be extended to multi-component solution
phases in a straightforward manner:
In the following discussion of the generalized relations for multi-component phases,
the constituents A, B, C,... are identified by integers i = 1, 2, ..., Iφ, thus a formalism
that is consistent with the notation used for the Gibbs energy minimization routine
(see above) is elaborated. The mass balance for a species i in a multi-constituent
solution phase φ is

Zφinφi = nφii +

Iφ∑

m=1

nφim . (3.51)

Pelton et al. [98,99] introduced composition-dependent coordination numbers Zφi to
adjust the composition of maximum short-range ordering in each sub-system:

Zφi =








1

nφii +
Iφ∑

m

nφim




nφii

Zi
φii

+

Iφ∑

m

nφim

Zi
φim












−1

, (3.52)

where Zi
φim is the value of Zφi when all nearest-neighbors of i are m. Additionally, the

symmetric relation Zi
φim = Zi

φmi holds and Zi
φii becomes a major model parameter.

The mole fraction xi and the coordination equivalent fraction Yφi of species i are

xφi =
nφi

Iφ∑

m=1

nφm

, (3.53)
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and

Yφi =
Zφinφi

Iφ∑

m=1

Zφmnφm

=
1

2



xφii +

Iφ∑

m=1

xφim



 , (3.54)

respectively. The pair fraction xφii in a multi-component system is

xφii =
nφii

Iφ∑

n=1

Iφ∑

m=1

nφnm

. (3.55)

The Gibbs energy of the multi-component solution is

Gφ =

Iφ∑

i=1

nφiµ
◦

φi − T∆Sconfig
φ +

1

2





Iφ∑

i=1

Iφ∑

m=1

nφim∆gφim −
Iφ∑

i=1

nφii∆gφii



 , (3.56)

with

∆Sconfig
φ = −R





Iφ∑

i=1

nφi ln(xi) +

Iφ∑

i=1

nφii ln

(

xφii
2Y 2

φi

)

+

Iφ∑

i=1

Iφ∑

m=1

nφim ln

(
xφim

2YφiYφm

)


 .

(3.57)
The chemical potential µφi of species i is derived in the usual manner via

µφi =

(
∂Gφ

∂nφi

)

nφm 6=nφi

=
Zi

φii

2

(
∂Gφ

∂nφii

)

nφim 6=nφii

, (3.58)

resulting in

µφi = µ◦

φi +RT ln xφi +
Zi

φii

2

(

RT ln

(

xφii
Y 2
φi

)

+
∂gex

φ

∂nφii

)

. (3.59)

The excess term gex
φ is given as

gex
φ =

1

2





Iφ∑

i=1

Iφ∑

m=1

nφim(∆gφim −∆g◦φim)



 . (3.60)

It is worth mentioning that (∆gφim −∆g◦φim) becomes zero in the case i = m.
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3.3.3 Calculation of the partial excess terms

As discussed above, the chemical potential of a constituent i contributing to a phase
φ can be generally expressed as

µφi = µ◦

φi +RT (ln(xφi) + ln(γφi)) . (3.61)

From comparing this general expression with Eq (3.39) and Eq (3.59) one gets
a new expression for the excess term that is used in the Gibbs energy minimization
routine (more specifically in Eq (3.22)) outlined above

1

RT

∂Gex
φ

∂nφi

= ln(γφi) =
Zi

φii

2

(

ln

(

xφii
Y 2
φi

)

+
1

RT

∂gex
φ

∂nφii

)

. (3.62)

The key task is now to calculate the equilibrium pair fractions xφii for a given overall
composition specified by the mole fractions xφi of the constituents i in phase φ. For
every possible pair-reaction of type (3.41) a pair-reaction constantKφim can be defined
in the form of

Kφim =
n2
φim

nφiinφmm

=
x2φim

xφiixφmm

= exp

(

−∆gφim
RT

)

. (3.63)

However, as for i = m the reaction constant becomes Kφim = 1 by definition, only
πφ independent equations of the form

xφim − 2(xφiixφmm)
1

2 exp

(

−∆gφim
2RT

)

= 0 , (3.64)

need to be further considered, where

πφ =
Iφ!

(Iφ − 2)! 2
. (3.65)

Additionally, Iφ mass balances in the form

xφii − Yφi +
1

2

Iφ∑

m=1

xφim − 1

2
xφii = 0 , (3.66)

must be satisfied (see Eq (3.54)). Eq (3.64) and (3.66) result in a set of (πφ + Iφ) non-
linear equations in the unknowns xφim. Negative values of xφim in Eq (3.64) result
in complex roots, that have no physical meaning. Thus, to account for the non-
negativity constraints a new set of substitution variables x̃2φim = xφim is introduced
and inserted in Eqs (3.64) and (3.66), resulting in

x̃2φim − 2(x̃2φiix̃φmm)
1

2 exp

(

−∆gφim
2RT

)

= 0 , (3.67)
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and

x̃φii − Yφi +
1

2

Iφ∑

m=1

x̃φim − 1

2
x̃φii = 0 . (3.68)

This set of (πφ + Iφ) non-linear equations is solved by means of an iterative nu-
merical procedure, i.e the well-established hybrid non-linear routine as suggested by
Powell [111]. The equilibrium values of the pair fractions xequi

φim are obtained by means
of back-substitution.
The equilibrium amounts nequi

φim of the individual pair fractions are calculated from
combining Eqs (3.51) and (3.55). Finally, the partial excess terms ln(γφi) are calcu-
lated using Eq (3.62).

3.3.4 Polynomial expansion of the Gibbs energy change for pair-reactions

As already stated above, the Gibbs energy change ∆gφim for a nearest-pair interaction
in a binary solution is usually expanded in a polynomial in the coordination equivalent
fractions Yφi and Yφm of the form

∆gφim = ∆g◦φim +
∑

p,q

Lpq
φimY

p
φiY

q
φm p ≥ 0 , q ≥ 0 . (3.69)

If a third constituent n is introduced to the phase, interactions with the original
constituents i and m must be considered and the polynomial expression for ∆gφim
must be modified (see [99, 108])

∆gφim = ∆g◦φim +
∑

p+q≥1

Lpq
φim

(
Yφi

Yφi + Yφm

)p(
Yφm

Yφi + Yφm

)q

+

∑

p≥0, q≥0, r≥1

Lpgr
φim(n)

(
Yφi

Yφi + Yφm

)p(
Yφm

Yφi + Yφm

)q

Y r
φn , (3.70)

where the last term gives the contribution of the third constituent to the pair exchange
energy ∆gφim. The model parameters Lpgr

φim(n) are obtained from fitting the model
function to experimental data. This extension ensures that ∆gφim is constant at
constant Yφi/Yφm ratio (see Fig 3.3a). Since the three constituents of the solution are
mathematically treated equally, this model is called symmetric. The symmetric model
is convenient for solutions where the constituent-species behave "chemically similar".
This vague term indicates already, that the selection of geometric models is generally
subject to empirical experience. Alternatively, in the case when one constituent in
the phase behaves "substantially different", the asymmetric model is applicable. The
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the following form:

∆gφim = ∆g◦φim
︸ ︷︷ ︸

reference term

+
∑

p+q≥1

Lpg
φi,

(
ζφim

ζφim + ζφmi

)p(
ζφmi

ζφim + ζφmi

)q

︸ ︷︷ ︸

binary term

+

+
∑

p≥0, q≥0, r≥1

(
ζφim

ζφim + ζφmi

)p(
ζφmi

ζφim + ζφmi

)q
(
∑

nI

Lpqr
φim(nI)

YφnI
(1− ζφim − ζφmi)

(r−1)

)

︸ ︷︷ ︸

contributions from ternaries, where i-m-nI symmetric or nI asymmetric

+

+
∑

p≥0, q≥0, r≥1

(
ζφim

ζφim + ζφmi

)p(
ζφmi

ζφim + ζφmi

)q
(
∑

nII

Lpqr
φim(nII)

(
YφnII

ζφmi

)(

1−
(
Yφm
ζφmi

))(r−1)
)

︸ ︷︷ ︸

contributions from i-m-nII ternaries, where i asymmetric

+

+
∑

p≥0, q≥0, r≥1

(
ζφim

ζφim + ζφmi

)p(
ζφmi

ζφim + ζφmi

)q
(
∑

nIII

Lpqr
φim(nIII)

(
YφnIII

ζφim

)(

1−
(
Yφi
ζφim

))(r−1)
)

︸ ︷︷ ︸

contributions from i-m-nIII ternaries, where m asymmetric

.

(3.73)

In order to extend the polynomial representation of ∆gφim properly it is, thus, nec-
essary to assess all sub-binaries and sub-ternaries of the multi-component system
beforehand. Usually, quaternary and higher-order interactions are neglected. On the
one hand, this is due to experimental data becoming very scarce for quaternary sys-
tems and beyond. On the other hand, interactions become more and more improbable
on the molecular level the higher the order of the interaction is. Therefore, their effect
on the equilibrium states is considered to be relatively small.

The procedure for calculating the equilibrium state of multi-component, multi-
phase systems is now established on a formal level. In the next section, the modelling
approach for oxygen steelmaking slags is discussed in more detail. The elaboration
of a thermodynamic database from literature sources is outlined in the following,
which together with the Gibbs energy minimization routine allows the calculation of
complex thermochemical equilibria with application to LD-steelmaking.

3.4 Modelling of the CaO-SiO2-FeOx-MgO-MnO-system

Slags resulting from the processing of low-phosphorus hot metal in oxygen steel-
making consist of up to 80% CaO, SiO2 and FeOx. Furthermore, depending on the
case, significant contents of MgO, MnO, Al2O3, P2O5, Cr2O3 and S contribute to the
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constitution of BOF slags [5]. In this work, the constitution of BOF slags during steel-
making is represented by the CaO-SiO2-FeOx-MgO-MnO-system. For the description
of the thermodynamic conditions in steelmaking slags it is necessary to be able to
calculate the Gibbs energies of all relevant phases in this system. To get a useful
thermodynamic description of the CaO-SiO2-FeOx-MgO-MnO-system all unary, bi-
nary and ternary sub-systems need to be assessed following the CALPHAD approach
outlined comprehensively by Lukas et al. [88]. The main focus in this work lies on the
description of the liquid phase while the solid phases are modelled as stoichiometric
phases; as will be shown later, the stoichiometric approximation for the solid phases
is sufficient for modelling dissolution kinetics of oxide particles in many cases.
To get the total number πsub of distinguishable binary or ternary sub-systems that
need to be evaluated, combinatorical analysis can be used:

πsub =
M !

(M −Msub)!Msub!
, (3.74)

where M is the number of components in the system, i.e. M = 5 in the quinary oxide
system, and Msub is the number of elements in the sub-systems, e.g. Msub = 2 for
the binary sub-systems, Msub = 3 for the ternary sub-systems etc. Thus, to describe
the quinary CaO-SiO2-FeO-MgO-MnO system, 10 binary sub-systems as well as 10
ternaries have to be evaluated.

With reference to the geometric models discussed in section 3.3.4, all ternary
subsystems containing SiO2 are regarded "asymmetric", with SiO2 as the asymmetric
constituent. All ternary subsystems without SiO2 are regarded "symmetric".
The equilibrium state of FeOx-containing phases depends to a significant degree on
the Fe3+/Fe2+ ratio or equivalently the Fe2O3/FeO ratio, i.e. the oxidative state of
iron in the phase. The oxidation ratio is highly dependent on temperature and the
oxygen partial pressure pO2

in the gas phase in equilibrium with the FeOx-containing
phase and has been investigated in various works, see e.g. [107,112–120]. For oxygen
steelmaking Schürmann et al. [115] argue for a steep gradient of pO2

throughout the
slag layer. According to their reasoning, the slag is in equilibrium with two different
phases, i.e. the gas phase and the liquid iron. At the slag-gas interface, oxygen from
the gas phase is in equilibrium with FeO and Fe2O3

2(FeO) +
1

2
O2 ⇐⇒ (Fe2O3) , (3.75)

and an equilibrium constant can be defined

Kslag-gas =
a(Fe2O3)

a2(FeO)p
1

2

O2

. (3.76)
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Schürmann et al. [115] assume that the oxygen partial pressure in the gas phase
reaches about 1 atm and estimate the degree of oxidation at 1600°C from the Fe-FeO-
Fe2O3 phase diagram, resulting in a Fe2O3/FeO-ratio of about 0.28 at the slag-gas
interface.
On the opposite side of the slag layer, the slag is in equilibrium with liquid iron.
Thus, the reaction equilibrium

(Fe2O3) + [Fe] ⇐⇒ 3(FeO) , (3.77)

defines the oxidation ratio of iron. According to Schürmann et al. [115], the oxygen
partial pressure at the metal-slag interface is approximately pO2

= 10−8 atm and
they derive an oxidation ratio of Fe2O3/FeO = 0.05 at 1600°C. Khadhraoui et al.
[107] extend this discussion by arguing that carbon is oxidized from the liquid hot
metal during the blow, resulting in a gas phase with a CO/CO2 ratio of 90/10 with
respect to gas volume. They calculate an oxygen partial pressure of pO2

=10−8.7 atm
at 1600°C for the case where the slag is in equilibrium with a gas phase containing
90 vol% CO. Consequently, the gradient of the oxygen partial pressure throughout
the slag layer becomes much flatter. Based on these results, the oxidation ratio is
assumed to attain small values, i.e., Fe2+ is the dominant oxidation state of iron in the
liquid slag during the BOF process. The influence of Fe3+ on the phase boundaries of
the solid phases at oxygen steelmaking conditions is therefore assumed to be negligi-
ble. In addition, its effect on the viscosity of silicate slags is reported to be relatively
small [121]. The interactions of Fe2O3 with the other constituents is thus neglected
in this work. Analogous considerations can also be made for the different oxidation
states of manganese. Thus, Mn+2 is assumed to be the dominant oxidative state. By
neglecting the Fe2O3 and the Mn2O3 component in the liquid phase, the possibility
to perform reliable calculations at higher oxygen partial pressures is prevented from
the outset; however, by reducing the complexity of the thermodynamic model, the
computation time can be significantly reduced, which brings advantages in terms of
integration into a comprehensive LD-converter model.
Proceeding from the above, the state of the slag system is represented by the dis-
tribution of five components over the different phases. The amount of oxygen is
assumed to be dependent on the amounts of the elements Ca, Si, Fe, Mn and Mg.
As the amount of oxygen can not vary independently, the components of the system
are chosen to be CaO, SiO2, FeO, MgO and MnO. The constitution of the liquid
phase is represented by the molar amounts (or equivalently the mole fractions) of
CaOliquid, SiOliquid

2 , FeOliquid, MgOliquid and MnOliquid in the liquid. The superscripts
indicate the difference between the components of the system and the constituents of
the liquid phase. The stoichiometric matrix Aliquid relating the molar amounts of the
components of the system to the amounts of the constituents of the liquid phase is
then
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Aliquid =

CaO SiO2 FeO MgO MnO














1 0 0 0 0 CaOliquid

0 1 0 0 0 SiO
liquid
2

0 0 1 0 0 FeOliquid

0 0 0 1 0 MgOliquid

0 0 0 0 1 MnOliquid

The stoichiometric solid phases are related to the molar amounts of the system com-
ponents by means of the matrix AΩ:

AΩ =

CaO SiO2 FeO MgO MnO






























































1 0 0 0 0 CaOlime

0 1 0 0 0 SiOcrist
2

0 1 0 0 0 SiO
tridym
2

3 1 0 0 0 Ca3SiOhatr
5

2 1 0 0 0 Ca2SiOC2Sα′

4

2 1 0 0 0 Ca2SiOC2Sα
4

0 0 0 1 0 MgOperic

0 0 0 0 1 MnOmang

2 2 0 1 0 Ca2MgSi2O
aker
7

3 2 0 1 0 Ca3MgSi2O
merw
8

3 1 0 0 0 Ca3Si2O
rank
7

1 1 0 0 0 CaSiOwoll
3

1 1 0 0 0 CaSiO
ps-woll
3

0 1 0 2 0 Mg2SiOforst
4

0 1 0 1 0 MgSiOenst
3

0 1 0 0 2 Mn2SiO
teph
4

0 1 0 0 1 MnSiOrhod
3

Although the list of selected solid phases is likely sufficient for the objectives of this
work, it should be noted that in order to solve certain detailed questions in metal-
lurgical processing, the current database would have to be considerably expanded.
For a detailed thermochemical investigation of the dephosphorization behavior, for
example, the introduction of solid solutions is inevitable, as the dephosphorization
in the LD converter is largely based on the formation of silico-phosphate solid solu-
tions (C2S-C3P, modelled as (Ca2+,Mg2+,Mn2+)3(Ca2+,Va)(P5+, Si4+)2(O2−)8). No
independent assessment of the thermodynamic parameters is conducted in this work.
Assessed parameters from various literature sources are "pieced" together to formu-
late a suitable thermodynamic database. This approach must be evaluated critically.
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One must ensure that the thermodynamic parameters of the individual sources are
compatible with each other to derive a useful thermodynamic description of the multi-
component system, i.e. the same models must be used in the individual assessments
(here the modified quasi-chemical model), the same unary-systems must be used in the
assessments of the binary and ternary assessments and the same binary assessments
must be used in the ternary assessments. Various assessments of CaO-SiO2-FeOx-
MgO-MnO-system and its sub-systems using the modified quasi-chemical model are
reported in the open literature, including [122–136]. Based on these assessments, the
database used in this work is elaborated. The description of the unary systems follow
Eq (3.40) and are taken from FactPS pure substance database.

The relevant data comprising the thermodynamic database are presented in the
form of the following Tables listed in the Appendix: The Gibbs energy functions of
the pure phases are listed in Table 2 and 3 in the Appendix. The binary interaction
parameters ∆g◦φim and Lpq

φim can be found in Table 4 and the ternary interaction pa-
rameters Lpqr

φim(n) are given in Table 5. The coordination numbers Zi
φii are provided

in Table 6.
In order to make an assessment of the usefulness of the developed software and
database, equilibrium calculations and phase diagrams are calculated and compared
to established software (i.e. FactSage [87]) and databases in the following discussion.

3.4.1 Software validation via equilibrium calculations in the CaO-SiO2-
FeO-MgO-MnO-system

The database is validated separately from the Gibbs energy minimization routine
outlined above. For this purpose, the thermodynamic database is converted in a
database format that can be used with FactSage 7.3. Now, equilibrium calculations
can be performed using FactSage’s "Equilib" module and phase diagrams can be
drawn by means of FactSage’s "Phase Diagram" module by coupling the database to
those modules. Equilibrium calculations under various conditions are compared with
results computed via FactSage to validate the Gibbs energy minimization routine.
In Fig 3.4 the amounts of phases predicted by the software developed in this work
and FactSage 7.3 are compared between 1200 °C and 1700°C at a global composi-
tion of 60 mol CaO, 25 mol SiO2, 15 mol FeO, 5 mol MgO and 5 mol MnO. The
equilibrium phases that are predicted in this temperature interval include the liq-
uid phase, lime (CaO), magnesia (MgO), dicalcium silicate (Ca2SiO4) and tricalcium
silicate (Ca3SiO5). As the temperature rises, the amount of liquid phase increases
continuously while the solid phases become unstable. The numerical results from the
Gibbs energy minimization routine developed in this work agree with the calculations
performed by means of the FactSage solver.
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Figure 3.4: Equilibrium amounts of phases with rising temperature at global compo-
sition: 60 mol CaO, 25 mol SiO2 15 mol FeO, 5 mol MgO and 5 mol MnO. The colored
lines are calculated by means of FactSage 7.3 and the circles represent calculated by
the software routine from this work.

3.4.2 Discussion of the CaO-SiO2-FeOx-system

The ternary CaO-SiO2-FeOx-system is the basic thermodynamic system in terms of
BOF slags, especially for processing low-phosphorus hot metal, and is discussed in
the following in the temperature and pO2

ranges relevant for steelmaking practice. As
outlined above, the oxidation ratio Fe2O3/FeO is assumed to be lower than 0.05 at
low oxygen partial pressures (pO2

< 10−8 atm). Thus, FeO is considered to be the
only relevant iron oxide in the liquid slag phase at steelmaking conditions.
Hidayat et al. [133] recently re-assessed the CaO-SiO2-FeOx-system incorporating
"latest available experimental data" using the modified quasi-chemical model for
modelling the Gibbs energy of the liquid phase. Their assessment is used in this
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work and for the equilibrium calculations in systems containing this quasi-ternary
system as a sub-set. However, some interaction parameters that are listed in their
publication [133] are modified in this work using an unpublished optimization of these
parameters that was provided by Denis Shishin, one of the co-workers of the original
publication, see Table 5 in the Appendix.
The isothermal section of the CaO-SiO2-FeO phase diagram at 1600°C is shown in Fig
3.5. As with all phase diagrams in this discussion, the CaO-SiO2-FeO-system is pre-
sented with respect to the mass fractions of the individual components for convenience
in terms of metallurgical practice. The results from this work are compared to results
from the FToxid database (FactSage 7.3), a recent assessment from Khadhraoui et
al. [107] and experimental data from Trömel et al. [137] and Görl et al. [138]. The
calculated phase boundaries from this work and from FToxid are indicated in black
and blue, respectively. The phase boundaries in the CaO-rich region from [107] are
highlighted in via green dashed lines. There are significant differences observed in
terms of the phase boundaries near the CaO-corner of the assessed phase diagrams.
The calculations using FToxid predict a much smaller dicalcium silicate (C2S)+liquid
region at 1600°C compared to the assessment of Khadhraoui et al. [107], the exper-
imental data from [137] and this work. The solubility limit of CaO for moderate to
low contents of FeO predicted by Khadhraoui et al. [107] agrees with the results from
this work. The solubility limit of tricalcium silicate (C3S) however, is predicted to be
higher in this work. The exact origin of the different deviations in the phase diagrams
are difficult to trace, since the interaction parameters used in FToxid and from [107]
are not published for commercial reasons. However, it is assumed that the database
developed in this work from open sources is sufficient to make reasonable predictions
in the CaO-SiO2-FeO system under the conditions outlined above.
In the following the effect of temperature and the influence of the addition of MgO and
MnO on the stability regions of relevant phases during steelmaking will be discussed.
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the dependence of the stability regions with temperature must be studied carefully
to account for the needs of industrial steelmaking practice. Superimposed isothermal
sections of the phase diagram of the ternary CaO-SiO2-FeO-system are shown in Fig
3.6 at 1400°C, 1500°C and 1600°C, respectively. In can be observed that the wollas-
tonite (CS) region decreases continuously with increasing temperature until it is no
longer present at 1600°C. A similar statement can be made for the stability regions
containing Ca3Si2O7 (C3S2), which is already unstable at 1500°C. In steelmaking
practice, the solubility line of C2S marks the conditions at which the slag becomes
heterogeneous. The position of the C2S region in the temperature-composition space
has a significant impact on the physical properties of slags (e.g. viscosity) or the
ability of the slag to absorb phosphorus. It can be seen from Fig 3.6 that with ris-
ing temperature the liquid phase domain increases, while the liquid-Ca2SiO4 domain
decreases significantly. The "nose" representing the solubility limit of dicalcium sil-
icate (C2S) is shifted in the direction of the edge of the CaO-SiO2-binary system.
In contrast, the solubility line for lime is hardly influenced by temperature in the
investigated temperature-range.
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interaction parameters are incorporated in the database, see Tables 4 and 5 in the
Appendix, respectively.
The influence of MgO on the phase boundaries in the CaO-SiO2-FeO-MgO system
at 1500°C is shown in Fig 3.7. It should be noted that Fig 3.7 is not an isothermal
section of a ternary phase diagram. To focus the discussion on the phase boundaries
relevant for steelmaking some simplifications are made in this diagram, as not every
equilibrium phase is indicated. Hence, interpretation of this figure should be done
with great caution. However, some important conclusions can be drawn in terms of
the slag phases relevant in BOF steelmaking. The C2S region is heavily influenced by
the MgO content in the slag. Similar to the effect of rising temperatures the "C2S-
nose" moves in the direction of the CaO-SiO2 binary system. The solubility region of
lime is hardly touched by the rising MgO-content in the system.
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contents of MnO in Fig 3.8. Analogous to the above, Fig 3.8 does not represent an
isothermal section of an actual ternary phase diagram, which is to be considered for
the interpretation. Compared to MgO, the addition of MnO affects the position of the
C2S phase field relatively little. This is qualitatively in accordance with the findings
of Khadhraoui [141]. The pseudo-wollastonite field however, is strongly affected by
the addition of MnO to the system and is already vanished at wMnO = 0.05. It is
predicted that the effect of MnO addition to the CaO-SiO2-FeOx-MnO-system on the
solubility limit of lime can be neglected.

Insights from thermochemical calculations for steelmaking practice

As shown, the Gibbs energy minimization routine coupled with a thermodynamic
database allows for the calculation of equilibrium states and phases at steelmaking
conditions. Various conclusions from these thermochemical equilibrium calculations
can be drawn with relevance for steelmaking practice:

• The solubility limit of lime at steelmaking conditions is hardly affected by tem-
perature or the addition of MgO or MnO. Thus, the driving force for diffusion
limited dissolution of lime in BOF slags can barely be influenced by rising the
temperature of the slag or by adding the above oxides to it. However, the dis-
solution rate of lime may nevertheless be enhanced by a lower slag viscosity
and an increase in the diffusion coefficient at higher temperatures. In addition,
the presence of certain oxides in the liquid phase can suppress the formation of
intermediate boundary layers and thus alter the dissolution mechanism. This
will be discussed in more detail in the next chapter.

• The saturation limit for the C2S phase is highly dependent on temperature
and MgO content in the liquid slag. The behavior of the stability regions of
silicate phases in the CaO corner of the CaO-SiO2-FeO-MgO-MnO-system with
varying temperature and composition are highly relevant for oxygen steelmaking
practice. In the context of the dissolution of lime, a smaller stability range for
C2S and C3S might enhance the dissolution kinetics of lime by suppressing the
formation of intermediate boundary layers at the lime-liquid interface, see also
e.g. [38,47].

• With reference to Fig 3.5, it is interesting to see how the predictions of es-
tablished databases that are regularly used in metallurgical practice, can differ
so much from each other. Consequently, the responsible process metallurgist
should always critically evaluate the applicability of open and, in particular,
commercial (black box) databases.
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in the next chapter.
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4 | Kinetics of solid-liquid phase trans-
formations in metallurgical slags

As discussed previously, a software package is developed in this work to calculate
thermodynamic functions and equilibrium phases. The numerical routines from this
package are used as sub-routines for simulating the kinetics of solid/liquid phase
transformations. The main code is based on the evolution equations of the kinetic
parameters for a multi-component slag system with certain contact conditions valid
at the sharp solid/liquid interface.

4.1 Thermodynamic contact conditions at the interface

The kinetics of (solid-liquid) phase transformations is strongly influenced by the ther-
modynamic contact conditions at the interface separating the parent and the new
phase. In principle, two extreme cases are conceivable:

• On the one hand, local equilibrium at the interface, where diffusion in the bulk
material determines the kinetics of the phase transformation.

• On the other hand, the transformation kinetics can be dominated by an interface
reaction (see e.g., [142,143]).

Assuming local equilibrium conditions at the (solid/liquid) interface is in many cases
physically reasonable; this holds especially for processes occurring at high tempera-
tures. The local equilibrium condition dictates the equality of the chemical potentials
of all components j at the solid and the liquid sides of the (spherical) interface with
position R:

µliquid
j,R = µsolid

j,R , j = 1, ..,M, (4.1)

The chemical potentials at the interface can be derived by means of the Gibbs energy
minimizing routine introduced in Chapter 3. The equilibrium concentrations or mole
fractions are hereby also derived automatically and serve as boundary conditions for
the resulting multi-component diffusion problem; details on the initial and boundary
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conditions of the dissolution problem will be discussed later. It follows from the local-
equilibrium condition at the interface, Eq (4.1), that there is no chemical driving force
∆fchem acting on the interface. Thus, the solid-liquid transformation is solely driven
by diffusion in the liquid phase with the interface migrating due to mass balance
considerations. Assuming that the molar volumes Vj of the diffusing species j are
equal to the molar volume VM the interface velocity becomes

v =

(
M∑

j=1

[[Jj]]VM

)(
M∑

j=1

[[xj]]

)
−1

, (4.2)

where [[Jj]] and [[xj]] denote the jumps of the fluxes and the jumps of the mole
fractions of the substitutional species at the interface, respectively.

The situation is different for congruent phase transformations, where there are
no non-zero concentration gradients occurring during the transformations process.
In this case, the jump [[µj,R]] in the chemical potentials of the components j at the
interface R leads to a chemical driving force ∆fchem 6= 0 promoting the motion of the
interface. The thermodynamic contact conditions at a migrating sharp (i.e. infinitely
thin) interface are derived from the thermodynamic extremal principle [144–146]. It
follows from the thermodynamic extremal principle that the jumps of the chemical
potentials at the interface are equal

[[µ1,R]] = [[µ2,R]] = ... = [[µM,R]] , (4.3)

Eq (4.3) is subsequently called the equal jump condition. The equal jump condition
can also be interpreted as the minimum distance of the Gibbs energy of the unstable
phase from the tangential hyperplane defining the equilibrium state. By applying the
equal jump condition at the interface, the chemical driving force at the interface can
be calculated

∆fchem =
M∑

j=1

x0j,R[[µj,R]] = [[µj,R]] , (4.4)

where x0j,R are the mole fractions of the components at the parent side of the interface.
The finite kinetics of the interfacial reaction are represented formally by an interface
mobility MI, that, in a first approximation, is only dependent on temperature. The
temperature-dependence of the interface mobility can be described by an Arrhenius-
like relation

MI =MI0 exp

(

−∆QM

RT

)

, (4.5)

where MI0 is a pre-exponential factor and QM is the activation energy for the move-
ment of the interface. The velocity v of the interface is then calculated from

v =
MI

VM

∆fchem . (4.6)
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(non-equilibrium) thermodynamics [148, 149] follow the linear relations between the
rate of entropy production σ̇, the thermodynamic fluxes Jj and their corresponding
thermodynamic forces Fj :

σ̇ = − 1

T

M∑

j=1

JjFj . (4.7)

Following Balluffi et al. [149], the evolution equations for mass transport in a multi-
component system are developed below.
The 1D-phenomenological equation relating the diffusive fluxes Jj in a multi-component
phase to the thermodynamic driving forces, i.e. the gradients of the chemical poten-
tials in z-direction, is

Jj = −
M−1∑

k=1

Ljk
∂µk

∂z
, (4.8)

where Ljk are the coefficients of the positive, semi-definite Onsager matrix. Hence,
the Onsager coefficients follow the reciprocal relationship

Ljk = Lkj . (4.9)

Assuming spatially constant molar volumes Vj the conservation requirement holds
in the volume fixed frame [149,150]:

M∑

j=1

VjJj = 0 , (4.10)

and

JM = − 1

VM

M−1∑

j=1

VjJj . (4.11)

Under isothermal and isobaric conditions the rate of entropy production σ̇ can be
related to multi-component diffusion. Thus, combining Eqs (4.7), (4.8), (4.10) and
(4.11) gives

σ̇ = − 1

T

M−1∑

j=1

Ji
∂

∂z

(

µj −
Vj
VM

µM

)

. (4.12)

Comparing with Eq (4.7) reveals the thermodynamic force Fj as

Fj = −
(
∂µj

∂z
− Vj
VM

∂µM

∂z

)

. (4.13)
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Thus, the diffusive flux Jj can be written as

Jj =
M−1∑

k=1

LjkFk = −
M−1∑

k=1

Ljk

(
∂µk

∂z
− Vk
VM

∂µM

∂z

)

. (4.14)

The local equilibrium concept allows for applicability of the Gibbs-Duhem relation,
hence, only M − 1 chemical potentials can change with composition independently

∂µj

∂z
=

M−1∑

k=1

∂µj

∂ck

∂ck
∂z

. (4.15)

where ck is the concentration of k. Combining Eq (4.14) with (4.15) gives

Jj = −
M−1∑

l=1

Ljl

M−1∑

k=1

(
∂µj

∂ck
− Vj
VN

∂µN

∂ck

)
∂ck
∂z

. (4.16)

Eq (4.16) is often expressed as

Jj = −
M−1∑

k=1

D̃jk
∂ck
∂z

, (4.17)

with the interdiffusivities D̃jk defined as the sum of products of the Onsager coeffi-
cients Ljl and the thermodynamic factors

D̃jk =
M−1∑

l=1

Ljl

(
∂µl

∂ck
− Vl
VM

∂µM

∂ck

)

︸ ︷︷ ︸

thermodynamic factors

. (4.18)

Finally, the partial differential equations for multi-component diffusion in 1D re-
late the evolution of the concentrations cj in the system with the gradients of diffusive
fluxes

∂cj
∂t

= − ∂

∂z
Jj = − ∂

∂z

M−1∑

k=1

(
M−1∑

l=1

Ljl

(
∂µl

∂ck
− Vl
VM

∂µM

∂ck

)
∂ck
∂z

)

= − ∂

∂z

M−1∑

k=1

(

D̃jk
∂ck
∂z

)

.

(4.19)
In many cases, the interdiffusivities are only available as constant values, i.e. their
dependence on the gradients of the chemical potentials is neglected. In this case, Eq
(4.19) is linearized:

∂cj
∂t

= −
M−1∑

k=1

(

D̃jk
∂2ck
∂z2

)

. (4.20)
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For spherical systems Eq (4.20) becomes

∂cj
∂t

= −
M−1∑

k=1

D̃jk

(
∂2ck
∂r2

+
2

r

∂ck
∂r

)

. (4.21)

As the constitution of a phase is usually given in mole fractions xj, it is convenient
to formulate the diffusion equations in terms of the mole fractions

∂xj
∂t

= −
M−1∑

k=1

D̃jk

(
∂2xk
∂r2

+
2

r

∂xk
∂r

)

. (4.22)

4.3 Numerical integration of the evolution equations

The partial differential equation (4.22) is integrated numerically by means of a finite-
difference central approximation with an uneven grid:

∂xj
∂t

∣
∣
∣
∣
n

≈ ∆xj,n
∆t

=
M−1∑

k=1

D̃jk

(
xk,n−1 + xk,n+1 − 2xk,n

∆r2
+

2

R

xk,n+1 − xk,n−1

2∆r

)

, (4.23)

where xj,n denotes the mole fraction of species j at nodal point n ranging from 0 to
p, ∆ indicates the difference of a value to its direct neighbor in the time-space grid.
A schematic representation of the one-dimensional mesh of the numerical model is
shown in Fig 4.2. The mole fractions at the nodal point adjacent to the interface are
treated by a parabola approximation (see Ogris and Gamsjäger [151])

xj = a0,jr
2 + a1,jr + a2,j , (4.24)

where a0,j, a1,j and a2, are the coefficients of the polynomial and follow from

a0,j =
xj,R∆r + xj,R+2∆rR − xj,R+1(∆r +∆rR)

∆rR∆r(∆rR +∆r)
, (4.25)

a1,j =
xj,R+2∆r

2
R − xj,R∆r

2 + xj,R+1(∆r
2 −∆r2R)

∆rR∆r(∆rR +∆r)
, (4.26)

and
a2,j = xj,R+1 . (4.27)

The index R indicates the nodal point at the solid-liquid interface. From the
position- and time dependence of the mole fractions xj,R+1, xj,R+2 and ∆rR follows
that the coefficients a0,j, a1,j and a2,j dependent on position and time. The time
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in the following:
The interdiffusivity matrix D̃ is decomposed into

D̃ = D̃r · D̃r , (4.31)

where D̃r is called the square-root diffusivity matrix and can be obtained by assem-

bling the eigenvalues of D̃ into a diagonal matrix ED and the eigenvectors of D̃ into
the transformation matrix E

D̃
1/2

= E · ED
1/2 · E−1 = D̃r . (4.32)

The amplitudes ajk of the complementary error functions are calculated from

ajk = E−1
jk

M−1∑

l=1

Ekl cosψl , (4.33)

where ψl are the M − 1 independent Euler angles between the initial composition
difference vector ∆x0 and the composition axes. To validate the numerical model,
the mole fraction profiles calculated by the square root diffusivity method and the
numerical solver used in this work are compared. The reference case - taken from
[44] - represents a Ni-Cr-Al diffusion couple, with initial compositions xNi = 0.87,
xCr = 0.08 and xAl = 0.05 on the left and xNi = 0.78, xCr = 0.17 and xAl = 0.05
on the right side of a planar interface positioned at 100 µm. The diffusion time is
t = 100 s and the interdiffusivity matrix is

D̃ =

(
22 7.6
7.8 12.6

)

· 10−15 [m2s−1] . (4.34)

The composition profiles of Cr and Al are calculated by the numerical solver agree
well with the concentration profiles predicted by the square root diffusivity method
and are shown in Fig 4.3. It is interesting to note that due to the coupling of multi-
component diffusive fluxes, a concentration peak of aluminum is formed even though
the initial concentration profile does not show any gradients. Effects of this kind can
not be observed by means of effective-binary diffusion models.
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Figure 4.3: Comparison of multi-component mole fraction profiles calculated by
means of the numerical model and the square root diffusivity method.

4.4 Choice of endmembers as diffusing species

In metallurgical slags, the nature of diffusing species is often not known. However,
as will be shown in the following, the choice of the endmembers as diffusion species
does not affect the applicability of the modelling approach presented above as long
as the number of independent variables does not change [150]. For describing the
molecular structure of slags two models can be destinguished, the ionic theory and
the molecular theory [154]. The ionic theory takes into account the ionic character
of liquid slags, whereas the molecular theory explains the properties of metallurgical
slags via observable or virtual oxidic molecules. For the study of the effect of the choice
of endmembers according to the ionic theory and the molecular theory, respectively,
the entropy production rate for mass transport in both cases is investigated.
In the sense of the ionic theory, the diffusion ionic species are e.g. Ca2+, Fe2+, Mg2+,
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Mn2+ and O2−. Following [150], the rate of entropy production due to one-dimensional
diffusion of ions in the liquid is given by

σ̇ =
1

T

M∑

j=0

Jj
∂(µj + qjFψel)

∂z
, (4.35)

where qj is the electric charge of species j, F is the Faraday constant and ψel is the
electric potential. The sum of the charge flux due to chemical diffusion is subject to
the following condition

M∑

j=0

qjJj = 0 . (4.36)

Thus, the rate of entropy production in the case of ion diffusion, Eq (4.35), sim-
plifies to

σ̇ =
1

T

M∑

j=0

Jj
∂µj

∂z
. (4.37)

In the scope of the molecular theory, the structure of molten oxides is described by
means of oxide molecules with chemical formula MajObj , where M is a metal, e.g.
Ca, Fe, Si, Mg and Mn; aj and bj are stoichiometric coefficients. The ionic and the
molecular species can be related via a dissociation relation of the following form

MajObj ⇐⇒ ajMqj + bjOqO . (4.38)

As the molecules, MajObj , are neutrally charged, the following charge constraint ap-
plies

ajqj + bjqO = 0 . (4.39)

The fluxes JMaj
Obj

of the oxide molecules are eventually related to the fluxes of the
corresponding ions

JMaj
Obj

= Jj/aj . (4.40)

From local equilibrium follows the relation of the chemical potential of the molecule
MajObj to its comprising ions

µMaj
Obj

= ajµj + bjµO (4.41)

The entropy production rate in the light of the molecular theory is thus

σ̇ =
1

T

(
M∑

j=1

JMaj
Obj

∂(µMaj
Obj

− bjµO)

∂z
+ JO

∂µO

∂z

)

. (4.42)
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By using
bj = −aj

qj
qO

(4.43)

the entropy production rate becomes

σ̇ =
1

T

(
M∑

j=1

JMaj
Obj

∂µMaj
Obj

∂z
+

M∑

j=0

qj
qO
Jj
∂µO

∂z

)

. (4.44)

The second sum in Eq (4.44) becomes zero due to the zero net charge flux constraint,
Eq (4.36). Hence,

σ̇ =
1

T

(
M∑

j=1

JMaj
Obj

∂µMaj
Obj

∂z

)

. (4.45)

Thus, it follows from local equilibrium that the choice of endmembers for diffusion
has no effect on the entropy production rate as long as the number of independent
variables is the same, see [150]. This result leads to the fact that the diffusive species
can be freely chosen under the given conditions. In this work, the endmembers for
diffusion in the liquid phase correspond to the constiutuents selected to describe the
thermodynamic state of the liquid phase, e.g. CaO, SiO2 or FeO (see Section 3.4).

4.5 Boundary and initial conditions

The dissolution kinetics of oxide particles is investigated in a 1D spherical system with
r as the spatial coordinate. The dissolving particle with a time dependent radius R(t)
is surrounded by a liquid phase with thickness S(t). Here, S(t) also determines the
boundary of the system. The thickness of the liquid phase is dependent on time; as
the radius R(t) shrinks, S(t) becomes larger. However, the sum S(t) + R(t) remains
constant. A scheme of the geometric conditions of a spherical dissolving particle is
shown in Fig 4.4.

Assuming that diffusion occurs only in the liquid phase and no material can leave
the system at the system boundary R + S, the boundary conditions at r = R and
r = R + S are given by

xj

∣
∣
∣
∣
(r=R, t)

= xliquid
j,R , (4.46)

and
∂xj
∂r

∣
∣
∣
∣
(r=R+S, t)

= 0 , (4.47)

respectively. The mole fraction xliquid
j,R at the liquid side of the interface is determined

by the thermodynamic contact conditions at the interface. It is calculated by means
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mechanical or electromagnetic stirring, an uneven temperature distribution, density
gradients in the liquid or capillary effects. In general, convective flow enhances mass
transport and, therefore, reduces the total dissolution time. In engineering, dimen-
sionless quantities are often used to estimate the physical reality of heat and mass
transport problems. The Péclet number Pe is a dimensionless number that relates
the convective transport rate to the diffusive transport rate. It is a comprehensible
quantity to reveal the physical conditions of mass transport for a given situation. The
Péclet number for studying diffusion-convection problems is defined as

Pe =
2Ruc
D

, (4.50)

where uc is the characteristic velocity of the convective flow field, see e.g. [155]. High
Péclet numbers indicate that the mass transport is dominated by convective flows
and low values of Pe signify a diffusive process. For a dissolving spherical particle
the concentration gradient at the interface is often approximated by

∂xj
∂r

∣
∣
∣
∣
r=R

∝ ∆xj
δ

, (4.51)

where δ is called the boundary layer thickness, a key parameter in describing diffusion-
convection problems, and ∆xj represents the mole fraction difference of j over the
boundary layer thickness. The boundary layer thickness δ together with the particle
radius R defines a spherical shell in which diffusion occurs. In this sense, Eq (4.51)
represents a strong simplification of the mole fraction profile in case of a non-steady
state process. Outside the spherical shell defined by R and δ the material transport
is fully governed by convection. It follows from this approximation that the concen-
tration gradients of all components outside of the spherical shell defined by δ become
zero

∂xj
∂r

∣
∣
∣
∣
r>R+δ

= 0 , j = 1, ...,M . (4.52)

In case the convective flow field around the patricle is (at least approximately) known,
the Péclet number can be used to estimate the boundary layer thickness δ [155] as

δ/R ∝ Pe−1/3 ; (4.53)

details follow below. The convective contribution to the dissolution kinetics of a
spherical particle can be interpreted in the following way: The convective flow field
disturbs the concentration profile around the particle as it increases the gradient of
the mole fractions by "cutting-off" the concentration profile at a certain distance δ
from the interface position R. In the model elaborated in this work the convective
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contribution to the transport kinetics is, thus, respected in the form of a "cut-off-
distance" δc. Inside the spherical shell defined by the cut-off distance δc the diffusion
equation is solved as usual, without the approximation from Eq (4.51). Thus, a new
boundary condition is introduced

xj

∣
∣
∣
∣
r=R+δc

= xj,S . (4.54)

A schematic representation of the influence of δc on the mole fraction profile near
the solid-liquid interface is depicted in Fig 4.5. It can be seen, that the gradient of
the mole fractions xj becomes steeper for smaller values of δc. The influence of δc
on the dissolution profile of a spherical particle is shown in Fig 4.6. It can be seen
that particles dissolve faster with smaller δc. Moreover, as δc becomes smaller, the
characteristic dissolution profile approaches a linear function. It is worth mentioning
that although the dissolution profile becomes almost linear for small δc, the interface
reaction is not the limiting step for the transformation. Thus, the dissolution profile
for the case δc = 0.2R0 in Fig 4.6 must not be confused with the chemical reaction
control mode of the classical shrinking core model, Eq (2.9). This further stresses the
fact that the limiting steps of the dissolution behavior can only be assessed if the flow
conditions around the particle can be estimated.
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Figure 4.6: Influence of the cut-off distance δc on the dissolution profile of a spherical
particle.

and Nokes [157], the relative velocity uc of this particle is calculated from

uc =
g (ρsolid − ρR) (2R)

2

18η
, (4.57)

where ρsolid is the density of the solid particle. In the case of small Reynolds numbers
Re, defined as

Re =
2Ruc ρR

η
, (4.58)

the Péclet number controls the cut-off thickness. In this case, Kerr [156] suggests the
following approximation

δc ≈
2R

1 + (1 + Pe)1/3
. (4.59)
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For Reynolds numbers Re ≤ 105 Zhang and Xu [158] recommend the use of the
following expression to approximate the Sherwood number Sh

Sh ≈ 1 + (1 + Pe)1/3
(

1 +
0.096Re1/3

1 + 7Re−2

)

. (4.60)

Finally, the Sherwood number Sh can be used together with

Sh = 2R/δc , (4.61)

to calculate the cut-off distance δc for a wide range of the Reynolds number Re.
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5 | Experimental part and validation

The numerical model is validated by means of experimental observations using High-
Temperature Confocal Scanning Laser Microscopy (HT-CSLM). The numerical re-
sults are compared to published data from the open literature and from experiments
that are performed at the Chair of Ferrous Metallurgy at Montanuniversität Leoben.
HT-CSLM is chosen for investigating the kinetics of solid-liquid phase transformations
due to the offered possibility to observe in-situ phase transformations in metallurgical
slags at high temperatures (> 1500°C). It is worth noting that iron(oxide)-containing
slags can not be investigated in the HT-CSLM due to diminishing optical trans-
parency. Nevertheless, it is expected that lessons learned using other steelmaking
slags (e.g. CaO-SiO2-Al2O3-slags) can be applied to Fe-containing slags.

5.1 High-Temperature Confocal Scanning Laser Microscopy set-up

The experimental set-up consists of a VL2000DX CSLM from Lasertec and a high
temperature furnace of the type SVF17-SP from Yonekura. The furnace chamber is
ellipsoidal in shape and coated with gold. The thermal radiation emitted by a halogen
lamp located in one of the focal points of the ellipsoid is reflected by the walls of the
furnace onto the sample located in the opposite focal point. During the experiment,
the sample is placed in a platinum crucible standing on a sample holder. The platinum
crucible can withstand the high temperatures during the experiment (>1500 °C) and
does not undergo any significant reactions with the slags that are used. A laser beam
with a wavelength of 405 nm acts as a light source. A camera system captures the
laser light reflected from the sample, and finally a video recording of the observed
sample throughout the experiment is made. A sketch of the experimental set-up is
shown in Fig 5.1.
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(a)

(b)

Figure 5.5: Simulated evolution of the interface position for the incongruent case
during a representative transformation cycle (a). The stagnant stage is highlighted in
green. The temperature during the transformation cycle is represented via the orange
line. The color coded dashed lines correspond to the times at which the mole fraction
profiles of xCaO are shown in (b), [163].
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results from the numerical model, the stagnant stage is not predicted to occur in
cyclic partial phase transformations subject to the congruent case. The velocity of
the interface simply follows the direction on the chemical driving force ∆f chem acting
on it. The experimental observations are compared to the numerical results for the
incongruent and the congruent case in Fig 5.6.

In the congruent case the peak of the normalized area profile A/A0 of the simu-
lated transformation cycle is located at a higher time compared to the experimental
observation. It is likely that a deviation of the actual temperature at the solid/liquid
interface from the temperature measurement during the experiment caused this diver-
gence. Due to its faster kinetics, this phenomenon is more dominant in the congruent
case. The complex heat flow through the experimental set-up is not accounted for
in the numerical simulations, i.e the temperature is assumed to be evenly distributed
over the sample, for details see Ogris et al. [163]. However, the basic features of
the kinetics of congruent and incongruent solid-liquid phase transformations in oxide
systems can be described using the simple concepts presented above. Specifically,
it is shown that the kinetics of solid-liquid phase transformations in the CaO-SiO2

system are limited solely by bulk diffusion in the liquid phase in case of incongruent
transformations and are limited by an interfacial reaction in the congruent case. The
insights derived from this study [163] are used for modelling the dissolution kinetics
of various oxides in multi-component slags, as subsequently discussed.

85



(a) incongruent case

(b) congruent case

Figure 5.6: Evolution of normalized observed area of the solid phase (wollastonite)
during a representative transformation cycle subject to the incongruent (a) and the
congruent (b) regime [163]. The experimental data (black dots and dashed line)
stemming from HT-CSLM observations is compared to numerical results (highlighted
in blue). The evolution of the temperature during the transformation cycle is given
via the orange line.
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5.3 Dissolution of oxide particles in multi-component slags - model vali-
dation using experimental data from literature

5.3.1 Dissolution of lime

As stated in the introductory chapter, the dissolution of lime (CaO) plays a major
role in slag formation during oxygen steelmaking. Various experimental investigations
on the dissolution of lime are described in literature, e.g. [31–33, 37, 38, 164–168].
Generally, two different dissolution mechanisms are conceivable, direct dissolution
and indirect dissolution. The direct dissolution reaction of lime can be expressed as

CaO(s) → (CaO) , (5.1)

where the solid lime is directly transferred into the liquid slag solution. The round
brackets in (CaO) indicate the species in liquid slag. Indirect dissolution occurs
when a solid product layer is formed around the dissolving particle. In the case of
lime dissolution in silica containing slags, Ca2SiO4 together with Ca3SiO5 have been
identified as the dominating phases in the product layer [31,38,47]. According to Sun
et al. [47], the following reactions are thermodynamically important in the case of
the indirect dissolution mechanism

3(CaO) + (SiO2) → Ca3SiO5(s) (5.2)

2Ca3SiO5(s) + (SiO2) → 3Ca2SiO4(s) (5.3)

2(CaO) + (SiO2) → Ca2SiO4(s) (5.4)

Ca2SiO4(s) → 2(Ca2+) + (Si4+) + 4(O2−) (5.5)

In the case of lime dissolution during steelmaking operations, the direct mechanism is
preferred. This is due to the relatively slow transformation kinetics that are observed
during indirect dissolution [38]. Sun et al. [47] observed the dissolution of lime at
1480°C in a ternary CaO-SiO2-Al2O3 (CAS) slag using HT-CSLM. The slag compo-
sition they used for their investigations is provided in Table 5.1. They observed a
three-stage dissolution process:

1. The first stage is characterized by direct dissolution of lime into the liquid slag.

2. After a certain amount of time an intermediate boundary layer forms at the
solid-liquid interface slowing down the shrinking rate of the lime particles.
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3. The intermediate boundary layer dissolves rapidly at the end of the second
stage and after its disappearance the solid-liquid transformation evolves rapidly
again.

It is shown by Ogris and Gamsjäger [151] that the dissolution kinetics of lime for
this case can be properly described by considering multi-component diffusion in the
liquid only using the modelling approach and software described above. The three-
stage process observed in experiment is handled in the following way: During the
first stage multi-component diffusion in the liquid phase limits the kinetics of the
dissolution process. The interdiffusivity matrix is estimated from Liang and Davis
[169] and is provided in Table 5.2. During the second stage the multi-component
diffusion is still the limiting process. However, the interdiffusivity matrix is multiplied
by a retardation factor αret = 0.3 that restrains the kinetics. It is assumed that
diffusion through the intermediate boundary layer limits the kinetics during this stage;
however, the diffusivities to be applied are not known. In this sense, αret needs to
be seen as a fitting parameter. After the intermediate boundary layer has dissolved,
the kinetics accelerate again, this is accounted for by applying the original diffusivity
values as in the first stage. The numerical results from the sharp-interface model are
compared to the experimental observations of Sun et al. [47] Fig 5.7, see [151]. It
is not clear when the second and third stages occur. The nucleation kinetics of the
intermediate boundary layer is not considered explicitly in the model. The time span
required for the formation of a nucleus with critical size can only be predicted to a
limited extent from a theoretical perspective. Furthermore, it is not entirely clear
how to predict the time span for the intermediate boundary phase to fully disappear
(here at about 170 s). The timings for the second and third stages (indicated by the
dashed lines in Fig 5.7) are thus fitting parameters that are only accessible through
experimental observations.

Table 5.1: Chemical composition of Slag SM04 in weight fractions as reported by [47].

Slag wCaO wSiO2
wAl2O3

SM04 0.267 0.533 0.200

Table 5.2: The chemical diffusion coefficients for the simulation of lime dissolution in
Slag SM04.

D̃CaO-CaO/m2s−1 D̃CaO-SiO2
/m2s−1 D̃SiO2-CaO/m2s−1 D̃SiO2-SiO2

/m2s−1

3.9 · 10−11 0.36 ·10−11 -1.9 ·10−11 0.8 ·10−11
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Figure 5.7: Lime dissolution at 1480°C in a ternary CaO-SiO2-Al2O3 slag with a
composition of wCaO=0.267, wSiO2

=0.53 and wAl2O3
=0.20 [151]. The experimental

data is taken from [47]. The dashed lines indicate the presence of an intermediate
boundary layer at the solid-liquid interface, i.e. Ca2SiO4.

5.3.2 Dissolution of silica

In the context of inclusion control and steel cleanliness, Michelic et al.[48] investigated
the dissolution of silica (SiO2) in CAS slags by means of HT-CSLM experiments. The
composition of Slag 1.1 that was used for their silica dissolution investigations is pro-
vided in Table 5.3. In the case of dissolving silica particles, no intermediate boundary
layers are reported to occur during the dissolution in CAS slags at 1450°C. Thus,
in contrast to the dissolution of lime described above, the transformation kinetics of
silica is subject only to direct dissolution. Adapting the quasi-static approximation of
the Stefan problem (see section 2.4), Eq (2.25), Michelic et al. introduce an additional
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correction parameter f to describe their observations by using

dR

dt
= −cR − cS

[[c]]

(

D

R
+ f

√

D

πt

)

. (5.6)

The correction factor f is a fitting-parameter without physical meaning and only cor-
rects the oversimplifications in the quasi-stationary approximation. Thus, Eq (5.6)
can not be used for predicting the dissolution kinetics of silica particles in steelmaking
slags. However, it is shown by Ogris and Gamsjäger [151] that the transformation
kinetics observed by Michelic et al. [48] can be described by solely considering diffu-
sion in the liquid phase without the need to introduce additional fitting-parameters.
To this end, the sharp interface model is applied to predict the dissolution kinetics of
a silica particle in slag 1.1. The interdiffusivity matrix can be estimated from Liang
and Davis [169] and is provided in Table 5.4. The numerical results of the sharp-
interface model are compared with the experimental data from Michelic et al. [48]
in Fig 5.8. It seems that by considering multi-component diffusion alone the kinetics
of the dissolution process can be described sufficiently. Since the dissolution curves
obtained through the numerical calculations closely resemble the experimentally de-
rived dissolution kinetics, without requiring any additional fitting parameters, it is
likely that the influence of convection on the dissolution process is negligible for the
HT-CSLM experiments discussed so far. This conclusion is likely valid as long as
the experimental investigations using HT-CSLM or other techniques do not involve
external stirring, intense particle movement and high density differences in the melt
do not occur.
The next section covers experimental and numerical investigations on alumina disso-
lution in CAS slags, where both convective contributions to mass transfer and mass
transfer due to diffusion in the liquid need to be considered.

Table 5.3: Chemical composition of Slag 1.1 in weight fractions as reported by [48].

Slag wCaO wSiO2
wAl2O3

1.1 0.341 0.546 0.106

Table 5.4: The chemical diffusion coefficients for the simulation of silica dissolution
in Slag 1.1.

D̃CaO-CaO/m2s−1 D̃CaO-SiO2
/m2s−1 D̃SiO2-CaO/m2s−1 D̃SiO2-SiO2

/m2s−1

5.2 · 10−11 −0.14 · 10−11 −0.21 · 10−11 0.18 · 10−11
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Figure 5.8: Silica dissolution in CaO-SiO2-Al2O3 at 1480 °C [151]. The composition
of the slag is wCaO=0.341, wSiO2

=0.546 and wAl2O3
=0.106 according to [48]. The slag

composition is slightly corrected in the numerical model so that the sum of the mass
fractions adds up to unity by distributing the missing mass fractions evenly among
the individual constituents.

5.4 Dissolution of alumina - in-situ experiments

The dissolution of alumina particles in different CaO-SiO2-Al2O3 slags is investigated
by means of HT-CSLM experiments performed at the Chair of Ferrous Metallurgy
at Montanuniversität Leoben; the experimental results are compared to predictions
made using the sharp-interface model and assuming local equilibrium at the interface.
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5.4.1 Sample preparation and temperature measurement

The slag samples are prepared by mixing the oxides (CaO-Al2O3-SiO2) according to
the desired slag composition and heating the material above 1500°C in a platinum
crucible and holding for a minimum of 15 minutes; thus, melting and overheating the
slag. After cooling, the sample is ground and eventually filled in the platinum cru-
cible used in the HT-CSLM experiment. The pre-melting procedure ensures optimal
homogenization of the slag samples before the start of the dissolution experiment.
The slag is melted again before the actual experiment in the HT-CSLM furnace to
prevent bubble formation during the experiment. The temperature in the furnace
is measured by means of a thermocouple situated below the platinum crucible and
deviates significantly from the actual temperature of the sample during the experi-
ment. To determine the actual temperature in the sample, a thermocouple is placed
at the center of the crucible during pre-melting in the HT-CSLM. The temperature
is measured simultaneously by the two thermocouples in the furnace and in the cru-
cible, respectively. In this way, a reference for the actual sample temperature during
the performed dissolution experiments is established. This is done before each trial.
A representative reference measurement is shown in Fig 5.9. It can be seen that
the sample temperature lies significantly lower than the furnace temperature; this
difference must be taken into account in the temperature control during the actual
experiment where only the furnace thermocouple is used.

5.4.2 Experimental procedure

At the beginning of the actual experiment, before the platinum crucible is placed in
the furnace, an spherical alumina particle with a radius of 250 µm (obtained from
Sandoz Fils SA) is placed on top of the pre-melted slag. Then the platinum crucible
is placed inside the HT-CSLM and is heated up to experimental temperature. The
dissolution of the oxide particle can be observed in-situ and is video-recorded for later
evaluation. The evolution of a spherical alumina particle during dissolution at 1500
°C in a CaO-SiO2-Al2O3 slag is shown in Fig 5.10. The experimental temperature
is maintained for the duration of the dissolution of the particle (isothermal holding).
After the particle is fully dissolved, the furnace is cooled down to room tempera-
ture. The obtained video-recordings from the dissolution experiment are evaluated
by means of the following steps:

1. A set of frames of the original video is extracted by means of the video processing
software VirtualDub [170].

2. For each individual frame the area of the dissolving particle is measured man-
ually using Jens Rüdig’s image analyzing software [171].
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Figure 5.9: Representative reference measurement of the control/furnace temperature
and sample temperature. The dashed line indicates the 1500°C mark where alumina
dissolution experiments are performed.

3. The measurement of the area is repeated 3 times for each frame as there exists
a certain error due to the manual measurement procedure. The standard devia-
tions of these measurements allow to estimate the quality of the experimentally
obtained image data.

The dissolution of the alumina particles is observed in-situ in three different slags.
The compositions are chosen in such a way that interdiffusivities, molar volumes,
thermal conductivities and viscosities can be directly obtained from literature. It is
hoped that actual predictions are possible with the numerical model. In case that
the model predictions agree well with experimental observations, then this supports
the validity and usefulness of the modelling approach developed above, as no fitting
parameters are used for simulating the transformation kinetics. The slag compositions
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Table 5.5: Slag compositions for alumina dissolution experiments.

Slag wCaO wSiO2
wAl2O3

1 0.25 0.60 0.15

2 0.35 0.45 0.2

3 0.30 0.525 0.175

Alumina dissolution in Slag 1

The evolution of the radius of a shrinking alumina particle in Slag 1 (for composition
see Table 5.5) with time is shown in Fig 5.11. The prediction from the sharp-interface
model is indicated via the solid lines. The shrinking behavior of the alumina par-
ticles is predicted by means of the sharp-interface model using the interdiffusivities
suggested by Liang et al. [172] with SiO2 as the dependent species. The values of
the diffusivities are listed in Table 5.6. The boundary conditions (equilibrium mole
fractions) at the interface are calculated using the assessment of Eriksson and Pelton
[173] and are listed in Table 5.7.

Table 5.6: Interdiffusivities in m2s−1 used in the dissolution simulations.

Slag D̃CaO-CaO D̃CaO-Al2O3
D̃Al2O3-CaO D̃Al2O3-Al2O3

Reference

1 4.22 · 10−11 −0.44 · 10−11 −0.54 · 10−11 1.44 · 10−11 [172]

2 14.6 · 10−11 2.26 · 10−11 −7.35 · 10−11 2.02 · 10−11 [172]

3 10.60 · 10−11 1.23 · 10−11 −4.76 · 10−11 1.62 · 10−11 [172]

Table 5.7: Boundary conditions (i.e. mole fractions) at the solid-liquid interface
calculated via Gibbs energy minimization.

Slag xR,CaO xR,Al2O3
xR,SiO2

1 0.226 0.268 0.506

2 0.317 0.303 0.380

3 0.272 0.284 0.444

In addition to multi-component diffusion, convective mass transfer is considered.
As discussed above, the influence of the density driven flow might be predicted using
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the Rayleigh number Ra. First the maximum density difference ∆ρ in the melt must
be calculated. This density difference ∆ρ is given by

∆ρ =

(
MR

VR
− MS

VS

)

, (5.7)

where MR and MS are the molar mass of the melt at the interface and in the liquid
bulk, respectively; VS and VR are the molar volume of the melt at the interface and
in the liquid bulk, respectively. For the calculation of the molar volumes VS and VR
Courtial and Dingwell [174] suggest the following relation

Vliquid = x1x2
(
L1
12 + L2

12(T − 1873)
)
+

3∑

i=1

xi
(
L1
i + L2

i (T − 1873)
)
, (5.8)

where L1
12, L

2
12, L

1
i and L2

i are parameters suggested in [174], see Table 5.8. The
indices i = 1, 2, 3 correspond to 1 ≡ CaO, 2 ≡ SiO2 and 3 ≡ Al2O3, respectively.
The viscosities η are estimated from the assessment provided by Tang et al. [175].

Table 5.8: Parameters suggested by Courtial and Dingwell [174] for the calculation
of molar volumes from Eq (5.8).

i L1
i L2

i

CaO 20.843 4.333 · 10−3

SiO2 27.611 1.849 · 10−3

Al2O3 36.361 −2.055 · 10−3

L1
12 L1

12

CaO-SiO2 -8.348 −4.137 · 10−3

The molar Volumes VS and VR are listed together with the molar mass MS and the
viscocities for the Slags 1-3 in Table 5.9.

From Fig 5.11 it can be seen that the dissolution kinetics during the first third
(≈ 1000 s) of the dissolution process can be adequately described by considering only
multi-component diffusion (dashed line). After that, convective contributions need
to be considered. This becomes clearer by comparing the evolution of the mole frac-
tion profiles xAl2O3

of alumina during the dissolution in Fig 5.12. At the beginning
of the dissolution, i.e. t = 0.5 s the cut-off distance δc (indicated via dashed orange
lines) is high relative to the diffusion penetration depth (DPD) into the melt. In
this context, the DPD is the thickness of the part of a mole fraction profile where
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Table 5.9: Molar masses, volumes and viscosities of selected slags at 1773 K.

Slag MS/kg mol−1 VS/m3mol−1 VR/m3mol−1 η/Pa s

1 0.063 24.91 · 10−6 27.39 · 10−6 8.3

2 0.0637 24.27 · 10−6 27.02 · 10−6 3.6

3 0.0633 24.56 · 10−6 27.16 · 10−6 5.94

its gradients are non-zero. As long as the cut-off distance is greater than the DPD,
the mole fraction profile of alumina is unaffected by the density-driven flow, i.e. the
mole fraction profile is equal to the case of a purely-diffusion driven transformation
(dashed black lines). After a certain amount of time, the cut-off distance and the
DPD intersect; from this time on the boundary condition Eq (4.54) applies and the
mole fraction profiles can only evolve within the spherical-shell with thickness δc. At
t = 1000 s the mole fraction profile is significantly affected by the cut-off distance
and the evolution of the radius R(t) begins to deviate from the case δc = ∞. This
deviation is considerably pronounced at At t = 2500 s, see Figs 5.11 and 5.12. The
estimation of the cut-off distance δc depends to a large extent on the quality of the
used models for calculating molar volumes and viscosities of the liquid phase. As re-
ported by Tang et al.[175], experimental uncertainties with respect to the underlying
viscosity measurements fall in the range of ±25%. Other deviations may result from
the non-ideal geometry of the alumina particles, as the spherical shape is not exactly
maintained during dissolution. Also the size of the dissolving particle is evaluated
from a 2D perspective; thus, possible rotation of the particles during the experiment
might lead to scattering in the data. Additionally, there may be other significant
factors influencing mass flow that are not considered in the current model, such as
capillary effects. Taking these aspects into account, the numerical results agree rea-
sonably well with the measurement. However, the kinetics of the dissolution process
is predicted to be slightly too fast compared to the experimental data in the final
stages of the dissolution.
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Figure 5.11: Dissolution profile of an alumina particle dissolving at 1500°C in Slag 1.
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Figure 5.12: Simulated mole fraction profile of alumina during the dissolution of
an alumina particle in Slag 1 at three different times, i.e. t1 = 0.5 s, t2 = 1000 s
and t3 = 2500 s. The mole fraction profiles are shown for two cases: in orange, the
mole fraction profiles in case of a density driven flow affecting the kinetics of the
dissolution. The black dashed lines are the mole fraction profiles in case of a purely
diffusion-driven phase transformation. The position R + δc is indicated by means of
the orange dashed lines.
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Alumina dissolution in Slag 2

Compared to Slag 1, Slag 2 contains much less silica (SiO2), which functions as a
network former in the slag. The composition of Slag 2 is provided in Table 5.5. The
content of silica usually results in the formation of silica clusters and networks, which
determine the structure of the slag, see e.g. [2, 3]. It seems to be reasonable that a
significantly lower viscosity and also higher diffusivities prevails in Slag 2 compared to
Slag 1 due to the diminished occurrence of silica clusters in Slag 2. This assumption
is confirmed by the values for the interdiffusivities and viscosities provided in Tables
5.6 and 5.9. Consequently, it is expected that the dissolution of alumina in Slag 2
occurs at a faster rate compared to Slag 1. In fact, when observing the dissolution
of alumina into Slag 2 through HT-CSLM, it is evident that it proceeds significantly
faster, with a total dissolution time of approximately t̃ ≈ 780 s compared to t̃ ≈ 3100 s
for Slag 1. Figure 5.13 illustrates the progression of the shrinking radius R of the
alumina particle in Slag 2. The numerical prediction from the sharp-interface model
is compared to the equivalent radius of the alumina particle estimated through image
analysis. The values of the interdiffusivities used in the simulations are listed in Table
5.6. The mole fractions xR,CaO, xR,Al2O3

and xR,SiO2
, i.e. the boundary conditions at

the solid-liquid interface, are presented in Table 5.7.
Similar to Slag 1, the beginning of the dissolution process (t < 250 s) in Slag 2

can be adequately described by considering multi-component diffusion only (dashed
line in Fig 5.13). However, after about 250 s, convection in the liquid phase starts
to influence the dissolution kinetics significantly. Similar to the previous case, the
density-driven flow determines the cut-off distance δc. Initially, the cut-off distance
is relatively large but gradually diminishes, eventually disturbing the mole fraction
profiles obtained from bulk diffusion. This is shown in Fig 5.14, where the mole
fraction profiles of alumina are shown for three different times. At the start of the
dissolution, the mole fraction profile is unaffected by the cut-off distance, due to its
high value. As δc diminishes, the mole fraction profile becomes steeper compared to
the purely diffusion-driven case. At this point, convection starts to contribute to the
dissolution kinetics. The evolution of the radius R(t) of the particle starts to deviate
for these two cases. At t = 500 s, the position of the solid-liquid interface (i.e. R)
is considerably progressed compared to the diffusion-only case (dashed black lines in
Fig 5.14). It seems worth mentioning that the flow field around the particle in slag 2
could be temporarily visualized with the HT-CSLM. As a representative example the
convective flow is indicated via light orange arrows in Fig 5.15. From Fig 5.13 the
prediction from the numerical model (orange line) agrees well with the data obtained
from the HT-CSLM experiment.
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Figure 5.13: Dissolution profile of an alumina particle dissolving at 1500°C in Slag 2.
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Figure 5.14: Simulated mole fraction profile of alumina during the dissolution of
an alumina particle in Slag 2 at three different times, i.e. t1 = 0.1 s, t2 = 200 s
and t3 = 500 s. The mole fraction profiles are shown for two cases: in orange, the
mole fraction profiles in case of a density driven flow affecting the kinetics of the
dissolution. The black dashed lines are the mole fraction profiles in case of a purely
diffusion-driven phase transformation. The position R + δc is indicated by means of
the orange dashed lines.
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Alumina dissolution in Slag 3

The composition of Slag 3 is presented in Table 5.5. Looking at the composition of
Slag 3, it might be assumed that the viscosity and diffusivities of the slag are between
Slag 1 and Slag 2. The diffusivity matrix obtained from [172] and the viscosities
calculated from using the relations given in [175] are presented in Table 5.6 and Table
5.9, respectively. Indeed, the above presumption seems to be justified when comparing
the values given in these tables. The total dissolution time of Slag 3 is therefore likely
to fall between that of Slag 1 and Slag 2. In fact, the total dissolution time for alumina
in Slag 3 at 1500°C observed in the HT-CSLM experiment lies between those of Slag
1 and Slag 2 with about 2500 s. The experimentally observed equivalent radius R
of the alumina particle in Slag 3 is shown in Fig 5.16 and is compared to results
from the numerical model. The dissolution kinetics are simulated by means of multi-
component diffusion only. Simulated mole fraction profiles of CaO, Al2O3 and SiO2

at t = 2400 s are shown in Fig 5.17. The contribution of natural convection in this
case seems to be negligible. It is not entirely clear why convection does not appear to
be involved in mass transfer in this case. However, the agreement of the experimental
observation with the numerical results when considering only diffusion in the liquid
phase seems to be convincing.
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Figure 5.16: Dissolution profile of an alumina particle dissolving at 1500°C in slag 3.
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Figure 5.17: Simulated mole fraction profiles at t = 400 s (indicated by filled circles)
and t = 2400 s (indicated by empty circles) during dissolution of an alumina particle
in Slag 3 at 1500°C.
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5.5 Validity of isothermal mass transport assumptions

The Rayleigh number may also be used to estimate the tendency for thermally induced
convection. Thus, it can be used to assess wh the isothermal assumptions made for
mass transport are valid. For that the Rayleigh number RaT is defined as

RaT =
g∆ρTL

3

ηα
, (5.9)

where g is the acceleration due to gravity (≈ 9.81ms−2), L is the characteristic length
and is taken to be the crucible height (4 mm) to account for the most extreme case,
∆ρT is the maximal density difference in the melt that is induced from temperature
differences in the melt, α is the thermal diffusivity and η is the viscosity of the melt.
The thermal diffusivity α can be calculated from

α =
λ

ρcP
, (5.10)

where λ is the thermal conductivity and cP is the specific heat capacity at constant
pressure of the liquid and is calculated from FactSage 7.3 using the FToxid database.
The thermal conductivity λ is estimated from Kang and Morita [176] and the values
for the individual slags are listed in Table 5.10.

Table 5.10: Thermophysical properties and dimensionless numbers of selected slags
at 1773 K. The Rayleigh numbers RaT are calculated by assuming a temperature
difference of ∆T = 100K in the melt.

Slag λ/W m−1K−1 cP/J kg−1K−1 ∆ρT/kg m−3 RaT Le

1 0.49 1197.39 15.1 4.4 1.38 · 104

2 0.34 1190.47 17.2 12.1 9.45 · 102

3 0.44 1192.71 15.6 6.1 1.64 · 103

Even for high temperature differences in the melt (∆T = 100K), the Rayleigh
numbers ranging from 4.4 (for Slag 1) to 12.1 (for Slag 2) are well below the critical
values of 650-1000, according to Chandrasekhar [177]. Moreover, the Lewis Le num-
ber, which relates the thermal diffusivity with the diffusivity of mass, can be used as
an indicator to estimate if the isothermal conditions are fulfilled during experiment
[178] and is defined as

Le = α/D , (5.11)
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where D is the average diffusion coefficient. The Lewis numbers characterizing the
conditions of the above experiments are given in Table 5.10. It can be seen that the
thermal diffusivities exceed the average diffusivities for mass transport by 2 to 4 orders
of magnitude, supporting the hypothesis of isothermal mass transport. Thus, by in-
terpreting these simple values (RaT and Le), neglecting thermally induced convective
contributions to mass transport seems physically reasonable.
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6 | Conclusions and Outlook

A Gibbs energy minimization routine is developed for the calculation of multi-component
and multi-phase equilibria in metallurgical slags. The software can be easily inte-
grated into comprehensive metallurgical process models (i.e. the LD-model [27–30])
and in computer routines for simulating the kinetics of congruent and incongruent
phase transformations. The software can be utilized to determine the thermody-
namic contact conditions occurring at solid-liquid interfaces within multi-component
slag systems and can be employed to calculate local equilibria in systems that are
not in a state of equilibrium. With regard to oxygen steelmaking, a useful ther-
modynamic database is composed of openly available thermodynamic assessments
to calculate thermodynamic functions and phase boundaries in the CaO-SiO2-FeO-
MgO-MnO-system. Additionally, a sharp-interface model for predicting the kinetics
of solid-liquid phase transformations in multi-component, multi-phase slag systems
is developed in this work. Numerical predictions of the dissolution kinetics of oxide
particles in multi-component slags are assessed by comparing them to experimental
observations obtained through the use of HT-CSLM. The following conclusions can
be drawn:

• The numerical results of the Gibbs energy minimization routine developed in
this work agree well with the calculations from established commercial codes,
i.e. Factsage [63]. Moreover, the calculated phase diagrams in the CaO-SiO2-
FeO-MgO-MnO-system are compared to experimental data [137, 138] and to
phase diagram data from other assessments [107, 141]. The collected data and
calculations demonstrate a satisfactory level of agreement within the defined
scope of its application as shown in Fig. 3.5.

• The thermodynamic model developed for the CaO-SiO2-FeO-MgO-MnO-system
presented in this work is applicable exclusively to slags that undergo LD-
steelmaking conditions characterized by low oxygen partial pressures. To accu-
rately predict equilibrium states at higher oxygen partial pressures, it is neces-
sary to introduce higher oxidation states of iron and manganese (Fe3+, Mn3+)
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into the thermodynamic model in the form of additional constituents (Fe2O3,
Mn2O3).

• For modelling dephosphorization reactions the modified quasi-chemical model
used in this work requires expansion into a multi-sublattice model. This en-
hancement is necessary in order to incorporate second-nearest neighbor pair
interactions between constituents located on separate sublattices. Moreover,
solid solution phases would need to be introduced as the dephosphorization in
the LD converter is largely based on the formation of silico-phosphate solid
solutions.

• The rate-determining processes of congruent and incongruent solid-liquid phase
transformations in metallurgical slags are investigated by comparing the ex-
perimentally obtained kinetics of growth and shrinkage of oxide crystals (i.e.
wollastonite) in CaO-SiO2-slags to numerical results using the sharp interface
model presented in this work. It is shown that diffusion in the liquid suffices
to describe the experimentally observed features of incongruent cyclic partial
phase transformations in the CaO-SiO2 system, whereas the characteristic fea-
tures of the investigated congruent cyclic partial phase transformations can be
described by modelling the kinetics of a reaction at the solid-liquid interface.

• For the dissolution of oxide particles (in the incongruent case) multi-component
diffusion in the liquid is identified as the rate limiting step in the case of various
oxide particles (i.e. CaO, SiO2 and Al2O3). However, convection might con-
tribute to mass transport and in such cases must be taken into account when
predicting the total dissolution time. This is done by calculating the time-
dependent thickness of a spherical shell (determined by the cut-off distance pa-
rameter δc) surrounding the particle. Inside this spherical shell multi-component
diffusion occurs undisturbed while outside of it convection "cuts-off" the mole
fraction profiles, resulting in homogenization of the melt.

• The major limiting factor in using the developed dissolution model remains
the availability of interdiffusion coefficients for liquid slag systems. For some
ternary slags interdiffusivities can be found in literature, see e.g. [169, 179];
however, interdiffusivity data remains scarce for multi-component slag systems.
For this reason, there is a strong need for more complete interdiffusivity data for
predicting the kinetics of diffusive phase transformations in multi-component
slag systems. Similar statements can be made regarding viscosity and molar
volume data.

• The modelling approach developed in this work might contribute to metallurgi-
cal process models for LD-steelmaking or secondary metallurgy. Furthermore,
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it might contribute to steel cleanliness applications and improved refractory
linings by predicting, e.g. dissolution times of inclusions at different slag com-
positions and simulating the corrosion of refractory materials in operation.
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Appendix

Table 1: Thermodynamic data of unary systems as taken from the FactPS database.
The standard enthalpies of formation ∆H0

298.15,f are provided in J mol−1, the heat
capacities C0

p and entropies S0
298.15 are given in J mol−1 K−1.

species ∆H0
298.15,f

S0
298.15 C0

p

applicability
range

CaOlime -635090 37.75
58.791171 − 1147146T−2

− 133.904T−0.5 +
102978788T−3 298K - 2845K

SiOcrist
2

-906377 46.03
83.513598 − 2455360T−2

− 374.693T−0.5 +
280072194T−3 298K - 1996K

Ca3SiOhatr
5

-2857015 235.65 209.98832− 504.60291T−0.5 298K - 2500K

Ca2SiOC2Sα′

4
-2273629 147.79

210.48877 − 7989399.9T−2 + 1297479950T−3
−

701.9T−0.5 298K - 1750K

Ca2SiOC2Sα
4

-2307514 119.66 243.66021 + 30758136T−3
− 2034.4214T−0.5 298K - 2500K

MgOperic -601500 26.95 61.109650−621154T−2
−296.199T−0.5+5844612T−3 298K - 3098K

MnOmang -384928 59.83 46.484240 + 0.00811696T − 368192T−2 298K - 2115K

Ca2MgSi2O
aker
7

-3866291 212 387.06396− 2938.7690T−0.5
− 40790480T−3 298K - 2000K

Ca3MgSi2O
merw
8 -4555779 251.77 453.62− 3250T−0.5

− 344230000T−3 298K - 2500K

Ca3Si2O
rank
7

-3950432 205.56
392.84876 − 10659996T−2

− 2200.0658T−0.5 +
1373589130T−3 298K - 5000K

CaSiOwoll
3

-1634676 79.81
149.07266 − 3.659348.0T−2

− 690.29498T−0.5 +
484349421T−3 298K - 2000K

CaSiOps-woll
3

-1625507 86.94 141.15611− 5857595T−3 298K - 1813

Mg2SiOforst
4

-2177699 94.01 238.64136− 2001.261T−0.5
− 116243281T−3 298K - 3000K

MgSiOenst
3 -1545080 66.66 107.64250 + 0.018582676T − 2575452T−2 298K - 2500K

SiOtridym
2

-907045 45.52 75.372668− 5958095.1T−2 + 958246123T−3 298K - 1991K

Mn2SiOteph
4

-1724664 163.2
512.52T − 0.18273T + 4602600T−2 +
0.0000520580016T 2

− 6640.4T−0.5 298K - 3000K

MnSiOrhod
3

-1321491 102.5
99.042999 + 0.0191449999T − 3040700T−2 +
274.47T−0.5 298K - 2500K

CaOliquid -555594 65.69
58.791171 − 1147146T−2

− 133.904T−0.5 +
102978788T−3 298K - 2845K

SiOliquid
2

-896796 50.83
83.513598 − 2455360T−2

− 374.693T−0.5 +
280072194T−3 298K - 1996K

FeOliquid -234643 78.47
−18.024474 + 0.0306080599T − 2533300T−2 +
1500.9T−0.5 298K - 1664K

68.1992 1664K - 2000K

MgOliquid -545345 27
72.795562 − 0.003142184T + 522751.6T−2

−

296.199T−0.5 + 5844612T−3 298K - 3098K

MnOliquid -330536 85.55 46.484240 + 0.00811696T − 368192T−2 298K - 2115K

112



Table 2: Molar Gibbs energy functions of unary liquid systems as taken from the
FactPS database.

species Gm(T )/J mol−1 applicability
range

µ◦

liq,CaO

−571766.658 + 348.735802T + 573572.991T−1 −
535.615998T 0.5 − 17163131.3T−2 − 58.7911706T ln(T )

298K - 2845K

µ◦

liq,SiO2

−915415.778 + 562.199392T + 1227679.99T−1 −
1498.77200T 0.5 − 46678699.1T−2 − 83.5135981T ln(T )

298K - 1996K

µ◦

liq,FeO

−290958.454 − 349.657168T − 0.01530402997T 2 +
1266650.00T−1 + 6003.60001T 0.5 + 18.0244741T ln(T )

298K - 1664K

−268094.665 + 398.288735T − 68.1992000T ln(T ) 1664K - 2000K

µ◦

liq,MgO

−554894.205 + 490.908663T + 0.001571092T 2 −
261375.798T−1 − 1184.79600T 0.5 − 974102.005T−2 −
72.7955625T ln(T )

298K - 3098K

µ◦

liq,MnO

−345990.970 + 230.277102T − 0.004058480000T 2 +
184096.000T−1 − 46.4842400T ln(T )

298K - 2115K
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Table 3: Molar Gibbs energy functions of unary solid systems taken from the FactPS
database.

species Gm(T )/J mol−1 applicability
range

µ◦

lime,CaO

−651262.658 + 376.676564T + 573572.991T−1 −
535.615998T 0.5 − 17163131.3T−2 − 58.7911706T ln(T )

298K - 2845K

µ◦

crist,SiO2

−924997.138 + 566.999695T + 1227679.99T−1 −
1498.77200T 0.5 − 46678699.1T−2 − 83.5135981T ln(T )

298K - 1996K

µ◦

hatr,Ca3SiO5

−2902196.94 + 1229.21802T − 2018.41164T 0.5 −
209.988320T ln(T )

298K - 2500K

µ◦

C2Sα′,Ca2SiO4

−2331645.86 + 1371.89957T + 3994699.94T−1 −
216246659T−2 − 2807.60006T 0.5 − 210.488764T ln(T )

298K - 1710K

µ◦

C2Sα,Ca2SiO4

−2241869.07 + 947.186107T + 3994699.94T−1 −
216246659. T−2 − 2807.60006T 0.5 − 160.488767T ln(T )

298K - 5000K

µ◦

peric,MgO

−611541.379 + 420.064762T + 310577.002T−1 −
1184.79600T 0.5 − 974102.005T−2 − 61.1096505T ln(T )

298K - 3098K

µ◦

mang,MnO

−400382.970 + 255.992539T − 0.00405848T 2 +
184096.000T−1 − 46.4842400T ln(T )

298K - 2115K

µ◦

aker,Ca2MgSi2O7

3880436.17 + 2721.30231T − 11755.0760T 0.5 +
6798413.33T−2 − 387.063961T ln(T )

298K - 2000K

µ◦

merw,Ca3MgSi2O8

−4580726.46 + 3167.16334T − 13000T 0.5 +
57371666.7T−2 − 453.620000T ln(T )

298K - 2500K

µ◦

rank,Ca3Si2O7

−4019610.62 + 2723.09959T + 5329997.77T−1 −
8800.26331T 0.5 − 228931522. T−2 − 392.848756T ln(T )

298K - 5000K

µ◦

woll,CaSiO3

−1664832.94 + 1013.06077T + 1829673.99T−1 −
2761.17992T 0.5 − 80724903.6T−2 − 149.072661T ln(T )

298K - 2000K

µ◦

ps-woll,CaSiO3

−1667538.65 + 927.913022T + 2928797.49T−1 −
1668.92799T 0.5 − 156789159. T−2 − 141.156110T ln(T )

298K - 1813K

µ◦

forst,Mg2SiO4

−2180392.41 + 1737.57718T − 8005.04402T 0.5 +
19373880.2T−2 − 238.641360T ln(T )

298K - 3000K

µ◦

enst,MgSiO3

−1572754.95 + 615.004096T − 0.007528365500T 2 +
1287726.00T−1 − 101.189699T ln(T )

298K - 3000K

µ◦

tridy,SiO2

−944111.184 + 480.752826T + 2979047.54T−1 −
159707687T−2 − 75.3726680T ln(T )

298K - 1991K

µ◦

teph,Mn2SiO4

−1625052.58 + 3960.53941T + 0.09136499966T 2 −
2301300.00T−1 − 8.676333604−6T 3 − 26561.6002T 0.5 −
512.52T ln(T )

298K - 3000K

µ◦

rhod,MnSiO3

−1371548.39 + 551.869975T−90.00572499962T 2 +
1520350T−1 + 1097.87999T 0.5 − 99.0429995T ln(T )

298K - 2500K
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Table 4: Binary interaction parameters for calculating the Gibbs energy of the liquid
phase.

Parameter Value / (J mol−1) Reference

∆g◦liq,CaO,SiO2
-158217.42 + 19.455475 T [122]

L01
liq,CaO,SiO2

- 37931.997 [122]

L05
liq,CaO,SiO2

- 90147.924 [122]

L07
liq,CaO,SiO2

439890.86 - 133.888 T [122]

∆g◦liq,SiO2,FeO -30497.176 + 14.294163 T [134] optimized

L02
liq,SiO2,FeO 14154.472 [134] optimized

L60
liq,SiO2,FeO 375706.46 - 140.58658 T [134] optimized

∆g◦liq,CaO,FeO -38074.4 [132]

L01
liq,CaO,FeO -13807.2 [132]

∆g◦liq,CaO,MgO 45329 [140]

L10
liq,CaO,MgO -30583 [140]

∆g◦liq,CaO,MnO 27006 [140]

∆g◦liq,SiO2,MgO -86090 [139]

L10
liq,SiO2,MgO -48974 + 37.656 T [139]

L70
liq,SiO2,MgO 328109 - 125.52 T [139]

∆g◦liq,SiO2,MnO -79946 + 20.92 T [122]

L70
liq,SiO2,MnO 228819 - 62.76 T [122]

∆g◦liq,FeO,MgO 10460 [123]

∆g◦liq,MnO,MgO 4184 [140]
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Table 5: Ternary interaction parameters for calculating the Gibbs energy of the liquid
phase.

Parameter Value / (J mol−1) Reference

L003
liq,CaO,SiO2,(FeO) 3347.2 optimized

L101
liq,SiO2,FeO,(CaO) -59432.288 optimized

L023
liq,SiO2,FeO,(CaO) 129704 optimized

L102
liq,SiO2MgO,(MnO) -10460 [130]

L102
liq,SiO2MnO,(MgO) 8368 [130]

L001
liq,CaOFeO,(MnO) -33472 [136]

L101
liq,FeOMnO,(SiO

2
) -8368 [135]

L001
liq,MgO,SiO2,(CaO) 4184 [126]

L001
liq,CaO,SiO2,(MgO) 8368 [126]

L021
liq,CaO,SiO2,(MgO) -29288 [126]

L011
liq,CaO,SiO2,(MnO) 8368 [125]

L101
liq,MgO,SiO2,(FeO) 20920 [127]

Table 6: Coordination numbers in the liquid phase.

Coordination number Value

ZCaO
liq,CaO,CaO2

1.37744375

ZFeO
liq,FeO,FeO2

1.37744375

ZSiO2

liq,SiO2,SiO2
2.75448875

ZMgO
liq,MgO,MgO2

1.37744375

ZMnO
liq,MnO,MnO2

1.37744375
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