
Development of a Flexible

Program Architecture for Shape

Optimization with Finite Elements

Diploma Thesis

Paul Kainzinger

Chair of Mechanical Engineering

University of Leoben, Austria

Supervisors:

Hans-Peter Gänser

Thomas Christiner

December 2009

Copyright c⃝ 2009 by

Paul Kainzinger

University of Leoben

Franz–Josef–Straße 18

A–8700 Leoben, Austria

Internet: http://amb.mu-leoben.at/

E–Mail: amb@mu-leoben.at

fatigue@mu-leoben.at

paul.kainzinger@stud.unileoben.ac.at

Tel.: ++43 (0)3842 402 1401

Fax.: ++43 (0)3842 402 1402

Affidavit

I declare in lieu of oath, that I wrote this thesis and performed the associated

research myself, using only literature cited in this volume.

Paul Kainzinger

Leoben, Dec. 2009

ii

Acknowledgments

The present thesis was written during my studies in mechanical engineering,

focusing on computational design, at the Chair of Mechanical Engineering in

the Department of Product Engineering at the University of Leoben.

Financial Support of part of this work by the Austrian Government (Federal

Ministry of Transport, Innovation and Technology and Federal Ministry of

Economy, Family and Youth) and the Province of Styria via the Austrian Re-

search Promotion Agency (Österreichische Forschungsförderungsgesellschaft

mbH) and the Styrian Business Promotion Agency (Steirische Wirtschafts-

förderungsgesellschat mbH) within the framework of the K2 Research Center

for Materials, Processing and Product Engineering, a member of the Aus-

trian COMET Center of Competence Program, based at Materials Center

Leoben, is gratefully acknowledged.

First of all, I would like to express my sincere gratitude to my supervi-

sors Priv.–Doz. Dipl.–Ing. Dr. mont. Hans–Peter Gänser and Dipl.–Ing.

Thomas Christiner for their excellent support and assistance throughout my

work.

I want to use this opportunity to thank Univ. Prof. Dipl.–Ing. Dr. techn.

Wilfried Eichlseder, the head of the Chair of Mechanical Engineering, for

laying the foundations that made this thesis possible.

Moreover I would like to thank Bernd Maier for his helpful discussions and

useful remarks. Furthermore I express my deep gratitude to all the employ-

iii

ees of the Chair of Mechanical Engineering who helped me during this thesis.

On this way I want to thank my girlfriend, Katharina Bruckmoser, for her

loving support and my parents, Elisabeth and Hannes Kainzinger, for offer-

ing me the oportunity to this excellent education.

Last but not least, I would like to thank all my colleagues during my studies

in Leoben for their wonderful cooperation and beautiful years in Leoben.

iv

Abstract

Within the scope of this thesis a flexible interface (Interface for Parametric

Optimization, IPO) between the finite element solver Abaqus and the open

source optimization library DAKOTA (Design Analysis Kit for Optimization

and Terascale Applications) was developed. Finite element models created

with Abaqus can be parametrized and optimized with respect to an arbitrary

objective function and optional restrictions. Any mathematical combination

of output variables available in Abaqus may serve as an objective function

or restriction.

DAKOTA provides a wide variety of different algorithms for optimization,

parametric studies, uncertainty quantification and many other applications.

Gradient based algorithms as well as gradient free methods, e.g., evolutionary

strategies, can be chosen for solving the optimization problem. The IPO

combines the advantages of both software packages. One can use the finite

element solver Abaqus, which is capable of solving highly nonlinear (material

as well as geometric nonlinearities) engineering problems and join it with the

extensive optimization and parametric study capabilities of DAKOTA.

The Abaqus Python application programming interface (API) serves as

an easy–to–use basis for the coding, since all Abaqus pre– and postprocessing

commands are available in this API. An object oriented approach was chosen

for the Interface for Parametric Optimization since is fits best into the Abaqus

Python API and provides a convenient way for further extensions of the

interface.

The program was applied to the optimization of a simple truss construc-

tion and a more sophisticated bridge construction with their total weight as

an objective function. The differences between several different optimization

algorithms are then discussed in detail, highlighting their advantages and

disadvantages.

v

Kurzfassung

Im Rahmen dieser Arbeit wurde eine flexible Schnittstelle (Interface for Para-

metric Optimization, IPO) zwischen dem Finite Elemente Programm Abaqus

und der Open Source Optimierungsbibliothek DAKOTA (Design Analysis

Kit for Optimization and Terascale Applications) entwickelt. Finite Ele-

mente Modelle können mit Abaqus parametrisiert und auf eine beliebige

Zielfunktion unter Berücksichtigung von optionalen Restriktionen optimiert

werden. Alle in Abaqus verfügbaren Ausgabevariablen können beliebig zu

Zielfunktionen oder Restriktionen kombiniert werden.

DAKOTA bietet eine Vielfalt an unterschiedlichen Algorithmen für Op-

timierungen, Parameterstudien, die Vorhersage der Ergebnisunschärfe sowie

viele weitere Anwendungen. Gradienten–basierte Verfahren sowie gradien-

tenfreie Methoden wie z.B. evolutionäre Algorithmen können zur Optimierung

verwendet werden. Das IPO kombiniert die Vorteile beider Programme, die

Fähigkeit von Abaqus hoch nichtlineare (material– sowie geometrische Nicht-

linearitäten) Probleme zu lösen sowie die weitreichenden Optimierungsmeto-

den bzw. Möglichkeiten für Parameterstudien von DAKOTA.

Die von Abaqus zur Verfügung gestellte Python Programmierschnittstelle

dient als Basis für die entwickelte Software, da auf alle Pre– bzw. Postpro-

cessing Befehle einfach zugegriffen werden kann. IPO wurde objektorien-

tiert in der Programmiersprache Python geschrieben, da dies sehr gut zu der

vorhandenen Programmierschnittstelle passt, bzw. eine spätere Erweiterung

erleichtert.

Die entwickelte Software wurde anschließend auf zwei Beispiele wurden

anschließend angewandt, die Gewichtsoptimierung einfaches Fachwerk und

einer aufwändigeren Brückenkonstruktion. Diese beiden Fachwerke wurden

auf ihr Gewicht hin optimiert. Verschiedene unterschiedliche Optimierungsal-

gorithmen wurden untersucht und deren Vor– bzw. Nachteile diskutiert.

vi

Contents

1 Introduction 1

2 Terminology 4

3 Mathematical Background 5

3.1 Formulation . 5

3.2 Global and Local Minimum 6

3.3 Existence of a Local Minimum 8

4 Categorization and Description of Commonly Used Opti-

mization Algorithms 11

4.1 Gradient Based Algorithms 11

4.1.1 Newton–Raphson Method 12

4.1.2 Direction Set Methods in Multidimensions 14

4.2 Gradient Free Algorithms . 14

4.2.1 Monte Carlo Simulation 15

4.2.2 Evolutionary Strategies 16

5 Structural Optimization 19

5.1 Classification of Structural Optimization Problems 21

5.2 Construction Method . 21

5.3 Topology Optimization . 23

5.3.1 Definition of the Design Space 26

5.3.2 Type of Objective Function 26

5.3.3 Types of Design Variables 27

vii

5.3.4 Algorithms . 28

5.3.5 Method of Homogenization 28

5.4 Shape Optimization . 29

5.4.1 Law of Stress Decay 30

5.4.2 Stress Homogeneity in the Variational Space 31

6 Introduction to DAKOTA 33

6.1 DAKOTA Input File . 34

6.2 DAKOTA Interfaces . 36

6.2.1 Direct Function . 36

6.2.2 System Call Interface 36

6.2.3 Fork Interface . 40

7 Interface for Parametric Optimization (IPO) 41

7.1 Object Structure . 42

7.2 IPO External Workflow . 44

7.3 IPO Internal Workflow . 46

7.3.1 Reading the Input Files 46

7.3.2 Changing the Parameters 49

7.3.3 Remeshing the Structure 50

7.3.4 Starting the Simulation 51

7.3.5 Reading the Objective Function 51

7.3.6 Writing the Output File 51

7.4 Restrictions . 52

8 Example Simulations 53

8.1 Simple Truss Construction . 53

8.1.1 Finite Element Model 54

8.1.2 Model Verification . 56

8.1.3 Parametric Study . 57

8.1.4 Optimization . 61

8.1.5 Discussion . 71

8.2 Bridge . 71

8.2.1 Finite Element Model 73

viii

8.2.2 Optimization . 73

8.2.3 Discussion . 76

9 Concluding Remarks 80

ix

Chapter 1

Introduction

Due to the constantly rising needs of the modern economy for optimizing me-

chanical components and thereby decreasing production costs and increasing

lifetime, stable and easy–to–use methods need to be developed to achieve

these goals. With computational power rising steadily and simultaneously

getting cheaper, numerical simulation methods like, e.g., the finite element

method become more and more affordable.

co
st

concept
stage

savings potential

cost expenditure

design
stage

production
stage

consumer
stage

Figure 1.1: Product development cycle

In Fig. 1.1 one can see a typical product development cycle. It is clearly

derivable that the costs caused by a single production step increase dramat-

ically the further the cycle proceeds while the savings potential decreases.

1

Hence it is obvious that it is most efficient to save costs in the early design

stage of a project. Modern simulation and optimization tools provide the

capability of doing so. They allow the designers and engineers to find the

optimal solution for a problem without having to go through complex and

expensive trial and error procedures. The variety of these programs and

tools is very rich, they go from small and simple optimization tasks (e.g., Mi-

crosoft Excel solver), to complex program solutions like ABAQUS or TOSCA.

The aim of this thesis is to develop an easy–to–use tool for parametric op-

timization with ABAQUS. An interface called IPO1 is implemented which

allows a general application of various optimization, least squares and para-

metric study algorithms. DAKOTA (Design Analysis Kit for Optimization

and Terascale Applications) [3], an open source library of optimization algo-

rithms, is used to provide the mathematical capabilities for the optimization

loop.

Figure 1.2: Capabilities of DAKOTA

Fig. 1.2 shows an overview of all the algorithms implemented in DAKOTA.

The ABAQUS Python API2 [21] is used as a basis for all coding needed to

complete the optimization loop. It provides an object–oriented scripting

framework to control all actions from ABAQUS/Standard and ABAQUS/-

Explicit. This API is used to do all the pre– and postprocessing to handle the

1Interface for Parametric Optimization
2Application Programming Interface

2

input parameters given from DAKOTA and to pass the restrictions and ob-

jective functions back. One of the main advantages of this interface is that

it grants ABAQUS access to the enormous capabilities of DAKOTA. One

can run simple parametric studies as well as much more complex nonlin-

ear restricted optimization problems with multiple objective functions. This

provides a way for optimizing components from an early design stage of the

product development cycle and therefore finding and fixing problems within

a short amount of time.

3

Chapter 2

Terminology

According to [18] the following general definitions apply.

Optimization algorithm: Mathematical method for optimizing an objective

function with or without following certain restrictions.

Optimization method : Combination of optimization approaches and optimiza-

tion algorithm for solving an optimization problem.

Optimization strategy : Method of reducing a complex optimization problem

to a more basic system which represents the original one but is

much easier to solve.

Objective function: Mathematical formulation of one or more design goals.

Restriction: Mathematical formulation of certain constraints that have to be

complied to.

Simulation model : Mathematical formulation of the model characteristics.

State variable: Response from the simulation model.

Variable: A changeable parameter in the simulation model.

Initial point : Set of start values for the variables of the simulation model.

4

Chapter 3

Mathematical Background

This Chapter describes the mathematical background needed to define the

existence and the position of a local or global optimum.

3.1 Formulation

An arbitrary optimization problem can be expressed by minimizing an ob-

jective function

min f (x) (3.1)

complying to the following restrictions:
gj (x) ≤ 0 j = 1 . . . mg inequality constraints

ℎk (x) = 0 k = 1 . . . mℎ equality constraints

xl
i ≤ xi ≤ xu

i i = 1 . . . n upper and lower bounds
With mg being the number of inequality constraints, mℎ the number of

equality constraints and n the number of degrees of freedom. The confine-

ment to min f (x) does not violate the general formulation since a maximiza-

tion problem can always be transformed into a minimization problem via

max f (x) = −min f (x) or max f (x) = min (−f (x)). The same applies to

inequality and equality constraints.

In closed formulation the optimization problem can be written as:

5

f∗ (x) = min {f (x) ∣ x ∈ X} with X = {x ∈ ℜn ∣ g (x) ≤ 0, h (x) = 0}

(3.2)

Where ℜn is the set of n–dimensional real numbers, X the design space,

h (x) the vector of equality constraints and g (x) the vector of inequality

constraints.

3.2 Global and Local Minimum

One of the main problems in optimizing a design problem is the fact that there

might be more than one optimum. Depending on the shape of the objective

function it may be easy or more difficult for a mathematical algorithm to

find the global minimum and not get stuck in a local one. Many algorithms

may only find a local minimum. If one wants to be sure to really find the

global optimum one has to be certain that there is only one local minimum

which is, in this case, also the global one. Therefore the function f (x) needs

to be convex within the interval x ∈
[

xl, xu
]

. A function is called convex if

f (�xA + (1− �) xB) ≤ �f (xA) + (1− �) f (xB) (3.3)

for all xA, xB ∈
[

xl, xu
]

and � ∈ [0, 1]. As one can see in Fig. 3.1, Eq.

3.3 illustrates that a straight line between two points may never touch or

intersect the function line.

Fig. 3.1 also shows a function which is not convex, because a straight line

from point A to point B intersects the function line twice within the interval
[

xl, xu
]

.

As shown in Fig. 3.2, the convexity is actually a too strong condition for

a function to have only one minimum. The minimum shown there would be

found by an optimization algorithm.

The restrictions have to be convex too. A set M is called convex if

y = �xA + (1− �)xB ∈M (3.4)

6

f

x

f

x

(a) (b)

Θ=0
 Θ=1

xA xB

xuxl

xA xB

xuxl

A B A

B

Θ=0

Θ=1

Figure 3.1: Convex and non–convex function

f

xxA xB

xuxl

A

B

Θ=0

Θ=1

Figure 3.2: Non–convex function with only one minimum

7

x2

x1

A

B

Θ=0

Θ=1

M x2

x1

A

B

Θ=1

M

(a) (b)

Θ=0

Figure 3.3: Convexity of restrictions

with xA, xB ∈M and � ∈ [0, 1].

Fig. 3.3 shows a convex and a non–convex design space. Generally speak-

ing, one can say that an optimization problem is convex if the optimization

function f(x) is convex corresponding to Eq. 3.3 and the restrictions g(x)

and h(x) are convex corresponding to Eq. 3.4.

The fact that the shape of an objective function for an engineering prob-

lem is usually not analytically describable and therefore only available at

discrete points makes it very hard to decide whether a problem is convex or

not. Hence one can never be sure to have found the global and not only a

local optimum. So it can be useful to combine the features of several opti-

mization algorithms by running one after the other, or running the simulation

with different initial points. [9]

3.3 Existence of a Local Minimum

For a local minimum to exist at a certain point x∗ the following equation

needs to be fulfilled:

8

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∂f

∂x1

∂f

∂x2

...

∂f

∂xn

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

x∗

= 0 (3.5)

Eq. 3.5 shows the necessary condition for a local minimum, where f is

the objective function, n is the number of variables and x1 . . . xn are the

variables. All partial derivatives of the objective function evaluated at x∗

need to be zero.

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∂2f

∂x2
1

∂2f

∂x1∂x2

⋅ ⋅ ⋅
∂2f

∂x1∂xn

∂2f

∂x2∂x1

∂2f

∂x2
2

⋅ ⋅ ⋅
∂2f

∂x2∂xn

...
...

. . .
...

∂2f

∂xn∂x1

∂2f

∂xn∂x2

⋅ ⋅ ⋅
∂2f

∂x2
n

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(3.6)

A sufficient condition for a local minimum can be formulated using the

Hessian matrix (Eq. 3.6) which is assembled using the second partial deriva-

tives. It needs to be positive definite, i.e., all eigenvalues � according to Eq.

3.7 need to be greater than zero:

9

det

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∂2f

∂x2
1

∂2f

∂x1∂x2

⋅ ⋅ ⋅
∂2f

∂x1∂xn

∂2f

∂x2∂x1

∂2f

∂x2
2

⋅ ⋅ ⋅
∂2f

∂x2∂xn

...
...

. . .
...

∂2f

∂xn∂x1

∂2f

∂xn∂x2

⋅ ⋅ ⋅
∂2f

∂x2
n

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

− �

⎛

⎜

⎜

⎜

⎜

⎝

1 0 ⋅ ⋅ ⋅ 0

0 1 ⋅ ⋅ ⋅ 0
...
...
. . .

...

0 0 ⋅ ⋅ ⋅ 1

⎞

⎟

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 0

(3.7)

10

Chapter 4

Categorization and Description of

Commonly Used Optimization

Algorithms

This chapter will focus on several commonly used optimization algorithms.

Since the number of algorithms developed is almost infinite, only a small

representative selection is highlighted.

4.1 Gradient Based Algorithms

As the name suggests, this type of algorithms takes the local gradients into

account. As stated in Eq. 3.5, the first derivative, otherwise known as

the gradient, of a function has a significant influence on finding an optimum.

Gradient based algorithms calculate the local derivative either numerically or,

if available, analytically. They then use the information gained for continuing

their iteration.

One of the main advantages of these methods is their speed of conver-

gence. Since the gradient gets smaller and finally reaches zero at a minimum,

it is obvious that such methods are very quick in finding the optimal solution.

Their main advantage is also their greatest shortcoming: these methods only

work properly if the objective function is smooth. Discontinuities or rapid

11

f

x

f

x

initial point initial point

local
optimum

global
optimum

(a) (b)

Figure 4.1: Gradient based algorithms

changes in the objective function can lead to incorrect results or divergence.

Fig. 4.1 shows another disadvantage, the result of a gradient–based minimum

search depends on the starting point. Choosing a bad starting position may

lead to only finding a local minimum instead of the global optimum. Another

disadvantage is the fact that gradient based algorithms may get stuck in a

local minimum, there is no guarantee that they will find the global one.

4.1.1 Newton–Raphson Method

4.1.1.1 Newtons’ Method for Root Finding

The Newton–Raphson Method is a gradient based algorithm used for finding

the roots of a function. This method converges quadratically if the initial

point is sufficiently near the root. On the other hand, Newton’s algorithm

may converge never, or only with difficulty, if the initial point is chosen

poorly.

The basic idea of this method is to linearize the function by means of its

tangent. Fig. 4.2 illustrates the iteration process. After calculating the local

tangent, the root of the tangent is determined.

xn+1 = xn −
f (xn)

f ′ (xn)
(4.1)

12

f

xx0x1

f

xx2 x1

(a) (b)

Figure 4.2: Newton–Raphson method

This value serves as the new input for the next iteration. If a certain con-

vergence tolerance is reached, the iteration stops and the current value xn is

returned as the desired solution.

4.1.1.2 Newton’s Method in Optimization

This method can easily be transformed into an approach to finding an opti-

mum. Since the first derivative of a function, otherwise known as the gradi-

ent, has to be 0 according to Eq. 3.5, one can apply Newton’s method to the

local gradient of an objective function and find its optimum according to

f∗ (x∗) =
∂f

∂x
(x∗) = 0 (4.2)

[11] describes the unconstrained algorithm as follows for the iteration k,

initial value x0 for k = 0:

For xk given and while
∥

∥

∂f
∂x

(

xk
)∥

∥ > ", do

1. compute the Jacobian Ak = ∂2
f

∂x2

(

xk
)

2. solve the linear system Ak ⋅ dx = − ∂f
∂x

(

xk
)

3. set xk+1 = xk + dx

13

One disadvantage of this method is that there is no guaranteed convergence

for dimensions higher than one. Quadratic convergence can also only be

found within a certain neighborhood of x∗; the size of this neighborhood

depends on the individual shape of the objective function.

4.1.2 Direction Set Methods in Multidimensions

If one wants to minimize a multidimensional objective function, the com-

plexity of the problem increases dramatically. But a multidimensional op-

timization can be reduced to an optimization with only one variable. This

is done by starting at an initial point P of an N–dimensional function f(P).

One then proceeds along any vector direction n and the function f(P) can

now be minimized along this direction with a one–dimensional method. Dif-

ferent methods only differ in the way they choose the vector direction n and

in the way they find the optimum along this line (otherwise known as line

minimization). A schematic line minimization algorithm is given below [16]

1. given the input vectors P and n, and the function f(P)

2. find the scalar � that minimizes f(P+ �n)

3. replace P by P+ �n

An exemplary algorithm for this method is the method of steepest descent,

where the direction n is chosen such that the gradient of f at P has its

maximum. For further information on these methods the reader is referred

to [16, 10, 9].

Fig. 4.3 shows a simple example for line minimization, the ellipses repre-

sents isocontours of the objective function, the arrows the path of descent.

4.2 Gradient Free Algorithms

This type of algorithm does not take the information gained by the gradient

into account. Most of them use stochastically generated variable values to

calculate the optimal solution for a problem.

14

Figure 4.3: Example for line minimization

Gradient free algorithms are not that sensitive to discontinuous or rough

objective functions as they do not use the local gradient in their calculations.

Since most of them use a stochastic approach in finding the optimum, they

are by far not as fast as gradient based methods. Depending on the randomly

chosen variable values, these methods may never find the optimum. On the

other hand, the chance of getting near a minimum increases with increasing

number of iterations, hence one needs to run the algorithm for a certain

amount of time to get a satisfactory result. Gradient free methods have

the great advantage of independency from their initial point, since they use

mostly randomly chosen variable values.

4.2.1 Monte Carlo Simulation

According to [6] the following definition of the Monte Carlo method can be

made:

"The Monte Carlo method is defined as representing the so-

lution of a problem as a parameter of a hypothetical population,

and using a random sequence of numbers to construct a sample of

the population, from which statistical estimates of the parameter

can be obtained."

A randomly generated set of parameters is used to generate a number of

objective function values. This set may then be used for further statistical

analysis or simply for finding the smallest function value. A simple example

is shown in Fig. 4.4, a random set of points is created inside a rectangle.

The number of all points p within the rectangle and all points pi within the

circle with radius r can be used to calculate � according to

15

f

x

Figure 4.4: Monte Carlo Simulation

lim
p→∞

4 ⋅
pi
p
= � (4.3)

Using the law of large numbers, one can prove that with increasing num-

ber of points the solution of Eq. 4.3 converges to �.

4.2.2 Evolutionary Strategies

An evolutionary algorithm uses nature’s concept of evolution to achieve the

optimal solution for a problem. According to [10] the following iteration

process describes an evolutionary algorithm:

1. Select an initial population randomly and perform function evaluations

on these individuals

2. Perform selection for parents according to their relative fitness

3. Apply crossover and mutation to generated new individuals from the

selected parents

∙ Apply crossover with a fixed probability from two selected parents

∙ If crossover is applied, apply mutation to the newly generated

individual with a fixed probability

16

∙ If crossover is not applied, apply mutation with a fixed probability

to a single selected parent

4. Perform function evaluations on the new individuals

5. Perform replacement according to their relative fitness to determine

the new population

6. Return to step 2 and continue the algorithm until the convergence

criteria are satisfied or the iteration limit is exceeded

At first, a set of random function evaluations, called a population, is gen-

erated (Fig. 4.5 (a)). This population is then evaluated according to its

fitness, meaning the lowest values are the best ones (marked with an ’x’).

The fittest individuals are then used to generate new populations near them

(Fig. 4.5 (b)). This process is then continued until certain termination

criteria are met. The number of function evaluations, a defined fitness or a

certain amount of time can be used as a termination condition. The survivors

at the end of the iteration represent the best function values according to

the evolutionary strategy (Fig. 4.5 (c)).

17

x2

x1

design space

(a)

x2

x1

(b)

x2

x1

(c)

Figure 4.5: Evolutionary strategy

18

Chapter 5

Structural Optimization

Structural optimization has to be seen as a design tool. A short example

should illustrate this: if one can manage to reduce the weight of a car in a

way that the fuel consumption is reduced by only one percent, this would

lead to enormous fuel savings. In Germany for example, calculated with an

average kilometrage of about 15.000 km per year and an average consumption

of 10 liters per 100 km, this would sum up to a reduction of 450.000.000 liters

per year [18]. The potential for optimization is huge, but it is often not clear

which way to pursue for finding it. So, the challenge for the engineer is to

find out the changeable parameters and to define criteria to quantify the

outcome. Two typical tasks for structural optimization might be as follows:

1. Minimize the weight of a structure without increasing the stresses or

displacements above the critical threshold.

2. Maximize the lowest eigenfrequency without influencing the weight.

For every optimization, one needs a corresponding model to represent the

optimization task and to abstract it into a mathematical relationship. If

the task is very simple, an analytical model might be the best choice. When

approaching more complex problems, the potential of analytical methods will

certainly be exceeded and numerical methods will need to be applied. Several

different numerical methods, e.g., the finite element method or the finite

difference method, have been developed to assist the engineer in fulfilling his

tasks.

19

Figure 5.1: Flow chart of a typical optimization loop

When one has successfully defined methods to quantify the optimization

result several more questions need to be answered:

∙ When is the optimal solution reached? Which objective function value

needs to be reached to satisfy the needs?

∙ Which are the restrictions, e.g., which critical deformations are not to

be exceeded?

∙ Which are the changeable parameters, and are these influencing the

objective functions and restrictions?

After defining all the aims and parameters of an optimization, the schema-

tic procedure of an optimization loop is described in Fig. 5.1. The initial

values are used as a first input for the analysis model. This model is then

evaluated and passed to the optimization algorithm, where the actual opti-

mization takes place. After that, the criteria defined earlier are checked if

the optimum has been reached. If so, the optimization task is finished; if

not, the loop starts over from the beginning.

20

5.1 Classification of Structural Optimization

Problems

According to [12], structural optimization problems can be classified by

their type of design parameters and therefore by the strategy that needs to be

applied to solve the problem. Fig. 5.2 illustrates the different optimization

tasks.

∙ The choice of construction method, e.g. a solid girder, a carcass or a

composite structure

∙ The choice of material, e.g., steel, aluminum, wood or composite ma-

terials

∙ Topology optimization: the design parameters define the arrangement

of structural elements

∙ Shape optimization: the geometry of the structure is changed without

influencing its topology

∙ Dimensioning: wall thicknesses and profiles are chosen

5.2 Construction Method

The main task in optimizing a structure is usually to optimize a specific ob-

jective function under certain restrictions. An example for this may be to

minimize the weight of a structure without exceeding a critical stress thresh-

old. In any case one needs an initial design, the first input for the optimiza-

tion. These initial designs can influence the outcome of the optimization

significantly. By following several basic construction principles, these initial

structures can be designed in a way to improve the simulation result or at

least shorten the simulation time.

Several methods for improving the initial design are as follows:

∙ Choice of material: utilize anisotropy and respect material–related

manufacturing issues.

21

construction method

choice of material

topology optimization

shape optimization

dimensioning

steel aluminum composite
material

Figure 5.2: Classification of structural optimization

22

∙ Be sure to determine the loads and boundary conditions as accurately

as possible; distinguish between static, cyclic and dynamic loads. If

necessary, use Multi Body Dynamics to verify the measured results.

∙ Use multifunctional components, which perform several different tasks

simultaneously, to reduce weight.

∙ Use the shortest possible levers to reduce bending stresses.

∙ Beware of buckling and warpage, especially with very thin structures.

∙ Used beads wherever possible in sheet or plate constructions.

Another problem in designing a component is its manufacturing. Optimiza-

tion processes like, e.g., topology optimization can lead to abstract results

that may not be fabricable. Cast components, for example, have to be de-

signed in a way to allow their removal from the die. Components manufac-

tured on a turning lathe need to be axisymmetric and milled parts need to be

designed in a way that the cutting tool is able to reach everywhere necessary.

One should also take economical aspects into account. Depending on

the batch size, the size of the component and several other demands, the

manufacturing method may differ.

Fig. 5.3 shows a few examples for how to improve an initial design and

thereby reduce bending stresses and weight and strenghten the structure.

5.3 Topology Optimization

The topology of a body describes how many voids it contains. The exact

shape of the voids and their borders are not exactly defined. Topological

properties are the most general properties of a body. Fig. 5.4 (a) shows two

topologically equivalent bodies, they belong to the same topological class.

Topological classes are distinguished by their degree of region connectivity, fig

5.4 (b) shows a simply, doubly and three times connected shape. (n–1) “cuts”

are necessary to transform a n–connected region into a simply connected one,

23

bending

torsion

frames

plates

Figure 5.3: Examples for improving an initial design

24

(a)

(b)

(c)

Figure 5.4: Topologically identical (a) and different (b, c) bodies

Fig. 5.4 (c) shows the transformation of a three times connected region into

a simply connected one.

Topology optimization represents a very time efficient way for optimiz-

ing a structure in the early design stage. It is only necessary to define the

design space, the fixed regions called “frozen elements” which are not to be

removed, the position, direction and value of the forces and the boundary

conditions, and the optimizer will find the best solution for the problem

regarding a specific objective function. This provides a way to design com-

pletely new structures, without knowing a–priori what they might look like.

Hence, topology optimization is a tool often used very early in a design pro-

cess to create an initial design which is then used as an input for further

optimization. A typical example for a topology optimization problem would

be to minimize the weight while maximizing the first eigenfrequency.

Modern topology optimization methods can be categorized in different

ways, described in the following sections:

∙ definition of the design space

∙ type of objective function

25

∙ type of design variable

∙ algorithm used

5.3.1 Definition of the Design Space

Topology optimization methods can be classified according to their definition

of the design space. Two different approaches can be used:

∙ Methods for optimizing discrete problems use a space filled with points,

which are then connected by as many rods in as many variations as

possible. From this structure, the optimal rods are then chosen as the

best ones.

∙ Continuous topology optimization does not need the design space de-

scribed above, it only requires the definition of the design space with

its — possibly very complex — boundary conditions. This space is

then filled with finite elements which are then iteratively removed by

the algorithm until the best solution is found.

5.3.2 Type of Objective Function

Most of the topology optimization methods use weight as their objective

function,

fw =

ˆ

V

� dV (5.1)

where � represents the density.

Other possibilities are the strain energy

fE =
1

2

ˆ

V

�ij ⋅ "ij dV (5.2)

where �ijrepresents the stress tensor and "ij the strain tensor, or the mass

moment of inertia

26

(a)

(b)

x

yr

Figure 5.5: Different types of design variables

fM =

ˆ

V

�r2 dV (5.3)

where r represents the distance to the axis of rotation.

Possible restrictions are, e.g.,

∙ stiffness

∙ lowest eigenfrequency

∙ durability

∙ etc.

5.3.3 Types of Design Variables

When using the method of parametrized boundaries, the number of design

variables is very small (Fig. 5.5 (a)). The other method is to divide the

design space into many different very small (finite) elements, each of them

representing a changeable parameter. One can clearly see that this approach

can soon lead to a high number of design variables (Fig. 5.5 (b)).

27

5.3.4 Algorithms

Different types of algorithms are used to solve the problem. All algorithms

implemented in COLIN1 [10], gradient based algorithms and evolutionary

algorithms may be used.

5.3.5 Method of Homogenization

Since it is the most common method in topology optimization, the method

of homogenization is now described in more detail as one example out of the

variety of different approaches available.

The main idea behind this method is to divide the design space into finite

spaces or elements. Each of these elements now represents a design variable.

The goal of the algorithm is to vary the density of each of these elements in

a way to satisfy all the restrictions and objective functions. [5]

An integer function � (xi) is used to describe the material distribution

throughout the design space Ωs. Its values can either be 1 or 0, representing

the presence or absence of material. xi represents the vector of design vari-

ables, each entry corresponds to one finite element. The mass density and

stiffness vectors are thus represented by:

% (xi) = %0 ⋅ � (xi)

C (xi) = C0 ⋅ � (xi)

(5.4)

with the integer function

� (xi) =

⎧

⎨

⎩

1 ∀xi ∈ Ωm

0 ∀xi ∈ Ωs ∖ Ωm

(5.5)

where Ωm represents the set with high density %0 and stiffness C0. With

the strain energy as an exemplary objective function, the following functional

has to be minimized
1Common Optimization Library INterface

28

fE =
1

2

ˆ

Ωs

�ij ⋅ "ij dΩ (5.6)

or, by inserting Hooke’s law,

fE =
1

2

ˆ

Ωs

Cijkl (�) ⋅ "ij ⋅ "kl dΩ (5.7)

Solving this unrestricted problem would lead to the trivial solution of

filling the whole design space with material. To prevent this, a constraint

ensuring a certain target mass is applied.

To achieve the design which satisfies the equation stated above, the al-

gorithm starts to iteratively reduce material in areas with low stresses to

homogenize the stress in the remaining areas. This iteration continuous un-

til certain abortion criteria are reached.

5.4 Shape Optimization

The shape of things is often a compromise between esthetic looks and me-

chanical requirements. These two demands can both be achieved at the same

time, as shown in many structures of nature like, e.g., trees. Mattheck per-

formed extensive studies on the shape of trees [13, 14]. He discovered that

trees grow in a way to homogenize their stresses and therefore minimize them.

He also discovered that trees strengthen themselves by developing denser and

differently shaped structures when experiencing periodical loads such as from

wind. The same applies if the tree gets somehow damaged: damage–induced

notches are also repaired in a way to reduce the surface stress.

In contrast to topology optimization, shape optimization deals with chang-

ing the shape of objects while leaving their topology untouched. This is

mainly done by altering the surface of a body; thereby it is possible to in-

crease the lifetime by reducing the surface stresses. There is an almost infi-

nite variety of methods for shape optimization, modern methods are almost

always computer aided. One possibility is to change the coordinates of the

29

Figure 5.6: Trees changing their shape when experiencing periodical loads
[13]

finite element nodes on the bodies’ surface, these nodes are parametrized and

their position is varied until the optimum is reached. Another possibility it to

parametrize the curve by defining it via control points. The following curves

are mainly used:

∙ Splines

∙ NURBS2

∙ Bézier curves

5.4.1 Law of Stress Decay

H. Neuber also performed studies on stress distributions. In 1958 he formu-

lated his law of stress decay [15]:

2Non–Uniform Rational B–Spline

30

"Die bei allen Kerbproblemen auftretende starke Spannungsüber-

höhung hat in der Umgebung der hochbeanspruchten Zone stets

eine beträchtliche Abminderung der Spannung zur Folge. Je

höher die Spannungsspitze ausgebildet ist, um so stärker erfolgt

das Abklingen der Spannungen mit zunehmender Entfernung von

der hochbeanspruchten Zone. Es handelt sich gewissermaßen um

ein Reaktionsgesetz der Kerbwirkung."

This law states that every increase in stress due to notches leads to a decrease

in stress in the notches’ surroundings. The higher the stress peak, the faster

the stress decay takes place in the notches’ neighborhood.

5.4.2 Stress Homogeneity in the Variational Space

G
*

A

B=B‘

Gk

G
*

A

B

Gk

B‘

(a) (b)

? ?

Figure 5.7: Stress homogeneity in the variational space

E. Schnack developed two hypotheses in 1978 regarding the stress homogene-

ity in the variational space [17]. If Γk represents the notch surface between

point A and point B, Λ represents the part of the notch surface between

point A and point B′ not on the boundary of Γ∗, then the following two

hypotheses can be made:

a) If there is a notch surface Γk within a defined region Γ∗ between two

fixed points A and B with constant tangential stress �t, then the resulting

31

notch stress is minimal (Fig. 5.7 (a)).

b) If there is a notch surface Γk within a defined region Γ∗ between two

fixed points A and B with constant tangential stress �t then the resulting

notch stress is minimal if the interior segment Λ of Γk with constant ∣�t∣ is

maximum and the tangential stress∣�t∣ on the boundary segment (Γk − Λ) is

smaller than the constant stress on Λ (Fig. 5.7 (b)).

32

Chapter 6

Introduction to DAKOTA

"The DAKOTA (Design Analysis Kit for Optimization and

Terascale Applications) toolkit provides a flexible, extensible in-

terface between analysis codes and iterative systems analysis meth-

ods." [3]

DAKOTA was developed by Sandia National Laboratories using an object–

oriented approach; it was coded using C++ as a programming language.

Originally, it was designed for Linux operating systems; a version for the

UNIX API Cygwin is available to provide a possibility for running DAKOTA

in a Microsoft Windows environment. Since the interface described in this

thesis was developed in a Windows environment, the Cygwin version was used

throughout. A generic interface is provided to ensure a flexible framework

for designing an interface between DAKOTA and an arbitrary program. The

following capabilities are included:

∙ Design of experiments

∙ Least squares methods

∙ Uncertainty quantification

∙ Parametric studies

∙ Optimization methods

33

Figure 6.1: Overview of DAKOTA

– gradient based

– gradient free

Basically, DAKOTA takes the input variables from the user input, and pro-

vides them for the interface to the arbitrary program (in this case, Abaqus).

Afterwards, when the program has finished its calculations, DAKOTA reads

the program’s output and runs its internal iterator (e.g., optimizer or a simple

parametric study) to provide the new variable values for the next program

call. Fig. 6.1 gives a basic overview of this process. As the cloud empha-

sizes, DAKOTA works as a black–box optimizer. It only knows the values of

the parameters and objective functions but does not know their meaning or

relation.

6.1 DAKOTA Input File

DAKOTA is controlled using a text input file. Fig. 6.2 shows an example of

this input file. The file is divided into several groups:

∙ Strategy

34

∙ Method

∙ Model

∙ Variables

∙ Interface

∙ Responses

The strategy section controls DAKOTA’s advanced meta–procedures, e.g.,

hybrid optimization, Pareto optimization or multi–start optimization. Fur-

thermore, it specifies the graphical output and the tabular data output.

The method section specifies the iterative technique that DAKOTA will

use. In the example in Fig. 6.2 the keyword multidim_parameter_study is

used which specifies a multidimensional parameter study without any opti-

mization. The range of values for both variables will be evenly divided into 5

partitions (6 data points) starting with the lower bound and ending with the

upper bound. Other choices for the method section could be optimization

methods or data sampling techniques.

In the model section, the model used by DAKOTA is specified. The term

"model" is defined as follows:

"A model provides the logical unit for determining how a set

of variables is mapped into a set of responses in support of an

iterative method." [9]

One can choose between a single interface, as done in the example in Fig.

6.2, or a more sophisticated multi–interface model.

The variable section specifies all the information needed for the parame-

ters of the optimization. Variables can be either continuous (as in the exam-

ple shown) or discrete, they can be classified as design variables, uncertain

variables, or state variables. In the example in Fig. 6.2 there are two con-

tinuous variables labeled ’angle’ and ’width’. Their lower bounds are 10 and

15, their upper bounds are 20 and 25, respectively.

35

In the interface section, the method of exchanging data with the analysis

code is specified. This example shows a system call interface; more detailed

information on the interface section is provided in section 6.2.

The responses section of the input file defines the data that will be re-

turned to DAKOTA from the analysis code. Information about the objective

function, constraints, gradients and Hessian matrix is provided. A single ob-

jective function, no gradients and no Hessian matrix are used in the present

example.

6.2 DAKOTA Interfaces

Several options are provided for implementing an interface between the anal-

ysis code and the iterator. These choices are discussed in what follows. We

provide only a small overview of the different approaches; for more detailed

instructions the reader is referred to [9].

6.2.1 Direct Function

The direct function interface can be used for interfaces between simulations

that are directly linked into the DAKOTA executable. This method creates

the least overhead because there is no need for files since the information is

passed directly within DAKOTA. Therefore this is the method of choice if

one wants to run massively parallel simulations with multiple function calls.

On the other hand, this is also the interface which takes the most effort to

create, since it is necessary to implement the analysis code into a library with

a subroutine interface. The following exemplary code shows the definition of

the direct interface (Fig 6.3).

6.2.2 System Call Interface

The system call approach includes an analysis code by calling it via the

system function from the standard C library [7]. This call then creates a new

36

DAKOTA INPUT FILE

strategy ,

single_method

graphics ,tabular_graphics_data

method ,

multidim_parameter_study

partitions 5 5

model ,

single

variables ,

continuous_design = 2

lower_bounds 10 15

upper_bounds 20 25

descriptors ’angle ’ ’width ’

interface ,

system

asynchronous evaluation_concurrency = 1

analysis_driver = ’/cygdrive /.../ Python/ipo.bat ’

parameters_file = ’params.in’

results_file = ’results.out ’

file_tag

file_save

responses ,

num_objective_functions = 1

no_gradients

no_hessians

Figure 6.2: Example of a DAKOTA input file

interface

direct

analysis_driver = ’rosenbrock ’

Figure 6.3: Example code for the direct interface

37

interface ,

system

analysis_driver = ’text_book ’

parameters_file = ’text_book.in’

results_file = ’text_book.out ’

Figure 6.4: Example code for the system call interface

2 variables

1.000000000000000e+01 x

2.000000000000000e+00 y

1 functions

1 ASV_1

2 derivative_variables

1 DVV_1

2 DVV_2

0 analysis_components

Figure 6.5: Example for a parameter file

process which runs the simulation code. Communication between DAKOTA

and the analysis code is handled via basic file I/O1. An input and an output

file are specified and all required information is transferred through these

files. This approach creates much more overhead and more processes then

the direct interface. On the other hand it is much easier to implement because

there is no need to become acquainted with the DAKOTA source code. One

only needs to implement a simple file I/O operation to complete the task.

This method is most commonly used because of its simplicity. An example

for a system call interface is shown in Fig. 6.4.

This interface was also chosen for the application developed in this the-

sis. The increase in overhead does not slow down the iteration significantly

because the finite element simulation is much more time consuming. This

makes the system call the most suitable interface for the present application.

Fig. 6.5 shows an example for a parameter file generated by DAKOTA

which hands the parameter values to the simulation code. There are two

variables defined in this example, one named ’x’ with a value of 10 and one

1Input/Output

38

599.436279699 f1

Figure 6.6: Example for a result file

Integer Code Binary Expression Meaning

7 111 Get Hessian matrix, gradient and value

6 110 Get Hessian matrix and gradient

5 101 Get Hessian matrix and value

4 100 Get Hessian matrix

3 011 Get gradient and value

2 010 Get gradient

1 001 Get value

0 000 No data required

Table 6.1: Active set vector

named ’y’ with a value of 2. One objective function has been defined.

ASV stands for ’Active Set Vector’ which contains an integer describing

all the possible combinations of value, gradient and Hessian matrix. The

most significant bit corresponds to the Hessian matrix, the intermediate one

to the gradient and the least significant one to the value of the objective

function. Table 6.1 shows a list of valid values for the active set vector with

their meaning. The ASV informs the simulation code which values need to

be returned, of course the gradients and Hessian matrix can only be returned

if they are analytically available.

The next line gives the number of derivative variables, in this case two,

followed by the ’DVV_1’ and ’DVV_2’ representing the derivative variable

identifiers. The final line provides the analysis components which are used

to pass additional information to the simulation code if necessary.

39

interface ,

fork

input_filter = ’test_3pc_if ’

output_filter = ’test_3pc_of ’

analysis_driver = ’test_3pc_ac ’

parameters_file = ’tb.in’

results_file = ’tb.out ’

file_tag

Figure 6.7: Example code for the fork interface

6.2.3 Fork Interface

The fork simulation interface uses the Linux functions fork, exec and wait of

the Linux fork function family to manage simulation codes and simulation

drivers [1]. Fork and vfork are used to create a copy of the DAKOTA process,

execvp replaces this copy with the simulation code and DAKOTA finally waits

using wait or waitpid until the simulation code has finished. An example for

a DAKOTA input file using the fork interface is given in Fig. 6.7.

40

Chapter 7

Interface for Parametric

Optimization (IPO)

As has been mentioned in the introductory remarks, the aim of this thesis

is to develop a flexible program interface between the finite element solver

Abaqus and the open source optimization library DAKOTA. With this inter-

face, one should be able to parametrically optimize a component and also to

use all capabilities of DAKOTA available. The Abaqus Python API1 serves

as an easy–to–use basis for the coding, since all Abaqus pre– and postpro-

cessing commands are available in this API. An object–oriented approach

fits best into the existing API and allows an easy further extension of the

interface. The interface combines the advantages of both software packages.

One can use the finite element solver Abaqus, which is capable of solving

highly nonlinear (material as well as geometric nonlinearities) engineering

problems, and join it with the extensive optimization and parametric study

capabilities of DAKOTA. The Abaqus Python API ensures a flexible program

architecture and an easy interface for ongoing extensions.

1For more information on the Abaqus Python API please refer to [21]

41

7.1 Object Structure

As mentioned above, an object–oriented programming approach is used for

implementing the interface. The following section will focus on describing

the principles of object–oriented programming and the object data structure

used for linking the two programs.

Object–oriented programming uses “objects” to store data in a more ef-

ficient and organized way. Abstract objects include data fields and methods

for manipulating them. The main idea behind this is to encapsulate the data

from different objects to avoid accidental manipulation of these data sets.

Classes are used to define abstract things (objects), their properties (vari-

ables) and their capabilities (methods). Instances of these classes, called

objects, are then created to store all the data needed. A simple example

for a class is a bank account. It has certain properties, e.g. owner, bank

corporation, amount of money on it etc., and different capabilities like, e.g.,

adding or transferring money. When creating a new bank account, the new

object inherits all the variables and methods from the original class.

Fig. 7.1 shows the structure used for the interface. The following classes

are used:

∙ LOG

∙ PARAMETER

∙ OBJECTIVEFUNCTION

∙ CONSTRAINT

∙ VARIABLE

∙ VARIABLEKEY

∙ IPO

The LOG class is used for creating and editing the log file. All actions taken

by the interface are stored in this file. This proves very useful for debugging

when encountering miscellaneous errors.

42

Figure 7.1: Object structure of the IPO
Data fields are written beneath the class name, methods are written in italics.
The lines represent the connectivity of the classes. The numbers stand for
the amount of instances of the class on the other end of the line which are
included in the class right next to the number.

43

The PARAMETER class stores all information needed to identify a pa-

rameter. Parameters are used for storing information about the changeable

values of the model, e.g. diameter, height or width. These parameters are

then changed during the simulation to provide different objective function

results.

Output information gained after the simulation is stored in the OBJEC-

TIVEFUNCTION and CONSTRAINT classes. The user specified objective

function or constraint is gathered when the Abaqus simulation is finished

and stored in objects of these classes.

VARIABLES are combined into objective functions and constraints. This

is necessary since one objective function or constraint can consist of several

different variables. One variable represents one output from Abaqus, e.g.

strain, stress or displacement.

The VARIABLEKEY class is used internally for temporally storing in-

formation about the key indexes used by Abaqus. It sorts the data in a way

to be easy accessible by the interface.

The IPO (Interface for Parametric Optimization) class is used as a basis

for all the other classes. It contains all the other classes and several methods

for controlling them. All the actions and changes made by the interface are

controlled from here. A detailed description of the operations will be given

in section 7.3.

7.2 IPO External Workflow

Fig. 7.2 is used to illustrate the general workflow of the interface for para-

metric optimization. As stated before, the UNIX API Cygwin is used to

run DAKOTA in a Microsoft Windows environment. Hence, DAKOTA is

started from the Cygwin shell at first. After reading the DAKOTA input

file, a Windows batch file is launched through the DAKOTA system call in-

terface described in section 6.2.2. The Windows batch file then creates a

new folder in order to keep all the files created by Abaqus organized, changes

the working directory to the newly created one and starts Abaqus with the

option -nogui and the appropriate input and output files used by DAKOTA.

44

Figure 7.2: IPO workflow

@echo off

if exist abaqus_ %1 goto next

mkdir abaqus_ %1

:next

cd abaqus_ %1

abq671 cae nogui="D:\...\ ipo.py" -- %1 %2

Figure 7.3: Windows batch file

This option starts Abaqus without the GUI2 and executes the IPO Python

script. The Windows batch file is shown in Fig. 7.3. The Python script then

executes the main program of the interface described in detail in section 7.3.

After the script is finished, Abaqus is closed and DAKOTA continues with

the next iteration.

2Graphical User Interface

45

7.3 IPO Internal Workflow

After executing Abaqus CAE with the -nogui option, the Python routine is

started. Fig. 7.4 expands Fig. 7.2 with the internal Python workflow.

7.3.1 Reading the Input Files

At first, the Python script reads the parameter input file provided by

DAKOTA (see section 6.2.2). Then it reads an additional input file required

for the interface, the IPO input file. This file provides information about the

Abaqus calculation and the specified objective functions. Fig. 7.5 shows an

exemplary IPO input file.

cae_name = v1.cae

model_name = v1

mesh_size = 0.075

mesh_factor = 0.1

num_cpus = 1

pre_memory = 1024

standard_memory = 1024

variable

name = pressure

step = apply_pressure

frame = -1

output = CPRESS

component = S11

instance = p32 -2

element_set = tip

objective_function

value = average(absolute(pressure))

Figure 7.5: IPO input file

The first block provides information needed for the Abaqus calcula-

tion. cae_name represents the name of the simulation file, model_name

the name of the Abaqus model, mesh_size the seed size for remeshing the

46

Figure 7.4: IPO flow diagram with internal workflow

47

part, mesh_factor the mesh deviation factor, num_cpus the number of cen-

tral processing units used for the simulation and pre_memory and stan-

dard_memory the amount of memory that need to be allocated for the sim-

ulation.

Beneath that, the variable section follows. As stated in section 7.1, the in-

terface uses variables to combine them into objective functions. Each variable

represents a field output provided by Abaqus. All the information needed

for the definition of these field outputs is given in this section. The name

represents an unique identifier for internal variable handling. Step and frame

define the analysis time at which to take the output, the integer value for

frame can also be negative if one wants to define the time starting from the

last frame. The field output is defined by the keyword output ; for more in-

formation on the available keywords please refer to [20]. If the field output

consists of multiple values, e.g., the stress tensor, further definition of the

required output can be made with the component keyword. In this example

the component keyword is not needed, since the field output request CPRESS

is a scalar value; therefore this line has been commented using the hash key.

With the instance keyword one can specify the part instance from which

to take the field output; it is also possible to define a specific element set

by using the element_set keyword. When defining the element set within a

part instance, both keywords (instance and element_set) are required; when

defining the element set within the assembly, only the element_set keyword

is required.

Objective functions are then defined using the objective_function key-

word. Those can consist of several variables; variable names are used as

placeholders for their respective values. This is done using vector operations

provided by the Python library ’numeric’ [4]. The value string is evaluated

in Python using the exec routine, this allows a very flexible calculation of the

objective functions and constraints. One can define an arbitrary objective

function by mathematical combination of any output variable provided by

Abaqus.

In this example, the absolute value of the pressure is averaged throughout

the instance p32–2.

48

objective_function

value = max(integral(absolute(disp)* absolute(mises)))

Figure 7.6: A more sophisticated example for an objective function

average

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f1

f2

...

fn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
1

n

n
∑

i=1

∣fi∣ (7.1)

Eq. 7.1 illustrates the example given in Fig. 7.5, the vector values

f1 . . . fn represent the nodal values for the output variable CPRESS with

n being the number of nodes.

A more sophisticated example is given in Fig. 7.6; Eq. 7.2 describes the

mathematical evaluation. The integral over time is evaluated for each node,

the maximum value serves as an objective function. This integral function

is not included in the Python numeric library, it has been coded separately

within the IPO.

max
n

(
ˆ

∣un∣ ⋅ ∣�Misesn ∣ dt

)

(7.2)

7.3.2 Changing the Parameters

After reading the input files, the script continues to find and change the spec-

ified parameters. Abaqus provides a possibility to label certain dimensions

with a name; this option is used to identify the dimension that is supposed

to change.

Fig. 7.7 shows the Abaqus parameter manager and a sketch with the

dimension labeled ’y’ marked in red.

All the information gained from the input files is used to find the correct

parameter, if the parameter is not found an error message will be written

49

Figure 7.7: Abaqus parameter manager

to the log file. The parameter name has to be unique throughout the whole

Abaqus model in order to be identified.

One has to make sure that the sketch is dimensioned correctly. Over– or

underdetermining the sketch will lead to incorrect model regeneration and

result in an error. When underdeterminig the sketch Abaqus may also change

unintended other dimensions when updating the parameter.

7.3.3 Remeshing the Structure

Right after updating the parameters to their respective values the structure

is remeshed. The values specified in the IPO input file (mesh_size and

mesh_factor) are used to remesh the part. The meshing strategy remains the

same as defined earlier by the user in the model. Fig. 7.8 shows an example

for the mesh controls; here, quad–dominated elements with the advancing

front algorithm are used.

50

Figure 7.8: Mesh control in Abaqus

7.3.4 Starting the Simulation

The next step is to submit the model for simulation. The parameters defined

in die IPO input file (num_cpus, pre_memory and standard_memory) are

used to define the properties of the job. After submitting the job, the script

waits until the simulation is completed.

7.3.5 Reading the Objective Function

After the simulation has successfully finished, the Abaqus ODB file3 is opened

to evaluate the objective function and the optional restrictions. The objective

functions and restrictions are then calculated as described in section 7.3.1.

All variables used in one objective function or constraint have to be from the

same element set and the same step in order to ensure proper execution of

the vector operations. If not done correctly this may otherwise lead to faulty

matrix dimensions and result in an error.

7.3.6 Writing the Output File

At last all the data gathered for the objective function and the constraints

are written to the result output file. Abaqus now closes and the data is

3Output Database file

51

passed back to DAKOTA which continues its iteration from the beginning.

7.4 Restrictions

The interface for parametric optimization only runs under certain conditions.

The restrictions are as follows:

∙ It was developed and tested with Abaqus 6.7–1. There is no guarantee

that the program will run under any other version of Abaqus, especially

not with an older one. Further testing and coding would be needed in

order to get IPO working with newer versions of Abaqus.

∙ Only the Cygwin version of DAKOTA was tested with the interface.

For use of other DAKOTA versions the input files, more precisely the

application paths need to be modified.

∙ The operating system used was Windows XP Professional 32 bit. For

the use with other operating systems the paths and possibly more so-

phisticated settings need to be changed.

52

Chapter 8

Example Simulations

The following chapter illustrates the capabilities of the Interface for Para-

metric Optimization (IPO) by explaining certain representative examples.

8.1 Simple Truss Construction

This example was taken from [8] which treats optimization with evolutionary

algorithms and uses this example to illustrate the capabilities of these meth-

ods. A simple truss construction consisting of 4 nodes and 5 trusses is shown

in Fig. 8.1. It features two bearings, one being a fixed bearing and the other

one being a floating one. The force F is applied at the top left corner where

trusses number 1 and 2 meet. The bottom left node is parametrized by the

variables x and y and therefore represents the moveable node.

This simple truss construction example was chosen to illustrate the gen-

eral capabilities of the IPO. It may look trivial at first sight, but will lead to

surprising insights in the following sections. Several approaches with differ-

ent optimization algorithms are used to demonstrate the varying outcomes

of these methods.

The aim of the optimization is to find the optimal values for x and y such

that the weight of the structure is minimized. Eq. 8.1 shows the formula

used for computing the objective function.

53

F

a

a

x

y

1

2

3

4

5

Figure 8.1: Simple truss construction

f = �

n
∑

i=1

Ai ⋅ li (8.1)

Where � represents the density, n the number of beams, 5 in this case, Ai

the cross sectional area, li the length of the individual beams. For simplifi-

cation purposes the constant material density � was chosen to be 1 kg/mm3.

To determine the individual cross sectional area of the beams, the forces

acting in them are calculated and afterwards divided by the nominal design

stress �max. This results in the minimal allowable area for each beam, but

does not consider the possibility of failure due to buckling.

Ai =
∣Fi∣

�max

(8.2)

�max was also set to 1MPa because of simplification reasons.

The width and height of the truss a where chosen to be 25mm.

8.1.1 Finite Element Model

The truss construction given in Fig. 8.1 was implemented in Abaqus using a

two–dimensional wire part. Abaqus provides two possibilities for character-

izing the deformation behavior of wire structures:

∙ beam

54

∙ truss

Beams can absorb axial and bending stresses, while trusses can only trans-

fer axial stresses. Trusses were chosen in this example, according to the

analytical model (see section 8.1.2).

A linear elastic material formulation was used to describe the deforma-

tion behavior of the truss construction, the parameters for this model are

summarized in Tab. 8.1.

parameter value unit

Young’s modulus 210000 MPa

Poisson’s ratio 0.3 –

Table 8.1: Linear elastic material constants

A force F of 1 Newton was applied as shown in Fig. 8.1. To be able

to compare the results of the finite element simulation with the analytical

calculation, the amount of the force was chosen very small compared to the

material properties. This is necessary to keep the deformations to a mini-

mum, since the analytical calculation was done using a first order approach

which does not take the deformation of the nodes and beams into account.

This approach is suitable for most such engineering constructions, because

massive deformations of the structure will definitely lead to malfunction.

Truss sections in Abaqus need to have a cross sectional area; for simpli-

fication purposes this area A0 was chosen to be 1mm2. With this area and

the resulting stress �i in each beam it is possible to calculate the acting force

Fi according to

Fi = A0 ⋅ �i (8.3)

In order to calculate the objective function described in Eq. 8.1 the

following equations need to be solved

fi = � ⋅ Ai ⋅ li (8.4)

55

using Eq. 8.2

fi = � ⋅
∣Fi∣

�max

⋅ li (8.5)

and Eq. 8.3

fi = � ⋅
A0 ⋅ ∣�i∣

�max

⋅ li (8.6)

with the length li being

li =
V0

A0

(8.7)

Eq. 8.6 becomes

fi = � ⋅
∣�i∣

�max

⋅ V0 (8.8)

Since � and �max are 1 the above equation simplifies to

fi = ∣�i∣ ⋅ V0 (8.9)

This objective function is now easily applicable for the IPO (see section

7.3.1) because the acting stress �i and the original volume V0 are available

as field output in Abaqus. �i (stress) is represented by the field output S11

and the volume V0 (volume) is represented by the element volume EVOL.

The resulting IPO input file is listed in Fig. 8.2.

The simplifications made within this process do not need to be made in order

to run this simulation with the IPO, all are only made to simplify the example

for this manner.

8.1.2 Model Verification

To verify the finite element model, the forces acting in the truss construction

pictured in Fig. 8.1 were analytically calculated using Ritter’s method, the

56

variable

name = volume

step = Step -1

frame = -1

output = EVOL

instance = fachwerk -1

variable

name = stress

step = Step -1

frame = -1

output = S

component = S11

instance = fachwerk -1

objective_function

value = sum(abs(volume*stress))

Figure 8.2: IPO input file for the simple truss construction

parameters where chosen to be x = 10 mm and y = 15 mm. The stress

results are illustrated in Tab. 8.2 and the volume results in Tab. 8.3.

As one can clearly see, the two calculation methods result in completely

the same stresses and length of the beams (Table 8.2, 8.3). Therefore they

both provide the same objective function value of 86.6668 kg.

8.1.3 Parametric Study

Because of the small amount of only two variables, a parametric study can

be performed to get a general overview of the shape of the objective function.

The study was run within the intervals

−25 ≤ x ≤ 50

and

−25 ≤ y ≤ 50

57

beam analytical [MPa] finite element [MPa]

1 0.666667 0,666667

2 -1.20185 -1.20185

3 -1.20185 -1.20185

4 0,666667 0.666667

5 0,471405 0.471405

Table 8.2: Comparison of the analytical and the finite element stress calcu-
lations

beam analytical [mm] finite element [mm]

1 25 25

2 18.0278 18.0278

3 18.0278 18.0278

4 25 25

5 21.2132 21.2132

Table 8.3: Comparison of the analytical and the finite element volume cal-
culations

58

Figure 8.3: Parametric study of the objective function
(a) represents a three dimensional surface plot of the analytically calculated
objective function according to Eq. 8.9, (b) shows a 2d surface plot of the
analytically calculated objective function viewed from above. (c) and (d)
display the corresponding finite element calculations.

59

minima x [mm3] y [mm3] value [kg]

1. 8 18 82.876

2. 43 -18 482.889

3. -1 -1 104.080

4. -25 -25 99.999

5. 26 25 104.080

6. 50 50 99.999

Table 8.4: Local minima

Despite the seemingly simple problem, the behavior of the objective func-

tion is all but simple. Fig. 8.3 shows the shape of the objective function

calculated using a parametric study. It is multimodal and has, besides one

global minimum, several local minima. All local minima are listed in Tab.

8.4, the first one represents the global optimum. These values are not the

exact values of the minima since the resolution of the parametric study was

only 75×75 and therefore the objective function was only evaluated at integer

values.

The difference between the analytical calculation (Fig. 8.3 (a) and (b))

and the finite element calculation (Fig. 8.3 (c) and (d)) is very small. The

general shape is very similar, only the high peaks differ slightly from each

other. This is because the structure is very distorted at these points and

therefore the deformations are relatively large resulting in a difference be-

tween the analytical and the finite element calculation due to reasons de-

scribed in section 8.1.1.

One can clearly see the scale of a seemingly simple looking structural

optimization problem at this structure. This truss construction represents

an excellent example for this manner because of its unique shape, several

different outcomes of different algorithms will be discussed later.

60

method ,

coliny_ea

max_iterations = 1000

max_function_evaluations = 500

population_size = 50

fitness_type merit_function

mutation_type offset_normal

mutation_rate 1.0

crossover_type two_point

crossover_rate 0.0

replacement_type chc = 10

Figure 8.4: DAKOTA input file for the evolutionary algorithm, first run

8.1.4 Optimization

In the following sections, different optimization algorithms will be applied to

the truss construction described above in order to illustrate their individual

strengths and weaknesses.

8.1.4.1 Evolutionary Algorithm

As a first approach an evolutionary algorithm was used to optimize the simple

truss construction. The coliny_ea1 algorithm included in DAKOTA was the

method of choice, for a more detailed documentation of the COLIN package

the reader is referred to [10, 9].

Fig. 8.4 shows the method definition within the DAKOTA input file. A

maximum of 1000 iterations with a maximum of 500 function evaluations was

chosen. Each population contains of 50 individuals, the best 10 are chosen

to survive during mutation.

The first run with the evolutionary optimizer leads to the solution il-

lustrated in Fig. 8.5. This point represents the global minimum shown in

Tab. 8.4, all differences are within the computational tolerance. Since the

evolutionary strategy is a nondeterministic algorithm, its outcome depends

on the number of function evaluations. Fig. 8.6 shows the evolution of the

objective function during the first run. Since there are several local minima

1Common Optimization Library INterface = COLIN

61

F

x = 7.161 mm
y = 17.203 mm

f = 82.862 kg

1

2

3

4

5

x
y

Figure 8.5: Solution found using the evolutionary algorithm, first run

Figure 8.6: Evolution of the objective function, first run

the clear trend downwards is a little bit distorted. To improve the outcome

of this simulation further, a second simulation was run using more function

evaluations.

The second simulation was done using the parameters given in Fig. 8.7.

This time, a maximum number of 5000 iterations with a maximum number

of 2500 function evaluations was selected. Out of a population size of 80, 20

individuals survived each mutation.

The second run results in a similar outcome, the objective function differs

only by 0.019 kg from the first run and is also in the range of tolerance. For

the structure to be symmetric along beam number 5 the following equation

needs to be fulfilled:

62

method ,

coliny_ea

max_iterations = 5000

max_function_evaluations = 2500

population_size = 80

fitness_type merit_function

mutation_type offset_normal

mutation_rate 1.0

crossover_type two_point

crossover_rate 0.0

replacement_type chc = 20

Figure 8.7: DAKOTA input file for the evolutionary algorithm, second run

F

x = 7.339 mm
y = 17.699 mm

f = 82.843 kg

1

2

3

4

5

x

y

Figure 8.8: Solution found using the evolutionary algorithm, second run

63

Figure 8.9: Evolution of the objective function, second run

x+ y = 25 (8.10)

The second simulation results in a smaller error regarding Eq. 8.10 and

is therefore more symmetric. Hence the second attempt leads to a better

objective function value, although the difference is very small.

Fig. 8.9 shows the evolution of the objective function and the respective

parameter values during the second run. The descending trend has now be-

come much more clearer due to the increased number of function evaluations.

A graphical illustration version of the solution is depicted in Fig. 8.8.

One can easily derive the advantages of evolutionary algorithms from

this example: they find the global optimum even if the objective function

64

method ,

conmin_frcg

max_iterations = 1000

convergence_tolerance = 5e-4

\vdots

responses ,

num_objective_functions = 1

numerical_gradients

method_source dakota

interval_type forward

fd_gradient_step_size = 1.e-2

no_hessians

Figure 8.10: DAKOTA input file for the gradient based algorithm

is very complex and contains several local minima. On the other hand,

an evolutionary algorithm needs a certain amount of function evaluations in

order to converge to this minimum. In this case, the limitation to 500 function

evaluations was not enough to converge in the first place; an increase to 2500

was found to be adequate.

8.1.4.2 Gradient Based Algorithm

The second algorithm applied to this example was the Fletcher–Reeves con-

jugate gradient algorithm implemented as conmin_frgc in the DAKOTA

CONMIN (constrained minimization) package [22, 9]. Fig. 8.10 shows parts

of the input file used for this simulation. A maximum number of 1000 itera-

tions with a convergence tolerance of 5 ⋅ 10−4 was used. Since the gradient is

not analytically available, DAKOTA calculates it internally using the forward

difference method and a step size of 1 ⋅ 10−2.

To demonstrate the influence of the initial values, the parameter interval

was divided into nine equally spaced parts. Nine different simulations with

their initial points at the center of each of these intervals where run. All initial

values and their respective outcomes are listed in Tab. 8.5. The best values

where gained by simulation number 7 with the final values x = 7.313 mm

and y = 17.686mm. All solutions are graphically illustrated in Fig. 8.11.

65

initial final

x [mm] y [mm] x [mm] y [mm] value [kg]

1. -13 -12 -1.955 -1.953 107.845

2. 12 -12 -3.921 -3.906 111.853

3. 37 -12 42.537 -17.537 482.852

4. -13 13 7.015 17.588 82.851

5. 12 13 7.310 17.690 82.843

6. 37 13 28.908 28.925 115.899

7. -13 38 7.313 17.686 82.842

8. 12 38 7.419 17.993 82.851

9. 37 38 26.780 26.780 107.123

Table 8.5: Initial points and outcomes for the gradient based algorithm

66

x = -1.955 mm
y =

f = 107.845 kg

-1.955 mm
x = -3.921 mm
y =

f = 111.853 kg

-3.906 mm
x = 42.537 mm
y =

f = 482.852 kg

-17.537 mm

x = 7.015 mm
y =

f = 82.851 kg

17.588 mm
x = 7.310 mm
y =

f = 82.843 kg

17.690 mm
x = 28.908 mm
y =

f = 115.899 kg

28.925 mm

x = 7.313 mm
y =

f = 82.842 kg

17.686 mm
x = 7.419 mm
y =

f = 82.851 kg

17.993 mm

F

x = 26.780 mm
y =

f = 107.123 kg

26.780 mm

F F

F F F

F F F

(3)(2)(1)

(6)(5)(4)

(9)(8)(7)

Figure 8.11: Solution of the gradient based optimizer

67

Only four out of nine initial points actually lead to the global minimum

(simulations number 4, 5, 7 and 8), the other ones got stuck in a local min-

imum. This illustrates the main disadvantage of gradient based algorithms:

they tend not to overcome local minima and therefore lead to incorrect re-

sults. On the other hand, also the main advantage of gradient based algo-

rithms is highlighted: their enormous speed of convergence. On average it

took the CONMIN algorithm only 22 iterations to converge to a minimum,

compared to 500 and 2500 for the evolutionary algorithms, respectively. This

saves a huge amount of simulation time.

Fig. 8.12 shows the path of the gradient based algorithm while descending

downwards, triangles represent the initial point, squares the final ones.

8.1.4.3 Hybrid Algorithm

The DAKOTA hybrid algorithm provides a possibility to combine the ad-

vantages of both gradient based and gradient free algorithms. One can run

several different algorithms one after the other and use the solution of the

first one as an input for the following one. This is useful if the shape of

the objective function is rough or if there are many different local minima.

The evolutionary algorithm first scans the whole design space for the best

evaluation, afterwards this point is used as a starting point for the gradient

based algorithm which refines the solution using the first derivative of the

objective function.

In this example, the algorithms investigated previously are combined.

Fig. 8.13 shows parts of the input file. First the evolutionary algorithm runs

800 function evaluations, afterwards the gradient based algorithm refines the

search. The solution found with the hybrid optimization is illustrated in Fig.

8.14.

Only a slight improvement is obtained, compared to the purely evolution-

ary strategy (Fig. 8.8),. However the simulation time could be reduced by

almost 60 percent.

68

Figure 8.12: Path of the gradient based algorithm.
Triangles represent the initial points of the algorithm, squares the final solu-
tion of the gradient based approach.

69

method ,

id_method = ’EA’

model_pointer = ’M1’

coliny_ea

max_iterations = 1000

max_function_evaluations = 800

population_size = 80

fitness_type merit_function

mutation_type offset_normal

mutation_rate 1.0

crossover_type two_point

crossover_rate 0.0

replacement_type chc = 20

method ,

id_method = ’GRADIENT ’

model_pointer = ’M2’

conmin_frcg

max_iterations = 1000

convergence_tolerance = 5e-4

Figure 8.13: DAKOTA input file for the hybrid optimization

F

x = 7.171 mm
y = 17.556 mm

f = 82.844 kg

1

2

3

4

5

x

y

Figure 8.14: Solution of the hybrid optimizer

70

8.1.5 Discussion

The first run made with the evolutionary algorithm was clearly made with too

few function evaluations, Fig. 8.6 shows no clear trend downwards. There-

fore, a second run was necessary, this time using more function evaluations.

This proves useful, since Fig. 8.9 shows a much more clear descending trend,

thus indicating better convergence. The evolutionary algorithm always finds

the global minimum; the quality of its outcome depends only on the number

of function evaluations, not on the initial point. One can clearly see the great

potential of this type of algorithm because of its ability of finding the global

optimum even on a quite rough objective function (Fig. 8.3).

On the other hand, the gradient based algorithm conmin_frcg was not

always able to find the global minimum, depending on the initial point the

outcome was more or less suitable. Fig. 8.11 illustrates the different solu-

tions, some of them are quite distorted. This demonstrates the main dis-

advantage of gradient based algorithms, one needs to choose a good initial

guess for the algorithm to succeed. However, if the gradient based algorithm

finds the global minimum, it does so in a very short amount of time.

Combining the advantages of both previously mentioned algorithms, the

hybrid method serves of this application best. The capabilities of the evolu-

tionary algorithms in finding the global minimum are joined with the high

convergence speed of the gradient based ones. It was possible to reduce

the simulation time by almost 60%, still leading to a very good result. This

would be the algorithm of choice for optimization problems with highly rough

objective functions and a reasonable number of parameters.

8.2 Bridge

The second example is a truss bridge construction, as illustrated in Fig. 8.15.

It consists of 25 nodes connected by 50 trusses; 11 point loads are applied

to the bottom girder of the structure. The coordinates of the top nodes

represent the parameters, two degrees of freedom per node sum up to a total

of 24 parameters. These parameters can be changed within the given range:

71

F

x1
y

1
x2

y
2

x3

y
3

F F

x10

y
10

x11

y
11

x12

y
12

F F F

20

12x20=240

Figure 8.15: Bridge construction

1 ≤ xi ≤ 19

and

1 ≤ yi ≤ 29

Values 0, 20 and 30 where avoided in order to prevent errors due to

regeneration failure. Abaqus would otherwise have resulted in an exception

and have aborted the simulation.

This example is used to illustrate the capabilities of DAKOTA for han-

dling a large amount of parameters. No parametric study was performed for

this example because of the large amount of changeable parameters. Even if

one divided each parameter range into only 10 equally spaced sections, 1012

different simulations would need to be made. If every simulation took only

one second, the whole study would take more than 32000 years. Therefore

no a–priori statement can be made where the optimal solution may be.

The same objective function as described above for the simple truss con-

struction (Eq. 8.9) was used, the constants Since � and �max where also set

to 1 kg/mm3 and 1MPa, respectively.

72

8.2.1 Finite Element Model

The bridge truss construction was again modeled in Abaqus using a two–

dimensional wire structure and a truss formulation. The material parameters

are also the same as displayed in Tab. 8.1. Cross sectional areas A0 were, for

simplification purposes, chosen to be 1mm2, applied forces are also 1N . As

the objective function remained unchanged, the IPO input file is the same

as shown in Fig. 8.2.

8.2.2 Optimization

8.2.2.1 Evolutionary Algorithm

The first algorithm applied to the truss bridge construction was again the

coliny_ea evolutionary algorithm. A maximum number of 5000 function

evaluations and a maximum number of 1000 iterations was used, each pop-

ulation has a size of 50, whereas 10 survive each mutation.

Fig. 8.16 provides an overview of the evolution of the objective function.

At first there is a rapid decrease in the objective function within the first

1000 function evaluations, afterwards the function somehow stabilizes if one

neglects the outliers. The objective function seems to drift off very easily,

since the number of outliers is quite high, indicating a highly distorted shape.

The optimal solution was captured at function evaluation 4943 and is

listed in Tab. 8.6. A graphical illustration of the result is available in Fig.

8.17. It is quite obvious that the solution found is not the global minimum

since it is not symmetric, but the overall shape looks very much like a typical

bridge construction. The arc–like shape provides the best support for the

applied load.

To improve the simulation further, another run was made, this time us-

ing 9000 function evaluations instead of 5000. The results are displayed in

Fig. 8.18. Although almost twice as much function evaluations were made,

the result seems not to have improved significantly. There is still a lack of

symmetry and the objective function does decrease only by 1.2%.

73

Figure 8.16: Evolution of the objective function using the evolutionary algo-
rithm, first run

x1 y1 x2 y2 x3 y3 x4 y4 x5 y5

10.5 13.1 11.9 21.9 1.8 25.1 3.4 29 10.2 29

x5 y5 x6 y6 x7 y7 x8 y8 x9 y9

10.2 29 7.1 28.3 5.3 29 9.1 29 15.4 27.7

x10 y10 x11 y11 x12 y12 function value

14.9 24.5 7.6 20.5 12.3 11.6 5653

Table 8.6: Optimal parameters for the bridge, length in mm and function
value in kg

f = 5653 kg

Figure 8.17: Graphically illustrated solution of the bridge, first run

74

f = 5585 kg

Figure 8.18: Graphically illustrated solution of the bridge, second run

Figure 8.19: Evolution of the objective function using the evolutionary algo-
rithm, second run

8.2.2.2 Gradient Based Algorithm

The same input file as in Fig. 8.10 was used, except that a maximum number

of function evaluations was increased to 3000. Three runs where made, each

with a different set of initial values as summarized in Tab. 8.7. All the

values for xi and yi, respectively, where chosen to be the same. The first

run represents a reasonable set of values for an initial design, the second and

third one represent the lower and upper bounds of the parameters.

xi [mm] yi [mm]

1. 10 15

2. 1 1

3. 19 29

Table 8.7: Initial values for the bridge

75

Fig. 8.20 graphically illustrates the results of the gradient based approach.

The top trusses show the initial designs, the bottom one the resulting design.

All three simulations show a very reasonable outcome. The first one leads

to the best result, although only very marginally. All of them end up in the

same arc–like structure as the evolutionary approach, however, they seem

much more symmetric. The x–values of the resulting structures are very

similar to the initial values, one can see that their angle looks very much the

same.

The gradient based approach also leads to a much shorter simulation time,

the first one needs 338, the second one 1298 and the third one 306 function

evaluations. The second one takes much longer because its initial shape is

very distorted, however this is still a reduction of about 75% compared to

the evolutionary algorithm.

8.2.2.3 Hybrid Algorithm

Another hybrid simulation was made using the same parameters as given in

Fig. 8.13, except that only 500 function evaluations where used. Fig. 8.21

graphically illustrates the results of this optimization. (a) shows the result

of the evolutionary algorithm which is then refined by the gradient based

algorithm to the final result (b). Fig. 8.21 (a) looks quite random due to the

stochastic nature of the evolutionary method, (b) looks very much the same

as all the other optimization results, the arc–like shape is clearly visible.

The evolution of the objective function of the hybrid optimization is il-

lustrated in Fig. 8.22. One can clearly see that 500 function evaluations are

not enough to result in a noticeable downward trend, but after 500 iterations

the gradient based algorithm kicks in and uses the best of the previous eval-

uations as initial design. The gradient based method then converges within

a short amount of time and leads to a very feasible design.

8.2.3 Discussion

The evolutionary algorithm used with this example clearly reaches its limi-

tations. Although a very high number of function evaluations (9000, taking

76

result
f = 5565 kg

initial
f = 9187 kg

result
f = 5740 kg

initial
f = 127504 kg

result
f = 5616 kg

initial
f = 6482 kg

(1)

(2)

(3)

Figure 8.20: Results of the gradient based approach

f = 7445 kg

f = 5590 kg

(a)

(b)

Figure 8.21: Results of the hybrid optimization

77

Figure 8.22: Evolution of the objective function during the hybrid optimiza-
tion

approximately 1.5 days) was chosen, this type of algorithm does not lead to a

satisfactory result. The lack of symmetry indicates that the global optimum

has not been found. The high number of parameters for this example exceeds

the capabilities of the evolutionary algorithm. When choosing the parame-

ters randomly, a feasible design is not found within a reasonable simulation

time.

Surprisingly, the gradient based algorithm leads to much more feasible

designs, even when using a set of distorted initial values. The best of all

results could be achieved by the first run illustrated in Fig. 8.20. The

structure looks very symmetric, thus indicating a close call to the global

minimum, but this was achieved via a very good initial structure. Even the

two other runs with their quite distorted initial values lead to two feasible

designs. Although the center beams are leaning to the same side as in the

initial design, the objective functions differ by only 3% and 1%, respectively.

Again, the gradient based approach extremely fast, taking on average only

647 function evaluations for reaching the optimum.

The last approach for this example was the hybrid one. Fig. 8.21 (a)

shows the result of the evolutionary algorithm, which looks quite distorted.

Fig. 8.21 (b) illustrates the final design found by the gradient based method

using (a) as an initial value. It looks almost symmetric, except the middle

right side, and the objective function hardly differs from Fig. 8.20 (1). The

78

hybrid algorithm seems to be a very feasible method for this example, since

it leads to an excellent result while consuming very little time. It takes only

about 900 function evaluations, compared to the evolutionary algorithm this

is a decrease by 90%. Compared to the gradient based algorithm this is only

about 60%, but without the need to chose a suitable initial design first.

Concluding, one can say that the hybrid algorithm is the algorithm of

choice if it is not possible to guess a good initial design. If the optimal design

is obvious, the gradient based algorithm leads to a faster solution, although

one can never be sure that the guessed design is the optimal solution indeed.

79

Chapter 9

Concluding Remarks

During this thesis the Interface for Parametric Optimization (IPO) between

the Open Source optimization library DAKOTA and the finite element solver

Abaqus was developed. With this interface one can parametrize finite ele-

ment models and optimize them regarding an arbitrary objective function.

Any mathematical combination of field outputs available in Abaqus can be

chosen as objective functions or restrictions.

The interface proves very useful if one needs to run parametric studies

and optimizations. In case of parametric studies, one can save a significant

amount of time by not having to make each simulation by themselves. One

only has to define the parameters within their ranges and IPO completes the

task. DAKOTA also provides several optimization routines, which are very

useful during the design stage of a production process.

The developed program was then applied to two examples. A simple truss

construction for validation and a more sophisticated bridge construction to

show the limitations of the different algorithms used. Tree different algo-

rithms where used during this process, an evolutionary one, a gradient based

one and a hybrid combination of both previously mentioned. Both examples

show excellent results and the interface proves its capabilities.

80

List of Figures

1.1 Product development cycle . 1

1.2 Capabilities of DAKOTA . 2

3.1 Convex and non–convex function 7

3.2 Non–convex function with only one minimum 7

3.3 Convexity of restrictions . 8

4.1 Gradient based algorithms . 12

4.2 Newton–Raphson method . 13

4.3 Example for line minimization 15

4.4 Monte Carlo Simulation . 16

4.5 Evolutionary strategy . 18

5.1 Flow chart of a typical optimization loop 20

5.2 Classification of structural optimization 22

5.3 Examples for improving an initial design 24

5.4 Topologically identical (a) and different (b, c) bodies 25

5.5 Different types of design variables 27

5.6 Trees changing their shape when experiencing periodical loads

[13] . 30

5.7 Stress homogeneity in the variational space 31

6.1 Overview of DAKOTA . 34

6.2 Example of a DAKOTA input file 37

6.3 Example code for the direct interface 37

6.4 Example code for the system call interface 38

81

6.5 Example for a parameter file 38

6.6 Example for a result file . 39

6.7 Example code for the fork interface 40

7.1 Object structure of the IPO 43

7.2 IPO workflow . 45

7.3 Windows batch file . 45

7.5 IPO input file . 46

7.4 IPO flow diagram with internal workflow 47

7.6 A more sophisticated example for an objective function 49

7.7 Abaqus parameter manager 50

7.8 Mesh control in Abaqus . 51

8.1 Simple truss construction . 54

8.2 IPO input file for the simple truss construction 57

8.3 Parametric study of the objective function 59

8.4 DAKOTA input file for the evolutionary algorithm, first run . 61

8.5 Solution found using the evolutionary algorithm, first run . . . 62

8.6 Evolution of the objective function, first run 62

8.7 DAKOTA input file for the evolutionary algorithm, second run 63

8.8 Solution found using the evolutionary algorithm, second run . 63

8.9 Evolution of the objective function, second run 64

8.10 DAKOTA input file for the gradient based algorithm 65

8.11 Solution of the gradient based optimizer 67

8.12 Path of the gradient based algorithm. 69

8.13 DAKOTA input file for the hybrid optimization 70

8.14 Solution of the hybrid optimizer 70

8.15 Bridge construction . 72

8.16 Evolution of the objective function using the evolutionary al-

gorithm, first run . 74

8.17 Graphically illustrated solution of the bridge, first run 74

8.18 Graphically illustrated solution of the bridge, second run . . . 75

8.19 Evolution of the objective function using the evolutionary al-

gorithm, second run . 75

82

8.20 Results of the gradient based approach 77

8.21 Results of the hybrid optimization 77

8.22 Evolution of the objective function during the hybrid opti-

mization . 78

83

List of Tables

6.1 Active set vector . 39

8.1 Linear elastic material constants 55

8.2 Comparison of the analytical and the finite element stress cal-

culations . 58

8.3 Comparison of the analytical and the finite element volume

calculations . 58

8.4 Local minima . 60

8.5 Initial points and outcomes for the gradient based algorithm . 66

8.6 Optimal parameters for the bridge, length inmm and function

value in kg . 74

8.7 Initial values for the bridge . 75

84

Bibliography

[1] Linux manual page, 2009. http://linux.die.net/man/2/fork/.

[2] W. Alt. Nichtlineare Optimierung. Vieweg, Braunschweig–Wiesbaden,

2002.

[3] DAKOTA. Design Analysis Kit for Optimization and Terascale Appli-

cations. 2009. http://www.cs.sandia.gov/DAKOTA/.

[4] Scientific Tools for Python. NumPy — N–dimensional Array manipula-

tions, 2001. http://www.scipy.org/NumPy/.

[5] F. Grün. Form– und Topologieoptimierung unter Berücksichtigung der

Betriebsfestigkeit. 2002.

[6] D.W. Heermann. Computer Simulation Methods in Theoretical Physics.

Springer, Berlin–Heidelberg, 1986.

[7] B.W. Kernighan and D.M. Ritchie. The C Programming Language.

Prentice Hall PTR, Englewood Cliffs, 1988.

[8] B. Kost. Optimierung mit Evolutionsstrategien. Harri Deutsch, Frank-

furt am Main, 2003.

[9] Sandia National Laboratories. DAKOTA User’s Manual, Version 4.2.

Livermore, 2007.

[10] Sandia National Laboratories. DAKOTA Reference Manual, Version

4.2. Livermore, 2008.

85

[11] E. Laporte and P. Le Tallec. Numerical Methods in Sensitivity Analysis

and Shape Optimization. Birkhäuser, Boston–Basel–Berlin, 2003.

[12] Mallet and Schmit. Structural Synthesis and Design Parameters. Hier-

archy Journal of the Structural Division, 89(4):269–299, 1963.

[13] C. Mattheck. Warum sie wachsen wie sie wachsen — Die Mechanik der

Bäume. Kernforschungszentrum Karlsruhe, 1988.

[14] C. Mattheck. Design in der Natur — Der Baum als Lehrmeister. Rom-

bach, 1992.

[15] H. Neuber. Kerbspannungslehre. Theorie der Spannungskonzentration.

Genaue Berechnung der Festigkeit. Springer, Berlin–Heidelberg, 1957.

[16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Nu-

merical Recipes in Fortran 77. The Art of Scientific Computing. Cam-

bridge University Press, 1992.

[17] E. Schnack. Ein Iterationsverfahren zur Optimierung von Span-

nungskonzentrationen. Number 589. 1978.

[18] A. Schumacher. Optimierung mechanischer Strukturen. Springer, Ham-

burg, 2004.

[19] P. Siarry and Y. Collette. Multiobjective Optimization. Springer, Berlin–

Heidelberg, 2003.

[20] Dassault Systems. Abaqus Analysis User’s Manual 6.7. 2007.

[21] Dassault Systems. Abaqus Scripting User’s Manual 6.7. 2008.

[22] G. N. Vanderplaats. CONMIN, a FORTRAN program for constrained

function minimization. Technical Report TM X–62282, NASA, 1973.

[23] H. Ziezold and K. Kirckeberg. Stochastische Methoden. Springer, Berlin–

Heidelberg, 1995.

86

