
Diploma Thesis

Numerical Studies on Crack Arrays in
Aluminum Pressure Die Casting Molds

by
Peter Raninger

Montanuniversität Leoben

&

Materials Center Leoben

Leoben, November 16, 2009



Affidavit

I hereby declare in lieu of oath that the following diploma thesis "Numerical Studies on

Crack Arrays in Aluminum Pressure Die Casting Molds" has been written only by the

undersigned and without any assistance from third parties. Furthermore, I confirm that

no sources have been used in the preparation of this thesis other than those indicated in

the thesis itself.

Place, Date Signature



I am especially grateful for their support and helpful suggestions to

• The supervisors of my thesis Prof. Dr. Thomas Antretter and Prof. Dr. Reinhold

Ebner.

• My advisor Dr. Werner Ecker who introduced me to the current topic and always

gave me support in the "dark hours" of crack array simulation.

• Dr. Mario Leindl whose doctoral thesis and advice were fundamental for this work.

• Prof. Dr. Reinhard Pippan and Prof. Dr. Otmar Kolednik for their valuable

insights in their areas of expertise.

• All my dear colleagues whose advise and friendship are very precious to me.

• Last but not least I want to express my gratitude towards the Materials Center

Leoben Forschung GmbH where this thesis was carried out within the scope of an

industrial project.



Abstract

Pressure casting dies are exposed to harsh service conditions consisting of thermal and
mechanical loading and thus undergo thermo-mechanical fatigue. Due to cyclic plastic
deformation of the material near the surface of the dies the loading conditions gradu-
ally change because of the formation of tensile residual stresses which add to the stress
field from external loading. This change in the stress field influences the nucleation and
growth of cracks. Typically after a few thousand casting cycles a network of heat checks
forms. Within a crack network crack shielding has a big influence on the evolution of the
crack array. The crack spacing within the network of heat checks, the length at which
the cracks stop growing and the crack growth rate are influenced by the thermo-physical
and mechanical properties of the die material. In the present study the influences of the
material properties on the formation and growth of heat check networks are investigated
in a numerical study on the evolutions of crack arrays.
In order to obtain the loading conditions for the numerical study on crack arrays a fi-
nite element (FE) model of a flat surface area of the pressure casting die is generated to
calculate the transient temperature field and the evolution of residual stresses over 100
casting cycles. The temperature field and the residual stress field of cycle 100 are used in
script based FE-models with linear elastic material behavior investigating the formation
and evolution of crack arrays. By the aid of a Python script FE-models are created,
computed and evaluated automatically. In this way a modeling chain is formed in which
data obtained from the previous model are used to create the subsequent one. For this
purpose, the script compares the maximal stress intensity factor Kmax to a user defined
criterion. In this criterion Kmax is converted, based on experimental data and parallel
computation of stress ratios, to the effective stress intensity factor ΔKeff and compared
to a threshold value ΔKth, which is a measure for crack arrest. In this way an initial
crack configuration and the evolution of crack arrays can be modeled in an automated
manner for different materials.
The focus in this work is put on the interplay of material parameters and crack shielding
and on the interconnection between hardness, thermal conductance and thermal expan-
sion. The ultimate goal in this work is to provide mathematical relations linking material
parameters and crack propagation that can be used for material selection and material
development.



Kurzfassung

Die im Aluminium Druckguss eingesetzten Gussformen sind einer Ermüdungsbeanspru-
chung infolge thermischer und mechanischer Belastungen ausgesetzt. Zyklisch plastische
Verformung an der Oberfläche der Formen bewirken eine schrittweise Veränderung des
Belastungsprofiles, da sich Zugeigenspannungen aufbauen, die sich den Spannungen zu-
folge der zyklischen Belastungen überlagern. Diese Veränderung des Spannungsfeldes hat
Einfluss auf Bildung und Wachstum von Rissen. Nach einigen Tausend Lastzyklen be-
ginnt sich typischerweise ein Netzwerk aus Heißrissen auszubilden, in welchem die gegen-
seitige Abschirmung der Risse wesentliche Auswirkungen auf die weitere Entwicklung
des Netzwerkes hat. Große Bedeutung wird auch den thermo-physikalischen und den
mechanischen Eigenschaften des verwendeten Materials für die Gussformen beigemessen,
da diese die Anfangsabstände, die Tiefe, in der die Risse stoppen, und die Risswachs-
tumsgeschwindigkeiten der Risse beeinflussen. In dieser Arbeit werden die Einflüsse der
Materialparameter auf die genannten Merkmale und Ausbildung der Heißrissnetzwerke
numerisch untersucht.
Um die Belastung der Gussformen, die für die Simulation der Rissnetzwerke benötigt wer-
den, zu bestimmen, wird ein Finite Elemente (FE) Modell eines ebenen Abschnittes der
Form erzeugt, um das stationäre Temperaturfeld sowie den Aufbau der Eigenspannungen
über 100 Gießzyklen hinweg zu berechnen. Die so erhaltenen Verteilungen für Temper-
atur und Eigenspannungen werden an ein script-basiertes FE Modell übergeben, welches
erlaubt, unter Annahme von linear-elastischem Materialverhalten, die Entstehung und
Ausbildung von Rissnetzwerken zu untersuchen. Unter Zuhilfenahme eines Python-Scripts
werden einzelne FE Modelle automatisch erzeugt, berechnet und ausgewertet. Dadurch
entsteht eine Kette, in der Daten eines vorhergehenden Modells verwendet werden, um
das darauf folgende zu generieren. Zu diesem Zweck überprüft das Script ein implemen-
tiertes Kriterium. Bei diesem wird Kmax, auf Basis experimenteller Daten und parallel
gerechneten Modellen, in eine effektive zyklische Spannungsintensität ΔKeff umgerechnet
und mit einem Schwellwert ΔKth verglichen. Somit können die Bereiche, in denen Risse
stoppen, identifiziert werden. Mit dieser Vorgehensweise können Anfangskonfigurationen
und die Ausbildung der Netzwerke für verschiedene Materialien automatisiert durchge-
führt werden.
Die Schwerpunkte dieser Arbeit liegen auf der gegenseitigen Beeinflussung von Material-
parametern und Rissabschirmung, sowie die Wechselwirkungen untereinander zwischen
Härte, Wärmeleitfähigkeit und Wärmeausdehnung. Letztendlich sollen mathematische
Zusammenhänge zwischen Materialparametern und Risswachstum gefunden und der Werk-
stoffwahl und Werkstoffentwicklung zur Verfügung gestellt werden.
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Chapter 1

Introduction

1.1 Overview

Aluminum pressure die casting is one of the most economic ways to process aluminum.
The dies are exposed to harsh service conditions and thus prone to heat checks, erosion
and other damage. New concepts are supposed to increase economic gain by extending
the service life time of the dies1.
According to [1] the predominant causes for degradation of the dies are:

• Thermal fatigue due to the interplay of heating and cooling in each casting cycle.

• Corrosion due to oxygen, metals, mold release agents, etc.

• Erosion due to focused beams of melt and particles transported with them.

• Softening due to tempering under service conditions.

• The technique used for finishing, like spark erosion, machining and polishing.

The formation of single cracks can cause early failure since propagation rates are very
high and the cracks can reach a critical size in a few thousand cycles. Furthermore it was
found that service life is strongly dependent on a thin surface layer of usually 2 mm or
less in case of the formation of crack networks. Thermal fatigue is of essential meaning
for the formation of crack arrays and single crack growth and thus it can be regarded as

1The term die is equivalent to mold but used specifically for casting, whereas molds are also used e.g.
in forging.
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Introduction 1

the main factor limiting the service life of casting dies.
The mechanical properties of the die material and their temperature dependence are
essential in view of thermal fatigue. Temperature gradients due to cyclic heat flow cause
cyclic stresses which induce a plastic material response in the surface region. Due to the
plastic cyclic strain the loading conditions gradually change because of the formation of
tensile residual stresses which add to the stresses from thermal loading. Thus, the mean
stress is shifted to larger values and damage is accumulated during each casting cycle
causing conditions favoring the nucleation and growth of cracks to form at the surface [2].
The typical materials used in aluminum pressure casting are hot work tool steels like
1.2343 (X38CrMoV5-1) or 1.2367 (X38CrMoV5-3), where the latter is resistant to higher
thermal loads [2]. All those grades are refined by Electro-Slag-Remelting or Vacuum-Arc-
Remelting, which give the material enhanced mechanical properties. Surface treatments
like nitriding and coating are applied but those are restricted to smaller die geometries.
For more demanding applications alternative types like maraging steels and molybdenum
alloys can be used [3].
The material investigated in this thesis and in the work preceding this thesis is the hot
work tool steel grade 1.2343 (X38CrMoV5-1) manufactured by Böhler Edelstahl GmbH
& Co KG (internal steel grade W300).

1.2 State of the Art

1.2.1 Physical Simulation of Heat Check Formation

At the Materials Center Leoben a testing facility was designed to study the formation
of crack arrays under conditions similar to service conditions of aluminum pressure cast-
ing dies. This facility utilizes pulsed laser radiation in order to subject samples to cyclic
thermal loads. The laser provides a high grade of flexibility which is convenient to approx-
imate the temperature evolution occurring in the dies. The facility was used to compare
thermal fatigue behavior of different steel grades and different heat treatments. In all
samples investigated rough surfaces were found due to plastic deformation and the for-
mation of microcracks.
In order to find the appropriate testing conditions, numerical simulations of the casting
process were done. This way, the surface temperatures in the solidification step were de-
termined and used for the settings of the laser. The finite element (FE) simulations also
showed that an increase in thermal conductivity causes lower maximum temperatures and
smaller temperature gradients. By the laser pulse experiments it was shown that higher
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Introduction 1

hardness increases lifetime in case of small strain ranges but has a negative effect, or none
at all, in case of higher strain ranges (Figure 1.1). In addition, it was found that crack
nucleation starts at the grain boundaries and that thermal fatigue behavior of marten-
sitic microstructures are superior to mixed martensitic/bainitic microstructures. Further
details can be found in [2].

Figure 1.1: Strain based Wöhler curve illustrating the correlation of service life and hardness
[2]. A larger hardness is favorable in case of small strains but has a negative effect or none at all
if larger strain ranges prevail.

1.2.2 Material Modeling

Beside experimental testing, an advanced elastic viscoplastic Chaboche-type model de-
scribing the material response to thermal loading was used by Ecker and calibrated with
test data on 1.2343 (X38CrMoV5-1) steel grade [4]. The material model was imple-
mented in a FE model allowing to take into account various material phenomena like the
Bauschinger effect, cyclic hardening/softening with elastic or plastic shakedown, ratch-
eting, relaxation of mean stress, rate dependence, creep and relaxation. The model was
calibrated with data from isothermal compression tests2 and verified by the laser pulse
experiments. Residual stresses calculated in FE models are matching the experimental

2Providing data on isothermal compression tests is required to describe the isotropic and kinematic
hardening/softening of the material
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results well. Thus, the material model can be utilized for the prediction of stresses and
strains in the dies [5, 6].

1.2.3 Analysis of Loading Behavior

In order to make use of the material model an analysis of a casting cycle was carried out.
A FE model was designed consisting of two die halves and the melt. The next step was
to model the process itself and thus a complete casting cycle was divided into five distinct
steps and five substeps, where specific parameters were set in each of them. The steps
and their corresponding heat flux vectors are schematically shown in Figure 1.2. With the
FE model it is possible to compute temperature distributions in the dies for an arbitrary
number of casting cycles, and by means of the material model the corresponding evolution
of residual stresses can be determined.
So far, the loading and the material response has been characterized, but crack growth
was not an issue at this point. The work of Leindl [7] deals with this part of the project.

Figure 1.2: Steps of a pressure die casting cycle [4]. The heat flux vectors are indicated by
arrows.
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1.2.4 Simulation of Crack Arrays

In a next step an FE model was designed and utilized for the simulation of crack growth
by Leindl [7]. The FE analysis was split into two parts, one for the determination of
temperature and stress distributions using the material laws discussed in the previous
section and one for the analysis of crack propagation itself. These models were used to
compute 17 different configurations of the crack array, starting with cracks of equal length
(0.1 mm) and ending with a specific final configuration with one crack reaching a length
of 4 mm. The initial crack distance was determined from crack patterns observed on
ingots provided by the industrial partner. The crack spacing was found to be close to 2
mm. Figure 1.3 shows a typical crack configuration and illustrates the periodic boundary
conditions.

Figure 1.3: Sketch of a typical crack configuration and the boundary conditions used in the
FE analysis [7].

Crack growth was described by an extended Paris equation [8] using experimentally de-
termined parameters. In the model crack propagation was characterized by integrating
this extended Paris equation based on data obtained from the 17 crack configurations.
In the course of the simulations the stress ratios and ΔKeff were computed. Thus, the
number of casting cycles for reaching the final configuration could be determined.
The 17 configurations of the crack array were computed for several materials whose mate-
rial parameters are fictional but based on a standard material. The thermal conductivity
(λ) and the heat expansion (α) were varied based on the material parameters of the
X38CrMoV5-1. This way it was possible to study the impact of λ and α on service life,
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which led to knowledge essential to casting industry and further research.
It was found that the consideration of the residual stresses and thus the material model
discussed above is absolutely necessary to obtain precise results. The simulations for stan-
dard material parameters resulted in a service life time very close to values reported from
casting industry. Furthermore, it was shown that increasing values of λ and decreasing
values of α prolong service life, where the impact of α is by far larger. The term service
life in this context is related to the number of casting cycles needed for a crack to reach a
length of 1.5 mm. This is a typical crack length observed in dies at the end of use provided
from industry in combination with data on casting cycles. Investigating the number of
service cycles needed to reach a certain crack penetration depth observed in real dies,
allows to study the impact of various material parameters on the overall service life time.
The number of casting cycles a mold can be used is determined by other factors as well
but still it can be related to crack penetration depth.
The results obtained from simulations of crack arrays have revealed the influence of λ,
α, crack shielding and the parameters C and m in the Paris equation. However, it is
recommended to always consider the full bandwidth of consequences ensued by modifying
a single parameter [9]. An increase in λ, for instance, may be achieved by a reduction of
certain solute elements in the hot work tool steel. These elements are essential, however,
in view of ductility, yield strength and fracture toughness. Thus, it is crucial to keep an
eye on the whole picture. Further aspects on this topic are discussed in [9] and [10].
Although the work of Leindl [10] covers a wide range of investigations there are still ques-
tions unanswered. The study on crack propagation was done for a constant crack spacing
only. It is still unknown whether the initial crack spacing is dependent on loading condi-
tions and thus material parameters like λ and α. The dependence of service life on the
initial configuration of the network is another issue not yet analyzed. Crack growth itself
was characterized for a limited range of materials only (λ ± 15%) and the interplay of λ

and α has not been investigated. Another point not included in [10] is the evolution of
crack arrays on the basis of criteria derived from fracture mechanics. The depths where
cracks stop were specified in advance based on observations of real crack networks. The
evolution of the arrays, however, is dependent on the initial spacing and loading condi-
tions. Thus, an automated and criterion-based simulation of crack arrays is neccessary
for studies on a larger scale.
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1.3 Current Problem Definition

The focus in this work is put on the interplay of material parameters and crack shielding.
The conclusions drawn from results discussed above do not consider the full influence of
crack shielding. It was assumed that the initial crack spacing would not change with
changing values for λ and α. The interplay of the geometric and physical influences might
be important, however, and its investigation is one of the main aspects in this thesis.
Therefore, the theses of Ecker [4] and Leindl [7] discussed in the previous section are
implemented and enhanced in the course of this thesis.
Another major issue are parametric studies concerning material parameters. Parametric
studies have already been carried out in the previous work [4, 7] but the design concepts
of the models developed for this thesis enable the user to perform them on a larger scale.
The common problems complexity and time are attacked with a high degree of automa-
tion and performance optimization.
For this purpose the crack model has to be changed to a script based model. The com-
mercial FE simulation package Abaqus [11] used in this thesis offers a scripting interface
for Abaqus CAE, the environment for designing, submitting, monitoring and evaluating
complex engineering problems. This environment is written in Python and the interface
enables the user to employ the full FE simulation capabilities of Abaqus CAE combined
with the scripting language Python. This way the topics automation and parameteriza-
tion can be treated in completely new manners.
The new design philosophy is also used to implement new concepts for the simulation of
the evolution of crack arrays during service life of casting dies. On the one hand criteria
are developed to manage crack array evolution in an automated manner, and on the other
hand these criteria are tested to determine initial crack spacing depending on material
parameters. This way crack spacing and configurations, where individual cracks will stop,
do not have to be given from experimental observation on casting ingots, but result from
implemented criteria. These criteria determining the evolution of crack arrays are the
same throughout the parametric studies thus providing equal conditions for all variations
and guaranteeing a large extent of comparability. The initial crack spacing of a crack
array is a rather complex issue and studies on this topic are meant to provide a starting
point for further investigations.
The ultimate goal of this thesis is to provide mathematical relations based on data fits
linking material parameters with crack propagation, which can be used for material se-
lection and material development. These data fits are supposed to reveal and comprise
the interconnections between hardness, λ and α themselves and to relieve the user of the
tedious task of having to look up data from three-dimensional diagrams.

10



Chapter 2

Fundamentals of Fracture Mechanics

This section is supposed to provide the reader with the theoretical background necessary
for the discussion of the approaches applied in Chapter 3 and the reasons for their selec-
tion. Furthermore, this background is necessary to identify the margins of applicability
of the individual concepts behind these approaches.
The energy approach as well as the stress intensity approach to linear elastic fracture
mechanics (LEFM) are essential for the development of a criterion managing automated
simulation of crack configurations in crack arrays. Fatigue and crack closure as well as
crack shielding and the formation of crack arrays are central issues in this thesis. They
will be discussed in the following sections.
Beside papers on specific topics the following four text books shall be referred to in this
section: “Fracture Mechanics - Fundamentals and Applications” [12] by Anderson provides
excellent insights in general fracture mechanics, “Deformation and Fracture Mechanics of
Engineering Materials” [13] by Hertzberg complements very well with [12] and gives ad-
ditional information on mechanisms occurring in materials under loading and the appear-
ance of fracture surfaces, “Fatigue of Materials” [14] by Suresh is an excellent standard
work on fatigue and “Bruchmechanik - Mit einer Einführung in die Mikromechanik” [15]
by Gross and Seelig further describes fracture mechanics from a continuum mechanics’
point of view.

11



Fundamentals of Fracture Mechanics 2

2.1 Linear Elastic Fracture Mechanics

2.1.1 Energy Approach

In 1920 Griffith published a quantitative connection between fracture stress and flaw size
(Equation 2.1) based on an energy balance derived from the first law of thermodynamics.
This approach, however, is only applicable to ideally brittle solids because it assumes
that the surface energy is the only factor fracture work is expended for. Nevertheless, the
mathematical concepts are fundamental and provide a basis for all future work [12].

U − U0 = −πσ2a2t

E
+ 4atγs (2.1)

Griffith’s derivation of Equation 2.1 is based on an elastic infinite plate under stress. U

and U0 refer to the potential energy with and without a crack, respectively. The term
−πσ2a2t

E
describes the decrease in elastic strain energy of a cracked plate with increasing

crack length a. E refers to the Young’s modulus and σ to the stress. He stated that if a
crack is introduced into the plate, elastic strain energy would be released accompanied by
an increase in surface energy γ. Griffith balanced these two factors and concluded that
an existing crack would propagate if the additional surface energy required was supplied
by the system. The surface energy arises from the fact that neighboring atoms on a
surface cannot reach the equilibrium configuration of the atoms within the solid. Thus,
energy must be provided to create a surface. The term 4atγs refers to this energy and
is simply the product of the total crack surface area and the specific surface energy γs

1.
The condition of equilibrium can be obtained by minimizing Equation 2.1 with respect
to the crack length [13]. The rewritten and common forms of the equilibrium condition
for plane stress and plane stain conditions, respectively, are given by:

plane stress: σ =

√
2Eγs

πa
plane strain: σ =

√
2Eγs

πa(1 − ν2)
(2.2)

ν refers to Poisson’s ratio.
In order to utilize this criterion it is necessary to know what happens if a system satisfies
the equilibrium condition. It is clear that a crack would grow if σ exceeds the value given

1Griffith based his derivation on a elliptical through thickness crack. The area of the flank is therefore
2 ∗ (2at)
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Fundamentals of Fracture Mechanics 2

by the equations above because more energy is released as is needed for the formation of
the surface. Now the question is whether the crack would continue growing or whether it
would stop. The surface energy increases linearly with crack length, so this question can be
answered by regarding the dependence of the release of elastic strain energy on the crack
length. From Equation 2.1 it is evident that the decrease is not linear but quadratic. This
means that the crack propagates right through the plate once the equilibrium condition
is satisfied. This is also apparent from the second derivative of 2.1. Equation 2.3 has
a negative sign and hence ∂U

∂a
will decrease with a [13]. The method Griffith used for

analyzing the equilibrium in an infinite plate can be applied to real components and
loads.

∂2U

∂a2
= −2πσ2t

E
(2.3)

As mentioned above, the Griffith relation is only applicable to ideal brittle material since
it does not take into account the energy required for plastic flow at the crack tip. Fur-
thermore Griffith assumed a very sharp crack. Because the crack tip radius must also be
considered the Griffith relation is only a necessary condition for failure [12, 13].

Fracture mechanics started to evolve from a scientific peculiarity to a major engineering
discipline in World War II and the following decade. This change in attitude towards
fracture mechanics became necessary because a significant number of vessels of the US
Liberty ship program became inoperable or even broke due to cracks propagating in the
newly designed hulls of the ships [12].
After the war the members of a research group at the Naval Research Laboratory in
Washington D.C. became the pioneers of fracture mechanics of that time. This group
was led by G. R. Irwin whose first major contribution was an extension of the Griffith
approach to metals which he achieved by adding the energy dissipated by plastic flow to
the energy balance, as already discussed above. This breakthrough, however, Irwin had
to share with Orowan who independently came up with a similar modification.
In 1948 Irwin published an alternative concept that is easier to use in engineering [16].
The concept is called energy release rate concept and it is based on the Griffith theory.
In contrast to Griffith, however, Irwin used the energy source term ∂U

∂a
designated by G,

instead of energy sink terms, like γs. Eventually, Irwin formulated Equation 2.4 which
is regarded as one of the most essential relations in the literature of fracture mechanics
[12, 13].

σ =

√
EG

πa
(2.4)
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In case of an elastically loaded plate (Figure 2.1) containing a crack of length a, the

Figure 2.1: Load-displacement curves for increasing crack lengths and strain and stress control,
respectively [13].

stored strain energy can be calculated according to Equation 2.5 [12, 13]. V is the stored
strain energy, P the applied load and M refers to the body stiffness P

δ
, where δ is the load

displacement. M is a function of the crack length as depicted in Figure 2.1. In case of a
fixed grip condition (displacement control), also P will vary with the crack length.

V =
1

2

P 2

M(a)
(2.5)

For a crack to propagate, energy from work done by external forces and the release of strain
energy is necessary to make up for the creation of additional surface area. Consequently,
the energy release rate can be formulated as Equation 2.6. After some mathematical
considerations Equation 2.7 can be found. If G reaches a critical value Gc, fracture
occurs.

G =
∂U

∂a
= P

dδ

da
− dV

da
(2.6)

Gc =
P 2

max

2

∂( 1
M

)

∂a
(2.7)

It should be considered that Equation 2.7 is valid for load control and displacement control
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but that G has opposite signs (Equation 2.8). This is a consequence of the increase in
strain energy due to the external force in load control [13, 17].

(
∂U

∂a
)δ = −(

∂U

∂a
)P (2.8)

Figure 2.2 depicts G curves and R curves for different crack lengths, where R refers to
the crack resistance. R is equal to the critical energy release rate Gc, but only in case of
a flat R curve, like 2.2 (a), an unambiguous value of Gc can be defined. Only in this case
the crack resistance should be designated as Gc, in order to avoid confusion [17].
In case (a) the crack is stable at any stress below σ2 and does not grow. The relation
between σ, G and a is given by Equation 2.4. At σ2 Gc is reached and the crack starts to
propagate. Since, in contrast to R, G rises continually the crack does not stop any more
and thus crack growth is unstable. In case (b) the crack grows at σ2 by a specific increment
but stops because R increases with crack length. Instability is not reached until σ4, where
the G curve becomes a tangent to the R curve. This point is connected to a critical crack
length ac [12]. The shape of the G curves depends on the sample geometry and the load
condition. Provided that the crack length is very small compared to the sample size,
the G curve will be linear. If a comes close to the magnitude of the sample size the G
curve will show a positive curvature in case of load control and a negative curvature for
displacement control [17]. The shape of the R curve depends on material behavior, stress
state and geometry. In the present work a criterion to determine initial crack spacings as

Figure 2.2: Schematic driving force vs. R curve diagrams (a) flat R curve (b) rising R curve
[12].

well as a criterion controlling the evolution of crack arrays were sought. Attempting to
find energy based criteria seemed to be promising but was given up since in the fatigue
community, energy has not yet established as quantity to describe crack propagation. To
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find proper relations would have been too much work and therefore criteria based on the
stress intensity approach were used. Nevertheless, the strain energy is still an appropriate
means to discuss fatigue crack propagation, as done in Chapter 3.

2.1.2 Stress Intensity Approach

Irwin’s energy release rate concept added up perfectly well with the findings of Wester-
gaard, who showed that stresses and displacements near the crack tip can be described
by a single parameter related to the energy release rate. This characterizing parameter
became known as stress intensity factor K. Its application made it possible to describe
crack growth with a scalar quantity [12, 14].
In a polar coordinate system with the origin at the crack tip the stress field in any linear
elastic cracked body is given by Equation 2.9. σij refers to the stress tensor, r and θ

originate from the polar coordinate system and fij is a dimensional function. For the
high order terms Am is the amplitude and gij is a dimensional function of the mth term.
Since the leading term approaches infinity as r approaches 0, whereas the high order terms
remain finite or approach 0, the stress near the crack tip varies with 1/

√
r independently

from the high order terms.

σij =
K√
2πr

fij(θ) +
∞∑

m=0

Amr
m
2 gm

ij (θ) (2.9)

The singular stresses in the crack plane for Mode I loading are given by Equation 2.10.
The validity of the singular field is restricted to a specific range of r. The upper boundary
is found where the singularity dominated zone ends. At large distances from the crack
tip the stress should approach σ∞, however, the singular term σ decreases to zero. Thus,
the singularity dominated zone extends to the point where the contributions of the high
order terms become significant. It is clear that there must be a lower limit for r, since
close at the crack tip stresses given by Equation 2.10 are larger than any material could
endure. Besides, plastic flow is present as well as a small process zone where blunting and
micromechanical phenomena like the growth and coalescence of voids occur [15].

σij =
KI√
2πr

(2.10)

Within the singularity dominated zone stress, strain and displacement can be calculated
as functions of r and θ. Thus, this so called single parameter approach is worth an
entry in the list of the most important concepts of fracture mechanics. Nevertheless, this
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concept is not useful, unless K can be calculated from the remote load and crack length.
Fortunately, this relation can be found in the literature for different sample geometries
and all of them can be related to a through thickness crack in a solid. This is possible
by making use of a correction factor. The general expression relating K, σ and a is given
by Equation 2.11. Similar to the energy release rate a critical value for K can be found
which is called fracture toughness Kc.

K = Y σ
√

πa (2.11)

Equation 2.11 carries significant meaning for the design of components. Kc is a matter
of material selection, σ is due to the design and loading and a could refer to a maximum
allowable flaw size or a minimum detectable flaw size. If two parameters are given, the
third one can be calculated. On the condition that Kc and σ are given, the maximum
allowable flaw size can be determined. In case a minimum detectable flaw size is given
by the technology used for inspection and with Kc given, it would be easy to find the
critical stress σc [13]. In casting dies no external loading is present since stress fields result
from temperature gradients and residual stresses. This is the reason why some aspects of
LEFM need to be treated in different ways as will be discussed in Chapter 3.
Equation 2.11 has a further meaning, i.e. it is a link between the energy and stress based
approaches. Both G and K can be expressed in terms of the remote load σ, leading to
Equation 2.12 in case of a through thickness crack under plane strain.

K =

√
EG

(1 − ν2)
(2.12)

As mentioned above, LEFM predicts infinite stresses at the crack tip, which contradicts
the observation of a finite crack tip radius and the occurrence of plasticity in metals and
crazing in polymers [12]. Since LEFM becomes increasingly inaccurate the larger the
inelastic zone grows, simple corrections were made available. Figure 2.3 schematically
shows the Irwin approach. At the position where the stress distribution exceeds σy it will
be truncated. Because equilibrium must be sustained, the stresses must be redistributed,
as depicted in Figure 2.3. A first order estimate of the plastic zone size without consid-
eration of stress redistribution was found according to Equation 2.13. A second order
estimate including the redistribution gives a plastic zone size rp exactly twice as large as
predicted by Equation 2.13. These expressions were derived for plane stress conditions,
so far. In case of plane strain rp is only a third of this size due to the triaxial stress state
[12, 13].
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Figure 2.3: Correction of the plastic zone size. The presence of plasticity makes the crack
behave as if it were longer. Thus, the first order estimate ry on the plastic zone size has to be
added to the actual crack length [12].

ry =
1

2π

KI

σys

2

(2.13)

The plastic zone makes the material behave as if the crack were longer than its actual
length. It is possible to account for this behavior by defining an effective crack length
that is the sum of the actual crack length and the first order estimate ry. Keff will
therefore be always larger than Kapplied, but this difference will be very small under low
stress conditions.

aeff = a + ry (2.14)

Equation 2.11 can be utilized to determine Keff (Equation 2.15). Since Y is dependent on
crack length, an iterative solution is necessary. From a first estimate of K, without a zone
correction, aeff can be determined and hence Keff . This procedure has to be repeated
until a reasonable convergence is reached [13].

Keff ≈ Y (
a + ry

W
)σ

√
a + ry (2.15)

Two alternative concepts of fracture analysis were found so far, namely the “Energy Cri-
terion” and the “Stress Intensity Approach”. However, both concepts are only applicable
to materials that obey Hooke’s law, apart from a limited correction for the K-approach. If
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nonlinear material behavior is not limited to a small region at the crack tip, well confined
in the singularity dominated zone, other concepts need to be used instead [12]. Thus,
in many cases K does not describe the stress and deformation field around the crack tip
and it does not have a further meaning except proportionality to the remote loading via
Equation 2.11 [18].

2.2 Elastic Plastic Fracture Mechanics

Researchers and Engineers started to make use of the new concepts. A series of fatal
accidents with Comet jet aircrafts in the 1950s were due to fatigue cracks reaching a
critical size [12]. These incidents were analyzed by means of fracture mechanics and on
the basis of the obtained knowledge design rules were developed still used in modern
aircraft technology. The main concepts to handle fatigue are based on LEFM will be
discussed in Section 2.3. Another example of early application of fracture mechanics is
the prediction of the bursting behavior of large steam turbine rotors at General Electric.
After LEFM had widely been accepted, a new period began in the 1960s, when focus
was turned toward crack tip plasticity. Wells tried to apply LEFM to low and medium
strength steels but had to abandon his efforts because these materials were too ductile.
Nevertheless, he found a new parameter used extensively today. He observed that the
crack faces move apart with plastic deformation, which led to the introduction of the
crack tip opening displacement (CTOD) giving rise to to the development of elastic plastic
fracture mechanics (EPFM).

2.2.1 CTOD

The CTOD results from plastic deformation at the crack tip and corresponds to the part
of the Burgers vector normal to the crack flank, accumulated for all dislocations emitted
from the crack tip. It can be calculated according to Equation 2.16 [18]

CTOD = 2sinα

∫ ω

0

B(r)dr (2.16)

The origin of the factor 2 lies in the symmetry of the displacement and sinα corresponds
to the opening part of the Burgers vector. Based on this relation the CTOD can be linked
to other parameters. The derivations and their results, however, depend on the model
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chosen and the assumptions made. In [18] a useful relation was found.

CTOD = 0.26
K2

σyE
(2.17)

However, there are several alternative definitions of CTOD, most commonly with focus on
the applicability to experimental setups. According to the most common definitions the
CTOD is the displacement at the original crack tip or the displacement at the intersection
of a 90° vertex with the crack flanks [12]. For laboratory measurements the most common
specimens in use are edge-cracked specimens in three point bending as shown in Figure
2.4. It is assumed that the specimen halves are rigid and rotate about a hinge point.
Thus the displacement V at the crack mouth can be measured and used to calculate the
CTOD (Equation 2.18). The rotational factor r is a dimensionless constant between 0
and 1 and defines the relative position of the apparent hinge point [12].

CTOD =
r(W − a)V

r(W − a) + a
(2.18)

Figure 2.4: Hinge model for CTOD estimation from three-point bend specimens [12].

2.2.2 J-Integral

Another important parameter used in EPFM was found by Rice. The material responses
of nonlinear elastic and elastic-plastic materials differ completely during unloading but
their loading behavior is identical. Provided that the stresses increase monotonically the
mechanical response of both materials is the same. Rice used this fact and approximated
plastic deformation as nonlinear elastic and generalized the energy release rate to nonlinear
materials. He proved that the nonlinear energy release rate can be expressed in terms
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of a line integral encompassing the crack tip. This integral is given by 2.19 where w is
the strain energy density, Ti the components of the traction vector, ui the displacement
vector components and ds the length increment along the contour Γ 2. The traction vector
defines the stresses acting at the boundaries of a free body diagram of the material within
the contour. It was found that the so-called J-Integral can be regarded as a nonlinear
stress intensity parameter and as an energy release rate3. Fracture occurs when J reaches
a critical value Jc [19, 12].

J =

∫
Γ

(wdy − Ti
∂u

∂x
ds) (2.19)

w =

∫ εij

0

σijdεij (2.20)

Ti = σijnj (2.21)

It was shown by Hutchinson, Rice and Rosengren that J can be used to describe stresses
and strains at the crack tip. In is an integration constant depending on the strain-
hardening exponent n. σ̃ij(n, θ) and ε̃ij(n, θ) are dimensionless functions of n and θ [12].

σij = σ0(
EJ

ασ2
0Inr

)
1

n+1 σ̃ij(n, θ) (2.22)

εij =
ασ0

E
(

EJ

ασ2
0Inr

)
1

n+1 ε̃ij(n, θ) (2.23)

Both equations are called the HRR singularity (named after Hutchinson, Rice and Rosen-
gren), whose amplitude is determined by J in a similar way as the elastic singularity is
by K. In case of small scale yielding two singularity dominated zones exist. The one in
the plastic zone is described by J and the stress varies with r

−1
(n+1) . The one in the elastic

regime is characterized by K and stresses vary with 1√
r
. The singularity dominated regime

2w and Ti are given by Equations 2.20 and 2.21 where Einstein’s summation convention is assumed.

3For linear or nonlinear elastic materials J equals G.
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in the plastic zone persists long after the linear elastic singularity zone has lost its validity
due to crack-tip plasticity. The HRR singularity, however, neglects blunting at the crack
tip. J is still a valid fracture criterion as long as there is a region around the crack tip
that follows Equations 2.22 and 2.23.
Figure 2.5 depicts the J dominated zone (II) embedded in zone I where HRR is not valid
any more [15]4. Zone II encloses zone III where the rules of deformation theory the J in-
tegral is based on do not apply. Zone III contains the process zone whose size is indicated
by ρ. Figure 2.5 (b) shows schematically the corresponding areas in a stress strain curve.
Figure 2.6 shows how the HRR field and LEFM describe the stress distribution at the
crack tip.

Figure 2.5: (a) Area of J dominated zone and (b) corresponding sections of σ-ε diagram [15].

Later on it was shown that CTOD and J-Integral can be related to each other and that
both of them are equally valid to describe crack growth unless excessive plasticity or sig-
nificant crack growth occurs.
In technical applications J is usually determined by numerical methods like finite element
methods. This way, J can be determined from a path independent integral, provided
that the contour chosen runs through areas showing elastic responses or plastic responses
according to deformation theory (no local unloading). Jc on the other hand is determined
by standardized experiments [12, 13, 15].

In the 1970s Rice’s findings were applied by the nuclear power industry in an effort to
make use of all available means to promote the safety of nuclear power plants. Because
nuclear pressure vessel steels are very tough they could not be characterized by LEFM.
For this reason the J-Integral was chosen as parameter [12].

4In case of small scale yielding a K dominated zone would enclose the J dominated zone.
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Figure 2.6: HRR field and K dominated zone in small scale yielding [12].

2.3 Fatigue Basics

In cases where components are subjected to loads that are not monotonic, i.e. load profiles
including unloading, other concepts apply, which are summarized as fatigue concepts.
Wöhler was one of the first engineers conducting systematic investigations on fatigue
failure (between 1852 and 1869) and a founder of the total life approach [14]. In the
1960s Paris, Gomez and Anderson suggested the stress tolerant approach based on the
observation that the increment of crack propagation per load cycle can be related to a
stress intensity factor range ΔK. Figure 2.7 shows a typical profile for a cyclic stress
test and parameters characterizing this profile in terms of K. This characterization can
also be done stress based, where σm is called mean stress, σa is the stress amplitude and
Δσ the stress range. A very important parameter is the stress ratio, which is defined as
R = σmin

σmax
. It should be noted that in general this stress ratio is not equivalent to Kmin

Kmax
.

Kmin and Kmax need to be calculated by Equation 2.11 which is valid for specific cases
only. In this work the stress based definition will be used.
One important issue in the course of discussing the principles of fatigue is similitude a
notion providing the theoretical basis for a number of concepts in fracture mechanics. It
says that stresses and deformations around the crack tip can be characterized by a single
parameter, like the stress intensity factor. In case of monotonic loading this hypothesis
is well established and it is true that specimens of different sizes and different crack
geometries, exposed to the same loading history, will exhibit the same stress and strain
distributions at the crack tip. Under specific circumstances this concept can be applied
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Figure 2.7: Overview of parameters used to characterize cyclic loading in terms of stress
intensity [20].

for fatigue and thus fatigue crack propagation can be related to ΔK and Kmax [21].
The Damage-Tolerant Approach which is commonly used to handle fatigue is based on
the concept on similitude and thus it is important to keep in mind that its validity may
be limited. There are two additional concepts, the stress and strain life approach, which
are combined and referred to as the total life approach. They are important for specific
applications and will be discussed briefly. Some additional views on fatigue are discussed
in Section 2.6.

2.3.1 Damage-Tolerant Approach

In this approach fatigue life is defined as the number of cycles needed for a preexisting
crack to reach a critical size [14]. This concept is counted among the most successful in
fracture mechanics and based on the concepts discussed in Chapters 2.1 and 2.2.
It relates the stress intensity factor range5 ΔK (Kmax −Kmin) and/or Kmax to the crack
propagation rate da

dN
, where for constant R ratios Kmax and ΔK are related to each other

according to Equation 2.24 [22].

Kmax =
ΔK

1 − R
(2.24)

Subsequently, the well known Paris equation was derived. C and m are experimentally
obtained scaling factors which depend on microstructure, environment, temperature and

5For tensile fatigue ΔK refers to Mode I loading but equal concepts exist for Mode II and III.
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stress ratio [14].

da

dN
= C(ΔK)m (2.25)

Stable fatigue growth occurs at Kmax significantly lower than KIc, and the onset of crack
growth in ductile metals usually begins at a fraction of this value [14]. In case environ-
mental conditions are kept constant, crack growth is still influenced by ΔK and R, which
lead to the idea to characterize crack growth by these two parameters. In Equation 2.24 R
can also be expressed in terms of Kmax. In the present case crack growth is characterized
by Kmax, which is computed by FE software, and the stress ratio. Kmax is transformed to
ΔKeff by means of R and an empirical relation discussed in Section 3.3.2. The parameters
C and m in Equation 2.25 are determined by the function f, g or h.

da

dN
= f(ΔK, R) = g(ΔK, Kmax) = h(Kmax, R) (2.26)

According to standard texts like [14], Paris equation can be utilized to estimate fatigue life
or the number of cycles to reach a specific crack length quite easily. By considering 2.27,
Paris relation can be transformed to Equation 2.28. After integration and reordering, the
desired relation for fatigue life is obtained (Equation 2.29). It can be applied in different
manners, typically for the calculation of load cycles until a critical crack size is reached. In
this case af refers to the critical crack length at which catastrophic failure occurs or would
occur based on estimates (i.e. from Equation 2.27) or on analyses of failed components.
In cases where it is important to know how many cycles it takes for a crack to propagate
by a specific increment, the corresponding crack extension can be used instead of af .
Values for a0 are usually chosen to match the detectable flaw size during inspection or
flaw sizes observed in components. The relation is valid, unless m = 2. If m = 2 a less
simplified form of Equation 2.29 must be used. In cases where ΔK cannot be calculated
simply from the remote load, a different procedure has to be chosen. This is the case
for the simulation of crack array evolution in aluminum pressure die casting molds. The
appropriate method will be discussed in Section 3.3.3.

ΔK = Y Δσ
√

πa (2.27)

CY m(Δσ)mπ
m
2

∫ Nf

0

dN =

∫ af

a0

da

a
m
2

(2.28)
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Nf =
1

CY 2(Δσ)2π
ln

af

a0

(2.29)

It is generally agreed that the relation between crack propagation and ΔK is characterized
by three different regimes (A, B, C or I, II, III), as depicted in Figure 2.8. Regime III
is associated with rapid crack growth, tearing or static fracture modes. Regime II, is
the linear region where Paris equation is assumed to describe crack growth. In regime I
crack growth is very slow and its lower border is set by ΔKth, a threshold value below
which cracks are thought not to grow [22]. ΔKth is also called fatigue threshold or fatigue
propagation threshold and should not be confused with the fatigue limit used in the total
life approach discussed in Section 2.3.2 [23]. Both thresholds are dependent on loading
cycle parameters and environment and tend to decrease with rising load ratios.

Figure 2.8: Regimes of stable fatigue crack propagation. Regime A: Near threshold fatigue,
Regime B: Crack growth according to Paris equation, Regime C: Rapid crack growth. [14].

2.3.2 Total Life Approaches

In the stress and strain life approach fatigue life is defined as the total number of cycles
to initiate fatigue cracks and to propagate the dominant fatigue crack to final failure.
This definition is significantly different to the one in Section 2.3.1. The approach was
introduced by Wöhler and led to the concept of a fatigue limit which defines a stress
amplitude below which a nominally defect free material is expected to have an infinite
fatigue life. Wöhler diagrams, like the one schematically shown in Figure 2.9 are used
to display the fatigue life in dependence of stress amplitude. At larger stress levels the
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crack propagation has a greater importance for service life compared to lower levels where
crack initiation is the predominant factor. In the lower portion of the Wöhler curves a

Figure 2.9: Schematic of stress based Wöhler curve. The larger the stress level gets the more
important becomes the crack propagation with regard to service life. At lower stress levels the
impact of crack initiation is predominant [13].

linear relationship is observed. Basquin derived an expression which relates the stress
amplitude, in a fully reversed (R=0), constant amplitude fatigue test to the number of
load reversals to failure 2Nf . σ́f is the fatigue strength coefficient and b is the fatigue
strength exponent (Basquin exponent) [14]. This relation describes fatigue life in high
cycle fatigue (HCF), where corresponding strain amplitudes are in the elastic regime.

σa = σ́f (2Nf )
b (2.30)

Wöhler diagrams, however, are strongly dependent on the mean stress. This dependence
is represented in of Haigh diagrams (Figure 2.10). In such diagrams curves are plotted
in coordinates of mean stress vs. cyclic stress amplitude in order to display conditions
for “infinite fatigue life” which, of course, cannot be treated as such. Figure 2.10 is also
called fatigue limit diagram and the stress at the point where the mean stress is zero is
defined as the fatigue limit (R=-1) [23]. An alternative kind of the Haigh diagram which
includes additional information like the stress ratio is also commonly used.
Coffin and Manson proposed an alternative characterization of fatigue life based on the
plastic strain amplitude. They found a linear relationship for the plastic regime (low cycle
fatigue, LCF) like Basquin did for the elastic regime [14].

Δεp

2
= έf (2Nf )

c (2.31)
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Figure 2.10: One possible form of a Haigh Diagram. The curve found by Soderberg gives a
conservative estimate for most engineering alloys. The Goodman relation gives very good results
for brittle metals and the Gerber relation is appropriate for ductile metals and tensile mean
stresses [23].

έf is the fatigue ductility coefficient and c refers to the fatigue ductility exponent.
The strain amplitude in a constant strain amplitude test can be expressed as the sum of
elastic and plastic strain amplitude. Thus, the findings of Basquin, Manson and Coffin
complement each other and can be used to describe fatigue life in the strain life approach.
Equation 2.32 is the combination of the relations found previously, where the first term
describes HCF (elastic regime) and the second one LCF (plastic regime). Figure 2.11
depicts a strain based Wöhler diagram with both approximations.

Δεp

2
=

σ́f

E
(2Nf )

b + έf (2Nf )
c (2.32)

2.4 Near Threshold Fatigue

Near threshold fatigue takes place at and below the border between regimes I and II
at propagation rates less than 10−6 mm

cycle
[23]. Cracks commonly grow in this range after

initiation in HCF. It is important to distinguish between fatigue growth of cracks in the
near threshold regime which propagate with less speed as expected from Paris equation
and fatigue growth of physically small cracks which grow faster than long cracks. In regime
I cracks are always small but in terms of crack propagation these cracks are usually long.
More information on the difference between long and small cracks is given in Section 2.6.
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Figure 2.11: Strain based Wöhler curve illustrating the findings of Basquin, Manson and Coffin
[14].

Fatigue thresholds and limits, however, are not absolute borders, below which da
dN

drops to
zero. If the method used for determining crack lengths in a crack propagation experiment
is accurate to 0.1 mm and no crack propagation is detected after 107 cycles, the fatigue
threshold is considered to have been reached [14]. Is should also be considered that, as
mentioned above, the fatigue threshold depends on several factors like microstructure,
stress ratio, environment and crack size. Figure 2.12 shows typical ranges of ΔKth for
various engineering alloys. At low R values differences in microstructure and between
materials are more significant than at high R values. For Fe and Ni alloys a plateau
is reached at high load ratios [14]. Due to limited plasticity in near threshold fatigue,
LEFM is the appropriate tool to describe crack propagation [23]. In order to describe
crack growth in this regime properly, an adapted version of Paris equation was suggested
by Elber.

da

dN
= C(ΔK − ΔKth)

m (2.33)

In case of short cracks, the use of LEFM to describe crack propagation is debated [23].
It is discussed whether similitude breaks down for short cracks or not. More information
on this issue can found in Section 2.6.
Nevertheless, Equation 2.33 can be used to describe crack growth of long cracks in the
near threshold regime, provided that the fatigue threshold is known.
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Figure 2.12: Typical ranges of fatigue threshold for some engineering alloys. Fe and Ni show
a plateau which corresponds to an intrinsic threshold ΔKth [14].

2.5 The Fatigue Threshold

The most common approach to consider the changes in the fatigue threshold is to im-
plement the findings of research carried out on crack closure, which will be discussed in
Section 2.7. In this approach, the whole crack propagation curve is shifted to match up
with the curves of other load ratios. This way crack propagation is transformed into
a function of an effective intensity factor range ΔKeff . In this consideration only one
threshold exists, i.e. the intrinsic threshold ΔKth.
Fe and Ni show a plateau in Figure 2.12. For these metals the dependence of the fatigue
threshold on R can be expressed in terms of the stress intensity factor range ΔK0 and the
maximum value of stress the intensity factor Kmax,0 [24]. Figure 2.13 schematically shows
how to handle the presence of a fatigue threshold which is dependent on stress ratio with
these two parameters. ΔKth in this context is the lowest value of ΔK0, which is constant
above a critical value of stress ratio Rc. If the fatigue crack growth threshold is treated
in terms of the stress intensity factor Kmax,0 it can be said that Kmax,0 is equal to a con-
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stant Kcr
max,th below Rc. Above this stress ratio Kmax,0 increases with R. The shape of the

curves in Figure 2.13 depends on the type of material, however, which is discussed in the
paper of Vasudevan and Sadananda [25]. The fatigue threshold is therefore determined
by two parameters, where one of them is always constant in the particular R range. This
approach is popular in the community around Vasudevan who argues that there exists
both an intrinsic threshold of ΔK and Kmax which determine the onset of crack growth.
In this community crack closure is regarded as less important and is defined as a third
but extrinsic parameter. Further differences between the concepts based upon one or two
thresholds are discussed in detail in the paper of Krenn and Morris [26].

The present work follows the first approach based on ΔKth as intrinsic threshold and
crack closure as extrinsic parameter. Crack propagation curves for various load ratios were
shifted in order to obtain a curve for the effective driving force. The quantity received
from the FE software, however, is Kmax. Thus, both parameters were used but only ΔKth

was regarded relevant for a criterion managing crack growth. The exact procedure for the
present case is described in Section 3.3.2.

Figure 2.13: Schematic relation between the maximum stress intensity and the stress intensity
range which illustrates the possibility to treat the onset of crack growth in both terms [14].

31



Fundamentals of Fracture Mechanics 2

2.6 Small Fatigue Cracks

In case of long cracks under small scale yielding conditions the propagation of fatigue
cracks can be described by the stress intensity factor range ΔK and lifetime predictions
can be found quite easily, at least in regime II where similitude is justified by the Paris
relation. In some cases Paris equation was successfully applied to short cracks but thresh-
olds often differ between small and long cracks as stated in [23].
However, in many investigations carried out on small crack growth, mostly with continuum
approaches, it has been shown that propagation rates of small cracks can be significantly
larger than for long cracks when characterized by ΔK6. Hence, design against fatigue
failure, based on standard methods, can come along with an overestimation of service life,
when components containing short cracks are concerned. In this section methods will be
introduced on how to identify small cracks and how to treat them with respect to fatigue
life estimations.
Figure 2.14 contains estimates for life time based on LEFM and small crack growth ki-
netics as functions of initial flaw size, in case of a nickel-base superalloy. For initial crack
sizes larger than 0.3 mm LEFM gives proper estimates whereas estimates for smaller ini-
tial sizes are nonconservative [14].

Figure 2.14: Number of fatigue cycles to failure based on LEFM and small crack growth
kinetics. The latter one gives nonconservative results for small initial sizes [14].

First of all, however, it is essential to be able to differentiate between long and short cracks,
which is not trivial, partly because of the various definitions of these terms. Understand-
ing the differences between these definitions and their backgrounds is very important.
For the considered superalloy in the example above cracks shorter than 0.3 mm could be

6Please mind that Equation 2.33 is valid for long cracks, i. e. physically small cracks.
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called small, but this is no general definition. In the literature cracks smaller than 1-3
mm are said to be small but, at least in a physical sense, small cracks are characterized
by the breakdown of similitude [18]. This breakdown can be caused by various reasons
and these in turn lead to various definitions of small cracks. Riemelmoser and Pippan
follow in their paper the definitions of Suresh [14].

Microstructurally Small Cracks
Cracks with dimensions in the range of microstructural characteristics, like grain size or in-
terlamellar spacing, are subject to environments formed by elastic and plastic anisotropies
and residual stresses characteristic for this length scale. The microstructural influences
diminish for cracks exceeding the characteristic length scale of the microstructure by the
factor 5 to 10.

Mechanically Small Cracks
In case of long cracks the plastic zone is embedded within the K-dominated stress field
and its size is given by Equation 2.34 according to LEFM.

rp =
1

2π

K2

σ2
y

(2.34)

According to Riemelmoser and Pippan [18], the plastic zones of small cracks are much
larger, in case of equal values for K, and they are not entirely situated within the K-
dominated field. This effect can be discussed when regarding Figure 4.11 in Chapter 5.
The simulation of crack growth starts at a crack length of 0.1 mm. ΔKeff increases at
first and after reaching a maximum value decreases back to the initial value and below, i.
e. the same value of ΔKeff occurs at two different crack lengths. At 0.1 mm, however,
the crack might be mechanically small which will be discussed in Section 4.5. Cracks
are called mechanically small as long as the deviations from the long crack solution are
significant.

Physically Small Cracks
Extrinsic effects that influence the closure level of cracks decide whether cracks are des-
ignated as physically small cracks. The dynamic stress intensity factor may be shielded
due to crack flank contact behind the crack tip. Contact is made within an area of the
size of the cyclic plastic zone, at least in case of plasticity induced crack closure under
plane strain conditions (see Section 2.7.2). Crack closure cannot develop its full effect in
cracks smaller than that area. Physically small cracks are thus cracks too small to develop

33



Fundamentals of Fracture Mechanics 2

the full closure level. Because also for long cracks situations exist where the closure level
differs from steady state values, the term extrinsically small crack is sometimes regarded
as the more favorable one, since its meaning is clearer. In disturbed long cracks this effect
is due to the loading history. Nevertheless, both cases have a physical background.

Chemically Small Cracks
Whenever crack propagation is affected by chemo-mechanical processes, cracks can be
called small relative to characteristic length scales involved in the process, like the hydro-
gen affected zone or the chemical transport zone behind the crack tip.

Short Cracks
The difference between small and short cracks can be explained by the dimensions taken
into account. Small cracks are small in three dimensions and form naturally. Short
cracks are small in two dimensions but not in the third one (through thickness cracks).
They are usually formed artificially like an incipient crack in a compact-tension-sample
(CT-sample) [18]. In many contexts, however, this difference is not considered.

The regimes of different types of small cracks overlap often but not always. Microstruc-
turally small cracks are typically small as well if mechanical and extrinsical aspects are
taken into account. Mechanically small cracks usually are also extrinsically small cracks.
Cracks in very coarse microstructures, however, may be mechanically short but not with
respect to the microstructure.
Since experiments are commonly carried out on short cracks this term will be used in the
following. The interactions of σy, crack length and loading condition are not trivial and
therefore their impact on characteristic quantities, like the CTOD, cannot be described
by simple relations. The border between the long and short crack regime, however, can
be found easier. For various crack sizes stress intensity factors can be calculated, at which
the long and short crack solutions differ by more than 10 %. The same way characteristic
crack sizes can be found in case of given stress intensity factors. This approach leads to
very straight border lines between the long and short crack regime. According to Riemel-
moser and Pippan [18] these lines can, in case of uniaxial loading, be described by the
corresponding Equations 2.35, 2.36 and 2.37.

K ≤ σy

10

√
πa (2.35)
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σ∞
yy =

σy

10
(2.36)

1

π

K

σy

2

≤ a

100
(2.37)

Equation 2.35 can be used to characterize a crack by the stress intensity factor applied.
If K is larger than the expression on the right hand side of the equation, the crack is in
the short crack regime. Equation 2.36 like Equation 2.37 is a reformulation of the first
equation. According to Equation 2.36 a crack is short if the applied stresses exceed a
tenth of σy. The equation thus illustrates the influence of the yield stress. The left hand
side of Equation 2.37 corresponds approximately to the plastic zone size obtained from
continuum mechanics. The plastic zone size can therefore be used as a criterion as well.
Even though ΔK does not have a justification as driving force in a mechanical and
physical point of view beyond the borders given by the equations discussed above, it is
still a widely used means to describe the propagation of short cracks. Therefore corrections
are necessary that take into account the deviations of the short crack solutions from the
long crack solutions .
Riemelmoser and Pippan provide an adapted formulation of Equation 2.17 that gives a
good and also conservative approximation of the short crack solution. Equation 2.38 can
be used instead of full elastic plastic analyses, if very accurate solutions are not necessary.

CTOD = 0.26
K2

E(σy − σ∞
yy)

(2.38)

The above-mentioned relations were derived for static loads. In case of cyclic loading,
however, the relations can be used as well by applying Rice’s scheme where K is replaced
by ΔK, σy by 2σy and σ∞

yy by Δσ∞
yy [18].

Equation 2.38 changes to Equation 2.39

ΔCTODcorr = 0.26
ΔK2

E(2σy − Δσ∞
yy)

(2.39)

In case of general loading a further correction needs to be applied to this expression.
Based on the derivations in [18] Equation 2.39 can be reformulated in order to be able to
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treat this issue in terms of ΔK only.

ΔKcorr = ΔK

√
2σy

2σy − Δσ∞
yy

(2.40)

Riemelmoser and Pippan found the correction of K according to Equation 2.40 yielding
adequate approximations being in good agreement with measured propagation rates and
effective growth curves [18].

2.7 Crack Closure

2.7.1 Overview

Crack closure is a crucial issue whenever Paris equation is applied for small or negative load
ratios. Due to plastic deformation, roughness of the crack flanks, oxide or metal particles,
or other phenomena, premature closure can occur [23]. Thus, the relative motion of the
crack flanks and the range between which K is varying, seen at the crack tip, are lower
than expected from the external loading. This phenomenon was first observed by Elber,
who explained it with residual plastic strains in the wake of the crack. Elber observed
and explained this by stress-dislocation curves [14]. Figure 2.15 shows schematically what
happens when a specimen is unloaded from a stress level, where the crack is completely
open. The section between points A and B is linear, which indicates that the crack flanks
do not have contact. It corresponds to the stiffness of the sample with a crack of the
length a. E is the stiffness of the sample without a crack. In the section between point
B, where σop is reached and point C, contact is established. After point C the stiffness of
the cracked specimen is equal to the one without crack, which means that contact is fully
established and the crack is closed in that stage. This finding of a closed crack at tensile
stress levels was the first evidence of the phenomenon crack closure. Elber concluded that
the a crack can only propagate during stages of a loading cycle where the crack flanks are
separated. The procedures necessary to take crack closure into account for predictions of
service life are explained in [12] and [14]. Elber’s conclusions led to the definition of an
effective stress range and an effective stress intensity factor range. The parameter ΔKeff

has to be used in Paris equation instead of ΔK. In the calculation of ΔKeff often Kmin

is used instead of Kop which is not correct, unless Kmin = Kop.

Δσeff = σmax − σop, ΔKeff = Kmax − Kop (2.41)
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Figure 2.15: Illustration of the relationship between applied stress and displacement with crack
closure involved [14]. In the linear section between points A and B the crack flanks do not have
contact. Between point B and point C contact is established. After point C contact is fully
established.

Figure 2.16 illustrates the effect of crack closure on the threshold value of ΔK (Kop is

Figure 2.16: Influence of R on the intrinsic threshold value ΔKth. Below R∗ the apparent
threshold for crack propagation is larger than the intrinsic value because of crack closure [12].

assumed to be independent of R in this example). Above the stress ratio R∗ crack closure
does not have an influence. The corresponding threshold value in the schematic is the
intrinsic threshold ΔKth. Below R∗ the intrinsic threshold is the same but from external
loading an apparent threshold which is larger arises.
In the opinion of the majority of experts there exists an intrinsic threshold ΔKth which
is a material property and an extrinsic threshold dependent on R due to crack closure
[12]. A second, smaller group thinks that crack closure has less relevance, though. They
believe that there are two intrinsic thresholds, a threshold for ΔK and one for Kmax.
In this thesis crack closure is regarded as significant and the applied concepts are based
on the findings of the first group.
Figure 2.17 shows various mechanisms, causing crack closure and thus reduced driving
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forces.

Figure 2.17: Different mechanisms of crack closure: (a) plasticity-induced crack closure; (b)
oxide-induced crack closure; (c) roughness-induced crack closure; (d) fluid-induced crack closure;
(e) transformation-induced crack closure; (f) crack deflection; (g) crack-bridging by fibers; (h)
crack-bridging by particles [14].

A deeper understanding about these crack retardation mechanisms is necessary for accu-
rate predictions of fatigue life. Particular attention should be paid to plasticity induced
crack closure especially under plane strain conditions. Because plane strain prevails in
the casting dies the next section will focus on this topic.

2.7.2 Plasticity Induced Crack Closure

According to Riemelmoser and Pippan [27] the reason for plasticity induced crack closure
is extra material behind the crack tip that causes contact of the crack flanks at an earlier
stage than expected. Under plane stress conditions this is a well studied phenomenon
and the origin of this extra material is quite easy to explain. A plate becomes thinner
in the area around the crack tip and material is transported to the flanks. This material
transport takes place during each crack growth increment and the entire fatigue crack
flanks are padded by the extra material. Figure 2.18 illustrates this mechanism. The
mechanism of material transport under plane strain conditions is very different and at a
first glance there is no possible source. It is unclear why plastic deformation at the crack
tip perpendicular to crack propagation should cause material transport in propagation
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Figure 2.18: Schematic of plasticity induced crack closure under plane stress conditions. Extra
material at the crack flanks originates from plastic out of plane flow [28].

direction. Nevertheless, there are many experiments giving evidence of plasticity induced
crack closure in the interior of specimens where plane strain conditions are predominant.
In [28] the mechanisms behind these observations are discussed in detail. In this paper
Pippan und Riemelmoser briefly discuss the role of roughness-induced crack closure, which
could explain the plastic wedge causing contact of crack flanks even under far-field ten-
sile loads. They pointed out, however, that additional concepts are required since crack
closure also arises on smooth fatigue crack surfaces and the plastic wedge appears in FE
simulations which do not consider roughness.
In order to understand the mechanism discussed in [27] and [28] the effect of cyclic plastic
deformation on the material in the wake of the crack needs to be understood. This can
be done by having a look at the geometrically necessary dislocations in that area. Their
Burgers vectors must allow both tip blunting and crack propagation. The volume in the
strip behind the crack does not change, however, since plane strain conditions do not al-
low out of plane flow (ε33) and ε11 and thus due to volume constance ε22 can be regarded
as zero. The last statement is an assumption based on the fact that plastic deforma-
tion occurs only in a small strip. Eventually, all these arguments lead to a dislocation
arrangement shown schematically in Figure 2.19. This Figure illustrates that elements
near the crack flanks have been exposed to shear in the direction of crack propagation
and therefore have been tilted. Similar dislocation configurations found in small-angle
grain boundaries are known to rotate the crystal elastically on one side of the crystal with
respect to the other. The same mechanism applies in the wake of a crack, where the areas
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in the vicinity of the flanks are rotated with respect to the areas further away. Because of
the rotation some material is missing on the left side, in case of the configuration shown
in Figure 2.19, and an equal amount of material can be found at the crack tip. The extra
material, however, travels along with the crack tip and no trace of it is left on the flanks.
This is a fact important to be aware of, since it is a crucial difference to the plane stress
case. In contrast to plane stress conditions not the entire fatigue crack is padded by extra
material but only a small area behind the crack tip. This is the reason why this effect
can hardly be observed in experimental setups.
In [27] Riemelmoser and Pippan also give an alternative explanation for the elastic ma-
terial transport on the basis of continuum mechanics.

Figure 2.19: On the left hand side: Volume transfer to the crack tip by rotation of volume
elements in the wake during crack growth under plane strain conditions; At the center: Monotonic
and cyclic plastic zone; On the right hand side: Remaining ligament [28].

2.8 Crack Arrays

2.8.1 Fundamentals

At the beginning of this section the basic interaction between multiple cracks should be
discussed. According to Anderson [12] there are two extremes, i. e. the amplification
of stress intensity factors at the crack tips compared to the case of a single crack and
conversely crack shielding leading to lower KI . The first extreme can be observed when
cracks are aligned in the same plane with propagation direction perpendicular to external
forces. This configuration is shown in Figure 2.20 as well as the normalized KI vs.
normalized crack spacing. As expected, the stress intensity factors rise with decreasing
crack distance. Because of the amplification of K multiple in-line cracks are a threat to
components. The second case is essential in view of the crack arrays developing in casting
dies. Figure 2.21 shows a configuration with parallel cracks. The stress distribution
changes in such a way that the cracks shield each other and the stress intensity factors
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Figure 2.20: Interaction of two identical coplanar through thickness cracks in an infinite plate
[12].

decrease with decreasing spacing. Engineers can take advantage of the shielding effect by
deliberately creating stress relief by minimizing the crack spacing in the case of arrays of
parallel cracks. This way more serious damage like fast propagating single cracks can be
avoided.

2.8.2 Former Studies on Crack Arrays

The issue of interacting cracks in crack arrays was investigated in the context of different
practical problems. Nemat-Nasser [29] et al. had a look at the formation of cracks in
rock masses used for extracting heat. Haddar et al [30] investigated the evolution of crack
networks in AISI 304L steel used for nuclear reactor components. Jenkins [31] studied
crack formation in solidifying coke, which show similar patterns as in basalt columns.
In their papers all of them provide theoretical approaches which can be adapted for the
present study or used for the development of new concepts. The most important ones
will be discussed now, beginning with the paper of Nemat-Nasser et al. which was a
cornerstone for many other scientific articles.

Formation of crack arrays in rocks

The elastic energy stored in a material subjected to thermal contraction, like in the case
of rock cooled by circulating water in geothermal plants or likewise in pressure die casting
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Figure 2.21: Interaction of two identical parallel through thickness cracks in an infinite plate
[12].

molds after spraying, is finite. This is the reason why there is always a finite number of
cracks with a minimum average crack spacing at the surface. This is true for monotonic
loading as well as load cycles leading to fatigue.
For the discussion of instabilities in the crack array a unit cell, consisting of two interacting
cracks, can be regarded. In equilibrium both cracks in the unit cell are of equal length
and their stress intensity factors equal Kc (2.42). The stress intensity factor of each
crack depends on the lengths of both cracks and a load parameter δ, which is also called
penetration depth. It is a measure that increases with square root of time and is also
a measure for the depth in which a significant temperature gradient is observed (Figure
2.22).

a1 = a2 = a and K1 = K2 = Kc (2.42)

Ki = Ki(a1, a2, δ0) (2.43)

It is not sufficient to simply identify equilibrium. Moreover a criterion must be defined
deciding whether this equilibrium is stable, unstable or critical. According to Nemat-
Nasser [29] this issue can be treated in the following way.
Condition 2.42 is stable when the terms in 2.44 are negative. There is no possibility
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Figure 2.22: Temperature distribution due to convection, redrawn from [29].

for either of the two cracks to grow spontaneously for any dai ≥ 0, since dKi is always
negative or equal to zero. In case of interacting cracks equilibrium becomes unstable if
condition 2.45 is true. If the terms in 2.45 are equal to zero a critical state is present at
which one of the cracks will stop. This is logical since, compared to the other states in
which both cracks can grow or cannot grow, at this point the only way for crack growth
to occur is that one of the cracks stops. In view of energy this is more obvious. At
the critical state a reduction in potential energy is not possible, if both cracks advance,
because elastic energy released would be entirely consumed by the newly formed crack
surfaces and hence the potential energy U would stay the same. For this reason this state
is critical, because for the system it does not make any difference if both cracks grow or do
not grow by an increment δa. If only one crack advances, on the other hand, the potential
energy of the system decreases because less energy is spent for the creation of new crack
surfaces. The growing crack draws stored strain energy from a larger area than during
the preceding increment δa where it had to share the energy with the second crack. Thus
it will grow, at the same time decreasing U. Note that the energy released by reducing U
is used to drive the crack.
Although crack propagation follows a different scheme in aluminum pressure die casting
dies, since it occurs far below Kc and due to non monotonic loading, the discussion of a
critical crack configuration will be picked up again in Section 3.3.2.

∂K1

∂a1

=
∂K2

∂a2

< 0, stable (2.44)
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∂K1

∂a1

=
∂K2

∂a2

> 0, unstable (2.45)

∂K1

∂a1

=
∂K2

∂a2

= 0, critical (2.46)

In rock masses, δ increases with time because heat energy is extracted steadily and the
temperature gradient moves deeper into the stone. Figure 2.23 schematically explains
the situation. Based on the assumption that there are initially two equal cracks in the
unit cell of the array, it can be said that both will grow stable until a critical point C1

is reached. One of the cracks will stop (crack one in this example) while the other one
continues to propagate in a stable manner as long as ∂K2

∂a2
is negative. Between C1 and

C2 K1 decreases and finally reaches zero at a second critical point C2. Since K cannot
become negative, it closes and crack number two reaches a finitely longer length aP . The
same will happen to all unit cells the system consists of and other critical states will be
reached, when the advancing cracks of the individual unit cells will start to interact.
As discussed in Section 2.1 there is an alternative approach to LEFM based on energy.
Thus, a criterion can be developed by comparing the energy stored in the system to the
energy needed for crack propagation, similar to Equation 2.1. This criterion is discussed
in [29].
In the present work the symmetry of the crack arrays was used to build a FE model for
the simulation of crack array evolution. This way criteria applicable to fatigue could be
implemented and computation time was reduced to a minimum. Further details can be
found in Chapter 3.

Formation of Crack Arrays in Solidifying Coke Layers

Jenkins investigated crack growth in solidifying coke layers. Coke is supposed to be
lumped and thus cracking is desired during industrial production. In [31] Jenkins imple-
mented the results found by Nemat-Nasser and others in order to conduct FE simulations
on crack arrays. In previous studies, however, the initial crack spacing was specified,
whereas Jenkins also implemented concepts to find the optimal initial spacing of the ar-
rays.
The approach chosen in [31] is to compute configurations of the array for a range of dif-
ferent values of a and l and to find those which minimize the potential energy U of the
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Figure 2.23: Two critical states during crack propagation with increasing δ, redrawn from [29].

Figure 2.24: Determination of minimum spacing, redrawn from [31]. The expression L
Lc

2 is
proportional to time. After the cracks start to initiate the optimum spacing decreases. The
global minimum determines the optimum spacing observed in the material.

system. For this purpose equations of mechanical equilibrium were solved by means of
the FE method in order to determine U for each combination of l and a. Afterwards, the
global minimum of the potential energy was identified and the corresponding values of l
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and a were designated l0 and a0. This analysis was carried out for various stages of growth.
The results found by Jenkins and depicted in Figure 2.24 show that at early stages of
growth no sufficient stress level has developed to cause cracking. Shortly thereafter, how-
ever, cracks initiate with a relatively large optimum spacing. This spacing decreases with
time which is equivalent to the initiation of additional cracks. After reaching a minimum
spacing l0,m the system would prefer larger spacings. These are not achievable, however,
because cracks already initiated cannot disappear. For this reason, the energy of the
system will be at higher levels than the optimum states determined for later stages of
growth. The spacing l0,m is therefore the one which will be observed at the surface. L
refers to the thickness of the layer. In Figure 2.24 l0 and L are scaled with Lc, which is
the Griffith crack length for a shrinking solid and a measure for the depth of diffusion of
heat necessary to initiate cracking. The term ( L

Lc
)2 is proportional to time.

Figure 2.25: Period doubling during crack propagation in a growing layer, redrawn from [31].
The black line is valid for a crack array with the optimum initial spacing which is illustrated
in Figure 2.24. The dashed line corresponds to crack configurations with the current optimum
spacing in each time increment.

Based on this knowledge crack growth itself was investigated, starting with equal cracks in
a distance of 2l0,m from each other and a length of a0,m. The configurations with (l0,m, a)

correspond to higher potential energies than the configurations with (l0, a0), which would
cause the lowest potential energy possible at the specific time but have already been ruled
out by the growth and initiation history of the system. Thus, instabilities in the growth
regime are possible. In accordance with the findings of Nemat-Nasser, the cracks in the
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array will propagate and maintain equal length until a criterion for instability is fulfilled.
Jenkins found that the crack array in the solidifying layer undergoes several instabilities
as shown in Figure 2.25, each accompanied by a period doubling, viz. every second crack
stops at each instability. In Figure 2.25 the crack length a is scaled with the current
thickness of the layer. The dashed line corresponds to a0, the crack length at a specific
time and the optimum spacing l0 at this time.

The idea of an optimum initial spacing is significant for the present study. An approach
based on the potential energy was tested but not further pursued since energy approaches
are too difficult to implement in case of fatigue. This is because the energy changes during
each loading cycle and no concepts which consider this issue have been developed so far.
Concepts based on the stress intensity approach to LEFM are more advanced and have
been used for this work, as will be discussed in Chapter 3.
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Chapter 3

Modeling

The FE models designed in the course of this thesis were implemented with the commercial
simulation package Abaqus. Furthermore, the FE package Zmat [32] was utilized to
model the material behavior, Matlab and Mathematica were used for data fits and the
programming languages Java and Python have been crucial for the automated design of
the modeling path.
The simulation of crack arrays is rather complex and was split into issues that can be
treated individually. Beside the implementation of theoretical knowledge on crack arrays,
focus was laid on parameterization, automation and performance to be able to conduct
parametric studies and simulations of crack propagation on a reasonable time scale. Figure
3.1 shows a flow chart with the individual units and their correlation. The single units
will be explained in detail in the following sections.

3.1 Preliminary Studies: T-Model and S-Model

3.1.1 Model Design

Because of performance issues, the computation of temperature distributions, residual
stresses and crack propagations were separated into three distinct models. The Tempera-
ture-Model (T-Model) and the Stress-Model (S-Model) will be described at this point.
Since the temperature distribution in even die areas is one dimensional and thus the
stress distribution as well, both models consist of a single row of elements which allow
the computation of temperature and stress distributions from the surface to a depth of
50 mm. For the T-Model DC2D4 elements are used, i.e. 4-node linear elements typical
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Figure 3.1: Flow chart of the modeling path.
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for heat transfer analyses. For the S-Model quadratic plane strain elements with reduced
integration are used (CPE8R). The mesh size at the top is 0.1 mm and the areas below a
depth of 10 mm are meshed with a seed size of 0.3 mm whereas the model width is kept
constant at 0.1 mm. Since data on temperature distributions computed by the T-Model
are transferred to the S-Model the same mesh should be applied to both models.
The T-Model is used to simulate heat transfer from the melt in the solidification step
to the die, thermal fluxes within the die and heat transfer to the surroundings after the
ingot has been removed. This is done in multiple steps by applying appropriate boundary
conditions. The S-Model is used to compute the material response to thermal loading.
For this purpose boundary conditions were set to block deformation at the sides and the
bottom of the model. In this simple model this has the same effect as periodic boundary
conditions allowing to determine stresses and residual stresses.

3.1.2 Generation of Input Files

The FE solver used to compute the FE models receives Input-Files (inp-files). Inp-files
are text files consisting of a list of keywords each followed by specific data lines. The
solver reads inp-files and processes their commands. Usually the model is designed with a
graphical user interface (GUI) provided by Abaqus CAE which creates the corresponding
inp-file of the model an passes it on to the solver. It is possible, however, to bypass the
GUI and write inp-files manually as it has been done for the creation of T-Models and
S-Models.
A single casting cycle consists of 10 different steps, which are described in detail in [4].
Every additional casting cycle is equivalent to another set of these steps. Thus, an inp-file
was prepared for the first casting cycle both for the T-Model and the S-Model. To be
able to generate inp-files for an arbitrary amount of cycles and to adjust these files to
current requirements, a package of Java programs was written and used for the preliminary
studies, viz. the computation of temperature and stress distributions for given sets of
parameter variations. The parameters investigated are hardness, thermal conductivity
(λ) and thermal expansion (α).
The package was used to generate a root file for each model and to create several sets of
inp-files based on the root files afterwards.
In this study the temperature and residual stresses were computed for 100 casting cycles.
After 100 cycles one can safely assume that all state variables will no longer change, i.
e. a stable cycle has been reached. The corresponding inp-files consist of 1000 steps and
about 30000 lines. The names of the inp-files with varying parameters were stored in a
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Table 3.1: Important thermo-physical material parameters of a X38CrMoV5-1 [7].

Temperature/[◦C ] 20 100 200 300 400 500 600 700
E/[GPa] 210 199 194.5 190 188 183 183 183
λ/[W/mK] 24.5 26.0 27.7 28.9 29.5 29.5 29.1 29.2

α/[(1/K)10−6] 10.5 11.13 11.75 12.28 12.73 13.13 13.33 13.58

batch file and started sequentially with Abaqus.

There is an alternative concept: Abaqus provides the possibility to conduct parametric
studies based on parameterized inp-files in combination with a Python script that man-
ages the parametric study. This script contains predefined functions especially developed
for parametric studies. For more information, the reader is referred to the Abaqus docu-
mentation. This concept, however, does not consider the variable number of load cycles
which necessitates an additional program that generates the parametric root file before
the actual parametric study begins. Both concepts offer similar functionality but in the
long term the built-in concepts of Abaqus, based on Python, should be preferred.

3.1.3 Temperature Distributions

The die casting process itself was investigated extensively in [4] and [7]. In the course of
this thesis the models developed by Ecker and Leindl were adapted and modified leading
to the T-Model and the S-Model. As mentioned above, the T-Model has been reduced
to a one dimensional heat conduction model which is an appropriate means to handle
the temperature conduction problem in the dies without spending more resources than
necessary.
The T-Model was used to compute temperature distributions for nine different values of
thermal conductivity1. Table 3.1 shows the thermo physical properties of the investigated
material. The other material parameters used in this study result from variations of these
values as depicted in Table 3.2.

3.1.4 Residual Stresses

The S-Model is coupled with the material modeling data base Zmat which is a standard
feature of the FE package Zebulon. This coupling is done via the User Subroutine UMAT,

1In [4, 7] it was found that α does not have an influence on the transient temperature field.
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Table 3.2: Variations of λ, α and hardness used for the studies in the present work.

λ α Hardness
-50% -50% 44HRC
-25% -25% 47HRC
-15% -15% 50HRC
-5% -5%
+0% +0%
+5% +5%
+15% +15%
+25% +25%
+50% +50%

which itself enables the simulation of material behavior. Nevertheless, Zmat offers supe-
rior functionality. This way the material model developed by Ecker [4] is implemented into
the simulation evaluating the plastic response of the material parallel to the stresses com-
puted by Abaqus. The complex elasto-viscoplastic material model consumes significant
hardware resources making this model the most time consuming one in the whole chain of
simulations. This is the reason why the simulations in the course of this work were done
with three different models, i.e. the T-Model, the S-Model and the Crack Propagation
Model (C-Model). The first two models could be implemented as one dimensional models
allowing the simulations to finish in reasonable time. One computation with the S-Model
takes only 2.5 hours, whereas this model combined with the C-Model would lead to com-
putation times in the range of days or weeks. Because multiple C-models are necessary
to simulate the evolution of crack arrays, computation time is a crucial issue.
Since mathematical relations between material parameters and e.g. the service life time
are to be found as the final aim of this work, studies are carried out on every combination
of hardness, λ and α. The data shown in Table 3.2 represent the parameter grid this work
is based upon which results in 243 parameter combinations. Thus, a total of 243 σres

distributions was computed and this way, enough data points were available for xyz-data
fits, which provide a means for quick estimations of the influence of these parameters. If
no mathematical fit functions can be found the distribution of the data points itself will
provide valuable information.

3.1.5 Data Processing I

The preliminary studies give information on temperature and σres distributions for dif-
ferent material parameters. This information has to be transfered to the C-Model. The
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easiest way to do this is to take advantage of the User Subroutines UTEMP and SIGINI
which allow to impose temperature and stress distributions on the nodes of a model as
initial conditions before the actual computation. Since the temperature distributions in
contrast to σres extend over the whole model and because they can be approximated by
polynomials quite easily, the obtained data is fitted with Mathematica. In a first step a
Python script is used that reads data from the output data bases (odbs) which contain
the computed results of the FE analyses and writes those data systematically to text files.
These files are read by Mathematica which determines the coefficients of the fit polyno-
mial. The polynomials are written to User Subroutines generated from a template file.
In case of the stress distributions a Python script is used to read the data and to write
them to a template directly. Data fitting is not possible because only complex functions
or spline curves would be able to fit the shapes of the distributions. Piecewise linear
approximations are appropriate means to transfer the distributions computed by Abaqus
at the integration points to the subroutines, especially if reasonably fine meshes are used
in the models.
Additionally, the envelopes of the stress distributions of the last solidification step are
needed for parallel computation of ΔKeff in the C-Model2. The envelope of the distri-
butions of all increments yields the minimum stress values with respect to depth. This
is also taken care of by a Python script that reads data, computes the envelopes and
generates a module that can be loaded by the control script (see the schematic in Figure
3.2).

3.2 The Architecture of Abaqus

The investigations on crack arrays are facilitated in this thesis by the scripting language
Python and the scripting interface built in Abaqus CAE. Basic knowledge of Python and
the architecture of Abaqus are preferable in order to follow the modeling path and the
discussions in Chapter 5. Some basic information is provided in this section. Further
information can be obtained from the official Python documentation [33], the Abaqus
Scripting User’s Manual [34] and the Abaqus Scripting Reference Manual [35].

An FE analysis with the commercial package Abaqus passes through three distinct steps
illustrated in Figure 3.3. The first one is the preprocessing, where the geometry, loads,
boundary conditions, mesh, etc. of the model are defined. This is usually performed using

2As will be discussed in Section 3.3.1 σmin is dependent on step time and depth.
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Figure 3.2: Overview of data transfer to the main script.

the graphical user interface (GUI), provided by Abaqus CAE, the part of the package
developed specifically for the preprocessing. Abaqus CAE was not available till the mid-
1990s so, as was common for FE programs of that time, the model was built just by
manually writing a text file containing lines with distinct keywords, each followed by
associated data lines. Today, the preprocessor does nothing else than generating this
inp-file by translating the GUI input into a text file. This inp-file is the link between
Abaqus CAE and the solvers Abaqus Standard and Abaqus Explicit, needed for the next
step, viz. the analysis of the model. The solver is chosen by the user according to the
type of the problem, e.g. static or dynamic. Abaqus CAE then passes the generated
inp-file to the chosen solver. After analysis has completed the results can be visualized
and postprocessed in Abaqus Viewer, which has been integrated into Abaqus CAE.
As depicted in Figure 3.3 the entire preprocessing via Abaqus CAE communicates with
the Python interpreter. Python is an object oriented programming language Abaqus CAE
was developed with. GUI inputs are internally translated to Abaqus-Python commands
and these are processed by the interpreter. Python is a language using bytecode which is
generated during interpretation and in case of Abaqus passed to the kernel, the brain of
Abaqus. In other bytecode based languages like Java, a compiler generates this code as
a part independent of the source code. In Python the bytecode is just kept in the main
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memory and it is thus dependent on the interpreter. The kernel processes the bytecode
and operates on the bytecode based model data bases (mdb) and output data bases (odb).
The recorded Python commands used in a model or a session, respectively, are stored in
the journal and replay files.
A very useful feature of Abaqus CAE, used extensively in this study, is the possibility to
access the Python interpreter and thus the kernel by using the scripting user interface.
This way models can be built directly by means of Abaqus Python commands. This
procedure entails far greater efforts but has a crucial advantage over GUI modeling. The
user can take advantage of the full capabilities of Abaqus CAE as well as the high-
level programming language Python. Parameterized modeling and automated procedures
involving model data bases (mdb) and output data bases (odb) are hence possible.
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Figure 3.3: Abaqus schematic, modified from [34]. The orange part illustrates the design of
the Abaqus preprocessor (Abaqus CAE). The red section describes the solvers provided by the
Abaqus FE package. The blue section refers to postprocessor which is integrated in Abaqus CAE
and the two types of output, i.e. field and history output.
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3.3 Main Studies: Control Script and C-Model

The C-Model was used to simulate propagation of cracks in crack arrays. This model cor-
responds to an even section within the die and uses periodic boundary conditions which
permit the reduction of the model to a size that is still representative for the entire array.
A model with periodic boundary conditions can be thought to be continued infinitely.
This means that although not all cracks in the die are included in the model, their influ-
ences are still considered in the simulation.
Because of the chosen modeling design, the simulation of crack propagation consists of a
chain of individual computations that provide data used by the subsequent one. Thus,
the generation of a single C-Model is not sufficient. This issue is handled by the Con-
trol Script (see appendix), a program written in Python, that creates C-Models in loops,
evaluates generated data and creates C-Models based on built-in criteria and predefined
settings. Before the Control Script builds the first C-Model, user defined modules are
loaded containing the data discussed above. Figure 3.4 shows the functionality of the
Control Script.

Figure 3.4: Relation between Control Script and C-Model. When the script is started user
defined modules are loaded. These contain data required for the application of a built-in criterion
and functions needed during the execution of the script.

During the application of the Control Script it has to be checked for each crack config-
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uration whether the array would propagate. For this purpose the concepts discussed in
Section 2.8 were reviewed in terms of fatigue. Although derivations from Section 2.8 do
not apply in this case, the views on energy and the stress field persist. As discussed for
monotonic loading, the system will always choose the path to the lowest possible energy
state. For monotonic loading like in rock it was debated what happens if stable crack
growth satisfies an equilibrium condition [29]. It was concluded that crack growth can
either stay stable, change to instable propagation or become critical, which causes other
cracks to stop. This debate was conducted in terms of Kc and Gc which mark equivalent
equilibrium conditions. The corresponding quantity in fatigue is ΔKth. This quantity,
however, marks the borderline between no crack propagation and stable crack growth.
Thus, the problem is not equivalent but still it can be treated in a similar way which
gives rise to even simpler conclusions. ΔKeff is connected to dislocation gliding at the
crack tip. When gliding stops, ductile crack propagation, as in the case of the material
investigated, is no longer possible. Unstable propagation is not an issue since ΔKeff is
far below Kc. This means that the system cannot lower its potential energy any more
since the array as a whole is not viable. On the assumption that all cracks initiate at
the same time with a homogeneous spacing, every second crack will stop at equilibrium
ΔKeff = ΔKth if ∂ΔKeff

∂a
< 0 which is always fulfilled in the case of equilibrium in casting

dies3. There is no configuration leading to lower potential energy. The continuing crack
in a unit cell will experience a jump of ΔKeff , whereas the other one will be shielded
immediately and drop significantly below ΔKeff . The case that all cracks stop does not
occur until the system cannot lower its energy any more by crack propagation. This is
assumed to mark the final configuration of the array. Figure 3.5 shows a result based
on this concept. The points where the configuration of the array changes, viz. where
cracks stop growing are designated as instabilities. This expression refers to the crack
configuration only and does not imply instable crack growth. This nomenclature will be
kept in the following sections.
The stress intensity factor is continuously compared to the threshold value. If ΔKeff >

ΔKth the array is stable and the configuration will not change. In order to be able to use
the criterion it is necessary to know the stress ratio at the crack tip of the propagating
crack in the unit cell as well as the relation between Kmax, which is computed by Abaqus,
and ΔKeff .

3At first ∂ΔKeff

∂a is positive but the first equilibrium is satisfied after a peak and thus at negative
values of the derivative.
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Figure 3.5: Progression of K for all cracks in an array with an optimum minimum initial spacing
of 230 μm. The crack configurations where cracks stop are designated as instabilities. The stress
intensities of cracks which have stopped drop significantly upon the propagation of the other
cracks.

3.3.1 Determination of the Stress Ratio

Minimum Stresses

σmin occurs during solidification of the melt in each casting cycle. Due to the consider-
able difference in temperature of melt and die the temperature distribution and hence the
stresses change significantly in each increment computed by Abaqus. Thus, the values
of σmin of different depths in the die arise at different times. The distribution of σmin

with depth can be found, however, by designing the envelope of all increments. Figure
3.6 depicts the stress distributions after each individual increment of the FE analysis.
The envelope which is equal to the distribution of σmin is marked red. After the first
increments there are still tensile stresses at the surface since residual stresses shift the
distribution in that area to positive values. The peak decreases until a minimum value is
reached. From this point on the stresses become less negative because with time heat flow
partially evens out the temperature differences, i.e the temperature distribution reaches
deeper into the die while consuming thermal energy stored in the surface region to some
extent. The spike near the surface is due to the residual stresses which add to the stresses
caused by thermal expansion.
Because the σmin distributions are entirely in the pressure regime all cracks are supposed
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Figure 3.6: Envelope of all increments of a solidification step. This envelope corresponds to
the distribution of σmin

.

to be closed and it is assumed that they do not change the distributions4. Therefore the
envelopes are determined from the S-Model directly which does not contain any cracks at
all. The evaluation is performed by means of the same script the subroutines were gener-
ated with and no extra programming step is necessary. The envelopes are approximated
by piecewise linear fits and written to a text file. This data module is a simple form of
a data base, consisting of if-conditions specifying the data sets and the sections of the fit
functions.
As mentioned above, this module can be loaded and used in the control script whenever
necessary. After a crack array has been computed, the database is called and σmin at the
crack tip of the propagating crack is loaded. In order to obtain the stress ratio, σmax must
be computed at the same position.

4Due to plastification the cracks are open when unloaded and pressure is necessary to close them.
This changes σmin slightly.
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Maximum Stresses

The maximum stresses occur in the spraying step of each casting cycle. There are three
spikes during this step since the spray nozzle passes each point of the surface three times.
Before the first cycle is started the die is heated to about 120°C to 250°C and is kept at
that value in the area of the cooling channels within the die. In this study T0 is 120°C
which matches the studies carried out in [7, 4]. The last pass of the nozzle gives rise to
the largest tensile stresses in the mold. The temperature distribution and thus the stress
distribution after the final pass are used in the C-Model. The σmax distributions start
in the tensile regime, which causes the cracks to open. Therefore, the influence of cracks
on the stress field is essential and σmax must be computed with a model related to the
C-Model. In this case, the propagating crack must be kept closed, however, since σmax in
the method chosen is by definition the stress of the uncracked model at the same position
as the crack tip. All the cracks in the surrounding area and their impact on the stress
field have to be taken into account.
This gives rise to the design of a C-Model differing from the standard one, designated as
C − Modelσmax. Due to the periodic boundary conditions the absence of a crack affects
the whole crack array. For this reason, the unit cell must be enlarged to make sure the
closed cracks do not influence each other. In case of an initial unit cell, consisting of one
crack only, the cell will be enlarged by a factor of 10 accommodating 9 identical cracks.
A configuration with 9 cracks is chosen because that way ΔK of the cracks farthest apart
from the closed crack are at the level of the cracks in the corresponding C-Model. This
procedure guarantees that the closed cracks in the array described by the C −Modelσmax

do not influence each other and that σmax is valid. The geometry of crack number 1 will
be modeled but no crack seam will be defined. Thus, the geometry affects the mesh but
no crack is present at this position in the simulation. The node at the crack tip will be
stored in a set as it is usually done in the C-Model, which enables the Control Script
to access the required stress data in the output data base of the current C − Modelσmax

easily.
Distributions of σmin, σmax and R will be discussed in Section 4.3.

3.3.2 Determination of the Effective Stress Intensity Range

In order check the criterion for the stability of the forming crack array it is necessary
to determine a relation between Kmax computed by Abaqus and ΔKeff which must be
compared to a threshold value obtained on the basis of experimental data. In the course
of finding this relation the data obtained by Leindl [7] who determined crack propagation
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curves for different stress rations is used. The data is shown in figure 3.7. The horizontal

Figure 3.7: Crack propagation curves for a X38CrMoV5-1 hot work tool steel with a hardness
of 44 HRC for various stress ratios [7].

shift of the curves with R indicates the presence of crack closure as discussed in Section
2.7. Due to crack closure the crack tip is subjected to loads less than predicted from
external loading conditions. The impact of crack closure depends on the stress ratio and
therefore its determination is necessary as mentioned above. If the effective dynamic stress
intensity factors at the crack tips are known and a new chart is printed in terms of ΔKeff

the curves are supposed to be on top of each other. This procedure was investigated by
Huang and Moan [8].
The modus operandi in this study was to calculate a ΔKeff curve from ΔK data for a
stress ratio of 0.7 by application of an adapted version of the relation found by Elber
and implemented in [7]. This correction is assumed to give precise values in a stress ratio
range from 1.0 to -1.0. The data corresponding to the other stress ratios were in a first
step transformed to Kmax curves by application of Equation 2.24. In a second step the
resulting curves were shifted individually to get a set of superimposed stress propagation
curves as shown in Figure 3.8. The focus when shifting the curves was led on the lower
portion of the curves which is in the present case predominant considering life time. The
upper parts of the curves usually differ from each other to some extent.
The coefficients applied for the curve shift, correspond to the ratios ΔKeff

Kmax
specific for each
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Table 3.3: Polynomials used for the data fit required in order to relate Kmax with ΔKeff . The
polynomials are depicted in Figure 3.9.

range of stress ratio Polynomial
0.7 to -1.0 0.543247 − 0.325812 ∗ R − 0.129059 ∗ R2

-1.0 to -3 0.705 − 0.035 ∗ R
-3.0 to -5 0.645 − 0.055 ∗ R
-5.0 to -6.455 0.645 − 0.055 ∗ R

lower than -6.455 ΔKeff

Kmax
= 1.0

stress ratio. For R = 0.7 the ratio was calculated directly by Equation 2.24. These ratios
were used to find a general relation between ΔKeff

Kmax
and the stress ratio for a X38CrMoV5-1

hot work tool steel. The results are depicted in Figure 3.9.
Since no satisfying curve fit can be found a curve is defined consisting of the polynomials
listed in 3.3. The curve is likely to approach 1 asymptotically at very negative stress
ratios. Because no data is available for stress ratios below -5, however, a conservative
curve progression is chosen. Below -5 the curve is linearly propagated by the preceding
1st order polynomial. The value of this function reaches 1.0 at a stress ratio of -6.455. At
stress ratios lower than -6.455 ΔKeff

Kmax
is supposed to be 1.

The piecewise fit with polynomials is regarded as the best solution in this case because no
other method would provide a better fit for the present data. This is due to the deviant
data point at R = −1 which would decrease the quality of a fit with a single function.
Even in case of a weighed fit function that puts more weight to the other data points the
results would not be better. The deviant data point originates from experimental data
and its deviation must be attributed to a physical influence. Thus, the most appropriate
approach is to use linear fits in the discussed data range.
Figure 3.8 also shows the Paris relation determined by Leindl in [7]. The procedure for
shifting the curves was different and other corrections beside the modified Elber correction
were applied. Thus, the Paris relation deviates to a minor extend from the ΔKeff curve
determined in this thesis. Nevertheless, the coefficients C and m of the Paris equation
determined in [7] are used for this work, since it is not known which method is more precise
and Leindl has already obtained reasonable results based on his data. Furthermore, the
deviation from the present curve is small and in case the ΔKeff curve determined in the
present work is more precise the results for the studies on service life are conservative
which would not be true for the opposite case when C and m would be determined
anew. Crack propagation in ductile materials is supposed to be based on cyclic plastic
deformation at the crack tip. Thus, ΔKth is connected to the initiation of cracks due to
cyclic plasticity, which in turn is dependent on the emission and gliding of dislocations
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Figure 3.8: The crack propagation curves are shifted in order to obtain a ΔKeff curve which
is compared to Paris relation determined in [7].

Figure 3.9: Data obtained from the shift of crack propagation curves (Figure 3.8) is used to
define ΔKeff/Kmax as a function of R.
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at the crack tip. The emission of dislocations depends on the shear modulus, which is
almost the same for different hardnesses. For this reason, ΔKth can be assumed to be
the same for X38CrMoV5-1 hot work tool steels with different hardnesses. In general, it
was found that even different types of steel have nearly the same threshold value of 3.0
MPa

√
m [36]. This value is used in this study. The curves in Figure 3.8 consist of data

points greater than ΔKeff . The reason why the threshold region is not represented is
the significant scatter of data points. Furthermore, it should be considered that in the
range of 3.0 to 3.5 MPa

√
m a corrected form of the Paris equation (Equation 2.33) should

be applied, at least in cases where this region is significant for fatigue life estimations.
Anyway, if the correction is not applied the estimates are conservative.
It was shown by Leindl [7] that the plastic zone size correction discussed in Section 2.1.2
does not have significant influence on ΔKeff . Thus, this correction was not implemented
in the modeling path.

3.3.3 The Relation between Crack Propagation and Load Cycles

As mentioned above, crack propagation is computed step by step by a self controlled
Python script, which determines the evolution of crack arrays. During analysis R and
ΔKeff are computed parallel to crack propagation. This analysis was done for various
data sets, each consisting of a unique combination of material parameters.
In addition to the output already mentioned, it is of scientific interest to know crack
propagation rates in each step and the number of loading cycles corresponding to crack
propagation between the C-Models. The information, at which stages of the formation of
the arrays most of the fatigue life is spent, is a major issue in this study.
The design of the chosen modeling path favors this kind of computations, where data are
extracted and used for parallel evaluation of criteria or specific characteristics. The propa-
gation itself is given by a fixed increment but the distribution of fatigue life is supposed to
be almost independent from this incremental modeling, provided that the increment size
provides an appropriate resolution of crack growth. The crack propagation rates for each
C-Model can be determined easily from Equation 2.25. ΔKeff is computed automatically
and the constants C and m are used as determined by Leindl [7]. The determination of
load cycles corresponding crack propagation in the specific configurations of the arrays is
a more complex task. In Section 2.3.1 an approach was introduced linking crack extension
to load cycles based on the integration of Paris equation. In this case ΔK was determined
by Δσ which is the difference between the minimum and maximum remote load. The
origins of the loads in the C-Models are thermally induced stresses and residual stresses.
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For this reason, no remote loading exists and an alternative approach has to be chosen,
since Equation 2.27 is not applicable.
On the one hand crack propagation curves are available for the application of Paris equa-
tion, on the other hand the progression of ΔKeff with increasing crack length is recorded
in the course of the FE analyses. With this data available it is possible to integrate Paris
equation for regime II, either as a whole after a simulation in a separate step or as a kind
of “live evaluation” during simulation. The latter method was judged to be the better one
because this way the number of loading cycles will be computed automatically for each
increment of propagation based on piecewise linear fitting of the distribution of ΔKeff

(Equation 3.2). The schematic in Figure 3.10 is supposed to give an impression of this
procedure. Due to the small increments of 0.05 mm these fits are more precise than a fit
of the whole distribution. Furthermore, it is computationally less expensive to integrate
this evaluation into the process instead of having to access all data in a separate postpro-
cessing.
From Equation 2.25 the following expression can be obtained.

NEnd − NStart =

∫ aEnd

aStart

1

C(ΔKeff )m
da (3.1)

In Section 2.3.1 ΔKeff is replaced by a term containing the cyclic remote loading, crack
length and a geometry factor. It has already been pointed out that in the present work
this term cannot be used, since the stresses in the die are not related to remote loads.
The stress intensity factors, however, are calculated by Abaqus and the curve progression
of ΔKeff (a) can be interpolated according to Equation 3.2. The index i refers to the
increment of crack propagation that is to be evaluated. Stress intensity factors and crack
lengths thus are to be taken from the C-Models before and after crack propagation (see
Figure 3.10). Equation 3.2 can be substituted in Equation 3.1 and integration gives the
relation needed to compute the number of loading cycles in each increment.

ΔKeff (a) =
ΔKi+1

eff − ΔKi
eff

ai+1 − ai
(a − ai) + ΔKi

eff for ai ≤ a ≤ ai+1 (3.2)

N i+1 − N i =

∫ ai+1

ai

1

C(
ΔKi+1

eff −ΔKi
eff

ai+1−ai (a − ai) + ΔKi
eff )

m

da (3.3)
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N i+1 − N i = −(ai − ai+1)((ΔKi
eff )

1−m − (ΔKi+1
eff )1−m)

C(ΔKi
eff − ΔKi+1

eff )(1 − m)
(3.4)

Figure 3.10: Progression of ΔKeff . For the integration of the Paris equation the progression
is approximated by linear sections.
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3.3.4 Parametric Studies

The Control Script is able to generate a modeling chain based on initial settings deter-
mining the type of study. A chain consists of dependent C-Models which are evaluated
automatically. The following list summarizes the functionality and output variables pro-
vided by this design:

• Distribution of Kmax.

• Computation of R based on σmin and σmax.

• Distribution of ΔKeff .

• Integration of Paris equation.

• Criterion for crack propagation.

• Automated data processing and output.

• Automated simulation of crack arrays for a set of material parameters.

Since the entire functionality of a programming language is available the Control Script
offers a high degree of flexibility. Therefore, it can be modified to generate various model-
ing chains fulfilling different tasks. In order to reach the aim of this study, i.e. to identify
interconnections between material parameters and the evolution of crack arrays, a range
of different studies is carried out, which will be discussed in Chapter 5.
The computation time of the studies conducted with the Control Script is in the range of
days. The data on service life of a set of 25 materials is usually obtained within 2-4 days,
provided all necessary data like the distributions of temperature and residual stresses are
available. The computation time with the S-Model for the corresponding residual stresses
is about 2 days. The analysis of the T-Model takes about half an hour per temperature
distribution.

3.3.5 Determination of the Characteristic Minimum Spacing

In order to investigate possible effects of variable initial spacings on service life, a method
is devised which relates the spacing to the stresses in the die material acting as driving
force represented by ΔKeff .
In this study the Control Script and C-Models are used in a specific mode. All C-Models
in the study contain one 100 μm long crack and stresses are impressed due to the results

68



Modeling 3

of the S-Model. In the beginning the model width is set to 50 μm, then the width
is increased until ΔKeff reaches the threshold value ΔKth. Because of the periodic
boundary conditions the model width corresponds to the crack spacing as illustrated in
Figure 3.11. This method leads to a characteristic crack spacing sch for each parameter
set investigated on the basis of the elastic strain energy and the assumption of an initial
crack length of 100 μm. Since only the relative changes of sch are regarded for the life time
analysis discussed in Section 4.7 these assumptions are appropriate to study the impact
of the driving force on the initial spacing and service life qualitatively.

Figure 3.11: In order to find the characteristic minimum spacing of a parameter set the width
of a model containing a 100 μm long crack is increased until ΔKeff reaches the threshold value
ΔKth.

3.3.6 Data Processing II

As mentioned above, data processing is already implemented in the script. The output
consists of two text files which can simply be copied to Origin or Excel. One file records
the K factors of all cracks occurring in the modeling chain and the other one contains
all data on the propagating crack as shown in Table 3.4. The column "Factor" refers to

Table 3.4: Format of the main output file.

a σmin σmax R Factor Kmax ΔKeff Instability Ni ΣNi

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

the internal transformation of Kmax into ΔKeff by using a function stored in the Data
Module. This function receives R as input and returns a transformation factor. The
elements of column "Instability" are either 0 or 1, where a 1 means that the array has
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gone through an instability, viz. cracks stopped at the corresponding crack lengths. As
previously mentioned, the term instability refers to the configuration of the array and not
to the fracture mode.
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Results

4.1 Temperature Distribution

Figure 4.1 shows temperature distributions after spraying for different values of λ. The
influence of λ on crack growth is assessed for two points, i.e. the surface region and the
point where tension changes to pressure. The temperature gradient at the surface is the
driving force for crack propagation in this region. A larger thermal conductivity leads
to higher surface temperatures and hence to smaller gradients. This is favorable with
regard to crack initiation and growth in the early stages of the formation of the crack
array. Smaller gradients are a consequence of a larger heat flux. This comes along with
decreased temperature maxima which are also shifted to larger depths. The position where
the temperature exceeds the temperature after preheating, 120°C in this case, marks the
point where the stresses change from tension to pressure. The cracks in a crack network
usually do not reach that far into the die but the positions where stresses change to
pressure are a measure of the maximum range of cracks which is especially important
for single crack propagation. Because a larger value of λ increases the length a single
crack can reach, smaller values of λ are favorable for later stages of crack growth. In
order to prove these assumptions single crack propagation for three different values of λ

is investigated, see Table 4.1. The simulations confirm the assumed relations of λ with
propagation rates at the surface and maximum penetration.
Nevertheless, it can be said that the influence of λ in the earlier crack growth regime is
the more significant one. In case of crack arrays the maximum crack length is not reached
before service life has ended which, in turn, is primarily dependent on the speed of crack
propagation at the surface. Thus, service life can be gained at the surface and nowhere
else. The appearance of single cracks has to be avoided since they are likely to cause early
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Table 4.1: Single crack propagation for three different values of λ. An increase in thermal
conductivity causes lower propagation rates at the surface but larger maximum depths.

λ -25% λstandard +25%
da
dN

in a depth of 0.5 mm/[mm/Cycle] 0.001570 0.000799 0.000398
Depth after 100000 cycles/[mm] 7.25 8.25 9.25

Maximum depth/[mm] 8.25 9.75 10.75

failure. Other concepts are used to avoid single cracks and thus λ should be optimized
with regard to crack growth in crack arrays. The formation of residual stresses which are
significant for the initiation and growth of cracks (see Leindl [7]) further emphasizes the
importance of the surface region.

Figure 4.1: Temperature distributions for various parameter variations. Larger values of λ
cause smaller temperature gradients but also shift the point where stresses change from tension
to pressure to larger depths, i.e. the intersection of temperature curves with the background
temperature (120°C).
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4.2 Formation of Residual Stresses

A wide range of experiments was carried out on X38CrMoV5-1 hot work tool steels sub-
jected to various heat treatments in order to vary its hardness. This was done in the
work of Ecker [4] whose material model provides the necessary tool to compute residual
stresses in the present diploma thesis.
The shape of the σres distribution after 100 casting cycles is shown in Figure 4.2 for three
different hardnesses, i.e. three different heat treatments. This material parameter is es-
sential for the simulation of the material response to cyclic thermal loading because it
affects all aspects of plasticity. The general shapes of the curves vary since the material
responses vary due to the changes in the microstructure during heat treatment. Based on
general observations, the residual stresses increase with the the plastic strain amplitude
of the material. This statement is confirmed by Figures 4.2 and 4.3. Figure 4.3 shows
the distributions for a range of parameter variations (α and λ) of a X38CrMoV5-1 with
44 HRC. Thermal expansion α and thermal conductivity coefficients λ do not change the
flow curves of the material. λ changes the temperature distribution which determines the
expansion of the material given by α. As was already discussed in [7] and [4] α has much
more impact than λ. However, λ can better be influenced by alloying and thus offers a
wider margin.
This part of the present work involves a parametric study with the aim to get an appro-
priate amount of data to find a fit function which is supposed to allow engineers to quickly
estimate σres. The stress values at the surface for a range of parameters is depicted in
Figure 4.4. The bottom plane represents the parameter space and the other two planes
show 2D diagrams σres vs λ and σres vs α. As expected, decreasing values of λ and rising
values of α cause larger residual stresses. Below an α of 75% of the standard value, the
formation of residual stresses becomes unlikely. Corresponding data for hardness levels of
47 HRC and 50 HRC can be found in the appendix.
The data is fitted with a cubic polynomial given by Equation 4.1. Its precision is good
enough for estimates, especially in the important region not too far away from the refer-
ence material. Further away deviations are larger and at 50% of the standard value for
α the polynomial gives negative stresses. In this region the residual stresses are 0 except
at small values of λ. Figure 4.5 shows the polynomial and the corresponding coefficients.
The values for λ and α have to be inserted in percent.

73



Results 4

Figure 4.2: Distribution of residual stresses after 100 casting cycles in X38CrMoV5-1 hot work
tool steels for three different heat treatments as initial states before cyclic loading.

Figure 4.3: Distribution of residual stresses after 100 casting cycles in a X38CrMoV5-1 hot
work tool steel with a hardness of 44HRC for different material parameters.
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Figure 4.4: Overview of residual stresses at the surface of a X38CrMoV5-1 hot work tool steel
with a hardness of 44HRC after 100 casting cycles for different material parameters.
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Figure 4.5: Polynomial fit of data shown in Figure 4.4.

σres = a1λ
3 + a2α

3 + a3λ
2α + a4λα2 + a5λ

2 + a6α
2 + a7λα + a8λ + a9α + a10


a =

⎛
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0.00055257973049667
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0.459024312533427

13.1270980388396
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⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.1)
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Figure 4.6: Distributions of σmin for different material parameters.

4.3 Stress Ratio

The distributions of σmin for different material parameters are depicted in Figure 4.6. It is
evident that the distribution is influenced mainly by residual stresses and α. The residual
stresses are dominated by hardness and α. λ does not have much impact. The distribu-
tions of σmax are depicted in Figure 4.7. As long as no instabilities in the configuration
occur the curve progressions are similar for different initial configurations. With decreas-
ing crack spacing σmax reaches lower values which is not surprising after the discussions
in the last section. In case of instabilities σmax jumps to larger values as expected and
it stays at an elevated level with respect to a corresponding curve with no instabilities.
This can be explained by the stress concentration areas of the neighboring cracks arrested
shortly before. Since the propagating cracks need to pass through the stress fields of
the neighboring cracks their crack tips are subjected to higher loads. Curve number 4
represented by the green line in Figure 4.7 was taken from the simulation of a crack array
starting from the lowest possible crack length and crack spacing. This curve shows insta-
bilities at larger levels than curve number 2 (red line) which follows stable behavior. This
can be explained by the way σmax is determined. Two characteristic C −Modelsσmax are
shown in Figure 4.8. The model in Figure 4.8a just went through an instability. Crack
number 1 is kept shut in each model as discussed in Section 3.3.1 and the same range of
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Figure 4.7: Distributions of σmax for various initial configurations.

σ11 is displayed. It can be seen that the area of the crack tip 1 is influenced by its neigh-
bors which have already stopped whereas the corresponding area in the other model (see
Figure 4.8b) with a larger initial spacing and no instabilities does not show this behavior.
Thus, larger stresses in combination with smaller spacings are possible. Note that there is
a crossover of the blue and the red line before an instability occurs (Figure 4.7) due to the
fact that the stress fields around the tips of the cracks on the left and on the right of the
closed crack have already become large enough to influence the crack tip region of crack
1 in the configuration corresponding to a spacing of 1 mm. It might seem confusing that
some cracks turn out to stop at comparatively large stress levels (as represented by the
fluctuations of the green curve indicating instabilities) as opposed to the continuously and
uniformly growing configurations represented by the red or blue curve where the stress
level is considerably lower. This can be explained simply by the different calculations of
σmax and Kmax. The surface areas of the closed cracks in Figure 4.8 are subject to larger
stresses since they are less shielded because the crack is missing. In Figure 4.8b these
stresses are far larger than in the other model which shows larger σ11 in the tip area. In
the C − Models the surface stresses pull the crack flanks apart and influence the stress
intensity largely. This is why σmax in C − Modelsmax is not significant for the stability
criterion.
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Figure 4.8: Two characteristic models. a: C − Modelσmax for initial spacing 1 mm; b: C −
Modelσmax for initial spacing 2 mm

Figure 4.9 shows R-Distributions for various material parameters which give rise to the
following conclusions: α and hardness have great influence on the residual stresses espe-
cially in the surface area. In greater depths the R-distributions coincide with the curve
for standard parameters. This might seem suspicious because in case of different values
for α the stresses due to the temperature distribution are also different even at greater
depths. Since stresses in the tensile and pressure regime are affected exactly the same
way this effect cancels out when the stress ratio is calculated. Because X38CrMoV5-1
steels with 44 HRC or 50 HRC only differ in their plastic response to external loads their
R-distributions only differ in the area where residual stresses are present. The impact
of λ is significant in areas deeper than the range of residual stresses. This is due to the
fact that the slope, the maximum value and the position of the maximum value of the
temperature distribution determine all stresses not related to residual stresses.

4.4 Crack Shielding

The purpose of this study is to illustrate the impact of crack shielding on the stress
intensity factors in a crack array. The script starts a chain of models each containing

79



Results 4

Figure 4.9: Stress ratios for diffent datasets.

a single crack. The width of the models is increased steadily up to 100 mm. Due to
the periodic boundary conditions the width of the model corresponds to the distance
between neighboring cracks. After reaching this value, a new chain starts with a longer
crack and this sequence is repeated for a set of crack lengths. The stability criterion is
switched off in the settings of the Control Script, since it is not required for this simple
purpose. It would be possible to do the same task analytically based on information from
the Stress Intensity Factors Handbook [37] which gives analytical solutions for a range of
crack configurations, however, the manual calculations would be tedious because of the
loading in this case leading to complex stress distributions.
The gathered information is supposed to give an impression, how far the shielding effect
reaches and what settings are needed for a study on single crack propagation. The curves
obtained are similar to Figure 2.21 but they consider the specific loading conditions in
aluminum pressure casting dies. The shielding takes effect within a length scale at least
twenty times the crack length. Since the curve approaches a constant value at far distances
a factor of 15 is enough for studies on single crack propagation. A factor of 10 can
still be regarded sufficient if computation time strongly limits the model size. It should
be considered, however, that between a factor 10 and 20 a difference of 1 MPa

√
m in

stress intensity can occur which considerably affects the computed life time due to the
exponential relation between ΔKeff and the corresponding crack propagation rate.
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Figure 4.10: The influence of crack shielding covers a distance of about 20 times the crack
length.

4.5 Evolution of Crack Arrays for Standard Parameters

The evolution of crack arrays in dependence on material parameters and initial configu-
rations is the core study of this thesis. This section covers in detail the evolution of crack
arrays depending on the initial crack spacing for the case of a X38CrMoV5-1 hot work tool
steel with a hardness of 44 HRC. The next section deals with parametric studies linking
service life with the material parameters λ and α. In both cases the whole functionality
of the Control Script is made use of where data of all preceding studies is required. Based
on an initial crack configurations the script starts a series of dependent C-Models. All
cracks are assumed to initiate at the same time and therefore the initial unit cell consists
of one crack only. In each C-Model the crack propagates by an increment of 50 μm where
the functionality summarized in Table 3.3.4 is implemented. After the analysis of each
C-Model the Control Script decides the design of the following model based on the stabil-
ity criterion. In case ΔKeff reaches or falls below ΔKth the unit cell is doubled in width
and number of cracks. From all the cracks in the unit cell always the first one is viable
and therefore propagates, whereas the others stay at the same length. In the course of
the simulation the width of the C-Models and the number of cracks increases until an
abortion criterion is satisfied.
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Preliminary Studies

In a first step the functionality of the script and the limits of the C-Model are tested. For
this purpose two Control Scripts with different settings are started in order to study two
extreme conditions, viz. very large and very small crack spacing. Since real configurations
are situated between these extremes it is essential to know what happens at each bound-
ary. The first script conducts a study on a crack not subjected to the influence of crack
shielding (see Figure 4.11). Based on the knowledge of the last section the model width
for the study on single crack propagation is set to 100 mm. A variable model width would
be desirably but this study is confined to a fixed width to avoid influences of the mesh.
The initial crack length a0 is set to 0.1 mm. The essential output is depicted in Figure
4.11 which clearly shows that a configuration like that would be fatal for a die. The stress
intensity factor does not show any influence by other cracks and results entirely from the
combination of loading and crack length. It would reach a depth of 2.5 mm in less than
2400 casting cycles and a final crack length of 9.5 mm. Since the model width is set to
100 mm which is already close to 10 times the final crack length some shielding influence
may be involved at larger crack lengths. The propagation rate da

dN
in the final increment

gets close to 3∗10−7 mm
Cycle

. This is the order of magnitude of a single Burgers vector which
marks the minimum crack extension and the limit for crack growth [38]. At a depth of
5.4 mm R changes sign because σmax drops below zero. This does not have any effect on
crack closure1. The maximum effect of crack closure still prevails (ΔKeff = Kmax).
In reality configurations similar to the one in this study emerge and cause failure because
single cracks hit the cooling channels. These configurations do not appear on even parts
of the dies but in areas with intricate geometries. There are other cracks as well but just
one of them prevails and behaves like a single crack without shielding. The next study is
supposed to give an impression of the slowdown effect of shielding.
The second script is set to find the smallest viable crack with the corresponding minimum
spacing for standard parameters. The result is an array consisting of cracks with a length
of 13 μm and a spacing of 230 μm. The spacing is computed by the method described in
Section 3.3.5. Crack growth of smaller cracks cannot be described by the C-Models since
small crack behavior significantly differs from the regime approximated by Paris equation.
Small cracks grow even below ΔKeff and at faster rates than expected [20].
Based on this initial configuration the script starts to simulate the evolution of the array
as illustrated in Figure 4.13. This study shows the influence of crack shielding which
causes several instabilities. In the beginning ΔKeff rises due to the combination of load-

1A positive R would have effect if σmin exceeded 0.
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Figure 4.11: Data on single crack propagation.

ing and crack length similar to the previous configuration. After the next propagation
increment shielding is dominant and the curve progression is headed towards the first
instability (see Figure 4.12). It seems like a more narrow optimum spacing might evolve
between the first two increments as described by Jenkins (Section 2.8). However, this
will not happen under the present loading conditions since cracks shorter than the main
cracks are exposed to extreme shielding effects (see Figure 3.5). The stress intensity of
cracks arrested due to an instability drops immediately by a significant factor. Crack
propagation continues until the crack is no longer viable. Again the propagation rate da

dN

in the final increment approaches 3 ∗ 10−7 mm
Cycle

.
Since crack growth takes place near the fatigue threshold for the most part, an extraordi-
nary fatigue life may be expected. The dies are replaced every 100000-150000 cycles and
according to the green line in Figure 4.12 the cracks in the array would never pass a length
of 0.25 mm. A crack configuration with similar spacing, however, cannot be observed in
aluminum pressure die casting dies even though the driving force concept predicts a crack
distance of 230 μm. This issue will further be discussed in Section 4.7.1. Crack growth in
regime I as discussed in Section 2.4 is an issue in this case. The range of ΔKeff is almost
completely in regime I and thus the estimations of load cycles is conservative because the
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Figure 4.12: Data on a crack array with with the closest possible initial spacing.

uncorrected Paris equation overestimates crack propagation rates in regime I. It does not
make sense to spend too much effort on applying the corrected Paris equation for a con-
figuration that will not occur in reality. the correction only plays a role in the studies on
real configurations with realistic spacings. It can be anticipated that this is not necessary,
since one or two instabilities of the crack configuration do not cause much deviation in
calculated life time based on the unchanged Paris equation.
Near threshold fatigue is not the only issue, as mentioned above, since it has to be checked
whether the cracks are still behaving like small cracks. According to Equation 2.35 the
initial configuration starts in the small crack regime but changes to the long crack regime
within the first propagation increments. Thus corrections are assumed needless. Regard-
ing single crack propagation, however, leads to a different result. The small crack regime
would reach several millimeters into the die which is not realistic. The corrections dis-
cussed in Section 2.6 are derived on the basis of external loading conditions and where
Equation 2.27 is applicable. However, in the present case of interacting cracks 2.27 is no
longer valid. Apart from the estimations based on continuum mechanics it is possible to
discuss the individual types of small cracks. According to the definitions in Section 2.6,
the crack in the second study is microstructurally small since the grain size is about 25
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μm. In the subsequent studies an initial crack length of 0.1 mm and long crack behavior
right from the beginning will be assumed even though this might cause some error be-
cause 0.1 mm are less than 5-10 times the grain size and cracks of this length can still be
microstructurally small. Plastic shakedown takes place up to a depth of 0.5 mm, between
0.5 and 1.7 mm elastic shakedown occurs. Due to this fact all cracks are mechanically
small within the top 0.5 mm and from this depth on it would have to be checked, whether
the cracks are mechanically small or long. The definition of mechanically small cracks
comes along with the validity of LEFM. This will further be discussed in Section 4.8. The
exact investigation of small cracks goes in line with studies on crack initiation. These
topics are left to future work.
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Figure 4.13: Scheme of modeling the development of a crack array. The contours show the
normal stress distribution in 1-direction.
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Approximation of Service Life Time

Conclusions from the last section suggest real configurations to be in between the two
extreme conditions. In the course of the whole project the samples were taken from a
die provided by industry after 130000 loading cycles. In nearly even portions of this die
typical networks, as shown in Figure 4.14, were found and analyzed. The orientation of
the cracks clearly follows the temperature gradient during casting and thus the arrays
consist of parallel cracks except for positions at the outer edges. The average spacing
based on these two arrays is determined to be 2.12 mm. In order to test the precision

Figure 4.14: Crack arrays at two different positions of a die received from industry after service
life was reached.

of the Control Script and the C-Model, a whole set of arrays is simulated with various
initial spacings, starting from 0.5 mm up to 2.25 mm. The results are depicted in Figure
4.15. In this study a very good accordance between simulation and real observations is
accomplished. The script based model predicts a maximum crack length of about 1.5 mm
for an initial spacing of 2.125 mm. For subsequent studies on this configuration a value
of 2.25 mm will be used since this leads to a value even closer to the observed maximum
crack lengths of 1.56 mm and 1.58 mm, respectively.
Figure 4.16 gives an impression on how the number of load cycles is obtained and how
the initial spacing and and the occurrence of instabilities affect service life. The load
cycles necessary for each crack propagation increment are obtained by integration of
Paris equation in the current increment as discussed in Section 3.3.3. The total number
of cycles required for a crack to reach a specific length is the sum of the cycles computed
for the preceding increments. The closer the cracks are the sooner shielding takes effect
which increases the number of load cycles. Instabilities on the other hand cause larger
propagation rates and a decrease in cycles needed per increment. Still, the shielding
effect prevails which keeps ΔKeff low and leads to the next instability soon after. The
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Figure 4.15: Progression of load cycles with increasing crack length for various initial spacings.
This diagram shows that a small change of the initial spacing has a significant effect on service
life.

Figure 4.16: Load cycles per increment for various initial spacings.

propagation rates are shown in Figure 4.17 which illustrates how fast surface cracks in real
arrays grow in dependence on loading, crack length and shielding. After the first cracks
have stopped da

dN
stays at a level several orders of magnitude lower than in the single crack

case (compare Figures 4.11 and 4.17). The black line was taken from the study on the
closely packed array. The depth where cracks stop depends on the initial spacing and on
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λ and α as will be discussed in the next section.

Figure 4.17: Propagation rates for various initial spacings.

4.6 Study on Service Life Time with Constant Initial
Spacing

The basic idea behind this thesis is to implement the findings of Leindl [7] and Ecker [4]
in an automated script together with further modifications and concepts. This script is
supposed to allow studies on the specified problem to a greater extent as has been possible
so far and in reasonable times. The study discussed in this section delivers the core result
whereas the results in the next section are supposed to give some ideas on future work.
The ultimate goal of this thesis is to relate material parameters with the formation of
crack arrays and thus service life. For this purpose, the study discussed in the preceding
section was performed for 25 material parameter combinations for each of the three exper-
imentally tested materials (Table 4.2). The other combinations are too far out of range
for metallurgical treatments. The number of load cycles necessary for a crack to reach a
specific length represents a measure for service life. Thus, the initial spacing of 2.25 mm
obtained in the last section is used and the number of load cycles for a crack to reach
a length of 1.5 mm is computed for all data sets. The script takes care of the creation
of the C-Models, the computation of R and ΔKeff , the occurrence of instabilities and
the integration of Paris equation. Since all the means necessary for this study have been
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Table 4.2: Variations of λ, α and hardness used in the core study on a X38CrMoV5-1 hot work
tool steel.

λ α Hardness
-15% -15% 44HRC
-5% -5% 47HRC
+0% +0% 50HRC
+5% +5%
+15% +15%

discussed and thoroughly checked in the previous sections, they will not be scrutinized
again. Figure 4.18 shows the results for the case of a X38CrMoV5-1 with 44 HRC. As

Figure 4.18: Study on service life for a X38CrMoV5-1 hot work tool steel with a hardness of
44 HRC. The plot shows the number of load cycles until a crack length of 1.5 mm is reached.
The initial crack spacing is 2.25 mm for all parameter combinations.

expected, an increase in thermal conductivity will increase service life whereas thermal
expansion should be as small as possible for life time optimization. The impact of α is by
far greater but λ is easier to manipulate as mentioned above. The optimum combination
is situated at the front corner corresponding to an increase of λ by 15% and a decrease of
α by 15% (for figures refer to Table 3.2). A closer view of the x-z and y-z plane in Figure

90



Results 4

4.18 can be found in the appendix (Figures 6.5 and 6.6).
It was found that the cubic fit function used for in Section 4.2 suits the simple distribu-
tion in Figure 4.18 very well. The corresponding surface is depicted in Figure 4.19. Since
service life depends inversely on the residual stresses, the axis are turned around to allow
a view on the concave side of the surface. For the fit function λ and α have to be inserted
in percent.
The corresponding data for the steels with the hardnesses 47 HRC and 50 HRC were
also fitted. The graphs can be found at the end of this section. Based on the results of
the studies on service life an increase in hardness would be favorable. Higher hardness
levels cause less residual stresses and thus a lower driving force for crack propagation.
This conclusion is dangerous, however, since it does not consider all possible effects. Die
materials with higher hardnesses are prone to single cracks which can cause early failure.
For this reason those materials have already been ruled out as new die materials and a
hardness level of 44 HRC was found to be a proper hardness. Furthermore, the effect of
driving forces, e.g. the stresses within the die, on the initial spacing have not been taken
into account so far. This issue, which is a possible way to explain the advantage of a
material with a lower hardness, will be discussed in Section 4.7.2.
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Figure 4.19: Polynomial fit of data shown in Figure 4.18 for 44 HRC. The axes were turned
around for the sake of visibility.

N0.1−1.5mm = a1λ
3 + a2α
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Figure 4.20: Polynomial fit of data on service life for 47HRC. The initial crack spacing is 2.25
mm for all parameter combinations.
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Figure 4.21: Polynomial fit of data on service life for 50 HRC. The initial crack spacing is 2.25
mm for all parameter combinations.
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4.7 Influence of Material Parameters on Crack Growth
with Variable Spacing

4.7.1 Possible Influences on the Initial Crack Spacing

In the previous study it was assumed that the initial crack spacing is constant for all data
sets. Real surface shows preferred crack initiation sites. On the one hand this is caused
by surface treatment techniques which lead to grinding grooves. These act as notches and
thus cause stress concentrations. On the other hand it was shown that crack initiation
depends on the microstructure of the material as schematically shown in Figure 4.22.
Depending on plastic strain four different initiation regimes can be distinguished.

• Regime 1: Plastic strains are very low. Flaws beneath the surface act like notches
and cause plastification. The areas around these flaws are initiation sites at a large
number of load cycles. This behavior is typical for materials showing a two stage
Wöhler diagram with two fatigue limits, one for the surface and one for the interior.
In regime I the internal fatigue limit is predominant.

• Regime 2: Which one of the two limits prevails depends on the level of loading and
the number of cycles the component is intended to withstand. At slightly larger
plastic strains, crack initiation starts at the surface. Apart from surface flaws, grain
boundaries of the former austenitic microstructure are preferred initiation sites.

• Regime 3: At intermediate levels of plastic strain, cracks also start to form at
the borders between differently orientated martensitic regions within the previously
existing austenite grains.

• Regime 4: At very high loads, cracks start to grow from the former austenite grain
boundaries, from interfaces between martensitic regions, and from the borders of
martensite laths or plates.

For the aluminum pressure casting dies regime 2 prevails. In theory, cracks initiate at
former grain boundaries and grow to a few micrometers before they start to grow indepen-
dently of microstructure. At first grain boundaries provide good conditions for initiation
but further on the cracks will grow in the direction of the stress gradient. Crack spacing
is therefore related to grain size which is about 25 μm in the case of the investigated ma-
terials. Again, these assumptions are not fully correct. Not all these initiation sites are
the same and hence the cracks will not initiate at the same time. Cracks appearing first
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start to shield the initiation sites in the vicinity. Although it is observed that most cracks
appear within a few thousand cycles, near surface crack growth is rapid and thus shield-
ing quickly affects larger areas. Thus, potential initiation sites are already shielded when
cracks could form at these positions. Even in case the influence is not strong enough to
prevent crack initiation, the shielding crack will grow faster than the smaller ones and the
shielding will increase. Hence, most of the surface cracks will already be shielded and stop
before reaching a significant length. This is the reason why crack spacings significantly
larger than the grain size are observed.

In the previous study it was assumed that the influence of the microstructure determines
the initiation behavior at a certain loading condition. It was not considered that e.g. an
increase in α causes a significant increase in plastic strain which in turn could activate
further initiation sites and influence the initial spacing. An experimental verification of
these effects was nearly impossible at the time this thesis was written since no die materials
existed showing such properties. Both the costs for the dies and for the manufacturing of
trial alloys are by far too high to be able to use real dies for such a study. Furthermore,
newly developed alloys would show a different stress-strain behavior. The development
of the required material models would further increase the costs. This fact emphasizes
the importance of the whole project because it is supposed to show the way to the next
generation of die materials. The means developed and the results obtained so far are
very instructive and promising for further research. If the approaches implemented in the
investigations of the project are enhanced and new concepts are found it is possible to gain
fundamental knowledge within weeks. The design of the modeling chain was designed for
this purpose, i.e. to enable fast implementation of new concepts. A prospective concept
will be discussed in Section 4.7.2.

4.7.2 Study on Service Life Time with Variable Initial Spacing

In the study in Section 4.6 on service life it is assumed that the material parameters do not
change the spacing. In order to get some insight into possible deviations, some estimates
based on driving force are made. The initial crack length of a single crack is assumed to be
100 μm and starting from a crack spacing of 50 μm the distance is increased until ΔKeff

reaches the threshold value ΔKth. In other words, one crack is assumed to be somewhere
in an even section of the die and the script searches for the position of the next viable
crack. This procedure is repeated for a set of material parameters and the results obtained
are saved to a text file. By means of the Python script this file is designed to match a
format that can be loaded as module back into the script. This enables the script in the
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Figure 4.22: The influence of microstructure on initial crack spacing.

next study to access the initial crack configurations. The characteristic initial crack spac-
ing sch is the smallest possible initial value for each material parameter set investigated.
This approach is based on continuum mechanics, which assumes that every single spot on
the surface is a possible site for crack initiation. Thus sch is related to the elastic energy
stored in the die which in turn is related to the stresses. The interconnections between
energy and strain have been discussed in Section 2.1. Simple relations are given by Equa-
tions 2.4 and 2.12. Despite the fact that direct relations between energy and stress based
approaches have not been found for fatigue, they are still linked. Thus, this issue can
be discussed in both terms, at least qualitatively. The larger α the more energy will be
stored in the material and the larger the stress level will be. Thus, cracks are viable in
closer distances since they draw more energy from their surroundings. Every value of sch

is characteristic for each combination of hardness, α and λ because the parameters affect
the energy available for crack initiation and crack growth. This information provided
by continuum mechanics, however, is not the only factor determining crack spacing as
discussed in Section 4.7.1. Other crucial factors are the microstructure and the surface
of the material. Nevertheless, it is assumed that sch can be used as a measure for real
crack spacing, based on the following thought pattern. When a die is exposed to thermal
fatigue, the first crack will appear at an arbitrary position. Soon after more cracks will
initiate somewhere at the surface of the die. All of these cracks behave like single cracks
in that phase and do not feel each other. They will advance with fairly high propagation
rates (see Figure 4.11) and each will soon shield an area several times its length. The
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cracks initiating in the next few hundred cycles cannot form at arbitrary positions any
more. They will fill the unshielded or not strongly shielded areas between the cracks that
initiated before. This process itself is to be investigated by future work since so far all
cracks have been assumed to form at the same time. This approximation is thought to be
appropriate because the cracks are found to initiate within several hundred cycles. The
results shown in Figure 4.15 suggest, however, that rapid crack growth at the surface
already causes significant shielding. This and the influence of microstructure is supposed
to be the reason why in case of standard material parameters the observed spacing is
about 20 times larger than the calculated value of sch. Nevertheless, crack spacing can
be related to the elastic strain energy stored in the system during spraying, the phase of
a casting cycle, in which cracks propagate. It can be assumed that the initiation of the
first cracks happens independently of each other, as has been described, for all parameter
variations and stress levels. The situation changes, however, when later on cracks start
to fill the areas between the first cracks. The number of cracks which can initiate and
grow depends on the energy stored in the surrounding regions. This means that e.g. for
low values of α only 2 additional cracks fit in a gap whereas for large αs maybe 10 viable
cracks would fit in. This view might provide a basis for relating α and λ to crack spacing.

Figure 4.23 shows sch for the parameter combinations used for the life time analysis in
Section 4.6. For standard parameters for a X38CrMoV5-1 hot work tool steel with a
hardness of 44 HRC this characteristic spacing was determined to be 110μm and ranges
from 7μm up to 300μm for the other data sets related to this hardness. The analysis in
Section 4.6 was repeated two times. In both cases the value of 2.25 mm was decreased
or increased by a factor determined from sch,standard and sch of the current parameter
combination. In a first step the relative change Δsrel,i of sch,i with respect to sch,standard

was calculated. In the first study a slight influence on the initial spacing was assumed
and the value of 2.25 was changed by one tenth of Δsrel,i. By this method the initial
spacing covers a range from 2.168 mm to 2.639 mm in case of a hardness of 44 HRC. In
the second study the full impact of the driving force was assumed and the initial spacing
for the current data set was set to 2.25 ∗ Δsrel,i which led to a range from 1.432 mm to
6.136 mm for the same hardness.
At first the results on 44 HRC will be discussed. Afterwards these results will be com-
pared to the ones for 47 HRC and 50 HRC. In the first study the shape of the surface
changes and the maximum number of load cycles drops by 170000 cycles which leads to a
maximum increase of the factor 4.3. Furthermore the position of the maximum changes
and so does the order of the data points at α = 85%. This can be explained by the
influence of the residual stresses on the determination of sch. At α = 85% the residual
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Figure 4.23: Characteristic crack spacings for variations of material parameters of a
X38CrMoV5-1 hot work tool steel with a hardness of 44HRC.

stresses are very low especially at λ = 115%. This data point marks the maximum in
Figure 4.19 since the driving is lower than for the other parameter combinations and the
spacing was assumed to be constant. If it is assumed that the driving force has an effect
on the initial spacing as well, the situation changes. The low values of σres cause large
spacings when a method based on driving forces is applied. This also means that the
effect of crack shielding on crack propagation and service life is less pronounced. Thus, it
is possible that smaller loads decrease service life. In the study in this section the stresses
in the die affect both the initial spacing and crack growth. Due to crack shielding there
is a buffer action between the two, but for each parameter combination usually either the
influence on initial spacing or crack growth has a greater effect with regard to service life
(this is an explanation for the complex shapes of the fit functions as will be discussed
below).
The impact of driving force on crack growth, however, is the sole factor determining ser-

99



Results 4

vice life. When talking about a buffer action in this context it is meant that the effect of
the driving force on crack spacing determines how the driving force is shared between the
cracks in a crack network. A large crack spacing means that the same driving force as in
the case of a small spacing is shared between fewer cracks. Thus, each individual crack
will grow faster. In case the overall driving force is small, however, the spacing has less
impact because crack propagation will be slow anyway.
The results of the second study, where a larger influence of the driving force on the initial
spacing was assumed, further suggest that in case the spacing is not determined by mi-
crostructure only, crack spacing and crack propagation buffer each other with respect to
service life. Thus it is not possible to gain service life by a factor 6 as in the study on fixed
model width. In the second study a maximum increase by a factor 1.4 is obtained. The
buffer action between the effect of driving force on spacing and growth can be discussed
when the edge on the left side of Figure 6.16 is regarded. The edge corresponds to 115%
of λstandard. With decreasing α service life increases first and drops again for 95% and
85% αstandard. The same edge in the study with fixed spacing increases steadily with lower
values of α. In the current study with variable spacing the crack distance rises along the
edge until it reaches a maximum at 85% αstandard and 115% λstandard. Thus, the effect
of crack shielding decays along this edge. Still service life increases at first, suggesting a
predominant influence of the driving force on crack growth itself, and decreases when α

drops below 95% which is caused by the diminishing impact of crack shielding.
Additionally the shape of the surface described by the data in Figure 6.16 differs com-
pletely from the one in Figure 4.18. The global minimum and maximum are not at the
same positions. There are two global minima and one local maximum of service life within
the surface. If full impact of the driving force was applicable, a gain in service life by
a factor of 1.2 could be obtained by decreasing α by 5 percent and leaving λ as it is.
This conclusion does not take into account other effects as mentioned in the introduction.
More detailed studies based on advanced concepts are left to future work.

The studies with an assumed slight influence of the driving force on the crack spacing for
44 HRC and 47 HRC led to similar results. Service life for 47 HRC is somewhat shifted
to higher values but the shape of the surface (Figures 4.25 and 4.27) stays the same. This
can be explained by the similar distribution of residual stresses for these two hardnesses
in the investigated parameter range. The variation of σres for 44 HRC is larger but this
does not cause much difference in the results in this study. The shape of the surface for
50 HRC (Figure 4.29) is noticeable different, however. The hot work tool steel only shows
limited plasticity at a hardness level of 50 HRC and thus develops less residual stresses.
For a significant number of parameter combinations the σres is close to 0 which affects
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the initial spacing significantly which in turn has an impact on service life (for data on
residual stresses refer to the appendix). The drop in service life in Figure 4.25 is caused
by the drop in residual stresses and the jump in initial spacing. The fit function slightly
undershoots in this area.
When a 100% proportionality between the characteristic and the real crack spacing is
assumed, the shape of the data fit for 50 HRC (Figure 4.35) is similar to the one for
constant spacing (Figure 4.21). In contrast to Figure 4.21 the surface rises in the right
front corner, but the maximum is at the same position. The low residual stresses cause
very wide spacings. Those, however, do not lower service life since driving forces are so
low that even with little crack shielding propagation rates are low. Thus, the buffer action
does not have much impact in this case. The corresponding surface for 47 HRC shown
in Figure 4.33 is rather flat compared to Figure 4.31. This can be explained by the lower
variation of σres for 47 HRC which did not have much effect in the study where a slight
influence of driving force was assumed. It clearly affects the surface shapes when the
differences in the spacing which depend on σres are more pronounced.
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Figure 4.24: Initial crack spacing of a crack array based on the observed standard spacing 2.25
mm and a 10% influence of the driving force. Data for a X38CrMoV5-1 hot work tool steel with
a hardness of 44 HRC.

Figure 4.25: Number of load cycles necessary for a crack in the array to grow from 0.1 mm to
1.5 mm based on initial spacings depicted in Figure 4.24. Data for a X38CrMoV5-1 hot work
tool steel with a hardness of 44 HRC.
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Figure 4.26: Initial crack spacing of a crack array based on the observed standard spacing 2.25
mm and a 10% influence of the driving force. Data for a X38CrMoV5-1 hot work tool steel with
a hardness of 47 HRC.

Figure 4.27: Number of load cycles necessary for a crack in the array to grow from 0.1 mm to
1.5 mm based on initial spacings depicted in Figure 4.26. Data for a X38CrMoV5-1 hot work
tool steel with a hardness of 47 HRC.
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Figure 4.28: Initial crack spacing of a crack array based on the observed standard spacing 2.25
mm and a 10% influence of the driving force. Data for a X38CrMoV5-1 hot work tool steel with
a hardness of 50 HRC.

Figure 4.29: Number of load cycles necessary for a crack in the array to grow from 0.1 mm to
1.5 mm based on initial spacings depicted in Figure 4.28. Data for a X38CrMoV5-1 hot work
tool steel with a hardness of 50 HRC.
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Figure 4.30: Initial crack spacing of a crack array based on the observed standard spacing 2.25
mm and a 100% influence of the driving force. Data for a X38CrMoV5-1 hot work tool steel
with a hardness of 44 HRC.

Figure 4.31: Number of load cycles necessary for a crack in the array to grow from 0.1 mm to
1.5 mm based on initial spacings depicted in Figure 4.30. Data for a X38CrMoV5-1 hot work
tool steel with a hardness of 44 HRC.
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Figure 4.32: Initial crack spacing of a crack array based on the observed standard spacing 2.25
mm and a 100% influence of the driving force. Data for a X38CrMoV5-1 hot work tool steel
with a hardness of 47 HRC.

Figure 4.33: Number of load cycles necessary for a crack in the array to grow from 0.1 mm to
1.5 mm based on initial spacings depicted in Figure 4.32. Data for a X38CrMoV5-1 hot work
tool steel with a hardness of 47 HRC.
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Figure 4.34: Initial crack spacing of a crack array based on the observed standard spacing 2.25
mm and a 100% influence of the driving force. Data for a X38CrMoV5-1 hot work tool steel
with a hardness of 50 HRC.

Figure 4.35: Number of load cycles necessary for a crack in the array to grow from 0.1 mm to
1.5 mm based on initial spacings depicted in Figure 4.34. Data for a X38CrMoV5-1 hot work
tool steel with a hardness of 50 HRC.
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4.8 Limitations of the C-Model

The cyclic plastic zone lies, in case of standard material parameters, embedded within the
top 0.5 millimeters of the die as shown in Figure 4.36. In this region neither LEFM, nor
the J-Integral are precise concepts and a more suitable approach like the CTOD would
be required. The CTOD is independent of contour integrals and therefore not subject to
limitations from the stress and strain fields. This concept, however, would necessitate the
change to an elastic-plastic model not applicable in the course of this study and is subject
to future work. Furthermore its relation to Paris equation and crack growth would have
to be investigated.
Since additional models for crack initiation are required and growth of small cracks follows
a different behavior as shown in Figure 2.8, the present model cannot capture processes
in the top 10-15 μm of the material.

Figure 4.36: Transition from cyclic plastic to cyclic elastic zone.
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Discussions and Conclusions

The modeling path designed for this thesis is both built upon concepts which have al-
ready been used in other works and upon new approaches. This combination of old and
new ideas allows the simulation of the evolution of crack arrays in a user friendly and
automated manner. The time demand for the simulations shrinks from weeks to days and
the models provide also new features like an automated evaluation of the results. In the
present work the new models are used for the investigation of single crack growth, crack
shielding and service life calculations.
In case of single crack propagation, where crack shielding is not involved, larger values of
λ decrease da

dN
in the surface region because the temperature gradient and thus the driving

force for crack growth sinks. Due to the change of the temperature distribution the area
where stresses change from tension to pressure is shifted to larger depths. This means
that an increase of λ also increases the maximum crack length. Similar conclusions for
the crack arrays are more difficult to obtain since crack shielding is of major importance.
As shown in Figure 4.10 the influence of crack shielding takes effect over a very large
distance. Its influence diminishes after 20 times the crack length. The influence of crack
shielding on service life was shown to be significant. Small changes in the initial crack
spacing of crack networks have an enormous impact. Figure 4.15 gives an impression how
a few tenths of a millimeter in crack distance can cause changes in service life by several
10000 cycles.
So far there have been three factors identified which can influence the crack spacing.
These are the microstructure, grinding grooves and the driving force which is related to
the stresses in the die material. The first two have been shown to have significant impor-
tance, but the role of the stresses and the elastic strain energy in the dies after spraying
with respect to the formation of the initial spacing of the crack arrays has not yet been
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determined. The stresses and the strain energy depend on λ and α which change the
thermal loading situation if the process itself stays the same. Since only a limited number
of real materials has been investigated no conclusions can be made about which effect
determines crack spacing or if all of them have an influence. In this work estimates on
service life are made which are both based on fixed initial spacings given by microstruc-
ture and surface treatments and variable spacings which are related to the driving force
in order to investigate possible design rules.
The studies on service life for fixed spacings which were determined from real dies show
that an increase in λ and a decrease in α by 15% can lead to a large improvement of
the service life of the dies by a factor of 5 or 6. On the one hand it is shown that a
smaller amount of plasticity as in the case of a X38CrMoV5-1 hot work tool steel with a
hardness of 50 HRC compared to the same type with 44 HRC, causes longer service life.
This conclusion is dangerous because it does not consider that the material with 50 HRC
is prone to single crack propagation which can cause early failure being the reason why
lower hardnesses are preferred by die designers. On the other hand it is not considered
that lower loads which result from a high thermal conductivity and low thermal expansion
coefficients, may entail larger initial crack spacings.
The possible impact on service life is studied by relating the spacing of each material pa-
rameter combination of λ and α to a characteristic minimum spacing which is determined
by a criterion based on fracture mechanics. As the main result of theses studies it turns
out that there is a buffer action limiting the gain in service life. A decrease of the load
which can be achieved by optimizing the material parameters lowers the driving force for
crack growth. In this study it is taken into account that the driving force also affects
the initial crack spacing which is essential with regard to service life. A low driving force
leads to larger distances between the cracks thus reducing the shielding effect. This in
turn entails larger driving forces for crack growth compared to the case of a fixed spac-
ing. Altogether, it can be said that the gain in service life by optimization of material
parameters is less than in the study with a fixed spacing. The shape of the resulting fit
surfaces can significantly differ due to the fact that - despite the buffer action of a change
of material parameters - either the effect on crack spacing or the direct effect on driving
force for crack propagation dominates. This explains the different surface shapes in Fig-
ures 4.31 and 4.35 which correspond to studies on service life with variable initial crack
spacing for a hardness of 44 HRC and 50 HRC, respectively. In case of 50 HRC residual
stresses almost disappear for slightly decreased values of α and slightly larger values for λ.
This decreases the driving force significantly and results in large spacings. Despite a lower
shielding effect crack propagation is still slow due to the driving force staying low even
without shielding. Thus the direct effect of material parameters on driving force clearly
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dominates. In case of 44 HRC there is more buffer action and thus the curve shape is
different.

Since the combined impact of the microstructure, the surface treatment and the driving
force on the initial crack spacing has not been investigated experimentally so far since
it is almost impossible to produce and test the required amount of samples, the studies
on service life are performed based on different scenarios. First, the material parameters
are assumed not to change the observed crack spacing. The second and third scenarios
are based on the assumption that the loading affects the spacing to some extent. The
studies suggest that results for fixed and variable spacings can differ significantly. The
possible gain in service life is lower if driving forces affect the spacing. Then the positions
of minima and maxima change due to the effect of buffer actions.
The studies show that in any case a decrease in thermal expansion has a positive effect
on service life. The question whether a large or small thermal conductivity is favorable
can be answered only after further studies investigating the influence on crack spacing
which determines life time to a great extent. Even if the stresses in the dies do not change
spacing directly it is probable that they affect the number of eligible crack initiation sites
in the microstructure. As discussed in Section 4.7 cracks have been found to initiate at
different microstructural features depending on the amount of plastic strain. The fact
that the latter depends on λ and α gives rise to yet another mechanism that makes the
spacing dependent on the loading.
The complex dependence of crack spacing on various factors can be simplified by pur-
posefully engineering the spacing by means of appropriate surface treatments. If such
treatments are found the effect of other influences like the microstructure is of less sig-
nificance or none at all. This way crack spacing and crack propagation can be treated
separately and the buffer action can be avoided which guarantees that a lower loading
level will increase service life.
Once the discussed dependencies have been quantified experimentally the script-based
modeling concept can be enhanced and reapplied for verification purposes. The method-
ology presented in this thesis proves versatile enough to accommodate virtually any kind
of newly found phenomena.
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Appendix 6

Residual Stresses for 47 HRC and 50 HRC

Figure 6.1: Overview of residual stresses at the surface of a X38CrMoV5-1 hot work tool steel
with a hardness of 47HRC for different material parameters.
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Figure 6.2: Polynomial fit of data shown in Figure 6.1.
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Figure 6.3: Overview of residual stresses at the surface of a X38CrMoV5-1 hot work tool steel
with a hardness of 50HRC for different material parameters.
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Figure 6.4: Polynomial fit of data shown in Figure 6.3.
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Influence of Material Parameters on the Evolution of Crack Arrays in Case of
Constant Initial Spacing-Detailed Results

Figure 6.5: X38CrMoV5-1 44 HRC: Load cycles until a crack length of 1.5 mm is reached in
dependence of α for fixed values of λ.

Figure 6.6: X38CrMoV5-1 44 HRC: Load cycles until a crack length of 1.5 mm is reached in
dependence of λ for fixed values of α.
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Figure 6.7: X38CrMoV5-1 47 HRC: Load cycles until a crack length of 1.5 mm is reached.

130



Appendix 6

Figure 6.8: X38CrMoV5-1 47 HRC: Load cycles until a crack length of 1.5 mm is reached in
dependence of α for fixed values of λ.

Figure 6.9: X38CrMoV5-1 47 HRC: Load cycles until a crack length of 1.5 mm is reached in
dependence of λ for fixed values of α.
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Figure 6.10: X38CrMoV5-1 50 HRC: Load cycles until a crack length of 1.5 mm is reached.
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Figure 6.11: X38CrMoV5-1 50 HRC: Load cycles until a crack length of 1.5 mm is reached in
dependence of α for fixed values of λ.

Figure 6.12: X38CrMoV5-1 50 HRC: Load cycles until a crack length of 1.5 mm is reached in
dependence of λ for fixed values of α.
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Influence of Material Parameters on the Evolution of Crack Arrays with Vari-
able Spacing-Detailed Results for 44 HRC

Figure 6.13: Load cycles until a crack length of 1.5 mm is reached including variable crack
spacing based on the observed standard spacing 2.25 mm and a 10% influence of the driving
force. Data on a X38CrMoV5-1 hot work tool steel with a hardness of 44 HRC.
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Figure 6.14: Load cycles until a crack length of 1.5 mm is reached based on the observed
standard spacing 2.25 mm and a 10% influence of the driving force in dependence of α for fixed
values of λ.

Figure 6.15: Load cycles until a crack length of 1.5 mm is reached based on the observed
standard spacing 2.25 mm and a 10% influence of the driving force in dependence of λ for fixed
values of α.
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Figure 6.16: Load cycles until a crack length of 1.5 mm is reached including variable crack
spacing based on the observed standard spacing 2.25 mm and a 100% influence of the driving
force. Data on a X38CrMoV5-1 hot work tool steel with a hardness of 44 HRC.
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Figure 6.17: Load cycles until a crack length of 1.5 mm is reached based on the observed
standard spacing 2.25 mm and a 100% influence of the driving force in dependence of α for fixed
values of λ.

Figure 6.18: Load cycles until a crack length of 1.5 mm is reached based on the observed
standard spacing 2.25 mm and a 100% influence of the driving force in dependence of λ for fixed
values of α.
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Control Script for generation of C-Models

1 ######################################################################################################

2 #Settings and Loops

3 ######################################################################################################

4
5 #Import of user defined modules

6 import MyData

7 import MyFunctions

8 import MySettings

9
10 #Import of Python modules

11 from Numeric import *

12 import os

13 import time

14 t1=time.clock()

15
16 #Import of Abaqus Python modules

17 from abaqus import *

18 from abaqusConstants import *

19 from caeModules import *

20 from part import *

21 from material import *

22 from section import *

23 from assembly import *

24 from step import *

25 from interaction import *

26 from load import *

27 from mesh import *

28 from job import *

29 from sketch import *

30 from visualization import *

31 from connectorBehavior import *

32
33 #Basic settings:

34 Mode=1

35 CS_IteratorEnd =0

36 CP_IteratorStart =0

37 CP_IteratorEnd =100

38 Study_IteratorStart =1

39 Study_IteratorEnd =1

40 SIF_CorrectionStart =0

41 SIF_CorrectionEnd =1

42 CrackPropagationsAlt =0

43 Threshold =3.0

44 C_Slope =1.14786E-9

45 m_Exponent =5.2091

46 JobName_Root='CrackPropagation '

47 mdb_close='On'

48 Stabilize='Off'

49 BorderExpansion=False

50 NLGEOM=OFF

51 CPUs=2

52
53 #For input

54 Variations_H =["44HRC", "47HRC", "50HRC"]

55 Variations_L =["+0","+5", "+15", " -5", " -15"]

56 Variations_A =["+0","+5", "+15", " -5", " -15"]

57 #For C-Model

58 Variations_A_Coeff =[1.00 , 1.05, 1.15, 0.95, 0.85]

59 #For output

60 Variations_L_Percent =["100", "105", "115", "95", "85"]

61 Variations_A_Percent =["100", "105", "115", "95", "85"]

62
63 MODEL='C-Model'

64 PART='EvenDieArea '

65 firstRun_finished=False

66
67 #Declaration of lists which must be available in the entire study.

68 Array_SIFs =[]

69 Array_SIFs_closed =[]

70 Array_initialSpacing =[]

71 CrackLengths =[]

72 CrackSpacings =[]

73 DataSets_Labels =[]

74 DataSets_Counter =-1

75 DataSets_Total=len(Variations_H)*len(Variations_L)*len(Variations_A)

76
77 for Iterator_H in range(len(Variations_H)):

78
79 for Iterator_L in range(len(Variations_L)):

80
81 for Iterator_A in range(len(Variations_A)):

82 DataSets_Counter +=1

83 CrackLengths.append ([])

84 CrackSpacings.append ([])

85
86 for IteratorIndex_Study in range(Study_IteratorStart , Study_IteratorEnd +1):

87 Break=False
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88 BreakCounter =0

89
90 for Iterator_Spacing in range(CS_IteratorEnd +1):

91
92 #Initial configuration of crack array

93 Elements =1

94 NumberOfCracks =1

95 Propagation_Increment =0.05

96 UnitCell =[0]

97 CrackDistance1 , UnitCell [0]= MyData.InitialData(Variations_H[Iterator_H], Variations_L[Iterator_L], ←↩
Variations_A[Iterator_A ])

98 CrackLength1=UnitCell [0]

99 UnitCell_copy=copy.deepcopy(UnitCell)

100 CrackLengths[DataSets_Counter ]. append ([])

101 DeltaKeff_Array =[]

102 LoadCycles_Array =[]

103 Cycles_total =0

104 InstabilityNumber =0

105 InstabilityBoolean=False

106
107 if Break:

108 break

109 else:

110 for Iterator_CrackProp in range(CP_IteratorStart , CP_IteratorEnd +1):

111
112 if Break:

113 break

114 else:

115 for Iterator_CP_alternative in range(CrackPropagationsAlt +1):

116 for SIF_Correction in range(SIF_CorrectionStart , SIF_CorrectionEnd +1):

117
118 if SIF_Correction ==0:

119 Mode=1

120 if SIF_Correction ==1:

121 Mode='1_closed '

122
123 SequenceNr0=Variations_H[Iterator_H ]+'_L'+Variations_L[Iterator_L ]+'_A'+Variations_A[Iterator_A]

124 SequenceNr1=str(IteratorIndex_Study)

125 SequenceNr2=str(SIF_Correction)

126 SequenceNr3=str(Iterator_Spacing)

127 SequenceNr4=str(Iterator_CrackProp)

128 SequenceNr5=str(Iterator_CP_alternative)

129 #In order to get clearly arranged data in the end , the labels of all data sets need to be stored←↩
.

130 if Iterator_Spacing ==0 and Iterator_CrackProp ==0:

131 DataSets_Labels.append(SequenceNr0)

132 JobNameDataSet=JobName_Root+'-DataSet_ '+SequenceNr0

133 Jobname=JobName_Root+'-DataSet_ '+SequenceNr0+'_ID -G_'+SequenceNr1+'_SIF_ '+SequenceNr2+'←↩
_SequenceNumber -'+SequenceNr3+'-'+SequenceNr4+'-'+SequenceNr5

134 #"PathDat" ist nur fuer Risswachstum relevant. Da die Daten der vorhergehenden Rechnung ←↩
eingelesen werden lautet die 3. SequenceNr: Iterator_CP_alternative -1

135 PathDat=Jobname+'.dat'

136
137 #Path to the User Subroutines

138 NameSubroutine='/sim/Peter.R_57/Subroutines/Subroutines_fertig/Step -999 _fertig/←↩
Subroutine_Utemp_Sigini2_Step -999_'+Variations_H[Iterator_H ]+'_L'+Variations_L[Iterator_L ]+←↩
'_A'+Variations_A[Iterator_A ]+'.f'

139
140
141
142 #Declaration of lists which must be available in a single loop.

143 All_CP_Directions =[]

144 AllCrackSeams =[]

145 K_Factors_Sets =[]

146 ######################################################################################################

147 #Dimensions and Seed Properties

148 ######################################################################################################

149 Radius , SeedSize_fine , SeedSize_fine_top , SeedSize_coarse , SeedSize_Flanks , Transition_Bias , ←↩
Transition_Elements , SegmentsCircle , Circles , BiasCircles , TransitionDistance_rel , ←↩
TransitionWidth_rel = \

150 MySettings.StandardSettings(NumberOfCracks , CrackLength1)

151 UnitCell , UnitCell_copy , Cracks_defined , CrackSpacing , BorderSpacing , NumberOfCracks , ←↩
CrackLengths , CrackSpacings , ModelWidth , Radius , SeedSize_Flanks , SeedSize_fine_top , ←↩
SeedSize_fine , SeedSize_coarse , TransitionDistance_abs , TransitionWidth_abs , ←↩
Transition_Bias , Transition_Elements , ModelHeight , Elements = \

152 MySettings.ModeSettings(Mode , Iterator_CrackProp , Iterator_Spacing , CrackDistance1 , ←↩
NumberOfCracks , CrackLengths , DataSets_Counter , UnitCell , UnitCell_copy , CrackSpacings , ←↩
Elements , InstabilityBoolean , Propagation_Increment)

153 ######################################################################################################

154 #Begin Part Level

155 ######################################################################################################

156 mdb.models.changeKey(fromName='Model -1', toName=MODEL)

157 mdb.models[MODEL]. ConstrainedSketch(name='__profile__ ', sheetSize =200.0)

158 a0=mdb.models[MODEL]

159 a=mdb.models[MODEL]. sketches['__profile__ ']

160 #SC... shortcut

161 a_LineSC=a.Line

162
163 if NumberOfCracks ==0:

164 PointsSketch =[(0.0 , 0.0), (ModelWidth_noCracks , 0.0), (ModelWidth_noCracks , -ModelHeight), (←↩
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ModelWidth_noCracks /2, -ModelHeight), (0.0, -ModelHeight), (0.0, 0.0)]

165 for i in range(len(PointsSketch) -1):

166 a_LineSC(point1=PointsSketch[i], point2=PointsSketch[i+1])

167
168 elif NumberOfCracks >0:

169 PointsSketch =[(0.0 , 0.0), (BorderSpacing , 0.0)]

170 for i in range(NumberOfCracks -1):

171 PointsSketch.append (( BorderSpacing+CrackSpacing*i, 0.0))

172 PointsSketch.append (( BorderSpacing+CrackSpacing *(i+1), 0.0))

173 PointsSketch +=[( BorderSpacing+CrackSpacing *( NumberOfCracks -1), 0.0), (BorderSpacing+←↩
CrackSpacing *( NumberOfCracks -1)+BorderSpacing , 0.0),

174 (BorderSpacing+CrackSpacing *( NumberOfCracks -1)+BorderSpacing , -ModelHeight), (( BorderSpacing+←↩
CrackSpacing *( NumberOfCracks -1)+BorderSpacing)/2, -ModelHeight), (0.0, -ModelHeight), ←↩
(0.0, 0.0)]

175
176 for i in range(len(PointsSketch) -1):

177 a_LineSC(point1=PointsSketch[i], point2=PointsSketch[i+1])

178
179 #Part is created

180 a0.Part(dimensionality=TWO_D_PLANAR , name=PART , type=DEFORMABLE_BODY)

181 a0.parts[PART]. BaseShell(sketch=a)

182 del a

183
184 #Partitioning

185 a0.ConstrainedSketch(gridSpacing =5.0, name='__profile__ ', sheetSize =200.0 , transform=a0.parts[←↩
PART]. MakeSketchTransform(

186 sketchPlane=a0.parts[PART]. faces[0], sketchPlaneSide=SIDE1 , sketchOrientation=RIGHT , origin←↩
=(0.0, 0.0, 0.0)))

187 a2=a0.sketches['__profile__ ']

188 b1=a0.parts[PART]

189 b1.projectReferencesOntoSketch(filter=COPLANAR_EDGES , sketch=a0.sketches['__profile__ '])

190 #SC... shortcut

191 a2_LineSC=a2.Line

192 a2_verticesSC=a2.vertices

193
194 NumberOfUnitCells=int(NumberOfCracks/Elements)

195 Rest=NumberOfCracks%Elements

196 if NumberOfCracks >0:

197
198 #Circles are inserted.

199 #Periodicies will be condsidered.

200 if NumberOfUnitCells ==0:

201 Iterator1 =1

202 Iterator2=NumberOfCracks

203 else:

204 Iterator1=NumberOfUnitCells

205 Iterator2=Elements

206 for i in range(Iterator1):

207 for j in range(Iterator2):

208 a2_LineSC(point1 =( BorderSpacing+CrackSpacing*j+CrackSpacing *( Elements)*i, 0),

209 point2 =( BorderSpacing+CrackSpacing*j+CrackSpacing *( Elements)*i, -UnitCell[j]))

210 if Rest !=0 and i== NumberOfUnitCells -1 and j==Elements -1:

211 ZusatzRisse=NumberOfCracks -NumberOfUnitCells*Elements

212 k=0

213 #This loop gets active in case an incomplete unit cell needs to be generated.

214 while k<ZusatzRisse:

215 j=j+1

216 a2_LineSC(point1 =( BorderSpacing+CrackSpacing*j+CrackSpacing *( Elements)*i, 0),

217 point2 =( BorderSpacing+CrackSpacing*j+CrackSpacing *( Elements)*i, -L))

218 k=k+1

219 #Alternative crack propagation (MTS criterion)

220 AllCrackTipCoord =[]

221 QVector_StartPoints =[]

222 #Within this loop all data must be available. Thus some lists are declared outside the loop.

223 #QVector_StartPoints: Together with AllCrackTipCoord QVectors for crack definition can be ←↩
defined.

224 if Iterator_CP_alternative >0:

225 if Rest ==0:

226 Iterator_End1=NumberOfUnitCells

227 else:

228 Iterator_End1=NumberOfUnitCells +1

229 for i in range(Iterator_End1):

230 if i<NumberOfUnitCells:

231 Iterator_End2=Elements

232 else:

233 Iterator_End2=NumberOfCracks -Elements*NumberOfUnitCells

234 for j in range(Iterator_End2):

235 X_Vertex1 =[]

236 Y_Vertex1 =[]

237 X_Vertex2 =[]

238 Y_Vertex2 =[]

239 X_Vertex1.append(BorderSpacing+CrackSpacing*j+CrackSpacing*Elements*i)

240 Y_Vertex1.append(-UnitCell[j])

241 X_Vertex2.append(BorderSpacing+CrackSpacing*j+CrackSpacing*Elements*i+←↩
CrackLength_ParisLaw*sin(radians(All_CP_Directions [0][j+Elements*i])))

242 Y_Vertex2.append(-UnitCell[j]-CrackLength_ParisLaw*cos(radians(All_CP_Directions [0][j+←↩
Elements*i])))

243 #Initial cracks and crackpropagations are partitioned for each crack.

244 for k in range(1, Iterator_CP_alternative +1):

245 if k==1:
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246 a2_LineSC(point1 =( X_Vertex1[k-1], Y_Vertex1[k-1]), point2 =( X_Vertex2[k-1], Y_Vertex2←↩
[k-1]))

247 Angle =0

248 for m in range(k):

249 Angle=Angle+All_CP_Directions[m][j+Elements*i]

250 if k>1:

251 X_Vertex1.append(X_Vertex2[k-2])

252 Y_Vertex1.append(Y_Vertex2[k-2])

253 #The newly determined angles refer to the actual propagation.

254 # => In order to draw the new propagation all angles need to be added!

255 X_Vertex2.append(X_Vertex2[k-2]+ CrackLength_ParisLaw*sin(radians(Angle)))

256 Y_Vertex2.append(Y_Vertex2[k-2]- CrackLength_ParisLaw*cos(radians(Angle)))

257 a2_LineSC(point1 =( X_Vertex1[k-1], Y_Vertex1[k-1]), point2 =( X_Vertex2[k-1],

258 Y_Vertex2[k-1]))

259 #Circles around the crack tips

260 if k== Iterator_CP_alternative:

261 Radius =(( X_Vertex2[Iterator_CP_alternative -1]- X_Vertex1[Iterator_CP_alternative -1])←↩
**2+( Y_Vertex2[Iterator_CP_alternative -1]- Y_Vertex1[Iterator_CP_alternative -1])←↩
**2) **0.5

262 a2.CircleByCenterPerimeter(center =( X_Vertex2[Iterator_CP_alternative -1], Y_Vertex2[←↩
Iterator_CP_alternative -1]), point1 =( X_Vertex2[Iterator_CP_alternative -1]-←↩
Radius*sin(radians(Angle)), Y_Vertex2[Iterator_CP_alternative -1]+ Radius*cos(←↩
radians(Angle))))

263 #SIN and COS always have the right sign.

264 #Crack tip coordinates are written to a list for set definitions later on.

265 #When the loop passes these lines the list gets defined anew and the old values are ←↩
gone.

266 CrackTipCoord =[]

267 CrackTipCoord.append(X_Vertex2[Iterator_CP_alternative -1])

268 CrackTipCoord.append(Y_Vertex2[Iterator_CP_alternative -1])

269 AllCrackTipCoord.append(CrackTipCoord)

270 QVector_a =[]

271 QVector_a.append(X_Vertex2[Iterator_CP_alternative -1]- Radius*sin(radians(Angle)))

272 QVector_a.append(Y_Vertex2[Iterator_CP_alternative -1]+ Radius*cos(radians(Angle)))

273 QVector_StartPoints.append(QVector_a)

274 Seam =[]

275 Seam.append(X_Vertex2[Iterator_CP_alternative -1]-( CrackLength_ParisLaw /2)*sin(←↩
radians(Angle)))

276 Seam.append(Y_Vertex2[Iterator_CP_alternative -1]+( CrackLength_ParisLaw /2)*cos(←↩
radians(Angle)))

277 AllCrackSeams.append(Seam)

278 #Partitioning of the circles if there are initiating cracks only.

279 if Iterator_CP_alternative ==0:

280 if Rest ==0:

281 Iterator_End1=NumberOfUnitCells

282 else:

283 Iterator_End1=NumberOfUnitCells +1

284 for i in range(Iterator_End1):

285 if i<NumberOfUnitCells:

286 Iterator_End2=Elements

287 else:

288 Iterator_End2=NumberOfCracks -Elements*NumberOfUnitCells

289 for j in range(Iterator_End2):

290 X_Vertex1 =( BorderSpacing+CrackSpacing*j+CrackSpacing*Elements*i)

291 Y_Vertex1=(-UnitCell[j])

292 a2.CircleByCenterPerimeter(center =(X_Vertex1 , Y_Vertex1), point1 =(X_Vertex1 , Y_Vertex1+←↩
Radius))

293 CrackTipCoord =[]

294 CrackTipCoord.append(X_Vertex1)

295 CrackTipCoord.append(Y_Vertex1)

296 AllCrackTipCoord.append(CrackTipCoord)

297 QVector_a =[]

298 #In case of a straigth crack X_Vertex1 and X_Vertex2 are equal.

299 QVector_a.append(X_Vertex1)

300 QVector_a.append(Y_Vertex1+UnitCell[j])

301 QVector_StartPoints.append(QVector_a)

302 Seam =[]

303 Seam.append(X_Vertex1)

304 #The order of the vertices is important. The first vertex is part of the edge above the ←↩
circle.

305 #The second vertex is is situated at the tip , i.e. it is part of the edge within the ←↩
circle.

306 Seam.append ( -0.001)

307 Seam.append(Y_Vertex1)

308 AllCrackSeams.append(Seam)

309 #Partitioning of transition area

310 a2_LineSC(point1 =(0.0, -TransitionDistance_rel), point2 =(ModelWidth , -TransitionDistance_rel))

311 a2_LineSC(point1 =(0.0 , -TransitionWidth_rel), point2 =(ModelWidth , -TransitionWidth_rel))

312 b1.PartitionFaceBySketch(faces=b1.faces , sketch=a2)

313 #Sketch for partitioning is finished

314 del a2

315 ######################################################################################################

316 #Properties

317 ######################################################################################################

318 #b1.faces gives a tuple with the labels of all faces.

319 b1.Set(name='Set_AllFaces ', faces=b1.faces)

320 a0.Material(name='W300')

321 a0.materials['W300']. Elastic(table =(

322 (210000.0 , 0.3, 20.0) ,

323 (199000.0 , 0.3, 100.0) ,
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324 (194500.0 , 0.3, 200.0) ,

325 (190000.0 , 0.3, 300.0) ,

326 (188000.0 , 0.3, 400.0) ,

327 (183000.0 , 0.3, 500.0) ,

328 (183000.0 , 0.3, 600.0) ,

329 (183000.0 , 0.3, 700.0)),

330 temperatureDependency=ON)

331 a0.materials['W300']. Expansion(table=(

332 (10.5*10** -6* Variations_A_Coeff[Iterator_A], 20.0),

333 (11.1*10** -6* Variations_A_Coeff[Iterator_A], 95.0),

334 (11.67*10** -6* Variations_A_Coeff[Iterator_A], 185.0) ,

335 (12.25*10** -6* Variations_A_Coeff[Iterator_A], 291.0) ,

336 (12.72*10** -6* Variations_A_Coeff[Iterator_A], 397.0) ,

337 (13.14*10** -6* Variations_A_Coeff[Iterator_A], 502.0) ,

338 (13.36*10** -6* Variations_A_Coeff[Iterator_A], 613.0)),

339 temperatureDependency=ON)

340 a0.HomogeneousSolidSection(material='W300', name='Section_EvenDieArea ', thickness =1.0)

341 b1.SectionAssignment(offset =0.0, region=b1.sets['Set_AllFaces '], sectionName='←↩
Section_EvenDieArea ')

342 ######################################################################################################

343 #Begin Assembly Level

344 ######################################################################################################

345 a0.rootAssembly.Instance(dependent=OFF , name='EvenDieArea -1', part=b1)

346 c1=a0.rootAssembly

347 c2=c1.instances['EvenDieArea -1']

348 c1_SetSC=c1.Set

349 c1_setsSC=c1.sets

350 c2_verticesSC=c2.vertices

351 c2_edgesSC=c2.edges

352 c2_facesSC=c2.faces

353 c2_verticesSC_findAtSC=c2_verticesSC.findAt

354 c2_edgesSC_findAtSC=c2_edgesSC.findAt

355 c2_facesSC_findAtSC=c2_facesSC.findAt

356 ######################################################################################################

357 #Cracks and Seams

358 ######################################################################################################

359 #Each crack tip is stored to a set.

360 for i in range(NumberOfCracks):

361 c1_SetSC(name='CTip'+str(i+1), vertices=c2_verticesSC_findAtSC ((( AllCrackTipCoord[i][0], ←↩
AllCrackTipCoord[i][1], 0), ), ))

362 #

363 #Crack definition

364 #

365 for i in range(NumberOfCracks):

366 if Cracks_defined[i]== True:

367 c1.engineeringFeatures.ContourIntegral(collapsedElementAtTip=SINGLE_NODE , crackFront=←↩
c1_setsSC['CTip'+str(i+1)], crackTip=c1_setsSC['CTip'+str(i+1)], ←↩
extensionDirectionMethod=

368 Q_VECTORS , midNodePosition =0.25, name='Crack -'+str(i+1), qVectors =((( QVector_StartPoints[i←↩
][0], QVector_StartPoints[i][1], 0.0), (AllCrackTipCoord[i][0], AllCrackTipCoord[i][1],←↩
0.0)), ), symmetric=OFF)

369 #

370 #Assign Seam

371 #

372 #The crack flanks are stored in sets and defined as seams.

373 a0.ContactProperty('IntProp -1')

374 a0.interactionProperties['IntProp -1']. TangentialBehavior(formulation=FRICTIONLESS)

375 #The default setting Penalty does not yield satisfying results. Lagrange is better in this case.

376 a0.interactionProperties['IntProp -1']. NormalBehavior(allowSeparation=ON, ←↩
clearanceAtZeroContactPressure =0.0,

377 constraintEnforcementMethod=AUGMENTED_LAGRANGE , contactStiffness=DEFAULT , ←↩
contactStiffnessScaleFactor =1.0, pressureOverclosure=HARD)

378 if Iterator_CP_alternative ==0:

379 for i in range(NumberOfCracks):

380 if Cracks_defined[i]== True:

381 #j runs from 1 to 2 because the circle splits the crack in two.

382 for j in range (1,3):

383 c1_SetSC(name='CrackFlank '+str(i+1)+str(j), edges=c2_edgesSC_findAtSC ((( AllCrackSeams[i←↩
][0], AllCrackSeams[i][j], 0), ), ))

384 c1.engineeringFeatures.assignSeam(regions=c1_setsSC['CrackFlank '+str(i+1)+str(j)])

385 #Contact Definitions

386 #Small Sliding is activated

387 for i in range(NumberOfCracks):

388 if Cracks_defined[i]== True:

389 c1.Surface(name='Surface '+str(i+1), side12Edges =( c1_setsSC['CrackFlank '+str(i+1)+str (1)].←↩
edges , c1_setsSC['CrackFlank '+str(i+1)+str (2)].edges))

390 a0.SelfContactStd(createStepName='Initial ', enforcement=SURFACE_TO_SURFACE , ←↩
interactionProperty='IntProp -1', name='Kontakt '+str(i+1), surface=c1.surfaces['←↩
Surface '+str(i+1)], thickness=ON)

391 else:

392 for i in range(NumberOfCracks+ NumberOfCracks*Iterator_CP_alternative):

393 c1_SetSC(name='CrackFlank '+str(i+1), edges=c2_edgesSC_findAtSC ((( AllCrackSeams[i][0], ←↩
AllCrackSeams[i][1], 0), ), ))

394 c1.engineeringFeatures.assignSeam(regions=c1_setsSC['CrackFlank '+str(i+1)])

395
396 #Contact Definitions

397 c1.Surface(name='Surface '+str(i+1), side12Edges =( c1_setsSC['CrackFlank '+str(i+1)].edges))

398 a0.SelfContactStd(createStepName='Initial ', enforcement=SURFACE_TO_SURFACE , ←↩
interactionProperty='IntProp -1', name='Kontakt '+str(i+1)+str(j), surface=c1.surfaces['←↩
Surface '+str(i+1)], thickness=ON)
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399 ######################################################################################################

400 #Step

401 ######################################################################################################

402 a0.StaticStep(initialInc =0.0001 , maxInc =1.0, maxNumInc =1000000 , minInc =1e-08, description='', ←↩
name='MainStep ', nlgeom=NLGEOM , convertSDI=CONVERT_SDI_ON , previous='Initial ')

403 ######################################################################################################

404 #Boundary Conditions: Fixed and Loose Bearing

405 ######################################################################################################

406 a0_DisplacementBC_SC=a0.DisplacementBC

407 if NumberOfCracks ==0:

408 c1_SetSC(name='Set_FixedBearing ', vertices=c2_verticesSC_findAtSC ((( ModelWidth_noCracks /2, -←↩
ModelHeight , 0), ), ))

409 c1_SetSC(name='Set_Bottom_left ', edges=c2_edgesSC_findAtSC ((( ModelWidth_noCracks /2-0.001, -←↩
ModelHeight , 0), ), ))

410 c1_SetSC(name='Set_Bottom_right ', edges=c2_edgesSC_findAtSC ((( ModelWidth_noCracks /2+0.001 , -←↩
ModelHeight , 0), ), ))

411 if NumberOfCracks >0:

412 c1_SetSC(name='Set_FixedBearing ', vertices=c2_verticesSC_findAtSC (((( BorderSpacing+←↩
CrackSpacing *( NumberOfCracks -1)+BorderSpacing)/2, -ModelHeight , 0), ), ))

413 c1_SetSC(name='Set_Bottom_left ', edges=c2_edgesSC_findAtSC ((( BorderSpacing /2, -ModelHeight , 0)←↩
, ), ))

414 c1_SetSC(name='Set_Bottom_right ', edges=c2_edgesSC_findAtSC ((((1.5* BorderSpacing+CrackSpacing←↩
*( NumberOfCracks -1)), -ModelHeight , 0), ), ))

415 a0_DisplacementBC_SC(amplitude=UNSET , createStepName='Initial ', distributionType=UNIFORM , ←↩
fieldName='', fixed=OFF , localCsys=None , name='FixedBearing ', region=c1_setsSC['←↩
Set_FixedBearing '], u1=0.0, u2=0.0, ur3=UNSET)

416 a0_DisplacementBC_SC(amplitude=UNSET , createStepName='Initial ', distributionType=UNIFORM , ←↩
fieldName='', fixed=OFF , localCsys=None , name='Bottom_left ', region=c1_setsSC['←↩
Set_Bottom_left '], u1=UNSET , u2=0.0, ur3=UNSET)

417 a0_DisplacementBC_SC(amplitude=UNSET , createStepName='Initial ', distributionType=UNIFORM , ←↩
fieldName='', fixed=OFF , localCsys=None , name='Bottom_right ', region=c1_setsSC['←↩
Set_Bottom_right '], u1=UNSET , u2=0.0, ur3=UNSET)

418 ######################################################################################################

419 #History/Field Output Request

420 ######################################################################################################

421 for i in range(NumberOfCracks):

422 a0.HistoryOutputRequest(contourIntegral='Crack -'+str(i+1), contourType=K_FACTORS , ←↩
createStepName='MainStep ', frequency=LAST_INCREMENT , name='K_Factor '+str(i+1), ←↩
numberOfContours =5, rebar=EXCLUDE , sectionPoints=DEFAULT)

423 a0.fieldOutputRequests['F-Output -1']. setValues(variables =('S', 'MISESMAX ', 'U', 'RF', 'NT'))

424 ######################################################################################################

425 #Seeds + Mesh

426 ######################################################################################################

427 c1_seedEdgeBySizeSC=c1.seedEdgeBySize

428 c1_seedEdgeByBiasSC=c1.seedEdgeByBias

429 c1_seedEdgeByNumberSC=c1.seedEdgeByNumber

430 if NumberOfCracks ==0:

431 #fine meshed area

432 c1_SetSC(name= 'fine_top ', edges=c2_edgesSC_findAtSC ((( ModelWidth_noCracks /2,0, 0), ) ,))

433 c1_SetSC(name= 'fine_top3 ', edges=c2_edgesSC_findAtSC ((( ModelWidth_noCracks /2,-←↩
TransitionDistance_rel , 0), ),))

434 c1_seedEdgeBySizeSC(constraint=FINER , edges=c1_setsSC['fine_top '].edges , size=SeedSize_fine)

435 #Fine mesh and a fixed number of elements for periodic boundary conditions

436 c1_SetSC(name= 'fine_fixed_left ', edges=c2_edgesSC_findAtSC (((0,-0.001, 0), ) ,))

437 c1_SetSC(name= 'fine_fixed_right ', edges=c2_edgesSC_findAtSC ((( ModelWidth_noCracks ,-0.001, 0),←↩
),))

438 c1_seedEdgeBySizeSC(constraint=FIXED , edges=c1_setsSC['fine_fixed_left '].edges , size=←↩
SeedSize_fine)

439 c1_seedEdgeBySizeSC(constraint=FIXED , edges=c1_setsSC['fine_fixed_right '].edges , size=←↩
SeedSize_fine)

440 #FINER

441 c1_SetSC(name= 'coarse_top ', edges=c2_edgesSC_findAtSC (((1.0,- TransitionWidth_rel , 0), ) ,))

442 c1_SetSC(name= 'coarse_bottom_left ', edges=c2_edgesSC_findAtSC ((( ModelWidth_noCracks /2-0.001,-←↩
ModelHeight , 0), ),))

443 c1_SetSC(name= 'coarse_bottom_right ', edges=c2_edgesSC_findAtSC ((( ModelWidth_noCracks←↩
/2+0.001 , - ModelHeight , 0), ) ,))

444 #FIXED

445 c1_SetSC(name= 'coarse_fixed_left ', edges=c2_edgesSC_findAtSC (((0,- ModelHeight +0.001 , 0), ) ,))

446 c1_SetSC(name= 'coarse_fixed_right ', edges=c2_edgesSC_findAtSC ((( ModelWidth_noCracks ,-←↩
ModelHeight +0.001 , 0), ),))

447
448 c1_seedEdgeBySizeSC(constraint=FINER , edges=c1_setsSC['coarse_top '].edges , size=←↩

SeedSize_coarse)

449 c1_seedEdgeBySizeSC(constraint=FINER , edges=c1_setsSC['coarse_bottom_left '].edges , size=←↩
SeedSize_coarse)

450 c1_seedEdgeBySizeSC(constraint=FINER , edges=c1_setsSC['coarse_bottom_right '].edges , size=←↩
SeedSize_coarse)

451 c1_seedEdgeBySizeSC(constraint=FIXED , edges=c1_setsSC['coarse_fixed_left '].edges , size=←↩
SeedSize_coarse)

452 c1_seedEdgeBySizeSC(constraint=FIXED , edges=c1_setsSC['coarse_fixed_right '].edges , size=←↩
SeedSize_coarse)

453 #Transition area with bias

454 #Mind the difference between end2Edges and end1Edges!

455 c1_seedEdgeByBiasSC(constraint=FIXED , end2Edges=c2_edgesSC_findAtSC (((0,-←↩
TransitionDistance_rel -0.001 , 0), ) ,), number=Transition_Elements , ratio=Transition_Bias)

456 c1_seedEdgeByBiasSC(constraint=FIXED , end1Edges=c2_edgesSC_findAtSC ((( ModelWidth_noCracks ,-←↩
TransitionDistance_rel -0.001 , 0), ) ,), number=Transition_Elements , ratio=Transition_Bias)

457 if NumberOfCracks >0:

458 #fine meshed area

459 #Line above transition area
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460 c1_SetSC(name= 'fine_top1 ', edges=c2_edgesSC_findAtSC ((( BorderSpacing /2,-←↩
TransitionDistance_rel , 0), ),))

461 #Lines on top of the plate

462 c1_SetSC(name= 'fine_top2 ', edges=c2_edgesSC_findAtSC ((( BorderSpacing /2,0, 0), ),))

463 c1_SetSC(name= 'fine_top3 ', edges=c2_edgesSC_findAtSC (((1.5* BorderSpacing+CrackSpacing *(←↩
NumberOfCracks -1) ,0, 0), ) ,))

464 for i in range(NumberOfCracks -1):

465 c1_SetSC(name= 'fine_top '+str(i+4), edges=c2_edgesSC_findAtSC ((( BorderSpacing /2+ CrackSpacing←↩
*(i+1) ,0, 0), ),))

466 #Mesh size at the top of the plate. Since the mesh must fit the one in the crack areas it ←↩
should be finer than SeedSize_fine.

467 for i in range(1, NumberOfCracks +2):

468 c1_seedEdgeBySizeSC(constraint=FINER , edges=c1_setsSC['fine_top '+str(i+1)].edges , size=←↩
SeedSize_fine_top)

469 c1_seedEdgeBySizeSC(constraint=FINER , edges=c1_setsSC['fine_top1 '].edges , size=SeedSize_fine)

470 #Fine mesh and a fixed number of elements for periodic boundary conditions

471 c1_SetSC(name= 'fein_fixed_left ', edges=c2_edgesSC_findAtSC (((0,-0.001, 0), ) ,))

472 c1_SetSC(name= 'fein_fixed_right ', edges=c2_edgesSC_findAtSC (((2* BorderSpacing+CrackSpacing *(←↩
NumberOfCracks -1) ,-0.001, 0), ),))

473 c1_seedEdgeBySizeSC(constraint=FIXED , edges=c1_setsSC['fein_fixed_left '].edges , size=←↩
SeedSize_fine)

474 c1_seedEdgeBySizeSC(constraint=FIXED , edges=c1_setsSC['fein_fixed_right '].edges , size=←↩
SeedSize_fine)

475 #FINER

476 c1_SetSC(name= 'coarse_top ', edges=c2_edgesSC_findAtSC (((0.001 , - TransitionWidth_rel , 0), ),))

477 c1_SetSC(name= 'coarse_bottom_left ', edges=c2_edgesSC_findAtSC ((( BorderSpacing /2,-ModelHeight ,←↩
0), ) ,))

478 c1_SetSC(name= 'coarse_bottom_right ', edges=c2_edgesSC_findAtSC (((1.5* BorderSpacing+←↩
CrackSpacing *( NumberOfCracks -1) ,-ModelHeight , 0), ),))

479 #FIXED

480 c1_SetSC(name= 'coarse_fixed_left ', edges=c2_edgesSC_findAtSC (((0,- ModelHeight +0.001 , 0), ) ,))

481 c1_SetSC(name= 'coarse_fixed_right ', edges=c2_edgesSC_findAtSC (((2* BorderSpacing+CrackSpacing←↩
*( NumberOfCracks -1) ,-ModelHeight +0.001 , 0), ) ,))

482
483 c1_seedEdgeBySizeSC(constraint=FINER , edges=c1_setsSC['coarse_top '].edges , size=←↩

SeedSize_coarse)

484 c1_seedEdgeBySizeSC(constraint=FINER , edges=c1_setsSC['coarse_bottom_left '].edges , size=←↩
SeedSize_coarse)

485 c1_seedEdgeBySizeSC(constraint=FINER , edges=c1_setsSC['coarse_bottom_right '].edges , size=←↩
SeedSize_coarse)

486 c1_seedEdgeBySizeSC(constraint=FIXED , edges=c1_setsSC['coarse_fixed_left '].edges , size=←↩
SeedSize_coarse)

487 c1_seedEdgeBySizeSC(constraint=FIXED , edges=c1_setsSC['coarse_fixed_right '].edges , size=←↩
SeedSize_coarse)

488 #Transition area with bias

489 #Mind the difference between end2Edges and end1Edges!

490 c1_seedEdgeByBiasSC(constraint=FIXED , end2Edges=c2_edgesSC_findAtSC (((0,-←↩
TransitionDistance_rel -0.001 , 0), ) ,), number=Transition_Elements , ratio=Transition_Bias)

491 c1_seedEdgeByBiasSC(constraint=FIXED , end1Edges=c2_edgesSC_findAtSC (((2* BorderSpacing+←↩
CrackSpacing *( NumberOfCracks -1) ,-TransitionDistance_rel -0.001 , 0), ),), number=←↩
Transition_Elements , ratio=Transition_Bias)

492 #Circles

493 for i in range(NumberOfCracks):

494 if Iterator_CP_alternative ==0:

495 c1_seedEdgeByNumberSC(constraint=FINER , edges=c2_edgesSC_findAtSC ((( AllCrackTipCoord[i][0]+←↩
Radius , AllCrackTipCoord[i][1] ,0), ) ,), number=SegmentsCircle)

496 c1_seedEdgeByBiasSC(end2Edges=c2_edgesSC_findAtSC ((( AllCrackTipCoord[i][0], AllCrackTipCoord[←↩
i][1] ,0), ),), number=Circles , ratio=BiasCircles)

497 else:

498 c1_seedEdgeByNumberSC(constraint=FINER , edges=c2_edgesSC_findAtSC ((( QVector_StartPoints[i←↩
][0]+2*( AllCrackTipCoord[i][0]- QVector_StartPoints[i][0]) , QVector_StartPoints[i←↩
][1]+2*( AllCrackTipCoord[i][1]- QVector_StartPoints[i][1]) ,0), ) ,), number=←↩
SegmentsCircle)

499 c1_seedEdgeByBiasSC(end2Edges=c2_edgesSC_findAtSC ((( AllCrackTipCoord[i][0], AllCrackTipCoord[←↩
i][1] ,0), ),), number=Circles , ratio=BiasCircles)

500 #Finer Constraint crack flanks outside the circular region.

501 for i in range(1, NumberOfCracks +1):

502 if Cracks_defined[i -1]== True:

503 c1_seedEdgeBySizeSC(constraint=FINER , edges=c1_setsSC['CrackFlank '+str(i)+'1'].edges , size=←↩
SeedSize_Flanks)

504 #The Mesh Controls of the whole model are set to QUAD. Afterwards the coarse area and transition←↩
area are set to TRI and the sections around the crack tips are set to Quad -Dominated.

505 c1_SetSC(name='CoarseArea_Set ', faces=c2_facesSC_findAtSC (((0, -ModelHeight ,0), ),))

506 c1_SetSC(name='TransitionArea_Set ', faces=c2_facesSC_findAtSC (((0, -TransitionDistance_rel←↩
-0.0001 ,0) , ),))

507 c1.setMeshControls(elemShape=QUAD , regions=c2.faces)

508 c1.setMeshControls(elemShape=TRI , regions=c1_setsSC['CoarseArea_Set '].faces)

509 c1.setMeshControls(elemShape=TRI , regions=c1_setsSC['TransitionArea_Set '].faces)

510 for i in range(NumberOfCracks):

511 c1.setMeshControls(elemShape=QUAD_DOMINATED , regions=c2.faces.findAt ((( AllCrackTipCoord[i][0],←↩
AllCrackTipCoord[i][1], 0), ) ,), technique=SWEEP)

512 c1_SetSC(name= 'AllFaces ', faces=c2.faces)

513 c1.setElementType(elemTypes =( ElemType(elemCode=CPE8 , elemLibrary=STANDARD), ElemType(elemCode=←↩
CPE6M , elemLibrary=STANDARD)), regions=c1_setsSC['AllFaces '])

514 c1.generateMesh(regions =(c2, ))

515 ######################################################################################################

516 #Job

517 ######################################################################################################

518 mdb.Job(contactPrint=OFF , description='', echoPrint=OFF , explicitPrecision=SINGLE , historyPrint=←↩
OFF , memory =50, memoryUnits=PERCENTAGE , model=MODEL , modelPrint=OFF , multiprocessingMode=←↩
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DEFAULT , name=Jobname , nodalOutputPrecision=SINGLE , numCpus=CPUs , numDomains=CPUs , ←↩
parallelizationMethodExplicit=DOMAIN , scratch='', type=ANALYSIS , userSubroutine=←↩
NameSubroutine)

519 ######################################################################################################

520 #Periodic Boundary Conditions

521 ######################################################################################################

522 #Opposite nodes must be linked by equation -constraints.

523 #Since the order of the labels is arbitrary , the corresponding pairs need to be identified by ←↩
their y-coordinates.

524 #No pair can be linked more than once per degree of freedom. Thus , dublicate pairs originating←↩
from the vertices between edges must be removed.

525 #In this script the nodes are are stored to a text file with inp -file syntax

526 if NumberOfCracks ==0:

527 c1_SetSC(edges=c2_edgesSC_findAtSC (((0 , -0.001 ,0) ,),), name='Edge_left1 ')

528 c1_SetSC(edges=c2_edgesSC_findAtSC ((( ModelWidth_noCracks , -0.001 ,0) ,) ,), name='Edge_right1 ')

529 c1_SetSC(edges=c2_edgesSC_findAtSC (((0, -1*( TransitionDistance_rel+TransitionWidth_abs /2) ,0) ,)←↩
,), name='Edge_left2 ')

530 c1_SetSC(edges=c2_edgesSC_findAtSC ((( ModelWidth_noCracks ,-1*( TransitionDistance_rel+←↩
TransitionWidth_abs /2) ,0) ,),), name='Edge_right2 ')

531 c1_SetSC(edges=c2_edgesSC_findAtSC (((0, -1*( ModelHeight -0.001) ,0) ,),), name='Edge_left3 ')

532 c1_SetSC(edges=c2_edgesSC_findAtSC ((( ModelWidth_noCracks ,-1*( ModelHeight -0.1) ,0) ,),), name='←↩
Edge_right3 ')

533 if NumberOfCracks >0:

534 c1_SetSC(edges=c2_edgesSC_findAtSC (((0 , -0.001 ,0) ,),), name='Edge_left1 ')

535 c1_SetSC(edges=c2_edgesSC_findAtSC (((( NumberOfCracks -1)*CrackSpacing +2* BorderSpacing , -0.001 ,0)←↩
,) ,), name='Edge_right1 ')

536 c1_SetSC(edges=c2_edgesSC_findAtSC (((0, -1*( TransitionDistance_rel+TransitionWidth_abs /2) ,0) ,)←↩
,), name='Edge_left2 ')

537 c1_SetSC(edges=c2_edgesSC_findAtSC (((( NumberOfCracks -1)*CrackSpacing +2* BorderSpacing ,-1*(←↩
TransitionDistance_rel+TransitionWidth_abs /2) ,0) ,),), name='Edge_right2 ')

538 c1_SetSC(edges=c2_edgesSC_findAtSC (((0, -1*( ModelHeight -0.001) ,0) ,),), name='Edge_left3 ')

539 c1_SetSC(edges=c2_edgesSC_findAtSC (((( NumberOfCracks -1)*CrackSpacing +2* BorderSpacing ,-1*(←↩
ModelHeight -0.001) ,0) ,) ,), name='Edge_right3 ')

540 c1_SetSC(nodes=c1_setsSC['Edge_left1 '].nodes , name='AL')

541 c1_SetSC(nodes=c1_setsSC['Edge_right1 '].nodes , name='AR')

542 c1_SetSC(nodes=c1_setsSC['Edge_left2 '].nodes , name='BL')

543 c1_SetSC(nodes=c1_setsSC['Edge_right2 '].nodes , name='BR')

544 c1_SetSC(nodes=c1_setsSC['Edge_left3 '].nodes , name='CL')

545 c1_SetSC(nodes=c1_setsSC['Edge_right3 '].nodes , name='CR')

546
547 #Node labels and their y-coordinates are stored to arrays.

548 LabelCoord1L =[(n.label , n.coordinates [1]) for n in c1_setsSC['AL'].nodes]

549 LabelCoord1R =[(n.label , n.coordinates [1]) for n in c1_setsSC['AR'].nodes]

550 LabelCoord2L =[(n.label , n.coordinates [1]) for n in c1_setsSC['BL'].nodes]

551 LabelCoord2R =[(n.label , n.coordinates [1]) for n in c1_setsSC['BR'].nodes]

552 LabelCoord3L =[(n.label , n.coordinates [1]) for n in c1_setsSC['CL'].nodes]

553 LabelCoord3R =[(n.label , n.coordinates [1]) for n in c1_setsSC['CR'].nodes]

554
555 LabelCoordL=LabelCoord1L+LabelCoord2L+LabelCoord3L

556 LabelCoordR=LabelCoord1R+LabelCoord2R+LabelCoord3R

557
558 #The two arrays are sorted by y-coordinates.

559 LabelCoordL.sort(lambda x, y: cmp(x[1],y[1]))

560 LabelCoordR.sort(lambda x, y: cmp(x[1],y[1]))

561
562 NodePairs=len(LabelCoordL)

563 CounterKW =0

564 file = open("AddKeywordsNSETS_"+JobName_Root+".inp", "w")

565 file.write('*NSET ,nset=LeftX , instance=EvenDieArea -1, Unsorted\n')

566 for i in range(NodePairs):

567 if LabelCoordL[i][1]== LabelCoordL[i -1][1]:

568 continue

569 else:

570 CounterKW +=1

571 if CounterKW ==10:

572 file.write('\n')

573 CounterKW =0

574 file.write(str(LabelCoordL[i][0]))

575 if i < NodePairs -1:

576 file.write(',')

577 file.write('\n*NSET ,nset=LeftY , instance=EvenDieArea -1, Unsorted\n')

578 CounterKW =0

579 for i in range(NodePairs):

580 if LabelCoordL[i][1]== LabelCoordL[i -1][1] or LabelCoordL[i][1]==( - ModelWidth):

581 continue

582 else:

583 CounterKW +=1

584 if CounterKW ==10:

585 file.write('\n')

586 CounterKW =0

587 file.write(str(LabelCoordL[i][0]))

588 if i < NodePairs -1:

589 file.write(',')

590 file.write('\n*NSET ,nset=RightX , instance=EvenDieArea -1, Unsorted\n')

591 CounterKW =0

592 for i in range(NodePairs):

593 if LabelCoordR[i][1]== LabelCoordR[i -1][1]:

594 continue

595 else:

596 CounterKW +=1
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597 if CounterKW ==10:

598 file.write('\n')

599 CounterKW =0

600 file.write(str(LabelCoordR[i][0]))

601 if i < NodePairs -1:

602 file.write(',')

603 file.write('\n*NSET ,nset=RightY , instance=EvenDieArea -1, Unsorted\n')

604 CounterKW =0

605 for i in range(NodePairs):

606 if LabelCoordR[i][1]== LabelCoordR[i -1][1] or LabelCoordR[i][1]==( - ModelWidth):

607 continue

608 else:

609 CounterKW +=1

610 if CounterKW ==10:

611 file.write('\n')

612 CounterKW =0

613 file.write(str(LabelCoordR[i][0]))

614 if i < NodePairs -1:

615 file.write(',')

616 file.close ()

617
618 if BorderExpansion == False:

619 MyFunctions.DatenAusgabe('*Equation\n2\nLeftX , 1, 1., RightX , 1, -1.\n*Equation\n2\nLeftY , 2, ←↩
1., RightY , 2, -1.', "AddKeywordsEQUATIONS_"+JobName_Root+".inp", "w")

620 if BorderExpansion ==True:

621 #Reference Points for consideration of thermal expansion

622 Counter =0

623 refPoints =[]

624 for i in range(NodePairs):

625 if i==0:

626 r1 = c1.referencePoints

627 if LabelCoordL[i][1]== LabelCoordL[i -1][1]:

628 continue

629 else:

630 c1.ReferencePoint(point =(-1.0, LabelCoordL[i][1], 0.0))

631 #The reference points are added at the first position of the repository.

632 refPoints.append(r1.values ()[0])

633 #If the reference point is fixed it has no influence in the equations.

634 c1_SetSC(referencePoints =( refPoints[Counter],), name='RF -'+str(Counter))

635 yPosition=LabelCoordL[i][1]

636
637 #Heat expansion is calculated with a temperature curve fit from Mathematica and the ←↩

thermal expansion coefficient at 95°C.

638 Temperature=MyData.T_Distributions(Variations_L[Iterator_L], Iterator_L , yPosition)

639 BorderExpansion_Value =(11.1*10** -6) *( Temperature -120)*ModelWidth

640 a0.DisplacementBC(amplitude=UNSET , createStepName='MainStep ', distributionType=UNIFORM , ←↩
fieldName='', fixed=OFF , localCsys=None , name='BC-'+str(Counter), region=Region(←↩
referencePoints =( refPoints[Counter],)), u1=BorderExpansion_Value , u2=UNSET , ur3=UNSET←↩
)

641 Counter +=1

642
643 #For the periodic boundary conditions in x-direction the nodes need to be defined in single ←↩

sets.

644 file = open("AddKeywordsNSETS.inp", "a")

645 Counter =0

646 for i in range(NodePairs):

647 if LabelCoordL[i][1]== LabelCoordL[i -1][1]:

648 continue

649 else:

650 file.write('\n*NSET ,nset=LeftX -'+str(Counter)+', instance=EvenDieArea -1, Unsorted\n')

651 file.write(str(LabelCoordL[i][0]))

652 Counter +=1

653 Counter =0

654 for i in range(NodePairs):

655 if LabelCoordR[i][1]== LabelCoordR[i -1][1]:

656 continue

657 else:

658 file.write('\n*NSET ,nset=rightX -'+str(Counter)+', instance=EvenDieArea -1, Unsorted\n')

659 file.write(str(LabelCoordR[i][0]))

660 Counter +=1

661 file.close ()

662
663 #The coefficent of the Reference Points must be chosen as 1. This results from the definition ←↩

of the boundary conditions of the RFs.

664 MyFunctions.DatenAusgabe('', "AddKeywordsEQUATIONS.inp", "w")

665 for i in range(Counter):

666 MyFunctions.DatenAusgabe('*Equation\n3\nLeftX -'+str(i)+', 1, 1., RightX -'+str(i)+', 1, -1., ←↩
RF -'+str(i)+', 1, 1.\n', "AddKeywordsEQUATIONS.inp", "a")

667 MyFunctions.DatenAusgabe('*Equation\n2\nLeftY , 2, 1., RightY , 2, -1.', "AddKeywordsEQUATIONS.←↩
inp", "a")

668 ######################################################################################################

669 #Initial Conditions

670 ######################################################################################################

671 # a0.Temperature causes the implementation of the Subtoutine UTEMP.

672 # Alternatively , UTEMP could be called by adding "* TEMPERATURE , USER\nallNodes" in the keyword ←↩
editor (the set 'allNodes ' needs to be created first).

673 c1_SetSC(name='CompleteEvenDieArea ', faces=c2.faces)

674 a0.Temperature(createStepName='MainStep ', distributionType=USER_DEFINED , name='TemperatureField '←↩
, region=c1_setsSC['CompleteEvenDieArea '])

675
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676 #The initial temperature of the prewarmed die is 120 centigrade.

677 a0.Temperature(createStepName='Initial ', crossSectionDistribution=CONSTANT_THROUGH_THICKNESS , ←↩
distributionType=UNIFORM , magnitudes =(120.0 , ), name='InitialTemperature ', region=c1_setsSC←↩
['CompleteEvenDieArea '])

678 ######################################################################################################

679 #Update of Keywords

680 ######################################################################################################

681 #"* INCLUDE" is used for adding the data on the periodic BC to the inp -file.

682 #Call of Sigini is not possible in CAE. It has to be added to the inp -file via "* INITIAL ←↩
CONDITIONS" in the KW editor.

683 #"* Energy Print" is an inp -file command causing the energy data to be written to the dat -file.

684 #FREQUENCY =999999 causes the energy to be written to file after the last increment only.

685 #Within the keywords a characteristic expression is sought which is used to insert the ←↩
additional keywords in the right place.

686 #"synchVersions" must be positioned in the code above the lines changing the keywords.

687 a0.keywordBlock.synchVersions(storeNodesAndElements=False)

688 for mem in a0.keywordBlock.sieBlocks:

689 if mem.startswith('*End Instance '):

690 memID_NSET = a0.keywordBlock.sieBlocks.index(mem)

691 elif mem.startswith('*Step ,'):

692 memID_Initial = a0.keywordBlock.sieBlocks.index(mem)

693 elif mem.startswith('*End Step'):

694 memID_Energy = a0.keywordBlock.sieBlocks.index(mem)

695 a0.keywordBlock.insert(memID_NSET , '\n*INCLUDE , Input=AddKeywordsNSETS_ '+JobName_Root+'.inp ')

696 a0.keywordBlock.insert(memID_NSET +1, '\n*INCLUDE , Input=AddKeywordsEQUATIONS_ '+JobName_Root+'.←↩
inp')

697 a0.keywordBlock.insert(memID_Initial , '\n*INITIAL CONDITIONS , TYPE=STRESS , USER')

698 a0.keywordBlock.insert(memID_Energy +2, '\n*ENERGY PRINT , FREQUENCY =9999999 ')

699 if Stabilize =='On':

700 a0.keywordBlock.insert(memID_Energy +3, '\n*CONTACT CONTROLS , STABILIZE ')

701 ######################################################################################################

702 #Job Definition and Submission

703 ######################################################################################################

704 #Either the job can be started or just the inp -file can be created.

705 #mdb.jobs[Jobname ]. writeInput(consistencyChecking=OFF)

706 mdb.jobs[Jobname ]. submit(consistencyChecking=OFF)

707
708 #The loop will proceed after analysis has finished.

709 mdb.jobs[Jobname ]. waitForCompletion ()

710 #The current mdb will be closed. This way all keywords will be deleted and potential errors will←↩
be avoided.

711 if mdb_close =='On':

712 mdb.close ()

713 firstRun_finished=True

714 ######################################################################################################

715 #Begin Output Processing and Generation

716 ######################################################################################################

717 K_Factors , SIF_Crack1 , CP_Directions=MyFunctions.K_Output(PathDat , NumberOfCracks)

718
719 if Iterator_CP_alternative >0 or Mode ==1 or Mode=='1_simpelCrackPropagation ':

720
721 #Data are systematically written to an array.

722 if Iterator_Spacing ==0 and Iterator_CrackProp ==0:

723 Array_SIFs.append ([])

724 Array_initialSpacing.append ([])

725 if Iterator_CrackProp ==0:

726 Array_SIFs[DataSets_Counter ]. append ([])

727 Array_initialSpacing[DataSets_Counter ]. append ([])

728 if Iterator_CrackProp >=0:

729 Array_SIFs[DataSets_Counter ][ Iterator_Spacing ]. append(K_Factors)

730
731 K_Factors_Sets.append(K_Factors)

732 All_CP_Directions.append(CP_Directions)

733
734 #The output of studies on crack spacing is treated differently.

735 if IteratorIndex_Study ==0:

736 if Array_SIFs[DataSets_Counter ][ Iterator_Spacing ][ Iterator_CrackProp ][0] >= Threshold:

737
738 FileToBeRead = open("Module_CrackDistance.txt", "a")

739 FileToBeRead.write('\n#'+Jobname)

740 FileToBeRead.write('\nif HRC_F =="'+str(Variations_H[Iterator_H ])+'" and Lambda_F =="'+str(←↩
Variations_L[Iterator_L ])+'" and Alpha_F =="'+str(Variations_A[Iterator_A ])+'"\n')

741 FileToBeRead.write('\t\tCrackDistance='+str(CrackDistance)+'\n')

742 FileToBeRead.write('\t\tInitialCrackLength='+str(UnitCell [0])+'\n')

743 dFileToBeRead.close ()

744
745 if os.path.exists("CrackDistance.txt")== False:

746 FileToBeRead2 = open("CrackDistance.txt", "a")

747 FileToBeRead2.write('\nHRC\tLambda\tAlpha\tDistance\tLength\n')

748 FileToBeRead2.close()

749 FileToBeRead2 = open("CrackDistance.txt", "a")

750 FileToBeRead2.write('\n'+str(Variations_H[Iterator_H ])+'\t'+str(Variations_L[Iterator_L ])+←↩
'\t'+str(Variations_A[Iterator_A ])+'\t'+str(RissAbstand)+'\t'+str(UnitCell [0]))

751 FileToBeRead2.close ()

752
753 Array_initialSpacing[DataSets_Counter ][ Iterator_Spacing ]. append ([ Array_SIFs[←↩

DataSets_Counter ][ Iterator_Spacing ][ VIterator_CrackProp ][0]])

754 if (DataSets_Counter +1)== DataSets_Total:

755 #All SIFs are written to a text file

756 MyModule.Output_Distance(DataSets_Total , CS_IteratorEnd , CP_IteratorEnd , Array_SIFs , ←↩
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DataSets_Labels , CrackLength1 , Propagation_Increment , CrackSpacings , '←↩
KFactors_Function '+Jobname+'.txt')

757 #Threshold data is written to a file.

758 MyModule.Output_Distance(DataSets_Total , CS_IteratorEnd , CP_IteratorEnd , ←↩
Array_initialSpacing , DataSets_Labels , CrackLength1 , Propagation_Increment , ←↩
CrackSpacings , 'InitialSpacing '+Jobname+'.txt')

759 Break=True

760 break

761 else:

762 Array_initialSpacing[DataSets_Counter ][ Iterator_Spacing ]. append ([0])

763 if Mode=='1_closed ':

764 if Iterator_Spacing ==0 and Iterator_CrackProp ==0:

765 Array_SIFs_closed.append ([])

766 if Iterator_CrackProp ==0:

767 Array_SIFs_closed[DataSets_Counter ]. append ([])

768 if Iterator_CrackProp >=0:

769 Array_SIFs_closed[DataSets_Counter ][ Iterator_Spacing ]. append(K_Factors)

770 ######################################################################################################

771 #Calculation of DeltaKeff

772 ######################################################################################################

773 #Sigma_max => access to current odb

774 Sigma_max=MyFunctions.ReadOdb(Jobname , NODAL , 'S', 'S11', 'CTIP1 ')

775 #Sigma_min => access to MyData

776 Sigma_min=MyData.S_Envelopes(Variations_H[Iterator_H], Variations_L[Iterator_L], Variations_A[←↩
Iterator_A], (-UnitCell [0]))

777 #Stress Ratio

778 StressRatio=Sigma_min/Sigma_max

779 #Correction Factor

780 CorrectionFactor=MyData.DeltaKeff_Calculation(StressRatio)

781 ######################################################################################################

782 #Criterion for Instability

783 ######################################################################################################

784 DeltaKeff=Array_SIFs[DataSets_Counter ][ Iterator_Spacing ][ Iterator_CrackProp ][0]*←↩
CorrectionFactor

785 DeltaKeff_Array.append(DeltaKeff)

786
787 if DeltaKeff < Threshold:

788 InstabilityNumber +=1

789 InstabilityBoolean=True

790 BreakCounter +=1

791 if DeltaKeff >= Threshold:

792 BreakCounter =0

793 ######################################################################################################

794 #Integration of Crack Propagation Curve

795 ######################################################################################################

796 PropagationRate=C_Slope *( DeltaKeff)** m_Exponent

797 if Iterator_CrackProp ==0:

798 Circles =0

799 LoadCycles_Array.append (0)

800 else:

801 Circles=MyFunctions.PropagationFunction(DeltaKeff_Array [-1], DeltaKeff_Array [-2], ←↩
CrackLengths [0][0][ -1] , CrackLengths [0][0][ -2] , C_Slope , m_Exponent)

802 LoadCycles_Array.append(Circles)

803 Cycles_total += Circles

804 ######################################################################################################

805 #Main Output Files

806 ######################################################################################################

807 if Iterator_CrackProp ==0:

808 MyFunctions.DatenAusgabe('Crack Length\tSigma_min\tSigma_max\tR\tFactor\tSIF Crack1\←↩
tDeltaKeff\tInstabilities\tPropagationRate\tCycles\tCycles_total\n', 'A_StressRatios '+←↩
JobNameDataSet+'-CD-'+str(CrackDistance1)+'.txt', 'a')

809 MyFunctions.DatenAusgabe(JobNameDataSet+'\nCrack Length\tLoadCycles\n', 'A_LoadCycles.txt', ←↩
'a')

810 MyFunctions.DatenAusgabe('%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s' % (str(UnitCell [0]), '←↩
\t', str(Sigma_min), '\t', str(Sigma_max), '\t', str(StressRatio), '\t', str(←↩
CorrectionFactor), '\t', str(SIF_Crack1),'\t', str(DeltaKeff),'\t', str(BreakCounter),'\t←↩
', str(PropagationRate),'\t', str(Circles),'\t', str(Cycles_total), '\n'), '←↩
A_StressRatios '+JobNameDataSet+'-CD-'+str(CrackDistance1)+'.txt', 'a')

811 MyFunctions.DatenAusgabe('%s%s%s%s' % (str(UnitCell [0]), '\t', str(Cycles_total), '\n'), '←↩
A_LoadCycles.txt', 'a')

812
813 if BreakCounter ==3 or UnitCell [0] >1.5 or Iterator_CrackProp == CP_IteratorEnd:

814 if (DataSets_Counter +1)== DataSets_Total:

815 MyFunctions.Output_Growth(DataSets_Total , CS_IteratorEnd , CP_IteratorEnd , Array_SIFs , ←↩
DataSets_Labels , CrackLengths , CrackSpacings , 'A_SIFs_CrackPropagation_ '+←↩
JobNameDataSet+"-CD -"+str(CrackDistance1)+'.txt')

816 MyFunctions.Output_Growth(DataSets_Total , CS_IteratorEnd , CP_IteratorEnd , ←↩
Array_SIFs_closed , DataSets_Labels , CrackLengths , CrackSpacings , 'A_SIFs_closedModel_←↩
'+JobNameDataSet+"-CD-"+str(CrackDistance1)+'.txt')

817 Break=True

818 break

819 t2=time.clock()

820 MyFunctions.DatenAusgabe('\n'+str(t2 -t1), "Time.txt", "a")

821 #In order to save disk space the current files are deleted.

822 os.remove(Jobname+'.com')

823 os.remove(Jobname+'.inp')

824 os.remove(Jobname+'.sta')

825 os.remove(Jobname+'.msg')

826 os.remove(Jobname+'.prt')

827 os.remove(Jobname+'.odb')
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