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Abstract

Non-metallic inclusions like oxides and sulfides influence the characteristics of
tool steels. After manufacturing the steel quality must be tested by visual obser-
vation of polished cut images in order to see if the steel can be used for further
production steps. Since the human effort for this kind of quality inspection is
very high the object of this work was to investigate whether or not it is possible
to extract and classify steel inclusions by automated inspection. Therefore 47
images with a total of 131 inclusions (provided by the Böhler Edelstahl GmbH
and Co KG) have been pre-processed, analyzed and classified using different
mathematical methodologies. Thereby state of the art operations as well as
new developed methodologies have been applied. The classification of sulfides
works very well. The separation of oxides turned out to be complex because
oxides occur in three different but similar types. Finally, good classification
results have been achieved for oxide types as well. As a concluding statement it
is to say that a change to automated inspection and classification turned out to
be possible. However it is advisable to further improve processing using more
sample images of different inclusion types and different types of surface errors
like holes and scratches.



Abstract

Nicht metallische Einschlüsse wie beispielsweise Oxide und Sulfide beeinflussen
Eigenschaften und Qualität von Werkzeugstählen. Nach der Stahlerzeugung
muss die Qualität anhand von polierten Schliffbildern visuell beurteilt wer-
den, um die weitere Verwendbarkeit der Charge zu ermitteln. Da der men-
schliche Aufwand für diese Qualitätskontrolle sehr hoch ist, war das Ziel dieser
Diplomarbeit, festzustellen ob eine Automatisierung der Überprüfung von Ein-
schlüssen machbar und zweckmäßig ist. Zu diesem Zweck wurden 47 Schliff-
bilder (zur Verfügung gestellt von Böhler Edelstahl GmbH and Co KG) mit
einer Gesamtanzahl von 131 Einschlüssen mit Hilfe von verschiedenen mathe-
matischen Methoden aufbereitet und die Einschlüsse klassifiziert. Dafür wurden
sowohl state-of-the-art Methoden als auch neu entwickelte Methodiken ange-
wandt. Die Klassifizierung von Sulfiden funktioniert sehr gut. Die automa-
tisierte Klassifizierung von Oxiden stellte sich als komplex heraus, da Oxide
in drei zu unterscheidenden aber ähnlichen Typen auftreten. Letztlich kon-
nten auch für Oxide gute Klassifizierungsergebnisse erzielt werden. Es wurde
festgestellt, dass die Automatisierung der Untersuchung und Klassifizierung
möglich ist. Zu beachten ist die Ähnlichkeit von Verunreinigungen und Löch-
ern zu den zu klassifizierenden Einschlüssen. Um die Genauigkeit der Klassi-
fizierung weiter zu erhöhen ist die Weiterentwicklung der Analysesoftware mit
Hilfe einer größeren Zahl von Schliffbildern ratsam.
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1 Introduction and Motivation

Böhler is one of the most significant companies in the developement and pro-
duction of special steels, and one of the world’s leaders in the areas of high
speed steels and tool steels. Different kinds of steel contain inclusions like ox-
ides, sulfides or nitrides that at are responsible for different characteristics. For
steel quality type, size and number are crucial aspects.
After manufacturing the cleanliness must be tested, in order to see if the steel
can be used for further production steps. Therefore small specimens are grinded,
polished and the inclusions are evaluated under a microscope with 100x magni-
fication. The human effort for this inspection is very high because nearly 5000
specimens must be viewed every month. To simplify this process, automated
detection has been tested in the past years, but without any conclusions. The
object of the feasibility study performed in the framework of the NKP Project
”Charakterisierung von Nichtmetallischen Einschlüssen in Edelstählen” was the
investigation whether or not it is possible to extract and classify given steel in-
clusions by automated inspection. It was aimed to conclude with the prognosis
if a change to automated inspection and classification is feasible.

In this thesis the processing of images and the results of the classification of
non-metallic steel inclusions are described.
The base of the inspection is the DIN 50 602 norm which defines the level of
purity. For an automation of this process a camera is placed on a microscope
and the provided images shot by this camera were processed and analyzed.

In Section 2 theoretical basis is described. The essential step before different
characteristics of an image can be extracted is pre-processing, where mathemat-
ical operations transform images to receive convincing data for image analysis.
Another important operation are Co-occurrence Matrices, which are used to de-
scribe images as a composition of elementary structures that carries attributes
and have different relations. The aim is to connect these attributes and re-
lations in order to get comprehensive information about image areas that are
important for classification.

Section 3 describes how the theoretical basis is applied on sample images of
non-metallic inclusions. Standard operations for pre-processing were tested and
combined in different ways in order to see if the the different inclusions in the
image can be extracted and classified. Therefore two methodologies were used
in this work: Morphological Classification to get the morphological character-
istics and Classification by Co-occurrence Matrices to get texture features and
type differentiation. MATLAB (The MathWorks, Inc.) with the Image Pro-
cessing Toolbox was used for image processing, where some features are already

1



1. Introduction and Motivation

prepared and others had to be programed.

In Section 4 the classification of oxide and sulfide inclusions is shown as well as
the detection of the shape of the inclusion (line-shaped, dissolved, globular).

Conclusions of this work and an outlook are shown in Section 6.
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2 Theoretical Basis of Image
Processing

The aim of this section is to show the theoretical and mathematical background
behind the operations that were used in this work. It is described how the pre-
processing of images works with different methodologies like Filtering or Image
Segmentation. Another important part in image analysis are Co-occurrence
Matrices which are also described in this section.

2.1 Pre-processing of Digital Images

Digital images exhibit varying quality levels, which is difficult for later process-
ing. For that reason pre-processing is necessary to get optimal results. Different
operations like Intensity Transformation or Filtering change the image in a way
that inclusion recognition and classification can perform better.

2.1.1 Spatial Representation of Digital Images

An image may be interpreted as the spatial distribution of the irradiance at a
certain area. A computer can’t work with continuous analogous images. That
is why images are shown as a function of two spatial coordinates x1, x2 for
image processing applications which are described in a two-dimensional array
of intensity points [1].

E(x1, x2) = E(�x) (2.1)

These points are called pixels from picture-elements. The positions of the image
points are stored in a 2D-array where the first index m denotes the position of
the row and the second index n denotes the position of the column.
A digital image consists of M rows and N columns, which are recorded through
a M × N matrix, where the index m runs from 0 to M − 1 and the index n
from 0 to N − 1 (see Fig. 2.1).
The measured irradiance must be transformed into a number of discrete gray
values. Usually 256 gray values are used, so that every pixel needs 8 bit storage
space.
The pixel that is stored in the matrix represents the average value of irradiance
in the corresponding region of the image.

2.1.2 Neighborhood Relations

Important features of a matrix are developed by the use of relationship between
”neighborhoods”, which define connected image areas. Pixels must have adja-

3



2. Theoretical Basis of Image Processing

Figure 2.1: Representation of an image by an array with a rectangular grid with
M rows and N columns.

cent edges or adjacent corners to belong to the same neighborhood.

In a 2-D array two different kinds of neighborhoods are defined: 4-neighborhood
and 8-neighborhood.
Figure 2.2 shows an example how these operations work. The dark red square
shows the center pixel of the neighborhood, the brighter red pixels show the
neighborhood pixels.
The 4-neighborhood only uses the four pixels in ±0� and ±90� direction in order
to describe a connected area (see Fig. 2.2(a)) whereas the 8-neighborhood also
uses four pixels in ±45� and ±135� direction (see Fig. 2.2(b)).
In Figure 2.2 (c) the darker region is considered as two regions if a 4-neighborhood
is used, but it is considered only as one region if an 8-neighborhood is used.

Figure 2.2: Neighborhoods on a rectangular grid: (a) 4-neighborhood (b) 8-
neighborhood (c) the colored region shows a connected region in an
8-neighborhood and two regions in a 4-neighborhood [1].

4



2. Theoretical Basis of Image Processing

2.1.3 Properties of Digital Images

With properties such as distance, slope, angle and coordinate transforms as well
as translation, rotation and scaling, properties of different regions in an image
can be described.
Therefore a grid vector �r for the position of each pixel is used to describe features
of the matrix [1].

�rm,n =
(

nΔx
mΔy

)
(2.2)

The most frequently used geometrical feature is the Euclidean Distance de which
defines the distance between two points. For a two-dimensional distance the
Euclidean Distance is better known as the Pythagorean theorem. Thereby for
distance measurement the Euclidean Distance is transfered from continuous
space to a discrete grid (see Eq. 2.3)[1].

de(r, r′) =
∥∥r − r′

∥∥ = [(n − n′)2Δx2 + (m − m′)2Δy2]1/2 (2.3)

2.1.4 Intensity Transformations

In image processing two important neighborhood processing methodologies are
used. The Intensity (or Gray Level) Transformations and the Spatial Filtering,
which are working directly on the pixels (see Eq. 2.4), where f(x, y) is the input
image, g(x, y) is the output image and T is the operator that is applied to f
[2].

g(x, y) = T [f(x, y)] (2.4)

Thereby the first step is to define a rectangular neighborhood around a defined
center (x, y) (see Fig. 2.3). The operator T is applied to each location (x, y) to
get the output g for which only the pixels in the predefined neighborhood are
used. This center runs from pixel to pixel.

Figure 2.3: A 3 × 3 Neighborhood around a pixel in an image f(x, y) [2].

The simplest transformation is the Intensity Transformation, where only one
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2. Theoretical Basis of Image Processing

pixel is predefined as neighborhood and the operator T becomes an Intensity
Transformation function. For this transformation the expression

s = T (a) (2.5)

is used, in where a is the intensity distribution of the image and s is the intensity
distribution of the output matrix [2].
A function that transforms intensity values that are lower than a given thresh-
old value t into a narrow range of darker levels is called Contrast-Stretching
Transformation (see Eq. 2.6). The levels that are higher are transformed into
a narrow range of lighter levels. The exponent E gives the shape of the curve
in Fig. 2.4 (a). If the curve is a step function like in Fig. 2.4 (b) the output
is a binary image where the values are just 0 and 1 (black and white). This
function is called Threshold Function [2].

s = T (a) =
1

1 + (t/a)E
(2.6)

Figure 2.4: Different curve shapes for Intensity Transformation: (a) Contrast-
Stretching Transformation (b) Tresholding Transformation [2].

2.1.5 Spatial Filtering

For Spatial Filtering an operation is used directly on the pixels of an image [3].
Thereby linear operations multiply each pixel in the neighborhood of a point
with a corresponding coefficient in a mask, covering a certain amount of neigh-
borhood pixels (windowing) and process the pixel values of the neighborhood
according to a defined rule in order to get the required output (see Fig. 2.5).
A mask is a M ×N matrix with predefined coefficients aimed to transform the
image specifically.

6



2. Theoretical Basis of Image Processing

Figure 2.5: Linear Spatial Filtering : The figure shows an image with a 3 × 3
mask around a centered pixel. The image is overlapped by the mask
[2].

For Linear Spatial Filtering two mathematical operations are essential: Corre-
lation and Convolution.
Figure 2.6 shows the steps of Correlation and Convolution. Figure 2.6(a) shows
the original image f and a mask w. Figure 2.6(b) and (c) show how to pad
the image with zeros that way that the origin of f is the same as the right
bottom point of w. The mask is moved from pixel to pixel that way that at
least one pixel of the mask overlaps with one pixel of the image. Figure 2.6(d)
shows a ”full”Correlation where the zeros remain, Fig. 2.6(e) shows the ”same”
Correlation where the zeros are erased, that the output has the same size as
the original image.
Convolution is a similar process like Correlation but with the mask w rotated
by 180�. Figure 2.6(f) shows the padded image overlapped by the rotated mask
w. Figure 2.6(g) shows a ”full”Convolution where the zeros remain, Fig. 2.6(h)
shows the ”same” Convolution where the zeros are erased, that the output has
the same size as the original image.

7



2. Theoretical Basis of Image Processing

Figure 2.6: The detailed steps of Correlation and Convolution as the elementary
mathematical operations for a variety of filter processes with an
image f(x, y) an a mask w(x, y) [2].

Filters generally used for Convolution are:

Average Filter

The Average Filter is a fast method for smoothing a matrix. It reduces the
amount of intensity variation between one pixel and adjacent pixels by averag-
ing neighborhood pixels. After applying the Average Filter the center pixel in
this neighborhood is replaced by the filtered pixel (see Eq. 2.7). FP denotes
the filtered pixel, M × N is the number of pixel in the mask and pi denotes a
single pixel in the mask. The Filter is frequently used to reduce image noise
prior further processing.

FP =
∑M×N

i=1 pi

M × N
(2.7)

8



2. Theoretical Basis of Image Processing

Gaussian Filter

The Gaussian Filter is a Convolution operator that blurs the image and re-
moves image noise as well. It is similar to the Average Filter but it uses a mask
that is a crude approximation of the Gaussian Hump which is shown with the
following mask (see Eq. 2.8 and Eq. 2.9). σ denotes the standard deviation of
the Gaussian Distribution, while G(x, y) denotes the distribution of the pixels
after Filtering .

GM =

⎡
⎢⎢⎢⎢⎣

0 1 2 1 0
1 4 8 4 1
2 8 16 8 2
1 4 8 4 1
0 1 2 1 0

⎤
⎥⎥⎥⎥⎦ (2.8)

G(x, y) =
1

2πσ2
e

−x2+y2

2σ2 (2.9)

Laplacian Filter

The Laplacian Filter is the second spatial derivative of the image matrix and
can be computed by using Convolution. It is used for Edge Detection, because
on edges the gray level transitions have high values and these transitions can
be detected very well. The Laplacian Filter is very sensitive to noise. So the
image is often smoothed with a Gaussian Filter at first. L(x, y) denotes the
distribution of the pixels after Filtering.

L(x, y) =
∂2f(x, y)

∂x2
+

∂2f(x, y)
∂y2

(2.10)

The Convolution masks LM1 and LM2 are received by approximating the sec-
ond derivatives because the input image consists of discrete pixels (see Eq.
2.11).

LM1 =

⎡
⎣ 0 1 0

1 −4 1
0 1 0

⎤
⎦ ; LM2

⎡
⎣ 1 1 1

1 −8 1
1 1 1

⎤
⎦ (2.11)

LoG (Laplacian of Gaussian) Filter

Convolution is associative so a Gaussian Filter can be convolved with a Lapla-
cian Filter first. Instead of using a Gaussian Filter and a Laplacian Filter
separately the LoG is used to reduce run-time on the image. LoG(x, y) denotes
the distribution of the pixels after filtering.

LoG(x, y) = − 1
πσ4

[
1 − x2 + y2

2σ2

]
e

−x2+y2

2σ2 (2.12)

9



2. Theoretical Basis of Image Processing

Prewitt Filter

The Prewitt Filter is a Convolution operator used for Edge Detection and its
output is the gradient of the image. Convolution is commutative and associative
so smoothing can be realized in a convolution mask, because noise is frequently
confused with edges. Smoothing works with simple averaging orthogonal to the
filter direction. That means for horizontal filters it is smoothed along rows, for
vertical filters it is smoothed along columns, which gives rise to the masks PMx

and PMy (see Eq. 2.13 and Eq. 2.14). The original image f(x, y) is convoluted
with the masks to get the resulting matrices Px and Py which show horizon-
tal and vertical derivative approximations standing for vertical and horizontal
edges (see Eq. 2.15 and Eq. 2.16).

PMx =

⎡
⎣ 0 0 0

−1 0 1
0 0 0

⎤
⎦ ∗

⎡
⎣ 0 1 0

0 1 0
0 1 0

⎤
⎦ =

⎡
⎣ −1 0 1

−1 0 1
−1 0 1

⎤
⎦ (2.13)

PMy =

⎡
⎣ 0 −1 0

0 0 0
0 1 0

⎤
⎦ ∗

⎡
⎣ 0 0 0

1 1 1
0 0 0

⎤
⎦ =

⎡
⎣ −1 −1 −1

0 0 0
1 1 1

⎤
⎦ (2.14)

Px =
1
8
PMx ∗ f(x, y) (2.15)

Py =
1
8
PMy ∗ f(x, y) (2.16)

To receive direction independent information these two results can be combined
to the gradient magnitude P .

P =
√

P 2
x + P 2

y (2.17)

The gradient direction is found by

Θ = arctan
(

Px

Py

)
(2.18)

Sobel Filter

The Sobel Filter is similar to the Prewitt Filter but the central row/column
of the filter is weighted double.

SMx =

⎡
⎣ 0 0 0

−1 0 1
0 0 0

⎤
⎦ ∗

⎡
⎣ 0 1 0

0 2 0
0 1 0

⎤
⎦ =

⎡
⎣ −1 0 1

−2 0 2
−1 0 1

⎤
⎦ (2.19)

SMy =

⎡
⎣ 0 −1 0

0 0 0
0 1 0

⎤
⎦ ∗

⎡
⎣ 0 0 0

1 2 1
0 0 0

⎤
⎦ =

⎡
⎣ −1 −2 −1

0 0 0
1 2 1

⎤
⎦ (2.20)

10



2. Theoretical Basis of Image Processing

Sx =
1
8
SMx ∗ f(x, y) (2.21)

Sy =
1
8
SMy ∗ f(x, y) (2.22)

Unsharp Filter

The Unsharp Filter enhances edges by deducting a smoothed version of an
image from the original image. It produces an edge image U(x, y) from the
original image f(x, y).

U(x, y) = f(x, y) − fsmooth(x, y) (2.23)

2.1.6 Morphological Operators

Morphological Operators use a a structuring element (a defined matrix of zeros
and ones) to change an object in an image in a way that makes possible to get
morphological information like area, width, axes length or diameter. To receive
information about these aspects images are transformed to binary images. That
means the images only exist of two intensity values (0 and 1) and are generated
by a threshold operation (see Section 2.1.4). The most important Morpholog-
ical Operations are Dilation and Erosion. Dilation can be used to fill holes in
connected regions and Erosion can be used to reduce noise.

Dilation

Dilation is an operation where an object in a binary image grows, that is to say
the boundaries of an object are enlarged. A structuring element is overlapped
on a binary image.
The structuring element and the binary image consists only of 0 and 1. If
the center of the structuring element meets a 1 of the binary image the other
structuring element values are transfered to the binary image. The values of
the binary image are now identical to the values of the structuring element -
boundaries are ”growing” (see Fig. 2.7). With this operation holes in a con-
nected region can be filled.
Dilation is commutative. That means it does not matter if the binary image is
used as structuring element or vice versa.
The mathematical description is given by Equation 2.24 where G is a set of
pixels with value 1 in the matrix and and M are non-zero mask pixels. Mp is
the mask shifted with the center to the pixel p [1].

11



2. Theoretical Basis of Image Processing

G ⊕ M = {p : Mp ∩ G �= �} (2.24)

Figure 2.7: Dilation: A binary image with a rectangular object (red) is dilated
with a 3×3 matrix as structuring element, where the red box denotes
the center. As a result the object enlarges. The dashed line shows
the original object.

Erosion

Erosion is the inverse operation to Dilation and shrinks an object in a binary
image. Like Dilation a structuring element is overlapped on the image but in
the case of Erosion only the points that are identical to the structuring element
get the value one. With this operation noise can be reduced. The mathematical
description is given by Equation 2.25 [1].

G � M = {p : Mp ⊆ G} (2.25)

Figure 2.8: Erosion: A binary image with a rectangular object is eroded with a
3× 3 matrix as structuring element, where the red box denotes the
center. As a result the object shrinks. The dashed line shows the
original object.

Erosion followed by Dilation is called Morphological Opening, Dilation followed
by Erosion is called Morphological Closing.

12



2. Theoretical Basis of Image Processing

2.1.7 Image Segmentation

Image Segmentation generates connected regions with common characteristics
such as color, intensity or texture in order to receive features of these regions.
Most important usage of Segmentation is in the classification of medical im-
ages. Sutton and Hall [4] for example used texture features for classification
of pulmonary diseases or Harms et al. [5] used a combination of texture and
color features to diagnose leukemic malignancy. Other usages are document
processing like classification of newspaper image blocks [6], [7], face [8], [9] and
fingerprint [10], [11] recognition, analysis of satellite images [12], [13], machine
vision [14], [15] or automatic traffic controlling systems [16], [17].
For Segmentation mainly two features are of interest: Discontinuity and Simi-
larities. At Discontinuities the intensity value changes abrupt. That is the case
with edges for example. In another case similarities are used to define connected
areas.
To detect points, lines or edges a mask (similar to Filtering) runs from pixel to
pixel in the image. A N × M mask is used, w denotes the intensity value and
z denotes the mask coefficient.

R =
N×M∑
i=1

wi · zi (2.26)

In this section methods for detecting points, lines and edges are presented.
These methods are used to segment a pre-processed digital image to get infor-
mation about different regions.

Point Detection

If a pixel is tested whether if it is part of a defined segment or not, that opera-
tions are called threshold operations.
The mask shown in Fig. 2.9 is overlapped with an image and a single point
is found if |R| ≥ T . T is a positive Threshold. In Fig. 2.9 8 was chosen as
centerpoint value because in continuous regions the return is 0. In other words,
the sum of all coefficients of the matrix is 0.

Figure 2.9: Example of a mask for Point Detection.
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2. Theoretical Basis of Image Processing

Line Detection

To detect lines in 0�, +45�, 90� and -45� direction masks like shown in Fig.
2.10 are used, where the red values indicate the origins. If the mask origin
overlays points of the same value in the image these pixels are detected as line-
points. There are four direction depended results and the direction with the
highest value defines the direction of the linepoint.

Figure 2.10: Examples of masks for Line Detection.

If only a certain orientation is needed the mask dedicated for this orientation
is used.

Edge Detection

For Edge Detection the first and the second derivate of the image matrix are
needed, as an edge means a significant change of local gray level values. The
derivatives are defined as follows (Eq. 2.27 and Eq. 2.28):

∇f =
(

Gx

Gy

)
=

(
∂f
∂x
∂f
∂y

)
(2.27)

∇2f(x, y) =
∂2f(x, y)

∂x2
+

∂2f(x, y)
∂y2

(2.28)

The absolute value of ∇f is

G = mag(∇f) = [G2
x + G2

y]
1/2 = [(∂f/∂x)2 + (∂f/∂y)2]1/2 (2.29)

The angle where the maximum occurs is

Θ(x, y) = arctan
(

Gx

Gy

)
(2.30)
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2. Theoretical Basis of Image Processing

Steps of edge detection

Locations where the gradients Gx and Gy are bigger than a defined threshold
and locations where divergence is zero are searched by the use of convolution
masks. An inflection point is shown by a vanishing divergence and the gradient
shows the slope of the curve. If the slope is bigger than a defined threshold and
it is an inflection point the point is detected as edge point.
Figure 2.11 shows two examples: The black dots correspond to pixels with
different gray level values. The left curve has a gray level transition that is
detected as edge point (green cross), the right curve has no edge point because
the slope is smaller than the threshold even though the point is an inflection
point (red cross).

Figure 2.11: A cut through an image where the black dots correspond to pixels
with different gray level values. The left curve has a gray level tran-
sition that is detected as edge point (green cross), the right curve
has no edge point because the slope is smaller than the threshold
even though the point is an inflection point (red cross).

Masks for edge detection

For edge detection different convolution masks are used. The most common
masks are Sobel, Prewitt, LoG, Roberts and Canny. Sobel, Prewitt and LoG
are discussed in Section 2.1.5. A Roberts Filter uses the masks in Fig. 2.12 and
it is the simplest mask for edge detection.
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2. Theoretical Basis of Image Processing

Figure 2.12: The Roberts Masks.

The most used edge detection mask is the Canny edge detector, developed
1986 by John F. Canny [18]. It consists of a few operations: First the image
is convolved with a Gaussian Filter (to reduce noise) and with a Sobel Filter
(Prewitt or Roberts are also possible) to get G and Θ (see Eq. 2.29 and Eq.
2.30). If a point has its local maximum in the gradient direction, it is detected
as an edgepoint. To ensure that the edge is only 1 pixel wide, G(x, y) of every
adjacent pixels in the neighborhood is tested. If one pixel has a higher G(x, y)
than the edgepoint, the pixel will be set to 0, except the pixel is on the computed
direction that means it is an edgepoint too. Last step is to define the thickness of
the edge to avoid a cracking up. For this purpose an operation called Hysterese
is used: Therefore two thresholds T1 and T2 are used, while T1 < T2. The
image matrix is scanned until a pixel has a greater value than T2 (the origin of
the edge). This edge is scanned in both directions and every pixel with a value
greater than T1 is detected as part of the edge.
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2.2 Co-occurrence Matrices

An image can be described as a composition of elementary structures that
carries attributes and have relations. Attributes are features like the gray level
value or the gradient. Relations are features like the distance between two
pixels.
In the object recognition field the most important attributes are textures and
gray levels. They affect how an image is perceived and they always appear to-
gether whereat one feature can dominate. The aim is to connect these features
in order to get comprehensive information about different areas in an image. In
the beginning of texture analysis autocorrelation functions [19], power spectra
[20], restricted first- and second order Markov mashes [21] and relative frequen-
cies of various gray levels [12] have been employed. For this purpose R. Haralick
developed the method of Co-occurrence Matrices, where texture information is
stored in a spatial array[22].
Descriptors that contain information about the texture characteristics are fre-
quently used operations to analyze textures in object recognition [23], [24]. This
operations are used for example in medicine [25], [26], to detect tumors [27],
[28], for the analysis of satellite images [29], [30] or for volumetric data analysis
[31].
To create a Co-occurrence Matrix a rectangular image matrix of M×N pixels is
taken. The occurrence structures can be stored in matrices with the frequency
values Pφ,d(i, j), showing how often two pixels with a defined distance d from
each other and a defined gray level value combination occur in the image matrix.
Four directions are defined (0�, 45�,90�,135�) in which the neighbor with the
distance d and the given gray level combination is found.
In the general form frequencies can be written as [22]:

P0,d = |((k, l), (m, n)) ∈ (M × N) × (M × N) : (2.31)

k − m = 0, |l − n| = d, f(k, l) = i, f(m, n) = j|

P45,d = |((k, l), (m, n)) ∈ (M × N) × (M × N) : (2.32)

(k − m = d, l − n = −d)OR(k − m = −d, l − n = d), f(k, l) = i, f(m, n) = j|

P90,d = |((k, l), (m, n)) ∈ (M × N) × (M × N) : (2.33)

|k − m| = d, l − n = 0, f(k, l) = i, f(m, n) = j|

P135,d = |((k, l), (m, n)) ∈ (M × N) × (M × N) : (2.34)

(k − m = d, l − n = d)OR(k − m = −d, l − n = −d), f(k, l) = i, f(m, n) = j|
In Fig. 2.13 the values 1 and 5 have the smallest distance in direction 0�, 8 and
4 in direction 45�, 7 and 3 in direction 90� and 6 and 2 in direction 135�.
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2. Theoretical Basis of Image Processing

Figure 2.13: The four different directions which are used in calculations with
co-occurrence matrices.

To show how Co-occurrence Matrices are generated an example image is used
(Fig. 2.14 (a)). It is a 4×4 pixel image with 4 gray levels from 0 to 3 (Fig. 2.14
(b)). Fig. 2.14 (c) shows the general form of any gray level spatial dependence
matrix. That means the position (3, 2) describes how frequent two pixels with
the gray level values 3 and 2 occur in the defined direction and distance. In the
given example distance 1 is chosen.
The gray level spatial dependence matrix is generated as follows. Element
P0,1(0, 0) shows how often two pixels with distance 1 and the gray level value
0 occur in direction 0�. In the example this occurs two times (Fig. 2.14(d)).
Element P0,1(3, 2) shows how often two pixels with distance 1 and the gray
level values 3 and 2 occur in direction 0� - that occurs one time. The matrix is
symmetric so that P0,1(2, 3) equals P0,1(3, 2).

2.2.1 Textural Features for Image Classification

One challenge in the field of image processing is to select adequate descriptors
of the objects to be found in the image and represent them adequately in a
mathematical formulation. A lot of different types of descriptors were defined
in literature like shape descriptors [32] and region descriptors [33]. For the
representation of features like semantic nets [34], Freeman chain codes [35], gray
level run length matrices [36] or Co-occurrence Matrices [22] a lot of descriptors
were defined too.
Haralick et al. defined 14 measures of textural features (see Tab. 2.1) that are
based on the concept of Co-occurrence Matrices. This is adequate since all in-
formation of the textural features is stored in the spatial gray level distribution
matrices [22].

In the following the features f1, f2 and f3 are discussed in detail, because
these features represent visual measures [37], [38]. They are descriptors for the
homogeneity, contrast and gray tone linear dependencies of the image and give
conclusions about how a viewer appreciate these texture characteristics. That’s
important for inclusion detection, which is needed in this work, because inclu-
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Figure 2.14: (a) Gray level image (b) Gray level matrix (c) General form of a
gray level spatial dependence matrix (d) Co-occurrence matrices
for different directions.

sions are commonly viewed by visual observers and then rated as image error
or inclusion [22].
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2. Theoretical Basis of Image Processing

Table 2.1: Haralick Classificators [22].
Visual Measures

f1 Angular Second Moment (ASM)
f2 Contrast
f3 Correlation

Statistical Measures
f4 Variance
f5 Inverse Difference Moment-Homogeneity
f6 Sum Average
f7 Sum Variance
f10 Difference Variance

Measures that are based on Information Theory
f8 Sum Entropy
f9 Entropy
f11 Difference Entropy

Measures that are based on Correlation
f12, f13 Information Measures of Correlation
f14 Maximal Correlation Coefficient

Angular Second Moment - ASM

The Angular Second Moment provides information about the homogeneity of
the image (see Eq. 2.35).

f1 =
∑

i

∑
j

P 2
d (i, j) (2.35)

Pd(i, j). . . Spatial gray level distribution matrix

If there are few gray level transitions, which means the image is homogeneous,
there will be fewer values with large magnitude in the matrix f1. If the image
has more transitions there will be more small values and so the average ASM
will also be smaller. Figure 2.15 shows two cutouts of an image from a steel-
specimen. Figure 2.15 (a) shows an inclusion in the specimen, Fig. 2.15 (b) is
nearly homogeneous. In Fig. 2.15 (a) there are more transitions than in Fig.
2.15 (b), so the ASM values for Fig. 2.15 (b) are higher than for Fig. 2.15 (a)
(see Tab. 2.2 and Tab. 2.3).

Contrast

The Contrast Feature is the difference moment and provides information about
local gray value changes in the image (see Eq. 2.36).

f2 =
∑

i

∑
j

(i − j)2Pd(i, j) (2.36)

The more variations occur in the image, the higher the Contrast value will be.
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In Fig. 2.15 (a) there is more Contrast than in Fig. 2.15 (b), so the Contrast
values for Fig. 2.15 (b) are lower than for Fig. 2.15 (a) (see Tab. 2.2 and Tab.
2.3).

Correlation

The Correlation feature measures the gray level dependence of the image (see
Eq. 2.36).

f3 =

∑
i

∑
j (i − μx)(j − μy)Pd(i, j)

σxσy
(2.37)

μx, μy. . .Means of Pd

σx, σy. . . Standard deviation of Pd

In Fig. 2.15 (a) the Correlation value is higher than in Fig. 2.15 (b), because
the image without inclusion is nearly homogeneous plus some additive noise.
The noise is mostly uncorrelated so the Correlation values are lower than in the
image with the inclusion (see Tab. 2.2 and Tab. 2.3).

Figure 2.15: Examples on which the Haralick features were tested: (a) example
with inclusion (b) homogeneous Example without inclusion.
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Table 2.2: Haralick Classificators for image19 (a).
Angle ASM Contrast Correlation

0� 0.1223 0.6181 0.9730
45� 0.1122 0.8269 0.9639
90� 0.1327 0.3504 0.9848

135� 0.1131 0.7983 0.9651
Avg. 0.1201 0.6484 0.9717

Table 2.3: Haralick Classificators for image19 (b).
Angle ASM Contrast Correlation

0� 0.2719 0.3744 0.6037
45� 0.2527 0.4516 0.5168
90� 0.2696 0.3254 0.6790

135� 0.2393 0.5141 0.4500
Avg. 0.2584 0.4163 0.5623

2.2.2 Multidimensional Co-occurrence Matrices

A multidimensional Co-occurrence Matrix is an M -dimensional array with el-
ements that have the form w(a1, a2..., am1; b1, b2..., bm2). Parameter a stands
for a certain attribute value, for example the gray level value. b covers the
values of relations, for example the Euclidean Distance. With this method the
relationship between two attributes can be precisely described [39], [40].
The gray values a1(i) and a2(j) of two pixels and their Euclidean difference
b1(i, j) are taken to get a matrix w(a1(i), a2(j), b1(i, j)). That means for exam-
ple that a matrix w(190, 200, 10) describes two pixels with the gray level values
190 and 200 and the Euclidean Distance 10. The amount of occurrence is stored
in the M -dimensional array.
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3 Methodologies for the Classification
of Non-Metallic Steel Inclusions

3.1 Introduction

Böhler Edelstahl GmbH and Co KG produces a wide range of steel grades with
different material properties. The type, the size and the number of inclusions
are responsible for these properties. Before steel can be go through further
processing it has to pass a strict quality control. Therefore small specimens
are grinded, polished and the inclusions are evaluated under a microscope with
100x magnification. A clip of 12 × 18 mm of the specimen is subdivided into
200 visual fields. The occurrence of inclusions is checked for every visual field
and the results are evaluated based on DIN 50 602.
DIN 50 602 defines the level of purity. It is a specification of non-metallic in-
clusions in steel specimens in form of oxides and sulfides. For declaring the
inclusions a board with different types and sizes of inclusions is used (Figure
3.1). The board is structured in 10 columns and 9 rows. Column 0 and 1
characterize line-shaped sulfides (strichförmige Sulfide - SS), where column 0
stands for thinner and column 1 stands for thicker line-shaped inclusions. Col-
umn 2 to 4 characterize dissolved oxides (aufgelöste Oxide - OA), column 5 to
7 characterize line-shaped oxides (strichförmige Sulfide - OS) and column 8 to
9 characterize globular oxides (globulare Oxide - OG). Nine images in a column
(with size index 0 to 8) range from the smallest to the biggest inclusion while
doubling the expanse of inclusions from row to row. Inclusions are viewed and
measured under a microscope with 100x magnification. The range at the lower
right of each image (f.e. > 4-6) are the minimum and maximum inclusion length
for this size class (f.e. OS 5.0). The unit is μm ∗ 10−1 so that the values from
the board equal 10 percent of the real size.

For the analysis two methodologies are specified in DIN 50 602:

Methodology M registrates only the maximum sized inclusion of each inclu-
sion type. For a specimen set of the same steel, the size index for each inclusion
type is averaged. The cut-area is 200 mm2.

Methodology K registrates every inclusion. The number of inclusions of ev-
ery type and every size index is stored and multiplied with different significance
factors. The results are summarized and transformed for an area of 1000 mm2.
The cut-area is 100 mm2.
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Figure 3.1: DIN 50 602: Board with images of different inclusions. The columns
define the type of inclusion: Dissolved Oxides (OA), Line-shaped
Oxides (OS), Globular Oxides (OG) and Line-shaped Sulfides (SS).
The rows range from the smallest to the biggest inclusion. The
range at the lower right of each image defines the size class. The
unit is μm∗10−1 so that the values from the board equal 10 percent
of the real size.
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With the results of the DIN 50 602 analysis it is determined whether the re-
quirements to create the necessary material properties are met or not. For an
automation of this process a camera is placed on the microscope. In this work
the provided images that were shot by this camera were processed and analyzed
in order to make a point if a change to full automation is feasible. The image
size was 1544 × 2080 pixels and the file format was TIF .
This section is aimed to show which methods were used for processing and
analyzing of the images.
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3.2 Pre-processing of Sample Images with Non-Metallic
Inclusions

Pre-processing is the essential step before different characteristics of an im-
age can be extracted. With mathematical operations matrices where the im-
age information is stored are transformed to receive convincing data for image
analysis. In this work standard operations for pre-processing were tested and
combined in different ways to get expressive results. The used software was
MATLAB (The MathWorks, Inc.), with the Image Processing Toolbox, where
some features are already prepared and others had to be programed.
This section describes the following operations for improving the image infor-
mation:

� Intensity Transformation is used to enhance separation of objects from
the background.

� Spatial Filtering is used to eliminated noise or scratches. Different filters
are used.

� Thresholding turns the image into a binary image.

� Dilation and Erosion transform the shape of an object to erode noise or
to fill holes.

� Edge Detection is used to define the edges of connected regions.

� Regiongrow serves to find connected pixels that belong to a larger region.

Figure 3.2 shows an example of each specimen type on which these operations
were used.

(a) Type OG (b) Type OA

(c) Type OS (d) Type SS

Figure 3.2: Images (by Böhler Edelstahl GmbH and Co KG and Co KG) of four
different types of inclusions.
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3.2.1 Intensity Transformation

The first pre-processing step is to change the intensity in order to seperate dark
objects (inclusions) from the bright background (steel matrix) which exhibits
scratches and noise (for theory see Section 2.1.4).
The feature Imadjust was used for Intensity Transformation and there are five
input values to modify:
Low Input and High Input are mapped to Low Output and High Output. This
means that only values between Low Input and High Input are relevant. The
rest is cut off. The values below Low Input are transformed to Low Output
and the values above High Input are transformed to High Output (Fig. 3.3).
Figure 3.4 shows three test calculations with different input and output values.
The gamma value defines the shape of the curve (Fig. 3.3) between Low Input
and High Input, which declares if the output image is brighter (gamma<1, Fig.
3.5(a)) or darker (gamma>1, Fig. 3.5(b)) as the input image. If gamma is 1,
the intensity won’t change (Fig. 3.5(c)).

Figure 3.3: Intensity Transformation with different gamma values.

(a) In:0.2;0.8 Out:0;1 (b) In:0.2;0.8 Out:0.2;0.8 (c) In:0;1 Out:0.2;0.8

Figure 3.4: Intensity Transformation with different in- (In:low;high) and out-
puts (Out:low;high) and gamma=1.

Values shown in Tab. 3.1 turned out to be best and have been chosen for further
processing. Figure 3.6 shows the resulting image.
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(a) gamma=0.5 (b) gamma=1.5 (c) gamma=1

Figure 3.5: Intensity Transformation with different gamma values and in- and
output 0 and 1.

Table 3.1: Settings for MATLAB-function Imadjust.
Low Input 0.25
High Input 0.70
Low Output 0.00
High Output 1.00
Gamma 0.80

Figure 3.6: An image processed with the function Imadjust and the chosen val-
ues: Input:0.25;0.7 Output:0;1 gamma=0.8. The result is an image
where the inclusion can be detected clearly.

3.2.2 Spatial Filtering

To eliminate remaining noise or scratches different filters (see Section 2.1.5)
were tested on the pre-processed image (Fig. 3.7).
The Average Filter (see Eq. 2.7) and the Gaussian Filter(see Eq. 2.9), which
are used for smoothing and noise reduction, delivered almost identical results
(Fig. 3.7(a) and Fig. 3.7(b)), which could be used for further processing.
The results of the Laplacian of Gaussian Filter (Eq. 2.12), Prewitt Filter (Eq.
2.15 and 2.16) and the Sobel Filter (Eq. 2.21 and 2.22), which are used as
masks for Edge Detection, delivered results which turned out to be unsuitable
for further processing (Fig. 3.7(c),Fig. 3.7(d) and Fig. 3.7(e)). The gray
level value difference between inclusions and background was too low to find an
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appropriate threshold. Thresholding is used for creating a convincing binary
image, which is needed for receiving morphological information.
The Unsharp Filter (see Eq. 2.23 and Fig. 3.7(f)) delivered results similar to
the Average Filter and the Gaussian Filter. With these filters an appropriate
threshold could be defined.
For further processing the Unsharp Filter was used, because smaller inclusions
were separated best from the background.

(a) Average (b) Gaussian (c) LoG

(d) Prewitt (e) Sobel (f) Unsharp

Figure 3.7: Different filter functions have been used to eliminate noise and
scratches in the images.

3.2.3 Thresholding

After Intensity Transformation and Spatial Filtering the image is not yet a
binary image, which is needed for gaining morphological information about the
inclusions. Therefore Thresholding is used. Two thresholds (T1, T2), which
represent the intensity boarders of the inclusions, were defined. Oxides and
sulfides have different intensities. Therefore two different threshold operations
have been used.
To find the right threshold for oxides a test inclusion (Fig. 3.8) with different
threshold values was analyzed. As determining value the length of the boundary
(in pixels) was chosen. Table 3.2 shows that boundary lengths don’t differ
much. That means that a variation of threshold values in a small range isn’t
very sensitive. 112 and 167 were chosen as the threshold values for oxides (see
Fig. 3.9). That is to say all values below 112 and above 167 are set to 1 (white)
and values between 112 and 167 are set to 0 (Eq. 3.1).
For sulfides the thresholds 155 and 185 were chosen: All values below 155 and
above 185 are set to 1 and values between 155 and 185 are set to 0 (Eq. 3.2).
That preserves the morphology of the inclusion in the binary image best.
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g(x, y)oxide =
{

0 if 111 < f(x, y) < 168
1 if f(x, y) < 112 orf(x, y) > 167

(3.1)

g(x, y)sulfide =
{

0 if 155 < f(x, y) < 185
1 if f(x, y) < 155 orf(x, y) > 185

(3.2)

Figure 3.8: Test oxide inclusion to receive adequate threshold values.

Table 3.2: Boundary length values for the test inclusion with different threshold
values.

140 150 160 167 180 190 210
130 300 307 308 312 316 332
125 300 306 307 309 314 329
120 286 297 304 307 309 314 329
115 284 294 300 306 309 312 328
112 284 293 300 306 308 312 324
105 286 297 301 307 309 317
100 284 294 300 307 309 316

Figure 3.9: Binary image with an oxide type inclusion after Thresholding with
112 and 167.
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3.2.4 Morphological Operators

The image is now arranged with the mathematical operations Dilation, Erosion,
Opening and Closing to change the image in a way that morphological features
like Area or Bounding Box can be calculated better. Therefore Erosion can be
used to erode noise and Dilation can be used to fill holes in connected regions.
Figure 3.10 shows an example of an inclusion where the structure element is an
8 × 8 matrix of zeros with ones in diagonal direction.
Figure 3.10(a) shows the original image. Figure 3.10(b) and Fig. 3.10(c) show
the results of Dilation and Erosion. The dilated object grows (Eq. 2.24) and
the eroded object shrinks (Eq. 2.25). Figure 3.10(d) and Fig. 3.10(e) show the
result of Opening and Closing. Opening is an Erosion followed by a Dilation.
In this operation the holes stay in the object because the image is eroded first.
Closing is a Dilation followed by an Erosion. In this operation the holes go
missing because the image is dilated first. The operations Opening and Closing
were tested to see if they can deliver better results than Erosion and Dilation,
but for further usage only Erosion was used to erode leftover noise.

(a) Original (b) Dilation -
The boundaries
are ”growing”

(c) Erosion -
The boundaries
are ”shrinking”

(d) Opening (e) Closing

Figure 3.10: An OG type inclusion processed with various mathematical oper-
ations to erode noise and to fill holes in connected regions.

3.2.5 Edge Detection

In order to define connected areas, different edge detectors like Sobel, Prewitt,
LoG, Roberts and Canny were tested (see Section 2.1.7). With Edge Detection
the edges of connected areas are computed in order to apply morphological
processing.
Figure 3.11(a), 3.11(b) and 3.11(d) show the Sobel, the Prewitt and the Roberts
edge detectors, which delivered results where noise was excluded but the shapes
of the boundaries weren’t continuous. Figure 3.11(c) and 3.11(e) show the
results of LoG and the Canny edge detectors. Noise and small gray level changes
were detected but the boundaries had a connected shape.
With different steps of pre-processing it was able to optimize Edge Detection.
The appearance of noise was almost deleted (Fig. 3.12). The Canny edge
detector delivered the best results for continuous edges.
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(a) Sobel (b) Prewitt (c) LoG (d) Roberts (e) Canny

Figure 3.11: An OG type inclusion processed with different types of Edge De-
tection operators. No pre-processing was used.

(a) Sobel (b) Prewitt (c) LoG (d) Roberts (e) Canny

Figure 3.12: An OG type inclusion processed with different types of Edge De-
tection operators. Pre-processing with methodologies like Filtering
and Morphological Operations was used.

3.2.6 Regiongrow

Regiongrow is an operation that finds connected pixels or subregions that belong
to a larger region [2]. While a region grows from a defined seed point adjacent
pixels are tested if they correlate to predefined properties. In this work the
neighborhood pixels are tested if they have the same gray level values as the
predefined seed points. If they have, they belong to the same region. Seed
points can be defined as matrix or scalar and the properties can be defined as
a matrix or a scalar too. If a scalar is chosen, it equals a threshold value. The
points with intensity value 0 were defined as seed points, threshold was defined
to be 0.9, giving rise to a binary image. Figure 3.13 shows the image after
Regiongrow, as the last step of pre-processing.

Figure 3.13: Image after Regiongrow as last step of pre-processing resulting in
a binary image.
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3.3 Classification of Inclusions

After pre-processing, with the result of a binary image, inclusions in the image
can be extracted and classified. Therefore two methodologies are described in
this section: The Morphological Classification to get the morphological charac-
teristics and the Classification by Co-occurrence Matrices to get texture features
and type differentiation.

3.3.1 Morphological Classification

For Morphological Classification a matrix including a wide range of descrip-
tors for morphological characteristics was computed. Therefore the MATLAB
function Regionprops was used. In this work the descriptors are Bounding Box,
Area, Centroid, Major Axis Length, Minor Axis Length and Eccentricity.

Definition of used descriptors:

Bounding Box: ”The smallest rectangle containing a region”. It is defined
by 4 values (Fig. 3.14(a) red). The one and two values are the coordinates of
the lefthead edgepoint, while value three and four describe the lateral lengths
of the rectangle.

Area: ”The number of pixels in a region” (Fig. 3.14(a) white).

Centroid: ”The center of mass of a region” (Fig. 3.14(a) magenta). The
values are the coordinates.

xc =
∑

i (xc,i · Ai)∑
i Ai

; yc =
∑

i (yc,i · Ai)∑
i Ai

(3.3)

Major Axis Length, Minor Axis Length: ”The length of the major and
minor axis of the ellipse that has the same second moment as the region” (Fig.
3.14(a) (a) green, blue).
Like in physics Moments are weighted averages. In image processing moments
are weighted averages of the pixel intensities. They are used to describe objects
after segmentation. Equation 3.4 shows the second moment, where f(x, y)
describes an input image [41].

M =
∫ ∞

−∞

∫ ∞

−∞
xyf(x, y)dxdy (3.4)

Eccentricity: ”The eccentricity of the ellipse that has the same second mo-
ment as the region” (Fig. 3.14(a) green). That is to say the ratio of the minor
axis and the major axis. If the Eccentricity is 1, the region is circle-shaped.
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The inclusion in the image (Fig. 3.14(b)) is almost a circle so eccentricity is
1.05 (Tab. 3.3).

(a) A schematic inclusion to describe the used
descriptors

(b) OG type inclusion
with eccentricity of 1.05

Figure 3.14: Definition of the morphological descriptors computed with Region-
props. Bounding Box (red), Area (white), Centroid (magenta), el-
lipse with same second moment (green), Major and Minor Axes
(blue).

Table 3.3: Morphological descriptors for Fig. 3.14(b).
Bounding Box 30; 33 99; 104
Area 7988
Centroid 79; 83
Major Axis Length 103.53
Major Axis Length 98.37
Eccentricity 1.05

3.3.2 Classification by the Utilization of Co-occurrence Matrices

The MATLAB function Graycomatrix computes a Gray Level Co-occurrence
Matrix (GLCM) from an image matrix. The occurrence of two pixels with
defined gray levels and a defined distance is stored in these matrices (for the
theory see Section 2.2).

Therefore Graycomatrix has a few parameters to define:

GrayLimits: Defines if gray levels are excluded. In this work the default
settings, the minimum and maximum graylevels, were chosen, so every gray
level value was stored in the GLCM.

NumLevels: Defines the size of the GLCM. That means the gray levels are
scaled to downsize the matrix. The matrix size was set to be 10 × 10.
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Offset: Defines the direction and the distance between two pixels (see Fig.
3.15).

Figure 3.15: Parameters to compute a GLCM: 4 defined directions with distance
d=2.

Symmetric: A symmetric matrix was chosen. That means the occurrence of
pixels was detected in both directions (for example +45� and -45�, see equation
3.5).

The image matrices used in this work include a steel matrix and dark inclu-
sions of varying size. Hence, for creating the GLCMs the inclusions had to be
inspected separately. Therefore the original image matrix was multiplied with
the image matrix after preprocessing in order to set the background pixels 0.
After this operation only the inclusion pixels are left and can be used for cre-
ating a GLCM.

For the OG type inclusion from Fig. 3.14(b), which is the biggest inclusion
of Fig. 3.2(a), the GLCM in direction 0� and for the distance d=10 is shown in
Equation 3.5.

GLCM0,10 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2368 0 0 0 117 515 310 225 129 14
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

117 0 0 0 2070 2174 97 54 29 0
515 0 0 0 2174 5236 422 239 109 7
310 0 0 0 97 422 90 36 24 4
225 0 0 0 54 239 36 66 20 2
129 0 0 0 29 109 24 20 10 3
14 0 0 0 0 7 4 2 3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.5)
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With the function Graycoprops the Haralick Features (see Tab. 2.1) can be
calculated. In this work the features Angular Second Moment (ASM, see Eq.
2.35), Contrast (CON, see Eq. 2.36) and Correlation (CORR, see Eq. 2.37)
were used (see Tab. 3.4).
It turned out that later on the Haralick Features have not been used because
most inclusions are oxides and have similar characteristics. To differentiate
sulfides from oxides the method with Haralick features is too time-consuming.
For further investigations, where inclusions should be separated from errors like
holes or dust, it is a method that should kept in mind.

Table 3.4: Haralick features for the OG type inclusion from Fig. 3.14(b).
Angle ASM Contrast Correlation

0� 0.1349 5.5560 0.3687
45� 0.1279 5.6593 0.2142
90� 0.1316 5.5675 0.3710

135� 0.1248 5.5875 0.2242
Avg. 0.1298 5.5926 0.2945

GLCMs have also been used to define the oxide type of the detected inclusions.
The first step was calculating a GLCM for a small distance to find out on
which matrix position the highest occurrence value appears. Then GLCMs were
computed for four directions and with different distances d. The occurrence
value on the predefined position was selected and stored.
In Eq. 3.5 the highest occurrence value appears for grayscale category 6 (po-
sition 6,6 in the matrix: 5236). The distances 2, 4, 8, 10, 15, 20, 30, 50, 60,
80 and 100 pixels were used and the received value on matrix position 6,6 was
outputted. So values for every direction and distance were stored and the result
can be used like a ”target” which runs from pixel to pixel. Therefore five values
for every distance were used: four values described the occurrence in a defined
direction and one value described the sum for all directions.
Figure 3.16 shows how the ”target” was used with a schematic example of a
clear situation: The ”target” overlays an inclusion. The origin pixel is equal to
the center of the target. If the target coincide with the inclusion at least one
target point corresponds to the origin pixel. The corresponding pixel is defined
through a direction and a distance. If the values in all four directions aren’t
zero, the origin pixel has at least four corresponding pixels. If a higher distance
delivers just zeros the inclusion can detected as globular oxide (OG) because
the shape of the inclusion is between two circles.
If some values of the four directions are zero and a higher distance delivers just
”close to” results, the inclusion can be detected as line shaped oxide (OS) or
dissolved oxides (OA) because the shape is more line shaped than globular.
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Figure 3.16: A line shaped inclusion (OS) and a globular inclusion (OG) over-
layed with the ”target”that runs from pixel to pixel. The red pixels
on the ”target” are corresponding to the origin pixel.
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4 Results of the Classification of
Non-Metallic Tool Steel Inclusions

In a specimen a lot of regions are detectable and the aim is to find which
region is an inclusion and specifically of what type and which size it is. In this
section the classification of oxide and sulfide inclusions is shown including the
classification of the shape of the inclusion (line-shaped, dissolved, globular).

4.1 Classification of Oxides

Oxide inclusions appear in three types: line-shaped (OS), dissolved (OA) and
globular (OG). After pre-processing using a threshold (see Eq. 3.1) to differ-
entiate from sulfide inclusions a lot of calculations had to be done to get the
type of the oxide inclusion. These calculations are presented with the aid of five
images in the following subsections. Subsection 4.1.1-4.1.3 show an example for
every oxide type. Therefore the same processing was used. Subsection 4.1.4
show the refinings of the processing.

4.1.1 Classification of Dissolved Oxide Inclusions - OA

An example is discussed in the following and it is shown how the matrices were
generated (Fig. 4.1, inclusion type OA). Every region is viewed separately at
first and in further operation steps they are combined to a connected inclusion.
The matrix M contains the morphological results for every detected region,
calculated as shown in Section 3.3.1. The first column of M defines the inclusion
type with the ”target”method, where 1 stands for OG and 2 stands for OA/OS.
Every region is viewed separately. Thats why nearly all regions are stored as
OG in the matrix M . In Fig. 4.1 it is shown that the small parts (regions)
of the inclusion have a globular shape. Column 2 defines the area, Column
3 and 4 the x- and y-coordinates of the centroid, column 5 and 6 the x- and
y-coordinates of the bounding box lefthead, column 7 and 8 the side-lengths
of the bounding box and column 9 the eccentricity (see Tab. 4.1). The first
inclusion is an OG type with an area of 31 pixels, the centroid is at (197,921),
the lefthead edge point of the bounding box is at (194,919), the bounding box
has a length of 8 pixels and a width of 5 pixels and the eccentricity is 1.49.
In Matlab regions are counted along the x-axis, that means they are counted
from the left to the right, so in some cases the calculated order of regions doesn’t
agree with the real order. This is one of the problems in connecting regions. The
Figures 4.2 and 4.3 show the way of numbering regions in Matlab schematically.
The regions are numbered from the left to right and every inclusion is marked
by a green box. Region 3 and 5 are two parts of one inclusion for instance
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Table 4.1: Matrix M , which contains the inclusion type and the morphological
descriptors for image 1 (Fig. 4.1).

39
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Figure 4.1: Image1: Specimen with inclusion type OA.

and region 4 is a separate inclusion, but Matlab orders region 4 between 3 and
5 at the first place. Anyway in later calculations the regions 3, 4 and 5 are
recognized as one inclusion.
The second matrix is the distance matrix D. In this matrix the distances
between a region and all neighbor regions in both directions are stored. Figure
4.3 shows schematically how the distances have been calculated. The chosen
center region is region 4. The distances between region 4 and the last (region
1-3) and the next three (region 5-7) regions were measured. Column 1 to 3 of
the distance matrix D contain the distances between the computed region and
the three left regions, column 4 contains the index, the columns 5 to 7 contains
the distances between the computed region and the three regions at the right
side and column 8 and 9 are the centroid coordinates (see Tab. 4.2). If regions
aren’t in a circumcircle of 120 around the computed region and their area is
smaller than 100, the index (column 4) is set as 0. In this case the region is
detected as an outlier and that means it won’t be used for later calculations,
because it is a separate inclusion or an error. A separate algorithm checks if it
is an inclusion or an error. If it is a discrete inclusion the region is added to the
matrix R . Region 4 (index) has a distance of 473 pixels to region 3, 718 pixels
to region 2, 581 pixels to region 1, 21 pixels to region 5, 87 pixels to region 6
and 417 pixels to region 7. The centroid is (737,707).
The matrix D1 is just the matrix D without the positions where the index was
set 0 (see Tab. 4.3).
Matrix D2 is a distance matrix that is based on the results of D1. In this
case the distances between a computed region and the next three regions are
measured (see Tab. 4.4). As Example region 1 (complies to region 4 in matrix
D) has a distance of 21 pixels to region 2, 87 pixels to region 3 and 129 pixels
region 4. The centroid is (737,707).
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Figure 4.2: The way of numbering regions in Matlab. Regions are numbered
from the left to the right, inclusions are marked by a green box.
Region 3 and 5 are two parts of one inclusion.

Figure 4.3: Explanation of distance-measurement in the matrix D. The dis-
tances between region 4 and the other regions are measured.
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Table 4.2: Distance matrix D with the measured distances for six regions and
the coordinates of the centroid for image 1 (Fig. 4.1).
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Table 4.3: Distance matrix D1 with the measured distances for six regions and
the coordinates of the centroid for image 1, without outliers (Fig.
4.1).

Table 4.4: Distance matrix D2 with the measured distances to the next three
regions and the coordinates of the centroid for image 1 (Fig. 4.1).
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4. Results of the Classification of Non-Metallic Tool Steel Inclusions

Matrix D3 connects the regions stored in D2 by pairs. Therefore an algorithm
was programmed, where it was checked how the regions are connected. Column
1 stands for the first region, column 2 for the second region, column 3 and 4
show the inclusion types of the region and column 5 and 6 show the areas of
the regions (see Tab. 4.5).
For explanation an example where the computed region is region 1 is chosen:
If region D+1 (complies to region 2) is the nearest region and the distance is
lower than 130 pixel, the entry in column 1 is [1] and in column 2 it is [2]: [1][2]
If region D+2 (complies to region 3) is the nearest region and the distance is
lower than 130 pixel, the entry in column 1 is [1] and in column 2 it is [3]: [1][3]
If region D+3 (complies to region 4) is the nearest region and the distance is
lower than 130 pixel, the entry in column 1 is [1] and in column 2 it is [4]: [1][4]
If every three regions have a larger distance than 130, they are sorted out.
In a special case it can be possible that a region is not sorted out, but neither
connected with another region. If the computed area of this region is larger
than 120 pixels, [1][1] is written. If the area is smaller, [1][0] is written (see
Tab. 4.13).

Table 4.5: Distance matrix D3 shows if a region of image 1 is connected with
the following region. Column 1 and 2 show the connection. [1][2]
means that region 1 and 2 are connected.

In Matrix D3 regions were just connected by pairs, but these regions can belong
together too, like it is shown in Tab. 4.6, which shows a part of D3. For example
two regions with [1][2] and [2][3] belong to each other, whereas regions with [1][2]
and [3][4] don’t belong to each other. Matrix D4 connects these regions, where
column 1 stands for the start region, column 2 for the end region and column 3
and 4 for the average centroid coordinates (see Tab. 4.7). Region 1 is the start
and region 10 the end of the inclusion. The centroid of the whole inclusion is
(871,717)
Matrix D5 itemizes the different regions of the inclusions. Column 1 stands for
the inclusion number, Column 2 for the type of inclusion which was computed
in matrix W , column 3 is the area and column 4 is the index number (see Tab.
4.8). This matrix serves to define the type of the whole inclusion. For example:
If the whole inclusion consists of only one OG, it is an OG type. If there are a
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4. Results of the Classification of Non-Metallic Tool Steel Inclusions

Table 4.6: The first two columns of Distance matrix D3 show that all regions
belong to the same inclusion (image 1). The end value of the previous
region is the start value of the next region.

Table 4.7: Distance matrix D4 shows the start and end region of the inclusion
and the average centroid for image 1 (Fig. 4.1).

lot of OGs connected to an inclusion, it is an OA type, because it is a dissolved
oxide. The result for image 1 is one inclusion with 9 regions of type OG and 1
region of type OA/OS that brings the result of type OA.
The matrix R stores the inclusion types and the length of the inclusions. In
the given example the inclusion type is OA and the length is 19.2 μm ∗ 10−1 ,
the second length is just used if the type is OG and two small sized OGs are
neighbors (see Tab. 4.9). Figure 4.4 shows the image with the inclusion type,
the length of the inclusion and the position on the DIN 50 602 board.
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Table 4.8: Distance matrix D5 shows the different regions of one inclusion for
image 1 (Fig. 4.1).

Table 4.9: Matrix R shows the results for image 1 (Fig. 4.1).

Figure 4.4: Image 1 with the type (OA) and length of the inclusion and its po-
sition on the DIN 50 602 board. The crucial length is 19.2 (14<in-
clusion length<21).
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4.1.2 Classification of Globular Oxide Inclusions - OG

The second example is an image matrix with inclusions of type OG (see Fig.
4.5). The matrix M detects 19 regions and every region is categorized as 1,
meaning OG. The biggest region is region 7 and has an area of 7997 pixels, the
centroid at (848,742), the lefthead edgepoint of the bounding box at (799,692),
a bounding box with a length of 99 and a width of 104 pixels, and an eccentric-
ity of 1.05 (see Tab. 4.10). Matrix D sorts out 12 regions, so that 7 regions

Figure 4.5: Image 2: Specimen with inclusion type OG.

stay in matrix D1 (see Tab. 4.11). Matrix D2 makes the same operation as
matrix D without outliers. For example region 2 (complies to region 7 in ma-
trix D1) with the centroid (848,742) has a distance to its next right neighbor of
429 pixels, 534 pixels to the second right neighbor and 1253 pixels to the third
neighbor (see Tab. 4.12). Table 4.13 shows that in this case most regions are
not connected. For example the biggest region in matrix D3 is region 2 with
[2] [2] in the first two columns, which means it is a single inclusion of type OG.
Region 5 is defined as [5] [0] - that means this region is too small to be a single
inclusion, so it is detected as an error. Region 6 and 7 are connected, but sorted
out later because the areas are too small. Table 4.14 shows the leftover regions
defined by the start and the end regions. Matrix D4 detects four inclusions
with the same start and end region, which means it is a single inclusion of type
OG. Table 4.15 shows the matrix R, which detects four OG type inclusions.
Figure 4.6 shows the image with the type, the length and the position on the
DIN 50 602 board for these inclusions.
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Table 4.10: Matrix M , which contains the inclusion type and the morphological
descriptors for image 2 (see Fig. 4.5).

48



4. Results of the Classification of Non-Metallic Tool Steel Inclusions

Table 4.11: Distance matrix D1 with the measured distances to the least and
next three regions and the coordinates of the centroid for image 2,
without outliers (see Fig. 4.5).

Table 4.12: Distance matrix D2 with the measured distances to three regions
and the coordinates of the centroid for image 2 (see Fig. 4.5).
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Table 4.13: Distance matrix D3 shows if a region of image 2 is connected with
the following region. In this case the regions aren’t connected. [2]
[2] describes a single inclusion, [5] [0] a region that is too small for
analysis.

Table 4.14: Distance matrix D4 shows the start and end region of the inclusions
and the average centroid for image 2 (see Fig. 4.5).

Table 4.15: Matrix R shows the results for image 2 (see Fig. 4.5).
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Figure 4.6: Image 2 with type (OG) and length of the inclusion and its position
on the DIN 50 602 board. The crucial length is 6.9 (5.3<inclusion
length<7.6).
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4.1.3 Classification of Line-shaped Oxide Inclusions - OS

Figure 4.7 shows an image with three different inclusion types: OA, OG and OS.
The image is analyzed with the operations that were tested before (Subsection
4.1.1 and 4.1.2). The matrix R and Fig. 4.7 show the type and length of all
detected inclusions in image 3.

Table 4.16: Matrix R shows the results for image 3 (Fig. 4.7).

Figure 4.7: Image 3 with type (OA, OG, OS) and length of the inclusions and
their positions on the DIN 50 602 board. The crucial lengths are:
10.3 (OA), 2.4 (OG), 6.4 (OS).
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4.1.4 Algorithm Improvements for Oxide Classification

Image 4 has inclusions of type OA and OG and shows the problem that is
described in Section 4.1.1, Fig. 4.2: Table 4.17 shows that Region 11 and region
12 has the same x-coordinates for the centroid ((648,278) and (648,1187)) and
this is a problem for the counting in Matlab.

Figure 4.8: Image 4: Specimen with inclusion types OA and OG.

This is a special case because after the calculations to receive the distance
matrices, region 10 (complies to region 12 in matrix M) isn’t detected as an
outlier (see Tab. 4.19) and Tab. 4.20 shows that the following regions are
connected with this region.
The result of wrong connecting are totally wrong morphological characteristics:
The length of inclusion 4 (marked by a red box in Tab. 4.21) was measured
from the outlier to the end of the proper inclusion (see Fig. 4.9). To avoid
results where various outliers are connected with regions, two submatrices have
been programmed and ordered between Matrix D3 and D4. Submatrix D2A
improves the matrix D2 and deletes points that are detected as outliers or single
inclusions (for example [1][1] or [1][0] in column 1 and 2). Then the distances
between a region and the next three right regions are calculated, like the origi-
nal matrix D2 does (see Tab. 4.22). The deleted points are stored and tested
if they are outliers or single inclusions of type OG. If they are detected as in-
clusions they are later added to the the Matrix R. Matrix D3A has the same
purpose as matrix D3 but is based on matrix D2A for the calculation (see Tab.
4.23). Table 4.24 shows the matrix D4 resulting the new start and end regions
of inclusions after processing with the submatrices.
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Table 4.17: Matrix M , which contains the inclusion type and the morphological
descriptors for image 4, columns 1 to 5, (Fig. 4.8). The red box
marks the regions with the same x-coordinates.
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Table 4.18: Matrix M , which contains the inclusion type and the morphological
descriptors for image 4, columns 6 to 9 (Fig. 4.8).
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Table 4.19: Distance matrix D3 shows if a region of image 4 is connected with
the following region. The red box shows the region that isn’t de-
tected as outlier.

Table 4.20: Distance matrix D4 shows the start and end region of the inclusions
and the average centroid for image 4 (Fig. 4.8). The red box shows
the wrong connected inclusion.
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Table 4.21: Matrix R shows the results for image 4 (Fig. 4.8). The red box
shows the wrong connected inclusion. The bold red box shows the
wrong length.

Figure 4.9: Image 4 with the type and length of the inclusions. The arrow marks
the length of the wrong connected inclusion.
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Table 4.22: Distance matrix D2A with measured distances to the next three
regions and coordinates of the centroid for image 4 (Fig. 4.8). D2A
is based on D3 without outliers.
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Table 4.23: Distance matrix D3A shows if a region of image 4 is connected
with the following region after implementing the submatrices. [1][2]
means that region 1 and 2 are connected.

Table 4.24: Distance matrix D4 shows the new start and end region of the
inclusions and the average centroid for image 4 after implementing
the subregions.
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After the implementation of submatrices the results are accurate (shown in
Tab. 4.25 and Fig. 4.10). Finally for inclusion 3 the correct length of 11.8
μm ∗ 10−1 instead of 35.2 μm ∗ 10−1 was detected.

Table 4.25: Matrix R shows the results for image 4 (Fig. 4.8).

Figure 4.10: Image 4 with type (OA, OG) and length of the inclusions and their
positions on the DIN 50 602 board. The crucial lengths are: 27.1
(OA), 1.4 (OG).

The last operation tries to connect leftover regions, if they have a special po-
sition that makes a connection possible. Of the whole set of data provided by
Böhler Edelstahl GmbH and Co KG and Co KG Fig. 4.11 was the only image
where this operation was necessary to use. It is useful when inclusions are big
(size index 5 and bigger) and a lot of regions must be connected.
Therefore the distance matrix D6 checks if adjacent regions can get connected
(see Tab. 4.26). For that purpose the angles between the first and the last region
of an inclusion and the angles between adjacent regions have to be measured. To
connect adjacent regions the angle between the regions must be in a tolerance
field of +/- 15�. The two calculated region angles must fulfill this tolerance too
and the distance must be smaller than 200 pixels (see Fig. 4.12). Table 4.26
shows the number of the start region (column 1), the number of the end region
(column 2), the inclusion centroid coordinates (column 3 and 4), the centroid
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Figure 4.11: Image 5: Specimen with inclusion types OG and OA.

Figure 4.12: Tolerancefield for adjacent regions to connect them.

Table 4.26: Distance matrix D6 with the angles between adjacent regions(image
5). Column 11 shows if regions can get connected. 1 means connec-
tion and 0 no connection.
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coordinates of the start and end region (column 5-8), the angle between the start
and the end region (column 9), the angle between two adjacent regions (column
10) and the distance between two adjacent regions (column 10). Column 11
shows if regions can get connected. 1 means connection and 0 no connection.
In this example there are two regions from 1 to 19 and from 20 to 31. The
regions have the same angle of 2� (based to the x-axis). The angle between
them is 4�. The distance is 152 pixels. The ones in the last column show that
those regions must be connected (see Tab. 4.26).
The Matrix R (see Tab. 4.27) and Fig. 4.13 show the results for image 5. The
described operation connected two inclusions to one inclusion with the start
region 1 and the end region 31. The remaining region is a single inclusion of
type OG, which was detected in a processing step before.

Table 4.27: Matrix R shows the results for image 5 (Fig. 4.11).

Figure 4.13: Image 5 with type (OA, OG) and length of the inclusions and their
position on the DIN 50 602 board. The crucial lengths are: 104.7
(OA), 0.9 (OG).
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4.2 Classification of Sulfides - SS

The detection of sulfides is much easier than the oxide detection, because there
is only one type of sulfides (line-shaped sulfides - SS). To detect sulfides a simple
Thresholding (see Eq. 3.2) followed by the regiongrow function is used. 155 and
185 were used as threshold values for the sample image 6 (Fig. 4.14), which
contains only inclusions of the SS type. That means all values between 155
and 185 were set 0, the other values were set 1. After this preprocessing the
morphological characters are calculated (like matrix M for oxides) and if the
area is smaller than 200 pixels the region is detected as an error. The Matrix R
contains the computed results: Column 1 is the index number, column 2 defines
the area, column 3 and 4 define the coordinates of the centroid and column 5
defines the length of the inclusion. Table 4.28 and Fig. 4.15 show the results.
To combine the detection of oxides and sulfides just both algorithms are working
separately on the image as shown in Fig. 4.16.

Figure 4.14: Image 6: Specimen with inclusions of type SS.

Table 4.28: Matrix R shows the results for image 6.

Further sample images and the results of the characterization of their inclusions
are shown in the Appendix.
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Figure 4.15: Image 6 with type (SS) and length of the inclusions and their
position on the DIN 50 602 board. The crucial length is 10.5.

Figure 4.16: Image 7 with type (OS, SS) and length of the inclusions and their
position on the DIN 50 602 board. The crucial lengths are: 4.1
(OS), 11.0 (SS), 6.4 (OS).
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4.3 Statistical Overview

In this work 47 images with a total of 131 inclusions were analyzed and classified
with those operations that were presented in the previous sections. Figure 4.17
shows the result of classification. The red bar stands for the overall number of
inclusions of the same type. The yellow bar stands for the number of correctly
classified inclusions.

Figure 4.17: Itemizing of the inclusions. The red bar stands for the number
of analyzed inclusions. The yellow bar stands for the number of
detected inclusions.

The detection of sulfides worked excellent so that 8 out of 8 sulfides were classi-
fied correctly. 18 out of 21 dissolved oxides inclusions were classified correctly.
With 67 out of 77 globular oxides were classified commonly good. The detec-
tion of line-shaped oxides worked well too with 24 out of 25 correctly classified
inclusions.

65



5 Conclusion and Outlook

The objective of this work was to study whether or not it is possible to extract
and classify given steel inclusions by automated inspection. It was aimed to
conclude with the prognosis if a change to automated inspection and classifica-
tion is useful. For this feasibility study 47 images with a total of 131 inclusions
were analyzed and classified using state of the art operations as well as new
developed methodologies operations.
The separation of oxides and sulfides worked well, because these inclusions show
vastly different gray level values. Problems could appear if errors like scratches
or holes have a similar intensity level as sulfides, but to answer this question a
further study with more sample images including errors is necessary.
The analysis of different types of oxide was more difficult. A dissolved oxide
consists of regions of small globular oxides or oxides which can also be classified
as line-shaped oxides. However 18 out of 21 inclusions were classified correctly.
A future goal is to improve the connection of the regions. Oxides lose intensity
on the end and start sections. That’s why a thresholding can produce a small
length error. For the improvement of the connective procedure and thresholding
more images are necessary.
Globular Oxides were detected commonly good (67 out of 77 ). For oxides with
size index 0 the classification is difficult and therefore 200x magnification of
images would be better.
The detection of line-shaped Oxides worked well too with 24 out of 25 detected
inclusions. Problems can occur only if a line-shaped oxide is a part of a dis-
solved oxide.

The feasibility study delivered results that show that a change to automated
inspection and classification is possible. However it is advisable to further im-
prove processing of the images with more sample images of different inclusion
types and errors. To detect errors the textural features for image classification
based on Co-occurrence Matrices can be an important tool. Improvements on
the camera like a higher resolution can also deliver better results.

66



6 Appendix

Figure 6.1: Type (OA) and length (72.5) of an inclusion and its position on the
DIN 50 602 board.
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Figure 6.2: Type (OG) and length of inclusions and their position on the DIN
50 602 board. The crucial length is 0.6. The image was taken with
a 200x magnitude.

Figure 6.3: Type (OA) and length of inclusions and their position on the DIN
50 602 board. The crucial length is 25.3.
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Figure 6.4: Type (OA, OG) and length of inclusions and their position on the
DIN 50 602 board. The crucial lengths are 31.4 (OA) and 1.8 (OG).

Figure 6.5: Type (OA, OG) and length of inclusions and their position on the
DIN 50 602 board. The crucial lengths are 36.4 (OA) and 0.9 (OG).
The image was taken with a 200x magnitude.
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Figure 6.6: Type (OA, OG) and length of inclusions and their position on the
DIN 50 602 board. The crucial lengths are 29.2 (OA) and 3.0 (OG).

Figure 6.7: Type (OG, OS) and length of inclusions and their position on the
DIN 50 602 board. The crucial lengths are 2.2 (OG) and 12.2 (OS).
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Figure 6.8: Type (OA, OG) and length of inclusions and their position on the
DIN 50 602 board. The crucial lengths are 57.9 (OA) and 2.1 (OG).

Figure 6.9: Type (OG, OS) and length of inclusions and their position on the
DIN 50 602 board. The crucial lengths are 0.6 (OG) and 21.8 (OS).
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Figure 6.10: Type (OA, OG) and length of inclusions and their position on the
DIN 50 602 board. The crucial lengths are 27.7 (OA) and 2.1
(OG).
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