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ABSTRACT 

The development of energy-autonomous systems also requires the availability of high-

performance energy storage devices. One method to store electrical energy rapidly and 

efficiently can be found in dielectric capacitors, provided the dielectric meets some relevant 

requirements. These are a high permittivity, a slim hysteresis curve, small leakage currents, and 

a high breakdown voltage. A class of materials that can fulfill many, if not all, of these 

requirements, is the so-called relaxor ferroelectrics (RF). Such RFs are created by the chemical 

substitution of ferroelectric materials and exhibit unique properties. These properties are not 

only relevant for energy storage but also for use in actuators, sensors, energy harvesting, or 

even novel computing devices. Despite efforts to understand RFs, the origins of their behavior 

are still not fully explained. This thesis aims to contribute to the discussion by using different 

theoretical approaches to describe RFs on an atomic level. Density functional theory (DFT) 

serves as the basis for all studies, allowing for the exploration of electronic structure, phonon 

properties, and structural deformations. As a prime example of two fundamentally different 

RFs, the homovalently substituted Ba(ZrxTi1−x)O3, BZT, and the heterovalently substituted 

Ba(NbxTi1−x)O3, BNT, are studied. Using DFT and comparison to experiments, substitution 

effects such as local volume changes, potential changes as well as the formation of defects are 

investigated. To study properties at finite temperatures, first-principles-based effective 

Hamiltonians are used for molecular dynamics (MD) simulations. First, the formalism for 

describing the parent system barium titanate (BaTiO3) is revised by including additional 

anharmonic couplings to higher-energy phonons, which yields a more accurate description of 

the potential energy surface. All associated parameters are parametrized using DFT 

calculations. Furthermore, the Hamiltonian extension's impact on various properties is studied 

using MD simulations, which result in a considerably better agreement with experimental data. 

The BaTiO3 parameterization is used as a foundation for the inclusion of substituents. An 

alternative scheme for describing substituents in effective Hamiltonians is introduced, which is 

parametrized through DFT calculations. The ensuing MD simulations reveal a high degree of 

agreement with experimental data and offer a thorough understanding of the occurrence of RF 

behavior. The effective Hamiltonians for BZT and BNT are further utilized to assess the 

potential of these systems in neuromorphic computing applications. The study examines the 

response of the systems to ultrafast THz pulses and explores the occurrence of hidden phases 

and polarization integration, which is a must for the realization of artificial synapses. 

Additionally, the thesis presents further findings on energy density in substituted BaTiO3, 

frequency-dependent susceptibility, and topological objects. 
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1 Introduction 
The current level of global energy consumption [1] is creating significant environmental 

problems that make a transition to renewable energy sources essential to combat climate 

change, reduce carbon emissions, and create economic opportunities, including job creation and 

energy security. In parallel with the development of alternative energy sources, electrical energy 

storage is also becoming increasingly popular [2]. The storage media here scale from miniature 

applications in microelectronics to large systems for expanding the energy grid. In general, 

electrical energy storage can take many forms, including batteries, capacitors, supercapacitors, 

pumped hydro storage, and flywheel energy storage. In this thesis, the focus is mainly on 

materials for dielectric capacitors [3], targeting the application in energy-autonomous systems, 

whereby developing and investigating improved dielectrics is one of the main objectives. Such 

systems are associated with the so-called Internet of Things (IoT) [4–6], which has the potential 

to revolutionize the economy by enabling energy-autonomous systems that can optimize energy 

consumption and generation, reduce waste, and improve overall energy efficiency. The IoT 

refers to a system of interconnected physical objects, including vehicles, household appliances, 

and other devices equipped with software, electronics, sensors, and internet connections. This 

allows these objects to communicate with each other and exchange data. To ensure the reliable 

and efficient operation of networked devices in the IoT, energy storage is critical [7]. Although 

most IoT devices are low-power and energy-efficient, they still require a certain amount of 

energy to operate. This is where energy storage comes into play, as it allows devices to store 

excess harvested energy and use it when the power supply is inadequate or intermittent. A 

promising class of storage media for use in IoT applications can be found in dielectric 

capacitors [8]. Dielectric capacitors have several advantages, including relatively high energy 

density, fast charging and discharging, low internal resistance, long lifetime, and are safe and 

can be produced in an environmentally friendly way. Their fast charge and discharge times 

make them ideal for applications that require high power in a short time, such as in IoT wireless 

transceivers. Their low internal resistance allows them to deliver power quickly and efficiently, 

making them ideal for high power output applications, such as in electric vehicles. Their long 

lifetime and safety make them a cost-effective and reliable storage medium in the long term. 

However, the energy density of dielectric capacitors is a few orders of magnitude lower than 

that of batteries, so considerable efforts have been devoted to developing new dielectrics with 

improved storage properties [9]. A promising class of materials that exhibit excellent properties 
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for the storage of electrical energy in dielectric capacitors is so-called relaxor ferroelectrics 

(RF) [10–13]. To gain a better understanding of RFs, it is important to first mention their parent 

materials, which are ferroelectrics [14]. Ferroelectrics exhibit spontaneous polarization, which 

can be altered by applying external electric fields. The unique properties of these materials 

make them suitable for a wide range of applications, from actuators and sensors to memory 

storage. Prime examples of such ferroelectric materials are lead titanate (PbTiO3) and barium 

titanate (BaTiO3), with lead-free systems particularly gaining interest recently. This is due to a 

partial ban of lead-containing systems by various funding bodies. Characteristic properties of 

such ferroelectric materials, besides spontaneous polarization, are the occurrence of hysteresis, 

anisotropy of the crystal lattice, the possibility to switch between polarization states, and the 

property of piezoelectricity [15]. The latter means that electrical energy can be converted into 

mechanical energy and is mainly used for actuators, sensors, and energy harvesters. However, 

when it comes to storing electrical energy, these ferroelectric materials are only partially 

suitable, as significant losses occur, resulting in the recovery of only a portion of the stored 

energy [9]. These losses stem from the reorientation of ferroelectric domains, which are caused 

by the long-range correlation of dipoles in such materials. This is where RFs come into play, 

since in RFs this long-range correlation is disrupted by chemical substitution of the ferroelectric 

parent systems, and thus losses are greatly minimized [9,13,16]. Such RFs, in principle, can be 

described as a type of ferroelectric material that contains polar nanoregions (PNRs), which are 

regions of a nanoscale size where the polarization can fluctuate rapidly [10–13]. RFs have a 

high dielectric permittivity and low hysteresis, making them useful for applications such as 

capacitors and piezoelectric actuators [17]. The dielectric constant of an RF is dependent on the 

frequency of the applied electric field, a property known as dielectric dispersion [13]. These 

unique properties make them promising materials for a variety of applications, including energy 

storage, energy harvesting, sensors, actuators, and memory devices [17]. Although significant 

progress has been made in understanding the properties and potential applications of RFs, many 

unanswered questions and challenges remain to be addressed in this field [10–12,18]. Ongoing 

research is focused on developing more accurate models [11–13,18] and theories to describe 

their behavior and optimizing and controlling their properties to improve their performance for 

specific applications. New synthesis methods and processing techniques are also being 

developed to enhance their properties and performance [19]. Therefore, while RFs have been 

extensively explored, there is still much to be learned and developed in this area of research. 

A central aim of this thesis is to enhance the existing knowledge of RFs and their properties by 

building upon previous research. Therefore, a crucial objective of the study is to develop 
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accurate theoretical models on an atomic level for homovalently and heterovalently substituted 

BaTiO3. The key difference here is the oxidation state of the respective substituents. The 

selection of these two fundamentally different cases is intended to identify the different 

mechanisms responsible for the occurrence of RF behavior. For the homovalent case, the 

substitution with Zr4+ at the B-site (Ti4+) of BaTiO3 is studied as a prime example. The 

corresponding chemical formula can be expressed by Ba(ZrxTi1−x)O3 (BZT). For the 

heterovalent case, BaTiO3 is substituted with Nb5+ at the B-site, where the chemical formula 

can be formulated as Ba(NbxTi1−x)O3 (BNT). Remarkably, the manifestation of RF behavior 

is detected in this case at significantly different levels of substituent concentrations. 

Specifically, in the case of BZT, RF behavior arises when the concentration of Zr exceeds 

30% [20], while for BNT, RF behavior is observed at a mere 7% of Nb concentration [21]. To 

delve into this discrepancy, various theoretical and experimental methods were pursued in this 

thesis, including density functional theory (DFT) calculations and effective Hamiltonian-based 

molecular dynamics (MD) simulations for the theoretical investigations. The core of this work 

is based on theoretical approaches aimed at describing various properties of the investigated 

materials. Density functional theory calculations are utilized to study electronic structures and 

structural relaxations. Moreover, they serve as the foundation for parameterizing potentials used 

in MD simulations. The potentials employed in this thesis are derived from effective 

Hamiltonians, which will be further elaborated upon. The fundamental concept behind these 

effective Hamiltonians is to employ a localized basis [22], defined within a subspace of the 

phonon band structure, to characterize the potential energy surface [23,24]. Initially used as a 

mean-field approach [23,24] for pure ferroelectrics like BaTiO3, this method was later modified 

into a localized approach [25]. This approach was constantly extended over the course of time. 

For example, Nishimatsu et al. [26,27] extended the local self-energy up to the 8th order. 

Moreover, Paul et al. [28] showed an extension of the effective Hamiltonian by including 

additional phonon modes. Furthermore, various further developments have also been designed 

to describe substituted systems [29–33]. 

With the introduction above, the objectives of this dissertation can now be clearly defined. It is 

important to note that this is a cumulative dissertation, and as such, the core of this thesis is 

comprised of the four enclosed publications. Not only do these four publications build upon 

each other in terms of content, but they can also be viewed chronologically as a progression of 

established knowledge. The main objectives of this work can now be summarized as follows: 
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1. The aim of the first study is to investigate substitution effects on an atomic level, 

specifically focusing on homovalently (Zr4+, BZT) and heterovalently (Nb5+, BNT) 

substituted BaTiO3. The objective is to identify fundamental differences between 

various substituents and, in combination with experiments, provide an improved 

understanding of RF behavior. Atomistic simulations, utilizing DFT, are used to 

describe the structural changes induced by substitution. Additionally, the effects on 

phonons are calculated through DFT, and the resulting data is compared with Raman 

spectroscopy. All the results of this study can be found in Publication 1. 

 

2. The objective of the second study is to revise the formalism of the effective Hamiltonian 

for the pure BaTiO3 system in order to provide an improved description of the potential 

energy surface. This involves revising the current formalism for the extension by 

additional phonons, followed by parameterization using DFT calculations. The resulting 

effective Hamiltonian for BaTiO3 is thoroughly tested and compared with experimental 

data. The derivation of the alternative formalism, the parameterization by DFT 

calculations, and the results from the MD simulations can be found in Publication 2. 

 

3. The objective of the third study is to extend the effective Hamiltonian so that it can 

describe substituted systems like those studied in the first publication (BZT and BNT). 

The extension should be flexible enough to incorporate different substituents while 

ensuring a local description on an atomic level. To achieve this, the effective 

Hamiltonian from the second publication shall serve as the basis for the extension's 

development, and parameterization is once again performed through DFT calculations. 

MD simulations are then carried out to verify the accuracy of the developed approach 

and to obtain important correlations that are relevant to the application of these 

materials. The details of the approach development, parameterization through DFT, and 

application through MD simulations are presented in Publication 3. 

 

4. The fourth objective of this thesis is to showcase one possible application of the 

effective Hamiltonians for BZT and BNT developed in the third objective. Recent 

publications suggest the potential application of RF materials in neuromorphic 

computing systems, and thus the effective Hamiltonians are used to test the two 

materials for the required properties. This involves subjecting the respective materials 

to ultrafast THz pulses to verify the occurrence of hidden phases and other relevant 
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properties. The application of MD simulations, the lessons learned, and other results 

obtained from this study are presented in Publication 4. 

 

The structure of this thesis is organized as follows. In Chapter 2, the fundamentals of 

ferroelectric materials and RF behavior are explained. Chapter 3 gives an overview of the state-

of-the-art on simulations of ferroelectric materials and how the studies presented in this thesis 

contribute to progress in this subject. Chapter 4 provides a detailed description of the theoretical 

approaches used in this thesis, including density functional theory and the concept of effective 

Hamiltonians. Results from Publications 2 and 3 are also included to complete the theory behind 

effective Hamiltonians. Although the parameterization of effective Hamiltonians is described 

in detail in Publications 2 and 3, Chapters 5, 6, and 7 provide additional details. The core of this 

thesis is presented in Chapter 8, which lists Publications 1 to 4 in chronological order. Chapter 

9 discusses additional results that have not yet been published. This thesis concludes with a 

summary and discussion in Chapter 10. 
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2 Lead-Free Relaxor Ferroelectrics 
This chapter covers the fundamentals of ferroelectric materials, with a focus on barium titanate 

(BaTiO3, BT) as the reference material for the work presented here. The chapter begins by 

presenting the basic properties of ferroelectric materials, followed by a discussion of 

homovalent and heterovalent substitution in BT. This discussion will inevitably introduce the 

concept of relaxor ferroelectrics (RF), including the properties exhibited by RFs and their 

theoretical description. Additionally, as this thesis explores energy storage based on the 

investigated materials, the third subchapter covers the basic quantities for dielectric capacitors. 

2.1 Ferroelectrics 

In general, ferroelectric materials [3,8,14] are characterized by permanent dipoles, which lead 

to spontaneous polarization of the system. A permanent dipole moment is caused by a non-

symmetrical arrangement of charges. That implies that all molecules or crystals with inversion 

symmetry cannot exhibit a permanent dipole moment. An example of such a system is methane 

(CH4), where no dipole moment occurs due to the symmetrical arrangement of the H atoms. 

However, if we look at H2O, for example, a non-vanishing permanent dipole moment can be 

observed due to the arrangement of the atoms and their associated charges. The dipole moment 

can be determined directly from the charge distribution, as shown in Equation 1, where 𝜌(𝒓) 

represents the charge density and 𝒓 the position vector. To obtain a dipole moment from 

Equation 1, both positive and negative charges must be present in the charge distribution. 

Furthermore, this equation is independent of the origin if overall charge neutrality is given. 

 
𝒑 = ∫𝜌(𝒓)𝒓𝑑𝒓 

(1) 

The above example of the two molecules can also be applied to the charge distribution in 

crystals. Thus, crystal systems with an inversion center show no local dipole moment, whereas, 

in the absence of an inversion center, a local dipole moment occurs. Furthermore, the crystals 

without an inversion center exhibit one or more polar axes, whereas those crystals with a unique 

polar axis are also called ferroelectric crystals. If one or more polar axes are found, then one 

speaks of the piezoelectric effect. This means that all systems which are ferroelectric are 

automatically also piezoelectric. Piezoelectric materials do not necessarily have to exhibit 

spontaneous polarization, but external influences such as electric fields or stresses can induce 

electric polarization. A dipole moment can also be defined for the case of ferroelectric crystals, 

although here it is now referred to as a dipole moment per unit cell (𝒑𝑢𝑛𝑖𝑡𝑐𝑒𝑙𝑙) due to the crystal 

structure. However, the concept of polarization is often used instead of dipole moment, which 
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can be simply calculated from the dipole moment and the volume of the unit cell (𝑉𝑢𝑛𝑖𝑡𝑐𝑒𝑙𝑙), as 

presented in Equation 2. 

 

𝑷 =
𝒑𝑢𝑛𝑖𝑡𝑐𝑒𝑙𝑙
𝑉𝑢𝑛𝑖𝑡𝑐𝑒𝑙𝑙

 
(2) 

The polar axis plays an important role in ferroelectric systems and shall be discussed in more 

detail. In principle, to find the polar axis, one needs to investigate the crystal structure of the 

lattice and find the axis where polarization occurs. The polar axis is parallel to the direction of 

the occurring polarization within the crystal. Consequently, the polarization can be inverted and 

switched in the opposite direction. It is important to note that, in this case, the direction of the 

polarization changes, but the crystal structure remains the same. This change in the polarization 

state is directly connected with the displacements of atoms. Furthermore, it becomes clear that 

there are different positions of the atoms, which can create opposite polarization states. When 

changing from one polarization state to the other, a potential barrier must be overcome. Such a 

potential barrier is schematically illustrated in Figure 1 and indicates two local minima 

corresponding to the different polarization states. Such a double-well potential is often used to 

qualitatively explain the respective polarization states but also reflects the energetic landscape 

of such material in reality. The calculation of such a double-well potential can be done by 

quantum mechanical approaches, where reference is made to the work of Cohen and 

Krakauer [34]. This paper demonstrates in detail how density functional theory can be used to 

calculate the potential energy surfaces for the ferroelectric BaTiO3. Such a double-well 

potential also indicates that by applying an external field, it is possible to switch between the 

two polarization states with different polarization directions. 

 

Figure 1. Illustration of double well potential found in many ferroelectric materials. V(x) represents 

the energy, whereas x denotes a symbolic displacement. 

Another essential concept is the so-called spontaneous polarization which occurs in 

ferroelectric systems. This spontaneous polarization occurs in the material even without the 
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application of an external field and is based on the collective behavior of local permanent 

dipoles. To explain spontaneous polarization, the double-well potential can again be used, but 

the concept of phase transition must also be considered. Spontaneous polarization occurs 

analogously to a ferromagnetic material below a critical temperature 𝑇𝑐. At such temperatures, 

the local dipoles dwell in one of the minima of the double-well potential. Spontaneous 

polarization is caused when the local dipoles are correlated and, in the ferroelectric case, have 

the same direction. Of course, it must be taken into account that dipoles with the same 

orientation generate an electric field that also acts beyond the material. This field is not 

energetically beneficial and is minimized by forming randomly-oriented  ferroelectric domains 

within the whole lattice. This is also referred to as a depolarization field. However, the 

correlation of the local dipoles can also be antiparallel, in which case we speak of anti-

ferroelectric behavior. If the temperature rises above the critical temperature 𝑇𝑐, then the 

correlation of the local dipoles is lost, and one speaks of a paraelectric state. This is analogous 

to a transition between a ferromagnetic and paramagnetic state and can be described by a Curie-

Weiss behavior. An alternative view can again be given by means of the double-well potential. 

The potential barrier is hard to overcome at temperatures below the critical temperature. At 

higher temperatures, however, enough energy is added that the potential barrier can be 

overcome, and the dipoles can fluctuate. The fluctuation of local dipoles leads to a paraelectric 

state. Of course, the above description is qualitative, and properties such as the coupling 

between displacements of the atoms and deformations of the unit cell must also be considered 

for the actual description of ferroelectric materials. Furthermore, ferroelectric materials can 

have several ferroelectric phases, which in turn can have different symmetries and, therefore, 

different polarization states. Therefore, the study of ferroelectric behavior and the resulting 

properties must be carefully performed for each material system. 

In this work, primarily the ferroelectric material barium titanate (BaTiO3, BT) and substituted 

versions of it are studied. Therefore, an overview of this material will be given here, and the 

main properties of BT will be discussed. The main preliminaries, BT exhibits four different 

phases, three of which are ferroelectric. The cubic phase (space group 𝑃𝑚3̅𝑚  [35]) is found at 

temperatures above 403 K and represents the paraelectric phase of BT [23,35]. The 

experimentally determined lattice constant for the cubic phase is 𝑎 = 4.010 Å [28]. For 

temperatures below 403 K, a tetragonal phase (space group 𝑃4𝑚𝑚  [35]) is found. This phase 

is ferroelectric and displays polarization along the crystal directions <001> or also often 

referred to as c-axis. The spontaneous polarization along this direction, measured 

experimentally [23], amounts to a value of 0.27 C/m2. The lattice constants for the tetragonal 
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structure were determined experimentally to be 𝑎 = 3.986 Å and 𝑎/𝑐 = 1.010. The next phase 

transition occurs at 278 K from the tetragonal phase to an orthorhombic phase (space group 

𝐴𝑚𝑚2  [35]). The polarization here is found along the <011> crystal directions and their 

symmetric counterparts. The polarization was determined here experimentally [23] with a value 

of 0.36 C/m2. The experimental lattice constants [36] are 𝑎 = 4.041 Å, 𝑏 = 3.982 Å and 𝑐 =

4.065 Å. The final phase transition occurs at a temperature of 183 K, where a transition from a 

orthorhombic phase to rhombohedral phase (space group 𝑅3𝑚  [35]) is observed. In this phase 

the polarization is found along the directions <111>. The experimental value for the 

polarization along this direction is given as 0.33 C/m2. Furthermore, the experimental lattice 

constants are found to be 𝑎 = 4.003 Å and 𝛼 = 89.84° [36]. The individual phases and the 

associated crystal structures can be seen schematically in Figure 2. The various possible 

polarization directions are also indicated here. 

 

Figure 2. Illustration of the four phases of pure BT. The arrows indicate the possible directions for 

polarization. Plot was taken from Ref. [37] and adapted. 

Due to the given number of phases, it becomes clear that BT is a rather complex system, where 

the description by a simple double-well potential is no longer satisfactory. Instead, the potential 

energy surface has different local minima, which can be assigned to the individual ferroelectric 

phases. The cubic phase represents a local maximum of the potential energy surface and can 

only be stabilized by enough applied thermal energy. The computation of the potential energy 

surface associated with BT represents a significant contribution to this work and is, therefore, 

discussed in detail in the subsequent chapters as well as in the attached publications. However, 

other important properties of BT will also be discussed here to explain the great popularity of 

this material. As already discussed in detail, BT is ferroelectric and piezoelectric, which makes 

this material interesting for many applications. For example, BT exhibits a very high relative 

permittivity, where this elevated permittivity is observed especially near the phase transitions. 

High permittivity is of particular interest in the application of ferroelectric materials in 
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capacitors. Furthermore, non-linear optical properties can be observed in BT, which is 

interesting for the application in frequency doubling in optical devices [38]. It should also be 

noted that BT has a high melting point of above 1600°C, which makes it suitable for high-

temperature applications (albeit in the paraelectric phase). 

Another important property of ferroelectric materials is their response to an applied external 

electric field. This leads to a hysteresis curve due to the spontaneous polarization and the 

associated alignment of the local dipoles. Such a curve is schematically outlined in Figure 3. 

Here, an external field 𝐸 is applied, and the response is monitored via the polarization 𝑃. For 

high electric fields, the polarization saturates to a value 𝑃𝑠. If the field is now reduced, the 

polarization also decreases but shows a non-linear behavior. At a field strength of zero, a non-

vanishing polarization is observed, which is also called remnant polarization 𝑃𝑟. The 

polarization disappears only when the so-called coercivity 𝐸𝑐 is reached. Subsequently, the 

polarization changes its sign and approaches the saturation level at the other side again. The 

shapes of hysteresis curves can be quite different and are heavily dependent on the atomic 

structure of the ferroelectric systems being studied. Furthermore, the variables of temperature 

and the presence of stresses also influence the shape of the curves. In addition, the shape of the 

hysteresis can be controlled by substitution with impurity atoms, and thus desired properties 

can be achieved. 

 

Figure 3. Schematic representation of a ferroelectric hysteresis loop. P denotes the polarization and E 

the external electric field. 𝑃𝑠 represents the saturated polarization and 𝑃𝑟 the remnant polarization. 𝐸𝑐 
corresponds to the coercive field strength. 

To conclude this chapter, the application areas of ferroelectric materials shall be discussed. 

Ferroelectric materials can be utilized in the fabrication of capacitors with medium to high 
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capacitance due to their relatively large permittivity. They are also employed in sensors for 

measuring temperature, pressure, and humidity. Non-volatile memories, or FeRAM, are another 

application of ferroelectric materials. Actuators based on ferroelectrics can be built due to their 

property of piezoelectricity, and they can be used for ultrasonic transducers in medicine. While 

energy harvesting is possible using ferroelectric materials, the gains achieved are typically quite 

small due to losses related to mechanical-mechanical and mechanical-electrical energy 

transfer [39]. 

2.2 Relaxor Ferroelectrics 

Relaxor ferroelectrics (RFs) are a special class of ferroelectric materials that exhibit highly 

perturbed behavior in their ferroelectric response. In contrast to classical ferroelectric materials, 

which exhibit a well-defined and reproducible transition between non-polar and spontaneously 

polarized phases, RFs exhibit a highly diffuse and frequency-dispersed permittivity maximum 

in correspondence with the transition between a nonpolar and a relaxor state. The following 

explanation of relaxor behavior is based on the publications of Bokov and Ye [13], Shvartsman 

and Lupascu [10], as well as Kleemann, Samara, and Dec [18]. In order to explain RF behavior, 

one shall start with the occurrence of the paraelectric phase at high temperatures. This phase is 

analogous to the paraelectric phase of conventional ferroelectrics and is mainly characterized 

by fluctuations of dipoles. If the system is cooled down, no phase transition to a ferroelectric 

phase is observed. Instead, nanometer-sized regions with randomly distributed dipoles are 

formed. The formation of these regions is observed at the so-called Burns temperature 𝑇𝐵, 

which is far above the temperature 𝑇𝑚 associated with the maximum of the permittivity. 

However, this transition to the formation of nanometer-sized regions is not a conventional phase 

transition, since no structural changes are measurable here at the macroscopic level. 

Nevertheless, many properties change significantly at the Burns temperature, leading to the 

definition of a new state. The nanometer-sized regions are mobile around the Burns temperature 

and their behavior can be described as ergodic, i.e. an ergodic relaxor state. If the temperature 

of the system is decreased further, the dynamics of these regions drastically decrease. Once the 

temperature is low enough, a nonergodic state is reached at the so-called freezing temperature 

𝑇𝑓. As the name suggests, the dynamics of the regions below 𝑇𝑓 are frozen, i.e. they become 

static. Interestingly, at these low temperatures, it is observed that the averaged symmetry of the 

system does not change and a macroscopic cubic state is still adopted. The nonergodic state is 

similar to that of a dipole glass, although this hypothesis is the subject of intense debate [13]. 

The loss of dynamics of the dipoles leads to a broad peak in the observed permittivity as a 

function of temperature. The magnitude of the broad peak is comparable to the permittivity 
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measured at the Curie point in conventional ferroelectrics. Furthermore, an interesting 

phenomenon is observed here, which is a shift of the peaks to higher temperatures when the 

frequency is increased (called frequency dispersion of permittivity). This behavior is illustrated 

in Figure 4, where the real and imaginary part of the permittivity is plotted as a function of 

temperature for different frequencies using the example of a lead-based RF [13]. The broad 

peak was often used to speak of a diffuse phase transition, although, of course, no real phase 

transition occurs here [13].  

 

Figure 4. Illustration of frequency dependence of permittivity in relaxor ferroelectrics on the example 

of Pb(Mg1/3Nb2/3)O3 (PMN) taken from Ref. [13]. The plot shows the real and imaginary parts of the 

permittivity as a function of temperature measured at different frequencies.  

Another important feature of RFs is the transformation of the nonergodic state at low 

temperatures to a ferroelectric state upon application of a large enough external field. This 

transformation is irreversible and is different from dipole glasses, where such a feature does not 

occur. By increasing the temperature, the ferroelectric phase is transformed into an ergodic 

state, whereby this transformation occurs at a temperature 𝑇𝑐. This temperature 𝑇𝑐 is very close 

to the freezing temperature 𝑇𝑓. Furthermore, in many RFs, a spontaneous transformation of the 

ergodic state into a ferroelectric state can be observed at low temperatures, in which case the 

non-ergodic state is absent. Another fundamental condition for the occurrence of RF behavior 

is compositional disorder. That is, the irregular distribution of different ions on the same lattice 

site. The first materials where RF behavior has been reported are heterovalently substituted 

lead-based perovskites. Two prime examples are Pb(Mg1/3Nb2/3)O3 (PMN) and 

Pb(Sc1/2Ta1/2)O3 (PST), where a disorder of the B-site cations is observed [13]. For lead-free 
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materials, compositions based on BT can be mentioned here as examples. This includes the 

homovalently substituted system Ba(ZrxTi1-x)O3 (BZT), where the substitution via Zr4+ takes 

place at the B-site. The occurrence of RF behavior is experimentally observed here at 

concentrations above 30% of Zr [20]. Another example can be found in heterovalently 

substituted Ba(NbxTi1-x)O3 (BNT), where here Nb5+ is substituted on the B-site. RF behavior is 

observed for this system at concentrations above 7%. Already here, it is obvious that the 

occurrence of RF behavior must depend on the different substituents and their distribution. For 

BNT, other defects also play an essential role since charge compensation becomes necessary 

due to the heterovalent substitution. For example, in BNT, such compensation is experimentally 

and theoretically proven to be provided by Ti vacancies [40]. As already mentioned, chemical 

disorder represents an important property in these RFs and will therefore be investigated in 

some detail. The basis for disorder in the system is the non-uniform distribution of ions on the 

respective lattice sites. In the general case at low temperatures, if the ratios of ions for the 

respective lattice site, for example, Ba(Zr1/2Ti1/2)O3, are equal, one would expect the ions to be 

ordered. This assumption is supported by the energy contributions of the elastic energy as well 

as the electrostatic interaction, which are the lowest in the ordered state [13]. At higher 

temperatures, however, the thermal fluctuations become high enough to allow the cations to 

diffuse, and thus disorder of the particular ion species becomes possible. The transition between 

ordered structure and disordered structure is a phase transition which is well known in metallic 

alloys. This means that at high temperatures the ions diffuse between the lattice sites, whereas 

at low temperatures such an exchange becomes almost impossible. However, there are also 

materials where an ordering of ions is not possible at all due to the long exchange times. For 

materials where an order can be established, the order can be prevented by rapid quenching. In 

summary, for the occurrence of RF behavior, it is necessary to achieve such a disorder in the 

materials, whether this disorder is given a priori or forced by quenching. 

Another interesting property of RFs can be found in their response to an external electric field. 

For conventional ferroelectric materials, a hysteresis curve is obtained, as evident in Figure 3, 

where the associated characteristic quantities have already been discussed in detail in the 

previous chapter. The ferroelectric hysteresis curve usually exhibits a relatively large remnant 

polarization as well as coercivity. In the case of an RF, this curve is found to be much slimmer, 

as can be seen in Figure 5. The reason for this is the differences in the polar order of the 

respective systems. For ferroelectric systems, domains are formed in the order of tens of 

nanometers up to micrometers. These domains can be repolarized by the applied field only with 

some effort, and thus the remnant polarization, as well as the coercivity, is increased. In the 
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case of RFs, however, as already mentioned, so-called nanodomains are formed, which are 

much easier to align when an external field is applied compared to ferroelectric domains. The 

occurrence of such a slim hysteresis curve is directly associated with lower losses caused by 

the repolarization process and therefore offers interesting properties for various applications. A 

relevant application can be found in the storage of electrical energy, which will be discussed in 

detail in the next chapter on dielectric capacitors. 

 

Figure 5. Illustration of a hysteresis loop for a conventional ferroelectric (left) and an example of a 

slim hysteresis loop for relaxor ferroelectrics (right). P denotes the polarization and E the electric 

field. 

In the following, different concepts for the mathematical description of certain properties in 

RFs will be discussed. First, the observed dispersion of the broad peak caused by the presence 

of nanometer-sized regions and their respective dynamics will be discussed. It has already been 

mentioned that these nanometer-sized regions are mobile but lose their mobility entirely at a 

freezing temperature 𝑇𝑓 and adopt a nonergodic state. As this non-ergodic state is very similar 

to a dipolar glass (or spin glass), the phenomenological Vogel-Fulcher law [10] can be used to 

estimate 𝑇𝑓. The mathematical expression of this law, which was originally derived for studying 

glass transitions, is given in Equation 3. Here, 𝑓0 represents the attempt frequency, 𝐸𝑎 denotes 

the activation energy, 𝑘𝐵 is the Boltzmann constant and 𝑇𝑚 is the temperature of the maximum 

in permittivity.  

 

𝑓 = 𝑓0𝑒𝑥𝑝 (
𝐸𝑎

𝑘𝐵(𝑇𝑚 − 𝑇𝑓)
) 

(3) 

The freezing temperature can thus be determined by Equation 3 and fitting the observed maxima 

in the permittivity. In the following, further approaches to the description of RF behavior shall 

be discussed. The basis is the broad peak in the permittivity, which is observed in RFs. To 

examine this peak from a different point of view, the example of substituted BT can be used. 

Here, when the pure system is considered, three sharp peaks in permittivity associated with the 
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phase transitions are observed [41]. The exact temperatures for the transitions can be taken from 

the previous chapter. To continue with the example, BT can now be substituted, for example, 

with Zr at the B-site [41]. The following trends in permittivity are observed. As the 

concentration of Zr is increased, the peaks begin to shift towards each other. At a concentration 

of about 15%, only one broad peak is visible, and the individual phase transitions have 

disappeared [41]. Furthermore, the temperature of the maximum in the permittivity decreases 

with increasing concentrations. For more details on this behavior of substituted BT, reference 

is made here to Publication 3, enclosed in this work. The occurrence of this merging of the 

individual phase transitions, and the associated broadening of the permittivity peak, are often 

referred to as a diffuse phase transition (DPT) [10]. Subsequently, a number of methods were 

developed to describe this DPT behavior mathematically. The first model to be presented was 

developed by Kirillov and Isupov [42]. The idea considers a spatial distribution of local 

compositions with different Curie points. The broad peak would be thus due to an average Curie 

temperature wrapped by a Gaussian function. The corresponding mathematical formulation of 

permittivity as a function of temperature can be found in Equation 4. Here, 𝜖′ is the real part of 

the complex permittivity, 𝜖𝑚
′  denotes the maximum of the permittivity at a given frequency and 

𝑇𝑚 is the temperature associated with the maximum in permittivity. The parameter 𝛿 defines 

the diffuseness of the transition.  

 
𝜖′ = 𝜖∞

′ +
𝜖𝑚
′

1 +
(𝑇 − 𝑇𝑚)2

2𝛿2

 

(4) 

However, this equation is often inadequate to accurately describe the found behavior of the 

peaks, so an alternative approach was developed by Santos and Eiras [43]. The corresponding 

mathematical expression can be seen in Equation 5. Here, the parameters 𝑇𝑚 and 𝛿 are 

analogous to Equation 4. The new parameter 𝛾 characterizes the phase transition. That is, the 

value of 𝛾 = 1 describes the phase transition of a conventional ferroelectric, whereas a value 

of 𝛾 = 2 represents a so-called complete diffuse transition. The values between these 

boundaries describe incomplete diffuse transitions. Furthermore, the Curie-Weiss behavior is 

the limiting case for both Equations 4 and 5, respectively. The above equations are suitable for 

describing DPT, but there is no shift of the peaks as a function of frequency. This is mainly the 

case at lower concentrations, such as 15% Zr-substituted BT. For higher concentrations, RF 

behavior is progressively exhibited, and a shift of the peaks is observed, which can be described 

by the already explained Vogel-Fulcher law. 
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𝜖′ =
𝜖𝑚
′

1 + (
𝑇 − 𝑇𝑚
𝛿

)
𝛾 

(5) 

Another model for describing RF behavior is the so-called random field model. Here, it is 

assumed that in RFs, localized random fields occur, which are caused by chemical substitution. 

This theory states that the ions in the system are subject to this interaction with the random 

fields, the strength of which plays a significant role in the occurrence of RF behavior. The 

fundamental principles of this theory were developed by Imry and Ma [44], and for more 

details, reference is made to their work [44]. Essentially, it must be stated that a variety of 

models have been developed over the years to describe the behavior of RFs 

phenomenologically. The approaches range from simple qualitative explanations to quite 

complex models. However, a generally accepted explanation of the phenomena occurring in 

RFs is still missing. One way to solve this puzzle is to simulate RFs on an atomic basis to better 

understand the effects that occur. In combination with the right experiments, another step 

towards a complete explanation can thus be made. In this work, the main contribution to the 

theoretical description of RF behavior is the development of suitable atomistic models. For 

more details on these models, reference is made here to the following chapters as well as to the 

enclosed publications. 

In order to conclude this chapter on RFs, the possible areas of application shall be outlined. RFs 

generally exhibit excellent dielectric properties and therefore have a wide range of applications. 

Due to their high permittivity and their small dielectric losses, RFs are often used in capacitors. 

The capacitors are mainly used in electronic devices such as computers, cell phones, or other 

digital devices. Due to their good properties as piezoceramics, RFs are also used as piezoelectric 

transducers. With their help, electrical voltages can be converted into mechanical displacements 

and vice versa. Such transducers are used in medical analytics, sonar devices, and ultrasound 

equipment. RFs can also be used for sensors, for example, to measure temperature, pressure, 

and other quantities. Last and for this work very relevant field of application is the possibility 

of storing energy. Due to the slim hysteresis curves found in such materials, the recoverable 

energy is increased compared to conventional ferroelectrics, and thus larger amounts of 

electrical energy can be stored. The fundamentals of electrical energy storage via the application 

of RFs in dielectric capacitors will be discussed in detail in the next chapter. 

2.3 Dielectric Capacitors 

A capacitor is basically an electrical component that can store electrical energy. The structure 

of a capacitor consists of two electrical conductors separated by an insulator, whereby the latter 
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is often also called dielectric. If a voltage is applied to the two conductors, charges begin to 

accumulate on the surfaces of the conductors, causing a potential difference between the 

conductors. The electric field and the potential difference 𝑉 are directly proportional to the 

charge 𝑄 that accumulates on the surface of the conductors. From this, as can be seen in 

Equation 6,  the ratio between charge and the potential difference can be derived (called 

capacitance 𝐶), which indicates the charge storage capacity of the selected arrangement of 

conductors and dielectric. It should be noted that the obtained relation assumes small field 

strengths as well as a linear behavior of the dielectric. 

 
𝐶 =

𝑄

𝑉
 (6) 

The above relation, though, does not give any information about the properties of the dielectric 

and the geometry of the capacitor. A simple example to explain the capacitance in more detail 

can be found in the parallel plate capacitor, where two electrical conductors simply face each 

other as plates. The capacitance of such an arrangement can be described by Equation 7. Here, 

𝐴 is the area of the plates, 𝑑 is the spacing of the plates and 𝜖0 is the vacuum permittivity. 𝜖𝑟 is 

the relative permittivity of the dielectric between the plates. Here it becomes clear that a large 

area, a small distance, and a large permittivity lead to a large capacitance. The first two 

requirements can be influenced by the design of the capacitor, but the last feature, permittivity, 

depends on the material used as the dielectric. 

 

𝐶 = 𝜖𝑟𝜖0
𝐴

𝑑
 

(7) 

The effect of a dielectric in a capacitor will also be briefly discussed here. If the capacitor is 

connected to a voltage source and, consequently, a dielectric is introduced into the capacitor, 

the accumulated charge on the surfaces increases by the factor 𝜖𝑟. This is due to the fact that an 

electric field is induced in the dielectric, which counteracts the external field. The induced field 

is caused by local dipole moments within the dielectric material, which align themselves by 

applying an external field, as already discussed in the chapter on ferroelectrics. A thorough 

description of dielectrics and capacitors can be found in the book of Tipler and Mosca [3]. 

Furthermore, if a dielectric is introduced into the capacitor and the voltage source is 

disconnected, the potential difference decreases by the factor 𝜖𝑟. This demonstrates that the 

dielectric in a capacitor is an essential component to achieve the desired capacitance. Another 

important quantity is the stored energy in a capacitor. For a linear dielectric, the relation in 

Equation 8 can be used to calculate the stored energy 𝑊. Here, 𝐶 is again the capacitance, and 
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𝑉 is the applied voltage across the capacitor. It becomes clear that the storage capacity is directly 

dependent on the capacity and, thus, also on the above-mentioned characteristic quantities like 

geometry and relative permittivity. The geometry of the capacitors has been optimized over the 

years in such a way that a further increase in capacitance in today's applications can only be 

achieved through the development and use of new materials with higher permittivity. Of course, 

new materials may, in turn, require new geometries, which shows the complexity of the 

development of high-performance capacitors. 

 
𝑊 =

1

2
𝐶𝑉2 (8) 

In many cases, however, the behavior of dielectrics is non-linear and depends on the applied 

voltage, i.e., on the electric field. The most obvious example of this is ferroelectric materials, 

which show a hysteresis curve that deviates strongly from linear behavior. Subsequently, 

Equation 9 can be used to calculate the stored energy of a non-linear system, integrating over 

the polarization. The upper limit 𝑃𝑚𝑎𝑥 here is the maximum polarization reached. This energy 

includes all contributions needed to align the local dipole moments in the dielectric and 

therefore represents the total stored energy. 

 
𝑊 = ∫ 𝐸𝑑𝑃

𝑃𝑚𝑎𝑥

0

 
(9) 

For energy storage applications, however, the energy portion that is recovered when the 

capacitor is discharged is of interest. Due to losses that occur during the repolarization of local 

dipole moments or in ferroelectric systems the repolarization of ferroelectric domains, the 

recoverable energy is not equal to the stored energy. The recoverable energy 𝑊𝑟𝑒𝑐 can be 

calculated by a similar integral over the polarization, as can be seen in Equation 10. Here, 

however, the lower limit is set with the remnant polarization. Therefore, for high recoverable 

energy, the P-E hysteresis curve must be slim (small remnant polarization) yet have a high 

maximum polarization. Such a slim hysteresis curve, for example, is observed in RFs, as already 

discussed in the previous chapter.  

 
𝑊𝑟𝑒𝑐 = ∫ 𝐸𝑑𝑃

𝑃𝑚𝑎𝑥

𝑃𝑟

 
(10) 

All in all, it can be stated that the stored energy in a capacitor can be determined via the shape 

of the P-E hysteresis curve. This curve depends on the respective material and differs 

considerably depending on the system under consideration. Ferroelectric systems show a 

pronounced hysteresis curve and exhibit high losses when the ferroelectric domains are 
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repolarized. Therefore, they are only partially useful for storing electrical energy. In contrast, 

RFs provide a much slimmer hysteresis curve due to the presence of nanodomains, and the 

recoverable energy is significantly increased. The influence of different chemical compositions 

in RFs on the shape of the P-E hysteresis curves is discussed in detail in the enclosed 

Publications 2 and 3. 
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3 State-of-the-Art and Impact of This Thesis 
In this chapter, the state-of-the-art of homovalent and heterovalent substituted BaTiO3 (BT) and 

theoretical models to describe such materials at the atomic scale will be elaborated. 

Furthermore, the impact of this thesis on the state-of-the-art will be highlighted. In the first 

subchapter, the state-of-the-art on Zr and Nb substituted BT is summarized, and open questions 

to explain the occurring effects are discussed. However, this subchapter is kept short because 

the main subject of this thesis is the method development for the theoretical description. 

Therefore, the state-of-the-art of simulations of ferroelectric materials and substituted versions 

thereof are discussed in the second subchapter. Here, an overview of different methods as well 

as their application will be given. Furthermore, the development of recent Hamiltonians will be 

discussed, and the areas of application for such simulations will be outlined. 

3.1 Substituted BaTiO3  

Chemical substitution is an essential aspect of developing new compositions, as already 

highlighted in the introductory Chapter 2.2. Substituting elements can significantly impact 

various material properties, such as permittivity, polarization, and other 

characteristics [10,13,18]. Additionally, substitution can influence the behavior of materials. 

For instance, ferroelectric behavior is generally observed at low concentrations, but at higher 

concentrations, this can result in relaxor (RF) behavior or behavior similar to dipolar 

glasses [10,13,18]. This chapter will focus on discussing the primary distinctions between Zr 

and Nb substituted BT. The first fundamental difference between these substituents is the 

oxidation state. Zr4+ (BZT) replaces the B-site cation Ti4+ in homovalent substitution, while 

Nb5+ (BNT) substitutes the B-site in heterovalent substitution. Moreover, these substituents 

differ in their ionic radii, with Zr4+ having a radius of 0.72 Å and Nb5+ having a radius of 

0.64 Å, in comparison to Ti4+'s ionic radius of 0.605 Å. An additional crucial distinction is the 

concentration range in which RF behavior occurs. For instance, in the case of BZT, the 

transition to RF behavior is experimentally [20] detected at a concentration exceeding 30%. 

Conversely, in BNT, RF behavior is already observed at a concentration exceeding 7.5% [21]. 

BZT is a well-studied form of substituted BT, and the research by Hennings et al. [41] deserves 

special recognition. They were the first to report on the diffuse phase transition (DPT) in BZT, 

which was a significant finding. Subsequent studies also demonstrated that polarization persists 

beyond Tc (Curie temperature) for certain BZT concentrations. Additionally, some 

compositions exhibit a frequency-dependent permittivity as a function of temperature, such as 

when the concentration is 40% Zr, where the Vogel-Fulcher law from Chapter 2.2 applies. On 
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the other hand, some studies [45] propose a behavior resembling that of dipolar glasses, 

challenging the notion of collective dynamics among the polar nanoregions. Furthermore, 

neutron scattering [46] indicates that the substitution of Ti4+ with larger Zr4+ stabilizes local 

polar clusters in the form of polar nanoregions by displacing B-site Ti4+ along the <111> 

direction. Kleemann et al. [47] proposed that weak random fields resulting from local strain 

effects exist and become effective in BZT at higher substitution content, influencing the 

distribution of local polar orders, which supports the neutron scattering findings. Further, in 

BZT below 50% Zr content, it seems appropriate to assume the presence of non-polar 

nanoregions embedded in a polar matrix since Zr-centered unit cells are nonpolar. Alternatively, 

one could assume that polar nanoregions have the size of a unit cell and are centered on Ti 

cations. This latter interpretation is indeed well-accepted and supported by the experimental 

findings. 

In the case of heterovalently substituted BT, complex defect structures can be considered to 

suppress ferroelectric ordering due to the presence of different oxidation states. The mechanism 

is thus fundamentally different from the homovalent case, where size differences were the 

driving force for the disruption of long-range ferroelectricity. This work mainly focuses on 

heterovalently substituted BNT, where Nb5+ is substituted at Ti4+ sites. Here additional charges 

must be compensated to maintain charge neutrality in the lattice. Compensation mechanisms 

could include A- or B-cations or electrons. However, Veerapandiyan et al. [40] and the enclosed 

Publication 1 demonstrate through DFT calculations and Raman spectroscopy that the most 

probable charge compensation in BNT is via Ti vacancies. This implies that for every 4 Nb 

ions, one Ti vacancy is generated. Such complex defect structures can lead to random fields in 

the material, disrupting the long-range correlation and leading to DPT or RF behavior. Despite 

the extensive research [9,20,21,31,32,40,48–55] conducted on these two systems, the 

underlying cause of this difference has yet to be clearly explained. Relevant open questions are, 

for example, how the two substituents integrate into the structure of BT on an atomic basis and 

which effects are responsible for the disruption of the long-range correlation. 

As part of this thesis, research was conducted on this matter, and the obtained results will be 

briefly summarized. A comprehensive analysis is available in Publications 1 and 3. A 

preliminary qualitative determination can be made by comparing ionic radii. This size 

difference causes a local expansion or contraction of the lattice, and randomly distributed strains 

occur. In the case of BNT, due to the similar ionic radius, such a local lattice change is not 

expected a priori. To validate these assumptions using DFT calculations, 5x5x5 supercells of 
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rhombohedral BT were created. Following, a small number of substituents were introduced for 

both BZT and BNT, and the structures were relaxed using DFT. Subsequently, the local volume 

change was calculated for each unit cell in the supercell. As predicted, substituting with Zr 

induces a local expansion of the lattice. Additionally, a volume change is observed for Nb, 

extending beyond the substituted unit cells. It should be noted that defects were also taken into 

account for charge compensation, as elaborated above. The local volume change also has a 

direct impact on the polar activity of the adjacent unit cells and induces preferred polarization 

directions, as described in the Supplemental Material of Publication 1. The volume change has 

already been discussed, but the effects on the electric potential were also explored. For that 

purpose, the same supercells described above were employed, and the potential change was 

determined using DFT with respect to the pure BT system. It was found that only a localized 

change in the electric potential occurs in the case of BZT. In contrast, BNT exhibits an induced 

change in the electric potential over several neighboring unit cells.  

In summary, it can be concluded that both BZT and BNT systems exhibit local lattice changes. 

However, only BNT displays a non-local electrical potential change, indicating a more effective 

perturbation of the polar order. A detailed explanation of how these materials behave at finite 

temperatures will be presented in Publication 3. Furthermore, Publications 1 and 3 take a step 

forward in explaining the RF behavior of these systems, building on the state-of-the-art research 

presented in Refs. [9,10,13,18,21,32,40,41,55–57]. 

3.2 Effective Hamiltonians 

The modeling of ferroelectric materials on the atomistic level can be done in different ways and 

depends on the properties to be investigated. If the atomic structure is to be investigated, first-

principles calculations are inevitable. The most common method which is used here is density 

functional theory (DFT) calculations. Here, the time-dependent Schrödinger equation is solved, 

and thus the electronic structure of the system under consideration is calculated. From this, a 

variety of properties can be studied, such as the density of states, energy levels, total energy, or 

the occurring forces. Furthermore, DFT can also be used to relax the geometry of the initial 

structure or to calculate the vibrational properties. The application of DFT calculations to the 

study of ferroelectric materials is, therefore, almost unlimited and constantly provides new 

insights into the physical mechanisms. A relevant work here is the calculation of the well-

known double-well potential of BT by Cohen and Krakauer [34] back in 1990. A steady 

increase of publications on DFT for the description of ferroelectric materials follows, which is 

also due to the ever-improving computing power. A paper that calculates and describes in detail 

the diverse properties of BT by means of DFT is that of King-Smith and Vanderbilt [24]. 
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However, such DFT calculations can also be used for the calculation of substituted systems, as 

in the work of Levin et al. [55] on Zr-substituted BT. In summary, DFT calculations are a 

powerful tool for studying materials at the atomistic level and are indispensable in research 

today. A disadvantage of this method is that the calculations are performed at 0 K and are static 

when using pure DFT calculations. Of course, there are now methods that also allow finite 

temperatures, but such ab-initio molecular dynamic simulations are extremely computationally 

expensive. The keyword here is molecular dynamics (MD), which also allows to perform 

dynamic simulations by allowing the particles to move. The basis for such MD simulations is 

the so-called potentials, which describe the interaction between the particles. In this thesis, only 

MD simulations where particles represent atoms or entities associated with atoms are 

considered, but such simulations can be performed for various applications. Just to give an 

example, the potentials could describe the interaction between planets, and thus the dynamics 

of these could be simulated. But what can one imagine by such a potential? In principle, such a 

potential is nothing else than a mathematical construct that should describe the interaction 

between particles by suitable parameters. There is no limit to the variety of potentials, which 

differ more or less from each other. A very common class of potentials is so-called pair 

potentials. As the name suggests, such potentials describe the interactions of pairs of particles. 

Two well-known examples are the Lennard-Jones [58,59] potential and the Morse 

potential [60]. Often, however, it is not sufficient to consider only the pairwise interaction, and 

therefore, more elaborate methods have been developed, which are commonly known as many 

body potentials. Here, the interaction of more than two particles is considered for the 

construction of the potential. For the simulation of ferroelectric materials, so-called core-shell 

potentials are a suitable option. These potentials distinguish between the interaction of the core, 

i.e., the atomic nucleus, and the shell, i.e., the electron shell. Such potentials proved to be quite 

effective for the description of ferroelectric materials, and a wide variety of properties could be 

simulated [61–65]. Such simulations based on these potentials are less expensive compared to 

ab-initio MD simulations but still do not allow large-scale simulations. However, for substituted 

systems like Zr- or Nb-substituted BT, it is of relevance to allow large ensembles and long 

simulation times to better comprehend the dynamics of the local dipoles.  

Therefore, in this thesis, an entirely different concept for the description of the interactions was 

selected. The chosen method is based on a description of the interactions by a local basis and is 

called the effective Hamiltonian. The idea behind this is to select a subspace of the phonon band 

structure, thereby defining a local basis and then parameterizing the interactions using this 

basis. The parameterization of the required parameters for the effective Hamiltonian can be 
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done entirely through DFT calculations [22–24]. A detailed explanation and derivation can be 

found in Chapter 4.3. The basis for the development of this method for describing ferroelectric 

materials was laid by the work of King-Smith, Vanderbilt, Zhong, Rabe, and Waghmare in the 

mid-1990s [22–24]. This method already allowed to reproduce properties of BaTiO3 (BT) and 

PbTiO3 (PT) astonishingly well by means of the effective Hamiltonian, which was still applied 

as a mean-field theory at that time. In 1997 this mean-field theory was extended to a local mode 

theory which also allowed a simulation of supercells. It was not long before this formalism was 

extended by Bellaiche et al. [29] to simulate substituted systems. In this work, it was 

impressively demonstrated how substituents could be taken into account by adding additional 

terms. Already in this early work, the phase diagram of Pb(Zr1−xTix)O3 and associated 

piezoelectric constants were simulated. The method used by Bellaiche et al. [29] to 

parameterize the effective Hamiltonian is based on the Virtual Crystal approximation 

(VCA) [66] made within DFT. All necessary corrections for substituent incorporation are then 

referenced to this virtual crystal. Such an approach is well suited for larger substituent 

concentrations but leads to complications when small concentrations are considered. This was 

followed by a number of different parameterizations of substituted systems, such as 

(Ba1−xSrx)TiO3 (BST) [67] and Pb(Sc0.5Nb0.5)O3 (PSN) [68]. In 2008, Nishimatsu et al. [26] 

published a paper on simulations of thin films of BT. In association with this work, a very 

efficient implementation of the effective Hamiltonian using Fortran was also published. This 

implementation is extremely computationally efficient due to the intelligent use of fast Fourier 

transforms and allows large-scale simulations even on conventional workstations. The software 

and self-adapted versions are also used in this thesis. In the work of Nishimatsu et al. [27] in 

2010, the approach was revised again, and certain energy terms were extended to provide an 

improved description of the potential energy surface. In another work by Nishimatsu et al. [33], 

it was shown for the BST system that parameterization by averaging and incorporating local 

deformations gives approximately the same results as using VCA. In 2017, parameterization by 

a newly developed exchange-correlation functional was demonstrated by Paul et al. [28]. 

Furthermore, the inclusion of anharmonic couplings [28] to higher energy phonons was 

presented. This inclusion of additional terms significantly increased the quality of the 

description of the phase transitions. Subsequently, this work also represents the inspiration for 

the approaches developed in this thesis to account for anharmonic couplings. Thus, this 

approach was completely revised, and a large number of couplings parameterized by DFT were 

incorporated into the effective Hamiltonian. The entire work on this topic can be found in detail 

in Publication 2 and its Supplemental Material. As a consequence, the description of the phase 
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transitions could be improved again. An alternative concept for the incorporation of substituents 

was published by Mentzer et al. [32] in 2019 for Ba(ZrxTi1−x)O3 (BZT). Here, BT was chosen 

as the basis, and the substitution effects were taken into account by means of a restoring force 

and an adaptation of the applied hydrostatic pressure. This approach made it possible to 

simulate the phase diagram for a larger concentration range and to achieve good agreement with 

experiments. The work of Mentzer et al. [32] and Akbarzadeh et al. [31] on BZT forms the 

starting point of this thesis for developing an extension of the effective Hamiltonian to describe 

substituted systems. Basically, the advantages and disadvantages of the two approaches were 

weighed, and then an alternative approach was formulated. The effective Hamiltonian from 

Publication 2 was chosen as the basis, which shows a favorable agreement of the phase 

transition temperatures compared to experiments. All corrections to describe substitution 

effects are referred to this basis. The corrections were designed following the work mentioned 

above and a general approach was derived from it. The parameterization and application in MD 

simulations shows good results compared to the reference simulations and experiments. The 

entire derivation and results from the MD simulations can be found in Publication 3 and its 

Supplemental Material. 

Recently, further interesting results have been published using effective Hamiltonians. These 

works investigate ferroelectric materials for properties that could be relevant for application in 

neuromorphic computing systems. Of particular note is the work of Prosandeev et al. [69–72], 

who investigated relaxor ferroelectrics using ultrafast THz pulses. The pulses are applied to the 

respective materials using MD simulations, and the response of the system is studied. Such 

pulses can induce phases in Pb(Mg1/3Nb1/3)O3 (PMN) which are hidden in the equilibrium 

state. Subsequently, these phases are also called hidden phases. When a train of pulses is 

applied, the integration of the polarization over the hidden phases is observed. These and other 

results show promising properties for application in neuromorphic computing systems. In 

Publication 4 of this thesis, an analogous study is performed for both Ba(ZrxTi1−x)O3 (BZT) 

and Ba(NbxTi1−x)O3 (BNT) systems, examining for possible similar phenomena. 

Overall, the following can be concluded on the state-of-the-art in simulations of ferroelectric 

materials: There are plenty of different methods for describing effects on the atomic level. 

Density functional theory is one of the most important and relevant methods for characterizing 

materials at the atomic level. For simulations of finite temperatures, molecular dynamics 

simulations are inevitable and different potentials can be used. If the positions of the atoms shall 

be directly accessible, core-shell potentials are preferable, for example. However, if large 
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supercells and long simulation times are to be realized, effective Hamiltonians are a suitable 

choice. Although these have a certain complexity, they provide outstanding results if 

parameterized correctly. To conclude this chapter, an example of the performance of such 

effective Hamiltonian simulations is given. For a supercell measuring 100x100x100 and 

comprising 5 million atoms to be simulated for 200 ps, a standard workstation with 18 cores is 

adequate, and the computation is finalized in under an hour. Achieving such high accuracy and 

performance with other potentials is almost implausible. 
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4 Computational Methods 
In this chapter, all computer-aided methods used in this thesis shall be described in detail. First 

of all, quantum mechanical methods mainly based on density functional theory (DFT) are 

considered. This method finds wide applicability in the simulation of effects on the atomic level 

and is, so to say, the foundation of the whole presented work. Therefore, a detailed description 

of the methodology is given, and the main components of DFT are explained. Since DFT is 

mainly related to static and 0 Kelvin properties, the basics of molecular dynamics (MD) 

simulations are also explained in the course of this chapter. Such simulations allow finite 

temperatures to be simulated and provide deep insight into the dynamics of atoms and their 

collective behavior. The range of possible properties to be simulated extends from local lattice 

effects to the simulation of permittivity as a function of frequency. First, the basics of MD 

simulations will be explained, and different thermostats will be discussed. As a basis for such 

simulations, one needs potentials for the description of the potential energy surface. Such 

potentials are mathematical constructs to describe the interaction between particles. There is a 

wide range of different approaches for this, but in this work, as previously stated, the well-tried 

method of effective Hamiltonians is extended and used. Such effective Hamiltonians are based 

on the idea of parameterizing the potential energy surface by means of so-called local modes. 

Since such potentials have a complex structure, first, the underlying theory is explained, and 

then the individual energy contributions are elaborated in detail. The required parameters for 

such an effective Hamiltonian can be determined entirely by means of DFT calculations. Owing 

to the fact that the parametrization is rather complex, the procedure of obtaining the parameters 

is explained in individual chapters for each of the investigated systems.  

4.1 Density Functional Theory 

In modern times, the application of quantum mechanical methods for the characterization of 

materials is indispensable. The basis for this is the so-called Schrödinger equation, which 

describes atoms, molecules, and crystal systems at the quantum mechanical level. The solution 

of this equation gives information about the energetic states of the system and allows to predict 

a variety of properties. Besides wave-function-based methods like Hartree-Fock, the 

application of DFT is predominant nowadays. This method is not only used by physicists and 

chemists but also by engineers, material scientists, geologists, and other scientists in related 

disciplines. The continuous development of high-performance computing centers makes it 

possible to describe even larger systems at the atomic level or to study a large number of 

different systems. This chapter will begin by explaining the basis of DFT, starting with the 

quantum mechanical description of many-particle systems, followed by an explanation of the 
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most important assumptions for DFT. The application of the Kohn-Sham formalism will be 

discussed, and a brief overview of plane-wave basis sets will be given. Additionally, the 

description of exchange-correlation energies will be presented, and the most important 

corresponding functionals will be discussed. 

4.1.1 Many Body Hamiltonian 

In order to understand DFT, the fundamental basis must first be laid at the quantum mechanical 

level. A system of different particles can be described energetically by a so-called many-particle 

Hamiltonian. In our case, we want to restrict ourselves to many-particle systems consisting of 

electrons and atomic nuclei. Such a system with 𝑀 atomic nuclei and 𝑁 electrons can be 

described by the Hamiltonian presented in Equation 11. Here ℏ is the reduced Planck constant. 

𝑀𝑗 the mass of the respective atomic nuclei. 𝑀𝑒 is the mass of the electrons. 𝑅𝑖𝑗 and 𝑟𝑖𝑗 represent 

the distances of the individual particles. 𝑍𝑖 describes the charge of the atomic nuclei and 𝑒 the 

elementary charge. The first term in Equation 11 denotes the kinetic energy of the atomic nuclei. 

The second term describes the Coulomb interaction between atomic nuclei. It follows the 

Coulomb interaction between atomic nuclei and electrons. The fourth term represents the 

kinetic energies of the electrons. The last term accounts for the electron-electron interaction. In 

principle, such a Hamiltonian fully describes a many-particle system at the quantum mechanical 

level. However, there are some challenges to overcome in order to actually obtain useful results 

from this quantum mechanically sound description. 
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(11) 

The above-mentioned many-particle Hamiltonian can now be used to formulate the time-

independent nonrelativistic Schrödinger equation as stated in Equation 12. Here, the 

Hamiltonian acts on the total wave function of the system. The total wave function is a function 

of all degrees of freedom, including the spatial coordinates of electrons and nuclei. Furthermore, 

the obtained equation represents an eigenvalue problem that has to be solved by searching for 

the wave function Ψ(𝐑1…𝐑M, 𝐫1…𝐫N) and the associated eigenvalue 𝐸. 

 

�̂�Ψ = 𝐸Ψ 
(12) 

At this point, we already encounter the first problem: an analytical solution to this equation is 

only possible for very simple problems like the hydrogen atom. All systems with several atomic 

nuclei and electrons require a numerical solution, but also, here, certain assumptions have to be 
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made, as will be seen in the next chapter. Most of the difficulties in this equation come from 

the electron-electron interaction, where the complexity increases strongly with increasing 

electron number. Furthermore, the expressions exchange energy, as well as correlation energy, 

get significance here, which carry special importance for a physically correct description of the 

total system. More about this topic can be found in the following chapters. 

4.1.2 Born Oppenheimer Approximation 

A step toward a solution to the above-mentioned Schrödinger equation is the application of the 

so-called Born-Oppenheimer approximation. The fact that electrons have a much smaller mass 

compared to the nuclei allows separating the electronic part from the nuclear part. That is, we 

can separate the contribution of electrons from the contribution of nuclei and obtain a new 

Hamiltonian which describes the electronic part of the system. The corresponding Hamiltonian 

for the electronic problem is stated in Equation 13. Here, three energy contributions are present. 

The kinetic energies of electrons as denoted by the first term. The electron-electron interactions 

are stated via the second term. The last term represents the interaction with an external potential, 

which in our case, is the interaction between electrons and nuclei. It becomes clear that the 

coordinates of the nuclei are also present in the electronic part of the Hamiltonian, but here they 

are only to be considered as parameters. 
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(13) 

This Hamiltonian can now be used to formulate the Schrödinger equation for the electronic part 

of a given system, as stated in Equation 14. The spin coordinate is omitted here to simplify the 

notation and focus the discussion on the main features of DFT. The electronic wave function 

Ψel(𝒓1…𝒓𝑁) differs from the total wave function Ψ(𝐑1…𝐑M, 𝐫1…𝐫N)  from above and 

includes only the spatial coordinates of the N electrons. 𝐸 represents the ground-state energy of 

the electronic Hamiltonian. Since the ground-state of this equation is independent of time, we 

can also speak here of the time-independent Schrödinger equation of the electronic part. 

 

�̂�elΨel = 𝐸Ψel 
(14) 

The electronic Schrödinger equation from above represents the central point of modern 

quantum chemistry. A variety of different theories have been developed to solve this equation 

numerically as efficiently and accurately as possible.  Even though in the following section the 
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focus will be on DFT, alternative approaches for solving this equation based on wave functions 

shall be discussed first. The simplest approach would be to write the electronic wave function 

as a product of individual single electron wave functions. Such an approach is also called 

Hartree product. However, the assumption to write the wave functions as a product would only 

be valid if the interaction between the electrons were switched off. But exactly this interaction 

is of great importance for the physically correct description. For further progress, we have to 

consider that electrons are subject to the Pauli principle, and therefore, the wave function must 

be antisymmetric. The Hartree product is anything but antisymmetric and thus cannot fulfill 

this requirement. A solution to this problem can be found in the construction of the wave 

function by means of a so-called Slater determinant. The construction again assumes individual 

single electron wave functions but forms an antisymmetric overall electronic wave function. 

This approach is the foundation for the Hartree-Fock method. Starting from the Slater 

construction, a formalism is derived to obtain a solution to the Schrödinger equation. The 

difficulty for this and all other solutions lies, as already mentioned, in the electron-electron 

interaction. Since the electrons influence each other and the potential is, therefore, always a 

function of the respective other electrons, the solution to this term is exceedingly complicated. 

Hartree and Fock provide a solution to this problem by introducing a new operator. The so-

called Fock operator. In simple words, the electrons no longer interact in pairs but with a field 

generated by all other electrons on average. This formalism represents a significant step toward 

a useful solution of the electronic Schrödinger equation and is still used in many quantum 

chemistry simulations today. A major advantage of this method is the exact calculation of the 

exchange energy of the system. However, the Hartree-Fock method does not properly account 

for the correlation between electrons. Therefore, in the course of time, additional methods have 

been developed which are based on Hartree-Fock and aim to take into account the correlation 

effects of the electrons. Examples are the configuration interaction (CI) method or the coupled 

cluster method. 

However, certain disadvantages of wave-function-based methods shall also be discussed here. 

A major challenge for the solution of the Schrödinger equation is the dimensionality of the 

corresponding wave function. For example, if we consider the molecule C2H6, we get a wave 

function with 54 dimensions (for each of the 18 electrons, 3 dimensions have to be considered). 

If we want to calculate 100 Au atoms, we get a function with more than 24000 dimensions. This 

means that wave-function-based methods are well suited for molecules and smaller ensembles 

of atoms but fail as soon as larger systems are to be calculated. In addition, such wave functions 

cannot be determined experimentally as a function of spatial coordinates. Nevertheless, there is 
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a quantity that can, in principle, be observed experimentally, namely the so-called electron 

density. The corresponding probability density is directly related to the wave-function and reads 

Ψel
∗ (𝒓1…𝒓𝑁)Ψel(𝒓1…𝒓𝑁). Here, the asterisk denotes the complex conjugate of the wave-

function. From that, it is possible to derive the electron density of a given system as stated in 

Equation 15, where 𝑁 represents the number of electrons. 

 

𝑛(𝒓) = 𝑁∫𝑑𝒓2…∫𝑑𝒓𝑁|Ψel(𝒓, 𝒓2…𝒓𝑁)|
2 

(15) 

The electron density is a key concept in quantum mechanics, as it reveals the likelihood of 

finding electrons in an infinitesimal element of space. What's intriguing is that the wave-

function determines the electron density and, as a result, provides abundant information about 

the system's fundamentals. However, while the wave-function has a 3N dimension, the electron 

density is simply a function of three coordinates. This disparity confers a significant advantage 

when employing the electron density as the focal point for addressing the Schrödinger equation. 

4.1.3 Hohenberg Kohn Theorems 

DFT is used in many fields nowadays, but the basis for it was already provided by Hohenberg 

and Kohn in the 1960s. The entire theoretical description can be traced back to two important 

Hohenberg-Kohn theorems [73,74]. For the actual application of these theorems, however, the 

so-called Kohn-Sham equations are needed, which will be discussed in the next chapter. The 

first fundamental theorem of Hohenberg and Kohn reads: 

“The ground-state energy from Schrödinger’s equation is a unique functional of the electron 

density.” [75] 

Consequently, the first theorem states that there is a direct connection between the ground state 

wave-function and the ground-state electron density. The connection between these two 

quantities is a so-called functional. A functional is defined by the application to a function 

whereby a number is returned as an answer. That means the ground state energy can be written 

as a functional of the electron density 𝐸[𝑛(𝒓)]. This theorem contains a very powerful 

statement, namely that by the ground state electron density, the properties of the ground state 

are uniquely determined. That is, a 3-dimensional function, the electron density, determines the 

ground state of the entire electronic system. Unfortunately, this theorem only states the 

existence of this functional but does not give any information about the actual form of the 

functional. In fact, this is part of the research, and much effort is being put into finding such a 
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functional, or at least developing good approximations, for any material or compound. The 

second fundamental theorem of Hohenberg and Kohn reads as follows: 

“The electron density that minimizes the energy of the overall functional is the true electron 

density corresponding to the full solution of the Schrödinger equation.” [75] 

This theorem contains an important property of the functional from the first theorem. It says 

that the functional provides the lowest energy if, and only if, the actual ground state density is 

put into the functional. In principle, this is nothing more than the so-called variational principle. 

That is, the electron density is varied until the minimum energy is reached. The corresponding 

mathematical expression is stated in Equation 16. 

 

𝐸0 ≤ 𝐸[𝑛(𝒓)] 
(16) 

In summary, these two theorems form the basis of DFT. The first theorem declares the existence 

of a universal functional, while the second one conveys the uniqueness of the ground state 

density. This framework is very powerful from the theoretical side, but it requires additional 

approaches and methods for actual applicability. Also, in this case, the electron-electron 

interaction causes the biggest problems. With some assumptions, however, it is possible to 

derive a formalism that allows an accurate calculation of quantum mechanical systems. 

4.1.4 Kohn Sham Equations 

A theory is only as good as its applicability. For DFT, the fundamental principles have been 

explained, but the question arises of how this formalism can be used to actually calculate the 

properties of a many-particle system. The answer can be found in the so-called Kohn-Sham 

equations. The idea of Kohn-Sham is based on a fictitious system of non-interacting particles 

which produce the same electron density as the interacting system. Here, analogous to the 

Hartree-Fock approach, the introduction of individual wave-functions Ψ𝑖 is used. In this 

context, these individual wave functions are often referred to as Kohn-Sham orbitals. The total 

electronic wave-function is constructed by using the Slater determinant approach as introduced 

before. Furthermore, it is possible to calculate the corresponding electron density as stated in 

Equation 17. The summation includes all individual wave-functions occupied by electrons. The 

factor of two arises from the fact that electrons can occupy each individual wave-function if 

they have opposite spins. 
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𝑛(𝒓) = 2∑Ψ𝑖
∗(𝒓)Ψi(𝒓)

𝑖

 

(17) 

The total energy of the system can now be formulated as a functional of the individual energy 

contributions, as evident in Equation 18. The first term is the kinetic energy of the system, 

followed by the interaction with an external potential. The third term is the so-called Hartree 

potential. The last term represents the exchange-correlation energy of the electrons. 

 

𝐸[𝑛(𝒓)] = 𝑇[𝑛(𝒓)] + ∫𝑉𝑒𝑥𝑡(𝒓)𝑛(𝒓)𝑑𝒓 + 𝐸𝐻[𝑛(𝒓)] + 𝐸𝑥𝑐[𝑛(𝒓)] 
(18) 

The next step is to provide a more detailed explanation of the individual energy 

contributions. The kinetic energy of the system can be expressed via the Kohn-Sham orbitals 

as stated below: 
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(19) 

The interaction with an external potential is to be calculated as indicated by the second term in 

Equation 18. The Hartree potential, in turn, can be expressed by Equation 20. The Hartree 

potential is determined directly from the electrostatic potential of the electron density. 
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(20) 

The previous energy terms are known and can be determined by the above equations. The last 

remaining term stands for the exchange-correlation energy. This term contains all quantum 

mechanical effects which are not considered by the first terms. Unfortunately, no analytical 

form can be derived for this energy contribution, and approximations are required to account 

for these effects. Let us assume we can provide a useful term for this energy. The question then 

arises as to how we obtain a solution to the problem formulated in the Schrödinger equation. 

Kohn and Sham provided the answer by establishing a set of equations that allowed them to 

find the correct electron density for the underlying problem. The Kohn-Sham equations are 

presented in Equation 21. These equations are based on the wave-functions, but in contrast to 

the conventional Schrödinger equation, the sums over the individual spatial coordinates are 

missing. This was achieved by using the single-electron wave-functions (Kohn-Sham orbitals) 

instead of the total electronic wave function. 
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[
ℏ2

2𝑀𝑒
∇2 + 𝑉(𝒓) + 𝑉𝐻(𝒓) + 𝑉𝑋𝐶(𝒓)]Ψ𝑖(𝒓) = 𝜖𝑖Ψ𝑖(𝒓) 

(21) 

The potentials of the Kohn-Sham equations are defined as follows. 𝑉(𝒓) represents the 

interactions of an electron with the potential of the atomic nuclei. This potential is also found 

in the conventional Schrödinger equation. The second term 𝑉𝐻(𝒓) is the Hartree potential. It 

accounts for the electrostatic repulsion between electrons and the total electron density. This 

term also includes a self-interaction since a considered electron is also part of the total electron 

density. Such an effect is unphysical and is therefore considered in the last term. This last term 

𝑉𝑋𝐶(𝒓) accounts for all effects not accounted for by the previous terms, such as exchange and 

correlation energies that occur due to the interaction of electrons. Formally, this potential can 

be written as a derivative with respect to the electron density, as evident in Equation 22. 

 
𝑉𝑋𝐶(𝒓) =

𝛿𝐸𝑋𝐶(𝒓)

𝛿𝑛(𝒓)
 

 
(22) 

Assuming there is an expression for the exchange-correlation energy, a complete procedure for 

solving the Kohn-Sham equations can now be established. First, an input electron density is 

generated. Subsequently, the Kohn-Sham equations can be solved by means of this electron 

density. This results in new Kohn-Sham orbitals. These orbitals can be used again to calculate 

a new electron density. Afterward, this electron density is compared with the initial electron 

density. If both are (almost) identical, then the electron density is the ground state density and 

can be used to calculate the total energy. If the densities do not match, the density is updated in 

a predetermined way, and the procedure starts again. Such a procedure is also called a self-

consistent procedure.  

However, there are still some open questions. For example, how is the exchange-correlation 

energy approximated, and what are the state-of-the-art approximations? Furthermore, the 

question of which functions can be used for the Kohn-Sham orbitals has to be answered. The 

answers to this question will be presented in the next two chapters. 

4.1.5 Exchange-Correlation Functionals 

An essential part of DFT is the description of the exchange-correlation energy. An exact 

determination of this energy is not yet achieved, and therefore, research in this area is of great 

interest. In the present time, however, there are a number of different approximations which 

allow an accurate solution of the Schrödinger equation for a wide range of molecules and 

materials. A well-known class of approximations is the so-called local-density approximation 
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(LDA) [76]. The obtained approximation for the exchange-correlation energy depends only on 

the value of the electron density at a given point in space. A common definition of the LDA 

approach can be found in Equation 23. Here, 𝜖𝑋𝐶 is the exchange-correlation energy per particle 

of a homogenous electron gas with 𝑛(𝒓) representing the electron density of the system. Hence, 

the exchange-correlation energy per particle at a given point 𝒓 is approximated by considering 

the exchange-correlation energy of a homogeneous electron gas of the same density 𝑛(𝒓). The 

LDA is a surprisingly effective estimate for the exchange-correlation energy and is still 

commonly utilized today. However, in the course of time, more sophisticated approximations 

based on LDA have been devised to enhance the description of the exchange-correlation 

energy [77]. 

 

𝐸𝑋𝐶
𝐿𝐷𝐴[𝑛(𝒓)] = ∫𝜖𝑋𝐶(𝑛)𝑛(𝒓)𝑑

3𝑟 
(23) 

An approximation that builds upon the LDA can be introduced by the inclusion of the gradient 

of the electron density. The gradient allows to include also non-local changes in the electron 

density. Such an approximation is generally called generalized gradient approximation 

(GGA)  [78–80] and has a wide range of applications in quantum chemistry. A formal definition 

of such a GGA functional can be seen in Equation 24. Here, the spin coordinate and its different 

electron densities have been omitted. Well-known examples of such GGA functionals would 

include Perdew-Wang (PW91) [78], Perdew-Burke-Enzerhof (PBE) [81], and revised PBE for 

solids (PBEsol) [82]. 

 

𝐸𝑋𝐶
𝐺𝐺𝐴[𝑛(𝒓)] = ∫𝜖𝑋𝐶(𝑛, ∇𝑛)𝑛(𝒓)𝑑

3𝑟 
(24) 

A commonly known problem of LDA and GGA functionals is the underestimation of bandgaps 

in semiconductors and insulators. To solve this problem and others, the available functionals 

are constantly evolving. For example, there are so-called meta-GGA functionals in which the 

second derivative of the electron density is also taken into account. Furthermore, the 

determination of an accurate exchange energy is often a challenge. This can be remedied by 

including a certain part of the exact exchange energy obtained within the Hartree-Fock 

approximation. Such functionals are generally called hybrid functionals. 

4.1.6 Plane Wave Basis Sets 

Not yet addressed is the question of how the electronic wavefunction in the framework of DFT 

should be formulated mathematically to obtain reasonable results. The choice of these functions 

is also called the choice of a basis set. Basically, there are two fundamentally different 
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approaches. Either the basis set is expressed by localized functions like atomic orbitals, or one 

chooses non-localized functions, which are also called plane waves. The former method is 

commonly utilized in quantum chemistry and is frequently selected for Hartree-Fock methods 

as well as DFT. The advantage of the localized basis functions is the description of core 

electrons and, therefore, is also called an all-electron method. If one uses a plane-wave basis 

set, such core electrons are difficult to describe, and so-called pseudopotentials are needed. The 

plane-wave basis sets are often used in the calculation of periodic structures. The reason for this 

is explained further below. However, it should also be mentioned that localized basis functions 

can also be used for periodic systems with the help of a Bloch construction. Since in this work 

mainly periodic structures are worked with, and the applied DFT packages are all based on 

plane-wave basis sets, this method shall be explained in more detail below. 

The foundation for plane-wave basis functions is the so-called Bloch theorem [83]. The theorem 

tells about the type of solutions of the stationary Schrödinger equation for a periodic potential. 

The solutions, thereby, are of the shape represented in Equation 25. Here, 𝒌 is a wave vector 

and 𝑢𝒌(𝒓) is a periodic function with the period 𝑢𝒌(𝒓 + 𝑹), where 𝑹 denotes a translational 

vector. 

 

𝜙𝒌(𝒓) = 𝑒
𝑖𝒌𝒓𝑢𝒌(𝒓) 

(25) 

As a further step, the periodic functions 𝑢𝒌(𝒓) can now be expressed by a set of plane waves. 

This leads to Equation 26, where the coefficients 𝑐𝑮
𝒌 have been introduced, and the reciprocal 

translational vector 𝑮 has been added. The functions obtained in this way have the following 

properties. They are periodic, orthonormal, and complete. Such a definition also requires that 

the Schrödinger equation must be solved for each chosen k-point in the reciprocal space. 

 
𝜙𝒌(𝒓) =∑𝑐𝑮

𝒌𝑒𝑖(𝒌+𝑮)𝒓

𝑮

 

(26) 

The reciprocal translation vector 𝑮 = 𝑚1𝒃1 +𝑚2𝒃2 +𝑚3𝒃3 is defined by the reciprocal 

lattice vectors 𝒃𝑖 and integer multiples (𝑚1, 𝑚2, 𝑚3) thereof. The definition of the plane-wave 

basis set and the summation over all possible 𝑮 vectors involved implies that the calculation of 

the solution of the Schrödinger equation requires an infinite sum. However, this cannot be 

implemented in reality, and thus a trade-off must be accepted. A common method to get rid of 

the infinite sum is to restrict the kinetic energy of the solutions. Since low-energy solutions are 

more important than high-energy solutions, such a constraint is acceptable. The so-called cutoff 
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energy can be found in Equation 27. That is, only wave-functions up to a certain energy under 

the limiting 𝐺𝑐𝑢𝑡 vector are considered. 

 

𝐸𝑐𝑢𝑡𝑜𝑓𝑓 =
ℏ2

2𝑀𝑒
𝐺𝑐𝑢𝑡
2  

(27) 

The introduction of the cutoff energy limits the infinite sum, and only a finite number of wave 

functions are taken into account in the Schrödinger equation, as seen in the equation below: 

 

𝜙𝒌(𝒓) = ∑ 𝑐𝑮
𝒌𝑒𝑖(𝒌+𝑮)𝒓

|𝑮+𝒌|<𝐺𝑐𝑢𝑡

 

(28) 

The introduction of cutoff energy, however, also has certain effects on the solution of the 

Schrödinger equation.  For example, valence electrons can still be described very accurately 

using the cutoff, but the description of electrons close to the nucleus becomes worse or even 

impossible. To solve this problem, so-called pseudopotentials are used. These pseudopotentials 

replace the electron density of the electrons close to the nucleus with the help of an effective 

potential. It is important that the pseudopotential is defined in a way that the physical and 

mathematical properties of the core electrons are captured. Therefore, only well-parameterized 

pseudopotentials lead to a meaningful solution of the Schrödinger equation. 

In summary, the following important aspects of a DFT calculation can be enumerated. The 

choice of the k-grid and, thus, the number of points in the reciprocal space at which the 

Schrödinger equation is solved is of particular importance. This number is not known a priori 

and must be determined by a convergence test. Which value or property is to converge is thereby 

due to the respective use of the results. For example, that could include a convergence test 

considering the total energy. Furthermore, the choice of correct cutoff energy is an important 

criterion. Here, convergence must also be checked, and a suitable value must be found 

according to requirements. Finally, the applied pseudopotentials play a decisive role and are 

usually included in a solid DFT package. 

4.2 Molecular Dynamics 

In this chapter, the theoretical basis of molecular dynamics simulations will be presented. The 

idea of such simulations is based on the description of interacting atoms with the help of 

Newton's equations of motion. The result is a time-resolved trajectory from which the desired 

physical properties can be derived. The beauty of this method is that such simulations are very 

similar to experiments. Different ensembles can be studied, different temperatures or pressures 
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can be applied, or external fields can be added. An important role is assigned to the so-called 

potentials, which describe the interaction of the atoms on a mathematical level. In this work, an 

effective Hamiltonian operator is used as potential. Such an effective Hamiltonian differs from 

conventional potentials since the smallest unit is no longer the atom but the unit cell. More 

details on this model can be found in Chapter 4.3. Even though the potential used no longer has 

the atom as its smallest unit, the general methodology of molecular dynamics simulations can 

be applied here as well. Therefore, the following description of the fundamentals is based on a 

conventional (i.e. atomic-based) potential. 

4.2.1 Newton’s Equations of Motion 

The foundation of molecular dynamics simulations is the solution of Newton’s equations of 

motion, as illustrated in Equation 29. Here, 𝑭 is the force acting on the i-th particle. 𝑚𝑖 

represents the corresponding mass and 𝒓𝑖 is the position vector of the particles. This equation 

is a second-order differential equation. To obtain a time-dependent trajectory for the individual 

particles, this equation must be integrated. The particles considered here do not play a role in 

the solution of the equations. It can be an ensemble of atoms, which are considered in a classical 

way. But also, whole galaxies can be simulated by such a description. It is only important that 

the boundary conditions, as well as the interactions among the particles, are determined. 

 

𝑭𝑖 = 𝑚𝑖
𝑑2𝒓𝑖(𝑡)

𝑑𝑡2
 

(29) 

The integration of the equations of motion represents the central point of molecular dynamics 

simulations. Therefore, two common and quite simple methods for integration will be discussed 

here. These are called Verlet [84] and Leap-Frog [85] algorithms. Both can be used to simulate 

a microcanonical ensemble. That is, constant particle number 𝑁, constant volume 𝑉, and 

constant energy 𝐸, in short 𝑁𝑉𝐸-ensemble. For the simulation of canonical ensembles, a 

thermostat is also needed, which will be described in the next chapter. The integration of the 

equations of motion in a simulation is done over discrete time steps 𝜏. This means that, for each 

time step, the particle positions, the velocity, and the forces acting on the particles have to be 

determined. The basis for the Verlet algorithm is a Taylor expansion of the spatial coordinate 

of the particles, which is terminated after the 3rd order. The resulting relationship between the 

new and old position of the particles can be seen in Equation 30. The Verlet algorithm does not 

rely on updating the velocity, as it only utilizes the velocity at the first time step. 

 
𝒓(𝑡 + 𝜏) = 2𝒓(𝑡) − 𝒓(𝑡 − 𝜏) + 𝜏2�̈�(𝑡) 

(30) 
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The Verlet algorithm is the basis for the more robust Leap-Frog algorithm. The name for this 

method comes from the fact that the spatial coordinate and the velocity are updated at different 

times. That is, as shown in Equation 31, the spatial coordinate is calculated at each time step 𝜏. 

 
𝒓(𝑡 + 𝜏) = 𝒓(𝑡) + 𝜏𝒗 (𝑡 +

𝜏

2
) 

(31) 

The Leap-Frog algorithm also includes the velocity, but the computation of the new velocity 

takes place at time steps shifted by 𝜏/2, as can be seen in the definition below: 

 
𝒗 (𝑡 +

𝜏

2
) = 𝒗 (𝑡 −

𝜏

2
) + 𝜏�̈�(𝑡) 

(32) 

The velocity for the first iteration can be calculated by using the following equation: 

 
𝒗 (
𝜏

2
) = 𝒗(0) +

𝜏

2
�̈�(0) 

(33) 

An important point for integration in a simulation is the choice of the time step. The latter must 

be chosen in such a way that the underlying physics is reproduced accurately. However, care 

must also be taken that the time step is not chosen too small. Otherwise, the total times to be 

simulated will be greatly reduced. In most cases, tests are necessary to select a suitable time 

step. 

4.2.2 Canonical Ensemble 

The integration methods shown in the previous chapters are based on a microcanonical 

ensemble. However, it is often necessary to keep variables other than the number of particles, 

volume, or energy constant. For example, many experiments are temperature dependent, and 

one would therefore want to simulate systems at a particular temperature. Such a system is also 

called a canonical ensemble, short NVT ensemble. However, one may also want to simulate a 

constant temperature and pressure. This leads to an isothermal-isobaric (NPT) ensemble. For 

this work, the canonical ensemble is mainly used and will therefore be explained in more detail. 

The canonical ensemble covers all possible states of a system in thermal equilibrium at a 

constant temperature that interacts with a heat bath. Energy can be exchanged between the 

system and the heat bath, i.e., the energy is no longer constant in this case. The absolute 

temperature is introduced as a new constant variable in addition to the number of particles and 

the volume. The temperature 𝑇(𝑡) of an ensemble of particles at a given time can be calculated 

using Equation 34. Here 𝑘𝐵 is the Boltzmann constant, and 𝑁𝑓 is the number of degrees of 
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freedom. 𝑚𝑖 is the mass and 𝑣𝑖,𝛼 the velocity of the individual particles. 𝛼 denotes the Cartesian 

component of the velocity vector. 

 

𝑇(𝑡) =
1

𝑘𝐵𝑁𝑓
∑𝑚𝑖𝑣𝑖,𝛼

2 (𝑡)

𝑖,𝛼

 

(34) 

For the canonical ensemble, it is important to keep the temperature constant. The methods used 

for this purpose are also called thermostats. In the following, different thermostats and their 

basic principles will be presented. The first thermostat can be realized by scaling the velocity 

of the particles, which is therefore called velocity scaling. For this purpose, a scaling factor 𝜆 

is introduced, which scales the velocities of the system. The corresponding mathematical 

expression for the temperature is given in Equation 35. 

 

𝑇𝑛𝑒𝑤 =
1

𝑘𝐵𝑁𝑓
∑𝑚𝑖 (𝜆𝑣𝑖,𝛼(𝑡))

2

𝑖,𝛼

 

(35) 

The difference between scaled temperature and old temperature can be represented by the 

following relation: 

 
Δ𝑇 = (𝜆2 − 1)𝑇(𝑡) (36) 

The value for the scaling factor can be calculated using the relationship evident in Equation 37. 

Here,  𝑇0 is the desired temperature, and 𝑇(𝑡) is the actual temperature of the time step 𝑡. 

 

𝜆 = √
𝑇0
𝑇(𝑡)

 
(37) 

This thermostat is very simple to implement, but it does not allow fluctuations in temperature. 

However, these are part of the canonical ensemble, and thus the velocity scaling algorithm 

cannot sample the canonical ensemble. Another thermostat can be found in the so-called Nose-

Poincare method [86,87]. This approach is based on the introduction of additional degrees of 

freedom, which belong to the heat bath and allow fluctuations of the energy of the system. The 

basis for this is the work of Nose [88,89], who introduced one additional degree of freedom. 

This enables sampling analytically from the canonical ensemble in an ergodic system. Based 

on the work of Nose, different approaches have been developed over the years [86,87,89,90], 

including the Nose-Poincare Hamiltonian [86]. Here, based on the Hamiltonian defined by 

Nose [88,89], a new Hamiltonian is constructed without using a Poincare time 

transformation [91,92]. This new Hamiltonian allows for keeping the temperature constant and 
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also ensures a correct sampling in the canonical ensemble. Since the derivation goes far beyond 

the knowledge required here, only the basic principles will be discussed. The Nose-Poincare 

Hamiltonian is presented in Equation 38. 𝑝𝑖 is the canonical momentum of the particles, where 

the tilde is used to distinguish it from the real momentum. 𝑞 is the associated position variable. 

𝑚𝑖 represents the mass of the particles and 𝑄 denotes an artificial mass corresponding to an 

extended position variable 𝑠. 𝜋 is introduced as canonical momenta associated with the 

variable 𝑠. 𝑘𝐵 stands for the Boltzmann constant and 𝑇 states the temperature of the system. 𝑔 

represents the degrees of freedom of the real system. 𝐻0 denotes a constant where the value is 

chosen so that 𝐻 is zero when evaluated at initial conditions. 

 

𝐻 = (∑
𝑝𝑖

2𝑚𝑖𝑠2
+ 𝑉(𝑞) +

𝜋2

2𝑄
+ 𝑔𝑘𝐵𝑇𝑙𝑛(𝑠) − 𝐻0 

𝑖

) 𝑠  

(38) 

As evident in Equation 38, additional degrees of freedom are introduced here to implement the 

exchange with the heat bath. A detailed description of the approach can be found in the work 

of Bond et al. [86]. The implementation of such an approach for the application in molecular 

dynamics simulations is very well described in the work of Kleinerman et al. [87].  

4.2.3 Statistical Quantities 

In this chapter, the statistical quantities which can be calculated from molecular dynamics 

simulations will be described. First of all, it must be stated that the result of such a simulation 

is a trajectory of positions along the simulation time. However, since, in our case, effective 

Hamiltonians are used as a basis, the quantities of the simulation are somewhat different. A 

detailed explanation of the basic quantities for effective Hamiltonians will be given in 

Chapter 4.3. In contrast to the trajectory of atomic positions, simulations using effective 

Hamiltonians consider the amplitude of so-called local modes [23,25,26]. This amplitude is 

directly connected to the atomic displacements by the eigenvectors of the phonon modes. That 

is, for a supercell of 𝑁 unit cells, a vector 𝒖(𝑹) is defined for the amplitude of the local mode 

in each cell [26,27]. Here, 𝑹 denotes the position of the unit cell within the supercell. Of course, 

there are also other variables in this context, but they are not relevant for the calculation of the 

following properties. Furthermore, the dipole moment can be calculated with the local mode 

and its amplitude. Here, the Born effective charge 𝑍∗ associated with the local mode are used. 

Thus, for a local unit cell in the supercell, the dipole moment is given by 𝑝(𝑹) = 𝑍∗𝒖(𝑹). In 

other words, the result of a simulation is a data set of amplitudes 𝒖𝑡(𝑹) in a supercell for each 

time step 𝑡 considered. This collection of amplitudes can now be used to calculate statistical 

quantities for relevant properties. The first important quantity that can be calculated is the 
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expectation value of the amplitude for the entire unit cell averaged over time. The 

corresponding mathematical expression is given in Equation 39. Here, the average is first taken 

over the supercell and then the time average is determined. 𝑁 is the number of time steps over 

which is averaged. 𝑁𝑡 is the number of time steps and 𝑁 is the number of unit cells used to 

calculate the mean value. 𝛼 denotes the Cartesian component of the amplitude vector. 

 

〈𝑢𝛼〉 =
1

𝑁𝑡
∑

1

𝑁
∑𝑢𝛼,𝑡(𝑹)

𝑁

𝑹

𝑁𝑡

𝑡

 

(39) 

This temporal and local mean value now also allows to directly calculate the temporally and 

spatially averaged dipole moment of the supercell. The corresponding mathematical expression 

for the Cartesian components of the dipole moment 𝑝𝛼 is provided in Equation 40. Here, 𝑁 is 

again the number of unit cells in the supercell and 𝑉 the volume of the entire supercell. 

 

𝑝𝛼 =
𝑁𝑍∗

𝑉
〈𝑢𝛼〉 (40) 

The molecular dynamics simulations performed in this work are mainly aimed at determining 

the dielectric properties of ferroelectric materials. An essential quantity here is the so-called 

susceptibility, which specifies the ability of polarization of the material upon application of an 

electric field. This quantity is a tensor of rank two and can be determined in different ways. The 

first method used in this work is based on the response of a system when an external field is 

applied. The relation between polarization and an electric field is given by 𝑷 = 𝜒𝜖0𝑬. Here, 𝜖0 

stands for the vacuum permittivity. This relation can be transformed under the condition that 

the applied electric field is small, which allows the response of the system and, thus, the 

susceptibility to be calculated. The expression for this calculation, using the fact that the 

susceptibility is a rank two tensor,  can be found in Equation 41. 𝛼 and 𝛽 denote the Cartesian 

components of the vectors. 〈𝑢𝛼〉𝑒𝑥𝑡 represents the averaged amplitude of the supercell when 

applying an external electric field 𝐸𝑒𝑥𝑡,𝛽. Since in this work, mainly ferroelectric materials are 

investigated, and these materials can exhibit spontaneous polarization, a reference simulation 

has to be performed for the determination of the susceptibility as well. The reference simulation 

is performed without an electric field and then subtracted from the response of the excited 

simulation. The associated averaged amplitude is denoted by 〈𝑢𝛼〉𝑟𝑒𝑓. For the further course of 

this work, this method is also called the direct method and represents the static limit of the 

susceptibility [31]. 
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𝜒𝛼𝛽
𝑑𝑖𝑟𝑒𝑐𝑡 =

𝑁𝑍∗(〈𝑢𝛼〉𝑒𝑥𝑡 − 〈𝑢𝛼〉𝑟𝑒𝑓)

𝑉𝜖0𝐸𝑒𝑥𝑡,𝛽
 

(41) 

Another important method for determining the susceptibility can be obtained from the 

fluctuations of the dipoles. The method uses the correlation functions of the amplitudes to 

determine the susceptibility, which can be found in Equation 42. Here, 𝑇 represents the 

temperature and 𝑘𝐵 the Boltzmann constant. This susceptibility can also be referred to as the 

low-frequency (nearly-static) susceptibility [31] of a system.  

 

𝜒𝛼𝛽
𝐶𝐹 =

(𝑁𝑍∗)2

𝑉𝜖0𝑘𝐵𝑇
(〈𝑢𝛼𝑢𝛽〉 − 〈𝑢𝛼〉〈𝑢𝛽〉) 

(42) 

For many applications, the susceptibility as a function of frequency is of interest. Furthermore, 

this quantity also plays an important role in the investigation of material properties. This way, 

the response of the system at different excitation frequencies can be studied. The calculation of 

this quantity requires somewhat more effort. On the one hand, the required equation is a bit 

more complicated. On the other hand, the simulations have to be adjusted for the desired 

frequency range as well. Basically, this means that the lower the considered frequency shall be, 

the longer the underlying simulation has to be performed. For example, if a frequency window 

of 1 GHz to 1 THz is to be investigated, the simulation must last at least for 1 ns, and the finite 

time step must be much smaller than 1 ps. From the trajectory, the frequency-dependent 

susceptibility can then be calculated using Equation 43. Here, 𝑓 represents the frequency, and 

𝑖 denotes the imaginary unit. The first term in the parenthesis is already known from 

Equation 42 and gives the nearly static case of the susceptibility. The second term includes two 

important components. First, the autocorrelation function of the amplitudes and second, the 

Fourier transform of it. The autocorrelation function describes the correlation of the dipoles 

with itself at an earlier time and can be easily implemented by using fast Fourier transforms 

(FFTs). As the Fourier transform of the autocorrelation is also calculated on discrete sampling 

points, FFT can be applied here as well. 

 

𝜒𝛼𝛽(𝑓) =
(𝑁𝑍∗)2

𝑉𝜖0𝑘𝐵𝑇
[〈𝑢𝛼(𝑡)𝑢𝛽(𝑡)〉 + 𝑖2𝜋𝑓∫ 𝑒𝑖2𝜋𝑓𝑡〈𝑢𝛼(𝑡)𝑢𝛽(0)〉𝑑𝑡

∞

0

] 
(43) 

A quantity related to susceptibility is permittivity. The permittivity is used, for example, to 

describe the polarizability of a dielectric. Consequently, the electrical capacitance of a material 

also depends directly on the permittivity. Thus, if the energy storage properties of dielectrics 

are required, the permittivity provides a straightforward indication of their storage capability. 
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The permittivity can be calculated by the relation to the susceptibility shown below, where 𝛿𝛼𝛽 

denotes the Kronecker delta: 

 
𝜖𝛼𝛽 = 𝛿𝛼𝛽 + 𝜒𝛼𝛽 

(44) 

The meaning of the calculated susceptibility or permittivity should also be discussed here. 

Basically, these quantities are composed of different contributions. The contributions which are 

included here refer mainly to the ionic polarization. The contributions from the displacements 

of the electronic shells are indirectly included in the calculation of the local dipole moments via 

the Born effective charges. The latter was obtained by first-principles calculations in the 

parameterization of the effective Hamiltonian. However, these contributions are not actively 

considered in the simulations, and therefore no electronic resonances can be observed in the 

frequency-dependent susceptibility. For this work, this is of no consequence since the 

investigated phenomena in the studied systems are caused by the relaxation of dipoles, and 

these are described very well by the effective Hamiltonian. 

4.3 Effective Hamiltonians 

As already mentioned in the chapter about molecular dynamics simulations, potentials 

describing the interactions between the particles are needed for the application of such 

simulations. There is a wide range of different approaches to formulate the interaction 

mathematically. On an atomic basis, these include pair potentials, many-particle potentials, or 

so-called force fields. A very well-known pair potential is, for example, the Lennard-

Jones [58,59] potential which consists of an attractive and a repulsive term. In the course of 

time, however, much more complex models have been developed to provide a more accurate 

description of the interaction. All these potentials are based on an atomistic basis, i.e., the 

interaction between individual atoms is described. In this work, a fundamentally different 

approach is used. The approach is based on so-called effective Hamiltonians for the 

mathematical description of the potential energy surface. The basic idea is the formulation of a 

potential that does not use the atoms as a basis but a local basis defined by a subspace of the 

phonon band structure. The associated parameters can be entirely determined by DFT 

calculations. The foundation for defining such a Hamiltonian was established in the 1990s by 

the works of Rabe and Waghmare [22] as well as Zhong, Vanderbilt, and Rabe [23]. In the 

beginning, this approach was a mean-field theory which was later extended to a local-mode 

theory [25]. Having proved its effectiveness over time, this approach was revised in the works 

of Nishimatsu et al. [26,27], with certain terms being innovated. In addition to numerous 
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applications for the simulation of pure [26–28] and substituted systems [29,30,32], work has 

also been done to increase the accuracy of the description of the potential energy surface. The 

work of Paul et al. [28] demonstrates the inclusion of anharmonic couplings to higher energy 

phonons, which have a positive effect on several simulated properties. This work serves as the 

foundation for the expansion of the approach outlined in this thesis, which incorporates an even 

greater number of anharmonic terms. Full details on this extension can be found further below 

and in the enclosed publications. In this chapter, the foundation for effective Hamiltonians via 

the so-called Lattice Wannier functions shall first be laid. This is followed by the definition of 

an effective Hamiltonian for the application to perovskite structures. Subsequently, all 

accompanying energy contributions are explained in detail, and the advantages and 

disadvantages of this approach are pointed out. 

4.3.1 Lattice-Wannier Functions 

The fundamental idea of effective Hamiltonians is based on the description of the potential 

energy surface by a local basis set. In principle, a subspace of the phonon band structure is 

represented where this subspace should contain the contributions important for the lattice 

distortion. Analogous to electronic Wannier functions, a local basis can also be constructed for 

phonons. In the following, this local basis set is also called Lattice-Wannier functions (LWF). 

The derivation here is based on the application of group theory and the decomposition of the 

ionic displacement space into invariant subspaces. Since the derivation goes far beyond the aim 

of this paper, only the most important points are explained. For more details, please refer to the 

valuable work of Rabe and Waghmare [22]. This work also provides the basis for the derivation 

presented here. 

After the decomposition of the ionic displacement space into invariant subspaces spanned by 

one or more branches of the phonon band structure, basis vectors can be defined for each 

subregion. These basis vectors combined represent the whole ionic displacement space. The 

basis vectors can be expressed by real numbers 𝜉Λ𝑙𝑹𝑖 and represent the coordinates of a certain 

configuration. Here Λ represents the index of the band subspace and 𝑛𝑠 it the total number of 

band subspaces. 𝑙 is the index which gives information about the multiplicity of the subspace 

and 𝑹𝑖 are the lattice vectors. These basis vectors are the analog of electronic Wannier 

functions. In further consequence, a Taylor expansion of the lattice energy can now be 

performed. The quadratic term of this expansion around a reference structure can be seen in 

Equation 45. Here, the conventional coordinates are already replaced by the local basis 
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functions. The sum runs over all subspaces 𝑛𝑠. An important feature of this expansion is that 

there are no cross-terms between the individual band subspaces. 

 

𝐻𝑙𝑎𝑡({𝜉Λ𝑙𝑹𝑖}) =∑𝐻Λ({𝜉Λ𝑙𝑹𝑖})  

𝑛𝑠

Λ

 
(45) 

The expression for the contributions of the individual subspaces is provided in Equation 46. 

Here, the number of branches 𝑛Λ in each subspace is summed. The second sum is over the 

number of unit cells 𝑁. The newly introduced quantity 𝑎𝑙𝑖𝑙′𝑗
Λ  represents associated coefficients. 

 

𝐻Λ({𝜉Λ𝑙𝑹𝑖}) =∑∑𝑎𝑙𝑖𝑙′𝑗
Λ

𝑁

𝑖,𝑗

 

𝑛Λ

𝑙,𝑙′

𝜉Λ𝑙𝑹𝑖𝜉Λ𝑙′𝑹𝑗 

(46) 

Based on these equations, an effective Hamiltonian can now be developed. First of all, a 

subspace must be chosen as a symmetry-invariant subspace. In this invariant subspace, the 

effective Hamiltonian acts. In principle, this subspace should be chosen as small as possible, 

but consider all modes that are important for the energetic description of low energy 

configurations. The choice of the modes usually includes unstable modes, which are responsible 

for driving the structural phase transitions of the system. In this context, higher orders of the 

branches must be taken into account in order to describe these transitions correctly. 

Subsequently, the effective Hamiltonian is assumed to act on a single subspace Λ0 and thus the 

following approximation can be derived for the lattice energy: 

 
𝐻𝑙𝑎𝑡 ≈ 𝐻𝑒𝑓𝑓({𝜉Λ0𝑙𝑹𝑖}) + ∑ 𝐻Λ({𝜉Λ𝑙𝑹𝑖})

Λ≠Λ0

 

(47) 

An important property of this approximation is that anharmonic terms are present only in the 

effective part. Furthermore, no cross-terms occur between the selected subspace Λ0 and the 

other subspaces. This has the implication that the degrees of freedom which do not appear in 

the effective part can be integrated analytically. The question now arises of how an effective 

Hamiltonian can be derived from this approximation, which can actually be used in a 

simulation. For this purpose, a Taylor expansion with respect to the symmetry invariant 

combinations of the basis-functions must be carried out. How such an expansion looks and how 

an effective Hamiltonian for perovskite structures can be derived from it will be described in 

detail in the next chapter. 
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4.3.2 General Definition 

In the course of this chapter, the fundamental approaches already derived will be used to 

formulate an effective Hamiltonian. The basis of the first part of the explanations presented 

here is the work of King-Smith and Vanderbilt [24]. This work shows a systematic derivation 

of a theoretical approach to describe the potential energy surface by choosing an appropriate 

local basis. Even if the actual effective Hamiltonians are based on a local-mode theory and the 

original formalism is a mean-field theory, it does not harm to sketch parts of the original idea 

first. Further below, a detailed description of actual Hamiltonians and their corresponding 

energy contributions is given. The starting point of the original formalism is the idea that the 

lattice energy of a cubic ABO3 perovskite can be described by the 15 displacement coordinates 

𝑣𝛼
𝜏 and six additional strain variables 𝜂𝑖. Here, 𝜏 denotes the index of the atoms, and 𝛼 represents 

the Cartesian component of the displacement. An important property in an inversion symmetric 

structure is the following relationship: 𝐸({𝜂𝑖}, {𝑣𝛼
𝜏}) = 𝐸({𝜂𝑖}, {−𝑣𝛼

𝜏}). This relation states that 

the energy is the same when an atom is displaced in a positive or negative direction from the 

nominal position. Consequently, the lattice energy of the system can be divided into four 

principal contributions, as evident in Equation 48. Here, 𝐸0 is the energy of the undistorted 

reference structure. 𝐸𝑑𝑖𝑠𝑝 denotes the energy change purely from atomic displacements. 𝐸𝑒𝑙𝑎𝑠 

accounts for energy contributions exclusively from strain and 𝐸𝑖𝑛𝑡 includes all interactions 

between displacements and strain. 

 
𝐸 = 𝐸0 + 𝐸𝑑𝑖𝑠𝑝({𝑣𝛼

𝜏}) + 𝐸𝑒𝑙𝑎𝑠({𝜂𝑖}) + 𝐸
𝑖𝑛𝑡({𝜂𝑖}, {𝑣𝛼

𝜏}) 
(48) 

The elastic energy for a cubic system can be simply described up to the second order by the 

expression given in Equation 49. Here, 𝐵11, 𝐵12 and 𝐵44 are the elastic constants multiplied by 

the volume of the unit cell. 

 
𝐸𝑒𝑙𝑎𝑠({𝜂𝑖}) =

1

2
𝐵11(𝜂1

2 + 𝜂2
2 + 𝜂3

2) + 𝐵12(𝜂1𝜂2 + 𝜂2𝜂3 + 𝜂3𝜂1) 

+
1

2
𝐵44(𝜂4

2 + 𝜂5
2 + 𝜂6

2) 

 
(49) 

As a next step, the energy of the displacements is to be considered. This contribution can be 

expressed by a Taylor expansion where Equation 50 illustrates the lowest term of the expansion. 

The matrix 𝐷𝛼,𝛽
𝜏,𝜏′

 is the so-called second-order force-constant matrix. 
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𝐸𝑑𝑖𝑠𝑝({𝑣𝛼
𝜏}) ≈

1

2
∑

𝜕𝐸

𝜕𝑣𝛼
𝜏𝜕𝑣𝛽

𝜏′
𝑣𝛼
𝜏𝑣𝛽
𝜏′ =

𝜏,𝜏′,𝛼,𝛽

1

2
∑ 𝐷𝛼,𝛽

𝜏,𝜏′𝑣𝛼
𝜏𝑣𝛽
𝜏′

𝜏,𝜏′,𝛼,𝛽

 

(50) 

The force-constant matrix can now be used to formulate an eigenvalue problem with 

eigenvalues 𝜆(𝑗) and eigenvectors 𝜉𝛼
𝜏(𝑗, 𝛾), as stated in Equation 51. The index 𝑗 numbers the 

solutions of the eigenvalue problem. This eigenvalue problem should not be confused with the 

solution of the dynamical matrix, where, unlike here, the masses are also considered. The 

eigenvectors of the eigenvalue problem presented in Equation 51 represent, in principle, the 

local basis functions from the previous chapter. Therefore, they are of utmost importance for 

the construction of the effective Hamiltonian. 

 
∑𝐷𝛼,𝛽

𝜏,𝜏′𝜉𝛽
𝜏′(𝑗, 𝛾) = 𝜆(𝑗)𝜉𝛼

𝜏(𝑗, 𝛾)

𝛽𝜏′

 
(51) 

To continue with the derivation of the formalism, another important relation has to be 

established first. The displacements 𝑣𝛼
𝜏 can be expressed by the amplitudes 𝑢𝛼

𝑗
 of the 

eigenmodes where the relation is made via the eigenvectors 𝜉𝛼
𝜏(𝑗, 𝛼). The corresponding 

mathematical expression is stated below: 

 
𝑢𝛼
𝑗
=∑𝜉𝛼

𝜏(𝑗, 𝛼)𝑣𝛼
𝜏

𝜏

 

(52) 

This relation can now be used to express the displacement energy in a straightforward manner 

by the eigenvalues and amplitudes as presented in Equation 53. 

 
𝐸𝑑𝑖𝑠𝑝 =

1

2
∑𝜆(𝑗)∑𝑢𝛼

𝑗
𝑢𝛼
𝑗

𝛼𝑗

 

(53) 

Equations 52 and 53 lead to an important point that was already mentioned in the previous 

chapter, namely, which subspace of phonons should be used for the construction of the 

Hamiltonian. For this purpose, the phonon modes present in the cubic ABO3 structure must first 

be discussed. Due to the cubic symmetry, the solutions of the eigenvalue problem reduce from 

15 to 5 eigenvalues and eigenvectors. These five eigenvalues are degenerate and therefore yield 

the same values for the Cartesian directions (𝑥,𝑦,𝑧). The occurring phonon modes can be 

characterized by their symmetry. One of the five degenerate modes is the acoustic mode with 

zero frequency in the Brillouin zone center. It is followed by a mode with Γ25 symmetry. 

Finally, there are three modes, with Γ15 symmetry. Without further information, it is difficult to 

predict which of these phonon modes have the largest influence on structural distortions of the 
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system. Experimentally it is observed in such systems that the Γ15 modes are responsible for 

ferroelectric transitions [24]. If one relies on pure theory, DFT calculations can help. For 

example, if BaTiO3 is found that one of these Γ15 modes has an imaginary frequency, indicating 

instability of the system [23,24,28]. It also shows an overlap of the eigenvector with the 

structural changes in the system [28]. Such an imaginary frequency mode is also often called a 

soft-mode. Consequently, this mode can be identified as the main cause of structural 

deformation and thus used as the basis for developing the effective Hamiltonian. For the 

theoretical description of the model, however, the choice of the mode plays a subordinate role 

but only finds its importance in the parameterization by DFT.  

To continue with the derivation of the effective Hamiltonian, one of these modes 𝜆0 is formally 

selected, and thus the energy of the displacements can be rewritten and expanded via the 

mathematical expressions of 𝜅 =
1

2
𝜆0 and 𝑢𝛼 = 𝑢𝛼

0 . The energy of the displacements developed 

up to the fourth order in 𝑢𝛼 can now be expressed by Equation 54. Third-order terms are 

forbidden due to symmetry. Here, the new parameters 𝛼 and 𝛽 were introduced, which are in 

relation to the higher-order derivatives of the energy by Equations 55 and 56. 

 
𝐸𝑑𝑖𝑠𝑝({𝑢𝛼}) = 𝜅𝑢

2 + 𝛼𝑢4 + 𝛾(𝑢𝑥
2𝑢𝑦
2 + 𝑢𝑦

2𝑢𝑧
2 + 𝑢𝑧

2𝑢𝑥
2) 

(54) 

 

 
𝛼 =

1

24

𝜕4𝐸

𝜕𝑢𝑥4
|
0

  
(55) 

 

 

𝛾 =
1

12
(3

𝜕4𝐸

𝜕𝑢𝑥2𝜕𝑢𝑦2
|
0

−
𝜕4𝐸

𝜕𝑢𝑥4
|
0

) 

(56) 

The remaining term to be explained in Equation 48 is the interaction between displacements 

and deformation, also called strain-phonon coupling. This term may also include any couplings 

to other phonons. The general way to account for this term is to calculate the magnitudes of �̃� 

and �̃� which minimize the total energy. The renormalized total energy of the system is denoted 

by �̃�({𝑢𝛼}). It can be shown that the decisive term for minimization is the lowest-order term in 

𝐸𝑖𝑛𝑡. This allows a matrix equation to be set up as presented in Equation 57. Here, both the 

elastic constants 𝐵𝑖𝑗 and the coupling terms 𝐵𝑖𝛼𝛽 find application. Furthermore, it can be shown 



50 
 

that due to the cubic symmetry, only three non-zero elements can occur. These elements are the 

parameters 𝐵1𝑥𝑥, 𝐵1𝑦𝑦 and 𝐵4𝑦𝑧. 

 

∑𝐵𝑖𝑗�̃�𝑖 +
1

2
∑𝐵𝑖𝛼𝛽𝑢𝛼𝑢𝛽 = 0

𝛼𝛽𝑗

 

(57) 

By solving the above matrix equation, a new term for the lattice energy can be formulated as 

presented in Equation 58. For the derivation of this equation, reference is made here to the work 

of King-Smith and Vanderbilt [24]. Furthermore, this equation can be taken as a starting point 

for further reformulation of the lattice energy as a function of known quantities. The lattice 

energy can thus be written as a function of the displacement energy and quantities such as the 

bulk modulus or shear moduli. The corresponding mathematical expression can be found in 

Equation 16 in Ref. [24]. 

 

�̃�({𝑢𝛼}) = 𝐸
0 + 𝐸𝑑𝑖𝑠𝑝({𝑢𝛼}) −

1

8
∑ ∑ 𝑢𝛼𝑢𝛽𝐵𝑖𝛼𝛽[𝐵

−1]𝑖𝑗
𝛼𝛽𝑚𝑛

𝐵𝑗𝑚𝑛𝑢𝑚𝑢𝑛 

𝑖𝑗

 

(58) 

In the following, an interesting feature can be exploited to further simplify the lattice energy. 

The corrections which become effective by the contributions of the interaction energy have the 

same form as the displacement energy up to the fourth order. Therefore, the associated 

parameters can be summarized, and a final form of the lattice energy is obtained in Equation 59. 

This energy represents the energy of the lattice renormalized by strain-phonon coupling. Here, 

the new parameters 𝛼′ and 𝛾′ were introduced, which are related to the already known 

parameters 𝛼 and 𝛾 via Equations 60 and 61. The additional parameters in these relations are, 

for example, the bulk modulus (𝐵), shear moduli (𝜈𝑡,𝜈𝑟) and the analogous expressions which 

can be defined for the interaction between strain and phonons (𝐶, 𝜇𝑡, 𝜇𝑟). A detailed listing and 

description of the individual parameters can be found in Ref.  [24]. 

 
�̃�({𝑢𝛼}) = 𝐸

0 + 𝜅𝑢2 + 𝛼′𝑢4 + 𝛾′(𝑢𝑥
2𝑢𝑦
2 + 𝑢𝑦

2𝑢𝑧
2 + 𝑢𝑧

2𝑢𝑥
2) (59) 

 

 
𝛼′ = 𝛼 −

1

24
(
𝐶2

𝐵
+ 4

𝜈𝑡
2

𝜇𝑡
) 

(60) 

 

 
𝛾′ = 𝛾 +

1

2
(
𝜈𝑡
2

𝜇𝑡
−
𝜈𝑟
2

𝜇𝑟
) 

(61) 
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The expression presented in equation 59 is the final lattice energy of the effective Hamiltonian 

defined by King-Smith and Vanderbilt [24] for the description of ABO3 perovskites. However, 

this formulation is based on a mean-field theory and is not, for example, designed for a supercell 

with different amplitudes of the local modes. In the following, this formalism was used as the 

basis for the development of a local mode theory. The first revision to such a theory was done 

already one year later by Zhong, Vanderbilt, and Rabe [23]. Another important work for the 

reformulation was published by Waghmare and Rabe [25] in 1997. Here, the theory was 

explained in detail and expanded, with the parameterization for PbTiO3 demonstrated as an 

example. After many publications based on such effective Hamiltonians, the formalism was 

revised again in 2008 by Nishimatsu et al.  [26], and a freely available software [26,27,93] was 

released that allows simulation with such models. In this thesis, this effective Hamiltonian of 

Nishimatsu et al. [26,27] is predominantly used, and therefore, the related theory will be 

explained in detail. 

The starting point for the derivation of the local-mode theory is the description of the lattice 

energy from Equation 59. In this equation, the lattice energy was derived via a Taylor expansion 

up to the fourth order. The final energy term also includes renormalization due to the interaction 

between strain and displacements. Furthermore, the chosen variables are given by {𝑢𝛼}, where 

here the bracket {} represents a set of amplitudes with Cartesian directions 𝑥, 𝑦, and 𝑧. As only 

the amplitudes of a unit cell are used here, we also speak of a mean-field theory. To develop a 

local-mode theory from this approach, the selected variables must be defined for a number of 

unit cells in a supercell. For this purpose, the bracket {} is used again, where {𝒖} denotes a set 

of amplitudes defined for each of the unit cells within a supercell. The 𝒖 is written in bold 

because it is an amplitude vector 𝒖 for each unit cell. The total energy of the system defined for 

a supercell using the newly introduced variables can be expressed as presented in Equation 62. 

The variables 𝜂𝑖 are the strain components of the supercell in Voigt notation. The energy 

contributions entering Equation 62 can be described as follows: 𝑉𝑠𝑒𝑙𝑓 is the so-called local-

mode self-energy. 𝑉𝑑𝑝𝑙 denotes the dipole-dipole interaction. 𝑉𝑠ℎ𝑜𝑟𝑡 represents the short-range 

interaction between the local-modes. 𝑉𝑒𝑙𝑎𝑠 contains all strain-related energies and 𝑉𝑖𝑛𝑡 

accounts for interactions between local modes and local strains. For further details on the 

derivation of Equation 62, reference is made here to the work of Zhong, Vanderbilt, and 

Rabe [23], as well as the work of Nishimatsu et al. [26]. The individual energy contributions 

are also described in detail in the following chapters. 
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 𝐸𝑡𝑜𝑡 = 𝑉𝑠𝑒𝑙𝑓({𝒖}) + 𝑉𝑑𝑝𝑙({𝒖}) + 𝑉𝑠ℎ𝑜𝑟𝑡({𝒖}) + 𝑉𝑒𝑙𝑎𝑠(𝜂1, … , 𝜂6)

+ 𝑉𝑖𝑛𝑡({𝒖}, 𝜂1, … , 𝜂6) (62) 

 Due to the importance, the relation between the amplitudes of the local modes and the 

displacements of the atoms shall be pointed out again. This relation is given by the eigenvectors 

of the respective mode, whereby the relation in Equation 63 can be stated. Here 𝝂𝛼 is the 

displacement vector of the atoms, 𝑢𝛼 the amplitude and 𝝃𝛼 the corresponding eigenvector. 𝛼 

denotes here again the Cartesian direction of the vectors. It is self-explanatory that this 

definition was derived for the ABO3 structure. The index of the eigenvector components 

indicates the value for the respective atoms at the A-site, the B-site, and the three oxygen 

positions. 

 

𝝂𝛼 = 𝑢𝛼

(

 
 
 

𝜉𝛼
𝐴

𝜉𝛼
𝐵

𝜉𝛼
𝑂1

𝜉𝛼
𝑂2

𝜉𝛼
𝑂3)

 
 
 

 

(63) 

The model in Equation 62 allows the description of the potential energy surface of the system 

under investigation and can be used quite straightforwardly for Monte Carlo simulations. In this 

work, however, molecular dynamics simulations are to be applied, and therefore, a suitable 

formalism of an effective Hamiltonian defined by Nishimatsu et al. [26,27] is described in 

further detail. The corresponding expression of the adopted Hamiltonian is presented in 

Equation 64. The Hamiltonian is a function of a set of local-mode amplitudes {𝒖} and the strain 

variables 𝜂𝑖 in Voigt notation. In addition, the variables 𝒘 have been introduced, with a set of 

these variables defined for each unit cell in the supercell {𝒘}. These dimensionless variables 

are used to account for local strains. A detailed description of these variables can be found in 

Chapter 4.3.7 about elastic energies. 𝑹 represents a translational vector between the unit cells 

within the supercell. 𝛼 indicates the Cartesian components of the individual vectors. 𝑀𝑖
∗ denote 

effective masses associated with the local-mode 𝒖 and variables w. 𝑍∗ is the Born effective 

charge corresponding to the local-mode 𝒖. Furthermore, kinetic energies for the local-mode 𝒖 

and the dimensionless variables 𝒘 were also introduced in Equation 64. The remaining energy 

contributions are analogous to those defined in Equation 62, but the elastic energies and the 

interaction energy have been divided into homogeneous and inhomogeneous components.  The 

last term is employed to enable the application of an external electric field. All associated 

variables, parameters, and the details of the individual energy contributions are discussed in 

depth in the following chapters.  
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𝐻𝑒𝑓𝑓 =

𝑀𝑑𝑖𝑝𝑜𝑙𝑒
∗

2
∑�̇�𝛼

2(𝑹)

𝑹,𝛼

+
𝑀𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐
∗

2
∑�̇�𝛼

2(𝑹) + 𝑉𝑠𝑒𝑙𝑓({𝒖}) + 𝑉𝑑𝑝𝑙({𝒖})

𝑹,𝛼

+ 𝑉𝑠ℎ𝑜𝑟𝑡({𝒖}) + 𝑉𝑒𝑙𝑎𝑠,ℎ𝑜𝑚𝑜(𝜂1, … , 𝜂6) + 𝑉
𝑒𝑙𝑎𝑠,𝑖𝑛ℎ𝑜({𝒘})

+ 𝑉𝑐𝑜𝑢𝑝𝑙,ℎ𝑜𝑚𝑜({𝒖}, 𝜂1, … , 𝜂6) + 𝑉
𝑐𝑜𝑢𝑝𝑙,𝑖𝑛ℎ𝑜({𝒖}, {𝒘})

− 𝑍∗∑𝜖 ⋅ 𝑢(𝑹)

𝑅

 
(64) 

The effective Hamiltonian from Equation 64 builds on all previously discussed foundations and 

represents the basis for all following simulations as well as extensions. Included in this 

formulation is the choice of a local basis by the selected eigenvectors associated with the used 

local-mode variable 𝒖. Furthermore, for the derivation, certain symmetry conditions arising 

from the ABO3 structure were exploited. The applicability of the formalism also depends 

strongly on the considered systems and must be examined for each case individually. The most 

important point, however, is the parameterization of the effective Hamiltonian by first-

principles calculations based on DFT calculations. Only a complete and reasonable parameter 

set allows an accurate description of the underlying system. The parameterization is a major 

part of this theory and is therefore discussed in detail in chapters on parameterization as well as 

in the enclosed publications. 

4.3.3 Kinetic Energies 

The first two terms in Equation 64 are the kinetic energies of the local-mode 𝒖 and of the 

dimensionless variable 𝒘. The quantities entering this equation are the derivatives of the 

respective variables with respect to time, which is implied by the dot in the accent. Furthermore, 

the corresponding effective masses 𝑀𝑑𝑖𝑝𝑜𝑙𝑒
∗  and 𝑀𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐

∗  were also introduced. The masses 

basically refer to the displacement of the atoms according to the respective eigenvectors and 

represent an effective mass of the corresponding modes. The calculation of the effective mass 

for the local mode can be accomplished as presented in Equation 65. Here, the quantities 𝑚𝐴, 

𝑚𝐵 and 𝑚𝑂 are the atomic masses of the respective A-site and B-site atoms and the mass of the 

oxygen atoms. These masses are multiplied by the respective squared components of the 

associated eigenvector. Due to the cubic symmetry, the eigenvectors are equivalent in their 

respective Cartesian directions, denoted by 𝛼. 
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𝑀𝑑𝑖𝑝𝑜𝑙𝑒
∗ = 𝑚𝐴(𝜉𝛼

𝐴)2 +𝑚𝐵(𝜉𝛼
𝐵)2 +𝑚𝑂(𝜉𝛼

𝑂1)
2
+𝑚𝑂(𝜉𝛼

𝑂2)
2
+𝑚𝑂(𝜉𝛼

𝑂3)
2
 

(65) 

The calculation of the effective mass 𝑀𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐
∗  for the dimensionless variables 𝒘 is to be carried 

out analogously. However, here the eigenvector for the acoustic branch in the center of the 

Brillouin zone has to be used, which in this case, represents a simple translation. These kinetic 

energies are required for use in MD simulations [26,27] but are not needed in Monte Carlo 

simulations as originally conducted by Zhong, Vanderbilt, and Rabe [23]. 

4.3.4 Local-Mode Self-Energy 

The next key energy contribution is the so-called local-mode self-energy. This energy is 

comparable with the displacement energy from Equation 54. However, here, a change from a 

mean-field theory to a local-mode theory is adopted, and thus the local-mode self-energy is 

defined for each unit cell in the supercell. In principle, this energy represents the isolated local 

displacements of the atoms with respect to the initial position, which in this case is the cubic 

phase of the ABO3 structure. In order to describe the system accurately, this energy contribution 

should include both harmonic and anharmonic terms. The first and consequently often used 

definition of this energy was provided by the fourth-order theory of King-Smith and 

Vanderbilt [24]. A reformulation into a local mode theory was conducted shortly thereafter by 

Zhong, Vanderbilt, and Rabe [23]. Over the years, however, it became apparent that for many 

cases, the description using polynomials up to the fourth order was not sufficient. Therefore, in 

2010, the local-mode self-energy was extended by further terms up to the eighth order in 𝒖 in 

the work of Nishimatsu et al. [27]. The corresponding mathematical expression for the local-

mode self-energy is given in Equation 66. Here, the sum over each unit cell is used to determine 

the total energy resulting from the isolated local modes. To note, due to the cubic reference 

structure, only even terms have a non-vanishing contribution. Furthermore, additional 

parameters 𝜅2, and 𝑘1 to 𝑘4 were introduced to the already known parameters 𝛼 and 𝛾. The 

parameter 𝜅2 is related to the parameter 𝜅 but is calculated by a correction during 

parameterization in order not to change the potential energy surface. A detailed description of 

how this parameter is calculated can be found in Chapter 4.3.6 on short-range interaction. The 

local-mode self-energy represents a central point in this thesis and will be discussed further in 

detail in the chapters on parameterization. Additionally, in the following subchapter and in the 

attached Publication 2, the possibility of extending this energy for additional phonon modes is 

also shown, and the implications for the quality of the potential energy surface are discussed. 
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𝑉𝑠𝑒𝑙𝑓({𝒖}) =∑{𝜅2𝑢

2(𝑹) + 𝛼𝑢4(𝑹)

𝑹

+ 𝛾[𝑢𝑦
2(𝑹)𝑢𝑧

2(𝑹) + 𝑢𝑧
2(𝑹)𝑢𝑥

2(𝑹) + 𝑢𝑥
2(𝑹)𝑢𝑦

2(𝑹)] + 𝑘1𝑢
6(𝑹)

+ 𝑘2(𝑢𝑥
4(𝑹) ∗ [𝑢𝑦

2(𝑹) + 𝑢𝑧
2(𝑹)]+𝑢𝑦

4(𝑹) ∗ [𝑢𝑧
2(𝑹) + 𝑢𝑥

2(𝑹)]

+ 𝑢𝑧
4(𝑹) ∗ [𝑢𝑥

2(𝑹) + 𝑢𝑦
2(𝑹)]) + 𝑘3𝑢𝑥

2(𝑹)𝑢𝑦
2(𝑹)𝑢𝑧

2(𝑹)

+ 𝑘4𝑢
8(𝑹)} (66) 

 

4.3.4.1 Expansion for Higher-Energy Phonons 

In this chapter, an extension of the local-mode self-energy developed in this thesis will be 

explained. A detailed description of the derivation as well as the application of the approach for 

BaTiO3 can be found in Publication 2. However, for the completeness of the theoretical part, 

the basic concept shall be explained here. The idea for an extension was based on the work of 

Paul et al. [28], which contains a detailed study of anharmonic couplings. In [28], it is 

demonstrated that an extension of the local-mode self-energy leads to an improved description 

of the potential energy surface and, thus, to improved results of the simulations compared to 

experiments. Basically, in their paper, the local-mode self-energy was extended for higher 

energy phonons, although the extension was only done up to the 2nd  order for these additional 

phonons. In this thesis, a more general approach was developed, and a variety of anharmonic 

couplings to higher energy phonons are included. The fundamental basis for the expansion is 

the local-mode self-energy from Equation 66. This equation can be used to evaluate the energy 

in the high-symmetric directions <001>,<011>, and <111> by substituting the expressions 𝒖 =

(0,0, 𝑢), 𝒖 = (0, 𝑢, 𝑢) and 𝒖 = (𝑢, 𝑢, 𝑢) for the local amplitude 𝒖. The local-mode self-energy 

in <001> directions reads as stated below: 

 
𝐸001(𝑢) = 𝜅𝑢

2 + 𝛼𝑢4 + 𝑘1𝑢
6 + 𝑘4𝑢

8 (67) 

It follows the local-mode self-energy in <011> direction: 

 

𝐸011(𝑢) = 𝜅𝑢
2 + (𝛼 +

1

4
𝛾)𝑢4 + (𝑘1 +

1

4
𝑘2) 𝑢

6 + 𝑘4𝑢
8 

(68) 

Finally, the corresponding expression for the energy in <111> direction: 

 
𝐸111(𝑢) = 𝜅𝑢

2 + (𝛼 +
1

3
𝛾)𝑢4 + (𝑘1 +

2

9
𝑘2 +

1

27
𝑘3) 𝑢

6 + 𝑘4𝑢
8 

(69) 

The above equations represent a central point for the parameterization by first-principles 

calculations and are used to determine the associated parameters by fitting. So far, however, 
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these equations are a function purely of the local amplitude 𝑢, whereas, in the parameterization, 

a suitable phonon mode must be chosen as the basis. In many cases, the parameterization and 

formulation via one phonon mode is already a very good approximation for the description of 

the potential energy surface. However, as described in detail in Publication 2, it can be shown 

that other phonon modes can also contribute a non-negligible amount to the structural phase 

transitions. In this case, the inclusion of these additional modes is essential for an improved 

description of the phase transitions. In the following, the local-mode self-energy shall be 

expanded to include two additional phonon modes, where the amplitudes of these modes are 

denoted by 𝑣1 and 𝑣2. That means an expression for the energy 𝐸001
𝑎𝑛ℎ(𝑢, 𝑣1, 𝑣2) must be found, 

which includes the three local mode amplitudes 𝑢, 𝑣1 and 𝑣2. In this thesis, the derivation is 

concentrated on the <001> direction, whereas the other directions are to be considered 

analogously. This also implies that the local amplitudes (𝑢, 𝑣1 and 𝑣2) in the subsequent 

derivation are not vectors but represent components in the <001> direction. For the expansion 

of the local-mode self-energy, a multivariate Taylor expansion is now applied, where 𝑢 is 

expanded up to the 8th order and 𝑣1 and 𝑣2 up to the 6th order. The corresponding mathematical 

expression can be seen in Equation 70, where the expansion is done around a reference of 𝑢0, 

𝑣1,0 and 𝑣2,0, respectively. The reference can be chosen as for the conventional effective 

Hamiltonian with the perfect cubic ABO3 structure.  

 𝐸001
𝑎𝑛ℎ(𝑢, 𝑣1, 𝑣2) = 

∑∑∑
(𝑢 − 𝑢0)

𝑛1(𝑣1 − 𝑣1,0)
𝑛2
(𝑣2 − 𝑣2,0)

𝑛3

𝑛1! 𝑛2! 𝑛3!

6

𝑛3

6

𝑛2

(
𝜕𝑛1+𝑛2+𝑛3𝐸(𝑢, 𝑣1, 𝑣2)

𝜕𝑢𝑛1𝜕𝑣1
𝑛2𝜕𝑣2

𝑛3
) (𝑢0, 𝑣1,0, 𝑣2,0)

8

𝑛1

 

 
(70) 

The evaluation of this multivariate Taylor expansion can be found in the Supplemental Material 

of Publication 2. Here it becomes clear that the evaluation contains all mathematical terms, also 

the ones that are forbidden due to symmetry. The reason for this is the choice of the cubic 

reference, which does not allow odd orders of the summed powers of the local amplitudes. An 

alternative derivation of the expanded local-mode self-energy in <001> direction can be found 

in the ISOTROPY tool [94]. This allows the automatic output of polynomials describing order 

parameters when the correct symmetries are entered. The order parameters, in this case, are the 

local amplitudes of the selected modes. Both methods can be used to derive an expression for 

the local-mode self-energy, including just allowed terms, as shown in Equation 71. The 

description of the local amplitudes 𝑢 was restricted to the parameters 𝑐1 to 𝑐4 to be consistent 

with the definition from Equation 67. It follows the parameters 𝑎1 to 𝑎12 which contain the 

terms for the phonon mode 𝑣1 as well as the anharmonic couplings to individual other modes. 
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Analogously, the parameters 𝑏1 to 𝑏12 are defined for the phonon mode 𝑣2. The parameters 𝑑1 

to 𝑑22 describe the couplings between the three included phonon modes. It becomes clear that 

a significant number of parameters are required to describe the local-mode self-energy under 

the chosen conditions. For low orders, these parameters can be determined quite easily by 

explicit first-principles calculations [28]. For higher orders, however, this endeavor becomes 

increasingly difficult or impossible. In this thesis, therefore, an approach was pursued to allow 

all parameters to be determined at once by fitting to a large set of first-principles calculations. 

The details of this approach, as well as its application to BaTiO3, can be found in Publication 2. 

 𝐸001(𝑢, 𝑣1, 𝑣2) = 𝑐0 + 𝑐1𝑢
2 + 𝑐2𝑢

4 + 𝑐3𝑢
6 + 𝑐4𝑢

8 + 𝑎1𝑢𝑣1 + 𝑎2𝑣1
2 + 𝑎3𝑢

3𝑣1

+ 𝑎4𝑢
2𝑣1
2 + 𝑎5𝑢𝑣1

3 + 𝑎6𝑣1
4 + 𝑎7𝑢

5𝑣1 + 𝑎8𝑢
4𝑣1
2

+ 𝑎9𝑢
3𝑣1
3+𝑎10𝑢

2𝑣1
4 + 𝑎11𝑢𝑣1

5 + 𝑎12𝑣1
6 + 𝑏1𝑢𝑣2 + 𝑏2𝑣2

2

+ 𝑏3𝑢
3𝑣2 + 𝑏4𝑢

2𝑣2
2 + 𝑏5𝑢𝑣2

3 + 𝑏6𝑣2
4 + 𝑏7𝑢

5𝑣2 + 𝑏8𝑢
4𝑣2
2

+ 𝑏9𝑢
3𝑣2
3+𝑏10𝑢

2𝑣2
4 + 𝑏11𝑢𝑣2

5 + 𝑏12𝑣2
6 + 𝑑1𝑣1𝑣2 + 𝑑2𝑢

2𝑣1𝑣2

+ 𝑑3𝑢𝑣1
2𝑣2 + 𝑑4𝑢𝑣1𝑣2

2 + 𝑑5𝑣1
3𝑣2 + 𝑑6𝑣1

2𝑣2
2 + 𝑑7𝑣1𝑣2

3

+ 𝑑8𝑢
4𝑣1𝑣2 + 𝑑9𝑢

3𝑣1
2𝑣2 + 𝑑10𝑢

3𝑣1𝑣2
3 + 𝑑11𝑢

2𝑣1
3𝑣2

+ 𝑑12𝑢
2𝑣1
2𝑣2
2 + 𝑑13𝑢

2𝑣1𝑣2
3 + 𝑑14𝑢𝑣1

4𝑣2 + 𝑑15𝑢𝑣1
3𝑣2
2

+ 𝑑16𝑢𝑣1
2𝑣2
3 + 𝑑17𝑢𝑣1𝑣2

4 + 𝑑18𝑣1
5𝑣2 + 𝑑19𝑣1

4𝑣2
2 + 𝑑20𝑣1

3𝑣2
3

+ 𝑑21𝑣1
2𝑣2
4 + 𝑑22𝑣1𝑣2

5 

 
(71) 

In summary, Equation 71 is an expansion of the local-mode self-energy of the effective 

Hamiltonian by two additional phonon modes. Subsequently, all terms which depend on 𝑢 

would have to be extended for the additional modes 𝑣1 and 𝑣2. However, careful tests showed 

that certain contributions, like the coupling of 𝑣1 and 𝑣2 with strain are only minor compared 

to the coupling of 𝑢 with strain. Therefore, as a good approximation, the corresponding 

extension can be omitted. Furthermore, the long-range interaction would also have to be 

modified for the new modes, but even in this case, the contribution obtained is negligible. 

Publication 2 and the associated attached Supplemental Material can be consulted to justify 

these assumptions. Rather, in the course of the development of this extension, emphasis was 

put on preserving the efficiency of the effective Hamiltonian. That is, a big advantage of such 

simulations is the speed as well as the thereby favorable computational effort. In order to not 

lose this advantage, the following approach was chosen for the inclusion of the couplings to the 

additional phonon modes. First, the local-mode self-energy from Equation 71 is parameterized 

by first-principles calculations. Then, the amplitudes of 𝑣1 and 𝑣2 which minimize the total 

energy to a given 𝑢 are determined. Substituting the minimizing amplitudes 𝑣1,𝑚𝑖𝑛(𝑢) and 
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𝑣2,𝑚𝑖𝑛(𝑢) into Equation 71 lead to a new term for the local-mode self-energy 

𝐸001(𝑢, 𝑣1,𝑚𝑖𝑛(𝑢), 𝑣2,𝑚𝑖𝑛(𝑢)), which again is a function purely depending on the local 

amplitude 𝑢. This new expression, which indirectly contains a large number of anharmonic 

couplings, can now be used in the conventional effective Hamiltonian without further 

modification. It should also be mentioned that, due to the complexity of Equation 71, an 

analytical solution for the minimizing amplitudes 𝑣1,𝑚𝑖𝑛(𝑢) and 𝑣2,𝑚𝑖𝑛(𝑢) is not feasible, and 

thus, numerical minimization must be performed. This numerical minimization can be done on 

discrete amplitudes of 𝑢, and subsequently, the local-mode self-energy from Equation 67 must 

be re-fitted. Also, on this topic, reference is made here to Publication 2, where such a numerical 

approach is applied. Furthermore, the effects of the extension on phase transitions and dielectric 

properties are also discussed in this publication. 

4.3.5 Long-Range Interaction 

The long-range interactions [23,26,27] between the individual unit cells will be discussed next. 

To lay the foundation for the physical description of this quantity, it must first be repeated that 

the fundamental unit of the effective Hamiltonian is the unit cell. The central variable defined 

for each unit cell is the amplitude of the local mode 𝒖. Through the amplitude of the local mode, 

the dipole moment of the unit cell can be directly calculated via the Born effective charges 𝑍∗. 

That is, for the long-range interaction, the interaction between dipoles in the supercell becomes 

decisive. The associated dipole-dipole interaction can be expressed by Equation 72. Here, the 

sums over 𝑖 and 𝑗 run respectively over the total number of unit cells in the supercell. The 

subscripts 𝛼 and 𝛽 indicate the Cartesian directions of the amplitude vectors.  

 
𝑉𝑑𝑝𝑙({𝒖}) =

1

2
∑ 𝑢𝛼(𝑹𝑖)Φ𝛼𝛽(𝑹𝑖𝑗)𝑢𝛽(𝑹𝑗)

𝑖,𝛼,𝑗,𝛽

 
(72) 

The remaining term in Equation 72 is the interaction matrix which is defined in Equation 73. 

Here, 𝑍∗ is the Born effective charge associated with the local mode 𝒖. 𝜖∞ denotes the optical 

dielectric constant. 𝛿𝛼𝛽 represents the Kronecker delta. Furthermore, 𝑹𝑖𝑗 are translational 

vectors between single unit cells within the supercell. Finally, 𝒏 represent translational vectors 

between the supercells. The expressions (𝑹𝑖𝑗 + 𝒏)𝛼,𝛽 have to be normalized. 

 

Φ𝛼𝛽(𝑹𝑖𝑗) =
𝑍∗2

𝜖∞
∑
𝛿𝛼𝛽 − 3(𝑹𝑖𝑗 + 𝒏)𝛼(𝑹𝑖𝑗 + 𝒏)𝛽

|𝑹𝑖𝑗 + 𝒏|
3

𝑛

 

(73) 
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The Born effective charge 𝑍∗ associated with the local mode 𝒖 can be calculated using the 

eigenvector 𝝃𝛼 and the respective effective charges of the atoms 𝑍𝑖
∗ as shown in Equation 74. 

The choice of the Cartesian direction 𝛼 is redundant since, due to the cubic symmetry, the 

effective charge is the same in all Cartesian directions. 

 
𝑍∗ = 𝑍𝐴

∗𝜉𝛼
𝐴 + 𝑍𝐵

∗𝜉𝛼
𝐵 + 𝑍𝑂1

∗ 𝜉𝛼
𝑂1 + 𝑍𝑂2

∗ 𝜉𝛼
𝑂2 + 𝑍𝑂3

∗ 𝜉𝛼
𝑂3 (74) 

It is obvious from the above equations that the dipole-dipole interaction can be calculated quite 

straightforwardly by matrix multiplication. The interaction matrix contains no variables as well 

as the translation vectors are fixed in the given case. This means that the matrix can be 

calculated at the beginning of the simulation and does not change consecutively. However, the 

calculation of the interaction matrix is increasingly complex due to the sum over different 

supercells. The problem represents the convergence of the matrix elements to be computed 

given by the sum over the supercells. In theory, this sum would have to be continued infinitely 

since periodic boundary conditions are used for the systems considered here. A widely used 

method to accurately and faster calculate the interaction matrix for such boundary conditions is 

found in the Ewald summation [95,96]. This method uses a trick that allows splitting the 

interactions into two parts. The first part is the so-called real space contribution, and the second 

part is the reciprocal space contribution. The real space contribution contains the short-range 

terms which converge very fast in real space. In contrast, the reciprocal contribution contains 

all parts of the long-range interaction. Since this term is evaluated in the reciprocal space, all 

long ranges are to be found at small 𝒌-vectors due to the definition. Here, the 𝒌-vector 

represents a reciprocal lattice vector. Accordingly, the 𝒌-vectors are summed and the sum again 

converges quickly. For more details on the long-range interaction in effective Hamiltonians as 

well as the implementation of it, the reader is referred to the work of Nishimatsu et al. [26,27]. 

4.3.6 Short-Range Interaction 

The next energy contribution for the effective Hamiltonian is the so-called short-range 

interaction [23,26,27]. This energy gives the interaction of adjacent unit cells as a function of 

local modes. Considering the total energy only as a function of the local modes, the energy 

contributions can be characterized as follows. The local-mode self-energy gives the isolated 

displacement energy at the zone center. The long-range and short-range interactions give the 

contributions to the total energy away from the zone center. Combining these energies, the 

phonon band structure can be reproduced for the chosen local basis. More details will be given 

in the course of this chapter. Nevertheless, the short-range energy can be expressed by Equation 

75, where again, the local amplitudes 𝒖 are used. Here, the sum over 𝑖 includes all unit cells in 
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the supercell. The sum for 𝑗 runs over the adjacent unit cells up to the third nearest neighbor 

shell. The sums exclude terms with the same index since these contributions are taken into 

account in the local-mode self-energy. The associated parameters are expressed by the coupling 

matrix 𝐽𝑖𝑗,𝛼𝛽. 

 
𝑉𝑠ℎ𝑜𝑟𝑡({𝒖}) =

1

2
∑∑𝑢𝛼(𝑹𝑖)𝐽𝑖𝑗,𝛼𝛽𝑢𝛽(𝑹𝑗)

𝛼𝛽𝑖≠𝑗

 

(75) 

In order to calculate and understand the entries of the coupling matrix 𝐽𝑖𝑗,𝛼𝛽, Figure 6 can be 

considered. Here new parameters 𝑗1-𝑗7 have been introduced, which will be called inter-site 

parameters in the course of this thesis. Each of these parameters represents a certain 

arrangement of adjacent local modes up to the third nearest neighbor shell. For example, the 

first parameter 𝑗1 indicates the interaction between local modes when they are direct neighbors 

and have a parallel displacement. However, the displacement of the local modes is 

perpendicular to the connection vector. Consequently, such a parameter can be defined for 

several different configurations. 

 

Figure 6. Schematic diagram to illustrate how the individual inter-site parameters 𝑗1-𝑗7 are 

defined [23]. The associated parameters allow a description up to the third nearest neighbor shell.   

These inter-site parameters 𝑗1-𝑗7 can now be used to construct the coupling matrix 𝐽𝑖𝑗,𝛼𝛽. A 

different mathematical expression is needed for the different shells of the neighbors. For the 

interactions between unit cells which are directly next to each other (first nearest neighbor 

shell), the following relation can be formulated: 

 
𝐽𝑖𝑗,𝛼𝛽 = (𝑗1 + (𝑗2 − 𝑗1)|�̂�𝑖𝑗,𝛼|)𝛿𝛼𝛽 

(76) 

For the second nearest neighbor shell, the relation reads: 
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𝐽𝑖𝑗,𝛼𝛽 = (𝑗4 + √2(𝑗3 − 𝑗4)|�̂�𝑖𝑗,𝛼|)𝛿𝛼𝛽 + 2𝑗5�̂�𝑖𝑗,𝛼�̂�𝑖𝑗,𝛽(1 − 𝛿𝛼𝛽) (77) 

Finally, the entries of the coupling matrix for the third nearest neighbor shell are given by: 

 
𝐽𝑖𝑗,𝛼𝛽 = 𝑗6𝛿𝛼𝛽 + 3𝑗7�̂�𝑖𝑗,𝛼�̂�𝑖𝑗,𝛽(1 − 𝛿𝛼𝛽) (78) 

In these equations, 𝛿𝛼𝛽 represents the Kronecker delta and �̂�𝑖𝑗 are normalized translational 

vectors between the adjacent unit cells. In the following, the determination of the inter-site 

parameters shall be discussed in more detail. In principle, there are two different approaches. 

The first approach is based on the application of the corresponding eigenvector of the local 

mode 𝒖. This eigenvector can be used to generate high symmetry configurations by 

constructing the displacements manually. Subsequently, first-principles calculations can be 

employed to compute the energies and determine the inter-site parameters from them [23]. 

However, a much more elegant method is to calculate the full phonon band structure and 

determine the parameters using highly symmetric points in reciprocal space. These points 

represent in real space nothing else than highly symmetric displacements of atoms. Therefore, 

in the following, a superposition of the inter-site parameters can be used to construct an equation 

for the phonon energy for different configurations. The chosen points in the reciprocal space 

for this purpose are: Γ (0,0,0), 𝑋 (
𝜋

𝑎
, 0,0), 𝑀 (

𝜋

𝑎
,
𝜋

𝑎
, 0), 𝑅 (

𝜋

𝑎
,
𝜋

𝑎
,
𝜋

𝑎
), Σ (

𝜋

4
,
𝜋

4
, 0). Here 𝑎 

symbolically represents a lattice parameter. The atomic displacements associated with these 

points are also those that must be manually constructed for the first method. If, instead, the 

entire phonon band structure or the required parts of it are calculated, the associated energies 

for these points are already included. Further details on these highly symmetric points and the 

reasons for their selection can be found in the work of Zhong, Vanderbilt, and Rabe [23] as well 

as Nishimatsu et al. [26,27]. Next, the energies associated with the highly symmetric points 𝒌𝑖 

can now be expressed by a combination of local energy, short-range contribution, and long-

range interaction. Thus, Equations 79 to 85 can be constructed for each of the selected points. 

Here, 𝜅(𝒌𝑖) represent half of the eigenvalues associated with the reciprocal point 𝒌𝑖. The first 

term in each equation specifies the contribution of the long-range interaction. The new 

parameter 𝑎0 represents the lattice constant of the unit cell. The second term is expressed by 

the parameter 𝜅2 and denotes the respective local contribution to the total energy. This 

parameter is also used in the self-energy, however, a small correction must be applied here to 

ensure the correct description of the potential energy surface. The correction for this parameter 

is 𝜅2 = 𝜅2 + [𝜅 − 𝜅(Γ𝑇𝑂)], where 𝜅 here stems from the isolated displacement energy and 
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𝜅(Γ𝑇𝑂) represents half of the eigenvalue at the zone center. This correction is applied to raise 

the dispersion of the band structure to align it with the self-energy. The further terms in 

Equations 79 to 85 are now the already known inter-site parameters 𝑗1-𝑗7 which are applied 

according to the associated configuration. The derivation can simply be done via the definition 

of the respective parameters shown in Figure 6. 

 
𝜅(Γ𝑇𝑂) = −

2

3
𝜋
𝑍∗

𝜖∞𝑎𝑜
3 + 𝜅2 + 2𝑗1 + 𝑗2 + 4𝑗3 + 2𝑗4 + 4𝑗6 (79) 

 

 
𝜅(𝑋1) = 4.84372

𝑍∗

𝜖∞𝑎𝑜
3 + 𝜅2 + 2𝑗1 − 𝑗2 − 4𝑗3 + 2𝑗4 − 4𝑗6 (80) 

 

 
𝜅(𝑋5) = −2.42186

𝑍∗

𝜖∞𝑎𝑜
3 + 𝜅2 + 𝑗2 − 2𝑗4 − 4𝑗6 (81) 

 

 
𝜅(𝑀3′) = −2.67679

𝑍∗

𝜖∞𝑎𝑜
3 + 𝜅2 − 2𝑗1 + 𝑗2 − 4𝑗3 + 2𝑗4 + 4𝑗6 (82) 

 

 
𝜅(𝑀5′) = 1.33839

𝑍∗

𝜖∞𝑎𝑜
3 + 𝜅2 − 𝑗2 − 2𝑗4 + 4𝑗6 (83) 

 

 𝜅(𝑅25′) = 𝜅2 − 2𝑗1 − 𝑗2 + 4𝑗3 + 2𝑗4 − 4𝑗6 (84) 

 

 
𝜅(Σ𝐿𝑂) = 2.93226

𝑍∗

𝜖∞𝑎𝑜
3 + 𝜅2 + 𝑗1 − 2𝑗5 − 4𝑗7 (85) 

 

In summary, using the above equations, the inter-site parameters can be determined by first-

principles calculations. From these results, the coupling matrix can then be constructed. 

However, it remains to be clarified how the different energy contributions represent the band 

structure of the system. As can be seen in the results for BaTiO3 from the work of Nishimatsu 

et al. [27], a band structure can be obtained purely for the long-range interaction. Adding now 

the contributions of the short-range interaction yields the band structure for the selected local 

basis. The offset which occurs between the real band structure and the added contributions of 
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short- and long-range interaction is given by the local energy, expressed by 𝜅2. Therefore, a 

correction of the parameter 𝜅2 can be performed without further ado, since 𝜅2 only shifts the 

absolute values of the energy but has no influence on the dispersion itself. 

The implementation of the different energy contributions shall now be discussed. The local-

mode self-energy can be implemented quite efficiently, as shown in Equation 66. For the long-

range energy and the short-range interaction, a transformation and evaluation in the reciprocal 

space can be considered due to their mathematical form. That can increase the performance of 

the code considerably through the utilization of Fourier transformations. Therefore, such a 

transformation into the reciprocal space shall be addressed. For more details, please refer to the 

work of Nishimatsu et al. [26,27]. Following, all energy contributions that have a quadratic 

term in 𝒖 can be combined and a new mathematical expression can be stated as evident in 

Equation 86. This equation also includes the quadratic term of the local-mode self-energy from 

Equation 66. In addition, the sum over the reciprocal vectors 𝒌 is introduced.  

 

𝑉𝑞𝑢𝑎𝑑({𝒖}) =
1

2
∑∑�̃�𝛼

∗ (𝒌)

𝛼𝛽

Φ̃𝛼𝛽
𝑞𝑢𝑎𝑑(𝒌)�̃�𝛽(𝒌)

𝒌

 

(86) 

The variable �̃�𝛼(𝒌) entering Equation 86 is the Fourier-transformed amplitude of the local 

modes. Such a Fourier transform for 𝒖(𝑹) is stated in Equation 87. In addition, the transformed 

interaction matrix Φ̃𝛼𝛽
𝑞𝑢𝑎𝑑

(𝒌) is introduced, which contains all quadratic contributions. 

 
�̃�𝛼(𝒌) =∑𝑢𝛼(𝑹)exp (−𝑖𝒌 ⋅ 𝑹)

𝑹

 

(87) 

All previous energy contributions were pure functions of the local amplitude 𝒖 and thus, only 

atomic displacements were considered without the deformation of the unit cell. However, 

especially for ferroelectric systems, it is of utmost relevance to include also the deformations 

and the couplings between displacements of the atoms and deformations. In the next two 

chapters, these energy contributions will be discussed in detail, and the formulation of the 

effective Hamiltonian will be completed. 

4.3.7 Elastic Energies 

In this chapter, the contributions to the energy originating from the elastic deformations shall 

be described. First of all, it can be stated that elastic energy can be divided into two 

contributions, i.e., homogeneous 𝑉𝑒𝑙𝑎𝑠,ℎ𝑜𝑚𝑜 and inhomogeneous strain 𝑉𝑒𝑙𝑎𝑠,𝑖𝑛ℎ𝑜. The 

description of the homogenous part correct to the second order can be conducted by 
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Equation 88. Here, 𝜂𝐻,𝑙 represent homogenous strain variables in Voigt notation. It should be 

noted that these strain variables allow for homogenous deformations of the entire supercell. 

Furthermore, the modified elastic constants 𝐵11, 𝐵12 and 𝐵44 are used. The relation of these 

parameters to the conventional elastic constants is given by: 𝐵11 = 𝑎0
3𝐶11, 𝐵12 = 𝑎0

3𝐶12 and 

𝐵44 = 𝑎0
3𝐶44. 𝑎0 denotes the lattice constant of the cubic reference system. The parameter 𝑁 

represents the number of unit cells in the supercell. 

 
𝑉𝑒𝑙𝑎𝑠,ℎ𝑜𝑚𝑜(𝜂𝐻,1, … , 𝜂𝐻,6) =

𝑁

2
𝐵11(𝜂𝐻,1

2 + 𝜂𝐻,2
2 + 𝜂𝐻,3

2 ) 

+𝑁𝐵12(𝜂𝐻,2𝜂𝐻,3 + 𝜂𝐻,3𝜂𝐻,1 + 𝜂𝐻,1𝜂𝐻,2) 

+
𝑁

2
𝐵44(𝜂𝐻,4

2 + 𝜂𝐻,5
2 + 𝜂𝐻,6

2 ) (88) 

 

The calculation of the inhomogeneous contribution to the elastic energy is somewhat more 

complex. For this purpose, the already known but not explained variables 𝒘 have to be 

introduced first. Such a vector 𝒘 is defined for each unit cell in the supercell. It should be noted 

that these vectors are defined in units of the lattice constants and, therefore, dimensionless. In 

principle, they give the local displacement, by definition, using an A-centered basis. 

Furthermore, inhomogeneous strain variables {𝜂𝐼,𝑙} for each of the unit cells can be introduced. 

To establish the relationship between local inhomogeneous strain 𝜂𝐼,𝑙(𝑹) and the dimensionless 

variables 𝒘, the six averaged differential displacements over Equations 89 and 90 must first be 

calculated. The remaining four expressions can be derived by cyclic permutation. Here 𝒙,𝒚 and 

𝒛 are unit vectors and indicate the translation to adjacent unit cells in these same directions. 𝒅 

represents an additional translational vector.  

 
Δ𝑤𝑥𝑥 = ∑ [𝑤𝑥(𝑹𝑖 − 𝒅 − 𝒙) − 𝑤𝑥(𝑹𝑖 − 𝒅)]

𝒅=0,𝒚,𝒛,𝒚+𝒛

 
(89) 

 

 
Δ𝑤𝑥𝑦 = ∑ [𝑤𝑦(𝑹𝑖 − 𝒅− 𝒙) − 𝑤𝑦(𝑹𝑖 − 𝒅)]

𝒅=0,𝒚,𝒛,𝒚+𝒛

 

(90) 

From the results of the above equations, the local inhomogeneous strain variables can now be 

calculated by 𝜂𝐼,1(𝑅𝑖) = Δ𝑤𝑥𝑥/4, 𝜂𝐼,4(𝑅𝑖) = (Δ𝑤𝑦𝑧 + Δ𝑤𝑧𝑦)/4, etc. For more details on the 

derivation of these relations, see the work of Zhong, Vanderbilt, and Rabe [23]. The total strain 

thus results from the amounts of homogeneous and inhomogeneous deformations, which can 
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be simply added: 𝜂𝑙(𝑹) = 𝜂𝐻,𝑙(𝑹) + 𝜂𝐼,𝑙(𝑹). As a next step, it will be explained how the 

dimensionless variables 𝒘 are taken into account in the effective Hamiltonian. These variables 

are used in the inhomogeneous part of the elastic energy and in the coupling between phonons 

and strain. The mathematical expression for the inhomogeneous elastic energy can be found in 

Equation 91. Again, the transformation of the potential into reciprocal space was performed to 

speed up the calculation. Here, the variables �̃�𝛼(𝒌) are the Fourier transformed dimensionless 

variables 𝑤𝛼(𝑹) analogous to Equation 87. 

 

𝑉𝑒𝑙𝑎𝑠,𝑖𝑛ℎ𝑜({𝒘}) =
1

2
∑∑�̃�𝛼

∗(𝒌)Φ̃𝛼𝛽
𝑒𝑙𝑎𝑠,𝑖𝑛ℎ𝑜(𝒌)�̃�𝛽(𝒌)

𝛼𝛽𝒌

 

(91) 

The quantity Φ̃𝛼𝛽
𝑒𝑙𝑎𝑠,𝑖𝑛ℎ𝑜(𝒌) represents the Fourier transformed force-constant matrix, whereby 

the long-wavelength approximation can be applied. Using this approximation, the diagonal 

elements of the matrix result as evident below: 

 

Φ̃𝛼𝛽
𝑒𝑙𝑎𝑠,𝑖𝑛ℎ𝑜(𝒌) =

1

𝑁
[𝑘𝑥
2𝐵11 + 𝑘𝑦

2𝐵44 + 𝑘𝑧
2𝐵44] (92) 

The off-diagonal elements of the force-constant matrix in reciprocal space are given by the 

following expression: 

 

Φ̃𝛼𝛽
𝑒𝑙𝑎𝑠,𝑖𝑛ℎ𝑜(𝒌) =

1

𝑁
[𝑘𝑥𝑘𝑦𝐵12 + 𝑘𝑥𝑘𝑦𝐵44] (93) 

An alternative formulation of this energy contribution in real space and more details on the 

derivation can be found in the work of Zhong, Vanderbilt, and Rabe [23]. A detailed description 

of the transformation to reciprocal space and its implementation can be found in the work of 

Nishimatsu et al. [26,27]. 

4.3.8 Strain-Phonon Coupling 

The final term which is employed in the effective Hamiltonian from Equation 64 is the coupling 

of the local mode with strain [26,27]. This coupling represents a central point since the atomic 

displacements from the reference structure are accompanied by deformations of the unit cell. 

In this case, the coupling energy can again be divided into homogeneous and inhomogeneous 

contributions. The homogeneous coupling between local mode and strain can be calculated via 

Equation 94. Here, both the strain variables 𝜂𝐻,𝑙 and the local modes 𝒖 are involved. 

 

𝑉𝑐𝑜𝑢𝑝,ℎ𝑜𝑚𝑜({𝒖}, 𝜂𝐻,1, … , 𝜂𝐻,6) =
1

2
∑∑∑𝜂𝐻,𝑖𝐶𝑖𝑗𝑦𝑗(𝑹)

6

𝑗=1

6

𝑖=1𝑹

 
(94) 
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To simplify the notation of the above equation, the new variables 𝑦𝑗(𝑹) were introduced for 

the local amplitudes. The definitions of the respective products of local amplitudes can be seen 

below: 

 𝑦1(𝑹) = 𝑢𝑥
2(𝑹), 𝑦2(𝑹) = 𝑢𝑦

2(𝑹), 𝑦3(𝑹) = 𝑢𝑧
2(𝑹) 

𝑦4(𝑹) = 𝑢𝑦(𝑹)𝑢𝑧(𝑹), 𝑦5(𝑹) = 𝑢𝑧(𝑹)𝑢𝑥(𝑹), 𝑦6(𝑹) = 𝑢𝑥(𝑹)𝑢𝑦(𝑹) (95) 

The relationship between local modes and strain can be determined by the coupling matrix 𝐶𝑖𝑗, 

as illustrated by Equation 96. The entries of this matrix are based on three different parameters 

𝐵1𝑥𝑥, 𝐵1𝑦𝑦 and 𝐵4𝑦𝑧 due to the cubic reference structure. These parameters specify the 

interaction between the local displacement of the atoms and the corresponding deformation of 

the unit cell. The calculation of these parameters can be done in different ways and is discussed 

in detail in the parameterization chapters and in the enclosed publications. For more details on 

the derivation of this energy contribution as well as the exact definition of the coupling 

parameters, the work of King-Smith and Vanderbilt can be referred to [24]. 

 

𝐶 =

(

 
 
 
 

𝐵1𝑥𝑥 𝐵1𝑦𝑦 𝐵1𝑦𝑦 0 0 0

𝐵1𝑦𝑦 𝐵1𝑥𝑥 𝐵1𝑦𝑦 0 0 0

𝐵1𝑦𝑦 𝐵1𝑦𝑦 𝐵1𝑥𝑥 0 0 0

0 0 0 2𝐵4𝑦𝑧 0 0

0 0 0 0 2𝐵4𝑦𝑧 0

0 0 0 0 0 2𝐵4𝑦𝑧)

 
 
 
 

 

(96) 

The next and final term is the coupling of the local modes with the inhomogeneous strain. The 

associated potential is again expressed in the reciprocal space, as shown in Equation 97. Here, 

both the local amplitudes 𝒖 and the dimensionless variables 𝒘 are involved. The local 

amplitudes are specified here again by 𝑦𝑗(𝑹), where the relations to the actual amplitudes are 

listed in Equation 95. However, since the calculation is done in reciprocal space, the Fourier 

transformed quantities have to be used for both variables. These are denoted here by �̃�𝛼
∗(𝒌) and 

�̃�𝑖(𝒌), where for �̃�𝛼
∗(𝒌) the complex conjugate version has to be adopted. 

 

𝑉𝑐𝑜𝑢𝑝,𝑖𝑛ℎ𝑜({𝒖}, {𝒘}) =
1

2
∑∑∑�̃�𝛼

∗(𝒌)�̃�𝛼𝑖(𝒌)�̃�𝑖(𝒌)

6

𝑖=1𝛼𝒌

 

(97) 

The interaction between local modes and inhomogeneous strain can again be expressed by a 

coupling matrix �̃�(𝒌). The corresponding illustration of the matrix can be found in Equation 98, 

where 𝑁 represents the number of unit cells in the supercell. The parameters found are the same 
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as in Equation 96 and describe the deformation as a function of local amplitudes. Furthermore, 

the long-wavelength approximation was also applied in this case. 

 

�̃�(𝒌) =
1

𝑁
(

𝑘𝑥𝐵1𝑥𝑥 𝑘𝑥𝐵1𝑦𝑦 𝑘𝑥𝐵1𝑦𝑦 0 2𝑘𝑧𝐵4𝑦𝑧 2𝑘𝑦𝐵4𝑦𝑧
𝑘𝑦𝐵1𝑦𝑦 𝑘𝑦𝐵1𝑥𝑥 𝑘𝑦𝐵1𝑦𝑦 2𝑘𝑧𝐵4𝑦𝑧 0 2𝑘𝑥𝐵4𝑦𝑧
𝑘𝑧𝐵1𝑦𝑦 𝑘𝑧𝐵1𝑦𝑦 𝑘𝑧𝐵1𝑥𝑥 2𝑘𝑦𝐵4𝑦𝑧 2𝑘𝑥𝐵4𝑦𝑧 0

) 

(98) 

4.3.9 Summary of Derivation 

As a whole, this chapter forms the basis of this thesis and can be summarized as follows. At the 

beginning, the fundamental basis was demonstrated by so-called Lattice Wannier functions. 

Subsequently, the original mean-field theory was presented, whereby here, the description of 

the lattice energy was carried out up to the fourth order. This approach served as a basis for the 

extension to a local-mode theory, where the application of the formalism to a supercell was 

demonstrated. The general form of the effective Hamiltonian was first explained, followed by 

a detailed discussion of the individual energy contributions. The derivations of the energy 

contributions and the effective Hamiltonian presented here are mostly based on existing works 

from the literature. In this thesis, however, extensions for the effective Hamiltonian have been 

developed, which were introduced in Chapter 4.3.4.1 and will be further discussed in the 

following chapters and in the enclosed publications. That includes a completely revised scheme 

for including a large number of anharmonic couplings to higher energy phonons as well as 

alternative ways to parametrize the effective Hamiltonian, as discussed in detail in 

Publication 2. Furthermore, the next chapter will also lay the foundation for the extension of 

the effective Hamiltonian to describe substituted systems.  

4.4 Effective Hamiltonians for Substituted Systems 

In this chapter, the extension of the effective Hamiltonian formalism for the inclusion of 

substituents in a perovskite structure will be discussed. In literature, one finds a variety of 

different approaches, whereby these are fundamentally different from each other. The main 

common feature of these approaches is the formalism of Zhong, Vanderbilt, and Rabe [23]. 

This Hamiltonian has already been described in detail in the previous chapter and allows the 

simulation of pure systems like BaTiO3 (BT). The most chosen approach to model substituents 

is to introduce a perturbation of a well-defined base system. Here, it must already be determined 

which system is to be perturbed. The work of Bellaiche et al. [29–31] describes a perturbation 

of a basis system parameterized by Virtual Crystal Approximation (VCA) [66]. Basically, a sort 

of averaged system is used here, and the respective different species at the A- and B-sites in the 

perovskite lattice are considered perturbations with respect to the base system. The applied 

perturbation terms were constructed to account for changes in the local-mode self-energy as 
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well as a correction to the local strain variables. Using this framework, several systems, such 

as Pb(Zr1−xTix)O3 (PZT) [29] and Ba(Zr1−xTix)O3 (BZT) [31] were parameterized, and the 

subsequent Monte Carlo and MD simulations showed good agreement with experimentally 

observed properties. A disadvantage of this approach is that the parameterization must be 

performed specifically for each composition, and therefore, results have only been published 

for selected concentrations. Furthermore, the application of the VCA method for small 

concentrations of substituents is debatable. In the work of Nishimatsu et al. [33], a different 

approach was followed, whereby the parameterization was first performed for the two binary 

systems (e.g. BaTiO3 and SrTiO3 for Ba1−xSrxTiO3, BST) in parallel. Then the parameters were 

simply averaged, and it was shown that these averaged parameters were very similar to those 

of the VCA parameterization. Furthermore, the averaged system was used as a basis, and the 

further perturbation terms were related to it. The chosen perturbation terms here refer to a 

hydrostatic pressure correction as well as a modulation for the local strain variables. The 

resulting findings for  BST provided good agreement with experimental data and demonstrated 

the applicability of this approach. In addition, a wide range of concentrations was simulated. A 

different approach was provided by the work of Mentzer et al. [32], which takes pure BT as the 

base system and relates the perturbation by substituents to this system. The perturbation induced 

by the B-site substitution by Zr ions is performed here by means of a restoring force. 

Furthermore, a hydrostatic pressure correction is applied for the influence of strain. The results 

obtained by this approach reproduce the phase diagram of BZT very well and also provide good 

agreement of hysteresis curves with experiments. Only the local description of effects like local 

deformations is somewhat neglected by such an approach. 

Overall, it can be concluded here that the integration of impurity atoms can be accomplished 

by a wide diversity of methods, with the respective approaches having to be adapted for 

different systems. In the following chapters, the approach developed in this thesis will be 

discussed based on literature and new ideas. 

4.4.1 General Definition via Perturbation 

In this chapter, the basic idea for the integration of substituent atoms, which was developed in 

this thesis, will be described. The basis of this chapter is the framework developed in 

Publication 3, though additional details will be provided here. Following the work done in this 

thesis on an accurate Hamiltonian for pure BT, as discussed in Publication 2, this Hamiltonian 

was chosen as the starting point for further development. This choice is further motivated by 

the excellent agreement of the phase transition temperatures as well as the reproducibility of 

other experimental data. The associated phase diagram and parameterization details can be 
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found in Publication 2. The idea of incorporating substituents is based on inspirations from the 

above-mentioned methods and is intended to provide an alternative scheme to the existing 

approaches from the literature. The starting point is the effective Hamiltonian 𝐻𝐵𝑇𝑂
𝑒𝑓𝑓

, which is 

extended by a perturbation term 𝐻𝑝𝑒𝑡𝑢𝑟𝑏.. The total Hamiltonian 𝐻𝑡𝑜𝑡𝑎𝑙
𝑒𝑓𝑓

 can be seen in 

Equation 99, where the definition for 𝐻𝐵𝑇𝑂
𝑒𝑓𝑓

 can be found in Publication 2. The used variables 

here are the local-mode amplitudes 𝒖, the dimensionless variables 𝒘, the strain variables in 

Voigt notation 𝜂𝑖, and a newly introduced variable 𝜎. The latter is used to distinguish between 

different species at the A or B lattice sites. In contrast to methods in the literature where this 

variable also has a quantitative value,  𝜎 denotes here a symbolic variable. 

 

𝐻𝑡𝑜𝑡𝑎𝑙
𝑒𝑓𝑓 ({𝒖}, {𝒘}, 𝜂𝑖, {𝜎}) = 𝐻𝐵𝑇𝑂

𝑒𝑓𝑓 ({𝒖}, {𝒘}, 𝜂𝑖) + 𝐻
𝑝𝑒𝑡𝑢𝑟𝑏.({𝒖}, {𝒘}, {𝜎}) 

(99) 

The foundation for the description of substituents is the additional term 𝐻𝑝𝑒𝑡𝑢𝑟𝑏., which 

contains the perturbation of the pure BT system. The construction of this term was inspired by 

already established methods from the literature as well as by own ideas. Basically, this term 

consists of four different energy contributions, as evident in Equation 100. The first 

contribution Δ𝑇 is a correction of the kinetic energies to account for the different masses of the 

ions. The second contribution Δ𝑉𝑠𝑒𝑙𝑓 adapts the local-mode self-energy due to the different ions 

at the lattice sites. This is followed by a correction to the long-range interaction Δ𝑉𝑑𝑝𝑙 to 

compensate for different effective charges. The last term 𝑉𝑎𝑢𝑥 accounts for short-range 

interactions between the different local modes and includes a correction for the local strains. 

An additional adaptation is made for the homogeneous strain, which is not included in 

Equation 100. All of these contributions are explained in more detail in the following 

subchapters as well as an explanation of the underlying physical principles is given.  

 𝐻𝑝𝑒𝑡𝑢𝑟𝑏. = Δ𝑇({𝒖}, {𝒘}, {𝜎}) + Δ𝑉𝑠𝑒𝑙𝑓({𝒖}, {𝜎}) + Δ𝑉𝑑𝑝𝑙({𝒖}, {𝜎})

+ 𝑉𝑎𝑢𝑥({𝒖}, {𝒘}, {𝜎}) (100) 

The perturbation term contains two contributions that were adopted directly from the literature. 

These are the adaptation of the local-mode self-energy and the short-range correction. The other 

two corrections may have been used occasionally but, to the author's knowledge, not in 

conjunction with the other corrections. All in all, the perturbation term in this work has been 

designed to ensure the most flexible application to different types of substituents. This includes 

the description of homovalently and heterovalently substituted systems, where different defects 

types (e.g. due to charge compensation) can also be considered. 
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4.4.2 Adaptation of Local-Mode Self-Energy 

The first correction, which shall be explained in more detail, is an adaptation of the local-mode 

self-energy. The local-mode self-energy is defined as the local displacement energy at the 

Γ-point of the 1st  Brillouin zone. Originally, a polynomial up to the fourth order was used by 

Zhong, Vanderbilt, and Rabe [23] for the mathematical description. Subsequently, this term 

was extended to the 8th order in the local amplitude 𝒖 by Nishimatsu et al. [27]. In the 

Hamiltonian 𝐻𝐵𝑇𝑂
𝑒𝑓𝑓

, which serves as a basis, the formulation of Nishimatsu et al. [27] is applied, 

which makes a correction of all associated parameters necessary. Such a correction, although 

only up to the fourth order, was first proposed by Bellaiche et al. [29] for the description of 

PZT. In this work, this approach has been adapted, and a correction up to the 8th order is applied. 

The corresponding mathematical expression for this adaptation can be seen in Equation 101. 

Basically, this equation is analogous to the original local-mode self-energy, but new parameters 

have been introduced. The first new parameter is 𝜎 to distinguish between different species at 

the A or B lattice sites. Following, the parameters Δ𝜅2,σ, Δ𝛼𝜎, Δ𝛾𝜎 and Δ𝑘1,𝜎 to Δ𝑘4,𝜎 have been 

applied, which are used to adapt the shape of the local-mode self-energy. Here it is important 

to define these parameters in such a way that the description of the correction refers to the parent 

system 𝐻𝐵𝑇𝑂
𝑒𝑓𝑓

. This means that all correction parameters must be parameterized in such a way 

that the energetic differences are related to the base system. More details on the 

parameterization by first-principles calculations can be found in Publication 3 and in Chapter 6 

and 7.  

 Δ𝑉𝑠𝑒𝑙𝑓({𝒖}, {𝜎})

=∑{Δ𝜅2,σ𝑢
2(𝑹) + Δ𝛼𝜎𝑢

4(𝑹)

𝑅

+ Δ𝛾𝜎[𝑢𝑦
2(𝑹)𝑢𝑧

2(𝑹) + 𝑢𝑧
2(𝑹)𝑢𝑥

2(𝑹) + 𝑢𝑥
2(𝑹)𝑢𝑦

2(𝑹)]

+ Δ𝑘1,𝜎𝑢
6(𝑹) + Δ𝑘2,𝜎(𝑢𝑥

4(𝑹) ∗ [𝑢𝑦
2(𝑹) + 𝑢𝑧

2(𝑹)]+𝑢𝑦
4(𝑹)

∗ [𝑢𝑧
2(𝑹) + 𝑢𝑥

2(𝑹)] + 𝑢𝑧
4(𝑹) ∗ [𝑢𝑥

2(𝑹) + 𝑢𝑦
2(𝑹)])

+ Δ𝑘3,𝜎𝑢𝑥
2(𝑹)𝑢𝑦

2(𝑹)𝑢𝑧
2(𝑹) + Δ𝑘4,𝜎𝑢

8(𝑹)} 

 
(101) 

The purpose of this correction of the local-mode self-energy shall also be discussed shortly. In 

principle, this correction allows the adaptation of the potential energy surface considering the 

displacive energy connected to the local amplitudes 𝒖. For example, a formation of a double-

well potential can result here for the parent system. The correction can change this potential 

arbitrarily within the mathematical boundary conditions. Thus, the influence of substituents on 
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the local amplitudes 𝒖 can be calculated relatively straightforwardly. However, as already 

mentioned, this correction only affects the local amplitudes and does not include interactions 

with neighboring unit cells. To apply corrections also away from this local adaptions, additional 

corrections of the potential energy surface are required. 

4.4.3 Auxiliary Spring System  

The next modification, which shall be explained in more detail, is for interactions between 

different unit cells containing different species of ions on the respective lattice sites. It is based 

on the work of Bellaiche et al. [29], which proposes a term that adapts the local amplitudes 𝒖 

and the dimensionless variables 𝒘. The correction proposed in the work of Bellaiche et al. [29] 

was derived up to the first order in 𝒖 and 𝒘, although an extension to higher orders can be 

carried out analogously if necessary. In this thesis, this approach has been adopted one-to-one 

and can be seen in Equation 102. Also, in this equation, the symbolic parameter 𝜎 is used to 

distinguish between unit cells with different substituted ions. The first term in Equation 102 is 

used to account for the influence of differently substituted unit cells on the neighboring unit 

cells with respect to the local amplitude 𝒖. Here, 𝑄𝑇,𝑅(𝜎𝑇) is an interaction matrix containing 

the parameters for the interaction between the unit cells. 𝑹 denotes a translational vector 

between the unit cells. The sum over 𝑹 runs over all unit cells in the supercell. 𝑻 represents a 

further translational vector between unit cells. The sum over 𝑻 is set so that interactions up to 

the third nearest neighbor shell are taken into account. 𝒆𝑇,𝑅 is a unit vector joining the site 𝑻 

with the center of 𝒖(𝑹). The application of such a unit vector contains a substantial advantage 

over other approaches like a pure definition by matrices. By projecting 𝒖(𝑹) onto the unit 

vector 𝒆𝑇,𝑅, only contributions that are different from zero are taken into account. All other 

contributions in the respective Cartesian directions, which are zero due to symmetry, are 

automatically neglected. An analogous term can now be applied to the dimensionless variables 

𝒘 as shown in Equation 102. This term is used to account for changes in the local strain induced 

by substituents. That is, with the help of this correction, it is possible to influence the local 

deformation of unit cells. Also, in this case, an interaction matrix is defined that takes into 

account the influence of the different ions at the respective lattice sites on their neighbors. Here, 

𝒇𝑇,𝑅 denotes again a unit vector joining the site 𝑻 with the center of 𝒘(𝑹). The translation 

vectors and the respective sums are analogous to those described for the correction applied for 

𝒖. It should be noted that the particular unit vectors must be defined to match the respective 

chosen basis for the local mode 𝒖 and the dimensionless variable 𝒘. For example, in the case 

of BT, a B-centered basis is chosen for the local mode 𝒖 and an A-centered basis is chosen for 
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the dimensionless variables 𝒘 during the parametrization of the effective Hamiltonian. More 

on this topic on the local basis can be found in Publication 2 and the instructive paper by 

Waghmare and Rabe [25]. 

 𝑉𝑎𝑢𝑥({𝒖}, {𝒘}, 𝜎)

=∑∑𝑄𝑇,𝑅(𝜎𝑇)𝒆𝑇,𝑅 ⋅ 𝒖(𝑹)

𝑇𝑅

+∑∑𝑆𝑇,𝑅(𝜎𝑇)𝒇𝑇,𝑅 ⋅ 𝒘(𝑹)

𝑇𝑅

 
(102) 

Altogether, this correction for the local amplitudes 𝒖 and the dimensionless variables 𝒘 is an 

important part of the perturbation of the parent system. Only with the application of this 

correction, it is possible to take into account the influence of substitution on the neighboring 

unit cells. The required parameters can be determined again by first-principles calculations. 

Also, here, the parameters have to account for the interactions with reference to the parent 

system. Furthermore, the interaction matrices 𝑄𝑇,𝑅(𝜎𝑇) and 𝑆𝑇,𝑅(𝜎𝑇) can be calculated quite 

straightforwardly using supercells and considering the occurring forces due to substitution. 

More about the parametrization using DFT can be found in Publication 3 and in Chapters 6 

and 7. 

4.4.4 Hydrostatic Pressure Correction 

As a next step, a correction for the change of the lattice volume due to substitution will be 

discussed. In the previous chapter, it was shown how the influence on the local strain could be 

taken into account, but this correction does not provide a change in the homogeneous strain. 

For many systems, however, substitution by impurity atoms does induce a change in the lattice, 

either by expansion or contraction. To introduce this contribution to the effective Hamiltonian, 

the application of a hydrostatic pressure was considered. The idea for such a correction goes 

back to the work of Nishimatsu et al. [33] as well as Mentzer et al. [32], whereby the underlying 

effective Hamiltonians are different. Also, the effective Hamiltonian used in this work differs 

from the literature since, here, the effects of substitution are considered differently. This means 

that the correction via the hydrostatic pressure must be chosen to be harmonized with the other 

applied corrections. Therefore, in this thesis, the following approach was adopted to account 

for induced volume changes. Initially, first-principles calculations were performed with 

different concentrations of substituents, and the change in the lattice constants was observed. It 

was found that, in most cases, a linear dependence of the lattice volume on the concentration 

can be assumed. For more details, the Supplemental Material of Publication 3 is referred to. 

Thus, a pressure correction can be written as in Equation 103, where 𝑥 denotes the concentration 

of the impurity atoms and 𝑝0 a constant. If a non-linear dependence of the pressure occurs, this 

relation can simply be extended by further orders of 𝑥 and fitted to the first-principles 
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calculations. It must also be mentioned here that the pressure correction refers to the parent 

system, which for example, in this thesis, is BT.  

 𝑝𝑒𝑓𝑓 = 𝑥 ⋅ 𝑝0 (103) 

Such a pressure correction causes an expansion or contraction of the entire supercell, and of 

course, the volumes of local unit cells change accordingly. However, this change is an averaged 

expansion or contraction of all unit cells and is not dependent on the particular chemical 

composition of each unit cell. Nevertheless, in order to take into account this local deformation 

in dependence on the chemical composition of the unit cell, the second term from Equation 102 

is essential. This term allows, despite the averaged change of the unit cell volume, to ensure a 

correct description of the local deformations. In order to make this feasible, though, the 

interaction matrix 𝑆𝑇,𝑅(𝜎𝑇) must be determined in such a way that the changes in the local unit 

cells already take into account the averaged change in the volume. This, in turn, implies that for 

each concentration, the interaction matrix 𝑆𝑇,𝑅(𝜎𝑇) would have to be re-parameterized. As the 

Hamiltonian constructed in this thesis should be as flexible as possible for a wide concentration 

range, a re-parameterization of the interaction matrix is omitted. This assumption is reasonable, 

especially for small concentrations of impurity ions, whereas for larger concentrations, an 

overestimation of local distortions can occur. 

4.4.5 Adaptation of Kinetic Energies 

A further adjustment for the description of substituents can be made in the kinetic energies of 

the effective Hamiltonian. As evident in Equation 64, effective masses and associated kinetic 

energies are used for the effective Hamiltonian of the parent system. If other species are 

substituted at certain lattice sites, these effective masses must be adapted to the respective 

atomic masses. It should be mentioned again that the effective masses used are associated with 

the local modes. That is, the atomic masses are multiplied by the quadratic entries of the 

respective eigenvectors, as can be seen in Equation 65. For the inclusion of substituents, an 

effective mass is calculated analogously, which takes into account the respective atomic mass 

at the A or B lattice site. Which eigenvector is taken for the computation must be decided 

individually, but the choice of the eigenvector used as the basis for the parametrization of the 

parent system is a good approximation. This adaptation of the effective masses allows to 

directly influence the dynamics of the respective local modes. Such an adjustment of kinetic 

energies has not yet been applied to the author's knowledge and will therefore be further 

discussed in Publication 3. 
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4.4.6 Adaptation of Long-Range Interaction 

As a final correction, the long-range interaction between the local dipoles is adapted. The basis 

for the calculation of this interaction has already been discussed in detail in Chapter 4.3.5. After 

the calculation of the interaction matrix, this energy contribution can be simply calculated by 

matrix multiplication, as shown in Equation 72. If different atoms are now substituted, the Born 

effective charges also change as defined in Equation 74. That is, for an adaptation of the dipole 

interaction, the Born effective charges of the impurity ions must be calculated first, and then an 

effective charge associated with the local mode must be calculated according to Equation 74. 

Also, for this case, a suitable eigenvector must be used for the calculation of the effective 

charge. The eigenvector used for the parameterization of the parent system can be used as an 

approximation. A more complex method would be to calculate the associated phonons in a 

supercell, where the coupling between the eigenvector of the parent system and the substituted 

system must be investigated. Subsequently, an approximation can be found for the eigenvector 

of the local unit cell containing the substituted ions with respect to the parent system. Such an 

approximation can also be used for the calculation of effective masses from the previous 

chapter. Whether an application of long-range interaction adaptation should be included in the 

extended effective Hamiltonian must be decided specifically for each substituted system 

considered. 
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5 Parametrization of BaTiO3 
In this chapter, the parameterization of the effective Hamiltonian for pure BaTiO3 (BT) will be 

discussed, with the results shown referring to Publication 2 and the associated Supplemental 

Material. Nevertheless, the parameterization will be summarized here, and any additional 

details will be revealed. The basis of the parameterization is DFT calculations, using the DFT 

package VASP [97–100] for all the following calculations. The calculations with VASP are 

based on so-called projector-augmented wave potentials [101]. The valence electronic 

configurations of 5s2 5p6 6s2 for Ba (10 valence electrons),  3s2 3p6 4s2 3d2 for Ti (12 valence 

electrons), and 2s2 2p4 for O (6 valence electrons) were used within the DFT calculations. 

Furthermore, the PBEsol [82] functional was used as an exchange-correlation functional. As a 

first step, convergence tests for the k-grid and the cutoff energy were performed. Cubic BT was 

considered, and the size of the k-grid was varied to determine which size yielded converging 

results. It was found that a k-grid of size 8x8x8 was sufficient for the 5-atom unit cell 

calculations. An analogous study was performed for the cutoff energy, and here a cutoff of 

520 eV was adopted for the calculations. Larger cutoff energies were also considered for 

relaxations, where only minimal differences in lattice constants were observed. For the 

convergence of the SCF (self-consistent field) cycle, the EDIFF tag within VASP was set to 

10−8 eV for all calculations.  

5.1 Lattice Constant 

The lattice constant of cubic BT plays a crucial role in the parameterization since this structure 

forms the basis for the effective Hamiltonian. Therefore, the optimization of the lattice constant 

by DFT calculations should be carried out with great care. In this work, a cubic structure of BT 

was first prepared and relaxed by DFT and the PBEsol functional. The k-grid, as well as the 

cutoff energy, were varied here to obtain a converged lattice constant. The final settings for the 

relaxation were a k-grid of size 8x8x8 and a cutoff energy of 520 eV. The criteria for the SCF 

cycle within the relaxation were set to a value for EDIFF of 10−8 eV, and for the maximal 

residual forces, a value of 10−4 eV/Å was chosen. As a result, a cubic lattice constant for BT 

of 𝑎0 = 3.987 Å can be reported. Compared to the experimental lattice constant [23] of 𝑎0 =

4.01 Å, the PBEsol functional slightly underestimates the lattice constant. The same procedure 

was also used to investigate the remaining phases of BT and the corresponding lattice 

parameters are presented in Table 1. These results are complementary to Publication 2 and are 

in good agreement with results from the literature [28]. 
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Table I. Summary of lattice constants for different phases of 𝐵𝑎𝑇𝑖𝑂3 obtained from DFT relaxations 

using the PBEsol functional. 

 a [Å] b [Å] c [Å] 𝜶 [°] 𝜷 [°] 𝜸 [°] 

Cubic 3.987 3.987 3.987 90.00 90.00 90.00 

Tetragonal 3.971 3.971 4.065 90.00 90.00 90.00 

Orthorhombic 4.027 4.027 3.965 90.00 90.00 90.21 

Rhombohedral 4.007 4.007 4.007 89.86 89.86 89.86 

 

5.2 Local-mode self-energy 

The parameterization of the local-mode self-energy is a central point of this thesis and is 

described in detail in Publication 2 and its Supplemental Material. Therefore, only the 

foundation of this parameterization will be discussed in this chapter. The starting point for the 

calculation of the required parameters is the cubic phase of BT obtained from the previous 

chapter. This structure is used to calculate the phonons at the Γ-point by means of DFT. The 

calculation can be done either by a finite-difference method or by density-functional-

perturbation theory (DFPT). In this thesis, both approaches were used, and only minimal 

differences in the calculated eigenvectors and eigenvalues were observed. The results for the 

eigenvectors are presented in Publication 2. A comparison between different exchange-

correlation functionals can be found in the Supplemental Material of Publication 2. The results 

of the phonon calculation result in a total of 15 modes, whereby these modes are threefold 

degenerate [23,26–28]. This means that the displacement associated with an eigenvalue is 

equivalent for each of the respective Cartesian directions. Therefore, only five distinct modes 

result. These five modes include one acoustic mode, three modes with Γ15 symmetry and one 

mode with Γ25 symmetry. Interestingly, one of the Γ15 modes has an imaginary frequency, 

indicating instability of the cubic phase. This mode is also called soft-mode and plays a special 

role in the parameterization. It can be shown that the structural change of the lattice is due to 

displacements based on the eigenvector of the soft-mode. See Publication 2 for more details. 

For the parameterization, as already explained in detail in the theoretical part, a phonon mode 

must be chosen as a basis. Since the eigenvector of the soft mode significantly overlaps with 

the structural change, this mode is the obvious choice for the basis of the effective Hamiltonian. 

In terms of Lattice Wannier functions, the eigenvector of the soft mode would now correspond 

to the local basis.  
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5.2.1 Conventional Hamiltonian 

The parameterization of the local-mode self-energy is rather simple to perform after choosing 

the local basis by the eigenvector of the soft-mode. For the conventional effective Hamiltonian, 

it is sufficient to construct displacements of the atoms using the eigenvector in the highly 

symmetric directions <001>, <011>, and <111>. The displacements of the atoms are given by 

the local amplitude 𝒖 and the eigenvector components, as evident in Equation 63. Then DFT 

can be used to calculate the associated total energies for a discrete set of amplitudes 𝒖. By 

fitting Equations 67, 68, and 69, the required parameters for the local-mode self-energy can be 

determined. Here it is important to choose the discrete set in order to fit the local minima as 

well as the anharmonic contributions in the best possible way. An illustration of the obtained 

local-mode self-energy for BT is given in the Supplemental Material of Publication 2. It should 

be further noted that this energy refers purely to the displacement of the atoms at the Γ-point 

and does not include any changes in the unit cell. The changes due to deformation are taken 

into account via the other terms of the effective Hamiltonian. In addition, an alternative method 

for the determination of the local-mode self-energy shall be discussed here. This approach is 

called the valley tracing method (VTM) and originates from the work of Hashimoto et al. [102] 

and Nishimatsu et al. [27]. The approach involves a redefinition of the local amplitude by the 

displacements of the individual atoms, as can be seen in Equation 104. Here, 𝑢𝛼 is the local 

amplitude in the Cartesian direction 𝛼. 𝑣𝛼
𝑖  represents the displacement of atom 𝑖. 

 
𝑢𝛼 = √(𝑣𝛼𝐴)2 + (𝑣𝛼𝐵)2 + (𝑣𝛼

𝑂1)
2
+ (𝑣𝛼

𝑂2)
2
+ (𝑣𝛼

𝑂3)
2
 (104) 

The basic proposition of the approach is that the eigenvector is not constant along the 

displacement of the atoms from the cubic phase toward the local minima. That is, a new 

eigenvector 𝝃(𝒖) should be calculated for each displacement 𝒖. The realization of this 

calculation of 𝝃(𝒖) is achieved by minimizing the energy with respect to the change in atomic 

displacements at a fixed local amplitude 𝒖. In this thesis, this approach was tested, and the 

results are comparable to literature values. However, due to the newly developed approach to 

include multiple phonon modes, the conventional approach was preferred in the remainder of 

the thesis. The reason for this is simply that by the VTM method, the local basis by clearly 

defined eigenvectors is no longer given. However, this basis is essential for the description of 

different phonon modes, and therefore, such a basis must be used for further parameterization. 

5.2.2 Revised Hamiltonian 

A major part of this thesis is the development of an extension of the effective Hamiltonian to 

incorporate additional phonon modes. A detailed description of the derivation, as well as the 
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parameterization, can be found in Publication 2 and its Supplemental Material. An overview of 

the developed approach is additionally given in Chapter 4.3.4.1. In this chapter, complementary 

to Publication 2, additional details on the parameterization will be discussed. The idea of 

including additional phonon modes in the effective Hamiltonian came from the fact that the two 

Γ15 modes besides the soft mode also have an overlap with the structural deformation. In 

Publication 2, using a projection of the eigenvectors onto the structural deformation, the 

contribution of these modes is discussed in detail. Subsequently, the local-mode self-energy 

was expanded, yielding Equation 70 by applying a multivariate Taylor expansion. The formula 

for the local-mode self-energy in the <001> direction, cleaned of disallowed terms, can be seen 

in Equation 71. This equation has to be parameterized by DFT calculations, where a large 

number of different parameters have to be determined. For further progress, the three included 

phonon modes are denoted by the amplitudes 𝑢, 𝑣1, and 𝑣2, with the associated eigenvectors 

given in Publication 2. Basically, for the parametrization of Equation 71, a set of DFT 

calculations has to be found, which allows the accurate determination of all parameters. For this 

purpose, a Python script was written that takes over the construction of different structures 

based on atomic displacements. A very helpful module for the construction of these structures 

is the pymatgen module, which allows to create input files for the VASP calculations. 

Subsequently, the script was programmed to apply a superposition of the respective 

displacements based on the eigenvectors. Since three different modes are used here, the 

considered range of the corresponding amplitudes increases enormously. In the course of the 

parameterization, a discrete range for the soft-mode amplitude 𝑢 was defined. This range was 

chosen to cover the local minima and to consider the anharmonic part as best as possible. The 

definition of this discrete range for 𝑢 is, in principle, analogous to the parameterization of the 

conventional local-mode self-energy. In order to consider the additional modes 𝑣1 and 𝑣2, 

structures have to be created which contain a finite amplitude of all three modes. First, a range 

of discrete grid points was defined for each amplitude, where each grid point must be combined 

with the grid points of the other amplitudes. If the number of grid points is denoted by 𝑁𝑢,𝑁𝑣1 

and 𝑁𝑣2, the total number of structures to be created is 𝑁𝑢𝑁𝑣1𝑁𝑣2. Here it is obvious that if a 

dense grid is chosen, the number of structures to be calculated increases significantly. However, 

due to symmetry, the choice of amplitudes can already be reduced. Furthermore, to ensure a 

suitable choice of grids, the calculation was divided into patches, and then the fitting process 

was performed with different sizes of the dataset. Thereby, the convergence of the individual 

parameters as a function of the dataset size could be observed systematically. The final 

parameterization, therefore, includes a dataset of over 2500 DFT calculations with different 
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amplitudes. In fact, however, over 4000 DFT calculations were performed. Details of the fit 

process with various fit algorithms can be found in Publication 2 and its Supplemental Material. 

Furthermore, the stability of the fit and the final parameters for the effective Hamiltonian are 

also presented in Publication 2. Another important point is that the local-mode self-energy 

parameterized by Equation 71 is not directly used in the effective Hamiltonian. As already 

discussed in detail in Chapter 4.3.4.1 and Publication 2, this energy term is again transformed 

back to a function purely of 𝒖. This transformation is performed by calculating the amplitudes 

𝑣1,𝑚𝑖𝑛(𝑢)  and 𝑣2,𝑚𝑖𝑛(𝑢)  which minimize the total energy. Since equation 71 does not allow a 

feasible analytical solution for the calculation of 𝑣1,𝑚𝑖𝑛(𝑢)  and 𝑣2,𝑚𝑖𝑛(𝑢), numerical methods 

have to be used. That means, as a result, a data set of local-mode self-energies over a discrete 

set of amplitudes 𝑢𝑖 is obtained. However, this set indirectly includes all calculated couplings 

between the individual phonon modes. Furthermore, this set is used to refit the conventional 

local-mode self-energy from Equation 67. For the refit, not all parameters are redetermined. 

Only the parameters 𝑘1 and 𝑘4. This choice is discussed in Publication 2 and can be further 

motivated by the work of Paul et al. [28]. The final parameters used in the revised effective 

Hamiltonian are denoted by 𝑘1
′  and 𝑘4

′ . 

In the course of this thesis, the inclusion of the other two directions, <011> and <111>, was 

also investigated. Here, an expansion of the local-mode self-energy analogous to the <001> 

direction must first be performed. This expansion can basically be done in two different ways. 

Either each direction is considered separately, and a multivariate Taylor expansion is applied, 

or the formulation is carried out with the vectors 𝒖, 𝒗𝟏, and 𝒗𝟐. Both approaches give essentially 

the same result, except that any pre-factors must be considered carefully. In the Supplemental 

Material of Publication 2, the expansion for both these directions is discussed in detail as well 

as the associated parametrization is demonstrated. However, it turns out that the chosen 

approach for the back-transformation of the local-mode self-energy as well as the 

accompanying refitting of the conventional approach, reaches its limits. In detail, for the 

refitting of the directions <011> and <111> only the two parameters 𝑘2
′  and 𝑘3

′  are available, 

which strongly limits the flexibility of the mathematical function. But even if all available 

parameters are used for the refit process, the energy to be fitted can only be described in a 

partially acceptable manner. The reason for refitting has already been mentioned and is simply 

to maintain the efficiency of the effective Hamiltonian. For the solution to the above-mentioned 

problem, two approaches can be pursued. First, the effective Hamiltonian is revised, and all 

phonon modes are actively considered, which, however, leads to a loss of computational 
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efficiency. Second, Equations 67, 68, and 69 used for the refit are extended by additional terms, 

which allows greater flexibility for the fitting process. The latter is currently in progress and 

will be covered in a possible future publication. 

5.3 Elastic Constants 

In this chapter, the calculation of the elastic constants will be explained in more detail. In 

Supplemental Material of Publication 2, a comparison of the elastic constants for different 

exchange-correlation functionals is given, but the theoretical basis for the calculation is not 

discussed. Therefore, the required DFT calculations, as well as the subsequent fit processes, 

shall be described at this point. The approach adopted here to determine the constants is based 

on the work of Nishimatsu et al. [27]. In general, the three constants 𝐵11, 𝐵12 and 𝐵44 are needed 

for the effective Hamiltonian. These constants are the elastic constants 𝐶11, 𝐶12 and 𝐶44 

multiplied by the volume of the unit cell. Furthermore, these elastic constants relate to the cubic 

structure used as the basis for the effective Hamiltonian. The first constant to be calculated is 

the bulk modulus of the system, which is not directly used in the Hamiltonian but is needed for 

the determination of the other constants. To calculate the bulk modulus, starting from the cubic 

structure, the strain tensor from Equation 105 is applied. Thus, the total energies at different 

volumes of the unit cell can be calculated by means of DFT. 

 

𝝐 = (
𝛿 0 0
0 𝛿 0
0 0 𝛿

) 
(105) 

The bulk modulus 𝐵0 can now be determined by fitting a Murnaghan [16] equation of state as 

shown in Equation 106. Here 𝐸(𝑉) is the total energy of the system as a function of the unit 

cell volume 𝑉. 𝐵0
′ , 𝑉0 and 𝐸0 represent further constants which are also estimated during the 

fitting.  The unit of the bulk modulus depends here on the input variables, of course, but the 

unit always amounts to pressure. To be consistent with the other variables 𝐵11, 𝐵12 and 𝐵44, 𝐵0 

must be multiplied by the volume of the unit cell. Furthermore, it is also possible to calculate 

the bulk modulus using the Birch-Murnaghan [103] equation of state, although no relevant 

change in bulk modulus was observed for the case of BT. That is, the value for cubic BT with 

the Murnaghan approach yields 𝐵0 = 177.43 GPa, whereas the Burch-Murnaghan equation of 

state leads to a value of 𝐵0 = 177.67 GPa. The corresponding fit of the DFT data can be seen 

in Figure 7a. 

 

𝐸(𝑉) =
𝐵0𝑉

𝐵0
′(𝐵0

′ − 1)
(𝐵0

′ (1 −
𝑉0
𝑉
) + (

𝑉0
𝑉
)
𝐵0
′

− 1) + 𝐸0 
(106) 
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The next constant to be determined is 𝐵11. For this purpose, the strain tensor from Equation 107 

must first be applied to the cubic structure. Such a deformation of the cubic cell leads to a 

tetragonal lattice structure. Subsequently, the constructed structures are calculated via DFT to 

obtain the corresponding total energy as a function of 𝛿. 

 

𝝐 = (
0 0 0
0 0 0
0 0 𝛿

) 
(107) 

In order to estimate the constant 𝐵11, Equation 108 is fitted to the above-mentioned set of DFT 

calculations. The corresponding fit for the case of BT can be found in Figure 7b. The associated 

value for the constant is provided in Publication 2. 

 
𝐸(𝛿) = 𝐸0 +

1

2
𝐵11𝛿

2 + 𝑂(𝛿4) (108) 

From the two constants 𝐵0 and 𝐵11, the constant 𝐵12 can now be calculated using the relation 

below. Here, the bulk modulus from Equation 106 must be multiplied by the volume of the unit 

cell to be consistent with the units. 

 
𝐵12 =

3𝐵0𝑎0
3 − 𝐵11
2

 (109) 

Finally, the constant 𝐵44 can be determined by the following procedure. First, the strain tensor 

from Equation 110 has to be applied to the cubic structure. Following, the constructed structures 

are calculated by DFT to obtain the total energies. 

 

𝝐 = (
0 𝛿 𝛿
𝛿 0 𝛿
𝛿 𝛿 0

) 
(110) 

From the set of DFT data, the constant 𝐵44 can then be determined by fitting Equation 111. An 

illustration of the fit for the case of BT is given in Figure 7c. 

 
𝐸(𝛿) = 𝐸0 +

3

2
𝐵44𝛿

2 + 𝑂(𝛿4) (111) 

All required parameters for the effective Hamiltonian for BT can be found in Publication 2. 

Furthermore, it should be mentioned that the calculation of the elastic constants can, of course, 

be done in different ways. For example, many DFT packages provide a direct output of the 

elastic constants when the phonon properties are calculated. However, it is advantageous if the 

direct results from DFT are checked with such classical approaches. Furthermore, a comparison 

to experimental values, as given in the Supplemental Material of Publication 2, is also helpful 

in estimating the quality of the calculation. 
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Figure 7. Illustration of fitting the elastic constants from DFT calculations. (a) shows the fit of the 

Murnaghan equation of state to obtain the bulk modulus. (b) shows the fit to determine the constant 

𝐵11. (c) shows the fit to extract the constant 𝐵44. 

5.4 Strain-Phonon Coupling 

Next, the parametrization of the strain-phonon coupling parameters will be described in more 

detail. The approach for this is based on the work of Nishimatsu et al. [27], but different 

methods are used for the required DFT calculations. The approach shown in the work of 

Nishimatsu et al. [27] is related to the application of the VTM method, where the relaxation of 

the unit cell is taken into account for the calculation of the local-mode self-energy. Using this 

approach, the final parameters of the local-mode self-energy have to be re-calculated by 

excluding the contributions from strain. In the case of the VTM method, the calculation of the 

strain-phonon coupling can be performed directly from the corresponding DFT calculations. In 

this work, however, the local-mode self-energy was parameterized in a conventional way by 

applying displacements according to the eigenvectors. For the calculation of the strain-phonon 

coupling, additional DFT calculations are now necessary, which take into account the 

dependence of the local amplitude on the deformation of the unit cell. The approach chosen 

here is described in detail in Publication 2 and its associated Supplemental Material, although 

the theoretical foundations will be supplemented here. The standard approach for the 

calculation of the strain-phonon coupling parameters 𝐵1𝑥𝑥, 𝐵1𝑦𝑦 and 𝐵4𝑦𝑧 is a simultaneous 

displacement by the local amplitude 𝒖 and application of different deformations of the unit cell. 

In this thesis, this approach was first followed, and viable parameters were extracted, as evident 

in Publication 2. However, this approach is based on predefined deformations of the unit cell 

and does not allow for additional relaxations of the unit cell. Therefore, in the course of this 

thesis, another approach was developed, which should provide an improved description of the 

strain-phonon coupling. The basis for the revised method is the ISIF=6 relaxation in VASP, 

which allows a full relaxation of the unit cell with fixed internal coordinates of the atoms. 



83 
 

Subsequently, relaxed unit cells for a particular displacement according to a local amplitude 𝒖 

can be calculated. Therefore, in the case of BT, structures with different amplitudes of 𝒖 in 

<011> direction were first constructed and then calculated using VASP and the ISIF=6 tag. 

Subsequently, the approach developed by Nishimatsu et al. [27] can be applied to calculate the 

coupling parameters. To use this approach, the parameters 𝑎𝑥𝑥, 𝑎𝑥𝑦, and 𝑎𝑧𝑧 must first be 

determined from the Equations 112, 113, and 114 by fitting. This is the quadratic dependence 

on the local amplitude 𝑢 of the strain. The local amplitudes 𝑢 in these equations correspond to 

the <011> direction. The calculation of the strain values 𝑒𝑥𝑥, 𝑒𝑥𝑦 and 𝑒𝑧𝑧 can be done from the 

relaxed structures of the DFT calculations. The required amplitudes 𝑢 can be calculated 

analogously considering the atomic displacements and the applied eigenvectors. A visualization 

of such fits to the DFT data for the case of BT can be found in the Supplemental Material of 

Publication 2. 

 
𝑒𝑥𝑥 = 𝑎𝑥𝑥𝑢

2 (112) 

 

 𝑒𝑥𝑦 = 𝑎𝑥𝑦𝑢
2 (113) 

 

 
𝑒𝑧𝑧 = 𝑎𝑧𝑧𝑢

2 (114) 

Once the parameters 𝑎𝑥𝑥, 𝑎𝑥𝑦, and 𝑎𝑧𝑧 are determined, the strain-phonon coupling parameters 

𝐵1𝑥𝑥, 𝐵1𝑦𝑦 and 𝐵4𝑦𝑧 can be calculated by Equations 115, 116, and 117. Here, the elastic 

constants from the previous chapter are used. As listed in Publication 2, the application of the 

ISIF=6 method yields slightly different coupling constants. However, since this method takes 

into account the full relaxation of the unit cell, these values are relied upon for application in 

the effective Hamiltonian. 

 
𝐵1𝑥𝑥 = −4𝐵11𝑎𝑥𝑥 + 2(𝐵11 − 2𝐵12)𝑎𝑧𝑧 (115) 

 

 𝐵1𝑦𝑦 = −4𝐵12𝑎𝑥𝑥 − 2𝐵11𝑎𝑧𝑧 (116) 

 

 𝐵4𝑦𝑧 = −2𝐵44𝑎𝑥𝑦 (117) 
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5.5 Short-Range and Long-Range Interactions 

Finally, the parameterization of the short-range and long-range interactions will be discussed. 

For the calculation of the long-range interaction, in general, just the determination of the Born 

effective charge associated with the local mode 𝒖 is required. The basis for this is Equation 74, 

where the Born effective charges of the atoms and the eigenvector of the local mode 𝒖 are used 

to calculate an effective charge for the mode. The required Born effective charges for the 

individual atoms can be determined by DFT calculations. Here, again, two approaches can be 

used. First, a finite-difference method can be employed by IBRION=6 in VASP. Second, the 

charges can also be determined via the tag IBRION=8 by density functional perturbation theory 

(DFPT). Both methods give results with excellent agreement. However, for the values in this 

thesis, the results of the DFPT method were used. The value of the Born effective charge 

associated with the local mode 𝒖 is listed in Publication 2. The calculation of the short-range 

parameters is a somewhat more complex task since the phonon band structure must be evaluated 

at different reciprocal points. The basis for the determination of the inter-site parameters 𝑗1 to 

𝑗7 is provided by Equations 79 to 85. Chapter 4.3.6 also describes the reciprocal points required 

for the parameterization. To calculate the band structure for these points, the phonopy [104,105] 

package was used. This package allows quite straightforwardly to compute the entire phonon 

band structure by the employment of supercells. The starting point is the cubic structure of BT 

represented by the 5-atom unit cell. Using the phonopy package, a supercell of size 2x2x2 was 

constructed based on this unit cell. Subsequently, the force constants have to be calculated for 

this supercell. These can be calculated either by the finite-difference method (IBRION=6) or 

by DFPT (IBRION=8). Furthermore, a k-grid of size 4x4x4 was employed for the DFPT 

calculation. The resulting force constants are then used to calculate the band structure using 

phonopy. Here, it is of utmost importance to set the masses of the respective atoms to one to be 

consistent with the definition of the effective Hamiltonian. For details on the derivation and 

definition of the effective Hamiltonian, please refer to Chapter 4.3.2. Actually, not the whole 

phonon band structure has to be calculated by phonopy, but only the highly symmetric points 

in the reciprocal space defined in Chapter 4.3.6. Subsequently, the eigenvalues which are 

applied in Equations 79 to 85 can be extracted from the DFT data. Again, the correct unit of the 

eigenvalues must be ensured. Once the eigenvalues have been calculated, the inter-site 

parameters 𝑗1 to 𝑗7 can be determined by solving the linear problem given by Equations 79 

through 85. The parameters for BT applying the procedure from above are listed in 

Publication 2. Furthermore, a value for the parameter 𝜅2 is determined by solving the linear 
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equation system. This parameter is used for the local-mode self-energy but has to be corrected 

first, as described in Chapter 4.3.6. The correction ensures that the potential energy surface is 

described consistently by all involved energy terms. As explained in the theoretical part, 

Chapter 4.3.6, the calculation of all quadratic terms is performed by a redefined potential 

Φ̃𝛼𝛽
𝑞𝑢𝑎𝑑(𝒌) in reciprocal space. This potential contains the quadratic term of the local-mode self-

energy, the short-range interaction as well as the long-range interaction. It is now possible to 

calculate the eigenvalues of this potential and to evaluate the dispersion along the highly 

symmetric directions in the reciprocal space. The result is shown in Figure 8, where half the 

value of the eigenvalues is plotted. Here, in principle, the subspace of the phonon band structure 

is mapped, which is given by choice of the local basis in the effective Hamiltonian. 

Furthermore, a minimum of the band structure is found at the Γ-point, which indicates the 

ferroelectric behavior of BT. 

 

Figure 8. Visualization of half of the eigenvalues associated with the quadratic interaction matrix 

�̃�𝛼𝛽
𝑞𝑢𝑎𝑑(𝒌) for the case of BT. The dispersion shows the subspace of the phonon band structure taken 

into account by choice of the local basis within the effective Hamiltonian. 
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6 Parametrization of Ba(ZrxTi1-x)O3 
In this chapter, the parameterization of Zr substituted BT (Ba(ZrxTi1−x)O3, BZT) will be 

discussed. Such a substitution is called homovalent substitution since Zr4+ is substituted for 

Ti4+ at the B-site of BT. Essentially, Publication 3 and its Supplemental Material cover the 

parameterization and application of the extended effective Hamiltonian. However, any 

additional details of the parameterization which were not covered in Publication 3 will be 

discussed here. The basis for the parameterization is, again, DFT calculations using the VASP 

package. The valence electronic configurations of the species Ba, Ti, and O are the same as 

explained in Chapter 5. For the species Zr, a configuration of 4s2 4p6 5s2 4d2 (12 valence 

electrons) was used. Furthermore, convergence tests were first performed to obtain suitable 

values for the k-grid size and cutoff energy. For the cutoff energy, convergence tests revealed 

that a value of 520 eV is sufficient for all required calculations. Furthermore, convergence tests 

were also performed for the k-grid, and the following values were determined for the different 

supercells. For calculations of the primitive 5-atom unit cell, a k-grid of size 8x8x8 was 

determined. For supercells of size 2x2x2, a k-grid of size 4x4x4 was applied. Finally, for 

calculations with supercells of size 3x3x3, a k-grid of size 3x3x3 was chosen. For the stop 

criterion of the SCF (self-consistent field) cycle, the EDIFF tag within VASP was set to 

10−8 eV for all calculations. 

6.1 Kinetic Energies 

The first correction which is applied in the extended effective Hamiltonian is the adaptation of 

the kinetic energies via the effective masses. The effective mass can be calculated for the chosen 

local mode 𝒖 by Equation 65 by multiplication with the squared entries of the corresponding 

eigenvector. For the case of the extended effective Hamiltonian, an adapted effective mass can 

now be calculated as a function of the local chemical composition. For the case of pure BT, an 

effective mass associated with the local mode 𝒖 of 𝑀𝑑𝑖𝑝𝑜𝑙𝑒
∗ (𝑇𝑖) = 38.148 a.m.u. results, as 

listed in Publication 2. For the effective mass associated with the acoustic mode, a value of 

𝑀𝑎𝑐𝑜𝑢
∗ (𝑇𝑖) = 46.638 a.m.u. is obtained. Here, the corresponding eigenvector used for the 

computation is related to a pure translation. In order to account for substituted unit cells, an 

alternative effective mass can be calculated. For the case of Zr substituted at the B-site of BT, 

the effective mass related to the local mode 𝒖 results to  𝑀𝑑𝑖𝑝𝑜𝑙𝑒
∗ (𝑍𝑟) = 64.148 a.m.u. 

Analogously, the effective mass for the acoustic mode can be estimated and yields 

𝑀𝑎𝑐𝑜𝑢
∗ (𝑍𝑟) = 55.309 a.m.u. For the effective masses associated with the acoustic mode, the 

calculation is unambiguous since the eigenvector is the same in both cases. However, the choice 

for the calculation of the effective masses associated with the local mode 𝒖 must be discussed. 
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It should be noted that the determination of the effective mass for pure BT is unambiguous due 

to the eigenvector of the local mode 𝒖. However, if Zr is substituted, the corresponding 

eigenvector changes and an unambiguous determination is no longer trivial. Two approaches 

can be followed here to determine an effective mass. The first and simplest approach is to use 

the eigenvector of 𝒖, which results from the parent system. This is a good approximation and 

describes, in principle, the mass change related to pure BT. This method was adopted in this 

thesis. A more elaborate method would be to calculate a supercell with substituted unit cells 

and to investigate the eigenvectors. Here, it can be filtered out how the local unit cell containing 

Zr couples with the surrounding Ti unit cells to the local mode 𝒖. From that investigation, an 

adapted mass can be calculated from the subspace of the total eigenvector of the supercell. 

However, also here, the choice of the eigenvector is not unique and is subject to the observer. 

All in all, the approach adopted here delivers reasonable results, as described in detail in 

Publication 3. 

6.2 Adapted Local-Mode Self-Energy 

The next correction for which the parameters are to be determined is the local-mode self-energy. 

The theoretical basis for this correction has already been explained in detail in Chapter 4.4.2, 

where the parameters Δ𝜅2,σ, Δ𝛼𝜎, Δ𝛾𝜎 and Δ𝑘1,𝜎 to Δ𝑘4,𝜎 have been introduced. In principle, 

for this correction, the change of the local-mode self-energy upon substitution of different 

species at specific lattice sites is considered with respect to the parent system BT. For the case 

of Zr substituted at the B-site of BT, the following DFT calculations can now be applied for the 

parameterization. The conventional parameterization for the parent system is performed with 

displacements of the atoms from the initial cubic phase by using the eigenvector of the local 

mode 𝒖. For the estimation of the correction parameters, the same eigenvector has to be applied 

in order to relate the energy difference to the parent system. For that purpose, a 5-atom unit cell 

of cubic BT is constructed first. The lattice parameters amount to those of the cubic BT. Then, 

the B-site is replaced by Zr, and different displacements of the atoms in the <001>, <011>, and 

<111> directions are constructed. The displacements are calculated using the eigenvector of the 

local mode 𝒖 from Publication 2. Following, the generated structures are calculated using DFT, 

and the total energies are extracted. The total energies can, in turn, be used to determine the 

parameters by fitting Equations 67, 68, and 69. The parameters obtained are listed in 

Publication 3 and its Supplemental Material. The corresponding DFT data, as well as the fits, 

are presented in Figure 9. Here it can be seen that, in contrast to BT, no double-well potential 

is formed upon substitution by Zr. Rather, a strong increase in energy is observed with 

increasing displacement by means of the eigenvector. That is, if a Zr ion is placed instead of Ti, 
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this Zr ion intends to remain in the center of the unit cell. This observation is in excellent 

agreement with the results of Mentzer et al. [32], who take advantage of this fact in the 

construction of their effective Hamiltonian. It is also intuitive that Zr4+ does not cause polar B-

site displacements, if its larger size compared to Ti4+ (0.72 Å for Zr4+ vs. 0.605 Å for Ti4+). 

Furthermore, it is also observed that the displacements in the different directions <001>, <011>, 

and <111> are equivalent. Another important point is the correct application of the parameter 

Δ𝜅2,σ which has to be chosen in a way that the potential energy surface is described consistently. 

For this purpose, a calculation via DFPT can be performed to adjust the values for the phonon 

band structure. More about this calculation will be discussed in the next chapter. 

 

Figure 9. Visualization of local-mode self-energy when B-site is substituted with Zr. The plot shows 

the obtained total energies from DFT and the respective fits to estimate the correction parameters. 

6.3 Modified Long-Range Interaction 

In this chapter, the determination of Born effective charges to describe the correction of long-

range interactions will be discussed. In general, a dipole-dipole interaction is used in the 

effective Hamiltonian to describe the long-range interaction. The only parameter which can be 

adapted for a correction is the Born effective charge associated with the local mode 𝒖. That 

means, if instead of Ti at the B-site, Zr is substituted, a new effective charge has to be calculated. 

In principle, there is a lot of leeway for its determination since it is not clearly defined how this 

new effective charge is to be calculated. For example, the unit cell of the parent system or the 

relaxed unit cell containing the substituted atom can be used as the initial structure. 

Furthermore, supercells could also be used to determine the effective charges. In this thesis, 

however, the approach chosen is to relate all corrections to the parent system BT and its cubic 

phase. Therefore, the parent cubic structure is also used to calculate the new Born effective 
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charges. That is, a 5-atom unit cell with the lattice parameters for pure cubic BT was chosen as 

the initial structure. Then, the B-site was replaced by Zr, and a supercell of size 2x2x2 was 

constructed. This supercell was calculated by means of DFPT to obtain the Born effective 

charges. Furthermore, the entire phonon band structure along the high-symmetry directions was 

also calculated, as described in Chapter 5.5. The Born effective charges of the individual atoms 

can now be used to calculate a new effective charge by Equation 74 using the eigenvector 

associated with the local mode 𝒖. The choice of eigenvector was made to relate the correction 

to the parent system. The estimated value for the Born-effective charge for a Zr-containing unit 

cell is listed in the Supplemental Material of Publication 3. Furthermore, the phonon band 

structure can be used to solve the linear system of equations from Chapter 4.3.6. Here, the 

choice of the input eigenvalues has to be done in such a way as to be consistent with the chosen 

modes of the base system. In principle, the symmetry of the individual modes must be analyzed 

and compared with the original parameterization. Afterward, analogous to Chapter 5.5, the 

short-range parameters 𝑗1-𝑗7 as well as the parameter Δ𝜅2,σ can be calculated. This parameter 

now represents the adapted correction parameter for the local-mode self-energy. The short-

range parameters obtained here describe, in principle, the interaction between Zr unit cells in a 

system with 100% Zr content. However, these parameters are not used in the following since 

these corrections are taken into account via the auxiliary spring system. 

6.4 Auxiliary Spring System 

The most time-consuming part of the parameterization of the extended effective Hamiltonian 

is the determination of the parameters for the auxiliary spring system. The mathematical 

description of this term has been discussed in detail in Chapter 4.4.3, and now the necessary 

DFT calculations for the parameterization shall be discussed. In general, the parameterization 

of this term is described in detail in Publication 3 and its Supplemental Material. However, 

more details and some challenges of parameterization shall be explained at this point. 

Fundamentally, supercells must be used for the parameterization, and these must be calculated 

with different arrangements of the substituents. In contrast to parameterizations in the 

literature [29–31], 3x3x3 supercells are used here instead of 2x2x2 supercells. This has the 

advantage that an improved description of the interactions can be achieved within the periodic 

boundary conditions. First of all, the determination of the parameters 𝑄𝑇,𝑅(𝜎𝑇) for the 

corrections to the local mode 𝒖 will be discussed. The basis for all calculations is, again, the 

cubic structure of BT. In principle, it is sufficient for the 1st order terms in Chapter 4.4.3 to 

construct supercells with different arrangements of substituents and to determine the occurring 

forces by DFT. Thus, the required parameters can be extracted rather straightforwardly. In this 
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thesis, however, a more elaborate way was chosen, and also the displacement of the atoms from 

their original positions was considered. Such an approach has the advantage that also higher 

order terms can be included analogously. That is, first, for example, a Ti atom was replaced by 

a Zr atom in the supercell. Consequently, the local unit cell, which is located as a direct neighbor 

to the Zr atom, was displaced by means of the eigenvector of the local mode 𝒖. Since a B-

centered basis was chosen for the local mode, the displacement of the atoms can be performed 

as follows. For Ti at the B-site, the full displacement due to the chosen amplitude is used. For 

the oxygen atoms, which are each adjacent to a directly neighboring unit cell and thus shared, 

half the amplitude is applied. For Ba atoms located at the A-site, one-eighth of the amplitude 

must be applied since these atoms are adjacent to eight neighboring unit cells. This procedure 

averages the local displacement of the atoms, which is a good approximation for the actual 

displacement. The displacement of the atoms of the local unit cell is carried out in the direction 

in which the substituted unit cell is located. Furthermore, this procedure is repeated for 

substituted neighbors up to the third nearest neighbor shell. Subsequently, the total energies, as 

well as the occurring forces, can be calculated by means of DFT. In order to calculate the 

interactions with respect to the parent system BT, the same displacements and associated 

calculations must be carried out for the pure system. In this way, the parameters can be 

determined in such a way that the interactions already considered in the effective Hamiltonian 

of pure BT do not occur twice. The calculation of the parameters from Chapter 4.4.3 can be 

done by two methods. The first method is rather simple, and a linear function is fitted to the 

total energies determined by DFT. Here, as already mentioned, the reference energy of the pure 

system must be subtracted first. The second method is a bit more complicated but allows the 

inclusion of higher orders of the correction term. Such higher orders are not employed in this 

thesis but could be relevant for future parameterizations. The calculation of the parameters is 

based on the occurring forces. For this purpose, an effective force is calculated for each unit 

cell from the individual forces of the atoms. This effective force can be determined analogously 

to the procedures described above for applying the displacements. Consequently, a fit process 

can be applied to determine the parameters of the auxiliary spring system from the effective 

forces. The parameters 𝑄𝑇,𝑅(𝜎𝑇)  thus obtained for the interaction between Zr and Ti unit cells 

in the context of the auxiliary spring system are listed in Publication 3 and its Supplemental 

Material. Next, the parameterization of the parameters 𝑆𝑇,𝑅(𝜎𝑇) for the corrections to the 

dimensionless variables 𝒘 will be discussed. Basically, the parameterization is quite similar to 

that of 𝑄𝑇,𝑅(𝜎𝑇), but certain procedures have to be adapted. Also in this case, in principle, the 

calculation of supercells substituted with different arrangements would be sufficient for the 
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determination of the parameters. However, the displacement of the atoms was also taken into 

account here. Since the dimensionless variables 𝒘 are defined by an A-centered basis, the 

displacement must be handled differently. That is, the Ba atom is in the center of the A-centered 

basis and is therefore displaced with the full amplitude. The B-site here is now shared by eight 

unit cells, and thus only one-eighth of the amplitude is applied for the Ti atoms. The oxygen 

atoms, in turn, are shared by four unit cells so that a quarter of the amplitude is used. The 

eigenvector which is used for the displacement is here a pure translation of the atoms. 

Analogous to the determination of 𝑄𝑇,𝑅(𝜎𝑇), different arrangements of substituted atoms are 

considered and the total energies as well as the forces are calculated by means of DFT. The 

determination of the parameters 𝑆𝑇,𝑅(𝜎𝑇) can be done by fitting a linear function to the total 

energies. Furthermore, in this case, after the study of the obtained parameters and to simplify 

the total energy, only interactions up to the first neighbor shell were considered. The parameters 

for the correction of the dimensionless variable 𝒘 can be found in the Supplemental Material 

of Publication 3. 
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7 Parametrization of Ba(NbxTi1-x)O3 
In this chapter, the parameterization for Nb substituted BT (Ba(NbxTi1−x)O3, BNT) shall be 

discussed. Essentially, Publication 3 and its Supplemental Material cover the basic aspects of 

the parameterization, but again additional details will be provided here. The basis for the 

following parameterization is provided by DFT calculations with the settings of Chapters 5 

and 6. The valence electronic configurations of the species Ba, Ti, and O are equivalent to those 

of Chapter 5. For the species Nb, a configuration of 4s2 4p6 5s2 4d3 for Nb (13 valence electrons) 

was used. In principle, the parameterization of Nb substituted BT is similar to that of BZT but 

differs in some aspects. In this case, the substitution is also carried out at the B-site of BT, but 

unlike Zr, Nb has a different oxidation state compared to Ti. That is, here, Ti4+ is substituted 

with Nb5+ and one can speak of a heterovalent substitution. Furthermore, the different oxidation 

state demands a suitable charge compensation scheme in order to maintain charge neutrality 

within the material. In principle, vacancies at the A-site or B-site of the BT structure can be 

considered for such a charge compensation. In the work of Veerapandiyan et al. [40] it is 

demonstrated by Raman spectroscopy and DFT calculations that the most probable charge 

compensation in BNT happens via Ti vacancies (VTi). That is, for the substitution of four Nb 

ions, one Ti vacancy is generated in turn. Taking these Ti vacancies into account, the chemical 

formula for BNT can be rewritten as Ba(Nbx□1/4xTi1-5/4x)O3. In this thesis, this finding is built 

upon, and a third species is introduced for the parameterization of BNT accounting for these Ti 

vacancies. More on this topic about Ti vacancies in BNT can be found in Publication 1 and its 

Supplemental Material. The inclusion of Ti vacancies implies that, for the parameterization of 

the effective Hamiltonian, the corrections for an additional species have to be introduced. First 

of all, however, the inclusion of the Ti vacancies shall be explained in more detail since some 

changes in the design of the corrections result from observations. As a first step, DFT 

calculations were performed on a supercell of size 3x3x3, calculating the phonon band structure 

for pure BT substituted with one Ti vacancy. From that, it is possible to investigate the coupling 

between the relevant local modes included in the parent effective Hamiltonian with the induced 

change in the phonon band structure due to the presence of Ti vacancies. As a result, it can be 

observed that the relevant modes of the surrounding unit cells couple with a local nonpolar 

vibration of the oxygen atoms in the vacancy unit cell. This observation can be used to obtain 

an approximation for the local modes of the Ti vacancy unit cell. Subsequently, the local modes 

centered on unit cells with Ti vacancies are frozen and thus do not exhibit an active dipole 

moment. However, this approximation does not mean that the influence of Ti vacancies on the 

surrounding unit cells is not considered. Rather, it is shown in Publication 1 that such Ti 
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vacancies exert a significant influence on the surrounding unit cells. To incorporate these effects 

into the effective Hamiltonian, the auxiliary spring system is used. In summary, the following 

corrections must be applied for the parameterization of the BNT system. For the species Nb, 

the parameterization is analogous to the previous chapter on BZT, but the correct charge 

compensation must be used in the required DFT calculations to ensure the correct oxidation 

state of Nb5+. For the species VTi, only the auxiliary spring system has to be parameterized 

since the other corrections are omitted due to the approximation made above. 

7.1 Kinetic Energies 

The correction of the kinetic energy for unit cells having Nb instead of Ti on the B-site can be 

done by adaptation of the effective mass associated with the local mode 𝒖. The basis for this is 

Equation 65, where the individual atomic masses are multiplied by the squared entries of the 

eigenvector associated with 𝒖. In principle, the choice of the eigenvector, as discussed in detail 

in Chapter 6.1, is also ambiguous, but since the reference to the parent system BT should be 

established, the eigenvector associated with the local mode 𝒖 is used. This eigenvector is 

discussed in detail in Publication 2. The effective mass associated with the local mode for Nb 

unit cells obtained by this approach yields 𝑀𝑑𝑖𝑝𝑜𝑙𝑒
∗ (𝑁𝑏) = 65.157 a.m.u. The calculation of the 

effective mass for the dimensionless variables 𝒘 can be performed analogously to the procedure 

described in Chapter 6.1. Here, again, the eigenvector associated with a pure translation is 

applied for the calculation. As a result, an effective mass of 𝑀𝑎𝑐𝑜𝑢
∗ (𝑁𝑏) = 55.646 a.m.u. can 

be determined. A calculation of the effective masses for unit cells that have Ti vacancies is not 

required since these are considered static in the effective Hamiltonian. An overview of the 

parameters listed here can be found in the Supplemental Material of Publication 3. 

7.2 Adapted Local-Mode Self-Energy 

As the next step, the correction parameters for the local-mode self-energy for the case of Nb 

substitution will be discussed. The procedure chosen here is already described in detail in 

Chapter 6.2, but a suitable charge compensation must be applied here for the required DFT 

calculations. The starting point for the parameterization is again the 5-atom unit cell of pure BT 

with the cubic lattice parameters. Subsequently, Ti is replaced by Nb, and different 

displacements of the atoms in the <001>, <011>, and <111> directions are applied. The 

displacements of the atoms are also calculated in this instance by the eigenvector associated 

with the local mode 𝒖 to establish the reference to the parent system. The constructed structures 

can subsequently be calculated by DFT to determine the total energies. Here, however, the 

number of electrons must be adjusted via the NELECT tag in VASP to match the actual 
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oxidation state of Nb5+. That is, for the case of a 5-atom unit cell with Nb at the B-site, the total 

electron number is set to NELECT=40. Here, one electron was removed from the system to 

artificially reproduce the assumed charge compensation by the Ti vacancies. The number of 

total electrons results from the valence electronic configurations as listed at the beginning of 

Chapters 5 and 7. A disadvantage of this method is that localized charges, which would 

normally occur due to the presence of Ti vacancies, cannot be considered. Instead, a 

homogeneous background charge is assumed for the system under consideration. However, for 

the calculation of the correction parameters, the application of this method is sufficient after a 

detailed study. This study compared MD simulations to DFT calculations on supercells of size 

5x5x5, taking into account the complete defect complex (4 Nb’s and 1 Ti vacancy). Therefore, 

this approach was used to calculate the structures described above by DFT in order to 

subsequently determine the correction parameters by fitting Equations 67, 68, and 69. The 

resulting parameters are listed in the Supplemental Material of Publication 3. Complementary 

to Publication 3, a visualization of the associated DFT data and fits is provided in Figure 10. 

Compared to BZT, the local-mode self-energy is flatter in the case of BNT, which can also be 

attributed to the different ionic radii of the two species. Furthermore, a deviation between the 

individual spatial directions <001>, <011>, and <111> is observed, indicating a preferential 

displacement direction of the Nb ion in the BT unit cell. Finally, analogous to BZT, the 

correction parameter Δ𝜅2,σ must be chosen to describe the potential energy surface consistently 

with respect to the parent system. Consequently, a DFPT calculation, as described in the next 

chapter, has to be performed, and a corrected parameter has to be extracted. 

 

Figure 10. Visualization of local-mode self-energy when B-site is substituted with Nb. The plot shows 

the obtained total energies from DFT and the respective fits to estimate the correction parameters. 
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7.3 Modified long-range interaction 

In this chapter, the correction of the long-range interaction for the case of BNT will be 

discussed. In principle, only the Born effective charge associated with the local mode 𝒖 has to 

be calculated for this purpose. However, to provide the necessary Born effective charges, DFPT 

calculations are required. These were performed using supercells of size 2x2x2, again assuming 

the underlying structure to be cubic BT. Subsequently, the B-sites in the supercell were replaced 

by Nb ions, and a DFPT calculation was performed. Here, the charge compensation from the 

previous chapter was again applied to ensure the correct oxidation state of Nb. The Born 

effective charges can be read directly from the results of the DFPT calculation. Then, an 

effective charge associated with the local mode 𝒖 can be calculated using Equation 74. The 

choice of the eigenvector corresponding to 𝒖 has already been discussed in detail in Chapter 6.3. 

The resulting effective charge can be found in the Supplemental Material of Publication 3. 

Furthermore, the DFPT calculation was used to calculate the entire phonon band structure along 

the high-symmetric points in reciprocal space for the supercell substituted by Nb. In the 

following, the procedure from Chapter 6.3 was applied to solve the linear system of equations 

from Chapter 4.3.6. Also, in this case, suitable eigenvalues have to be taken from the phonon 

band structure to be in agreement with the choice of the local basis of the effective Hamiltonian. 

The choice must be made in such a way as to take into account the modes with the correct 

symmetries. From this, a new correction parameter Δ𝜅2,σ for the local-mode self-energy can 

then be extracted. 

7.4 Auxiliary Spring System 

Finally, the auxiliary spring system for BNT must be parameterized. In principle, the 

interactions between the species Ti, Nb and VTi must now be taken into account. That means 

there are interactions between Ti - Nb, Ti - VTi, Nb - VTi, and Nb - Nb. In the context of the 

effective Hamiltonian, these interactions are naturally to be understood between the individual 

unit cells through their local modes. The parametrization of this term is already described in 

detail in Publication 3, as well as its Supplemental Material, but additional details will be 

explained here. The basis for parameterization here is formed by 3x3x3 supercells with the 

lattice parameters of pure cubic BT. These supercells are subsequently used to determine the 

interactions between the local mode 𝒖 at different arrangements of the substituents. That is, for 

the calculation of the interaction between Ti and Nb unit cells, an Nb ion is introduced into the 

supercell. Then, the local unit cell, which is located as a direct neighbor to the substituted atom, 

is displaced by the application of the eigenvector of the local mode 𝒖. The approach chosen to 

calculate the individual atomic displacements is analogous to Chapter 6.4. This procedure is 
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repeated to account for the various interactions up to the third nearest neighbor shell. 

Subsequently, the constructed structures are calculated by means of DFT, again paying attention 

to charge compensation. That is, if only one Nb ion is introduced into the supercell, the total 

number of electrons must be adapted accordingly since no compensation via Ti vacancies takes 

place. In the case of one Nb ion in the supercell, one electron must be removed to reach the 

right oxidation state. Furthermore, the same displacements have to be calculated for pure BT to 

establish the reference to the parent system. The interaction parameters 𝑄𝑇,𝑅(𝜎𝑇) can then be 

determined from the results by fitting the total energy. An alternative way to determine these 

parameters was elaborated in Chapter 6.4. The determination of the parameters for the 

interaction between Ti and VTi can be carried out analogously to the procedure explained above. 

However, charge compensation must again be applied here in the associated DFT calculations, 

which can be accomplished by adjusting the total number of electrons. The Ti vacancy would 

normally compensate for the four surplus electrons of four Nb ions, so for the supercell 

containing only one Ti vacancy, the number of electrons must be increased by this amount. For 

the calculation of the interactions between Nb and VTi, two lattice sites of the 3x3x3 supercell 

have to be substituted, and then the atoms of the Nb unit cell have to be displaced by applying 

the eigenvector of the local mode 𝒖. The associated parameters can then be calculated again by 

fitting the total energy. The correction for the dimensionless variables 𝒘 is to be carried out 

analogously to the procedure described in Chapter 6.4. Here, the displacement of the atoms 

through the A-centered basis has to be performed, and the eigenvector of a pure translation has 

to be applied. Furthermore, the total energies can be calculated with DFT and the interaction 

parameters 𝑆𝑇,𝑅(𝜎𝑇) can be determined by fitting the total energy. It should be noted again that 

appropriate charge compensations for the DFT calculations must be used for the respective 

supercell calculations. All parameters discussed here are listed in the Supplemental Material of 

Publication 3. 
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8 Publications 
This chapter represents the core of this dissertation, featuring the four publications that were 

published as a part of it. The publications, along with their supplemental material, have been 

included in this chapter in the format of their respective journals. Additionally, a brief summary 

of each publication will be provided, highlighting the contributions made by the author. 

• Publication 1: 

Title: Origin of Relaxor Behavior in Barium-Titanate-Based Lead-Free Perovskites 

Authors: Vignaswaran Veerapandiyan, Maxim N. Popov, Florian Mayer, Jürgen 

Spitaler, Sarunas Svirskas, Vidmantas Kalendra, Jonas Lins, Giovanna Canu, Maria 

Teresa Buscaglia, Marek Pasciak, Juras Banys, Pedro B. Groszewicz, Vincenzo 

Buscaglia, Jiri Hlinka, Marco Deluca 

Journal: Advanced Electronic Materials 

Status: Published 

DOI: 10.1002/aelm.202100812 

Personal Contribution: Elaboration of the DFT study of the atomistic effects in BZT 

and BNT. This includes the calculation of the local volume change as well as the 

electrical potential change. Interpretation and preparation of the results to support the 

experimental data. Reading and feedback on the entire manuscript as well as writing the 

theoretical chapter on the above results. Preparing the manuscript for publication and 

helping with revisions. 

 

• Publication 2: 

Title: Improved description of the potential energy surface in BaTiO3 by anharmonic 

phonon coupling 

Authors: Florian Mayer, Maxim N. Popov, Donald M. Evans, Stephan Krohns, Marco 

Deluca, Jürgen Spitaler 

Journal: Physical Review B 

Status: Published 

DOI: 10.1103/PhysRevB.106.064108 

Personal Contribution: Idea and conceptualization of the revision and modification of 

the effective Hamiltonian. This included the derivation of the new formalism and all 

necessary intermediate steps. All DFT calculations for the parameterization of the 

effective Hamiltonian. The preparation of many scripts for the determination of the 

parameters. Testing of the developed approach as well as continuous revision. All MD 
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simulations for testing as well as for the final results in the paper. Preparation of the 

results and formulation of the final approach. Writing the first draft of the manuscript, 

including all chapters. Many more calculations after the revision of the paper, such as 

ab-initio MD simulations.  

 

• Publication 3: 

Title: Finite-temperature investigation of homovalent and heterovalent substituted 

BaTiO3 from first principles 

Authors: Florian Mayer, Maxim N. Popov, Petr Ondrejkovic, Jiri Hlinka, Jürgen 

Spitaler, Marco Deluca 

Journal: Physical Review B 

Status: Published 

DOI: 10.1103/PhysRevB.106.224109 

Personal Contribution: Idea and conceptualization of the extension of the effective 

Hamiltonian for substituted systems. This includes the formulation of the theoretical 

approach as well as the implementation using Fortran. All DFT calculations for the 

parameterization of the effective Hamiltonian. Preparing all scripts to create the 

necessary structures for the DFT calculations. Testing of the approach by means of MD 

simulations and continuous revision. Processing and analysis of the results. Writing the 

first draft of the manuscript. 

 

• Publication 4: 

Title: Hidden phases in homovalent and heterovalent substituted BaTiO3 

Authors: Florian Mayer, Marco Deluca, Maxim N. Popov 

Journal: Physical Review B 

Status: Published 

DOI: 10.1103/PhysRevB.107.184307 

Personal Contribution: Implementation of the necessary functions for the application 

of the THz pulses. All MD simulations, as well as the corresponding evaluation of the 

data. Processing of the data and analysis of the results. Writing the first draft of the 

manuscript. Further simulations after revision of the manuscript. 
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8.1 Publication 1 
 

Origin of Relaxor Behavior in Barium-Titanate-Based Lead-Free 

Perovskites 

Vignaswaran Veerapandiyan1, Maxim N. Popov1, Florian Mayer1, Jürgen Spitaler1, Sarunas Svirskas2, 

Vidmantas Kalendra2, Jonas Lins3, Giovanna Canu4, Maria Teresa Buscaglia4, Marek Pasciak5, Juras 

Banys2, Pedro B. Groszewicz3,6, Vincenzo Buscaglia4, Jiri Hlinka5, Marco Deluca1,  

1Materials Center Leoben Forschung GmbH, Roseggerstrasse 12, 8700 Leoben, Austria  
2Faculty of Physics, Vilnius University, Sauletekio al. 9, 2040 Vilnius, Lithuania 

3Institute of Physical Chemistry, Technische Universität Darmstadt, 64287, Darmstadt, Germany 
4CNR-ICMATE, Institute of Condensed Matter Chemistry and Technologies for Energy, National 

Research Council of Italy, Via de Marini 6, 16149, Genoa, Italy 
5Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, Praha 8, Czech 

Republic 
6Department of Radiation Science and Technology, Delft University of Technology, Delft 2629JB, 

Netherlands. 

 

Corresponding author: marco.deluca@mcl.at 

 

Abstract: 

It is well known that disordered relaxor ferroelectrics exhibit local polar correlations. The origin of 

localized fields that disrupt long range polar order for different substitution types, however, is unclear. 

Currently, it is known that substituents of the same valence as Ti4+ at the B-site of barium titanate lattice 

produce random disruption of Ti-O-Ti chains that induces relaxor behavior. On the other hand, 

investigating lattice disruption and relaxor behavior resulting from substituents of different valence at 

the B-site is more complex due to the simultaneous occurrence of charge imbalances and displacements 

of the substituent cation. The existence of an effective charge mediated mechanism for relaxor behavior 

appearing at low (< 10%) substituent contents in heterovalent modified barium titanate ceramics is 

presented in this work. These results will add credits to the current understanding of relaxor behavior in 

chemically modified ferroelectric materials and also acknowledge the critical role of defects (such as 

cation vacancies) in lattice disruption, paving the way for chemistry-based materials design in the field 

of dielectric and energy storage applications. 
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8.2 Publication 2 
 

Improved description of the potential energy surface in 𝐁𝐚𝐓𝐢𝐎𝟑 by 

anharmonic phonon coupling 

Florian Mayer1, Maxim N. Popov1, Donald M. Evans2, Stephan Krohns2, Marco Deluca1, 

Jürgen Spitaler1 

1Materials Center Leoben Forschung GmbH, Roseggerstrasse 12, 8700 Leoben, Austria 
2Experimental Physics V, Center for Electronic Correlations and Magnetism, Institute of Physics, 

University of Augsburg, 86135 Augsburg, Germany 

 

Corresponding author: florian.mayer@mcl.at 

 

Abstract: 

Barium titanate (BT) based materials are at the forefront of materials searched as possible candidates 

for the replacement of lead-based compositions in applications ranging from piezoelectrics to energy 

storage devices. Computational methods are very promising to increase the efficiency of materials 

discovery, provided that finite temperature properties can be realistically computed using – for example 

– molecular dynamics (MD). In this work, we present a systematic increase of the quality of MD 

simulations via an alternative way to calculate anharmonic contributions to the potential energy surface 

(PES) of barium titanate. A large number of first-principles calculations are performed, which are 

subsequently used to parameterize an effective Hamiltonian. To test the effects on various physical 

properties, MD simulations for the determination of transition temperatures, hysteresis and permittivity 

of BT are shown. Furthermore, measurements were performed on BT single crystals to compare them 

directly with the MD simulations. It is observed that by incorporating a large number of anharmonic 

couplings, the description of the local minima in the PES becomes more accurate than in previous 

simulations. This leads to a better prediction of phase transition temperatures and shows the importance 

of anharmonic couplings in barium titanate. The presented approach can directly be adapted for other 

perovskite structures. 
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8.3 Publication 3 
 

Finite-temperature investigation of homovalent and heterovalent 

substituted 𝐁𝐚𝐓𝐢𝐎𝟑 from first principles 

Florian Mayer1, Maxim N. Popov1, Petr Ondrejkovic2, Jiri Hlinka2, Jürgen Spitaler1, Marco Deluca1 

1Materials Center Leoben Forschung GmbH, Roseggerstrasse 12, 8700 Leoben, Austria 
2Institute of Physics of the Czech Academy of Sciences, 182 00, Praha 8, Czech Republic 

 

Corresponding author: florian.mayer@mcl.at 

 

Abstract: 

Barium titanate (BT) solid solutions are used in a wide range of applications such as piezoelectric 

actuators and high-performance energy storage devices. The key to achieve and tune desired 

macroscopic properties is the chemical modification, which is done by substituting Ba or Ti with other 

homovalent or heterovalent cations. This work uses large-scale molecular dynamics simulations based 

on an effective Hamiltonian approach to calculate the macroscopic properties of BT solid solutions from 

first principles, thereby offering a framework for the prediction of properties prior to materials synthesis. 

To this end, we elaborate on the theoretical description of substitution in effective Hamiltonians as well 

as their parametrization by density functional theory (DFT) calculations for two model systems: 

homovalent substituted BaZrxTi1-xO3 (BZT) and heterovalent substituted BaNbxTi1-xO3 (BNT). The 

effective Hamiltonian for BZT obtained in this work is first used for benchmarking against other models 

and experimental data on the phase diagrams and dielectric properties. Subsequently, the effective 

Hamiltonian is further extended and used to parametrize BNT and compare the model’s predictions to 

the available experimental data. The parameter sets obtained in this work can be used for future studies 

and provide deep insight into the subject of relaxor ferroelectrics. 
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8.4 Publication 4 

 

Hidden phases in homovalent and heterovalent substituted 𝐁𝐚𝐓𝐢𝐎𝟑 

Florian Mayer1, Marco Deluca1, Maxim N. Popov1 

1Materials Center Leoben Forschung GmbH, Roseggerstrasse 12, 8700 Leoben, Austria 

 

Corresponding author: florian.mayer@mcl.at 

 

Abstract: 

Ferroelectric materials can exhibit metastable phases when exposed to THz pulses, characterized by a 

polarization integration capability related to the amplitude and frequency of the pulses. These so-called 

“hidden” phases enable gradual switching of polarization that can be utilized in artificial synapses for 

non-conventional (neuromorphic) computing machines. In this work, we employ large-scale molecular 

dynamics simulation based on an effective Hamiltonian approach and report on the discovery of hidden 

phases in Zr- and Nb-doped barium titanate (BaTiO3).  We investigate the formation and the stability of 

those phases at different stimuli and temperatures (20 K and 200 K). Our results shed light on the 

compositional dependence of the properties of these phases, demonstrating the potential of lead-free 

relaxor ferroelectrics for near-room-temperature neuromorphic computing.      
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9 Continuative Studies 
In this chapter, additional results of this thesis will be discussed, which are not yet part of a 

publication. These include the determination of the recoverable energy from simulations of the 

P-E hysteresis loop, the computation of the frequency-dependent permittivity, or the application 

of the effective Hamiltonian for the investigation of nanoscale topological objects in 

ferroelectrics. 

9.1 Recoverable Energy Density 

In the context of Publication 3, several simulations have been presented that include the ability 

to simulate hysteresis curves at different concentrations and temperatures. The rationale behind 

the development of the methods in this work is based on the ability to predict properties that 

are important for the practical implementation of said materials. Therefore, in this chapter, the 

possibility of determining the recoverable energy shall be demonstrated, which is important for 

the application of materials in dielectric capacitors. Such a workflow could indeed become a 

predictive tool to design compositions with excellent properties in light of energy storage 

applications, provided that the methodology is automated and embedded into materials 

accelerator loops. The basis for such a calculation has already been prepared in detail in the 

introductory Chapter 2.3, where Equations 9 and 10 are employed here. These integrals are to 

be applied to the hysteresis curves obtained by MD simulations. However, the actual 

implementation required numerical methods and was performed using Python scripts. Here, the 

data were first averaged over the different cycles, and then the recoverable energy, as well as 

the total energy, were determined using a numerical integration procedure. The study shown 

here is limited to the Zr-substituted BT (BZT) but can be performed analogously for the case 

of Nb substitution (BNT). The results for the recoverable energy as a function of temperature 

and concentration in BZT can be found in Figure 11. It must be stated here that the calculated 

energies should only be compared relative to each other. The absolute values are difficult to 

compare due to the differences in the applied field strengths between the simulation and 

experiment (i.e. dependence on voltage level, material thickness, and so on). See Publications 

2 and 3 for more details on that topic. The maximum field strength applied in the hysteresis 

simulations associated with the results shown in Figure 11 was 100 kV/cm. The concentration 

trend in Figure 11 indicates a peak at a specific temperature, beyond which the recoverable 

energy decreases. BZT05 (5% Zr) exhibits the highest value at 400 K, just above the 

paraelectric to the ferroelectric phase transition. Figure 11b shows the associated losses, 

revealing that high temperatures produce a nearly loss-free hysteresis curve attributed to 
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paraelectric behavior. As the temperature decreases, the losses gradually increase, with smaller 

concentrations showing higher losses due to ferroelectric behavior. At higher concentrations, 

the substitution disrupts long-range interaction, narrowing the hysteresis curve. This results in 

fewer losses but at the expense of the saturated polarization. 

 

Figure 11. Recoverable energy density from MD simulations for different concentrations of Zr in BZT 

obtained at different temperatures. (a) shows the recoverable energy density as a function of 

temperature and concentration. (b) illustrates the associated losses as a function of temperature and 

concentration. The associated hysteresis loops were obtained using a maximum field of 100 kV/cm and 

a frequency of 1 GHz. 

For practical applications, temperatures close to room temperature are more relevant. 

Therefore, in Figure 12, the energy densities have been plotted against Zr content at 300 K. It 

is observed that losses are minimal at higher concentrations, which is expected because long-

range interaction is suppressed, allowing nanoscale dipoles to align to the external field more 

efficiently. Additionally, the maximum recoverable energies are observed at higher 

concentrations, where a balance between maximum saturated polarization and low losses is 
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necessary for high recoverable energy. The maximum energy stored is found at BZT05, being 

in a ferroelectric state at 300 K. At this concentration, however, there are still large losses due 

to the ferroelectric long-range order. Thus, for energy storage applications, compositions with 

concentrations 20%-25% should be considered. At these Zr contents, the ferroelectric long-

range order is disrupted to an extent that losses are minimized (i.e. slim hysteresis loop), but 

the saturated polarization is still very high. Above 25%, the polarization decreases (i.e. due to 

further size reduction of polar nanoregions), and this is associated with a decrease in the 

recoverable energy density. It should be taken into account, of course, that the results were 

calculated for an oscillating field with a frequency of 1 GHz. For lower frequencies, the results 

might be slightly different. These, however, require very long MD calculations (cf. details in 

the next chapter) and were not carried out here. 

 

Figure 12. Illustration of recoverable energy density, losses, and total energy as a function of 

concentration in BZT obtained from MD simulations. The results are obtained at a temperature of 

300 K. 

Overall, the purpose of this chapter is to illustrate that simulations can be used to scan a wide 

range of concentrations and temperatures for practical properties for energy storage. The 

required simulations can be performed efficiently, and any promising materials can be 

identified. However, a comparison of absolute values is only partially possible due to the 

deviations in electric field strengths mentioned in Publications 2 and 3. 

9.2 Frequency-Dependent Susceptibility 

In the timeframe of this thesis, the frequency-dependent susceptibility of a considerable number 

of BZT and BNT compositions at different temperatures has also been simulated. In this 

chapter, however, only a part of them will be presented to showcase what these calculations can 
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deliver. The focus is on the compositions BZT50 (50% Zr) and BNT15 (15% Nb), which both 

display relaxor behavior. The basis for the calculation has already been laid in Chapter 4.2.3, 

and Equation 43 is to be applied here. In principle, this equation consists of two parts. The first 

part describes the static part of the susceptibility, whereas the second part gives the frequency-

dependent contribution. The calculation of the first part is straightforward and has already been 

discussed in detail in Publication 3. For the second part, the autocorrelation function for the 

trajectory of the polarization values must be calculated from the MD simulations. This can be 

done quite efficiently using Fast Fourier transformation (FFT) algorithms. The MD simulations 

required for these calculations differ somewhat from those shown so far because the frequency 

range that can be calculated depends on the length of the trajectory. That is, the longer the MD 

simulation, the larger the frequency range becomes toward smaller frequencies. For the 

following calculations, MD simulations with a total simulation time of 1.2 ns were employed. 

Furthermore, a supercell of size 20x20x20 was applied, and the simulations were carried out at 

temperatures between 450 K and 10 K in steps of 5 K. The remaining settings are analogous to 

the simulations presented in Publication 3. The results of the MD simulations shall now be used 

to investigate the dispersion of susceptibility as a function of temperature and frequency. For 

this purpose, the frequency-dependent susceptibility must first be calculated for each 

temperature and then plotted over the different temperatures. The result for BZT50 can be seen 

in Figure 13, where the real and imaginary parts of the susceptibility were plotted versus 

temperature and frequency. The result shows a dispersion of the susceptibility, which can be 

recognized by the shift of the susceptibility peaks to higher temperatures when the frequency is 

increased. Furthermore, a decrease in the absolute values is observed when the frequency 

increases. A comparison with Figure 4 from Chapter 2.2 shows that this behavior is a main 

feature of relaxor ferroelectrics [13]. This finding is crucial because it indicates that the 

parameterization of BZT is capable of replicating the distinctive behavior observed in the 

relaxor region. In addition, Publication 1 provides a means for conducting a comparison with 

experimental data. 
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Figure 13. Susceptibility of BZT50 (50% Zr) as a function of temperature and frequency. (a) shows the 

real part of the susceptibility. (b) shows the imaginary part of the susceptibility. 

An analogous study is now to be carried out for BNT15. The MD simulations required for this 

composition were carried out analogously with the above settings. The results for the 

susceptibility as a function of temperature and frequency can be found in Figure 14. Again, the 

real and imaginary parts of the susceptibility were plotted. Dispersion can be seen in the real 

part, characterized by the shift of the peaks to higher temperatures when the frequency is 

increased. This behavior is again characteristic of relaxor ferroelectrics [13] and shows that the 

parameterization of BNT15 is able to reproduce this behavior. Furthermore, Publication 1 can 

be used for comparison with experimental data. 
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Figure 14. Susceptibility of BNT15 (15% Zr) as a function of temperature and frequency. (a) shows 

the real part of the susceptibility. (b) shows the imaginary part of the susceptibility. 

All in all, this short chapter shall show the possibility of such calculations by using effective 

Hamiltonians. The calculation of the frequency-dependent susceptibility for the compositions 

BZT50 and BNT15 shows, for both cases, a dispersion that is to be expected in this 

concentration range (see Publication 1 for experimental data) and is distinctive of relaxor 

behavior. A more detailed study of frequency-dependent susceptibility by the developed models 

is planned for the future. 

9.3 Antiskyrmions in BaTiO3 

Skyrmions are topological solitons that can occur in certain magnetic materials, such as thin 

films or multilayers, where the interactions between electron spin lead to a complex order 

parameter [106,107]. These solitons are characterized by a localized region of magnetic order 
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with a topological charge [108,109], meaning that they cannot transition to the uniform 

background state without creating a singularity. Even though skyrmions are usually associated 

with magnetic materials, recent research [110–115] has shown that they can also be found in 

nonmagnetic ferroelectrics, i.e., materials that exhibit spontaneous electric polarization. In 

nonmagnetic ferroelectrics, the electric polarization can couple with other degrees of freedom, 

such as strain or lattice distortions, which can lead to a complex order parameter. This coupling 

can lead to the formation of skyrmions in these materials, where the skyrmion has a topological 

charge [108,109] due to the localized order region. Examples of the occurrence of skyrmions 

in ferroelectric materials were found in superlattices [115] of lead titanate (PbTiO3) and 

strontium titanate (SrTiO3), but also pure PbTiO3 can theoretically exhibit skyrmions [114] 

under certain conditions. 

In this chapter, it will be demonstrated that such topological objects can also be theoretically 

observed in pure BaTiO3 (BT). The inspiration for this study came from a recently published 

article on arXiv about topological objects in rhombohedral BT by Goncalves et al. [116]. 

Although this work is still under review at the time of this thesis, the findings of their work 

shall be reproduced, and additional investigations will be carried out in this chapter. To better 

comprehend the following concept, a brief overview of the work of Goncalves et al. [114] must 

be provided. Their research demonstrated the potential to stabilize skyrmions in pure PbTiO3 

by introducing a nanodomain into the ferroelectric phase. The ferroelectric phase of PbTiO3 is 

tetragonal, which means that polarization takes place in the <001> direction, also referred to as 

the z-axis. To begin with, a system in a single-domain state is assumed in which the polarization 

direction is aligned in the +z direction, i.e., all local dipoles are uniformly oriented. When a 

nanodomain is now introduced along the polarization direction but with opposite polarization, 

a skyrmion with a topological charge of 𝑄 = 1 forms around this nanodomain [114]. 

The idea from Ref. [116] is based on observations of PbTiO3, specifically, what happens when 

a nanodomain is introduced into rhombohedral BT along the polarization direction. It should 

be noted that the polarization in rhombohedral BT is found along the <111> direction. Figure 

15 shows a visualization of such a nanodomain, which was created by constructing a supercell 

of size 40x40x40 and aligning all dipoles along the <111> direction. A script was then created 

to induce a nanodomain along this direction with opposite polarization, with a diameter of 

approximately 18 unit cells for this case. 
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Figure 15. Illustration of a 40x40x40 supercell of rhombohedral 𝐵𝑎𝑇𝑖𝑂3 including a nanodomain 

along the <111> direction with opposite polarization. (a) shows the side view of the supercell as a 

projection along the <001> direction. (b) shows the projection along the <111> direction. The blue 

color represents the z-component of the polarization. 

In the following, MD simulations based on the models developed in Publication 2 are shown. 

It should be noted that the methodology used in this study involves effective Hamiltonians, 

which differs from the simulations conducted by Goncalves et al. [116], who used core-shell 

potentials. Additionally, the study presented here employs much larger unit cells, which 

minimizes any influences of boundary conditions. First, a low temperature of 1 K shall be 

considered to exclude temperature-induced fluctuations as far as possible. Furthermore, the 

Nose-Poincare thermostat was chosen here to keep the temperature constant. The simulations 

of the 40x40x40 supercell were performed over a period of 200 ps choosing the starting 

configuration of the dipoles from Figure 15. Furthermore, a dead layer was introduced at the 

boundaries of the nanodomain. To study the evolution over time, snapshots were written out at 

different time steps. The results of the MD simulations can be observed in Figure 16. Here, the 

snapshots were plotted as a projection along the <111> direction. The color mapping, in this 

case, is different from Figure 15 and represents the absolute length of the dipoles. At the starting 

point of the simulation at 0 ps, the configuration from Figure 15 is evident, with the nanodomain 

in the center having an inverted polarization compared to the surrounding matrix. If the 

simulation is now started, the local dipoles can relax. It is observed that already after 1 ps, a 

pattern emerges which shows vortices of local dipoles. This pattern remains until the end of the 

simulation at 200 ps. 
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Figure 16. Time evolution of MD simulation of the 40x40x40 supercell of rhombohedral 𝐵𝑎𝑇𝑖𝑂3 with 

induced nanodomain along the <111> direction at a temperature of 1 K. The plots show a projection 

of the supercell along the <111> direction at different time steps. The color represents the total length 

of the polarization. (a) shows the starting configuration where a nanodomain with opposite 

polarization along the <111> direction was induced. 

The above results show that there are vortices of local dipoles around the introduced 

nanodomain, which are stable over a considerable period of time. To better understand these 

results, this pattern needs to be studied in more detail. For this purpose, a script was first written 

which can write out cross sections of the supercell perpendicular to the <111> direction. Such 

a cross-section is shown in Figure 17 for the time step at 200 ps from the above simulation. In 
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this figure, it is clear that a highly symmetric arrangement of different vortices of the dipoles 

results here. The local vortices show opposite rotations and produce a symmetric arrangement 

around the nanodomain. Whether such a pattern is a topological object can be investigated in 

more detail by calculating the topological charge. This can be calculated for a 2D grid of dipoles 

using the definition of Berg and Lüscher [117], as evident in the work of Heo et al. [108]. Since 

no electron spins are used here, the local dipoles must be included in the equations. 

Furthermore, the elementary triangles must be chosen to be consistent with the definition. To 

obtain the correct topological charge, the normalized vectors of the local dipole moments must 

be used. In this work, a script has been prepared which can perform such a calculation and 

therefore determine the topological charge for the cross sections considered. Remarkably, for 

the cross section from Figure 17, using this approach, a topological charge of 𝑄 = −2 is 

obtained. The numerical value resulting directly from the calculation is 𝑄 = −1.998. Such a 

negative topological charge is assigned to the topological object of an antiskyrmion. This result 

is in excellent agreement with the observations of Goncalves et al. [116]. 

 

Figure 17. Cross section through the 40x40x40 supercell from a snapshot at 200 ps. The cross-section 

represents a plane perpendicular to the <111> axis of the supercell. The arrows visualize the in-plane 

local dipole moments. The color represents the out-of-plane polarization. 

The advantage of the approach chosen here by effective Hamiltonians is that many different 

simulations can be performed quite inexpensively. It is interesting to carry out such simulations 

also at higher temperatures, which are more easily accessible by experiments. For this purpose, 
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again, the 40x40x40 supercell was taken, and the simulation was started at a temperature of 

1 K. Subsequently, the temperature was steadily increased with steps of 5 K, and snapshots 

were written out repeatedly. The simulation duration per temperature step was chosen to be 

200 ps. The corresponding snapshots at different temperatures can be found in Figure 18. At 

low temperatures, the already-known dipole pattern from the above results appears. If the 

temperature is now steadily increased, the fluctuations of the dipoles become stronger. 

However, the antiskyrmion manages to remain stable over a large temperature range. Only at a 

temperature above 101K does the surrounding matrix swallow the antiskyrmion, and a single-

domain state is established. 



202 
 

 

Figure 18. Temperature evolution of antiskyrmion in rhombohedral 𝐵𝑎𝑇𝑖𝑂3 using MD simulations 

and a 40x40x40 supercell. The temperature was steadily increased by steps of 5 K. The plots show a 

projection of the supercell along the <111> direction at different temperature steps. 

As a final step, the influence of nanodomain diameters will be examined. To do so, the supercell 

size was increased to 100x100x100, allowing for the efficient use of the effective Hamiltonian. 

MD simulations were conducted on the rhombohedral phase of BT at a temperature of 1 K over 

200 ps, introducing nanodomains of different diameters (9, 18, 24, and 36 unit cells) and 

observing their behavior. The nanodomain with a diameter of 9 unit cells disappeared after a 

few picoseconds and was swallowed by the surrounding matrix without producing an 

antiskyrmion. In contrast, a nanodomain with a diameter of 18 unit cells resulted in the 

formation of an antiskyrmion, as shown in Figure 19. The corresponding topological charge of 
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this antiskyrmion was found to be 𝑄 = −2 (obtained numerical value 𝑄 = −2.00006). For a 

diameter of 24 unit cells, a cross-section at 200 ps is illustrated in Figure 20. Also, in this case, 

an antiskyrmion results in the vicinity of the nanodomain. The topological charge also gives a 

value of 𝑄 = −2 (obtained numerical value 𝑄 = −2.0001). The occurrence of an antiskyrmion 

is also observed in the case of a diameter of 36 unit cells. The corresponding cross-section can 

be seen in Figure 21. The topological charge is again 𝑄 = −2 (obtained numerical value 𝑄 =

−2.0002). 

 

Figure 19. Cross section of a 100x100x100 supercell containing a nanodomain with a diameter of 18 

unit cells. The snapshot was taken after 200 ps. The simulation was carried out at 1 K. The cross-

section represents a plane perpendicular to the <111> axis of the supercell. The arrows visualize the 

in-plane local dipole moments. The color represents the out-of-plane polarization. 
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Figure 20. Cross section of a 100x100x100 supercell containing a nanodomain with a diameter of 24 

unit cells. The snapshot was taken after 200 ps.  The simulation was carried out at 1 K. The cross-

section represents a plane perpendicular to the <111> axis of the supercell. The arrows visualize the 

in-plane local dipole moments. The color represents the out-of-plane polarization. 

 

Figure 21. Cross section of a 100x100x100 supercell containing a nanodomain with a diameter of 36 

unit cells. The snapshot was taken after 200 ps.  The simulation was carried out at 1 K. The cross-

section represents a plane perpendicular to the <111> axis of the supercell. The arrows visualize the 

in-plane local dipole moments. The color represents the out-of-plane polarization. 
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In summary, the following statements can be drawn about topological objects in BT: The 

introduction of nanodomains into the rhombohedral phase along the polarization direction of 

BT generates topological objects with a topological charge of 𝑄 = −2. These objects can be 

referred to as antiskyrmions due to the associated negative topological charge. The study tested 

the stability of an antiskyrmion using a 40x40x40 supercell at a low temperature of 1 K and 

observed its formation and stability over the simulated time period. Simulations were also 

conducted at different temperatures, revealing that antiskyrmions formed at low temperatures 

remain stable over a range of almost 100 K before transitioning to a single-domain state. The 

study also examined the effect of nanodomain diameter on antiskyrmion occurrence with 

supercells of size 100x100x100 and found that a minimum diameter is required for stabilization. 

The study confirms earlier findings of Goncalves et al. [116] but suggests the need for 

additional simulations to further explore the phenomenon, including the effect of supercell size, 

temperature, and nanodomain size. Future work may address these questions in subsequent 

publications. 
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10 Summary and Conclusion 
In this final chapter, the main findings of this thesis and the resulting conclusions will be 

explained and summarized. The primary objective of this dissertation is to provide a theoretical 

description of ferroelectric materials, including solid solutions, which can further be used to 

predict application-relevant properties of substituted systems in order to enable a 

computationally based design of ferroelectric materials. The theoretical framework is based on 

density functional theory (DFT) and molecular dynamics (MD) simulations that rely on 

effective Hamiltonians. Publication 1 discussed the origin of relaxor (RF) behavior in 

homovalently and heterovalently substituted BT. Along with various experimental 

measurements, DFT calculations were performed to study these systems at the atomic level. 

The prime examples of such substituted variants of BT, which are shown in this publication as 

well as throughout the dissertation, are BZT and BNT. The difference between the two systems 

lies in the oxidation state of the substituents. In the case of BZT, Zr4+ is substituted on the B-

site of BT, while in BNT, Nb5+ is substituted on the B-site. Publication 1 initially discussed 

general differences such as ionic radii, defect formation, or the different onset of RF behavior. 

BNT is of particular interest, where Raman spectroscopy and DFT calculations were utilized to 

prove the occurrence of Ti vacancies. This information was used to conduct more advanced 

DFT studies. The local deformation of BZT and BNT was studied, and in both cases, a local 

change in the lattice induced by the substituents was detected. Subsequently, the change in the 

total electric potential was investigated, and a strong effect of the substituents on the 

surrounding unit cells was found only for BNT. For BZT, in contrast, only a localized change 

in the potential was observed compared to the parent system BT. In summary, Publication 1 

provides a detailed comparison of BZT and BNT and discusses both macroscopic and atomistic 

effects. The disruption of long-range correlation in BZT can be attributed to the non-polar Zr 

unit cells and their induced deformations of the lattice in the surrounding unit cells. In contrast, 

substitution by Nb is much more effective in disrupting ferroelectric long-range order due to 

the induced Ti vacancies and the associated disturbance of the total electric potential in addition 

to the induced strains. 

In order to provide a comprehensive theoretical description of materials at finite temperatures, 

MD simulations were applied with the potential energy surface (PES) modeled through the use 

of effective Hamiltonians, which parameterize the PES on a local basis specified by phonon 

modes. In Publication 2, this approach was employed to parameterize the PES of the 

ferroelectric BT. Significant efforts were made to improve the accuracy of the PES description, 

including a complete revision of the local-mode self-energy and an extension of this approach 
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to incorporate additional phonon modes. Subsequently, a large set of DFT calculations was used 

to parameterize a significant number of parameters. In order not to lose the efficiency of the 

effective Hamiltonian, the formalism was constructed in a way that preserves the original form. 

The effects of the revised approach were studied using MD simulations. The phase diagram of 

BT was simulated, and a significant improvement in the phase transition temperatures was 

observed compared to experimental data. Furthermore, the simulations were used to also 

compare the permittivity as well as the P-E hysteresis curves with experiments. Again, good 

agreement was found, with the occurrence of a double-hysteresis loop also observed in BT near 

the transition between paraelectric and ferroelectric. All in all, an alternative scheme for the 

parameterization of effective Hamiltonians could be developed within the framework of this 

thesis, whereby improvements in the description of the PES could be achieved. 

The effective Hamiltonian, which was developed and described in Publication 2, was used as a 

foundation for the development of a substituent integration concept. Similarly, a model was 

parameterized for two primary examples, BZT and BNT, to enable the calculation of properties 

at finite temperatures through MD simulations. As a result, Publication 3 focused on an 

alternative concept that extended the effective Hamiltonian, and corrections were implemented 

to attain the most precise description of the substituents concerning the parent system, BT. 

Several corrections were implemented, including the correction of kinetic energies, local-mode 

self-energy, long-range interaction, hydrostatic pressure, and an auxiliary spring system. While 

drawing inspiration from existing approaches in the literature, these corrections were extended 

with own ideas. The parameterization of these models was accomplished using DFT 

calculations and supercells up to sizes of 5x5x5. Following this, MD simulations were carried 

out using the developed models to calculate phase diagrams, P-E hysteresis loops, and other 

relevant properties. The simulated results for both BZT and BNT systems demonstrated good 

agreement with experimental data. Overall, this thesis successfully parameterized two precise 

models for BZT and BNT, offering deep insights into the dynamics of these systems. 

In Publication 4, the previously developed models were utilized to conduct additional studies 

on BZT and BNT systems, with the objective of assessing their suitability for use in 

neuromorphic computing. Specifically, MD simulations were employed to investigate the 

systems' response to ultrafast terahertz (THz) pulses. The use of THz pulses facilitated the 

induction of states in the materials that are not present in thermodynamic equilibrium, 

commonly referred to as hidden phases. Publication 4 investigated various compositions 

exposed to THz pulses to determine the occurrence of hidden phases. In addition, properties 
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such as polarization integration through pulse train application were examined. Stability runs 

were conducted on selected concentrations to assess the stability of these hidden phases for 

potential use in neuromorphic computing systems. The study revealed that different 

compositions responded uniquely to THz pulses, but those within the concentration range of 

RF behavior demonstrated promising potential for neuromorphic computing applications. 

10.1 Conclusive Remarks 

Finally, the results obtained in this thesis as well as the related publications will be discussed, 

and final conclusions will be drawn. The discussion is divided into the four attached 

publications, which were published in the framework of this dissertation. 

1. Publication 1 explored the underlying causes of RF behavior in BZT and BNT through 

a combination of experimental and theoretical approaches, yielding new insights into 

the phenomena. It was discovered that the long-range ferroelectric correlation in 

homovalent- or heterovalent-substituted systems is disrupted by fundamentally different 

effects. In the case of BZT, the disruption is caused by the local deformation of unit 

cells induced by the larger Zr cation being substituted on the B-site. In contrast, BNT 

requires the consideration of charge compensation via Ti vacancies, leading to complex 

defect structures, as well as local lattice deformation. Additionally, a significant change 

in electric potential beyond the substituted unit cells was observed in BNT, which more 

effectively breaks the long-range correlation of B-site displacements and thus explains 

the differences in the onset of RF behavior. However, further studies are needed to fully 

explain the onset of RF behavior, including the study of the dynamics and interaction of 

local dipoles and the role of polar and non-polar nanoregions. 

 

2. In Publication 2, an alternative approach for the parameterization of effective 

Hamiltonians was presented, which enables the incorporation of additional phonon 

modes. The proposed concept involved adapting the local-mode self-energy and 

introducing a significant number of new parameters. However, the emphasis was placed 

on achieving an accurate description of the total energy rather than depending on 

individual parameters. The parameterization required a large set of DFT calculations 

but could be performed at a low cost due to the small unit cell. The approach also aimed 

to preserve the original form of the effective Hamiltonian to maintain its performance. 

MD simulations demonstrated a significant improvement in phase transition 

temperatures compared to reference simulations. Although this approach is not 

definitive and can be adapted in the future, it provides an accurate description of 
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ferroelectric materials with perovskite structure and can be built upon for further 

developments. These developments could include the expansion of the local-mode self-

energy by further orders and the extension of other relevant energy terms. 

 

3. Publication 3 presents the extension of the effective Hamiltonian for substituted 

versions and introduces an alternative scheme for the corrections. This approach is 

based on the findings of Publication 2 and accurately predicts phase transition 

temperatures for the studied systems. The development of the corrections is supported 

by comparing MD simulations with DFT calculations, emphasizing a precise 

description on a local basis. The resulting MD simulation results agree well with 

experimental data and provide valuable insights into the dynamics of the local dipoles. 

The developed models are available for free and can be used for further investigations, 

including the exploration of polar and non-polar nanoregions to address the remaining 

open questions from Publication 1. Additionally, the models permit the study of various 

compositions over a broad concentration range. In the future, the models can be 

expanded further, and the corrections for substitution effects can be refined. For 

instance, it is possible to increase the orders considered in the auxiliary spring system 

or reparametrize for other material systems. 

 

4. Publication 4 employs all the methods developed in this thesis to explore the BZT and 

BNT compositions for their potential use in neuromorphic computing systems. The 

investigation of the systems' responses to ultrafast THz pulses represents a novel and 

fascinating area, providing profound insight into the dynamics of local dipoles. 

However, it should be noted that experimental investigation using ultrafast THz pulses 

is not currently feasible, and the potential properties demonstrated here should be 

regarded as a starting point for future research. Additionally, a more thorough 

understanding of the dynamics of local dipoles and the impact of concentration on 

relevant properties is necessary. As the most favorable properties are observed in the 

RF behavior range, such research is also complementary to the open questions posed in 

Publication 1. 

The present thesis has conducted numerous DFT studies to enhance the understanding of the 

considered materials. Three effective Hamiltonians (i.e. for three different material systems) 

have been formulated and parametrized within this framework to enable the description of the 

materials at finite temperatures by implementing MD simulations. These models are now 
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available for free and can be utilized in future research endeavors to explore the fascinating 

properties of ferroelectric and relaxor ferroelectric materials. Moreover, this thesis 

demonstrated the feasibility of filtering prospective compositions for utilization in energy 

storage devices. This will enable the use of high-throughput simulations to supplement 

experimental work in the future. Additionally, this thesis delved into the study of topological 

objects in pure BT using the effective Hamiltonian, leading to the theoretical confirmation of 

antiskyrmions. This area of research presents a wealth of opportunities for future exploration. 
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