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Abstrakt

Das 1957 von Koopmans und Beckmann eingeführte Quadratische Zuordnungsproblem (QAP)
stellt eine der zentralen Herausforderungen in der kombinatorischen Optimierung dar und dient
als mathematisches Rückgrat für zahlreiche Anwendungen. Als NP-hard eingestuft, hat es sich
als schwer erwiesen, optimale Lösungen für Instanzen gröÿer als 20, zu �nden.
Überdies zeigt der traditionelle Algorithmus Branch and Bound seine Ine�zienz für dieses Pro-
blem, primär aufgrund des Fehlens von guten Schranken für das QAP. Viele schwierige Probleme
der kombinatorischen Optimierung, darunter auch das QAP, haben in den vergangenen Jahr-
zehnten zur Einführung von Metaheuristiken geführt. Zu diesen zählt auch Scatter Search, aus
der Familie der evolutionären Algorithmen.Metaheuristiken dienen als übergreifender Rahmen,
der in erster Linie dazu entwickelt wurde, den Beschränkungen von Verbesserungsmethoden ent-
gegenzuwirken. Dies geschieht, indem sie suboptimale Züge ermöglichen, um lokale Extrema zu
überwinden. Insbesondere die �exible Struktur von Scatter Search ermöglicht die Untersuchung
verschiedener Strategien während seiner Ausführung. Die Grundform von Scatter Search ent-
hält eine Diversi�cation Method, eine Improvement Method, eine Reference Set Update Method,
eine Subset Generation Method und eine Solution Combination Method.
In dieser Arbeit wurden verschiedene Algorithmen für die in Scatter Search verwendeten Me-
thoden analysiert. Weiterhin wurde eine Implementierung von Path Relinking als zusätzliche
Solution Generation Method implementiert. Die Idee hinter Path Relinking ist es, Trajektorien
zu erkunden, die qualitativ hochwertige Lösungen miteinander verbinden.
Die Implementierung erfolgte in C# und folgte der Scatter Search-Architektur, die von Nebro
A. et al. 2008 vorgestellt wurde. Zusätzlich zur Implementierung des Frameworks wurden auch
parallelisierte Algorithmen implementiert.
Zur Vorauswahl der Kombinationen verschiedener Algorithmen, und um die Algorithmen zu
vergleichen und die E�zienz einer parallelen Berechnung zu prüfen, wurden Benchmarks durch-
geführt. Das Framework Scatter Search wurde über mehrere Instanzen unterschiedlicher Gröÿen
getestet. Die Testreihe umfasste zehn Instanzen mit bekannten optimalen Zielfunktionswerten
und weitere zehn Instanzen, für die nur eine untere Grenze bekannt ist. Die ersten zehn In-
stanzen wurden für die endgültige Auswahl des Algorithmus verwendet und halfen bei der
Einstellung der Parameter. Jeder Test wurde mit einer vorgegebenen Laufzeit von zehn Mi-
nuten durchgeführt. Im ersten Test lieferte der Algorithmus Scatter Search Ergebnisse, welche
zwischen 0 und 35 % schlechter als der optimale Zielfunktionswert waren. In einigen Fällen
waren die Ergebnisse jedoch um mehr als 100 % schlechter als der optimale Zielfunktionswert.
Daher wurden einige Verbesserungen am Scatter Search-Rahmen vorgenommen. Eine davon war
eine dynamische Anpassung der Gröÿe der Referenzmenge, wenn nach der Kombinationsme-
thode keine guten Permutationen gefunden wurden. Dadurch verbesserten sich die Ergebnisse
derjenigen Instanzen, die zuvor schlecht abgeschnitten hatten. Nach der Verbesserung wurden
die beiden besten Kombinationen von Algorithmen ausgewählt und eine weitere Parameterab-
stimmung vorgenommen.
Nach dem Testen jeder Instanz mit dem Scatter Search Framework lagen die Ergebnisse inner-
halb eines Zeitrahmens von zehn Minuten zwischen 0 und 30 %, mit Ausnahmen, über dem
Optimum oder der unteren Grenze. Die Modularität des Frameworks erlaubt jedoch eine Kom-
bination verschiedener Algorithmen, was eine Anpassung an spezi�sche Probleme ermöglicht.

Stichwörter: Quadratisches Zuordnungsproblem; QAP; NP-schwer ; Metaheuristik ; Scatter
Search; Path Relinking ; Evolutionärer Algorithmus
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Abstract

Introduced by Koopmans and Beckmann in 1957, the Quadratic Assignment Problem (QAP)
represents one of the pivotal challenges in combinatorial optimization, serving as the mathe-
matical backbone for numerous applications. Classi�ed as NP-hard, �nding optimal solutions
for instances exceeding size 20 has proven elusive.

Furthermore, the traditional algorithm Branch and Bound demonstrates its ine�ciency for
this problem, primarily due to the absence of e�ective bounding strategies for the QAP. Many
di�cult problems of the combinatorial optimization, the QAP included, led to the introduction
of Meta-heuristic over the last few decades. Among them, is Scatter Search from the family of
evolutionary algorithms. Meta-heuristics serve as overarching frameworks designed primarily
to counter the limitations of improvement methods, permitting sub-optimal moves to surpass
local peaks. Notably, the �exible structure of Scatter Search enables the exploration of vari-
ous strategies during its execution. Its basic form of Scatter Search contains a Diversi�cation
Method, an Improvement Method, a Reference Set Update Method, a Subset Generation Method
and a Solution Combination Method.

This thesis analysed di�erent algorithms for the methods used in Scatter Search. Moreover,
an implementation of Path Relinking as an additional Solution Generation Method was imple-
mented. The idea behind Path Relinking is to explore trajectories which connect high-quality
solutions. The implementation was done in C# and followed the Scatter Search architecture
introduced by Nebro A. et al. in 2008. In addition to the implementation of the framework,
parallelized algorithms were also implemented.

For pre-selecting the combinations of di�erent algorithms, benchmarks were performed to com-
pare the algorithms and verify the e�ciency of a parallel computation. The Scatter Search
framework underwent testing across multiple instances of varying sizes. The test batch com-
prised 10 instances with known optimal objective values and another 10 for which only a lower
bound is known. The initial 10 instances were used for the �nal algorithm selection and assisted
with parameter tuning. Every test was executed with a designated runtime of 10 minutes. In
the �rst test, the Scatter Search algorithm delivered results which were between 0 and 35%
worse than the optimal objective value. However, some instances had results over 100% per-
cent worse than the optimal objective value. Therefore, some improvements were made to the
Scatter Search framework. One was a dynamic adjustment to the reference set size if no good
permutations were found after the Combination Method. This improved the results of those
instances which performed poorly before. After the improvement, the best two combinations
of algorithms were chosen and further parameter tuning was performed.

After testing every instance with the Scatter Search framework, the results were between
0 and 30%, with exceptions, above the optimum or lower bound, respectively, within a time
frame of 10 minutes. However, the modularity of the framework allows a combination of various
algorithms, which allows an adjustment to speci�c problems.

Keywords: Quadratic Assignment Problem; QAP; NP-hard ; Meta-heuristic; Scatter Search;
Path Relinking ; Evolutionary algorithm
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1 Introduction

Current Situation

First introduced in 1957 by Koopmans and Beckmann [8, p. 53-76], is the quadratic assignment
problem is used to model and describe a high number of real-life problems. However, despite the
investigation of di�erent solving approaches, the quadratic assignment problem is considered
impossible to solve for larger instances than 20 to optimality. [3, p. ix] Due to the di�culty to
solve large instances of the quadratic assignment problem, a complete-enumeration approach,
for example the Branch and Bound, are only used for small instances. [3, p. 73] Therefore,
heuristics and meta-heuristics, especially population algorithms like the Genetic Algorithm
proved to be e�cient for solving large instances. This thesis investigates another population
algorithm named Scatter Search.

Target and Research Question

Bitte hier etwas feedback für die Formulierung der Forschungsfrage. Idee wäre:

1. What does an implementation of Scatter Search for the quadratic assignment problem
look like?

2. How does the Scatter Search framework perform with di�erent implementations for the
steps for small, medium and large instances?

Procedure

This thesis will start with the de�nition of the standard terms for the quadratic assignment
problem. After that, it will describe the term e�ectiveness in the context of computation, time
complexity and explain the issues with �nding an optimal solution. Moreover, the thesis will
enumerate heuristics, meta-heuristics and describe the Scatter Search framework in detail. In
chapter 4 a detailed description of the implementation in C# will follow. Finally, section 6 will
describe the setup and enumerate and interpret the results of the implementation.

Structure

The thesis is divided into four primary sections. It begins with an introduction to the quadratic
assignment problem, proceeds with an overview of the Scatter Search methodology and its im-
plementation, and concludes with a presentation of the achieved results through the implemen-
tation of the Scatter Search framework.
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2 Quadratic Assignment Problem

This chapter will focus mainly on the quadratic assignment problem itself. An introduction to
the quadratic assignment problem is given along with some historical background, followed by
an explanation for its continued relevance and various examples. Furthermore, it describes how
to �nd the optimal solution, identify the challenge of �nding an optimal solution and explain a
di�erent way of solving this combination optimization problem.

2.1 Explanation

The quadratic assignment problem (QAP) was �rst introduced by Koopmans and Beckmann in
1957 [8, p. 53-76]. The QAP was used to model a plant location problem and, since then, has
been the target of the research. It's considered a classical combinatorial optimization problem
and since it's inception, has been used in a wide variety of di�erent issues, such as placement
problems, scheduling, manufacturing and many more. According to Çela et al.[3, p. xi], there
are three di�erent reasons why the quadratic assignment problem is still attractive as a mathe-
matical model. First, a high and increasing number of real-life problems which can be modelled
as a quadratic assignment problem. Second, a high number of well-known combinatorial opti-
mization problems can be formulated as a quadratic assignment problem. Finally, the QAP is
NP-hard to solve, NP-hard to approximate, not traceable and is generally considered impossi-
ble to solve with instances larger than 20 to optimize within reasonable time limits. [3, p. xi]
A QAP can be formulated with a problem statement. For this statement, consider the set {1,
2, ..., n} and two n times n matrices A = (aij), B = (bij). Where n indicates the size of the
QAP. With these parameters, the quadratic assignment problem with the coe�cient matrices
A and B (QAP (A,B)), can be written as the following cost function:

min
π∈Sn

n∑︂
i=1

n∑︂
j=1

aπ(i)π(j)bij (1)

Where Sn is a set of permutations with the values {1, 2, . . . , n}. Therefore, the QAP it-
self, asks for the permutation π ∈ Sn which minimizes the formulation above. The result of the
sum in the formulation depends on the matrices A, B and on the permutation π. Consequently,
to indicate those dependencies, the formulation can be denoted as:

Z(A,B, π) =
n∑︂

i=1

n∑︂
j=1

aπ(i)π(j)bij (2)

The formulation Z(A,B, π) displays the objective function of QAP (A,B) and a permuta-
tion π0 which minimizes the objective function over Sn is called an optimal solution with the
optimal value. The cost function also gives the problem the �quadratic� term, because of the
formulation as an integer program with a quadratic cost function.[3, p. 2] The statement in
(1) is called the Koopmans-Beckmann QAP. [8, p. 53-76] There is also a more general problem
formulation from Lawler. However, this thesis will focus on the Koopmans-Beckmann QAP.
Moreover, according to Çela et al., results from the Koopmans-Beckmann QAP can also be
extended to the more general QAP from Lawler. [3, p. 3]
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2.2 Applications

Koopmans and Beckmann introduced the QAP in 1957. Both considered it as a mathematical
model for assigning a set of economic activities to a set of locations. Moreover, it was the
�rst occurrence in the context of a facility location problem. [8, p. 53-76] However, other
application would be in the area of scheduling, wiring problems in electronics, design of control
panels, sports, statistical data analysis, parallel and distributed computing, balancing of turbine
runners and computer manufacturing. [3, p. 3-4]

Facility location

The QAP can be used in the optimization of a facility location. In this example, n is the number
of facilities which are assigned to n locations. A = (aij) determines the �ow of materials from
facility i to facility j and B = (bij) is the matrix with distances between the facility on location
i and the facility on location j. The problem value or costs are given with aπ(i)π(j) · bij for
the facility π(i) at location i and facility π(j) at location j. The assignment of all facilities
to the possible locations are represented in the permutation π ∈ Sn and the total costs of an
assignment are equal to Z(A,B, π). This model can also be reused and renamed with several
other applications like a hospital or campus planning [3, p. 4]

Field Programmable Gate Array

Field Programmable Gate Arrays (FPGA) require connections between the di�erent logic blocks
on a silicon chip. These logic blocks are used to implement functions like equations, multiplexers
or memory elements. The way how the modules are connected in an FPGA is the �rst step of
the con�guration. Those ways or routes can be described in a routing matrix A = (aij) which
gives the number of connections between modules i and j. The next step is the assignment
of each module i to a logic block π(i) on the chip. The length of the di�erent links between
the modules and block a�ects the signal propagation delay. The problem can be classi�ed as a
quadratic assignment problem due to the objective of minimizing the total propagation time.
[17, p. 52]

Con�guration of a keypad

Entering text on a keypad with the digits from 0 to 9 requires assigning the 26 letters of the
alphabet plus space to the numbers. A typical con�guration can be found on cell phones with
a dedicated keypad. In order to reduce the overall typing time in a speci�c language, let's
assume that pressing a key takes one time unit and moving from one key to another takes two
time units. For example, the frequency of occurrence of the symbol j after the symbol i can
be represented as aij in a typical text and the time between the press of a key in position u
and position v in the matrix buv. The minimization of the problem can be denoted as a QAP.
Figure 1 displays the example. (a) indicates a typical phone keyboard and (b) the optimized
keyboard. That applies also to modern digital keyboard layout on mobile phones or physical
keyboards for PCs.

11



Figure 1: Standard cellular phone keyboard and keyboard optimized for the French language.(a)
Standard keyboard. (b) Optimized keyboard. Source: [9, p. 12]

In addition to the typical QAP problems, many other NP-hard problems can be transformed in
the QAP. Some of them are, linear ordering, travelling salesman, graph bipartition and others.
However, modelling those problems as a QAP does not lead to the most e�cient solving method.
[17, p. 52-53]

2.3 Time Complexity

For the examples listed in Section 2.2 it would be interesting to �nd an e�cient algorithm to
solve them. In those cases, e�cient means, a fast algorithm. This time constraint depends
on the instance size and complexity of the problem. For example, the number of facilities and
locations determine the size of the instance and, furthermore, the time to solve the problem.
This time complexity function describes the approximately largest time requirements of an al-
gorithm for a possible input length. The time complexity function can be for example, linear,
quadratic, cubic and more. However, there is a distinction between polynomial algorithms and
exponential algorithms.

An algorithm is considered a polynomial time algorithm if its time complexity function, denoted
as O(π(n)), satis�es the condition that |f(n)| is bounded by c∗|g(n)| for all values n ≥ 0, where
f(n) represents the time complexity of the algorithm and g(n) represents a polynomial function.

If an algorithm has a time complexity function O(π(n)) that can be expressed as a polynomial
function, it can be classi�ed as a polynomial time algorithm. Conversely, any other algorithm
that cannot solve the problem within a time complexity function that is a polynomial is referred
to as an exponential time algorithm.

The distinction between those two complexity functions is important, because of the signif-
icant time growth with the instance size is the case of an exponential complexity. Table 1
shows this time increase.
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Time complexity Size n

function 10 20 30 40 50 60

n .00001 .00002 .00003 .00004 .00005 .00006

n2 .0001 .0004 .0009 .0016 .0025 .0036

n3 .001 .008 .027 .064 .125 .216

n5 .1 3.2 24.3 1.7 [min] 5.2 [min] 13.0 [min]

2n .001 1.0 17.9
[min]

12.7 [days] 35.7
[years]

366
[centuries]

3n .059 58
[min]

6.5
[years]

3855
[centuries]

2 · 108
[centuries]

1.3 · 1013
[centuries]

Table 1: Comparison of several polynomial and exponential time complexity functions. (If
not explicit stated, the time is in seconds) Adapted from: [6, p. 4-8]

Moreover, the improvements with faster compute times are not improving the calculation time
at the same rate. For example, a time complexity with n and a 1000 faster computation time
is 1000 times faster. However, with the complexity of 2n, the 1000 faster computation time,
adds only 10 to the size of the largest problem. Table 2 displays this example.

Time
complexity
function

With present
computer

With computers
100 times faster

With computers
1000 times

faster

n N1 100 N1 1000 N1

n2 N2 10 N2 31.6 N2

n3 N3 4.64 N3 10 N3

n5 N4 2.5 N4 3.98 N4

2n N5 N5 + 6.64 N5 + 9.97

3n N6 N6 + 4.19 N6 + 6.29

Table 2: E�ect of improved technology on several polynomial and exponential time algo-
rithms. Adapted from: [6, p. 4-8]

These examples, are the reason polynomial times for algorithms are more desirable than expo-
nential times. [6, p. 4-8] According to Garey et al. [6, p. 8] "there is a wide agreement that a
problem is not being 'well-solved' until a polynomial time algorithm is known for it".
Taillard gives a de�nition for nondeterministic polynomial problems. [17, p. 21]

'Informally, the class NP (standing for nondeterministic polynomial) of languages
includes all the problems for which we can verify in polynomial time that a given
solution produces the answer �yes.� For a problem to be part of this class, the re-
quirements are looser than for the class P. Indeed, it is not required to be able to �nd
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a solution in polynomial time but only to be able to verify the correctness of a given
solution in polynomial time. Practically, this class contains intractable problems,
for which we are not aware of a polynomial time solving algorithm.'

The quadratic assignment problem is NP-Hard. Furthermore, there is no approximation al-
gorithm in polynomial time unless P = NP . [14, p. 555�565] According to Tiallard [17, p.
28] "A problem is NP-Hard, if any problem of the of NP can transform into this problem in
polynomial time."

2.4 Optimal Algorithms

The NP-hardness of the QAP, leads to the conclusion that only explicit and implicit enumeration-
based methods are known for solving the QAP exactly. Furthermore, the branch and bound
algorithms where for a long time the most successful enumeration methods for solving the
quadratic assignment problem to optimality.[3, p. 27]

Branch and Bound

Branch and Bound was �rst developed in 1960 by A. Land and G. Doig for mixed and pure
ILP problems. In 1965 the additive algorithm for solving binary ILPs was developed by E.
Balas. This further development of the algorithm was initially celebrated as a breakthrough.
Unfortunately, the computational advantages were not realized. [16, p. 367] The implementa-
tion of cutting algorithms was, because of the unfeasible runtime not successful. Furthermore,
it has been observed that for instances larger than 20, no optimal solutions have been found
within a reasonable amount of time. Additionally, problems of size greater than 15 are gener-
ally regarded as challenging to solve. The reason for the low e�ciency of Branch and Bound
algorithms for the QAP is mainly due the lack of e�cient bounding approaches for problems
of a large size. This absence, con�rms implicitly the di�culty of the QAP. However, one of the
most studied topics in the QAP is the computation of lower bounds. Despite this e�ort those
lower bounds have not been found yet. Those lower bounds are crucial for the Branch and
Bound algorithm. There are �ve main groups of lower bounds for the QAP: Gilmore-Lawlwer
and related lower bounds, eigenvalue related lower bounds, reformulation based bounds, lower
bounds based on LP relaxations and lower bounds based on semide�nite relaxations.[3, p. 27-28]
However, this is just an enumeration of the known lower bound techniques. Overall, only small
instances of the QAP are optimally solved and many problems or applications of the QAP have
instances with a larger size. Therefore, polynomial time heuristics, which have not optimal
solutions for QAP instances are used for applications witch a larger size.[3, p. 73]

2.5 Heuristics

The QAP is a real-world problem which is markedly di�cult to solve with medium and large
instances. These di�culties lead to high computational time, which is impractical. Therefore,
non-optimal methods with more feasible computation time are used to solve QAP large in-
stances. Those non-optimal algorithms are called heuristics. The usual classi�cation of those
algorithms is constructive and local search improvement methods. [18, p. 12]
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Constructive

Constructive algorithms start from scratch and gradually add parts of the solution to the empty
initial solution. For example, in schedule problems, the algorithm adds additional operations
of the production plan to the initial solution. Constructive algorithms are get inferior results
than the local search methods. However, the bene�t is usually very fast computational time,
although some special implementations for complex problems may increase the computational
time. [18, p. 12]

Local Search

Local search algorithms starts with an initial solution, which can be generated by a constructive
algorithm or algorithms which do not generate the �nding of an optimum, and improves the
solution. This happens by changing parts of the solution iteratively and generating a new better
solution. A drawback of the local search method is that, the algorithm get trapped easily in
a local optimum. Therefore, new modern local search algorithms try with meta-strategies to
escape local optima and to explore also distant neighbourhoods. [18, p. 13]

Meta-heuristics

Meta-heuristics are dominating the combinatorial optimization methods for the last decades.
Those algorithms are combining heuristics with higher level frameworks. Stützle in 1999 gives
a de�nition of meta-heuristics [15, p. 23]:

'Metaheuristics are typically high-level strategies which guide an underlying, more
problem speci�c heuristics, to increase their performance. The main goal is to avoid
the disadvantages of iterative improvement and, in particular, multiple descent by
allowing the local search to escape from local optima. This is achieved by either
allowing worsening moves or generating new starting solutions for the local search
in a more �intelligent� way than just providing random initial solutions. Many of
the methods can be interpreted as introducing a bias such that high quality solutions
are produced quickly. This bias can be of various forms and can be cast as descent
bias (based on the objective function), memory bias (based on previously made deci-
sions) or experience bias (based on prior performance). Many of the metaheuristic
approaches rely on probabilistic decisions made during the search. But, the main
di�erence to pure random search is that in these algorithms randomness is not used
blindly but in an intelligent, biased form.'

Based on the de�nition from Stützle, meta-heuristics are an improved way to overcome the
downfall of traditional heuristics, without increasing the computational time.

There are several kinds of heuristics and meta-heuristics which can be applied to the QAP.
However, according to [3, p. 73] there are several main streams of heuristics for the QAP:

1. Construction methods

2. Limited enumeration methods

3. Improvement methods

4. Tabu search algorithms
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5. Simulated annealing approach

6. Genetic algorithms

7. Greedy randomized search

The enumerated list does not display all possible heuristics for the QAP. Moreover, those
methods are overlapping. Figure 2 displays further methods and the overlapping.

Figure 2: Di�erent classi�cations of meta-heuristics shown as a Euler Diagram. Source: [5]

However, this thesis will focus on a heuristic introduced 1977 by Glover and is named Scatter
Search.
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3 Scatter Search

This chapter will take a look at a heuristic named Scatter Search. It will explain the idea
behind it, display the structure of Scatter Search, and describe the di�erent modules in the
structure. Moreover, this chapter will describe the di�erent methods used in the modules and
parts of Scatter Search.

Scatter Search was introduced by Glover in 1977 as a heuristic for integer programming. [10, p.
2] Scatter Search is in the group of evolutionary algorithms, like the genetic algorithm, and has
been successfully applied to hard optimization problems. The di�erence between Scatter Search
and other evolutionary algorithms such as the genetic algorithm is, that Scatter Search uses
systematic methods and strategies for creating new solutions. These methods and strategies for
search diversi�cation and intensi�cation have proven e�ective in optimization problems. [10,
p. 1] Adapted from Glover, Scatter Search is founded on the following premises [7, p. 6]:

1. A good collection of elite solutions usually contains useful information about the form (or
location) of the best solutions.

2. To exploit such information, it is important to provide combinations that can extend be-
yond the regions spanned by the solutions considered, and to further incorporate heuristic
processes to map combined solutions into new points. (This serves to provide both diver-
sity and quality.)

3. Taking account of multiple solutions simultaneously, as a foundation for creating combi-
nations, enhances the opportunity to exploit information contained in the union of elite
solutions.

However, the Scatter Search procedure itself is not restricted to a single design. Moreover, it's
a collection of procedures which adds additional strategies. [7, p. 7]

3.1 Structure

Scatter Search is very �exible because each part of the methodology can be implemented in
di�erent ways. The �exible design of the Scatter Search methodology gives the possibility to
explore di�erent strategies in the implementation. However, adapted from [10, p. 2] there are
�ve well-known methods that build the basic structure of a Scatter Search implementation.[10,
p. 2]

1. A Diversi�cation Generation Method to generate a collection of diverse trial solutions,
using an arbitrary trial solution (or seed solution) as an input

2. An Improvement Method to transform trial solution into one or more enhanced trial
solutions.

3. A Reference Set Update Method to build and maintain a reference set consisting of cur-
rently the best solutions found with the size b

4. A Subset Generation Method to operate on the reference set and produce new subsets of
the solutions for creating new combined solutions

5. A Solution Combination Method to transform the subsets into new combined solutions
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Figure 3: Scatter Search Template. [12, p. 12]

Those �ve methods are combined in the Scatter Search template. Figure 3 displays this tem-
plate. The implementation in �gure 3 starts �rst with the Diversi�cation Generation Method,
which generates a population with p solutions in the initialization phase. Second, the �rst
improvement of every solution in the population is carried out. This improvement leads to the
�nal population P with the size p. Next, the reference set is generated, the best b solutions
of the population are selected, and the reference set, which is ordered starting with the best
solutions, is established. In the Scatter Search main loop, the implementation starts with gen-
erating the subsets, combining those subsets into new solutions, improving the new solutions
and updating the reference set. This main loop stops if the maximum number of iterations or
a timestamp is reached. If the combination of subsets does not change our reference set, the
algorithm uses the diversi�cation method to generate new solutions. As already mentioned, the
design of Scatter Search is not �xed, therefore, the implementation in other publications can
di�er. Algorithm 1 displays a basic Scatter Search procedure.
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1: Start with p = ∅ Use the diversi�cation generation method to construct a solution and
apply the improvement method. Let x be the resulting solution. If x /∈ P then add x to P ,
otherwise, discard x. Repeat this step until p = |P |.

2: Use the reference set update method to build RefSet = {x1, ..., xb} with the best b solutions
in P . Order the solutions in RefSet according to their objective function value such that
x1 is the best solution and xb the worst. Set NewSolutions = TRUE.

3: while NewSolution do
4: Generate NewSubsets with new solutions using the subset generation method. Set

NewSolutions = FALSE
5: while NewSubsets ̸= ∅ do
6: Select the next subset s in NewSubsets
7: Apply the solution combination method to s to obtain one or more new trial

solutions x.
8: Apply the improvement method to the trial solutions
9: Apply the reference set update method

10: if RefSet has changed then
11: Make NewSolutions = TRUE
12: end if
13: end while
14: end while

Algorithm 1: Basic Scatter Search procedure. Source: [10, p. 3]

The implementation can also add additional strategies to the Scatter Search procedure, which
would lead to more advanced approaches. However, designs of advanced Scatter Search algo-
rithms have the goal of improving the performance of the implementation. Nevertheless, this
often results in higher complexity and greater di�culties in the �ne-tuning of the di�erent
methods. [10, p. 4]

3.2 Diversi�cation Method

Diversity control in the population and the reference set is crucial for Scatter Search because
the algorithm does not allow duplicated solutions in the reference set. However, comparing
each index in a solution with each index in every other solution comes at a high computational
cost. Therefore, there are di�erent methods to archive the diversity between the solutions. One
method is hashing. Hashing is often used to reduce the computational e�ort. One hashing
method is reported by Campos, et. al. [2, p. 397-414]

hash(p) =
m∑︂
i=1

iπ(i)2 (3)

Simple Scatter Search algorithms check the duplication of the solution. However, they are, in
general, not monitoring the diversity of the high-quality solutions in the reference set. To do
so, a diversity test can be applied on the set of high-quality solutions in the reference set. This
happens after the P set has been created and only updates, removes or add the solutions, in
P if it exceeds certain threshold, which depends on the type of the problem. For example, at
each step when the algorithm adds the next best solution, we ensure that there is a minimum
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distance between the solution. Otherwise, solutions are removed and new one generated. [10,
p. 6]

3.3 Improvement Method

The improvement methods improve the solutions in the reference set or in the population.
These methods are typically approaches to solve combination optimization problems and usu-
ally belong to the class of local search algorithms. A local search procedure is an iterative
approach which tries to improve an already feasible solution. The improvement is achieved by
replacing the current solution with a better, more feasible solution from the neighbourhood of
the current one. The iterative steps are repeated until no improved solution can be found. [3, p.
77] The improvement method is not explicitly needed in a Scatter Search structure. However,
if the implementation desires high-quality outcomes, the implementation of an improvement
method is recommended. [10, p. 4]

Generating a new neighbourhood can be typically done with two di�erent types of exchange
methods. The pair-exchange and the cyclic triple-exchange neighbourhood. With the transposi-
tion of the pair-exchange neighbourhood of a given solution, or permutation, every permutation
can be obtained. The cyclic triple-exchange, works by means of a cyclic exchange of three in-
dices. Using the cyclic exchange approach, every possible permutation of the current solution
can also be found. However, according to Çela et al., the cyclic triple-exchange does not lead
to considerably better results compared to the pair-exchange. [3, p. 77]

The start of the local search for the improvement, can be done in two di�erent ways. Ei-
ther, with a �xed prede�ned order, or with a random order. In addition to the di�erent ways of
a local search start, there are three frequently used update rules to update the current feasible
solution.[3, p. 78]:

� Method of First Improvement

� Method of Best Improvement

� Heider's Method

First Improvement updates the current solution as soon as a �rst improving neighbour is
found. The Best Improvement method, �rst scans the whole neighbourhood and chooses the
best improving neighbour solution. Ding-Zhu et al. de�nes the Haider's method: [4, p. 281]

'Heider's rule starts by scanning the neighborhood of the initial solution in a prespec-
i�ed cyclic order. The current solution is updated as soon as an improving neighbor
solution is found. The scanning of the neighborhood of the new solution starts there
where the scanning of the previous one was interrupted (in the prespeci�ed cyclic
order).'
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3.4 Reference Set Update Method

The reference set is one of the most important parts of Scatter Search If the reference set only
contains very similar solutions, Scatter Search will not be able to improve the best solution
found, even if the combination method is very advanced. It is, therefore, essential to build a
good reference set and maintain it throughout the search process.[10, p. 4]
The basic design for the reference set is a pool of the best solutions from the population. Those
solutions are combined and if better solutions arise, the reference set is updated. This is called
a static strategy for updating the reference set.[10, p. 4] The dynamic update method updates
the reference set as fast as possible. This means, as soon a new solution is provided to the
reference set, the combination method is used to generate new solutions.[10, p. 4]

Update Strategies

One of the advantages of the dynamic update strategy is, that the reference set contains solutions
of better quality and that solutions with an inferior quality are replaced quicker. Furthermore,
future combinations are made with already improved solutions from the reference set. However,
the dynamic update strategy is more challenging than the static update strategy and therefore
more di�cult to implement. Moreover, the dynamic approach can eliminate some potential
combinations, which makes the order of the solutions in the reference set more important.
In the static counterpart, the order is not relevant because the reference set gets updated
after all combinations have been performed. The dynamic update needs some tweaking in the
combination orders.[10, p. 4] If there are no new trial solutions for the reference set, a rebuilding
is needed.

Reference Set

The idea is to partly rebuild the reference set when the combination and improvement methods
do not provide solutions of a better quality than the reference solutions. This rebuild is done
with a diversi�cation update that assumes the size of the reference set is b = b1 + b2, where
b1 for the solutions from x1 to xb1 and b2 the solutions from xb1+1 to xb. The rebuild method
deletes the solutions, b2, from the reference set and uses the diversi�cation method to construct
a set P of new solutions. With the criterion of maximizing the diversity, the solutions b2 are
sequentially selected from P . A possible criterion for diversity is to maximize the minimum
distance, between the solution values, in the context of the problem being solved. This criterion
is a part of the reference set update method. When selecting solution xb1+1 the criterion is
applied regarding the solutions x1, . . . , xb1 , selecting solution xb1+2, with x1, . . . , xb1+1 and so
on.[10, p. 4-5]

Reference Set Tiers

One more possibility to handle the reference set and its solutions is to order the reference
set by the objective function of a solution. Therefore, if we �nd a new possible solution for
the reference set, we will remove the worst solution and insert the new solution in the correct
position, which is given by the objective function value. This approach leads to a converging
reference set, which is when there are no possible solutions to add to the reference set, and a
diversi�cation procedure needs to be done.
However, there is another possibility to maintain the reference set. Instead of doing the diver-
si�cation procedure at the end, a proactive injection of diversi�cation is possible. This leads to
a splitting of the reference set into b1, consisting of high-quality solutions, and b2, consisting of
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diverse solutions. This update procedure is called 2-tier design and has the goal of dynamically
preserving the diversi�cation in the reference set. This solved the problem, that high-quality
solutions tend to be very similar to each other. The 2-tier design updates the reference set in
both senses, in being a set of high-quality solutions and highly diverse solutions. Therefore, the
set b1 is ordered by the objective function value and the set b2 is ordered by the value which
de�nes the diversity.[10, p. 5]
The 2-tier design can be expanded to a 3-tier design. Where the reference set is partitioned
in three sets. RefSet1 and RefSet2 follow the same rules as in the 2-tier approach. For
RefSet3, we introduce a new variable called g(x), which determines the object value of the
best solution ever created from a combination of a solution from RefSet1 and any other ref-
erence solution. The third reference set is ordered according to g(x). The exact comparison
of g(x) depends on the problem itself. For example, for a minimization problem, the order is
g(xb1+b2+1) < g(xb1+b2+2) < . . . < g(xb). If a better solution is found, and updating a solution
in RefSet1 with a higher quality one is necessary, a check for in the RefSet3 is also needed.[10,
p. 5-6]

Managing the reference set can be quite challenging, and the implementation can be tricky.
It's important to �nd a good balance between the complexity of the implementation and the
bene�ts of solving a problem.

3.5 Subset Generation Method

The combination method in Scatter Search is not limited to only combining two solutions.
Moreover, the Scatter Search algorithm uses subsets of di�erent sizes for combining parts of
solutions. However, Scatter Search also ensures that a subset is created only once. This di�ers
from the genetic algorithm, where combinations are typically determined by a roulette wheel.
However, if the generation method only creates all the subsets of size two, then all subsets of
size three, and so on until the method creates the reference set. For a size of b = 10, which
is typical, the generation method would create 1013 subsets. This is not e�ective because this
creates a lot of almost identical subsets.[10, p. 6] Therefore, a possibility for the Scatter Search
algorithm is, to use di�erent subset type generations and switch through those types in every
iteration. According to Glover et al. there are 4 di�erent subset types[7, p. 25]:

1. SubsetType = 1: all 2-element subsets.

2. SubsetType = 2: 3-element subsets derived from the 2-element subsets by augmenting
each 2-element subset to include the best solution not in this subset.

3. SubsetType = 3: 4-element subsets derived from the 3-element subsets by augmenting
each 3-element subset to include the best solutions not in this subset.

4. SubsetType = 4: the subsets consisting of the best i elements, for i = 5 to b.

Where b indicates the max size of the reference set.
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3.6 Combination Methods

The Combination Method uses the subsets and generates new trial solutions for the refer-
ence set. The method itself is problem-speci�c because it is directly related to the solution
representation.[9, p. 25] For the implementation, Two di�erent approaches for combining the
subsets were chosen. First, an exhausting approach which combines every solution in the subset
with each other and generates new solutions and second, a fragmented �ll. The fragmented
�ll algorithm deletes the worst part or a random part from the solutions and �lls it with the
subsets. This thesis will describe the method in more detail in section 4.

3.7 Path Relinking

Path Relinking was initially a strategy for diversi�cation in tabu search. The strategy was
originally suggested by Glover and Laguna and can be considered as an extension of the combi-
nation method of Scatter Search. The idea is to explore trajectories which connect high-quality
solutions. For the exploring, Path Relinking starts with one of those high-quality solutions, an
initiating solution, which is used to generate a path to other, guiding, solutions. For character-
izing the paths, attributes of a solution can be used and added, dropped or otherwise modi�ed
by the moves executed. Those attributes can be, for example, the edges and nodes of a graph,
sequence positions in a schedule, vectors contained in linear programming basic solutions, values
of variables and functions of variables. Path Relinking searches for attributes of high-quality
solutions, by creating inducements to favour these. For creating the good attribute composition
of high-quality solutions in the current solution, Path Relinking chooses the best move. The
decision uses customary choice criteria, from a set of moves currently available, that integrate
a maximum number of the attributes from the guiding solutions.[9, p. 161]. The illustration
4 shows the Path Relinking procedure. A represents the start point, start solution. The solid

Figure 4: Path Relinking illustration. Source: [9, p. 162]

line shows a greedy function towards the solution with the optimal object value B. However,
the optimization with the solid line takes more steps to get to the object value B. The relinked
path, the dashed line, needs the same amount of steps towards the point B. Moreover, the
relinked path was able to reach a better solution, the black �lled one, as the greedy algorithm.
[9, p. 162].

Figure 5 shows a di�erent example. The starting solution is a permutation with an object
function value. The solution gets transformed step by step into the target solution. At each
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transformation step, the neighbourhood solution gets calculated and evaluated and the solution
with the best value gets selected. [9, p. 162] Similar to the Subset Generation Method, Path

Figure 5: Path Relinking illustration. Source: [9, p. 162]

Relinking can use every solution from the reference set to generate the paths. Moreover, for
each pair of solutions, two paths can be created with the Path Relinking method. One from
solution A to B and one from solution B to A. In addition, an improvement method can be
applied for the found solutions. However, because of the small di�erences, usually only one
attribute, for every step, it's not e�cient to apply the improvement method in every step. [10,
p. 9]
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4 Implementation

This chapter will describe the implementation of Scatter Search. Moreover, it will explain the
structure of the program with the architecture, models, interfaces, and classes used in the im-
plementation. Furthermore, it will include some considerations regarding parallel computing,
identify the memory constrains and display some benchmark results to consolidate the decisions
made.

The 11th version of the programming language C# , was used for the implementation of Scatter
Search. C# is an object-oriented which is type-safe and has several features to build robust
applications. It has a garbage collection, which automatically reclaims memory occupied by
unreachable and unused objects, supports nullable, reference and value types and asynchronous
operations. The C# program runs on .NET, which is a virtual execution system called com-
mon language runtime. In addition, the .NET architecture provides a set of class libraries and
functions. [11] For this Scatter Search implementation, the .NET version 7.0 was used.

4.1 Program Structure and Architecture

The C# program which was implemented is hosted in a solution. A solution can contain several
programs and the programs contain the �les with the written code. The solution for the QAP
and the Scatter Search implementation was split in six di�erent programs:

� Domain

� QAP

� QAPAlgorithms

� QAPBenchmark

� QAPInstanceReader

� QAPTest

Domain

The program Domain contains two folders. Models and TestInstances. The folder TestInstances
contains the instances for the QAP. These instances were taken from the webpage QAPLIB
[1] and used to test the Scatter Search implementation The folder Models contains the class
representation of the QAP. The instances are stored in the record QAPInstance. A record is an
inmutable, not changeable after the �rst initialization, reference type. This reference type con-
tains the following properties: string InstanceName, int N, int[,] A and int[,] B. InstanceName
contains the name of the instance, N the instance size and the two matrices A and B with for ex-
ample distances and problem value. (This depends on the problem) The struct InstanceSolution
contains the array SolutionPermutation, with the permutation of a solution, SolutionValue, the
objective value and the property HashCode with the hash code of the permutation. In contrast
to the record, a struct is a value type in C# . In addition to the folders, the program Domain
also has a static class InstanceHelpers. This class has several static helper methods for the
Scatter Search algorithm and the QAP. For example, the method GetSolutionValue calculates
the objective value of a given InstanceSolution, and the method GenerateHashCode generates
a hash code for the instance solution. The generation of the hashcode and the calculation of
the objective value follows the formula in section 2.
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QAP

The program QAP contains the �les CSVExport, which exports test results to a csv �le. The �le
Program is the start class and entry point of the solution. TestSettings contains the parameters
and instances of the used algorithms for a Scatter Search run. The settings are a combination
of the QAP instance, the population generation method, diversi�cation method, combination
method and improvement method. This class also contains the maximum runtime of the al-
gorithm and is the way subsets are generated. TestInstance contains the method StartTest
which start a Scatter Search run with the given TestSettings. The result, objective value, �nal
permutation, runtime and the number of iterations needed is stored in the TestResult class.

QAPAlgorithms

QAPAlgorithms contains the interfaces and the implementation of the di�erent algorithms for
the combination, diversi�cation, generation, and improvement. It also contains the single and
multithreaded implementation of the di�erent algorithms. This thesis will explain which algo-
rithms were used in subsection 4.3. However, the main class for the QAPAlgorithms program is
the ScatterSearchStart class. At initialization, this class needs the implementation of the meth-
ods for population generation, diversi�cation, combination, and improvement. The injection
of the methods happens via interfaces. Those interfaces can be found in the folder Contracts.
The implementation of the needed algorithm needs to implement the correct interface. For
example, a new combination algorithm needs to implement the interface ICombinationMethod.

The class ScatterSearchStart also contains the functions Solve which starts the Scatter Search
algorithm and, after the �nalization, returns a tuple with the InstanceSolution, the runtime
in seconds and the number of iterations. The algorithm �nished after a given runtime. This
runtime in seconds has to be passed via a parameter in the function Solve.

QAPBenchmark

The program QAPBenchmark contains the classes and functions for benchmarking di�erent
parts of the implementation. This thesis will explain this in further details in section 4.5.

QAPInstanceReader

QAPInstanceReader implements every function for reading test instances. The test instances
are stored in di�erent folders. The method ReadFileAsync has as parameter the folder and the
�le name and returns the QAPInstance �lled with the values in the �les.

QAPTest

The program QAPTest contains the unit tests for the algorithms. The implementation of
Scatter Search can be quite di�cult and debugging, �nding and �xing errors can be very time-
consuming. For this reason, almost every part of the program is covered by unit tests. This
made �nding errors much easier and therefore changes in the code can be carried out without
to much e�ort.
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4.2 Scatter Search Architecture

The Scatter Search implementation followed the in the subsection 3.1 and �gure 3 explained
implementation. For the reference update function the static approached was used. The static
approach was used because of the easier implementation with di�erent improvement, combina-
tion, and diversi�cation methods. Path Relinking and Scatter Search outweighs the speed-up
update of the reference set function. The static approach also enables an easier implementa-
tion of a parallel update function for the reference set. The main part of the implementation
is the ScatterSearch Class itself. It combines the di�erent population, diversi�cation, combi-
nation, improvement, and solution generation methods to solve a given QAP instance. The
combination of the classes for the di�erent algorithms is done via interface and composition
via injection over the constructor of the ScatterSearch class. Figure 6 shows the class with the
di�erent interfaces for the population, diversi�cation, combination, improvement, and solution
generation method.

Figure 6: Scatter Search class with the interfaces for the interfaces for the di�erent algorithms.
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The created ScatterSearch class has the method Solve which applies the Scatter Search algo-
rithm with the via the constructor injected methods. The Solve method takes an object from
the QAPInstance class, the max runtime in seconds and wherever the progress should be dis-
played in the console. However, the last parameter is set to false as default and is only for
debugging reasons. The �gure 7 displays the steps of the Solve method.

Figure 7: Activity diagram for the Solve method.

The method starts with the sub-method InitScatterSearch. This method initializes the needed
variables for the Scatter Search algorithm. This includes the start and end time, the iteration
count and initializing the di�erent methods for the population generation, diversi�cation, com-
bination, improvement and solution generation. Next, the GenerateNewPopulation sub-method
is called, which generates a new population, applies an elimination of duplicated solutions, im-
proves the solutions in the population set and applies a diversi�cation method. After the
GenerateNewPopulation sub-method, the ReferenceSetUpdate method gets called for every so-
lution in the population set. The sub-method ReferenceSetUpdate updates the reference set
and sorts it after the objective value, where the index zero is the best solution with the lowest
objective value. Next, the main Scatter Search loop starts. The loop starts with comparing the
current time with the end time. If the current time is higher than the end time, the loop stops
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and the solve method ends. If the current time is less than the end time, the Scatter Search
main loop continues. First, with generating new solutions with the ISolutionGenerationMethod
and updating the reference set with the ReferenceSetUpdate method. Second, the main loop
checks, if new solutions were added to the reference set after the ReferenceSetUpdate . If yes,
the loop jumps back to the start. However, if not, the GenerateNewPopulation method is called
and then the loop starts again.

4.3 Algorithms

As explained in section 3.1, interfaces were used for implementing the di�erent algorithms for
the combination, diversi�cation, improvement, population generation and solution generation,
and they were injected into the main Scatter Search class. Most of those algorithms have
di�erent implementations:

� Combination Methods:

DeletionPartsOfTheFirstSolutionAndFillWithPartsOfTheOtherSolution

ExhaustingPairwiseCombination

� Diversi�cation Methods:

HashCodeDiversi�cation

HashCodeThreePartDiversi�cation

� Improvement Methods:

ParallelImprovedLocalSearchBestImprovement

ParallelImprovedLocalSearchFirstImprovement

ImprovedLocalSearchBestImprovement

ImprovedLocalSearchFirstImprovement

LocalSearchBestImprovement

LocalSearchFirstImprovement

� Initial Population Generation Methods:

RandomGeneratedPopulation

StepWisePopulationGeneration

ParallelRandomGeneratedPopulation

� Solution Generation Methods:

ParallelPathRelinking

ParallelPathRelinkingSubSetGenerationCombined

ParallelSubSetGeneration

PathRelinking

PathRelinkingSubSetGenerationCombined

SubSetGeneration
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Combination Methods

Two di�erent combination methods where implemented. The DeletionPartsOfTheFirstSolutio-
nAndFillWithPartsOfTheOtherSolution and the ExhaustingPairwiseCombination. Both use a
base class, the CombinationBase for shared functions. For example, the method WereSolu-
tionsAlreadyCombined in the CombinationBase stores already combined solutions and checks
if the composition was already combined. Furthermore, the WereSolutionsAlreadyCombined
is also available as a thread safe method which allows to check the solutions in parallel. For
comparison of the solutions a new hash code was generated and stored in a hash set and in a
concurrent dictionary for the thread save version. A hash set is a collection which contains no
duplicated elements and provides a high-performance set of operations.[11] The hash code was
calculated from the following formulas:

hash(s) =
m∑︂
i=1

s(i)h ∗ (i) (4)

Which was used for combinations where the order of the solutions is necessary. This is the
case for the DeletionPartsOfTheFirstSolutionAndFillWithPartsOfTheOtherSolution algorithm.

hash(s) =
m∑︂
i=1

s(i)h (5)

To calculate the hashcode without taking into consideration the order of the solutions. In
the above formulas, s indicates the set of solutions for the combination and s(i)h the hash code
of the solution in the set s at the position i. Because of the hash code and the hash set, a
check if the solution combination has already been used is possible in O(1). Both calculation
methods have the possibility to generate a non unique hashcode. However, the probability of
loosing possible combinations is very low. Moreover, the possibility that a better solutions can
be found within the lost solutions is negligible.

The DeletionPartsOfTheFirstSolutionAndFillWithPartsOfTheOtherSolution method, deletes
parts of a solution and �lls the deleted part with a part of an alternative solution.
The percentage of how much of the solution should be deleted is passed via the constructor.
The part which should be deleted can be chosen at random, or the part with the worst object
value is chosen.
The ExhaustingPairwiseCombination extracts every pair of a solution and tries to combine
those pairs in every possible way. This algorithm has two parameters. One is for the step size
of the pairs. This parameter indicates how many indices the pointer is moved after a pair has
been selected. For example, if the step size is 1, the algorithm would �nd for the permutation
(0, 1, 2, 3) the pairs (0, 1), (1, 2), (2, 3), (3, 0) and for the step size of two, (0, 1) and (2, 3). This
parameter in�uences how many new solutions are found with the combination method. The
other parameter, maxNumberOfPairs is a limit for the maximum number of pairs used for the
combination.
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Diversi�cation Methods

For the diversi�cation of the reference set, the HashCodeDiversi�cation algorithm was imple-
mented. This algorithm works by calculating the average possible hash code with the minimum
and maximum hash code of a permutation. This calculation takes place in the InitMethod and
the average hash code does not change during a solve process. If the diversi�cation is applied
to a set, the algorithm calculates the hash code of the set with the following formula:

hash(s) =
m∑︂
i=1

s(i)h, (6)

In formula 6, s indicates the set of solutions for the combination and s(i)h the hash code
of the solution at the position i in the set s. The result is then divided by the number of
solutions in the set. This results in an average hash code for the set. After the calculation of
the average hash code of the set, the algorithm removes the worst part, which is an adjustable
parameter, of the reverence set and �lls it with solutions with a hash code which is as far away
from the average hash code as possible.

In addition, a second diversi�cation method was implemented which increases the hash code
diversity of the reference set. The HashCodeThreePartDiversi�cation also deletes the worst
part of the reference set and �lls the reference set with three di�erent types of solutions. The
�rst part has a hash code near the best solution of the reference set. The solutions in the second
and third part includes solutions which are as far away as possible from the best solution of
the reference set. The solutions in the second part have a hash code lower, in the third part
higher than the best solution in the reference set.

The source for new solutions to �ll the reference set for both diversi�cation methods is the
population. This population is newly generated each time before applying the diversi�cation
method.
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Improvement Methods

For the improvement methods, the local search algorithms with �rst and best improvement
were implemented. The algorithm checks the neighbourhoods from the solution by swapping
pairs in the solution. The �rst improvement algorithm stops at the �rst improvement it can
�nd, the best improvement iterates over all swaps and uses the best improvement. In addition,
an improved version was included where the objective value is calculated in a more e�cient
way. In the default version, the object value was calculated with formula 1. This formula
takes O(n2) to calculate the objective value. However, for the implementation of the improved
version the method uses the known indexes of a swap and takes only O(n) for calculating the
objective value. The algorithm 2 displays the implementation.

1: Get I, p, i and j.
2: d = 0
3:

4: for i = 0; i < p.length; i++ do
5: d = d− I.A[i, k] ∗ I.B[p[i], p[k]]
6: d = d− I.A[j, k] ∗ I.B[p[j], p[k]]
7:

8: d = d+ I.A[i, k] ∗ I.B[p[j], p[k]]
9: d = d+ I.A[j, k] ∗ I.B[p[i], p[k]]

10: end for
11:

12: d = d+ I.A[i, j] ∗ I.B[p[i], p[j]]] ∗ 2
13:

14: return d ∗ 2
Algorithm 2: Improved implementation of the object value calculation.

The variable I contain the 2-dimensional arrays A and B which are needed for the calculation of
the new objective value. p is the permutation. The variable i indicates the �rst index and j the
second index for the swap. First, the algorithm introduces the variable d which stores the delta
of the objective value before and after the swap of the values on the indices i and j. Second,
the For − loop gets initialized to loop from zero to p.length. Next, delta gets reduced by the
actual values of the permutation. Fourth, delta gets increased by the values after the swap.
After the loop, d gets increased by doubled amount of the value for i and j. Last, the variable
d gets doubled and returned. This thesis will demonstrate the performance improvements from
the improved method of calculation of the solution value in section 4.5.

In addition to the improved version, the improvement algorithms include a parallel calcula-
tion for the improved algorithms.

32



Initial Population Generation Methods

The initial generation methods include two di�erent algorithms. First the RandomGenerated-
Population and second the StepWisePopulationGeneration. The RandomGeneratedPopulation
generates several solutions for the population. This is achieved by generating a list with the
size n. The size n is the size of a permutation. The list is �lled with the numbers from zero
to n − 1. Next, a random number r is generated from the numbers from zero to n − 1. The
number on the index of the generated number r is removed from the list, and the next ran-
dom number r from zero to the new size n − 1 is generated. This continues until the list is
empty, and the permutation arrives at the solutions. However, this algorithm does not check
for duplicated permutations and therefore this check needs to be carried out after the gen-
eration. The StepWisePopulationGeneration algorithm �lls the �rst permutation p1 with the
values from 0 to the size of the permutation n. The next population p2 moves the start point
to the right and starts with 1 to n and ends with 0. For example, with a permutation size
4, the permutations are p1 = (0, 1, 2, 3) and p2 = (1, 2, 3, 0). The step of the shift can be set
via the parameter nrOfIndexesToMovePerIteration. However, for a large population size
and a small permutation size, the algorithm produces very similar permutations and duplicated
solutions. Therefore, it was not used in the further implementation.

Solution Generation Methods

The solution generation methods are the algorithms for the subset generation and Path Relink-
ing. The algorithms, SubSetGeneration, PathRelinking, PathRelinkingSubSetGenerationCom-
bined and their parallel versions were implemented. The SubSetGeneration algorithms follows
the implementation given in section 3.5. The procedure implements the 4 di�erent generation
types and cycles through those types. Moreover, the implementation added 2 parameters which
can be set in the constructor. First, the parameter typeCount which indicates the start of the cy-
cling and second, the parameter subSetGenerationMethodType. This parameter is an enum, has
the values Cycle and UseOnlyOne and indicates two di�erent procedures of the algorithm. One
where the algorithm cycles through the subset generation types and one where the algorithm
stays at the type set in the parameter typeCount. In addition to the two parameters, the con-
structor has also the improvement and combination method as necessary parameters. Similarly,
the implementation of the SubSetGeneration follows the explanation of Path Relinking given
in section 3.7. The algorithm PathRelinking generates two di�erent paths between all solution
pairs of the reference set. One with the starting solution s1 and guiding solution s2 and one
with the starting solutions s2 and guiding solutions s1. For the path generation, the algorithm
adds one attribute of the guiding solution to the starting solution until they have the same hash
code. The algorithm also implements the improvement method. However, according to Martí
et al. [10] the improvement method should not be applied in every iteration. Therefore, the
constructor of PathRelinking algorithm also supports the parameter improveEveryNSolutions
which indicates when the improvement method should be applied. The PathRelinkingSubSet-
GenerationCombined algorithm combines Scatter Search and Path Relinking to generate even
more possible solutions.
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4.4 Parallel Implementations

Several algorithms of the Scatter Search implementation can compute their results in parallel.
However, generating tasks for di�erent threads allocates additional memory which needs to be
released by the garbage collector after the thread terminates. Therefore, additional tasks can
potentially slower an algorithm. Consequently, this implementation of Scatter Search uses a
parallel computation for algorithms which needs to be applied to many solutions or algorithms
that have to create numerous solutions. Therefore, a parallel implementation was employed
for the improvement methods and initial population methods and solution generation methods.
Moreover, the implementation of the combination methods is thread safe and can be used in
parallel. However, for the diversi�cation methods no parallel implementation was considered in
this thesis. The parallel implementation was tested and benchmarked. The results are displayed
in section4.5.

Improvement methods

The improvement methods include the parallel implementation of the improved algorithms of
the local search algorithms for �rst and best improvement. The parallel computation was not
implemented for the improvement methods themselves. Moreover, the improvement methods
improve the solutions in parallel. The implementation of the parallel algorithms was done via
a task list. For every solution a task was created, started and added to a list. When every task
is �nished the method is complete. However, the algorithm only starts the parallel computa-
tion if the list of solutions is greater than �ve. The code in listing 1 displays the implementation.

pub l i c new void ImproveSolut ions ( Lis t<Ins tanceSo lu t i on>
in s t an c eSo l u t i on s )

{
i f ( i n s t an c eSo l u t i on s . Count <= 5)
{

base . ImproveSolut ions ( i n s t an c eSo l u t i on s ) ;
r e turn ;

}

var t a s kL i s t = new List<Task>() ;
f o r ( i n t i = 0 ; i < in s t an c eSo l u t i on s . Count ; i++)
{

var i 1 = i ;
var newTask = Task . Factory . StartNew ( ( ) =>

in s t an c eSo l u t i on s [ i 1 ] = ImproveSolut ion (
i n s t an c eSo l u t i on s [ i 1 ] ) ) ;

t a s kL i s t .Add(newTask ) ;
}
Task .WhenAll ( t a s kL i s t ) .Wait ( ) ;

}

Listing 1: Algorithm of the parallel best improvement algorithm
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A similar approach was used for the implementation of the initial population generation meth-
ods. However, to store the solutions a concurrent bag was used. The concurrent bag is a thread
safe collection in C# . Listing 2 displays the code.

var t a s kL i s t = new List<Task>() ;
_newSolutions . Clear ( ) ;

f o r ( i n t i = 0 ; i < popu la t i onS i z e ; i++)
{

var task = Task . Factory . StartNew ( ( ) =>
{

_newSolutions .Add( GenerateSolut ionThreadSafe ( ) ) ;
}) ;
t a s kL i s t .Add( task ) ;

}

Task .WhenAll ( t a s kL i s t ) .Wait ( ) ;
r e turn _newSolutions . ToList ( ) ;

}

p r i va t e In s t anceSo lu t i on GenerateSolut ionThreadSafe ( )

Listing 2: Algorithm for the parallel initial population generation method.

The implementation for the solution generation method follows the same scheme as the imple-
mentation for the initial population generation methods
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4.5 Benchmarks

The multitude of methods for generating, combining, and optimizing solutions, as well as the
multitude of parameters, can be exhausting when implementing Scatter Search. In order to
eliminate ine�cient algorithms and generate a preselection of test methods, benchmarks were
created.
For generating the benchmarks, the library BenchmarkDotNet was used. This library is easy
to use and generates reliable and precise benchmark results.[13] A benchmark can be created
with the code displayed in listing 3.

[ MemoryDiagnoser ]
pub l i c c l a s s TestBenchmark
{

p r i va t e ImprovedLocalSearchFirstImprovement
_improvedLocalSearchFirstImprovement ;

p r i va t e In s t anceSo lu t i on _instanceSo lut ion ;

[ GlobalSetup ]
pub l i c void SetUp ( )
{

_improvedLocalSearchFirstImprovement = new
ImprovedLocalSearchFirstImprovement ( ) ;

_ins tanceSo lut ion = new In s tanceSo lu t i on ( ) ;
}

[ Benchmark ]
pub l i c void Benchmark ( )
{

_improvedLocalSearchFirstImprovement . ImproveSolut ion (
_instanceSo lut ion ) ;

}
}

Listing 3: Small example benchmark.

And run with the following code:

BenchmarkRunner .Run<TestBenchmark>() ;

Benchmarks for the initial population generation, the improvement method, instance helpers
and the solution generation methods were created. For the benchmarks, three di�erent instances
of di�erent size were used. Those instances are, chr12a.dat, chr25a.dat and tai256c.dat. The
sizes of the instances are 12, 25 and 256. Moreover, not only the algorithms where tested with
di�erent solution sizes, number of solutions generated and the number of calls were bench-
marked. The number of calls was tested with 10, 100 and 200 calls for a particular setting.
Those benchmarks should give an indication for good heuristics in Scatter Search. The bench-
marks were run on a pc with an AMD 5800X3D processor with 8 cores, 16 threads and a
maximum CPU clock from 4.5 GHz. However, in multicore scenarios the CPU only clocks to
4.2 GHz. In addition to the CPU, 32 GB of memory were used. No other tasks except for the
benchmarks were performed on this pc.
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Generate Initial Population Benchmark

The generation of the initial population is important for the start of the Scatter Search methods.
Furthermore, if the Scatter Search algorithm cannot update the reference set, a generation
method creates a new population. However, the call of the generation method is far more
seldom used than the improvement one. Therefore, it's more in�uential that the generation
method generates a diverse population than the runtime of the method itself. Figure 8 displays
the time in microseconds of the di�erent generation methods. The �gure shows the increased
performance of the parallel random generation method with larger solutions.

Figure 8: Runtime in microseconds for the population generation methods.

Figure 9 compares the memory consumption of the population generation methods. It shows
the increased memory consumption of parallel implementations. However, as mentioned, the
performance of the population generation method is not as critical. Moreover, generates the
StepWisePopulationGeneration method, does not generate su�ciently diverse solutions for the
population. Therefore, the focus was kept on the random generation methods for the Scatter
Search implementation.
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Figure 9: Memory consumption in bytes for the population generation methods.1

Improvement Method Benchmark

The improvement methods are called in for every iteration of the newly generated solutions.
Therefore, the improvement methods have a high impact on the performance of Scatter Search.
Hence, a benchmark was created for all the di�erent implementations of the improvement
methods. The benchmarks include the Improved Local Search Best Improvement, Improved Lo-
cal Search First Improvement, Local Search Best Improvement, Local Search First Improvement
and the parallel implementations of the Improved Local Search Best Improvement and Improved
Local Search First Improvement. Figure 11 plots the results of the benchmarks. It shows an
increased performance with the improved versions of the improvement methods. This increased
performance is the result of a more e�cient calculation of the solution value after a swap. This
computation of the solution value has a runtime of O(n) instead of the regular implementation
with O(n2). Therefore, the improved algorithm demonstrates a much lower runtime. Moreover,
�gure 11 and 13 display the additional e�ort for the parallel computation. This additional e�ort
is a result of the state machine initialization for the computing on di�erent threads. Hence, the
time bene�t of the parallel computation is not present. Overall, the results of �gure 10 and 12
lead to the conclusion, that the most e�cient ways for improving the solutions are the faster
algorithms for �rst and best improvement. This result also be clearly seen in �gure 11 and 13
which display the increased memory consumption for the parallel implementations.

1Small transformation of the lines to prevent overlapping in the �gure
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Figure 10: Runtime in nanoseconds for the �rst improvement methods.1

Figure 11: Memory consumption in bytes for the �rst improvement methods.1

1Small transformation of the lines to prevent overlapping in the �gure
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Figure 12: Runtime in nanoseconds for the best improvement methods.1

Figure 13: Memory consumption in bytes for the best improvement methods.1

1Small transformation of the lines to prevent overlapping in the �gure

40



Solution Generation Benchmark

The solution generation methods are used for combining the solutions in the population, using
those to generate new solutions. Three di�erent approaches were implemented. First, the
subset generation algorithm, second, Path Relinking and last, a combined method with subset
generation and Path Relinking. The methods used are not only di�erent in their runtime and
memory consumption. Moreover, they di�er in their a�ectivity to generate new solutions for the
Scatter Search algorithm. Therefore, before analysing the runtime and memory consumption, it
is necessary to consider the number of new solutions generated from a given population. For the
analysis, three di�erent instances were used which generated a population of ten solutions. After
the creation, the three solution generation algorithms were used for generating new solutions.
However, for combination of solutions the exhausting pairwise method was used and for the
improvement method the local search, the best improvement method. Table 3 shows the results
of the test.

Method Instance Name New Solutions Generated
Subset generation chr12a.dat 290
Path Relinking chr12a.dat 449
Combined chr12a.dat 645

Subset generation chr25a.dat 992
Path Relinking chr25a.dat 1606
Combined chr25a.dat 2468

Subset generation tai256c.dat 4091
Path Relinking tai256c.dat 22306
Combined tai256c.dat 26384

Table 3: Number of new solutions generated.

The results in table 3 indicate that the subset generation method is not the most e�cient way
to generate new solutions. However, the Path Relinking combined with the subset generation
method creates the highest number of new distinct solutions. Regarding the runtime of the
algorithms, the more complex implementation of Path Relinking results in a higher computation
time than the subset generation method. However, the parallel implementation reduces the
computation time signi�cantly. Plot number 14 gives the results.
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Figure 14: Runtime in microseconds for the solution generation methods.1

Figure 15: Memory consumption in kilobytes for the solution generation methods.1

1Small transformation of the lines to prevent overlapping in the �gure
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On the other hand, the memory consumption does not di�er between the implemented algo-
rithms. Figure 15 displays an increasing memory consumption overtime. However, this is due
to the hash table which stores the already found solutions. In conclusion to the results of the
benchmarks, a preselection of the algorithms was created. The investigation of the Scatter
Search implementation will focus on this selection. Table 4 lists the selected algorithms.

Generation Method ParallelRandomGeneratedPopulation

Combination Methods DeletionPartsOfTheFirstSolution-
AndFillWithPartsOfTheOtherSolutions

ExhaustingPairwiseCombination

Diversi�cation Method HashCodeThreePartDiversi�cation

Improvement Method ParallelImprovedLocalSearchBestImprovement

ParallelImprovedLocalSearchFirstImprovement

Solution Generation Method ParallelPathRelinkingSubSetGenerationCombined

Table 4: Preselection of the used algorithms.
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5 Analysis

This chapter will describe the test and analysis procedure for the implementation of Scatter
Search. Furthermore, it will also describe the test settings, display and explain the results of
the pre-test.
By utilizing the algorithms that have been pre-selected in chapter 4.5, four distinct settings for
the tests can be de�ned:

� Shared algorithms:

ParallelRandomGeneratedPopulation

HashCodeThreePartDiversi�cation

ParallelPathRelinkingSubSetGenerationCombined

� Test Setting 1:

DeletionPartsOfTheFirstSolutionAndFillWithPartsOfTheOtherSolution

ParallelImprovedLocalSearchBestImprovement

� Test Setting 2:

ExhaustingPairwiseCombination

ParallelImprovedLocalSearchBestImprovement

� Test Setting 3:

DeletionPartsOfTheFirstSolutionAndFillWithPartsOfTheOtherSolution

ParallelImprovedLocalSearchFirstImprovement

� Test Setting 4:

ExhaustingPairwiseCombination

ParallelImprovedLocalSearchFirstImprovement

Those test settings were applied to the following instances.

� chr12a.dat

� chr15b.dat

� chr25a.dat

� esc16b.dat

� esc32c.dat

� esc128.dat

� nug24.dat

� nug30.dat

� sko64.dat

� tai256c.dat
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Those instances were selected due to their di�erent type and size. The testing of Scatter Search
can be time-consuming. For example, the runtime for one pre-test is 400 minutes. The runtime
for one test setting is 600 seconds, for four test settings and 10 di�erent instances yields a total
of 400 minutes for the entire test. For the �nal test, the number of repetitions will be increased
to �ve, which will further increase the runtime. Therefore, the pre-test settings were created to
investigate di�erent behaviours when applying Scatter Search to di�erent instances. In addition
to the combination of algorithms for the Scatter Search framework, two additional parameters
were also selected. The number of repetitions, which indicates how often a test should repeat
and the runtime in seconds. The settings for both the preliminary and �nal tests are presented
in Table 5.

Pre Test Settings runtime[s]: 600
no of repetitions: 1
reference set size: 20
populations size: 100

algorithms used: all 4 settings
Final Test Settings runtime[s]: 600

no of repetitions: 5
reference set size: 20
populations size: 100

algorithms used: best 2 settings

Table 5: Test Settings.

At the outset, the reference set was set to a size of 20 and the population to a size of 100.
According to Laguna, is a size of the population, �ve times the size of the reference set, used
in most Scatter Search applications [9, p. 25].

5.1 Pretests

The �rst pre-test was performed with all four combinations of algorithms and applied to every
instance. This �rst test demonstrates how Scatter Search performs with instances of di�erent
size and structure. Table 6 displays the outcome of the �rst pre-test. The column Instance Name
represents the name of the instance tested, N the size, and Di�erence the di�erence between the
found optimum and the lower bound. The di�erence is calculated with the following formula:

Difference[%] = ((foundOptimum/knownOptimum)− 1) ∗ 100 (7)

During the �nal tests with �ve repetitions, the geometric mean was calculated.

Difference[%] = (

(︄
n∏︂

i=1

xi

)︄ 1
n

− 1) ∗ 100 = ( n
√
x1x2 · · ·xn − 1) ∗ 100 (8)

Where xn is the optimum determined from one repetition. The last column, Test Setting
represents the di�erent test settings as indicated at the beginning of chapter 5.
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Instance Name N Di�erence [%] Test Setting
chr12a.dat 12 11.22 1
chr12a.dat 12 6.7 2
chr12a.dat 12 11.22 3
chr12a.dat 12 6.7 4
chr15b.dat 15 11.86 1
chr15b.dat 15 17.07 2
chr15b.dat 15 45.86 3
chr15b.dat 15 24.76 4
chr25a.dat 25 76.13 1
chr25a.dat 25 72.08 2
chr25a.dat 25 97.47 3
chr25a.dat 25 101.63 4
esc16b.dat 16 0.0 1
esc16b.dat 16 0.0 2
esc16b.dat 16 0.0 3
esc16b.dat 16 0.0 4
esc32c.dat 32 0.0 1
esc32c.dat 32 0.0 2
esc32c.dat 32 4.05 3
esc32c.dat 32 5.61 4
esc128.dat 128 137.5 1
esc128.dat 128 125.0 2
esc128.dat 128 118.75 3
esc128.dat 128 171.88 4
nug24.dat 24 6.31 1
nug24.dat 24 4.99 2
nug24.dat 24 9.52 3
nug24.dat 24 7.8 4
nug30.dat 30 6.11 1
nug30.dat 30 6.73 2
nug30.dat 30 7.77 3
nug30.dat 30 8.65 4
sko64.dat 64 15.85 1
sko64.dat 64 13.37 2
sko64.dat 64 17.26 3
sko64.dat 64 14.73 4
tai256c.dat 256 8.47 1
tai256c.dat 256 5.33 2
tai256c.dat 256 6.97 3
tai256c.dat 256 3.4 4

Table 6: Result of the �rst pre-test.

From Table 6 it can be seen that the majority of instances exhibit a variance of 0 - 15%
between the found and known optimum. Nonetheless, there are two instances which perform
worse, namely chr25a.dat and esc128.dat, and which necessitate further investigation.
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5.2 Investigation of speci�c Solutions

The instances chr25a.dat and esc128.dat needed more investigation because of the poorer
performance of Scatter Search. As often in the QAP it could be due to the early development
of a local minimum. Therefore, the reference set size was increased to improve the possibility
to leave the local minimum. This investigation was done with 10-times repetition of the tests
and increasing the reference set by 10 in every repetition. However, with an increased reference
set, also the population size was increased to keep the same ratio of �ve between the reference
set and the population. The results of this test are plotted in Figures 16 and 17.

Figure 16: Increased Reference Set Size for chr25a.dat

Both results indicate, that an increased reference set size would reduce the di�erence between
the found and known optimum. Moreover, the correlation between reference set size and de-
creased di�erence is independent from the algorithm combination which was used. Nonetheless,
to ensure that the correlated parameter was not the population, a rerun of the test was con-
ducted solely with an increased population and not the reference set size. Figures 18 and 19
plot the results and display that the solution quality does not correlate with the population
size if increased independently to the size of the reference set. The missing correlation can be
explained by the di�erent roles the reference set and the population in Scatter Search. Where
the population is solely utilized for the generation of novel solutions that cater for diversity,
the reference set is also utilized to generate novel solutions by utilizing the existing solutions.
Moreover, a bigger reference set increases the chance that there are more diverse solutions in
the set.
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Figure 17: Increased Reference Set Size for esc128.dat

Figure 18: Increased Population Size for chr25a.dat
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Figure 19: Increased Population Set Size for esc128.dat

The results with the adjustment of the reference set led to an implementation of a dynamic
adjustment of the reference set size in Scatter Search. This dynamic adjustment of the reference
set size takes place, if the solution generation methods, Subset Generation and Path relinking
cannot �nd additional solutions. If additional solutions are not found within ten iterations, the
reference set size is increased by ten together with the population size. However, two tests were
carried out, one with an unlimited reference set and one with a limit of 200 solutions in the
reference set. This measure is intended to avoid the use of additional memory and time. Table
7 displays the results.
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Instance Name N No Dyn. [%] Dyn. [%] Dyn. with Limit[%] Test Setting
chr12a.dat 12 11.22 0.0 0.0 1
chr12a.dat 12 6.7 3.81 11.22 2
chr12a.dat 12 11.22 6.7 6.7 3
chr12a.dat 12 6.7 6.7 11.22 4
chr15b.dat 15 11.86 21.05 11.86 1
chr15b.dat 15 17.07 13.34 46.98 2
chr15b.dat 15 45.86 42.3 32.44 3
chr15b.dat 15 24.76 27.56 18.05 4
chr25a.dat 25 76.13 87.2 55.69 1
chr25a.dat 25 72.08 51.53 59.69 2
chr25a.dat 25 97.47 55.22 47.1 3
chr25a.dat 25 101.63 70.02 73.45 4
esc16b.dat 16 0.0 0.0 0.0 1
esc16b.dat 16 0.0 0.0 0.0 2
esc16b.dat 16 0.0 0.0 0.0 3
esc16b.dat 16 0.0 0.0 0.0 4
esc32c.dat 32 0.0 0.62 2.8 1
esc32c.dat 32 0.0 1.25 0.0 2
esc32c.dat 32 4.05 5.92 6.54 3
esc32c.dat 32 5.61 1.87 1.25 4
esc128.dat 128 137.5 109.38 109.38 1
esc128.dat 128 125.0 131.25 100.0 2
esc128.dat 128 118.75 150.0 121.88 3
esc128.dat 128 171.88 125.0 140.62 4
nug24.dat 24 6.31 4.42 5.39 1
nug24.dat 24 4.99 5.45 2.75 2
nug24.dat 24 9.52 7.22 7.17 3
nug24.dat 24 7.8 6.48 4.82 4
nug30.dat 30 6.11 5.13 8.23 1
nug30.dat 30 6.73 7.9 5.52 2
nug30.dat 30 7.77 8.46 11.4 3
nug30.dat 30 8.65 8.43 10.16 4
sko64.dat 64 15.85 12.59 15.59 1
sko64.dat 64 13.37 14.75 15.1 2
sko64.dat 64 17.26 17.65 14.79 3
sko64.dat 64 14.73 18.22 16.53 4
tai256c.dat 256 8.47 7.25 8.2 1
tai256c.dat 256 5.33 3.19 3.05 2
tai256c.dat 256 6.97 9.11 7.3 3
tai256c.dat 256 3.4 3.69 3.2 4

Table 7: Result of the dynamic reference set adjustment.

The dynamic adjustment of the reference size does slightly improve the results of the Scatter
Search algorithm. The geometric mean of the results for all test instances is displayed in table
8.
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Method Geometric Mean [%]
No dynamic adjustment 23.31
Dynamic adjustment 20.88
Dynamic adjustment with limit 20.22

Table 8: Geometric mean of the dynamic reference set adjustment.

The di�erences between the results are small. However, because of the lower mean the dynamic
reference set adjustment with limit was chosen.

5.3 Selection and Optimization

For the �nal tests, the focus was on the two best test settings. Therefore, a comparison of the
results of the di�erent instances was conducted. Figure 20 plots the results of the comparison.

Figure 20: Comparison of di�erent test settings.

The results in �gure 20 indicates that Test Setting 1 and Test Setting 2 perform slightly better
than the other settings. Therefore, the focus will be on the those con�gurations for further
tests. The settings are displayed in table 9. Figure 20 also shows, that there is not a connection
between the instance size and the di�culty of solving it. For example, chr25a.dat, esc32c.dat,
nug24.dat and nug30.dat have a similar size. However, the result after ten minutes computation
time di�ers signi�cantly between those instances.
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Final Test Settings runtime[s]: 600
nr of repetitions: 5
reference set size: 20
populations size: 100

algorithms used: Test Setting 1, 2

Table 9: Final Test Settings.

The Test Setting 1 and Test Setting 2 use the ParallelImprovedLocalSearchBestImprovement
as improvement algorithm, DeletionPartsOfTheFirstSolutionAndFillWithPartsOfTheOtherSo-
lutions and ExhaustingPairwiseCombination as the combination method. The results for the
�nal tests without tuning are displayed in �gure 21.

Figure 21: Final results without any adjustment to parameters.

Optimization with the parameters

Both combination methods have additional parameters to enable �ne tuning of the algo-
rithm. DeletionPartsOfTheFirstSolutionAndFillWithPartsOfTheOtherSolutions has the pa-
rameters percentageOfSolutionToDelete, con�gures the percentage of the solution to delete and
deleteWorstPart which switches between the deletion of the worst part or a random part. Ex-
haustingPairwiseCombination has the parameter stepSizeForPairs. This parameter a�ects the
number of pairs for the combination. In addition to the parameters in the test settings, the
Scatter Search algorithm itself has the possibility to adjust the parameter, percentageOfSolu-
tionToRemove, which is the percentage of a solution which should be deleted. Therefore, there
are four di�erent parameters to �ne tune:

52



� percentageOfSolutionToDelete

� deleteWorstPart

� stepSizeForPairs

� percentageOfSolutionToRemove

The parameter stepSizeForPairs will not be investigated further, because increasing the num-
ber will only minimize the number of solutions and all the previous tests have been made with
the value of one. This value provides the highest output of possible combinations. Therefore,
an increase will not be done. Moreover, for further optimization the focus was set on the more
problematic solutions chr15b.dat, chr25a.dat, esc128.dat and tai256c.dat as control instance.
For the optimization, �rst a reduction of the values for the parameters percentageOfSolution-
ToDelete and percentageOfSolutionToRemove was carried out. In a second run these values
were increased.

Parameter Default Decreased Value Increased Value
percentageOfSolutionToDelete 0.5 0.2 0.8
percentageOfSolutionToRemove 0.5 0.2 0.8

Table 10: Values for the optimization.

Figure 22: Results adjusted parameters.

Figure 22 displays the mean of the results. Moreover, the �gure indicates a slight improvement
with the increased values for the parameters. Therefore, every further test was carried out with
these optimized parameters.
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6 Results and conclusion

Chapter 6 initially enumerates the parameter settings and the selection of algorithms applied
with the Scatter Search framework. Furthermore, the outcomes of the �nal assessments are
presented.

6.1 General Results

The �nal results were achieved using test settings 1 and 2. In addition, a dynamic reference
set adjustment with a limit was implemented. Moreover, the two parameters, percentageOf-
SolutionToDelete and percentageOfSolutionToRemove, were set to the value of 80%. The �nal
settings are displayed in Table 11.

Shared Population Generation ParallelRandomGeneratedPopulation
Diversi�cation HashCodeThreePartDiversi�cation
Solution Generation ParallelPathRelinkingSubSetGeneration-

Combined
Test Setting 1 Solution Combination DeletionPartsOfTheFirstSolutionAnd-

FillWithPartsOfTheOtherSolution
Solution Improvement ParallelImprovedLocalSearchBest-

Improvement
Test Setting 2 Solution Combination ExhaustingPairwiseCombination

Solution Improvement ParallelImprovedLocalSearchBest-
Improvement

Parameter Values Reference Set Size 20
Population Size 100
Dynamic Reference Set True, Limit: 200
percentageOfSolutionToDelete 80%
percentageOfSolutionToRemove 80%
Runtime in seconds: 600

Table 11: Final parameter values and algorithms.

Table 12 and Figure 23 display the results of instances with known solutions. The results
indicate that the implementation with test setting 2, therefore with the ExhaustingPairwiseC-
ombination and ParallelImprovedLocalSearchBestImprovement, performs slightly better than
the implementation with the other algorithms.

The last test was done with instances where the optimal objective value is not known. For
those instances, the lower bound of the solution for the di�erence calculation was taken. Fur-
thermore, the gap between the lower bound and the current best objective value found was
added. In addition, the heuristic which found the lower bound was also added. Table 13 and
�gure 24 illustrate the result. Both test settings perform very similarly. Furthermore, at a
runtime of 600 seconds, no implementation was able to get lower the currently found gap.
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Instance Name Test Setting Geometric Mean
chr12a.dat 1 6.81
chr12a.dat 2 5.53
chr15b.dat 1 32.21
chr15b.dat 2 13.97
chr25a.dat 1 52.46
chr25a.dat 2 47.11
esc128.dat 1 114.46
esc128.dat 2 93.02
esc16b.dat 1 0.0
esc16b.dat 2 0.0
esc32c.dat 1 1.36
esc32c.dat 2 0.74
nug24.dat 1 4.09
nug24.dat 2 4.41
nug30.dat 1 5.97
nug30.dat 2 5.93
sko64.dat 1 12.92
sko64.dat 2 14.87
tai256c.dat 1 7.98
tai256c.dat 2 2.82

Table 12: Final results of instances with known objective value.

Figure 23: Final results of instances with known objective value.
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Instance Name Test Setting Geometric Mean [%] Gap [%] Heuristic
sko100c.dat 1 14.2 5.73 GEN
sko100c.dat 2 14.52 5.73 GEN
sko42.dat 1 13.22 5.56 Ro-TS
sko42.dat 2 13.09 5.56 Ro-TS
sko64.dat 1 12.67 5.70 Ro-TS
sko64.dat 2 13.97 5.70 Ro-TS
sko90.dat 1 14.77 6.10 Ro-TS
sko90.dat 2 14.08 6.10 Ro-TS
tai100a.dat 1 43.51 25.10 Re-TS
tai100a.dat 2 42.96 25.10 Re-TS
tai30a.dat 1 24.71 15.90 Ro-TS
tai30a.dat 2 26.15 15.90 Ro-TS
tai50a.dat 1 37.22 22.00 GEN
tai50a.dat 2 36.95 22.00 GEN
tho150.dat 1 18.73 6.30 SIM-3
tho150.dat 2 18.51 6.30 SIM-3
tho40.dat 1 22.48 10.94 SIM-2
tho40.dat 2 22.69 10.94 SIM-2
wil100.dat 1 7.63 3.35 GEN
wil100.dat 2 7.74 3.35 GEN

Table 13: Final results of instances with unknown objective value. (GEN=genetic hybrids, Ro-
TS=robust tabu search, Re-TS=reactive tabu search, SIM-3, SIM-2=simulated annealing)[1]

Figure 24: Final results of instances with unknown objective value.
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6.2 Conclusion

The Scatter Search framework provides an approach to get good results for medium and large
instances in a reasonable time limit. Furthermore, the framework allows to combine di�erent al-
gorithms and parameters to tune the meta heuristic. The subset generation and path relinking
methods generate a large number of possible permutations for an instance, which allows a good
solution to be found. However, there is a high risk of getting stuck in local minima with those
permutations because they all are derived from the permutations in the current reference set.
Consequently, a highly diverse reference set is essential for the Scatter Search framework. Tests
with an increase in the reference set size, and hence an increase in the diversity of the reference
set, show an improvement of the objective value. This led to the implementation of a dynamic
reference set adjustment. With the �rst adjustment to the algorithm done, the algorithms Dele-
tionPartsOfTheFirstSolutionAndFillWithPartsOfOtherSolutions, ExhaustingPairwiseCombina-
tion and ParallelImprovedLocalSearchBestImprovment, which are used in the Scatter Search
framework, tend to perform slightly better than the other implemented algorithms. Moreover,
by means of an increase in the removed solutions in the HashCodeThreePartDiversi�cation and
an increase in the parts to delete of a permutation in the DeletionPartsOfTheFirstSolution-
AndFillWithPartsOfOtherSolutions algorithms further improvements could be observed.

In total, 20 instances derived from QAPLib, varying in size and method of generation, were
subjected to testing. The results are between 5 and 30% within a time frame of 10 minutes.
However, there are solutions which perform signi�cantly worse than that. Therefore, I believe
a speci�ed diversity algorithm for a speci�c class of instance can further improve the results
of the Scatter Search framework. Moreover, it may be possible to achieve a diverse reference
set with modern machine learning algorithms for a speci�c problem. This approach could be
used for further research. The Scatter Search framework provides a platform to connect those
methods easily. This modularity of the framework allows the easy combination of di�erent al-
gorithms. Nevertheless, with the increasing number of complicated algorithms and parameters,
the implementation and the tuning become increasingly complex.
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Appendix

https://github.com/StefNehl/QAP
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