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Abstract 

A significant component in the drilling operation is the circulation system. Drilling rigs have a 

crucial dependency on mud pumps, and a failure in the mud pumps will impose the drilling 

operation to stop completely; consequently, the drilling cost will increase due to the associated 

nonproductive time. Therefore, companies try to detect failures before occurring by 

implementing different techniques and strategies for improving pump operation time and 

efficient maintenance management to reduce or eliminate non-productive time, health, and 

environmental safety risks. 

Different tools and techniques that support the real-time monitoring of mud pumps have been 

proposed in the last decade; one of them is Artificial Intelligence (AI), which has shown 

promising results. Therefore, the ultimate goal of this thesis is to investigate the possibility of 

using artificial intelligence techniques to detect specific mud pump failures by utilizing only 

the pump pressure and flow rate as input features. 

This thesis is divided into three main parts. The first part of the thesis presents and discusses 

the general failure detection techniques and maintenance strategies. The second part of this 

work presents the common drilling mud pump failures and the impact of failures on drilling 

operation efficiency and HSE, and what are the state-of-the-art non-intrusive sensors that can 

be used to detect the pump failure signatures. The last part of the thesis elaborates on the steps 

of developing a conceptual approach based on artificial intelligence techniques to detect failures 

in drilling mud pumps. In order to validate and determine the limits of the developed tool, a 

case study was conducted using real historical data.   

 

 

 

 

 

 

 

 



 

Zusammenfassung 

Ein wichtiger Bestandteil des Bohrvorgangs ist das Zirkulationssystem. Bohrinseln sind in 

hohem Maße von Schlammpumpen abhängig, ein Ausfall der Schlammpumpen würde dazu 

führen, dass der Bohrbetrieb vollständig eingestellt werden muss. Daraus folgend steigen die 

Bohrkosten aufgrund der damit verbundenen unproduktiven  Zeit. Deswegen versuchen 

Unternehmen, Ausfälle zu erkennen, bevor sie auftreten, indem sie verschiedene Methoden und 

Strategien zur Verbesserung der Betriebszeit von Pumpen und ein effizientes 

Instandhaltungsmanagement anwenden, um Ausfallzeiten, Gesundheits- und Umweltrisiken zu 

verringern oder zu beseitigen. 

Unterschiedliche Instrumente und Techniken für die Echtzeit-Überwachung von 

Schlammpumpen wurden in den letzten zehn Jahren entwickelt. Eine von ihnen ist die 

Künstliche Intelligenz (KI), welche vielversprechende Ergebnisse gezeigt hat. Das Hauptziel 

dieser Arbeit ist es daher, die Möglichkeit zu untersuchen, mit Hilfe von Technologien der 

künstlichen Intelligenz bestimmte Schlammpumpenausfälle zu identifizieren, indem nur der 

Pumpendruck und die Durchflussrate als Eingangsmerkmale verwendet werden. 

Diese Arbeit ist in drei Hauptteile gegliedert. Der erste Teil der Arbeit befasst sich mit der 

Vorstellung und Diskussion allgemeiner Techniken zur Fehlerdetektion und 

Instandhaltungsstrategien. Im zweiten Teil dieser Arbeit werden die häufigsten Ausfälle von 

Bohrschlammpumpen und die Auswirkungen dieser Ausfälle auf die Effizienz des Bohrbetriebs 

und die Gesundheit und Sicherheit am Bohrplatz vorgestellt, und weiters auch welche 

hochmodernen nicht-intrusiven Sensoren zur Überwachung von Pumpenausfällen eingesetzt 

werden können. Schließlich wird im letzten Teil der Arbeit die Entwicklung eines 

konzeptionellen Ansatzes auf der Grundlage von Techniken der künstlichen Intelligenz zur 

Detektion von Fehlern in Bohrschlammpumpen erläutert. Es wurde eine Fallstudie mit realen 

Vergangenheitsdaten durchgeführt, um die Grenzen des entwickelten Tools zu validieren und 

zu bestimmen. 
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Chapter 1  

Introduction 

1.1 Overview 

In the drilling industry, mechanical failure is one of the main reasons for downtime that have 

had a major impact on drilling efficiency and well expenditure. The cost of each well mainly 

relies on the time it takes to drill and complete it successfully. On the other hand, non-planned, 

unexpected events continue to plague the progress and accomplishment of drilling operations. 

These events are considered to create a crucial loss of time and performance, generally referred 

to as non-productive time. One of the NPT contributors is equipment reliability2.  

The design life of each piece of equipment needs periodic maintenance, and the most traditional 

maintenance approaches are reactive, corrective, or time schedule. The following pie chart 

illustrates (Figure 1.1) that poor maintenance strategies are the main root cause of downtimes 

in the drilling rig (data is based on daily maintenance reports of nine wells drilled in Olkaria). 

The mentioned techniques are not suitable enough for minimizing NPT and HSE risks; 

therefore, it is vital to move from traditional maintenance methods towards those strategies that 

can anticipate the occurrence of failure. Predictive maintenance strategy aims at anticipating or 

predicting the mechanical failure time of a system or its components based on experience, 

physical laws, or machine learning techniques and replacing the faulty components before 

failure, consequently reducing downtime3,4.  
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Figure 1-1.  Root cause of downtime in drilling rig (P. Otieno, 2016) 

A mud pump is one of the pieces of equipment known as the heart of the circulation system. 

This system keeps the borehole and drill bit clean provides bit lubrication and cooling and 

maintains sufficient hydrostatic pressure on the formation to prevent hole cave-in or blowout 

due to abnormal bottom hole pressures5. Due to these heavy-duty, the mud pump is prone to 

fail more frequently than the other rig equipment, especially for high-pressure, high-

temperature drilling applications. Figure 1.2 compares the NPT of five rig equipment and tools. 

As shown in Figure 1.2, mud pump has a noticeable NPT share compared to other crucial 

equipment.  

 

Figure 1-2. NPT% of Drilling rig equipment (A.Samuelson & W.Nirbito, 2020) 

 



 

1.2 Problem Description 

Non-Productive Time is the crucial reason for delays in drilling projects. There are several 

incidents or eventualities that cause the stoppage of drilling mud pumps as well as a marginal 

decrease in the development of the drilling progress. Upstream segments have been facing 

numerous mud pump failures and have incurred huge costs and HSE risks6. The most usual 

technical malfunctions such as seat valve failure, breaking the bearing carrier bolt, failure in 

the SCR which leads to increasing temperature and causes traction motor generating loads, low 

material quality such as the pulley, worn-out sheave grooves and damaged V-belt and so on. 

Different approaches and tools have supported the monitoring circulation processes as well as 

mud pump components. Traditional monitoring such as visual techniques and experienced 

crews, together with selective data acquisition have assisted crews in the monitoring process. 

But the gap between the time to report and the time to action leads to increase NPT. Through 

non-intrusive measurements and real-time monitoring companies can fill this gap with real-

time data, notifications and alerts. Therefore, estimating when the mud pump or system will 

fail and identifying the root cause of failure create noticeable value. Artificial intelligence is 

one of the cutting-edge technologies that can be adapted to predict and classify the failures 

associated with the mud pump. Accordingly, the ultimate goal of this thesis is to develop a 

model based on artificial intelligence techniques that aim at detecting the symptoms of common 

mud pump failures by monitoring the two essential output parameters of the mud pump, mainly 

pressure and flow rate. 

1.3 Objectives 

Reducing downtime and the cost of maintenance under the premise of zero-failure 

manufacturing is always a crucial objective for each company. The main objective of this thesis 

is to develop a generic failure detection model for mud pumps.  To achieve the main goal, the 

following stepped-objectives are defined to be the main focus of the thesis 

• Review and background of existing failure detection, maintenance strategies, drilling 

mud pumps, pump failure, HSE, and NPT aspects of those failures 

• The application of state-of-the-art technologies in predictive maintenance as well as 

their advantages and shortcomings 

• Look at non-intrusive measurements, which can be integrated into the mud pump and 

can be used for anticipating failures 

• Define the most applicable non-invasive measurements that can be integrated into the 

mud pump and can be used to detect the failures 
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• Creating an artificial intelligence-based model for a triplex drilling mud pump that 

considers the use of non-intrusive measurements and other measurements that can be 

read out from the pump to detect the mud pump failures in an earlier time 

• Validate the developed model by using historical data 
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Chapter 2  

Failure Detection and Maintenance Strategy 

2.1 Basic Terminology 

Growing demands on the safety and reliability of technical plants need early detection of 

process faults. At any stage in the life of a system, mechanical and electrical equipment may be 

poorly operated. In the drilling industry, regardless of the level of the wells construction 

technology, failure situations inevitably happened during drilling operations. Prompt detection 

of failures can noticeably reduce the nonproductive time of the well associated with the 

elimination of accidents consequences and costs for further materials and technical resources. 

Consequently, developing techniques that can support detecting failures during real-time 

drilling operations is essential for the petroleum industry. Techniques are developed that 

facilitate the earlier discovery of process faults than the customary limit and tendency 

monitoring based on a single process variable. These techniques include data from not just 

single system variables but also contain non-measurable variables as process conditions, 

variables, and feature quantities. Some methods require precise process models whereas others 

depend mostly on accessible previous process data7. 

Fault detection and fault diagnosis tasks for industrial operations are vital to prognosticate the 

procedure's operation time or location before a specific fault or an unusual change happens. A 

sustainable action like maintenance is required. Maintenance is a significant activity in the 

petroleum industry; with its crucial influence on costs and reliability, it is tremendously 

effective to a company’s capability to be competitive in reasonable price, high quality, and 

performance. Any unexpected equipment downtime will degrade the company’s core business, 

possibly resulting in crucial penalties and immeasurable reputation loss. Moreover, unplanned 

downtime can create enormous costs for offshore and onshore drilling rigs (even to 2 to 3 

million dollars daily for catastrophic asset failures). Many companies still rely on obsolete 
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techniques for fault detection and maintenance strategies, prompting several to point out data 

and analytics to make maintenance decisions. The following chapter presents various fault 

detection techniques as well as existing maintenance strategies and how they can be 

implemented with state-of-the-art technologies8–10. 

It is important to clearly determine terminologies used in the process monitoring field and 

classify those in terms of their characteristics. The following terms, such as fault, failure, and 

malfunction, types of fault as well as fault detection will be defined in this section. 

The fault is defined as an inadmissible deviation of at least one characteristic feature of the 

system from the acceptable, usual, and standard conditions. Particularly, impermissible 

deviation shows the dissimilarity among a trigger value and fault value, and this fault may lead 

to a process malfunction or operation failure. It could be possible that faults already existed in 

the process or appear at an unknown period, and the rapidness of the emergence of faults can 

be various. Dependent upon the occurrence period, faults are always categorized in three 

groups. 

As for faults classification, the first fault type is based on the faulty component, i.e., actuator 

faults, plant component faults, and sensor faults (Figure 2.1). The second fault type is based on 

the faulty form; it could be abrupt (stepwise), incipient (drift-like), or intermittent faults (with 

interrupts), which Figure 2.2 illustrates. The last type is an additive or multiplicative faults. 

This fault types appear and disappear frquently ( like partially damaged in wiring). Additive 

faults often emerge as offsets of sensors, while the most common multiplicative faults are 

parameter changes through a process7. 

 

 

Figure 2-1. Fault models based on faulty component  

 



 

 

Figure 2-2. Fault models based on faulty form  

Failure is a constant disruption of a system’s ability to carry out an essential function under a 

particular operational circumstance. Based on expectedness, the types of failure can be 

categorized into three groups: 

1) random or unpredictable failure,  

2) deterministic failure, and 

3)  systematic or casual failure.  

Malfunction is identified as a sporadic irregularity in the completion of a system’s desirable 

function. Progression of events “failure” or “malfunction” from a fault is demonstrated in 

Figure 2.39. 

 

Figure 2-3. Development of fault toward failure or malfunction  

2.2 Process Monitoring 

A general system monitoring approach has a loop structure , which is determined by four stages 

and begins with detecting, isolating, identifying the fault, and recovering the process, as 

illustrated in Figure 2.4. Fault detection identifies the existence of a fault in the supervised 

system. It involves discovering faults in the system, actuators, and detectors by utilizing 
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dependencies among various quantifiable signals. Relevant tasks are also isolating and 

identifying faults. Fault isolation is related to the position and the kind of fault, while fault 

identification is related to the scale or size of the fault. Fault isolation and fault identification 

are mutually indicated as fault diagnosis. The fault identification function compromises the 

specification of the fault, with as many elements as feasible, such as the fault size, location, and 

time of identification7. The last stage is process recovery, also known as fault correction. This 

step makes appropriate decisions regarding corrective actions to return to normal and safe 

process conditions. Since this stage is usually specific to the manufacturing process, most 

research generally concentrates on fault detection and fault diagnosis (FDD)11.     

 

 

Figure 2-4. Execution procedure of a conventional process monitoring 

One of the most well-known techniques for process monitoring is statistical process monitoring 

(SPM), also referred to as statistical process control (SPC) has been used to enhance system 

efficiencies in different activities. In conventional univariate SPM methods for single system 

variable controlling, it is supposed that the whole quantified system variables track the normal 

(i.e., Gaussian) distribution and are separate and individual. Nevertheless, the traditional SPC 

approaches have many restrictions since a supposition is often inaccurate for the data gathered 

from many actual industrial processes due to their fundamental characteristics, for instance 

multivariate, non-linearity, non-Gaussianity, and non-stationarity. As example, it is insufficient 

to implement a univariate monitoring chart to a multivariate system if the factors in that system 

include non-linearity features and cross-correlation. 

To surpass the restrictions of the traditional univariate SPC techniques for controlling the 

dynamic industrial system, different chief multivariate statistical process monitoring (MSPM) 

approaches, including useful data have been created and applied for several industrial 

processes. Additionally, for monitoring non-measurable process variables (e.g., status, 

parameters, and so on.), useful prediction techniques and process-based models have been 

broadly investigated and widely applied. Especially, by adverting and developing sensor 

technology that facilitates to regularly gather data on various system factors, numerous useful 

system controlling and fault diagnosis (FD) techniques on the basis of multivariate statistical 

approaches have gained great attention9. 



 

2.3 Fault Detection and Diagnosis Techniques (FDD) 

The FDD is a significant function in different industrial processes. It has been an active research 

area to confirm efficient and safe operations as well as the productivity of the process. 

Generally, fault detection is a task to define or indicate faults in a process or system, actuators 

and sensors by using dependencies between various measurable signals. The faulty process or 

variable should isolate next since fault diagnosis is a general responsibility to define fault type, 

fault size, location of the fault, occurrence time of the detected fault, and behavior of fault 

among a suitable evaluation of the fault. There are numerous overlapping classifications of the 

field. Many of them are more oriented toward the control engineering approach than 

mathematical, statistical, and AI techniques. Literature is abundant on process fault diagnosis 

ranging from analytical methods to artificial intelligence and statistical approaches, but in the 

following section, the most common methods can be observed7: 

• Data-Based Methods and Signal Models 

• Process Model-Based Methods 

• Knowledge-Based Methods 

2.3.1 Data-Based Methods and Signal Models 

Data base methods are derived directly from collected process operation data and fault detection 

and diagnosis and exploit only available experimental (historical) data. The systematic 

taxonomies of different data-driven FDD methods are brought in the following sections. 

2.3.1.1 Limit Checking and Trend Checking 

Limit Checking, and trend checking are the most straightforward and frequently used 

techniques for fault detection, which directly measure variables. Thereby, calculated variables 

of a process are monitored as well as checking if their absolute values or trends surpass specific 

thresholds. Generally, two limit values, named thresholds, are preset, the highest value Ymax 

and the lowest value Ymin. 

It means that the process is a normal condition if the monitored variable remains within a 

specific tolerance zone. By exceeding the thresholds, fault indicates somewhere in the process. 

By the side of false alarms over normal fluctuations of the variable should be prevented; on the 

other hand, faulty deviations should be identified early. Consequently, a trade-off between too-

narrow and wide thresholds exists. 
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Figure 2-5. Limit checking absolute value Y(t)  

The limit-checking method can also be applied to the first derivative �̇� = 𝑑𝑌(𝑡)/𝑑𝑡, which is 

known as trend checking. The trend of monitored variable and to control if �̇�𝑚𝑖𝑛 < �̇�(𝑡) <

�̇�𝑚𝑎𝑥. When approximately a small threshold is selected, an alarm can be gotten earlier than 

for limit checking of absolute value, see Figure 2.6 The main benefit of this checking is the 

clarity and trustworthiness of its methods, although they are capable to react after comparatively 

big change of properties. The distribution of non-fault condition (normal state) information is 

not all the time Gaussian; for this purpose, Gaussian Mixture Patterns can be used12. 



 

 

Figure 2-6. Trend checking Y ̇(t)  

2.3.1.2 Detecting Fault with Principal Component Analysis 

To increase monitoring performance, the detection of changes in the process needs a modeling 

technique that captures the central relations between the process variables. The principal 

component analysis (PCA) method is an influential MSPC (multivariate statistical process 

control) technique that has been broadly used to monitor such modern industrial processes. It 

is a reliable method for capturing variable correlation , and utilizes an uncorrelated conversion 

to transform a set of examination of potentially correlated variables into a set of rates of 

orthogonal variables known as main elements (into two orthogonal subspaces: a principal 

component subspace (PCS) and a residual sub-space (RS))13.  

In PCA- based monitoring, information extraction from regularly achieved data, constructed 

mode, residual space, and identified the control limits of both subspaces could be used. It is 

determined by straight conversion matrix P [m x r], r < m (its identification need some matrix 

calculation steps), that transforms matrix of entry information X [N x m] in a class of uncorrelated 

data T [N x r] (PCS). By analyzing a wide range of interrelated variables, PCA decreases the 
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dimensionality of the data set, while  keeping as much as possible variation in a data set. This 

leads monitoring and processing of large dimensional data feasible. Fault detection is 

implemented by using the alternation identification on transformed information T takes 

allowable means and variances into consideration (Figure 2.7)7. 

 

Figure 2-7. Fault detection with Principal Component Analysis  

2.3.1.3 Fault Detection with Signal Models 

Several assessed signals of processes demonstrate oscillations that are either of harmonic or 

random character or both. In case alternation of these signals is associated with the error in the 

actuators, the process, and sensors, signal model-based fault-detection methods can be applied. 

If the alternations in signals are corresponding to faults in a system, the signal analysis can be 

implemented. By considering mathematical models for the analyzed signal, relevant features 

can be calculated (like amplitudes, phases, and spectrum). A comparison with the observed 

features for normal behavior provides changes in the features that are considered analytical 

symptoms. The mission of the signal models approach is summarized in Figure 2.8. 

The signal models can be categorized into nonparametric models, like frequency spectra or 

correlation functions, or parametric models, like amplitudes for distinct frequencies or 

autoregressive moving-average (ARMA) type models. The spectrum analysis and the 

parametric signal models are two practical signal analysis techniques for fault detection.12  



 

 

Figure 2-8. Signal Models approach   

Spectrum Analysis 

The extraction fault-related signal properties can be limited to the amplitudes or amplitude 

densities within a specific signal bandwidth. For calculating the frequency content of signal 

X(t), the algorithm Fast Fourier transform (FFT) can be used. Throughout normal operation 

components, Ai falls within a specific range7𝐴𝑖𝑚𝑖𝑛 ≤ ∣ 𝐴𝑖 ∣ ≤ 𝐴𝑖𝑚𝑎𝑥. 

Parametric signal model 

Two overall linear models for parametric representation of multicomponent non-stationary 

signals are the time-dependent ARMA (autoregressive moving-average) process and the sum 

of modulated signals with time-variant amplitude and phase functions14.  

2.3.1.4 Pattern Recognition (Artificial Neural Network) 

An artificial neural network is a neuron network that learns highly complicated functions 

through a series of nonlinear transformations. It has been successfully used for pattern 

identification as well as fault detection15. Each neural network has two feature components: 

Architecture, which is the pattern of connection among the neurons. The second is a learning 

algorithm known as a training algorithm and used for establishing the connection weights. 

Supervised training a feedforward network is the most regular architecture (Figure 2.9), which 

is usually trained with some variant of the backpropagation algorithm. Unsupervised training 

is needed (training data without labeled input-output pairs). Kohonen’s self-organizing network 
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is a choice, Figure 2.10. The third one is activation functions. It uses to transform the activation 

level of a unit (neuron) into an output signal16.  

 

Figure 2-9. Feedforward Neutral Network 

The neurons of the competitive net train to identify groups of similar input vectors in such a 

way that each neuron competes to react to an input vector 𝑋𝑡, the neuron whose value 𝑚𝑐  is 

nearest to 𝑋𝑡 get the highest net input and consequently wins the competition and outputs one, 

all other neurons output zero. Normal (non-fault) and fault conditions are represented as 

different subsets of neurons through a map.  Between other statistical classifiers, the regular is 

the k-Nearest Neighbor rule as a nonparametric supervised classification approach. 

 



 

 

Figure 2-10. Self-organize map (SOM) (T. Kohonen, 1997) 

2.3.2 Process Model-Based Methods 

This technique consists of detecting faults in the processes, actuators, and sensors using the 

dependencies among various measurable signals. Mathematical process models present these 

dependencies. In this technique, the signal is first fitted into a suitable model, then this model 

is used for analysis, synthesis, and different other signal-processing tasks. Figure 2.11 illustrates 

the overall structure of model-based fault detection.  

Residual assessment is implemented by threshold logic and decision function. Alongside fixed 

thresholds, advanced robust adaptive residual evaluators exist. According to assessed input 

signals U and output signals Y, the detection techniques create residuals r; factor estimates Ӫ 

or state estimates ẋ that are named features. In contrast with the normal features, changes in 

features are discovered, leading to analytical symptoms 𝑆17. This technique supposes that the 

model's structure and parameters are exactly recognized. Faults can be represented as state 

variable changes. Restricting attention to linear system7. 
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Figure 2-11. Overall scheme of process model-based FDD 

2.3.2.1 Fault Detection with Parity Equations 

This method is a straightforward approach that compares the process behavior with a process 

model describing non-faulty behavior. The variation of signals among the model and the 

processes are presented by residuals ( Figure 2.12). Then residuals identify differences among 

the process and the model and check for consistency. The process is characterized by transfer 

function  𝐺𝑃(𝑠) and process model by 𝐺𝑚(𝑠). A simple model-based technique is to take 

fixed model  𝐺𝑀 and execute it in parallel to process, therefore forming an output error 

or r´12. 



 

 

Figure 2-12. Fault detection with parity equations technique 

2.3.2.2 Fault Detection with State Observers and State Estimation 

Alternations in the input and output action of the process cause to change of output error and 

state variables. The main concept of the observer approach is to remodel the outputs of the 

system from the measurements with the help of observers using the estimation error, or 

innovation, as residual for the detection of the fault. Different techniques have been considered 

for fault detection that is based on the classical Luenberger state observer, Kalman filter and 

the so-called output observer12. 

State Observers Technique 

This method can be implemented when the faults can be modeled as state variable changes ∆x𝑖. 

The structure of the linear full-order state estimator is demonstrated in Figure 2.13. A linear-

time invariant process can be presented by the state-space model, which includes a parallel 

process model. By the feedback (matrix H) of the prediction error ( e ), is used for computation of the 

residual, r, for the purpose of fault detection (by threshold logic). 

 

Figure 2-13. Process and state observer (D. Miljković, 2011) 
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Output Observers Technique 

The primary purpose of state observers is to remodel the state of the process. Nonetheless, there 

is  no such requires for a diagnostic objective. When the reconstruction of the state vector 𝑋(𝑡) 

is not of interest, it is feasible to use output observers. A linear transformation with matrix  𝑇1 

conducts to new state vectorξ(𝑡). Output observers remodel the outputs in order to generate 

redundancy18. The below figure illustrates this technique. 

 

Figure 2-14. Process and output observer (D. Miljković, 2011) 

2.3.2.3 Fault Detection with Parameter Estimation 

This technique relies on the principle that feasible faults in the monitored process can be 

connected with specific parameters and states of a mathematical model of a process given in 

general by an input-output relation. Faults of a dynamical system are reflected in physical 

factors (mass, friction, resistance, capacitance, inductance, etc.). The concept of the parameter 

estimation technique is to identify the faults with the estimation of the parameters of the 

mathematical model. The basis of this technique is the combination of theoretical modeling and 

parameter estimation of the continuous-time model. The overall procedure to detect faults 

follows the steps below19: 



 

 

Figure 2-15. Fault detection with parameter estimation technique 

1. Establishment of the numerical model of the system’s non-fault behavior at this point 

acceptable tolerances for the system’s parameter values are also defined 

2. Determination of connection among the model parameters ϴi and physical parameters 

pi,          𝛳 = 𝑓(𝑝)  

 

3. Recognition of model parameter vector 𝛳 using the input 𝑢 and output 𝑦 of the current 

system 

4. Identification of physical factor vector 𝑝 = 𝑓−1                                                                                                                            

5. By taking nominal value from the nominal model, vector deviations ∆𝑝 can be achieved  

6. Decision on a fault by exploiting the connection between fault and changes in the 

physical factors ∆𝑝𝑖 

2.3.2.4 Nonlinear Models and Neural Networks 

Several technical processes are not proper to traditional modeling techniques due to the lack of 

accuracy, formal knowledge regarding the system, and strongly nonlinear behavior. If 

numerical process models 𝐺𝑝 are not available, a nonlinear model can be applied to generate 

residuals (Figure 2.16). A method to create a nonlinear model 𝐺𝑁𝑀is to use neural networks. 
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Neural networks do not need specific knowledge of process structure. They can act as black-

box models of general nonlinear, multivariable static and dynamic systems. 

 

Figure 2-16. Fault detection using nonlinear model and parity equations (D. Miljković, 2011) 

Neural networks consist of several factors, but these factors are basically not suitable for the 

physical interpretation of the modeled system. Nevertheless, once the process modeling is 

completed, fault detection with parity equations can be applied. Moreover, the combination of 

neural networks with different process models as well as using in the residual assessment is 

possible7. 

2.3.2.5 Fault Detection of Control Loops 

The key purposes for using automatic control loops are accurate following of reference 

variables (setpoints), a quick response than in an open loop, compensation of all kinds of 

external disturbances on the controlled variable, stabilization of unstable processes, reduction 

of the influence of process parameter alteration with regard to the static and dynamic behavior, 

partial compensation of actuator and process nonlinearities, and, of course, replacement of 

manual control by humans12. 

Control systems have to consist of automatic supervision of closed-loop operation to find 

malfunctions as early as possible. For larger plants with hundreds of control loops, it is 

functional to have automatic fault detection for control loops. Control loop faults conduct to 

oscillations, therefore automatic detection of various types of oscillations is of importance. 

Techniques are signal-based (variance), detection of oscillations and model-based. 

2.3.3 Knowledge-Based Methods 

By advancement of computer technology. Modern industrial processes tend to be more 

automated, integrated, complex and intelligent. In real process monitoring, because of the large 



 

scale of industrial processes and complex business logic, there is a complex connection among 

process variables in the production process. Meanwhile, with the increasing complexity of the 

process, the influencing factors are gradually increasing, and multiple faults happen frequently 

in complex industrial systems. Although the conventional fault detection technology is mostly 

implemented under single fault type and simple influencing parameters, its precision is mostly 

reduced in the face of complex industrial processes20. 

In the current period, there is a trend towards knowledge-based and artificial intelligence 

approaches. The knowledge-based method does not need specific knowledge of the exact 

mathematical of the object. It can be mainly classified into fuzzy logic, expert system and neural 

network, support vector machine fault diagnosis method, and so on. These fault techniques can 

effectively make use of expert knowledge and experience to make judgments. In some areas, 

through constructing the fault ontology, the researchers would model the connection between 

the fault phenomenon and the cause, and then use the ontology reasoning technology to 

diagnose. Nevertheless, in the real fault diagnosis process, there is usually an uncertain 

connection between the fault phenomenon of the equipment to be inspected and the cause of 

the fault21. 

 

Figure 2-17. Basic structure of Knowledge Based 

2.3.3.1 Fuzzy Logic 

Fuzzy logic is a system for dealing with inexact or unreliable information. The output of the 

fault detection system does not require an alarm that takes two values, fault or no-fault. Instead 

of simple binary decision fault or no-fault, the fault severity of the system is provided to 

operators as the output of the fuzzy controller. It supports users to work with ambiguous or 

fuzzy quantities such as large or small, or data that is subject to interpretation. A linguistically 

comprehensible rule-based model is formed based on the available expert knowledge and 

measured data. The following diagram of the fuzzy logic controller is shown in Figure 2.1822. 
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Figure 2-18. Fuzzy logic controller (M. Alakhras, 2020) 

As can be seen in Fig.19, fuzzy inference process consists following steps7: 

a) Fuzzyfication 

Entry to a control unit moves during the fuzzification process utilizing membership functions. 

The membership function is a visual depiction of the size of involvement of each entry. The 

shape of some membership functions is represented in Fig. 19. 

 

 

Figure 2-19 Some membership functions (D. Miljković, 2011) 

b) Rule Based Inference 

All rules are analyzed in parallel using fuzzy reasoning. The fuzzy inference process utilizes 

membership functions, logical operations, and if-then rules ( Fig. 2.20). 

 

 

Figure 2-20 Fuzzy inference process (D. Miljković, 2011) 

c) Defuzzification 

Defuzzification is defined as converting the fuzzy information to crisp. It is achieved by 

integrating the consequence of the inference system and computing the "fuzzy centroid" of the 
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area, x* is defuzzified value, µ𝑖(𝑥) is the accumulated membership function, x is the output 

variable. 

2.3.3.2 Support Vector Machine-Based (SVM) 

Artificial neural network (ANN) technology is superior to conventional methods in pattern 

recognition and categorization. Between identification algorithms, the neural network (NN), 

the support vector machine (SVM), and learning vector quantization are among the more 

outstanding smart classifiers due to their preferable effect of classification and regression. SVM 

is a representative nonlinear approach (can deal with large feature spaces), and it is a potentially 

effective method for categorizing all types of datasets (based on the structural risk minimization 

principle). The basic principle of SVM is to categorize the dataset into two separate classes 

based on the hyperplane (a decision boundary), which should have a maximum distance among 

support vectors in each class. Support vectors are representative data points, and their rising 

number may increase the difficulty of the problem23,24. 

 

 

Figure 2-21. SVM concept, Non-linear to a linear transformation (MathWorks.com/svm) 

2.4 Maintenance Concepts 

The FDD (fault detection and diagnostics) approaches are executed in order to select various 

maintenance management scheduling and operations of these actions. The purpose of these 

activities is to perceive phenomena and operating consequently. Nonetheless, rather than 

realizing an incident that has emerged as a failure, it looks suitable to predict its indication and 

consequences in order to consequently and, as quickly as possible, resort to protective actions. 

As far back as parts, machines, and equipment have existed, there has been a necessity for them 

to be repaired and supported. Records of maintenance can be found already in ancient Egypt. 

In the beginning, maintenance was straightforward. It means, in case of breakdown, one simply 

fixed it and was known as reactive maintenance. Insufficient attention was given to the 

maintenance consequences had on cost or when it should happen. As time goes on, the parts 

and machines became more complex, maintenance strategies began to mature at the onset of 
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World War II. Thereafter world war, the development of formal maintenance was lead to the 

second generation of maintenance in the 1950s. In the late 1970s and 1980s, the third generation 

of maintenance was evolved when the first programmable logic controller e.g. PLC, was made. 

The data that developed from these maintenance notions could be analyzed to make informed 

decisions and initiate to estimate when maintenance should be completed (Figure 2.22). 

Nowadays, maintenance has existed in its fourth generation, an abundance of Internet-linked 

sensors, parts as well as machines can be monitored using real-time predictions25 and EN 

1306:2017 defined maintenance as the combination of all technical, administrative, and 

managerial actions during the life cycle of an item intended to retain it in or restore it to, a state 

in which it can perform the required function.  

 

Figure 2-22. The development of maintenance expectations and methods from 1940 to 

Present (J. Moubray, 1997 and I.Lazakis, 2018) 

Maintenance notions have a direct impact on the amortization and maintainability requirements 

for the design of the asset, and the operating costs of a business because some party must 

ultimately pay for the maintenance. In general, across all sectors, the costs of maintaining 

physical assets demonstrate 5%-12% of the total capital invested, up to 15% of the gross sales, 

and up to 10% of the production costs of an asset26. From management‘s point of view, there is 

a need to determine whether maintenance operation is planned or unplanned. Different kinds 

of maintenance strategies can be applied for different scenarios. BS EN 13306:2017 divided 

maintenance into two key groups: unplanned maintenance and planned maintenance. Each 

group is subdivided into several categories, Figure 2.23 illustrates it.  



 

 

Figure 2-23. Maintenance classification overview 

2.4.1 Corrective Maintenance 

Corrective maintenance (CM) is also known as Run to fail (RTF) maintenance and it is the 

strategy to repair or replace a machine after it has broken down until the machine fails, there is 

no intervention. These activities include diagnostics, disassembly (repair), repair, replacement, 

reassembly, alignment and adjustments, and checks. The advantage of using this type of 

maintenance is that it can increase the proper operating time before it requires to be stopped or 

shut down for repair. The potential problems of this maintenance are that it includes the procure 

of a large number of spare parts to be ready when required (involving high costs) and needs the 

constant application of crisis management. The maintenance team is usually overworked and 

faces daily (unexpected) emergencies that may arise; moreover, a malfunction could be 

catastrophic, and that it continues to impart damage on other nearby components or machines27. 

A total run to failure methodology is the most expensive method of maintenance management, 

and drilling rigs usually perform basic preventive tasks like machine adjustments and 

lubrication28. 

In this type of maintenance, it is essential to follow a series of stages to fix it or restore it to its 

full operability. These stages involve: diagnosing the failure, isolating it, disassembling the 

equipment to gain access to the broken component, repairing it, and as can be seen in Figure 

2.24, completing these stages is a corrective maintenance cycle. Table 1 gives more information 

about the pros and cons of corrective maintenance.  
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Figure 2-24. Corrective maintenance cycle 

The table below gives more information about pros and cons of corrective maintenance. 

Corrective Maintenance 

Advantages 
Low cost 

Less staff 

Disadvantages 

Increased expenditure due to unplanned downtime of equipment 

Increased labor cost, especially if overtime is required 

Cost involved with repair or replacement of equipment 

Feasible secondary equipment or process damage from 
equipment failure 

Ineffective use of staff resources 
Table 1. Corrective Maintenance pros and cons (O&M Best practice, 2010) 

 



 

2.4.2 Preventive Maintenance  

The preventive maintenance compromises the substitute, repair and maintenance of equipment 

for purpose of preventing unexpected failure through the operation. The primary objectives of 

PM are to reduce the failure rate or failure frequency of the equipment which leads to cost 

reduction, less machine or equipment downtime and increasing productivity and enhancing the 

quality. There are two significant types of PM techniques, maintenance in periodic cycle and 

maintenance dependent on equipment status. As for the maintenance based on periodic cycles 

could be unreasonably costly for about 92% of machine components. Machine-based 

maintenance replaces the components as well as interferes with the equipment only when 

deviations start to show up in its procedure, making it more efficient. This kind of planned 

maintenance is based on regular, repetitive tasks done to maintain machines or equipment in 

the suitable working order and to optimize its efficiency and precision. These tasks consist of 

frequent, regular cleaning, calibrating, lubricating, adjusting testing, and exchanging the 

components to prevent the breakdown25,29,30.  

All PM management techniques suppose that the equipment is going to degrade within a 

specified time of their individual classification. Figure 2.25 portraits the statistical life of a 

machine. The bathtub curve or MTTF (mean time to failure) illustrates that new equipment or 

machine has a great possibility of failure because of installation issues through the first few 

weeks of operation. Throughout this stage, the reasons for malfunctions can, for instance, be 

human error, low-quality control, low manufacturing quality as well as poor material and 

workmanship of the machine and its components.  

The second period is defined as the useful life (constant failure) where the failure frequency 

remains stable and constant. The failures which occur in this stage are usually natural failures, 

undetectable failures, and human errors. The last period is called the wear-out period when the 

malfunction frequency increases. It could be represented as poor maintenance, corrosion, 

erosion, or wear from the friction of components. This stage is the last period of a machine’s 

life. The following table gives more information about the merits and demerits of preventive 

maintenance31. Table 2 represents the advantages and disadvantages of preventive maintenance.  
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Figure 2-25. Typical bathtub curve 

Preventive Maintenance 

Advantages 

Cost effective in several capital-intensive processes 

Adaptability allows for the adjustment of maintenance periodicity  

Higher component life cycle 

Energy saving 

Lower machine or process failure 

Estimated 12% to 18% cost reduction over reactive maintenance 

approach  

Disadvantages 

Labor intensive 

Consists performance of unnecessary maintenance 

Potential for incidental damage to components in 

conducting unnecessary maintenance 

Catastrophic failures still likely to happen 

Table 2. Preventive Maintenance pros and cons (O&M Best practice, 2010) 

2.4.3 Predictive Maintenance 

Predictive maintenance (PdM) or sometimes called “on-line monitoring”, “risk-based 

maintenance”, or “condition-based maintenance”, is the latest maintenance approach adopted 

by many industries which analyze efficiency, productivity, and remaining useful life for 

scheduling before occurring any breakdown in the system. There are various definitions for this 

type of maintenance, but the general premise of PdM is that steady monitoring of the real 

mechanical condition, functional efficiency, and other indicators of the working condition of 

machine-trained; moreover, the operating systems are going to contribute the data needed to 

verify the highest interval among repairs and reduce the range and cost of unscheduled 

breakdowns created by machine-train failures. 

Performing PdM has a direct impact on the overall equipment effectiveness (OEE), by 

strengthening the equipment life cycle and quality, reducing human effort, maximize supply 

and facilitate the management of reliability and errors, losses, wastage, and costs. The physical 



 

structure of equipment and the kind of failure is associated with an evaluation of identifying 

unpredictable problems. Consequently, the assessment of the predictive maintenance model is 

based on the mathematical models that are beneficial to determine when failure arises and when 

to perform maintenance action. Hence, PdM supports measuring and report physical parameters 

continuously for evaluating and comparing data to make maintenance decisions. The 

convergence of PdM with preventive maintenance is only in terms of scheduling the 

maintenance operation in advance to prevent equipment failures. In comparison with the 

traditional preventive maintenance, PdM schedule operations are based on gathered data from 

sensors as well as trained algorithms31–33. 

In another word, the PdM is an approach or an attitude which represent the actual operating 

condition of plant machines and systems to optimize whole plant operation. By using the most 

cost-effective tools such as vibration monitoring, thermography, tribology, performance 

monitoring, and ultrasonic noise detection and so on, the PdM can reach the actual operating 

condition of critical plant systems and according to the current information schedule all 

maintenance activities on an as-needed basis. 

The developed version of predictive maintenance is known as Condition Based Maintenance 

(CBM) where provoking alarms are triggered before occurring any breakdown. Contrary to 

dependent on mean-time-to failure (i.e., industrial or in-plant average-life statistics) to schedule 

maintenance operation, condition monitoring uses direct monitoring of the actual mechanical 

condition, system efficiency as well as other indicators to identify the current mean-time-to-

failure or loss of efficiency for each equipment or machine in the operation. The various 

techniques and algorithms can be used to implement CBM. The predictive threshold in CBM 

is presumed as degradation-based failure which has to reduce to an allowable level for better 

efficiency. CBM plans prospective component’s health conditions by signal processing 

methods which provide decision support for predictive maintenance. Real-time prediction and 

data acquisition support to estimate a sign of likely hazards as well as prevent them from 

occurring32. 

In general, executing which maintenance approaches are suitable for maintenance operations 

are based on two parameters: the frequency of failure and the time development of failure (the 

below figure gives more information regarding these two factors). Occurring failure in an 

acceptable normal frequency Figure a, preventive maintenance in any approach can be a 

suitable choice as a countermeasure. When failures have development time like pattern Figure 

c, predictive maintenance can be a proper technique in this case. Figure d demonstrates failures 

without a development time might take advantage of a predetermined preventive maintenance 

method instead, such as time and calendar-based, in case the failures happen in a moderately 

regular frequency. Figure b represents the random failures occurring that a development time 
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could possibly benefit from a PdM technique, whereas components without a development time 

may require to be operated by a corrective maintenance technique. But the right choice of 

maintenance depends on the operating context of the asset. Other points of view, such as HSE, 

finance, quality, also require to be taken into consideration.          

 

Figure 2-26. Failure frequency (a & b) and failure development time (c & d) 

When the condition monitoring methods execute properly, it has a great impact on failure 

reduction, but if they are unsuitable they can be a very costly and sometimes caustically 

unsatisfying loss of time. Condition monitoring not only requires to have an acceptable pay-

back period but also needs to be technically feasible. In order to achieve a feasible condition 

monitoring, the development time of failure importance has to exist to perform a warning 

period. This is sometimes referred to as a Potential failure to functional failure or p-f curve that 

P is identified as a measurable potential failure and f is a functional failure. 

 

Figure 2-27. Example of a p-f curve of a ball bearing 

PdM has many advantages in comparison to other maintenance strategies. A well-organized 

PdM program is going to minimize catastrophic machine failures from 70 to 75%, reducing 

downtime up to 45%, cost reduction up to 30% as well as boosting production to 25%. The 

following table gives more information regarding the advantages and disadvantages of the PdM 

technique34. Another significant benefit of predictive maintenance is to evaluate the RUL of a 

machine or a system. According to previous sections, the RUL is the time between a machine’s 



 

actual condition and failure. Three different models exist to estimate RUL: survival mode, 

degradation model, and similarity model. Using each model depends on how much data and 

information are available. For instance, a survival model can be used in case data are available 

only from the time of failure rather than complete run to failure histories. As for using the 

degradation model, the data should exist between the healthy state and failure, and the safety 

threshold should not be exceeded in the current condition. The similarity model can be used, 

when data spans the whole deterioration of a machine from a healthy condition to failure. The 

figure below illustrates mentioned models35. Table 3 summarized the merits and demerits of 

predictive maintenance.  

 

Figure 2-28. RUL estimator models 

Preventive Maintenance 

Advantages 

Enhanced component operational life and availability 

Provides for preventative corrective actions 

Reducing equipment or process downtime 

Reducing in expenditure for parts and labor 

Increasing product quality 

Improved HSE 

Enhanced worker morale 

Predicted from 8% to 12% cost savings over preventive maintenance 

technique 

Energy saving 

Disadvantages 

Increased investment in predictive equipment 

Require skillful operators 

Savings potential not readily seen by management 

Table 3. Predictive Maintenance pros and cons (O&M Best practice, 2010) 

Prediction is estimating the period of time after which a component can no longer perform its 

intended or expected capability to enhance system safety. The ISO 13381-1:2004 (International 

Standard Organization) elucidates Prognostics as the TTTF (estimated time to failure) and the 

risk of existence or subsequent appearance of one or more failure modes. The various researches 

have categorized condition-based monitoring strategies differently, but according to the section 

2.3 the most common strategies which could be seen are defined as36: 
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• Data-driven  

• Model-based 

• Knowledge-based 

• Hybrid 

Data-driven approaches are originated from the configuration, operation and historical run to 

failure data relevant to maintenance decision-making. By informing the maintenance decision 

based upon the failure threshold, these methods are often used for prediction. For instance, the 

Wavelet packet decomposition and/or HMMs (Hidden Markov Models) techniques can be used 

where time-frequency properties allow more accurate results than using time-variable only. 

Nevertheless, the techniques result from the historical data used for estimating machine life 

without the foreknowledge of the physics of the formation of a component. Moreover, there are 

other techniques for data-driven strategies, such as PEMFC (Proton Exchange Membrane Fuel 

Cells), SW-ELM (Summation Wavelet-Extreme Learning Machine) and SVM (Support Vector 

Machine) and so on. 

Model-based approach is also known as the physical-model-based technique which is related 

to an understanding of the physics for reliability predictions. By using physical science of 

components and generated empirical equations to estimate the conditions. The Crack-growth-

model also can be used for prognosticating the RUL (remaining useful life) of a system affected 

by the fatigue failure mechanism. By evaluating such crack failure such as fatigue, wear out, 

and corrosion of components relevant to mathematical laws used to predict RUL. The model 

base strategy should be a combination of experiment, observation, geometry, and condition 

monitoring of data to predict any damage resulting from an individual failure system. 

The knowledge-based method is a combined experience as well as computational intelligence 

approaches relative to collected data from domain experts and rule sets for interpretation. An 

expert mechanism for decision support working according to the principles of service feedback 

for analysis. Variables of reliability are predicted using an experience-based approach to collect 

data for understanding the operations of an asset. The knowledge-based approach evaluates the 

correlation between the actual condition and a database of previous failures and infers the life 

expectancy from prior occurrences using expert and fuzzy systems. 

A hybrid model is a combination of one or more approaches for estimation to improve 

precision. This model uses non-parametric and parametric information to implement prediction 

as well as improving precision. The quality of data and the comprehensiveness can be 

inadequate for the data-driven model because they need historic data historical knowledge. 

Therefore, the hybrid model considered all three approaches (the experimental-based model, 



 

data-driven model and physics-based model) for estimating the RUL36. Consequently, 

predictive maintenance is showing great potential when conducted by an ML (machine 

learning) algorithm that works in the domain of AI and DT. The following sections are more 

going through the state-of-the-art technologies in PdM. 

2.5 Cutting-edge Technology in PdM 

The advent of the fourth industrial revolution has led to a noticeable connection between the 

physical and digital world, referred to as CPS (cyber-physical systems), IoT (internet of thing), 

IoS (internet of service), and DM (data mining). The main objective of Industry 4.0 is to initiate 

the interaction among a number of technological advances which is going to create additional 

benefits in the manufacturing process, maintenance management. In another word, it has had 

great advancement by associating various technologies which generate and communicate 

information between systems. The data achieved from different resources are interpreted and 

turned into useful data. Those useful data are subsequently used to control and coordinate the 

systems as well as subsystems to perform optimally and possibly individually. These 

technologies can be used in the purpose of predicting product performance degradation, and 

autonomously managing as well as optimizing product service needs37.  

According to the high applicability of Artificial Intelligence (AI) and Digital Twin (DT) in 

industrial sectors, they are among the top ten technology trends in the last years. The association 

of big data analytics and AI techniques with DT enables the features of real-time monitoring 

and digitalization for asset management. This combination is leading to evaluate the past and 

present condition of machines and makes predictions about the future state38,39. The next part 

of this section focuses on the application of AI and DT technologies in predictive maintenance. 

2.5.1 Application of AI in PdM 

Artificial Intelligence is fundamentally a computer system implemented as a replacement for 

the intelligent functions of human beings. It imitates techniques of solving problems and 

learning in human beings over data and knowledge collecting. AI is also known as 

computational intelligence or machine learning and consists of the following area of activities: 

Processing of human language, image and visual processing, intelligent robots, neural networks 

and expert systems.  

One of the most applicable technology in the field of machine diagnosis is Expert systems. It 

tries to maintain the information and knowledge of experts and make identification of any 

irregularity of a given piece of equipment by classification, diagnosis, and prediction. 

Accordingly, AI can support preventive maintenance by evaluating big data collected from 

numerous sensors to monitor, identify, and prognosis machine failures. The application of AI 
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frameworks can lead to significant cost savings, increasing operational performance and safety 

as well as raising the remaining useful life of assets, especially for identifying equipment 

condition and predicting when maintenance should be performed40–42. 

Machine learning techniques can be divided into three categories, unsupervised, semi-

supervised, supervised, and reinforcement learning. As for unsupervised learning, the data is 

not going to be labeled. By means of analogies among the data points, the ML model is intended 

to find out the unknown patterns in the data. Therefore the algorithms should be developed in 

a way to discover structures and patterns in the data independently. For the semi-supervised 

learning approach, the input data is a combination of marked and unmarked data points. While 

in the supervised learning approach, the machine learning model utilized labeled information 

training data that the specified labels with the proper output and plans to learn a mapping of 

inputs to outputs. This step is iterated until the model reaches a suitable level of precision on 

the training data and can anticipate the outputs for the new cases. The last machine learning 

approach is (reinforcement one) used trial and error in an exploration versus exploitation way 

to find the behavior that generates the highest rewards. Moreover, condition-based maintenance 

is used in convergence with AI techniques for tough fault detection and diagnosis (FDD). There 

are several AI techniques such as neural network (K-Nearest Neighbors) and pattern 

recognition, fuzzy logic, support vector machine (SVM) and so on which talked in the fault 

detection and diagnostic section more about them43. 

 

Figure 2-29. Classification of machine learning the ML tasks 

One of the chief complexity of executing an AI process to maintenance data is the selection of 

the right workflow, therefore this section is going to explore the simple and complete 



 

framework for AI technology in PdM.  A machine learning project should always initiate with 

the establishment of a precise and clear interpretation of the goals. Because the system 

implements a specific task and when a model has an unclear objective, it is not able to predict 

what it is intended to. The most significant step in the ML project is the capability to realize the 

data applied and how it is relevant to the task that wants to be solved. Choosing the algorithm 

should be purposeful. Because if it selects randomly, it will not be effective. Therefore, using 

a data set leads to acquire good results. It is essential to figure out what is going on in the data 

set before beginning to build a model. As for creating a machine-learning solution, the 

following issues must be answered: 

• What problems are going to be solved? 

• Does an accessible data set allows to solve these problems? 

• What is the suitable approach to paraphrase the problems as a Machine Learning 

challenge? 

• Is the accessible data set adequate to represent the problem that is going to be solved? 

• Which attributes or properties have been extracted and can they lead to a correct 

estimation? 

• How the outcome of the application of ML can be measured? 

• How does achieved ML solution interact with the rest of the process? 

It is important to take into consideration that the ML algorithms and techniques are only a small 

part of a larger process for solving a specific challenge. Because a huge amount of time is 

wasted on creating the complex ML solutions, while at the end it is discovered they do not solve 

the problem which is waiting for. Thus, the assumptions for creating the ML algorithms can be 

caused explicitly or implicitly. Fig 2.30 represents the machine learning workflow44. 
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Figure 2-30. Machine Learning procedures 

For evaluating the ML model different assessment techniques are apply to verify the attributes 

as well as the performance of simulation. In machine learning approach the regression problems 

and classification problems are two common types of problems. For those models which have 

dependent variables (continuous in nature) regression methods can be used while for those 

model which have categorized variable classification methods can be utilized. In further 

chapters, confusion matrix will be applied for classification approach in order to demonstrate 

the actual and predicted values. According to the following figure, the true positive section 

represents the positive prediction whereas the false positive one represents the values that are 

negative but falsely estimated as positive (named as error I). The false negative section are 

related to those values which are positive but falsely estimated as negative (named as error II). 

The last section is related to those values which are negative and estimated as negative45. 



 

 

Figure 2-31. Confusion matrix for binary classification 

2.5.2 Application of Digital Twin in PdM 

The appearance of real-time and condition monitoring has led to the generation of a huge 

abundance of information that necessitates using big data analytics through a product life cycle. 

The key objective of big data analytics is providing personalized and precise product service 

and enhancing quality. The data source for big data analysis is known as PLM (product life 

cycle management). One of the main applications of PLM data is in the root cause analysis of 

a product during the integration of maintenance data. 

The Digital Twin (DT)was first introduced as a PLM concept to maintain product-related 

information over the entire life cycle. In general, DT can create value with the virtual illustration 

of a physical system that is able to real-time monitoring of a product or an asset through its life 

cycle. DT can evaluate performance data gathered over time and under various conditions. In 

the PdM framework, DT can be used widely in46: 

• Health monitoring of assets, by monitoring fatigue, abnormalities, deformation and 

reliability of equipment 

• Digitally analyzing the life of a physical asset to anticipate its performance affected by 

various ambient condition 

• To improve an asset intelligence with its historical and actual state 

The DT requires to be fully associated with the asset and interacted with the environment as 

well as its physical processes. Due to the diversity of components and the close interaction 

among computer programs, platforms/networks and physical components, this interaction 

becomes more complex. Therefore, DT is not only a passive twin of the real systems, but also 

is an active and reactive component that can constantly analyze the actual condition of its real 

replica and include professional recommendations in the context of optimizing processes, 

forecasting and scheduling maintenance, and enhancing the design and overall performance. 
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The mentioned interaction in DT needs a domain understanding of the physical asset and some 

facilitate technologies. DT concept model is comprised of three key elements: physical 

modeling of the machine, virtual objects in virtual space, the interaction of data among the 

virtual object and real machine. The main purpose of real-time condition monitoring and 

updating of the digital model is to create a similar behavior of the machine. 

A significant value added to DT for PdM is that a set simulation can be implemented on the 

digital model of the machine for purpose of exposing aspects, like component deterioration of 

the real asset which cannot be directly determined by using data only gathered by the real 

machine elements. To achieve this, a group of Virtual Sensors is used for purpose of defining 

the components which will be monitored throughout the simulation. This feature is led to 

prevent stoppages the real machine’s operation during its activity for testing. Based on the DT 

approach, the industrial men and users are able to simulate the future condition of the machine, 

generate failures profiles and even plan the maintenance operations47. 

A physics-based simulation refers to solving the counter kinematics of the model by supplying 

position signals as well as acquires the calculated torque signals that are exerted to each 

machine`s element as a simulation output. The same procedures will be attributed in the reality 

to the simulation models directing to utilize the simulation output for the RUL calculation. The 

utilization of static digital models to create the required data for remaining useful life 

anticipation is not suggested because the real machine condition may be changed. To verify 

that the created information by the simulation of the digital model can be utilized for the precise 

anticipation of the RUL, the physics-based digital models have to be updated online by using 

information coming from the actual world. 

In order to create the DT for the cyber-physical-system, the following procedures should be 

taken into consideration: 

 

Figure 2-32. Overview of DT framework for PdM 

1. Create a physical Model 

The first stage is to create a 3D model of the cyber-physical system. Except for the kinematic 

as well as dynamic features of the equipment, a group of virtual sensors will be incorporated 

into the equipment simulation models. This step contains replicating physical processes and 

objects to digital systems with the use of CAD models that represent the kinematic and 

structural models of the machines. The comprehensive model of each machine includes a 



 

number of components that demonstrate the dynamic behavior of each machine’s element on 

the basic model of the mechanical, electoral, hydraulic and other functions. For the purpose of 

having an effective and practical model that can be simulated in an allowable computational 

time, it has to be determined which elements of machine are supposed to be modeled. The 

number of the machine’s elements are determined as black boxes (without any information of 

its internal operations) or as the grey boxes (utilizing theoretical information to carry out its 

model) or as white boxes which represent the accurate functionality and operating mechanism 

of the element are known. 

Thereafter defining and modeling the elements, the virtual sensors of the model have to be 

defined for implementing the machine’s simulation model. The virtual sensors are simulated as 

a layout of components as well as their functionality is to observe and collect information from 

the physics-bases models through their simulation. Thus, it is significant to have determined 

and specified the information to be collected from the model’s simulation with the purpose of 

using it in the algorithm of remaining useful life predictions. The utilization of virtual sensors, 

at each component and application of the model, rises the computational time of the model’s 

simulation. Finally, the modeling parameters are defined that will be utilized to upgrade the 

physical model, based on the sensor and controller information. These parameters are 

modifiable and will be linked to the synchronized simulation tuning with an objective to modify 

the attitude of the machine’s model with its real machine. 

2. Tuning the physical model 

The second stage is to leverage two-way communication in order to synchronize the real and 

digital twins. While the simulation of the equipment model is applied for its RUL calculation, 

the equipment model must be tuned constantly to prevent feasible variation between its real and 

simulated functionality. The main purpose of this step is to recognize the DT of the real 

machines in the simulation circumstances. The most crucial stage in tuning the physical model 

is how the data can be monitored with the physical sensors as well as controllers. Based on the 

previous step, the modeling parameters constitute the base for the interpretation of these data. 

A data synthesis method can be used for both physical and computational reductions. Physical 

reduction is referred to the abundance of information that has to be synthesized (potential lack 

of information may happen) whereas computational reduction is referred to the computational 

time for the information synthesis. The purpose of the synthesized data is to tune the model by 

upgrading the modeling parameters.  

More precisely, the current information which is collected by the machine’s sensors and the 

controller can be used for two purposes. The first reason is to supply them as input in the digital 

model for the simulation of it and the second one is to compare them with the simulation’s 
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output. Consequently, a comparison between the current attitude of the robot and the anticipated 

one will occur. For recognizing the DT technique, the modeling parameters which already 

determined in step 1 are going to remove the error of this comparison had to be defined. Then 

periodical anticipation of the parameters modeling should be considered in the digital model. 

This tuning process is in accordance with the current machine’s element behavior with the 

estimated one. These comparisons are performed with the signals. Because the model is tuned 

and the modeling parameters are anticipated, the variation among the current and digital 

machine’s element performance is decreased. If this variation is less than the appropriate limit, 

the tuning process stops, and the new modeling parameters are achieved and given to the digital 

model. 

Another task that should be considered in determining the priority of the online real-time 

machine’s element tuning. Accordingly, the synchronized tuning of the simulation model is 

responsible for maintaining the accuracy of the DT accomplishment above 95%. On the 

contrary, it is not vital for all modeling parameters to be constantly upgraded.  

3. Digital twin operation 

The third stage contains the simulation of the physics-based model utilizing collected sensors 

and equipment controller data as input. The key intention of this step is the application of the 

DT. Thereafter steps 1 and 2 (modeling and tuning the machine through their operation), the 

next phase is allocated to simulation. The similar tasks that the actual machine has to implement 

are utilized as input to the simulation. These tasks are carried out virtually by the simulation 

software, and their results are utilized for each machine's remaining useful life computation for 

the RUL phase. The results of the virtually executed tasks are compared with the current result 

of the real machine operation and the output of this correspondence is used for the next step. 

4. Remaining useful life calculation 

The fourth stage consists of associating the simulation outcome and monitored equipment data 

to anticipate the equipment’s remaining useful life. The reliability factors of the equipment have 

been merged into its simulation models48,49. The elements of RUL are measured by analyzing 

the data collected from the controller, sensors, and the simulation of the machines’ physics-

based models. The model’s associated simulation enables the estimation of the system’s 

performance under various operational conditions. In addition, the digital models can be 

utilized for the simulation of the assets in the prospective based on the determined operational 

plan. The essential of DT emerges from the reality that the gathered sensor data are not usually 

sufficient for RUL estimation. The physics-based models can only extrapolate data using virtual 

sensors on the basis of a mathematical model of the machine. 



 

The supervised parameters can be associated with voltage, current, temperature, torque and 

power. They are collected directly by the controller, whereas the physical-based models utilized 

the virtual sensors as mentioned in stage 2. All these assessments are categorized and filtered 

for an individual time phase. The purpose of this classification and filtering is to prevent the 

random sudden alterations of the parameters which are not significant to the machine’s 

condition. The result of this step provides the computation of the machines’ component RUL 

through their operations.  

The remaining useful life estimation is based on the comparison of the anticipated behavior of 

the machine’s elements and the nominal conduct of the machine’s element. This analogy is 

according to signal comparison, especially with torque signal one. The process to predict the 

RUL for a machine’s element is to simulate the digital model continually, by considering the 

prospective operation plan of the actual machine and the degradation model of a physical 

phenomenon over a period of time as well as comparing the simulation result with the nominal 

output of the machine. Productive algorithms are utilized to handle and merge the collected 

information intending to provide the created data to the simulation software. These data are 

used as an entry for the simulation and the tuning of the simulation model48. 

There is a difference between time to failure (TTF) and RUL. The TTF is the amount of time 

left before a machine reaches a mechanical failure, while RUL is the amount of time remained 

before a machine fails to operate within allowable limits. The TTF can be computed always the 

feature value cross an individual value of interest known as the detection threshold. The TTF 

assessment is set to zero prior to the feature value cross the detection threshold. Thereafter 

threshold is crossed, the TTF will be achieved. The TTF calculation is the variation between 

the actual time step and the time of the estimated threshold crossing. The RUL calculation is 

also similar to TTF, but instead of a failure threshold, an upper operating limit threshold exists. 

The figure below depicts the differences and shows the operating threshold of RUL is lower 

than the failure threshold. Therefore it presents the importance of RUL, because RUL supports 

to repair system prior to failure50,51 
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Figure 2-33. Difference between RUL and TTF 
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Chapter 3  

Drilling Mud Pump Common Malfunctions and 

Maintenance Approach 

3.1 Overview 

Reciprocating positive displacement pumps, also known as slush pumps or power pumps are a 

chief component of the circulation system. They are capable to supply a continuous flow rate 

of fluid regardless of the pump’s outlet pressure. Reciprocating pumps utilize fluid pressure to 

transmit power. The benefits of the reciprocating positive displacement pumps consist of the 

capability to pump high solid content fluids, to move the large particles, no difficulty in 

operation, reliability, operating during a broad range of pressures as well as flow rate by 

modifying the diameter of liners (compression cylinder) and pistons.  These kinds of pumps are 

categorized into duplex and triplex pumps.  

Two kinds of piston strokes exist for the reciprocating positive displacement pumps, the single-

action piston stroke, and the double-action piston stroke. The single-action stroke has three 

cylinders known as the triplex pumps (Figure 3.1), while the double-action type (Figure 3.2) 

has two cylinders, known as duplex pumps. In general, two duplex pumps can perform the job 

efficiently for uncomplicated drilling applications; however, the triplex pump is the most 

efficient with complex well trajectory designs and increased pumping requirements.     
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Figure 3-1. A triplex mud pump (B.GUO, 2011) 

 

Figure 3-2. A duplex mud pump (B.GUO, 2011) 

Triplex pumps are more compact and lighter than duplex ones, their output pressure pulsation 

is not as tremendous, and they are cheaper in comparison with the duplex pumps. Accordingly, 

the most recent pumps being placed into operation are of the triplex design. In general, the 

duplex pumps can manage higher flow rates while the triplex pumps can supply with higher 

working pressure. On the other hand, for all of the mentioned pumps, the flow rate and working 

pressure can be modified by changing the sizes of the liners inside the pump. Normally, two 

pumps can be operated at shallow depth for high flow rates and only one can be utilized for the 

deeper sections. Advanced drilling rigs on the contrary have four pumps, three of them working 

in parallel meanwhile one is on standby. On a particular occasion, the fourth pump is also 

utilized as a riser booster pump, such as in offshore drilling, to support the movement of cuttings 

in the annulus. The pump on which this study focused is the triplex pumps. The following 

section is going to explain more about mud pumps components in general6,52. 

3.2 The Key Mud Pump Components 

There are two main principal sections to drilling mud pumps, the power end, and the fluid end. 

The power end part takes the input power, generally over a driveshaft, and transforms it into 
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the reciprocating motion required for the pistons. Furthermore, it uses a crosshead crankshaft 

for this transformation. The fluid end section, which consists of valves, pistons (or plungers), 

and liners, is the division where the actual pumping occurs. The fluid end part is in direct contact 

with the drilling fluid. The below figure illustrates the plan view of the triplex mud pump. 

 

Figure 3-3. Cross-sectional view of the triplex drilling pump  

3.2.1 Crankshaft 

The crankshaft is a shaft driven by a crank mechanism, consisting of a series of cranks and 

crankpin which converts the reciprocating motion to rotational motion. Additionally, converts 

the energy that applies in the pivot point and distributes equally to the center point. It is made 

of cast alloy steel and furnished with herringbone gear. The power balance crankshaft decreases 

vibrations and noises and leads to extend the life of the bearings and crankshaft (Figure 3.4). It 

supplies the axis of rotation, or oscillation, of components like gears, pulleys, flywheels, cranks, 

sprockets, and the like and controls the geometry of their motion and is supported by 

bearings53,54. 
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Figure 3-4. The triplex pump crankshaft (indiamart.com) 

3.2.2 Fly-wheel 

The fly-wheel is a big disk with teeth that act as an internal wheel. It is massive to provide 

energy for pistons and is mounted in the crankshaft (Figure 3.5). 

 

Figure 3-5. Flywheel ring and fly-wheel (Dezhou Rundong Petroleum Machinery Co., Ltd, 

whitestar.com) 
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3.2.3 Con-Rod (Connecting Rod) 

The  Con-Rod transfers the rotating force of the crankpin to an oscillating force on the wrist 

pin. In addition, it supports avoiding side forces in the cylinder and is furnished with roller or 

ball bearings55. 

 

Figure 3-6. The Connecting Rod (M.Stewart, 2019) 

3.2.4 Crosshead 

The crosshead which is known as X head or universal joint, is used to withstand the side forces 

(Figure 18). The flange bolts with pinhole fit are utilized for connecting the crosshead to the 

extension rod. This rigid connection secures the concentricity of the extension rod and 

crosshead (Figure 3.7). 

 

Figure 3-7. Cross head assembly (Dezhou Rundong Petroleum Machinery Co., Ltd) 
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3.2.5 Pony Rod 

The pony rod is the connecting rod that comes from the crosshead and supports to transform 

rotating energy to linear energy. It locates below the polished rod and is used to make a rod 

string of a desired length , and connected to the piston rod. 

 

Figure 3-8. Pony rod (Hebei petroleum machinery.co) 

3.2.6 Piston Rod 

The Piston rod known as the piston pull rod, is the essential accessory for the connecting the 

power end and hydraulic end of mud pumps. The piston pull rod is a vulnerable component of 

the drilling pump. The bottom end (large end) of this piece, is connected with the power end of 

the pump within the clamp and the smaller part of it is connected to the piston that carries in a 

reciprocating direct line in the cylinder liner to generate pressure. 

 

Figure 3-9. Rods assembly (texstarep.com) 

3.2.7 Piston, Liner, and Valve 

The piston moves forward and backward in its liner, applying a force on the cylinder chamber. 

Throughout the backward movement of the piston, the valve is opened and allowed the drilling 

fluid to be drawn into the cylinder. Thereafter the piston has completely retracted, it is pushed 

back into the cylinder. In the meantime, the inlet valve is closed and the exhaust valve open, 

letting the piston push the drilling fluid out of the cylinder under pressure. When the piston 
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attains to its maximal depth of the cylinder, the exhaust valve closed and the process continues 

again and again. 

 

Figure 3-10. Common liner types for pumps (Lakepetro.com) 

Liners are always locked in place with metal contact, especially for high-pressure mud pumps. 

The liner packing is modified individually via set screws on a liner packing cage. In order to 

control the proper functioning of the packing, special tell-tail holes type can be used. In case 

the drilling fluid drips out of these holes the liners packing should be tightened. The middle of 

stroke is mostly faced with wear and it is result of the highest piston velocity in that point. The 

highest permissible liner wear relies on the pressure the pump has to overcome. The piston 

bodies have been produced with an individual tell-tale wear groove in order to support the 

piston wear. 

 

Figure 3-11. The triplex mud pump pistons (texstarep.com) 

Valves and seats can be categorized into three main groups. The first type is known as the full-

open valve which is considered as the high performant type of valve and its seat has a fully 

open construction, without the support webs present at other types of valves. The pressure is 

equally spread on the tapered surface of the valve, therefore decreasing the appearance of valve 

seat wear and rising the valve assembly life. The second type is known as the Four web valve 

that is suitable for low and medium pressure range operations. It has center guide construction 

as well as provides a large bearing area for the valve that increases its operation life. The last 

valve type is called the Three web valve. It is the most well-known valve type in the oil sector 

and uses in a wide range of drilling projects. This valve type has a centered guide construction 

and provides support during pressure application for the valve body56. 



 

58 

 

 

Figure 3-12. Valves and seats (texstarep.com) 

3.2.8 Pulsation Dampeners 

Since the pressure and the material are being pumped, most mud pumps can create high amount 

of friction and vibration. The pulsation dampener is used to create a more efficient suction 

process into the pump. It is filled with a little airth low pressure and has a rubber blader with 

air (Nitrogen gas) above it which reduces a surge in flow. It can be installed on both the suction 

and discharge sections of the pump. On the discharge face, it installs on the cross among the 

pump and the vibrator hose, that moves mud from the pump to the standpipe on the drilling 

mast. 

 

Figure 3-13. Pulsation Dampener (Hebei petroleum machinery.co) 

3.2.9 Vibrator Hose 

The vibrator hose is a flexible hose assembly utilize to conduct high-pressure drilling fluids 

among two piping systems or among the mud-pump discharge outlet and the high-pressure mud 

piping system in order to mitigate noise, vibration, or compensating for misalignment as well 

as thermal expansion. 
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Figure 3-14. Vibrator Hose (Hebei petroleum machinery.co) 

3.2.10  Pop Off Valves 

The pop-off valves are designed to support against overpressure from the pump supply in the 

flow line. It is located over the mud pump near to discharge damper and will be opened at a 

preset pressure. It exists in two structures, needle and spring formats.  

 

Figure 3-15. Pop off valve (rrvalve.com) 

3.2.11 Pulley 

The pulleys or sheaves are designed to connect pumps to diesel motors by V-belts, which 

transmit the required horsepower to the pump. 
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Figure 3-16.  Pulley or sheave (Robust.com) 

3.2.12  Bearings 

There are four crucial bearings used in the triplex mud pumps. Main bearings (used in the 

crankshaft support), pinion bearings (input), wrist pin or crosshead bearing (connecting rod, 

small end) and eccentric bearings (connecting rod, small end). In a triplex mud pump design 

the load is changing in direction, while the in the single-acting type the load is consistent in one 

direction. Therefore in the triplex pump, two separate load zones are existed in the outer race 

of the connecting rod bearings, as significant connecting rod load operates in two directions. 

The crankshaft main bearings are mostly the tapered roller bearing which is simple to install 

and perform well in tough conditions. The TDO (two-row double outer race) and spherical 

roller bearings are mainly used for crankshafts that in the spherical roller type a brass cage 

model has high strength and high durability in comparison with a steel cage. The Pinion 

bearings (input) are faced with the highest operating speed in the mud pumps and the spherical 

or roller bearing types are common bearings in for them. The next bearing model is the 

Crosshead bearing (connecting rod small end) which is installed on the shaft as well as in the 

housing in order to achieve a very low radial internal clearance in the installed position. The 

two-row HJ heavy-duty cylindrical bearing type is utilized as the crosshead/wrist bearings. The 

last bearing type in this classification is the Eccentric bearings (mounted on the connecting rod 

large end). They are the largest bearing in the mud pump which four-flanged locating-type 

cylindrical roller bearings are used in this section. 
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Figure 3-17. Main bearng types in mud pumps (R. Yorty, 2020) 

3.3 Pump Performance Characteristics 

The four fundamental parameters in pump performance are Power, Head, Flow and Efficiency. 

The below table represents basic terms and units in pump performance. It is commonly suitable 

to utilize monometric terms for the head as well as volumetric terms for flow. This is due to the 

fact that the same head-flow curve applies to fluids in a range of temperatures (without 

considering the consequence of viscosity). As for the power-flow curve, it will be changed in 

direct relation to the fluid density. These four fundamental quantities are achieved by this basic 

equation while efficiency can be measured directly57: 

                                     

𝜂 =
𝑄𝜌𝑔𝐻

𝑃
                (1) 

 

The main parameters that have direct impact on pump performanc are given in the following 

table and figure 3.18 illusrates the genericperformance curve of the pumps. 

 

Pump power output 

Pump power input 
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Quantity Other terms used Symbol Units Other units 

Flow Volumetric 

flowrate, Capacity 

discharge, Quantity 

Q m3/s, L/s, m3/h, 

ML/d, Sometimes 

kg/s 

IGPM, USGPM 

Head Total head, Total 

dynamic head, 

Generated pressure, 

Generated head 

 

H 

 

m, kPa 

 

Bar, ft, psi 

Power Power absorbed P W, kW hp 

Efficiency  η Decimal % 

Table 4. Basic terms and units in pump performance 

 

Figure 3-18. Pump performance curve (E. Shashi 2005) 

One of the main features which can be measured in the condition monitoring of mud pumps is 

pump efficiency. Declining efficiency can represent itself through increasing cycle times; 

specifically machine slow down.  In general, mud pump efficiency can be classified into three 

groups. Volumetric efficiency, mechanical or hydraulic efficiency and overall efficiency. 

Volumetric efficiency is mainly dependent on the valve’s condition and is defined as the 

measured output volume to the theoretical output volume. The theoretical flow or volume is 

Head 

Head 

Efficiency % 

Power 

BEP H 

Q 

Flow rate (capacity) 
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computed by multiplying the pump’s displacement per revolution by its driven speed. 

Deteriorating of volumetric efficiency is strongly caused by the delay in valve shutdown. 

During the backward plunger motion the valves are not entirely closed, as a result, the mass 

inertia of the valves, and some amount of drilling fluid have the possibility to flow back. By 

means of volumetric efficiency, the crews on the drilling rig can analyze the condition of mud 

pump in case of internal leakage through wear or damage.  Additional reasons for decreasing 

this type of efficiency can be: leakage losses between piston and liner, leakage losses suction 

lines, gas or air absorbed in fluids and leaking in the of stuffing box58. The actual flow can be 

measured with various techniques and devices such as orifice plates, withdrawable double-tip 

pitot tube devices, ultrasonic flow meters. But one of the practical techniques for identifying 

the volumetric technique is pumping a specific amount of liquid from a tank to another and 

compare it via the theoretical volume measured from the number of strokes made. This process 

should be implemented during pumping through the well at a realistic rate to make sure the 

pump is delivering against pressure. The ideal time for doing this technique is when circulating 

prior to running casing and cementing. Generally, a triplex pump has  higher volumetric 

efficiency in comparison with a duplex type57. 

Hydraulic/mechanical efficiency is attained from the theoretical torque needed to drive it 

divided by the actual torque needed to drive it. A 100% of hydraulic/mechanical efficiency 

means, when the pump is delivering the fluid at zero pressure, no torque or force will be needed 

to drive it. Instinctively, it is not feasible, because of mechanical and liquid friction. Torque is 

one of the crucial parameters of key performance indicators. For example, a progressive 

increase in a pump’s torque may consequence of increasing flow to reimburse for growing 

leakage; an abrupt increase can be the result of a blockage downstream of the pump, whereas 

an abrupt decrease can indicate an upstream blockage.  Torque can be measured with different 

tools such as dynamometer (determine torque and power required to operate a pump) and toque 

sensors which can provide real-time pump performance data. The torque sensors evaluate the 

twist in real-time and its electronics change the reading into a torque value59. Overall efficiency 

is achieved from volumetric and hydraulic/mechanical efficiency. It is utilized to measure the 

drive needed by a pump at a given flow and pressure. For example, if the volumetric efficiency 

of a triplex mud pump is 95% and hydraulic/mechanical efficiency is 91%, the overall 

efficiency will be 86.4% (0.95*0.91*100=86.4%). 

3.4 Common Mud Pump Physical Damages 

This section is allocated to the technical problems and their solutions, which directly and 

indirectly impact the NPT and HSE aspects of the drilling operations. This information was 

collected from a different maintenance and technical reports from onshore and offshore drilling 
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rigs for the reciprocating positive displacement pumps (triplex models). The majority of 

accidents occur in the following main groups: 

3.4.1 Failure in Pulley and Groove of Pulley 

Throughout the drilling operation, when the driller observe the stork per minute (SPM) of the 

mud pump is decreasing and the V-belts are noisy as well as begin to stretch and slip on pulleys 

with making a high amount of smoke, noise and vibration. In this case, the temperature has to 

be checked on both electric motors (A and B) on the sprocket ends. If there is a temperature 

variation between A and B, that means there is a possibility of a defect on the pinion drive shaft 

pulley. Therefore, the side belt guard of the mud pump should be removed and controlled by 

supporting links of the pinion drive shaft pulley (sheave).  

The reason can be originated from existing of crack or fracture on the sheave. Moreover, the 

crack can be developed and oversized which leads to the eccentricity and belts vibration during 

pump operation (Figure 3.19). Thereafter observing the failure in the pulley, the new items 

(pulley and V-belts) should be assembled. There are two possibilities after this maintenance. In 

the first one, the SPM increased and operated normally. 

 

Figure 3-19. Failure in the pulley due to a developed crack (R.Khademi, M. Makvandi, 2014) 

As for the second possibility, if the pulley was changed and the SPM increased at the beginning, 

but the V-belts started to slip, make noise and after somewhile SPM decreased again and the 

temperature of new pulley increased gradually. Then the maintenance team should inspect 

pulleys for any indication of abnormal wear (maybe there is a defect or pitting on grooves of 

the pulley). The main reason for these failures comes from low-quality material that used for 
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manufacturing pump components. After replacing the new item the SPM shuold be increased 

and pumps operated normally.  

 

Figure 3-20. Pitting defect on the groove of pulley (R.Khademi, M. Makvandi, 2014) 

In case the temperature of the new pulleys and V-belt increased with operating time, they can 

lead to slip and produce noise again. To avoid more damage, the drive between the mud pump 

and DC motors from V-belt can be changed to multi-chain drive. The replaces components 

consist of electric motor drive and pinion drive shaft sprockets and drive chains. 

3.4.2 Failure of Bearing Carrier Bolt 

Breaking or cracking the bearing carrier bolt in the crankshaft start with the loud noise. In this 

case, the mud pump has to be shut down instantly. Because it can damage crankshaft, main 

bearings, crossheads, crosshead pins. This failure‘s condition can happen in pump power end 

main parts involving main bearings, main bearing carrier bolts, connecting rod bearings, 

crankshaft, crankshaft gear as well as pinion gear. 

3.4.3 Failure in SCR 

The power generators used in drilling rigs are configured with the diesel-AC generators and the 

Silicon Controlled Rectifiers (SCR). On the DC drilling rigs, DC traction motors are controlled 

by SCR and the AC (alternate current) is generated by AC generators which are converted to 

DC (direct current) with a SCR system. The electrical controls are supported the electrical 

motors through variable speeds. The existence of this variable speed can assure different flow 

rates in drilling operations to compensate for downhole conditions and hole size. The 

malfunction in the SCR can increase the temperature of the motor and also caused the traction 

motor to generate loads that will be carried to the pump input shaft. Therefore, SCR should be 

replaced with the new one5. 
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3.4.4 Failure in Valve 

The mud pump valves are produced in various constructive forms, which have a significant 

effect on their wear resistance as well as their service life. Erosive wear of them have direct 

influence on the proper operation of the other pump components that can lead to mud pumps 

failure. The erosion in the valves is indicated with a delay between piston and cylinder and 

damages the suction and discharge valves. It is not simple to identify the appearance of wear to 

suction and discharge valves. They can be determined only in a final stage of deterioration, 

when keeping constant the discharge pressure becomes difficult. In this case, the pump should 

be stopped instantly and the broken valve should be replaced. Listening to the unusual noise is 

used as an approach (health stethoscope and mini microphones) for evaluating the valve’s 

condition. The main reason for the erosion of valve assembly (Figure 3.21) is the high operating 

pressure. The abrasive drilling fluid, including solid particles and debris, is circulated at high 

pressures and velocities which can damage all the mud pump parts56,60.  

 

Figure 3-21. Valve and seat failure due to high operaating pressssure and abrasive drilling 

fluid (V.Ulmanu, 2016) 

3.4.5 Failure in Piston 

The main component of a mud pump that ensures mud circulation is the piston; however, the 

main reasons for failure in the fluid end section are caused by piston’s wear as well as piston’s 

sealing failure (due to the operations under complex and harsh working conditions). Therefore, 

the abrasive drilling fluid simply enters the kinematic pair of the cylinder liner, abrading the 

piston surfaces and decreasing its service life and drilling performance. As a result, it is vital to 

improve the contact sealing and wearing-resisting performance of the mud pump piston. 

One of the solutions for increasing the sealing efficiency is using nonsmooth surface structures 

that can enhance the mechanical sealing performance. This sealing structure can be considered 
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as the radial labyrinth-like or honeycomb-like surfaces which increase the performance of gap 

sealing. The piston with groove structure has higher sealing effiiciency in comparison with the 

normal one. Because machining a groove-shaped multilevel structure on the magnetic pole will 

prevent the magnetic fluid gradually and slow down the passing velocity, thereby creating the 

sealing effect. The following figure illustrates both normal piston and nonsmooth piston. 

 

Figure 3-22. A Standard piston  , B Striped piston (Q. Cong, T. Gao, 2019) 

The piston assembly comprises piston core, rubber, circlip, pressure plate et cetera. The piston 

core is produced from 42CrMo, and the material of the piston rubber is nitrile rubber or 

polyurethane rubber. A specific type of piston rubbers must be used for different drilling 

conditions. The ideal piston rubbers must have excellent wear resistance, chemical resistance, 

high tensile strength, and long service life in their drilling working environment. For instance, 

in ordinary drilling environments pressure and temperature (below 20Mpa and 120 °C) the 

nitrile rubber is proper, while this nitrile rubber is not suitable for drilling operations which 

have pressure and temperature more than 20Mpa and 120 °C, respectively. Therefore for the 

pressure up to 35 Mpa, polyurethane rubber is more efficient. As for the high-pressure, high-

temperature (HPHT) and high sulfur content well, the hydrogenated nitrile rubber has great 

performance. Because the other rubber types will damage under HPHT conditions as well as 

the action of hydrogen sulfide, carbon dioxide, methane, steam and acid, but hydrogenated 

nitrile rubber has great performance in pressure and temperature up to 75 Mpa and 150 °C61,62. 

3.4.6 Failure in Crosshead Bearing 

The sign of this failure begins with smoke and knocking sound from crosshead which generated 

heat, smoke and unnormal noise. The reason comes from the wiper rubber’s seal failure. 

Because when the washout wiper seal occurs, the wiper seal fails in holding the liner water 

from entering the pump chamber. Consequently, the oil used for the lubrication was polluted 

by water and it leads the lubrication to underperform. Lubrication is a significant parameter for 

reducing friction, dissipating heat and inhibiting corrosion on balls and raceways. Another issue 

that intensify this failure is the coarse materials from drilling fluid. The abrasive particles in 
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mud can broken the wiper rubber when the screen for filtering the coarse materials from the 

mud fluid was not the real screen as should be based on the pump manual.  

 

Figure 3-23. Consequce of washout wiper seal on the crosshead bearing (A.Samuelson, 2020) 

The solutions for the wiper rubber seal washout are: first, using the suitable seal rubber for each 

specific drilling condition, i.e. Nitrile Rubber seals has good performance with a temperature 

range of -40 °C to 121 °C, while Nitrile rubber is caused washout in the HPHT drilling and 

Viton rubber seals must be used in there. The Viton rubber seal temperature range is from -23 

°C to 315 °C. The second solution is taking Standard Operation Procedures (SOP) or manual 

of mud pump into consideration for utilizing proper and standard screen for filtering the coarse 

materials63. 

3.4.7 Failure in Pressure Gauge 

Due to the pulsation of the effect of drilling fluid in the pipeline, the pressure gauges can be 

prematurely worn out. This problem impacts the accuracy of its readings. Moreover, the wrong 

and unprecise pressure indication, especially when the pressure increased. This issue can 

damage the valve couples, valve spring, pistons, the gate valves on the discharge line, failure 

in downhole motors well as drilling bit and so on. In order to overcome pulsation’s negative 

effect and equalize the flow rate in the injection line, pneumatic compensators are a constructive 

solution. If the pressure in the pump's discharge line is higher than the pressure inside the gas, 

the pneumatic compensator acts like an air cap. 

3.4.8 Failure in Discharge Line 

The status of the discharge line from the riser to the pump outflow must be rectilinear as much 

as possible or even without any sharp turns, should have slopes to assure that the mud flows 

from the entire line when the pumps do not operate. This issue is really noticeable in low-

temperature areas, due to freezing of the fluid remaining in the line can lead to its rupture when 
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starting the pumps. As for preventing this type of failure in the discharge pipe or pump, 

especially in case of pressure is higher than the allowable near the pump outlet, a plate-type 

safety device can be used. The groove of the safety plate must be directed towards the discharge 

of the fluid and the drain line from the  safety device conduct the fluid to the receiving tank. 

This type of installation excludes the workplace pollution in the pump room as well as injuries 

to crews from a direct impact by chemical solutions or fragments of the plate over its 

destruction64. 

3.4.9 Failure in Discharge/Suction Valve 

The most common failures in the fluid end subunit come from leaks. If the leaks are associated 

with the wear of the piston-cylinder interface the sign which represents damage is the pollution 

of water cooling the cylinder liners. The contamination in this case, can easily observe (it is 

apparent even if the damage is minor), because of working in the closed circuit the water returns 

to the cooling water storage. But the problem arises when leaks are related to both discharge 

and suction valves, because these types of wash-outs are not visible. These failures can be found 

only in the final stage of damage when it is completely difficult to maintain a steady discharge 

pressure. In this situation, it is vital to stop the pump and exchange the valves. The problematic 

matter for replacing new valve is which valve is damaged or which of them begins to 

malfunction. The experienced crews tried to evaluate the condition of the valves by the ear. 

This technique is inaccurate, unreliable and consists of comparing acoustical effects from the 

individual pump subunits at 15-minute intervals. There is another solution for this type of 

failure, which will be discussed in the acoustic emission technique setion. 

3.4.10  Failure in Lubricating System 

The main parameter in the power end section is to control the lubricating oil quality as well 

as the frequency of replacement is the parts least subject to impairment. The failure in the 

lubricating system can lead to malfunction in the gear transmission system. Because the gear 

transmission transferring the force from the elctrical motor to the pistons. The reason for this 

failure is either too low pressure on the oil pump or filter blockage. In case these signs 

happened, the pump must be stopped instantly65.    

3.4.11  Cavitation 

One of the key factors which reduced pump efficiency and caused excessive wear and damage 

to pump elements is cavitation. The parameters that can be related to this problem, like fluid 

velocity and pressure, can sometimes be assigned to an insufficient mud system design and/or 

the reducing performance of the mud pump’s feed system. The reasons for cavitation are related 
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to: inappropriate sizing of the charge pump, height or elevation change and useless elbows in 

plumbing from mud tank to mud pump, inappropriate plumbing size from charge pump to mud 

pump, insufficient suction as well as discharge dampening and so on. Various solutions can be 

considered for cavitation’s issues such as routine inspection and maintenance, using speed 

pressure sensors in the suction line to notify if the pressure falls below 30 psi, using 

accelerometers to identify minor changes in module performance and controlling the pump’s 

oil levels66. 

3.5 Mud Pump Failure Symptoms and Roots 

The Positive reciprocating pumps can usually resist more abuse and variations in system 

demand compared to other pumps; nevertheless, they should have a steady supply of relatively 

clean liquid to operate correctly. The inlet and discharge valves utilized to handle the pumping 

function are weak links in the mud pump's design. The most repetitive failures come from the 

valve’s malfunctions. Most of the time,  fatigue is the main reason for valve failure. The only 

constructive way to minimize or avoid these failures is to ensure that the right maintenance is 

regularly implemented on these elements. The common failure modes in the mud pumps are 

represented with different signs and problems such as: no liquid delivery, insufficient capacity, 

short packing life, high wear in fluid end and power end sections, extreme heat in the power 

end components, inordinate vibration and noise, strong knocking, motor trips and so on. In the 

following section, the main reasons for each of these indications will be mentioned31. 

3.5.1 No Liquid Delivery 

• Excessive suction lift 

• Non-condensables (air) in fluid 

• Insufficient suction pressure 

• Impediments in lines 

• Supply tank is empty 

• Valves, seats, liners, rods or pistons are worn out 

3.5.2 Insufficient Capacity 

• Broken valve springs 

• Cylinders are not filling 

• Excessive suction lift 

• Low volumetric efficiency 

• Non-condensables (air) in fluid 

• Insufficient suction pressure 

• One or more cylinders are not operated 

• Incorrect pump speed 

• Pump valves stuck open 

• Leaking in relief or bypass valve 
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• Scored piston or rod 

• Valves, seats, liners, rods or pistons are worn out 

3.5.3 Short Packing Life 

• Abrasives or corrosives in fluid 

• Cylinders are not filling 

• Improper packing selection 

• Low volumetric efficiency 

• Misalignment of rod or packing 

• Non-condensables (air) in fluid 

• Worn cross-head or guides 

3.5.4 High Wear in Fluid End Section 

• Abrasives or corrosives in fluid 

• Broken valve springs 

• Cylinders are not filling 

• Valves, seats, liners, rods or pistons are worn out 

3.5.5 High Wear in Power End Section 

• Overloading 

• Other mechanical problems such as wear, rusted and so on 

3.5.6 Excessive Heat Power End 

• Insufficent lubrication 

• Liquid entry into power end section 

• Other mechanical problems such as wear, rusted and so on 

• Incorrect pump speed 

• Worn cross-head or guides 

3.5.7 Inordinate vibration and noise 

• Broken valve springs 

• Cylinders are not filling 

• Drive-train problems 

• Gear drive problem 

• Insufficient lubrication 

• Non-condensables (air) in fluid 

• Impediments in lines 

• Other mechanical problems such as wear, rusted and so on 

3.5.8 Persistent Knocking 

• Gear drive problem 

• Loose cross-head pin or crankpin 

• Loose piston or rod 

• Other mechanical problems such as waer, rusted and so on 
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3.5.9 Motor Trips 

• Drive-train problems 

• Excessive suction lift 

• Insufficient lubrication 

• Misalignment of rod or packing 

• Non-condensables (air) in fluid 

• Impediments in lines 

• Overloading 

• Scored piston or rod 

3.6 Mud Pump Failure Contribution in NPT 

Technical failure is one of the main reasons for non-productive time , which has had a crucial 

consequence on drilling efficiency and well cost. By considering various NPT, drilling time 

analysis reports, maintenance reports, and downtime analysis reports from different dilling 

projects, mud pump failure has been the top NPT reasons (Figure 3.24). There is a primary 

difference between the productive time and the productivity of a mud pump that is used in NPT. 

The productive time analyzes the system is operating or not while the productivity evaluates 

how well the system is in operation. A mud pump which has sufficiently high productive time 

but unacceptably less productivity can still lose money for the company by taking longer than 

predicted to accomplish a drilling campaign. On the other hand, productivity identifies if the 

predicted amount of work gets done throughout the available productive time. 

 

Figure 3-24. NPT of drilling equipment (A.Samuelson, 2020) 

There has been another survey which also obtained data from the daily maintenance reports and 

drilling time analysis reports of nine wells drilled in Olkaria. In this investigation by using 

Pareto analysis, the root causes are discovered for downtime (the Pareto principle is a statistical 
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technique in decision making used for the choosing of the small number of tasks that create 

crucial overall concequences). Figure 3.25 demonstrates that poor maintenance has a significant 

impact on the downtime of these nine drilled wells1,68. The following section is allocated to 

the root causes of mud pump downtime in detail. 

 

Figure 3-25. Root cause analysis of equipment downtime (O. Otieno, 2016) 

3.7 HSE Risks Associated with Mud Pump Failures 

Based on different investigations regarding mud pump incidents, the main reason for most of 

them is the inability of crews to predict, eliminate or decrease the occupational risks in advance; 

however, it is always better to prevent an incident than to handle the consequences. Failures in 

mud pumps and deviations in technical procedures can lead to catastrophic outcomes related to 

human life and substantial financial losses of the enterprise. Additionally, the 96% of the jobs 

of personnel servicing drilling rigs are harmful or dangerous; therefore minimizing the incidents 

which originate from mechanical failure can create additional value from the HSE point of 

view. Throughout the operation of mud pumps, hazardous and harmful production parameters 

can influence crews, which are divided into physical, chemical, psychophysiological and 

biological parameters, which lead to occupational risks for drilling crews. The majority of 

accidents happen in the following main groups of negative parameters64,67. 

The functionality of plunger pumps is based on the kinematic features that are affiliated with 

an uneven supply of drilling mud and the consequent pressures, which leads to shocks in the 

discharge line, considerable structural vibrations, weakening, and rupture of the joints and 
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discharge line.  By growing the pressure above the admissible level results in rupturing the 

connections and the hydraulic components of the pump such as cylinders, air cap, discharge 

line, valves, expansion joints, and mud hose. In case the crews are in the danger zone, such 

incidents can coincide with severe or fatal incidents. 

The pulsation of drilling fluid in the pipeline, instrumentation (especially in pressure gauges) 

early wear out which has a direct impact on the precision of its readings. Flawless running of 

pressure gauges is one of the critical conditions for safety when mud pumps are under operation. 

These pulsations can increase pressure and leads to wear of the working surfaces of the valve 

couples of the pump, surface of plungers as well as valve spring. 

In the low temperature area, there is a possibility of freezing the fluid that remained in the 

discharge line from the riser to the pump outflow, this issue can lead to the rapture during the 

starting the pump. This can break the discharge line and the pump especially when the pressure 

is greater than the allowable near the pump outlet. 

In case the bottom hole pressure surpasses the static pressure of the fluid column in the 

borehole, oil and gas manifestations are feasible. Therefore, the ambient area of the pump room 

can be polluted by oil and gas components especially with explosive and toxic gases which can 

lead to the explosion and irreparable consequences. 

Thruoh mud pump operation, because of the abrasive action of sand in the drilling fluid the 

most hydraulic components of pump wear out quickly, that leads to disruption of the normal 

pump operation as well as a decrease in the flow of drilling fluid to the bottom of the well. This 

issue can create other negative consequences for humans and environment. 

There are additional issues that endanger crews in the operations is the moving parts of mud 

pump like pully, V-belt drive, crankschaft and the other heavy components. It may occur during 

hazardous operations for repairing and maintenance. For instance, when the hatches of the oil 

bath and chamber are not tightened, moving rotating components of the pump and during the 

fencing V-belt (if the belt is not too strong) there is a possiblity the belt can not withstand the 

load. Additionally, sometimes the crews have to tighten the stem seal of the stem with the sleeve 

by pressing the cover, tightening the nuts through the window of the bed. This issue can lead 

to incident due to pressing the crew’s hand with the cutter against the gland. Another topic that 

can be considered for the crews is during the use of electrical motors to drive mud pumps, 

insulated componets of electrical equipment in case of urgency can be stimulated, touching 

which becomes deadly if there is no or malfunctioning protective ground connecting the metal 

to the ground. 

The extra noise levels beyond the standards in accordance with GOST 12.1.003-83 in the pump 

compartment reaches up to 10 dBA, for vibrating screens (up to 18 dBA), which has a negative 
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effect on the human body and leads to weaken the hearing sense, negative impact on the general 

activity of the nervous, cardiovascular and digestive system, causes fatigue, reduced 

functioning and slowed mental reactions. There are other technical problems that can directly 

and indirectly impact the human as well as environment. In section mud pumps failures and 

solutions more cases will take into consideration64. 

3.8 PdM Techniques Application in Mud Pumps 

In predictive maintenance activities, condition-based maintenance is one of the most used 

techniques. It is an efficient strategy where maintenance is performed by observing particular 

factors or particular components of the mud pumps. The benefit of this approach is that the state 

of the mud pump is presented in real-time. Nevertheless, the mud pumps basically have a well-

defined operational curve by the producer; depending on the drilling conditions and the 

operational environment, it may undergo changes, resulting in failure. According to condition-

based maintenance, a broad range of factors can be monitored for predictive maintenance. 

Additionally, most failures already discussed in previous sections are affiliated with 

unacceptable vibrations, noises, temperature, lubrication issues, and corrosion problems. 

Therefore, a comprehensive PdM program has to include other monitoring and diagnostic 

methods. These methods include vibration analysis, acoustic analysis, lubrication oil analysis, 

thermography analysis, and ultrasonic and non-destructive testing techniques. In the following 

section most practical and effective analysis will be discussed. 

3.8.1 Vibration Monitoring 

Vibration analysis is one of the fundamental, predictive maintenance tools used for the last 

decades to monitor electromechanical systems. The mud pump vibration is mostly at its lowest 

level, if functioning at the best efficiency point (BEP), and can be doubled in magnitude as flow 

is decreased to 25% or so of BEP. This assumption is noticeable throughout the routine 

measurements as a range of vibration levels may happen although the pump internal condition 

is constant. In case the BEP in operation is not constantly possible, therefore a standard flow 

has to be considered for regular measurements, except a number of normal vibration levels in 

different flow rates are achieved and used as the information.  

The crucial quantities for vibration measurement are displacement, velocity and acceleration. 

Additionally transducer is used for acquiring accurate information over the mud operation and 

the accelerometers are the most typical tools for handholding data collectors or analyser. 

According to the physic’s laws, the low frequincies are the result of large displacement and 

small acceleration. While the high frequencies are from low displacement and high 

acceleration. During all frequencies, the velocity remaines unchanged. The place where the 



 

76 

 

vibration sensor is mounted is named as the reading point. The sensor can be installed in one 

or more directions or orientations.  

In the mud pumps, the reading point should be corresponded to the entry shaft where the 

sprocket is placed, both on the pulley side and the opposite, and on the crankshaft, where the 

gearwheel is located to measure on both ends. Moreover, for evaluating and monitoring pump 

vibration’s severity, the measurements with contact transducers are taken at bearings in vertical, 

horizontal (on the shaft centreline) and axial directions. In general, it can be 4 measuring points 

or bearing support as a minimum 2 on each shaft (8 radial measurements will be considered 4 

vertical and 4 horizontal) and 2 axial measurements on each shaft. The intensity and range of 

vibration are always expressed in: a.The frequencies up to 10 Hz is known for the displacement 

of low-speed machines, b. The frequencies between 10-1000 Hz are known for velocity which 

the majority of machines fit here and c. The frequencies from 1000 Hz onward are for 

acceleration. The table below represents the velocity span limits as well as machinery classes, 

based on  ISO-2372. 

Vibration is frequently a mixture of several frequency elements of variable amplitudes. These 

amplitudes are essential for a more accurate diagnosis of pump faults. The vibration amplitude 

is represented in the time domain. The Fast Fourier Transform or FFT spectrum is a practical 

tool for vibration analysis. The FFT spectra supports the user to evaluate amplitudes at different 

component frequencies on the FFT spectrum. Utilizing the vibration spectrum provides more 

perceptions about the reason for vibration57. 
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Table 5. Vibration severity range (ISO-2372) 

The vibration monitoring systems identify indications associated with certain problems 

occurring in the entire area of the mud pump, but it is complicated to determine with certainty 

the specific place of origin, even more so to recognize the component itself that generates an 

increased level of vibrations. Therefore vibration techniques must be used along with other 

predictive maintenance methods. 

3.8.2 Acoustic Emission Monitoring 

Acoustic emission (AE) is an approach that takes transient elastic waves created by the rapid 

discharge of energy from a particular source of energy. High-frequency elastic waves allow 

users to separate other signals from in the area devices. The drilling mud pump has a different 

AE source. The AE technique uses the piezoelectric sensor to capture acoustic emission and 

transmit them to the preamplifier to intensify the signal and send it to the SAEU2S AE 

acquisition box. The output of this monitoring will be in the form of an amplitude chart that 

oscillates in different ways and is then analyzed. As already discussed, the fluid end section in 

the mud pump is most subject to wash out, and it is not simple to identify in the early stage. 

The AE approach is an efficient technique to detect wear on the fluid end part. The Piezoelectric 
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sensors have suitable features for fault detection in the pump such as high detection distance 

capability (up to 300 meters), well sensitivity (20-20000 Hz and >20000Hz), less safety risks 

(long-distance detection as well as low voltage) and simple maintenance.The AE test can be 

implemented with some properties that are incorporated into a monitoring tool known as an 

electric audio module (EAM). EAM is worked base on the acoustic emission and compromise 

of Piezoelectric sensor, RCA cable, Pre-amplifier, Power supply, Driver amplifier, 

Loudspeaker, Jack audio 6.5 mm, Jack audio 3.5 mm and Interface cable DB25. The application 

of EAM is to monitor the development of waer in the fluid end part in advance with considering 

the safety issues.  

The acoustic emission elastic waves are not restricted to the audible domain, and the effective 

spectral span can extend to numerous or even tens of megahertz frequency span. The extension 

of elastic waves in mud pumps depend on the transition and reflection of vibration modules at 

the phase boundaries of real objects. The reason for the effect of frequency fluctuation is the 

alteration in the attenuation rate; Moreover, the friction node is another factor for these 

frequency changes which can be caused by tear, wear and tribological processes. Therefore, it 

can represent relevant diagnostic data. Any impairment to the tested pump creates a change in 

the AE elastic wave signal. 

The piezoelectric sensors are mounted in each bonnet valve module or placed in each mud 

pump module to find out abnormal noises. In order to minimize the scattering of elastic waves, 

silicon grease should be used (it acts as a coupling liquid between the sensor and mud pump 

housing). The installed piezoelectric sensors will identify oscillations from acoustic emissions 

that come out due to the drilling fluid and fluid end part in the mud pump module, thereafter it 

creates acoustic emission pulses in the piezoelectric and flows over the cable to the EAM. At 

the electric audio module, the emission pulses are regenerated into two outputs. The first output 

is achieved by laptop software such as sonic visualizer free (the linear programming output read 

on a laptop). The second one is in the kind of acoustic emission sounds which can be modified 

in volume and heard in headphones. 

The non-linear diagnostic technique is used for AE signal analysis. The two significant issues 

that directly impact the non-linearity behavior are elastomers and gases. Because in the solid 

material structure like metals, such as metals, the phenomenon of high non‐linearity is often 

related to degradation, the occurrence of cracks, any defect in the crystalline structure. In this 

case, local elasticity is various for stretching as well as compression, and associated non‐linear 

behaviors cause rising high frequencies of the harmonics. The same issues happen in the valve 

unit of the mud pump. The valve unit consists of metal and elastomer. Therefore, the non-

stationary and non-linear behaviors are obvious here. Based on these fluctuations, crews can 

diagnose the damage and its location. For instance, the following figures illustrate a 
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comparative evaluation of the signals from the proper operating of valve unit in mud pump and 

early-stage valve unit failure60,65. 

 

Figure 3-26. AE elastic waves comparison between the properly operating of valve unit (a) 

and early stage valve unit failure (b) 

3.8.3 Lubrication Oil Analysis 

Oil analysis provides another valuable source of data for early pump failure detection. Oil 

monitoring can identify oil condition degradation by defining the loss of additives or detection 

of contamination. Lubrication oil supports the mud pump by providing a protective layer 

between moving component surfaces in the power end section, to reduce friction and prevent 

the mating elements from seizing. Additionally, it cools the elements, prevents the corrosion of 

the metal component, keeps the mud pumps free of containment deposits. Alterations in the 

physical and chemical oil features change the properties of the lubrication oil that could lead to 

performance weakening. There are different lubrication oil analyses which can directly or 

indirectly monitor these properties. The crucial reasons for oil degradation are water 

contamination, oxidation and particle contamination. 

As for water contamination, the viscosity of oil decreases during the combination of oil with 

water. This viscosity reduction can lead to oil leakage or the degradation of layers among the 

metal parts, generating extra wear and friction.  Oxidation also has an impact on viscosity and 

causes the formation of wear particles which leads to damage of the mechanical system, in case 

they come into contact via the elements. In better words, the created wear particles can block 

the strainer or filter or oil holes which leads to lubricant starvation as well as mating element 

seizure. For the particle contamination, the metal debris due to wear and friction of parts, soot 

contamination and dust which can cause seizure of components (because of increasing the 

viscosity)68. 
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There are numerous specifications and techniques for testing lubricant wear debris. The normal 

and abnormal classifications are the common ones. While the normal wear proceeds, the portion 

of particles grows. By doing one of the spectrometry analyses, the ppm (present as parts per 

million) of elements can be found out. The larger particles of up to 50 micrometeres in size or 

greater are known as abnormal wear and are beyond the range of spectroscopy. The form of 

debris particles is helpful in the identification and diagnosis process. The screening technique 

is also a valuable approach for diagnosing the wear debries. The online/offline devices and 

carriable testers can be applied to evaluated iron particles in the oil sample. 

The acid digestion method is another technique to minimize larger particles which can 

implement with a patch test (combination of the microscope, ferrography and filtergrams) for 

purpose of facilitating larger particles to be seen. In the filtergram technique, the oil sample is 

taken from the pump. Then by using single-use laboratory plastic ware for passing the mixed 

sample over a fine filter paper, the sample oil is removed with solvent and the filter paper 

analyzed with a micrsocope to find out the particle’s size. The automatic inspection in this case 

can be done with computerized atlases. The cleaner lubrication oil leads to increase the life of 

beatings and other parts. The ISO-4406 categorizes the cleanliness of lubricants based on three 

code numbers from minimum to maximum size span. The minimum code numbers consist of 

low concentrations of particles in the oil (4,6 and 14micrometers). For instance, ISO code 

18/16/14 represents that the lubricant has 1300-2500 particles per milliliter ≥ 4 µm, for 320 to 

640 particles ≥ 6µm and from 160 to 180 particles ≥ 14µm in size. The table below summarises 

the main techniques for oil analysis.  

 

 Filter 

Inspection 

Magnetic 

Plug 

Inspection 

Magnetic 

Particle 

Detectors 

Spectrometric 

Oil Analysis 

Ferrographic 

Wear Analysis 

Filtergrams 

Wear 

Analysis 

Measurement of 

concentration 

 

Good 

Good-ferrous 

particles 

Good-waer 

particles 

 

Excellent 

Good-ferrous 

particles 

 

Good 

Particle appearance Good Good - - Excellent Excellent 

Size of distribution - - Excellent Fair Good Good 

Identifies elements Fair Ferrous only All particles Excellent Ferrous only Good 

Particle size range  

> 2 µm 

 

25-400µm 

 

1-80 µm 

1-80 µm (direct 

dilusion) 

 

>1 µm 

Widest (by 

choice of filter 
paper) 

 

Type of analysis 

 

In field, off 

line 

 

In field, 

on/off line 

On site, 

laboratory, 

off line 

 

Laboratory, off 

line 

Laboratory, 

off/on line, on 

site 

Laboratory off 

line, in field 

off line 

Table 6. The most common oil analysis techniques (S.Beebe, 2004) 
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As can be seen in table 6, each of the mentioned approaches can use in different conditions. 

The filter inspection can be used as a condition monitoring indicator for analysis while the 

magnetic plug inspection, use to identify abnormal wear. On the other hand, someones believe 

the screening technique is the best approach for magnetic particle detectors on site. 

Spectrometric oil analysis s a suitable approach to monitor normal wear. In addition to those 

approaches,  ferrographic wear analysis is the best technique to predict incipient failures. 

3.8.4 Thermographic Analysis 

The use of thermography has been expanding rapidly in various sectors of the oil and gas 

industry. The objective of the thermographic or infrared thermal analysis is to recognize areas 

where extra heat is being created which can lead to failure in the mud pump. The thermal camera 

scans the surface of the pump and represents the temperature profile in color scales. This 

analysis can identify thermal variations which can indicate issues like vale leaks, hot bearing, 

electrical faults, determining baseline thermal signatures for future trending, identify 

components suffering from drive shaft misalignment problems and so on. Each color indicates 

different temperatures in the monitoring. The following colors are related to the specific 

temperatures range: 

• Green color is from 10 ˚C  to 25 ˚C  

• Yellow color is from 25 ˚C  to 40 ˚C  

• Orange color is from 40 ˚C to 70 ˚C 

• Red color is from 70 ˚C onwards 

Figure 3.27 shows thermal imaging in the mud pump electrical cable. The right side cable does 

not carry the current to the mud pump and the whole current is passing through another cable, 

while the temperature in the left side cable is growing. 

 

Figure 3-27. Thermal imaging of the current in the cables of mud pump (rigtech.com) 

The key features that identify the performance of a modern thermal imaging camera are: 

• Temperature range 

• Noise equivalent temperature difference or NETD (the lowest temperature variation 

which can be determined by the thermal imaging camera) 
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• Field of view or FOV ( is defined as an angle and identifies the surface which can be 

captured with thermal imaging camera. It strongly depends on the lenses type) 

• Instantaneous Field of View or IFOV (evaluated the capability of a detector to illustrate 

the smallest details) 

• Instantaneous Measured Field of View or IFOV meas (represent the smallest object 

whose temperature is still to be accurately measured by an infrared camera)69 

3.8.5 Power Analysis and Electrical Testing 

The predictive maintenance approach in power and electrical engineering can be achieved by 

monitoring electrical parameters as well as evaluating installation (precise assessments of the 

quality parameters for the received and consumed power)69.To acquire the power absorbed by 

the pump, the efficiency of the motor and any gearbox or fluid coupling (from works test data) 

should be considered. It must be mentioned that the rate of analyzed motor current to the full 

load rated current does not associate directly with measured power, as no-load current should 

be known, e.g., 60% rated current is not 60% rated load57. Conventional electrical testing 

techniques should be used in conjunction with vibration analysis, in order to prevent the early 

failure of electrical motors. These investigations should consist of Resistance testing, Megger 

testing, HiPot testing, Impedance testing and other techniques.  

By utilizing ohmmeter resistance can be measured. It measures the current instead of resistance. 

The rate of current supplied by the meter is too low, normally in the range of 20 to 50 

microamperes. The meter functions by implementing its terminal voltage to the test point and 

evaluating the current in the circuit. Practically, despite resistance analysis is of limited value, 

several useful analysis may be applied. A resistance analysis will represent an open or close 

circuit. This indicates whether a break in a circuit existed or a dead short to ground existed.  

Resistance analysis will more frequently not identify windings that are shorted together or weak 

insulation and have restricted value for testing coils. It will distinguish an open coil, or a coil 

shorted to the ground. 

Megger testing is another technique for measuring high resistances via mega-ohmmeter. The 

difference between this instrument and ohmmeter is that instead of measuring current to 

identify resistance, it measures voltage (relatively high voltage, from 500 to 2500 volts). In 

general, this analysis is considered as non-destructive test and used to test the integrity of the 

insulation. This approach will not discover shorts between windings, but it can identify higher-

voltage–related issues in relation to the ground. 

High potential testing or HiPot testing is a destructive test. This test is used in order to identify 

the integrity of the insulation. The implemented voltage level in this kind of test is twofold the 
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rated voltage plus 1000 volts. This technique is principally used for purpose of the tool’s quality 

assuring. It should be notified that the HiPot testing does some damage to insulation every time 

it is implied, because of this reason it is not recommended for field use. 

Impedance test is another technique that can be used in electrical testing. It comprises two 

elements, a real (or resistive) element and a reactive (inductive or capacitive) element. This is 

a practical technique to detect serious shorting in coils, either between turns or to ground. There 

is no other non-intrusive approach to identify a coil that is shorted between turns31.  

Ultrasound inspection is another significant power and electrical analysis which is known as a 

practical non-destructive test. This technique can detect as well as isolate high-frequency 

sounds that are otherwise imperceptible to the human ear. It is applied to differentiate electrical 

discharge noises from ordinary sound patterns. Safety is enhanced in this technique due to 

inspection of the energized electrical equipment without having to open it up. The ideal practice 

is to utilize both ultrasound and infrared techniques together, because they identify various 

failure modes and together contribute considerable safety benefits. Infrared discovers 

resistance-based issues such as overheating fuses and insulation breakdown, whereas 

ultrasound identifies ionization-based issues such as tracking on loose and faulty connections 

in switchgear, tracking on transformer windings and cracked insulators70. There are additional 

techniques that can support PdM include eddy-current, motor current, signature analysis, 

magnetic particle, residual stress and so on that the ANST (American Society of Nondestructive 

Testing) has published a series of comprehensive handbooks for numerous nondestructive 

testing approaches.   

3.8.6 Performance Analysis 

Performance analysis requires performance data or replicable measurements, like pressure, 

temperature, flow, displacement, speed, power, and time. In this case, real-time monitoring has 

been facilitated the productivity and accuracy of the processes. Two significant parameters 

which support this technique from undesirable failures are stand pipe pressure (SPP) and flow 

rate. In other word, SPP is considered as the total pressure drop (because of fluid friction 

happened). SPP is measured by pressure sensor which is mounted at standpipe manifold. There 

are analogue and new generation pressure sensors. The analogue type comprises of a 

diaphragm, pressure transducer and hydraulic line while the new generation one consists of the 

strain gauge fixed to a steel plate (force summing component) for the purpose of pressure 

measurement at standpipe. SPP analysis can prevent liner failures in mud pumps or worn pumps 

packing71. 

Drilling mud pumps is worked at high speed of drilling fluid, including solid particles and 

debris which can cause of failure in pump components, especially in the pump valves. The flow 
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rate is calculated based on the SPM (number of pump strokes per minutes) and the pump output 

per stroke which dependent on piston characteristics, therefore, flow rate analysis can leads to 

prevention of mud pumps failure. The flow sensor is settled close to the piston of mud pump56.      

The other condition monitoring techniques by performance analysis in positive displacement 

pumps can be considered of relief valve setting, crankcase return flow, capacity tests, and 

thermodynamic method. Relief valve setting is used for keeping the essential pressure as the 

pump wears and the discharge relief valve should be modified. Its setting will therefore 

represent pump wear, in case it is feasible to observe and record it. In this matter of variable 

speed pumps, as with centrifugal pumps, increased speed for standard duty points to internal 

wear. As for the crankcase return flow, by increasing piston ring wear, the crankcase flow will 

be increased. Someone believed, a container has to be inserted by hand into the oil reservoir in 

order to gather this flow. For the purpose of removing this possible health hazard and difficult 

access, a tee piece and two valves can be used. They should be mounted in a way that the flow 

could be diverted into a measuring container external to the reservoir. 

In the capacity test, a flowmeter can be mounted in the return line between the relief valve and 

the return tank. The flowmeter will measure the flow rate at various pressures arranged by the 

relief valve’s setting. For some of the heavy oil installations, a quality volumetric flowmeter is 

sometimes arranged, and performance tests can be implemented. For the thermodynamic 

method, as wear progresses, running clearances will increase. Internal leakage over clearances 

is a function of clearance cubed. The increased clearance is led to a power loss and converted 

into heat. The higher pump pressure, the greater the temperature increase for the provided pump 

condition and efficiency57.  

3.8.7 Smart Pumping Technique 

More and more the operations, engineering, maintenance (OEMs), and operators of mud pumps 

apply advanced digitalization technologies to improve pumping system operation and 

maintenance. Among those state-of-the-art technologies, the combination of AI and DT creates 

a smart pumping concept. The capabilities of this combination are remote condition monitoring, 

diagnostics and serviceability, which leads to reducing pump downtime. Smart pumping can 

analyze and test optimization cases to fix operational problems as they occur and reduce them 

before costly breakdowns. The following points give more information regarding the smart 

pumping approach: 

1. Process Twin 

Digital process twins can maintain a pumping system’s commissioning costs and time to the 

lowest level, therefore proceeding to convey value throughout its whole life cycle. Experts can 
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perform dynamic process simulations during a diverse range of the system’s features. 

Simulations can consist of analyzing simple input/output or signal of the pumping process’s 

control to make sure its effectiveness, as well as logic, works correctly. Furthermore, they are 

capable to optimize the pumping operations and training crews with virtual commissioning 

simultaneously with the manufacture and other related groups to save time. 

2. Plant Twin 

By utilizing 3D engineering data (as-built documentation) digital plant twins can be represented 

as a virtual-reality viewer over a pump or pumping system’s life. Experts can analyze the 

instrumentation control and safety system (ICSS) ahead, in case of a single or more pumping 

system earlier than commissioning and startup. Additionally, a digital plant twin can be 

changed between 2D drawings as well as 3D representations with a centralized engineering 

information repository that leads to improvement of cross-discipline association, spare time and 

minimizes the mistakes and miscommunications. 

3. Intelligent Monitoring 

Throughout this stage, the pumping system is activated during a web-based analytics and 

visualization abilities that can comprise of: physics-based analytics of pump’s KPIs, checking 

the loop as well as alarm system operation, AI-based machine learning for monitoring and 

optimizing the functioning of pump system elements, periodical (daily, weekly and yearly) 

maintenance and operational KPIs and maintenance warnings. The real-time operational 

visibility and monitoring of the pump can be improved via visualization tools that represent the 

KPI trends, warnings and faults graphically. 

4. OEM Services 

Operations, engineering and maintenances of the mud pump and circulation operations bring 

immense experience from the design and engineering of their solutions. Despite the fact that 

intelligent monitoring can offer a practical intelligence derived from conditional monitoring on 

these pump system’s KPIs, an OEM’s in detail and cross awareness of their pumping instrument 

is still expensive. RSD or remote diagnostic services are based on an OEM’s engineering 

support the operations by identifying emerging performance problems before unexpected 

downtime or disastrous failures. Using AI technology support the operators to compare KPI 

information, like vibration, power, and temperature and so on to reference operating signatures 

to discover differences that could escape notice by crews72. 
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3.9 Additional Mud Pump Sensors 

In addition to the monitoring techniques that have already been discussed, other non-intrusive 

and intrusive sensors can be used in real monitoring as well as predictive maintenance for mud 

pumps. The most common types used for pump real-monitoring are Flow, SPP, Tachometer 

(also used for temperature analysis), and Stroke sensors. The combination of these sensors can 

be used for comprehensive predictive maintenance. Nonetheless, this thesis will only consider 

flow and SPP sensors for building the fault detection model because these two sensor types can 

identify wide ranges of pump failures. Table 8 summarizes the most common component failure 

that these sensors can identify. 

Sensor Failures 

Flow Valves, seats, liners, rods or pistons are worn out, excessive suction lift, 

volumetric efficiency, impediments in lines and leaking in relief valve or 

bypass valve 

SPP Insufficient suction pressure, , impediments in lines, leaking in relief valve 

or bypass valve, valves, seats, liners and rods or pistons are worn out 

SPM Piston or rod, One or more cylinders not operating, incorrect pump speed, 

misalignment of rod or packing and other mechanical problems (wear, 

rusted, etc.) 

Temperature Insufficient lubrication, bearing problem and overloading 

Table 7. Sensors for identifying the failures (R. Keith Mobley, 2002) 

 

3.10 Summary of Mud Pump Failure Symptoms and Roots 

The failures in reciprocating positive-displacement pumps can be from different sources and 

roots, but one of the primary reasons for most of the failures comes from inlet and discharge 

valve breakdown, these are the Achille’s Heel of mud pumps and are caused by fatigue. It is 

vital to follow the manufacturer’s instructions and use the most efficient maintenance strategy 

to minimize them31. Table 8 summarizes the most typical pump failure symptoms and their 

possible causes. 
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Abrasives or corrosives in fluid     •  •            
Broken Valve Springs   •    •      •      
Cylinders are not filling   •  •  •      •      
Drive-train problems             •    •  
Excessive Suction Lift •  •                
Gear Drive Problem             •  •  •  
Improper Packing Selection     •              
Insufficient lubrication           •  •    •  
Liquid Entry into Power End of Pump           •        
Loose Cross-Head Pin or Crank Pin               •    
Loose Piston or Rod               •    
Low Volumetric Efficiency   •  •              
Misalignment of Rod or Packing     •            •  
Non-Condensables (Air) in Liquid •  •  •        •    •  
Insufficient suction pressure •  •                
Impediments in lines •            •    •  
One or More Cylinders Not Operating   •                
Other mechanical problems (wear, rusted, etc )         •  •  •  •    
Overloading         •        •  
Incorrect pump speed   •        •        
Pump Valve(s) Stuck Open   •                
Leaking in relief or bypass valve   •                
Scored piston or rod   •              •  
Supply tank is empty •                  
Worn Cross-Head or Guides     •      •        
Valves, seats, liners, rods or pistons are worn out •  •    •            

Table 8. Common mud pump failure and causes 
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Chapter 4  

Mud Pump Failure Detection Model 

Development and Testing 

4.1 Overview 

As can be seen in the previous chapter, worn-out mud pump components, liner, packing, and 

valve failures are the most common breakdown reasons that can lead to other mud pump 

failures. This chapter will represent the approach and methodology for creating a model based 

on artificial intelligence techniques for detecting the symptoms of the mentioned failures at the 

earlier stage to avoid the total collapse of the mud pump, consequently reducing the NPT.  The 

Methodology is built in   MATLAB software environments using an integrated app ,  the 

Diagnostic feature app, and the Classification Learner app. To successfully achieve the 

objective of the developed model, two types of data are required:  a)  sensor data (SPP and Flow 

rate and weight on bit) before occurring of the failure and during the failure and b) the daily 

drilling reports (DDR), which will be used to precisely determines the time windows of the 

failure. The evaluation of acquired data will be based on the performance analysis point of 

view. Through this approach, performance data or replicable measurement sensor data are taken 

into consideration for training the MATLAB model. Figure 4.1 illustrates the main processes 

followed to develop the model. 
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Figure 4-1. the main steps to develop AI model 

The following points are going to give more information in further paragraphs regarding the 

methodology of simulation: 

• Required Data Description 

• Data Preparation  

• Condition indicators Identification  

• Models Training and Evaluation 

• Methodology Testing   

• Limitation 

4.2 Required Data Description 

Through this stage, collecting the pump data is vital to identify the information required to 

create the model. Data acquisition is one of the significant and primary steps for perceiving, 

sensing, and implementing any evaluation as well as interpreting mud pump failures. Because 

it is the process of getting signals from real monitoring or real conditions of the mud pumps 

and transforming them into the computerized value for further processing. The sensor data 

acquired from the drilling rig includes total depth, bit depth, rate of penetration, weight on bit, 

rotation per minute, torque, standpipe pressure, and flow rate. The sensor data represent the 

drilling progress and condition. Moreover, the data should illustrate the healthy and faulty 

condition of the mud pump. It is mandatory to use the sensor data allocated to a particular field 

for the same drilling rig and well configuration. 
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Figure 4-2. Data acquisition overview from the mud pump 

Figure 4.2 demonstrates the overview of data acquisition from the mud pump. In addition to 

sensor data, according to the daily drilling report, the time when the pump was failed obtained 

and recorded, then the corresponding data window from the real-time sensor data is extracted. 

In the following sections, both healthy and faulty behaviors are considered. Figure 4.3 shows 

different variables acquired from sensors that will be used in the next stages. 

 

 

Figure 4-3. Data acquisition from sensors 

4.3 Data Preparation 

During data preparation, the raw sensor data are prepared into a suitable form for further 

analysis and processing. Moreover, in this step, due to the possibility of uncompleted, 

inconsistent and imprecise (comprises outliers) information, preprocessing data is needed. As 

for the archived sensor data in this research, the WOB, SPP, and flow rate are the required data 

for simulation. Now it turns to preparing data (bringing the sensor’s data into a proper form) to 
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a format in which data can be easily extracted. Therefore in the current stage, the acquired data 

should be preprocessed by implementing the noise, outlier, and missing data removal 

techniques. 

In some cases, there is essential to reveal extra data that may not be visible in the original form 

of the data. For instance, this adjustment may contain modification of time-domain data to 

frequency-domain. This stage contains both healthy and faulty conditions.  

 

Figure 4-4. Preprocessing data based on their healthy and faulty status 

As can be seen in Figure 4.4, the data are categorized based on their operating conditions (by 

considering the DDR reports and the sensor data attributes). The operating condition is defined 

as the binary characteristic, fault 0 or 1. Fault zero represents the normal or healthy operation, 

whereas fault 1 is corresponded to faulty or pump failures (in this case there are four times of 

mud pump failure which leads to stop the mud pump operation). After that classifying the data 

into a useful format, the preprocessed data should be imported into the diagnostic feature app. 

From figure 4.5 can be observed, the selected parameters (WOB, SPP and flow rate) in this 

section should be changed from condition variable to signal variable type to represent the 

attribute of the data based on time and frequency domain. This app is able to develop properties 

and analyze potential condition indicators by utilizing a multi-functional graphical interface.  
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Figure 4-5. Importing the preprocessed data to diagnostic feature app 

 

4.4 Condition Indicators Identification 

In MATLAB, the PdM Toolbox lets the user create condition indicators using the model- and 

signal-based techniques. In this thesis, the signal-based approach has been considered. Before 

importing the preprocessed sensor data to the diagnostic feature app (figure 4.5), defining the 

faults as a condition variable item is necessary. Otherwise, the faulty operation cannot easily 

differentiate from the normal operation. In order to represent how the signals will change with 

time, signal trace diagrams should be generated. Moreover, those signals can also be 

demonstrated via the magnitude and phase as a function of frequency.  The following figure 

shows the peaks in the frequency information move left as the mud pump degrades; then, the 

peak frequencies can be considered as condition indicators. Figure 4.6 represents the main steps 

of transforming the raw data to the preprocessed data type.  

 

Figure 4-6. Overview of the identify condition indicators step 

For the next step, the signal trace diagrams should be grouped in the diagnostic feature app 

according to the pump failures. This step aims to determine condition indicators, properties that 
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attitude change in an expected way as the system degrades. These properties are utilized to 

distinguish between faulty and healthy operations. In order to differentiate diverse fault 

conditions or distinguish faulty conditions from healthy ones, features should be extracted (it 

is based on signal-based condition indicators). For instance, the mean value of an individual 

signal or its standard variation might change as system health degrades. Therefore in this stage, 

signal features will be extracted.  

 

Figure 4-7. SPP signal trace diagram 

Figure 4.7 and 4.8 represent the signal attributes of the mud pump for standpipe pressure and 

flow rate, respectively (signal trace diagrams for SPP and flow rate on 24 hours for various 

operational days). As can be seen in both figures, the five times pump failures are shown in the 

diagrams. The a. failure occurred a day at 05:15 am, and the pump was stopped for 30 minutes 

for repair. The b. failure is related to another day in which the mud pump was under 

maintenance from 08:15 am to 09:15 am. The c. and d. failures correspond to a single day, c. 

had been started from 08:00 am to 08:30 am, and d. had begun from 10:00 am to 11:30 am. 

After that, it is required to generate the time-domain diagram for further steps. 
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Figure 4-8. Flow rate signal trace diagram 

Since the time-domain features are inadequate to perform as condition indicators, the 

frequency-domain feature technique can be used with time-domain features. In MATLAB, the 

time-domain feature is essential for creating a feature table (for the ranking feature section). 

The frequency-domain feature technique gives cyclic fluctuations of the pump pressure and 

flow graphs that give us an efficient insight into how pressure and flow signals change under 

various fault conditions.  

 

Figure 4-9. SPP power spectrum diagram 

Then the results can be plotted to observe whether the features facilitate the diagnosis of 

different fault conditions. Signals which replicate intermittently in time are shown via a power 

spectrum as illustrated in Figures 4.9 and 4.10. Based on the Fourier analysis, any natural or 

physical signal can be converted into a value of discrete frequencies or the spectrum of the 
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frequencies throughout the ongoing range. The frequency domain illustration of the signal is 

sometimes easier to evaluate than the time domain diagrams (it is also more frequent in the 

vibration and acoustic emission techniques). The failure attributes in both power spectrum 

diagrams are shown according to the previous analysis. As can be observed from power-

frequency graphs the orange lines have an unusual trend which the system takes into 

consideration as the pump failures. 

 

Figure 4-10. Flow rate power spectrum diagram 

4.5 Models Training and Evaluation 

The key purpose of this section is to train the model to identify certain types of patterns. In the 

following step, the whole extracted features should be transferred to a table, in order to illustrate 

the computed featured data. As more properties are evaluated, more columns get annexed to 

the table. After that, the distributions of the feature values for numerous condition variable 

values, in this regard, fault class, the feature table will be represented as the histogram for the 

different features. They are categorized by fault. The further step has to identify which 

properties are more valuable for fault prediction. It comprises ranking and exporting the 

features. The software ranks the properties according to their importance based on the metric 

value. For the performance analysis technique, standpipe pressure and flow rate properties are 

more important for the ongoing trained model. In such a case, the root means square value 

(RMS) for flow signals and the impulse factor for SPP are the properties that most intensely 

recognize various fault types from each other (diagnosed by MATLAB). Thereafter prioritizing 

the properties based on their importance, now is time to train the model based on these 

properties. Figure 4.11 represents the most notified features. 
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Figure 4-11. Ranking features histogram 

Then, the top features that need classification should be selected and exported to the next stage 

for diagnosis of different faults (this will be done by the classification learner application). The 

classification learner app illustrates the scatter plot for a signal model based on the flow rate 

and standpipe pressure data (Figure 4.12 and Figure 4.13).  

 

Figure 4-12 SPP-Flow prediction scatter plot 

These scatter plots in classification application, are going to determine predictors that separate 

classes well by representing various pairs of predictors. Figures 12 and 13 demonstrate training 

information as well as misclassified points. In the app, the pressure and flow rate axis can be 
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changed. The X-axis represents the actual values of SPP and flow rate and illustrates the 

predicted values throughout the Y-axis. The orange and blue colors show both correct and 

incorrect values (correct values are illustrated by bullet shape, and incorrect ones are shown 

with cross sign). 

 

Figure 4-13 Flow-SPP prediction scatter plot 

After fulfilling the training, the classification learner listed each model based on the model 

number, besides the model accuracy as well as represents a confusion matrix (is one of the 

useful performing classifiers that can be trained via extracted features to evaluate the quality or 

the performance of the model) for the first model. The K-Nearest Neighbor which already has 

discussed in the second chapter can support this classification to reach an accuracy up to 90 %. 

To enhance the precision of the matrix, the number of features can be increased or use various 

frequency peaks or adjust the bandwidth.  
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Figure 4-14. Mud pump confusion matrix for healthy and faulty conditions 

By confusion matrix, the number of observations in both predicted class (row) and actual or 

true class (column) can be represented, or in the better word, the right and false classifications 

are filled into the table. Figure 4.14 facilitates the understanding of how the actual selected 

classifier acted in each class. Among these created models, MATLAB selected the model with 

highest accuracy automatically by itself and the represented confusion matrix is corresponding 

to the selected model. As can be seen in the confusion matrix (figure 4.14), the 50380 sensor 

records were predicted correctly by the model as healthy mud pump conditions. The second 

section shows the 188 sensor records were related to faulty conditions but wrongly predicted 

as normal pump operations; moreover, the 581 sensor records were related to healthy 

conditions, but wrongly estimated as the pump’s failure. The last section is related to the 686 

sensor records which were estimated correctly by the model as faulty states. 

4.6 Case Study 

The data used in chapter 4 is related to a drilled well in North Africa. The model is also trained 

with sensor data from six drilling operation days (24 hours operation) which mud pump failures 

occurred on three different days. During these periods four pump breakdowns happened. The 

other 3 operational days data are corresponding to normal drilling activities without failure. To 

enhance the quality and accuracy of the simulation, the operational days which do not have any 

failure were also taken into consideration. The healthy operational pump data trained the model 

for normal operation at different depths and other parameters. The healthy pump data used in 
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this model training are related to the day before, and after failures; the reason for that is to 

observe the deviation from normal attributes. 

The last step in this methodology is to place the trained ML model into the cloud or on the edge 

or end device where it can be utilized for its further purpose. In case there is no internet 

connection, the algorithm can be run on inserted devices that are near the mud pump. The 

combination of cloud and embedded devices are feasible (the preprocessed and data extraction 

stages are on the edge device and transferring the extracted properties to the prediction model 

that runs on the cloud).  

In order to verify the accuracy of the model via new sensor data and validate whether the trained 

model works properly or not, a new data set belonging to the same drilled well should be used. 

For this purpose, the trained model should be exported to the new workspace (in this stage 

MATLAB will generate a code as well as the related prediction function for the trained model). 

It is required to modify the input name of the prediction function in the newly generated code 

and write a code to read the new sensor data for the trained model. Then the new mud pump 

sensor data will be imported for evaluation (the new sensor data was related to the 24 hours 

normal drilling operation). The following points represent the key steps in the generated 

MATLAB code: 

• Creating an input table with the new sensor data 

• Taking WOB, SPP and Flow as the predictor variables 

• Response to failure 

• Train a classifier (all classifier options should be specified) 

• Create result struct (by predict function) 

• Add additional fields to result struct 

• Extract predictors and response 

• Perform cross-validation 

• First output, Compute validation predictions 

• Second output, compute validation accuracy 

Figure 4.15 represents the trained model has 98% accuracy with imported sensor data. At the 

end, when sensor data is run or used in the trained model, the user can observe whether the 

input data is healthy or faulty. 
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Figure 4-15. Trained model validation 

4.7 Limitation 

The main limitations of the developed model are summarized in the following points: 

• Since the model relies on a binary classifier algorithm to differentiate between the 

failure and regular operation of the pump,  multiple historical datasets in which the 

incidents occurred are required.  

• Similarity must exist in the utilized data set; the data must be from the same pump, 

field, phase, used drilling fluid, etc; otherwise, the model will not work effectively, and 

false alarms will be generated. 

• Training data frame selection and classification have a significant impact on the model 

performance, which is considered to be subjective.  

• The model's current version uses the SPP as an indicator; however, the abnormality of 

the SPP can be caused by another issue, such as downhole drilling problems. This issue 

can be solved by considering additional sensors, such as vibration and temperature 

sensors.  
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Chapter 5  

Conclusions  

The Mud pump is one of the crucial components of drilling rigs and its operational condition 

plays a significant role in nonproductive time and HSE issues. Therefore it is necessary to keep 

it in the best condition and try to anticipate and minimize the possible failure on it. This thesis 

has tried to choose the most efficient fault detection and diagnosis approach in order to use it 

in the AI frame and created the machine learning model based on the best maintenance strategy. 

To sum up all the significant aspects of this thesis, the following points are summarized based 

on the previous chapters: 

1. The most common FFD techniques are the data-based and signal-based models, process 

model-based, and knowledge-based techniques. In this research, data-based and signal-

based technique is implemented for fault detection. The trained model is built according 

to the collected process operation non-intrusive sensor data, fault detection, and 

diagnosis and exploits only available experimental (historical) data.  

2. On the other hand, by emerging the 4th industrial revolution, the advancement by 

connecting different technologies that create and communicate between systems has 

been observed. The information in these communications can be achieved from different 

sources which interpreted and turned into useful information. Among theis new 

progresse, AI technology can be used in order to anticipate mud pump performance 

degradation, and autonomously manage as well as optimize pump service needs. 

3. Machine learning is one of the applicable and well-known techniques in AI technology 

to train a model according to this research objectives. One of the significant applications 

of the ML model is to identify unknown patterns in the mud pump’s sensor data and is 

developing a way to discover structures and patterns in the data independently. For this 

purpose, associating the condition-based monitoring and machine learning approaches 

can create a trained model that is capable to identify drilling pump conditions. 
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4. Mud pumps have two key sections, power end and fluid end parts. Each of the mentioned 

sections has different components and subcomponents. The most common failures in 

mud pump elements are 1. Pulley and groove of pulley, 2.Bearing carrier bolt, 3.SCR, 

4. Valves, 5.Piston, 6.Crosshead bearing, 7.Pressure gauge, 8.Discharge line, 9. 

Discharge/Suction valve, 10. Lubricating system and 11. Cavitation failures and so on. 

According to the recorded reasons for these failures each of them has specific symptoms 

and roots. Among these failures, valve related issues are the most common breakdown 

reason which can lead to failure in other components. 

5. In case to boost the uptime of any component in mud pumps and minimize the NPT as 

well as HSE incidents, a profound and precise predictive maintenance approach is 

required. There are various kinds of PdM techniques for mud pump failures that most 

of them integrated via non-intrusive measurements like Vibration monitoring, Acoustic 

emission monitoring, Lubrication oil analysis, Thermographic analysis, Performance 

analysis, Smart pumping technique, Power analysis and Electrical testing. 

6. In this thesis, the performance analysis approach has been considered for the predictive 

maintenance of mud pumps. This technique is based on analyzing the replicable 

measurements such as standpipe pressure, flow rate and weight on bit. These parameters 

have a direct impact on such pump failures like damaging pump components, valve 

breakdown, wearing liners, seats and pistons out that can be reasoned for other mud 

pump failures. 

7. The methodology throughout this study is based on the integration of AI technology and 

the PdM approach which have been led to train a machine learning model. The model 

has been trained by real sensor data in MATLAB Classification and Diagnostic feature 

apps. For this purpose, the methodology is comprised of 5 key stages that have been 

started with acquiring sensor data, preprocessing achieved data, identifying condition 

indicators, training model, deploying and integrating the trained model. The main output 

or achievement in this methodology is the ML-trained model which has been verified 

by setting new sensor data to determine the pump conditions. 
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