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Abstract

The application of Gram polynomial basis functions to hierarchical image processing
is presented in this research work. In the early 1960s Ming-kuei Hu used continuous
geometrical moments for pattern recognition; since then there has been much research
work done on moment invariants in the field of image processing. An accurate set of basis
function is required to reconstruct the image of larger order with minimum error. The use
of Chebychev moments produces numerical instabilities for moments of large order. The
polynomial basis functions used in the method proposed here are discrete orthogonal basis,
being unary discrete polynomial basis of order n. These basis functions are numerically
better conditioned than discrete cosine transform, which leads us to a new method of
image compression.
A new multiresolution image analysis technique is presented based on hierarchies of im-
ages. The structure of the hierarchy is adapted to the image information and artefacts
of each sequential images are reduced by Gram polynomial decimation. A major im-
provement is achieved by implementing suitable amount of decimation at each level; this
decimation is implemented via Gram polynomial bases. Both global and local polynomial
approximation are considered and compared with the Fourier basis. The issue of Gibbs
error in polynomial decimation is examined. It is shown that the Gram basis is superior
when applied to signals with strong gradient, i.e., a gradient which generated a signifi-
cant Gibbs error with Fourier basis. The modified functions are used to compute spectra
whereby the Gibbs error associated with local gradients in the image are reduced. The
present work in the field of image registration also presents the first direct linear solution
to weighted tensor product polynomial approximation. This method is used to regularize
the patch coordinates, the solution is equivalent to a Galerkin type solution to a partial
differential equations. The new solution is applied to published standard data sets and to
data acquired in a production environment. The speed of the new solution justifies explicit
reference: the present solution, implemented in MATLAB, requires approximately 1.3 s
to register an image of size 800 x 500 pixels. This is approximately a factor 10 to 100 time
faster than previously published results for the same data set. The proposed algorithm is
applied to non-rigid elastic registration of hyper spectral imaging data for the automatic
quality control of decorative foils.
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Kurzfassung

In dieser Forschungsarbeit wird die Anwendung von Gram-Polynom-Basisfunktionen in
der hierarchischen Bildverarbeitung vorgestellt. In den frühen 1960er Jahren verwendete
Ming-Kuei Hu kontinuierliche geometrische Momente zur Mustererkennung. Seither wurde
viel über Momenteninvarianten im Bereich der Bildverarbeitung geforscht. Eine geeignete
Menge von Basisfunktionen ist erforderlich, um ein Bild mit höherer Ordnung und gerin-
gerem Fehler zu rekonstruieren. Die Verwendung von Tschebyscheff-Polynomen führt zu
numerischen Instabilitäten für Momente höherer Ordnung. Die Polynom-Basisfunktionen,
die in dieser Arbeit vorgeschlagen werden, bilden eine unitäre diskrete orthogonale Basis
der Ordnung n. Diese Basisfunktionen sind numerisch besser konditioniert als die diskrete
Kosinustransformation, was zu einer neuen Methode der Bildkompression führt.
Eine neue Multiskalenanalyse zur Bildverarbeitung basierend auf hierarchischen Struk-
turen von Bildern wird präsentiert. Die Struktur der Hierarchie wird abhängig gemacht
vom Bildinhalt, und die Artefakte der Teilbilder werden reduziert durch Dezimation
mit Gram-Polynomen. Eine erhebliche Verbesserung wurde erreicht durch Anpassung
der Dezimation auf jeder einzelnen Ebene der Hierarchie. Diese Dezimation erfolgt mit
der Gram-Polynom-Basis. Sowohl globale als auch lokale Polynomapproximation wer-
den betrachtet und mit den Ergebnissen der Fourier-Basis verglichen. Auch das Prob-
lem des Gibbsschen Phänomens bei der Polynomdezimation wird untersucht. Es wird
gezeigt, dass die Gram-Basis bei Anwendung auf Signale mit hohem Gradienten einen
geringeren Fehler ergibt als mit der Fourier-Basis. Mit diesen modifizierten Algorith-
men werden die Spektren berechnet, wobei der mit dem Gradienten verbundene Gibbs-
Fehler in den Bildern reduziert wird. Die vorliegende Arbeit präsentiert weiters die erste
direkte lineare Lösung einer gewichteten Tensorprodukt-Polynomapproximation. Diese
Methode wird verwendet zur Regularisierung von Patch-Koordinaten. Die Lösung ist
äquivalent zur Lösung von partiellen Differentialgleichungen nach dem Galerkin-Ansatz.
Die neue Lösungsmethode wird sowohl auf bereits publizierte Daten angewendet, als
auch auf Daten, die aus einer aktuellen Industrieanwendung stammen. Besonders her-
vorzuheben ist der geringe Rechenaufwand, der die Berechnung um einen Faktor 10 bis
100 schneller macht als bei bekannten Lösungen. Der vorgeschlagene Lösungsweg wird
angewendet auf nicht-rigide Registrierung von hyperspektralen Bilddaten zur automatis-
chen Qualitätskontrolle bei Dekorfolien.
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Chapter 1

Review of the literature and
relationship to the other work

1.1 Literature review

In the field of image processing, computer vision, quality control and image decimation
it is very important to represent an image or signal efficiently. For finite set of data
Fourier functions are commonly used to reconstruct a desired function. The Fourier bases
functions are efficient and suitable if the data is smooth i.e. with neither a gradient nor
discontinuities. In case of data with much gradient gives discontinuity. This type of data is
challenging for the Fourier basis method to reconstruct. As the Fourier basis functions are
suitable for periodic data, and the data with gradients remains no more periodic, Hence
the Fourier representation suffer from Gibbs error phenomena. A good explanation is
given in [69]. Much has been written on how to reduce the Gibbs error which contaminate
the original data[7][21][3].

1. In 1957, G.Forsythe used orthogonal polynomials for least square fitting of data [15],
which approximates an arbitrary function by least squares fitting using orthogonal
polynomials. It uses a generalization of the three-term relation, generating recur-
sively a system of orthonormal polynomials over arbitrary sets of data points. The
main disadvantage of the method is that as the degree of the polynomial increases
the condition number of the matrix also increases, the use of orthogonal polynomials
is theoretically sound, however their numerical implementation is ill conditioned[18].
The algorithm he proposed could only be used for images or data with limited size.

2. M.K. Hu, for the first time used geometric moments [29] for image demonstration,
and at the same time he applied these image moments for pattern recognition.
It was a foundational work of the use of the basis function in the field of image
processing and was an achievement at the time. However by increasing the degree
of the Vandermonde basis functions, errors are generated, therefore the method was
limited in the degree of the basis functions. Dudani et al. [11] proceeded the research
work for moving objects, and introduced object recognition in 3-D form.
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3. Continuous orthogonal moments (e.g. Legendre moments and Zernike moments) can
be used to represent an image with the minimum amount of information redundancy.
But their computation by a direct method is very time consuming. The use of Leg-
endre polynomials to compute 2D moments of grey level images has been presented
in [70]. Yap and Paramesran’s [71] work shows reduction of image reconstruction
error by Legende polynomial moments. Hosny [28] improved the prescribed research
work by presenting a new exact and fast method for computing 2D Legendre mo-
ments for gray level images. The Legendre moment values calculated by using the
approximated method deviate from the theoretical values.

Pew-Thian [72] prescribed a new set of orthogonal moments based on the dis-
crete classical Krawtchouk polynomials. Krawtchouk moments are a set of mo-
ments formed by using discrete Krawtchouk polynomials as the basis function set.
These are used to calculate higher-order Krawtchouk polynomials. It is shown in
the prescribed research work that the Krawtchouk polynomials are scaled to en-
sure numerical stability, thus creating a set of weighted Krawtchouk polynomials.
The orthogonality of the moments ensures minimal information redundancy. No
numerical approximation is involved in deriving the moments, since the weighted
Krawtchouk polynomials are discrete. These properties make the Krawtchouk mo-
ments well suited as pattern features in the analysis of two-dimensional images.
O’Leary and Harker [52] has rejected the concept that Legendre polynomials causes
error, which affects the accuracy of the reconstructed image [72]. It is proved that
polynomial basis when properly applied, need only to be complete for correct re-
construction, i.e., it does not need to be orthogonal. Mukundan [49] used discrete
Chebichev polynomials as pattern features in the analysis of two-dimensional im-
ages. And it is claimed that Chebichev moments are superior to the conventional
orthogonal moments such as Legendre moments and Zernike moments.

4. Describing all the above different basis functions used for different purposes in the
field of image reconstruction it is concluded by O’Leary and Harker [52] and proved
that there is one and only one basis functions for image reconstruction. And ex-
plained that the exact Legendre, the Chebichev and the normalized Krawtchouk
polynomials are equivalent; and it is presented that they have simply different norms
on the individual polynomials, and the polynomials themselves are identical.

5. Digital image compression has great importance in many applications in the field of
image processing in the form of signals or images. An image compression technique
removes redundant and/or irrelevant information, and efficiently encodes what re-
mains. In the field of machine vision to expedite the data processing the quantity
of the data is kept as small as possible but with minimum artefacts. Articles [63][8]
give an overview of JPEGs proposed image-compression standard. Hunt and Mukun-
dan [30] have analyzed the reconstruction accuracy when using different orthogonal
basis functions as the kernel for a reversible image transform. A comparison has
been shown between few transform functions for energy compactness. Mukandan
[47] introduced the Chebichev transform as possible alternative to DCT (Discrete
Cosine Transform) for applications in image compression. O’Leary and Harker [51]
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has introduced a new algebraic framework for discrete basis functions’s analysis,it
has been shown how to synthesize unitary basis and the concept of anisotropic mo-
ments is introduced and applied to 2D seismic data, which is an image processing
problem. The new polynomial basis is numerically better conditioned than the dis-
crete cosine transform. This opens the door to new image compression algorithms.
A new concept on the orthogonalization of basis is applied to Mukandan’s work to
properly synthesize perfect basis [46].

6. There are many fields of application of the above mentioned work, in this research
work application of these basis functions in the field of image registration has been
described generally and non-rigid registration in particular. Goshtasby [19] [20] pre-
sented a paper on non-rigid registration, which assumes that a set of corresponding
points in two images are known. The task is: given a set of irregularly placed control
points, to find the mapping functions X ≈ f(x, y) and Y ≈ g(x, y) which relate the
coordinates in one image to those in a second image. Today this would not be con-
sidered registration, it is actually the final step after the required correspondences
have been found. Later the concept of hierarchical subdivision was introduced in
[40] whereby, mutual information was used to perform the local registration of the
small patches. They observed inconsistency in the mutual information during the
subdivision process. However, no systematic explanation for the decimation process
was given. Xie et al. [73] define the task as given two sets of points. These points
are regarded as clouds of points. They implement a subdivided grid using splines,
however, assuming that the correspondences between the clouds of points are known.

Mellor [45] proposed local phase as a measure for registration; it was implemented
using Fourier transform methods. There is an implicit assumption here: that the
patches are well modeled by periodic basis functions. It is shown in this research
work that in general there is a very significant Gibbs error if Fourier bases are
used to implement decimation. Further methods based on feature extraction have
been presented e.g [26] it is important to note that feature extraction is strongly
dependent on the pattern being analyzed.

7. The problem with hierarchical subdivision is that aliasing occurs when an image is
decimated to a lower resolution unless appropriate filtering measures are applied.
That means, there must also be a consistent hierarchical filtering performed at each
layer in the tree structure. Multiresolution [37] pyramids are an attempt to solve
this problem. Scale-space filtering [41], i.e., using a Gaussian kernel, has become
the most common filtering method in multiresolution pyramids [39]. Indeed, the
Gaussian filters deal well with the decimation of additive Gaussian noise; however,
it does not address the issue of aliasing adequately.



4

Chapter 2

Introduction

Hierarchical procedures for image decomposition have been independently proposed by
many researchers in computer graphics, scene analysis, architectural design and pattern
recognition. The proposed research work is related to the image processing at multiscale
resolution, this could be explained as if we see the whole solar system, we can observe
few circular objects and can observe only the movements relative to each other by these
objects; but what happening inside these objects (planets) will be out of approach; now
let’s go near to the planet world and see from upper space; then we can see two major
parts of the world, i.e. the water and the land; now again if any of these two changes
their boundaries we can observe that, but nothing we can see inside; similarly coming
further near to the earth then we can see more i.e. plants, rivers, buildings etc. and going
further we can travel up to micro and nano scale. In image processing, choosing the correct
scale of image for analyzing an image scene is critical for recovering a complete physical
interpretation of the objects.

With the help of multiscale image representation it is very easy to analyze any image at
multiple scales. An image is decomposed into a set of descriptors, each making explicit
image features at a specific scale. The issue of how to best construct such hierarchy of
images in coarser to finer is needed to be focused. Representation of this type have been
referred to as “ pyramids”,“multiresolution” and “scale-space images”.

In this work an alternative interpretation is presented for consistent information deci-
mation during construction of the hierarchial subdivision. The classical design of filters
implicitly involve the selection of basis functions; the most common of which are the
Fourier basis and polynomials [24] Actually the selection of the best set of basis functions
depends on the nature of the data being processed. It is presented that careful attention
must be payed to correct decimation procedures.

2.1 Hypothesis

Images with non rigid distortion are better registered by introducing Gram polynomial
basis functions for image decimation via multiresolution registration.
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2.2 Motivation

The initial motivation for this work was to develop an improved method of image registra-
tion for non rigid distortion. Much of it has now been completed and applied on real data
images, and is used in the paper industry to find the registration of data and reference
images. The second motivation was to facilitate the development of methods for studying
image decimation. A new method of image decimation has been generated, i.e., image
decimation by Gram polynomial basis.

2.3 Image moments

One of the major tasks of image processing is pattern recognition, in which we get image
features and then process those features for pattern recognition. Some moments have the
properties invariant and by means of these moment invariants we compare the object to be
detected. Various forms of moment descriptors have been extensively employed as pattern
features in scene recognition, registration, object matching as well as data compression.
There are many fields from applied mechanics to statistics and shape descriptors to image
scene analysis. For many years, the concept of mathematical moments have been used. All
these different applications start from Hu [29] to the latest present research work trying to
improve the applications and get maximum output from these different image moments.

2.4 Discrete Cosine transform and image compres-

sion

The more advances in the field of multimedia, the more challenging problems are to be
given attention, one of those is to store maximum data in less space. For example, making a
web page maximum information is needed in form of images, but by increasing the number
of images the cost increase, so it is needed to keep minimal data but with almost the same
information. Similarly the present advancement in mobile engineering, a very low data
traffic is possible for sending, to send maximum information we are need to compress
the data in such a way which at lesser cost but maximum information is transformed.
There are many methods to compress data. Lossy and lossless are the two possibilities.
The JPEG is a widely used form of lossy image compression which uses Discrete Cosine
Transform. The DCT works by separating images into parts of different frequencies. These
frequencies are coded and less important and repeatable frequencies are removed, hence
the term of lossy is used. Then the only the most important frequencies that remain are
used to retrieve the image in the compression space. As a result we get an image with
some artifacts, which are supposed to be as minimum as possible. When needed the data
is decompressed by the inverse cosine transform.
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2.5 Compression artifacts

Storage and retrieval are two stages involved in providing information on a function. To
place all the information about a function is to store its expansion coefficients; however,
in the case of a discontinuous function one should use more sensitive methods to retrieve
this information rather than naively sum up the expansion. Consider the Fourier-Galerkin
projection of a piecewise [21] smooth function f(x), 0 ≤ x ≤ 2π.

fN(x) =
N∑

k=−N

f̂ke
ikx (2.1)

where the coefficients f̂k are given by

f̂k =
1

2π

∫ 2π

0

f(x)e−ikxdx (2.2)

The reason for the slow (and nonuniform) convergence of fN(x) to f(x) can be traced to
two facts:

• the slow decay of the Fourier coefficients f̂k

• the global nature of the Fourier series, where the Fourier coefficients are determined
by integration over the whole interval, even across discontinuities.

2.6 Scale space filtering

A detailed discussion has been given in [65] about scale space filtering. The extrema
in a signal which is calculated by its first derivatives provide a useful general-purpose
qualitative description. The signal is first expanded by convolution with Gaussian masks
over a continuum of sizes. The actual problem is not so much to eliminate finer-scale
noise, to separate events at different scales arising from distinct physical processes and to
introduce a parameter of scale by smoothing the signal with a mask of variable size. Scale
space filtering begins by continuously varying the scale parameters, in this representation
it is possible to track extrema as they move continuously with scale changes and to identify
the singular points at which new extrema appear. The scale space image is then collapsed
to a tree providing a concise but complete qualitative description of the signal over all
scales of observation.

2.7 Gram polynomial basis functions

The eigen values of a matrix could be the roots of a polynomial equation. These poly-
nomial roots are of great importance in the field of numerical analysis. All numerical
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analysis depends on the understanding of the polynomials. If the polynomials give us the
solution to some problem, the method of analysis could hence be easily found. In 1990 two
groups [31] [44], apparently independently, proposed the use of Gram polynomials [4] in
place of the Vandermonde basis for Savitzky-Golay smoothing. Meer and Weiss [44] state
that the Chebyshev and Gram polynomials are synonymous for the same set of basis func-
tions; this is only partially correct. The modified discrete Chebyshev polynomials [6] [33]
do not have a uniform scaling, where as the Gram polynomials do.

2.7.1 Mathematical background

The recurrence relationship [50] for the Gram polynomials is,

gn(x) = 2 αn−1 x gn−1(x) − αn−1

αn−2

gn−2(x) (2.3)

whereby,

αn−1 =
m

n

(
n2 − 1

2

m2 − n2

) 1
2

(2.4)

and
g0(x) = 1, g−1(x) = 0 and α−1 = 1, (2.5)

x is computed on equidistance points,

x = −1 +
2k − 1

m
, 1 ≤ k ≤ m, (2.6)

These points do not span the full range [-1,1].

2.7.2 Fourier basis function

In machine vision image reconstruction typically proceeds by estimating a function from
Fourier-transform values. An infinite number of solutions are obtained for finite number
of basis function to reconstruct a function. To single out one particular solution, one can
require that some functional of the image, such as its entropy, be optimized, or that the
solution be closest to some other appropriate prior estimate according to a given distance
criterion.

F (ωn) =

∫ ∞

−∞
f(x) exp (−jxωn)dx (2.7)

for n = 1, 2, ..., N . In many applications, f(x) can be support limited to some region S,
and it is typically the case that this function f(x) can be well modelled as the restriction
to S of a function, say
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g(x) =
N∑

N=1

anhn(x) (2.8)

where the hn(x), for n = 1, 2, ..., N , are the basis functions.

f̂(x) =
N∑

N=1

an
sin [σ(x − xn)]

σ(x − xn)
, (2.9)

F (ωm) =
N∑

n=1

anAmn (2.10)

with

Amn =

∫ x

−x

sin [σ(x − xn)]

σ(x − xn)
exp (−jxωm)dx (2.11)

The reconstruction procedure is to solve 2.10 for the coefficients an for N = 1, 2, 3, ...N ,
and the substitute these coefficients into Eq.2.9.

2.7.3 Generating basis functions

It is explained in detail in [52] that any polynomial basis P (x) which are sum of monomials
can be defined by post multiplying the Vandermonde matrix PV by an upper triangular
matrix A, i.e.,

PA
∼= PV A (2.12)

whereby the Vandermonde matrix of degree dx for nx points in x is defined as,

PV
∼=

⎛
⎜⎜⎝

1 x1
1 . . xdx

1

. . . . .

. . . . .
1 x1

nx . . xdx
nx

⎞
⎟⎟⎠ (2.13)

Hence post multiplying this matrix, which is the result of the coefficients of the polynomial
equations with the image data, we get the spectrum of the image. Decreasing the number
of rows from the the above basis matrix, and then multiplying we get the resulting image
in compressed form.

2.8 Savitzky Golay smoothing

Gram based local polynomial approximation: Both the Fourier and Gram bases are global
approaches, i.e., the signal is approximated globally by the respective basis functions over
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the full length of the support. They have the advantage of globally averaging the Gaussian
noise, which is spread evenly onto the coefficients of all the basis functions. Consequently,
they are well suited for application to images which have a high degree of noise. However,
the global basis functions requires the signal to be modelled globally; consequently, the
Gibbs error from, say, a step function is spread over the complete support. An alternative
approach is to use local polynomial approximation (Savitzky-Golay smoothing [56]) to
perform decimation. This yields a lower Gibbs error at the cost of reduced noise suppres-
sion.

2.9 Quad tree structure

A quad tree hierarchical subdivision is applied to both the reference and data image;
this method has been applied in the past by many others [44][1]. A local decimation is
performed at each level while ascending the hierarchy, whereby the patch position in the
second image is incrementally adjusted by the shift determined from registration at the
previous levels. The fundamental problem is that during decimation of the image to lower
resolution there are two major sources of error: a Gibbs error which results from the basis
function not being able to describe features in the data; the second source of error is
aliasing. Commonly aliasing is only considered for periodic basis functions, but the same
problem is also present for polynomial basis functions. The issue is further complicated
by the presence of Gaussian noise in the image data.

2.10 Image analysis by hierarchies

Hierarchical procedures for picture decomposition have been independently proposed by
many researchers in computer graphics, scene analysis, architectural design and pattern
recognition. And a very good research outcome has been written in [61]. It discusses
methods for solving problems associated with hierarchical image processing systems. The
pyramid data structure is one of the simplest hierarchical image data structures. The goal
of this application is to segment an image at different resolutions according to its content.
The top-down process lies on the fact a pyramid can be seen as a tree from the roots (top
to the pyramid) to the leaves. Keeping the level of the pyramids, each region could be
split of any level into sub-regions. While the quad-tree is a tree structure with the root
corresponding to the whole image. Unless the subimage is homogeneous it is recursively
subdivided into four quadrants. The tree growth continues until either a sufficiently fine
resolution is reached or all the children nodes correspond to uniform subquadrants.

2.11 Rigid and non-rigid registration

A review of recent as well as classic image registration methods has been described in [75].
Image registration is the process of overlaying images (two or more) of the same scene
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taken at different times, from different viewpoints, and/or by different sensors. Regis-
tration geometrically aligns two images (the reference and sensed images). The reviewed
approaches are classified according to their nature (area based and feature-based) and
according to four basic steps of image registration procedure: feature detection, feature
matching, mapping function design, and image transformation and sampling. Mainly the
registration could be divided in two types. One is area based and the other is feature
based. Further, the rigid and non-rigid or elastic registration are subjects of importance.

2.12 Tensor application in image registration

An overview has been written in [36]. A tensor is a multidimensional array. More formally,
an N way or Nth-order tensor is an element of the tensor product of N vector spaces, each
of which has its own coordinate system. A first-order tensor is a vector, a second-order
tensor is a matrix, and tensors of order three or higher are called higher-order tensors. In
the last ten years, interest in tensor decompositions has expanded to other fields. Examples
include signal processing, numerical linear algebra, data mining, and more.

2.12.1 Tensor approximation

Tensor approximation introduce a lossless hierarchical transformation of multi-dimensional
matrices, or tensors. This transformation decomposes the original data into multiple lev-
els and removes the redundancy at each level by exploiting the similarity among different
spatial regions. To exploit spatial inhomogeneity of the original data, further lossy ap-
proximation (quantization and pruning) is performed on the resulting multilevel data.
These two steps together give rise to a very compact representation. An overview to the
related work could be found in [68]. In which they show the development of a compact
data approximation technique based on a hierarchical tensor-based transformation.

2.12.2 Galerkin’s method

Various meshfree particle [42] methods have emerged in the last a few years, and the
most basic common feature is that a predefined mesh is not necessary, at least not for
field function interpolation. It is focused on the element-free Galerkin method (EFGM)
and it is claimed that it is relatively well developed, robust, and has straightforward and
obvious links to the finite element methods. In many applications, EFGM has shown
superior rate of convergence and high efficiency in modelling moving interfaces.

2.13 Proposed work

The proposed work presents an alternative interpretation for consistent information dec-
imation during construction of the hierarchial subdivision. The classical design of filters
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implicitly involve the selection of basis functions; the most common of which are the
Fourier basis and polynomials [24]. Actually the selection of the best set of basis func-
tions depends on the nature of the data being processed. It is shown that careful attention
must be payed to correct decimation procedures. The use of thin-plate splines has become
almost standard [39]. Spline fitting is however numerically time consuming. In this work
the use of a global Gram-polynomial tensor product has been introduced for regulariza-
tion. A new decimation technique is introduced based on Savitzky-Golay smoothing. This
technique ensures consistent data and information reduction at each layer in the tree. This
is a very important step and has been underestimated in the past. Correct decimation of
the image ensures the minimization of the Gibbs error associated with the step, which in
turn improves the result of local registration. Furthermore, correct decimation is instru-
mental in making the registration solution numerically efficient. The research work also
presents the first direct linear solution to weighted tensor product polynomial approxima-
tion. This method is used to regularize the patch coordinates, the solution is equivalent
to a Galerkin type solution to a partial differential equation.
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Chapter 3

Moment based approaches in image
processing

Real world image analysis for the image recognition is always challenging if these images
are acquired in non ideal conditions like in remote sensing, medical images and quality
control. Lens aberration, blurring, or improper lens setting can introduce such problems
in image acquisition. There are many techniques used for the pattern recognition. In most
of them the images are analyzed and the region of interest are segmented. And these are
classified for object recognition. There is much research work in moments invariants for
object recognition, the approach of invariant features has proved to be the most prominent
and efficient. Its basic idea is to describe the objects by a set of features which are not
sensitive to particular deformations and which provide enough discrimination power to
distinguish among objects from different classes.

In 1957, G.Forsythe [15] used orthogonal polynomials for least square fitting of data.
Which approximates an arbitrary function by least squares fitting using orthogonal poly-
nomials. Hu [29] use geometric moments for the pattern recognition. He derived a set
of seven moment invariants. And the property of these invariants was that these were
unaltered by changing the position either by translation, rotation or scaling. The work
was further extended by other researchers for air craft identification [11], ship identifica-
tion [57] pattern and scene matching [9][67] etc.

These moments invariants briefly described as follow.

3.1 General moments

General definition of moment functions Mpq of orders (p+q), of an image intensity f(x, y)
can be written as follows:

Mpq =

∫
x

∫
y

wpq(x, y)f(x, y)dxdy (3.1)
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Table 3.1: Moments Properties
Noise Sensitivity Computational Complexity Reconstruction

Moments of Monomials
Geometric Moments High Low N/A
Central Moments High Low N/A
Complex Moments High Low N/A

Continuous Moments
Legendre Low High Medium
Zernike Low Very High High

Pseudo Zernike Low Very High High
Fourier-Mellin moments Low Very High High
Discrete Orthogonal

Tchebichef Low Medium Very High
Hahn Low Medium Very High

while wpq(x, y) is a weighting function. This generalized form of moment is used to produce
image descriptors which are invariant to translation, rotation, scaling and other image
deformations. The equation (3.1) could be rewritten in discrete form as follows:

Mpq =
∑

x

∑
y

wpqf(x, y) (3.2)

The image moments could further be divided as in the following.

3.2 Geometric moments

Geometric moments are non-orthogonal moments, used for different purposes in image
processing. The two dimensional geometric moment of order (p + q) of a function f(x, y)
is defined as follows:

Mpq =

∫ +∞

−∞

∫ +∞

−∞
xpyqf(x, y)dxdy (3.3)

For discrete data the Geometric moment Equation(3.3) is written as follows:

Mpq =
+∞∑
−∞

+∞∑
−∞

xpyqf(x, y) (3.4)

These moments were used by Hu [29] for pattern recognition. He also proved that the
moment sequence is unique. These moment functions were scaled and used by Eden [12]
to present images: with the help of these moments functions he obtained the method of
approximation and resynthesizing the images. The approaches were theoretically sound,
but due to the Vandermonde matrix the methods are very limited. Because it is known
that the Vandemonde matrix is ill-conditioned [18] with evenly spaced real nodes.
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3.3 Legendre moments

Legendre polynomials are used as basis functions for the Legendre moments. The (p , q)
order Legendre moment is written as follows,

Lpq =
(2p + 1)(2q + 1)

4

∫ 1

−1

∫ 1

−1

Pp(x)Pq(y)f(x, y)dxdy (3.5)

The pth order of Legendre polynomial is as

Pp(x) =
1

2pp!

dp

dp
x
(x2 − 1)p (3.6)

The Legendre polynomial basis is usually computed over the range x ∈ [−1, 1]. The
continous Legendre polynomials are orthogonal over the range [−1, 1].∫ 1

−1

Pp(x)Pq(x)dx =

{
0 for p �= q

2
2p+1

for p = q
(3.7)

The recursion relation for Legendre polynomial is written as,

npn(x) − (2n − 1)p1(x) ◦ Pn−1(x) + (n − 1)pn−2(x) = 0 (3.8)

for n ≥ 2, with p0 = 1 and p1 = x. The norm of the nth Legendre basis function with nx

discrete points can be approximated by,

‖pn‖2
2 =

√
2nx

2n
(3.9)

3.4 Zernike moments

Geometric moments are computationally inexpensive as we can see in Table (3.1), but
due to large dynamic range it creates numerical instabilities; and large sensitivity to
noise. Teague [60] applied complex radial polynomials for investigating its results. Zernike
moments are rotationally invariant and more robust to noise.

Zpq =
p + 1

π

∑
x

∑
y

f(x, y)Wpq(r, θ) (3.10)

while
Wpq(r, θ) = Rpqe

iqθ (3.11)

and

Rp,±q =

p∑
k=q,p−|−k|=even

Bpqkr
k (3.12)

also

Bpqk =
(−1)(p−k)/2((p + k)/2)!

((p − k)/2)!((q + k)/2)!((k − q)/2)!
(3.13)

We can see that here radius is used while the cartesian coordinates are ignored, thats why
zernike moments are invariants to rotation.
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3.5 Orthogonal basis proposed by Forsythe

These basis function could be obtained by three term recurrence relationship in the
range x ∈ [0, N − 1] as follows:

Pn(x) = 2(x − αn) ◦ pn−1(x) − βnpn−2(x) (3.14)

With

αn =
‖x ◦ pn−1‖2

2

‖pn−1‖2
2

(3.15)

βn =
‖pn−1‖2

2

‖pn−2‖2
2

(3.16)

given p−1 = 0 and p0 = 1. These polynomial basis are orthogonal but not unitary. More
detail could be seen in [52].

3.6 Chebyshev moments

These moment are the outcome of chebyshev polynomials in the range x ∈ [0, N − 1] can
be generated from the recurrence relationship as follow.

ntn(x) − (2n − 1)t1(x) ◦ tn−1(x) + (n − 1)

{
1 − (n − 1)2

N2

}
tn−2(x) = 0 (3.17)

While the initial conditions t0 = 1, and t1 = (2x + 1 − N)/N , which form discrete and
orthogonal basis. The Chebyshev moments of order (p+q) of an image f(x, y) are defined
as follow.

Tnm =
1

ρ(m,N)ρ(n,N)

N−1∑
x=0

N−1∑
y=0

tm(x)tn(y)f(x, y) (3.18)

while

ρ(n,N) =
N(1 − 1

N2 )(1 − 22

N2 )..(1 − n2

N2 )

2n + 1
(3.19)

Chebyshev moments are not orthonormal. The norm of the ith polynomial basis with nx

discrete points as complemented in [48].

‖ti‖2
2 =

√
2nx

2(i + 1) + 1
(3.20)
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3.7 Bernstein polynomial basis

The Bernstein polynomials are shown in following equation, which are poorly conditioned
polynomial basis. These basis are used for generating Bezier, Spline and NURBS patches.

Bi,n(x) =
n!

i!(n − i)!
xi(1 − x)n−i (3.21)

for the value of x in the range x ∈ [0, 1]. The Bezier patch is given by the tensor product.

S(x, y) =
n∑

i=0

m∑
j=0

Bi,n(x)Bj,m(y)Pi,j (3.22)

3.8 A new unitary polynomial basis

O’Leary and Harker [52] proposed a new unitary polynomial basis. It is proved that
there is one and only one unitary polynomial basis which can be generated from the
sum of monomials. It is stated and proved that unique unitary polynomial basis can
be synthesized for N discrete points in the range [−1, 1] directly from the recurrence
relationship,

pn = αpt + βpn−2 (3.23)

while the values in equation (3.23) are given, like (pt
∼= p1 ◦ pn−1),(α = ± 1√

pT
t pt−(pT

t pn−2)2
)

and (β = pT
t pn−2α) The initial values are given

p0 =
1√
N

(3.24)

p1 =

√
3(N − 1)

N(N + 1)
x (3.25)

Describing all the above different basis functions used for different purposes in the field of
image reconstruction it is concluded by O’Leary and Harker [52] and proved that there is
one and only one basis function for image reconstruction. And explained that the exact
Legendre, the Tchebichef and the normalized Krawtchouk polynomials are equivalent;
and it is shown that they have simply different norms on the individual polynomials, and
the polynomials themselves are identical.

3.9 Recursive procedures for sequential calculation

of basis coefficients

Linear algebra has solved and made easy many problems in field of image processing. It
is known that any polynomial basis p(x) which are sums of monomials can be defined by
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post-multiplying the Vandermonde Pv by a matrix A,

PA = PvA (3.26)

While the Vandermonde matrix of degree dx for nx points in x is defined as,

Pv
∼=

⎛
⎜⎜⎝

1 x1
1 . . xdx

1

. . . . .

. . . . .
1 x1

nx . . xdx
nx

⎞
⎟⎟⎠ (3.27)

3.10 Image representation by moments

A very brief overview of image moments is given in Table (3.1)as described in [38]. Ge-
ometric moments have the big advantage of computational cost. The computational cost
is much less. These moments are invariant to translation and could be used for pattern
recognition; the disadvantage of Geometric moments could be described as they are much
sensitive to noise and that image reconstruction is not possible. To overcome the noise
sensitivity problem Complex moments are better; these moments also improve the invari-
ance property. But the same problem with these moments is the image reconstruction is
not possible. Continuous orthogonal moments, i.e., Legendre, Zernike moments give us
much better results in presence of noise. But the computational cost increases on the other
hand. Zernike moments are also invariant to rotation. The image reconstruction problem
is solved by these moments. They do not remove all the problems, but only some extent.
Discrete continuous moments, i.e., Tchebychev moments are better than the above men-
tioned moments. The results in presence of noise is much better, also the computational
cost is not much higher than Zernike moments, the image reconstruction accuracy is very
much satisfactory. The only problem with these moments are the invariance properties
i.e., these moment are not invariant in nature to any movements.

3.11 Discrete polynomial moments

Legendre polynomial got more interest by researchers due to less noise sensitivity and its
image reconstruction property. The computational cost is not as high as for Zernike mo-
ments. The major problem pointed out was its non-orthogonal nature in discrete domain.
Which is great cause of error propagation when implemented for higher degree. Mukan-
dan [46] for the first time used Chebychev moments for image reconstruction. These poly-
nomials gave efficient results in image reconstruction. Also maintaining the quality and
it is lower sensitivity to noise. The only problem with these moments are their invarianct
properties. These moments are not invariant to any movements i.e. translation, rotation
etc. Also the limitation of the degree of polynomials bounds its application to lower order
polynomial. These moments are not orthonormal. For higher degree of polynomials de-
generation occurs and errors generate. O’Leary and Harker [51] proposed application of
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polynomials for some arbitrary number of degree and their proposed method is efficient
to apply for any higher degree polynomial. It is proven that there is one and only one uni-
tary polynomial basis which is complete, that means the polynomial basis for Chebyshev
system. By QR decomposition method it is proved that any nonorthogonal matrix could
be converted to othonormal matrix, and with the help of this decomposition systematic
propagation error is eliminated, which is required for efficient image reconstruction.

3.12 Polynomial approximation and interpolation

The saying “Something for nothing” is much akin to the term interpolation. The behavior
of a function of some known data points is first observed, for some missing data we make
an assumption and follow the same behavior as given by known functions. The same
we do in interpolation process. Polynomials are used for this interpolation. O’Leary and
Harker [51] have done work on interpolation for missing Seismic data. Some of the data
go missing by geo-phones. 2D anisotropic moments are combined with the interpolation
algorithm; an incomplete bases are used to perform the filtering. It is proved that the lower
the degree of polynomial used the stronger the filtering i.e. the data is approximated by
a polynomial of lower degree.

3.13 Polynomial image decimation

Image decimation may be regarded as transformation from one image to another image.
The methods mostly used for image decimation are interpolation, smoothing, compression,
enhancement and feature detection. In these image processing applications data images
are represented by set of discrete values with uniformly spaced nodes. The coefficients of
these polynomials represent a linear transform of the image pixels. For computation these
transform matrices are computed by three term relationship. As we get the desired matrix
from the polynomial these two dimensional coefficient give us an exact representation,
or we can say, an approximation to this rectangular array. The computational cost is
decreased by decimating these arrays of polynomials coefficient in the form of interpolation
and least square approximation. The proposed research work presents transform properties
of Gram polynomials and shows that they can be used for image decimation. The energy
compactness of the transform is difficult to calculate directly, we can only approximate it
by analyzing the reconstruction error of the transform when the image is reconstructed
with fewer basis functions than the total number. Image decimation is done both on a
global and local basis. These results are compared with Fourier basis.

General formulation of a discrete equivalent an integeral transorm is

s = B+
a y (3.28)

The spectrum s of the data y is determined by computing the discrete equivalant of an
integral transform. The formulation with the Moore-Penrose pseudo inverse B+

a has been
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chosen as it is the least squares solution for non-orthogonal bases. The synthesis of a
signal i.e.,the inverse transform is computed as,

ŷ = Bss (3.29)

While Bs contains the synthesized functions.

3.13.1 Gram polynomials are polynomial preserving

By comparison of Geometric polynomial; which were used by Hu [29] for pattern recogni-
tion, and Gram polynomials basis we can conclude that Gram basis are more flexible for
large data size with higher degree of polynomials. Hu used a geometric moment polynomial
basis set called the Vandermonde basis. This Vandermonde matrix is poorly conditioned
and quickly becomes degenerate as the degree of the polynomial increases. To this de-
generate matrix there is no unique inverse so these basis are not perfect for the signal
synthesis. Also it is worth to describe that these basis are not orthogonal in the discrete
space, and we can say that these polynomials are not polynomial preserving. A detailed
discussion has been given in [50], in which a new theoretical framework has been presented
for polynomial approximations. A perfect Gram polynomial basis set is synthesized which
ensures that the approximations are strictly polynomial preserving. And without any
significant error a polynomial of degree d = 1000 can be generated.

3.13.2 Artefact free compression of images

Different decimation techniques have been proposed for the image reconstruction accu-
racy. Discrete Cosine and Fourier transform are the most well known transform in image
processing, which are used in many different image processing fields like compression and
decimation. The best set of basis functions for image decimation depends on the na-
ture of the image being considered. The Fourier basis is suitable when there are periodic
structures in the image. Correspondingly, the Gram basis is suitable when the image is
predominantly geometric in nature. To illustrate this consider Figure 3.1, the data corre-
sponds to a surface generated by z = x + y + x2 − y2 + yx for the range x, y ∈ [−1; 1],
this is clearly geometric in nature. The residuals resulting from decimation by a factor of
11 with the Gram, Fourier, Cosine, Haar and Savitzky Golay smoothing basis are shown
in Figures (3.2,3.3,3.4,3.5,3.6 and 3.7) respectively. Clearly, for this example the Gram
basis is superior; not just marginally better but orders of magnitude better.

3.13.3 Decimation is not for visual impression but to avoid alias-
ing errors

A notable loss in image quality is observed when the image is resamapled i.e decimated.
To preserve image quality, the interpolating function used for the resampling should be an
ideal low-pass filter. In image processing mostly the aliasing occurs due to the repetitive
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Figure 3.1: Geometric data generated by the function z = x+y+x2−y2+y x for the range
x, y ∈ [−1, 1]. This data set is generated with 550 nodes in both the x and y directions.(a)
original surface(b) generated by Fourier basis(c) Gram basis(d) Cosine basis(e) Savitzky
Golay Gram smoothing and(f) Sivitzky Golay Cosine smoothing
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Figure 3.2: Difference be-
tween the original surface at
the decimation points and
the surface decimated us-
ing the Fourier basis, the
decimation-rate rd = 8.
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Figure 3.3: Difference be-
tween the original surface at
the decimation points and
the surface decimated us-
ing the Gram basis, the
decimation-rate rd = 8.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1
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ing the Cosine basis, the
decimation-rate rd = 8.
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Figure 3.5: Difference be-
tween the original surface
at the decimation points
and the surface decimated
using the Haar basis, the
decimation-rate rd = 8.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 −0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Figure 3.6: Difference be-
tween the original surface at
the decimation points and
the surface decimated using
the Gram Savitzky Golay
smoothing.
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Figure 3.7: Difference be-
tween the original surface at
the decimation points and
the surface decimated using
the Cosine Savitzky Golay
smoothing, the decimation-
rate rd = 8.

structure of the image. An image with repetitive pattern of high spatial frequency when
sampled at low resolution, we can observe Moire patterns [32] results on the image. And
this happens because the original size is shrunk to a new size. Transformation of discrete
image which is defined at certain coordinate location is called sampling. In the sampling
process we actually interpolate the discrete image on to a continuous image and then
the interpolated image is sampled. A good explantation can be found in [54]. Different
interpolating methods have been described and compared. The high frequency artifacts
due to gradients at the boundaries could only be decreased by resampling. The interpo-
lating function must be an ideal low pass filter, to remove the replicates of the frequency
spectrum caused by the sampling. The sampling of the interpolating function aliases the
higher frequencies of the interpolating function into the lower frequencies. To avoid this
aliasing generated by this sampling mechanism a perfect basis function is required for
particular interpolation. Gram polynomials, we can say, do not introducing any further
aliasing in the image, and the final results we get of better quality as compared to other
methods like Cosine basis or Fourier basis.

3.13.4 Polynomial antialiasing

A continuous signal is resmapled and it is converted into discrete form, for this discrete
signal a discrete function is considered to be an exact representation of a band-limited
continuous function. We keep in mind that the original signal can be regenerated exactly
from it. An ideal low pass filter is used then for interpolating this discrete signal which give
us a new discrete function which is a new representation of the original signal. Similarly
the resampled function is resampled back to the original co-ordinate points; then the
original discrete function will be exactly reproduced assuming that the different sampling
rates are all above the Nyquist sampling rate. This states that the interpolating function
which is used for resampling is an ideal low pass filter.
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3.13.5 The relationship to the Tchebychev polynomial (func-
tions)

Lengendre and Zernike moments have been explained in detail by Mukundan [48]. And
the superiority of the Tchebychev moments to these two, i.e., Legendre and Zernike has
been proved. The Tchebychev polynomial [48] in the range x ∈ [0, N−1] can be generated
from the recurrence relationship as in equation 3.17. It is clear that they form a discrete
and orthogonal basis but they are not orthonormal. The condition number of the complete
Tchebychev polynomial basis shows that these polynomial degenerate more rapidly than
Legendre basis. The proposed polynomial basis system is based that there is one and only
one unitary polynomial basis which can be generated from the monomials. This has greatly
improved the present techniques used. The image reconstructed by these basis functions
have less error as compared to the others. These basis functions could be formed from the
recursive relationship as shown in equation 3.23. Being orthonormal the matrix containing
the polynomials basis generated in this manner having negligible numerical error: Whereby
the condition number of this matrix should be unity independent of degree of the basis or
number of points used. The recurrence relationship leads to propagation errors for large
data sets and polynomial bases of higher degrees. These errors can be eliminated and
truly orthogonal polynomial basis generated by applying QR decomposition to the above
polynomial basis matrix.

3.13.6 Possible relationship to scale space

The scale space theory: It states that the natural operations perform in a visual front-end
are convolutions with Gaussian kernels and their derivatives at different scales. The same
technique has been applied in the proposed method, in which the image is decimated on
different levels. For filtering on the high scale the image is decimated upto maximum level.
As we do the decimation locally we going inside to the image and decreasing the level
of decimation on the other hand. On the last level we do not have any decimation. The
decimation is variable at variable steps.
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Chapter 4

Hierarchical image processing

Data images may be transformed by different linear techniques like rotation, translation,
Affine transformation, etc. Scaling is one of these linear techniques for data image alter-
ation. Processing the image at different scale is actually scale space processing. And for
this process a hierarchy with different levels is defined for image processing at each level.
Specially in the proposed method proper decimation is done at various scale. Scale-space
filtering, [41] i.e. using a Gaussian kernel, has become the most common filtering method
in multiresolution pyramids. Indeed the Gaussian filters deal well with the decimation
of additive Gaussian noise; however, it does not address the issue of aliasing adequately.
The basic idea is to embed the original signal into a one parameter family of gradually
smoothed signals, in which the fine scale details are successively suppressed. It is shown
in [41] that the Gaussian kernel and its derivatives are singled out as the only possible
smoothing kernels. The condition that specify the Gaussian kernel are basically, linearity
and shift invariance combined with different ways of formalizing the notion that structures
at coarse scales should correspond to simplifications of corresponding structures at fine
scales. To extract any type of information from data it is necessary to interact with it
using certain operators. The type of information that can be obtained is to a large extent
determined by the relationships between the size of the actual structures in the data and
the size (resolution) of the operators (probes): This research work presents an alternative
interpretation for consistent information decimation during construction of the hierarchial
subdivision. The classical design of filters implicitly involve the selection of basis functions;
the most common of which are the Fourier basis and polynomials. Actually the selection
of the best set of basis functions depends on the nature of the data being processed. It is
shown that careful attention must be payed to correct decimation procedures.

4.1 Hierarchical subdivision of images.

The hierarchical aspect of subdivision itself leads to a natural hierarchy: the first level
of subdivision creates a parent and child relationship between the original image and the
resulting four subdivided images, which in turn leads to a hierarchy of subdivision as each
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Figure 4.1: decomposition tree, with
three layers.

Figure 4.2: decomposition tree, with four
layers.

child in turn subdivides. For decimation in any level and any subimage we must have
the path to the subdivision, in which we are interested in, excluding of the position of
the target cell, means to define a hierarchical path specification for all subimages. For
location of any subimage we need information how the subimage are indexed with respect
to their root image. We can see in figure(4.1) and (4.2) which shows the multi levels of
hierarchy. We see that the base level image has four subimages indexed using the rule, all
these subimages have again four subimages and so on. The proposed function generate a
vector containing the parent nodes from a quadtree and also return the entry points into
each layer. The number of layers in the tree in addition to the root is flexible as shown in
figure(4.4), we can give any arbitrary number in forward or reverse direction.

4.1.1 Quad-tree structure

The root-node of the balanced tree as shown in figure (4.4) contains information about
the entire image. The root-node is partitioned into four subquadrants. By viewing each
descendant node as a father node and repeating the same process, the previously defined
quadrants can be further partitioned into four subquadrants up to the level where the
nodes contain information obtained by the scanning devices. Every tree node corresponds
to a specific area of the original image. By going from top to bottom we go from coarser
to finer quality of the image. And decimation is done from global to local. In the proposed
method to divide the data and reference image we decide the number of level of quad-tree.
The number of layers in the tree in addition to the root is predefined for the process. The
main aspect of the proposed quad-tree could be defined and summarized as follows:

1. Number of Layers : Coarser to finer decimation is applied to the image on various
scales. The main objective of the research work is to apply the non-rigid registra-
tion technique in steps. It is known from the definition of the elastic or non-rigid
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registration that the image changes nonlinearly. And the change in image different
at different regions. By applying any rigid registration method could not solve the
problem exactly. Hence cut and divide rule is applied to the process, and the regis-
tration is done from global to local. The same time Gram polynomial decimation is
applied at variable level to the image at variable rate.

2. Tree : A row vector is defined which have all the parent node numbers. As in figure
4.4 tree structure shows the parent-child hierarchy. With the help of this row vector
any node can be traced. The subdivision starts from the zero level, in the first level
division the tree is composed of original image and four equally subdivided images.
Similarly in two levels we go further and divide the four subimages in further sixteen
subimage, i.e., each subimage is again divided into four equal parts. And the process
is repeated till the final level is reached. At this stage each subimage is treated as
an independent image. The decimation or registration or both of these processes are
applied to all these subimages to get the required results.

3. Entry points: Given a layer number this vector given the entry point into the vector
of nodes.

4. Leaves: The leaves of the tree, i.e. the terminal nodes gives the path to the subimge
on prescribed level. As we can see in figure (4.4) the number of leaves in each level
is described. The main objective of the proposed research work is to consider each
leaf at each level as an independent image. The proposed method was mainly used
for elastic registration. So both the data and reference images are divided by the
prescribed method to the end of the required level. At each level of both the images
the leaves are treated independently as a separate image and the pre and post
processing techniques are applied i.e. decimation, smoothing and registration to all
of them, which could be explained in detail by some real time images and examples
in coming sections.

P0 = < 0 > (Zero level)

P1 = < 1, 2, 3, 4 > (First level)

P2 = < 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 > (Second level)

5. Quadrant and layer: The question arises as to why we divide the image in quad tree
although all the information already available in the image? Multi scale aspect of
the real world image is shown, also to remove all the unwanted information in the
image and decrease the processing time of data.



26

Figure 4.3: decomposed image, with four layers.

Figure 4.4: decomposition tree, with four layers.
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Figure 4.5: Target image to be de-
composed.

Layer = 1

Figure 4.6: decomposition tree, first
layer.

Layer = 2

Figure 4.7: decomposition tree, second
layer.

Layer = 3, Tensor On

Figure 4.8: decomposition tree, third
layer.
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4.1.2 Multiresolution decomposition

Multiscale image decomposition is used for analyzing image features at multiscales. An
image is decomposed in different levels and each level is set at various scales. In this way
going upwards or downwards in the process, the image is processed at various scales. We
can say that during the process we go from coarser to finer forms. In the proposed research
work two processes at a time are applied to the image on one level i.e. the image is first
cut and divided in quad tree structure and then each sub image is decimated at certain
decimation rate. These decimation rates vary for all the levels. To get exact registration
first we do global registration on zero level and then going inside the image by moving
from global to local. And similarly we are cutting and dividing the image. But the rate of
decimation we decrease as we go inside the image. At the last level we have no decimation.

4.1.3 Implementing a suitable decimation at each level

It is explained in detail earlier that cut and division, decimation and registration of the
images are done in levels. During the testing of the proposed algorithm on real data
images exact results were not obtained by keeping the decimation rate constant at each
level. Because when decimation is applied at the same time the image scale also changes.
The process is a multiscale process. From zero level up to the last level the number of
quadrants increases, therefore at the same time the unit size of the image also decreases.
As the size of the unit image decreases we also decrease the decimation rate. It could
be concluded that as we keep maximum decimation rate at the top or zero level, in this
position the size of the image is maximum which is at its original position. Going inside
the image the unit size of the image decreases while we reaches the last level. Here the
decimation rate we keep minimum or zero decimation because here the size of the unit
image is too small to operate by applying more decimation rate we loose much information
from the image and it is difficult then to register with the target image. This could be
understood by figure (4.9,4.10,4.11,4.12) in detail.

4.1.4 Proposed decimation algorithm based on QT decomposi-
tion

The main objective of the proposed research work is to register two or more images with
non-rigid or elastic distortion. There are many linear or rigid registration techniques like
translation, rotation, scaling ,etc., used by many researchers. The main challenging task
was to register the non linear images consuming very small time for execution of the
data. Many other techniques like used by [59] [58], but in all those process the execution
time was much longer. It was decided to cut and divide the images in quadtrees, and
then decimate each unit image. Keeping maximum decimation at zero level saves much
processing time. And similarly going inside the image in quad tree the time consumption
increases.
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M

Figure 4.9: Maximum decimation
rate 8 at zero level.

M

Figure 4.10: Decimation rate 4 at in-
termediate level .

M

Figure 4.11: Decimation rate 2 at in-
termediate level .

M

Figure 4.12: Decimation rate 1 at
last level .
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Chapter 5

Application of the proposed
algorithm for global registration

Very much has been written on non-rigid registration; an overview of techniques in biomed-
ical applications is given in [14] and a general review of non-rigid registration can be found
in Zitova [75] and Lester [39]. It is virtually impossible to reference all past research work
in an introduction: for this reason it restrict the references to the research work most perti-
nent to the issues dealt with in this proposed research work. Goshtasby [19] [20] presented
a paper on non-rigid registration, which assumes that a set of corresponding points in two
images are known. The task is: given a set of irregularly placed control points, to find the
mapping functions X ≈ f(x, y) and Y ≈ g(x, y) which relate the coordinates in one image
to those in a second image. Today this would not be considered registration, it is actually
the final step after the required correspondences have been found. Later the concept of
hierarchical subdivision was introduced; [40] whereby, mutual information was used to
perform the local registration of the small patches. Likar observed inconsistency in the
mutual information during the subdivision process. However, no systematic explanation
for the decimation process was given. Xie et al. [73] define the task as given two sets of
points. These points are regarded as clouds of points. They implement a subdivided grid
using splines, however, assuming that the correspondences between the clouds of points
are known.

Mellor [45] proposed local phase as a measure for registration; it was implemented using
Fourier transform methods. There is an implicit assumption here: that the patches are
well modeled by periodic basis functions. It is shown in the proposed work that in general
there is a very significant Gibbs error if Fourier basis are used to implement decimation.
Further methods based on feature extraction have been presented [26]; it is important to
note that feature extraction is strongly dependent on the pattern being analysed. There
are, however, thousands of different decorative patterns which are produced on one and the
same printing machine, effectively making feature extraction based methods impractical.
Andronache [1] suggests using mutual information (MI) and cross-correlation to perform
non-rigid registration. They observe .̇ . the loss of MI’s statistical consistancy along the
hierarchical subdivision . . . ”, Information theoretical measures are proposed to identify
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regions in which such problems occur. Their method identifies such regions, but cannot
truly solve the problem.

The problem with hierarchical subdivision is that aliasing occurs when an image is dec-
imated to a lower resolution unless appropriate filtering measures are applied. That is,
there must also be a consistent hierarchical filtering performed at each layer in the tree
structure. Multiresolution [37] pyramids are an attempt to solve this problem. Scale-space
filtering, [41]i.e., using a Gaussian kernel, has become the most common filtering method
in multiresolution pyramids [39]. Indeed, the Gaussian filters deal well with the decimation
of additive Gaussian noise; however, it does not address the issue of aliasing adequately.
This work present an alternative interpretation for consistent information decimation
during construction of the hierarchial subdivision. The classical design of filters implicitly
involve the selection of basis functions; the most common of which are the Fourier basis
and polynomials [24]. Actually the selection of the best set of basis functions depends
on the nature of the data being processed. In the proposed work it is shown that careful
attention must be payed to correct decimation procedures.

5.1 Data filtering by proper basis functions

The very first step to design a filter is to examine the nature of the data being processed.
The selection of basis functions are then finalized for the filter. Fourier and polynomial
basis functions are commonly used for these filter design. Three signals of different nature
have been presented in the figure (5.1). It is difficult for both Fourier and polynomial basis
functions to reconstruct all these three signals separately. But it is easy for Fourier basis
to analyze the periodic signal but not to reconstruct the other two, i.e., the polynomial
and stepped signal will have some error. Similarly for the polynomial basis functions, the
polynomial signal is reconstructed with minimum error, but the other two will have more
error.

5.1.1 Periodic signal

A test signal of periodic nature has been generated by 128 points as shown in figure
(5.3). First the Gram basis functions are applied to reconstruct the signal by keeping
order 11 decimation ratio. The result is shown by the red line; which does not show
exact signal reconstruction. As it is already described earlier the nature of data is of more
importance for signal reconstruction. The given data signal is of periodic nature, therefore
it is regenerated by Gram basis function with some error. Then Fourier basis functions
are applied for the same data keeping the same decimation rate and the results are shown
by the green line. Which describe the accuracy of the Fourier function; because the signal
is of periodic nature so the Fourier basis give exact signal representation.
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5.1.2 Polynomial signal

Here we try to apply the two basis functions i.e. Fourier and Gram basis on a data signal
of polynomial nature. In the figure (5.4) a polynomial data signal is presented. After
applying the Fourier basis function, keeping the decimation rate 11 we get the results as
shown by the green line. Because the data is of polynomial nature we have some error
for Fourier basis functions. But on the other hand by application of polynomial basis
functions the results are more accurate; as shown by the red line.

5.1.3 Stepped signal

Here we have a stepped data signal as shown in figure (5.5). Results with error are obtained
after applying both of the basis functions. The result of Fourier basis functions are shown
by green line and the red line show the result of polynomial basis functions. This concludes
that for both of the basis functions either Fourier or Gram we will have some error if we
want to reconstruct a stepped signal.

5.1.4 Mixed signal

All the three signal are combined and presented by one signal as shown in figure (5.6).
Fourier basis function being suitable for periodic data have problem at starting and at
the end. The outcome is presented by green line. While due to gradient or stepped nature
of the signal the polynomial basis are also not well suited for the signal representation.
Fluctuations are observed when there is abrupt changes in signal. And this is the major

Figure 5.1: The test function shows three
different signals,(a) black color shows
polynomial signal (b) red color shows pe-
riodic (c) Green color shows stepped sig-
nal

Figure 5.2: Combining all these three
signal we have signal with all these prop-
erties.
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Figure 5.3: The periodic signal generated by Fourier and Gram basis functions , (a)
original data “small circle”(b) Gram basis “red line” (c) Fourier basis “Green line”.

Figure 5.4: The polynomial signal generated by Fourier and Gram basis functions ,
(a)original data “small circle” (b) Gram basis “red line” (c) Fourier basis “Green line”.

Figure 5.5: The stepped signal generated by Fourier and Gram basis functions ,(a) Gram
basis “red line” (b) Fourier basis “Green line”.



34

Figure 5.6: All the three signals are combined (a) green line present Fourier and (b) red
line present Gram basis functions

cause of the well known Gibbs error [33].

5.2 Reduction of the Gibbs energy

During decimation of the image to lower resolution there are two major sources of error:
a Gibbs error which results from the basis function not being able to describe features
in the data; the second source of error is aliasing. Commonly aliasing is only considered
for periodic basis functions, but the same problem is also present for polynomial basis
functions. The issue is further complicated by the presence of Gaussian noise in the image
data. Consider a signal y with n data points, to find the spectrum s for this signal we
have a set of k discrete orthonormal basis functions [b0...bk−1], which form the columns of
the matrix B = [b0...bk−1].

s = BT y (5.1)

and the inverse transform as,
ŷ = Bs (5.2)

If the basis are complete,i.e., any set of basis functions,B, where BBT = I, can represent
a discrete signal without error, since from equation 5.1 and 5.2, ŷ = BBT y. Similarly
the Gibbs error is not principally associated with specific basis, but with approximating a
signal by truncated set of basis functions, or by weighting the basis functions. This could
be formulated generally as follow,

ŷ = BHBT y (5.3)

where the element H weight the respective spectral components, in the case Fourier
basis H is traditionally diagonal ; however, with polynomials more general structures are
encountered. This could be explained for one and two dimensional data as follows:
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5.2.1 One dimensional problem

It is instructive to consider the decimation of a one-dimensional signal before proceeding
to 2D data sets representing images. Consider the simple example shown in Figure (5.7)
and (5.8): the data consists of a ramp with a slope of 0.5 in the support range x ∈ [−1, 1]
and a superimposed unit step function, the signal has been computed for n = 100 points.
The decimation-rate of k = 4 is simulated for two different cases:

Figure 5.7: The test function is a lin-
ear ramp in the range x ∈ [−1, 1] with
a slope of 0.5 with the addition of
a unit step. Decimation-rate of four
is performed using 25 Fourier basis
functions.

Figure 5.8: Decimation-rate of four is per-
formed using the first 25 Gram polynomial
basis functions.

1. the Fourier basis functions. The result of approximating the test signal by the first
m = 25 Fourier basis functions is shown in Figure 5.7. There are two sources of
Gibbs error in this signal: the step function and the ramp. The error associated
with the ramp is usually dealt with using windowing; this however modifies the
signal spectrum and with this influences the phase correlation;

2. Gram polynomial basis. The recent introduction of polynomial basis [51] which are
virtually free from errors, enable new decimation procedures. The result of deci-
mating the signal with the first m = 25 Gram basis functions is shown in Figure
5.8, there is no Gibbs error associated with the ramp, since the basis function of
degree 1 can model the linear portion of the signal exactly; however, a Gibbs error
is still associated with the step function. As can be seen there is significantly lower
distortion in the decimated signal than using the Fourier basis;

To summarize: general images are poorly modelled by Fourier basis functions. This ex-
plains why Mellor [45] did not achieve the desired results. In general Gram polynomial
basis functions offer a better solution.

5.2.2 Two dimensional problem

The best set of basis functions for image decimation depends on the nature of the image
being considered. The Fourier basis is suitable when there are periodic structures in the
image. Correspondingly, the Gram basis is suitable when the image is predominantly
geometric in nature. To illustrate this consider Figure (5.9), the data corresponds to a
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surface generated by z = x + y + x2 − y2 + y x for the range x, y ∈ [−1, 1], this is
clearly geometric in nature. The residuals resulting from decimation by a factor of 8 with
the Fourier and Gram basis are shown in Figures (5.10) and (5.11) respectively. Clearly,
for this example the Gram basis is superior; not just marginally better but orders of
magnitude better.

5.2.3 Comparison of Fourier and Gram basis functions for image
analysis

A common approach for accessing image quality is to determine one of a wide variety of
figures of merit including values such as signal to noise ratio, bias, contrast levels, etc.
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Figure 5.9: Geometric data
generated by the function
z = x + y + x2 − y2 + yx
for the range x; y ∈ [−1; 1].
This data set is generated
with 550 nodes in both the
x and y directions.
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Figure 5.10: Difference be-
tween the original surface
at the decimation points
and the surface decimated
using the Fourier basis, the
decimation-rate rd = 11.
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Figure 5.11: Difference be-
tween the original surface
at the decimation points
and the surface decimated
using the Gram polyno-
mial, the decimation-rate
rd = 11.
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Figure 5.12: Variation in the peak
signal to noise ratio(PSNR) with re-
spect to variation in decimation ra-
tio for Gram and Fourier basis func-
tions.
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Decimation rate = 8

Figure 5.14: Lenna original image.

Gaussian Noise (%) = 2

Figure 5.15: Lenna image with 2
percent noise.

PSNR = 33.5516

Figure 5.16: Reconstructed Lenna
image by Fourier basis keeping dec-
imation rate of 4.

PSNR = 36.3775

Figure 5.17: Reconstructed Lenna
image by Gram basis keeping dec-
imation rate of 4.
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Decimation rate = 8

Figure 5.18: Synthetic stepped im-
age.

Gaussian Noise (%) = 2

Figure 5.19: Image with 2 percent
noise.

PSNR = 27.6763

Figure 5.20: Reconstructed image
by Fourier basis keeping decimation
rate of 4.

PSNR = 28.1031

Figure 5.21: Reconstructed image
by Gram basis keeping decimation
rate of 4.

The commonly used is the signal to noise ratio, to use this method first the signal to noise
ratio is calculated for the reference image and then similarly signal to noise ratio is found
for the reconstructed image either by Fourier or Gram basis functions. The maximum
value for any of the method provide the better quality of the image. In the proposed work
different test has been done for both the basis functions at various decimation rate, and a
graph is plotted as shown in figure 5.12. The testing is also done for additional Gaussian
noise i.e. in the presence of different amount of noise how the peak signal to noise ratio
changes. The results are shown in the figure 5.13.

5.2.4 Peak signal to noise ratio and change in decimation rate

As long as we increase the decimation ratio we are removing information from the original
data image. This means by increasing the decimation ratio the peak signal to noise ratio
(PSNR) is going to decrease. It is desired in most of the cases to keep maximum quality
with maximum decimation rate. In figure 5.12 it is shown that how Peak Signal to Noise
Ratio (PSNR) value changes for changing the decimation ratio. This Graph is generated
by decimating Lenna image at different decimation ratio and then finding the peak sig-
nal to noise ratio at consecutive decimation points. The graph shows the comparison of
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the Fourier and Gram basis image reconstruction quality. Gram polynomial basis method
shows better result than Fourier basis. The target of the research work is to investigate
the trends of changing behavior with changes in the decimation rate, and conclude with
the best method for image decimation with maximum peak signal to noise ratio. Ap-
plying suitable decimation at each level of the hierarchy during non-rigid registration,
implemented using the Gram basis, eliminates the statistical inconsistencies.

5.2.5 Peak signal to noise ratio and change in Gaussian noise

Looking at the figure (5.13) the graph showing the change in the Peak Signal to Noise Ratio
with respect to change in the Gaussian noise. The test has been done on the well known
Lenna image for both Fourier and Gram basis. The results show that Gram bases are bet-
ter than Fourier basis for same Gaussian noise. The resultant image after reconstruction
by both Fourier and Gram basis could also be seen in figure (5.16) and (5.17). These tests
are also applied on a 2D stepped data image as shown in figure ( 5.20) and (5.21). And
the relative signal to noise ratio after reconstruction is presented. Here also the Gram
basis are superior than Fourier basis for reconstruction, because the signal to noise ratio
for Gram basis is better than Fourier basis functions.

5.3 Covariance propagation

This problem is further explained in the field of statistics by considering its covariance. If
we have a signal y of n data points, the covariance propagation could be achieved by first
obtaining its covariance matrix. As we know that Fourier basis are orthogonal, therefore
the independent and identical distributed Gaussian noise is distributed these equally
spaced places in the Fourier spectrum. Three possible modification type of covariance
propagation has been described in [25]. The linear transformation could be found as
following,

Λym =
∂ym

∂y
Λy

(
∂ym

∂y

)T

(5.4)

where Λy is the covariance matrix of the signal y. Since windowing and the least squares
projections are linear operators, in each case the Jacobian matrix ∂ym

∂y
is simply the coef-

ficient matrix effecting the linear operator.

5.3.1 Windowing application for possible modification

Application of the windowing function can be written as,

ym = Wy (5.5)

where,
W = diag{w1, ..., wn}. (5.6)
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The covariance of the windowed signal is therefore,

Λym = WΛyW
T (5.7)

In the case Fourier basis i.e i.i.d (independent and identical distributed) Gaussian noise
with variance σ2, i.e., Λy = σ2I, the covariance matrix is then,

Λyw = σ2W 2 = σ2diag{w2
1, ..., w

2
n} (5.8)

5.3.2 Subtraction of the aperiodic part

A common method eliminating the aperiodic part of a signal is to simply subtract the
linear component connecting the end points. This amounts to subtracting the linear func-
tion,

l = [l1...ln]T (5.9)

where lk = y1 + (k−1)
(n−1)

(yn − y1). In matrix form, the kth element of this linear function can
be written as,

lk = [1 − (k − 1)

(n − 1)
0... 0

(k − 1)

(n − 1)
]

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1

y2

.

.

.

yn−1

yn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.10)

we can write it more concisely as,
l = Ty (5.11)

Thus, subtracting this component from the original signal yields,

yl = (I − T )y (5.12)

The covariance matrix of this operation is hence,

Λyl = (I − T ) Λy (I − T )T (5.13)

In the case of i.i.d. Gaussian noise with variance σ2, i.e. ,Λy = σ2I the covariance matrix
is then,

Λyl = σ2(I − T )(I − T )T (5.14)

The entries of the matrix can be shown to be,

σ−2Λyl(i, j) = δij +
(n − i)(n − j)

(n − 1)2
+

(i − 1)(j − 1)

(n − 1)2
− δi1

n − j

n − 1
(5.15)
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−δ1j
n − i

n − 1
− δ(n−i+1)1

j − 1

n − 1
− δ1(n−j+1)

i − 1

n − 1
(5.16)

where δij is the Kronecker delta. The diagonal entries of the matrix, i.e., the variances,
are,

Λyl(k, k) =

{
0 for k = 1, n

σ2(1 + (n−k)2

(n−1)2
+ (k−1)2

(n−1)2
) for k = 2, ..., n − 1

(5.17)

With the exception of the end points, all the diagonal entries are clearly greater than 1,
in fact, reaching a minimum value of 3/2. The maximum variance occur at k = 2 and
k = n − 1, where the variance is,

σ2
max(n) = 2

n2 − 3n + 3

(n − 1)2
σ2 (5.18)

As n increases, the maximum variance tends asymptotically to 2.

5.3.3 Polynomial approximation

Removal of the low degree polynomial approximation can be written as,

yg = G̃dG̃
T
d y (5.19)

where the matrix G̃d is the orthogonal complement of Gd, that is,

G = [Gd G̃d] (5.20)

is a complete set of Gram polynomials. Thus, the covariance of the modified signal is,

Λyg = G̃dG̃
T
d ΛyG̃dG̃

T
d (5.21)

In this case, when the input noise is i.i.d. Gaussian noise, the covariance becomes,

Λyg = G̃dG̃
T
d (σ2I)G̃dG̃

T
d (5.22)

Λyg = σ2G̃dG̃
T
d (5.23)

The significance of this result can be seen in the fact that the Moore-Penrose pseudo-
inverse of G̃d is its transpose,i.e.

G̃+
d = G̃T

d (5.24)

The pseudo-inverse, however, is a minimizer in the sense that the term G̃dG̃
+
d is as close

to an identity in the least-squares sense.

G̃+
d = min

X
||G̃dX − I||F (5.25)
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Figure 5.22: Covariance ma-
trix of pre-processing step of
Hanning windowing function

Figure 5.23: Covariance ma-
trix of pre-processing step of
subtraction of the aperiodic
portion.

Figure 5.24: Covariance ma-
trix of pre-processing step
of Gram polynomial approx-
imation of degree 1.

This means that for a given set of basis functions Gd, the covariance of the modified signal
yg is that which is closest to an identity matrix in the least squares sense. Specially, given
Gd, the signal yg is the signal whereby,

Λyg = min
X

||X − I||F (5.26)

and X is a covariance matrix. The matrix Λyg is then generally symmetric and positive
semi-definit.

5.3.4 Comparative results

In the case of windowing functions a large variation in gain across the signal is observed,
because the covariance matrix of the windowing function is diagonal and the square of
the windowing function. While the second method i.e. simple subtraction of the aperi-
odic portion has all non-zero variances are greater or equal to 3/2, and thus the gain
in general is more than unity. For the least squares approximations the variances are
generally slightly less than unity. These comparisons could bee seen in detail in the fig-
ure (5.22)(5.23)(5.24). The diagonals of the corresponding covariance matrices are shown
in Figures (5.25)(5.26)(5.27).

5.4 Improved normalized phase correlation by mod-

ified Fourier basis functions

A modified normalized phase correlation method is introduced to perform registration.
The Fourier basis is modified by projection onto the orthogonal complement of a degree
d = 1 Gram-polynomial. This eliminates the effects of intensity and intensity gradients
within a patch. This modification is an alternative to windowing in Fourier analysis [53]
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Figure 5.25: A Hanning win-
dowing function

Figure 5.26: Subtraction of
the aperiodic portion.

Figure 5.27: Gram polyno-
mial approximation of de-
gree 1.

P (n) = �
−1

{
R(ω)MT (ω)

‖R(ω)MT (ω)‖2

}
(5.27)

where R(ω) and M(ω) are the 2D Fourier spectra of the reference image and measurement
image respectively. Mellor [45] proposed local phase, i.e. computing the phase correlation
for each patch individually, as a measure for registration in non-rigid registration. As men-
tioned earlier: Andronache [1] observed . . . the loss of MIs statistical consistency along the
hierarchical subdivision . . . . Indeed the main loss of consistency is due to aliasing and/or
Gibbs error during the decimation and Fourier based registration processes. Aliasing leads
to a shifting of peaks in the frequency domain; while ringing associated with the Gibbs
error leads to spurious peaks in the spectrum as in figure (5.34). These additional peaks
are not properties of the image, they are errors associated with mathematical processing.
The Fourier basis functions are,

f(k) = e−
2πk
N

j (5.28)

clearly these basis functions can not model a simple gradient. However, the image patches
regularly have strong slope. Consequently, the Fourier transform will have significant
Gibbs errors and associated spurious peaks in the spectrum which can lead to errors
in the registration: this phenomena is well known and documented in [33]. In classical
signal processing windowing is used [24] to reduce the Gibbs error. However, windowing
is not appropriate in image registration, since it would modify the signal significantly
and preclude a correct registration. For this reason a modified Fourier transform [53] is
introduced here for the computation of the image spectrum.

5.4.1 Orthogonal residualization of the Fourier basis

Prior to computing the 2D Fourier spectrum, the image patch D is projected onto the
orthogonal complement of a set of truncated Gram polynomials,

Dpg = D − GyG
T
y DGxG

T
x (5.29)

where the columns of Gx and Gy contain the Gram basis functions for the x and y direc-
tions respectively. This process removes, to a large degree, the subharmonic components
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in the patch (for more detailed description see [53]); reducing the Gibbs error associate
with this portion of the data. This computation can be performed as either a two step
task, as presented above, or a modified set of basis functions can be computed a-priory
and applied at run-time. The spectrum of Dpg is computed as,

Spg = F T
y DpgFx, (5.30)

where Fx and Fy are the matrices containing the Fourier basis functions for the x and y
directions respectively. The fast Fourier transform is only a numerically efficient method
of performing this computation. Now substituting Equation( 5.29) into Equation( 5.30)
yields,

Spg = F T
y {D − GyG

T
y DGxG

T
x }Fx (5.31)

Expanding this equation yields,

Spg = F T
y {I − GyG

T
y }D{I − GxG

T
x }Fx (5.32)

Now defining the modified basis functions as by By = F T
y {I − GyG

T
y } and Bx = {I −

GxG
T
x }Fx. The modified Fourier transform is now computed as,

Spg = ByDBx (5.33)

and the modified spectrum is used for the computation of the normalized phase correlation.
This computation is numerically efficient than the two step process for small patches.

5.4.2 Numerical testing
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Figure 5.28: A test signal generated with a subharmonic component sh = cos(0.75φ), a
purely periodic component fp = 0.1 cos(15φ)+0.2 sin(20φ) and a additive Gaussian noise
with standard deviation σ = 0.02. The data set has n = 2048 points.

Numerically this could be demonstrated by considering the signals shown in the figure
5.28. The signal has been generated by superposition of subharmonic component sh =
cos(0.75φ), to a purely periodic component fp = 0.1 cos(15φ) + 0.2 sin(20φ) and with
additive Gaussian noise with standard deviation σ = 0.02. Five different spectra have
been computed for comparison purposes, Figures (5.29)(5.30).
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Figure 5.29: Without additional noise
Fourier spectra(dB) derived from the test
signal shown in Figure 5.28.

Figure 5.30: With additional Gaussian
noise. Fourier spectra(dB) derived from the
test signal shown in Figure 5.28.

• The image (5.29)(5.30)A presents the spectra of the signal without any modifica-
tions.

• Figure (5.29)(5.30)B show that spectra of the signal after applying the Blackman
windowing function.

• The method of subtracting the linear aperiodic portion, is presented in the fig-
ure (5.29)(5.30)C.

• The proposed method of projection onto a truncated gram polynomial basis, in this
example of degree d = 2, as shown in figure (5.29)(5.30)D.

• The new method of the removal of local Gram polynomial approximation with
p = 11 and degree d = 1 as in figure (5.29)(5.30)E.

The target of the research work is to estimate the signal frequency and amplitude more
accurately. From the results shown above it could be clearly concluded that Hanning
window spreads the signal energy over number of frequencies which we can see in fig-
ure (5.29)(5.30)B. But in comparison of this result the proposed method shows more
accurate result as shown in figure (5.29)(5.30)E. The proposed work is majorally used for
image registration. For which the concentration of the signal energy on narrow peaks is
particularly important when performing normalized phase correlation. The work is further
analyzed by a test signal explained in following section.



46

5.4.3 Testing of the modified phase correlation method

The improvement in the registration associated with the modified Fourier basis set is
demonstrated with a one dimensional data example. This is an operation commonly used
when determining displacements. Given two discrete signals, d1x and d2x ,together with
their corresponding discrete Foureir spectra, D1(w) and D2(w) computed via FFT , the
normalized phase correlation is computed as,

c(n) = IFFT

(
D1(w)D2(w)∗

|D1(w)D2(w)∗|2

)
(5.34)

A synthetic data signal d(n) has been generated for this test, see Figure 5.31. Two subsets
d1(n) and d2(n) are cut from d(n) with a shift of 55 samples. These two data sets, with
known time shift, are used to test the normalized phase correlation with (see Figure 5.33)
and without projection onto the orthogonal complement of a truncated Gram polynomial
of degree d = 2 (see Figure 5.32). It can be seen that the shift by 55 samples can be
clearly identified, if the projection onto the truncated Gram polynomials is performed
prior to computing the correlation. The signal to noise ratio is significantly better than
with the conventional computation.

Considering in two dimensional case lets see figure 5.34. The image has been modified with
known shift. The two images before and after shift are registered by proposed method.
Phase correlation is used to find the shift in the images. To register two images by phase
correlation, we calculate the discrete 2D Fourier transform of both images. The cross
power spectrum is calculated by taking the complex conjugate of the shifted image. The
result is normalized element wise as in equation 5.34. Taking the inverse Fourier transform
of the calculation we get the required shift in the two images. We get a false result by
this method due to the false peak value in the cross power spectrum, and this leads us
to an incorrect registration. In figure 5.34(left) we observe many peaks, due to covariance
propagation by fourier basis functions. The proposed work reduce those peaks to a single
peak as shown in the figure 5.34(middle). So the false peaks are removed and as a result
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Figure 5.31: A synthetic
data set d(n), with two data
subsets d1(n), and d2(n).
Both data subsets have a
length of 256 samples and
are cut from d(n) with a rel-
ative shift of 55 samples.
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Figure 5.32: Normalized
phase correlation of the
signals d1(n) and d2(n)
computed using Equa-
tion 5.42
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Figure 5.33: Normalized
phase correlation of the
signals d1(n) and d2(n),
after projection onto the
orthogonal complement of a
truncated Gram polynomial
basis of degree d = 2.
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we have the exact shift of the data image from the reference image. Figure 5.34(right)
shows the difference in the two patches produced by the two methods.

Previous method

−5 0 5

−5

0

5

Proposed method

−5 0 5

−5

0

5

Difference

−5 0 5

−5

0

5

0
10

20

0

10

20
0

5

10

15

0
10

20

0

10

20
0

10

20

30

40

0
10

20

0

10

20
0

0.5

1

1.5

Figure 5.34: (left) the cross power spectrum produced by the older method, this showing
many peaks. (Middle) the cross power spectrum produced by the proposed method, this
showing single peak. (right)the difference in the two patches produced by the two methods

5.5 Image registration

A detailed introduction of image registration can be found in [75]. It is described that
image registration is the process of overlaying two or more images of the same scene
taken at different times, from different viewpoints, and/or by different sensors. Image
registration geometrically aligns two images - the reference and data images. The present
differences between images are introduced due to different imaging conditions. Image reg-
istration is a crucial step in all image analysis tasks in which the final information is
gained from the combination of various data sources like in image fusion, change detec-
tion, and multichannel image restoration. Typically, registration is required in remote
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Figure 5.35: Example of a biomedical im-
age requiring registration. This image has
353 × 354 pixels. This image has been pub-
lished online and enables the comparison
with other implementations[10].

Figure 5.36: Example of a decorative lami-
nate (imitation wood). This image has 800×
500 pixels.

sensing (multispectral classification, environmental monitoring, change detection, image
mosaicing, weather forecasting, creating super-resolution images, integrating information
into geographic information systems - GIS), in medicine (combining CT and NMR data
to obtain more complete information about the patient, monitoring tumor growth, treat-
ment verification, comparison of the patients data with anatomical atlases), in cartography
(map updating), and in computer vision (target localization, automatic quality control).

5.6 Non rigid or elastic registration

Non-rigid or elastic registration is a major area of research in biomedical applications of
image processing; see for example. [14] The biological material, which is not rigid, may
deform in the time between the acquisition of two images. Consequently, an automatic
comparison of the images is only possible when the two images are non- rigidly registered
to each other. A further area of application is emerging in quality control of printed
surfaces which are subject to deformation. Two examples of typical images requiring non-
rigid registration can be found in Figure (5.35) and (5.36).
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5.7 Image registration by proposed method

The proposed work presents a new approach to non-rigid registration. A hierarchical
subdivision approach is applied, with local normalized phase correlation for patch regis-
tration. The major improvement is achieved by implementing a suitable decimation at
each level. The decimation is implemented via a Gram polynomial basis. Both global and
local polynomial approximation are considered and compared with the use of a Fourier
basis. The issue of Gibbs error in polynomial decimation is examined. It is shown that the
Gram basis is superior when applied to signals with strong gradient, i.e., a gradient which
generates a significant Gibbs error with a Fourier basis. A bivariate Gram polynomial
tensor product approximation is used to implement regularization. It is demonstrated
that the new method performs well on both synthetic and real image data. The procedure
requires approximately 1.3 sec. to register an image with 800 × 500 pixels

5.8 Application of algorithm on rotation, translation

and scaling distortion

The linear transformation of images results in linear registration, which is not too difficult
to compute. In these transformations the most important are translation, rotation, scaling
and Affine transformation. The proposed algorithm is applied for all of these transforma-
tions and the image are registered as shown in figure (5.37, 5.38, 5.39 and 5.40).

5.8.1 Application on Affine distortion

Complete non-rigid registration applied to an image with Affine distortion is shown in
figure( 5.41). The green blue line show the original position of the image, while the grid
shows the final position of the image after applying Affine distortion.

5.8.2 Application on non rigid and elastic distortion

Now returning to the reference data from paper industry application: the registered images
are shown in Figure (5.42 and 5.43), the image which is known to be subject to Pin cushion
distortion is shown in Figure (5.42) the registered grid shows the distortion in the data
image. The distortion required to map the reference image to the registered image is
shown in Figure (5.46) . The new procedure has performed well on the reference data set.
The speed of the new solution is worth explicit reference: Suarez et al. have published
two different techniques for registration: the first [59] required 7 mins, the second [58]
required 15 mins. In contrast, the solution presented here required approximately 1 sec.
to perform the complete registration including the regularization. This is an improvement
of at least 2 orders of magnitude.
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Layer = 5, Tensor On

Figure 5.37: Application of the method
on translation. The blue line shows the
original position while the grids shows
final position of the the image.

Layer = 5, Tensor On

Figure 5.38: Application of the method
on rotation. The blue line shows the
original position while the grids shows
final position of the the image

Layer = 5, Tensor On

Figure 5.39: Application of the method
on scaling. The blue line shows the
original position while the grids shows
final position of the the image

Layer = 5, Tensor On

Figure 5.40: Application of the method
on combination of all the three i.e.
translation, rotation and scaling. The
blue line shows the original position
while the grids shows final position of
the the image
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Layer = 5, Tensor On

Figure 5.41: Application of the method on Affine distortion. The blue line shows the
original position while the grids shows final position of the the image

Layer = 5, Tensor On

Figure 5.42: Application of the
method on Pin and cushion distor-
tion. The blue line shows the orig-
inal position while the grids shows
final position of the the image

Layer = 5, Tensor On

Figure 5.43: Application of the
method on Barrel distortion. The
blue line shows the original posi-
tion while the grids shows final po-
sition of the the image
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5.8.3 Behavior in the presence of noise

The Gram polynomial basis is unitary; consequently, Gaussian noise in data is evenly
spread onto all spectral components. The polynomial decimation and tensor regulariza-
tion serve to reduce the noise power significantly, resulting in a registration which is not
susceptible to noise. In Figure (5.44 and 5.45) the registration is shown for images with a
signal to noise ratio of SNR = 0 : 442,i.e., the noise power is larger than the signal power;
also non rigid distortion of both types i.e., Pin cushion and Barrel type has been applied
to the data images, Applying the proposed algorithm the result is correct. The present

Layer = 5, Tensor On

Figure 5.44: Application of the
method on Pin and cushion distor-
tion in presence of Gaussian noise.
The blue line shows the original po-
sition while the grids shows final
position of the the image

Layer = 5, Tensor On

Figure 5.45: Application of the
method on Barrel distortion in
presence of Gaussian noise. The
blue line shows the original posi-
tion while the grids shows final po-
sition of the the image

techniques used for registration are using image intensity for processing, and most of them
are sensitive to noise, but the proposed method is an area based phase correlation type of
image registration which is quite rigid in the presence of a high amplitude Gaussian noise.
In the given tested example a huge Gaussian noise has been added to the data images,
It looks like difficult to recognize the distortion for human beings but very fine results
are achieved by the proposed method. So the outcome shows that no matter what the
amount of Gaussian noise present in data or reference image the distortion or registration
could be achieved accurately by the method proposed. A detailed discussion has been
given in chapter (6), how the signal to noise ratio changes by changing the amount of
Gaussian noise. And a comparison has been presented for different basis functions i.e.
Fourier, Gram, Haar, Cosine, and Savitzky Golay smoothing.
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5.8.4 Registration with and without decimation

The result of registration using local normalized phase correlation is shown in Figure 5.47,
this is basically equivalent to Mellor’s method [45]. Considering the results shown in Fig-
ure 5.47: the local phase correlation has failed in the upper left corner of the image.
Andronache [1] observed a similar effect and considered it to be a loss of statistical con-
sistency in the hierarchical subdivision. Mellor [45] used Fourier based decimation to try
and obtain the desired results. However, they failed to observe that the Fourier basis is
not well suited to perform aliasing and Gibbs-error free decimation on data representing
typical images. Also multiresolution pyramids [39], [37] which use scale-space filtering [41]
cannot fully solve this problem. The fundamental problem is that during decimation of
the image to lower resolution there are two major sources of error: a Gibbs error which
results from the basis function not being able to describe features in the data; the second
source of error is aliasing. Commonly aliasing is only considered for periodic basis func-
tions, but the same problem is also present for polynomial basis functions. The issue is
further complicated by the presence of Gaussian noise in the image data.
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Figure 5.46: The distortion relating the reference image to the registered image, i.e. how
far has a patch moved (the dimension is in pixels) from its original position .
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Figure 5.47: Example of image registration
without compression during subdivision.

Figure 5.48: The same example as shown
in (Figure 5.47) but with consistent Gram
polynomial compression.



55

Chapter 6

Local registration and modified
normalized phase correlation

This section presents a new approach to non-rigid elastic registration. A new image deci-
mation procedure based on Savitzky-Golay smoothing is presented and applied in a mul-
tiresolution pyramid. Modified Fourier basis functions implemented by projection onto the
orthogonal complement of a truncated Gram polynomial basis are presented. The modi-
fied functions are used to compute spectra whereby the Gibbs error associated with local
gradients in the image are reduced. The new method also presents the first direct linear
solution to weighted tensor product polynomial approximation. This method is used to
regularize the patch coordinates, the solution is equivalent to a Galerkin type solution to
a partial differential equations. The new solution is applied to published standard data
set and to data acquired in a production environment.

Numerical testing demonstrations shows that the method provides a good alternative to
windowing for signals with significant sub-harmomics components. Further, it is showed
that the normalized phase correlation (NPC) can be significantly improved using the new
method. The speed of the new solution justifies explicit reference: the present solution
implemented in MATLAB requires approximately 1.3 second to register an image of size
800 × 500 pixels. This is approximately a factor 10 to 100 times faster than previously
published results for the same data set.

6.1 Decimation and Savitzky-Golay smoothing

Multi-resolution pyramids [40] [37] require that the resolution of the image be reduced
as the tree is traversed. This requires a consistent filtering prior to decimation if aliasing
and/or Gibbs errors are to be avoided. A Gibbs error would lead to an artificial ringing
at edges in the image. This ringing would contribute to peaks in the Fourier spectrum,
result is a perturbation of the registration process.

Scale-space filtering [41] i.e. using a Gaussian kernel, has become a common technique
to implement filtering in multiresolution pyramids. The problem with Gaussian kernels
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is that they are neither periodic nor polynomial and a consistent decimation cannot be
achieved in an optimal manner. Andronache [1] observed “. . . the loss of MIs statistical
consistency along the hierarchical subdivision . . . ”, and proposed information theoret-
ical measures to identify regions in which such errors occur. However, they provided no
explanation for the source of this inconsistency.

The classical design of filters implicitly involve the implicit selection of basis functions; the
most common of which are the Fourier basis and polynomials [24]. Actually the selection
of the best set of basis functions depends on the nature of the data being processed.
Images are clearly not periodic and consequently generate a significant error when filtered
and decimated using Fourier basis functions.

The use of Gram polynomials for filtering prior to decimation has been proposed by the
author in the previous chapter; the Gram polynomials are global basis functions and lead
to Gibbs ringing at discontinuities [33] in the image. In this chapter a new decimation
process is implemented to perform simultaneous low-pass polynomial filtering and deci-
mation, which is based on Savitzky-Golay filtering [56] [50]. The Gram polynomials are
applied as basis functions in local approximation. Filters with monotonic step response
can be implemented by correct selection of the support length and local polynomial degree.
In this manner Gibbs ringing is avoided. The new process enables the implementation of
arbitrary decimation factors. The Savitzky-Golay filtering can be implemented as a linear
matrix operation [50] the filtered image Dsg is generated by pre- and post-multiplying the
unfiltered data D by matrices Sy and ST

x respectively,

Dsg = SyDST
x (6.1)

The rows of the matrices Sx and Sy contain the coefficients required to implement the
desired Savitzky-Golay filter, details can be found in [50]. Given a data matrix D of size
n × m then Sy is m × m and Sx is m × m. Equation (6.1) implements the Savitzky-
Golay filtering without decimation. Given the desired size of the decimated image p × q
then a decimation rate of dy = m/p is required in the y direction. An indices vector iy
is generated in the range iy(k) ε [1, n] with p equidistant nodes. For integer indices the
decimating matrix is extracted from Sy directly,

Sy,d = Sy(iy, :) (6.2)

yielding a p × n matrix. Linear interpolation between the two adjacent rows Sy is used
for non-integer indices. The resulting filtering and decimation process is,

Dsg,d = Sy,dDST
x,d (6.3)

The matrices Sx,d and Sy,d can be computed a-priory, so that only matrix multiplications
are required at run-time. This enables a numerically highly efficient implementation of
the required filtering and decimation.



57

Global Gram polynomial decimation

The concept of of a unitary polynomial basis and their application to least squares ap-
proximation has been introduced by Gram in [22]. The Gram-Schmidt orthogonalization
process is used to synthesize the polynomials by a three term relationship. But this process
is unstable with respect to numerical roundoff errors, so that previously a complete set of
discrete polynomials with small enough errors could not be generated for a large number
of nodes. These difficulties could only be overcome by new synthesis procedures derived
in [51]. And with help of the proposed procedures it is possible to generate a complete set
of Gram polynomial basis of the same accuracy as the Fourier basis.

Consider Gd a truncated Gram basis of degree d, whereby the basis is synthesized using
the procedure presented in [51]. The least square approximation of the signal y by the
basis functions is computed as the orthogonal projection onto the basis functions, i.e.

yg = GdG
T
d y. (6.4)

This component is then removed from the input data,

yr = y − yg = (I − GdG
T
d )y (6.5)

This residulization process is the projection onto the orthogonal complement of the basis
functions. The frequency spectrum Sr is then computed by taking the Fourier transform
of the residualization data yr, i.e.,

sr = F T yr, (6.6)

sr = F T (I − GdG
T
d )y, (6.7)

In this case FG,d = F T (I−GdG
T
d ) can be considered to be modified Fourier basis functions.

There are two approaches to perform this computation.

1. It is numerically more efficient to perform a two stage computation, i.e., residualza-
tion followed by an FFT , for a single computation of the spectrum and resiualization
on a polynomial of low degree.

2. If computing many spectra, e.g., as is the case when computing power spectral
densities, it may be numerically more efficient to compute the modified basis and
then apply it multiple times.

Local Gram polynomial decimation

It is also possible to apply local aproximation rather than applying a global approximation
to the entire signal y. This method of approximation was introduced by Savitzky and
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Golay [56]. Their method was later improved by incorporating Gram polynomials and
by addition of end-point computations.

Decimation by local method reduces Gibbs error effects in reconstruction of stepped sig-
nal. Comparing the reconstruction of a signal by global method which is described in
details in previous chapter and signal reconstruction by local method i.e. Savitzky Golay
smoothing, we have less reconstruction error by the local method. An example of a syn-
thetic signal as shown in figure( 6.4). In which the test function is a linear ramp in the
range x ∈ [−1; 1] with a slope of 0.5 with the addition of a unit step. First the signal is
reconstructed by Fourier method which is a general method and belong to the global type
of decimation. Decimation-rate of four is performed using 25 Fourier basis functions. We
can see the reconstruction error on the image clearly. Then Gram basis method which also
belong to the global type of decimation is applied [3]. The results shows some improve-
ment to the Fourier basis method, but there still error exists. Now finally applying the
proposed method which belongs to the local decimation method category, this method is
explained in detail in [2]. The results shows much improvements. Showing minimum error
as compared to the Fourier and Gram basis methods. So this shows that the local way
of decimation reduces the Gibbs error effects and results in more accurate reconstructed
signal.

6.2 Generating Savitzky Golay matrix

Consider an input signal y with n data points and a subinterval of this data yp(k) =
y(k − m : k + m) for p = 2m + 1 sequential data points, whereby p is called the support
length. The points yp(k) can be regarded as a sliding window, centered at the location
k in y. For each position k one output value z(k) is computed from yp(k). Generalized
polynomial spectral filtering can be formulated as,

zp(k) = GHGT yp(k) (6.8)

Where G is complete Gram basis with p nodes and H is a weighting matrix. Defining
M = GHGT yields,

zp(k) = Myp(k) (6.9)

The matrix M is a p × p matrix where p is an odd number. The matrix M can be
partitioned as follow,

M =

⎡
⎣ M(1 : m, :)

M(m + 1, :)
M(m + 2 : p, :)

⎤
⎦ (6.10)
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M =

⎡
⎣Mu

Mc

Ml

⎤
⎦ (6.11)

The center point formula for z(k) is,

z(k) = zp(m + 1) (6.12)

z(k) = M(m + 1, :)yp(k) (6.13)

In term of the full signal y,

z(k) = Mcy(k − m : k + m). (6.14)

This point is centered in the support and the computation is valid for all positions k such
that m < k < (n − m). End points formulas are required for the start of and end of the
data sequence. These are provided by Mu and Ml, such that,

z(1 : m) = Muy(1 : m) (6.15)

z(n − m : n) = Mly(n − m + 1 : n). (6.16)
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Figure 6.1: structure of the linear
transformation for Savitzky Golay
smoothing,support length ls = 5,
degree d = 3 and n = 10.
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Figure 6.2: sliding window and the
points can be regarded as sliding
window.

End point formulas are neglected in FIR filtering; indeed for small p the consequences
may be negligible. However, in this application the support has a significant length and
determines the length of the signal for which the local approximations are computed. In
this case the endpoint formulas are essential: The complete local approximation process
can now be formulated in a matrix algebraic form by defining the matrix S as,
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Figure 6.3: Example of transformation matirx with the parameters ls = 51, of degree
d = 5, and n = 100 points

S =

⎡
⎣ M̂u

In−p+1 ∗ Mc

M̂l

⎤
⎦ (6.17)

Where M̂u and M̂l correspond to post- and pre- augmenting Mu and Ml with the necessary
number of zeros, In−p+1 is an (n−p+1)×(n−p+1) identity matrix as shown in figure 6.1.
The local approximation is now computed as,

yl = Sy (6.18)

and the residualizatiion, i.e removing the local polynomial estimate for the signal is com-
puted as,

yr = (I − S)y (6.19)

This is the proposed local approximation alternative to windowing. We are, however,
not proposing to compute the filtering in this manner, since there are numerically more
efficient solutions, The advantage of formulating the process as a linear matrix operator
(I − S) is that it enables the algebraic analysis of the performance, e.g the covaraince
propagation can be computed explicitly.

6.3 Gibbs error problem

It is instructive to consider the decimation of a one-dimensional signal before proceeding
to 2D data sets representing images. Consider the simple example shown in Figures 6.4,
6.5, and 6.6: the data consists of a ramp with a slope of 0.5 in the support range x ∈ [−1, 1]
and a superimposed unit step function, the signal has been computed for n = 100 points.
The decimation-rate of k = 4 is simulated for three different cases:
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1. the Fourier basis functions. The result of approximating the test signal by the first
m = 25 Fourier basis functions is shown in Figure 6.4. There are two sources of
Gibbs error in this signal: the step function and the ramp. The error associated
with the ramp is usually dealt with using windowing; this however modifies the
signal spectrum and with this influences the phase correlation;

2. Gram polynomial basis. The recent introduction of polynomial basis [51] which are
virtually free from errors, enable new decimation procedures. The result of deci-
mating the signal with the first m = 25 Gram basis functions is shown in Figure
6.5, there is no Gibbs error associated with the ramp, since the basis function of
degree 1 can model the linear portion of the signal exactly; however, a Gibbs error
is still associated with the step function. As can be seen there is significantly lower
distortion in the decimated signal than using the Fourier basis;

3. Gram based local polynomial approximation. Both the Fourier and Gram bases are
global approaches, i.e., the signal is approximated globally by the respective basis
functions over the full length of the support. They have the advantage of globally
averaging the Gaussian noise, which is spread evenly onto the coefficients of all the
basis functions. Consequently, they are well suited for application to images which
have a high degree of noise. However, the global basis functions requires the signal
to be modelled globally; consequently, the Gibbs error from the step function is
spread over the complete support. An alternative approach is to use local polynomial
approximation (Savitzky-Golay smoothing [56]) to perform decimation (see Figure
6.6). This yielded the lowest Gibbs error at the cost of reduced noise suppression.

6.4 Frequency response

The method is further investigated by its frequency and impulse response. Consider a set
of n measurement values y(i) which are concatenated to form a column vector y. The
output of the linear process is also in the form of vector x. The input to output mapping
is effected through multiplication by a matrix A, i.e.,

Figure 6.4: The test function
is a linear ramp in the range
x ∈ [−1, 1] with a slope of
0.5 with the addition of a
unit step. Decimation-rate of
four is performed using 25
Fourier basis functions.

Figure 6.5: Decimation-rate
of four is performed using
the first 25 Gram polynomial
basis functions.

Figure 6.6: Decimation-rate
of four is performed so as
to prevent aliasing, the re-
sulting Gibbs error is shown
for: Savitzky-Golay smooth-
ing with ls = 5 and d = 2.
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y = Ay (6.20)

The ith output value is obtained by multiplying the ith row rT
i = A(i, :) of the matrix A

by complete input vector y,

x(i) = rT
i y =

n∑
j=1

ri(j)y(j) (6.21)

This is the same computation associated with as FIR filter; whereby,ri can be considered
to contain the coefficients of the the filter. Given the coefficients of an FIR filter it is a
simple task to compute the frequency response.

Now consider an input vector y of zeros with a single 1 at the location y(i); the output
vector x then corresponds to the ith column ci = A(:, i) of A. Consequently, the ith column
ci of the matrix A defines the impulse response of the linear system to an impulse at the
ith input position. Consequently, an invariant frequency and an impulse response of the
linear system is only given when the matrix A is circulant [23].

6.5 Frequency response of the residualization process

The process of global and local polynomial approximation can be interpreted as the dif-
ference of two independent FFTs, for the global case it is formulated as,

sr = F T (I − GdG
T
d )y, (6.22)

= FFT (y) − FFT (GdG
T
d y). (6.23)

Given n data points, the matrix PG,d = GdG
T
d is of size n × n. The matrix PG,d is not

circulant; consequently, the frequency response of the residualization process varies across
the range of the support, it is not the same for each output value. This can be seen in
figure 6.7 where the frequency response of the projection onto degree-1 polynomial basis
is shown. The variation of the frequency response across the support is not surprising; this
is characteristic of polynomial approximations. However, it can be computed analytically.
In the case of windowing, the end points are suppressed very strongly and also have
different frequency response. The frequency response for polynomial filter at the center of
the support is shown in figure 6.8 for degree 1,3 and 5.

6.6 Savitzky Golay decimation and comparative re-

sults

The above discussion concludes that if the Gram polynomial basis functions are applied
locally to reconstruct a signal then it give more accurate result.
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Figure 6.7: Frequency response for the polynomial filters PG,d of degree 1. Each row of
the matrix has a particular frequency response as an FIR filter
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Figure 6.8: Frequency response for the polynomial filters PG,d of degree 1,3 and 5. This
computation has been performed at the center of the support, that is shown in figure 6.7.
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Figure 6.9: Variation in the peak
signal to noise ratio(PSNR) with
respect to variation in decimation
ratio for Gram global, Fourier and
Gram local basis functions.
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Figure 6.10: Variation in the peak
signal to noise ratio(PSNR) with
respect to variation in Gaussian
noise for Gram global, Fourier and
Gram local basis functions.
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By replacing the Fourier basis function to Gram basis improve to some extent but Gram
basis are globally applied, which results with some error at the gradients. Savitzky and
Golay [56] applied the basis function for data smoothing or regression locally, similarly
applying the Gram basis locally we achieve some satisfactory result. These three methods
are applied on the well known Lenna image for different decimation ratio and additional
Gaussian noise and a graph is plotted for these results as shown in figure 6.9 and 6.10.
Signal to noise ratio is the one method through which the quality of an image could be
calculated. The Lenna image is reconstructed by the three methods,i.e., Fourier basis,

2 4 6 8 10 12 14 16 18
34

35

36

37

38

39

40

41

42

 Gaussian Noise (%)

 P
ea

k 
Si

gn
al

 to
 N

oi
se

 R
at

io
(P

SN
R

) Savitzky Golay Cosine
Savitzky Golay Gram
Gram Basis
Haar Basis
Cosine Basis
Fourier Basis

Figure 6.11: Variation in the peak
signal to noise ratio(PSNR) with
respect to variation in decimation
ratio for Gram and Fourier basis
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Figure 6.12: Variation in the peak
signal to noise ratio(PSNR) with
respect to variation in decimation
ratio for Gram and Fourier basis
functions.

Gram basis global and Gram basis local at different decimation rates, and consecutively
the peak signal to noise ratio are determined. The pink line present the change in peak
signal to noise ratio for Fourier basis, the red line presents Gram basis and the cynic
color line presents Gram basis applied locally. This leads us to the conclusion that if the
Gram basis is applied locally like Savitzky Golay smoothing then the results are better for
minimum decimation ratio as compared to Fourier basis or Gram basis globally. The tests
are also done for changing the additional Gaussian noise and the results are presented
in figure (6.10). For changes in additional Gaussian noise again the Gram polynomial
decimation locally outclass the other two approaches. This further proves the quality of
the proposed method which also satisfactory in presence of any additional Gaussian noise.

All the basis functions i.e. Fourier, Gram basis globally, Gram basis locally, Cosine and
Haar basis are applied for the same test; the results are presented in figure 6.11 for
change in decimation ratio and similarly for change in the additional Gaussian noise as
in figure 6.12. In the whole test it is proved that local decimation outclass the all other
basis functions either changing the decimation factor or the additional Gaussian noise. It
is further tested on a mixed signal reconstruction as shown in figure 6.13, and we can say
that in this case also the local basis better synthesize the mixed signal as by the other
basis functions.
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6.7 Image registration by local method

The proposed method of local decimation has already been applied on all major type of
rigid and non-rigid registration. These further improve the results obtained by the Gram
polynomial decimation registration method which is applied globally. The challenging
task was to accurately register non-rigid and elastic distortion with minimum processing
time. Hence on one side if the proposed method remove the Gibbs error problem which
enhance the exact registration, on the other side the decimation on each layer decrease
the processing time. And some data image like 1200 × 1500 of size is processed just in
few seconds. A significant speed improvement has been achieved. Using the same data
as presented by Suarez et al. [59], the proposed method requires approximately 1 sec. to
perform registration. In comparison, Suarez et al. required 7 mins, and their alternative
method [58] required 15 mins. This is an improvement in the range of 2 to 3 orders of
magnitude.

The proposed method of local decimation and then registration is further tested on a
porous compressible medium, which is compressed to find the properties of the material,
see Figure 6.14, 6.15 and 6.16. The typical barrel distortion with flat tops and bottoms
can be observed. The area of the original grid can be compared with the area of the
compressed grid to determine the volumetric compression of the material. Figure 6.14
shows the block position before distortion, figure 6.15 and 6.16 presents the final position
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Figure 6.13: Comparison of the Fourier, Gram basis global, Haar basis and Gram basis
local. A signal is reconstructed by all these methods and the results are shown.
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after distortion. The grid shows the non-rigid registration. Gram polynomial basis are
applied globally, but distortion is not properly registered as shown in figure 6.15. When
the Gram basis are applied locally for decimation, the results are accuratelly achieved
which are shown in figure 6.16.

Figure 6.14: Test specimen
for compression testing. This
is a porous compressible
medium.

Figure 6.15: The sample
under compression, and
the compression distortion
is found by the grid. The
Gram basis failed globally
to find the exact registration

Figure 6.16: Applying the
Gram basis locally the com-
pression distortion is found
accurately as shown by the
grid.
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Chapter 7

Registration enhancement by
regularization

Normalized phase correlation delivers the coordinates for each shifted patch. The shifted
positions are also affected by noise in the image, and numerical errors associated with
the computation. There is no guarantee that the coordinates of the patches lie on a grid
which corresponds to an elastic deformation. Regularization of the coordinates onto a
grid which is consistent with the solutions of a partial differential equations for elastic
deformation can be achieved by approximation by a tensor product of global polynomial
basis functions.

Here we propose the alternative approach of using a bivariate Gram-polynomial tensor
product for regularization. Given the matrices X and Y containing the coordinates of the
original points, i.e. the reference point, of the patches and Gr the Gram polynomial basis
functions of degree r, the least squares tensor product approximation for the coordinates
can be computed as follows,

Xr = Gr{GT
r XGr}GT

r and (7.1)

Yr = Gr{GT
r Y Gr}GT

r (7.2)

This approach is significantly faster than using spline approximations.

7.1 Image registration by splines

Modelling of machine’s parts by bending long wood or metal strips is termed as “splines”.
The desired model is obtained by attaching some weights at certain positions or bending
these strips by some other ways. The same method is used in image processing to model
certain spatial transformations. If we have two surfaces, i.e., reference and data, then
certain points are selected in these two surfaces and a 2D transformation is used to
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compare or register these two surfaces. Registration of reference and data images by
splines works on the principle that some points are selected in reference image and these
points are then identified in the data image. These points are called as control points.
Spline-based transformations either interpolate or approximate the distances at these
points. Between these control points a smooth varying displacement is achieved. The
interpolation condition for both data and reference surface is modelled as follows:

T (φi) = φ
′
i (7.3)

Where φi indicates the location of selected control points in data image and φ
′
i shows the

location of the corresponding selected points in the reference image. There are many dif-
ferent techniques used to find these control points. Intensity based and Geometric based
registration are commonly used. Intensity-based registrations match intensity patterns
over the whole image but do not use anatomical knowledge. Geometric registration uses
anatomical information but usually sparsely distributed throughout the images. Com-
bining geometric features and intensity features in registration should result in more
robust methods. Hybrid algorithms are therefore of particular current interest, combining
intensity-based and model-based criteria to establish more accurate correspondences in
difficult registration problems, of the these the one is geometrical method which could be
recognized in data and reference image by spline- based transformation mapping functions.

7.2 Regularization by Gram basis

The position of the individual patches is subject to some error. Thin-plate splines have
been applied to regularize the coordinates of the patches; [39] unfortunately, their com-
putation is numerically intensive. The functional for such a tensor product approxima-
tion [35] [43] [74] is,

E = ||GySGT
x − D||F (7.4)

The aim is to determine the values of the entries in the matrix S which minimize the
functional. Given the Gram polynomials as global basis functions a linear solution to
the minimization of the functional is known, to be the projection onto the orthogonal
complement,

7.2.1 Bivariate Gram-polynomial tensor product regularization

Looking at figure 7.1 and 7.2 we can see the original problem during registration. An image
is distorted with 12 percent pin cushion distortion. Non rigid registration technique is
applied to register this image with the image before distortion i.e reference image, but the
image could not be registered accurately and we can see the wrong registered grid at the
center of the image as in figure 7.1. In this test no regularization was applied. Now Some
extra distortion i.e. 15 percent is applied to the same image and again try to register the
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image and find the distortion. This time the bivariate Gram-polynomial tensor product
regularization is applied along with the registration method. An accurate registration is
achieved after applying the proposed method as in figure 7.2. The application of Gram-

Figure 7.1: The image is distorted
with 12 percent pin and cushion dis-
tortion. The method is failed to reg-
ister the image without applying the
tensor approximation.

Layer = 4, Tensor On

Figure 7.2: The image is distorted with
15 percent pin and cushion distortion. Reg-
istration is achieved after applying the ten-
sor approximation.

polynomial tensor product regularization further enhances the non-rigid registration. And
the proposed method is the replacement of the spline methods, which are mostly used for
the tensor approximation purposes, they also take more time for data computation.

7.2.2 Proposed tensor approximation and Galerkin’s method

One of the most important weighted residual methods was invented by the Russian math-
ematician Boris Grigoryevich Galerkin (February 20, 1871 - July 12, 1945). Galerkin’s
method selects the weight functions in a special way: they are chosen from the basis
functions, i.e. w(x) ∈ {φi(x)}n

i=1 . It is required that the following equations hold true

∫ b

a

φi(x) (L[u(x)] + f(x))dx = 0 for i = 1, 2, 3....., n (7.5)

The proposed work presents the first direct linear solution to weighted tensor product
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polynomial approximation. This method is used to regularize the patch coordinates, the
solution is equivalent to a Galerkin type solution to a partial differential equation. The
boundary condition at the border has been removed and replaced with the constraint
that the mean distance of all patch positions to the solution of the partial differential is
zero. The new solution is applied to test samples and compare with other methods. The
speed of the new solution justifies explicit reference: the present solution implemented in
MATLAB requires approximately 1.3 s to register an image of size 800× 500 pixels. This
is approximately a factor 10 to 100 faster than previously published results for the same
data set.

Regularization of the coordinates onto a grid for elastic deformation can be achieved by
approximation by a tensor product of global polynomial basis functions. The functional
for such a tensor product approximation is,

E = ||GySGT
x − D||F (7.6)

The aim is to determine the values of the entries in the matrix S which minimize the
functional. Given the Gram polynomials as global basis functions a linear solution to
the minimization of the functional is known, to be the projection onto the orthogonal
complement,

S = D − GyG
T
y DGxG

T
x (7.7)

A further issue which needs to be considered is that not all patches have the same infor-
mation content. It is desirable to weight the coordinates of a patch by the information
contained in the patch, i.e. patches with a higher information content are given more
significance during the least squares approximation process. Given the matrix of weights
W, the functional for the weighted tensor product approximation can be formulated as,

Ew = ||W o 1
2 ◦ {GySGT

x − D||F (7.8)

7.3 Entropy-weighted tensor polynomial regulariza-

tion

Without weighting the least squares with ordinary polynomials will have wrong average
interpolation over all the surface if the images have local geometric differences or the
control points in a local neighborhood are inaccurate. The resultaning approximated reg-
istration will not find the exact distortion produced in the data image. In the proposed
method the information available in the image is kept as weighting function. In some area
of the images there will be very less information available and will be difficult for the
phase correlation to find the exact registration. Therefore entropy plays its role in this
regards, and the approximated value is allotted to those portions having no information.
The solution for S which minimizes the functional Ew has been considered a non-linear
task in the past. This work presents the first direct linear solution to this task based on the
Kronecker product. The coordinates of the registered patches are regularized by weighted
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least squares approximation by a sum of a tensor products of Gram polynomials. [22] [51].
The weighted tensor product of two sets of truncated Gram polynomial basis functions
of maximum degree n ensures that the solution lies on a C(n) continuous grid. This is
consistent with the elastic deformations of the sample which are also C(n) continuous up
to the end point. The entropy of the data contained in each patch is used as a weighting
factor during the least squares tensor approximation. This ensures that patches with low
information content do not contribute so strongly to the functional as do the patches with
a strong information content. There are three specific cases which need to be considered
for a general solution:

7.3.1 The matrix W is rank one and positive semi-definite

If rank W = 1 then the matrix can be computed from two vectors, a left wl and right wr

singular vector respectively,
W ◦ 1

2 = wlw
T
r = wl ⊗ wr (7.9)

The left wl and right wr singular vectors are determined by applying singular value de-
composition to W ◦ 1

2 . Now substituting into equation 7.8 yields,

Ew = ‖diag{wl}GySGT
x diag{wr} − W ◦ 1

2 D‖F (7.10)

The normal equations associated with the above functional can be solved directly and
linearly for S yielding,

S = (diag{wl}Gy)
+ W ◦ 1

2 D (GT
x diag{wr})+ (7.11)

7.3.2 The matrix W is rank one and is strictly positive definite

If wl and wr are strictly positive the problem can be solved directly using weighted poly-
nomial basis functions.

7.3.3 The matrix W is full rank and strictly positive definite

If the matrix W is full rank and strictly positive definite, then the functional ( 7.8) must
be vectorized. Consider the properties of the Kronecker product,

vec{AXB} = (BT ⊗ A)vec{X} (7.12)

The vec {X} corresponds directly to the MATLAB operator X(:). Now consider,

vec{GySGT
x } = Gx ⊗ Gy vec{S} (7.13)

Before proceeding further it is helpful to define some succinct notations,
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s = vec{S}, d = vec{D} , A = Gx ⊗ Gy, and V = diag vec{W ◦ 1
2}} (7.14)

Now vectorizing Equation 7.8 using this notation yields,

Ew = ‖V {As − d}‖2
2 (7.15)

This is the cost function for a weighted vector approximation, the solution for s which
minimized Ew is well known s = {V A}+ V d. For numerical reasons it is more efficient to
compute,

s = {V A}+ vec{W ◦ 1
2 ◦ D} (7.16)

This is a direct linear solution and is non-iterative. Consequently, the number of com-
putations required can be determined a-priori making this solution suitable for real-time
applications. In this application the entropy of the data contained in each patch is used as
the corresponding weight. Since all images contain some noise the entropy will be strictly
positive and it must be assumed that the matrix W is full rank. The coordinates of each
patch are reformed to generate a matrix of X and of Y coordinates. Both matrices are
regularized using the above procedure.

7.3.4 Improvement of Galerkin’s method

The new method, whereby the solution is generated from a tensor product of Gram
basis functions, is fundamentally equivalent to the Galerkin method of solving partial
differential equations. However, its implementation is considerably better in its numerical
efficiency. The boundary condition at the border has been removed and replaced with
the constraint that the mean distance of all patch positions to the solution of the partial
differential is zero.

7.3.5 Comparison of the two methods

It is known that in the area of numerical analysis, Galerkin methods belongs to the class
of methods for converting a continuous operator problem i.e. a differential equation to a
discrete problem. In principle, it is the equivalent of applying the method of variation of
parameters to a function space, by converting the equation to a weak formulation. Some
constraints on the function space are applied to characterize the space with a finite set of
some basis functions. Solving differential equations in which the solution is assumed to be
well approximated by these function of a particular form having a finite set of degree and
then any one of a theoretically infinite set of methods of weighted residuals are applied
in an attempt to find which precise value each of these degrees of freedom should take in
order to minimize these residuals in some way the residue function. The Galerkin method,
which uses the basis functions themselves as test functions or in the more general case
of a nonlinear assumed form (where the nonlinearity is in the degrees of freedom) of the
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solution the Galerkin method uses the test functions. For all these approximating testing
we have the Governing equation a very basic equation, which is written as follows;

f(u) = 0 (7.17)

For load application on a beam,
f(u) = P (7.18)

This equation sates as we apply load on a beam then the stress produced is equal to the
load P applied. There are many approximation methods to find the stress produced in the
beam, which is not the exact solution of the problem to find load. For the approximated
guess we will have,

f(ū) − P = e (7.19)

This presents that the approximated value ū will have some error being not the exact
solution. But our target is to keep this error as minimum as possible. Most of the cases
basis functions are used to find these approximation i.e. ū = a0 + a1x + a2x

2. Galerkin
proposed a test to find the solution with minimum error by introducing a weighted function
multiplication to the approximated value with some boundary condition.∫

x

w e dx = 0 (7.20)

Putting equation 7.19 in 7.20 we will have.

∫
x

w (f(ū) − P ) dx = 0 (7.21)

Equation 7.21 is a typical Galerken equation for one dimensional case. Looking at the
proposed functional for such a tensor product approximation is,

E = ||GySGT
x − D||F (7.22)

In which the aim is to determine the values of the entries in the matrix S which minimize
the functional. Given the Gram polynomials as global basis functions a linear solution
to the minimization of the functional is known, to be the projection onto the orthogonal
complement, the patch coordinates are weighted by the information contained in the
patch, i.e. patches with a higher information content are given more significant during
the least squares approximation process. Given the matrix of weights W, the functional
for the weighted tensor product approximation can be formulated as,

Ew = ||W o 1
2 ◦ {GySGT

x − D||F (7.23)

Comparing equation 7.21 and 7.23 looks exactly same equation. Both are calculating
the approximated solution by using the basis functions and the result is then weighted
for minimizing the error. In the proposed method the Gram polynomial are used as basis
functions being unitary basis and there solution is complete. On the other hand the Gibbs
error problem is minimized by local application of the basis functions.
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7.3.6 Behavior in the presence of noise

There are some factors which lead to a wrong non-rigid registration, one common factor
is the noise arising from the processes of image acquisition and feature extraction. The
resulting feature points cannot be exactly matched if there is noise present in the data or
reference or both images. Another factor is the existence of outliers i.e many point features
may exist in an image that have no corresponding points in the reference image and hence
need to be rejected during the matching process. Finally, the geometric transformations
may need to incorporate high dimensional non-rigid mappings in order to account for
deformations of the point-sets. It should be possible to solve for the correspondences
between selected area in the data and reference images and reject outliers and determine
a good non-rigid transformation that can map a data image to a reference image.

Figure 7.3: The original stochastic im-
age to be registered after some addi-
tion of Gaussian noise

Layer = 5, Tensor On

Figure 7.4: 15 percent Gaussian noise
added to the image and the registered im-
age is shown. The blue line presents the
original image position and the colored grid
presents the deformation in the image

This could be explained by the example presented in the figure 7.3 and 7.4. A stochastic
image has rotational deformation and an additional 15 percent Gaussian noise has been
added to the data image. The proposed algorithm of non-rigid registration with bivariate
tensor approximation is applied to register the two images. The results are shown, as, the
blue line presents the position of the reference image, and the grids shows the image after
deformation.
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Abstract

This paper presents a new approach to non-rigid elastic registra-
tion. The method is applied to hyper spectral imaging data for the
automatic quality control of decorative foils which are subject to
deformation during lamination. A new image decimation procedure
based on Savitzky-Golay smoothing is presented and applied in a
multiresolution pyramid. Modified Fourier basis functions imple-
mented by projection onto the orthogonal complement of a trun-
cated Gram polynomial basis are presented. The modified func-
tions are used to compute spectra whereby the Gibbs error associ-
ated with local gradients in the image are reduced. The paper also
presents the first direct linear solution to weighted tensor product
polynomial approximation. This method is used to regularize the
patch coordinates, the solution is equivalent to a Galerkin type so-
lution to a partial differential equations. The new solution is applied
to published standard data set and to data acquired in a produc-
tion environment. The speed of the new solution justifies explicit
reference: the present solution implemented in MATLAB requires
approximately 1.3 s to register an image of size 800 500 pixels. This
is approximately a factor 10 to 100 faster than previously published
results for the same data set.

1 Introduction

Many products and most modern furniture are given their final optical finish by laminating
or gluing decorative foils onto the surface. The self adhesive foils and laminates are printed
with decorative patterns, some examples of which are shown in Figures 1 to 4. There
are many thousands of patterns, whereby the characteristic features vary strongly. Some
of the patterns have a strong geometric content, e.g. Figure 1, some imitate natural
structures, e.g. Figures 2 and 3, while yet others are almost purely stochastic as can be
seen in Figure 4. In particular for the production of furniture, it is important that the
decorative patterns can be reproduced with the same optical quality over a period of many

1This paper presented in QCAV’2011 conference, 28-30 june Saint-Etienne, France
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years, i.e., a piece of office furniture bought years later should generate the same optical
impression. This requires a stringent quality control, of both the spatial pattern and its
spectral properties. Furthermore, the decorative foils are subject to deformations during
the lamination process. The laminating press exerts a force on the foil which tends to
stretch before the layer of glue hardens. These deformations have in the past precluded an
automatic quality control, since simple registration is not sufficient to enable comparison
of the patterns properties. This paper presents a new solution to non-rigid registration
which is used in conjunction with an Advanced Colour Measurement System (ACMS).

Figure 1: Example of
a decorative laminate
with a strong geomet-
ric design. The pat-
tern is both partially
and globally repeti-
tive.

Figure 2: Imitation
wood laminate.

Figure 3: Imitation
stone laminate.

Figure 4: Example of
a laminate with an al-
most purely stochas-
tic pattern.

The two survey papers [28, 13] and the workshop dedicated to biomedical image registra-
tion [5] show the vast extent of material published on non-rigid registration. Two major
techniques have evolved as reliable solutions to nonrigid registration:

1. Feature based registration, see Zitova [28]. In this technique specific features are
identified in both the reference and measurement images. The matched features
are used to determine a mapping between the two images. This techniques is well
suited to images where features are unique and evenly distributed across the image.
The method can deal with discontinuities in the deformation, since the features
are individually matched. However, some of the patterns in this application, e.g. the
pattern in Figure 4, are almost purely stochastic and will not deliver reliable features.
Furthermore, the techniques only uses a discrete set of features and as such does not
take advantage of all the information in the image, this has detrimental consequences
for the signal to noise ratio. For these reasons this approach was deemed to be
unsuitable in this application;
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2. elastic registration which is most commonly implemented using some form of hier-
archical subdivision, also called pyramid processing, see Lester [13] for a survey of
such techniques. The distortions generated during the lamination process are indeed
elastic in nature, suggesting that an elastic registration approach is suitable. How-
ever, the techniques suffered from a speed problem which would make their present
implementations unsuitable for real time non-rigid registration.

A good overview of non-rigid or elastic registration can be gained from studying the
review articles [13, 28] and the present state of the art in medical imaging can be found
in [5]. The solution presented here falls into the general class of hierarchical subdivision2;
whereby, three new and major contributions are made:

1. a new decimation techniques is introduced based on Savitzky-Golay smoothing. This
technique ensures consistent data and information reduction at each layer in the tree.
This is a very important step and has been underestimated in the past. Correct
decimation of the image ensures the minimization of the Gibbs error associated
with the step, which in turn improves the result of local registration. Furthermore,
correct decimation is instrumental in making the registration solution numerically
efficient;

2. a modified normalized phase correlation method is introduced to perform local regis-
tration. The Fourier basis is modified by projection onto the orthogonal complement
of a degree d = 1 Gram-polynomial. This eliminates the effects of intensity and in-
tensity gradients within a patch. This modification is an alternative to windowing
in Fourier analysis [18];

3. a new direct, i.e. non iterative, solution to least squares approximation via weighted
bivariate Gram polynomial tensor product is presented. The least squares weighted
tensor product is used to regularize the positions of the patches at each level in
the tree structure, whereby the entropy of the patch is used as weight. This new
approach is numerically efficient and optimal in terms of finding a least squares
solution in the presence of Gaussian perturbations;

4. the new solution can be computed in real-time and is suitable for in-line quality
control. Presently the algorithm requires approximately 1 second to register an image
with 500×800 pixels. This is significantly faster than other reported solutions, Suarez
et. al [22] require and with a “Fast entropy” method [21] they require 15 minutes .

2 Data Acquisition: Advance Color Measurement Sys-

tem

The Advance Color Measurement System (ACMS) is a new industrial scanner which
performs spatially resolved color measurements of decorative and multi-colored patterned

2The literature pertinent to the new issues is reviewed in the relevant section of the paper.
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surfaces. The system uses hyper-spectral [4] imaging to scan an area of maximum 8×20 cm
with a spatial resolution of 125μm. Each pixel is measured with 81 spectral windows within
the CIE-specified [10] wavelength range 380 . . . 780μm yielding a spectral resolution of
5μm. The measurement result is stored in a 3-dimensional data-cube of size 640×160×81.

The aim of the measurement is to determine if the spatial distribution of the spectral
properties on the newly produced foil corresponds to the desired reference. The task is
further complicated by the elastic deformation of the foil which may occur during the
lamination process. The deformation is the same for all spectral layers, since the foil is
produced from a single printed layer. The 81 spectral layers are summed-up to generate
a single image Im of size 640 × 160. This image is used to perform registration prior to
comparing the spectral properties at each layer.

3 Elastic registration

The deformations of the decorative layer which occurs during the lamination process is
a true elastic deformation. The flow of the foil — a 3D viscous material — results from
anisotropic forces during the lamination process, which are the result of irregularities
in the surface onto which the foil is being laminated and due to nonuniform distribu-
tion of the glue. This is in strong contrast to the general case in non-rigid registration,
e.g. in medical imaging tissue3 growth plays a major role — this is a non-conservative
process. Computational techniques based on partial differential equations for fluid dy-
namics [25, 19, 26] have become popular as a means of implementing elastic registration.
Most commonly the Navier-Stokes equation is used to describe the motion of the viscous
fluid,

∂u

∂t
+ u · ∇u =

∇P

ρ
+ v∇2u (1)

whereby, u is the velocity vector, P is the pressure vector, ρ the fluid density and v is the
kinematic viscosity. However, there are a number of unsolved problems associated with
this approach:

1. the measurement is a 2D observation of a 3D deformation. Wang and Staib [24] deal
with this issue by modifying the Navier-Stokes equation to remove the constraint
that the volume of the fluid is invariant and proceed to solve the modified equation.
An alternative is to assume that the thickness of the film remains unchanged, so
that the flow is characterized by the 2D observation. In this case the Navier-Stokes
equation can be simplified to 2D field. This may be a valid approximation for films
where thickness is small with respect to the local deformations;

2. it is assumed that the force is applied over the boundary of the image. Consequently
the forces at the boundary and the corresponding deformation would yield a valid
boundary condition of the solution of the differential equation within the field. This

3This image is used during method testing and comparison of methods since it is freely available online

and results from other research groups are available for this image pair.
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assumption is not true for the application at hand. The lamination press together
with the irregularities in the surface and thickness of the layer of glue yield a dis-
tribution of forces over the field of observation.

3. the solution of the differential equation corresponding to the observation is deter-
mined via iterative approaches [25], both boundary element methods and finite
element methods have been investigated [6]. The solutions are computationally pro-
hibitive if they are to be applied in a real-time quality control application.

The aim of using a specific partial differential equation is to introduce regularization
into the solution, i.e. the motion within the registration process is forced to lie on a
path corresponding to a solution of the partial differential equation. This improves the
quality of the solution by reducing the influence of perturbations, if the partial differential
equation truly describes the system being observed.

Figure 5: Reference image with the final
layer reference patches .

Figure 6: Image which is to be registered.

Figure 7: Reference decomposition tree,
with five layers

Figure 8: Registered decomposition tree,
with five layers, the modified position of
each patch can be seen.

The new method, whereby the solution is generated from a tensor product of Gram
basis functions, is fundamentally equivalent to the Galerkin method of solving partial
differential equations. However, its implementation is considerably better in its numerical
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efficiency. The boundary condition at the border has been removed and replaced with
the constraint that the mean distance of all patch positions to the solution of the partial
differential is zero.

3.1 Decimation and Savitzky-Golay smoothing

Multi-resolution pyramids [12, 14] require that the resolution of the image be reduced as
the tree is traversed. This requires a consistent filtering prior to decimation if aliasing
and/or Gibbs errors are to be avoided. A Gibbs error would lead to an artificial ringing
at edges in the image. This ringing would contribute to peaks in the Fourier spectrum,
resulting is a perturbation of the registration process.

Scale-space filtering [15], i.e. using a Gaussian kernel, has become a common technique
to implement filtering in multi-resolution pyramids. The problem with Gaussian kernel
is that they are neither periodic nor polynomial and a consistent decimation can not be
achieved in an optimal manner. Andronache [2] observed “. . . the loss of MI’s statistical
consistency along the hierarchical subdivision . . . ”, and proposed information theoreti-
cal measures to identify regions in which such errors occur. However, they provided no
explanation for the source of this inconsistency.

The classical design of filters implicitly involve the implicit selection of basis functions; the
most common of which are the Fourier basis and polynomials [7]. Actually the selection
of the best set of basis functions depends on the nature of the data being processed.
Images are clearly not periodic and consequently generate a significant error when filtered
and decimated using Fourier basis functions. The authors previously proposed the use of

M M M M

Figure 9: Results of the Savitzky-Golay smoothing and decimation across the multi-
resolution pyramid. The decimation rate, from left to right are 2, 4, 8 and 16.

Gram polynomial for filtering prior to decimation [3]. However, the Gram polynomials
are global basis functions and lead to Gibbs ringing at discontinuities [9] in the image.
In this paper a new decimation process is implemented to perform simultaneous low-pass
polynomial filtering and decimation, which is based on Savitzky-Golay filtering [20, 17].
The Gram polynomials are applied as basis functions in local approximation. Filters with
monotonic step response can be implemented by correct selection of the support length
and local polynomial degree. In this manner Gibbs ringing is avoided. The new process
enables the implementation of arbitrary decimation factors. The Savitzky-Golay filtering
can be implemented as a linear matrix operation [17], the filtered image Dsg is generated
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by pre- and post-multiplying the unfiltered data D by matrices Sy and ST
x respectively,

Dsg = Sy D ST
x . (2)

The rows of the matrices Sx and Sy contain the coefficients required to implement the
desired Savitzky-Golay filter, details can be found in [17]. Given a data matrix D of size
n × m then Sy is m × m and Sx is m × m. Equation 4 implements the Savitzky-Golay
filtering without decimation. Given the desired size of the decimated image p × q then
a decimation rate of dy = m/p is required in the y direction4. An indices vector iy is
generated in the range iy(k) ∈ [1, n] with p equidistant nodes. For integer indices the
decimating matrix is extracted from Sy directly,

Sy,d = Sy(iy, :), (3)

yielding a p×n matrix. Linear interpolation between the two adjacent rows Sy is used for
non-integer indices. The resulting filtering and decimation process is,

Dsg,d = Sy,d D ST
x,d. (4)

The matrices Sx,d and Sy,d can be computed a-priory, so that only matrix multiplications
are required at run-time. This enables a numerically highly efficient implementation of
the required filtering and decimation.

3.2 Modified Fourier Basis Functions for Improved Normalized
Phase Correlation

Normalized phase correlation P(n) computed via the FFT is well known for image regis-
tration of two images where only translations need to be determined,

P(n) = F−1

{
R(ω) MT(ω)

‖R(ω) MT(ω)‖2

}
, (5)

where R(ω) and M(ω) are the 2D Fourier spectra of the reference image and measurement
image respectively. Mellor [16] proposed local phase, i.e. computing the phase correlation
for each patch individually, as a measure for registration in non-rigid registration. As men-
tioned above: Andronache [2] observed “. . . the loss of MI’s statistical consistency along
the hierarchical subdivision . . . ”. Indeed the main loss of consistency is due to aliasing
and/or Gibbs error during the decimation and Fourier based registration processes. Alias-
ing leads to a shifting of peaks in the frequency domain; while ringing associated with
the Gibbs error leads to spurious peaks in the spectrum. These additional peaks are not
properties of the image, they are errors associated with mathematical processing.

The Fourier basis functions are,

f(k) = e−
2πk
N

j (6)

4The same procedure is applied in the x direction with the respective parameters.



83

clearly these basis functions can not model a simple gradient. However, the image patches
regularly have strong gradients. Consequently, the Fourier transform will have significant
Gibbs errors and associated spurious peaks in the spectrum which can lead to errors in
the registration: this phenomena is well known and documented [9]. In classical signal
processing windowing is used [7] to reduce the Gibbs error. However, windowing is not
appropriate in image registration, since it would modify the signal significantly and pre-
clude a correct registration. For this reason a modified Fourier transform [18] is introduced
here for the computation of the image spectrum.

Prior to computing the 2D Fourier spectrum, the image patch D is projected onto the
orthogonal complement of a set of truncated Gram polynomials,

Dpg = D − Gy GT
y D Gx GT

x , (7)

where the columns of Gx and Gy contain the Gram basis functions for the x and y directions
respectively. This process removes, to a large degree, the subharmonic components in the
patch (for more detailed description see [18]); reducing the Gibbs error associate with
this portion of the data. This computation can be performed as either a two step task,
as presented above, or a modified set of basis functions can be computed a-priory and
applied at run-time. The spectrum of Dpg is computed as,

Spg = FT
y Dpg Fx, (8)

where Fx and Fy are the matrices containing the Fourier basis functions for the x and y
directions respectively. The Fast Fourier Transform is only a numerical efficient method
of performing this computation. Now substituting Equation 7 into Equation 8 yields,

Spg = FT
y

{
D − Gy GT

y D Gx GT
x

}
Fx. (9)

Expanding this equation yields,

Spg = FT
y

{
I − Gy GT

y

}
D

{
I − Gx GT

x

}
Fx. (10)

Now defining the modified basis functions as By � FT
y

{
I − Gy GT

y

}
and

{
I − Gx GT

x

}
Fx.

The modified Fourier transform is now computed as,

Spg = By D Bx, (11)

and the modified spectrum is used for the computation of the normalized phase correlation.
This computation is numerically efficient than the two step process for small patches.

3.3 Entropy-Weighted Tensor Polynomial Regularization

The normalized phase correlation delivers the coordinates for each shifted patch. The
shifted positions are also affected by noise in the image, and numerical errors associated
with the computation. There is no guarantee that the coordinates of the patches lie on a
grid which corresponds to an elastic deformation. Regularization of the coordinates onto
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a grid which is consistent with the solutions of a partial differential equations for elastic
deformation can be achieved by approximation by a tensor product of global polynomial
basis functions. The functional for such a tensor product approximation [11][23][27][8] is,

E =
∥∥Gy S GT

x − D
∥∥

F
. (12)

The aim is to determine the values of the entries in the matrix S which minimize the
functional. Given the Gram polynomials as global basis functions a linear solution to
the minimization of the functional is known, to be the projection onto the orthogonal
complement,

S = D − Gy GT
y D Gx GT

x (13)

A further issue which needs to be considered is that not all patches have the same infor-
mation content. It is desirable to weight the coordinates of a patch by the information
contained in the patch, i.e. patches with a higher information content are given more
significant during the least squares approximation process. Given the matrix of weights
W, the functional for the weighted tensor product approximation can be formulated as5,

Ew =
∥∥∥W◦ 1

2 ◦ {
Gy S GT

x − D
}∥∥∥

F
. (14)

The solution for S which minimizes the functional Ew has been considered a non-linear

Layer = 1 Layer = 2, Tensor On Layer = 3, Tensor On Layer = 4, Tensor On

Figure 10: The above figures show the registration at each of the four sublayers in the
multi-resolution pyramid. The color of the patch is proportional to the entropy of the data
contained within the patch. This is used as the relative weighting in the tensor polynomial
approximation.

task in the past. This paper presents the first direct linear solution to this task based on
the Kroneker product. There are three specific cases which need to be considered for a
general solution:

The matrix W is rank one and positive semi-definite

If rank {W} = 1 then the matrix can be computed from two vectors, a left wl and right
wr singular vector respectively,

W◦ 1
2 = wl w

T
r = wl ⊗ wr. (15)

5The notation W◦ 1
2 indicates a Hadamard operator with respect to the square root, i.e. the square

root of each entry in W.
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The left wl and right wr singular vectors are determined by applying singular value
decomposition to W◦ 1

2 . Now substituting into Equation 14 yields,

Ew =
∥∥∥diag (wl) Gy S GT

x diag (wr) − W◦ 1
2 D

∥∥∥
F

. (16)

The normal equations associated with the above functional can be solved directly and
linearly for S yielding,

S = (diag (wl) Gy)
+ W◦ 1

2 D
(
GT

x diag (wr)
)+

. (17)

The matrix W is rank one and is strictly positive definite

If wl and wr are strictly positive the problem can be solved directly using weighted
polynomial basis functions.

The matrix W is full rank and strictly positive definite

If the matrix W is full rank and strictly positive definite, then the functional (Equation 14)
must be vectorized. Consider the properties of the Kronecker product,

A X B =
(
BT ⊗ A

)
X (18)

The X corresponds directly to the MATLAB operator X(:). Now consider,

Gy S GT
x = Gx ⊗ Gy

S. (19)

Before proceeding further it is helpful to define some succinct notations,

s � S, d � D, A � Gx ⊗ Gy, and V � diag
(


W◦ 1

2

)
. (20)

Now vectorizing Equation 14 using this notation yields,

Ew = ‖V {A s − d}‖2
2 . (21)

This is the cost function for a weighted vector approximation, the solution for s which
minimized Ew is well known s = {V A}+ V d. For numerical reasons it is more efficient to
compute,

s = {V A}+ 
W◦ 1

2 ◦ D. (22)

This is a direct linear solution and is non-iterative. Consequently, the number of com-
putations required can be determined a-priori making this solution suitable for real-time
applications.

In this application the entropy of the data contained in each patch is used as the corre-
sponding weight. Since all images contain some noise the entropy will be strictly positive
and it must be assumed that the matrix W is full rank. The coordinates of each patch are
reformed to generate a matrix of X and of Y coordinates. Both matrices are regularized
using the above procedure.
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4 Testing

The improvement in the registration associated with the modified Fourier basis set is
demonstrated with a one dimensional data example. A synthetic data signal d(n) has
been generated for this test, see Figure 11. Two subsets d1(n) and d2(n) are cut from
d(n) with a shift of 55 samples. These two data sets, with known time shift, are used to
test the normalized phase correlation with (see Figure 13) and without projection onto the
orthogonal complement of a truncated Gram polynomial od degree d = 2 (see Figure 12).
It can be seen that the shift by 55 samples can be clearly identified, if the projection onto
the truncated Gram polynomials is performed prior to computing the correlation. The
signal to noise ratio is significantly better than with the conventional computation.
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Figure 11: A synthetic data
set d(n), with two data sub-
sets d1(n), and d2(n). Both
data subsets have a length of
256 samples and are cut from
d(n) with a relative shift of
55 samples.
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Figure 12: Normalized phase
correlation of the signals
d1(n) and d2(n) computed
using Equation 5
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Figure 13: Normalized phase
correlation of the signals
d1(n) and d2(n), after pro-
jection onto the orthogonal
complement of a truncated
Gram polynomial basis of
degree d = 2.

The second test is with the images shown in Figure 10, it has been chosen since it is
freely available online [1] and results from other research groups are available for this
image pair. Correct registration has been achieved with the new method and required in
a MATLAB implementation: this compares with required by Suarez et. al [22] and with
a “Fast entropy” method [21]. The results are for the same data set. The new method
delivers a speed improvement in the range of two orders of magnitude.

The results shown in Figure 14 for the case where data was acquired directly in the
production line and an unrealistically large pin-cushion distortion has been synthetically
applied. The aim being to show that the method can deal with very large distortions. The
method has successfully registered the images and identified the correct distortion.

The last test involved registration of images during the automatic inspection process, see
Figure 15. The production samples demonstrated only a very low distortion. All produc-
tion samples were successfully registered, i.e. the registration enables the comparison of
the local colour patterns.
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Layer = 4, Tensor On Layer = 4, Tensor On

Figure 14: The above test patterns have
been acquired with the production instru-
ment, whereby the pin-cushion and barrel
distortion has been applied artificially. The
aim was to determine the limits of the algo-
rithm.

Layer = 4, Tensor On Layer = 4, Tensor On

Figure 15: The above patterns were mea-
sured with the production instrument. The
comparison is between two samples pro-
duced in different batches.

5 Conclusions

This paper has presented a new solution to non-rigid elastic registration of hyper spec-
tral data. The method has been applied to hyper spectral data for the automatic quality
control of decorative foils which are subject to deformation during lamination. Local poly-
nomial approximation offers a successful method of implementing simultaneous filtering
and image decimation as required for multi-resolution pyramids.

Modified Fourier basis functions implemented by projection onto the orthogonal comple-
ment of a truncated Gram polynomial basis are presented. The modified functions are
used to compute spectra whereby the Gibbs error associated with local gradients in the
image are reduced. This improves the statistical consistency across the subdivision tree.
The improvement associated with this method are demonstrated for a one dimensional
data set.

The paper also presents the first direct linear solution to weighted tensor product polyno-
mial approximation. This method is used to regularize the patch coordinates, the solution
is equivalent to a Galerkin type solution to a partial differential equation. The new so-
lution is applied to test samples and compared with other methods. The speed of the
new solution justifies explicit reference: the present solution implemented in MATLAB
requires approximately 1.3 second to register an image of size 800 × 500 pixels. The is
approximately a factor 10 to 100 faster than previously published results for the same
data set.
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Abstract

This paper presents a new approach to optical material stress analy-
sis, which eliminates the need to apply a random dot pattern to the
surface of the sample being tested. A multi-resolution hierarchical
sub-division is implemented, with a consistent polynomial decima-
tion applied at each layer of the tree. The degree of decimation
must be selected depending on the nature of the structure of the
surface of the sample being At each layer the individual patches are
registered using a modied normalized phase correlation, whereby
the Fourier basis functions are projected onto the orthogonal com-
plement of a low degree Gram polynomial basis. This reduces the
effect of the Gibbs error on the local registration. The registra-
tion positions are then subjected to a regularization via an entropy
weighted tensor-polynomial approximation. The Gibbs polynomial
basis is used for the tensor product, since they are orthonormal and
model the continuous deformation associated with an elastic defor-
mation. The stability of the proposed method is demonstrated in
real measurements and the results with and without the application
of the random pattern are compared.

1 Introduction

The problem of optical strain analysis can be regarded as being fundamentally the same
task as non-rigid registration [2][1]: a sequence of images of the sample is acquired during
the tensile of compressive testing. The deformation of the sample is a continuous process
of elastic and plastic deformation up the point when the sample ruptures. Consequently,
a nonrigid registering of the individual images will yield the deformation of the sample at
the time point when the image was acquired.

Numerous papers have been written on the topic of strain measurement by digital image
correlation and grid method,i.e, [5, 7, 3, 8]. In general these methods require a stochastic
pattern on the surface of the material so as to enable a reliable registration. Commercial

1This paper presented in SPIE Electrnic Imaging conference 22 - 26 February 2012 Hyatt Regency

San Francisco Airport Burlingame, California, USA.
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Figure 1: Test sample of a composite material which is to be tested. The surface exhibits
a texture associated with the weaving pattern of the reenforcing material. (The material
used here is Tepex Dynalite 102-RG600C3 from Board Laminates GmbH)

systems require a random dot pattern on the surface to ensure good registration of the
sequence of images. The application of the pattern is performed in two steps: a white
coating is applied as a base; then the black dots are generated using a graphite spray2.
However, particularly in the testing of polymer material [6] the application of a coating
containing solvents can have serious undesirable side effects. The solvents penetrate deep
into small cracks and may have a chemical interaction with the material being tested.
During testing a parallel evaluation with a commercial system was performed. The system
failed without application of the dot pattern. Consequently there is justification for the
development of a new evaluation scheme which can deal with both globally and locally
structured surfaces. This is particularly important for the measurement of composite
materials which may have a repetitive weaving pattern associated with the reinforcing
material. The material being tested in this paper is a perfect example of such a case, a
sample without coating can be seen in Figure 1.

There are two main reasons which lead to the need to apply the stochastic pattern:
the registration methods used in optical strain measurement are rudimentary and no
systematic analysis of this issue is provided; for example, Haile and Ifuj [5] use a locally
weighted mean transform. This is in no way related to the physics of the problem at hand.
Koljonen et al. [8] investigated different measures for confidence and adapted the template
size to achieve a higher degree of confidence. More advances methods of entropy based
regularization, as used in medical imaging, were too slow for application in strain analysis,
see for example Suarez et. al [15] require and with a “Fast entropy” method [14] they
required for a single regularization; secondly, registration via normalized phase correlation
(NPC) is subject to Gibbs error, since the stochastic pattern is not periodic. Recently the
authors introduced a new real time nonrigid registration method which addresses this
issues and provides solutions applicable to strain analysis, details of their work can be
found in [2][1], consequently only the salient points relevant to strain analysis are dealt
with in this paper in more detail.

2In this application a U89 Developer from a dye penetrant inspection system by Helling is used as the

base white coating and a graphite spray 33 from Kontakt Chemie is used to generate the dot pattern.
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2 Experimental setup

A universal testing machine is used to perform all the measurements presented in this
paper, the machine is shown in Figure 2 and the sample mounted for testing in Figure 3.
The technical specification of the universal materials testing machine are given in Table 2.
This machine can be used for tension, compression and bending tests up to 250kN. The
image sequences were acquired with a commercial video extensometer system from the
company GOM mbH.: ARAMIS HS system with Basler 504k cameras, equipped with
50mm lenses for the tensile testing and a S5LPJ0625 telecentric lens for the compression
test.

Table 1: Technical Specification of the Universal Testing Machine.
Type UPM Zwick/Roell Z 250

Load Range 1 kN to 250 kN
Working space 800mm max

Test speed max. 600 mm/min
Equipment: laser extensometer, max. 400 mm with 0.1 micron resolution

Grips Hydraulic
Application Tension, compression, bending and elasticity tests

3 Principle of operation of elastic registration

A hierarchial decomposition [10] of the image, also called multiresolution [9] pyramids3

is performed. This type of decomposition ensures that structures with a combination of
stochastic and repetitive patterns can be reliably registered. At each level in the decom-
position the image is subdivided into four sub-images, see Figures 4 and 5: this results in
a quad-tree structure. As the tree is traversed the resolution of the patches is reduced via
Savitzky-Golay [13, 11] approximation combined with a consistent decimation. The deci-
mation rate must be selected prudently: since, a higher degree of decimation will improve
the speed of computation, however, for stochastic patterns sufficient local information
must be maintained to enable global registration. Registration of the individual patches
is performed at each layer using a modified FFT based normalized phase correlation. The
patch is projected onto the orthogonal complement of a low degree Gram polynomial basis
prior to computation of the normalized phase correlation. This eliminates the predominant
a-periodic portion of the data and with this reduces the Gibbs error significantly.

Then the coordinates of the registered patches are regularized by weighted least squares
approximation by a sum of a tensor products of Gram polynomials [4, 12]. The weighted
tensor product of two sets of truncated Gram polynomial basis functions of maximum
degree n ensures that the solution lies on a C(n) continuous grid. This is consistent
with the elastic deformations of the sample which are also C(n) continuous up to the

3The term pyramids emerged in parallel to the term hierarchical subdivision.
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point of rupture. The entropy of the data contained in each patch is used as a weighting
factor during the least squares tensor approximation. This ensures that patches with low
information content do not contribute so strongly to the functional as do the patches with
a strong information content.

4 Testing

The first test is on a standard sample to which a random dot pattern has been applied,
Figure 6(a) shows the specimen prior to loading, 6(b) the final image from which the
deformation is to be measured, 6(c) and 6(d) show the third and fourth layers of the
quad-tree registration. It can be seen that the registration has performed correctly.

In the second test a porous compressible medium is compressed, see Figure 7 and 8. The
typical barrel distortion with flat tops and bottoms can be observer. The area of the
original grid can be compared with the area of the compressed grid to determine the
volumetric compression of the material, it should be noted that two cameras mounted at
90 to each other are require to perform a precise volumetric measurement.

The third test shows a sample which has been specially prepared: one half of the sample
has been coated with a stochastic dot pattern, while the second half is left in its original
form. The commercial system fails to function of the surface which has not been prepared.
The results of three evaluations are presented in Figure 9: (left) registration only on the
prepared portion of the surface; (center) registration on the whole sample and (right) reg-
istration on the unprepared surface. All three measurements are consistent, demonstrating
that the method has functioned correctly on the unprepared surface.

5 Conclusions

This work has demonstrated a non-rigid registration techniques based on hierarchical
decomposition together with entropy weighted regulatization is suitable for the measure-
ment of mechanical strain on composite materials. The advance achieved in this paper is
that the surface of the sample need not be prepared prior to measurement. The weaving
structure associated with composite materials does not affect the quality of the results.

The weighted tensor polynomial approximation is consistent with the solutions of the
Navier-Stokes differential equation, i.e. that is the equation describing the flow of viscous
materials. This is a suitable model when measuring composite plastics.
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7 Appendix I: A note on the Gram Polynomials

There is considerable confusion in the literature on the Tchebychev and discrete Tcheby-
chev polynomials. We choose the term Gram [4] since in his original work from 1883 he
also considered the issue of weighted polynomial approximations. The Gram polynomials
are continuous polynomials which are orthonormal on a set of discrete sample points. The
recurrence relationship for the Gram polynomials is,

gn(x) = 2 αn−1 x gn−1(x) − αn−1

αn−2

gn−2(x), (1)

whereby,

αn−1 =
m

n

(
n2 − 1/2

m2 − n2

)1/2

(2)

and
g0(x) = 1, g−1(x) = 0 and α−1 = 1, (3)

for x on equidistant points,

x = −1 +
(2k − 1)

m
, 1 ≤ k ≤ m, (4)

note these points do not span the full range [−1, 1]. The bases functions are scaled by√
m yielding a unitary bases set. It should be noted that the coefficients αn are also a

function of m the number of nodes.
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Figure 2: The universal testing machine
used: UPM Zwick/Roell Z 250.

Figure 3: Specimen held in the jaws ready
for testing, this sample has been coated
with the random dot pattern.

Figure 4: Reference decomposition tree,
with five layers. The reference tree is gen-
erated on the first image of the sample prior
to applying force.

Figure 5: Registered decomposition tree,
with five layers, the modified position of
each patch can be seen. The registration is
performed for each subsequent image as re-
quired.
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a)

b)

c)

Layer = 3, Tensor On

d)

Layer = 4, Tensor On

Figure 6: Specimen being measured: a) prior to extension; b) after extension; c) the dis-
tortion map relating the specimen prior and post extension at level 3 of the hierarchical
decomposition; d) the distortion map as the final result. The colors of the grid are pro-
portional to the entropy in the corresponding image tile. The white rectangle corresponds
to the position of the grid prior to extension.
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Figure 7: Test specimen for compression
testing. This is a porous compressible
medium.

Layer = 4, Tensor On

Figure 8: The sample under compression
and the distortion mat relating it to the
uncompressed state. The colors of the grid
ar proportional to the entropy in the cor-
responding image tile. The white rectangle
corresponds to the position of the grid prior
to compression.

Figure 9: Three test of the elastic registration method: (left); (center); (right).
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Tunnel inspection by non-rigid registration1

Amir Badshah, Paul O’Leary, and Matthew Harker
University of Leoben, Leoben, Austria

Abstract

Machine vision play major rule in the filed of quality control by
inspecting the in line product using image processing tools. These
automatic inspection methods are contactless and more accurate
compared to the other manual procedures inspection methods ei-
ther by sensor or human being. Yearly or quarterly inspection of
tunnels are recommended for safety purposes. Presently the inspec-
tion of tunnels are mostly done by human being physically. Some
long tunnels of length of few kilometers are challenging for such
methods. An automatic method could enhance the quality of in-
spection and less effort is required in short time. Initially series
of images are taken at different position in the tunnel and saved.
When the time of inspection comes again images are taken at the
exact same positions. These old and new images are registered with
each other by non-rigid regularized registration method. Any dis-
placement at any position of the tunnel is pointed out.

1 PROBLEM STATEMENT

The infrastructure manager belong to road safety and tunnel inspection evaluate how to
commit the human and financial resources for the work of tunnel inspection and other
clearances for stringent safety and tunnel accessibility standards. In the most cases, these
measurement and inspection are carried out by manually-operated measuring devices at
very low speed, during this measurement and inspection process time all the line is closed
for traffic which could otherwise be used by revenue-earning. On lines with a high traffic
density, finding the time to carry out such inspections safely and without disruption to
traffic is a perennial challenge. But recent technological advances mean a new genera-
tion of more compact measuring systems is now emerging, offering the opportunity to fit
such equipment to normal service. In the proposed inspection procedures first establish
an initial data images, which will serve as baseline for future inspections. The inspections
cover structural elements i.e. rocks movements, tunnel wall displacement, and other sys-
tems appurtenances. Ideally all data collected during the initial and follow-up inspections
should be gathered in an electronic database. The new data images are registered with
the previous data. Maintenance remains the key in preserving the operational status of
all underground structures.

1This paper is in process and to be submitted in tunnelling conference
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Figure 1: Test tunnel before deformation
.

Layer = 2

Figure 2: Test tunnel after deformation.

2 Introduction

Tunnel inspection by machine vision could be studied in the papers,i.e, [5] [7] [6] [8]. To
find the deformation in the tunnels methods are used differently by different researchers
,i.e, holography, spot center tracking, grid tracking, spectral method and Fourier trans-
formation of the grid pattern. There are many advantages of these methods against the
measurement by some mechanical instruments, of those the most important is the relia-
bility and accuracy of the measurements. Moreover the simplicity of the procedure is also
valuable. In order to find displacement, movement of each grid block is followed on the
test specimen from frame to frame.

Figure 3: Tunnel before distortion.
.

Layer = 4, Tensor On

Figure 4: Tunnel registered after distortion.

All these strain measurement methods are direct observation of the grid patterns or po-
sitions of spots in the data images stored during the test process. These approaches need
more attention and time to process. Also the grid lines may disappear during the test
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process. A low cost machine vision system is required to increase the accuracy and de-
crease processing time. A new method is introduced for the measurement of the strain
of an object, in which no marking of grid lines, grid spots or laser pointer is need as a
pre-process of the test sample.

The main contributions of this paper are:

1. tunnel inspection by non-rigid registration has been presented;

2. on line tunnel inspection could be carried out without stoping the road traffic;

3. a simple method has been proposed for tunnel inspection ;

4. the method is robust to noise and ambient lighting;

5. a significant speed improvement has been achieved.

6. results are presented which demonstrate the functionality of the complete non-rigid
registration method.

3 Experimental Setup

A panoramic vision system is introduced in [3] that improves the geotechnical data
acquisition and analysis at tunnel construction sites. It consists of two rotating colour
CCD line-scan cameras in a stereoscopic arrangement and software components that al-
low different kinds of image analyses. The system can acquire panoramic images up to
360 angular coverage with 27000x6000 pixels. A radiometric calibration procedure ensures
high image quality. The special image formation is described by a mathematical sensor
model leading to a geometrical camera calibration. The cameras are absolutely oriented
in relation to the tunnel, thus enabling three-dimensional (3D) measurements from the
images. The image analyses can be performed directly at the tunnel site and are separated
into: (i) interactive annotations on single images supported by (ii) an interactive binoc-
ular vision system that allows a 3D navigation through a virtual tunnel face model, (iii)
automatic edge extraction from single images, (iv) automatic 3D surface reconstruction;
(v) by overlaying the resulting 2D discontinuity maps from (i) or (iii) onto the recon-
structed surface from (iv) brings the structural data into 3D. Besides, the system delivers
comprehensive documentations of a rock mass.

3.1 Calibration of the setup

An accurate calibration of the external and internal parameters of the system is required, if
the displacement measurement is needed in millimeters. Determination of the projection
matrices is the main idea from calibration of a system. Fauster et al. in [2] described
in detail the evaluation and calibration method for the video-extensometer. In which a
calibration target with a grid of bore is used, where the center positions of all bores are
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known with in a planar real-world coordinate frame. The authors will follow the same
method to calibrate the system.

3.2 Displacement Measurements

This method is based on the quad-tree structure, for which the indices of the grid are
known. By subtracting the old indices position from the new one the distortion map is
obtained. A detail description has been given in [1] for the distortion mapping. The same
method is followed to find the strain distribution in the x and y directions.

sx(u, v) = ∇x(u, v) −∇∗
x(u, v) (1)

sy(u, v) = ∇y(u, v) −∇∗
y(u, v) (2)

After solving the displacement components, the field of the strain is evaluated by numerical
matrix algebra. Harker and O’Leary [4] solved the surface reconstruction by a matrix based
approach; by the derivative matrices of proper size, Dx and Dy, the partial derivatives of
a surface Z are given as

∂Z

∂x
= ZDT

x (3)

∂Z

∂y
= DyZ (4)

The above equations give us the approximate strain distribution(εxx,εyy) at any point in
the deformed surface.

Figure 5: Tunnel before distortion.
.

Layer = 4, Tensor On

Figure 6: Tunnel registered after distortion.
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4 Conclusions

The above proposed method provides a new and efficient method for the tunnel inspection.
Complete shutdown of the tunnel is required for the tunnel observation, used by the
previous methods. The time for the process is saved on one side, the efficiency is also
improved. The exact place of the distortion could be pointed out where the rocks changes
their position.
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Chapter 9

Conclusions and Future Work

9.1 Contributions of the Thesis

This work has presented a novel approach to non-rigid or elastic registration. It has
been shown that consistent decimation during hierarchical subdivision enables non-rigid
registration of two images. In particular the use of Gram polynomial basis is more suitable
than the Fourier basis for this task. This results from the general nature of the image
data. Gradients in images do not result in a Gibbs error when polynomial bases are
used during decimation. Further more a new solution to non-rigid elastic registration of
hyper spectral data has been presented. The method has been applied to hyper spectral
data for which the other methods i.e. Fourier decimation and Gram basis globally has
been failed to register. The use of global versus local polynomial approximation is a
trade off between noise suppression and Gibbs error. Local polynomial approximation
offers a successful method of implementing simultaneous filtering and image decimation
as required for multi-resolution pyramids. It has been demonstrated on real data that
the modified normalized phase correlation procedure performs better than past Fourier
methods. Modified Fourier basis functions implemented by projection onto the orthogonal
complement of a truncated Gram polynomial basis are presented. The modified functions
are used to compute spectra whereby the Gibbs error associated with local gradients in the
image are reduced. This improves the statistical consistency across the subdivision tree.
The improvement associated with this method are demonstrated for a one dimensional
and two dimensional data set.

9.2 Open Problems

There are some practical and theoretical issues that need to be addressed. The concept of
local polynomial approximation for decimation was introduced. The use of Savitzky-Golay
type smoothing for decimation requires further investigation. In particular, there are still
no clear rules for the selection of the support length a tradeoff between local features and
noise suppression — and degree of approximation, i.e., the number of bases functions used.
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The analysis of the registration of the present approach is rather bounded to cartesian
coordinate system. Much remains to be done in this regard, especially when applying in
polar coordinate. Images with different type of distortion i.e. rigid, non-rigid and elastic,
are registered successfully. The method is tested only in cartesian coordinate system.
Additional work will be required to adapt the current procedure to suit for both cartesian
and polar coordinate system both. Which will be a generalized system of registration.
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