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Kurzfassung

Keramische Werkstoffe werden zunehmend in Form von Hochleistungsbauteilen
in Gebieten wie der Medizintechnik, Raumfahrt, Elektronik und Sensorik einge-
setzt. Die Basis dafür bildet ihre einzigartige Kombination aus mechanischen Ma-
terialeigenschaften wie Härte, Dichte, Festigkeit oder ihr Widerstand gegen Ver-
schleiß, und funktionellen Eigenschaften, wie einstellbarer elektrischer und ther-
mischer Leitfähigkeit. Im Zuge der Materialentwicklung für solche Bauteile ist die
Festigkeitsprüfung ein essenzielles Mittel, um das mechanische Materialverhalten
zu charakterisieren und Eigenschaftsänderungen zu beurteilen. Zusätzlich erlaubt
die genaue Kenntnis der Festigkeit und der ihr zugehörigen Streuung, das Versa-
gen spröder Bauteile vorherzusagen und ihre Lebensdauer abzuschätzen. Da sich
keramische Werkstoffe durch ihre speziellen Materialeigenschaften stark von an-
deren Materialklassen unterscheiden, wurden im Zuge der letzten 50 Jahre eine
Vielzahl spezieller Prüfmethoden entwickelt.
Ziel der vorliegenden Arbeit war es, bestehendeMethoden zur Festigkeitsprüfung
in ihrer Anwendbarkeit zu erweitern beziehungsweise weiterzuentwickeln oder
neueMethoden zu entwickeln. Dies wurde für eine Auswahl an zweiachsigen Bie-
geversuchen durchgeführt. Für den Ball-on-Ring-Versuch wurde die mathemati-
sche Beschreibung des Verschiebungs- und Spannungsfeldes komplett überarbei-
tet und mit Finite-Elemente-Simulationen validiert. Für den Ball-on-Three-Balls-
Versuch wurde die Auswertung der maximalen Zugspannung vereinfacht und
um die Festigkeitsprüfung quadratischer Platten erweitert. Zusätzlich wurden
für diese Methode der Einfluss nicht-linearer, lastabhängiger Effekte auf die ge-
messene Festigkeit analysiert und in die Auswertung mit einbezogen, sodass nun
auch Festigkeitsprüfungen bei starker Durchbiegung genau bewertet werden kön-
nen. Diese Ergebnisse wurden in Einzelfällen auch experimentell mittels Röntgen-
Tomographie validiert. Die Vergleichbarkeit des Ball-on-Three-Balls-Versuchs mit
anderen Methoden wurde ermöglicht, indem numerisch generierte Daten für die
effektiven Größenweitläufig zugänglich gemacht wurden. Die Anwendung dieser
Daten wurde durch einen Vergleich mit dem Ring-on-Ring-Versuch demonstriert.
Im Zuge dieses Vergleichs wurde der Einfluss reibungsreduzierender Schichten
für den Ring-on-Ring-Versuch diskutiert und der Einfluss unebener Oberflächen
auf die Festigkeitsprüfung untersucht.
Einweiterer Fokus dieser Arbeit war die Festigkeitsprüfung additiv gefertigter, ke-
ramischer, Bauteile. Im Zuge der additiven Fertigung werden prozess- und orien-
tierungsabhängige, periodische Strukturen auf der Oberfläche jedes Bauteils ein-
gebracht, die Spannungskonzentrationen verursachen und damit das Versagen si-
gnifikant beeinflussen. Zusätzlich ist die Größe der Bauplattform in vielen Pro-
zessen begrenzt, sodass die notwendige Menge an Prüfkörpern für eine statisti-
sche Festigkeitsauswertung nicht in einem einzelnen Durchgang hergestellt wer-
den kann. Um diese Aspekte berücksichtigen zu können, wurde eine neuartige
Versuchsmethode, basierend auf der Prüfung spezieller Kragbalken, entwickelt.
Es wurde eine theoretische Betrachtung und Fehlerabschätzung dieser Methode
durchgeführt, und dies mit experimentellen Ergebnissen in Bezug gesetzt.





Abstract

Ceramic materials have found their way into a multitude of technical fields such
as medical implants, spaceflight, electronics and sensorics in the form of high-
performance components. This is due to their unique combination of structural
and functional properties, such as hardness, density, strength, or tuneable electri-
cal and thermal conductivity. In the process ofmaterial development for such com-
ponents, strength testing is an essential tool to characterise the structural material
behaviour and to assess the development process. Additionally, the knowledge
of the material’s strength and its underlying scatter allows the prediction of the
failure of brittle components and an estimation of the expected lifetime in service.
Since ceramic materials differ significantly from other material classes, a variety
of testing methods have been specifically developed for ceramics over the past 50
years.
The goal of this work was to develop and extend the application range or further
develop existing methods for strength testing. This was done for a selection of bi-
axial bending tests and, depending on the individual testing method, was accom-
plished on different levels for each method. For the Ball-on-Ring-test, the mathe-
matical description of the stress- anddeflection-fieldwas completely reworked and
validated through Finite-Element-Analysis. For the Ball-on-Three-Balls-test, the
evaluation of themaximum tensile stresswas simplified significantly and extended
to allow strength testing of square plates. Furthermore, the influence non-linear,
load-dependent effects on the measured strength was analysed and included in
the current evaluation, which now enables testing if large deflections occur. These
findings were validated not just through simulations, but also through experimen-
tal data obtained through X-ray tomography in some cases. Additionally, the com-
parability of the Ball-on-Three-Balls-test to other testing methods was made possi-
ble through providing the numerical data for the effective volume and surface on
an open-access scale. The application of this data was demonstrated by a com-
parison of the Ball-on-Three-Balls-test to the Ring-on-Ring-test. Alongside this
comparison, the influence of friction-reducing intermediate layers for the Ring-
on-Ring-test was discussed and the influence of uneven surfaces on the measured
strength was investigated.
Another focus of this work was set on strength testing of additively manufactured
ceramic specimens or components. During fabrication, process- and orientation-
specific, periodic structures are created on the surface of each component, which
cause stress concentrations and subsequently affect the failure behaviour signifi-
cantly. Additionally, the maximum component size is restricted for most manufac-
turing processes, so that the necessary number of specimens for statistical strength
analysis cannot be fabricated within a single print-job. In order to consider these
aspects appropriately, a novel testing method, based on strength testing of can-
tilevers, was developed. Within this work, a detailed theoretical analysis of the
testing method and possible sources of error was performed, and the results were
put into perspective and validated through experimental work.
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Abbreviation Description
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4PB Four-point-bending
3PB Three-point-bending
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Symbol Description Unit
a Crack length m
ac Critical crack length m
b1, b2 Cantilever width m
B Width of a solid body m
c0 − c9 Dimensionless fitting constants −
D Specimen diameter m
Deq Equivalent specimen diameter m
Dj Dimensionless stress magnitude −
DLR Load ring diameter m
Drad Dimensionless radial stress magnitude −
Dtan Dimensionless tangential stress magnitude −
DSR Support ring diameter m
E Young’s modulus GPa
E∗ Effective Young’s modulus GPa
F Probability of failure −
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√
m
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√
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m Weibull modulus −
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r radial distance m
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RB Support ball radius m
Rcon Radius of the area of constant load m
R∗

con Corrected radius of the area of constant load m
Rcon,Hertz Radius of the area of Hertzian load m
RLR Load ring radius m
RLB Load ball radius m
RS Support radius m



Symbol Description Unit
RSR Support ring radius m
S Surface area m2

S0 Reference surface m2

Seff Effective surface m2

Seff,3PB Effective surface in three-point-bending m2

Seff,4PB Effective surface in four-point-bending m2

Seff,B3B Effective surface for the B3B-test m2

Seff,BoR Effective surface for the BoR-test m2

Seff,RoR Effective surface for the RoR-test m2

t Specimen thickness (plate) m
U Stored elastic energy J
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V0 Reference volume m3

Veff Effective volume m3

Veff,3PB Effective volume in three-point-bending m3

Veff,4PB Effective volume in four-point-bending m3

Veff,B3B Effective volume for the B3B-test m3

Veff,BoR Effective volume for the BoR-test m3

Veff,RoR Effective volume for the RoR-test m3

w Specimen width (bar) m
W Work by external loads J
Y Geometry factor −
z Distance to the neutral plane m

α Dimensionless factor −
β Dimensionless factor −
γ Surface energy per unit area J/m2

δmax Maximum specimen deflection m
θ Angle °
µ Coefficient of friction −
ν Poisson’s ratio −
ρ Normalized radial position −
σ(x, y, z) Stress MPa
σ0 Characteristic strength MPa
σmax Maximum tensile stress MPa
σI First principal stress MPa
σII Second principal stress MPa
σIII Third principal stress MPa
σf Failure stress MPa
σeq Equivalent uniaxial stress MPa
σeq,FPS Equivalent stress using the FPS-criterion MPa
σeq,PIA Equivalent stress using the PIA-criterion MPa
σref Reference stress MPa
σrad Radial stress component MPa
σtan Tangential stress component MPa
σx Stress in x-direction MPa
σy Stress in x-direction MPa
τx Shear stress in xy-direction MPa





Contents

Affidavit iii

Danksagung vii

Kurzfassung ix

Abstract xi

List of Abbreviations & Symbols xiii

Contents xvii

1 Introduction and motivation 1

2 Strength of brittle materials 3
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Brittle failure . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Defects in conventionally and additively manufactured ce-

ramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Fracture statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Testing methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Uniaxial bending tests . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 The Ring-on-Ring-test . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 The Ball-on-Ring-test . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.4 The Ball-on-Three-Balls-test . . . . . . . . . . . . . . . . . . . 22
2.3.5 Strength testing of additively manufactured ceramics . . . . 26

2.4 Practical limitations of strength testing . . . . . . . . . . . . . . . . . 28

3 Relevant methods 33
3.1 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Experimental methods . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Advancements of established methods and the extension towards addi-
tive manufacturing 37
4.1 Deriving an analytical solution for the BoR-test . . . . . . . . . . . . 37
4.2 Extending the range of application of the B3B-test . . . . . . . . . . 38
4.3 Comparing the B3B-test to the RoR-test . . . . . . . . . . . . . . . . 41
4.4 Applying the obtained knowledge to the development of a novel test

method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Summary & Outlook 47

6 List of Publications 50
6.1 Contributions as first author . . . . . . . . . . . . . . . . . . . . . . . 50
6.2 Contributions as co-author . . . . . . . . . . . . . . . . . . . . . . . . 51

xvii



6.3 Contributions to the publications as first author . . . . . . . . . . . 51

7 Funding acknowledgements 53

8 References 54

xviii



1. Introduction and motivation

Throughout the past and current century technical ceramics and glasses, which
are manufactured from synthetic materials, have become a staple in many high-
performance fields. Some of the most notable applications of these materials are
found in the fields of medical implants, spaceflight, communication systems and
microelectronics. For every case, the use of brittle materials can be traced back
to one (or often several) of their outstanding structural or functional properties.
For the structural aspect, a high compressive strength at comparably low densities,
excellent high-temperature stability, an exceptional hardness (and consequently a
highwear resistance) are some of themost outstanding properties. Furthermore, a
high corrosion resistance and exceptional biocompatibility positions these materi-
als as prime candidates for any applications in the medical field. In terms of func-
tional properties, a unique combination of electrical, optical, andmagnetic proper-
ties hasmade thesematerials attractive contenders for any field related to electron-
ics and sensorics. Especially the highly non-linear dependence of some material’s
electrical resistance on the acting electric field as well as the piezo-electric effect
have made them irreplaceable for electronic components such as varistors, sensors
and actuators [1]–[3].
However, one of the biggest drawbacks of ceramics and glasses is their brittle fail-
ure behaviour. Due to their chemical bonding, plastic deformation at room temper-
ature is a rare occurrence and single, critical flaws in the material lead to sudden,
catastrophic failure of the stressed component. Due to the statistical distribution
of such flaws, which occurs in each component or specimen, a certain amount of
scatter of thematerial’s strength is generally observed [3]–[6]. In order to ensure a
reliable application of ceramic or glass components in service, it is necessary to un-
derstand the failure behaviour and the accompanying scatter of all relevant prop-
erties [7]–[9]. One of the key methods to gather vital information, predict failure
und ultimately improve the reliability of components, is strength testing. It is an
essential tool formaterial development, component design, weakness analysis and
often forms the basis for toughnessmeasurements. Since the compressive strength
of brittle materials is generally a magnitude (or even more) higher than the ten-
sile strength, only the latter will be of relevance for this work. With the advent
of technical ceramics based on synthetic materials in the 50s and 60s of the past
century, a better understanding of their characteristics ensued and strength test-
ing was successively adapted to the special requirements of ceramics and glasses.
These requirements mostly stem from a high stiffness and the lack of plastic de-
formation of the investigated materials which cause, if not considered adequately,
a number of problems and sources of errors during testing. To the present day, a
multitude of strength testing methods have been specifically developed for brittle
materials [3], [4], [8], [10].
In general, these methods can be categorised by the dimensionality and shape of
their stress field, e.g. into uniaxial and biaxial testing methods. Some other im-
portant criterions for method selection or differentiation are the way that the load
is applied, the error tolerance as well as the necessary amount of specimen prepa-
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ration. Especially the latter is significantly more time- and cost-intensive for ce-
ramics and glasses in comparison to other material classes. Furthermore, it poses
the risk of introducing or removing flaws into the surface or sub-surface-region of
the specimens, thus altering thematerial’s intrinsic flawdistribution and falsifying
the measured strength and its scatter [3], [4], [8], [10]. In this work, the focus was
set on biaxial testing methods, such as the Ring-on-Ring-test (RoR), the Ball-on-
Ring-test (BoR) and the Ball-on-Three-Balls-test (B3B), as well as a novel uniaxial
testing method (CharAM-test) [10]–[14]. It is obvious that each method applies
an inherently different stress field on the specimen, and that they each come with
their specific advantages and disadvantages. Due to the flaw-based failure of brit-
tle materials, this will result in varying strength values being measured with each
method, even if the same material is tested. However, a comparison based on a
several assumptions (e.g. weakest-link-hypothesis) andWeibull-theory is still pos-
sible and highly relevant [15]–[18]. It should be noted that some emerging fields
of ceramic materials, such as additive manufacturing, require special treatment
in terms of strength testing due to the characteristics of the manufacturing pro-
cess itself, specimen warpage and the demands that are placed on the fabricated
components themselves [19]. Thus, new strength testing methods are necessary
or existing methods have to be adapted appropriately, in order to guarantee ac-
curate strength measurement and to confidently use well-established tools from
traditionally manufactured ceramics for strength and reliability prediction.
The overarching goal of this work was to improve the accuracy and range of appli-
cation of strength testing for ceramics and glasses, to therefore allow for a better
understanding of the materials failure behaviour and reliability in service. This
goal was achieved by several separate, but related means for various strength test-
ing methods with a biaxial stress field and will be presented in the form of several
publications: First, the analytical stress evaluation of two existing testing methods
was improved (to be more accurate) and extended (to include load-dependent ef-
fects and a wider range of specimen geometries). This was achieved through a
combined analytical and numerical approach for both the BoR-test and the B3B-
test. For the latter, experimental validation of the otherwise theoretical results was
obtained through X-ray tomography. Second, the comparability of strength test-
ing methods to each other was investigated. This aspect was finally made publicly
available for the B3B-test, and the underlying principle and possible issueswere in-
vestigated in detail for both the B3B-test and the RoR-test. Finally, a novel strength
testing method was developed, which takes the specific aspects of additive man-
ufacturing and ensuing requirements for strength testing into account. Further-
more, a detailed analysis of the possible sources of error of this new method was
performed and supported by both experimental and numerical findings.
While a short introduction is given in each publication, the upcoming chapter
(Chapter 2) will provide the necessary background to describe brittle failure, for
the statistical treatment of the strength of brittle materials and for each testing
method that is relevant within the scope of this work. The utilised numerical
methods and experimental techniques will be briefly outlined in Chapter 3, and
an extended summary of each publication is given in Chapter 4.
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2. Strength of brittle materials

2.1 Background

The typical properties of ceramic materials can often be attributed to their strong
atomic bonds within their crystal lattice, which are predominantly ionic and co-
valent [20]. In general, plastic deformation due to the movement of dislocations
is severely limited at room temperature, since any shift of the lattice structure
would result in adjacent, but repellingly charged sections of the lattice [21]. Conse-
quently, a low plasticity and fracture toughness with a simultaneously high hard-
ness, Young’s modulus and compressive strength ensue for such materials [20].
Furthermore, any form of small-scale stress relief due to plastic deformation is
severely impeded. Therefore, individual local stress concentrations, which could
be caused by crack-like defects within or at the surface of the material (see sec-
tion 2.1.2), often initiate catastrophic failure. Generally, the failure of a ceramic
component can be attributed to one of the following damage mechanisms [5]:

• Sudden, catastrophic failure (brittle failure)
• Sub-critical crack growth
• Fatigue
• Creep
• Corrosion or oxidation

For the topics presented in this work, only sudden failure will be relevant, hence
why the other damage mechanism will not be discussed in any further detail. The
upcoming sections (Sections 2.1.1 to 2.2) will deal with the basic principles of brit-
tle failure, the underlying defects that cause failure and the statistical tools that are
necessary to describe the failure behaviour of ceramic materials.

2.1.1 Brittle failure

In order to describe the sudden fracture due to brittle failure, crack-growth within
the material has to be considered und understood. Due to the low plasticity of
ceramics, it is sufficient to rely on linear elastic fracturemechanics. Assume a crack
with length a at the edge of a solid body with width B and heightH , as displayed
in Figure 2.1. For such a case, three possible modes of loading of the crack ensue,
as shown in Figure 2.2. Mode I describes a tensile loading perpendicular to the
crack plane, Mode II a shear loading in the crack plane perpendicular to the crack
front andMode III a shear loading in the crack plane parallel to the crack front. The
most harmful type of loading is Mode I, hence why the remainder of this section
will be limited to this case. Note that the following derivations can be performed
analogously for Mode II and Mode III as well [3], [4], [22], [23].
Assuming plane stress, for a point with radial distance r at angleΘ from the tip of
the crack, the acting stress field due to Mode I loading can be given through [3]

3



Figure 2.1: Solid body
with an edge crack [3].

Figure 2.2: Crack opening Modes I to III [4].
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withKI as the stress intensity factor given through [3], [4], [22], [23]

KI = Y σ
√
πa (2.4)

Here, σ refers to the stress in the undamaged body at the position of the crack, and
Y is a geometry factor that takes the type of crack, its size, and its position into
account. Typical values for Y range from 2/π to 1.12 [5]. Therefore, KI describes
the magnitude of the stress in front of the crack tip and can be utilised to describe
crack growth. If the stress σ within the body increases, KI increases, until a crit-
ical value for unstable crack growth is reached. This critical value is commonly
referred to as the fracture toughness KIc, and it is a material property that can be
determined through various testing methods [4], [5], [24]–[27]. Note that Equa-
tions 2.1 to 2.3 yield singular stresses at the crack tip (r = 0), thus exceeding the
theoretical strength of any material, at any load or crack size.
Consequently, a second criterion for crack growth has to be fulfilled. It was derived
by Griffith in 1921 by describing the crack growth through consideration of the
various energies that determine the state of the observed system [28]. In order
for a crack to grow, two new surfaces have to be created within the body, and the
necessary energy per unit area Gc is given through [3], [4], [22], [23], [28]

Gc = 2γ (2.5)

with γ as the specific surface energy per unit area. During loading of a cracked
structure, energy is provided from two sources: The work W , that is done by ex-
ternal loads, and the elastically stored energy U , which ultimately determine the
energy release rate GI per crack surface S through [3], [4], [22], [23], [28]

GI =
dW

dS
− dU

dS
(2.6)
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and allow crack growth if the total energy of the system is reduced, namely if

GI ≥ Gc (2.7)

Irwin has shown that a simple relationship between the stress intensityKI and the
energy release rate GI can be derived [4], [29]:

GI =

{
K2

I

E Plane stress
K2

I

E

(
1− ν2

)
Plane strain

(2.8)

with E as the Young’s modulus and ν as the Poisson’s ratio of the material.
If Equation 2.7 and Equation 2.8 are combined for a plane stress state, the so-called
Griffith-Irwin failure criterion is obtained [3]–[5], [22], [23]:

KI ≥ KIc (2.9)

Inserting Equation 2.9 into Equation 2.4, the maximum tensile stress at failure σf

is determined through [5]

σf =
KIc

Y
√
πac

(2.10)

From this equation, it can be deduced that an increased tensile strength is obtained
through an increased fracture toughness KIc or a decreased critical crack length
ac. Through transformation of Equation 2.10, the critical crack length ac at a given
tensile strength σf and fracture toughnessKIc is determined through [5]

ac =
1

π

(
KIc

Y σf

)2

(2.11)

The range of typical defects in brittle materials, which ultimately act as cracks, and
their influence on the failure behaviourwill be discussed in the upcoming sections.

2.1.2 Defects in conventionally and additively manufactured ce-
ramics

In general, defects refer to small flaws that are randomly distributed within the
material or at its surface. Each of these flaws causes stress concentrations, which
can be described as cracks, that subsequently lead to failure, as outlined in the
previous section. Typically, flaws are caused by the production process, the han-
dling of the finished component or they can be introduced during service. Some
examples for processing related flaws are pores, hard agglomerates, glass phases,
cavities due to evaporation of an organic component (e.g. hairs), or abnormally
large grains, as given in Figures 2.3a to 2.3d. One of the most important sources of
defects due to handling or service is found in contact damage. If the component is
dropped, damaged during transportation, or installed with inadequate tools, sur-
face defects are formed. In general, surface defects show higher values for Y and
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(a) (b)

(c) (d)

Figure 2.3: Typical process related flaws in ceramics. (a) gives a pore, (b) shows
a hard agglomerate at the surface, (c) depicts a region of abnormally large grains,
and (d) shows a region of delamination between two layers. All flaws were ob-
served in alumina manufactured through the LCM-process (Note the subtle lay-
ered structure in (a)). (a) and (d) are sourced from [30]
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are highly stressed during many load cases, thus further increasing the potential
for damage or even failure [5].
For strength testing, an important source of defects is found in the process of spec-
imen machining from the bulk material, which usually causes edge or surface de-
fects. Therefore, it is essential to avoid this damage altogether or implement so-
lutions, such as chamfered edges, which reduce the impact of potential machin-
ing defects. Otherwise, the measured strength does not correlate to the intrinsic
strength of the investigatedmaterial, and the results are misleading. Alternatively,
some testing methods allow testing in as-fabricated conditions, and the influence
of defects from specimen machining can be avoided altogether. A more detailed
discussion on this aspect of the testing methods investigated in this work is given
in Section 2.4 [10], [31].
Finally, it is important for the remainder of this work to understand the poten-
tial sources of defects that are related to a certain category of processing methods,
namely additive manufacturing. While some of the discussed aspects are relevant
for amultitude ofmanufacturingmethods, the focuswill be set on the lithography-
based ceramic manufacturing technology (LCM). This process was developed by
LITHOZ GmbH and is a specific version of digital light processing (DLP) meth-
ods, which by themselves can be attributed to the stereolithography (SLA) and
vat photopolymerisation (VPP) methods [32]–[35]. In general, the LCM-process
utilises light with a wavelength of blue, visible light to selectively cure and solidify
a liquid suspension of photosensitive polymers mixed with typically ≥ 40 vol% of
dispersed ceramic powder particles. A schematic of the process is given in Figure
2.4. The light from the LED-source (Figure 2.4 (1)) is reflected towards the bottom
of a transparent vat (Figure 2.4 (3)) through a grid of tiltable mirrors (e.g. with a
size in the vicinity of 40µm × 40µm) (Figure 2.4 (2)). The size of the individual
mirrors, which each act as a single pixel, limits the minimum lateral resolution of
this process. Within the transparent vat, the regions illuminated by the mirrors
solidify and attach to the building platform (Figure 2.4 (4)), which is submerged
in the slurry-filled vat, thus creating one layer of the desired component. The verti-
cal resolution of this process is dependent on thematerial and printing equipment,
but a layer-thickness as low as approximately 25µmcan be achieved. Subsequently,
the building platform is removed from the slurry, a new layer of slurry is spread
through rotation of the vat, and the building platform is re-submerged to create a
new layer of the desired component. After completion of all layers, the component
is debinded through a thermal post-processing step and a ceramic green body is
obtained. Through sintering, a dense ceramic component is ultimately produced.
For any further information or details of the LCM-process, the reader is referred
to [36]–[41].
A typical type of defect within the bulk of the material stems from the layered na-
ture of the process itself, namely the bonding between each individual layer. If the
processing parameters are not optimally chosen at any stage of the fabrication, the
resulting weak interface between individual layers is highly susceptible to cause
material failure. Additionally, an orientation-dependent strengthwill be observed,
as the acting direction of the stresses to the interface plane changes. However, it
has been shown that this effect is not significant as long as the processing param-
eters of fabrication and thermal treatment are understood well [43]. On the other
hand, the layered structure also creates defects on the surface of the component
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Figure 2.4: Schematic of the LCM-process, with the light source (1), the mirror
array (2), the transparent vat (3) and the building platform (4), adapted from
[42].

in the form of wavy surface structures on a micrometer-scale. They are caused by
two effects and are highly dependent on the printing orientation, i.e. the angle
between the surface and the vertical building direction.
On one hand, these surface structures are caused by overpolymerisation of the
slurry. This means that the light reflected by eachmirror scatters within the slurry,
which slightly increases the amount of curedmaterial. Therefore, a deviation from
an ideal, square pixel of cured slurry towards a barrel-shaped pixel is observed
[44]. On the other hand, the pixel-based nature of the LCM-process causes aliasing
effects when inclined surfaces (with respect to the pixel-grid) are manufactured,
as shown in Figure 2.5. Note that this effect occurs both within a single layer and
in building direction withmultiple layers being involved instead of pixels, as high-
lighted through a historic example in Figure 2.7.
The result of both effects acting together is displayed in Figure 2.6, where two dis-
tinct surface structures are observed for the same material but different surface
inclinations. If stressed, these structures will act as notches and cause stress con-
centrations at the surface of thematerial, whichwill inevitably affect the failure be-
haviour of the specimen or component. This effect has been observed for strength
testing with both uniaxial and biaxial stress fields, as outlined in [43], [45]. Due
to these special types of defects and other process-related effects of additive man-
ufacturing for strength testing, it is clear that these aspects have to be taken into
account accordingly, as will be discussed in Section 2.4. This ultimately lead to the
development of a novel strength testingmethod, as shown in Publication F ([14]).

2.2 Fracture statistics

Due to the statistical nature of defects in ceramics and their impact on the mate-
rial’s strength, it is necessary to describe the failure of ceramics with some sort
of strength distribution. For most materials, it is well established that the two-
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Figure 2.5: In-plane aliasing effect
due to the pixel-based
LCM-process [14].

Figure 2.6: Surface structures of speci-
mens printed at different angles [14].

Figure 2.7: Pyramid of Djoser, demonstrating the aliasing effect in building direc-
tion due to the discrete layer thickness and limited spatial resolution [46].
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Figure 2.8: Weibull-scaled plot of the empirical cumulative distribution function
of two samples from the same material, but with different geometry [51].

parameter Weibull distribution can be utilised, which gives the probability of fail-
ure F (σ, V ) at a given uniaxial, homogeneous stress σ in the form of a cumulative
distribution function through [5], [47], [48]

F (σ, V ) = 1− exp

[
− V

V0

(
σ

σ0

)m]
(2.12)

with σ0 and m as the distribution’s scale and shape parameters, respectively. V
refers to the specimen’s volume, and V0 to a chosen reference volume that is invari-
ably linked to σ0. Consequently, m, which is known as the Weibull modulus, de-
scribes the scatter of strength, with higher values of m indicating less scatter. The
characteristic strength σ0 is given as the strength of a specimen that, with V = V0

and σ = σ0, exhibits a failure probability F (σ0, V0) = 1 − e−1 = 63.2%. Note that
for certain circumstances, it has been shown that the Weibull distribution can be
derived analytically [49], [50].
For many cases, it is helpful to rescale Equation 2.12 according to [4]

log log

(
1

1− F (σ, V )

)
= log

(
V

V0

)
+m log

(
σ

σ0

)
(2.13)

to better visualise the data in a so-calledWeibull-plot, as shown in Figure 2.8. For a
given set of (sorted) strength data σ1−σN with specimen volume V , an estimation
of the respective probability of failure is assigned by [4]

F (σi, V )i =
i− 0.5

N
(2.14)

with i as the ranking number of the respective strength value and N as the to-
tal number of measured data. Through the aforementioned linearisation, and if
the tested material behaves according to Weibull-theory, the strength data will
(ideally) form a line with slope m. While m and σ0 could be determined graph-
ically from a Weibull-plot or through a linear regression of the data obtained
through Equation 2.12 and Equation 2.14, the recommended procedure utilises
the Maximum-Likelihood method [4], [52]. In any case, the obtained results for
m and σ0 are just estimates based on a finite number of random specimens from
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the underlying distribution. Therefore, it is standard procedure to include 90%- or
95%- confidence intervals for both parameters, as defined in [52], [53].
An essential aspect of the statistical nature of the strength of brittle materials is the
influence of the specimen’s or component’s size on themeasured strength. As out-
lined in the previous section, the strength of a specimen is generally limited by the
most critical defect. Consequently, if a larger specimen is tested, a higher probabil-
ity to encounter a critical defect at a given size ensues, and the average measured
strength decreases notably with an increase of the specimen’s size. This aspect is
more commonly known as the "size-effect". This resulting shift in strength is dis-
played in Figure 2.8, where both samples represent the samematerial, but different
specimen geometries (For a more elaborate explanation of the effects causing the
shift in Figure 2.8 please refer to [51]). Through the inclusion of the specimen’s
volume V and a reference volume V0 in Equation 2.12, the "size effect" is considered
for the probability of failure as well [3]–[5].
For samples of the same material, the relationship between the characteristic
strength σ0,1 and reference volume V0,1 of a specific specimen geometry and σ0,2

and V0,2 of a different geometry [3]–[5], [16]

σ0,1

σ0,2
=

(
V0,2

V0,1

)1/m

(2.15)

can be derived from Equation 2.12.
Up until now, only uniaxial, homogeneous stress fields have been considered. For
inhomogeneous stress fields, the probability of failure can be determined by con-
sidering the spatially varying stress distribution σ(x, y, z) through [5], [47], [48]

F (σ, V ) = 1− exp

[
− 1

V0

∫
V

(
σ(x, y, z)

σ0

)m

dV

]
(2.16)

Note that integration is performed for the entire specimen, but only tensile stresses
are taken into account, therefore neglecting the damaging effects of compressive
stresses. This is due to the much higher compressive strength of brittle materials,
and is valid for most cases where the compressive stress is not significantly higher
than the tensile stress [5]. If the shape of the stress field is independent of the
magnitude of the applied load, σ(x, y, z) can be rewritten as σ(x, y, z) = σref ×
g(x, y, z) and an effective volume Veff can be defined through [5], [47], [48]

Veff =

∫∫∫
σ>0

[g(x, y, z)]
m

dx dy dz (2.17)

with σref as an arbitrary reference stress. Thus, the effective volume can be inter-
preted as the volume of a hypothetical, uniaxially and homogeneously (tensile)
loaded specimen with the same probability of failure for σref as the inhomoge-
neously loaded specimen. Note that other definitions are commonly used as well,
and have to be distinguished with care [54]. Through inserting Equation 2.17,
Equation 2.16 can be generalised to [5], [47], [48]
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Figure 2.9: Influence of the effective surface on the measured strength if the mate-
rial behaves according to Weibull-theory [3].

F (σref , Veff ) = 1− exp

[
−Veff

V0

(
σref

σ0

)m]
(2.18)

Typically, the maximum first principal stress is chosen as σref , thus limiting
g(x, y, z) to the numerical range between 0 and +1 for uniaxial stress fields.
For multiaxial stress fields, specific failure criterions are utilised to determine an
equivalent uniaxial stress σeq(x, y, z). The criterions used in this work are the First-
Principal-Stress-criterion (FPS) and the Principle-of-Independent-Action (PIA)
[6], [9], [55], [56]. For the FPS-criterion, it is assumed that solely the first princi-
pal stress σI contributes to the damaging action, and is therefore simply defined
as [55]

σeq,FPS = σI (2.19)

The PIA-criterion takes the contribution of all principal stresses to the damaging
action into account through [6], [9], [56]

σeq,PIA = m
√

σm
I + σm

II + σm
III (2.20)

with σII and σIII as the second and third principal stress, respectively, and m as
defined before. Finally, it should be noted that the concept of effective volume can
be applied to failure caused by surface defects as well. Analogously to Equation
2.17, an effective surface Seff can be defined as [5], [47], [48], [57]

Seff =

∫∫
σ>0

[g(x, y)]
m

dx dy (2.21)

and the probability of failure due to surface defects is given by [5], [47], [48]

F (σref , Seff ) = 1− exp

[
−Seff

S0

(
σref

σ0

)m]
(2.22)

For some well-established testing methods such as 4PB or 3PB, Equations 2.17 and
2.21 can be solved, therefore providing a straightforward way to determine the ef-
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fective volume or surface through an analytical expression [15], [58], [59]. How-
ever, if this not the case, numerical methods such as FEA have to be utilised to
determine the effective quantities for individual specimen geometries. This aspect
will be discussed for the testing methods presented in the upcoming section.
On the basis of the size-effect, it is now evident that even specimens with the ex-
act same geometry can exhibit a difference in strength if the shape of the applied
stress field is altered. Note that this behaviour requires that all specimens fail due
to the same defect population. Thus, if the characteristic strength of each sample
is plotted in dependence of the respective effective volume or surface on a loga-
rithmic scale, a linear trend according to Equation 2.15 is observed, as displayed
in Figure 2.9. If the investigated material behaves according to Weibull theory, the
slope kreg of a linear regression through all samples yields a regression modulus
mreg through mreg = −1/kreg that is similar to the Weibull modulus m of each
individual sample [3]–[5], [47], [48].

2.3 Testing methods

The upcoming section will deal with the strength testing methods that have either
been worked on for this thesis or that are necessary to be known in case they are
referenced to. The state-of-the-art for each method will refer to the time at the
beginning of this thesis, and chapter 4 will explain the advancements that have
been made through this work.

2.3.1 Uniaxial bending tests

The most wide-spread testing methods are variations of uniaxial bending tests
(also known as flexural tests), such as three-point-bending (3PB) and four-point-
bending (4PB). Due to the experimental complexity of uniaxial tension tests for
brittle materials, flexural tests are widely used since the 1950s and 1960s at ceramic
manufacturers and research institutes [31]. In general, flexure testing of ceramics
is a versatile and simple testing method, and the necessary fixtures can be pro-
duced with relatively low cost. In the past decades, several standards have been
developed that govern the specimen geometry and related tolerances, the testing
setup and stress evaluation, such as [60], [61].
A schematic of the setup for a 3PB-setup for rectangular bars and for a 4PB-setup in
a 1/4 point configuration (see [15]) is given in Figures 2.10 and 2.11, respectively.
Their respective stress fields can easily be determined through beam theory and
are given in Figure 2.12 and Figure 2.13 in dependence of the longitudinal position
on the bar. For three-point-bending, themaximum tensile stress σmax in the centre
of the specimen is given through [60], [61]

σmax =
3Pl

2wh2
(2.23)

with l as the distance between the supporting rollers, w as the width of the speci-
men, h as its height and P as the applied load. For the region of constant bending
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Figure 2.10: Schematic testing setup
for three-point-bending.

Figure 2.11: Schematic testing setup
for four-point-bending.

Figure 2.12: Longitudinal profile of
the stress field for three-point-bending.

Figure 2.13: Longitudinal profile of
the stress field for four-point-bending.

moment (and consequently constant edge fibre stress) in the four-point-bending
setup, σmax is given through [60], [61]

σmax =
3P (l2 − l1)

2wh2
(2.24)

with l1 as the inner roller span, l2 as the outer roller span, and the other variables
as defined before.
Due to the simplicity of the respective stress field, analytical expressions for the
effective volume and surface can be derived according to Equation 2.17. For a 3PB
setup, the effective volume Veff,3PB is given through [15]

Veff,3PB =
hwl

2(m+ 1)
(2.25)

withm as the Weibull modulus of the investigated material, and the effective sur-
face Seff,3PB is given through [15]

Seff,3PB = l [h+ w(m+ 1)]
1

(m+ 1)2
(2.26)

For a 1/4-point 4PB setup, the effective volume Veff,4PB is determined by [15]

Veff,4PB =
hwl2(m+ 2)

4(m+ 1)2
(2.27)

and the effective surface Seff,4PB is calculated through [15]

Seff,4PB = l2 [h+ w(m+ 1)]
m+ 2

2(m+ 1)2
(2.28)
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Themost common specimen geometry is configuration B of MIL-STD-1942A (suc-
ceeded byASTMC1161, [61]), i.e. a rectangular bar with awidth of 4mm, a height
of 3mm and a length of 45mm, which is typically tested on a fixture with an outer
span length of 40mm (and an inner span length of 20mm in the case of 4PB). Note
that other specimen geometries, apart from bars with a rectangular cross section,
are also commonly used, such as bars with a square cross section or cylindrical
rods. Finally, a possible testing setup that fulfils all requirements for accurate
strength testing according to [62] is shown in Figure 2.14.

Figure 2.14: A possible design of a testing fixture for 4PB according to [62].

2.3.2 The Ring-on-Ring-test

One of the most prominent biaxial testing methods is the Ring-on-Ring-test. It
is widely known and well established due to its standardisation in the ASTM-
standard C1499 [11]. As the name implies, the load is applied to the specimen
via a centrally positioned steel ring, and the specimen is supported by a concentric
steel ring with significantly larger radius. It allows testing of both disc-shaped and
square- or slightly rectangular plate specimens. An example for a possible testing
setup is given in Figure 2.15.
Due to the rotational symmetry of the testing setup, an analytical description of
the stress field can easily be derived through plate theory. In order to simplify the
upcoming expressions, several dimensionless factors are defined:

α =
RLR

RSR
(2.29)

β =
R

RSR
(2.30)

ρ =
r

RSR
(2.31)
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Figure 2.15: A possible design of a testing fixture for the RoR-test according to [11].

with RLR as the load ring radius, RSR as the support ring radius, R as the speci-
men’s radius and r as the radial coordinate from the centre of the specimen. The
stress field can be divided into three regions, depending on the distance from the
specimen’s centre, and two stress components, i.e. a radial stress σrad and a tangen-
tial stress σtan. For each region, each stress component can generally be expressed
through

σj =
3Pz

2πt3
Dj (ρ, α, β, ν) (2.32)

with the subscript j referring to either the radial (j = rad) or the tangential (j =
tan) stress component. P refers to the applied load, z to the distance from the
neutral plane, t to the specimen’s thickness and ν to the Poisson’s ratio of the tested
material. Dj determines the value of the stress field and is given for each region
through the following expressions:

Drad = Dtan = (1− ν)
1− α2

β2
− (1 + ν)2 logα (2.33)

for 0 ≤ r ≤ RLR,

Drad = (1− ν)

[
1− α2

β2
+

α2

ρ2
− 1

]
(2.34)

Dtan = (1− ν)

[
1− α2

β2
− α2

ρ2
+ 1

]
(2.35)

for RLR ≤ r ≤ RSR and

Drad = (1− ν)
(
1− α2

) [ 1

β2
− 1

ρ2

]
(2.36)
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Figure 2.16: Radial profile of the axisymmetric stress field of the RoR-test.

Dtan = (1− ν)
(
1− α2

) [ 1

β2
+

1

ρ2

]
(2.37)

for RSR ≤ r ≤ R.
The resulting stress field for the tensile loaded surface and a typical specimen ge-
ometry is shown in Figure 2.16. Note the large region of constant (maximum)
stress in the centre of the specimen, which is one of the main points of differen-
tiation to the ball-loaded testing methods that will be presented in the following
sections. Since equations 2.33 to 2.37 are derived through plate theory, sufficiently
thin specimens have to be tested. Similarly, if the specimens are too thin, large de-
flections ensue and plate theory is no longer applicable. Therefore, an upper and
lower limit for the specimen’s thickness is defined by the standard: [11], [63]

DSR

10
≥ t ≥

√
2σfD2

SR

3E
(2.38)

with DSR as the diameter of the support ring, σf as the measured or expected
strength of the specimen and E as the Young’s modulus of the tested material.
Regarding the overhang of the specimen, i.e. the part of the specimen outside the
support radius RSR, the following criterion has to be fulfilled:

2 ≤ D −DSR

t
≤ 12 (2.39)

withD as the specimen’s diameter and the other variables as defined before. This
criterion assures that specimen failure seldomly originates from its edge, as the
stress at the edge of the specimen decreases with an increase in overhang. For
both of these criteria, square or slightly rectangular plates are taken into account
through the conversion

D = 0.54 (L1 + L2) (2.40)

with L1 and L2 as the edge lengths of the plate. Note that 0.98 ≤ L1/L2 ≤ 1.02
has to be given.
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If these criteria are met, the strength of a failed specimen is determined through
the maximum tensile stress σmax according to

σmax =
3qD2

LR(1 + ν)

4t2

[
2 log

(
DSR

DLR

)
+

1− ν

1 + ν

(
1− D2

LR

D2
SR

)
D2

SR

D2

]
(2.41)

with

q =
4P

πD2
LR

(2.42)

and all other symbols as defined before. The deflection in the centre of the speci-
men, δmax, can be estimated through

δmax =
3P

(
1− ν2

)
D2

LR

8πEt3

{
D2

SR

D2
LR

[
1 +

(1− ν)
(
D2

SR −D2
LR

)
2 (1 + ν)D2

]

−
(
1 + log

DSR

DLR

)}
(2.43)

with E as the Young’s modulus of the tested material. If square or rectangular
specimens are tested, Eq. 2.41 can still be utilised by determining an equivalent
specimen diameter Deq according to

Deq =
1(

0.90961 + 0.12652 t
DSR

+ 0.00168 log Lmean−DSR

t

) (2.44)

where Lmean = 0.5 (L1 + L2). Due to the simplicity and symmetry of the stress
field, it is possible to derive a single equation that fits the analytical results (after
the PIA-criterion) for the effective surface Seff,RoR and effective volume Veff,RoR.
Form > 5, the effective surface is given through

Seff,RoR =
π

2
D2

LR

{
1 +

44(1 + ν)

3(1 +m)

(5 +m

2 +m

(
DSR −DLR

DSRD

)2

×
[
2D2(1 + ν) + (DSR −DLR)

2(1− ν)

(3 + ν)(1 + 3ν)

]}
(2.45)

and the effective volume can be determined from

Veff,RoR = Seff,RoR

[
t

2(m+ 1)

]
(2.46)

with a maximum error to the exact, analytical results of less than 5%.
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Figure 2.17: Schematic of the BoR testing setup.

2.3.3 The Ball-on-Ring-test

Another ring-supported, biaxial testingmethod is the Ball-on-Ring-test. Similar to
the RoR-test, a steel ring is utilised as the support for the specimen, but the load
is applied in the centre of the support ring through a (steel) ball, as illustrated in
Figure 2.17. Due to this difference, the influence of friction due to load application
is significantly less pronounced [12]. Due to the symmetry and simplicity of the
testingmethod, it is possible to describe the stress field and deflection field of disc-
shaped specimens analytically. However, this aspect has been a point of discussion
for many years and several solutions have since been developed, which will be
briefly outlined in the following paragraphs. One of the main problems is that the
unknown load distribution beneath the contacting sphere is simplified to ease the
derivation of an analytical solution. Unless stated otherwise, all of the presented
solutions will assume that a concentric, uniform load distribution is applied to the
specimen.
The first solution for the stress field and deflection field was published by Roark
& Young [64], [65]. In this solution, the stiffening effect of the overhang, i.e. the
region outside the loading ring radius, was not taken into account. Furthermore,
it was found that the equation for the maximum tensile stress is erroneous, as out-
lined in [66]. The correct solution for themaximum tensile stressσmax, determined
through plate theory, is given through

σmax = σrad,r=0 = σtan,r=0

=
3qconR

2
con(1 + ν)

4t2

[
1 + 2 log

(
RSR

Rcon

)
+

1− ν

1 + ν

(
1− R2

con

R2
SR

)]
(2.47)

with

qcon =
P

πR2
con

(2.48)

andRcon as the radius of the area of constant load. An improvement was provided
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by Vitman et al. in 1962 through a solution for the RoR-test, which takes the effect
of the overhang into account [67]. By replacing RLR with Rcon in Equation 2.41, a
solution for the maximum tensile stress σmax

σmax =
3qconR

2
con(1 + ν)

4t2

[
2 log

(
RSR

Rcon

)
+

1− ν

1 + ν

(
1− R2

con

R2
SR

)
R2

SR

R2

]
(2.49)

and the central deflection of the plate δmax

δmax = δr=0

=
qb4

8M

(
1− log

(
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Rcon

)
−
[
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1− ν

1 + ν

(
1− R2

con

R2
SR

)
R2

SR

R2

]
R2

SR

R2
con

)
(2.50)

with the bending stiffness of the plateM as

M =
I × E

1− ν2
(2.51)

and the second moment of area I given by

I =
t3

12
(2.52)

is obtained. It has been shown that this solution underestimates σmax and overes-
timates δmax for the BoR-test [68].
Kirstein&Woolley derived a solution for the stress anddeflection in centrally loaded
discs on a finite amount of support points in 1967, which also takes the contribu-
tion of the overhang into account [69]. Through the application of Bassali’s theory,
equations for the stress distribution for the entire disc were derived [70]. Further-
more, they have shown analytically that σmax is independent of the number of
support points, hence why their solution can be applied to the BoR-test (infinite
number of support points) through

σmax =
3qconR

2
con(1 + ν)

4t2

[
1 + 2 log

(
RSR

Rcon

)
+

1− ν

1 + ν

(
1− R2

con

R2
SR

)
R2

SR

R2

]
(2.53)

with the symbols as defined before. Due to its length, the solution for the deflection
will not be shown in this work. Note the similarity of Equations 2.47, 2.49 and 2.53.
Finally, Frandsen published his results for the application of plate theory to the
BoR-problem in 2012. His work contains the radial-, tangential- and shear-stress
distributions, as well as solutions for the deflection-, slope-, curvature-field for the
entire disc. While his solution for σmax is identical to that of Kirstein & Woolley
(Equation 2.53), the central deflection of the disc is given through
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Figure 2.18: Radial profile of the axisymmetric stress field of the BoR-test.
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(2.54)

The radial and tangential stress component in dependence of the radial position
for a typical geometry is shown in Figure 2.18.
As mentioned before, all of the solutions presented so far assume a constant load
distribution with a known radius Rcon. It is obvious that the actual load distribu-
tion beneath the loading ball is not constant, and that the extent of the simplified
load distributionRcon has to be determined according to some criterion. Based on
the results of FEA, Shetty et al. proposed that Rcon ≈ t/3, while McKinney & Her-
bert proposed Rcon ≈ t based on experimental strain gauge measurements [71],
[72].
Additionally, all solutions based on plate theory include terms that approach in-
finite stress values for Rcon → 0. A method to solve both of these problems is
found based on work byWestergaard from 1926 in combination withHertz’s theory
of elastic contact [73], [74]. Based on an analytical approach byNádai [75],Wester-
gaard proposed a correction to avoid infinite stress values through replacing small
contact radii Rcon with a corrected contact radius R∗

con:

R∗
con =

{
Rcon for Rcon ≥ 1.724t√
1.6R2

con + t2 − 0.675t for Rcon < 1.724t
(2.55)

In later work,Rcon is often determined according to the Hertzian solution for elas-
tic contact of a sphere and a planar half-space [12], [72]:

Rcon,Hertz =
3

√
3PRLB

4E∗ with 1

E∗ =
1− ν21
E1

+
1− ν22
E2

(2.56)
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withRLB as the load ball radius,E∗ as the effective Young’smodulus,E1 and ν1 as
the elastic constants of one contact partner, andE2 and ν2 as the elastic constants of
the other one. While Equation 2.56 would generally yield contact radii that are too
small for a meaningful result for σmax from the analytical solution given in Equa-
tion 2.53, the combination with the correction given in Equation 2.55 has provided
satisfactory results, as shown in [12] and [66]. Hertzian theory further provides
a solution for the stress distribution p(r) beneath a sphere pressed against a half
space through

p(r) = q
3

2

√
1− r2

R2
con,Hertz

for 0 ≤ r ≤ Rcon,Hertz (2.57)

with the symbols as defined before.
In the early 1980s,Hu utilised superposition to derive a solution for the maximum
tensile stress for a disc with such a load applied in its centre, even including the
effect of the overhang [76]

σmax =
3qconR

2
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+
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1 + ν
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5R2
SR

)
R2

SR

R2

]
(2.58)

but did not derive any further solutions for other parts of the disc or its deflection.
Equation 2.53 and Equation 2.58 have been validated through FEA for various ge-
ometries by Chae et al. [77]. In 2014, Frandsen derived an analytical expression
for the effective surface Seff,BoR using the PIA-criterion by solving Equation 2.17
for the solution of the stress field he published two years earlier [68], [78]. How-
ever, the solution is too long to be included in this work and is only applicable to
integer values of the Weibull modulusm, which is rarely the case in actual testing
scenarios. Following the procedure demonstrated for the effective volume for the
RoR-test, the effective volume of the BoR-test, Veff,BoR is derived from the effective
surface Seff,BoR through the relationship given in Equation 2.46.

2.3.4 The Ball-on-Three-Balls-test

The Ball-on-Three-Balls test was already mentioned in the 1980s, but substantial
development of this testing method was made starting from the early 2000s by
Börger et al. [13], [79]–[81]. At that time, itwas initially conceptualised as amethod
to determine the strength of functional ceramics or components, but it has since
been applied to many other classes of ceramics and brittle materials in general.
Similar to the RoR-test, both disc-shaped and square specimens can be utilised,
with special fixtures allowing the testing of rectangular plates as well [82]–[93].
Recently, the testing of hexagonal plates has also been investigated, as outlined in
[94].
As with the BoR-test, a single ball is employed to apply a load on a specimen, and
it is typically positioned in the centre of the specimen. The support is realised
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Figure 2.19: Schematic of a B3B testing setup. The block has to be removed prior
to testing and helps with specimen alignment until a pre-load is applied.

through three balls which are in contact with each other and not constrained in
any other way. A schematic of a possible testing setup is given in Figure 2.19.
Therefore, the support radius RS is determined by the radius of the supporting
balls RB and is given through

RS =
2RB√

3
(2.59)

If not stated otherwise, it is assumed that the load ball is of equal size to the sup-
porting balls. On one hand, this increases the simplicity of the testing setup, and,
on the other hand, reduces the risk of contact damage in the specimen at high
loads. For most brittle materials, it is sufficient to utilise bearing balls made from
steel, which are widely available in different sizes and manufactured to strict tol-
erances. For high-strength materials, plastic deformation of the load ball might
become an issue, and ceramic- or cemented carbide balls are used instead. In con-
trast to the RoR- and BoR-test, no accurate analytical solution for the stress field of
the B3B-test is available. Therefore, FEA has to be utilised to determine the maxi-
mum tensile stress σmax for strength evaluation [13], [80].
The stress distribution with the characteristic three-fold symmetry for a disc with
a typical geometry is given in Figure 2.20. Furthermore, Figure 2.21a and Figure
2.21b depict the radial and tangential stress distribution along the 0° and 60° di-
rection, as marked in Figure 2.20, in dependence of the relative radial position. For
small deflections and elastic specimen behaviour, a linear relationship between the
applied load P and the maximum tensile stress σmax is given through [13], [95]

σmax = fB3B

(
t

R
,
RS

R
, ν

)
P

t2
(2.60)

with the variables as defined before and fB3B as a dimensionless factor that takes
the specimen geometry, testing setup and material into account. The factor fB3B
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Figure 2.20: Stress field (1st principal stress) of the tensile loaded surface for a
typical specimen geometry of the B3B-test. The coloured contours give the mag-
nitude of stress from 0 (blue) to the maximum tensile stress (red) in intervals of
10%. Grey areas represent compressive stresses.

(a) (b)

Figure 2.21: Radial (σrad)and tangential (σtan) stress components in dependence
of the radial position for two angles (0° in (a), 60° in (b)) as defined in Figure 2.20,
adapted from [13].
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Table 2.1: Fitting constants c0 − c6 for various values of ν from [95]

ν 0.10 0.15 0.20 0.25 0.30 0.35 0.40
c0 −39.96 −42.09 −42.54 −46.07 −47.82 −46.84 −49.70
c1 42.24 44.50 45.07 48.72 50.60 49.74 52.72
c2 499.46 532.09 538.14 592.59 618.42 602.64 645.51
c3 −11.69 −12.53 −13.07 −14.14 −14.86 −15.22 −16.12
c4 4.69 5.18 5.49 6.14 6.57 6.76 7.31
c5 12.34 12.47 12.47 12.68 12.75 12.67 12.79
c6 0.0242 0.0232 0.0232 0.0216 0.0210 0.0216 0.0206

has been determined through FEA by [13] and later by [95] for a wide range of
specimen geometries and materials. Note that an idealised model was utilised,
which assumes punctiform load introduction and supports.
In order to make these results available, a non-linear fit for fB3B was developed
[95]:

fB3B
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t
R + c3

(
t
R

)2
+ c4

(
t
R

)3)
1 + c5

t
R

(
1 + c6

RS

R

)
(2.61)

with the constants c0− c6 as given in Table 2.1 for different Poisson’s ratios ν of the
tested material. This fit is valid within the range 0.1 ≤ t/R ≤ 0.5, 0.7 ≤ RS/R ≤
0.9 and 0.1 ≤ ν ≤ 0.4. For many cases, the Poisson’s ratio ν of the tested material
is in between the tabulated values. Then, the value for fB3B can be determined
through interpolation according to [95]
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(2.62)

with ν1 and ν2 as the next higher and lower values to ν in Table 2.1. Within the
given range of parameters, the maximum stress for the B3B-test is given with a
maximum error of less than 2%. This error stems from the general error of the
FEA-model (≈ ±1%) and the accuracy of the fit given through equations 2.61 and
2.62 (≈ ±1%).
For a slightly extended range of parameters (0.05 ≤ t/R ≤ 0.5, 0.6 ≤ RS/R ≤ 0.95
and 0.1 ≤ ν ≤ 0.4) and without a decrease in accuracy, a simpler function for the
fit of fB3B

25



Table 2.2: Fitting constants c0 − c9 from [96]

c0 c1 c2 c3 c4
1.12613 −2.00184 0.993698 11.91891 0.89157

c5 c6 c7 c8 c9
−5.20337 0.253034 5.58097 1.12707 −18.4977
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was published in 2016, with the constants as given in Table 2.2 [96]. However, due
to the lack of an accurate analytical solution, the effective surface Seff,B3B and ef-
fective volume Veff,B3B have to be determined through FEA as well. Up until the
publication of Publication C ([51]), the effective quantities were available online
through a Flash-based webtool (for which support was seized by most browsers
in 2020) or as fits for limited parameter ranges [97].

2.3.5 Strength testing of additively manufactured ceramics

While all of the testing methods presented so far are widely used for a wide range
of ceramic materials and glasses, some problems arise for the testing of additively
manufactured specimens in as-fabricated condition, as will be discussed in more
detail in Section 2.4. Furthermore, due to the effects outlined in Section 2.1.2, a
distinct anisotropy (i.e. a dependency of the measured strength on the relation
between the tensile load during testing and the orientation of the deposited lay-
ers) might be expected. As a reference, Figure 2.22 gives typical possibilities for
the flexure specimen’s orientation in relation to a coordinate system. During man-
ufacturing, a single layer is always applied in the xy-plane, and the specimen is
therefore built along the z-axis (=printing direction). The orientation of a speci-
men that is manufactured with its tensile loaded face (see section 2.3) in the xy-
plane (XY)will be referred to as "horizontal", if it is in x-z-plane (XZ) then itwill be
referred to as "sideways", and if it is manufactured upright (YZ), it will be referred
to as "vertical".
In this section, an overview of strength testing of additively manufactured ceram-
ics in regard to this anisotropy in recent literature will be given. While this ef-
fect is relevant for a plethora of manufacturing methods, this section will focus on
VPP-based methods. For a recent and general overview of strength testing of alu-
mina and zirconia, manufactured throughmany different fabricationmethods, the
reader is referred to [99]. While many publications for the anisotropy for the SLA
process are found, such as [100], [101], this sectionwill solely dealwithDLP-based
methods like the LCM-process, since no other techniques have been investigated
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Figure 2.22: Coordinate system utilised to define the specimen orientation,
adapted from [98].

within the scope of this work.
For the LCM-process, initial studies did acknowledge the existence and impor-
tance of the printing orientations’ influence on the measured strength but did not
perform any further investigations on the quantitative aspects. Schwentenwein &
Homa performed four-point bending measurements on alumina, with the bend-
ing bars printed in an upright (vertical) orientation [102]. Similarly, Schwarzer
et al. considered the orientation of square plates made from alumina toughened
zirconia (ATZ) tested with the B3B-test, while Borlaf et al. adequately compared
their results of four-point bending of zirconia to studies on the influence of the
printing orientation performed by Harrer et al. [103]–[105]. Speaking of, Harrer
et al. published two studies on this effect in 2017 [105], [106]. The former pub-
lication ([106]), which deals with binder development for zirconia that is subse-
quently tested with the B3B-test, only acknowledged this effect. The latter ([105])
presents the results of two orientations (horizontal and vertical) of zirconia bars
tested in four-point bending. Furthermore, the vertical orientation is also tested
with the B3B-test. In the same year, Osman et al. published an investigation on
zirconia-discs manufactured in horizontal and vertical orientation as well as spec-
imens tilted by 45°, which were tested using the Piston-on-Three-Balls-test [107].
All publications have noted a distinct difference of the measured strength between
specimens manufactured in vertical and horizontal orientation, with the latter one
exhibiting a higher strength compared to the vertical orientation. This effect can
be attributed to both weak interfaces between layers if the processing parameters
are not yet optimised, or to the influence of the specimen’s surface, as outlined in
2.1.2
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A thorough investigation of the influence of the printing orientation on the mea-
sured strength is provided by Schlacher et al. for alumina. Three different ori-
entations are considered for four-point-bending, while two different orientations
are considered for B3B-testing. Furthermore, the influence of as-printed surfaces
versus machined surfaces (and of the sintering parameters) was also investigated
[43]. They have shown that for machined specimens, no difference for the mea-
sured strength between different printing orientations is observed. Saâdaoui et al.
investigated the defect distribution in zirconia in relation to the measured strength
(three-point-bending) through X-ray tomography for both the horizontal and ver-
tical orientation [108]. Recently, Kammler et al. presented results of conventionally
manufactured alumina in comparison to additively manufactured alumina in 3
different printing orientations, i.e. horizontal, sideways and vertical [109].
For the DLP-process in general, Lu et al. performed both three-point-bending as
well as RoR-tests on yttria-stabilised, tetragonal zirconia and purposely chose the
more favourable (horizontal) printing orientation, but did not perform any further
investigations on its influence on themeasured strength [110]. Meanwhile,Marsico
et al. presented results for partially stabilised zirconia for five different orientations
(vertical, horizontal and tilted by 45°, with the latter two in a sideways-variation
as well) using three-point-bending [111]. Shen et al. took a different, systematic
approach for zirconia specimens tested in three-point-bending: Seven orientations
were investigated, with all specimens being printed horizontally and the difference
of each orientation being a tilt of 15° along their longitudinal axis [112]. A distinct
difference in strength, with a minimum for the specimens rotated by 45°, has been
found. Finally, Zhao et al. determined the strength of zirconia for dental implants
using three point bending of "test strips" in both horizontal and vertical orientation
[113]. Again, the same tendencies as outlined in the previous paragraph have been
found within these publications.
Overall, while a number of investigations on the influence of the printing orien-
tation on the measured strength have been performed, all of these investigations
rely on the same testing methods that are used for conventionally manufactured
ceramics. These procedures have some issues, as will be outlined in Section 2.4,
and the capabilities of additive manufacturing with respect to specimen design
have not yet been fully utilised for strength testing.

2.4 Practical limitations of strength testing

This sectionwill present and discuss the advantages, disadvantages, practical limi-
tations, andmost prominent sources of error for each testingmethod introduced in
the previous section. These errors are one of themainmotivations for this work, as
a significant (unsystematic) error greatly inhibits the maximumWeibull-modulus
that can be measured due to the added scatter of strength results [114]. Therefore,
in order to only measure the material’s inherent strength and scatter thereof, it is
essential to minimise any potential source of error in the testing method itself.
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Uniaxial bending

For uniaxial bending tests, which seldomly allow direct testing of components,
specimen preparation is an issue that has to be addressed properly. It is essential
that machining is performed with care so that no critical defects are introduced at
or beneath the surface. If that is not the case, the measured strength and scatter of
thematerial will be influenced by specimen preparation and the resulting datawill
not be relevant for design purposes anymore. Furthermore, the surface condition
of the test specimen should resemble that of the component in service. In order
to reduce the risk of specimen failure due to machining-induced edge defects, the
tensile loaded edges are chamfered. However, this is a possible source of error for
stress evaluation, as the cross-section is reduced, which decreases the moment of
inertia and increases the maximum tensile stress. Depending on the geometry of
the chamfered edges, this effect can be as much as 1% to 5% [62]. Note that these
issues are nearly irrelevant for biaxial testing methods, as the edge stresses are
typically less than 25% of the maximum tensile stress and are therefore seldomly
the cause of specimen failure [11].
Other potential issues arise from the influence of friction at the load-points, which
can be as high as 13% [115]. By using moving rollers instead of fixed structures,
this issue can be neglected. On the flip side, this causes the possibility of a tan-
gency shift of the contact points due to the specimen’s movement on the roller.
The influence of this effect is dependent on the roller size, specimen thickness, and
the flexibility as well as bending strength of the investigated material. It has been
shown that this effect causes a potential error of up to 4% [115]. If smaller rollers
are utilised, this error is significantly reduced, but the problem of contact stresses
and wedging beneath the rollers increases [116]. Note that these two effects can
only be reduced through contrasting measures and some middle-ground for the
roller size has to be chosen. In general, a misalignment of the roller positions of
1% will be amplified to an error of 2 % to 4% in maximum tensile stress for 3PB
and 4PB setups, respectively [115].
Finally, another significant source of error is a twisted specimen or testing setup,
which can have severe influences on the whole stress field [117]. Through articu-
lating rollers, this error can be significantly reduced. Lube & Manner have shown
that a miniaturisation of the 4PB-setup for an outer span length of 15 mm is pos-
sible with an error of less than 10% [118]. However, further miniaturisation is
limited by the positioning accuracy of the rollers and specimen manufacturing.
To conclude, it should be noted that many components are not stressed in pure
uniaxial tension or bending during service, and are often subjected to a more com-
plex, multi-axial stress state, which inhibits the meaningfulness of strength results
obtained through uniaxial bending for design purposes.

The RoR-test

One of the essential aspects during testing is the reduction of friction between
the load- or support ring and the specimen. As shown by Fessler & Fricker, fric-
tion causes stress concentrations at the regions of contact of the specimen with the
rings, while simultaneously reducing the level of the constant, tensile maximum
stress within the load ring radius [119]. The impact of these effects on the stress
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field increases with an increase in friction.
In order to reduce friction, some sort of intermediate layers or lubricants have to
be used. While lubricants have the least impact on load application, their use of-
ten impedes fractographic analysis [11]. Typically, thin intermediate layers such
as carbon-, teflon- or polymer foils are applied in the regions of contact, as shown
in Figure 2.15. While their drawback is an influence on the load application it-
self through deformation, an additional benefit of these layers is that they improve
the contact between the rings and the specimen by compensating small misalign-
ments and machining inaccuracies. This effect and its consequences on the mea-
sured strength has been discussed in more detail in Publication D ([120]). Due
to the necessity of planar contact between the specimen surface and the load- and
support rings, smooth and parallel surfaces of the specimen have to ensured. Fur-
thermore, the surfaces of the load-and support rings have to bemachined to a high
degree of flatness as well. This aspect drastically impedes the potential for minia-
turisation of this testing method, as steel rings with a diameter of less than 10mm
are increasingly difficult to manufacture to the required tolerances [10].
Other important aspects during testing are the alignment of the rings. More specif-
ically, their concentricity has a severe influence on the accuracy of the analytical
solution. If the centre of the load ring is shifted by 1% of the support radius, an
error of 2% in the maximum stress ensues [121].
Overall, if specimens shall be tested according to the standard for RoR-test, their
geometry is quite limited, but the conditions for testing are well defined. In many
cases, this method is therefore not suited to test components directly or to test
specimens in as-sintered conditions. However, theRoR-test allows testing of a large
effective volume or surface, especially in comparison to the other biaxial testing
methods described in this work [11], [51], [78], [120].

The BoR-test

While friction due to load application plays a significantly less important role in the
BoR-test compared to the RoR-test [12], the problem with friction at the support
ring still remains. Additionally, the ring support requires a planar surface and
even contact of the specimen with the testing fixture. If this is not the case, the
axisymmetric stress field is disturbed and stress concentrations at the support are
formed. Furthermore, the usage of rings inhibits the miniaturisation capabilities
of this testing method as well, as outlined in the previous paragraph [10].
A big advantage of the BoR-test is the simple testing setup and the availability
of a complete, analytical description of its stress- and deflection-field (within the
aforementioned limitations, see Chapter 2.3.3. Consequently, the effective volume
and surface can either be directly determined through analytical expressions (see
Chapter 2.3.3) or through numerical integration of the analytical solutions for the
stress field according to Equation 2.17 [68], [78].
Still, the effective surface or volume is significantly smaller compared to that of the
RoR-test, but slightly larger than that of the B3B-test, which positions this testing
method as an intermediate option between these two [11], [51], [78], [120].
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Figure 2.23: Influence of a potential change of several system parameters on the
measuring accuracy for the B3B-test [80].

The B3B-test

In contrast to the other biaxial testing methods discussed so far, friction does not
play a significant role for the B3B-test, as the balls are free to roll instead of the spec-
imen sliding on their surface. This aspect and many others have been discussed
in detail by Börger et al. [80]. In summary, some of the most prominent sources of
error stem from the limited measuring accuracy of the specimen geometry and in-
sufficient knowledge of material parameters. The influence of a potential error of
some parameters on the measured strength is displayed in Figure 2.23. While the
specimen’s thickness t has the biggest influence, it is often the Poisson’s ratio ν that
causes the biggest error, as its value is usually not known as well as the geometric
parameters [80], [95].
An important aspect of the B3B-test is the potential for miniaturisation. Since bear-
ing balls are manufactured to a high degree of accuracy and are widely available
in small sizes (RB ≤ 1mm), specimens as small as 2mm × 2mm have success-
fully been tested [122], [123]. Due to the well-defined support by three points of
contact, this method allows testing of warped or tapered specimens, which is not
possible with any ring-supported testing method.
Another important aspect of the B3B-test is the small region of maximum stress.
On one hand, this allows localised testing of specimens or components [124],
[125], but, on the other hand, results in the comparatively smallest effective sur-
face or volume of the biaxial testing methods discussed in this work.
Finally, one of the biggest drawbacks of this method is the absence of a sufficiently
accurate analytical solution. As shown in Section 2.3.4, numerical methods have to
utilised for strength evaluation instead. However, the existing fits are lengthy and
cumbersome to use, and the number of necessary constants makes them prone to
errors. Similarly, the effective surface and volume are also based on a numerical
evaluation and are only available for a limited range of parameters, which drasti-
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cally impedes a comparison of the B3B-test to other testing methods on the basis
of Weibull-theory.

"CharAM-test"

An error analysis of this testing method which is based on strength testing of can-
tilevers, is performed in Publication D ([14]). Therefore, it will not be discussed
at this point and the reader is referred to Chapter 4.4 of this work. Instead, the
necessity for a novel testing method for strength testing in the context of additive
manufacturing will be discussed. Some of the presented arguments can also be
found in [19].
As outlined in Chapter 2.1.2, additive manufacturing methods introduce specific,
process-related defects to the material, on top of the range of defects that is al-
ready present in conventionally manufactured ceramics. Therefore, it is essential
to employ testing methods that allow the assessment of these specific defects. For
this work, an important example of typical defects are the surface structures cre-
ated by the LCM-process, which depend on the printing orientation and are severe
enough to cause a significant variation in strength. As a consequence, it is neces-
sary to investigate the strength of the material in multiple orientations (relative to
the printing direction).
Furthermore, the specimens should be tested in as-fabricated condition, as any
machining would counter one of the biggest advantages of additive manufactur-
ing, which is the near-net-shape aspect of the manufacturing process. However,
the requirements of many established testing methods are difficult to meet under
these circumstances. First and foremost, for a well-founded statistical analysis of
the material’s strength, a minimum of 30 specimens have to be tested, otherwise
the uncertainty increases disproportionately high [52], [53]. Due to the restricted
amount of printing area or volume for many processes, multiple print-jobs are
required to produce the necessary number of specimens. Not only does this intro-
duce an additional aspect of variation within a single set of specimens, it is also
time- and material-intensive. Note that in some cases, this aspect can be desired,
as outlined in [126]. While miniaturisation of the test specimens would help to
reduce the number of print-jobs, it is seldom possible due to limits in the process
tolerances or due to limits in the testing methods, as outlined above.
Another aspect to consider is the final geometry of the specimen. During sinter-
ing, specimen warpage is rarely avoided, which prevents testing with any ring-
loaded or even ring-supported methods, as proper contact between the specimen
and the fixture will not be achieved. For other methods, such as 4PB or the B3B-
test, warped specimens can be tested, but thewarpage’s influence on themeasured
strength has to be considered adequately, sometimes even for each specimen indi-
vidually. Additionally, structured surfaces further impair the contact between the
specimen and the testing fixture, which has to be taken into account.
While the B3B-test could take all of these considerations into account, it’s small
region of maximum stress and consequently small effective volume results in inef-
ficient testing, as the majority of the volume or surface of each specimen remains
relatively unstressed [13].
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3. Relevant methods

These chapterwill briefly introduce the numerical and experimental tools ormeth-
ods that were used in this work. However, it is out of scope of this work to explain
the utilised methods in detail, and the reader will be referred to the cited literature
for a better, in-depth description of the respective methods.

3.1 Numerical methods

One of the key methods that was utilised in this work is Finite-Element-Analysis
(see [127]–[131] for more information on the method itself) through a total of 14
individual models. All simulations conducted were performed with ANSYS Me-
chanical by ANSYS Inc. (Southpointe 2600 Ansys Drive, PA 15317, Canonsburg,
USA), with versions R19.1 for Publication A ([120]) to R22.1 for Publication D
([51]). Eachmodelwas implemented through the internal coding languageAPDL
(Ansys Parametric Design Language) for better traceability and documentation.
Most importantly, it enables script-based parametric studies to assess the influence
of a variety of input parameters on an automated basis. Both two-dimensional
models as well as three-dimensional models were utilised, with runtimes that var-
ied from several seconds for the simplest models to multiple hours for the most
demanding ones.
For all models, linear elastic and isotropic material behaviour was assumed. For
2D-models, 8-node quad elements (PLANE183) were used for the specimen and
loading structures. For simulations that involved the contact between two solid
bodies, CONTA172 and TARGE169 elements were employed. Similarly, for 3D-
models, 20-node brick elements (SOLID186) were utilised for the specimen’s and
the fixture’s mesh and contact was also implemented through CONTA172 and
TARGE169 elements. The coefficient of friction µ was either varied, or, if not
stated otherwise, µ = 0.5 was assumed. An example of a meshed 3D-model for
the B3B-test for square plates is given in Figure 3.1. For eachmodel, amesh conver-
gence analysis was performed in order to assure a sufficiently fine mesh. This was
especially important for the calculation of the effective quantities in Publication D
([51]), since they are highly sensitive to the shape of the stress field in the vicinity
of the position ofmaximum tensile stress. The post-processing procedure to obtain
the effective quantities is outlined in [132] and the appendix of PublicationD [51].

Due to the high number of simulations that were conducted for this work, effi-
cient data processing was essential. This step was performed within the scientific
programming package Mathematica from Wolfram Research, Inc. (100 Trade
Center Drive, Champaign IL 61820–7237, USA). Throughout this work, versions
12.0 to 13.1 were employed. Furthermore, the majority of analytical derivations
were assisted or at least implemented within Mathematica scripts to ensure re-
producibility and to minimise errors. This was especially relevant for solving the
differential equation and the resulting system of equations in Publication A for
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Figure 3.1: 3D-model of the B3B-test for square plates, which considers the inter-
action of the load/support balls and the specimen, from Publication C.

the analytical solution of the Ball-on-Ring-test [133].

Another numerical technique that was utilised in Publication F ([14]) wasMonte-
Carlo analysis (see [53], [114]). Through a high number of repetitions (≥1000)
of a process that is dependent on a statistical distribution, a trend towards certain
values for the results of the process can be observed. An overview of the process
of such an analysis from Publication F is given in Figure 3.2.

3.2 Experimental methods

All strength results presented in Publication D, Publication E and Publication F
([14], [51], [120]) were obtained with a universal testing machine (Model Z010)
by ZwickRoell GmbH&Co. KG (August-Nagel-Strasse 11, 89079 Ulm, Germany).
The load frame is equippedwith either a KAP-S load cell (maximum load= 200N)
by AST GmbH (Marschnerstrasse 26, 01307 Dresden, Germany) or a Xforce HP
by ZwickRoell (maximum load = 10kN). It is operated through a control system
by Doli Elektronik GmbH (Rudolf-Diesel- Strasse 3, 72525Münsingen, Germany).
For the strength results presented in PublicationC, a prototype developed at INSA
Lyon was utilised. The B3B-fixture was placed inside a transparent PMMA tube
which is mounted to a loading stage with a 5kN load cell.

Fractography was performed on the specimens of Publications C-F ([14], [51],
[120]) with a SZH10 stereomicroscope by Olympus K.K. (2-3-1 Nishi-Shinjuku,
163-0914 Tokyo, Japan) which was operated through the "Olympus Stream Mo-
tion" software, version 2.2. Fracture surfaceswere investigated inmore detail using
a scanning electron microscope (Model NeoScope JCM-6000Plus) by JEOL K.K.
(3-1-2 Musashino Akishima-Shi, 196- 8558 Tokyo, Japan). Prior to imaging, each
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Figure 3.2: Outline of theMonte-Carlo analysis as performed in Publication F [14].

specimen was coated with gold sputtering and conducted to a metal base through
copper wires and silver paste. For a comprehensive overview of fractography for
ceramics and glasses, the reader is referred to [134].

For the radiography and tomography experiments presented in Publication C,
a Vtomex tomograph by phoenix|x-ray systems (Niels-Bohr-Strasse 7, Wunstorf
31515, Germany) was utilised. The software “datos|x”, version 2.0, was used for
post-processing and volume reconstruction of the raw data from the detector. A
detailed account of the necessary filtering is given in Publication C. Any further
analysis or processing of the scans was conducted through the open-source pro-
gram ImageJ, version 1.53t, with the use of built-in extensions and the MATEIS
plug-in. For an introduction to in-situ experiments through X-ray tomography, the
reader is referred to [135], [136].

For the analysis of the surface topology in Publication E, Publication F and
Publication H [14], [45], [120], a laser confocal microscope (Model VK-X1000)
by Keyence Corporation (1-3-14 Higashi-Nakajima, 533-8555 Osaka, Japan) was
utilised. Data evaluation was performed within the accompanying software "Mu-
tiFileAnalyzer", version 2.2.0.93, by Keyence Corporation. The underlying princi-
ples are explained in [137]–[139]

For the specimens fabricated through additivemanufacturing in Publication F and
Publication H ([14], [45]), a 3D-printer utilising the LCM-process (as outlined in
section 2.1.2) was employed. More specifically, a CeraFab 7500 by Lithoz GmbH
(Mollardgasse 85A, 1060 Vienna, Austria) was used. Most test specimens were
manufactured in-house from the alumina-based slurry LithaLox350, with some
specimens from Publication H ([45]) being manufactured from the alumina-
based slurry LithaLox HP500. In either case, any excess slurry was removed
from the manufactured green bodies with an airbrush and the use of the solvent
LithaSol20, produced by Lithoz GmbH. For thermal post-processing, debind-
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ing was performed in a vented furnace (Model KU15/06/A) by ThermConcept
(Friedrich-List-Strasse 17, 28309 Bremen, Germany) and sintering was conducted
in a HTL10/17 furnace by ThermConcept. While the details of each thermal post-
processing step were varied, the maximum temperature and holding times were
identical. During debinding, a maximum temperature of 430 °C was reached, and
during sintering a maximum of 1650 °C was reached for 2h.
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4. Advancements of establishedmeth-
ods and the extension towards ad-
ditive manufacturing

This chapter will present the most notable findings of each publication within this
work. In the case of the Ball-on-Three-Balls-test, several publications are combined
to a single section to give a more general conclusion on the advancements of this
method. Since all publications presented have been published independently of
each other, some variables will be defined repeatedly and will not always corre-
spond to the nomenclature used so far. Therefore, if necessary, each variable will
be re-defined accordingly in the corresponding section.

4.1 Deriving an analytical solution for the BoR-test

This section will summarise the contents of Publication A ([133]), which focuses
on the Ball-on-Ring-test and its analytical solution. As outlined in Section 2.3.3,
the analytical description of the stress- and deflection-field was investigated for
many years. In most cases, the solutions provided so far were based on a simpli-
fied approach by assuming a constant loaddistribution beneath the loading ball. In
this work, a Hertzian load distributionwas assumed instead. Kirchhoff-Love-plate
theory was utilised to derive a solution for the radial-, tangential- and shear-stress
field for the full disc, with the effect of the overhang considered as well. Further-
more, analytical expressions for the deflection, slope and curvature of the disc are
given. For the maximum tensile stress σmax in the centre of the disc, the same
solution as provided by Hu (see Equation 2.58) was obtained.
Since this quantity is essential for strength testing, further investigations on σmax

were conducted, such as a comparison to σmax obtained through the assumption
of a constant load by Frandsen. The result is shown in Figure 4.1. Depending on
the relative overhang α of the disc and the relative loading radius β, an increase in
σmax between 3.5% to 7.5%was observed. However, plate theory does not take the
thickness of the specimen into account. A comparison of σmax obtained through
either the analytical solution or FEA was performed for various specimen geome-
tries and loading conditions and is shown in 4.2. It is evident that plate theory fails
to describe specimens with a small relative loading radius β, and that this effect
increases with an increasing relative thickness γ of the plate. For β → 0, a singular
(infinite) stress is approached.
This shortcoming has been dealt with through a correction byWestergaard, but was
obtained under the assumption of a constant, central load distribution. Therefore,
a new correction based on the ansatz byWestergaard and the results of FEAwas de-
rived. The difference for σmax between the analytical solution in combination with
the respective correction to results obtained by FEA is shown in Figure 4.3a and
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Figure 4.1: Relative difference of the maximum tensile stress (in %) between con-
sidering aHertzian load distribution and considering a constant stress distribution
for various specimen and loading geometries. R refers to the specimen’s radius, a
to the support radius, and b to the radius of the Hertzian load distribution [133].

Figure 4.3b. With the new analytical solution and correction, a maximum error
of less than ±1% is achieved for a wide range of specimen geometries. Conse-
quently, a highly accurate description of the maximum tensile stress is provided,
which eliminates the need for FEA to determine σmax. Additionally, this solution
for σmax can be applied to any ball-loaded biaxial bending test, as the maximum
tensile stress in the centre of the disc is independent of the number of support
points, as shown by Kirstein & Woolley (see Section 2.3.3). A comparison of σmax

to FEA-results of the B3B-test has given an error of less than ±3.3%, thus showing
excellent agreement with these theoretical findings.

4.2 Extending the range of application of the B3B-test

This section deals with the improvements that were made for the B3B-test, and
includes the work of three publications, namely Publication B, Publication C and
Publication D ([51], [140]). Within Publication B ([140]), the stress evaluation
of the Ball-on-Three-Balls-test was extended to include square plates, on top of
providing a significantly simpler fit (compared to Equations 2.61 and 2.63) for both
discs and squares.
Additionally, non-linear, load-dependent effects were incorporated into the eval-
uation through a pseudo-analytical approach as multiplicative correction factors.
These effects stem from twomajor sources: On one hand, an increased area of con-
tact between the loading ball and the specimen leads to a deviation from an ide-
alised, punctiform load introduction towards aHertzian surface load. On the other
hand, the deflection of the specimen causes an inwardly shift of the point of con-
tact between the support ball and the specimen. Both effects decrease the applied
bending moment and cause an overestimation of the measured strength, if not
considered properly. While the impact of these effects on the measured strength is
smaller than 2% formany specimens, they should not be neglected if high-strength
ceramics or glasses are tested.
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Figure 4.2: Comparison of the results for the normalised maximum tensile stress
from the analytical solution to FEA. Note that the annotation refers to Equation
40 in [133]. t refers to the specimen’s thickness, and γ refers to the specimen’s
thickness in relation to the support radius a, i.e. γ = t/a [133].

(a) (b)

Figure 4.3: Relative difference (in %) for σmax between FEA and the analytical
solution in combination with the correction by Westergaard (a) or by the author
(b) [133].

39



Figure 4.4: Comparison of the normalised maximum stress f = σmaxt
2/P in de-

pendence of the applied load obtained through the pseudo-analytical solution
(black lines) or through non-linear FEA (coloured lines and markers) [140].

Overall, excellent agreement between the pseudo-analytical approach and non-
linear FEA was achieved, as displayed in Figure 4.4. Thus, the stress evaluation
for the B3B-test was notably simplified, while also providing a significant increase
in accuracy for high-strength specimens, hence omitting the need for individual
FEA in many cases.
A follow-up to Publication B is given through Publication C. Since all of the re-
sults presented in Publication B rely on theoretical considerations and are only
validated by FEA, some sort of experimental validation is still necessary. There-
fore, an attempt to measure the specimen’s deflection during B3B-testing and sub-
sequent comparison to FEA-results was made. Due to the special construction
of the B3B-testing fixture, well established methods to measure deflection during
strength tests such as the use of a Linear Variable Differential Transformer (LVDT)
(which requires specimen contact) or Digital Image Correlation (DIC) (which re-
quires a direct view of the specimen) cannot be utilised. Instead, X-ray tomogra-
phywas employed to open the opportunity for a "direct" view of the specimen and
the loading/supporting balls, as given in Figure 4.5.
From a three-dimensional reconstruction (tomograph) of the testing assembly, the
specimen’s deflection can be determined, as well as the movement of the load-
ing and supporting balls during loading. Alternatively, two-dimensional radio-
graphs were also evaluated to allow a continuous recording of the deflection dur-
ing testing in contrast to the discontinuous method that tomography is providing.
Through this procedure, a vast increase in the number of datapoints was achieved
and better load-wise resolution is obtained. Furthermore, a higher displacement
compared to tomography measurements was observed, since the impact of sub-
critical crack growth is significantly lower.
In general, a good agreement between the tomography measurements and FEA
was obtained. As shown in Figure 4.6, the behaviour significantly deviates from
the linear model, which highlights the importance of considering these effects un-
der such circumstances. The radiography measurements show good agreement
with the general tendencies as well, but they do not yield the same absolute values
as FEA. Instead, bothmeasurements deviate by a systematic offset of about 200µm.
Overall, these two approaches are promising, but several aspects still need to be
improved until they are a suitable alternative to other, well-established methods.
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Figure 4.5: Deformed glass specimen at
maximum load (26N) before failure,
see Publication C.

Figure 4.6: Experimental tomography
results compared to linear and non-linear
FEA, see Publication C.

However, the validity of FEA was shown with both tomography and radiography
measurements, thus also validating the pseudo-analytical equations obtained in
Publication B, which generally describe a range of less extreme testing circum-
stances.
Further developments of the B3B-test include the determination of the effective
volume and surface for a wide range of specimen geometries and materials, as
given in Publication D ([51]). The data for the effective quantities was generated
through FEA and is published for both discs and square plates. For each geometry,
results for both the maximum principal stress criterion (FPS) and the principle of
independent action (PIA) were made available.
Also, a fit for the dependency of the effective quantities on theWeibullmodulus for
any one specific geometry was provided. The necessity of this fit is shown through
a pooled evaluation of strength data obtained with specimens of varying geome-
try, which opens up the possibility to use the available informationmore efficiently.
The results are given in Figure 4.7 through a Weibull-plot with both specimen ge-
ometries extrapolated to the same reference surface S0. This plot highlights the
importance of testing at different effective quantities for a for a more reliable ex-
trapolation of the probability of failure.
But, most importantly, this work now enables all users of the B3B-test to compare
their results to other testing methods through the concept of the effective volume,
as outlined and performed in the upcoming section within Publication E ([120]).
Finally, it should be noted that the use of a hexagonal specimen geometry (due to
better printability for additive manufacturing) for the B3B-test was investigated in
Publication G ([94]).

4.3 Comparing the B3B-test to the RoR-test

This work, as given in Publication E ([120]), demonstrates the process of compar-
ing two biaxial testing methods on the basis of Weibull theory. More specifically,
the B3B-test was compared to the RoR-test, and the numerical results for the effec-
tive quantities, as outlined in the previous section, were utilised. Good agreement
according to Weibull theory was found for most of the investigated samples, but
some outliers demanded further attention, as shown in Figure 4.8. These outliers
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Figure 4.7: Results of a pooled Weibull analysis with the probability of failure of
Sample B extrapolated to the same reference surface S0 as Sample A [51].

Figure 4.8: Characteristic strength of samples from different methods and geome-
tries in dependence of their respective effective surface. Note the difference of the
effective surface of approximately two magnitudes [120].

(a) (b)

Figure 4.9: Influence of friction (a) or uneven contact for a different number of
contact points (b) on the radial stress component in dependence of the radial po-
sition for the RoR-test [120].
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Figure 4.10: Topographic scan of a load ring for the RoR-test, obtained with a laser
confocal microscope [120]

were a B3B-sample that was tested with an intermediate layer under the load ball,
and a RoR-sample that was tested without any layers at all.
Consequently, another important aspect of this investigation was to assess the in-
fluence of surface layers and friction on the stress field in both testingmethods. For
the B3B-test, it was found that the usage of soft intermediate layers underneath the
loading ball overestimates the measured strength. This can be explained through
the deformation of the surface layer, which increases the area of contact, which
is an effect that was already discussed in other work (see Publication B [140])
and decreases the bending moment. If this effect is not accounted for, the strength
is overestimated, as higher loads are necessary for fracture and therefore higher
apparent strengths are measured.
For the RoR-test, omitting the surface layers introduces friction to the contact be-
tween the rings and the specimen. The influence of friction on the radial stress
component is given in Figure 4.9a, which shows a decrease of the constant stress
level with an increase in friction, but also leads to the formation of stress concen-
trations at the load ring radius. Additionally, through the lack of soft layers, small
misalignments or the uneven contact between the load ring and the specimen’s
surface are not compensated for. Again, this effect leads to stress concentrations at
the load ring, and especially at the position of uneven contact, as shown in Figure
4.9b. Therefore, at a given load, a higher stress than expected is applied in those
regions, which results in a general underestimation of the measured strength.
This finding is backed up by fractography of the specimens tested with and with-
out intermediate layers. For those tested without layers, a significantly higher
number of fracture origins were located at or close to the radius of the load ring
as compared to the specimens tested with intermediate layers. An investigation of
the load ring’s surface through laser confocal microscopy revealed significant un-
dulations with an amplitude in the range of 20µm, as shown in Figure 4.10. Subse-
quent Finite-Element-Analysis has shown that these undulations are not compen-
sated through elastic deformation and contact to the specimen is limited to several
points.
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Figure 4.11: Overview of the three different configurations of the CharAM speci-
men, adapted from [14].

4.4 Applying the obtained knowledge to the develop-
ment of a novel test method

This section deals with the results of Publication F ([14]), which presents an
introduction to and development of a novel strength testing method based on
cantilever bending for ceramics manufactured though the LCM-process. As out-
lined in previous sections (see Section 2.1.2 and Section 2.4), additive manufac-
turing causes process-specific defects and issues, which impede the use of well-
established testing methods. Therefore, a novel testing method was conceptu-
alised at the IKTS Dresden within the scope of a master’s thesis [141]. Through
the bi-national project "CharAM" (FFG 877684) of the COIN/IraSME program, the
method was further developed, refined, and validated. Some aspects of this pro-
cess are discussed in Publication F, hence why only a brief introduction to the
testing method will be given here.
The novelty of the method is based on the test specimen, which is displayed in dif-
ferent configurations in Figure 4.11. The characteristic features of the test specimen
are a baseplate, which consists of two solid plates connected through an arched
structure, and 48 cantilevers, which are attached to the upper part of the base-
plate. As discussed in Section 2.1.2, the surface structure of a printed specimen
has a distinct influence on its failure behaviour and strength, and is strongly de-
pendent on the printing orientation of the specimen’s surface. In order to assess
this influence of surface structures, multiple configurations of the test specimen
were developed. By tilting the upper solid plate, the inclination of each cantilever
is changed accordingly. For now, three configurations are available: A specimen
with no inclination to the printing direction, one with an inclination of 15°, and
one with an inclination of 15° combined with rotation of 180° of the cantilevers
along their respective longitudinal axis. The baseplate of each configuration is ap-
proximately 26mm × 35mm, and the height varies from 15mm to 20mm.
While the structure of the baseplate changes, the geometry of the cantilevers is the
same for each configuration. Figures 4.12a and 4.12b show the geometry of the
cantilever from the top and side, respectively. A small bulge is printed on each
cantilever to ensure a consistent position of load introduction. Due to the special
design of the cantilever, namely its linear increase in width, a region of constant
bending stress is obtained, and marked as "Testing region" within Figures 4.12a
and 4.12b. The maximum tensile stress σmax in this region is determined through
Euler-Bernoulli beam theory and is given by [142]
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(a) (b)

Figure 4.12: Dimensions of the cantilever (in mm) in top-view (a) and side-view
(b) [14].

σmax =
6P

kh2
(4.1)

with h as the thickness of the cantilever, and k as the slope of the inclined flanks,
which is determined through

k =
b2 − b1

L
(4.2)

The parameters L, b1 and b2 refer to dimensions of the cantilever, as marked in
Figures 4.12a and 4.12b. Due to the simplicity of the stress field in the testing re-
gion, analytical expressions for the effective volume and effective surface can be
determined according to Equations 2.17 and 2.21, respectively.
While the method itself was developed at the IKTS in Dresden, the details of
strength evaluation and possible sources of error were investigated within the
scope of this work. Initially, a comparison between the ideal maximum tensile
stress as given through Euler-Bernoulli beam theory and the stress field according
to FEAwas conducted. The results are shown in Figure 4.13a. Overall, amaximum
difference of less than ±2.5% is observed. If the analytical solution is utilised, the
maximum tensile stress will be overestimated at the borders of the testing region
and edges of the cantilever, while it will be underestimated in the centre of the
testing region. From the analytical stress field, a closed form expression for the ef-
fective volume and surface were derived. Again, a comparison to FEA has shown
only a slight deviation, as displayed in Figure 4.13b. Especially for a Weibull mod-
ulus m ≥ 5, excellent agreement between the analytical and numerical solution
was achieved.
A major focus of this publication was the influence of geometrical inconsistencies
on the measured strength and on the subsequent statistical evaluation. First, a sig-
nificant variation in the height and opening angle of each cantilever was observed,
which necessitates additional measurements of these values. While averaging the
geometries of several random cantilevers on each specimen could reduce the mea-
surement effort, it is shown that the impact on statistical strength analysis is too
severe and that individual geometrical measurements are necessary. Second, the
impact of a non-rectangular cross section of the cantilevers was analysed and dis-
cussed. Due to overpolymerisation, a barrel-shaped cross section is obtained, and,
if not considered adequately, the strength of thematerial is underestimated. On av-
erage, this effect can be as large as 10%. Third, the effect of a shift in the position of
load introduction was discussed and quantified. However, this effect is less severe
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(a) (b)

Figure 4.13: Deviation of the cantilever’s stress field obtained through FEA to beam
theory (a) and comparison of its effective volumeobtained through FEAandEqua-
tion 2.17 (b) [14].

(a) (b)

Figure 4.14: Characteristic strength (a) and Weibull modulus (b) for various con-
figurations and multiple specimens [14].

than the ones mentioned beforehand and taking it into account for each cantilever
would require too much experimental effort. Thus, this effect adds about 1.5% to
3% to the general measurement uncertainty of ±2% of this testing method.
Finally, several specimens of each testing configuration were manufactured and
tested in a universal testing machine (UTM). The results of statistical strength
analysis is shown in Figure 4.14a and Figure 4.14b. As expected, a significant de-
crease of the characteristic strength σ0 for 15°-specimens was observed, while the
Weibull modulus m remained unchanged. This is in good agreement with the re-
sults obtained through other testingmethods and theoretical considerations based
on Weibull theory, as given in Publication H ([45]).
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5. Summary & Outlook

In thiswork, an in-depth analysis of several strength testingmethods for brittlema-
terials was performed. The findings of this work were obtained through a combi-
nation of theoretical considerations (e.g. plate- or beam-theory), numerical meth-
ods such as Finite-Element-Analysis, and experimental validation through means
such as fractography and X-ray tomography. More specifically, the advancements
made can be summed up as follows:

• For the Ball-on-Ring-test, the analytical expressions for the stress- and dis-
placement field for thewhole specimenwere reworked to consider aHertzian
surface load beneath the loading ball instead of a simplified, constant load
distribution. It was shown that, depending on the specimen geometry, a
significant difference in the value for the maximum stress is obtained. The
analytical expressions were validated through FEA and the applicability
of the provided equations for other ball-load strength testing methods was
demonstrated.

• For the Ball-on-Three-Balls-test, a new fit of numerical results for the evalua-
tion of the maximum tensile stress for both discs and square plates was pro-
vided. In comparison to previous fits, a simpler equation for the same range
of geometry and materials was obtained, without any loss in accuracy. Ad-
ditionally, the influence of non-linear, load-dependent effects was discussed
and corrections for the stress evaluation are presented. These expressions
were validated through Finite-Element-Analysis and experimental findings.
The experimental results were obtained through X-ray-tomography and ra-
diography and a good agreement to theoretical considerations and Finite-
Element-Analysis was observed. Furthermore, the effective volume and
surface for this testing method were determined and were made publicly
available. This allows a comparison of the strength results of the Ball-on-
Three-Balls-test to the results of any other testing method. An example of
the application of these results was given through a pooledWeibull-analysis.

• A comparison of the Ball-on-Three-Balls-test to the Ring-on-Ring-test, based
on Weibull-theory, was performed. While most investigated samples have
shown excellent agreement to theory, a few outliers were identified and
discussed. These outliers have formed the basis for an investigation of the
influence of soft, intermediate layers on the measured strength for both the
Ball-on-Three-Balls-test and the Ring-on-Ring-test. Additionally, the influ-
ence of friction and uneven contact between the fixture and the specimen
was investigated for the Ring-on-Ring-test and the findings were validated
through fractography.

• Finally, a novel strength testing method for ceramics manufactured through
the LCM-process was introduced and investigated in detail. Due to the
pixel-based nature of the LCM-process and the layeredmanufacturing, well-
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established testing methods cannot be utilised or have been proven to be
inefficient. Therefore, a novel strength testing method was developed to
take the special aspects of additive manufacturing into account. However,
several issues due to process-related inconsistencies had to be analysed qual-
itatively and quantitively. These findingswere incorporated into the strength
evaluation and the capability of this testing method was demonstrated ex-
perimentally.

For futurework, the experimental validation of the theoretical findings for the Ball-
on-Three-Balls-test through X-ray tomography or radiography shall be further de-
veloped through the use of better equipment, such as the use of a beam line and
load-cells with a higher accuracy and resolution. This will allow an investigation
of other, stiffer materials with less deformation, which are encountered more fre-
quently. Through modifications of the testing fixture, well established methods
for deflection measurement could be implemented and allow further assessment
of the applicability of this method. Another aspect that is worth considering is the
influence of non-linear material behaviour on the measured strength, as would be
encountered if specimens with a transformation plasticity are tested. Finally, the
possibility of contact damage through load application could be assessed exper-
imentally for a number of different material- and testing configurations, as this
consideration is one of the biggest hindrances for the wide-spread use of this test-
ing method.
Additionally, a thorough investigation of the variability of the Ball-on-Three-Balls-
test should be performed, whereas a round-robin trial could lay the groundwork
for future standardisation. Practical aspects of the testing method, such as the
usability of the provided equations or the user-friendliness of the tools provided
for the evaluation of the effective quantities should be investigated. Furthermore,
a comparison of results obtained through multiple laboratories could give further
insight to the reproducibility of the method. Overall, important aspects such as
comparability, effort, applicability, accuracy, and reproducibility of the B3B-test
shall be compared to existing, standardised strength testing methods.
For the CharAM-test, the automated optical scanning of the specimen after test-
ing is currently under development. This will allow a fast and reliable acquisition
of the necessary geometrical data for accurate strength evaluation. Furthermore,
possible sources of error, such as the varying cross-section of the cantilevers, will
be negated through individual scanning and evaluation of the exact cross-section.
Additionally, automated acquisition of the relevant geometrical parameterswill al-
low a better assessment of the influence of fabrication parameters on the final com-
ponent geometry. Due to the small absolute size of the cantilevers, small changes
in the relevant parameters will have a higher relative impact on the final geom-
etry compared to existing specimens for strength testing. This aspect, in combi-
nation with the aforementioned benefits of the testing method, might ultimately
even serve as a benchmark for the quality of the fabrication equipment or process-
ing method. Furthermore, round-robin trials could highlight the variability of the
measured strength due to the manufacturing equipment and conditions, such as
the 3D-printer itself, the furnace, and the positioning of specimens within the fur-
nace. Beyond that, the number of possible configurations for the specimens of this
testing method could be extended to include other inclinations as well. Finally,
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the application of the CharAM-test could be extended towards other DLP-based
methods ,or the specimen could even be up- or downscaled for entirely different
additive manufacturing methods.
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A B S T R A C T   

The Ball-on-Ring-test is a biaxial strength testing method utilized to test brittle materials such as ceramics, glass, 
or semiconductor wafers. In this work, an analytical solution for the BoR-test is derived using plate theory. In 
contrast to previous work, a Hertzian load distribution beneath the loading ball is considered. The solution 
provided in this work is extensively analyzed and validated by two Finite-Element-Analysis (FEA) models. For 
thin specimens, excellent agreement between FEA and the analytical solution was found. For many specimen 
geometries and loading configurations, it is shown that plate theory generally fails to accurately describe the 
maximum stress. Therefore, a simple correction for these cases is proposed. With this correction, an error < 2 % 
to the FEA-results is achieved. By combining these methods, accurate functional expressions for the displacement 
field, its derivatives, and the shear force-, the bending moment- and stress distributions are provided for the 
entire disc.   

1. Introduction 

Strength testing of brittle materials is well known as one of the key 
methods to assess component reliability. Due to a large number of 
components being either disc or plate-shaped, biaxial strength testing 
methods have found their way into many fields and are used for a wide 
range of materials [1–6]. Apart from well-known ceramic materials, thin 
plates made from glass, silicon wafers or ceramic membranes for solid 
oxide fuel cells are frequently tested [7–11]. Furthermore, biaxial 
testing methods provide a better representation of real-world loading 
situations (which are rarely uniaxial) and require less effort for specimen 
preparation due to the maximum tensile stress acting at the specimen’s 
center far from the specimen’s edges. Some of the most prominent 
biaxial testing methods are the Ring-on-Ring-test (RoR), the 
Piston-on-Ring-test (PoR), the Ball-on-Three-Balls-test (B3B) and the 
Ball-on-Ring-test (BoR) [1,12–16]. Each testing method applies a 
different stress field to the specimen, depending on the geometry of the 
indenter and the support conditions. Whilst the support conditions 
generally change the overall shape or symmetry of the stress field, the 
indenter geometry significantly influences the maximum stress by 
defining the shape of the applied load distribution. Common indenter 
geometries are spheres or cylindrical pistons. A major upside of cylin
drical over spherical indenters is the arbitrary and load-independent 

contact radius with the specimen. This is not the case for spherical in
denters, whose contact radius is dependent on both the load and the 
curvature of the specimen, as will be discussed later. When comparing 
the resulting elastic load distributions, a nearly opposing trend towards 
the edge of contact (ρ →1) is observed, as displayed in Fig. 1 [17]. 

However, the load distribution underneath the piston-shaped 
indenter is very likely to deviate from the displayed ideal case. On one 
hand, the sharp edge of the indenter causes a stress singularity at its 
edge, which induces plastic deformation of the indenter and favors wear. 
This is especially pronounced if high-hardness materials such as ce
ramics are tested, and if the same piston is used repeatedly [17]. On the 
other hand, small deformation of the specimen results in a shift from 
planar contact to a ring-like contact along the edges of the piston-shaped 
indenter. Both effects can be neglected with the use of a spherical 
indenter, leading to a well-defined load distribution. This aspect con
tributes to the attractiveness of ball-loaded biaxial tests such as the 
Ball-on-Ring-test. Whilst the load distribution for this test is 
well-defined, some problems arise from its small extent, as will be 
explained later on. 

In general, the BoR-test is performed by loading a ring-supported 
specimen (usually discs) with a ball located in the center of the disc. A 
schematic of the testing setup is shown in Fig. 2. 

The maximum tensile stress in both radial and tangential direction is 
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found at the bottom surface in the center of the disc, opposing the 
loading ball. In order to assess the strength of the tested specimen and 
relate it to results from other testing methods, the maximum stress as 
well as the effective tested volume and surface [5], respectively, have to 
be known. The full stress distribution of the disc is necessary to allow 
determination of these parameters. Such can be provided through an 
analytical approach based on linear Kirchhoff-Love plate theory [18] for 
elastic isotropic specimens. If they are disc-shaped, the problem can be 
reduced to one dimension through cylindrical symmetry. According to 
plate theory, the radial and tangential stress component σrad and σtan in 
distance z from the neutral plane can be derived from the radial and 
tangential bending moment per unit length Mrad and Mtan according to 

σrad =
Mrad

I
z, σtan =

Mtan

I
z (1)  

with I being the second moment of area, i.e. I = t3/12. The shear stress τ 
is determined by 

τ =
QradS

I
(2)  

with the radial shear force per unit length Qrad and S as the first moment 
of area external to the horizontal section at z which is given by S =
1/2((t/2)2

− z2). A thorough analysis of the history of the BoR-test and 
its general analytical solutions was also given by With & Wagemans in 

1989 and Frandsen in 2012 [16,19]. In this work, an overview of the 
advancements in the analytic description of the maximum tensile stress 
will be given. If not stated otherwise, all solutions presented assume a 
constant central load (as shown in Fig. 1), but were still utilized to 
calculate the maximum stress for the Ball-on-Ring problem. Roark & 
Young [20] published a solution for a ring supported plate loaded with a 
central constant load distribution q. The maximum tensile stress σmax is 
given by 

σmax = σrad,r=0 = σtan ,r=0 =
3qbcon

2

4t2

[

(1+ ν)2 ln
(

a
bcon

)

+ 2
]

(3)  

with bcon as the radius of the area of constant load, t as the specimen’s 
thickness, a as the support radius and v as the Poisson’s ratio of the 
tested material. Note that this solution only considers a disk without 
overhang, i.e. R=a. Furthermore, this solution (Eq. (3)), is erroneous for 
the problem described in [20] and in the most recent edition [21], since 
the correct solution according to plate theory, determined by the au
thors, is: 

σmax =
3qbcon

2(1 + ν)
4t2

[

1+ 2 ln
(

a
bcon

)

+
(1 − ν)
(1 + ν)

(

1 −
bcon

2

2a2

)]

(4) 

A significant improvement for the same loading conditions was 
provided by Kirstein & Woolley in 1967 [22]. Here, the increased 
stiffness caused by the added constraint of the overhang is taken into 
account by including the specimen’s radius R in the term a2/R2: 

σmax =
3qbcon

2(1 + ν)
4t2

[

1+ 2 ln
(

a
bcon

)

+
(1 − ν)
(1 + ν)

(

1 −
bcon

2

2a2

)
a2

R2

]

(5) 

The same expression was also derived by Frandsen in 2012 along 
with a description of the displacement field and its derivatives for the 
full disc. From these expressions, he further derived the solutions for the 
distribution of the radial and tangential bending moment as well as the 
shear force distribution [19]. A very similar solution is found when 
investigating the Ring-on-Ring-problem, with only the constant term 
missing. Vitman and Pukh [23] provided this solution in 1962 

σmax =
3qbring

2(1 + ν)
4t2

[

2 ln
(

a
bring

)

+
1 − v
1 + v

(

1 −
bring

2

a2

)
a2

R2

]

(6)  

with bring as the radius of the loading ring. A problem throughout all 
solutions presented is the determination of the maximum stress for small 
loading radii bcon or bring. Since an infinite stress is approached for 
bcon→0, the analytical solution will only give accurate values above a 
minimum loading radius, which is mainly dependent on the specimen’s 
thickness. For a different bending problem (plates loaded by a narrow 
constant surface pressure on complete elastic support), Westergaard 
derived a correction for small loading radii by utilizing Nádai’s theory in 
1926 [24,25]. It is based on replacing a small loading radius b with an 
equivalent loading radius b*

con, which is dependent on the specimen’s 
thickness t and is determined by 

b*
con =

{
b for b ≥ 1.724t̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1.6b2 + t2
√

− 0.675t for b < 1.724t
(7) 

(Note that the first line of the correction by Westergaard has some
times been miscited as b*con=t for b ≥ 1.724t instead of b*con=b, as in 
[16]). Later work [15,16] utilized Eq. (7) to describe the Ball-on-Ring 
problem with bcon = b*

con, and b as the Hertzian contact radius between 
a sphere and the planar surface of a half space calculated through [26]. 

b =

̅̅̅̅̅̅̅̅̅̅̅
3PRB

4E*
3

√

with
1

E* =
1 − v2

1

E1
+

1 − v2
2

E2
(8) 

Here, P denotes the load applied on the sphere, RB denotes the 
loading ball’s radius and E* an effective Young’s modulus which is 
determined from the Young’s modulus E1 and E2 and the Poisson’s ratio 
v1 and v2 of the contacting bodies. The correction by Westergaard was 

Fig. 1. Normalized axis-symmetric pressure distribution p(ρ) for an ideal 
constant load and the elastic contact between two indenter types and an elastic 
half space. The relative contact radius ρ is given though the radial distance from 
the center r divided by the contact radius b. Each distribution is displayed for 
the same total load P and is normalized to its mean stress q = P/πb2[17]. 

Fig. 2. Cross sectional schematic of the Ball-on-Ring testing setup. R denotes 
the specimen’s radius, t its thickness, a the support ring radius, b the loading (or 
contact) radius and P the total applied load. Note that the deflection of the 
specimen due to the applied load is not displayed in this Figure. 
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experimentally validated by With & Wagemans using strain gauge 
measurements [16]. On the other hand, Shetty et al. proposed thatb*

con =

t/3, since the influence of the loading ball radius on b is expected to be 
small [15]. According to Hertz’s theory of contact between elastic solids 
[26], the pressure distribution p(r) between a sphere and an elastic 
half-space is defined as 

p(r) = q
3
2

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
r2

b2

√

with q =
P

πb2 for 0 ≤ r ≤ b (9)  

with P as the applied load, q as the average pressure and b as the contact 
radius as given above in Eq. (8). Hu [7] derived an expression for the 
maximum tensile stress at the center of a disc loaded by a Hertzian stress 
distribution, which is given by 

σmax =
3qb2(1 + ν)

4t2

[
8
3
+ 2 ln

( a
2b

)
+

1 − ν
1 + ν

(

1 −
2b2

5a2

)
a2

R2

]

(10)  

but did not derive any further information about the stress distribution 
or deformation of the disc. The validity of this solution and the one by 
Kirstein & Woolley (Eq. (5)) was discussed and compared to Finite 
Element Analysis results for a single disc geometry and multiple loading 
ball radii by Chae et al. [27]. It will be shown later (Section 4) that this 
load distribution is also obtained in case of pressing a ball on the center 
of a circular plate. The main difference to contact with a half space is the 
deflection of the plate and the resultant curvature of the surface. 

In the upcoming chapters, plate theory will be utilized to derive an 
analytical solution for the Ball-on-Ring problem for small displacements 
and assuming isotropic elasticity. A central Hertzian load distribution 
will be assumed. A schematic of the load distribution p(r) and the sign 
convention used in this work are given in Fig. 3. The expressions for the 
displacement field and its derivatives for the entire disc will be pre
sented. Consequently, expressions for the shear force, radial and 
tangential bending moments will be provided. These results will be 

compared to previous work by Frandsen, Kirstein & Woolley and Hu [7, 
19,22]. To validate the presented results, especially regarding the 
maximum tensile stress, two FEA models will be employed and 
compared to each other. One model represents the ideal case with a 
Hertzian surface load applied, while the other one includes a model of 
the loading ball and utilizes contact calculations to better represent the 
actual loading situation. Furthermore, the applicability of the presented 
solution will be discussed for a wide range of loading conditions and disc 
geometries. For cases where the maximum stress is not represented 
accurately by the analytical solution, a correction will be provided. It is 
formally based on the proposition by Westergaard [24] and yields an 
equivalent loading radius for stress evaluation. Its validity will be shown 
through a comparison to FEA-results. 

2. Deriving an analytical solution for the BoR-problem 

2.1. Formulating the general equations 

This chapter will describe the derivation of an analytical solution to 
the BoR-problem. Due to the cylindrical symmetry of the problem, a one- 
dimensional expression w(r) describing the displacement w of the 
neutral plane can be derived by Kirchhoff-Love plate theory. The cal
culations have been performed both by hand and with the aid of 
Mathematica 13.1 (Wolfram Research, IL 61820, Champaign, USA). The 
Mathematica-script, which provides the full solution to this problem, 
can be found in the Supplementary material. This script can easily be 
adjusted to provide an analytical solution for any type of central load 
distribution. As shown in Fig. 3, the problem was divided into three 
different regions: The central loaded region I, the load-free region II up 
to the supporting ring and the load-free region III outside the supporting 
ring. Roman numeral superscripts will be used to assign variables to 
their region of validity. By splitting the problem, a functional expression 
w(r) describing the displacement w of each section individually can be 
formulated. Their general form for bending of a circular, transverse 
loaded plate is given as a linear 4th order differential equation by 
Kirchhoff-Love plate theory [18,28,29] through 

d4w
dr4 +

2
r

d3w
dr3 −

1
r2

d2w
dr2 +

1
r3

dw
dr

= −
p(r)
D

(11)  

where the load is defined by p(r). While the pressure itself is defined as a 
positive quantity (see Eq. (9)), the direction of load application demands 
a negative sign, see Fig. 3. Note that Eq. (11) reduces to a homogeneous 
differential equation outside the centrally loaded region. In contrast to 
earlier work on the Ball-on-Ring Problem [19,20], a Hertzian 
load-distribution p(r) (see Eq. (9)) will be applied instead of a constant 
load-distribution. Solving Eq. (11) analytically then yields the 
displacement and its derivatives 

for the loaded region I. The bending stiffness of the plate, D, is given by 
D = IE/(1 − v2). For regions II and III, no external load q is applied, 
therefore Θ(r) = 0. The integration constants cI − cIV will be determined 
individually by the boundary and continuity conditions for each region. 
The radial and tangential bending moments, Mrad and Mtan respectively, 
are given through [18,28,29]. 

Mrad = − D
(

d2w
dr2 +

v
r

dw
dr

)

(13)  

Mtan = − D
(

1
r

dw
dr

+ v
d2w
dr2

)

(14)  

with the shear moment Mrad tan 

w = Θ +
1
2
cIr2

(

ln r −
1
2

)

+ cII ln r +
1
2

cIII r2 + cIV

dw
dr

=
dΘ
dr

+ cIr ln r + cII
1
r
+ cIII r

d2w
dr2 =

d2Θ
dr2 + cI(ln r + 1) − cII

1
r2 + cIII

d3w
dr3 =

d3Θ
dr3 + cI

1
r
+ cII

1
r3

with

Θ(r) =
qr4

600D

⎡

⎣

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
r2

b2

√
(

61
b4

r4 + 48
b2

r2 − 4
)

+ 15
(

2
b4

r4 + 5
b2

r2

)
⎛

⎝ln r − ln

⎛

⎝1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
r2

b2

√ ⎞

⎠

⎞

⎠

⎤

⎦

(12)   
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Mradtan = 0 15  

and the shear force normal to the radial plane Qrad given by 

Qrad = − D
(

d3w
dr3 +

1
r

d2w
dr2 −

1
r2

dw
dr

)

(16)  

2.2. Field equations for the BoR-problem 

This section provides the equations that describe the plate’s 
displacement and its derivatives for each region. 

2.2.1. Region I, 0 ≤ r ≤ b 
As for region I, where the location r = 0 is included, all instances of ln 

(r) have to be removed in order to maintain a non-singular solution for 
the deflection of the plate. The same is true for all instances of r2ln (r) to 
maintain a non-singular solution for the curvature of the plate. This is 
achieved if cI

I = −
150qb2

600D and cI
II = −

30qb4

600D . This reduces θ(r) from Eq. (12) 
to the expression ψ(r) and leaves 

to describe the displacement field for region I. (Note that ψ(r) at r =
0 yields a numerically undefined expression, that is analytically deter
mined to be (61 − 30 ln 2)qb4/600D). Due to the relatively large num
ber of terms of ψ(r) and especially its derivatives, the authors refrained 
from stating their full form for the remainder of this work. By forming a 
new constant c1 from the constant expression 

ʀ
cI

III −
1
2c

I
I
)
, Eq. (17) is 

significantly simplified. To ease traceability, the integration constants 
cI − cIV for each region will be denoted by continuous subscripts c1 −

c10from this point on. This gives 

wI = Ψ +
1
2
c1r2 + c2

dwI

dr
=

dΨ
dr

+ c1r

d2wI

dr2 =
d2Ψ
dr2 + c1

d3wI

dr3 =
d3Ψ
dr3

(18)  

to describe the displacement field for region I. 

2.2.2. Region II, b ≤ r ≤ a 
Due to the absence of external loads, Θ(r) = 0 for this region, which 

leaves a simpler form of Eq. (12). However, all other terms and inte
gration constants are included with 

wII =
1
2
c3r2

(

ln r −
1
2

)

+ c4 ln r +
1
2

c5r2 + c6

dwII

dr
= c3r ln r + c4

1
r
+ c5r

d2wII

dr2 = c3(ln r + 1) − c4
1
r2 + c5

d3wII

dr3 = c3
1
r
+ c4

1
r3

(19)  

describing the displacement field for region II. 

2.2.3. Region III, a ≤ r ≤ R 
For region III, the same conditions as for region II apply, i.e. all terms 

and integration constants of Eq. (12) with Θ(r) = 0 are utilized. The 
displacement field for region III is therefore given by 

wIII =
1
2
c7r2

(

ln r −
1
2

)

+ c8 ln r +
1
2
c9r2 + c10

dwIII

dr
= c7r ln r + c8

1
r
+ c9r

d2wIII

dr2 = c7(ln r + 1) − c8
1
r2 + c9

d3wIII

dr3 = c7
1
r
+ c8

1
r3

(20) 

In conclusion, two integration constants for region I and four inte
gration constants each for regions II and III have to be determined, 
totaling 10 unknown variables. By formulating the boundary and con
tinuity equations, a set of 10 independent linear equations can be 
derived. Solving this system yields the solution for the displacement 
field and its derivatives. 

Fig. 3. Sign conventions utilized in this work and segmentation of the specimen 
into three regions displayed in a 2D-cross section of the axisymmetric problem. 
p(r) denotes the applied surface load, w the specimen’s deflection, Qrad the 
shear force and Mrad the cross-sectional bending moment. 

wI = Ψ +
1
2

r2
(

cI
III −

1
2
cI

I

)

+ cIV

with

Ψ(r) =
qr4

600D

⎡

⎣

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
r2

b2

√
(

61
b4

r4 + 48
b2

r2 − 4
)

− 15
(

2
b4

r4 + 5
b2

r2

)

ln

⎛

⎝1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
r2

b2

√ ⎞

⎠

⎤

⎦

(17)   
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2.3. Boundary and continuity conditions 

This section forms the basis for the system of equations that are used 
to determine c1 − c10. Starting with deflection, the first equation is given 
through the continuity from region I to region II by 

wI(b) = wII(b) (21) 

Furthermore, the deflection of the plate at the position of the support 
ring (r = a) is zero, which gives 

wII(a) = 0 (22)  

and 

wIII(a) = 0 (23)  

for region II and region II, respectively. Due to the absence of external 
moments, the slope and curvature of the plate has to be continuous from 
region I to region II and from region II to region III. However, evaluating 
Eq. (18) at position r = b gives the indeterminate form 0/0 for both the 

slope and the curvature. Therefore, L′Hôpital’s rule has to be applied in 
order to obtain a regular expression that can be evaluated. This then 
yields the continuity conditions for the slope at positions r = b and r = a 
through 

lim
r→b

dwI

dr
(r) = c1b −

7qb3

40D
=

dwII

dr
(b) (24)  

dwII

dr
(a) =

dwIII

dr
(a) (25)  

and the continuity condition for the curvature at the same positions with 

lim
r→b

d2wI

dr2 (r) = c1 −
13qb2

40D
=

d2wII

dr2 (b) (26)  

d2wII

dr2 (a) =
d2wIII

dr2 (a) (27) 

Two further equations can be derived from the stress-state at the 
edge of the plate. Here, both the radial stress and the shear stress have to 
be zero, which gives 

Mrad(R) = 0 (28)  

QIII
rad(R) = 0 (29) 

Finally, the reaction force per unit length Ra from the support ring at 
position r = a causes a discontinuity in the shear field, which can be 
expressed by 

QII
rad(a

− ) +Ra = QIII
rad(a

+) (30)  

with positions close to r = a towards the center or towards the edge 
denoted as a- and a+, respectively. By using a vertical force equilibrium, 
Ra is given through the total load applied, Fa, divided by the total line 
length of the support at r = a: 

Ra =
Fa

2aπ (31) 

The total load Fa is given by an integral over the load distribution p 
(r), which gives 

Fa =

∫ 2π

0

∫ b

0
p(r)rdrdφ =

∫ 2π

0

∫ b

0
q

3
2

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
r2

b2

√

rdrdφ = qb2π (32)  

3. Solution for the Ball-on-Ring problem 

This chapter provides the solution for the Ball-on-Ring problem 
assuming a Hertzian pressure distribution. The system of equations from 
the previous chapter was solved by Mathematica 13.1 and the constants 
c1 − c10were obtained, which are listed in the Appendix of this work. 
Inserting these constants in Eqs. (18)–(20) gives the solution for the 
displacement field and its derivatives. Special care was taken to simplify 
the constants and equations in similar way to the work by Frandsen [19] 
in order to identify similarities between the two solutions.  

dw
dr

=
qb3

8D

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dψ
dr

8D
qb3 +

[

2 + 2 ln
(a

b

)
+

1 − ν
1 + ν

(

1 −
2b2

5a2

)
a2

R2

]
r
b

for 0 ≤ r ≤ b

−
2b
5r

+

[

1 + 2 ln
(a

r

)
+

1 − ν
1 + ν

(

1 −
2b2

5a2

)
a2

R2

]
r
b

for b ≤ r ≤ a

(

1 −
2b2

5a2

)
a2

b2
b
r
+

1 − ν
1 + ν

(

1 −
2b2

5a2

)
a2

R2
r
b

for a ≤ r ≤ R

(34)  

d2w
dr2 =

qb2

8D

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2ψ
dr2

8D
qb2 +

[

2 + 2 ln
(a

b

)
+

1 − ν
1 + ν

(

1 −
2b2

5a2

)
a2

R2

]

for 0 ≤ r ≤ b

2b2

5r2 − 1 + 2 ln
(a

r

)
+

1 − ν
1 + ν

(

1 −
2b2

5a2

)
a2

R2 for b ≤ r ≤ a

(

1 −
2b2

5a2

)(
1 − ν
1 + ν

a2

R2 −
a2

r2

)

for a ≤ r ≤ R

(35)  

d3w
dr3 =

qb
4D

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d3ψ
dr3

4D
qb

for 0 ≤ r ≤ b

−
b
r
−

2b3

5r3 for b ≤ r ≤ a

a2b
r3 −

2b3

5r3 for a ≤ r ≤ R

(36) 

With the slope and curvature known for each region, the radial 
Moment Mrad is derived by inserting Eqs. (34) and (35) in Eq. (13). 

w =
qb4

16D

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ 16D
qb4 +

r2 − a2

b2

[

2 +
1 − ν
1 + ν

(

1 −
2b2

5a2

)
a2

R2

]

+ 2 ln
(a

b

)(2
5
+

r2

b2

)

for 0 ≤ r ≤ b

2 ln
(a

r

)(2
5
+

r2

b2

)

+

[

2 +
1 − ν
1 + ν

(

1 −
2b2

5a2

)
a2

R2

]
r2 − a2

b2 for b ≤ r ≤ a

2 ln
(r

a

)(

1 −
2b2

5a2

)
a2

b2 +
1 − ν
1 + ν

(

1 −
2b2

5a2

)
a2

R2
r2 − a2

b2 for a ≤ r ≤ R

(33)   
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Mrad = −
(1 + v)qb2

8

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
(

d2ψ
dr2 +

ν
r

dψ
dr

)
8

(1 + v)qb2+

[

2 + 2 ln
(a

b

)
+

1 − ν
1 + ν

(

1 −
2b2

5a2

)
a2

R2

]

for 0 ≤ r ≤ b

2 ln
(a

r

)
+

1 − ν
1 + ν

(
a2

R2 −
2b2

5R2 +
2b2

5r2 − 1
)

for b ≤ r ≤ a

1 − ν
1 + ν

(

1 −
R2

r2

)(

1 −
2b2

5a2

)
a2

R2 for a ≤ r ≤ R

(37)  

and the tangential moment Mtan through inserting Eqs. (34) and (35) in 
Eq. (14). 

Mtan = −
(1 + v)qb2

8

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
(

dψ
dr

+ ν d2ψ
dr2

)
8

(1 + v)qb2+

[

2 + 2 ln
(a

b

)
+

1 − ν
1 + ν

(

1 −
2b2

5a2

)
a2

R2

]

for 0 ≤ r ≤ b

2 ln
(a

r

)
+

1 − ν
1 + ν

(
a2

R2 −
2b2

5R2 −
2b2

5r2 + 1
)

for b ≤ r ≤ a

1 − ν
1 + ν

(

1 +
R2

r2

)(

1 −
2b2

5a2

)
a2

R2 for a ≤ r ≤ R

(38) 

The radial and tangential stress components can be determined by 
inserting Eqs. (37) and (38) in the respective expressions in Eq. (1). 
Finally, the shear force is given by inserting Eqs. (34)–(36) in Eq. (16). 

Qrad =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− D
(

d3ψ
dr3 +

1
r

d2ψ
dr2 −

1
r2

dψ
dr

)

for 0 ≤ r ≤ b

qb
2

b
r

for b ≤ r ≤ a

0 for a ≤ r ≤ R

(39) 

Utilizing either Eq. (37) or (38) to determine the maximum tensile 
stress σmax at the center of the plate (r = 0) yields 

σmax =
3qb2(1 + ν)

4t2

[
8 − 2 ln(8)

3
+ 2 ln

(a
b

)
+

1 − ν
1 + ν

(

1 −
2b2

5a2

)
a2

R2

]

=
3qb2(1 + ν)

4t2

[
8
3
+ 2 ln

( a
2b

)
+

1 − ν
1 + ν

(

1 −
2b2

5a2

)
a2

R2

] (40) 

Note that this expression is identical to the solution derived by Hu 
(see Eq. (10)) [7]. As expected, it is also very similar to the solution by 
Kirstein and Woolley [22] (see Eq. (5)) in terms of the basic mathe
matical structure, but with different coefficients. The term 
(8 − 2 ln(8))/3 amounts to about 1.28 (in contrast to 1 in Eq. (5)) and the 
factor 2/5 is found in the later part of the equation (in contrast to 1/2 in 
Eq. (5)). Such similarities are found throughout all expressions 

presented in this chapter when compared to the work by Frandsen [19]. 
The expressions describing region I additionally include the term ψ(r) or 
its derivatives. Note that this solution also becomes singular for small 
(more precisely: vanishing) contact radii b. 

4. Comparison and validation with FEA 

In order to validate the derived expressions, they will be compared to 
FEA results. All simulations were conducted utilizing ANSYS Mechanical 
R.22.1 (ANSYS Inc., PA 15317, Canonsburg, USA) with the model 
implemented in APDL (Ansys Parametric Design Language). This 
allowed for easy reproducibility with automated scripts. Two FEA 
models were utilized in this work. One model, which will be referred to 
as linear FEA or Model 1 throughout the following chapters, applied an 
ideal Hertzian surface load at the center of the disc, as shown in Fig. 3. 
The support ring was implemented as a nodal displacement constraint 
(vertical displacement uz = 0) at r = a. If not stated otherwise, this model 
was used to generate the FEA results that the expressions from the 
previous chapter are compared to. As this model only considers the ideal 

Fig. 4. Meshed FEA model (Model 2) and applied boundary conditions. The 
mesh has been coarsened for better visualization. Contact elements are utilized 
at the surface of the finer regions next to the axis of symmetry. 

Fig. 5. Radial and tangential stress components in dependence of the relative 
radial position derived by analytical and numerical methods. The results shown 
are valid for a specimen with radius R = 12 mm, thickness t = 1 mm, support 
radius a = 10 mm and a loading radius b = 0.5796 mm (gray region). The 
specimen’s Young’s modulus E is 420 GPa, and the Poisson’s ratio v = 0.25. The 
specimen was loaded by a steel ball with Young’s modulus Eb = 210 GPa, a 
Poisson’s ratio vb = 0.33, a ball radius Rb = 50 mm and a load P = 600 N. 

Fig. 6. Radial and tangential stress components in dependence of the relative 
radial position derived by analytical and numerical methods. The results shown 
are valid for a specimen with radius R = 12 mm, thickness t = 1 mm, support 
radius a = 10 mm and a loading radius b = 1.276 mm (gray region). The 
specimen’s Young’s modulus E is 420 GPa, and the Poisson’s ratio v = 0.25. The 
specimen was loaded by a steel ball with Young’s modulus Eb = 210 GPa, a 
Poisson’s ratio vb = 0.33, a ball radius Rb = 200 mm and a load P = 1000 N. 
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case of a perfect elliptic load, which is independent of the specimen’s 
curvature, another model was utilized. This model, which will be 
referred to as contact FEA or Model 2, implemented the interactions of 
the loading ball and the specimen through contact analysis. This model 
therefore represents a more realistic representation of real-world testing 
situations. Since the problem is axisymmetric, a 2D-representation of the 
full testing assembly sufficed, as shown in Fig. 4. The load was applied 
on a single node at the loading ball, with the vertical displacement of 
other nodes on the same surface being coupled to it. This ensures even 
load distribution by forcing their respective translation to be identical. 
Both models utilize linear geometric deformation, but Model 2 includes 
the nonlinear change in contact radius between the loading ball and the 
specimen. Another major difference between both models is the way 
that the contact radius b is defined. While it can be specified by the user 
in Model 1, it is dependent on the applied load and the curvature of the 

plate in Model 2. 
The results in the following chapters will be shown as a function of 

normalized variables, with them being 

ρ =
r
a
, β =

b
a
,α =

R
a
, γ =

t
a

(41) 

Additionally, the stress will be normalized with respect to the 
maximum tensile stress obtained with Model 2 at the center of the plate. 
In Fig. 5 and Fig. 6, the tangential and radial stress distributions on the 
tensile side of the disc (z = - t/2) are shown for two loading conditions, i. 
e. different loading radii b. The contact radii were chosen to be b =
0.5796 mm and b = 1.276 mm, respectively. In order to achieve suffi
ciently large loading radii for the analytical solution to be valid, as will 
be discussed in Section 5, large ball diameters RB and high loads P had to 
be utilized in the contact FEA. These are RB = 50 mm and P = 600 N for 
the results shown in Figure 5 and RB = 200 mm and P = 606.67 N for the 
results shown in Fig. 6. Such large loading ball diameters could be 
realized by utilizing a slightly domed punch. 

It is evident from Fig. 5 that excellent agreement between Eqs. (37) 
and (38) and the results from FEA is achieved. Furthermore, the 
different FEA models show the same results throughout the whole 
specimen and both stress components, indicating that running a full 
contact analysis can be substituted by a simulation with an idealized 
surface load. Note that the lack of datapoints at ρ = 1 stems from the use 
of pointwise boundary conditions, which result in singularities at and 
close to that point, hence why the datapoints were removed on purpose. 
Fig. 6 shows good agreement as well, with a small difference of about 1 
% between Eqs. (37) and (38) and the results of FEA. For the situations 
shown here, the solution for the maximum stress by Frandsen (which is 
identical to the one derived by Kirstein & Woolley) deviates by about 4 
% for b = 0.5796 mm and about 6 % for b = 1.276 mm to the results of 
Eqs. (37) and (38) and FEA. To get a better understanding of the dif
ference between the solution for a constant central load,σmax,const ,and the 
one presented in this work, σmax, the relative difference of the maximum 
stress 

Relative difference
[

%
]

= 100
σmax − σmax ,const

σmax ,const
(42)  

was investigated for a range of different plate geometries and loading 
radii with a Poisson’s ratio of 0.25. The result is shown in Fig. 7. The 
relative difference is strongly affected by the relative loading radius β, 
while the relative overhang α only has a minor influence. The best 
agreement is found for small relative loading radii where the difference 
reaches a minimum of 3.5 %. The maximum of 7.5 % is found for large 
relative loading radii. 

Fig. 8 shows a comparison of the load distribution beneath the 

Fig. 7. Relative difference of the maximum tensile stress between the analytic 
solutions of this work and the one by Frandsen (and Kirstein & Woolley) in 
dependence of the specimen’s relative overhang α = R/a and relative loading 
radius β = b/a. 

Fig. 8. Load distribution beneath the loading ball for the same set of param
eters as used for Fig. 5. The round markers represent the results obtained with 
Model 2, the dashed line shows the distribution given by Eqs. (8) & (9). The 
through line shows the distribution given by Eq. (9) for the contact radius 
obtained from the FEA results. 

Fig. 9. Comparison of f derived with either FEA from Model 1 (colored 
markers) or Eq. (40) (black line) for discs with R/a = 1.2, E = 100 GPa and v 
= 0.25. 
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loading ball for the same conditions as in Fig. 5. Shown are the load 
distribution obtained by FEA with Model 2, the analytic load distribution 
(see 9(9)) for the contact radius derived with Eq. (8), and the analytic 
load distribution with the contact radius as obtained from FEA. It is 
evident that if the contact radius from FEA is utilized, the analytic load 
distribution is in excellent agreement with the numeric result. There
fore, even though Eq. 9 is derived for the contact of a sphere with an 
elastic half-space, it can also be utilized to describe the load distribution 
of a sphere with a plate as thin as γ = 0.05. If the contact radius is 
determined with Eq. (8), it will be underestimated by about 12 %, 
causing the deviation shown in Fig. 8. This is due to the deformation of 
the plate not being considered in combination with the exceptionally 
large diameter of the loading ball used to obtain Fig. 5. This results in a 
significant change in contact radius through a small increase of the 
plate’s curvature. For loading ball radii used in practice, this deviation 
will be significantly smaller. 

5. Extending the limits of plate theory 

To determine the applicability of the solution presented in this work 
for stress evaluation, more specimen geometries and loading situations 
were compared to FEA, with a focus on the influence of the specimen’s 
thickness t on the maximum tensile stress. The maximum stress will be 
normalized and expressed through 

f = σmax
t2

P
(43)  

to allow a better visualization of the results. The constant f therefore 
represents a dimensionless value which is linked to the respective 
maximum stress and is dependent on the specimen’s thickness and 
radius, the loading radius, and the Poisson’s ratio of the specimen. Fig. 9 
shows f derived from 43(43) in dependence of the relative loading radius 
β = b/a, which is independent of the specimen’s thickness. The colored 
markers represent results obtained with Model 1 for specimens with 
varying relative thickness γ = t/a and relative loading radius, totaling 
500 individual simulations, which will be referred to as Dataset 1. Both 
analytical and numerical results were generated for specimens with a 
relative overhang α = R/a of 1.2, a Young’s modulus of 100 GPa and a 

Poisson’s ratio of 0.25. 
It is obvious that the analytic solution derived by plate theory does 

not agree with FEA-results for all combinations of loading radius and 
specimen thickness. This is especially pronounced for thick plates 
(γ > 0.15). Additionally, the analytic solution significantly over
estimates the maximum tensile stress for small loading radii (β < 0.025) 
and approaches an infinite stress if β → 01. To better quantify these re
sults, the relative error between the analytic solution fanalytic (derived by 
inserting Eq. (40) in Eq. (43)) and FEA results fFEA 

Relative error
[

%
]

= 100
fanalytic − fFEA

fFEA
(44)  

is presented as contours in Fig. 10. 
Universally good agreement, i.e. independent of the specimen’s 

thickness, is only achieved for relative loading radii b/a ≥ 0.3. However, 
loading radii this large will only rarely occur in real-life testing and 
material configurations. Mostly, small relative loading radii of about 
0.05–0.1 are to be expected [15]. In this region, previous analytic so
lutions and the one derived in this work will significantly overestimate 
the maximum stress for most practical specimens. Better results are 
achieved if the correction by Westergaard (eq. (7)) is utilized in com
bination with the analytic solution by Kirstein & Woolley (Eq. (5)) [22, 
24]. The relative error, according to Eq. (46), between this corrected 
analytic solution and the FEA results is shown in Fig. 11a. Since both the 
correction and Eq. (5) were derived for a constant load distribution, 
good agreement is only achieved for exceptionally small loading radii. 
Therefore, a new correction based on the ansatz provided by West
ergaard is proposed: 

b* =

{
b for b ≥ 2.15t̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1.459b2 + t2
√

− 0.633t for b < 2.15t
(45) 

Again, this correction provides an equivalent loading radius b*, 
which is based on the Hertzian contact radius b and the specimen’s 
thickness t. This correction will come into play if the ideal Hertzian 
loading radius b is small in comparison to the specimen’s thickness. The 
values for the numerical constants in Eq. (45) were derived by fitting the 
FEA results generated with Model 1. To determine the accuracy of this 
fit, the relative error between the corrected analytic solution (that is Eq. 
(40) evaluated with the equivalent loading radius under the conditions 
from Eq. (45)) and the fitted FEA results was calculated with 

Relative error
[

%
]

= 100
fanalytic,corr − fFEA

fFEA
(46)  

The results are shown as contours in Fig. 11b. 
It is evident that the correction yields significantly better results 

compared to the uncorrected stress evaluation, as shown in Fig. 10, with 
a reduction in the maximum relative error in f to less than 2 %. Since the 
expressions for the correction have been derived from this set of FEA- 
results (Dataset 1), it is obvious that good agreement will be achieved. 
So far, only one relative overhang and Poisson’s ratio, i.e. R/a = 1.2 and 
v = 0.25, have been investigated. Therefore, two additional sets of FEA- 
results have been generated with Model 1, this time with R/a = 1.5 and v 
being either 0.25 (Dataset 2) or 0.35 (Dataset 3), respectively. As before, 
the same range of parameters has been simulated, yielding a total of 
1000 additional results. The relative error of the corrected analytical 
solution provided above (Eqs. (40) & (45)) to the new sets of FEA results 
is shown in Fig. 12a and b. Again, excellent agreement is observed. The 
change in maximum tensile stress due to the change in relative overhang 
or Poisson’s ratio is accurately described by Eq. (40) alone. Therefore, 
these influences do not need to be additionally included in the correction 

Fig. 10. Relative error between fanalytic and fFEA in dependence of the relative 
loading radius β = b/a and the specimen’s relative thickness γ = t/a. 

1 While the stress approaches a singularity for b → 0 when the applied load is 
represented by a δ-function) at the center of the plate, the displacement remains 
regular, i.e. w(r = 0, b = 0) = Pa2/(16πD)(2+ a2/R2(1 − v)/(1+ v))
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(Eq. (45)) itself. 
Furthermore, Kirstein & Woolley investigated the general case of a 

plate supported on several equally spaced point supports in their work. 
They have found that the maximum tensile stress at the center of the plate 
is independent of the number of supports [22]. For an infinite number of 
supports, a ring support is realized. Utilizing these findings for the cor
rected evaluation presented in this work, it can therefore be used for all 
ball-loaded biaxial testing methods. This includes the Ball-on-Three-Balls 
test, for which no analytically derived description of the maximum stress 
has been used so far. If compared to FEA results in recent work of the 
authors (see chapter 4.1 of [30]), a maximum relative error of about 3.3 % 
for the maximum tensile stress of the B3B-test is achieved. 

6. Summary 

In this work, the Ball-on-Ring problem for elastic deformation and 
small displacements of discs has been investigated. In contrast to pre
vious work, which utilized a constant central load distribution, a Hert
zian load distribution was analyzed. The problem was segmented into 3 
separate regions, and the differential equation for the displacement field 
based on Kirchhoff-Love plate theory was solved for each region. In 
combination with the boundary and continuity conditions of this prob
lem, 10 equations containing 10 unknown integration variables have 
been stated. 

Solving this system of equations leads to novel expressions for the 
displacement field, its derivatives, and the shear force-, the bending 
moment- and stress distributions for the entire disc. From these, an 

Fig. 12. Relative error between the maximum tensile stress of the corrected analytic solution and FEA results from Model 1 for discs with R/a = 1.5 and v = 0.25 (i.e. 
Dataset 2, shown in a) or v = 0.35 (i.e. Dataset 3, shown in b). The grey region marks the geometry and load configurations where the use of the equivalent loading 
radius is not necessary (b ≥ 2.15t). 

Fig. 11. Relative error between the maximum tensile stress of the corrected analytic solution (Eqs. (5) & (7) in a, Eqs. (40) & (45) in b) and FEA results from Model 1 
for discs with R/a = 1.2 and v = 0.25. Shown is the error for the analytic solution provided in this work (Eq. (40)) with the correction from Eq. (45) applied. The grey 
region marks the geometry and load configurations where the use of the equivalent loading radius is not necessary (b ≥1.724t for a, b ≥ 2.15t for b). 
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expression for the maximum tensile stress at the center of the disc is 
derived, which is identical to the solution by Hu [7] and in good 
agreement to the solution by Frandsen [19] or Kirstein & Woolley [22]. 
Upon further investigation, a difference of 3.5–7.5 % to the latter, 
depending on the specimen’s geometry and loading condition, was 
found. 

The solution for the stress field provided in this work was analyzed 
and validated by two different Finite-Element-Analysis (FEA) models. 
One model represents the idealized case with an ideal Hertzian load 
distribution being applied, while the other included a model of the 
loading ball and utilized contact calculations to represent the non-linear 
testing situation more realistically. This model was used to validate the 
assumption of a Hertzian contact stress distributionp(r)∝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − r2/b2

√
for 

the analytical solution. For thin specimens (i.e. thickness over support 
radius ≤ 0.1), and large enough contact radii (i.e. contact radius over 
support radius >0.05), excellent agreement between both FEA models 
and the solution based on plate theory was found. For thicker specimens 
and exceptionally small loading radii, a comparison to FEA results has 
shown that plate theory generally fails to accurately describe the 
maximum stress. 

Therefore, a correction based on the approach by Westergaard [24] 
and derived through FEA-results has been proposed. For small loading 
radii (relative to the specimen’s thickness), an equivalent loading radius 

is determined from the ideal Hertzian loading radius and the specimen’s 
thickness. With this substitution model, an error of less than 2 % to the 
FEA-results is achieved. This has been shown for a wide range of spec
imen geometries and loading configurations. Through a combined 
analytical and numerical approach, an accurate description of the 
Ball-on-Ring problem is presented. Additionally, its applicability to 
other testing methods is discussed. 
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Appendix A. Integration Constants c1-c10 

c1 =
qb2

4D

[

1+ ln
(a

b

)
+

1 − ν
1 + ν

a2

R2

(
1
2
−

b2

5a2

)]

(47)  

c2 =
qb4

80D

[

4 ln
(a

b

)
− 10

a2

b2 −
1 − ν
1 + ν

a2

R2

(
5a2

b2 − 2
)]

(48)  

c3 = −
qb2

4D
(49)  

c4 = −
qb4

20D
(50)  

c5 =
qb2

40D

[

5(1+ 2 ln(a))+
1 − ν
1 + ν

a2

R2

(

5 − 2
b2

a2
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(51)  

c6 =
qb2

80D

[

4 ln(a)b2 − 10a2 −
1 − ν
1 + ν

a4

R2

(

5 − 2
b2

a2

)]

(52)  

c7 = 0 (53)  

c8 =
qb2

40D
ʀ
5a2 − 2b2) (54)  

c9 =
qb2

40D
1 − ν
1 + ν

ʀ
5a2 − 2b2) 1

R2 (55)  

c10 =
qb2

80D
ʀ
5a2 − 2b2)

(

− 2 ln(a) −
1 − ν
1 + ν

a2

R2

)

(56)  

Appendix B. Supporting information 

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.jeurceramsoc.2023.06.016. 
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Bauztg. 23 (1920) 257–260. 

[26] H. Hertz, Ueber die Berührung fester elastischer Körper, J. für die reine und 
Angew. Math. (1881) 156–171. 

[27] S.-H. Chae, J.-H. Zhao, D.R. Edwards, P.S. Ho, Verification of ball-on-ring test using 
finite element analysis, in: Proceedings of the 2010 12th IEEE intersociety 
conference on thermal and thermomechanical phenomena in electronic systems: 
(ITherm 2010), Las Vegas, Nevada, USA, 2–5 June 2010, IEEE, Piscataway, N.J., 
2010, pp. 1–6. 

[28] S. Timoshenko, S. Woinowsky-Krieger. Theory of Plates and Shells, 2nd ed., 
McGraw-Hill, Auckland, 1959. 
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The Ball-on-Three-Balls strength test for discs and plates: Extending and 
simplifying stress evaluation 
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A B S T R A C T   

The Ball-on-Three-Balls-test has proven to be an accurate and easy-to-use option for strength testing. However, 
the maximum stress must be calculated based on Finite-Element-Analysis results. For this purpose, a fitted 
function was already provided. This function is based on results which were generated under the assumption of 
punctiform load introduction. Deviations from these conditions occur through an increase in contact-area be
tween the loading ball and the specimen, large specimen deformations, friction, or plastic deformation of the 
balls. These non-linear effects are investigated by Finite-Element-Analysis for a wide range of specimens. It is 
shown that the maximum stress is sensitive to the area of contact between the loading ball and the specimen. 
Furthermore, thin specimens are subject to large deformations, which significantly decrease the maximum stress. 
Therefore, a revised fitted function is derived. For specimens with exceptional geometries, non-linear effects are 
considered with correction factors added to the new fitted function.   

1. Introduction 

Strength testing is probably the most important tool for ceramic ma
terial characterization and material development. It allows the determi
nation of both general mechanical strength and the scatter thereof, which 
then enables the prediction and reduction of component failure [1]. 
Today, a number of mechanical testing methods are widely available and 
well examined. They can be categorized by the type of stress field that the 
specimen is subjected to, which is usually either uniaxial or biaxial. The 
main uniaxial testing methods are 3-or 4-point-bending, tensile and 
compression tests [2,3]. Biaxial testing methods can be classified by the 
symmetry of their stress distribution, being either axisymmetric or not. 
Examples for common methods with axisymmetric stress distributions are 
the Ring-on-Ring-test (RoR), the Ball-on-Ring-test or the 
Ball-with-flat-on-Ring-test [4–6]. Common methods employing 
non-axisymmetric stress distributions are the Ball-on-Three-Balls-test 
(B3B), the Piston-on-Three-Balls-test (P3B), the Ball-on-Ring-of-Balls-test 
and the Three-Balls-on-Three-Balls-test [7–12]. A significant disadvan
tage of axisymmetric tests is that a high degree of flatness of the specimen 
is required in order to guarantee even contact throughout the ring. This 
results in either additional specimen preparation requirements or de
viations from the ideal analytical stress field due to uneven load distri
bution [13,14]. Therefore, tests utilizing a support of three balls have been 

developed since non-planar discs can still be stably supported. The 
Piston-on-Three-Balls-test shows a similar problem, since the surface 
beneath the punch has to be planar to ensure uniform load application – 
the condition that has been assumed to derive the equation for the stress 
calculation. Furthermore, with increasing deformation of the sample, the 
assumption of an extended area of uniform pressure is lost and load 
application shifts towards the outer edge of the piston. This leaves testing 
methods such as the Ball-on-Three-Balls-test as one of the most tolerant to 
non-planar specimens and most flexible in terms of specimen geometry. As 
a result, it is among the most common biaxial testing methods and is 
employed for a variety of materials [15–24]. An extensive study about the 
influence of the most important sources of error has been conducted by 
Börger et al. [25]. Furthermore, the strongly localized area of maximum 
stress allows testing of specific regions of a component to generate 
spatially resolved strength results [26]. A prerequisite for an accurate 
evaluation for all tests that use an analytical stress calculation is to perform 
them under conditions of small deflections and linear elastic material 
behavior, i.e. maintaining a linear stress-deflection relationship. This is 
assured by prescribing that the support radius is smaller than about 6–20 
times the specimen thickness [4,13,20]. Taking into account that 
manufacturing tolerances make support rings smaller than 5 mm in radius 
impractical [13], the lower limit for the thickness of strong specimens is 
approximately 0.5 mm in the RoR-test. The B3B-test, however, can easily 
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be scaled down to much smaller support radii. With the use of standard
ized bearing balls, specimens as small as 2 × 2 × 0.13 mm3 have been 
tested successfully [27–29]. However, the main disadvantage of the 
B3B-test is that no sufficiently accurate analytical description of the full 
stress field is available and numerical analysis has to be employed to 
determine the maximum stress and the effective volume or surface for 
each specimen [30,31]. This then entails new difficulties in making those 
results available. One possibility is to provide fitting functions for the 
factor f, which relates the applied load and the maximum tensile stress, as 
has been done by Börger et al. [30]. Yet, these functions are cumbersome 
to use and only provide a solution for the ideal case of punctiform load 
introduction and small deformations. Deviations from these ideal condi
tions lead to a load dependency of the factor f, as shown for an exemplary 
specimen in Fig. 1, which is not represented in [30]. This may lead to a 
significant overestimation of the specimen’s strength [32]. 

Within this work, a new expression for the ideal case of both discs 
and square plate specimens will be derived by utilizing FEA for linear 
elastic isotropic materials. By modifying the range and variables of the 
underlying data field, a new and simpler fit with similar accuracy to the 
one derived by Börger et al. [30] will be presented. Furthermore, the 
difference between the ideal case and real testing situations, such as an 
increase in contact-area between the loading ball and the specimen, 
large specimen deformations, friction, or plastic deformation of the 
loading ball will be discussed. The effect of large specimen deformations 
will be investigated by utilizing a combined analytical and numerical 
approach. The effect of an increasing contact-area at the loading ball 
will be examined by utilizing FEA. This will yield correction factors 
which describe the load-dependency of the factor f. The performance of 

this new evaluation and its corrections will be assessed by comparison 
with an elaborate FEA model. The practical aspects given by the new 
evaluation and its valid domain of application will be discussed. 

2. Methods 

2.1. Finite-Element-Analysis 

FEA was performed to generate grid points for fitting and to inves
tigate specific effects. All simulations were conducted utilizing the 
commercial FEA-program ANSYS R21.1 (ANSYS Inc., PA 15317, Can
onsburg, USA). Each of the following models was implemented as a 
script written in Ansys-Parametric-Design-Language (APDL). This 
allowed using them in automated parametric studies for a wide range of 
geometries and isotropic material properties, covering several thousand 
unique combinations. 

2.1.1. Simplified models for discs 
To investigate the dependence of the factor f on the testing geometry 

as well as the specimen’s elastic properties, the 3D-model shown in  
Fig. 2a) was utilized. Due to the symmetry of the system and loading 
conditions, the model could be reduced to one sixth of the full disc. In 
Model 1A, the loading ball was represented by a punctiform load applied 
in the center of the disc. The support ball was represented by a puncti
form boundary condition at the support radius Rs. Consequently, this 
model represents the ideal case during testing. The specimen was 
meshed with 178958 SOLID95 elements (20-node brick elements) and 
749574 nodes. The script further facilitates the implementation of 
various types of load application in the center of the specimen. To 
examine the influence of a finite area of contact, a Hertzian contact- 
pressure distribution with varying extent was utilized in Model 1B, as 
depicted in Fig. 2b). 

Fig. 1. FEA-results for the factor f in dependence of the applied load P for an 
exemplary specimen with a radius of 12 mm, a support radius of 10 mm and a 
thickness t of 1 mm. The specimen’s Young’s modulus and Poisson’s ratio are 
70 GPa and 0.22, respectively. 

Fig. 2. a) displays the meshed Model 1A with a punctiform load P applied. b) shows Model 1B, but with a Hertzian contact-pressure distribution p(r) applied.  

Fig. 3. Meshed Model 2 with a punctiform load P applied.  
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2.1.2. Simplified model for square plates 
Model 2 serves the same purpose as Model 1A, but for square plates. 

Due to the reduced symmetry of the system, one half of the plate has to 
be simulated, as displayed in Fig. 3. Both the loading and the support 
balls were represented by a punctiform load (or boundary condition) 
applied in the center of the disc and at the support radius Rs, respec
tively. The specimen was meshed with a minimum of 162216 SOLID95 
elements and 682140 nodes, depending on the specimen’s thickness and 
overhang. 

2.1.3. Complete 3D-Model for discs 
Model 3 serves as a validation for the simplified models. It represents 

a 3D-model of the testing assembly, based on a model first developed by 
Börger et al. [30]. Symmetry conditions allowed a reduction to one sixth 
of the full testing assembly, see Fig. 4. The specimen was meshed with a 
minimum of 40392 SOLID95 elements and 173061 nodes and a 
maximum of 70668 SOLID95 elements and 301375 nodes, depending on 
the specimen’s thickness and overhang. The loading ball was meshed 
with 1750 SOLID95 elements and 8196 nodes, the support ball using 
3500 SOLID95 elements and 15582 nodes. The contact between the 
loading ball and the specimen was meshed with 375 CONTA174 (8-node 
surface elements) and 375 TARGET170 elements (8-node surface ele
ments), the contact between the support ball and the specimen with 490 
CONTA174 and 490 TARGET170 elements. The friction coefficient was 
set to µ = 0.5 and symmetric contact calculations were employed. Since 
this model includes interactions between the specimen and the balls as 
well as load-dependent changes to the testing assembly and is solved 
under non-linear conditions, a better representation of real testing sit
uations is given. A mesh convergence analysis for this and the other 
mentioned models can be found in Appendix A of this work. 

2.2. Analytic solution for the deflection of plates 

Kirstein et al. already developed an analytical solution for the 
deflection of thin centrally loaded plates on symmetric point supports in 
1966 [33]. This solution is valid for a minimum of three supporting 

points up to a theoretical maximum of an infinite number of support 
points, which would represent a ring supported situation. Within the 
context of this paper, their solution will be utilized for the special case of 
m = 3 support points and a central punctiform load. The deflection w at a 
position with radial distance r from the center of a disc with radius R and 
supported on points with distance Ds from the evaluated position is 
given by: 

w = w0 +
3P(1 − v2)

2πEt3

(

r2lnρ − 1
m
∑m

s=1
D2

s ln
Ds

c

)

(1)  

with 

w0 =
P(1 − v2)

2πκEt3

[
∑m

s=1
D2

s ln
D′

s

r′s
+
ʀ
κ2 − 1

)
c2Re{Lm(ζ) }+

m(1 − ρ2)Rs
2

κ + 1

]

+ γ3

(2)  

and 

γ3 =
3P(1 − v2)R2

s

2πκEt3

[

Am(β) +
ʀ
1 − κ2)Bm(β) − κlnβ −

1 − β2

κ + 1

]

. (3) 

Here, P denotes the applied load, E the specimen’s Young’s modulus, 
t the specimen’s thickness, Rs the support radius, β the ratio Rs/R, and v 
the Poisson’s ratio of the specimen. Other parameters of the equation 
will not be discussed here, the authors refer to the original work by 
Kirstein et al. [33]. 

2.3. Fitting 

Every fit in this work has been performed in Mathematica 13.1 
(Wolfram Research, IL 61820, Champaign, USA) with the command 
NonlinearModelFit. This command performs a least sum of squared errors 
fit on any given type of ansatz function by adjusting user-specified 
constants within the function. The deviation between the value of the 
fit xi,fit and the fitted data xi,ref for data point i will be referred to as re
sidual error and is determined by 

Residual error [%] = 100⋅
xi,fit − xi,ref

xi,ref
(4) 

For each fit, the maximum positive and negative residual error for 
the complete data field will be given. Furthermore, the mean residual 
error for a fit based on n grid points is given by 

Mean residual error [%] = 100⋅

∑n

i=1
Abs

(
xi,fit − xi,ref

xi,ref

)

n
. (5)  

3. Simplifying the stress calculation 

3.1. Discs 

Due to the lack of an accurate analytical solution for the stress field, 
it must be numerically evaluated instead. Börger et al. [30] performed 
Finite-Element-analysis for the special case of contacting support balls. 
If not stated otherwise, this assumption will be maintained throughout 
this work. For this case, the support radius Rs is given by the radius of the 
support balls RSB by 

Rs = RSB
2̅
̅̅
3

√ . (6) 

In general, the maximum tensile stress σmax in the center of a bent 
plate scales with the applied load P and the inverse square of the 
thickness of the plate t: 

σmax = f
P
t2 (7) 

The factor f is a dimensionless function which takes the material 

Fig. 4. Meshed model of the specimen and the loading/support balls, Model 3.  
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properties and the involved geometry into account. Within their work, 
they reduced the factor f for the B3B-test to being dependent on the 
specimen’s thickness t, the specimen’s radius R, the support radius Rs 
and the Poisson’s ratio v. Furthermore, the results of a parametric study 
were made available by providing a fitted function for f: 

fBörger

(
t
R
,
Rs

R
, v
)

= c0 +
c1 + c2

t
R + c3

ʀ
t
R

)2
+ c4

ʀ
t
R

)3

1 + c5
t
R

(

1+ c6
Rs

R

)

(8) 

This function covers the range of 0.55 ≤ Rs/R ≤ 0.9, 0.05 ≤ t/R 
≤ 0.6 and 0.2 ≤ v ≤ 0.3. This range was later extended to 0.1 ≤ v ≤ 0.4 
by Danzer et al. [32]. The value of fBörger determined with this fit has an 
error ≤ ± 1% with respect to the numerical solution. This accuracy is 
made possible by providing a set of constants c0-c6 for different Poisson’s 
ratios in an increment of 0.05; a total of 49 constants. If the tested 
material has a Poisson’s ratio not tabulated, linear interpolation must be 
performed. This makes implementation of this equation prone to errors 
and cumbersome. In order to simplify the calculation of the maximum 
stress, a new study on f has now been conducted. Up to now, f was al
ways expressed and evaluated with its arguments relative to R. How
ever, the influence of the support radius Rs on the value of f is 
significantly higher than that of the specimen’s radius R. Therefore, a 
new data field for f based on the now modified parameters t/Rs, R/Rs and 
v was generated by FEA utilizing Model 1, with a total of 1400 data
points. The data field covers 1.05 ≤ R/Rs ≤ 2, 0.05 ≤ t/Rs ≤ 0.6 and 0.1 
≤ v ≤ 0.4. Based on this data, a new empirical fit was developed. Now, 
the factor f can be determined by 

fnew

(
t

Rs
,

R
Rs
, v
)

= exp

[

m1(1+ v)+m2ln
t

Rs
+m3

̅̅̅̅̅̅̅
Rt2

R3
s

4

√ ]

(9)  

with m1-m3 as listed in Table 1 and the limits of valid application as the 
range of the fitted data field. 

An overview of the general deviation from Eq. (9) to the fitted data 
can be found in Table 2. Fig. 5a)-e) provide a more comprehensive 
overview of the fit’s accuracy. In terms of specimen geometry, the lowest 
accuracy/largest deviation is generally found in the peripheral regions. 
Similarly, a low accuracy for exceptionally low and high Poisson’s ratios 
can be observed. However, most technical ceramics exhibit a Poisson’s 
ratio in the range of 0.2 – 0.3 [31], a range well described by the fit. 
Furthermore, typical specimens for the Ball-on-Three-Balls-test exhibit 
geometries as marked in Fig. 5c). Here, a maximum and minimum de
viation as low as + 0.15% and − 0.7%, respectively, are achieved. In 
principle, a small loss in (overall) accuracy as compared to the fit by 
Börger et al. [30] is observed, though only in regions of minimal interest. 
Fig. 5 further gives the possibility to derive highly accurate strength 
results for individual geometries by utilizing the given deviation in 
combination with Eq. (9) to determine the applied stress as originally 
calculated with FEA. 

3.2. Square plates 

Another very common specimen geometry are square plates, which 
can be tested in similar testing fixtures as discs. The factor f for these 
specimens does not deviate much from similarly sized disc-shaped 
specimens, but the difference is large enough to necessitate a separate 
treatment. This is due to the fact that the overhang, i.e. the part of the 
specimen from the outer edge to the support radius, has a small but still 
pronounced effect on the maximum tensile stress. Therefore, instead of 
describing square plates with fit very similar to Eq. (9), the authors 
opted to provide a conversion from square plates to equivalent discs, as 
has been done for other methods [4,34]. An equivalent disc is defined by 
its diameter Deff, which is chosen in a way so that the maximum stress is 
the same as in the square plate specimen. All other geometry parame
ters, such as the specimen’s thickness and the support radius, remain 
unchanged. Therefore, only the conversion from the square plate’s edge 
length L to the equivalent diameter is needed. In order to derive this 
conversion, Model 2 was utilized and 1035 datapoints were generated. 
The data field covers 2.165 ≤ L/Rs ≤ 3.899, 0.0449 ≤ t/Rs ≤ 0.736 and 
0.05 ≤ v ≤ 0.45. Based on this data, a conversion from square plates to 
discs was developed. The effective diameter Deff is determined by 

Deff = L
(

1.053 − 0.017
tL
R2

s

)

. (10) 

An overview of the deviation for the factor f, derived with the con
version to equivalent discs and Eq. (9), to the FEA-data for square plates 
can be found in Table 2. 

It should be noted that this conversion is only valid in the range 2.17 
≤ L/Rs ≤ 3.9, 0.1 ≤ t/ Rs ≤ 0.6 and 0.1 ≤ v ≤ 0.4. 

4. Improving accuracy for high-load testing situations 

So far, all simulations have been conducted with Models 1A and 2 
described in Sections 2.1.1 and 2.1.2. As previously stated, this model 
represents the ideal case during testing with both punctiform load 
introduction and support conditions. It is evident that this will not 
represent reality in a number of practical cases and that some errors are 
to be expected. Errors due to geometric deviations of various aspects of 
the testing setup have already been discussed by Börger et al. and 
deemed negligible [25]. Therefore, the aforementioned errors mostly 
arise because no interactions between the loading or support balls and 
the specimen are represented in the model. First, an increase in load 
results in deformation of the loading ball and the specimen in the area of 
contact, whereby the assumption of punctiform load introduction loses 
its validity. Instead, a finite area of contact and load introduction is 
established. Second, large deflection of the specimen may occur under 
certain conditions, causing it to roll off the support balls. This results in a 
shift of contact position towards the center of the support circle, altering 
the applied bending moment and with it the maximum tensile stress. 
Third, friction between the loading ball and the specimen can have a 
significant influence on the maximum tensile stress of the specimen. It 
induces shear stresses under the area of contact, which act through the 
specimen thickness and thus reduce the maximum tensile stress. 

Due to these interactions being included, Model 3, as described in 
Section 2.1.3, is significantly better suited to provide an accurate rep
resentation of reality. This then provokes the idea of using this model in 
a similar way to the previous section and incorporate all the mentioned 
effects into the evaluation at once. The main drawback of this model is 
its high processing time due to its use of contact calculations despite a 
decrease in the overall number of elements. In general, the evaluation 
takes about 70–80 times longer than for Model 1A. In order to represent 
the mentioned effects in the calculation of maximum stress, a higher 
number of parameters would be needed. First, the load-dependence has 
to be considered, which is influenced by the elastic constants of both the 
specimen and the support or loading balls. This would result in the 

Table 1 
Constants m1-m3 utilized in Eq. (9).  

m1 m2 m3 

0.697 -0.118 -0.728  

Table 2 
Accuracy parameters describing the deviation of Eq. (9) to the data field for discs 
and Eq. (10) used in Eq. (9) to the data field for square plates.  

Accuracy parameter Discs Square plates 

Maximum residual error [%] + 1.4 + 1.6 
Minimum residual error [%] -1.9 -1.6 
Mean residual error [%] + 0.52 + 0.63  
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Fig. 5. Overview of the relative error of fnew to the fitted data points.  
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addition of up to four new parameters. To properly capture each de
pendency, each relevant parameter would have to be varied within its 
relevant range in at least 10 steps. Putting all those considerations 
together, a new parameter field with a size well within millions of data 
points would be necessary. In combination with the high processing 
time, a study like this would require immense computing power. 
Developing an accurate fit for such a data field would be another chal
lenge by itself. 

Therefore, a different method has to be considered. Within this work, 
a separation approach will be utilized. By taking an individual look at 
each major effect, a better understanding of its consequences can be 
achieved. Ideally, the deviations from the ideal solution fnew caused by 
them can be described separately with correction factors ki. Combining 
these expressions multiplicatively, as shown in Eq. (11), will yield a 
corrected factor fcorr. If each ki is a somewhat manageable functional 
expression with sufficiently similar results to FEA, this method will 
provide a valuable alternative evaluation, but within a much shorter 
time. 

fcorr = fnew

∏

i
ki (11) 

In the upcoming sections, a closer look at the change in load appli
cation and the specimen’s deflection will be taken and functional ex
pressions to describe their influence on the factor f will be provided. 

4.1. Contact at the loading ball 

As mentioned in the previous section, an increase in load establishes 
a finite area of contact between the loading ball and the specimen. This 
causes a change in load introduction from the ideal punctiform load to a 
distributed load over a circular contact area at the center of the spec
imen. The size of this area will be quantified by its radius, which will be 
referred to as the contact radius Rc. In principle, an increase in contact 
radius reduces the bending moment and with it the stress applied on the 
specimen. This change in stress has been investigated by FEA with Model 
1B described in Section 2.1.1. Instead of a punctiform load, a Hertzian 
pressure distribution for the contact between a sphere and a flat surface 
has been applied. With this model, a parametric study of approximately 
6000 simulations on the influence of the contact radius Rc on the 
maximum stress (i.e. the factor f) has been conducted. More specifically, 
the contact radius Rc was varied for a wide range of specimen geome
tries, such as the specimen’s thickness t, the specimen’s radius R and the 
support radius Rs. Additionally, the influence of the applied load P, the 
specimen’s Young’s modulus E and Poisson’s ration v was investigated 
as well. In conclusion, only the contact radius, specimen’s thickness and 
support radius have a distinct influence on the maximum stress. The 
other parameters mentioned have an influence on the contact radius, but 

not on the maximum stress directly. This allowed to reduce the number 
of relevant parameters to just three. By using dimensionless relative 
parameters, e.g. the relative contact radius Rc /Rs and relative thickness 
t/Rs, the number of parameters could be further reduced to two. Based 
on these findings, a reduced data field with 525 data points to describe 
the change in maximum stress, i.e. the factor f, was generated. The in
fluence of these two parameters on f is shown in Fig. 6. 

By fitting this data field, a functional expression for the change of f 
due to the change in contact area can be provided. The correction k1 can 
be given as 

k1(a/Rs, t/Rs, v,E,ELB, vLB,P) = h1 + h2 ln( Rc/Rs⋅t/Rs) + h3
(Rc/Rs)

h4

(t/Rs)
h5

(12)  

where 

Rc =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

3PRLB

4

(
1 − v2

E
+

1 − vLB
2

ELB

)
3

√

(13) 

with Rc describing the contact radius based on the Hertzian solution. 
ELB and vLB are the Youngs’s modulus and Poisson’s ratio of the loading 
ball, respectively. RLB denotes the radius of the loading ball. The fitting 
constants h1-h5 are listed in Table 3. An overview of the deviation of Eq. 
(12) to the fitted data can be found in Table 4. 

4.2. Deflection of the specimen 

A different problem is raised through the interaction of the specimen 
and the support balls. With increasing specimen deflection, the point of 
contact progressively shifts inwards. This reduces the applied bending 
moment due to decreasing leverage. Since the bending moment is 
directly proportional to the maximum stress and therefore the factor f, a 
functional expression for the change in bending moment is equal to the 
searched correction k2. This effect is especially pronounced when ma
terials with high strength (> 1000 MPa) and low Young’s modulus (<
100 GPa), such as high-strength glass, are tested. In order to predict the 
extent of this effect, the change in leverage, i.e. the shift in contact po
sition at the support balls, has to be known. By considering the geometry 
of the problem, trigonometry can be utilized to express the shift in 
contact xshift from the slope scon of the specimen with 

xshift = RSBsinarctanscon, (14)  

where RSB is the radius of the support ball. A schematic of the geometric 
relations is shown in Fig. 7. 

Therefore, the problem can be reduced to the determination of the 
slope of the specimen’s deflection curve at the point of contact. Ideally, 
this information can be directly deduced from an analytical expression. 
Favorably, Kirstein et al. [33] derived an analytical description for the 
deflection of point-loaded plates on an arbitrary number of equally 
spaced point supports, as explained in Section 2.2. If we differentiate a 

Fig. 6. The factor f in dependence of the relative contact radius and the 
specimen’s relative thickness as predicted by FEA. Values at Rc/Rs = 0 are those 
which correspond to the point-load situation, and which are described by 
Eq. (7). 

Table 3 
Constants h1-h5 utilized in Eq. (12).  

h1 h2 h3 h4 h5 

1.0052 0.00063 -0.5928 1.6756 1.3523  

Table 4 
Accuracy parameters describing the deviation of Eq. (12) and Eq. (15) to their 
respective fitted data fields.  

Accuracy parameter k1 sred (k2) 

Maximum residual error [%] + 1.0 + 6.4 
Minimum residual error [%] -0.50 -13 
Mean residual error [%] 0.16 3.7  
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function describing the deflection of a specimen, a function describing 
its slope is obtained. However, due to its complexity, this cannot be done 
analytically for the solution by Kirstein et al. Therefore, a numerical 
approach had to be employed. First, the number of variables for the 
numerical evaluation had to be reduced. This was done by factoring out 
P/Et2, which leaves a reduced function for the deflection that is inde
pendent of the applied load and the specimen’s Young’s modulus. 
Therefore, the variables had been narrowed down to R, Rs, v and t. By 
forming dimensionless relative parameters, i.e. the relative radius R/Rs 
and relative thickness t/Rs, the number of parameters could be further 
reduced to three. A parametric study on those three parameters for the 
reduced slope at the point of support was conducted and a data field 
comprising 1330 data points was generated. By fitting, an approxima
tion for the analytical derivation of the equation by Kirstein et al. at this 
position can be given. The fit for the reduced slope sred can therefore be 
expressed as 

sred =
ʀ
1 − v2)R/Rs

t/Rs

(

0.0015 − 1.13
1

(R/Rs)
2

)

. (15) 

A summary of the deviation of Eq. (15) to the fitted data can be found 
in Table 4. The high relative deviation stems from the deviation for low 
absolute values of the reduced slope. Here, a small deviation in absolute 
value causes a large relative deviation due to the reference value being 
very small. This large error would therefore only come into play when 
very small deflections are involved, a case where an application of this 
fit or correction is neither necessary nor recommended. Combining the 
reduced slope with the load- and material-specific term previously 
factored out yields the actual slope scon at the contact point between the 
specimen and the support ball 

scon =
P

Et2

[
ʀ
1 − v2)R/Rs

t/Rs

(

0.0015 − 1.13
1

(R/Rs)
2

)]

(16)  

with the variables as denoted in previous equations. Since the slope at 
the point of contact is now known, Eq. (14) can be utilized to predict the 
shift in contact position xshift with 

xshift = RSBsinarctan
P

Et2

[
ʀ
1 − v2)R/Rs

t/Rs

(

0.0015 − 1.13
1

(R/Rs)
2

)]

(17) 

Due to the small value of the argument of the trigonometric func
tions, scon, a small angle approximation (sinarctanx ≈ x) can be per
formed. This then gives 

xshift = RSB
P

Et2

[
ʀ
1 − v2)R/Rs

t/Rs

(

0.0015 − 1.13
1

(R/Rs)
2

)]

(18)  

for xshift. In order to predict the change in bending moment, the relative 
change in leverage has to be calculated. This is done by subtracting xshift 
from the original lever arm, i.e. the support radius Rs, and then dividing 

the result by Rs. Since the slope determined with Eq. (16) is negative, 
xshift is negative as well and has to be added to Rs instead in order to 
correctly portray the change in leverage. This then yields 

k2 =
Rs + xshift

Rs
(19)  

for the change in bending moment k2. Inserting Eq. (17) into Eq. (19), 
utilizing the relationship from Eq. (6) and simplifying the resulting 
expression gives 

k2 = 1+
̅̅̅
3

√

2
P

Et2

[
ʀ
1 − v2)R/Rs

t/Rs

(

0.0015 − 1.13
1

(R/Rs)
2

)]

(20)  

4.3. Friction & plastic deformation of the loading ball 

The influence of friction and plastic deformation has been investi
gated through FEA with a model employing contact calculations. It was 
found that friction between the specimen and the loading ball starts to 
play an increasingly important role if the specimens are thin. For thin 
and highly flexible specimens, i.e. t/Rs= 0.05 and E = 70 GPa, a 
reduction in the maximum tensile stress of about 4% from the friction
less case to the same setup with µ = 0.5 has been observed. This is due to 
the shear stresses caused by friction starting to affect the stress at the 
opposing face, resulting in a reduction of maximum tensile stress. For 
thicker and less flexible specimens, this effect is in the range of about 
1–2%. As will be explained in the upcoming sections, thin and flexible 
specimens are difficult to describe with the models established in this 
work and will have to be treated separately. Since this effect is only 
significant for a small portion of possible specimen geometries, while 
having only a minor influence on the remaining ones, no functional 
expression for the influence of friction will be provided. Additionally, 
friction between the support balls and the specimen is not present if the 
balls are allowed to rotate freely [25]. 

Another possible source of error is plastic deformation of the loading 
ball. The expected effect would be similar to what has been covered in 
Section 4.1. A FE study using an ideal bilinear elastic-plastic material 
model for the loading ball [35], solely for the influence of plastic 
deformation on the contact situation, was conducted. It revealed a 
nearly linear relation between the increase in load and the increase in 
contact radius compared to the pure elastic case. If the material prop
erties of the balls are known, this additional increase can be determined 
and added to the elastic deformation. This would provide a new contact 
radius Rc’ for the usage in k1 and no further changes to the calculation of 
the maximum tensile stress would have to be made. 

4.4. The load-corrected stress evaluation 

Combining the correction factors k1 and k2 with fnew ultimately yields 
the corrected factor fcorr 

Fig. 7. Geometric relations for the contact point shift between the specimen and the support ball.  
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fcorr

(
t

Rs
,

R
Rs
, v,E, vLB,ELB,P

)

= fnewk1k2 (21)  

which now takes additional load- and material-dependent effects into 
account. The following sections will provide an overview of the per
formance and accuracy of this functional expression for fcorr. 

5. Validation and Comparison of fcorr 

Before the comparison of fcorr to FEA results obtained with Model 3, 
some aspects of the behavior of the correction factors k1 and k2 have to 
be discussed. First, thin specimens exhibit the highest relative de
flections and with it the strongest curvature. This especially affects the 
size of the zone of contact between the loading ball and the specimen, 
where the curvature is most pronounced. As discussed in Section 4.1, the 
size of the contact area has a strong effect on the maximum stress. 
However, the correction factor k1 is based on the assumption of Hertzian 
contact between a sphere and a flat surface. This suggests a smaller area 
of contact compared to contact between a sphere and a concave surface. 
Therefore, k1 underestimates the effect of contact for large deflections. 
Second, the geometric assumptions necessary for the equation given by 
Kirstein et al. [33] lose their validity for large deflections. Due to the 
correction factor k2 being deducted from this equation, an error for 

exceptionally thin specimens is expected. A comparison of the slope at 
the point of contact as obtained with FEA and the prediction by Eq. (1) 
for thin specimens with large deflections shows an overestimation by the 
analytical solution. Additionally, Kirstein et al. assume punctiform load 
introduction, while an extended load introduction is closer to real 
testing situations. This reduces the applied bending moment and with it 
the deflection, which is another reason for the overestimation of the 
slope at the point of contact. Therefore, the correction factor k2 gener
ally overestimates the effect of deflection for exceptionally thin 
specimens. 

Model 3 mentioned in Section 2.1.3 was utilized as a base of com
parison and a tool for the validation of Eq. (21). More specifically, the 
load dependency of the factor f was determined with both methods for a 
range of parameters. On one hand, this range includes “typical” speci
mens and testing setups, as one would encounter on a regular basis. On 
the other hand, the edge-cases of possible parameter combinations were 
also examined to work out the limits of Eq. (21)’s applicability. All 
comparisons in this chapter are based on a testing setup that utilizes 
steel balls with a Young’s Modulus of 210 GPa and a Poisson’s ratio of 
0.33. For typical specimens, a relative radius R/Rs of 1.2 and a range of 
relative thicknesses t/Rs from 0.05 to 0.4 were chosen. The material- 
specific parameters are listed in Table 5. Fig. 8a)-c) depict the change 
in f in dependence of the applied load P, predicted by both FEA and Eq. 
(21). The corresponding maximum stress for each curve is approxi
mately 2 GPa. Except for specimens with a relative thickness of 0.05, 
exceptional agreement between the two methods is achieved. The 
maximum relative error for specimens with t/Rs ≥ 0.1 is less than 1%. It 
should be noted that FEA was conducted with non-linear geometric 
behavior considered, which is represented accurately by the functional 
expressions. 

Eight edge-cases were investigated to cover extreme specimen 

Table 5 
Material parameters for "typical" specimens.  

Specimen material R/Rs [-] E [GPa] v [-] 

Glass  1.2  70  0.22 
Zirconia  210  0.25 
Alumina  420  0.2  

Fig. 8. Dependence of f on the applied load P as predicted by FEA and by Eq. (21). The colored markers represent the results of FEA, the continuous black line 
represents fcorr, Eq. (21). The maximum tensile stress for each curve is approximately 2 GPa. The results for glass are shown in a), zirconia in b) and alumina in c). 
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geometries and extreme material properties. As before, the relative 
thickness was varied, but now in the range from 0.05 to 0.5. Two main 
cases were differentiated: An exceptionally small relative radius of 1.05 
(i.e. a small overhang) and large relative radius of 1.525 (i.e. large 
overhang). Within each case, 4 combinations of material parameters 
were evaluated. The specific parameters are listed in Table 6. Fig. 1 of 
the supplementary material depicts the results for cases 1–4, while Fig. 2 
of the supplementary material depicts the results for cases 5–8. Again, 
specimens with a relative thickness of 0.05 exhibit the highest deviation, 
with the exception of case 2 and 8, and will not be included in the 
following observations. For cases 1–4, i.e. specimens with very low 
relative radius, an overall good agreement is observed. The highest 
deviation is displayed in case 3 by the specimen with a relative thickness 
of 0.1. However, the maximum deviation for this specific combination of 
parameters is about 2%, which is well within the desired accuracy. For 
cases 5–8, i.e. specimens with a very high relative radius, a similar sit
uation is found. Cases 6–8 exhibit good agreement, only the specimen 
with a relative thickness of 0.1 in case 7 displays a deviation of about 
1.6%. Case 5 however indicates a problem for highly flexible specimens 
with a low Poisson’s ratio. Here, even the thickest specimen exhibits a 
constant deviation of about 4%. The specimen with a relative thickness 
of 0.1 exhibits an error of up to 5.9%, albeit only for a maximum stress of 
more than 1 GPa. 

As discussed in the beginning of this chapter, both corrections either 
underestimate (k1) or overestimate (k2) their respective influences with 
increasing load. Due to the factors k1 and k2 being utilized in multipli
cative combination, these errors cancel each other out and an accurate 
description can evidently be achieved for most specimens. However, 
they cannot sufficiently describe specimens with a relative thickness 
< 0.01. Considering these aspects, the range of parameters for the 
application for fcorr , i.e. Eq. (21), is given in Table 7. Since fcorr has been 
compared to FEA only up to a maximum tensile stress of 2 GPa, the 
authors do not recommend application for specimens with a higher 
strength. Within the given range, Eq. (21) replaces individual FEA with 
an error typically ≤ ± 2%. 

6. Practical aspects 

The test set-up of the B3B-test was originally designed using three 
contacting balls to provide the support of the specimen on a perfect 
circle and a ball of similar size as loading ball, as depicted in [25,30]. 
Due to the ability of the support balls to rotate at their position during 

the test, friction can be minimized, and an important source of error can 
be eliminated [25]. Furthermore, this set-up facilitates jig-designs with 
exceptionally easy handling. Preferably, ball bearing grade steel balls 
are used, since they are easy to obtain and available in a fine grading of 
radii over a wide range of sizes. The separate description of the in
fluences of two important issues of the B3B test – the contact situation 
through k1 and the deflection effects through k2 - paves the way to an 
analysis of some practical aspects of the test. In the following sections, 
these aspects will be discussed within the validity range of Eq. (21), as 
given in Table 8, for exemplary specimens with radius of R = 6 mm on a 
support radius of Rs = 5 mm. The ideal ball radius for this set-up is RSBi 
= RLBi = 4.33 mm. 

6.1. Support ball size 

In Section 4.2 and in Eqs. (17) and (19), the influence of the speci
men’s deflection on the maximum stress in the specimen is described 
and quantified. It is obvious that this effect is more pronounced if the 
specimen is supported on large balls. The influence of the shift of contact 
on the maximum stress can be reduced if smaller than ideal support balls 
are used. For any test geometry, the correction factor k2 depends linearly 
on the ratio of the support ball radius over support radius, RSB/RS. For 
RSB/RS = 0, k2 = 1, for larger ratios k2 < 1. This trend is illustrated in  
Fig. 9 for thin specimens with a Young’s modulus of E = 70 GPa and 
more typical, thicker specimens with E = 300 GPa at two failure 
stresses. It can be seen that the effect of using smaller support balls is 
very small unless very flexible materials with extremely high strength 
are tested. Using smaller balls will also require a new design of the test 
fixture, which will certainly be more complicated than the one suggested 
earlier [25,30], especially regarding the exact positioning of the support 
balls and their ability to rotate. 

Table 6 
Geometry and material parameters as well as the maximum relative deviation 
from fcorr to FEA for a number of investigated edge cases.  

Designation R/Rs [-] E [GPa] v [-] Max. dev. 

Case 1  1.05  70  0.1 < 2% 
Case 2  0.4 < 2% 
Case 3  420  0.1 2% 
Case 4  0.4 < 2% 
Case 5  1.525  70  0.1 6% 
Case 6  0.4 < 2% 
Case 7  420  0.1 < 2% 
Case 8  0.4 < 2%  

Table 7 
Parameter range for the accurate application of Eq. (21).  

t/Rs [-] R/Rs [-] E [GPa] v [-] σmax [MPa] 

0.1 – 0.5 1.05 – 1.525 70–420 0.1 – 0.4 ≤ 2000 

Note that for the special case of specimens similar to case 5, i.e. highly flexible 
specimens (E ≤ 100 GPa) with a high strength (σF ≥ 1 GPa) and a Poisson’s ratio 
in the range of 0.1–0.15, deviations of up to 6% are expected.  

Table 8 
Summary of the valid parameter ranges for the functional expressions of f.   

t/Rs R/Rs or L/ 
Rs 

E [GPa] v σmax [MPa] 

fnew 0.1 – 0.6 1.05 – 2 – 0.1 – 
0.4 

material specific,Eq. 
23 

fnew, 

square 

0.1–0.6 2.17 - 3.9 – 0.1 – 
0.4 

material specific,Eq. 
23 

fcorr 0.1 – 0.5 1.05– 
1.525 

70–420 0.1 – 
0.4 

≤ 2000  

Fig. 9. Correction factor k2 for exemplary specimens (R = 6 mm, RS = 5 mm) in 
dependence of the radius of the support balls (in fractions of the support 
radius). Through lines represent thin, flexible (glass) specimens (t = 0.5 mm, 
E = 70 GPa), dashed lines represent thicker, more typical ceramic specimens 
(t = 1.5 mm, E = 300 GPa). Two cases are shown: σmax = 500 MPa and 
σmax = 2000 MPa. 
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6.2. Contact of the specimen with the loading ball 

The ideal loading situation in the B3B-test is a punctiform load 
introduction. Of course, this cannot be achieved using a ball to apply the 
load. It has been shown in Section 4.1 how an increase in the size of the 
area of load introduction influences the maximum stress. In practice, the 
desirable situation of keeping the size of this area as small as possible is 
favored by two means: by using a loading ball with a higher Young’s 
modulus (see Eq. (13) or by using a smaller loading ball (i.e. smaller than 
the ideal size which is equal to the contacting support balls). Eqs. (12) 
and (13) can be employed to evaluate the influence of using a hard metal 
loading ball of ideal size with a Young’s modulus of ELB = 600 GPa 
instead of steel balls. This only has a negligible influence of less than 1% 
on the correction factor k1. The effect of using a smaller loading ball is 
slightly more pronounced, with deviations up to 3% for very small balls. 
These numbers were obtained for the condition of a maximum tensile 
stress of 2000 MPa in the specimens. The effect will be even smaller at 
lower stresses. 

Moreover, any contact of a ball with a surface, as at the site of load 
introduction in the B3B-test, bears the risk of the formation of contact 
cracks if a certain critical load Pc is exceeded [36]. Upon increase of the 
load beyond this critical value such cracks may grow, penetrate the 
thickness of the specimens and lead to failure [37]. This is an unwanted 
situation that can be avoided if the load at fracture due to bending, Pf, is 
less than the critical load Pc for the formation of contact cracks, i.e. Pf 
< Pc. 

For common ball sizes used in the B3B test, this situation can be 
analyzed by using Auerbach’s law for the contact between a flat surface 
and a ball. According to Auerbach’s observations [38], the load required 
to produce contact cracks Pc is proportional to the radius of the loading 
ball: PC = A⋅RLB. The constant A (Auerbach constant) has been related to 
the elastic constants of the involved materials and the surface energy γ of 
the cracked material [39,40], and has further been determined experi
mentally for various material (i.e. specimen and ball) combinations 
[41–45]: 

Pc =
3π3

16 ϕa

(
1 − ν2

E
+

1 − v2
LB

ELB

)
2γ E
(1 − ν2)

RLB (22) 

Eq. (22) or experimental values for A can be used to plot curves of 
σ(Pc), using Eq. (7), for a given specimen geometry as a function of the 
specimen’s thickness t. Such curves can be used to find limiting condi
tions for contact cracking during B3B-tests. An example for such curves 
for the exemplary specimen is given in Fig. 10 for various specimen 
materials (glass, alumina, silicon nitride) and a steel loading ball of ideal 

size RLBi. If the expected strength of the specimen is below the line at a 
given thickness, no contact cracks should be generated during the B3B- 
test. For glass, A = 62 N/mm was taken from [41], for alumina, A 
= 590 N/mm from [42] and for silicon nitride, a value of A 
= 1360 N/mm using materials properties given in [46], Eq. (22) ϕa 

= 0.0011 [39] and the relation K2
Ic = 2γE/(1 − ν2) was used. Addition

ally, Fig. 10 depicts the same limit curves for a loading ball made from 
hard-metal and with a radius RLB = 1 mm. 

It is obvious from Eq. (22) how the size and Young’s modulus of the 
loading ball influence the limit curve: the smaller RLB, the smaller is Pc 
and the higher ELB, the smaller is A. Both trends shift the limit curve 
towards lower strength values. These findings discourage the use of 
smaller or stiffer loading balls. However, the use of balls with RLBi and a 
high Young’s modulus may be indicated for cases where high fracture 
loads prevail, and plastic deformation of the loading ball is an issue. 

Several simplifications have been made for the construction of 
Fig. 10. The data for A are related to the contact between a ball and a 
thick, flat specimen that does not deform globally. In the case of the B3B- 
test, the contacted surface is concave and under a general compressive 
equi-biaxial stress. The curvature will increase the contact area in 
comparisons to the flat surface case and thus decrease the overall 
magnitude of the contact stress field. The overall compressive equi- 
biaxial stress state at the loaded surface of the specimen additionally 
hinders contact cracking, since tensile stresses are relevant for this 
phenomenon. The limit curves in the presented map can therefore be 
regarded as conservative estimates. 

6.3. Domains of application 

As is evident from the plots in Fig. 6, the factor f does not deviate a lot 
from fnew, i.e. the values of f on the ordinate axis, for certain conditions. 
These conditions are given by the specimen geometry (relative thickness 
and relative radius), its elastic properties and the applied load. Even 
though fcorr gives the more accurate result for f, it is not necessary to use 
this lengthy expression in all cases. In order to determine which 
expression to use, the impact of the correction factors k1 and k2 has been 
investigated for all valid parameter combinations. A combined correc
tion of k1 and k2 of 2% has been set as the limit for the application of fnew. 
This means that if fcorr/fnew < 0.98, fnew does not sufficiently describe f 
anymore and fcorr has to be utilized instead. For the following graphs and 
statements, a testing fixture utilizing steel balls with a Young’s modulus 
of 210 GPa and a Poisson’s ratio of ν = 0.33 is assumed. This then re
duces the possible parameters to R/Rs, t/Rs, E and v of the specimen as 
well as the applied load P. To display the limits in a way that is not 
dependent on the absolute geometry of the specimen, the applied load 
will be expressed by the maximum applied stress σ (or the measured 
strength) instead. Fig. 11 depicts the 2%-limit in dependence of R/Rs for 
exemplary specimens made from glass, zirconia, and alumina with t/Rs 

Fig. 10. Strength-thickness map for B3B-tests on exemplary specimens (R =
6 mm, RS = 5 mm) of glass, alumina, and silicon nitride. If the measured 
strength of a specimen with a given thickness t is below its respective line, no 
contact cracks are expected. The through lines refer to loading with a steel 
loading ball with the ideal radius RLBi = 4.33 mm, the dashed lines refer to 
loading with hard-metal ball with RLB = 1 mm. 

Fig. 11. 2%-Limit for selected specimens with varying Young’s modulus in 
dependence of R/Rs. 
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= 0.2. The lines in this Figure display the maximum stress that can be 
applied to the material before the deviation between fcorr and fnew is 
≥ 2%. Therefore, if a specimen exhibits a strength below this line, the 
simplified evaluation, i.e. Eq. (9), can be utilized. If the strength is 
higher, then Eq. (21) has to be utilized to accurately determine f. 

Fig. 11 shows that R/Rs does not strongly influence the limit. This 
was found to be true for all other possible configurations of t/Rs, E and v. 
Therefore, the following graphs will depict the limits only in dependence 
of t/Rs, E and v. Fig. 12 displays the application limits for typical ma
terials such as glass, zirconia, and alumina. 

In order to ensure that the parameter R/Rs can safely be omitted, 
each datapoint for a specific configuration (t/Rs, E, v) actually represents 
the lowest value of all R/Rs in its valid range of 1.05–2 for that config
uration. This means that the limits shown always assume the worst case 
in terms of R/Rs, so that no matter what value of R/Rs the tested spec
imen exhibits, the limit shown might actually be lower than 2%, but 
never higher. Fig. 3a)-c) of the supplementary material display the limits 
for more cases, including the special cases discussed in Section 5. An 
alternative route to convey these limits in a more general form is by 
providing a functional expression. By setting the Poisson’s ratio of the 

specimen to a fixed and common value, one function can describe a very 
broad range of materials and geometries. This has been done for v 
= 0.25, which gives 

σlim ≤ − 347 − 497
̅̅̅̅̅̅̅̅̅
t/Rs

√
− 0.062

̅̅̅̅
E

√
+ 68

̅̅̅̅̅̅̅̅̅̅̅̅̅
E⋅t/Rs

4
√

(23)  

to describe the limiting strength σFlim (in MPa) for the application of fnew 
in dependence of t/Rs and E (in MPa). An overview of the accuracy of 
this expression is shown in Fig. 13. Again, R/Rs was chosen in a way so 
that it represents the worst-case scenario. Regarding the Poisson’s ratio, 
v = 0.25 was chosen since it represents a value close to that of many 
technical ceramics [31]. A change to a higher Poisson’s ratio would shift 
the curves slightly upwards, while lowering the Poisson’s ratio would 
shift them slightly downwards. 

Eq. (23) provides a convenient tool to decide which factor, fnew (for 
σF < σlim) or fcorr (for σF > σlim), has to be used to obtain the most accurate 
result for σmax for a given test geometry or which test geometry is suit
able to allow for the use of the simple expression of fnew, Eq. (7). 

Overall, 3 regimes for the evaluation of f can be defined. If the 
strength of the material is below the limits displayed in Fig. 13, then the 
simple functional expression fnew (Eq. (9)) can be utilized. If the strength 
of the material is higher, than the more complex functional expression 
fcorr (Eq. (21)) has to be used. Finally, if the geometry- or material pa
rameters of a specimen are not covered by the given range for fnew or fcorr, 
as summarized in Table 8, then individual FEA has to be conducted to 
determine f. Note that this work has been performed for linear elastic 
isotropic materials. If the tested specimen exhibits anisotropic behavior 
or material nonlinearities (such as plastic deformation of the specimen), 
then neither fnew nor fcorr should be applied. Again, this would then be a 
typical case were individual FEA has to be performed. 

7. Summary  

1) A simplified model of the B3B-test has been utilized to analyze the 
factor f for a wide range of geometric and material parameters and a 
new fitted function fnew, for the evaluation of the B3B-test is 
presented.  

2) A conversion from square plate specimens to discs with an equivalent 
diameter Deff for the calculation of f is given. This allows stress 
evaluation for square plates with the new fitted function fnew from 1).  

3) The influence of the applied load on the factor f was investigated. 
Two major effects have been considered separately. First, the in
crease of contact area between the loading ball and the specimen due 
to high loads and elastic deformation was investigated. Second, the 
shift in contact position between the specimen and the support balls 
due to deflection of the specimen was examined. For each effect, a 
correction factor that describes the deviation in f is presented.  

4) By utilizing these corrections, a range of geometries and material 
properties can be defined, for which the ideal punctiform solution 
fnew gives an error < 2% for the calculated maximum stress. Within 
this range, the simplified evaluation from 1) is sufficient.  

5) Cases, which are not included in 4) can be accurately represented by 
taking the corrections from 3) into account and using fcorr = fnewk1k2. 
Such, the load-dependence of f is given for most practical specimens 
with strengths up to 2 GPa.  

6) Cases, which are not included in 5), have been identified. For these 
cases, the authors recommend referring to individual solutions by 
Finite-Element-Analysis. 

7) Using the correction factors, the effect of modifications of the sug
gested test set-up were discussed. It was shown that the use of small 
support or loading balls or balls with a high Young’s modulus has 
very limited beneficial effects while making the test less practicable. 
A simple estimation was proposed that showed that contact cracking 

Fig. 12. 2%-Limit for selected specimens with various Young’s moduli and 
Poisson’s ratios in dependence of t/Rs. 

Fig. 13. Comparison of the 2% limit, expressed by the functional expression 
(dashed), and the curves derived by fcorr, for v = 0.25. 
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at the loading ball can be avoided by using sufficiently thin 
specimens. 
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Appendix A. – Mesh convergence analysis 

In order to obtain the optimum number of elements and mesh 
configuration for each model, a mesh convergence analysis has been 
performed. Fig. A1a) shows the absolute factor f for Model 1 in depen
dence of the total number of elements for three different thicknesses. 
Fig. A1b) shows the factor f normalized to the value obtained with the 
highest number of elements. The black markers indicate the mesh uti
lized in this work. 

Since the results of the mesh configuration utilized in this work only 
display a maximum relative error of 0.5% to the result obtained by 
approximately tripling the number of elements, it was deemed suffi
ciently accurate. Model 2 utilizes a similar mesh-density in the central 
region of maximum stress and is loaded in the same way, hence why no 
additional mesh convergence analysis was performed for this model. 

Due to the different type of loading, the analysis has also been per
formed for Model 3. As before, Fig. A2a) shows the absolute factor f for 
three different thicknesses, while Fig. A2b) shows the normalized factor 
f. 

As before, the factor f calculated with the mesh utilized in this work 
shows a maximum relative error of about 0.6% to the factor f calculated 
with a model with double the number of elements. For this model, 
special care was taken to primarily increase the number of elements in 
the contacting regions of both the balls and the specimen as well as the 
central tensile loaded regions of the specimen. Due to the iterative na
ture of the contact analysis, larger deviations between different mesh 
densities are expected. As soon as the relevant abort criteria are met, the 
solver is stopped. Since the amount and step size of these iterations 
changes for each mesh density, final solutions may be just below the 
abort criteria or well below it. This allows changes of f in both directions, 
as observed for the thickest specimen in Fig. A2. 

Fig. A1. Results for the factor f (a) absolute values, b) normalized values) in the mesh convergence analysis for the model from Section 2.1.1 for a specimen with R/ 
Rs= 1.33, E = 210 GPa, v= 0.25 and varying thickness. The black markers represent the mesh configuration that was either used directly or slightly modified (in 
dependence of the specimen’s geometry) in this work. 

Fig. A2. Results for the factor f (a) absolute values, b) normalized values) in the mesh convergence analysis for the model from Section 2.1.3 for a specimen with R/ 
Rs= 1.05, E = 70 GPa, v= 0.25 and varying thickness. The black markers represent the mesh configuration that was either used directly or slightly modified (in 
dependence of the specimen’s geometry) in this work. 
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Appendix B. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.jeurceramsoc.2022.09.047. 
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Biegefestigkeit spröder Werkstoffe, Kriegsmann, J. Hrsg Tech. Keram. Werkst. 
(2009) 1–48. 

[33] A.F. Kirstein, W.H. Pell, R.M. Woolley, L.J. Davis, Deflection of centrally loaded 
thin circular elastic plates on equally spaced point supports, J. Res. Natl Bur. Std. 
Sect. C Eng. Instrum. 70C (1966) 227–244. 

[34] J.D.S. Ramos, S. Fraga, G.F. Vogel, L.G. May, Influence of the geometry of ceramic 
specimens on biaxial flexural strength: Experimental testing and finite element 
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Corrigendum to "The Ball-on-Three-
Balls strength test for discs and plates:  
Extending and simplifying stress 
evaluation" [J. Eur. Ceram. Soc. 43 
(2023) 648–660] 
 

In the published article Figure 9 was represented with an incorrectly scaled axis. The corrected 
figure is: 

 

Figure 9: Correction factor k2 for exemplary specimens (R = 6 mm, RS = 5 mm,  = 0.25) in dependence of the 
radius of the support balls (in fractions of the support radius). Through lines represent thin, flexible (glass) 
specimens (t = 0.5 mm, E = 70 GPa), dashed lines represent thicker, more typical ceramic specimens (t = 1.5 mm, 
E = 300 GPa). Two cases are shown: max = 500 MPa and max = 2000 MPa. 



Supplementary material 
 

A) Special (extreme) cases for comparison to FEA 
 

a) 

 

b) 

 
c) 

 

d) 

 
Figure 1: Dependence of f on the applied load as predicted by FEA and eq. Fehler! Verweisquelle konnte 
nicht gefunden werden.. Figures a), b), c) and d) show the results of specimen 1, 2, 3 and 4, respectively. 

 

 

a) 

 

b) 

 
c) d) 



  
Figure 2: Dependence of f on the applied load predicted by FEA and eq. Fehler! Verweisquelle konnte nicht 

gefunden werden.. Figures a), b), c) and d) show the results of specimen 5, 6, 7 and 8, respectively. 

 

B) 2% limits for fcorr for various materials 
 

a) 

 
b) 

 
 



 
c) 

 
Figure 3: 2%-Limit for extreme cases of combinations of E, v and t/Rs. 
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Abstract 

Over the past two decades, the Ball-on-Three-Balls-test (B3B) has been increasingly used due 
to its low systematic error and simple execution. A limiting factor for a more wide-spread use 
of the B3B-test is the lack of an accurate analytical solution. This demands the use of numerical 
methods, such as Finite-Element-Analysis (FEA). In a recent work, FEA has been used to assess 
the influence of non-linear effects on the measured strength. To validate the utilized FEA-
model, the experimental measurement of the specimen’s deflection can be drawn on. Due to 
the design of the fixture for the B3B-test, common deflection-measurement methods are not 
straightforward. Therefore, X-ray tomography is employed in this paper to track the 
displacement of the load and support balls for thin plates of a high-strength glass and Ce-doped 
zirconia presenting transformation-induced plasticity. Furthermore, the ball displacement is 
also determined from two-dimensional radiographs and shows good agreement with FEA 
results. 

Keywords: Strength testing, Biaxial Testing, Ball-on-Three-Balls-Test, In-situ-testing, X-Ray 
tomography 

  



1 Introduction 

Biaxial testing is one of the cornerstones of mechanical strength testing for brittle materials 
such as ceramics and glasses. Some of the most well-known methods are the Ring-on-Ring-
test, the Ball-on-Ring-test, the Piston-on-Three-Balls-test, or the Ball-on-Three-Balls-test [1–
11]. Over the past two decades, the use of the Ball-on-Three-Balls-test (B3B) has increased due 
to its low systematic error and fast and simple execution. However, one of the limiting factors 
for a more wide-spread use of the B3B-test is the lack of an accurate analytical solution to 
describe the stress and deflection field (note that it has been shown that the analytical solution 
of other ball-loaded testing methods, e.g. the Ball-on-Ring-test, can be utilized to determine the 
maximum stress for the B3B-test to a very reasonable degree of accuracy [12,13]). This 
demands the use of numerical methods, such as Finite-Element-Analysis (FEA), to evaluate 
stresses and deflection.  

In a recent work on the B3B-test, the influence of load dependent, non-linear effects on the 
measured strength was investigated [14]. Two major effects were considered and investigated 
qualitatively and quantitatively. On the one hand, the region of contact between the loading ball 
and the specimen increases with an increase in load and deflection. This causes a deviation from 
an ideal, punctiform load introduction (that is usually assumed for stress evaluation through 
FEA) towards a Hertzian surface load distribution, which changes the leverage and with it the 
applied bending moment. On the other hand, the specimen deflection causes a shift of the 
position of contact between the support balls and the specimen. With an increase in deflection, 
the specimen rolls off the support balls and the contact point shifts towards the specimen center, 
thus also changing the leverage and applied bending moment. Overall, both effects decrease the 
applied bending moment and the maximum tensile stress σmax. If they are not considered 
adequately, the strength of the investigated material will be overestimated (note that this aspect 
is relevant for other testing methods as well, especially if the stress evaluation is based on 
analytical solutions). Figure 1 displays the characteristics of this effect. The results for the 
normalized maximum stress are based on FEA and are given for high-strength specimens made 
from a flexible glass with a low Young’s modulus. Especially for thin specimens, the 
combination of the two aforementioned effects can lead to a decrease of the normalized stress 
of up to 20%, i.e., the strength of the investigated material will be overestimated by 20%.  

These findings, which are based on a FEA and theoretical considerations, were implemented 
through correction factors in the current evaluation of the maximum stress for the B3B-test. For 
both effects, an analytical expression was presented, which decreases the maximum tensile 
stress accordingly. These correction factors were validated with non-linear FEA for a wide 
range of specimen geometries and materials, and excellent agreement for specimens with a 
relative thickness (i.e. the specimen’s thickness divided by the support radius) ≥0.1 was 
achieved. However, the correction factors or the non-linear FEA-model were not validated 
through experimental results so far. 



 

Figure 1: Decrease in the normalized, maximum tensile stress in B3B-tests due to non-linear effects in 
dependence of the applied load P for multiple relative thicknesses t/RS of the specimen. The results shown are 
valid for a specimen with a radius R of 12mm, a support radius RS of 10mm, a Poisson’s ratio v of 0.22 and a 
Young’s modulus E of 70GPa. The specimen’s thickness t was varied from 0.5mm to 4mm. Figure adapted 

from [14]. 

 

Therefore, the aim of this work is to validate the utilized FEA-models for significantly non-
linear cases. A suitable base of comparison for validation was found in the experimental 
determination of the specimen’s deflection or its general deformation. Due to the design of the 
fixture for the B3B-test, common methods, such as digital image correlation (DIC) or the use 
of a Linear Variable Differential Transformer (LVDT), cannot be implemented in a straight-
forward way [15–18]. To use these methods, some adjustments to the fixture itself and the 
overall testing setup would have to be made, at the cost of losing some of the advantages of the 
test or the comparability to the regular setup. Therefore, an alternative method with minimal 
influence on the testing setup was sought after, and X-ray tomography and radiography 
provided the necessary requirements. 

In this work, X-ray tomography is employed to track the displacement of the load and support 
balls in three dimensions. This method relies on a stepwise increase of the load, with each 
tomography recording being performed at a constant load. In contrast, the balls’ positions in 
three-dimensional space are also determined from two-dimensional radiographs. The latter 
method significantly decreases the experimental time and allows in-situ image acquisition 
without holding points at constant loads, which are necessary to obtain a three-dimensional 
reconstruction of the testing setup through tomography. The experiments were performed on 
thin plates of high strength glass to emphasize the influence of non-linear effects and to observe 
comparatively large deflections. Additionally, a Ce-doped zirconia showing some degree of 
ductility by Transformation Induced Plasticity (TRIP, see [19,20]) was investigated to assess 
the influence of the material’s non-linearity during the B3B-test.  

 

 



2 Experimental methods 

2.1 Specimen preparation 

The glass specimens were sourced from Schott AG (Hattenbergstrasse 10,  
55122 Mainz, Germany) and are commercially available under the product name AF32®eco. 
The specimens were manufactured through the Down-Draw-Process and were cut into square 
specimens with an edge length of 10mm. The thickness of each specimen is 130µm in the as-
delivered condition, and the thickness or surface were not altered in any way. The material’s 
mechanical properties are given in [21].  

For the zirconia specimens, a composite consisting of ceria-stabilized zirconia, alumina and 
aluminates was utilized [20,22]. The material is commercially available under the product name 
EvoCera® from Doceram GmbH (Heßlingsweg 65-69, 44309 Dortmund, Germany). Specimens 
were received as discs with a diameter of 20mm. They were cut to squares with an edge length 
of 10mm, ground and then polished to a thickness of about 250µm. Special care was taken 
during polishing to avoid phase transformation from the tetragonal to the monoclinic phase 
before testing. The monoclinic phase content of each specimen was tested through X-ray 
Diffraction (XRD) to ensure a low initial monoclinic content and thus a high transformability. 
An average monoclinic content of about 6% was determined.  

2.2 Testing setup 

In order to perform the in-situ bending experiments, a tension/compression device as described 
in [23] was utilized. The testing fixture is placed within a transparent PMMA tube with an outer 
diameter of 30mm and a wall thickness of 2mm. The tube is fastened and mounted to a 
compression/tension stage with a 5kN load cell. The testing fixture itself is held in place through 
a compression fit to a steel rod on both the upper and lower stamp, and it is shown schematically 
in Figure 2. Each specimen was loaded until failure, with a discontinuous increase in load and 
holding times at constant load of up to 30min for tomography specimens. For radiography 
specimens, a constant loading rate of 1µm/s was used. In both cases, the load was recorded at 
1s-1 and written to a separate file. 

The testing fixture itself is a modified version of the B3B-fixture given in [15–18]. It’s 
components and a schematic of the testing setup are given in Figure 2a) and b). Two major 
adjustments have been performed to allow in-situ testing and observation through X-rays. First, 
the materials were adapted to minimize the absorption and influence of the fixture and 
load/support balls. POM was utilized to manufacture the fixture, as shown in Figure 2. For the 
load/support balls, commercial high-performance bearing balls made from Si3N4 with a 
diameter of 7.144mm were used, which yields a support radius of 4.12mm. Second, the usual 
multi-step loading process had to be reduced to a single step, as, once inside the PMMA tube, 
access to the fixture was not possible. Therefore, small misalignments in the testing setup were 
possible, but could be checked and recorded through the resulting X-ray scans. Due to the high 
deformation of the glass specimens, Si3N4 spacers were utilized to increase the height of the 
loading ball and allow greater deflection of the specimens before coming into contact with the 
fixture. A radiograph of the testing setup before loading is given in Figure 3. 



a) 

 

b) 

 

Figure 2: The components of the testing fixture are shown in a), with the top stamp, guide and bottom stamp 
from left to right, as well as the Si3N4-balls for load application. A schematic of the assembly of these 

components, loaded with a specimen, is given in b). 

 

 

Figure 3: Radiograph of the testing setup with an undeformed glass specimen and the Si3N4 spacers beneath 
the loading ball.  

 

2.3 Tomography analysis 

X-ray tomography was used to image the specimen at several stages of the bending test. 
For each scan, the loading stage was halted, and several projections were taken at equally 



spaced angular positions. The projections were used to reconstruct the three-dimensional 
volume through a classic filtered-back projection algorithm. For the glass specimens, the 
Vtomex tomograph by phoenix|x-ray systems (Niels-Bohr-Strasse 7, Wunstorf 31515, 
Germany) located at Laboratoire MATEIS (INSA Lyon, France) was used, where plenty 
of in-situ experiments have been successfully performed [24–27]. The scanning parameters 
for each experiment are summarized in Table 1. 

Table 1: Equipment parameters for the X-ray analysis. For each of the 900 angular positions, three radiographs 
were averaged, and a single radiograph was skipped, which ultimately determines the total scanning time. 

Parameter Glass Zirconia 

Number of 
projections 

900 900 

Voltage 80kV 140kV 

Current 280μA 80μA 

Voxel size 11.91μm 11.91μm 

Exposure time 333ms 500ms 

Tomography 
scanning time 20min 30min 

 

Volume reconstruction was performed on the proprietary software “datos|x”, version 2.0, of the 
Phoenix system. Before volume reconstruction, the offset from the ideal rotational axis was 
corrected, and a multi-material filter, a beam hardening correction (bhc+ filter) and a low noise 
filter were applied. 

With the reconstructed volume for each load step, the positions of the balls in three-dimensional 
space were determined. This procedure was conducted in ImageJ, version 1.53t, with the use of 
built-in extensions and several plug-ins developed in the MATEIS laboratory. Initially, the 
stack of images is converted from 16-bit grayscale to 8-bit grayscale, followed by a three-
dimensional median filter with a radius of 2 pixels. By setting a threshold value, the balls and 
sample were separated from the surrounding image and a binary image was created. Once the 
volume has been binarized, an opening operation (erosion, then dilation) based on a Euclidean 
distance measurement is used, with a carefully chosen radius so as to retain only the four balls. 
The dilation radius chosen is also slightly smaller than the erosion radius, so that the four balls 
are no longer in contact with each other and can be labelled individually. Next, the volume and 
center of mass is calculated for each labeled ball. These various steps, in particular erosion and 



3D dilation based on Euclidean distance, use ImageJ plugins developed in the MATEIS 
laboratory.  

From this point on, any further data analysis was conducted with Mathematica 13.1 from 
Wolfram Research, Inc. (100 Trade Center Drive, Champaign IL 61820-7237, USA). For each 
tomograph, the distance between the support balls and the loading ball was determined and their 
respective positions checked for any deviations from the ideal case. For the results shown in 
this work, no major misalignments were found. If the testing fixture was tilted in any direction, 
the measured distances were adjusted accordingly. 

2.4 Radiograph analysis 

As shown previously, in-situ X-ray tomography is an ideal technique to perform a digital 3D-
reconstruction of the experimental setup and measure the position of the balls at a given point 
of the test. However, this means that the loading system must be halted for each scan, which 
may affect the mechanical response of the specimen (e.g., through sub-critical-crack-growth) 
or the measurement itself (e.g., drift of the load cell and stress relaxation) as well as 
considerably increase the time required for a complete experimental campaign.  

Recent techniques propose the use of radiographs, instead of the 3D reconstructed volumes, to 
measure the kinematics of the process that takes place [28], which requires a substantially lower 
amount of time and computational resources. Following a similar approach, the open-source 
technique proposed by [29] is used in this work, where the 3D position of a sphere can be 
measured using a single radiograph for conic-beam tomographs. Briefly, the technique is based 
on a series of fast Fourier transform deconvolutions between the measured radiographs and a 
sequence of structuring elements. In this case, the structuring elements are synthetic 
radiographs constructed from the projections of a single sphere of the same size as the one used 
in the B3B setup. By varying the position of the sphere along the X-ray beam, the 3D positions 
of the spheres can be found. Further details of the technique can be found in [30], while the 
open-source code is available in [31]. 

Given that this method can only be used for a system where the measured spheres are all of the 
same size, the B3B-test represents an ideal test case for tracking the positions of the support 
and loading balls. As an example, Figure 4a) presents the same radiograph as in Figure 3, after 
the calibration which allows to transform from attenuation values to the path length of the x-
rays through the balls. After measuring the 3D positions of the balls, the balls are projected-
back into a radiograph, as shown in Figure 4b). To quantify the quality of the measurement, the 
residual between the two images (i.e., the squared difference between them) is shown in Figure 
4c) as well. The technique does not take the presence of the specimen into account, and thus it 
is not back-projected into the radiograph of Figure 4b), which results in the middle region of 
the image with higher values. This proposed measurement technique was used only on the glass 
specimens, since the zirconia specimens had an attenuation coefficient higher than that of the 
bearing balls, which causes a substantial error when performing the convolutions between the 
radiographs and the structuring elements. 



 

Figure 4: Measurement of the three-dimensional positions of the balls using radiographs. a) shows the original 
radiograph after applying the calibration, b) gives a synthetic radiograph generated with the measured positions 

of the balls, and c) displays the residual of the correlations between the two previous images. 

 

To test the quality of 3D measurements from this technique, the positions of the balls are 
computed for the initial tomography scan at a constant load, prior to any further loading. This 
initial scan serves the purpose of comparison of the tomography- and radiography results. As 
the tomography scan is performed, the setup is rotated along the vertical axis, and at each 
angular position, a different radiograph is taken. Figure 5 shows the temporal evolution of the 
position for the different balls of the testing assembly along the horizontal plane. As expected, 
the three support balls (particle 1-3) show a circular path, while the loading ball shows almost 
no displacement.  

 

Figure 5: Temporal evolution of ball positions in the horizontal (XY) plane during a tomography scan. The 
graph to the far left gives the position of the loading ball, and the three other graphs the position of each 

support ball. 

For all radiographs, the same equipment and machine parameters as given in Table 1 were 
utilized. Three images were acquired per second, resulting in a total of more than 2000 
radiographs for each specimen tested. 



3 Numerical Methods 

The main FEA-model utilized in this work is shown in Figure 6a). Due to the symmetry of the 
problem, it is sufficient to model only one half of the setup. The model is implemented in 
ANSYS Mechanical Release 2022R1 by ANSYS Inc. (Southpointe 2600 Ansys Drive, PA 
15317, Canonsburg, USA). It is implemented through an APDL (Ansys Parametric Design 
Language) script to allow detailed control of the model and full documentation of all input 
parameters and changes to the model. The model consists of approximately 50000 SOLID186 
20-node brick elements (the exact number depends on the thickness of the specimen) and 
200000 nodes. The regions of contact between the balls and the specimen are modeled through 
a symmetrical contact using CONTA174 and TARGE170 elements, with a friction coefficient 
of µ=0.5. A mesh convergence analysis was performed for the deflection of the specimen to 
ensure consistent results. After a small initial displacement, a load is incrementally applied to 
the loading ball until a specified target load is reached. Since the interaction between the balls 
and the specimen are considered, this model is able to include the influence of non-linear 
effects. More specifically, the term “non-linear effects” refers to the non-linear change in 
contact area between the balls and the specimen, the influence of friction in these regions and 
the geometrically non-linear deformation of the specimen and consequent shift of the contact 
point of the support balls and the specimen. Additionally, a model for square plates, utilized in 
previous work (Model 2 in [14] for further details on the mesh and convergence analysis), was 
employed to analyze the linear behavior of the specimen as another point of reference, as shown 
in Figure 6b). This model will serve as a point of reference for an idealized testing situation 
through punctiform load application and boundary conditions. Furthermore, the non-linear 
geometrical behavior is not considered in this model, therefore any results provided by this 
model are independent of the magnitude of the applied load. For both models, linear-elastic 
material behavior is assumed. 

a) 

 

b) 

 

 

Figure 6: a) gives the meshed FEA model of the loading balls, support balls and glass specimen that was 
utilized for non-linear analysis as a base of comparison to the experimental results. The linear model is shown 
in b), with L as the edge length of the specimen, t as its thickness and RS as the support radius determined by 

the support ball radii [14]. 

 



4 Results 

4.1 Tomography 

Figure 7 shows a comparison of the tomography results to the numerical results for glass 
specimens. More specifically, the distance between the center of the loading balls and the center 
of the support balls is given as a function of the measured/applied load. For the experimental 
results, the deflection at 0N is defined through the diameter of the balls and the specimen 
thickness, as a load-free setup could not be scanned. This is due to the movement of the whole 
fixture during a tomography scan, which would unsettle the testing setup if no load is applied. 
While the slope of all curves is initially well aligned with the results from the linear model, it 
is obvious that this is not the case for loads greater than 3N. With an increase in load, a decrease 
of the specimen’s deflection (relative to the expected deflection from the linear model) is 
observed. This is in good agreement with the results from previous work [14]. Furthermore, the 
experimental results from two different tests give nearly identical results to FEA, with a 
maximum deviation of about 20µm.  

 

Figure 7: Comparison of the vertical distance between the center of the loading ball and the center of the 
support balls obtained through experimental results, linear FEA and non-linear FEA. The experimental results 

were obtained for two glass specimens through tomography, with the results of glass specimen A shown in 
yellow and glass specimen B shown in purple. 

 

Figure 8a) displays the comparison between the experimental and numerical results for the Ce-
doped zirconia specimen. The initial measured deflection showed a constant offset to FEA of 
about 10µm, which lead to the measured distance at 5N to be slightly larger than the theoretical 
maximum given through the specimen’s average thickness (this aspect will be discussed further 
in chapter 5). Therefore, the measured data was corrected by this constant offset of 10µm, as 
shown in Figure 8a). Compared to the glass specimens, the opposite behavior is observed. With 
an increase in load, an increase in deflection compared to the linear FEA-results is measured, 
indicating the onset of the TRIP-effect at approximately 28N. Note that the non-linear FEA-
model does not consider the non-linear mechanical behavior of the material itself, thus the phase 
transformation process and resulting plastic deformation is not considered. Hence, no alignment 
between those two curves was expected. However, it still gives a better estimate for the 
specimen deflection than the linear model, as the aforementioned non-linear effects (see chapter 
3) are considered. Figure 8b) displays the corresponding tensile loaded surface after failure, 



examined with an optical light microscope (BX53M by Olympus K.K. (2-3-1 Nishi-Shinjuku, 
163-0914 Tokyo, Japan)). By utilizing differential interference contrast, the regions of phase 
transformation are clearly visible due to their increase in volume and subsequent formation of 
surface structures. Phase transformation is visible within a circular region in the center of the 
specimen, with a diameter of approximately 5mm. Furthermore, phase transformation occurred 
in the vicinity of the crack path up to the edge of the specimen.  

 

a) 

 

b) 

 

Figure 8: a) shows a comparison of the vertical distance between the center of the loading ball and the center 
of the support balls for a Ce-doped zirconia specimen, with the experimental results obtained through 

tomography and corrected by an offset of 10µm. The fractured specimen is given in b), with the transformed 
regions clearly visible as surface undulations (differential interference contrast). 

 

4.2 Radiography 

Figure 9a) shows the results from the radiograph analysis compared to the results from linear 
and non-linear simulations. Note that for better visualization, only every twentieth measurement 
from the experimental data is shown. In comparison to the results from the tomography 
experiments, the maximum load has doubled. While the tendencies are very similar to the non-
linear FEA results, the absolute value has an offset. More specifically, a difference of about 
180µm is found for the distance between the balls at a load of about 1N. The presence of such 
an offset is discussed in the following section. If every measured distance is corrected by this 
difference, Figure 9b) is obtained. Through this correction, the tendencies between the 
experimental measurements and non-linear FEA results are easier to compare. With an increase 
in load, a higher deflection compared to the simulations is measured. Just before failure, a total 
deflection of about 620µm was measured, which equates to more than 4.5 times the specimen’s 
thickness. The resulting deformation is shown in Figure 10c), along with earlier stages of 
deformation at the initial state and at half of the failure load in Figure 10a) and Figure 10b), 
respectively. Similar to the results obtained for glass specimen C, significantly higher loads and 
deflections compared to tomography were achieved for specimen D. The total deflection of this 
specimen was 580µm at a maximum load of 20.8N. Again, the tendencies between 



experimental results and the simulations are very similar, but an offset in the range of about 
200µm of the absolute deflection values was observed, as shown in Figure 9c) and d).  

a) 

 

b) 

 

c) 

 

d) 

 

Figure 9: Comparison of the vertical distance between the center of the loading ball and the center of the 
support balls obtained through experimental results, linear FEA and non-linear FEA. The experimental results 
were obtained for glass specimens C and D through radiography, with the uncorrected values for specimen C 

given in a) and the values corrected by an offset of 180µm given in b). For specimen D, the uncorrected 
values are given in c) and the values corrected by an offset of 200µm are given in d). 

 

a) 

 

b) 

 

c) 

 

Figure 10: Radiographs of glass specimen C at 1N (a)), 13N (b)) and 26.6N (c)), where the large deflection of 
the specimen is visible, especially in c). 

 



5 Discussion 

In general, the experimental results from the tomographs are well aligned with theoretical 
considerations and the behavior expected from FEA. While both glass specimens show a 
difference of about 20µm to the simulations, the general behavior of the deflection versus 
applied load is the same. It is important to note that the experimentally determined parameter 
was not the deflection of the specimens, but the full distance between the loading and support 
balls, which is in the range of about 7200µm. In this case, a difference of 20µm to the 
simulations is less than 0.3% of the total distance measured. However, if just the deflection is 
considered (which is in the range of 300µm to 400µm), the difference of 20µm corresponds to 
an error of about ±6%.  

For the zirconia specimen, a similar comparison to FEA is not possible, as the phase 
transformation is not implemented in the utilized model. Note that an implementation of phase 
transformation might be possible through a simple material model, that is linear-elastic in 
compression and elastic-plastic (without hardening) in tension (a material model like this is 
often referred to as a “cast-iron-model”). Compared to the non-linear model, an opposing trend 
to the glass specimens (i.e. a non-linear increase) of the deflection in dependence of the applied 
load was observed. This aligns well with theoretical considerations, as a plastic deformation 
through phase transformation would lead to increased deformation without the expected 
increase in load. As shown in Figure 8b), it is evident that phase transformation occurred in the 
highly stressed regions. As with the glass specimens, an error of about 10µm of the uncorrected 
measurements to the FEA results is detected. Due to the higher stiffness of the zirconia 
specimens, the total deflection (about 100µm) is much smaller as compared to the glass 
specimens, and the relative error is larger. Furthermore, the uncorrected measurement at 5N is 
higher than the theoretical maximum. This might be attributed to the imperfect shape of the 
specimen. More specifically, due to the high amount of polishing that was necessary to remove 
the transformed surface layer, the parallelism of the two main surfaces was lost and the 
specimen thickness varied by about 30µm. For the simulations and the initial state, an average 
specimen thickness from three measurements was utilized for the uncorrected measurements, 
which is 15µm less than the highest value. While this difference in thickness would not 
noticeably affect the general behavior of the simulations, the absolute value of the distance 
between the balls would be increased and better aligned with the measurements. This could also 
explain the observed difference for the other datapoints, which are all offset by about 10µm, 
thus giving the reasoning behind the correction performed to obtain Figure 7a).   

The results from the radiographs align with the observations from the tomography results. 
While the same tendencies as in the simulations are obtained, an offset error in the absolute 
distance between the balls was observed, which simply corresponds to the discretization 
performed when measuring the position of the balls – as explained before, several structuring 
elements are used for the convolution from which the 3D position is measured. It is important 
to note that the main advantage of the distance evaluation through radiographs is the 
significantly faster measurement. While the measurement of a specimen through tomography 
takes about half a day to obtain a reasonable amount of data, this alternative provides 
considerably more data within a few minutes. Through the fast experimental procedure, it is 



also possible to achieve higher maximum loads and increased deformation, as effects such as 
sub-critical crack growth play a less important role [32,33]. Note that for the evaluation of 
radiographs and tomographs (reconstruction excluded), a different amount of time for the post-
processing of the acquired data is necessary. While the total time for post-processing for 
tomography is lower, this is mainly due to the small number of scans that can be obtained for a 
given specimen (usually in the range of 5-20 scans per specimen). For radiography, one scan 
containing 1500-2500 projections was regularly obtained, thus vastly increasing the amount of 
datapoints, which naturally causes longer post-processing times if all projections are evaluated. 
If this is not the case, and only a few select projections are evaluated, post-processing times are 
in the same range as for a typical tomography measurement. Additionally, there is no need for 
volume reconstruction and each image is evaluated through an automated script, which 
minimizes the potential for human error and requires less overall attention. 

Improvements to this first iteration of this method can easily be made if a better-suited load cell 
is utilized. For the investigated specimens, which fractured at less than 50N, the range of the 
load cell was not ideal, but it was the only one available for this testing setup. Consequently, 
the load signal oscillated and an average value was used. Another improvement related to the 
load measurement is an increase of the sampling rate, which was limited to 1s-1. While this is 
not relevant for the tomography experiments, the continuous in-situ experiments would greatly 
be improved by a higher sampling rate. Furthermore, through the use of a synchrotron beamline, 
smaller deflections which usually occur for thicker or stiffer specimens could be tested due to 
a higher achievable resolution.  

A potential source of error with the testing setup in general is friction. Due to the inaccessibility 
of the testing fixture within the tomograph, the usual testing procedure for the B3B-test, which 
involves pre-loading the specimen and subsequently removing a spacer, could not be 
conducted. Therefore, the testing fixture had to be slightly adapted so that the support balls stay 
in place throughout the whole loading sequence. This leads to contact of the support balls with 
the sides of the guide of the testing fixture, which is not the case for the usual B3B testing setup. 
Consequently, additional resistance against ball movement due to friction is built up, and a 
higher load as compared to the regular setup is necessary to achieve the same amount of 
specimen deformation. Preliminary testing has shown that this effect is increasingly relevant at 
higher loads, and the results obtained in this work do not show an overestimation of the applied 
load. Still, this influence should be investigated in more detail by a comparison of both testing 
setups with well-established methods of deflection measurement. 

As of now, the accuracy of this method (or rather these two approaches) is not sufficient to 
provide an alternative to other well-established methods for deflection measurement such as 
digital image correlation, video extensometer or contacting deflection measurements, such as 
LVDT. This is especially true if specimens with a high stiffness and/or thickness must be 
investigated, where deformations are in the range of only a few micrometers. But, for use cases 
like the B3B-test, where established methods are not feasible, it provides a promising 
alternative, which also provides additional information about the deflection at specified 
positions.  



Overall, while some improvements could be made to this method to provide a higher degree of 
accuracy, it is shown that the predictions by FEA align well with the experimental data, 
especially for the glass specimens. Even for specimens with such a large deformation and 
significant non-linear effects, an accurate prediction could be made. Therefore, the results from 
this work serve as one point of experimental validation of the FEA for the comparisons and 
conclusions drawn in earlier work, notably in [14].  

 

6 Summary 

A follow-up to a previous publication on the Ball-on-Three-Balls-test is provided in this work 
[14]. In that publication, the influence of non-linear effects on the measured strength was 
discussed, quantified, and validated through Finite-Element-Analysis (FEA). Consequently, 
additional validation through experimental results is desired in the form of deflection 
measurements. In order to measure the specimen’s deflection during testing, X-ray tomography 
was employed to open the opportunity for a "direct" view at the testing assembly.  

The specimen’s deflection is determined from a three-dimensional reconstruction (tomograph) 
of the specimen and load/support balls. Additionally, two-dimensional radiographs were also 
used as a continuous alternative to the discontinuous tomography measurements. Through this 
approach, a vast increase in the amount of time steps is achieved and better load-wise resolution 
is obtained.  

In general, excellent agreement between the deflection measured through tomography and the 
deflection obtained through FEA was observed. The radiography measurements show good 
agreement with the general tendencies, but they do not yield comparable absolute values to 
FEA. A systematic deviation in the form of an offset of about 200µm was observed and 
discussed for the radiography measurements presented in this work.  

Overall, measuring the deflection of thin, flexible ceramic specimens through X-ray 
tomography or radiography is promising, but several aspects need to be improved until these 
methods are a suitable alternative to other, well-established methods. Still, the validity of FEA 
was demonstrated, thus also validating the findings which were obtained in previous work. 
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A B S T R A C T   

In order to compare the strength results of brittle materials from various testing methods or use the data for 
design purposes, it is essential to know the effective volume (Veff) or surface (Seff) for every loading scenario. For 
the Ball-on-Three-Balls-test (B3B), Veff and Seff have to be determined and investigated through Finite-Element- 
Analysis due to the lack of an accurate analytical description of the stress field. Through this work, the effective 
volume and surface of the B3B-test are made available as tabulated data for a wide range of specimen geometries 
and materials, along with the tools to utilize the data. A fitting model for the dependency of Veff and Seff on the 
Weibull-modulus for any given specimen geometry is provided. The influence of load-dependent non-linear ef-
fects on Veff and Seff is discussed. Finally, the necessity of Veff and Seff for statistical strength analysis is 
demonstrated through a practical example.   

1. Introduction 

Due to the brittle nature of ceramics and glasses, special care has to 
be taken during component design. Most notably, the scatter of strength 
has to be considered adequately. For this purpose, a multitude of uni-
axial and biaxial strength testing methods have been developed over the 
past decades. Some of the most commonly used uniaxial testing methods 
are 3- and 4-point bending, while the Ring-on-Ring-test (RoR), Ball-on- 
Ring-test (BoR) or Ball-on-Three-Balls-test (B3B) make up some of the 
most common biaxial testing methods [1]. Each method differs in the 
general shape of the specimen, e.g. bars for uniaxial tests or plates for 
biaxial tests, and the general concept of the fixture to apply the 
respective bending moment on the specimen, e.g. with rollers, rings or 
balls. Therefore, each testing method applies a unique stress field on the 
respective specimen. In combination with the statistical nature of failure 
of ceramics, strength results for the same material may vary immensely 
between each of the mentioned methods. Through Weibull-theory and 
its underlying assumptions [2–4], it is possible to take the differing stress 
fields of each method into account and to compare the respective 
strength results [5]. This comparison is based on the concept of the 
effective volume, Veff, or the effective surface, Seff. For some testing 
methods, these quantities can be derived analytically if a closed form 
solution for the stress field is available [6–9]. However, this is not the 
case for the B3B-test, where Finite-Element-Analysis (FEA) has to be 

employed for stress evaluation. In this work, FEA will be utilized to 
assess the influence of various testing geometries on Veff and Seff for the 
B3B-test. The influence of nonlinear effects on these values will be dis-
cussed and quantified in the context of strength comparison. Ultimately, 
an example for a pooled Weibull evaluation will be given, showcasing 
the application of the results and expressions provided in this work. The 
numerical values of Veff and Seff are made available for a wide range of 
testing geometries and materials. Additionally, the FEA-postprocessing 
routine to evaluate the effective volume and surface is outlined in the 
appendix of this work. 

2. Theoretical Background 

It is well accepted that the strength of brittle specimens tested in 
tension can be statistically described by the two-parameter Weibull 
distribution [3,4,10], which is typically represented by its cumulative 
form (CDF=Cumulative Distribution Function) 

P(σ) = 1− exp
[
−
( σ

σ0

)m]
(1) 

The scale and shape parameters of the Weibull distribution are σ0 

and m, which correspond to the characteristic strength and the Weibull 
modulus of the considered sample. The expression Eq. (1) represents the 
probability of failure at a given applied tensile stress level σ, i.e. the 
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expectation value of the fraction of specimens which fail at stresses less 
or equal to σ. The choice of the stress σ in a general test configuration is 
not definite. Usually, it is defined as the maximum value in a given stress 
field, e.g. the applied stress in a homogeneous tensile test or the edge 
fiber tension in a uniaxial bending test, or a meaningful equivalent stress 
in a complicated, multiaxial stress field. Therefore, the resulting Weibull 
parameters depend on the details of strength test interpretation. Due to 
its flexibility, the Weibull distribution can be used as an empirical 
strength distribution to describe the measured strength of brittle sam-
ples for many cases. 

If specimens of a single material with varying geometry or varying 
loading configurations are tested, systematic shifts of the expectation 
value of the Weibull parameters, predominately the characteristic 
strength, are observed. This effect is attributed to the size effect of 
strength and can be described by the Weibull-theory of the strength of 
brittle materials. This concept is linked to the material’s behavior under 
several assumptions (e.g. defect-controlled failure; randomly distributed 
and independent defects from a unimodal size distribution, weakest link 
hypothesis, etc. [2,4,11,12]) and leads to material specific strength pa-
rameters, namely the Weibull modulus m and the Weibull material scale 
parameter Σ0. While the Weibull modulus is a pure number, the unit of 
the scale parameter is given by stress⋅(volume)1/m, i.e. Pa⋅

̅̅̅̅̅̅
m3m√ ). The 

knowledge of these parameters allows the calculation of the character-
istic strength σ0 of a homogeneously tensile loaded specimen with vol-
ume V, namely by: 

σ0 = Σ0⋅(V)−1/m (2) 

Consequently, the size effect of the characteristic strength is inher-
ently implemented by the scaling law, Eq. (2), so that the empirical 
ansatz Eq. (1) can be rewritten as: 

P(σ,V) = 1− exp
[
−V

( σ
Σ0

)m]
= 1− exp

[
− V

V0

( σ
σ0

)m]
(3) 

For practical (dimensional) reasons, the Weibull material scale 
parameter Σ0 is often replaced by an arbitrary reference volume V0 (in 
m3 or mm3) and its related characteristic strength σ0 (in Pa or MPa, 
respectively). The failure probability for specimens loaded in inhomo-
geneous tensile stress fields can be determined by taking the scaling law 
Eq. (2) into account. For a given stress distribution σ(x,y, z), the corre-
sponding probability of failure can be expressed by: 

P(σ,V) = 1− exp
[
−
�⊰

V

(σ(x, y, z)
Σ0

)m

dV
]

= 1− exp
[
− V

V0

�⊰

V

(σ(x, y, z)
σ0

)m

dV
]

(4) 

The integration has to be performed over the entire specimen’s 
tensile loaded regions. For stress fields with a spatial distribution that is 
independent of the applied load, σ(x, y, z) can be expressed as 

σ(x, y, z) = σref ⋅g(x, y, z) (5)  

with a load-dependent amplitude factor σref and a dimensionless, load- 
independent and spatially varying shape function g(x,y, z). Note that if 
the spatial distribution of the stress field, i.e. g(x,y,z), changes during the 
loading history, this has to be considered appropriately [13]. A recom-
mended choice for σref is the maximum first principal stress, so that g is 
normalized and restricted to a numerical range between 0 and + 1 in the 
case of uniaxial stress fields. Many important loading configurations (e. 
g. uniaxial 3- or 4-point bending test, the RoR-test, etc.) sufficiently 
fulfill the assumption for Eq. (5). It should be noted that the accuracy of 
Eq. (5) depends on the extent of any non-linearities in the test setup, 
which will be discussed in Section 4.3 of this work. To simplify Eq. (4), 
Eq. (5) is utilized to define the effective volume Veff by 

Veff =
�⊰

V

(σ(x, y, z)
σref

)m

dV =
�⊰

V
g(x, y, z)mdV (6)  

which can be considered as the equivalent, homogeneously loaded 
volume of the tested specimen. The advantage of introducing the 
effective volume is that it can be calculated only once for a given type of 
test-setup or loading case. The expression for the probability of failure 
for inhomogeneous stress distributions can therefore be generalized to 

P(σ,V) = 1− exp
[
−Veff

( σ
Σ0

)m]
= 1− exp

[
−Veff

V0

( σ
σ0

)m]
(7)  

where σ = σref . To relate the effective volume to the specimen’s volume 
in a given setup or load-configuration, a ratio k 

k = Veff

V (8)  

can be defined [4,14]. In the case of uniaxial stress fields and with the 
recommended choice of σrefto normalize g(x,y,z), the resulting effective 
volume is always less or equal to the specimen’s volume and therefore 
k ≤ 1. In the limiting case of a homogeneous tensile stress field, k equals 
1. For multiaxial stress states, an equivalent uniaxial stress σeq must be 
defined through a failure criterion in order to replace σ(x,y,z) with σeq(x, 
y,z) in Eq. (6). For some failure criterions (e.g. the PIA-criterion), k can 
exceed 1, which would represent a more critical test compared to uni-
axial loading. Within the field of technical ceramics, two of the most 
prominent and widely employed failure criteria are the 
First-Principal-Stress criterion (FPS) [15] and the 
Principle-of-Independent-Action (PIA) [16–18]. As implied by the name, 
the FPS-criterion assumes that only the first principal stress contributes 
to failure, and therefore σeq,FPS is given through 

σeq,FPS = σI (9)  

with σI as the first principal stress. On the other hand, the PIA-criterion 
includes the contribution of all principal stresses, which is especially 
relevant when they are of similar magnitude. The equivalent stress 
σeq,PIA is determined by 

σeq,PIA =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
〈σI〉m + 〈σII〉m + 〈σIII〉mm

�↠
(10) 

With σII and σIII as the second and third principal stress, respectively, 
and m as the Weibull-modulus of the investigated material. If any of the 
principal stresses is compressive, they will be discarded from this eval-
uation, which is indicated by the “Macaulay-Brackets” 〈〉. 

If defects on tensile loaded surfaces or edges dominate the strength 
behavior, an effective surface or effective edge length can be defined 
analogously to Eq. (6). Through calculating a surface or path integral 
with respect to the normalized stress field, a corresponding expression to 
Eq. (7) for the probability of failure is given by 

P(σ,V) = 1− exp
[
− Seff

( σ
Σ0

)m]
= 1− exp

[
− Seff

S0

( σ
σ0

)m]
(11) 

(Note, that in this case the Weibull material scale parameter Σ0 is 
different from Eq. (2) and has the units Pa⋅

̅̅̅̅̅̅
m2m√ ). For many uniaxial 

stress states, closed form solutions for Veff or Seff can be derived 
analytically according to Eq. (6), and are widely used due to their 
simplicity and accuracy. As an example, the effective volume of a rect-
angular beam with width b, height h tested in flexure on a support span l 
subjected to 4-point bending (4PB) in a ¼-point-setup is given as [7]. 

Veff ,4PB = lbh(m + 2)
4(m + 1)2 = V⋅ (m + 2)

4(m + 1)2 (12) 

Note that the effective volume depends on the Weibull modulus, 
which is always the case for inhomogeneous stress fields. For more 
complicated stress fields, approximate expressions can be found in 
literature. One example is the effective volume for the Ring-on-Ring-test 
under the PIA-criterion developed by Salem et al. [9,19] which was 
incorporated into the corresponding standard. Another example is the 
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analytically derived expression for the Ball-on-Ring-test under the 
PIA-criterion, which is restricted to values of m from the range of natural 
numbers [20]. Note that for both cases, the stress field is well described 
through analytical expressions. Unfortunately, a simple analytical 
expression for the stress field of the Ball-on-Three-Balls-test is not 
available and consequently no analytical expression for the effective 
volume can be found. Instead, numerical analysis through FEA must be 
performed in order to determine the effective volume or effective sur-
face for any given specimen. 

3. Methods 

3.1. FEA-Models 

All simulations conducted in this work utilized ANSYS Mechanical 
Release 2022R1 by ANSYS Inc. (Southpointe 2600 Ansys Drive, PA 
15317, Canonsburg, USA). Each model is implemented in APDL (Ansys 
Parametric Design Language) to allow detailed, script-based access to 
the model and documentation with varying input parameters. The 
Finite-Element-Analysis models utilized in this work are based on the 
ones already discussed in previous work [21], and the same designation 
will be utilized. Furthermore, a more detailed description of the models 
and their boundary conditions is given in that work. Model 1 is a 
3D-model of a disc-specimen with punctiform displacement constraints, 
i.e. a punctiform load applied at the central node of the specimen and 
punctiform boundary conditions representing the support balls. Due to 
symmetry, it is sufficient to evaluate just one sixth of the total disc. This 
results in constraining the out-of-plane displacements of the nodes on 
the mirror-symmetry faces. Model 2 is a 3D-model of a 
square-plate-specimen. Again, the load is applied at a single node in the 
center of the specimen, and the support balls are represented by punc-
tiform boundary conditions. Due to the symmetry of this problem, it is 
sufficient to model one half of the full specimen and the constraints of 
nodes in the symmetry plane are set as described for Model 1. The dif-
ference to previous iterations of both Model 1 and Model 2 is a complete 
overhaul of the mesh, to achieve a significantly finer mesh in the center 
and a coarser mesh at the edge of the disc or square plate. This overhaul 
was necessary since the effective volume is much more sensitive to the 

mesh size, especially in the high-stress regions. Finally, Model 3 repre-
sents a 3D-model of the full testing assembly, including the load- and 
support balls. The main difference to the other models is the way that the 
load is applied on the specimen. By displacing the load ball and utilizing 
contact simulations under the assumption of a friction coefficient 
µ = 0.5 for the contact pairs, a closer representation of a real-world load 
application is given. The same applies for the support balls. With this 
model, load-dependent effects, such as specimen deformation and 
increasing contact areas between the balls and the specimen, can be 
considered. Since disc-specimens are analyzed, the problem can be 
reduced to one sixth of the full testing assembly. It should be mentioned 
that the results generated with Model 3 are only valid for a testing setup 
as described in [22,23] where supporting balls are large and in contact 
with each other. 

The effective volume and surface were determined as outlined in 
Appendix A and 5th order Gauss-Legendre-Quadrature was utilized for 
numerical integration. Preliminary studies were conducted to determine 
the error of 5th order Gauss-Legendre-Quadrature compared to the exact 
analytical result for a linear stress distribution within a single element. If 
an error ≤ 2% has to be achieved for all m ≤ 50, the difference between 
the maximum and minimum stress within a single element must be 
smaller than 40% of the maximum stress. Therefore, for each model, 
special care was taken to avoid large stress gradients by adjusting the 
number of elements in both radial and vertical direction, depending on 
the respective specimen geometry. A mesh convergence analysis for the 
effective volume was performed for Model 1 and Model 2, and the results 
are shown in Fig. 1a) and b). A mesh convergence analysis for the 
maximum stress for Model 3 was already performed in [21]. Due to the 
large computational demand of Model 3, it was not feasible to signifi-
cantly increase the number of elements. Therefore, this model is not 
fully converged for the accurate determination of the effective volume 
and surface and will only be utilized for qualitative analyses instead. The 
minimum and maximum number of elements utilized for each model are 
given in Table 1. For the specimen and loading or support balls, 20-node 
brick elements (SOLID186) were utilized. The contacting regions were 
modelled with CONTA174 and TARGE170 elements. To determine the 
effective surface, only the tensile loaded face of the model was evalu-
ated. To avoid any influence of the tensile stress field around the contact 
regions between the balls and the specimen on both the effective volume 
and surface, a small part of the specimen was removed at the respective 
regions for each model. The removed region is determined by a circle 
around the contact region and a depth of about one third of the speci-
men’s thickness. In the case of Model 1 and Model 2, this removal was 
especially important due to the punctiform load introduction and 
boundary conditions, which caused numerical artifacts. 

Model 1 and Model 2 were each used to calculate the effective volume 
and surface for a wide range of specimen geometries. The relevant 

Fig. 1. Mesh convergence analysis for each model. a) shows the relative error to the result with the highest number of elements for Model 1, b) for Model 2. The red 
markers represent the approximate number of elements used in this work. 

Table 1 
Minimum and maximum number of elements and nodes used in each model.  

Model Model 1 Model 2 Model 3 
Min/Max num. of 

elements 
155936 / 
202734 

225472 / 
422730 

47373 / 78009 

Min/Max. num. of 
nodes 

652265 / 
847223 

933429 / 
1775043 

197379 / 
325153  
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specimen geometries for discs are the specimen’s thickness t, the spec-
imen’s radius R and the support radius RS, which is determined from the 
support ball radius RSB through 

RS = RSB
2̅ ̅̅
3

√ (13)  

if the support balls are in contact with each other. For square plates, the 
same parameters are used, with the plate’s edge length L instead of R, 
and the support diameter DS instead of RS. For each specimen geometry, 
the effective volume and surface were determined for different Poisson’s 
ratios v and a range of m from m= 0 to m= 50. The full range of inves-
tigated parameters is given in Table 2. To reduce the total number of 
variables, the geometric parameters were combined to the relative 
thickness t/RS and the relative specimen radius R/RS for discs or L/DS for 
square plates. 

For each of the 71400 combinations of these parameters (10 steps for 
t/RS × 20 steps for R/RS × 7 steps for v × 51 steps for m), Model 1 and 
Model 2 were utilized to determine the values of the effective volume 
and the effective surface with both the FPS-criterion and the PIA- 

criterion. If not stated otherwise, all data evaluation for this work has 
been conducted with Mathematica 13.1 from Wolfram Research, Inc. 
(100 Trade Center Drive, Champaign IL 61820–7237, USA). 

3.2. The necessary accuracy of Veff and Seff 

One aspect to consider is the accuracy of Veff that is needed to convert 
the characteristic strength from one testing method or specimen ge-
ometry to a different one. Through equating Eq. (7) for the same prob-
ability of failure, but two characteristic strengths σ0,1 and σ0,2 with their 
respective effective volume Veff,1 and Veff,2, Eq. (14) can be derived: 

σ0,2 = σ0,1

(
Veff ,1
Veff ,2

)1/m

(14) 

Note that this relationship can also be derived through Eq. (2). The 
Weibull modulus m plays a very important role when relating the 
strength levels, and for typical technical ceramics, m is often found to be 
in the range of 10–25. Therefore, assuming that m is high enough, even a 
large error in one of the effective volumes does not influence the error in 
characteristic strength σ0,2 significantly. To better understand this in-
fluence, we assume that a Weibull-analysis was performed on specimens 
tested with the B3B-test, and the characteristic strength σ0,1 was deter-
mined. If this characteristic strength shall be extrapolated to that of a 
different specimen size or testing method, i.e. σ0,2, the effective volume 
of the B3B-test, Veff,1, and the effective volume of the other specimen’s or 
method, Veff,2, is necessary. If the effective volume of the B3B-test, Veff,1 
is not well known and affected by an error εV, an erroneous converted 
characteristic strength σ0,2,err is obtained. The relative error εσ2 between 
σ0,2,err and σ0,2 can be defined through 

εσ2 =
σ0,2,err − σ0,2

σ0,2
=

σ0,1
ʀ

Veff ,1(1+εV)
Veff ,2

ʐ1/m
− σ0,1

ʀ
Veff ,1
Veff ,2

ʐ1/m

σ0,1
ʀ

Veff ,1
Veff ,2

ʐ1/m = (1 + εV)1/m − 1

(15)  

with the variables as defined before. Fig. 2 depicts εσ2 in dependence of 
the Weibull modulus m for several fixed errors εV of Veff,1. 

For m≥ 10, even with εV as large as 20%, a relative error of less than 
2% for σ0,2 is obtained. While the effective volume still has to be 
determined accurately for materials with a low Weibull modulus (m≤5), 
this is not the case for materials with a medium to high Weibull modulus 
(m≥10). Note that this consideration is only relevant for strength 
extrapolation and is not generally true for all applications of Veff. 

4. Results 

The following results will only be shown and discussed for disc- 

Table 2 
Range of parameters.  

Parameter t/RS R/RS (L/DS) v m 
Range 0.05–0.5 1.05–2 0.1–0.4 0–50 
Step size 0.05 0.05 0.05 1  

Fig. 2. Relative error in σ2 through strength extrapolation, i.e. εσ2, in depen-
dence of the Weibull modulus m. Each line represents εσ2 for a different value of 
the error in Veff,1. 

Fig. 3. Dependence of the relative effective volume (a)) and relative effective surface (b)) for the PIA criterion on the Weibull modulus m for different relative 
specimen thicknesses t/RS and v= 0.25. The effective volume and surface were divided by the specimen’s volume Vspec or tensile loaded face Sspec, respectively, and 
are plotted on a double-logarithmic scale. 
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shaped specimens, but almost identical tendencies are found for square 
plates. The maximum first principal stress in the center of the specimen 
was utilized for σref. 

4.1. Geometrical dependencies of Veff and Seff 

The effective volume in dependence of the Weibull modulus m is 

given in Fig. 3. Note the strong decrease of Veff (more than six orders of a 
magnitude) with an increase in m and the change of slope at approxi-
mately m= 2 and m= 10. 

The influence of the specimen’s thickness on the effective volume 
and effective surface is shown in Fig. 4a) and b) for an exemplary ge-
ometry. Contrary to initial assumptions based on the behavior of Seff for 
the Ring-on-Ring-test, the effective surface for the B3B-test is strongly 
dependent on the specimen’s thickness, similar to the effective volume, 
where this effect was expected. This is due to a change in the general 
shape of the stress field, i.e. a widening of the region of maximum stress 
with an increase in thickness, as shown in Fig. 5a)-c). 

To assess the influence of the relative specimen radius R/RS, Veff was 
evaluated for either the full specimen, Veff,full, or just the regions 
included within RS, Veff,support. Fig. 6 displays the relative contribution of 
the overhang 

rel.contr. = Veff ,full − Veff ,support
Veff ,full

(16)  

in dependence of the Weibull modulus m for several geometries. It is 
evident that the overhang significantly influences Veff for very low 
Weibull moduli (m<5) but has a vanishing influence as soon as m 
increases. 

4.2. The relation of Veff to Seff 

For many bending-based testing methods, it is possible to analyti-
cally derive a relationship between the effective surface and the effective 

Fig. 4. Dependence of the relative effective volume (a)) and effective surface (b)) for the PIA criterion on the specimen’s thickness t for different relative specimen 
radii R/RS for v= 0.25 and m= 15. The effective volume and surface were divided by the specimen’s volume Vspec or tensile loaded face Sspec, respectively. 

Fig. 5. Variation of the tensile stress field (first principal stress) for different relative thicknesses of a specimen with R/RS= 1.5 and v= 0.25. a) displays the result for 
a specimen with t/RS= 0.05, b) for t/RS = 0.25 and c) for t/RS = 0.5. Each contour gives a 10%-percentile of the maximum stress from 0 (blue) to the maximum stress 
(red). Gray represents compressive stresses. 

Fig. 6. Contribution of the overhang to the effective volume (PIA criterion). 
The results were obtained with Model 1 for discs with t = 0.2 mm, Rs= 10 mm 
and v= 0.25. 
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volume for the same multiaxial stress criteria. In the ideal bending case, 
a linear decrease of the magnitude of stress within a specimen from the 
tensile surface to the neutral plane (a path perpendicular to the bending 
axis/plane, parallel to the loading direction) is observed, independent of 
the position on the specimen. Considering this behavior and disregard-
ing the lateral surfaces, Eq. (6) can be utilized to derive the relationship 

Veff = Seff
t

2(m + 1) (17)  

to relate Veff and Seff, with the other variables as defined before [9,24]. 
Through analyzing the B3B-test with FEA, it was found that an ideal 
linear decrease of stress is not given for the centermost region of the 
specimen. Since the central region determines the majority of Veff, this 
deviation from the ideal case is too severe ( ± 50%) to utilize the con-
version given in Eq. (17). Therefore, separate results for Veff and Seff have 
to be utilized to accurately determine both quantities. 

4.3. The impact of non-linear effects 

Previous work of the authors has shown that the maximum tensile 
stress may strongly depend on the applied load, especially for thin and 
flexible specimens. This is due to non-linear effects, e.g. specimen 
deformation and deviations from the ideal punctiform load introduction 
[21]. However, not just the maximum tensile stress, but the general 
shape of the tensile stress field changes due to these effects. Conse-
quently, this impacts the results for Veff and Seff, in particular for high 
values of the Weibull-modulus m. To assess the influence of non-linear 
effects on the effective volume and surface, Model 3 was utilized. Due 
to the increase in computational complexity by the use of contact sim-
ulations, the number of total elements had to be lower than that of the 
other models. Therefore, the absolute values for Veff and Seff differ 
slightly from the values generated through Model 1 and Model 2, but the 
general tendencies can still be analyzed. Through previous in-
vestigations [21], it has been determined that thin glass specimens, e.g. 
with a relative thickness t/Rs= 0.05 and a Young’s modulus = 70 GPa, 
exhibit the strongest load-dependency within the valid range of pa-
rameters (see Table 2). For the following analysis, these parameters 
along with R/Rs= 1.05 and v= 0.25 were utilized. Fig. 7 displays the 
results for the normalized stress f 

f = σmax
t2

F (18)  

with F as the applied load and t as the specimen’s thickness. On the 
secondary vertical axis, the normalized effective volume Veff/Vspecin 
dependence of the maximum tensile stress for m= 10 is shown. The 
effective volume has been calculated with the respective maximum 
tensile stress σmax as the reference stress σref and by utilizing the PIA- 
criterion. While f decreases by about 30% through a decrease in 
bending moment, the normalized effective volume increases nearly 
threefold at a maximum stress of about 1600 MPa. The increase is 
caused by a widening of the central region of maximum tensile stress. 

However, this strong dependency of Veff on the applied load is not as 

Fig. 7. Normalized maximum tensile stress and normalized effective volume 
(PIA criterion) in dependence of the maximum tensile stress σmax for m= 10. 
The results were obtained with Model 3 for a disc with t = 0.5 mm, 
R= 10.5 mm, Rs= 10 mm, a Young’s modulus of 70 GPa and v= 0.25. 

Fig. 8. Relative error in strength extrapolation, εσ2, in dependence of the 
Weibull modulus m for the same parameters as in Fig. 7. The maximum tensile 
stress is 233 MPa. 

Table 3 
Geometry and testing parameters. N gives the number of tested specimens, tmean 
the average specimen thickness and the related standard deviation (STD), tmin 
and tmax the minimum and maximum specimen thickness, respectively, and s 
gives the crosshead-speed.  

Designation N 
[-] 

tmean ±STD 
[mm] 

tmin 
[mm] 

tmax 
[mm] 

s 
[mm/min] 

Sample A  37 0.246 ± 0.013  0.222  0.281  0.6 
Sample B  53 1.548 ± 0.024  1.460  1.608  1.5  

Table 4 
Results of strength testing, with m̂b as the biased and m̂ub as the unbiased Weibull modulus, and all other variables as defined before. The subscripts lower and upper 
indicate the extent of the 90% confidence intervals for the respective variable.  

Designation m̂b 
[-] 

m̂ub 
[-] 

m̂lower 
[-] 

m̂upper 
[-] 

σ̂0 

[MPa] 
σ̂0,lower 
[MPa] 

σ̂0,upper 
[MPa] 

Seff 
[mm2] 

Seff,lower 
[mm2] 

Seff,upper 
[mm2] 

Sample A  12.1  11.7  9.4  14.5  1134  1106  1162  0.048  0.037  0.075 
Sample B  17.5  17.1  14.3  20.4  906  894  919  0.639  0.540  0.802  

Table 5 
Results of the pooled evaluation based on the maximum- 
likelihood method.  

Parameter Result 

Reference surface S0 [mm2] 0.041 
σ̂0 [MPa] 1132 
m̂ [-] 13.5 
Σ̂0 [MPa

̅̅̅̅̅̅̅̅̅̅mm213.5
√

] 894  
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relevant as it might first appear. This is due to two reasons: First, the 
results shown represent the worst-case scenario within the investigated 
parameter range. Second, Veff and Seff are most commonly used to 
convert or extrapolate strength results, as given through Eq. (14). As 
shown in Section 3.2, the influence of an error in Veff or Seff on the error 
in strength extrapolation using Eq. (14) is strongly dependent on the 
material’s Weibull-modulus m. For the results shown in Fig. 7, the 
observed relative error in Veff, εV, has been translated to an error in 
strength extrapolation, i.e. εσ2, according to Eq. (15). Fig. 8 gives the 
result for εσ2 in dependence of m for Veff and Seff, each calculated with 

both the PIA and S1 multiaxial stress criterion. In various previous work 
on the B3B-test, a general error of 2% on the obtained results was often 
utilized as an accuracy limit [21–23,25]. Therefore, these findings are 
discussed in the context of this accuracy limit and the displayed results 
correspond to a reduction of f by about 2%, which occurs at 233 MPa. 

A maximum for εσ2 is reached between m= 8 and m= 9, depending 
on the effective size and stress criterion. This behavior is caused by two 
contrasting effects. On one hand, the error of the effective volume εV 
increases with an increase in m, see Fig. 7. On the other hand, the effect 
of this error on the stress extrapolation εσ2 decreases rapidly with an 
increase in m, as shown in Fig. 2. Most notably, εσ2 is always smaller than 
the error in f, i.e. 2%. If the maximum stress is increased further, the 
maximum of εσ2 increases and shifts to slightly higher Weibull-moduli. 
For the highest loaded case in Fig. 7, with a maximum tensile stress of 
about 1600 MPa, the maximum of εσ2 reaches nearly 10% and is found 
between m= 9 and m= 10. Note that this analysis has been performed on 
the “worst-case scenario”. For thicker and stiffer specimens, the influ-
ence of non-linear effects will decrease drastically, as will the value of 
εσ2. Therefore, for the range of parameters given in Table 2, εσ2 will 
always be smaller than the error of f. To determine an accurate result for 
the effective size, εσ2 should be smaller than 2%. This is guaranteed if the 
error of f is less than or equal to 2%. Through an equation and figures 
given in [21], a limit for the maximum applied load (in the form of a 
maximum specimen strength) to achieve an error of less than 2% in f can 
easily be predicted. These tools are valid for any combination of testing 
and material parameters as given in Table 2. If the tested specimens are 
within or close to these limits, non-linear effects don’t need to be 
considered and the results given in this work are sufficiently accurate. If 
the tested specimens surpass these limits significantly, the authors 

Fig. 9. a) depicts a Weibull plot of each sample individually. b) displays individual specimen strength plotted with their respective effective surface. The red line 
displays the 63% quantile. The negative inverse slope of the line corresponds to m̂pooled = 13.5. The upper and lower black lines represent the 95% and 5% quantiles, 
respectively. c) shows both samples in a traditional format, with each specimen’s strength extrapolated to S0 = 0.041 mm2. d) shows both samples in a traditional 
format as well, but with the probability of failure of each specimen extrapolated to S0 = 0.041 mm2. The slope of the black line in c) and d) is the Weibull modulus 
obtained through the pooled evaluation. 

Table 6 
Natural coordinates of the corner nodes of an element in three-dimensional 
space.  

i 1 2 3 4 5 6 7 8 

ξi  -1  1  1  -1  -1  1  1  -1 
ηi  1  1  -1  -1  1  1  -1  -1 
ζi  -1  -1  -1  -1  1  1  1  1  

Table 7 
Integration points ri and associated weights wi for 5th order Gauss-Legendre- 
Quadrature.  

Index i Integration points ri Weights wi 

1 0 0.568889… 
2 & 3 ±0.538469… 0.478629… 
4 & 5 ±0.90618… 0.236927…  
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recommend individual FEA to determine the most accurate results for 
the effective volume and surface. 

4.4. Data availability 

Any attempt to provide a functional expression describing the 
effective volume and surface were deemed either insufficiently accurate 
or too unwieldy to provide any meaningful benefit. The most accurate 
way to evaluate Veff or Seff for a specific geometry is to rely on inter-
polation of the generated data field. Therefore, all datapoints for discs 
and square plates, i.e. each effective size for both multi-axial stress 
criteria, are provided in the supplementary material of this work. These 
files are available in the comma-separated value format (.csv), the tab- 
separated format (.tsv) and as Excel-files (.xlsx). Each line contains the 
respective geometry- or material parameters (t/RS, R/RS, v and m) as 
well as the associated value for the effective size. To aid data evaluation, 
scripts for the interpolation of these data-files are provided in several 
coding languages (Mathematica & Python) as well as integrated in an 
Excel-file. Note that data evaluation through the Excel-file is limited to 
linear interpolation, while the other scripts allow higher order inter-
polation and are defaulted to third-order interpolation. For m≥ 2, the 
difference between linear and third-order interpolation is in the range of 
− 8.2% to + 8.0%, with the highest differences obtained for specimens 
with a small relative thickness (t/RS<0.2). Due to the aforementioned 
effect of the Weibull-modulus on the size-scaling of strength data, this 
difference will only be relevant for small Weibull-moduli such as m< 5. 

For some applications, such as a pooled evaluation of several sets of 
data, it is necessary to describe the dependence of the effective volume 
on the Weibull-modulus m. For common strength tests such as 3- or 4- 
point-bending, this dependency is given through their closed form so-
lutions for the effective volume and effective surface. Since no closed 
form solution is available for the B3B-Test, a different method must be 
employed. For each fixed combination of geometric and material pa-
rameters, the effective volume Veff or surface Seff can be described 
through the expression 

Veff (m)t/RS ,R/RS ,v = Vspec × exp
[

v0 + v1
m − 1
m + 1 + v2 ln m+ v3m4 + v4

1
m

]
(19)  

Seff (m)t/RS ,R/RS ,v = Sspec × exp
[

s0 + s1
m − 1
m + 1 + s2 ln m+ s3m4

]
(20)  

with v0-v4 (or s0-s3) as constants determined through fitting of the 
respective datapoints and the other variables as defined before. Vspec and 
Sspec are the total volume of the specimen or the area of the tensile loaded 
face, respectively. This expression can be utilized to fit both discs and 
square plates and both multi-axial stress criteria. The determination of 
v0-v4 (or s0-s3) is included in the Python and Mathematica scripts in the 
supplementary material. The authors recommend to fit Eqs. (19) & (20) 
to the results from m= 2 to m= 50 to achieve an error of less than 5% 
(which is the default range within the provided scripts). If this range in m 
is narrowed, the error of the fits will decrease. 

5. Employing Veff and Seff for pooled Weibull evaluation 

To give an example for the need and application of the data and 
expressions provided above, strength results from B3B-testing of Si3N4 
will be utilized. Due to the high variability in geometry in some of the 
tested specimens, the standard procedure according to EN-843–5 pro-
vides erroneous results. Instead, a pooled data evaluation through taking 
the effective volume or surface of each specimen into account is per-
formed and the results are discussed. 

The specimen material SL200 B (v=0.27, Young’s mod-
ulus=305 GPa) was produced by CeramTec (CeramTec-Platz 1–9, 73207 
Plochingen, Germany) and provided as rectangular billets [26]. From 
these, square plates with an edge length L=11 mm and an approximate 

thickness t=0.25 mm or t=1.5 mm were cut. The tension-loaded side of 
each specimen was ground with a D46-diamond grit grinding wheel to 
purposely introduce surface defects. The testing fixture is built accord-
ing to the design outlined in [23,27,28] and support balls with a 
diameter of 2RSB= 7.5 mm were utilized, resulting in a support radius 
Rs= 4.33 mm. All specimens were tested with the universal testing 
machine Z010 (ZwickRoell GmbH & Co. KG, August-Nagel-Strasse 11, 
89079 Ulm, Germany) at a constant crosshead-speed s and failure 
occurred within 5–15 s. The dimensions of the tested specimens and 
their testing parameters are given in Table 3. 

The strength was calculated according to [21]. The results of the 
statistical strength evaluation according to EN-843–5 are given in 
Table 4 [29]. Note that this procedure assumes the same geometry for 
each specimen in each sample. To differentiate from the true, unknown 
parameters σ0 and m, the results obtained from an “estimator”, e.g. 
maximum likelihood, will be denoted as σ̂0 and m̂. Fractography has 
shown that failure is caused by surface flaws, hence why the effective 
surface Seff will be utilized for any further analyses. For these results, the 
average geometry of each sample was utilized to determine Seff through 
interpolation of the data provided in the supplementary material of this 
work. Note the difference in Seff of more than one order of magnitude 
between the samples. 

To determine the material’s Weibull-modulus from the information 
gained from both samples, the characteristic strength of each set of 
strength data is plotted in dependence of the effective surface or volume 
on a logarithmic scale. This is a graphical representation of Eq. (14). 
Then, the slope of a linear regression kreg through all pairs of data is 
determined. From kreg, the “regression modulus” m̂reg is determined 
through m̂reg = − 1/kreg. From the results given in Table 4, a “regres-
sion modulus” m̂reg of 11.5 is determined. 

However, the specimens of Sample A show a significant variation in 
thickness, with a relative difference of approximately 26% from the 
thinnest to the thickest specimen. As shown in previous chapters, the 
specimen’s thickness has a pronounced effect on the effective surface 
and effective volume of B3B-specimens. Therefore, statistical strength 
evaluation according to EN-843–5 for this set of data is flawed, since a 
nearly constant specimen geometry, i.e. similar effective surface for each 
individual specimen, is assumed. Instead, strength evaluation for mul-
tiple specimen geometries should be performed through a pooled Wei-
bull evaluation, as first outlined by Johnson & Tucker in 1992 [4,11,30]. 
The method will be presented utilizing the effective volume, but it can 
equally be applied using the effective surface. Similar to data evaluation 
in EN-843–5, this procedure is based on the maximum-likelihood 
method to obtain point estimates of the parameters of the distribution 
that describes the scatter of strength data. In the context of measuring 
the strength σi of n specimens, the likelihood function L is defined 
through 

L =
�⃰n

i=1
pi (21)  

with pi as the probability density to obtain σi. Consequently, the likeli-
hood L is a measure for the probability to obtain the measured sample. 
The estimates for the searched parameters are defined to be those for 
which L becomes maximal. To simplify the numerical evaluation, the 
likelihood can be expressed as the log-likelihood function 

ln L =
�ℐn

i=1
ln pi (22)  

instead, since it has been shown that the maximum of L corresponds to 
the maximum of ln L. In the case of the Weibull distribution, the dis-
tribution parameters are m and σ0 for a chosen reference volume V0, 
with pi as the probability density function (PDF) of the Weibull distri-
bution. The PDF is obtained by differentiating the cumulative distribu-
tion function, i.e. Eq. (7), with respect to σi, which gives 
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pi =
(

dP
dσ

)

σ=σi

= m Veff ,i

V0

σm−1
i
σm

0
exp

[
− Veff ,i

V0

(σi

σ0

)m ]
(23)  

with the variables as defined before. Inserting Eq. (23) into Eq. (22) 
yields an expression for the log likelihood functionln L 

ln L = n ln(m) − n m ln(σ0) +
�ℐn

i=1
ln
(

Veff ,i

V0

)
+ (m − 1)

�ℐn

i=1
ln(σi)

−
�ℐn

i=1

Veff ,i

V0

(σi

σ0

)m

(24)  

for a set of n strength measurements. To maximize ln L, partial de-
rivatives with respect to either m or σ0 are taken and set equal to zero, 
respectively. By combining the two resulting equations, a function solely 
depending on m is obtained. Solving this equation gives a maximum- 
likelihood estimate m̂ for m: 

0 = n
m̂ +

�ℐn

i=1

1
Veff ,i

dVeff ,i

dm +
�ℐn

i=1
ln σi − n

∑n

i=1

ʀ
Veff ,iσm̂

i ln σi + σm̂
i

dVeff ,i
dm

ʐ

∑n

i=1
Veff ,iσm̂

i

(25) 

Since the term dVeff ,i/dm occurs, it is necessary to know the func-
tional dependence of the effective volume for each specimen on the 
Weibull-modulus m (see Eq. (20)). With m̂ determined, the maximum- 
likelihood estimate σ̂0 for σ0 is obtained through 

σ̂0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
�ℐn

i=1

Veff ,i

V0,i
σm̂

i
m̂

√

(26) 

Following this procedure for the experimental data and utilizing Seff 
instead of Veff, new and consistent results for σ̂0 and m̂were determined, 
as given in Table 5. Similarly, the method can be applied using average 
specimen geometries for each sample instead of individual specimen 
geometries. This vastly reduces the necessary number of functional ex-
pressions for Seff to just one per sample. It should be mentioned that m̂ 
can also be determined from Eq. (24) by utilizing a maximizing algo-
rithm and avoiding the usage of derivatives (as has been done in this 
work) instead of finding the root of Eq. (25). The benefit of utilizing Eq. 
(25) over Eq. (24) is a more reliable convergence towards m̂ due to the 
reduction of two variables to one. 

Fig. 9a) shows a traditional Weibull plot for each sample, with the 
data as measured from strength testing. As expected, smaller specimens 
exhibit a higher strength due to the size effect [3,4]. Fig. 9b) shows the 
strength of each sample, but now in dependence of the effective surface 
for each individual specimen. Through this presentation, the large 
scatter of the effective surface of specimens of sample A is clearly visible. 
In Fig. 9c), a traditional Weibull plot is depicted again, but with the 
strength of both samples extrapolated to the same reference surface, i.e. 
S0 = 0.041 mm2, through strength scaling according to Eq. (14). This 
results in a horizontal shift of the individual datapoints, especially those 
of Sample B, as the reference surface is the average effective surface of 
Sample A. If the material behaves according to Weibull theory, a mixing 
of both distributions should be observed, as shown in this case. Finally, 
Fig. 9d) shows a Weibull plot with the probability of failure of each 
specimen extrapolated to the reference surface S0 = 0.041 mm2. The 
extrapolated probability of failure P0,i for each specimen i is obtained 
through 

ln ln
( 1

1 − P0,i

)
= ln ln

( 1
1 − Pi

)
+ ln

(
S0

Seff ,i

)
(27)  

with Pi as the probability of failure for each specimen, and Seff,i as the 

respective effective surface of that specimen [4]. This approach gives 
insight into the material’s behavior at low strengths and if an extrapo-
lation based on Weibull-Theory is reasonable. If the material behaves 
according to Weibull theory, a single linear trend with a clear distinction 
between the individual samples should be observed, as shown in 
Fig. 9d). 

In conclusion, through testing several different specimen geometries 
and a subsequent pooled data evaluation, more information about the 
tested material can be acquired. First, testing at several different Veff or 
Seff (through varying the specimen geometry or the testing method) 
gives a better understanding whether the investigated material can be 
considered a “Weibull-material” or not [31]. Furthermore, due to the 
increased number of individual specimens for statistical analysis, the 
confidence intervals will be reduced [32]. Finally, testing larger speci-
mens results in testing larger defects, through which lower probabilities 
of failure are measured, instead of extrapolated, as depicted in Fig. 9d) 
[33,34]. 

6. Summary 

In this work, the effective volume Veff and the effective surface Seff 
have been investigated for the Ball-on-Three-Balls-test (B3B). While the 
B3B-test is a commonly used biaxial strength testing method, these 
quantities have only been available for a small range of specimen ge-
ometries and materials so far. This is due to the lack of an accurate 
analytical description for the stress field of the B3B-test. Consequently, 
Veff and Seff must be numerically determined through Finite-Element- 
Analysis (FEA). 

Therefore, a thorough analysis of the effective volume and surface 
for the B3B-test for a wide range of specimen geometries and materials 
has been conducted. Two models were implemented in ANSYS to 
determine the effective volume and surface for both discs and square 
plates. In the supplementary material of this work, the effective volume 
and surface is provided as tabulated data in various formats together 
with the tools to utilize them for specific specimens. Furthermore, the 
influence of non-linear effects on the accuracy of the provided data is 
discussed and quantified through a separate FEA-model. Additionally, 
the necessary accuracy of the provided results for Weibull strength 
scaling is investigated. 

For any given choice of geometry parameters within the range of this 
work, a fitting model that describes Veff and Seff as a function of the 
Weibull modulus is given. Finally, the application of the results and 
functions provided in this work for the statistical analysis of experi-
mental strength data is demonstrated through an example of pooled 
Weibull evaluation. In the appendix of this work, the determination of 
the effective volume and surface through a FEA-post-processing routine 
is outlined in detail. 
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Appendix A. Numerical evaluation of Veff and Seff 

This section will demonstrate the determination of Veff and Seff from the results of FEA, based on the procedure given in [35]. It will be outlined for 
the determination of Veff and the use of linear elements, but it can equally be applied to the determination of Seff or the use of higher order elements. 

Generally speaking, the procedure aims to determine Veff(e) in each element individually through 

V (e)
eff =

�⊰�⊰�⊰

V(e)

[σ(e)(x, y, z)
σref

]m

dV (28)  

with the superscript (e) referring to quantities of the individual elements and the other variables as defined before. The maximum first principal stress 
in the center of the specimen was utilized for σref. Through numerical integration of Eq. (28) and subsequent summation of the results of all individual 
elements, Veff for the full model is obtained. To simplify the integration limits for an element in an arbitrary position in three-dimensional space, it’s 
position in cartesian coordinates (x, y, z) is transformed to a natural coordinate system (ξ, η, ζ), in which each element is represented as a cube within 
the space (−1,1). 

Within natural coordinates, each element is described through i = 8 shape functions hi (ξ, η, ζ), which give the value 1 at each respective node with 
position (ξi, ηI, ζi) and 0 at all other nodes: 

hi(ξ, η, ζ) =
1
8 (1+ ξiξ)(1+ ηiη)(1+ ζiζ) (29) 

The coordinates (ξi, ηI, ζi) of each node within an element are given in Table 6. Superimposing these functions gives a linear interpolation within 
the element for any value at each node. If this is performed for the cartesian coordinates xi, yi and zi of each node, the following transformation 
functions are derived: 

x(e)(ξ, η, ζ) =
�ℐ8

i=1
x(e)i hi(ξ, η, ζ) (30)  

y(e)(ξ, η, ζ) =
�ℐ8

i=1
y(e)i hi(ξ, η, ζ) (31)  

z(e)(ξ, η, ζ) =
�ℐ8

i=1
z(e)i hi(ξ, η, ζ) (32) 

In order to use this transformation in the following calculations, the determinant of the Jacobian-Matrix J(e)(ξ,η,ζ)for the three-dimensional case 
will be necessary, which is given through 

J(e)(ξ, η, ζ) = Det

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(33) 

Similarly, superimposing the shape functions for the results of stress evaluation, i.e. the equivalent stress σ(e)
eq,i at each node, gives a function 

f (e)(ξ, η, ζ) that allows stress interpolation within each element: 

f (e)(ξ, η, ζ) =
�ℐ8

i=1
σ(e)

eq,ihi(ξ, η, ζ) (34) 

This finally allows stress integration with natural coordinates within a single element to determine its effective volume V(e)
eff according to 

V (e)
eff =

�⊰�⊰�⊰

V(e)

[
f (e)(ξ, η, ζ)

σref

]m

dV =
�⊰ 1

−1

�⊰ 1

−1

�⊰ 1

−1

[
f (e)(ξ, η, ζ)

σref

]m

J(e)(ξ, η, ζ)dξdηdζ (35)  

with the variables as defined before. The next step is a numerical integration of Eq. (35). In this work, Gauss-Legendre-Quadrature is utilized, which 
gives accurate estimates for the definite integral of a function in the space (−1,1) through 
�⊰ 1

−1
f (x)dx ≈

�ℐn

i=1
wif (ri) (36)  

for the one-dimensional case. The points of integration ri are given by the order n of the Gauss-Legendre-Quadrature as the roots of the nth Legendre 
polynomial, and wi are the respective quadrature weights. The integration points and associated weights for 5th-order quadrature are given in Table 7. 
For multiple dimensions, the integration points are iterated in every dimension and the associated weights are the product of their respective one- 
dimensional weights. 

Applying this procedure to Eq. (35) with a nth order quadrature converts the integral to 
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V (e)
eff =

�ℐn

i=1

�ℐn

j=1

�ℐn

k=1

[
f (e)

ʀ
ri, rj, rk

ʐ

σref

]m

wiwjwkJ(e)ʀri, rj, rk
ʐ

(37) 

for the effective surface of a single element. By conducting this evaluation for every tensile loaded element and adding them up, the effective volume 
Veff for the full model is determined. In the same way, the effective surface can be determined for two-dimensional elements. For higher-order- 
elements, the procedure doesn’t have to be changed as long as the results of stress evaluation are saved on the nodes at the corners of elements. 

However, a problem arises for two-dimensional elements or element-faces in a three-dimensional model (e.g. when Seff shall be determined for a 
three-dimensional model). While these faces are defined by two dimensions in natural coordinates, their position is determined by three dimensions in 
the cartesian space. Therefore, the transformation functions yield a non-square Jacobi-Matrix, for which the determinant can’t be formed. In that case, 
the determinant of the Gram-Matrix J(e)T(ξ, η) × J(e)(ξ, η) is formed instead and its square root G(e)(ξ, η) replaces J(e)(ξ, η) in Eq. (35). 

G(e)(ξ, η) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Det

ְ
J(e)T(ξ, η)J(e)(ξ, η)

↠�א
(38)  

Appendix B. Supporting information 

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.jeurceramsoc.2023.09.018. 
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A B S T R A C T

The Ball-on-Three-Balls-test (B3B) and the Ring-on-Ring-test (RoR) were conducted on alumina discs and
compared based on Weibull-Theory. The influence of various intermediate layers was evaluated. To support these
findings, Finite-Element-Analysis was conducted to analyze the effects of deviations from ideal loading conditions.
The influence of friction between sample and fixture and the effects of an inhomogeneous load distribution on the
maximum stress were investigated. The experiments demonstrated that measuring corresponding strength values
with both testing methods is possible. To properly asses the strength using the RoR-test, intermediate layers must
be used. Teflon-foils or adhesive tapes are considered suitable. If no intermediate layer is used, the materials
strength will be underestimated. Finite-Element-calculations show that this effect cannot be explained by the
influence of friction and is rather caused by a non-homogeneous load distribution along the load-ring. Fractog-
raphy supports these findings.

1. Introduction

Ceramic components have found their way into a multitude of highly
technological and specific fields of application due to their unique
thermal, electrical, chemical and mechanical properties [1]. However,
some of their most notable downsides are the lack of ductility and a large
scattering of mechanical strength [2]. On the upside, if the mechanisms
behind these problems are understood well, component failure can be
predicted and minimized [3]. Mechanical strength testing is well known
as one of the key methods in order to understand failure behavior and a
wide number of tests have been developed. The most common testing
methods are some types of uniaxial tensile or compressive tests, uniaxial
bending tests and biaxial bending tests [4]. The latter two are established
as the main methods for strength testing of ceramic materials [4].

One of the main benefits of biaxial testing compared to uniaxial
testing is the reduced influence of specimen preparation on its edges and
the consequential possibility to omit edge preparation at all. Machining
of ceramic materials is usually very time- and cost-intensive due to their
inherent hardness and wear resistance. Additionally, any preparation
method may introduce defects or flaws at already failure sensitive loca-
tions such as edges and surfaces. During uniaxial bending, edges and
surfaces are subjected to the maximum stress as well and therefore in-
fluence failure significantly. On the other hand, biaxial tests like the

Ring-on-Ring-test are less dependent on specimen preparation at the
edges since the maximum stresses occur at or in the area close to the
specimen’s center. Thus, the quality of the edge preparation is in most
cases negligible with respect to the strength measurement in the speci-
men’s center. If the specimens are manufactured in compatible size and
shape, even testing in as-fabricated condition is possible [5]. Further-
more, biaxial loading provides a better representation of real-world
loading scenarios of typical ceramic parts than uniaxial loading.

To ensure an independence of specimen orientation and uniform load
distribution, equi-biaxial stress states are preferred. Several different
tests with widely varying stress fields have been developed. The most
common ones are the Ring-on-Ring-test [6,7], the Ball-on-Ring-test [8],
the Piston-on-Balls-test [9], the Ball-on-Three-Balls-test [10,11] and the
Three-Balls-on-Three-Balls-test [12]. In this work, the focus will be on the
Ring-on-Ring-test (RoR) and the Ball-on-Three-Balls-test (B3B).

The Ring-on-Ring test is standardized in ASTM C1499 [6]. This es-
tablishes a good understanding of its capabilities and limitations.
Alongside that, the loading condition exhibits a cylindrical symmetry
which leads, in the case of isotropic materials, to a cylindrical symmet-
rical stress field that can be expressed in an analytical closed form. This
allows an easy calculation of results and “effective” specimen sizes. Due
to the comparatively large portion of maximum stress in the specimen’s
center, a good representation of the materials general strength can be
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measured. The major drawback of the Ring-on-Ring method is the need
for some sort of lubricant or intermediate layer to reduce friction be-
tween the specimen and the loading fixture [6,13]. Especially interme-
diate layers might change load application depending on their material
and thickness. Miniaturization of testing rigs is impeded by
manufacturing tolerances of loading and support rings, resulting in a
minimum support ring diameter of about 10 mm [13]. Moreover,
concentric alignment of loading and support ring has to be ensured since
small deviations of about 1% cause a difference in measured strength of
about 2% [14]. No definitive numbers concerning the accuracy are
available. However, an indication of precision (i.e. the coefficient of
variation) of about 5–14% is mentioned in ASTM C1499 [6]. If inter-
mediate layers are used, testing proves to be rather time consuming and
cumbersome compared to other biaxial testing methods.

In contrast to the RoR-test, the Ball-on-Three-Balls-test does not
require any intermediate layers. This major upside is achieved through
elimination of all sources of friction by using freely movable balls as a
support structure instead of a fixed ring [10]. The use of large balls
(diameter typically approx. 70% of the specimens diameter) inhibits
contact failure associated with the loading ball [15]. Furthermore, the
combination of an easy testing procedure and the general benefits of
biaxial testing (little to no specimen preparation) allow a comparatively
high testing output. Typically, standardized bearing balls are used as
support and load members, which allows test miniaturization with
specimens as small as 2.0 mm � 2.0 mm due to the balls tight
manufacturing tolerances [16–19]. This can prove to be very useful if
only small batches of material, like in the dental ceramic field, are
available [20,21]. The stress field exhibits a characteristic three-fold
symmetry with the maximum tensile stress in the center between the
three supporting balls. Since the region of maximum stress is compara-
tively small, localized strength testing of specific features or regions of
interest within a specimen is possible [22]. However, if the general
strength of a specimen has to be determined, the small region of
maximum stress proves to be a significant drawback in terms of effective
volume or area [23]. Another drawback is the absence of any analytical
description of the stress field. Therefore, Finite-Element-Analysis results
obtained for a large variety of possible test geometries have to be inter-
polated in order to determine themaximum stress in the center of the disc
[24], or approximated using a fitted expression [10,25]. So far, the
B3B-test has not been standardized. All in all, the B3B-test is robust
against inaccurate specimen shapes and alignment errors and can be
performed with a typical error of less than 2% [11].

According to ASTM C1499, and in order for the analytical stress
expression to be valid, the possible specimen geometries for the RoR-test
are limited by plate theory (and contact pressure) and the maximum
amount of deflection [6,14,26]. As a result, typical values (for materials
tested in this work) for the ratio of thickness to support ring diameter
range between 0.1 and 0.023 in order to limit the error to �2% [27]. As
for the B3B-test, the authors refer to work published by Danzer et al. [25].
It describes suitable combinations of the parameters of relative strength
(fracture strength divided by Young’s modulus) and relative thickness
(thickness divided by specimen radius), to guarantee a sufficiently small
area of contact between the balls and the specimen. Ceramics generally
show a low relative strength, which allows testing with 0.1 < t/R < 0.5,
with t being the specimen’s thickness and R the specimen’s radius.

So far, not many comparisons of strength results obtained with the
B3B-test and with other test methods, especially standardized biaxial
ones are available [28,29]. Themain emphasis of the present work was to
investigate whether the strength results measured with the Ball-on--
Three-Balls-test and the Ring-on-Ring-test are comparable to each other
in the framework of the statistical theory of fracture, i.e. in a similar way
to 4- and 3-point bend tests [30]. Another topic of investigations was the
role of intermediate layers on the strength. Furthermore, the influence of
friction on the stress field was analyzed. To complement a series of
performed fracture tests, Finite-Element-Analysis was conducted for the
Ring-on-Ring-test.

2. Methods and material

2.1. Weibull fracture statistics and size effect

In order to compare the strength values and Weibull distributions
determined with different test configurations, we presume that we
investigate a “Weibull material” [31], i.e. a material which shows a size
effect on strength as described by the Weibull theory [32–34]. In the
following this idea is outlined for cases where specimens fail due to a
defect located within the bulk of the material, but the concept can
analogously be applied to failure due to surface located defects [16].
According to Weibull-Theory, the probability of failure P at a certain
(equivalent) stress σr is given by:

Fðσ;VÞ¼ 1� exp
�
� Veff

V0

�
σr
σ0

�m�
(1)

with m being the “Weibull-modulus”, which describes the scatter of
measured strengths, and the characteristic strength σ0, which is related to
the reference volume V0. Characteristic strength is defined as the stress
necessary to achieve a 63.2% probability of failure at Veff/V0 ¼ 1. The
effective Volume Veff is defined by the integral over the positive values of
the stress field σ( r!):

Veff ¼
Z
σ>0

�
σð r!Þ
σr

�m

dV (2)

with σr as an arbitrary reference stress, usually representing the
maximum stress in the specimen [30]. Veff describes the theoretical
volume of a tensile specimen with the same probability of failure at σr as
the non-homogeneously loaded specimen. In the case of biaxial loading,
some form of equivalent stress has to be defined to properly quantify the
complex stress state. Several methods such as the S1 criteria or PIA are
proposed [30,35]. For this work, the “Principle of Independent Action”,
or PIA, was used [36]. If σI, σII and σIII are the (positive, tensile) principle
stresses and m is the Weibull modulus, the equivalent stress σe is calcu-
lated as:

σe ¼
�
σmI þ σm

II þ σmIII
�1=m (3)

and can be used in the same way as in an uniaxial scenario in all equa-
tions previously mentioned (note: in case of compressive stress compo-
nents, these contributions are clipped to zero). Utilizing eq. (1) to
compare different volumes at the same probability of failure, the
following relationship can be derived:

σ1

σ2
¼
�
Veff ;2

Veff ;1

�1=m

(4)

with σi and Veff,i describing strength and effective volume of specimen
type 1 or 2. Elaborating on eq. (4), larger effective volumes result in a
lower strength and vice versa. This behavior can be utilized to compare
different specimen sizes or testing methods for the same material. If
characteristic strength of different specimen types is plotted as a function
of effective volume on logarithmic scales, all data pairs should yield a
straight line with slope�1/mreg [30]. If that condition is satisfied and the
Weibull modulus mreg derived from the slope is similar to that of each
dataset, the tested material is a “Weibull material” [31]. This principle
will be the basis for the comparison of samples tested with different
testing methods in this work.

2.2. Investigated material

The investigated material Frialit F99.7 contains 99.5% alumina [37].
Its grain size is about 10 μm, and its microstructure contains about 2%
pores as well as 1%–2%Mg-spinel. The microstructure of Frialit is shown
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in Fig. 1. The basic material properties can be found in Table 1. It was
sourced from KYOCERA Fineceramics Solutions GmbH (68229, Man-
nheim, Germany) [37]. The material was provided as a rod of 28 mm
diameter, which was cut and diamond ground into 1 mm and 1.7 mm
thick discs. The prospective tension-loaded side of each specimen
received a final grinding step using a D15 diamond grit wheel.

2.3. Experimental

The first developments on the Ball-on-Three-Balls method started in
the 80s and were later further developed by B€orger et al. [10,11,38,39].
It allows testing of discs and plates with minimal specimen preparation or
even in as-sintered condition. It utilizes a single steel or carbide ball to
apply the load and three moveable balls (which are in contact with each
other) as a support structure [25]. The basic design is shown in Fig. 2(a)
and a typical specimen after testing is shown in Fig. 3(a). The result is a
localized maximum of stress in the center of the disc on the opposite side
of the loading ball [40]. The maximum stress at failure σf of the specimen
is calculated by the following formula [10,25]:

σf ¼ f
�
2 t
D
;
DS

D
; ν
�
� F
t2

with DS ¼ 2DBffiffiffi
3

p (5)

with F as the applied force, ν as the Poisson’s ratio, D as the specimen’s
diameter, t as the specimen’s thickness, DS as the diameter of the circle on
which the three support points lie (i.e. support diameter) and DB as the
support ball diameter. The factor f is determined by interpolation of
Finite-Element-Analysis results which assume load introduction by a
point load [24] or by using a fitted polynomial on these FEA-results
depending on the specimen’s geometry and Poisson’s ratio [10,25]. For
this work, the maximum stress at failure was evaluated by using a third
order interpolation function calculated with Mathematica 12.0 (Wolfram
Research, IL 61820, Champaign, USA). The effective volumes and areas
were determined by interpolation of FEA results as well.

The principle of the RoR-test can be seen in Fig. 2(b) and a specimen
after testing in is shown in Fig. 3(b). Coaxial steel-rings are used to apply
the load evenly along a certain radius and to provide support for the
specimen. The result is a stress field with nearly equal and constant radial
and tangential stresses within the diameter of the loading-ring and a
drop-off towards the edge of the specimen. The stress field is ideally
symmetric with respect to the central axis. An analytical solution of the
stress field can be derived. The maximum stress at failure σf for discs is
determined by Ref. [6]:

σf ¼ 3F
2πt2

�
ð1� νÞD

2
S � D2

L

2D2
þð1þ νÞlnDS

DL

�
(6)

where F is the applied force, v the Poisson’s ratio, t the specimen’s

thickness, D the specimen’s diameter, DL the load ring diameter and DS
the support ring diameter. The RoR-method has been proven to allow
testing of discs and plates as well [6,41]. However, some limitations
related to the specimen’s thickness apply. If the specimen is too thin,
large deformations restrict the use of linear geometric relations. If
specimens are too thick, plate theory does not apply anymore and contact
stress increase to a level where localized contact failure occurs [14,26,
42].

An important task during testing is to reduce friction between spec-
imen and support and loading rings in order to avoid additional stresses
which are not taken into account in eq. (6). The common approach is to
either use intermediate layers or lubricants. Lubricants allow testing
without any influence on the stress field, but greatly impede

Fig. 1. Microstructure of KYOCERA Frialit, SEM, with clearly visible pores and
elongated spinel grains.

Table 1
Mechanical properties of KYOCERA Frialit [37].

Property Unit KYOCERA Frialit

Density [g/cm3] �3.90
Purity [weight-%] >99.5
Open porosity [Vol.-%] 0
Average grainsize [μm] 10
Flexural strength DIN-EN 843-1 [MPa] 350
Weibull modulus [�] >10
Fracture toughness KIc (SEVNB) [MPa m1/2] 3.5
Compressive strength [MPa] 3500
Young’s modulus [GPa] 380
Poisson’s ratio [�] 0.22
Vickers Hardness HV1 [�] 1760

Fig. 2. Schematic of the B3B (a) and the RoR (b) loading layout [ref 36,43].

Fig. 3. Typical crack-patterns of fractured specimens for the B3B- (a) and RoR-
(b) test.
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fractographic analysis, whereas intermediate layers might change load
application and distribution. In this work, several different loose and
adhesive materials were employed as intermediate layers. Their names,
manufacturers, materials and properties are found in Table 2. Adhesive
tape was used because of two reasons: i) to eliminate friction and - a
beneficial side effect - ii) to keep the fracture pieces together to facilitate
fractographic analysis. If adhesive tape was used, it was always applied to
the compression-loaded side to ensure the smallest possible impact on
strength results. Care was taken to use intermediate layers only for tests
with expected fracture loads below loads that lead to failure of the layer
itself. Loose layers were solely utilized between the support ring and the
specimen (tension-loaded side). Sample strength was evaluated using eq.
(6). The effective volumes and areas were calculated in the same manner
as done for the Ball-on-Ring test by Frandsen [43]. The occurring in-
tegrals were solved numerically in Mathematica 12.0.

All experiments were conducted using a Zwick Z010 test frame
(ZwickRoell GmbH & Co. KG, 89079, Ulm, Germany) equipped with a
Doli control system (Doli, 72525, Münsingen, Germany). B3B tests were
conducted using 15.08 mm diameter balls (resulting in a support diam-
eter of 17.42 mm). RoR testing rigs were manufactured from 42CrMo4
(1.7225) and hardened to HRC> 40 and has a surface -finish of about 1.2
µm. The discs were tested using a support-ring diameter of 17.24 mm and
a loading-ring diameter of 8.31 mm, both with a cross-section diameter
of 1.2 mm. In order to compare both testing methods, different thick-
nesses and intermediate layers were used. Table 3 shows all tested
samples and gives details on the testing conditions. FP describes the pre-
load, v the constant cross-head speed, RH relative humidity, T the
ambient temperature and N the number of tested specimens. Each sam-
ple, with the exception of R-28-1 and B-28-1.7-BT, was in alignment with
standards [6] or with previously published guidelines [47,48]. R-28-1
was tested without any layers or lubricants and was therefore not tested
according to standards. In contrast, the B3B-method does not call for any
compliant layers, hence why B-28-1.7-BT was not tested correctly.

The Weibull parametersm (unbiased) and σ0 were estimated from the
strength of the individual specimens for each dataset using the
Maximum-Likelihood-Method [2,4]. Confidence-intervals for m and
σ0 provide additional information about the statistical uncertainty which
is essential when comparing multiple datasets [49]. In this work, 90%
confidence intervals will be used.

2.4. Finite-Element-Analysis

Finite-Element-Analysis was conducted to complement the experi-
ments. More specifically, the influence of friction during Ring-on-Ring
testing for 28 mm diameter discs with a thickness of 1 mm, was evalu-
ated. In order to ensure consistent model properties throughout different
scenarios, the commercial FEA-program ANSYS R19.1 (ANSYS Inc., PA
15317, Canonsburg, USA) was chosen for its ability to implement Ansys-
Parametric-Design-Language (APDL) scripts. To investigate the influence
of friction within a geometrically perfect test situation, a simple 2D-

contact-model was sufficient to assess the full problem due to rota-
tional symmetry. This model allows quantitative statements and com-
parison with existing analytical solutions [40]. More specifically, the
specimen (Young’s Modulus¼ 380 GPa, ν¼ 0.22) was meshed with 3145
PLANE183 (8-node quad elements) elements and 9948 nodes. The
loading and supporting rings (Young’s Modulus¼ 210 GPa, ν¼ 0.3) were
meshed with 490 PLANE183 elements and 1516 nodes. Surfaces, which
will come into contact during testing, were meshed with 338 CONTA172
and 338 TARGET169 elements. Symmetric contact calculation was uti-
lized and the friction coefficient μ between specimen and both rings was
varied between 0 and 0.5 in steps of 0.1. The model was loaded by a force
of 600 N. The model is shown in Fig. 4(a).

Additionally, the influence of uneven surfaces of the loading ring and
thus uneven load application was examined using FEA. For this investi-
gation, a simplified 3D-model had to be used (no contact calculations).
Therefore, only qualitative statements can be deduced. This model was
meshed with 35266 SOLID 95 elements (20-node brick elements) and
140759 nodes. Due to symmetry, the model could be reduced to one half.
The uneven load application was realized by applying an oscillating force
with equally spaced maxima and minima along the load-ring contour.
The script allowed for changes in both frequency and number of load
maxima (Z) and amplitude (A) in percentage of the applied total force. An
example of the model with an uneven force applied is shown in Fig. 4(b).

To verify the simplified model as described above, a single contact
scenario of the full testing assembly was modeled with a 3D-contact-
model (material properties as mentioned above). The surface of the
loading ring was modified so that it follows a sine with an amplitude of 5
μm and 3 full periods along its circumference, similar to the load in
Fig. 4(b). The model is shown in Fig. 4(c).

3. Results & discussion

As previously explained, the size effect will be used to compare
different testing methods. Since fractography did not show volume flaws
to be responsible for failure, the effective area will be used instead of
effective volume as the basis for future comparison [16,35]. A compar-
ison is valid, when two requirements are met. First, RoR samples have to
exhibit a lower strength than B3B samples due to the larger effective area.
Second, if a fit of eq. (4) through all data pairs (which appears as straight
line in the plot of characteristic strength versus effective area), results in a
fitted Weibull modulus mreg (the inverse slope of the straight line) which
is close to the Weibull moduli of the individual sets.

The number of specimens N, Weibull parameters m and σ0 as well as
their 90% confidence intervals and effective area Seff for each dataset are
found in Table 4. Fig. 5(a) allows for a better overview of these results. R-
28-1 specimens stand out due to their lowWeibull modulus (m¼ 15) and
poor characteristic strength. All other samples have a comparable Wei-
bull modulus of 25 � m � 35. Other findings are the slightly increased
Weibull moduli for samples tested with intermediate layers, as all of them
exhibit m > 34. Furthermore, the datasets R-28-1-T and R-28-1-BT are

Table 2
Names, manufacturers, materials and properties of utilized intermediate layers
[44–46].

Trade name Manufacturer Material Layer
thickness

Adhesive
thickness

PTFE virginal foil
0.05–600

High-tech-flon
(78467, Konstanz,
Germany)

Teflon 50 μm –

PTFE tape 0.08 V
SW

High-tech-flon
(78467, Konstanz,
Germany)

Teflon 51 μm 38 μm

Flashbreaker® 1 Airtech
International, Inc.
(CA 91708, Chino,
USA)

Polyester 25 μm 30 μm

Table 3
Summary of tested sets. The prefix indicates the testing method: B3B-method (B-)
or the RoR-method (R-). The first number is the specimen diameter; the second
number the specimen thickness, both in mm. The suffix indicates the interme-
diate layers: BT (Flashbreaker® 1 compression side, loose Teflon tension side)
orT (Teflon-tape compression side, loose Teflon foil tension side). FP describes
the pre-load, v the constant cross-head speed, RH relative humidity, T the
ambient temperature and N the number of tested specimens.

Designation FP [N] v [mm/min] RH [%] T [�C] N [�]

B-28-1 10 0.5 24 23.2 30
B-28-1.7 20 2 52 22.6 30
B-28-1.7-BT 20 2 51 22.4 32
R-28-1 20 1.5 50 24.5 28
R-28-1-T 20 1.5 21 22.6 30
R-28-1-BT 20 8.5 49 21.5 29

M. Staudacher et al. Open Ceramics 6 (2021) 100101

4



nearly identical. A significant difference in strength and effective area
between B3B and RoR samples is evident. When the effective area is
considered, RoR specimens show a lower strength and higher effective
area than B3B samples, as seen in Fig. 5(b). The regression fits all but two
datasets (R-28-1 and B-28-1.7-BT), which were not considered since their
testing details deviated from the standard procedure. The fit according to
eq. (4) implies mreg ¼ 30, which is in excellent agreement with all
datasets except R-28-1. Note the high difference in strength between all
RoR sample sets and R-28-1. Furthermore, B-28-1.7-BT samples deviate
by exhibiting significantly higher strength than other B3B sample sets.

Two samples were not tested in accordance with standards or

established guidelines: B-28-1.7-BT and R-28-1. B-28-1.7-BT was tested
with Flashbreaker® 1 on its compressive side to observe the influence of
intermediate layers on force application and strength measurement for
the B3B test. The R-28-1 RoR-specimens were tested without any inter-
mediate layers. It is evident that a significant deviation from other
samples ensued.

In the B3B test, as compared to B-28-1.7, specimens tested with an
interlayer on the compressive side (B-28-1.7-BT) show a significantly
increased strength (i.e. þ5%). This can be explained by a change in load
application.

The factor fwas determined assuming a point load, i.e. with a contact

Fig. 4. Models and mesh for the FEA analysis. (a) Shows the model to investigate the influence of friction, (b) shows the model to test the influence of uneven loading
with parameters A ¼ 100% and Z ¼ 3. The bottom plane in (b) marks the symmetry plane employed to reduce processing time. (c) Shows the model of the full testing
assembly for more precise calculations of uneven surfaces.

Table 4
Results of strength testing of various specimens. m and σ0 as described beforehand, with indices “lower” and “upper” referring to the borders of their 90% confidence
interval. Seff refers to the average effective area of specimens tested.

Designation N [�] m [�] mlower [�] mupper [�] σ0 [MPa] σ0, lower [MPa] σ0, upper [MPa] Seff [mm2]

B-28-1 30 26 19 31 375 370 380 0.245
B-28-1.7 30 29 22 36 360 356 364 0.965
B-28-1.7-BT 32 34 26 41 381 378 385 0.770
R-28-1 28 15 11 19 242 237 248 126.8
R-28-1-T 30 34 26 42 305 302 308 116.8
R-28-1-BT 29 36 27 44 307 304 310 116.4
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radius Rc¼ 0 mm. For load introduction over an actual contact area under
the ball with a Hertzian contact pressure [50] f(Rc > 0 mm) depends on
the contact radius (which increases with applied load), as can be seen in
Fig. 6. Note that the circles in Fig. 6 indicate the values of f(Rc ¼ 0 mm).
For most testing situations covered with available FEA results [10,11] the
specimens will fracture at loads which are low enough to give small
contact areas. For such small contact areas, the actual f is not much
different from f(Rc ¼ 0 mm). For example, the dashed areas in Fig. 6 refer
to a decrease of maximal 2% in f, which is an experimental error that is
acceptable.

Using the information from Fig. 6 the effect of a compliant interlayer
on B3B strength results can be explained qualitatively. A soft interlayer
will lead to an increased contact area between the loading ball and the
specimens as compared to the situation without any layer, resulting in a
lower value of f(Rc) and a lower maximum stress. An increased load will
be necessary to break the specimen. If f(Rc ¼ 0 mm) which is greater than
f(Rc > 0 mm) is used for the evaluation of strength from the fracture load,
the strength of each specimen will be overestimated. This statement re-
lies on the assumption that the effective area is not changed substantially.
Using compliant layers for the Ball-on-Three-Balls-test creates a load

introduction situation which deviates from the assumptions that were
made for theoretical stress evaluation. Consequently, incorrect stress
results will be obtained.

For the RoR set-up, tests without interlayers (R-28-1) which are
influenced by friction, lead to an approximately 20% lower strength as
compared to tests with applied interlayers (R-28-1-T and R-28-1-BT).

To investigate the influence of friction on the stress in the disc, the
stress on the tensile surface along a radial path from the disc center to its
edge was evaluated for varying friction coefficients and compared with
the analytical solution found by Fessler & Fricker [40]. The numbers
presented were evaluated for a typical fracture load for our specimens,
i.e. 600 N. Only radial stresses are shown since tangential stress exhibit
the same behavior with a lower stress concentration near the loading ring
position. Fig. 7(a) shows the FEA results of radial (σr) stress in absolute
values, Fig. 7(b) displays the radial stress results σr normalized by the
central stress σi ¼ σr(r ¼ 0). Fig. 7(c) shows the results as predicted by
equation 14–16 in Fessler & Fricker in absolute values, and the
normalized curves are found in Fig. 7(d). The dashed line represents the
position of the loading ring. The exact results of σi and σr,max and their
comparison to Fessler & Fricker can be found in Table 5.

As indicated by the FEA results, an increase in friction results in a
decrease in radial stress at the loading ring radius (up to ~8% with μ ¼
0.5) und a decrease in radial and tangential stress in the central region
(up to ~10% with μ ¼ 0.5). The position of maximum stress moves to-
wards the loading ring radius but not outside the central region. These
findings for the central region are in good accordance with Fessler &
Frickler [40]. As indicated by the FEA results, an increase in friction
results in a decrease of stress throughout the specimen. The relative stress
concentration near the load ring position (σr,max/σi) increases as friction
increases. According to FEA this effect is not very strong (1.6% for μ ¼
0–3.4% for μ¼ 0.5, cp. Table 5). This is much lower than predicted by the
Fessler & Frickler solution which results in up to 13% for μ ¼ 0.5.
However, it is stated in Ref. [40] that the analytical model overestimates
the stress at the loading ring radius due to a discontinuity in the equa-
tions, which explains the difference with respect to the FEA results. Thus,
only a very small influence on the effective area can be expected from this
effect, but an increased probability of failure from locations near the load
ring radius. If friction is not eliminated, higher loads are necessary for
specimens to fail and thus the strength would be overestimated. For the
given geometry, and from the data in Table 5 this effect is estimated to be
in the order of 5%–10%. With our RoR-tests without any intermediate
layers a significant decrease in apparent strength was observed. We
conclude that the action of friction alone cannot explain the observed
result.

Another approach to explain the low strength is a change in load
application due to the omission of any intermediate layers. More pre-
cisely, instead of a perfect line contact along both the load and support
ring, an uneven load application through several contact points is sus-
pected. If layers were used, the slight differences of height along the rings

Fig. 5. Results of strength testing. (a) Depicts the Weibull modulus m and the characteristic strength σ0 as well as their confidence intervals, (b) depicts the char-
acteristic strength for each sample depending on their effective area Seff.

Fig. 6. Factor f depending on the Hertzian contact zone under the central
loading ball for different values of thickness t to support radius Rs and the ge-
ometry D ¼ 12 mm, Ds ¼ 10 mm and ν ¼ 0.3. The circles represent the values of
fB3B which are used for the evaluation of strength from fracture load. The shaded
areas indicate an error <2% [50].
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and specimens would be mitigated out, but without any layers theymight
influence load introduction in a way that would underestimate the
samples strength. The FEA results in the case of ideal conditions (i.e. a
constant line load) and 5 loadmaxima are shown in Fig. 8. The parameter
A was set to 100%, meaning that the force along the loading ring
diameter oscillates between 0% and 200% of the constant line load.
Alongside that, the maximum stress at the tensile face is displayed in
Table 6 and selected stress trends are shown in Fig. 9. Localized stress
concentration along the loading ring circumference occur, while the
stress level in the center of the disc remains unchanged. With an
increasing amount of load maxima, the maximum stress decreases. Note
that these results were obtained without considering friction. As previous
results have shown, friction would result in a small general decrease of
stress, similar to the trend shown in Fig. 7(a). However, the large stress
concentrations at the loading ring radius would still be present.

It can be expected that this leads to an increased number of fractures
from these locations of stress concentration. Additionally, these speci-
mens will also fracture at a lower load compared to specimens that fail
from the central region and consequently their strength will be

underestimated. It can also be expected, that this results in an increased
scatter in strength, i.e. a lower Weibull modulus.

Note the difference in maximum stress for the case of three load
maxima compared to ideal conditions, which is equal to an increase of
nearly 20%. The difference in strength between the datasets R-28-1-T
and R-28-1 is approximately 20% as well.

For a more accurate representation of the real loading scenario, the
full model with amodified surface on the loading ring was evaluated. The
results for the contact model shown in Fig. 4(c) with a maximum dif-
ference of 10 μm between the highest and lowest points of the loading
ring surface are shown in Fig. 10(a). Even at a load similar to the fracture
load during our experiments, full contact along the load ring cannot be
achieved. Alternating regions of contact and no contact ensue. As can be
seen in Fig. 10(b), a 3D-scan of the loading ring used in this work shows
that even by machining with care a variation of about 20 μm between the
highest and lowest points of such a ring can be present. Even smaller
differences than what we found on a turned ring can result in a partial
loss of contact along the circumference and an increase in stress at the
remaining contact areas.

To verify the predicted results, the fractures of specimens from sets R-
28-1, R-28-1-T and R-28-1-BT were investigated on a macroscopic scale.
According to the positions of fracture origins, specimens were allocated
to one of three groups:

	 Fracture origin at or very close to the loading ring
	 Fracture origin in the central region
	 Location of fracture origin not identifiable, unknown

Since the number of unknown fracture origins were about 30% in-
dependent of the investigated sample, only the differences in clearly
assignable fractures are discussed. In Fig. 11, it is evident that dataset R-

Fig. 7. Radial stress for different friction coefficients: (a) shows the absolute FEA results, (b) the normalized FEA results, (c) the absolute results of Fessler & Fricker
and (d) the normalized results of Fessler & Fricker [40]. The dash-dotted line marks the position of the loading ring.

Table 5
Detailed results of FEA and Fessler& Fricker’s analytical solution for radial stress.

Friction
Coefficient

σi/σi,μ¼0

FEA
σi/
σi,μ¼0

Fessler

σr,max/σi
FEA

σr,max/
σi
Fessler

σmax,FEA/
σmax,Fessler

μ ¼ 0 1 1 1.016 1 1.008
μ ¼ 0.1 0.978 0.976 1.018 1.024 0.988
μ ¼ 0.2 0.956 0.953 1.021 1.048 0.969
μ ¼ 0.3 0.934 0.929 1.025 1.075 0.951
μ ¼ 0.4 0.911 0.905 1.029 1.102 0.933
μ ¼ 0.5 0.890 0.882 1.034 1.131 0.915
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28-1 (without interlayers) exhibits a significantly higher fraction of
fractures from the loading ring, while the specimens with interlayers (R-
28-1-T and R-28-1-BT) have a higher number of fractures from the center.
No major distinction between dataset R-28-1-T and R-28-1-BT were
found. Contrary to the Ball-on-Three-Balls-test, using no compliant layers
for the Ring-on-Ring-test creates a load introduction situation which
deviates from the assumptions that were made for analytical stress
evaluation. Consequently, incorrect stress results will be obtained.

4. Summary

Biaxial strength tests were conducted on a commercial alumina
ceramic (Frialit 99.7, Kyocera) using the Ball-on-Three-Balls-test and the
Ring-on-Ring -test. Two different specimen thicknesses were investigated
and details of the test procedure, namely the use of compliant layers,
were varied. The results were compared based on the size effect predicted
by Weibull fracture statistics. Additionally, the influence of friction and
uneven loading was investigated using Finite-Element-Analysis.

Generally, it could be shown experimentally that both tests deliver
comparable results within a Weibull approach. The B3B test can thus be
used to evaluate the strength of specimen that may be too small or too
thin to be tested with the RoR-test. This holds true as long as the tests are
performed in a way where the real loading situation is as close as possible
to the one assumed for the theoretical description of the test.

For the numerical evaluation of the B3B-test, load application by a
point load is assumed, which is realized in most testing situations. If
compliant interlayers are used between the loading ball and the spec-
imen, the assumption is corrupted and a significant strength

Fig. 8. Tangential (left) and radial (right) stress field (in Pa/N) for two cases of load introduction: ideal load introduction (a) and 5 load maxima (b). The dashed lines
mark the load- and support-ring positions. The paths along which the stress trends in Fig. 9 are evaluated are marked by the dashed-dotted arrow.

Table 6
Maximum radial (σr,max) and tangential (σt,max) tensile stress for different load
introduction cases as well as their ratios to the central stress (σi).

No. of Osz. [�] σr,max [MPa] σr,max/σi [�] σt,max [MPa] σr,max/σi [�]

Z ¼ 0 290 1.016 287 1.005
Z ¼ 3 337 1.181 338 1.184
Z ¼ 5 312 1.093 320 1.121
Z ¼ 10 296 1.037 301 1.054

Fig. 9. Comparison of radial (a) and tangential (b) stress trends for various pointwise and ideal load introduction cases.
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overestimation may result.
For the analytical description of the RoR-test, frictionless testing and

uniform load introduction is assumed. If friction is not avoided, the
specimen strength will be overestimated. If deviations from uniform ring-
load introduction are present, the specimen strength will be under-
estimated due to the formation of regions of increased stress at the
loading ring circumference. Even for deviations as small as a waviness of
the loading ring surface of � 5 μm, regions without any contact of the
loading ring and the specimen form and an increase in stress in the
remaining regions ensues. Compliant interlayers help to achieve uniform
load introduction with the additional benefit of a reduction of friction in
the RoR-test.
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A B S T R A C T   

This paper introduces a new method for strength testing of additively manufactured ceramics, which was 
designed to take the characteristics of the manufacturing process into account. It was developed for time- and 
material efficient specimen fabrication and its design allows adjustment so that different surface orientations can 
be investigated. This gives insight into the influence of surface structures on the measured strength, which vary 
significantly depending on the surface orientation. 

Functional expressions for strength evaluation and the determination of effective volume are given and 
validated through Finite Element Analysis (FEA). The influence of surface structures on the measured strength is 
analyzed based on Weibull theory and FEA. Other influences on the accuracy of this testing method are discussed 
and quantified based on practical observations. The manufacturing process, testing setup and statistical evalu
ation for specimens of three different configurations is outlined and the results and applicability of this method 
are discussed.   

1. Introduction 

In the past decades, ceramic materials have taken an increasingly 
prominent position in many technical fields, which can frequently be 
traced back to their unique combination of mechanical and functional 
properties. Some of their most relevant characteristics are a high hard
ness, strength, and wear resistance. Whilst these properties are sought 
after in many applications, they severely limit the geometric complexity 
of ceramic components due to time- and cost intensive machining. 
Therefore, new shaping and manufacturing methods have been devel
oped, aiming to increase component complexity while simultaneously 
reducing machining effort. Amongst the most promising methods to 
achieve this goal are the different additive manufacturing (AM) tech
nologies. Through layered material deposition, AM has opened the path 
to near-net-shaped ceramic components with similar properties to 
conventionally manufactured ones. It should be noted that many 
different AM technologies exist, and all have their merits and limitations 
[1,2]. 

In order to optimize the manufacturing process, it is of utmost 
importance to accurately determine the component’s functional and 
mechanical properties. However, AM introduces a number of additional 
challenges that have to be considered for the determination of the 

component’s mechanical properties. Notable differences to regular bulk 
ceramics are the layered structure, the layers’ orientation in relation to 
the applied load or the influence of periodically structured surfaces. As 
an example, digital-light-processing (DLP) based vat photo
polymerization enables the fabrication of a ceramic green body with 
high spatial resolutions. The starting point for the green body is a slurry 
consisting of ceramic-powder dispersed in a photo curable polymer. The 
light source is directed at the slurry with a plethora of small mirrors, 
whose size determine the maximum resolution of the process, as each of 
them represent a curable pixel [3–7]. As a consequence, aliasing effects 
occur if a structure of any incline is manufactured, as depicted in 
Fig. 1a). This effect causes the surface to exhibit unique wave patterns 
for each inclination, i.e. surface orientation, as shown in Fig. 1b). It is 
well known that surface defects can have a severe effect on the measured 
strength due to the higher geometry-factor compared to defects found 
within the bulk material [8]. Due to the orientation dependent surface 
structures, stress concentrations may form and amplify this effect. This 
results in changes of the measured strength in dependence of the surface 
orientation [9]. Moreover, recent work has shown that the strength of 
specimens manufactured with AM is significantly dependent on whether 
the specimen is loaded perpendicular or parallel to the building direc
tion. It has to be noted that this difference can be eliminated if the 
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surface of both specimen types is machined [10,11]. However, 
machining of the final component is not always possible and would 
reduce the benefit gained through additive manufacturing and should 
therefore be avoided altogether. Apart from these two extreme orien
tations, the mechanical properties of the intermittent orientations are of 
high interest as well. 

Ideally, all of this information can be gathered through a single 
testing method for a wide range of surface orientations. Then, it could be 
directly implemented into the design process of an additively manu
factured component to increase material efficiency and component 
reliability. 

Testing methods such as four-point bending or biaxial testing 
methods have the upside of already being established and standardized 
[12,13]. One of their major downsides is the time- and material inten
sive process of manufacturing each specimen. Especially with high res
olution methods, such as DLP-based vat photopolymerization, the 
number of specimens that can be manufactured simultaneously is 
severely limited. Additionally, the high number of layers causes long 
manufacturing times. Furthermore, if specimens are not oriented par
allel or perpendicular to the building direction, support structures are 
necessary, which further increases material consumption and decreases 
surface quality. Therefore, new testing methods have to be developed to 
accurately assess the mechanical properties with respect to the specifics 
of AM. 

Within this work, a new strength testing method for DLP-based vat 
photopolymerization based on a novel specimen geometry, as displayed 
in Fig. 2, is presented. An introduction to the test specimen itself, its 
stand-out characteristics, and the reasoning behind them is given. Based 
on practical observations, a thorough analysis of possible sources of 
error and their influence on the measured results is carried out. The 
possible sources of error are quantified by theoretical considerations, 
Monte-Carlo analysis, and Finite-Element-Analysis (FEA). Limits for the 
influence of surface structures on the measured strength are given 
through a numerical analysis based on Weibull-theory. The imple
mentation of the new testing method with the use of widely available 
testing equipment is shown. Empirical results obtained with the new 
testing method are given and discussed in relation to AM-specific fea
tures. Although this testing method was developed for DLP-based vat 
photopolymerization, its applicability to other manufacturing methods 
is conceivable. 

2. Theoretical considerations 

2.1. Specimen characteristics 

The development of this test specimen was performed at IKTS 

Dresden and is given in Refs. [14,15]. The basic elements of the test 
specimen are a baseplate and 48 cantilevers attached to the baseplate’s 
upper surface. Through increasing the thickness of the cantilevers to
wards the baseplate, a strong support for loading is formed. The other 
end of the cantilevers will be loaded perpendicular to their longitudinal 
axis (see Fig. 3), resulting in a bending load. The specimen’s baseplate is 
formed by two solid plates with an arched structure in between, as 
shown in Fig. 3. 

In combination with the anchoring points at each end of the longi
tudinal edge, a rigid base for clamping or mounting of the test specimen 
is formed. The angle of the upper solid plate can be adjusted to subse
quently yield any desired surface orientation for the cantilevers attached 
to it. Within this work, three configurations of the test specimen have 
been investigated, as shown in Fig. 4. Fig. 4a) displays the reference 
specimen, which will be referred to as “Type A”. The inclination of the 
longitudinal axis of the cantilevers to the z-axis (see Fig. 3) is 0◦. The 
cantilevers in specimen “Type B1”, as shown in Fig. 4b), are angled at 
15◦ to the z-axis. The same angle is chosen for specimen “Type B2”, as 
shown in Fig. 4c), but with the cantilevers rotated along their longitu
dinal axis by 180◦. Therefore, the tension loaded side is downskin for 
cantilevers of configuration B1 and upskin for configuration B2. 

The design of the cantilever is the same for each configuration of the 
test specimen. A detailed overview of its geometry is given in Fig. 5. A 
small bulge at the front of the cantilever ensures load introduction at the 
correct position. Due to the linear increase of the cross section in the 
marked region, a constant bending moment acts within this part of the 
cantilever. This section serves as the intended region of failure and the 
maximum tensile stress σmax at the specimen’s surface is given through 

σmax =
6P
kh2 (1) 

with P as the applied load and h as the thickness of the specimen 
within this region. The variable k describes the slope of the inclined 
flanks and is determined by 

k=
b2 − b1

L
= 2 tan

(α
2

)
(2) 

with L as the length and b1 & b2 as the width at the beginning and end 
of the region of constant bending moment. Another way to determine k 
is by the opening angle α of the cantilever’s flanks. 

In order to trace the broken cantilevers to their respective counter
parts on the baseplate after testing, each cantilever is marked by two 
binary codes which indicate the row and the column of the cantilever on 
the baseplate [15]. This allows testing of all cantilevers on the specimen 
in one session without the need to demount the specimen or collect each 
broken cantilever directly after failure. 

To get a better understanding of the accuracy of the new testing 

Fig. 1. a) shows a schematic of the aliasing effect due to the pixel-based nature of the DLP-based vat photopolymerization process (incline from left to right: 0◦; 15◦; 
30◦ and 45◦). The same effect occurs in building direction as well due to the layerd manufacturing process. A side-by-side comparison of the surface structures due to 
differing surface orientations is given in b). The upper surface was manufactured at an incline of 45◦, the lower one at 15◦. 
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method, some aspects have been investigated with FEA. A model of the 
cantilever attached to a part of the baseplate was implemented in ANSYS 
Mechanical R.22.1 by ANSYS Inc. (Southpointe 2600 Ansys Drive, PA 
15317, Canonsburg, USA) through APDL (Ansys Parametric Design 
Language) by importing a CAD-file of the model. The model was meshed 
with 224868 SOLID186 elements (20-node elements), and 316950 

nodes and is shown in Fig. 6. A mesh convergence analysis was per
formed to ensure the use of sufficiently small elements. 

2.2. Stress field validation 

Since eq. (1) was derived by utilizing Euler-Bernoulli beam theory, 

Fig. 2. Sintered test specimen in three different configurations. For size indication refer to Fig. 3.  

Fig. 3. Overview of the test specimen in side-view in a) and top-view in b), with its most significant dimensions given and the load direction along the y-axis.  

Fig. 4. Schematic for each variation of the test specimen, with the orientation of the cantilever highlighted by the black lines and the direction of the applied load P 
given in red. The 0◦ configuration is shown in a), the 15◦ configuration in b) and the rotated 15◦ configuration, i.e. 15◦-180, is shown in c). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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some effects such as transverse shear strains are not considered [16]. 
Even though these effects are minor for thin beams and small dis
placements, a comparison between the FEA-derived stress field and the 
ideal stress field given by eq. (1) for the tensile surface was conducted. 
The results are shown in Fig. 7. Eq. (1) underestimates the stress in the 
central region by about 1.6% and overestimates the stress in the 
edge-regions by about 0.5%. Overall, excellent agreement between eq. 
(1) and FEA-results is achieved, validating the use of Euler-Bernoulli 
beam theory to calculate the maximum stress. 

2.3. Effective volume and surface 

An important consideration during design was material efficiency. 
More specifically, as much as possible of the manufactured volume 

should be stressed at or close to the maximum tensile stress. This effi
ciency can be quantified by calculating the effective volume Veff or 
effective surface Seff in relation to the overall stressed volume V or sur
face S of the specimen. For the region of constant bending moment, an 
analytical solution for Veff can be derived by solving the integral 

Veff =

∫∫∫

σ>0

[
σ(x, y, z)

σ∗

]m

dx dy dz (3) 

for the tensile regions of the stress field σ(x, y, z) normalized by an 
arbitrary tensile stress σ∗ with m as the Weibull-modulus [8,17]. If the 
maximum tensile stress in the specimen is used for σ∗, this then yields 

Veff =
hL(b1 + b2)

4(m + 1)
(4) 

for the effective volume, with h as the thickness of the region of 
maximum stress of the cantilever. The other symbols are as defined 
previously. If the small contribution of the side faces of the beam are 
neglected, the effective surface Seff is derived by the general relationship 
between Seff and Veff for a stress distribution induced through bending: 

Seff = Veff
2(m + 1)

h
=

L(b1 + b2)

2
(5) 

Fig. 8 shows the relative effective volume of the testing region, i.e. 
the ratio of Veff to the total stressed volume V, of one cantilever of the 
novel test specimen in comparison to traditional flexural strength tests 
[18]. Note that the volume of the supporting structures, i.e. the base 
plate, is not taken into account, as this material would also be needed to 
a similar extent for the overhang or support structures for the other tests. 
Due to the large region of constant maximum stress at the surface of the 
cantilever, a high material-efficiency compared to traditional 
bend-testing methods is achieved. If the total volume Vtot of the spec
imen, i.e. including all supporting structures, is considered, the new 
specimen exhibits slightly higher efficiency than 3-point-bending bars. 

Similar to before, the functional expressions for the effective volume 

Fig. 5. Geometry of the cantilever, shown in top view in a) and side view in b). All measurements are given in mm. The region of constant bending moment is marked 
in green and the applied load P is marked in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 6. Meshed model of the cantilever with a small portion of the baseplate.  
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and surface (eq. (4) and (5)) were derived under the assumption of ideal 
conditions, i.e. a constant bending moment. In order to validate these 
expressions, the FEA-model from the previous section was utilized. The 
analytical and the numerical results in dependence of the Weibull 
modulus m are shown in Fig. 9. For m ≥ 10, good agreement between eq. 
(4) and FEA is achieved. Note that the numerical results were generated 
for the full cantilever (excluding the region in immediate proximity of 
load introduction) while the analytical solution describes only the re
gion of constant bending moment. This explains the increasing error for 
low Weibull moduli (m < 5) due to the increasing contribution of low- 
stress regions to the effective volume. 

2.4. Influence of surface orientation 

To assess the influence of surface structures, an approach based on 
Weibull theory was considered [19]. Since these surface structures 
modify the tensile stress field, the effective sizes (Veff and Seff) will 
change as well. Based on the size-effect, a change in measured strength is 
to be expected [8]. To accurately represent these surface structures, 
which are on a sub-millimeter scale, the mesh of the FEA-model has to be 
several times smaller than in the previous model. By utilizing 
sub-modelling, the region of constant bending moment can be modelled 
and meshed individually. Due to the simpler geometry of the sub-model, 
a mapped mesh with element sizes on a sub-micrometer scale can be 
implemented [20,21]. The sub-model is meshed with 52404 SOLID186 
elements and 244031 nodes. With this sub-model, the observed periodic 
surface structures of the manufactured specimens are directly imple
mented in FEA. A sinusoidal wave was deemed as the best representation 
of the measured data, with the amplitude and wavelength for each 
specimen type determined through surface characterization (see chapter 
4.3). These structures were subsequently implemented in the sub-model 
and compared to the case of an ideal flat surface structure, i.e. specimens 
of type A. The investigated results were the change in maximum tensile 
stress and the influence of the surface structures on the effective volume 
and surface. The maximum tensile stress of the flat specimen was chosen 
as the reference stress σ∗ for the calculation of Veff and Seff for the other 
specimen types. Utilizing the size effect described by Weibull theory [8], 
the expected measured strength of a specimen σB of an effective volume 
Veff,B is given by 

σB

σA
=

(
Veff ,A

Veff ,B

)1/m

(6) 

with Veff,A and σA as the known effective volume and strength, 
respectively. In the case presented here, the subscript B corresponds to 
the specimen with a structured surface and A corresponds to the flat 
specimen. The very same principle can be applied utilizing the effective 
surface instead of the effective volume. The ratio σB/σA for each spec
imen type, based on either Veff or Seff, will be used to quantify this effect. 

3. Practical aspects 

All equations and investigations presented in the last section were 
derived or conducted under the assumption of ideal specimen geome
tries, i.e. as given in Fig. 5. A comprehensive analysis of the first pro
totypes revealed a number of deviations from the ideal geometry. On 
one hand, the general dimensions of the sintered cantilever did not 
correspond to those given in Fig. 5, even though a state-of-the-art printer 
(see chapter 4) was utilized. On the other hand, these dimensions fluc
tuated for each cantilever, even within one test specimen. Therefore, the 
initial concept of measuring a single cantilever, which is representative 
for the whole specimen, had to be investigated and reworked. In the 
upcoming section, the observed deviations from the ideal specimen 

Fig. 7. Result of the stress field determined by FEA, σFEA, in relation to the constant stress at the surface σmax as given by eq. (1). The contours give the ratio 
σFEA/σmax. 

Fig. 8. Comparison of the relative effective volume for the novel test specimen, 
3-point-bending bars and 4-point bending bars. 

Fig. 9. Effective volume for the cantilever in dependence of the Weibull 
modulus calculated with either eq. (4) or FEA. 
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geometry and ideal loading situation will be discussed. 

3.1. Non-ideal geometry of the cantilevers 

The most relevant dimensions for stress evaluation are the thickness 
h and the opening angle α of the cantilevers, as given in eq. (1). Contrary 
to initial assumptions, these dimensions are different for each cantilever 
within each test specimen. Therefore, measuring the dimensions of just a 
single cantilever is not adequate to accurately determine the fracture 
stress for each cantilever. Other options are to either determine mean 
values from the measurements of several cantilevers or to use individual 
measurements from every cantilever. In order to determine a suitable 
number of measurements for the average values, a Monte-Carlo (MC) 
analysis was conducted with Mathematica 12.0 by Wolfram Research, 
Inc. (100 Trade Center Drive, Champaign IL 61820-7237, USA) [22,23]. 
More specifically, the characteristic strength σ0 and Weibull modulus m 
were determined with dimensions from either individual or average 
measurements. An overview of the principle of this analysis is given in 
Fig. 10. The dimensions for each specimen were randomly generated 
based on normal distributions, which are determined from measure
ments of manufactured specimens. The final result of the MC analysis is 
the relative difference between the Weibull parameters determined with 
either individual or average dimensional measurements. 

3.2. Position of load introduction 

Another problem caused by the deviation from intended cantilever 
dimensions is a shift of the point of load introduction away from the 
ideal loading position. The cantilever is designed so that the extensions 
of the inclined flanks intersect at the point of load introduction. At this 
location, a small bulge is added to facilitate a well-defined load appli
cation. This condition is needed so that the maximum stress in the 
intended region of failure can be determined by eq. (1). If the slope k of 
the edges, i.e. the opening angle α, changes, the intersection point does 
no longer coincide with the position of the bulge, as shown by the blue 
lines in Fig. 11. Instead, the intersection of the edges is shifted by a 
distance a, depending on α, while the load will still be applied at the 
bulge. A schematic of this effect is given in Fig. 11. 

The influence of a on the maximum stress σmax,shifted can be considered 
analytically and is given through 

σmax,shifted(x, a)=
3F(x − a)
h2x tan

ʀ α
2

) (7) 

with x as the distance from the ideal loading point for α = 18◦ and the 
other symbols as defined before. The relative error in maximum stress in 
dependence of x and a is defined by 

Rel. error[%] =
σmax,shifted − σmax

σmax
(8) 

with σmax as defined in eq. (1). 

3.3. Shape of the cantilever cross-section 

Further deviations from the ideal specimen geometry are related to 
the cross-section of the cantilevers. Even directly after specimen fabri
cation, the desired rectangular cross-section is not achieved by DLP- 
based vat photopolymerization, resulting in a barrel shaped cross- 
section instead. This effect is still evident after sintering, as shown in 
Fig. 12. Another reason for geometric deviations might be the subse
quent thermal crosslinking of suspension that is still adhering because it 
has not been cleaned off. 

For the derivation of eq. (1), a rectangular cross-section with height h 
was assumed to derive a simple functional expression for the section 
modulus. If the maximum thickness of the cantilever in the center, hmax, 
is utilized as h, the section modulus will be overestimated. This will 
result in an underestimation of the measured strength of the cantilever. 

4. Experimental 

4.1. Specimen fabrication 

The test specimens were manufactured in-house from the alumina- 
based slurry LithaLox350 with the DLP-based vat photopolymerization 
printer CeraFab 7500, both produced by Lithoz GmbH (Mollardgasse 
85A, 1060 Vienna, Austria). The most relevant printing parameters are 
given in Table 1. 

All specimens were manufactured from the same slurry batch and 
excess slurry was removed with the solvent LithaSol20 produced by 
Lithoz GmbH. A total of 18 test specimens were manufactured, with 6 
specimens per specimen type. The size of the building platform allows 
manufacturing of two specimens side by side as a single batch. All 
specimens of the same type, i.e. A, B1 or B2, were treated simultaneously 
during thermal postprocessing and according to the procedure recom
mended by Lithoz GmbH. Debinding was performed in a KU15/06/A 
furnace and sintering in a HTL10/17 furnace, both manufactured by 
ThermConcept (Friedrich-List-Strasse 17, 28309 Bremen, Germany). 
The maximum temperature during debinding was 430 ◦C, then the 
specimens were transferred into the sintering furnace. Sintering of the 
specimens was conducted at 1650 ◦C for 2 h. For the sintering process, 
special care was taken to guarantee an upright position of the cantilevers 
by tilting the angled specimens by 15◦. Thus, the deformation of canti
levers due to their own weight was kept to a minimum. 

4.2. Strength testing 

The specimens were tested with the universal testing machine Z010 
by ZwickRoell GmbH & Co. KG (August-Nagel-Strasse 11, 89079 Ulm, 

Fig. 10. General Principle of the Monte-Carlo analysis.  
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Germany) equipped with a KAP-S load cell (maximum load = 200 N) by 
AST GmbH (Marschnerstrasse 26, 01307 Dresden, Germany) and oper
ated through a control system by Doli Elektronik GmbH (Rudolf-Diesel- 
Strasse 3, 72525 Münsingen, Germany). Each specimen was mounted on 
an X–Y table by clamping two sides of the baseplate, as shown in Fig. 13. 
The cantilevers of each specimen were tested successively through a slim 
metal probe. The X–Y table enabled an adjustment of the specimen’s 
position in the X–Y plane (see Fig. 13), so that each cantilever was 
loaded perpendicular to its longitudinal axis at the intended point of 
load introduction (bulge). The cantilevers were loaded at a constant 
crosshead speed of 1 mm/min. 

Prior to strength analysis, the validity of each individual bending test 
was verified. This involves checking for unsteady loading curves, large 
geometric imperfections, and failures outside the region of constant 
bending moment. The relevant dimensions of each cantilever, i.e. the 
thickness hmax and the opening angle α, were determined on the 

remainders of the cantilevers on the baseplate (hmax) and on the frac
tured cantilevers (α), respectively, with a SZH10 stereomicroscope by 
Olympus K.K. (2-3-1 Nishi-Shinjuku, 163-0914 Tokyo, Japan) within the 
Olympus Stream Motion Software 2.2. Strength results were obtained 
utilizing eq. (1). Statistical Weibull analysis was performed with the 
Maximum-Likelihood method in accordance with the standard EN-843- 
5 [24]. 

4.3. Surface characterization and fractography 

The surface structures of the cantilevers were characterized with a 
VK-X1000 Laser-Confocal-Microscope by Keyence Corporation (1-3-14 
Higashi-Nakajima, 533-8555 Osaka, Japan). 6 cantilevers of each type 

Fig. 11. Positional change of the ideal point of load introduction due to the change in opening angle α. Green: ideal situation, blue: situation for a cantilever with a 
larger than ideal flank opening angle. The load will always be applied at the green circle due to the bulge at this position. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 12. Fracture surface of a sintered cantilever of specimen type B1. Note that 
the observed cross-section deviates significantly from the assumed rectangular 
cross-section. 

Table 1 
Printing parameters utilized for specimen manufacturing.  

Layer thickness 
[μm] 

Lateral resolution 
[μm] 

DLP-Intensity 
[mW/cm2] 

DLP-Energy 
[mJ/cm2] 

25 40 100 150  

Fig. 13. Testing setup for a specimen of Type A (4), which is held in place by a 
clamping fixture (3) that is mounted on a X–Y table (5). The metal probe (2) is 
fixed to the load cell (1). This setup can be used for each specimen type without 
modification. 
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were examined, and an average surface structure was determined from 
60 line-measurements on each cantilever. Fracture surfaces were 
investigated using a JEOL K.K. (3-1-2 Musashino Akishima-Shi, 196- 
8558 Tokyo, Japan) NeoScope JCM-6000Plus. Prior to imaging, the 
cantilevers were coated with gold sputtering. 

5. Results 

5.1. Errors affecting single strength values 

To quantify the influence of the shift in loading position a on the 
measured strength, typical values of a were determined for five canti
levers of each type of specimen. For specimens of type A, the average 
shift was a = − 158μm, with a = − 161μm and a = − 133μm for type B1 
and B2, respectively. With these values, an average relative error in 
maximum stress between +1.6% and +3.7% is expected, depending on 
the position of failure, as displayed in Fig. 14. Combining the largest 
single value for the shift in load introduction a = -281μm (measured on a 
specimen of type B1) with the shortest possible failure length x = 4.4 
mm would yield a maximum error of about +6.4%. 

Similarly, the influence of non-rectangular cross-sections is quanti
fied by evaluating the shapes of ten cross-sections of each specimen type 
in detail. The section moment of the barrel shaped cross section Wbarrel 
was determined numerically with CATIA Version 5.19 (Dassault 
Systèmes, 78140 Vélizy-Villacoublay, France) and compared to the ideal 
section moment Wideal given through 

Wideal =
bmaxh2

max

6
(9) 

with bmax as the cross-section’s maximum width and hmax as defined 
before. The relative error between Wbarrel and Wideal is calculated with 

Rel. error[%] =
Wideal − Wbarrel

Wbarrel
(10) 

and the results are shown in Fig. 15. On average, the section moment 
will be overestimated by about 3.5%–5.7% if hmax and bmax are used for 
the calculation. This leads to the same underestimation for the 
maximum strength. 

5.2. Errors affecting the Weibull distribution 

The influence of utilizing average dimensions instead of individual 
dimensions on the Weibull evaluation is assessed through MC-analysis. 
The parameters of the underlying distributions for the dimensions hmax 
and α are given Table 2. They were determined with measurements 
taken from four specimens of the 0◦ configuration, with a minimum of 
47 cantilevers per specimen. The final result of the MC analysis is the 
relative difference between the Weibull parameters determined with 
individual or average dimensional measurements. 1000 randomized 
runs were conducted, and the results are displayed as distribution den
sities in Fig. 16a)-c). 

Note that the extent of the deviation in σ0 does decrease with an 
increased number of measurements for the average dimensions, while 
the extent of the deviation in m does not change substantially. In gen
eral, the center of the density distribution is at about +1% deviation in 
σ0 and − 12% deviation in m. Further investigations based on MC anal
ysis have shown that the influence of Δh on the deviation of σ0 and m is 
significantly higher than that of Δα. 

5.3. Strength and orientation dependency 

The number of valid bending tests N, the characteristic strength σ0, 
and the Weibull modulus m as well as their respective 90% confidence 
intervals are given in Table 3 for each specimen. Table 4 gives the same 
parameters for a combined evaluation of multiple test specimens. This 
has only been performed if the confidence intervals of all test specimens 
included overlap. Fig. 17 displays the individual results of strength 
testing and for the combined evaluations sorted by each specimen type. 

It is evident that the characteristic strength of both 15◦ configura
tions (Type B1 & B2) is lower than that of the 0◦-configuration (Type A). 
The difference in characteristic strength between specimens of Type B1 
and B2 is not statistically relevant as most of their confidence intervals 
overlap. The same is true for the Weibull modulus of each specimen 
type. Furthermore, significant differences between batches can be 
observed, e. g. specimens of batch two and three of Type A. An exem
plary fracture surface for a specimen of Type B2 is given in Fig. 18. It is 
evident that the origin of failure is within the groove of the surface. This 
was found in the majority of observed cases. In the displayed case, the 

Fig. 14. Influence of the shift a in loading position on the maximum stress. The 
black through line represents the solution of eq. (8) for the upper limit (failures 
at the very beginning of the region of constant bending moment) of this effect, 
whereas the dashed black line indicates the solution for the lower limit (failures 
at the end of the region of constant bending moment). The green bar represents 
the range of typical average values of a for all three specimen types. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 

Fig. 15. Relative error between the barrel shaped cross-section and the ideal 
rectangular cross-section for each specimen type. 

Table 2 
Parameters used for the normal distributed values of the height hmax and the 
opening angle α for the Monte-Carlo analysis.  

Parameter Mean μ Standard deviation Δ 

Height hmax [mm] 1.13 0.017 
Opening angle α [− ] 17.76 0.72  
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Fig. 16. Results of the MC analysis. Each figure shows the density distribution of the relative difference in m and σ0 between individual and average dimension 
measurements for 1000 simulations. In a), 6 random dimensions are used to determine the average dimensions, 20 in b) and 30 in c). 

Table 3 
Results of strength testing for each specimen. N gives the number of valid bending tests, m and mub the biased and unbiased Weibull modulus, and σ0 the characteristic 
strength with lower and upper indicating the respective 90% confidence intervals. The designation starts with the specimen type, followed by the batch number and 
finally the specimen number within that batch.  

Type Designation N [− ] m [− ] mub [− ] mlower [− ] mupper [− ] σ0 [− ] σ0,lower [− ] σ0,upper [− ] 

A A.1.1 25 12.3 11.7 8.9 15.2 342 332 352 
A.1.2 19 12.4 11.5 8.5 15.8 352 340 365 
A.2.1 33 9.1 8.8 7.0 11.1 335 323 346 
A.2.2 29 10.7 10.2 8 13.1 336 326 348 
A.3.1 18 8.8 8.1 5.9 11.2 376 357 396 
A.3.2 32 11.5 11.0 8.7 13.9 364 354 375 

B1 B1.1.1 44 16.3 15.8 13.0 19.2 301 296 306 
B1.1.2 41 13.7 13.3 10.8 16.3 287 281 293 
B1.2.1 27 9.9 9.4 7.3 12.2 320 309 332 
B1.3.2 32 8 7.7 6.1 9.8 281 270 292 

B2 B2.1.1 47 13.6 13.2 10.9 15.9 323 317 330 
B2.1.2 47 12.3 11.9 9.9 14.5 296 290 302 
B2.2.2 29 15.9 15.2 11.8 19.5 317 311 324 
B2.3.1 44 11.5 11.2 9.2 13.6 333 325 341  

Table 4 
Results of the combined evaluation of strength testing results for specimens of type A.  

Designation N [− ] m [− ] mub [− ] mlower [− ] mupper [− ] σ0 [− ] σ0,lower [− ] σ0,upper [− ] 

A.1.1+ A.1.2 44 12.2 11.8 9.7 14.4 347 339 354 
A.2.1+ A.2.2 62 9.8 9.5 8.1 11.3 336 328 343 
A.3 (A.3.1+ A.3.2) 50 10.0 9.8 8.1 11.7 369 360 378 
A.1 & A.2 (A.1.1+ A.1.2 + A.2.1+ A.2.2) 106 10.6 10.4 9.2 11.9 340 335 346  

Fig. 17. a) shows the characteristic strength and b) shows the (unbiased) Weibull modulus of each tested specimen. The combined evaluation of multiple test 
specimens is displayed separately through the black open markers. The 90%-confidence intervals are given by the error bars. 
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failure is caused by a pore as shown in Fig. 18b). 
To assess the influence of surface orientation on the measured 

strength, the surface structures are investigated in detail. Surface char
acterization has shown that specimens of Type A did not exhibit any 
surface structures except the regular surface roughness after sintering, 
which appeared on all specimen types. Therefore, this configuration will 
be considered as ideally flat for further comparison and discussions. 
Characterization of the surface structures of the other configurations 
revealed a periodical wave-like structure. This structure can be quanti
fied with two parameters, the wavelength and the wave’s amplitude. 
The average values for both 15◦ configurations are given in Table 5. 

These structures were subsequently implemented in the sub-model 
and compared to the case of an ideal flat surface structure, i.e. speci
mens of Type A. As shown in Fig. 19, the maximum stress at the surface 
increases significantly. The stress increase for each type of specimen is 
given in Table 6. The maximum stress increases by about 54% for Type 
B1 and 45% for Type B2, with the maximum stress located in the valleys 
of the grooves. These are thus preferred locations for fracture. 

Further results from FEA are the effective volume Veff and effective 
surface Seff. Each value was determined by utilizing the same normali
zation stress σ∗, that is the maximum tensile stress of specimen Type A. 
Note that for specimens of Type B1, the structured surface increases the 
effective surface by more than a factor of ten, while the effective volume 
increases by approximately 60%. The ratio σB/σA gives the influence of 
the increase in effective sizes on the measured strength based on either 
Veff or Seff. These results are also shown in Table 6. 

6. Discussion 

Regarding each individual strength result, the shift in ideal loading 
position a causes an average overestimation of the applied stress from 
1.6% to 3.7%, which results in an underestimation of the materials’ 
strength by the same amount. The further the cantilevers fail from the 
point of load introduction, the smaller this effect becomes. In this work, 
the majority of cantilevers failed at a distance of 6mm–7mm from the 
point of load introduction, meaning that the deviation in stress is likely 
to be smaller than 2.7%. Therefore, this effect is rather small and a does 
not have to be evaluated for each specimen, but the authors recommend 
to check this issue on several random cantilevers. In a similar way, the 
deviating shape of the cross section causes a general underestimation of 
the materials strength by 8%–10% through an overestimation of the 
section modulus. In combination with the problem of the shift in loading 

position, an average underestimation of the material’s strength of about 
12% with an uncertainty of about ±4% remains, which is similar for all 
specimen types. This means that a direct comparison between different 
specimen types, i.e. different surface orientations, of the same material 
is feasible. If the absolute strength of the tested material is of high 
importance, both effects have to be checked and considered for strength 
evaluation. 

Due to the dimensional inconsistency, the influence of utilizing 
average values for the cantilever’s dimensions on the results of Weibull 
evaluation was investigated. Monte-Carlo analysis has shown that uti
lizing average values will slightly shift both the average characteristic 
strength (+1%) and the average Weibull modulus (− 12%). While these 
values would still be acceptable, the possible deviation in m ranges from 
+10% to − 30%, which is too much to allow Weibull evaluation with 
average dimensions. Increasing the number of measurements to 

Fig. 18. SEM-image of a typical fracture surface of a 15◦–180◦ specimen in a) with the failure-causing defect depicted in b).  

Table 5 
Average quantification parameters of the surface structures for each specimen 
type.  

Parameter Type A (0◦) Type B1 (15◦) Type B2 (15◦–180◦) 

Amplitude [μm] – 12.8 10.7 
Wavelength [μm] – 122.6 123.3  

Fig. 19. Distribution of the first principal stress for an ideal specimen without 
surface structures (Type A, left) and with surface structures (Type B2, right). 
Both simulations were conducted for specimens with the same length and 
width. The height of the wavy specimen was chosen so that the zero line of the 
sinusoidal wave is the same as the height of the ideal specimen, which gives the 
same specimen volume. 

Table 6 
Relative increase of the maximum tensile stress σmax, effective volume Veff and 
effective surface Seff for each specimen type as well as the expected change in the 
measured strength σB/σA due to the change in either Veff or Seff for m = 10.  

Parameter Flat surface Type A (0◦) Type B1 (15◦) Type B2 (15◦–180◦) 

σmax 1 1.54 1.45 
Veff 1 1.62 1.39 
Seff 1 12.82 8.45 
σB/σA (Veff) 1 0.95 0.97 
σB/σA (Seff) 1 0.78 0.8  
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determine the average dimensions does not decrease the possible vari
ation in Weibull modulus. Therefore, individual measurements of both 
the specimen’s thickness and the opening angle for each cantilever are 
recommended to neglect this effect. However, the aforementioned un
certainty of ±4% for each individual strength result limits the maximum 
detectable scatter of the material’s strength. With this uncertainty, a 
precise determination of the material’s Weibull modulus m is possible 
for m ≤ 20 [23]. 

The analysis of the influence of surface structures on the measured 
strength shows that the increase in effective surface from a flat to a 
structured specimen is notably larger than in effective volume. This is 
due to the surface structures mainly affecting the stress distribution at 
the surface and the first 10 μm of the bulk material. A long-range in
fluence on the stress distribution in the bulk material was not detected. 
This forms a strong initial stress gradient from the increased surface 
stress towards the neutral plane. Seff is only dependent on the stress in 
the edge fiber, where the stress increases the most. Additionally, the 
regions of increased stress make up a significant portion of the total 
surface, hence why a stress increase of 54% (to the power of m = 10) 
results in an extreme increase in Seff. For Veff, the regions of increased 
stress only make up a very small part of the total volume, which is why 
its increase is much smaller compared to that of Seff. Usually, the defects 
found at the origin of failure are either surface defects (for which Seff is 
relevant) or volume defects (for which Veff is relevant). Therefore, these 
results give the upper and lower limits for the influence of the observed 
surface structures, with σB/σA as an estimation of the change in 
measured strength. The actual decrease in measured strength depends 
on whether the defects are more akin to surface- or volume defects. 

The strength results obtained in this work show a significant drop-off 
in strength from the 0◦ configuration to the other configurations. This 
decrease is in good agreement with the expected results based on the 
concept of effective volume or surface and previous work [11,19]. It is 
evident that the influence of surface structures on the measured strength 
should not be neglected. This observation is further supported by the 
results of fractographic analysis, which shows that a high number of 
fractures originated in the grooves of the surface structures. 

Despite these uncertainties, this novel testing method provides a 
number of promising advantages over common testing methods such as 
uniaxial and biaxial bending. First and foremost, it allows the fabrica
tion of 96 test specimens, i.e. cantilevers, with a single manufacturing 
batch. This is well enough to perform a well-founded Weibull analysis on 
each specimen. Therefore, two different configurations could be man
ufactured within one batch, which further increases the time- and ma
terial efficiency of this method. Additionally, since all cantilevers are 
manufactured within one batch, it is possible to make out differences 
between individual batches and thermal treatments. Other methods 
often require a number of batches to fabricate the necessary number of 
specimens for statistical evaluation, which adds an additional layer of 
variation to those methods. This variation may stem from differences in 
specimen handling and cleaning or, if not handled properly, from 
modification of the slurry. The observed deviations from the ideal 
specimen geometry are the most important sources of error. If the non- 
rectangular cross-section of the cantilevers is not taken into account, a 
direct comparison of specimens manufactured from the same material is 
still possible. However, this error is too large to accurately determine the 
absolute characteristic strength and Weibull modulus of the utilized 
material. The other errors, which also affect the individual strength 
results, can be minimized by increasing the reproducibility during 
manufacturing. As an example, the specimens tested in this work were 
individually cleaned by hand, with low variations in the amount of 
solvent used. The solvent interacts with the specimen’s surface and 
could therefore easily influence the measured results. Similarly, speci
mens were successively manufactured throughout three to five days 
without a complete exchange of slurry. During this time, interaction 
with the environment or contamination of the slurry might have 
occurred, changing the properties of the source material. 

Taking these manufacturing-related effects into account, the next 
step in the development of this testing method would be a higher degree 
of automation. This includes procedures such as 3D-scanning the whole 
specimen, from which the cantilevers dimensions are evaluated auto
matically. Furthermore, a round robin with individual manufacturing 
and controlled testing could aid in determining the most important areas 
of improvement. 

7. Summary 

In this work, a new method for strength testing of additively man
ufactured materials is presented. The testing method is based on a novel 
specimen, which was designed to take the characteristics of additive 
manufacturing into account. On one hand, it was developed for time- 
and material efficient fabrication. Each specimen consists of a base plate 
and 48 cantilevers attached to it, thus generating enough data to 
perform statistical analysis. A large effective volume in comparison to 
well-known strength testing methods further contributes to the speci
men’s efficiency. On the other hand, the specimen can easily be adjusted 
so that different surface orientations can be investigated. This gives 
insight into the influence of surface structures on the measured strength, 
which vary significantly depending on the surface orientation. 

Functional expressions for strength evaluation and the determination 
of effective volume and surface are given and validated with Finite 
Element Analysis (FEA). The influence of surface structures on the 
measured strength is analyzed based on Weibull theory and FEA. Other 
possible influences on the accuracy of this testing method are discussed 
through analytical considerations, Monte-Carlo analysis, and FEA. These 
effects are quantified based on practical observations and their impact is 
discussed. An example for a possible testing fixture is shown and 
demonstrated for multiple specimen configurations. More specifically, a 
minimum of four specimens for three different configurations were 
fabricated and tested. The results are evaluated statistically through 
Weibull theory. The observed influence of surface structures on the 
measured strength is in good agreement with the predictions based on 
FEA. 

Overall, the deviation of the dimensions of the manufactured speci
mens from the ideal geometry limits the achievable accuracy of this 
testing method for strength determination. This effect can be minimized 
if the dimensions for each tested cantilever are individually recorded 
and if the fabrication process is streamlined and reproducibility is 
increased. However, the testing method can depict differences between 
different surface orientations and between specimens from each 
manufacturing batch. The latter is especially important for additive 
manufacturing, as regular testing methods such as uniaxial four-point 
bending and biaxial bending often require multiple batches to produce 
the necessary number of specimens for statistical analysis. 
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