
Chair of Petroleum and Geothermal Energy Recovery

Master's Thesis

Hydrodynamic prediction of geothermal
water injection using machine learning

Redha Hamel, BSc
August 2023

AFFIDAVIT

I declare on oath that I wrote this thesis independently, did not use other than the specified sources
and aids, and did not otherwise use any unauthorized aids.

I declare that I have read, understood, and complied with the guidelines of the senate of the
Montanuniversität Leoben for "Good Scientific Practice".

Furthermore, I declare that the electronic and printed version of the submitted thesis are identical,
both, formally and with regard to content.

Date 30.08.2023

Signature Author
Redha Hamel

Redha Hamel Master Thesis 2023 Geoenergy Engineering

Hydrodynamic prediction of

geothermal water injection using

machine learning

 Supervisor: Univ.-Prof. Ph.D. Keita Yoshioka

 Advisors: Dr. Francesco Parisio Fredrick Titoes Libert

 Chair of Petroleum and Geothermal Energy Recovery

Acknowledgments

I would like to express my heartfelt gratitude to my supervisor, Prof. Keita Yoshioka, for

his guidance during the completion of this Thesis. His knowledge and mentorship have

been instrumental in shaping my research and enhancing my understanding of the subject

matter.

I am also deeply thankful to Dr. Francesco Parisio, whose expertise in machine learning

has been helpful for the analytical framework of this thesis. And Frederick Titoes Libert

for his assistance in understanding the field data.

Additionally, I wish to acknowledge the continued encouragement, support, and attention

provided by my parents, sister, and girlfriend.

Abstract

To ensure efficient and sustainable reinjection of water into geothermal reservoirs, a

proper prediction of the hydrodynamics of the geothermal system is necessary. However,

a deep understanding of the reservoir's properties is typically required. This study

investigates the use of machine learning to forecast the wellhead pressure of geothermal

injection wells using only historical data of wellhead pressure, fluid injection rates, and

temperatures. These datasets will be used to construct several machine learning (ML)

algorithms, including Multiple Linear Regression (MLR), Random Forest (RF), eXtreme

Gradient Boosting (XGBoost), Support Vector Machine (SVM), as well as Artificial Neural

Network (ANN) such as Multilayer Perceptron (MLP) and Long Short-Term Memory

(LSTM). Water injection data from four injection wells underwent rigorous data cleaning

and outlier removal to ensure the fidelity of the results. The performance of the six

algorithms was then validated and examined using metrics like the coefficient of

determination (R squared), the root mean squared error (RMSE), and the symmetric

mean absolute percentage error (sMAPE).

Results show that LSTM outperforms other tested algorithms with a sMAPE of 8.02%,

followed closely by XGBoost with 8.28% and MLP with 8.55%. RF and SVM achieved a

sMAPE of 10.18% and 10.48%, respectively, while the MLR, used in this thesis as a way to

better gauge the upper limit of the models, got a sMAPE of 20.56%. It's essential to note

that these results are subjective on the specific dataset used in this study, as well as the

particular preprocessing, feature engineering, and hyperparameter tuning.

Future studies might consider implementing other ML techniques or hybrid learning

models, offering valuable insights for geothermal optimization. As ML becomes

increasingly important in the geothermal energy sector, such exploration is of significant

interest.

Zusammenfassung

Um eine effiziente und nachhaltige Rückinjektion von Wasser in geothermische

Reservoire zu gewährleisten, ist eine angemessene Vorhersage der Hydrodynamik des

geothermischen Systems notwendig. Allerdings wird in der Regel ein tiefgehendes

Verständnis der Eigenschaften des Reservoirs benötigt. Diese Studie untersucht den

Einsatz von machine learning zur Vorhersage des Brunnenkopfdrucks von

geothermischen Injektionsbohrungen, wobei nur historische Aufzeichnungen von

Brunnenkopfdruck, Flüssigkeitsinjektionsraten und Temperaturen verwendet werden.

Diese Datensätze werden durch verschiedene Algorithmen des machine learning (ML)

genutzt, einschließlich Multiple Linearer Regression (MLR), Random Forest (RF),

eXtreme Gradient Boosting (XGBoost), Support Vector Machine (SVM) sowie Artificial

Neural Network (ANN) wie Multilayer Perceptron (MLP) und Long Short-Term Memory

(LSTM). Wasserinjektionsdaten von vier Injektionsbohrungen wurden einer gründlichen

Datenreinigung und Entfernung von Ausreißern unterzogen, um die Genauigkeit der

Ergebnisse zu gewährleisten. Anschließend wurden die sechs Algorithmen hinsichtlich

ihrer Leistung anhand von Metriken wie dem Bestimmtheitsmaß (R-Quadrat), dem

quadratischen Mittelwertfehler (RMSE) und dem Symmetrischen durchschnittlichen

prozentualen absoluten Fehler (sMAPE) validiert und getestet.

Die Ergebnisse zeigen, dass LSTM die anderen getesteten Algorithmen mit einem sMAPE

von 8,02% übertrifft, dicht gefolgt von XGBoost mit 8,28% und MLP mit 8,55%. RF und

SVM erreichten einen sMAPE von 10,18% bzw. 10,48%, während die MLR, die in dieser

Arbeit als Maßstab für die obere Grenze der Modelle verwendet wurde, einen sMAPE von

20,56% erzielte. Es ist wichtig zu beachten, dass diese Ergebnisse abhängig von dem

spezifischen Datensatz sind, der in dieser Studie verwendet wurde, sowie von der

speziellen Vorverarbeitung, Merkmalsentwicklung und Hyperparameterabstimmung.

Zukünftige Studien könnten in Erwägung ziehen, andere ML-Techniken oder hybride

Lernmodelle einzusetzen, die wertvolle Erkenntnisse für die geothermische Optimierung

bieten. Da ML im geothermischen Energiesektor immer wichtiger wird, ist eine solche

Erkundung von erheblichem Interesse.

Table of Contents

Acknowledgments ... vi

Abstract ... vii

Zusammenfassung ... viii

 .. 11

Introduction .. 11

1.1 Background and context .. 11

1.2 Scope and objectives ... 12

 .. 13

Literature Review ... 13

2.1 Geothermal injection management ... 13

2.2 Concept and theoretical framework of machine learning ... 16

2.3 Regression metrics .. 18

2.4 Regression ... 21

2.5 Decision trees ... 22

2.6 Support vector machine .. 25

2.7 Artificial neural network ... 28

2.8 Time series modelling .. 35

 .. 37

Exploratory Data Analysis & Modelling ... 37

3.1 Data cleaning and pre-processing ... 37

3.2 Feature relationship .. 41

3.3 Machine learning modelling... 44

 .. 49

Results & Discussion ... 49

4.1 Results ... 49

4.2 Discussion .. 53

 .. 56

Conclusion ... 56

5.1 Evaluation .. 56

5.2 Future work .. 56

References ... 59

List of Figures ... 65

List of Tables ... 67

Abbreviations ... 68

Introduction

1.1 Background and context

Geothermal energy is a mature technology. However, despite its vast potential,

geothermal energy accounts in 2021 for only a small fraction, approximately 0.3%, of the

world's energy mix, as reported by the International Renewable Energy Agency (Taylor

et al., 2021). Nevertheless, the International Energy Agency reports that geothermal

energy has a promising outlook, with continued growth anticipated by 2026 (IEA, 2021).

Despite its favorable outlook, several challenges impede its development, such as the

availability and quality of heat reservoirs, economic viability, and the disposal of large

volumes of low-temperature water condensate. If not disposed properly, residual

geothermal water can have adverse environmental impacts, in particular on soil,

vegetation, wildlife, and groundwater resources. Thus, it is crucial to implement

sustainable disposal methods that minimize these impacts and ensure the long-term

sustainability of geothermal energy development (Bundschuh & Tomaszewska, 2017;

Sharmin et al., 2023).

A valuable solution for a sustainable geothermal energy extraction process is to

continuously reinject part, if not all, of the produced wastewater back into the geothermal

reservoir to lower the amount of residual water that needs to be disposed of (Zarrouk &

McLean, 2019). However, this needs to be closely managed not to lower the reservoir

temperature and thus decrease the efficiency of the geothermal system. The amount of

fluid that can be injected into the reservoir through an injection well depends on its

injectivity (Grant & Bixley, 2011). As a result, precise predictions of injectivity changes

over time can aid in optimising water injection, adjusting the volume of fluid in the

12 Introduction

reservoir, and minimising the amount of water and other fluids released into the

environment.

Several studies have been published on injection performance change using different

well-test analyses (Nolte, 1988; Yoshioka et al., 2008, 2019). However, these evaluations

take time and require a deep understanding of the geological formation and reservoir

properties.

1.2 Scope and objectives

This thesis investigates the application of machine learning (ML) to the modeling of the

hydrodynamic of geothermal wells. The goal of the modeling is to dynamically adapt the

volumes of water reinjected into the reservoir and predict the future wellhead pressures.

Historical injection and pressure data from a geothermal field will be analysed using ML

algorithms to identify patterns and trends that can aid in predicting future pressure

changes. The process of developing effective ML models involves a series of steps. Firstly,

the raw data must be carefully cleaned and organized to ensure that it is of sufficient

quality to be used in ML. This process involves finding and handling any missing data,

fixing any formatting issues, and normalising the data to get rid of any biases or

inconsistencies that might compromise the models' accuracy. Once the data has been pre-

processed, it is partitioned into training, test, and validation sets. These sets are used to

train, evaluate, and fine-tune the ML models. During this phase, ML algorithms, including

Multiple Linear Regression (MLR), Random Forest (RF), Support Vector Machine (SVM),

eXtreme Gradient Boosting (XGBoost), Multilayer Perceptron (MLP), and Long Short-

Term Memory (LSTM)., are applied and compared to identify the most effective one.

Choosing the best algorithm for the given task is a crucial step and requires extensive

analysis of the performance metrics. Once the most effective ML algorithm has been

identified, it is used to develop a model that can accurately predict pressures based on the

injection data. The best machine learning algorithm is then used to create a model that

can precisely predict well head pressures based on injection data.

http://www.cs.stir.ac.uk/~kjt/research/conformed.html

Literature Review

2.1 Geothermal injection management

The optimal recovery of geothermal resources while minimizing the environmental

impacts requires the effective management of geothermal production processes. One

critical process is the reinjection of fluids, which serves several purposes, such as

resource recovery optimization, residual water disposal, pressure support, and increased

thermal recovery (Bundschuh & Tomaszewska, 2017). Achieving these goals and

ensuring effective field management requires careful design of the injection system.

Despite the advantages of injection, it can be difficult to maintain reinjection capacity,

particularly when dealing with a limited reservoir capacity, scaling in surface pipelines,

cooling of production wells, and reservoir clogging (Axelsson, 2010). To mitigate these

adverse effects, continuous monitoring is necessary. This involves measuring parameters

such as wellhead pressure, injection rate, and temperature to be able to detect any

changes in the injection system and take appropriate action to maintain optimal

performance (Axelsson, 2012).

The wellhead pressure in a water injection well is influenced by several factors(Grant &

Bixley, 2011). Firstly, there is the hydrostatic pressure 𝑃ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 exerted by the column

of water present in the tubing given by equation (1). 𝑃ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 = 𝜌𝑔ℎ (1)

Where, 𝜌 is the density of the water, 𝑔 the acceleration due to gravity, and ℎ the vertical

height of the water column.

14 Literature Review

Then the frictional losses in the tubing are given by equation (2), which depends on the

flow rate, the rheological properties of the water, the diameter and roughness of the

tubing, and the path of the flow.

𝛥𝑃 = 𝑓 ∗ (𝐿D) ∗ 12𝜌𝑣2
(2)

With 𝛥𝑃 as the pressure drop, 𝑓 the Darcy friction factor, 𝐿 the length of the tubing, 𝐷 the

diameter of the tubing, and 𝑣 the velocity of the water.

And finally, the formation pressure 𝑃𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 will resist the injection. Therefore, the

wellhead pressure will need to overcome this formation pressure to inject water into the

reservoir.

The final required wellhead pressure for injection is given by equation (3): 𝑃𝑤ℎ = − 𝑃ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 + 𝛥𝑃 + 𝑃𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 (3)

Another important parameter that can be estimated is the injectivity index, which

provides valuable information about the performance of the injection system and is a

measure of the well's ability to accept injected fluid at a given wellhead pressure (Zarrouk

& McLean, 2019). It is calculated by dividing the fluid injection rate by the wellhead

pressure change as shown in equation (4): 𝐼𝐼  =   Δ �̇�Δ 𝑃 (4)

where 𝐼𝐼 is the injectivity index in kg/s/kPa, Δ �̇� is the injection rate in kg/s and Δ 𝑃 is

the change in well head pressure in kPa.

Another diagnostic tool to assess the injection performance of a geothermal well is using

Hall plot. Hall plot is a graphical representation proposed by R. E. Hall in 1963 (Hall,

1963). It displays how the total amount of water injected and the so-called Hall integral

relate to one another. The Hall integral is calculated using the time integral of the

wellhead pressure 𝑝𝑤ℎ and the average reservoir pressure 𝑝𝑎𝑣𝑔 as shown in equation (5)

(James T. Smith & William M. Cobb, 1997).

∫ (𝑝𝑤ℎ − 𝑝𝑎𝑣𝑔)𝑑𝑡𝑡
0

(5)

This graphical representation helps to determine changes in injection conditions for a

particular geothermal system. For instance, when there are reservoir obstructions or

wellbore plugging, there is a gradual increase in the skin factor, leading to a decrease in

the injectivity and an increase in the slope of the Hall plot. On the other hand, if fracture

Literature Review 15

growth results in an increase in injection rate and a decrease in the slope of the Hall plot,

the skin factor will increase as a result of injecting pressure exceeding fracture pressure.

Figure 1 illustrates the different conditions of injection on the Hall plot (James T. Smith &

William M. Cobb, 1997).

Figure 1 Hall plot for different injection conditions. (A) normal injection with no change,

(B) abrupt skin increase due to well plugging, (C) Gradual skin increase, (D) gradual

stimulation, skin decrease and enhanced injectivity, (E) Abrupt skin decrease, fracture near

the well. Figure adapted from (Boumi Mfoubat & Zaky, 2020).

By monitoring and collecting data related to well injection, operators can effectively use

tools like injectivity index estimation and Hall plot interpretation to identify any changes

in the well's performance (Bundschuh & Tomaszewska, 2017). With this information,

they can take appropriate corrective actions to ensure the well is functioning optimally.

However, analysing and monitoring injection well problems using numerical models can

be time-consuming and challenging, especially when dealing with large amounts of

injection and pressure data. In such cases, ML can be a useful tool for automating the

analysis and monitoring process (Harry et al., n.d.). ML algorithms trained to detect

patterns and anomalies in the data can be used by operators to quickly identify potential

issues with the injection system and take corrective action to prevent them from affecting

the performance of the geothermal system.

16 Literature Review

2.2 Concept and theoretical framework of machine

learning

Artificial intelligence (AI) is the ability of machines to carry out tasks that have historically

required cognitive skills similar to those of humans, such as understanding natural

language, spotting patterns, having the ability to generalise, or remembering past

experiences. (Ryszard S. Michalski et al., 1983). As shown in Figure 2, ML is a subclass of

AI that uses probabilistic algorithms and statistical models to enable computers to learn

from data and make predictions or decisions that improve over time.

Figure 2 Diagram of the different branches of AI and ML. Figure adapted from

(Understand the Basics of Artificial Intelligence, 2021).

Arthur Samuel, a pioneer in artificial intelligence and a computer scientist, described

machine learning as the "field of study that gives computers the ability to learn without

being explicitly programmed" (Samuel, 1959). Since its inception, ML has grown in

popularity across many industries thanks to the emergence of big data and advances in

computing power (Attaran & Deb, 2018). Some of the earliest applications of ML include

handwriting recognition in the 1970s, speech recognition in the 1980s and email spam

filtering in the 1990s. Nowadays, ML has the potential to greatly enhance productivity in

many industries and can provide businesses with a competitive advantage by enabling

them to make data-driven decisions and improve their operations (Sanil et al., 2022). As

technology continues to advance, the potential applications of ML are likely to expand as

well. According to a 2021 study by McKinsey, AI and ML are estimated to create 13 trillion

US dollars of value annually by the year 2030 (Michael Chu et al., 2021).

Literature Review 17

According to Mjolsness and DeCoste, (2001), the main steps to create an ML model could

be summarized as follows:

1. Data collection: Collect and acquire the relevant data that is needed to solve the

problem.

2. Data preparation: Clean and preprocess the data by eliminating noise, addressing

missing values, and formatting it appropriately for analysis. Separate the data into

a training, test and validation set.

3. Feature selection: Determine and choose the model's most important features.

4. Model selection: Select the appropriate ML algorithm that can be used to solve the

problem.

5. Model training: Train the ML model on the training data using the selected

method.

6. Performance evaluation: Evaluate the cost function of the trained model by using

a suitable metric.

7. Model optimization: Fine-tune the model parameters to optimize its performance

using the test data.

8. Model deployment: Deploy the trained model to make predictions on new data or

integrate it into a larger system to solve the problem.

Note that the ML process is iterative, and steps 4 to 7 may need to be repeated multiple

times until the desired outcome is achieved. The best model can then be chosen by

comparing the various generated models to one another using the validation data. As

previously stated, there are many types of ML (Figure 2). However, this thesis will only

focus on supervised learning.

A model is trained on a labelled dataset using supervised learning, where the right output

is provided for each input (Caruana & Niculescu-Mizil, 2006).

Supervised learning is a type of ML, where a model is trained on a labelled dataset, where

the right output is provided for each input (Caruana & Niculescu-Mizil, 2006). Figure 3

illustrate the iterations of supervised ML where the overarching goal is to fine-tune the

model through such that the difference between the labelled output 𝑦 and the predicted

output �̂� diminishes, leading to enhanced prediction accuracy.

Supervised learning is frequently used in classification and regression problems. In all

classification problem, the target variables are discrete (Anderson et al., 1983). This

indicates that the objective is to classify a data point from the input into one of many

predefined categories. This can be (true/false) for binary classification problems or

18 Literature Review

several possible values for multi-class classification problems. For example, handwriting

recognition models can be trained to accurately identify handwritten letters and classify

them into their correct equivalent of the alphabet. On the other hand, in all regression

problem, the target variables are continuous. In other words, the models look for the best-

fit line that can represent the overall trend in data with continuous numerical values or

attempt to predict a target value based on a set of input features. This thesis will utilize

supervised regression ML models.

Figure 3 Flow chart of a supervised ML iterations. S is the regular system, 𝑥 the input, 𝑦 the

labeled output, and �̂� the predicted output.

2.3 Regression metrics

In regression-based ML models, the aim is to minimize the discrepancy between the

predicted values and the actual values. This is accomplished by calculating the error

between these values (6), 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑒𝑟𝑟𝑜𝑟  =  𝑦  −  �̂� (6)

with 𝑦 ̂ as the predicted value and 𝑦 as the actual values. The error is then calculated as

the difference between these values (Borchgrave, 2019). An error of zero, which would

indicate perfect predictions for all values, would be the ideal situation but is unlikely to

happen.

To determine how well the model can make these predictions, regression metrics, also

referred to as loss functions are used. They typically follow the same three-step: first,

calculating the distance between predicted and expected target values for each data point;

second, normalizing the distance using a chosen method; and finally, combining the

normalized distances to obtain an overall measure of model performance. The goal is to

find the best parameters which have the smallest error (Botchkarev, 2019).

Literature Review 19

The four main categories of metrics are primary metrics, extended metrics, composite

metrics, and hybrid sets of metrics (Botchkarev, 2019). The choice of regression metrics

can depend on the specific problems and the goals of the analysis.

Due to the fact that they offer a straightforward and understandable measure of error,

primary metrics are frequently used as a starting point for assessing regression models.

Mean squared error (MSE), root mean squared error (RMSE), and mean absolute error

(MAE) are the three that are most frequently used.

By including more details about the distribution of the target variable, extended metrics

can provide more granular insights into the performance of a model. This is accomplished

by adding unique normalisation techniques to the fundamental metrics. For instance, the

Root Mean Square Error is normalised by the standard deviation to produce the

Normalised Root Mean Square Error (NRMSE). The difference between the data's

maximum and minimum values can also be used for normalisation.

Composite metrics can be useful for comparing the performance of different models, as

they provide a single summary measure that incorporates multiple performance metrics.

Hybrid metrics can be particularly useful when multiple aspects of model performance

need to be evaluated, such as bias and accuracy.

To get a comprehensive understanding of a model's performance, various regression

metrics should be used to evaluate the error. To evaluate the effectiveness of the proposed

model, this thesis utilizes the coefficient of determination (R squared or 𝑅2) the root

mean squared error (RMSE) and the mean absolute percentage error (sMAPE) as

evaluation metrics (Ethem Alpaydin, 2014).

Coefficient of determination (R squared),

𝑅2 =   1𝑛 ∑ (�̂�𝑖−𝑦𝑖)2𝐷𝑖=1∑ (�̂�𝑖−�̅�)2𝐷𝑖=1
(7)

Root mean square error (RMSE),

𝑅𝑀𝑆𝐸 = √1𝑛∑ (�̂�𝑖 − 𝑦𝑖)2𝐷𝑖=1   (8)

Symmetric mean absolute percentage error (sMAPE), 𝑠𝑀𝐴𝑃𝐸 =   100𝑛 ∑ |�̂�𝑖−𝑦𝑖||�̂�𝑖|+|𝑦𝑖|𝐷𝑖=1 (9)

20 Literature Review

�̂� and 𝑦 are 𝐷 dimensional vectors representing the predicted value �̂�𝑖 and the actual

value 𝑦𝑖 . The index 𝑖 indicates the value on the 𝑖th dimension of �̂� and 𝑦. 𝑛 is the number

of observations and �̅� the mean of the actual values 𝑦𝑖 .
R2 is the proportion of variance in the dependent variable that is predictable from the

independent variables (Ethem Alpaydin, 2014). The value of R2 ranges between 0 and 1.

Poor predictions are indicated by an R2 close to 0, while a model that fits the data

perfectly is indicated by an R2 close to 1.

The Mean Square Error (MSE) calculate the average square of the errors. Even if the

residual error is negative, a positive value is calculated (Ethem Alpaydin, 2014). MSE is

less biased towards higher values and does not penalize large errors disproportionately,

meaning that MSE is less likely to be affected by outliers present in the dataset. The RMSE

and mean squared error share many similarities as RMSE is essentially the square root of

MSE (Ethem Alpaydin, 2014). Since each error has an impact on RMSE that is directly

proportional to the squared error, outliers can cause results to be exaggerated or

magnified. However, RMSE is better at reflecting performance when dealing with large

error values, as in Figure 4, where a random noise was added to a sinusoidal curve to

simulate a difference between actual and predicted values..

Figure 4 Error metric plot of MSE and RMSE using a noisy sinusoidal signal with.

sMAPE provides the average percentage error between forecasted and actual values. For

instance, an sMAPE of 5% indicates that, on average, forecasts deviate by 5% from the

actual values. This metric offers a straightforward method to interpret and compare

across different scales. Its symmetry avoids the bias that can emerge in using the basic

Literature Review 21

mean absolute percentage error when actual values approach zero because it treats over-

forecasts and under-forecasts equally. A high sMAPE value signifies less accurate

forecasts, whereas a low value indicates greater accuracy (Ethem Alpaydin, 2014).

The next section will dive deeper into the architecture of supervised regression ML

models, more specifically MLR, RF, SVM and ANNs.

2.4 Regression

Regression is a statistical technique used to assess the relationship between variables.

Linear regression is one of the simplest and most widely used statistical algorithms in

predictive modelling. According to Fahrmeir et al. (2007), it seeks to identify a linear

relationship between a dependent variable and one or more independent variables. When

there is a single input variable, the regression is called Simple Linear Regression (SLR).

When there are more than one input variables, it's called Multiple Linear Regression

(MLR). By solving a linear equation(10), linear regression seeks to determine the "line of

best fit" for SLR (Figure 5) and the ideal hyperplane for MLR (Draper & Smith, 1998). 𝑦 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 +⋯+ 𝑎𝑛𝑥𝑛 + 𝜖 (10)

with 𝑦 is the dependent variable, 𝑥𝑖 the 𝑖th independent variables, the intercept 𝑎0

represent the value of y when all other parameters are set to 0, 𝑎𝑛 represent the 𝑛th

regression coefficient of the 𝑛th independent variable and 𝜖 the error term indicating the

variability of the dependent variable that is not described by the independent variables.

Figure 5 representation of a SLR using random values.

22 Literature Review

2.5 Decision trees

Decision trees are versatile statistical models that find applications across numerous

domains. The concept of decision trees originated from the research conducted by

Morgan and Sonquist in 1963, during their research into the factors influencing social

circumstances (Clark & Deurloo, 2005). Since then, decision trees have evolved and

gained widespread recognition for their effectiveness in data analysis by providing an

intuitive approach for solving classification and regression problems by modelling

decisions and their consequences in a tree-like structure. As shown in Figure 6Figure 6

decision trees consist of nodes, branches, splits, and leaf nodes. Nodes represent features

or attributes, branches represent possible values or decisions, and splits divide the

dataset based on these decisions. The leaf nodes are the final predictions or outcomes

(Tretter, 2003). The path from the root node to a leaf node forms a sequence of decisions,

allowing users to trace the decision-making process.

Figure 6 example of a decision tree architecture with 𝑥1, 𝑥2, 𝑥3, 𝑥4 and 𝑥5 as features nodes

with yes or no binary splits and 0 or 1 as the leaf nodes.

However, as stated before, decision trees are not only limited to classification tasks but

are also applicable to regression problems. The Classification and Regression Trees

algorithm, extends decision trees to handle continuous target variables (Breiman, 2001).

The creation of a decision tree involves the consideration of three key parameters. The

first parameter is feature selection, which aims to identify the most informative features

that effectively discriminate between different classes(Steinberg Dan, 2009).

Once the feature selection process is completed, the next step involves identifying the

conditions for dividing the data. The nature of the attribute determines the specific

conditions required for splitting:

Literature Review 23

• Categorical Attributes: In the case of categorical attributes, each possible attribute

value gives rise to a separate branch in the decision tree. The data is divided

according to the value of the attribute, producing distinct branches that represent

the various attribute values.

• Continuous Attributes: Continuous attributes need the creation of split points or

thresholds. Optimal split points are determined using various algorithms that

evaluate different thresholds, such as binary or multiway splits, based on

statistical measures like variance reduction or information gain.

Finally, to ensure effective generalization and prevent overfitting, it is crucial to establish

stopping criteria. Overfitting occurs when the model's complexity escalates to a point

where it begins learning the noise embedded in the data along with its intrinsic patterns.

On the other hand, underfitting occurs when the model's simplicity prevents it from

accurately capturing the complexity of the dataset. Using a stopping criterion which

determine when to cease expanding the decision tree and convert a node into a leaf node

can help to mitigate overfitting. One such criterion is the maximum depth, which places a

predetermined limit on the decision tree's depth. When this limit is reached, further

splitting is stopped. The minimum samples needed in a node before starting a split is

another stopping criterion. By setting a threshold, overfitting can be avoided, and each

split can be based on a reliable amount of data. (Steinberg Dan, 2009).

2.5.1 Random forest

Decision trees can be prone to overfitting. This can make them less effective at predicting

new, unseen data. In order to strengthen and enhance the performance of decision trees,

the RF algorithm was developed (Breiman, 2001). It functions by creating a diverse group

of decision trees, like shown in Figure 7, thereby mitigating the impact of the training data

on a single tree.

24 Literature Review

Figure 7 example of the architecture of a Random Forest algorithm with 𝑛 trees.

The first stage in the RF algorithm involves creating new datasets from the original data.

This is done using random sampling with replacement, ensuring the same dimensionality

of the dataset. This procedure is known as bootstrapping or bagging (Hastie et al., 2009).

An important note is that by using bootstrapping, individual data points may recur

multiple times in a single dataset. The following stage involves training decision trees

independently from other dataset. However, unlike the conventional decision tree, not all

features are used in training. Instead, each tree is trained using a randomly chosen subset

of features, enhancing the forest's diversity. The final stage is the prediction. Here, the

model uses an aggregation process, in which the data point is successively passed through

each tree. Each unique tree prediction is recorded, and then combined to arrive at the

final output. The mean is calculated for regression problems and the majority vote is used

for classification problems (Steinberg Dan, 2009). By guaranteeing a wider, more varied

sampling of the data, this approach lowers the possibility of overfitting and improves the

model's capacity for generalisation.

2.5.2 XGBoost

In this thesis an advanced version of decision trees called eXtreme Gradient Boosting

(XGBoost) has also been utilized.

Making a prediction, which by default is set to the mean of the target variable, is the first

step of the XGBoost algorithm. This default value is then used to compute the residuals,

which represent the differences between the observed and predicted values. Following

Literature Review 25

this, XGBoost fits a regression tree. In contrast to RF, which builds trees one at a time,

XGBoost builds trees sequentially, with each new tree attempting to fix the mistakes of

the previous one (Xgboost 2.0.0-Dev Documentation, n.d.). The quality of the prediction

can be quantified using the loss function for regression, as given by equation (11)

(Christophe Pere, 2020) ∑ 𝐿(𝑦𝑖 , �̂�𝑖) = 12 (𝑦𝑖 − �̂�𝑖)2𝑛𝑖=1 (11)

with 𝑦𝑖 the observed values and �̂�𝑖 the predicted values.

XGBoost utilizes this loss functions to construct trees by minimizing equation (12): ∑ 𝐿(𝑦𝑖 , �̂�𝑖) + 𝛾𝑇 + 12𝜆𝑂𝑣𝑎𝑙𝑢𝑒2𝑛𝑖=1 (12)

In this equation, 𝐿 stands for the loss function, 𝑇 for the number of leaves, and 𝛾 for a user-

definable penalty that encourages tree pruning. Pruning aims to shorten the tree, making

it less susceptible to overfitting. Finally,
12 𝜆𝑂𝑣𝑎𝑙𝑢𝑒2 is a regularization term where λ a

regularization parameter used to control overfitting and 𝑂𝑣𝑎𝑙𝑢𝑒 is the similarity score also

called optimal value. The objective of XGBoost is to find splits that maximize the difference

in similarity scores between the child leaves. A large difference indicates that the split has

effectively separated the data into a distinct group and improving the model performance.

(Chen & Guestrin, 2016).

Upon creating the leaves, the gain of splitting the residuals into two groups is evaluated.

This gain is equivalent to the sum of the similarity scores of both leaves, minus the root

similarity score. This gain value is also used as a way to stop splitting the nodes once it

becomes negative(Christophe Pere, 2020). In XGBoost, each tree iteration is built in a

greedy way, which means selecting the best split among all potential splits at each node

to maximise the gain without taking the global optimal into account.

2.6 Support vector machine

Support Vector Machines (SVM) were originally invented in the 1990s primarily for

binary classification tasks (Cortes et al., 1995). Nevertheless, over time, their utility has

extended to cover diverse classification and regression problems.

2.6.1 Building a support vector machine

SVM is based on the idea of a decision boundary separating the data points. Considering

the simplest case where data is linearly separable, SVM finds the optimal hyperplane that

maximizes the margin between two classes as shown in Figure 8.

26 Literature Review

Figure 8 2D binary classification scenario with a hyperplane represented as a straight line

with arrows pointing at the support vectors. The data points belonging to one group are in

red, while the other group are in blue. Figure adapted from (Terence Shin, 2021).

The so-called support vectors refer to the data points that reside along the margin and

help in determining the position of the hyperplane. In the simple linear case, this function

takes the form of a plane (Terence Shin, 2021). For non-linearly separable data, SVM

employs a technique called the kernel trick, which transforms the input space into a

higher-dimensional feature space where the classes can be separated linearly (Schölkopf

& Smola, 2018).

To solve regression problems, the same idea behind SVM can be used. This is called

Support vector regression (SVR). As shown in Figure 9, SVR algorithm determines a

boundary that includes as many data points as possible within that limit. Points outside

this threshold are called slacks. SVR can also use the kernel trick to carry out regression

in the transformed space, allowing for non-linear regression (Beny Maulana Achsan,

2019)

Literature Review 27

Figure 9 Linear regression (depicted on the left) and non-linear regression (shown on the

right), each illustrated with an epsilon-insensitive band and slack points marked in red.

Figure adapted from (Beny Maulana Achsan, 2019).

2.6.2 Optimizing a support vector machine

In most linear regression models, the primary goal is to minimize the errors. However,

SVR focus mainly on maintaining the error within an acceptable boundary 𝜀 like defined

in equation (13) (Terence Shin, 2021). |𝑦𝑖 −𝑤𝑖𝑥𝑖| ≤ 𝜀 (13)

The optimization of SVR start by defining an acceptable error threshold 𝜀 within the

model and efficiently determines an optimal hyperplane, to align with the data. However,

this algorithm might not provide suitable results for all data points. It attempts to

optimize the objective function, but occasionally, some points might fall outside the

established boundary. It is thus crucial to consider the probability of errors exceeding the

established 𝜀 limit. This requires the use of slack variables, labelled as ξ. These variables
capture deviations of any data point that strays beyond the 𝜀 limit. These deviations

become an added component in the optimization the function (14) (Terence Shin, 2021). |𝑦𝑖 −𝑤𝑖𝑥𝑖| ≤ 𝜀 + ξ𝑖 (14)

The level of error tolerance will vary depending on the specific problem and the level of

accuracy required for the solution. For conditions involving higher error tolerance, the

epsilon error margin can be increased. Or it can be decreased for models with a lower

acceptance of errors.

28 Literature Review

2.7 Artificial neural network

The original motivation behind the invention of neural networks in the early 1940s by

McCulloch and Pitts was to create software that could replicate the learning processes of

the biological brain (McCulloch & Pitts, 1943). The human brain is considered to be the

epitome of intelligence and surpasses anything that has been developed so far. This is why

neural networks were initially created with the aim of imitating the brain. Although, due

to our limiting understanding of how the brain actually works, today's neural networks

have evolved to become quite distinct from how we perceive the brain to function.

However, some of the original biological inspirations still remain in the way we

conceptualize ANNs.

2.7.1 Perceptron

Multiple interconnected processing nodes, also known as neurons, make up ANNs, which

can be trained to recognise patterns in different types of data. A neuron processes input

from other neurons and then generates an output. Each neuron is equipped with 𝑛 input

units 𝑥𝑖 along with a bias 𝑏𝑖 and a corresponding weight 𝑤𝑖 (Ethem Alpaydin, 2014).

Figure 10 Representation of the inside of a perceptron with input 𝑥𝑖, associated weight 𝑤𝑖 ,
bias 𝑏𝑖, activation function 𝜎(𝑧) and output �̂�.

ANNs consist of input, hidden, and output layers, as shown in Figure 10. The input layer

is the first layer of the neural network and receives the raw data. Each unit in the input

layer represents one feature of the data and thus the number of units in the input layer is

equal to the number of input features. The final output of the neural network is produced

by the output layer. The input data is transformed by applying mathematical functions,

called activation functions, to the weighted sum of the input values and biases at each

neuron (Anderson et al., 1983).

Literature Review 29

The number of neurons in the output layer depends on the task being performed. For

instance, in a binary classification task, the output layer would contain a single neuron

that produces a value between 0 and 1 that represents the probability of belonging to the

class. On the other hand the output layer of a multi-class classification task would contain

numerous neurons, each of which would stand in for a different class. The hidden layers

perform the intermediate computations required to map the input to the output.

A perceptron is a basic form of an ANN, composed of a single hidden layer of neurons as

shown in Figure 11. This linear binary classifier can be employed to model the

relationship between inputs and outputs in a supervised learning model. In a neural

network, the procedure of passing input data sequentially through its layers is known as

forward propagation. Up until the output layer is reached, each neuron's output from a

layer serves as the input for the following layer. The output layer ultimately generates the

result, which is based on the information the network has collected.

Figure 11 Representation of a feed forward ANN model. With n input values (green), m

neurons in the hidden layer (blue) and k output values (red).

The connections between the neurons in different layers are represented by weights. The

weights determine the degree to which a given input will affect the neuron's output. If

weight 𝑤₁ is greater than weight 𝑤₂, the input 𝑥₁ will apply a greater influence on the

output than input 𝑥₂. The input value 𝑥ᵢ is multiplied by the corresponding weight 𝑤ᵢ and

added to all the resulting products to produce the output of a neuron(Ethem Alpaydin,

2014).

30 Literature Review

∑ (𝑤𝑖. 𝑥𝑖)𝑛𝑖=1 = 𝑤𝑥 (15)

Then, the bias term 𝑏 Is added to the sum of multiplied values, the resulting value is

represented by 𝑧. The bias is needed to shift the activation function to produce the desired

output (Ethem Alpaydin, 2014). 𝑧(𝑥) = 𝑤𝑥 + 𝑏 (16)

Finally, to add nonlinearity to the network and enable it to model complex relationships

in the data, activation functions are applied to the weighted sum of the input values and

biases at each neuron in the network. For example, if a simple binary step function (17)

is chosen as the activation function, the output of the function is 1 if the input belongs to

class 1, or 2 if it belongs to class 2 (Ethem Alpaydin, 2014). 𝜎(𝑧) = {1 𝑖𝑓 𝑧 ≥ 00 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (17)

Common activation functions are sigmoid (18) and ReLU (rectified linear unit) (19),

plotted in Figure 12.

Sigmoid activation function:

𝜎(𝑧) = 11 + 𝑒−𝑧
(18)

ReLU activation function: 𝜎(𝑧) = 𝑚𝑎𝑥(0, 𝑧) (19)

Figure 12 Plot of the sigmoid and ReLU activation Functions

Literature Review 31

Perceptrons can only learn linearly separable functions, which limits their use compared

to more complex ANN models like multilayer perceptrons and other deep learning

architectures (Akshay L Chandra, 2018).

2.7.2 Multilayer perceptron

A neural network with more than one hidden layer is called a deep learning model. A deep

neural network can learn hierarchical representations of the input data due to the

increased number of hidden layers, which can result in forecasts that are more precise.

On the negative side, deep learning models frequently need a lot of data and processing

power to train well (Ian Goodfellow et al., 2016).

Figure 13 Representation of a multilayer perceptron model using 2 hidden layers. With n

input values (green), m neurons in the hidden layer 1 and 2 (blue) and k output values

(red).

Am MLP is a type of deep learning model composed of multiple layers of interconnected

nodes as shown in Figure 13. Because it is a feedforward neural network, data flows from

the input layer through the hidden layers and finally to the output layer in a single

direction. Each node in the MLP thus receives input from the nodes in the preceding layer,

processes the weighted sum of those inputs using an activation function, and then passes

the result to the nodes in the subsequent layer (Anderson et al., 1983).

2.7.2.1 Training a feedforward neural network.

Backpropagation is a widely used algorithm for training feedforward neural networks.

This algorithm uses a stochastic gradient descent optimisation algorithm to iteratively

adjust the weights and biases of the network after a random initialization (Ethem

32 Literature Review

Alpaydin, 2014). During each iteration, the algorithm computes the error between the

predicted output and the actual output for a given input and propagates this error

backwards through the network to update the weights and biases.

The backpropagation algorithm works by computing the gradient of the cost function

with respect to the network's weights and biases. According to Them Alpaydin (2014),

the cost function calculates the difference between the expected and actual output. For

example, using the mean squared error as the loss function to calculate the cost function 𝐶 across the entire dataset, resulting in: 𝐶 = 𝑀𝑆𝐸  = 1𝑛∑ (�̂�𝑖 − 𝑦𝑖)2𝑛𝑖=1 (20)

Then to find the optimal weights and bias the gradients of the cost function is utilized. But

as the cost function is not directly dependent on 𝑤ᵢ, the chain rule will be used for this

purpose: 𝜕𝐶𝜕𝑤𝑖 = 𝜕𝐶𝜕�̂� ∗   𝜕�̂�𝜕𝑧   ∗   𝜕𝑧𝜕𝑤𝑖 (21)

It is possible to simplify the gradient of the cost function 𝐶 with respect to the predicted

value 𝑦 as follows: 𝜕𝐶𝜕�̂� = 𝜕𝜕�̂� 1𝑛∑ (�̂�𝑖 − 𝑦𝑖)2 = 2𝑛∑(�̂� − 𝑦)𝑛𝑖=1 (22)

Assuming the use of the Sigmoid activation function 𝜎. the gradient of the predicted

value with respect to the 𝑧 can be broken in to: 𝜕�̂�𝜕𝑧 = 𝜕𝜕𝑧 1𝑛 (11+𝑒−𝑧) = 𝜎(𝑧) ∗ (1 − 𝜎(𝑧)) (23)

Finally, the gradient of 𝑧 with respect to the weight 𝑤ᵢ is: 𝜕𝑧𝜕 𝑤𝑖 = 𝜕 𝜕𝑤𝑖   ∑ (𝑥𝑖 ∗ 𝑤𝑖 + 𝑏)𝑛𝑖=1 = 𝑥𝑖 (24)

Thus, the outcome is: 𝜕𝐶𝜕𝑤𝑖 = 2n ∗   ∑(�̂� − 𝑦) ∗ 𝜎(𝑧) ∗ (1 − 𝜎(𝑧)) ∗ 𝑥𝑖 (25)

To find the most optimized ML model available, an optimization algorithm needs to be

used. The most used optimization algorithm is gradient descent (Ethem Alpaydin, 2014;

Ian Goodfellow et al., 2016). Backpropagation is used to iteratively adjust the weights and

biases based on the cost function's negative gradient's direction. This process is repeated

until the cost function reaches a local minimum or a predetermined number of iterations

have been reached.

Literature Review 33

 𝑤𝑛+1 = 𝑤𝑛 − 𝛼 𝜕𝐶(𝑤𝑛, 𝑏)𝜕𝑤𝑛
(26)

𝑏𝑛+1  =  𝑏𝑛   −  𝛼  𝜕𝐶(𝑤, 𝑏)𝜕𝑏𝑛
(27)

𝑤𝑛 and 𝑏𝑛 are the 𝑛th weight and bias, 𝑤𝑛+1 and 𝑏𝑛+1 the new improved weight and bias.

The learning rate 𝛼 is a hyperparameter controlling the range in which the weights and

biases are adjusted (Ian Goodfellow et al., 2016). If the learning rate is too high, the

algorithm may fail to converge, while a too low learning rate may result in slow

convergence.

2.7.3 Recurrent neural network

The recurrent neural network (RNN) is a frequently used neural network for processing

sequential data, such as time series or natural language text. As shown in Figure 14, RNNs

have recurrent connections that enable them to transfer information from one time step

to the next in addition to the feedforward connections that are typical of multilayer

perceptrons. This allows the RNN to map not just from an input vector to an output vector,

but from the entire history of previous inputs to the output (Ian Goodfellow et al., 2016).

During the forward pass of an RNN, the input vector 𝑥 with 𝑛 input units is fed into the

network, consisting of m hidden neurons and k output units. However, unlike an MLP, the

hidden neurons in an RNN receive additional inputs from hidden layer of the previous

time step activation (Ian Goodfellow et al., 2016). The value of the input 𝑖 at time 𝑡 is

denoted as 𝑥𝑖𝑡, while 𝑎𝑗𝑡 represent the inputs of node 𝑗 at time 𝑡.
𝑎ℎ𝑡 =∑(𝑤𝑖ℎ . 𝑥𝑖𝑡)𝑛

𝑖=1 +∑(𝑤𝑗ℎ . 𝑎 𝑗𝑡−1)𝑚
𝑗=1

(28)

Once the weighted sum is computed in a neuron, the activation function is applied: ℎℎ𝑡 = 𝜎ℎ(𝑎ℎ𝑡) (29)

34 Literature Review

Figure 14 Representation of a Recurrent Neural Network (RNN) neuron with 1 input and

output at t iteration.

The RNN requires initial values, which correspond to the network's state before it

receives any input. There are various approaches to choosing these initial values. One

possibility is to set all of them to zero. The output layer has no recurrent inputs since it is

the last layer in the network (Ian Goodfellow et al., 2016).

2.7.3.1 Training recurrent neural network

Just like the multilayer perceptron, RNN measures the difference between the predicted

output and the actual output using partial derivatives of the loss function. However, due

to its recurrent architecture and dependence on earlier time steps, traditional

backpropagation cannot be directly applied (Ian Goodfellow et al., 2016). The output of

each neuron in a conventional feed-forward neural network only depends on the input

and weights at the same layer, allowing the use of the conventional backpropagation

algorithm for training. However, in an RNN, the output of each neuron depends not only

on the input and weights but also on the previous hidden state, which introduces a

temporal dependency between the layers. As a result, we need to use specialized

algorithms such as backpropagation through time (BPTT) to train RNNs (Ian Goodfellow

et al., 2016).

BPTT unfold the RNN over time and then applies the usual backpropagation method.

However, during this process, the gradients can either shrink too much (vanishing) or

grow excessively (exploding), making it hard for the network to learn effectively. (Graves,

2012). To address this issue, more advanced ANN structures have been developed, such

as the use of gated recurrent units (GRUs) and long short-term memory (LSTM)

algorithms, which can mitigate the vanishing gradient problem and better capture long-

term dependencies in sequential data (Graves, 2012).

Literature Review 35

2.8 Time series modelling

A time series is a group of data points, each of which was recorded at a particular time t.

When a time series comprises solely of records for one variable, it is called a univariate

time series. On the other hand, if it consists of measurements for multiple variables, it is

known as a multivariate time series (Brockwell & Davis, 2016).

Trend, seasonality, cyclicality, and irregularity are the four main categories of time series

data. The seasonal component represents a cyclical pattern that happens every year,

while the trend component reflects the overall long-term movement of the time series.

While irregular components represent random variations, cyclical components are

medium-term fluctuations (Adhikari & Agrawal, 2013).

Outlier detection refers to the process of identifying rare or unlikely events. The goal of

this process is to decide whether or not the data measured at each time step is an outlier

(Boris Iglewicz & David C. Hoaglin, 1993; Cousineau & Chartier, 2010). Typically, an

anomaly score is used to measure the dissimilarities between the data and the non-

anomalous data. The sample is deemed an outlier if this score exceeds a predetermined

threshold (GörnitzNico et al., 2013; Lin et al., 2020). It has been discovered that

autoencoders are a useful tool for detecting outliers. Time-series data that needs to be

analysed is often high-dimensional, so an autoencoder is used to perform dimensionality

reduction and extract the most important features from it (Lopez Pinaya et al., 2020a). An

autoencoder is typically unable to reconstruct abnormal data, resulting in a high

reconstruction error, which can be used to identify outliers (Lopez Pinaya et al., 2020b).

Exploratory Data Analysis & Modelling

In data science and statistical analysis, the first step towards understanding the

complicated patterns and correlations within a dataset is often the most crucial. This step

known as exploratory data analysis (EDA) was first introduced by John Tukey in his

seminal work in 1977 (Tukey, 1977). It represents a method that facilitates observing

what the data can uncover beyond what modeling or hypothesis testing tasks can give. It

involves exploring and understanding the properties of the data through an open-ended

process. It forms a critical initial step in any data analysis, providing the context necessary

to develop appropriate modeling strategies and helping to highlight potential challenges

that might be encountered, such as missing data, outliers or the need for data

transformation (Komorowski et al., 2016).

The ultimate goal of EDA is to visualize the data, understand the underlying dynamics of

the chosen variables, to extract meaningful information, and to guide the selection of

appropriate tools for more detailed analysis. EDA is a critical step to make informed

decisions in predictive modeling and ML.

3.1 Data cleaning and pre-processing

The dataset needed to be cleaned and pre-processed in order for the data to be consistent

enough for further analysis. Initially, the dataset was imported from an Excel file

containing four extensive tables corresponding to the four injection wells, with more that

8000 distinct data points. These well data were represented in various formats and units.

The data included the date, which was split into three separate columns as day, month,

and year; wellhead pressure (WHP) in psi; injection rate of brine in kilo-pound per hour;

injection rate of condensate in kilo-pound per hour; and injection rate of sump water in

38 Exploratory Data Analysis & Modelling

kilo-pound per hour. To improve clarity and organization, the tables were first placed into

four separate sheets. These sheets were read using the pandas library in Python, and the

data from all four sheets were put into four different pandas DataFrames. All further

manipulations were done on all four DataFrames at the same time.

The date was reformatted into a standardized 'Day-Month-Year' format to ensure

consistency throughout the entire dataset. At the same time, condensate injection rate

and swam injection rate columns were combined as they have the same temperature

when injected. Extraneous columns were removed, and field units were converted to SI

metric units, streamlining the dataset and guaranteeing uniformity. Furthermore, new

columns were added to the dataset to indicate the temperature of the injected brine and

condensate. The temperature was set to 40°C when condensate was injected and 175°C

when brine was injected. Additionally, the injected volume of water was calculated by

summing the brine injection rate and condensate injection rate, and the cumulative sum

of the injected volumes was computed and incorporated as a new column in the

DataFrame.

Figure 15 pressure vs cumulative injection volume plot of the four injection wells.

The next step in the data cleaning process is to identify and remove outliers from the

dataset, which helps reduce noise and improve overall data quality. Figure 15 illustrate

the pressure vs cumulative injection volume plot of the initial data. Outliers can be found

and eliminated using a variety of techniques, including the Standard Deviation Method, Z-

score method, and Interquartile Range Method. (Lin et al., 2020).

Exploratory Data Analysis & Modelling 39

In this thesis, an enhanced approach for outlier detection is proposed by combining the

Modified Z-Score Method with an autoencoder, a specific kind of neural network, in order

to increase the efficacy and accuracy of outlier detection. The Modified Z-Score Method, a

variation of the standard Z-Score Method, offers a robust statistical measure for

identifying outliers based on their deviation from the mean. Meanwhile, the autoencoder

utilizes its powerful neural network architecture to capture complex data patterns to

effectively identify outliers that conventional statistical methods may overlook

(Cousineau & Chartier, 2010). Finally, a straightforward and effective method to identify

outliers is by utilizing real-world potential values. Understanding that in these specific

injection wells, the injection pumps have a maximum rate of 10 MPa, making it possible

to flag all pressures greater than 10 MPa as outliers.

3.1.1 Statistical outlier detection

The process of identifying data points in a dataset that significantly deviate from expected

or normal behaviour is known as statistical outlier detection (Boris Iglewicz & David C.

Hoaglin, 1993). One commonly used method for outlier detection is the Z-score, also

known as the standard score. The Z-score 𝑍𝑖 quantifies how far away each data point 𝑥i is

from the mean 𝜇 of the dataset in terms of standard deviations 𝜎 of the dataset (Cousineau

& Chartier, 2010; Vishal jain, 2020). 𝑍𝑖 = (𝑥i – 𝜇)/𝜎 (30)

By calculating the Z-score for each data point, it is possible to determine whether a

specific data point is an outlier by comparing its Z-score to a threshold. If the Z-score of a

particular data point 𝑖 exceeds this threshold (|𝑍𝑖| > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑), it is considered an

outlier. This indicates that the data point is drastically deviated from the mean compared

to the rest of the dataset (Boris Iglewicz & David C. Hoaglin, 1993)

The standard Z-Score uses the mean and standard deviation, which are both greatly

influenced by outliers. In other words, a single extreme value can significantly alter the

mean and standard deviation, and subsequently, the Z-Score. That's why a more reliable

method for detecting outliers involves utilizing a modified Z-score. The modified Z-score

is computed as follows (Vishal jain, 2020): 𝑍𝑖 = 0.6745 ∗ (𝑥𝑖 − �̃�)/MAD (31) 𝑀𝐴𝐷 = (|𝑥𝑖 − �̃�|)̃ (32)

40 Exploratory Data Analysis & Modelling

The Modified Z-Score uses the median value of the dataset X̃ and median absolute

deviation (MAD) which is the median of the absolute difference between each data point 𝑥𝑖 and the median of the dataset. Finally, by multiplying the expression by 0.6745, the

Modified Z-Score is scaled to have a similar magnitude as the Z-Score when the data

follows a normal distribution. In a normally distributed dataset, approximately 50% of

the data points fall within one standard deviation of the mean. The value 0.6745

corresponds to the distance from the mean to the point that separates the middle 50% of

the data, called the first quartile. This allows for a more direct comparison between the

Modified Z-Score and the Z-Score (Vishal jain, 2020). These calculation differences make

the Modified Z-Score more robust to outliers. This means that a single extreme value will

have less influence on the Modified Z-Score compared to the traditional Z-Score.

Moreover, while the Z-Score assumes that the data follows a normal distribution, the

Modified Z-Score is more flexible in this regard. Although it performs optimally on

normally distributed data, it can still be utilized for datasets that exhibit some deviation

from normality. (Misra et al., 2020).

Similar to the conventional Z-Score approach, the identification of outliers using the

Modified Z-Score requires the selection of an appropriate threshold. According to Iglewicz

and Hoaglin, a recommended threshold for Modified Z-Scores is ± 3.5 meaning (|𝑍𝑖| >3.5) (Boris Iglewicz & David C. Hoaglin, 1993). Any values exceeding this threshold was

flagged as potential outliers.

3.1.2 Autoencoder

An autoencoder is an unsupervised learning model that learns to reconstruct its input

data. It consists of two parts: an encoder and a decoder (Lopez Pinaya et al., 2020a). The

encoder reduces the input data's dimensionality, creating a lower-dimensional

representation called the latent space. The decoder then reconstructs the input. In this

thesis, a simple feedforward autoencoder is built using TensorFlow and Keras. The model

consists of an input layer, an encoding layer, and a decoding layer that reconstructs the

input data. The activation functions used are Rectified Linear Unit (ReLU) for the encoding

layer and sigmoid for the decoding layer. The model is compiled using the Adam optimizer

and MSE as the loss function. These are the most common hyperparameters employed in

autoencoders that often yield suitable outcomes (Santiago L. Valdarrama, 2021).

The autoencoder is trained on the normalized dataset for 5 epochs. The number of epochs

represents the number of times the autoencoder iterates over the entire dataset during

training. Depending on the dataset and the complexity of the autoencoder architecture,

Exploratory Data Analysis & Modelling 41

the ideal number of epochs can change (Lopez Pinaya et al., 2020a). The data is shuffled

before each epoch to ensure better generalization during training. After training, the

autoencoder tries to reconstruct the input data from the lower-dimensional

representation it has learned. The reconstruction error (MSE) is computed for each data

point by comparing the original normalized data with the reconstructed data from the

autoencoder. The idea is that the autoencoder will have a higher reconstruction error for

outliers, as these data points are harder to reconstruct accurately (Ian Goodfellow et al.,

2016). To establish which data points are deemed outliers, a threshold for the

reconstruction error need be specified. The threshold is set based on 98.5% of the

reconstruction error, meaning that 1.5% of the data points with the highest

reconstruction errors will be considered outliers. This threshold was chosen after several

iterations. If data points, such as pressures exceeding the maximum pump capacity of 10

MPa, still appear in the data, it becomes evident that the filtering method is not sufficient

in capturing all anomalies. Data points with reconstruction errors above the threshold are

identified as outliers. The outliers are then removed from the original data, resulting in a

filtered dataset Figure 16 .

Figure 16 Filtered pressure vs total injection volume plot of the four injection wells after

the outliers were removed.

3.2 Feature relationship

Examining the correlation matrices before and after outlier removal provides insight into

the relationships between flow rate, well head pressure, and temperature. With 1

42 Exploratory Data Analysis & Modelling

denoting perfect positive correlation, -1 perfect negative correlation, and 0 denoting no

correlation at all. Outliers, which are data points that differ significantly from others, can

skew these relationships. Outliers, being data points radically different from others, can

distort these relationships. Once the outliers are eliminated, there is a clear increase in

correlation between these variables. The comparison in Table 1 shows the degree to

which outliers were influencing the data.

Table 1 correlation matrices between flow rate, well head pressure and temperature

before and after outlier detection.

Finally, the pairplot in Figure 17 and Figure 18, which includes a histogram and scatter

plot for Flow Rate and WHP, provides as a visual aid in analysing the distribution of both

variables. It clearly illustrates a significant improvement in the normal distribution of the

data after the cleaning process, indicating more reliable and representative data. In

addition, there's a stronger linear correlation between flow rate and WHP, pointing to a

more predictable relationship making accurate predictions more likely.

Exploratory Data Analysis & Modelling 43

Figure 17 Pair plot Analysis of flow rate and wellhead pressure of the original dataset.

Figure 18 Pair plot Analysis of flow rate and wellhead pressure of the cleaned dataset.

44 Exploratory Data Analysis & Modelling

3.3 Machine learning modelling

This chapter will examine each ML model's implementation as well as the model training

and hyperparameter tuning processes. The construction of these models was an iterative

process, which required a continuous examination between theoretical assumptions,

empirical observations, and model performance.

3.3.1 Training the algorithm for machine learning modelling

For MLR, the model was constructed using the LinearRegression function available

in the Scikit-learn library. After preprocessing the data, the input and output variables are

indicated, and the model is fitted using the fit function.

The RF model is built using the RandomForestRegressor function in Scikit-learn.

Similar to MLR, the model is trained using the fit function. The number of trees in the

forest (n_estimators) and the maximum depth of the trees (max_depth) are among

the important hyperparameters that need to be tuned to optimize the performance of the

model(Scikit-Learn 1.3.0 Documentation, n.d.). A larger number of trees generally

improves the model's performance but also increases computational complexity. This

means more time and resources to train the model. Also, after a certain number of trees

the performance stop improving but keeps on increasing the computational cost. The

distance from a tree's root to its largest leaf is considered the tree's maximum depth. A

higher depth often allows the model to fit more complex patterns, which can lead to

overfitting if the model becomes too specific to the training data and will then performs

poorly on unseen data.

For the XGBoost model, it was built using the XGBRegressor function available in the

XGBoost library. Like the RF algorithm, XGBoost also involves some similar

hyperparameters that need to be fine-tuned to maximize the performance of the model.

These include n_estimators (number of trees), max_depth (maximum tree depth),

learning_rate the step size that decides how fast the model learns, and gamma the

minimum loss required to partition a leaf node. Increasing gamma making it more difficult

for the model to overfit the training set, but accuracy suffers as a result. (Xgboost 2.0.0-

Dev Documentation, n.d.).

The SVM model was built using the SVR function, again from Scikit-learn. The kernel

type and the penalty parameter C are hyperparameters that need to be adjusted to

enhance the model's predictive performance. The primary role of the kernel is to

transform the input data into a higher dimension to make it possible to solve complex

Exploratory Data Analysis & Modelling 45

problems that are nonlinear. As explained previously in section 2.6.1 in nonlinear

problems the separation of the regions is not limited by a line but rather by a hyperplane.

This can be computed by selecting specific kernels like linear, polynomial, or radial basis

functions. For this specific problem the radial basis function was used as it is a popular

choice for non-linear data and has the ability to create complex regions within the feature

space. The penalty parameter C is a parameter that impact the size of the margin. A larger

value of C creates a narrower margin and fewer errors, while a smaller value of C creates

a wider margin and allow more errors while improving the model's overall consistency.

The ANN model was constructed using the TensorFlow library. Two hidden layers, as well

as an output layer, make up the model's three layers. Due to its computational

effectiveness and its ability to help with the vanishing gradient problem during

backpropagation, the ReLU activation function is utilised (TensorFlow Core: Multilayer

Perceptrons, 2023). The output layer has a single neuron corresponding to the predicted

WHP. For model optimization, the Adam optimizer with a learning rate of 0.001 is utilized.

As a method of stochastic gradient descent, Adam is easy to configurate and deliver good

performance. The model's performance is evaluated using the MSE.

An epoch is an iteration of the entire dataset. An early stopping callback is implemented

to prevent overfitting and conserve computational resources. This function keeps track

of the validation loss and stop training if no improvement is seen after a predetermined

number of epochs, in this case 5. Finally, the fit method is used to train the model over

a fixed number of epochs. This function generates a history object that retains a record

of loss and metric values throughout training. This record is used to plot the training and

validation loss curves like shown in Figure 19. If the training loss doesn't converge, this

indicates that model isn't fitting the training data well, which is a sign of underfitting. This

means the model may not be capturing the underlying patterns in the data, leading to

unreliable training outcomes. On the other hand, if the validation loss doesn't converge, it

indicates that the model may not perform well on new, unseen data, witch is a sign of

overfitting. This is because the model might have difficulty generalizing beyond the

training data.

46 Exploratory Data Analysis & Modelling

Figure 19 MLR's validation and training loss curves.

Scikit-learn provides the train_test_split function to split the dataset into training

and testing sets. The training dataset is used to fit all the used models and validate them

using k-fold cross validation, and the holdout set is then used as the test dataset for the

final evaluation of their performance.

For hyperparameter tuning a GridSearchCV function has been used on RF and

XGBoost. GridSearchCV is a library function from Scikit-learn that helps to loop

through predefined hyperparameters and fit the model in the training set to output the

different results for each hyperparameter change and be able to select the best

hyperparameters values. However the grid search method was computationally

expensive, particularly when searching over a large hyperparameter list. A solution was

to use for SVM, MLP and LSTM RandomizedSearchCV. In randomize search not all

hyperparameter values undergo testing. Instead, a fixed number of parameter settings is

sampled from the specified distributions, leading to a reduction in computational cost but

at the detriment of better hyperparameter tuning optimisation.

3.3.2 Model validation and selection

Model validation is a crucial step in assessing the reliability and performance of ML

models. K-fold cross-validation is a widely used method applicable to almost any

supervised machine learning model.

K-fold cross-validation offers significant advantages in model validation. Unlike other

methods that require a separate validation set k-fold cross validation allows for the full

Exploratory Data Analysis & Modelling 47

utilization of the dataset for both training and validation by partitioning the data

differently in each iteration. It is however often recommended to have a separate test set

outside of k-fold cross-validation to assess the final performance of the model (Matthew

Terribile, 2017). The training data is divided into k equal-sized subsets or folds for as

shown in Figure 20.

Figure 20 : Example of K-Fold cross validation with 5 iterations. Figure from (Scikit-Learn — 3.1. Cross-Validation, n.d.)

One fold is used as the validation set for each iteration, and the remaining 𝑘 − 1 folds are

used for training. This process is repeated 𝑘 times, with each fold serving as the validation

set once. This approach guarantees that the model is exposed to various subsets of the

data, providing training for each fold of the training data and a thorough assessment of

the model's performance. Another benefit is by averaging evaluation metrics over

multiple iterations, it minimizes the effect of random variations present in the dataset

(Matthew Terribile, 2017). Typically, the value of k in k-fold cross-validation is set at

either 5 or 10. The k value chosen for this study is 5 (Scikit-Learn — 3.1. Cross-Validation,

n.d.).

Once the model validation is complete, the next step is model selection by evaluating and

comparing the different regression metrics from each model using the test data.

Results & Discussion

After the construction and training of the different algorithms, the best models were

selected and compared against each other to evaluate their performance and reliability.

4.1 Results

Table 2 provides a summary of the 5-split k-fold cross-validation results for all the models

using RMSE and R2 as metric. XGBOOST consistently performs the best, with the lowest

over all RMSE for each split as well as the highest R2. Followed by LSTM and then MLP,

RF and SVP within the same range of RMSE and R2 values across the 5 splits.

As stated in section 2.3 Regression metrics an R2 of 1, an RMSE of 0 and an sMAPE of 0%

represent a perfect fit of the model.

Table 2 k-fold cross validation results

Table 3 shows the RMSE, sMAPE, and R2 result for the test data set. As previously

explained the k-fold split was performed in conjunction with a hold-out set before even

doing the 5-fold. After model validation, this hold-out set is used as the test data set to

assess the model, as shown in Figure 20. This will serve as the model's final assessment

and produce a more accurate score for the model, ensuring that it is less prone to

overfitting and more accurately depicts its performance.

50 Results & Discussion

Table 3 final evaluation using the regression metrics of the test set data.

Figure 21 - Figure 26 illustrate the observed versus predicted plot of the test data. This

plot is also known as an actual versus predicted plot, which is a representation of the

results obtained from the ML models compared to the real values. This plot is a visual

overview of how well a model's predictions align with actual values.

Figure 21 Actual versus predicted plot of the multivariate linear regression model with a

sMAPE of 20.56% on the test data

Results & Discussion 51

Figure 22 Actual versus predicted plot of the support vector machine model with a sMAPE

of 10.48% on the test data

Figure 23 Actual versus predicted plot of the random forest model with a sMAPE of 10.18%

on the test data

52 Results & Discussion

Figure 24 Actual versus predicted plot of the XGBoost model with a sMAPE of 8.28% on the

test data

Figure 25 Actual versus predicted plot of the multilayer perceptron model with a sMAPE of

8.55% on the test data

Results & Discussion 53

Figure 26 Actual versus predicted plot of the multilayer perceptron model with a sMAPE of

8.02% on the test data

4.2 Discussion

From previous results, all models outperform MLR with its sMAPE of 20,56% in the test

data. The MLR model was used mainly as a baseline to compare with other models. As

fitting a hyperplane to this data will never be able to produce a low error prediction.

RF and SVM exhibit similar performance, with an sMAPE of approximately 10% in the test

data. Tuning SVMs for regression problems can be complicated. Unlike methods that aim

to minimize error directly, SVR keep the error within a specified boundary, which is

determined by its hyperparameters. This characteristic is evident when comparing the

actual versus predicted plots of RF and SVM in Figure 22 and Figure 23. Although both

models have comparable error rates, the distribution of the predicted points for SVM is

more tightly clustered along the red line than for RF.

The best performing ML models are XGBoost, MLP, and LSTM. Among these, XGBoost

consistently outperformed the others during k-fold cross-validation, achieving a

consistent R2 of 0.99 and an RMSE of around 0.03. However, its performance on the test

dataset was slightly lower, with an R2 of 0.97, an RMSE of 0.07 and an sMAPE of 8.28%.

54 Results & Discussion

This discrepancy can be due to over-tuning of the training data and overfitting, so the

model is performing exceptionally well during cross-validation but underperforming on

the unseen test data. This shows the importance of separating the data into training and

testing. While k-fold cross-validation gives a good indication of the model's overall

performance on different splits of the training data, it does not guarantee the model's

performance on completely unseen data. In contrast to that, the MLP model was

performing wors than XGBoost in the validation splits but was only slightly outperformed

it in the test data, with an sMAPE of 8.55%, indicating a better generalisation of the model

compered to the validation.

LSTM had the lowest sMAPE of 8.02% in the test data. This reinforces the efficacy of LSTM

in handling complex data. LSTM stand out in this task because of its intrinsic ability to

remember past information. This ability is decisive for accurate forecasting, as it allows

the model to make use of past observations to predict future values. However, a challenge

associated with optimizing LSTM is hyperparameter tuning. Tuning the hyperparameters

of LSTM was difficult and took a lot of computing power. The GridSearchCV algorithm

was initially employed to attempt to determine the model's ideal hyperparameters, but

the computational cost was significant and the program's execution time was too long. So,

instead, the RandomizedSearchCV was used to reduce these computational costs,

making the optimization more time efficient but also less precise. Comparing this process

with the implementation of the XGBoost algorithm, which was relatively straightforward

and yielded almost similar accuracy levels. For XGBoost, GridSearchCV was employed

successfully for hyperparameter tuning. Even though LSTM performed slightly better

regarding the test data, it can be pretty demanding in terms of computer power. A simpler

method like XGBoost might be a good choice since it can deliver almost the same results

without using as much processing power. This is of course not an all-encompassing

conclusion for every forecasting problem. It is subject to the specific dataset used in this

study, as well as the particular pre-processing, feature engineering, and hyperparameter

tuning applied.

Ultimately, these results reveal the high efficiency of ML models in WHP prediction. The

production data, crucial for the day-to-day operations of the geothermal field, is readily

available and was employed to construct these ML prediction models. With meticulous

cleaning of this data, its use in ML becomes straightforward. These models serve as a

faster, more effective alternative to traditional pressure predictions. In their paper “The

prediction of wellhead pressure for multiphase flow of vertical wells using artificial neural

networks” (2021) Gomaa et al. built an ANN to predict WHP for an oil production well.

Results & Discussion 55

They then compared their ANN model with five different numerical correlations used in

the oil industry to predict WHP. They found that their ML model vastly outperformed any

of the numerical methods shown in Figure 27. The shortcomings of those correlations

come from the fact that they were all created in the past. The most recent was in 1985,

using small data sets for specific conditions and assumptions that do not apply to all oil

fields. ML models can be trained on vast, diverse datasets, allowing them to recognize

complex patterns and nuances which traditional models might miss. This gives them a

considerable edge.

Figure 27 Comparison of the Average Absolute Percentage Error (MAPE) with an ANN

model with five other correlations utilized in the oil industry for WHP predictions. Figure

from (Gomaa et al., 2021)

56 Conclusion

Conclusion

5.1 Evaluation

This thesis highlights the potential of ML algorithms in simulating the hydrodynamics of

geothermal injection wells. Utilizing water injection data, comprised of wellhead

pressure, flowrate, and temperature, a rigorous data cleaning and outlier removal process

was employed. This meticulous preprocessing was necessary to ensure that the ensuing

analysis was rooted in high-quality and dependable data. Building upon this, various ML

algorithms were tested. The ML model comparison provides a thorough analysis of the

benefits and drawbacks of each algorithm. This comparative analysis show that the LSTM

model had the highest prediction accuracy with an sMAPE of 8.02%. However, the less

computationally heavy model, XGBoost, is a close second with a sMAPE of 8.28%.

It's crucial to emphasise that the production data used in these ML prediction models is

openly accessible and necessary for the geothermal water injection operations. Utilizing

this dataset for ML is straightforward, provided that the data is rigorously cleaned. Such

models offer a swifter, more efficient alternative to conventional numerical models.

5.2 Future work

The efficiency of ML models can often be improved by feature engineering. Feature

engineering is the ability of pinpointing the most significant features in a dataset and

create them. A more refined feature selection might strengthen the predictive capabilities

of all reviewed models.

Another crucial step in model refinement is hyperparameter tuning, which has its own set

of difficulties, particularly the cost of computing these optimisations. These

Hyperparameters dictate the learning trajectory and significantly influence model

efficacy. In particular ANNs, have a lot of tuneable hyperparameters. Tracking an effective

Conclusion 57

approach to hyperparameter optimisation in future research could potentially lead to

significant improvements in these models' predictive accuracy.

This thesis emphasizes the substantial potential of machine learning in the geo-energy

industry. Predicting well head pressure in geothermal wells with machine learning

models has delivered encouraging results. Future studies would benefit from examining

diverse machine learning algorithms and examining the use of hybrid learning models.

References

References

Adhikari, R., & Agrawal, R. K. (2013). An Introductory Study on Time Series Modeling and

Forecasting. https://arxiv.org/abs/1302.6613v1

Akshay L Chandra. (2018). Perceptron Learning Algorithm: A Graphical Explanation Of

Why It Works | by Akshay L Chandra | Towards Data Science. Towards Data Science.

https://towardsdatascience.com/perceptron-learning-algorithm-d5db0deab975

Anderson, J. R. (John R., Michalski, R. S. (Ryszard S., Carbonell, J. G. (Jaime G., & Mitchell, T.

M. (Tom M. (1983). Machine learning : an artificial intelligence approach. M.

Kaufmann. http://www.sciencedirect.com:5070/book/9780080510545/machine-

learning

Axelsson, G. (2012). Role and Management of Geothermal Reinjection. UNU-GTP and La-

Geo. https://rafhladan.is/bitstream/handle/10802/8536/UNU-GTP-SC-14-

29.pdf?sequence=1

Beny Maulana Achsan. (2019, December 10). Support Vector Machine: Regression . IT

Paragon. https://medium.com/it-paragon/support-vector-machine-regression-

cf65348b6345

Boris Iglewicz, & David C. Hoaglin. (1993). How to Detect and Handle Outliers (Vol. 16).

ASQ Quality Press.

Botchkarev, A. (2019). A New Typology Design of Performance Metrics to Measure Errors

in Machine Learning Regression Algorithms. Interdisciplinary Journal of Information,

Knowledge, and Management, 14, 045–076. https://doi.org/10.28945/4184

Boumi Mfoubat, H. R. N., & Zaky, E. I. (2020). Optimization of waterflooding performance

by using finite volume-based flow diagnostics simulation. Journal of Petroleum

60 References

Exploration and Production Technology, 10(3), 943–957.

https://doi.org/10.1007/S13202-019-00803-5/FIGURES/17

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

https://doi.org/10.1023/A:1010933404324/METRICS

Brockwell, P. J., & Davis, R. A. (2016). Introduction to Time Series and Forecasting.

https://doi.org/10.1007/978-3-319-29854-2

Bundschuh, J., & Tomaszewska, B. (2017). Geothermal water management (1st Edition).

CRC Press. https://doi.org/https://doi.org/10.1201/9781315734972

Caruana, R., & Niculescu-Mizil, A. (2006). An empirical comparison of supervised learning

algorithms. ACM International Conference Proceeding Series, 148, 161–168.

https://doi.org/10.1145/1143844.1143865

Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of

the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. https://doi.org/10.1145/2939672

Christophe Pere. (2020). What is XGBoost? And how to optimize it? . Towards Data Science.

https://towardsdatascience.com/what-is-xgboost-and-how-to-optimize-it-

d3c24e0e41b4

Clark, W. A. V., & Deurloo, M. C. (2005). Categorical Modeling/Automatic Interaction

Detection. Encyclopedia of Social Measurement, 251–258.

https://doi.org/10.1016/B0-12-369398-5/00359-5

Cousineau, D., & Chartier, S. (2010). Outliers detection and treatment: a review.

International Journal of Psychological Research, 3(1), 58–67.

https://doi.org/10.21500/20112084.844

Ethem Alpaydin. (2014). Introduction to Machine Learning. MIT Press.

Gomaa, I., Gowida, A., Elkatatny, S., & Abdulraheem, A. (2021). The prediction of wellhead

pressure for multiphase flow of vertical wells using artificial neural networks.

Arabian Journal of Geosciences, 14(9). https://doi.org/10.1007/S12517-021-07099-

Y

GörnitzNico, KloftMarius, RieckKonrad, & BrefeldUlf. (2013). Toward supervised

anomaly detection. Journal of Artificial Intelligence Research.

https://doi.org/10.5555/2512538.2512545

References 61

Grant, M. A., & Bixley, P. F. (2011). Geothermal Reservoir Engineering. Geothermal

Reservoir Engineering. https://doi.org/10.1016/C2010-0-64792-4

Graves, A. (2012). Long Short-Term Memory. 37–45. https://doi.org/10.1007/978-3-642-

24797-2_4

Hall, H. N. (1963). How to Analyze Waterflood Injection Well Performance. World Oil,

128–130.

Harry, M., Aditya Wahyudi, M. F., Midat Al Islam, M. P., Sabrina, N. A., & Situmorang, J. (n.d.).

Comparative Study of Decline Curve Prediction in Geothermal Injection Well Using

Machine Learning and Wellbore Simulator. PROCEEDINGS, 46.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning

(Second Edition). Springer New York. https://doi.org/10.1007/978-0-387-84858-7

Ian Goodfellow, Yoshua Bengio, & Aaron Courville. (2016). Deep Learning. In MIT Press.

https://www.deeplearningbook.org/

IEA. (2021). International Energy Agency Renewables 2021 - Analysis and forecast to 2026.

www.iea.org/t&c/

James T. Smith, & William M. Cobb. (1997). Waterflooding. Midwest Office of the

Petroleum Technology Transfer COuncil.

https://books.google.co.uk/books/about/Waterflooding.html?id=cqx5HAAACAAJ&

redir_esc=y

Komorowski, M., Marshall, D. C., Salciccioli, J. D., & Crutain, Y. (2016). Exploratory data

analysis. In Secondary Analysis of Electronic Health Records. Springer International

Publishing. https://doi.org/10.1007/978-3-319-43742-2_15

Lin, S., Clark, R., Birke, R., Schonborn, S., Trigoni, N., & Roberts, S. (2020). Anomaly

Detection for Time Series Using VAE-LSTM Hybrid Model. ICASSP, IEEE International

Conference on Acoustics, Speech and Signal Processing - Proceedings, 2020-May,

4322–4326. https://doi.org/10.1109/ICASSP40776.2020.9053558

Lopez Pinaya, W. H., Vieira, S., Garcia-Dias, R., & Mechelli, A. (2020a). Autoencoders.

Machine Learning: Methods and Applications to Brain Disorders, 193–208.

https://doi.org/10.1016/B978-0-12-815739-8.00011-0

Lopez Pinaya, W. H., Vieira, S., Garcia-Dias, R., & Mechelli, A. (2020b). Autoencoders.

Machine Learning: Methods and Applications to Brain Disorders, 193–208.

https://doi.org/10.1016/B978-0-12-815739-8.00011-0

62 References

Matthew Terribile. (2017, July 29). Understanding Cross Validation’s purpose . Medium.

https://medium.com/@mtterribile/understanding-cross-validations-purpose-

53490faf6a86

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous

activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133.

https://doi.org/10.1007/BF02478259/METRICS

Michael Chu, Bryce Hall, Alex Singla, & Alex Sukharevsky. (2021). The state of AI in 2021.

https://www.mckinsey.com/capabilities/quantumblack/our-insights/global-

survey-the-state-of-ai-in-2021

Misra, S., Osogba, O., & Powers, M. (2020). Unsupervised outlier detection techniques for

well logs and geophysical data. Machine Learning for Subsurface Characterization, 1–
37. https://doi.org/10.1016/B978-0-12-817736-5.00001-6

Mjolsness, E., & DeCoste, D. (2001). Machine Learning for Science: State of the Art and

Future Prospects. Science, 293(5537), 2051–2055.

https://doi.org/10.1126/SCIENCE.293.5537.2051

Nolte, K. G. (1988). Principles for Fracture Design Based on Pressure Analysis. SPE

Production Engineering, 3(01), 22–30. https://doi.org/10.2118/10911-PA

Ryszard S. Michalski, Jaime G. Carbonell, & Tom M. Mitchell. (1983). Machine Learning, An

Artificial Intelligence Approach (R. S. Michalski, J. G. Carbonell, & T. M. Mitchell, Eds.).

Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-12405-5

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM

Journal of Research and Development, 1–2. https://doi.org/10.1147/RD.441.0206

Sanil, H. S., Singh, D., Raj, K. B., Choubey, S., Bhasin, N. K. K., Yadav, R., & Gulati, K. (2022).

Role of machine learning in changing social and business eco-system – a qualitative

study to explore the factors contributing to competitive advantage during COVID

pandemic. World Journal of Engineering, 19(2), 238–243.

https://doi.org/10.1108/WJE-06-2021-0357/FULL/PDF

Santiago L. Valdarrama. (2021). Keras documentation: Convolutional autoencoder for

image denoising. https://keras.io/examples/vision/autoencoder/

Schölkopf, B., & Smola, A. J. (2018). Learning with Kernels: Support Vector Machines,

Regularization, Optimization, and Beyond. The MIT Press.

https://doi.org/10.7551/MITPRESS/4175.001.0001

References 63

scikit-learn developers — 3.1. Cross-validation: evaluating estimator performance. (n.d.).

Retrieved August 26, 2023, from https://scikit-

learn.org/stable/modules/cross_validation.html

Sharmin, T., Khan, N. R., Akram, M. S., & Ehsan, M. M. (2023). A State-of-the-Art Review on

Geothermal Energy Extraction, Utilization, and Improvement Strategies:

Conventional, Hybridized, and Enhanced Geothermal Systems. International Journal

of Thermofluids, 18. https://doi.org/10.1016/J.IJFT.2023.100323

sklearn.ensemble.RandomForestRegressor — scikit-learn 1.3.0 documentation. (n.d.).

Retrieved August 13, 2023, from https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.h

tml

Steinberg Dan. (2009). Chapter 10 CART: Classification and Regression Trees.

https://www.researchgate.net/publication/265031802_Chapter_10_CART_Classifi

cation_and_Regression_Trees

Taylor, M., Ralon, P., Al-Zoghoul, S., Epp, B., & Jochum, M. (2021). Renewable Power

Generation Costs 2020. 1–180. www.irena.org

TensorFlow Core | Multilayer perceptrons . (2023).

https://www.tensorflow.org/guide/core/mlp_core

Terence Shin. (2021). A Mathematical Explanation of Support Vector Machines . Towards

Data Science. https://towardsdatascience.com/a-mathematical-explanation-of-

support-vector-machines-e433ffe04362

Tretter, M. J. (2003). Data Mining. Encyclopedia of Information Systems, 477–488.

https://doi.org/10.1016/B0-12-227240-4/00033-2

Tukey, J. W. (1977). Exploratory data analysis (Vol. 2). Addison-Wesley.

Understand the basics of Artificial Intelligence . (2021, April 27).

https://balayokeshmani.blogspot.com/2021/04/understand-basics-of-

artificial.html

Vishal jain. (2020, February 25). Anomaly detection by Z-Score and Modified Z-Score.

Analytics Vidhya. https://medium.com/analytics-vidhya/anomaly-detection-by-

modified-z-score-f8ad6be62bac

xgboost 2.0.0-dev documentation. (n.d.). Retrieved August 13, 2023, from

https://xgboost.readthedocs.io/en/latest/python/python_api.html

64 References

Yoshioka, K., Izgec, B., & Pasikki, R. (2008). Optimization of Geothermal Well Stimulation

Design Using a Geomechanical Reservoir Simulator. Presented at 33rd Workshop on

Geothermal Reservoir Engineering, Stanford, CA, 28–39.

Yoshioka, K., Pasikki, R., & Stimac, J. (2019). A long term hydraulic stimulation study

conducted at the Salak geothermal field. Geothermics, 82, 168–181.

https://doi.org/10.1016/J.GEOTHERMICS.2019.06.005

Zarrouk, S. J., & McLean, K. (2019). Geothermal Well Test Analysis: Fundamentals,

Applications and Advanced Techniques. Geothermal Well Test Analysis:

Fundamentals, Applications and Advanced Techniques, 1–349.

https://doi.org/10.1016/C2017-0-02723-4

List of Figures

Figure 1 Hall plot for different injection conditions. (A) normal injection with no change,

(B) abrupt skin increase due to well plugging, (C) Gradual skin increase, (D) gradual

stimulation, skin decrease and enhanced injectivity, (E) Abrupt skin decrease,

fracture near the well. Figure adapted from (Boumi Mfoubat & Zaky, 2020). 15

Figure 2 Diagram of the different branches of AI and ML. Figure adapted from

(Understand the Basics of Artificial Intelligence, 2021). .. 16

Figure 3 Flow chart of a supervised ML iterations. S is the regular system, 𝑥 the input, 𝑦

the labeled output, and 𝑦 the predicted output. ... 18

Figure 4 Error metric plot of MSE and RMSE using a noisy sinusoidal signal with. 20

Figure 5 representation of a SLR using random values. .. 21

Figure 6 example of a decision tree architecture with 𝑥1, 𝑥2, 𝑥3, 𝑥4 and 𝑥5 as features

nodes with yes or no binary splits and 0 or 1 as the leaf nodes. 22

Figure 7 example of the architecture of a Random Forest algorithm with 𝑛 trees. 24

Figure 8 2D binary classification scenario with a hyperplane represented as a straight line

with arrows pointing at the support vectors. The data points belonging to one group

are in red, while the other group are in blue. Figure adapted from (Terence Shin,

2021). ... 26

Figure 9 Linear regression (depicted on the left) and non-linear regression (shown on the

right), each illustrated with an epsilon-insensitive band and slack points marked in

red. Figure adapted from (Beny Maulana Achsan, 2019). .. 27

Figure 10 Representation of the inside of a perceptron with input 𝑥𝑖, associated weight 𝑤𝑖 , bias 𝑏𝑖, activation function 𝜎(𝑧) and output 𝑦. ... 28

Figure 11 Representation of a feed forward ANN model. With n input values (green), m

neurons in the hidden layer (blue) and k output values (red). 29

Figure 12 Plot of the sigmoid and ReLU activation Functions .. 30

Figure 13 Representation of a multilayer perceptron model using 2 hidden layers. With n

input values (green), m neurons in the hidden layer 1 and 2 (blue) and k output

values (red). ... 31

Figure 14 Representation of a Recurrent Neural Network (RNN) neuron with 1 input and

output at t iteration. ... 34

Figure 15 pressure vs cumulative injection volume plot of the four injection wells. 38

Figure 16 Filtered pressure vs total injection volume plot of the four injection wells after

the outliers were removed. ... 41

Figure 17 Pair plot Analysis of flow rate and wellhead pressure of the original dataset. 43

Figure 18 Pair plot Analysis of flow rate and wellhead pressure of the cleaned dataset. 43

Figure 19 MLR's validation and training loss curves. ... 46

Figure 20 : Example of K-Fold cross validation with 5 iterations. Figure from (Scikit-Learn — 3.1. Cross-Validation, n.d.) ... 47

Figure 21 Actual versus predicted plot of the multivariate linear regression model with a

sMAPE of 20.56% on the test data ... 50

Figure 22 Actual versus predicted plot of the support vector machine model with a sMAPE

of 10.48% on the test data ... 51

Figure 23 Actual versus predicted plot of the random forest model with a sMAPE of

10.18% on the test data .. 51

Figure 24 Actual versus predicted plot of the XGBoost model with a sMAPE of 8.28% on

the test data ... 52

Figure 25 Actual versus predicted plot of the multilayer perceptron model with a sMAPE

of 8.55% on the test data ... 52

66 List of Figures

Figure 26 Actual versus predicted plot of the multilayer perceptron model with a sMAPE

of 8.02% on the test data .. 53

Figure 27 Comparison of the Average Absolute Percentage Error (MAPE) with an ANN

model with five other correlations utilized in the oil industry for WHP predictions.

Figure from (Gomaa et al., 2021) ... 55

List of Tables

Table 1 correlation matrices between flow rate, well head pressure and temperature

before and after outlier detection. ... 42

Table 2 k-fold cross validation results .. 49

Table 3 final evaluation using the regression metrics of the test set data. 50

Abbreviations

AI Artificial intelligence

ANN Artificial neural network

BPTT Backpropagation through time

EDA Exploratory data analysis

GRU Gated recurrent units

II Injectivity index

LSTM Long short-term memory

MAE Mean absolute error

MAD Median absolute deviation

ML Machine learning

MLP Multilayer perceptron

MLR Multiple linear regression

MSE Mean squared error

ReLU Rectified Linear Unit

RF Random forest

RNN Recurrent neural network

RMSE Root mean squared error

MAPE Mean absolute percentage error

sMAPE Symmetric mean absolute percentage error

SVM Support vector machine

SVR Support vector regression

WHP Well head pressure

XGBoost eXtreme Gradient Boosting

