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Abstract

Nowadays industrial automation control tasks are increasingly implemented in embedded

real-time computer systems. Modern microprocessors developed for mobile computing and

innovative sensors allow more sophisticated algorithms on a higher level of mathematics. For

this purpose newer software techniques are required, which are not provided by platforms

with traditional automation languages. Furthermore the developers have to speed up the

design process even with increasing complexity of the control tasks. This thesis aims to

explore the capabilities of model-based software design on such systems. After an introduc-

tion to real-time systems and model-based design process, a cross-development platform was

implemented on two popular target hardware systems. For this purpose Matlab/Simulink

was chosen. The experiences made during the development of application examples on both

systems are documented. Finally, a concrete signal processing algorithm for a recently de-

veloped acoustic sensor for injection molding machines was implemented and tested under

real-time conditions.
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Kurzfassung

Steuerungsaufgaben in Maschinen und Anlagen werden heute zunehmend auf eingebetteten

Systemen implementiert. Moderne Mikroprozessoren, die für Mobile Computing entwickelt

wurden, sowie neuentwickelte Sensoren erlauben die Anwendung von komplexeren Algorith-

men auf einem höheren mathematischen Niveau. Zu diesem Zweck sind Software-Techniken

notwendig, die von traditionellen Programmierumgebungen für industrielle Systeme nicht

unterstützt werden. Zusätzlich ist eine Verkürzung des Entwicklungsprozesses trotz steigen-

der Komplexität der Aufgaben gefordert. Diese Arbeit untersucht die Möglichkeiten, die sich

durch Model-Based Design bei der Programmierung von eingebetteten Systemen ergeben.

Nach einer Einführung in Echtzeit-Systeme und Model-Based Design in der Software-Ent-

wicklung wird die Implementation einer Cross-Plattform-Entwicklungsumgebung anhand

von zwei bekannten Zielsystemen gezeigt. Zu diesen Zweck wurde Matlab/Simulink als

Plattform gewählt. Die Erfahrungen bei der Entwicklung von Beispiel-Applikationen wur-

den dokumentiert. Algorithmen zur digitalen Signalverarbeitung für einen neuentwickelten

akustischen Sensor aus der Spritzgusstechnik für Kunststoffe wurden realisiert und unter

Echtzeitbedingungen erfolgreich getestet.
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i

Affidavit

I declare that I, myself, composed this thesis and that the work contained therein is my own,

except where stated.

Leoben, November 28, 2012

ZHUANG YIFAN



ii

Acknowledgements

• First and foremost, I would like to show my deepest gratitude to my co-supervisor, Prof.

Gerhard Rath, a respectable, responsible and resourceful scholar, who has provided

me with precious guidance in every stage of the writing this thesis. Without his

enlightening instruction, impressive kindness and patience, this thesis could not have

reached its present form.

• I appreciate my supervisor, Prof. Paul O‘Leary who gives me the chance complete my

thesis in automation institute, gives me his valuable advice and provides the support

and equipment I have needed .

• I shall extend my thanks to Ms. Doris Widek and Mr. Gerold Probst for all their

kindness and help.

• In my daily work I have been blessed with a friendly and cheerful group of colleagues.

• I thank my family for supporting me throughout all my life with their love.

• Last but not least, I want to thank all my friends in Leoben, especially my best friend

forever Xu Tian for their encouragement and support.



Table of Contents

1 Theoretical Background 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Embedded System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Definition and Characteristics . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Difference between Embedded System and PC . . . . . . . . . . . . . 3

1.2.3 Embedded Operating Systems . . . . . . . . . . . . . . . . . . . . . . 4

1.2.4 Design Tools for Embedded Systems . . . . . . . . . . . . . . . . . . 4

1.3 Real-Time Simulation and Control . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Basic Real-Time Concepts . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Embedded Real-Time Operating System . . . . . . . . . . . . . . . . 7

1.4 Model Based Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Purpose and Advantage of MBD . . . . . . . . . . . . . . . . . . . . 8

1.4.2 Relevance to Automation . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 A New Support for Hardware Platforms 12

2.1 System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Target Hardware Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Arduino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Beagle Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Real-Time Operating System . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Operating Systems on Beagle Board . . . . . . . . . . . . . . . . . . 18

2.4 Host Target Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

iii



TABLE OF CONTENTS iv

2.4.1 Components of Beagle Board . . . . . . . . . . . . . . . . . . . . . . 19

2.4.2 Connecting the Components . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.3 Setting up the console . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Software Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.2 The New Toolbox for Target in Simulink . . . . . . . . . . . . . . . . 26

2.5.3 C-Compiler for Win 7 . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Interaction between Host and Target . . . . . . . . . . . . . . . . . . . . . . 29

2.6.1 The Image Inversion Demo Test with Beagle Board . . . . . . . . . . 29

3 Implementation of Arduino as Platform 32

3.1 Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Servo Control Principle . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.2 Connection of the Peripherals with the Arduino . . . . . . . . . . . . 33

3.2 Model implementation on Arduino . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Implementation Using Simulink in Contrast With Using Arduino 1.0.1 . . . . 35

4 A Machine Condition Monitoring Example on Beagle Board 37

4.1 Wireless Monitoring of Injection Molding . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.2 Principle of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.3 Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Principle of Digital Signal processing . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.2 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.3 FIR Filter Design for a Bandpass Filter . . . . . . . . . . . . . . . . . 45

4.3 Model Construction for Simulation . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.1 Basic concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.2 Design of the Bandpass Filter . . . . . . . . . . . . . . . . . . . . . . 47



TABLE OF CONTENTS v

4.3.3 Peak detector with the MATLAB-Function . . . . . . . . . . . . . . . 51

4.3.4 The Occurrence Time Finder Based on State Machine . . . . . . . . . 55

4.3.5 Result from the Simulation . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Implement the Model on the Target Beagle Board . . . . . . . . . . . . . . . 56

4.4.1 Model for the Target Hardware . . . . . . . . . . . . . . . . . . . . . 56

4.4.2 Run the Model on Beagle Board . . . . . . . . . . . . . . . . . . . . . 57

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Summary and Outlook 64

Reference 66

List of Figures 68

Appendix A Install Support for Arduino Hardware 72

Appendix B Install Support for Beagle Board Hardware 75

B.1 Install the Support Package . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B.2 Replace the Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Appendix C A Servo Control Program Written for Arduino 1.0.1 84

Appendix D A Bandpass Filter Written with MATLAB 86

Appendix E MATLAB Function for Peak Detector 88



Chapter 1

Theoretical Background

1.1 Introduction

Cross development is used to generate executable code on one system (host) for executing on

the other platform (target). It takes less time by cross development to bring a new product

into a functional prototype. This kind development also improves the maintainability of a

product and enables development of complex subsystems, which include sensors, actuators,

communication interfaces and provide significant computation power for control tasks.

A number of developments have been emerged these years, which use stringent languages

to define the system specifications. In this way the code could be generated and a formal

testing of correctness could be performed. But these developments are not yet accepted by

industry, since it doesn’t reduce the difficulties by writing specifications instead of writing

computer code. This approach can be described as ’correct by design’.

The tools such as Matlab R©/Simulink R© or some other suites can be applied for simulation

of large scale systems. In these systems correct function is tested based on interaction of

electromechanical, physical or components of control systems and their communications.

The simulation can be used as specification document, which is better than the classical

paper version or code description, since the simulation tools can abstract the specification in

a higher level than a computing language. From a single model different code is generated

for different platforms, so it is obviously possible to use the model for defining specifications.

From a single model code can be generated for different platforms using the specific cross-

compilers. Consequently, the simulation model represents the system specifications regard-

less of the target hardware. If the simulation behaviour meets the requirements as a specifica-

tion, this is a method for verification or validation. Mistakes are found before the deployment

1
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of the system. We call this procedure ”correct by simulation”.

This change of paradigm in the development process is still not very evident at present. So

the aims of this thesis are:

• To install and commission a complete environment for cross development.

• To investigate the intuitive workflow of a development process.

• To test single simulation model on different hardware targets.

• To use some applications to show the capability of the new development approach and

furthermore with these examples the future investigations should know where they are

going to be focused.

1.2 Embedded System

Sophisticated systems such as rockets or satellites contain many embedded systems (ES).

Many household items such as cell phones, toys or MP3 players have embedded systems.

Even an electric shaver, which has a small micro-controller to provide variable speed. Auto-

mobiles can contain more than fifty embedded micro-controllers. Most of all electronic chips

produced today are for ES, they are all around us. We probably have more than a dozen

in our homes right now. On the other hand, embedded systems are also significant for the

industrial production.

1.2.1 Definition and Characteristics

Definition An embedded system is a computer system designed for specific

control functions within a larger system, often with real-time computing con-

straints [25].

The following characteristics are important for ES:

• Dependability,

Reliability

Maintainability

Availability
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Safety and security

• Must be efficient with respect to,

Energy

Code-size

Run-time

Weight

Cost

• Developed for a dedicated application and

• Many ES must meet real-time constraints (details will be talked later in section 1.2).

1.2.2 Difference between Embedded System and PC

An embedded system is an applied computer system, which is distinguished from other types

of computer systems such as personal computers (PC) or supercomputers from following

points:

1. ES are designed for some specific task rather than a multi-functional PC. Some ES also

have real-time performance constraints that must be met, for reasons such as safety.

Others may have low performance requirements, allowing the system hardware to be

simplified to reduce costs.

2. Many ES are not standalone devices. They consist of small parts within a larger device,

which serves a general purpose. For example an ES in a car provides a specific function

as a subsystem and not a function as a car itself.

3. The program instructions written for ES are stored usually in Flash memory chips. It

may have its own operating system and does not rely on having a hard disk.

4. Typically, the end user does not develop new software for the embedded device.

5. They are usually delivered with a fixed program, which is virtually never changed.

6. The embedded systems have always peripherals for inputs and outputs.
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1.2.3 Embedded Operating Systems

The operating system manages computer hardware resources and provides common services

for computer programs interfaces for the user. It is that piece of software that turns the

collection of hardware blocks into a powerful computing platform [23]. They broadly have

the tasks:

1. Processor and peripherals management

2. Memory and storage management

3. Providing common application interface

4. Providing common user interface

Most modern ES have complex software that needs to provide multitasking, a large amount of

inputs and outputs, memory management, graphics displays, networking, etc. An embedded

OS provides all these features to help support application developers. ES usually uses existing

OS for saving development time and costs.

Embedded OS are often associated to real-time OS, which will be described later in section

1.2.

1.2.4 Design Tools for Embedded Systems

The software design happens in the development phase, which will be described now in

more detail. Since now most ES have OS, the major factors to focus on a new design are

availability of a proper OS, device drivers, applications and software development tools.

Tool Selection

Before developing an ES, the designer must know, which demands must be met, and choose

the optimal tool. The following parameters can be used to judge the quality of a software

for ES:

• Dynamic efficiency, which means in memory management, task switching, pre-fetch

pipelining, etc.

• Static efficiency, which means in consumption of RAM size and ROM size.
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• Power consumption depending on efficient switching and enabling of peripheral hard-

ware. This is important for battery driven devices and sometimes relevant for EMI

properties (electromagnetic interference).

• Easy to understand

• Easy to change

Software for Embedded System

A survey shows that today one third of the designers still use assembly language somewhere

in their design [9]. The reason may probably be, that it is processor specific and efficient.

But since it is hard to write and complex for a large program, the engineer would rather

choose a high level language like C family.

Because the large variety of tasks of embedded systems, a general-purpose language would

not be enough to solve them all. So always more than one languages are involved, each best

suited to a particular problem domain.

In this thesis a model based development tool is presented in details. The advantage of

this design method will be discussed in section 1.3. Such kind of tools lets you create and

simulate graphical data flow and State chart diagrams of components like digital filters,

communication protocol decoders and multi-rate tasks.

1.3 Real-Time Simulation and Control

1.3.1 Basic Real-Time Concepts

The notion of a system is very important to engineering and it can be defined like this: A

system is a mapping of a set of inputs into a set of outputs [15]. Most real-world entities

can be modeled as systems.

A system must respond to external inputs and produce new outputs in a limited amount

of time as seen in Fig. 1.2. This fact can be described as follows: The time between the

presentation of a set of inputs to a system (stimulus) and the realization of the required

behavior (response), including the availability of all associated outputs, is called the response

time of the system [15].
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d

Figure 1.1: A typical real-time control system including inputs from sensors and imaging
devices and producing control signals and display information

Real-Time Definitions

Definition A real-time system is a system that must satisfy explicit (bounded) response-

time constraints or risk severe consequences, including failure, and a failed system means

this system cannot satisfy one or more of the requirements stipulated in the formal system

specification [15].

Classification An illustrative example of a real-time (RT for short) system is an automatic

door. When the door’s motion sensor detects any person standing at a distance in front of

it, the system needs to respond by opening the door within 100 ms or the system fails. If

someone enters the room at high speed, with any delay longer than 100 ms this person will

hit the door.

RT systems are usually classified into [15][19]:

• A soft real-time system is one in which performance is degraded but not destroyed by

failure to meet response-time constraints.

• A hard real-time system is one in which failure to meet a single dead line may lead to

complete and catastrophic system failure.

A typical example for soft RT is an automated teller machine. The machine could oc-

casionally miss the deadline, which does not lead to catastrophic failure, only degraded

performance.
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For a hard RT example, consider a airbag controller in the car. Missing the deadline to

deploy the airbag within a specified time after the sensor detects a collision will lead to

injury of the passengers [13].

Real-Time System Design Issues

Many skills qualify the engineers for the design and analysis of RT systems. The design and

implementation of RT systems require attention to numerous problems. These include [15]:

• The selection of hardware and software, and evaluation of the trade-off needed for a

cost-effective solution, including dealing with distributed computing systems and the

issues of parallelism and synchronisation.

• Specification and design of RT systems and correct representation of temporal behavior.

• Understanding the nuances of the programming language(s) and the RT implications

resulting from their translation into machine code.

• Maximising of system fault tolerance and reliability through careful design.

• The design and administration of tests, and the selection of test and development

equipment.

• Taking advantage of open systems technology and inter-operability. An open system is

an extensible collection of independently written applications that cooperate to func-

tion as an integrated system. For example, a number of versions of the open OS, Linux,

have emerged for use in RT applications. Inter-operability can be measured in terms

of compliance with open system standards, such as the CORBA RT standard.

• Finally, measuring and predicting response time and reducing it. Performing a schedu-

lability analysis, that is, determining and guaranteeing deadline satisfaction, a priori,

is the focus of most of scheduling theory.

1.3.2 Embedded Real-Time Operating System

Real-time Operating System (RTOS) allows RT applications to be designed easily. Functions

can be added without major changes to the software. The use of an RTOS simplifies the

design process by splitting the application code into separate tasks. With a preemptive

RTOS all time critical events are handled as quickly and efficiently as possible. An RTOS
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allows one to make better use of the system resources by providing valuable services such as

semaphores,mailboxes, queues, time delays, time outs, etc.

A recent study [9] concluded that 95% of real-time applications require a bounded response

time in the range of 0.5 ms to 10 ms. Only one tenth variance (50 us to 1 ms jitter) in the

response time can be tolerated. By these measures, most general purpose operating systems

are not real-time [9].

The Kernel code in an RTOS is written so that processor interrupts are only disabled for

very short periods of time. The maximum interrupt response time (latency) is a key factor

in the response time of an RTOS. An interrupt is a hardware mechanism used to inform the

CPU that an asynchronous event has occurred. When CPU recognizes an interrupt, it saves

its context and jumps to a subroutine known as Interrupt Service Routine (ISR). Each OS

needs to disable interrupts from time to time to execute critical code that should not be

interrupted.

1.4 Model Based Design

Model based design (MBD) is a mathematical and visual method of addressing problems

associated with designing complex control [26], signal processing and communication sys-

tems. It is used in many motion control, industrial equipment, aerospace, and automotive

applications. MBD is a methodology applied in designing embedded software. Four steps

are necessary in the process [26]:

1. Build the plant model;

2. Analyze the plant model and synthesize a controller for it;

3. Simulate the plant and controller together and

4. Deploy the controller.

MBD process is based on a work flow known as the ’V’ diagram, which is illustrated in Fig.

1.3.

1.4.1 Purpose and Advantage of MBD

ES engineers are also very familiar with problems such as the following, which may destroy

the results of the project:
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Figure 1.2: A model based design process (http://www.reactive-
systems.com/images/mbdProcess.1.png)

• The software engineers interpret to write code in according to the specifications which

are defined by the system engineers and the system will not correspond to the original

concept.

• The testing cost on expensive hardware should be reduced but the system performance

must be optimized.

• You work with R&D teams, which design efficient algorithms and it’s hard to let the

teams cooperate and share the designs.

MBD handle all the problems, which delay the projects and offer many advantages, such as

[5]:

• This model becomes an executable specification and includes all the information needed

to specify the software or hardware implementation, including fixed-point and timing

behavior.

• Simulation is used to show that the model is complete and works correctly.

• All the code and test benches for final system testing, verification, and deployment can

be automatically generated from the model, saving time and avoiding the introduction

of errors.
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• Model-Based Design reduces the complexity of large-scale system development by let-

ting multiple design teams work in parallel to refine and optimize subsystem designs.

As each subsystem is finalized, it can be incorporated into the overall system model.

Executable Specifications The traditional specifications are written on paper, which

leads to misinterpretation among different teams. Also hand-written code is too large and

leads to errors, that will spread through the process. By sharing the same model as exe-

cutable specification can get rid of all these problems.

Design with Simulation Since developing hardware prototypes is expensive and costs

much time, in addition a multiple prototype is hard to create, the MBD shows the advan-

tage of providing a comprehensive description of design. In this way, they can find and

correct problems much earlier in the process and at the same time update automatically the

executable specification.

The model provides continuity in the design and development process and can be used to

test any optimizations proposed by the implementation team. As a result, the final product

will be much closer to the original design [5].

Implementation with Automatic Code Generation The transferring plans to an

implementation team can invite mistakes. Models in this respect shows the advantage again.

It can be automatically generated into code for RT prototyping and implement in the target

system. So that the hand-code error will be also avoided and save the time on coding.

Continuous Test and Verification If the engineers find out problems in this final step

before production, they will face a bad situation, meanwhile the model provides a better

way. Software models must be tested as often as possible. simulation models allow testing

of control software earlier in the design cycle and more frequently during the development.

1.4.2 Relevance to Automation

In automation technologies modern languages such as C, C++, Python and so on, are not

preferred, since written code is error-prone and hard to understand for people who did not

write it. Special automation languages according to the standard IEC-1131 had no further

development and are not suitable to utilise the computing power of modern processors.
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Engineers of automation are not software experts and prefer a configuration rather than a

programming job. Model based design supports this development approach.



Chapter 2

A New Support for Hardware

Platforms

After introducing to the ES design, we know that it’s highly demanding of engineers: Good

knowledge of hardware and the operating system, and being skilled in at least one computer

programming language. This makes the engineers who doesn’t major in computer science

step back. In the spring of 2012, Matlab announced that Simulink models can run directly

on Arduino, Beagle Board, and LEGO MINDSTORMS NXT platforms [29]. This means,

the engineers can now benefit from creating and running the model to test and tune their

automatic control algorithms much easily without knowing the ES. Specially for students who

learn control theory can have industry best practices for DSP, robotics, and mechatronics

design. From now on, this new built-in support for the hardware platforms will be gone to

particulars.

2.1 System Configuration

Fig. 2.1 shows a host-target cross development platform. In this manner a working environ-

ment for the ES design can be built.

The target hardware is booted from a RT-kernel and works with the model from the Simulink

application of a non RT host PC and a C compiler also from the Simulink to build the RT

target application, which can run on the target hardware once and is downloaded from the

host.

This RT-kernel on the target PC initiates the host-target communication, activates the

application loader, and waits for the target application to be downloaded from the host

12
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Figure 2.1: System Configuration

PC [17]. This communication can through either serial or TCP/IP protocols. Once the

application has been written on the target hardware, it can be controlled and modified from

the host.

2.2 Target Hardware Configuration

First the hardware site will be introduced. The new support provided only for some low-cost

hardware platforms, such as Arduino, Beagle Board, and LEGO MINDSTROMS NXT. This

work refers to two of them, which are Arduino UNO and Beagle Board XM.

2.2.1 Arduino

Arduino is an open source platform, which consists of a wiring I/O board with many con-

nection capabilities and a programming environment similar to C++.

Arduino began as a project in Italy in 2005 and since then it has widely spread. There are

thousands of Arduino projects today such as electric meters, guitar amplifiers and Arduino-

based gadgets that can tell you when your plants need water.

The wiring I/O board can control sensors and actuators. Sensors allow the board to get

information from the surrounding environment (temperature, distance etc). Actuators are

devices that used for changing in the physical world (servos, motors, etc). So it can be

considered for robotics, mechatronics, and hardware-connectivity tasks.

Boards

The major component of Arduino is its Board, which based on micro-controller from Atmel.

In this thesis the latest in a series of USB Arduino boards UNO is used as the target system.
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The picture below (Fig. 2.2) is the UNO board, on which the main components of the board

is labeled.

Figure 2.2: Arduino UNO

UNO connects to the computer with a standard USB cable and contains everything else you

need to program and use the board. It can be extended with a variety of shields: custom

daughter-boards with specific features. It is similar to the Duemilanove board, but has a

different USB-to-serial chip the ATMega8U2, and newly designed labeling to make inputs

and outputs easier to identify [4].

Shields

Shields are boards that can be plugged on top of the Arduino PCB extending its capabilities.

For example [4]: Xbee shield:

The Arduino Xbee shield allows multiple Arduino boards to communicate wirelessly over

distances up to 100 feet (indoors) or 300 feet (outdoors) using the Maxstream Xbee Zigbee

module.

Motor Control v1.1:

The Arduino Motor shield allows you to control DC motors and read encoders.
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Under this website http://shieldlist.org/ more shields can be found.

In this work the TinkerKit sensor shield is added on the Uno board: Fig. 2.3 and Fig 2.4.

Figure 2.3: TinkerKit sensor shield Figure 2.4: This shield fits perfectly upon an
UNO.

The Sensor Shield allows the user to hook up the TinkerKit Sensors and Actuators directly

to the Arduino, without the use of the breadboard.

It has 12 standard TinkeKit 3 pin connectors. The 6 labeled I0 through I5 are Analog Inputs.

The ones labeled O0 through O5(which equal to Pin 11 through Pin 3 on the Arduino) are

Analog Outputs connected to the PWM capable outputs of the Arduino Board.

The peripherals

The peripheral hardware consists of a variety of visual, Audio, mechanical, electrical inputs

and outputs possibility for Arduino. More details can be found under: http://www.arduino.cc/playgroun

2.2.2 Beagle Board

The Beagle board is a low-power, single-board computer with all expandability of today’s

desktop machines, whose latest version is based on the same 1GHz ARM Cortex A8 processor

that drives the most sophisticated smartphones today.This gives it far more processing power

than the Arduino. It applies mainly for audio, video, and digital signal processing, which is

totally different from the Arduino. But also it has application possibilities such as robotics,

home automation, web services, 3D gaming, etc. A modified version of the Beagle Board

called the Beagle Board-XM started shipping in 2010, that will be used in this work. Fig.

2.5 shows this version of Beagle Board.

Specifications [1]:

1. USB OTG Connection, which allows USB devices such as digital audio players or
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Figure 2.5: Beagle Board XM

mobile phones to act as a host allowing a USB flash drive, mouse, or keyboard to be

attached and also connecting USB peripherals directly for communication purposes

among them.

2. USB Host Connection.

3. DC Power Connection.

4. JTAG Connection was initially devised for testing PCB using boundary scan and is

still widely used for this application.

5. Serial Cable Connection is the process of sending data one bit at a time, sequentially

over a communication channel or computer bus.
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6. S-Video Connection: Separate video is an analog video transmission scheme, in which

video information is encoded on 2 channels: intensity and colour. S-video carries

standard definition video, but does not carry audio on the same cable.

7. DVI-D Connection: The digital interface is used to connect a video source to a display

device, such as a computer monitor.

8. Audio out Cable Connection.

9. Audio in Cable Connection.

10. Indicator Locations

5 green and 1 red indicator

POWER: power is applied to the board.

USR 0/1: can be used by the SW as needed.

PMU: controlled from the power management chip and can be connected to a

PWM.

VOLT: will turn on when the DC voltage exceeds specification.

HUB: turns on when power is applied to the UAB HUB.

11. Button:

R: Reset and

U: User can be used by the SW for user interaction.

12. Micro SD: boot source for the board.

13. LCD Connection.

14. Ethernet Connection.

2.3 Real-Time Operating System

As mentioned before, that the OS supports a variety of open standard application program-

ming interfaces. The Arduino actually has no OS, or someone has to write an OS himself.

So in this section only the OS for Beagle Board will be covered in detail.
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2.3.1 Operating Systems on Beagle Board

Beagle Board gives you several choices for Operating System [8]:

1. Angström Distribution (Most widely used and recommended)

2. Android for Beagle Board (Google Mobile System)

3. Ubuntu on the Beagle Board (which used in this thesis)

4. Windows Embedded

5. QNX Neutrino

Ubuntu’s parent company, has dedicated resources to porting Ubuntu to ARM processors

such that used on the Beagle Board. The Linux-realtime package eLinux gives RT capabil-

ities to Ubuntu.

Booting refers to the process by which a newly reset computer prepares itself to load an

operating system. Modern desktop computer usually do this process with the BIOS, which

automatically discovers and initializes the hardware. Beagle Board use a different, multi-step

process because of constrained memory. This process often takes three steps [22].

1. A small boot loader, which fits neatly into the small ROM provided on the system,

locates and loads a larger,

2. Boot loader into RAM,

3. Boot loader initializes the system and boots the operating system.

Booting Ubuntu To boot Ubuntu it is necessary to download the pre-compiled binary

image. Then insert the micro SD card in the USB card reader of the host PC and determine

its device name. Next write the image directly to the card and finally insert this card into

the Beagle Board. All these can step by step tutorial on simple installing a Linux on the

Beagle Board with Matlab 2012a to build the Ubuntu image on the board. This will be

introduced in section 2.5.
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Linux kernel of Ubuntu A kernel is a central component of an operating system. If

some useful applications and utilities are added over the kernel, then the complete package

becomes an OS. Linux is a kernel as it does not include applications like file-system utilities,

windowing systems and graphical desktop, system administrator commands, text editors,

compilers etc. So, various companies add these kind of applications over Linux kernel and

provide their operating system like Ubuntu. Is the Ubuntu Linux kernel running on Beagle

Board, provided by Simulink support for Beagle Board hardware (of section 2.5), a ”real-

time” kernel? The answer is yes but not a hard real-time kernel as defined [13]. The

interrupt response times are not deterministic. Assumed the user needs a system that can

process video at 30 fps or process an audio stream without interruptions. The Beagle Board

can do both. For control applications, the Beagle Board can probably handle a 1KHz loop,

but anything below that is probably not possible [6].

2.4 Host Target Connection

Arduino has no OS and its connection through the USB port is simple, so this is not going

to be described here. It is also possible for Arduino to connect the host through serial port,

which won’t be discussed in this work. This section will only show the connection between

Beagle Board XM and the host PC.

2.4.1 Components of Beagle Board

The Beagle Board XM is packaged with a pre-formatted 4GB micro SD card and a 5V

external power supply but no cables. For connection the components below are needed:

• A desktop or laptop computer with a serial port as host PC.

• A serial cable

The target PC provides a female DB9 port.

If there is no COM port on the host computer, you can use a USB to serial cable.

• An ethernet cable.

• 4GB+ micro SD cards

Use the one, which has been already overwritten with the Ubuntu as OS.
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• Monitor, USB keyboard and mouse

in order to show display and operate the target PC with Ubuntu distribution

2.4.2 Connecting the Components

When all the parts have been collected, it’s time for plugging things in.

1. Connect a serial cable between the board an the host computer.

2. Connect an Ethernet cable to the board, Connect the other end of the Ethernet cable

to a network or directly to the host computer.

3. Plug the DVI-D end into the monitor and the USB keyboard and mouse into the Hub.

4. Connect a 5 Volt power supply.

Figure 2.6 shows the connected components.

2.4.3 Setting up the console

Since in this case 64-bit Windows 7 is host PC for running the programming software Matlab,

so the first step is to set up a Windows-based development environment for Beagle board.

Setting up the console on Windows

Connect host computer to Beagle board via serial terminal A serial console can

use to:

• View the standard output while the board boots.

• Get or set the IP address, as described in Get IP Address of Beagle Board Hardware

topic (which will be used in the next paragraph).

To open a serial connection to your board [28]:

• Identify the COM port for your serial connection. In Windows 7, use the ”search

programs and files” feature in the Start menu to find ”Device Manager”. Open Device

Manager, and expand Ports (COM & LPT) to see the list of serial connections.
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Figure 2.6: The connected Beagle Board

• Start PuTTY by typing ’Putty’ at the ’Search Programmes and files’ box in the Start

menu and click the

• In the PuTTY window, select the Serial Category and configure the selected COM

port to:

Serial line to connect to: COM# (in this case, it is COM6)

Speed (baud) 115200

flow control: None

look at the Fig. 2.7

• In the PuTTY dialog box, select the Session category.

• Set the Connection type parameter to Serial, enter a new name for Saved Sessions,

click Save, and click Open (see Fig. 2.8).
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• When a terminal window opens, press the Enter. Then type in the user name ubuntu

and the password temppwd to login.

Figure 2.7: Configure the COM port in Putty

Figure 2.8: Serial connection to the target with Putty

Configure Network Connection with Beagle Board Hardware To set up a console

under Windows XP, Vista or Win 7 operating system , SSH Secure Shell Client is recom-

mended to download, a free program for windows. Setting up an SSH server on the board

allows to open up a terminal on any Internet connected computer as if it was opened locally

on it and be able to log into the board and copy a file from the network back to the local
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PC. The SSH Secure Shell Client is a client for secure, encrypted communication, including

file transfer, across networks.

Before transfer the file at SSH Secure Shell Client, the IP configuration needs to be set up at

both Beagle Board and the host PC.It is assumed that the board has a static IP. For setting

up static IP, these steps are required under the terminal(which named konsole of the system

tools’ submenu) in the Ubuntu applications [27]:

• Display the contents of the /etc/network/interfaces file. Enter:

cat /etc/network/interfaces

If the board is configured to use DHCP services (the default configuration), dhcp

appears at the end of the following line: iface eth0 inet dhcp

If the board is configured to use static IP settings, static appears at the end of the

following line: iface eth0 inet static

• Create a backup of the /etc/network/interfaces file. Enter:

sudo cp /etc/network/interfaces /etc/network/interfaces.backup

Enter the root password when prompted (default: temppwd).

• Change the permissions of /etc/network/interfaces so you can edit the file. Enter:

sudo chmod 777 /etc/network/interfaces

• Edit interfaces using a simple editor called nano. Enter:

• nano interfaces

• Edit the last word of line that starts with iface eth0 inet.

To use DHCP services, edit the line to say:iface eth0 inet dhcp

To use static IP settings, edit the line to say:iface eth0 inet static

• For static IP settings, add lines for address, netmask, and gateway. In this case:

iface eth0 inet static

address 193.170.30.144

netmask 255.255.255.0

gateway 193.170.30.17
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• Tell nano to exit and save the changes:

Press Ctrl+x.

Enter Y to save the modified buffer.

For ”File Name to Write: ”interfaces”, press Enter.

The nano editor confirms that it ”Wrote # lines” and returns control to the com-

mand line. Restore the original file permissions. Enter:

sudo chmod u=rw,g=r,o=r interfaces

Installing the SSH Server is a matter of installing after having the static IP address: sudo

apt-get install ssh type this command in the terminal window of the Ubuntu desktop.

To connect

• After Installing this secure software click on the Connect computer icon, or go to the

File –> Quick Connect.

• Type in your host name (static IP address)and user name (Ubuntu).

• Make sure the Port Number is 22.

• Click Connect.

• At the prompt, type in your password (temppwd for here)and click OK.

• You will then be at a Unix command line and can work from there. Fig. 2.9.

2.5 Software Configuration

Some softwares suites for ES, specially the MBD software is preferred base on its full advan-

tage. The engineers aim at using the model to do not only simulation but also implemen-

tation. In the past Simulink offers this possibility by embedded code generation, which can

produce the code like C/C++ for the Embedded RT target. But it left still a complicated

work to do. For example, some engineers have limited experience of Linux, since a large

number of ES base on Linux OS. So they need to use cross compiler on the host platform

which use Windows OS for the target Linux OS execution. Some other need a IDE (In-

tegrated Development Environment) such as Eclipse, which is a programming environment
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Figure 2.9: SSH connection with the target.

that has been packaged as an application program, typically consists of a code editor, a

compiler, a debugger, and a graphical user interface (GUI) to import the generated code

into the IDE. Someone else needs at least to write the drive to control the I/O devices on

the target. An example of the Beagle Board with Simulink has been done before [3]. From

this can be found out that this work before is not as simple as it looks. It based on much

knowledge about hardware and software. So the MATLAB new support provides a way to

develop the ES for simulation, control and implementation. In this manner Simulink models

can run directly on some hardware platforms with one click of a mouse. In other hand, it

offers also automatic booting stage, which saves both time and energy to learn the hardware

and OS.

2.5.1 Installation

The Target Installation

The new support for the target can only installed in MATLAB 2012a and 2012b. 3 ways

can be used to get this support package:

1. In a MATLAB Command Window, enter targetinstaller and the package will be auto-

matically downloaded.

2. In a model, select Tools > Run on Target Hardware > Install/Update Support Package.
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3. Download the support package under

http://www.mathworks.cn/matlabcentral/fileexchange/37897

With the Targetinstaller or Install/Update Support Package the friendly installation pro-

ceeds step by step both for Arduino and Beagle Board. It’s very user-friend installation, so

will not be discussed in details here and can be seen in the appendix. For Arduino that’s all

before running Simunlink, but for Beagle the factory-installed firmware must be replaced on

the Beagle Board hardware with Ubuntu Linux.

Replacing Firmware

The following steps provide an overview of the firmware replacement process [30]:

1. The Target Installer locates a firmware image on your host computer or downloads

new one.

2. The Target Installer uses the host computer to write the firmware image to a micro

SD or SD memory card.

3. You transfer the micro SD or SD memory card to the Beagle Board hardware.

4. The Target Installer applies the IP settings you choose to the firmware on the Beagle

Board hardware.

Details can also be found in appendix.

2.5.2 The New Toolbox for Target in Simulink

After installing support for your Arduino hardware, its block library can be opened from the

command window or from the Simulink Library Browser.

Arduino

The new Simulink Blocks of Arduino target included blocks listing below:

• Arduino Analog Input: Measure voltage of analog input pin,

• Arduino PWM: Generate PWM waveform on analog output pin,
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• Arduino Digital Input: Get logical value of digital input pin,

• Arduino Digital Output: Set logical value of digital output pin,

• Arduino Serial Receive: Get one byte of data from serial port,

• Arduino Serial Transmit: Send buffered data to serial port,

• Arduino Standard Servo Read: Get position of standard servo motor shaft in degrees,

• Arduino Continuous Servo Write: Set shaft speed of continuous rotation servo motor

and

• Arduino Standard Servo Write: Set shaft position of standard servo motor.

Figure 2.10: Simulink blocks of Arduino taget hardware

Beagle Board

The new Beagle Board support blocks provides the capability of:

• Beagle Board ALSA Audio Capture: Capture audio from sound card using ALSA,

• Beagle Board ALSA Audio Playback: Send audio to sound card for playback using

ALSA,
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• Beagle Board SDL Video Display: Display video using SDL,

• Beagle Board UDP Receive: Receive UDP packets over IP network,

• Beagle Board UDP Send: Send UDP packets over IP network,

• Beagle Board V4L2 Video Capture: Capture video from USB camera using V4L2.

Figure 2.11: Simulink blocks of Beagle Board taget hardware

2.5.3 C-Compiler for Win 7

The C-compiler is required by stateflow and MATLAB-function blocks, if the Host PC has in-

stalled with 64 bits Win 7 OS, the error massage will be appeared by running the models with

stateflow and M-func. This website: http://www.mathworks.cn/support/compilers/R2012a/win64.htm

describe the complete set of supported compilers, among which the SDK is most recom-

mended. Before install this C-compiler the Visual C++ 2010 must be uninstalled, otherwise

will cause problem. After the installation the command ’Mex-setup’ should be typed in

MATLAB window to select this supported C-compiler.



CHAPTER 2. A NEW SUPPORT FOR HARDWARE PLATFORMS 29

2.6 Interaction between Host and Target

In this section 2 demos will run to test the installation and the interaction between the host

and target PC. The demos are under Simulink Help in the Library Browser Help menu.

Then look for the ”Other Demos”, which contains two submenu about the help ,with that

the user can get stated with the target hardware. Since in chapter 3 an Arduino simple

example model will be written and executed, it’s not necessary to test the demo in this case.

Later the Beagle Board will be taken to do a real example for the industrial purpose, which

will be reported in chapter 4, so first a simple demo model will be introduced for getting

use to its development environment and making sure the interaction between the two PC

working in a proper way.

2.6.1 The Image Inversion Demo Test with Beagle Board

Before running the Simulink the camera must be connected to the USB port of the Beagle

Board. The Logitech Webcam Pro 9000 is confirmed to be supported by the target package.

The other connections are the same as written before in section 2.4. Paying particular

attention that the SSH connection must done before running the model. The whole system

looks the same as in the Fig. 2.12.

Then open the Image Inversion model as the Fig. 2.13 :

the next thing is to run on the hardware configuration, which can be selected under Tools >

Run on Target Hardware > Options... The parameters on this page should be reviewed and

set up. If the step ’Replace Firmware’ of installation has been performed, the information

of the Board will be automatically showed like the pictures (Fig. 2.14) below.

Finally select Tools > Run on Target Hardware > Run to run the model on the target

hardware. It takes about one minute until the compiler, download etc. finish. After that

a terminal window appears. The whole precess can be watched in SSH Secure Shell or the

terminal of Ubuntu by typing the command ’ps -A’.
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Figure 2.12: The target host connection for the demo

Figure 2.13: Image Inversion model which will run on Beagle Board
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Figure 2.14: The configuration before running the model



Chapter 3

Implementation of Arduino as

Platform

Arduino is a hardware platform, which has many inputs and outputs pocities as mentioned

before. In this chapter an example is presented from connection of the sensor and actuator

with the board to control the RT system.

3.1 Peripherals

In this example a servo motor is going to attend. Servo is defined as an electrical device in

which an electrical input determines the angular position of the shaft as an output.

Standard servos allow the shaft to be positioned at various angles, usually between 0◦and

180◦. Continuous rotation servos allow the rotation of the shaft to be set to various speeds.

3.1.1 Servo Control Principle

Servos are comprised of an electric motor mechanically linked to a potentiometer. Arduino

controls the servo using the Servo Library. Pulse-width modulation (PWM) signals sent to

the servo are translated into position commands by electronics inside the servo. When the

servo is commanded to rotate, the motor is powered until the potentiometer reaches the

value corresponding to the commanded position.

A standard servo will move based on pulses sent over the control wire. The control pulses

set the angle of the servo axis. The servo expects a pulse every 20 ms in order to gain correct

information about the angle. The pulse width maps directly to the servo angle. The servo

32
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will rotate 180◦and expect pulse widths between 1-2 ms or so [14].

Figure 3.1: Control Principle of a servo motor

3.1.2 Connection of the Peripherals with the Arduino

The other peripheral is the joystick, whose funciton here is as a sensor to provide some analog

input signals. Both the peripherals are sold as modules and can easily be mounted on the

TinkerKit shield. All the wire connection work can be saved, the only thing to do is plugging

the 3pin connector to the sensor shield. The joystick’s connectors are outputs which must be

connected to the input connectors on the Thinkerkit shield. It has 12 standard TinkeKit 3

pin connectors. The 6 labeled I0 through I5 are Analog Inputs. The ones labeled O0 through

05 are Analog Outputs connected to the PWM capable outputs of the Arduino Board [24].

Fig. 3.2 shows the completely system connected system.

3.2 Model implementation on Arduino

The idea in this example is that the servo will read the analog values from the joystick. The

block ’Analog Input’ should be connected to the ’Servo Write’. One thing to notice is setting
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Figure 3.2: Servo motor (1) and joystick (2) with Arduino

pins on Arduino board pins on the shield
Pin 11 O0
Pin 10 O1
Pin 9 O2
Pin 6 O3
Pin 5 O4
Pin 3 O5

Table 3.1: Relationship between pins on the Arduino and pins on the shield

put the pin number of both servo and joystick. The pins have a relation with the pins on

the shield:

So the simple model looks like the one showed in Fig. 3.3.

Figure 3.3: The program for joystick controlling the servo

The other option set-up is same as what has been done in the Beagle Board image test before.

Then Run on the Target Hardware > Run. After it finished, the servo may be controlled
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with the joystick.

3.3 Implementation Using Simulink in Contrast With

Using Arduino 1.0.1

Instead of analog signals the servo can also accept the digital ones, which can be configured

on the PC.

The Arduino 1.0.1 is the actual software version, which is provided by Arduino itself and can

be downloaded from its website. There is a program module in this software for the digital

signals to make the shaft angle of the servo motor vary between 0 and 180 degrees. The

programm will be found in the appendix. Now the same result will be obtained by creating

a Simulink model.

Figure 3.4: Program for controlling the servo with signal sources

When the model starts running on the Arduino Uno, the motor shaft position sweeping

0-180 degrees can be observed.

If someone want to stop the servo, he only need to drag the manual switch block between

the signal and servo blocks.

With the external mode it can be halted by double clicking the switch.

conclusion In this example it is obviously to know the advantage of the model based

design for Arduino:

• Design directly points at the requirements.
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Figure 3.5: Model built to stop the servo

• The workflow is obvious at a glance.

• It takes little time to modify the model and to test continuously identify and correct

errors. Even with this simple example, it can be imagined that we benefit from the

MBD without manually coded errors.

• This kind of development can save the time to learn the programming language.



Chapter 4

A Machine Condition Monitoring

Example on Beagle Board

4.1 Wireless Monitoring of Injection Molding

4.1.1 Introduction

Injection molding is an important manufacturing process for producing parts from plastics.

In-mold sensors are usually used to monitor injection molding process, so that high quality

parts could be produced. Wired sensors predominate at present. Since wires make the

design and maintenance of the mold more difficult, a new sensor concept is presented for

wireless monitoring filling of molds [7]. A mechanical resonator is excited and generate

a characteristic structure borne sound, when the melt front is passing by. This temporal

resolution of the passing melt front is of special interest for detecting the switch over point

or for hot runner balancing [12].

4.1.2 Principle of Operation

Fig. 4.1 shows the principle of the operation: The dark area represents the melt filling the

cavity (C). When the melt reaches the pin (B), it will be depressed and excites the resonator

(A), which injects a characteristic sound into the metal mass of the mold [18].

Mechanical Resonator

For the experimental purposes two different resonators were designed [18]:
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Figure 4.1: The principle of operation

• A plate resonator with a primary resonant mode at 12 kHz and

• a tongue resonator with a primary resonant mode at 3.8 kHz.

Both designs are only differentiated by the resonant body. The two different oscillation

characteristics can be separated with those two resonators. Both two resonators generate

sounds, which will be acquired by using a single accelerometer.

Acoustic Detection

The accelerometer is mounted on the outside of the mold and detects the structure borne

sounds from both of the resonators. The accelerometer has a wide frequency range in order

to improve performance of the system with the presence of acoustic disturbances and a

high sampling frequency which can be used in the pattern recognition to detect the desired

oscillations and the wider range of noise is uncorrelated.

4.1.3 Signal Processing

The purpose is to find out an optimal detector for the resonators. A new algebraic approach

[18] has been explored to implement the frequency domain pattern matching. In this work

the classical digital signal processing method will be used. A bandpass filter is going to be

designed to identify one of the signature sound, meanwhile the exactly occurrence time of

it can also be found out. In this manner the two characteristic damped oscillatory behavior

could be separated.
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4.2 Principle of Digital Signal processing

4.2.1 Introduction

The signals in the real world, such as voice, audio, video, temperature, pressure or posi-

tion are called analog signals. These signals should be digitized, so that the computer can

mathematically manipulate them. While an analog signal is continuous in both time and

amplitude, a digital signal is discrete in both time and amplitude. To convert a signal from

continuous time to discrete time, a process called sampling is used. The value of the signal

is measured at certain intervals in time. Each measurement is referred to as a sample.

Digital processing of analog signals proceeds in three stages [21]:

1. The analog signal is digitized, that is, it is sampled and each sample quantized to a

finite number of bits. This process called A/D conversion.

2. The digitized samples are processed by a digital signal processor.

3. The resulting output samples may be converted back into analog from by an analog

reconstructor (D/A conversion).

q

Figure 4.2: A typical digital signal processing system

The digital signal processor can be programmed to perform a variety of operations, such as

filtering, spectrum estimation, and other DSP algorithm.

4.2.2 Sampling

The continuous signal varies over time and the sampling process is performed by measuring

the continuous signal’s value every T units of time, which is called the sampling interval.

Sampling results in a sequence of numbers, called samples, to represent the original signal.

The reciprocal of the sampling interval (1/T ) is the sampling frequency fs.

For system design purposes, two questions must be answered [21]:

1. What is the effect of sampling on the original frequency spectrum?
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2. How should one choose the sampling interval T?

Aliasing

Sinusoids are an important periodic function, because realistic signals are often modeled as

the summation of many sinusoids with different frequencies and different amplitudes. In

fig. 4.3 a set of samples were plotted with a sample-interval 1, as you can see, two different

sinusoids can reproduce the sample, whose sample rate fs = 1. Suppose the interval is 1

second, it means the rate is 1 sample per second. Nine period of the red sinusoid span an

interval of 10, that is to say, its frequency is 0.9. In this way the frequency of the blue

sinusoid can also be obtained as 0.1.

� � � � � � � � 	 
 ��

�

Figure 4.3: Two different sinusoids that fit the same set of samples

When a sinusoid of frequency f is sampled with frequency fs, the resulting samples are

indistinguishable from those of another sinusoid of frequency (f − N × fs ) for any integer

N . The values corresponding to N¬0 [20]. When N = 1 for the red sinusoid, the aliased

frequency is 0.9 − 1 × 1 = −0.1. A negative frequency is equivalent to its positive value,

because

sin (−ωt+ θ) = sin (ωt− θ + π) (4.1)

cos (−ωt+ θ) = cos (ωt− θ) (4.2)

Then the N = 1 alias of fred is fblue. This aliasing will result in the reconstructed signal not

matching the original signal.
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Nyquist sampling theorem

The Nyquist sampling theorem provides a prescription for the nominal sampling interval

required to avoid aliasing. It may be stated simply as follows: The sampling frequency

should be at least twice the highest frequency contained in the signal [20].

Or in mathematical terms:

fs ≥ 2fmax (4.3)

where fs is the sampling frequency, and fmax is the highest frequency contained in the signal.

Hardware Limits

In RT applications, each input must be sampled, quantized and processed by the digital

signal processor, and the output will be converted back into analog format. This operation

is continuous in order to reduce the time. Anyhow there is a total processing time Tproc

required for each sample. The time interval T between input samples must b e greater than

Tproc; otherwise, the processor would not be able to keep up with the incoming samples [21].

Thus,

T ≥ Tproc (4.4)

In other words, processing rate fproc=1/Tproc. We have already known by Nyquist theorem

the lower bound of fs and now we obtain the upper limit for, so the range of fs, which can

be chosen is:

2fmax ≤ fs ≤ fproc (4.5)

Filtering

In Fig. 4.1 the filtering has been mentioned as a device or process, which actually removes

from a signal some unwanted component or feature.

The frequency response can be classified into a number of different forms, for example:

• Low pass filter low frequencies are passed, high frequencies are attenuated.

• High pass filter high frequencies are passed, low frequencies are attenuated.

• Band pass filter only frequencies in a frequency band are passed.
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• Band stop filter only frequencies in a frequency band are attenuated.

Linear Time Invariant System

Before starting to look at the filter, some concepts must be introduced first.

Linear vs. Nonlinear A linear system is any system that obeys the properties of scaling

(homogeneity) and superposition (additivity), while a nonlinear system is any system that

does not obey at least one of these. and can be described so in mathematics:

H (k1f1 (t) + k1f1 (t)) = k1H (f1 (t)) + k2H (f2 (t)) . (4.6)

Time Invariant Time invariant system is one that does not depend on when it occurs:

the shape of the output does not change with a delay of the input. That is to say that for a

system H where H(f(t)) = y(t), H is time invariant if for all T

H (f (t− T )) = y (t− T ) . (4.7)

When a system has both linear and time invariant characteristics, we call it a

linear time invariant (LTI) system. and the Fig. 4.4 illustrates the superposition in

Linear Time-Invariant Systems.

Figure 4.4: The principle of superposition applied to LTI systems

Impulse Response and Convolution

LTI systems are characterized uniquely by their impulse response sequence h(n), which is

defined as the response of the system to a unit impulse δ(n),as shown in Fig. 4.5 [21]. The
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unit impulse is the discrete-time analog of the Dirac delta-function δ(t) and is defined as

δ (n) =

{
1 n = 0

0 n �= 0
(4.8)

Figure 4.5: Response to linear combination of inputs

Time invariance implies that

δ (n−D)
H−→ h (n−D) (4.9)

and linearity can prove that

δ (n) + δ (n− 1) + δ (n− 2)
H−→ h (n) + h (n− 1) + h (n− 2) . (4.10)

The weighted linear combination of three inputs will cause the same weighted combination

of three outputs:

x (0) δ (n) + x (1) δ (n− 1) + x (2) δ (n− 2))
H−→ h (0) δ (n) + h (1) δ (n− 1) + h (2) δ (n− 2) .

(4.11)

An arbitrary input sequence x(0), x(1), x(2), ... can be usually described as the linear

combination of shifted and weighted unit impulses:

x (n) = x (0) δ (n) + x (1) δ (n− 1) + x (2) δ (n− 2) ... (4.12)

and the output sequence will be obtained by replacing each delayed unit impulse by the

corresponding delayed impulse response, that is:

y (n) = x (0)h (n) + x (1)h (n− 1) + x (2)h (n− 2) ... (4.13)

or written in this form:

y (n) =
∑
m

x (n)h (n− k) (4.14)

or
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y (n) =
∑
m

h (n) x (n− k). (4.15)

This is the discrete-time convolution of the input sequence x(n) with the filter sequence

h(n). Hence, LTI systems are convolves.

FIR and IIR Systems

Both FIR and IIR filters are LTI systems and are defined as:

Finite Impulse Response (FIR) have an impulse response that is zero outside some

finite time interval or

h (n) = 0 for n < 0 and n ≥ M (4.16)

M is referred to as the filter order. The output at any time n is simply a weighted linear

combination of the input signal samples x[n] to x[n − M + 1], where the weights are the

values of the impulse response h[k] for k = 0 to M − 1.

The system acts as a window that views only the most recent M input signal samples in

forming the output [16]. The Fig. 4.6 explains an FIR, which has a finite memory of length

4 samples. z−1 represents the digital memory elements. So it’s not difficult to find out, that

in this FIR example,

y (n) =
4∑

k=0

hkx (n− k). (4.17)

Consider that we change the numb er 4 to ∞ . It means this system has infinite memory,

which doesn’t exist in the real world, how could an infinite impulse response (IIR) system

implement? In some cases it is better to define the output of a system in terms of its current

input value and past output values instead of just the resent and past values of its inputs[16].

A general form of the IIR system is defined by,

y (n) = −
N∑
k=1

aky (n− k) +
M∑
k=0

bky (n− k). (4.18)

ak and bk represent a time-invariant constant.
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Figure 4.6: example of FIR

4.2.3 FIR Filter Design for a Bandpass Filter

We discuss the basic principles of FIR filter design and concentrate mostly on bandpass

filters, which is the core of the algorithms for the experiment later. There are two main

reasons why FIR filters are very attractive for design:

• Stable

• Easy to attain linear phase

Window Method

Ideal Filter The window method is one of the simplest methods of designing FIR digital

filters. An ideal bandpass filter shapes can be designed is shown in Fig. 4.7. It blocks signals

with a frequency range of −π to −ωb, between −ωa and ωa and from above −ωb. The signals

operating at frequencies between −ωb and −ωa, also ωa and ωb.

A given desired ideal frequency response, say D(ω), being periodic in (ω) with period 2(π),

need only be specified over one complete Nyquist interval −π ≤ ω ≤ π. The corresponding

impulse response, say d(k), is related to D(ω) by the Discrete-Time Fourier Trans-form

(DTFT) and inverse DTFT relationships, which will not be told into details and just taken

this formula:

D (ω) =
∞∑

k=−∞
d (k) e−jωk ⇔ d (k) =

π∫
−π

D (ω) ejωk
dω

2π
(4.19)
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Figure 4.7: Ideal bandpass filter

and frequency response D(ω) in this example satisfies

D (ω) =

{
1, if − ωb < ω < −ωa, or ωa < ω < ωb;

0, if − π < ω < −ωb, or − ωa < ω < ωa, or ωb < ω < π.
(4.20)

Hence, equation 4.18 can be written as the impulse response of the ideal band pass filter:

d (k) = sin(kωb)−sin(kωa)
kπ

−∞ < k < ∞ (4.21)

Window Functions Because the impulse response required to implement the ideal band-

pass filter is infinitely long, it is impossible to design an ideal FIR bandpass filter. Although

d(k) decreases with large k it is in theory infinite. Therefore this is not a FIR. One Solution

to this problem is to truncate the impulse response for n > M . However finite length ap-

proximations to the ideal impulse response introduce undesirable ripples and overshoots(the

Gibbs phenomenon) in the frequency response of the filter - The Windowing Method .

A practical approach is to multiply the ideal impulse response by a suitable window function

ω[n] whose duration is finite. This will ensure that the resulting impulse response decays

smoothly to zero.

FIR Filter Design Specifications Both the passband/stopband ripples and the transi-

tion width are undesirable but unavoidable, which disobey the response of an ideal bandpass

filter. Practical FIR designs typically consist of filters that meet certain design specifica-

tions,which describes a transition width and maximum passband/stopband ripples that do

not exceed allowable values or a filter order M. Fig. 4.8 illustrates a typical deviations from

the ideal bandpass filter when approximating with an FIR filter.
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Figure 4.8: The typical deviations from the ideal bandpass filter

4.3 Model Construction for Simulation

4.3.1 Basic concept

As what mentioned in section 4.1 the purpose of this incidence is seeking for each signature

sound of the two resonators and the exact occurrence time of them. Since the resonators

have totally different frequencies, the first thing supposed to do is using a bandpass filter,

which can pass only one of the both resonators’ frequencies. Two optimal frequency range

can be observed, in which only one of the structure borne sound exists. So it is necessary to

design a bandpass filter at first.

The system’s resonant frequencies are known as the frequencies at which the response am-

plitude is a relative maximum. so the next thing is going to find out the maximum value of

the signals’ amplitude.

Finally on the basis of the two maximum values the occurrence time of the signature sound

should figure out.

4.3.2 Design of the Bandpass Filter

The first step begins with the bandpass filter design.
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Preprocess the Audio Data

The format of the sampled audio data from the injection molding machine is .mat file, which

can be loaded by MATLAB into workspace and its value is read as 1200000×4 double. Only

the first channel of the data is needed, so the command :

plot(data(:,1))

helps to express graphicly like Fig.4.9.

0 2 4 6 8 10 12

x 105

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 4.9: The original audio data channel 1

The signature sound happens in the data range from 2×105 to 3×105. So the command

data new = data(200000:300000,1);

is used to cut out the required data. After that the data looks like the figure below:

The standard audio sampling rate used by professional digital video equipment is 48kHz,

which was chosen because the human ear can respond to minute pressure variations in the air

if they are in the audible frequency range, roughly 20-22kHz and according to the Nyquist

sampling theorem the sample frequency of the audio device must be more than twice. The

audio sampling rate of Beagle Board is from 4000 to 48000Hz, which means the 120kHz is

not acceptable. This problem can be solved with the MATLAB function Resample, which

resamples object data at P/Q times original sample rate. A new .m file is generated for that

aim, which include only two command:
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Figure 4.10: The required audio data which contains the structure borne sound

load data new;

data new resample=resample(data new,2,5);

Assumed that the data new has been saved under the current folder of MATLAB. In this way

the audio data with sample rate 48kHz is produced. In the workspace the data new resample

can be seen as 40001×1 double. For simulation purpose this data must be written into sound

file with the MATLAB command wavwrite :

wavwrite(data new resample,48000,’Schuss14 resample’);

Now a .wav file with sampling rate of 48kHz is generated, which can be taken to do the

audio signal process.

Parameters Tuning

The bandpass filter is planed to be the kernel algorithms for distinguishing those two sig-

nature elements. In the previous section the mathematically design of the filter design is

described. It’s not easy work to program or write this into MATLAB language, still there is

one in the appendix. Simulink provides a fairly simple approach to design one’s own filter:

The DSP System Toolbox in the Library Browser. In the submenu exist the Filtering,

in that a Bandpass Filter block can be found out. With this block the identification of one
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sound is able to be done. In the DSP Toolbox there is a ’From Multimedia File’ block, which

allowed wav file to be loaded as signal inputs. In order to observe the outputs which comes

after the signals processed by the bandpass filter, a time scope is connected to the filter.

Time

Time

Scope

Schuss14 resample.wav

A: 48000 Hz, 16 bit, mono
Audio

From Multimedia File

Bandpass

Bandpass Filter

Figure 4.11: The bandpass filter model, which is designed to identify the signature sound

After structuring the model various kinds of frequencies should be tested to obtained the

optimal two, under each of that 2 frequency ranges exists only one structure borne sound or

at least one sound is obviously more characteristic than the other one. For purpose of get

such frequency range the parameters of the bandpass filter blocks must be set up like Fig.

4.12 and one clicks ’View Filter Response’ the graphical details of the filter can be displayed.

Figure 4.12: The parameter set-up of the bandpassfilter

Different frequency ranges of the pass band have been tested. One can see that in the range

about 22kHz just exists the second signature element, the first one disappears (Fig. 4.13).
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Figure 4.13: The signals after processing by the bandpass filter of pass band about 22kHz

The other result is not just as desired, in the test frequency range from 5000Hz to 25kHz

the other optimal pass band for the first signature element can’t be found, which means the

second exists in the entire range. So the other way to identify the first one must be tried,

that in some range the first is clearly different from the second sound. In the zone of 11kHz

this idea works. The first one has a much larger magnitude as the second one(Fig. 4.14).

Thus far,the design for the filter part is finished.

4.3.3 Peak detector with the MATLAB-Function

For the sake of finding the maximal value of the filtered signal inputs, peak detectors are in

need. Simulink provides some blocks of that functions such as peak finder, which displays

all the local maximum of the inputs signals or MinMax block with the same purpose. But

they both are not what is searched for. The idea is to obtain not only the maximum but

also the response to the change of the local maximum values. So a new block in Simulink

should be written for that task. Here we use the MATLAB function under user-Defined

Functions submenu, so that the capability of using the blocks on the target hardware can
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Figure 4.14: The signals after processing by the bandpass filter of pass band about 11kHz

also be tested.

Time

Time

Scope3

Time

Time

Scope1

u y

fcn2

MATLAB Function

Schuss14 resample.wav

A: 48000 Hz, 16 bit, mono
Audio

From Multimedia File

Bandpass

Bandpass Filter

Figure 4.15: Part of the model with peak detector using MATLAB-function.
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Time constant τ

The detector time constant (τ) represents the time it takes for the detector output to reach a

level τ of an instantaneous change in the incoming signal, which usually is (1-1/e) = 63.2%.

In order to get the optimal behavior of the local maximal values, various values for τ were

tried. For 128 samples per audio channel the range of τ is acceptable from 0.0001 to 0.01.

In the block the peak detector is programmed, whose details can be found in appendix. By

using this block a satisfactory result is worked out.
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Figure 4.16: The filtered signals which con-
tains the maximal amplitude of the signature
sound

Figure 4.17: The maximal amplitude of the
signature sound has been represented with the
Time Scope3

Absolute Maximum

The complete result coming from the peak detector is shown in Fig. 4.18, where some local

maxima can still be seen. So the next step is to achieve the absolute one and detect its

position.

The solution is comparing with a threshold, so that only the values above it will be held.

In Fig 4.18 it is obvious that all the other peaks are much smaller than 0.01 except the

absolute one. To be sure about this observed result, a MaxMin block is used with the mode

parameter set to ’running’, which means the absolute maximal value holds. It has also an

advantage by executing the model on the target PC, which will be discussed in next section.

In this way, the threshold can be found out. Then the ’Relational Operator’ will be connect

to the peaks detector and the threshold. Finally the absolute maximum with its position

shows in Fig. 4.19. In the same manner, the signals from the bandpass filter with pass band
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Figure 4.18: The complete result coming from the peaks detector.

of 11 kHz are processed (the result is displayed in Fig. 4.20) and the model of stage 2 is

accomplished (Fig. 4.21).
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Figure 4.19: The absolute maximum with its
position of the second signature element

Figure 4.20: The absolute maximum with
their positions of the both signature element
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4.3.4 The Occurrence Time Finder Based on State Machine

The last step of the model design look for the occurrence time of the two structured borne

sound. In stage 2 the positions of them have already appeared. The idea is take advantage

of the positions to confirm their unique corresponding time. In this case the Stateflow block

set of Simulink is going to be applied.

Stateflow

The Stateflow is a powerful graphical design and development tool based on state machines

and flow for complex control and logic problems charts [31].

A finite state machine is a model, which describes the behavior of a finite number of states,

the transitions between those states, and actions. A state represents an operating mode of a

machine [11]. The activity or inactivity of the states dynamically changes based on on events

and conditions. An action describes the activity that is to be performed. Like Simulink,

objects can be dragged and dropped to create state transition charts in which a series of

transitions directs a flow of logic from one state to another [10].

In this case there are two basic states labeled ’executing the time detector’ and ’time counter’.

During the activity of the first state the detector implements to find the appearance of the

two signature elements. By the transition the second state will be activated to record the

time of the result of the searching. The condition on the transition is showing up the

position of the held maximum which explained in last subsection. One more point is the

Default transitions, which specify the exclusive state is to be active when there is ambiguity

between two or more exclusive states at the same level in the hierarchy [11]. so the chart of

the Stateflow is obtained in Fig. 4.22.

In the chart the whole process can be understood as a visual logical work flow. The first

action in ’detecting’ state is a during action, that is executed while this state is active and

no transition to another state occurs. The variable eltime, which represents the time of the

first signature element, is updated with the actual time tim, as long as the state is active.

When the state is left, el1time holds the time of the event. In the same manner the event

time for the second acoustic element el2time is obtained (Fig. 4.22).

Next the input and output events should be added in Simulink and the data type must be

setup under Tools Explores, like illustrated in Fig. 4.23.

The events sig11 and sig22 come from the ’Relational Operators’ in Fig 4.22 and a clock

must be put into the model for calculating the time. The blocks ’Clock’ and ’Digital Clock’
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have been tested and both didn’t work. So a ’Discrete-Time Integrator’ is used to take place

of the clock. The output is the time for the appearance of both the signature signals and

the time difference is also needed, which will be discussed in next section. After connection

of the inputs and ’Display’ blocks as outputs to the Stateflow chart the entire model for the

project’s simulation is finished (Fig. 4.24).

4.3.5 Result from the Simulation

As what displayed after running the model, the first structure borne sound occurs at 392ms

and the second appears at 418.7ms.

4.4 Implement the Model on the Target Beagle Board

The results from simulation is as the wishes, so its algorithms can be accepted and inherited

by the Beagle Board.

4.4.1 Model for the Target Hardware

For the Beagle Board the input audio signals is no longer the wave file but the audio from

the sound card using its ALSA driver framework. By using the ’ALSA Audio Capture’

block the signal source can be accessed. This kind of source is stereo, which means the

output’s dimensions are [N×2]. The audio sampling frequency is also set to 48kHz as in the

simulation. The wave file signals are mono, so one block must be added extra to select only

one of the columns of the outputs for processing by using the ’Multiport Selector’ block.

First the model should be built almost like in the Simulation except the input signal part,

the selector block and the ’ALSA Audio Playback’ instead of ’To Audio Device’ block. Since

the scale is different from the simulation running on the host PC, the threshold value can

not be set to the same value. On the other hand time Scopes cause the running error, the

MaxiMin block is used to estimate the threshold as mentioned before. After running the

model once, the threshold value will be obtained. Then the comparator level for getting the

time incident is modified and the model started again. The program (Fig. 4.25) for the

board looks similar to the model for simulation.
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4.4.2 Run the Model on Beagle Board

To run this acoustic machine condition monitoring program the following hardware is re-

quired:

• Headphones or speakers,

• audio input source and

• audio cable.

The connection is the same as what described in section 2.4. Additionally the speaker must

be plugged into the audio in of the board and one side of the audio cable to the audio out of

the target and the other side to the audio out of the host PC. Run the model under external

mode and play the wave file on the host with the software like media player. Due to the

time running at the very beginning before playing the wave file, the time for detecting the

position of the signature elements can not be told, but the difference between then is showed

as 91.38ms, which is a little bit different from the one from simulation (26.70ms). Different

audio software is applied to play the wave file, but the results of the time-difference are

identical. The result is shown in Fig. 4.26.

4.5 Conclusion

The development of a machine condition monitoring system based on acoustic signals points

out a way to develop software for a real-time hardware platform with help of Simulink target

support. First the program is implemented as a model on the PC for testing and simulation,

which takes much less time than to run the model on the target system. Then only a few

blocks are modified to adjust the development environment to the target hardware. An

advantage is that many functions from Simulink and Matlab libraries can be used directly

for the real-time application. For example from block-sets for digital signal processing, State-

flow, data acquisition and computer vision. The so-called external mode allows the access to

process variables and makes them visible in the Matlab workspace. Communication blocks,

such as UDP and TCP, or scope functions are available. Some of them, which are not

especially designed for the target system, may cause problems. Consequently it is important

to test such functions carefully before deployment.

Another aspect of the design process turned out during this work. Using this target support,

the software development for embedded systems is possible requiring less knowledge about
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the target hardware details. Furthermore, engineers need not to be experts for languages

and programming techniques, but can concentrate on algorithms and their specific processes.

Its also easy to tune the parameters and monitor the signals, which brings great convenience

and saves time. The real-time implementation on the target hardware shows a satisfying

result compared to the simulation of the host computer.
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Figure 4.21: The complete result coming from the peaks detector.
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time counter
entry:el2time=tim;

executing the time detector
during:el1time=tim;

[sig22 >= 0.5] [sig11 >= 0.5]

Figure 4.22: The Chart of the Stateflow.

Figure 4.23: Input and output events for the stateflow.
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Figure 4.24: The entire model for the project’s simulation
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Figure 4.25: The entire model prepared for the project’s implementation on the target Beagle
Board.
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Figure 4.26: The result coming from the Beagle Board.



Chapter 5

Summary and Outlook

The goal of this thesis was to test the cross-development environment provided by Matlab R©/

Simulink R© for modern processors designed for embedded systems. Two different popular

hardware platforms, which are supported, were used for this purpose, Arduino
TM

and Bea-

gleBoard. Simulink supports model based design for software development on embedded

real-time systems.

In Chapter 1 the basic concepts of real-time, embedded systems and model based design are

introduced. A feature of the environment is that engineers can use the same suite for mod-

elling and testing on the computer and for programming the target system. Consequently

in the next chapter this new tool has been discussed in detail. It allows the designer to save

time and focus on the algorithms and the rest will be all done with a click by support of

Simulink.

In the third chapter a small design example was presented on the Arduino target to operate

a servo motor by a joystick. This example shows the possibility of real-time control of

this hardware. Then a digital signal processing application was developed for an injection

molding machine. In this project the software development process was described. First

the idea of the algorithms was abstracted to a graphical model. With the help of learning

some DSP knowledge this model is accomplished step by step and was simulated on the

host PC to test its possibility and the correctness of the algorithms. By simulation there

is also the advantage to tune the parameters and monitor the signals, so that the model

can be used to prepare the implementation on the target. After this the model only needed

slight modification based on the simulation to run on the Beagle Board as a target system.

The result shows that the system successfully responds in real-time to acoustic signals. This

means that such development methods are applicable for industrial automation.
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The number of hardware platforms that are supported directly is presently increasing. So it

is expected that in the future more and more embedded hardware which are applied in every

field of industrial automation can be developed in an efficient way, saving time and letting

the engineers concentrate on the model construction.
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Appendix A

Install Support for Arduino Hardware

Step 1 Type targetinstaller in a MATLAB Command Window. or click the Tools menu >

Run on Target Hardware > Install/Update Support Package.

Step 2 Select getting the support package from the Internet or from a folder,to that the

package has been downloaded (Figure A.1).

Step 3 Select the Install check box for Arduino UNO target, and click Next (Figure A.2).

Step 4 Click Install and wait till the end of the progress (Figure A.3).

Step 5 Click Finish (Figure A.4).
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Figure A.1: Step 2

Figure A.2: Step 3
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Figure A.3: Step 4

Figure A.4: Step 5



Appendix B

Install Support for Beagle Board

Hardware

B.1 Install the Support Package

Step 1 Type targetinstaller in a MATLAB Command Window or click the Tools menu >

Run on Target Hardware > Install/Update Support Package.

Step 2 Select getting the support package from the Internet or from a folder,to that the

package has been downloaded (Figure B.1).

Step 3 Select the Install check box for Beagle Board target, and click Next (Figure B.2).

Step 4 Click Install and wait till the end of the progress (Figure B.3).

Step 5 Replace the firmware on the Beagle Board with Ubuntu, which described in next

section (Figure B.4).

B.2 Replace the Firmware

Step 1 Choose Beagle Board and click Next (Figure B.5).

Step 2 Choose version of the board and click Next (Figure B.6).

Step 3 Connect the cables like what is shown in the Fig B.7 and click Next.

Step 4 Get the firmware image from the Internet or a folder (Figure B.8).
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Figure B.1: Step 2

Figure B.2: Step 3
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Figure B.3: Step 4

Figure B.4: Step 5
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Figure B.5: Replace the Firmware Step 1

Figure B.6: Replace the Firmware Step 2
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Figure B.7: Replace the Firmware Step 3

Figure B.8: Replace the Firmware Step 4
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Figure B.9: Replace the Firmware Step 5

Step 5 Insert the micro SD card in the host PC with a card reader if it is necessary (Figure

B.9).

Step 6 Click Write and wait for the end of the process (Figure B.10).

Step 7 Choose the COM port of the host and continue (Figure B.11). Pay attention that

Target Installer does not automatically choose the COM port of the serial connection,

before that the COM port of the serial connection in Windows must be defined.

Step 8 Insert the SD card into the Beagle Board hardware and reset (Figure B.12):

Step 9 Set the IP address as mentioned in section 2.4.3 and click Configure (Figure B.13):

Step 10 Confirm the configuration and click next (Figure B.14):

Step 11 Click Finish to end replacing the firmware (Figure B.15):
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Figure B.10: Replace the Firmware Step 6

Figure B.11: Replace the Firmware Step 7
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Figure B.12: Replace the Firmware Step 8

193.170.30.17

193.170.30.144

255.255.255.0

my Beagle

Figure B.13: Replace the Firmware Step 9
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193.170.30.144

ubuntu

temppwd

Figure B.14: Replace the Firmware Step 10

Figure B.15: Replace the Firmware Step 11



Appendix C

A Servo Control Program Written for

Arduino 1.0.1

#include <Servo.h>

Servo myservo;

// create servo object to control a servo

// a maximum of eight servo objects can be created

int pos = 0;

// analog pin used to connect the potentiometer

void setup()

{
myservo.attach(11);

// attaches the servo on pin 11 to the servo object

}
void loop()

{
for(pos = 0; pos < 180; pos += 1)

// goes from 0 degrees to 180 degrees

{
// in steps of 1 degree
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myservo.write(pos);

// tell servo to go to position in variable ’pos’

delay(15);

// waits 15ms for the servo to reach the position

}
for(pos = 180; pos>=1; pos-=1)

// goes from 180 degrees to 0 degrees

{
myservo.write(pos);

// tell servo to go to position in variable ’pos’

delay(15) ;

// waits 15ms for the servo to reach the position

}
}



Appendix D

A Bandpass Filter Written with

MATLAB

P samplefreq = 48000;

N = length(data);

f0 = [12000 17600];

B = [0.01 0.01];

om = f0*2*pi;

nfilter = length(f0);

T = 1/P samplefreq;

for n = 1:nfilter

bpass(n,1) = tf([B(n)/om(n) 0], [1/(om(n)*om(n)) B(n)/om(n) 1]);

end

bpassDig = c2d (bpass, T);
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impulse (bpassDig);

z = impulse (bpassDig);

figure(10);

for n = 1:nfilter

y(n,:) = conv(data1,z(:,n),’same’);

x(n,:) = 1:N;

subplot(nfilter+1,1,n+1)

plot(x(n,:),y(n,:))

end

subplot(nfilter+1,1,1);

plot(data)



Appendix E

MATLAB Function for Peak Detector

function y = fcn2(u)

%#codegen

T = 1/48000;

tau = 0.0005;

max = u(1);

for i=2:128;

if u(i)>max

max=u(i);

end

max = max*(1-T/tau);

end

y = max;
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