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Abstract 

Today, the problem of industrial equipment diagnostics is actively discussed by scientists. 

First of all, timely diagnosis and early prediction of developing defects directly affect the 

efficiency of enterprises. For this purpose, enterprises actively introduce new developing 

technologies, methods and systems, aimed at reducing downtime, energy and material losses 

and significant increase in socio-economic welfare, as traditional approaches to monitoring 

the technical condition of equipment and diagnostics, based on periodic inspection does not 

allow to determine reliably accurate information about the technical condition. One of the 

innovations are predictive diagnostic systems based on machine learning methods.  To date, 

there are already works and experimental studies of such methods, but further research and 

validation of such models is needed. 

The main purpose of the work is to study the application of machine learning methods to 

assess the technical condition of objects of the main pipeline transport, on this basis it is 

planned to develop an algorithm based on data taken from the electric drive of oil pumping 

equipment.A block based on current and voltage sensors and an Arduino microcontroller for 

digitization of the obtained data were developed to take the electric characteristics data. To 

assess the possibility of machine learning algorithms in the work were used such machine 

learning models as Logistic regression models, and Decision Tree Classificator model.  

Through experimentation and application of the developed algorithm, it was found that this 

algorithm detects the presence of defects with an accuracy of more than 80%, which confirms 

the potential of integrating physical and digital systems of the production environment



 

 

Zusammenfassung 

Das Problem der Diagnose von Industrieanlagen wird heute von Wissenschaftlern aktiv 

diskutiert. Vor allem die rechtzeitige Diagnose und die frühzeitige Vorhersage sich 

entwickelnder Defekte wirken sich unmittelbar auf die Effizienz von Unternehmen aus. Zu 

diesem Zweck führen die Unternehmen aktiv neue Technologien, Methoden und Systeme ein, 

die darauf abzielen, Ausfallzeiten, Energie- und Materialverluste zu verringern und den 

sozioökonomischen Wohlstand erheblich zu steigern, da die traditionellen Ansätze zur 

Überwachung des technischen Zustands von Anlagen und zur Diagnose, die auf periodischen 

Inspektionen beruhen, es nicht erlauben, zuverlässig genaue Informationen über den 

technischen Zustand zu ermitteln. Eine der Innovationen sind prädiktive Diagnosesysteme auf 

der Grundlage von Methoden des maschinellen Lernens.  Bis heute gibt es bereits Arbeiten 

und experimentelle Studien zu solchen Methoden, aber weitere Forschung und Validierung 

solcher Modelle ist erforderlich. 

In dieser Arbeit wird die Anwendung von Algorithmen des maschinellen Lernens zur 

Bewertung des technischen Zustands von Pipelinetransportobjekten untersucht. Das Hauptziel 

ist die Entwicklung einer Methode zur Diagnose von Ölpumpanlagen anhand der Parameter 

des Elektromotors unter Verwendung von Methoden des maschinellen Lernens. Zur 

Erfassung der elektrischen Kenndaten wurde ein Block auf der Grundlage von Strom- und 

Spannungssensoren sowie ein Arduino-Mikrocontroller zur Digitalisierung der gewonnenen 

Daten entwickelt. Um die Möglichkeiten von Algorithmen des maschinellen Lernens in der 

Arbeit zu bewerten, wurden Modelle des maschinellen Lernens wie logistische 

Regressionsmodelle und Entscheidungsbaum-Klassifizierungsmodelle verwendet.  

Als Ergebnis der Experimente und der Anwendung des entwickelten Algorithmus wurde 

festgestellt, dass dieser Algorithmus das Vorhandensein von Fehlern mit einer Genauigkeit 

von über 80 % erkennt, was das Potenzial der Integration von physischen und digitalen 

Systemen der Produktionsumgebung bestätigt. 
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Chapter 1  

Introduction 

1.1 Background and Context 

For trouble-free operation of the main pumping equipment (pump-compressor equipment 

(PCE)) at the pumping and compressor stations, timely diagnostics (or periodic control) of its 

condition during operational maintenance is of great importance. There is also a strong 

emphasis on any particular piece of equipment that is most susceptible to wear and tear.  

However, the traditional approach to control of technical condition of equipment and 

diagnostics, based on periodic inspection does not allow to determine reliably accurate 

information about the technical condition of PCE, which often leads to emergency shutdowns, 

and also does not allow to effectively plan repair work on the actual technical condition. 

1.2 Scope and Objectives 

In the midst of the fourth industrial revolution, industrial companies are constantly looking 

for ways to optimize production lines and reduce costs at the same time. Maintenance costs 

typically account for more than one-third of total operating costs. Traditional maintenance 

methods are based on two different strategies: corrective maintenance and preventive 

maintenance (Susto et al., 2015). The first method means that faulty systems and equipment 

are repaired when the failure has already occurred, which greatly increases the cost of 

maintenance.  The second is performed at regular intervals to prevent systems/equipment 

failures. Thus, repairs are performed on machines or components when their service life is not 

yet known, resulting in unplanned equipment downtime and increased operating costs. 

Consequently, the most appropriate maintenance strategy should improve the overall 

condition of the equipment and, in addition, reduce equipment failures, minimize 

maintenance costs, and maximize equipment life (Carvalho et al., 2019). 

http://www.cs.stir.ac.uk/~kjt/research/conformed.html
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1.3 Achievements 

In order to improve plant efficiency, reduce downtime, energy and material waste, and 

significantly improve socio-economic welfare, there is a need to develop a new equipment 

maintenance strategy. A new strategy scenario would presumably provide better 

accountability, better cost control and allocation, improved productivity and reduced waste. 

Under the influence of these factors, predictive maintenance (PdM) has become one of the 

most urgent topics of the Industry 4.0 era, based on high-quality and optimally planned 

sustainable maintenance by integrating the physical and digital systems of the production 

environment. Technological developments in recent years have reduced the costs associated 

with monitoring the condition of equipment, collecting and storing huge amounts of data. 

Advanced analytical algorithms provide information on the state of the equipment without 

interrupting the process and allow strategic decisions to be made on the basis of this 

information. The main purpose of such monitoring, based on data collection and processing 

through algorithmization, is to predict a future failure event, which allows for early response 

and planning of subsequent equipment repairs. In simple words, predictive analytics solves 

the following problems:  

- preventing equipment outages; 

- reducing the number of unscheduled repairs; 

- evaluation of the technical condition of equipment; 

- revealing the causes of equipment failures; 

- alerts on approaching failures and malfunctions. 

1.4 Technical Issues 

Since the volume of data is large enough to be processed continuously by humans or by 

simple programs that cannot detect the necessary pattern and hence determine the faulty state 

of technological machines, advances in computing performance have allowed the introduction 

of machine learning (ML) algorithms capable of finding correlations in complex and large 

volumes of data. The basic idea behind such algorithms is to collect and train databases in 

order to create reliable and sufficiently accurate models for equipment diagnostics. 

1.5 Overview of Dissertation 

Today, machine learning models are being actively implemented in technological processes, 

including oil and gas operations. There are many different models, but each or their ensemble 
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is selected based on the task at hand. In this paper, to solve the set problem, namely to 

diagnose equipment by taking the electrical characteristics of the electric drive, considered in 

the context of the element of pumping equipment, will be considered two of them: logistic 

regression and decision tree, because the main pump and gas pumping units - powerful 

energy-intensive machines, the effective operation of which directly affects the reliability and 

economy of the industry. Along with the problems of technical condition and productivity of 

the units, it is also necessary to highlight the issue of energy saving during pumping. Failure 

of responsible equipment leads to additional costs and expenses from downtime. 
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Chapter 2  

Literature Review 

2.1 Technical condition monitoring  

The history of fault diagnosis and protection is as complex as the machines themselves. 

Initially, manufacturers adopted simple types of protection, such as overcurrent, overvoltage 

or ground fault, to ensure reliable and safe operation of electrical machines. However, the 

advanced functions of these machines required more complex protection systems and more 

sophisticated systems for diagnostics. Nowadays, it is just as important to diagnose 

malfunctions at the very beginning, since unplanned machine downtime can disrupt deadlines 

and lead to large financial losses.  

It should be noted that at the moment there is no method, allowing sufficiently reliable and 

objective identification of defects of oil and gas pumping equipment. Existing methods utilize 

indirect defect determination based on equipment operating experience. They are also poorly 

amenable to automation (Valeev A.R., О. М. Saubanov, 2014), (Oscar & Anvar, 2017). In 

addition, it should be noted that at the moment there are no methods that allow to determine 

the position of the defect in space, identify the defect and know the degree of its danger, not 

on the basis of experimental or empirical data, but on the basis of accurate and fundamental 

analysis. 

One of the methods of equipment diagnostics is parametric diagnostics of oil pumping 

equipment, which is the control of standardized parameters of the equipment, detection and 

identification of their dangerous changes. When diagnosing gas pumping units, information 

about power, gas flow rate, efficiency, temperature, etc. is used (Kunina P.S., 2001),                

(Ponomorev Y.K., 1998) , (Revzin B.S., 2002). 
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At this type of diagnostics, both analysis of current parameters and analysis of parameters 

tracking in time - trend analysis are carried out. However, in parametric diagnostics it is 

impossible to determine the specific cause of the equipment malfunction. The main purpose 

of parametric diagnostics is to eliminate the consequences of certain changes in equipment 

operation. 

At the boundary of 70-80s of the XX century, mobile and portable vibration measuring 

equipment, allowing to carry out vibration monitoring of equipment on the basis of frequency 

analysis, was used in the repair service of productionAt the same time, the problems of 

equipment reliability theory were actively discussed and solved, which eventually led to the 

emergence of a new direction - technical diagnostics, the basis of which was the 

implementation of maintenance and repair (M&R) strategy on the technical condition (TC) 

(Shirman A.R., 1996).  

In the maintenance of rotary machines, vibration monitoring and diagnostics occupy a special 

place due to the fact that these methods determine the possibility of detecting faults long 

before the emergency mode is triggered (Barkov A.V., Barkova N.A., Azovtsev A.U., 2012).  

According to the works (Barkov A.V., Barkova N.A., Azovtsev A.U., 2012) diagnostics and 

monitoring are divided into four main constituent parts. The first part of the vibration 

diagnostics system is the means of measurement and signal analysis. For rotary machines it is 

the spectrum analysis, based on the primary Fourier transform. The advantage of analysis in 

frequency bands with relatively constant width is the ability to present a wide frequency range 

on one graph with a fairly narrow resolution at low frequencies. The resolution in the area of 

high frequencies (typical both for hydrogasodynamic vibration of different nature, and for gas 

turbine drives) deteriorates with increasing frequency. In this case, to measure and analyze the 

spectrum, sensors or digital devices - spectrum analyzers are used.  

However, spectral vibrodiagnostics has a number of drawbacks. If the signal level is not 

stable, the conversion of the signal from one domain area to another will be distorted, 

resulting in no visual identification of the desired signal peak, instead the graph shows a wide 

continuous band, which cannot be used to make a correct diagnosis.. Secondly, due to 

resonances or attenuation of the signal its modulation, both frequency and amplitude, can be 

observed. In this case, the information fed to the input will be distorted, which also does not 

provide an opportunity for further research. Third, spectral vibrodiagnostics is characterized 

by a high level of noise, among which useful signals may be lost, and the defect will be 

detected when the condition becomes critical. Fourth, spectral vibrodiagnostics requires 

knowledge of the normal and threshold vibration levels of the equipment to identify the defect 

at each frequency, in other words, a defect map. This means that spectral vibrodiagnostics is 
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possible only if there is a long experimental operating time of the equipment and an 

information base on defects (Bogdanov E.A., 2006). 

The second part includes a computer with a set of software for vibration monitoring. The 

main tasks of this software are: storage of measured data, their analysis, comparison of 

incoming measurements with threshold values.  

The third main part of the vibration diagnostics system is the intellectual one, which provides 

the task of defect identification as well as prognosis of its development in perspective on the 

basis of measurement data and intermediate materials, prepared by monitoring means in 

advance. 

The last constituent part of the diagnostic system can be considered preventive and timely 

maintenance means. these means imply performance of general procedures such as balancing 

of rotors, replacement of bearings, etc.  

A machine in perfect working order does not vibrate, but the incomparable presence of 

imbalances and defects means that even new machines vibrate after repairs. These vibration 

levels correlate with a serviceable machine, and any deviations characterize the presence of 

defects or suboptimal operation of the pumping equipment (Barkov A.V., Barkova N.A., 

Azovtsev A.U., 2012). (GOST 20911-89, 2009.), (Shirman A.R., 1996). 

The normative levels of oil trunk pumps vibration intensity are presented in the normative 

documentation (RD 75.200.00-KTN-119-16 Main Pipeline Transport, 2016). The 

measurement points are strictly specified (bearing units, casing, supports). Norms for electric 

motors are presented in (RD 29.020.00-CTN-185-08, 2008). Other norms can be seen in 

(GOST P 55265.7-2012 [ISO 10816-7:2009]. For gas compressor units the norms of band 

units of PJSC Gazprom (Temporary standards of bandwidth settings for spectral, 2001) are 

used. However, this document has a description of only 20 permissible values of the 

boundaries of areas of RMS values of vibration velocity, as well as the total vibration velocity 

in the presence of defects in the early stage of development, the possibility of the appearance 

of secondary defects, the presence of developed defects. 

2.2 Experience in diagnostics of oil pumping equipment 

during its operation in PJSC “Transneft” 

Let will consider technical diagnostics of oil pumping equipment in Russia by the example of 

Transneft, which concentrates a large amount of pumping equipment. Technical diagnostics 

of oil pumping equipment in PJSC "Transneft" during operation is considered in the context 

of diagnostic controls with the use of parametric and vibroacoustic criteria. In Transneft, 
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diagnostics is divided into operational, scheduled and unscheduled (RD 153-39TN-008-96). 

The list of types of control to be performed in Transneft in operation mode is given in               

(RD 19.100.00-CTN-084-12). Various additional guidelines are given in (RD 23.080.00-

KTN-063-11). The main method of inspection during pump operation is vibro-inspection. 

According to this process documentation, the average quadratic vibration velocity should be 

in the range of 10 to 1000 Hz. Causes of vibration of pump units in PJSC Transneft are 

presented in (RD 153-39TN-008-96). 

2.3 Technical diagnostics of gas compressor units at PJSC 

“Gazprom” 

At present, the following methods of nondestructive control of the current technical condition 

are mainly used for diagnostics of gas compressor units (Zaritsky S.P., 1987), (Kunina P.S., 

2001): 

- vibration diagnostics; 

- parametric diagnostics; 

- oil condition analysis; 

The largest volume of diagnostic information falls on the vibration diagnostics. With its help, 

about 60% of all defects can be detected, and it is suitable for almost all elements of a gas 

compressor unit. The remaining defects are usually diagnosed by means of parametric 

diagnostics and oil condition analysis - respectively, on the order of 20% of the total number 

of faults (Terentyev A.N., Sedykh Z.S., V.G. Dubinsky, 1979). 

2.4 Methods of diagnosing electrical machines 

In addition to the method described earlier, there are also a number of others, for example, 

methods of diagnostics of the electric motor by electric parameters of electromagnetic fields 

allow to analyze its condition and some general parameters of the whole unit (for example 

unbalance) quite fully. However, for oil pumping units, attention, as a rule, is shifted more to 

the pump condition. And, obviously, these methods do not allow diagnosing the whole unit 

(Petukhov V., 2005). 

Methods of diagnostics of electric motors, applied now, demand placing of special gauges 

directly on engines themselves or it is required full removal of the engine from operation for 

periodic routine maintenance. Considering this case, we can say that vibrodiagnostics is also 
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applicable, however, it requires special measuring equipment and complex software, which 

makes this approach quite expensive. 

Recently, the EU countries began to actively develop methods of diagnostics of electric 

machines, based on the monitoring of the state of equipment by the current consumption, 

followed by the spectral analysis. This analysis allows to determine with a high degree of 

reliability the technical condition of various elements of motors, as well as with a certain 

degree of probability to determine the remaining life. 

The basic concept of the spectral analysis method summarizes those favorite perturbations in 

the operation of an electrical machine or part of a mechanical motor led to a change in the 

magnetic flux in the equipment gap, and as a consequence to a modulation of the current 

draw.   

In (Fedorov D. V., 2007) author also describes the method of applying spectrum analysis by 

current consumption.  The presented technique allows you to determine the following faults 

and damage: 

- inter-winding short circuits of the windings; 

- partial or complete breakdown of winding insulation; 

- bearing damage; 

- rotor imbalance; 

- misalignment and run-out of shafts, etc. 

The experimental part included direct recording of the current signal, which was carried out 

during the time required to perform spectral analysis with resolution at a frequency of 0.01-

0.02 Hz. The data with the spetcr results are further analysed after being transferred to a 

personal computer. The diagnosis was established by the presence of characteristic 

frequencies in the spectrum, which indicate the presence of damage to the electric or 

mechanical part of the electric motor or an associated mechanical device. For example, a 

diagnostic sign of motor rotor damage is the presence of two symmetrical peaks relative to the 

mains frequency (Figure 2.1). 
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Figure 2.1 - Spectral composition of current of electric motor 5AI-112 M4 with rotor conductor fixing 

violations 

However, the author also suggests monitoring the applied voltage to determine asymmetry or 

the presence of higher harmonics. 

2.5 Wavelet transforms of a signal 

Since it is reasonable to carry out equipment diagnostics in the on-line mode, the use of 

complex expensive equipment that affects the technological process is unacceptable. These 

requirements, as described above, are fully met by current consumption, or, vibrodiagnostics. 

Both methods are subject to spectral analysis, which is based on the primary Fourier 

transform. 

The Fourier transform consists in representing the signal f(x) as an infinite sum of sinusoids of 

the form F(ω)∙sin(ω∙x). The function F(ω) - Fourier transform, or spectrum of the signal: 

 𝐹(𝜔) = ∫ 𝑦(𝑥) ⋅ exp(−𝑖𝜔𝑥) ⅆ𝑥

+∞

−∞

 
(2.1) 

 

 

The arbitrary signal f(x) can be represented in an orthogonal system: 

Rotor damage 
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𝑦(𝑥) = 𝐶0𝜑0(𝑥) + ⋯ + 𝐶𝑛𝜑𝑛(𝑥) + ⋯ = ∑ 𝐶𝑛𝜑𝑛(𝑥)

∞

𝑛=0

 (2.2) 

where 𝜑𝑛(𝑥) - basis function; 

𝐶𝑛𝜑𝑛(𝑥) - spectral component 𝑦(𝑥); 

aggregate coefficients [𝐶0, … , 𝐶𝑛] - signal spectrum. Its graphical representation is shown in a 

Figure 2.2 called a spectral diagram, which gives a visual representation of the signal 

spectrum (Yakovlev A.N., 2003), (Astafeva N.M., 1996).  

 

Figure 2.2 - Spectral diagram 

[“Despite the many and significant advantages of this method it also has a number of 

disadvantages, for example, the dynamics of changes in the composition of the signal will be 

strongly distorted. This disadvantage means that it is not always possible to determine the 

presence of a defect unambiguously. Moreover, Fourier analysis is extremely unstable with 

respect to perturbations (shock and dynamic loads). In some cases, this method proves to be 

ineffective for signals with local features. This is due to the fact that the basis function of the 

Fourier series is a sinusoid, which is defined in the region from - ∞ to + ∞ and is by its 

nature a smooth and strictly periodic function. Such a function in practice is fundamentally 

incapable of describing arbitrary signals and functions. Traditional spectral analysis is 

ineffective for nonstationary signals with a temporal scale of nonstationarity much smaller 

than the duration of the realization to be analyzed”] (Kornishin D.V., 2015), (Diakonov V.P., 

2002).  
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These shortcomings do not allow to solve the problem of defect detection comprehensively.  

The solution to this problem is wavelet transforms of signals, which consider the analyzed 

time functions in terms of oscillations localized by frequency and time, thus providing a two-

dimensional sweep of one-dimensional signals.  

The one-dimensional wavelet transform of signal f(x) is a two-dimensional function: 

 
𝑤𝛹𝑓(𝑎, 𝑏) =

1

√𝐶𝛹

∫
1

√|𝑎|
𝛹 (

𝑏 − 𝑥

𝑎
) 𝑓(𝑥) ⅆ𝑥

+∞

−∞

 (2.3) 

where 𝛹 - is the wavelet function;  

b -  is the shift;  

a - is the scale or scale. 

The standardizing factor is equal to: 

 
𝐶𝛹 = 2𝜋 ∫

|𝛹(𝜔)|2

|𝜔|
ⅆ𝜔

+∞

−∞

< ∞ (2.4) 

where 𝛹(𝜔) - the Fourier wavelet image 𝛹. 

In their essence, wavelet transforms are a representation of a signal in the form of equally 

shaped short "bursts" that can be shifted and stretched relative to time. This is the 

fundamental difference from infinite Fourier transform waves.  

In (Kruglova T.N., 2019), a wavelet transform method was also applied for more accurate 

identification of the electric drive state. In this work, the author applied the methodology of 

recalculating the frequencies of the Fourier spectrum into a wavelet scale, which allows to 

translate the signal analysis into wavelet space to find new signal characteristics that cannot 

be detected by the Fourier analysis. 

Wavelet analysis is expressed as a parameter dependence: 

 
𝜓𝑎𝑏(𝑡) =

1

√𝑎
𝜓 (

𝑡 − 𝑏

𝑂𝑏
) 

(2.5) 

 

𝜓 - primary or maternal function; 

𝜓𝑎𝑏 - analytical function. The designations in the (2.5) have been deciphered earlier. If 

(𝑎 > 1) it is an extension of the basic function, (𝑎 < 1) compression. 

In integral form, the wavelet analysis looks like this: 
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𝑊(𝑎,𝑏) =

1

√𝑎
∫ 𝑓(𝑡)𝛹∗ (

𝑡 − 𝑏

𝑎
) ⅆ𝑡

+∞

−∞

 (2.6) 

where the function ψ(t) is the wavelet (analyzing, basis, mother wavelet); the parameter a 

defines the size of the wavelet and is called the scale; the parameter b defines the time 

localization of the wavelet and is called the shift. The symbol * in formula (2.6) denotes 

complex conjugation (Belyaev A.I. et al., 2015). 

2.6 Introduction to Machine Learning in technical 

condition monitoring 

The development of Industry 4.0 technologies opens up new opportunities in all areas of 

modern industry. Today, technologies such as "digital twin" are used to diagnose the 

condition of electrical equipment, for the realization of which machine learning methods are 

used. Such models analyze measurement data of various equipment parameters to identify 

abnormal data, estimate and predict the development of the equipment condition. 

2.6.1 Application of Machine Learning to Diagnose the Technical 

Condition of Industrial Facilities 

With the development of various automated control systems, as well as systems with remote 

access, there is an increasing trend in the amount of data stored, which reflects information on 

the technical condition of industrial equipment. such changes provide an opportunity for the 

development of new methods of defect detection (FDD) (Dai & Gao, 2013), (Corradini et al., 

2012). FDD methods are classified into two main groups: model-based methods and signal-

based methods. In order to describe the normal operating conditions of asynchronous 

machines (or IM), assumption principles are used which in turn do not take into account 

various uncertainties and perturbations. this is done in order to simplify the problem, as such 

modelling is not practical, and all this together leads to the fact that it is difficult to develop a 

system or procedure for defect detection (FFD) (Soualhi et al., 2013).      

The signal-based method identifies and works with a specific feature, which ultimately 

provides data on the operating or technical condition of the machine. The methods most used 

for feature extraction are based on time domain analysis, frequency domain analysis and time 

frequency analysis. On the other hand, in signal-based methods, a pre-acquired data set from 

IMs in abnormal conditions is necessary for proper fault diagnosis (Gérard-André Capolino et 

al., 2011). In this context, MCSA (motor current signature analysis) monitoring strategies use 

the detection and identification of current signatures that indicate normal or abnormal motor 
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conditions, with the advantages of easy installation of current sensors and no evaluation of 

motor parameters. However, motor current is affected by many factors such as power supply, 

static and dynamic load conditions, noise, motor geometry, and fault conditions, so MCSA is 

not effective for saturation effects or magnetic asymmetry (Concari et al., 2013). 

Typical methods for extracting features from current signals use frequency domain 

algorithms. Traditional methods include: fast Fourier transform (FFT), multiple signal 

classification (MUSIC) and the estimation of signal parameters by rotational invariant 

techniques (ESPRIT). These methods are too computationally complex to be implemented 

online, with the exception of the FFT, so improved versions are discussed in (Kim et al., 

2013). Another problem related to the current signature is the rigorous characterization and 

classification of IMs (Joksimovic et al., 2013). MCSA is also used for fault diagnosis: wavelet 

decomposition extracts information about the system state from the signal over a wide 

frequency range. The wavelet components can detect various electrical faults, such as rotor 

rod breakage, end ring segment, and stator phase loss during operation. Another area of 

MCSA research concerns the identification of mechanical faults occurring in gearboxes and 

in the rotor-stator coupling. These faults cause torque fluctuations that affect current signals, 

as described in (Kia et al., 2009).  

In (Zhongming Ye et al., 2003), batch wavelet decomposition is used to extract IM signals 

with varying torque conditions. The FFT method does not work during startup, while the VT - 

due to its expansion property and frequency-time representation - picks up signal features 

under different operating conditions. 

In (Jung et al., 2006), an online diagnostic system is proposed. In this paper, MCSA applied 

to stator current signals is used to detect four classes of motor faults: rotor asymmetry, stator 

winding fault, bearing failure and abnormal air gap eccentricity. Recently, neural networks 

(NSs) have been applied to rotor faults of three-phase induction machines: a statistical 

classification and classification of NSs using the representation of the ambiguity plane is 

presented in (Boukra et al., 2013). Detection of inter-turn short circuits in the stator and rotor 

windings of an induction generator with a wound rotor is carried out using DC digital current 

signals and ANN (Toma et al., 2013). 

Also, the probability density function (PDF) algorithm is used for fault detection and 

diagnosis (FDD). This method is well illustrated in (Giantomassi et al., 2015), the basic idea 

is that the multivariate normal distribution, calculated from the signals of the current IM, can 

be regarded as a signature of the state of the IM. Such a signature is robust to external 

perturbations, but sensitive to faults. The focus is on detecting and diagnosing backlash faults 

in AC motors, rotors with out-of-tolerance geometries, and cracked rotors. In this approach, 
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motor currents are measured to extract statistical information using probability density 

function estimation. 

The procedure is based on the principal component analysis of the measured signal with 

signal preprocessing. The characteristics are extracted from the data transformed by principal 

component analysis (PCA), using a kernel density estimation (KDE) enhanced with a fast 

Gaussian transform, and a point reduction method. 

This procedure is computationally intensive as it significantly reduces the cost of core density 

estimation. The proposed approach allows models to be defined for each engine condition. 

The Kullback-Leibler divergence is used as a fault index that allows each fault to be 

identified. Core density estimation methods have never before been used to diagnose faults in 

the MCSA scenario. In this context, the authors tested the effectiveness of the KDE-based 

FDD procedure. The algorithm is completely signal-based, no engine parameters are required. 

The algorithm was tested in various situations. Tests were performed at different load and 

voltage levels, as well as at different faults: cracking and out of tolerance rotor and backlash. 

According to the obtained data, the method is used for its further implementation in 

production.  

2.6.2 Application of the Support Vector Method as a Machine 

Learning Model 

Support vector method (SVM) is a type of supervised machine learning. Can be used for 

classification and regression analysis. SVM works by finding an optimal hyperplane that 

separates different classes in the input data. The hyperplane is chosen to maximize the 

difference between the nearest points of each class. These nearest points, called support 

vectors, are used to define the decision boundary of the model (Voroncov K.V., 2007).  

In the context of equipment diagnostics, SVM can be used to analyze patterns in data 

collected from equipment in order to identify faults or anomalies. The SVM algorithm is 

trained on a dataset that includes various points that can be both defective and indicative of 

normal equipment. The algorithm learns to classify new points based on previous data.  

One advantage of this method is that it is able to process multidimensional data, in other 

words, data collected from multiple sensors to diagnose equipment. 

SVM, in turn, is divided into a number of classes: classification, which can be either linear or 

non-linear, as well as regression and outlier detection.  

The method of reference vectors is a popular method for analyzing data from various areas. 

The method is considered optimal for classification and regression under uncertainty or when 
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classes are not linearly separable. The main task of SVM is to obtain the optimal function f(s) 

representing the dependence of the output variable on the input variables on the training 

sample: 

 𝑝𝑑 = 𝑓(𝑠) = 𝑤𝑇𝜑(𝑠) + 𝑏 (2.7) 

где 𝑤 – weights; 

𝜑(𝑠) - is the function transforming the original feature space into the new one, where 

the accurate regression is simpler; 

 𝑏  - is the free real-valued element (used for scaling and moving the SVM-generated 

function). 

The main goal is to find the simplest form of the function f(s) that best fits the analyzed data. 

Typical SVM optimization aims to minimize the error function: 

 𝐸𝜀(𝑝, 𝑝𝑑) = {
|𝑝 − 𝑝𝑑| − 𝜀 𝑓𝑜𝑟 |𝑝 − 𝑝𝑑| ≥  𝜀

0
 (2.8) 

where ε is the admissible difference between the actual p and the obtained values of the 

parameters 𝑝𝑑 =  𝑓(𝑠). Thus, the measurement uncertainty is taken into account. 

The SVM is trained using a training dataset L (in the form of an array (2.9)) storing examples 

(symptom vectors) for various simulated states. 

 
𝑇 = 𝐿 = [

𝑠1 𝑝1 𝑣11

𝑠2 𝑝2 𝑣12

⋮
𝑠𝑛 𝑝𝑚 𝑣𝑛𝑚

] =  [

𝑆11 𝑆12 𝑆1𝑘 𝑝1 𝜈11

𝑆21 𝑆22 𝑆2𝑘 𝑝1 𝑣21…
𝑆𝑛1 𝑆𝑛2 𝑆𝑛𝑘 𝑝𝑚 𝑣𝑛𝑚

] (2.9) 

The total regression error on the training set L is defined as: 

 
𝐸 =

1

2
⋅ ∑ 𝐸𝜀(𝑝, 𝑝𝑑)

𝑛

𝑖=1

 (2.10) 

where 𝑛 – number of examples in L. 

The training method for SVM is quadratic programming (S. Gunn, 1998), which consists in 

finding optimal weights w (2.10) (i.e. minimizing the error) for a selected kernel and its 

parameters. The procedure is to train L and test T datasets, each containing n - parameters 

describing the behavior of the system. The data set presented above (2.9) works only for unit 

fault analysis. Each row stores k -symptoms. They are complemented with information and 

the actual value of the parameter that is the source of the problem. The presence of a fault is 

described by two additional columns, containing the identifier of the parameter: ra (where            

a = (1,..., m)) and one of its values q, chosen for the experiment ( vab, where b = (1, ...., q)). 

The other parameters in each example are assumed to be nominal (within acceptable values). 

This makes the data set (matrix reference) suitable for classification and regression tasks. 
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In (Bilski, 2014), the author explains the importance of accurate identification of induction 

motor parameters, which can be used for fault diagnosis, optimization of operation and design 

of control systems using the reference vector method, presented as a machine learning 

method. The paper describes the methodology used to apply SVM for parameter 

identification, including data collection and preprocessing, model training, and validation. 

The results of a study demonstrating the effectiveness of SVM for parameter identification are 

presented. 

Overall, the paper highlights the potential of SVM as a powerful tool for parameter 

identification of asynchronous motors, capable of providing accurate results with relatively 

little data preprocessing. 

2.6.2.1 SVM for diagnosing bearing faults in asynchronous motors 

Bearings are one of the main parts of electrical machines, ensuring that the rotor rotates 

smoothly and is mounted at a fixed distance from the stator. About 41% of all faults in 

electrical machines are due to faulty bearings. Rolling bearings (also known as antifriction 

bearings) are mainly used in small and medium machines, while friction bearings (thrust 

liquid-film bearings) are used in large machines. Other common causes of bearing failure 

include overloading, corrosive environments, mechanical wear and misuse (Önel & 

Benbouzid, 2008), (Harris T., 2001). 

Bearing failures occur due to grease contamination, loss or excess grease, overloading, and 

corrosive environments. Dirt and other foreign particles that are commonly present in the 

operating environment contaminate the bearing materials. Abrasive structures of various 

kinds and degrees of abrasion lead to metal corrosion such as pitting or grinding wear, which 

increases the wear rate of bearings and raceways considerably. Bearing corrosion is caused by 

water, acids, degraded lubrication, and even sweat from careless handling during installation. 

Loss of lubrication causes friction between the rotating parts of the bearing, which increases 

the effect of heating. This excessive heating leads to destruction of the lubricant and 

accelerates bearing failure. Therefore, it is necessary to detect bearing failure at an early stage 

to prevent secondary failure. 

The two main methods used to detect and diagnose bearing faults are: vibration measurement, 

temperature measurement. A detailed review of various bearing fault detection and diagnosis 

techniques was presented in (Wei Zhou et al., 2007), (Stack et al., 2004), (Tandon et al., 

2007). For large-sized induction motors, the vibration measurement method is used as one of 

the most effective methods, but it is not suitable for small power machines because the 

method is considered to be complicated and expensive for them. (Valeev A.R., 2020). 

Therefore, the current signature analysis method can be considered advantageous and 
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universal. The analysis of bearing vibration frequencies in the motor current is much more 

difficult than their detection in the motor vibration. 

To solve the problems associated with spectrum analysis, researchers tend to apply intelligent 

methods, since they can give more accurate results for ambiguous and "noisy" data. For 

example, in (Om Prakash et al., 2013), the least-squares support vector method was also 

applied to diagnose bearing failure by the "parameter" - contamination of the rolling bearing 

lubricant. In this version, the solution is linear equations instead of quadratic programming. 

2.6.3 Clustering 

Today, large industrial enterprises use the method of threshold values of any parameter to 

determine the technical condition of the equipment. It is believed that this approach is quite 

simple and easy to implement.  

For example, at present Transneft uses guidelines from (RD 08.00-60.30.00-CTN-016-1-05, 

2005), in which the estimation of vibration state is determined by the threshold values of 

mean square value of vibration velocity, applied equally to a large class of pumps (RD 

75.200.00-KTN-119-16 Main Pipeline Transport, 2016). 

With such an approach it is difficult to determine the nucleation of a defect and to recognize 

in advance irregularities in the operation of the pumping equipment. For example, a pump 

operating at low load may show little or no underestimated signs of defects, but may still 

"deteriorate" intensively and soon fail. 

In practice, oil pumping units operate in different modes, in which, obviously, have different 

operating parameters. In this case, all parameter values in all modes will not follow the 

normal distribution law, and therefore the statistical methods based on it to determine the 

anomalies will not be applicable. 

In the context of oil pumping equipment, application of methods using cluster analysis looks 

interesting. According to this approach, all the initial data reflecting the parameters of 

equipment operation are placed as points in the conditional space - n parameters - in n-

dimensional space. All points are not uniformly distributed in the dimensionless space. Group 

or cluster are the points lying closest to each other, and the points not included in these 

clusters are anomaly points.  

The paper (Valeev et al., 2022) shows the practical application of the clustering method. To 

analyze the application of this method in order to detect abnormal state of equipment or signs 

of developing defect, synthetic initial data about conditional equipment operation were used, 
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i.e. the data was selected so that their main part reflected the normal operation of equipment, 

as well as "data with anomalies". 

The initial data reflect three operating modes, and have information about pump flow rate, 

pressure drop across the pump, vibration level, node bearing temperature, power, pressure at 

the pump inlet, efficiency factor. 

 

Figure 2.3 – Visualization of the initial data on the pair "pump flow - vibration level" (Valeev et al., 

2022) 

The number of clusters is taken equal to k, because the k-means method was used. The 

position of each centroid is defined as the sum of the Euclidean distances from all points to 

the nearest centroid, and this value must be the smallest. The next step is to plot the 

dependence of the sum of distances on k, then the optimal number of clusters is determined 

by the point of the smallest inflection.  

Given that the analyzed data had different dimensions, data normalization (in this standard 

estimation, or z-estimation in another way) was performed. For this purpose, the following 

formula is used for each i-th dimension of parameter x: 

 𝑧𝑖 =
𝑥 − 𝑥𝑖

𝜎
 (2.11) 

where 𝑧𝑖 - standardized value of the i-th measurement of parameter x; 

 𝑥𝑖- value of the i-th measurement of parameter x;  

𝑥̅ - average value of measurements of parameter x;  
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𝜎  - standard deviation of parameter x. 

The data are all reduced to dimensionless values with a mean of 0 and a standard deviation               

of 1. 

Statistical analysis determined that a point belonged to the "anomaly" class if at least one 

value of any of the parameters differed by more than three times the mean standard deviation: 

 
𝑠𝑎 = 𝑚𝑖𝑛( 𝑠𝑖 + 3𝜎𝑖) (2.12) 

where 𝑠𝑖- average value of distances from each dimension to the nearest centroid by i-

dimensional parameter;  

𝜎𝑖 - its standard deviation;  

𝑠𝑎 - threshold value of distance to the nearest centroid, above which the point is considered 

anomalous; i - index of enumeration of values by initial parameters. 

Therefore, in the original data with information on the operation of equipment identified three 

normal modes of operation, as well as five abnormal cases. 

 

Figure 2.4 – Visualisation of data clustering and highlighting of anomalies (anomalies are marked in 

red) (Valeev et al., 2022) 

To obtain a range of values in which each system parameter is considered normal under 

different modes of operation, it is necessary to perform a data back-normalization procedure. 

The results are presented in Table  2.1. 
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Table  2.1– Range of standard values for equipment operating parameters 

Parameter  

Regime 1 Regime 2 Regime 3 

Average  Min Max 
Aver

age  
Min Max 

Avera

ge  
Min Max 

Inflow, m3/hour 7790 7415 8165 6929 6554 7303 8631 8256 9006 

Pressure drop, 

atm. 
15,4 14,0 16,8 13,7 12,3 15,1 17,2 15,8 18,6 

Vibration 

velocity, mm/sec 
2,8 2,5 3,1 2,5 2,2 2,7 3,1 2,9 3,4 

Temperature, °С 38,9 36,3 41,4 34,6 32,1 37,1 43,2 40,7 45,8 

Capacity, kKW 5094 4749 5438 4527 4182 4871 5657 5312 6001 

Inlet pressure, 

atm. 
9,3 8,9 9,6 8,2 7,8 8,6 10,3 9,9 10,7 

Efficiency 0,802 0,751 0,852 0,711 0,661 0,762 0,885 0,834 0,935 

 

The method of data clustering allows to carry out the procedure of equipment diagnostics 

both by a separate parameter and by their different combinations.  

The calculated range of values obtained as a result of this methodology allows a more 

accurate assessment of the technical condition of the equipment, also the advantage is that the 

new threshold values obtained are much smaller than in the established normative 

documentation. In other words, it allows to detect a defect at its earlier stage, thus reducing 

the probability of equipment failures, hence providing more reliable transportation of 

hydrocarbons. 

2.6.4 An ensemble of machine learning methods 

Machine learning algorithms have been implemented in many technological and everyday 

processes, and this has also affected the field of equipment diagnostics. Various classification 

approaches are used, in particular binary classification. These include classical statistical 

models (naive Bayesian method, classifier, logistic regression, etc.), these methods are 

focused on machine learning, such as neural networks or reference vector method. The 

problem is that it is impossible to determine in advance which of the selected methods can 

solve the problem with the required accuracy, so different methods and their combinations are 

used, in other words, the aggregate approach. 

Obviously, the use of a combined approach would be able to combine the strengths of both 

approaches within a single model. The study (Nikhil Muralidhar et al., 2018) schematically 

shows the conditional advantage of using such combined models. In general terms, individual 

models using only branch diagnostics, as well as models using only machine learning, can 

produce results with varying reliability. However, models using the combined approach, as 

shown in the figure below, will achieve the best validity. 
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Figure 2.5 - A visual representation of the machine learning model combination approach (Nikhil 

Muralidhar et al., 2018) 

The detailed experiment as well as the theoretical part is well illustrated in the " Forecasting 

the state of a technical object using machine learning methods " by V. N. Klyachkin. In this 

paper, the application of machine learning to diagnose the state of a technical object is 

proposed as a program based on the Statistics and Machine Learning Toolbox library in 

Matlab, which provides: 

-using various basic methods as well as constructing aggregate classifiers; 

- application of different criteria for classification; 

- changing the volume of the sampling fraction.  

The program developed is able to classify an object as serviceable or not by determining the 

probability at a given threshold value. The program is also able to decide which method or 

combination to use to solve the problem (Klyachkin & Zhukov D.A., 2019). 

2.6.5 Application of Machine learning in practice  

Recent research, and its intensity, suggests that machine learning has attracted the attention of 

both academics and practitioners in industrial service management, emerging as a powerful 

tool for developing intelligent predictive algorithms in many applications. ML approaches are 

capable of finding patterns of interest from process or asset data and transforming raw data 

into a feature space using mathematical algorithms. Recent development in such 

technological fields as cyber-physical systems or big data allows to obtain much larger data 

volumes than before, which allows machine learning models to solve more and more different 

problems, including the tasks of predicting the technical condition of industrial objects 
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(Wuest et al., 2016). On the other hand, as reported in (Ruiz-Sarmiento et al., 2020), the 

implementation of ML methods in real-world enterprises remains quite challenging. The main 

challenges are: 

- Data collection and storage (Ruiz-Sarmiento et al., 2017). A large amount of data is used to 

train the models. In general, more data leads to more robust models and therefore better 

results. However, the data should carry essential information for further analysis. Therefore, 

the collection of relevant data has a strong impact on the performance of the ML algorithm.  

- Selection and design of the ML algorithm (Wuest et al., 2016). In order to make the right 

decision about the technical condition of the equipment, the applied machine learning model 

must provide information about the object in a fairly short time. Although the basic principles 

of ML are now available to a wide audience, adequate knowledge and deep technical skills 

are required. 

In order to obtain the most accurate results when using ML methods for anomaly detection, 

several estimation methods should be applied simultaneously, as mentioned above. Such a 

task has been posed in Pier Francesco Orrù's paper " Machine Learning Approach Using MLP 

and SVM Algorithms for the Fault Prediction of a Centrifugal». The authors propose a 

preliminary development of a supervised machine learning algorithm ("Supervised Machine 

Learning") for fault diagnosis of rotating equipment in the oil and gas industry. The 

fundamental idea is to develop a very simple and executable ML model for rapid and 

informed decision making. The data was obtained from a real working centrifugal pump, 

which operates on the production line of the SARLUX refinery plant (Sarroc, Italy). Eight 

different sensors were used to create the features: one for flow rate, two for bearing vibration, 

two for axial displacement and three for motor winding temperature. The use of a real dataset 

has a strong influence on further decisions about the methods to be used for feature 

development, data labeling, and machine learning techniques. This paper uses and compares 

two different algorithms, Support Vector Machine (SVM) and Multilayer Perceptron (MLP). 

The main goal of this paper is not to find a highly accurate and extremely precise MoM 

model, but to show how a simple and intuitive MoM algorithm can be used to obtain good 

prediction results. Recent results have shown that the classification results of the proposed 

solutions (algorithms) are able to determine quite accurately the state of the equipment. The 

SVM algorithm shows better accuracy than MLP, MLP shows better classification 

performance, predicting two out of four failures that occurred in the selected period (Orrù et 

al., 2020).  
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Chapter 3  

Technical Chapters 

3.1 General scope and aims 

The aim of the following study is analyzed of application of Machine Learning for technical 

condition monitoring. For this goal experimental study is provided using laboratory 

installation, developed electric circuit and the machine learning implementation discussed 

above. 

Of the basis of experiment diagnostics data is collected. On the basis of the data various 

machine learning algorithms are tested. 

3.2 Experimental installation for study of machine 

learning application for equipment diagnostic  

Problems of diagnostics of oil pumping equipment are extremely indicative on the example of 

pump units widely used in modern production of oil and gas industry. To date, there are many 

potential applications of machine methods for equipment diagnostics, and their study 

continues. As a rule, organoleptic method is used for the preliminary maintenance, which 

allows defining the faulty state of the mechanism by detecting the noise, not typical for the 

normal state, namely tapping, as well as increase of the operating temperature of the 

equipment. However, this method is extremely ineffective and works only for determining the 

pre-emergency state.  

Since the machine-learning methods for equipment diagnosis described earlier have already 

found practical application in various other related fields, the use of such solutions for early 
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equipment diagnosis is proposed. This paper discusses the practical application of machine 

learning techniques such as decision tree and linear regression on an industrial scale. 

To identify anomalies in the work of mainline transport objects it was accepted to study 

electrical characteristics of electric drive - the most common and important receiver in 

production is an electric motor, because this element of oil pumping equipment system is an 

integral part of it.  The main consumers of electric power in industrial enterprises are three-

phase AC motors. Electric load of an electric motor is determined by the magnitude and 

nature of mechanical load. 

The scheme of the experimental setup for approbation of the proposed method is as follows: 

Training stand for vibrodiagnostics PROTON-Stand (Figure 3.1) with the possibility of 

frequency adjustment, including:  

- low-noise electric motor; 

- pin coupling with shaft; 

- speed controller 0-3000 rpm; 

- balancing disks with places for installation of balancing masses; 

- standard locations for installation of vibration sensors; 

- set of balancing weights; 

- single platform (frame); 

 

 

Figure 3.1 - Training model of BALTECH PROTON-Stand centrifugal pump 
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- A motor electrical characterization block (Figure 3.2), consisting of: 

• Arduino Nano controller 

• ACS712 30A current sensor 

• 1kΩ and 100kΩ resistors 

 

Figure 3.2 - Electrical characterization block 

The Arduino Nano platform is a fully functional debug board with its own process and 

memory. The controller converts the analog signal into digital, then the signal is transmitted 

to a personal computer by an algorithm written in the Arduino language (see appendix A). 

The microcontroller is based on ATmega328 and has the following characteristics: 

Microcontroller ATmega328 

Operating voltage 5 V 

Input voltage (recommended) 7-12 V 

Input voltage (limit) 6-20 V 

Digital Inputs/Outputs 14 (6 of which can be used as PWM outputs) 

Analog inputs 8 

DC current through the input/output 40 mAh from one lead and 500 mAh from all leads 
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Flash memory 32 KB (ATmega328) with 2 KB used for the loader 

RAM 2 KB (ATmega328) 

EEPROM 1 KB (ATmega328) 

Clock rate 16 MHz 

Dimensions 1.85 cm x 4.2 cm 

 

 

Figure 3.3 - Arduino Nano Pin Description/Pin Diagram 

 

ACS712 30A Current Sensor Specifications: 

• Supply voltage +5.0 V; 

• Current consumption does not exceed 11mA; 

• Current bus resistance 1.2 mΩ; 

• Operating temperature -40°C...+85°C; 

• Size 31mm x 13mm. 

To connect the ACS712 to the Arduino board use 3 wires (Figure 3.4): 

VCC - power supply (5V reference voltage); 
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GND - ground; 

OUT - signal (connected to the analog pin of the Arduino controller). 

 

 

Figure 3.4 - Connecting the ACS712 current sensor to the Arduino board 

 

For measuring the voltage values a voltage divider with resistors was used. The voltage 

reduced with the divider was brought to values in the range of -2.5V to 2.5V, shifted to a 

voltage of 0-5V, and fed to the analog input of the Arduino. 

The general procedure of data acquisition is as follows - The general procedure of data 

acquisition is as follows: the microcontroller requests data from 2 channels with a minimum 

delay of 100 microseconds. The requests are made sequentially, which allows further data 

acquisition with the maximum frequency of 220,78 Hz. The microcontroller collects a certain 

amount of data, saves it and sends it to the computer via COM port. 

3.2.1 Development of program code 

Special programs written in Arduino and Python were developed to receive and analyze the 

data.  

The full code of the program is presented in Appendix B. 

The program code conventionally consists of the following parts: 

- Sensor block to receive data on the computer. The block receives information via USB cable 

with additional information about the frequency of the signal measurements from the block. 
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- The block of primary data processing. In this case the microcontroller acts as an analog-to-

digital converter (ADC). Analog signal (measured voltage and current) is fed to the MC, 

converted to digital. To read the signal the analogRead function is used in the Arduino 

development environment, after calling this function, the microcontroller measures the level 

of the analog signal at a given contact, and will save the result of the ADC in a given variable. 

The result of the analogRead function will be a number from 0 to 1023. Displaying the 

values, you are looking for in the COM monitor window in the Arduino IDE.  

Further signal processing is done using the Python programming language. The obtained data 

are transmitted through the serial connection using the PySerial library.  

To store the obtained data from each experiment, we used a spreadsheet program, Excel.  The 

structure of the tables takes the following form Table  3.1: 

Table  3.1 - Example of data storage in Excel 

 
Current [A] Voltage [V] Time [mcs] 

0 -0,4004 0,0250 

579748,00 

1 0,3809 0,0550 

2 -0,4980 0,0750 

3 -0,3125 0,0950 

4 -0,4102 0,0900 

5 1,6113 0,0850 

6 0,9570 0,0900 

7 0,5469 0,0750 

8 -0,4590 0,0400 

9 -0,8887 0,0000 

10 -0,8789 -0,0150 

11 -0,5664 -0,0550 

12 0,0684 -0,0800 

13 0,0684 -0,1150 

14 -0,0586 -0,1300 

15 -0,0195 -0,1300 

16 -0,6348 -0,1250 

17 -0,7715 -0,1300 

18 -1,6602 -0,1000 

19 -1,5332 -0,7750 

20 0,1270 -0,0500 

 

To digitize the signal in the time domain, a fast Fourier transform (FFT) of the signal is 

performed for each experiment with different frequencies.  The signal is converted into a 

spectrum, because the frequency domain is much more convenient for determining the 

harmonic composition of the signal. 

The algorithm of the discrete Fourier transform (DFT), has the following view: 
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 𝑋(𝑘) =  
1

𝑁
∑ 𝑥(𝑛)𝑒−𝑗

2𝜋𝑛𝑘
𝑁

𝑁−1

𝑛=0 

 (3.1) 

where 𝑥(𝑛) is the number of samples of the digital signal 

In order to shorten the notation when converting formulas, we replace the variable. Replace 

the complex frequency 𝑒−𝑗𝜔with the variable 𝑊: 

 𝑊𝑁
𝑛𝑘 = 𝑒−𝑗

2𝜋𝑛𝑘
𝑁   

(3.2) 

The formula for the discrete Fourier transform will now look as follows: 

 𝑋(𝑘) =  
1

𝑁
∑ 𝑥(𝑛)𝑊𝑁

𝑛𝑘

𝑁−1

𝑛=0 

 (3.3) 

Write down the sequence of even samples of the signal 𝑥(𝑛) in the following form: 

 𝑥1(𝑛) = 𝑥(2𝑛), 𝑛 = 0, 1, … ,
𝑁

2
− 1 (3.4) 

A sequence of odd signal samples 𝑥(𝑛): 

 𝑥2(𝑛) = 𝑥(2𝑛 + 1),     𝑛 = 0, 1, … ,
𝑁

2
− 1 (3.5) 

 

Now express the discrete Fourier transform through the discrete Fourier transforms of even 

and odd sequences of input signal samples: 

 

 𝑋(𝑘) =  
1

𝑁
∑ 𝑥(2𝑛)

𝑁

2
−1

𝑛=0 𝑊𝑁
𝑛𝑘 +

1

𝑁
∑ 𝑥(2𝑛 + 1)𝑊𝑁

2𝑛𝑘 
𝑁

2
−1

𝑛=0 𝑊𝑁
𝑘  . 

(3.6) 

   

To measure the scatter of values, we find the mean values as well as the standard deviation in 

the spectra for two variants: with applied load and under normal operation.  

Mean value: 

 𝑥̅ =
∑ 𝑥𝑖

𝑛
𝑖=0

𝑛
 (3.7) 

Standard deviation: 

 𝜎 = √
𝛴(𝑥𝑖 − 𝑥̅)2

𝑁
 (3.8) 

The final part of the developed complex for diagnosing the condition of industrial equipment 

is the application of machine learning, namely the application of algorithms based on such 

models as Linear Regression Classificator and Decision Tree Classificator (CART method). 

The choice of ML models was based on the following criteria: 
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1) Simplicity: Logistic regression models as well as the Decision Tree Classificator model are 

mathematically less complex than other machine learning methods.  

2) Speed: Models can process large amounts of data at high speed because they require less 

computing power, such as memory and processing capacity. 

3) Flexibility: Logistic regression can be used to find answers to questions that have two or 

more outcomes. For example, logistic regression can be used to sort data with a large range of 

values. 

4) Visibility: The results of the models are easy to visualize using the built-in tools. 

3.3 Logistic regression models  

Logistic regression is a statistical model that uses a logistic or logit function in mathematics 

as an equation between x and y. The logit function (sigmoid) maps y as a sigmoid function of 

x. Constructing a logistic regression equation yields an s-shaped curve (Figure 3.5): 

 

 

Figure 3.5 - Sigmoid function 

The result of a logical regression is the number 0 or 1 for the dependent variable. This is a 

consequence of this type of regression method, in other words, equations between two 

independent variables and one dependent variable are solved. This type of regression is 

excellent for binary classification because, unlike ordinary regression, it assigns the value of 

the dependent variable to a class, in other words, it determines the probability of assigning the 

value to a certain class.  Consequently, such a dependent variable can have only one value, for 

example, "0" or "1".  The calculated probability value is rounded to the nearest number. 
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Typically, answers below 0.5 are rounded to 0 and answers above 0.5 are rounded to 1, so the 

logistic function returns a binary result. 

3.4 Decision Tree Classificator model 

Decision trees are a logical classification algorithm based on finding conjunctive patterns.  

In general, the structure of a decision tree looks as follows (Figure 3.6): 

 

Figure 3.6 - Decision tree structure 

 

• Root Node: Data processing starts in this node. 

• Internal Node: This node is also called a decision node because it is the point where 

data is split into subgroups based on certain criteria. 

• Leaf Node: Final node from any internal node, this holds the decision. 

The CART method was chosen to build a decision tree model. The decision tree training 

belongs to the class of learning with a teacher, that is, the training and test samples contain a 

classified set of examples. The estimation function used by the CART algorithm is based on 

the intuitive idea of node error reduction. A Gini index is used to analyze the partitioning 

score of the data, which determines the degree of probability of a particular feature being 

classified nonparametrically by random selection: 
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 Gini Index = 1 − ∑ (Pi)
2n

i=1 , (3.9) 

where Pi is the probability of assigning an element to a certain class. 

3.5 The experimental part 

To analyze the possibility of using ML to diagnose industrial equipment the following 

experimental studies were carried out: 

- taking electric characteristics of electric drive under normal operating conditions (without 

the presence of anomalies and defects); 

- reading of electric characteristics of electric drive under conditions of loaded electric drive - 

a rotor mounted on bearings with high friction was connected; 

- artificially created unbalance of the rotor by adding weight (additional mass). 

To carry out the experiments, a circuit was assembled from the parts described above, namely 

a training simulator for vibrodiagnostics PROTON-Stand with the ability to adjust the 

frequency, a developed unit for the (Figure 3.7): 

 

Figure 3.7 -  Experimental installation 

Since the selected machine learning models are Supervised learning models, a training sample 

must be fed into the input in order to teach the model to see the relationship between these 

features and the correct answer. Such a data set in this experiment is the electrical 

characteristics of a motor taken in the absence of applied load at various frequencies, in other 

words, in idle mode. The data taken from the motor in this mode are considered reference, 

since during the initial observation the motor used did not change its temperature 

characteristics, there were no extraneous noises and vibrations, which indicates that it is in 

good working order.  During the experiment, the variable parameter was the frequency 
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regulated by the variable frequency drive (VFD) (from 20 Hz to 40 Hz in steps of 5 Hz). To 

evaluate the results the graphs of voltage and current values changes in time were plotted 

(Figure 3.8): 

 

Figure 3.8 - Variation of voltage values in the time domain 

Visual assessment assumes that the waveform is a sine wave, which is a periodic alternating 

voltage (periodic voltage function). 

 

 

Figure 3.9 - Changing current values in the time domain 
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Whereas some conclusions can be drawn about the nature of voltage from a graph of voltage 

variation, the same conclusion cannot be drawn from a current curve, since it represents a 

more complex law. In other words, these currents have a more complex law of change over 

time than a simple sinusoidal current. To facilitate the study of this kind of current, it should 

be known that such a current is a number of simple sinusoidal currents with different 

amplitudes. Finding harmonics of complex currents is quite difficult. A special section of 

mathematics, called harmonic analysis, is devoted to this. However, by some signs you can 

judge the presence of certain harmonics. To simplify the handling of this kind of signal, it is 

necessary to decompose it into a spectrum. 

For a clear assessment on Figure 3.10 - Figure 3.14 presented amplitude-frequency response 

(AFR) voltage with a loaded rotor considered at frequencies 20, 25, 30, 35 and 40 Hz. Each 

frequency corresponds to an explicit harmonic amplitude. However, in addition to the 

fundamental harmonics, some noises are also present, it is especially evident at frequencies  

20 Hz and 25 Hz (Figure 3.10 - Figure 3.11). The nature of appearance of these noises can be 

various, they can be both noises from vibrations, created by operation of electric drive, also 

the reason can be resonance of auto-oscillation system, another reason of appearance can be 

so called Flicker noises or noises of 1/f type, this assumption is based on the fact that such 

kind of noises have distinctive features, for example, noises of 1/f type increase with 

decreasing frequency, which can be seen on the presented graphs. 

 

Figure 3.10 - Frequency voltage response at 20 Hz without load 
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Figure 3.11 - Frequency voltage response at 25 Hz without load 

 

 

 

Figure 3.12 - Frequency voltage response at 30 Hz without load 
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Figure 3.13 - Frequency voltage response at 35 Hz without load 

 

 

Figure 3.14 - Frequency voltage response at 40 Hz without load 

 

As well as for, voltage on the current-frequency graphs (Figure 3.15 - Figure 3.19), we can 

determine the peak at frequencies from 20 Hz to 40 Hz in steps of 5 Hz - the fundamental 
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harmonic, but there are others. The nature of the occurrence of these harmonics can be 

different, most often such "noise" is caused by switching processes. Pulsed power supplies 

create their own "noise" - usually at frequencies that are multiples of the converter's operating 

frequency. 

 

Figure 3.15 - Frequency current response at 20 Hz without load 

 

 

Figure 3.16 - Frequency current response at 25 Hz without load 
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Figure 3.17 - Frequency current response at 30 Hz without load 

 

 

Figure 3.18 - Frequency current response at 35 Hz without load 
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Figure 3.19 - Frequency current response at 40 Hz without load 

3.5.1 Rotor unbalance 

One of the reliability criteria IM is the uniformity of the air gap. Ununiformity of air gap 

worsens power characteristics, increases noise and vibration level. The eccentricity of rotor 

relative to stator axis can be taken as a value of unevenness of air gap. The presence of such 

eccentricity leads to one-sided magnetic attraction and bearing wear. In this case, periodic 

contact of the rotor with the stator occurs during IM operation. In the presence of eccentricity, 

the rotor axis shifts from the set position mainly in the radial direction, causing various 

pulsations of the electromagnetic field. The amplitude of the rotor oscillation and the 

frequency of the pulsation depends on the magnitude of the eccentricity, the parameters and 

the design of the motor. 

There are several methods of rotor eccentricity diagnostics: by means of measuring probe; 

capacitive method; vibration method by means of vibration sensors and method based on 

spectral analysis of current consumption of stator. The latter two are the preferred methods of 

fault and defect diagnosis, however, the spectral analysis method is superior in terms of 

remote monitoring.  

As part of the experiment, a weight was attached to the motor shaft to simulate rotor 

imbalance (Figure 3.20). In this experiment, an artificial change in the air gap between the 

rotor and stator is created, in other words, a mixed eccentricity is created. 
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Figure 3.20 - Adding additional mass to the rotor to create rotor imbalance 

3.5.2 Comparing of amplitude spectrum characteristics under load, 

unbalance condition and normal state 

The experiments were also performed at five different frequencies, from 20 Hz to 40 Hz in 

steps of 5 Hz. As a result of the characteristics taken from the actuator, the AFC for each 

frequency was plotted. A comparative analysis of the spectra at different frequencies was 

made for both voltage-frequency and current. In the first case, there are characteristic 

amplitude components, corresponding to the set frequency (Figure 3.21- Figure 3.23). 

 

Figure 3.21 - Comparative frequency response of voltage at different frequencies without load 
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The graph shows 5 spectra of voltages at different frequencies during VFD operation at 

frequencies 20, 25, 30, 35, 40 Hz. It can be seen that the graph has pronounced peaks at 

similar frequencies. 

 

 

Figure 3.22 - Comparative frequency response of voltages at different frequencies in the 

presence of a load 

The graph shows 5 different spectra at different frequencies from 20 Hz to 40 Hz in 5 Hz 

steps. It can be seen that the graph has pronounced peaks at similar frequencies. At the same 

time, the voltage amplitudes differ from the values obtained in the previous graph. 

 

Figure 3.23 - Comparative frequency response of voltage at different frequencies in 

the presence of load and rotor unbalance 
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Figure 3.24 - Comparative frequency response of current at different frequencies without 

load 

Analysis of the graphs allows us to conclude that visually it is impossible to notice a specific 

law of spectrum distribution. 

3.6 The average current value 

In order to calculate the scatter of the data obtained when the drive is under load compared to 

the reference data or in other words data taken in idle mode, it was determined that the 

standard error based on RMS and mean values was 10.2%, which is acceptable for this kind 

of experiment. In order to clearly evaluate the results, plots of the current dependence on the 

frequency at 20 Hz were plotted (Figure 3.25, Figure 3.26). 

 

Figure 3.25 - Mean value visualization comparing two spectra with and without load at 20 Hz 
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Figure 3.26 - Visualization of the mean square deviation when comparing two spectra with 

and without loading at 20 Hz 

 

Mathematically, the RMS is defined as the square root of the variance: 

 𝑆 = √𝐷(𝑥) =  √
1

𝑛
∑(𝑥𝑖 −  𝑥̅)2

𝑛

𝑖=1

 (3.10) 

where 𝑥̅ is the arithmetic mean of the sample: 

 
𝑥̅ =

1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

=
1

𝑛
(𝑥1 + ⋯ + 𝑥𝑛) (3.11) 

𝑥𝑖-i-th element of the sample; 

𝑛 -volume of the sample. 

3.7 Applying machine learning models 

An approach in which in-service diagnostic work enables condition assessment, detection and 

remedial action during maintenance. For example, the engine condition is diagnosed by fuel 

consumption, gas temperature, noise and vibration level, composition of exhaust gases, 

clearance between the cylinder and piston, clearance between crankshaft journals and 

bearings and other indicators (Birger I.A., 1978). Having numerical values of this set of 

indicators, it is necessary to assess whether the engine is serviceable or whether it needs to be 
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stopped for maintenance. In this case there is a risk of false alarm (when the serviceable 

object will be recognized as faulty) or, on the contrary, of missing the target, in which the 

faulty object is considered serviceable.  

In most cases, diagnosis is reduced to the division of object states into two classes: 

serviceable and faulty. Learning by precedent is one solution to this kind of problem, machine 

learning is the tool. These methods are reduced to binary classification problems. The known 

results (precedents) of system state evaluation are considered as input data: the system is 

working or not working at given values of monitored indicators. Thus, there is a set of 

situations with given indicators and a set of possible states of the system, which together form 

an initial sample. This sample is divided into two parts: training and control. The first part is 

intended for training the model, which in turn classifies the state of the object as serviceable 

or faulty.  

It is assumed that there is some dependence between object functioning indicators and its 

state. On the basis of this data, it is required to reconstruct this dependence and create an 

algorithm capable of determining the state of the object with maximum accuracy. 

Initial data for diagnostics of the object state, as a rule, are represented in the matrix form - X 

indicators of system functioning, the elements of which 𝑥𝑖𝑗 is the result of ⅈ-th observation on 

j-th indicator, 𝑖 = 1, … , 𝑙, 𝑗 = 1, … , 𝑝 (l - number of lines, or number of observations, p - 

number of columns, or number of indicators) and vector-column Y, consisting of zeros for 

those tests, in which the object is good and units for faulty state. Each row 𝑥𝑖 of matrix X 

corresponds to a certain value 𝑦𝑖 of vector Y. The set of pairs (𝑥𝑖 , 𝑦𝑖) form a sample of initial 

data - precedents. 

The problem is to build a model 𝑎(𝑥, 𝜔) that predicts the answer Y for any given X. Usually 

linear models are used for this purpose:  

 𝑎(𝑥, 𝜔) = 𝜔0 + 𝜔1𝑥1 + ⋯ + 𝜔𝑝𝑥𝑃, (3.12) 

𝜔 = (𝜔0, 𝜔1, … , 𝜔𝑝) - a vector of model parameters (weights).  

In this paper, a logistic regression model was chosen as a linear model. 

The parameters are selected from the input data; the process of selecting the parameters is 

called learning the algorithm. The found parameters should provide the optimal value of some 

quality functional. Often the error functional is minimized (it is the average number of 

mismatches between the actual result ⅈ of the object 𝑦𝑖 and the predicted one a(𝑥𝑖): 
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 𝑄(𝑎, 𝑋) =
1

𝑙
∑ 𝐿(𝑎, 𝑥𝑖)𝑙

𝑖=1 =  
1

𝑙
∑ [𝑎(𝑥𝑖) −  ]  → 𝑚𝑖𝑛

𝑙

𝑖=1

, (3.13) 

where 𝐿(𝑎, 𝑥𝑖) is the loss function, which captures the presence of a mismatch between the 

experienced value of the object state for a given set of performance indicators (matrix rows) 

and the value predicted by the constructed algorithm a(𝑥𝑖). 

Solving this problem, as it was said above, two different methods were used: logistic 

regression and decision tree. The use of two methods is due to the fact that there is a problem 

of selecting a method that provides a solution to the problems with the necessary accuracy, so 

often in practice, combinations of methods are used, the result of which is the ability to decide 

on the quality functional. 

3.7.1 Analysis of the application of logistic regression 

Application of the logistic regression model was performed for the whole frequency range: 

from 20 Hz to 40 Hz in steps of 5 Hz. Both current and voltage data were used for the training 

and control samples.  

As mentioned above, the logistic regression method differs from the ordinary regression 

method in that in the first case the value of the predicted variable is the assignment of it to a 

class: "serviceable" or "defective", while in the second case it is the immediate value of the 

pregnant woman herself that is predicted. To illustrate this, there is some probability 

belonging to the class of "serviceable" equipment - 𝑃+  , then the probability of the opposite 

class is defined as 𝑃− = 1 − 𝑃+. Thus, the result of a logistic regression always lies in the 

interval [0, 1]. 

Visually, the logistic regression can be represented as an n-dimensional space. Since the paper 

assumes that there are two classes, therefore, there is a two-dimensional space divided by a 

line into two regions corresponding to the classes (Figure 3.27). 
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Figure 3.27 - Visual representation of logistic regression in 2-dimensional space 

This separating plane is called a linear discriminant, since it is linear in terms of its function, 

and allows the model to divide, discriminate points into different classes. 

The process of dividing variables into classes is as follows: suppose that there are some 

variables 𝑥1and 𝑥2, then the function corresponding to the boundary will take the form: 

 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2. (3.14) 

Considering any point, for example (a,b), and substituting the values of 𝑥1and 𝑥2, into the 

boundary function, we obtain:  

 𝛽0 + 𝛽1𝑎 + 𝛽2𝑏. (3.15) 

Since the coordinates of the point change depending on the probability value, it is necessary 

to consider the following three positions of the point:: 

1) (a,b) lies in the area bounded by the points of class "+". Then 𝛽0 + 𝛽1𝑎 + 𝛽2𝑏, will be 

positive, being somewhere within (0,∞). Mathematically speaking, the greater the value 

of this value, the greater the distance between the point and the boundary. And this 

means a higher probability that (a,b) belongs to the "+" class. Consequently, 𝑃+ will lie 

within (0,5, 1]. 

2) 𝑃+ lies in the region bounded by points of class "-". Now, 𝛽0 + 𝛽1𝑎 + 𝛽2𝑏 will be 

negative, being within (-∞ ,0). But, as in the case of the positive value, the greater the 

value of the output value modulo, the more likely it is that (a,b) belongs to the "-" class, 

and 𝑃+ is in the interval [0, 0.5). 
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3) (a,b) lies on the boundary itself. In this case, 𝛽0 + 𝛽1𝑎 + 𝛽2𝑏 = 0. The model in this case 

is unable to accurately determine to which class the values a and b belong, so the result 

𝑃+ will be equal to 0.5.  

For clarity of attribution of values of each measurement an additional column "defect" was 

added in Excel, because the experimental data are exported to this program. 

3.7.2 Analysis of the application of the decision tree model based on 

the CART method 

The binary representation of the decision tree is as follows: in the CART algorithm each 

decision tree node has two descendants. At each step of the tree construction the rule formed 

in the node divides the given set of examples (training sample) into two parts - the part where 

the rule is executed (descendant - right) and the part where the rule is not executed 

(descendant - left). To select the optimal rule, a partitioning quality function is used - in this 

context, the Gini index, the algorithm for finding which was described earlier, was applied.  

The supposed algorithmic solution is quite obvious. Each node (the general structure of the 

decision tree is described in chapter 3.4 must have references to two descendants Left and 

Right - similar structures. Also, a node must contain a rule identifier, describe the right part of 

the rule in some way, contain information about the number or ratio of examples of each class 

of the training sample "passed" through the node and have a sign of a terminal node - a leaf. 

Such a rule in the developed model is a value for voltage or current at different frequency 

characteristics. In Figure 3.28 - Figure 3.32, the developed model is presented in the form of a 

hierarchical tree structure. Each tree has been considered for a certain frequency, so the 

number of measurements is three hundred, where one hundred is the series of measurements 

referring to the training sample, i.e. assuming fault-free condition, or, in this work, referring 

to the series of measurements taken at idle running of the electric drive, and, two hundred, 

referring to the second class - faulty equipment (the measurements taken at artificially created 

load).  

The elements of the decision tree structure are colored in different colors, thus, white 

indicates uncertainty, blue and its shades indicate defective condition, orange, respectively, 

belonging to the "defect-free" class. 

An influential indicator affecting the accuracy of decision making in the decision tree model 

is its depth. The larger it is, the lower the error. However, too large a depth value is also not 

always good, as it can lead to overtraining of the model. As can be seen from the Figure 3.28 

- Figure 3.32, the proposed model has a maximum depth of three. 
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Figure 3.28 - Decision tree for defect detection via voltage values at 20 Hz  

 

 

 

Figure 3.29 - Decision tree for defect detection via voltage values at 25 Hz  
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Figure 3.30 - Decision tree for defect detection via voltage values at 30 Hz  

 

 

 

 

Figure 3.31 - Decision tree for defect detection via voltage values at 35 Hz 
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Figure 3.32 - Decision tree for defect detection via voltage values at 40 Hz 

 

Since the initial data were known, i.e. it was known which number of values belong to class 

"0" and which to class "1", it is possible to determine the accuracy of the model analytically. 

Thus, only 50.6 values out of 100 were correctly determined as non-defective, which 

indicates a low accuracy of the model. The same procedure was carried out for the current 

values, where it was found that only 39.4 out of 100 values were correctly determined.  

Therefore, it can be concluded that the model should be adjusted more accurately by 

changing, for example, its depth, hence, to increase the accuracy of this parameter it is 

necessary to select the most appropriate number of it. 

3.8 Model quality assessment based on F-score 

In the chapter 3.7 аs it was determined before, the F1 metric was used to evaluate the 

performance of the models, which is the average harmonic value of recall and precision: 

 𝐹 =
2𝑃𝑅

𝑃 + 𝑅
 (3.16) 

where precision: 

 𝑃 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 (3.17) 

and recall: 

 𝑅 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
, (3.18) 

are estimated by the number of correctly classified good states tp, the number of incorrectly 

classified good states tp and the number of incorrectly classified states fn. The F-criterion, in 
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contrast to the error minimization function, is able to estimate objectively the quality of 

classification at unbalanced classes (predominance of values of one of the classes over the 

other). 

In turn, the metrics constituting the F1 criteria are based on the error matrix (Figure 3.33). 

The class that is of interest to us is called "positive", and the remaining class is called 

"negative". The columns represent the actual values of the target variable, and the rows 

represent the predicted values of the target variable. For ease of understanding, a decoding of 

the matrix is presented: 

True Positive (TP) 

- Assumed value corresponds to the actual value. 

- The actual value was positive and the model predicted a positive value. 

True Negative (TN) 

- Assumed value corresponds to the actual value. 

- The actual value was negative and the model predicted a negative value. 

False Positive (FP) - Type 1 error 

- The predicted value defective state was incorrectly predicted. 

- The actual value was negative, but the model predicted a positive value. 

- Also known as type 1 error. 

False Negative (FN) - Type 2 error 

- The predicted value of normal state was predicted incorrectly. 

- The actual value was positive, but the model predicted a negative value. 

- Also known as type 2 error. 
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Figure 3.33 - Confusion matrix 

 

F1 metric was used for all proposed models and the whole range of values including all 

current and voltage values at different frequencies.  

The results are presented in the tables: 

Table  3.2 - F-1 metric for LogisticRegression and DecisionTreeClassifie models based on current 

values 

Frequency, Hz LogisticRegression DecisionTreeClassifier 

20 0.680368 0.662967 

25 0.70703 0.572197 

30 0.48628 0.548564 

35 0.387273 0.524199 

40 0.396109 0.490219 

20, 25, 30, 35, 40 0.143998 0.421023 
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Table  3.3 - F-1 metric for LogisticRegression and DecisionTreeClassifie models based on voltage 

values 

Frequency, Hz LogisticRegression DecisionTreeClassifier 

20 0,560162 0,813963 

25 0,459445 0,576249 

30 0,420972 0,532341 

35 0,381662 0,495299 

40 0,442377 0,442331 

20, 25, 30, 35, 40 0,285791 0,497666 

 

Table  3.4 - F-1 metric for LogisticRegression and DecisionTreeClassifie models based on current and 

voltage values 

 

Frequency, Hz LogisticRegression DecisionTreeClassifier 

20 0.681425 0.804247 

25 0.69694 0.513071 

30 0.476604 0.525286 

35 0.39467 0.445239 

40 0.396109 0.530988 

20, 25, 30, 35, 40 0.127959 0.470489 

 

Evaluating the results of the tables, the following conclusions can be drawn: 

1) Application of LogisticRegression and DecisionTreeClassifier models for diagnostics 

of industrial equipment allows predicting both the priesthood of defects and making 

conclusion about normal operation of equipment with some accuracy; 

2) Comparing the models with each other, we can conclude that the use of 

LogisticRegression gives poor results for all frequencies, while the predictive ability of the 

DecisionTreeClassifier model is much higher, which gives reason to believe that this model, 

the most suitable in the conditions of this work. The relatively poor results of the first model 

can be explained by the fact that the spectra for different shaft frequencies have different 
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important bands for analysis, so the decision tree, according to its algorithm, adjusts to 

different frequencies, while the regression cannot do this.
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Chapter 4  

Results and Discussion 

In the provided study it is offered a method for determination technical condition of industrial 

equipment via machine learning algorithms. The developed algorithm can be applied to any 

equipment that has an electric drive. It is based on spectrum analysis of voltage and current of 

electric drive that measured online. The data obtained from equipment should be transmitted 

to a computer, where machine learning algorithm of defect prediction is implemented. 

On the basis of provided experimental study it is achieved, that the for various frequencies of 

the equipment it is recommended to use various models: 

- for frequency 20 Hz – DecisionTreeClassifier for voltage with metrics of f1-score 

0.813963; 

- for frequency 25 Hz – LogisticRegression for current with metrics of f1-score 

0.70703; 

- for frequency 30 Hz – DecisionTreeClassifier for voltage with metrics of f1-score 

0.532341; 

- for frequency 35 Hz – DecisionTreeClassifier for current with metrics of f1-score 

0.524199; 

- for frequency 40 Hz – DecisionTreeClassifier for voltage with metrics of f1-score 

0.530988; 

As it is seen from the results Machine learning works good for small frequencies 20 Hz and             

25 Hz. But it works worse for higher frequencies. This suggests that the study of the influence 

of frequencies on the results requires additional expert and research activities. 

It is evident, that LogisticRegression gives no result for whole range of frequencies, but 

DecisionTreeClassifier deals good with it. This characteristic is easily explained by the fact 

that the model can adapt to different frequencies under different operating modes. It should 
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also be noted that in order to obtain the most accurate results, it is necessary to adjust the 

model correctly, i.e., for example, to adjust its depth, but it should also be remembered that 

this should be done carefully, as there is a tendency to overtrain the model.  

It should be mentioned that for better results it is necessary to obtain more precision data, 

provide more experiments for various defects, analyze more model, it particular more 

complicated models, such as fully connected neural networks models, autoencoder model, 

convolutional neural networks. 
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Chapter 5  

Conclusion 

5.1 Summary 

As a result of the performed scientific research the following tasks were considered: 

1) Analysis of modern experience for diagnostics of oil pumping equipment; 

2) Design and development of electronic unit for measuring electrical parameters; 

3) Conducting experimental research; 

4) Processing of experimental data and development of machine learning model. 

In order to address the objectives, the following was undertaken: 

- Analysis of scientific publications and literature in the field of technical diagnostics; 

- Different methods of meshing learning and their application for diagnosing the defective 

state of equipment were considered;  

- In order to analyze the possibility of applying machine learning methods, a clustering 

method was used. 

- In order to test the proposed models, a number of experiments were conducted, for 

which a block for taking electrical characteristics from the motor was developed.  

5.2 Evaluation 

The evaluation of the models (Subchapter 3.8) showed that different models are applicable for 

different operating conditions of the equipment, presumably due to the fact that the VFD 

affects differently the frequency response at different frequencies. Based on this there is a 
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need to develop the application of different models of a more complex architecture in order to 

apply them to the operation of equipment at different frequencies. 

5.3 Future Work 

The limited effectiveness of the model (based on f1-score metric) is due to the simplicity of 

the model architectures, as well as the use of data with high noise level (low ADT bit rate). 

For further research, the use of more sophisticated models is recommended, and more in-

depth preprocessing of the data is needed. It is also relevant to conduct experiments using 

different equipment, on a large time interval, the study of a wider range of modes, a larger list 

of defects and, consequently, the expansion of diagnostic features. 
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Appendix A  

Code for data measuring and preprocessing  

This code was designed to measure data from sensors and send to a computer. The code for 

the Arduino microcontroller is written in Arduino language ("Simplified C++."). 

unsigned long time; 

int N ; 

int x[512]; 

int i; 

const int ledPin = 13; 

const int pin1 = A2; 

const int pin2 = A5; 

int incomingByte = 0; 

int i_kak_e = 0; 

void setup() { 

Serial.begin(115200); 

pinMode(ledPin, OUTPUT); 

digitalWrite(ledPin, HIGH); 

} 

void loop() { 

N = 512; 

incomingByte = 0; 

// while (incomingByte < 1) 

// { 

// incomingByte = Serial.read(); 

// } 

time = micros(); 

for ( i=0; i <= N-1; i++){ 

if (i % 2 == 0) {x[i] = analogRead(pin1);} 

if (i % 2 == 1) {x[i] = analogRead(pin2);} 

delay(1) ; 

} 

time = micros()-time; 

for ( i=0; i <= N-1; i++){ 

Serial.print(x[i]); 

Serial.print('*'); 

} 

Serial.print(time); 
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Serial.print('*'); 

Serial.println('*'); 

delay(100) ; 

} 
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Appendix B  

Code for data processing and storage based on 

Python programming language 

This code was developed for the purpose of collecting and storing received data from the 

microcontroller. 

import serial 

 

 

def GetOneArrayArd(COMName, COMSpeed): 

    ser = serial.Serial(COMName, COMSpeed) 

    try: 

        s = ser.readline().replace(b'\r\n', b'').decode() 

    except TypeError as e: 

        print(e) 

    ser.close() 

 

 

    s = s.rsplit('*') 

    n = len(s) - 3 

    a = [] 

    b = [] 

    for i in range(n): 

        if i % 2 == 1: 

            a.append(int(s[i])) 

        else: 

            b.append(int(s[i])) 

    t = int(s[-3]) 

    # a - current 

    # b - voltage 

 

    return a, b, t 
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Appendix C  

Code for machine learning models training 

based on Python programming language  

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from IPython.display import clear_output 

from sklearn.linear_model import LogisticRegression 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import f1_score 

import sklearn 

from sklearn.metrics import accuracy_score 

from sklearn.metrics import make_scorer 

from sklearn.metrics import precision_score 

from sklearn.metrics import recall_score 

from sklearn.neural_network import MLPClassifier 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.model_selection import GridSearchCV 

from sklearn.metrics import make_scorer 

from sklearn.model_selection import cross_val_score 

 

 

# # Чтение всех Excel файлов 

 

# In[ ]: 

 

 

base_path = r'C:\Users\Lenovo\Desktop\Диплом\EXPER — 

копия\Experiment data' 

 

 

# In[ ]: 

 

 

freqs = [20,25,30,35,40] 

exps = ['rotor', 'rotor_disb', 'wl'] 
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lists = list(range(100)) 

 

 

# In[ ]: 

 

 

df0 = None 

for freq in freqs: 

    for exp in exps:         

        path = base_path+'\\'+f'{freq}{exp}.xlsx'    

         

        clear_output(wait=True) 

        print(f"Loading file {path}")               

                 

        xls = pd.ExcelFile(path)         

        for i in lists:    

            dfi = pd.read_excel(xls, str(i))                                 

                                 

            dfi = dfi[['Current [mA]','Voltage [mV]','Time 

[mcs]']]         

            dfi.columns = [f'{freq}{exp}{i}I', 

f'{freq}{exp}{i}V', f'{freq}{exp}{i}t'] 

 

            if df0 is None: 

                df0 = dfi 

            else:       

                df0 = pd.concat([df0, dfi], axis=1)       

                 

clear_output(wait=True) 

print("Loaded!")                     

 

 

# In[ ]: 

 

 

df0['t'] = df0['20rotor1t'].mean()*df0.index / df0.shape[0] / 

1_000_000 

 

 

# In[ ]: 

 

 

total_time = df0['20rotor1t'].mean() / 1_000_000 

max_freq = 1 / total_time * df0.shape[0] / 2 

min_freq = 1 / total_time  

print(total_time) 

print(max_freq) 

print(min_freq) 

 

 

# In[ ]: 

 

 

df0 
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#*See how the signal changes over time** 

 

# Voltage change over time 

 

# In[ ]: 

 

 

df0.plot(x = 't', y = '20rotor3V', grid=True, legend=False, 

ylabel = 'measured values', xlabel = 'time, seconds') 

 

 

# Changes in current strength over time 

 

# In[ ]: 

 

 

df0.plot(x = 't', y = '20rotor3I', grid=True, legend=False, 

ylabel = 'measured values', xlabel = 'time, seconds') 

 

 

 

# Conversion of all signals into a spectrum 

# 

# dff - table with spectra 

# In[ ]: 

 

 

V = np.abs(np.fft.rfft(df0.T)).T / len(df0) 

 

 

# In[ ]: 

 

 

V.shape 

 

 

# In[ ]: 

 

 

dff = pd.DataFrame(V, columns = df0.columns) 

 

 

# In[ ]: 

 

 

dff = dff.drop('t', axis=1) 

 

 

# In[ ]: 

 

 

dff['frequency'] = 1/total_time * dff.index #/ dff.shape[0] 
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dff  

 

 

A = np.angle(   np.fft.rfft(   df0.T  )  ).T 

A.shape 

 

 

columns_freq = [str(i)+'_phase' for i in df0.columns] 

 

 

dffA = pd.DataFrame(A, columns = columns_freq) 

 

 

dffA 

 

 

dff2 = pd.concat([dff, dffA],axis=1) 

 

 

# In[ ]: 

 

 

dff = dff2 

 

 

 

# Voltage spectrum 

# In[ ]: 

 

 

dff.drop(0).plot(x = 'frequency',  

                 y = '40rotor0V',  

                 grid=True,  

                 legend=False,  

                 ylabel = 'measured values',  

                 xlabel = 'frequency, Hz' 

                ) 

 

 

 

# Current spectrum 

 

# In[ ]: 

 

 

dff.drop(0).plot(x = 'frequency',  

                 y = '40wl0I',  

                 grid=True,  

                 legend=False,  

                 ylabel = 'measured values',  

                 xlabel = 'frequency, Hz' 

                ) 

 

 

# Comparison of no-load spectra at different frequencies 
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# In[ ]: 

 

 

dff.drop(0).plot(x = 'frequency',  

                 y = 

['20wl0V','25wl0V','30wl0V','35wl0V','40wl0V'],  

                 grid=True,  

                 legend=True,  

                 ylabel = 'measured values',  

                 xlabel = 'frequency, Hz' 

                ) 

plt.legend(['20 Hz','25 Hz','30 Hz','35 Hz','40 Hz']) 

 

 

** Comparison of voltage spectra in the presence of a load at 

different frequencies** 

 

 

# In[ ]: 

 

 

dff.drop(0).plot(x = 'frequency',  

                 y = 

['20rotor0V','25rotor0V','30rotor0V','35rotor0V','40rotor0V'],  

                 grid=True,  

                 legend=False,  

                 ylabel = 'measured values',  

                 xlabel = 'frequency, Hz' 

                ) 

plt.legend(['20 Hz','25 Hz','30 Hz','35 Hz','40 Hz']) 

 

 

# Comparison of spectra at load and unbalance - at different 

frequencies 

 

# In[ ]: 

 

 

dff.drop(0).plot(x = 'frequency',  

                 y = 

['20rotor_disb0V','25rotor_disb0V','30rotor_disb0V','35rotor_d

isb0V','40rotor_disb0V'],  

                 grid=True,  

                 legend=False,  

                 ylabel = 'measured values',  

                 xlabel = 'frequency, Hz' 

                ) 

plt.legend(['20 Hz','25 Hz','30 Hz','35 Hz','40 Hz']) 

 

 

#** Comparison of current spectra in the presence of a load at 

different frequencies** 
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# In[ ]: 

 

 

dff.drop(0).plot(x = 'frequency',  

                 y = 

['20wl0I','25wl0I','30wl0I','35wl0I','40wl0I'],  

                 grid=True,  

                 legend=True,  

                 ylabel = 'measured values',  

                 xlabel = 'frequency, Hz' 

                ) 

plt.legend(['20 Hz','25 Hz','30 Hz','35 Hz','40 Hz']) 

 

# ## Mean value and standart deviation 

 

# In[ ]: 

 

 

def get_df_mean_std(dff, s, p): 

 

    df_av = None 

 

    for freq in freqs: 

        for exp in exps:   

            df_ = None 

 

            for i in lists:   

                dfi = dff[[f'{freq}{exp}{i}{p}']] 

 

                if df_ is None: 

                    df_ = dfi 

                else:       

                    df_ = pd.concat([df_, dfi], axis=1)       

                     

            if s == 'mean': 

                df_col = df_.mean(axis=1) 

            else: 

                df_col = df_.std(axis=1) 

                 

            df_col.name= f'{freq}{exp}{p}_{s}' 

 

            if df_av is None: 

                df_av = df_col 

            else:       

                df_av = pd.concat([df_av, df_col], axis=1)         

                 

    df_av['frequency'] = 1/total_time * df_av.index               

    return df_av 

 

 

# In[ ]: 

 

 

df_av = get_df_mean_std(dff, 'mean', 'I') 

df_av.drop(0).plot(x = 'frequency',  
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                 y = ['20wlI_mean','20rotor_disbI_mean'],  

                 grid=True,  

                 legend=True,  

                 ylabel = 'measured values',  

                 xlabel = 'frequency, Hz' 

                ) 

plt.legend(['Without load','With load']) 

 

 

# In[ ]: 

 

 

df_av = get_df_mean_std(dff, 'std', 'I') 

df_av.drop(0).plot(x = 'frequency',  

                 y = ['20wlI_std','20rotor_disbI_std'],  

                 grid=True,  

                 legend=True,  

                 ylabel = 'measured values',  

                 xlabel = 'frequency, Hz' 

                ) 

plt.legend(['Without load','With load']) 

 

 

# Let's apply machine learning algorithms to the full set of 

raw data without additional processing. 

# We will use Linear Regression Classificator and Decision 

Tree Classificator models. 

# We'll start with all frequencies together, then separately 

for frequencies 20, 25, 30, 35, 40 Hz. 

#  

# We'll also run them separately for voltage, current and both 

# In[ ]: 

 

 

def get_ml(freqs=freqs, exps=exps, lists=lists, vi=['V', 'I'], 

aa=[''], k=1): 

     

    df_ml = [] 

 

    for freq in freqs:     

        for exp in exps:   

            for i in lists:   

                df_row = None 

                index = f'{freq}{exp}{i}' 

 

                for p in vi:      

                    #for a in ['','_phase' ]:   

                    for a in aa:   

 

                        dfi = dff[[f'{freq}{exp}{i}{p}{a}']] 

                        name = dfi.columns[0] 

 

                        dfi = dfi.T                 

 

                        dfi.columns = [name[-
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1]+a+'_f'+str(col) for col in dfi.columns] 

                        dfi.index = [index] 

 

                        if df_row is None: 

                            df_row = dfi 

                            df_row['defect'] = 0 if 'wl' in 

name else 1 

                        else:       

                            df_row = pd.concat([df_row, dfi], 

axis=1)       

 

                df_ml.append(df_row) 

 

    res = pd.concat(df_ml, axis=0)  

     

    if k==1: 

        return  res 

 

    big_rows = [] 

    nn = [] 

    for i in range(len(res) // k):  

        big_row = res.iloc[i*k:(i+1)*k,:]  

        n = big_row.index[0] 

        big_row = big_row.max(axis=0)   

 

 

        nn.append(n) 

 

        big_rows.append(big_row) 

    big_rows = pd.concat(big_rows, axis=1) 

    big_rows.columns = nn        

    big_rows = big_rows.T          

                 

    return big_rows 

 

 

# In[ ]: 

 

 

df_ml0 = get_ml(k=2) 

 

 

# In[ ]: 

 

 

df_ml0 

 

 

# In[ ]: 

 

 

for i in df_ml0.columns: 

    print(i) 
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# In[ ]: 

 

 

df_ml0['defect'] 

 

 

# In[ ]: 

 

 

df_ml0.to_excel(r'C:\Users\Lenovo\Desktop\Диплом\dsd.xlsx') 

 

 

# In[ ]: 

 

 

def my_f1(y_test, predict): 

     

    defects = 0  

    defects_true = 0 

     

    not_defects = 0 

    not_defects_true = 0 

     

    for i in range(len(y_test)): 

         

        t = y_test[i] 

        p = predict[i] 

         

        if t == 1: 

            defects += 1 

             

            if t == p: 

                defects_true += 1 

                 

        if t == 0: 

            not_defects += 1 

             

            if t == p: 

                not_defects_true += 1 

     

    sm = 0.00001 

     

    d = defects_true/(defects + sm)   

    nd = not_defects_true/(not_defects + sm) 

     

    return d*nd*2/(d+nd) 

 

custom_score = make_scorer(my_f1, greater_is_better=True) 

 

 

# In[ ]: 

 

 

models = {'LogisticRegression' : 

LogisticRegression(max_iter=1000, random_state=1),  
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          'DecisionTreeClassifier' : 

DecisionTreeClassifier(random_state=1), 

         } 

              

parametrs = {} 

parametrs['LogisticRegression'] = {}   

 

parametrs['DecisionTreeClassifier'] = {#'max_depth': range 

(3,11, 2), 

              'min_samples_leaf': range (2,11,2), 

              'min_samples_split': range (2,11,2),  

            } 

 

 

# In[ ]: 

 

 

model = DecisionTreeClassifier(random_state=1, max_depth = 3) 

 

 

# In[ ]: 

 

 

pip install graphviz 

 

 

# In[ ]: 

 

 

df_ml = get_ml(freqs=['20'], exps=exps, lists=lists, vi=['V']) 

 

X = df_ml.drop('defect', axis=1) #feature 

y = df_ml['defect'] # target 

model.fit(X, y) 

 

 

# In[ ]: 

 

 

from sklearn import tree 

 

 

# In[ ]: 

 

 

from IPython.display import SVG 

 

 

# In[ ]: 

 

 

from sklearn import tree 

plt.figure(figsize=(40,20))  # customize according to the size 

of your tree 

_ = tree.plot_tree(model, feature_names = X.columns, rounded = 
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True, proportion = False,  

                precision = 2, filled = True) 

plt.show() 
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Abbreviations 

AC (motors) Alternating current (motors) 

AFC 

 

Amplitude-frequency characteristic 

AFR 

 

Amplitude-frequency response 

ANN 

 

Artificial neural network 

CART (method) Classificator and Decision Tree Classificator 

 DFT Discrete Fourier transform 

EMF Electromotive force 

ESPRIT Estimation of signal parameters by rotational invariant techniques 

EU Europe union  

FDD Fault detection and diagnosis 

FFT Fast Fourier transform 

FN False negative 

FN False negative 

FP False positive 

FP False positive 

GPU Gas pumping unit 

IDE Integrated development environment 

IMs Induction machines 

IoT Internet of Things 

KDE Kernel density estimation 

M&R Maintenance and repair 

MCSA  Motor current signature analysis 

ML Machine learning 
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MLP Multilayer perceptron 

MTBF Mean time between failures 

MUSIC Multiple signal classification 

NSs Neural networks 

PC Personal computer 

PCE Pump-compressor equipment 

PdM Predictive maintenance 

RMS Root-mean-square 

SVM Support vector method 

TN True negative 

TP True positive 

TС Technical condition 

VFD Variable frequency drive 

WT Wavelet transform 

 

 


