Die Phasenzusammensetzung von Stranggießpulvern und ihre Veränderung mit steigender Temperatur

Dissertation am Lehrstuhl für Gesteinshüttenkunde der Montanuniversität Leoben zur Erlangung des Grades einer Doktorin der montanistischen Wissenschaften

Irmtraud Marschall

Leoben, Mai 2013

Danksagung

Die vorliegende Arbeit entstand im Rahmen meiner Tätigkeit am Lehrstuhl für Gesteinshüttenkunde der Montanuniversität Leoben im Bereich Gießpulver und Gießschlacken. Mein besonderer Dank gilt Herrn O. Univ.-Prof. Dipl.-Ing. Dr. mont. Harald Harmuth für seine fachliche Unterstützung und Anregungen in allen Phasen dieser Arbeit, die entscheidende Voraussetzungen für den erfolgreichen Abschluss dieser Dissertation waren.

Herrn Ao.Univ.-Prof. Dr.phil. Oskar W. Thalhammer möchte ich für die Begutachtung der Arbeit ganz herzlich danken.

Außerdem möchte ich meinen Kolleginnen und Kollegen am Lehrstuhl für Gesteinshüttenkunde für die Hilfsbereitschaft und das angenehme Arbeitsklima danken.

Weiters möchte ich mich bei meinen Industriepartneren RHI AG, voestalpine Stahl Donawitz GmbH & Co KG, voestalpine Stahl GmbH und dem österreichischen Kompetenzzentren-Programm COMET, das mit den Mitteln des BMVIT, des BMWA, des Landes OÖ, des Landes Steiermark, der SFG, des Landes Tirol sowie der Tiroler Zukunftsstiftung diese Arbeit fördert, für die Finanzierung dieses Projektes bedanken.

Mein abschließender Dank gilt meiner Familie für ihre Unterstützung.

Eidesstattliche Erklärung

Ich erkläre an Eidesstatt, dass ich diese Arbeit selbstständig verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubten Hilfsmittel bedient habe.

Phasenverzeichnis

Phasenname	Chemische Formel	
Albit	NaAlSi ₃ O ₈	
Akermanit	Ca ₂ MgSi ₂ O ₇	
Anhydrit	CaSO ₄	
Baryt	BaSO ₄	
Calcit	CaCO ₃	
Carnegieit	NaAlSiO ₄	
Colemanit	$Ca_2B_6O_{11}$ ·5H ₂ O	
Combeit	Na ₂ Ca ₂ Si ₃ O ₉	
Cuspidin	$Ca_4Si_2O_7F_2$	
Dicalciumsilikat (C₂S)	Ca ₂ SiO ₄	
Diopsid	CaMgSi ₂ O ₆	
Feldspat	(Ba,Ca,Na,K,NH₄)(Al,B,Si)₄O ₈	
Fluorpectolit	NaCa ₂ Si ₃ O ₈ F	
Fluorrichterit	Na(NaCa)Mg₅Si ₈ O ₂₂ F₂	
Flussspat/Fluorit	CaF ₂	
Gaylussit	Na ₂ Ca(CO ₃) ₂ ·5H ₂ O	
Gehlenit	Ca ₂ Al(Al,Si)O ₇	
Graphit	C	
Hämatit	Fe ₂ O ₃	
Jadeit	NaAlSi ₂ O ₆	
Kalifeldspat	KAISi ₃ O ₈	
Kaliumcarbonat	K ₂ CO ₃	
Koksmehl	C	
Korund	AI_2O_3	
Kryolith	Na ₂ AIF ₆	
Lithiumcarbonat	Li ₂ CO ₃	
Lithiumfluorid	LiF	
Magnesit	MgCO ₃	
Malladrit	Na ₂ SiF ₆	
Natrit	Na ₂ CO ₃	
NAS ₂	$Na_2Al_2Si_2O_8$	
NAS ₃	$Na_2AI_2Si_3O_{10}$	
Natriumcalciumsilicate		

NC ₃ S ₂	Na ₂ Ca ₃ Si ₂ O ₈		
NCS	Na ₂ CaSiO ₄		
NCS ₂	Na ₂ CaSi ₂ O ₆		
NC ₂ S ₂	Na ₂ Ca ₂ Si ₂ O ₉		
NC ₃ S ₆	Na ₂ Ca ₃ Si ₂ O ₁₆		
N ₂ C ₃ S ₅	Na ₄ Ca ₃ Si ₆ O ₁₈		
N₂C₄Si ₆	$Na_4Ca_4Si_5O_{15}$		
Natriumhydrogencarbonat	NaHCO ₃		
Nephelin	(Na,K)AlSiO₄		
Nyerereit	$Na_2Ca(CO_3)_2$.		
Oldhamit	CaS		
Olivin	(Mg,Mn,Fe) ₂ SiO ₄		
Pectolit	NaCa ₂ Si ₃ O ₈ (OH)		
Periklas	MgO		
Perovskit	CaTiO ₃		
Petalit	LiAISi ₄ O ₁₀		
Petrolkoks	С		
Pirssonit	Na ₂ Ca(CO ₃) ₂ ·2H ₂ O		
Pyrolusit	MnO ₂		
Quarz	SiO ₂		
Rankinit	$Ca_3Si_2O_7$		
Ruß	С		
Shortit	$Na_2Ca_2(CO_3)_3$		
Soda	Na ₂ CO ₃ ·10H ₂ O		
Spodumen	LiAISi ₂ O ₆		
Strontiumcarbonat	SrCO ₃		
Tonerde	AI_2O_3		
Villiaumit	NaF		
Wollastonit	CaSiO ₃		
Xonotlit	Ca ₆ Si ₆ O ₁₇ (OH) ₂		

_

Abkürzungsverzeichnis

C/S	CaO/SiO ₂
EDS	Energiedispersive Röntgenmikroanalyse
DTA	Differenzthermoanalyse
нтм	Heiztischmikroskop/Heiztischmikroskopie
ICP-OES	Optisch Emissionsspektrometrie mit induktiv gekoppeltem Plasma
RDA	Röntgendiffraktometrie
REM	Rasterelektronenmikroskop
RFA	Röntgenfluoreszensanalyse
SEN	Submerge Entry Nozzle
STA	Simultane Thermoanalyse
TG	Thermogravimetrie

1.	Prob	lemstellung	1
2	Stan	d der Technik	2
2.	0 (an	Definition Aufaben und Anwendungen von Stranggießnulvern	2
2		Zusemmensetzung von Stranggießnulver	∠ ?
2		Zusammensetzung von Stranggleispulver	ა ი
	2.2.1		3
_	2.2.2	2. Mineralogische Zusammensetzung	3
2	.3.	Gießpulvertypen und Herstellung	4
2	.4.	Prüfmethoden	6
	2.4.1	I. Prüfungen in der Kokille	6
	2.4.2	2. Erhitzungsmikroskopie	7
	2.4.3	B. Molten slag drip test	7
	2.4.4	Weitere phänomenologische Prüfmethoden	7
	245	5 Thermoanalyse	8
	246	S Stufenalühungen	8
	247	7 Heiztischmikroskonie und Confocal Scanning Laser Microscone" (CSLM)	0 8
	2.4.7	2 Döntgendiffraktometrie	O
	2.4.0). Thermoshamiasha Kalkulatian	9 0
~	Z.4.8	2. Thermolyarhaltan	9
2	.5.	Schmeizverhalten	9
	2.5.1	 Schichtenblidung über dem Meniskus 	9
	2.5.2	2. Schmelzrate	.10
	2.5.3	3. Vertikaler Wärmetransport	.11
	2.5.4	Berechnungsmodelle f Gr Schlackenpooltiefe und Schmelzrate	.12
	2.5.5	5. Wirkungsweise des Kohlenstoffs	.14
	2.5.6	6. Dissoziation der Carbonate	.15
	2.5.7	7. Bildung intermediärer Mineralphasen	.18
	2.5.8	B. Bildung einer Gasphase	.21
3.	Durc	hführung	.22
3	5.1.	Proben	.22
	3.1.1	I. Modellpulver	.22
	3.1.2	2. Kommerzielle Gießpulver	.22
3	5.2.	Untersuchungsmethoden	.23
	3.2.1	Chemische Analyse	.23
	3.2.2	2. Simultane Thermoanalyse (STA)	.23
	3.2.3	3. Stufenalühungen	.24
	324	RDA	25
	325	5 Mikroskonie	26
	326	Heiztischmikroskonie	26
	0.2.0		.20
4	Frae	bnisse	30
Δ	. 1	Fraehnisse der Untersuchungen an Modellpulvern	30
	<u> </u>	Modelloulver CS_F	30
	112	Modellpulver HOS-F	.00 31
	4.1.2	Modellpulver CS HOS E	201
	4.1.3	. Ivioutiipuivei 03-1103-F Madallaulvar 09 Na	20. 20
	4.1.4	Madallauhar UOS Na	.33
	4.1.5		.34
	4.1.6	b. IVIODEIIPUIVEr US-F-U,5Na	.35
	4.1.7	7. Modellpulver HOS-F-Na	.36
	4.1.8	3. Zusammenfassung der Ergebnisse der Modellpulver	.37
4	.2.	Gießpulver zum Vergießen von Knüppeln und Vorblöcken	.39
	4.2.1	I. Gießpulver für das Vergießen von Federstählen	.39
	4.2.2	2. Gießpulver für das Vergießen von Schienenstählen	.42
	4.2.3	B. Gießpulver für das Vergießen von Kaltstauchgüten	.44

4	.3. Gie	ßpulver zum Vergießen von Brammen	50
	4.3.1.	Gießpulver für das Vergießen von Baustahl	50
	4.3.2.	Gießpulver für das Vergießen von Weichstahl	55
	4.3.3.	Gießpulver für das Vergießen von ULC-Stahl	58
	4.3.4.	Gießpulver für das Vergießen von TRIP-Stahl	61
4	.4. Erg	ebnisse der RDA mit Heizkammer	67
4	.5. Erg	ebnisse der an die STA gekoppelte Massenspektroskopie	68
5.	Diskuss	ion der Ergebnisse und Schlussfolgerungen	
5	.1. Zus	ammenfassung der Rohstoffe	
5	.2. Rea	aktionen während des Aufschmelzens	
-	5.2.1.	Kohlenstoffabbrand	71
	5.2.2.	Die Dissoziation der Carbonate	73
	5.2.3.	Reaktionen der Silikate	74
	5.2.4.	Fluorit, Kryolith und Villiaumit	77
	5.2.5.	Korund, Periklas, Diopsid und Pyrolusit	78
	5.2.6.	Bildung der Schmelzphasen	79
	5.2.7.	Intermediäre Phasenneubildung	80
	5.2.8.	Bildung einer homogenen Schmelzphase	83
	5.2.9.	Vergleich der Laborergebnisse mit denen aus dem Betrieb	83
5	.3. Beu	urteilung der verwendeten Messmethoden	83
	5.3.1.	Bestimmung des Rohstoffzusammensetzung	83
	5.3.2.	Bestimmung des Schmelzverlaufes	85
6.	Graphis	che Zusammenfassung des Reaktionsverlaufes beim Aufheizen	88
7.	Anhang		1
8.	Literatur	nachweis	1

Kurzfassung

Gießpulver sind Hilfsstoffe im Stranggießprozess der Stahlerzeugung. Sie werden in der Kokille auf den Stahlmeniskus aufgegeben, wo sie durch die vorherrschenden hohen Temperaturen aufschmelzen. Die gebildete Schlacke infiltriert den Gießspalt zwischen Strang und Kokille und sorgt dort für die notwendige Schmierung sowie kontrollierten Wärmetransport. Einer einen der wichtigsten Parameter im Stranggießprozess zur Gewährleistung eines stabilen Gießbetriebes und zur Vermeidung von Oberflächendefekten ist das Schmelzverhalten dieser Gießpulver. Die Erfahrung zeigte, dass die Kenntnis ihrer chemischen Zusammensetzung alleine nicht immer für eine zufriedenstellende Auswahl der Gießpulver ausreicht. Es ist sehr wahrscheinlich, dass neben der chemischen Zusammensetzung auch die Phasenzusammensetzung und ihre Verteilung die Betriebseigenschaften der Pulver beeinflussen.

Aus diesem Grund wurde die Phasenzusammensetzung von vierzehn kommerziellen Gießpulvern mittels Auflicht- und Rasterelektronenmikroskop so wie mittels Röntgendiffraktometer untersucht. Zur Charakterisierung des Schmelzverhaltens wurden diese Pulver bei ausgewählten Temperaturen geglüht und nach Abschrecken auf Raumtemperatur mit den zuvor genannten Methoden analysiert. Außerdem wurde an ihnen eine simultane Thermoanalyse und Heiztischmikroskopie durchgeführt. Das CaO/SiO₂ Verhältnis der Proben reichte von 0,6 - 1,3 und die Obwohl Kohlenstoffgehalte lagen zwischen 2,2 und 15.2 Gew.%. die mineralogischen Zusammensetzungen der Pulver differierten, zeigten sie doch Gemeinsamkeiten.

Die Analyse der Proben zeigte, dass Gießpulver zum Großteil aus Silikaten bestehen. Zum Teil bilden Gläser wie Glasbruch oder Hochofenschlacke eine der Hauptphase. Als Fluorrohstoff ist immer Fluorit (CaF₂) enthalten und zum Teil kommt auch Kryolith (Na₃AlF₆), Phosphorschlacke und Villiaumit (NaF) zum Einsatz. Soda (Na₂CO₃·10H₂O) oder Natriumhydrogencarbonat (NaHCO₃) wird in den meisten Fällen als Natriumträger zugesetzt, doch bereits während des Herstellungsprozesses bilden sich Doppelcarbonate wie zum Beispiel Gaylussite (Na₂Ca(CO₃)₂·5H₂O) durch die Reaktion von Soda oder Natriumhydrogencarbonat mit den Silikaten. Ein wichtiger Bestandteil sind Kohlenstoffträger. Außerdem enthalten die Pulver meist in geringeren Mengen Tonerde (Al₂O₃), Calcit (CaCO₃) und Periklas (MgO). Als Lithiumquelle dient entweder Lithiumcarbonat (Li₂CO₃) oder Spodumen (LiAlSi₂O₆).

In Bezug auf das Schmelzverhalten ergab sich folgendes Bild. Die Carbonate beginnen in Gießpulvern bereits unter 500 °C zu dissoziieren und schließen diesen Vorgang bei spätestens 790 °C ab. Als Folge diffundiert Na₂O in die umliegenden Silikate und senkt dadurch deren Schmelzbereich. Die Entstehung von ersten größeren Schmelzphasenmengen hängt stark von der Art der verwendeten Silikate ab. Besonders die Gegenwart von Glasbruch fördert ihre Bildung bei vergleichsweise niedrigeren Temperaturen.

Zwischen 750 °C und 900 °C ist mit der Kristallisation von Natriumcalciumsilikaten aus der an Natrium gesättigten Schmelze und durch Feststoffdiffusion von Natriumionen in den Wollastonit zu rechnen. Durch das spätere Aufschmelzen von Korund und der Rohstoffe mit Aluminiumgehalten über 18 % erfolgt die Bildung von Natriumalumosilikaten erst zwischen 900 °C und 1000 °C. Cuspidin ist in allen fluorhältigen Gießpulver auf Siliziumbasis die wichtigste gebildete Phase, da sie zum einen oberhalb von 900 ° den größten festen Phasenanteil ausmacht, zum anderen die letztschmelzende Phase darstellt. Seine Bildung erfolgt einerseits bei Temperaturen um 600 °C durch Feststoffdiffusion von Fluorionen in Natriumcalciumsilikatphasen, zum Großteil wird er aber durch Kristallisation gießpulverabhängig zwischen 690 °C und 1073 °C aus einer genügend großen Schmelzmenge gebildet. Im Gegensatz dazu trat im einzigen Gießpulver auf Calcium- und Aluminiumoxidbasis oberhalb von 900 °C an seine Stelle eine nicht anderswo spezifizierte Phase mit einem Al Gehalt von 17,1 mol%.

Die Bildung einer homogenen Schmelzphase erfolgt zwischen 1020 °C und 1260 °C und ist weitgehend rohstoffunabhängig, korreliert aber mit dem CaO/SiO₂ Verhältnis der Gießpulverzusammensetzungen.

Obwohl die Untersuchungen mit einer Heizrate von 5 K min⁻¹ durchgeführt wurden, war die Zeit für das Erreichen des thermochemischen Gleichgewichtes zu kurz. Als Folge wurden besonders die Ergebnisse der Heiztischmikroskopie von der Gegenwart der Kohlenstoffträger beeinflusst, da Kohlenstoff durch silikatische Schmelzen nicht benetzbar ist und dadurch die Agglomeration der Schmelzperlen behindert.

1. Problemstellung

Die Erfahrung zeigt, dass die alleinige Kenntnis der chemischen Zusammensetzung der Gießpulver für eine Auswahl des Gießpulvers in Abhängigkeit der vergossenen Stahlsorte nicht immer ausreichend ist. Es ist zu erwarten, dass außer der chemischen Zusammensetzung auch die Phasenzusammensetzung und Details der Struktur, also die Verteilung der Phasen einschließlich der Granulometrie, von Bedeutung sind. Deshalb ist das erste Ziel der vorliegenden Arbeit die Bestimmung des Phasenbestandes von Gießpulvern bei Anlieferung.

Weiters ist zu vermuten, dass das Verhalten von Gießpulvern und Gießschlacken im Betrieb auch durch jene Vorgänge beeinflusst ist, die während der Schlackenbildung mit zunehmender Temperatur eintreten. Ein zweites Ziel dieser Arbeit ist daher, diese Reaktionen in Abhängigkeit von der Temperatur zu erfassen, also die ganze Reaktionsfolge eines Gießpulvers bis zur Schlackenbildung zu ermitteln.

Beide Ziele sollen hauptsächlich dadurch erreicht werden. dass die Phasenzusammensetzung in Abhängigkeit der Temperatur mit mehreren Untersuchungsmethoden ermittelt wird. Die gewünschten Ergebnisse der Arbeit sollen daher sowohl Reaktionsfolgen von Gießpulvern in Abhängigkeit von der Temperatur als auch Aussagen über geeignete Untersuchungsmethoden zu ihrer Ermittlung beinhalten.

2. Stand der Technik

2.1. Definition, Aufgaben und Anwendungen von Stranggießpulvern

Gießpulver sind Hilfsmittel im Stranggießprozess, die aus oxidischen, silikatischen, carbonatischen und fluoridischen Rohstoffen so wie Kohlenstoffträgern bestehen.

Während des Gießprozesses wird das Gießpulver, wie in Abbildung 1 zu sehen ist, auf den flüssigen Stahl in der Kokille aufgegeben. Durch die hohen Temperaturen, denen es dort ausgesetzt ist, schmilzt das Pulver und formt unter Bildung von Zwischenphasen schließlich eine flüssige Schlackenschicht. Dieser sogenannte Schlackenpool dient als Reservoir, der den Spalt zwischen erstarrter Strangschale und Kokille mit flüssiger Schlacke versorgt. Seine Tiefe hängt vom Gießpulververbrauch, der Gießgeschwindigkeit und der Schmelzrate des Gießpulvers ab [1, 2].

Im Gießspalt bildet sich ein Schlackenfilm, der für den gleichmäßigen Wärmetransport zwischen Strang und Kokille so wie für die Schmierung des Stranges verantwortlich ist. In der Regel bilden sich im Film drei Schichten aus: eine glasige Schicht in direkten Kontakt mit der Kokille, eine flüssige Schicht in Kontakt mit dem Strang. und eine kristalline Schicht zwischen den beiden erstgenannten Schichten [3,4].

Abbildung 1: Schematische Darstellung der Bildung verschiedener Schlackenschichten in der Kokille (aus [4])

Für das Betriebsverhalten sind folgende Eigenschaften von Bedeutung [5]:

- das thermische Isolationsvermögen der Schicht auf dem Meniskus, das wesentlich durch die Wärmeleitfähigkeit der lockeren oberen Pulverschicht bestimmt wird
- das Aufschmelzverhalten
- das Schmiervermögen der Schlackenschicht im Spalt bedingt durch die Viskosität der Gießschlacke und der Oberflächenspannung zwischen Strangschale und Gießpulver
- die Morphologie der Schlackenschicht im Spalt und ihre Auswirkung auf den Wärmetransport zwischen Strang und Kokille
- die chemischen Wechselwirkungen mit dem Strang, z.B. die Aufnahme von Al_2O_3 aus dem Stahl.

In der Kokille müssen die Gießpulver und deren Schlacken folgende Aufgaben erfüllen:

- Schmierung des Stranges, um ein Anhaften des Stahls an der Kokille zu vermeiden
- Einstellung eines gleichmäßigen und in seinem Ausmaß der zu gießenden Stahlqualität entsprechenden Wärmeüberganges zwischen Stahl und Kokille. Besonders peritektische Stahlsorten benötigen eine milde Kühlung, da mit der δ-γ Umwandlung eine große Volumensänderung (Schrumpfung) verbunden ist, die in ein Abheben der Strangschale von der Kokille münden kann und in weitere Folge Längsrisse hervorruft.
- Schutz des Stahls vor Reoxidation
- Aufnahme von nichtmetallischen Einschlüssen (Al₂O₃, TiO₂, etc.) aus dem Stahl
- Thermische Isolierung der Stahlbadoberfläche [1, 5, 6]

Entspricht ein Gießpulver diesen Anforderungen nicht, kann dies zu Oberflächenfehlern des Stahlstranges bzw. im schlimmsten Fall zu Durchbrüchen und zum Stillstand der Anlage führen [5, 7].

2.2. Zusammensetzung von Stranggießpulver

2.2.1. Chemische Zusammensetzung

Die Bandbreite der chemischen Zusammensetzungen von Gießpulvern ist, wie in Tabelle 1 angeführt, groß, da gerade die Viskosität und das Erstarrungsverhalten stark von ihr abhängen. Außerdem lassen sich die Ergebnisse eines Stahlwerkes nur bedingt auf ein anderes übertragen, was wiederum zu einem größeren Variantenreichtum an Gießpulvern führt [8]. Gießpulver liegen üblicherweise im System SiO₂ - CaO - Al₂O₃ - Na₂O - CaF₂. Manchmal beinhalten sie weiters MgO, K₂O und LiO₂ und in seltenen Fällen B₂O₃. Eisen ist unerwünscht, da einerseits Eisenoxide den Sauerstoffpartialdruck an der Kontaktfläche Stahl - Gießschlacke erhöhen, andererseits metallisches und zweiwertiges Eisen in der Lage ist, den Sauerstofftransport aus der Atmosphäre zum Meniskus zu fördern [9]. Als unerwünschte Begleitelemente treten Schwefel und Phosphor auf [10].

	Gehalt/		Gehalt/
	Gew.%		Gew.%
SiO ₂	17 - 56	CaO	22 - 45
AI_2O_3	0 - 13	MgO	0 - 10
B_2O_3	0 - 19	BaO	0 - 10
Fe_2O_3	0 - 6	SrO	0 - 5
Na ₂ O	0 - 25	F	2 - 15
Li ₂ O	0 - 5	MnO	0 - 5
K₂O	0 - 2	С	2 - 20

Tabelle 1:	Bandbreite der chemischen	Zusammensetzung von	ı Gießpulvern in G	ew.% (aus [11])
------------	---------------------------	---------------------	--------------------	-----------------

2.2.2. Mineralogische Zusammensetzung

Bei der Auswahl der Rohstoffe spielen neben den technischen Aspekten auch ökonomische und ökologische Kriterien eine Rolle. Wie in Tabelle 2 aufgelistet, sind die meisten Materialien Naturprodukte, deren chemische Zusammensetzung Schwankungen unterliegt. Aber auch synthetische Ressourcen weisen keine konstante Zusammensetzung auf. Ein Beispiel dafür sind Flugaschen, die bei der Verbrennung von Braun- oder Steinkohle in Kraftwerken anfallen. Zur Gewährleistung einer konstanten Produktqualität sollte der Mengenanteil eines stark streuenden Rohstoffes nicht zu hoch angesetzt werden [12].

Natürliche Silikate und	Quarzsand, Quarzmehl (SiO ₂)
Kieselsäuren	Wollastonit (CaSiO ₂)
	Feldsnäte z B. Nenhelin ((K Na)AlSiO ₄)
	Petalit (LiAlSi (Ω_{co})
	Kieselerde
	Tone
	Silicofluorid z B. Malladrit (Na.SiE.)
	Dianaid (CaMaSi Ω)
	Diopsiu (CalvigSi $_2O_6$) Olivin (Ma Ma Fa) SiO
	$O(1) ((1) ((1) (1), \Gamma C)_2 (1) (1), \Gamma C)_2 (1) (1)$
	Perint Kalifaldanat (KAIQi Q)
Synthetische Silikate	Flugasche
	synthetischer Wollastonit
	Portlandzement
	Glasbruch (Natriumsilikatglas)
	Hochofenschlacke
	Phosphorschlacke
Carbonate	Calciumcarbonat (z.B. Kalksteinmehl) CaCO ₃
	Natriumcarbonate (Soda (Na ₂ CO ₃ ·10H ₂ O),
	Natrit (Na ₂ CO ₃))
	Kaliumcarbonat (K ₂ CO ₃)
	Lithiumcarbonat (Li ₂ CO ₃)
	Strontiumcarbonat $(SrCO_3)$
Fluoride	Fluorit (CaF ₂)
	Kryolith (Na $_{3}AIF_{6}$)
	Villiaumit (NaF)
Weitere Oxide	Colemanit (Ca ₂ B ₆ O ₁₁ ·5H ₂ O)
	Tonerde (Al_2O_3)
	Periklas (MgO)
	$Pvrolusit (MnO_2)$
	Walzenzunder
Kohlenstoffträger	Graphit (C)
i tomenotomi uger	Petrolkoks (C)
	Koksmehl(C)
	Industrieruß (C)
	Flugasche
Bindemittel	wasserlösliche Carbonate
Dindemiller	Vassenusiume Carbunale Saccharida (z.B. Stärka)
	Zamont
	Crassisshe Verbindungen (Kusetherre, Klebcherre)
	Organische verbindungen (Kunstnarze, Klebenarze)
	Bindetone

 Tabelle 2:
 In der Gießpulverherstellung verwendete Rohstoffe (aus [10, 13, 14, 15, 16, 17, 18, 19])

2.3. Gießpulvertypen und Herstellung

Drei Typen von Gießpulvern werden produziert: Pulverisate, Granulate und Fritten. In Europa werden hauptsächlich Granulate und teilweise Pulverisate aus einer Mischung natürlicher und synthetischer Rohstoffe eingesetzt. Pulverförmige Gießpulver besitzen den Nachteil, dass die Staubentwicklung zu gesundheitlichen Beeinträchtigungen führen kann. Freie Silica sollte wegen der Silicosegefahr bei Staubentwicklung vermieden werden [19]. Weiters kann es zu Entmischungen während des Transportes kommen. Bei Granalien ist dies nicht der Fall. Außerdem können sie automatisch Fließfähigkeit aufgegeben werden [11]. Die kann sich bei hohen Strömungsgeschwindigkeiten des Stahles in der Kokille als Nachteil herausstellen, da Turbulenzen zu einer Anhebung des Badspiegels an den Schmalseiten der Kokille führen können und die Granalien in tiefer liegende Bereiche in der Mitte rollen, so dass vor allem im Bereich der Ecken keine ausreichende Stärke der Gießpulverschicht gegeben ist. Dies kann im schlimmsten Fall zu Durchbrüchen führen. Durch die Zugabe expandierender Komponenten, durch die die Granalien aufbrechen, kann dies vermieden werden. Dazu eigenen sich säurebehandelter Graphit, Perlit oder Vermiculit [19]. Säurebehandelte Graphite enthalten in den Zwischengitterschichten Komponenten (z.B. NO_x oder SO_x), die über 150°C freigesetzt werden und dadurch den Schichtebenenabstand vergrößern [20]. Die Bindekraft soll für Herstellung, Transport, Lagerung und Manipulation ausreichend hoch sein, im geeigneten Temperaturbereich jedoch nachlassen, sodass die Granalien zu Pulvern zerfallen [19]. Vor allem im asiatischen Raum werden partiell oder zu 100 % vorgeschmolzene Gießpulver in Form von Fritten verwendet. Diese weisen den Vorteil auf, dass im Gegensatz zu heterogenen Rohstoffgemischen ihr Sinterbereich kleiner ist und sich ihre Gießschlacke gleichmäßiger während des Gießprozesses verhält [21, 22]. Dem gegenüber stehen die hohen Herstellungskosten dieses Verfahrens.

Bei der Herstellung von pulverförmigen Gießpulvern werden je nach Rezeptur die einzelnen Rohstoffkomponenten über Bandwaagen verwogen, in einem Mischer homogenisiert und in Säcke abgepackt [23]. Die Korngröße ist meist kleiner als 60 µm. Die größten Körner erreichen 0.3-0.6 mm. Die feinsten Partikel sind kleiner als 2 µm und bestehen aus Kohlenstoff [24].

Granulate werden entweder durch Extrudieren einer Masse hergestellt, in kleine Stücke (1-2 mm) geschnitten und getrocknet, oder durch Einblasen einer Wassersuspension des Pulvers in ein heißes Gas erzeugt, wobei die zweite Art die Strandardform darstellt. In Analogie zu den pulverförmigen Produkten werden nach [23] auch bei sprühgetrockneten Granalien die meisten Rohstoffkomponenten in Silos angeliefert und in Abhängigkeit der Rohstoffzusammensetzung automatisch verwogen. Die Masse der chemischen Additive (z.B. Binde-, Schäumungs- oder Dispergiermittel) sowie alle Rohstoffe, die noch als Sackware zur Anlieferung kommen, werden per Hand verwogen und zugegeben. In einem Becken werden die Rohstoffe mit Hilfe einer dreiflügeligen Schiffsschraube dem sogenannten "Quirl" zu Schlicker aufgeschlämmt. Die Wassermasse beträgt zwischen 30 und 40 % der Feststoffmasse und wird zu Beginn des Prozesses zugegeben. Nach einer Quirlzeit von ca. 4 Stunden wird die Suspension über ein Sieb in den sogenannten "Rührer", gepumpt, wo sie bis zum Versprühen bleibt. Am Boden dieses runden Gefäßes bewegen sich zwar ständig Rührarme, die Verweilzeit wird aber trotzdem so kurz wie möglich gehalten, um eine Sedimentation zu vermeiden. In weiterer Folge wird der Schlicker aus dem "Rührer" von einer Hochdruckmembranpumpe angesaugt und bei 10 bis 25 bar Überdruck über Einstoffdüsen im unteren Drittel des Sprühturm (Abbildung 2) in die von oben eingeleitete 500-570 °C heiße Luft versprüht und gleichzeitig getrocknet. Die Korngröße der späteren Granalien wird über die Bohrung im Düsenblättchen der Sprühdüse beeinflusst. Mit einer Temperatur von 120-130 °C verlassen die Granalien den Sprühturm über ein Rüttelsieb. Im Anschluss werden sie gekühlt, nochmals gesiebt und verpackt.

Durch die Sprühtrocknung entstehen im Inneren der Granulatkörner Poren, die nach [23] einerseits daraus resultieren, dass die löslichen Salzen im Schlicker mit der Flüssigkeit zur Tröpfchenoberfläche strömen, wo Verdampfung und Kristallisation stattfindet. Der Verdampfungsgrad überschreitet den Grad der Salzdiffusion zurück ins Innere der Tröpfchen, sodass Hohlräume entstehen. Andererseits werden unlösliche Feststoffe mitgerissen, wenn die Flüssigkeit aufgrund der Kapillarkräfte zur Oberfläche strömt und verdampft, sodass sich ebenfalls Poren bilden. Außerdem ist im Schlicker stets je nach Schaumbildungsneigung eine bestimmte Luftmenge gelöst. Die Bildung der Poren, aufgrund eines elastischen, wenig durchlässigen Filmes, der sich um das Tröpfchen bildet und die Verdampfungsrate vermindert, so dass die noch vorhanden Feuchtigkeit beim Verdampfen ein Aufblähen der Granulate bewirkt tritt nach [23] bei Gießpulvergranalien nicht ein.

Abbildung 2: Sprühturm zur Herstellung von Gießpulvergranalien (aus [23]).

2.4. Prüfmethoden

Obwohl das Schmelzverhalten für den Stranggießprozess von Wichtigkeit ist, gibt es bis dato keine standardisierte Prüfung [25]. Direkt aus der Kokille Werte zu ermitteln ist schwierig, mit vielen zusätzlichen Einflussfaktoren behaftet und oftmals nicht sinnvoll. Deshalb wurden und werden eine Vielzahl von Methoden entwickelt, um das Aufschmelzverhalten der Gießpulver im Labor zu charakterisieren. Der Nachteil dabei ist, dass nur vergleichsweise geringe Mengen untersucht werden können.

2.4.1. Prüfungen in der Kokille

Die Ermittlung der Temperaturverteilung in der Gießpulverschüttung über dem Meniskus kann in der Kokille mittels Thermoelementen erfolgen [26]. Die Ermittlung der Stärke der gebildeten Gießpulverschichten wurde von Schwerdtfeger [13] durch senkrechtes Eintauchen eines offenen Rohres durchgeführt. Die Fixierung der Schichten erfolgte durch Verschließen des Rohres in der Kokille. Zur groben Abschätzung der Schichtstärken wird häufiger die sogenannte "Nagelbrettmethode" angewandt. Hierbei sind in einem Brett Nägel aus niedrigkohligem Stahl, Kupfer und Aluminium eingeschlagen. Nach kurzem Auflegen auf die Gießpulverschüttung kann anhand der unterschiedlichen Längen der Drähte, bedingt durch die unterschiedlichen Schmelztemperaturen der Metalle, auf die Temperaturen und die Schichtstärke meist leicht überschätzt wird [27, 28, 29, 30, 31]. Direkt im Betrieb kann auch der Gießpulververbrauch erhoben werden.

2.4.2. Erhitzungsmikroskopie

Die am weitesten verbreitete Prüfmethode zur Bestimmung des Aufschmelzverhaltens ist die Erhitzungsmikroskopie. Da diese Methode relativ einfach ist, wird sie standardmäßig zur Qualitätskontrolle sowohl beim Lieferanten als auch beim Kunden eingesetzt. Nach DIN 51730 wird aus dem Material ein Zylinder mit einem Durchmesser von 6 mm und einer Höhe von 6 mm gepresst und in einem Ofen mit 10 °C min⁻¹ aufgeheizt. Mittels eines Mikroskops, das in den meisten Fällen an eine Videokamera gekoppelt ist, wird das Aufschmelzen des Probekörpers mitverfolgt und die charakteristischen Temperaturen protokolliert. Zu diesen zählen der Erweichungspunkt, an dem die Kanten abzurunden beginnen, der Halbkugelpunkt, bei der die Probe die Form einer Halbkugel annimmt und der Fließpunkt. Der Nachteil dieser Methode ist, dass aus ihr keine Rückschlüsse auf die Prozesse im Probeninneren gezogen werden können [32, 33].

2.4.3. Molten slag drip test

Eine ähnlich einfache, empirische Methode zur Eingangskontrolle ist der "Molten slag drip test" zur Bestimmung der Schmelzrate. Wie in Abbildung 3 dargestellt ist, wird das Pulver induktiv beheizt. Das geschmolzene Pulver läuft nach unten ab und wird in einer Auffangtasse gewogen [34, 35, 36]. Bei garanulierten Pulvern kam es immer wieder zu Fehlergebnissen, weil die Granalien durch die Apparatur durchliefen. Mittlerweile wurde diese Methode auch für Granalien optimiert [37]. Über Reaktionen beim Aufschmelzen sagt aber auch diese Methode nichts aus.

Abbildung 3: Schematischer Aufbau der Apparatur zur Ermittlung der Schmelzrate (aus [34])

2.4.4. Weitere phänomenologische Prüfmethoden

Neben den oben genannten Methoden gibt es eine Vielzahl an weiteren Methoden, die angewandt wurden und werden. Einer Gruppe liegt das Prinzip zu Grunde, dass Pulver in einem Tiegel bei einer definierten Temperatur, z.B. 1400 °C, für eine definierte Zeit in einen Ofen gestellt werden und nach Ablauf dieser Zeit der Anteil des geschmolzenen Pulver erhoben und bewertet wird [27]. Bei einer vergleichbaren Methode wird die Zeit gemessen, die ein Pulver bei definierter Temperatur bis zur vollständigen Verflüssigung braucht [26]. Wieder andere Methoden variieren die Art der Beheizung. Entweder befindet sich die Probe in einem Tiegel, der induktiv von unten beheizt wird [38, 39], oder die Probe wird überhaupt auf ein flüssiges Stahlbad aufgebracht [31, 25].

Bei der sogenannten Erweichungsmethode wird das Gießpulver zu einem Zylinder verpresst und bei 1400 °C in einen Ofen gegeben. Ein Korundstange wird auf dem Zylinder platziert, die Verschiebung der Stange aufgezeichnet und ausgewertet. Das Erweichen wird als Funktion über die Zeit angegeben [25].

2.4.5. Thermoanalyse

Ebenso zu den Standardmethoden zählt die simultane Thermoanalyse (STA), die eine Messung der Thermogravimetrie (TG) mit der Differenzialthermoanalyse (DTA) kombiniert. Sie nutzt den charakteristischen Energieumsatz eines Stoffes beim Phasenübergang und basiert auf einem Vergleich der Probentemperatur mit der einer ausgewählten Referenzsubstanz, die im zu untersuchenden Temperaturbereich keine Phasenübergänge aufweist. Die Probe wird gleichzeitig mit der Referenzsubstanz während der Messung unter definierter Atmosphäre und mit einem gegebenen Temperaturprogramm in einer symmetrischen Messkammer aufgeheizt und abgekühlt. Bei konstanter Heiz- bzw. Kühlrate wird über Temperaturfühler die Temperatur (T) unter beiden Tiegeln (Probe und Referenz) gemessen und die Differenz aufgezeichnet. Eine Temperaturdifferenz zeigt endotherme oder exotherme Prozesse an. solche Gleichzeitig werden mittels einer Waage Massenänderungen protokolliert [40, 41]. Die STA hat den Vorteil, dass sie relativ einfach und schnell ist. Besonders gut lassen sich mit dieser Methode der Kohlenstoffabbrand und die Kristallisationstemperaturen bestimmen. Allerdings sind die Messwerte vom der Heiz- bzw. Kühlrate und der Einwaage abhängig. So wird z.B. der Kohlenstoffabbrand mit zunehmender Heizrate hin zu höheren Temperaturen verschoben [42]. Die Schmelzenthalpie ΔH^{fus} kann durch mittels quantitativer DTA bestimmt Messen des endothermen Schmelzbereiches Hierbei wird anhand von Messungen an Referenzmaterialien werden. die Empfindlichkeit des Messsensors kalibriert so dass anschließend das Messsignal von µV in mW umgerechnet werden kann. Die Messkurve zeigt während des Erhitzens allerdings viele Peaks, da Gießpulver aus verschiedensten Komponenten bestehen, sodass es schwierig ist, einen eindeutigen Wert für ∆H^{fus} zu lokalisieren. Die Ermittlung der c_p-Wertes von Gießpulvern kann mittels Differential Scanning Calorimeter (DSC) erfolgen [43].

2.4.6. Stufenglühungen

Hierbei handelt es sich um eine Methode, bei der Proben bis zu einer gewünschten Temperatur in einem Tiegel erhitzt werden und zumeist bei dieser Temperatur bis zum Einstellen des chemischen Gleichgewichts gehalten werden. Danach werden die Proben auf Raumtemperatur abgeschreckt. Anschließend können die Proben mineralogisch untersucht werden. Der Nachteil hierbei ist, dass eine gewisse Unsicherheit besteht, ob nicht während des Abkühlens Phasen gebildete wurden, die bei der Maximaltemperatur nicht vorhanden waren. In der Regel ist diese Unsicherheit bei Abschreckung gering, da nur Phasen mit einer sehr geringen Kristallgröße dabei gebildet werden können [26, 35, 44].

2.4.7. Heiztischmikroskopie und "Confocal Scanning Laser Microscope" (CSLM)

Eine auch in dieser Arbeit angewandte Methode ist die Heiztischmikroskopie, bei der eine Probe in einer Heizkammer unter einem Auflichtmikroskop aufgeschmolzen wird. Das Aufschmelzen der einzelnen Rohstoffe und die Bildung neuer Phasen kann mit diesen Methoden direkt untersucht werden. Eine detaillierte Beschreibung befindet sich in Kapitel 3.2.6. Die CSLM Technik entspricht vom Prinzip der Heiztischmikroskopie. Im Gegensatz zu dem hier verwendeten Heiztischmikroskop ist dabei die Lichtquelle keine Quecksilberdampflampe, sondern ein Laser, der die Oberfläche der Probe abrastert [45].

2.4.8. Röntgendiffraktometrie

Die Röntgendiffraktometrie (RDA) wird zur Analyse von Gießpulvern standardmäßig eingesetzt, mit der Einschränkung, dass nur kristalline Phasen scharfe Peaks zeigen, die gut ausgewertet werden können. Synthetische Gläser wie Hochofenschlacke und Flugasche können sich bei entsprechender Menge als langgezogene, niedrige Peaks im Untergrund zeigen. Mittels Rietveld-Methode können die Phasengehalte auch quantitativ ausgewertet werden. Durch die große Anzahl der sich überlagernden Peaks bedingt durch die Vielzahl an Komponenten stellen die Ergebnisse nur eine grobe Abschätzung dar. Amorphe Phasen können nur mit großen Unsicherheiten berücksichtigt werden. In letzter Zeit wurde die Röntgendiffraktometrie aber auch in Verbindung mit einer Heizkammer genutzt, um die Phasenumwandlungen beim Aufschmelzen in situ ermitteln zu können. Ein großer Nachteil ist noch immer die Zeit, die benötigt wird, ein komplettes Spektrum aufzunehmen, obwohl die Zählraten der Detektoren in der Vergangenheit entschieden verbessert wurden. Aus diesem Grund wird in der Praxis während des Aufschmelzens nur ein eingeschränkter Winkelbereich betrachtet und die Verweilzeit an einem Winkel so kurz wie möglich gehalten. Für eine quantitative Auswertung der Phasen reichen die so erzielten Spektren nicht aus, sodass dafür Messungen nach Stufenglühungen durchgeführt werden müssen [18, 40].

2.4.9. Thermochemische Kalkulation

Thermodynamische Berechnungen sind in der Feuerfestindustrie ein nützliches Hilfsmittel, um Phasenparagenesen bei gewünschten Temperaturen im Gleichgewicht zu berechnen. Für fluorhältige Gießpulver ist diese Methode noch nicht anwendbar, da in den zur Verfügung stehenden Datenbanken die Datensätze für Na₂O, K₂O und Li₂O in Verbindung mit Fluor nicht konsistent sind. Erste Versuche wurden dennoch bereits von anderen Forschergruppen unternommen [46]. Die errechneten Phasen stimmen aber nicht mit der Praxis überein. Wie [47] berichtet arbeitet ein Konsortium an der Bereitstellung einer thermodynamischen Datenbank für das System CaO-MgO-Al₂O₃-SiO₂-CaF₂. Erste Resultate liegen bereits vor, allerdings waren diese Daten zum Zeitpunkt der Fertigstellung dieser Dissertation noch nicht allgemein verfügbar.

2.5. Schmelzverhalten

2.5.1. Schichtenbildung über dem Meniskus

Wie in 2.1 beschrieben, werden die Gießpulver dem flüssigen Stahl in der Kokille aufgegeben. Da Gießpulver Gemische verschiedenster Rohstoffe sind, besitzen sie Schmelzpunkt Schmelzintervall. Abhängig keinen sondern ein von der Zusammensetzung werden in der Literatur Werte zwischen 1100 °C und 1250 °C angegeben, bei denen die Gießpulver komplett aufgeschmolzen sind [13, 48]. Bis das Pulver gänzlich aufgeschmolzen ist, durchläuft es mehrere Schritte. Die daraus resultierende Schichtenbildung in der Kokille wurde in der Literatur oftmals beschrieben [11, 13, 26, 49, 50], jedoch divergiert die Zahl der angegebenen gebildeten Schichten zwischen 3 und 5. In Abbildung 4 ist ein Beispiel für einen dreischichtigen Aufbau dargestellt, in dem die Temperatur in Abhängigkeit von der Höhe über den Meniskus eingetragen ist [51]. Nach [52] verläuft der Schmelzprozess in der Kokille in vier Schritten

- Nach Zugabe des Gießpulvers wird das Gießpulver erhitzt, verbleibt aber in seiner ursprünglichen Morphologie und Struktur.

- Bei fortschreitender Erwärmung beginnt der Kohlenstoff im Gießpulver zu verbrennen. Einzelne Rohstoffpartikel berühren einander und eine Versinterung beginnt, welche mit steigender Temperatur und zunehmendem Kohlenstoffverlust zunimmt.
- Die eingesetzten Rohstoffe beginnen zu schmelzen. Es bilden sich Schmelzperlen, die von Kohlenstoff umhüllt sind. Sobald der Kohlenstoff vollständig abgebrannt ist, koaleszieren diese Schmelzperlen.
- Zum Schluss bildet sich ein flüssiger Gießschlackenpool.

Unterschiede zwischen Pulvern und Granulaten sind bekannt. Während in Laborversuchen Granulate dem vorher beschriebenen Schichtaufbau Folge leisteten, wurde hingegen bei Pulvern das Auftreten von Inseln geschmolzenen Pulvers in der Sinterschicht beschrieben [27].

Von entscheidender Bedeutung beim Gießen rissfreier Brammen ist die Höhe der Schlackenschicht in der Kokille. Eine Badhöhe von über 5 mm wird empfohlen, die außerdem während des ganzen Gusses über die gesamte Kokillenbreite konstant sein sollte. Das heißt, die Massenströme der zufließenden und der abfließenden Schlacke müssen ident sein [53]. Da sich diese Schicht zu Beginn eines Gusses erst aufbauen muss, ist bei den ersten Metern der Bramme mit Oberflächenfehlern zu rechnen. Mit speziellen Angießpulvern, die auf sehr kurze Aufschmelzzeiten getrimmt sind, kann der Fehlerbefall verhindert werden, da sich ein gleichmäßiger Badspiegel frühzeitig einstellt [6, 54].

Abbildung 4: Beispiel für einen Temperaturverlauf in Gießpulver und Schlacke in der Kokille (aus [51])

2.5.2. Schmelzrate

Die Zeit, die eine Gießpulvermenge zur Bildung einer flüssigen Schlackenschicht in der Kokille benötigt, wird als Schmelzrate bezeichnet. Sie hat einen signifikanten Einfluss auf das Betriebsverhalten von Gießpulvern. Wenn sie zu hoch ist, ist es unmöglich, eine stabile Schicht von nicht geschmolzenem Pulver auf dem Meniskus zu halten. Instabilitäten und das Fehlen einer Isolationsschicht können zu vermehrter Schlackenkranzbildung bis hin zum Einfrieren des Stahlmeniskus führen. Auf der anderen Seite führt eine zu geringe Schmelzrate zu einem Mangel an flüssiger Schlacke, sodass eine gleichmäßige Schmierung nicht erreicht wird. Dies kann wiederum zu Oberflächendefekten wie Longitudinalrissen und Durchbrüchen führen [27].

Wie in Abbildung 5 dargestellt ist, ist die Schmelzrate von hoher Komplexität und nach [37] das Produkt vieler Faktoren. Zusätzliche betriebliche Parameter, die Einfluss auf das Gießpulververhalten ausüben, sind in Tabelle 3 aufgelistet. Besonders hervorgehoben seien hier alle Parameter, die die Strömungen, insbesondere die Turbulenzen in der Kokille, betreffen, da diese zu einer Vergrößerung der Stahlbadoberfläche und dadurch zu einer Erhöhung der Schmelzgeschwindigkeit führen [55,13,56,57, 58].

Abbildung 5: Schematische Darstellung der Einflussfaktoren auf die Schmelzrate von Gießpulvern (aus [37])

Tabelle 3: Einflüsse au	uf das Gießpulververhalten
-------------------------	----------------------------

operative Einflussgrößen	chemisch Einflussgrößen	Anwendung
Gießgeschwindigkeit Kokillenbreite SEN Design Kokillendesign, -beschichtung Gießspiegelüberwachung Hubhöhe Oszillationsfrequenz Negative Strip Time (Periode in der die Abwärtsbewegung der Kokille die Gießgeschwindigkeit übersteigt)	Stahlqualität Schlacke-Stahl Interaktionen	Gießpulverzugabepraxis Argonspülung Kokillenwartung Anforderungen an die Oberflächenqualität SEN: Rampe und Eintauchtiefe Stahlherstellung

2.5.3. Vertikaler Wärmetransport

Der Wärmeentzug oberhalb des Pulvers spielt, wie in Abbildung 4 zu erkennen ist, bei Vorhandensein einer ausreichenden und konstanten Pulverschicht keine Rolle, da die Temperaturleitfähigkeit а der Gießpulverschicht in ungefähr der aleichen Größenordnung (a = 3 bis 6 $\cdot 10^{-7}$ m² s¹) wie die dichter kristalliner oder glasiger Stoffe liegt und eine geringe Abhängigkeit von der Temperatur (zwischen 25 und 700 °C) zeigt. Die Wärmeleitfähigkeit $\lambda = ac_{p}\rho$, wobei c_{p} die spezifische Wärmekapazität bei konstantem Druck und ρ die Dichte sind, ist entsprechend der niedrigeren scheinbaren Dichte der lockeren Pulver niedriger [13]. Besonders durch den Einsatz von Granalien, die ein geringeres Schüttgewicht und einen geringeren Wärmeleitfähigkeit im Vergleich zu Pulvern aufweisen, können die Abstrahlungsverluste gering gehalten werden. Bei ungleichmäßiger Zugabe des Gießpulvers sind durch die unterschiedliche Isolationswirkung der frischen Gießpulverschüttung Schwankungen der Schlackenpooltiefe [14] erwarten. da eine bessere Isolierung die zu

Schmelzgeschwindigkeit erhöht. In Tabelle 4 sind gemessene Werte für Schüttdichten und Wärmeleitfähigkeiten λ der einzelnen Gießpulvertypen angeführt [59].

	Staubfeine Pulver	Extrudierte Pulver	Kugel/ Hohlkugelgranulate
Schüttdichte / g cm ⁻³	0,9 - 1,2	1,1 – 1,3	0,85 – 1,15
λ -Wert/ W m ⁻¹ K ⁻¹	0,19 – 0,27	0,24 – 0,29	0,17 – 0,25

Tabelle 4:	Schüttdichte- und Wärmeleitfähigkeitswerte handelsüblicher	Gießpulver (aus [59])
	j	

Der Wärmeübergang in der flüssigen Schicht findet überwiegend durch Strahlung und Konvektion statt. Der Koeffizient der Gitterleitfähigkeit verbleibt im Bereich von 0,4 ± 0,2 W m⁻¹ K⁻¹, während der Leitfähigkeitskoeffizient der Strahlung einen Wert von k_r = 7 W m⁻¹ K¹ für eine relativ dicke Schicht (20 ± 10 mm) einer niedrigeisenoxidhaltigen Schlacke erreicht. Der Wärmeübergang wird darüber hinaus durch Konvektion gesteigert [13].

Durch die vernachlässigbaren Wärmeverluste an der Oberseite ist der Wärmestrom zum örtlichen Schlackenverbrauch proportional. Der Wärmeentzug von der Stahloberfläche ist eng mit der Enthalpieänderung des Pulvers verbunden. Nach Schwerdtfeger [13] gilt folgende Abschätzung. Bei einem angenommenen Gießpulververbrauch von 0.4 kg t⁻¹, einer Gießgeschwindigkeit von 1 m min⁻¹ und einer spezifischen Enthalpie der Schlacke (h_{1500} - h_{25}) von 2,2 MJ kg⁻¹ ergibt sich ein Wärmestrom $\Phi \cong q_{(h1500-h25)} \cong 0,1$ MW m⁻². Das ist 15- bis 20mal kleiner als die Wärmestromdichte in Berührung mit der Kokille im Meniskus.

Neben dem Wärmetransport wird das Schmelzen des Pulvers von der Kinetik der ablaufenden chemischen Reaktionen und Phasenumwandlungen bestimmt und hängt somit außer von der chemischen auch von der mineralogischen Zusammensetzung des Gießpulvers, der Korngröße und der Art des beigemengten Kohlenstoffs ab [25]. Anhand von Gießpulvern, die zur Carbonatzersetzung und Kohlenstoffverbrennung vor der Prüfung wärmebehandelt wurden, ist beobachtbar, dass in jenen Bereichen in denen keine Reaktionen ablaufen, die Enthalpie-Temperaturkurven unterschiedlicher Gießpulversorten sehr ähnlich sind. Die durchschnittliche Wärmekapazität beträgt 1100 J K⁻¹kg⁻¹. Die Schmelzwärme wurde an Schlacken gemessen und liegt in der gleichen Größenordnung wie die der Silikate. Als Beispiel nennt Schwertfeger H^{fus} = $5,3 \, 10^5$ J kg⁻¹ für ein ausgewähltes Pulver [13].

2.5.4. Berechnungsmodelle für Schlackenpooltiefe und Schmelzrate

Wie schon erwähnt ist die Schlackenpooltiefe ein wichtiger Parameter für das Gießen fehlerfreier Produkte. Einen Ansatz für die Berechnung Schlackenschichtstärke (d) stellt Gleichung (1) dar [56].

$$d = \left(\frac{a}{v_1}\right) \ln \left[\frac{(1-f)c_{p,1}(T_m - T_{liq})}{\Delta H^{fus} + c_{p,s}(T_{liq} - T_{amb})}\right]$$
(1)

a ist die Temperaturleitfähigkeit des Pulvers in m² s⁻¹, *c*_{*p*,1} und *c*_{*p*,s} die durchschnittlichen Wärmekapazitäten der flüssigen Schlacke und des festen Pulvers in J kg⁻¹K⁻¹, ΔH^{fus} die spezifische Schmelzenthalpie in J kg⁻¹, *f* der Anteil der flüchtigen Bestandteile, *v*₁ durchschnittliche senkrechte Geschwindigkeit der flüssigen Schlacke in m s⁻¹, *T*_{*m*} die Stahltemperatur in K, *T*_{*liq*} die Schmelztemperatur des Pulvers in K und *T*_{*amb*} die Umgebungstemperatur in K. Die Schlackendicke hängt somit direkt proportional von der Temperaturleitfähigkeit ab. Der Term zwischen den Klammern enthält nur auf den

Schmelzvorgang bezogene Daten und erhöht sich, wenn die Gießpulverschmelztemperatur sinkt.

Valentin et. al. [55] verwenden die Fouriesche Wärmeleitgleichung unter Einbeziehung der Wärmetönung beim Erhitzen der Gießpulver las Wärmesenke zur Berechnung der Temperaturverteilung oberhalb des Meniskus. Daraus folgern die Autoren die Stärke der geschmolzenen Schlackenschicht.

$$\frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\frac{\kappa}{\rho c_p} \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{\kappa}{\rho c_p} \frac{\partial T}{\partial y} \right) + \frac{S}{\rho c_p}$$
(2)

T ist die Temperatur in K, *t* die Zeit in sec, *x* die Entfernung zur Kokille in mm, *y* die Entfernung zum Meniskus in mm, κ die Wärmeleitfähigkeit des Gießpulvers in W m⁻¹ K⁻¹, ρ die Dichte des Gießpulvers in kg m⁻³, c_{ρ} die spezifische Wärmekapazität des Gießpulvers in J kg⁻¹ K⁻¹ und S die Wärmesenke des Gießpulvers während des Erhitzens in J m⁻³ sec⁻¹.

Die Berechnung erfolgte mit einer finiten Elemente-Methode. Als Ergebnis erhielten sie unter Einbeziehung der Schmelztemperatur eine ortsabhängige Schlackenschichtstärke. Demnach ist die Schlackenschichtstärke in der unmittelbaren Umgebung des Tauchrohres am dicksten, während im Vergleich dazu an der Kokillenwand, insbesondere den Ecken, viel festes Pulver zu erwarten ist.

Wie schon erwähnt wurde ist die Schmelzrate ein wichtiger Parameter. In [31] wird von einem Versuch berichtet, bei dem jeweils 4 kg von vier verschiedenen Gießpulvern gleichzeitig auf ein Stahlbad aufgebracht wurden, wobei die einzelnen Gießpulver durch Stege aus Magnesia getrennt waren. Die Schmelzrate wurde über die Messung der Änderung der Höhe der flüssigen Schlackenschicht ermittelt. Die Ergebnisse zeigen den Einfluss der Kohlenstoff- und Carbonatgehalte sowie der Schüttdichte auf die Schmelzrate. Aus den experimentellen Ergebnissen wurde folgende empirische Gleichung (3) zur Berechnung der Schmelzrate erstellt.

$$R_m = 16.8(\sum k^*(\%Carbonat)) - 0.00336C_v + 0.0477$$
 (3)

 R_m ist die die Schmelzrate in mm s⁻¹, k^* die Zersetzungsrate der Carbonate bei vorkommen mehrere Carbonate bei 1623 K in s⁻¹ für die unterschiedlichen Gießpulver und C_v den Kohlenstoffgehalt pro Volumenseinheit in kg m⁻³ z.B. C_v = Masse% Kohlenstoff mal der Gießpulverschüttdichte (kg m⁻³).

Im Gegensatz dazu kann mittels Gleichung (4) die Schmelzrate *MR* in kg s⁻¹ praxisbezogen über den brammenmantelflächenbezogenen Gießpulververbrauch Q_s in kg m⁻², die Abmessungen der Kokillenbreit- und Schmalseite *w* und *t* in m, so wie der Gießgeschwindigkeit v_c in m s⁻¹errechnet werden [60].

$$MR = (w+t)Q_s v_c \tag{4}$$

In der Literatur wird aber auch eine Reihe von Formeln zur Berechnung des Gießpulververbrauchs, die hauptsächlich auf der Analyse von Werksdaten gründen, genannt. In [60] sind die bekanntesten Gleichungen zusammengestellt. Die einfachsten Ansätze beinhalten lediglich die Gießgeschwindigkeit und die Viskosität der Schlacke. Modelle berücksichtigen zusätzlich die Kontaktfläche Komplexere zwischen Gießpulverschlacke und Stahl bzw. das Verhältnis von Gießpulvervolumen und Kontaktfläche. die Erstarrungstemperatur, die Druckverteilung mit Hilfe der Schlackenschichthöhe oder den Mehrverbrauch, der sich durch die Bildung von Oszillationsmarken ergibt.

2.5.5. Wirkungsweise des Kohlenstoffs

Während die Schmelztemperatur von Gießpulvern von der Phasen- und chemischen wird Schmelzrate Zusammensetzung abhängt, die bei gegebener der Menge und der Korngröße der Mineralzusammensetzung von der Art, Kohlenstoffträger beeinflusst [6, 52, 34]. Deshalb werden einem Gießpulver bis zu fünf verschiedene Kohlenstoffträger zugegeben [53]. Durch seine relativ schlechte Benetzbarkeit verhindert der Kohlenstoff die Agglomeration isolierter Schmelztröpfchen und fördert dadurch das Entstehen einer teilweise geschmolzenen Schicht. Kohlenstoffträger mit einer geringen Korngröße sind effektiver, weil sie die anderen Rohstoffpartikel vollständig umhüllen können, auch wenn die einzelnen Partikel agglomerieren. Ideal verhalten sich Partikelgrößen zwischen 90 und 200 nm [35]. Geringere Korngrößen behindern das Aufschmelzen zu stark, während hingegen größere Kohlenstoffpartikel die Bildung einer dickeren, flüssigen Schlackenmenge begünstigen und nahezu keinen Unterschied in der Schmelzrate zu Pulvern ohne Kohlenstoffzusatz zeigen. In der Praxis erwies sich darum die Verwendung unterschiedlicher Rußtypen zur Kontrolle der Schmelzrate am geeignetsten [18]. Feingemahlener Graphit ist aber ebenso wirksam [34]. Wie eine Studie [53] zeigte, ist die Verteilung der Kohlenstoffpartikel in den Granalien mitverantwortlich für ein homogenes Schmelzverhalten. Eine ungleichmäßige Distribution kann demnach bei Gießgeschwindigkeiten über 1,9 m min⁻¹ und einer Brammenstärke unter 225 mm zu Schlackenkranzbildung vermehrter führen. Positiv auf eine gleichmäßige Kohlenstoffverteilung wirkt sich die Kombination von Ruß und feinem Koks aus [24]. In Tabelle 5 sind Kohlenstofftypen, sowie deren Korngröße und Flammpunkt nach einer Studie von Däcker et. al. [37] aufgelistet.

Sorte	Korngröße/µm	Flammpunkt/°C
Ruß	0,028	386-522
Koks	20	511-718
Graphit	74	613-897
Gemahlener Graphit	1,36	613-897

Tabelle 5: Übersicht Kohlenstoffträger (aus [37])

Die Verbrennung des Kohlenstoffs durch die Umgebungsluft folgt dem Boduard-Gleichgewicht [55]. Zusätzliche Sauerstoffguellen zum Luftsauerstoff sind das bei der Dissoziation der Carbonate freiwerdende CO₂ und zu einem geringen Anteil der Sauerstoff aus der Reduktion metallischer Oxide [37]. Der Kohlenstoffabbrand findet wie in Kapitel 2.5.1 erwähnt in der losen Gießpulverschüttung und im oberen Teil der Sinterschicht statt. Der Sauerstoff aus der Luft tritt an der Oberfläche ein und diffundiert in Richtung Stahlbad [38]. Wegen der niedrigen Temperaturen an der Oberfläche finden dort noch keine Reaktionen statt. Sobald die Temperaturen ausreichen, beginnt der Kohlenstoff unter Bildung von CO₂ zu verbrennen. In den unteren Regionen, wo die Temperaturen hoch sind, reagiert das CO₂ mit Kohlenstoff zu CO. Das CO diffundiert aufwärts und reagiert mit dem abwärtsdiffundierenden Sauerstoff zu CO2. Eine Mischung aus CO₂ und CO verlässt die Schüttung an der Oberfläche. Wichtig für den Betrieb ist, dass die Heizrate und die Reaktionsrate im Gleichgewicht sind, damit kein Kohlenstoff an den flüssigen Stahl gelangen kann, was zur Aufkohlung des Stahls führen würde [38]. In isothermen Laborexperimenten wurde die Kinetik der Kohlenstoffverbrennung in Gießpulverschichten untersucht. Bei niedriger Temperatur (300, 400°C) wird die Verbrennungsrate durch die chemische Reaktion C + $O_2 = CO_2$, bei höheren Temperaturen (600 bis 800°C) durch den Massetransport vom Sauerstoff in der Gießpulverschicht und in dem darüberliegenden Gasraum dominiert. Dazwischen liegt ein Bereich, in dem beide Prozesse von Bedeutung sind [61]. Durch unterschiedliche Kohlenstoffträger wird die Abbrandkinetik hauptsächlich bei tiefen Temperaturen beeinflusst. Es zeigte sich, dass bei 400°C die Abbrandgeschwindigkeit in der Reihenfolge Ruß, Flugaschenkohlenstoff, Koksstaub und Graphit abnimmt [62]. Verbrennungsreaktivität Singh [32] untersuchten die verschiedener et.al. Kohlenstoffträger in dem sie ihre Aktivierungsenergie während der Verbrennung maßen. Ihre Untersuchung zeigt, dass alle Typen zum einen Teil aus amorphen zum anderen Teil aus kristallinem Kohlenstoff bestehen. Deshalb zeigt die Messkurve, in der die Aktivierungsenergie in Abhängigkeit von der Temperatur dargestellt ist, zwei Äste. Der erste Ast, bei niedrigeren Temperaturen, ist auf den amorphen Anteil zurückzuführen, wobei seine Steigung bei allen untersuchten Proben nahezu gleich ist. Die Autoren kommen deshalb zum Schluss, dass der amorphe Anteil in allen Proben von ähnlicher Natur ist. Dahingegen differiert die Steigung des zweiten Astes, der auf den kristallinen Anteil gründet. Beim Vergleich aller untersuchten Proben stellte sich dass mit sinkendem amorphen Anteil des Kohlenstoffträgers heraus. die Aktivierungsenergie steigt während die Reaktivität sinkt. Dies beeinflusst die Schmelzrate der Pulver. Deshalb zeigt Gießpulver mit Graphit die niedrigste Schmelzrate und metallurgischer Koks die höchste. Die Verbrennungsrate der Kohlenstoffträger spielt aber nach [35] gegenüber ihrer Partikelgröße auf die Schmelzrate nur eine untergeordnete Rolle.

2.5.6. Dissoziation der Carbonate

Wie in Kapitel 2.2.2, Tabelle 2 erwähnt, wird eine Reihe von Oxiden in Form carbonatischer Rohstoffen eingebracht. Der Carbonatgehalt eines Gießpulvers beeinflusst das Aufschmelzverhalten entscheidend [13]. Durch seine Gegenwart kommt es bei der thermischen Zersetzung zu einer Gasentwicklung [14]. Nach Abratis et al. [63] reagiert das aus den Carbonaten frei werdende CO₂ kann in den heißen Zonen der Gießpulverschicht mit Kohlenstoff bzw. Grafit, wodurch sich neben dem toxischen CO-Gas auch ein erhöhter Kohlenstoffabbrand ergeben kann. Außerdem neigen Pulver mit hohen Carbonatgehalten zur Flammenbildung in der Kokille. Es ist bekannt, dass die Zersetzungsgeschwindigkeit der Carbonate bei steigender Temperatur zunimmt. Die Kinetik ist jedoch kompliziert, erfolgt über mehrere Reaktionen und läuft in Gießpulvern abhängig von der Zusammensetzung unterschiedlich ab [62].

CaCO₃ dissoziiert im Gleichgewicht bei 1atm entsprechend der Reaktionsgleichung (5) bei 893,5 °C[64].

$$CaCO_3 \rightarrow CaO + CO_2$$
 (5)

Freies Calciumoxid ist jedoch wie alle anderen basischen Oxide mit anderen sauren Komponenten des Pulvers im Ungleichgewicht und hat daher die Tendenz, mit dem zugesetzten Quarzmehl, Silikaten und weiteren basischen Oxiden Meta- und Orthodisilikate zu bilden. Die Zersetzung des zugesetzten Kalkmehls würde, wenn sie unter Gleichgewichtsbedingungen erfolgen würde, nicht entsprechend der Gleichung (5) sondern gemäß Reaktionsgleichung (6) ablaufen. Durch die Reaktion von CaO mit den Silikaten wird der CO_2 -Partialdruck im Vergleich zu Gleichung (5) bei gleicher Temperatur erhöht, sodass die Gleichgewichtstemperatur bei konstantem CO_2 Partialdruck zu geringerer Temperatur verschoben wird [26].

$$CaCO_3 + yMe_xO \cdot zSiO_2 \rightarrow CaO \cdot yMe_xO \cdot zSiO_2 + CO_2$$
(6)

Soda, Pottasche und Lithiumcarbonat beeinflussen den Schmelzprozess in Verbindung mit Quarzsand durch die Bildung niedrig schmelzender Eutektika und verkürzen

dadurch die Aufschmelzzeit der Glasrohstoffe. In Abbildung 6 sind zwei Beispiele für den Einfluss von Na₂CO₃ auf das Aufschmelzen von Gießpulvern dargestellt [46].

Abbildung 6: Änderung der Erweichungs-, Schmelz- und Fließtemperatur unter Zugabe von Na_2CO_3 zu P1 (a) und P2 (c) (aus [46])

Kim et. al. [65] beschäftigten sich eingehend mit dem Dissoziationsverhalten von Na₂CO₃ und Li₂CO₃ in inerter Atmosphäre durch Argonspülung mit und ohne Zusatz von Ruß. Ohne Ruß zersetzt sich Na₂CO₃ demnach mit einem relativ geringen Reaktionsfortschritt erst nach Erreichen des Schmelzpunktes von 850 °C. Li₂CO₃ dissoziiert ebenfalls erst ab seinem Schmelzpunkt von 720 °C, wobei die Reaktionsrate höher als die von Na₂CO₃ ist. Im Fall von Na₂CO₃ ist die Reaktion bei 1200 °C nicht abgeschlossen, während bei Li₂CO₃ ab 1076 °C kein weiterer Masseverlust verzeichnet wurde. Die Zugabe von Ruß bewirkt bei beiden Carbonaten eine Beschleunigung des Zerfalls. Der Prozess verläuft gemäß den Reaktionsgleichungen (7) und (8).

$$Na_2CO_3(l) + 2C(s) \rightarrow 2Na(g) + 3CO(g) \tag{7}$$

$$Li_2CO_3(l) + 2C(s) \rightarrow Li_2O(s) + 2CO(g)$$
(8)

wobei im Falle von Na₂CO₃ der Reaktionsfortschritt vom Verhältnis Soda zu Ruß beeinflusst wird. Als Erklärung führen die Autoren eine Ummantelung der gebildeten Na₂CO₃-Schmelzperlen durch den Ruß an, die eine Dispergierung der Schmelzperlen bewirkt und so die spezifische Oberfläche im Vergleich zur der der Schmelzperlen ohne Rußzugabe erhöht. Erst wenn der Kohlenstoff konsumiert wurde, agglomerieren die Schmelzperlen. Im Fall von Li₂CO₃ konnte keine Agglomeration der Schmelzperlen beobachtet werden. Die Werte der Aktivierungsenergien für die Zersetzung von Na₂CO₃ allein und in Anwesenheit von Ruß werden mit 180 bzw. 223 kJ mol⁻¹angegeben.

Stärker wirkt sich die Gegenwart von SiO₂ auf die Zersetzung der Carbonate aus. Na₂CO₃ zersetzt sich bereits ab 799 °C (eutektische Temperatur des Zweistoffsystems Na₂O - SiO₂ [66]), und Li₂CO₃ bereits ab 600 °C gemäß den Gleichungen (9) und (10) unter der Bildung von Na₂SiO₃ bzw. Li₂SiO₃. In beiden Fällen sind das Reaktionsprodukt und die Reaktionsrate unabhängig vom Mischungsverhältnis, solange beide Reaktanden vorhanden sind. Im Vergleich zur Zugabe von Ruß sind die Reaktionsraten in Gegenwart von SiO₂ höher.

$$Na_2CO_3 + SiO_2 \rightarrow Na_2SiO_3(s) + CO_2(g)$$
(9)

$$Li_2CO_3 + SiO_2 \rightarrow Li_2SiO_3(s) + CO_2(g)$$
⁽¹⁰⁾

Der Zersetzungsmechanismus läuft bei beiden Carbonaten über die Bildung einer flüssigen Phase an den Korngrenzen ab. Während die Lösung der Körner weiter voranschreitet, bilden sich aus der Schmelze Na₂SiO₃(s) bzw. Li₂SiO₃(s). Herrscht ein SiO₂-Mangel in der Mischung, reagiert das verbleibende Carbonat mit der neu gebildeten Phase zu Na₆Si₂O₇ bzw. Li₄SiO₄. Bei höheren Temperaturen konnte

zusätzlich die direkte Dissoziation von Na₂CO₃ beobachtet werden. Herrscht hingegen ein SiO₂-Überschuss, kommt die Reaktion zum Erliegen, sobald der carbonatische Reaktand komplett umgesetzt ist, sodass ein Rest SiO₂ bestehen bleibt. Die Aktivierungsenergie für die Zersetzung von Na₂CO₃ in Gegenwart von SiO₂ beträgt 426 kJ mol⁻¹ und für Li₂CO₃ 198 kJ mol⁻¹ [66, 67]

In Gegenwart allgemeiner Silikate verläuft die Dissoziation von Natriumcarbonat gemäß Gleichung (11) [26].

$$Na_2CO_3 + yMe_xO \cdot zSiO_2 \rightarrow Na_2O \cdot yMe_xO \cdot zSiO_2 + CO_2$$
 (11)

Aus der Glasindustrie [68] bekannt, dass Natriumcalciumcarbonate ist schmelzbeschleunigend wirken. In Abhängigkeit der Temperatur entstehen durch Zugabe von Wasser die Doppelcarbonate Pirsonnite Na2Ca(CO3)2.2H2O und Gaylussit $Na_2Ca(CO_3)_2 \cdot 5H_2O$ im Rohstoffgemenge neben aggressiven Alkali-und Erdalkalihydroxiden, so wie Calciumsilicathydratphasen auf den Quarzkornoberflächen. In den Gleichungen (12) - (18) sind die wichtigsten Reaktionen angeführt.

$$CaO + H_2O \to Ca(OH)_2 \tag{12}$$

$$Na_2CO_3 + xH_2O \rightarrow Na_2CO_3 \cdot xH_2O$$
(13)

(x = 1, 7 oder 10) (14)

$$Na_2CO_3 + Ca(OH)_2 \leftrightarrow 2NaOH + CaCO_3 \tag{14}$$

$$Ca(OH)_{2} + 2Na_{2}CO_{3} + xH_{2}O \leftrightarrow 2NaOH + Na_{2}Ca(CO_{3})_{2} \cdot xH_{2}O$$

$$(x = 5 \text{ bei } T < 40^{\circ}C, x = 2 \text{ bei } T > 40^{\circ}C)$$
(15)

$$Na_2CO_3 + H_2O \leftrightarrow NaHCO_3 + NaOH$$
 (16)

$$NaHCO_3 + Na_2CO_3 + 2H_2O \rightarrow Na_3H(CO_3)_2 \cdot 2H_2O$$
(17)

$$xCaO + ySiO_2 + zH_2O \xrightarrow{>80^\circ} xCaO \cdot ySiO_2 \cdot zH_2O$$
(18)

Es ist anzunehmen, dass alle diese Reaktionen auch bei der Suspensierung der Rohstoffe im Zuge des Granulationsprozesses der Gießpulverherstellung auftreten. Beim Erhitzen von Gießpulvern darf deshalb mit denselben oder verwandten Reaktionen gerechnet werden wie sie für das Einschmelzen des Glasgemenges beschrieben werden [68]. Demnach spaltet Soda (Na₂CO₃·10H₂O) bei 120 °C Wasser ab. Gaylussit entwässert zweistufig bei 120 °C und 160 °C, während Pirssonit sein gesamtes Kristallwasser bei 160 °C abgibt. Am Beispiel des Pirssonit wird im folgenden Schema gezeigt, welche Stadien die Doppelcarbonate während des Einschmelzens durchlaufen.

$$Na_{2}Ca(CO_{3})_{2} \cdot 2H_{2}O \xrightarrow{160^{\circ}C} Na_{2}CO_{3} \cdot CaCO_{3} \xrightarrow{320^{\circ}C} Na_{2}Ca(CO_{3})_{2}$$
(19)
Pirssonit ("getrockneter" Pirssonit") (Tieftemperatur-
modifikation)

$$\xrightarrow{380^{\circ}C} Na_{2}Ca(CO_{3})_{2} \xrightarrow{425^{\circ}C} Na_{2}Ca(CO_{3})_{2}$$
(Mitteltemperatur
-modifikation) (Hochtemperatur
-modifikation)

Zusätzlich wird die Bildung von Doppelkarbonaten durch Festkörperreaktion der Soda und des Calcits (CaCO₃) im Glasgemenge ab 500 °C beschrieben [68]. Bestätigt wird dies durch eine Studie von Smith et. al. [69]. Diese untersucht die Bildung von Doppelcarbonaten aus der Mischung CaCO₃ und Na₂CO₃ im molaren Verhältnis 1:1. Mittels DTA konnten vier endotherme Phasenübergänge bei 379 °C, 432 °C, 441 °C und 445 °C nachgewiesen werden. Im Glasgemenge bilden die Doppelcarbonate bei

760 °C eine Schmelzphase, die mit Quarzsand zu Silikaten reagiert [68]. Dieser Silikatbildungsprozess lässt sich vereinfacht nach Gleichung (20) beschreiben [68].

$$3Na_2Ca(CO_3)_2 + 6SiO_2 \rightarrow Na_2Ca_2Si_3O_9 + Na_4CaSi_3O_9 + 6CO_2(g)$$
⁽²⁰⁾

2.5.7. Bildung intermediärer Mineralphasen

Während des Schmelzprozesses werden in der Gießpulverschüttung Zwischenphasen gebildet. Die wichtigste, die in Gegenwart von Fluor fast immer die Hauptphase darstellt, ist Cuspidin (Ca₄Si₂O₇F₂) [44]. Der Schmelzpunkt von reinem Cuspidin wurde von Nagata et.al. [70] mit 1407±2 °C bestimmt. Die weiteren thermodynamischen Daten sind in Tabelle 6 angeführt.

Tabelle 6:	Thermodynamische	Daten von	Cuspidin (aus [70,71,72])
------------	------------------	-----------	------------	-----------------

Schmelzpunkt/°C	1407±2 °C
Gibbsenergie ∆G/ kJ mol ⁻¹ °	-5198+0.825T ±12
Wärmekapazität ∆H₅/ kJ mol⁻¹	$0.382T - 135 \pm 15$
Wärmekapazität ∆Hı/ kJ mol⁻¹	$0.854T$ -810 \pm 25
Schmelzenthalpie bei 1683K/kJ mol ⁻¹	119
Schmelzentropie (angenommen)/ kJ mol ⁻¹ K ⁻¹	70,7

Im binären Phasensystem $Ca_4Si_2O_7F_2$ - CaF_2 beträgt die eutektische Temperatur 1242 ± 3 °C bei 46 Gew.% 3CaO·2SiO₂ und 54 Gew.% CaF₂ [73].

Das Dreiphasensystem CaO-SiO₂-CaF₂ weist vier ternäre Eutektika und zwei Peritektika auf [74]. Ihre Zusammensetzungen und Temperaturen sind in Tabelle 7 aufgelistet, das zugehörige Phasensystem ist in Abbildung 7 dargestellt.

Tabelle 7: Invariante Punkte im System CaO-CaF₂-SiO₂ (aus [74])

	CaO	SiO ₂	CaF_2	Temp./°C
CaSiO ₃ + SiO ₂ + CaF ₂ (ternäres Eutektikum)	33,8	40,7	25,5	1103
$CaSiO_3 + CaF_2 + Ca_4Si_2O_7F_2$				
(ternäres Peritektikum)	34,6	40,2	25,2	1116
$Ca_3Si_2O_7 + Ca_3Si_2O_7 + Ca_4Si_2O_7F_2$				
(ternäres Eutektikum)	49,6	39,6	10,8	1232
$Ca_2SiO_4 + Ca_3Si_2O_7 + Ca_4Si_2O_7F_2$				
(ternäres Peritektikum)	50,4	39,2	10,4	1235
$C_2S + Ca_4Si_2O_7F_2 + CaF_2$ (ternäres Eutektikum)	31,5	18,5	50,0	1114
Ca ₄ Si ₂ O ₇ F ₂ + CaF ₂ (pseudobinäres Eutektikum)	26,8	19,2	54,0	1242
Schmelzpunkt von Cuspidin				1407

Abbildung 7 : Phasensystem CaO-SiO₂-CaF₂-SiF₄ (aus [74])

Na₂O wird Gießpulvern zur Senkung der Schmelztemperatur zugegeben. In einer CaO-SiO₂-CaF₂ Schlacke tendiert Na₂O thermodynamisch zur Bildung von NaF [70]. Abbildung 8b zeigt die Auswirkung der Zugabe von 8 Gew.% NaF auf das System Ca₄Si₂O₇F₂-CaF₂.

Abbildung 8: a) Binäres Phasendiagramm Cuspidin (3CaO·2SiO₂·CaF₂)-CaF₂ (aus [70]), b) Pseudobinäres Phasendiagramm Cuspidin-CaF₂ mit 8 Gew.% NaF (aus [70])

In Abhängigkeit der chemischen Zusammensetzung des Pulvers werden zusätzlich zu Cuspidin weitere mineralische Phasen während des Schmelzprozesses gebildet. In der Literatur werden die Phasen Pseudowollastonit (CaSiO₃), Pectolith (NaCa₂Si₃O₈(OH), Combeit (Na₂Ca₂Si₃O₉), Natriumcalciumsilikat (Na₂Ca₃Si₄O₁₅), Gehlenith (Ca₂Al(Al,Si)O₇)), und Carnegieit (NaAlSiO₄) genannt. Villiaumit (NaF), der sich über 800 °C zersetzt, wird selten gebildet. Außerdem wird vom Auftreten nicht identifizierter Phasen berichtet [18, 40, 44, 46]. Grieveson et. al. [44] untersuchten den Phasenbestand nach Glühung bei 1000°C. Die Linien in Abbildung 9 legen fest, welche

Phasen in Abhängigkeit von der Bruttozusammensetzung neben Cuspidin auftreten. Gleichzeitig geben die Autoren aber zu bedenken, dass vergleichsweise geringe Anteile eines weiteren Oxides genügen um eine andere Phase zu stabilisieren. Als Beispiel nennt er die Bildung von Akermanit (Ca₂MgSi₂O₇) in Gegenwart von MgO anstelle von Wollastonit.

Abbildung 9: Mineralphasenbestand nach Glühung bei 1000°C aus [44].

Hering et. al. [75] untersuchte den Phasenbestand von Gießschlacken aus der Kokille nach dem Vergießen unterschiedlicher Stähle mit variierenden Aluminiumgehalten. Durch die Redoxreaktion war der Al_2O_3 Gehalt der Schlacken gegenüber dem Originalpulver erhöht. Er beobachtete die Abhängigkeit der zusätzlich zu Cuspidin gebildeten Mineralphasen vom Na₂O- und Al_2O_3 -Gehalt (siehe Abbildung 10). Obwohl diese Phasenparagenese durch Abkühlen einer homogenen Schmelze ermittelt wurde, gibt sie Hinweise auf die beim Aufschmelzen zu erwarteten Phasen.

Abbildung 10: Dominierende Mineralphasenanteile zweier Gießpulver in Abhängigkeit vom Gehalt an Na_2O und Al_2O_3 (aus [75])

2.5.8. Bildung einer Gasphase

Neben dem bei der Verbrennung von Kohlenstoff und der Entsäuerung der Carbonate freiwerdenden CO und CO₂ gehen auch andere Elemente des Gießpulvers in die Gasphase über. So detektierten Zaitsev et.al. [76] im gesättigten Dampf über den Proben mit der Knudsen Effusions Massenspektroskopie die Ionen CaF⁺, Ca⁺, AIF₂⁺, AIF⁺, AI⁺, AIOF⁺, SiF₃⁺, SiF₂⁺, SiF⁺, NaF⁺, Na⁺, NaAIF₃⁺, Na₂AIF₄⁺, K⁺, KF⁺, BF₂⁺, BF⁺, FeF⁺, MnF⁺, MgF⁺, TiF₂⁺ und TiF⁺. Anhand von Referenzspektren wurden die Verbindungen NaF, KF, SiF₄, AIF₃, NaAIF₄, Na₂AIF₅, AIOF, CaF₂, BF₃ als die Hauptkomponenten identifiziert. Diese Verbindungen werden auch von Abratis et.al. [77] mit einem Massenspektrometer ermittelt, allerdings nennen sie zusätzlich Na₂AIF₅, AIOF, CaF₂ und BF₃ als Bestandteile der Gasphase. Außerdem weisen sie darauf hin, dass fluorhältige Verbindungen bereits während des Schmelzprozesses entweichen. Park et. al. [78] führen an, dass das C/S Verhältnis der Schlacke entscheidet, welches Gas entweicht. Aus ihren Untersuchungen schließen sie, dass bei einem C/S Verhältnis zwischen 0,8 und 1 bei silikatischen Schmelzen SiF₄ die Hauptkomponente ist, während ab einen C/S-Verhältnis über 1 mit dem Entweichen von CaF₂ zu rechnen ist.

3. Durchführung

3.1. Proben

3.1.1. Modellpulver

Zum besseren Verständnis der Vorgänge während des Schmelzens wurden Modellpulver aus den Komponenten Wollastonit mit einem Reinheitsgrad >99 %, Fluorit mit einem Reinheitsgrad von 99,5 %, Hochofenschlacke, deren chemische Zusammensetzung in Tabelle 8 gegeben ist, und Natriumcarbonat mit einem Reinheitsgrad von >99,5% hergestellt. Für jedes Modellpulver wurden in Summe 100 g der Komponenten vorgelegt und die Mischung in einer Laborscheibenschwingmühle gemeinsam vermahlen. Die molaren Mischungsverhältnisse der einzelnen Modellpulver sind in Tabelle 9 zu entnehmen.

	Gehalt/ mol%
CaO	34,41
SiO ₂	34,12
MgO	16,46
AI_2O_3	8,28
SO ₃	2,26
K ₂ O	1,28
MnO	0,85
Na ₂ O	0,58
TiO ₂	0,38
Fe ₂ O ₃	0,19
SrO	0,12
BaO	0,08
weitere	1,00

Tabelle 8: Chemische Zusammensetzung der Hochofenschlacke

Tabelle 9: Mineralogische Zusammensetzung der Modellpulver (molar)

Probenbezeichnung	Wollastonit	Hochofenschlacke	Fluorit	Natriumcarbonat
CS-F	1	-	1	-
HOS-F	-	1	1	-
0,75CS-0,25HOS-F	0,75	0,25	1	-
0,5CS-0,5HOS-F	0,5	0,5	1	-
0,25CS-0,75HOS-F	0,25	0,75	1	-
CS-Na	1	-	-	1
CS-F-0,5Na	1	-	1	0,5
HOS-Na	-	1	-	1
HOS-F-0,5Na	-	1	1	0,5

3.1.2. Kommerzielle Gießpulver

Im Rahmen dieser Arbeit wurde das Aufschmelzverhalten von 14 kommerziell eingesetzter Gießpulvern untersucht, die entweder pulverförmig oder granuliert vorlagen. Diese wurden für das Vergießen von Knüppeln und Vorblöcken verwendet bzw. kamen für das Vergießen von Brammen zum Einsatz. Tabelle 10 enthält eine Aufstellung der untersuchten Proben. Bei Pulver 3a, 3b und 3c handelt es sich wie im

Fall der Proben 4a, 4b und 4c um drei verschiedene Chargen mit der gleichen Sortenbezeichnung vom selben Hersteller.

1GranulatFederstahl2PulverisatSchienenstahl3aPulverisatKaltstauchgüten3bPulverisatKaltstauchgüten3cPulverisatKaltstauchgüten4aGranulatBaustahl4bGranulatBaustahl4cGranulatBaustahl5Sortenbezeichnung	Proben Nr.	Art	Stahlqualität	Bemerkung
5 Granulat Weichstahl 6 Granulat Weichstahl 7 Granulat Weichstahl 8 Pulverisat ULC 9 Granulat TRIP Stahl 10 Granulat TRIP Stahl	1 2 3a 3b 3c 4a 4b 4c 5 6 7 8 9	Granulat Pulverisat Pulverisat Pulverisat Pulverisat Granulat Granulat Granulat Granulat Granulat Granulat Granulat Granulat	Federstahl Schienenstahl Kaltstauchgüten Kaltstauchgüten Baustahl Baustahl Baustahl Weichstahl Weichstahl Weichstahl ULC TRIP Stahl	Selbe Sortenbezeichnung Selbe Sortenbezeichnung

 Tabelle 10:
 Untersuchte Gießpulverproben

3.2. Untersuchungsmethoden

3.2.1. Chemische Analyse

Die zu untersuchenden Pulver wurden chemisch mittels Röntgenfluoreszensanalyse (RFA) analysiert. Da durch den Schmelzaufschluss zur Probenvorbreitung die flüchtigen Bestandteile des Pulvers zum Teil entwichen, wurden die Elemente Natrium und Kalium so wie teilweise Bor und Lithium zusätzlich mittels optischer Emissionsspektrometrie mit induktiv gekoppeltem Plasma (ICP-OES) bestimmt. Zur Analyse der Fluorgehalte wurde eine fluorselektive Ionensonde herangezogen. Zusätzlich wurde der Gesamtkohlenstoff so wie der Schwefelgehalt mittels Verbrennungstechnik bestimmt.

3.2.2. Simultane Thermoanalyse (STA)

Um einen Überblick über die beim Aufschmelzen stattfindenden Reaktionen erhalten zu können, wurde an allen Proben eine Differenzthermoanalyse mit kombinierter Thermogravimetrie durchgeführt. Um Reaktionen zwischen dem Tiegelmaterial und dem Gießpulver zu vermeiden, wurden Platintiegel verwendet. Die Probenmasse lag jeweils zwischen 80 und 100 µg. Die Heizrate betrug 5 °C min⁻¹, und die Maximaltemperatur wurde mit 1450 °C gewählt. Um die Oxidation des Kohlenstoffes untersuchen zu können, wurde mit 60 ml min⁻¹ synthetischer Luft gespült. Obwohl die STA gut geeignet ist, den Kohlenstoffabbrand zu charakterisieren und weitere Effekte zu detektieren, können mit ihr die Vorgänge während des Aufschmelzens nicht näher spezifiziert werden.

Zu Testzwecken wurden an der Proben 8 eine STA Messungen durchgeführt, deren Abgasstrom mittels einer auf 300 °C geheizter Kapillare an ein Massenspektrometer angeschlossen war. Es ermöglichte die Detektion von Ionen mit Massenzahlen zwischen 1 und 300 amu. Leider konnten damit Alkalien nicht detektieren werden, da diese bedingt durch die niedrigen Temperaturen von 300 °C bereits vor Eintritt in das Massenspektrometer kondensierten.

3.2.3. Stufenglühungen

Da wie in 2.4.5 beschrieben mit der STA nur thermodynamische Effekte erkannt, diese aber ohne nähere Kenntnis keinen Reaktionen zugeordnet werden konnten, wurden die Proben in einem Hochtemperaturofen bis zu einer zuvor definierten Temperatur mit 5°C min⁻¹ erhitzt und nach einer 15-minütigen Haltezeit durch Eintauchen des Tiegels in ein Wasserbad auf Raumtemperatur abgeschreckt. Bei Probe 1 und 2 wurden die Temperaturstufen anhand der DTA- und TG-Kurven festgelegt, sodass bei Pulver 1 die Stufenglühungen bei 350 °C, 600 °C, 750 °C, 900 °C, 1000 °C, 1100 °C, 1150 °C und 1200 °C erfolgten. Bei Probe 2 fanden die Stufenglühungen bei 400 °C. 670 °C, 750 °C, 870°C, 1000 °C, 1050 °C, 1150 °C und 1200 °C statt. Für eine bessere Vergleichbarkeit wurden alle weiteren Proben bei 500 °C, 750 °C, 900 °C, 1000 °C, 1100 °C und 1200 °C temperaturbehandelt. Bei Pulver Nr. 1 und 2 kamen bis 900 °C zylindrische Korundtiegel mit einem Durchmesser von 30 mm und einer Höhe von 40 mm zum Einsatz. Für höhere Temperaturstufen wurden zylindrische Tiegel aus Chromstahl mit einem Durchmesser von 18 mm und einer Höhe von 70 mm verwendet. Durch die geringe freie Oberfläche reichte der Sauerstoffpartialdruck in der Probe für eine vollständige Verbrennung des Kohlenstoffs nicht aus, sodass die Proben zuerst entkohlt werden mussten. Bei den späteren Versuchsserien kamen für alle Temperaturstufen guaderförmige Chromstahltiegel mit den Maßen 30x30x40 mm³ zum Einsatz, die eine Probenvorbehandlung überflüssig machten.

Im Fall der Versuchsmischungen war der Versuchsablauf nahezu identisch. Allerdings betrug die Haltezeit außer in drei Fällen, bei der die Probe 240min bei der Maximaltemperatur verblieb, 30min. Des Weiteren wurde bei vier Versuchen ein Platintiegel verwendet. Eine detaillierte Aufstellung befindet sich in Tabelle 11.

Probenbezeichnung	Temperatur/ °C	Haltezeit/ min	Tiegelmaterial
	750	30	Stahl
	1200	30	Stahl
03-r	1170	30	Stahl
	1220	30	Stahl
	925	30	Stahl
HS-F	1020	30	Stahl
	1100	30	Stahl
	1200	240	Platin
	625	30	Platin
CS No	800	30	Platin
03-Ma	925	30	Stahl
	1100	30	Stahl
	750	30	Platin
HS-Na	1150	240	Stahl
	1250	30	Stahl
	1250	240	Stahl
	625	30	Platin
CS-F-0,5Na	925	30	Stahl
	1220	30	Stahl
	700	30	Stahl
HS-F-0,5Na	925	30	Stahl
	1100	30	Stahl
	1200	30	Stahl
	700	30	Stahl
0.50S-0.5HS-E	925	30	Stahl
0,000-0,0110-1	1100	30	Stahl
	1200	30	Stahl

Tabelle 11: Verzeichnis der Modellpulver

3.2.4. RDA

Sowohl an den Pulvern im Anlieferungszustand als auch von den Proben nach Temperaturbehandlung wurden röntgendiffraktometrische Untersuchungen durchgeführt. Der Winkelbereich umfasste 7-65°. Für die Messung wurden die Proben analysenfein gemahlen. Die Auswertung der Kurven erfolgte qualitativ und teilweise quantitativ mittels Riedveltanalyse.

Außerdem wurden am Pulver 8 zwei Testmessungen bei verschiedenen Einrichtungen mittels Hochtemperaturkammer durchgeführt. Hierbei wurde die Probe auf ein widerstandsbeheiztes Band aufgebracht (siehe Abbildung 11), das sich in einer geschlossenen Kammer befand, die wiederum im Goniometer situiert war. Bei der ersten Messung wurde ein Platinheizband verwendet während bei der zweiten Messung ein Heizband aus Tantal zum Einsatz kam. Im ersten Fall wurde die Kammer evakuiert, im zweiten Fall erfolgte die Messung an Luft. Auch bezüglich der Schichtdicke gab es Unterschiede. So wurde bei der ersten Messung nahezu eine Monokornschicht auf das Heizband aufgebracht, während bei der zweiten Messung die Schichtdicke größer war. In beiden Fällen betrug die Heizrate 50 °C min⁻¹. Die Schrittweite war 50 °C. Die Haltezeit bei den einzelnen Temperaturstufen betrug 20 min.

Abbildung 11: Heizkammer HTK16 und Graphitheizband [aus 79]

3.2.5. Mikroskopie

Da röntgendiffraktometrisch nur kristalline Phasen, und auch diese nur ab einer gewissen Menge, detektiert werden können, wurden alle Proben vor und nach Temperaturbehandlung mikroskopisch analysiert. Dafür wurden von den Proben Anschliffe hergestellt, die auflichtmikroskopisch und mittels Rasterelektronenmikroskop (REM) gekoppelt mit einer energiedispersiven Röntgenmikroanalyse (EDS) untersucht wurden.

3.2.6. Heiztischmikroskopie

Um die Vorgänge beim Aufschmelzen in situ beobachten zu können, wurde die Heiztischmikroskopie Methode der angewendet. Hierbei ist unter einem handelsüblichen Auflichtmikroskop eine gasdichte Heizkammer platziert (Abbildung 12). Diese ist kardanisch gelagert, um die Probe senkrecht zum einfallenden Lichtstrahl positionieren zu können. Die Heizkammer ist an der Oberseite mit einem Quarzfenster verschlossen, wassergekühlt und kann über zwei Öffnungen mit Gas gespült werden. In ihr ist ein widerstandsbeheizter 60-Watt-Korundofen, der Temperaturen bis maximal 1500 °C zulässt, situiert. Durch die Öffnung des Ofens nach oben werden ein Saphirplättchen und ein Platintiegel in den Probenraum eingelegt. Das Saphirplättchen hat die Aufgabe zu verhindern, dass das Regelthermoelement, das von unten in den Probenraum eingeführt ist, während des Versuchs aufgrund lokaler Überhitzungen mit dem Tiegel verschmilzt. Zur Verringerung der Wärmestrahlung wird der Ofen während des Versuches mit einem Korundplättchen verschlossen, das in der Mitte eine runde Öffnung mit einem Durchmesser von ca. 1 mm aufweist. Damit die flüssige Schlacke nicht an die Tiegelwand kriecht, wurde die Probe zusätzlich auf einer Schleife aus Platinthermodrähten platziert, wodurch gleichzeitig die tatsächliche Temperatur der Probe ermittelt werden kann [80].

Da die Granalien rund sind, und somit nur ein geringer Teil der Probe in der Fokussierungsebene liegt, wurden, um möglichst viele Phasen beim Aufschmelzen beobachten zu können, sowohl die pulverförmigen als auch die granulierten Proben ohne Bindemittel zu Tabletten verpresst. Von einem Großteil der Proben wurden Anschliffe hergestellt und mikroskopisch mittels Auflichtmikroskop, REM und EDS analysiert. Die für die REM Analyse notwendige Beschichtung wurde anschließend wieder entfernt. Das Zuschneiden der Proben erfolgt zuerst mit Hilfe eines Präzisionsschneidegeräts, mit dem eine Scheibe von ca. 1,5mm Dicke abgetrennt wurde. Aus dieser Scheibe werden dann Proben mit einer Kantenlänge von ca. 2-3 mm
herausgeschnitten. Die Heizrate betrug 10 °C·min⁻¹. Die Messungen erfolgten unter synthetischer Luft.

Ein wichtiger Kennwert, der mit dem HTM ermittelt wurde, ist die Temperatur des vollständigen Kohlenstoffabbrandes. Im HTM ist Kohlenstoff neben der Gelbfärbung an dem hohen Reflexionsvermögen erkennbar. Erkennbar wird auch der Kohlenstoffabbrand durch eine zunehmende Verringerung der Partikelgröße mit steigender Temperatur. Die Oxidation erfolgt sowohl an der Oberfläche als auch an den Rändern der Partikel. Wenn der Kohlenstoff vollständig abgebrannt ist, bleiben Poren zurück, die erst geschlossen werden, wenn das Sintern der Probe eintritt (Abbildung 13). Die erste Cuspidinbildung zeigt sich im Heiztischmikroskop durch ein Aufhellen der Bereiche, wo sich Cuspidin bildet. Der Grund für die hellere Erscheinung lässt sich darauf zurückführen, dass es bei der Reaktion der Rohstoffe durch Feststoffdiffusion zur Ausbildung einer raueren Oberfläche sowohl am Wollastonit bzw. der Glasphase als auch am sich auflösenden Fluorit kommt. Dadurch wird das auftreffende Licht gestreut, was das hellere Erscheinen dieser Bereiche im Vergleich zum ursprünglichen Zustand Bildung erster Schmelzphasen (Abbildung 14). Die zeiat sich erklärt im Heiztischmikroskop durch dunkler erscheinende Bereiche als die sie umgebenden festen Phasen. Außerdem weist die Schmelzphase eine rote Färbung auf (Abbildung 15). Eine weitere wichtige Kennzahl ist die Temperatur, ab der gut ausgebildete Schmelze Cuspidinkristalle in einer vorliegen. Sie weisen ein hohes Reflexionsvermögen auf und liegen zumeist als einzige feste Phase in der Schmelze vor (Abbildung 16). Wenn diese Cuspidinkristalle wieder schmelzen, ist generell zu beobachten, dass sich zuerst schlierenförmige Gebilde formieren, die plötzlich verschwinden. Dieser Vorgang ist immer mit einem sofortigen Temperaturanstieg der Probe verbunden. Sofort nach dem Schmelzen der Cuspidinkristalle kann das Aufsteigen von Gasblasen beobachtet werden. Dabei handelt es sich um flüchtige Bestandteile (z.B. Alkalien, Fluorverbindungen). Erst danach ist eine homogene Schmelzphase beständig.

Abbildung 12: Aufbau des Heiztischmikroskops: (1) 1,3 Megapixel-Kamera, (2) Heiztisch, (3) Kardantisch, (4) Regeleinheit und (5) Ofen im Inneren des Heiztisches

Abbildung 13: Auflichtmikroskopische Darstellung des Kohlenstoffabbrandes mittels HTM a) Originalzustand, b) fortgeschrittener Kohlenstoffabbrand. Phasen (1) Fluorit, (2) Kohlenstoff, (3) Phosphorschlacke, (4) Albit, (5) Glasphase

Abbildung 14: Auflichtmikroskopische Darstellung der Cuspidinbildung mittels HTM

Abbildung 15: Mikroskopische Darstellung der Bildung erster Schmelzphasen mittels HTM

Abbildung 16: Mikroskopische Darstellung von gut ausgebildeter Cuspidin in einer Schmelze mittels HTM

4. Ergebnisse

4.1. Ergebnisse der Untersuchungen an Modellpulvern

4.1.1. Modellpulver CS-F

Anhand von Stufenglühungen am Modellpulver CS-F wurde die Cuspidinbildung mineralogisch untersucht. Der erwartete Reaktionsweg gemäß dem Dreistoffsystem SiO_2 -CaO-CaF₂ aus [74] ist nachstehend (21) dargestellt, wobei die Temperaturen teilweise aus dem Diagramm geschätzt wurden.

$$(CaSiO_3, CaF_2) \xrightarrow{1123} (CaF_2, Ca_4Si_2O_7F_2, L) \xrightarrow{1227} (CaF_2, L) \xrightarrow{1267} (L)$$
(21)

Die STA Analyse (siehe Anhang) zeigte, dass die Probe zwischen 250 °C und 750 °C 0,9 Gew.% an Masse verlor. Grund dafür ist die Dissoziation von im Wollastonitpulver enthaltenem Calcit (CaCO₃). Die Ergebnisse der röntgendiffraktometrischen und der mikroskopischen Untersuchungen der Stufenglühungen zeigten, dass wie erwartet nach der Stufenglühung bei 750 °C der Mineralphasenbestand unverändert vorliegt (Abbildung 17). Allerdings deuten die abgerundeten Kanten der Fluoritkörner auf die Bildung von HF nach Gleichung 20 hin. Erste SiO₂-reiche Säume um den Fluorit traten nach der Stufenglühung bei 1020 °C auf. Die STA zeigt die Cuspidinbildung ab 1023 °C. In Übereinstimmung damit lagen nach der Stufenglühung bei 1170 °C vorwiegend Cuspidin, sowie zwei Schmelzen vor. Diese Schmelzen wiesen beide ein molares C/S Verhältnis von 2:3 auf. Aufgrund von Rohstoffverunreinigungen beinhalteten sie unterschiedliche Magnesium- und Aluminiumgehalte. Neben Cuspidin und der Schmelzphase war Fluorit weiterhin vertreten. Nach Stufenglühung bei 1220 °C (Abbildung 17) zeigte der Phasenbestand qualitativ keine Veränderung. Allerdings war eine deutliche Verringerung der Kristallgröße des Cuspidins zu beobachten, der nun nadelförmig vorlag. Die Schmelzphasenmenge erschien gegenüber der Stufenglühung bei 1170 °C deutlich verringert. Ihre chemische Zusammensetzung wies zusätzliche Eisen- und Chromgehalte auf, die aus dem Tiegelmaterial stammten. Die Ergebnisse der Stufenglühungen sind in Tabelle 12 zusammengefasst.

Abbildung 17: Auflichtmikroskopische Darstellung des Modellpulvers CS-F nach der Stufenglühung bei a) 750 °C und b) 1220 °C. (1) Fluorit, (2) Wollastonit, (3) Quarz, (4) Feldspat, (5) Cuspidin und (6) Glasphase

Tabelle 12:Modellpulver CS-F, Phasenbestand nach den Stufenglühungen in Abhängigkeit der
Temperatur

CS-F	750 °C	1020 °C	1170 °C	1220 °C
Wollastonit (CaSiO ₃)				
Fluorit (CaF ₂)				
Cuspidin (Ca ₄ Si ₂ O ₇ F ₂)				
2 Glasphasen (C:S 3:2)				

4.1.2. Modellpulver HOS-F

Neben Wollastonit wird auch Hochofenschlacke mit einem ähnlichen C/S-Verhältnis wie Wollastonit bei der Herstellung von Gießpulvern eingesetzt. Deshalb wurde die Cuspidinbildung anhand des Modellpulvers HS-F untersucht. Die Kurve zeigt eine Glasübergangstemperatur von 544°C. Ab 806°C beginnt die Probe zu rekristallisieren. Obwohl der Fluorit und die Hochofenschlacke nach der Stufenglühung bei 925 °C isoliert in der Probe vorlagen, konnte sowohl mit der EDS als auch mit der RDA die Existenz von Cuspidin nachgewiesen werden, der sich an den Korngrenzen der Hochofenschlacke gebildet hatte (Abbildung 18a). Ab 1030 °C begann die gesamte Probe zu schmelzen. Gleichzeitig setzte ein geringer Masseverlust ein. Bei 1030 °C weist ein exothermer Peak in der DTA-Kurve ein Maximum auf, der der Bildung von Cuspidin zuzuschreiben ist. Bestätigt wird dies durch die mineralogische Untersuchung der Proben nach Stufenglühung bei 1020 °C und 1100 °C (Abbildung 18b). Diese zeigt, dass hauptsächlich Fluorit, Cuspidin und Schmelze in den Proben vorliegt, wobei die Kristallgröße des Cuspidins bei Temperaturstufe 1100 °C im Vergleich zu 1020 °C zunahm. Der DTA zufolge schmolz die Probe bei 1160 °C. Fluorit konnte aber mittels RDA nach der Stufenglühung bei 1220 °C immer noch in der glasig erstarren Schmelze nachgewiesen werden.

Abbildung 18: Rasterelektronenmikroskopische Darstellung des Modellpulvers HOS-F nach der Stufenglühung bei a) 925 °C und b) 1100 °C. (1) Hochofenschlacke, (2) Fluorit, (3) Cuspidin und (4) glasig erstarrte Schmelze

Tabelle 13: Modellpulver Schlacke-Fluorit im Verhältnis 1:1, Phasenbestand nach den
Stufenglühungen in Abhängigkeit der Temperatur

4.1.3. Modellpulver CS-HOS-F

manchen Gießpulverrezepturen liegen Wollastonit und Hochofenschlacke In nebeneinander vor. Deshalb wurden in Summe drei Mischungen mit den Komponenten Wollastonit, Hochofenschlacke und Fluorit im molaren Verhältnis 0,25:0,75:1; 0,5:0,5:1; und 0,75:0,25:1 mittels STA untersucht. Die DTA-Ergebnisse sind in Abbildung 19 dargestellt. Aufgrund der Rekristallisation der Schlacke ist ein exothermer Peak mit einer Onset-Temperatur von ca. 760 °C in allen drei Kurven zu erkennen, seine Fläche ist aber bei der Probe 0,25CS-0,75HS-F wegen des höchsten Schlackenanteils am größten und nimmt mit steigendem Wollastonitanteil in der Probe ab. Ab 960°C beginnen die Proben 0,75CS-0,25HOS-F und 0,5CS-0,5HOS-F zu schmelzen, bei Probe 0,25CS-0,75-HOS-F tritt das erst ab 1010°C ein. Der endotherme Peak liegt in allen Fällen bei 1020 °C. Bei der Mischung mit dem höchsten Schlackenanteil ist dies allerdings am deutlichsten ausgeprägt Mit der Schmelzphasenbildung einher geht die Bildung von Cuspidin. Ab 1100°C waren alle Proben geschmolzen.

Abbildung 19: Ergebnisse der STA der Modellpulver CS-HOS-F. (1) Oxidation des Eisens in der Hochofenschlacke, (2) Schmelzbeginn

Mineralogisch näher untersucht wurde das Modellpulver 0,5CS-0,5HOS-F. Hierbei zeigte sich, dass nach einer Stufenglühung bei 700 °C der Mineralphasenbestand unverändert vorlag. Während der Stufenglühung bei 925 °C bildeten sich Cuspidin als Saum um den Wollastonit und die Hochofenschlacke (Abbildung 20a). Außerdem diffundierten Fluorionen in das Innere der Hochofenschlacke, wodurch feine Cuspidinkristalle geformt wurden. Nach der Stufenglühung bei 1100 °C konnten große Cuspidinkristalle und Fluorit eingebettet in eine homogene glasig erstarrte Schmelze detektiert werden (Abbildung 20). Wollastonit und Schlacke wurde hierbei zur Gänze umgesetzt. Nach der Stufenglühung bei 1200 °C war der Cuspidin vollständig geschmolzen. Lediglich Fluorit lag dentritisch in einer homogenen glasig erstarrten Schmelze vor. Die Phasenvergesellschaftung nach den Stufenglühungen ist in Tabelle 14 gegeben.

Abbildung 20: Rasterelektronenmikroskopische Darstellung des Modellpulvers 0,5CS-0,5HOS-F nach der Stufenglühung bei a) 925 °C und b) 1100 °C. (1) Wollastonit (2) Hochofenschlacke (3) Fluorit, (4) Cuspidin und (5) glasig erstarrte Schmelze

Tabelle 14: Modellpulver 0,5CS-0,5HOS-F, Phasenbestand nach den Stufenglühungen in
Abhängigkeit der Temperatur

4.1.4. Modellpulver CS-Na

Aufgrund seiner den Schmelzpunkt erniedrigenden Wirkung wird Natriumcarbonat in unterschiedlichen Gehalten in Gießpulvern eingesetzt. In der Literatur (siehe 2.5.6) wird die Dissoziation in Verbindung mit Silikaten beschrieben. Mit dem folgenden Versuch sollte der Einfluss des Wollastonits auf die Dissoziation von Natriumcarbonat untersucht werden. Aus dem in der TG-Kurve aufgezeichneten Massenverlust ist abzuleiten, dass die Zersetzung von Na₂CO₃ in Gegenwart von Wollastonit bereits bei 625 °C einsetzt. Vermutlich bildete sich während der Stufenglühung bei 800 °C das Doppelcarbonat Nverereit (Na₂Ca(CO₃)₂). Durch die Bedampfung des Schliffes mit Kohlenstoff konnte mittels EDS nicht geklärt werden, ob es sich wirklich um ein Karbonat handelt. Zwei endotherme Peaks im DTA-Kurvenverlauf bei 870 °C und 910 °C markieren die Bildung der Phasen Na₂CaSiO₄ und Na₄CaSi₂O₇, wobei sich aufgrund der Ergebnisse der Stufenglühungen Na2CaSiO4 zuerst bildet und sich weiter zu Na4CaSi2O umsetzt (Abbildung 21). Zu den Stufenglühungen ist anzumerken, dass sich der Phasenbestand am Tiegelrand von dem in der Mitte insofern unterschied, als dass Na₂CaSiO₄ nach Stufenglühung bei 800 °C bereits in den tiegelnahen Bereichen auftrat, während diese Phase in der Probenmitte erst nach Stufenglühung bei 925 °C detektiert werden konnte. Analog verhielt es sich mit der Phase Na₄CaSi₂O₇. Dies ist damit zu erklären, dass in den äußeren Bereich der CO₂ Partialdruck geringer ist und die Entsäuerung des Carbonates deshalb hier erwartungsgemäß bei geringeren Temperaturen auftritt. Nach den Stufenglühungen bei 925 °C und 1100 °C trat zusätzlich die Phase Na₂Ca₂Si₂O₇ auf. Aus der STA resultiert, dass sich die Dissoziation des Natriumcarbonates ab 915 °C verlangsamt und bei 1190°C mit Übergang in die flüssige Phase abgeschlossen ist. Die Ergebnisse der Stufenglühungen sind in Tabelle 15 zusammengefasst.

Abbildung 21: Rasterelektronenmikroskopische Darstellung des Modellpulvers CS-Na nach Stufenglühung bei a) 625 °C und b) 1100 °C. (1) Wollastonit, (2) Natriumcarbonat, (3) Na₂Ca₂Si₂O₇ (4) Na₄CaSi₂O₇ und (5) glasig erstarrte Schmelze

Tabelle 15: Modellpulver CS-Na, Phasenbestand nach den Stufenglühungen in Abhängigkeit der
Temperatur

4.1.5. Modellpulver HOS-Na

Beim Ersatz des Wollastonits durch Hochofenschlacke geht aus der DTA-Kurve hervor, dass die Dissoziation des Natriumcarbonates ab 580 °C einsetzte, also um 45 °C früher als in Gegenwart von Wollastonit. Bei 960 °C und ca. 75 % des zu erwarteten Masseverlustes durch das entweichende CO₂ kam es zu einer Verlangsamung des Dissoziationsprozesses, der erst bei 1130 °C abgeschlossen war. Wie in Abbildung 22 dargestellt, reagierten die Schlackenkörner mit Natrit und sinterten zusammen, wobei sich in Analogie zum Modellpulver CS-Na ab 808 °C vorwiegend Na₂CaSiO₄ am gemeinsamen Rand ausbildete. Auffallend war, dass die CaO und SiO₂ Gehalte an den Rändern gegenüber dem gemeinsamen Zentrums erhöht waren, während Natrium vor allem im Zentrum der versinterten Körner vorlag und eine natrium- und aluminiumoxidreiche Phase bildete. Na₄CaSi₂O₇ hingegen konnte nicht detektiert werden. Die Zusammenfassung des Phasenbestandes nach den Stufenglühungen ist in Tabelle 16 gegeben.

Tabelle 16:Modellpulver HS-Na, Phasenbestand nach den Stufenglühungen in Abhängigkeit der
Temperatur

HOS-Na	750 °C	1150 °C	1250 °C
Hochofenschlacke			
Na ₂ CO ₃			
Na ₂ CaSiO ₄			
natrium- und aluminium-			
oxidreiche Phase			

Abbildung 22: Rasterelektronenmikroskopische Darstellung des Modellpulvers HOS-Na nach Stufenglühung bei a) 750 °C und b) 1150 °C. (1) Hochofenschlacke, (2) Natriumcarbonat, (3) Na₂CaSiO₄ und (4) natrium- und aluminumoxidreiche Phasen

4.1.6. Modellpulver CS-F-0,5Na

Aus der STA geht hervor, dass ab 560 °C die Dissoziation des Natriumcarbonats einsetzte. Einher ging die Bildung von Villiaumit. Der Peak in der DTA-Kurve, der seiner Bildung zugeordnet werden kann, erreicht bei 575°C sein Maximum. Der Masseverlust betrug zwischen 400 °C und 770 °C ca. 8 %, was der zu erwarteten Menge an CO₂ entspricht. Die RDA zeigte, dass nach einer Stufenglühung bei 625°C neben Wollastonit und Fluoritresiduen auch Villiaumit und Cuspidin vorlagen. Wie in Abbildung 23a zu sehen ist, bildete sich Cuspidin um den Wollastonit, erkennbar durch ein Aufhellen der Ränder der Wollastonitkörner. Zwischen den großen Körnern bildete sich eine Matrix aus Cuspidin, Villiaumit und Schmelzphase. Aufgrund ihrer geringen Größe war eine genaue Analyse mittels EDS nicht durchführbar. Die Bildung von Cuspidin erfolgte im überwiegenden Ausmaß zwischen 810 °C und 890 °C, wobei in diesem Bereich zwei Peaks mit einem Maximum bei 820 °C bzw. 875 °C in der DTA auftraten. Da das Pulver nach der Stufenglühung bei 925 °C nur gesintert vorlag, ist davon auszugehen, dass die Bildung von Cuspidin über Feststoffdiffusionsprozesse erfolgte. Wie in Abbildung 23b dargestellt ist, war Cuspidin nach Stufenglühung bei 925 °C die Hauptphase. Villiaumit lag in den Zwickeln vor. Bei 1100 °C begann die Probe zu schmelzen. Gleichzeitig setze ein Masseverlust ein. Die dentritische Struktur des Cuspidins nach der Stufenglühung bei 1220 °C lässt den Schluss zu, dass die Probe bei der Haltezeit vollständig flüssig war und die Kühlgeschwindigkeit nicht ausreichte. um eine Kristallisation zu verhindern. In Tabelle 17 ist ein Überblick über die Phasenvergesellschaftung nach den Stufenglühungen gegeben.

 Tabelle 17:
 Modellpulver CS-F-0,5Na, Phasenbestand nach den Stufenglühungen in Abhängigkeit der Temperatur

CS-F-0,5Na	625 °C	925 °C	1220° C
Wollastonit (CaSiO ₃)		I	
Fluorit (CaF ₂)		I	
Villiaumit (NaF)			•
Cuspidin (Ca ₄ Si ₂ O ₇ F ₂)			
glasig erstarrte Schmelze			

Abbildung 23: Rasterelektronenmikroskopische Darstellung des Modellpulvers CS-F-0,5Na nach der Stufenglühung bei a) 625 °C und b) 925 °C. (1) Fluorit, (2) Wollastonit, (3) Villiaumit und (4) Cuspidin

4.1.7. Modellpulver HOS-F-Na

Die DTA-Kurve zeigt, dass ab 520 °C die Dissoziation von Natriumcarbonat einsetzte, die in Gegenwart von Fluorit wie bei der vorangegangenen Mischung, zur Bildung von Villiaumit bei 561° C führte. Bei 830 °C war die Dissoziation abgeschlossen. Nach der Stufenglühung bei 700° C war zu beobachten, dass Cuspidin wie beim Modellpulver CS-F-Na durch Diffusionsvorgänge um die Hochofenschlackenkörner gebildet wurde, jedoch im Gegensatz zur Mischung mit Wollastonit keine netzartige Struktur aus Cuspidin und Villiaumit vorlag (Abbildung 24). Vielmehr diffundierte Natrium in die erweichenden Schlackenkörner, sodass es im Kontakt mit Fluorit zur Bildung einer Schmelzphase kam, in der Cuspidin und Villiaumit vorlag. Nach der Stufenglühung bei 925 °C fiel auf, dass das Pulver stark gesintert war und Bereiche vorlagen, die durch Diffusionsvorgänge einen ringförmigen Aufbau besitzen (Abbildung 24) indem sich Cuspidin, Villiaumit und eine Schmelzphase abwechseln. Ab 1000 °C schmolz die Mischung rasch auf. Bei 1050 °C bildete sich jedoch aus der Schlacke eine Natriumcalciumsilicatphase Na_{15.6}Ca_{3.84}Si₁₂O₃₆ aus. Nach der Stufenglühung bei 1100 °C war nur mehr eine geringe Menge an Cuspidin in der Probe vorhanden. Aufgrund der geringen Phasengröße war allerdings eine genaue Analyse des Phasenbestandes mittels EDS nicht möglich. Die mikroskopische Analyse der Probe nach Stufenglühung bei 1200 °C zeigte eine rein glasige Struktur.

Tabelle 18: Modellpulver HS-F-0,5Na, Phasenvergesellschaftung nach den Stufenglühungen in
Abhängigkeit der Temperatur

Abbildung 24: Rasterelektronenmikroskopische Darstellung des Modellpulvers HOS-F-0,5Na nach Stufenglühung bei a) 700 °C und b) 925 °C. (1) Schlacke, (2) Fluorit, (3) Villiaumit, (4) Cuspidin und (5) glasig erstarrte Schmelze

4.1.8. Zusammenfassung der Ergebnisse der Modellpulver

In Tabelle 19 sind die wichtigsten Ergebnisse der Modellpulver zusammengefasst. Die Bildung von Cuspidin konnte gemäß dem Phasendiagramm SiO₂-CaO-CaF₂ aus [74] reproduziert werden. Cuspidin bildet sich im Wesentlichen unter Beisein einer Schmelzphase. Es ist allerdings zu ergänzen, dass Cuspidin bei niedrigen Temperaturen an den Korngrenzen des Wollastonits bereits durch Feststoffdiffusion gebildet wird. Durch das Ersetzen des Wollastonits durch Hochofenschlacke kristallisiert Cuspidin um 85 °C früher aus der Schmelze aus. Der Schmelzpunkt der Mischung sank von 1214 °C auf 1160 °C. Durch das gleichzeitige Vorliegen von Wollastonit und Hochofenschlacke wird die Bildung einer Schmelzphase um weitere 60 °C erniedrigt. Die Zugabe von Natriumcarbonat beeinflusst die Bildung von Cuspidin nachhaltig Erfolgt die Bildung von Cuspidin ohne Natriumcarbonat hauptsächlich durch Kristallisation aus einer Schmelze, so verläuft die Bildung in Gegenwart von Natriumcarbonat großteils über Diffusion im festen Zustand. Es zeigte sich, dass im Beisein von Wollastonit die Entsäuerung von Natriumcarbonat bereits bei 625 °C einsetzt, durch die Anwesenheit von Fluorit wird sie sogar zu 580 °C verlagert. Der Einsatz von Schlacke reduziert die Starttemperatur der Dissoziation im Vergleich zum Wollastonit um nochmals 40 °C. In weiterer Folge diffundieren Natriumionen in die beiden silikatischen Phasen. Erst als zweiter Schritt diffundieren Fluorionen in die Natriumcalciumsilikatphasen und reagiereten mit ihnen zu Cuspidin und natriumreichen Schmelzphasen. Bemerkenswert ist, dass Cuspidin Natrium in sein Gitter einbauen kann, und dies auch bei den hier untersuchten Proben sichtbar war. Als wichtigster Punkt ist anzuführen, dass die Schmelztemperatur senkende Wirkung des Natriums auch hier gezeigt werden konnte. Während die Liguidustemperatur der Mischung Wollastonit und Fluorit mit der DTA bei 1214 °C lag, wurde diese bei Zugabe von Natriumcarbonat auf 1100 °C gesenkt. Bei Verwendung von Schlacke anstelle von Wollastonit war dieser Effekt nicht so deutlich, hier wurde die Liquidustemperatur von 1160 °C auf 1080 °C verringert, war somit aber immer noch niedriger als bei der Mischung mit Wollastonit.

	Dissoziation von Na ₂ CO ₃ / °C	1. Cuspidin- bildung (max.)/ °C	Cuspidin- bildung aus der Schmelze (max.)/ °C	Bildungs- temperatur der Natrium- silikate (max.)/ °C	Bildungs- temperatur Villiaumite/ °C	Liquidus- temperatur/ °C
CS-F			1140			1214
HOS- F		<925	1045			1160
0,5CS- 0,5HOS-F		800	1020			1100
CS-Na	625-1190			870 und 905		1190
HOS-Na₃	580-1315			845		1130
CS-F-0,5Na	560-770	<625	820 und 875		575	1100
HOS-F- 0,5Na	520-830	<625	800	1050	575	1080

Tabelle 19: Zusammenfassung der Reaktionen beim Aufheizen der Modellpulver

4.2. Gießpulver zum Vergießen von Knüppeln und Vorblöcken

4.2.1. Gießpulver für das Vergießen von Federstählen

In nachstehender Tabelle ist die chemische Zusammensetzung des Gießpulvers 1 gegeben. Es wies ein C/S Verhältnis von 0,73 und einen hohen Kohlenstoffgehalt von 14,5 Gew.% auf. Im Anlieferungszustand bestand das Pulver aus den Hauptphasen Wollastonit, Quarz und Kohlenstoffträgern, den Nebenphasen Fluorit, einer Natrium-Calcium-Carbonatphase mit einem molaren Verhältnis Na₂CO₃/CaCO₃ von 0,5, das dem Mineral Shortit (Na₂Ca₂(CO₃)₃ entspricht, Flugasche und Hochofenschlacke, so wie in geringen Mengen aus Calcit, Periklas (MgO) und Diopsid. Sporadisch traten die Phasen Korund, Hämatit (Fe₂O₃) und eine Natrium-Calcium-Carbonatphase mit einem molaren Verhältnis Na₂CO₃/CaCO₃ von 1, das dem Mineral Nyerereit (Na₂Ca(CO₃)₃ entspricht, auf (Abbildung 25).

Im Gegensatz zu den anderen Komponenten bildeten sich Natrium-Calcium-Carbonatphasen bei der Herstellung durch eine Lösungs-Fällungsreaktion zwischen Schlacke und Soda. Aufgrund ihrer Stöchiometrie wurde auf die Phasen Shortit (Na₂Ca₂(CO₃)₃) und Nyerereit (Na₂Ca(CO₃)₂) geschlossen. Mittels RDA sind aber diese Phasen im Pulver nicht nachweisbar. Weil mit der EDS Wasserstoff nicht detektierbar ist, ist nicht auszuschließen, dass die Phasen zumindest Spuren von Kristallwasser enthalten könnten und es sich deshalb auch um die Phasen Gaylussit (Na₂Ca(CO₃)₂·5H₂O) oder Pirssonit (Na₂Ca(CO₃)₂·2H₂O) handeln könnte. Allerdings brachte der Spektrenvergleich der RDA auch hier kein Ergebnis.

		1
F	Gew.%	4,3
Na₂O	Gew.%	7,2
MgO	Gew.%	3,4
AI_2O_3	Gew.%	6,2
SiO ₂	Gew.%	35,5
SO ₃	Gew.%	0,9
K ₂ O	Gew.%	0,2
CaO	Gew.%	26,0
TiO ₂	Gew.%	0,3
Fe_2O_3	Gew.%	1,5
BaO	Gew.%	0,1
B_2O_3	Gew.%	0,03
С	Gew.%	14,5
Summe	Gew.%	100
C/S		0,73

Tabelle 20: Chemische Zusammensetzung eines Gießpulver für das Vergießen von Federstählen

Abbildung 25: Rasterelektronenmikroskopische Darstellung eines Granalienquerschnittes des Pulvers 1 im Anlieferungszustand. Phasen: (1) Wollastonit, (2) Quarz, (3) Kohlenstoffträger, (4) Fluorit, (5) Shortit, (6) Nyerereit, (7) Flugasche, (8) Hochofenschlacke, (9) Calcit und (10) Diopsid

Aus der STA geht hervor, dass anhaftendes Wasser bis ca. 170 °C verdampfte. Ab 170 °C setzten zwei sich überlagernde exotherme Reaktionen ein, die vermutlich auf die Verbrennung des organischen Bindemittels zurückzuführen sind. Die Peaks liegen bei 224 °C und 327 °C. Die Verbrennung der Kohlenstoffträger setzte ab 383 °C ein. Wie die TG-und DTA-Kurven zeigen, wurden mindestens drei Kohlenstoffträger verwendet, die ihre Peaks bei 449 °C, 556 °C und 643 °C aufwiesen. Daher wird vermutet, dass Ruß, Koks und Graphit dem Gießpulver zugegeben wurde. Ab 727 °C war mittels STA kein weiterer Masseverlust durch eine Verbrennungsreaktion zu erkennen. Im HTM konnten Kohlenstoffpartikel bis 858 °C beobachtet werden. Die Dissoziation der Carbonate konnte anhand der STA nicht detektiert werden, da der Kohlenstoffabbrand die Reaktionen überlagerte. Die Ergebnisse der Stufenglühungen zeigen bereits nach der Stufenglühung bei 350 °C Veränderung der Form der Natrium-Calcium-Carbonatphasen, die vermutlich von ihrer Entwässerung herrührte. Nach der Stufenglühung bei 500 °C war die Zersetzung der Na-Ca-Carbonate deutlich zu erkennen (Abbildung 26a). Bei den nun skelettartig vorliegenden Phasen verschob sich das molare Na₂O/CaO Verhältnis von 0,5 auf 1. Außerdem nahmen die Phasen SiO₂ sowie geringe Mengen an Al₂O₃ und K₂O auf. Nach der Stufenglühung bei 600 °C waren die Natrium-Calcium-Carbonate unter Aufnahme von Siliziumoxid aus dem Quarz und den synthetischen Silikaten zu Combeit (Na2Ca2Si3O9) umgesetzt. Außerdem diffundierten Natriumionen in die Hochofenschlacke und die Flugasche. Außerdem war erster Cuspidin schon nach der Stufenglühung bei 600 °C zu beobachten.

Nach der Glühung bei 750 °C konnte Cuspidin um alle Wollastonitkörner detektiert werden (Abbildung 26b). Na₂O diffundierte in die Wollastonitkörner, was ebenfalls zur Bildung von Combeit führte. Gleichzeitig schmolzen Quarz, Hochofenschlacke so wie kleine Flugaschepartikel zur Gänze auf. Calcit war dissoziiert und war in der Schmelze gelöst. Die verbleibende Flugasche war in ihrer chemischen Zusammensetzung natriumreicher als im Originalzustand. Vereinzelt bildete sich MgF₂ im direkten Kontakt mit Periklas und Fluorit. Obwohl die Granalienform nach der Stufenglühung bei 900 °C noch teilweise vorhanden war, bildeten sich während dieser Stufenglühung beträchtliche Mengen an Schmelze (Abbildung 26c). In dieser nach dem Abschrecken auf Raumtemperatur glasig erstarrten Schmelze konnten mit dem REM fein verteilte

Cuspidin, Diopsid und Residuen von Wollastonit und Flugasche detektiert werden. Nach der Stufenglühung bei 1000 °C lag eine lose zusammenhängende glasig erstarrte Schmelze vor, in der sich große Mengen an Cuspidin gebildet hatten. Vereinzelt waren aber noch immer Residuen von Wollastonit vorhanden. Mit dem HTM konnte die erste Schmelzphasenbildung erst bei 1034°C beobachtet werden. Mit steigender Temperatur kam es zur Ausbildung einer zusammenhängenden Matrix aus Schmelzphase, in der ab 1073 °C nur mehr Cuspidin als einzige feste Phase beständig war. Cuspidin bildete generell in den Schmelzen der Gießpulver gut ausgebildete Kristalle, die sich aufgrund des deutlich höheren Reflexionsvermögens von der flüssigen Matrix im HTM abhoben. Mittels STA konnte diese Kristallisationstemperatur bei 1040 °C festgelegt werden. In Übereinstimmung mit den Ergebnissen des HTMs betrug die Größe der Cuspidinkristalle nach Stufenglühung bei 1100 °C ein Vielfaches derer bei 1000 °C (Abbildung 26d). Ab 1175 °C war das Pulver der STA zufolge vollständig aufgeschmolzen. Eine homogene Schmelze war mittels HTM ab 1180 °C sichtbar.

Abbildung 26: Rasterelektronenmikroskopische Darstellung des Pulvers 1 nach Stufenglühung bei a) 500 °C, b) 750 °C, c) 900 °C und d) 1100 °C. Phasen: (1) Wollastonit, (2) Quarz, (3) Kohlenstoffträger, (4) Fluorit, (5) Shortit, (6) Nyerereit, (7) Flugasche, (8) Combeit, (9) Cuspidin, (10) Diopsid und (11) glasig erstarrte Schmelze

Tabelle 21: Phasenbestand von Gießpulver 1 nach den Stufenglühungen in Abhängigkeit der Temperatur

4.2.2. Gießpulver für das Vergießen von Schienenstählen

Das Gießpulver 2 lag im Anlieferungszustand pulverförmig vor. Seine chemische Zusammensetzung ist in Tabelle 22 gegeben. Es wies so wie Pulver 9 das geringste C/S-Verhältnis aller untersuchten Pulver auf. Die Hauptbestandteile waren Albit (NaAlSi₃O₈), Calcit, Kohlenstoffträger, Fluorit, Glasbruch und Natriumhydrogencarbonat (NaHCO₃). In geringen Mengen konnten Hämatit und Quarz detektiert werden (Abbildung 27).

Tabelle 22:	Chemische	Zusammensetzung	des Gießpulvers 2
-------------	-----------	-----------------	-------------------

		2
F	Gew.%	5,1
Na ₂ O	Gew.%	4,8
MgO	Gew.%	2,4
AI_2O_3	Gew.%	6,3
SiO ₂	Gew.%	40,3
SO_3	Gew.%	0,4
K ₂ O	Gew.%	0,1
CaO	Gew.%	34,4
TiO ₂	Gew.%	0,04
Fe_2O_3	Gew.%	0,6
BaO	Gew.%	0,2
B_2O_3	Gew.%	0,08
С	Gew.%	15,2
Summe	Gew.%	100
C/S		0,61

Abbildung 27: Rasterelektronenmikroskopische Darstellung des Pulvers 2 im Anlieferungszustand. (1) Albit, (2) Glasbruch, (3) Quarz, (4) Fluorit, (5) Calcit und (6) Hämatit

Während des Aufheizens dissoziierte Natriumhydrogencarbonat zwischen 63 °C und 102 °C zu Natriumcarbonat (NaCO₃), Wasser und Kohlendioxid. Aus der STA geht außerdem hervor, dass mindestens drei Kohlenstoffträger verwendet wurden. Es dürfte sich hierbei um zwei verschieden Koksarten handeln, deren Verbrennung ab 420 °C einsetzte. Ihre Peaks überlagern sich stark und weisen Maxima bei 543 °C und 603 °C auf. Als dritter Kohlenstoffträger dürfte Graphit verwendet worden sein. Sein Peak zeichnet sich in der DTA-Kurve durch eine schmale Peakbreite aus. Sein Maximum liegt bei 696 °C. Der vollständige Kohlenstoffabbrand konnte mittels STA bei 719 °C und mittels HTM bei 727 °C bestimmt werden

Die TG- und DTA-Kurven zeigten die Dissoziation der Carbonate zwischen 719 °C und 765 °C. Nach der Stufenglühung bei 670 °C waren allerdings die Carbonate Na₂CO₃ und Calcit mikroskopisch nicht mehr beobachtbar. Außerdem waren nach dieser Stufenglühung die Kanten der Quarzes und der Glasphasen abgerundet, was auf eine Schmelzphasenbildung hinweist. Zudem war deren chemische Zusammensetzung calcium- und natriumreicher als es ihrer Ausgangszusammensetzung entspricht. Albit hingegen verarmte an Na₂O und Al₂O₃. Zusätzlich bildete sich erster Cuspidin. Bei weiterem Aufheizen setzte sich dieser Prozess fort. Nach der Stufenglühung bei 750 °C war der Glasbruch zur Gänze geschmolzen. In der nun glasig erstarrten Schmelze lagen die neugebildeten Phasen Combeit und NC₃S₆ (Na₂Ca₃Si₆O₁₆) vor. Außerdem konnte Cuspidin detektiert werden (Abbildung 28a).

Nach der Stufenglühung bei 870 °C war eine deutliche Versinterung des Pulvers zu erkennen. Glasig erstarrte Schmelze war die vorherrschende Phase. In dieser bildeten sich die Phasen Cuspidin, zusätzliches NC₃S₆ und teilweise Wollastonit. Combeit war nicht mehr präsent. Mit dem HTM wurde die Bildung einer Schmelzphase bei 921 °C beobachtet. Ab 943 °C lagen in der Schmelze gut ausgebildete Cuspidinkristalle vor. Die DTA-Kurve zeigt einen äquivalenten exothermen Peak mit einer Onset -Temperatur von 945 °C und einem Maximum bei 1005 °C. In Übereinstimmung mit den Ergebnissen aus der STA und der HTM lag das Pulver nach den Stufenglühungen bei 1000 °C und 1050 °C in Form einer glasig erstarrten Schmelze vor, in der Cuspidin die einzige kristalline Phase war (Abbildung 28b). Seine Kristallgröße war allerdings nach der Stufenglühung bei 1050 °C größer als jene bei 1000 °C. Die Temperatur, ab der eine homogene Schmelzphase auftrat, lag mit dem HTM bei 1121 °C und mit der STA bei 1133 °C. Nach der Stufenglühung bei 1150 °C waren in der glasig erstarrten Schmelze keine kristalline Phasen zu erkennen. In Tabelle 23 ist der Phasenbestand nach den Stufenglühungen zusammengefasst.

Tabelle 23: Phasenbestand von Gießpulver 2 nach den Stufenglühungen in Abhängigkeit der
Temperatur

Abbildung 28: Rasterelektronenmikroskopische Darstellung des Pulvers 2 nach Stufenglühung bei a) 750 °C und b) 1050 °C. Phasen: (1) Albit, (2) glasig erstarrte Schmelze, (3) Quarz, (4) NC₃S₆, (5) Fluorit, (6) Cuspidin und (7) Combeit

4.2.3. Gießpulver für das Vergießen von Kaltstauchgüten

Drei verschiedene Chargen ein und derselben Gießpulversorte wurden untersucht, da sie trotz nahezu identer chemischer Zusammensetzung (Tabelle 25) ein geringfügig unterschiedliches Aufschmelzverhalten in der STA zeigten (Abbildung 29).Die Proben waren pulverförmig, so dass die einzelnen Komponenten lose vorlagen. In der Mikroanalyse zeigte sich, dass die Hauptphasen aller drei Pulver Albit, Wollastonit, Hochofenschlacke, Flugasche, Natriumhydrogencarbonat (NaHCO₃), Kohlenstoffträger und Fluorit waren. In geringeren Mengen waren Phosphorschlacke, die aus den Phasen Wollastonit, Cuspidin und Glasphase bestand, Tonderde (Al₂O₃) mit ca. 0,3 Gew.% Na₂O, Quarz und Calcit enthalten. Sporadisch traten die Phasen Dicalciumsilikat (Ca₂SiO₄), Diopsid (CaMgSi₂O₆), Anhydrit (CaSO₄) und Kryolith (Na₃AlF₆) sowie metallisches Eisen in der Flugasche auf. Das Ergebnis der Rietveldanalyse ist in

Tabelle 24 gegeben. In ihr ist Tonerde als Korund (Al₂O₃) ausgewiesen. Pulver 3b wies einen geringeren Gehalt an Wollastonit als Pulver Nummer 3a und 3c auf. Dafür schien der Gehalt an Albit in Pulver 3c verringert. Dies schien sich auch in der Mikroanalyse zu bestätigen. In einer Diskussion mit dem Gießpulverlieferanten stellte sich aber heraus, dass diese Schwankungen auf die Analysenstreuung zurückzuführen sind und den Aufzeichungen des Herstellers zufolge bei allen drei Chargen die gleichen Rohstoffmengen eingewogen wurden.

		Anteile der kristallinen Phasen in					
		Gew.% nach Rietveld					
		3a	3a 3b 3c				
Albit	Gew.%	36	36	32			
Wollastonit	Gew.%	31	26	31			
Fluorit	Gew.%	10	10	10			
Cuspidin	Gew.%	8	7	8			
Quarz	Gew.%	5	6	5			
Calcit	Gew.%	4	5	5			
Korund	Gew.%	3	4	4			
Graphite 3R	Gew.%	3	6	5			

Tabelle 24: Röntgendiffraktometrische Untersuchung der Proben im Originalzustand

Tabelle 25: Chemische Zusammensetzung der drei Chargen des Gießpulvers 3

		3a	3b	3c
F	Gew.%	3,5	3,1	4,1
Na₂O	Gew.%	6,0	5,8	5,7
MgO	Gew.%	2,3	2,5	2,3
AI_2O_3	Gew.%	11,4	11,5	11,5
SiO ₂	Gew.%	35,8	35,6	35,1
P_2O_5	Gew.%	0,33	0,34	0,33
SO ₃	Gew.%	0,90	1,07	1,20
K ₂ O	Gew.%	0,13	0,12	0,16
CaO	Gew.%	32,5	32,3	32,2
TiO ₂	Gew.%	0,45	0,44	0,45
MnO	Gew.%	0,08	0,08	0,08
Fe_2O_3	Gew.%	0,91	1,17	0,93
BaO	Gew.%	0,05	0,04	0,06
С	Gew.%	5,6	5,8	6,0
Summe	Gew.%	100	100	100
C/S		0,91	0,91	0,92

Abbildung 29: Ergebniskurven der DTA Analyse der Pulver 3a-c

Wie schon erwähnt, zeigten die drei Gießpulverchargen Abweichungen in der DTA- und TG-Kurve. Erste Masseverluste bei ca. 75 °C resultieren aus der Dissoziation von Natriumhydrogencarbonat zu Natriumcarbonat, Wasser und Kohlendioxid. Der endotherme Anstieg bis 245 °C von Pulver 3c war verbunden mit einem Masseverlust und trat bei den anderen beiden Pulvern nicht auf. Der größte Unterschied zeigte sich bei den Kohlenstoffträgern. Während der Kurvenverlauf der Gießpulverchargen 3a und 3b nahezu ident war, wodurch auf die gleichen Mengen und dieselben Kohlenstoffträger geschlossen werden kann, wich die DTA-Kurve von Pulver 3c von jenen der anderen beiden ab. So lag der Peak des ersten Kohlenstoffträgers, vermutlich Ruß, um 20 °C höher als die der anderen beiden Kurven. Die Peaks des zweiten Kohlenstoffträgers, vermutlich Koks, lag bei allen drei Proben im selben Bereich, allerdings dürfte bei Probe 3c das Verhältnis Ruß zu Koks höher gewesen sein als bei den Pulvern 3a und 3b. Da die endothermen Effekte, hervorgerufen durch die Dissoziation der Carbonate, nahtlos an die des Kohlenstoffabbrand anschlossen, kann ein Ende des Kohlenstoffabbrandes aus der DTA-Analyse nicht angegeben werden. Mit dem HTM konnte der letzte Kohlenstoffabbrand in Probe 3a und 3b bei 780 °C beobachtet werden, während in Probe 3c schon ab 750 °C kein Kohlenstoff mehr detektiert werden konnte.

Ab vermutlich 675 °C setzte bei allen drei Pulvern die Dissoziation der Carbonate ein. die im Fall der Pulver 3a und 3c bei ca.765 °C bzw. im Fall von 3b bei 790 °C Heiztischmikroskop abgeschlossen war. Mit dem konnte eine beginnende Transformation der Rohstoffe Fluorit, Albit, Wollastonit und Glasphase zwischen 460 °C und 530 °C beobachtet werden. Die Bildung des ersten Cuspidins trat im HTM zwischen 500 °C und 640 °C auf. In den Stufenglühungen waren große Veränderungen des Phasenbestandes erst nach der Stufenglühung bei 900 °C beobachtbar. Obwohl das Pulver noch lose vorlag, bildeten sich erste Schmelzphasen im Kontakt mit Quarz und Hochofenschlacke, in denen N₂C₃S₅ (Na₄Ca₃Si₅O₁₅) und Wollastonit kristallisierten. Diopsid konnte nicht mehr detektiert werden. Außerdem war ein Schmelzen der Phasen Albit, Hochofenschlacke und der Glasphase der Phosphorschlacke zu erkennen. Die Flugaschenkörner zeigten an den Korngrenzen Veränderungen, die auf ein Erweichen Ihre chemische Zusammensetzung war im Vergleich zu hindeuteten. ihrer Ausgangszusammensetzung reicher an Na₂O und wies zusätzlich Fluorgehalte auf. Wenig Reaktion zeigten hingegen die Rohstoffe Wollastonit, Fluorit, Tonerde und

Diopsid. Von den drei Chargen bildete Gießpulver 3a die geringste Schmelzphasenmenge.

Mit dem Heiztischmikroskop konnten erste Schmelzphasen in Pulver 3a bei 920 °C, in Pulver 3b bei 925 °C und in Pulver 3c bei 970 °C beobachtet werden. Nach den Stufenglühungen bei 1000 °C war der Schmelzprozess weiter fortgeschritten, allerdings lagen die einzelnen Körner noch immer weitgehend separat vor (Abbildung 30a). Um den Wollastonit bildete sich durch Feststoffdiffusion Cuspidin. Quarz wurde zur Gänze in der Schmelzphase gelöst. Diopsid kristallisierte aus der Schmelze. Fluor diffundierte in die Hochofenschlacke, in der C₂S, Cuspidin und TiO₂ kristallisierten (Abbildung 30b). Der dissoziierte Calcit wurde vollständig mit Quarz und Fluorit zu Cuspidin umgesetzt. Die Flugasche nahm im Vergleich zur Stufenglühung bei 900 °C weiter Na₂O auf. Durch die Abgabe von SiO₂ in die Schmelze verschob sich ihre chemische Zusammensetzung in Richtung jener des Jadeits (NaAlSi₂O₆). Fluorit konnte weiterhin detektiert werden und zeigte in direktem Kontakt keine Reaktionen. Außerdem waren die Phasen Albit und Tonerde präsent. Letztere war aber in einzelne, kleinere Kristalle zerfallen.

Ein Schmelzen trat bei den Pulvern der DTA zufolge ab 1027 °C bei 3a, ab 1038 °C bei 3b und ab 1044 °C bei 3c ein. Als Folge kristallisierte Cuspidin aus der Schmelze. Die Temperaturen, die mit den HTM beim Vorliegen von gut ausgebildeten Cuspidinkristallen aus der Schmelze ermittelt wurden, lagen außer bei Pulver 3c unter denen mit der STA ermittelten Schmelztemperaturen und betrugen 1023 °C bei Gießpulver 3a, 985 °C bei Gießpulver 3b und 1085 °C bei Gießpulver 3c. Die Proben Stufenglühungen bei 1100°C zeigten neben Cuspidin in einer nach den zusammenhängenden, glasig erstarrten Schmelze die Phase Nephelin und Residuen der Tonerde, um die sich ein Reaktionssaum bildete (Abbildung 30c und d). Mit der DTA konnte das Vorliegen einer homogenen Schmelzphase ab 1133 °C für Pulver 3a, ab 1126 °C für Pulver 3b und ab 1151 °C für Pulver 3c detektiert werden. Mit dem HTM war in Pulver 3a ab 1220 °C, in Pulver 3b ab 1208 °C und in Pulver 3c ab 1217 °C eine homogene Schmelzphase zu beobachten. Zusammenfassend ist zu sagen, dass keine großen Unterschiede zwischen den einzelnen Chargen auftraten. Allerdings begann der Schmelzprozess bei Pulver 3c bei vergleichsweise höheren Temperaturen und war auch erst bei höheren Temperaturen abgeschlossen. Der Phasenbestand der Proben nach den Stufenglühungen ist in Tabelle 26 zusammengefasst.

Abbildung 30: Rasterelektronenmikroskopische Darstellung des Pulvers 3a nach Stufenglühung bei a), b) 1000 °C c), d) 1100 °C. Phasen: (1) Fluorit, (2) Hochofenschlacke, (3) Wollastonit, (4) Cuspidin, (5) Tonerde, (6) Flugasche, (7) Diopsid, (8) Albit, (9) glasig erstarrte Schmelze, (10) C₂S, (11) Na-reiche, glasig erstarrte Schmelze, (12) TiO₂, (13) Nephelin, (14) Reaktionssaum um Korund

	original	500°C	750°C	900°C	1000°C	1100°C	1200°C
Albit (NaAlSi ₃ O ₈) Wollastonit (CaSiO ₃) Hochofenschlacke Flugasche					1	1	
Natriumhydrogencarbonat (NaHCO ₃)							
Fluorit (CaF ₂) Kohlenstoff (C) Phosphorschlacke Wollastonit (CaSiO ₃) Cuspidin (Ca ₄ Si ₂ O ₇ F ₂) Glasphase Quarz (SiO ₂) Tonerde (Al ₂ O ₃) Calcit (CaCO ₃) Dicalciumsilikat (Ca ₂ SiO ₄) Diopsid (CaMgSi ₂ O ₆) Anhydrit (CaSO ₄) Kryolith (Na ₂ AIF ₆)							I
Natriumcarbonat (NaCO ₃) $N_2C_3S_5$ (Na ₄ Ca ₃ Si ₅ O ₁₅) Diopsid (CaMgSi ₂ O ₆) Wollastonit (CaSiO ₃) Cuspidin (Ca ₄ Si ₂ O ₇ F ₂) Nephelin (NaAlSiO ₄) glasig erstarrte Schmelze Dicalciumsilikat (Ca ₂ SiO ₃)							

Tabelle 26: Phasenbestand des Gießpulvers 3 nach den Stufenglühungen in Abhängigkeit der Temperatur

4.3. Gießpulver zum Vergießen von Brammen

4.3.1. Gießpulver für das Vergießen von Baustahl

Das hier beschriebene granalienförmige Gießpulver wird seit mehreren Jahren für das Vergießen von mikrolegierten Baustählen eingesetzt. Im Zuge dieser Arbeit wurden drei Chargen untersucht. Ihre chemischen Zusammensetzungen sind in Tabelle 27 gegeben, wobei die Werte in allen drei Fällen innerhalb der vom Hersteller angegebenen Grenzen lagen. Von allen hier untersuchten Gießpulvern wies es mit ca. 1,3 das höchste C/S-Verhältnis auf.

Der Hauptrohstoff war in allen drei Fällen fluorhältige Phosphorschlacke. Diese ist ein Abfallprodukt aus der Phosphorherstellung und lag teilweise kristallin vor. Als kristalline Mineralkomponenten konnten Cuspidin, Wollastonit und sporadisch Oldhamit (CaS) nachgewiesen werden. Die zweite Hauptkomponente war bei allen drei Pulvern Fluorit. In der Probe 4a konnten in geringeren Mengen die Phasen Albit, der eine Krongröße von bis 96 µm aufwies und Kryolith detektiert werden. Akzessorisch traten Periklas, Quarz, Tonerde, Calcit und Flugasche auf. Natriumcarbonat wurde vermutlich als Natriumträger verwendet. Weil es wahrscheinlich in Form von Soda zugesetzt wurde, sich bei der Sprühgranulierung in Wasser löste und nach der Trocknung in der sehr fein strukturierten Bindematrix verblieb, konnte es mit den angewendeten Analysemethoden nicht detektiert werden. Außerdem wurde die Verwendung von Lithiumcarbonat als Lithiumträger vermutet, da Lithium in der chemischen Analyse nachgewiesen wurde, aber aufgrund der geringen Massenzahl von Lithium und der Kohlenstoffbedampfung der Probe Lithiumcarbonat mittels EDS nicht nachgewiesen werden kann, aber auch keine andere der detektierten Phasen in ihrer chemischen Zusammensetzung einem bekannten Lithiumrohstoff entsprach. Die Zusammensetzungen der Pulver 4b und Pulver 4c sind jener von Pulver 4a sehr ähnlich. Allerdings konnte bei ihnen weder Kryolith, noch Tonerde oder Flugasche detektiert werden. Dafür hatte Soda während des Herstellungsprozesses zu Gaylussit reagiert. Im Fall von Pulver 4c wurde Lithiumcarbonat und Albit durch Spodumen (LiAlSi₂O₆) ersetzt. In Abbildung 31 sind alle drei Pulver bei Anlieferung dargestellt.

		4a	4b	4c
F	Gew.%	8,0	8,20	8,15
Na ₂ O	Gew.%	7,	6,79	8,69
MgO	Gew.%	1,4	1,91	1,65
AI_2O_3	Gew.%	3,0	3,19	3,11
SiO ₂	Gew.%	31,2	31,47	30,85
P2O5	Gew.%	0,9	1,27	1,02
SO3	Gew.%	0,5	0,41	0,48
K ₂ O	Gew.%	0,1	0,41	0,25
CaO	Gew.%	41,9	40,53	39,99
TiO ₂	Gew.%	0,03	0,09	0,16
MnO	Gew.%	0,06	0,00	0,02
Fe_2O_3	Gew.%	0,4	0,38	0,38
ZrO ₂	Gew.%	0,11	0,10	0,16
BaO	Gew.%	0,03	0,08	0,11
HfO ₂	Gew.%	0,00	0,01	0,01
B_2O_3	Gew.%	0,00	0,00	0,03
Li₂O	Gew.%	0,3	0,3	0,03
С	Gew.%	4,71	4,84	4,93
Summe	Gew.%	100,00	100,00	100,00
C/S		1.34	1.29	1.30

Tabelle 27: Chemische Zusammensetzung der drei Chargen des Gießpulvers 4

c) Abbildung 31: Rasterelektronenmikroskopische Darstellung eines Granalienquerschnittes im Anlieferungszustand der Pulver a) 4a, b) 4b und c) 4c. Phasen: (1) Wollastonit, (2) Cuspidin, (3) Glasphase der Schlacke, (4) Oldhamit, (5) Fluorit, (6) Albit, (7) Kryolit, (8) Kohlenstoff, (9) Gaylussit, (10) Quarz, (11) Calcit, (12) Periklas und (13) Spodumen

Aus der STA geht hervor, dass das organische Bindemittel aller drei Pulver zwischen 160 °C und 316 °C verbrannte. Ebenfalls ist daraus abzuleiten, dass in allen drei Pulvern dieselben Kohlenstoffträger verwendet wurden. Drei exotherme Peaks bei ca. 430 °C, ca. 495 °C und ca. 640 °C deuten auf Ruß, Koks und Graphit hin. Da die Peaks der Dissoziation der Carbonate und der Verbrennung des Kohlenstoffes in den DTAund TG-Kurven überlagern, konnten die beiden Reaktionen nicht eindeutig voneinander getrennt werden. Mit der Heiztischmikroskopie war die Zersetzung von Kohlenstoff bei 4a zwischen 450 °C und 790 °C bzw. von 520 °C bis 750 °C bei Probe 4c beobachtbar. An Probe 4b wurde keine Heiztischmikroskopie durchgeführt, da der Phasenbestand nahezu gleich dem der Probe 4a war. Die Dissoziation des Gaylussit mit einer einhergehenden Diffusion von Natriumionen in den bereits dissoziierenden Calcit war bei Pulver 4c nach der Stufenglühung bei 500 °C sichtbar. Die Bildung von erstem, neu gebildeten Cuspidin trat im Heiztischmikroskop von 480 °C bis 560 °C bei Probe 4a bzw. von 520 °C bis 750 °C bei Probe 4c auf. Die Bildung einer Schmelzphase konnte mit dem HTM bei Probe 4c schon ab 630 °C beobachtet werden. Im Vergleich dazu begann Probe 4a erst bei 940 °C eine Schmelzphase auszubilden. Dieser in der Heiztischmikroskopie beobachtete durch Feststoffdiffusion gebildete Cuspidin war auch nach der Stufenglühung bei 750 °C als Saum um NCS₂ (Na₂CaSi₂O₆) präsent. Dieses NCS₂ wiederum war das Endprodukt der Diffusion von Natriumionen in den Wollastonit. Obwohl die Granalien ihre Kugelform während der Stufenglühung bei 750 °C beibehielten, bildeten die Glasphase der Phosphorschlacke, Quarz, Calcit, Fluorit und gegebenen Falls Kryolith, Lithiumcarbonat und Gaylussit eine Schmelzphase, aus der Cuspidin kristallisierte. In den Proben 4a und 4b war seine Form kompakt, während er sich im Fall von 4c nadelförmig ausbildete (Abbildung 32a und b). Größere Albitkörner waren nach der Stufenglühung der Pulver 4a und 4b bei 750 °C noch vorhanden, allerdings waren auch hier Diffusionsprozesse beobachtbar. So bildeten sich im Korn unterschiedliche Zonen aus, wobei die äußerste Diffusionszone reicher an Na₂O und Al₂O₃ war als es seiner Grundzusammensetzung entsprach. Außerdem war er mit den Oxide MgO, SO₃, K₂O und CaO angereichert. Diese Oxide diffundierten mit Ausnahme des Al₂O₃ auch ins Innere der Körner, die hier an SiO₂ und Al₂O₃ verarmt sind. Bei kleinern Albitpartikel waren diese Diffusionsprozesse, an deren Ende die Bildung von Nephelin und Glasphase steht, bereits abgeschlossen. Mit dem Heiztischmikroskop konnte die vollständige Auflösung des Albits bei 925 °C in der Schmelze beobachtet werden. Spodumen konnte hingegen bei Temperaturstufe 750°C nicht mehr detektiert werden. Durch Feststoffdiffusionsprozesse wurde an seiner Stelle eine Phase mit einer durchschnittlichen Zusammensetzung von 16,6 mol% Na, 9,7 mol% Al, 14,8 mol% Si, 2,2 mol% Ca, 1,4 mol% S, 1,1 mol% Mg und 57,2 mol% O gebildet. Fallweise konnte in ihr auch Fluor detektiert werden. Ob sie Lithium enthält, konnte mit der EDS nicht geklärt werden. In Probe 4c trat zusätzlich die Phase Villiaumit auf.

Obwohl nach Stufenglühung bei 900 °C alle Proben ihre Granalienform beibehielten, waren auch die letzten Residuen der Rohstoffe geschmolzen. (Abbildung 32c). Eine Ausnahme bildete die Tonerde, die vereinzelt bei 4a auch nach Stufenglühung bei 1000 °C noch vorhanden war. Um die ehemaligen Albitkörner traten bei Pulver 4a und 4b ringförmig Nephelin auf. Nepehlin lag aber auch in Pulver 4c vor. Vereinzelt konnten Residuen von NCS₂ detektiert werden. Die Cuspidinkristalle nahmen im Vergleich zur Stufenglühung bei 750 °C an Volumen zu. Auffallend war der wesentlich höhere Al₂O₃ Gehalt von 12,5 Gew.% der glasig erstarrten Schmelze von Pulver 4c im Vergleich zu 3,8 Gew.% und 5,3 Gew.% im Fall von 4a und 4b, der sich wahrscheinlich auf das frühere Aufschmelzen des Spodumens im Vergleich zu Albit und Tonerde gründet. Als Folge konnte die Kristallisation von Cuspidin mit dem HTM bei Pulver 4c bereits bei 963 °C beobachtet werden, während sie bei Pulver 4a erst bei 1060 °C einsetzte. Nach

der Stufenglühung bei 1000 °C war das Pulver dicht gesintert, wobei Cuspidin den Hauptphasenanteil ausmachte (Abbildung 32d). Seine Kristallgröße nahm mit steigender Temperatur zu. Neben Cuspidin lag noch Nephelin vor. Nach Stufenglühung bei 1100 °C war Cuspidin die einzige kristalline Phase. Allerdings waren Entmischungen der Glasphase zu beobachten, die hauptsächlich aus den Elementen Natrium, Schwefel, Calcium, Fluor und Sauerstoff bestanden (Abbildung 32e). Das komplette Aufschmelzen der Pulver fand in der STA von 1110 °C - 1240°C bei Pulver 4a bzw. 900°C - 1260 °C bei Pulver 4b und 938 °C - 1210 °C bei Pulver 4c statt, wobei Cuspidin im HTM bei Pulver 4a erst ab 1100°C aufschmolz und im Fall von Pulver 4c ab 1000 °C. Eine homogene Schmelze war bei Pulver 4a mit dem HTM ab 1305 °C beobachtbar, während diese bei Pulver 4c schon ab 1225 °C vorlag.

Zusammenfassend ist zu sagen, dass die geringfügigen Unterschiede in der mineralogischen Zusammensetzung kaum Auswirkungen auf den Phasenbestand nach den Stufenglühungen haben. Allerdings verringert die Verwendung von Spodumen und Soda anstelle von Albit die Temperatur, ab der eine homogene Schmelze vorliegt, um 30 - 50 °C der STA, bzw. 80 °C der HTM zufolge. Dies ist vermutlich auf das frühere Auflösen von Spodumen zurückzuführen und die Bildung einer größeren Schmelzmenge bei geringeren Temperaturen; die die Auflösung der restlichen Phasen begünstigt. Der Phasenbestand der Proben nach den Stufenglühungen ist in Tabelle 28 zusammengefasst.

	original	500°C	750°C	900°C	1000°C	1100°C	1200°C
Phosphorschlacke							
Wollastonit (CaSiO ₃)							
Cuspidin (Ca ₄ Si ₂ O ₇ F ₂)							
Glasphase							
Oldhamit (CaS)							
Fluorit (CaF ₂)							
Albit (NaAlSi ₃ 0 ₈)							
Kryolith (Na ₃ AIF ₆)							
Flugasche							
Lithiumcarbonat (Li ₂ CO ₃)							
Spodumen (LiAlSi ₂ O ₆)							
Quarz (SiO ₂)							
Kohlenstoff (C)							
Gaylussit (Na ₂ Ca(CO ₃) ₂)							
Natriumcarbonat (Na ₂ CO ₃)							
Calcit (CaCO ₃)							
Periklas (MgO)							
Tonerde (AI_2O_3)							
glasig erstarrte Schmelze							
Entmischung in der Glasphase						l	
Cuspidin (Ca ₄ Si ₂ O ₇ F ₂)							
NCS_2 (Na ₂ CaSi ₂ O ₆)							
Nephelin (NaAlSiO ₄)							

Tabelle 28:	Phasenbestand der drei Chargen des Gießpulvers 4a (orange) und 4c (grau) nach den
	Stufenglühungen in Abhängigkeit der Temperatur

Abbildung 32: Rasterelektronenmikroskopische Darstellung des Gießpulvers 4 nach Stufenglühung bei a) 750 °C (für Probe 4b), b) 750 °C (für Probe 4c), c) 900 °C (für Probe 4c), d) 1000 °C (für Probe 4c) und e) 1100°C (für Probe 4c). Phasen: (1) Cuspidin, (2) Nephelin, (3) Albit, (4) NAS₂, (5) glasig erstarrte Schmelze und (6) Entmischung in der Glasphase

4.3.2. Gießpulver für das Vergießen von Weichstahl

Für das Vergießen von Weichstahl wurden die Gießpulver 6 und 7 alternierend eingesetzt. Pulver 5 ist der Vorläufer des Pulvers 6. Ihre chemischen Zusammensetzungen waren sehr ähnlich. Wie aus Tabelle 29 hervorgeht, zeichnete sich Pulver 5 durch einen vergleichsweise hohen Natriumgehalt aus. Pulver 7 enthielt kaum MgO. Das C/S Verhältnis aller drei Proben war ähnlich.

Auch die mineralogische Zusammensetzung war bei allen drei Pulvern sehr ähnlich (Abbildung 33). Die Hauptkomponenten waren in allen drei Fällen Flugasche, Glasbruch, Wollastonit und Fluorit. In geringeren Mengen war Quarz in der Mischung vorhanden, ebenso wie verschiedene Kohlenstoffträger. Calcit kam ebenfalls in allen drei Fällen zum Einsatz, trat allerdings im Gießpulver 5 nur sporadisch auf. Soda wurde vermutlich bei allen drei Pulvern verwendet. Während des Granulationsprozesses bildete sich im Gießpulver 5 Shortit als Reaktionsprodukt der Soda mit Glas und Calcit. Diese Phase trat auch sporadisch im Gießpulver 6 auf. In geringen Mengen waren Diopsid, Hämatit und Rutil in allen drei Gießpulvern nachweisbar. Periklas hingegen trat nur bei den Pulvern 5 und 6 auf. Tonerde wurde nur bei den Gießpulvern 5 und 7 verwendet.

		5	6	7
F	Gew.%	6,2	7,4	6,8
Na ₂ O	Gew.%	12,3	5,8	6,6
MgO	Gew.%	1,7	2,5	0,3
AI_2O_3	Gew.%	5,2	4,8	5,3
SiO ₂	Gew.%	35,1	38,7	38,2
P_2O_5	Gew.%	0,2	0,07	0,07
SO ₃	Gew.%	0,3	0,4	0,4
K ₂ O	Gew.%	0,3	0,3	0,2
CaO	Gew.%	30,5	32,6	33,5
TiO ₂	Gew.%	0,2	0,2	0,20
Cr_2O_3	Gew.%	0,0	0,03	0,00
MnO	Gew.%	0,05	0,03	0,03
Fe_2O_3	Gew.%	1,6	1,6	1,6
NiO	Gew.%	0,00	0,02	0,00
ZrO ₂	Gew.%	0,00	0,20	0,15
BaO	Gew.%	0,10	0,10	0,10
С	Gew.%	6,5	5,57	6,76
Summe	Gew.%	100	100	100
C/S		0,87	0,84	0,88

Tabelle 29: Chemische Zusammensetzung der Pulver für das Vergießen von Weichstahl

c) Abbildung 33: Rasterelektronenmikroskopische Darstellung eines Granalienquerschnittes im Anlieferungszustand der Pulver: a) 5, b) 6 und c) 7. Phasen: (1) Flugasche, (2) Glasbruch, (3) Wollastonit, (4) Fluorit,(5) Quarz, (6) Calcit, (7) Shortit, (8) Diopsid, (9) Hämatit,(10) Magnesit, (11) Tonerde, (12) Kohlenstoff und (13) Soda

Beim Aufheizen trat bis ca. 200 °C bei allen Proben ein Masseverlust von 1-2 Gew.% durch das Entweichen anhaftender Feuchte auf. Aufgrund ähnlicher exothermer Peaks und Masseverlusten zwischen 175 °C und 395 °C kann geschlossen werden, dass für die Granulation von Gießpulver 5, 6 und 7 das gleiche organische Bindemittel verwendet wurde. Der STA zufolge waren die eingesetzten Kohlenstoffträger in Art und Menge bei Gießpulver 5 und 6 ident. Es dürfte sich hierbei um Ruß (Peak bei 440 °C), Koks (Peak bei 524 °C) und Graphit (Peak bei 675 °C) handeln. Im Fall des Pulvers 7 wurden andere Kohlenstoffträger verwendet, die Fläche unter dem Peak, der dem Ruß zugeschrieben werden kann, ist geringer als die der vorher genannten Pulver, woraus folgt, dass in diesem Fall weniger Russ im Gießpulver vorhanden war als in den anderen beiden Pulvern. Der Abbrand des letzten Kohlenstoffträgers erfolgte in der STA um 70 °C früher als bei den Gießpulvern 6 und 7. Mit dem Heiztischmikroskop war die Gegenwart von Kohlenstoff beim Gießpulver 6 bis 689 °C beobachtbar, während Kohlenstoffpartikel im Gießpulver 5 nur bis 620 °C vorhanden waren und die Verbrennung bei Gießpulver 7 bereits bei 560 °C abgeschlossen war. Mit ansteigender Temperatur dissoziierten die Carbonate Calcit und Shortit, was mittels STA bei Pulver 5 zwischen 680 °C und 750 °C, bei Pulver 6 zwischen 680° C und 790 °C und bei Pulver 7 zwischen 655 °C und 730 °C registriert werden konnte. Durch die Überlappung mit dem Kohlenstoffpeak kann der Beginn aus dem Kurvenverlauf der STA allerdings nur abgeschätzt werden. So konnte nach Stufenglühung bei 500 °C bereits eine teilweise Entsäuerung des Calcits nachgewiesen werden und auch die Ergebnisse des HTMs lagen unter den Temperaturen der STA. Erste Schmelzphasen bildeten sich im HTM bei

Pulver 5 ab 604 °C, bei Pulver 6 ab 696 °C und bei Pulver 7 ab 598 °C. Die Phasenvergesellschaftung aller drei Pulver nach den Stufenglühungen bei 750 °C war vergleichbar (Abbildung 34a). In allen Fällen diffundierten Natriumionen in den Wollastonit und bildete einen Saum aus Combeit. In weiterer Folge reagierte dieser mit Fluorit zu Cuspidin an der Kornoberfläche. Glasbruch nahm ebenfalls Na₂O und Fluor auf, aber anders als bei Wollastonit bildete sich Cuspidin nicht nur am Rand sondern auch im Inneren der Körner aus. Quarz reagiert ebenfalls mit Na₂O und formte gemeinsam mit dem Glasbruch die zuvor erwähnte erste Schmelzphase. Bei mangelndem Kontakt mit anderen Körnern bildeten sich als Folge der Reaktion von Glasphase und Quarz mit Na₂O um diese Phasen natriumreiche Säume. Ebenfalls eine Zunahme an Na₂O war in der chemischen Zusammensetzung der Flugasche zu beobachten. Durch ihren hohen Al₂O₃ Gehalt war ihr Erweichen im Bereich von 699 °C - 995 °C bei Pulver 6 und 601 °C - 838 °C bei Pulver 7 zu beobachten. Für das Pulver 5 liegen diesbezüglich keine Daten vor, da bei dieser Probe die Heiztischmikroskopie nur an einer gepressten Probe durchgeführt wurde. Nach der Stufenglühung bei 900°C konnte aber Flugasche noch nachgewiesen werden. Zwischen 750 °C und 900 °C sinterten die Pulver, es lag aber noch keine zusammenhängende Schmelze vor. Zusätzlich zu dem bereits gebildeten Cuspidin kristallisierte Cuspidin aus der Schmelze. Residuen ehemals großer Fluorit- und Wollastonitkörner waren noch vorhanden. Tonerde und Flugasche bildeten die Phase NAS₃ (Na₂Al₂Si₃O₁₀) (Abbildung 34b). Zwischen 900 °C und 1000 °C schmolzen mit Ausnahme einiger weniger Wollastonitund Tonerdekörner alle Rohstoffe auf. Cuspidin war allerdings die vorherrschende feste Phase in der zusammenhängenden Glasphase. Mit dem HTM war der Beginn der Kristallisation von Cuspidin aus der Schmelze bei Probe 5 ab 870°C beobachtbar. In Probe 6 und 7 lagen gut ausgebildete Cuspidinkristalle ab 1071 °C bzw. 1008°C vor. Nach der Stufenglühung bei 1100 °C war eine deutliche Zunahme der Kristallgröße beobachtbar, bevor Cuspidin schmolz. Die aus der STA abgeleiteten Temperaturen, ab der eine homogene Schmelzphase vorlag, sind vergleichbar und betragen 1160°C ± 20 °C. Die Werte die mit dem Heiztischmikroskop erzielt wurden liegen für die Pulver 5 und 6 im selben Bereich. Allerdings weist das Pulver 7 mit 1055 °C einen signifikant niedrigeren Wert auf. Der Phasenbestand der Proben nach den Stufenglühungen ist in Tabelle 30 zusammengefasst.

Abbildung 34: Rasterelektronenmikroskopische Darstellung der Weichstahlpulver nach den Stufenglühung bei a) 750 °C (für Pulver 5) und b) 900 °C (für Pulver 6). Phasen: (1) Wollastonit, (2) Combeit, (3) Cuspidin, (4) Glasbruch, (5) natriumreicher Reaktionssaum um den Glasbruch, (6) Flugasche, (7) Quarz, (8) natriumreicher Reaktionssaum um Quarz, (9) Tonerde, (10) NAS₃ (Na₂Al₂Si₃O₁₀) und (11) glasig erstarrte Schmelze

4.3.3. Gießpulver für das Vergießen von ULC-Stahl

Gießpulver 8 war ein Pulverisat und wurde für das Vergießen von Stählen mit geringen Kohlenstoffgehalten eingesetzt. Seine chemische Zusammensetzung ist in Tabelle 31 gegeben. Der Gesamtkohlenstoffgehalt von 2,24 % war sehr niedrig, um eine Aufkohlung des Stahls durch den Kontakt mit dem Gießpulver zu vermeiden. Die Hauptkomponente war Phosphorschlacke, wie sie auch bei den Pulvern 4a - 4c verwendet wurde. Als Natriumträger wurden die Komponenten Soda und wasserfreier Natrit (Na₂CO₃) zugegeben. Weitere Hauptrohstoffe waren Quarz und Fluorit, so wie in geringeren Mengen Kohlenstoffträger und Periklas. Vereinzelt konnte auch Baryt (BaSO₃) im Pulver detektiert werden (Abbildung 35).

		8	
F	Gew.%	5,6	
Na ₂ O	Gew.%	6,7	
MgO	Gew.%	4,2	
AI_2O_3	Gew.%	2,0	
SiO ₂	Gew.%	39,2	
P_2O_5	Gew.%	0,8	
SO ₃	Gew.%	0,08	
K₂O	Gew.%	0,1	
CaO	Gew.%	37,8	
TiO ₂	Gew.%	0,09	
Fe_2O_3	Gew.%	0,7	
NiO	Gew.%	0,01	
ZrO ₂	Gew.%	0,33	
BaO	Gew.%	0,11	
С	Gew.%	2,24	
Summe	Gew.%	100	
C/S		0,97	_

Tabelle 31: Chemische Zusammensetzung der Pulver für das Vergießen von ULC-Stahl

Abbildung 35: Rasterelektronenmikroskopische Darstellung des Pulvers 8 im Anlieferungszustand. Phosphorschlacke bestehend aus (1) Wollastonit, (2) Glasphase und (3) Cuspidin, (4) Quarz, (5) Fluorit (6), Periklas und (7) Soda

Die DTA-Kurve zeigte zwischen 100 °C und 160 °C einen endothermen Peak, der auf die Entwässerung von Soda zu Natriumcarbonat, Kohlendioxid und Wasser zurückzuführen ist. Aus der Kurve ging weiters hervor, dass hauptsächlich Ruß (Peak bei 424 °C) neben geringen Mengen an Koks (Peak bei 515 °C) als Kohlenstoffträger verwendet wurde. Aufgrund des geringen Masseverlusts von 0,9 % war aber der freie Kohlenstoffgehalt sehr gering. Mit dem Heiztischmikroskop konnte der vollständige Kohlenstoffabbrand bei 588°C beobachtet werden, mittels STA bei 530 °C.

Aufgrund der Überlagerung mit dem Kohlenstoffpeak konnte der Beginn der Dissoziation der Carbonate in der STA nicht eindeutig bestimmt werden. Nach der Stufenglühung bei 500 °C war aber bereits eine deutliche Veränderung der Kanten der Natritkörner im Mikroskop erkennbar. Ab 530°C war die Dissoziation auch in den STA

zu erkennen, die bei 690°C endete. In diesem Bereich lagen zwei endotherme Peaks bei ca. 570 °C und 670 °C. Da drei Carbonate im Pulver vorhanden waren, ist eine eindeutige Zuordnung nicht möglich. An den zweiten Carbonatpeak schließt ab 700 °C ein weiterer endothermer Peak bei 747 °C an, mit dem kein Gewichtverlust einhergeht. Der Peak dürfte auf die Bildung einer Schmelzphase zurückzuführen sein, da mit dem Heiztischmikroskop ab 718 °C die Bildung einer flüssigen Phase beobachtet werden Die Eraebnisse der Stufenglühungen zeiaten. konnte. dass nach einer Temperaturbehandlung bei 750 °C die Körner teilweise versinterten. Zuerst erweichten die Quarzkörner und die Glasphase der Phosphorschlacke. Aus der Reaktion dieser Silikatphasen mit dem Natrium- und Magnesiumcarbonaten bildeten sich die neugebildeten "Fluorpektolith" (NaCa₂Si₃O₈F) und Phasen Fluorrichterit (Na(Na,Ca)Mq₅Si₈O₂₂F₂). Erstere wurde in der Literatur bisher noch nicht erwähnt. Es ist aber bei Mineralien oft zu beobachten, dass, wie im Falle des Richterits (Na(Na,Ca)Mg₅Si₈O₂₂OH₂), eine OH Gruppe durch Fluorionen ersetzt wird. Neben diesen neugebildeten Phasen nahm Cuspidin Natrium in sein Kristallgitter auf. Zwischen 850 °C und 950 °C schmolz das Pulver in der STA rasch auf. Gleichzeitig war ab 854 °C mittels HTM die Bildung von Cuspidin aus der Schmelze beobachtbar. Die Ergebnisse der Stufenglühung bei 900 °C (Abbildung 36a) zeigten eine starke Versinterung des Pulvers. In einer zusammenhängenden glasigen Matrix sind noch Residuen der Komponenten Quarz, Wollastonit und Periklas, so wie die Phasen "Fluorpektolith" und Fluorrichterit vorhanden. Cuspidin war wiederum frei von Natrium und lag in Form gut ausgebildeter Kristalle vor. Zusätzlich wurde während dieser Stufenglühung Diopsid gebildet.

Nach der Stufenglühung bei 1000 °C (Abbildung 36b) lag hauptsächlich Cuspidin in einer glasig erstarrten Schmelze vor. Vereinzelt konnte Wollastonit detektiert werden, dessen Erscheinungsbild auf eine Kristallisation aus der Schmelze hinwies. Obwohl nach der Stufenglühung bei 1100 °C keine kristallinen Phasen in der glasig erstarrten Schmelze auftraten, zeigte die DTA-Kurve zwei weitere endotherme Peaks mit einem Maximum bei 1060 °C und 1115 °C, die auf das Schmelzen des Wollastonits und des Cuspidins zurückzuführen sein dürften. Die Temperatur, ab der eine homogene Schmelze vorlag, betrug mit dem HTM 1123 °C und mit der STA 1139 °C.

Abbildung 36: Rasterelektronenmikroskopische Darstellung des Pulvers 8 nach den Stufenglühungen bei a) 900 °C und b) 1000 °C. (1) Cuspidin, (2) Diopsid, (3) glasig erstarrte Schmelze, (4) Fluorpektolith, (5) Periklas, (6) Wollastonit

Tabelle 32: Phasenbestand des Gießpulvers 8 nach den Stufenglühungen in Abhängigkeit der Temperatur

4.3.4. Gießpulver für das Vergießen von TRIP-Stahl

Die folgenden beiden Pulver wurden zum Vergießen von TRIP-Stählen eingesetzt. Pulver 9 war hierbei das Standardpulver, wo hingegen Pulver 10 wegen der vermehrten Schlackenkranzbildung nur zum Angießen verwendet wurde. In ihrer chemischen Zusammensetzung unterschieden sie sich stark (Tabelle 33). Während Pulver 9, wie auch Pulver 2, mit einem C/S-Verhältnis von 0,61 das geringste C/S-Verhältnis aller untersuchten Pulver aufwies, lag das C/S-Verhältnis von Pulver 10 mit 1,19 vergleichsweise hoch. Außerdem wurde im Vergleich zu Pulver 9 bei Pulver 10 die Hälfte des SiO₂-Gehaltes durch Al₂O₃ ersetzt. Als Besonderheit enthielt Pulver 9 5,5 Gew.% MnO.

Die Hauptkomponente war bei Pulver 9 Glasbruch (Abbildung 37). In geringeren Mengen wurden Fluorit, Wollastonit, Kryolith, Pyrolusit (MnO₂) und Kohlenstoffträger dem Pulver zugegeben. Vereinzelt konnten die Komponenten Tonerde, Quarz, NC₃S₆, Flugasche, Villiaumit und Diopsid detektiert werden. Soda und Lithiumcarbonat wurden vermutlich auch eingesetzt, waren aber mit den zur Verfügung stehenden Methoden nicht eindeutig nachweisbar. Im Gegensatz zu Pulver 9 wurde bei Pulver 10 der Gehalt an Glasbruch reduziert. Dafür wurde zur Erreichung des gewünschten Al₂O₃-Gehaltes vermehrt Tonerde eingesetzt (Abbildung 37). Als dritte Hauptkomponente wurde Fluorit identifiziert. In geringen Mengen enthielt dieses Pulver außerdem Phosphorschlacke, Kohlenstoff und Villiaumit. Sporadisch waren die Komponenten Quarz, Flugasche, Calcit und Pyrolusit im Gießpulver vorhanden. Wie bei den anderen Granulaten bildete sich im Herstellungsprozess Shortit, der vereinzelt auftrat. Der Nachweis von Lithiumcarbonat war auch bei Pulver 10 nicht möglich. Da aber die chemische Analyse Lithiumgehalte aufwies, ist das Vorhandensein von Lithiumcarbonat wahrscheinlich.

	J .		
		9	10
F	Gew.%	9,6	9,6
Na ₂ O	Gew.%	8,9	10,6
MgO	Gew.%	1,0	0,7
AI_2O_3	Gew.%	4,3	25,3
SiO ₂	Gew.%	38,4	19,6
P_2O_5	Gew.%	0,04	0,25
SO ₃	Gew.%	0,24	0,3
K ₂ O	Gew.%	0,17	0,22
CaO	Gew.%	23,6	23,3
TiO ₂	Gew.%	0,00	0,9
Cr_2O_3	Gew.%	0,00	0,05
MnO	Gew.%	5,5	0,85
Fe_2O_3	Gew.%	0,97	0,78
BaO	Gew.%	0,17	0,09
B_2O_3	Gew.%	0,3	0,33
Li ₂ O	Gew.%	2,0	2,57
С	Gew.%	4,9	4,56
Summe	Gew.%	100	100
C/S		0,61	1,19

Tabelle 33: Chemische Zusammensetzung der Pulver 9 und 10

Abbildung 37: Rasterelektronenmikroskopische Darstellung eines Granalienquerschnittes im Anlieferungszustand der Pulver a) 9 und b) 10. Phasen: (1) Glasbruch, (2) Fluorit (3) Kryolith, (4) Pyrolusit, (5) Wollastonit, (6) Lithiumcarbonat, (7) Flugasche, (8) Tonerde, Phosphorschlacke bestehend aus (5) Wollastonit, (9) Cuspidin und (10) Glasphase und (11) Shortit

Aufgrund der deutlich unterschiedlichen chemischen und mineralogischen Zusammensetzung der beiden Pulver wich auch das Schmelzverhalten stark voneinander ab. Eine Gemeinsamkeit stellte das verwendete organische Bindemittel dar, das, wie aus der STA hervorging, zwischen 180 °C und 380 °C abbrannte und zwei exotherme Peaks bei 220 °C und 285 °C in der DTA-Kurve aufwies. In beiden Gießpulvern waren vermutlich drei Kohlenstoffträger vorhanden. Die STA-Untersuchungen deuteten darauf hin, dass in beiden Fällen der Hauptanteil an Kohlenstoff in Form von Ruß in das Pulver eingebracht wurde, jedoch trat der zugehörige Peak bei Pulver 9 bei 465 °C auf, während dieser bei Pulver 10 bei 431 °C lag. Bei beiden Pulvern trat zwischen ca. 490 °C und 560 °C ein zweiter Kohlenstoffpeak auf, der aber jeweils vom ersten Peak überlagert wurde. Im Fall von Pulver 9 war ein dritter großer Kohlenstoffpeak in der DTA-Kurve vorhanden, der sein
Maximum bei 600 °C hatte und bei Pulver 10 nur schwach ausgeprägt war. Der begleitende Masseverlust deutete auf eine Überlagerung der Verbrennung des Kohlenstoffes mit der Dissoziation der Carbonate hin. Mit dem HTM konnte im Fall von Pulver 9 nach 470 °C und im Fall von Pulver 10 ab 550 °C kein weiterer Kohlenstoffabbrand beobachtet werden. Aufgrund der Überlagerung mit der Dissoziation der Carbonate kann anhand der STA-Ergebnisse keine genaue Temperatur für das Ende des Kohlenstoffabbrandes angegeben werden. Anhand der Verringerung des Masseverlusts ab 640 °C bei Pulver 9 kann davon ausgegangen werden, dass ab dieser Temperatur kein Kohlenstoff mehr vorlag. Bei Pulver 10 blieb die Masse ab 689 °C bis zum Schmelzen konstant. Ab der Bildung einer Schmelzphase kam es zu Masseverlusten durch Verdampfen von Fluor und Alkalien.

Als Besonderheit begann Pulver 9 als frühestes von allen untersuchten Pulvern aufzuschmelzen. So konnte mit dem HTM der Schmelzbeginn bei 643 °C beobachtet werden. In den TG- und DTA-Kurven konnte der Beginn bei ca. 640 °C festgelegt werden. Der konstante Masseverlust bis 1067 °C deutete auf die Bildung einer größeren Menge an Schmelzphase hin, aus der flüchtige Bestandteile abdampften. Die Ergebnisse der Stufenglühung bei 750°C zeigten, dass zwischen 500 °C und 750 °C Glasbruch und Kryolith aufschmolz und gemeinsam mit Fluorit und Shortit eine Schmelzphase bildeten, aus der Fluorpectolit kristallisierte (Abbildung 38a). Flugaschekörner reicherten sich an Natrium an, zeigten aber in ihrer chemischen Zusammensetzung gegenüber der Ausgangszusammensetzung aeringere Aluminiumgehalte. Um die Residuen des Wollastonits bildete sich Cuspidin, der im HTM ab 680°C beobachtet werden konnte. Combeit konnte im Gegensatz zu den Pulvern 1, 2, 4, und 5 nicht detektiert werden. Pyrolusit wurde zu Mn₂O₃ reduziert. Außerdem konnten Residuen der Komponenten Diopsid, Flugasche und Quarz ausgemacht werden. Die DTA-Kurve zeigte während des Erhitzens drei exotherme Peaks bei 821 °C, 881 °C und 949 °C. Der erste Peak konnte aufgrund des Phasenbestandes nach Stufenglühung bei 750 °C der Bildung von "Fluorpektolith" zugeordnet werden. Einer oder beide der restlichen Peaks markierte die Kristallisation von Cuspidin und der andere die Kristallisation von Wollastonit aus der Schmelze, da die Probe nach der Stufenglühung bei 900 °C zum Großteil aus einer glasigen Matrix bestand, in der idiomorphe Cuspidinkristalle sowie Residuen von Fluorit, Quarz und Mn₂O₃ detektiert werden konnten (Abbildung 38b). Bereits bei 956 °C war das Pulver bis auf geringe vereinzelt aus Cuspidin Mengen an und der Schmelze ausgeschiedene Wollastonitkristalle geschmolzen, wie die Auswertung der STA und der Stufenglühung bei 1000 °C ergab. Ab 1043 °C konnte die Bildung einer homogenen Schmelze mittels HTM beobachtet werden. In der STA Analyse deuten der zunehmende Masseverlust ab 1020 °C sowie das Ende des letzten endothermen Peaks auf das Vorliegen einer homogenen Schmelzphase hin.

Obwohl bei Pulver 10 die ersten Schmelzphasen ebenfalls bereits bei 650 °C mit dem HTM beobachtet und in der DTA-Kurve einem endothermen Peak mit einem Maximum bei 690 °C die Bildung einer Schmelzphase zugeordnet werden konnte, lag das Pulver nach Glühung bei 750 °C noch immer in Form von Granalien vor. Die Mikroanalyse zeigte, dass der eingebrachte Glasbruch und die Glasphase der Phosphorschlacke zwischen 500 °C und 750 °C schmolzen und mit der Tonerde erste Reaktionen zeigten. Aufgrund ihrer geringen Menge kam es aber zu keiner Sinterung des Pulvers. Die gebildete Schmelzphase reagierte außerdem mit Wollastonit und Fluorit zu Cuspidin. Diesem Ereignis konnte der endotherme Peak bei 747 °C in der DTA-Kurve zugeordnet werden. Ab 870 °C lagen im HTM gut ausgebildete Cuspidin vor. Bei 870 °C zeigte auch ein weiterer endothermer Peak in der DTA-Kurve sein Maximum, der auf das

Erweichen der Tonerde und der Bildung einer Aluminatphase zurückzuführen sein dürfte, denn nach der Stufenglühung bei 900 °C konnte mikroskopisch neben Cuspidin eine Aluminatphase als zweite Hauptphase in Form eines Saumes um die Tonerderesiduen detektiert werden (Abbildung 39c). Als weitere Besonderheit konnten nach der Stufenglühung bei 900 °C Villiaumit und Lithiumfluorid (LiF) detektiert werden. Außerdem kristallisierte Perovskit (CaTiO₃) aus der Schmelzphase. Das hierfür notwendige TiO₂ stammte aus den Verunreinigungen der Tonerde. Nach der Stufenglühung bei 1000 °C lag das Pulver gesintert vor und ein Großteil der Tonerde war zu Aluminatphase umgewandelt worden. Der Phasenbestand war außer dem Fehlen des Villiaumits dem nach der Stufenglühung bei 900 °C sehr ähnlich. Im Gegensatz dazu bildete die kristalline Aluminatphase nach Glühung bei 1100 °C die Hauptphase, in ihren Zwickeln lag vorwiegend Fluorit vor, Cuspidin konnte nur noch in geringen Mengen und immer in Verbindung mit Fluorit detektiert werden. Residuen der Tonerde sowie Lithiumfluorid und Perovskit waren auch nach dieser Temperaturstufe vorhanden. Auffallend war das Fehlen einer Schmelzphase wie sie bei den übrigen untersuchten Gießpulvern auftrat. Mit dem Heiztischmikroskop konnte ab 1240°C eine homogene Schmelzphase beobachtet werden. Aus der TG- und DTA Kurve ist das Vorliegen einer Schmelze ab 1139 °C abzuleiten.

In der Literatur wurde die gebildete Aluminatphase in dieser Form bisher noch nicht beschrieben. Im RDA-Spektrum wies sie bei 2 Θ 30,12° den höchsten Peak auf. Weitere Peaks lagen bei 2 Θ 25,63°, 31,46°, 15,60° und 23,99° (Abbildung 40). Seine näherungsweise Formel lautet Na_{10,5}Ca_{6,7}Al_{5,3}Si_{6,7}O_{44,3}F₇ wobei die Zusammensetzung nach Stufenglühung bei 900 °C erhöhte Natriumgehalte aufwies

Abbildung 38: Rasterelektronenmikroskopische Darstellung des Pulvers 9 nach der Stufenglühung bei (a) 750 °C und (b) 900 °C. Phasen: (1) Fluorit, (2) Wollastonit, (3) glasig erstarrte Schmelze, (4) Mn₂O₃, (5) Cuspidin und (6) Fluorpektolith

Abbildung 39: Rasterelektronenmikroskopische Darstellung des Pulvers 10 nach der Stufenglühung bei (a) 750 °C, (b) 900 °C, (c) 1000 °C und (d) 1100 °C. Phasen: (1) Tonerde, (2) Cuspidin, (3) glasig erstarrte Schmelze, (4) Villiaumit (5) Aluminatphase bei 900°C, (6) Perovskit, (7) LiF 9 und (8) Fluorit

Abbildung 40: RDA Spektrum des Pulvers 10 nach Stufenglühung bei 900 °C

	original	500 °C	750 °C	900 °C	1000 °C	1100 °C	1200 °C
Glasbruch							
Tonerde (Al ₂ O ₃)							
Fluorit (CaF ₂)						I I	
Wollastonit (CaSiO ₃)							
Kryolith (Na ₃ AIF ₆)							
Quarz (SiO ₂)							
Soda (Na ₂ CO ₃ ·10H ₂ O)							
NC ₃ S ₆							
Flugasche							
Kohlenstoff (C)							
Pyrolusit (MnO ₂)							
Villiaumit (NaF)							
Diopsid (CaMgSi ₂ O ₆)							
Lithiumcarbonat (Li ₂ CO ₃)							
Cuspidin (Ca ₄ Si ₂ O ₇ F ₂)							
"Fluorpektolith" (NaCa ₂ Si ₃ O ₈ F)							
Mn ₂ O ₃							
glasig erstarrte Schmelze							

Tabelle 34: Phasenbestand der Gießpulver 9 nach Stufenglühungen in Abhängigkeit der Temperatur

Tabelle 35: Phasenbestand der Gießpulver 10 nach Stufenglühungen in Abhängigkeit der Temperatur

	original	500 °C	750 °C	900 °C	1000 °C	1100 °C	1200 °C
Glasbruch			1				
Tonerde							I
Fluorit (CaF ₂)							
Pyrolusit (MnO ₂)			I I				
Phosphorschlacke							
Wollastonit (CaSiO ₃)			I				
Cuspidin (Ca ₄ Si ₂ O ₇ F ₂)			I				
Glasphase			I				
Oldhamit (CaS)			I I				
Villiaumit (NaF)							
Quarz (SiO ₂)			I I				
Shortit (Na ₂ Ca ₂ [CO ₃] ₃)							
Flugasche							
Calcit (CaO)							
Kohlenstoff (C)							
Lithiumcarbonat (Li ₂ CO ₃)							
Cuspidin (Ca ₄ Si ₂ O ₇ F ₂)							I
Calcium-Aluminat-Phase					I		
LiF							I
Perovskit (CaTiO ₃)							I
Fluorit (CaF ₂)							I
glasig erstarrte Schmelze					I		

4.4. Ergebnisse der RDA mit Heizkammer

Wie in 2.4.8 beschrieben wurde an Probe 8 eine RDA mit integrierter Heizkammer durchgeführt. Im ersten Versuch wurde nahezu eine Monokornschicht auf ein Platinheizband appliziert, die Durchführung erfolgte unter Vakuum. Als Folge schmolz das Pulver nicht auf, da zwischen den Rohstoffen kaum Kontakt vorlag. Im zweiten Versuch war die Schichtdicke wesentlich stärker, sodass ein Aufschmelzen der Phasen beobachtbar war. Beim diesem Versuch bestand das Heizband aus Tantal. Der Versuch wurden unter Luft durchgeführt. Die aufgenommenen Spektren sind in Abbildung 41 dargestellt. Ab 200 °C verringert sich die Höhe der Quarzpeaks geringfügig. Bei 450°C war Fluorit nicht mehr vorhanden, dafür bildete sich eine neue Phase, die nicht in der Datenbank der Auswertesoftware enthalten war. Zwischen 650 °C und 750 °C verringerte sich die Höhe der Wollastonitpeaks zu Gunsten der Bildung von Cuspidin, dessen Peaks ab 750 °C verzeichnet werden konnten. Bei 800 °C war eine deutliche Verringerung des Quarzgehaltes zu erkennen, ehe bei 850 °C kein Quarzpeak mehr detektiert werden konnte. Dafür traten ab dieser Temperaturstufe zusätzlich zu den noch vorhandenen Phasen neue Peaks auf, die aber keiner bekannten Phase zugeordnet werden konnten. Ab 1000 °C war eine Reduzierung der dem Cuspidin zugehörigen Peaks zu erkennen, die sich bis 1050 °C fortsetzte. Zwischen 1050 °C und 1100 °C kam es zu keinen Reaktionen, da sich die Spektren von 1050 °C und 1100 °C deckten. Bei 1150 °C war eine Verringerung der Peakhöhe aller restlichen Phasen zu erkennen, so dass auf ein Aufschmelzen geschlossen werden kann. Das bei 1200 °C aufgenommene Spektrum zeigte außer einer Phase, die vermutlich durch die Reaktion der Schmelze mit dem Tantalheizband entstand, keine weiteren Peaks.

Die Spektren sind mit denen der Proben nach den Stufenglühungen vergleichbar, jedoch schmolzen die Rohstoffe in der Heizkammer durchwegs später auf. Die Bildung der Phasen, bei denen es sich der mikroskopischen Analyse zufolge um Fluorrichterite und Fluorpectolit handelt, traten in den Stufenglühungen bei Temperaturstufe 750 °C auf, während sie in der Heizkammer erst bei 850 °C detektiert werden konnten. Auch das Vorliegen einer homogenenn Schmelze erfolgte im Vergleich mit den Stufenglühungen bei einer um 100 °C höheren Temperatur.

Die Vermutung liegt nahe, dass der Kontakt zwischen den einzelnen Körnern aufgrund der geringen Schichtstärke nicht im gleichen Maße bestand wie in den Stufenglühungen, und so Diffusionsprozesse, die zur Bildung einer Schmelze führten, vermindert abliefen.

Abbildung 41: RDA Spektrenübersicht ; Probe 8 beim Aufschmelzen in der Heizkammer

4.5. Ergebnisse der an die STA gekoppelte Massenspektroskopie

Wie in 3.2.2 beschrieben wurde bei Probe 8 der Abgasstrom der STA an ein Massenspektrometer aekoppelt. Die Eraebnisse der simultanen Massenspektrometeruntersuchung des Pulvers sind in Abbildung 42 dokumentiert. Die beobachteten MS-Peaks für die Massenzahlen 18, 19, 20, 30, 44, 48, 64 und 85 sind höchstwahrscheinlich auf das Entweichen von H₂O, F₂, HF, NO, CO₂, SO, SO₂ und SiF₃ zurückzuführen. Die anderen in [76,77,78] beschriebenen Verbindungen konnten in dieser Messung nicht detektiert werden. In Verbindung mit der DTA-Kurve geht hervor, dass, sobald das Pulver zu schmelzen beginnt, Fluorverluste auftreten und mit steigender Temperatur zunehmen. Der große Massenverlust ab ca 1000 °C von 10,47 % ist auf das Abdampfen von F₂ aus der Schmelze zurückzuführen. In geringen Mengen evaporieren auch HF und SiF₃. Der ausgewiesene Masseverlust von 1,16 % erfolgte durch die Verbrennung von Ruß, während die 3,53 % Masseverlust auf die Dissoziation der Carbonate zurückzuführen waren.

Abbildung 42: Ergebnisse der Thermogravimetrie gekoppelt mit einer Massenspektrometrie

Abbildung 43: Ergebnisse der Simultanthermoanalyse der Probe 8

5. Diskussion der Ergebnisse und Schlussfolgerungen

5.1. Zusammenfassung der Rohstoffe

Die Hauptkomponenten der Gießpulver, deren SiO₂ Gehalt größer als 30 Gew.% ist, bilden die natürlichen Silikate Wollastonit (CaSiO₃), Albit (NaAlSi₃O₈) und Quarz (SiO₂), sowie die synthetischen Silikate Glasbruch, Phosphorschlacke, Hochofenschlacke und Flugasche. Wie die Analysen der EDS zeigen, ist ihre chemische Zusammensetzung unabhängig vom Gießpulverhersteller. Beispielhafte Zusammensetzungen dieser Rohstoffe sind in Tabelle 36 gegeben.

		Glasbruch	Phosphor- schlacke	Glasphase der Phosphor- schlacke	Hochofen- schlacke	Flugasche
GPNr.		2	8	8	1	1
F	Gew.%		3,2	1,16		
CaO	Gew.%	8,3	43,6	24,3	40,7	1,2
SiO ₂	Gew.%	75,4	43,3	45,7	40,8	56,4
MgO	Gew.%	2,4	1,2	3,0	4,8	
AI_2O_3	Gew.%	1,2	3,1	15,0	11,1	29,6
Na ₂ O	Gew.%	11,6	1,6	4,4		2,9
K ₂ O	Gew.%	1,1	0,4	1,5	0,2	5,0
P_2O_5	Gew.%		1,8	4,1		
SO ₃	Gew.%		1,8	1,6	2,7	
TiO ₂	Gew.%					0,7
Fe_2O_3	Gew.%					4,1
C/S		0,15	1,00	0,53	1,00	0,02

Tabelle 36: Chemische Zusammensetzung der synthetischen Silikate ermittelt mit der EDS

Zur Senkung der Viskosität der Gießschlacke wird den Gießpulver Fluor zugegeben. Dies geschieht immer in Form von Fluorit (CaF₂). Vereinzelt wird zusätzlich Kryolith (Na₂AIF₆) oder Villiaumit (NaF) zugesetzt. Eine weitere Fluorquelle ist die Phosphorschlacke. Natriumoxid senkt sowohl den Schmelzpunkt als auch die Viskosität der Gießpulver. Neben dem bereits in den Silikaten und Kryolith enthaltenen Natrium wird der gewünschte Natriumgehalt durch die Verwendung von Natriumcarbonaten eingestellt. In den pulverförmigen Proben 2 und 3 wurde Natriumhydrogencarbonat (NaHCO₃) als Natriumträger verwendet, in Pulver 8 Soda (Na₂CO₃·5H₂O). Bei Pulver 2 war auch Natrit (Na₂CO₃) enthalten. Im Fall der sphärischen Granulate kann anhand der Proben nicht gesagt werden, ob Natriumhydrogencarbonat oder Natriumcarbonat eingesetzt wurde, da es bereits während des Sprühtrockenprozesses zur Bildung von Shortit $(Na_2Ca_2(CO_3)_3)$ und/oder Gaylussit $(NaCa(CO_3)_2 \cdot 5H_2O)$ durch Fällungsreaktionen gemäß Gleichungen (15) und (23) bis (24) kommt.

$$2Ca(OH)_2 + 3Na_2CO_3 \rightarrow Na_2Ca_2(CO_3)_3 + 4NaOH^-$$
(22)

$$2Ca(OH)_2 + 3NaHCO_3 \rightarrow Na_2Ca_2(CO_3)_3 + NaOH + 3H_2O$$
(23)

$$Ca(OH)_2 + 2Na_2CO_3 + 5H_2O \rightarrow 2NaOH + Na_2Ca(CO_3)_2 \cdot 5H_2O$$
⁽²⁵⁾

$$Ca(OH)_2 + 2NaHCO_3 + 3H_2O \rightarrow Na_2Ca(CO_3)_2 \cdot 5H_2O$$
⁽²⁴⁾

Besonders große Mengen an Shortit und Gaylussit treten in Gegenwart von Hochofenschlacke und vermehrt auch bei der Verwendung von Phosphorschlacke auf. Wenn jedoch Calcium in Form von Wollastonit eingebracht wird, sind diese Phasen in einem weitaus geringeren Maß in den Granalien vorhanden. Grund dafür ist, dass Calciumionen leichter aus einem Glasnetzwerk als aus einem Kristallgitter gelöst werden und die Anwesenheit von calciumhältigen Glasphasen die Bildung von Natrium-Calcium-Carbonaten begünstigt. Der vergleichsweise geringe Calciumgehalt des Glasbruchs ist für die Bildung von Natrium-Calcium-Carbonaten nicht ausreichend, so dass bei den Gießpulvern auf Basis Glasbruch diese Doppelcarbonate nicht detektiert werden konnten.

Zur Einstellung der Aufschmelzgeschwindigkeit werden verschieden Kohlenstoffträger eingesetzt. Anhand der STA Analyse können Graphit, Ruß und Petrolkoks unterschieden werden. Je nach Anwendungsbereich der Gießpulver beträgt der Kohlenstoffgehalt 2-16 Gew.%.

In geringen Mengen finden zur Korrektur der chemischen Zusammensetzung der Gießpulver Calcit (CaCO₃), Magnesit (MgCO₃) oder Periklas (MgO) und Tonerde (Al_2O_3) Verwendung. Eine Ausnahme bilden Gießpulver auf Calcium-Aluminat-Basis, bei denen Tonerde eine Hauptkomponente ist.

Selten wird Lithiumcarbonat (Li_2CO_3) oder Spodumen ($LiAlSi_2O_6$) als Lithiumträger eingesetzt. Nur in einem Fall war Pyrolusit (MnO_2) als Manganquelle im Pulver enthalten.

5.2. Reaktionen während des Aufschmelzens

Die untersuchten Proben spiegeln die breite Palette an Gießpulvern wider. In Tabelle 37 sind die Temperaturen der wichtigsten Reaktionen zusammengefasst. Die Temperaturbeständigkeit der Rohstoffe in den Gießpulvern ist in Tabelle 38 aufgelistet.

	C/S	Vollständiger	Dissoziation	1. Schmelz-	Cuspidin-	Natrium-	Homogene
		Kohlenstoff-	der	phasenbildung	bildung aus	silicate	Schmelze
		abbrand	Carbonate	(HTM)/°C	der	(Stufenglüh	(HTM/
		(HTM/	(STA)/°C		Schmelze	ung)/°C	STA)/°C
		DTA)/°C			(HTM)/°C		
1	0,73	858/ 727	n.b.	1034	1073	600, 750,	1180/ 1175
~	0.04	707/747	740 705	004	040 4005	900	4404/4400
2	0,61	7277717	/19-/65	921	943, 1005	750, 870	1121/1133
За	0,91	780/ n.b	675-765	920	1023	900, 1000, 1100	1220/ 1133
3b	0,91	780/ n.b	675-790	925	985	900, 1000,	1208/ 1126
						1100	
3c	0,92	750/ n.b	675-765	970	1085	900, 1000,	1217/ 1151
						1100	
4a	1,34	790/ 728	n.b.	940	1060	750, 900	1230/ 1060
4b	1,29	n.b,	n.b.	n.b.	n.b.	750, 900	n.d/ 1260
4c	1,30	750/ 617	n.b.	633	963	750, 900	1100/ 1000
5	0,87	620/ 734	680-750	604	870	750	1160/ 1160
6	0,84	689/ 690	680-790	696	1071	750, 900	1160/ 1180
7	0,88	560/ 630	655-730	598	1008	750	1055/ 1140
8	0,97	588/ 530	530-690	718	854	750, 900	1123/ 1139
9	0,61	470/ 640	n.b.	643	690	750	1043/ 1020
10	1,19	550/ 689	n.b.	650	870		1240/ 1139

Tabelle 37: Zusammenfassung der Reaktionen die beim Aufheizen der Gießpulver auftreten

Tabelle 38: Stabilität der Rohstoffe

		H	ТМ		Stufeng	lühungen
		Mittelwert	Min.	Max.	Min.	Max.
Dissoziation Soda	Anfang	320	310	330	500	500
	Ende	485	430	540	750	750
Dissoziation Calcit	Anfang	480	480	480	25	
	Ende	580	580	580		
Auflösen des Kalks	Anfang	613	505	670		900
	Ende	720	565	820		1000
Veränderung der Kanten von						
Fluorit, Albit, Wollastonit und Glas	Anfang	463	460	470		
	Ende	533	530	540		
Cuspidinbildung	Anfang	509	470	580	500	
1 0	Ende	610	520	750	750	
Schmelzphasenbildung	Anfang	757	598	1020	500	750
1 3	Ende	1140	930	1300	750	900
Auflösung der Phosporschlacke	Anfang	607	470	720	500	750
5	Ende	893	740	1000	750	900
Auflösung des Spodumens	Anfang	630	630	630	500	500
5	Ende	740	740	740	750	750
Auflösung der Gläser	Anfang	633	470	698	400	750
5	Ende	776	650	918	500	900
Auflösung der Flugaschen	Anfang	650	601	699	25	1000
	Ende	917	838	995	500	1100
Auflösung des Fluorits	Anfang	678	550	938	500	1000
-	Ende	900	690	1070	750	1100
Auflösung des Kryolths	Anfang	710	710	710	500	900
	Ende	770	770	770	750	1000
Auflösung des Diopsid	Anfang	734	615	995	600	900
	Ende	910	797	1105	750	1000
Auflösung des Korunds	Anfang	755	660	850	500	1100
	Ende	875	810	940	750	1200
Auflösung des Quarz	Anfang	756	525	1000	25	900
	Ende	905	655	1150	500	1000
Auflösung der Hochofenschlacke	Anfang	757	700	790	750	900
	Ende	1123	1110	1150	900	1000
Auflösung des Periklas	Anfang	790	630	900	350	900
	Ende	862	680	1005	500	1000
Auflösen von Wollastonit	Anfang	821	600	1000	500	1000
	Ende	991	850	1150	750	1100
Auflösung des Albits	Anfang	960	920	1000	750	1000
	Ende	1073	930	1150	900	1100

5.2.1. Kohlenstoffabbrand

Kohlenstoff war in allen Gießpulverproben präsent. Die TG- und DTA-Kurven zeigen generell mehrere exotherme Peaks, die auf die Verbrennung unterschiedlicher Kohlenstoffträger hindeuten. Die für die Granulation verwendeten organischen Bindemittel verwendet, brennen zwischen ca. 170 °C und 380 °C aus und weisen zwei exotherme Peakmaxima bei ca. 220 °C und ca. 280 °C auf. Der erste große exotherme Peak in den Gießpulvern dürfte auf die Verbrennung von Ruß zurückzuführen sein. Aufgrund seiner geringen Partikelgröße und der Tatsache, dass er in der Bindematrix neben anderen Feinstpartikeln in der Granalien vorliegt konnte er aber mikroskopisch nicht verifiziert werden. Bei den Pulverisaten ging dieser Feinteil überhaupt durch die

Schliffpräparation verloren. Die Peaklage der Verbrennung von Ruß erstreckt sich von 430 °C im Fall von Pulver 4a bis 543°C im Fall von Pulver 2. Die Verbrennung von vermutlich Koks reicht von 490 °C im Fall von Pulver 4b und 9 bis zu 603°C im Fall von Pulver 2. Ein dritter großer exothermer Peak, der der Verbrennung von Graphit zugeschrieben werden kann, konnte nicht bei allen Pulvern detektiert werden. Die Spanne der Lage seines Peaks reicht von 600 °C (Pulver 9) bis 696 °C (Pulver 2). Mit dem Heiztischmikroskop konnte die Temperatur, ab der die Kohlenstoffträger vollständig abgebrannt waren, im Fall von Pulver 9 bereits bei 470 °C festgelegt werden. Im Gegensatz dazu konnten Residuen von Graphit im Pulver 1 bis 828 °C beobachtet werden.

Die Versuchparameter wurden so gewählt, dass der Gleichgewichtszustand möglichst erreicht werden sollte. Aufgrund der geringen Probenmasse und der Heizrate von 5 °C/min bei der Durchführung der STA und HTM sowie einer 15 minütigen Haltezeit bei den Stufenglühungen ist die Versuchsanordnung nicht geeignet, um den in der Literatur beschriebenen Einfluss der Menge und Art der unterschiedlichen Kohlenstoffträger auf Schmelzrate zu untersuchen. Allerdings zeigte sich der Einfluss die der Kohlenstoffträger auf das Schmelzverhalten der Gießpulver im direkten Vergleich der Proben 6 und 7, die eine nahezu identische chemische Zusammensetzung aufwiesen. So lag bei Gießpulver 7 mit dem höheren freien Kohlenstoffgehalt bereits bei 1055 °C eine homogene Schmelze im HTM vor, während dies bei Pulver 6, mit einem vergleichsweise geringeren freien Kohlenstoffgehalt, erst bei 1160 °C der Fall war. Grund dafür dürfte ein höherer Anteil an Ruß im zweiten Fall sein, der die anderen Rohstoffe und die ersten Schmelzperlen umhüllt und durch seine Unbenetzbarkeit für eine Separation der Partikel sorgt. Aufgrund dieses mangelnden Kontaktes werden die Phasen an der Reaktion gehindert. Diese Dispergierung durch den Kohlenstoff wirkte sich auf die Bildung erster Schmelzphasen im HTM (Abbildung 44) aus. Auffallend war, dass besonders die Gießpulver für das Vergießen von Knüppeln und Vorblöcken hohe Schmelzphasenbildung späten Temperaturen für die aufgrund des Kohlenstoffabbrandes aufwiesen. Bei singulärer Betrachtung der Gießpulver zum Vergießen von Brammen korrelieren die Werte allerdings nicht, da die Temperatur, ab der sich ersten Schmelzphasen bilden, auch von der Art der verwendeten Silikate und dem Natriumgehalt des Pulvers abhängt. Der Verdacht, dass die Temperatur des vollständigen Kohlenstoffabbrandes im HTM sowie in der STA im direkten Zusammenhang mit dem Gesamtkohlenstoffgehalt steht, erwies sich als falsch, da diese auch von der Art der eingesetzten Kohlenstoffträger beeinflusst wird.

Abbildung 44: Bildung einer ersten Schmelze im HTM in Abhängigkeit von der Temperatur des vollständigen Kohlenstoffabbrandes im HTM für alle untersuchten Gießpulver

5.2.2. Die Dissoziation der Carbonate

Die Dissoziation der Carbonate ist eng mit der Bildung der ersten Schmelzphasen verbunden. Ab 63 °C dissoziert Natriumhydrogencarbonat gemäß Gleichung (26) zu Natriumcarbonat (NaCO₃), Wasser (H₂O) und Kohlenstoffdioxid (CO₂).

$$2NaHCO_3 \rightarrow NaCO_3 + H_2O + CO_2 \tag{26}$$

Wie die Ergebnisse der Stufenglühungen zeigen, beginnen unter 350° C Umwandlungsprozesse in den Doppelcarbonaten, die auf eine Entwässerung derselben hindeuten. Die Dissoziation des Natrit (Na₂CO₃) setzte im Modellpulver HOS-F-0,5Na der STA zufolge bei 520 °C ein. Anhand der Stufenglühungen konnten in den Gießpulvern der Beginn der Dissoziation des Natrits (Abbildung 45), des Calcits und der Natrium-Calcium-Carbonate bereits bei der Temperaturstufe unter 500 °C detektiert werden.

Abbildung 45: Rasterelektronenmikroskopische Darstellung des Natrits bei einsetzender Dissoziation (GP 8 nach Stufenglühung bei 500°C) Phasen: (1) Natrit, (2) Wollastonit, (3) Cuspidin und (4) Glasphase der Phosphorschlacke Weil der Beginn der Dissoziation der Carbonate immer vom Kohlenstoffabbrand überlagert wird, kann der frühe Beginn mittels STA nicht bestätigt werden. Mit dem HTM gelang es allerdings, die Dissoziation von Na₂CO₃ in Gießpulver 3a und 3b von 330-540 °C und die Dissoziation von Calcit in Pulver 9 zwischen 480 °C und 580 °C zu beobachten. Die Spanne des vollständigen Auflösens vom Kalk (CaO) im HTM reicht von 565-820 °C. In der STA ist der Dissoziationsprozess der Carbonate mit Ausnahme von Pulver 8 zwischen 690°C und 790°C abgeschlossen.

Nach der Stufenglühung bei 750°C waren Reaktionen zu beobachten, die an Gleichung (6) aus Kapitel 2.5.6 angelehnt sind.

$$CaCO_3 + yMe_xO \cdot zSiO_2 \rightarrow CaO \cdot yMe_xO \cdot zSiO_2 + CO_2$$
(6)

An Stelle des Calcits (CaCO₃) kann Natrit, Gaylussite, Shortit und gegebenenfalls Lithiumcarbonat (Li₂CO₃) stehen. Die Reaktionspartner sind Quarz, Wollastonit, synthetische Glasphasen, Albit und Spodumen. Durch die Gegenwart von Fluorit, Kryolith und NaF geht mit der Dissoziation der Carbonate meist die Bildung von Cuspidin durch Feststoffdiffusion einher. Außerdem wird in den meisten Fällen eine Schmelzphase gebildet, die die erste auftretende Schmelzphase darstellt und aus der Natrium-Calcium-Silikatphasen auskristallisieren. Die wichtigsten Reaktionen im Einzelnen werden nachfolgend beschrieben.

5.2.3. Reaktionen der Silikate

Quarz

Die Untersuchungen der Stufenglühung bei 750°C zeigten, dass Quarz eine der ersten Phasen ist, die mit Natriumcarbonat reagiert. Am Beispiel des Gießpulvers 8 (Abbildung 46) ist gut zu erkennen, wie sich um den Quarz ein Diffusionssaum bildet, und als Folge der Quarz durch Schmelzphasenbildung seine Form verliert.

Abbildung 46: Rasterelektronenmikroskopische Darstellung der Reaktion von Quarz und Phosphorschlacke und Natriumcarbonat am Beispiele des Pulvers 8 nach Glühung bei 750°C Phasen: (1) Quarz, (2) Diffusionszone um Quarz, (3) Glasphase der Phosporschlacke, (4) Wollastonit, (5) Cuspidin, (6) Fluorpectolit, (7) Glasphase, (8) Fluorrichterit

Quarz formt aber in Beisein von Na₂O auch mit anderen Rohstoffen eine Schmelzphase. Insbesondere herauszuheben ist Glasbruch, aus deren gemeinsamer Schmelzphase NC₃S₆ kristallisierte (27) und Phosphorschlacke, die zur Kristallisation von "Fluorpektolith" (NaCa₂Si₃O₈F) führt (28). In Gegenwart der Doppelcarbonate kann die Bildung von Cuspidin beobachtet werden. Außerdem kommt es in Kontakt mit Kryolith und Calcit zur Schmelzphasenbildung. Die Auflösung des Quarzes konnte mit dem Heiztischmikroskop im Schnitt zwischen 785 °C und 936 °C beobachtet werden.

Auffallend war die große Spanne des letzten Auftretens von Quarz, die in den Stufenglühungen von 400 °C bis 900 °C und im HTM von 525 °C bis 1110 °C reichte, wobei ein gleichsinniger Zusammengang mit der Bildungstemperatur der ersten Schmelzphase erkennbar war.

$$(Na_2CO_3, SiO_2, Glasbruch) \rightarrow (Na_2Ca_3Si_6O_{18}, CO_2, L)$$
⁽²⁷⁾

$$(Na_2CO_3, SiO_2, Phosphorschlacke) \rightarrow (NaCa_2Si_3O_8F, CO_2, L)$$
 (28)

Wollastonit

Im Fall von Wollastonit diffundieren Natriumionen in das Innere des Korns. Liegt natürlicher Wollastonit vor, wird ohne Beteiligung einer flüssigen Phase durch Feststoffdiffusion die Phase Combeit (Na₂Ca₂Si₃O₉), wie in [18] beschrieben gebildet. In den Proben konnte er nach Stufenglühung bei 600°C bis max. 900°C beobachtet werden (4.2.1, Abbildung 26b). Als Folge diffundiert CaO an die Korngrenzen, wo sich als nächster Schritt Cuspidin (Ca₄Si₂O₇F₂) gemäß Gleichung (29) bildet.

$$5CaSiO_3 + Na_2CO_3 + CaF_2 \rightarrow Na_2Ca_2Si_3O_9 + Ca_4Si_2O_7F_2 + CO_2$$
⁽²⁹⁾

Residuen von Wollastonit konnten bis teilweise 1000 °C anhand der Stufenglühungen nachgewiesen werden. Daraus ist zu schließen, dass besonders bei größeren Wollastonitkörnern die Menge an Natrium und/ oder die Zeit für eine vollständige Umwandlung nicht ausreichten. Das Vorhandensein einer Schmelzphase wirkt auf den Umwandlungsprozess beschleunigend. Dies spiegelt eine gute, positive Korrelation zwischen dem Ende der Bildung einer Schmelzphase im HTM und der Anfangstemperatur der Umsetzung des Wollastonits wieder. (Siehe Korrelationsmatrix im Anhang)

Der Wollastonit, der in der Phosphorschlacke vorliegt, nimmt ebenfalls Natriumoxid auf, reagiert aber in Beisein der Glasphase zu NCS₂ (Na₂CaSi₂O₇). In Analogie zum natürlichen Wollastonit bildet sich auch hier ein Ring aus Cuspidin um die NCS₂ Phase aus, aber im Gegensatz zum natürlichen Wollastonit ist an dieser Reaktion die umgebende Glasphase beteiligt (4.3.1,Abbildung 32b).

$$(CaSiO_3, Na_2O, CaF_2, L) \rightarrow (Na_2CaSi_2O_7, Ca_4Si_2O_7F_2, L)$$
(30)

Liegt die Phosphorschlacke neben einer ausreichenden großen Menge Quarz vor, geht der in der Schlacke vorliegende Wollastonit zuerst in eine Schmelzphase über, aus der die Phase Flourpektolith auskristallisiert (28) (Abbildung 46).

Synthetische Glasphasen

Durch die Diffusion von Natriumionen in die synthetischen Silikate (Abbildung 47) senkt dieses deren Schmelzpunkt bzw. deren Schmelzbereich. Anhand der Stufenglühungen konnte beobachtet werden, dass besonders Glasbruch zwischen 670 °C und 750 °C Natriumoxid aufnimmt und eine flüssige Phase bildet. Gleichzeitig formiert sich Cuspidin in und um diese Schmelzphase. Mit dem Heiztischmikroskop könnte seine Auflösung im Schnitt zwischen 666 °C und 802 °C beobachtet werden.

Das Schmelzen der Hochofenschlacke (HOS) setzte vergleichsweise spät ein und war in Gegenwart von Quarz und Carbonaten anhand der Stufenglühungen ab 750 °C beobachtbar. Wie das Beispiel des Gießpulvers 3 nach Stufenglühung bei 900°C zeigt, erfolgt bei mangelndem Kontakt eine Rekristallisation der Hochofenschlacke. Trotzdem ist auch hier eine Feststoffdiffusion von Na₂O und CaF₂ in die Schlackenkörner beobachtbar, die zur Bildung von Cuspidin führt.

$$(HOS, Na_2O, CaF_2) \rightarrow (Ca_4Si_2O_7F_2, C_2S, L)$$
(31)

Die Auflösung dieser rekristallisierten Schlackenkörner fand im HTM im Schnitt zwischen 757 °C und 1123 °C statt.

Flugasche ist in unterschiedlichen Mengen Bestandteil aller Gießpulver und wird zwischen 750 °C und 1000 °C in einer Schmelze gelöst. Im HTM lagen die Temperaturen zwischen 650 °C und 917 °C. Allerdings tritt auch hier, wie bei allen anderen Silikaten, zuvor eine Feststoffdiffusion von Natriumionen in das Innere der Körner auf. Flugasche trägt somit nicht zur Bildung der ersten Schmelzen bei. Eine Ausnahme bildete Gießpulver 3. Aus Ermangelung einer ausreichenden Schmelzmenge war nach Stufenglühung bei 900 °C das isolierte Schmelzen der Flugasche anhand einer Formänderung der Körner ersichtlich.

Eine Sonderstellung unter den synthetischen Silikaten nimmt die Phosphorschlacke ein. Ihr Glasphasenanteil beginnt schon bei 600 °C zu schmelzen, während Cuspidin und Wollastonit weiterhin kristallin in der Schmelze vorliegen. Die Reaktion des Wollastonit ist auf der vorhergehenden Seite schon beschrieben. Auffällig ist, dass obwohl Cuspidin bereits kristallin in den Schlackenkörnern vorliegt, dieser bei Temperaturstufe 750°C und 900°C ebenfalls Natriumionen in sein Gitter einbaut, bei Temperaturen darüber Cuspidin aber wieder natriumfrei vorliegt und die letztschmelzende Phase im Gießpulver darstellt.

Abbildung 47: Rasterelektronenmikroskopische Darstellung der Festoffdiffusion von Na₂O in die Hochofenschlacke (GP 1 nach Stufenglühung bei 600°C) Phasen: (1) Hochofenschlacke mit Diffusionssaum, (2) Flugasche, (3) Wollastonit, (4) Quarz, (5) NC₂S₃

Albit und Spodumen

Albit zählt zu den Phasen, die erst unter Beteiligung einer Schmelzphase reagieren. Die Beständigkeit des Albits in Gießpulvern hängt somit stark von der Bildung silikatischer Schmelzen ab. Ist die umliegende Schmelzmenge ausreichend groß, wird Albit direkt in der Schmelze gelöst. Die Bildung von Diffusionszonen war bei Gießpulver 4 im Kontakt mit der Phosporschlacke zu beobachten, weil in diesem Fall die das Korn umgebende Schmelzmenge für einen sofortigen Abtransport des Reaktionsproduktes zu gering war. Die chemische Zusammensetzung des in Abbildung 48 ersichtlichen dunklen Randes des ehemaligen Albitkorns ist reicher an Natrium- und Aluminiumoxid, als er der Zusammensetzung von Albit entspricht, ist an SiO₂ verarmt und enthält geringe Mengen an F, MgO, SO₃, K₂O and CaO. Im Gegensatz dazu konnten in der heller erscheinenden Diffussionszone im Inneren keine erhöhten Al₂O₃ Gehalte detektiert

werden. Das Endprodukt dieses Diffusionsprozesses ist die Bildung von Nephelin. Ab einer Korngröße des Albits von ca. 95µm sind seine Kristalle ringförmig angeordnet und markieren die ehemaligen Korngrenzen des Albits.

$$(NaAlSi_{3}O_{8}, Schmelze) \rightarrow (NaAlSiO_{4}, L)$$
(32)

Obwohl im Dreistoffsystem $Na_2O-Al_2O_3-SiO_2$ (81) die eutektische Temperatur der Phasen Albit, Nephelin und $Na_2Si_2O_5$ bei 732°C liegt, konnte Albit in den Stufenglühungen bis max. 1000°C detektiert werden. Mit dem HTM war seine Auflösung im Schnitt zwischen 960 °C und 1073 °C beobachtbar.

Der in Gießpulver 4c eingesetzte Spodumen war bis 500 °C in den Stufenglühungen bzw. bis 750 °C im HTM sichtbar und reagiert ähnlich wie Albit. Auch hier war eine Natriumzunahme und eine SiO₂ Abnahme detektierbar. In Analogie zum Albit steht am Ende der Diffusionsvorgänge die Kristallisation von Nephelin aus einer lokal übersättigten Schmelze (Abbildung 32d).

$$(LiAlSi_2O_6, L) \to (NaAlSiO_4, L)$$
(33)

Der Ersatz von Lithiumcarbonat und Albit durch den Einsatz der niedriger schmelzenden Rohstoffe Spodumen und Soda bewirkt die Senkung der Bildungstemperatur einer homogenen Schmelze. Bei den untersuchten Pulvern betrug der Unterschied 80 °C.

Abbildung 48: Rasterelektronenmikroskopische Darstellung der Ausbildung von Diffusionssäumen im Albit 1) NCS2, (2) Cuspidin, (3) glasig erstarrte Schmelze, (4) Albit, (5) Innere Diffusionszone, (6) äußere Diffusionszone

5.2.4. Fluorit, Kryolith und Villiaumit

Fluorit

Kurz nach der Bildung der ersten Schmelzphase beginnt Fluorit bei ca. 550°C (HTM) mit seiner Zersetzung, so dass die Schmelzphasen nach Stufenglühung bei 750°C Fluorgehalte bis 10 Gew.% aufweisen. Residuen von Fluorit konnten in den meisten Fällen in den Stufenglühungen bis 900°C und in seltenen Fällen im HTM bis 1070°C beobachtet werden. Es besteht ein schwacher Trend, dass die Temperatur der vollständigen Umsetzung des Fluorits bei steigender Bildungstemperatur der ersten Schmelzphase sinkt. Aus den Untersuchungen geht hervor, dass Fluorit in Kontakt mit einer silikatischen Phase eine fluorreiche Schmelze bildet, aus der sich erst in einem gewissen Abstand zum verbliebenen Fluorit Cuspidin ausscheidet (Abbildung 49). Teilweise zeigen die Kornkanten des Fluorits auch ohne direkten Kontakt

Veränderungen. Zusätzlich war die Bildung von Poren im Inneren der Fluoritkörner zu beobachten, die auf eine Gasentwicklung hindeuten (4.3.3, Abbildung 38a).

Durch die Kopplung des Abgasstroms der STA an ein Massenspektrometer konnte gezeigt werden, dass Fluorverlust bei der Bildung einer fluorhältigen Schmelzphase auftreten. Ohne Massenspektrometrie ist der Beginn des Fluorverlusts nicht festzulegen, da der Gewichtsverlust durch die Dissoziation der Carbonate nahtlos in den Gewichtsverlust durch das Entweichen von Fluor übergeht. Im Schnitt betrug der Masseverlust 0,6 % vom Ende der Dissoziation der Carbonate bis zum Ende des Schmelzprozesses. Im Fall der Pulver 3a-c und 6 wurden die geringen Gewichtsverluste zu Beginn von einer Gewichtszunahme vermutlich durch die Oxidation von FeO zu Fe_2O_3 in der Hochofenschlacke überlagert. Ein unmittelbarer Zusammenhang zwischen Fluorgehalt im Gießpulver und Höhe des Gewichtsverlusts lag nicht vor, da der Dampfdruck fluorhaltiger Spezies über der Schmelzphase höher ist als über der festen Phase.

Abbildung 49: Rasterelektronenmikroskopische Darstellung der Reaktion von Fluorit im Kontakt mit Glasbruch am Beispiele des Pulver 8 nach Glühung bei 750°C 1) Fluorit, (2) ehemaliger Glasbruch, (3) glasig erstarrte Schmelze, (4) Cuspidin

Kryolith und Villiaumit

Kryolith war in Gießpulver 3, 4 und 9 enthalten und bildete mit den synthetischen Gläsern, Quarz und den Carbonaten die erste Schmelzphase. So konnte Kryolith nur bis Stufenglühung 500 °C bzw. bis 770°C im HTM beobachtet werden. Villiaumit war in geringen Mengen nur Bestandteil der Pulver 9 und 10. In beiden Fällen war er an der Bildung erster Schmelzphasen beteiligt und nach Glühung bei 750 °C bzw. 900 °C nicht mehr präsent.

5.2.5. Korund, Periklas, Diopsid und Pyrolusit

Tonerde war meist der Rohstoff, der in den Proben am längsten beständig war. Er wurde während der Stufenglühungen in der Schmelze zwischen 900 °C und 1100 °C gelöst. Mit dem HTM konnte Tonerde nur bis max. 940 °C beobachtet werden, weil diese meist nur in geringen Mengen vorlag und sich somit nicht immer im Sichtfeld des HTMs befand. Hierbei konnte ein schwacher Trend beobachtet werden, dass die Schmelztemperatur mit zunehmendem Al_2O_3 Gehalt der Pulver stieg. Weil der Umwandlungsprozess feststoffdiffusionsorientiert ist, wie anhand der Diffusionszone um Tonerderesiduen ersichtlich ist (Abbildung 30d und), spielt die Korngröße auf die Auflösungsgeschwindigkeit der Tonerde eine entscheidende Rolle.

$$(Al_2O_3, L) \to (NaAlSi_3O_8, L) \tag{34}$$

Eine Ausnahme bildet Gießpulver 10. Aufgrund des geringen SiO₂ Gehalts des Pulvers wird der hohe Tonerdegehalt nicht in einer silikatischen Schmelze gelöst, sonders bildet in Kontakt mit einer silikatischen Schmelze durch Feststoffdiffusion eine Phase auf Basis Aluminiumoxid.

$$(Al_2O_3, L) \to (Na_{105}Ca_{67}Al_{53}Si_{67}O_{44}F_7, L)$$
 (35)

Die Temperaturen bei denen Diopsid noch detektiert werden konnten reichten in den Stufenglühungen von 750 °C bis 1000 °C. Im HTM konnte seine Auflösung ohne Verbindungsbildung von 615 °C bis 1105 °C beobachtet werden. Periklas war auf Grund seiner Basizität weniger lang als Diopsid in der silikatischen Schmelze beständig. Die Temperaturen, bei denen er noch beobachtet werden konnte erstreckten sich von 350 °C bis 900°C in den Stufenglühungen bzw. von 630 °C bis 1005 °C im HTM. Als Folge wurde Diopsid aus einer lokal übersättigten Schmelze ausgeschieden.

$$(MgO,L) \to (CaMgSi_2O_6,L) \tag{36}$$

Im Kontakt mit Phosphorschlacke kann es zwischen 500 °C und 750 °C zur Bildung von Fluorrichterit kommen.

$$(MgO, Phosporschlacke) \rightarrow (Na(Na, Ca)Mg_5Si_8O_{22}F_2, L)$$
(37)

In seltenen Fällen konnte im direkten Kontakt mit Fluorit die Bildung von MgF detektiert werden.

$$(MgO, CaF_2, L) \to (MgF_2, L)$$
(38)

Pyrolusite war nur in Gießpulver 9 enthalten. Im Gleichgewicht reduziert MnO_2 bei 1 atm und 466 °C zu Mn_2O_3 .

$$4MnO_2 \rightarrow 2Mn_2O_3 + O_2 \tag{39}$$

Mittels EDS Analyse der Proben der Stufenglühung bei 750°C, konnte nachgewiesen werden, dass dieser Prozess auch bei Gießpulvern stattfindet. In weiterer Folge wird Mn_2O_3 ohne eine Verbindungsbildung zwischen 900 °C und 1000 °C in der Schmelze gelöst.

5.2.6. Bildung der Schmelzphasen

Die eutektischen Temperaturen der Gießpulver liegen zwischen 500°C und 750°C. Weil die Mengen der ersten gebildeten Schmelzphasen sehr gering sind, reichen sie nicht aus, um mit dem HTM oder DTA detektiert werden zu können. Daher sind genauere Temperaturangaben nicht möglich. Eine der beteiligten Komponenten ist immer ein Natrium- oder Natrium-Calcium-Carbonat das wie in 5.2.2 beschrieben mit den Silikaten reagiert. Diese sind Quarz, Glasbruch und der Glasphase der Phosphorschlacke, welche sich durch hohe SiO₂ Gehalte und ein niedriges C/S Verhältnis auszeichnen. Obwohl die Flugasche einen höheren SiO₂ als die Glasphase der Phosphorschlacke aufweist, führt ihr Al₂O₃ Gehalt von ca. 30% dazu, dass sie nicht an der Bildung der ersten Schmelze beteiligt ist. Wenn Kryolith und Villiaumit im Pulver enthalten sind, nehmen auch diese an der Bildung der ersten Schmelzphasen teil. Die chemischen Zusammensetzungen der ersten Schmelzephasen spiegelten die eingesetzten Silikate Quarz, Glasbruch, Glasphase der Phosphorschlacke und Hochofenschlacke wider, wiesen aber zusätzlich Natriumgehalte zwischen 10 Gew.% und 17 Gew.% auf. Die Werte streuen allerdings innerhalb der einzelnen Proben, da die gebildeten Phasen davon abhängen, welche Partikel konkret in Kontakt standen.

Wie der Vergleich von Pulver 9 und 10 zeigte, ist die Bildungstemperatur der ersten Schmelzphasen unabhängig von der Menge der verwendeten Silikate. Der weitere Schmelzverlauf der Gießpulver wird aber vor allem von der Art und Menge der verwendeten synthetischen Gläser bestimmt. Anhand der Stufenglühungen ist zu erkennen, dass die Gießpulver, die auf der Komponente Glasbruch basieren, bereits bei Glühung bei 750°C größere Mengen an Schmelze bilden, währen vor allem bei den Gießpulvern auf Basis Wollastonit und Hochofenschlacke erst nach Glühung bei 1000°C zusammenhängende Schmelzphasen zu erwarten ist. Wie schon erwähnt bedarf es bei der Heiztischmikroskopie einer gewissen Menge an flüssiger Phase, um sie detektieren zu können. Die Gießpulver die Glasbruch beinhalteten weisen mit 643-696 °C die geringste Bildungstemperatur einer erkennbaren Schmelzphase im HTM auf. Aufgrund seines hohen Kohlenstoffgehaltes bildet Gießpulver 2 mit einer Bildungstemperatur von 921 °C eine Ausnahme. Die Gruppe der Gießpulver, die Phosphorschlacke enthielten, bildeten im HTM zwischen 633 °C und 940 °C eine Schmelzphase. Bemerkenswert ist, dass die Gruppe der Gießpulver, die auf Hochofenschlacke und Wollastonit basiert, im Gegensatz zu den Gießpulvern, die auf Glasbruch und Phosphorschlacke aufgebaut sind, erst zwischen 920 °C und 1034 °C eine erkennbare Schmelzphase zeigen. In Übereinstimmung mit den Stufenglühungen zählte Hochofenschlacke durch ihr hohes C/S Verhältnis somit zu den vergleichweise spät schmelzenden synthetischen Silikaten. Da die Bildungstemperatur der ersten Schmelzphasen mit dem Natriumgehalt der Proben nur schwach korreliert, ist davon auszugehen, dass mit steigendem C/S Verhältnis der synthetischen Silikate die Temperatur des Schmelzbereiches ansteigt, wenn die Al₂O₃ Gehalte entsprechend gering sind. Denn wie am Beispiel der Flugasche zu sehen, wirken sich hohe Al₂O₃ Gehalte auf den Schmelzbereich erhöhend aus.

5.2.7. Intermediäre Phasenneubildung

Die ersten auftretenden neugebildeten Phasen sind Natriumcalciumsilikate, als Folge der Reaktion der Natriumcarbonate bzw. Natriumcalciumcarbonate mit den Silikaten, die geringe AI_2O_3 Gehalten aufweisen. Sie werden zwischen 500°C und 750°C gebildet und lösen sich zwischen 900°C und 1000°C in der der Schmelze.

Durch Feststoffdiffusion von Natriumionen in den Wollastonit werden die Phasen Combeit und NCS₂ gemäß Gleichung (29) und (30) aus 5.2.3 gebildet. Vereinzelt entsteht Combeit auch in der äußersten Diffusionszone der Hochofenschlacke. Mit dem Heiztischmikroskop können diese Reaktionen nicht direkt beobachtet werden, da diese neugebildeten Phasen von einer Schicht aus Cuspidin umhüllt sind, dessen Bildung mit der Combeitbildung einhergeht und im Schnitt zwischen 509°C und 613°C erfolgt.

Aus einer flüssigen Phase kristallisiert die Phase NC_3S_6 durch die Reaktion der Natrium- bzw. Natriumcalciumcarbonate mit Quarz und Glasbruch gemäß Gleichung (27). Die Temperaturen liegen hierbei höher als die der Bildung von Combeit, da sich wie in 5.2.3 beschrieben Quarz und Glasphase im Schnitt zwischen 666 °C und 802 °C bzw. 785 °C und 936 °C auflösen. Ist an Stelle von Glasbruch Phosporschlacke enthalten, kann es zur Bildung von "Fluorpektolith" nach Gleichung (28) kommen, wobei das Schmelzen der Phosporschlacke im Schnitt zwischen 607 °C und 893 °C mittels HTM beobachtet wurde.

Liegt der MgO Gehalt des Pulvers über 2%, ist bei Temperaturstufe 900 °C Diopsid in der Probe zu erwarten. Ist Diopsid nicht schon als Rohstoff im Pulver vorhanden, kristallisierte er zwischen 750°C und 900°C gemäß Gleichung (36) aus der Schmelze aus. Im HTM fand die Auflösung des Periklas im Schnitt zwischen 790 °C und 862 °C

statt. Eine Ausnahme bildete Pulver 8. In diesem wurde MgO zusätzlich in der Phase Fluorrichterit bei Temperaturstufe 750 °C und 900 °C gebunden.

Die Gegenwart von Al₂O₃ führt in Gießpulvern zwischen 750 °C und 900 °C zur Bildung von Natrium-Aluminium-Silikaten. Die Ausnahme bildet Gießpulver 8, dessen Al₂O₃ Gehalt von 2 Gew.% dafür nicht ausreichte. Ist Albit oder Spodumen als Rohstoff vorhanden, wird Nephelin wie in 5.2.3 beschrieben, gebildet. In den Stufenglühungen trat dieser bei Temperaturstufe 1000°C, teilweise aber auch schon ab 750°C auf. Eine Ausnahme bildet Pulver 2, bei dem Albit aufgrund des Mangels an niedriger schmelzenden Silikatphasen bis 850°C beobachtet werden konnte. Wurde hingegen der Al₂O₃ Gehalt in Form von Tonerde eingebracht, konnte nach Stufenglühung bei 900°C und 1000°C zumeist die Phase Albit detektiert werden. Selten war auch das Auftreten eines Saumes um die Tonerde zu beobachten. Durch den hohen Al₂O₃ Gehalt des Pulvers 10 wich die Phasenparagense stark von der der anderen Pulver ab. In diesem Fall bildete eine nicht näher identifizierte Phase auf Basis Calcium-Aluminat mit der durchschnittlichen Zusammensetzung Na_{10,5}Ca_{6,7}Al_{5,3}Si_{6,7}O_{44,3}F₇ (4.3.4, 5.2.5) den Hauptteil des Gefüges nach Glühung bei 900 -1100°C.

Reduziert man die Pulver auf die Komponenten CaO, SiO₂ und CaF₂, liegt mit Ausnahme von Pulver 4a-c die Zusammensetzung nicht im Ausscheidungsfeld von Cuspidin sondern in dem des Wollastonits. Es ist auch das einzige, das im Konjugationsdreieck CaSiO₃- Ca₄Si₂O₇F₂-CaF₂ liegt. Alle anderen befinden sich im Konjugationsdreieck CaSiO₃-SiO₂-CaF₂. Somit ist es weiter nicht verwunderlich, dass während der Stufenglühung bei 1000°C neben Cuspidin auch Wollastonit aus der Schmelze kristallisierte. C₂S hingegen wurde in den isoliert vorliegenden Hochofenschlackenkörnern während der Stufenglühung bei 1000°C in Pulver 3a-c gebildet.

Die Phase MgF₂ trat nur bei Pulver 1 in direkter Umgebung von Periklas auf. Bei SiO₂ Mangel, wie er in Calcium-Aluminatgießpulvern herrscht, ist CaF₂ und LiF stabil. Im untersuchten Gießpulver 10 war CaF₂ bei Temperaturstufe 1100°C und bei LiF bei Temperaturstufen 900 °C und 1000 °C beobachtbar.

Die wichtigste Phase stellte der Cuspidin dar, die in allen silikatischen Gießpulvern die letztschmelzende Phase war. Sobald Fluorit zu zersetzen beginnt, erfolgt seine Bildung durch Feststoffdiffusionsvorgänge in die Silikate. Als Folge konnte mit dem HTM ab 500 °C ein Aufhellen der Körner beobachtet werden. Durch die Gasentwicklung war für die Bildung des Cuspidins die räumliche Nähe zwischen Silikat- und Fluoritkörnern nicht nötig. Natrium wirkte bei der Umsetzung der Calciumsilikate zu Cuspidin in gewisser Weise als Katalysator. So ging der Cuspidinbildung stets die Diffusion von Natrium in die Silikate voraus. Besonders gut war dies am Beispiel des Wollastonit zu beobachten, der wie in 5.2.3 beschrieben durch die Diffusion von Natrium einen Saum aus Combeit bildete. Erst dann konnte Cuspidin um diesen Saum als Folge der Reaktion zwischen Combeit und Fluor entstehen. Daraus resultierend diffundiert das nun wieder freigewordene Natrium in das Innere des Wollastonits und bildet erneut die Phase Combeit. Da Cuspidin Na-Ionen in sein Kristallgitter einbauen kann, weisen die ersten gebildeten Cuspidin Natriumgehalte auf, die sie aber mit zunehmenden Temperaturen wieder abgeben. Aufgrund des Glasnetzwerks des synthetischen Silikate diffundiert einerseits Natrium leichter in das Innere der Körner, zum anderen stellt es auch keine Barriere für Fluor da, so dass in ihrem Fall Cuspidin auch im Korninneren gebildet wird.

Der Großteil des gebildeten Cuspidins kristallisierte aus der Schmelze. Ein direkter Zusammenhang zwischen der Bildungstemperatur der ersten Schmelzphasen und der Kristallisation von Cuspidin konnte in dieser Arbeit nicht gefunden werden, ein schwacher Trend, dass mit sinkender Bildungstemperatur der ersten Schmelzphase auch die Solidustemperatur des Cuspidins sinkt, war allerdings erkennbar. Von größerer Bedeutung war die gebildete Schmelzphasenmenge. Cuspidin kristallisierte erst dann aus der Schmelze, wenn die Schmelzphasenmenge dafür ausreichend war ging daher in den Stufenglühungen und im HTM mit der Bilduna und zusammenhängender Schmelzphasen einher (Abbildung 50). Im frühesten Fall (Pulver 9) betrug die Solidustemperatur des Cuspidin 690 °C und im spätesten Fall (Pulver 3c) 1085 °C. Das Temperaturintervall der Liguidustemperaturen reichte von 840 °C (Pulver 9) bis 1200 °C (Pulver 3a) und lagen im Mittel bei 960 °C, wobei die Solidus und die Liquidustemperatur positiv korrelieren (Abbildung 51). Außerdem besteht ein schwacher Zusammenhang dieser Ergebnisse der HTM mit dem C/S Verhältnis der Gießpulverzusammensetzung.

Abbildung 50: Kristallisationstemperatur von Cuspidin aus der Schmelze

Abbildung 51: Temperatur des vollständigen Aufschmelzens von Cuspidin in Abhängigkeit seiner Kristallisationstemperatur aus der Schmelze

5.2.8. Bildung einer homogenen Schmelzphase

Die Bildung der homogenen Schmelzphase ist im Heiztischmikroskop definiert als die Temperatur, ab der keine Konzentrationsunterschiede in der Schmelze in Form von Schlieren beobachtbar und keine weitere Gasentwicklung durch aufsteigende Gasblasen erkennbar sind. Sie korreliert kaum mit der Schmelztemperatur des Cuspidins. Im Vergleich dazu wird bei Auswertung der STA hierfür das Ende des letzten Schmelzpeaks herangezogen, bei dem gleichzeitig ein starker Masseverlust einsetzt. Zwischen der Bildungstemperatur einer homogenen Schmelze und der Bildung der ersten Schmelzphasen besteht kein Zusammenhang. Vielmehr hängt sie vom C/S-Verhältnis des Gießpulvers ab, wie in Abbildung 52 zu sehen ist.

Abbildung 52: Abhängigkeit der Bildungstemperatur der homogenen Schmelze vom C/S Verhältnis

5.2.9. Vergleich der Laborergebnisse mit denen aus dem Betrieb

Im Zuge der Arbeit wurden auch Proben von Schlackenkränzen aus dem Betrieb genommen und untersucht. Es zeigte sich, dass der obere Teil dieser Kränze aus teilgeschmolzenem Pulver bestand, und die Phasenparagenese mit der der Stufenglühungen übereinstimmte. Phasen deren Schmelzbereich tendenziell bei höheren Temperaturen angesiedelt sind und größere Korngrößen aufwiesen, stellten auch in den Schlackenkränzen die letztschmelzenden Rohstoffe dar. Die dominierende Phase war mit Ausnahme der Kränze von Pulver 10 Cuspidin. Im Fall von Pulver 10 herrschte die Calcium-Aluminat-Phase vor.

5.3. Beurteilung der verwendeten Messmethoden

5.3.1. Bestimmung des Rohstoffzusammensetzung

In dieser Arbeit wurden vier verschieden Methoden zu Untersuchung der Phasenvergesellschaftung von Gießpulvern vor und während des Schmelzens verwendet. Am Anfang der Untersuchung eines Gießpulvers stand immer die Bestimmung der Rohstoffe. Diese erwies sich als sehr zeitaufwendig und die Ergebnisse sind teilweise mit Unsicherheiten behaftet. Rückschlüsse auf die Kohlenstoffträger lässt eine STA Analyse zu. Anhand der Lage der exothermen Peaks kann auf die Art der Kohlenstoffträger geschlossen werden. Gut unterscheiden lassen sich Ruß, Koks und Graphit. Um detailliertere Aussagen treffen zu können, müssten

Kohlenstoffträgern Referenzmessungen an bekannten mit denselben Versuchsparametern durchgeführt werden. Der Schwerpunkt der Arbeit lag aber auf der Phasenvergesellschaftung im Gleichgewicht, sodass diesbezüglich keine zusätzlichen Untersuchungen stattfanden. Die Menge der Kohlenstoffträger kann aus der Thermogravimetrie ermittelt werden, da mit der Kohlenstoffverbrennung ein Masseverlust einhergeht. In der TG-Kurve ist dies in Form von Stufen ersichtlich, die mit der Lage der Peaks konform gehen. Wenn sich die Peaks der einzelnen Kohlenstoffträger überlagern, werden die Ergebnisse ungenau. Außerdem setzt die Dissoziation der Carbonate vor Beendigung des Kohlenstoffabbrandes ein, was vor allem die Werte für Graphit beeinflusst. Weiters hängen die gewonnenen Temperaturen der Oxidation der Kohlenstoffträger von der Durchwärmung der Probe ab, so dass die Probenmenge und Heizrate die Ergebnisse beeinflussen. die Wenn die Versuchsparameter gleich gelassen werden, eignet sich die Methode für die Qualitätskontrolle um zu prüfen, ob die eingesetzten Kohlenstoffträger geändert wurden. Außerdem kann in Pulverisaten Natriumhydrogencarbonat anhand eines endothermen Peaks identifiziert werden, dessen On-set ca. 62°C beträgt und mit dem ein Gewichtsverlust einhergeht. Die Entwässerung von Soda tritt bei 120°C ein

Die RDA ist zur Beurteilung der Kohlenstoffträger nicht geeignet, da sie große röntgenamorphe Anteile besitzen. Auch die Peaks der Graphitanteile sind im Untergrundrauschen der anderen kristallinen Phasen nur selten detektierbar. Kristalline Phasen lassen sich mit einer röntgendiffraktometrischen Analyse (RDA) erfassen. Die große Zahl an Komponenten und ihre teils niedrige Symmetrie der Kristallstrukturen führen allerdings zu einer Vielzahl an Peaks, die sich überlagern, sodass Phasen, die in geringen Mengen vorliegen, nicht analysiert werden können. Eine weitere Einschränkung stellen Komponenten dar, die eine bevorzugte Orientierung der Kristallflächen aufweisen, sodass diese Komponenten quantitativ überschätzt werden. In Gießpulvern können ohne Probleme und Auswirkung auf den Untergrund die Phasen Fluorit, Calcit, Quarz und Periklas detektiert werde. Albit, Wollastonit und Cuspidin, Nephelin und Combeit sind ebenfalls gut analysierbar, weisen aber viele Parks auf und sorgen für den oben genannten hohen Untergrund. Dies wirkte sich auch als besonders störend bei der quantitativen Analyse aus. Glasphasen, die im Wesentlichen röntgenamorph sind, können mittels RDA nur bedingt in Form eines breit gestreckten Peaks detektiert werden. Natriumhydrogencarbonat, Shortit und Gaylussite konnten nicht erfasst werden. Zur Qualitätskontrolle ist die Methode insofern geeignet, als sich damit eine gualitative Veränderung der mineralischen Komponenten gut erfassen lässt. Die Spektren wurden auch guantitativ mittels Rietveld Analyse ausgewertet. Aufgrund der oben genannten Einschränkungen stellen die Ergebnisse lediglich eine grobe Abschätzung dar, wie die Untersuchung an drei verschiedenen Chargen einer Gießpulversorte zeigte.

Da wie erwähnt Glasphasen röntgenamorph sind, ist für die Untersuchung des Schmelzverhaltens eine mikroskopische Untersuchung der Gießpulver im Anlieferungszustand unabdingbar. Allerdings die teils sehr führen kleinen Partikelgrößen von unter 2 µm auch die Methode der Energiedispersiven Röntgenspektroskopie (EDS) an ihre Auflösungsgrenze. Deshalb ist auch die Verifizierung von Ruß mit dieser Methode nicht möglich. Koks und Graphit können aber sehr wohl mit der Auflichtmikroskopie detektiert werden.

Bei dem HTM handelt es sich um ein Auflichtmikroskopisches Verfahren, bei dem unter dem Objektiv eine Heizkammer positioniert ist, in der die Probe liegt. Charakteristische Phasen wie Graphit, Koks, Fluorit, Shortit, Gaylussit, Flugasche und teilweise Wollastonit sind mit ihr gut zu unterscheiden. Für eine genaue Kenntnis der vorliegenden Phasen muss aber zuvor eine Schliffpräparation erfolgen, die eine Voruntersuchung mit der EDS ermöglicht.

5.3.2. Bestimmung des Schmelzverlaufes

Die STA erwies sich als vergleichsweise schnelle Methode, um Reaktionen während des Aufschmelzen anzuzeigen. Anhand ihrer Kurven ist, wie zuvor beschrieben, der Kohlenstoffabbrand gut zu bewerten. Vor allem bei geringen Kohlenstoffgehalten ist die Dissoziation der Carbonate zu erkennen. Die Bildung einer Schmelzphase ist, wie die Koppelung mit dem Massenspektrometer zeigte, mit Fluorverlusten verbunden. Sofern diese Massenabnahme nicht durch Oxidationsprozesse überlagert wird, kann durch sie ersten Schmelzphase abgeschätzt werden. die Bilduna der Eine aroße Gewichtsabnahme setzte ein, sobald die Probe komplett aufgeschmolzen ist. Der zugehörige endotherme Peak ist in der DTA-Kurve klar ersichtlich. Leider treten im Verlauf der Kurve durch das vorliegende Vielkomponentensystem derart viele Effekte auf, dass eine erschöpfende Interpretation des gesamten Kurvenverlaufes trotz Stufenglühungen in einem vernünftigen Zeitrahmen nicht möglich ist. Weites zeigte sich eine Abhängigkeit der Temperaturen von der Heizrate und der Probenmenge. Werden diese beiden Parameter konstant gehalten, ist sie eine für den Betrieb praktikable Methode zur Einganskontrolle. Die Koppelung mit dem Massenspektrometer zeigte auf, dass die Gewichtsverluste zum überwiegenden Teil durch die Verbrennung von Kohlenstoff als auch durch das Verdampfen von F2 zustande kommen. Leider können bedingt durch die tiefen Temperaturen in der Kapillare Alkalien nicht gemessen werden, da sie bereits kondensierten. Weil in fluorhältigen Gießpulvern keine anderen Masseverluste zu erwarten sind, ist die Chance eines weiteren Wissenszuwachs als gering zu bewerten.

Als weitere Methode wurde am Lehrstuhl die Heiztischmikroskopie implementiert. Sie ermöglicht die in situ Beobachtung des Schmelzverlaufes. Der Abbrand von Koks und Graphit ist wegen ihres großen Reflexionsvermögens gut beobachtbar. Diese Methode ist somit gut geeignet zur Bestimmung der Temperatur, ab der kein freier Kohlenstoff in der Probe mehr vorliegt. Ruß und Mikrographite schwimmen beim Einbetten der Pulvers auf, bzw. liegen bei Granalien neben anderen Mikropartikeln vor, sodass sie aufgrund ihrer geringen Korngröße mikroskopisch nicht auflösbar sind. Wurde vor dem Versuch eine Mikroanalyse an der Probe durchgeführt, kann die Veränderung der einzelnen Komponenten, vom ersten Formverlust der Partikel bis zum völligen Aufschmelzen, dokumentiert werden. Die Bildung des ersten Cuspidins durch Feststoffdiffusionsvorgänge ist anhand eines Aufhellens vor allem der Phasen Wollastonit und Glasbruch zu erkennen, trat aber auch um Albit auf. Zur Beobachtung der allerersten Schmelzen ist die Schmelzphasenmenge oft nicht ausreichend, sodass die aufgezeichneten Temperaturen der ersten Schmelzphase nicht die exakten euthektischen Temperaturen wiedergeben. Sie sind auch vergleichsweise höher, als jene, die anhand der Stufenglühungen evaluiert werden konnten.

Die Bildung intermediärer Phasen kann zwar beobachtet, aber nicht analysiert werden, so dass hiermit keine Aussage über die Art der gebildeten Phasen getroffen werden kann. Die Stufenglühungen zeigten aber, dass der Großteil der aus der Schmelze kristallisierten Phase Cuspidin ist, sodass die beobachtete Kristallisation der Bildung von Cuspidin gleichgesetzt werden kann. Besonders gut eignet sich diese Methode zur Bestimmung der Bildung einer homogenen Schmelze. Auch wenn bereits alle festen Phasen aufgeschmolzen sind, sind Konzentrationsunterschiede in der Schmelze anhand von Schlieren beobachtbar. Erst wenn das Reflexionsvermögen im gesamten Sichtfeld konstant ist, liegt eine homogene Schmelze vor. Ein Problem stellte bei dem verwendeten Gerät die Sichtfeldeinschränkung durch den Strahlschutz dar. Somit ist der beobachtbare Bereich stark limitiert und mehrere Versuche müssen für ein befriedigendes Ergebnis durchgeführt werden. Obwohl die Auswertung der Ergebnisse einer gewissen Erfahrung bedarf ist die Methode generell für eine Eingangskontrolle im Betrieb geeignet.

Für die genaue Untersuchung der Reaktionen während des Aufschmelzens waren die Stufenglühungen unabdingbar. Nur mit dieser Methode können Diffusionsvorgänge umfassend ergründet und neugebildete Phasen bestimmt werden. Sie sind allerdings sehr zeitintensiv und für eine schnelle Beurteilung des Aufschmelzverhaltens nicht geeignet. Aufgrund des großen Zeitaufwandes der Auswertung können die Temperaturstufen nicht zu klein gewählt werden, wodurch die Stufenglühungen auch wenig geeignet ist um geringe Abweichungen in der Zusammensetzung, wie sie bei unterschiedlichen Chargen vorkommen, zu beurteilen.

Beim Vergleich der Ergebnisse der Stufenglühung mit denen der , die für die Beständigkeiten der einzelnen Phasen erzielt wurden, fällt auf, dass durch die großen Temperaturstufen im niedrigeren Temperaturbereich die mit dem HTM erzielten Temperaturen durchwegs niedriger liegen. Sobald die Temperaturintervalle geringer werden, ist eine Trendumkehr zu bemerken. Der Grund dafür ist, dass bei den Stufenglühungen zum Einstellen eines Gleichgewichtes die Temperatur für 15 min gehalten wurde. Im Gegensatz dazu wird im Heiztischmikroskop die Probe mit einer konstanten Heizrate von 10 °C min⁻¹ die Probe erwärmt, so dass sich die Phasen im Unaleichaewicht befindet. Dies hat besondere Auswirkungen auf den Kohlenstoffabbrand und in Folge auf die Schmelzphasenbildung durch dispergierende Wirkung der Kohlenstoffpartikel auf die Schmelzperlen. Als letztes ist noch anzumerken, dass im Gegensatz zu den Stufenglühungen die beobachteten Phasen an der Oberfläche nicht von allen Seiten umschlossen sind.

Die Verwendung einer Heizkammer in der RDA stellt eine Alternative dar, da es sich hierbei um eine rasche Methode zur Detektierung mineralischer Phasen handelt, bei der Spektren in relativ kleinen Temperaturschritten in situ aufgezeichnet werden können. Aufgrund ihrer röntgenamorphen Eigenschaft können Glasphasen gleich wie Schmelzphasen nur als breiter Peak, der sich über mehrere Grad erstreckt, detektiert werden. Die beim Aufschmelzen entstehenden Glasphasen haben ihrer Peaklage bei ca. 30°, das ist derselbe Bereich in dem auch die Hauptpeaks des Cuspidins liegen, so dass eine quantitative Auswertung der Schmelzphasenmenge nicht sinnvoll ist. Ein großer Nachteil der RDA ist, dass die Auswertung der Analyse auf dem Abgleich der gemessen Peaks mit dem Peakmuster bekannter Phasen beruht, die in einer Datenbank gesammelt vorliegen. Bei der Analyse der neugebildeten Phasen stieß diese Methode oftmalig an ihre Grenzen, weil keine entsprechenden Datensätze vorlagen. Durch die selbst im Vergleich zu HTM und STA geringen Probenmenge und vor allem Schichtstärke der Probe in der Heizkammer kommt es einerseits zu einem geringen Kontakt der Phasen und einer geringeren Menge an Schmelzphase. Auf der anderen Seite ist die spezifische Oberfläche relativ groß, die ein Abdampfen von Alkalien und Fluor begünstigt. Aus diesen Gründen liegen die Schmelztemperaturen in der Heizkammer höher als bei den anderen angewendeten Methoden und hängen zudem stark von der aufgebrachten Schichtstärke ab.

Da jede Methode wie in Tabelle 39 dargestellt, wo anders ihre Stärken aufweist, ist die Kombination für das umfassende Charakterisieren des Schmelzverhaltens notwendig. Allen vier Methoden ist gemeinsam ist, dass der Einfluss des Kohlenstoffs auf die Bildung einer zusammenhängenden Schmelze mehr oder weniger in die Ergebnisse einfließt, dieser aber nicht erfasst und bewertet werden kann.

Tabelle 39:	Beurteilung	der der	verwendeten	Methoden
-------------	-------------	---------	-------------	----------

	STA	HTM	Stufenglühung	RDA
Bestimmung der Art der Kohlenstoffträger	++	+-	+-	-
Masse der der Kohlenstoffträger	+	-	-	-
Bestimmung des letzten Kohlenstoffabbrandes	+-	++	-	-
Qualitative Analyse der kristallinen Komponenten	-	+	++	++
Quantitative Analyse der kristallinen Komponenten	-	-	+	++
Qualitative Analyse von Gläsern	-	-	++	+-
Quantitative Analyse von Gläsern	-	-	+	-
Dissoziation der Carbonate	+	+	+	-
Bildung der ersten Schmelzphase	-	+-	++	-
Bildung größerer Mengen an Schmelze	+	++	+	+-
Auflösung der Komponenten	+-	++	+	+
Bildung neuer Phasen	+-	+	++	+
Bildung einer homogenen Schmelze	+	++	+	+

6. Graphische Zusammenfassung des Reaktionsverlaufes beim Aufheizen

		200°C	400°C	000°C	800°C	1000°C	1200°C
	←			+ +			
Natriumcarbonat (Na ₂ CO ₃) ¹			+	-			
Calcit (CaCO ₃) ¹			•				
Shortit, Nyerereit ¹	_						
Kohlenstoffträger (C) ¹							
Glasbruch ¹						•	
Phosphorschlacke ¹	_			•			
Hochofenschlacke ¹						+	
Flugasche ²						•	
Quarz (SiO ₂) ¹				÷			•
Periklas (MgO) ²							
Albit (NaAl ₂ Si ₂ O ₇) ¹					+		-
Fluorit (CaF ₂) ²				•			
Wollastonit (CaSiO ₄) ¹	_			+			
Tonerde $(Al_2O_3)^2$							
Kryolith (Na ₃ AlF ₆) ¹							
Cuspidin (Ca ₄ Si ₂ O ₇ F ₂) ¹							
Na-Ca–Silikates ²							
Diopsid (CaMgSi ₂ O ₆) ²					← →		
Na-Al- Silikate ²					•		
Erste Schmelzphasen ¹							
Schmelzen des Cuspidins ¹					•		
Homogene Schmelzphase ¹						+	+
¹ Heiztischmikroskopie							
² Stufenglühungen							
Carbonate							

- Kohlenstoffträger Synthetische Silikate Natürliche Rohstoffe Intermediäre Phasenneubildungen Bildung der Schmelze

- Streuung der Schneize
 Streuung der intermediären Phasenneubildung

7. Anhang

Abbildung A1: Kurvenverlauf des Modellpulvers CS-F

Abbildung A2: Kurvenverlauf des Modellpulvers HOS-F

Abbildung A3: Kurvenverlauf des Modellpulvers CS-Na

Abbildung A4: Kurvenverlauf des Modellpulvers HOS-Na

Abbildung A5: Kurvenverlauf des Modellpulvers CS-F-0,5Na

Abbildung A6: Kurvenverlauf des Modellpulvers HOS-F-0,5Na

Abbildung A7: Kurvenverlauf der STA des Gießpulvers 1

Abbildung A8: Kurvenverlauf der STA des Gießpulvers 2

Abbildung A9: Kurvenverlauf der STA des Gießpulvers 3a

Abbildung A10: Kurvenverlauf der STA des Gießpulvers 3b

Abbildung A11: Kurvenverlauf der STA des Gießpulvers 3c

Abbildung A12: Kurvenverlauf der STA des Gießpulvers 4a

Abbildung A13: Kurvenverlauf der STA des Gießpulvers 4b und 4c

Abbildung A14: Kurvenverlauf der STA des Gießpulvers 5

Abbildung A15: Kurvenverlauf der STA des Gießpulvers 6

Abbildung A16: Kurvenverlauf der STA des Gießpulvers 7

Abbildung A17: Kurvenverlauf der STA des Gießpulvers 8

Abbildung A18: Kurvenverlauf der STA des Gießpulvers 9

Abbildung A19: Kurvenverlauf der STA des Gießpulvers 10
Tabelle A1: Zusammenfassung der Ergebnisse der Pulver 1 bis 4c

Pulver		1	2	3a	3h	30	4a	4h	4c
			Albit	Albit	Albit	Albit	τu		70
			Albit,	Albit,	Albit,	Aibit,			
		Wallaster;t	Calcit,	Wonastonit,	Wonastonit,		Dheenher	Dheenher	Dheenher
		wollastonit,	Fluorit,	Hocholen-	Hocholen-	Hocholen-	Phosphor-	Phosphor-	Phosphor-
Hauptphasen		Quarz	Glasbruch	schlacke	schlacke	schlacke	schlacke	schlacke	schlacke
				Hochofen-	Hochoten-	Hochofen-			
				schlacke,	schlacke,	schlacke,			
		Hochofen-		Phosphor-	Phosphor-	Phosphor-	Phosphor-	Phosphor-	Phosphor-
Glasphasen		schlacke	Glasbruch	schlacke	schlacke	schlacke	schlacke	schlacke	schlacke
C/S		0,7	0,6	0,9	0,9	0,9	1,3	1,3	1,3
C/Gew%		14,5	15,2	5,6	5,8	6,0	4,7	4,8	4,9
Na-O /Gew%		72	4.8	6.0	5.8	57	7.0	6.8	87
		7,2	4,0 5 7	0,0	0,0	0,1	7,0	0,0	0,1
Na ₂ O onne C/Gew %		8,4	5,7	6,4	0,2	0, 1	7,3	7,1	9,1
Al ₂ O ₃ /Gew%		6,2	6,3	11,4	11,5	11,5	3,0	3,2	3,1
Al ₂ O ₃ ohne C/Gew%		7,3	7,4	12,1	12,2	12,2	3,1	3,4	3,3
MgO/Gew%		3.4	2.4	2.3	2.5	2.3	1.4	1.9	1.7
MgO ohne C/Gew%		4.0	28	24	27	24	15	2.0	17
F/Gew%		43	5.1	3.5	3.1	4 1	8.0	8.2	8.2
E obne C/Gew%		5.0	6.0	3.7	3.3	1,1	8.4	8.6	8.6
		5,0	0,0	3,7	3,3	4,4	0,4	0,0	0,0
1.3chineizphasen- bildung		1001	004	000	005	070	0.40		000
(HTM)/°C		1034	921	920	925	970	940		633
Scnmelzenbildung DTA/°C		845	860	1030	1038	1045	840		
Cuspidinbildung aus der									
Schmelze (HTM)/°C		1073	943	1023	985	1085	1060		963
Schmelzen Cuspidin (HTM)/°C				1200	1140	1140	1110		1010
			Combeit,	<u> </u>					
Natriumcalciumsilicate		Combeit	NC ₂ S ₂	NoCoSe	NoCoSe	N2C2SE	NCS ₂	NCS ₂	NCS ₂
		600 750	110306	000 1000	000 1000	000 1000	1002	1002	11002
Township () (00		000, 750,	750 0-0	900, 1000,	900, 1000,	900, 1000,	750 000	750 000	750 000
remperaturstuten/°C		900	750, 870	1100	1100	1100	/50, 900	750, 900	750, 900
Natriumaluminimsilikate				Nephelin	Nephelin	Nephelin	Nephelin	Nephelin	Nephelin
							750, 900,	750, 900,	750, 900,
Temperaturstufen/°C				900	900	900	1000	1000	1000
Calciummagnesiumsilicate		Diopsid		Diopsid	Diopsid	Diopsid			
Temperaturstufen/°C		900		900	900	900			
Tonerde/°C		900		1100	1100	1100	900		
Homogene Schmelze HTM/°C		1180	1121	1120	1208	1217	1305		1225
Homogene Schmelze STA/°C		1175	1133	1120	1126	1151	1240	1260	1210
Franknisse der HTM		1175	1155	1100	1120	1151	1240	1200	1210
Kableneteff 4 2 Abbrend	Antona /ºC								
Konienston 1, 2 Abbrand	Aniang / C								
	Ende /°C								
Kohlenstoff 3 Abbrand	Anfang /°C	580	540	460	460	480	450		520
	Ende /°C	830	730	780	780	750	790		750
Dissoziation Soda	Anfang /°C			330	310				
	Ende /°C			540	430				
Veränderung der Kanten von									
Fluorit, Albit, Wollastonit und									
Glas	Anfang /°C			460	460	470			
	Ende /°C			540	530	530			
Cuspidinbildung	Anfang /°C	580	550	500	490	500	480		510
Caspianishaung	Ende /°C	750	710	640	600	600	560		660
Sohmo Iznho oo nhildung		1020	710	040	000	000	040		620
somerzpnasensnuung	Finda /20	1020	910				340		1000
		1040	930				1300		1220
Autiosung der Hochofenschlacke	Antang /°C			790	780	700			L
	Ende /°C			1150	1110	1110			
Autlösung der Phosporschlacke	Anfang /°C						470		630
	Ende /°C						740		940
Auflösung des Quarz	Anfang /°C			920	1000	1000			650
	Ende /°C			1150	1110	1100			820
Auflösen von Wollastonit	Anfang /°C			920	1000	1000			770
	Ende /°C			1150	1110	1100			860
Auflösen des Hämatits	Anfang /°C	l		-		-	1		530
	Ende /°C	İ							820
Auflösung des Dionsid	Anfang /°C	1		1	1		1		710
	Ende /°C								880
Auflögung das Snadumens									630
Autosung des Spodumens	Aniang / C								030
	Ende /°C	l							/40
Autlösung des Periklas	Anfang /°C								840
	Ende /°C								900
Auflösung des Fluorits	Anfang /°C			600	580	550	620		660
	Ende /°C			970	1070	720	690		900
Auflösung des Albits	Anfang /°C			920	1000	1000	920		
	Ende /°C			1150	1110	1100	930		
Kristallisation von Cuspidin	Anfang /°C	1010	860	1020	990	1090	830		830
	Ende /°C	1090	960	1170	1120	1120	1080		1000
Schmelzen von Cuspidin	Anfang /ºC	1090	960	1170	1120	1120	1100		1000
		1000	900	11/0	1130	1130	1100		1000
	Ende /°C	1100	970	1200	114	1140	1110		1010
homogene Schmelzphase	Anfang /°C	1200	1120	1200	1200	1210	1300		1220
1	Ende /°C	1		1210	1210	1220	1310		1230

Tabelle A2: Zusammenfassung der Ergebnisse der Pulver 5 bis 10

Pulver		5	6	7	8	9	10
		Flugasche,	Flugasche,	Flugasche,			
		Glasbruch,	Glasbruch,	Glasbruch,			Glasbruch,
Hauptphasen		Wollastonit	Wollastonit	Wollastonit	Phosphorschlacke	Glasbruch	Tonerde
			Glasbruch,	Glasbruch,			
Glasphasen		Glasbruch	Wollastonit	Wollastonit	Phosphorschlacke	Glasbruch	Glasbruch
C/S		0,9	0,8	0,9	1,0	0,6	1,2
C/Gew%		6,5	5,6	6,8	2,2	4,9	4,6
Na ₂ O /Gew%		12,3	5,8	6,6	6,7	8,9	10,6
Na ₂ O ohne C/Gew%		13,2	6,1	7,1	6,9	9,4	11,1
Al ₂ O ₃ /Gew%		5,2	4,8	5,3	2,0	4,3	25,3
Al ₂ O ₂ ohne C/Gew%		5.6	5.1	5.7	2.0	4.5	26.5
MgO/Gew%		1.7	2.5	0.3	4.2	1.0	0.7
MaO ohne C/Gew%		1.8	2.6	0.3	4.3	1,1	0.7
F/Gew%		6.2	7.4	6.8	5.6	9.6	9.6
F ohne C/Gew%		6,6	7,8	7,3	5,7	10,1	10,1
1.Schmelzphasenbildung (HTM)/°C		604	696	598	718	643	650
Schmelzenbildung DTA/°C		775	1068	1066	720	600	917
Cuspidinbildung aus der Schmelze (HTM)/°C		870	1071	1008	854	690	870
Schmelzen Cuspidin (HTM)/°C			1160	1055	1040	840	990
Natriumcalciumsilicate		Combeit	Combeit	Combeit	Fluorpektolit	Fluorpektolit	
Temperaturstufen/°C		750	900, 750	750	750, 900	750	
Natriumaluminimsilikate		NAS ₃	NAS ₃	NAS ₃			
Temperaturstufen/°C		900, 1000	900	900			
Calciummagnesiumsilicate					Fluorrichterit, Diopsid		
Temperaturstufen/°C					750, 900		
Tonerde/°C		1000	500	900		500	1100
Homogene Schmelze HTM/°C		1160	1243	1193	1123	1043	1240
Homogene Schmelze STA/°C		1160	1180	1140	1139	1020	1139
Ergebnisse der HTM							
Kohlenstoff 1, 2 Abbrand	Anfang /°C			373			
	Ende /°C			510			
Kohlenstoff 3 Abbrand	Anfang /°C	490	496		470	420	440
	Ende /°C	520	689		620	470	550
Reduktion Pyrolusit	Anfang /°C					180	180
	Ende /°C					220	220
Auflösung Mn2O3	Antang /°C					520	450
	Ende /°C			070		790	925
Auflosen Na-Ca-Fluorid	Antang /°C			270			
Discoviation Coloit	Ende / C			505		490	
	Endo /°C					460	
Auflöson das Kalzits	Anfang /°C	650	670	505	630	610	
Autosen des Raizits	Ende /°C	710	805	565	700	820	
Cuspidiphildung	Anfang /°C	470	500	503	550	480	500
oupplaintendung	Fnde /°C	520	618	550	580	570	570
Schmelzphasenbildung	Anfang /°C	670	696	598	820	640	650
	Ende /°C	1200	1243	1193	1160	1040	1070
Auflösung der Gläser	Anfang /°C	670	698	620	660	680	470
	Ende /°C	870	918	690	740	790	650
Auflösung Glas 2	Anfang /°C					810	
	Ende /°C					840	
Auflösung der Flugaschen	Anfang /°C		699	601			
	Ende /°C		995	838			
Auflösung der Phosporschlacke	Anfang /°C	720					
	Ende /°C	1000		_			
Auflösung des Quarz	Anfang /°C	690		592	660	770	525
Audian was Minile - to - 14	Ende /°C	920	005	697	850	840	655
Autiosen von wollastonit	Antang /°C	690	925	600	660		
Auflöson des Hämstite	Ende /°C	920	1078	860	850		
Aunosen des Hamatits	Aniang / C			607			
	Anfonc /ºC	600	005	900	660		
Autosung des Diopsid	Finda /ºC	090	995	707	850		
Auflösung das Bariklas	Anfang /°C	920	900	191	630		
Autosung des Perikias	Ende /°C		1005		680		
Auflösung des Kryolths	Anfang /°C		1005		000	710	
Autosung des Kiyotais	Ende /°C					770	
Auflösung des Fluorits	Anfang /°C	710	938	735	880	640	550
	Ende /°C	1030	986	935	940	830	830
Auflösung des Korunds	Anfang /°C			850	010	000	660
	Ende /°C			940	1		810
Kristallisation von Cuspidin	Anfang /°C	890	925	888	870	690	870
	Ende /°C	1120	1071	1008	1000	830	890
Schmelzen von Cuspidin	Anfang /°C	1100	1160	1055	990	830	980
	Ende /°C	1120	1160	1055	1000	840	990
Rekrisatllisation	Anfang /°C					920	710
	Ende /°C					950	790
homogene Schmelzphase	Anfang /°C	1200	1160	1055	1150	1040	1240
	Ende /°C				1160	1050	

													Schmelzen			Tonerde
					Na ₂ O		Al ₂ O ₃		MgO	_	F ohne	Schmelzen-	Cuspidin	Homogene	Homogene	Stufen-
		C/S	ပ	Na ₂ O	ohne C	Al ₂ O ₃	ohne C	MgO	ohne C	ш	υ	bildung DTA	(HTM)/°C	Schmelze HTM	Schmelze STA	glühung
C/S		1.00	-0.56	0.20	0.13	0.07	0.05	-0.22	-0.27	0.38	0.34	0.20	0.16	0.73	0.74	0.46
0			1,00	-0,26	-0,14	-0,04	0,00	0,19	0,30	-0,38	-0,29	0,02	0,32	-0,16	-0,04	0,03
Na ₂ O				1,00	0,99	0,21	0,19	-0,40	-0,42	0,51	0,50	-0,48	-0,77	-0,03	-0,09	0,04
Na ₂ O ohne C					1,00	0,20	0,19	-0,38	-0,38	0,47	0,47	-0,48	-0,77	-0,04	-0,09	0,05
Al ₂ O ₃						1,00	1,00	-0,27	-0,26	-0,02	-0,03	0,35	0,06	0,19	-0,24	0,57
Al ₂ O ₃ C							1,00	-0,26	-0,24	-0,04	-0,05	0,35	0,07	0,19	-0,24	0,58
MgO								1,00	0,99	-0,60	-0,61	-0,10	0,40	-0,18	0,10	0,07
MgO ohne C									1,00	-0,62	-0,62	-0,10	0,42	-0,19	0,09	0,07
										1,00	1,00	-0,42	-0,74	0,13	0,08	-0,54
F ohne C											1,00	-0,43	-0,73	0,11	0,07	-0,55
Schmelzenbildu ng DTA												1,00	0,79	0,54	0,37	0,38
Schmelzen																
Cuspidin (HTM)/°C													1,00	0,46	0,54	0,44
Homogene Schmelze HTM														1,00	0,82	0,26
Homogene Schmelze STA															1,00	0,27
Tonerde																1,00
Kohlenstoff 3. A	nfang															
Abbrand	nde															
<u>×</u>	nfang															
Cuspidin-bildung E	nde															
Schmelzpha-	nfang															
Senbildung E	nde															
	uda bida		T							Ì						
Auflösung des A	nfang															
Quarz	nde															
Auflösen von A	nfang															
Wollastonit E	nde															
Auflösung des <u>A</u>	nfang															
Diopsid E	inde															
Auflösung des <u>A</u>	nfang															
Fluorits E	inde							_								

Tabelle A3: Korrelationsmatrix Teil 1

		Kohlens Abbra	toff 3. Ind	Cuspidinb	ildung	Schmelzp bildu	hasen- ng	Auflösun Gläst	g der ∍r	Auflösur Qua	ng des rz	Auflösei Wollasi	n von tonit	Auflösur Diops	ng des sid	Auflösunç Fluori	ts gdes gdes
		Anfang	Ende	Anfang	Ende	Anfang	Ende	Anfang	Ende	Anfang	Ende	Anfang	Ende	Anfang	Ende	Anfang	Ende
C/S		-0,25	0,19	-0,30	-0,30	-0,12	0,66	-0,81	-0,54	-0,38	-0,28	-0,14	-0,43	-0,23	-0,29	-0,24	-0,38
c		0, 78	0,38	0,62	0,75	0,58	-0,65	0,09	0,26	0,27	0,22	0,19	0,32	0,07	0,11	-0,28	0,20
Na ₂ O		-0,22	-0,69	-0,39	-0,46	-0,47	0,13	-0,35	-0,04	-0,60	-0,51	-0,51	-0,51	-0,33	-0,14	-0,15	0,05
Na ₂ O ohne C		-0,12	-0,65	-0,31	-0,38	-0,40	0,05	-0,34	-0,02	-0,59	-0,49	-0,50	-0,49	-0,32	-0,13	-0,16	0,06
Al ₂ O ₃		-0,30	-0,12	-0,14	-0,07	-0,21	-0,33	-0,94	-0,56	-0,01	-0,06	0,77	0,86	0,19	0,24	-0,58	-0,08
Al ₂ O ₃ C		-0,26	-0,10	-0,11	-0,04	-0,18	-0,36	-0,94	-0,56	0,00	-0,05	0,77	0,85	0,18	0,23	-0,58	80,0
MgO		0,49	0,41	0,65	0,48	0,62	-0,14	0,44	0,35	0,40	0,52	0,25	0,16	0,22	0,25	0,44	0,29
MgO ohne C		0,58	0,45	0,70	0,56	0,67	-0,21	0,45	0,37	0,42	0,55	0,28	0,19	0,24	0,27	0,43	0,29
н		-0,38	-0,61	-0,35	-0,39	-0,63	0,23	-0,47	-0,27	-0,77	-0,85	-0,58	-0,69	0,40	0,30	0,10	-0,39
F ohne C		-0,31	-0,60	-0,30	-0,33	-0,61	0,16	-0,46	-0,26	-0,77	-0,85	-0,57	-0,68	0,39	0,30	0,10	-0,39
Schmelzenbildu	_	0.13	0.61	60.0-	0.10	-0.16	0.31	-0.22	-0.02	0.35	0.33	0.57	0.63	0.44	0.31	-0.08	0.18
Schmelzen		1		- -	-						1						-
Cuspidin (HTM)/°C		0,42	0,84	0,05	0.36	0,42	0.85	0.13	0.35	0,57	0,69	0.77	0.96	0,87	0.86	0,06	0.24
Homogene Schmelze HTM		0,06	0,44	-0,19	-0,11	0,10	0,65	-0,45	-0,04	-0,11	-0,12	0,36	0,12	0,65	0,55	60'0-	-0,29
Homogene Schmelze STA		0,41	0,58	0,10	0,15	0,34	0,61	60'0-	0,21	-0,17	00,0	-0,10	-0,34	0,44	0,42	0,12	-0,17
Tonerde		0,03	0,34	0,05	-0,01	0, 15	-0,01	-0,73	-0,58	0,22	0,36	0,13	0,16	-0,93	-0,83	-0,70	0,02
Kohlenstoff 3.	Anfang	1,00	0,51	0,73	0,81	0,52	-0,26	0,41	0,67	-0,04	0,13	-0,33	-0,54	0,19	0,14	0,39	0,31
Abbrand	Ende		1,00	0,39	0,63	0,72	0,14	0,18	0,32	0,62	0,68	0,77	0,59	0,35	0,17	-0,17	-0,08
Cuspidin-	Anfang			1,00	0,78	0,64	-0,52	-0,06	-0,36	-0,22	-0,17	-0,28	-0,38	-0,17	-0,29	0,45	0,08
bildung	Ende				1,00	0, 59	-0,52	0,13	0,21	0,36	0,39	0,54	0,36	0,43	0,30	-0,03	0,08
Schmelzpha-	Anfang					1,00	-0,25	0,27	0,17	0,14	0,40	0,06	0,02	0,10	0,13	0,10	-0,52
senbildung	Ende						1,00	0,46	0,54	-0,12	0,28	0,83	0,75	0,78	0,75	0,32	0,00
Auflösung der	Anfang					_		1,00	0,78	0,87	0,83	0,89	0,82	0,85	0,92	0,69	0,56
Gläser	Ende								1,00	0,79	0,94	0,85	0,87	0,81	0,92	0,57	0,66
Auflösung des	Anfang									1,00	0,95	0,97	0,96	0,76	0,94	-0,45	0,04
Quarz	Ende					_					1,00	0,91	0,95	0,73	0,93	-0,33	0,20
Auflösen von	Anfang					_						1,00	0,92	0,96	0,94	-0,44	-0,14
Wollastonit	Ende					_							1,00	0,95	0,96	-0,40	0,00
Auflösung des	Anfang					_								1,00	0,98	0,63	0,32
Diopsid	Ende														1,00	0,59	0,49
Auflösung des	Anfang					_										1,00	0,39
Fluorits	Ende																1,00

Tabelle

8. Literaturnachweis

- [1] Soares, R. W.; Fonseca; M. V. A.; Neuman, R.; Menezes, V. J.; Lavinas, A. O.; Dweck, J.: An application of differential thermal analysis to determine the change in thermal properties of mold powders used in continuous casting of steel slabs. Thermochimica Acta, Vol. 318, 131-136 (1998)
- Wolf, M. M.: Mold powder consumption a useful criterium. METEC Congress
 94. 2nd European Continuous Casting Conference. 6th International Rolling
 Conference. Vol. 1; Dusseldorf; Germany, 78-85 (1994)
- [3] Stewart, B.; Jones, N.; Bain, K.; McDonald, M.; Burniston, R.; Bugdol, M; Ludlow, V.: Development of the Mould Slag Film and its Impact on the Surface Quality of Continuously Cast Semis. Proceedings of the VIII International Conference on Molten Slags, Fluxes and Salts, Santiago Chile, 1061-1071 (2009)
- [4] Susa, M.; Mills, K. C.; Richardson, M. J.; Taylor, R.; Stewart, D.: Thermal properties of slag films taken from continuous casting mold. Ironmaking and Steelmaking, Vol. 21, 279-286 (1994)
- [5] Mills, K.C.; Fox, A.B.; Thackray, R.P.; Li, Z.: The performance and properties of mould fluxes. in VII International Conference on Molten Slags, Fluxes and Salts, Cape Town, South Africa, 713-721 (2004)
- [6] Sardemann, J.; Schrewe, H.: Einfluss des Gießpulvers auf die Rissbildung beim Stranggießen von Brammen. Stahl und Eisen, Vol 111, Vol11, 39-46 (1991)
- [7] McPherson, N. A.; McIntosh, S. L.; Mold powder related defects in some continuously cast steel products. Iron&Steelmaker June 19-25 (1987)
- [8] Ludlow, V.; Harris, B.; Riaz S.; Normanton, A.: Continuous casting mould powder and casting process interaction: why powders do not always work as expected. Ironmaking and Steelmaking Vol. 32 (2), 120-126 (2005)
- [9] Chavez, J. F.; Rodriguez, A.; Morales, R.; Tapia, V.: Laboratory and plant studies on thermal properties of mold powders. Steelmaking Conference Proceedings, 679-686 (1995)
- [10] Schürmann, E.; Steinhoff, H.; Lachmund, H.: Einfluss von Kohlenstoff und Eisenoxid in synthetischen Stranggießpulvern auf die Metall-, Schlacken- und Gasphase. Stahl und Eisen, Vol.110, 125-133 (1990)
- [11] Homepage Kemprocast Mould Powders http://www.kempro.com/mould.htm
- [12] Mills, K. C.: Continuous casting powders and their effect on surface quality and sticker breakouts. Molten Slags, fluxes and salts '97, conference, Sydney, Australia, 675-682 (1997)
- [13] Schwerdtfeger, K. (Herausgeber): Metallurgie des Stranggießens, ISBN 3-514-00350-5, Verlag Staheisen, Düsseldorf, 233-255 (1992)
- [14] Bommaraju, R.: Optimum selection and application of mold fluxes for carbon steels. Steelmaking conference proceedings, 131-146 (1991)
- [15] Unamuno, I.; Ciriza, J.; Arteaga, A.; Laraudogoitia, J.J.: Mould powder properties characterisation for billet casting at Sindenor Basauri. Proceedings of the 6th European Conference on Continoius Casting, Riccione, Italy, CD (2008)

- [16] Borhani, S.;. Monshi, A: Comparison of Properties of mould powders with identical chemical composition produced from different raw materials. Ironmaking and Steelmaking, Vol. 34, No 4, 325-331 (2007)
- [17] Kriegel, R.; Buchwald, A; Amorpher Anteil und Reaktivität von Flugaschen. 15. Internationale Baustofftagung, Bd.1,Weimar, Deutschland, Poster/Vortrag P1.53 (2003)
- [18] Kromhout, J.A., Liebske, C.; Melzer, S.; Kampermann, A.A.; Boom, R.: Mould powder investigations for high-speed casting. Proceedings of the 6th European Conference on Continuous Casting, Riccione, Italy, CD (2008)
- [19] Phillips et al.: Mould Fluxes used in the continuous casting of steel. United states Patent Nr. 5,577,549 (1996)
- [20] von Bonin, W.; von Gizycki, U.; Krüger, K: Verfahren zur Herstellung von Formteilen. PatentNr. 0458150 (1994)
- Kishi, T., Nakano, T.; Maruyamano, T.; Taniguchi, H.; Fuji, M.; Nagano, K.; Yoshimitsu, T.: Prefused mold powder and its manufactoring technology.
 Nippon Steel Technical Report Vol 34, 48-52 (1987)
- [22] Park, J. H.; Sun Park, J.; Ko, J. Y.: Improvement of slab surface quality by the use of sintered and fused mould fluxes. Steel times/steel times international [Sept.] CC14-CC17 (1998)
- [23] Eeitel, H.J.: Entwicklung und Produktion von Gießpulvergranulaten mittels Sprühtrocknungsverfahren so wie dessen Bedeutung für die Stahlindustrie. Dissertation, Technische Hochschule Aachen (1990)
- [24] Kromhout, J.; Boom, R.; Kawamoto, M.; Hanao, M.: Development of Mould Flux for High Speed Thin Slab Casting. Proceedings of the VIII International Conference on Molten Slags, Fluxes and Salts, Santiago Chile, 1041-1052 (2009)
- [25] Kromhout, J. A.; Van der Plas, D. W.: Melting speed of mould powders: determination and application in casting practice. Ironmaking and Steelmaking Vol. 29 No.4 303-307 (2002)
- [26] Spitzer, K.-H.; Holzhauser, J.-F.; Brückner, F.-U.; Siera, B.; Grethe, H.-J.; Schwerdtfeger, K.: Neuere Messverfahren zur Beurteilung von Gießpulvern. Stahl und Eisen, Vol. 108, No 9, 441-450 (1988)
- [27] Pinheiro, C. A.; Smarasekera, I. V.; Brimacombe, J. K.: Mold flux for continuous casting of steel. Part IX: Molten Structure and Melting Rate. Iron and Steelmaker, June 43-44 (1995)
- [28] Gilles, H. L.; Byrne, M.; Rußo, T. J; DeMasi, G. A.: The use of an instrumented mold in the development of high speed slab casting. 9th PTD conference proceedings, 123-138 (1990)
- [29] Koyama, K.; Nagano, Y.; Nagano, K.; Nakano, T.: Design for chemical and phyiscal properties of continuous casting powders. Nippon steel technical report, Vol. 34, 41-47 (1987)
- [30] Nakamori, Y.; Mimura, Y.; Kunimoto, M.; Ohta, M.; Yamaguchi, K.: Development of a measuring system for powder film thickness and molten powder pool thickness in continuous casting. Nippon steel technical report, Vol. 34, 53-61 (1987)

- [31] Kawamoto, M.; Nakajima, K.; Kanazawa, T.; Nakai, K.: The melting rate of the mold powder for continuous casting. Iron&Steelmaker [Sept.] 65-70 (1993)
- [32] Singh, D.; Bhardwaj, P.; Yang, Y. D.; McLean, A.; Hasegawa, M.; Iwase, M.: The influence of Carbonaceous Material on the Melting Behaviour of Mold Powder. Proceedings of the VIII International Conference on Molten Slags, Fluxes and Salts, Santiago Chile, 1073-1082 (2009)
- [33] Brandaleze, E.; Castella, L.; Madias, J.: Behavior of continuous casting fluxes during heating and cooling. VII International Conference on Molten Slags, Fluxes and Salts, Cape Town, South Africa, 807-811 (2004)
- [34] Pinheiro, C. A.; Smarasekera, I. V.; Brimacombe, J. K.: Mold flux for continuous casting of steel. Part X: Melting Rate. Iron and Steelmaker [July], 41-43 (1995)
- [35] Kim, J.-W.; Kim, S-K.; Lee, Y-D.: Y-D. Effects of Carbon Particle size and content on the Melting rate of Mould Powders. 4th European Continuous Casting Conference,) Birmingham, UK, Vol. 1, S. 371-377(2002)
- [36] Jablonka, A.; Harste, K.; Schwerdtfeger, K.: Thermomechanical properties of iron and iron-carbon alloys: density and thermal contraction. Steel Research Vol. 62 24-33 (1991)
- [37] Däcker, C.-Å.; Eggertsson, C.; Lönnqvist, J.: Development of a Laboratory Method for Characterisation of Mould Powder Melting Rate. Proceedings of the VIII International Conference on Molten Slags, Fluxes and Salts, Santiago Chile, 1111-1120 (2009)
- [38] Supradist, M.; Cramb, A. W.; Schwerdtfeger, K.: Combustion of carbon in casting powder in a temperature gradient. ISIJ Iternational 44, 817-826 (2004)
- [39] Supraist, M.; Cramb. A. W.; Schwerdtfeger, K.: Mold phenomena: mathematical and physical model of heating and melting of casting powder. CISR Progress Report October (2000)
- [40] Carli, R.; Righi, C.; Dapiaggi, M.: Melting Process of Mold Fluxes: In situ Investigation. Proceedings of the VIII International Conference on Molten Slags, Fluxes and Salts, Santiago Chile, 1121-1128 (2009)
- [41] Gronebaum, R.-H.; Pischke. J.: The function of mould fluxes and the estimation of its properties by thermal analysis. 49. Internationales Feuerfest-Kolloquium (2006)
- [42] Fischer, G.; Golloch, A.; Kasajanow, Optimization of the measuring conditions for thermal analysis of casting powders and evaluation of the results by means of factor analysis. Steel Research Vol. 67, 479-484 (1996)
- [43] Mills, K. C.; Olusanya, A.; Brooks, R.; Morrell, R.; Bagha, S.: Physical properties of casting powders. Part 4: Physical properties relevant to fluid and thermal flow. Ironmaking and Steelmaking Vol. 15, No.5, 257-264 (1988)
- [44] Grieveson, P.; Bagha, S.; Machingawuta, N.; Liddell, K.; Mills, K. C.: Physical properties of casting powders. Part 2: Mineralogical constitution of slags formed by powders. Ironmaking and Steelmaking Vol.15, No. 4, 181-186 (1988)
- [45] Fox, A. B.; Valdez, M. E.; Gsiby, J.; Atwood, R. C.; Lee, P. D.; Sridhar, S.: Dissolution of ZrO₂, Al₂O₃, MgO and MgAl₂O₄ particles in a B₂O₃ containing commercial fluoride-free mould slag. ISIJ International Vol.44, 836-845 (2004)

- [46] Cruz, A.; Chávez, F.; Romero, A.; Palacios, E.; Arredono, V.: Mineralogical phases formed by flux glasses in continuous casting mould. Journal of Materials Processing Technology, Vol. 182, 358-362 (2007)
- [47] Jung, I.-H.; Van Ende M.-A.; Kim'D.-G.: Thermodynamic database development for CaF2-containing oxide systems and applications to the steelmaking process. Proceedings of UNITECR 2011 Congress, Kyoto, Japan, CD 1-E-15 (2011)
- [48] Riboud, V.; Olette, M.; Leclerc, J.; Pollak, W.: Continuous casting slags: theoretical analysis of their behavior and industrial performances Steelmaking conference proceedings 61, 411-417 (1978)
- [49] Attia, A. K. M.; Hassan, M. S.; Shalabi, M. E. H.; El-Maksoud, A. A.: Effect of mineralogical composition of mould powder on continuous casting. la metallurgia italiana, Vol.1, 55-60 (1999)
- [50] Delhalle, A.; Larrecq, M.; Marioton, J. F.; Riboud, P. V.: Slag melting and behaviour at meniscus level in a cc mold .Steelmaking conference proceedings 69, 145-152 (1986)
- [51] Maas, H.: Stahlerzeugung Gießen und Erstarren von Stahl III. Bericht EUR 8569 I+II+III DE
- [52] Pinheiro, C. A.; Smarasekera, I. V.; Brimacombe, J.K.: Mold flux for continuous casting of steel. Part XI: Behavior of the flux in the mold. Iron and Steelmaker Aug., 41-43 (1995)
- [53] Kromhout, J. A.; Kamperman, A. A.; Kick, M.; Trouw, J.: Mould powder selction for thin slab casting. VII International Conference on Molten Slags, Fluxes and Salts, Cape Town, South Africa, 731-736 (2004)
- [54] Neumann, F.; Neal, J.; Pedroza, M. A.; Castillejos, A. H.; Acosta, E. and F. A.: Mold fluxes in high speed thin slab casting. Steelmaking Conference Proceedings 249-257(1996)
- [55] Valentin, P.; Bruch, CH.; Harste, K.; Lachmund, H.; Hecht, M.; Pötschke, J.: Carbon pickup in continuous casting processes. Steel Research Vol. 74 No.3 139-146 (2003)
- [56] Pinheiro, C. A.; Smarasekera, I. V.; Brimacombe, J. K.; Mold flux for continuous casting of steel. Part XII: Modeling of melting behaviour. Iron and Steelmaker [Sept.], 71-72 (1995)
- [57] Goldschmit, M. B.; González, J. C.; Dvorkin, E. N.: Finite element model for analysing liquid slag development during continuous casting of round bars. Ironmaking and Steelmaking, Vol.20, 379-385 (1993)
- [58] Zinni, M; Johnson, D.; Hiembach, H.: Characterization of mold flux performance MetSoc, 3-17
- [59] Mayer, A.: Stranggießpulver, Teil I: Aufbau. Sonderdruck aus "Radex-Rundschau", Heft 2/3 (1988) 597-615
- [60] Mills, K. C.; Fox, A. B.: Review of mould Flux Performance and Properties. 4th European Continuous Casting Conference, Birmingham, UK, Vol. 1, S. 345-358 (2002)
- [61] Schwerdtfeger, K.; Jablonka, A.: Kinetics of carbon combustion in packings of casting powder Steel Research 64 (1993) 77-83

- [62] Schwerdtfeger, K.; Sardemann, J.; Grethe, H.-J.: Oxidation von Kohlenstoff und Zersetzung von Karbonat beim Erhitzen von Gießpulvern. Stahl und Eisen Vol. 114, No.2; 57-64 (1994)
- [63] Abratis, H.; Höfer, F.; Jünnemann, M.; Sardemann, J.; Stoffel, H.: Wärmeübergang in der Stranggießkokille bei Einsatz unterschiedlicher Gießpulver. Stahl und Eisen Vol. 116 No.9 73-78 (1996)
- [64] FactSage Version 6.23
- [65] Kim, J.-W.; Lee, H.-G.: Decomposition of Na₂CO₃ and Li₂CO₃. Thermal and Carbothermic Metallurgical and Materials Transtactions B 32B, 17-24 (2001)
- [66] Kim, J.-W.; Lee, Y.-D.; Lee, H.-G.: Decomposition of Na₂CO₃ by interaction with SiO₂ in mold flux of steel continuous casting ISIJ International 41, 116-123 (2001)
- [67] Kim, J.-W.; Lee, Y.-D.; Kang, Y.-B.; Lee, H.-G.: Decomposition of Li₂CO₃ in existence of SiO₂ in mould flux of steel casting. VII International Conference on Molten Slags, Fluxes and Salts, Cape Town, South Africa, 737-743 (2004)
- [68] Maletzki, K.-H.: Die chemischen Reaktionen im Umsetzungsgemenge und ihr Einfluss auf das Einschmelzverhalten. Silikattechnik Vol. 31 No 8 241-245 (1980)
- [69] Smith, J. W.; Johnson, D. R.; Robb, W. A.: Thermal synthesis of sodium-calcium carbonate – a potential thermal analysis standard. Thermochimica Acta, Vol. 2, 305-312 (1971)
- [70] Nagata, K.; Fukuyama, H: Physicochemical properties of CaO-SiO₂-CaF₂-NaF Slag system as a mold flux of continuous casting. Steel Research Vol.74 No.1, 31-35 (2003)
- [71] Fukuyama, H; Tabata, H.; Nagata, K.: Determination of Gibbs energy of formation of cuspidine (3CaO.2SiO₂.CaF₂) from the electromotive force method using CaF₂ as the solid electrolyte. Metallurgical and Materials Transactions 34B, 307-311 (2003)
- [72] Maruo, H., Iyama, H.; Suehiro, T.; Tanaka, T.; Hara, S.: Measurement of heat content of cuspidine (3CaO.2SiO2.CaF2). J. High Temp. Soc. 26, 145-148 (2000)
- [73] Watanabe, T; Fukuyama, H.; Susa. M.; Nagata K.: Phase diagram cuspidine (3 CaO.2SiO2.CaF2)-CaF2. Metallurgical and Materials Transactions B, Vol. 31B No 12, 1273-1281(2000)
- [74] Watanabe, T.; Fukuyama, H.; Nagata, K.: Stability of cuspidine (3CaO-2SiO2-CaF2) and phase relations in the CaO-SiO2-CaF2 system. ISIJ Int. Vol. 42, 489-497 (2002)
- [75] Hering, L.; Heller, H-P.; Frenzke, H-W.: Untersuchungen zur Gießpulverauswahl beim Brammenstranggießen. Stahl und Eisen Vol. 112, 61-65 (1992)
- [76] Zaitsev, A. I.; Leites, A. V.; Litvina, A. D.; Mogutnov, B. M.: Investigation of the mould powder volatiles during continuous casting. Steel Research, Vol. 65, No.9, 368-374(1994)
- [77] Abratis, H.; Höfer, F.; Jünnemann, M.; Sardemann, J.; Stoffel, H.: Einsatz von unterschiedlichen Gießpulvern beim Stranggießen von Vorblöcken und Knüppeln. Stahl und Eisen, Vol. 116, No. 4, 85-91(1996)
- [78] Park, J. H., Min, D. J.: Thermodynamics of fluoirde vaporisation from slags containing CaF₂ at 1173K, Steel Research int. Vol. 75 No.12, 807-811 (2004)

- [79] Homepage Fa. Anton Paar. http://www.anton-paar.com/Hochtemperatur-Kammern-HTK-16-und-HTK 2000/R%C3%B6ntgenstrukturanalyse/60 Austria de?product id=137
- [80] Koelbl, N., Harmuth, H.: Hot stage microscopy for in situ observations of the melting and crystallisation behaviour of mould powders. In Proceedings of Scanmet III 3rd International Conference on Process Development in Iron and Steelmaking, Lulea, Sweden, 73 – 81 (2008)
- [81] Levin, E.M., Robbins C.R., McMurdie H.F.: Phase Diagrams for Ceramists Volume I, 0-916094-04-9, The American Ceramic Society, Inc.1964, Fig.501