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Abstract 

To ensure efficient and sustainable reinjection of water into geothermal reservoirs, a 

proper prediction of the hydrodynamics of the geothermal system is necessary. However, 

a deep understanding of the reservoir's properties is typically required. This study 

investigates the use of machine learning to forecast the wellhead pressure of geothermal 

injection wells using only historical data of wellhead pressure, fluid injection rates, and 

temperatures. These datasets will be used to construct several machine learning (ML) 

algorithms, including Multiple Linear Regression (MLR), Random Forest (RF), eXtreme 

Gradient Boosting (XGBoost), Support Vector Machine (SVM), as well as Artificial Neural 

Network (ANN) such as Multilayer Perceptron (MLP) and Long Short-Term Memory 

(LSTM). Water injection data from four injection wells underwent rigorous data cleaning 

and outlier removal to ensure the fidelity of the results. The performance of the six 

algorithms was then validated and examined using metrics like the coefficient of 

determination (R squared), the root mean squared error (RMSE), and the symmetric 

mean absolute percentage error (sMAPE). 

Results show that LSTM outperforms other tested algorithms with a sMAPE of 8.02%, 

followed closely by XGBoost with 8.28% and MLP with 8.55%. RF and SVM achieved a 

sMAPE of 10.18% and 10.48%, respectively, while the MLR, used in this thesis as a way to 

better gauge the upper limit of the models, got a sMAPE of 20.56%. It's essential to note 

that these results are subjective on the specific dataset used in this study, as well as the 

particular preprocessing, feature engineering, and hyperparameter tuning.  

Future studies might consider implementing other ML techniques or hybrid learning 

models, offering valuable insights for geothermal optimization. As ML becomes 

increasingly important in the geothermal energy sector, such exploration is of significant 

interest.



 

Zusammenfassung 

Um eine effiziente und nachhaltige Rückinjektion von Wasser in geothermische 

Reservoire zu gewährleisten, ist eine angemessene Vorhersage der Hydrodynamik des 

geothermischen Systems notwendig. Allerdings wird in der Regel ein tiefgehendes 

Verständnis der Eigenschaften des Reservoirs benötigt. Diese Studie untersucht den 

Einsatz von machine learning zur Vorhersage des Brunnenkopfdrucks von 

geothermischen Injektionsbohrungen, wobei nur historische Aufzeichnungen von 

Brunnenkopfdruck, Flüssigkeitsinjektionsraten und Temperaturen verwendet werden. 

Diese Datensätze werden durch verschiedene Algorithmen des machine learning (ML) 

genutzt, einschließlich Multiple Linearer Regression (MLR), Random Forest (RF), 

eXtreme Gradient Boosting (XGBoost), Support Vector Machine (SVM) sowie Artificial 

Neural Network (ANN) wie Multilayer Perceptron (MLP) und Long Short-Term Memory 

(LSTM). Wasserinjektionsdaten von vier Injektionsbohrungen wurden einer gründlichen 

Datenreinigung und Entfernung von Ausreißern unterzogen, um die Genauigkeit der 

Ergebnisse zu gewährleisten. Anschließend wurden die sechs Algorithmen hinsichtlich 

ihrer Leistung anhand von Metriken wie dem Bestimmtheitsmaß (R-Quadrat), dem 

quadratischen Mittelwertfehler (RMSE) und dem Symmetrischen durchschnittlichen 

prozentualen absoluten Fehler (sMAPE) validiert und getestet. 

Die Ergebnisse zeigen, dass LSTM die anderen getesteten Algorithmen mit einem sMAPE 

von 8,02% übertrifft, dicht gefolgt von XGBoost mit 8,28% und MLP mit 8,55%. RF und 

SVM erreichten einen sMAPE von 10,18% bzw. 10,48%, während die MLR, die in dieser 

Arbeit als Maßstab für die obere Grenze der Modelle verwendet wurde, einen sMAPE von 

20,56% erzielte. Es ist wichtig zu beachten, dass diese Ergebnisse abhängig von dem 

spezifischen Datensatz sind, der in dieser Studie verwendet wurde, sowie von der 

speziellen Vorverarbeitung, Merkmalsentwicklung und Hyperparameterabstimmung. 

Zukünftige Studien könnten in Erwägung ziehen, andere ML-Techniken oder hybride 

Lernmodelle einzusetzen, die wertvolle Erkenntnisse für die geothermische Optimierung 

bieten. Da ML im geothermischen Energiesektor immer wichtiger wird, ist eine solche 

Erkundung von erheblichem Interesse.
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Introduction 

1.1 Background and context 

Geothermal energy is a mature technology. However, despite its vast potential, 

geothermal energy accounts in 2021 for only a small fraction, approximately 0.3%, of the 

world's energy mix, as reported by the International Renewable Energy Agency (Taylor 

et al., 2021). Nevertheless, the International Energy Agency reports that geothermal 

energy has a promising outlook, with continued growth anticipated by 2026 (IEA, 2021). 

Despite its favorable outlook, several challenges impede its development, such as the 

availability and quality of heat reservoirs, economic viability, and the disposal of large 

volumes of low-temperature water condensate. If not disposed  properly, residual 

geothermal water can have adverse environmental impacts, in particular on soil, 

vegetation, wildlife, and groundwater resources. Thus, it is crucial to implement 

sustainable disposal methods that minimize these impacts and ensure the long-term 

sustainability of geothermal energy development (Bundschuh & Tomaszewska, 2017; 

Sharmin et al., 2023). 

A valuable solution for a sustainable geothermal energy extraction process is to 

continuously reinject part, if not all, of the produced wastewater back into the geothermal 

reservoir to lower the amount of residual water that needs to be disposed of (Zarrouk & 

McLean, 2019). However, this needs to be closely managed not to lower the reservoir 

temperature and thus decrease the efficiency of the geothermal system. The amount of 

fluid that can be injected into the reservoir through an injection well depends on its 

injectivity (Grant & Bixley, 2011). As a result, precise predictions of injectivity changes 

over time can aid in optimising water injection, adjusting the volume of fluid in the 
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reservoir, and minimising the amount of water and other fluids released into the 

environment. 

Several studies have been published on injection performance change using different 

well-test analyses (Nolte, 1988; Yoshioka et al., 2008, 2019). However, these evaluations 

take time and require a deep understanding of the geological formation and reservoir 

properties. 

1.2 Scope and objectives 

This thesis investigates the application of machine learning (ML) to the modeling of the 

hydrodynamic of geothermal wells. The goal of the modeling is to dynamically adapt the 

volumes of water reinjected into the reservoir and predict the future wellhead pressures. 

Historical injection and pressure data from a geothermal field will be analysed using ML 

algorithms to identify patterns and trends that can aid in predicting future pressure 

changes. The process of developing effective ML models involves a series of steps. Firstly, 

the raw data must be carefully cleaned and organized to ensure that it is of sufficient 

quality to be used in ML. This process involves finding and handling any missing data, 

fixing any formatting issues, and normalising the data to get rid of any biases or 

inconsistencies that might compromise the models' accuracy. Once the data has been pre-

processed, it is partitioned into training, test, and validation sets. These sets are used to 

train, evaluate, and fine-tune the ML models. During this phase, ML algorithms, including 

Multiple Linear Regression (MLR), Random Forest (RF), Support Vector Machine (SVM), 

eXtreme Gradient Boosting (XGBoost), Multilayer Perceptron (MLP), and Long Short-

Term Memory (LSTM)., are applied and compared to identify the most effective one. 

Choosing the best algorithm for the given task is a crucial step and requires extensive 

analysis of the performance metrics. Once the most effective ML algorithm has been 

identified, it is used to develop a model that can accurately predict pressures based on the 

injection data. The best machine learning algorithm is then used to create a model that 

can precisely predict well head pressures based on injection data. 

 

http://www.cs.stir.ac.uk/~kjt/research/conformed.html


 

 

 

  

Literature Review 

2.1 Geothermal injection management 

The optimal recovery of geothermal resources while minimizing the environmental 

impacts requires the effective management of geothermal production processes. One 

critical process is the reinjection of fluids, which serves several purposes, such as 

resource recovery optimization, residual water disposal, pressure support, and increased 

thermal recovery (Bundschuh & Tomaszewska, 2017). Achieving these goals and 

ensuring effective field management requires careful design of the injection system. 

Despite the advantages of injection, it can be difficult to maintain reinjection capacity, 

particularly when dealing with a limited reservoir capacity, scaling in surface pipelines, 

cooling of production wells, and reservoir clogging (Axelsson, 2010). To mitigate these 

adverse effects, continuous monitoring is necessary. This involves measuring parameters 

such as wellhead pressure, injection rate, and temperature to be able to detect any 

changes in the injection system and take appropriate action to maintain optimal 

performance (Axelsson, 2012).  

The wellhead pressure in a water injection well is influenced by several factors(Grant & 

Bixley, 2011). Firstly, there is the hydrostatic pressure 𝑃ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 exerted by the column 

of water present in the tubing given by equation (1).  𝑃ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 = 𝜌𝑔ℎ (1) 

 

Where, 𝜌 is the density of the water,  𝑔 the acceleration due to gravity, and  ℎ  the vertical 

height of the water column. 



14 Literature Review 

 

 

Then the frictional losses in the tubing are given by equation (2), which depends on the 

flow rate, the rheological properties of the water, the diameter and roughness of the 

tubing, and the path of the flow. 

𝛥𝑃 = 𝑓 ∗ (𝐿D ) ∗ 12𝜌𝑣2 
(2) 

With 𝛥𝑃  as the pressure drop, 𝑓 the Darcy friction factor, 𝐿 the length of the tubing, 𝐷 the 

diameter of the tubing, and 𝑣 the velocity of the water.  

And finally, the formation pressure 𝑃𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟  will resist the injection. Therefore, the 

wellhead pressure will need to overcome this formation pressure to inject water into the 

reservoir. 

The final required wellhead pressure for injection is given by equation (3):  𝑃𝑤ℎ  = − 𝑃ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐  +  𝛥𝑃 + 𝑃𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟  (3) 

Another important parameter that can be estimated is the injectivity index, which 

provides valuable information about the performance of the injection system and is a 

measure of the well's ability to accept injected fluid at a given wellhead pressure (Zarrouk 

& McLean, 2019). It is calculated by dividing the fluid injection rate by the wellhead 

pressure change as shown in equation (4): 𝐼𝐼  =   Δ �̇�Δ 𝑃   (4) 

where 𝐼𝐼 is the injectivity index in kg/s/kPa, Δ �̇� is the injection rate in kg/s and Δ 𝑃 is 

the change in well head pressure in kPa. 

Another diagnostic tool to assess the injection performance of a geothermal well is using 

Hall plot. Hall plot is a graphical representation proposed by R. E. Hall in 1963 (Hall, 

1963). It displays how the total amount of water injected and the so-called Hall integral 

relate to one another. The Hall integral is calculated using the time integral of the 

wellhead pressure 𝑝𝑤ℎ and the average reservoir pressure 𝑝𝑎𝑣𝑔 as shown in equation (5)  

(James T. Smith & William M. Cobb, 1997). 

∫ (𝑝𝑤ℎ − 𝑝𝑎𝑣𝑔)𝑑𝑡𝑡
0  

(5) 

This graphical representation helps to determine changes in injection conditions for a 

particular geothermal system. For instance, when there are reservoir obstructions or 

wellbore plugging, there is a gradual increase in the skin factor, leading to a decrease in 

the injectivity and an increase in the slope of the Hall plot. On the other hand, if fracture 
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growth results in an increase in injection rate and a decrease in the slope of the Hall plot, 

the skin factor will increase as a result of injecting pressure exceeding fracture pressure. 

Figure 1 illustrates the different conditions of injection on the Hall plot (James T. Smith & 

William M. Cobb, 1997). 

 

Figure 1 Hall plot for different injection conditions. (A) normal injection with no change, 

(B) abrupt skin increase due to well plugging, (C) Gradual skin increase, (D) gradual 

stimulation, skin decrease and enhanced injectivity, (E) Abrupt skin decrease, fracture near 

the well. Figure adapted from (Boumi Mfoubat & Zaky, 2020). 

By monitoring and collecting data related to well injection, operators can effectively use 

tools like injectivity index estimation and Hall plot interpretation to identify any changes 

in the well's performance (Bundschuh & Tomaszewska, 2017). With this information, 

they can take appropriate corrective actions to ensure the well is functioning optimally. 

However, analysing and monitoring injection well problems using numerical models can 

be time-consuming and challenging, especially when dealing with large amounts of 

injection and pressure data. In such cases, ML can be a useful tool for automating the 

analysis and monitoring process (Harry et al., n.d.). ML algorithms trained to detect 

patterns and anomalies in the data can be used by operators to quickly identify potential 

issues with the injection system and take corrective action to prevent them from affecting 

the performance of the geothermal system. 
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2.2 Concept and theoretical framework of machine 

learning  

Artificial intelligence (AI) is the ability of machines to carry out tasks that have historically 

required cognitive skills similar to those of humans, such as understanding natural 

language, spotting patterns, having the ability to generalise, or remembering past 

experiences. (Ryszard S. Michalski et al., 1983). As shown in Figure 2, ML is a subclass of 

AI that uses probabilistic algorithms and statistical models to enable computers to learn 

from data and make predictions or decisions that improve over time.  

 

Figure 2 Diagram of the different branches of AI and ML. Figure adapted from 

(Understand the Basics of Artificial Intelligence, 2021). 

Arthur Samuel, a pioneer in artificial intelligence and a computer scientist, described 

machine learning as the "field of study that gives computers the ability to learn without 

being explicitly programmed" (Samuel, 1959). Since its inception, ML has grown in 

popularity across many industries thanks to the emergence of big data and advances in 

computing power (Attaran & Deb, 2018). Some of the earliest applications of ML include 

handwriting recognition in the 1970s, speech recognition in the 1980s and email spam 

filtering in the 1990s. Nowadays, ML has the potential to greatly enhance productivity in 

many industries and can provide businesses with a competitive advantage by enabling 

them to make data-driven decisions and improve their operations (Sanil et al., 2022). As 

technology continues to advance, the potential applications of ML are likely to expand as 

well. According to a 2021 study by McKinsey, AI and ML are estimated to create 13 trillion 

US dollars of value annually by the year 2030 (Michael Chu et al., 2021). 
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According to Mjolsness and DeCoste, (2001), the main steps to create an ML model could 

be summarized as follows:  

1. Data collection: Collect and acquire the relevant data that is needed to solve the 

problem. 

2. Data preparation: Clean and preprocess the data by eliminating noise, addressing 

missing values, and formatting it appropriately for analysis. Separate the data into 

a training, test and validation set. 

3. Feature selection: Determine and choose the model's most important features. 

4. Model selection: Select the appropriate ML algorithm that can be used to solve the 

problem. 

5. Model training: Train the ML model on the training data using the selected 

method. 

6. Performance evaluation: Evaluate the cost function of the trained model by using 

a suitable metric. 

7. Model optimization: Fine-tune the model parameters to optimize its performance 

using the test data. 

8. Model deployment: Deploy the trained model to make predictions on new data or 

integrate it into a larger system to solve the problem. 

Note that the ML process is iterative, and steps 4 to 7 may need to be repeated multiple 

times until the desired outcome is achieved. The best model can then be chosen by 

comparing the various generated models to one another using the validation data. As 

previously stated, there are many types of ML (Figure 2). However, this thesis will only 

focus on supervised learning. 

A model is trained on a labelled dataset using supervised learning, where the right output 

is provided for each input (Caruana & Niculescu-Mizil, 2006). 

Supervised learning is a type of ML, where a model is trained on a labelled dataset, where 

the right output is provided for each input (Caruana & Niculescu-Mizil, 2006). Figure 3 

illustrate the iterations of supervised ML where the overarching goal is to fine-tune the 

model through such that the difference between the labelled output 𝑦 and the predicted 

output �̂� diminishes, leading to enhanced prediction accuracy. 

Supervised learning is frequently used in classification and regression problems. In all 

classification problem, the target variables are discrete (Anderson et al., 1983). This 

indicates that the objective is to classify a data point from the input into one of many 

predefined categories. This can be (true/false) for binary classification problems or 
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several possible values for multi-class classification problems. For example, handwriting 

recognition models can be trained to accurately identify handwritten letters and classify 

them into their correct equivalent of the alphabet. On the other hand, in all regression 

problem, the target variables are continuous. In other words, the models look for the best-

fit line that can represent the overall trend in data with continuous numerical values or 

attempt to predict a target value based on a set of input features. This thesis will utilize 

supervised regression ML models. 

 

Figure 3 Flow chart of a supervised ML iterations. S is the regular system, 𝑥 the input, 𝑦 the 

labeled output, and �̂� the predicted output. 

2.3 Regression metrics 

In regression-based ML models, the aim is to minimize the discrepancy between the 

predicted values and the actual values. This is accomplished by calculating the error 

between these values (6),  𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑒𝑟𝑟𝑜𝑟  =  𝑦  −  �̂� (6) 

with 𝑦 ̂ as the predicted value and 𝑦 as the actual values. The error is then calculated as 

the difference between these values (Borchgrave, 2019). An error of zero, which would 

indicate perfect predictions for all values, would be the ideal situation but is unlikely to 

happen. 

To determine how well the model can make these predictions, regression metrics, also 

referred to as loss functions are used. They typically follow the same three-step: first, 

calculating the distance between predicted and expected target values for each data point; 

second, normalizing the distance using a chosen method; and finally, combining the 

normalized distances to obtain an overall measure of model performance. The goal is to 

find the best parameters which have the smallest error (Botchkarev, 2019). 
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The four main categories of metrics are primary metrics, extended metrics, composite 

metrics, and hybrid sets of metrics (Botchkarev, 2019). The choice of regression metrics 

can depend on the specific problems and the goals of the analysis. 

Due to the fact that they offer a straightforward and understandable measure of error, 

primary metrics are frequently used as a starting point for assessing regression models. 

Mean squared error (MSE), root mean squared error (RMSE), and mean absolute error 

(MAE) are the three that are most frequently used.  

By including more details about the distribution of the target variable, extended metrics 

can provide more granular insights into the performance of a model. This is accomplished 

by adding unique normalisation techniques to the fundamental metrics. For instance, the 

Root Mean Square Error is normalised by the standard deviation to produce the 

Normalised Root Mean Square Error (NRMSE). The difference between the data's 

maximum and minimum values can also be used for normalisation.  

Composite metrics can be useful for comparing the performance of different models, as 

they provide a single summary measure that incorporates multiple performance metrics. 

Hybrid metrics can be particularly useful when multiple aspects of model performance 

need to be evaluated, such as bias and accuracy. 

To get a comprehensive understanding of a model's performance, various regression 

metrics should be used to evaluate the error. To evaluate the effectiveness of the proposed 

model, this thesis utilizes the coefficient of determination (R squared or 𝑅2) the root 

mean squared error (RMSE) and the mean absolute percentage error (sMAPE) as 

evaluation metrics (Ethem Alpaydin, 2014). 

 

Coefficient of determination (R squared), 

𝑅2 =   1𝑛 ∑ (�̂�𝑖−𝑦𝑖)2𝐷𝑖=1∑ (�̂�𝑖−�̅�)2𝐷𝑖=1   
(7) 

Root mean square error (RMSE),  

𝑅𝑀𝑆𝐸 = √1𝑛∑ (�̂�𝑖 − 𝑦𝑖)2𝐷𝑖=1    (8) 

Symmetric mean absolute percentage error (sMAPE), 𝑠𝑀𝐴𝑃𝐸 =   100𝑛 ∑ |�̂�𝑖−𝑦𝑖||�̂�𝑖|+|𝑦𝑖|𝐷𝑖=1   (9) 
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�̂� and 𝑦 are 𝐷 dimensional vectors representing the predicted value �̂�𝑖  and the actual 

value 𝑦𝑖  . The index 𝑖 indicates the value on the 𝑖th dimension of �̂� and 𝑦. 𝑛 is the number 

of observations and �̅� the mean of the actual values 𝑦𝑖 . 
R2 is the proportion of variance in the dependent variable that is predictable from the 

independent variables (Ethem Alpaydin, 2014). The value of R2 ranges between 0 and 1. 

Poor predictions are indicated by an R2 close to 0, while a model that fits the data 

perfectly is indicated by an R2 close to 1. 

The Mean Square Error (MSE) calculate the average square of the errors. Even if the 

residual error is negative, a positive value is calculated (Ethem Alpaydin, 2014). MSE is 

less biased towards higher values and does not penalize large errors disproportionately, 

meaning that MSE is less likely to be affected by outliers present in the dataset. The RMSE 

and mean squared error share many similarities as RMSE is essentially the square root of 

MSE (Ethem Alpaydin, 2014). Since each error has an impact on RMSE that is directly 

proportional to the squared error, outliers can cause results to be exaggerated or 

magnified. However, RMSE is better at reflecting performance when dealing with large 

error values, as in Figure 4, where a random noise was added to a sinusoidal curve to 

simulate a difference between actual and predicted values..  

 

Figure 4 Error metric plot of MSE and RMSE using a noisy sinusoidal signal with. 

sMAPE provides the average percentage error between forecasted and actual values. For 

instance, an sMAPE of 5% indicates that, on average, forecasts deviate by 5% from the 

actual values. This metric offers a straightforward method to interpret and compare 

across different scales. Its symmetry avoids the bias that can emerge in using the basic 
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mean absolute percentage error when actual values approach zero because it treats over-

forecasts and under-forecasts equally. A high sMAPE value signifies less accurate 

forecasts, whereas a low value indicates greater accuracy (Ethem Alpaydin, 2014). 

The next section will dive deeper into the architecture of supervised regression ML 

models, more specifically MLR, RF, SVM and ANNs. 

2.4 Regression 

Regression is a statistical technique used to assess the relationship between variables. 

Linear regression is one of the simplest and most widely used statistical algorithms in 

predictive modelling. According to Fahrmeir et al. (2007), it seeks to identify a linear 

relationship between a dependent variable and one or more independent variables. When 

there is a single input variable, the regression is called Simple Linear Regression (SLR). 

When there are more than one input variables, it's called Multiple Linear Regression 

(MLR). By solving a linear equation(10), linear regression seeks to determine the "line of 

best fit" for SLR (Figure 5) and the ideal hyperplane for MLR (Draper & Smith, 1998).  𝑦 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 +⋯+ 𝑎𝑛𝑥𝑛 + 𝜖   (10) 

with 𝑦 is the dependent variable, 𝑥𝑖 the 𝑖th independent variables, the intercept 𝑎0  

represent the value of y when all other parameters are set to 0, 𝑎𝑛 represent the 𝑛th 

regression coefficient of the 𝑛th independent variable and 𝜖  the error term indicating the 

variability of the dependent variable that is not described by the independent variables. 

   

Figure 5 representation of a SLR using random values. 
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2.5 Decision trees 

Decision trees are versatile statistical models that find applications across numerous 

domains. The concept of decision trees originated from the research conducted by 

Morgan and Sonquist in 1963, during their research into the factors influencing social 

circumstances (Clark & Deurloo, 2005). Since then, decision trees have evolved and 

gained widespread recognition for their effectiveness in data analysis by providing an 

intuitive approach for solving classification and regression problems by modelling 

decisions and their consequences in a tree-like structure. As shown in Figure 6Figure 6 

decision trees consist of nodes, branches, splits, and leaf nodes. Nodes represent features 

or attributes, branches represent possible values or decisions, and splits divide the 

dataset based on these decisions. The leaf nodes are the final predictions or outcomes 

(Tretter, 2003). The path from the root node to a leaf node forms a sequence of decisions, 

allowing users to trace the decision-making process.  

 

Figure 6 example of a decision tree architecture with 𝑥1, 𝑥2, 𝑥3, 𝑥4 and 𝑥5 as features nodes 

with yes or no binary splits and 0 or 1 as the leaf nodes. 

However, as stated before, decision trees are not only limited to classification tasks but 

are also applicable to regression problems. The Classification and Regression Trees 

algorithm, extends decision trees to handle continuous target variables (Breiman, 2001).  

The creation of a decision tree involves the consideration of three key parameters. The 

first parameter is feature selection, which aims to identify the most informative features 

that effectively discriminate between different classes(Steinberg Dan, 2009). 

Once the feature selection process is completed, the next step involves identifying the 

conditions for dividing the data. The nature of the attribute determines the specific 

conditions required for splitting:  
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• Categorical Attributes: In the case of categorical attributes, each possible attribute 

value gives rise to a separate branch in the decision tree. The data is divided 

according to the value of the attribute, producing distinct branches that represent 

the various attribute values.  

• Continuous Attributes: Continuous attributes need the creation of split points or 

thresholds. Optimal split points are determined using various algorithms that 

evaluate different thresholds, such as binary or multiway splits, based on 

statistical measures like variance reduction or information gain.  

Finally, to ensure effective generalization and prevent overfitting, it is crucial to establish 

stopping criteria. Overfitting occurs when the model's complexity escalates to a point 

where it begins learning the noise embedded in the data along with its intrinsic patterns. 

On the other hand, underfitting occurs when the model's simplicity prevents it from 

accurately capturing the complexity of the dataset. Using a stopping criterion which 

determine when to cease expanding the decision tree and convert a node into a leaf node 

can help to mitigate overfitting. One such criterion is the maximum depth, which places a 

predetermined limit on the decision tree's depth. When this limit is reached, further 

splitting is stopped. The minimum samples needed in a node before starting a split is 

another stopping criterion. By setting a threshold, overfitting can be avoided, and each 

split can be based on a reliable amount of data. (Steinberg Dan, 2009). 

2.5.1 Random forest 

Decision trees can be prone to overfitting. This can make them less effective at predicting 

new, unseen data. In order to strengthen and enhance the performance of decision trees, 

the RF algorithm was developed (Breiman, 2001). It functions by creating a diverse group 

of decision trees, like shown in Figure 7, thereby mitigating the impact of the training data 

on a single tree. 
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Figure 7 example of the architecture of a Random Forest algorithm with 𝑛 trees. 

The first stage in the RF algorithm involves creating new datasets from the original data. 

This is done using random sampling with replacement, ensuring the same dimensionality 

of the dataset. This procedure is known as bootstrapping or bagging (Hastie et al., 2009). 

An important note is that by using bootstrapping, individual data points may recur 

multiple times in a single dataset. The following stage involves training decision trees 

independently from other dataset. However, unlike the conventional decision tree, not all 

features are used in training. Instead, each tree is trained using a randomly chosen subset 

of features, enhancing the forest's diversity. The final stage is the prediction. Here, the 

model uses an aggregation process, in which the data point is successively passed through 

each tree. Each unique tree prediction is recorded, and then combined to arrive at the 

final output. The mean is calculated for regression problems and the majority vote is used 

for classification problems (Steinberg Dan, 2009). By guaranteeing a wider, more varied 

sampling of the data, this approach lowers the possibility of overfitting and improves the 

model's capacity for generalisation. 

2.5.2 XGBoost 

In this thesis an advanced version of decision trees called eXtreme Gradient Boosting 

(XGBoost) has also been utilized.  

Making a prediction, which by default is set to the mean of the target variable, is the first 

step of the XGBoost algorithm. This default value is then used to compute the residuals, 

which represent the differences between the observed and predicted values. Following 
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this, XGBoost fits a regression tree. In contrast to RF, which builds trees one at a time, 

XGBoost builds trees sequentially, with each new tree attempting to fix the mistakes of 

the previous one (Xgboost 2.0.0-Dev Documentation, n.d.). The quality of the prediction 

can be quantified using the loss function for regression, as given by equation (11) 

(Christophe Pere, 2020) ∑ 𝐿(𝑦𝑖 , �̂�𝑖) = 12 (𝑦𝑖 − �̂�𝑖)2𝑛𝑖=1   (11) 

with 𝑦𝑖  the observed values and �̂�𝑖  the predicted values.  

XGBoost utilizes this loss functions to construct trees by minimizing equation (12): ∑ 𝐿(𝑦𝑖 , �̂�𝑖)  +  𝛾𝑇 + 12𝜆𝑂𝑣𝑎𝑙𝑢𝑒2𝑛𝑖=1   (12) 

In this equation, 𝐿 stands for the loss function, 𝑇 for the number of leaves, and 𝛾 for a user-

definable penalty that encourages tree pruning. Pruning aims to shorten the tree, making 

it less susceptible to overfitting. Finally, 
12 𝜆𝑂𝑣𝑎𝑙𝑢𝑒2  is a regularization term where λ a 

regularization parameter used to control overfitting and 𝑂𝑣𝑎𝑙𝑢𝑒 is the similarity score also 

called optimal value. The objective of XGBoost is to find splits that maximize the difference 

in similarity scores between the child leaves. A large difference indicates that the split has 

effectively separated the data into a distinct group and improving the model performance. 

(Chen & Guestrin, 2016).  

Upon creating the leaves, the gain of splitting the residuals into two groups is evaluated. 

This gain is equivalent to the sum of the similarity scores of both leaves, minus the root 

similarity score. This gain value is also used as a way to stop splitting the nodes once it 

becomes negative(Christophe Pere, 2020). In XGBoost, each tree iteration is built in a 

greedy way, which means selecting the best split among all potential splits at each node 

to maximise the gain without taking the global optimal into account. 

2.6 Support vector machine 

Support Vector Machines (SVM) were originally invented in the 1990s primarily for 

binary classification tasks (Cortes et al., 1995). Nevertheless, over time, their utility has 

extended to cover diverse classification and regression problems. 

2.6.1 Building a support vector machine 

SVM is based on the idea of a decision boundary separating the data points. Considering 

the simplest case where data is linearly separable, SVM finds the optimal hyperplane that 

maximizes the margin between two classes as shown in Figure 8.  
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Figure 8 2D binary classification scenario with a hyperplane represented as a straight line 

with arrows pointing at the support vectors. The data points belonging to one group are in 

red, while the other group are in blue. Figure adapted from (Terence Shin, 2021). 

The so-called support vectors refer to the data points that reside along the margin and 

help in determining the position of the hyperplane. In the simple linear case, this function 

takes the form of a plane (Terence Shin, 2021). For non-linearly separable data, SVM 

employs a technique called the kernel trick, which transforms the input space into a 

higher-dimensional feature space where the classes can be separated linearly (Schölkopf 

& Smola, 2018). 

To solve regression problems, the same idea behind SVM can be used. This is called 

Support vector regression (SVR). As shown in Figure 9, SVR algorithm determines a 

boundary that includes as many data points as possible within that limit. Points outside 

this threshold are called slacks. SVR can also use the kernel trick to carry out regression 

in the transformed space, allowing for non-linear regression (Beny Maulana Achsan, 

2019) 
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Figure 9  Linear regression (depicted on the left) and non-linear regression (shown on the 

right), each illustrated with an epsilon-insensitive band and slack points marked in red. 

Figure adapted from (Beny Maulana Achsan, 2019). 

2.6.2 Optimizing a support vector machine 

In most linear regression models, the primary goal is to minimize the errors. However, 

SVR focus mainly on maintaining the error within an acceptable boundary 𝜀 like defined 

in equation (13) (Terence Shin, 2021). |𝑦𝑖 −𝑤𝑖𝑥𝑖| ≤  𝜀  (13) 

The optimization of SVR start by defining an acceptable error threshold 𝜀 within the 

model and efficiently determines an optimal hyperplane, to align with the data. However, 

this algorithm might not provide suitable results for all data points. It attempts to 

optimize the objective function, but occasionally, some points might fall outside the 

established boundary. It is thus crucial to consider the probability of errors exceeding the 

established 𝜀 limit. This requires the use of slack variables, labelled as ξ. These variables 
capture deviations of any data point that strays beyond the 𝜀 limit. These deviations 

become an added component in the optimization the function (14) (Terence Shin, 2021). |𝑦𝑖 −𝑤𝑖𝑥𝑖| ≤  𝜀 + ξ𝑖   (14) 

The level of error tolerance will vary depending on the specific problem and the level of 

accuracy required for the solution. For conditions involving higher error tolerance, the 

epsilon error margin can be increased. Or it can be decreased for models with a lower 

acceptance of errors.  
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2.7 Artificial neural network  

The original motivation behind the invention of neural networks in the early 1940s by 

McCulloch and Pitts was to create software that could replicate the learning processes of 

the biological brain (McCulloch & Pitts, 1943). The human brain is considered to be the 

epitome of intelligence and surpasses anything that has been developed so far. This is why 

neural networks were initially created with the aim of imitating the brain. Although, due 

to our limiting understanding of how the brain actually works, today's neural networks 

have evolved to become quite distinct from how we perceive the brain to function. 

However, some of the original biological inspirations still remain in the way we 

conceptualize ANNs. 

2.7.1 Perceptron 

Multiple interconnected processing nodes, also known as neurons, make up ANNs, which 

can be trained to recognise patterns in different types of data. A neuron processes input 

from other neurons and then generates an output. Each neuron is equipped with 𝑛 input 

units 𝑥𝑖 along with a bias 𝑏𝑖 and a corresponding weight 𝑤𝑖 (Ethem Alpaydin, 2014). 

 

Figure 10 Representation of the inside of a perceptron with input 𝑥𝑖, associated weight 𝑤𝑖 , 
bias 𝑏𝑖, activation function 𝜎(𝑧) and output �̂�. 

ANNs consist of input, hidden, and output layers, as shown in Figure 10. The input layer 

is the first layer of the neural network and receives the raw data. Each unit in the input 

layer represents one feature of the data and thus the number of units in the input layer is 

equal to the number of input features. The final output of the neural network is produced 

by the output layer. The input data is transformed by applying mathematical functions, 

called activation functions, to the weighted sum of the input values and biases at each 

neuron (Anderson et al., 1983).  
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The number of neurons in the output layer depends on the task being performed. For 

instance, in a binary classification task, the output layer would contain a single neuron 

that produces a value between 0 and 1 that represents the probability of belonging to the 

class. On the other hand the output layer of a multi-class classification task would contain 

numerous neurons, each of which would stand in for a different class. The hidden layers 

perform the intermediate computations required to map the input to the output.   

A perceptron is a basic form of an ANN, composed of a single hidden layer of neurons as 

shown in Figure 11. This linear binary classifier can be employed to model the 

relationship between inputs and outputs in a supervised learning model. In a neural 

network, the procedure of passing input data sequentially through its layers is known as 

forward propagation. Up until the output layer is reached, each neuron's output from a 

layer serves as the input for the following layer. The output layer ultimately generates the 

result, which is based on the information the network has collected.  

 

Figure 11 Representation of a feed forward ANN model. With n input values (green), m 

neurons in the hidden layer (blue) and k output values (red).  

The connections between the neurons in different layers are represented by weights. The 

weights determine the degree to which a given input will affect the neuron's output. If 

weight 𝑤₁ is greater than weight 𝑤₂, the input 𝑥₁ will apply a greater influence on the 

output than input 𝑥₂. The input value 𝑥ᵢ is multiplied by the corresponding weight 𝑤ᵢ and 

added to all the resulting products to produce the output of a neuron(Ethem Alpaydin, 

2014). 
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∑ (𝑤𝑖. 𝑥𝑖)𝑛𝑖=1 = 𝑤𝑥  (15) 

Then, the bias term 𝑏 Is added to the sum of multiplied values, the resulting value is 

represented by 𝑧. The bias is needed to shift the activation function to produce the desired 

output (Ethem Alpaydin, 2014). 𝑧(𝑥) = 𝑤𝑥 + 𝑏  (16) 

Finally, to add nonlinearity to the network and enable it to model complex relationships 

in the data, activation functions are applied to the weighted sum of the input values and 

biases at each neuron in the network. For example, if a simple binary step function (17) 

is chosen as the activation function,  the output of the function is 1 if the input belongs to 

class 1, or 2 if it belongs to class 2 (Ethem Alpaydin, 2014). 𝜎(𝑧) = {1       𝑖𝑓    𝑧 ≥  00       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (17) 

Common activation functions are sigmoid (18) and ReLU (rectified linear unit) (19), 

plotted in Figure 12. 

Sigmoid activation function: 

𝜎(𝑧) = 11 + 𝑒−𝑧 
(18) 

ReLU activation function: 𝜎(𝑧)  =  𝑚𝑎𝑥(0, 𝑧) (19) 

 

 

Figure 12 Plot of the sigmoid and ReLU activation Functions 
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Perceptrons can only learn linearly separable functions, which limits their use compared 

to more complex ANN models like multilayer perceptrons and other deep learning 

architectures (Akshay L Chandra, 2018). 

2.7.2 Multilayer perceptron 

A neural network with more than one hidden layer is called a deep learning model. A deep 

neural network can learn hierarchical representations of the input data due to the 

increased number of hidden layers, which can result in forecasts that are more precise. 

On the negative side, deep learning models frequently need a lot of data and processing 

power to train well (Ian Goodfellow et al., 2016). 

 

Figure 13 Representation of a multilayer perceptron model using 2 hidden layers. With n 

input values (green), m neurons in the hidden layer 1 and 2 (blue) and k output values 

(red). 

Am MLP is a type of deep learning model composed of multiple layers of interconnected 

nodes as shown in Figure 13. Because it is a feedforward neural network, data flows from 

the input layer through the hidden layers and finally to the output layer in a single 

direction. Each node in the MLP thus receives input from the nodes in the preceding layer, 

processes the weighted sum of those inputs using an activation function, and then passes 

the result to the nodes in the subsequent layer (Anderson et al., 1983). 

2.7.2.1 Training a feedforward neural network. 

Backpropagation is a widely used algorithm for training feedforward neural networks. 

This algorithm uses a stochastic gradient descent optimisation algorithm to iteratively 

adjust the weights and biases of the network after a random initialization (Ethem 
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Alpaydin, 2014). During each iteration, the algorithm computes the error between the 

predicted output and the actual output for a given input and propagates this error 

backwards through the network to update the weights and biases. 

The backpropagation algorithm works by computing the gradient of the cost function 

with respect to the network's weights and biases. According to Them Alpaydin (2014), 

the cost function calculates the difference between the expected and actual output. For 

example, using the mean squared error as the loss function to calculate the cost function 𝐶 across the entire dataset, resulting in:  𝐶 = 𝑀𝑆𝐸  = 1𝑛∑ (�̂�𝑖 − 𝑦𝑖)2𝑛𝑖=1   (20) 

Then to find the optimal weights and bias the gradients of the cost function is utilized. But 

as the cost function is not directly dependent on 𝑤ᵢ, the chain rule will be used for this 

purpose: 𝜕𝐶𝜕𝑤𝑖 = 𝜕𝐶𝜕�̂� ∗   𝜕�̂�𝜕𝑧   ∗   𝜕𝑧𝜕𝑤𝑖  (21) 

It is possible to simplify the gradient of the cost function 𝐶 with respect to the predicted 

value 𝑦   as follows: 𝜕𝐶𝜕�̂� = 𝜕𝜕�̂� 1𝑛∑ (�̂�𝑖 − 𝑦𝑖)2 = 2𝑛∑(�̂� − 𝑦)𝑛𝑖=1   (22) 

Assuming the use of the Sigmoid activation function 𝜎. the gradient of the predicted 

value with respect to the 𝑧 can be broken in to: 𝜕�̂�𝜕𝑧 = 𝜕𝜕𝑧 1𝑛 ( 11+𝑒−𝑧) = 𝜎(𝑧) ∗ (1 − 𝜎(𝑧))  (23) 

Finally, the gradient of 𝑧 with respect to the weight 𝑤ᵢ is: 𝜕𝑧𝜕 𝑤𝑖 = 𝜕 𝜕𝑤𝑖   ∑ (𝑥𝑖 ∗ 𝑤𝑖 + 𝑏)𝑛𝑖=1 = 𝑥𝑖  (24) 

Thus, the outcome is: 𝜕𝐶𝜕𝑤𝑖 = 2n ∗   ∑(�̂� − 𝑦) ∗ 𝜎(𝑧) ∗ (1 − 𝜎(𝑧)) ∗ 𝑥𝑖  (25) 

To find the most optimized ML model available, an optimization algorithm needs to be 

used. The most used optimization algorithm is gradient descent (Ethem Alpaydin, 2014; 

Ian Goodfellow et al., 2016). Backpropagation is used to iteratively adjust the weights and 

biases based on the cost function's negative gradient's direction. This process is repeated 

until the cost function reaches a local minimum or a predetermined number of iterations 

have been reached.  
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 𝑤𝑛+1 = 𝑤𝑛 − 𝛼 𝜕𝐶(𝑤𝑛, 𝑏)𝜕𝑤𝑛  
(26) 

𝑏𝑛+1  =  𝑏𝑛   −  𝛼  𝜕𝐶(𝑤, 𝑏)𝜕𝑏𝑛  
(27) 

𝑤𝑛 and 𝑏𝑛 are the 𝑛th weight and bias, 𝑤𝑛+1 and 𝑏𝑛+1 the new improved weight and bias. 

The learning rate 𝛼 is a hyperparameter controlling the range in which the weights and 

biases are adjusted (Ian Goodfellow et al., 2016). If the learning rate is too high, the 

algorithm may fail to converge, while a too low learning rate may result in slow 

convergence. 

2.7.3 Recurrent neural network 

The recurrent neural network (RNN) is a frequently used neural network for processing 

sequential data, such as time series or natural language text. As shown in Figure 14, RNNs 

have recurrent connections that enable them to transfer information from one time step 

to the next in addition to the feedforward connections that are typical of multilayer 

perceptrons. This allows the RNN to map not just from an input vector to an output vector, 

but from the entire history of previous inputs to the output (Ian Goodfellow et al., 2016). 

During the forward pass of an RNN, the input vector 𝑥 with 𝑛 input units is fed into the 

network, consisting of m hidden neurons and k output units. However, unlike an MLP, the 

hidden neurons in an RNN receive additional inputs from hidden layer of the previous 

time step activation (Ian Goodfellow et al., 2016). The value of the input 𝑖 at time 𝑡 is 

denoted as 𝑥𝑖𝑡, while 𝑎𝑗𝑡 represent the inputs of node 𝑗 at time 𝑡. 
𝑎ℎ𝑡 =∑(𝑤𝑖ℎ . 𝑥𝑖𝑡)𝑛

𝑖=1 +∑(𝑤𝑗ℎ . 𝑎 𝑗𝑡−1)𝑚
𝑗=1  

(28) 

Once the weighted sum is computed in a neuron, the activation function is applied: ℎℎ𝑡 = 𝜎ℎ(𝑎ℎ𝑡 ) (29) 

  



34 Literature Review 

 

 

 

Figure 14 Representation of a Recurrent Neural Network (RNN) neuron with 1 input and 

output at t iteration. 

The RNN requires initial values, which correspond to the network's state before it 

receives any input. There are various approaches to choosing these initial values. One 

possibility is to set all of them to zero. The output layer has no recurrent inputs since it is 

the last layer in the network (Ian Goodfellow et al., 2016).  

2.7.3.1 Training recurrent neural network 

Just like the multilayer perceptron, RNN measures the difference between the predicted 

output and the actual output using partial derivatives of the loss function. However, due 

to its recurrent architecture and dependence on earlier time steps, traditional 

backpropagation cannot be directly applied (Ian Goodfellow et al., 2016). The output of 

each neuron in a conventional feed-forward neural network only depends on the input 

and weights at the same layer, allowing the use of the conventional backpropagation 

algorithm for training. However, in an RNN, the output of each neuron depends not only 

on the input and weights but also on the previous hidden state, which introduces a 

temporal dependency between the layers. As a result, we need to use specialized 

algorithms such as backpropagation through time (BPTT) to train RNNs (Ian Goodfellow 

et al., 2016).  

BPTT unfold the RNN over time and then applies the usual backpropagation method. 

However, during this process, the gradients can either shrink too much (vanishing) or 

grow excessively (exploding), making it hard for the network to learn effectively. (Graves, 

2012). To address this issue, more advanced ANN structures have been developed, such 

as the use of gated recurrent units (GRUs) and long short-term memory (LSTM) 

algorithms, which can mitigate the vanishing gradient problem and better capture long-

term dependencies in sequential data (Graves, 2012). 
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2.8 Time series modelling 

A time series is a group of data points, each of which was recorded at a particular time t. 

When a time series comprises solely of records for one variable, it is called a univariate 

time series. On the other hand, if it consists of measurements for multiple variables, it is 

known as a multivariate time series (Brockwell & Davis, 2016).  

Trend, seasonality, cyclicality, and irregularity are the four main categories of time series 

data. The seasonal component represents a cyclical pattern that happens every year, 

while the trend component reflects the overall long-term movement of the time series. 

While irregular components represent random variations, cyclical components are 

medium-term fluctuations (Adhikari & Agrawal, 2013). 

Outlier detection refers to the process of identifying rare or unlikely events. The goal of 

this process is to decide whether or not the data measured at each time step is an outlier 

(Boris Iglewicz & David C. Hoaglin, 1993; Cousineau & Chartier, 2010). Typically, an 

anomaly score is used to measure the dissimilarities between the data and the non-

anomalous data. The sample is deemed an outlier if this score exceeds a predetermined 

threshold (GörnitzNico et al., 2013; Lin et al., 2020). It has been discovered that 

autoencoders are a useful tool for detecting outliers. Time-series data that needs to be 

analysed is often high-dimensional, so an autoencoder is used to perform dimensionality 

reduction and extract the most important features from it (Lopez Pinaya et al., 2020a). An 

autoencoder is typically unable to reconstruct abnormal data, resulting in a high 

reconstruction error, which can be used to identify outliers (Lopez Pinaya et al., 2020b). 





 

 

 

  

Exploratory Data Analysis & Modelling 

In data science and statistical analysis, the first step towards understanding the 

complicated patterns and correlations within a dataset is often the most crucial. This step 

known as exploratory data analysis (EDA) was first introduced by John Tukey in his 

seminal work in 1977 (Tukey, 1977). It represents a method that facilitates observing 

what the data can uncover beyond what modeling or hypothesis testing tasks can give. It 

involves exploring and understanding the properties of the data through an open-ended 

process. It forms a critical initial step in any data analysis, providing the context necessary 

to develop appropriate modeling strategies and helping to highlight potential challenges 

that might be encountered, such as missing data, outliers or the need for data 

transformation (Komorowski et al., 2016). 

The ultimate goal of EDA is to visualize the data, understand the underlying dynamics of 

the chosen variables, to extract meaningful information, and to guide the selection of 

appropriate tools for more detailed analysis. EDA is a critical step to make informed 

decisions in predictive modeling and ML. 

3.1 Data cleaning and pre-processing 

The dataset needed to be cleaned and pre-processed in order for the data to be consistent 

enough for further analysis. Initially, the dataset was imported from an Excel file 

containing four extensive tables corresponding to the four injection wells, with more that 

8000 distinct data points. These well data were represented in various formats and units. 

The data included the date, which was split into three separate columns as day, month, 

and year; wellhead pressure (WHP) in psi; injection rate of brine in kilo-pound per hour; 

injection rate of condensate in kilo-pound per hour; and injection rate of sump water in 
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kilo-pound per hour. To improve clarity and organization, the tables were first placed into 

four separate sheets. These sheets were read using the pandas library in Python, and the 

data from all four sheets were put into four different pandas DataFrames. All further 

manipulations were done on all four DataFrames at the same time. 

The date was reformatted into a standardized 'Day-Month-Year' format to ensure 

consistency throughout the entire dataset. At the same time, condensate injection rate 

and swam injection rate columns were combined as they have the same temperature 

when injected. Extraneous columns were removed, and field units were converted to SI 

metric units, streamlining the dataset and guaranteeing uniformity. Furthermore, new 

columns were added to the dataset to indicate the temperature of the injected brine and 

condensate. The temperature was set to 40°C when condensate was injected and 175°C 

when brine was injected. Additionally, the injected volume of water was calculated by 

summing the brine injection rate and condensate injection rate, and the cumulative sum 

of the injected volumes was computed and incorporated as a new column in the 

DataFrame. 

 

Figure 15 pressure vs cumulative injection volume plot of the four injection wells. 

The next step in the data cleaning process is to identify and remove outliers from the 

dataset, which helps reduce noise and improve overall data quality. Figure 15 illustrate 

the pressure vs cumulative injection volume plot of the initial data. Outliers can be found 

and eliminated using a variety of techniques, including the Standard Deviation Method, Z-

score method, and Interquartile Range Method. (Lin et al., 2020).  
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In this thesis, an enhanced approach for outlier detection is proposed by combining the 

Modified Z-Score Method with an autoencoder, a specific kind of neural network, in order 

to increase the efficacy and accuracy of outlier detection. The Modified Z-Score Method, a 

variation of the standard Z-Score Method, offers a robust statistical measure for 

identifying outliers based on their deviation from the mean. Meanwhile, the autoencoder 

utilizes its powerful neural network architecture to capture complex data patterns to 

effectively identify outliers that conventional statistical methods may overlook 

(Cousineau & Chartier, 2010). Finally, a straightforward and effective method to identify 

outliers is by utilizing real-world potential values. Understanding that in these specific 

injection wells, the injection pumps have a maximum rate of 10 MPa, making it possible 

to flag all pressures greater than 10 MPa as outliers.  

3.1.1 Statistical outlier detection 

The process of identifying data points in a dataset that significantly deviate from expected 

or normal behaviour is known as statistical outlier detection (Boris Iglewicz & David C. 

Hoaglin, 1993). One commonly used method for outlier detection is the Z-score, also 

known as the standard score. The Z-score 𝑍𝑖  quantifies how far away each data point 𝑥i is 

from the mean 𝜇 of the dataset in terms of standard deviations 𝜎 of the dataset (Cousineau 

& Chartier, 2010; Vishal jain, 2020). 𝑍𝑖 =  (𝑥i – 𝜇)/𝜎 (30) 

By calculating the Z-score for each data point, it is possible to determine whether a 

specific data point is an outlier by comparing its Z-score to a threshold. If the Z-score of a 

particular data point 𝑖 exceeds this threshold (|𝑍𝑖|  >  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑), it is considered an 

outlier. This indicates that the data point is drastically deviated from the mean compared 

to the rest of the dataset (Boris Iglewicz & David C. Hoaglin, 1993) 

The standard Z-Score uses the mean and standard deviation, which are both greatly 

influenced by outliers. In other words, a single extreme value can significantly alter the 

mean and standard deviation, and subsequently, the Z-Score. That's why a more reliable 

method for detecting outliers involves utilizing a modified Z-score. The modified Z-score 

is computed as follows (Vishal jain, 2020): 𝑍𝑖 = 0.6745 ∗ (𝑥𝑖 − �̃�)/MAD (31) 𝑀𝐴𝐷 =  (|𝑥𝑖 − �̃�|)̃   (32) 
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The Modified Z-Score uses the median value of the dataset X̃ and median absolute 

deviation (MAD) which is the median of the absolute difference between each data point 𝑥𝑖 and the median of the dataset. Finally, by multiplying the expression by 0.6745, the 

Modified Z-Score is scaled to have a similar magnitude as the Z-Score when the data 

follows a normal distribution. In a normally distributed dataset, approximately 50% of 

the data points fall within one standard deviation of the mean. The value 0.6745 

corresponds to the distance from the mean to the point that separates the middle 50% of 

the data,  called the first quartile. This allows for a more direct comparison between the 

Modified Z-Score and the Z-Score (Vishal jain, 2020). These calculation differences make 

the Modified Z-Score more robust to outliers. This means that a single extreme value will 

have less influence on the Modified Z-Score compared to the traditional Z-Score. 

Moreover, while the Z-Score assumes that the data follows a normal distribution, the 

Modified Z-Score is more flexible in this regard. Although it performs optimally on 

normally distributed data, it can still be utilized for datasets that exhibit some deviation 

from normality. (Misra et al., 2020).  

Similar to the conventional Z-Score approach, the identification of outliers using the 

Modified Z-Score requires the selection of an appropriate threshold. According to Iglewicz 

and Hoaglin, a recommended threshold for Modified Z-Scores is ± 3.5 meaning (|𝑍𝑖| >3.5)  (Boris Iglewicz & David C. Hoaglin, 1993). Any values exceeding this threshold was 

flagged as potential outliers. 

3.1.2 Autoencoder 

An autoencoder is an unsupervised learning model that learns to reconstruct its input 

data. It consists of two parts: an encoder and a decoder (Lopez Pinaya et al., 2020a). The 

encoder reduces the input data's dimensionality, creating a lower-dimensional 

representation called the latent space. The decoder then reconstructs the input. In this 

thesis, a simple feedforward autoencoder is built using TensorFlow and Keras. The model 

consists of an input layer, an encoding layer, and a decoding layer that reconstructs the 

input data. The activation functions used are Rectified Linear Unit (ReLU) for the encoding 

layer and sigmoid for the decoding layer. The model is compiled using the Adam optimizer 

and MSE as the loss function. These are the most common hyperparameters employed in 

autoencoders that often yield suitable outcomes (Santiago L. Valdarrama, 2021). 

The autoencoder is trained on the normalized dataset for 5 epochs. The number of epochs 

represents the number of times the autoencoder iterates over the entire dataset during 

training. Depending on the dataset and the complexity of the autoencoder architecture, 
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the ideal number of epochs can change (Lopez Pinaya et al., 2020a). The data is shuffled 

before each epoch to ensure better generalization during training. After training, the 

autoencoder tries to reconstruct the input data from the lower-dimensional 

representation it has learned. The reconstruction error (MSE) is computed for each data 

point by comparing the original normalized data with the reconstructed data from the 

autoencoder. The idea is that the autoencoder will have a higher reconstruction error for 

outliers, as these data points are harder to reconstruct accurately (Ian Goodfellow et al., 

2016). To establish which data points are deemed outliers, a threshold for the 

reconstruction error need be specified. The threshold is set based on 98.5% of the 

reconstruction error, meaning that 1.5% of the data points with the highest 

reconstruction errors will be considered outliers. This threshold was chosen after several 

iterations. If data points, such as pressures exceeding the maximum pump capacity of 10 

MPa, still appear in the data, it becomes evident that the filtering method is not sufficient 

in capturing all anomalies. Data points with reconstruction errors above the threshold are 

identified as outliers. The outliers are then removed from the original data, resulting in a 

filtered dataset Figure 16 . 

 

Figure 16 Filtered pressure vs total injection volume plot of the four injection wells after 

the outliers were removed. 

3.2 Feature relationship 

Examining the correlation matrices before and after outlier removal provides insight into 

the relationships between flow rate, well head pressure, and temperature. With 1 
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denoting perfect positive correlation, -1 perfect negative correlation, and 0 denoting no 

correlation at all. Outliers, which are data points that differ significantly from others, can 

skew these relationships. Outliers, being data points radically different from others, can 

distort these relationships. Once the outliers are eliminated, there is a clear increase in 

correlation between these variables. The comparison in Table 1 shows the degree to 

which outliers were influencing the data. 

Table 1 correlation matrices between flow rate, well head pressure and temperature 

before and after outlier detection. 

 

Finally, the pairplot in Figure 17 and Figure 18, which includes a histogram and scatter 

plot for Flow Rate and WHP, provides as a visual aid in analysing the distribution of both 

variables. It clearly illustrates a significant improvement in the normal distribution of the 

data after the cleaning process, indicating more reliable and representative data. In 

addition, there's a stronger linear correlation between flow rate and WHP, pointing to a 

more predictable relationship making accurate predictions more likely.  
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Figure 17 Pair plot Analysis of flow rate and wellhead pressure of the original dataset. 

 

Figure 18 Pair plot Analysis of flow rate and wellhead pressure of the cleaned dataset. 
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3.3 Machine learning modelling  

This chapter will examine each ML model's implementation as well as the model training 

and hyperparameter tuning processes. The construction of these models was an iterative 

process, which required a continuous examination between theoretical assumptions, 

empirical observations, and model performance. 

3.3.1 Training the algorithm for machine learning modelling 

For MLR, the model was constructed using the LinearRegression function available 

in the Scikit-learn library. After preprocessing the data, the input and output variables are 

indicated, and the model is fitted using the fit function.  

The RF model is built using the RandomForestRegressor function in Scikit-learn. 

Similar to MLR, the model is trained using the fit function. The number of trees in the 

forest (n_estimators) and the maximum depth of the trees (max_depth) are among 

the important hyperparameters that need to be tuned to optimize the performance of the 

model(Scikit-Learn 1.3.0 Documentation, n.d.). A larger number of trees generally 

improves the model's performance but also increases computational complexity. This 

means more time and resources to train the model. Also, after a certain number of trees 

the performance stop improving but keeps on increasing the computational cost. The 

distance from a tree's root to its largest leaf is considered the tree's maximum depth. A 

higher depth often allows the model to fit more complex patterns, which can lead to 

overfitting if the model becomes too specific to the training data and will then performs 

poorly on unseen data.  

For the XGBoost model, it was built using the XGBRegressor function available in the 

XGBoost library. Like the RF algorithm, XGBoost also involves some similar 

hyperparameters that need to be fine-tuned to maximize the performance of the model. 

These include n_estimators (number of trees), max_depth (maximum tree depth), 

learning_rate the step size that decides how fast the model learns, and gamma the 

minimum loss required to partition a leaf node. Increasing gamma making it more difficult 

for the model to overfit the training set, but accuracy suffers as a result. (Xgboost 2.0.0-

Dev Documentation, n.d.). 

The SVM model was built using the SVR function, again from Scikit-learn. The kernel 

type and the penalty parameter C are hyperparameters that need to be adjusted to 

enhance the model's predictive performance. The primary role of the kernel is to 

transform the input data into a higher dimension to make it possible to solve complex 
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problems that are nonlinear. As explained previously in section 2.6.1 in nonlinear 

problems the separation of the regions is not limited by a line but rather by a hyperplane. 

This can be computed by selecting specific kernels like linear, polynomial, or radial basis 

functions. For this specific problem the radial basis function was used as it is a popular 

choice for non-linear data and has the ability to create complex regions within the feature 

space. The penalty parameter C is a parameter that impact the size of the margin. A larger 

value of C creates a narrower margin and fewer errors, while a smaller value of C creates 

a wider margin and allow more errors while improving the model's overall consistency. 

The ANN model was constructed using the TensorFlow library. Two hidden layers, as well 

as an output layer, make up the model's three layers. Due to its computational 

effectiveness and its ability to help with the vanishing gradient problem during 

backpropagation, the ReLU activation function is utilised (TensorFlow Core:  Multilayer 

Perceptrons, 2023). The output layer has a single neuron corresponding to the predicted 

WHP.  For model optimization, the Adam optimizer with a learning rate of 0.001 is utilized. 

As a method of stochastic gradient descent, Adam is easy to configurate and deliver good 

performance. The model's performance is evaluated using the MSE.  

An epoch is an iteration of the entire dataset. An early stopping callback is implemented 

to prevent overfitting and conserve computational resources. This function keeps track 

of the validation loss and stop training if no improvement is seen after a predetermined 

number of epochs, in this case 5. Finally, the fit method is used to train the model over 

a fixed number of epochs. This function generates a history object that retains a record 

of loss and metric values throughout training. This record is used to plot the training and 

validation loss curves like shown in Figure 19. If the training loss doesn't converge, this 

indicates that model isn't fitting the training data well, which is a sign of underfitting. This 

means the model may not be capturing the underlying patterns in the data, leading to 

unreliable training outcomes. On the other hand, if the validation loss doesn't converge, it 

indicates that the model may not perform well on new, unseen data, witch is a sign of 

overfitting. This is because the model might have difficulty generalizing beyond the 

training data.  
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Figure 19 MLR's validation and training loss curves. 

Scikit-learn provides the train_test_split function to split the dataset into training 

and testing sets. The training dataset is used to fit all the used models and validate them 

using k-fold cross validation, and the holdout set is then used as the test dataset for the 

final evaluation of their performance.  

For hyperparameter tuning a GridSearchCV function has been used on RF and 

XGBoost. GridSearchCV is a library function from Scikit-learn that helps to loop 

through predefined hyperparameters and fit the model in the training set to output the 

different results for each hyperparameter change and be able to select the best 

hyperparameters values. However the grid search method was computationally 

expensive, particularly when searching over a large hyperparameter list. A solution was 

to use for SVM, MLP and LSTM RandomizedSearchCV. In randomize search not all 

hyperparameter values undergo testing. Instead, a fixed number of parameter settings is 

sampled from the specified distributions, leading to a reduction in computational cost but 

at the detriment of better hyperparameter tuning optimisation. 

3.3.2 Model validation and selection 

Model validation is a crucial step in assessing the reliability and performance of ML 

models. K-fold cross-validation is a widely used method applicable to almost any 

supervised machine learning model. 

K-fold cross-validation offers significant advantages in model validation. Unlike other 

methods that require a separate validation set k-fold cross validation allows for the full 
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utilization of the dataset for both training and validation by partitioning the data 

differently in each iteration. It is however often recommended to have a separate test set 

outside of k-fold cross-validation to assess the final performance of the model (Matthew 

Terribile, 2017). The training data is divided into k equal-sized subsets or folds for as 

shown in Figure 20.  

 

Figure 20 : Example of K-Fold cross validation with 5 iterations. Figure from (Scikit-Learn — 3.1. Cross-Validation, n.d.) 

One fold is used as the validation set for each iteration, and the remaining 𝑘 − 1 folds are 

used for training. This process is repeated 𝑘 times, with each fold serving as the validation 

set once. This approach guarantees that the model is exposed to various subsets of the 

data, providing training for each fold of the training data and a thorough assessment of 

the model's performance. Another benefit is by averaging evaluation metrics over 

multiple iterations, it minimizes the effect of random variations present in the dataset 

(Matthew Terribile, 2017). Typically, the value of k in k-fold cross-validation is set at 

either 5 or 10. The k value chosen for this study is 5 (Scikit-Learn — 3.1. Cross-Validation, 

n.d.). 

Once the model validation is complete, the next step is model selection by evaluating and 

comparing the different regression metrics from each model using the test data. 





 

 

 

  

Results & Discussion 

After the construction and training of the different algorithms, the best models were 

selected and compared against each other to evaluate their performance and reliability. 

4.1 Results 

Table 2 provides a summary of the 5-split k-fold cross-validation results for all the models 

using RMSE and R2 as metric. XGBOOST consistently performs the best, with the lowest 

over all RMSE for each split as well as the highest R2. Followed by LSTM and then MLP, 

RF and SVP within the same range of RMSE and R2 values across the 5 splits.   

As stated in section 2.3 Regression metrics an R2 of 1, an RMSE of 0 and an sMAPE of 0% 

represent a perfect fit of the model. 

Table 2 k-fold cross validation results 

 

Table 3 shows the RMSE, sMAPE, and R2 result for the test data set. As previously 

explained the k-fold split was performed in conjunction with a hold-out set before even 

doing the 5-fold. After model validation, this hold-out set is used as the test data set to 

assess the model, as shown in Figure 20. This will serve as the model's final assessment 

and produce a more accurate score for the model, ensuring that it is less prone to 

overfitting and more accurately depicts its performance. 
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Table 3 final evaluation using the regression metrics of the test set data. 

 

Figure 21 - Figure 26 illustrate the observed versus predicted plot of the test data. This 

plot is also known as an actual versus predicted plot, which is a representation of the 

results obtained from the ML models compared to the real values. This plot is a visual 

overview of how well a model's predictions align with actual values.  

 

Figure 21 Actual versus predicted plot of the multivariate linear regression model with a 

sMAPE of 20.56% on the test data 
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Figure 22 Actual versus predicted plot of the support vector machine model with a sMAPE 

of 10.48% on the test data 

 

 

Figure 23 Actual versus predicted plot of the random forest model with a sMAPE of 10.18% 

on the test data 
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Figure 24 Actual versus predicted plot of the XGBoost model with a sMAPE of 8.28% on the 

test data 

 

 

Figure 25 Actual versus predicted plot of the multilayer perceptron model with a sMAPE of 

8.55% on the test data 
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Figure 26 Actual versus predicted plot of the multilayer perceptron model with a sMAPE of 

8.02% on the test data 

4.2 Discussion 

From previous results, all models outperform MLR with its sMAPE of 20,56% in the test 

data. The MLR model was used mainly as a baseline to compare with other models. As 

fitting a hyperplane to this data will never be able to produce a low error prediction.     

RF and SVM exhibit similar performance, with an sMAPE of approximately 10% in the test 

data. Tuning SVMs for regression problems can be complicated. Unlike methods that aim 

to minimize error directly, SVR keep the error within a specified boundary, which is 

determined by its hyperparameters. This characteristic is evident when comparing the 

actual versus predicted plots of RF and SVM in Figure 22 and Figure 23. Although both 

models have comparable error rates, the distribution of the predicted points for SVM is 

more tightly clustered along the red line than for RF.  

The best performing ML models are XGBoost, MLP, and LSTM. Among these, XGBoost 

consistently outperformed the others during k-fold cross-validation, achieving a 

consistent R2 of 0.99 and an RMSE of around 0.03. However, its performance on the test 

dataset was slightly lower, with an R2 of 0.97, an RMSE of 0.07 and an sMAPE of 8.28%. 
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This discrepancy can be due to over-tuning of the training data and overfitting, so the 

model is performing exceptionally well during cross-validation but underperforming on 

the unseen test data. This shows the importance of separating the data into training and 

testing. While k-fold cross-validation gives a good indication of the model's overall 

performance on different splits of the training data, it does not guarantee the model's 

performance on completely unseen data. In contrast to that, the MLP model was 

performing wors than XGBoost in the validation splits but was only slightly outperformed 

it in the test data, with an sMAPE of 8.55%, indicating a better generalisation of the model 

compered to the validation. 

LSTM had the lowest sMAPE of 8.02% in the test data. This reinforces the efficacy of LSTM 

in handling complex data. LSTM stand out in this task because of its intrinsic ability to 

remember past information. This ability is decisive for accurate forecasting, as it allows 

the model to make use of past observations to predict future values. However, a challenge 

associated with optimizing LSTM is hyperparameter tuning. Tuning the hyperparameters 

of LSTM was difficult and took a lot of computing power. The GridSearchCV algorithm 

was initially employed to attempt to determine the model's ideal hyperparameters, but 

the computational cost was significant and the program's execution time was too long. So, 

instead, the RandomizedSearchCV was used to reduce these computational costs, 

making the optimization more time efficient but also less precise. Comparing this process 

with the implementation of the XGBoost algorithm, which was relatively straightforward 

and yielded almost similar accuracy levels. For XGBoost, GridSearchCV was employed 

successfully for hyperparameter tuning. Even though LSTM performed slightly better 

regarding the test data, it can be pretty demanding in terms of computer power. A simpler 

method like XGBoost might be a good choice since it can deliver almost the same results 

without using as much processing power. This is of course not an all-encompassing 

conclusion for every forecasting problem. It is subject to the specific dataset used in this 

study, as well as the particular pre-processing, feature engineering, and hyperparameter 

tuning applied.   

Ultimately, these results reveal the high efficiency of ML models in WHP prediction. The 

production data, crucial for the day-to-day operations of the geothermal field, is readily 

available and was employed to construct these ML prediction models. With meticulous 

cleaning of this data, its use in ML becomes straightforward. These models serve as a 

faster, more effective alternative to traditional pressure predictions. In their paper “The 

prediction of wellhead pressure for multiphase flow of vertical wells using artificial neural 

networks” (2021) Gomaa et al. built an ANN to predict WHP for an oil production well. 
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They then compared their ANN model with five different numerical correlations used in 

the oil industry to predict WHP. They found that their ML model vastly outperformed any 

of the numerical methods shown in Figure 27. The shortcomings of those correlations 

come from the fact that they were all created in the past. The most recent was in 1985, 

using small data sets for specific conditions and assumptions that do not apply to all oil 

fields. ML models can be trained on vast, diverse datasets, allowing them to recognize 

complex patterns and nuances which traditional models might miss. This gives them a 

considerable edge.  

 

Figure 27 Comparison of the Average Absolute Percentage Error (MAPE) with an ANN 

model with five other correlations utilized in the oil industry for WHP predictions. Figure 

from (Gomaa et al., 2021) 
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Conclusion 

5.1 Evaluation 

This thesis highlights the potential of ML algorithms in simulating the hydrodynamics of 

geothermal injection wells. Utilizing water injection data, comprised of wellhead 

pressure, flowrate, and temperature, a rigorous data cleaning and outlier removal process 

was employed. This meticulous preprocessing was necessary to ensure that the ensuing 

analysis was rooted in high-quality and dependable data. Building upon this, various ML 

algorithms were tested. The ML model comparison provides a thorough analysis of the 

benefits and drawbacks of each algorithm. This comparative analysis show that the LSTM 

model had the highest prediction accuracy with an sMAPE of 8.02%. However, the less 

computationally heavy model, XGBoost, is a close second with a sMAPE of 8.28%. 

It's crucial to emphasise that the production data used in these ML prediction models is 

openly accessible and necessary for the geothermal water injection operations. Utilizing 

this dataset for ML is straightforward, provided that the data is rigorously cleaned. Such 

models offer a swifter, more efficient alternative to conventional numerical models.  

5.2 Future work 

The efficiency of ML models can often be improved by feature engineering. Feature 

engineering is the ability of pinpointing the most significant features in a dataset and 

create them. A more refined feature selection might strengthen the predictive capabilities 

of all reviewed models.  

Another crucial step in model refinement is hyperparameter tuning, which has its own set 

of difficulties, particularly the cost of computing these optimisations. These 

Hyperparameters dictate the learning trajectory and significantly influence model 

efficacy. In particular ANNs, have a lot of tuneable hyperparameters. Tracking an effective 



Conclusion 57  

 

 

 

approach to hyperparameter optimisation in future research could potentially lead to 

significant improvements in these models' predictive accuracy. 

This thesis emphasizes the substantial potential of machine learning in the geo-energy 

industry. Predicting well head pressure in geothermal wells with machine learning 

models has delivered encouraging results. Future studies would benefit from examining 

diverse machine learning algorithms and examining the use of hybrid learning models.  
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