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Abstract

This master thesis investigates the conceptual development of an opto-electronic perpendic-

ular utilizing electro-active glass. An exactly aligned laser beam serves as reference axis to

enable the measurement of relative movements, caused by geological activities, within under-

ground structures. This application is designed as a monitoring system, which automatically

triggers maintenance tasks.

The paper’s scope covers the documentation as well as the implementation of several im-

age processing techniques for camera aided position determination. The primary process is

composed of a logical sequence of four sub-procedures: at first, during image preprocessing,

the contrast is normalized and the noise is suppressed through digital filtering; the segmen-

tation of image objects is accomplished by binary morphology, employed ideas to calculate a

suitable threshold are Otsu’s method, brightness class average, Gaussian curve intersection

and maximal normal distance; the determination of an object’s center is performed through

the computation of its center of gravity, its Gaussian curve extremum or fitting of a conic,

to be specific the approximation of a circle and an ellipse; the last step is coordinate map-

ping through linear homography, polynomial control points or the newly introduced tensor

interpolation via basis function sectioning and quad tree decomposition.

The different approaches are evaluated through experiments with a laboratory prototype.

Consequently, verification and analysis is carried out on the numerical results to give a

statement about the suitability of the different methods for such a kind of measurement

instrument.

Index Terms

laser; perpendicular; electro-active glass; image processing; contrast normalization; noise

suppression; segmentation; binarization; threshold; coordinate mapping; homography; poly-

nomial control points; tensor interpolation; quad tree decomposition
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Kurzfassung

Diese Diplomarbeit beschreibt die konzeptionelle Entwicklung eines opto-elektronischen Lots

unter Verwendung von elektro-aktivem Glas. Ein exakt ausgerichteter Laserstrahl fungiert

als Referenzachse um Relativbewegungen, ausgelöst durch geologische Aktivitäten, in Tief-

bauanlagen zu registrieren. Die Anwendung stellt ein Überwachungssystem dar, mit dessen

Hilfe Wartungsaufgaben automatisch angestoßen werden.

Die Arbeit umfasst sowohl die Dokumentation als auch die Implementierung verschiedener

Bildverarbeitungstechniken zur kameragestützten Positionsbestimmung. Der Hauptprozess

besteht aus folgenden vier Unterprozeduren: zuerst wird während der Bildvorverarbeitung

der Kontrast normalisiert und das Rauschen durch digitales Filtern gedämpft; die Segmen-

tierung von Bildobjekten wird durch Binarisierung erreicht, umgesetzte Ideen zur Berechnung

eines geeigneten Schwellwerts sind Otsu’s Methode, Helligkeitsklassendurchschnitt, Gauß

Kurvenschnittpunkt und maximaler Normalabstand; die Mittelpunktbestimmung der Objekte

erfolgt durch Schwerpunktberechnung, Gauß Kurvenextremum oder Kegelschnittanpassung,

im Konkreten die Approximation durch einen Kreis und eine Ellipse; der letzte Schritt ist

Koordinatenabbildung mittels linearer Homographie, polynomialen Kontrollpunkten und die

in diesem Zusammenhang neue Tensorinterpolation durch Auswahl von Basisfunktionsab-

schnitten und hierarchischer Viertelzerlegung.

Die unterschiedlichen Ansätze werden durch Experimente mit einem Laborprototyp evaluiert

sowie verifiziert. Die Analyse der numerischen Ergebnisse liefert eine Aussage über die An-

wendbarkeit der untersuchten Methoden für diese Problemstellung.

Schlagwörter

Laser; Lot; elektro-aktives Glas; Bildverarbeitung; Kontrastnormalisierung; Rauschunter-

drückung; Segmentierung; Binarisierung; Schwellwert; Koordinatenabbildung; Homogra-

phie; Polynomiale Kontrollpunkte; Tensorinterpolation; hierarchische Viertelzerlegung
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Chapter 1

Introduction

This master thesis investigates several methods to determine a laser 1 spot’s position on a

target plate via image processing. The discussed concepts allow it to assemble an opto-

electronic perpendicular for surveillance purposes. An exactly aligned laser beam and a set

of measurement stations, whereby each one is composed of a target plate and a camera,

deliver the possibility to detect relative movements of the environment, caused by geological

activities, within a tunnel, a mine shaft or any other underground structure. The aim of the

work is the conceptual development of such a device.

1.1 Logistic Relevance

It is in the nature of any infrastructure, that it deteriorates with time. Maintenance logistics

addresses this issue by observing and tracking those objects and their changes to trigger

corresponding support processes. The goal is to create systems, which last longer and require

less service, thereby their overall lifetime costs are reduced and their safety is increased. The

impact is measured in terms of metrics such as reliability, availability and maintainability.

The robust and automated tracking of information over the entire operational life cycle

provides the opportunity to optimize maintenance strategies. These ideas and concepts are

normally applied for machines and their spare parts, however in the application at hand they

are used for whole facilities [14].

1The acronym laser stands for light amplification by stimulated emission of radiation.

13
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According to DIN 31051 [6], maintenance2 is defined as: ’The entire effort to achieve and

conserve the desired condition. Additionally, the current state must be determined and eval-

uated.’ The related DIN 13306 [5] specifies the primary processes, which are inspection,

service, reparation and improvement. An adequate inspection strategy is vital for condition

monitoring and error diagnosis. Failure prevention is achieved by enhancing the related tech-

nical and administrative processes continuously. From an economic point of view, the costs

for the observation system must be smaller than the total costs of a system breakdown [18].

Generally, the maintenance processes are scheduled according to a specific plan. The scope

ranges from periodical intervals to just-in-time and risk-based approaches. Therefore, the

downtimes can be organized well in contrast to unexpected, time-critical errors and the un-

productive time they induce to the system. Another important aspect is safety at work,

because only a well maintained system is a secure one [10].

According to literature, maintenance logistics is responsible for supplying resources such

as manpower, material and information. Additionally, it synchronizes these factors with

the operational facilities. The last aspect is known as the coordinating and administrating

process and is normally covered by a software package, which is part of the maintenance

planning and controlling system. The introduced surveillance concept could be integrated

via standard interfaces to automate the complete process chain. By simplifying the man-

agement of the support processes, more effort can be focused on the important value adding

processes [1].

1.2 Problem Statement

The thesis presents the conceptual development of an opto-electronic perpendicular utilizing

electro-active glass. The schematics in Figure 1.1, 1.2 and 1.3 show the desired functionality

of the instrument. There’s an exactly calibrated laser, which radiates a beam along the

reference path. The laser beam impinges upon several measurement stations along its path,

whereby a portion of the light is scattered and a visible spot is produced. Each station

consists of a target plate and a camera. It is important, that these two components are

mounted relatively and unchangeably to each other to avoid displacements. The position of

the laser spot on the target is the relevant information. By logging its temporal position on

the plate, the relative movements of the environment can be determined. For that purpose,

several image processing methods are introduced in later chapters.

2The German terms are Instandhaltung: Inspektion, Wartung, Instandsetzung and Verbesserung
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Figure 1.1: The laser radiates a laser beam along an underground structure, such as a tunnel or
mine shaft, to observe the changes of the environment. The laser spot occurs when the beam meets
a measurement station and impinges upon the attached target plate. The station is installed to the
structure via a wall mount. The camera registers the laser spot and delivers the acquired image to
a connected computer for further processing.

Figure 1.2: Environmental changes are caused by geological activities. The measurement stations
are attached to the observed structure. Hence, they also change their position if the mountain is
moving. The relative change of the position can be registered, as the laser’s original orientation
stays the same. The difference between the laser spot’s new and original position is detected and
evaluated in further process steps.

Electro-active glass is investigated as a possible means of improving the optical behavior of

the target. This composite material can switch its opalescence from opaque to transparent

by applying a voltage to a set of electrical contacts. The aim is to enable a larger number

of targets in series.
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Figure 1.3: Underground structures are likely to have extensive dimensions, e.g. several kilometer
long tunnels. The observation of sequentially arranged measurement stations requires transparent
target plates. Nevertheless, the transparency does not deliver the best surface for laser measure-
ments. To address this issue, electro-active glass is introduced to the application. It can change
its opalescence as the needs arises: it’s opaque during the measurement and transparent when the
laser beam should pass through it.

Geological movements are effecting the statics of a structure. A perpendicular can act

as reference axis. The displacement relative to the axis defines the changes in the system.

Based on this data, operational decisions can be made and support processes can be triggered

automatically when a critical value is reached.

1.3 Approach for Solution

The idea to use a calibrated laser as a perpendicular is not new, but in combination with

electro-active glass a wide range of applications becomes possible. In fact, it is possible

to measure long distances at any given angle, this is almost ideal for monitoring common

underground structures or even bridges and dams. Of course, there exist other solutions such

as the telependulum from Huggenberger 3. The device quantifies automatically, contactlessly

and continuously coordinates of a wire, which is attached to an anchor point at the top

and a great mass at the bottom. Light sources cast a shadow of the plumb wire, the effect

is detected by bright-dark sensors. The exact position of the wire is determined from the

location of the light sources and the shadow focal points. This idea works very well and

delivers an accuracy of ±0.05mm to ±0.10mm, but only in vertical dimension and for this

reason the system is very limited.

3 c©Huggenberger AG, Horgen, Switzerland, www.huggenberger.com
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A laser offers the greatest flexibility for the discussed problem. It enables many possible

setups in contrast to conventional devices such as the described telependulum. Of course,

this advantage comes with the price of higher computational complexity, i.e. a sequence of

operations must be applied to an image to extract the wanted information. The following

steps must be performed to the dataset:

1. The image containing the current position of the laser spot is taken by a digital camera.

The raw and unprocessed image is the initial data for all further computations;

2. The image is prepared by improving its contrast and applying noise suppression;

3. A threshold determines the borders of image objects and enables their segmentation

from the background. The surrounding area is also relevant for the calculations and it

must be considered by adding a confidence range;

4. The image objects are classified to acquire the regions of interest and to reject unwanted

optical information;

5. Each region of interest is defined by its center. This information is the dominating

factor for all following computations, as its accuracy defines the quality of the results;

6. The camera-target system must be calibrated, so that the image coordinates can be

mapped to real world coordinates. Thus, suitable mathematical models are required;

7. After the calibration is performed, it is possible to convert any given point from its

camera coordinates to its real world coordinates.

The real space is modeled as a Cartesian coordinate system with Euclidean distances, see

Figure 2.12. The camera space is biased, because of optical effects of the camera’s objective.

Both spaces are related via a projection. The ultimate goal of the explained procedure is

the possibility to map a point p = [xc, yc]
T from the camera space to its corresponding real

space equivalent q = [xr, yr]
T :

p
mapping−−−−−→ q. (1.1)

The complete process together with the used hard- and software will be described in Chap-

ter 2. Figure 1.4 shows the camera space and Figure 1.5 shows its real world coordinates.

Like in Equation 1.1, the mapping process is also true for the deployed units:

[pixel]
mapping−−−−−→ [mm]. (1.2)
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Figure 1.4: The camera space is biased because of optical effects. A mathematical relation is
established through coordinate mapping methods, which are able to transform the coordinates of
p to its real world pendant q. Distances are measured in pixels.

Figure 1.5: The real space is modeled by a Cartesian coordinate system with Euclidean distances.
Changes of the laser spot’s position can be measured in millimeters.
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1.4 Research Questions

The primary goal of the master thesis is the conceptual development, i.e. a feasibility study,

of an instrument, which is capable of measuring relative movements of structures caused by

external forces. Image processing techniques enable the registration of these environmental

changes. A set of procedures is necessary to acquire the desired information. For every

process step, there exist several possible alternative methods. A further secondary objective

is the evaluation of the object segmentation, center determination and coordinate mapping

functions. The thesis’ scope also covers the question, how precisely the overall system is

working. A laboratory prototype was constructed and tested to verify the complete concept.



Chapter 2

Principle of Operation

The methodology of the introduced application is based on the requirements of the hardware

setup. Figure 2.1 shows the laboratory prototype, Figure 2.2 focuses on the arrangement of

a single measurement station. The acquired image is processed via Matlab.

Figure 2.1: The conceptual laboratory prototype is a working miniature version of the actual
instrument with all needed components: the laser, the target plate and the camera. The laser
generates a laser beam. When it impinges the target plate, the laser spot is produced. See
Figure 2.10 and the according text for a detailed description.

20
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Figure 2.2: The photograph shows the optical arrangement of the application. The target plate is
left and the camera is right. Both components are mounted on a static carrier cantilever to ensure
a fixed object distance g. The schematic in Figure 2.13 illustrates the geometric relations.

2.1 Methodology and Processes

The measurement procedure consists of several processes, whereby each routine fulfills a

specific task. The image is acquired on the so called iconic level, which implies the raw data.

By performing the steps explained in this chapter, the data is reduced to its symbol level

and only contains the relevant information for the following computations, i.e. the camera

space coordinates in pixels. Figure 2.3 illustrates how the information density is increased.

Figure 2.3: The acquired image G is the input for the overall process and resides on the so called
iconic level. By extracting the image’s characteristics, i.e. the regions of interest {R1, . . . ,Rm}, the
object level is reached. Each object’s defining attribute is the center point p, its coordinates are
the desired information and represent the symbol level.
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According to literature, the proposed approach is the most common workflow and best-

practice in industries [4, 7, 28]. Note, that accuracy is lost over the whole process, because

every step is based on assumptions and simplifications. The entire methodology is composed

of following steps, which will be introduced in the next sections and explained in their

according chapters:

1. structure image:

(a) image acquisition,

(b) image preprocessing,

(c) object segmentation,

(d) center determination;

2. system calibration;

3. coordinate mapping.

The processes yield a number of variables, which will not change their designated name

throughout in this thesis. Table 2.1 presents an overview of the used terminology.

variable name: description:

d degree
f focal length of a lens
t threshold level
G originally acquired grayscale image
D normalized grayscale image containing {R1, . . . ,Rm}
B binarized monochrome image using t
R image object respectively region of interest, R ∈ D
A∗ set of unclassified image objects, A∗ = {R1, . . . ,Rm}
A set of classified image objects, A = {R1, . . . ,Rn} and A ∈ A∗

p = [xc, yc]
T camera space center coordinates, u in homogeneous form

q = [xr, yr]
T real space center coordinates, v in homogeneous form

P = [p1, . . . ,pn] array of camera space points
Q = [q1, . . . , qn] array of real space points
m number of a vector’s elements or number of a matrix’ rows
n number of a vector’s elements, a matrix’ columns or iterations
i indexing variable for rows, equivalent to y dimension
j indexing variable for columns, equivalent to x dimension
cij = cyx an element’s or pixel’s value at ith row and jth column
k various constants

Table 2.1: Used variable names and terminology in the thesis.
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Structure Image

The following methods are used to structure an image, that includes preparing it and ex-

tracting the image object’s attributes. The logical sequence of the implemented procedures

is illustrated in Figure 2.4. The structured image is the origin for the system calibration and

coordinate mapping steps.

Figure 2.4: The structure image process is composed of several subroutines, which are necessary for
the system calibration and the laser spot measurement. At first, the image is taken and prepared.
Afterwards, the image objects are segmented and classified. The center coordinates of the camera
space are the main attributes.

Image Acquisition

The camera is employed as an optical sensor, which delivers the image of the target. The

image is in fact a raster of pixels with quantized values. The result is a matrix, whereby

each discrete value represents the pixel’s intensity, i.e. the brightness. Common encodings

are 8 or 10 bit1. In this application, a grayscale camera with a resolution of 1280 × 1024

usable pixels and an 8 bit encoding is used. The device delivers the original grayscale image

G.

Image Preprocessing

In Chapter 3 there’re explanations of two methods for manipulating the image’s properties

to condition the signal for the impending operations:

• contrast normalization enables the usage of the whole encoding spectrum and

• noise suppression smooths the image through digital filtering.

The first method is used on the whole original image G. The normalized image is then

referenced as D. The second method is only performed on portions of the image R.

1A 8 bit code has 28 = 256 values, a 10 bit code has 210 = 1024 values.
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Object Segmentation

Generally, an image holds parts that are more important than the rest, the so called image

objects contained in the set A∗ = {R1, . . . ,Rm}. The identification of these objects can be

implemented by analyzing the whole image and extracting integral features. A common

approach for the named problem is binary segmentation, which is in fact a bright-dark

detection. If a pixel’s intensity is higher than a certain threshold t, it is considered as relevant.

Vice versa, if it is below this threshold, it is irrelevant and belongs to the background. The

introduced procedure delivers a monochromatic or binary image B.

Figure 2.5: The segmentation process contains three subprocedures. The binary image B is the
origin for locating the sought objects. Their contours deliver vital information about their usability,
i.e. if the found objects in A∗ are relevant or not. The identification of the ROIs in A is necessary
for the following process steps.

Finding a meaningful threshold t is not trivial, as it depends on the image’s quality and

the treated problem. In Chapter 4 four different methods will be explained with histogram

analysis:

• Otsu’s method, which is based on the separation of two brightness classes,

• the brightness class average, the arithmetic mean value of the classes’ peaks,

• Gaussian curve intersection, which utilizes two bell curves and

• the maximal normal distance of two brightness classes.

A good threshold is necessary to detect the image objects A∗, which are basically defined by

their contours. Contour algorithms are based on the idea, that there are connected binary

borders. By tracing these closed lines, the sought objects can be isolated. A confidence

range is added to ensure that no relevant information is lost. Normally, it’s implemented by

utilizing a surrounding rectangle.
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Another concept for object segmentation would be Haar-like features, they are based on

arithmetic differences in parts of the image.

The image objects delivered by the segmentation process must be classified, because not ev-

ery found object in A∗ is relevant for the next computations. The routine generates defined

areas known as regions of interest (ROI), which are contained in the set A = {R1, . . . ,Rn}.

A∗ classification−−−−−−−→ A, (2.1)

whereby A ∈ A∗ and the number of their elements is n ≤ m. The classifier decides with

the help of quantitative characteristics if a feature Ri is usable or not. This issue will be

explained in Chapter 4. The remaining relevant image objects in a A represent the regions

of interest of the acquired image.

Center Determination

The following center determination methods are implemented and tested for their suitability

to find the center coordinates p = [xc, yc]
T of a region of interest R:

• computation of the centroid or center of gravity of an area,

• Gaussian curve extremum, which uses two bell curves’ peak values and

• conic matching by the fitting a circle and an ellipse based on contours.

When the described task has been finished, the regions of interest can be sorted according

to their center coordinates yielding the matrix of camera points P = [p1, . . . ,pn]. Further

explanations are found in Chapter 5.
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System Calibration

Calibration is the act of applying a known input, i.e. an array of a-priori known real points

Q = [q1, . . . , qn] and camera points P = [p1, . . . ,pn], to the measurement system for the

purpose of forming the logic how to interpret unknown input values. The described procedure

must be performed before any actual measurement can take place. Chapter 6 describes how

this linkage is created to employ coordinate mapping, Figure 2.6 shows the flowchart.

Figure 2.6: At first the acquired image is structured and all ROI center coordinates are determined.
During the calibration, a relation between the registered camera space coordinates P and the known
real space coordinates Q is established. The linkage allows mapping of points between those spaces
through a mathematical framework.

It is of utmost importance, that the relative distance g between the target plate and the

camera is constant. Furthermore, the function settings must stay the same. If one of those

factors changes, then the adjustment is not transferable to the actual measurement situation

anymore.

Two ideas are introduced during the experiments in Chapter 8:

• a dedicated calibration plate utilizing an array of light emitting diodes (LED) and

• a movable xy-table, which generates the calibration pattern on the go.

Figur 2.7 shows how a plate with mounted LEDs is used to calibrate the system. Each LED’s

position in the real space is known a-priori. The calibration plate is manufactured precisely,

but it must be replaced by the actual target plate after the adjustment. This causes changes

to the installation and is a possible source of errors.
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Figure 2.7: The distinct calibration plate is mounted with an array of exactly positioned LEDs. It
must be replaced by the target plate for the following measurements.

The calibration utilizing the xy-table is more flexible and has the same assembly as the

actual measurement environment, including the target plate. Nevertheless, the xy-table is

victim to mechanical inexactness. Figure 2.8 gives an impression of how it works.

Figure 2.8: The calibration via the xy-table utilizes the target plate, i.e. there are no error-prone
changes of the installation. The laser spot visits several exactly defined positions on its way from
the left upper to the right lower corner. This procedure yields a laser spot calibration matrix. The
recalibration of the system is also unproblematic.
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Coordinate Mapping

The final step delivers the real space coordinates q = [xr, yr]
T of one laser spot. It assigns a

value to the physical image acquired by the digital camera p = [xc, yc]
T . This works through

coordinate mapping methods, which will be explained in Chapter 6 in detail:

• linear homography,

• polynomial control points and

• tensor interpolation via basis function sectioning as well as quad tree decomposition.

The first two ideas are known approaches in image processing, the other one utilizes a set

of bases functions and is new for such a kind of problem. Note, that measuring the same

object with different methods delivers varying results. Figure 2.9 shows the flowchart of the

process.

Figure 2.9: At first, the acquired image is structured and all ROI center coordinates are determined.
In fact, there should only be one ROI: the wanted laser spot. The center coordinates of the
camera space p are then combined with the calibration data to map the laser spot to its real space
coordinates q.

The repeatability of measurements is influenced by certain factors. When the unchanged

target object is acquired more often, then the results are slightly varying. Chapter 7 will

deal with this random error effects. Other sources of inexactness are systematic errors

like the finite resolution of the camera, the limited calibration accuracy and the restricted

mathematical models itself. Nevertheless, sub-pixel exactness can be achieved, because

the procedures take numerous discrete values into account and their combination is more

accurate than their single treatment.
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2.2 Hardware Setup

The prototype’s hardware consists of three main components:

• a laser,

• a target plate and

• a camera,

whereby the target plate and the camera are mounted on a static carrier cantilever, these

parts compose a measurement station. The intended application can consist of several sta-

tions as illustrated in Figure 1.1. For the discussed experiments, only one was used due to

economic reasons. Figure 2.10 shows the assembled components.

Figure 2.10: The prototype consists of a target plate a), a camera b) and a laser c). A measurement
station is composed of a) and b), whereby both parts are unchangeable attached to a carrier
cantilever to keep the relative distance static. The laser c) is mounted on a xy-table (there’s
also a setup with a linear drive) to enable relative movements between the laser beam and the
measurement station.

The actual application will have a fixed calibrated laser, while the individual measure-

ment stations are moving according to the mountain’s geological activities, because they

are mounted on the tunnel’s or shaft’s wall. Under laboratory conditions, it is irrelevant

which one - the laser or the station - is moving, as it is only necessary to generate relative

movements between those parts of the device. In Figure 2.10, a xy-table holds the laser, in

another setup it is replaced by a linear drive. A xy-table is capable of moving its mounting

platform in horizontal and vertical dimensions, a linear drive can only change the position
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in one dimension. Nevertheless, both systems are used, because the more complex xy-table

is more sensible to errors and sometimes a two-dimensional movement is not required.

Optical Arrangement

The measurement station consists of the target plate and the camera. Digital measurements

have high demands on the deployed sensor devices, therefore an industry level camera is

chosen. The prototype uses the VRmC-9+ COB (b/w) from VRmagic2. It has a 1/2”

optical format and an usable resolution of 1280×1024 pixels. To acquire a sharp image with

high contrast, the lighting conditions must be acceptable. The camera’s exposure time is a

parameter, which can be adjusted to fit the environmental conditions, but only within certain

limits. A grayscale camera was selected, because no color information is needed. Moreover,

this design is more accurate than comparable color cameras with their relatively rough Bayer

patterns. This avoids other spheric errors resulting from that design and weakens chromatic

aberration, because only monochromatic light is detected. In addition, there’s no need for

another white-balancing step. Figure 2.11 shows the device.

Figure 2.11: The VRmagic VRmC-9+ COB (b/w) is a 1/2” grayscale industry approved camera
with a resolution of 1280× 1024 pixel. The resolution must be high enough to catch all the details,
as the whole target object is pictured at once. Tested objectives are a normal-angle lens with
f = 12mm and a wide-angle lens with f = 3.6mm.

The standard normal-angle lens has a focal length of f = 12mm, the calculations are also

carried out for a wide-angle lens with f = 3.6mm. A 1/2” chip has an image hight Bh =

4.8mm and an image width Bw = 6.4mm, the target plate has a dimension of 150mm ×
200mm. An additional safety margin of k = 20mm is added, therefore the object hight is

2 c©VRmagic GmbH, Mannheim, Germany, www.vrmagic.com
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Gh = (150 + 20)mm and object width is Gw = (200 + 20)mm. By putting the values into

Equation 2.2, the value for the object distance g is computed using commonly known optical

coherency [4]:

G = B

(
g − f

f

)
and consequently g = g(f) = f

(
G+B

B

)
. (2.2)

The computation must be done for the hight and for the width values, retrieving the object

distance in respect to the height gh and the width gw. Thus, the chosen value for g is

g = max(gh, gw). (2.3)

Figure 2.12: The dimensions of the target plate are equivalent to the object size parameters Gh =
150mm and Gw = 200mm with an additional safety margin k = 20mm. The origin of the Cartesian
coordinate system is the left upper corner.

This delivers an object distance g(f = 12mm) = 440mm and g(f = 3.6mm) = 140mm.

The detailed calculation can be found in Appendix A. Figure 2.13 illustrates the optical

arrangement. The amount of illumination can only be controlled by manipulating the expo-

sure time with the software, because the aperture size is unchangeable. The depth of field

can be set through manually focusing the objective to adjust the sharpness of the acquired

image.
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Figure 2.13: The schematic of an optical lens illustrates the relation between the object G and
image B, the object distance g and image distance b as well as the focal length f . The correct
distance between the camera and the target is essential for good results. It is mandatory to capture
the whole object sharply with full resolution. See Figure 2.2 for the laboratory setup.

The camera’s finite resolution in x and y dimension, xres = 1280pixel and yres = 1024pixel,

delivers a certain inexactness. As a result, each pixel covers only a quantized distance of

the object’s real dimension Gh = 150mm and Gw = 200mm. Consequently, the error of the

hight Δy is

Δy =
Gh + k

yres
=

150 + 20

1024
= ±0.166

mm

pixel
(2.4)

and the error of the width Δx is

Δx =
Gw + k

xres

=
200 + 20

1280
= ±0.172

mm

pixel
. (2.5)

In order to improve the lighting conditions, an additional interference filter is mounted onto

the camera’s objective. So only certain wavelengths can pass through the filter, e.g. the

laser’s and the LEDs’ red light with a wavelength of around λ = 650nm. As a result,

common daylight can widely be prevented from entering the camera.
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Target Plate

There are two different kinds of target plates employed in this application:

• a black solid eloxadized aluminium plate and

• a plate composed of electro-active glass.

The metal plate is used for experimental testing, but the final instrument should utilize the

glass. Electro-active glass is a composite material, which is capable of changing its opales-

cence instantly and with no alteration of light level. This means, the glass can switch from

transparent to opaque and vice versa. Two ways are known to implement the mentioned

function: electro-chromatic glass, which is based on a chemical effect, and the mentioned

electro-active glass.

The experiments are carried out by utilizing the SGG PrivaLite3 glass. Its primary de-

ployments can be found in architecture. The idea to use it for a measurement instrument is

new. Figure 2.14 illustrates the design of the material.

Figure 2.14: Layer design of the Saint-Gobain PrivaLite electro-active glass.

The product is composed of two sheets of extra-clear glass encapsulating a liquid crystal film

sandwiched between two ethylene vinyl acetate (EVA) interlayer films. The material is con-

stituted by two plates of polyethylene terephtalate (PET) films, coated with a transparent

metallic deposit and laminated together with a very fine layer of liquid crystal gel. When

an alternating voltage of 100V is applied to the lateral copper electrodes, the liquid crystals

3 c©Saint-Gobain Glass, Courbevoie, France, www.privalite.com
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orient themselves in the same direction. The initially milky film gets instantly transparent.

The power consumption is 24V A/m2. Its light transmission in transparent mode is 77% and

76% when it’s opaque.

The application utilizes this kind of glass, because it enables the reachability of a series

of consecutively installed measurement stations. Figure 2.15 shows the opaque glass and

the laser spot is generated directly on its surface. When the glass is transparent, the laser

beam can pass through it and reaches the solid target plate. The effect can be observed in

Figure 2.16.

Figure 2.15: The electro-active glass is turned off and opaque. The laser spot is generated directly
on the glass plate’s surface by the laser beam.

Figure 2.16: The electro-active glass is turned on and transparent. The laser beam passes through
the glass and impinges the metal target plate behind it.



2.2. HARDWARE SETUP 35

Calibration Plate

The calibration plate features an array of mounted LEDs, which are the L-483 SRSGW from

Kingbright4. Those LEDs’ characteristics are: a diameter of ∅5mm, a flat head, a white

diffused light and a wavelength of λ = 660± 20nm. Their operating point is approximately

at 2.1V .

The LEDs are arranged in a (m × n) = (7 × 9) matrix, i.e. there are 63 LEDs in total.

Their horizontal and vertical distance to each other is δx = δy = δ = 25mm, the manufac-

turing tolerance is ±0.01mm. The size of the grid defines the achievable accuracy for the

coordinate mapping functions. Note, that in some experiments not all LEDs are used. The

information of each LED’s location in the real space is needed for the calibration process

and it’s saved in the matrix Q = [q1, . . . , qn].

Linear Drive and xy-Table

The experiments in Chapter 8 take advantage of two drive systems:

• the linear drive THK Guide Actuator KR for one-dimensional movement and

• the xy-table iTK Dr. Kassen ST9 for two-dimensional, orthogonal movement.

The first device is operated via the Bernecker & Rainer 5 PS465/CP360 Programmable Logic

Controller (PLC) with the attached Acopos 1045 controller. This arrangement theoretically

offers a position repeatability of ±0.01mm. The PLC runs an Open Process Control (OPC)

service, allowing the direct reading and writing of files via common Ethernet with TCP/IP

protocol. Note, that it’s not working in real time any more! The communication with Mat-

lab is established through the standardized Process Visualization Interface (PVI).

The communication of the xy-table is set up through a common RS232 serial interface

between a computer and the Pollux 2 controller. The achievable position repeatability is

±0.02mm according to its datasheet. Figure 2.17 shows the vertically assembled device and

the mounted laser.

4 c©Kingbright, Taiwan, www.kingbright.com
5 c©Bernecker & Rainer Industrie-Elektronik GmbH, Eggelsberg, Austria, www.br-automation.com
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(a) The laser at the start position. (b) The laser at the end position.

Figure 2.17: The xy-table changes the position of the mounted laser. The movement is orthogonal
and two-dimensional. The vertical installation enables testing and calibration of the system.

Laser

The application utilizes a red laser from Schäfter und Kirchhoff 6, to be specific the 55Lpm-

653x11-S01-07+LR25S1000 SN:334. The emitted coherent light has as wavelength of λ =

638nm with a radiation power of 11mW , this is equivalent to a 3B laser class. It is energized

by a direct current of 5V .

The measured object’s size b should be at least five times bigger than the light’s wave-

length λ to avoid certain optical distortions. This indicates, that the laser spot’s position

can’t be located more accurate than determined by this physical barrier:

b ≥ 5λ resulting in b ≥ 3.2μm. (2.6)

6 c©Schäfter und Kirchhoff, Hamburg, Germany, www.sukhamburg.com
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2.3 Software Implementation

All calculations are done with Matlab7 version 7.8.0.347 (R2009a). Special advantage is

taken of the Image Acquisition Toolbox (imaqtool). Additionally, VRmagic delivers a con-

figuration tool: CamLab 2.7.2.6. It’s useful for setting up the camera for different lighting

conditions.

When performing image operations in Matlab, the x dimension is equivalent to the columns

of a matrix and the y dimension is equivalent to its rows. Furthermore, Matlab sets the

image’s origin point, meaning the c11 pixel with the (i, j) = (y, x) = (1, 1) coordinates, to

the left upper corner. As seen in Figure 2.12, this circumstance leads to the decision to put

the real world origin to that position. Depending on the camera’s resolution, there are m

rows and n columns. The acquired grayscale image is therefore a (m× n) matrix, whereby

each element cij = cyx is equivalent to the pixel’s 8 bit encoded brightness ranging from 0

(black) to 255 (white). Binary images are just represented by the values 0 (black) and 1

(white).

Figure 2.18: Each matrix has m rows, representing the y dimension, and n columns, representing
the x dimension. The corresponding indexing variables are i and j. Each element cij = cyx, i.e. a
pixel, has a defined position at the ith row (y dimension) and the jth column (x dimension) as well
as an 8 bit brightness value ranging from 0 . . . 255. The origin c11 is in the left upper corner of the
matrix.

7 c©The MathWorks Inc., Natick, MA, United States of America, www.mathworks.com



Chapter 3

Image Preprocessing

The preprocessing yields the normalized image D from the original image G:

G
normalization−−−−−−−→ D. (3.1)

There are two dominating external factors: the lighting condition, which causes unequally

illuminated images and noise, which is a random variation of the measured signal’s value. It’s

essential to take care of these undesired trends inside the images to avoid misinterpretation

of results. As a consequence, the methods described in this chapter try to handle these

effects economically [4].

3.1 Contrast Normalization

This method is a simple and efficient way to distribute the brightness over the whole available

range of pixel intensities. It’s basically a so called point operation, because it only takes the

currently investigated pixel value into account. To be correct, it’s not completely local, as

the minimal and a maximal values depend on the original image’s brightness. At first, the

parameters must be read out from the image. Except for this aspect, its handling is just like

a common point operation.

38
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The original grayscale image G has an 8 bit encoding, i.e. the pixels’ values are theoretically

ranging from 0 . . . 255. In many cases they don’t use the provided space. The smallest and

biggest values become the minimal value gmin and maximal value gmax of G. The normalized

image D utilizes the whole value spectrum by eliminating the unused space. Its minimal

value dmin and maximal value dmax can be set to fit the problem. In this application, the

original integer values are replaced by double values. Matlab provides better support for

normalized data, thus

dmin = 0 and dmax = 1. (3.2)

Figure 3.1: This example employs the turned-off calibration plate for demonstration. The original
grayscale image G has very low contrast, the histogram shows values ranging from approximately
10 to 70 (integer values). The normalized grayscale image D uses the whole spectrum ranging from
0 to 1 (double values). The result is an image with a higher contrast.
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The values for gmin and gmax are acquired by analyzing the original image G. The formula

in Equation 3.3 delivers the output brightness c
(out)
ij for every input pixel c

(in)
ij of the ith row

(y dimension) and jth column (x dimension):

c
(out)
ij =

dmax − dmin

gmax − gmin

(c
(in)
ij − gmin) + dmin. (3.3)

The Matlab implementation is very efficient as all variables are scalars.

1 D = (dMax - dMin) / (gMax - gMin) * (G - gMin) + dMin;

Source Code 3.1: Matlab code to perform image normalization.

3.2 Noise Suppression

Filtering is necessary to reduce the noise of images and to smooth value peaks. The procedure

is a local operation, because it adds information from neighboring points [4]. The defined

neighborhood is called tile, the weighted sum of the pixels included in this tile delivers the

filtered value. The area enclosed by the tile is called masksize fm.

Figure 3.2: The input image D is grouped into sections of pixels, the so called tiles. Each tile
undergoes a filter operation defined by a convolution kernel, e.g. the mean brightness of the pixel
group. The resulting value is projected onto the filtered output image Df [4].

In this implementation, the mask is standardized to the quadratic masksize to obtain a

smooth image. See Figure 3.3 for an example of how a scattered image of a laser spot is

filtered.
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1 mask = ones(fm)/fmˆ2; % fm ... filter masksize

2 Df = filter2(mask, D); % linear 2D FIR filter

Source Code 3.2: Linear two-dimensional filtering with Matlab.

Matlab’s function filter2() filters the input data D with the two-dimensional FIR filter mask

fm. The application uses fm = 5 for the operation. It computes the result, Df , using two-

dimensional correlation. The delivered convolution kernel is then used for the filter operation.

Matlab utilizes a finite impulse response (FIR) filter for digital image processing. It’s im-

pulse response is of finite duration, because it settles to zero in finite time. There are no

internal feedback loops, i.e. the implementation is easier and there aren’t any rounding errors

compounded by summed iterations. FIR filters are stable as they do not possess any poles.

As a drawback, they need more computation power than other comparable filter types.

Figure 3.3: The original image D shows a scattered laser spot. It would be hard for the following
operations, e.g. the contour algorithm, to handle such raw data. The example uses a masksize of
fm = 5 to filter the original image. The filtered image Df is much smoother and the laser’s gradient
is well defined. Note, that the procedure is often carried out only for certain regions Ri of an image
D.
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Object Segmentation

The set of image objects A∗ = {R1, . . . ,Rm} is essential for image processing, because it

makes a statement of what is actually measured. Segmentation is the process of isolating

these image objects from their background, because each Ri is part of the complete image

D:

Ri ∈ D. (4.1)

Generally, this is a hierarchical approach: a workspace, which contains the image objects, is

defined. After the segmentation, they are classified for their relevance, delivering the set of

regions of interest A = {R1, . . . ,Rn}, whereby

A ∈ A∗ and n ≤ m, (4.2)

when n and m are the numbers of contained elements. This yields the following procedure:

D
binarization−−−−−−→ B

segmentation−−−−−−−→ A∗ = {R1, . . . ,Rm} classification−−−−−−−→ A = {R1, . . . ,Rn}. (4.3)

Note, that B is just used to find the ROIs, but further computations are carried out on

D. The determination of the center coordinates P = [p1, . . . ,pn] is the next process step.

The sections in this chapter introduce several methods for binary segmentation, the most

common technique to identify image objects via contour finding. Additionally, the principles

of classification are described [4].

42
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4.1 Binary Morphology

Methods, which are based on the determination of thresholds in grayscale images, are utilized

for binary segmentation. This basic principle is described as

c
(out)
ij =

⎧⎨
⎩1 if c

(in)
ij > t

0 else,
(4.4)

when c
(in)
ij and c

(out)
ij are the intensities of the input and output pixels of the ith row (y

dimension) and jth column (x dimension) of the image D. This means, if the input value

is higher than a specific threshold t, then the investigated pixel’s output value is set to 1

(white), if it’s lower it is set to 0 (black). The result is a black and white, i.e. binary or

monochrome, image B. Finding a suitable threshold for the binary morphology is one of the

major difficulties in image processing. The value of t tends to change with different lighting

conditions, especially when there’s a notable gradient. There are two different approaches:

• global thresholds, which are valid for the complete image D, and

• local thresholds, only determined from a local feature Ri.

This means, instead of having a single global threshold, the local one smoothly adapts its

value across the image. The task is to find an appropriate level for t, which suits the appli-

cation. The identification and segmentation of image objects is simplified. As a downside,

most threshold methods are not robust and deliver different solutions for the same image

under unstable conditions. As a result, they must be determined by hand. The process

additionally induces loss of information, because the original gray values, e.g. ranging from

0 . . . 255 for an 8 bit encoding, are reduced to just 2 values. Another major problem is, that

only the intensity is considered, but not any relationships between the pixels. There is no

guarantee that the pixels identified by the thresholding process are contiguous. Therefore,

it’s recommended to filter the image before binarizing it to avoid sparkles. This effect would

cause the contour algorithm to find many unwanted objects, like in Figure 4.6.

Figure 4.1 shows an unfiltered grayscale image of a laser spot. This example will demon-

strate, that even in this simple case different threshold strategies will lead to varying results

for the same input. Figure 4.3 shows the outcome of binarizing the image with four types of

methods, all of them are based on considering the pixels’ brightness. They will be described

in the following sections.
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Figure 4.1: The image object Ri of the original grayscale image D contains the laser spot. In this
example, it has an 8 bit encoding, i.e. 256 discrete values. In fact this is already an extracted
object, therefore the resulting threshold will be valid only locally. If it is the goal to find the
object’s contour, then the image should be filtered.

Figure 4.2: The threshold t acts as classifier: each pixel value below t is set to 0, each value above
t is set to 1. The surface plot visualizes the issue, whereby the transparent plane is equivalent to
the threshold level.
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A local threshold is better suited for the discussed problem, because the black to white ratio

is not balanced globally. Most of the original image is black, only a few parts are gray and

white. Computing a global threshold under this condition would lead to biased results.

Figure 4.3: Each binarizing method delivers a different outcome. There’s no general statement of
which one is the best, it depends on the investigated problem. During the experiments, the local
Otsu threshold is used, as it proofed to be the most reliable one.

In order to compute the different thresholds, the pixels are classified into discrete bins ac-

cording to their intensities. The resulting histogram in Figure 4.4 utilizes 1024 bins. The

pixel values are rescaled to the common 0 to 1 range through normalization. Figure 4.5

shows the associated levels for t.
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Figure 4.4: Each pixel is classified into one discrete bin by its intensity.

Figure 4.5: The threshold’s bin index is normalized to fit a value between 0 and 1.
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Note, the results of the methods differ significantly. As a consequence, the image object’s

edges are clearly shifted and with them their defining center coordinates. The binarizing

method must fit the problem or the following processes are based on bad quality data. This

is a challenging task, because it’s not possible to say generally which one is the best. The

Matlab implementation of the algorithms can be found in Appendix B.

4.1.1 Otsu’s Method

Otsu’s method is based on the idea, that there are basically two groups of pixels with different

value ranges of their intensities, i.e. the result is a bivariate histogram. The primary difficulty

is, that these ranges are overlapping and that only the histogram for the combined regions is

available. The goal is to minimize the error of classifying a background pixel as a foreground

one or vice versa. The method involves iterating through all the possible threshold values

and calculating a measure of spread for the pixel levels of each side of the threshold, i.e. the

pixels that either fall in foreground or background. The threshold minimizing the combined

spread should be determined [25].

The method defines two classes of pixels: the brighter (white) ones w and the darker (black)

ones b. The exhaustive search for the Otsu threshold to minimizes the intra-class variance,

which is defined as a weighted sum of variances of the two classes:

σ2
w(to) = ω1(to)σ

2
1(to) + ω2(to)σ

2
2(to) ← min, (4.5)

whereby ω is the probability and σ2 is the variance of the investigated class. In fact, it’s the

same as maximizing the inter-class variance between white σ2
w and black σ2

b pixels:

σ2
b (to) = σ2 − σ2

w(to) ← max . (4.6)

The iterative updates of the histogram and the probabilities of each intensity level yields an

effective algorithm, whereby the desired threshold corresponds to the found maximum value.

Matlab implements this functionality in the graythresh() function.

1 t = graythresh(D); % t ... threshold

2 B = im2bw(D,t); % binarizing using t

Source Code 4.1: Binarizing an image with Matlab.

The following approaches are also based on the idea of two classes w and b in a bivariate

histogram. Hence, Otsu’s method is utilized as an effective way to acquire them.
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4.1.2 Brightness Class Average

The simplest algorithm is to determine the intensities μw and μb associated with the two

peaks of a bivariate histogram pw and pb, i.e. the brighter and darker pixels, to compute the

simple threshold ts:

ts =
μw + μb

2
. (4.7)

The peaks are acquired by finding the maximum values of the two classes delivered by Otsu’s

method. The simple threshold is suitable for high quality images with balanced bimodal

histograms.

4.1.3 Gaussian Curve Intersection

Given a bivariate histogram, it’s a reasonable idea to consider the intersection point of two

Gaussian bell curves, modeled by the two intensity classes w and b, as a good threshold

value, because the data of each class is normally distributed. The curves are described by

the equations

yw(a) = pw · e− 1
2(

a−μw
σw

)
2

and yb(a) = pb · e−
1
2

(
a−μb
σb

)2

, (4.8)

when a is the index of the investigated bin. The curve is evaluated by the mean value μ,

which is in fact the index of the associated peak pw or pb, and the standard deviation σ of the

particular class. Consequently, the intersection point can be found by solving the equation

yw(a) = yb(a) for a:

ln pw −
(
a− μw

σw

)2

= ln pb −
(
a− μb

σb

)2

. (4.9)

This is a simple quadratic equation, the valid solution lies between the two intensity peaks

pw and pb. The calculated value represents the Gauss threshold tg.

4.1.4 Maximal Normal Distance

The described algorithm works for images with bad illumination conditions, i.e. the bivariate

nature is not clearly present. This leads to strongly asymmetric histograms. Like the other

methods, it’s based on two brightness classes. The peaks are connected by a line, the bin

with the maximal normal distance is equivalent to the sought threshold tn. Note, that in

Figure 4.4 the two magenta lines are orthogonal to each other, the axes are not equalized.
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4.2 Contour Finding

The monochromatic image B is used to find the image objects Ri, because of the higher

information density in comparison to the grayscale image D. When the location of each Ri

is acquired, the further computations are carried out for D. This is no problem, because B

and D are the same size and also contain the same information about the objects. Therefore,

the location of a Ri is the same in both images. Each separated region Ri ∈ D is equivalent

to its contour. The algorithm detects this bright-dark transfers, whereby it is triggered by a

threshold t. An isolated object generates a point cloud on the edges around it. By connect-

ing them in the right order, the defining contour is acquired.

This issue is not trivial, because the order of the points is not always clear without any

doubt. A common solution is the introduction of a neighborhood to the investigated point.

A contour point on the edge of an object is then connected to the next point on this edge, as

long as it is a neighbor of the original point. This procedure must iteratively be performed

clock-wise or counter-clock-wise, but the chosen direction must be kept constant. The algo-

rithm is complete, when the first point is reached again and a contour around an object is

acquired. If the first point cannot be reached, then it’s an open contour and not an object

of interest.

Matlab’s function contour() delivers a vector of points c. The points are settled around

the image object’s edge and define its contour.

1 c = contour(D,t); % t ... threshold vector, c ... contour points

Source Code 4.2: Finding an image object’s contour with Matlab.

The threshold vector t has the form t = [t1, t2]. If t1 �= t2, then Matlab delivers 10 contours

using 10 evenly distributed thresholds between the two values. If t1 = t2, then Matlab delivers

only one contour in c. Still, this effect can be exploited to generate as much contours as

needed, e.g. t1 = [t1, t1], . . . , tn = [tn, tn] . Figure 4.6 illustrates the outcome for a filtered

and an unfiltered image.
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Figure 4.6: The ROI R shows one laser spot, but the contour plot reveals, that there exist numerous
tiny objects around the main object. Filtering solves the problem by reducing the noise and
removing the brightness peaks, which are causing the errors. The example uses a filter mask
fm = 5 and an Otsu threshold vector t = [to, to].
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4.3 Region of Interest Classification

The last step of the segmentation is the classification of image objects A∗ = {R1, . . . ,Rm} as

regions of interest A = {R1, . . . ,Rn}. Not every found feature is relevant for the measurement

task. As a consequence, each image object Ri is checked for its geometric properties, which

are:

• the minimum (xmin, ymin) and

• the maximum (xmax, ymax) object size as well as

• the length to width ratio (rmin, rmax, whereby r = x
y
)

in respect of its x and y dimensions. The Matlab code is:

1 % check each criterium

2 xDimValid = (xDim ≥ xDimMin) && (xDim ≤ xDimMax);

3 yDimValid = (yDim ≥ yDimMin) && (yDim ≤ yDimMax);

4 xyPropValid = (xDim/yDim ≥ xyPropMin) && (xDim/yDim ≤ xyPropMax);

5 % check if image object is a region of interest

6 roiValid = (xDimValid && yDimValid && xyPropValid);

Source Code 4.3: Image object classification for ROI determination.

The parameters are based on a-priori knowledge. Following settings to deliver reliable results

under laboratory conditions:

xmin = ymin ≈ 10pixel,

xmax = ymax ≈ 100pixel,

rmin ≈ 0.5,

rmax ≈ 2.0.

These values should only give an impression of their dimensions, they can vary by the factor

2 because of lighting conditions and camera settings. The best idea is to set them up during

the calibration procedure. Figure 4.7 shows an example of an image object, which is not a

region of interest. It’s rejected as it does not meet the described criteria.
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The classification for the example in Figure 4.7 works this way:

A∗ = {R1,R2} classification−−−−−−−→ A = {R1}. (4.10)

Figure 4.7: This is an image of the target plate. The laser spot R1 is marked with the red
surrounding rectangle, which also indicates the confidence range added to this image object. The
object fulfills the described criteria by having valid dimensions and proportions. Therefore, it is a
region of interest. However, there’s also a disturbing object R2 caused by the installed interference
filter, marked with a green circle. It’s recognized as an image object by the binary segmentation,
but thanks to the classification this irrelevant feature is not used.

Each relevant object in A gets an additional security margin of varying size added to it’s

dimensions. The reasons are: to ensure to don’t miss relevant data at the border of the

object and it’s necessary for certain center determination methods. In fact, each Ri is a cut

out window of the image D, the binary image B was just used to find its location.



Chapter 5

Center Determination

This chapter investigates a collection of different techniques to determine the center point

p of an image object R, because this feature is its defining attribute. The matrix R is used

equivalently to the general image object Ri ∈ D for easier reading of the following section:

R
determination−−−−−−−→ p = [xc, yc]

T . (5.1)

In the application, the region of interest R contains a laser spot, which is projected on a

metal or glass target plate. Consequently, its appearance is determined by the reflection

from the rough or glossy surface, the constructive and destructive interferences of coherent

light and the blooming effect of the camera sensor. All these effects cause the image curve

to be spread over several pixels with varying width in a direction orthogonal to the laser

beam. Furthermore, the intensity values along the spread are distributed in the neighborhood

around the sought center of the object. The explanation states, that the algorithms must

be capable of handling these influencing factors.

53
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5.1 Center of Gravity

The centroid, more commonly called the center of gravity (COG), is considered to be the

equilibrium point at which the entire mass of an object is concentrated. In image processing,

the mass of the object is replaced with the pixels’ intensities. As a consequence, the center

coordinates p of any given geometrical object can easily be acquired. Equation 5.2 calculates

the centroid, whereby cyx is the intensity of the pixel at the corresponding y and x position,

i.e. ith row and jth column, k is a power factor to emphasize bright pixels in a grayscale

image and R is the investigated area [20, 17]:

p = [xc, yc]
T =

[∑
y,x∈R x · ckyx∑
y,x∈R c

k
yx

,

∑
y,x∈R y · ckyx∑
y,x∈R c

k
yx

]T

. (5.2)

The calculation’s precision is influenced by involving pixels, which are not part of the actual

object. The binary image in Figure 5.2 clearly contains such pixels. The intensity values of

all pixels inside R are evaluated by a threshold t, which is used to separate the object’s pixels

from the background and thereby determines which ones should be used for the computation.

To conclude, a small threshold leads to a biased object center, because more pixels enter the

calculation, a high value leads to lower precision. Only a proper threshold value t and an

adequate method to compute it will effectively separate the object from its background and

surrounding noise. Note, that for this algorithm, the values for the x dimension are stored

in the rows and the values for y are stored in the columns.

1 % matrix with each pixel set to its coordinate values

2 [rows,cols] = size(D);

3 x = ones(rows,1)*(1:cols);

4 y = (1:rows)’*ones(1,cols);

5 % calculating the centroid

6 area = sum(sum(D));

7 xCenter = sum(sum(D.ˆp).*x))/area;

8 yCenter = sum(sum(D.ˆp).*y))/area;

Source Code 5.1: Computation of an area’s center of gravity with Matlab.
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Figure 5.1: The grayscale image’s pixels have double values ranging from 0 to 1. As a result, each
pixel’s intensity in R acts as a weighting factor for the calculation. In the example, the emphasizing
factor is set to neutral, i.e. k = 1.

Figure 5.2: The image R has been binarized by using an Otsu threshold to and therefore the former
gradient has been eliminated. The pixel intensities are now 0 or 1. As a consequence, the resulting
center points are different.
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5.2 Gaussian Curve Extremum

The method uses the idea of determining a Gaussian bell curve’s extremum to obtain the

center point of an uniform geometric figure along its main axes. A laser spot approximately

represents a circle on the target plate in R. Therefore, it can be examined from every angle.

Figure 5.3 illustrates the concept: the mean intensity of each column is plotted on the x axis

and the mean intensities of each row is plotted on the y axis. The resulting curves of mean

intensities are smoothed by a moving average method.

Figure 5.3: The mean intensities of R’s columns and rows are plotted in respect of the x and y
axis to obtain a set of data points. The data points are smoothed and fitted by a least squares
polynomial. The peak values of the resulting Gaussian curves are equivalent to the laser spot’s
center coordinates p in R.
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A least squares polynomial fit is performed onto the smoothed data points a to acquire the

bell curve’s characteristics, which are the mean μ, the standard deviation σ and a scale factor

k:

f(ai) = k · e− 1
2(

ai−μ

σ )
2

. (5.3)

The peak values, i.e. the extremum of each curve, are equivalent to the center points of

the corresponding axes of R. Combining them yields the coordinates of the center point p.

Note, like the center of gravity method, this approach uses the unfiltered image.

5.3 Algebraic Conic Fitting

A laser spot’s contour can be modeled as a cloud of scattered data points. Fitting a closed

planar second order implicit curve, i.e. a circle or an ellipse, is a good idea to determine such

an object’s center coordinates. However, a projected circle yields a distorted ellipse and as

a result, the center point is not invariant, Figure 5.4 illustrated the effect.

Figure 5.4: The schematic visualizes the non-invariant center point. In real space, the coordinates
of q describe exactly the circle’s center. However, in camera space, the equivalent p is not located
in the center of the ellipse. The computed point is slightly different than the actual point p, because
of the camera objective’s distortion.

The algebraic method introduced in this section is based on linear least mean squares fitting,

whereby the approximated conic’s curve is compared to the contour points by calculating

the resulting residuals. This approach can be considered as one kind of template matching,
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as a defined geometric figure is fitted to a given data set. A detailed introduction to the

Euclidean classification of conics can be found in literature [15, 12].

A generic conic is represented by its concise matrix form:

uTCu =
[
x y w

]⎡
⎢⎣c1

c2
2

c4
2

c2
2

c3
c5
2

c4
2

c5
2

c6

⎤
⎥⎦

⎡
⎢⎣x

y

w

⎤
⎥⎦ = 0. (5.4)

The homogeneous coordinates of a point on the conic are given by the vector u = [x, y, w]T ,

whereby the conic’s center is uc = [xc, yc, wc]
T . Consider, that homogeneous and affine (or

inhomogeneous) coordinates of a point are related as following:

u =

⎡
⎢⎣x

y

w

⎤
⎥⎦

︸ ︷︷ ︸
homogeneous

and p =

[
x
w
y
w

]
︸ ︷︷ ︸

affine

. (5.5)

Euclidean invariants, that determine the conic type, are embedded inside the symmetric

coefficient matrix C. Every point ui = [xi, yi, wi]
T imposes a constraint on the coefficients of

the conic. Because the multiplication of Equation 5.4 by a non-zero constant is of no conse-

quence, five known points are enough do describe a generic conic. Consequently, expanding

the equation with w = 1, yields an implicit polynomial in x and y, which can be written as

the product of two vectors n and c:

nTc =
[
x2 xy y2 x y 1

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1

c2

c3

c4

c5

c6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0, (5.6)

where the vector c contains the conic coefficients and n carries the point information. For

fitting a conic with n given points, this results in n equations for the algebraic distance from

each point ui to the approximated conic. The set of equations provides the design matrix N

for the fitting procedure.
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Nc =

⎡
⎢⎢⎣
x2
1 x1y1 y21 x1 y1 1
...

...
...

...
...

...

x2
n xnyn y2n xn yn 1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1

c2

c3

c4

c5

c6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎣
e1
...

en

⎤
⎥⎥⎦ = e, (5.7)

whereby the ei are the algebraic distances of each point to the conic, i.e. the resulting

error vector e. The last column of N contains only ones, which are statistically invariant

with respect to the data points. For numerical stability, the calculation of the total least

squares requires this column to be removed to avoid the unusable result of a hyperplane.

The decomposition is called orthogonal residualization [24]. The goal is the partitioning of

N into

N = [N1N0] =

⎡
⎢⎢⎣
x2
1 x1y1 y21 x1 y1 1
...

...
...

...
...

...

x2
n xnyn y2n xn yn 1

⎤
⎥⎥⎦ , (5.8)

from which the new design matrix N̂ is sought. It is the orthogonal residual of N1 in respect

of N0:

N̂ = N1 − N0N
+
0 N1, (5.9)

whereby the Moore-Penrose pseudo inverse N+
0 is defined by:

N+
0 � (NT

0N0)
−1NT

0 , for a vector containing n ones: N+
0 =

1

n
NT

0 . (5.10)

Back-substitution into Equation 5.9 yields

N̂ = N1 − N0
1

n
NT

0N1, (5.11)

which is equivalent to the removal of the mean value from each column of matrix N1:

N̂c∗ =

⎡
⎢⎢⎣
x2
1 − x2 x1y1 − xy y21 − y2 x1 − x̄ y1 − ȳ
...

...
...

...
...

x2
n − x2 xnyn − xy y2n − y2 xn − x̄ yn − ȳ

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

c1

c2

c3

c4

c5

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎣
e1
...

en

⎤
⎥⎥⎦ = e. (5.12)
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As a consequence, the cost function K, which should be minimized, is

K = eTe =
n∑

i=1

e2i ← min, (5.13)

i.e. the sum of squared normal distances ei. Figure 5.5 illustrates the idea.

Figure 5.5: The schematic illustrates the usability of an algebraic least squares approach for conic
fitting. Each data point ui (equivalent to pi) has a normal distance ei to the curve, which represents
the error. By minimizing the cost function K, i.e. the sum of quadratic errors, the best fitting
conic, e.g. a circle or an ellipse, is computed.

The minimization is performed by applying singular value decomposition (SVD) to the new

design matrix N̂
SVD−−→ [U, S,V], whereby N̂ = USVT . The right singular column vector v∗ of

V corresponds to the smallest singular vector value in S. The SVD ensures the constraint

||v∗|| = 1 to obtain a non-trivial solution for the vector v∗. If N̂ is a (m × n) matrix, then

U is a (m×m) and V is a (n× n) unitary, i.e. normalized and orthogonal, matrix. Hence,

the magnitude information is contained in S. Moreover, the constraint imposes that the

residuals ei are the normal distances of the data points to the fitted plane.[15]

The thesis focuses on circular and elliptical solutions, because these two geometrical figures

deliver the best quality of fit for an imaged laser spot. To enable an efficient computation

inside a region of interest R, the pixel coordinates are first normalized. To fit an adequate

conic, noise suppression is necessary to avoid unwanted contours from sparkles.
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5.3.1 Ellipse Approximation

The well known equation of a normal orientated ellipse in the plane is given by

(xi − xc)
2

a2
+

(yi − yc)
2

b2
= 1, (5.14)

where xi, yi are the Euclidean coordinates of a point lying on the ellipse with the center

point pc = [xc, yc]
T and the form factors a and b. Thus, by expanding Equation 5.4, the

scalar point equation of a conic, which also describes an ellipse in its homogeneous form, is

derived:

c1x
2
i + c2xiyi + c3y

2
i + c4xiwi + c5yiwi + c6w

2
i = 0. (5.15)

Considering, that the measurement data is scattered, the algebraic distance ei of a point

ui = [xi, yi, wi]
T to the ellipse is

c1x
2
i + c2xiyi + c3y

2
i + c4xiwi + c5yiwi + c6w

2
i = ei. (5.16)

The elliptical parameters are embedded inside the conic coefficient matrix C, which are

the homogeneous coordinates of the center point uc = [xc, yc, wc]
T , the direction through

the eigenvectors i1, i2 and the lengths l1, l2 of the major and minor principal axes. The

homogeneous coordinate wi acts as a scaling factor and it’s best to set wi = 1, leading to:

c1x
2
i + c2xiyi + c3y

2
i + c4xi + c5yi + c6 = 0, (5.17)

which is equivalent to Equation 5.6. Consequently, five given points fully define an ellipse.

This means, if n ≥ 6 data points, then a system of linear equations is derived like in Equa-

tion 5.7.

The formulas explained so far are completely general for conics. The Euclidean invariants

describing an ellipse are depending on the coefficient matrix C, which are

D = detC and (5.18)

Δ =

∣∣∣∣∣c1
c2
2

c2
2

c3

∣∣∣∣∣ = c1c3 − c22
4
. (5.19)

If D �= 0 and Δ > 0, then the coefficients of the matrix C describe an ellipse, if D �= 0 and

Δ < 0 the shape of the conic is hyperbolic and finally, if D �= 0 and Δ = 0, it is parabola.
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The affine center point can be derived by acquiring

uc = [xc, yc, wc]
T and converting it to pc =

[
xc

wc

,
yc
wc

]T

. (5.20)

Figure 5.6: Compare the plot to the schematic in Figure 5.5. The red dots indicate the points ui,
the distances to the fitted blue conic line are the errors ei. The approximated ellipse represents
the least squares solution. The example uses three contours with the Otsu threshold vectors
t1 = [0.9to, 0.9to], t2 = [1.0to, 1.0to] and t3 = [1.1to, 1.1to].
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5.3.2 Circle Approximation

The equation of a circle in the plane is given by

(xi − xc)
2 + (yi − yc)

2 − r2 = 0, (5.21)

where xi, yi are the Euclidean coordinates of a point lying on the circle with the center point

pc = [xc, yc]
T and the radius r. A circle is a special kind of ellipse, because the axes have

the same lengths l1 = l2 = r. Because of the constraints, it is possible to describe a circle

with just three given points.

The explanation skips the use of homogeneous coordinates by directly utilizing Grassman-

nian tetra-circular coordinates on the above equation:

c1(x
2
i + y2i ) + c2xi + c3yi + c4 = 0. (5.22)

As already mentioned, any point of the circle can be derived as a linear combination of three

known points. Hence, the linear system of equations can be solved for the coefficients ci by∣∣∣∣∣∣∣∣∣∣

(x2 + y2) x y 1

(x2
1 + y21) x1 y1 1

(x2
2 + y22) x2 y2 1

(x2
3 + y23) x3 y3 1

∣∣∣∣∣∣∣∣∣∣
= 0. (5.23)

The linear system of equations is derived by Grassmannian expansion of the determinant.

Taking into account, that the measurement data is scattered, the algebraic distance ei of a

point pi to the circle is

c1(x
2
i + y2i ) + c2xi + c3yi + c4 = ei. (5.24)

Having n ≥ 4 data points, to describe the circle, Equation 5.24 can be rewritten as

⎡
⎢⎢⎣
(x2

1 + y21) x1 y1 1
...

...
...

...

(x2
n + y2n) xn yn 1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
c1

c2

c3

c4

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎣
e1
...

en

⎤
⎥⎥⎦ , (5.25)

which is equal to its abbreviated form:

Nc = e, (5.26)
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whereby N is once again the design matrix. Analog to Equation 5.8, orthogonal residualiza-

tion is performed:

N = [N1N0] =

⎡
⎢⎢⎣
(x2

1 + y21) x1 y1 1
...

...
...

...

(x2
n + y2n) xn yn 1

⎤
⎥⎥⎦ , (5.27)

hereby acquiring the mean-free form:

N̂c∗ =

⎡
⎢⎢⎣
(x2

1 + y21)− (x2 + y2) x1 − x̄ y1 − ȳ
...

...
...

(x2
n + y2n)− (x2 + y2) xn − x̄ yn − ȳ

⎤
⎥⎥⎦

⎡
⎢⎣c1c2
c3

⎤
⎥⎦ =

⎡
⎢⎢⎣
e1
...

en

⎤
⎥⎥⎦ = e. (5.28)

The computation of the coefficients c1, c2 and c3 is done through back-substitution [15]. The

center of the circle pc = [xc, yc]
T and the radius r are calculated the following way:

pc =

[
xc

yc

]
=

[
− c2

2c1

− c3
2c1

]
and r =

√
x2
c + y2c −

c4
c1
. (5.29)

Figure 5.7: Compare the plot to the schematic in Figure 5.5. The red dots indicate the points
pi, the distances to the fitted blue conic line are the errors ei. The approximated circle represents
the least squares solution. Once again, the example uses three contours with the Otsu threshold
vectors t1, t2 and t3.



Chapter 6

Coordinate Mapping

Linear two-dimensional projections can be represented through a projection matrix M:

M =

⎡
⎢⎣a11 a12 dx

a21 a22 dy

gx gy 1

⎤
⎥⎦ , (6.1)

whereby {a11, a12, a21, a22} describe the translation, rotation, scaling and affine transforma-

tion by the amounts of dx and dy of a planar object. Additionally, gx and gy model the

projective geometry. The last element of the matrix is a scalar and is set to 1, i.e. the ma-

trix is normalized. This leads to a total number of 8 degrees of freedom for two-dimensional

projections. The only remaining invariant is cross ratios [13]. Note, if gx = gy = 0, then it’s

an affine transformation and original parallel lines stay parallel after the projection. The

schematic in Figure 6.1 gives an idea how a warped linear space, including its objects, can

be transformed to the real space, which is basically an Euclidean plane with a Cartesian

coordinate system. The ultimate goal of the procedure is the piecewise mapping of a camera

space point p = [xc, yc]
T to its corresponding real space point q = [xr, yr]

T , therefore

p =

[
xc

yc

]
[pixel]

mapping−−−−−→ q =

[
xr

yr

]
[mm]. (6.2)

The problem visualized in Figure 6.1 is a well explored branch of image processing, the

commonly utilized method is linear homography. The issue gets more complex when adding

non-linear effects to it, e.g. through optical distortions caused by a camera’s objective. The

illustration in Figure 6.2 shows such a fish-eye effect.
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Figure 6.1: The schematic gives an idea how a point p in the camera space can be mapped to its
real space pendant q. The linear perspective effects are described via the projection matrix M,
which yields 8 degrees of freedom. A solution can by acquired by the usage of linear homography.

Figure 6.2: A non-linear camera space makes the mapping process more complex, as the utilized
methods are also based on non-linear models. This thesis uses the idea of polynomial fitting and
tensor interpolation.

The handling of such non-linear effects demands the introduction of more specialized meth-

ods. The thesis will investigate two ideas: polynomial control points as well as tensor inter-

polation via basis function sectioning and quad tree decomposition.
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6.1 System Calibration

In this application, the calibration process generates a relation between the camera space

and the metric real space. To determine corresponding points inside the images, a set of

predefined and uniquely identifiable points, known as the base points or control points, are

selected from each space. Once two sets of control points are chosen, techniques are available

to match these two sets.

The first set Q is an array of vectors, i.e. a matrix, of known real space coordinates with nr

points:

Q = [q1, . . . , qn] (6.3)

and the second set P is an array of vectors of known camera space coordinates with nc points

P = [p1, . . . ,pn] . (6.4)

The points in P are acquired from the originally acquired grayscale image G. The calibration

yields:

Q & P
calibration−−−−−−→ calibration data. (6.5)

Figure 6.3: The calibration process consists of two steps: at first, the image’s base points P
are selected and matched to their corresponding real world base points Q. Afterwards, a mapping
function is determined, which is capable of transforming other points in the image using information
about the matched base points. This is true for linear and non-linear spaces.



68 6.1. SYSTEM CALIBRATION

Obviously, a calibration for a bijective mapping function can only be carried out, if the

condition nr = nc is fulfilled. The schematic in Figure 6.3 illustrates how the generated

mapping functions characterize geometric differences between the two spaces by establishing

a mathematical relation between the base points P and Q. A number of factors determine

the acquirable calibration quality and introduce a systematic error:

• the real world’s reference points Q were produced with limited preciseness,

• the camera space’s base points P can only be determined with a certain accuracy and

• the deployed mathematical models are approximation methods.

Each method requires a minimal number of n reference points to work as intended, whereby

the number must be equal in both spaces, thus n = nr = nc. Additionally, the number n

depends on the degree d of the function. Table 6.1 provides an overview.

method: required number of points:

linear homography n = 4
n = 6 for d = 2

polynomial control points n = 10 for d = 3
n = 15 for d = 4

tensor interpolation n = d+ 1

Table 6.1: Required number of points for the coordinate mapping methods.

The metric coordinates in Q are a-priori known, the pixel coordinates P are extracted au-

tomatically from the image D, but in an arbitrary order. The calibration requires a sorted

list of coordinates, whereby the elements in each list must match each other, i.e. pi ↔ qi

describe the same point in different spaces. The arranging of P is implemented via a custom

hash code and insertionsort, the fastest sorting algorithm which is not based on a divide

& conquer approach. The Source Code 6.1 shows the Matlab implementation, whereby a

contains the elements and b holds the original index of each element.
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Figure 6.4: Each red rectangle indicates the existence of a region of interest Ri. The coordinates of
the center points pi are automatically acquired. Afterwards, a sorting procedure must be applied.

1 for i = 2:n

2 cmp = a(i);

3 idx = b(i);

4 j = i-1;

5 while (j≥ 1 && a(j)>cmp)

6 a(j+1) = a(j);

7 b(j+1) = b(j);

8 j=j-1;

9 end;

10 a(j+1) = cmp;

11 b(j+1) = idx;

12 end;

Source Code 6.1: The Matlab implementation of insertionsort.

The results of the automatic acquisition of the regions of interest Ri of an image D is visualized

in Figure 6.4. The pre- and post sorted data points of P are shown in Figure 6.5.
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(a) Unsorted regions of interest.

(b) Sorted regions of interest.

Figure 6.5: The ROIs are sorted from the upper left to the lower right corner. The result of the
automatic acquisition is stored in the matrix of camera coordinates P. The correct order is essential
for establishing a meaningful relation between P and Q.
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The application’s main problems are the geometric distortions caused by the non-perfect

camera components, i.e. the objective and the sensor, and the non-affine projection. These

circumstances generate optical effects, which must be handled by the mapping functions.

Although the polynomial control points and tensor interpolation are more attractive than

the linear homography, their price in terms of computation time is generally higher. Each

method will be explaint thoughtfully in the following sections.

6.2 Linear Homography

As already mentioned in Chapter 5, homogeneous and affine coordinates of a point are related

as following:

u = [xc, yc, wc]
T and p =

[
xc

wc

,
yc
wc

]T

, (6.6)

which is a non-bijective mapping of

R
3 −→ R

2, (6.7)

where w is the homogeneous component. Homogeneous coordinates allow it to deal with

points at infinity (singularity) by setting w = 0. This issue allows the intersection of parallel

lines in non-affine projections. The transformation is given by

v = Hu, (6.8)

when v is the homogeneous equivalent of the affine point q. The common approach to

compute the homography matrix H is the direct linear transformation (DLT) algorithm.

Equation 6.8 is expressed in homogeneous coordinates:

⎡
⎢⎣xr

yr

wr

⎤
⎥⎦ =

⎡
⎢⎣h11 h12 h13

h21 h22 h23

h31 h32 h33

⎤
⎥⎦

⎡
⎢⎣xc

yc

1

⎤
⎥⎦ . (6.9)

The (3 × 3) homography matrix H may always be divided by a non-zero real number, i.e.

there are only eight unknown variables. As a consequence, the location of at least four non-

collinear points, i.e. they do not lie on one mutual line, must be known on each plane to

yield a total of eight linear equations.
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The affine coordinates can be acquired by rewriting Equation 6.9:

v =

⎡
⎢⎣

xr

wr

yr
wr

wr

wr

⎤
⎥⎦ =

⎡
⎢⎣

h11xc+h12yc+h13

h31xc+h32yc+h33

h21xc+h22yc+h23

h31xc+h32yc+h33

1

⎤
⎥⎦ and consequently q =

[
xr

wr

yr
wr

]
. (6.10)

The implicit form of Equation 6.10 is

−h11xc − h12yc − h13 + h31xc
xr

wr

+ h32yc
xr

wr

+ h33
xr

wr

= 0, (6.11)

−h21xc − h22yc − h23 + h31xc
yr
wr

+ h32yc
yr
wr

+ h33
yr
wr

= 0, (6.12)

i.e. each known point yields two equations. Redundant information can be employed by

adding more than the needed four points per space to the application to make the process

more robust. By applying the SVD operation, a least squares solution can be acquired for

the overdetermined equation system. For n ≥ 4 it can be written:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−xc(1) −yc(1) −1 0 0 0 xc(1)
xr(1)
wr(1)

yc(1)
xr(1)
wr(1)

xr(1)
wr(1)

0 0 0 −xc(1) −yc(1) −1 xc(1)
yr(1)
wr(1)

yc(1)
yr(1)
wr(1)

yr(1)
wr(1)

...
...

...
...

...
...

...
...

−xc(n) −yc(n) −1 0 0 0 xc(n)
xr(n)
wr(n)

yc(n)
xr(n)
wr(n)

xr(n)
wr(n)

0 0 0 −xc(n) −yc(n) −1 xc(n)
yr(n)
wr(n)

yc(n)
yr(n)
wr(n)

yr(n)
wr(n)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h11

h12

h13

h21

h22

h23

h31

h32

h33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣
e1
...

e2n

⎤
⎥⎥⎦ ,

(6.13)

which is in concise matrix form

Ch = e. (6.14)

In fact, the total least squares approach deployed by the DLT algorithm is not the best idea,

because it makes no difference between linear and quadratic parts of the error as well as

the statistically invariant constants. Residualization based on orthogonal matrix projections

delivers a reduced error structure for the linear system of equations. That is a new approach

for the efficient non-iterative computation of H and can be found in literature [11].
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6.3 Polynomial Control Points

The method locally models patches via polynomials by dividing the image into small regions.

The overall mapping function is obtained by piecing together each pair of corresponding

patches from camera space and real space. Like the linear homography, this technique is a

total least squares approach. One drawback of the method is: when the images have local

geometric differences or the base points (control points) are measured inaccurately, the ac-

curacy averages out equally over the whole image. Orthogonal polynomials are used instead

of ordinary polynomials to avoid unnecessary computational effort.

The described algorithm is directly implemented in Matlab via the cp2tform() function.

The general procedure uses a valid pair of control points to infer a spatial transformation T

from camera space to real space according to the defined transformation type. The method

varies depending on the type. In this application, the polynomial transformation is utilized.

It’s advised to deploy this type when the used objective causes a curved image. Other possi-

ble options are: non-reflective similarity, similarity, affine and projective. The order of the

polynomials can be specified in the function, with the degree d = {2, 3, 4}. Theoretically, a
polynomial of degree d = 2 is enough to describe the optical distortions of a camera objec-

tive. The generated effect is based on a sphere’s surface and therefore there’s a quadratic

relationship. However, the testing showed, that choosing a polynomial of degree d = 4 is

better suited for the mathematical description of the discussed effect, because the camera

space is obviously not a perfect sphere surface. The higher the order of the polynomial,

the better the fit, but the result could contain more curves than the original image. When

the minimum quantity of base points is available, the function finds the coefficients exactly.

If there are more points accessible, a least squares solution is found. Ill-conditioned poly-

nomials might result if too little pairs are used. When either the data of P or the Q has

a large offset with respect to their origin, i.e. relative to the range of values that the data

spans, then cp2tform() normalizes the data prior to fitting to enhance the numerical stability.

The deployed polynomial transformation uses polynomial functions of x and y to deter-

mine the mapping. The coordinates in the camera space are described by xc and yc, the

coordinates in the real space are described by xr and yr. The transformation is performed

through the spatial transformation matrix T. The second order d = 2 polynomial for each

pair is described by 6 terms:[
xr yr

]
T =

[
1 xc yc xcyc x2

c y2c

]
. (6.15)
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At least 6 control point pairs are needed to solve for the 12 unknown coefficients, T is (2×6)

in this case. The fourth order d = 4 polynomial is described by 15 terms:[
xr yr

]
T =

[
1 xc yc xcyc x2

c y2c x2
cyc xcy

2
c x3

c y3c x3
cyc x2

cy
2
c xcy

3
c x4

c y4c

]
(6.16)

and here are at least 15 control point pairs necessary to solve for the 30 unknown coeffi-

cients, T is (2 × 15) in this case. Both, xc and yc, represent the polynomial coefficients of

the specified degree [8, 9].

The Matlab code for the transformation is:

1 % inputPoints are the known real space coordinates and

2 % basePoints are the corresponding camera space coordinates

3 T = cp2tform(inputPoints, basePoints, ’polynomial’, d);

4 % compute the mapped point’s real coordinates

5 [xR, yR] = tforminv(T, xC, yC); % remapping

Source Code 6.2: Polynomial control points with the Matlab function cp2tform().

6.4 Tensor Interpolation

The method uses an approach to describe the camera space via bases functions. The idea

is to deploy discrete orthogonal Gram polynomials to model the distortions caused by the

projection and the optics. The Gram basis is suitable when the data is predominantly geo-

metric in nature, like it is the case in this application [21, 23].

The section introduces a bivariate Gram polynomial tensor product approximation for image

regularization. The utilized bases are unitary1, i.e. XTX = I, YTY = I, and compete, i.e.

XXT = I, YYT = I. A consequence is, that Gaussian noise is evenly spread onto all spectral

components. The polynomial decimation and tensor regularization serve to reduce the noise

power significantly, resulting in a registration, which is not susceptible to such disturbances.

The use of bases functions normally comes along with the idea of filtering, i.e. abstracting

data to increase the information density2. The proposed method follows the inverse path:

based on a few known base points, the space between them is interpolated. Another idea,

which is not investigated further, would be the numerically time consuming local approxi-

mation via spline fitting [3, 2, 22].

1A unitary matrix is normalized and orthogonal, it can contain real and complex elements.
2This issue is explained in my bachelor thesis.
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If a set of bases functions is applied to a two-dimensional data matrix Z, there must be

one for the x dimension, i.e. X, and one for the y dimension, i.e. Y. By combining the

bases functions X and Y with the spectrum S, the data Z can be synthesized. Note, that the

computation is carried out separately for x and y dimensions, i.e. Z one time contains the

base point’s x coordinates and the other time it contains the y coordinates.

At first, the process is explained for complete bases functions for better understanding.

The following equation describes the relation of the mentioned components:

Zc = YcScX
T
c , (6.17)

whereby Zc is the complete data set, Xc and Yc are the complete unitary bases functions

in x and y dimension. Furthermore, Sc is the complete spectrum. Keep in mind, that

premultiplication effects the rows and postmultiplication effects the columns of a matrix.

Like mentioned in the previous section, an even degree of d = 2, d = 4 or d = 6 for the

Gram polynomials suits the problem best. The matrices’ dimensions3 are very important for

the comprehension of the introduced mathematical model, therefore they are written down

explicitly for Equation 6.17:

(u× v) = (u× u)(u× v)(v × v). (6.18)

By shifting the equation, the explicit form of Sc can be acquired.

Sc = (Yc)
−1Zc(X

T
c )

−1. (6.19)

The bases functions’ orthogonality conditions yields following property:

XT
c = X−1

c and YT
c = Y−1

c . (6.20)

Hence,

Sc = (Yc)
TZc(X

T
c )

T . (6.21)

Because of the calculation rule (AT )T = A, when A is a matrix, it can be written

Sc = YT
c ZcXc. (6.22)

3The used notation is (rows× columns).
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By subsidizing Equation 6.22 in Equation 6.17, the projections onto the complete bases

functions XcX
T
c = I and YcY

T
c = I are acquired. It’s only true for complete unitary matrices.

Ẑc = YcY
T
c ZcXcX

T
c , (6.23)

which is following in respect of the matrices’ dimensions:

(u× v) = (u× u)(u× u)(u× v)(v × v)(v × v). (6.24)

Obviously, the complete data set Zc is the same size as the reprojected data set Ẑc, i.e.

Zc = Ẑc in this case. Incomplete sets of bases functions Xr and Yr are used to describe the

reduced spectrum Sr with the help of Zr, which is the set of available base points:

Zr ≈ YrSrX
T
r . (6.25)

The equation’s dimensions are

(m× n) = (m× u)(u× v)(v × n). (6.26)

In fact, the incomplete sets of bases functions Xr and Yr are the known portions of the

complete sets Xc and Yc, i.e.

Xr ∈ Xc and Yr ∈ Yc. (6.27)

The residuum E is the difference between the actual data Zr and its approximation:

E = YrSrX
T
r − Zr. (6.28)

This yields the cost function K, which should be minimized to get the least squares solution:

K =
m∑
i=1

n∑
j=1

c2ij = ||E||2F = ||YrSrX
T
r − Zr||2F = trace

{
EET

} ← min, (6.29)

whereby ||E||2F is the squared Frobenius norm of E, i.e. the sum of the squares of all elements

cij of the matrix. Evaluation of the term yields:

K = trace
{
(YrSrX

T
r − Zr)(YrSrX

T
r − Zr)

T
}

(6.30)

= trace
{
YrSrX

T
r XrS

T
r Y

T
r

}− trace
{
YrSrX

T
r Z

T
r

}
(6.31)

−trace
{
ZrXrS

T
r Y

T
r

}
+ trace

{
ZrZ

T
r

}
. (6.32)
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By differentiating the cost function K with respect to the matrix Sr and setting it equal to

zero, the matrix equation for the minimization is delivered:

∂K

∂Sr

= 2
(
YT
r YrSrX

T
r Xr − YT

r ZrXr

)
= 0. (6.33)

Consequently,

YT
r YrSrX

T
r Xr = YT

r ZrXr. (6.34)

It follows, that

Sr = (YT
r Yr)

−1YT
r ZrXr(X

T
r Xr)

−1, (6.35)

whereby A+ � (ATA)−1AT is the Moore-Penrose Pseudo inverse of a rectangular, i.e. singu-

lar, matrix, which is in fact the desired least squares approach. Hence,

Sr = Y+
r Zr(X

+
r )

T (6.36)

with the dimensions

(u× v) = (u×m)(m× n)(n× v). (6.37)

The interpolated grid Zg is obtained by synthesizing the reduced spectrum Sr with the

complete bases functions Xc and Yc. The process yields the least squares tensor product

approximation:

Zg = YcSrX
T
c . (6.38)

The matrices’ dimensions are

(u× v) = (u× u)(u× v)(v × v). (6.39)

By putting Equation 6.38 into Equation 6.36 the interpolation over the whole grid is acquired:

Zg = YcY
+
r Zr(X

+
r )

TXT
c , (6.40)

(u× v) = (u× u)(u×m)(m× n)(n× v)(v × v). (6.41)

The described process accomplishes following:

Zr︸︷︷︸
(m×n)

interpolate−−−−−−→ Zg︸︷︷︸
(u×v)

, (6.42)

whereby u > m and v > n, i.e. the interpolated grid in Zg has a higher resolution k than

the original points stored in Zr. Figure 6.6 illustrates the process.
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Figure 6.6: The goal is to map the point p = [xc, yc]
T from the camera space to its real space

pendant q = [xr, yr]
T . The known base points coordinates are stored in the matrix Zr. The

geometry is described by deploying a set of discrete orthogonal Gram polynomials in x and y
direction. The reduced functions Xr and Yr are the known portions of the complete bases Xc and
Yc. The performed interpolation yields the complete grid Zg. The point q can now be located in
the resulting discrete real space with the resolution k.
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Furthermore, the known portions Xr and Yr are equivalent to the base points stored in Zr.

This means, the polynomials are fitted through them and therefore describe the geometry.

The space between the mentioned base points is interpolated. The achievable accuracy is

determined through the number of elements in Xc and Yc. This yields a discrete Cartesian

coordinate frame, i.e. a grid, of the desired resolution k, which also defines the application’s

measurement quality. Note, that the point p can only lie on the interpolated grid, i.e. the

application’s accuracy depends on the resolution k. This is also the reason for the former

continuous real space to be now discrete, as it depends on the underlying grid. Figure 6.7

visualizes the selection of the nearest grid point.

Figure 6.7: The point p can only lie on the grid, therefore the grid’s resolution k determines the
overall measurement accuracy. During locating, the nearest grid point next to p is searched and p
is placed there. Afterwards, the corresponding location q in the discrete real space can be found.

Imagine, that Zg had a 1mm grid. Thus, the resulting accuracy would be ±0.5mm. Of

course this is insufficient accurate. The proposed method allows it to deploy a resolution of

0.01mm, i.e. k = 100, when the base points are arranged in a δx = δy = 25mm raster. Still,

it’s too less accurate. Additionally the computation is very ineffective and the numerical

effort is enormous.
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The procedure is implemented in Matlab as following:

1 % real space coordinates of known points, multiplied by resolution k

2 xs = xReal * k;

3 ys = yReal * k;

4 % determine number of elements (i.e. size of interpolated grid)

5 noXs = max( xs(:) );

6 noYs = max( ys(:) );

7 % generate the required sets of Gram basis functions of degree d

8 Xc = generateGramBasis( noXs, d);

9 Yc = generateGramBasis( noYs, d);

10 % extract the known portions of the bases functions

11 Xr = Xc( xs, :);

12 Yr = Yc( ys, :);

13 % compute the reduced spectra for x and y dimension utilizing the camera coordinates

14 Sx = pinv( Yr ) * xCam * pinv( Xr )’;

15 Sy = pinv( Yr ) * yCam * pinv( Xr )’;

16 % the interpolated grid is computed seperately for x and y dimension

17 Zx = Yc * Sx * Xc’;

18 Zy = Yc * Sy * Xc’;

Source Code 6.3: Tensor interpolation with Matlab.

Consider the following example: The investigated area in the real space is (y×x) = (150mm×
200mm). If the resolution k = 100, then a grid of (15 000mm/k× 20 000mm/k) is acquired.

According to Equation 6.36, the resulting matrix dimensions are

(15 000× 20 000) = (15 000× 7)(7× 9)(9× 20 000), (6.43)

when Zr has (7 × 9) base points. If the resolution goes even higher, the required memory

demands are unacceptable. As a consequence, the following two subsections will propose

ideas to handle the problem in a more economic manner. Note, that interpolating the whole

image leads to complete image registration. It’s is not necessary in this application, because

only one point is of interest. Additionally, the implementation is not capable of extrapolating

over the borders of the support.
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6.4.1 Basis Function Sectioning

The idea of this method is to perform only a partial registration of the synthesis function.

The rough location of the laser spot is known, i.e. the four nearest base points. By selecting

only those portions Xa and Ya of the complete bases functions Xc and Yc, which are really

needed, the partly interpolated grid Za can be computed:

Za = YaSrX
T
a = YaY

+
r Zr(X

+
r )

T
XT
a , (6.44)

which is in terms of matrix dimensions:

(a× b) = (a× u)(u×m)(m× n)(n× v)(v × b). (6.45)

The bases functions Xa and Ya are sections of Xc and Yc

XT
c =

[
. . . XT

a . . .
]

and Yc =

⎡
⎢⎢⎣

...

Ya

...

⎤
⎥⎥⎦ . (6.46)

Accordingly,

Xa ∈ Xc and Ya ∈ Yc. (6.47)

Figure 6.8: The partial bases functions Xa and Ya are sections of Xc and Yc. The partly interpolated
grid Za can provide a much higher resolution than the complete grid Zg.
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Figure 6.8 shows the effect of the approach. The partly interpolated grid Za contains the laser

spot. This matrix is considerable smaller than the complete grid Zg, i.e. the resolution can be

much higher than original. Note, that the resulting offset must be considered. Nevertheless,

there’s space for further improvements. The matrices are still very large, especially when

the resolution is high. Thus, many operations are necessary, because the object of interest

is just one single point. The next subsection introduces an approach through hierarchical

subdivision.

6.4.2 Quad Tree Decomposition

This variation of the introduced method applies a hierarchical subdivision to the algorithm.

The major improvement is achieved by performing a suitable decimation at each level. It

enables a numerically more efficient implementation than interpolating the complete grid Zg

or the partial grid Za. A local registration is performed at each level while ascending the

hierarchy, whereby each iteration computes just one point zp via the following formula:

zp = ypSrx
T
p = ypY

+
r Zr(X

+
r )

T
xT
p , (6.48)

which is in terms of matrix dimensions:

(1× 1) = (1× u)(u×m)(m× n)(n× v)(v × 1). (6.49)

The vectors xp and yp are sections of Xc and Yc

XT
c =

[
. . . xT

p . . .
]

and Yc =

⎡
⎢⎢⎣

...

yp
...

⎤
⎥⎥⎦ . (6.50)

This means

xp ∈ Xc and yp ∈ Yc. (6.51)

The process pins down the pixel coordinates of the camera point p incrementally. The

idea can be described as a ’binary search in a two-dimensional space’, which is in fact a

quaternary search. Each iteration step increases the accuracy until one of the following

termination conditions triggers:

• the defined tolerance or

• the maximal number of iterations is reached.
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After the procedure, the real coordinates of q can easily be determined by finding the

corresponding location in the discrete real space. Figure 6.9 illustrates, that theoretically, it

would be enough to use just two vectors to describe the point’s position. It’s an immense

saving of computation effort and runtime in comparison to the other methods. Consequently,

the algorithm could run on an embedded system. Practically, the achievable resolution k

has no relevant limits in respect to the mathematical model behind it. The limiting factors

are based on the physical boundaries and the used equipment.

Figure 6.9: The basis function vectors xp and yp are sections of the complete bases functions Xc

and Yc. The point’s position can be described by just these two vectors. The accuracy has no
relevant limits caused by the mathematical model.

The process starts with the a-priori knowledge of the base points’ location saved in the

matrix Zr. The enclosed area is quartered and the quarter containing the sought point is

selected. The four corners’ locations are computed utilizing the basis function vectors xp

and yp. Once again, the resulting rectangle is quartered and the procedure starts anew. The

recursion is stopped when one of the mentioned termination conditions is fulfilled.
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Figure 6.10: The section of Zr containing the searched point is selected. The investigated area
is quartered and the quarter’s corners are computed via the basis function vectors xp and yp.
Afterwards, the procedure is executed again. The process incrementally approximates the point’s
location until the desired accuracy is reached.

The proposed hierarchical approach utilizing only portions of unitary bases functions is new

for such kind of image processing routine. The quaternary search tree algorithm can be

implemented as a highly efficient data structure. The resulting depth of the quad tree τ is

equivalent to the number of elements n, i.e. the possible locations inside the interpolated

grid:

τ = log4 n. (6.52)

The runtime tr of the algorithm is proportional:

tr = O(log4 n) (6.53)

Consider the following example for a rough runtime estimation: the real coordinates of the

base points in Zr are positioned in a δ = 25mm grid and the utilized resolution k = 1 000,

i.e. the measurement accuracy is ±0.5μm. The possible locations inside the grid are

n = 25 · k · 25 · k = 25 000 · 25 000 = 625 000 000. (6.54)
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It’s a huge number and such matrix operations cannot be computed economically. As a result,

the standard tensor interpolation reaches it’s limits when the resolution is too high. Even by

utilizing bases function sectioning, the computational effort is extreme. By deploying quad

tree decomposition, the depth of the search structure for this example is

τ = log4 n =
lnn

ln 4
=

ln 625 000 000

ln 4
= 14.6096 ≈ 15. (6.55)

Thus, maximal τ = 15 search levels are needed. Still, it’s the worst case scenario, because

the point could be found earlier during the search and the procedure terminates prematurely!

For a resolution of k = 100 000, which actually makes no sense in a practical manner, the

number of steps is τ = 22. It’s obvious, that the savings in runtime are immense and this

approach provides much potential for other fields of applications.



Chapter 7

Statistical Analysis

In this application, there are two different types of data depending on their origin: the cal-

ibration LEDs and the laser spot, which have their own characteristics and therefore the

measured data must be investigated thoroughly. The acquired empirical sample values de-

scribe how the overall system behaves in terms of preciseness and robustness. Statistical

analysis helps to understand the data’s nature [26].

Two basic test-cases are defined to cover both types of data, which can be embedded inside

the investigated feature R:

• measurement of a single LED and

• measurement of a single laser spot

over n repetitions. Each case delivers sets of the original camera coordinates p = [xc, yc]
T

and in addition the mapped real coordinates q = [xr, yr]
T . The goal of this procedure is

to show, that the measured sample values have Gaussian distribution. Only in this case,

a meaningful error estimation is possible. Furthermore, the proposed methods will deliver

maximum likelihood estimations.

86
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7.1 Descriptive Statistics

Consider a discrete data stream, i.e. a set of samples {a1, . . . , ai, . . . , an}, which is saved in

a vector a, whereby ai indicates the current element and n is the number of elements. For

statistical analysis, the concept of central moments is utilized, which allows it to meaningfully

characterize the properties of a data set’s probability distribution. They are better suited

for the task than ordinary moments, because the values’ higher order quantities relate only

to the spread and shape of the distribution, rather than to its location. Central moments

are described via the kth moment about the mean1. For a real-value data set a it is

μk = E
[
(a− E [a])k

]
, (7.1)

where E is the expectation operator. The central moments of degree 0 and 1 are μ0 � 1

and μ1 � 0. The second degree moment is known as the variance μ2 � σ2, the third and

fourth central moment are only used in their standardized form in respect of the σ of degree

k. This leads to standardized moments :

μk

σk
. (7.2)

The third and fourth order standardized moments are known as skewness γ1 and kurtosis

β2:

γ1 �
μ3

σ3
and β2 �

μ4

σ4
. (7.3)

When investigating measured empirical data, which is identically distributed, but the pop-

ulation distribution itself is unknown, following simplifications can be assumed:

μ = E [a] = ā and σ2 = Var [a] = s2. (7.4)

This knowledge enables the computation of the following data attributes:

1. The mode â is the most common value in a set of samples a;

2. The median ã delivers the element, which is in the middle of a;

ã =

⎧⎨
⎩an+1

2
if n is odd

1
2
(an

2
+ an

2
+1) if n is even.

(7.5)

1It is also called the kth central moment.
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3. The mean ā is the arithmetic average value of all elements in a;

ā =
1

n

n∑
i=1

ai (7.6)

4. The variance s2 and standard deviation s for a set of sample a are computed as2

s2 =
1

n− 1

n∑
i=1

(ai − ā)2 and therefore s =
√
s2 (7.7)

and describe the natural scatter of the data;

5. The skewness for empirical data γ̂1 is computed as

γ̂1 =
1
n

∑n
i=1(ai − ā)3

(
√

1
n

∑n
i=1(ai − ā)2)3

(7.8)

and can be interpreted as following: if γ̂1 > 0, then most samples are left of the median

ã; if γ̂1 < 0, then most samples are right of the median ã; and only if γ̂1 ≈ 0, then the

data is symmetric as in a Gaussian distribution;

6. The kurtosis for empirical data β̂2 is computed as

β̂2 =
1
n

∑n
i=1(ai − ā)4

( 1
n

∑n
i=1(ai − ā)2)2

(7.9)

and can be interpreted as following: if β̂2 ≈ 3, then the data looks like a Gaussian

bell-shaped curve; if β̂2 < 3, then the data is more flat; if β̂2 > 3, then the data is more

peaked.

These statistical properties will be utilized during the evaluation of the measured data.

2This is the formula for the corrected variance, which is utilized for empirical data.
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7.2 Standard Error

The standard error estimates how well a measured value is known [27]. In this case, the

standard error of the mean e is computed by standardizing the standard deviation s in

respect to the root of the sample size n:

e =
s√
n
.

If the data samples are assumed to be normally distributed, quantiles of the normal distribu-

tion, the sample mean and standard error can be used to calculate approximate confidence

intervals for the mean. The following expressions are used to compute the upper and lower

confidence limits for 95% and 99% respectively:

e95% = Z95%
s√
n

and Z95% = 1.96, (7.10)

e99% = Z99%
s√
n

and Z99% = 2.58. (7.11)

The Z value describes in how many cases the expected value lies within the desired bound-

aries of a Gaussian curve. The standard error estimates the real value of the mean with a

given uncertainty:

ā95% = ā± e95% and ā99% = ā± e99%. (7.12)

According to most literature [26, 27, 19] the number of empirical samples, such as measure-

ment data, n must be at least 30, i.e.

n ≥ 30. (7.13)

There also exists a rule of thumb: n ≈ 5d, when d is the degree of the moment to be

computed, e.g. if the variance should be acquired, then d = 2. Some statistical tests also

provide an operation characteristics (OC) curve to determine a suitable n. Be aware, that

there’s an important difference between the standard deviation s and the standard error

e. The natural scatter of data is described by s. It doesn’t matter how big the number of

samples n is, s stays almost constant. On the other hand, the standard error e describes

how precise the mean ā can be determined, in fact e gets lower the more samples exist.
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7.3 Kolmogorov-Smirnov Test

This statistical non-parametric test introduced by Kolmogorov and Smirnov (K-S test) is

used to check the goodness of fit between one-dimensional empirical data and its expected

reference continuous parent distribution. The test quantifies the distance between both cu-

mulative distribution functions [16].

During the experiments, the measured data a is tested, if it is normally distributed according

to the Gaussian probability density function f(t), where t is the continuous equivalent of the

discrete ai values:

f(t) =
1

σ
√
2π

e−
1
2(

t−μ
σ )

2

. (7.14)

Figure 7.1: The K-S test quantifies the difference between the cumulative distribution functions of
the normalized empirical data F (a) and the standard normal distribution F (t). If the difference is
not too high, both functions are considered to be equivalent in terms of their distribution densities
f(a) and f(t). Note, that a are discrete and t are continuous values.
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By integrating the probability density function f(t), the cumulative distribution function

F (t) with respect to t is computed by

F (t) =

∫ t

−∞
f(t) dt =

1

σ
√
2π

∫ t

−∞
e−

1
2
( t−μ

σ
)2 dt. (7.15)

The standard normal distribution function Φ(t) is acquired with the parameter values μ = 0

and σ = 1, hence

Φ(t) =
1√
2π

∫ t

−∞
e−

1
2
t2 dt. (7.16)

To enable the comparison between the discrete empirical samples ai, their normalized values

are computed and evaluated at the function steps:

Φ

(
ai − ā

s

)
. (7.17)

If the difference between the measured data and the expected distribution is not too larg,

let’s say a 95% confidence interval, which is approximately equivalent to 2σ, then the data is

assumed to be normally distributed and the null-hypothesis H0 is accepted. See Figure 7.1

for an example.

7.4 Measurements and Results

To ensure significant results, the number of iterations n is set to 100 to meet the condition

in Equation 7.13 with an additional safety factor3. As already mentioned, the measurements

are carried out for two different types of data sources for R: a single LED and a single laser

spot. The numerical results of the statistical testing can be found in Appendix C.

The tests show, that the camera coordinates p = [xc, yc]
T are always normally distributed.

Depending on the used mapping method, this is not entirely true for the real coordinates

q = [xr, yr]
T : on the one hand the data computed via linear homography and polynomial

control points do have Gaussian distribution, on the other hand the tensor interpolation via

basis function sectioning and tensor quad tree decomposition are not normally distributed

in general, because of the discrete way they are computed. Nevertheless, it can be assumed,

that the measured data samples are normally distributed and the operations performed on

them do not change their statistical nature.

3Note, that in further chapters, ρ is the number of repetitions and ε is the number of investigated objects.



Chapter 8

Experimental Verification

In this chapter, the performance of the introduced methods is investigated under different

conditions. It’s demonstrated, that the procedures work as intended and the predicted

behavior is verified. The identification of relevant process parameters is of utmost importance

for the experimental strategy and for later applications. The following three setups are

deployed to test certain aspects of the system:

1. The base points, which were originally be used to calibrate the system, are remapped

from the camera space to the real space. The technique for determining an image

object’s center as well as the degrees of the non-linear coordinate mapping methods

are varied. Additionally, two types of optics are employed: a normal-angle lens with

f = 12mm and a wide-angle lens with f = 3.6mm. The goal is to find out, if the

mapping methods work for non-linear spaces and if the center coordinates of the image

objects can be extracted reliably. See Section 8.1;

2. The system can either be adjusted by a designated calibration plate with LEDs or

a laser mounted on a xy-table. An interlaced cross validation matrix is produced to

verify the quality of each calibration mode. Once again, different center determination

techniques are tested. The experiment’s aim is to give a statement, which one of the

calibration modes is better suited for the application. See Section 8.2;
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3. The selection of the target is important when it comes to real operating conditions.

Therefore, measurements are carried out on following hardware setups:

• a metal target, with no obstacle between the target and the laser,

• a metal target, with transparent glass between the target and the laser and

• an opaque glass target, with no obstacle between the target and the laser.

The goal is to verify, if measuring the laser spot on different targets influences the

output and if the solution is valid in terms of accuracy. See Section 8.3.

The experiments take advantage of the center determination techniques introduced in Chap-

ter 5. Furthermore, each coordinate mapping method is evaluated, whereby these synonyms

are used in the next sections:

synonym: coordinate mapping method:
homography linear homography
polyCtrlPts polynomial control points
tensorBFS tensor interpolation via basis function sectioning
tensorQTD tensor interpolation via quad tree decomposition

Table 8.1: Synonyms for the coordinate mapping methods.

The number of repetitions for the measurement of one point is ρ. The number of inves-

tigated objects is ε, whereby this can either be one point or the distance between a pair

of points. This data acquisition under fixed operating conditions provides the opportunity

to differentiate systematic errors, which remain constant during a given series of repeated

measurements, and random errors. The standard error e95% for a 95% confidence interval is

computed either for ρ, if one point is measured often, or for ε, if many objects are measured

once, i.e.

e95% = Z95%
s√
ρ

or e95% = Z95%
s√
ε
, (8.1)

whereby s is the standard deviation of the test data. The segmentation process uses Otsu’s

local thresholding method for the binary morphology; the tensor interpolation uses a reso-

lution of kBFS = 100 for basis function sectioning and kQDT = 10 000 for quad tree decom-

position. The interpretation of the results delivered by the three experiments can be found

in Section 8.4.
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8.1 Base Points Remapping

During this experiment, the base points, which were originally used to calibrate the system,

are remapped from the camera space to the real space utilizing the introduced methods for

center determination and coordinate mapping. It is known a-priori, where the remapped

points should be located, as they should have the same positions as the corresponding base

points. The difference between an individual base point qc and the according remapped

point qm is the resulting error e, i.e.

qc − qm = e, which is

[
xc

yc

]
−

[
xm

ym

]
=

[
ex

ey

]
. (8.2)

Figure 8.1: The green dots indicate the known base point qc, the red dot is the measured point
qm. The errors ex and ey are the differences in x and y dimensions, exy is the distance between
both points.

The error calculations are carried out for (m×n) base points, i.e. the number of elements is

ε = (m · n). The characteristics of the outcome can be summarized by the means of errors

in x and y dimensions, ēx and ēy:

ēx =
1

ε

ε∑
i=1

|exi| and ēy =
1

ε

ε∑
i=1

|eyi| (8.3)

as well as their combined error exy and its mean ēxy:

exyi =
√

ex2i + ey2i , therefore ēxy =
1

ε

ε∑
i=1

exyi. (8.4)
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The standard error e95% is computed for the examined exyi values, i.e. the expected error

for one point is ēxy95%i
= ēxyi ± e95%i

.

The calibration utilizes (7 × 9) = 63 LEDs, this can be seen in Figure 8.3 and 8.9. The

validation image is just using the inner data points, meaning the first and the last row as

well as the first and the last column are ignored. This leads to (5×7) = 35 LEDs, which are

used for the evaluation of the remapping quality, see figures 8.4 and 8.10. Hence, the number

of data points to be evaluated is ε = 35. The outcome for two optical arrangements is tested:

for a normal-angle lens with f = 12mm as well as for a wide-angle lens of f = 3.6mm. As

stated in Chapter 2, the object distance g must be adjusted depending on the installed lens,

i.e. g(f = 12mm) = 440mm and g(f = 3.6mm) = 140mm.

The figures in this section the show best solutions for each coordinate mapping method.

The detailed results for the base points remapping can be found in Appendix D.

(a) The calibration plate features 63 LEDs. (b) The validation plate features 35 LEDs.

Figure 8.2: The system is calibrated with 63 LEDs. By remapping the inner 35 LEDs, the quality
of the mathematical models is evaluated. The position of each LED in real space is known a-priori,
this allows the direct evaluation of the remapping error.
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8.1.1 Focal Length of f = 12mm

Figure 8.3: Calibration image utilizing a lens of f = 12mm.

Figure 8.4: Validation image utilizing a lens of f = 12mm.
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Center Determination via Center of Gravity

method: degree ēx/[mm] ēy/[mm] ēxy/[mm] ±e95%/[mm]

homography d = 1 0.0425 0.0339 0.0603 0.00130
polyCtrlPts d = 2 0.0466 0.0419 0.0695 0.00120

d = 4 0.0069 0.0084 0.0122 0.00035
tensorBFS d = 2 0.0303 0.0011 0.0308 0.00100

d = 4 0.0043 0.0003 0.0046 0.00034
d = 6 0.0006 0.0026 0.0031 0.00030

tensorQDT d = 2 0.0299 0.0013 0.0304 0.00099
d = 4 0.0036 0.0004 0.0039 0.00027
d = 6 0.0014 0.0029 0.0040 0.00025

Table 8.2: Remapping results utilizing f = 12mm and center of gravity.

Figure 8.5: Remapping error for f = 12mm and center of gravity.
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Center Determination via Gaussian Curve Extremum

method: degree ēx/[mm] ēy/[mm] ēxy/[mm] ±e95%/[mm]

homography d = 1 0.0442 0.0376 0.0650 0.00151
polyCtrlPts d = 2 0.0484 0.0393 0.0698 0.00147

d = 4 0.0106 0.0118 0.0176 0.00055
tensorBFS d = 2 0.0317 0.0109 0.0364 0.00129

d = 4 0.0051 0.0063 0.0102 0.00061
d = 6 0.0031 0.0014 0.0046 0.00039

tensorQDT d = 2 0.0320 0.0102 0.0361 0.00125
d = 4 0.0046 0.0065 0.0099 0.00055
d = 6 0.0036 0.0016 0.0050 0.00039

Table 8.3: Remapping results utilizing f = 12mm and Gaussian curve extremum.

Figure 8.6: Remapping error for f = 12mm and Gaussian curve extremum.
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Center Determination via Ellipse Approximation

method: degree ēx/[mm] ēy/[mm] ēxy/[mm] ±e95%/[mm]

homography d = 1 0.0447 0.0386 0.0653 0.00117
polyCtrlPts d = 2 0.0469 0.0378 0.0677 0.00136

d = 4 0.0069 0.0157 0.0182 0.00043
tensorBFS d = 2 0.0300 0.0071 0.0334 0.00106

d = 4 0.0046 0.0009 0.0053 0.00035
d = 6 0.0020 0.0000 0.0020 0.00023

tensorQDT d = 2 0.0301 0.0071 0.0333 0.00107
d = 4 0.0041 0.0010 0.0048 0.00030
d = 6 0.0026 0.0003 0.0028 0.00019

Table 8.4: Remapping results utilizing f = 12mm and ellipse approximation.

Figure 8.7: Remapping error for f = 12mm and ellipse approximation.
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Center Determination via Circle Approximation

method: degree ēx/[mm] ēy/[mm] ēxy/[mm] ±e95%/[mm]

homography d = 1 0.0446 0.0402 0.0661 0.00110
polyCtrlPts d = 2 0.0468 0.0379 0.0678 0.00136

d = 4 0.0082 0.0204 0.0232 0.00045
tensorBFS d = 2 0.0303 0.0060 0.0329 0.00106

d = 4 0.0037 0.0006 0.0043 0.00031
d = 6 0.0034 0.0000 0.0034 0.00030

tensorQDT d = 2 0.0301 0.0068 0.0329 0.00107
d = 4 0.0039 0.0007 0.0043 0.00028
d = 6 0.0034 0.0001 0.0034 0.00024

Table 8.5: Remapping results utilizing f = 12mm and circle approximation.

Figure 8.8: Remapping error for f = 12mm and circle approximation.
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8.1.2 Focal Length of f = 3.6mm

Figure 8.9: Calibration image utilizing f = 3.6mm.

Figure 8.10: Validation image utilizing f = 3.6mm.
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Center Determination via Center of Gravity

method: degree ēx/[mm] ēy/[mm] ēxy/[mm] ±e95%/[mm]

homography d = 1 3.4908 2.1590 4.5597 0.08848
polyCtrlPts d = 2 3.4588 2.1228 4.5473 0.08982

d = 4 0.3092 0.2428 0.4391 0.01075
tensorBFS d = 2 2.7960 1.4891 3.3613 0.06585

d = 4 0.1160 0.0366 0.1375 0.00588
d = 6 0.0063 0.0026 0.0083 0.00044

tensorQDT d = 2 2.7956 1.4888 3.3607 0.06587
d = 4 0.1154 0.0316 0.1314 0.00611
d = 6 0.0061 0.0026 0.0080 0.00041

Table 8.6: Remapping results utilizing f = 3.6mm and center of gravity.

Figure 8.11: Remapping error for f = 3.6mm and center of gravity.
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Center Determination via Gaussian Curve Extremum

method: degree ēx/[mm] ēy/[mm] ēxy/[mm] ±e95%/[mm]

homography d = 1 3.5989 2.1635 4.6714 0.08389
polyCtrlPts d = 2 3.4767 2.1226 4.5684 0.09017

d = 4 0.4399 0.2471 0.5565 0.02084
tensorBFS d = 2 2.8126 1.4880 3.3792 0.06506

d = 4 0.1203 0.0380 0.1432 0.00584
d = 6 0.1383 0.0206 0.1444 0.01793

tensorQDT d = 2 2.8128 1.4876 3.3792 0.06509
d = 4 0.1192 0.0316 0.1356 0.00613
d = 6 0.1385 0.0204 0.1441 0.01800

Table 8.7: Remapping results utilizing f = 3.6mm and Gaussian curve extremum.

Figure 8.12: Remapping error for f = 3.6mm and Gaussian curve extremum.
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Center Determination via Ellipse Approximation

method: degree ēx/[mm] ēy/[mm] ēxy/[mm] ±e95%/[mm]

homography d = 1 3.4920 2.1580 4.5597 0.08847
polyCtrlPts d = 2 3.4600 2.1214 4.5473 0.08980

d = 4 0.3085 0.2423 0.4393 0.01081
tensorBFS d = 2 2.7969 1.4894 3.3621 0.06585

d = 4 0.1160 0.0374 0.1379 0.00600
d = 6 0.0063 0.0014 0.0074 0.00036

tensorQDT d = 2 2.7966 1.4888 3.3614 0.06589
d = 4 0.1154 0.0316 0.1316 0.00626
d = 6 0.0067 0.0020 0.0079 0.00034

Table 8.8: Remapping results utilizing f = 3.6mm and ellipse approximation.

Figure 8.13: Remapping error for f = 3.6mm and ellipse approximation.
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Center Determination via Circle Approximation

method: degree ēx/[mm] ēy/[mm] ēxy/[mm] ±e95%/[mm]

homography d = 1 3.4907 2.1580 4.5593 0.08843
polyCtrlPts d = 2 3.4587 2.1211 4.5470 0.08980

d = 4 0.3101 0.2418 0.4400 0.01079
tensorBFS d = 2 2.7960 1.4891 3.3620 0.06586

d = 4 0.1157 0.0374 0.1382 0.00609
d = 6 0.0020 0.0020 0.0094 0.00064

tensorQDT d = 2 2.7960 1.4883 3.3615 0.06593
d = 4 0.1144 0.0316 0.1310 0.00607
d = 6 0.0078 0.0022 0.0093 0.00059

Table 8.9: Remapping results utilizing f = 3.6mm and circle approximation.

Figure 8.14: Remapping error for f = 3.6mm and circle approximation.
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8.2 Calibration Modes

The system can either be adjusted with the help of a calibration plate with LEDs or by

utilizing a xy-table with a mounted laser, which generates a laser spot calibration matrix.

Figure 8.16 visualizes the resulting matrices. The experiment examines how the source of

calibration data influences the system’s output. Therefore, an interlaced cross validation

(m × n) matrix is produced for evaluation, but unlike in the previous section, not each

point’s location is investigated. Instead, the differences bx and by between two measured

points qm are acquired for every row and for every column, thus

bx = xj+1 − xj and by = yi+1 − yi, (8.5)

when i is the indexing variable for rows and j is the indexing variable for columns. The cross

validation matrix features a δ = δx = δy = 25mm raster in x and y dimensions, yielding a

raster point qr relatively to every qm. The errors exj
and eyi are the differences between b

and δ for every pair of neighboring points, i.e.

exj
= δ − bxj

and eyi = δ − byi . (8.6)

Figure 8.15: The green dots indicate the resulting raster points qr relatively to every measured
point qm, which are both separated by δ = δx = δy = 25mm. The errors ex and ey are the
differences between δ and bx respectively by.
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The errors ex and ey of the cross validation are examined separately for rows and columns.

The number of inspected image object distances ε is

εx = m · (n− 1) and εy = (m− 1) · n. (8.7)

Thus, the computation of the mean error ēx, is carried out for all rows m, but only (n− 1)

columns:

ēx =
1

εx

m∑
i=1

n−1∑
j=1

∣∣δ − (xi(j+1) − xij)
∣∣ . (8.8)

Consequently, ēy is calculated for (m− 1) rows and n columns:

ēy =
1

εy

m−1∑
i=1

n∑
j=1

∣∣δ − (y(i+1)j − yij)
∣∣ . (8.9)

Hence, for a (m×n) = (4× 8) cross validation matrix, there are εx = 4 · 7 = 28 values for bx

and εy = 3 · 8 = 24 values for by. The reason for the separate testing of the x and y errors is

that εx �= εy. The standard error e95% is computed for the investigated mean values ēx and

ēy for εx respectively εy elements.

The non-linear coordinate mapping functions use a degree of d = 4, because for a lens

with f = 12mm, this delivers the best solutions. Once again, the computations are carried

out for all center determination methods. The detailed results for the cross validation can

be found in Appendix E.
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(a) Calibration with LEDs. (b) Calibration with laser spots.

Figure 8.16: The system can either be calibrated by utilizing a calibration plate with mounted
LEDs or by using a laser, which is mounted on a xy-table, to generate a laser spot matrix. Only
45 calibration points are used during this experiment because of hardware limitations.

Figure 8.17: The plot shows the camera space generated using both calibration modes. The matrix
has (5 × 9) = 45 calibration points. To enable the evaluation of the reached quality, a (4 × 8)
interlaced cross validation matrix is generated with the xy-table.
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Center Determination via Center of Gravity

method: degree ēx/[mm] ±ex95%
/[mm] ēy/[mm] ±ey95%/[mm]

homography d = 1 0.1748 0.0124 0.1416 0.0102
polyCtrlPts d = 4 0.2016 0.0145 0.1466 0.0103
tensorBFS d = 4 0.2000 0.0143 0.1438 0.0101
tensorQDT d = 4 0.2009 0.0144 0.1448 0.0101

Table 8.10: Calibration evaluation utilizing LEDs and center of gravity.

method: degree ēx/[mm] ±ex95%
/[mm] ēy/[mm] ±ey95%/[mm]

homography d = 1 0.1321 0.0122 0.0956 0.0094
polyCtrlPts d = 4 0.0858 0.0069 0.0441 0.0045
tensorBFS d = 4 0.0864 0.0070 0.0458 0.0048
tensorQDT d = 4 0.0856 0.0069 0.0445 0.0047

Table 8.11: Calibration evaluation utilizing laser spots and center of gravity.

Center Determination via Gaussian Curve Extremum

method: degree ēx/[mm] ±ex95%
/[mm] ēy/[mm] ±ey95%/[mm]

homography d = 1 0.1540 0.0133 0.1083 0.0096
polyCtrlPts d = 4 0.1714 0.0146 0.1156 0.0096
tensorBFS d = 4 0.1725 0.0147 0.1150 0.0097
tensorQDT d = 4 0.1673 0.0142 0.1138 0.0095

Table 8.12: Calibration evaluation utilizing LEDs and Gaussian curve extremum.

method: degree ēx/[mm] ±ex95%
/[mm] ēy/[mm] ±ey95%/[mm]

homography d = 1 0.1434 0.0133 0.1057 0.0104
polyCtrlPts d = 4 0.1130 0.0104 0.0927 0.0097
tensorBFS d = 4 0.1154 0.0111 0.1258 0.0124
tensorQDT d = 4 0.1156 0.0111 0.1261 0.0123

Table 8.13: Calibration evaluation utilizing laser spots and Gaussian curve extremum.
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Center Determination via Ellipse Approximation

method: degree ēx/[mm] ±ex95%
/[mm] ēy/[mm] ±ey95%/[mm]

homography d = 1 0.1731 0.0122 0.1478 0.0107
polyCtrlPts d = 4 0.1998 0.0143 0.1569 0.0111
tensorBFS d = 4 0.2000 0.0143 0.1567 0.0110
tensorQDT d = 4 0.2010 0.0143 0.1553 0.0109

Table 8.14: Calibration evaluation utilizing LEDs and ellipse approximation.

method: degree ēx/[mm] ±ex95%
/[mm] ēy/[mm] ±ey95%/[mm]

homography d = 1 0.1299 0.0121 0.1032 0.0100
polyCtrlPts d = 4 0.0816 0.0066 0.0542 0.0053
tensorBFS d = 4 0.0821 0.0067 0.0504 0.0052
tensorQDT d = 4 0.0820 0.0067 0.0510 0.0052

Table 8.15: Calibration evaluation utilizing laser spots and ellipse approximation.

Center Determination via Circle Approximation

method: degree ēx/[mm] ±ex95%
/[mm] ēy/[mm] ±ey95%/[mm]

homography d = 1 0.1738 0.0124 0.1493 0.0110
polyCtrlPts d = 4 0.2004 0.0145 0.1584 0.0113
tensorBFS d = 4 0.2000 0.0145 0.1592 0.0113
tensorQDT d = 4 0.2005 0.0145 0.1574 0.0112

Table 8.16: Calibration evaluation utilizing LEDs and circle approximation.

method: degree ēx/[mm] ±ex95%
/[mm] ēy/[mm] ±ey95%/[mm]

homography d = 1 0.1337 0.0123 0.1066 0.0102
polyCtrlPts d = 4 0.0848 0.0070 0.0564 0.0055
tensorBFS d = 4 0.0861 0.0072 0.0550 0.0055
tensorQDT d = 4 0.0853 0.0071 0.0540 0.0054

Table 8.17: Calibration evaluation utilizing laser spots and circle approximation.
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8.3 Laser Spot Measurements

The goal of this scenario is to determine how electro-active glass influences the outcome of

the measurements. Three different setups are examined, which are visualized in Figure 8.21,

8.24 and 8.25. A linear drive, like in Figure 8.20, enables one-dimensional movement to

produce an interlaced cross validation vector, i.e. a (1×m) = (1× 8) matrix of 8 measured

points qm. Each point is acquired ρ = 30 times, thus

x =
1

ρ

ρ∑
i=1

xi as well as y =
1

ρ

ρ∑
i=1

yi. (8.10)

Their standard errors ex95%
and ey95% are also computed in respect of the number of repeti-

tions ρ. Like in the previous experiment, the distances bi between a pair of points are evalu-

ated. Consequently, the number of investigated image object distances is ε = 1 · (8− 1) = 7.

Again, the relative distance of a measured point qm and the next raster point qr is δ = 25mm.

The distance bi between two points qmi
and qmi+1

is computed by

bi =
√
(xi+1 − xi)2 + (yi+1 − yi)2 (8.11)

to compensate inexact alignment of the linear drive. The error ei of each tested distance is

the difference between the measured points qm and the corresponding raster point qr, hence

ei = δ − bi (8.12)

and the overall mean error ē is

ē =
1

ε

ε∑
i=1

|ei|. (8.13)

Figure 8.18: The green dots indicate the raster points qr, which are separated by δ = 25mm from
their corresponding measured point qm. The error e is the difference between δ and b.
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(a) Metal target with opaque glass. (b) Metal target with transparent glass.

Figure 8.19: It’s tested, if a transparent glass between the laser and the target influences the out-
come. The issue is important, because this feature allows the installation of a series of measurement
stations in a consecutive order.

Figure 8.20: The laser is mounted on the linear drive’s slide, which allows it to perform one-
dimensional movements. It’s controlled via a PLC.

The deployed degree of non-linear coordinate mapping functions is d = 4 for a lens of

f = 12mm. The used center determination method is ellipse approximation, because this

technique delivers the best results as proofed in the previous experiments.
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8.3.1 Metal Target without Glass

Figure 8.21: The standard setup for the measurements features a metal target.

Figure 8.22: Resulting error on a metal target without glass.
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Linear Homography

point: x/[mm] ±ex95%
/[mm] y/[mm] ±ey95%/[mm] b/[mm] e/[mm]

q1 8.9404 0.0022 66.4875 0.0005 25.0010 -0.00098
q2 33.9393 0.0011 66.1650 0.0002 25.1668 -0.16679
q3 59.1023 0.0022 65.7260 0.0004 25.1262 -0.12617
q4 84.2265 0.0025 65.4109 0.0002 25.1316 -0.13159
q5 109.3553 0.0017 65.0365 0.0005 25.0692 -0.06923
q6 134.4231 0.0017 64.7731 0.0005 25.1610 -0.16099
q7 159.5806 0.0035 64.3538 0.0005 25.1174 -0.11743
q8 184.6943 0.0004 63.9166 0.0007

Table 8.18: Homography error on metal target without glass, ē = 0.1105mm.

Polynomial Control Points

point: x/[mm] ±ex95%
/[mm] y/[mm] ±ey95%/[mm] b/[mm] e/[mm]

q1 8.9600 0.0022 66.5005 0.0005 25.0462 -0.04622
q2 34.0040 0.0011 66.1705 0.0002 25.1613 -0.16133
q3 59.1614 0.0022 65.7242 0.0004 25.0918 -0.09179
q4 84.2512 0.0024 65.4068 0.0002 25.0886 -0.08856
q5 109.3370 0.0016 65.0367 0.0005 25.0362 -0.03621
q6 134.3719 0.0016 64.7825 0.0005 25.1544 -0.15441
q7 159.5230 0.0035 64.3731 0.0005 25.1526 -0.15260
q8 184.6718 0.0004 63.9382 0.0007

Table 8.19: PolyCtrlPts error on metal target without glass, ē = 0.1045mm.

Tensor Interpolation via Basis Function Sectioning

point: x/[mm] ±ex95%
/[mm] y/[mm] ±ey95%/[mm] b/[mm] e/[mm]

q1 8.9587 0.0022 66.4943 0.0005 25.0464 -0.04640
q2 34.0030 0.0012 66.1723 0.0003 25.1602 -0.16016
q3 59.1593 0.0022 65.7333 0.0004 25.0934 -0.09337
q4 84.2507 0.0024 65.4137 0.0004 25.0905 -0.09047
q5 109.3383 0.0017 65.0383 0.0005 25.0377 -0.03770
q6 134.3747 0.0017 64.7763 0.0005 25.1564 -0.15644
q7 159.5277 0.0035 64.3603 0.0006 25.1500 -0.14996
q8 184.6740 0.0004 63.9330 0.0007

Table 8.20: TensorBFS error on metal target without glass, ē = 0.1049mm.
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Tensor Interpolation via Quad Tree Decomposition

point: x/[mm] ±ex95%
/[mm] y/[mm] ±ey95%/[mm] b/[mm] e/[mm]

q1 8.9593 0.0022 66.4945 0.0005 25.0464 -0.04643
q2 34.0037 0.0011 66.1726 0.0002 25.1606 -0.16064
q3 59.1605 0.0022 65.7322 0.0004 25.0920 -0.09201
q4 84.2505 0.0024 65.4148 0.0002 25.0905 -0.09049
q5 109.3382 0.0016 65.0387 0.0005 25.0389 -0.03887
q6 134.3756 0.0016 64.7753 0.0005 25.1555 -0.15551
q7 159.5277 0.0035 64.3605 0.0005 25.1484 -0.14838
q8 184.6725 0.4285 63.9338 0.6793

Table 8.21: TensorQDT error on metal target without glass, ē = 0.1046mm.

8.3.2 Metal Target with Glass

Figure 8.23: Resulting error on a metal target with glass.
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Figure 8.24: This setup features a transparent glass between the laser and the metal target.

Linear Homography

point: x/[mm] ±ex95%
/[mm] y/[mm] ±ey95%/[mm] b/[mm] e/[mm]

q1 9.3305 0.0014 66.5048 0.0006 24.6926 0.30743
q2 34.0214 0.0019 66.2199 0.0007 25.1108 -0.11080
q3 59.1287 0.0013 65.8025 0.0003 25.1216 -0.12161
q4 84.2480 0.0011 65.4629 0.0011 25.1376 -0.13761
q5 109.3820 0.0017 65.0359 0.0006 25.0481 -0.04810
q6 134.4280 0.0026 64.7091 0.0005 24.9450 0.05495
q7 159.3716 0.0021 64.4404 0.0006 24.9320 0.06805
q8 184.2987 0.0041 63.9516 0.0005

Table 8.22: Homography error on metal target with transparent glass, ē = 0.1212mm.

Polynomial Control Points

point: x/[mm] ±ex95%
/[mm] y/[mm] ±ey95%/[mm] b/[mm] e/[mm]

q1 9.3512 0.0014 66.5177 0.0006 24.7367 0.26335
q2 34.0861 0.0019 66.2253 0.0007 25.1053 -0.10527
q3 59.1878 0.0013 65.8005 0.0003 25.0872 -0.08721
q4 84.2727 0.0011 65.4585 0.0011 25.0946 -0.09455
q5 109.3637 0.0017 65.0361 0.0006 25.0151 -0.01508
q6 134.3768 0.0026 64.7186 0.0005 24.9384 0.06156
q7 159.3139 0.0021 64.4595 0.0006 24.9663 0.03374
q8 184.2754 0.0041 63.9733 0.0005

Table 8.23: PolyCtrlPts error on metal target with transparent glass, ē = 0.0944mm.
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Tensor Interpolation via Basis Function Sectioning

point: x/[mm] ±ex95%
/[mm] y/[mm] ±ey95%/[mm] b/[mm] e/[mm]

q1 9.3490 0.0014 66.5123 0.0006 24.7383 0.26169
q2 34.0857 0.0019 66.2270 0.0007 25.1048 -0.10483
q3 59.1870 0.0013 65.8080 0.0004 25.0867 -0.08665
q4 84.2713 0.0011 65.4670 0.0011 25.0967 -0.09668
q5 109.3643 0.0017 65.0373 0.0006 25.0181 -0.01812
q6 134.3803 0.0025 64.7117 0.0005 24.9394 0.06061
q7 159.3183 0.0022 64.4487 0.0007 24.9619 0.03805
q8 184.2757 0.0041 63.9687 0.0005

Table 8.24: TensorBFS error on metal target with transparent glass, ē = 0.0952mm.

Tensor Interpolation via Quad Tree Decomposition

point: x/[mm] ±ex95%
/[mm] y/[mm] ±ey95%/[mm] b/[mm] e/[mm]

q1 9.3485 0.0013 66.5118 0.0006 24.7390 0.26098
q2 34.0859 0.0019 66.2274 0.0007 25.1044 -0.10445
q3 59.1873 0.0014 65.8083 0.0005 25.0874 -0.08742
q4 84.2720 0.0011 65.4665 0.0011 25.0965 -0.09654
q5 109.3649 0.0017 65.0383 0.0006 25.0177 -0.01767
q6 134.3804 0.0026 64.7115 0.0005 24.9396 0.06037
q7 159.3186 0.0021 64.4470 0.0006 24.9613 0.03872
q8 184.2753 0.0040 63.9686 0.0005

Table 8.25: TensorQDT error on metal target with transparent glass, ē = 0.0952mm.

8.3.3 Glass Target

Figure 8.25: This setup features an opaque glass target.
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Figure 8.26: Resulting error on a glass target.

Linear Homography

point: x/[mm] ±ex95%
/[mm] y/[mm] ±ey95%/[mm] b/[mm] e/[mm]

q1 8.6335 0.0006 66.3595 0.0004 25.1156 -0.11557
q2 33.7456 0.0012 65.9409 0.0004 25.2247 -0.22469
q3 58.9671 0.0018 65.5402 0.0005 25.3112 -0.31118
q4 84.2627 0.0017 64.6495 0.0016 25.2432 -0.24319
q5 109.5056 0.0020 64.7587 0.0003 25.2230 -0.22301
q6 134.7264 0.0006 64.4280 0.0004 25.2316 -0.23158
q7 159.9551 0.0018 64.0416 0.0004 25.3969 -0.39689
q8 185.3458 0.0017 63.4809 0.0003

Table 8.26: Homography error on opaque glass target, ē = 0.2494mm.
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Polynomial Control Points

point: x/[mm] ±ex95%
/[mm] y/[mm] ±ey95%/[mm] b/[mm] e/[mm]

q1 8.6520 0.0006 66.3725 0.0004 25.1617 -0.16166
q2 33.8101 0.0012 65.9467 0.0004 25.2195 -0.21950
q3 59.0263 0.0018 65.5388 0.0005 25.2765 -0.27648
q4 84.2871 0.0017 64.6471 0.0016 25.2002 -0.20021
q5 109.4870 0.0020 64.7596 0.0003 25.1900 -0.18996
q6 134.6749 0.0006 64.4382 0.0004 25.2255 -0.22554
q7 159.8976 0.0018 64.0614 0.0004 25.4336 -0.43360
q8 185.3251 0.0017 63.5024 0.0003

Table 8.27: PolyCtrlPts error on opaque glass target, ē = 0.2439mm.

Tensor Interpolation via Basis Function Sectioning

point: x/[mm] ±ex95%
/[mm] y/[mm] ±ey95%/[mm] b/[mm] e/[mm]

q1 8.6510 0.0006 66.3657 0.0004 25.1621 -0.16211
q2 33.8097 0.0012 65.9493 0.0004 25.2189 -0.21889
q3 59.0253 0.0018 65.5460 0.0006 25.2774 -0.27736
q4 84.2870 0.0016 64.6553 0.0015 25.2002 -0.20023
q5 109.4870 0.0020 64.7623 0.0003 25.1935 -0.19351
q6 134.6783 0.0006 64.4313 0.0004 25.2262 -0.22624
q7 159.9017 0.0019 64.0483 0.0005 25.4296 -0.42962
q8 185.3253 0.0017 63.4980 0.0003

Table 8.28: TensorBFS error on opaque glass target, ē = 0.2440mm.

Tensor Interpolation via Quad Tree Decomposition

point: x/[mm] ±ex95%
/[mm] y/[mm] ±ey95%/[mm] b/[mm] e/[mm]

q1 8.6508 0.0006 66.3664 0.0004 25.1625 -0.16253
q2 33.8099 0.0012 65.9488 0.0004 25.2187 -0.21872
q3 59.0254 0.0018 65.5468 0.0005 25.2770 -0.27704
q4 84.2867 0.0017 64.6553 0.0016 25.2018 -0.20179
q5 109.4883 0.0020 64.7615 0.0003 25.1926 -0.19256
q6 134.6787 0.0006 64.4310 0.0004 25.2265 -0.22654
q7 159.9023 0.0018 64.0488 0.0004 25.4290 -0.42899
q8 185.3254 0.0017 63.4985 0.0003

Table 8.29: TensorQDT error on opaque glass target, ē = 0.2440mm.
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8.4 Result Interpretation

The research questions demand a proposal for the methodology to be deployed to achieve

the best results for the actual measurement instrument. The experiments with the prototype

showed following facts:

1. The image acquisition works for a normal-angle lens with f = 12mm as well as for

a lens with f = 3.6mm, the object distance g must be adjusted accordingly. It’s

recommended to use an interference filter to avoid errors from external light sources.

The resolution of the digital camera is a limiting factor for the achievable accuracy.

Still, a better device is no guarantee for increased quality, because of subpixel accuracy

effects;

2. Image preprocessing is vital for the efficient computation of certain methods, as the full

encoding spectrum can be used and therefore the contrast is increased. Furthermore,

normalized data is required for many functions to work correctly. Noise suppression

is essential for center determination through conic fitting, also the contour finding of

image objects requires this filtering step;

3. Local Otsu’s method delivers the best and most robust threshold for binary morphol-

ogy. Therefore, object segmentation and contour finding can be efficiently carried out.

The classification of image objects as regions of interest can be performed by deploying

a-priori knowledge of the geometry;

4. The experiments in Section 8.2 and 8.1 showed, that for center determination, the

conic fitting via ellipse approximation delivers the best results. If computation time is

critical or the object has an arbitrary geometrical form, the center of gravity is also a

good option;

5. The system should be calibrated directly with a xy-table. This brings a number of

advantages: the system is directly adjusted using the actual target plate, i.e. there are

no changes of the hardware setup; the mechanical errors even out, because they occur

during the calibration and the measurement process; the LEDs and laser spots have

different geometrical nature. This effect was shown in Section 8.2;
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6. The quality of the coordinate mapping methods strongly depends on the objectives

being used. For a normal-angle lens, homography works quite good, polynomial control

points of d = 4 are okay and for tensor interpolation a degree d = 4 is sufficient. For a

wide-angle lens, the homography doesn’t work at all, polynomial control points could

be used for other less accurate applications and tensor interpolation of d = 6 delivers

almost a perfect mapping.

Chapter 7 proofed, that the acquired data is normally distributed, therefore the reachable

accuracy can be estimated by employing the concept of the standard error with a 95%

confidence interval. By recalling the experiments from chapter 8, it can be assumed, that

the measurement error e for this instrument is about

e ≤ ±0.05mm. (8.14)

This is about ten times higher than the physical barrier of 3.2μm determined by the laser’s

wavelength as stated in Equation 2.6, which is in fact a reasonable solution. The experiments

from Section 8.3 showed errors of e ≈ ±0.10mm, but as this error is stable and appears ev-

ery time, it can be assumed to be a systematic error caused by the linear drive. Therefore,

electro-active glass has much potential for such an application.

Keep in mind, that there are fundamental challenges for this application when it’s used

under real conditions in an underground structure: dust and moisture on the target plates,

vibrations through heavy machinery or other external influences. It might be necessary to

install more than one system, since curved structures may need to be monitored.



Chapter 9

Discussions

The experiments covered by this feasibility study showed, that the implemented methods

work under laboratory conditions and it’s possible to detect relative movements caused by

external forces.

9.1 Conclusion

It turned out, that the system can be calibrated directly with a xy-table without the need of

a designated calibration plate. Therefore, it could be tested, how a theodolite would perform,

as this device allows a highly accurate adjustment. Still, LEDs could be used to validate the

correct position of a target plate. Other possible options would be the use of a camera with

a higher resolution or the deployment of a laser with a shorter wavelength.

Additionally, this thesis introduced the idea of tensor interpolation via quad tree decom-

position. It was shown, that this technique is highly efficient for remapping one point from

the camera space to its real space equivalent. This brings three main advantages: it works

for wide-angle objectives, therefor a compact design is possible; the optics can be cheap in

comparison to common industry equipment; and the low computational effort allows the

algorithm to run on an embedded system.

The software implementation could be translated from Matlab to a native C -code or the

process could be modeled in Simulink 1 to profit from higher computational performance.

1 c©The MathWorks Inc., Natick, MA, United States of America, www.mathworks.com
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Consequently, the next step of the concept’s development would be the deployment of a pro-

totype in an actual working environment for further testing and improvement. Especially,

the installation of a series of electro-active glass plates and how this effects the outcome

must be investigated next.

9.2 Potential

The fields of application for electro-active glass are numerous, e.g. when a barrier for light

is required. A possibility would be its deployment as a replacement for mechanical shutters

in cameras or even in theodolites.

The tensor interpolation via quad tree decomposition has much potential, especially when

a complete image registration is not necessary and only certain points are of interest. Still,

there are possible expansions to improve the method further, e.g. the extrapolation over the

borders of the support or to use only the even portions of the bases functions, because the

camera space has axis symmetry.

Bases functions are commonly used for filtering purposes. This thesis has proofed, that

the inverse way, i.e. interpolation of data, is also working. This means, based on a few

known points, assumptions about the whole data set can be made. The idea is not re-

stricted for two-dimensional images, it can also be adapted to work for spoken language or

three-dimensional objects.
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Appendix A

Optical Arrangement

This appendix features the calculations done for the optical arrangement of chapter 2.

Figure A.1: This schematic of an optical lens illustrates the relation between the object G and
image B, the object distance g and image distance b as well as the focal length f .
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Focal Length of f = 12mm

1 % 1/2" CCD chip (image size, Bildhoehe), fixed values

2 Bh = 4.80; % higth [mm]

3 Bw = 6.40; % width [mm]

4 % target (object size, Gegenstandshoehe)

5 Gh = 150.00 + 20.00; % higth [mm]

6 Gw = 200.00 + 20.00; % width [mm]

7 % focal length (Brennweite des Objektivs)

8 f = 12; % [mm]

9 % object distance (Gegenstandsweite)

10 % G = (g-f)*B/f >> g = f * (G+B)/B

11 gh = f * (Gh+Bh)/Bh; % gh = 437.00 mm

12 gw = f * (Gw+Bw)/Bw; % gw = 424.50 mm

13 % take the maximal object distance and round it to the next [cm]

14 g = ceil(max(gh,gw)/10)*10; % g = 440.00 mm

15 % the target size with the computed distance

16 Gh1 = (g-f)*Bh/f; % Gh1 = 171.20 mm

17 Gw1 = (g-f)*Bw/f; % Gw1 = 228.27 mm

Source Code A.1: Computation of the optical arrangement for f = 12mm.

Therefore the object distance g = 44cm for the focal length f = 12mm.

Focal Length of f = 3.6mm

1 % 1/2" CCD chip (image size, Bildhoehe), fixed values

2 Bh = 4.80; % higth [mm]

3 Bw = 6.40; % width [mm]

4 % target (object size, Gegenstandshoehe)

5 Gh = 150.00 + 20.00; % higth [mm]

6 Gw = 200.00 + 20.00; % width [mm]

7 % focal length (Brennweite des Objektivs)

8 f = 3.6; % [mm]

9 % object distance (Gegenstandsweite)

10 % G = (g-f)*B/f >> g = f * (G+B)/B

11 gh = f * (Gh+Bh)/Bh; % gh = 131.10 mm

12 gw = f * (Gw+Bw)/Bw; % gw = 127.35 mm

13 % take the maximal object distance and round it to the next [cm]

14 g = ceil(max(gh,gw)/10)*10; % g = 140.00 mm

15 % the target size with the computed distance

16 Gh1 = (g-f)*Bh/f; % Gh1 = 181.87 mm

17 Gw1 = (g-f)*Bw/f; % Gw1 = 242.49 mm

Source Code A.2: Computation of the optical arrangement for f = 3.6mm.

Therefore the object distance g = 14cm for the focal length f = 3.6mm.
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Threshold Computation

The computation of a suitable threshold is necessary for a successful image object segmenta-

tion. The implementations presented here allow to derive the Otsu threshold to, the simple

threshold ts, the Gauss threshold tg and the maximal normal distance threshold tn.

1 function [t, tIdx] = getThreshold (D, bins, method, debug)

2 x = 1:bins;

3 % Otsu threshold and corresponding index:

4 % ----------------------------------------

5 otsuT = graythresh(D);

6 otsuIdx = round(otsuT*bins);

7 % get histogram values

8 h = imhist(D,bins);

9 % find classes:

10 % ----------------------------------------

11 idxT = round(bins*otsuT);

12 % class1

13 class1 = h(1:idxT);

14 max1 = max(class1); % peak value

15 meanIdx1 = find(class1 == max(class1));

16 mean1 = x(meanIdx1(1)); % index of peak value

17 sigmaIdx1 = findnearest(std(class1),class1);

18 sigma1 = mean1-x(sigmaIdx1(1)); % difference of indices

19 y1 = max1*exp(-((x-mean1)/sigma1).ˆ2); % Gauss curve

20 % class2

21 class2 = h(idxT+1:end);

22 max2 = max(class2);

23 meanIdx2 = find(class2 == max(class2))+idxT;

24 mean2 = x(meanIdx2(1));

25 sigmaIdx2 = findnearest(std(class2),class2)+idxT;

26 sigma2 = mean2-x(sigmaIdx2(1));

27 y2 = max2*exp(-((x-mean2)/sigma2).ˆ2);

28 % simple threshold:

29 % ----------------------------------------

30 simpleIdx = round(((meanIdx1+meanIdx2)/2));

31 simpleT = ((meanIdx1+meanIdx2)/2)/bins;

32 %
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33 % Gauss method:

34 % ----------------------------------------

35 mean1_2 = mean1ˆ2;

36 sigma1_2 = sigma1ˆ2;

37 mean2_2 = mean2ˆ2;

38 sigma2_2 = sigma2ˆ2;

39 a = - 1/sigma1_2 + 1/sigma2_2;

40 b = + 2*( -mean2/sigma2_2 + mean1/sigma1_2 );

41 c = - mean1_2/sigma1_2 + mean2_2/sigma2_2 + log(max1/max2);

42 temp = sqrt( bˆ2 - 4*a*c);

43 % solutions

44 sol1 = (-b +temp)/(2*a);

45 sol2 = (-b -temp)/(2*a);

46 % only one solution is valid

47 if (sol1 > mean1) && (sol1 < mean2)

48 solG = sol1;

49 elseif (sol2 > mean1) && (sol2 < mean2);

50 solG = sol2;

51 else

52 solG = [];

53 end;

54 gaussIdx = round(solG);

55 gaussT = solG/bins;

56 % maximal normal distance:

57 % ----------------------------------------

58 lineP = [ max1-max2, mean2-mean1,(max2*mean1)-(max1*mean2)];

59 scale = sqrt(lineP(1)ˆ2 + lineP(2)ˆ2);

60 lineP = lineP/scale;

61 yP = -lineP(1)/lineP(2)*x-lineP(3)/lineP(2); % plotting lineP

62 % points = [bins counts 1];

63 points = [x(mean1:mean2); h(mean1:mean2)’; ones(size((mean1:mean2)))];

64 % find the index with the maximal normal distance

65 ds = lineP * points;

66 [maxD maxDidx] = max (abs(ds));

67 maxDidx = maxDidx + mean1;

68 % determine the normal line;

69 lineT = [ -lineP(2), lineP(1), 0];

70 lineT(3) = -lineT * [x(maxDidx);h(maxDidx);1];

71 yT = -lineT(1)/lineT(2)*x-lineT(3)/lineT(2); % plotting lineT

72 % compute threshold and corresponding index

73 maxNdIdx = maxDidx;

74 maxNdT = maxDidx/bins;

Source Code B.1: Threshold computation with Matlab.



Appendix C

Statistical Analysis

The measurements are carried out for two different types of data sources to determine their

statistical behavior, which are

1. TC#1 (Test-Case 1): single LED ;

2. TC#2 (Test-Case 2): single laser spot.

The data samples are acquired for the camera coordinates of p = [xc, yc]
T , additionally

the corresponding real coordinates q = [xr, yr]
T for every coordinate mapping method are

computed. All values are examined with the K-S test: if H0 is accepted, then the data

has normal distribution, if H0 is rejected, then the data has no normal distribution . The

number of repetitions is ρ = 100.
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TC#1: Single LED / Camera Samples / x Dimension

Figure C.1: Measured LED camera coordinates in x dimension.

Figure C.2: Histogram of measured LED camera coordinates in x dimension.
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Figure C.3: K-S test of measured LED camera coordinates in x dimension.

Statistical analysis:
â 649.8374 pixel
ã 649.8618 pixel
ā 649.8606 pixel
s2 0.00011213 pixel2

s 0.010589 pixel
e 0.0010589 pixel
e95% 0.0020755 pixel
e99% 0.002679 pixel
γ̂1 -0.40949

β̂2 2.427
K-S test H0 accepted

Table C.1: Stat. analysis of measured LED camera coordinates in x dimension.
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TC#1: Single LED / Camera Samples / y Dimension

Figure C.4: Measured LED camera coordinates in y dimension.

Figure C.5: Histogram of measured LED camera coordinates in y dimension.



135

Figure C.6: K-S test of measured LED camera coordinates in y dimension.

Statistical analysis:
â 507.7686 pixel
ã 507.7793 pixel
ā 507.7794 pixel
s2 0.000021018 pixel2

s 0.0045845 pixel
e 0.00045845 pixel
e95% 0.00089856 pixel
e99% 0.0011599 pixel
γ̂1 0.050525

β̂2 2.8473
K-S test H0 accepted

Table C.2: Stat. analysis of measured LED camera coordinates in y dimension.
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TC#1: Single LED / Homography / x Dimension

Figure C.7: LED real coordinates in x dimension via homography.

Figure C.8: Histogram of LED real coordinates in x dimension via homography.
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Figure C.9: K-S test of LED real coordinates in x dimension via homography.

Statistical analysis:
â 100.0082 mm
ã 100.0129 mm
ā 100.0127 mm
s2 0.00000418 mm2

s 0.0020445 mm
e 0.00020445 mm
e95% 0.00040072 mm
e99% 0.00051726 mm
γ̂1 -0.40753

β̂2 2.4245
K-S test H0 accepted

Table C.3: Stat. analysis of LED real coordinates in x dimension via homography.
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TC#1: Single LED / Homography / y Dimension

Figure C.10: LED real coordinates in y dimension via homography.

Figure C.11: Histogram of LED real coordinates in y dimension via homography.
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Figure C.12: K-S test of LED real coordinates in y dimension via homography.

Statistical analysis:
â 74.9865 mm
ã 74.9885 mm
ā 74.9886 mm
s2 0.00000079207 mm2

s 0.00088998 mm
e 0.000088998 mm
e95% 0.00017444 mm
e99% 0.00022517 mm
γ̂1 0.052232

β̂2 2.8453
K-S test H0 accepted

Table C.4: Stat. analysis of LED real coordinates in y dimension via homography.
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TC#1: Single LED / PolyCtrlPts / x Dimension

Figure C.13: LED real coordinates in x dimension via polyCtrlPts.

Figure C.14: Histogram of LED real coordinates in x dimension via polyCtrlPts.
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Figure C.15: K-S test of LED real coordinates in x dimension via polyCtrlPts.

Statistical analysis:
â 100.0094 mm
ã 100.0141 mm
ā 100.0138 mm
s2 0.0000041659 mm2

s 0.0020411 mm
e 0.00020411 mm
e95% 0.00040005 mm
e99% 0.00051639 mm
γ̂1 -0.40755

β̂2 2.4245
K-S test H0 accepted

Table C.5: Stat. analysis of LED real coordinates in x dimension via polyCtrlPts.
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TC#1: Single LED / PolyCtrlPts / y Dimension

Figure C.16: LED real coordinates in y dimension via polyCtrlPts.

Figure C.17: Histogram of LED real coordinates in y dimension via polyCtrlPts.
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Figure C.18: K-S test of LED real coordinates in y dimension via polyCtrlPts.

Statistical analysis:
â 74.9658 mm
ã 74.9679 mm
ā 74.9679 mm
s2 0.00000078846 mm2

s 0.00088795 mm
e 0.000088795 mm
e95% 0.00017404 mm
e99% 0.00022465 mm
γ̂1 0.052372

β̂2 2.8451
K-S test H0 accepted

Table C.6: Stat. analysis of LED real coordinates in y dimension via polyCtrlPts.
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TC#1: Single LED / TensorBFS / x Dimension

Figure C.19: LED real coordinates in x dimension via tensorBFS.

Figure C.20: Histogram of LED real coordinates in x dimension via tensorBFS.
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Figure C.21: K-S test of LED real coordinates in x dimension via tensorBFS.

Statistical analysis:
â 100.01 mm
ã 100.01 mm
ā 100.01 mm
s2 2.4683 1026 mm2

s 1.5711 1013 mm
e 1.5711 1014 mm
e95% 3.0793 1014 mm
e99% 3.9748 1014 mm
γ̂1 -1

β̂2 1.0
K-S test H0 rejected

Table C.7: Stat. analysis of LED real coordinates in x dimension via tensorBFS.



146

TC#1: Single LED / TensorBFS / y Dimension

Figure C.22: LED real coordinates in y dimension via tensorBFS.

Figure C.23: Histogram of LED real coordinates in y dimension via tensorBFS.
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Figure C.24: K-S test of LED real coordinates in y dimension via tensorBFS.

Statistical analysis:
â 74.97 mm
ã 74.97 mm
ā 74.973 mm
s2 0.000021212 mm2

s 0.0046057 mm
e 0.00046057 mm
e95% 0.00090271 mm
e99% 0.0011652 mm
γ̂1 0.87287

β̂2 1.7619
K-S test H0 rejected

Table C.8: Stat. analysis of LED real coordinates in y dimension via tensorBFS.
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TC#1: Single LED / TensorQTD / x Dimension

Figure C.25: LED real coordinates in x dimension via tensorQTD.

Figure C.26: Histogram of LED real coordinates in x dimension via tensorQTD.
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Figure C.27: K-S test of LED real coordinates in x dimension via tensorQTD.

Statistical analysis:
â 100.0108 mm
ã 100.0108 mm
ā 100.0122 mm
s2 0.000025031 mm2

s 0.0050031 mm
e 0.00050031 mm
e95% 0.00098062 mm
e99% 0.0012658 mm
γ̂1 1.6263

β̂2 4.753
K-S test H0 rejected

Table C.9: Stat. analysis of LED real coordinates in x dimension via tensorQTD.
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TC#1: Single LED / TensorQTD / y Dimension

Figure C.28: LED real coordinates in y dimension via tensorQTD.

Figure C.29: Histogram of LED real coordinates in y dimension via tensorQTD.
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Figure C.30: K-S test of LED real coordinates in y dimension via tensorQTD.

Statistical analysis:
â 74.9741 mm
ã 74.9741 mm
ā 100.0122 mm
s2 0.0000065503 mm2

s 0.0025594 mm
e 0.00025594 mm
e95% 0.00050163 mm
e99% 0.00064752 mm
γ̂1 -2.6852

β̂2 11.7109
K-S test H0 rejected

Table C.10: Stat. analysis of LED real coordinates in y dimension via tensorQTD.
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TC#2: Single Laser Spot / Camera Samples / x Dimension

Figure C.31: Measured laser spot camera coordinates in x dimension.

Figure C.32: Histogram of measured laser spot camera coordinates in x dimension.
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Figure C.33: K-S test of measured laser spot camera coordinates in x dimension.

Statistical analysis:
â 576.7147 pixel
ã 576.7795 pixel
ā 576.7803 pixel
s2 0.00068303 pixel2

s 0.026135 pixel
e 0.0026135 pixel
e95% 0.0051224 pixel
e99% 0.0066121 pixel
γ̂1 -0.14242

β̂2 2.469
K-S test H0 accepted

Table C.11: Stat. analysis of measured laser spot camera coordinates in x dimension.
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TC#2: Single Laser Spot / Camera Samples / y Dimension

Figure C.34: Measured laser spot camera coordinates in y dimension.

Figure C.35: Histogram of measured laser spot camera coordinates in y dimension.
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Figure C.36: K-S test of measured laser spot camera coordinates in y dimension.

Statistical analysis:
â 483.8225 pixel
ã 483.9126 pixel
ā 483.904 pixel
s2 0.00096485 pixel2

s 0.031062 pixel
e 0.0031062 pixel
e95% 0.0060882 pixel
e99% 0.0078587 pixel
γ̂1 -0.80396

β̂2 2.8444
K-S test H0 accepted

Table C.12: Stat. analysis of measured laser spot camera coordinates in y dimension.
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TC#2: Single Laser Spot / Homography / x Dimension

Figure C.37: Laser spot real coordinates in x dimension via homography.

Figure C.38: Histogram of laser spot real coordinates in x dimension via homography.
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Figure C.39: K-S test of laser spot real coordinates in x dimension via homography.

Statistical analysis:
â 85.9242 mm
ã 85.9367 mm
ā 85.9369 mm
s2 0.000025491 mm2

s 0.0050488 mm
e 0.00050488 mm
e95% 0.00098957 mm
e99% 0.0012774 mm
γ̂1 -0.14322

β̂2 2.4712
K-S test H0 accepted

Table C.13: Stat. analysis of laser spot real coordinates in x dimension via homography.
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TC#2: Single Laser Spot / Homography / y Dimension

Figure C.40: Laser spot real coordinates in y dimension via homography.

Figure C.41: Histogram of laser spot real coordinates in y dimension via homography.
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Figure C.42: K-S test of laser spot real coordinates in y dimension via homography.

Statistical analysis:
â 70.2981 mm
ã 70.3156 mm
ā 70.3139 mm
s2 0.000036425 mm2

s 0.0060353 mm
e 0.0011829 mm
e95% 0.0011829 mm
e99% 0.0015269 mm
γ̂1 -0.80386

β̂2 2.8454
K-S test H0 accepted

Table C.14: Stat. analysis of laser spot real coordinates in y dimension via homography.
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TC#2: Single Laser Spot / PolyCtrlPts / x Dimension

Figure C.43: Laser spot real coordinates in x dimension via polyCtrlPts.

Figure C.44: Histogram of laser spot real coordinates in x dimension via polyCtrlPts.
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Figure C.45: K-S test of laser spot real coordinates in x dimension via polyCtrlPts.

Statistical analysis:
â 85.9483 mm
ã 85.9609 mm
ā 85.961 mm
s2 0.000025406 mm2

s 0.0050404 mm
e 0.00050404 mm
e95% 0.00098793 mm
e99% 0.0012752 mm
γ̂1 -0.14319

β̂2 2.4711
K-S test H0 rejected

Table C.15: Stat. analysis of laser spot real coordinates in x dimension via polyCtrlPts.
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TC#2: Single Laser Spot / PolyCtrlPts / y Dimension

Figure C.46: Laser spot real coordinates in y dimension via polyCtrlPts.

Figure C.47: Histogram of laser spot real coordinates in y dimension via polyCtrlPts.
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Figure C.48: K-S test of laser spot real coordinates in y dimension via polyCtrlPts.

Statistical analysis:
â 70.2863 mm
ã 70.3037 mm
ā 70.3021 mm
s2 0.000036253 mm2

s 0.006021 mm
e 0.0006021 mm
e95% 0.0011801 mm
e99% 0.0015233 mm
γ̂1 -0.80386

β̂2 2.8454
K-S test H0 accepted

Table C.16: Stat. analysis of laser spot real coordinates in y dimension via polyCtrlPts.
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TC#2: Single Laser Spot / TensorBFS / x Dimension

Figure C.49: Laser spot real coordinates in x dimension via tensorBFS.

Figure C.50: Histogram of laser spot real coordinates in x dimension via tensorBFS.
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Figure C.51: K-S test of laser spot real coordinates in x dimension via tensorBFS.

Statistical analysis:
â 85.94 mm
ã 85.94 mm
ā 85.9411 mm
s2 0.000036152 mm2

s 0.0060126 mm
e 0.00060126 mm
e95% 0.0011785 mm
e99% 0.0015212 mm
γ̂1 -0.04408

β̂2 2.717
K-S test H0 rejected

Table C.17: Stat. analysis of laser spot real coordinates in x dimension via tensorBFS.
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TC#2: Single Laser Spot / TensorBFS / y Dimension

Figure C.52: Laser spot real coordinates in y dimension via tensorBFS.

Figure C.53: Histogram of laser spot real coordinates in y dimension via tensorBFS.
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Figure C.54: K-S test of laser spot real coordinates in y dimension via tensorBFS.

Statistical analysis:
â 70.31 mm
ã 70.31 mm
ā 70.3046 mm
s2 0.000051354 mm2

s 0.0071661 mm
e 0.00071661 mm
e95% 0.0014046 mm
e99% 0.001813 mm
γ̂1 -0.93497

β̂2 2.5279
K-S test H0 rejected

Table C.18: Stat. analysis of laser spot real coordinates in y dimension via tensorBFS.
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TC#2: Single Laser Spot / TensorQTD / x Dimension

Figure C.55: Laser spot real coordinates in x dimension via tensorQTD.

Figure C.56: Histogram of laser spot real coordinates in x dimension via tensorQTD.
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Figure C.57: K-S test of laser spot real coordinates in x dimension via tensorQTD.

Statistical analysis:
â 85.9437 mm
ã 85.9414 mm
ā 85.9414 mm
s2 0.0000257 mm2

s 0.0050695 mm
e 0.00050695 mm
e95% 0.00099363 mm
e99% 0.0012826 mm
γ̂1 -0.26901

β̂2 2.4866
K-S test H0 accepted

Table C.19: Stat. analysis of laser spot real coordinates in x dimension via tensorQTD.
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TC#2: Single Laser Spot / TensorQTD / y Dimension

Figure C.58: Laser spot real coordinates in y dimension via tensorQTD.

Figure C.59: Histogram of laser spot real coordinates in y dimension via tensorQTD.
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Figure C.60: K-S test of laser spot real coordinates in y dimension via tensorQTD.

Statistical analysis:
â 70.3064 mm
ã 70.3061 mm
ā 70.3044 mm
s2 0.00003785 mm2

s 0.0061523 mm
e 0.00061523 mm
e95% 0.0012058 mm
e99% 0.0015565 mm
γ̂1 -0.70323

β̂2 2.685
K-S test H0 accepted

Table C.20: Stat. analysis of laser spot real coordinates in y dimension via tensorQTD.



Appendix D

Base Points Remapping

The measurements are carried out for two different types of lenses:

1. TC#1 (Test-Case 1): a normal-angle objective with focal length of f = 12mm;

2. TC#2 (Test-Case 2): a wide-angle objective with focal length of f = 3.6mm.

The combined error exy and its mean ēxy are acquired by

exyi =
√
ex2i + ey2i , and ēxy =

1

ε

ε∑
i=1

exyi, (D.1)

when the number of investigated image objects ε = 35 LEDs. The object distance g is

adjusted depending on the utilized objective, i.e. g(f = 12mm) = 440mm and g(f =

3.6mm) = 140mm. The deployed degree d and the used mapping function is stated for each

figure.
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TC#1: f = 12mm / Center of Gravity / Homography

Figure D.1: Homography error utilizing f = 12mm and center of gravity.

TC#1: f = 12mm / Center of Gravity / PolyCtrlPts

Figure D.2: PolyCtrlPts error utilizing d = 2, f = 12mm and center of gravity.



174

Figure D.3: PolyCtrlPts error utilizing d = 4, f = 12mm and center of gravity.

TC#1: f = 12mm / Center of Gravity / TensorBFS

Figure D.4: TensorBFS error utilizing d = 2, f = 12mm and center of gravity.
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Figure D.5: TensorBFS error utilizing d = 4, f = 12mm and center of gravity.

Figure D.6: TensorBFS error utilizing d = 6, f = 12mm and center of gravity.
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TC#1: f = 12mm / Center of Gravity / TensorQDT

Figure D.7: TensorQDT error utilizing d = 2, f = 12mm and center of gravity.

Figure D.8: TensorQDT error utilizing d = 4, f = 12mm and center of gravity.
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Figure D.9: TensorQDT error utilizing d = 6, f = 12mm and center of gravity.

TC#1: f = 12mm / Gaussian Curve Extremum / Homography

Figure D.10: Homography error utilizing f = 12mm and Gaussian curve extremum.
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TC#1: f = 12mm / Gaussian Curve Extremum / PolyCtrlPts

Figure D.11: PolyCtrlPts error utilizing d = 2, f = 12mm and Gaussian curve extremum.

Figure D.12: PolyCtrlPts error utilizing d = 4, f = 12mm and Gaussian curve extremum.
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TC#1: f = 12mm / Gaussian Curve Extremum / TensorBFS

Figure D.13: TensorBFS error utilizing d = 2, f = 12mm and Gaussian curve extremum.

Figure D.14: TensorBFS error utilizing d = 4, f = 12mm and Gaussian curve extremum.



180

Figure D.15: TensorBFS error utilizing d = 6, f = 12mm and Gaussian curve extremum.

TC#1: f = 12mm / Gaussian Curve Extremum / TensorQDT

Figure D.16: TensorQDT error utilizing d = 2, f = 12mm and Gaussian curve extremum.
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Figure D.17: TensorQDT error utilizing d = 4, f = 12mm and Gaussian curve extremum.

Figure D.18: TensorQDT error utilizing d = 6, f = 12mm and Gaussian curve extremum.
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TC#1: f = 12mm / Ellipse Approximation / Homography

Figure D.19: Homography error utilizing f = 12mm and ellipse approximation.

TC#1: f = 12mm / Ellipse Approximation / PolyCtrlPts

Figure D.20: PolyCtrlPts error utilizing d = 2, f = 12mm and ellipse approximation.
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Figure D.21: PolyCtrlPts error utilizing d = 4, f = 12mm and ellipse approximation.

TC#1: f = 12mm / Ellipse Approximation / TensorBFS

Figure D.22: TensorBFS error utilizing d = 2, f = 12mm and ellipse approximation.
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Figure D.23: TensorBFS error utilizing d = 4, f = 12mm and ellipse approximation.

Figure D.24: TensorBFS error utilizing d = 6, f = 12mm and ellipse approximation.
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TC#1: f = 12mm / Ellipse Approximation / TensorQDT

Figure D.25: TensorQDT error utilizing d = 2, f = 12mm and ellipse approximation.

Figure D.26: TensorQDT error utilizing d = 4, f = 12mm and ellipse approximation.
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Figure D.27: TensorQDT error utilizing d = 6, f = 12mm and ellipse approximation.

TC#1: f = 12mm / Circle Approximation / Homography

Figure D.28: Homography error utilizing f = 12mm and circle approximation.
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TC#1: f = 12mm / Circle Approximation / PolyCtrlPts

Figure D.29: PolyCtrlPts error utilizing d = 2, f = 12mm and circle approximation.

Figure D.30: PolyCtrlPts error utilizing d = 4, f = 12mm and circle approximation.
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TC#1: f = 12mm / Circle Approximation / TensorBFS

Figure D.31: TensorBFS error utilizing d = 2, f = 12mm and circle approximation.

Figure D.32: TensorBFS error utilizing d = 4, f = 12mm and circle approximation.
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Figure D.33: TensorBFS error utilizing d = 6, f = 12mm and circle approximation.

TC#1: f = 12mm / Circle Approximation / TensorQDT

Figure D.34: TensorQDT error utilizing d = 2, f = 12mm and circle approximation.
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Figure D.35: TensorQDT error utilizing d = 4, f = 12mm and circle approximation.

Figure D.36: TensorQDT error utilizing d = 6, f = 12mm and circle approximation.
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TC#2: f = 3.6mm / Center of Gravity / Homography

Figure D.37: Homography error utilizing f = 3.6mm and center of gravity.

TC#2: f = 3.6mm / Center of Gravity / PolyCtrlPts

Figure D.38: PolyCtrlPts error utilizing d = 2, f = 3.6mm and center of gravity.
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Figure D.39: PolyCtrlPts error utilizing d = 4, f = 3.6mm and center of gravity.

TC#2: f = 3.6mm / Center of Gravity / TensorBFS

Figure D.40: TensorBFS error utilizing d = 2, f = 3.6mm and center of gravity.
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Figure D.41: TensorBFS error utilizing d = 4, f = 3.6mm and center of gravity.

Figure D.42: TensorBFS error utilizing d = 6, f = 3.6mm and center of gravity.
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TC#2: f = 3.6mm / Center of Gravity / TensorQDT

Figure D.43: TensorQDT error utilizing d = 2, f = 3.6mm and center of gravity.

Figure D.44: TensorQDT error utilizing d = 4, f = 3.6mm and center of gravity.
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Figure D.45: TensorQDT error utilizing d = 6, f = 3.6mm and center of gravity.

TC#2: f = 3.6mm / Gaussian Curve Extremum / Homography

Figure D.46: Homography error utilizing f = 3.6mm and Gaussian curve extremum.
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TC#2: f = 3.6mm / Gaussian Curve Extremum / PolyCtrlPts

Figure D.47: PolyCtrlPts error utilizing d = 2, f = 3.6mm and Gaussian curve extremum.

Figure D.48: PolyCtrlPts error utilizing d = 4, f = 3.6mm and Gaussian curve extremum.
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TC#2: f = 3.6mm / Gaussian Curve Extremum / TensorBFS

Figure D.49: TensorBFS error utilizing d = 2, f = 3.6mm and Gaussian curve extremum.

Figure D.50: TensorBFS error utilizing d = 4, f = 3.6mm and Gaussian curve extremum.
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Figure D.51: TensorBFS error utilizing d = 6, f = 3.6mm and Gaussian curve extremum.

TC#2: f = 3.6mm / Gaussian Curve Extremum / TensorQDT

Figure D.52: TensorQDT error utilizing d = 2, f = 3.6mm and Gaussian curve extremum.
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Figure D.53: TensorQDT error utilizing d = 4, f = 3.6mm and Gaussian curve extremum.

Figure D.54: TensorQDT error utilizing d = 6, f = 3.6mm and Gaussian curve extremum.
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TC#2: f = 3.6mm / Ellipse Approximation / Homography

Figure D.55: Homography error utilizing f = 3.6mm and ellipse approximation.

TC#2: f = 3.6mm / Ellipse Approximation / PolyCtrlPts

Figure D.56: PolyCtrlPts error utilizing d = 2, f = 3.6mm and ellipse approximation.
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Figure D.57: PolyCtrlPts error utilizing d = 4, f = 3.6mm and ellipse approximation.

TC#2: f = 3.6mm / Ellipse Approximation / TensorBFS

Figure D.58: TensorBFS error utilizing d = 2, f = 3.6mm and ellipse approximation.
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Figure D.59: TensorBFS error utilizing d = 4, f = 3.6mm and ellipse approximation.

Figure D.60: TensorBFS error utilizing d = 6, f = 3.6mm and ellipse approximation.
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TC#2: f = 3.6mm / Ellipse Approximation / TensorQDT

Figure D.61: TensorQDT error utilizing d = 2, f = 3.6mm and ellipse approximation.

Figure D.62: TensorQDT error utilizing d = 4, f = 3.6mm and ellipse approximation.
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Figure D.63: TensorQDT error utilizing d = 6, f = 3.6mm and ellipse approximation.

TC#2: f = 3.6mm / Circle Approximation / Homography

Figure D.64: Homography error utilizing f = 3.6mm and circle approximation.
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TC#2: f = 3.6mm / Circle Approximation / PolyCtrlPts

Figure D.65: PolyCtrlPts error utilizing d = 2, f = 3.6mm and circle approximation.

Figure D.66: PolyCtrlPts error utilizing d = 4, f = 3.6mm and circle approximation.
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TC#2: f = 3.6mm / Circle Approximation / TensorBFS

Figure D.67: TensorBFS error utilizing d = 2, f = 3.6mm and circle approximation.

Figure D.68: TensorBFS error utilizing d = 4, f = 3.6mm and circle approximation.
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Figure D.69: TensorBFS error utilizing d = 6, f = 3.6mm and circle approximation.

TC#2: f = 3.6mm / Circle Approximation / TensorQDT

Figure D.70: TensorQDT error utilizing d = 2, f = 3.6mm and circle approximation.
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Figure D.71: TensorQDT error utilizing d = 4, f = 3.6mm and circle approximation.

Figure D.72: TensorQDT error utilizing d = 6, f = 3.6mm and circle approximation.



Appendix E

Calibration Modes

The measurements are carried out for every introduced center determination technique,

furthermore each test-case features calibration via a LED matrix and a laser spot matrix.

1. TC#1 (Test-Case 1): center determination via center of gravity ;

2. TC#2 (Test-Case 2): center determination via Gaussian curve extremum;

3. TC#3 (Test-Case 3): center determination via ellipse approximation;

4. TC#4 (Test-Case 4): center determination via circle approximation.

The differences bx and by between two measured points are acquired for every row and for

every column by

bx = xj+1 − xj and by = yi+1 − yi, (E.1)

when i is the indexing variable for rows and j is the indexing variable for columns. The cross

validation matrix features a δ = 25mm raster in x and y dimension. The errors exj
and eyi

are the differences between b and δ for every pair of neighboring points, i.e.

exj
= δ − bxj

and eyi = δ − byi , (E.2)

when the numbers of investigated objects distances in the interlaced cross validation matrix

are εx = 4 · 7 = 28 values for bx and εy = 3 · 8 = 24 values for by. A lens with a focal

length of f = 12mm is employed. The degree d = 4 is used for the non-linear mapping

functions. At first, every test-case presents the outcome of the different coordinate mapping

functions, afterwards the solutions depending on the data source, i.e. LEDs or laser spots,

are investigated.
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TC#1: Center of Gravity / Coordinate Mapping Error

Figure E.1: Homography error utilizing center of gravity.

Figure E.2: PolyCtrlPts error utilizing center of gravity.
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Figure E.3: TensorBFS error utilizing center of gravity.

Figure E.4: TensorQDT error utilizing center of gravity.
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TC#1: Center of Gravity / LEDs vs. Laser Spots Error

Figure E.5: Error in x dimension using LEDs and center of gravity.

Figure E.6: Error in y dimension using LEDs and center of gravity.
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Figure E.7: Error in x dimension using laser spots and center of gravity.

Figure E.8: Error in y dimension using laser spots and center of gravity.
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TC#2: Gaussian Curve Extremum / Coordinate Mapping Error

Figure E.9: Homography error utilizing Gaussian curve extremum.

Figure E.10: PolyCtrlPts error utilizing Gaussian curve extremum.
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Figure E.11: TensorBFS error utilizing Gaussian curve extremum.

Figure E.12: TensorQDT error utilizing Gaussian curve extremum.
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TC#2: Gaussian Curve Extremum / LEDs vs. Laser Spots Error

Figure E.13: Error in x dimension using LEDs and Gaussian curve extremum.

Figure E.14: Error in y dimension using LEDs and Gaussian curve extremum.
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Figure E.15: Error in x dimension using laser spots and Gaussian curve extremum.

Figure E.16: Error in y dimension using laser spots and Gaussian curve extremum.
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TC#3: Ellipse Approximation / Coordinate Mapping Error

Figure E.17: Homography error utilizing ellipse approximation.

Figure E.18: PolyCtrlPts error utilizing ellipse approximation.
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Figure E.19: TensorBFS error utilizing ellipse approximation.

Figure E.20: TensorQDT error utilizing ellipse approximation.
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TC#3: Ellipse Approximation / LEDs vs. Laser Spots Error

Figure E.21: Error in x dimension using LEDs and ellipse approximation.

Figure E.22: Error in y dimension using LEDs and ellipse approximation.
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Figure E.23: Error in x dimension using laser spots and ellipse approximation.

Figure E.24: Error in y dimension using laser spots and ellipse approximation.
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TC#4: Circle Approximation / Coordinate Mapping Error

Figure E.25: Homography error utilizing circle approximation.

Figure E.26: PolyCtrlPts error utilizing circle approximation.
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Figure E.27: TensorBFS error utilizing circle approximation.

Figure E.28: TensorQDT error utilizing circle approximation.
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TC#4: Circle Approximation / LEDs vs. Laser Spots Error

Figure E.29: Error in x dimension using LEDs and circle approximation.

Figure E.30: Error in y dimension using LEDs and circle approximation.
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Figure E.31: Error in x dimension using laser spots and circle approximation.

Figure E.32: Error in y dimension using laser spots and circle approximation.
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8.21 TensorQDT error on metal target without glass, ē = 0.1046mm. . . . . . . . 115
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