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Abstract

In this work, molecular dynamics was used to investigate the effect of grain size and tem-

perature on the elastic constants and hardness of CoCrFeMnNi high entropy alloy through

atomistic simulations. Grain sizes of up to 4 nm to 20 nm were simulated, across a temper-

ature range of 100 to 1000 Kelvin.

The systems were equilibrated using a conjugate gradient style minimization followed by an

NpT ensemble. Elastic constants were calculated using the deformation method, and for

polycrystalline systems, averaged using Hill’s averaging method. When available, the results

proved to be well in agreement with experiment and other atomistic simulations. The elastic

constants were found to increase with grain size on this scale.

In addition to the elastic response, the plastic response was quantified by calculating the

hardness through nanoindentation. The grain size effects on flow stress were examined, and

this work shows an inverse Hall-Petch relationship for the Cantor alloy.
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Kurzfassung

In dieser Arbeit wurde durch Molekulardynamik die Auswirkung von Korngröße und Tem-

peratur auf die elastischen Konstanten und die Härte der hochentropischen Legierung CoCr-

FeMnNi durch atomistische Simulationen untersucht. Es wurden Korngrößen von bis zu 4

nm bis 20 nm in einem Temperaturbereich von 100 bis 1000 Kelvin simuliert.

Die Systeme wurden durch eine konjugierte Gradienten-Minimierung, gefolgt von einem

NpT-Ensemble, ins Gleichgewicht gebracht. Die elastischen Konstanten wurden mit der

Deformationsmethode berechnet und für polykristalline Systeme mit der Hill’schen Mit-

telungsmethode gemittelt. Soweit verfügbar, stimmten die Ergebnisse gut mit Experimenten

und anderen atomistischen Simulationen überein. Es wurde festgestellt, dass die elastischen

Konstanten mit der Korngröße auf dieser Skala zunehmen.

Neben der elastischen Reaktion wurde auch die plastische Reaktion durch Quantifizierung

der Härte mittels Nanoindentation berechnet. Die Auswirkungen der Korngröße auf die

Fließspannung wurden untersucht, und diese Arbeit zeigt eine inverse Hall-Petch-Beziehung

für die Cantor-Legierung.
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Chapter 1

Introduction

The discoveries of traditional alloys with one dominant element have often led to great

societal and technological advancements for the human race. The early alloying of tin and

copper led to the Bronze Age, and around 2000 years later steel was discovered by alloying

iron and carbon. Since the Bronze Age, there has been exhaustive research conducted on

and use of alloys with one dominant or prominent element. Traditional alloys have led to

great advancements and outstanding materials, but there are still many areas to be explored.

An alloy with many elements but without a dominant element greatly increases the degrees

of freedom and therefore the possible materials, properties, and applications.

These materials, called multi-principle element alloys or high-entropy alloys (HEAs) have

been studied since as early as the late eighteenth century by the German metallurgist Franz

Karl Achard [1, 2]. About two centuries later, the separate works of Brian Cantor and

Jien-Wei Yeh discovered and reported stable single-phase HEAs [3, 4]. Since 2004 extensive

research has been conducted on these HEAs. Some have shown to have superior mechanical

properties such as high ductility at low temperature [5, 6], high yield strength at high

temperature [7], high fracture toughness [8], and a high endurance limit [9, 10]. One of

the most studied HEAs is CrMnFeCoNi alloy, or Cantor alloy, due to its excellent low

temperature ductility and fracture toughness. The uses and applications of Cantor alloy

may include biomedical alternatives, aerospace engines, and nuclear reactors [11].

The hardness of a material, defined as the resistance against plastic deformation, permanent

indentation, scratching, etc. is an important material property for engineers to consider

while designing and choosing a material. Hardness has a strong correlation with wear re-

sistance [12, 13], which is necessary to be examined for moving parts, or parts subject to

frequent or continuous fluid flow. Microhardness is typically measured by either a Knoop

test, Brinell test, Vicker’s test, or Rockwell test. Hardness on the nanoscale, measured

through nanoindentation, is the preferred method for surface properties of thin films and

many bio-materials [14–16].
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1. Introduction

Other quite critical material properties are the elastic constants. For novel materials, the

Young’s modulus is often one of the first material properties to be examined. The Young’s

modulus, along with the shear modulus and Poisson’s ratio, describes how the material will

deform under stresses below the material’s yield strength.

This thesis mainly focuses on the elastic constants and hardness dependencies of Cantor alloy,

with respect to temperature and grain size. Additionally, this paper serves to demonstrate

the usability of a Lennard-Jones style potential [17] for polycrystalline applications at finite

temperature.
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Chapter 2

Computational Methods

2.1 Molecular Dynamics

Since its development in the 1950s, classical molecular dynamics (MD) has been used to

simulate and model atomic, polymeric, biological, metal, ceramic, macroscopic, and more

systems. The main advantage of MD, compared to density functional theory (DFT), is the

scale of the simulations possible. DFT calculations typically only treat hundreds of atoms,

while MD simulations can model millions. While DFT is a more accurate and computa-

tionally costly method, MD is quite good at modelling larger systems or systems on larger

timescales, up to µs [18]. There are 4 main steps necessary for an MD simulation, which will

be described in further detail below:

1. Initial conditions: position and type of atoms, boundaries, units, etc.

2. A potential or force field to describe the interactions between particles

3. An algorithm or integrator to integrate Newton’s equations of motion and update the

positions and velocities of each particle, each timestep

4. An ensemble which describes and controls the thermodynamics of the system. This

may include thermostatting, barostatting, energy conservation, enthalpy control, and

more

There are many MD packages available, but one of the most popular for atomistic simulations

for materials science is Large-scale Atomic/Molecular Massively Parallel Simulator [18], or

LAMMPS. LAMMPS is a very powerful tool designed for computationally heavy calculations

on parallel computers, but can also be built and used on laptops and desktop computers.

Many integrators exist for differential equations, such as the forward Euler method and

Runge Kutta algorithms, but the velocity Verlet algorithm is the default integrator for

7



2.2 Potentials

LAMMPS and the most used integrator for molecular dynamics. This is due to energy con-

servation. Other integrators may be faster, simpler, or more robust than the velocity Verlet

algorithm, but they do not conserve energy after many timesteps and are more applicable to

other systems besides MD. A simple derivation of the velocity Verlet algorithm from Taylor

expansions is shown through equations (2.1), (2.2), and (2.3) [19].

Starting with the Taylor expansion of s(t+∆t)

s(t+∆t) = s(t) +∆t ṡ(t) +
(∆t)2

2
s̈(t) +O((∆t)3) (2.1)

and by setting ṡ(t) = v(t), s̈(t) = F (t)
m

and neglecting O((∆t)3) and higher order error terms,

we simplify to

s(t+∆t) = s(t) +∆t v(t) +
(∆t)2

2

F (t)

m
(2.2)

From here, we still need a way to describe v(t), so by taking the derivative of Eq. (2.2), we

arrive at the following

v(t+∆t) = v(t) +
∆t

2

✓

F (t)

m
+

F (t+∆t)

m

◆

(2.3)

At this point, with starting initial conditions s0 and v0 and an equation or force field to

describe F as a function s and/or t, we can translate the equations into a pseudocode for

the velocity Verlet algorithm, shown in algorithm (1).

Algorithm 1 Velocity Verlet

Define s0, v0, ∆t and F

for iteration = 1, 2, . . . do

Compute position si+1 = si +∆t vi +
(∆t)2

2
Fi

m

Compute velocity vi+1 = vi +∆t
Fi+1+Fi

2m

end for

This algorithm and integrator can be applied relatively easily to 2D and 3D for many-body

systems.

2.2 Potentials

In order to appropriately model a system in LAMMPS, it is extremely important to use the

correct potential for the system. The potential must accurately calculate the force field acting

on each particle defined. There are many styles of potentials for MD available in LAMMPS,

including but not limited to, pairwise potentials, machine-learned potentials, many-body

potentials, potentials designed for polymers, semi-empirical potentials, and electron force

fields.
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2.2 Potentials

2.2.1 Lennard-Jones

Pairwise potentials such as Lennard-Jones or Mie are typically not used for FCC metals.

One of the primary reasons for this is that the resulting model is often much more brittle

than what is observed experimentally. This is due to the Cauchy relation C12

C44
of FCC metals

being ca. 1.5-3, while pairwise potentials such as the Lennard-Jones or Mie potential tend

towards giving a Cauchy relation of 1 [20]. The Cauchy relation is a criterion for the ductility

of a material, with a value of less than 1 being a brittle material and a value larger than 1

being a ductile material. This is equivalent to the Cauchy pressure, C12�C44, where ductile

FCC metals have large Cauchy pressures.

However, as described by Gröger in [17], the Cauchy pressure of the Cantor alloy is low, which

leads the Cauchy relation to be close to 1 [21, 22], the same as a Lennard-Jones material.

Specifically, the Cauchy pressure C12 � C44 of Cantor alloy is an order of magnitude lower

than any of the elastic constants C11, C12, and C44. Additionally, due to the randomness

of the equiatomic structure, we expect 75% or 80% of the nearest neighbors to be between

unlike atoms, for quaternary and quinary systems respectively. With the combination of

these two points, it is argued by Gröger that pair interactions are the dominant component

of bonding within the alloy.

The Lennard-Jones model defines the pairwise energy contribution to a particle from its

neighbors as

U =
N
X

i=1

2✏

"

✓

�

ri

◆12

�
✓

�

ri

◆6
#

(2.4)

where N is the number of neighbors, ri is the distance between the neighbor particle i and

the center particle, ✏ is the absolute minimum of the potential energy curve, and � is the

distance at which the potential energy is zero. The 12th power term of the equation describes

the repulsive forces due to overlapping electron clouds, and the 6th power term describes

the attractive Van der Waals forces between particles. A second summation can be added

to loop over all pairs in a system, as shown below.

U =
1

2

N
X

i=1

N
X

j=1,j 6=i

2✏

"

✓

�

rij

◆12

�
✓

�

rij

◆6
#

(2.5)

It is important to exclude self interactions, where i = j, as this would lead to diverging

energy. The force contributions, defined as �dU
d~r
, can be tabulated and then summed for

efficient computing. A section of the U(r) potential energy curve between two atoms is

shown in Fig. 2.1.
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2.2 Potentials

Figure 2.1: The potential energy between two atoms of interatomic distance r. The potential
was generated by Gröger et al. [17].

2.2.2 Embedded AtomMethod and Modified Embedded AtomMethod

Many-body potentials, such as the embedded atom method (EAM) and modified embedded

atom method (MEAM) are the most popular potentials to model FCC metals [20], because

they balance accuracy and efficiency. Large scale simulations are still possible, though they

take longer than simulations run with simpler potentials. The EAM, as proposed by Daw and

Baskes [23], seeks to better model close packed metals than pairwise potentials by including

more information in a more complicated potential form. The energy of an atom Ei, described

by the EAM is shown in Eq. 2.6

Ei = F↵

"

X

j 6=i

⇢�(rij)

#

+
1

2

X

j 6=i

�↵�(rij) (2.6)

where � is the pairwise interaction potential between atoms i and j based on electrostatics,

rij is the distance between atoms i and j, F (⇢) is an embedding function that depends on

the local electron density ⇢ around the atom i, and ↵ and � are the element types of atoms

i and j, respectively.

The MEAM potential, first proposed by Baskes [24], is based on the EAM but takes into
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2.3 Thermostats and Ensembles

account angular forces, allowing covalently bonded materials to be modelled in addition to

metals. The EAM approximates the local electron density around each atom is a sphere in

shape, while the MEAM takes bond orientation into account.

The energy of an atom Ei using the MEAM is calculated using the same formula as the

EAM, shown in Eq. 2.6. However, the angular forces are included while calculating the

electron density, ⇢, by separating ⇢ into partial electron background densities. These are

scaled depending on the x, y, z components of the distances between two atoms.

A MEAM potential for Cantor alloy [25] was used in the early stages of this work, but was

replaced by the Lennard-Jones potential due to an increased computational efficiency of ˜10

times, and more accurate results for calculated elastic constants. A direct comparison of the

results from these two methods is shown in Chapter 3.

2.3 Thermostats and Ensembles

The next step in setting up the simulation is to describe how and which system parameters

can be controlled. Widely used ensembles for molecular dynamics simulations include the

microcanonical (NVE), canonical (NVT), isothermal-isobaric (NpT), and isenthalpic (NpH)

ensembles, though others exist. Ensembles describe how the energy, temperature, pressure,

etc. are controlled or maintained throughout the simulation [26–28].

The earliest ensemble used for MD simulations was the NVE ensemble (constant number

of particles, volume, and energy), since it suitable for modelling a wide range of situations.

However, it is sometimes of interest to control the temperature and/or pressure of the system,

and allow the volume and/or energy of the system to fluctuate. The earliest examples of

this includes phase changes in chemical reactions, where the system could heat up at an

unrealistic rate, accelerating the reaction or destroying the new phase [26]. With an NpT

or NpH ensemble, these issues would be avoided, as energy could be dissipated at a realistic

rate, allowing the system to be modelled further. The earliest methodology for applying

constant temperature or constant temperature ensembles in molecular dynamics is described

by Andersen et al. [26].

In the simulations described in this paper, NpT is the most often used ensemble. NpT (con-

stant number of particles, pressure, and temperature) thermostats the system by adding a

damping factor and random velocity to each particle. A barostat also controls the system

pressure, by adjusting the simulation boundary dimensions. During simulations with con-

stant volume, NVE is used along with a Langevin thermostat. The microcononical ensemble

is the best method for conserving energy.
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2.4 Calculation Setups

2.4 Calculation Setups

2.4.1 Coefficient of Thermal Expansion

The linear coefficient of thermal expansion, or CTE, of a material is necessary for engineers

to know, especially while designing structural, performance, or composite parts. The CTE

is used to calculate internal stresses due to temperature fluctuations. The residual stresses

from manufacturing composite materials such as ceramic matrix composites and carbon fiber

reinforced plastics can also be calculated using the CTE of the materials [29].

In engineering practice, it is sometimes enough to approximate the CTE of a material as a

constant value. The average coefficient of thermal expansion over a set temperature range

can be calculated as

↵avg =
L2 � L1

L1

1

T2 � T1

(2.7)

where ↵avg is the average coefficient of thermal expansion. T1 and T2 are the initial and final

temperatures, respectively. L1 and L2 are the initial and final lengths, respectively.

If much more data is available or the material will undergo a large temperature change, one

can take the derivative of the first term with respect to temperature, which simplifies to

↵ =
d

dT

L(T )� L0

L0

(2.8)

where the length L is a function of temperature T and L0 is the initial reference length.

As shown by Van Bohmen et al. [30], the relative change in specimen length L�L0

L0
of

austenitic steels can be reasonably fit to the exponential

L� L0

L0

= ↵HT · T + ↵HT ·ΘD · (e�T/ΘD � 1) (2.9)

where ↵HT is the linear coefficient of thermal expansion at the high temperature limit, T is

the temperature, ΘD is the Debye temperature, and L is the length of the sample. While

this equation was originally derived to most accurately fit FCC steels [30], it also fits the

experimental data of other metals [31] and the Cantor alloy [22] very well.

In order to reduce bias, the calculated data from this work will not be fit to this equation,

but the derivative in Eq. 2.8 will be calculated numerically by the central difference method.
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2.4 Calculation Setups

2.4.2 Elastic Constants

The most basic definition of Hooke’s law relates an applied uniaxial stress (�) on a material

and the resulting strain in the same direction of the applied stress (✏) by the Young’s modulus

(E), as shown in Eq. 2.10.

E =
�

✏
(2.10)

While this equation is applicable in simple cases and helpful for teaching the subject, a lot

of useful information about the material behavior is lost. Applying the same relationship

in 3 dimensions and using principles of continuum mechanics, we arrive at the more general

Eq. 2.11

� = c✏ (2.11)

where � and ✏ are second order tensors and c, the stiffness tensor, is a fourth order tensor.

� =

2

6

4

�xx �xy �xz

�yx �yy �yz

�zx �zy �zz

3

7

5
(2.12)

✏ =

2

6

4

✏xx ✏xy ✏xz

✏yx ✏yy ✏yz

✏zx ✏zy ✏zz

3

7

5
(2.13)

The stiffness tensor c, which has 81 components, can be simplified due to the geometry and

symmetry of physical materials to between 2 and 21 individual components. The resulting

equation for an anisotropic material in Voigt notation also simplifies � and ✏ due to geometry

and symmetry, leading to a simpler form, shown in Eq. 2.14.

2

6

6

6

6

6

6

6

6

4

�11

�22

�33

�23

�13

�12

3

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

4

C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

C66

3

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

4

✏11

✏22

✏33

2✏23

2✏13

2✏12

3

7

7

7

7

7

7

7

7

5

(2.14)

where the stiffness tensor is symmetric along the diagonal.

There are a few different approaches to determine the stiffness tensor using molecular dy-

namics. The method used in this paper, the stress-strain method, works by applying a
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2.4 Calculation Setups

defined strain deformation in each of the 6 defined modes (✏11, 2✏23, etc.) shown in 2.14, and

calculating the resulting stresses. The strain is applied in both the positive and negative

directions, and by using this data, the stresses are then averaged.

Since the Cantor alloy is a cubic system, the elastic constants can be defined by 3 independent

values: C11, C12, and C44. These values will be calculated and plotted for the monocrystalline

systems in Chapter 5.

For polycrystalline systems, the most applied method used for calculating average elastic

constants in the literature is the Hill averaging scheme. Derived from and using aspects of

Voigt [32] and Reuss [33], Hill’s averaging method [34] can more accurately calculate the

elastic constants: Young’s modulus, shear modulus, bulk modulus, and Poisson’s ratio. The

equations for a cubic crystal using Voigt’s method are:

Bv =
1

3
(C11 + 2C12) (2.15)

Gv =
1

5
(C11 � C12 + 3C44) (2.16)

with B and the bulk modulus and G as the shear modulus. These calculated by Reuss’

methods are:

Br =
1

3
(C11 + 2C12) (2.17)

Gr =
5(C11 � C12)C44

4C44 + 3(C11 � C12)
(2.18)

Hill’s method averages these values, so

B =
Bv +Br

2
(2.19)

G =
Gv +Gr

2
(2.20)

E =
9GB

3B +G
(2.21)

⌫ =
3B � 2G

2(3B +G)
(2.22)

with E and ⌫ being the Young’s modulus and Poisson’s ratio, respectively. This method was

used to calculate the polycrystalline elastic constants in Chapter 6.

14



2.4 Calculation Setups

2.4.3 Hardness

While the units of hardness are pascals, the same as strength and elastic constants, the

results from measuring hardness vary greatly depending on the methodology. The indenter

shape, speed, and many more test parameters can greatly affect the resulting hardness value,

and therefore, many hardness tests have been standardized. Those among the most popular

include the Knoop test, Brinell test, Vicker’s test, or Rockwell test. Each test method has

a standardized indenter shape and indenter depth. A spherical indenter with indentation

depths up to 5 nm were used, though the hardnesses were calculated at around 2 nm depths.

In this work, the hardness H will be calculated as

H =
Favg

Ares

(2.23)

where Favg is the average force acting on the indenter at the maximum indentation depth,

and Ares is the resulting area of the imprint after the indenter is removed. It will be shown

how both the force vs. displacement curves and the hardness values change with varying

parameters, which will be discussed later in this thesis.
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Chapter 3

Microstructure Generation and

Equilibration

3.1 Motivation

The first step of an MD simulation is to define the initial positions of the atoms. While

LAMMPS does this quite easily for aligned monocrystalline monoatomic structures, it does

not have the capability yet to generate an equiatomic polycrystalline microstructure of CoCr-

FeMnNi Cantor alloy. To do this, Nanohub [35] random structure generator was used to gen-

erate a seed file of equiatomic FCC CoCrFeMnNi. Next, Atomsk [36] was used to generate

polycrystalline microstructures using the seed file from Nanohub.

Proper equilibration of an MD system simulation is often one of the most important and

computationally costly steps. During the equilibration phase, the atoms are brought to a

local or global minimum potential energy position, depending on the desired output of the

simulation. In simple equilibrations, the temperature is maintained at 0 K and the atomic

positions are algorithmically adjusted to reach a local minimum energy state, sometimes

overcoming small energy boundaries to deeper potential energy wells depending on the al-

gorithm. For equilibration at finite temperatures, it is a much more complicated procedure.

The temperature, pressure, or volume of the system are typically controlled during an en-

semble to regulate the phase and/or microstructure of the result. The lowest energy phase of

a material modelled by a Lennard-Jones potential is hexagonal close packed (hcp) [37]. But

as described by Travasset [37], an FCC phase can easily be stabilized with pressure and/or

temperature.

In this chapter, the procedure and methods for equilibration at finite temperatures will be

explained.
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3.2 Simulation

3.2 Simulation

The seed file from Nanohub and an example of the resulting microstructure are shown in

Fig. 3.1.

(a) (b)

Figure 3.1: a) The seed file of equiatomic FCC CoCrFeMnNi from Nanohub [35]. b) The
polycrystalline microstructure generated through Atomsk [36]. The seed and simulation cells
visualized by Ovito [38].

The steps to properly equilibrate the systems at finite temperatures are as follows:

1. Delete overlapping atoms generated during defining the microstructure

2. Use a conjugate-gradient (CG) style minimization while allowing the simulation box

to relax

3. Set an NpT ensemble with a target virial pressure of zero and defined target temper-

ature

a) Run for a sufficient amount of time steps to allow the system to equilibrate (30-

40% of time steps occur once energy has plateaued)

Since equilibrating is often one of the most costly steps of MD, care must be taken to improve

efficiency. The logic behind the steps above are as follows. The positions of the atoms from

Nanohub and Atomsk are perfect FCC crystals with “messy” grain boundaries. The delete

overlapping atoms step serves to improve the grain boundaries, and to remove the possibility

of an exploding simulation. Through testing and critical examination of Fig. 2.1, an atom

within a 0.75 Å radius of another is deleted. The calculated values of elastic constants and

CTE showed almost no difference with or without this step, though equilibrating with this

step was faster and never resulted in an exploding simulation.
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3.3 Results

The next step, the CG minimization while allowing the box to relax, serves two main pur-

poses. First, it allows for local relaxations and rearrangements at the grain boundaries, and

second, it brings the atoms in the bulk of grains to their positions in the distorted lattice

that HEAs are known for. Since this is done while allowing the box dimensions to change

anisotropically, internal stresses that may have occurred due to the grain boundaries or even

an uneven distribution of lattice parameters, are relaxed. The relaxation of the simulation

cell boundaries, using the ‘fix box/relax’ command in LAMMPS, allows one to define the

target pressure in each of the boundary directions, and is even applicable to triclinic boxes.

A basic pseudocode for a CG style minimization is shown in algorithm 2.

Algorithm 2 Conjugate Gradient (CG) minimization algorithm

1: procedure CG Minimization

2: Set the initial position ~x0 and force ~f0
3: Set the energy tolerance Ebreak

4: Set the force tolerance fmax

5: Set the maximum number of iterations nmax

6: Set the initial step size ↵0 = 1
7: for n = 0, 1, 2, ..., nmax � 1 do

8: Calculate the energy En and force ~fn at the current position ~xn

9: Calculate the magnitude of the force fn = k~fnk
10: if fn < fmax or ∆E < Ebreak then

11: break

12: end if

13: if n = 0 then

14: Set the search direction ~dn = �~fn
15: else

16: Calculate the beta coefficient �n =
~fn·(~fn�~fn−1)

k~fn−1k2

17: Update the search direction ~dn = �~fn + �n
~dn�1

18: end if

19: Calculate the step size ↵n =
~dn·~fn
k~dnk2

20: Update the position ~xn+1 = ~xn + ↵n
~dn

21: end for

22: end procedure

3.3 Results

Before all the systems were to be equilibrated, the potential had to be chosen. As described

in Chapter 2, there are both MEAM and Lennard-Jones potentials to model the Cantor

alloy. The results comparing the equilibration results using both potentials are described in

Tab. 3.1 and 3.2. The same equilibration script was tested on both a monocrystalline and

polycrystalline system.
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3.4 Discussion

Table 3.1: MEAM vs. Lennard Jones: Monocrystalline Equilibration Results

1 Grain MEAM 1 Grain Lennard-Jones
Eeq / eV �2714246 ± 19 �1047073 ± 8

Temperature / K 300.05 ± 0.19 300.02 ± 0.23
Pressure / Bar �0.03 ± 2.79 0.05 ± 1.76

Volume / Å3 8024776 ± 105 8180380 ± 124
CPU Hours 3193.2 314.4

Table 3.2: MEAM vs. Lennard Jones: Polycrystalline Equilibration Results

7 Grains MEAM 7 Grains Lennard-Jones
Eeq / eV -2717465 ± 26 -1038219 ± 10

Temperature / K 300.03 ± 0.21 300.01 ± 0.22
Pressure / Bar 0.14 ± 2.84 0.03 ± 1.61

Volume / Å3 8102460 ± 97 8314025 ± 138
CPU Hours 3251.5 329.7

It can be seen that the chosen potential effects the final equilibrated energy Eeq, final volume,

and CPU hours. The temperature and pressure should not change, as those are controlled

with the NpT ensemble. The volume, while changing from 8024776 Å3 to 8180380 Å3 seems

like a significant change, but only signifies an increase in lattice constant of about 1%. The

change in energy is likely described by the type and properties of the potential.

The results from the equilibration script are shown in Fig. 3.2.

Shown are the virial pressure, temperature, volume, and energy as a function of timestep

during the NpT ensemble. While using LAMMPS, one must take care to use the correct

pressure. LAMMPS defaults to the total pressure, which includes a kinetic energy term. One

method to change this is to use the compute command to compute a new pressure though

the virial pressure, or stress, equation, as shown in Eq. 3.1.

Pij =
1

V

N
X

k=1

rki · fkj (3.1)

In this equation, Pij is the i, j component of the LAMMPS calculated symmetric virial

pressure, or stress, tensor. rki and fkj are the i and j components of the position and force

and vectors of atom k. N is the total number of particles in the system.

3.4 Discussion

As shown in Fig. 3.2b, 3.2c, and 3.2d, the temperature, volume, and energy all rise during

equilibration with the NpT ensemble. This is because the previous kinetic energy of the
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3.4 Discussion

(a) (b)

(c) (d)

Figure 3.2: Examples of the results from the NpT ensemble of the equilibration script using
the Lennard-Jones poteential from Gröger eet al. [17]. a) The virial pressure equilibration.
b) The temperature equilibration. c) The volume equilibration. d) The energy equilibration.

system is zero after the CG minimization. The kinetic energy of the system rises with

temperature, thus increasing energy. The volume of the system must increase with due to

the thermal expansion of the material with an increase in temperature. The pressure on the

other hand, shown in Fig. 3.2a, quickly equilibrates to zero and then fluctuates from about

�2 MPa to 2 MPa.

The difference in the equilibration results using MEAM vs. Lennard-Jones, shown in 3.1 and

3.2, are quite interesting. Since the Lennard-Jones potential was shown to model the Cantor

alloy by Gröger et al. [17], the resulting values should match those of MEAM [25], but they

do not. This is especially true for the volume change. It was initially thought that this

difference could just be at the grain boundaries, but since the final volume of the Lennard-

Jones equilibrated monocrystalline system is larger than that of the MEAM equilibrated

monocrystalline system, it is shown that the lattice constant is modelled to be larger using

the Lennard Jones potential. The difference in calculated elastic constants will be discussed
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3.4 Discussion

in Chapter 5.
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Chapter 4

Coefficient of Thermal Expansion

Calculation

4.1 Motivation

Calculating the coefficient of thermal expansion (CTE) is a side product of this thesis, but

it provides insight on the usability of the potential for polycrystalline simulations.

4.2 Simulation

The average equilibrated volume and equilibrated temperature are calculated by averaging

the last 20,000 timesteps from the results shown in figures 3.2b and 3.2c. From here, the

average length is calculated as the cube-root of the simulation box volume, and L�L0

L0
is

plotted with respect to temperature. The CTE value, ↵, is defined as d
dT

∆L
L0

. The derivative

was computed numerically through the central difference method, in order to not induce any

fitting bias.

4.3 Results

Fig. 4.1a shows the relative change in specimen length L�L0

L0
as a function of temperature.

On the right-hand side, in Eq. 4.1b, the result of the ↵ values, calculated by the central

difference method, are shown.

The simulation results from Fig. 4.1a are very similar to the experimental values from

Laplanche et al. [22]. There is a slight difference in the trend of the curve, as Laplanche et

al. describes an exponential fit for both FCC metals and Cantor alloy, while the data found

in this work is more similar to the shape of a quadratic curve. This is more evident in Fig.
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4.4 Discussion

(a) (b)

Figure 4.1: Coefficient of thermal expansion results compared to Laplanche et al. [22]. a)
The plotted normalized change in length with respect to temperature. b) The calculated
coefficient of thermal expansion.

4.1b, where the experimental values follow an exponential curve, but the values from this

work are nearly linear. The CTE values are still quite similar for temperature values above

500 K, although there is a discrepancy between values at lower temperatures.

4.4 Discussion

The reasons for the inaccuracies at lower temperatures are unclear, though it is likely due

to the simplicity of the potential. Nevertheless, this potential provides a very reasonable

approximation for volume change and length change for the temperatures tested.

Since the scope of this work is mainly on the mechanical properties and the system only

needed to be effectively equilibrated in this step, accurate CTE values were not necessary.

If it was necessary to obtain more accurate CTE values, a potential trained on or fit to CTE

data should be used.
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Chapter 5

Influence of Temperature on Elastic

Constants

5.1 Motivation

Since some HEAs have been shown to have good properties, particularly at high [7] or low [5,

6] temperatures, the temperature dependency of the elastic constants for Cantor alloy should

be examined. This has been done experimentally for monocrystalline systems by calculating

the stiffness tensor Cij [39]. Polycrystalline systems have also been investigated [21, 22, 40],

calculating the polycrystalline elastic moduli: Young’s modulus E, shear modulus G, bulk

modulus B, and Poisson’s ratio ⌫. There has also been DFT calculations on polycrystalline

systems [41]. While the experimental results are in agreement, there is a discrepancy between

the experimental results and the results from DFT. This is likely a size effect from the

small simulation size of DFT, which cannot handle polycrystalline microstructures. Another

possible factor for this difference is temperature. DFT corresponds to a stake with no kinetic

energy, or a 0K state, while experiments can only be performed at finite temperatures.

In an attempt to achieve values more similar to experiment, the elastic constants of poly-

crystalline Cantor alloy for a large simulation cell (20 nm x 20 nm x 20 nm) are calculated.

Additionally, the stiffness tensor and independent values C11, C12, and C44 are calculated for

an aligned monocrystal across various temperatures. This serves primarily to compare the

results to [39] across temperatures and [17] at 0 K, to ensure that the correct methodology

was being used.

In addition to the elastic constants, the Zener’s anisotropy ratio is calculated. The Zener’s

anisotropy ratio, defined as A = 2C44

C11�C12
, reflects the anisotropy of the crystal’s mechanical

response to deformation in different crystallographic directions. A higher anisotropy ratio

depicts a greater anisotropy in the material. In metals, the Zener’s anisotropy ratio has
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5.2 Simulation

been shown to increase with temperature [42], while the plastic anisotropy has been shown

to decrease [43].

In this chapter, the calculated stiffness tensor, elastic moduli, and anisotropy ratio will be

compared with experiment and DFT, across a range of temperatures.

5.2 Simulation

For both the monocrystalline and polycrystalline cases, an overview of the tests is shown be-

low in Tab. 5.1. For the polycrystalline simulations, there were 3 unique models equilibrated

and tested across the range of temperatures.

Table 5.1: Simulation Plan for Elastic Constants vs. Temperature

Temp. / K Monocrystalline # of trials Polycrystalline # of trials (grain size in nm)
100 1 3 (8.5)
200 1 3 (8.5)
300 1 3 (8.5)
400 1 3 (8.5)
500 1 3 (8.5)
600 1 3 (8.5)
700 1 3 (8.5)
800 1 3 (8.5)
900 1 3 (8.5)
1000 1 3 (8.5)

The temperature range of 100K to 1000K was chosen as it is a large range below the melting

temperature, and is similar to the ranges of [21, 39]. While the higher temperature tests

are above annealing temperatures for Cantor alloy [44], 450 �C - 1200 �C, care was taken to

ensure that none of the grains disappeared due to grain growth.

Each of the 3 unique models were generated and equilibrated at each of the 10 temperatures

as described in Chapter 3. The stiffness tensor was calculated as described in Chapter 2

through the LAMMPS example script. The specific and important parameters input into

LAMMPS can be seen in Tab. 5.2.

Table 5.2: Parameters for Elastic Constants Calculation

Parameter / Units Value
Timestep / ps 0.001

Thermostat damping constant / K 0.01
Applied Strain 0.02
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5.3 Results

The first results to be discussed are the elastic constant results comparing using MEAM and

Lennard-Jones potentials. The raw output stiffness tensor from the LAMMPS script for the

monocrystalline system modelled with MEAM is:

Cij =

2

6

6

6

6

6

6

6

6

4

206.7 149.8 148.1 0.4 �1.1 �0.9

208.0 147.9 2.0 �0.3 �1.7

208.6 1.7 0.4 �0.2

73.7 �0.3 �0.1
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GPa

while the same system modelled with Lennard-Jones is:

Cij =

2

6

6

6

6

6

6

6

6

4

223.3 128.3 128.9 0.0 2.7 1.2

222.8 128.5 �1.0 �0.3 3.1

222.7 �2.7 4.0 �0.2

123.9 �0.5 �0.6

124.1 0.3

123.5

3

7

7

7

7

7

7

7

7

5

GPa

The averaged C11, C12, and C44 values are shown in Tab. 5.3.

Table 5.3: MEAM vs. Lennard Jones: Monocrystalline Elastic Constant Results

1 Grain MEAM 1 Grain Lennard-Jones
C11 / GPa 207.8 222.9
C12 / GPa 148.6 128.6
C44 / GPa 74.3 123.8
CPU Hours 542.8 57.0

There is a significant change in the computed C44 values. Interestingly, the Lennard-Jones

potential seems to fit the expected values better. For example, the Cauchy pressure (C12 �
C44) of Cantor alloy is close to 0. The results from the Lennard-Jones potential agree with

this substantially more than the results from MEAM.

Next, for the polycrystalline case, the raw output stiffness tensor from the LAMMPS script

for the system modelled with MEAM is:
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5.3 Results

Cij =

2
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while the same system modelled with Lennard-Jones is:

Cij =

2
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The Young’s Modulus (E), bulk modulus (B), shear modulus (G), and Poisson’s ratio (⌫),

calculated will Hill’s averaging scheme, are shown in Tab. 5.4.

Table 5.4: MEAM vs. Lennard Jones: Polycrystalline Elastic Constant Results

7 Grain MEAM 7 Grain Lennard-Jones
E / GPa 143.6 209.9
B / GPa 165.9 155.2
G / GPa 52.9 82.3

⌫ 0.356 0.275
CPU Hours 555.2 58.0

Interestingly, the Lennard-Jones potential better calculates the elastic constants than MEAM,

even for polycrystalline cases. This is shown in Tab. 5.4, and the accuracy of the Lennard-

Jones potential across a range of temperatures can be seen in Fig. 5.3. This is likely due

to the fact that the Lennard-Jones potential was fit more to experimental values of elastic

constants, while the MEAM used other material properties.

In Fig. 5.1, values of the 3 independent components of the stiffness tensor are plotted as a

function of temperature. The results are compared to the experimental work of Teramoto

et al. [39], the DFT results of Zaddach et al. [45], and the expected potential results from

Gröger et al. [17]. It should be noted that only the results from Teramoto are across a range

of temperatures, while the others are only simulations at 0K.

The Zener’s anisotropy ratio is also plotted as a function of temperature, shown in Fig. 5.2a.

Since an anisotropy value of 1 signifies an isotropic material, an increase of anisotropy can

28



5.3 Results

Figure 5.1: The monocrystalline elastic constants vs. temperature. This work is compared
to the experimental work of Teramoto et al. [39], the DFT results of Zaddach et al. [45],
and the expected potential results from Gröger et al. [17].

Table 5.5: Single Crystal: Temperature vs. C11

Temp. / K C11, This work / GPa C11, Teramoto et al. / GPa
100 242.33 202.97
200 232.49 198.51
300 222.91 194.05
400 213.09 189.05
500 203.47 185.13
600 193.85 180.67
700 184.59 176.21
800 174.95 171.75
900 165.95 167.29
1000 156.16 162.83
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5.3 Results

Table 5.6: Single Crystal: Temperature vs. C12

Temp. / K C12, This work / GPa C12, Teramoto et al. / GPa
100 140.2 118.0
200 134.2 117.7
300 128.5 117.3
400 122.9 116.9
500 117.1 116.6
600 111.6 116.2
700 106.3 115.8
800 100.5 115.4
900 95.6 115.1
1000 90.2 114.7

Table 5.7: Single Crystal: Temperature vs. C44

Temp. / K C44, This work / GPa C44, Teramoto et al. / GPa
100 133.1 136.8
200 128.4 133.2
300 123.8 129.3
400 119.4 124.6
500 114.6 120.3
600 110.2 116.3
700 105.8 110.5
800 101.1 106.6
900 96.9 102.3
1000 92.1 97.6

be seen with increasing temperatures. The experimental results from Teramoto et al. [39]

also follow the trend of increasing anisotropy with increasing temperature.

The directional dependence of the Young’s modulus with regard to crystallographic orienta-

tion, shown in Fig. 5.2b, serves as an example and aid for visualizing the anisotropy. The

darker regions further from the origin describe a larger modulus, while the areas closer to

the origin and lighter in color describe a lower value. In this figure, the x, y, and z axis

represent the [100], [010], and [001] crystallographic directions, respectively.

The last results from this section are the temperature dependence of a polycrystal with

a grain size of ⇡ 8.5 nm. In Fig. 5.3, the elastic moduli can be seen as a function of

temperature, and are compared to the experimental works of Laplanche et al. [22] and

Haglund et al. [47]. The simulated results of the Young’s modulus and shear modulus, fit

quite well to the experimental data, though there is a difference in the bulk modulus results

at low temperatures of up to 23%.
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Figure 5.2: a) The Zener’s anisotropy ratio of a monocrystal compared to temperature. b)
The directional dependence of the Young’s modulus, as visualized by Elate [46].

Figure 5.3: The polycrystalline elastic constants vs. temperature. This work is compared to
the experimental works of Wu et al. [22] and Haglund et al. [47].
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5.4 Discussion

The results of this chapter served to show that the potential is applicable across a range of

temperatures, as well as to cement the fact that the elastic constants are correctly calculated

in later chapters.

Especially for modelling an FCC metal with a pairwise potential, the monocrystalline elastic

constants are quite well approximated. Comparing with the results from Gröger et al. [17],

the methodology of this work was shown to be correct as it aligned well with the results from

Gröger. As many or all properties of a modelled material will change when the potential

is changed even slightly, it is impossible to isolate and better fit only certain properties to

experiment, as described by Gröger. The other two independent constants, C12 and C44, are

better approximated, but an acceptable amount of error still exists.

This error in the slope of the C12 values is likely an effect of the Lennard-Jones potential. As

discussed previously, pairwise potentials such as the Lennard-Jones have a Cauchy pressure

of 0. It is likely that this potential was fit to more closely match the C44 values or a

property dependent more on C44 than C12, leading to the C44 values more closely matching

experimental results. It is important to note that a pairwise potential could not perfectly

match both C44 and C12, if they have different slopes.

For the polycrystalline simulations, the potential, and model used fits the experimental

results even better. For the Young’s modulus and shear modulus in Fig. 5.3, the resulting

values are very much in agreement with the experimental results. There is still some error

in the bulk modulus at very low and very high temperatures. This is speculated to be an

issue similar to the C11 error in Fig. 5.1, where it is only an effect from the limitations of

fitting a Lennard-Jones potential to different material properties.

In the next chapter, the polycrystalline cases will be examined as a function of grain size

rather than temperature.
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Chapter 6

Influence of Grain Size on Elastic

Constants

6.1 Motivation

The influence of grain size on elastic constants has been measured for many materials,

including the FCC metals Fe [48], Cu [49], and Pd [48]. The results all show a significant

decrease in elastic constants of about 20% when grain sizes decrease from around 10-20 nm

[50]. For all materials, it is important to understand how the microstructure affects the

mechanical properties in order to better tune the material to the application.

This relationship has been measured for other medium entropy alloys [51] and high entropy

alloys [52], but has not yet been sufficiently studied for Cantor alloy. This was the earliest

inspiration for this project.

6.2 Simulation

The simulation plan for the grain size vs. elastic constants is shown below in Tab. 6.1.

This range of grain sizes was chosen as it is the range found to have degrading mechanical

properties in other FCC metals. Each of the tests were generated and equilibrated at 300K

as described in Chapter 3. The stiffness tensor and resulting moduli were calculated as

described in Chapter 2 through the LAMMPS example script and Hill’s averaging method.

The exact parameters for these simulations were the same as for Chapter 5, and can be seen

in Tab. 5.2.
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6.3 Results

Table 6.1: Simulation plan for grain size vs. elastic constants

Number of Grains Grain Size in nm Number of Trials
1 20.00 6
2 15.87 6
4 12.60 6
7 10.46 6
10 9.28 6
13 8.51 6
16 7.94 6
19 7.50 6
31 6.37 6
120 4.05 6

6.3 Results

A significant change in the slope of the curve at about 8 nm can be seen in each of the plots

with grain size as the independent variable. This can be seen specifically in grain volume

fraction in Fig. 6.3b, Young’s modulus, shear modulus, bulk modulus, and Poisson’s ratio

vs. grain size in Fig. 6.2 and Tab. 6.2. There is a 30% increase in Young’s modulus from

4 nm grains to 20 nm grains. There is also a 30% increase in the shear modulus, while the

bulk modulus only increases by about 8%.

Table 6.2: Predicted polycrystalline elastic properties

Grain Size / nm E / GPa G / GPa K / GPa Grain Boundary Volume Fraction
20.00 230.73 91.58 160.04 1.5
15.87 221.53 87.48 157.82 2.2
12.60 215.54 84.83 156.43 3.2
10.46 209.96 82.37 155.18 4.0
9.28 206.62 80.90 154.38 4.6
8.51 204.33 79.89 153.93 4.9
7.94 202.17 78.94 153.46 5.2
7.50 200.55 78.24 153.01 5.5
6.37 194.77 75.72 151.7 6.4
4.05 175.33 67.32 147.72 9.8

Fig. 6.3b shows the grain boundary volume fraction. More specifically, this figure shows

the inverse percentage of atoms in an FCC structure out of the total atoms in the system,

calculated with Ovito [38]. As expected, as grain size increases, the grain boundary volume

fraction decreases since more atoms are in the bulk of the grains in the FCC structure.

Since the grain boundary percentage and many of the elastic properties seem to follow a

similar trend, only inverted, it was thought to compare the elastic constants as a function of

grain boundary volume fraction. This is shown in Fig. 6.4d, where the relationship is seen
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6.4 Discussion

Figure 6.1: The polycrystalline elastic constants vs. grain size.

to be nearly linear. From this, it can be concluded that the change in elastic constants due

to grain size is more directly due to the change in volume fraction of the atoms in the grain

boundaries, than to the actual change in size of the grain itself.

6.4 Discussion

The results from this chapter are similar and in agreement with the results of other FCC

metals [50] and medium entropy alloys [51]. The elastic constants are increasing with grain

size across the range, though there is a transition point around 8 nm where any additional

increase in grain size has less of an effect than before. This transition in values around 8

nm is also found in the medium entropy alloy CoCrNi [51], and at slightly larger grain sizes

in other FCC metals [50]. Zhang et al. [51] speculates that at below 8 nm grain size the

additional atoms in the grains have a substantial effect on the material properties, but for

grain sizes larger than 8 nm the additional atoms have a lesser effect. This transition point

may be geometry-based or defect-based, but there is clearly a transition point where the

microstructure and the way atoms are distributed starts to have a different influence on the

mechanical properties.
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(a) (b)

(c) (d)

Figure 6.2: The elastic moduli as functions of grain size. a) The bulk modulus as a function
of grain size. b) The shear modulus vs. grain size. c) The Poisson ratio as a function of
grain size. d) The Young’s modulus vs. grain size.

(a) (b)

Figure 6.3: a) The grain boundary volume fraction vs. elastic constants. b) The percentage
of atoms in grain boundaries compared to grain size.
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6.4 Discussion

(a) (b)

(c) (d)

Figure 6.4: The elastic moduli as functions of the grain boundary volume fraction. a) The
bulk modulus as a function of grain boundary volume fraction. b) The shear modulus vs.
grain boundary volume fraction. c) The Poisson’s ratio as a function of grain boundary
volume fraction. d) The Young’s modulus vs. grain boundary volume fraction.

Interestingly, this distinct change in slope also occurs in the grain boundary volume fraction

curve, shown in Fig. 6.3b. It can then be inferred that the elastic constants vary more

linearly with grain boundary volume fraction than with grain size. This point is further

backed up in Fig. 6.4, where the relationship of each elastic constant is linear with the grain

volume fraction.

Looking forward, it would be interesting to analyze larger and smaller grain volume fractions

in order to see if this trend continues over a wider range of grain sizes.
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Chapter 7

Nanoindentation

7.1 Motivation

In Chapters 5 and 6, the effect of temperature and grain size on elastic constants was

discussed. It has been shown that the yield strength, hardness, and creep of metals is also

dependent on temperature [53] and grain size [54, 55]. The relationship of hardness to

temperature is quite as expected: hardness decreases with increasing temperature. While

dislocations have a higher drag coefficient at higher temperatures [56, 57], there are also

many temperature effects which promote dislocation glide. Firstly, at higher temperatures

a lower Peierls stress is measured [58], meaning that the energy boundary to initiate plastic

deformation is lower. Additionally, temperature can activate dislocation sources and even

change the movement to perpendicular to the dislocation’s glide plane, called dislocation

climb. Lower energy barriers for dislocation movement combined with a lengthening of the

interatomic bonds due to the increase in thermal energy leads to a decrease in the strength,

hardness, and elastic moduli of the metal.

The temperature effects on the hardness of the Cantor alloy have not been extensively

studied, either experimentally or through simulation.

The effect of grain size on the hardness of metals is slightly more complicated. At the

microscale, hardness has been found to increase with inverse grain size, often referred to as

grain boundary strengthening. This is known as the Hall-Petch relationship [59, 60], where

the yield stress and hardness for metals are found to increase linearly with the square root

of decreasing grain size. This is shown in Eq. 7.1

� = �0 + kd�
1

2 (7.1)

where � is the yield stress, �0 is the yield stress of a single crystal, k is a measure of the local

stress needed to initiate plastic deformation at a grain boundary or the flow stress, and d is

the average grain size [61].
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7.2 Simulation

On the nanoscale, while some metals follow the Hall-Petch relationship [55, 62], others are

shown to do the opposite, known as the inverse Hall-Petch relationship, or grain boundary

weakening. The inverse Hall-Petch occurs because there is a point where the main mechanism

for plastic deformation is grain boundary sliding or rotation, in contrast to mainly dislocation

glide [61]. This means that on the nanoscale, the hardness of some metals increases with

increasing grain size. This has been observed experimentally [63] and though simulation

[64–67].

For grain sizes on the microscale, the Hall-Petch relationship has been measured experimen-

tally for Cantor alloy in the work of Liu et al. [68], and evidence for the inverse Hall-Petch

relationship has been found on the nanoscale regarding the wear resistance of Cantor alloy

[69]. Furthermore, a recent MD study from Zhang et al.[67], on a different HEA, shows the

inverse Hall-Petch region, the Hall-Petch region, as well as the transition zone with maximum

hardness.

The main motivation of this section is to corroborate if Cantor alloy shows an inverse Hall-

Petch relationship, and to calculate the maximum hardness as well as the grain size at which

it occurs.

7.2 Simulation

The script for nanoindentation was taken partly from the PhD. thesis of Lukas Löfler [70]

and partly from the LAMMPS documentation. The steps are as follows:

1. Equilibrate systems as described in Chapter 3

2. Equilibrate systems with new boundary conditions (indentation axis cannot be peri-

odic)

3. Indent material

4. Hold indenter at maximum defined depth

5. Remove indenter

6. Calculate residual imprint area

A visual of this procedure can be seen in Figs. 7.1, 7.2, and 7.3, showing a schematic of the

simulation setup as well as a monocrystal after indentation.

It is important to note that the previously equilibrated systems must be equilibrated again

due to changing boundary conditions. The indent script in LAMMPS requires a non-periodic
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7.2 Simulation

Figure 7.1: A schematic showing the simulation setup. An indenter of radius 3.5 nm can be
seen along with a frozen layer of atoms at the bottom of the simulation box. The atoms in
the middle are fully mobile.

boundary in the direction of indentation, as this would lead to obvious issues. In order to

deal with the non-periodic boundary, a simple solution is to freeze a layer of atoms at the

bottom of the simulation. This prevents atoms from being pushed through or extending

the boundary, but does not allow the material to act as a bulk. Also shown in Fig. 7.1 is

the indenter invoked by the fix indent command and the mobile atoms in the middle. The

mobile atoms are only controlled by an NVE ensemble and the temp/rescale command in

LAMMPS. This was chosen over the typical NpT ensemble because the x-y area, and thus

the area between indentations and relative area of indentation, should be consistent between

simulations.

The force between the indenter and each atom in the material is described as

F (r) =

8

<

:

�k(r �R)2 if r  R

0 if r > R
(7.2)

where F (r) is the repulsive force between the indenter and the simulated particles, k is a

user-defined constant, r is the radial distance from an affected particle to the center of the

indenter, and R is the radius of the indenter. The direction of this force is peerpendicular
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7.2 Simulation

Figure 7.2: A snapshot of the nanoindentation simulation. Shown is a monocrystal with
plastic deformation around the indenter tip.

to the sphere’s surface. This allows the user to define the interactions between the tip and

surface atoms very easily, without worrying about attractive forces.

Once the indentation, hold, and removal steps are complete, the data must be analyzed.

Using Eq. 2.23, the hardness can be calculated with the average maximum force at the

maximum indentation depth and the resulting area of the imprint after the indenter is

removed.

To calculate Fmax, the average force in the z-direction during the hold step was used. This

was done to remove any velocity or inertia effects during the rapid indentation speeds during

MD nanoindentation.

For nanoindentation at the atomic scale, care must be taken to calculate the area properly.

As described by Ziegenhain et al. [71], the area should be calculated using the center atom

coordinates of the atoms contacted by the indenter. This leads to an elliptical area equation:

Aellipse =
⇡

4
[(xmax � xmin)(ymax � ymin)] (7.3)
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7.2 Simulation

Figure 7.3: A snapshot of the nanoindentation simulation. Pile-up can clearly be seen around
the edges of the indented area.

where x and y are the coordinates of the furthest atoms contacted by the indenter. This is

most necessary at very low indentation depths or with very small indenters, where the scale is

similar to the lattice constant. In this work, both the contact area and indenter are an order

of magnitude larger than the lattice constant, so this was approximated for simplicity. In

addition, this work only focuses on a maximum hardness value, while the equation described

by Ziegenhain is useful for continuous hardness measurements.

In this work, the area was approximated as

A = ⇡(rarea)
2 (7.4)

where rarea is the radius of the circle projected onto the surface of the contact area from the

indenter. rarea was calculated using the geometry of the simulation, and can be calculated

as a function of the indentation depth. During the removal of the indenter, there is a point

at which the force returns to zero. It is at this point that the relaxed indentation area was

calculated. These points can be seen in Figs. 7.4 and 7.5.

Both the influences of temperature and grain size on the force/displacement curves and
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7.2 Simulation

Figure 7.4: An example force/displacement curve during nanoindentation. Shown is the
point during the removal of the indenter at which the force returns to zero. This depth was
used in Eq. 7.4 to calculate the residual area after indentation.

hardness were to be calculated. An overview of the trials runs is shown in Tab. 7.1 and 7.2,

and the specific test parameters used are shown in Tab. 7.3.

As seen in 7.4, the force vs. displacement curves for the single crystals were compared to

Hertz contact theory or Hertz Law [72]. Hertz contact theory relates the elastic response

to the compressive force between two spherical solids, or one spherical and one flat surface.

While Hertz Law was dereived in the late 1800s, it was not widely used until nearly a cen-

tury later. Currently, Hertz contact theory is used primarily for nanoindentation purposes,

including measuring changes in contact radius [73], validating nanoindentation simulations

[74, 75], and AFM nanoindentation [76].

Hertz Law states that for two frictionless and purely elastic solids, the applied force F can

be related to the elastic properties of the materials through Eqn. 7.5:

F =
4

3
E⇤

p
Rh (7.5)
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7.2 Simulation

(a) (b)

Figure 7.5: a) The position of the indenter plotted as a function of timestep. b) An example
force vs. timestep curve during nanoindentation. The values in the averaging zone occurred
during the holding of the indenter, and were averaged and used in Eq. 2.23 to calculate the
hardness.

Table 7.1: Simulation Plan for Nanoindentation vs. Temperature

Test Temperature / K Grain Size / nm
1 100 Aligned single-crystal, 20
2 200 Aligned single-crystal, 20
3 300 Aligned single-crystal, 20
4 400 Aligned single-crystal, 20
5 500 Aligned single-crystal, 20
6 600 Aligned single-crystal, 20
7 700 Aligned single-crystal, 20
8 800 Aligned single-crystal, 20
9 900 Aligned single-crystal, 20
10 1000 Aligned single-crystal, 20

Table 7.2: Simulation Plan for Nanoindentation vs. Grain Size

Number of Grains Temperature / K Grain Size / nm
1 300 20.00
2 300 15.87
4 300 12.60
7 300 10.46
10 300 9.28
13 300 8.51
16 300 7.94
19 300 7.50
31 300 6.37
120 300 4.05
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7.3 Results

Table 7.3: Parameters for Nanoindentation

Parameter / Units Value
Timestep / fs 0.1

Indenter velocity / m
s

140
Force constant k from Eq. 7.2 1

where E⇤ is the reduced modulus, R is the radius of curvature, and h is the indentation

depth. The reduced modulus, E⇤, can be calculated by:

1

E⇤
=

1� ⌫2
1

E1

+
1� ⌫2

2

E2

(7.6)

where E1 and E2 are the Young’s moduli of the contacting materials, and ⌫1 and ⌫2 are the

Poisson’s ratios of the contacting materials. In the simulations conducted in this work, the

Young’s modulus of the spherical indenter is infinite, so the equation simplifies to:

1

E⇤
=

1� ⌫2
s

Es

(7.7)

where Es and ⌫s are the Young’s modulus and Poisson’s ratio of the indented material,

respectively.

Using the elastic constants calculated in Chapter 4, Hertz contact theory was used to validate

the simulation results in the elastic region of the force vs. displacement curves.

7.3 Results

Typically, hardness, yield stress, or flow stress are used to describe the stresses during plastic

deformation. In this work, both the hardness values and the force/displacement curves are

displayed. The results of Fig. 7.6 and 7.9a show a significant temperature dependence of

both the plastic and elastic response during nanoindentation, respectively. In the elastic

region, the simulated results align quite well with Hertz contact theory using elastic data

from Chapter 6, shown in Fig. 7.9a.

The results in Fig. 7.7 show a clear decreasing trend of hardness with increasing temperature.

This follows the theory described in the motivation: higher temperature in metals usually

leads to lower hardness and yield strength due to easier dislocation motion and therefore a

lower flow stress and hardness. However, while the trend is correct, the simulated values

differ from experiment. In experiment, hardness values range from 100 to 200 HV, or 1

to 2 GPa [68, 77]. The simulated results are an order of magnitude higher, with values of

approximately 10 to 20 GPa. Presently, there is no explanation for this discrepancy.

The effects of grain size cannot only be seen clearly in the elastic region, shown in Fig. 7.9b,

but also in the plastic region, shown in Fig. 7.8.
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7.4 Discussion

Figure 7.6: The influence of temperature on the force/displacement curves. The simulations
shown are the aligned monocrystals.

A clear inverse Hall-Petch relationship can be seen. The hardness values in Fig. 7.10 increase

from 11.3 GPa at 4 nm grain sizes to 17.2 GPa at 20 nm grain sizes, over a 50% increase.

7.4 Discussion

Once again, the first section of this chapter served primarily to confirm the methodology

of the simulation steps to yield useful, meaningful, and realistic results. The calculated

hardness values were higher than experimental values, pointing towards errors during plastic

deformation. The difference between the experimental values and the simulated values is

likely due to the difference in indentation speeds. The simulated nanoindentation results

of Lu et al. [74] show a trend of increasing calculated hardness with increasing indentation

speed. For the amount of simulations ran, it was speculated that running at faster inden-

tation speed but then using the force during which the indenter position was held constant,

would minimize the effects of higher velocity. While this did lessen the effects, the calcu-
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7.4 Discussion

Figure 7.7: The influence of temperature on the calculated hardness values. The simulations
shown are the aligned monocrystals.

Table 7.4: Single Crystal: Temperature vs. Hardness

Temperature / Kelvin Hardness / GPa
100 21.1
200 18.9
300 20.8
400 18.3
500 16.2
600 15.9
700 16.9
800 17.2
900 16.5
1000 11.7

lated hardness was still too high, and it would be of interest to run similar experiments

at much lower indentation speeds. Interestingly, while the final hardness values differ from

experiment, the force vs. displacement curves in Fig. 7.9a match the theoretical curves from

Hertz Law. Therefore, the methodology used to simulate nanoindentation is shown to yield

useful and realistic values, at least during low indentation depths in the elastic region. At
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7.4 Discussion

Figure 7.8: The influence of grain size on the force/displacement curves.

low indentation depths, the force is theoretically only a function of the elastic moduli, and

the temperature dependence of elastic moduli was confirmed in Chapter 5.

For the hardness values shown in Fig. 7.7 and therefore higher indentation depths with

plastic deformation, the expected trend of decreasing hardness with increasing temperature

can be seen. The flow stresses shown in Fig. 7.6 back up these results as a clear difference

can be seen.

The grain size vs. hardness results are at least as clear and distinct as the temperature vs.

hardness results. At both low and high indentation depths, a clear difference in the force

vs. displacement curves can be seen in Figs. 7.9b and 7.8, respectively. This shows both the

grain size dependence on elastic modulus and flow stress. An inverse Hall-Petch relationship

can be seen in Fig. 7.10. The transition point from the inverse Hall-Petch to the regular

Hall-Petch relationship occurs at grain sizes larger than 20 nm, and therefore could not be

seen in this work. But there is a critical grain size that leads to maximum hardness for the

Cantor alloy.
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7.4 Discussion

(a) (b)

Figure 7.9: a) The influence of temperature on the force/displacement curves. b) The
influence of grain size on the force/displacement curves. The data is equivalent to that of
Fig. 7.6 and 7.8, but shows lower indentation depths in more detail.

For future work, it would be of interest to run a series of experiments with larger simulation

box size to find this transition point. It is expected that the results would look similar to

the results of Zhang et al. [67]. Once the transition point is found through simulation, it can

be confirmed by experiment. Since annealing is a very time-consuming procedure, time and

resources can be saved by finding the theoretical transition point through simulation before

turning to experiment.
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7.4 Discussion

Figure 7.10: The influence of temperature on the calculated hardness values. The simulations
shown were conducted at 300 K.
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Chapter 8

Summary

In this work, several simulations were conducted on the high entropy alloy CoCrFeMnNi, or

Cantor alloy, using molecular dynamics methods. The linear coefficient of thermal expansion,

elastic constants, and hardness through nanoindentation were calculated. Using molecular

dynamics rather than DFT for these simulations allowed grain sizes up to 20 nm to be

investigated, impossible with DFT. In addition, this work showed the usability of a pairwise

potential for HEAs for polycrystalline systems by comparing results to experiment. New

results were also investigated in ways not yet conducted experimentally.

Fully equilibrating a polycrystalline system with lattice distortion proved to be quite difficult,

though through deliberate equilibration steps the systems were equilibrated. The volume

difference between the same simulations equilibrated at different temperatures was used to

calculate the linear CTE at each temperature.

As shown in Chapter 4, the polycrystalline linear CTE was found to be reasonably similar

to experimental results, showing the usability of the pairwise potential for polycrystalline

HEAs.

The elastic constant results across a range of temperatures were measured and proved to be

within expected values from experiment and DFT. Here, no new information was found, but

rather the methodology used was proven to be correct.

On the other hand, the elastic constants vs. grain size simulations yielded interesting results.

A distinct trend of moduli increasing with grain size can be seen. The results were analyzed

further, and it was found that the elastic moduli increase linearly with the percent of atoms

in grains. To further this work, it would be of interest to run the same experiments with

an even larger grain size to examine if this trend is applicable even up to 50 nm grains, for

example.

The results of the nanoindentation also proved to be quite insightful. An inverse Hall-Petch
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8. Summary

relationship was shown through decreasing yield stress and hardness with decreasing grain

size. The transition point to a typical Hall-Petch relationship was not found within the scale

of these experiments, so it can be concluded that it is abbove 20 nm grain size. Therefore, it

would be of interest to analyze larger grain sizes with the same methodology in future work.
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Chapter 9

Conclusions

• A pairwise potential was shown to sufficiently model polycrystalline CoCrFeMnNi high

entropy alloy, by producing values similar to DFT and experiment for a range of

mechanical properties.

• The temperature dependence of elastic moduli were calculated using MD methods,

and the Young’s modulus and shear modulus results align very well with experimental

data.

• In polycrystalline systems, the elastic moduli were shown to increase with grain size

for grains averaging 4 nm to 20 nm. The relationship of elastic moduli to grain volume

fraction was shown to be linear.

• An inverse Hall-Petch relationship was found through nanoindentation tests on grain

sizes from 4 nm to 20 nm.

55





Bibliography

[1] B. S. Murty, J.-W. Yeh, and S. Ranganathan, “A brief history of alloys and the birth

of high-entropy alloys,” (Elsevier, 2014) pp. 1–12.

[2] J. Piaskowski and C. S. Smith (1963).

[3] B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, Materials Science and

Engineering: A 375-377, 213 (2004).

[4] J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, and

S.-Y. Chang, Advanced Engineering Materials 6, 299 (2004).

[5] J. Liu, X. Guo, Q. Lin, Z. He, X. An, L. Li, L. P. K., X. Liao, L. Yu, J. Lin, L. Xie,

J. Ren, and Y. Zhang, Science China Materials 62, 853 (2019).

[6] B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, and R. O.

Ritchie, Science 345, 1153 (2014).

[7] B. C. Hu, Y. J. Chang, A. C. Yeh, and Y. J. Chen, Procedia Manufacturing 15, 364

(2018).

[8] B. Gludovatz, A. Hohenwarter, K. V. S. Thurston, H. Bei, Z. Wu, E. P. George, and

R. O. Ritchie, Nature Communications 7, 10602 (2016).

[9] M. A. Hemphill, T. Yuan, G. Y. Wang, J. W. Yeh, C. W. Tsai, A. Chuang, and P. K.

Liaw, Acta Materialia 60, 5723 (2012).

[10] Z. Tang, T. Yuan, C.-W. Tsai, J.-W. Yeh, C. D. Lundin, and P. K. Liaw, Acta Mate-

rialia 99, 247 (2015).

[11] D. Modupeola, P. Patricia, A. Samson, and M. Ntombi, “High entropy alloys for

aerospace applications,” in Aerodynamics , edited by G.-B. Mofid and A. Aly-Mousaad

(IntechOpen, Rijeka, 2019) Book section 7.

[12] M. Khruschov, Wear 28, 69 (1974).

57

http://dx.doi.org/https://doi.org/10.1016/j.msea.2003.10.257
http://dx.doi.org/https://doi.org/10.1016/j.msea.2003.10.257
http://dx.doi.org/%20https://doi.org/10.1002/adem.200300567
http://dx.doi.org/https://doi.org/10.1007/s40843-018-9373-y
http://dx.doi.org/%20doi:10.1126/science.1254581
http://dx.doi.org/https://doi.org/10.1016/j.promfg.2018.07.231
http://dx.doi.org/https://doi.org/10.1016/j.promfg.2018.07.231
http://dx.doi.org/%2010.1038/ncomms10602
http://dx.doi.org/%20https://doi.org/10.1016/j.actamat.2012.06.046
http://dx.doi.org/%20https://doi.org/10.1016/j.actamat.2015.07.004
http://dx.doi.org/%20https://doi.org/10.1016/j.actamat.2015.07.004
http://dx.doi.org/10.5772/intechopen.84982
http://dx.doi.org/https://doi.org/10.1016/0043-1648(74)90102-1


BIBLIOGRAPHY

[13] M. A. Moore, Wear 28, 59 (1974).

[14] F. Haque, Surface Engineering 19, 255 (2003).

[15] A. C. Fischer-Cripps, “Nanoindentation of thin films,” in Nanoindentation (Springer

New York, New York, NY, 2004) pp. 132–143.

[16] L. Qian and H. Zhao, Micromachines (Basel) 9 (2018).
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