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Abstract  

Steady feeding of subsequent waste treatment machines by 
optimizing the output flow of a primary shredder 

This thesis is concerned with the problem of fluctuating mass and volume streams in waste 

treatment plants. The heterogeneous material from the mixed municipal waste creates a 

fluctuating output despite the continuous feeding of the hopper. The suggested solution is to 

utilize a control loop on the shredder that minimizes output fluctuations and optimizes the use 

of the conveyor belt and following aggregates in the waste treatment plant. The experimental 

control loop showed no significant improvement. However, using time series analysis, a 

prediction model was developed. A different version of equally spaced data points is used for 

this model: the mass series. This prediction model is up to 75 % better than the defined 

benchmark of using the current value to predict the next values. The data was taken from the 

large-scale industrial experiments performed with mixed municipal waste as a part of the 

ReWaste F Project. 

  



 

 

Kurzfassung  

Gleichmäßige Beschickung nachgeschalteter Aggregate durch die 
Vergleichmäßigung des Durchsatzes eines Vorzerkleinerers 

 

In dieser Arbeit werden die Maschinendaten eines Zerkleinerers analysiert um den 

Outputstrom regeln zu können. Durch die gegebene stark heterogene 

Materialzusammensetzung der Gewerbeabfälle kommt es trotz kontinuierlicher Beschickung 

des Zerkleinerers zu großen Schwankungen im Outputstrom. Die Herausforderung des 

schwankenden Volumen- und Massestromes in Abfallaufbereitungsanlagen soll durch eine 

geeignete Regelung geglättet werden. Die erste Regelung konnte keine signifikante 

Verbesserung erzielen. Daher wird in dieser Arbeit der Zerkleinerer charakterisiert um weitere 

Regelungen zu testen sowie ein Vorhersagemodell für das Verhalten des Volumenstromes 

entwickelt auf Basis der Zeitreihenanalyse. Hierfür wird eine alternative Art der gleichmäßig 

verteilten Datenpunkte benutzt, die Massenreihe. Es konnte eine bis zu 75% bessere 

Vorhersage der nächsten Datenpunkte gegenüber dem Vergleichsmaßstab, einer Vorhersage 

mit nur dem letzten Messwert, erreicht werden. Die Versuchsdaten sind den großtechnischen 

Versuchen des ReWaste F Projektes entnommen. 
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1 Introduction 

Municipal waste treatment has become an essential part of the EU circular economy package 

as it requires the preparation for re-use and recycling of a minimum of 55% by weight until 

2025 and 65% by 2035(EU 2018, p. 21). In 2020, there were 14.5 million metric tons of mixed 

solid municipal and commercial waste in Germany (174 kg/inhabitant) (Umweltbundesamt, 

2023) and in Austria, 2.1 million metric tons of mixed solid waste (236 kg/inhabitant), about 

32% of the total municipal waste. The other 68% are made up of separately collected 

secondary raw materials (e.g., glass, paper, metal), organic waste, and electrical and 

hazardous waste (BAWP, 2023). To achieve these goals in Austria, the recycling of solid 

municipal waste must be increased from the current 62.3 % within the coming years (BAWP, 

2023). Most of the increase will need to come from improving the recycling of the mixed solid 

municipal waste, as the other waste fractions are either only a small portion of the whole 

(electrical and hazardous waste) or already have 83% of the collected materials going towards 

recycling since recycling of separately collected packaging has been enforced since 1999 

(Weißenbach et al., 2020). Therefore, more development for the recycling of municipal solid 

waste is required.  

In waste management and processing, the first step of most treatment plants is to comminute 

the large mixed solid waste into a grain fraction that is easier to process and transport with 

conveyor belts. Also, for producing solid recovered fuels (SRF), the first step is comminution, 

and depending on the desired quality of the product, several more steps can follow 

(Pomberger, 2008). There are many comminution aggregates, but the most common for mixed 

commercial waste is a shredder. This is an energy-intensive step in the waste treatment 

process; however, the benefits of improved grain size distribution and, most importantly, the 

liberation of the individual materials for further processing are more significant. The steadiness 

at which this first step operates influences every following step's performance (Curtis et al., 

2021). Therefore, optimizing the first step has compounding benefits for the waste treatment 

plant. 

1.1 Problem Presentation 

As municipal waste is a very heterogeneous material, it is difficult to predict what sort of 

comminution will occur within the shredder at any given moment, as both ductile and brittle 

materials will enter the shredder and engage with the cutting tool. This interaction of the cutting 

tool with the material influences the comminution performance and the shredder shaft rotation 

speed. As a result, there are significant fluctuations in the output stream that can cause issues 

with the following aggregates in the process chain, such as sieving and sorting (Curtis et al., 

2021). As the heterogeneous material creates a challenge for the shredder to perform at a 

constant output level, the output fluctuates significantly. The high fluctuation in the shredder 

output creates inefficiencies because of an over and under-loading of the subsequent 

aggregates rather than a constant optimal material volume to be processed by the machine. 

This issue created the desire to find a way to regulate the output stream of the shredder to 

minimize the fluctuations.  
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Among the many factors that will influence the output of the shredder are the input material, 

the shaft rotation speed, the radial cutting gap width, the shape of the blades, and possibly 

more (Khodier et al., 2021). This thesis will focus on correlations between the current and 

previous volume output data points to investigate the hypothesis that a prediction of the next 

data point can be made. This has only been inferred by previous studies. 

1.2 Objective 

The idea of a control loop for the shredder was born out of a previous study from the ReWaste 

F project (Khodier et al., 2021). The hypothesis was that the material from within one load of 

a wheel loader is more similar than the rest of the heap, and this was supported by some 

correlations within the output flow. If it were possible to control the output of the shredder by 

understanding and controlling the shredder itself, no other machines or facilities would be 

required to improve the waste plant processing performance. Therefore, this thesis will show 

the data analysis of several real-scale experiments to discover and quantify the possible 

potential of the idea to change the parameters of the shredder on the fly to control the output. 

 

The first goal is to develop a control loop for the shredder output stream. This requires a better 

description of the output mass and volume streams of the primary shredder and the 

development of a model that can be used to forecast the output a few steps ahead and use 

that model to adjust the parameters of the shredder. Ideally, this model can also be applied to 

other shredder types since the model is based on a material correlation rather than just a 

machine parameter. Determining the potential of an improved model of the output behavior 

from the shredder is the second goal. To use this model, the machine parameters that influence 

the control loop (e.g., shaft rotation speed, volume and mass output, the input material) must 

be well known as the control path's reaction time and calibration curve determine whether any 

forecast of the mass and volume stream can be exploited.  
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2 Foundations 

The statistical and technical basics for understanding the analysis methodology are reviewed 

in this chapter. 

2.1 Comminution Basics: Shredder 

Comminution is an important first step in any mechanical treatment facility as it serves several 

purposes. First, it is necessary for the liberation of material phases to enable further sorting 

processes; secondly, it creates a maximum grain size to which other process steps can be 

adjusted; and lastly, it increases the specific surface area of the material; this is mostly 

important for chemical or biological reactions. The comminution process is complex in most 

cases, and the choice of a comminution machine is dependent on the material properties. As 

this is an energy-intensive step, the proper choice of stressing will significantly improve the 

performance. In waste treatment plants, a wide range of materials will need to be comminuted, 

e.g., from brittle and hard to ductile and soft. There are many companies that produce a wide 

variety of comminution machines for customer specifications. A common machine for solid 

waste comminution is a single shaft shredder, which at its core consists of a single rotor with 

cutting tools attached, an adjustable gap between the cutting tools, and operating at low 

rotational speeds (Kranert, 2017; Schönert, 2002). In Figure 1, an example of what some 

cutting tools could look like is given.  

 

Figure 1: A cutting system with an adjustable main cutting bar (Kranert, 2017) 

 

The type of stressing is a mix of tearing and cutting, as this has proven effective for mixed solid 

waste. Since mixed solid waste is very heterogeneous, the shredder shaft can be overloaded 

during a jam caused by a too-hard particle. In such a case and also at regular intervals to assist 

in unblocking the feed opening, the shaft will counter-rotate a bit, and then the particle may 

unblock the shaft, and comminution can continue. Also, due to the maximum power supplied 

by the motor (electric or diesel), the higher the shaft rotation speed the lower the torque 
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becomes, as illustrated in Figure 2. The lower torque is due to the fact that power (P) is the 

product of torque (M) and shaft rotation speed (n) (Käser, 2021). 

 

 

Figure 2: Motor characteristic curve; Power (P), Torque (M), Shaft rotation speed (n); (Käser, 2021) 

The reverse rotation procedure contributes to a discontinuous output, which leads to further 

mass and volume fluctuations further down the process chain (Coskun et al., 2018; Kranert, 

2017). These fluctuations are further studied by Curtis et al. (2021). The fluctuation in the time 

series of the volume and mass flow can be categorized into three groups: the short-term 

(<15s), the mid-term (15-600s), and the long-term (>600s); all of these have more distinct 

influences (Curtis et al., 2021). For the sake of this thesis, the same terms will be used. The 

short and mid-term fluctuations are based more on the material and shredder loading than the 

long-term fluctuations. 

The shape of the cutting tools, gap width, and shaft rotation speed influence the cutting 

performance and result in a change of energy input, volume and mass output, while particle 

size distribution is unaffected by the gap width and shaft rotation speed (Khodier et al., 2021; 

Khodier and Sarc, 2021). 

2.2 Technical Basics: Control Loops 

A control loop is the fundamental building block of control systems, particularly industrial ones. 

It consists of three components: the process sensor, the controller function, and the final 

control element (FCE). Together, they automatically adjust the value of the controller output in 

order to change a measured process variable (PV) to the value of a desired set-point (SP). In 

Figure 3, the output response of a controller to a disturbance is illustrated; this can be pictured 

like a cruise control on a car; the more headwind or, the higher the incline of the road is, the 

more the fuel needs to be burned to provide the required power to maintain the speed of the 

vehicle. 
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Figure 3: A disturbance (bottom - black, dashed line) shifts the process variable (PV, top – solid line) 

from the set point (SP, top – dashed line), so the Controller Output (bottom – solid line) responds; 

(Smuts, 2012) 

Figure 4 illustrates that the classical control loop can be shown as a flow chart. The measured 

error can be as simple as a difference between the set point and the current value but can also 

be a proportional band, i.e., a range of values within the PV should remain. This can be 

particularly helpful for slow-responding control loops. The proportional band is similar to the 

output response, but the PV is compared to an upper and lower limit rather than just a single 

SP. This method helps to limit the controller output response to reduce the risk of an unstable 

control loop (Smuts, 2012). 

In Figure 4, the SP is the desired output value, which is compared with the current process 

variable by a mathematical function (e.g., a simple difference), generating a measured error. 

The controller is a combination of proportional (P), integral (I), and derivative (D) building 

blocks, which create a P, PI, or PID controller. Using the measured error, the controller creates 

an output as an electrical signal to the shaft motor to change the rotation speed. The rotation 

speed takes effect on the comminution process, and thus the process variable changes. The 

new process variable is measured by a sensor, and so the new value is compared with the set 

point, generating a new measured error, i.e., the difference between the set point and the 

current process variable. This completes the loop, and with good controller tuning, the process 

variable will ideally remain at the set point. 
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Figure 4: Shredder control loop Flowchart (closed loop) 

There are two common control loop classes: open and closed. In an open-loop control system, 

the control action from the controller is independent of the process variable. For example, a 

shredder operating with a set shaft rotation speed only attempts to keep the shaft rotation 

speed independent of the volume stream output. This is how most shredders are operated. 

The Flowchart from Figure 4 shows that the control system becomes an open loop if the sensor 

does not connect to the sum point. In contrast, in a closed-loop control system, the control 

action from the controller depends on the desired and actual process variable. Using the 

shredder analogy, the goal is to change the shaft rotation speed based on the shredder output. 

A closed-loop controller has a feedback loop, ensuring the controller exerts a control action to 

maintain the process variable at the same value as the SP. For this reason, closed-loop 

controllers are also called feedback controllers (Smuts, 2012).  

Output feedback control, also known as controlling a system by its output, involves measuring 

the system's output variables, such as position, speed, rpm, or pressure, to adjust the control 

input and regulate the system’s behavior. While output feedback control is widely used in many 

practical applications and was used during the experiments performed for this thesis, it can 

also present several challenges and limitations. Here are some of the main problems 

associated with controlling a system by its output: 

1. Observability: To implement output feedback control, the system must be observable, 

which means that the system's state can be accurately estimated using only 

measurements of its outputs. However, in some systems, not all of the state variables 

can be measured, and therefore, the observability of the system is limited. This can 

lead to difficulties in designing an effective output feedback controller. 

2. Stability: Output feedback control can be less stable than other control methods that 

use full-state information. This is because the control action is based solely on the 

measured outputs, which may not be able to capture all the dynamics of the system. 

As a result, the controller may respond slower or less accurately to disturbances or 

changes in the system. 
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3. Noise and disturbances: Output measurements may be affected by noise and 

disturbances, which can cause the controller to respond erroneously or unpredictably. 

This can lead to instability or reduced performance of the control system. 

4. Controller design: Designing an effective output feedback controller requires 

knowledge of the system's transfer function, which relates the system's output to its 

input. However, accurately determining the transfer function from output 

measurements alone can be challenging, particularly for complex systems. 

Despite these challenges, output feedback control remains a popular and useful method for 

controlling many different types of systems. With careful design and tuning, output feedback 

controllers can achieve stable and accurate regulation of system behavior, even when full-

state information is unavailable. 

The tuning of a control loop and, thus the degree of success depends on the process 

characterization. Regarding controlling a process variable, the most important factors are the 

dead time and the lag time. The dead time is the time between the change of the controller 

output and the beginning of the PV change, and the lag time is the duration from 0% to 63% 

of the total PV change, i.e., the new stable PV value after an adaptation to the controller output. 

In Figure 5, these two factors are determined by step testing and determining the time at which 

the greatest rate of change in the response curve occurs (Smuts, 2012). The ratio between 

dead and lag time is important for the tuning of the controller as it influences the stability and 

response time of the control loop. 

 

Figure 5: Measuring Dead time and Lag time (Time Constant); (Smuts, 2012) 

There are several approaches for tuning a control loop to minimize the loop settling time and 

optimize the controller output response. Some of these tuning rules have a narrow range of 

applications and others are more universal. The minimum settling time is primarily influenced 

by the dead time, while the stability of the control loop is better with lag time dominant control 
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loops. Figure 6 shows an overview of the effect that dead and lag time have on the tuning 

process. The lag time and dead time influence the control loop differently, so a proper 

determination is necessary for the tuning and optimization of the control loop. To better 

understand the difference between dead and lag time, some extreme examples are useful. 

Pure dead time would define a process that takes a long time to begin changing, but when it 

begins, it reacts quickly, e.g., the mass flow along a conveyor belt. Pure Lag time defines a 

process that begins changing immediately, but the change of the PV is sluggish, e.g., the 

charging of a capacitor. Another way of thinking about it is an example from everyday life. 

When a file is transferred on a computer, there are two extreme cases after the command to 

move the file is given. Assuming that the transfer requires 5s to complete, either the computer 

immediately opens a progress bar that is then continuously filled over the 5s, or there is no 

reaction for 5s and then the progress bar appears and is filled immediately. For the user, the 

first case would be pure lag time, while the second case would be pure dead time. This also 

gives a more intuitive sense of why pure dead time is more difficult to control. If there is no 

feedback on whether the given command has had any effect, it is easy to give too many 

commands and thus overload the system. If the progress bar gives some feedback on how far 

along the system is in responding to a command, it is easier to give further commands that are 

appropriate. This is what Figure 6 shows: which tuning rules can be applied to achieve a 

minimum settling time for the PV while maintaining control loop stability. Also, unless lag time 

dominates the response time, only a PI controller rather than a PID controller can be used. 

This is a result of how the differential component interacts with the PV. For the sake of this 

thesis, it is enough to understand that depending on the ratio of dead and lag time, the control 

loop must be tuned differently and that tuning a control loop is an important step that requires 

a deeper understanding of control loops and their properties. 

 

Figure 6: Pure dead time to lag time on a continuum with the applicable tuning rules (td: dead time, 

τ: lag time (Smuts, 2012) 
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2.3 Basics of Time Series 

Analyzing experimental data over time presents unique challenges in statistical modeling and 

inference. The correlation introduced by sampling adjacent time points can limit the 

applicability of traditional statistical methods that depend on the assumption of independent 

and identically distributed observations. Time series analysis is the systematic approach to 

answering mathematical and statistical questions posed by these time correlations. 

Correlation is a statistical concept that measures the strength and direction of the linear 

relationship between two variables. It provides insights into how changes in one variable are 

associated with changes in another variable, i.e., is there a systematic change between the 

two values, or is the change only random and can be described by a stochastic variable with 

a certain variance (Shumway and Stoffer, 2017). 

There are ARIMA models to describe a time series. ARIMA is a compound acronym for Auto 

Regressive Integrated Moving Average. The Auto-Regressive (AR) part is a series xt that is 

defined by p past values xt-1,…,xt-p, and after each value is multiplied with a corresponding 

coefficient, a stochastic variable (wt) defined as white noise is added to the sum. A formal 

definition can be seen in Equation 1 (Shumway and Stoffer, 2017). 

Equation 1: AR(p) Model 

𝑥𝑡 = 𝑤𝑡 + ∑ φ𝑡 ∗ 𝑥𝑡−𝑝

𝑝

𝑡=1

= 𝑤𝑡 + 𝜑1 ∗ 𝑥𝑡−1 + 𝜑2 ∗ 𝑥𝑡−2 +··· +𝜑𝑝 ∗ 𝑥𝑡−𝑝 

The integrated part can be thought of as the trend of the series, i.e., a drift in a particular 

direction. This could be as simple as a linear function or a higher-order polynomial. Instead of 

using the autoregressive representation where the left-hand side of the equation assumes a 

linear combination of xt, the moving average model, referred to as MA(q), assumes a linear 

combination of the white noise wt to form the observed data. In Equation 2, the MA(q) Model 

is defined formally. The idea is to define the current value as the sum of noise q steps back 

(Shumway and Stoffer, 2017). 

Equation 2: MA(q) Model 

𝑥𝑡 =  𝑤𝑡 + ∑ θ𝑡 ∗ 𝑤𝑡−𝑞

𝑞

𝑡=1

= 𝑤𝑡 + 𝜃1 ∗ 𝑤𝑡−1 + 𝜃2 ∗ 𝑤𝑡−2 +··· +𝜃𝑞 ∗ 𝑤𝑡−𝑞 

Using these ARIMA models as linear combinations, they can describe a wide range of data 

sets. The next section will look at tools to better fit an ARIMA Model to an observed data set. 

The combined model can be seen in Equation 3. 
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Equation 3: Auto Regressive Integrated Moving Avarage (ARIMA) Model of Order p, d, q 

𝑥𝑡 = 𝐴𝑅(𝑝) + 𝐼 + 𝑀𝐴(𝑞) = 𝑤𝑡 + ∑ φ𝑡 ∗ 𝑥𝑡−𝑝

𝑝

𝑡=1

+ 𝐼(𝑡) + 𝑤𝑡 + ∑ θ𝑡 ∗ 𝑤𝑡−𝑞

𝑞

𝑡=1

 

The effect of the integrated part can be reduced by differencing the data set. This can help to 

achieve stationarity, which means that the data set has an average around which it fluctuates, 

i.e., no trend. The differencing order is denoted with d, so an ARIMA model would be described 

by the variables (p,d,q), which give the order of AR, I, and MA parts. Looking at the differenced 

data can help to understand what next steps could be useful. If it appears to be randomly 

distributed, i.e. white noise, then there is likely no more trend in the data.  

Auto-Correlation 

The concept of correlation involves measuring how closely two variables are related. In the 

context of time series, the two variables are usually part of the same data set but separated by 

a time difference expressed as lag k. Therefore, the correlation is between two data points of 

“itself”; hence it is called Auto-Correlation. This is usually expressed as a correlation coefficient 

that ranges from -1 to 1 and the equation is expressed as rk and can be seen in Equation 4. 

A positive correlation coefficient signifies a direct or positive relationship, indicating that as one 

variable increases, the other variable also tends to increase. Conversely, a negative correlation 

coefficient indicates an inverse or negative relationship, where one variable increases while 

the other variable decreases. A correlation coefficient of zero suggests that there is no linear 

relationship between the variables. The denominator describes the variance of the data point 

at lag 0, while the numerator describes the covariance of the value at lag 0 with the value at 

lag k. The covariance is a measure of how strongly two variables will vary together and thus 

the correlation coefficient can be thought of as a measure of the strength of the linear 

relationship between two variables, normalized by the standard deviations of the variables 

(Fahrmeir et al., 2016) 

Equation 4: Correlation Coefficient rk (Chatfield, 1975) 

𝑟𝑘 =

1

𝑁−𝑘
∑ (𝑥𝑡 − 𝑥)(𝑥𝑡+𝑘 − 𝑥)𝑁−𝑘

𝑡=1

1

𝑁
∑ (𝑥𝑡 − 𝑥)2𝑁

𝑡=1

 

Taking this correlation coefficient, applying it to various lags, and gathering the results in a 

single diagram leads to the autocorrelation function (ACF), which is displayed with the partial 

auto-correlation function (PACF) in Figure 7. As mentioned previously, the correlation 

coefficient rk will result in a specific value between -1 and 1 for every value of k, which is the 

lag or distance between the two considered data points, i.e., if only r1 and r2 is 1 and every 

other rk value is 0 then the correlation between with the current value and the next two values 

of a given dataset is linear while every value beyond the next two is stochastic. So, for the 

example given in Figure 7, the correlation approximates a dampened oscillation, i.e., there is 
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a recurring feature in the data that can be called seasonality. Seasonality (S) is a useful tool 

for data sets that have periodic trends (e.g., sin(x)). Data sets where one would expect such a 

seasonality would be any set where a time frame is cycled through, such as yearly, monthly, 

or weekly data sets (e.g., weather data for rainfall or temperatures (summers vs. winters)). The 

ARIMA Model is extended with S to the Seasonal Auto-Regressive Integrated Moving Average 

(SARIMA) and can now accommodate an AR(P) and MA(Q) as a periodic function with a 

defined period or season, i.e., a function that recurs every S lags. Figure 7 shows an ACF 

where such a seasonality can easily be seen as a harmonic oscillation with a period S=12. 

Since after 12 lags, the value of the ACF has the same prefix and is only dampened by some 

factor. SARIMA now can have up to 7 variables (p,d,q, P, D, Q, S), each with their calculated 

coefficients within the model. 

 

Figure 7: Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) for second-order 

autoregressive Model (AR(2)), Autocorrelation coefficient has a periodic fluctuation visible in the ACF, 

while the PACF cut off after two peaks. 

Partial Autocorrelation Function (PACF) is used to measure the correlation between two 

variables, X and Y, while controlling for the effects of one or more other variables, Z, within a 

time series. This is where the concept of partial correlation (ρXY|Z) comes into play. The idea 

behind ρXY|Z is to measure the correlation between X and Y with the linear effect of Z removed 

or partialled out. For example, if the three variables that are considered are the waste 

generated per capita, electric vehicles per capita, and income per capita, it would be expected 

to see a correlation between all three, but the correlation between waste generation and 

electric vehicles would need to be controlled for using the third variable which will influence the 

other two and therefore must be removed to properly reflect the correlation between the first 

two. For time series, this is the same effect; the PACF is similar to the ACF, but it only shows 

the relationship between two observations that are not explained by the shorter time lags 

between them. The PACF can show the relationship between data points that are some time 
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units apart. For example, with lag 3, the PACF considers only the unique correlation between 

those two data points after removing the influence of the correlations at lags 1 and 2. The 

PACF is, therefore, useful to better visualize the Autoregressive contribution to a model. This 

can be applied to the AR model since it trails off in the ACF because xt is correlated with xt-2, 

as defined in Equation 5. xt-1 was created using xt-2 and xt-2 is defined by xt-3 and so on. The 

stochastic variables wt-n start to add up, and thus the correlation begins to become less 

significant as more random variables are introduced into the definition. Therefore, the linear 

causality between lag 0 and lag k needs to be removed, i.e., the values between xt and xt-k. 

Equation 5: AR(1) Model correlation of xt values 

𝑥𝑡−1 = 𝜑2 ∗ 𝑥𝑡−2 + 𝑤𝑡−1; 𝑥𝑡 = 𝜑1 ∗ 𝑥𝑡−1 + 𝑤𝑡 = 𝜑1 ∗ 𝜑2 ∗ 𝑥𝑡−2 + 𝑤𝑡−1 + 𝑤𝑡  

The formal definition for the partial correlation coefficient is given in Equation 6, from which the 

PACF can be created for k lags in the same manner as the ACF.  

Equation 6: PACF Definition, 𝑥̂𝑡+𝑘 = 𝑥̂𝑡 = ∑ 𝑥𝑡+𝑖−1
𝑘
𝑖=2 ; k -number of lags, ϕk – partial correlation 

coefficient; (Shumway and Stoffer, 2017) 

𝑘 = 1: 𝜙1 = corr(𝑥𝑡+1, 𝑥𝑡) = 𝑟𝑘(1); 𝑘 ≥ 2: 𝜙𝑘 = corr(𝑥𝑡+𝑘 − 𝑥𝑡+𝑘 , 𝑥𝑡 − 𝑥𝑡) 

The ACF and PACF can be used to better model data sets because of the distinct behavior 

from the ARMA models described in Table 1. The ARIMA Model is the same as the ARMA 

Model, given that it was sufficiently differenced to achieve stationarity. The ARMA Model is 

analog to ARIMA except for the integrated part. This can be used to estimate the order of the 

best-fit model. 

Table 1: ACF and PACF behavior for ARMA models; (Shumway and Stoffer, 2017) 

 AR(p) MA(q) ARMA(p,q) 

ACF Trails off Cuts off after lag q Trails off 

PACF Cuts off after lag p Trails off Trails off 

 

Table 1 shows the ideal model behavior. However, real data sets have a less clear cut-off, and 

therefore, the ACF and PACF are only used to test for potential cut-offs; if none are obvious, 

then there are other more advanced methods available that can be studied in the appropriate 

literature. The estimation of p and q can be used to create a smaller number of models that 

can be compared with the observed data. This reduction in computing power was particularly 

useful when computational power was low, but this method can still optimize some 

calculations. Since, for this thesis the brute force method is applicable, other methods will not 

be further studied here. 



Section 2 - Foundations 20 

   

 

 

After several different p and q are modeled and using the sum of squared errors (SSE) or 

Akaike´s Information Criterion (AIC), the best fit is chosen. The AIC penalizes the number of 

parameters used for the model, as seen in Equation 7. This is done so that simple models, 

which are more flexible, are given an advantage over significantly more complex models with 

an insignificant better fit. The lower the SSE or AIC value is, the better the model fit is 

(Shumway and Stoffer, 2017). Basically, the parsimony principle is in effect: Take the simplest 

mathematical model with the best fit to describe the correlation between two variables, e.g., 

the mean volume output and the shaft rotation speed. Whenever possible, i.e. it doesn’t 

sacrifice too much accuracy, a linear model is preferred for its simpler calculations over a 

higher-order equation. 

Equation 7: AIC Definition; Standarddeviation: σk = SSE/n, Number of datapoints(n), Number of 

parameters (k) 

𝐴𝐼𝐶 = log(𝜎̂𝑘
2) +

𝑛 + 2𝑘

𝑛
 

Another Method for comparing models is the F-test. If there are a total of n data points available 

to estimate parameters for both models, you can compute the F-statistic using Equation 8, 

where RSSi represents the residual sum of squares for model i. In cases where the regression 

model has been computed with weighted data, you can replace RSSi with χ2, representing the 

weighted sum of squared residuals. 

Under the null hypothesis, which posits that Model 2 does not offer a significantly improved fit 

compared to Model 1, the F-statistic follows an F-distribution with (p2 - p1, n - p2) degrees of 

freedom. The null hypothesis is rejected if the calculated F-statistic derived from the data 

surpasses the critical value associated with the F-distribution, typically chosen to control the 

desired false-rejection probability, such as 0.05. 

It is important to note that since F is a monotone function of the likelihood ratio statistic, the F-

test effectively operates as a likelihood ratio test in this context. 

Equation 8: F-Statistic: RSSi (Residual sum of squares model i), pi (degrees of freedom i), n (Total 

sample size); (Fahrmeir et al., 2016) 

𝐹 =

𝑅𝑆𝑆1−𝑅𝑆𝑆2

𝑝2−𝑝2

𝑅𝑆𝑆2

𝑛−𝑝2

 

Time Series Smoothing 

Analyzing data through time series smoothing is a crucial technique. By minimizing short-term 

fluctuations or noise in the data, the underlying trend or pattern becomes more visible, enabling 

better identification of seasonal patterns, long-term trends, or other structural components of 

the time series. Furthermore, time series smoothing can aid in detecting anomalies or 

irregularities that may be concealed in the raw data. It is critical to choose an appropriate 
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smoothing method based on the characteristics of the data, such as the duration of the time 

series, the level of noise, and the desired level of flexibility in the trend estimation. Common 

smoothing methods include moving averages, exponential smoothing, and linear decay.  

In Figure 8, the time series is smoothed using a moving average of several time frames, 

including an overall average, which is basically the traditional arithmetic mean of the entire 

data set. Ultimately, time series smoothing aims to gain an in-depth understanding of the data 

and extract meaningful insights that can aid in decision-making. Ballini and Yager (2014) 

describe the advantages of the linear decay smoothing method and advocate for its superior 

flexibility over Moving Average and exponential smoothing. Exponential smoothing and linear 

decay use a weighted average, giving more recent values greater importance. This is good for 

the average age, but the expected variance is greater. The best balance is found for weights 

that decay following a linear function rather than an exponential one. The most flexible method 

was chosen for the smoothing in this thesis. However, there may be a better option if further 

studied. 

 

Figure 8: Moving Average time frames used to reveal layers of information (Curtis et al., 2021) 

Quantile-Quantile Plot (QQ- Plot) 

A QQ-Plot is a visual test to help identify departures from a normal distribution. 

A Normal Q-Q (quantile-quantile) plot, also known as a Normal probability plot, is a graphical 

tool used to assess whether a dataset follows a normal distribution. It helps to visually compare 

the distribution of a given data set to a theoretical normal distribution by plotting the quantiles 

of the given data against the quantiles of a normal distribution.  
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• Quantiles: A quantile is a value that divides a dataset into equal parts. For instance, 

the median is a quantile that divides the data into two halves, with half the values below 

it and half above it. Other quantiles include quartiles (dividing the data into four parts) 

and percentiles (dividing the data into 100 parts). 

• Creating the Plot: In a Normal Q-Q plot, the data is sorted in ascending order, and the 

corresponding quantiles are calculated. Next, these quantiles are plotted against the 

quantiles of a normal distribution with the same number of data points. If the data 

closely follows a normal distribution, the points on the plot should fall approximately 

along a straight line. 

Interpreting the Plot: 

• Straight Line: If the points on the plot follow a straight line, it suggests that the data is 

approximately normally distributed. Deviations from the straight line might indicate 

departures from normality. 

• Curvature: If the points curve upwards at the ends of the plot, it suggests heavy tails 

compared to a normal distribution. If the points curve downwards at the ends, it 

suggests light tails compared to a normal distribution. 

• S-Shaped Curve: An S-shaped curve indicates that the data is bimodal or has multiple 

modes, which means it's not well-described by a normal distribution. 

Given a dataset, it can be checked if it follows a normal distribution using a Normal Q-Q plot. 

First, sort the dataset in ascending order and calculate the quantiles. Then, generate the 

corresponding quantiles for a normal distribution using the mean and standard deviation of the 

data. Next, plot the calculated quantiles of the data against the theoretical quantiles of the 

normal distribution. If the points fall along a straight line, the data is approximately normally 

distributed (Chambers et al., 2018). This is modeled in R and is seen in Figure 9. 
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Figure 9: QQ-Plot of Bimodal(left) distribution and an approximately normal distribution with heavy tails 

(right); Line is a reference for normal distribution. 

Normal Q-Q plots are valuable tools for quickly assessing the distribution of your data and 

identifying departures from normality. However, they are not definitive tests for normality and 

should be used in conjunction with other methods, such as statistical tests and histograms, to 

get a comprehensive understanding of your data's distribution.   
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3 Methodology 

Based on the hypothesis that there is a material and time correlation between the output 

volume and mass stream data points, a mathematical model should be developed using 

empirical data and the model needs to be tested using real world data. This hypothesis was a 

result of the gathered data from ReWaste 4.0 experiments by Khodier et al. (2021) and Curtis 

et al. (2021). To this end, the control loop parameters were determined and an experimental 

control loop tested. The resulting data was further studied to determine the correlation as well 

as a potential model with a time series analysis. 

3.1 Data Acquisition  

To acquire the desired data some preparations were made and some planning of the test runs 

was done. This will be the topic of this section. 

3.1.1 Experimental Setup 

The following passage should give a brief summary of the required resources and setup of the 

experiments. It is necessary to have a shredder and material that can be shredded as well as 

a suitable measuring device for the mass and volume streams. The other requirements to run 

this experiment are a place to set up the machines and store the material with the necessary 

legal permissions, a crane or wheel loader (vehicle and operator), all the different extension 

cables for the electronics, and many other miscellaneous tools. The location in St. Margarethen 

(Austria) was provided by Müllex GmbH, one of the project partners. 

The data was collected from several experiments using a Digital Material Flow Monitoring 

System (DMFMS), a mobile measuring unit which was placed directly after the mobile shredder 

the “Terminator 5000 SD” which were both from the company Komptech GmbH (Khodier et 

al., 2021). The DMFMS is a Komptech prototype and consists of a conveyor belt, a mass flow 

measuring unit and a volume flow measuring unit. The mass flow unit consists of an integrated 

weighing belt scale and functions at a speed of 0.5 m/s, has a throughput rate of 5 – 100 t/h 

with a tolerance of +/- 2% within the 25 – 100% operating range. The volume flow 

measurement uses an optical sensor above the belt and with laser triangulation it determines 

the contour of the material on the belt and the belt speed (Curtis et al., 2021). The shredder 

was continuously fed by a crane with a cactus grab to ensure that the volume and mass 

streams would not drop to zero because there was no material available to be shredded. The 

material used was mixed solid commercial waste from Styria, Austria. In the Figure 10 the 

setup of the experiment can be seen. Using this set up all the test runs were conducted. 
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Figure 10: Komptech Terminator and DMFMS in St. Margarethen at the Müllex GmbH facilities 

The mass and volume streams are recorded using the DMFMS, the Terminator also has a 

volume stream sensor which can record data independently and the data is stored as a 

Dewesoft file. These files can be rather large (~4 GB for 1h) since the software is configured 

to record a lot of machine data that is not relevant for this experiment. After selecting the 

relevant Data and exporting it as a CSV-File, the further analysis is done using the statistical 

programming language R. Within Dewesoft the files can be viewed and edited, an example of 

what these time series can look like is in Figure 11. The bottom shows the high rpm fluctuations 

of the shaft, while the top shows the volume output fluctuations over the length of the 

experiment. It is clear that the long term (>600s) time frame needs to be examined further to 

extract any information. 
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Figure 11: Dewesoft File of shredder data with Volume output in m3/h (top) and shaft rotation speed in 

rpm (bottom) 

3.1.2 Test Runs 

Some experiments were conducted to set up the tuning for the control loop of the shredder to 

limit its short-term fluctuations. The test runs were done in the described order and the first two 

tests set up the third and primary experimental goal. The following is a overview of the tuning 

process: 

1. Calibration curve: Long term (>600s) mean volume output at different set shaft rotation 

speeds to create a calibration curve and gain a better understanding of the correlations 

between the mean volume output and the shaft rotation speed. 

2. Step testing: A change of the set shaft rotation speed of 40% and recording the volume 

output, with the goal of gaining a better understanding of the response time (dead and 

lag time) of the shredder output to PV changes. 

3. Application of a control loop to the shredders shaft rotation speed to minimize output 

fluctuations. This control loop is a rudimentary test to see the potential of the material 

correlation hypothesis. 

The first experiment was focused on gathering some data to gain a better understanding of the 

shaft rotation speed and the volume and mass throughput that was indicated by previous 

experiments (Khodier et al., 2021). The test runs for the calibration curve were done at 50%, 

60%, 70%, 80%, 90%, and 100%. Each setting was done twice and lasted for 15 minutes, with 

the fixed shaft rotation speeds selected in random order, and the same commercial waste heap 

was utilized as feed for all runs. The 10% steps from 50% up to 100% were chosen because 

this was the recommended operating range and since a higher average mass and volume 
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output was expected at higher shaft rotation speeds (>60% maximum rpm) from previous 

experiments by Khodier et al. (2021). By starting at 50% the limits of the recommended 

operating range are included and the results from Khodier et al. (2021) can be verified. The 

10% steps were the result of the minimum step distance the shredder shaft rotation speed 

could be set at and the 15 min were chosen to ensure that the data gathered was dominated 

by the shredder operating at a steady state i.e. the initial oscillations have passed. The data 

from these runs were incorporated into the control loop experiments. 

The second test runs were step testing and were not able to be directly applied for the 

experimental control loop. The test runs consisted of the usual set up and the shredder 

changing its set shaft rotation speed every 3 min by 40% i.e. from 50% to 90% and back again. 

The 40% jump was done to maximize the output change of the shredder with the goal of 

identifying the response time of the shredder more easily. This jump was repeated 8 times. 

The third and last of the test runs done at the Müllex facilities in July were the control loop 

experiments. The test runs were 15 min long, set at 70% of the maximum shaft rotation speed 

and to alternate between the control loop activated and deactivated. The alternation was done 

to minimize the chance of any waste material change to disproportionately affect either the 

active or inactive runs. The 15 min were chosen to balance the interest of long run times with 

many repetitions. The control loop was programmed by Komptech GmbH, and was set up to 

keep the current volume output flow within the 10% boundaries from 180 m3/h determined by 

the linear model from the calibration curve test runs. The control loop was also limited to only 

change the PV once every 30s, to reduce the chance of over stimulating the control loop, since 

it was not possible to determine the response time before the experiment. To keep all the data 

sets organized the experimental data was exported into a file with each run as an extra set. 

The results from the experiments in July were saved as VMJ_oR(1-9) and VMJ_mR(1-9) which 

stands for “Versuche Muellex Juli ohne/mit Regelung” (Experiments Muellex July with/without 

control loop). This nomenclature is referred to when addressing specific data sets. Other data 

sets from different experiments from within the ReWaste 4.0 and F projects are also used and 

are individually named. 

The exported CSV-File has datapoints every few thousandths of seconds which is why the 

files can have well over 10000 Datapoints at the beginning. Since these files are just columns 

of numbers the size is significantly smaller and also rather uninformative by themselves. The 

head of an example file can be seen in Figure 12. 

 

Figure 12: Head of a CSV-File containing Volume and Mass Stream Data. 
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3.2 Data Analysis 

Time series analysis is a statistical analysis method that is well supported in the programming 

language R. Therefore the decision was made to develop the tools for the data analysis in R. 

In order to analyze the data the files need to be prepared so that the statistical tools of R can 

be utilized, then the statistical analysis is done. 

3.2.1 File Preparation 

The first few steps of the analysis are simply cleaning up the data and preparing it for further 

calculations. The entire Code will not be shared here so only the essentials will be mentioned 

and commented. However the uncommented code can be seen in the appendix. 

First of all the CSV-Files are loaded and only every 60th value is saved into a data frame as 

this results in a 4s time difference between each datapoint. This time spacing was chosen 

because of how the sensor stored its data. As the measuring unit for both the volume and 

mass streams generated datapoints every 0.06s but a new value was updated far less at just 

under 4s, i.e. the data points form a step function. So a the timeframe of 4s was chosen in 

order to avoid any duplicate datapoints later on in the analysis. In Figure 13 the 4s interval is 

marked and the two graphs are the volume and mass streams. This illustrates how the value 

for mass and volume only updates every 3,9s and therefore all the exported data points in 

between would interfere with the time series analysis in the following calculations, as this would 

distort the results of the analysis. It is better to air on the side of sampling the data a bit to less 

and miss a data point than to get data points double since this would suggest a correlation that 

does not exist while the other error would only slightly hide a correlation that might exist, thus 

making any discovered correlation more robust. 

 

Figure 13: The raw datapoints with constant values for every ~4s 

The goal to use a form of a control loop to limit the short and mid-term fluctuations requires a 

better understanding of the shredder parameters and their influence on the output fluctuations. 

As Curtis et al. (2021) points out there are fluctuations caused because of the loading of the 
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hooper with a wheel loader and others are caused by material inhomogeneity. To this end the 

calibration curve was recorded by running the shredder for a set amount of time at a defined 

shaft rotation speed in a random sequence.  

3.2.2 Mass Series Analysis 

While the results of the regular time series analysis are discussed in section 4.4, the analysis 

of the data prompted a slightly different approach. The Hypothesis that the correlation between 

the data points is actually better described as mass-related rather than time-related is further 

analyzed with the next developed method: Mass series. 

Since the theory behind the correlation of the volume stream is that the material is shredded 

differently and therefore different types of material will produce a different volume and mass 

output. The lower the plastic contribution to the overall stream is the higher the mass output 

becomes and is also more dominated by pulp-based materials (Curtis et al., 2021). This 

material correlation should be reflected in the data series analysis. As the time series is also a 

fluctuating mass stream the two are obviously proportional, i.e. the more time passes the more 

mass passes by. This connection is exploited to transform the time series into a mass series. 

Conceptually a time series is just a list of datapoints that are spaced at equal distances in time. 

Applying this concept the equal distance in time for a time series is what an equal distance in 

mass is for a mass series, i.e. the same amount of mass that passes by per data point. It could 

also be thought of as a conveyer belt of buckets with equal mass within them but differing 

volumes. 

To transform the timeseries data to a mass series data the current mass flow is multiplied with 

the time until the next data point. This mass increment is then added up until a target value is 

met and the whole process repeats till the end of the data set. This process is illustrated in 

Figure 14. The target value is basically the chosen separation between two consecutive data 

points in the mass series. The separation is now a unit of mass rather than time. A few other 

variables (n, i, cm)  are necessary for the code to function, however these are only indexes and 

control variables to keep the associated while-loops running. 
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Figure 14: Flowchart for mass series algorithm 

The transformation of a time series will result in a shorter mass series, for a target value greater 

than the mass flow between two data points of the time series, because it requires several 

data points from the time series for one value of the mass series. This means that a longer 

data set is required than the 15 minutes from the control loop experiments to ensure that the 

resulting mass series has a few hundred data points. The longer the data set the better the 

prediction model can be trained. Therefore the data set used is taken from a ReWaste F 

experiment done under similar conditions at the same place using the same mixed municipal 

waste, but the data set runs for more than an hour and will be referred to as VRW data. 

As the data is recorded discretely at 4s intervals the mass increments are also discrete, i.e. 

the addition of these elements result in steps depending on the current mass flow for the last 

4s. To keep the code simple a minimum target value is chosen since the mass increment steps 

are not equal and have a spread that will be transferred to the separation between the final 

data points of the mass series. In other words, the mass increments created are not equal but 

have a distribution described by a 90/10-quantile ratio. The 97th-Percentile is 50 kg and the 

median is 26 kg which limits the variation of around the target value. This is illustrated by the 

reduction of the 90/10-quantile ratio from 4.8 at the start to 1.4 when the mass separation for 
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a given target value is calculated, i.e. the mass series data point separation becomes more 

homogeneous than the mass increments. 

The actual variation for the target value of 70 kg is shown in Figure 15 and has a variance of 

1.39*10-4 which has a minimum for the data set VRW. The variance is a function of both the 

spread of the data and the number of data points, since with a larger target mass increment 

the number of data points will become less and the absolute spread of the data is relatively 

constant the variance is consistently in the order of 10-4. How significant the variance of the 

distance between individual data points was not further studied for this thesis, however a 

further analysis of the behavior of the time series could be done with a strictly statistical 

interest.  

 

Figure 15: Histogram for value of mass between each data point of mass series 

As Figure 15 shows the histogram and the 97th Quantile is at 0.11 which illustrates that the 

code for a simple transformation of the time series to a mass series can be optimized, but for 

this thesis the deviation is accepted and the actual median of 0.083 t is noted. For the purpose 

of the mass series analysis the actual target value is less significant than the spread which is 

relatively small and can still be used to compare the utility of mass series over time series. 

Using these Mass series the best ARIMA Model is fitted and the AR(p), level of differencing 

(d) and MA(q) terms are chosen for the lowest AIC value. This (p,d,q)ARIMA model can be 

forecasted for the next n steps which for this analysis n was set at 20 and can be seen in 

Figure 16. This translates to 20*target value so e.g. for every 50 kg the forecast is for 1000 kg 

material into the future. 1000 kg is equivalent to 153 s using the 26 kg per 4s data point.  
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Figure 16: ARIMA (p,d,q)(P,D,Q)[S] Model forecast for 50 kg increments with 95% and 80% 

confidence interval 

The results of the models for different target mass increments are shown in Table 5.  
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4 Results and Discussion 

4.1 Calibration Curve for Control Loop 

Experimental runs were conducted to determine the connection between the speed of the shaft 

rotation and the output of volume and mass from the shredder. The goal was calibrate the 

control loop by establishing a clear connection between the shaft rotation speed and the mean 

volume output. Khodier et al. (2021) proposed this idea as an observation from those 

experiments.  

As a protection mechanism the shaft will stop its rotation and reverse for half a turn and then 

start up again if anything blocks the cutting tools and also at regular intervals every few minutes 

to clear the shredder cutting compartment. Also as a result of the power coupling the higher 

the rotation speed the lower the torque becomes. This leads to the effect that when the shaft 

load rises above what the motor can provide at that speed, the shredder will automatically 

reduce the shaft rotation speed in order to increase the torque. Therefore for the higher target 

rotation speeds it was observable that the actual rotation speed would vary more than for lower 

target values. 

In Figure 17 the gathered data for the calibration curve, i.e. the long-term fixed rotation speed 

are plotted as the mean and median volume flow over the entire time at the set rpm. The data 

points indicate a trend of a directly proportional function i.e. the higher the rpm of the shaft the 

higher the volume output, however it is important to remember that there is variance and that 

this data is a 15 min average, which limits its practical application. 
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Figure 17: Volume output data for varying shaft rotation speeds (described as share of maximum rpm) 

A similar yet less clear trend can be seen when plotting the mass flow data from the calibration 

curve experiments for the respective shaft rotation speeds in Figure 18. For the mass flow the 

trend seems to be less linear than with the volume flow, however both trends will be further 

described in Figure 19. 
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Figure 18: Mass output data for varying shaft rotation speeds (described as share of maximum rpm) 

Using this experimental data a linear model can be calibrated for the datapoints and a 

confidence interval calculated. This is done using R and in Figure 19 the median data and the 

mean data is used to calculate the linear model. This shows that despite the large confidence 

interval, meaning the data distribution is wide or in this case there are not sufficient data points 

to lower the width of the interval without lowering the degree of confidence. However, there is 

a clear trend indicating a proportional increase of volume output with an increase in shaft 

rotation speed. A more precise function, i.e. lower the width of the interval, would need more 

data points to generate a higher degree of statistical confidence. 
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Figure 19: Comparison of Linear model for output behavior with confidence interval based on 

median(left) and mean(right) output, Shaft rotation described as share of maximum rpm 

The values of the modelling for the median are listed below and are calculated with R:  

1. Quadradic model for median: 𝑦 = −342.1 ∗ 𝑥2 + 739.5 ∗ 𝑥 − 159.5 

2. Linear model for median 𝑦 =  224.93 ∗ 𝑥 +  23.23:  

The comparison of these two models is done by looking at how good of a fit each model is for 

the data and then testing if all the terms of the model are necessary. This is done in R with the 

drop() function. 

The results of the modelling for the mean are also calculated: 

1. Quadradic model for Mean: 𝑦 = −262 ∗ 𝑥2 + 600 ∗ 𝑥 − 101.5 

2. Linear model for Mean: 𝑦 =  205.88 ∗ 𝑥 +  38.41 

The purpose of the drop1() function in R is to aid in variable selection and model comparison 

by examining the impact of dropping individual terms on the overall model fit. By comparing 

the AIC,  the F-values and p-values, you can assess the importance and significance of each 

term in the model. Since the p-Values for the F-Test of the linear model for dropping the x² 

term are above any standard significance value (α = 0.05) the null hypothesis is accepted that 

the term is insignificant, in addition the AIC is lower for the model with only x. Therefore the 

linear model with just the x term is selected. The values for the F-Test and AIC can be seen in 

Table 2. 
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Table 2: Results of F-Test for models of Mean Volume Output;  

Model: a*(Shaft rotation)2 + b*Shaft rotation + c = Mean Volume Output  

 Df Sum of Sq RSS AIC F value Pr(>F) (p-Value) 

<none> NA NA 4726.505 72.69351 NA NA 

Shaft roation 1 1054.6911 5781.196 72.90918 1.785152 0.2182738 

(Shaft roation)2 1 458.9477 5185.452 71.71289 0.776807 0.4038212 

Shaft rotation  

(Linear Model) 
1 14720 19905.455 84.50939 25.5484 0.0006861009 

 

Using the linear model calculated for the mean volume output, the range for the control loop 

was chosen to be centered at 0.7 since then a 20% increase or decrease in Shaft Rotation 

speed leads to an approximate 20% proportional change in mean volume output. By centering 

the target volume output at the approximate 0.7 value for the shaft rotation speed it was 

ensured that the shredder would be able to both increase and decrease the shaft rotation 

speed without encountering the boundaries of the shredders chosen operating range. Since 

the 95% confidence intervals allow for many possible other linear models of which for some 

the change of 20% for the shaft rotation speed can lead to as much as 35% output change or 

as little as 10% output change compared to the 180 m3/h at the chosen center of 0.7 for the 

shaft rotation speed. The output value of 180 m3/h was chosen since it is the value the linear 

model for mean volume output calculates for the chosen set point. Accepting a directly 

proportional linear model for the calibration, this means the more dominant the shaft rotation 

speed change is the more likely the output will actually change in any significant way. With this 

calibration model in place, an important part of the tuning process was completed and the 

control loop was set up. 

4.2 Step Testing for Control Loop Tuning 

The previously described calibration curve experiments of the response only accounted for the 

overall 15 min response, not the short term reaction behavior. The next experiment attempted 

to determine the dead time (td) and lag time (τ) in the control loop. Determining either of these 

proved to be a particularly difficult challenge, because this involves doing step testing, and 

moreover since the fluctuations of the process variable are greater than the change introduced 

by the control variable. The long term calculated change in mean volume output by the control 

variable is 80 m3/h, as seen in Figure 19, and the fluctuations can regularly exceed 100 m3/h, 

as seen in Figure 21 with the first derivative. These fluctuations make it difficult to determine 

the times at which the shredder output actually responds and how fast. As can be seen in 

Figure 20 despite a large change in shaft rotation speed it is not obvious at what time the 

volume output changes to match it. Taking a rough estimate, the total response time of td and 

τ is 11,6s. The time difference between the control variable changing the target rpm of the 
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shaft and the shredder shaft rpm responding is approximately t1=1s. This time delay is both 

more accurate and shorter than the process variable changing, however it is worth 

remembering that t1 does add time to the total control loop settling time by effectively being 

dead time as far as the volume output is concerned. 

The step testing was done by switching the target shaft rotation between 50% and 90% speed 

every 3 min. This time frame for the settling of the step was chosen to optimize the 

experimental time and generate some more step changes. If the step change takes longer 

than 3 min to settle then the response time is too slow for any effective control loop looking at 

smoothing short term to mid-term fluctuations between 4s and 200s. Therefore a longer settling 

time is irrelevant for the development of the control loop and 3 min is a compromise between 

an infinite settling time and cutting off the settling prematurely.  

 

Figure 20: Results from step-testing between 50% and 90% shaft rotation speed (blue), Volume output 

(orange) is process variable (PV) without clear response time to the step change. 

A more robust analytical tool must be developed to properly determine any response time and 

have some sort of standard to compare results to. The discussion to what possible methods 

could be plausible will be in the section: 5. 

4.3 Control Loop Test 

The prepared CSV list can be stored and visualized in a diagram. Before any fancy 

mathematical tools are applied to the data it is useful to get a first impression of how the time 

series behaves since this is the starting point for any proper analysis. So a better 

understanding is gained, an example of such a raw file is displayed in Figure 21. The short 

term fluctuations (one datapoint every 4s – solid line ) vary significantly while the function with 

linear decay smoothing for the 15 previous values (dashed red line) varies less. The difference 

function in the diagram below simply calculates the difference between two neighboring data 
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points, i.e. the first derivative. As the bottom of Figure 21 shows the differenced data resembles 

white noise with no medium or long term trends. As discussed in section 2.3 this means the 

differenced data can be used for further analysis. 

 

Figure 21: Time series of the first runtime without a control loop: top – data point every 4s (solid green 

line), 60s fluctuations (dashed red line); bottom – first derivative of the 4s time series 

The possibility of a control loop was tested by using the available information from the 

calibration curve and having a simple control loop change the shaft rotation speed if the volume 

output went out of bounds for a specified amount of time, as described in Section 3.1.2. The 

next step is to determine whether a statistically significant improvement in the fluctuations was 

achieved in the test runs with versus without the control loop.  

The 90/10 Percentile ratio has been used before and is chosen in this thesis as a metric of 

how strongly a waste stream fluctuates (Curtis et al., 2021). An average of all the 90/10 

Quantiles was made for both the runs without and with a control loop. These 90/10 Quantiles 

were tested for normal distribution using a Quantile-Quantile Plot, as well as the Shapiro-Wilk 

test that can be seen in Figure 22. If the p-Value is below the significance level, then the null 

hypothesis (H0: Data is normally distributed) must be rejected. Since the Q-Q plot is mostly 

insignificant, considering that there are only 9 values, the indication of a divergence from the 

normal distribution can be neglected and the p-Value accepts the null hypothesis, the data can 

be assumed to be normally distributed. Therefore with only 9 data points the histogram and 

QQ plot are not reliable, so despite no confirmation of normality from these plots, for the sake 

of simplicity and based on the Shapiro-Wilk Test the normal distribution is accepted. Further 

experimental data should be used to better verify future findings.  
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Figure 22: 90/10 Control loop quantiles 

Since the 90/10 Quantiles are assumed to be normally distributed a two sample t-Test can be 

done to determine whether there is a significant difference between the 90/10 Quantiles 

without and with a control loop.  

The result from the control loop tests are displayed as boxplots of the volume data from each 

test run and can be seen in Figure 23. Looking at the width of each boxplot there does not 

seem to be any significant difference between the two settings, with and without the control 

loop active. The medians are comparable and the 75th and 25th percentile are also 

comparatively distributed. 

 

Figure 23: Test runs with(orange) and without(white) control loop 
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In Figure 24 it can be seen that the confidence interval for the difference of the mean volume 

output goes below zero and the confidence interval overlap completely. This means that the 

control loop made no significant difference to the 90/10 Quantile metric. So while the standard 

deviation of the 90/10 Quantiles for the group with the control loop active is smaller (σ = 0.8) 

than without the control loop (σ = 1.4), the actual Quantiles are not significantly better because 

of the control loop. In other words, the control loop made no meaningful improvement. 

 

Figure 24: Mean of 90/10 Quantiles using a confidence interval of the mean for unknown variance; 1-

without control loop; 2 - with control loop (CL); 3 – Difference 

4.4 Time Series Forecast 

The result of the control loop experiments from section 4.3 begged the question of why the 

control loop did not make a meaningful improvement. So, the next analysis will focus on the 

time series analysis and material correlations of the shredder output. 

Going through the basics of time series analysis the first step is to plot the data and see if there 

is any obvious trend, seasonality or other significant anomalies in Figure 25. Using linear decay 

smoothing the dashed line is added to better estimate the medium-term fluctuations with a 60s 

window, i.e. the most recent 15 data points (15*4s=60s) are used to calculate the current 

average. Linear decay smoothing is used to create the dashed line in Figure 25 by calculating 

linearly decaying values for the most recent 15 data points. This is only relevant for the best 

way to calculate the smoothed time series, which can help to visualize the relevant fluctuations 

better.  

Some things to take notice of in Figure 25 are the significant reduction in fluctuations achieved 

by a 60s smoothing. This should come as no surprise, as it indicates that the greatest potential 
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to control the output lies in the short-term fluctuations rather than the long term. Also looking 

at Figure 25 there still remain mid-term fluctuations in the range of 120-400 s that are likely to 

be outside the control loops ability to influence. 

The goal of any control loop would be to reduce the short to medium-term fluctuation as those 

between 10 and 120s, since the smoothed values show the effect of the fluctuations in this 

time frame. The fluctuations in these data sets cannot be attributed to discontinuous feeding 

of the shredder, since a crane operator was tasked to ensure the feeding hopper of the 

shredder was always full. Some issues described by Curtis et al. (2021) such as bridging or 

the material and shape of the objects were not addressed in this thesis. 
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Figure 25: Time Series of volume output data from July experiments at Müllex with no control loop 

(VMJ_oR): solid line – 4s data point intervals; dashed line – 60s mid-term fluctuations with linear decay 

smoothing 

There is no obvious trend i.e. an integrated part for all the data sets. However, for longer 

sections(300s) there can be an overall increase or decrease in the output average, which is 

better seen with the 60 s smoothed values (e.g. in Figure 25 for VMJ_oR 4 for the smoothed 

values from approximately lag 70 to lag 180 there is an output increase from 120 to 220 m3/h) 

and therefore the differenced data i.e. 1st Derivative is also displayed in Figure 26.  
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Figure 26: Differenced volume output data 

The differenced data looks similar to white noise i.e. no recurring patterns for all the data sets 

and there is no trend or seasonality visible in any of them and the ACF and PACF in Figure 27 

also have no slow trailing off but a rather sharp cut off. The Box-Pierce test used for 

determining correlation between data points is applied and as the p-Values for all the data sets 

are well below the significance level of 0.05 the null hypothesis (H0: The datapoints are 

independent) is rejected. 

As a correlation between the data points is given, the next tool to get a more accurate 

understanding of the time series is to use the ACF and PACF as displayed in Figure 27. These 

diagrams help to estimate the order of the best ARIMA model, as described in the chapter: 

2.3. 
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Figure 27: ACF and PACF of differenced data (d=1) with no control loop 

All the 9 data sets have a similar appearance, as seen in the Appendix. They all indicate an 

MA(q≤2) and AR(p≤3) with little to no seasonality or recurring pattern. Therefore a few models 

were tested with the parameters varied around these values and using the AIC result the best 

fit was chosen. The Box-Pierce test should give a p-Value high enough to accept the null 

hypothesis, as the residuals of the model and observed data should be independently 

distributed. Some of the models are displayed in Table 3 where for the lower AIC values the 

p-Value is consistently high enough to not reject the null hypothesis. SARIMA models i.e. 

models that use P,D,Q variables are used to account for any kind of seasonality. 
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Table 3: SARIMA Models compared to observed data from July 2022 “Versuche Müllex Juli ohne 

Regelung (VMJ_oR)” for lowest AIC values 

VMJ p  d  q  P  D  Q  AIC  SSE  p-Value 

oR1 1 1 1 1 1 1 2492.720 907271.0 0.1790 

oR1 1 1 1 0 1 2 2492.739 906884.5 0.1743 

oR1 1 1 1 0 1 1 2493.075 921020.2 0.0627 

oR1 0 1 1 0 1 2 2500.235 980806.1 0.3296 

oR2 0 1 1 0 1 1 2459.198 931960.3 0.9402 

oR3 1 1 1 0 1 1 2493.896 1066366 0.2990 

oR4 1 1 1 0 1 1 2474.001 892150.5 0.0900 

oR5 0 1 1 0 1 1 2367.654 777565.1 0.9116 

oR6 1 1 1 0 1 1 2411.778 1000909 0.3109 

oR7 1 1 1 0 1 1 2386.919 824207.7 0.7346 

oR8 0 1 1 0 1 1 2424.830 855878.3 0.9815 

oR9 0 1 1 0 1 1 3489.705 1676321 0.9810 

 

While this method will generate the possibility to create a forecast, meaning predicting future 

values based on the generated model, the model must be better than the bench mark of 

forecasting, which simply takes the last empirical data point and extrapolates that as a 

stationary process for the next 20 values i.e. the next 80s. 

The time series model for the VRW data from the November experiments calculated the 

forecast in Figure 28. The model and the benchmark (using the last measured value for the 

next 20) is compared with the measured datapoints to check their accuracy. The numerical 

result for the sum of squared erros (SSE) is calculated and a ratio is created to better see how 

much smaller the Forecast is compared to the benchmark: 

• SSE of Benchmark: 366299 

• SSE of Forecast:  247776 

• Forecast/Benchmark: 68 % 

This is done 5 times to reduce the chance that the benchmark was only particularly 

unfortunate. Also another benchmark is compared where the last 5 values are used with a 

weighted average, i.e. linear decay smoothing, to smooth out the most recent value with 4 

other data points. The results are presented in Table 4.  
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Table 4: Time series forecast improvements compared to benchmark models, last value (the most recent 

value) or a linear decaying weighted average of the last 5 values (LD 5); The Index is for identifing the 

individual forecasts 

  Benchmark type 

Index Last value Last 5 values (LD) 

1 77,1 55,7 

2 -2,5 -1,7 

3 -9,1 4,3 

4 32,4 68,0 

5 67,2 48,8 

Mean [%] 33,0 35,0 
 

Comparing the average across all 5 improvement ratios, it becomes clear that the linear 

decay smoothing over 5 steps (LD 5) is actually slightly worse than taking just the last value. 

The takeaway is that for both benchmarks the time series prediction improvement averages 

around 35%.  

 

Figure 28: Forecast model for Time Series Data from Experiments done in November 2022 (File name: 

“VRW - Nov alte Zähne”); Vol-Real – is the actual Volume output from empirical data points, Vol-Model 

– is the predicted volume output from the generated model with a 95% confidence interval (grey), 

Benchmark – is the prediction using just the last real value to forecast the next 20 datapoints 

4.5 Mass Series Forecast 

The developed method of the mass series was applied to another ReWaste F data set which 

had a longer run time than the control loop experiments and provided another real world 

alternative for the application of the forecasting method. The method must function on all data 
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sets that are produced in a similar fashion otherwise it would only produce a model that is 

useful for that particular set up and day which would not be a very useful model. The different 

target values and their calculated results compared to the actual results are shown in Table 5. 

The target value is the mass amount before the counter resets or using the metaphor of the 

bucket conveyor belt, the target value is the size of the bucket. The SSE (Benchmark and 

Forecast) is the numerical value to compare the two forecasting methods while the fourth 

column states whether the SSE of the Forecast is smaller and therefore better. The last column 

shows the ratio of the two SSE values which indicates how much smaller the SSE value is. 

Looking at the ratio it becomes clear that the mass series forecast is significantly (70-80%) 

better than just using the benchmark value available to forecast. 

Table 5: Comparison of forecast and benchmark models using SSE at set target values for the mass 

series 

Target Value 

[kg] 

SSE 

Benchmark 

[-] 

SSE Forecast 

[-] 

Forecast is 

better: 

𝑆𝑆𝐸 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝑆𝑆𝐸 𝐵𝑒𝑛𝑐ℎ
 

[%] 

50 572760 130056 TRUE 22.707 

60 585560 109661 TRUE 18.728 

69 623434 110609 TRUE 17.742 

70 573250 123016 TRUE 21.459 

80 598962 139369 TRUE 23.268 

90 962229 296843 TRUE 30.849 

 

The results of the modelling are graphed in Figure 29 where it shows the last 20 values of the 

VRW November data set compared to the forecasted values of the model with the 95% 

confidence interval. This illustrates how the model behaves. The images for all the other results 

from Table 5 can be seen in the appendix. 
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Figure 29: Forecast model for Mass Series Data from VRW - Nov alte Zähne 

Table 5 means that with the mass series prediction model the output of the shredder can be 

predicted better than the simplest alternative of using the last value to predict the next value, 

which was used as the benchmark comparison. As the comparison between the size of the 

mass series increments (every 50 kg up to every 90 kg) shows is that the SSE difference is 

lower for lower mass increments i.e. the model prediction fits better for smaller mass 

increments. This tracks well with the fact shown in Figure 30, that the ACF and PACF peaks 

become lower for larger mass increments, meaning the correlation becomes less significant 

and therefore the basis for the model becomes weaker. The other mass series increment ACF 

and PACF diagrams are in the Appendix. This is particularly apparent with the target value of 

200 kg where the PACF peaks disappear. 

  

Figure 30: ACF and PACF of Mass Series for small target increment (50kg - left side) and for large target 

increment (200kg - right side); Notice the loss of significant peaks for the 200 kg increments compared 

to the 50 kg increments 
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The advantage of using mass series rather than time increments is not statistically analyzed 

with a significant amount of data sets. However, the mass increments appear to function more 

reliably and with better improvements from the models than using the time series since the 

ACF and PACF show a stronger correlation. This is collaborated by the fact that the mass 

series has an average improvement of 77% over the benchmark compared with an average 

improvement of 35% using the time series. 

As mentioned in section 3.2.2, the transformation from a time series to a mass series results 

in a shorter data set because of the summing of several data points into one. This happens 

both for the mass flow and volume flow. Therefore, the transformation process could be 

improved to ensure an equivalence transformation between the two methods. In addition to 

the static transformation of the data sets, there is the issue of forecasting. The model creates 

a forecast for either the mass or volume flow. Therefore, if both are required to transform the 

data, once a forecast is made, this modeled data only has one of the two flows, and this is also 

only an estimation, so transforming it into the other method would require a proper error 

propagation analysis to estimate its feasibility. In short, a direct comparison between the two 

forecasting methods is not as straightforward. 

The method used in this thesis to compare the forecasts was to take the same data set to do 

a forecast with both methods and use the same benchmark. This shows the effectiveness of 

the models in their own right. 
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5 Summary and Outlook 

A Summary of the results will be discussed now and further research suggested: 

• The relationship between shaft rotation speed and volume output was described for the 

tuning of the control loop with a best-fit model, which indicated a linear dependence 

over a 15 minute output average in Figure 19. The linear model that was calculated to 

describe the correlation between the long-term median volume output (y) and the shaft 

rotation speed (x) is:  𝑦 =  224.93 ∗ 𝑥 +  23.23 

• The step testing resulted in the necessity of a more robust determination of dead and 

lag time, since the fluctuations, even for constant settings, are greater than the average 

volume output change for the set shaft rotation speed. 

• The initial control loop experiment resulted in no significant improvement for the 90/10-

quantiles compared to the experiment with no control loop active. 

• The time series analysis resulted in a mass series model that can generate forecasted 

values that are better than just taking the last available value. The forecasted values 

are up to 75% more accurate in terms of SSE for a 120 s forecast. 

The shaft speed and volume output have a proportional dependence on each other for longer 

time frames. However, this does not translate well to time frames below 5 min. The strong 

fluctuations in the short-term are what the control loop would aim to reduce, which is heavily 

dependent on the ability of the shaft rotation speed to rapidly change the output. This is best 

characterized by the dead time and lag time of the shredder. Since the output varies by a large 

amount in the short-term, it is difficult to define terms at which the step answer is achieved 

and, even more so, at what point the dead time ends and the lag time begins. This is where 

another analysis, using the more accurate forecasting models, could aid this endeavor. 

As the forecast predicts what the next 80s of the output would be without any change to the 

system, this result could be compared to the actual data after the step change. Assuming the 

model prediction is accurate enough, the comparison between the actual data with the change 

in shaft rotation speed and the predicted values of the unchanged system can be analyzed. 

The diagrams would require significant smoothing to achieve any sort of visual distinction 

between dead and lag time, but this would be a significant move towards creating a functional 

control loop that could be tuned and tested in another experiment. However, the available data 

from the experiments for this thesis should be enough to test this method of determining the 

response time of the shredder. 

With an improved forecasting model over the method used at the beginning of the first control 

loop experiment, a different result may be expected for the output fluctuations of an improved 

control loop with a 75% better forecast and better tuning because of a more accurate 

measurement of the dead and lag time parameters. This could be the topic of further research. 
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6.2 Abbreviations 

AIC Akaike´s Information Criterion 

AR(p) Auto-Regressive Model of order p 

DMFMS Digital Material Flow Monitoring System 

e.g. Exempli gratia / for example 

Etc. et cetera 

FCE Final Control Element 

i.e. id est / that is 

M torque 

MA(q) Moving Average Model of order q 

NIR Near-Infrared 

P Power 

PACF Partial Autocorrelation Function 

pi Degrees of freedom i 

PID - Controller Proportional Integral Derivative - Controller 

PV Process Variable 

rk Correlation Coefficient for lag k 

rpm Rotations per minute 

RSSi Residual sum of squares model i 

s seconds 
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SARIMA Seasonal Auto Regressive Integrated Moving Average Model 

SP Set Point 

SSE Sum of squared Errors 

td Dead Time 

wt Stochastic variable 

xt Time Series Data Point at Index t 

 

Average of all Data Points x 

θt Moving Average Coefficients 

τ Lag Time 

ϕk Partial Correlation Coefficient for variables at lag k 

φt Auto-Regressive Coefficients 

 

Standard deviation 
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