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Abstract 

As the interest in hydrogen as an energy carrier, for an energy storage, grows, with it grows the 

effort for a better understanding of the working environment and the conditions that can be 

encountered. Depleted natural gas reservoirs are so far considered the best option for 

underground hydrogen storage. Seeing how they bring an option for a large storage volume, 

whose rocks have a history of being in contact with the gas. An extensive library of collected 

data and knowledge about the reservoir, throughout the years of production, only adds to the 

favorability of such storage. In the reservoirs where such implementation has been carried out 

an interesting phenomenon has been observed, namely various species of microorganisms that 

thrive at the rough reservoir conditions have been using stored hydrogen as an energy source 

for their metabolism. The focus of this work is set on a certain species of these microorganisms 

called methanogenic archaea, which are producing methane as they consume hydrogen. In 

other words, stored hydrogen gas is converted to methane in the presence of these 

microorganisms. Little is known about the underlying physics and influencing parameters on 

the microbial conversion of underground hydrogen storage. Therefore, many laboratory tests, 

as well as simulations, are being done in order to broaden our knowledge and familiarize 

ourselves with the expected outcomes when it comes to these types of microorganisms and their 

activity. We intend to implement a developed mathematical model into the MRST (The 

MATLAB Reservoir Simulation Toolbox) code and therefore simulate a one-dimensional 

injection of the nutrient gas mixture into the core sample that has been populated with 

methanogenic archaea. The model consists of two equations, one describing the population 

growth of the microbial species and the other describing the effects of metabolic bioreaction 

(called methanogenesis), those being nutrient (H2 and CO2) consumption and methane 

production. Once developed, this code can serve as an assisting tool for future laboratory 

experiments and a basis for full reservoir scale simulations that could predict the expected 

effects in a more realistic environment.
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Zusammenfassung 

Mit dem wachsenden Interesse an Wasserstoff als Energieträger zur Energiespeicherung, 

wächst auch der Aufwand für ein besseres Verständnis der Arbeitsumgebung und der 

anzutreffenden Bedingungen. Erschöpfte Erdgaslagerstätten gelten bisher als beste Option für 

die unterirdische Wasserstoffspeicherung, da Gesteine die in der Vergangenheit mit Erdgas in 

Kontakt waren die Möglichkeit  bieten enorme Volumina an Gas zu speichern. Eine 

umfangreiche Bibliothek mit gesammelten Daten und Wissen über eine Lagerstätte durch die 

Jahre der Produktion hinweg, trägt dazu bei bevorzugt als Lagerstätte für Wasserstoff in Frage 

zu kommen. In jenen Lagerstätten, mit eben solcher Implementierung, wurde ein interessantes 

Phänomen beobachtet, nämlich verschiedene Arten von Mikroorganismen, die unter den rauen 

Lagerstättenbedingungen nicht nur gedeihen, sodern den gespeicherten Wasserstoff als 

Energiequelle für ihren Stoffwechsel nutzen. Der Fokus dieser Arbeit liegt auf einer 

bestimmten Spezies dieser Mikroorganismen, den methanogene Archaeen, welche Methan 

produzieren, während sie Wasserstoff verbrauchen. Mit anderen Worten, gespeichertes 

Wasserstoffgas wird in Gegenwart dieser Mikroorganismen in Methan umgewandelt. Über die 

zugrunde liegende Physik und die Einflussparameter der mikrobiellen Umwandlung 

unterirdischer Wasserstoffspeicher ist wenig bekannt. Um unser Wissen daher zu erweitern, 

werden viele Labortests sowie Simulationen durchgeführt. Ziel ist, uns mit den erwarteten 

Ergebnissen vertraut zu machen, speziell wenn es um diese Art der Mikroorganismen und ihre 

Aktivität geht. Wir beabsichtigen, ein mathematisches Modell im MRST (The MATLAB 

Reservoir Simulation Toolbox) Code zu implementieren, um damit eine eindimensionale 

Injektion des Nährgasgemisches in die mit methanogenetischen Archaeen besiedelte Kernprobe 

zu simulieren. Das Modell besteht aus zwei Gleichungen, von denen die erste das 

Populationswachstum der mikrobiellen Spezies beschreibt. Die zweite Gleichung beschreibt 

die Auswirkungen der metabolischen Bioreaktion (=Methanogenese), welche als Verbrauch 

von Nährstoffen (H2 und CO2) und der daraus folgenden Methanproduktion ersichtlich wird. 

Einmal entwickelt, kann dieser Code als unterstützendes Werkzeug für zukünftige 

Laborexperimente und als Grundlage für Simulationen im vollen Reservoirmaßstab dienen, um 

die erwarteten Auswirkungen in einer realistischeren Umgebung vorhersagen zu können.  
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Introduction 

As the focus of the energy industry changes towards renewable supply systems hydrogen 

emerged as the feasible option for the energy carrier role. Even though there have been 

suggestions in the past regarding hydrogen-based power systems, some even dating to the early 

years of the past century, it was not until recent years that a new spike in interest for hydrogen,  

for the mentioned role, really started to show.  

When it comes to renewable systems (sun, wind or flowing water being dominating sources), 

high dependency on the everchanging weather conditions presents itself. The resulting fact is 

that there are highly fluctuating periods in energy production. When there is an excess in 

production – energy gets wasted, on the other hand, when there is a lack of optimal weather 

conditions – there is no production. In both of these scenarios, there is an obvious need for 

energy storage. In the first, not to lose produced electricity and in the second to have a reserve 

that can provide continuous supply when the production is lacking (Hagemann, 2017; Zivar et 

al., 2021). 

From different Electrical Energy Storage (EES) options Underground Hydrogen Storage (UHS) 

shows high potential. From which most interesting are the depleted natural gas reservoirs, 

considering that they provide high volumes in which gas can be stored, as well as such an 

environment where gas presence is a familiarity, additionally years of knowledge gathered 

throughout the life of a natural gas reservoir are available. Another point in favor of UHS is the 

fact that hydrogen has a high energy density per mass (around 120 MJ/kg), and also it is a ‘low-

carbon energy carrier’ which goes in favor of decarbonization on a global level. To quote 

United Nations Industrial Development Organization “Hydrogen is a true paradigm shift in the 

area of more efficient energy storage, especially for renewable energy on industrial scale…”  

(Heinemann et al., 2021) 
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So far there are two concepts regarding hydrogen storage and its utilization. One is “POWER-

to-GAS”, where produced hydrogen is added to the existing natural gas grid. H2 concentrations 

in this “mixture” are to be in low (single-digit) percentages. Second is the so-called “POWER-

to-GAS-to-POWER”, here pure hydrogen is stored in the subsurface. Different options include 

depleted gas or oil reservoirs, aquifers and solution-mined salt caverns, from where, dictated 

by the demand, hydrogen is produced and used as an energy fuel. (Hagemann, Rasoulzadeh et 

al., 2016) 

1.1 UHS 

Underground hydrogen storage is a temporal storage of energy-carrying hydrogen in the 

subsurface formation, having similarities to the natural gas reservoirs. UHS can provide long-

term, high-capacity energy storage at a lower cost compared to some other storing options (such 

as batteries, which are preferred as short-term storage).  

In Electrical Energy Storages (EES), energy holds a form characteristic to the technology that 

is being used, and then in time of need, it is converted to electrical energy (Luo et al., 2015). 

When it comes to UHS energy is stored as chemical energy by utilizing hydrogen as a carrier. 

Stored hydrogen is later on produced, therefore forming a cycle. 

UHS cycles include:  

• Electrolysis process, where water is split into hydrogen and oxygen. Energy used comes 

from the produced electricity excess.  

• Compression and transport of the hydrogen to the wells and from there to the 

subsurface reservoir. As mentioned already when describing the “POWER-to-GAS-to-

POWER” concept, H2 remains until needed in the formation storage.  

• Need for energy calls for H2 production. Once produced it is also processed if necessary 

(Hagemann, 2017; Hagemann, Rasoulzadeh et al., 2016).  

When storing hydrogen in the formation, pre-injection of cushion gas, either nitrogen (N2) or 

methane (CH4), is carried out, after which the injection of hydrogen occurs. The role of the 

cushion gas is pressure maintenance in order to achieve an optimal production rate of the 

hydrogen, while the cushion gas itself is not to be produced (nevertheless, some amounts are 

produced in a mixture with H2 which then requires separation)  (Zivar et al., 2021). 

For a formation to be considered as a UHS it needs to have sufficient volume capacity, a good 

sealing structure so that there are no losses to the surrounding formations and also the necessary 

injection-production rates must be possible (conditioned by the properties of the rocks such as 

porosity, permeability etc.).  
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As of now, possible options include salt caverns, aquifers and depleted gas or oil reservoirs.  

Caverns provide no limitations to the injection-production rates, while highly enclosed 

structure ensures almost none-existing losses. Cushion gas is allowing compression and 

decompression of the working gas, which is how the cycles are carried out. Limiting sides to 

this strategy are the available volumes, investment into the cushion gas, as well as the 

availability of the salt caverns in the domes.  

Aquifers and depleted gas or oil reservoirs, both consist of a porous rock that serves as the 

storing medium and a tight sealing rock preventing the losses. Compared to salt caverns 

properties of the porous rock are limiting the injection-production rates, and due to the much 

bigger size of the reservoir possibilities for leakages and therefore losses are increased. What 

else, reactions between hydrogen and rock minerals and also bioreactions are adding to the 

losses. What separates the two and makes the latter a more favorable option is the much higher 

storage availability, whereas with the salt caverns volumes of hydrogen gas are around 

 6 ∗ 107m3 and here possible volumes can be higher than 109m3. Also, these structures are 

having bigger availability than what is the case with the salt caverns. The usage of cushion gas 

as a means of pressure maintenance is a common factor for both. As for the differences between 

the three (aquifer, gas reservoirs and oil reservoirs), they lie in the type of medium that was 

present in the pores. With the aquifers, we are talking about brine while with depleted reservoirs 

up to three different phases (brine, gas, oil) (Hagemann, 2017).  

1.2 Bioreactions 

Field operations regarding hydrogen storage are based on salt caverns when it comes to pure 

hydrogen storage, aquifers or depleted reservoirs have so far stored gas mixtures containing 

hydrogen, such as town gas (a mixture of carbon monoxide and hydrogen). Reports in town gas 

storages have been showing considerable reductions in gas volumes, what was concluded as 

the most probable cause was the presence of microbial species which during their metabolism 

are consuming stored gas. Namely, so far four microbial processes have been marked as most 

affecting in the UHS scenario (Hagemann, 2017; Zivar et al., 2021): 
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• Methanogenesis, where organisms are consuming CO2 and H2 and are producing 

methane with water, converting therefore stored hydrogen gas into methane. An 

example was with the town gas storage in Lobodice, Czech Republic, where with the 

decrease in H2, CO2 and CO an increase in CH4 was observed (Buzek et al., 1994).  

CO2 + 4H2  →  CH4 +  2H2O 

• Sulfate-reduction 

SO4
2− + 5H2  →  H2S +  4H2O  

• Acetogenesis 

2CO2 +  4H2  →  CH3COOH+  2H2O 

• Iron-reduction 

3Fe2
IIIO3 + H2  → 2Fe3

IIIO4  +  H2O 

1.3 Thesis Agenda  

Throughout the years there have been projects and pilot tests executed in order to better 

understand the conditions and environment behind hydrogen underground injection and storage 

as well as to test possible storage sites throughout the world. Below are the tables summarizing 

some of these, as presented by Davood Zivar, Sunil Kumar and Jalal Foroozesh in their work 

“Underground hydrogen storage: A comprehensive review” (Table 1 & Table 2). What can be 

observed is that there is an ongoing interest in further understanding and developing when it 

comes to the application of UHS. 

Table 1: UHS operating sites (Zivar et al., 2021) 
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Table 2: UHS potential sites (Zivar et al., 2021) 
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Besides the ongoing and planned field testing, there are also related research projects that are 

following. Some are consisting out of numerical simulations, others are combining both field 

testing and simulating, adding to these laboratory tests as well. Some of these are:  

• H2STORE in Germany (Ganzer et al., 2013); 

• HyUnder in European Union countries (Simon et al., 2015);  

• Hychico in Argentina (Sebastien, 2016);  

• ANGUS+ in Germany (Kabuth et al., 2017); 

• Underground Sun Storage in Austria (Bauer and Pichler, 2017);  

• HyINTEGER in Germany (Hagemann, 2017).  

Work that will be described in this thesis is focusing on the depleted gas storage conditions and 

is aiming to numerically simulate the effects of methanogenic archaea microorganisms present 

in underground storages, where as a result of their metabolism stored hydrogen is reduced as a 

generation of methane occurs in return.  

The scenario is set on a core scale, complementing laboratory-planned and ongoing tests. In 

which injection of a gas mixture containing hydrogen and carbon dioxide is introduced to the 

environment already pre-populated with methanogenic archaea.  

The simulation will be done using ‘The MATLAB Reservoir Simulation Toolbox (MRST)’ an 

open-source library, developed for reservoir simulation and prototyping. With the intent to 

expand our understanding of the underlying physics and influencing parameters on the 

microbial conversion of underground hydrogen storage.  

Using MRST would be a different approach compared to what was done so far, and is available 

in the literature, where the majority of cases relied on DuMuX open-source code as the 

simulating tool.  

 

 

 



 

 

 

  

Microbes – an Overview 

Microorganisms are defined as living organisms that are of microscopic size (micrometers, 

sometimes nanometers and millimeters), most of them being too small to be seen by the human 

eye. Currently accepted classification of cellular life forms consists of three domains Archaea, 

Bacteria and Eucarya. The first two belong to Prokaryotes and the third belongs to Eukaryotes 

(Talaro and Chess, 2018). 

 

2.1 Prokaryotes’ Structure 

Prokaryotes are simple, usually single-celled organisms that do not have a nucleus nor 

membrane-bound cell structures (organelles), while eukaryotes in turn are complex and contain 

both. While all prokaryotes are microorganisms, only some eukaryotes belong to the 

microorganisms. Relevant for this work are the ones that can survive in the UHS conditions, 

those being some archaea and bacterial species.  

Necessary parts for all prokaryotes include cell membrane, cytoplasm, ribosomes and 

chromosomes. Some species have additional parts such as cell wall, surface coating or even 

appendages used for directional movement or adhesion  (Figure 1) (Talaro and Chess, 2018). 

Although both archaea and bacteria have similar structures and metabolism the key differences 

are still existing when it comes to genetics and biochemistry (genetic processes of transcription 

and translation, as well as materials that walls and membranes are consisted of). Archaea are 

considered to be one of the oldest forms of life, and are capable to survive and even thrive in 

some of the most extreme conditions, which is why their presence in UHS is not a surprise 

(Gentry et al., 2015).  
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Figure 1: Example of a bacterial cell structure (Talaro and Chess, 2018) 

• Cytoplasm, or cytoplasmic matrix. Represents the internal filling medium of bacteria, 

not only does it hold all of the internal parts of the microorganism (chromosome, 

ribosomes, granules, and actin strands) it is also here that the necessary biochemical 

activities are carried out. Consisting mostly of water it is a perfect solvent for nutrients.   

• Chromosome, organism’s DNA containing genetic information. As a characteristic of 

all prokaryotes, there is no nuclear membrane surrounding the chromosome, part of the 

bacteria where it is located is known as the nucleoid. 

• Ribosomes are distributed throughout the cytoplasm and are responsible for protein 

synthesis. 

• The cell membrane located underneath the cell wall is a selectively permeable layer 

that stretches itself around the cytoplasm and serves as a filter dictating what comes 

into the cell (nutrients) and what comes out (wastes). The cell wall is a surrounding 

rigid layer, responsible for the shape and protection of the cell (Gentry et al., 2015; 

Talaro and Chess, 2018). 
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2.2 Metabolism and Growth 

Microbial metabolism is activated when nutrients and needed surrounding factors are available, 

a result of metabolic activation is growth. Two types of growth can be differentiated, one where 

cell size is increased and the other where cell number increases. The latter is a result of cell 

division. The singular parent cell engages in chromosome duplication as well as in cell wall 

thinning in the middle as it grows double in size, finally resulting in two daughter cells  

(Figure 2) (Talaro and Chess, 2018). 

 

Figure 2:Steps in microbial duplication (Talaro and Chess, 2018) 

Another differentiation is present, but now when it comes to metabolism. Namely, besides 

growth metabolism, whose result was just described, there is also a non-growing metabolism. 

Lacking growth and cell duplication, nutrient consumption serves just as a mean of cell 

maintenance. 

For a functioning metabolism microbes need an energy source and a carbon source. Depending 

on outside conditions these are obtained in various ways. The interest here is in the UHS 

conditions, where the source of energy lies in hydrogen (which is in an abundance in UHS) 

serving as an electron donor for the redox reaction (hydrogenotrophic metabolism). The second 

requirement is fulfilled by an inorganic source of carbon found in CO2 (autotrophy) or from an 

organic one like glucose (heterotrophy) (Gentry et al., 2015).  
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2.3 Microbial Population 

Described duplication is a continuous process, as long as the required conditions are present 

each daughter cell becomes the parent, therefore with each new generation number of cells is 

doubled. The resulting growth is exponential, due to which microorganisms are occurring in a 

form of a population (having a very high number of individual cells) (Gentry et al., 2015) 

(Figure 3).  

 

Figure 3: Exponential cell growth (Gentry et al., 2015)  

As mentioned, as long as the conditions are favorable population will grow, but this does not 

go on forever, many different factors are controlling the cells’ maximum-rate reproduction. 

Laboratory batch culture studies have shown that what typically occurs is a growth curve over 

time (Figure 4). Microbial culture is contained in a bottle and fed with nutrients under 

controlled conditions. Over time, samples are taken and analysis is carried out concerning 

biomass [𝑘𝑔] (sum of individual microorganisms’ mass) or microbial counts [
𝑐𝑒𝑙𝑙𝑠

𝑚𝑙
] (or [

𝑐𝑒𝑙𝑙𝑠

𝑔
], 

depending on whether the count is related to a volume or total mass). 

The resulting growth curve (semi-log plot) contains different stages – the lag phase, the 

exponential growth (log) phase, the stationary phase and finally the death phase (Figure 4)  

(Talaro and Chess, 2018). 
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Figure 4: Microbial population growth curve over time (Talaro and Chess, 2018) 

The lag phase represents the initial stage of population growth, it is characterized by the fact 

that either no growth appears to be happening, or it is at much lower rates compared to the 

exponential rate. This occurs due to the introduced cells’ need for a period of adjustment to the 

new outside conditions. Even though the population itself is not growing, individual cell’s 

metabolism is active as division is in preparation. Under laboratory conditions, this phase lasts 

from minutes up to some hours (Gentry et al., 2015; Talaro and Chess, 2018). 

The exponential growth (log) phase, is the stage at which population growth starts to increase 

exponentially (Figure 3). The average time of growth between generations is 30 minutes to an 

hour at optimal conditions, while at perfect scenario it takes 5 to 10 minutes, and at unfavorable 

conditions, it can take days and even months or years. Rates depend on both the type of 

microorganism as well as outside conditions (Talaro and Chess, 2018). Population growth 

during this phase can be mathematically expressed by the equation(Gentry et al., 2015): 

  
𝑑𝑛

𝑑𝑡
= 𝜇𝑛 

 

(2.1) 
 

𝑛… number of cells, or mass of cells [
𝑚𝑎𝑠𝑠

𝑣𝑜𝑙𝑢𝑚𝑒
] (depending on the representation 

       choice);  

𝑡… time [𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑡𝑖𝑚𝑒 𝑢𝑛𝑖𝑡]; 

𝜇… specific growth rate constant [
1

𝑡𝑖𝑚𝑒
] (also referred to as the maximum growth 

       rate). 
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Generation time (cell division time) or the doubling time (𝑡) as well as the specific growth rate 

(𝜇) can both be calculated using the provided equation, given that there is an existing growth 

curve (such as one from Figure 4) from which data can be extracted. This would require 

rearranging and solving equation (2.1): 

𝑑𝑛

𝑛
= 𝜇𝑑𝑡 

 

(2.2) 
 

𝑑𝑛

𝑛
= 𝜇𝑑𝑡 

 

(2.3) 

 

ln 𝑛 − ln 𝑛0 = 𝜇𝑡  or   
𝑛

𝑛0
= 𝑒𝜇𝑡  

 

(2.4) 
 

Where for population growth of one generation (doubling the n0): 

𝑛

𝑛0
= 2 

 

(2.5) 

 

meaning that: 

2 = 𝑒𝝁𝒕 

 

(2.6) 
 

The Stationary Phase, when reached results in a state of no net growth. This does not mean 

that cells are not growing and dividing, they indeed do, it is just that this growth is balanced 

by the number of cells dying. This phase is expressed by: 

 
𝑑𝑛

𝑑𝑡
= 0 

 

(2.7) 

 

Reasons that are bringing the population growth cycle to this phase are commonly found in the 

depletion of nutrients required for a functioning metabolism – carbon or energy sources are 

used up. Endogenous metabolism is the term used for when population growth occurs from 

consuming dead cells, this takes place throughout the whole cycle but is best observable in the 

stationary phase since all other growth causes are eliminated (on some growth curves seen as 

the small but observable amount of growth in the stationary phase). Another reason for the 

stationary phase is in the scenario with a high density of microbial cells, where too much waste 

has been accumulated throughout the exponential growth phase and therefore is preventing 

further growth or is even toxic to cells (Gentry et al., 2015; Talaro and Chess, 2018). 
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The death phase comes as conditions for already limited metabolism become even worse 

resulting in population decline. It is not only that the death of cells occurs, but some cells go 

into an idle state in which they remain without growing, and some go into starvation by which 

resistance to the lack of favorable conditions increases. Endogenous metabolism keeps some 

cells alive even at this phase. Nevertheless, the net population growth is negative and 

exponential as well. Decay does have a lesser rate than what is the case with the growth in the 

exponential phase (Gentry et al., 2015; Talaro and Chess, 2018).  

Describing equation is: 

 
𝑑𝑛

𝑑𝑡
= −𝑏𝑛 

 

(2.8) 
 

𝑏… specific death rate [
1

𝑡𝑖𝑚𝑒
]. 

2.4 UHS Occurring Microbial Species  

A major factor in the viability of an UHS are effects caused by microbial population growth. 

Microbial survival and reproduction are based on their ability to achieve functional metabolism, 

which is essentially composed of biochemical reactions in which hydrogen is permanently lost 

as it is an energy source for different microbial species found under UHS conditions. By 

injecting hydrogen necessary nutrients for microbes are provided in an abundance leading to 

biodegradations. Losses come in a form of hydrogen conversion into other gases (CH4, H2S etc. 

depending on microbial species) (Heinemann et al., 2021).  

Loss of 17% of hydrogen followed by a reduction in CO2 and generation of CH4 was reported 

in Lobodice, Czech Republic in a town gas storage that was rich with hydrogen,  the cause for 

this was found in the presence of methanogenic archaea (Buzek et al., 1994). Another hydrogen 

consumption examples are Underground Sun.Storage project in Austria as well as the HyChico 

project in Argentina. In each, microbial population was detected and as a result percentage of 

injected hydrogen was converted into CH4 by methanogenesis (Bauer and Pichler, 2017; 

Sebastien, 2016). Sulfate-reducing microbes were reported as well, in town gas and natural gas 

storages, as a result, generation of H2S was detected, and consequences are the same as 

abiotically formed H2S – mainly corrosion-caused problems (Kleinitz and Böhling, 2005).  

Besides the biodegradation of hydrogen, pore closure is occurring due to pore space microbial 

overpopulation. Such an effect is an often-met problem in geothermal and CO2 operations. As 

a consequence, reduced hydrogen injectivity and flow rates throughout the reservoir emerge.  
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This is yet to be investigated properly and in detail when it comes to the UHS scenario, 

mentioned projects (Underground Sun.Storage and HyChico) did not report pore-clogging 

effects (Heinemann et al., 2021).  

Four chemical reactions caused by microbial presence have been so far identified as important 

for UHS. Besides already mentioned methanogenesis and sulfate reduction, there are reports 

about the presence of homoacetogenic archaea and iron-reducing bacteria (Cord-Ruwisch et 

al., 1988). 

Methanogenic archaea’s metabolic reaction is as follows: 

CO2 + 4H2 → CH4 + 2H2O 

 

(2.9) 

 

Where CO2 is used as a carbon source (autotrophy).  

Homoacetogenic archaea: 

2CO2 + 4H2 → CH3COOH + 2H2O 

 

(2.10) 

 

The same sources for energy and carbon as with methanogenic archaea are used here. But they 

can use an organic carbon source as well. 

Sulfate-reducing bacteria: 

SO4
2− + 5H2 → H2S + 4H2O 

 

(2.11) 

 

The most common source of carbon is of an organic origin (heterotrophy), but some types of 

bacteria use CO2 as well. 

Iron-reducing bacteria: 

3Fe2
IIIO3 + H2 → 2Fe3

IIIO4 + H2O 
 

(2.12) 
 

Here are also possible both options for a carbon source, with the organic one being what most 

species use. 

What occurs when multiple species coexist is the so-called competition for nutrients. The ones 

that have the lowest microbial concentration threshold, after which they start consuming 

hydrogen, are the ones to dominate the competition (Cord-Ruwisch et al., 1988; Lovley and 

Phillips, 1987). But in the UHS conditions where hydrogen is in high volumes, and can be 

considered as an always available nutrient, species end up coexisting. 



 

 

 

  

Mathematical Model and Governing Equations   

The basis for this work is the mathematical model developed by Hagemann (Hagemann, 2017; 

Hagemann, Rasoulzadeh et al., 2016). Model is considering up to two phases (gas and water) 

saturating the reservoir, it is combining flow and transport with biochemical processes of the 

microbes. Scale which he used is a continuum one, where an upscaling from discrete scale has 

been done, to do so representative elementary volume (REV) was used (Figure 5). This is the 

smallest volume that is containing average parameters implemented in the model (porosity, 

saturation, mole fraction, microbial density).  

 

Figure 5: Going from discrete to the continuum scale (Hagemann, 2017) 

Porosity was calculated as pore volume divided by total volume; saturation as phase volume 

divided by pore volume; mole fractions as a molar volume of a component in a phase divided 

by the total molar volume of that phase; microbial density as the number of microbial cells 

divided by total volume. 

The approach was to first find adequate equations dealing with physio-chemical processes and 

the ones dealing with biochemical processes before coupling them into a system of differential 

equations.  
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3.1 Physio-Chemical Processes 

Mass (mol) conservation of chemical components in different phases (water or gas) considering 

advective and dispersive/diffusive transport (Hagemann, 2017; Hagemann, Rasoulzadeh et al., 

2016): 

𝜙
𝜕(�̂�𝑣 𝑐𝑣

𝑘𝑆𝑣 +  �̂�𝑙𝑐𝑙
𝑘𝑆𝑙)

𝜕𝑡
+ 𝛻(�̂�𝑙 𝑐𝑙

𝑘𝑣𝑙 + 𝐽𝑙
𝑘 + �̂�𝑣 𝑐𝑣

𝑘𝑣𝑣 + 𝐽𝑣
𝑘) = 𝑞 𝑘 

 

(3.1) 

 

𝜙 … porosity;  �̂�… molar density [
𝑚𝑜𝑙

𝑚3
];        

c… mole fraction; 𝑆 … saturation;  

q … source/sink;  𝑘 … chemical component; 

𝑣… vapor phase;  𝑙… liquid phase. 

𝑣𝑖 is the Darcy velocity of the phase in [
𝑚

𝑠
] (dictating advective transport): 

𝑣𝑖 = −
𝐾𝑘𝑟𝑖

𝜇𝑖
(𝛻𝑃𝑖 − 𝜌𝑖 𝑔) 

 

(3.2) 
 

𝑖 = 𝑣, 𝑙;  

𝐾… absolute permeability [𝑚2];  𝑘𝑟… relative permeability; 

𝜇… dynamic viscosity [𝑃𝑎. 𝑠];  𝛻𝑃𝑖… phase pressure gradient [
𝑃𝑎

𝑚
]; 

𝜌𝑖… phase density [
𝑘𝑔

𝑚3
];  𝑔… gravity acceleration [

𝑚

𝑠2
]. 

 

 𝐽 is dispersive/diffusive flux in [
𝑚𝑜𝑙

𝑚.𝑠
], consisting out of molecular diffusion and mechanical 

dispersion: 

𝐽𝑖
𝑘 = −�̂�𝑖 (𝐷𝑑𝑖𝑓𝑓,𝑖

𝑘 + 𝐷𝑑𝑖𝑠𝑝,𝑖
𝑘 )𝛻𝑐𝑖

𝑘 

 

(3.3) 
 

𝑖 = 𝑣, 𝑙;  

𝐷𝑑𝑖𝑓𝑓,𝑖
𝑘 … effective molecular diffusion coefficient (of component 𝑘 in phase 𝑖) [

𝑚2

𝑠
]; 

𝐷𝑑𝑖𝑠𝑝,𝑖
𝑘 … effective mechanical dispersion coefficient (of component 𝑘 in phase 𝑖) 

               [
𝑚2

𝑠
]. 

Molar balance equation is finalized by:        

𝑆𝑣 + 𝑆𝑙 = 1 (3.4) 

∑𝑐𝑖
𝑘

𝑘

= 1,     𝑖 = 𝑣, 𝑙 (3.5) 
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3.2 Biochemical Processes 

Earlier studies had a structured approach regarding microbial population, in one such study 

population was divided into a part which is attached (to the solid) biomass called biofilms, and 

a part which is suspended (in the aqueous phase) biomass (Murphy and Ginn, 1999). Another 

work divided the population into biomass in an aqueous phase (including both suspended and 

attached biomass) called biofilm and into biomass located close to the gas-water interface 

forming a coherent structure this group was referred to as neuston biofilm (Panfilov et al., 

2012). For the continuum scale, on which Hagemann developed his model, the decision was 

made to treat microbial populations without considering different structures that they can form 

(chosen approach is called the unstructured approach). Leading to only one general structure of 

microbes at the end. The assumed structure is considered as a penetrable, volumeless 

component that is not affecting the porosity or permeability of the reservoir no matter its 

density. Microbes are considered to be located in the aqueous phase therefore only relevant 

nutrient concentration is the one dissolved in the water. 

In addition, microbial movement is present as well, including attachment and detachment by 

which they can interchange between mentioned occurring structures (when talking about a 

structured approach), this movement is diffusion-like in the sense that it can be perceived as 

random. Also, chemotaxis is present which is the tendency of microbes to go where nutrient 

(substrate) concentration is high. For the continuum scale advective transport of microbes and 

chemotaxis is neglected (Hagemann, 2017; Hagemann, Panfilov, Ganzer, 2016; Hagemann, 

Rasoulzadeh et al., 2016). Resulting microbial population dynamics equation: 

𝑑𝑛

𝑑𝑡
= 𝑆𝑙 𝜓𝑔𝑟𝑜𝑤𝑡ℎ(𝑐𝑙

𝐻2 ,𝑐𝑙
𝐶𝑂2 ) ∗ 𝑛 − 𝜓𝑑𝑒𝑐𝑎𝑦 ∗ 𝑛 + ∇(𝐷𝑚∇𝑛) 

 

(3.6) 
 

𝜓𝑔𝑟𝑜𝑤𝑡ℎ… microbial growth function [
1

𝑠
]. It depends on hydrogen (substrate) 

concentration (𝑐𝑙
𝐻2 ) and carbon dioxide (electron acceptor) concentration 

(𝑐
𝑙
𝐶𝑂2 ) in liquid phase; 

𝜓𝑑𝑒𝑐𝑎𝑦… microbial decay function [
1

𝑠
];  

𝑛… microbial density [
1

𝑚3
]; 

𝐷𝑚… microbial diffusion coefficient [
𝑚2

𝑠
]. 
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When it comes to methanogenic reactions, as was mentioned in section 2.2, hydrogen is used 

as a source of energy (hydrogenotrophy) and carbon dioxide as a carbon source (autotrophy). 

The rate at which biochemical reaction (for energy uptake) is carried out is proportional to 

microbial growth. Therefore, the source/sink term in equation (3.1) takes the following form: 

𝑞 𝑘 = 𝜙𝑆𝑙 ϒ𝑘
𝜓𝑔𝑟𝑜𝑤𝑡ℎ

𝑌
𝑛 

 

(3.7) 
 

ϒ… stoichiometric coefficient depending on the reaction. For the methanogenesis  

        (2.9) it is: 

ϒ = (

−1
−4
1
2

) , representing CO2, H2, CH4, H2O; 

𝑌… yield coefficient, relating microbial growth to the consumption of hydrogen 

        [
1

𝑚𝑜𝑙(𝐻2)
]. 

3.2.1 Growth and Decay Functions 

In section 2.3 growth function of a batch experiment was plotted and explained. Monod 

(Monod, 1949) developed a model using such an experiment that describes the growth function 

of a microbial population. In regards to UHS conditions where substrate as well as electron 

acceptor availability is to be taken into account, Hagemann has used the extended Monod model 

– “double Monod model”. Microbial growth function for the methanogenic reaction: 

𝜓𝑔𝑟𝑜𝑤𝑡ℎ = 𝜓𝑚𝑎𝑥
𝑔𝑟𝑜𝑤𝑡ℎ (

𝑐𝑙
𝐻2

𝛼𝐻2
+ 𝑐𝑙

𝐻2
)(

𝑐𝑙
𝐶𝑂2

𝛼𝐶𝑂2
+ 𝑐𝑙

𝐶𝑂2
) 

 

(3.8) 
 

             𝜓𝑚𝑎𝑥
𝑔𝑟𝑜𝑤𝑡ℎ

… maximum specific rate of microbial growth [
1

𝑠
]; 

𝛼… half-velocity constant [
𝑚𝑜𝑙

𝑚𝑜𝑙
]. In his work, Monod defined this as a concentration 

        of a nutrient at which the rate of growth is half of the maximum growth rate 

        (𝜓𝑚𝑎𝑥
𝑔𝑟𝑜𝑤𝑡ℎ) (Monod, 1949). 

The model is not able to present lag and stationary phases (Figure 4). It starts with the 

exponential growth phase and, if the conditions are such, it goes into the death phase. 

Mentioned competition between different bacterial species for the nutrients (section 2.4) is also 

not covered by the growth model, but seeing how our work is focused only on methanogenic 

archaea this does not present a problem. 
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With the decay rate it all comes down to two options, either having a constant decay rate:  

𝜓𝑑𝑒𝑐𝑎𝑦 = 𝑏 

 

(3.9) 
 

𝑏… decay coefficient [
1

𝑠
]. 

Or a decay rate that is linearly dependent on microbial density:  

𝜓𝑑𝑒𝑐𝑎𝑦 = 𝑏 ∗ 𝑛 (3.10) 

3.3 Final Governing Equations 

After analyzing necessary equations that are covering flow and transport, as well as microbial 

population growth due to biochemical reactions, the resulting mathematical model for 

methanogenic archaea is composed of two differential equations: 

1. Microbial population dynamics: 

𝑑𝑛

𝑑𝑡
= 𝑆𝑙 [𝜓𝑚𝑎𝑥

𝑔𝑟𝑜𝑤𝑡ℎ (
𝑐𝑙

𝐻2

𝛼𝐻2
+ 𝑐𝑙

𝐻2
) (

𝑐𝑙
𝐶𝑂2

𝛼𝐶𝑂2
+ 𝑐𝑙

𝐶𝑂2
)]∗ 𝑛 − 𝑏 ∗ 𝑛 + ∇(𝐷𝑚∇𝑛) 

 

(3.11) 
 

Where the first term on the right side is microbial growth in the liquid (aqueous) phase, 

followed by the microbial decay term and the final term that is representing microbial diffusion-

like movement.   

2. Reactive transport of nutrients (mobile components): 

𝜕(�̂�𝑣 𝑐𝑣
𝑘𝑆𝑣 +  �̂�𝑙𝑐𝑙

𝑘𝑆𝑙)

𝜕𝑡
 

+𝛻 [−�̂�𝑣 𝑐𝑣
𝑘

𝐾𝑘𝑟𝑣

𝜇 𝑣

(∇𝑃𝑣 − 𝜌𝑣 𝑔) − �̂�𝑙 𝑐𝑙
𝑘

𝐾𝑘𝑟𝑙

𝜇𝑙

(𝛻𝑃𝑙 − 𝜌𝑙 𝑔)] 

+𝛻[−𝜌𝑣 (𝐷𝑑𝑖𝑓𝑓,𝑣
𝑘 + 𝐷𝑑𝑖𝑠𝑝,𝑣

𝑘 )𝛻𝑐𝑣
𝑘 − 𝜌𝑙 (𝐷𝑑𝑖𝑓𝑓,𝑙

𝑘 + 𝐷𝑑𝑖𝑠𝑝,𝑙
𝑘 )𝛻𝑐𝑙

𝑘] 

= 𝜙𝑆𝑙ϒ
𝑘

𝜓𝑔𝑟𝑜𝑤𝑡ℎ

𝑌
𝑛 

𝑘 = 𝐶𝑂2 , 𝐻2,𝐶𝐻4 ,𝐻2𝑂 

 

(3.12) 

Where the second and third terms represent advective and dispersive/diffusive transport, while 

the source/sink term is on the right side.   
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3.4 Parameters 

Besides developing the mathematical model Hagemann also collected available data from the 

literature regarding parameters used in the equations. These are resulting from different 

laboratory batch experiments on the basis of the Monod model, and are presented in Table 3 

and Table 4 with the averages at the bottom. Initial values for the simulation runs are to be in 

the range of the table values. 

Table 3: Parameters' values for the mathematical model's equations (Hagemann, 2017) 

 𝜓𝑚𝑎𝑥
𝑔𝑟𝑜𝑤𝑡ℎ  [

1

𝑠
]   𝛼𝐻2

 [
𝑚𝑜𝑙

𝑚𝑜𝑙
]   𝛼𝐶𝑂2

 [
𝑚𝑜𝑙

𝑚𝑜𝑙
] 𝑌 [

1

𝑚𝑜𝑙(𝐻2)
] 𝑏 [

1

𝑠
] 

 2.488×10−5 3.240×10−7 5.400×10−6 6.875×1011 1.019×10−6 

 1.273×10−5 1.179×10−7 4.140×10−6 4.584×1011 6.944×10−7 

 8.912×10−6 1.170×10−7 2.340×10−8 2.483×1011  

 1.447×10−5 1.179×10−7  8.403×1011  

 1.433×10−5 1.188×10−7  1.222×1011  

 1.447×10−5 1.188×10−7  3.056×1011  

 
1.528×10−5 8.999×10−8  7.257×1011  

 1.736×10−5 8.999×10−8  1.451×1012  

 3.009×10−5 2.160×10−11  1.093×1013  

 2.373×10−5   3.820×1011  

 1.852×10−5   2.925×1011  

 
1.794×10−5   7.697×1010  

 1.472×10−5     

 7.523×10−6     

 2.546×10−5     

 1.505×10−6     

 1.736×10−5     

Mean 1.643×10-5 1.094×10-7 3.188×10−6 1.376×1012 8.565×10−7 

 

Table 4: Methanogenic archaea density in subsurface systems (Hagemann, 2017) 

 Depth [𝑚] 𝑛 [
1

𝑚3] 

 
330 5.600×1013 

 
376 4.800×1012 

 
68–446 3.600×109 

 200-1800 4.400×1012 

 
200–1800 7.800×1012 

 
200–1800 1.120×1013 

 
1264–1742 2.000×108 

 129–1240 1.001×1011 

 
14–182 1.000×1013 

 
647 2.000×1011 

Mean   9.450×1012 



 

 

 

  

MRST Implementation 

Window of possible simulating tools available for the exploration of UHS processes consists 

of the commercial software used for the petroleum industry as well as the scientific software 

and open-source codes. None are able to simulate UHS processes in their original form, without 

previous adjustments. That is why an option which is allowing access to the source code is 

preferred (Hagemann, 2017). 

Majority of numerical simulations, regarding UHS processes, that have been done so far and 

are available in literature used DuMuX. Open-source software for scientific purposes, used for 

flow and transport simulations in porous media. It was developed for different hydrological 

applications, and one can adjust it relatively easy for the bio-reactive modeling needed for UHS 

simulations (Flemisch et al., 2011).     

In this work, however, for the simulation of methanogenic archaea’s metabolic reaction, we are 

using MRST (MATLAB Reservoir Simulation Toolbox), an open-source library originally 

developed in order to provide solutions to daily reservoir simulation problems. It was developed 

by SINTEF and their Computational Geosciences group in the Department of Mathematics and 

Cybernetics. The library contains core modules for basic data structures and functionality but 

also a big set of additional modules offering discretization, solvers, physical models and a large 

range of simulators and workflow tools. Some of these are third-party modules developed by 

researchers from Heriot-Watt University, NTNU, University of Bergen, TNO, and TU Delft. 

This code is broadly used for research purposes to investigate new reservoir simulation theories, 

and since its initial development, it surpassed usage in just the petroleum industry.  
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MATLAB is one of, if not the most popular tool for applied numerical analysis. MRST is also 

more of a research tool than just a simulator for porous media flow processes. As such, it opens 

up opportunities for the prototyping of new user-made modeling and simulation utilities. This 

is possible due to the wide range of provided data structures and computational methods which 

can be modified (LIE, 2019; SINTEF, 2022). 

With that in mind, this work is set out to do the same, namely, MRST’s compositional module 

will be used (since the black-oil module is more suitable for flow modeling in oil and/or gas 

reservoirs containing up to three phases). This compositional module will be adjusted for the 

modeling of flow and transport as well as bio-reactive processes in UHS. As far as it comes to 

available works in the literature, this will be the first attempt to adapt MRST for the UHS 

simulations, which could provide yet another option for such simulations, diversifying the UHS 

numerical simulation approaches. 

4.1 Fluid Model Classes  

The compositional module of the MRST contains different model classes which are 

implemented in the module (Table 5).  

Table 5: Model classes implemented in the compositional module of MRST (LIE and Møyner, 2021) 

 

The first three classes compose a group that was developed using principles set out for the 

black-oil module. These models are assuming that by default two hydrocarbon phases (vapor 

and liquid) representing multicomponent phases and an aqueous phase representing immiscible 

phase are always present. Scenarios, where any of these are not present, are treated as special 

cases, the gas or the aqueous phase can be excluded but the problem occurs when the oleic 

phase is not present.  

 

Group Class name Formulation Note 

I 

ThreePhaseCompositionalModel — 
Virtual base 

class 

OverallCompositionCompositionalModel 
Overall 

composition 
 

NaturalVariablesCompositionalModel Natural variables  

II 

GenericOverallCompositionModel 
Overall 

composition 
Generic model 

GenericNaturalVariablesModel Natural variables Generic model 
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This is exactly why models from group I are not useful for this work, in which the UHS 

conditions that are to be simulated consist of two phases, water which will be our liquid phase 

and gas which will be our vapor phase. Therefore, the default conditions that are expected from 

the models of this group are not fulfillable.  

Using the black-oil module’s code as a basis for the development of the different compositional 

model classes turned out not to be an optimal solution resulting in complications when adding 

new features. This resulted in the development of the second group of compositional model 

classes called generic model classes. The generic approach has no default expectations that 

should be fulfilled, it constructs the setup of the fluid model as a collection of individual 

components, where each may belong to certain predefined categories exhibiting specific 

behavior. 

In conclusion, the initially developed compositional model formulations have inherited 

principles from the black-oil model and therefore are requiring the oil phase in the fluid to work, 

but the oleic phase is not present for the planned simulation. The generic formulation, on the 

other hand, was developed later on with the goal of overcoming more complicated scenarios 

that are coming together with the compositional model approach. This formulation is providing 

the option of not having an oil phase in the fluid model (LIE and Møyner, 2021).  

Normally, the aqueous phase is treated as immiscible and hydrocarbon liquid and vapor phases 

are governed by an equation of state (EOS). In this work, the oil phase is disabled while the 

water phase is set as the liquid phase, and the gas phase remained as the vapor phase. In general, 

the compositional model is relying on the equation of state in order to compute equilibrium 

compositions and densities of the individual components that are a part of the fluid system. 

As can be seen from Table 5 there are two different formulations that are implemented in the 

compositional models: 

• The overall composition formulation, which is using pressure and overall mole 

fractions as primary variables. 

• The natural variable formulation, which is using phase saturations and phase mole 

fractions as primary variables. 

Mentioned primary variables are used as a basis for solving a system of equations in the 

compositional model scenario. A two-part system of equations is composed of the N 

conservation equations for each component in the system and the N isofugacity or K-value 

constraints for cells in which phases are present. The conservation equations are time-

dependent and cell residuals depend on the neighboring cells’ fluxes. K-values are a result of 

the EOS flash calculations and are local for each cell. 
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There are different strategies for solving the system of equations. For each, governing equations 

are the same as well as the converged solution but the number of iterations before the solution 

is reached can be much different depending on the strategy. The solution-reaching strategy will 

significantly differ depending on whether natural variables (in natural variable formulation) or 

overall composition variables (in overall composition formulation) are used. 

Each component of the fluid system can exist in both liquid and vapor phases. The mole fraction 

of component i in the liquid phase is denoted as xi  and in the vapor phase as yi. The overall 

mole fraction of component i is denoted as zi. The liquid phase mole fraction of the fluid system 

is denoted as L while the vapor phase mole fraction is denoted as V. 

𝑥𝑖 𝐿 + 𝑦𝑖𝑉 = 𝑧𝑖 

∑𝑥𝑖 = 1,

𝑁

𝑖

   ∑ 𝑦𝑖 = 1,     𝐿 + 𝑉 = 1

𝑁

𝑖

 

The overall composition formulation uses pressure (p) and N-1 overall mole fractions (zi) as 

primary variables. It assumes that the flash equations are more difficult to converge than the 

flow equations. Therefore, flash equations are solved first as a nested nonlinear system using 

primary variables (p, zi). Resulting flash outputs are made up of vapor and liquid phase mole 

fractions, these are used for the determination of saturations. Next, flow equations, in terms of 

pressure and overall molar compositions, are assembled and solved separately. If they converge 

simultaneous convergence of both conservation and flash equations is achieved, and the next 

time-step calculation initiates.   

The natural variable formulation’s primary variables consist of saturations and components’ 

phase fractions (xi, yi) which are grouped in a natural primary variable set together with pressure 

(unknowns consist out of p, Si, xi and yi): 

𝜂𝑁  =  (𝑝, 𝑥1, . . . , 𝑥𝑁−1 ,𝑆𝑙 ,𝑦1 , . . . , 𝑦𝑁−1) 

Contrary to the overall composition formulation, here flash equations and flow equations are 

gathered in one system of equations and are solved simultaneously for the unknowns. The 

natural variable formulation showed better convergence for immiscible displacement cases 

(LIE and Møyner, 2021). 

Compatible for this work is the second group of compositional model classes and from there 

the GenericOverallCompositionModel. The Natural variables model had convergence 

problems where it could not find the solution during iterations.  

In the Appendix B (Fluid Model Implementation) section of this work, part of the code is 

presented where the implementation of the fluid model is carried out. 
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4.2 Discretization and Solver  

The standard discretization method in MRST is the finite volume method (FVM) and for the 

solver, MRST’s NonLinearSolver function is used. This solver is based on the Newton-

Raphson method, which together with FVM is described in Appendix A. MRST also uses the 

Fully Implicit Method solving scheme (LIE, 2019; LIE and Møyner, 2021).  

Therefore, governing partial derivative equations are discretized, linearized and solved 

providing resulting pressure, saturation, temperature, components’ mole fractions as well as 

phase fractions and phase densities for each time step throughout the grids. 

4.3 Microbial Effects Configuration  

As stated in Chapter 3, the desired process can be described using differential equations for 

microbial population dynamics (3.11) and reactive transport of nutrients (mobile components) 

(3.12). In this study following assumptions and strategies were made: 

• Microbes are assumed as immobile (ignoring the diffusion term in (3.11)).  

• Equation (3.12) served as a basis for the derivation of a new – involved in reaction 

nutrient’s molar fraction (4.2) equation. This has been done in order to enable the 

combination of results from the MRST’s solver with the effects of the methanogenic 

reaction.  

Resulting in: 

𝑑𝑛

𝑑𝑡
= 𝑆𝑙 [𝜓𝑚𝑎𝑥

𝑔𝑟𝑜𝑤𝑡ℎ (
𝑐

𝑙
𝐻2

𝛼𝐻2
+ 𝑐𝑙

𝐻2
)(

𝑐
𝑙
𝐶𝑂2

𝛼𝐶𝑂2
+ 𝑐𝑙

𝐶𝑂2
)] ∗ 𝑛 − 𝑏 ∗ 𝑛 (4.1) 

 

∆𝑐𝑟,𝑙
𝑘 = ϒ𝑘 ∗

𝜓𝑔𝑟𝑜𝑤𝑡ℎ

𝑌 ∗ �̂�𝑙
∗ 𝑛 ∗ ∆𝑡,     𝑘 = 𝐶𝑂2 , 𝐻2 

 

(4.2) 

 

In order to implement the equations, the sequential explicit approach is carried out. The 

approach consists of taking the solver’s results for each time-step and updating them by the 

additional calculations coming from the two equations listed above. In the following detailed 

description of the entire process is present. 

How the approach looks in the code can be seen in the extracted section presented in  

Appendix B (Microbial Effects). 
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As mentioned in the previous chapters, microbes are located in the liquid (aqueous) phase, in it 

therefore nutrient consumption occurs. Amounts of available nutrients are presented in the form 

of liquid phase molar fractions of each. The solubility of nutrients is calculated by the 

implementation of Henry’s law. Which states that the solubility of a gas in a liquid is 

proportional to its pressure over the solution (Figure 6) (Mills and Coimbra, 2015): 

 

Figure 6: Representation of  Henry's law (Azizmohammadi, 2018) 

𝑝𝑘 = 𝑐𝑙
𝑘 ∗ 𝐻𝑘       →     𝑐𝑙

𝑘 =
𝑝𝑘

𝐻𝑘
,       𝑘 = 𝐶𝑂2 , 𝐻2 (4.3) 

𝑝𝑘… partial pressure of component k above the solution; 

𝑐𝑙
𝑘… molar fraction of component k in solution (liquid phase); 

𝐻𝑘… Henry constant of component k. 

Where: 

𝑝𝑘 = 𝑝 ∗ 𝑐𝑣
𝑘  (4.4) 

𝑝… total pressure distribution gained from the solver; 

𝑐𝑣
𝑘… molar fraction of component k above solution (in vapor phase). 

Values for the Henry constant are provided in “Basic heat and mass transfer” by A. F. Mills 

and C. F. M. Coimbra (Table 6). 

Table 6: Henry constants for different gases in aqueous solutions (in [bar])  (Mills and Coimbra, 2015) 
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4.3.1 Change in Microbial Density  

For microbial population dynamics equation (4.1), the microbial density “n” of each grid cell 

is calculated as the number of microbes in the cell divided by the cell’s total volume. Next, 

microbial growth using the double Monod model (equation (3.8)) is calculated where the model 

is fed with water phase molar fractions of hydrogen and carbon dioxide gained from the 

implemented Henry’s law. Derivatives are then replaced by differential formulations in which 

the time difference has a fixed value of the time-step and the difference in microbial density is 

equal to the current density value (one being calculated) minus the previous time-step’s 

microbial density (explicit scheme).  

The described calculation process is then carried out for each grid cell (𝑖) and time-step (𝑡) as 

follows:  

𝑑𝑛

𝑑𝑡
= 𝑆𝑙 𝜓𝑔𝑟𝑜𝑤𝑡ℎ(𝑐𝑙

𝐻2 , 𝑐𝑙
𝐶𝑂2 ) ∗ 𝑛 − 𝜓𝑑𝑒𝑐𝑎𝑦 ∗ 𝑛  

𝑑𝑛

𝑑𝑡
= 𝑆𝑙 [𝜓𝑚𝑎𝑥

𝑔𝑟𝑜𝑤𝑡ℎ (
𝑐𝑙

𝐻2

𝛼𝐻2
+ 𝑐𝑙

𝐻2
)(

𝑐𝑙
𝐶𝑂2

𝛼𝐶𝑂2
+ 𝑐𝑙

𝐶𝑂2
)] ∗ 𝑛 − 𝑏 ∗ 𝑛 

 

 

replacing the calculated value of the equation’s right side with “A1” and derivatives 

with differential formulations: 

𝑛𝑖
𝑡 − 𝑛𝑖

𝑡−1 = 𝐴1 ∗ 𝛥𝑡 (4.5) 

𝑛𝑖
𝑡 = 𝑛𝑖

𝑡−1 + 𝐴1 ∗ 𝛥𝑡   

4.3.2 Reaction-induced Compositional Changes 

Seeing how what the solver is providing is a result of just an advective transport, the changes 

caused by the reaction must be calculated as well. With this in mind, we derived a new equation 

(based on equation (3.12)), that has the goal of providing the reaction mole fractions of nutrients 

in the liquid phase (because this is where the reaction is occurring).  

Starting with equation (3.12):  

𝜙
𝜕(�̂�𝑣 𝑐𝑣

𝑘𝑆𝑣 +  �̂�𝑙 𝑐𝑙
𝑘𝑆𝑙 )

𝜕𝑡
 

+𝛻. [−�̂�𝑣 𝑐𝑣
𝑘

𝐾𝑘𝑟𝑣

𝜇 𝑣

(∇𝑃𝑣 − 𝜌𝑣 𝑔) − �̂�𝑙 𝑐𝑙
𝑘

𝐾𝑘𝑟𝑙

𝜇 𝑙

(𝛻𝑃𝑙 − 𝜌𝑙 𝑔)] 

 

+𝛻. [−𝜌𝑣 (𝐷𝑑𝑖𝑓𝑓,𝑣
𝑘 + 𝐷𝑑𝑖𝑠𝑝,𝑣

𝑘 )𝛻𝑐𝑣
𝑘 − 𝜌𝑙 (𝐷𝑑𝑖𝑓𝑓,𝑙

𝑘 + 𝐷𝑑𝑖𝑠𝑝,𝑙
𝑘 )𝛻𝑐𝑙

𝑘] 

 

= 𝜙𝑆𝑙 ϒ𝑘
𝜓𝑔𝑟𝑜𝑤𝑡ℎ

𝑌
𝑛 
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• From the first term on the left, the vapor phase mole fraction is cut.  

• Diffusive and dispersive transport of the chemical component is neglected. 

• The advective transport effects are handled by the MRST’s solver, therefore the 

advective term is excluded.  

Resulting in: 

𝜙
𝜕( �̂�𝑙𝑐𝑙

𝑘𝑆𝑙)

𝜕𝑡
= 𝜙𝑆𝑙 ϒ𝑘

𝜓𝑔𝑟𝑜𝑤𝑡ℎ

𝑌
𝑛,     𝑘 = CO2 ,H2 

 

(4.6) 
 

What we are left with essentially is the change in component liquid phase molar fraction only 

due to the reaction. Considering that and replacing derivatives with differential formulations:  

𝜙
 �̂�𝑙𝑆𝑙∆𝑐𝑟,𝑙

𝑘

∆𝑡
= 𝜙𝑆𝑙 ϒ𝑘

𝜓𝑔𝑟𝑜𝑤𝑡ℎ

𝑌
𝑛,     𝑘 = CO2 ,H2 

 

(4.7) 
 

where:  

∆𝑐𝑟,𝑙
𝑘 = 𝑐𝑝𝑟𝑒−𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛,𝑙

𝑘 − 𝑐𝑝𝑜𝑠𝑡−𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛,𝑙
𝑘  

 

(4.8) 
 

Seeing how the ∆𝑐𝑟,𝑙
𝑘  is the difference between the state of component’s molar fraction in the 

liquid phase before and after the reaction, the resulting value is providing exactly what is needed 

– the nutrient’s molar fraction that is involved in the reaction. This calculation is then carried 

out for each time-step. 

Porosities and saturations from each side of equation (4.7) cancel each other out. With that, 

equation (4.2), based on carbon dioxide, is having the following look: 

∆𝑐
𝑟,𝑙
𝐶𝑂2 = ϒ𝐶𝑂2 ∗

𝜓𝑔𝑟𝑜𝑤𝑡ℎ

𝑌 ∗ �̂�𝑙
∗ 𝑛 ∗ ∆𝑡  

 

(4.9) 
 

 

The molar density of the liquid phase is calculated by dividing the density of the liquid phase 

(resulting from the solver) by the sum of the molar masses of dissolved components, each 

multiplied by its liquid phase molar fraction. 

�̂�𝑙 =
𝜌𝑙

∑ 𝑀𝑘 ∗ 𝑐𝑙
𝑘

,       𝑘 = CO2 ,H2 ,CH4,H2O 

 

(4.10) 

 

Provided in Chapter 3, below equation (3.7) were the stoichiometric coefficients (ϒ) of 

components derived from the methanogenesis reaction: 

CO2 + 4H2 → CH4 + 2H2O 
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In that mathematical model, ϒ for CO2 was -1 since it is a consumed component in the reaction. 

This is then used for the reaction term calculation in equation (3.12), once summed up with the 

advection and diffusion/dispersion terms they would give the total molar fraction changes of 

components. But seeing how for equation (4.2) we are only looking for the component reaction 

molar fraction for each time-step, a negative sign would not work for ϒ𝐶𝑂2
. Therefore, in order 

to get correct values ϒ for CO2 was set to 1.  

Once the liquid phase molar fraction of CO2 used in the reaction is gained (Eq. (4.9) it is 

possible to calculate the actual moles of each component that is consumed or produced in the 

reaction.  

This calculation is done on the basis of 1 mol due to which molar fractions of both liquid (𝐿) 

and vapor phase (𝑉), provided by the solver, are actually considered as the amounts of total 

moles in each phase (𝑛𝐿, 𝑛𝑉).  

First, total moles present in the liquid phase are multiplied with the calculated ∆𝑐𝑟,𝑙
𝐶𝑂2. Resulting 

in moles of CO2 consumed in the reaction: 

𝑛𝑟
𝐶𝑂2 = ∆𝑐𝑟,𝑙

𝐶𝑂2 ∗ 𝑛𝐿  

 

(4.11) 

 

𝑛… amount of substance [mol], not to be confused with microbial density [
1

𝑚3
] form 

       before; 

𝑛𝐿 … total moles in the liquid phase; 

𝑛𝑟
𝐶𝑂2… moles of CO2 involved in the reaction; 

∆𝑐𝑟,𝑙
𝐶𝑂2… CO2 molar fraction that is involved in the reaction  

              (as a change of CO2 molar fraction in the liquid phase before and 

              after the reaction). 

Using calculated moles of CO2 that are consumed in the reaction (4.11) and the stoichiometry 

of the methanogenesis, moles of the remaining components are gained: 

𝑛𝑟
𝐻2 = 4 ∗ 𝑛𝑟

𝐶𝑂2 ,     𝑛𝑟
𝐶𝐻4 = 𝑛𝑟

𝐶𝑂2 ,     𝑛𝑟
𝐻2𝑂 = 2 ∗ 𝑛𝑟

𝐶𝑂2 (4.12) 
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4.3.3 Combining the Processes  

In order to gain a complete picture, a connection must be made between the effects of the 

advection (injection) as well the ones caused by the methanogenic reaction. In other words, a 

connection between the results provided by the MRST’s solver and the results of our newly 

derived equation (4.2. 

The approach taken can be explained by presenting some ground ideas and from them resulting 

calculations.  

Reaction nutrients (CO2 and H2): 

• The vapor phase serves as a source for the nutrients that are dissolved in the liquid 

phase. 

• The liquid phase serves as a habitat for the microbes and therefore is the phase in which 

methanogenic reaction occurs. 

• As the reaction is occurring dissolved nutrients are consumed from the liquid phase.  

• As the nutrients are consumed, they are replaced by new ones from the vapor phase.  

• Nutrient losses per each time-step due to the methanogenic reaction are at the end 

observed in the vapor phase. 

• To present these as a vapor phase molar fraction, moles of each nutrient consumed in 

the reaction (Eq. (4.11 & (4.12) are used: 

𝐶𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛,𝑣
𝑘 =

𝑛𝑟
𝑘

𝑛𝑉
,     𝑘 = 𝐶𝑂2 , 𝐻2. 

 

(4.13) 
 

𝑛𝑟
𝑘… moles of component “𝑘” involved in the reaction; 

𝑛𝑉 … total moles in the vapor phase. 

Reaction products (CH4 and H2O): 

• As the reaction occurs methane and water are produced in the liquid phase. 

• The very low solubility of methane in water was assumed to be zero.  

• All of the produced CH4 in the methanogenesis migrates to the vapor phase:  

𝐶𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛,𝑣
𝐶𝐻4 =

𝑛𝑟
𝐶𝐻4

𝑛𝑉
. 

 

(4.14) 
 
 

• All of the produced H2O remains in the liquid phase: 

𝐶𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛,𝑙
𝐻2𝑂 =

𝑛𝑟
𝐻2𝑂

𝑛𝐿
. 

 

(4.15) 
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Vapor phase molar fraction changes: 

▪ Hydrogen and Carbon dioxide: 

• Each time-step (t) of the simulation starts with the set relation between injected 

nutrients’ molar fractions in the vapor phase – (𝐶𝑠𝑡𝑎𝑟𝑡,𝑣
𝐶𝑂2,𝐻2 )

𝑡
. 

• During each time-step these fractions change due to advection – (𝐶𝑠𝑜𝑙𝑣𝑒𝑟,𝑣
𝐶𝑂2,𝐻2 )

𝑡
 and 

reaction – (𝐶𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛,𝑣
𝐶𝑂2,𝐻2 )

𝑡
. 

• Each time-step ends with new molar fractions in the vapor phase of the nutrients: 

(𝐶𝑒𝑛𝑑,𝑣
𝐶𝑂2,𝐻2 )

𝑡
= (𝐶𝑠𝑜𝑙𝑣𝑒𝑟,𝑣

𝐶𝑂2,𝐻2 )
𝑡

− (𝐶𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛,𝑣
𝐶𝑂2,𝐻2 )

𝑡
. 

 

(4.16) 

 

• Ending values of a previous time-step serve as starting values for a new time-step: 

(𝐶𝑠𝑡𝑎𝑟𝑡,𝑣
𝐶𝑂2,𝐻2 )

𝑡
= (𝐶𝑒𝑛𝑑,𝑣

𝐶𝑂2,𝐻2 )
𝑡−1

 

 

o The only exception to this is the initial time-step. Since the injection starts with 

this time-step no reaction occurred before it. The initial time-step starts with 

the values affected only by the advection.  

▪ Methane: 

• The only source of CH4 is the methanogenic reaction.  

• There are no advection-caused changes to the vapor phase molar fraction as there were 

for the injected CO2 and H2 molecules.  

(𝐶
𝑒𝑛𝑑,𝑣 
𝐶𝐻4 )

𝑡
= (𝐶

𝑝𝑟𝑒−𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 ,𝑣
𝐶𝐻4 )

𝑡

+  (𝐶
𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛,𝑣
𝐶𝐻4 )

𝑡
 

 

(4.17) 

 

Liquid phase molar fraction:  

▪ Of the nutrients: 

• At the start of each time-step implementation of the mentioned Henry’s law occurs. 

• Resulting are the molar fractions of the nutrients in the liquid phase (Eq. (4.3), available 

for the reaction carried out during the time-step. 

• Used in Henry’s law calculation (Eq. (4.4) are the described starting vapor phase molar 

fractions – (𝐶𝑠𝑡𝑎𝑟𝑡,𝑣
𝐶𝑂2,𝐻2 )

𝑡
. These are containing changes due to both advection and the 

reaction that have occurred in the previous time-step –  

(𝐶𝑠𝑡𝑎𝑟𝑡,𝑣
𝐶𝑂2,𝐻2 )

𝑡
= (𝐶𝑒𝑛𝑑,𝑣

𝐶𝑂2,𝐻2 )
𝑡−1

.  

• Therefore, the amount of available nutrients for each new time-step is dictated by the 

changes occurring in each previous time-step. 
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• The Exception again is with the initial time-step, since no reaction occurs 

before this time step, it starts by using the values provided by the solver. 

▪ Of the produced water molecules: 

• Water molecules’ increase in the liquid phase is as follows: 

(𝐶𝑒𝑛𝑑,𝑙 
𝐻2𝑂 )

𝑡
= (𝐶𝑠𝑜𝑙𝑣𝑒𝑟,𝑙

𝐻2𝑂 )
𝑡

+ (𝐶𝑟𝑒𝑎𝑐𝑡𝑜𝑛 ,𝑙 
𝐻2𝑂 )

𝑡
 (4.18) 

 

  



 

 

 

  

Case Studies 

Following are different simulation runs, all replicating laboratory-planned experiments. 

Dimensions are of a core scale, samples are pre-populated by a certain number of methanogenic 

archaea and injection of the nutrient mixture is introduced for the duration of the simulation.  

The scenario is a one-dimensional (1-D) injection simulation, due to which the resulting 

distribution of microbial density throughout the sample and in different time-steps is to be 

shown, as well as the production of methane from the archaea’s metabolic reaction.  

 

5.1 Base Case 

Domain geometry and grid 

Core sample dimensions are 25 cm in the x direction and 5 cm in both y and z directions, 

resulting in a grid system of 25 grids in x and 1 grid in both y and z directions.  

Figure 7 shows a homogenous medium, with constant 20% porosity and permeability of 250 

millidarcy throughout the sample. 
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Figure 7: Grid system of a sample with assigned Φ and k 

Compositional Fluid Model 

As mentioned in Chapter 4 for this work compositional module of MRST was used, and from 

there the GenericOverallCompositionModel (Table 5). Necessary inputs for the model contain:  

• Geometry containing rock properties (𝜙 and k). 

• Description of the flowing fluid’s phases, including the number of phases (for our work 

it is a water-gas system), densities, viscosities and compressibility of both phases.    

• List of components for the compositional model present in different fluid phases. This 

simulation contains initially just water (H2O component) and nitrogen (N2) which 

serves as cushion gas. Once the injection starts added are hydrogen (H2) and carbon 

dioxide (CO2) as well as produced methane (CH4). Nevertheless, all of them are added 

to the list and fed to the input argument of the model.  

 

MRST’s function TableCompostionalMixture offers the possibility to initiate a 

multiple-component mixture with each species called by name from stored tables 

formed from CoolProp library. CoolProp library represents an open-source database 

of fluid and humid air properties (Ian H. Bell and the CoolProp Team, 2020). 
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• As explained in Chapter 4 model is expecting a three-phase fluid by default (having oil 

as the liquid phase gas as the vapor phase and water belonging to the third, so-called, 

immiscible phase). Therefore, as a final input, the default setup is changed in order to 

serve our scenario. Water is assigned to be the liquid phase, while gas remains as the 

vapor phase. The oleic phase is completely removed from the setup.  

The setting of the fluid model code is present in Appendix B (Fluid Model Implementation). 

Initial State 

In order to formulate an initial state, function initCompostionalState is used, having the 

following inputs: 

• Pressure is set to 40 bar (which is the pressure that the cushion gas is maintaining before 

the injection starts).  

• The temperature is 50 °C (323.15 K). 

• Equation of State model, which is contained in the output of the used 

GenericOverallCompositionModel. 

• Initial fluid composition, containing overall mole fractions for each component (zi). 

• When it comes to the saturation calculations (𝑆𝑙 and 𝑆𝑣) they are calculated internally 

using (LIE and Møyner, 2021): 

𝑆𝑙 =
𝑍𝑙 ∗ 𝐿

𝑍𝑙 ∗ 𝐿 + 𝑍𝑣 ∗ (1 − 𝐿)
 (5.1) 

 

𝐿… liquid phase molar fraction; 

𝑍… compressibility factor gained as a result of cubic EOS.  

As can be seen, saturation is dependent on the molar fractions of the fluid, for this base case, 

different compositions were set resulting in different saturations, in order to compare the results 

and find the optimal one. These scenarios can be observed in the Results section below. 

The resulting initial state is provided in a structure array (struct) data type, which groups 

related data using data containers called fields, each field can contain any type of data 

(MathWorks and Inc., 2022).  

Additionally, added to the resulting initial state struct is an initial microbial distribution 

throughout the grid cells, for this case the same number of microbes is distributed throughout 

each grid cell. 
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Boundary Conditions 

Both left and right boundaries are controlled by the rates. The left boundary is defined by an 

injection rate resulting from dividing the pore volumes of the whole sample (sum of pore 

volumes of each grid block) by the total time of the injection. The right boundary is defined by 

the production rate which was set equal to the injection rate. Injected gas consists of 80% 

hydrogen and 20% of carbon dioxide. 

Different injection rates were tested in order to compare their effects to the results as well as to 

find the optimum one, these can be seen below in the Results section. 

Microbial Equations’ Parameters 

For the implemented equations (4.1) and (4.2), the following parameters were used: 

Table 7: Equations' parameters 

𝜓𝑚𝑎𝑥
𝑔𝑟𝑜𝑤𝑡ℎ  [

1

𝑠
] 1.643 ∗ 10−5 

𝑏 [
1

𝑠
] 2.3 ∗ 10−6 

  𝛼1  [
𝑚𝑜𝑙

𝑚𝑜𝑙
] 1.1 ∗ 10−7 

  𝛼2  [
𝑚𝑜𝑙

𝑚𝑜𝑙
] 3.2 ∗ 10−6 

𝑌 [
1

𝑚𝑜𝑙(𝐻2)
] 1.376 ∗ 1012 

ϒ𝐶𝑂2
 1 

ϒ𝐻2
 4 

ϒ𝐶𝐻4
 1 

ϒ𝐻2𝑂 2 

 

All values are in the range of provided literature values presented in Chapter 3  

(Table 3 & Table 4 ).  

Regarding the initial number of microbes, for the base case, it was set to 10, resulting in 

𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 4 ∗ 105 [
1

𝑚3
]. This was done in order to easily observe the changes through the time 

and space (grid cells) as well as changes due to different water saturations and injection rates.  
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5.1.1 Injection Rate Analysis 

Analyzing different rates, it was found that the 50 PV injection results in the highest average 

number of microbes throughout the sample. This injection rate was taken as the base one, to 

which all other tested rates were compared. Each injection lasted for 10 days, which for the 

optimum injection of 50 PV can be converted into the rate of 2.6 ∗ 10−5 [
𝑚3

ℎ
] or 26 [

𝑐𝑚3

ℎ
].  

Tested were two rates higher than 50 PV, the first one being double of it – 100 PV and the 

second one being 20 times bigger – 1000 PV. What was concluded is that, as the rates go up, 

injected gas mixture is flushing the liquid phase present in the sample, therefore removing the 

possibility for microbial life. As can be seen from the figures trend of the flushed liquid phase 

(Figure 9) reflects the microbial population trend (Figure 8). 

Presented figures are of the last 10th day of the injection, and the initial liquid saturation is 20%. 

 

Figure 8: Above 50PV – number of microbes throughout the core sample on the last day of the injection 

 

Figure 9: Above 50PV liquid phase gets flushed 
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Also tested were three rates lower than the 50 PV, namely 1 PV, 10 PV and 25 PV. What occurs 

here is that if the injection rate is too small the necessary nutrients do not reach the far parts of 

the core sample. As a result, the microbes’ population gets high at the beginning of the sample 

but further down the length less and less growth is observed. 

 

Figure 10: Below 50PV – number of microbes throughout the core sample on the last day of the injection 

As a summary, Table 8 presents an average number of microbes throughout the sample at 

different rates. As noted at the beginning, after 10 days of injection, the rate of 50 PV results in 

the highest average number of microbes. 

Table 8: Average number of microbes throughout different rates 

Injection Rate Average Number of Microbes 

1 PV 25 

10 PV 77 

25 PV 104 

50 PV 107 

100 PV 105 

1000 PV 76 
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5.1.2 Saturation Analysis  

As was already mentioned with equation (5.1, saturation is calculated internally by MRST 

based on the initial fluid composition, set by the user. 

As an optimal value, initial liquid phase saturation of 20% was chosen. This results from the 

set initial molar fraction of 𝑧0 = [0,0.89,0.11,0,0] representing [𝐻2 ,𝐻2𝑂, 𝑁2 ,𝐶𝑂2 , 𝐶𝐻4]. 

Different comparisons were carried out in order to see the effect of liquid phase saturation on 

the microbial population dynamics as well as on the produced methane and the injected 

nutrients.  

On all of the figures that are showing temporal changes, presented are per-day-average values 

throughout the sample. All of the injections are carried out at the rate of 50 PV for the duration 

of 10 days. 

 

Figure 11: Base case 𝑆𝑙𝑖 = 20% temporal distribution of the microbial population and produced CH4 

As the liquid phase saturation increases so does the microbial population, seeing how that is 

the assumed microbial habitat. Naturally, as the microbes are growing the production of 

methane, due to the metabolic reaction, is larger (Figure 13). Therefore, indirectly, saturation 

increase dictates the generation of methane as well.  

Opposite to this, when the liquid phase saturation is reduced so is the population growth and 

the methane production with it.  
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Described liquid saturation-microbes-methane relation is observable on the below figures. 

Trend set by liquid phase saturation throughout the core sample (Figure 12) is reflected onto 

microbial population distribution and therefore onto the produced methane as well (Figure 13).  

 

Figure 12: 𝑆𝑙𝑖 = 20%; day 10 of the injection – spatial distribution of liquid phase saturation  

 

Figure 13: 𝑆𝑙𝑖 = 20%; day 10 of the injection – spatial distribution of microbes and produced CH4 
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Compared to the optimal 20% were two larger and two lower saturations. Larger values of the 

initial liquid phase saturation were set to 38% and 76%. 

 

Figure 14: Microbial growth comparison between 𝑆𝑙𝑖 = 20%, 𝑆𝑙𝑖 = 38% and 𝑆𝑙𝑖 = 76% 

 

Figure 15: Microbial growth comparison between 𝑆𝑙𝑖 = 20% and 𝑆𝑙𝑖 = 38% 

 

Figure 16: Produced methane comparison between 𝑆𝑙𝑖 = 20% and 𝑆𝑙𝑖 = 38% 

20%

38%

76%

0

1000

2000

3000

4000

5000

6000

7000

0 1 2 3 4 5 6 7 8 9 10

N
u

m
b

e
r 
o

f 
M

ic
ro

b
e
s

Days

20%

38%

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9 10

N
u

m
b

e
r 
o

f 
M

ic
ro

b
e
s

Days

20%

38%

0

2E-09

4E-09

6E-09

8E-09

1E-08

0 1 2 3 4 5 6 7 8 9 10

Y
C

H
4

Days



54 Case Studies 

 

 

 

Figure 17: 𝑆𝑙𝑖 = 76% produced methane 

With the 𝑆𝑙𝑖 = 76% the described (in Chapter 2) doubling of the microbe number with each 

generation is observed (Table 9), where the largest exponential growth phase is therefore 

established. So much so, that a semi-log plot is used to represent the results (Figure 18). 

 

Figure 18: 𝑆𝑙𝑖 = 76% microbial population distribution throughout 10 days of injection 

Table 9: Doubling of the microbial number per each generation at 𝑆𝑙𝑖 = 76%  

(injection starts on day 1 and ends on day 10) 
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Two lower saturations were introduced as well, 𝑆𝑙𝑖 = 10% and 𝑆𝑙𝑖 = 2%. From Figure 19 it 

can be observed that the initial liquid phase saturation of 2% results in the non-growing 

metabolism (described in Chapter 2).  

 

Figure 19: Microbial growth comparison between 𝑆𝑙𝑖 = 20%, 𝑆𝑙𝑖 = 10% and 𝑆𝑙𝑖 = 2% 

 

Figure 20: Produced methane comparison between 𝑆𝑙𝑖 = 20%, 𝑆𝑙𝑖 = 10% and 𝑆𝑙𝑖 = 2% 

 

Figure 21: 𝑆𝑙𝑖 = 2% produced methane 
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By increasing the decay coefficient (𝑏) (Eq. (4.1) under the same initial liquid phase saturation 

conditions the death phase (also described in Chapter 2) was reached (Figure 22). Production 

of methane is indicating that the metabolism is ongoing, but it is not resulting in growth. In the 

first case (Figure 19) it is just sufficient enough to maintain the life of the microbes while in 

the second case it is not. 

 

Figure 22: 𝑆𝑙𝑖 = 2%; microbial and produced methane distribution during the death phase 

Throughout all of the presented results, a very small amount of produced methane can be seen. 

The reason for this is that so far simulation runs had only 10 microbes per grid block set as the 

initial population of the sample. In order to get more of a realistic representation, number of 

initial microbes at each grid block was changed to the average value calculated from the data 

available in the literature (Table 4).  

This being 2.36 ∗ 108 resulting in 𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 9.45 ∗ 1012  [
1

𝑚3
]. Reflecting the high increase in 

the number of the initial microbes, the produced methane is much higher than what it was before 

(Figure 23). 

 

Figure 23: Per-day-average microbial and produced methane distribution  
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Another interesting observation was that as the saturation of the liquid phase increases in the 

simulated core sample, so does the injected gas mixture reach the set composition of 80% H2 

and 20% CO2 faster (see Boundary Conditions above) (Figure 24).  

An increase in the liquid phase saturation means that the volume occupied by the liquid phase 

is larger, therefore it is easier for the injected gas to fill the smaller volume occupied by the 

vapor phase and therefore get to the set fraction faster.  

As an example, on the Figure 24 one can see that for the liquid phase initial saturation of 76% 

it takes for about 3 days to reach the set injection fraction between H2 and CO2 in the vapor 

phase of the sample. While for the rest of the lower saturations it takes around 8 to 10 days to 

do so. 

 

Figure 24: Time needed in order to reach the set injected nutrients’ fractions inside of the sample’s 

vapor phase throughout different initial liquid phase saturation conditions 

 

 

 

 

 

 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

V
a
p

o
r 
P

h
a
s
e
 M

o
la

r 
F

ra
c
ti

o
n

Days

Sli=2% Sli=10% Sli=20% Sli=38% Sli=76%

H2 

CO2 



58 Case Studies 

 

 

5.2 Realistic Case 

Simulations that were done in Base Case all had the same number of microbes distributed 

initially throughout the sample, which is not something that can be expected in reality. That is 

the reason why here the initial microbial distribution throughout the grid cells was set to random 

values. Initial liquid phase saturation was 20% and the injection rate was 50 PV with the 

injection lasting 10 days. 

For the initial microbial distribution throughout the grid blocks normal (gaussian) distribution 

was used based on values from Table 4: 

• Mean value was set to 2.36 ∗ 108;  

• Standard Deviation was set to 4.01 ∗ 108; 

• Lower and upper values are 5000 and 1.4 ∗ 109. 

Table 10: Random distributed initial number of microbes 

Grid 

Block 

Initial Number 

of Microbes 

Grid 

Block 

Initial Number 

of Microbes 

Grid 

Block 

Initial Number 

of Microbes 

1 6.78E+08 11 1.26E+08 21 5.07E+08 

2 8.29E+08 12 1.04E+09 22 3.01E+07 

3 1.02E+08 13 9.75E+08 23 7.27E+08 

4 8.46E+08 14 3.67E+08 24 8.98E+08 

5 4.86E+08 15 6.59E+08 25 5.28E+08 

6 7.97E+07 16 1.14E+08   

7 2.15E+08 17 3.19E+08   

8 4.15E+08 18 8.51E+08   

9 9.76E+08 19 6.49E+08   

10 1.01E+09 20 9.84E+08   

 

 

Figure 25: Initial distribution of the microbes 
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Compared to the Base Case simulation that was carried out by initially distributing 2.36 ∗ 108 

microbes throughout the sample (Figure 23), it can be seen that an average population growth 

and therefore, as well, the production of methane throughout 10 days of injection are now bigger  

(Figure 26 & Figure 27). 

 

Figure 26: Per-day-average microbial distribution Realistic vs Base Case 

 

Figure 27: Per-day-average produced methane Realistic vs Base Case 
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What can also be tested as a controlling factor is a random porosity and permeability 

distribution. For the case that has been the focus of this work, which is a core sample 25 cm 

long, this is not something that is realistically possible. Because, when applied, this would mean 

that throughout such a small length drastic changes in both porosity and permeability would 

occur after each centimeter (seeing how we have 25 grids). This is therefore more suitable for 

the simulation of the whole reservoir. 

Nevertheless, we present here what such a set-up in MRST would look like:  

• Used for the random distribution of porosity throughout the model is the 

gaussianField function of MRST that generates a porosity field in which the values 

are distributed using the normal (gaussian) distribution.  

As an input to the function porosity range as well as a standard deviation should be set 

(for example, one can say that porosity is to be from 10% to 30% with the standard 

deviation of 5% – meaning that around 70% of data will deviate ±5% from the mean 

value of the porosity).  

• Permeability, being a function of porosity, is calculated using the Carman-Kozeny 

relation (LIE, 2019): 

𝐾 =
1

8 ∗ 𝜏 ∗ 𝐴𝑣
2

∗
𝜙3

(1 − 𝜙)2
 

 

(5.2) 
 

 𝜙… porosity; 

 𝜏… tortuosity; 

 𝐴𝑣… specific surface area. 

Assuming that the medium is made of uniform spherical grains and that their radius is  

𝑟𝑝 = 10 𝜇𝑚, grain specific area is then 𝐴𝑣 =
3

𝑟𝑝
. Assumed tortuosity is 𝜏 = 0.81.  

The resulting form of the Carman-Kozeny equation that would be implemented: 

𝐾 =
1

72 ∗ 𝜏
∗

𝜙3 ∗ 𝑟𝑝
2

(1 − 𝜙)2
 

 

(5.3) 
 

𝐾 =
1

72 ∗ 0.81
∗

𝜙3 ∗ (10 ∗ 10−6)2

(1 − 𝜙)2  

 

 
 

 



 

 

 

  

Alternative Approach  

The idea behind this chapter is to present an alternative approach to the mathematical modeling 

of methanogenic archaea’s metabolism. Namely, it is a review of the work done by Muñoz-

Tamayo and his colleagues in 2019.  

Their work had a focus on the methanogenic microbes present in the mammalian gut, so from 

that point of view, it is in a completely different area of focus compared to the UHS. On the 

other hand, the strategy for the modelling approach of the methanogenic reactions and microbial 

growth itself is something that can be correlated.  

They have constructed, what they call, an energetic-based mathematical model of 

methanogenesis capturing the dynamics of the reaction (Muñoz-Tamayo et al., 2019). 

6.1 Mathematical Model of Methanogenesis 

To start, in this model not just a single reaction of methanogenesis is used, but a combination 

of methanogenesis reaction for methane production treated as a catabolic reaction (6.1) and an 

anabolic reaction (6.2) representing microbial formation. Where it was assumed that ammonia 

is the nitrogen source for microbial formation, as well as that microbial biomass has a formula 

of 𝐶5𝐻7𝑂2𝑁.  

CO2 + 4H2 → CH4 + 2H2O 

 

(6.1) 
 

5CO2 + 10H2 + NH3 → C5H7O2N+ 8H2O 

 

(6.2) 
 

This is one of the key points that are differentiating this approach from the other works available 

in the literature. 
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The mathematical model consists of five differential equations. The first one is considering the 

biomass concentration: 

𝑑𝑥𝐻2

𝑑𝑡
= 𝜇 𝑚𝑎𝑥 ∗ 𝑒𝑥𝑝 (−

𝐾𝑠 ∗ 𝑉𝑔

𝑛𝑔,𝐻2

) ∗ 𝑥𝐻2
− 𝑘𝑑 ∗ 𝑥𝐻2

 

 

(6.3) 
 

𝑥𝐻2
… biomass concentration [

𝑚𝑜𝑙

𝐿
]; 

𝑘𝑑… cell death rate constant [
1

ℎ
]; 

As much as this equation and the one used in the model of our work (4.1) are similar (both 

having the microbial growth and the microbial death term), there are also quite some differences 

in the approach. Namely microbial mass is treated as a concentration of moles of biomass per 

liter of the aqueous solution, while in our model there was microbial density (𝑛), the number 

of microbes per m3. When it comes to the growth model instead of the popular Monod equation 

(3.8) what is used is the kinetic rate function developed by Desmond-Le Quéméner and 

Bouchez (Desmond-Le Quéméner and Bouchez, 2014): 

𝜇 = 𝜇𝑚𝑎𝑥 ∗ 𝑒𝑥𝑝 (−
𝐾𝑠 ∗ 𝑉𝑔

𝑛𝑔,𝐻2

) 

 

(6.4) 

 

Where:      

𝐾𝑠 =
𝐸𝑀 + 𝐸𝑑𝑖𝑠

𝑉ℎ𝑎𝑟𝑣 ∗ 𝐸𝑐𝑎𝑡
 

 

(6.5) 

 

𝜇 𝑚𝑎𝑥… maximum specific growth rate constant [
1

ℎ
]; 

𝑉𝑔… gas (vapor) phase volume [𝑚𝐿]; 

𝑛𝑔,𝐻2
… amount of hydrogen in gaseous (vapor) phase [𝑚𝑜𝑙]. 

𝐾𝑠 is the affinity constant [
𝑚𝑜𝑙

𝐿
], derived on the energy basis, focusing on the concept of exergy. 

That is the maximum work that microorganism has available during chemical transformation. 

From equation (6.5): 

𝐸𝑀… stored exergy during growth [
𝑘𝐽

𝑚𝑜𝑙
]; 

𝐸𝑑𝑖𝑠… dissipated exergy during growth [
𝑘𝐽

𝑚𝑜𝑙
]; 

𝐸𝑐𝑎𝑡… catabolic exergy of one molecule of energy-limiting substrate [
𝑘𝐽

𝑚𝑜𝑙
]; 

𝑉ℎ𝑎𝑟𝑣… volume in which each microbe can harvest the chemical energy in the form 

              of substrate molecules [𝐿]. 
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The second equation focuses on the change in the CO2 concentration in the liquid phase: 

𝑑𝑠𝐶𝑂2

𝑑𝑡
= −

−𝑌𝐶𝑂2
∗ 𝜇𝑚𝑎𝑥

𝑌
∗ 𝑒𝑥𝑝 (−

𝐾𝑠 ∗ 𝑉𝑔

𝑛𝑔,𝐻2

) ∗ 𝑥𝐻2
 

 

(6.6) 
 

       −𝑘𝐿𝑎 ∗ (𝑠𝐶𝑂2
− 𝐾𝐻,𝐶𝑂2

∗
𝑅∗𝑇∗𝑛𝑔,𝐻2

𝑉𝑔
) 

 

 

𝑠𝐶𝑂2
… CO2 concentration in the liquid phase [

𝑚𝑜𝑙

𝐿
]; 

𝑌𝐶𝑂2
… CO2 yield factor [

𝑚𝑜𝑙(𝐶𝑂2)

𝑚𝑜𝑙 (𝐻2)
]; 

𝑌… microbial biomass yield factor [
𝑚𝑜𝑙(𝑏𝑖𝑜𝑚𝑎𝑠𝑠)

𝑚𝑜𝑙(𝐻2 )
]; 

𝑘𝐿𝑎… mass transfer coefficient [
1

ℎ
]; 

𝐾𝐻,𝐶𝑂2
… Henry’s law coefficient [

𝑚𝑜𝑙

𝐿∗𝑏𝑎𝑟
]; 

𝑅… ideal gas law constant [
𝑏𝑎𝑟∗𝐿

𝑚𝑜𝑙∗𝐾
]; 

T… temperature [𝐾]. 

The first term on the right side of the equation is relating the yield factors of both carbon dioxide 

and microbial biomass to the growth model and the biomass concentration. The second term is 

dedicated to the liquid-gas transfer of CO2, governed by the mass transfer rate coefficient and 

the concentration difference of CO2 in the liquid (𝑠𝐶𝑂2
) and in the vapor (gas) phase. Carbon 

dioxide concentration in the vapor phase is calculated using the ideal gas law (providing the 

CO2 partial pressure in the vapor phase) and Henry’s law. 

The rest of the governing differential equations are referring to the molar gas phase changes of 

hydrogen, carbon dioxide and produced methane: 

 

𝑑𝑛𝑔,𝐻2

𝑑𝑡
= −

𝜇 𝑚𝑎𝑥

𝑌
∗ 𝑒𝑥𝑝 (−

𝐾𝑠 ∗ 𝑉𝑔

𝑛𝑔,𝐻2

) ∗ 𝑉𝐿 ∗ 𝑥𝐻2
 

 

(6.7) 

 

𝑑𝑛𝑔,𝐶𝑂2

𝑑𝑡
= 𝑉𝐿 ∗ 𝑘𝐿𝑎 ∗ (𝑠𝐶𝑂2

− 𝐾𝐻,𝐶𝑂2
∗

𝑅 ∗ 𝑇 ∗ 𝑛𝑔,𝐻2

𝑉𝑔

) 

 

(6.8) 
 

𝑑𝑛𝑔,𝐶𝐻4

𝑑𝑡
=

𝑌𝐶𝐻4
∗ 𝜇𝑚𝑎𝑥

𝑌
∗ 𝑒𝑥𝑝 (−

𝐾𝑠 ∗ 𝑉𝑔

𝑛𝑔,𝐻2

) ∗ 𝑉𝐿∗𝑥𝐻2
 

 

(6.9) 
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Yield factors for carbon dioxide and methane are calculated using the microbial biomass yield 

factor for which the values are provided in the literature. In addition to that, the stoichiometry 

of the two chemical reactions (6.1) and (6.2) is used: 

𝑌 =
1

10
∗ (1 − 𝑓) 

 

(6.10) 

 

With 𝑓 being the fraction of hydrogen used for the catabolic reaction (6.1), therefore (1 − 𝑓) 

would be the fraction used in the anabolic reaction (6.2). The fraction 
1

10
 refers to the 

stoichiometry from the second equation, relating biomass to hydrogen (since 𝑌 is in 

[𝑚𝑜𝑙(𝑏𝑖𝑜𝑚𝑎𝑠𝑠)

𝑚𝑜𝑙(𝐻2)
]). From equation (6.10) one can calculate the 𝑓, and from there the rest of the 

yield factors are gained: 

𝑌𝐶𝑂2
=

1

4
∗ 𝑓 +

5

10
∗ (1 − 𝑓) (6.11) 

𝑌𝐶𝐻4
=

1

4
∗ 𝑓 (6.12) 

6.2 Future Work 

The presented model is describing the batch type of laboratory experiments, therefore to be 

used in a work similar to the one done in this thesis it would have to be optimized for the 

injection type of experiments. An advective term would be necessary for equation (6.6, besides 

that the approach for our model was to use molar fractions since that is what the MRST solver 

is providing, while here emphasis is on the actual mols. Also, the mentioned difference in 

treating microbes as part of the chemical reaction and therefore not having a microbial density 

in the system but the microbial concentration should also be addressed. 

This chapter is here to serve as a potential starting point for future work that could implement 

the presented mathematical model in a numerical simulation of the UHS, or simulations of 

laboratory experiments mimicking UHS conditions. Where then results of these simulations 

could be compared with the ones provided in this thesis or any other work available in the 

literature for that matter. 

 



 

 

 

  

Conclusions 

Our main goal set for this work was fulfilled. We managed to provide a tool that can present 

both methanogenic archaea’s population change in the presence of nutrients, as well as the 

changes to the gas composition due to their metabolism.  

The available mathematical model finalized by Mr. Hagemann has been further adapted for the 

needs of this work. Namely, the second equation describing the reactive transport of nutrients 

was used as a basis for the development of the new equation dealing only with the effects of 

the reaction, seeing how advective effects were provided by the MRST’s solver.  

The 1-D simulation results have provided the microbial population growth phases that have 

been observed in the laboratory batch experiments described in the literature. Whether it be the 

exponential growth phase including the duplication of the cells after each generation, or the 

stationary and death phases. Both microbial, as well as the produced methane, dependencies on 

the liquid phase saturation were described as well as the effect of different injection rates of the 

nutrient gas mixture.  

As it is, the developed code described in this thesis can be used as a tool for the laboratory core 

injection experiments, but also, we have provided a possible basis for future work that can be 

carried out.  

Further development of this code could include a 3-D reservoir scale model and the effects that 

methanogenic archaea, as well as other microbial species, would have on the stored hydrogen. 

Also, possible would be the complete UHS cycle simulation, including the injection phase, 

resting phase (where hydrogen sits stored in the reservoir) and finally withdrawal phase. 

Simulations with the same set-up could then be run in both MRST as well as in the popular 

DuMuX and therefore provide a variety of prediction sources.  
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Also, the approach presented in Chapter 6 can be adapted to the UHS scenario seeing how the 

mathematical model there treats bioreaction members in a different way than the one used in 

this work, providing a possible upgrade to what has been done here and so far in other works.  
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Workflow of a Numerical Simulator 

To simulate a reservoir, or in our case a specific phenomenon that is occurring in the reservoir 

under the presence of different fluids, defined steps need to be taken to get from the problem’s 

setup to the solution. What we have is a computer program that solves equations which are 

describing the processes of interest from the physical world.  

Steps include Formulation (containing non-linear partial differential equations), Discretization 

(going from PDEs to non-linear algebraic equations), Linearization (resulting in linear 

algebraic equations), and Solution.   

 

A.1 Formulation 

The mathematical model described in Chapter 3 and his adaptation described in Chapter 4 

represent the numerical simulation formulation of this work. Such formulation, in general, 

consists of listed equations that are going to be used to cover all of the necessary physics. The 

usual types of equations that can be found as a framework of a reservoir simulator are (Ganzer, 

2021a): 

• Balance equations or rather conservation laws (mass balance, mole balance (used in 

our work), momentum balance (Darcy’s law) etc.);  

• Equations of state; 

• Rock and fluid models; 

• Constraints (mole constraints, saturation constraints);  

• Saturation functions (kr, Pc);  

• Source/sink equations;  

• Boundaries and initial conditions.  
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All in all, the formulation of mathematical constraints for the simulation is set in this initial 

step. These equations are in form of non-linear partial differential equations.  

A.2 Discretization 

To solve these equations numerically, first, the geometrical domain gets subdivided into several 

grid cells that can be regular or irregular in shape and size. These cells consist of grid cell 

volumes as well as grid cell points. Points are located at the center of the cell and are controlling 

the volume that is constructed around it. The property assigned at the grid point location should 

represent the average for the entire grid cell volume.  

Second, the spatial and time discretization of governing equations is necessary, since there is 

no analytical solution for the problem. During the process of discretization, equations are 

converted from the non-linear partial differential to non-linear algebraic equations 

When it comes to spatial discretization – instead of finding a solution that is valid for every 

point in space (which would result in infinite solutions) solutions are reduced to finite points 

(one solution per grid point) (Azizmohammadi and Rath, 2021; Ganzer, 2021a). 

So far there is a wide range of methods used to discretize space. The most common 

discretization techniques are (Azizmohammadi and Rath, 2021; C. G. and D. M., 2010; L. et 

al., 2011): 

• Finite Difference Method (FDM), the oldest method;  

• Finite Element Method (FEM) is, a newer, flexible method;  

• Finite Volume Method (FVM) incorporates what is called a control volume approach.  

With FEM one can generate very precise shapes which are not necessary when it comes to 

reservoir simulation where the rough approximation is good enough, which is available with 

FDM method. That makes it very efficient when it comes to computation compared to FEM 

(which requires more time and computational power). That is why most commercial reservoir 

simulators are using FDM. FVM incorporates strong points of the other two methods – it is 

reasonably fast and also reasonably flexible. Therefore, FVM is what new reservoir simulation 

projects are following. Our work in MRST is using exactly this method.  

The first step in the equation’s discretization of space and time is the replacement of partial 

derivatives from the conservation laws. Partial derivatives are replaced either by differential or 

integral formulation. When it comes to space, formulation depends on the used discretization 

method- the integral formulation is suitable for FEM and FVM approach, while the differential 

formulation is more suitable for the FDM. Also used for time discretization is the differential 

formulation. 
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A.2.1 Differential Formulation 

The basis of the differential approach is the Taylor expansion series. Taylor expansion scheme 

for some property f can be written as a forward difference (Azizmohammadi and Rath, 2021; 

C. G. and D. M., 2010): 

𝑓(𝑥 + 𝛥𝑥) = 𝑓 (𝑥) + (
𝜕𝑓

𝜕𝑥
)

𝛥𝑥

1!
+ (

𝜕2𝑓

𝜕𝑥2
)

𝛥𝑥2

2!
+ (

𝜕3𝑓

𝜕𝑥3
)

𝛥𝑥3

3!
+ ⋯ 

 

(A.1) 
 

Or as a backward difference: 

𝑓(𝑥 − 𝛥𝑥) = 𝑓 (𝑥) − (
𝜕𝑓

𝜕𝑥
)

𝛥𝑥

1!
− (

𝜕2𝑓

𝜕𝑥2
)

𝛥𝑥2

2!
− (

𝜕3𝑓

𝜕𝑥3
)

𝛥𝑥3

3!
− ⋯ 

 

(A.2) 
 

Both schemes represent the change of property f as distance increases (𝛥𝑥) by its derivatives. 

In order to replace partial derivatives of first-order Taylor series is considered only up to the 

first-order derivative and the rest of the terms are cut off. Accuracy will be higher the further 

the terms that are considered in Taylor expansion, therefore after a cut-off, there is a certain 

error called truncation error.  From the above Taylor expansion schemes, different differential 

formulation schemes for both space and time are derived, these are represented in Table 11 

below.   

Table 11: Difference schemes for space and time (Azizmohammadi, 2022) 

  

In the table as an example for the property pressure is taken, also, superscript “n” refers to the 

time increment and subscript “i” represents spatial increment. Term that is added at the end of 

each scheme (0(Δx) or 0(Δt)) represents mentioned truncation error (due to cut-off). First order 

derivative’s forward or backward difference scheme is followed by the first-order error while 

the central difference scheme and second-order derivative have it squared since the cut-off has 

been done further into the Taylor expansion. 
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• Forward difference scheme – forward changes to the function. 

• Backward difference scheme – backward changes to the function. When it comes to 

the time difference in the table, the notation for the current time step is “n+1” and for 

the previous it is “n”. It could have been also written as: 

(
𝜕𝑝

𝜕𝑡
)

𝑖

𝑛

=
𝑝𝑖

𝑛 − 𝑝𝑖
𝑛−1

∆𝑡
 

• Central difference scheme – represents the combination of both  

Explicit and Implicit Schemes Implemented in FDM 

Taylor series provides the needed connection between derivation and difference terms required 

for the FDM as well as for the time discretization. With the FDM approach changes of 

properties in the grids are represented as the property differences between grid cells at distance 

Δx between grid points (Figure 28). The advantage of FDM is its easy implementation for 

geometrically simple domains (C. G. and D. M., 2010). 

 

Figure 28: (top) Two grid cells at distance Δx between the grid points; (bottom) Pressure (as an example 

for cell property) difference between two cells (green line is the  linearization of the actual behavior) 

(Ganzer, 2021a) 

The forward difference scheme is based on the next neighboring cell (on the right side – 

“positive” direction from the current cell), and backward difference evaluates the difference 

between the current and the previous (in the “negative” direction) cell property value. For the 

time discretization, on the other hand, the same idea is applied but now differences are being 

calculated between cell properties at the current and future or rather previous time-step.  
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The central difference scheme simplifies the relation, the derivative of the current grid cell 

property is evaluated by using both “next” and “previous” cell values, with the distance then 

being doubled, and therefore the value of the current point itself is not used. Normally central 

difference is not used for time discretization.  

Combining the provided difference schemes will lead to different sets of combined schemes, 

two of such schemes are relevant (C. G. and D. M., 2010):  

Explicit scheme is formed if FTCS (forward time central space) combination is implemented, 

meaning that for the time forward difference scheme and for the space central difference scheme 

is used. The property value of the future time-step (n+1) would be calculated using the known 

property values of the current time-step (n). At which, property values at the current grid cell 

position and both grid cells at the neighboring positions are combined (to the left and right) 

(Figure 29). 

 

Figure 29: Graphical description of explicit scheme (Azizmohammadi, 2022) 

Implicit scheme is formed if BTCS (backward time central space) combination is implemented, 

meaning that for time backward difference scheme is used and for the space central difference 

scheme. The property value of the current time-step (n+1) is unknown and it would be 

calculated using the known property value of the previous time-step (n) at the same position. 

Combined with that are the property values of both grid cells at the neighboring positions (to 

the left and right) of the current grid cell’s position, but this time both of the neighboring 

property values are unknown as well (Figure 30).  

 

Figure 30: Graphical description of implicit scheme (Azizmohammadi, 2022) 
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After writing the equations for all of the nodes one would end up with a system of equations 

that is to be solved, simultaneously for all of the unknowns. This system is sorted out in a form 

of a linear equation system consisting of three matrices (C. G. and D. M., 2010): 

𝐴 ∗ 𝑥 = 𝑏 

 

(A.3) 
 

𝐴…coefficient matrix; 

𝑥…matrix containing unknown properties; 

𝑏…inhomogeneous part of the equation- matrix containing known values. 

With the explicit scheme, there is no need for the system of equations which makes it simpler 

for implementation and is requiring less computational power and time. But it is also less stable 

when compared to the implicit scheme. The type of problems that are to be solved will dictate 

the decision which scheme to use (hyperbolic type of equations such as transport or saturation 

equations will be more suitable for the implicit scheme, while for parabolic, analytic type of 

equations explicit scheme would work very well). 

Taking now for an illustrative example one-dimensional (1-D) pressure diffusion equation 

(which is indeed PDE) (Azizmohammadi, 2022; Azizmohammadi and Rath, 2021): 

𝜕2𝑝

𝜕𝑥2 =
1

𝛼

𝜕𝑝

𝜕𝑡
 

 

(A.4) 
 

where 𝛼 is hydraulic diffusivity. 

After applying to it FDM, the equation would take following forms: 

• Explicit scheme 

(
𝜕2𝑝

𝜕𝑥2
)

𝑖

𝑛

=
𝑝𝑖+1

𝑛 − 2𝑝𝑖
𝑛 + 𝑝𝑖−1

𝑛

𝛥𝑥2
,      (

𝜕𝑝

𝜕𝑡
)

𝑖

𝑛

=
𝑝𝑖

𝑛+1 − 𝑝𝑖
𝑛

∆𝑡
 

𝑝𝑖
𝑛+1 − 𝑝𝑖

𝑛

∆𝑡
= 𝛼

𝑝𝑖+1
𝑛 − 2𝑝𝑖

𝑛 + 𝑝𝑖−1
𝑛

∆𝑥2  

after rearranging: 

𝑝𝑖
𝑛+1 = 𝑝𝑖

𝑛 +
𝛼𝛥𝑡

𝛥𝑥2 (𝑝𝑖+1
𝑛 − 2𝑝𝑖

𝑛 + 𝑝𝑖−1
𝑛 ) 

 

(A.5) 
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• Implicit scheme 

(
𝜕2𝑝

𝜕𝑥2
)

𝑖

𝑛+1

=
𝑝𝑖 +1

𝑛+1 − 2𝑝𝑖
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𝑖
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𝑛+1 + 𝑝𝑖−1
𝑛+1

∆𝑥2  

after rearranging in such a way that on the left side of the equation are all of the 

unknown parameters and on the right side are known values: 

𝑝𝑖−1
𝑛+1 − (2 +

𝛥𝑥2

𝛼𝛥𝑡
)𝑝𝑖
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𝑛+1 = −

𝛥𝑥2

𝛼𝛥𝑡
𝑝𝑖

𝑛 
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To illustrate the mentioned system of equations (A.3), that is occurring when the 

implicit formulation of the problem is taken, let us take equation (A.6) and write it as: 

𝑎𝑖−1𝑝𝑖−1
𝑛+1 + 𝑎𝑖 𝑝𝑖

𝑛+1 + 𝑎𝑖+1𝑝𝑖+1
𝑛+1 = 𝑏𝑖 

 

(A.7) 
 

Each node (grid point) has such an equation, for each of the unknown parameters  

(in this example it is pressure) which results in an equation system. The coefficient 

matrix “A” consists of coefficients standing in front of each parameter value (in 

equation (A.7) those are 𝑎𝑖−1 , 𝑎𝑖,   𝑎𝑖+1). The size of the matrix depends on the number 

of unknowns per grid – its width responds to the number of unknowns and its height 

responds to the number of equations. Matrix “x” would contain all of the unknown 

properties (in equation (A.7) those are all three pressures). And finally, all of the known 

values that were set on the right side of the equations make up the matrix “bi”. 

A.2.2 Integral Formulation 

FVM is implementing the integral formulation, what that means is that the volume integral is 

applied over the individual grid cells to calculate the values of different properties  

(L. et al., 2011). 

To illustrate integral formulation, let’s take the general representing partial differential equation 

for the conservation law (a generalized form of the equations listed in Chapter 3)  

(Hagemann, 2017): 

𝜕

𝜕𝑡
𝑢 + ∇ ∙ 𝑓(𝑢) = 𝑔(𝑢) 

 

(A.8) 
 

𝑢… vector representing values of cell properties; 

𝑓… flux function; 

𝑔… source/sink function. 
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As already stated, the geometric domain is subdivided into finite non-overlapping control 

volumes, the conservation law that is represented above is valid for each of these control 

volumes. Having an integral form of: 

𝜕

𝜕𝑡
∫ 𝑢

𝑉𝑖

𝑑𝑉𝑖 + ∫ 𝑓(𝑢)
𝑉𝑖

𝑑𝑉𝑖 = ∫ 𝑔(𝑢) 𝑑𝑉𝑖
𝑉𝑖

 

 

(A.9) 

 

𝑉𝑖… control volume of a grid cell; 

𝑖… grid cell index.  

For the volumetric integral of the flux function (𝑓) Gauss-Divergence theorem is applied. 

Which declares that the change of a property in a control volume is equal to the net change of 

that property caused over all cell faces. Transforming a volumetric integral into a surface 

integral (Nag, 1998): 

∫ 𝑓(𝑢)
𝑉𝑖

𝑑𝑉𝑖 = ∫ 𝑓(𝑢) ∗
𝐴𝑖

𝑛 𝑑𝐴𝑖 

 

(A.10) 
 

𝐴𝑖… total surface area of a grid cell; 

𝑛… unit normal vector. 

A surface integral is equal to the sum over all sub-surfaces connecting the grid block to its 

neighbors (taking into account the parameter values of the current (i) and neighboring (j) grid 

cell): 

∫ 𝑓(𝑢) ∗
𝐴𝑖

𝑛 𝑑𝐴𝑖 = ∑𝑘𝑖𝑗(𝑢𝑖,

𝑚

𝑗=1

𝑢𝑗) 

 

(A.11) 

 

𝑚… number of neighboring cells; 

𝑘𝑖𝑗… new flux function, taking now additionally into account geometrical quantities 

                       (distance between grid cells’ points and cell interface area) as well as average 

                       rock and fluid properties.  

Since for FVM average values of the grid cell properties are contained at the grid cell point (at 

the center of the grid) we can state that: 

𝑢𝑖 =
1

𝑉𝑖

∫ 𝑢
𝑉𝑖

𝑑𝑉𝑖 (A.12) 

and also: 

𝑔(𝑢𝑖) =
1

𝑉𝑖

∫ 𝑔(𝑢) 𝑑𝑉𝑖
𝑉𝑖

 

 

(A.13) 
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Dividing the whole equation (A.9) by control volume “Vi”, and placing in terms from equations 

(A.11), (A.12), (A.13): 

𝜕𝑢𝑖

𝜕𝑡
+

1

𝑉𝑖

∑𝑘𝑖𝑗 (𝑢𝑖 ,

𝑚

𝑗=1

𝑢𝑗) = 𝑔(𝑢𝑖) 

 

(A.14) 
 

For the time discretization backwards difference scheme is used (Table 11): 

(
𝜕𝑢

𝜕𝑡
)

𝑖

𝑛+1

=
𝑢𝑖

𝑛+1 − 𝑢𝑖
𝑛

∆𝑡
 

 

(A.15) 
 

Finally, the discretization of the presented PDE (A.8), having the implicit formulation, looks 

like this: 

𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛

∆𝑡
+

1

𝑉𝑖

∑ 𝑘𝑖𝑗(

𝑚

𝑗=1

𝑢𝑖
𝑛+1 , 𝑢𝑗

𝑛+1) = 𝑔(𝑢𝑖
𝑛+1) 

 

(A.16) 
 

Rearranging so that the current time-step’s (n+1) unknown property values are on the same 

side: 

𝑢𝑖
𝑛+1 + ∆𝑡 (

1

𝑉𝑖

∑ 𝑘𝑖𝑗(

𝑚

𝑗=1

𝑢𝑖
𝑛+1 ,𝑢𝑗

𝑛+1) − 𝑔(𝑢𝑖
𝑛+1)) = 𝑢𝑖

𝑛 (A.17) 

A.3 Linearization  

After discretization we are left with the non-linear algebraic equations before the solution 

comes into play, equations need to be linearized. To do so Newton-Raphson method is used, 

this method is seeking zero points of the equation system. Equations are linearized using first-

order derivatives (Ben-Israel, 1965). 

If we are, for example, talking about the linearization of a single equation, Newton-Raphson’s 

general form is derived in the following way:  

Taylor series expansion: 

𝑓(𝑥 + 𝛥𝑥) = 𝑓(𝑥) + (
𝜕𝑓

𝜕𝑥
)

𝛥𝑥

1!
+ (

𝜕2𝑓

𝜕𝑥2
)

𝛥𝑥2

2!
+ (

𝜕3𝑓

𝜕𝑥3
)

𝛥𝑥3

3!
+ ⋯ 

Cutting off after the first derivative and ignoring the truncation error: 

𝑓(𝑥 + 𝛥𝑥) = 𝑓(𝑥) + (
𝜕𝑓

𝜕𝑥
) 𝛥𝑥 

 

(A.18) 
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Newton-Raphson is valid for the setup where f(x) = 0, it is an equation-zero-point-seeking 

method, therefore: 

𝑓(𝑥 + 𝛥𝑥) = 0 
 

(A.19) 
 

Resulting in (from (A.18) & (A.19)): 

𝛥𝑥 = −
𝑓(𝑥)

𝑓′(𝑥)
 ,     ∆𝑥 = 𝑥𝑛+1 − 𝑥𝑛 

 

(A.20) 
 

Arriving at Newton-Raphson’s general form: 

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
 

 

(A.21) 

 

 Equation (A.21) can be rearranged so that it shows the linearized form:   

∆𝑥 ∗ 𝑓′ (𝑥𝑛) = −𝑓(𝑥𝑛) 

 

(A.22) 
 

With the derivative being the slope of the function.  

If we have a function and take the first-order derivative of it, we would result in a tangent of 

that function. With the Newton-Raphson method, this tangent will look to replace the original 

function (the approximated new look of the function). The smaller the variable changes per 

timestep the more will approximated linear function be true to the actual function.  

When it comes to the application of the Newton-Raphson method in the numerical simulator, 

not an exact zero is found, but rather the best approximation. This is carried out by calculating 

the absolute relative approximate error (Ganzer, 2021b): 

|𝜀| = |
𝑥𝑛+1 − 𝑥𝑛

𝑥𝑛+1
| 

 

(A.23) 

 

The iterations will stop as the stopping criteria is reached (defined value of the 𝜀). 

Newton-Raphson method works on the same principle when it comes to the system of 

equations, namely it has the following look (Hagemann, 2017): 

𝑋𝑛+1 = 𝑋𝑛 − 𝐽(𝑋𝑛 )−1 ∗ 𝐹(𝑋𝑛) 

 

(A.24) 

 

∆𝑋𝑛 𝐽(𝑋𝑛 ) = −𝐹(𝑋𝑛) 

 

(A.25) 

 

𝑋𝑛+1… matrix containing unknown parameters of the future timestep; 

𝑋𝑛 … matrix containing known parameters of the current timestep; 

𝐽… Jacobian matrix. 
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As can be seen, equations (A.24) and (A.25) are analogous to (A.21) and (A.22). Difference is 

in the fact that now matrices are used.  

After linearization, the equations are now linear algebraic.  

In the case of our work, these will be sorted in the linear equation system, since we are in the 

implicit formulation (A.3). 

A.4 Solution 

The solution technique of the linear equation system depends on the type of governing 

equations (integral vs. differential formulation) and spatial-time discretization in the end. For 

our work, using MRST, space is discretized by FVM while time discretization is carried out 

using a backward difference scheme, leading to the implicit formulation of the problem (LIE, 

2019).  

Two possible solution methods can be applied to the resulting system of linearized algebraic 

equations (Ganzer, 2021b): 

• Direct Methods have the advantage of finding an exact solution, but the problem is that 

they are limited only to small models. 

• Iterative Methods do not provide the exact solution of the equations but an 

approximation with a small error. But they can handle big and complex systems, 

therefore they are mostly used. The method starts with an initial guess, after which a 

sequence of approximations follows. These iterations terminate if an approximate 

solution is “close enough” to the true solution (stopping criteria) or the iteration 

maximum is exceeded. 

All in all, if a discretized domain contains a small number of grid cells direct solution will 

provide exact and therefore ideal solutions to the unknown parameters’ system of equations. 

While as soon as the number of grid cells gets larger (which is mostly the case) the iterative 

solution method would give closer values to the ideal solutions.   

Linear solvers are what most of the CPU time is spent during the simulation, therefore the aim 

is to go for a memory-efficient solution. The biggest memory requirement is in storing the 

coefficient matrix “A” (Eq. (A.3)). With that in mind different solution methods, when it comes 

to reservoir simulators have been developed (Ganzer, 2021b): 
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• Fully Implicit Method (FIM), all of the variables are solved implicitly. It is the most 

stable solution but large memory is required. 

If there would be for example 3 unknown property variables (pressure, water saturation, 

gas saturation) per grid cell, which would be the case for Black Oil model (for the 

Compositional this number is much bigger) and that there are 1 million grid cells, we 

would result in 3 million equations and unknowns. Matrix A would be a 3×106  by 

3×106 matrix containing 9×1012 entries. 

• Implicit Pressure Explicit Saturation (IMPES), saturation is based on the last time-step 

while the pressure is calculated for the new time-step. Taking the same example, now 

there would be only one variable per grid block (pressure) matrix A would be a 1×106  

by 1×106 matrix containing 1012 entries, which is less with a factor of 9 compared to 

the FIM. It is less memory-demanding, but at the same time, it has stability issues. 

• Adaptive Implicit Method (AIM), combines the strengths of the other two. High stability 

of the solution at the computational cost comparable to the IMPES method. Each grid 

block can change its implicit/explicit formulation status at any time-step. Grids, where 

variable changes are expected to be high, are using FIM and where the changes are not 

expected as often are set to IMPES method. 

 



 

 

 

  

Parts of Code  

B.1 Fluid Model Implementation 

 

%% Compositional fluid model 

 

compFluid = 

TableCompositionalMixture({'Hydrogen','Water','Nitrogen','CarbonDioxide',

'Methane'}, {'H2', 'H2O', 'N2', 'CO2', 'CH4'}); 

                            

 

flowFluid = initSimpleADIFluid('phases', 'WG', ... % water-gas system 

                               'blackoil', false, ... 

                               'rho', [1000, 1], ... 

                               'mu', [1, 0.1]*centi*poise, ... 

                               'n', [2, 1], ... 

                               'c', [0, 1e-4]/barsa); 

arg = {G, rock, ... 

       flowFluid, ... % flow fluid 

       compFluid,... % compositional mixture 

       'water', true, 'oil', false, 'gas', true,... % water-gas system 

       'liquidPhase', 'W', 'vaporPhase', 'G'}; % water=liquid, gas=vapor 

 

gravity reset on 

 

overall = GenericOverallCompositionModel(arg{:}); % overall mole fractions 
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B.2 Microbial Effects 

The current time-step notation is “i+1” while the previous time-step is referred to as “i”. 

 

while time < totalTime 

    i = i + 1; 

     

    schedule = simpleSchedule(dt, 'bc', bc); 

    ctrl = schedule.control(schedule.step.control(1)); 

    [forces, fstruct] = overall.getDrivingForces(ctrl); 

    overall = overall.validateModel(fstruct); 

    state = overall.validateState(state); 

    currControl = schedule.step.control(1); 

    state = solver.solveTimestep(state, dt, overall, 'bc', bc); 

    states = horzcat(states,state'); 

 

%1# Henry’s law___________________________________________________________ 

    xH2 = []; xN2 = []; xCO2 = [];  

    p = states{i+1}.pressure; 

 

    if i == 1  

        yH2pr = states{i+1}.y(:,1); 

        yN2 = states{i+1}.y(:,3); 

        yCO2pr = states{i+1}.y(:,4); 

        yCH4pr = states{i}.y(:,5); 

        xH2O = states{i+1}.x(:,2); 

    else 

        yH2pr = states{i}.y(:,1); 

        yN2 = states{i+1}.y(:,3); 

        yCO2pr = states{i}.y(:,4); 

        yCH4pr = states{i}.y(:,5); 

        xH2O = states{i}.x(:,2); 

    end 

 

% ypr (pre-reaction) what is there at the beginning of the time step in 

% the gaseous phase, before the reaction occurs  

 

    pH2 = p.* yH2pr; 

    xH2 = pH2./(76000*10^5); 

     

    pN2 = p .* yN2 ; 

    xN2 = pN2./(110000*10^5); 

     

    pCO2 = p .* yCO2pr ; 

    xCO2 = pCO2./(2720*10^5); 

     

    states{i+1}.x(:,1) = xH2; 

    states{i+1}.x(:,3) = xN2; 

    states{i+1}.x(:,4) = xCO2; 

         

% 2# 1st Equation; I) listing parameters that are changing with Time Steps  

              %   II)Calculating new 'n' 

 

   %I)___________________________________________________________________ 

    n = (states{i}.microbes ./ CellVolume); % microbial density [1/m3] 

    states{i}.microbialdensity = n; 
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    Sw = states{i+1}.s(:,1); 

   

   %II)__________________________________________________________________ 

    microgrowth = (microgrowthmax * (xH2 ./ (alphah2 + xH2)) .*  

    (xCO2 ./ (alphaco2 + xCO2))); %[1/s] 

     

    microdecay = b; %[1/s] 

 

    dndt = ( Sw.* (microgrowth .* n)) - (microdecay .* n); %[1/m3*s]  

    dn = dndt * dt; 

    nnew = dn + n; 

 

    states{i+1}.microbialdensity = nnew; 

    states{i+1}.microbes = (states{i+1}.microbialdensity .* CellVolume); 

 

% 3# 2nd Equation;________________________________________________________ 

     

    rhow = states{i+1}.PVTProps.Density{1} ./  

          (compFluid.molarMass(1) *xH2 + compFluid.molarMass(2) * xH2O +         

.          compFluid.molarMass(3) * xN2 + compFluid.molarMass(4) * xCO2);  

    % molar density [mol/m3] 

    states{i+1}.rhow = rhow; 

 

   %CO2__________________________________________________________________ 

    Xco2r = (((gammaCO2 * microgrowth/Y) .* n) * dt)./states{i+1}.rhow; 

    nco2r = Xco2r .* states{i+1}.L; % [mol] amount in moles of CO2 consumed  

.                                     in the reaction 

     

% 4# Combining the Processes______________________________________________ 

% Calculating new Ys, after the reaction 

     

    V = 1 - states{i+1}.L; 

    states{i+1}.V = V; 

     

    Yco2 = (states{i+1}.y(:,4)) - (nco2r ./ states{i+1}.V);  

% What is used in moles of CO2 in the reaction, in the liquid phase is 

added from the gas phase. Therefore, the loss is calculated in the gas 

phase. Plus, what was added by advection during this ts that is why the 

solver fraction is used (since it is considering advection). 

     

    states{i+1}.y(:,4) = Yco2; 

 

    %H2____________________________________________________ 

    nh2r = nco2r * gammaH2; 

    Yh2 = (states{i+1}.y(:,1)) - (nh2r ./ states{i+1}.V); 

 

    states{i+1}.y(:,1) = Yh2; 

     

 

 

 

    %CH4___________________________________________________ 

    nch4 = nco2r * gammaCH4; 

    Ych4 = yCH4pr + (nch4 ./ states{i+1}.V); 

    YCH4current = nch4 ./ states{i+1}.V; 

     

    states{i+1}.YCH4current = YCH4current; 

    states{i+1}.y(:,5) = Ych4; 

 



86 Parts of Code 

 

 

    %H20___________________________________________________ 

    nh2o = nco2r * gammaH20; 

    Xh2o = (states{i+1}.x(:,2)) + (nh2o ./ states{i+1}.L); 

     

    states{i+1}.x(:,2) = Xh2o; 

 

    time = time + dt;  

 

end 
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Nomenclature 

𝛷 porosity [-] 

𝑐 component mole fraction [-] 

𝑆 saturation [-] 

�̂� molar density [
𝑚𝑜𝑙

𝑚3
] 

𝑞 source/sink [
𝑚𝑜𝑙

𝑠.𝑚3
] 

𝑘 chemical component [-] 

𝑣 vapor phase [-] 

𝑙 liquid phase [-] 

𝑣𝑖 darcy velocity [
𝑚

𝑠
] 

𝐾 absolute permeability [𝑚2]/[𝑚𝑖𝑙𝑖𝑑𝑎𝑟𝑐𝑦] 

𝑘𝑟 relative permeability [-] 

𝜇 dynamic viscosity [𝑃𝑎.𝑠] 

𝑃𝑖 phase pressure [𝑃𝑎] 

𝜌𝑖 phase density [
𝑘𝑔

𝑚3
] 

𝑔 gravity acceleration [
𝑚

𝑠2] 

𝑙 length [𝑚] 

𝐽 dispersive/diffusive flux [
𝑚𝑜𝑙

𝑚.𝑠
] 

Ddiff effective molecular 

diffusion coefficient 

[
𝑚2

𝑠
] 

Ddisp effective mechanical 

dispersion coefficient 

[
𝑚2

𝑠
] 

𝑛 microbial density [
1

𝑚3] 

𝛹𝑔𝑟𝑜𝑤𝑡ℎ microbial growth 

function 

[
1

𝑠
] 
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𝛹𝑑𝑒𝑐𝑎𝑦 microbial decay function [
1

𝑠
] 

𝛹𝑚𝑎𝑥
𝑔𝑟𝑜𝑤𝑡ℎ

 maximum specific rate of 

microbial growth 

[
1

𝑠
] 

𝐷𝑚 microbial diffusion 

coefficient 

[
𝑚2

𝑠
] 

ϒ stoichiometric coefficient [-] 

𝑌 yield coefficient [
1

𝑚𝑜𝑙(𝐻2)
] 

𝛼 half-velocity constant [
𝑚𝑜𝑙

𝑚𝑜𝑙
] 

𝑏 decay coefficient [
1

𝑠
] 

𝐴 coefficient matrix  

𝑥 matrix containing 

unknown properties 

 

𝑏 inhomogeneous part of 

the equation-matrix 

containing known values 

 

𝐽 jacobian matrix  

𝐿 liquid phase mole fraction [-] 

𝑉 vapor phase mole fraction [-] 

𝑧𝑖 overall mole fraction of 

component i 

[-] 

𝑝𝑘 partial pressure of 

component k above the 

solution 

[𝑃𝑎] 

𝐻𝑘 henry constant of 

component k 

[𝑃𝑎] 

𝑛𝑘 Amount of substance k [𝑚𝑜𝑙] 

𝑍 compressibility factor 

gained as a result of cubic 

EOS 
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𝑥𝐻2
 biomass concentration [

𝑚𝑜𝑙

𝐿
] 

𝑘𝑑 cell death rate constant [
1

ℎ
] 

𝜇 𝑚𝑎𝑥 maximum specific 

growth rate constant 

[
1

ℎ
] 

𝑉𝑔 gas (vapor) phase volume [𝑚𝐿] 

𝑛𝑔,𝐻2
 amount of hydrogen in 

gaseous (vapor) phase 

[𝑚𝑜𝑙] 

𝐾𝑠 affinity constant [
𝑚𝑜𝑙

𝐿
] 

𝐸𝑀 stored exergy during 

growth 

[
𝑘𝐽

𝑚𝑜𝑙
] 

𝐸𝑑𝑖𝑠 dissipated exergy during 

growth 

[
𝑘𝐽

𝑚𝑜𝑙
] 

𝐸𝑐𝑎𝑡 catabolic exergy of one 

molecule of energy-

limiting substrate 

[
𝑘𝐽

𝑚𝑜𝑙
] 

𝑉ℎ𝑎𝑟𝑣  volume in which each 

microbe can harvest the 

chemical energy in form 

of substrate molecules 

[𝐿] 

𝑠𝐶𝑂2
 CO2 concentration in the 

liquid phase 

[
𝑚𝑜𝑙

𝐿
] 

𝑌𝐶𝑂2
 CO2 yield factor [

𝑚𝑜𝑙(𝐶𝑂2)

𝑚𝑜𝑙(𝐻2)
] 

𝑌 microbial biomass yield 

factor 

[
𝑚𝑜𝑙(𝑏𝑖𝑜𝑚𝑎𝑠𝑠)

𝑚𝑜𝑙(𝐻2)
] 

𝑘𝐿𝑎 mass transfer coefficient [
1

ℎ
] 

𝐾𝐻,𝐶𝑂2
 CO2 henry’s law 

coefficient 

[
𝑚𝑜𝑙

𝐿.𝑏𝑎𝑟
] 

𝑅 ideal gas law constant [
𝑏𝑎𝑟.𝐿

𝑚𝑜𝑙.𝐾
] 

𝑇 temperature [𝐾]/[°𝐶] 
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𝑓 catabolic reaction’s 

hydrogen fraction 

[-] 

𝜏 tortuosity [-] 

𝐴𝑣 specific surface area [
1

𝑚
] 



 

 

 

Abbreviations 

EES Electrical Energy Storages 

UHS Underground Hydrogen Storages 

MRST The MATLAB Reservoir Simulation Toolbox 

REV Representative Elementary Volume 

PDE Partial Differential Equation 

FDM Finite Difference Method 

FEM Finite Element Method 

FVM Finite Volume Method 

FTCS Forward Time Central Space 

BTCS Backward Time Central Space 

FIM Fully Implicit Method 

IMPES Implicit Pressure Explicit Saturation 

AIM Adaptive Implicit Method 

EOS Equation of State 

PV Pore Volume  
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