im

MONTAN
UNIVERSITAT
M LEOBEN M

Chair of Mechanics

Doctoral Thesis

Process Models for the Manufacturing of
Railway Components

Dipl.-Ing. Jakob Bialowas, BSc

May 2023

- | 222, MONTANUNIVERSITAT LEOBEN
J)Zi www.unileoben.ac.at

= -1
. O

EIDESSTATTLICHE ERKLARUNG

Ich erklare an Eides statt, dass ich diese Arbeit selbstandig verfasst, andere als die angegebenen
Quellen und Hilfsmittel nicht benutzt, und mich auch sonst keiner unerlaubten Hilfsmittel bedient habe.

Ich erklare, dass ich die Richtlinien des Senats der Montanuniversitat Leoben zu "Gute
wissenschaftliche Praxis" gelesen, verstanden und befolgt habe.

Weiters erklare ich, dass die elektronische und gedruckte Version der eingereichten

wissenschaftlichen Abschlussarbeit formal und inhaltlich identisch sind.

Datum 26.05.2023

“Halow N

Unterschrift Verfasser/in
Jakob Bialowas

Acknowledgements

Das sind hier die letzten Zeilen, die ich im Zuge des Verfassens dieser Arbeit schreibe. Ich blicke auf
vier lehrreiche Jahre zuriick und mdchte mich bei allen, die mich in dieser Zeit begleitet haben ganz
herzlich bedanken. Zuallererst gilt mein Dank den Menschen, die mir am nachsten sind, meiner groBen
Liebe Anja und meiner Familie. Liebe Anja, vielen Dank fir alles. Die gliicklichen Momente, die wir
gemeinsam abseits der Arbeit verbracht haben, die unzahligen schénen Erinnerungen an gemeinsame
Reisen und dass du mich auch durch diese Reise des Doktoratsstudiums begleitet hast. Danke!

Chciatbym réwniez bardzo podziekowa¢ mojej rodzinie. Moi rodzice Elzbieta i Krzysztof potozyli
fundamenty pod moja edukacje i zawsze zachecali mnie do dazenia do gwiazd. Mysle tez, ze moje
zainteresowanie transportem kolejowym narodzito sie w dziecinstwie podczas niezliczonych podrézy
pociagiem. Chciatbym réwniez podziekowa¢ dwém nadzwyczajnym kobietom w moim zyciu, mojej
mtodszej siostrze Natalii, ktéra zawsze byta dla mnie wielkim wzorem, oraz mojej babci Krystynie,
ktéra obchodzi wtasnie dziewiecdziesigte urodziny i odgrywata kluczowa role w moim wychowaniu.
Dziekuje!

Without a place to work, doctoral studies and related research would not be possible. For me, that
place was MCL. Here | was able to develop personally and professionally and learn a lot. Much of the
credit for this goes to Jiirgen and Hans-Peter, who managed a very diverse and extensive project and
still found the time for detailed expert advice. What would work be without colleagues? | don't know
how it was possible, but | simply had the best ones. | want to thank Sebastian and Dominik,who were a
great help in creating complex finite element models, and Daniel for his contribution to my dissertation.
Only through the preliminary work in material modeling by Manuel, Konstantin, Silvia and Christian |
was able to get this far in this field myself. Peter, Anatol and Tristan taught me a lot about python
programming and the science of coffee brewing. Thank you very much! To my office colleagues, with
whom | was lucky to share an office, | would like to say the biggest thanks regarding the motivation
and the more than friendly working atmosphere. Georg, thank you for the funniest moments of our
countless working days together. You have always been a role model for me in the way you work.
Timna, without you | would have been lost the last weeks and months. Thank you for your attention
to detail, you have contributed greatly to the quality of my written work. Thank you so much!

Es geht im Leben auch nicht immer nur um Arbeit. Was wirklich zahlt ist das Vergniigen. An
dieser Stelle mochte ich mich bei all meinen Freunden und Studienkollegen bedanken, mit denen ich
unzahlige Berggipfel erklommen habe und tausende Kilometer im besten Zug der Welt, dem WeiBbier-
express gefahren bin. Danke Thomas, Alex, Claus, Clemens, Hari, Marlene. .. Ihr bereichert das Leben

ungemein.

A research project needs partnerships. In the DRaCo project, | was able to enjoy a very good partner-
ship with industry and academia. From my colleagues at Siemens, Lucchini RS, HEGENSCHEIDT-MFD
and OBB | was able to learn an incredible amount about the manufacturing and use of railway compo-
nents. | would also like to thank the academic partners Polimi, ESI and the Montanuniversitat Leoben.
Thank you Reinhard for always questioning everything critically. You contributed a lot to the develop-
ment of the models in this work. Thanks to Martin for mentoring me during my PhD. Regarding the
scientific work, my greatest thanks go to Thomas. With your unbiased nature, you laid the foundation

for my scientific and professional career and were the best supervisor imaginable. Many, many thanks!

The author gratefully acknowledges the financial support under the scope of the COMET
program within the K2 Center “Integrated Computational Material, Process and Product
Engineering (IC-MPPE)" (Project No 886385). This program is supported by the Austrian
Federal Ministries for Climate Action, Environment, Energy, Mobility, Innovation and Tech-
nology (BMK) and for Labour and Economy (BMAW), represented by the Austrian Research
Promotion Agency (FFG), and the federal states of Styria, Upper Austria and Tyrol.

VI

This thesis is dedicated to
my parents

the first two engineers | met in my life

Kurzfassung

Da die Eisenbahnindustrie eine zentrale Rolle im weltweiten Transportwesen spielt, ist die
Entwicklung effizienter und zuverlassiger Eisenbahnkomponenten erforderlich. In dieser Arbeit
liegt der Fokus auf der Optimierung der Herstellungsprozesse dieser Komponenten mit Hilfe
von neu entwickelten Prozessmodellen. Diese Modelle ermdéglichen es, die Zuverlassigkeit
der Komponenten zu optimieren, die Sicherheit zu erhéhen und die Nachhaltigkeit in der
Eisenbahnindustrie zu férdern.

Die entwickelten Prozessmodelle helfen die im Betrieb auftretenden Bedingungen besser
zu beurteilen. Weiters kdnnen die Herstellungsprozesse von Eisenbahnkomponenten durch die
Anwendung komplexer Materialmodelle besser verstanden und optimiert werden. Durch die
genaue Vorhersage von Eigenspannungen sowie der Spannungsumlagerung und der Bewertung
beeinflussender Prozessparameter tragen diese Prozessmodelle dazu bei, Eisenbahnkomponen-
ten laufend weiterzuentwickeln.

In dieser Arbeit wird ein neues, innovatives Prozessmodell prasentiert, welches das Fest-
walzen von Radsatzwellen mittels der Finite Elemente Methode beschreibt. Dieses fortschrit-
tliche Modell beriicksichtigt dabei sowohl das zyklische Materialverhalten, als auch verschiedene
Prozess- und Geometrieparameter, um die Eigenspannungsverteilung tiber den gesamten Quer-
schnitt der Radsatzwelle prazise vorherzusagen. Durch die Einbeziehung und Kombination
periodischer Randbedingungen wird eine erhebliche Reduzierung der ModellgroBe und der
Berechnungszeit erreicht, wobei die Integritat der Ergebnisse erhalten bleibt. Dabei liefert das
Prozessmodell prazisere Vorhersagen des Eigenspannungszustands im Vergleich zu friiheren
Ansatzen.

Dariiber hinaus befasst sich diese Arbeit mit dem Warmebehandlungsprozess von Eisenbah-
nradern, wobei der Schwerpunkt auf dem Einfluss heterogen verteilter, fester Phasen von Stahl
liegt. Zudem wird ein Materialmodell prasentiert, welches lokale Effekte wahrend der Warme-
behandlung, einschlieBlich der Phasenumwandlungen und umwandlungsinduzierter Plastizitat,
beriicksichtigt. Um das komplexe Materialverhalten in einem Finite Elemente Prozessmodell
adaquat abzubilden, ist eine prazise Abstimmung zwischen den Experimenten, den mathe-
matischen und physikalischen Modellen und dem Finite Elemente Modell des Prozesses selbst
unerlasslich. Ein solches Materialmodell bietet umfassende Einblicke in das Verhalten des Eisen-
bahnstahls ER7, wahrend das entwickelte Prozessmodell es erméglicht, die Beanspruchungen
des Eisenbahnrades unter verschiedenen und sich schnell &ndernden Bedingungen zu verstehen.

Zusammenfassend kann gesagt werden, dass diese Arbeit einen wesentlichen Beitrag zur
Weiterentwicklung der Herstellung von Eisenbahnkomponenten leistet. Die entwickelten Pro-
zessmodelle ermdglichen tiefe Einblicke in das Eigenspannungsverhalten und nachfolgender
Spannungsumlagerung in Eisenbahnkomponenten. AuBerdem ebnen diese Modelle den Weg

hinsichtlich der Optimierung der Herstellungsprozesse.

Xl

Abstract

The railway industry plays a pivotal role in global transportation, necessitating the development
of efficient and reliable railway components. This thesis focuses on advancing the manufactur-
ing process of these components through the development of process models. These models
aim to optimize component performance, enhance safety, and promote sustainability within
the railway industry.

Process models including advanced material models allow for understanding and optimizing
not only the manufacturing processes but also the in-service conditions that arise. Within
the context of railway components, these models provide valuable insights into the material
behavior and guide the optimization of these processes. By accurately predicting residual
stresses, the stress redistribution, and the influencing process parameters, these process models
contribute to improve and better understand the behavior of railway components.

This thesis presents a novel process model specifically designed for the cold rolling of
wheelset axles with the finite element method. This advanced model incorporates cyclic ma-
terial behavior, various process parameters, and geometrical features to precisely predict the
residual stress distribution across the entire cross section of the wheelset axle. By incorpo-
rating and combining smart periodic boundary conditions, a notable reduction in model size
and computation time is achieved, while maintaining the integrity of the results. Notably, the
process model developed for the cold rolling of wheelset axles enhances the accuracy of the
prediction of the residual stress state compared to previous approaches.

Additionally, this thesis addresses the manufacturing process of railway wheels, focusing
on the influence of heterogeneously distributed solid phases of steel. An advanced material
model is developed to accurately capture localized effects during the heat treatment, includ-
ing phase transformations and transformation induced plasticity. To adequately represent the
intricate material behavior within a finite element process model, precise coordination among
experiments, mathematical and physical models for changing material properties, and the finite
element model of the process itself is imperative. Such a material model provides comprehen-
sive insights into the behavior of the railway steel ER7, while the developed process model
allows to understand the stress evolution of a railway wheel in various and rapidly changing
conditions.

In summary, this thesis contributes to the advancement of the manufacturing of railway
components. The established process models provide deep insights into the development of
residual stresses and stress redistribution of railway components enabling a further process

optimization.

Contents

[Preamblel
[Abstract]

[Cist of Symbols|

[ist of Abbreviations

(1__Introduction

|2 Theoretical Background|

2.1 Constitutive Equations|
2.2 Phase Transformationl

[s) olling o eelset Axles

3.1 The Component Wheelset Axle|

[3.1.1

Requirements for Wheelset Axles|

[3.1.2

Manufacturing of Wheelset Axles|

3.2 Cold Rolling Process|.

3.3 Modeling of Cold Rollingl

[3.3.1

Geometries for Cold Rolling Simulations|

[3.3.2 Materials and Material Models for Cold Rolling Simulations|.

B.4 Finite Element Model of Cold Rolled Wheelset Axfes|

B41

Requirements for a FE Model of Cold Rolled Wheelset Axles|

B.4.2

Geometry for the Cold Rolling Process Model|

B.43

Coupling and Boundary Conditions|

B4.4

Material Model for Cold Rolling Simulation|

B45

Kinematics of Cold Rolling Simulation|

B.46

Contact Settings|.

B.4.7

Python Script for Model Generation|

B.48 Model Extensionl.

[3.5.3

Parameter Study for the Cold Rolling of Wheelset Axles|.

B354

Comparison of Simulation and Experimental Results|.

XV

XIX

11
14
15
15
19

XIV Contents

35,5 Stress Redistributionl o 55

3.6 Conclusions] 57

|4 Heat Treatment of Railway Wheels| 59
4.1 The Component Railway Wheel| 59
[4.1.1 Requirements for Wheels| 59

[4.1.2 Manufacturing of Wheels|o 61

4.2 Heat [reatment Process|. 61
4.3 Modeling of Heat Treatment| 62
[4.3.1 Heat Treatment Simulations of Railway Wheels| 64

4.3.2 Materials and Material Models for Heat [reatment Simulationsl. 66

|4.4 Material Characterization Experiments| 67
|4.4.1 Continuous Cooling Transformation Phase Diagram| 67

442 Hot Tensile Tests| 68

|4.4.3 Deformation Dilatometry| o000 69

4.5 Modeling of the Material Behaviorl 70
4.5.1 Modeling of Phase Transformation Kinetics| 71

|4.5.2 Modeling of Plastic Material Behavior| 72

[4.5.3 Modeling of Transformation Induced Plasticity]. 75

|4.6 Finite Element Models for the Heat Treatment of Railway Wheels] 76
[4.6.1 Representative Volume Element for Material Modeling] 76

4.6.2 Process Model for the Heat lreatment of Wheels| 7

[4.6.3 Model Extension: Block Brakingl 83

4.7 Results and Discussion| Lo 85
|4.7.1 Continuous Cooling Transformation Phase Diagram| 85

472 Hot Tensile Testsl 88

[4.7.3 Deformation Dilatometry| 91

|4.7.4 ERY Material Model for the Implementation in a Finite Element Software] 93

475 Process Model for Heat Treatment of Wheels| 93

|4.7.6 Block Braking of Railway Wheels| 98

4.8 Conclusions| 101
103
[Cist of Figures| 105
[List_of Tables| 109
Bib grap 111
A Appendix Al
IA.1 RVE py-Script| Al
|A.2 Cold Rolling py-Script| Al13

|A.3 Heat Ireatment py-Script| A37

List of Symbols

Symbol
Aq
As

As

By

Ck

Daxie

Dwr

f(&)
flo, H)

T Q8

~

Unit

mJ\/R

13VK

L

MPa

Description

material constant for calculation of critical nucleation radius
material constant for calculation of Gibbs free energy at its
peak

material constant for calculation of the growth rate of the prod-
uct phase fraction

material constant for calculation of the growth rate of a nucleus
during transformation

Parameter of isotropic hardening rule, that defines the rate at
which the size of the yield surface changes as plastic straining
develops.

material constant for calculation of the growth rate of the prod-
uct phase fraction

Parameter of kinematic hardening rule, that defines the ini-
tial kinematic hardening modulus. The index k represents the
number of the particular backstress.

specific heat capacity

matrix of the regularization, that determines the zero, first and
second derivatives

diameter of the wheelset axle

diameter of the work roller

Derived saturation function

yield criterion

compliance matrix

coefficient of compliace matrix

peak value of Gibbs free energy

tensorial hardening variable

matrix of the regularization, that weights the contributions of
individual evaluation points

identity matrix

Greenwood-Johnson transformation coefficient for the i-th
phase transformation.

load

feed: distance in axial direction of the work roller covered in

one turn

XVI List of Symbols
Symbol Unit Description
n I normal vector
n - material constant for calculation of the growth rate of the prod-
uct phase fraction
DH MPa herzian pressure
Q J thermal energy
Qq j activation energy
q W /m? heat flux
Qoo MPa Parameter of isotropic hardening rule, that defines the maxi-
mum change in the size of the yield surface.
R J/(mol K)| universal gas constant
r mm first coordinate of a cylindrical coordinate system
r* m critical nucleation radius
Tn ; nucleation radius
Rwr ; edge radius of the work roller
S MPa deviatoric part of the stress tensor
S — diagonal matrix of the regularization, that indicates the mea-
surement error
U j internal energy
U j specific internal energy
u rT1 displacement vector
W N mechanical energy
z mm third coordinate of a cylindrical coordinate system
« constant in the Koistinen Marburger equation describing the
velocity of the phase transformation
Qg — aperture angle of finite element model of the cold rolling process
a backstress tensor
oy deviatoric part of the backstress tensor
oy coefficient of thermal expansion
oy convective heat coefficient
Qp, material constant for calculation of the growth rate of a nucleus
during transformation
I5} scalar factor of the regularization, that control the amount of
regularization
Al undercooling
€ emissivity
ECC strain vector for cut compliance method
€ - total strain tensor
éfp Transformation induced strain rate by Leblond
e elastic strain tensor
epl eqivalent plastic strain

List of Symbols XVII

Symbol Unit Description
é{i’é F egivalent plastic strain rate
si’j m-1 local strain component of a single layer within the cut compli-
ance method
P! : plastic strain tensor
gp! 1 rate of plastic flow
e? 1 thermal expansion tensor
elP 1 TRIP strain tensor
gl I transformation extension tensor
v 1 material constant for calculation of the growth rate of the prod-
uct phase fraction
Vi 1 Parameter of kinematic hardening rule, that defines the rate at
which the kinematic hardening moduli decrease with increasing
plastic deformation. The index k represents the number of the
particular backstress.
A h-s cooling parameter
A s plastic multiplier
A /r thermal conductivity
% second coordinate of a cylindrical coordinate system
Daxle rotational DOF of the axle
PWR rotational DOF of the work roller
7(Eeq) isotropic hardening function
) mass density
alo Parameter of isotropic hardening rule, that defines the yield
stress at zero plastic strain.
oco MPa stress vector for cut compliance method
O dil MPa applied stress during deformation dilatometry experiments
O MPa von Mises equivalent stress
agj MPa local stress component of a single layer within the cut compli-
ance method
Omax MPa maximum permissible load for deformation dilatometry tests
Opp MPa normal stress component in -direction
O MPa normal stress component in r-direction
o MPa stress tensor
Ty0 MPa initial yield stress
oy MPa yield stress
Oz MPa normal stress component in z-direction
0 K current temperature
Ao R equilibrium temperature, at which the parent phase has the
same free energy as the product phase
Lo R load onset temperature
Ors K martensite start temperature

XVIII

List of Symbols

Symbol

9*

Em

Description

rate of temperature change

temperature corresponding to the shortes incubation time
volume fraction of the product phase in Leblond's law

time derivative of the volume fraction of the product phase in

Leblond’s law

volume fraction of martensite according to the Koistinen Mar-
burger equation

List of Abbreviations

OBB Austrian Federal Railways

2D two dimensional

3D three dimensional

bcc body centered cubic

bct body centered tetragonal

CC cut compliance

CCT continuous cooling transformation
CFD computational fluid dynamics

DB Deutsche Bahn

DOF degree of freedom

EAAT standardized quenched and tempered steel for wheelset axles
ER7 standardized quenched and tempered steel for railway wheels
fcc face centered cubic

FE finite element

FEA finite element analysis

FEM finite element method

GUI graphical user interface

GWJ Greenwood-Johnson

hex hexagonal

ICE Inter City Express

LCF low cycle fatigue

MPC multi point constraint

PBC periodic boundary conditions

py python

ROI region of interest

RP reference point

RVE representative volume element
TRIP transformation induced plasticity
TTT time-temperature transformation
UHCF ultra high cycle fatigue

XRD X-ray-diffraction

1 Introduction

Mobility plays a crucial role in modern life, facilitating commuting, leisure travel, and the trans-
portation of goods. However, as society moves towards a COj-neutral future, the importance
of sustainable mobility concepts has grown significantly. In Austria, transport is responsible
for 28.2% of greenhouse gas emissions, with road traffic accounting for nearly 99% of these
emissions. Despite efforts in other sectors, transport emissions continue to rise each year.
Consequently, reducing emissions has become a top priority, necessitating effective strategies

and solutions. [IH3]

Motivation
A key approach to reducing greenhouse gas emissions from transport is to shift road traffic to

rail. However, for this transition to succeed, rail transport must become even more appealing

to commuters, and capacity must be expanded. In 2019, |Austrian Federal Railways (OBB)

transported 476 million passengers using up to 600 trains simultaneously. Addressing the chal-
lenge of accommodating even higher traffic volumes in the future is critical. One possible
strategy would be to create longer inspection intervals, although this should not jeopardize
safety. To accomplish this, engineers need to develop methods to better predict component
behavior, especially of critical components like the wheelset. Therefore, exploring methods to

enhance the attractiveness and efficiency of rail transport is crucial. [3]

Goals
The objective of this thesis is to develop advanced methods for analyzing critical components,
focusing specifically on the wheelset, which comprises the wheelset axle and wheels. The
wheelset is subject to stringent safety standards, and its lifetime assessment and dimension-
ing are typically conducted using conventional safety engineering approaches. However, these
methods often employ conservative assumptions, considering average values and disregarding
local property variations. To address these limitations, this thesis aims to utilize computa-
tional modeling and simulations to gain a deeper understanding of the wheelset's behavior
both due to manufacturing and in service. Based on these validated software tools and simu-
lation models it will be possible to incorporate local property changes of the material to the
existing dimensioning framework and thereby increase the inspection intervals for these railway
components.

By employing more advanced analysis methods, the thesis seeks to enhance the safety,
reliability, and efficiency of rail transport. This proactive approach can reduce downtime,

increase train availability, and ultimately contribute to the attractiveness of rail transport.

2 1 Introduction

Moreover, by improving the sustainability of rail transportation, this work aligns with the
broader goal of reducing greenhouse gas emissions in the transport sector.

Overall, this thesis endeavors to explore sustainable mobility concepts with a focus on en-
hancing the wheelset's behavior through advanced analysis methods. By achieving these goals,
we can contribute to a more sustainable and efficient transport system, thereby advancing the

vision of a COz-neutral future. [IH3]

State of the Art

Presently, the existing guidelines and standards governing the design and dimensioning of
railway components rely on traditional fatigue calculations, based on Smith or Haigh diagrams,
as well as fracture mechanics analyses. However, these conventional approaches are susceptible
to inherent uncertainties and rely on a worst-case assumption, typically considering a visible
crack scenario. Moreover, such calculations employ average material properties, disregarding
local variations in these properties. As a result, there is a need for more comprehensive
methodologies that can account for the complex nature of material behavior and address the
limitations associated with current practices. [4]

The current approach to addressing the corrosion and stone chip protection requirements of
railway components relies predominantly on the application of paints and coatings. However,
this method incurs substantial costs, both in terms of materials and ongoing maintenance.
Notably, coatings need to be removed periodically for component inspection and subsequently
reapplied to meet in-service standards. Nevertheless, research findings have unveiled the po-
tential of mechanical surface treatments, particularly the cold rolling process. By inducing
compressive stresses in the vicinity of the component surface, cold rolling leads to crack-
closure effects capable of mitigating both typical crack growth and corrosion-enhanced crack
growth. The utilization of such mechanically treated components not only streamlines the
manufacturing process but also yields favorable implications for maintenance procedures, ex-
pediting the overall maintenance timeline and augmenting the safety and quality in-service of
these components.

Detailed elaborations of the current state of the art for the manufacturing and modeling
of the components wheelset axle and railway wheel can be found in sections through

and [4.1] through [4.3] respectively.

Open Questions

The challenges surrounding the manufacturing and maintenance of railway components give
rise to several unanswered questions. The current models available for characterizing residual
stresses generated during the manufacturing process provide only approximate estimations of
the stress state. To achieve more precise predictions of the stress distribution in these compo-
nents throughout and after their manufacturing and in service, advanced models are required.
These models must account for the local property changes that have global implications on
the component behavior. In the case of the stress profile within the depth of the wheelset axle,
it is crucial to identify the process parameters that influence it and understand its distribution

at greater depths, where conventional measurement techniques may have limitations. Further-

more, local changes in material properties during the heat treatment of railway wheels must be
considered. This entails investigating the formation of solid phases at localized regions during
typical heat treatments and their subsequent impact on the overall component behavior. A key
focus lies in the development of integrated material and process models that extend beyond
academic research and can be effectively utilized for the design and advancement of these

critical railway components.

Structure

The thesis is organized into the following sections. The introduction provides an overview of
the subject of process models in railway component manufacturing and highlights the unre-
solved questions within this field. Following the introduction, the fundamentals chapter delves
into the essential elements required for the development of material models. This includes
a discussion on the fundamental mechanisms of phase transformation, heat transfer, and the
influential variables pertaining to residual stresses and their measurement. This is followed by
two substantive chapters that provide comprehensive information critical to the formulation of
process models in railway component manufacturing, namely the cold rolling of wheelset axles
and the heat treatment of railway wheels. These respective chapters form thematically self-
contained sections within the large subject area of railway component manufacturing, and each
consists of a state of the art section, a methods section, a results section, and a conclusion.
The thesis concludes with a summary chapter, which briefly recaps the results and highlights
the scientific contribution. Throughout the work, readability and language has been enhanced
through the utilization of Al software tools such as DeepL and ChatGPT. After using these
tools, the author reviewed and edited the content and takes full responsibility for the content

of the publication.

2 Theoretical Background

This chapter provides an overview of the fundamental concepts and theoretical background
essential to this thesis. Initially, the constitutive equations governing the mechanical behavior
of materials are briefly summarized. Subsequently, residual stresses resulting from the plastic
material behavior are discussed from an engineering perspective. This section elaborates on
commonly employed techniques to measure these stresses, as well as a novel technique capable
of measuring residual stresses at considerable depths below the surface of a component, namely
the cut compliance method. Finally, the chapter concludes with a discussion of heat transfer,
particularly with regards to the implementation of heat transfer calculations through the finite

element method.

2.1 Constitutive Equations

An essential part of any process model is the material description. Besides geometry and
contact, it is another source of nonlinearity of the system to be solved. To represent or
describe the real material behavior, material models are created that are valid for specific
purposes or domains. Basically, a material model is the mathematical relationship between
the stress and the strain state, or from another perspective between an applied force and the
resulting displacement. This relationship can take various forms, such as elastic, plastic, or
viscoplastic, that also include a monotonic or cyclic behavior. More generally, a material model
aims to describe how and to what extent the material reacts to external influences.

In this thesis, two key processes are studied: cold rolling and heat treatment. The material
properties play a vital role in both processes and their simulations. During both cold rolling
and heat treatment, the material plasticizes, i.e. it experiences irreversible deformation. The
stress-strain relationship for a uniaxial tensile test, which is commonly used to evaluate material
properties, is shown in Figure 2.1l Understanding material behavior under different loading
conditions is critical to accurately model manufacturing processes. Therefore, it is essential to
understand how material models are developed and the key ingredients they use.

The transition from the elastic to the plastic regime is marked by the yield point@ which
represents the stress level at which plastic deformation initiates, irrespective of its subsequent
behavior. Once the material enters the plastic regime and experiences a certain strain, that
strain becomes permanent even after unloading or load reversal, with only the elastic portion
of the strain being recoverable. This distinction allows for the additive decomposition of the
total strain tensor || into an elastic component and a plastic component as shown

6 2 Theoretical Background

linear strain hardening
11
oy, =+ - - —— - = _I/_ L|= = = perfect plasticity
|
/
/ I
/ ! o
1
E 'LIE !
I
/ 1
/ |
/ . >
W_,/v P
&.p/ Eel

Figure 2.1: Decomposition of the strain into an elastic and plastic part. Figure and caption
adapted from [5].

in Equation The stress-strain relationship during loading and unloading follows Hooke’sE]

law, which states that stress is proportional to strain.

e =¢e" 4 g (2.1)

Yield criterion

In the context of the uniaxial case, identifying the onset of plastic deformation is relatively
straightforward by using the yield point. However, in more complex scenarios involving a
multiaxial stress states, where the stress tensor comprises components in multiple spatial
directions, determining the transition to plastic behavior becomes more challenging. To address
this, a yield criterion needs to be defined. In the general case, this criterion is
a function of the current stress state [o] and internal hardening variables, denoted by [H]|
Equation establishes that the material exhibits purely elastic behavior when this function
is less than zero, while plastification occurs when the yield criterion is satisfied at[f(o, H)|= 0
and f(a, H) = 0, with the latter being the consistency condition. The consistency condition
enforces that the current point remains at the border of the elastic domain during the plastic
flow. It should be noted that because of the consistency condition > 0 is inadmissible.
This relationship is also shown in Figure for the plane stress state, where the ellipse

represents the yield surface with |f (o, H)| = 0. [5, 6]

f (o, H) <0 elastic (2.2)

f(o,H)=0 and f(o,H) <0 : elastic unloading (2.3)
f(o,H)=0 and f(o,H)=0: plastic (2.4)

f (0, H) > 0 : inadmissible (2.5)

'Robert Hooke (18 July 1635 — 3 March 1703): English mathematician.

2.1 Constitutive Equations 7

The choice of the yield criterion function depends on the specific characteristics of the ma-
terial under consideration. In this study, the von Miseﬂ yield criterion is exclusively employed
due to its suitability for ductile materials like steel, which is prevalent in the manufacturing
of railway components. Equation [2.6] presents the tensorial representation of the von Mises
yield function (with [0 as the (von Mises) equivalent stress), wherein [S] represents the stress
deviator of the stress tensor [o] [5, 6]

f(a)zae—ay:\/gS:S—ay (2.6)

Furthermore, Equation unifies three essential criteria of this law: (1) the yield condition
is invariant to the hydrostatic stress, meaning it solely relies on the deviatoric component,
(2) the material response is isotropic, ensuring consistent behavior regardless of the direction
of loading, and (3) the yield stress in tension equals to the yield stress in compression, ensuring
symmetry in the material’s response to different loading conditions. This material behavior
is sometimes referred to as Jo plasticity because the expression Jy = ,/%S : S describes the
second invariant of the deviatoric stress tensor. A graphical representation of the von Mises
yield surface is shown in Figure 2.2} where the yield condition is shown in the principal stress
space as a green cylinder. The red part around this surface is part of the hardening rules, that
are described later. [5], [6]

olll &

Mises yield surface /o\\\
at critical state N e
N /K

deviatoric plane
o|+0]|+0)(|=0

ol

Figure 2.2: lllustration of the Mises yield surface in the principle stress space. Figure adapted
from [6].

Flow rule

The yield stress serves as a criterion to determine the onset of plastic deformation, marking
the limit of the elastic region. In contrast, the flow rule characterizes the material's behavior
beyond the yield point and provides information on the direction of flow. This direction is

determined by the plastic potential. When the yield surface and the plastic potential surface

'Richard von Mises (19 April 1883 — 14 July 1953): Austrian mathematician.

8 2 Theoretical Background

projected in the stress space are congruent, the flow rule is referred to as associated flow.
However, in the case of non-associated flow, the plastic deformation direction, governed by
the plastic potential, does not align with the normal vector of the yield surface, representing a
more general case. Figure [2.3| shows this relationship graphically for the case of plane stress,
which can also be expressed mathematically by Equation . In this equation, % represents
the direction of the plastic strain increment, and |\ the plastic multiplier which corresponds

to its magnitude.

gl = \ZL (2.7)

Uz‘

N

tangent to
yield surface

elastic region

ield surface
y f<0

f=0 Oy

Figure 2.3: The von Mises yield surface for the plane stress condition illustrating the direction
of the incremental plastic strain normal to the tangent of the surface. Figure and caption
adapted from [5].

During plastic deformation satisfying the yield condition at any time is crucial, especially for
time-independent plasticity. This condition, known as the consistency condition, ensures that
the total differential of the yield condition is zero throughout the plastic deformation process.

Mathematically, this is represented as
df =0 , (2.8)

indicating that the yield condition remains unchanged during the entire plastic deformation.

Hardening Rule

To capture the complex stress states encountered during the manufacturing of railway com-
ponents, it is necessary to consider the evolution of the yield surface. The area marked in
red in Figure illustrates the expansion of the yield surface, which is one possible modifi-
cation of the yield surface. This expansion signifies the modification of the yield surface to

accommodate a broader range of stress states. This change of the yield surface can also be

2.1 Constitutive Equations 9

described as increasing stress for further plastification and is called hardening. The hardening
rule affects both the yield criterion and the flow rule. The fact that the yield surface changes
is a consequence of the aforementioned consistency condition, since there is no valid material
state beyond the limit of the yield surface.

Isotropic and kinematic strain hardening are widely recognized methods for characterizing
the intricate stress evolution experienced by materials during plastic deformation. While each
model effectively captures specific aspects of this phenomenon in isolation, their combined
utilization is often favored to mitigate the limitations inherent to the other model. Figure [2.4
shows the modification of the yield surface under plane stress conditions when subjected to the
hardening laws respectively. Isotropic strain hardening induces a uniform expansion of the yield
surface in all directions, whereas kinematic hardening shifts the position of the yield surface.
Notably, the third part of Figure portrays the yield surface's behavior when the combined

variant of isotropic and kinematic hardening is employed.

o ok
2 A oY |
°4 - -~ -
,/ \ d \ /’ \\
r} L > 7 L - / 1 o
\ / o / o 4 / 3
\"/ ' ‘b ' L~ '

(a) isotropic (b) kinematic (c) combined

Figure 2.4: Change of the yield surface of (a) kinematic, (b) isotropic and (c) combined
hardening. Figure adapted from [7].

The expansion of the yield surface in isotropic hardening is a function of the accumulated
plastic strain. Considering the consistency condition, the following relationship is obtained for

the yield function:

flo.eby) =0c —oy(hy) =0 (2.9)

where is the equivalent plastic strain, which is similar to the equivalent von Mises stress
and calculated via integrating the equivalent plastic strain rate which again is dependent
on the rate of the plastic strain tensor [¢7'}

. 2. 0.
el = gspl cerl (2.10)
sgg:/éggdt : (2.11)

0y (€¢q) can be decomposed into an initial yield stress and the isotropic hardening

function :

10 2 Theoretical Background

0y (£eq) = 040 — 7 (2eq) (212)

Where in its most common form is:

r (5eq) = Qoo (1 - e_baeq) . (2.13)

In this function gives the saturation of a nonlinear stress strain relationship and [f]
denotes the rate at which the saturation is achieved, leading to an exponential evolution of
the corresponding stress strain relationship. By combining Equation and [2.13] the change
of the yield stress defining the yield surface is given as:

0y (Eeq) = 040 — Qoo (1= €7P50) . (2.14)

Isotropic hardening models are suitable for accurately describing the stress-strain relation-
ship under monotonically increasing loads or loads without load reversal. However, when load
reversal occurs, the ability to accurately reproduce the relationship between stress and strain
diminishes. This is where kinematic hardening proves advantageous. By incorporating kine-
matic hardening, the elastic region is effectively reduced through the displacement of the yield
surface, as depicted in Figure 2.4 When the kinematic hardening rule is included in the yield
criterion using the von Mises yield function, the following relationship is obtained:

f(a'—a):\/g(S—ad):(S—ad) , (2.15)

Here, represents the deviatoric component of the backstress tensor @ which in turn is
the key variable for describing kinematic hardening.

To accurately capture the material behavior under alternating loading in the plastic regime,
Chaboche developed a comprehensive nonlinear model incorporating both isotropic and kine-

matic hardening. This combined model has gained widespread acceptance for its effectiveness

in commercially available|finite element (FE)| programs and is employed in this work to describe

the material behavior in the manufacturing of railway components. The kinematic hardening
component proves particularly valuable in characterizing the response during a single load cy-
cle, while the isotropic hardening component allows predicting the maximum stresses after a
certain number of cycles. In the Chaboche model, the evolution of the back stress is described

by the sum of multiple backstresses:

N

) . 1)

&= Z Créeq—— (0 —) — Vpoéeq (2.16)
k=1 Oy (5€¢Z)

where the term o, (e¢4) represents the inclusion of isotropic hardening in this evolution.
By superimposing multiple backstresses and subsequently adapting the values of the material
parameters and [y;| it is possible to calibrate the evolution of the backstress accurately to
the experimental data. For the application in this work it has proven useful to model the
kinematic hardening by calibrating 3 backstresses. [5, 6] 8] 9]

2.2 Phase Transformation 11

For a better understanding of the manufacturing of railway components, it is essential to
be able to describe their material behavior. For this description, material models are used
which have as key ingredients the yield criterion, the flow rule, the consistency condition and

the hardening. The combination of these rules constitutes a material model.

2.2 Phase Transformation

An additional significant aspect considered in this work is the influence of heat treatment on
the material behavior. Temperature variations initiate metallurgical processes that impact the
material properties of railway components, not only during the heat treatment process but
also throughout their operational lifetime. To gain initial insights into these metallurgical pro-
cesses, models describing the crystal structure of metals are elucidated. These models serve to
demonstrate the underlying reasons for alterations in the stress field during phase transforma-
tions. A comprehensive explanation of these phenomena and their modeling will be provided
in Chapter |4] dedicated to the heat treatment of railway wheels.

Crystal Structures

The fundamental structure of materials, in particular metals can be understood as a periodic
arrangement of atoms within a lattice structure. The specific way in which these atoms arrange
themselves within the lattice plays a significant role in determining the overall behavior of
the material. The microstructure, including the arrangement, size, distribution, shape, and
composition of these lattice cells, further influences the material’s properties. The lower parts
of Figures and [2.6] respectively, illustrate this concept of the grouped atoms in periodic

unit cells. Metals, in particular, tend to crystallize in three primary lattice structures, namely:

[body centered cubic (bcc)l [face centered cubic (fcc)| and [hexagonal (hex)l The mechanical

properties of materials are closely related to these underlying crystal structures. Through heat
treatments, the arrangement of atoms within the lattice can be altered, consequently leading
to changes in the material's properties. [I0H14]

During the heat treatment of steel, different phases are formed, each characterized by their
distinct lattice structure. These phases also exhibit variations in their material properties,
playing a crucial role in determining the ductility, hardness, strength, impact toughness, and
creep strength of the material. The ability to intentionally manipulate and harness these
properties makes steel an incredibly versatile material. Through careful control of the heat
treatment process, steel can be tailored to meet specific performance requirements in a wide
range of applications. [I0H12, [14]

Different temperature-time profiles during the heat treatment process are instrumental in
the formation of specific solid phases. This enables the manufacturing of components from
a single material that simultaneously meet diverse requirements. As illustrated in this thesis
using the example of a railway wheel, specific heat treatment conditions can be applied to

meet the specific performance criteria. Detailed requirements for the railway wheel can be

found in Subsection (12, 15]

12 2 Theoretical Background

FE atoms ap
C atoms
‘}\ ‘/ab(

af>ab

fcc bcc

Figure 2.5: Change in the crystal structure of steel during the transformation of austenite
into pearlite. Figure adapted from [16].

Transformation Mechanisms

The residual strains and stresses observed in a railway wheel are a result of the phase trans-
formations that take place within its austenitic microstructure. During these transformations,
the crystal structure changes from to as the austenite transforms into ferrite, pearlite,
and bainite. Figure shows the distinct atomic arrangements in the and lattices.
This transformation process, known as reconstructive or diffusive transformation, involves the
diffusion of atoms, which rearrange themselves into a new structure. It is important to note
that such atomic movements require time for diffusion to occur. However, increasing cooling
rates restrict the available time for diffusion, impeding the movement of atoms. When the
cooling rate reaches a critical speed, the atoms do not have enough time to diffuse, resulting
in an abrupt transformation. In the case of steel, the austenite transforms into martensiteE|
through a displacive or martensitic transformation. Unlike diffusive transformations, this type
of transformation is solely dependent on temperature and not time. The limited diffusion time
leads to a presence of embedded C atoms that cause a distortion of the original cuboid geom-
etry, transforming it into a tetragonal lattice. The structural transition in Figure [2.6] shows the

transformation from the lattice, which represents the most densely packed arrangement

for spheres, to the distorted [body centered tetragonal (bct)| lattice of martensite. The result-

ing volume change and lattice distortion play a significant role in generating stresses during
heat treatment processes involving phase transformations. These stresses do not necessarily
have a negative influence on the component behavior. The distorted lattice not only enhances
strength and hardness but also impacts the component’s service life positively, particularly
when the residual stresses are compressive. [10-14), [17] 18]

' Adolf Karl Gottfried Martens (6 March 1850 — 24 July 1914): German materials scientist and metallurgist.

2.2 Phase Transformation 13

FE atoms

fcc btc

Figure 2.6: Change in the crystal structure during the transformation of austenite into marten-
site. Figure adapted from [16].

Strain decomposition

The heat treatment of steels involves numerous variables that give rise to stresses, primarily
attributed to changes in both strain and localized strain alterations. The total strain encom-
passes various factors contributing to its magnitude. In the framework of small strain theory,
these individual contributions to the total strain can be decomposed in an additive manner.
By understanding and accounting for each specific component, a comprehensive analysis of
the overall strain and its associated stresses can be achieved. This decomposition approach
allows for a more detailed examination of the factors influencing the resulting stresses in the
context of heat treatment processes. [19-22]

The total strain tensor |g| is composed of the components , , and as
presented in Equation [2.17] Here represents the elastic strain tensor, the plastic strain
tensor, [€°| the tensor of thermal expansion, the ftransformation induced plasticity (TRIP)|
strain tensor, and [g™”] the transformation expansion tensor.

e=e tePl 4l e el (2.17)

The decomposition of the strain tensor is a key aspect of the analysis conducted in this
work. To provide a clearer depiction of these contributions, refer to Figure 2.7, which depicts
a scenario where a wire is subjected to both applied weight and simultaneous heat removal. As
the temperature decreases, the wire contracts, representing the strain component of thermal
expansion The applied weight stretches the wire, constituting the elastic component of the
strain tensor, assuming reversible behavior upon unloading. If the temperature drop triggers

a phase transformation, it can be accompanied by a volume jump, resulting in a transformation

14 2 Theoretical Background

expansion strain . When all these effects occur simultaneously, an additional phenomenon
known as can arise. The strain entails plastic deformation occurring during
phase transformations under the concurrent influence of an external load. It is important to
note that the load itself remains within the purely elastic regime and does not cause plasticity
of the product phase. Plastic deformation manifests in the softer region in the vicinity of the
transformation, particularly in the case of steel where it occurs during the martensitic transfor-
mation in the austenitic regions. Interestingly, in practical scenarios, the additional load does
not necessarily need to be externally applied. Pre-existing stresses within the microstructure
can be interpreted as an additional load in regions that will undergo transformation later on.
In the case of the heat treatment of the railway wheel, this is the case when the outer layers
contract due to cooling with water and press on the inner regions, where phase transformations

occur later in the process. [19-22]

Y Y

/\
\/\’Ae\/\ y &= a' transformation
A
Ag®
i
Ag® JTAE"V
--r-------
I T Ac®®
Ag
Y i

Figure 2.7: Various contributions of strain under load, temperature change and phase trans-
formation. Figure adapted from [23].

In section one can find detailed information on the current state of the art in modeling
such processes, such as phase transformation and the associated property changes, including

the modeling of the individual components of the strain tensor [e]

2.3 Residual Stresses

Residual stress refers to the internal stresses that persist within a component or material even
after the removal of the external forces or loads that caused them. These stresses can exist
in different forms, such as tensile, compressive, or shear stresses, and are a result of various

manufacturing processes like welding, heat treatment, machining, or forming operations. These

2.3 Residual Stresses 15

processes induce localized changes in geometry like for example during the cold rolling process
of wheelset axles and temperature gradients, and microstructure changes, leading to non-

uniform and inelastic strains. [12, [24] 25]

2.3.1 Definition of Residual Stresses

In the realm of continuum mechanics, the equilibrium of residual stresses is essential. It
mandates that the forces and moments arising from these stresses must sum up to zero. In the
light of this principle, residual stresses are classified into three categories: (1) first-order residual
stresses, which are balanced across larger regions and account for the inhomogeneity of multiple
grains, (2) second-order residual stresses, which exhibit homogeneity over microscopic areas and
compensate for the inhomogeneity within individual grain regions, and (3) third-order residual
stresses, which reflect inhomogeneities at the submicroscopic scale. Another consideration of
this classification is the impact of residual stresses on the macroscopic level. Alterations in first-
order residual stresses always lead to macroscopic changes, while substantial modifications are
necessary to yield discernible macroscopic effects in second-order residual stresses. Third-order
residual stresses, however, are imperceptible at the macroscopic level. [12] 24]

The focus of this work is primarily on first-order residual stresses, although the involve-
ment of second-order residual stresses may be considered in specific cases. Residual stresses
have been a subject of extensive investigation within the scientific community for many years,
encompassing numerous aspects. However, for the scope of this thesis, it is sufficient to ac-
knowledge the existence of residual stresses and understand how they can be influenced at
the macroscopic level. The simulation of manufacturing processes has emerged as a valuable
approach to assess the occurrence of residual stresses. Given that this thesis involves compar-
ing simulation results with experimental measurements of residual stresses, it is pertinent to

briefly discuss the key aspects of residual stress measurement.

2.3.2 Measurement of Residual Stresses

This section provides a concise overview of various experimental methods commonly employed
for the measurement of residual stresses. Subsequently, it delves into a specific method utilized
in this work, namely the[cut compliance (CC)|method. The[CC method is a destructive testing
method that derives residual stresses by analyzing the strains during the cutting process of a

component.

Commonly Used Measuring Techniques

In the field of residual stress measurement, numerous well-established methods have been
utilized for several decades. However, these methods face two recurring challenges when
applied to real components. Firstly, the accuracy of measurements is not always satisfactory,
particularly in cases involving complex geometries or positions where significant changes in

geometry occur. Secondly, there is a limitation in the depth to which measurements can

penetrate. Non-destructive techniques such as [X-ray-diffraction (XRD)} ultrasonic velocity

16 2 Theoretical Background

measurements, and the utilization of the Barkhausen effect yield reliable results within the
near-surface region, typically limited to the first 2 mm below the surface. [26H28]

@]is a versatile method. In materials science, it is used to determine the crystal structure,
but also to determine the stress state. The diffraction of electromagnetic waves using Bragg's
law is applied to the surface to be examined. Thin layers can even be transmitted by radiation.
Based on constructive and destructive interference, the stress state can be obtained. [26-28]

The ultrasonic stress measurement is based on the acoustoelastic effect. It takes advantage
of the fact that the speed of propagation of elastic waves in the continuum is related to the
present stress. [26H28]

Barkhausen Noise Analysis offers an alternative non-destructive method for measuring resid-
ual stresses. This technique is specifically applicable to ferromagnetic materials, as it requires
the component to be magnetized. By subjecting the material to an external magnetic field,
the magnetic domains within the workpiece align themselves with the field lines. Once the
saturation state is reached, where all domains are aligned parallel to the external field, the
field is removed. The magnetic domains then undergo a process where they sequentially re-
turn to their original positions, producing detectable fluctuations in the magnetic field known
as Barkhausen noise. These noise characteristics are influenced by the presence of stresses
in the material. To accurately determine the stress state, the measurement system must be
properly calibrated to the specific material. Once calibrated, the method provides a convenient
and rapid means of assessing the orientation and magnitude of residual stresses. However, a
limitation of this method is that it can only provide an average measurement value within a
depth of approximately one millimeter, starting just below the surface of the material. [29] 30]

In contrast to non-destructive methods, destructive or mechanical methods for measuring
residual stresses rely on the principle of strain measurement during material removal, which
leads to the relief of residual stresses. [31],32]

The hole drilling technique is the most popular and widely used method for measuring
residual stresses, constituting approximately 30% of all measurements. This technique involves
drilling a hole into the surface of a component, where strain gauges are used to measure the
strains in the vicinity of the hole resulting from the relaxation of the residual stresses. By
analyzing these strains, the residual stresses in the material can be determined. One of the
main advantages of this technique is its capability to measure strains in different directions,
providing comprehensive information about the stress composition leading to the residual stress
state. [31] 32]

Destructive testing methods also include the so-called contour method. It can be used to
determine the stress for an entire exposed surface of a component. In this method, a cut is
made through the component using wire erosion to avoid introducing additional stresses. The
residual stresses in the component cause the cut surface to deform or warp. The deviation of
the cut surface from a flat plane is then measured using a coordinate measuring system. By in-
corporating the warped geometry into [FE| calculations, the residual stress state can be derived.
Although this method provides meaningful stress distributions over a large exposed area, it is

a particularly complex procedure that requires expertise in both measuring and simulation. [31]

2.3 Residual Stresses 17

Cut Compliance Method

The [CC] method, employed in this work for stress measurement, was initially proposed by
Schindler in [33, 34] for determining stress intensity factor and residual stresses in CT spec-
imens. It was later extended and applied to cylindrical geometries such as wheelset axles by
Ganser in [35]. Similar to the contour method, the method is a destructive measurement
technique that involves making a cut on the component, which can be performed using saws
as well as wire erosion. This enables the determination of stresses perpendicular to the cutting
plane. Strain gauges are strategically positioned to measure the strain resulting from relaxation
during the cutting process. A common arrangement involves placing two gauges on either side
of the cut, with a third gauge positioned opposite to the cut, where the highest strain due to
relaxation is expected. Unlike the contour method, the@ method measures strain throughout
the cut and provides information about each layer removed. However, the measured strains
cannot be directly converted into stresses. Instead, simulations are conducted iteratively to
simulate the relaxation process and determine an appropriate stress distribution for the given
geometry. [31], [33H36]

The measurement process begins by identifying a suitable position on the component,
ensuring a minimum distance of three times the diameter to the component edges in the case
of wheelset axles. This distance requirement aims to ensure that the measured stresses are
representative and uninfluenced. In the case of wheelset axles subjected to alternating bending,
the middle region is of particular interest since it experiences the highest load stresses. Once
the strain gauges are securely attached, the cutting process can commence, taking care to
minimize the introduction of additional stresses. When using saws, it is recommended to
make the cut as narrow as possible, and the feed rate should be kept as low as possible.
Typically, a feed rate of 0.1 mm per cut has been found to yield satisfactory results. This
incremental material removal is necessary for subsequent [FE| calculations. The cut is then
made to the desired measurement depth, which is typically slightly deeper than the depth at
which the stresses are to be evaluated. This additional depth allows for averaging of the stress
distribution over a certain range. For example, if a 2 mm range is desired to determine the
stress distribution up to a depth of 10 mm, the total depth of the cut should be 12 mm.
While it is theoretically possible to perform a complete slicing of the component to obtain a
comprehensive stress profile, experiments have shown that excessively large cutting depths can
yield unrealistic results. [35]

Upon completing the measurement, the subsequent stage of stress determination using
the @ method commences. Initially, the measured stresses are plotted as a function of the
depth of the cut, and these data points are approximated using polynomials or other suitable
mathematical representations to facilitate subsequent calculations. The stress vector
obtained from the [CC| method is derived by establishing the relationship between the strain
vector [ecc] of the [CC method and the compliance matrix [G] It is important to note that the

compliance matrix is the reciprocal of the well-known elasticity matrix:

occ=G ' eco . (2.18)

18 2 Theoretical Background

While the compliance matrix establishes a direct relationship between the measured strains
and the desired stresses, determining the coefficients of the matrix for each strain gauge
necessitates the use of [FE| simulations. Unfortunately this is not a trivial task. An important
prerequisite underlying the determination of these coefficients is the axial symmetry of the
stress distribution within the component. Figure [2.8] illustrates the sequential exposure of
axially symmetric stress layers as the sectioning progresses, providing an overview of the general
framework of the method.

&' =&n'

!

Uz'
A A

N\

Gy = €' / o, G2 = €22' / (7%

!

Gn=¢€x'/0 Gs;=€3,'/ 0’ Gaz =€33'/ 03’

€3' = €3' 4+ €32' + €33

Figure 2.8: Determination of the coefficients of the compliance matrix. Figure taken from [35].

It is important to note that a single section cuts through multiple regions with varying
stress levels. To determine the coefficients of the compliance matrix [G] an arbitrary stress
value is assumed, resulting in a corresponding strain. By combining the known values of
and , the individual coefficient of the compliance matrix is obtained, as follows:

The influencing factors of the compliance matrix are determined with the help of the
finite element method (FEM)| A separate calculation is performed for each individual
section that is cut. To reduce computational complexity, a stress value of =1 MPais

2.4 Heat Transfer 19

assumed, resulting in = for the influencing factors. As a result, the measured strain at
the strain gauge is equal to

In practical applications, it has been found that using polynomials alone for smoothing
is insufficient. To address this limitation, regularization techniques are applied. Specifically,

Tikhonov regularization is employed [37], leading to the following system of equations:

(G"G+BCTSTHSC) 000 = G eco . (2.20)

Here [C]is a matrix that determines the zero, first and second derivatives of the stress. It
determines whether there is (0) stress uniformity, (1) stress gradient reduction, or (2) stress
jump reduction. The[H}matrix weights the contributions of the individual evaluation points. If
the spacing is constant, [H] =[I| The matrix[S]is a diagonal matrix indicating the measurement

error and |[J] controls the amount of regularization.

2.4 Heat Transfer

To accurately model the heat treatment process of a railway wheel, it is crucial to determine
the temperature distribution at every point of the component and at each point in time. Both
material parameters that influence heat transfer, as well as those that leave the heat transport
unaffected, are temperature-dependent. Furthermore, phenomena like phase transformations
are as well influenced by both the temperature and the temperature rate. Therefore, it is
important to explore the fundamental mathematical relationship of heat conduction in an
isotropic solid. In addition, the feasibility of sequentially coupled calculations, eliminating the
need for full coupling in both directions, to determine the stress field resulting from the heat
treatment of railway wheels will be discussed. [38] [39]

The solution to the heat conduction problem involves calculating the temperature distri-
bution as a function of time and space. This is achieved by applying the first law of thermo-
dynamics in the form of its time derivative to a closed system, which can be expressed as the
power balance equation

(iT(t] = % + % . (2.21)

The change in internal energy[U]over time is influenced by two factors: the thermal energy[Q)]
and the mechanical energy that enter or leave the defined region through its boundaries.
The change in internal energy can also be described by the volume integral of the specific
internal energy [u] and the density of the material [g] by

dU du

o % 2.22

dt / Pt (2.22)
(V)

The specific internal energy again results from the relation of a (temperature dependent)

specific heat capacity [d and the temperature [f] to

20 2 Theoretical Background

du=c(0)do . (2.23)
Taking into account the mass m = [pdV, the time derivative of the internal energy thus
results in
au do
— = 0)—d . 2.24
dt ./'Oc()dtv (2.24)
V)

In order to calculate the heat flow d() which moves over the surface of the area dA in

direction of the normal vector [} the following relationship results

dQ = —gqndA (2.25)

where [g] is the heat flux vector, a power density necessary to describe the heat flow.
Using the divergence theorem that states that the flux through a surface is equal to the
volume integral of the divergence over the region inside the surface the heat flow can be

rewritten to

fqndA: /quv . (2.26)
(4) (V)

The law of heat conduction, also known as Fourier'sE] law, states that the rate of heat
transfer through a material is proportional to the negative gradient in the temperature and
the the area normal to this gradient and thus gives the equation for the heat flux with its
proportionality factor [, which is called thermal conductivity

qg=-\V0 . (2.27)

Finally the change of the thermal energy can be rewritten as

% - / VOO dV (2.28)

")
The power, the time derivative of the mechanical energy [IW)], supplied to the region usually
consists of two parts, a power that causes a change in volume and the power that is dissipated
within the region. In the case of solids, such as railway wheels, the first part can be neglected

and only the part associated with the dissipated energy remains leading to

dw - diss
V)

By combining the individual contributions of the energy and differentiating with respect
to the volume the partial differential equation, which governs the temperature field in a solid

yields as

!Joseph Fourier (21 March 1768 - 16 May 1830): French mathematician.

2.4 Heat Transfer 21

pc (0) % =V (A\V0) 4 g% . (2.30)
In various thermal calculations, the dissipated energy plays a crucial role in describing
different effects, characterized by irreversible energy conversion. For example, in electrical
calculations, it represents the heat generated by a resistor, while in mass transfer calculations,
it accounts for heat sources resulting from chemical reactions. In mechanical calculations
involving significant deformations, the dissipated energy arises from internal friction within the
material. The magnitude of this fraction is influenced by various variables, including the strain
rate, making it necessary to perform fully coupled calculations. Fully coupled means that the
temperature field is dependent on the stress field and, conversely, the stress field is dependent
on the temperature field. However, in the case of the heat treatment of the railway wheel
examined in this work, large deformations are not involved, allowing the neglect of internal
friction effects. Consequently, the dissipated energy term becomes independent of the strain
rate and mechanical calculations, although it can still be utilized to account for other dissipative
components, such as the latent heat of phase transformations. Thus, a sequential approach is
adopted, wherein the thermal calculation is initially performed independently, followed by the
mechanical calculation, which relies on the results obtained from the thermal analysis.
This concludes the Chapter Theoretical Background. With the knowledge gained on mate-
rial models and residual stresses, the upcoming chapter delves into the specifics of cold rolled

wheelset axles.

3 Cold Rolling of Wheelset Axles

© OBB / Marek Knopp

This chapter focuses on investigating the effects of the cold rolling process on the wheelset
axle component. It begins with a brief introduction to the component itself, including its
requirements and manufacturing process. A closer examination is then given to the specific
process of cold rolling. As the main objective of this work is process modeling, a section is ded-
icated to reviewing the current state of the art in modeling this process. This section provides
insights into different modeling strategies, their respective advantages and disadvantages, as
well as the selection of appropriate materials and material models. In order to develop a mean-
ingful process model, the comparison with reality is crucial. Therefore, parts of various sections
are dedicated to experimental approaches and the necessary measurements. The heart of this
chapter is the Section [3.4|[Finite Element Model of Cold Rolled Wheelset Axles It details all

the relevant models that have been developed in this work. Finally, this chapter concludes with

the presentation and discussion of the results and findings obtained through these models.

24 3 Cold Rolling of Wheelset Axles

3.1 The Component Wheelset Axle

Wheelset axles are key components for the railroad sector as they play a crucial role regarding
safety. The wheelset comprises an axle with two wheels fitted tightly onto it. These axles act
as a connection between the two wheels and facilitate the transfer of power and torque. A

schematic representation of a typical wheelset configuration is depicted in Figure [3.1]

wheelset axle

\ J

Figure 3.1: Wheelset comprised of an axle and two wheels including the destinations of the
key components of a railway wheel.

In the field of railroad engineering, wheelset axles are categorized based on their functionality
and geometry. There are two main types: powered and non-powered wheelset axles. Powered
axles are responsible for transmitting torque and power to drive the wheels, while non-powered
axles are primarily responsible for providing support and stability to the wheelset. Additionally,
wheelset axles can have either hollow or solid geometries. Hollow axles have a central void or
cavity, which helps reduce weight while maintaining the structural integrity. It is important
to note that in railroad engineering terminology, the term "axle" is commonly used to refer
to components that transmit torque, taking on the role of a shaft in conventional mechanical
engineering. [15]

Wheelset axles are designed to withstand long service lives and a high number of load cycles,
typically up to 10” cycles. According to Wohler's concept of fatigue strength, components are
designed to be fatigue-resistant up to approximately 10® load cycles. Beyond this point, the
regime of ultra-high-cycle fatigue (UHCF) begins, which imposes further limitations on the
permissible load.

To illustrate the relationship between the number of load cycles and the allowable stress
amplitude, an S-N curve is commonly used. The S-N curve, typically plotted on a logarithmic

scale, provides a graphical representation of the fatigue behavior of a material. In Figure|3.2} a

schematic S-N curve is depicted, showing multiple stages. Thelultra high cycle fatigue (UHCF)|

regime is marked as stage llIl. Despite being subjected to an extremely high number of load

cycles, wheelset axles are considered to be particularly safe.

3.1 The Component Wheelset Axle 25

o A
ST low cycle: high cycle : ultra high
fatigue 1 fatigue 1 cycle fatigue
LCF | HCF | UHCF
1 1
S [I
3 1 1
£\ :
£ l 5
9 1 NG
; : :
| |] |]
| 1 | | 1 | >
10* 10° 10° 10’ 10® 10° logN

Number of cycles

Figure 3.2: Schematic illustration of a multi-stage S-N curve.

Nevertheless, the consequences of an axle failure must not be completely disregarded and
work must continue on increasing the safety of these components. Uncertainties present a par-
ticular difficulty in predicting component behavior. These include: changing load amplitudes,
especially when a significant number of load cycles exceed the fatigue strength; changing or
unknown track conditions; uneven distribution of loads in the cars; load peaks due to damage
on the track or on other components of the train; and operator errors. This "safe-life" design
approach is complemented by additional regular inspections to counteract the uncertainties
mentioned above. [40H44]

3.1.1 Requirements for Wheelset Axles

The European standards EN13103 [45] and EN13104 [46] describe the design method for pow-
ered and non powered axles and the standard EN13261 [47] regulates the product requirements
with focus on the material behavior. The axle design proceeds according to the following steps.
Firstly, the forces acting on the axle must be precisely defined, and the resulting moments in all
sections of the axle are calculated. Subsequently, the diameters of the axle body and journals
are determined. Using these parameters, the stresses in each section of the axle are computed
and compared against the maximum allowable stress limits. These limits vary depending on
factors such as the steel type, whether the axle is hollow or solid, and whether it is powered or
non-powered. For the definition of the forces the following influences are taken into account:
moving masses, effects due to braking, effects due to curving, the wheel geometry, as well
as effects due to traction. Since the wheelset rotates during the travel of a train, all loads
are to be considered as alternating loads. These requirements result in a clearly specified

manufacturing process. [45H47]

26 3 Cold Rolling of Wheelset Axles

3.1.2 Manufacturing of Wheelset Axles

The casting process plays a crucial role in the manufacturing of wheelset axles, as it provides the
initial cylindrical ingot from which the axle will be further processed. However, it is important
to note that this stage of manufacturing can introduce potential sources of defects that may
impact the performance of the axle in the long term. One of the primary causes of failure in
the regime is the presence of non-metallic inclusions. [41]

In addition to employing continuous casting, steel plants also employ the method of individ-
ual ingot casting. This approach offers the advantage of enhanced control over the formation
of non-metallic inclusions and other defects specifically for the production of wheelset axles.
The process control is meticulously designed to ensure that potential defects are localized in
regions that are not integral to the final component. Consequently, any defective areas can
be precisely identified and removed through targeted cutting prior to subsequent processing
stages.

The actual manufacturing process of a wheelset axle begins with the defect-free ingot.
Figure [3:3] depicts the necessary steps of the manufacturing of a wheelset axle from ingot to
shipment. First, the ingots are cut to the necessary pre-size to be subsequently preheated for
the forging process. A press with semicircular dies forges the wheelset axle using the open-die

forging process.

Ingot Cold cutting Heating furnace 1000 tons
for ingot section press for axles
ey —-» Bauy —» g “ i -
.
Inspection Machining Heat treatment Heat treatment
tanks furnaces
E =
<_ —- <_ E : | |
C | - ecccccel
Shipment

®

Figure 3.3: Manufacturing steps of a wheelset axle starting with a defect-free ingot with the
process stages: cold cutting, heating of ingots, hammer forging, heat treatment in a furnace,
heat treatment in a tank, machining, inspection and shipment. Figure adapted from [48].

The actual manufacturing process of a wheelset axle commences with a defect-free ingot.
[3:3|depicts the necessary steps of the manufacturing of a wheelset axle from ingot to shipment.
Initially, the ingots undergo cutting operations to achieve the required pre-size, followed by
preheating in preparation for the subsequent forging process. One possibility to forge a wheelset
axle is by employing the open die process with semicircular dies. Another possibility is the radial

forging process. This forging processes involve significant plastic deformation, resulting in a

3.2 Cold Rolling Process 27

concomitant decrease of the component in radial direction and an expansion in the longitudinal
direction. In cases where the forging cools below the recrystallization temperature, reheating
is necessary to minimize forming forces and tool wear. The forging process serves two main
purposes: geometric modification and alteration of the microstructure, thereby enhancing
the mechanical properties of the wheelset axle and contributing to its improved service life
and safety compared to non-forged counterparts. Following forging, the heat treatment stage
ensues, encompassing microstructure normalization and subsequent quenching in a tank. Prior
to being shipped to rail vehicle manufacturers, the finished components undergo meticulous
quality inspections utilizing a variety of testing methods. Figure [3.4] presents an illustration of
a completed wheelset axle. [15, /48|, 49]

Figure 3.4: Finished wheelset axle. Figure taken from [49].

3.2 Cold Rolling Process

Cold rolling is a versatile and straightforward manufacturing process that can be adapted
based on the type of tool and process control employed. Regardless of the specific variant,
the fundamental principle remains consistent. During the process, the tool rolls over the
component’s surface while simultaneously applying pressure. At the contact point, the load is
increased to a level that surpasses the material’s yield point, causing plastic deformation. This
plastic deformation results in residual stresses within the component'’s rolled-over region. With
this work-hardening process local compressive stresses can be introduced to the components
in a very targeted manner. [50-560]

The process of cold rolling has been extensively researched and has found widespread use in
both manufacturing and maintenance applications. It is particularly suitable for enhancing the
durability of components subjected to cyclic loading. Notably, Scholtes has made significant
contributions to the understanding of mechanical surface treatment processes, with a specific
emphasis on the resulting residual stresses [28]. Subsequent research efforts have focused on

achieving precise descriptions of the cold rolling process itself, as well as investigating the

28 3 Cold Rolling of Wheelset Axles

behavior of different materials. An essential aspect of these investigations is the accurate
prediction of the residual stress distribution following cold rolling, as well as the subsequent
redistribution of stresses during operational conditions. [50, 56/ 57]

In addition to its positive impact on service life, cold rolling also imparts surface harden-
ing to the component. Unlike alternative surface treatments like shot peening, cold rolling
generates a smoother surface, facilitating more accurate prediction of component properties
after manufacturing. Furthermore, the process offers the advantage of precise control over
the depth at which residual stresses are introduced. According to [56], 85% of the damage to
components originates from the surface zone. By introducing residual stresses that counteract
applied loads, the service life of the component can be improved, as stress peaks in this region
remain below the permissible tensile stress threshold. [50, 56, 57]

Figure [3.5] shows a schematic of the cold rolling process for cylindrical geometries, such as
wheelset axles. In this particular example, a machine resembling a lathe is employed, where
a tool known as the work roller is pressed against the surface of the wheelset axle with a
specified force denoted as[[] in Figure Both the wheelset axle and the work roller rotate
around their respective axes (c.f. and , while the work roller also undergoes an
axiaE] movement. This relative motion generates a helical path on the component’s surface.
The distance covered thereby in [z}direction during one complete revolution is referred to as

the feed, which is measured in millimeters per revolution.

L

Figure 3.5: Simplified representation of the cold rolling process with the process-determining
parameters: load (L)), feed (f]), edge radius of the work roller (Rwg]), work roller diameter

(Dwr) and axle diameter (Daxie)-

Using the described process, it is feasible to roll larger areas. The rolling procedure com-

mences on one side with a running-in phase, wherein the force is gradually augmented to attain
the desired surface pressure. Rolling continues at this defined force until a transition point is
reached. At the transition point, a run-out phase follows during which the force is gradually
diminished. In contrast, transitions or ring notches are rolled in the single pass process without
feed.

!Note that unless otherwise specified in this thesis, axisymmetric geometries use a cylindrical coordinate system.
The designation of the axes is and [z]in radial, tangential and axial directions respectively.

3.3 Modeling of Cold Rolling 29

3.3 Modeling of Cold Rolling

Despite its relative simplicity as a mechanical surface treatment, predicting component proper-
ties after cold rolling is a challenging task. Numerous calculation methods have been researched
to predict various properties of components subjected to cold rolling. Numerical approaches
are the most commonly used, but analytical methods have also been developed for specific
component properties. The choice of the calculation method depends on factors such as com-
ponent geometry or its simplified representation. Analytical methods may not be suitable for
complex geometries but offer greater efficiency for simple ones. The modeling of the cold
rolling process takes into account different geometries, the material properties, the desired
component properties, the purpose of cold rolling, and the intended application, as well as
the required level of accuracy in the results. The interest in modeling arises from the limita-
tions of experimental methods in determining certain properties, such as measuring stresses at
significant depths within the component.

Given that cold rolling involves contact between two bodies, an initial approximation is
made using the HertziarE] theory, which describes the behavior of two bodies under a con-
tact load. However, this theory is limited to purely elastic material behavior and does not
accurately capture plastic behavior, leading to an underestimation of the contact area and
an overestimation of the mean surface pressure. To address this, Maierhofer et al. [58] de-
veloped an efficient process model by combining the Hertzian theory with Prandtl'sE] theory
and incorporating plasticity. This model provides a reliable initial estimation of the depth of
residual stresses in axisymmetric components resulting from cold rolling. By using such a tool,
it becomes possible to assess the potential suitability of the cold rolling process for enhancing
the damage tolerance in early stages of the design. However, in advanced design stages, an
accurate prediction of the stress distribution throughout the entire component depth is crucial.
Numerical methods, such as the , are well-suited for this purpose. [58]

In the field of numerical modeling of the cold rolling process, there have been numerous
studies. To gain a comprehensive understanding of the current state of the art, previous works
in this area are categorized based on the geometry and its simplification, material and models,

and the specific quantities of interest of the investigation, respectively.

3.3.1 Geometries for Cold Rolling Simulations

A first approximation, initially independent of any particular geometry, is certainly the use of

aftwo dimensional (2D)| model. It is suitable for modeling processes without feed. Choi et al.

developed in [59] a model for the cold rolling of fillets on crankshafts. Another example of a
simulation realized by Yen et al. is [60]. Here, the effect of smoothing an uneven or rough
component surface is studied. A more recent example is the work of Mombeini et al. [61],
which includes a model of a section of a cylindrical fatigue test specimen and is used for

analyzing the effect of cold rolling on the fatigue behavior. [59-H61]

'Heinrich Rudolf Hertz (22 February 1857 - 1 January 1894): German physicist.
?Ludwig Prandtl (4 February 1875 - 15 August 1953): German engineer.

30 3 Cold Rolling of Wheelset Axles

The majority of simulations is in [three dimensional (3D)| It is necessary to simplify the

geometry of the component as much as possible, either to planar [54, 62-68] or cylindrical
geometries [69H73]. Even complex components, such as turbine blades, can be approximated
with planar cuboids by selecting sufficiently small sections [74] [75]. The three most commonly
studied components by the are crankshafts |59, [76], turbine blades [74, [75] and railway
axles [68, [77].

When considering the geometry, or even just a section of it, the choice of boundary condi-

tions has a major impact on the results. Especially when reducing the [region of interest (ROI)|

to a section, it must be ensured that the boundary conditions are adapted to the component,
the material and the process. [3.6]illustrates a simplified representation of the wheelset axle ge-
ometry as a cylinder sector. As a result of this simplification, appropriate boundary conditions
need to be applied to the exposed surfaces of the cutout section. One possible approach is
to define the boundary conditions sufficiently far from the investigated zone, so that different
boundary conditions lead to the same result in the investigated zone. In the following, already
implemented combinations of boundary conditions are presented. [70, 71}, (73, 78] constrain
the inside face of a cylindrical cutout and [72] additionally constrain the faces in tangential
direction. When using cubic geometries, there is often a lack of information on boundary
conditions, but it can be assumed that the surface facing away from the cold rolling process is
fixed, as for example in [63H65, [65H68, (74, [75]. In [69] there are special boundary conditions.
Here, the[ROI|is followed by semi infinite elements. At one end, these elements are connected
to the component and at the other "infinite" end they are connected in such a way that the
far field displacements approach zero [9]. Another method, which many works make use of, is
the use of several parts fit and tied to each other. This method allows to create finely meshed
areas in the [ROI| and insert them into more coarsely meshed peripheral areas, reducing the
total number of elements of a model.

In summary, it is not possible to represent the entire component in a simulation of the cold
rolling process. When choosing the section and the boundary conditions, it is necessary to

adapt them to the exact application to be investigated.

Figure 3.6: Simplified model geometry used in the model.

3.3 Modeling of Cold Rolling 31

3.3.2 Materials and Material Models for Cold Rolling Simulations

The material selection is a crucial factor in process simulation, as many properties and outcomes
are dependent on the chosen material. The material not only influences the process itself but
also interacts with the geometry, thereby affecting the overall model. In the context of the
cold rolling process, several materials are of significant interest, including steel, nickel alloys,
aluminum alloys, and titanium alloys. These materials share a common characteristic, which
is the enhancement of fatigue strength or improved surface quality as a result of cold rolling.

In many instances, a specific spot on a component undergoes multiple passes of cold
rolling by the roller. As the material is subjected to successive passes it hardens. To accurately
simulate this behavior, the material model employed should be capable of reproducing cyclic
plasticity.

In [59] a new material model was developed that can reproduce anisotropic hardening be-
havior. Although this material model is particularly well suited for cyclic compressive loads,
material models with a combined isotropic and kinematic material behavior prevail. This may

be attributed to the wider availability and greater familiarity of these models within the field.

EA4AT
The material used for the wheelset axles in this work is called EA4T. It is a lstandardizedl

lquenched and tempered steel for wheelset axles (EA4T)| The chemical composition, mechanical

properties and the necessary test methods are regulated in EN13261 [47].

C ‘Si ‘I\/In ‘P ‘S ‘Cr ‘Cu ‘I\/Io ‘Ni ‘V

0.40 ‘0.50 ‘1.20 ‘0.02 ‘0.02 ‘0.30 ‘0.30 ‘0.08 ‘0.30 ‘0.06

Table 3.1: Maximum percentage content of the various specified elements of [EA4T|according
to [47].

is a low-alloy steel that has a long-standing history of usage in the railroad industry.
In the late 2000s, the entire [Deutsche Bahn (DB)|[Inter City Express (ICE)| fleet transitioned
from a higher-strength and more modern steel, which was chosen for lightweight construction
purposes, back to the reliable [EA4T] steel. Although components made of [EA4T] are not as
lightweight as those made of high-strength steels like 34CrNiMo6, they offer certain advan-
tages. However, it should be noted that steel results in higher energy consumption
during service and occupies more space in the passenger compartment. One significant advan-
tage of [EA4T] steel is its well-established track record. It has undergone extensive testing and

has proven to meet the stringent safety requirements set by railway operators and the general

public. However, it is important to note that factors such as curve radii, track conditions,
weather influences, and other variables can only be partially considered in the design and per-
formance of components made from steel. Nonetheless, its extensive service on Central
European railway lines has demonstrated its ability to meet the demanding safety standards of
the industry. [79]

32 3 Cold Rolling of Wheelset Axles

3.4 Finite Element Model of Cold Rolled Wheelset Axles

This section describes the model used for all calculations related to the cold rolling of
wheelset axles. First, the requirements for such a model are discussed. This is followed by
a subsection describing the selected geometry and focusing on the necessary model simplifi-

cations. Among other things, these simplifications can only be implemented if the boundary

conditions are selected correctly. The subsection [3.4.3|(Coupling and Boundary Conditiond is

devoted to this problem and its implementation.

3.4.1 Requirements for a FE Model of Cold Rolled Wheelset Axles

This model is mainly used to predict the production-related residual stresses of wheelset
axles caused by cold rolling. Furthermore, it aims to identify the factors influencing the
distribution of these residual stresses. The influences in this work refer primarily to parameters
that can be adjusted in the course of the manufacturing process. In particular, the focus is on
the local property changes caused by this manufacturing process.

The outcomes of the [FE| calculations serve as the foundation for a specialized software that
accurately predicts the stress state of cold rolled wheelset axles. To achieve this, a considerable
number of calculations are necessary, which impose a maximum computing time for each
parameter set. ldeally, the developed process model enables automation of all calculations,
facilitating integration into a higher-level optimization process.

In addition to accuracy and efficiency, the model should provide insights into the impact of
subsequent maintenance measures on the residual stress state of cold rolled components. It
should offer the capability to qualitatively predict the effects of maintenance actions and easily
adapt to future calculations. The following subsections provide detailed explanations of how

these complex requirements were incorporated into different aspects of the [FE] model.

3.4.2 Geometry for the Cold Rolling Process Model

In the context of cold rolling wheelset axles, the machining process involves treating significant
sections of the axle surface. Consequently, it is generally desirable to employ a model that
encompasses as large a portion of the geometry as possible. The wheelset axle’s geometry is
primarily characterized by rotational symmetry, suggesting the potential for an axially symmet-
rical approach in modeling. However, due to the multidirectional movements involved in the
cold rolling process (radial, tangential, and axial), it is not feasible to reduce the model solely
to its cross-sectional area.

Even if this simplification were achievable, it would still result in a model too large to
thoroughly investigate local property changes induced by cold rolling. The challenge lies not
in the disparity between the component size and the analyzed zone, but rather in the need
for a fine resolution of results throughout the entire component, which cannot be consistently
maintained. Consequently, it becomes necessary to focus on a small section of the wheelset
axle and generate high-resolution and representative results in that region, with the aim of

capturing the overall stress state of the entire component.

3.4 Finite Element Model of Cold Rolled Wheelset Axles 33

However, the roller used in the cold rolling process can come into contact with the edges
or at least close to the edges of the simplified geometry, leading to heterogeneously distributed
results in this area. The challenge of these edge effects can only be addressed by implementing
carefully chosen boundary conditions, which play a crucial role in mitigating these effects and

ensuring accurate and meaningful simulations.

3.4.3 Coupling and Boundary Conditions

The primary purpose of implementing boundary conditions in the model is to accurately repre-
sent the behavior of the entire component within the free-cut portion of the geometry. Thus,
at least the faces with the colors yellow and salmon in Figure 3.9 need boundary conditions.
Another consequence of the presence of the free-cut region is the disruption of the continuous
nature of the cold rolling process in the simulation. This discontinuity can impact the fidelity

of the results and the ability to capture the true behavior of the system. To address this issue,

[periodic boundary conditions (PBC)| are employed. These conditions restore the continuity

of the cold rolling process in the simulation, enabling a more faithful representation of the
phenomenon under investigation.

Free cutting results in free surfaces in the tangential and axial directions. These surfaces
require boundary conditions that meet the requirements already discussed. In order to main-
tain the overview of the boundary conditions at this point, they are subdivided as follows:
(1) Coupling of nodes: the nodes of the free-cut EE planes are coupled together to create a
periodic cell in the direction of rotation. (2) Shadow elements: the shadow elements, which
are additional elements representing part of the surface of the missing geometry in the free-
cut region, are coupled with surface elements of the actual model. (3) Boundary conditions
at free-cut [/ planes: these are meant to compensate for the missing geometry in the axial
direction. (4) Tilting of the model geometry: the model geometry is tilted by a defined angle
to represent the feed of the cold rolling process.

Before delving into the detailed description and implementation of boundary conditions,
it is important to understand what periodic boundary conditions (PBCs) are and why they
are necessary for this particular application. [PBCk were first applied in the field of molecular
dynamics. In principle, a large but finite simulation domain is chosen for such calculations and
this domain is evaluated only in a small region far from the edges. The use of [PBCk in all
spatial directions results in an infinite grid of repeating regions of interest (ROIf). This works
as follows: if a molecule leaves the [ROI| on one side, then the same molecule re-enters the
model on the opposite side. This idea then made its way into continuum mechanics and was
applied, for example, by Mayer et al. [80] in rolling contact simulations of railway wheels on
rails. What makes the model of Mayer et al. special is the fact that the railway wheel can
roll on the free-cut edges and even beyond. In analogy to molecular dynamics, the wheel rolls
up onto the "beginning" of the rail when it rolls out over the "end". In the model of the cold
rolling process presented in this work, this idea is applied, adapted and extended for the special

motion procedure in cold rolling compared with rolling straight on a rail.

34 3 Cold Rolling of Wheelset Axles

(1) The top part of Figure shows one of the relevant couplings of this model. The
coupled faces in the [felplane are marked with the color magenta. The coupling itself is
achieved applying equations to individual pairs of nodes of the [FE| mesh. The equations for

the couplings must be defined for each node pair in the displacement degrees of freedom.

return

preload rolling illear

work roller

¢ wheelset axle
COUN @
boundary
diti r
conditions 5
r
1
z

L]
u, wheelset axle : shadow
3 1 elements
L 1
3 o, ;
work roller 1
]
1
1
1
1
1

Figure 3.7: Coupling of nodes in the EE—plane and arrangement of faces of the simplified
model.

To realize the implementation of these equations independent of the opening angle of the
model, a separate local coordinate system is defined for each node. This allows to simply
equate the displacement of the coupled nodes without having to consider the tangential part
due to the opening angle. A set of equations for the coupling of nodes n%, and 7%, in Figure
is defined as follows where [uf represents the displacement vector:

b ~b

uplt — 1t = (3.1)
b b

upt — upt =0 (3.2)

b b
Ut — 21t =0 (3.3)

3.4 Finite Element Model of Cold Rolled Wheelset Axles 35

This set of equations states that the distance between two coupled nodes must be constant.
It follows that if one of these nodes moves, its coupled partner will also move. This creates a
cell which is periodic in the tangential direction, and that repeats 360 times.

@ aperture angle

T distortion angle

r .
7 = === coupled rolling path
b Ny nd nd ZI == true rolling path

Np1
A% RS, s ab
: M1 n7 ii coupled boundary node

——— - 2 T] n,]
— | T | P .
— 1 n3 a2,
- iy e - E o hjj coupled surface node
L 1

coupled zone

uncoupled zone

[]]
[[E]]
/\4/

entry point on surface

b
Ny s A&
M n3, ns N3 . .
13 Al R > exit point on surface
11 n AS
1 n

Figure 3.8: Coupling of nodes in the @aplane and arrangement of faces of the simplified
model.

(2) The previously described coupling establishes a periodic cell in the tangential direction
but does not enable complete rolling over the edge. To address this, additional elements known
as shadow elements are introduced. In Figure [3.7] these elements are depicted in cyan and are
strategically positioned to extend the surface of the cylinder sector. It's important to note that
the coupling occurs between the nodes on the surface of the shadow elements and the surface
of the actual model, rather than between the elements themselves. The use of elements in this
model simplifies the implementation of these nodes. The coupling starts with the first node
after the edge, because the edge nodes were already considered in the first coupling. This
coupling is shown in Figure [3.8] where the coupled nodes are depicted in different shades of
cyan.

The surface nodes of the shadow elements are coupled to the surface of the actual model
using equations that equate the displacement degrees of freedom. This allows the roller to roll
over the edge and simultaneously reenter the model from the opposite side. In other words,

during a rolling cycle, the roller follows the dark green path in Figure For the cylinder

36 3 Cold Rolling of Wheelset Axles

sector, it "feels" as if the roller is moving along the light green path. It is the combination of
both, the two boundary conditions and couplings that allow the roller to smoothly traverse the
edge, thereby transforming the discontinuous process of cold rolling a cylinder sector into a
continuous process. This approach ensures that the simulation accurately captures the helical
path of cold rolling a cylinder and preserves the overall continuity of the process.

(3) The primary objective of this model is to accurately determine the stress state, with a
particular focus on the stresses in the axial direction. During the cold rolling process, a complex
multi-axial stress state arises, which is predominantly influenced by the boundary conditions in
the axial direction. Hence, it is crucial to carefully select the appropriate boundary conditions
on the faces of the [plane.

Throughout the development of this model, several variables that affect the stresses in the
axial direction have been identified. These variables include the length of the model in the
axial direction, the number of constrained degrees of freedom on the side surfaces, the specific
location on the model where the boundary conditions are applied, and the utilization of special
features in conjunction with the boundary conditions.

Extensive investigations have revealed that using a model length that is either too large or
too small has undesirable effects on the calculation time and the accuracy of results. Excessively
long model lengths do not significantly improve the accuracy but increase computation time,
while excessively short model lengths lead to artificially high stresses due to a stiffening effect.
Furthermore, convergence issues arise when the roller is positioned too close to the edges of
the model.

An alternative approach considered was to simulate the fixed-loose bearing arrangement of
the wheelset axle during the cold rolling process. In this case, the face on the fixed bearing
side was fixed in all spatial directions, while the face on the loose bearing side was allowed to
deform in the axial direction. Although this boundary condition variation yielded satisfactory
results in the near-surface region, it produced unrealistic outcomes as the depth increased.

Throughout these investigations, various positions for applying the boundary conditions
were tested, including individual edges, entire faces, and different combinations thereof. How-
ever, the results exhibited considerable variation, indicating that none of these arrangements
accurately represented the real-world scenario.

Based on this empirical knowledge, a special feature, namely springs, was introduced to the
faces in the axial direction. The concept behind this approach is to strike a balance between
the stiffening effect of fully constrained edges and the underestimation of stresses caused by
completely free edges (even in only one spatial direction). By implementing the springs, a
compromise solution is achieved that better approximates the real stress distribution in the
wheelset axle during the cold rolling process.

By incorporating spring elements, a solution is achieved that lies between the extremes
of fully constrained and completely free edges, providing better control over the boundary
conditions. The model is reconstructed using a different coupling approach compared to
previous ones. Instead of coupling individual nodes, all nodes on a surface are coupled to a

reference node. This reference node serves multiple purposes: it enables better control over

3.4 Finite Element Model of Cold Rolled Wheelset Axles 37

the boundary conditions and facilitates the application of loads through the aforementioned
spring elements.

As depicted in Figure 3.9 a spring element is positioned between a fixed node at the
boundary and the reference node to which all nodes on the free-cut surface are coupled. This
configuration allows for displacements in the axial direction, which, in turn, induce stresses in
the model. The stiffness of the springs can be easily adjusted to meet specific requirements,

offering flexibility in controlling the behavior of the boundary conditions.

Figure 3.9: Spring elements used in E model.

The determination of the spring stiffness for the inserted spring element is based on con-
sidering the removed or cut-off portion of the wheelset axle as a bar spring. In the scenario
where the cold rolling process is simulated at the center of the wheelset axle, the length of the
bar spring is chosen as 1 meter, and the modulus of elasticity is assigned as that of steel.

(4) The non-perpendicular sides of the cut-out cylinder sector depicted in Figure ne-
cessitate the introduction of a distortion angle, denoted as 7, in order to model the roll's feed
using the couplings described earlier. The feed causes the roller to move in a helical pattern
across the surface as it rolls over. To compensate for the missing geometry of the cylinder, the
roller needs to advance the distance it would have traveled on the remaining geometry when it
rolls back onto the cylinder sector. However, this presents two challenges: the need to adjust
the feed rate between simulations and the potential difficulty in reproducing the exact feed
rate using finite element subdivisions.

By distorting the geometry by the 7 angle, both challenges can be addressed simultaneously.
A uniform finite element mesh is employed, and the angle only needs to be adjusted according
to the desired feed rate. This distortion allows the roller to move in a helical path over the
surface, and the coupled nodes at the edges are positioned relative to each other in a way
that compensates for the roller’s virtual completion of the rollover offset due to the feed rate.
The entire geometry can be adjusted based on the feed parameter using a Python script for
parametrization.

In summary, the combination of the various boundary conditions used in the finite element
model of the cold rolling process ensures both a realistic representation of the process and

computational efficiency.

38 3 Cold Rolling of Wheelset Axles

3.4.4 Material Model for Cold Rolling Simulation

As discussed in Subsection [3.3.2] a material model is required that can represent cyclic-plastic
behavior. The underlying constitutive equations are given in Chapter [2]

The calibration of the material model used in the analysis involves conducting
[fatigue (LCF)]experiments. These experiments are performed under controlled strain conditions
at various load levels. Typically, the experiment maintains a constant load level until a stabilized
state is achieved before applying the next higher strain level. Additionally, the stress ratio is
varied to account for further influences on the material model, with a stress ratio of R = —1
being of particular significance.

The experimental data obtained from the [LCF] tests is used to fit the parameters of the
Lemaitre-Chaboche model. The fitting process aims to find the parameter values that best
replicate the behavior observed in the experiments. This calibrated material model is then
tested for its suitability in numerical simulations.

The parameter set for the simulations in this work is provided in Table[3.2] It is important
to note that the literature does not always specify the number of cycles for which a material
model has been fitted. However, this information is crucial in process simulations, as the
model's ability to accurately capture the cyclic behavior over a specific number of cycles is

essential for reliable predictions.

i Index k
(MPa) (MPa) (-) () (MPa) ()
1 432369 3592.6
345.7 -150 100 2 78409 470.2
3 7023 47.4

Table 3.2: Parameters of combined isotropic-kinematic hardening behavior of |EA4T| used for
[FE] simulations.

In the context of simulating the cold rolling manufacturing process, it is necessary to
conduct experiments with a specific range of cycle numbers, typically between 10 and 100
cycles. This range has been found to yield accurate results when utilizing the material model
for simulation purposes. This material model has been fitted to 100 cycles, which suits the
purpose of this work. However, it should be noted that this particular parameterization is
not suitable for simulating the operational behavior of the wheelset axle, which experiences
significantly higher cycle numbers ranging from 10° to 10° cycles. To effectively capture the
long-term cyclic behavior in such operational scenarios, alternative experiments and parameter
values must be employed to calibrate the material model appropriately. These considerations
ensure that the simulation accurately reflects the observed behavior under the anticipated cycle

range in real-world operational conditions.

3.4 Finite Element Model of Cold Rolled Wheelset Axles 39

3.4.5 Kinematics of Cold Rolling Simulation

The simplification of the geometry in the cold rolling process transforms the originally con-
tinuous process into a discontinuous one. Consequently, the kinematics of the simulation,
including the motion steps, are also affected by this change.

In order to accommodate the force-controlled nature of the cold rolling process, the simu-
lation makes use of special features offered by finite element (FE) programs, known as
[point constraint (MPC)| [MPCs are utilized to fix or connect [degree of freedom (DOF)| of

individual nodes or components within the simulation. Similar to boundary conditions, [MPCs

enable the design of relative movements between different parts of the system. Most [FE| pack-
ages provide predefined [MPC, such as connector elements in Abaqus, which are named based
on their intended purpose and specify the fixed DOF|in each case.

This model incorporates two connector elements to facilitate the force-controlled move-
ments required in the cold rolling process. The first connector element utilized is the Translator,
which enables movement of the roller along the |rfaxis. In this case, all but this translational
are fixed, allowing free movement in the first direction of the locally defined coordinate
system. The second connector element employed is the Hinge, which permits free rotation of
the roller around its own axis.

The configuration of these features is depicted in Figure [3.10, where they are connected
through individual reference nodes. The combination of the RP Center and RP Hinge forms
the [MP(] Translator, with RP Center being stationary and RP Hinge capable of movement
along the connecting axis. The Hinge connector is positioned between RP Hinge and RP WR,
with RP Hinge being fixed while RP WR is allowed to rotate freely relative to it.

RP Hinge g RP Center

|
RP WR G:) l
|
|

Figure 3.10: Multi point constrains of the |FE| model. Gold: connector elements,
blue: reference points, green: of components.

40 3 Cold Rolling of Wheelset Axles

The force-controlled loading of the cold rolling process is initiated by the RP Hinge and
can be adjusted according to specific requirements. The rotation of the roller is also precisely
defined, with the default setting allowing the roller to roll over the wheelset axle surface without
experiencing friction. The Python (Py) script calculates the necessary rotation based on the
selected geometry. For processes involving slippage or similar phenomena, the rotation can be
adjusted accordingly.

A successful rollover of the roller requires a specific sequence of steps, which are: (1) preload,
(2) load, (3) rolling, (4) unload, and (5) return. These steps are depicted schematically in
Figure [3.7] at the top. The division into these individual steps serves to effectively control the
different motions involved and efficiently handle the numerical nonlinearities.

(1) The preload step serves the purpose of establishing contact between the roller and
the surface of the wheelset axle. In the initial cycle, this contact is already present since
the axle surface is perfectly cylindrical and the roller is initially positioned precisely on the
surface. However, even the first rolling causes permanent deformation of the surface, which
cannot be determined a priori. As the number of cycles increases, the surface of the wheelset
axle continues to evolve due to material hardening, leading to changes in plastic strains and
consequently altering the surface position.

In an earlier version, the preload step was controlled based on displacement, with minimal
adjustments made to ensure contact between the two parts. However, it was observed that
during certain phases of the simulation, the displacement-controlled preload triggered reaction
forces higher than the maximum forces occurring in the load step. To address this issue, the
preload step is now stress controlled, employing a negligible load on the order of 1% of the
total load. However, stress control introduces other numerical challenges. If the roller has no
initial contact with the wheelset axle during the preload step, applying a force would result in
infinitely large acceleration and lead to numerical instabilities.

To overcome this problem, a workaround is implemented by adjusting the contact settings
to virtually bring the two bodies into contact, even though there is a small gap between them.
However, it is crucial to use such settings judiciously and ensure they do not impact the
simulation results. Therefore, this setting is enabled only during the preload step and disabled
in all other steps. This approach allows the roller to establish contact with the wheelset axle
in a stable manner without altering the simulated process itself.

(2) The second step of a cycle is called Load and is used to apply the full force to the
roller. This step also reestablishes the correct contact settings and begins the actual cold
rolling process. When using the default load application settings, the force is applied linearly
over the step time and reaches the desired magnitude at the end of the step.

(3) During the rolling step, the actual process of cold rolling takes place. In the previous
steps, all degrees of freedom of each component were fixed, except for the translator that
allowed movement along the [r}direction while preventing any other movements. However, in
the rolling step, the entire movement of the roller, including rotation about the center axis of

the wheelset axle and translation along this axis, can be controlled.

This control is achieved through the use of the [reference point (RP)| Center, which is

connected to other reference points via connectors, enabling the roller to move over the surface

3.4 Finite Element Model of Cold Rolled Wheelset Axles 41

of the component. The translational part of this motion represents the feed rate of the cold
rolling process. In Figure [3.10] these motions are depicted in green color, indicating the
controlled movement of the roller during the rolling step.

(4) and (5) In the unload and return steps of the process, the roller is maneuvered back
to its initial position for the next rollover. This involves overcoming the remaining rotation
and ensuring that the roller precisely returns to the same position it occupied before, virtually
through the coupling mechanism.

To visualize the actual and virtual positions of the roller, a comparison can be made be-
tween the true rolling path and the coupled rolling path. This comparison provides a better
understanding of how the roller moves during the process and how its position is controlled
through the coupling. Figure [3.7]illustrates this comparison, highlighting both the true rolling
path and the path achieved through the coupling mechanism.

3.4.6 Contact Settings

When simulating the cold rolling process, two components come into contact. Modeling the
contact introduces another nonlinearity in addition to geometry and material. This model uses
the extended LagrangeE] contact formulation. It follows three steps: (1) the solver finds a
converged solution using the penalty method, (2) if a slave node penetrates the master and
exceeds the maximum penetration depth, the contact pressure is "increased" and iterations start
over until convergence is regained, (3) this contact pressure is changed until the penetration
depth falls below an allowable maximum value.

The use of this contact formulation leads to a higher number of iterations and thus to
higher computation times, but is characterized by high stability and avoids problems of over-

constraints. [9]

3.4.7 Python Script for Model Generation
The model of the cold rolling process described in Section is controlled by a [python (py)

script. The geometry is built and adapted to the process parameters as discussed in the tilted
mesh example in subsection [3.4.3] All described couplings are defined node by node. This
requires precise search algorithms that find the nodes in the model and couple them correctly.
Properties such as the part geometry, the underlying material model, and all process parameters
of the cold rolling process can be changed quickly. This ease of use allows to perform parameter
studies and to investigate the influence of individual process parameters on the residual stress
state. The combination of individual couplings and the resulting reduction of the geometry
improve the calculation time by a factor of 25 compared to previous models of the cold rolling
process. The boundary conditions with the additional spring elements homogenize the results
and increase the accuracy, especially in deeper regions below the surface. See Appendix
for the code of the py script for Abaqus used for the fully automatic generation of the finite

element models.

! Joseph-Louis Lagrange (25 January 1736 - 10 April 1813): Italian mathematician, physicist and astronomer.

42 3 Cold Rolling of Wheelset Axles

3.4.8 Model Extension

The[FE] model of the cold rolling process described so far represents an idealized scenario where
the surfaces are initially perfectly smooth and the cylinder sector represents the central area
of the wheelset axle. However, in real-world operation, these components are subjected to
additional hazards beyond high loads. One common issue is ballast impact, where individual
stones from the ballast bed are thrown up by the train and strike the undercarriage components.
This impact can lead to the formation of notches, which serve as potential initiation sites for
crack growth. Furthermore, these impacts can cause paint damage, exposing the surface to
corrosion. To demonstrate the capabilities of the model for further calculations, this subsection
presents an example of a possible extension to incorporate these additional factors into the
existing model. [81]

The objective of extending the existing model is not to simulate the impact of a rock
on the surface of the wheelset axle, but rather to gain insights from experimental studies.
Pourheidar et al. [82] conducted experiments on full-scale wheelset axles, aiming to investigate
the behavior of crack propagation under rotating bending and corrosion conditions in cold-
rolled wheelset axles. During the study, notches were intentionally introduced on the surface
to examine the formation and propagation of cracks. However, one aspect that remained
unresolved in the experiments was the stress state in the vicinity of the notch. To address this
aspect, the existing [FE| model was expanded.

To incorporate the notch into the surface of the [FE| model, a suitable location needs to
be chosen where no existing couplings are present. In Figure [3.8] the gray area is designated
for this purpose as it is free from couplings. This region serves as a neutral zone between
the coupled surface and the shadow elements, allowing for the insertion of additional features
such as notches or cracks. The objective in this instance is to replicate a semicircular notch,
resembling the one employed in Pourheidar’s [82] experiments.

The notch is semicircular in shape with a depth (or radius) of 3 mm. Its width measures
0.3 mm, resulting in an edge radius of 0.15 mm at the notch. Figure[3.11]provides a schematic
representation of the notch on the axle surface. To prevent the introduction of additional

stresses from the machining process, the notch is created using electrical discharge machining.

(a) Partitioning of model with a notch as a partition. (b) Detail view of notch geom-
etry.

Figure 3.11: Model geometry of cold rolled axle with notch.

3.5 Results and Discussion 43

The model needs to fulfill the following requirements: (1) ensuring the wheelset axle and
notch dimensions match the tests, (2) maintaining consistency with the cold rolling parameters
used in the tests, (3) introducing the notch with minimal additional stress, and (4) evaluating
the stress state before and after introducing the notch.

To accommodate the 6 mm diameter of the notch in the uncoupled zone, the model must
be enlarged. However, this poses a challenge of maintaining fine geometries while managing
the dramatic increase in the number of elements. To ensure reasonable computational time,
the model needs to be partitioned strategically, reducing resolution near the notch while still
obtaining meaningful results. Another complexity arises from the requirement of having identi-
cal element sizes at the transition between coupled and uncoupled zones to facilitate accurate
coupling assignments. This necessitates partitioning the wheelset axle and specifying the mesh
in a way that preserves the original coupled areas at the edges. Figure [3.12] provides a front
view of the wheelset axle surface and a detailed view of the transition region between the

coupled and uncoupled zones.

M

notch

Figure 3.12: Front view on the mesh of the wheelset axle surface and a detail view on the
transition between the coupled and uncoupled zones.

After the partitioning of the wheelset axle, the notch can be removed via element deletion.
This is achieved by running the simulation of the cold rolling process as usual. At the end of
the simulation, an additional step is included to remove the notch and analyze the resulting
stress redistribution. It's important to note that this removal of the notch is an idealized

geometry change and does not introduce any additional stresses.

3.5 Results and Discussion

The results section of the study primarily examines the distribution of residual stresses in
the cold rolled wheelset axle. It begins with a validation process to ensure the appropriate
size of the model. Subsequently, a comprehensive analysis is conducted to investigate the
distribution of residual stresses throughout the depth of the axle. This analysis provides
a detailed understanding of the residual stress profile. Furthermore, a parameter study is

conducted, which leads to the development of a software tool capable of predicting the residual

44 3 Cold Rolling of Wheelset Axles

stress profile of cold rolled wheelset axles. This tool enables the estimation of residual stress
distribution based on various process parameters. Lastly, the section discusses the redistribution
of residual stresses resulting from maintenance procedures or the presence of a notch, as
described earlier. This examination sheds light on how these factors impact the distribution of

residual stresses within the wheelset axle.

3.5.1 Validation of Model Size

This subsection is partly taken verbatim from [83].

One of the questions that arose with the first results of the developed cold rolling model was
to which extent it would be possible to reduce the size of the model through homogenization.
Due to the fact that the computational time of previous models was very large, no relevant
advantage over other methods was achieved. However, by creating the periodic cell, the
boundary effects caused by ordinary boundary conditions are eliminated.

Figure (a) shows a stress contour plot of a first attempt to model the cold rolling
process with the possibility of rolling over the edges of a cylinder sector with a total opening
angle of 45°. This model consists of two parts, a plastic region of interest in the center
surrounded by an elastic part. The rollover starts at the elastic part and continues over the
entire plastic region before lifting off from the elastic part on the other side. This model is
used as a reference for the updated model described in Section [3.4]

04z [MPa]

300

250 work roller work roller
200

150

100

50 =
0

2

500 evaluation

-400 path

evaluation

path

(a) (b)

Figure 3.13: Contour plots of the residual stresses, the position of the evaluation path
and the modeled movement of the work roller:

(a) Reference model with 45° aperture angle of the cylinder sector and (b) the corresponding
updated model with 6° aperture angle with an additional detail view.

It is important to note that all three of the 6°, 12° and 45° opening angle models are
supported axially by a fixed/free bearing arrangement. The model size refers only to the
direction. The outlined results already include the update with the springs for bearing in the
[2}direction. The difference in the results compared to the updated model can be seen from
about 5 mm below the surface. However, they are sufficient to illustrate the effects of size in
the [ghdirection.

Figure [3.13] (b) shows the stress distribution of the model described in section [3.4] with an
aperture angle of 6°. The distribution of residual stresses in the tangential direction is more

3.5 Results and Discussion 45

homogeneous compared to the reference model with an aperture angle of 45° in Figure (a).
In addition, the number of elements is significantly smaller (200 000 for the reference model and
80 000 for the updated model), although the mesh size in the tangential and radial directions
could be decreased by about 50 % per side. Thus, the mesh of the updated model is finer and
can better reproduce the high stress and strain gradients. The biggest difference between the
two models is the computation time. It is reduced from approximately 24 hours per rollover
for the 45° aperture angle reference model to less than one hour for the 6° aperture angle
updated model using an Intel Xeon CPU with 64 GB of memory for both computations.

In order to achieve a steady state after cold rolling, a certain number of rollovers must be
achieved in the simulation. The evaluation path in Figure is located at half the length
of the cylinder sector, which is also half the rolled-over length in the axial direction (i.e., the
number of rollovers times the feed rate). The stress state in this path is already influenced
before the work roller comes into direct contact with this path and continues to change while
the work roller rolls over the zone behind the path. Considering the material model and the
possible values of the process parameters for wheelset axles, at least 30 rollovers are required
to reach a steady state in the region of interest, resulting in a total computation time of less
than 30 hours.

Figure shows the axial stress and equivalent plastic strain distributions eval-
uated along the evaluation path of Figure [3.13] The results labeled 45° correspond to the
reference model in Figure (a) and those labeled 6° and 12° correspond to the updated
model in Figure (b). The good agreement between the results of the 6° and 12° model
shows that the reduction to a 6° aperture angle is acceptable since they were calculated with
the same element size. The different results between 6° and 45° in Figure (a) can be
explained by the choice of a finer mesh in the tangential and axial directions, since smaller
elements can better resolve the high stress gradients towards the surface. The different results
in Figure (b) can be explained by the same argument, although the difference for the
equivalent plastic strain is even more pronounced. This also indicates that the element size
of the reference model does not lead to an adequate resolution of the plastic deformations in

the cold rolled zone.

300 1.4
200 SRR o]
100 O e N 31_2/\
ey o
e /4 s
g / £
< -100 / 2
g—zoo 5 o 0-3/\

-300 / i K] .
§ -400 7 aperture angle 2 06 \\ aperture angle
£ 500 — 45° _ Eo04 — 45°

~600 -// 6° < \ 6°

Z 0.2 L
-700 —_ 12° = = — 12"
_ I I o i 1
800G 2 4 6 8 10 12 14 00 2 ¥ 6 8 10 iz 14
depth from surface [mm] depth from surface [mm]

(a) (b)

Figure 3.14: (a) Residual stresses and (b) equivalent plastic strain distributions of
the updated model with aperture angles 6° and 12° and the reference model with an aperture
angle of 45°. The two curves of the updated model with 6° and 12° nearly coincide.

46 3 Cold Rolling of Wheelset Axles

The simulation methodology with periodic boundary conditions is equivalent to multiple
work rollers cold rolling the axle simultaneously. This means that in the model with an opening
angle of 6°, there are 60 rollers distributed around the circumference in a row along the helical
rolling path, each cold rolling an angle of 6°. By further reducing the opening angle, the stress
fields of the individual work roller could influence each other and thus affect the results. It
is also important to ensure that the size of the contact area is a fraction of the area of the
cylinder sector in order to prevent the contact from being overlapped by the shadow elements.

In summary, the following statements can be made about the model size: (1) the periodic
boundary conditions allow a significant reduction in the opening angle, (2) the combination
of component geometry and roller size determines the size of the contact patch. The contact
patch must not exceed a fraction of the size of the uncoupled zone to ensure that no feedback
caused by the coupling occurs in the model. (3) The ratio of cylinder sector size to shadow
elements must be adapted to the process. A ratio of 2:1 of cylinder sector:shadow elements
has been found to work well. This ensures that the uncoupled zone is the same size as the
protruding shadow elements, and adjusting the size from point (2) ensures that the shadow

elements are also of a size that will not cause problems.

3.5.2 Stress Distribution in Cold Rolled Wheelset Axles

The previous subsection demonstrates the impressive capability of simple models with coarse
resolution to accurately represent the stress state in the near-surface region. However, as the
depth increases, deviations arise between the models and the expected values in terms of me-
chanical stress equilibrium. The following considerations are made regarding this equilibrium:
The stresses or forces must be in balance. It is assumed that the stresses at the surface are
already accurately represented, that the stresses in the axial direction remain unchanged over
long distances, and that the plastic strains occur only in the region close to the surface. If
these assumptions hold true, the stresses at greater depths should approach a constant value
and, most importantly, be in equilibrium with the surface stresses.

A typical stress profile, represented by [0,.} exhibits compressive stresses at the surface of
the wheelset axle. As depth increases, these compressive stresses gradually decrease until they
eventually transition to tensile stresses. The depth at which the compressive stresses penetrate
is a significant characteristic of the cold rolling process. At a certain depth along the stress
curve, the tensile stresses reach a maximum peak before gradually decreasing to a constant
value that persists towards the center of the wheelset axle. Figure illustrates such a curve
spanning the entire cross section of the wheelset axle, which is designed as a hollow shaft.
For a closer examination of the near-surface area, Figure provides a detailed view of the
same stress curve. It is noteworthy that cold rolling typically results in an almost planar stress
state near the surface, with primarily and [o,,| stresses being present. The [z}direction is
particularly relevant for design considerations involving rotating bending, hence the subsequent
results predominantly focus on stresses in the [z}direction.

For a further assessment of the tensile stress state, an equilibrium is calculated between

the compressive stresses from the simulation and the tensile stresses that would form if they

3.5 Results and Discussion 47

were constant all the way to the center. As Figure presents a plot along the [}axis, it
represents an axially symmetric view. The equilibrium is therefore calculated using the volume
under pressure or tension. The following subsection applies the knowledge gained here in the
form of parameter studies and shows which geometry and process parameters have an influence

on the residual stress state of cold-rolled railway components.

200
0
E 200
<)
2]
%]
2 -400
@ = stress component o,
-600 stress component gy, -
evaluation path = Stress component 0,
-800 . .
0 20 40 60 80

distance to surface (mm)

(a) Isometric view of cold (b) Distribution of the normal stress components @and
rolling model. in radial direction.

Figure 3.15: Distribution of the normal stress components over entire axle geometry of the
cold rolled model with the process parameters feed [f|= 0.5 mm/rev and load [L| = 30 kN.

200
0
§ 200
=3
2]
[%2]
£ -400 4
@ / = stress component o,
-600 stress component gy, -
- evaluation path / = stress component 0,
-800 ! ! !
0 2 4 6 8 10 12

distance to surface (mm)

(a) lsometric view of cold (b) Distribution of the normal stress components @and
rolling model. in radial direction.

Figure 3.16: Distribution of the normal stress components in the near surface region of the
cold rolled [FE| model with the process parameters feed [f|= 0.5 mm/rev and load [L[] = 30 kN.

48 3 Cold Rolling of Wheelset Axles

3.5.3 Parameter Study for the Cold Rolling of Wheelset Axles

With the significantly improved computational efficiency compared to previous models, pa-
rameter studies can now be conducted to investigate the influencing factors of the cold rolling
process. The first study aims to provide an overview of the geometry parameters that affect
the stress distribution. Subsequently, these parameters will be further examined to determine
the precise extent of their influence.

The initial investigation focuses on varying the geometry parameters, namely the wheelset
axle diameter (Dué]), work roller diameter (Dwg]), and work roller edge radius (Rwg]). For
a visual reference, please refer to Figure for the corresponding designations. Table [3.3
provides an overview of the varied values, constant parameters, and resulting values for the

remaining parameters.

varied values constant calculated values
values
(mm) (mm) (mm) (MPa) (N) (mm/rev)
160 100 75 5000 min 9 700 min 0,37
180 150 15 max 74 700 max 1,33
200 200 30

220

Table 3.3: Values of the first parameter study for the influencing factors of the cold rolling
process.

In previous studies, a Hertzian pressure of 5000 MPa has proven to be suitable for wheelset
axles. Therefore, this value is maintained as a constant in the initial parameter study, while
the other values are adjusted accordingly. To accomplish this, the process model developed
by Maierhofer et al. is utilized [58]. This model is primarily used to estimate the depth of
residual stress penetration resulting from cold rolling. However, it also provides the capability
to estimate the required cold rolling force and feed rate for a given combination of geometry
parameters and Hertzian pressure.

In the parameter study, the required force [[] was calculated for each possible combination
of geometry parameters at a constant Hertzian pressure [py] The feed rate|[f]is determined by
twice the half-width of the contact ellipse formed during the process.

The values chosen for the geometry parameters are based on the dimensions of typical
railway components and the tools employed in their manufacturing. It is worth noting that the
calculated cold rolling forces may exceed the capabilities of modern machines. However, they
are utilized in order to better illustrate the influences on the residual stress state.

The evaluation of the first parameter study has revealed that the wheelset axle diame-
ter and work roller diameter [Dwg| have no significant influence on the distribution of
residual stresses. Conversely, the work roller edge radius [Rwg| has been found to have a signif-
icant impact. The calculation of the load [[] and feed [f] for Table [3.3] has already demonstrated

3.5 Results and Discussion 49

that the contact ellipse changes significantly when the roller edge radius is varied while main-
taining the same Hertzian pressure. These findings have motivated the need for a further
parameter study.

The second study followed the same procedure as the first, but this time the values for
the wheelset axle diameter and work roller diameter were kept constant. These
values are based on existing component and tool geometries. The variable parameters in this
study are the Hertzian pressure and the work roller edge radius . Similar to the
first study, the load and feed are calculated using the process model developed by Maierhofer
et al. An overview of all the values is provided in Table [3.4]

varied values constant values calculated values

Rur
(MPa) (mm) (mm) (mm) (N) (mm/rev)
3 500 7.5 180 150 min 4 200 min 0,26
4 000 15 max 76 000 max 1,20
4 500 22.5
5 000
5 500
6 000

Table 3.4: Values of the second parameter study for the influencing factors of the cold rolling
process.

The results of the parameter study demonstrate the influence of the Hertzian pressure
and the work roller edge radius on the distribution of residual stresses. To enhance
computational efficiency, the model geometry was adjusted based on the process parameters.
Lower work roller edge radii and corresponding lower loads result in a smaller contact ellipse,
leading to a reduced feed and a shorter rolled-over length in the [z} direction. Each simulation is
conducted for 50 cycles or overrolls, which is determined empirically as a point where the stress
curve in the region of interest changes minimally. The model length in the direction
is adjusted to cover the central 80% of the rolled-over region. Furthermore, small loads with
a small contact ellipse only require an opening angle of 3° of the model, for large loads this is
doubled to 12°.

In summary, the results of the parameter studies indicate the following: The depth of
penetration of compressive stresses increases with higher Hertzian pressure and larger work
roller edge radius. The overall shape of the stress distribution remains relatively consistent,
regardless of the specific geometry parameters. Even with low loads, the cold rolling process
generates significant compressive stresses at the surface, approaching the tensile strength of
(around 700 MPa). The maximum compressive stress at the surface remains relatively
constant, even with higher loads, due to limitations imposed by the chosen material model.
It is important to exercise caution when implementing extremely high Hertzian pressures, as
the simulations indicate the occurrence of high plastic strains that could potentially lead to

surface damage. A Hertzian pressure of 5000 MPa is recommended as a safe limit. The

50 3 Cold Rolling of Wheelset Axles

simulations also reveal that the increasing penetration depth of compressive stresses results
in a higher peak of tensile stresses within the wheelset axle. This effect helps to maintain
stress equilibrium. However, the influence of this increase in tensile stresses is not particularly
significant. The study determined a maximum penetration depth of 8.7 mm, achieved with a
Hertzian pressure of 6000 MPa and a work roller edge radius of 22.5 mm. The tensile stresses
generated at depth remain below 100 MPa, which is considered sufficiently low for ensuring
fatigue resistance in the design of [EA4T]

The findings of this investigation have been consolidated into a user-friendly software tool
called PRESD, which stands for Prediction of Residual Stress Distribution. The
user interface (GUI)| of the program is depicted in Figure [3.17] The left side of the interface
allows users to input the desired Hertzian pressure and tool geometry parameters. In the

middle section, all the calculated results are displayed, including visualizations of stress and
strain components. Users have the flexibility to examine stress values for specific strains
or vice versa. On the right side, the input history and corresponding results are presented.
The software utilizes data from the discussed [FE| simulations, with intermediate values being
interpolated between the obtained results. With PRESD, estimating the distribution of residual
stresses induced by cold rolling becomes a straightforward and efficient process.The following

subsection deals with the question how the simulation results compare to experimental results.

PRESD - Prediction REsidual Stress Distribution

wromen Bsws Biswens o commstng ' eston [Exportior mans

okt P A Pasel Sreses

Figure 3.17: of the PRESD software tool. Left: definition of input parameters.
Center: stress and strain distributions. Right: input and result history.

3.5.4 Comparison of Simulation and Experimental Results

This section discusses the comparison of simulation results with measurements. On the one
hand, it is examined whether the [FE| simulations can reproduce the stress behavior at the
actual component size and, on the other hand, whether the model is also suitable for small
specimens that are orders of magnitude smaller. The measurements on the actual wheelset
axles are further categorized into pure laboratory tests and wheelset axles that were installed
in a train after being cold rolled and then running in regularservice.

3.5 Results and Discussion 51

For the laboratory tests, a wheelset axle was cold rolled with four different parameter
combinations by the well-known machine tool manufacturer HEGENSCHEIDT-MFD. This
time the focus of these investigations was the cold rolling force[[] and the feed[f] The selected
parameters are shown in Table 3.5

varied values constant values calculated

values

Daxle Dwr Rwr
(N) (mm/rev) (mm) (mm) (mm) (MPa)
18 000 0.45 182 155 15 4 300
24 000 0.50 182 155 15 4 700
30 000 0.55 182 155 15 5 100
36 000 0.60 182 155 15 5 400

Table 3.5: Cold rolling parameters used for laboratory test on full scale wheelset axles.

The force values chosen for the laboratory tests encompassed both values below and above the
conventionally used range. The feed, on the other hand, was determined based on empirical
values and was slightly lower than the prediction derived from the Maierhofer et al. process
model.

Figure presents the simulation results for these four parameter combinations across
the entire radius of the wheelset axle. For a more detailed view of the near-surface region,

Figure [3.19 zooms in on the same configurations.

200 |
0 —
g‘-; 200
. <
.... 2
£ -400 ~ 0,,f0.45L18 t
? 0, f0.50 L24
-600 - 0,,f0.55L30 t
evaluation path = ,, f0.60 L36
-800 !
0 20 40 60 80
distance to surface (mm)
(a) Isometric view of cold (b) Distribution of the normal stress component in radial di-
rolling model. rection.

Figure 3.18: Distribution of the normal stress component over entire axle geometry of
the cold rolled [FE| model with different combinations of the process parameters feed [f] and

load |E

52 3 Cold Rolling of Wheelset Axles

200 |
0 ‘ Es >l
| 7
£ -200 | /
=3
@
£ 400 7 0,,10.45 L18 -
? 0, f0.50 L24
-600 0, f0.55L30 -
g evaluation path — O, f0.60 L36
-800 ! !
0 2 4 6 8 10 12
distance to surface (mm)
(a) Isometric view of cold (b) Distribution of the normal stress component in radial di-
rolling model. rection.

Figure 3.19: Distribution of the normal stress component in the near surface region of
the cold rolled [FE] model with different combinations of the process parameters feed [f] and

load E

Furthermore, the results demonstrate that as the load increases, the depth of penetration
of the residual compressive stresses also increases. All parameter combinations reach the
maximum near-surface stress, which once again corresponds to the absolute maximum within
the tensile strength range of the material.

Figure [3.:20] presents a comparison between the simulation and measured results. It is
important to note that in this figure, the measured results are displayed in the foreground,
while the previously shown solid line representing the simulation results is now depicted as a

dotted line. The color coding has been maintained.

200
0
©
% -200 Sim 0, f0.45 L18
= Sim 0, f0.50 L24
§ s Sim o, 0.55L30
= -400 == Simo,,f0.60136
@ CC 0,,0.45 L18
-600 CC 0., 0.50 L24 _
o am CC 0, f0.55 L30
7 evaluation path e CC 0, 10.60 L36
-800 z .
0 2 4 6 8 10 12

distance to surface (mm)

(a) lsometric view of cold (b) Distribution of the normal stress component of mea-
rolling model. surement and |F_E|simu|ation in radial direction.

Figure 3.20: Comparison of measurement and [FE|simulation of four different combinations
of the process parameters feed |Z| and load |z|

3.5 Results and Discussion 53

The measurement was conducted using the cut compliance method, which is described in
detail in Section 2.3:2] The same wheelset axle was subjected to all four parameter com-
binations to optimize the utilization of the available surface. The length of each parameter
combination exceeded twice the axle diameter, and a sufficient distance from the shaft shoul-
ders was maintained to mitigate potential edge effects. Strain gauges were applied to the
center of the respective regions for subsequent measurement. The wheelset axle was then cut
using a conventional band saw, piece by piece, and the resulting strain from stress redistribution
was measured.

The measurement results exhibit good agreement with the simulation. A trend towards in-
creased depth of penetration with higher loads can be observed, although it is not as prominent
as in the simulation. Both the surface stress values and the peak tensile stress in the interior
show good agreement. These measurement results serve as verification of the accuracy of the
[FE| model while also highlighting the superiority of simulation in predicting deep residual stress
fields.

In the second investigation using full-scale wheelset axles, an in-service test was conducted
at OEBB. Two wheelset axles were cold rolled with parameters of [[] = 30 kN and[f]= 0.50 mm.
One axle was installed as a powered wheelset axle, and the other as a trailer wheelset axle, and
both were used in regular service for several months. After the axles were removed from the
train, cut compliance measurements were performed, and the results are shown in Figure [3:21]
To facilitate comparison, the results of the simulation and the corresponding cut compliance

measurements immediately after cold rolling are presented in the same graph.

200

0 /
L~

|
|

g 7/~ /
s % 7 s
""" %) :‘
£ -400 - 7 === Sim 0., f0.50 L24 M
[2]
4 = CC 0,,0.50 L24
-600 7 = CC 0y, trailer H
g evaluation path ,n® — CC Oz, powered axle
_800 1 1 1
0 2 4 6 8 10 12

distance to surface (mm)

(a) Isometric view of cold (b) Distribution of the normal stress component of mea-
rolling model. surement and [F_Elsimulation in radial direction.

Figure 3.21: Comparison of measurement of a cold rolled powered axle and a cold rolled
trailer axle.

The results of the in-service test on the full-scale wheelset axles indicate a significant
redistribution of stresses during service. The compressive stresses at the surface are reduced
by approximately 50% compared to the stresses introduced by cold rolling, while the depth of
penetration remains unchanged. In addition, a slight decrease in tensile stresses in the interior

54 3 Cold Rolling of Wheelset Axles

can be observed, as dictated by the prevailing stress equilibrium. Notably, no significant
difference is observed between the powered and trailer axles.

In addition to the full-scale axles, small-scale specimens were manufactured and cold rolled
for various rotating bending tests using the material. The cold rolling parameters
employed for these tests are provided in Table (3.6}

varied values constant values calculated
values
Rwr
(N) (mm/rev) (mm) (mm) (mm) (MPa)
423 0.09 6.67 40 4 4 700

Table 3.6: Cold rolling parameters used for laboratory test on small scale specimens.

The cold rolling of the small specimens was also calculated using the FE model. The ob-
tained stress curve is shown in Figure[3.22] The measurement of the residual stress distribution
was performed using [XRD] On the one hand, the size of the specimen is small, and on the
other hand, the penetration depth of the stresses to be measured is not too large, and it is

expected that better results can be obtained with the [XRD| measurement.

500
250
— /
[a 0 =
\2/ /ll!llllllllll!llll
& -250 P sim .
= o net ‘/ = 0,,f0.09 L423
-500 XRD measurement ~
evaluation path e O'zz f009 L423
=750 1 —

| |
0.00 025 050 075 1.00 125 1.50
distance to surface (mm)

(a) Isometric view of cold (b) Distribution of the normal stress componentof mea-
rolling model. surement and [FE| simulation in radial direction.

Figure 3.22: Comparison of)XRD| measurement and simulation on a cold rolled small scale
specimen.

The simulation results again demonstrate the presence of compressive stresses at the sur-
face, approaching the tensile strength of the material. The progression of stress into the depth
is also similar to previous findings. However, it is important to note that the depth of pene-
tration of the compressive stresses has a different proportion relative to the overall component
geometry. In the full-scale tests, the depth of penetration ranged from 5 mm to 7 mm, which
is below 10% of the radius of the wheelset axle. In contrast, for the small specimens, the depth

of penetration is around 30% of the radius. Moreover, the effect of increasing tensile stresses

3.5 Results and Discussion 55

due to deeper penetrating compressive stresses is clearly observed. The comparison with the
[XRD| measurement shows an acceptable agreement. However, more credibility is given to the
simulation results as they align well with the previous process model by Maierhofer et al. Ad-
ditionally, the rotational bending tests indicate that the compressive stresses at the surface are
indeed high. If the values measured by [XRD]| are accurate, there is potential to utilize them
to enhance the fatigue strength of such components, considering the presence of significant

compressive stresses.

3.5.5 Stress Redistribution

This section presents the results of stress redistribution for cold rolled wheelset axles. Unlike
the stress redistribution discussed in the previous section, the results here refer to predictions
based on [EEl calculations.

At the end of the simulation of the cold rolling process, the surface up to and including
the tenth row of elements is removed, which measures approximately 5 mm, depending on the
model and consequently on the element size. Figure shows an example of how stresses
are redistributed when near-surface layers are removed, as it may occur during maintenance
operations. Note that the shown results are qualitative only, as they do not account for many
of the effects that may occur. However, they are a useful indication of the changing behavior

of the stresses introduced into the material.

200
0 ;
= | — 0, del0
,a - 0,, del1
o -200 — 0, del2 -
= / 05, del3
?)2 0,, deld
£ -400 Z 02z del5
@ @ 0, del6
-600 — 0y, del7 _
- A evaluation path — O,, del8
0., del9
-800 !
0 2 4 6 8 10 12
distance to surface (mm)
(a) Isometric view of cold (b) Changes of the distribution of the normal stresses of a cold
rolling model. rolled wheelset axles due to the removal of surface layers similar to

maintenance procedures.

Figure 3.23: Stress redistribution due to the removal of surface layers.

A noticeable trend is that the existing compressive stresses do not disappear when the layer
containing them is removed. Instead, they shift at least partially to deeper levels, thereby
also shifting the penetration depth of residual compressive stresses. As more and more of the
surface is removed, the compressive stresses will eventually decrease, but not below the value
originally present at that point. It should be noted that the results shown in Figure [3:23] are
based on the original geometry and that the curve starts at the newly created surface in each

56 3 Cold Rolling of Wheelset Axles

case. As the compressive stresses decrease, the tensile stresses inside also decrease. These
stress redistribution calculations are also part of the PRESD software tool.

Finally, the simulation results with the introduced notch from the corrosion fatigue tests on
full-scale wheelset axles are discussed. The question here is what is the residual compressive
stress in the vicinity of the notch after it has been introduced. As in the previous example,
the material is removed after the cold rolling process. Since the notch involves significantly
less material, the results can also be interpreted quantitatively. Figure (a) shows the
section through the notch after stress redistribution. Figure [3.24] (b) shows the already known
distribution of the three normal stress components in the [r}direction before and after removal

of the notch.

200
0 N
o-ZZ —_
700 ©
ggg % -200 w———
400
300 ~
% 2 - .o
0 o -400 del notch -
-100 = un
3% @ = wus oo
ggg " del notch
% -600 aue 92 1
s del notch
=== notch base
~800, 2 4 6 8 10 12

distance to surface (mm)

(a) Contour plot of the (b) Distribution of the normal stresses in the vicinity of the notch
stresses in a sectional view of on radial paths around the notch.

a cold rolled wheelset axle af-

ter removal of the notch.

Figure 3.24: Stress redistribution due to the removal of a notch in a cold rolled wheelset axle.

After removing the notch, a stress state with high compressive stresses is observed at
the base of the notch. Figure (a) presents a contour plot illustrating how the initially
homogeneously distributed stresses in the [r] direction align along the notch base. Additionally,
it can be observed that the stress magnitudes directly at the bottom of the notch exhibit higher
compressive stress values. Two overlapping effects contribute to this behavior. Firstly, as seen
in the previous example, the stresses are shifted to lower regions. Secondly, the removal of the
sharp geometric feature allows the near-surface layer to deform more freely in the 2] direction .
As the near-surface stresses are compressive, the notch experiences tension at the surface
and compression at the bottom.

Furthermore, it is worth noting that although the stresses shift in depth, the stress gradient
increases significantly. The penetration depth of the compressive stresses remains unchanged
at a depth > 5 mm (or 2 mm below the notch base), indicating that the notch no longer

influences the residual stresses.

3.6 Conclusions 57

3.6 Conclusions

This thesis presents the development of a process model specifically designed for the cold
rolling process of wheelset axles. The model incorporates innovative boundary conditions that
accurately capture the effects of this manufacturing process on the component properties.
These boundary conditions not only ensure precise representation of the cold rolling process
but also enable a significant reduction in model size without compromising result accuracy.
This reduction in size also improves computational efficiency, facilitating the exploration of
various parameters influencing the cold rolling process.

A parameter investigation demonstrates that the component and tool geometry have mini-
mal influence on the residual stress profile, while the Hertzian pressure arising from the contact
between the toll and the component emerges as the most influential process parameter. Con-
trolling this parameter allows for an effective design of the penetration depth of the favorable
residual compressive stresses. Moreover, the developed process model enables an accurate
assessment of the residual stress distribution throughout the entire component’s cross section.

Building upon the results of this process model, a dedicated software tool has been created
to predict residual stresses induced by cold rolling. This tool proves valuable in component
design, eliminating the need for time-consuming trial-and-error approaches. Additionally, the
process model demonstrates its efficacy in simulating stress redistribution during maintenance
operations. These simulations offer qualitative insights into changes in favorable residual
stresses and serve as indicators for determining when renewed surface treatment via cold

rolling becomes necessary to ensure component safety.

4 Heat Treatment of Railway Wheels

4.1 The Component Railway Wheel

Railway wheels, similar to wheelset axles, are critical components that must meet stringent
safety requirements in the railway industry. These components are subjected to various chal-
lenges, including the high speeds involved in railway operations and the constantly increasing

accelerations experienced during starting and braking.

4.1.1 Requirements for Wheels

The product requirements for wheels in the railroad sector are defined in the standard EN13262 [84].
This standard specifically applies to forged, rolled solid wheels made of vacuum-degassed steel.
It sets criteria for various aspects of the wheel, including the wheel rim and tread, which must
undergo quenching and tempering processes to achieve increased hardness and residual com-
pressive stresses. These requirements ensure the strength and durability of the wheels.

In addition to product requirements, there are other regulations that govern the approval of
railway wheels for traffic. The UIC510-5 [85] and EN13979 [86] standards provide guidelines

60 4 Heat Treatment of Railway Wheels

and procedures for the approval process. These standards ensure that railway wheels meet the
necessary safety and performance criteria before they can be used in railway systems.

The design process for railway wheels follows similar steps as described for wheelset axles
in Subsection [3.1.1] It involves considering various requirements, including geometric inter-
changeability, thermomechanical aspects to control deformations and prevent wheel fractures
during braking, mechanical considerations to evaluate service life and prevent fatigue cracks,
and acoustic factors to ensure ride comfort for passengers and minimize noise pollution caused
by passing trains.

Figure[3.1]in Section [3.1][The Component Wheelset Axld depicts the individual components
of a railway wheel, such as the tread, rim, web, and hub. These components play crucial roles

in the overall performance of the wheel. Modern wheel design adheres to the aforementioned
requirements, considering factors related to geometry, thermomechanical behavior, mechanical
strength, and acoustic performance.

The design aspects of a wheel also include the way in which the train moves through the
rail network. This results in the geometry of the wheel rim with associated flange. Wheels are
fixed to the axle. Therefore, it is not possible for wheels to rotate independently of each other.
On a straight track, this is nothing special, but when cornering, one wheel has to travel a
longer distance than the other. Most vehicles solve this problem with the help of a differential,
which decouples the rotation of the individual wheels from each other. For railway wheels this
is not possible. [87, [88]

Railway wheels also do not have a flat running surface but an inclined one. When cornering,
centrifugal forces push the entire wheel set outward, causing the rails to contact the wheels
at different positions. The conical geometry enables the wheelset to travel different distances
at the same rotational speed. Another function of the conical shape of the treads is self-
centering in the event of lateral misalignment on a straight track. Figure [4.1]shows this effect
in simplified form. The flange serves here only as an additional protective measure. Slipping
off the rail is prevented by the conical geometry alone. The only exception is when rails are

changed with the aid of switches. Here, contact with the flange can also occur. [87] B8]

r
Arf
7 e
e e

: 2s '

Figure 4.1: Steering effect of a slip-free wheelset on a tight curve (radius R) related to the
inner rail. Figure and caption taken from [87].

4.2 Heat Treatment Process 61

4.1.2 Manufacturing of Wheels

The manufacturing process of railway wheels begins with a cylindrical ingot, which is cut into
processable-sized blocks using a cold-cutting machine. The blocks are then heated in a pusher
furnace to forging temperature. Once the desired temperature is reached, a press is used to
shape the blocks into wheels through a multi-step process: (1) Presetting: The preheated and
descaled ingot is compressed by one third using the press. (2) Upsetting: The press forms
a flat round component called a pancake, which already has a preprofiled top and bottom.
(3) Final upsetting: The preform undergoes further shaping to achieve the final contour.
(4) Punching: A hole is punched in the center of the component using a pin. The partially
formed wheel is then transferred to a ring rolling mill, where rotating rolls reshape the disk,
gradually enlarging the part. Afterward, the wheel undergoes additional shaping in another
press to achieve its final contour. Once the wheel has reached its final shape, it enters the heat
treatment shop, which includes an austenitizing furnace, quenching tanks, and a tempering
furnace. This heat treatment process gives the wheel the desired microstructure. A machining
center for metal cutting brings the wheel to final size before it is ready for shipment. After
thorough inspection throughout the entire manufacturing process, any defective components
are immediately rejected. Figure provides an overview of the necessary steps involved in
manufacturing a railway wheel, from the ingot to shipment. [88]

Ingot Cold cutting Heating furnace 9000 tons press
for ingot section

|
v
I
\
|
.
\
L

Sandblasting Heat treatment Heat treatment Rolling mill for

tanks furnace wheels
—s
ey

ga't =

Inspection Machining Inspection Shipment
H o H
[~]
-
—
il |k =

Figure 4.2: Manufacturing of wheels. Figure adapted from [48].

*
f

:
D

\

4.2 Heat Treatment Process

Another essential manufacturing process in this work is the heat treatment. This subsection
gives a brief overview of the state of the art of such a process in combination with the material
steel. In general, heat treatment is a process in which the physical and chemical properties of

a material can be influenced by specific temperature control. Different types of heat treatment

62 4 Heat Treatment of Railway Wheels

are normalizing, quenching, annealing, tempering, carburizing, surface hardening or precipita-
tion strengthening. For the particular railway wheel in this thesis, only normalizing, quenching
and tempering are of interest.

For a railway wheel, the heat treatment starts after the wheel has been forged into its final
shape. For this purpose, it is first austenitized, i.e. the temperature of the entire wheel is
increased until the phases formed in previous process steps can be transformed into austenite.
This process is also called normalizing and has the purpose of relieving the stresses of previous
manufacturing steps such as forging. Subsequent process steps introduce stresses into the
component again. Subsequent manufacturing processes reintroduce stresses to the component.
Therefore, it is advantageous for process control and product quality to initiate the actual heat
treatment with a stress-free component. Then the wheel is quenched and tempered, i.e. in
the first step it is quenched in a tank with water and then tempered in the furnace. In this
way, it is possible to obtain a wear-resistant and hard tread without sacrificing the damping
and fatigue properties inside the wheel. [89]

4.3 Modeling of Heat Treatment

Heat treatment processes are intricate, involving multiple simultaneous physical phenomena
that partly influence each other. Despite decades of research and efforts to develop comprehen-
sive models, no single model can capture all these phenomena at once. Analytical methods have
their limitations in handling such complexity, leading to the adoption of numerical methods like
the [FEM] to solve heat treatment problems. This section gives an overview of the possibilities
for modeling heat treatment processes and then goes into detail about the state of the art for
modeling quenching processes for the component railway wheel. Regarding the material, the
focus here is on low-alloyed steel that is used to manufacture railway wheels. [24] 90, 9]

The simulation of heat treatment processes, especially quenching, is a multiphysics and
multiscale problem. The physical fields involved and their interactions are shown schematically
in Figure [4.3] [24, (90, O1]

It is clear from this figure that the physical fields are interrelated and influence each other.
Not only that, but they influence each other in both directions. From this multitude of possible
interactions, one can already see the difficulties that can arise in such models.

In [91] these problems are defined as:

» Multi-scale/multi-physics processes: The model must deal with couplings between dif-
ferent physical events such as heat/mass transfer, mechanical interactions and phase
transformations. Some of those couplings may require multi-scale treatment due to

mechanisms operating at different length and time scales.

» Strong material non-linearity: The model may require dealing with highly nonlinear
material properties since the material properties usually have a pronounced variation

with temperature, microstructural constitution, stress and concentration.

= Complex boundary conditions: The model may require dealing with complex boundary

conditions such as nonlinear and moving boundary conditions.

4.3 Modeling of Heat Treatment 63

thermal field

(heat transfer)

transformation strains

-
phase fraction dependent hanical fiel
metallurgical field mechanical properties mechanical field

- .
. i (stress and strain
(phase transformation) stress or strain X
X evolution)
affected transformations

-

Figure 4.3: Physical fields and coupling interactions involved in heat treatment processes.
Figure and caption adapted from [91].

» Complex geometries: The model may necessitate handling of complex 3-D geometries

since most of the critical engineering components have complex geometries.

= Thermophysical events and energy sources: The model may necessitate handling of
thermophysical events driving the heat transfer and different energy sources ranging

from conventional heating to induction or laser, etc.

The first studies in this area date back to the 1970s. At that time, only the simplest
phenomena, such as thermal expansion, could be applied to simple geometries. In the 1980's
and 1990’s, these models advanced rapidly to the point where they could be used to predict the
microstructure, at least to some extent. The constitutive equations of individual phenomena
such as[TRIP] could also be implemented in the first simulations. With the rapidly increasing
power of modern computers these development processes accelerated even further, and by
the end of the 1990s the focus was on process optimization using the simulations developed
until then. In the 2000s, the focus shifted to working across computational methods like
for example [computational fluid dynamics (CFD)| and [FEM| The goal of these simulations

was to better understand the interaction between the heat treated components and their
surrounding. [24), (90, [91]

Since then, these simulations have evolved in several directions. A strong focus is on
multiscale simulation, starting from the atomic scale up to the scale of entire plants in heat
treatment shops. In this context, [FEM]is suitable for multiscale simulations starting from the

mesoscopic scale. In contrast, atomistic modeling uses other methods such as Monte Carlo

64 4 Heat Treatment of Railway Wheels

simulations or cellular automata. Existing [FEM| models are now able to interact from one
scale to the next. What is still missing are models that work across more than two scales.
Most models in the field of heat treatment processes are mathematical rather than physical,
which adds to the difficulty of parameter determination. Mathematical models focus on de-
scribing and simulating system behavior using mathematical equations, but the variables and
relationships may not always have a direct physical interpretation. In contrast, physical mod-
els aim to capture the real-world meaning of variables and relationships, providing a deeper
understanding of the phenomena involved. Mathematical models are particularly parameter
sensitive, which also makes it difficult to find stable sets of parameters for a more general use.
The problem with these models goes even further. In some cases they cannot be applied to
similar problems without additional effort, since they are developed for specific applications.
Thus, even after decades of research in this field, one still faces problems related to nonlinear-
ities, numerical instabilities, multiscale effects, and the interaction of different computational
methods. [24] 90| 91]

A wide range of phase transformation models are available for implementation in [FEM]| soft-
ware. While it is not possible to provide a comprehensive overview of all these models here,
the focus will be on previous works that share a similar framework in terms of coding subrou-
tines for phase transformation modeling. Schemmel et al. developed a model for predicting
residual stresses in hot-working steel components that includes both phase transformation and
transformation plasticity [92, [93]. Based on this work, Brunbauer et al. developed a model
for the evaluation of residual stresses during spray cooling of seamless tubes, which considers
both phase transformation and the complex heat transfer during spray cooling [94]. Further
development of this work is focused on heat treatment design where the developed material
models are used [95]. Another application of this material model can be found in [96]. The
focus here is on resistance spot welding with rapid heating and cooling phases and phase
transformations that occur differently when heating or cooling. The resulting residual stresses
are used to address other effects, such as the damage behavior of the material due to liquid
metal embrittlement [97]. The most recent work in this area is focused on cross-scale effects,
starting with stresses in the microscopic range, as they occur in the vicinity of inclusions, up to
the macroscopic view on component size [98]. The framework to build the material model that

is the heart of the heat treatment simulation in this thesis builds on the latter works [92-98].

4.3.1 Heat Treatment Simulations of Railway Wheels

The railway wheel component is of great interest to both industry and research. In the field of
simulation alone, the works go in many different directions, such as manufacturing, including
forming processes and heat treatment, but also in service, such as fatigue, crack propagation
or rolling contact fatigue.

There are numerous works in the field of heat treatment simulation of railway wheels
alone. While these papers deal with different aspects of heat treatment, the focus is always

on describing or predicting residual stresses due to production. The key elements leading to

4.3 Modeling of Heat Treatment 65

a quantitative description of the residual stress state are the material model and the heat
transfer.

Lingamanaik et al. [99] developed a thermo-mechanical model of the quenching process
using the DANTE software. Dilatometer measurements were performed to account for the
phase transformation behavior, which in turn were used to find parameters using a fitting tool
built into DANTE. Although the model is still quite simple, since not all effects have been taken
into account, both in the material model and in terms of heat transfer, it already provides good
initial indications of the distribution of production-related residual stresses in railway wheels.
In [I00], the phase transformation behavior was improved by considering both martensite and
pearlite. In addition, the heat transfer could be described more precisely by temperature
measurements in a specially designed laboratory dip tank. However, the present results raise
the question of whether the input variables have been well calibrated, since unusually high
phase fractions occur at rather unexpected locations and predict a strongly martensitic wheel
web.

Recognizing the large influence of heat transfer on residual stresses, Brunel et al. [101]
focused their model on the calibration of the heat transfer. By iteratively matching measure-
ments and numerical calculations, they were able to determine a temperature-dependent heat
transfer coefficient for the water-quenched wheel tread. Simple material models were then
used to investigate the influence of heat transfer on residual stress behavior.

Another simulation shows the importance of temperature dependent parameters. Here,
temperature-dependent data for both the heat transfer and the material itself are entered,
using only a simple elastic-plastic material model. On the other hand, the process control is
well represented according to common standards for the heat treatment of railway wheels. [102]

A recent work in this area is that of Tian et al. The focus here is on a quantity not
yet mentioned, namely hardness. In order to describe and later predict the distribution of
hardness in the wheel, both martensitic and bainitic phase transformation are considered and
a temperature dependent heat transfer is modeled. Finally, the simulation is verified with a
series of hardness measurements and microstructure images, and an optimization strategy for
the heat treatment is proposed. [103]

In summary, the following can be said about existing simulations in this field: (1) tem-
perature dependent process and material parameters are required, (2) the process parameters
need to be verified by experiments, since there is no satisfactory method for predicting the
heat transfer between very hot components and cold water, (3) the material parameters must
be measured according to the real heat treatment process and should have the same range of
temperature, temperature change and strain rate, (4) for a qualitative prediction of residual
stresses, complex processes such as phase transformations and transformation induced plastic-
ity must be taken into account, (5) this type of simulation requires a detailed comparison with

experiments on several stages to ensure the quality of the results.

66 4 Heat Treatment of Railway Wheels

4.3.2 Materials and Material Models for Heat Treatment Simulations

In principle, railway wheels are made of unalloyed or low-alloyed steel. The focus is always on
a high degree of purity, since even small deviations from the chemical composition influence
the mechanical properties. Since a railway wheel is a component that is produced in very large
quantities, these tolerances must also be kept tight. The steels defined in EN 13262 [84] are
called ER6 up to ER9, where the higher the number, the higher the strength of the material.

A key element of every process simulation is certainly the material used. Many properties
and results depend exclusively on the selected material, although the process itself can also be
influenced by it.

ER7, the material used for heat treatment simulations in this thesis is a
lquenched and tempered steel for railway wheels (ER7), The chemical composition (c.f. Ta-
ble [4.1]), mechanical properties and the necessary test methods are regulated in EN13262 [84].

C [si [Mn [P |S |c |cu |Mo |Ni |V
052 |040 |080 |0.02 |0015 |030 |030 |008 |030 |0.06

Table 4.1: Maximum percentage content of the various specified elements of according
to [84].

This material has been established for years (or even decades) as a material for railway
wheels. It shows good behavior in terms of service life, including thermo-mechanical fatigue,
wear, but also in terms of damping properties and ride comfort. In addition, the long experience
of operators supports the use of [ER7] wheels.

The materials used in the simulations are either based on the behavior of low-alloy steels
or, as in most publications, experimentally derived from standardized ER7 and ERS steels.

The development of material models goes in two directions. They differ in their application
and thus fundamentally in the underlying constitutive laws. On the one hand, material models
are being developed for the heat treatment process, which exhibits temperature and phase
dependent plastic behavior, and on the other hand, research is going in the direction of service
life behavior, where the focus is on cyclic plasticity.

The requirements for a future material model can be summarized as follows: (1) all material
parameters must be temperature-dependent and determined over the entire spectrum of the
process, (2) it must be possible for different phases to form, (3) the mechanical behavior of
these phases must be represented, (4) effects such as transformation plasticity must be taken
into account, (5) since heat treatment in the course of production is not a cyclic process
in terms of fatigue, the cyclic material behavior can be reduced to modeling cooling with

subsequent reheating.

4.4 Material Characterization Experiments 67

4.4 Material Characterization Experiments

As described in the previous section, several measurements are required for a material model.
They should be adapted to the process at hand, and the resulting material model is then only
valid for certain applications. However, this ensures that the results of the process models
are of a quantitative nature. This section goes into detail about the experimental procedure

needed to create a material model for the heat treatment of [ERT] steel.

4.4.1 Continuous Cooling Transformation Phase Diagram

A good first overview of the transformation behavior of a material can be obtained with trans-

formation phase diagrams. A distinction is made between [time-temperature transformation|
(TTT)| diagrams and |continuous cooling transformation (CCT) diagrams. Both show the re-

lationship between time and temperature and the resulting solid phase fractions of a material,

but they differ in their creation and validity. The[TTT]is also called an isothermal transforma-
tion diagram and, as the name implies, is generated at a constant temperature. The [CCT], on
the other hand, is generated with continuous temperature changes and thus better represents
the quenching process.

Before the dilatometer measurements required for a[CCT]|can be made, the heat treatment
process is simulated using a first simple[FE|model. This initial simulation is used to estimate the
cooling rates that occur in the process. The[CCT]is then generated based on these estimates.
The results of this simulation already show one of the main difficulties of such calculations. On
the one hand, the component railway wheel is very large and cools down slowly on the inside,
but on the other hand, the outer layers cool down very quickly. The full range of cooling rates
must be considered in the [CCT]

Table shows the experimental plan for the dilatometer measurement to obtain a
for the material [ER7L

N (hs) |/ 0.013 |0.035 | 0.070 | 0.150 | 0.300 | 0.600 | 1.250 | 2.500 | 5.000
|§|(K/s) H 230 \ 85 \ 425 \ 20 \ 10 \ 5 \ 2.4 \ 1.2 \ 0.6

Table 4.2: Cooling rates for generating the for the steel in two different represen-
tations: [\ is the time in hs for cooling from 800 °C to 500 °C, |f| is the corresponding rate of
temperature change in K/s.

The test specimens are cylinders of 10 mm length and 4 mm diameter. They are taken from
the wheel rim made of [ER7] at the same point in the circumferential direction and austenitized
at 850 °C for 30 minutes prior to testing in order to minimize possible influences of the actual
heat treatment of the wheel and the sampling point in the wheel. 850 °C was chosen as the
starting temperature, since this is also the starting temperature of the actual heat treatment.
In addition, 850 °C is above the Ac3 temperature at which the transformation to austenite
ends. Metallographic examinations and hardness measurements to determine the proportions
of the phase fractions follow the dilatometer measurements. The final [CCT] is presented in

subsection [4.7.1] which also includes a discussion of the results.

68 4 Heat Treatment of Railway Wheels

4.4.2 Hot Tensile Tests

The [CCT] from Subsection shows that it can be expected that the phases martensite,
bainite, ferrite and pearlite can be formed during the heat treatment of a railway wheel made
of [ER7] One purpose of the simulation is to reproduce the plastic behavior of these different
phases. For their determination, mechanical experiments are performed on pure phases at
different temperature levels.

In order to measure the pure phase behavior, the specimens are first prepared in such a way
that this behavior can be measured directly. For this purpose, standardized cylindrical tensile
specimens are again produced from the wheel rim and then heat-treated in such a way that the
corresponding microstructure is established in the specimen. As in the dilatometer tests, the
specimens are austenitized at 850 °C and then continuously cooled at different cooling rates.

According to the [CCT], an almost 100% martensitic specimen can be produced if cooling is
fast enough. The ferrite and pearlite phases are combined into one phase for simulation pur-
poses, as they are assumed to have similar mechanical behavior. Furthermore, when evaluating
the dilatometer signal for the [CCT| measurements, no significant volume jump was observed
during the conversion from ferrite to pearlite. In the following, the ferrite and pearlite phases
will be referred to as pearlite only. In the case of very slow cooling, 100% pearlitic samples
can be produced.

Unfortunately, this is not possible with bainite. It is infeasible to produce a 100% bainitic
microstructure with continuous cooling. The [CCT| shows here a maximum of 35% of phase
fraction for cooling with [\ of 0.15 hs. However, the best way to measure the mechanical
properties of bainite is to prepare specimens according to this cooling route.

The mechanical test is again preceded by a simulation. It is used to estimate the strain
rates and strains that occur. Based on the results obtained, the strain rate dependence is

not implemented and all tests are performed at a strain rate of 104 s71.

Since strains are
expected in both tension and compression, a combined testing scheme is performed to minimize
the testing effort. In this scheme, a specimen is extended to 1% strain, then unloaded, then
compressed in the opposite direction to 1% compressive strain, and then extended again to
failure. Using this scheme, all hot tensile tests are performed at the respective temperature
levels.

This wide range of test temperatures ensures that the plastic behavior of the phases
formed during cooling can be reproduced in the simulation. Measurements are also made
above the temperatures at which the phases first appear in order to describe their behavior
during the subsequent annealing of the wheels.

The hot tensile test of austenite is a special case. Since this phase does not exhibit stable
behavior, it is not possible to make specimens from it as is the case with the other phases. In
this test, the specimen is austenitized, then cooled to the test temperature and tested directly.
In order to exclude isothermal transformations into other phases, a test temperature of 700 °C
and a cooling rate of [\| = 1.250 and faster are chosen. At lower temperatures the available
time window is too small to guarantee that no isothermal transformation will occur during the

measurement. A summary of the test plan is shown in Table [4.3]

4.4 Material Characterization Experiments 69

measurement objective cooling rate (hs) testing temperatures (°C)
martensite RT 250 450

bainite RT 150 300 450

pearlite RT 150 300 450 600 700
austenite 700

Table 4.3: Experimental design for the hot tensile tests of

4.4.3 Deformation Dilatometry

[TRIP] is a phenomenon that occurs during the transformation of one solid phase to another.
During the transformation with an additional load, plastic strains develop in the softer phase
even though the yield strength is not reached. These plastic strains remain present at room
temperature even after removal of the applied load. There are several mathematical models to
describe this effect. The one by Leblond in [104] gives a linear relationship between the [TRIP|
strains just mentioned and the applied external stresses. The experiments in this section are
used to determine the linear coefficient that relates and , as given in equation to
model in [FE| simulations. [104H106]

For this reason, the experiments are again performed on a dilatometer. However, this time it
is necessary to apply additional loads to the specimens, which is why the experiments are carried
out on a DSI Gleeble 3800 thermomechanical forming simulator. Figure[4.4]schematically shows
the results to be expected as well as the critical adjustment variables of this measurement.

€ A
//
o>0 /l
-7 ay
Aetp 0:0’ A
0<0
71,
Ag" / 7 N
AT
Y Bus | | 8o
T -
| °]
I
I
oA :
I
I
o.dil I\
>
6

Figure 4.4: Top: Schematic representation of the dilatometer curve used to determine the
[TRIP| strain with the use of different load levels, showing the onset of phase transformation
and the onset of load application, as well as the changing thermal expansion of the different
phases.

Bottom: Corresponding profile of the additional load. Figure adapted from [105].

70 4 Heat Treatment of Railway Wheels

The test procedure is based on the tests performed so far in this thesis. Basically, the
experiment runs along the same cooling curves as in the previous experiments to ensure that
the transformation start of the respective phases remains unchanged. Since there will be an
additional load applied during the test, the timing of the load application must be determined.
According to Besserdich et al. [106] additional effects are minimized if the load is applied
just above the transformation start temperature [far5] This is the best way to isolate the
TRIP| effect and to easily compare the results of the loaded and unloaded samples. Every
test is performed according to the following scheme: (1) heating the sample and holding
at 850 °C to ensure 100% austenitization, (2) cooling at a defined cooling rate to the load
onset temperature [fo} (3) holding at this temperature, (4) applying the additional load |04
(5) continuous cooling to room temperature, (6) unloading the specimen at room temperature.

The main difficulty of these experiments is to define the level of the additional load [o4;]
As mentioned above, it is necessary to ensure that the yield strength of the softer phase is
not exceeded. Also, the [TRIP|effect is greater as the load increases. ldeally, the load should
be as high as possible, but not so high as to cause additional plasticization of the softer
phase. Austenite, which is also the softest phase, is the origin of all phases formed during
transformation. The yield strength of austenite at a temperature just above the martensite
start temperature is a necessary design variable for the experiment. However, due to
the very short time window available, it is not possible to perform a measurement of this
value directly. Nevertheless, in order to estimate the plastic behavior of the austenite at lower
temperatures, the results of the hot tensile test are extrapolated and a safety factor is applied
to ensure that the material does not plasticize due to the additional load during the test.

In order to determine the parameter [K;] it has proven useful to perform measurements
under both tensile and compressive loading. An unloaded measurement always serves as a
reference. The applied load is in each case 75% and 37.5% of the previously extrapolated
yield strength of the austenite, taking into account the introduced safety factor. [o,,q4] takes into
account both the yield strength of the austenite and the safety factor. Table summarizes

the overall test plan of the deformation dilatometry.

transformation [0l °C) | [omaa] (MP2) | [oaid]

austenite to martensite 350 250
austenite to bainite 600 100 0.0% + 37.5% + 75.0%
austenite to pearlite 700 50

Table 4.4: Experimental design for the deformation dilatometry tests of .

4.5 Modeling of the Material Behavior

This section deals with the modeling of the material behavior. On the one hand, mathematical
models are used to describe complex processes such as transformation kinetics or On
the other hand, it describes how the measured data are processed in order to use them as a

material model in the [EE calculation.

4.5 Modeling of the Material Behavior 71

4.5.1 Modeling of Phase Transformation Kinetics

To model phase transformation one must first describe the two mechanisms responsible for
the transformation. The driving force for transformation from austenite to martensite is super-
cooling and thus exclusively dependent on temperature. The other transformations into the
phases bainite and pearlite are diffusion-driven and are described by different kinetics than the
martensite transformation.

Koistinen and Marburger first described the austenite to martensite transformation in [107].
The fraction of martensite is expressed in equation [4.1]

Ev =1—exp(—a(@ys —0)) (4.1)

where [o] is a constant that represents the velocity of the phase transformation, repre-
sents the martensite start temperature and the current temperature. Consequently, (0y75—0)
results in supercooling below the martensite start temperature.

Modeling the diffusive transformation in this framework faces the challenge of fitting a
multitude of parameters compared to the diffusionless and athermal transformation of austenite
to martensite. One model for the diffusive phase transformation was given by Garrett et al. [108]
and later refined by Mahnken et al. [109]. The underlying assumption is that in order for one
phase to form from another, a nucleus of a critical size must first form and then grow at
a certain rate. The necessary calculations can also be divided in this way, namely into a
nucleation phase and a growth phase.

The transformation of one phase into another does not start immediately with the onset
of cooling of the material, but with a time delay. This time delay is called incubation time.
As can be seen in a time-transformation diagram, this time changes depend both on the
cooling rate and the current temperature. In order to describe such a phenomenon, a model
is necessary that takes into account the different cooling rates and determines the start of the
transformation at different temperatures and times. One idea to calculate this incubation time
is the nucleation model of Garrett et al. [108]. The idea behind the nucleation model is this:
the new phase begins to grow only when the nucleus reaches a critical size. Until then, only
the nucleus grows and no new phase is formed. [108] [109]

The underlying equations of the model have their origin in thermodynamics. For a thermo-
dynamic process to start, a certain activation energy must be overcome. For the present case,
this is described by equation [4.2] which is a slightly simplified form the equation presented
in [108].

o As 01703
ABQq

In this equation [G7] represents the Gibbs free energy at its peak, [Ag]is a material constant,

(4.2)

[Af] is the undercooling, [fg| the equilibrium temperature at which the parent phase has the
same free energy as the product phase, and is the activation energy.

The critical nucleation radius corresponding to the energy in equation is in equa-
tion This critical nucleation radius strongly depends on the temperature. The so far

72 4 Heat Treatment of Railway Wheels

unmentioned quantity of this equation is which is a material constant used for modeling

purposes, that is influenced by the surface free energy. [108]

A109AG°S
i (4.3)
0A0Q,
Finally, the differential equation for the growth of the nucleus can be defined as
% = a, exp (W_BH|> , (4.4)

where [B] and are again material constants used for modeling purposes of the growth
rate. The required initial condition of this differential equation is 7(t = 0) = 0. The nucleus
radius|r,,| grows until it reaches the critical value[r} at which point the actual phase growth can
begin. The time taken to reach [r¥]is the aforementioned incubation time. The temperature [
represents a special temperature value, i.e. the temperature corresponding to the shortest
possible incubation time of a given phase.

Using equations it is possible to model the incubation time and thus the start of
the phase transformation. This model is used for both the bainite and pearlite phase. Once
the onset of transformation is determined, the rate at which the phase grows is required.
Equation describes the growth of the product phase in the form of a differential equation

which is also temperature sensitive,

dgy 0* —0 r=r\" (_G*>
= —A5€$p(B,)(") (1—xf)7 exp AT , (4.5)

where and [] are material constants and [R] ist the universal gas constant.

The actual modeling work lies in the determination of the numerous parameters. Again,

the problem is divided into two parts, first the nucleation and then the phase growth. The
parameters are then optimized using a[py]software until a complete set of parameters is available
to describe the transformation kinetics of bainite and pearlite, respectively. In order to use the
model in a finite element simulation, the whole set of equations including the found material
parameters has to be implemented with the help of user subroutines. The respective phase

fraction is defined as a field variable on which other material properties depend.

4.5.2 Modeling of Plastic Material Behavior

This subsection describes the experimental setup of the hot tensile tests and how to process
the data to make it available for use in an [EE| simulation.

The first step is to define how the plastic law is to be implemented. The easiest way is
to enter the flow curves in table form. The dependency of different influencing variables such
as temperature, strain rate or any other field variable can also be taken into account easily.
Unfortunately, the measurement results cannot be transferred directly to the [FE| software.
They need to be processed first before being used. The main goal is to generate a data set of

flow curves that represent the pure phase behavior of [ER7] as a function of temperature.

4.5 Modeling of the Material Behavior 73

In order to achieve this, it is first necessary to distinguish the elastic from the plastic
part of the stress strain curve, or in other words, to find the yield strength of the individual
measurement. For the purposes of the simulation, it is assumed that the elastic behavior of
each phase is the same and therefore they all have the same Young'sE] modulus. However, the
measurement shows deviations of about 5% of Young's modulus for the different measurements.
It is well known that a tensile test is not the most precise method for determining Young's
modulus. Nevertheless, the measurements can be used to determine the flow curves because
the variations in Young's modulus are within a reasonable range. Therefore, only the plastic
parts of the measurement are processed, assuming a constant modulus. To determine the end
of the elastic and the beginning of the plastic behavior, a regression line is plotted through
each of the measured points. The points used for this are determined individually for each
measurement in such way that they obey Hooke's law. At a 0.2% strain deviation from this
line, the plastic region begins. All flow curves are determined in this way. In the next step,
they are checked for plausibility and adjusted if necessary. An example of this is the removal
of minimal overlaps of flow curves of the same phase at different temperatures. Such an input
is not tolerated by the [FE| software.

With the method described so far, the flow curves for martensite and pearlite can be de-
termined because the tensile specimens consist of only one phase each. This is not possible
for the bainite flow curve. According to[CCT], the specimen cooled at[\| = 0.15 has a marten-
site:bainite:pearlite ratio of 35:35:30. To determine the pure bainite behavior, the linear mixing
rule is applied first. For this purpose, a linear system of equations is created from the already
known flow curves and the known mixing ratio, and thus the unknown flow curve of the bainite
is determined. For such a system of equations, another assumption must be made, namely
whether the mixing of the mechanical properties takes place with constant strain or with con-
stant stress. Figure[4.5]shows this consideration graphically, on the one hand with the help of a
stress-strain diagram and on the other hand with different spatial arrangements of the different
phases. The resulting bainite flow curves are then analyzed. First, there is a large deviation
between the two different methods, and second, the results do not pass the plausibility check.
At constant stress, bainite shows higher strength than martensite, and at constant strain, the
flow curve of bainite is below that of pearlite. The true flow curve must be somewhere in
between. This is the reason for a simulation assisted approach.

In this approach, the hot tensile test is modeled using Finite Element (FE) software. For

this purpose, a so-called |representative volume element (RVE)|is used, as described in detail
in Subsection [4.6.1] The loading conditions in the simulation are identical to those in the
experiment, with 1% tension and 1% compression. The material data required for the [FE|sim-

ulation are stored separately for each phase in tabular form, and initially, the data for bainite
is estimated. The primary objective of this simulation is to predict the mechanical behavior
of bainite and compare it to the experimental results. To account for the mixing ratio of the
phases, a user subroutine is programmed, enabling the representation of different mechanical
behaviors within the model. Each element in the model is assigned a phase with its

'Thomas Young (13 June 1773 — 10 May 1829): British mathematician.

74 4 Heat Treatment of Railway Wheels

il

oy

(a) Flow curves in a stress strain diagram with a (b) Schematic of a tensile test with different spatial
representation of the mixture rule at a constant distributions of phases.
strain or stress value.

Figure 4.5: Different approaches for the mixing rule.

individual mechanical properties. The stress-strain diagrams calculated in the simulation are
then compared with the measured data, and if necessary, adjustments are made to the bainite
flow curve. This iterative process continues until a satisfactory agreement is achieved between
the measured and simulated mixed flow curves. To provide a visual representation of this pro-
cedure, Figure@ illustrates the measured flow curve, including all three phases, the assumed
bainite flow curve, and the resulting mixed flow curve obtained from the simulation. The flow

curves generated through this methodology are presented and discussed in Subsection [4.7.2]

1000
800
© /' A” /
% 600 " 7
= ”
5 72 /
2 / /
2 400 3 L
@ /‘ e pure bainite
V4 measurement
200 / mixed 1
/ ___ sim
/ mixed
0 , -~ 1 1
0.0 0.2 0.4 0.6 0.8 1.0

true strain € (%)

Figure 4.6: Comparison of measured and simulated plastic material behavior of steel
with a composition of 35:35:30 of martensite:bainite:pearlite.

[ER7] exhibits yet another noteworthy feature. At low temperatures, some specimens exhibit
a pronounced yield strength. This behavior is particularly challenging to model. For the
purpose of this work, the representation of the pronounced yield strength is omitted. However,

this means that the material behavior must be modeled in a different way. In a first attempt

4.5 Modeling of the Material Behavior 75

to create a continuous flow curve from the measured data, it was difficult to determine where
the elastic region ends and the plastic region begins. In addition, it was unclear what shape
the yield curve would take if it did not show a pronounced yield strength behavior. To solve
this problem, a material behavior that is otherwise of interest in fatigue is used, namely, the
Masing behavior. This means that a stress or strain amplitude that is equal to twice the value
of the amplitude of the stress or strain of the initial load curve is applied upon reloading.

Figure shows this relationship in the form of a cyclic stress-strain diagram.

o
A
|
|
|
|
| 3
€ | S
Il 17
g |
12 |
I~
— '
Iengtr:/’g
o ——— —
length

Figure 4.7: Masing hypothesis: the stress strain curve of the first cycle doubles for the second
cycle.

With respect to the experiment to be modeled, the blue curve corresponds to the first
tensile load, the black curve to the reverse load to 1% compression, and the red curve to the
second tensile load. Here, in contrast to Masing's idea, the first load is not used as a basis for
the subsequent loads, but the second load is used as a basis for the first load. In this way, an
experimentally based material behavior can be derived and implemented in the [FEM]

4.5.3 Modeling of Transformation Induced Plasticity

Multiple formulations for the transformation induced plastic strain rate exist. For numerical
simulations of heat treatment processes, it has proven useful to describe the resulting strain

due to the transformation using Leblond's law [21], (104, [106]. In its general form it reads:

e = PKi(E)ES (4.6)

where the index i represents the individual phase, represents the transformation induced
strain rate, [K;| the [Greenwood-Johnson (GWJ)| transformation coefficient, [f7(&;)| the derivative
of a saturation function, || the volume fraction of the product phase satisfying 0 < & < 1,
E] the time derivative oflﬂ and |S| the deviatoric part of the stress tensor. There are also many

formulations for the saturation function. One of the most commonly used is:

76 4 Heat Treatment of Railway Wheels

f&)=02-&& , (4.7)

and consequently its derivative is:

fl&)=201-&) . (4.8)

To implement this law in the software Abaqus, the user subroutine CREEP is used, but
instead of a creep strain, the strain is returned. This was put into practice by [21].
To model the behavior of [ER7] only the transformation coefficient [K;| needs to
be determined for each phase transformation. The results of and a comparison of the
experimental and simulated behavior can be found in subsection [4.7.3]

4.6 Finite Element Models for the Heat Treatment of Railway
Wheels

This section deals with the finite element models developed and used in this thesis. First,
a brief overview of the [RVE| used to model all experiments is given. This is followed by a
subsection describing the entire model developed here for the heat treatment of railway

wheels.

4.6.1 Representative Volume Element for Material Modeling

A representative volume element is a periodic unit cell. One common definition is that it
is the smallest possible cell for which tests can be performed that are representative of the
entire material. In continuum mechanics, [RVEE are used to represent heterogeneous material
behavior at the scale above. Here, the heterogeneous behavior originates from the different
phases. [110]

The key to such an|RVE|is the boundary conditions and couplings. The surfaces are coupled
in such a way that a periodic arrangement of this cell is possible in any spatial direction. The
edges and corners make it possible to represent true shear with a slightly modified coupling.
The used in this thesis was adopted from previous works, e.g. it was used by [21].

Figure [4.8 shows an [RVE| with a heterogeneous distribution of different phases, as they can
occur during heat treatment, and the resulting stresses.

Alpy|script creates the entire geometry including all the couplings. See Appendix|A.1]for the
code of the [py] script for Abaqus used to generate the RVE| models. The number of elements
is arbitrary, but a size of 8x8x8 has proven suitable for the representation of metallurgical
processes. Here, the size has been increased to 10x10x10 for an easier representation of the
relationship of phase fractions and the number of transformed elements. The smallest possible
number of elements is 1, which is used in the single-element test for the modeling of the [TRIP|
behavior that is later implemented in the process model. All simulation results performed

in parallel to the experimental work were generated with these RVEf and can be found in

section [4.7]

4.6 Finite Element Models for the Heat Treatment of Railway Wheels 7

Pearlite
Bainite
Martensite
Austenite

(a) Heterogeneous distribution of stresses in an (b) Distribution of different phases of the steel
[RVE| caused by the different mechanical properties in an [RVE]
of the various phases.

Figure 4.8: Hot tensile test performed with an m

4.6.2 Process Model for the Heat Treatment of Wheels

This subsection describes the setup of the [FE| model for the simulation of the heat treatment
process of a railway wheel made of [ER7 Special emphasis is placed on the modeling of the
heat treatment process itself with all its boundary conditions and settings based on the actual
process.

Process models always focus on the interaction of the process with the associated compo-
nent. The component in this work is a railway wheel, specifically a solid wheel made of [ER7|
with a diameter of 850 mm and a profile of $1002/h28/e32.5/6.7% according to the EN13715
standard [I11]. Such wheels are installed on the Desiro ML OBB Cityjet vehicle from Siemens.
They are used for all wheelsets of the train, both powered and non-powered (also called trailer
wheelsets).

Such a wheel is manufactured by the steps described in Subsection where the steps
considered in this process simulation are those of quenching and subsequent tempering. After
forging, the wheel is placed in a pusher furnace for normalizing. During this process, the wheel
is heated to 850 °C, which allows sufficient time for the microstructure to completely transform
to a low-stress austenitic microstructure. Leaving this furnace represents the beginning of the

process simulation and thus the stress free reference state.

Quenching Process for Railway Wheels

From this furnace, the wheel enters a water tank for quenching. This is a special quenching
process in which only the tread of the wheel is quenched with water. Normally, a spray cooling
process is used for this type of quenching, in which the tread is targeted with nozzles to get
the water exactly where it is needed. A modified form of this cooling is used here. The wheels
are submerged in a tank. In order to guarantee the contact of the water with the tread of the

wheel, but at the same time to exclude the contact of the water with the rest of the wheel, a

78 4 Heat Treatment of Railway Wheels

specially designed water tank is used. Figure [4.9 shows a schematic of such a quenching tank

with a submerged wheel.

base water

!
!
!
J
!
!
|
|

Figure 4.9: Schematic of the quenching tank with a submerged wheel.

Inside the tank there is a base that serves as a support for the wheel. This base also serves
as a water drain that regulates the water level of the tank by allowing the water to run off
which made it either over the flange of the wheel or between the wheel and the base. This
method ensures that only the tread of the wheel is in contact with water. The amount of water
that reaches the other parts of the wheel is negligible. The water in the tank rotates by means
of angled nozzles so that fresh, cold water always reaches the wheel's tread. For the purpose
of the simulation, it is assumed that fresh water is brought to the surface by movement and
that there is no formation of a vapour film. This means that there is no insulating vapour
layer on the surface of the component, as would be the case if the wheel were submerged in

still water.

Temperature Measurement with an Instrumented Wheel
As the previous section shows, the quenching process is subject to many uncertainties. In
order to correctly represent the heat transfer many different effects must be taken into account,
i.e. the heat transfer by radiation, conduction and convection. For many forms of heat transfer,
some of which are complex, the literature offers ways to calculate the heat transfer coefficient.
However, for a forced flow with temperature differences above 800 K between a glowing
steel surface and water, there is no satisfactory approach. For this reason, the heat transfer
coefficient is calibrated by means of a temperature measurement during the process.

For this purpose, a wheel equipped with thermocouples passes through the entire heat
treatment process. Temperature measurements are taken at multiple positions on the wheel
to better distinguish between the different contributions to the heat transfer. The positions of

the thermocouples in the wheel are shown in Figure [4.10]

4.6 Finite Element Models for the Heat Treatment of Railway Wheels 79

[t
"
"
"
"
"
"
"
"

4

Figure 4.10: Positions of thermocouples in instrumented railway wheel.

Heat Transfer Modeling

The temperature measurements of the instrumented wheel are used as the basis for calibrating
the heat transfer coefficients and thus the total heat transfer. Similar to the calibration of
the bainite flow curves, the heat transfer calibration is inversely fit to the experimental results.
The largest influence on the heat transfer is the water quenching at the tread. For this reason,
the remaining contributions to heat transfer are determined in advance of the calibration. The
contributions to heat transfer are: (1) conductivity, (2) radiation and (3) convection.

(1) In principle, it would be possible to determine the thermal conductivity of [ER7] from
these measurements. However, there are specific measurements carried out to determine the
thermal conductivity in a previous work. Thermal conductivity is not a parameter that varies
greatly from batch to batch and can therefore be safely adopted. A number of other material
parameters are required for heat transfer calculations. All the temperature dependent physical
material parameters required for this have also been taken from previous work and can be
found in Table [4.5] where [d denotes the specific heat capacity, the coefficient of thermal
expansion, [g| the mass density and [the thermal conductivity. It should be noted that the
parameters|d, [p] and [N are assumed to be constant across all phases, while[ay]is replaced with
phase-dependent values in subsequent calculations. For the initial calibration calculations, the
values in Table [4.5] are used. Furthermore, these values are used exclusively for the calculation
of the heat conduction. Other effects that may cause changes in density, such as volume
changes during transformation (i.e. transformation expansion , are considered at a later
stage of the model.

(2) The contribution to the heat flux due to thermal radiation is a function of two natural
constants, namely the temperature difference between the component and its surroundings
and the emissivity [g] of the material. Emissivity is a quantity that can vary widely for the same
material. In some cases it can vary by a factor of 100 depending on the surface characteristics.
For this reason, a plausible value for the emissivity must be assumed. In this thesis, a value of

[F=0.29 is used to represent a surface that is not perfectly smooth during heat treatment. If not

80 4 Heat Treatment of Railway Wheels

°C kJ /kgk 107°/k kg /m? W/mK
20 0.470 7836 42.2
100 0.500 11.363 7815 42.9
200 0.534 12.344 7784 42.3
300 0.567 13.107 7750 40.5
400 0.606 13.650 7715 38.4
500 0.658 14.250 7677 36.4
600 0.732 15.252 7632 33.9
700 0.856 15.662 7591 30.4
750 0.604 13.611 7607 25.0
800 0.609 12.841 7605 25.7
850 0.614 13.410 7580 26.3

Table 4.5: Temperature-dependent thermo-physical data of .

chosen correctly this value has no significant effect on the rest of the calculation. The remaining
contribution to the heat transport, namely convection, is adjusted to the measurement in the
next step, thus including any missing parts of the heat transfer by radiation. Nevertheless,
a small deviation is unavoidable, since the temperature is of first order in Newton'dl] law
for conductive heat transfer and of fourth order in the StefanP}BoltzmanrP law for thermal
radiation, and thus an incorrectly chosen value for the emissivity has a greater impact at higher

temperatures.

(3) The contribution of convection to the overall heat transfer in the wheel is divided into
two components. One component accounts for the interaction with water at the tread of the
wheel, which is calibrated through measurements. The other component represents the heat
transfer at the remaining parts of the wheel, involving the interaction with air. This component
can be calculated in advance. Temperature and geometry-dependent heat transfer coefficients
are determined for Newton's law by considering the complex interaction between the air and the
surface of the wheel. This involves using dimensionless quantities and temperature-dependent
material parameters of the air. The detailed procedure is described in [112] [113]. The cal-
culated heat transfer coefficients, which vary with temperature and geometry, are presented
in Table [4.6] The different geometries considered include the top and bottom of horizontal
surfaces, as well as vertical cylindrical surfaces, which are further influenced by their diameter
and height. The corresponding surfaces with their respective heat transfer coefficients are
shown in Figure through color coding.

The second contribution to convective heat transfer is that of the water-cooled tread. To
determine this, an [FE| simulation is set up to represent the first stage of the heat treatment,

the quenching. The thermal boundary conditions are implemented according to the previously

!lsaac Newton (4 January 1643 - 31 March 1727): English mathematician, physicist and astronomer.
2 Josef Stefan (24 March 1835 - 7 January 1893): Carinthian Slovenian physicist, mathematician and poet.
3Ludwig Boltzmann (20 February 1844 - 5 September 1906): Austrian physicist and philosopher.

4.6 Finite Element Models for the Heat Treatment of Railway Wheels 81

temperature heat transfer coefficients |ag|in W/m2k
. horizontal horizontal vertical
in °C .

top bottom cylinder
25 0.000 0.000 1.335
50 3.753 1.753 5.033
100 5.125 2.169 6.620
200 6.168 2.537 7.887
300 6.587 2.744 8.460
400 6.782 2.890 8.781
500 6.864 3.002 8.973
600 6.891 3.093 9.098
700 6.893 3.172 9.190
800 6.856 3.236 9.232
850 6.842 3.268 9.258

Table 4.6: Temperature and geometry dependent heat transfer coefficient .

discussed points. Figure illustrates these boundary conditions at the corresponding sur-
faces of the wheel. To evaluate the simulation, points are defined at the same positions on the
wheel where the thermocouples were placed in the experiment, cf. Figure [£.10] As a starting
point for the calibration of the heat transfer coefficient, an analytical method is again used to
determine a temperature and pressure dependent heat transfer coefficient for nucleate boiling
of water. The exact procedure can be found in [38, [39] with material data taken from [113].
Similar to the calculation for convective heat transfer in air, dimensionless quantities and func-
tions are derived from tabulated material parameters of boiling water to finally derive this heat

transfer coefficient. These calculated values are the starting point for the calibration.

o —
N

horizontal top

radiation

conduction >

o S QY
R i

Figure 4.11: Boundary conditions of the heat treatment model during the water quenching
step.

vertical cylinder

O}

water

The calibration itself is now carried out in an iterative process where the heat transfer
coefficient independent of temperature is fitted to the measurement. As soon as a good

agreement is achieved, the temperature dependence is implemented in a second phase based

82 4 Heat Treatment of Railway Wheels

on trends from literature. The values obtained with this method are shown in Table 4.7l Note
that a temperature of 162.5 °C is necessary for the calculation of the reference Nusselt number

for the nucleate boiling heat transfer coefficient.

°C |25 50 100 162.5 850
\%[W /m2k \ 30 209 385 2380 2380

Table 4.7: Temperature-dependent heat transfer coefficient for a water quenched surface.

The other heat treatment steps, such as tempering, cooling and transport between treat-
ments, also require temperature and geometry dependent heat transfer coefficients. Since the
surrounding medium is always air, the calculated values can be taken from Table 4.6 In the

simulation, only the ambient temperature is adjusted.

Process Modeling

To determine the stress state of the wheel after heat treatment, sequentially coupled heat
transfer and mechanical analyses are performed. This means that the heat transfer analysis is
calculated first and the resulting temperature field is used as an input in the subsequent stress
analysis.

The process model itself is axially symmetric. Although the web of the wheel has bores that
only a model can represent correctly, the advantages of a fine-meshed, axially symmetrical
model outweigh the disadvantages of a model that considers the bores. Also, the bores
on the web are in a zone where there are only moderate temperature gradients. The chosen
element type is a quadrilateral axially symmetric element with first order shape functions. These
elements are particularly well suited to thermal analysis because the heat conduction equation
for constant parameters yields only a linear temperature distribution within an element.

The core of this process model is the implementation of the material model. For the thermal
analysis, the temperature-dependent thermophysical parameters are used, but also parts of the
user subroutine are already required. User subroutines are used to describe a material behavior
that exceeds the standard capabilities of commercially available finite element software. The
transformation behavior is implemented as a purely thermal problem, so that a prediction of
the distribution of the individual phases is already possible after the thermal analysis. The
mechanical analysis then uses the full set of phase and temperature dependent flow curves.
Again, user subroutines have to be coded to describe the complex mechanical material behavior
such as e.g. the effect.

The boundary conditions for heat transfer are selected according to the steps of the actual
heat treatment. These include the quenching, tempering and subsequent cooling before further
manufacturing steps. The transports before and between the treatments are also modeled.
With this setup it is possible to get accurate insights into the processes inside a heat treated
railway wheel during the heat treatment process and also obtain information from inside the
wheel that would not be accessible with any other method than simulation.

The process model generation is again fully automated using a[py] script. See Appendix[A.3|
for more details on the code.

4.6 Finite Element Models for the Heat Treatment of Railway Wheels 83

4.6.3 Model Extension: Block Braking

The present model is designed specifically for heat treatment process modeling, yet it holds
potential for addressing thermal issues related to braking as well. Consequently, the heat
treatment models developed in this work can be utilized to describe the heat input resulting
from block braking.

Note, that the model and the corresponding results presented in Subsection [4.7.6] were
developed within the framework of a master’s thesis [114] under my supervision.

Block brakes, the oldest braking system employed in trains, continue to be utilized in freight
traffic to this day. This system involves pressing a brake block against the wheel’s tread using
a braking force. As the train’s kinetic energy is transformed into heat, both the wheel and the
brake block experience heating. Effective dissipation of this heat is crucial to prevent thermal
overload, which can lead to excessive temperature rise in the components. The advantages
of block brakes are apparent, as they boast a simple design and have a long-standing track
record of reliability. Additionally, the contact between the brake pad and the tread serves the
secondary purpose of cleaning the tread, thereby enhancing contact and power transmission
with the rail. However, it is important to consider the drawbacks, such as the already high
stress experienced by the wheel as a critical component. Consequently, in the design of these
components, the additional thermal load, particularly at vulnerable locations like the tread,
must be taken into account in addition to mechanical loads associated with supporting and
guiding the vehicle on the rails. [88] 115, 116]

The UIC 510-5 standard [85] serves as a crucial reference for the design of components
in the railway industry, particularly in relation to block brakes. According to this standard, a
solid wheel intended for freight cars must meet specific requirements, including the ability to
withstand a demanding braking scenario. Specifically, the wheel should be capable of enduring
45 minutes of continuous braking at a speed of 60 km/h, with a braking power of 50 kW. This
particular case represents an extreme condition within the European railway system, simulating
a journey over the Gotthard ramp. To ensure optimal performance, the design of the wheel
must be meticulously engineered to withstand the associated thermal load imposed by this
intense braking scenario. Adhering to the UIC 510-5 standard guarantees that the wheel meets
the necessary criteria for safe and reliable operation under such challenging conditions.

The braking scenario described represents a combination of both thermal and mechanical
loads that impact the performance of railway wheels. The wheel hub absorbs the axle loads,
which are subsequently transmitted through the web to the rim and the tread and ultimately
transferred to the contact point with the rail. Block braking adds an additional mechanical
load onto the wheel as the brake pushes against it. However, this study focuses exclusively
on the thermal effects caused by the block brake, specifically analyzing the resulting stresses
affected by the thermal contribution of the brake. The investigation does not consider the
influence of other concurrent mechanical loads on the wheel. By isolating and examining the
thermal contribution of the block brake, the study aims to gain insights into the thermal be-

havior and stress distribution within the wheel during this specific braking scenario.

84 4 Heat Treatment of Railway Wheels

Block Braking Model

The modeling of the block braking process is accomplished by utilizing the existing heat
treatment model and expanding it to meet the specific requirements of the braking scenario. A
standardized brake test is employed as a reference to simulate the conditions experienced during
the traversal of the Gotthard ramp. In this test, a railway wheel is mounted in a test stand, with
a rigid axle connected to the wheel and being driven while simultaneously applying hydraulic
braking force via a brake block. To capture the thermal behavior accurately, thermocouples are
installed on both the wheel and the test stand, enabling the recording of temperature profiles.
These temperature curves are then utilized to calibrate the thermal boundary conditions in the
finite element model. It should be noted that the brake test primarily focuses on the thermal
load imposed on the wheel and neglects the additional mechanical loads, aligning with the
specific objective of investigating the thermal effects induced by block braking.

Various thermal boundary conditions can be applied to the edges of the model, allowing
for the representation of heat transfer both from the component to its surroundings and the
reverse case, such as heat input into the wheel during braking. In this study, the braking power
is converted into a heat flux density and applied to a specific section of the wheel’s tread that
is about 80 mm wide. However, the temperature increase resulting from the braking power
specified in the standard may not correspond exactly to the measured values in an idealized
model. To address this, the heat flux density is adjusted inversely based on temperature mea-
surements, providing a more accurate representation that accounts for previously unconsidered
losses and heat transfer to the brake pad. The remaining edges of the [FE| model incorporate
convection for heat transfer, considering both the geometric factors and the influence of the
wheel’s rotation, which affects the convective heat transfer by a moving air flow.

The simulation process for the thermal analysis follows the same steps as the mechanical
analysis. Prior to simulating the braking process, a heat treatment is applied to the wheel
under investigation in order to establish an initial stress field. Initially, a 45-minute period of
braking is simulated, during which the wheel rotates. This is followed by a 4-hour cooling
period without rotation. The heat transfer coefficients are adjusted accordingly to simulate
these processes accurately. To capture the stress redistributions that occur during operation
and to ensure the component design meets the required criteria, the simulation is repeated
30 times until a stabilized stress-strain state is achieved. It is important to note that the
employed material model in this process is not the same as for the heat treatment simulation.
It can effectively simulate cyclic plasticity in a temperature-dependent manner, albeit without
incorporating the effects of phase transformation and

In contrast to the previous calculations utilizing the heat treatment process model, the
present study employs a different wheel geometry known as the SURA wheel, which is specif-
ically used for freight transport and block braking applications. This SURA wheel features
a curved web and a diameter of 920 mm, distinguishing it from the Cityjet wheel geometry.
The focus of this investigation lies in examining the impact of thermal loads induced by block
braking on critical locations of the web, which is of particular interest to railway operators.
The results obtained using this process model are presented in Subsection [4.7.6] shedding light
on the effects and behavior observed under these specific conditions.

4.7 Results and Discussion 85

4.7 Results and Discussion

The results section focuses on the material model for the steel. Firstly, the results of
the experimental work are presented and the material parameters derived from them. The
structure is similar to the modeling section with subsections on [CCT| diagram, hot tensile tests
and forming dilatometry. A subsection is then devoted to the developed material model and
summarizes all the parameters required for it. The results section concludes with the results

of the process model and the special case of the heat treatment, namely the block braking.

4.7.1 Continuous Cooling Transformation Phase Diagram

With the dilatometer experiments described in subsection (4.4.1], it was possible to create
a [CCT] The [CCT] with the corresponding cooling curves from the dilatometer experiments
is shown in Figure [£.12] It shows the different transformation behavior of [ER7] at different

cooling rates. It also shows the onset of transformation of each phase as well as the time at

which each phase ceases to form.

ER7 - kontinuierliches ZTU-Diagramm
1000

Austenitisierungstemperatur: 850°C
Haltedauer: 30 min (Heizrate: 2 K/s)
900

800

K_\w‘_\ p S U Y Ny N AR N N N I o —'—'(AC3(780°C)
—_ _._._\ . 4 - — — q % ______ R A N I I 1 A P S P — - —Ac, (730°C)
AR a0 s
8 E) b —75 70
600 4 i §5 8 -
2

. A\ AT R\
2o Ms(290°C) \ \\ \ >\/ \ \ \ \
. LT AV

A0,012| X0,035 A0,07 AQ,15 A02 AO6 | A125 | A5 AS

Temperatur [°C] —»
>
A
A
71
 §
n/r
(5}
h} 1
1
) &
e
A
o SN
f

Bereich d. Austenitbildung
Bereich d. Ferritbildung
Bereich d. Perlitbildung
'w Bereich d. Zwischenstufen-
gefiigebildung
M Bereich d. Martensitbildung
100 4,5% 55% 7% 65% | 1% | <1% | <1% | <1% <1% % RA M, Starttemperatur Martensit

AHdrtewerte in HV,,

0 N e e
102
L

NTT>

10t 100 10t . 10° 10¢ 10° 105 [s]

1 1 1

) ‘
zeit — 1 10 102 108 104 [min]

1 10 10? [h]

Figure 4.12: [CCT|diagram of the steel.

The martensite start temperature [fa;5] is constant at 290 °C and decreases slightly at lower
cooling rates, although this slight decrease is not accounted for in the material model. In
general, well-defined phases of bainite, pearlite and ferrite are formed at moderate cooling
rates, however the case is slightly different for the low alloyed steel. As seen in the [CCT],
the ferrite, pearlite, and bainite phases merge. Only the beginning of the transformation into

one of these phases is well-defined. The transition from ferrite to pearlite and then to bainite is

86 4 Heat Treatment of Railway Wheels

not clear from the dilatometer tests alone. This is also the reason for the dashed representation
of the phase boundaries in this[CCT| The phase fractions shown in the figure were determined
by metallographic examination. This includes the retained austenite content, shown as %RA in
the diagram. An additional verification of the phase composition is the hardness test performed
on the specimens. It shows high values for the pure martensitic microstructure at the highest
cooling rate and decreases with increasing pearlite and ferrite phase content. In the diagram
the values are marked with HV1p.

Furthermore, it can be seen in the [CCT]| that the ferrite, pearlite and bainite region is
very far on the left side of the diagram compared to high-alloyed steels, which means that
the transformation into these phases occurs very early. As a consequence, extreme cooling
rates are required to obtain a pure martensitic microstructure. In other words, if cooling from
850 °C to 500 °C takes longer than 4 seconds, some bainite has already formed. It is precisely
this small time window that makes the modeling of the process and the experiments difficult.
However, the first simulation models show that these high cooling rates can occur directly on
the tread of the railway wheel. For this reason, also the highest cooling rates were taken into
account in all experiments and simulations.

Using the nucleation model described in Subsection [4.5.1] it is possible to model the trans-
formation behavior. A [py| routine was used to determine the material parameters from equa-
tions [4.2] through [4.4] In the routine, the transformation start of the respective phase and the
cooling rate are entered and the differential equations are solved. The parameters found are
then varied with the help of an optimizer until there is good agreement between the experi-
mentally determined values and the simulated values. A comparison of these points is shown
in Figure [4.13] Note that the phase labeled P already represents both pearlite and ferrite.

1000 i 1000 i
B simulation B simulation
800 ® measurement - 800 ® measurement -
et o u
600 —A = 600 —A =
| g —
400 B 400 B
6/\45 =290.0 C I 6/\45 =290.0 C
200 M 200 M
0 1 2 3 0 0 1 2 3
10 10 10 10 10 10 10 10
(a) Bainite (b) Pearlite

Figure 4.13: of [ER7} comparison between measurement and simulation of the transfor-
mation times of bainite and pearlite.

The comparison of experiment and simulation in Figure shows almost perfect agree-
ment for modeling the onset of the bainite transformation. The only noticeable deviation
occurs at the point with the most rapid cooling rate. However, given that the abscissa is
logarithmically scaled, this deviation is minor, registering within the range of one second. In
addition, the modeling of the pearlitic transformation demonstrates a favorable correspondence

between experimental and simulated results. Notably, the agreement is more pronounced for

4.7 Results and Discussion 87

— 1.0 . . - = 1.0 ' ; :
5 : : = pearlite § — pearlite |)
g 1 | = bainite 9 05 bainite . 1 1
£ 05 I | = martensite wz — martenlsne :
% ! ! austenite © austenite |
= I 1 s 1]
0.0 = 0.0
0 200 400 600 800 0 200 400 600 800
0.0000 I 1 o 0.0000 I I I
' [[
-0.0025 ' = -0.0025 I —
1 11 1 1 I
— ~0.00%0 T T __ -0.0050 i : :
£ -0.0075 : b : £ _0.0075 /I/ 1 1
g | /1 s 0. ' ' :
~0.0100 = B I// | measurement 7 -0.0100 7/ i t measurement "
: —_ I I
-0.0125 1 t ‘;ﬁ:ﬂon M -0.0125 t t python
-0.0150 ! ! (- i 1 1 FEM
0150 200 400 600 800 -0.0150 ' L3 '
0 200 400 600 800

temperature (° C) temperature (° C)

(a) Cooling with || = 0.013 hs triggers a trans- (b) Cooling with [\| = 5.000 hs triggers a trans-
formation into martensite. formation into pearlite.

Figure 4.14: Comparison of measured and modeled dilatometry signal and corresponding
evolution of the phase fraction for martensite and pearlite. The vertical lines represent the
onset of the respective phase transformation.

Top: phase fraction evolution.

Bottom: dilatometry signals of the measurement, the [py] and the [FEM] simulation.

the more rapid cooling rates, while the temperature level of the transformation onset remains
within acceptable limits for all cooling rates. For the slower cooling rates there is a deviation
in time, but it is again within reasonable limits. The experimentally determined [CCT] shows
that only a pearlitic microstructure is formed in this range, rendering the observed deviation
negligible.

The second part of the modeling of the transformation kinetics is the growth of the re-
spective phase. Again, a[py| script is used to solve the differential equations and optimize the
desired material parameters from equation[4.5] This time the optimization is done by matching
the entire dilatometer curves of the experiment and the simulation, as can be seen in the two
lower plots of Figure [4.14]

For this purpose, the linear thermal expansion coefficients of the individual phases were first
determined from the experimental dilatometer curves. For austenite, martensite and pearlite,
these could be read directly at the cooling rates at which they predominantly occur. For
bainite, the slope of the dilatometer curve of [N = 0.15 hs after complete transformation was
measured and the linear mixing rule was applied again to separate the pure thermal expansion
coefficient.

Initially, the martensitic transformation behavior is fitted by establishing the onset of phase
growth, which occurs when both the temperature falls below the martensite start temperature
and while the austenite phase is available for the transformation. The transformation rate of
martensite is governed by the variable [o] in equation [4.1] which is determined via parameter

fitting. Additionally, the transformation strain of martensite is determined by a linear function

88 4 Heat Treatment of Railway Wheels

of temperature. Figure m (a) exhibits excellent agreement between the experimental and
simulation curves, indicating successful determination of the three parameters governing the
martensitic transformation. The top part of Figure shows the corresponding temperature
dependent evolution of the respective phase fractions. Given the exponential nature of the
process, it can be observed that 80% of the martensite phase is formed upon reaching the
200 °C limit. In comparison to the cooling curve depicted in the [CCT] diagram, this finding
suggests that the time required to reach the aforementioned point is less than 2 seconds, while
the complete transformation process takes less than 10 seconds.

The transformation strains for both pearlite and bainite are determined based on the ex-
perimental curves and incorporated into the [py] routine. In this step, the optimizer assesses
the entire dilatometer curve for all cooling rates, instead of individual points, which presents a
considerable challenge. Moreover, the calculation for pearlite and bainite must be performed
concurrently, doubling the number of parameters to be optimized. It should be noted that all
newly formed phases must originate from the austenite phase, and any pre-existing transfor-
mation in the austenite will impact the transformation rate of all other phases.

In addition, the simulation results agree well with the experimental data for the lower
cooling rate of [\ = 1.25 hs. The transformation strain is accurately predicted, but the onset
of pearlite phase growth occurs much faster than in the experiment, which is evidenced by the
sharp edge at the pearlite start temperature of 685 °C. The phase fraction evolution depicted
in Figure m (b) indicates an abrupt transformation process, but it should be noted that
the transformation is taking place within a narrow temperature range at a cooling rate that
is several orders of magnitude lower than that necessary to form martensite. Therefore, while
the transformation may appear rapid, in a diagram with the temperature scale as abscissa it
is moderately slow in terms of its temporal evolution.

A comprehensive summary of all the values obtained in this study is provided in subsec-

tion (.74

4.7.2 Hot Tensile Tests

For the hot tensile tests, specimens were prepared for the respective phase and temperature
level following the method outlined in Subsection The standard [LCF| specimens were
manufactured from the rim of the railway wheel and heat treated to obtain the desired phase
compositions. The manufacturing was successful for all specimens, except for those requiring
the highest cooling rates of [\] = 0.013 hs. Reaching such cooling rates is at the limits of
controllable conditions, and quenching these specimens leads to distortions. To rectify these
distortions, the affected specimens were turned on a lathe to attain a smaller dimension, ulti-
mately regaining a perfectly axially symmetrical geometry that is well suited for the combined
tension-compression tests.

The hot tensile tests were conducted as per the planned protocol, where each specimen was
subjected to a 1% tensile strain, followed by 1% compression, and again to failure under tension.
The stress-strain diagrams obtained from these tests show hysteresis loops as expected. All

tests were carried out in duplicate to identify and eliminate any measurement outliers. The

4.7 Results and Discussion 89

results of these tests show a high level of agreement, with the curves aligning almost perfectly
within the range of +1%.

At both room temperature and 150 °C, pearlitic specimens show a pronounced yield
strength, which is illustrated by the raw data presented in Figure [4.15]in a dark green color.
It can be seen that there is always a slight drop in stress during the strain controlled loading.

This effect is particularly strong when the yield point is reached for the first time.

600 ’
— 200 —
o
=
e 0
/
% -200
measurement
== second cycle
-400 shifted I
| | second cycle
-600 !

-1.5 -1.0 -05 0.0 0.5 1.0 1.5
strain (%)

Figure 4.15: Processing of measurement data with pronounced yield strength.

To avoid having to model this effect, but still be able to use the measurements for simulation
purposes, the Masing rule is applied as described in Subsection [4.5.2] The second half of the
hysteresis loop, depicted in olive, is shifted to the origin and reduced by half. The outcome,
displayed in pale green, is then separated into elastic and plastic components, enabling the
utilization of these measurements for simulation purposes. This approach has been employed
to process all data sets featuring pronounced yield strength. For the remaining measurements,
solely the elastic and plastic components were separated, and the results were thinned and
smoothed. A comprehensive summary of all the phase and temperature dependent flow curves
can be found in Figure [4.16]

The 4 plots in Figure show that the strength of decreases as expected from
martensite through bainite and pearlite to austenite. The flow curves of martensite and pearlite
differ by about a factor of 3, which is also a reason why the linear mixing rule used to calculate
the bainite flow curve failed. The bainite flow curves shown here are those determined inversely
using the [RVE|] The martensite and austenite data sets have another peculiarity. The dashed
curves are linearly interpolated values since no measurements were taken at these temperature
levels. In the case of austenite the entries marked with dashed lines are extrapolated values
based on measurements found in literature.

In the process of modeling the bainite flow curves using the RVE] a discrepancy was found
between the experimental and simulated results. To accurately represent the mixed structure
of the sample, each phase is assigned a corresponding number of elements in the [RVE] The
flow curves of martensite and pearlite were obtained from the measurements, but a reliable

estimation for bainite had to be made. The simulation result showed that the experimental

90 4 Heat Treatment of Railway Wheels

7z - — 6I=25°C 1
1400 L= 1400 — 0=150°C
S~ = 0=300°C
1200 7. ‘,/ = 1200 e 6=450°C -
L2 A _~»~
— 1000 7 — — 1000
© ¢ L ©
= S g
% 800 ,/// < % 800
7’ ——
2 7 2 —
S 600 — g 600 -
% 4 / @ | "1
400 — -— 0=25°C - 400
/ = 6=250°C
s 0=450°C
200 . o120°C - 200
=1 6=300 °C
0 ! ! 0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
plastic strain €p (%) plastic strain €p (%)
(a) Martensite (b) Bainite
1400 - 0=25°C . 1400 == 0=300°C -
— 0=150°C =1 0=400°C
— §=300°C ==+ 0=500°C
1200 e =450 C - 1200 6=600°C -
6=600°C 6=700°C
6=700°C
1000 H 1000
g g
2 800 2 800
o o
£ 600 £ 600
400 400
| [e] e ——
200 =~ 1 1 200 A= — C o ——
| | | | Zo===== | :
0 | | | | 0 I I I I
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
plastic strain €p/ [%] plastic strain €p [%]
(c) Pearlite (d) Austenite

Figure 4.16: Temperature dependent plastic material behavior of single phases of steel.

curve had a higher strength than the simulated curve. Theoretically, increasing the strength of
pure bainite would result in perfect agreement between experiment and simulation. However,
this approach would lead to a higher strength for bainite than martensite, which is not plausible.
Therefore, the closest bainite flow curves to the experimental results were chosen for the
analysis, resulting in a reasonable agreement between experiment and simulation. It is worth
noting that Figure does not show perfect agreement between the two curves due to this
limitation.

Another potential cause of error for the determination of the bainite flow curves could
be the manufacturing of the pure martensitic specimens. They were cooled at the maximum
possible rate, which still may have been too slow to produce a 100% pure martensite specimen.
If the interior of the specimen cools more slowly than the areas near the surface, this will
lead to an inhomogeneous phase distribution. To test this hypothesis, a microsection of
the martensitic specimen was prepared and examined under a light microscope. Figure [4.17]

illustrates a comparison of the center of the specimen with the edge region, showing an

4.7 Results and Discussion 91

CHRAS

(a) Edge (b) Center

Figure 4.17: Microsections on two distinct positions of a heat treated specimen. Based on
the conformity of the microsections both at the edge (a) and in the center (b) of the specimen,
a uniform distribution of martensite over the entire specimen cross-section can be assumed.

absolutely homogeneous microstructure over the entire specimen cross-section, confirming
that the microstructure is pure martensite. Therefore, it is concluded that the inhomogeneous
martensite sample assumption can be rejected and the bainite flow curves are determined as

discussed earlier.
4.7.3 Deformation Dilatometry

The deformation dilatometry tests were conducted using the DSI Gleeble 3800 thermomechan-
ical forming simulator. The specimens used in these tests were cylindrical in shape, and were
subjected to different cooling rates and external loads as defined in the experimental design of
Table [4.4] in Subsection The change in length of the specimen was measured perpen-
dicular to the loading direction by means of a laser, while temperature was monitored through
a thermocouple affixed to the specimens. Force-controlled load application was carried out,
taking into account the material's thermal expansion to convert the required stress into the
corresponding force.

The plots on the left side of Figure [4.18] show the results of the dilatometer tests. They
each consist of a reference measurement without additional load and then two measurements
each under tension and compression. Note that the signal was recorded perpendicular to the
load, and thus experiences negative strain under tension and positive strain under compression.

In the dilatometry plots of Figure [4.18] the vertical red line marks the time of load applica-
tion. Note that for the martensite measurement with the highest cooling rate the time of load
application is not immediately before the transformation temperature due to the gradual load
application of the system. Instead, a small safety margin is provided from the transformation
temperature. At the high cooling rate, it was crucial to ensure that the entire load was applied
to the specimen before transformation occurred. In the subsequent measurements, sufficient
time was available for full load application. The vertical black line serves as a reference for the
measurement of the total strain |g, which comprises the elastic , plastic , transformation
expansion [V} thermal and components The plastic, transformation expan-
sion and thermal components are already included in the reference measurement. Thus, the

92 4 Heat Treatment of Railway Wheels

0.0125
0.0100
— X
S 0gi=+150 —_
w 0.0050 T e— 0gi=+75 T <
— od,v/TIO 8 0.0000 X
0.0025 _: gzx;jgo 1 W x o regression
AetP _ I AEP 1
0.0000 & = 0.0025 ==~ X Gt sore0s
0 250 500 750 -200 -100 0 100 200
6rc (°C) Orc (°C)
a) Martensite b) GWJ Martensite
(a)
0.0125 - =138
==
0.0100 -— ggz=_45
. X Ag®
\'é 00075 Sty 00025 | '/
w 0.0050 =
8 0.0000
0.0025 S| regressi
"X ogher L
0.0000 ~0.0025 / X Gil=2.1946-05
0 250 500 750 -200 -100 0 100 200
6rc(°C) O4ir (MPa)
(c) Bainite (d) GWJ Bainite
0.0125
0.0100
Z 0.0075 ——— | P
5 R 0.0025 : >
w 0.0050 O
= 0.0000
0.0025 W — rogesgn
0.0000 ~0.0025 == X &hutrsre0s
-200 -100 0 100 200
Orc (°C)
(e) Pearlite (f) GWJ Pearlite

Figure 4.18: Determination of the parameter for multiple solid phase transformations
of [ER7 steel using dilatometry with additional load application during cooling.

strain can be determined directly by subtracting the elastic portion resulting from
the applied load.

These[TRIP|strains obtained are then plotted as a function of applied stress in the right-hand
plots of Figure [4.18] where the slope of each regression line represents the [GWJ]| transformation
coefficient [;] being sought.

4.7 Results and Discussion 93

4.7.4 ER7 Material Model for the Implementation in a Finite Element
Software

For a better overview the Table in this subsection presents a summary of all the material

parameters required to model the heat treatment process of a railway wheel made of [ER7]

parameters austenite martensite bainite pearlite

thermal expansion

107°-K™1 2.1818 0.8824 1.5035 1.43 +0.0002 - 0
transformation expansion
1-1072 - 0.95+7.978-10* - 0 0.4696 0.3100
displacive transformation kinetics
Orrs| °C - 290 - -
o - - 0.02 - -
diffusive transformation kinetics
s! - - 0.9202 1.0053
°C - - 495 565
°C - - 255 245
mJVvK - - 6.8769 6.3636
°C - - 825 955
BVK - - 0.0003 0.0003
- - - 1.9 1.8
°C - - 17 100
- - - 0.2 0.2
- - - 0.03 0.03

transformation induced plasticity (GWJ)
MPa—t - 1.697 -107° 2.194-107> 1.657-10°°

Table 4.8: Required material parameters to model the heat treatment process of a railway

wheel made of

4.7.5 Process Model for Heat Treatment of Wheels

This subsection describes the results of the process model described in Subsection [4.6.2] The
following topics are addressed: (1) the calibration of the heat transfer coefficient on the
water-quenched tread of the railway wheel, (2) the presentation and discussion of the phase

distribution in the wheel, (3) and a stress analysis of this process.

Heat transfer coefficient

Figure [4.19) displays the temperature distribution of the instrumented wheel during heat treat-
ment. The upper section of the figure depicts a close-up of the temperature evolution for
a point located close to the surface during the quenching. The lower left section portrays

the temperature profiles of all the instrumented points throughout the entire heat treatment

94 4 Heat Treatment of Railway Wheels

800

g 600
g
35
2400
]
Q
g 200
)

0 100 200 300 400 500 600 700

time (s)
(a)
800 ® ®
g2 £3 P3
28 | BS ¢ °
600 —8 | =5
o
v 3
2 P2 P5
g 40 TE
(]
Q
S
[
+ 200
P8 PS
'y °
0
0 1000 2000 3000 4000 5000 6000
time (s)
(b) (c)

Figure 4.19: Measurement of temperature at specific positions in the railway wheel during
heat treatment and comparison with results from simulation.

process. On the lower right, the positions of the points where the temperature was measured
in the experiment and analyzed in the simulation are presented for an additional orientation.

The top part of Figure illustrates the comparison between the temperature evolution
obtained from measurements and simulations. A point near the surface of the instrumented
wheel was chosen as an example, as the heat transfer at the tread surface has the greatest
impact at this point. The graph displays an almost perfect agreement between the temperature
curve obtained from measurement and the one obtained from simulation. This confirms the
choice of the temperature dependent heat transfer coefficient from Table [4.7] This is not
surprising since this agreement was exactly the target value for the calibration of the heat
transfer coefficient. Nevertheless, this agreement shows exactly how accurate the heat transfer
coefficient was determined. For all other points where temperature measurements were taken,
the agreement is just as good, confirming both the choice of heat transfer coefficients on the
remaining surfaces of the wheel and the temperature-dependent thermal conductivity of the
material used as an invariant quantity in the calibration.

In the lower left part of the Figure shows the temperature curves at different points
in the wheel. Here only the simulation results of the temperature curves are shown. This

4.7 Results and Discussion 95

is because at this resolution, the simulations and the measurements coincide perfectly. In
contrast to the temperature drop during quenching, it can be seen that the heat flux is already
reversed at the point where transport to the tempering furnace begins (shaded in yellow), and
most of the points heat up again. This happens even though heat is still being dissipated over
the entire surface of the wheel. This result shows that the heat stored in the wheel prevails over
the heat transferred to the air. Only the points farthest from the surface cool down further
during the transport. The heating in the tempering furnace (shaded in red) is moderate and
takes a relatively long time to completely heat the wheel.

The slope of the temperature profiles during quenching can be used to estimate the cool-
ing rates required for the experiments to determine the phase transformation kinetics. The
points used for the evaluation here reach a maximum cooling rate of 50 K/s (corresponding to
: 0.06), but if points are evaluated directly on the surface, the cooling rate reaches values up
to 300 K/s (corresponding to [\| = 0.01). To consider phase transformations at this positions
and consequently the resulting local property changes, the experiments for the material model

thus must also include these highest cooling rates.

Solid phase distribution

With the material model developed in Subsection [4.5.7] it is feasible to analyze the phase
composition during heat treatment. Figure [4.20] illustrates the distribution of the martensitic,
bainitic, and pearlitic phases after the heat treatment process and Figure shows the
distribution after the final machining to the required size of the rim of the railway wheel.
The proportion of the phase fraction is presented as a gradient ranging from 0% (in blue) to
100% (in red).

phase
fraction

0000000000
oRNwhrUONKLO

(a) Martensite (b) Bainite (c) Pearlite

Figure 4.20: Distribution of individual phases in a railway wheel after the heat treatment.

It is apparent that a small amount of martensite and bainite is formed during the heat
treatment. Instead, a pearlitic microstructure is dominant throughout the wheel. Martensite
and bainite are present only in a thin layer directly on the tread of the wheel.

During the modeling and meshing of the wheel, various partitions were defined to control
mesh fineness at specific parts of the wheel and enable model features like element removal,
as it was already used in the extension of the model of the wheelset axle described in Sub-

section [3.4.8] These partitions allow for a very fine mesh near the tread area. However, it

96 4 Heat Treatment of Railway Wheels

phase
fraction

OO000000000oR
oRNwhUONKLO

(a) Martensite (b) Bainite (c) Pearlite

Figure 4.21: Distribution of individual phases in a railway wheel after final machining.

is possible that the mesh fineness plays a role in the low amount of martensite observed. To
investigate this, simulations were performed with a mesh twice as fine, but the same phase
distribution was obtained, indicating that the selected elements were adequate to reproduce
the temperature gradients accurately.

Figures [4.20] and display the distribution of the phase fractions in the wheel before
and after final machining, with partitioning used to delete elements at the relevant positions.
The machining process removes approximately 5 mm of material relative to the original wheel
radius, with the ultimate goal of achieving a final diameter of 850 mm. The majority of the
machining occurs on the tread of the wheel and removes the higher strength phase components
in this region, resulting in a fully pearlitic microstructure throughout the wheel.

The low amount of martensite and bainite phases formed during heat treatment was un-
expected, given initial calculations that suggested a deeper region of high martensite content
directly at the tread. However, by accurately modeling the heat transfer using temperature
measurements of the instrumented wheel, the cooling rate was found to be reduced enough
to almost completely suppress the formation of these higher-strength phases. To confirm the
microstructure formed at and just below the surface, a fully fabricated wheel was cut and
metallographic sections were taken. This investigation verified the results of the [FE| model and
revealed a pearlitic-ferritic microstructure just beneath the surface of the tread, as depicted in

the optical microscope image of Figure [4.22]

Figure 4.22: Optical microscope image of the microstructure just beneath the tread of a fully
fabricated railway wheel made of .

4.7 Results and Discussion 97

Stress analysis

The previously discussed results focus primarily on the thermal effects of the analysis. However,
the ultimate goal of this model is to assess the stress state, which is strongly influenced by the
thermal behavior of the whole system. Therefore, it is crucial to also consider the mechanical
aspects of the problem. Figure [4.23|shows contour plots of the distributions of individual stress
components of the railway wheel after the heat treatment.

o, (MPa)

(a) Stress distribution of o.;.. (b) Stress distribution of o,.

ale(MPa)

350
300
250
200
150
100

50

0,,(MPa)
350
300
200
100
0
-100
-200

-300
-350

(c) Stress distribution of o . (d) Stress distribution of o, .

Figure 4.23: Distribution of residual stresses in a railway wheel after the heat treatment.

In a theoretical ideal scenario, residual stress formation and evolution in a thermally stressed
cylinder proceed as follows. During the cooling and contraction of the surface, the core remains
at a relatively high temperature, leading to the development of tensile stresses in the outer
shell and compressive stresses in the core. As the core remains at high temperatures, its yield
point is lower than that of the cooled shell, leading to compression and subsequently to plastic
compressive stresses. Further cooling causes the core to contract, but the still non-plastically
deformed outer shell inhibits this expansion, resulting in a stress reversal. As a consequence,
the outer shell experiences compressive stresses while the core reverses to tensile stresses. The
observed trend of stress development in the railway wheel aligns with the theoretical ideal case
of residual stress formation in a thermally stressed cylinder.

The results of the[finite element analysis (FEA)| of the railway wheel show the development

of compressive stresses on the tread in both radial and axial directions, with the highest
magnitude occurring directly at the transition of the flange to the straight part of the tread.
Although the axial compressive stresses are in the range of 350 MPa and may further increase
during operation due to superposition with the rolling contact stresses, they do not pose
a threat to operation. These compressive stresses have positive crack closure effects and
counteract the crack growth of so called head checks, a typical damage mode of rolling contact.

In the tangential direction the development of any stresses is minimal. Only tensile stresses

98 4 Heat Treatment of Railway Wheels

with peaks up to 250 MPa appear at the transition from the hub to the hub seat in the radii.
On the other hand, the tensile stresses in radial and axial directions concentrate also around
the hub of the railway wheel, with the radii at the transition to the hub seat exhibiting the
highest values of up to 400 MPa in the radial direction and in the range of 300 MPa in the
axial direction. The contour plot of the von Mises equivalent stresses in the lower right plot of
Figure confirms these results and shows stress maxima at the same radii. Furthermore,
stresses at the tread represent another maximum.

The analysis of the stress distribution in the railway wheel reveals that the two radii at
the transition between the hub and the hub seat are the most critical areas in terms of safety.
The overlapping tensile stress components from several directions at these points could initiate
cracks and accelerate crack growth. To enhance the safety of these components, measures
must be taken to reduce these tensile stresses. The process model developed in this work can
be used to simulate different heat treatment routes that can further optimize the currently
used heat treatment process with respect to these local stresses. Alternatively, subsequent
localized heat treatments can be applied to treat only the high-risk areas. These approaches
can help to mitigate the risks associated with these stress concentrations and improve the

overall safety of the railway wheel.

4.7.6 Block Braking of Railway Wheels

The analysis of block brakes in this work focuses specifically on the curved web of the railway
wheel. At the start of the braking process, the wheel already has a residual stress state resulting
from the preceding heat treatment. Figure displays the web section chosen for further
analysis, depicting the distribution of [o,,] stresses following the heat treatment. This stress
state serves as the initial condition for the braking simulation. As shown in the figure, tensile
stresses tend to manifest on the inside radii of the web, while compressive stresses tend to
occur on the outside radii. Notably, these stress values are already relatively high. However,
their impact remains benign as they counterbalance the stresses induced by the rolling of the
wheel under the weight of the train in service. This arises from the fact that the displacement
in r-direction induces compressive stresses at the inside radii and tensile stresses at the outside

radii.

outside radius 2

500 inside radius 1

outside radius 1

Figure 4.24: Distribution of residual stresses in the web of a SURA railway wheel after the
heat treatment. Figure taken from [114].

4.7 Results and Discussion 99

Figure serves to illustrate the heat input and the temperature evolution at important
time points during the process. Initially, the wheel is at room temperature. During block brak-
ing, heat is introduced into the wheel through the tread, gradually increasing until reaching its
peak after 2700 s. At this point, the braking process ends, and the wheel subsequently cools
across all surfaces. The depth of heat penetration into the wheel can be clearly observed.
Despite the rim's substantial mass, the extreme braking process leads to a significant temper-
ature rise, particularly at the surface. Moreover, the web exhibits a comparatively moderate

temperature increase, which holds significance for the subsequent stress analysis.

6 (°C) N

450 6(0)

400 450
350 400
300 350
250 300
200 250
150 200
100 150
50 r ¢ 100

0 I 58 l“—T(P
z z
(a) Temperature distribution at t = 0 s. (b) Temperature distribution at t = 1350 s.

6(°C)
450 433
350 339
300 250
200 150
i3
50 58 r<—T(p
0
z
(c) Temperature distribution at t = 2700 s. (d) Temperature distribution at t = 2800 s.

Figure 4.25: Temperature distribution in a railway wheel at various stages of the block braking
simulation. Figure taken from [114].

Figure shows the temperature evolution at the wheel’s tread. The red x's indicate
temperatures measured during the experimental setup, serving as target values for calibrating
the heat transfer coefficients and heat input of the block braking. It is evident that the
temperature after braking aligns precisely with the target value, and the temperature after
cooling exhibits minimal deviation. These findings validate the selected boundary conditions
of the process model.

Subsequently, the stress analysis focuses on the web, specifically the point displaying the
highest tensile stress in Figure[4.24] This point serves as a representative position for the anal-
ysis due to its exposure to the most significant stresses and stress redistributions. Figure [4.27
illustrates the stress-strain hysteresis of the [o,,] stress component over 30 braking cycles, each
consisting of 45 minutes of brake-induced heat input followed by 4 hours of cooling. Initially,
the stress is tensile, with an approximate magnitude of 550 MPa. Throughout the braking
process, the stress continues to rise, reaching a peak value of around 700 MPa. Only dur-

ing the cooling phase does the stress at this point diminish, eventually transitioning into the

100 4 Heat Treatment of Railway Wheels

500

target temperature 465 °C
reached temperature 464.4 °C
deviation: 0.1 %

0 (°C)

target temperature 80 °C
reached temperature 86.2 °C
deviation: 7.8 %

0 1000 2000 3000 4000 5000

t(s)
Figure 4.26: Temperature evolution at the tread of a railway wheel during block braking.
Figure taken from [114].

compressive range as the wheel cools. This pattern is consistent over the subsequent braking
cycles, where the stresses in the web change sign during each cycle. As long as the tread, and
thus the wheel rim is subjected to heat, the tensile stresses rise in the web. At the end of each
braking (at the maximum temperature), the web exhibits a tensile stress maximum. When the
wheel cools again the stresses transition into the compressive regime with notable high values.
As the number of cycles increases, the overall hysteresis stabilizes, featuring a stress ratio of

-1 and maximum stress values ranging between +400 and -400 MPa.

700

600

500

400

300

200

100

o(MPa)

-100

-200

—300

—400

-500
—-0.014 —0.012 —-0.010 —0.008 —0.006 —0.004 —0.002

Err (')

Figure 4.27: Stress-strain evolution at a critical position of the web of a railway wheel during
block braking. Figure taken from [114].

Similar behavior is observed at other points on the web, albeit with lower stress values.
These positions also undergo a sign change in stresses, where points initially exhibiting com-
pressive stresses after heat treatment transition into the tensile regime. It is important to note
that the simulated Gotthard ramp scenario represents an extreme and extraordinary thermal

load for a railway wheel. Nevertheless, the results demonstrate that such a braking process

4.8 Conclusions 101

induces significant changes in the stress state of the railway wheel. Interestingly, the tem-
perature increase in the web is moderate compared to the substantial impact on the stresses
at these positions. This phenomenon is likely explained by the expansion of the wheel's rim,
which absorbs the majority of the heat.

Stress redistributions yield further consequences. Localized property changes can be em-
ployed to design components that for example counteract the stresses experienced in service.
However, in the case of block brakes, it is revealed that the stresses introduced during heat
treatment are not merely eliminated but actually reversed. Consequently, additional surface
treatments of the rim would lose its effectiveness following the initial high heat input of block

braking in service.

4.8 Conclusions

This part of the thesis focuses on the development of a process model of the heat treatment
process of railway wheels. The model accurately simulates the heat transfer phenomena that
occur during various heating and cooling conditions. It successfully accounts for complex
physical processes, including quenching at temperature differences of up to 800 °C, which
result in the formation of high-strength phases on the wheel’s surface. The material model
developed for this process model is a key component of this research, as it accurately predicts
the formation of different phases in the steel and considers other complex effect such as[TRIP]

The development of such a material model necessitates careful preparation of the exper-
imental work. The rapid transformation behavior of the material posed a significant
challenge, requiring meticulous sample preparation and pushing the limits of the test rigs em-
ployed. However, the resulting material model is highly versatile and capable of accommodating
more intricate heat treatment processes beyond those investigated in this work. An initial step
in this direction has been taken by extending the model to incorporate block braking calcula-
tions. The findings highlight the crucial role of thermal stress in railway wheel performance

and emphasize the need for continued research in this area.

5 Summary

The primary aim of this thesis is to develop comprehensive process models for the manufac-
turing of railway components. These models are designed to encompass localized property
variations by both the material properties and those properties influenced by the manufactur-
ing process itself. These localized property variations affect the overall behavior of the railway
components. Specifically, for the cold rolling process employed in wheelset axle manufacturing,
the objective is to accurately quantify the stress distribution within the components and iden-
tify the key parameters influencing it. Additionally, the developed model aims to enable the
evaluation of the stress redistribution during service and maintenance operations. Regarding
the railway wheels, a significant focus is placed on addressing the localized property changes
arising from the non-uniform distribution of solid phases of steel affected by the heat treat-
ment. Consequently, an advanced material model is developed to account for this influence

and enhance the predictive capabilities of the model.

Scientific Contribution and Conclusion

The scientific contribution of this thesis is focused on the development of models for the
manufacturing of railway components, with a particular emphasis on residual stresses and
stress redistribution. It offers a deeper understanding of the evolution of production-induced
residual stresses in these components, providing novel insights into the underlying mechanisms
and influential factors during the manufacturing process of steel components. Regarding the

cold rolling of wheelset axles the main attainments are:

= development of a novel, versatile and efficient finite element process model specifically

designed for the cold rolling of wheelset axles

= implementation of new types of periodic boundary conditions and model features, which
restore the continuity of the cold rolling process in a discontinuous reduced model ge-

ometry

= increase in accuracy for determining the residual stress profile throughout the entire

component geometry of large components, such as wheelset axles

= increase in computation efficiency allows large parameter studies to be carried out, with

the results then being used to create software tools, such as PRESD

= extension of the model’s capabilities beyond manufacturing, as it allows for the examina-
tion of stress redistribution in cold rolled components under maintenance and in-service

conditions

104 5 Summary

For the subject area of heat treatment of railway wheels, the most important findings are:

= investigation of the influence of inhomogeneously distributed solid phases in the manu-

facturing process of railway wheels and their impact on the overall component behavior

= development of an advanced material model specifically designed to accurately capture
the unique characteristics of rapidly transforming materials like steel

= enhancement of the model’s precision in representing the material's response under ex-
treme and varying process conditions, including localized quenching during the heat

treatment stage

= incorporation of multiple solid phases in the material model, encompassing a wide range

of mechanical and metallurgical properties

= analysis of the significant changes in the residual stress field of the railway wheel resulting

from the heat input during block braking

The outcomes of this research pave the way for enhanced manufacturing processes, im-
proved component design, and more effective maintenance practices in the railway industry.
By incorporating the developed models and insights into industry practices, manufacturers
and engineers can make informed decisions to optimize the manufacturing process, improve

component performance, and ensure safe and reliable operation of railway components.

Outlook

The process models developed in this work hold great potential to further advance the process
optimization and component design in the railway industry. Integrating the calculated stress
fields into further analyses is a crucial next step, to enable for example the development of mod-
els to predict crack propagation under corrosive conditions and facilitating the implementation
of condition monitoring techniques. Continual research in this field is essential to enhance the
attractiveness and modernization of rail transportation. By leveraging the insights gained from
this thesis, future work can further optimize processes, improve component performance, and

contribute to the advancement of the railway industry.

List of Figures

2.1 Decomposition of the strain into an elastic and plastic part. Figure and caption |
adapted from [B] 6
[2.2 lllustration of the Mises yield surface in the principle stress space. Figure |
adapted from [6].| 7
2.3 The von Mises yield surface for the plane stress condition illustrating the di- |
rection of the incremental plastic strain normal to the tangent of the surface. |
Figure and caption adapted from [B] 8
[2.4 Change of the yield surface of (a) kinematic, (b) isotropic and (c) combined [
hardening. Figure adapted from [7].| 9
[2.5 Change in the crystal structure of steel during the transformation of austenite |
into pearlite. Figure adapted from [16].| 12
2.6 Change in the crystal structure during the transformation of austenite into |
martensite. Figure adapted from [16].| 13
[2.7 Various contributions of strain under load, temperature change and phase trans- |
formation. Figure adapted from [23[] 14
[2.8 Determination of the coefficients of the compliance matrix. Figure taken |
from [35] 18
[3.1 Wheelset comprised of an axle and two wheels including the destinations of the |
key components of a railway wheel |.00 24
[3.2 Schematic illustration of a multi-stage S-N curve| 25
[3.3 Manufacturing steps of a wheelset axle starting with a defect-free ingot with the |
process stages: cold cutting, heating of ingots, hammer forging, heat treatment |
in a furnace, heat treatment in a tank, machining, inspection and shipment. |
Figure adapted from [48]] 26
[3.4 Finished wheelset axle. Figure taken from [49].| 27
[3.5 Simplitied representation of the cold rolling process with the process-determining |
parameters: load (|L), feed (/f]), edge radius of the work roller ((Rwg|), work roller [
diameter (Dwg|) and axle diameter (Dawiel).|. - - 28
3.6 Simplified model geometry used in the|FE/model.| 30
[3.7 Coupling of nodes in the jijzlplane and arrangement of faces of the simplitied |
[FE[modell 34
[3.8 Coupling of nodes in the |4zl plane and arrangement of faces of the simplified |
[FEImodel] 35
[3.9 Spring elements used in|[FE[model.|o o000 37

106 List of Figures

[3.10 Multi point constrains of the [FE| model. Gold: connector elements, blue: ref- |

| erence points, green: [DOFs of components.| 39
[3.11 Model geometry of cold rolled axle with notch.| 42
B2 E . 1 | : | T i l

| transition between the coupled and uncoupled zones.| 43

[3.13 Contour plots of the residual |0, .| stresses, the position of the evaluation path |

| and the modeled movement of the work roller: (a) Reference model with 45° |

| aperture angle of the cylinder sector and (b) the corresponding updated model |

| with 6° aperture angle with an additional detail view.| 44

3.14 (a) Residual [o..| stresses and (b) equivalent plastic strain [c£| distributions of |

| the updated model with aperture angles 6° and 12° and the reference model |

| with an aperture angle of 45°. The two curves of the updated model with 6° |

| and 12° nearly coincide.|o 45

[3.15 Distribution of the normal stress components over entire axle geometry of the |

| cold rolled |FE| model with the process parameters feed |[f{ = 0.5 mm/rev and |
[load 1= 30 KNI 47

[3.16 Distribution of the normal stress components in the near surface region of the |

| cold rolled |FE| model with the process parameters feed |[f{ = 0.5 mm/rev and |
| load Il =30 kKNI 47

[3.17 |GUI| of the PRESD software tool. Left: definition of input parameters. Center: |
| stress and strain distributions. Right: input and result history.| 50

[3.18 Distribution of the normal stress component |o..| over entire axle geometry of |

| the cold rolled [FE| model with ditferent combinations of the process parameters |

[3.19 Distribution of the normal stress component |o. .| in the near surface region of |

| the cold rolled |FE[model with different combinations of the process parameters |

[3.20 Comparison of |[C(| measurement and [FE[simulation of four different combina- |

| tions of the process parameters feed |f{and load |L}|. 52

[3.21 Comparison of |C(| measurement of a cold rolled powered axle and a cold rolled |

| trailer axlel 53

[3.22 Comparison of |[XRD| measurement and |[FE| simulation on a cold rolled small |

| scale specimen.| 54

[3.23 Stress redistribution due to the removal of surface layers.| 55
B2LS [stribution d of K [d Tolled wheel 5] 56

[4.1 Steering effect of a slip-free wheelset on a tight curve (radius R) related to the |

| inner rail. Figure and caption taken from [87]] 60
[4.2 Manufacturing of wheels. Figure adapted from [48].|. 61

|4.3 Physical fields and coupling interactions involved in heat treatment processes. |
| Figure and caption adapted from [O1]] 63

List of Figures 107

|4.4 Top: Schematic representation of the dilatometer curve used to determine |

| the [TRIP| strain with the use of different load levels, showing the onset of |
| phase transformation and the onset of load application, as well as the changing |
| thermal expansion of the different phases. Bottom: Corresponding profile of |
| the additional load. Figure adapted from [105(. 69
|4.5 Different approaches for the mixingrule| 74
|4.6 Comparison of measured and simulated plastic material behavior of [ER7| steel |

| with a composition of 35:35:30 of martensite:bainite:pearlite.| 74
|4.7 Masing hypothesis: the stress strain curve of the first cycle doubles for the |

| second cycle. | 75
|4.8 Hot tensile test performed with an|RVElf 77
|4.9 Schematic of the quenching tank with a submerged wheel| 78
|4.10 Positions of thermocouples in instrumented railway wheel.| 79
|4.11 Boundary conditions of the heat treatment model during the water quenching |
.. 81
[4.12 [CCT]diagram of the|ERV|steel.| 85
[4.13 |CCT] of |ER7} comparison between measurement and simulation of the trans- |

| formation times of bainite and pearlite.|. 86
|4.14 Comparison of measured and modeled dilatometry signal and corresponding |

| evolution of the phase fraction for martensite and pearlite. The vertical lines |
| represent the onset of the respective phase transformation. lop: phase fraction |
| evolution. Bottom: dilatometry signals of the measurement, the |py[and the |
[TFEMISimulation] o o v oo et 87
|4.15 Processing of measurement data with pronounced vyield strength.|. 89
|4.16 Temperature dependent plastic material behavior of single phases of [ER7|steel.| 90
|4.17 Microsections on two distinct positions of a heat treated specimen. Based on |

| the conformity of the microsections both at the edge (a) and in the center (b) [
| of the specimen, a uniform distribution of martensite over the entire specimen |
[cross-section can be assumed. | L. 91
|4.18 Determination of the [GWJ| parameter for multiple solid phase transformations |

| of |ER7| steel using dilatometry with additional load application during cooling.|. 92
14.19 Measurement of temperature at specific positions in the railway wheel during |

| heat treatment and comparison with results from simulation.| 94
[4.20 Distribution of individual phases in a railway wheel after the heat treatment.|. . 95
|4.21 Distribution of individual phases in a railway wheel after final machining.[. . . . 96
14.22 Optical microscope image of the microstructure just beneath the tread of a |

| fully tfabricated railway wheel made of [ERY]| 96
|4.23 Distribution of residual stresses in a railway wheel after the heat treatment.| . . 97
|4.24 Distribution of residual stresses in the web of a SURA railway wheel after the |

| heat treatment. Figure taken from [114].|. 98
|4.25 Temperature distribution in a railway wheel at various stages of the block brak- |

| ing simulation. Figure taken from [114].| 99

108 List of Figures

|4.26 Temperature evolution at the tread of a railway wheel during block braking. |
Figure taken from [114].|. 100
|4.27 Stress-strain evolution at a critical position of the web of a railway wheel during |
block braking. Figure taken from [114f. 100

List of Tables

3.1 Maximum percentage content of the various specified elements of |[EA4T]| ac- |

cording to [47].| 31
[3.2 Parameters of combined isotropic-kinematic hardening behavior of |[EA4 T| used |
L forlFElsimulations). 38

[3.3 Values of the first parameter study for the influencing factors of the cold rolling |

ProCess.| 438

[3.4 Values of the second parameter study for the influencing factors of the cold |

rolling process.|. 49
3.5 Cold rolling parameters used for laboratory test on full scale wheelset axles.| . . 51
3.6 Cold rolling parameters used for laboratory test on small scale specimens.| . . . 54

4.1 Maximum percentage content of the various specified elements of |ER7| accord- |

ing to [84]] 66

|4.2 Cooling rates for generating the |[CCT]| for the |ER7| steel in two different rep- |
resentations: |\ is the time in hs for cooling from 800 °C to 500 °C, || is the |

corresponding rate of temperature change in K/s| 67
|4.3 Experimental design for the hot tensile tests of |ERY]| 69
|4.4 Experimental design for the deformation dilatometry tests of [ER7}| 70
|4.5 Temperature-dependent thermo-physical data of |[ERYVL|. 80
|4.6 Temperature and geometry dependent heat transfer coefficientfagl| 81

4.7 Temperature-dependent heat transfer coefficient for a water quenched surface.| 82

|4.8 Required material parameters to model the heat treatment process of a railway |

Bibliography

[1]

2]

[3]
[4]

[3]
[6]

[7]

[8]

[9]

[10]

[11]
[12]
[13]

[14]

[15]

O.-H. AG, “Zahlen, Daten, Fakten. Heute. Fiir morgen. Fiir uns.,” 2020. Last visited:
2022-07-05.

Umweltbundesamt GmbH, “Treibhausgase.” https://www.umweltbundesamt.at/
klima/treibhausgase, . Last visited: 2022-07-04.

OBB-Holding-AG, “OBB Klimaschutzstrategie 2030,” 2019. Last visited: 2022-07-05.

U. Zerbst and C. Klinger, “Anmerkungen zur auslegung und zum sicheren betrieb von
radsatzwellen aus der sicht von betriebsfestigkeit und bruchmechanik,” in 40. Tagung des
DVM-Arbeitskreises Betriebsfestigkeit-Die Betriebsfestigkeit als eine Schliisselfunktion
fiir die Mobilitit der Zukunft, vol. 140, pp. 69-80, 2013.

F. Dunne and N. Petrinic, Introduction to computational plasticity. OUP Oxford, 2005.

J. Besson, G. Cailletaud, J.-L. Chaboche, and S. Forest, Non-linear mechanics of mate-

rials, vol. 167. Springer Science & Business Media, 20009.

J. Chaboche, “A review of some plasticity and viscoplasticity constitutive theories,”
International Journal of Plasticity, vol. 24, no. 10, pp. 1642-1693, 2008. Special Issue
in Honor of Jean-Louis Chaboche.

J.-L. Chaboche, “Constitutive equations for cyclic plasticity and cyclic viscoplasticity,”
International journal of plasticity, vol. 5, no. 3, pp. 247-302, 1989.

Dassault Systémes, “Simulia user assistance 2019." https://help.3ds.com, . Last
visited: 2022-07-28.

G. Gottstein, Materialwissenschaft und Werkstofftechnik: Physikalische Grundlagen.
Springer-Verlag, 2013.

W. Callister and D. Rethwisch, Materials science and engineering. Wiley, 2011.
G. Totten, Steel heat treatment: metallurgy and technologies. CRC press, 2006.
W. Bleck, Werkstoffkunde Stahl fiir Studium und Praxis. Verlag Mainz, 2010.

S. Banerjee and P. Mukhopadhyay, Phase Transformations: Examples from Titanium
and Zirconium Alloys. Elsevier, 2010.

H. Dubbel and K.-H. Grote, DUBBEL: Taschenbuch fiir den Maschinenbau. Springer
Berlin Heidelberg, 2007.

https://www.umweltbundesamt.at/klima/treibhausgase
https://www.umweltbundesamt.at/klima/treibhausgase
https://help.3ds.com

112

BIBLIOGRAPHY

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Materials Science and Engineering Student, “Crystal structure, properties, interstitial
sites, and examples.” https://msestudent.com, . Last visited: 2023-04-25.

H. Bhadeshia and R. Honeycombe, Steels: microstructure and properties. Butterworth-
Heinemann, 2017.

J. Beddoes and J. G. Parr, “Introduction to stainless steels, 3,” 1999.

J.-B. Leblond, G. Mottet, and J. Devaux, “A theoretical and numerical approach to
the plastic behaviour of steels during phase transformations—i. derivation of general
relations,” Journal of the Mechanics and Physics of Solids, vol. 34, no. 4, pp. 395-409,
1986.

G. W. Greenwood and R. Johnson, “The deformation of metals under small stresses
during phase transformations,” Proceedings of the Royal Society of London. Series A.
Mathematical and Physical Sciences, vol. 283, no. 1394, pp. 403422, 1965.

T. Antretter, D. Zhang, and E. Parteder, “Modelling transformation induced plasticity—
an application to heavy steel plates,” steel research international, vol. 81, no. 8, pp. 675—
680, 2010.

R. Mahnken, A. Schneidt, and T. Antretter, “Macro modelling and homogenization for
transformation induced plasticity of a low-alloy steel,” International Journal of Plasticity,
vol. 25, no. 2, pp. 183—-204, 2009.

T. Antretter, Experimental and numerical investigations of the mechanics of martensitic

transformation. PhD thesis, University of Leoben, 2003.

B. Liscic, H. M. Tensi, L. C. Canale, and G. E. Totten, Quenching theory and technology.
CRC Press, 2010.

G. E. Totten, Handbook of residual stress and deformation of steel. ASM international,
2002.

C. Ruud, “A review of selected non-destructive methods for residual stress measure-
ment,” NDT international, vol. 15, no. 1, pp. 15-23, 1982.

V. Dive and S. Lakade, "Recent research progress on residual stress measurement using
non-destructive testing,” Materials Today: Proceedings, vol. 47, pp. 3282-3287, 2021.

B. Scholtes, Eigenspannungen in mechanisch randschichtverformten Werkstoffzustin-

den: Ursachen, Ermittlung und Bewertung. DGM Informationsgesellschaft, 1991.

M. Lindgren and T. Lepisto, “Relation between residual stress and barkhausen noise in
a duplex steel,” NDT & E International, vol. 36, no. 5, pp. 279-288, 2003.

S. Santa-Aho, A. Sorsa, A. Nurmikolu, and M. Vippola, “Review of railway track applica-
tions of barkhausen noise and other magnetic testing methods,” Insight-Non-Destructive
Testing and Condition Monitoring, vol. 56, no. 12, pp. 657-663, 2014.

https://msestudent.com

BIBLIOGRAPHY 113

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

N. Rossini, M. Dassisti, K. Benyounis, and A.-G. Olabi, “Methods of measuring residual
stresses in components,” Materials & Design, vol. 35, pp. 572-588, 2012.

F. Kandil, J. Lord, A. T. Fry, and P. Grant, “A review of residual stress measurement

methods-a guide to technique selection.,” NPL MaterialsCentre QueensRoad, 2001.

H.-J. Schindler and P. Bertschinger, “Some steps towards automation of the crack com-
pliance method to measure residual stress distributions,” in 5th International Conference
on Residual Stresses, Sweden, pp. 682—687, 1997.

H.-J. Schindler, “Experimental determination of crack closure by the cut compliance
technique,” ASTM Special Technical Publication, vol. 1343, pp. 175-190, 1999.

H.-P. Ganser, “Entwicklung einer Methode zur Bestimmung von Eigenspannungen in
Radsatzwellen mit Hilfe des Cut-Compliance-Verfahrens,” Interner Projektbericht Mate-
rials Center Leoben Forschung GmbH, 2015.

M. R. Hill, “The slitting method,” Practical residual stress measurement methods,
pp. 89-108, 2013.

G. S. Schajer and M. B. Prime, "Use of inverse solutions for residual stress measure-
ments,” Journal of engineering materials and technology, vol. 128, no. 3, pp. 375-382,
2006.

H. Baehr and K. Stephan, Wérme und Stoffiibertragung. Springer-Verlag, 2008.

P. Bockh and T. Wetzel, Wérmeiibertragung: Grundlagen und Praxis. Springer-Verlag,
2018.

M. Sander, Sicherheit und Betriebsfestigkeit von Maschinen und Anlagen. Berlin Hei-
delberg: Springer-Verlag, 2008.

U. Zerbst, S. Beretta, G. Kohler, A. Lawton, M. Vormwald, H. T. Beier, C. Klinger,
|. Cerny, J. Rudlin, T. Heckel, and D. Klingbeil, “Safe life and damage tolerance aspects
of railway axles - A review,” Engineering Fracture Mechanics, vol. 98, no. 1, pp. 214-271,
2013.

U. Zerbst and K. Madler, “Bruchmechanische Bewertungskonzepte fiir Bahnkomponen-
ten,” Materials Testing, vol. 46, no. 7-8, pp. 354-362, 2004.

T. Nguyen-Tajan and X. Lorang, “Euraxles—a global approach for design, production
and maintenance of railway axles: Wpl—-advances in fatigue load analysis and reliability
assessment of railway axles,” Materialwissenschaft und Werkstofftechnik, vol. 48, no. 7,
pp. 666-686, 2017.

J. Hug, V. Runzer, M. Traupe, H. Zenner, and A. Esderts, “Dauerfestigkeit von Rad-
satzwellen und Eisenbahnradern,” Materials Testing, vol. 46, no. 1-2, pp. 27-32, 2004.

114

BIBLIOGRAPHY

[45]

[46]

[47]

[48]
[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

DIN Deutsches Institut fiir Normung e.V., “EN13103: Railway applications-Wheelsets
and bogies-Non powered axles-Design method,” 2009.

DIN Deutsches Institut fiir Normung e.V., “EN13104: Railway applications-Wheelsets
and bogies-Powered axles-Design method,” 2009.

DIN Deutsches Institut fiir Normung e.V., “EN13261: Railway applications-Wheelsets
and bogies-Axles-Product requirements,” 2009.

Lucchini RS S.p.A, “Lucchini-Irs-axles-process,” 2022.
Lucchini RS S.p.A, “Lucchini-10-Hollow-Bored-Axle,” .

D. Regazzi, S. Cantini, S. Cervello, S. Foletti, A. Pourheidar, and S. Beretta, “Improv-
ing fatigue resistance of railway axles by cold rolling: Process optimisation and new

experimental evidences,” International Journal of Fatigue, vol. 137, p. 105603, 2020.

P. Delgado, |I. Cuesta, J. Alegre, and A. Diaz, “State of the art of Deep Rolling,”
Precision Engineering, vol. 46, pp. 1-10, 2016.

F. Klocke and S. Mader, “Fundamentals of the deep rolling of compressor blades for

turbo aircraft engines,” Steel research international, vol. 76, no. 2-3, pp. 229-235, 2005.

R. Nalla, I. Altenberger, U. Noster, G. Liu, B. Scholtes, and R. Ritchie, “On the influence
of mechanical surface treatments—deep rolling and laser shock peening—on the fatigue

behavior of ti—6al-4v at ambient and elevated temperatures,” Materials Science and
Engineering: A, vol. 355, no. 1-2, pp. 216-230, 2003.

G. Majzoobi, K. Azadikhah, and J. Nemati, “The effects of deep rolling and shot peening
on fretting fatigue resistance of Aluminum-7075-T6," Materials Science and Engineering:
A, vol. 516, no. 1-2, pp. 235-247, 2009.

F. Henning and E. Moeller, Handbuch Leichtbau: Methoden, Werkstoffe, Fertigung.
Carl Hanser Verlag GmbH Co KG, 2020.

B. Denkena, J. Dege, and C. Miiller, “Beeinflussung der Randzoneneigenschaften des
Werkstoffs 42CrMo4 durch einen geregelten Festwalzprozess,” HTM Journal of Heat
Treatment and Materials, vol. 61, no. 1, pp. 43-46, 2006.

K. Rottger, G. Wilcke, and S. Mader, “Festwalzen—eine Technologie fiir effizienten Le-
ichtbau,” Materialwissenschaft und Werkstofftechnik: Entwicklung, Fertigung, Priifung,
Eigenschaften und Anwendungen technischer Werkstoffe, vol. 36, no. 6, pp. 270-274,
2005.

J. Maierhofer, H.-P. Ganser, and R. Pippan, “Prozessmodell zum Einbringen
von Eigenspannungen durch Festwalzen,” Materialwissenschaft und Werkstofftechnik,
vol. 11, no. 45, pp. 982-989, 2014.

BIBLIOGRAPHY 115

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

K. Choi and J. Pan, “Simulations of stress distributions in crankshaft sections under
fillet rolling and bending fatigue tests,” International Journal of Fatigue, vol. 31, no. 3,
pp. 544-557, 2009.

Y. Yen, P. Sartkulvanich, and T. Altan, "“Finite element modeling of roller burnishing
process,” CIRP annals, vol. 54, no. 1, pp. 237-240, 2005.

D. Mombeini and A. Atrian, “Investigation of deep cold rolling effects on the bending
fatigue of brass C38500,"” Latin American Journal of Solids and Structures, vol. 15, 2018.

F. Klocke, V. Backer, A. Timmer, and H. Wegner, “Innovative FE-analysis of the roller
burnishing process for different geometries,” ed. E Onate, Barcelona: CIMNE, pp. 1-4,
20009.

A. Manouchehrifar and K. Alasvand, "Finite element simulation of deep rolling and
evaluate the influence of parameters on residual stress,” Recent researches in applied
mechanics, pp. 121-127, 2009.

F. Mohammadi, R. Sedaghati, and A. Bonakdar, “Finite element analysis and design
optimization of low plasticity burnishing process,” The International Journal of Advanced
Manufacturing Technology, vol. 70, no. 5, pp. 1337-1354, 2014.

Z. Liu, C. Fu, M. Sealy, and Y. Guo, “Prediction and analysis of residual stress and
deflections of almen strip by burnishing,” Production Engineering, vol. 11, no. 3, pp. 265-
274, 2017.

M. Uddin, C. Hall, R. Hooper, E. Charrault, P. Murphy, and V. Santos, “Finite element
analysis of surface integrity in deep ball-burnishing of a biodegradable AZ31B Mg alloy,”
Metals, vol. 8, no. 2, p. 136, 2018.

A. Hadadian and R. Sedaghati, “Investigation on thermal relaxation of residual stresses
induced in deep cold rolling of Ti-6Al-4V alloy,” The International Journal of Advanced
Manufacturing Technology, vol. 100, no. 1, pp. 877-893, 2019.

S. Hassani-Gangaraj, M. Carboni, and M. Guagliano, “Finite element approach toward
an advanced understanding of deep rolling induced residual stresses, and an application
to railway axles,” Materials & Design, vol. 83, pp. 689703, 2015.

P. Balland, L. Tabourot, F. Degre, and V. Moreau, “An investigation of the mechanics
of roller burnishing through finite element simulation and experiments,” International

Journal of Machine tools and manufacture, vol. 65, pp. 29-36, 2013.

M. Sayahi, S. Sghaier, and H. Belhadjsalah, “Finite element analysis of ball burnishing
process: comparisons between numerical results and experiments,” The International
Journal of Advanced Manufacturing Technology, vol. 67, no. 5, pp. 1665-1673, 2013.

116

BIBLIOGRAPHY

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

J. Perenda, J. Trajkovski, A. Zerovnik, and |. Prebil, “Residual stresses after deep rolling
of a torsion bar made from high strength steel,” Journal of Materials Processing Tech-
nology, vol. 218, pp. 89-98, 2015.

G. Majzoobi, F. Zare Jouneghani, and E. Khademi, “Experimental and numerical studies
on the effect of deep rolling on bending fretting fatigue resistance of Al7075," The
International Journal of Advanced Manufacturing Technology, vol. 82, no. 9, pp. 2137-
2148, 2016.

J. Perenda, J. Trajkovski, A. Zerovnik, and |. Prebil, “Modeling and experimental vali-
dation of the surface residual stresses induced by deep rolling and presetting of a torsion

bar,” International Journal of Material Forming, vol. 9, no. 4, pp. 435-448, 2016.

F. Klocke, V. Backer, H. Wegner, and M. Zimmermann, “Finite element analysis of
the roller burnishing process for fatigue resistance increase of engine components,” Pro-
ceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering
Manufacture, vol. 225, no. 1, pp. 2-11, 2011.

V. Bécker, F. Klocke, H. Wegner, A. Timmer, R. Grzhibovskis, and S. Rjasanow, "“Anal-
ysis of the deep rolling process on turbine blades using the FEM/BEM-coupling,” in
IOP Conference Series: Materials Science and Engineering, vol. 10, p. 012134, IOP
Publishing, 2010.

L. Fonseca, A. Cantisano, and A. Faria, "Numerical modelling of deep rolling influence
over crankshaft bending and correlation with fatigue behaviour,” Fatigue & Fracture of
Engineering Materials & Structures, vol. 43, no. 4, pp. 672—683, 2020.

M. Traupe and A. Landaberea, “EURAXLES—-A global approach for design, production
and maintenance of railway axles: WP2—-development of numerical models for the anal-
ysis of railway axles,” Materialwissenschaft und Werkstofftechnik, vol. 48, pp. 687-698,
2017.

D. Trauth, F. Klocke, P. Mattfeld, and A. Klink, “Time-efficient prediction of the surface
layer state after deep rolling using similarity mechanics approach,” Procedia CIRP, vol. 9,
pp. 29-34, 2013.

G. Kuffner, “Achsentausch beim ICE: Der Eisenbahn-Stahl kehrt zuriick,” Frankfurter
Allgemeine, 2010. URL: https://www.faz.net/-gyg-16g93, Last visited: 2022-07-20.

K. A. Meyer, R. Skrypnyk, and M. Pletz, “Efficient 3d finite element modeling of cyclic
elasto-plastic rolling contact,” Tribology International, vol. 161, p. 107053, 2021.

U. Zerbst, C. Klinger, and D. Klingbeil, “Structural assessment of railway axles—a critical

review,” Engineering failure analysis, vol. 35, pp. 54-65, 2013.

A. Pourheidar, L. Patriarca, S. Beretta, and D. Regazzi, “Investigation of fatigue crack
growth in full-scale railway axles subjected to service load spectra: Experiments and
predictive models,” Metals, vol. 11, no. 9, p. 1427, 2021.

BIBLIOGRAPHY 117

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

J. Bialowas, M. Pletz, S. Gapp, and J. Maierhofer, “A method to reduce computation

time in finite element simulations of deep rolling,” Procedia structural integrity, 2023.

DIN Deutsches Institut fiir Normung e.V., “EN13262: Railway applications-Wheelsets
and bogies-Wheels-Product requirements,” 2009.

Union Internationale der Chemins de Fer, “UIC510-5: Technische Zulassung von
Vollradern-Anwendungsdokument fiir die EN13979-1,"” 2007.

DIN Deutsches Institut fiir Normung e.V., “EN13979: Railway applications-Wheelsets
and bogies-Monobloc wheels-Technical approval procedure-Partl: Forged and rolled
wheels,” 2010.

K. Grote and E. Antonsson, Springer handbook of mechanical engineering, vol. 10.
Springer, 2009.

J. lhme, Schienenfahrzeugtechnik. Springer, 2016.

J. Ahlstréom and B. Karlsson, “Modified Railway Wheel Steels: Production and Evalu-
ation of Mechanical Properties with Emphasis on Low-Cycle Fatigue Behavior,” Metal-
lurgical and Materials Transactions A, vol. 40, no. 7, pp. 1557-1567, 2009.

D. Mazumdar and J. W. Evans, Modeling of steelmaking processes. CRC press, 2009.

C. Simsir and C. H. Giir, “A fem based framework for simulation of thermal treat-
ments: Application to steel quenching,” Computational Materials Science, vol. 44, no. 2,
pp. 588-600, 2008.

M. Schemmel, P. Prevedel, R. Schongrundner, W. Ecker, and T. Antretter, “Modelling of
phase transformations and residual stress formation in hot-work tool steel components,”
in European Conference of Heat Treatment and 21st IFHTSE Congress, pp. 285-292,
2014.

M. Schemmel, P. Prevedel, R. Schongrundner, W. Ecker, and T. Antretter, “Size effects
in residual stress formation during quenching of cylinders made of hot-work tool steel,”

Advances in Materials Science and Engineering, vol. 2015, 2015.

S. Brunbauer, G. Winter, T. Antretter, P. Staron, and W. Ecker, “Residual stress and
microstructure evolution in steel tubes for different cooling conditions—simulation and

verification,” Materials Science and Engineering: A, vol. 747, pp. 73-79, 2019.

S. Leitner, G. Winter, J. Klarner, T. Antretter, and W. Ecker, “Model-based residual

stress design in multiphase seamless steel tubes,” Materials, vol. 13, no. 2, p. 439, 2020.

K. Prabitz, M. Pichler, T. Antretter, H. Schubert, B. Hilpert, M. Gruber, R. Sierlinger,
and W. Ecker, “Validated multi-physical finite element modelling of the spot welding
process of the advanced high strength steel dpl200hd,” Materials, vol. 14, no. 18,
p. 5411, 2021.

118

BIBLIOGRAPHY

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

K. M. Prabitz, M. Z. Asadzadeh, M. Pichler, T. Antretter, C. Beal, H. Schubert,
B. Hilpert, M. Gruber, R. Sierlinger, and W. Ecker, “Liquid metal embrittlement of
advanced high strength steel: Experiments and damage modeling,” Materials, vol. 14,
no. 18, p. 5451, 2021.

S. Leitner, G. Winter, J. Klarner, T. Antretter, and W. Ecker, “Residual stress evolution
in low-alloyed steel at three different length scales,” Materials, vol. 16, no. 7, 2023.

S. N. Lingamanaik and B. K. Chen, “Thermo-mechanical modelling of residual stresses
induced by martensitic phase transformation and cooling during quenching of railway
wheels,” Journal of Materials Processing Technology, vol. 211, no. 9, pp. 1547-1552,
2011.

S. N. Lingamanaik and B. K. Chen, “Prediction of residual stresses in low carbon bainitic—
martensitic railway wheels using heat transfer coefficients derived from quenching exper-

iments,” Computational materials science, vol. 77, pp. 153-160, 2013.

F. Brunel, J.-F. Brunel, P. Dufrénoy, and F. Demilly, “Prediction of the initial residual
stresses in railway wheels induced by manufacturing,” Journal of thermal stresses, vol. 36,
no. 1, pp. 37-55, 2013.

M. MiloSevi¢, A. Miltenovi¢, M. Bani¢, and M. Tomi¢, “Determination of residual stress
in the rail wheel during quenching process by fem simulation,” Facta Universitatis, Series:
Mechanical Engineering, vol. 15, no. 3, pp. 413-425, 2017.

Y. Tian, Z. Tan, J. Wang, R. Wang, Y. Liu, and M. Zhang, “Experiment and finite
element analysis of asymmetrical hardness induced by quenching in railway wheel,” En-
gineering Failure Analysis, vol. 133, p. 105959, 2022.

J.-B. Leblond, J. Devaux, and J. Devaux, “Mathematical modelling of transformation
plasticity in steels i: Case of ideal-plastic phases,” International journal of plasticity,
vol. 5, no. 6, pp. 551-572, 1989.

S. Neubert, A. Pittner, and M. Rethmeier, "“Experimental determination of trip-
parameter k for mild-and high-strength low-alloy steels and a super martensitic filler

material,” SpringerPlus, vol. 5, pp. 1-16, 2016.

G. Besserdich, B. Scholtes, H. Miiller, and E. Macherauch, “Consequences of transforma-
tion plasticity on the development of residual stresses and distortions during martensitic

hardening of sae 4140 steel cylinders,” Steel research, vol. 65, no. 1, pp. 41-46, 1994.

D. P. Koistinen, “A general equation prescribing the extent of the austenite-martensite
transformation in pure iron-carbon alloys and plain carbon steels,” Acta metallurgica,
vol. 7, pp. 59-60, 1959.

R. Garrett, S. Xu, J. Lin, and T. Dean, “A model for predicting austenite to bainite
phase transformation in producing dual phase steels,” International Journal of Machine
Tools and Manufacture, vol. 44, no. 7-8, pp. 831-837, 2004.

BIBLIOGRAPHY 119

[109] R. Mahnken, A. Schneidt, S. Tschumak, and H. Maier, “On the simulation of austen-
ite to bainite phase transformation,” Computational Materials Science, vol. 50, no. 6,
pp. 1823-1829, 2011.

[110] R. Hill, “Elastic properties of reinforced solids: some theoretical principles,” Journal of
the Mechanics and Physics of Solids, vol. 11, no. 5, pp. 357-372, 1963.

[111] "DIN EN 13715:2020-10, Railway applications-Wheelsets and bogies-Wheels-Tread pro-
file,” 2006.

[112] R. Marek and K. Nitsche, “Praxis der warmeiibertragung,” 2015.
[113] V. D. I. V.-G. V. und Chemieingenieurwesen (GVC), Vdi-Wairmeatlas. Springer, 2006.

[114] D. Scheinast, "Simulation der thermischen belastung blockgebremster eienbahnrader,”
2021.

[115] B. Breuer and K. Bill, “Brake manual. fundamentals, components, systems, vehicle

dynamics; bremsenhandbuch. grundlagen, komponenten, systeme, fahrdynamik,” 2003.

[116] P. Berger, R. Rau, J. Galander, and R. Loebner, “Bremssysteme von schienenfahrzeu-
gen," Bremsenhandbuch: Grundlagen, Komponenten, Systeme, Fahrdynamik, pp. 389-
410, 2017.

A Appendix

A.1 RVE py-Script

—+— coding: mbcs —x—
Author:

J. Bialowas

from abaqus import *

from mesh import x*

from abaqusConstants import x*
from caeModules import x
import os

import numpy as np

import math

session.journalOptions.setValues(replayGeometry=COORDINATE, recoverGeometry=COORDINATE)
TOL = le—6
workDir =os.path.abspath('")

jobName = 'test_of_sub’

odb_name = 'test_of_sub’

odbPath = workDir + "\\' + jobName 4+’ .odb’
rptPath = workDir + jobName +'.rpt’

Lambda = [0.013, 0.150, 5.000,]
LambdaStr = ['0p013', '0pl50', '5p000°]

y ;g I /g I /g Sy /
1+ A A 1

I i g
11+ 1~
General purpose function
I B A) I
-+ 1+

/
s
: +
def calc_true_strain(engineering_strain):

Ly Ly

-t 1

true_strain = math.log(l+engineering_strain)
return true_strain
#

def calc_true_stress(engineering_stress, engineering_strain):

true_stress = engineering_stress x (l+engineering_strain)

return true_stress

NN NN f gy NN NN NN NN NN
LI e LI e -+ I B e LI e

Functions for Abaqus

B o B o B B B B B B O B B B O O O B O
def import_inp ():

m = mdb. ModelFromlnputFile(inputFileName="outputlO.inp ',

name="outputl0’)

define physical constants of the model

absolute zero in C

Stefan Boltzmann in t—mm-s

m.setValues(absoluteZero = 0.0,

stefanBoltzmann = 5.670371e—11)

m = mdb. models| ' outputl0’]
m.setValues(noPartslnputFile=ON)

p = m.parts['PART-1"]

print 'model fromyinp,file imported’
return m, p

#

def create_geometry(m, 1):

s = m. ConstrainedSketch (name='__profile__ "', sheetSize=200.0)
s.rectangle(pointl=(0, 0), point2=(l, 1))

p = m.Part(dimensionality=THREE_D, name='Part—RVE’, type=DEFORMABLE_BODY)
p.BaseSolidExtrude (depth=Il, sketch=s)

del s

return p

A2

A Appendix

#

def create_assembly(m, p, m_name):

m.rootAssembly . DatumCsysByDefault (CARTESIAN)

a = mdb. models [m_name]. rootAssembly

inst = m.rootAssembly.Instance(dependent=ON, name='Part—RVE—1', part=p)
return a, inst

#

def create_step(m, kelvin):

Loadtxt of temperature amplitude with distinct

and define step time with last entry

lambda value

amp_Temp = np.loadtxt(os.path.join (os.getcwd(), ' Temp_Lambda_0p03'),

skiprows=0,

delimiter=","

unpack=True)

amp_Temp [1][:] = amp_Temp[1][:] + kelvin
Define Quench—step

m. StaticStep(initiallnc=0.01,
maxlnc=12.0,

maxNumlnc=10000,
minlnc=1e—07,
name='Step—Quench’,
nlgeom=0ON,

previous="lInitial ",
timePeriod=amp_Temp[0][—1])

return amp_Temp

#

def create_Amplitude(m, amp_Temp):
m. TabularAmplitude (data=((0.0, 0.0),
(1.0, 1.0),

(2.0, 0.0),

(3.0, —1.0),

(4.0, 0.0)),

name="Amp—Tens—Comp ',
smooth=SOLVER_DEFAULT,
timeSpan=STEP)

m. TabularAmplitude (data=(tuple (map(tuple ,

name="Amp—Temp ',
smooth=SOLVER_DEFAULT,
timeSpan=STEP)

return

#

zip (xamp_Temp)))) .

def create_material(m, p, kelvin):

mat = m. Material (name="ER7-TD")

Import material properties from files
USER DEFINED material properties

mat. expansion.setValues (type=ISOTROPIC,

mat. Creep (law=USER, table=())
mat. HeatGeneration ()

Create and assign Section

userSubroutine=ON)

m. HomogeneousSolidSection(material="ER7-TD",

name='Section—RVE’', thickness=None)
p.Set(cells=p.cells[:], name='Set_all")
p.SectionAssignment(offset=0.0,
offsetType=MIDDLE_SURFACE,
region=p.sets ['Set_all’],
sectionName="Section—RVE"',
thicknessAssignment=FROM_SECTION)

#

offsetField="",

def create_pl_material ():

with open(’'ER7_plastic_TD ",
f.write('Yield Stress [MPa],
f.write(’1000.0, 0.0, 20.0,

‘w’) as f:

0.0, 1.0,

Plastic Strain [—], Temperature [C], A phase, M phase,
0.0,

0.0\n")

f.write('2000.0, 0.02, 20.0, 0.0, 1.0, 0.0,0.0\n")

#
def create_RPs(m,a):

REFD = a.ReferencePoint(point=(0.0,
a.features.changeKey(fromName='RP—1",

0.0,

0.0))
toName="REFD ")

B phase, P, phase\n’)

A.1 RVE py-Script

A3

a.Set(name='Set—REFD ',
REFS = a.ReferencePoint(point=(0.0,
a.features.changeKey(fromName='RP—1",
a.Set(name='Set—REFS',

referencePoints=(a.
0.0, 0.0))

toName="REFS ")
referencePoints=(a

referencePoints [REFD.id],

.referencePoints [REFS.id],

))

))

#
def create_mesh(p, |, nr_elements):

Assign Element Type
p.setElementType(elemTypes=(ElemType(elemCode=C3D8,
ElemType(elemCode=C3D6, elemLibrary=STANDARD) ,
ElemType(elemCode=C3D4, elemLibrary=STANDARD)),
regions=(p.sets[’'Set_all']))
p.seedPart(deviationFactor=0.1, minSizeFactor=0.1,
p.seedEdgeByNumber(constraint=FINER,

size=1./nr_

elemLibrary=STANDARD) ,

elementsx1)

edges=p.edges.findAt(((0.0, |, 0.25%1),)),

number=nr_elements)

p.generateMesh ()

#

def create_p_sets(p, inst, |):

Corners

pset_geom_C_000 = p.Set(name="pSet—C_000', vertices=p.vertices.findAt(((0.0, 0.0, 0.0),)))
pset_geom_C_L00 = p.Set(name="pSet—C_L00', vertices=p.vertices.findAt(((l, 0.0, 0.0),)))
pset_geom_C_OLO = p.Set(name="pSet—C_0LO', vertices=p.vertices.findAt(((0.0, I, 0.0),)))
pset_geom_C_00L = p.Set(name="pSet—C_00L', vertices=p.vertices.findAt(((0.0, 0.0, 1),)))
pset_geom_C_LOL = p.Set(name="pSet—C_LOL', vertices=p.vertices.findAt(((!, 0.0, 1),)))
pset_geom_C_LLO = p.Set(name="pSet—C_LLO', vertices=p.vertices.findAt(((!, I, 0.0),)))
pset_geom_C_LLL = p.Set(name="pSet—C_LLL"', vertices=p.vertices.findAt(((l, I, 1),)))
pset_geom_C_OLL = p.Set(name="pSet—C_OLL', vertices=p.vertices.findAt(((0.0, I, 1),)))
Edges without vertices

pset_geom_E_X00 = p.Set(edges=p.edges.findAt(((!/2, 0.0, 0.0),)), name='pSet—E_XO00",
xVertices=p.vertices.findAt(((0.0, 0.0, 0.0),), ((I, 0.0, 0.0),),))

pset_geom_E_LOX = p.Set(edges=p.edges.findAt(((!, 0.0, 1/2),)), name='pSet—E_LOX",
xVertices=p.vertices.findAt(((l, 0.0, 0.0),), ((I, 0.0, 1),),))

pset_geom_E_XOL = p.Set(edges=p.edges.findAt(((!1/2, 0.0, |),)), name='pSet—E_XOL',
xVertices=p.vertices.findAt(((0.0, 0.0, 1),), ((I, 0.0, 1),),))

pset_geom_E_00X = p.Set(edges=p.edges.findAt(((0.0, 0.0, 1/2),)), name='pSet—E_00X",
xVertices=p.vertices.findAt(((0.0, 0.0, 0.0),), ((0.0, 0.0, 1),),))

pset_geom_E_0X0 = p.Set(edges=p.edges.findAt (((0.0, |/2, 0),)), name='pSet—E_O0X0',
xVertices=p.vertices.findAt(((0.0, 0.0, 0.0),), ((0.0, I, 0.0),),))

pset_geom_E_LX0 = p.Set(edges=p.edges.findAt(((!, 1/2, 0),)), name='pSet—E_LX0",
xVertices=p.vertices.findAt(((l, 0.0, 0.0),), ((I, I, 0.0),),))

pset_geom_E_LXL = p.Set(edges=p.edges.findAt(((l, 1/2, 1),)), name='pSet—E_LXL",
xVertices=p.vertices.findAt (((l, 0.0, 1),), ((I, I, 1),),))

pset_geom_E_OXL = p.Set(edges=p.edges.findAt(((0.0, 1/2, 1),)), name='pSet—E_OXL',
xVertices=p.vertices.findAt(((0.0, 0.0, 1),), ((0.0, I, 1),),))

pset_geom_E_XLO = p.Set(edges=p.edges.findAt(((!/2, I, 0),)), name='pSet—E_XLO',
xVertices=p.vertices.findAt(((0.0, |, 0.0),), ((I, I, 0.0),),))

pset_geom_E_LLX = p.Set(edges=p.edges.findAt (((l, I, 1/2),)), name='pSet—E_LLX",
xVertices=p.vertices . findAt (((!, I, 0.0),), ((I, 1, 1),),))

pset_geom_E_XLL = p.Set(edges=p.edges.findAt(((1/2, I, 1),)), name='pSet—E_XLL",
xVertices=p.vertices.findAt (((0.0, I, 1),), ((I, I, 1),),))

pset_geom_E_OLX = p.Set(edges=p.edges.findAt(((0.0, I, 1/2),)), name='pSet—E_OLX",
xVertices=p.vertices.findAt(((0.0, I, 0.0),), ((0.0, I, 1),),))

Faces without edges

pset_geom_F_X0X = p.Set(faces=p.faces.findAt(((1/2, 0.0, 1/2),)), name='pSet—F_X0X",
xEdges=p.edges. findAt (

((0.0, 0.0, 1/2),),

(1, 0.0, 1/2),),

((1/2, 0.0, 1),),

((1/2, 0.0, 0.0),),))

pset_geom_F_XX0 = p.Set(faces=p.faces.findAt(((1/2, 1/2, 0.0),)), name='pSet—F_XX0',
xEdges=p.edges. findAt(

((0.0, 1/2, 0.0),),

(r/2, 1, 0.0),),

(1, 1/2, 0.0),),

((1/2, 0.0, 0.0),),))

pset_geom_F_0XX = p.Set(faces=p.faces.findAt(((0.0, 1/2, 1/2),)), name='pSet—F_OXX",
xEdges=p.edges. findAt(

((0.0, 1/2, 1),),

((0.0, I, 1/2),),

((0.0, 1/2, 0.0),),

((0.0, 0.0, 1/2),),))

pset_geom_F_XLX = p.Set(faces=p.faces.findAt(((1/2, I, 1/2),)), name='pSet—F_XLX',

xEdges=p.edges. findAt(
(0.0, 1, 1/2),),
(cr,ro1/2),),

A4 A Appendix

(/2. 1, 1),),

((1/2,1,0.0),),))

pset_geom_F_XXL = p.Set(faces=p.faces.findAt(((1/2, 1/2, 1),)), name='pSet—F_XXL',
xEdges=p.edges. findAt (

((0.0, 1/2, 1),),

((r/2, 1, 1.,

(o172, 1.,

((r/2, 0.0, 1),),))

pset_geom_F_LXX = p.Set(faces=p.faces.findAt(((!, 1/2, 1/2),)), name='pSet—F_LXX",
xEdges=p.edges. findAt(

(o172, 1)),

(11, 1/2),),

(1, 172, 0.0),),

(1, 0.0, 1/2),),)

magic

p.regenerate ()

#

def create_a_sets(a, inst, |):

Corners

set_geom_C_000 = a.Set(name='Set—C_000', vertices=inst.vertices.findAt(((0.0, 0.0, 0.0),
set_geom_C_L00 = a.Set(name='Set—C_L00', vertices=inst.vertices.findAt(((l, 0.0, 0.0),)
set_geom_C_OLO = a.Set(name='Set—C_OLO', vertices=inst.vertices.findAt(((0.0, |, 0.0),)
set_geom_C_00L = a.Set(name='Set—C_00L', vertices=inst.vertices.findAt(((0.0, 0.0, 1),)
set_geom_C_LOL = a.Set(name='Set—C_LOL', vertices=inst.vertices.findAt(((l, 0.0, 1),)))
set_geom_C_LLO = a.Set(name="Set—C_LLO', vertices=inst.vertices.findAt(((l, I, 0.0),)))
set_geom_C_LLL = a.Set(name="Set—C_LLL', vertices=inst.vertices.findAt(((l, I, 1),)))
set_geom_C_OLL = a.Set(name='Set—C_OLL', vertices=inst.vertices.findAt(((0.0, | 1),)))
Edges without vertices

set_geom_E_X00 = a.Set(edges=inst.edges.findAt(((1/2, 0.0, 0),))., name='Set—E_XO00"’
xVertices=inst.vertices.findAt (((0.0, 0.0, 0.0),), ((I, 00 0.0),),))
set_geom_E_LOX = a.Set(edges=inst.edges.findAt(((!, 0.0, 1/2),)), name='Set—E_LOX",
xVertices=inst.vertices.findAt(((l, 0.0, 0.0),), ((l, 0.0, 1),),))

set_geom_E_XOL = a.Set(edges=inst.edges.findAt(((!/2, 0.0, I),)), name='Set—E_XOL’
xVertices=inst.vertices.findAt(((0.0, 0.0, I),), ((I, 0.0, 1),),))

set_geom_E_00X = a.Set(edges=inst.edges.findAt(((0.0, 0.0, 1/2),)), name='Set—E_00X",
xVertices=inst.vertices.findAt(((0.0, 0.0, 0.0),), ((0.0, 0.0, 1),),))
set_geom_E_O0X0 = a.Set(edges=inst.edges.findAt(((0.0, /2, 0),)), name='Set—E_0X0’
xVertices=inst.vertices.findAt(((0.0, 0.0, 0.0),), ((0.0, I, 0.0),),))
set_geom_E_LX0 = a.Set(edges=inst.edges.findAt(((!, 1/2, 0),)), name='Set—E_LXO0",
xVertices=inst.vertices.findAt(((I, 0.0, 0.0),), ((l, I, 0.0),),))

set_geom_E_LXL = a.Set(edges=inst.edges.findAt(((!l, 1/2, 1),)), name='Set—E_LXL"’
xVertices=inst.vertices.findAt (((I, 0.0,),), ((I, I, 1),),))

set_geom_E_OXL = a.Set(edges=inst.edges.findAt(((0.0, 1/2,),)), name='Set—E_OXL"’
xVertices=inst.vertices.findAt (((0.0, 0.0, 1),), ((0.0, I, 1),),))

set_geom_E_XLO = a.Set(edges=inst.edges.findAt(((!1/2, |, 0),)), name='Set—E_XLO’
xVertices=inst.vertices.findAt(((0.0, I, 0.0),), ((I, I, 0.0),),))

set_geom_E_LLX = a.Set(edges=inst.edges.findAt(((!, |, 1/2),)), name='Set—E_LLX",
xVertices=inst.vertices.findAt (((I, I, 0.0),), ((I, I, 1),),))

set_geom_E_XLL = a.Set(edges=inst.edges.findAt(((1/2, |, 1),)), name='Set—E_XLL’
xVertices=inst.vertices.findAt (((0.0, I,),), ((I, I, 1),)

set_geom_E_OLX = a.Set(edges=inst.edges.findAt(((0.0, I, 1/2),)), name='Set—E_OLX"’
xVertices=inst.vertices.findAt (((0.0, |, 0.0),), ((0.0, I, 1),),))

Faces without edges

set_geom_F_X0X = a.Set(faces=inst.faces.findAt(((1/2, 0.0, 1/2),)), name='Set—F_X0X",
xEdges=inst.edges.findAt(

((0.0, 0.0, 1/2),),

(1, 0.0, 1/2),),

((1/2, 0.0, 1),),

((1/2, 0.0, 0.0),),))

set_geom_F_XX0 = a.Set(faces=inst.faces.findAt(((1/2, 1/2, 0.0),)), name='Set—F_XX0’
xEdges=inst.edges.findAt(

((0.0, 1/2, 0.0),),

((1/2, 1, 0.0),),

((r, 1/2, 0.0),)

((1/2, 0.0, 0.0),),))

set_geom_F_0XX = a.Set(faces=inst.faces.findAt(((0.0, 1/2, 1/2),)), name='Set—F_OXX",
xEdges=inst.edges.findAt(

((0.0, 1/2, 1),),

((0.0, 1, I/2)).

((0.0, 1/2, 0.0),),

(o0, 0.0, 172, 30 1)

set_geom_F_XLX = a.Set(faces=inst.faces.findAt(((!1/2, |, 1/2),)), name='Set—F_XLX’

xEdges=inst .edges.findAt(

((0.0, 1, 1/2),),
(11, 1/2),),
(cr/2, 1, 1))
((r/2, 1, 0.0),),))

A.1 RVE py-Script

A5

set_geom_F_XXL = a.Set(faces=inst.faces.findAt(((1/2, 1/2, 1),
xEdges=inst.edges.findAt(

((0.0, /2, 1),),

/2, 1,1,),

((ro 172, 1)),

((1/2, 00, 1),).))

set_geom_F_LXX = a.Set(faces=inst.faces.findAt(((I, 1/2, 1/2),

xEdges=inst .edges. findAt(

(Cr, /2, 1),),
(cr, ro1/2),),
((r, 1/2, 0.0),),
((r, 0.0, 1/2),),))
magic

p.regenerate ()
a.regenerate()

#node sets from geometry sets

Vertices

set_node_C_000 = a.Set(
nodes=set_geom_C_000. nodes ,
name="N_Set—C_000")

set_node_C_L00 = a.Set(
nodes=set_geom_C_L0O0. nodes,
name="N_Set—C_L00")

set_node_C_0OLO = a.Set(
nodes=set_geom_C_0OLO. nodes,
name='N_Set—C_0LO0")

set_node_C_00L = a.Set(
nodes=set_geom_C_00L . nodes ,
name="N_Set—C_00L ")

set_node_C_LOL = a.Set(

nodes=set_geom_C_LOL . nodes,
name="N_Set—C_LOL")

set_node_C_LLO = a.Set(
nodes=set_geom_C_LLO. nodes,
name="N_Set—C_LLO")

set_node_C_LLL = a.Set(
nodes=set_geom_C_LLL.nodes,
name='N_Set—C_LLL")

set_node_C_OLL = a.Set(
nodes=set_geom_C_OLL.nodes,
name="N_Set—C_0OLL")

Edges

set_node_E_X00 = a.Set(nodes=set_geom_E_XO00.
name="N_Set—E_X00")

set_node_E_LOX = a.Set(nodes=set_geom_E_LOX.
name='N_Set—E_LOX")

set_node_E_XOL = a.Set(nodes=set_geom_E_XOL.
name="N_Set—E_XOL ")

set_node_E_00X = a.Set(nodes=set_geom_E_00X.
name='N_Set—E_00X")

set_node_E_O0X0 = a.Set(nodes=set_geom_E_0XO0.
name="N_Set—E_0X0")

set_node_E_LX0 = a.Set(nodes=set_geom_E_LXO0.
name='N_Set—E_LX0")

set_node_E_LXL = a.Set(nodes=set_geom_E_LXL.
name="N_Set—E_LXL")

set_node_E_OXL = a.Set(nodes=set_geom_E_OXL.
name='N_Set—E_0XL ")

set_node_E_XLO = a.Set(nodes=set_geom_E_XLO.
name='N_Set—E_XL0")

set_node_E_LLX = a.Set(nodes=set_geom_E_LLX.
name='N_Set—E_LLX")

set_node_E_XLL = a.Set(nodes=set_geom_E_XLL.
name="N_Set—E_XLL")

set_node_E_OLX = a.Set(nodes=set_geom_E_0OLX.
name="N_Set—E_0LX")

#Faces

set_node_F_XO0X = a.Set(
nodes=set_geom_F_XO0X. nodes,
name="N_Set—F_X0X")

set_node_F_XX0 = a.Set(
nodes=set_geom_F_XXO0. nodes ,
name="N_Set—F_XX0")

set_node_F_0XX = a.Set(
nodes=set_geom_F_0XX. nodes ,
name="N_Set—F_0XX")

set_node_F_XLX = a.Set(
nodes=set_geom_F_XLX. nodes,

nodes ,

nodes ,

nodes ,

nodes ,

nodes ,

nodes ,

nodes ,

nodes ,

nodes ,

nodes ,

nodes ,

nodes ,

)) ., name='Set—F_XXL',

)), name='Set—F_LXX",

A6

A Appendix

name="N_Set—F_XLX")
set_node_F_XXL = a.Set(
nodes=set_geom_F_XXL. nodes,
name="N_Set—F_XXL")
set_node_F_LXX = a.Set(
nodes=set_geom_F_LXX. nodes,
name="N_Set—F_LXX")

Unsorted nodes sets

faces

nodes_F_O0XX = [x.label

a.SetFromNodelLabels(name='Unsorted—Set—F_O0XX",

nodes_F_LXX = [x.label

nodes_F_X0X = [x.label

nodes_F_XLX = [x.label

nodes_F_XX0 = [x.label

nodes_F_XXL = [x.label

#edges

nodes_E_X00 = [x.label

nodes_E_LOX = [x.label

nodes_E_XOL = [x.label

a.SetFromNodeLabels(name='Unsorted—Set—E_XOL ",

nodes_E_00X = [x.label

nodes_E_0X0 = [x.label

a.SetFromNodeLabels(name='Unsorted—Set—E_0X0",

nodes_E_LX0 = [x.label

nodes_E_LXL = [x.label

a.SetFromNodeLabels(name='Unsorted—Set—E_LXL ",

nodes_E_OXL = [x.label

a.SetFromNodelLabels(name='Unsorted—Set—E_OXL ",

nodes_E_XLO = [x.label

a.SetFromNodeLabels(name='Unsorted—Set—E_XLO ",

nodes_E_LLX = [x.label

a.SetFromNodelLabels(name='Unsorted—Set—E_LLX",

nodes_E_XLL = [x.label

a.SetFromNodeLabels(name='Unsorted—Set—E_XLL ",

nodes_E_OLX = [x.label

#

for x in a.sets[’'Set—F_0XX'].nodes]

nodelabels=((

for x in a.sets['Set—F_LXX']. nodes]
a.SetFromNodeLabels(name='Unsorted—Set—F_LXX",

nodelLabels=((

for x in a.sets[’'Set—F_XO0X'].nodes]
a.SetFromNodelLabels(name='Unsorted—Set—F_X0X",

nodelabels=((

for x in a.sets['Set—F_XLX']. nodes]
a.SetFromNodeLabels(name='Unsorted—Set—F_XLX",

nodelLabels=((

for x in a.sets[’'Set—F_XX0'].nodes]
a.SetFromNodelLabels(name='Unsorted—Set—F_XX0",

nodelabels=((

for x in a.sets[’'Set—F_XXL']. nodes]
a.SetFromNodeLabels(name='Unsorted—Set—F_XXL",

nodelLabels=((

for x in a.sets[’'Set—E_XO00']. nodes]
a.SetFromNodeLabels(name='Unsorted—Set—E_X00",

nodelLabels=((

for x in a.sets[’'Set—E_LOX'].nodes]
a.SetFromNodelLabels(name='Unsorted—Set—E_LOX ",

nodelabels=((

for x in a.sets[’'Set—E_XOL']. nodes]

nodelLabels=((

for x in a.sets[’'Set—E_00X'].nodes]
a.SetFromNodelLabels(name='Unsorted—Set—E_00X ",

nodelabels=((

for x in a.sets[’'Set—E_0X0']. nodes]

nodelLabels=((

for x in a.sets[’'Set—E_LX0'].nodes]
a.SetFromNodelLabels(name='Unsorted—Set—E_LX0",

nodelabels=((

for x in a.sets[’'Set—E_LXL']. nodes]

nodelLabels=((

for x in a.sets[’'Set—E_OXL'].nodes]

nodelabels=((

for x in a.sets[’'Set—E_XLO']. nodes]

nodelLabels=((

for x in a.sets[’'Set—E_LLX'].nodes]

nodelabels=((

for x in a.sets[’'Set—E_XLL']. nodes]

nodelLabels=((

for x in a.sets[’'Set—E_OLX'].nodes]
a.SetFromNodelLabels(name='Unsorted—Set—E_OLX ",

nodelabels=((

"Part—RVE-1",

'Part—RVE-1",

"Part—RVE-1",

'"Part—RVE-1",

"Part—RVE-1",

'"Part—RVE-1",

'"Part—RVE-1",

"Part—RVE-1",

"Part—RVE-1",

"Part—RVE-1",

"Part—RVE-1",

"Part—RVE-1",

"Part—RVE-1",

"Part—RVE-1",

"Part—RVE-1",

"Part—RVE-1",

"Part—RVE-1",

"Part—RVE-1",

nodes_F_0XX),
nodes_F_LXX),
nodes_F_X0X),
nodes_F_XLX),
nodes_F_XX0),

nodes_F_XXL),

nodes_E_XO00),
nodes_E_LO0X),
nodes_E_XOL),
nodes_E_00X),
nodes_E_0X0),
nodes_E_LX0),
nodes_E_LXL),
nodes_E_0OXL),
nodes_E_XL0),
nodes_E_LLX),
nodes_E_XLL),

nodes_E_0LX),

def create_equations(m

equations for

terms=((1.0,
(—1.0,
(-1.0,

terms=((1.0,
(—1.0,
(-1.0,

terms=((1.0,
(—1.0,
(-1.0,

terms=((1.0,
(—1.0,
(-1.0,

terms=((1.0,
(-1.0,
(-1.0,

terms=((1.0,
(-1.0,
(-1.0,

terms=((1.0,
(—1.0,
(—1.0,

"Unsorted—Set—F_0XX",
"Set—REFD ',
m. Equation (name='Eq—F_LXX-DOF-2",
"Unsorted—Set—F_LXX"
"Unsorted—Set—F_0XX", 2),

'Set—REFS ',
m. Equation (name='Eq—F_LXX-DOF-3",
"Unsorted—Set—F_LXX"
"Unsorted—Set—F_0XX", 3),

'Set—REFS ',
m. Equation (name='Eq—F_XLX-DOF-1",
"Unsorted—Set—F_XLX"
1),

1))

1))

3)))

"Unsorted—Set—F_X0X",
'Set—REFS ',
m. Equation (name='Eq—F_XLX-DOF-2",
"Unsorted—Set—F_XLX'
"Unsorted—Set—F_X0X", 2),

"Set—REFD ',
m. Equation (name='Eq—F_XLX-DOF-3",
"Unsorted—Set—F_XLX"
"Unsorted—Set—F_X0X", 3),

'Set—REFS ',
m. Equation (name='Eq—F_XXL-DOF-1",
"Unsorted—Set—F_XXL'
1),

1))

2)))

2)))

"Unsorted—Set—F_XX0",
'Set—REFS ',

3)))

):

faces and reference points
m. Equation (name='Eq—F_LXX-DOF-1",
"Unsorted—Set—F_LXX"
1),

1),

unsorted=True)
unsorted=True)
unsorted=True)
unsorted=True)
unsorted=True)

unsorted=True)

unsorted=True)
unsorted=True)
unsorted=True)
unsorted=True)
unsorted=True)
unsorted=True)
unsorted=True)
unsorted=True)
unsorted=True)
unsorted=True)
unsorted=True)

unsorted=True)

A.1 RVE py-Script

A7

m. Equation (name='Eq—F_XXL-DOF-2",
terms=((1.0, 'Unsorted—Set—F_XXL’
(—1.0, 'Unsorted—Set—F_XX0', 2),
(—1.0, 'Set—REFS', 2)))

m. Equation (name='Eq—F_XXL-DOF-3",

2),

terms=((1.0, 'Unsorted—Set—F_XXL', 3),

(—1.0, '"Unsorted—Set—F_XX0', 3),
(—1.0, 'Set—REFD', 3)))

equations for edges and reference points

m. Equation (name='Eq—E_XL0-DOF-1",
terms=((1.0, 'Unsorted—Set—E_XLO"’
(—1.0, 'Unsorted—Set—E_X00", 1),
(—1.0, 'Set—REFS’, 1)))

m. Equation (name='Eq—E_XL0O-DOF-2",
terms=((1.0, 'Unsorted—Set—E_XLO"’
(—1.0, 'Unsorted—Set—E_X00", 2),
(—1.0, 'Set—REFD’, 2)))

m. Equation (name='Eq—E_XL0-DOF-3" ,
terms=((1.0, 'Unsorted—Set—E_XLO"’
(—1.0, 'Unsorted—Set—E_X00", 3),
(—1.0, 'Set—REFS’, 2)))

m. Equation (name='Eq—E_XOL-DOF-1",
terms=((1.0, 'Unsorted—Set—E_XOL"’
(—1.0, 'Unsorted—Set—E_X00", 1),
(—1.0, 'Set—REFS’', 3)))

m. Equation (name='Eq—E_XOL-DOF-2",
terms=((1.0, 'Unsorted—Set—E_XOL"’
(—1.0, 'Unsorted—Set—E_X00", 2),
(—1.0, 'Set—REFS’, 2)))

m. Equation (name='Eq—E_XOL-DOF-3",
terms=((1.0, 'Unsorted—Set—E_XOL"’
(—1.0, 'Unsorted—Set—E_X00", 3),
(—1.0, 'Set—REFD’, 3)))

m. Equation (name='Eq—E_XLL-DOF-1",
terms=((1.0, 'Unsorted—Set—E_XLL"’
(—1.0, 'Unsorted—Set—E_X00", 1),
(—1.0, 'Set—REFS’', 1),

(—1.0, 'Set—REFS', 3)))

m. Equation (name='Eq—E_XLL-DOF-2",
terms=((1.0, 'Unsorted—Set—E_XLL"’
(—1.0, 'Unsorted—Set—E_X00", 2),
(—1.0, 'Set—REFD’, 2),

(—1.0, 'Set—REFS', 2)))

m. Equation (name='Eq—E_XLL-DOF-3",

terms=((1.0, 'Unsorted—Set—E_XLL",

(—1.0, 'Unsorted—Set—E_X00", 3),
(—1.0, 'Set—REFS’', 2),

(—1.0, 'Set—REFD', 3)))

m. Equation (name='Eq—E_O0XL-DOF-1",
terms=((1.0, 'Unsorted—Set—E_OXL"’
(—1.0, 'Unsorted—Set—E_0X0', 1),
(—1.0, 'Set—REFS', 3)))

m. Equation (name='Eq—E_O0XL-DOF-2",
terms=((1.0, 'Unsorted—Set—E_OXL"’
(—1.0, 'Unsorted—Set—E_0X0', 2),
(—1.0, 'Set—REFS', 2)))

m. Equation (name='Eq—E_O0XL-DOF-3",
terms=((1.0, 'Unsorted—Set—E_OXL"’
(—1.0, 'Unsorted—Set—E_0X0', 3),
(—1.0, 'Set—REFD', 3)))

m. Equation (name='Eq—E_LX0-DOF-1",
terms=((1.0, 'Unsorted—Set—E_LXO0’
(—1.0, 'Unsorted—Set—E_0X0', 1),
(—1.0, 'Set—REFD', 1)))

m. Equation (name='Eq—E_LX0-DOF-2",

terms=((1.0, 'Unsorted—Set—E_LX0",

(—1.0, 'Unsorted—Set—E_0X0', 2),
(—1.0, 'Set—REFS', 1)))
m. Equation (name='Eq—E_LX0-DOF-3",
terms=((1.0, 'Unsorted—Set—E_LXO0’
(—1.0, 'Unsorted—Set—E_0X0', 3),
(—1.0, 'Set—REFS', 3)))
m. Equation (name='Eq—E_LXL-DOF-1",
terms=((1.0, 'Unsorted—Set—E_LXL"’
(—1.0, 'Unsorted—Set—E_0X0', 1),
(—1.0, 'Set—REFD', 1),
(—1.0, 'Set—REFS', 3)))
m. Equation (name='Eq—E_LXL-DOF-2",
terms=((1.0, 'Unsorted—Set—E_LXL"’

1),

A8

A Appendix

(—1.0, 'Unsorted—Set—E_0X0', 2),
(—1.0, 'Set—REFS', 1),

(—1.0, 'Set—REFS', 2)))

m. Equation (name='Eq—E_LXL-DOF-3",
terms=((1.0, 'Unsorted—Set—E_LXL', 3),
(—1.0, 'Unsorted—Set—E_0X0', 3),
(—1.0, 'Set—REFS’', 3),

(—1.0, 'Set—REFD', 3)))

m. Equation (name='Eq—E_LOX-DOF-1",
terms=((1.0, 'Unsorted—Set—E_LOX', 1
(—1.0, 'Unsorted—Set—E_00X', 1),
(—1.0, 'Set—REFD', 1)))

m. Equation (name='Eq—E_LOX-DOF-2",
terms=((1.0, 'Unsorted—Set—E_LOX', 2
(—1.0, 'Unsorted—Set—E_00X', 2),
(—1.0, 'Set—REFS', 1)))

m. Equation (name='Eq—E_LOX-DOF-3",
terms=((1.0, 'Unsorted—Set—E_LOX', 3
(—1.0, 'Unsorted—Set—E_00X", 3),
(—1.0, 'Set—REFS', 3)))

m. Equation (name='Eq—E_OLX-DOF-1",
terms=((1.0, 'Unsorted—Set—E_OLX', 1
(—1.0, 'Unsorted—Set—E_00X', 1),
(—1.0, 'Set—REFS', 1)))

m. Equation (name='Eq—E_OLX-DOF-2",
terms=((1.0, 'Unsorted—Set—E_OLX', 2
(—1.0, 'Unsorted—Set—E_00X", 2),
(—1.0, 'Set—REFD', 2)))

m. Equation (name='Eq—E_OLX-DOF-3",
terms=((1.0, 'Unsorted—Set—E_OLX', 3
(—1.0, 'Unsorted—Set—E_00X", 3),
(—1.0, 'Set—REFS', 2)))

m. Equation (name='Eq—E_LLX-DOF-1",
terms=((1.0, 'Unsorted—Set—E_LLX', 1
(—1.0, 'Unsorted—Set—E_00X', 1),
(—1.0, 'Set—REFD’, 1),

(—1.0, 'Set—REFS', 1)))

m. Equation (name='Eq—E_LLX-DOF-2",
terms=((1.0, 'Unsorted—Set—E_LLX", 2
(—1.0, 'Unsorted—Set—E_00X', 2),
(—1.0, 'Set—REFS', 1),

(—=1.0, 'Set—REFD', 2)))

m. Equation (name='Eq—E_LLX-DOF-3",
terms=((1.0, 'Unsorted—Set—E_LLX", 3
(—1.0, 'Unsorted—Set—E_00X', 3),
(—1.0, 'Set—REFS', 3),

(—1.0, 'Set—REFS', 2)))

equations for corners and reference points
m. Equation (name='Eq—C_L00-DOF-1",
terms=((1.0, 'N_Set—C_L00", 1),
(—1.0, 'N_Set—C_000", 1),

(—1.0, 'Set—REFD', 1)))

m. Equation (name='Eq—C_L00-DOF-2",
terms=((1.0, 'N_Set—C_L00", 2),
(—1.0, 'N_Set—C_000", 2),

(—1.0, 'Set—REFS', 1)))

m. Equation (name='Eq—C_L00-DOF-3",
terms=((1.0, 'N_Set—C_L00", 3),
(—1.0, 'N_Set—C_000", 3),

(—1.0, 'Set—REFS', 3)))

m. Equation (name='Eq—C_0OLO-DOF-1",
terms=((1.0, 'N_Set—C_0LO", 1),
(—1.0, 'N_Set—C_000", 1),

(—1.0, 'Set—REFS', 1)))

m. Equation (name='Eq—C_0OLO0-DOF-2",
terms=((1.0, 'N_Set—C_0LO", 2),
(—1.0, 'N_Set—C_000", 2),

(—1.0, 'Set—REFD', 2)))

m. Equation (name='Eq—C_0OLO0-DOF-3",
terms=((1.0, 'N_Set—C_0LO", 3),
(—1.0, 'N_Set—C_000", 3),

(—1.0, 'Set—REFS’', 2)))

m. Equation (name='Eq—C_00L-DOF-1",
terms=((1.0, 'N_Set—C_00L', 1),
(—1.0, 'N_Set—C_000", 1),

(—1.0, 'Set—REFS', 3)))

m. Equation (name='Eq—C_00L-DOF-2",
terms=((1.0, 'N_Set—C_00L', 2),
(—1.0, 'N_Set—C_000", 2),

A.1 RVE py-Script

A9

(—1.0, 'Set—REFS', 2)))

m. Equation (name='Eq—C_00L-DOF-3",
terms=((1.0, 'N_Set—C_0OL", 3),

(—1.0, 'N_Set—C_000", 3),

(—1.0, 'Set—REFD', 3)))

m. Equation (name='Eq—C_LLO-DOF-1",
terms=((1.0, 'N_Set—C_LLO", 1),

(—1.0, 'N_Set—C_000", 1),

(—1.0, 'Set—REFD', 1),

(—1.0, 'Set—REFS’', 1)))

m. Equation (name='Eq—C_LLO-DOF-2",
terms=((1.0, 'N_Set—C_LLO", 2),

(—1.0, 'N_Set—C_000", 2),

(—1.0, 'Set—REFS’, 1),

(—1.0, 'Set—REFD', 2)))

m. Equation (name='Eq—C_LLO-DOF-3",
terms=((1.0, 'N_Set—C_LLO", 3),

(—1.0, 'N_Set—C_000", 3),

(—1.0, 'Set—REFS’', 3),

(—1.0, 'Set—REFS', 2)))

m. Equation (name='Eq—C_LOL-DOF-1",
terms=((1.0, 'N_Set—C_LOL", 1),

(—1.0, 'N_Set—C_000", 1),

(—1.0, 'Set—REFD’, 1),

(—1.0, 'Set—REFS', 3)))

m. Equation (name='Eq—C_LOL-DOF-2",
terms=((1.0, 'N_Set—C_LOL", 2),

(—1.0, 'N_Set—C_000", 2),

(—1.0, 'Set—REFS’, 1),

(—1.0, 'Set—REFS’', 2)))

m. Equation (name='Eq—C_LOL-DOF-3",
terms=((1.0, 'N_Set—C_LOL", 3),

(—1.0, 'N_Set—C_000", 3),

(—1.0, 'Set—REFS’, 3),

(—1.0, 'Set—REFD', 3)))

m. Equation (name='Eq—C_OLL-DOF-1",
terms=((1.0, 'N_Set—C_OLL", 1),

(—1.0, 'N_Set—C_000", 1),

(—1.0, 'Set—REFS’', 1),

(—1.0, 'Set—REFS', 3)))

m. Equation (name='Eq—C_OLL-DOF-2",
terms=((1.0, 'N_Set—C_OLL", 2),

(—1.0, 'N_Set—C_000", 2),

(—1.0, 'Set—REFD’, 2),

(—1.0, 'Set—REFS', 2)))

m. Equation (name='Eq—C_OLL-DOF-3",
terms=((1.0, 'N_Set—C_OLL", 3),

(—1.0, 'N_Set—C_000", 3),

(—1.0, 'Set—REFS’, 2),

(—1.0, 'Set—REFD', 3)))

m. Equation (name='Eq—C_LLL-DOF-1",
terms=((1.0, 'N_Set—C_LLL", 1),

(—1.0, 'N_Set—C_000", 1),

(—1.0, 'Set—REFD’, 1),

(—1.0, 'Set—REFS’', 1)
(—1.0, 'Set—REFS', 3)))

m. Equation (name='Eq—C_LLL-DOF-2",
terms=((1.0, 'N_Set—C_LLL", 2),

(—1.0, 'N_Set—C_000", 2),

(—1.0, 'Set—REFS’', 1),
(—1.0, 'Set—REFD', 2),
(—1.0, 'Set—REFS', 2)))

m. Equation (name='Eq—C_LLL-DOF-3",
terms=((1.0, 'N_Set—C_LLL", 3),

(—1.0, 'N_Set—C_000", 3),

(—1.0, 'Set—REFS', 3),
(—1.0, 'Set—REFS', 2),
(=1.0, 'Set—REFD’, 3)))

#

def create_boundary(m, a):
Initial step
m. DisplacementBC(amplitude=UNSET, createStepName="Initial ',

distributionType=UNIFORM, fieldName="", localCsys=None, name='BC—C000’,

region=a.sets ['N_Set—C_000"],

ul=SET, u2=SET, u3=SET, url=UNSET, ur2=UNSET, ur3=UNSET)
Load step

amp = 0.01

m. DisplacementBC (amplitude="Amp—Tens—Comp ',

Al10 A Appendix

createStepName='Step—Hot—Tensile—Test ',
distributionType=UNIFORM,

fieldName="", fixed=OFF,

localCsys=None,

name='BC—Tens—Comp ',

region=m.rootAssembly.sets['Set—REFD '],

ul=UNSET, u2=amp, u3=UNSET, url=UNSET, ur2=UNSET, ur3=UNSET)

#
def create_predefined_field(m, a, Temp_850):
Initial Temperature

m. Temperature (createStepName="1Initial ',
crossSectionDistribution=CONSTANT_THROUGH_THICKNESS,
distributionType=UNIFORM,

magnitudes=(Temp_850,),

name='Predefined Field—Initial _Temp ',
region=a.instances ['Part—RVE—-1'].sets['Set_all"'])

m. Temperature(amplitude="Amp-Temp ',
createStepName='Step—Quench’,
crossSectionDistribution=CONSTANT_THROUGH_THICKNESS,
distributionType=UNIFORM,

magnitudes=(1.0,),

name='Predefined Field—Temp’,

region=a.instances ['Part—RVE—1'].sets['Set_all"'])

#
def create_job(m, jobName):

create field output

m. fieldOutputRequests ['F—Output—1'].setValues (
variables=('FV','SDV’','S' ,'PE’, 'PEEQ', 'PEMAG', 'LE’, 'U’', 'RF’
"CSTRESS', 'CDISP’', 'NT', 'TEMP'))

#create job

mdb. Job(atTime=None, contactPrint=OFF, description="", echoPrint=OFF,
explicitPrecision=SINGLE, getMemoryFromAnalysis=True, historyPrint=OFF,

memory=90, memoryUnits=PERCENTAGE, model="Model—1', modelPrint=0OFF,
multiprocessingMode=DEFAULT, name=jobName, nodalOutputPrecision=FULL,

numCpus=1, numDomains=1, numGPUs=0, queue=None, resultsFormat=0ODB, scratch="",
type=ANALYSIS, userSubroutine='Sub_Quench_ER7_Toggling.f', waitHours=0, waitMinutes=0)

adding keywords for additional output variables

m. keywordBlock.setValues(edited=0)

m. keywordBlock.synchVersions(storeNodesAndElements=False)

block_list = m.keywordBlock.sieBlocks

pos_i = [i for i, j in enumerate(block_list) if 'Output, field’' in j]

str_out = 'sx\nxElement Output, directions=YES,\nCOORD, IVOL,\ n*x_\n*Node_ Output,\nCOORD, '
String einfuegen!

m. keywordBlock . insert (pos_i[0], str_out)

adding keywords for use of subroutines

pos_i = [i for i, j in enumerate(block_list) if 'sUser,Defined Field’' in j]

str_out = "\nxlInitial Conditions , type=SOLUTION, juser \nxInitial_ Conditions , type=FIELD’
String einfuegen!

m. keywordBlock . insert (pos_i[0], str_out)

adding new names for state variables
pos_i = [i for i, j in enumerate(block_list) if 'xDepvar’ in j]
str_out = '1,TEMP,TEMP\

\n2,AUSTENITE, AUSTENITE\
\n3,MARTENSITE, MARTENSITE\
\n4,BAINITE, ,BAINITE\

\n5,PEARLITE, PEARLITE\

\n6 ,DMARTENSITE, DMARTENSITE\
\n7,DBAINITE, DBAINITE\

\n8,DPEARLITE, DPEARLITE\

\n9 ,DTEMP, DTEMP\

\n10, RBAINITE, RBAINITE\

\nll,RPERLITE, RPERLITE\

\n12, NELEMENTS, NELEMENTS\

\n13 ,NAUSTENITE, NAUSTENITE\

\n14 ,NMARTENSITE, NMARTENSITE\
\n15,NBAINITE, NBAINITE\

\n16 ,NPERLITE,NPERLITE\

\n17 ,RKRITBAIN, RKRITBAIN\

\n18 ,RKRITPERL, RKRITPERL)\

\n19,NOEL, NOEL\

\n20, PHASE, PHASE’

String einfuegen!

m. keywordBlock . insert (pos_i[0], str_out)

A.1 RVE py-Script All

set general solution controls to allow more cutbacks

m.steps [Step—Quench’']. control.setValues(

allowPropagation=0FF,

timelncrementation=(8.0, 10.0, 9.0, 16.0, 10.0, 4.0, 12.0, 25.0, 6.0, 3.0, 50.0))
m. steps['Step—Quench ']. control.setValues(

allowPropagation=0OFF,

resetDefaultValues=OFF,

timelncrementation=(8.0, 10.0))

write input

mdb. jobs [jobName]. writelnput(consistencyChecking=0FF)

I i I i I i I i I /
Ft—11—+ 11+ F—tH1—+ Ft—HF1—+ F—tH1—+
running program
I I N B) I B A I B I
-+ -+ A A~ -+
if name, = main

Model and part
m_name="Model—-1"

m = mdb. models [m_name]
m.setValues(noPartslnputFile=ON)

| = 1.

#

define geometry for RVE
| = 1.

nr_elements = 10

#

define start temperature for tests
Temp_850 = 850. + kelvin

p = create_geometry(m, |)
amp_Temp = create_step(m, kelvin)
create_Amplitude (m, amp_Temp)
create_pl_material ()
create_material(m, p, kelvin)

a, inst = create_assembly(m, p, m_name)
create_RPs(m,a)

create_mesh(p, |, nr_elements)
create_p_sets(p, inst, |)
create_a_sets(a, inst, |)

create_equations(m)

create_boundary(m, a)
create_predefined_field (m, a, Temp_850)
create_job(m, jobName)

A.2 Cold Rolling py-Script

A13

A.2 Cold Rolling py-Script

DR_axle_script Deep—Rolling —3D—Python—Script

#

This script generates and calculates an ABAQUS model for the deep rolling
process of a train axle.

The axle subdivides into a fine meshed segment and a surface of dummy elements
to fasten the calculation of the rolling process.

#

#

2021—09—06

#

J. Bialowas, S. Gapp, D. Otipka

#

#

Import of packages

from abaqus import *

from abaqusConstants import x*
from caeModules import *
import numpy as np

import os

import math

import shutil

from connectorBehavior import *

session.journalOptions.setValues(replayGeometry=COORDINATE,
recoverGeometry=COORDINATE)
TOL = le—6

global testing

testing = True

coarse_bias = False # true if the coarse meshed (inside) partition of the axle is bias
Different variants of boundary conditions

first two BC can be both active (Variant_3)

front_z_loose = True # True if the Boundary Condition is fixed (back) — loose(front) in
hollow_encastre = False # True if the Boundary Condition is Axle_hollow fixed
dir0=os.path.abspath('")

Mdb ()

Perspective off
session.viewports [' Viewport:,1'].view.setProjection(projection=PARALLEL)

gy gy gy gy gy

Definition of Functions
F A

#

def get_geometry_parameters():
Model parameters (N-mm-s)

#

Parameters for parameter study

#

r_Axle = 180./2. # Outside radius of the axle
r_Axle_hollow = 15. # !do not use values below 0.1 mm!

use 0.1 mm for full axle

t_Axle_sector = r_Axle — r_Axle_hollow # Thickness of axle sector

r_WRoller = 30. # Contour radius of work roller

R_WRoller = 150./2. # Outside radius of work roller

h_WRoller = r_WRoller—1. # Heigth of contour of work roller

#Set feed and load in function get_process_parameters according to Excel tool

#

Axle

|_Axle_sector = 50. # Length of axle sector

aa_Axle_sector = 6./360.x2.xmath.pi # Aperture angle of axle sector in radiant
ta_Axle_sector = 1./360.%2.xmath.pi # Tilting angle of axle sector in radiant

#ta_Axle_sector = aa_Axle_sector /2.

Hollow axle

r_Axle_hollow = r_Axle — t_Axle_sector # Inside radius of the hollow axle

a_WR_start = 2./360.%2.xmath.pi # Angle where the WR starts, measured form the sector;
If <0 it’'s beneath the sector; also defines the angle

that the WR is rolling on the dummy elements

scale_analytical = 1.1 # Scale factor to compensate for non—deformable behaviour
of analytical rigid body

meshed

z—direction

Al4 A Appendix

Dummy
a_dummy_min = 4./360.%2.xmath. pi # minimum Angle above the axle sector that shall be covered with dummy elements
a_dummy_min must big greater than a_WR_start and smaller than aa_Axle_sector!!

nr_layer_dummy = 1 # number of dummy layers

Translator
distance_centerpoint = r_Axle + R_WRollerx1.1

lowerbound_Trans = distance_centerpoint — 0.5

upperbound_Trans = distance_centerpoint + 1.1

dtype = [('Name', (np.str_, 20)), ('Parameter’, np.float64)]
geom_par=np.array ([('r_Axle’ ,r_Axle),('t_Axle_sector’,t_Axle_sector),
("I_Axle’,I_Axle_sector),('aa_Axle_sector’', 6 aa_Axle_sector),
('aa_Axle', aa_Axle_sector), ('t_Axle’', t_Axle_sector),

("ta_Axle_sector’, ta_Axle_sector),('r_WRoller’' , r_WRoller),
('R_WRoller’ ,R_WRoller) ,("h_WRoller’ ,h_WRoller),
('scale_analytical ',scale_analytical),

('r_Axle_hollow ', r_Axle_hollow),

(’a_WR_start’', a_WR_start), (’'nr_layer_dummy’, nr_layer_dummy),
('lowerbound_Trans ', lowerbound_Trans),

('upperbound_Trans ', upperbound_Trans)

]

dtype=dtype)

return (r_Axle, t_Axle_sector, |_Axle_sector, aa_Axle_sector, ta_Axle_sector,
r_Axle_hollow, r_WRoller, R_WRoller, h_WRoller, scale_analytical,

geom_par, a_WR_start, a_dummy_min, nr_layer_dummy,

lowerbound_Trans, upperbound_Trans)

#

def get_process_parameters(aa_Axle_sector, ta_Axle_sector, a_WR_start,

a_dummy_min, nr_layer_dummy):
Process parameter

#

Element deletion

nr_el_del = 10 # number of element rows that shall be deleted

nr_dels_per_cyc = 1 # number of elements that shall be deleted per one turning cycle

nr_dels = int(math. ceil (float(nr_el_del)/nr_dels_per_cyc)) # number of necessary deletion processes
nr_cycles = 25 # number of turns of the deep rolling process

i_models = nr_cycles

#

feed = 1.16 # distance covered in axial direction by the work roller in

#0 one turn (cycle)
load_WR = —44000. # operating force of the work roller
indent_WR = (I_Axle_sector—nr_cyclesxfeed)/2. # indention of WR from right bottom corner of the axle

#

rpm = 220 # rotational velocity of the deep rolling process in

rounds per minute

rad_per_s = rpmx*2xmath.pi/60 # rotational velocity in radiant per second
rolling_angle = aa_Axle_sector #3./360.x2.xmath.pi # angle of the model covered
by the work roller in radiant

feed_v = feed /(60./rpm) # velocity of the feed dependent on rpm in mm/s
movement_type = 'controlled’' # 'controlled'=rotation of the workroller is

controlled by a boundary condition

'free'=rotation of the workroller is free and

enforced due to friction and the load

Mesh

mesh_num = 10 # variable for element numbers on the axle sector

mesh_ref_angle = 6./360.%2.xmath.pi # reference angle for the element number at the edges

if testing:

#rolling_angle = 13. / 360. % 2. % math.pi

nr_cycles = 3

nr_el_del =1

nr_dels =1

mesh_num = 6

mesh_num_edges = int(round(mesh_num * 2. % aa_Axle_sector/mesh_ref_angle)) #%4 # element number at the edges
mesh_num_depth = int (round(mesh_num * 3.)) #x1 # element number from the surface to depth of t_Partition
mesh_num_side = int (round(mesh_num x 8.)) #x2 # element number in Z—direction

mesh_bias_ratio = 5 # bias ratio for the coarse partition

Partition
t_Partition = 15. # depth of finely meshed section of the

Element Type
reduced = True # True if reduced integration

Calculation
num_cpus = 8

A.2 Cold Rolling py-Script

Al5

Dummy

angle_per_el = aa_Axle_sector/mesh_num_edges # angle that is covered by one element
nr_dummy = int(math. ceil (a_dummy_min/angle_per_el)) # number of dummy rows
a_dummy = angle_per_elxnr_dummy # angle of dummy elements above the axle sector
depth_per_el = t_Partition/mesh_num_depth # depth of one element

depth_dummy = nr_layer_dummyxdepth_per_el # total depth of the dummy elements

Displacement during preload—step

preload = —(1.)

Saving parameters for future availability

20)), ('Parameter’, np.float64)]

process_par = np.array ([('nr_cycles’, nr_cycles), ('i_models’, i_models),
('feed', feed),

dtype = [('Name', (np.str

("nr_el_del’, nr_el_del), (’'nr_dels_per_cyc’', nr_dels_per_cyc),
('rpm’, rpm),('rad_per_s’', rad_per_s),

('load_WR"', load_WR) ,('rolling_angle’', rolling_angle),

('feed_v', feed_v), ('t_Partition’', t_Partition),

('num_cpus’, num_cpus), ('mesh_num’, mesh_num),
('coarse_bias',coarse_bias), ('mesh_bias_ratio’', mesh_bias_ratio),
('nr_dummy’, nr_dummy), ('a_dummy’, a_dummy)],

dtype=dtype)

return nr_cycles, i_models, feed, rpm, rad_per_s, load_WR, indent_WR, rolling_angle ,k\
feed_v, movement_type, t_Partition, num_cpus, process_par, \

nr_el_del, nr_dels_per_cyc, nr_dels, mesh_num, mesh_num_edges, mesh_num_depth, \
mesh_num_side, mesh_bias_ratio, reduced, nr_dummy, a_dummy, depth_dummy, preload

#

def save_parameter(geom_par, process_par ,mat_par,name_geom='geometry_parameters ',

name_process='process_parameters ', name_mat='material_parameters’):

par={name_geom: geom_par,name_process: process_par ,name_mat:mat_par}

for i_name,i_par in par.items():

np.savetxt(i_name+'.csv', i_par, delimiter=",", fmt=["%s"', '%f'])
return

#

def set_directory ():

dir_name="DR_DAxle_{}_WR D{}R{} _feed_{}_load_{} _nr_cycles{} ' .format(str(int(r_Axlex2)),
str(int (R_WRoller*2)).replace('.",'p"),str(int(r_WRoller)).replace('."
str(abs(load_WR/1000)).replace(’'."', 'p'),str(int(nr_cycles)))

deletes the old directory

if os.path.exists(dir_name):
shutil.rmtree(dir_name)
os.chdir(dir_name)

dir_calc = os.path.abspath(’")
if not os.path.exists('Results’):
os.mkdir('Results ")

else:

create a new directory

os. mkdir(dir_name)

change directory
os.chdir(dir_name)

dir_calc = os.path.abspath(’")
os.mkdir('Results ")

return dir_name, dir_calc

#
def scale_WRoller(r_WRoller,R_WRoller, h_WRoller,scale_analytical):
Scaling the geometry to compensate for non—deformable behaviour

of analytical rigid body

r_WRoller = r_WRoller x scale_analytical
R_WRoller = R_WRoller x scale_analytical
h_WRoller = h_WRoller % scale_analytical
return r_WRoller, R_WRoller, h_WRoller

#

def make_node_sets(m, a, p_Axle_sector):

This function creates the node set for the boundary condition (fixed end)
It contains the Axle—hollow Set without the edges, because the edges nodes are coupled

n_Set_1 = p_Axle_sector.sets['Set—Axle_hollow']. nodes
p_Axle_sector.Set(name="N_Set—Axle_hollow ', nodes = n_Set_1)
n_Set_2 = p_Axle_sector.sets['Set—Axle_sector_edges_hollow']. nodes
p_Axle_sector.Set(name="N_Set—Axle_hollow_edges', nodes = n_Set_2)

p_Axle_sector.SetByBoolean(name='Encastre_Set’', operation=DIFFERENCE,
sets=(p_Axle_sector.sets['N_Set—Axle_hollow '],
p_Axle_sector.sets ['N_Set—Axle_hollow_edges']))

,'p') . str(feed).replace(

Al6 A Appendix

#
def make_geometry(m, r_Axle,t_Axle_sector ,|_Axle_sector ,aa_Axle_sector,ta_Axle_sector,
r_WRoller ,R_WRoller ,h_WRoller, r_Axle_hollow , a_dummy, depth_dummy):

r_dummy = r_Axle — depth_dummy

if ta_Axle_sector — aa_Axle_sector:

a_half = —ta_Axle_sector /2

else:

a_half = (aa_Axle_sector — ta_Axle_sector)/ 2

Axle sector

s_Axle_sector = m. ConstrainedSketch (name="s_Axle_sector’', sheetSize=200.0)
s_Axle_sector.ArcByCenterEnds(center=(0.0, 0.0), direction=CLOCKWISE,
pointl=(math.cos(aa_Axle_sector — ta_Axle_sector) x

(r_Axle — t_Axle_sector),

math.sin (aa_Axle_sector — ta_Axle_sector) =*

(r_Axle — t_Axle_sector)),

point2=(math.cos(ta_Axle_sector) * (r_Axle — t_Axle_sector),

(—1) * math.sin(ta_Axle_sector) x*

(r_Axle — t_Axle_sector)))
s_Axle_sector.Line(pointl=(math.cos(ta_Axle_sector) * r_Axle,
(—1) * math.sin(ta_Axle_sector) % r_Axle),
point2=(math.cos(ta_Axle_sector) * (r_Axle — t_Axle_sector),
(—1) * math.sin(ta_Axle_sector) x*

(r_Axle — t_Axle_sector)))

s_Axle_sector.ArcByCenterEnds(center=(0.0, 0.0), direction=CLOCKWISE,
pointl=(math.cos(aa_Axle_sector — ta_Axle_sector + a_dummy) * r_Axle,
math.sin (aa_Axle_sector — ta_Axle_sector + a_dummy) x r_Axle),
point2=(math.cos(ta_Axle_sector) * r_Axle,

(—1) * math.sin(ta_Axle_sector) % r_Axle))
s_Axle_sector.ArcByCenterEnds(center=(0.0, 0.0), direction=CLOCKWISE,

pointl=(math.cos(aa_Axle_sector — ta_Axle_sector + a_dummy) * r_dummy,

math.sin (aa_Axle_sector — ta_Axle_sector + a_dummy) * r_dummy),
point2=(math.cos(aa_Axle_sector — ta_Axle_sector) * r_dummy,

math.sin (aa_Axle_sector — ta_Axle_sector) * r_dummy))
s_Axle_sector.Line(pointl=(math.cos(aa_Axle_sector — ta_Axle_sector + a_dummy) * r_Axle,
math.sin (aa_Axle_sector — ta_Axle_sector + a_dummy) x r_Axle),
point2=(math.cos(aa_Axle_sector — ta_Axle_sector + a_dummy) * r_dummy,

math.sin (aa_Axle_sector — ta_Axle_sector + a_dummy) #* r_dummy))
s_Axle_sector.Line(pointl=(math.cos(aa_Axle_sector — ta_Axle_sector) x r_dummy,
math.sin (aa_Axle_sector — ta_Axle_sector) % r_dummy),
point2=(math.cos(aa_Axle_sector — ta_Axle_sector) x r_Axle_hollow,

math.sin (aa_Axle_sector — ta_Axle_sector) % r_Axle_hollow))

p_Axle_sector = m.Part(dimensionality=THREE_D, name='p_Axle_sector’,
type=DEFORMABLE_BODY)

p_Axle_sector.BaseSolidExtrude (depth=I_Axle_sector, sketch=s_Axle_sector)
del s_Axle_sector

Partitions

s_Partition = m. ConstrainedSketch (name="partition_sketch ',
sheetSize=100.0,

transform=p_Axle_sector.MakeSketchTransform (
sketchPlane=p_Axle_sector.faces.findAt(

((r_Axle — t_Axle_sector / 2) % math.cos(a_half),

(r_Axle — t_Axle_sector / 2) x math.sin(a_half),

0.0),),

sketchPlaneSide=SIDE1,

sketchUpEdge=p_Axle_sector.edges.findAt (((r_Axle — t_Axle_sector / 2) *

math. cos(aa_Axle_sector — ta_Axle_sector),
(r_Axle — t_Axle_sector / 2) x math.sin(
aa_Axle_sector — ta_Axle_sector),

0.0),),

sketchOrientation=RIGHT,

origin=(0.0, 0.0, 0.0)))
p_Axle_sector.projectReferencesOntoSketch (filter=COPLANAR_EDGES,
sketch=m.sketches[' partition_sketch '])
s_Partition.ArcByCenterEnds(center=(0.0, 0.0), direction=CLOCKWISE,
pointl=(math.cos(aa_Axle_sector — ta_Axle_sector) x (r_Axle — t_Partition),
math.sin (aa_Axle_sector — ta_Axle_sector) * (r_Axle — t_Partition)),
point2=((—1) * math.cos(ta_Axle_sector) * (r_Axle — t_Partition),

(—1) * math.sin(ta_Axle_sector) * (r_Axle — t_Partition)))

p_Axle_sector. PartitionFaceBySketch (faces=p_Axle_sector. faces.findAt(
(((r_Axle — t_Axle_sector / 2) * math.cos(a_half),

(r_Axle — t_Axle_sector / 2) x math.sin(a_half),

0.0).)).

sketch=m.sketches[' partition_sketch '],
sketchUpEdge=p_Axle_sector.edges.findAt (((r_Axle — t_Axle_sector / 2) x

A.2 Cold Rolling py-Script Al7

math. cos(aa_Axle_sector — ta_Axle_sector),
(r_Axle — t_Axle_sector / 2) x math.sin(
aa_Axle_sector — ta_Axle_sector),

0.0),))

del s_Partition

p_Axle_sector. PartitionCellByExtrudeEdge (cells=p_Axle_sector.cells.findAt(
((r_Axle — 1., 0.0, 0.0),)),

edges=(p_Axle_sector.edges.findAt (((r_Axle — t_Partition) * math.cos(a_half),
(r_Axle — t_Partition) % math.sin(a_half),

0.0),).).

line=p_Axle_sector.edges.findAt ((r_Axle * math.cos(ta_Axle_sector),

(—1) * r_Axle * math.sin(ta_Axle_sector),

|_Axle_sector / 3),),

sense=FORWARD)

s_Partition_dummy = m. ConstrainedSketch (name='partition_dummy_sketch ',
sheetSize=100.0, transform=p_Axle_sector.MakeSketchTransform (
sketchPlane=p_Axle_sector.faces.findAt (((r_Axle — t_Partition / 2) % math.cos(a_half),
(r_Axle — t_Partition / 2) % math.sin(a_half),

|_Axle_sector),),

sketchPlaneSide=SIDE1,

sketchUpEdge=p_Axle_sector.edges.findAt((r_Axle, 0., I_Axle_sector),),
sketchOrientation=RIGHT,

origin=(0.0, 0.0, 0.0)))

p_Axle_sector. projectReferencesOntoSketch (filter=COPLANAR_EDGES,
sketch=m.sketches [partition_dummy_sketch'])

s_Partition_dummy . Line(pointl=(math.cos(aa_Axle_sector — ta_Axle_sector) * r_Axle,
math.sin (aa_Axle_sector — ta_Axle_sector) * r_Axle),
point2=(math.cos(aa_Axle_sector — ta_Axle_sector) * r_dummy,
math.sin(aa_Axle_sector — ta_Axle_sector) * r_dummy))

p_Axle_sector. PartitionFaceBySketch (faces=p_Axle_sector.faces.findAt(
(((r_Axle — t_Partition / 2) % math.cos(a_half),

(r_Axle — t_Partition / 2) % math.sin(a_half),

|_Axle_sector),)),

sketch=m.sketches [partition_dummy_sketch '],
sketchUpEdge=p_Axle_sector.edges. findAt ((r_Axle, 0., I_Axle_sector),),)
del s_Partition_dummy

p_Axle_sector. PartitionCellByExtrudeEdge (cells=p_Axle_sector. cells.findAt(
((r_Axle —1./1000.xr_Axle, 0.0, 0.0),)),
edges=(p_Axle_sector.edges. findAt ((

math. cos(aa_Axle_sector — ta_Axle_sector) * (r_Axle + r_dummy)/2.,
math.sin (aa_Axle_sector — ta_Axle_sector) % (r_Axle + r_dummy)/2.,
|_Axle_sector),),),

line=p_Axle_sector.edges.findAt ((r_Axlexmath.cos(ta_Axle_sector),
(—1)xr_Axle*math.sin (ta_Axle_sector),

|_Axle_sector/3),),

sense=REVERSE)

Work Roller

s_WRoller = m. ConstrainedSketch (name='s_WRoller’', sheetSize=200.0)
Construction of work roller geometry

s_WRoller. ConstructionLine (pointl =(0.0, —R_WRoller*2),
point2=(0.0, R_WRollerx2))

s_WRoller.geometry. findAt ((0.0, 0.0))

s_WRoller. FixedConstraint (entity=s_WRoller.geometry.findAt ((0.0, 0.0),))
s_WRoller. ArcByCenterEnds(center=(R_WRoller — r_WRoller, 0.0),
direction=CLOCKWISE,

pointl=(R_WRoller — r_WRoller + math.sqrt(r_WRoller *

r_WRoller — h_WRoller * h_WRoller), h_WRoller),

point2=(R_WRoller — r_WRoller + math.sqrt(r_WRoller *

r_WRoller — h_WRoller * h_WRoller), —h_WRoller))

p_WRoller = m.Part(dimensionality=THREE_D, name='p_WRoller’,
type=ANALYTIC_RIGID_SURFACE)

p_WRoller. AnalyticRigidSurfRevolve (sketch=s_WRoller)

del s_WRoller

return p_Axle_sector, p_WRoller

#

def make_feed_compensation(m, p_Axle_sector, r_Axle, |_Axle_sector, ta_Axle_sector,

aa_Axle_sector, a_dummy, feed):

cut sides for the compensation of the feed

datum_front = p_Axle_sector.DatumPlaneByPrincipalPlane(offset=r_Axle + 1.,

principalPlane=YZPLANE)

|_comp = feed % (1 — (aa_Axle_sector + a_dummy) / (2 x math.pi))

h_all = r_Axle * (math.sin(aa_Axle_sector + a_dummy — ta_Axle_sector) — math.sin(—ta_Axle_sector))
a_comp = math.atan(l_comp/h_all)

s_Axle_feed_comp = m. ConstrainedSketch (name="s_Axle_feed_compensation’

A18 A Appendix

sheetSize =200.,

transform=p_Axle_sector.MakeSketchTransform (
sketchPlane=p_Axle_sector.datums[datum_front.id],
sketchPlaneSide=SIDE1,
sketchUpEdge=p_Axle_sector.edges.findAt((r_Axle, 0., 0.0),),
sketchOrientation=RIGHT,

origin=(r_Axle, 0, |_Axle_sector / 2)))
p_Axle_sector.projectReferencesOntoSketch (filter=COPLANAR_EDGES,
sketch=s_Axle_feed_comp)

s_Axle_feed_comp.Line(pointl=(I_Axle_sector / 2,

r_Axle x math.sin(—ta_Axle_sector + aa_Axle_sector + a_dummy)),
point2=(l_Axle_sector / 2,

r_Axle x math.sin(—ta_Axle_sector)))
s_Axle_feed_comp.Line(pointl=(I_Axle_sector / 2,

r_Axle x math.sin(—ta_Axle_sector)),

point2=(l_Axle_sector / 2 — I_comp,

r_Axle x math.sin(—ta_Axle_sector)))
s_Axle_feed_comp.Line(pointl=(I_Axle_sector / 2 — |_comp,
r_Axle x math.sin(—ta_Axle_sector)),

point2=(l_Axle_sector / 2,

r_Axle x math.sin(—ta_Axle_sector + aa_Axle_sector + a_dummy)))

s_Axle_feed_comp.Line(pointl=(—I_Axle_sector / 2,

r_Axle x math.sin(—ta_Axle_sector + aa_Axle_sector + a_dummy)),
point2=(—I_Axle_sector / 2,

r_Axle x math.sin(—ta_Axle_sector)))
s_Axle_feed_comp.Line(pointl=(—I_Axle_sector / 2,

r_Axle x math.sin(—ta_Axle_sector)),

point2=(—I_Axle_sector / 2 + |I_comp,

r_Axle x math.sin(—ta_Axle_sector + aa_Axle_sector + a_dummy)))
s_Axle_feed_comp.Line(pointl=(—I_Axle_sector / 2 + |_comp,
r_Axle x math.sin(—ta_Axle_sector + aa_Axle_sector + a_dummy)),
point2=(—I_Axle_sector / 2,

r_Axle x math.sin(—ta_Axle_sector + aa_Axle_sector + a_dummy)))

p_Axle_sector. CutExtrude(flipExtrudeDirection=0OFF,
sketch=s_Axle_feed_comp,

sketchOrientation=RIGHT,
sketchPlane=p_Axle_sector.datums[datum_front.id],
sketchPlaneSide=SIDE1,
sketchUpEdge=p_Axle_sector.edges.findAt((r_Axle, 0., 0.0),))

return |_comp, h_all, a_comp
#
def make_datum_planes(p_WRoller, h_WRoller, p_Axle_sector, indent_WR, |_comp):

Assigning datum planes to variables for further use

(eg. for reading 'id’' of instances)

dat_WR_XZ_h = p_WRoller. DatumPlaneByPrincipalPlane(offset=indent_WR+I_comp,
principalPlane=XZPLANE)

dat_Ax_XY_0 = p_Axle_sector.DatumPlaneByPrincipalPlane(offset=0.0,
principalPlane=XYPLANE)

return dat_WR_XZ_h, dat_Ax_XY_0

#

def make_instances(m, p_Axle_sector, p_WRoller, r_Axle):

Instances

a = m.rootAssembly

a.DatumCsysByDefault (CARTESIAN)

inst_Axle_sector = a.lInstance(dependent=ON, name='p_Axle_sector—1', part=p_Axle_sector)
inst_WRoller = a.lnstance(dependent=ON, name='p_WRoller—1', part=p_WRoller)

a.features['p_Axle_sector—1"].resume()

Create Datum Axes

dat_axis_x = a.DatumAxisByPrincipalAxis(principal Axis=XAXIS)
dat_axis_y = a.DatumAxisByPrincipalAxis(principal Axis=YAXIS)
dat_axis_z = a.DatumAxisByPrincipalAxis(principal Axis=ZAXIS)

Surfaces on Sector

a.Surface(name='Surf_Sector_outside ',

sidelFaces=inst_Axle_sector.faces.findAt (((math.cos((aa_Axle_sector — ta_Axle_sector) / 2.) * (r_Axle),
math.sin ((aa_Axle_sector — ta_Axle_sector) / 2.) * (r_Axle),

|_Axle_sector / 2.),),

((math.cos(aa_Axle_sector — ta_Axle_sector + a_dummy/2.) * (r_Axle),

math.sin (aa_Axle_sector — ta_Axle_sector + a_dummy/2.) * (r_Axle),

|_Axle_sector / 2.),),

))

Surface on WRoller

a.Surface(name='Surf_WRoller ',
sidelFaces=a.instances|['p_WRoller—1']. faces.findAt (((
R_WRoller,

A.2 Cold Rolling py-Script Al19

0.0,
0.0),)))

return a, inst_Axle_sector, inst_WRoller, dat_axis_x, dat_axis_y, dat_axis_z

#
def get_edges(part, list_coords):

counter = 0

for coords in list_coords:

edge = part.edges.getClosest ((coords,),)[0][0]
index = edge.index

if counter==0:

edges = part.edges[index:index+1]

else:

edges = edges.__add___(part.edges[index:index+1])

counter = counter + 1

return edges

#

def get_faces(part, list_coords):
counter = 0

for coords in list_coords:

face = part.faces.getClosest((coords,),)[0][0]
index = face.index

if counter==0:

faces = part.faces[index:index+1]

else:

faces = faces.__add__(part.faces[index:index+1])
counter = counter + 1

return faces

#

def make_p_sets(p_Axle_sector, r_Axle, t_Axle_sector, |_Axle_sector,
a_dummy, depth_dummy, |_comp, h_all, a_comp):

if ta_Axle_sector =— aa_Axle_sector:

a_half = —ta_Axle_sector/2

else:

a_half = (aa_Axle_sector — ta_Axle_sector)/ 2.

Compensation in z—direction of tilting angle
and radial dependence

h_top = r_Axlexmath.tan(a_dummy+aa_Axle_sector)

z_comp_edges = |_comp*math.tan(a_half)/h_top

z_comp_r = |l_comp/h_topx(h_top—(r_Axle)*math.tan(a_half))

z_comp_r_t = |_comp/h_top*(h_top—(r_Axle — t_Axle_sector)*math.tan(a_half))

z_comp_r_p = |_comp/h_top*(h_top—(r_Axle—t_Partition)*math.tan(a_half))

z_comp_t_Axle_sector = |_comp/h_topx*(h_top—(r_Axle)*math.tan(aa_Axle_sector — ta_Axle_sector))
Sets

p_Axle_sector.Set(cells=p_Axle_sector.cells [:], name='all_Axle_sector')

p_Axle_sector.Set(cells=p_Axle_sector.cells.findAt(

((r_Axle % math.cos(a_half),

r_Axle x math.sin(a_half),

|_Axle_sector /2.),),

((r_Axle_hollow * math.cos(a_half),

r_Axle_hollow % math.sin(a_half),

|_Axle_sector /2.),),),

name='Set—Axle_sector ')
p_Axle_sector.Set(cells=p_Axle_sector.cells.findAt(
(((r_Axle_hollow + 1./1000.%xr_Axle_hollow) % math.cos(a_half),
(r_Axle_hollow + 1./1000.xr_Axle_hollow) % math.sin(a_half),
|_Axle_sector / 2.),),

)

name='Set—Axle_elastic ')
p_Axle_sector.Set(cells=p_Axle_sector. cells.findAt(
(((r_Axle — 1./1000.xr_Axle) * math.cos(a_half),

(r_Axle — 1./1000.%xr_Axle) =« math.sin(a_half),
|_Axle_sector / 2.),),

).

name='Set—Axle_elastic_plastic')

list_coords_side_back = (
(r_Axle — 1./1000.xr_Axle) * math.cos(a_half),
r_Axle — 1./1000.xr_Axle) * math.sin(a_half),

(

(r_

0.),

((r_Axle_hollow + 1./1000.%r_Axle_hollow) % math.cos(a_half),
(r_Axle_hollow + 1./1000.xr_Axle_hollow) % math.sin(a_half),
0.)

)

faces_back = get_faces(p_Axle_sector, list_coords_side_back)
set_surf_back = p_Axle_sector.Set(

faces=faces_back,
name='Set—Axle_side_back ")

A20 A Appendix

list_coords_side_front = (

((r_Axle — 1./1000.%xr_Axle) x math.cos(a_half),

(r_Axle — 1./1000.xr_Axle) * math.sin(a_half),
|_Axle_sector),

((r_Axle_hollow + 1./1000.xr_Axle_hollow) * math.cos(a_half),
(r_Axle_hollow + 1./1000.xr_Axle_hollow) % math.sin(a_half),
|_Axle_sector)

)
faces_front = get_faces(p_Axle_sector, list_coords_side_front)
set_surf_front = p_Axle_sector.Set(

faces=faces_front,
name='Set—Axle_side_front ")

p_Axle_sector.Set(cells=p_Axle_sector.cells.findAt(
_Axle * math.sin(aa_Axle_sector — ta_Axle_sector + a_dummy),

_Axle_sector /2.),),),
name="Set—Dummy ')

((r_Axle x math.cos(aa_Axle_sector — ta_Axle_sector + a_dummy),
r
|

list_coords_bottom = (

(math.cos(ta_Axle_sector) * (r_Axle—t_Partition/3),
(—1)xmath.sin(ta_Axle_sector) x (r_Axle—t_Partition/3),
|_Axle_sector),

(math.cos(ta_Axle_sector) * (r_Axle—t_Partition/3),
(—1)xmath.sin(ta_Axle_sector) x (r_Axle—t_Partition/3),
0.0)

)

edges_bottom = get_edges(p_Axle_sector, list_coords_bottom)
p_Axle_sector.Set(edges=edges_bottom ,
name='Set—Axle_t_sector_bottom ")

list_coords_top = (

(math.cos(aa_Axle_sector — ta_Axle_sector) *(r_Axle — t_Partition / 3),
math.sin (aa_Axle_sector — ta_Axle_sector) % (r_Axle — t_Partition / 3),
|_Axle_sector),

(math.cos(aa_Axle_sector — ta_Axle_sector) * (r_Axle — t_Partition / 3),
math.sin (aa_Axle_sector — ta_Axle_sector) % (r_Axle — t_Partition / 3),
0.0),

)

edges_top = get_edges(p_Axle_sector, list_coords_top)

p_Axle_sector.Set(edges=edges_top,
name='Set—Axle_t_sector_top ")

list_coords_bias_sides = (

(math.cos(aa_Axle_sector — ta_Axle_sector) x r_Axle,

math.sin (aa_Axle_sector — ta_Axle_sector) % r_Axle,

|_Axle_sector / 2),

(math.cos(aa_Axle_sector — ta_Axle_sector) * (r_Axle — t_Partition),
math.sin (aa_Axle_sector — ta_Axle_sector) * (r_Axle — t_Partition),
|_Axle_sector / 2),

(math.cos(aa_Axle_sector — ta_Axle_sector) * (r_Axle — t_Axle_sector),
math.sin (aa_Axle_sector — ta_Axle_sector) * (r_Axle — t_Axle_sector),

|_Axle_sector / 2),

(math.cos(ta_Axle_sector) * r_Axle,

(—1) * math.sin(ta_Axle_sector) * r_Axle,

|_Axle_sector / 2),

(math.cos(ta_Axle_sector) * (r_Axle — t_Partition),

(—1) * math.sin(ta_Axle_sector) * (r_Axle — t_Partition),
_Axle_sector / 2),

math. cos(ta_Axle_sector) * (r_Axle — t_Axle_sector),

|
(
(—1) * math.sin(ta_Axle_sector) * (r_Axle — t_Axle_sector),
|_Axle_sector / 2),

(

math. cos(aa_Axle_sector — ta_Axle_sector + a_dummy) x* r_Axle,

math.sin (aa_Axle_sector — ta_Axle_sector + a_dummy) * r_Axle,

|_Axle_sector / 2),

(math.cos(aa_Axle_sector — ta_Axle_sector + a_dummy) * (r_Axle — depth_dummy),
math.sin (aa_Axle_sector — ta_Axle_sector + a_dummy) * (r_Axle — depth_dummy),
|_Axle_sector / 2),

(math.cos(aa_Axle_sector — ta_Axle_sector) * (r_Axle — depth_dummy),

math.sin (aa_Axle_sector — ta_Axle_sector) * (r_Axle — depth_dummy),

|_Axle_sector / 2),

)

edges_bias_sides = get_edges(p_Axle_sector, list_coords_bias_sides)
p_Axle_sector.Set (edges=edges_bias_sides ,
name='Set—Axle_bias_sides ")

list_coords_bias_edges = (
(math.cos(a_half) % r_Axle,
math.sin (a_half) x r_Axle,
z_comp_r),

A.2 Cold Rolling py-Script A21

(math.cos(a_half) % r_Axle,

math.sin (a_half) x r_Axle,
|_Axle_sector—I_comp +z_comp_r),
(math.cos(a_half) * (r_Axle — t_Axle_sector),
math.sin(a_half) x (r_Axle — t_Axle_sector),
z_comp_r_t),

(math.cos(a_half) * (r_Axle — t_Axle_sector),
math.sin(a_half) * (r_Axle — t_Axle_sector),
|_Axle_sector—I_comp +z_comp_r_t),
(math.cos(a_half) * (r_Axle — t_Partition),
math.sin(a_half) x (r_Axle — t_Partition),
z_comp_r_p),

(math.cos(a_half) * (r_Axle — t_Partition),
math.sin(a_half) x (r_Axle — t_Partition),
|_Axle_sector—I_comp +z_comp_r_p),

)

edges_bias_edges = get_edges(p_Axle_sector, list_coords_bias_edges)
p_Axle_sector.Set(edges=edges_bias_edges,
name='Set—Axle_bias_edges ")

list_coords_bias_coarse = (
(math.cos(aa_Axle_sector — ta_Axle_sector) * (
r_Axle — (2 * t_Axle_sector + t_Partition) / 3),
math.sin (aa_Axle_sector — ta_Axle_sector) * (

r_Axle — (2 x t_Axle_sector + t_Partition) / 3),

|_Axle_sector),

(math.cos(aa_Axle_sector — ta_Axle_sector) * (r_Axle — (2 % t_Axle_sector + t_Partition) / 3),
math.sin (aa_Axle_sector — ta_Axle_sector) * (r_Axle — (2 x t_Axle_sector + t_Partition) / 3),
0.0),

(math.cos(ta_Axle_sector) * (r_Axle — (2 % t_Axle_sector + t_Partition) / 3),

(—1) % math.sin(ta_Axle_sector) * (r_Axle — (2 % t_Axle_sector + t_Partition) / 3),

0.0),

(math.cos(ta_Axle_sector) * (r_Axle — (2 % t_Axle_sector + t_Partition) / 3),

(—1) * math.sin(ta_Axle_sector) * (r_Axle — (2 * t_Axle_sector + t_Partition) / 3),
|_Axle_sector),

)

edges_bias_coarse = get_edges(p_Axle_sector, list_coords_bias_coarse)
p_Axle_sector.Set(edges=edges_bias_coarse ,

name='Set—Axle_bias_coarse ')

list_coords_Dummy_bias_edges = (

(math.cos(aa_Axle_sector — ta_Axle_sector + a_dummy / 2) % r_Axle,
math.sin (aa_Axle_sector — ta_Axle_sector + a_dummy / 2) % r_Axle,
0.0),

(math.cos(aa_Axle_sector — ta_Axle_sector + a_dummy / 2) % r_Axle,
math.sin (aa_Axle_sector — ta_Axle_sector + a_dummy / 2) % r_Axle,

|_Axle_sector),

(math.cos(aa_Axle_sector — ta_Axle_sector + a_dummy / 2) % (r_Axle — depth_dummy),
math.sin (aa_Axle_sector — ta_Axle_sector + a_dummy / 2) % (r_Axle — depth_dummy),
0.0),

(math.cos(aa_Axle_sector — ta_Axle_sector + a_dummy / 2) % (r_Axle — depth_dummy),
math.sin (aa_Axle_sector — ta_Axle_sector + a_dummy / 2) % (r_Axle — depth_dummy),
|_Axle_sector),

)

edges_Dummy_bias_edges = get_edges(p_Axle_sector, list_coords_Dummy_bias_edges)
p_Axle_sector.Set(edges=edges_Dummy_bias_edges,

name='Set—Dummy_bias_edges ")

list_coords_Dummy_t_sector = (

(math.cos(aa_Axle_sector — ta_Axle_sector) * (r_Axle — depth_dummy / 3),
math.sin (aa_Axle_sector — ta_Axle_sector) % (r_Axle — depth_dummy / 3),
|_Axle_sector — |_comp + z_comp_t_Axle_sector),

(math.cos(aa_Axle_sector — ta_Axle_sector) * (r_Axle — depth_dummy / 3),
math.sin (aa_Axle_sector — ta_Axle_sector) % (r_Axle — depth_dummy / 3),
z_comp_t_Axle_sector),

)

edges_Dummy_t_sector = get_edges(p_Axle_sector, list_coords_Dummy_t_sector)
p_Axle_sector.Set(edges=edges_Dummy_t_sector,

name='Set—Dummy_t_sector ')

return

#
def make_a_sets(a, inst_Axle_sector, p_WRoller,r_Axle ,R_WRoller, h_WRoller,
ta_Axle_sector, a_WR_start, dat_Ax_XY_0,dat_WR_XZ_h,

indent_WR, |_comp):

Assembly sets

Reference point definition

rp_RC = a.ReferencePoint(point=(0.0, 0.0, 0.0))
a.features.changeKey(fromName=rp_RC.name, toName='RP—Rolling—Centre’)

A22 A Appendix

rp_H = a.ReferencePoint(point=((r_Axle + R_WRoller)*cos(a_WR_start—ta_Axle_sector),
(r_Axle + R_WRoller)*sin (a_WR_start—ta_Axle_sector),

0.0))

a.features.changeKey(fromName=rp_H.name, toName='RP—Hinge')

rp_WR = a.ReferencePoint(point=((r_Axle + R_WRoller)*cos(a_WR_start—ta_Axle_sector),
(r_Axle + R_WRoller)*sin (a_WR_start—ta_Axle_sector),

h_WRoller x 2))

a.features.changeKey(fromName=rp_WR.name, toName='RP-WR')

set_Rolling_Centre = a.Set(name='Set—RP—Rolling—Centre ',
referencePoints=(a.referencePoints[rp_RC.id],))

Creating sets of reference points

a.Set(name='Set—RP-WR',

referencePoints=(a.referencePoints[rp_WR.id],))

a.Set(name='Set—RP—Hinge ',

referencePoints=(a.referencePoints[rp_H.id],))
dat_plane_WR=a.DatumPlaneByThreePoints(pointl=a.referencePoints[rp_RC.id],
point2=a.referencePoints [rp_WR.id],

point3=a.referencePoints[rp_H.id])

a.features.changeKey(fromName=dat_plane_WR.name, toName='Datum-WR'")

#
Positioning of instances

a.FaceToFace(clearance=0.0,

fixedPlane=inst_Axle_sector.datums[dat_Ax_XY_0.id], flip=ON,
movablePlane=inst_WRoller.datums [dat_WR_XZ_h.id])

pt_out_center_WR = p_WRoller. DatumPointByCoordinate (coords=(0.0, indent_WR+I_comp, 0.0))
a.CoincidentPoint(fixedPoint=a.referencePoints[rp_H.id],
movablePoint=a.instances['p_WRoller—1'].datums[pt_out_center_WR.id])

Axle sector

if ta_Axle_sector =— aa_Axle_sector:

a_half = —ta_Axle_sector/2

else:

a_half = (aa_Axle_sector — ta_Axle_sector)/ 2

list_coords_inside_back =

(

(r_Axle_hollow % math.cos(a_half),

r_Axle_hollow x math.sin(a_half),

0.),

)

edges_inside_back = get_edges(inst_Axle_sector, list_coords_inside_back)
set_geom_inside_back = a.Set(edges=edges_inside_back ,

name='Set—Sector_inside_back ")

list_coords_inside_front = (
(r_Axle_hollow % math.cos(a_half),
r_Axle_hollow x math.sin(a_half),

|_Axle_sector),

)
edges_inside_front = get_edges(inst_Axle_sector, list_coords_inside_front)
set_geom_inside_front = a.Set(edges=edges_inside_front ,

name='Set—Sector_inside_front ")

set_geom_angle_top = a.Set(

faces=inst_Axle_sector.faces.findAt(

(((r_Axle — depth_dummy — 1./1000.%xr_Axle) x math.cos(aa_Axle_sector — ta_Axle_sector),
(r_Axle —depth_dummy — 1./1000.%xr_Axle) % math.sin(aa_Axle_sector — ta_Axle_sector),
|_Axle_sector /2.),),

(((r_Axle_hollow + 1./1000.xr_Axle_hollow) x math.cos(aa_Axle_sector — ta_Axle_sector),
(r_Axle_hollow + 1./1000.xr_Axle_hollow) % math.sin(aa_Axle_sector — ta_Axle_sector),
|_Axle_sector / 2.),),),

name='Set—Sector_angle_top ")

set_geom_angle_bottom = a.Set(

faces=inst_Axle_sector.faces.findAt(

(((r_Axle — 1./1000.%r_Axle) % math.cos(—ta_Axle_sector),

(r_Axle — 1./1000.%xr_Axle) % math.sin(—ta_Axle_sector),

|_Axle_sector /2.),),

(((r_Axle_hollow + 1./1000.%xr_Axle_hollow) * math.cos(—ta_Axle_sector),

(r_Axle_hollow + 1./1000.xr_Axle_hollow) % math.sin(—ta_Axle_sector),

|_Axle_sector / 2.),),),

name='Set—Sector_angle_bottom ")

set_node_inside_back = a.Set(
nodes=set_geom_inside_back.nodes,
name='N_Set—inside_back ")
set_node_inside_front = a.Set(
nodes=set_geom_inside_front.nodes,
name="N_Set—inside_front ")
set_node_angle_top = a.Set(
nodes=set_geom_angle_top.nodes,
name='N_Set—angle_top ")

A.2 Cold Rolling py-Script

A23

set_node_angle_bottom = a.Set(
nodes=set_geom_angle_bottom . nodes,
name='N_Set—angle_bottom ")

a.SetByBoolean(name='N_Set—Sector_angle_top ',
operation=DIFFERENCE,

sets=(set_node_angle_top,

set_node_inside_back ,

set_node_inside_front))
a.SetByBoolean(name='N_Set—Sector_angle_bottom ',
operation=DIFFERENCE,
sets=(set_node_angle_bottom ,
set_node_inside_back ,

set_node_inside_front))
a.deleteSets(setNames=('N_Set—inside_back’', 'N_Set—inside_front ',
"N_Set—angle_top', 'N_Set—angle_bottom'))

return rp_RC, rp_H, rp_WR
#

def make_mat_sections(m, mat_name, mat_name_dummy, youngs_modulus,
youngs_modulus_dummy, nu, nu_dummy,

yield_stress , cl, gammal, c2,

gamma2, c3, gamma3, equiv_stress ,

q_infinity , hardening_b):

mat_name_elastic = mat_name + '_elastic’
mat_name_ideal_plastic = mat_name + '_ideal_plastic’
Material

mat = m. Material (name=mat_name)

mat_ideal_pl = m. Material (name=mat_name_ideal_plastic)
mat_el = m. Material (name=mat_name_elastic)

mat_dummy = m. Material (name=mat_name_dummy)

elastic

mat. Elastic(table=((youngs_modulus, nu),))

mat_ideal_pl. Elastic(table=((youngs_modulus, nu),))

mat_el. Elastic(table=((youngs_modulus, nu),))

mat_dummy. Elastic (table=((youngs_modulus_dummy, nu_dummy),))

plastic

mat. Plastic (dataType=PARAMETERS,
hardening=COMBINED,

numBackstresses=3,

table=((yield_stress , cl, gammal,

c2, gamma2, c3, gamma3),))

mat. plastic.CyclicHardening (parameters=ON,
table=((equiv_stress, q_infinity , hardening_b),))
mat_ideal_pl.Plastic(table=((yield_stress, 0.0),
(yield_stress, 0.1)))

Section and material assignment

chaboche type section

m. HomogeneousSolidSection(material=mat_name,
name='Section —EA4T ",

thickness=None)
m.HomogeneousSolidSection(material=mat_name_elastic,
name='Section—EA4T_elastic',

thickness=None)

m. HomogeneousSolidSection(material=mat_name_ideal_plastic,
name='Section—ideal_plastic’,

thickness=None)

p_Axle_sector.SectionAssignment (offset=0.0,
offsetField="", offsetType=MIDDLE_SURFACE,
region=p_Axle_sector.sets [Set—Axle_elastic_plastic’'],
sectionName="Section—EA4T ",
thicknessAssignment=FROM_SECTION)
p_Axle_sector.SectionAssignment (offset=0.0,
offsetField="", offsetType=MIDDLE_SURFACE,
region=p_Axle_sector.sets['Set—Axle_elastic'],
sectionName="Section—EA4T_elastic',
thicknessAssignment=FROM_SECTION)

m. HomogeneousSolidSection(material=mat_name_dummy,
name='Section —Dummy’ ,

thickness=None)

p_Axle_sector.SectionAssignment (offset=0.0,
offsetField="", offsetType=MIDDLE_SURFACE,
region=p_Axle_sector.sets['Set—Dummy’],
sectionName='Section —Dummy’ ,
thicknessAssignment=FROM_SECTION)

A24 A Appendix

return

#
def make_rigid(a, m, inst_WRoller):

Rigid body constraint

m. RigidBody (name="Constraint—analytical —rigid ',
refPointRegion=a.sets['Set—RP-WR'],
surfaceRegion=a.surfaces ['Surf_WRoller'])
return

#
def make_connectors(a, m, rp_RC, rp_H, rp_WR, r_Axle, R_WRoller, h_WRoller,
ta_Axle_sector, a_WR_start, lowerbound_Trans, upperbound_Trans):

Connectors

wire definition

a.WirePolyLine (mergeType=IMPRINT,

meshable=OFF,

points=((a.referencePoints[rp_RC.id],

a.referencePoints[rp_H.id]),))

a.Set(edges=a.edges.findAt ((((r_Axle + R_WRoller — 1)xcos(a_WR_start—ta_Axle_sector),
(r_Axle + R_WRoller — 1)*sin (a_WR_start—ta_Axle_sector), 0.0),)),
name='Wire—Translator ")

a.WirePolyLine (mergeType=IMPRINT, meshable=OFF,
points=((a.referencePoints[rp_H.id],

a.referencePoints [rp_WR.id]),))

a.Set(edges=a.edges.findAt ((((r_Axle + R_WRoller)*cos(a_WR_start—ta_Axle_sector),
(r_Axle + R_WRoller)*sin (a_WR_start—ta_Axle_sector),

h_WRoller / 3),)),

name='Wire—Hinge ")

Connector definition and CSYS definition

m. ConnectorSection (assembled Type=TRANSLATOR, name='ConnSect—Translator ")
m. ConnectorSection (assembledType=HINGE, name='ConnSect—Hinge")
csys_translator = a.DatumCsysByThreePoints(coordSysType=
CARTESIAN, name='Datumgcsys—Translator ',
origin=a.referencePoints [rp_RC.id],
pointl=a.referencePoints[rp_H.id],

point2=a.referencePoints [rp_H2.id])
a.SectionAssignment(region=a.sets [Wire—Translator '],
sectionName='ConnSect—Translator ")
a.ConnectorOrientation(localCsysl=a.datums[csys_translator.id],
region=a.allSets ['Wire—Translator'])

csys_hinge = a.DatumCsysByThreePoints(coordSysType=

CARTESIAN, name='Datumgcsys—Hinge ',
origin=a.referencePoints[rp_H.id],

pointl=a.referencePoints [rp_H2.id],

point2=a.referencePoints [rp_RC.id])
a.SectionAssignment(region=a.sets ['Wire—Hinge'],
sectionName="'ConnSect—Hinge ")

a.ConnectorOrientation (localCsysl=a.datums[csys_hinge.id],
region=a.allSets ['Wire—Hinge'])

m.sections ['ConnSect—Translator'].setValues(
behaviorOptions=(ConnectorDamping(table=((.03,),),
independentComponents=(), components=(1,)),

ConnectorStop (minMotion=lowerbound_Trans,
maxMotion=upperbound_Trans, components=(1,))

))

m.sections['ConnSect—Translator']. behaviorOptions[0]. ConnectorOptions ()
return

#

def make_mesh(p_Axle_sector, mesh_num_edges, mesh_num_depth, mesh_num_side, mesh_bias_ratio,

Mesh of sector
p_Axle_sector.seedEdgeByNumber(constraint=FIXED,
edges=p_Axle_sector.sets ['Set—Axle_bias_sides']. edges,
number=mesh_num_side)
p_Axle_sector.seedEdgeByNumber(constraint=FIXED,
edges=p_Axle_sector.sets['Set—Axle_bias_edges']. edges,
number=mesh_num_edges)
p_Axle_sector.seedEdgeByNumber(constraint=FIXED,
edges=p_Axle_sector.sets ['Set—Axle_t_sector_top'].edges,
number=mesh_num_depth — nr_layer_dummy)
p_Axle_sector.seedEdgeByNumber(constraint=FIXED,
edges=p_Axle_sector.sets['Set—Axle_t_sector_bottom ']. edges,
number=mesh_num_depth)

if coarse_bias:
p_Axle_sector.seedEdgeByBias(biasMethod=SINGLE,
constraint=FIXED,

endlEdges=(p_Axle_sector.sets ['Set—Axle_bias_coarse']. edges[0],

reduced):

A.2 Cold Rolling py-Script

A25

p_Axle_sector.sets ['Set—Axle_bias_coarse']. edges[2]),
end2Edges=(p_Axle_sector.sets ['Set—Axle_bias_coarse'].edges[1],
p_Axle_sector.sets ['Set—Axle_bias_coarse'].edges[3]),
number=mesh_num_depth /2,

ratio=mesh_bias_ratio)

else:
p_Axle_sector.seedEdgeByNumber(constraint=FIXED,
edges=p_Axle_sector.sets ['Set—Axle_bias_coarse']. edges,

number=mesh_num_depth /2)

p_Axle_sector.seedEdgeByNumber(constraint=FIXED,
edges=p_Axle_sector.sets ['Set—Dummy_bias_edges']. edges,
number=nr_dummy)
p_Axle_sector.seedEdgeByNumber(constraint=FIXED,
edges=p_Axle_sector.sets ['Set—Dummy_t_sector']. edges,
number=nr_layer_dummy)

p_Axle_sector.generateMesh ()

Assign Element Type

if reduced:

p_Axle_sector.setElementType(elemTypes=(

mesh . ElemType (elemCode=C3D8R, elemLibrary=STANDARD,
secondOrderAccuracy=0OFF, distortionControl=DEFAULT),
mesh . ElemType (elemCode=C3D6, elemLibrary=STANDARD),
mesh . ElemType(elemCode=C3D4, elemLibrary=STANDARD)),
regions=(p_Axle_sector.sets [all_Axle_sector']))
else:

p_Axle_sector.setElementType (elemTypes=(

mesh . ElemType(elemCode=C3D8, elemLibrary=STANDARD,
secondOrderAccuracy=0FF, distortionControl=DEFAULT),
mesh . ElemType (elemCode=C3D6, elemLibrary=STANDARD),
mesh . ElemType(elemCode=C3D4, elemLibrary=STANDARD)),
regions=(p_Axle_sector.sets [all_Axle_sector']))
return

#

def make_el_sets(p_Axle_sector, nr_el_del, nr_dels, mesh_num_depth, mesh_num_side,

|_comp, a_comp):

a_top = aa_Axle_sector — ta_Axle_sector + a_dummy # angle of the top edge
h = r_Axle * sin(a_top)

hypl = h * sin(a_comp)

z1 = hypl x cos(a_comp)

Element Sets Axle_sector

el_size_z = (I_Axle_sector—I_comp) / mesh_num_side # element length in Z—direction
el_size_r = t_Partition/mesh_num_depth # radial height of one element
nr_dels_per_layer = mesh_num_side # number of deletions per layer

p_Axle_sector.Set(elements=p_Axle_sector.elements[:],
name='Set—all_el ")

for i_del in range(1l, nr_dels+1):

p_Axle_sector.Set(elements=p_Axle_sector.elements.getByBoundingCylinder(centerl=(0.,

center2=(0., 0., |_Axle_sector),
radius=r_Axle—i_del*el_size_r+el_size_rx0.05),
name='Set—remaining_el_Layer_ '+str(i_del). zfill (2))
if i_del=
p_Axle_sector.SetByBoolean(name='Set—el_del_Layer_ '+str(i_del). zfill (2),
operation=DIFFERENCE,

sets=(p_Axle_sector.sets['Set—all_el '],

p_Axle_sector.sets ['Set—remaining_el_Layer_ '+str(i_del). zfill (2)]))
else:

p_Axle_sector.SetByBoolean(name="Set—el_del_Layer_ "' + str(i_del). zfill (2),

operation=DIFFERENCE,

sets=(p_Axle_sector.sets['Set—remaining_el_Layer_ ' + str(i_del —1).zfill (2

p_Axle_sector.sets['Set—remaining_el_Layer_ "' + str(i_del). zfill (2)]))

return nr_dels_per_layer

#

def make_step(a,m,rpm, rad_per_s, feed_v, nr_cycles, rolling_angle, nr_dels_per_layer,

initiallnc=5e—05, maxlnc=0.1, maxNumlnc=10000,

minlnc=1e —07):

timePeriodperCycle = 60./rpm

timePeriod = timePeriodperCyclexnr_cycles

timePeriodperRoll = rolling_angle /(2.xmath.pi)*xtimePeriodperCycle
timePeriodperReturn = (1—rolling_angle /(2.%*math. pi))*60./rpm

#

Steps

A26 A Appendix

for i_cycles in range(l,nr_cycles+1):

if i_cycles==I:

m. StaticStep(initiallnc=0.02, maxlnc=maxinc,

matrixStorage=UNSYMMETRIC,

maxNumInc=maxNumlnc, minlnc=minlnc, name='Pre—Load '+str(i_cycles). zfill (2),
nlgeom=0ON,

previous='lnitial ', timePeriod=0.1,

convertSDI=CONVERT_SDI_ON)

m. StaticStep(initiallnc=initiallnc*10., maxlnc=maxInc,
matrixStorage=UNSYMMETRIC,

maxNumlnc=maxNumlnc, minlnc=minlnc,

name='lLoad’ + str(i_cycles). zfill(2),

nlgeom=0ON,

previous='Pre—Load '+str(i_cycles). zfill (2),
timePeriod=0.1,

convertSDI=CONVERT_SDI_ON)

m. StaticStep(initiallnc=timePeriodperRoll*le—02, maxlnc=timePeriodperRollxle—01,
matrixStorage=UNSYMMETRIC,

maxNumlnc=maxNumlnc, minlnc=minlnc,

name="Cycles '+str(i_cycles). zfill (2),

nlgeom=0ON,

previous="lLoad '+str(i_cycles). zfill (2),

timePeriod=timePeriodperRoll)

m. StaticStep(initiallnc=initiallnc*1000., matrixSolver=DIRECT,
matrixStorage=UNSYMMETRIC, maxInc=maxlInc,
maxNumlnc=maxNumlnc, minlnc=minlnc,

name="Unload '+str(i_cycles). zfill (2),

previous='Cycles '+str(i_cycles). zfill (2),
timePeriod=timePeriodperCycle)

m. StaticStep(initiallnc=maxlnc, matrixSolver=DIRECT,
matrixStorage=UNSYMMETRIC, maxlnc=maxlInc,
maxNumlnc=maxNumlnc, minlnc=minlnc,
name='Return'+str(i_cycles). zfill (2),
previous='Unload '+str(i_cycles). zfill (2),
timePeriod=timePeriodperReturn)

#
Controls (WARNING: This settings are for advanced users only!)

m.steps ['Pre—Load’ + str(i_cycles).zfill (2)].control.setValues(allowPropagation=OFF,
discontinuous=ON,

resetDefaultValues=0OFF)

m.steps|['Load’ + str(i_cycles).zfill (2)].control.setValues(allowPropagation=OFF,
discontinuous=ON,

resetDefaultValues=0FF)

m.steps [Cycles'+str(i_cycles). zfill (2)].control.setValues(allowPropagation=OFF,
discontinuous=0ON,

resetDefaultValues=OFF)

m.steps['Unload '+str(i_cycles). zfill (2)].control.setValues()

m.steps [Return’'+str(i_cycles). zfill (2)].control.setValues()

else:

m. StaticStep(initiallnc=0.02, maxlnc=maxlnc,
matrixStorage=UNSYMMETRIC,
maxNumlnc=maxNumlnc, minlnc=minlnc,
name='Pre—Load ' + str(i_cycles). zfill(2),
nlgeom=0N,

previous='"Return '+str(i_cycles —1). zfill (2),
timePeriod=0.1)

m. StaticStep(initiallnc=initiallnc , maxlnc=maxlnc,
matrixStorage=UNSYMMETRIC,

maxNumInc=maxNumlnc, minlnc=minlnc, name='lLoad '+str(i_cycles). zfill (2),
nlgeom=0ON,

previous='Pre—Load '+str(i_cycles). zfill (2),

timePeriod=0.1)

m. StaticStep(initiallnc=initiallnc , maxlnc=maxlncxle—02,

matrixStorage=UNSYMMETRIC,

maxNumlnc=maxNumlnc, minlnc=minlnc, name='Cycles '+str(i_cyc|es).zfi||(2), nlgeom=0ON,
previous='lLoad '+str(i_cycles). zfill (2), timePeriod=timePeriodperRoll)

m. StaticStep(initiallnc=initiallnc*1000., matrixSolver=DIRECT,

matrixStorage=UNSYMMETRIC, maxInc=maxInc, maxNumlnc=maxNumlinc,

minlnc=mininc, name='Unload '+str(i_cycles). zfill (2),previous="Cycles '+str(i_cycles). zfill(2),
timePeriod=timePeriodperCycle)

m. StaticStep(initiallnc=maxlnc, matrixSolver=DIRECT,

A.2 Cold Rolling py-Script

A27

matrixStorage=UNSYMMETRIC, maxInc=maxlInc,
maxNumlnc=maxNumlnc, minlnc=minlnc,
name='Return'+str(i_cycles). zfill (2),
previous='Unload '+str(i_cycles). zfill (2),
timePeriod=timePeriodperReturn)

#
Controls (WARNING: This settings are for advanced users only!)

m.steps ['Pre—Load’ + str(i_cycles). zfill (2)].control.setValues(allowPropagation=OFF,
discontinuous=0ON,

resetDefaultValues=0OFF)

m.steps['Load’ + str(i_cycles).zfill (2)].control.setValues(allowPropagation=OFF,
discontinuous=ON,

resetDefaultValues=0OFF)

m.steps [Cycles '+str(i_cycles). zfill (2)].control.setValues(allowPropagation=OFF,
discontinuous=ON,

resetDefaultValues=0OFF)

m.steps['Unload '+str(i_cycles). zfill (2)].control.setValues()

m.steps [Return’'+str(i_cycles). zfill (2)].control.setValues()

#
Restart Option

if nr_cycles>=10:

m.steps [' Returnl10’']. Restart(

frequency=1, numberlntervals=0, overlay=ON, timeMarks=OFF)

if nr_cycles>=20:

m.steps['Return20’']. Restart(

frequency=1, numberlntervals=0, overlay=ON, timeMarks=OFF)
if nr_cycles >=30:

m.steps [' Return30’']. Restart(

frequency=1, numberlntervals=0, overlay=ON, timeMarks=OFF)
#
Steps of Element Deletion

layer—wise deletion

m. StaticStep(initiallnc=1, matrixSolver=DIRECT,
matrixStorage=UNSYMMETRIC, maxlInc=1,
maxNumlnc=maxNumlnc, minlnc=minlnc,

name='Step—Element_Deletion—Layer_01",
previous='Return’' + str(nr_cycles). zfill (2))

for i_del in range(2, nr_dels+1):

m. StaticStep(initiallnc=1, matrixSolver=DIRECT,
matrixStorage=UNSYMMETRIC, maxInc=1,

maxNumlnc=maxNumlnc, minlnc=minlnc,
name='Step—Element_Deletion—Layer_{}'.format(str(i_del). zfill (2)),
previous='Step—Element_Deletion—Layer_{}'.format(str(i_del —1).zfill (2)))
#
Restart Option for Restart Steps

for i_del_steps in range(1l, nr_dels + 1):

#el_last_step = sets_el_del[i_del_steps —1].elements[—1]. label

m.steps [’ 'Step—Element_Deletion—Layer_{}'.format(str(i_del_steps). zfill (2))]. Restart(
frequency=1,

numberlntervals=0,
overlay=ON,
timeMarks=OFF)

return timePeriodperCycle, timePeriod, timePeriodperRoll, timePeriodperReturn
#

def make_contact(m, movement_type, mu_r=0.3):

Contact

m. ContactProperty('IntProp—Contact_penalty ")
m. ContactProperty (’'IntProp—Contact_old ")
(

m. ContactProperty('IntProp—Augmented_Lagrange ')

tangential = False

if tangential = True:

if movement_type = 'controlled ":
mu_r = 0.1

m.interactionProperties['IntProp—Contact_penalty']. TangentialBehavior(
dependencies=0, directionality=ISOTROPIC, elasticSlipStiffness=None,
formulation=PENALTY, fraction=0.005, maximumElasticSIlip=FRACTION,
pressureDependency=0OFF, shearStressLimit=None, slipRateDependency=OFF,
table=((mu_r,),), temperatureDependency=0OFF)
m.interactionProperties['IntProp—Contact_old']. TangentialBehavior(
dependencies=0, directionality=ISOTROPIC, elasticSlipStiffness=None,
formulation=PENALTY, fraction=0.005, maximumElasticSIip=FRACTION,
pressureDependency=OFF, shearStressLimit=None, slipRateDependency=OFF,
table=((mu_r,),), temperatureDependency=0OFF)
m.interactionProperties['IntProp—Augmented_Lagrange’']. TangentialBehavior (
dependencies=0, directionality=ISOTROPIC, elasticSlipStiffness=None,
formulation=PENALTY, fraction=0.005, maximumElasticSIip=FRACTION,
pressureDependency=OFF, shearStressLimit=None, slipRateDependency=OFF,

A28 A Appendix

table=((mu_r,),), temperatureDependency=OFF)

else:

m.interactionProperties['IntProp—Contact_penalty']. TangentialBehavior(
dependencies=0, directionality=ISOTROPIC, elasticSlipStiffness=None,
formulation=PENALTY, fraction=0.005, maximumElasticSIip=FRACTION,
pressureDependency=0OFF, shearStressLimit=None, slipRateDependency=0FF,
table=((mu_r,),), temperatureDependency=0OFF)
m.interactionProperties|['IntProp—Contact_old’']. TangentialBehavior(
dependencies=0, directionality=ISOTROPIC, elasticSlipStiffness=None,
formulation=PENALTY, fraction=0.005, maximumElasticSIip=FRACTION,
pressureDependency=OFF, shearStressLimit=None, slipRateDependency=OFF,
table=((mu_r,),), temperatureDependency=OFF)
m.interactionProperties|['IntProp—Augmented_Lagrange']. TangentialBehavior (
dependencies=0, directionality=ISOTROPIC, elasticSlipStiffness=None,
formulation=PENALTY, fraction=0.005, maximumElasticSIip=FRACTION,
pressureDependency=OFF, shearStressLimit=None, slipRateDependency=OFF,
table=((mu_r,),), temperatureDependency=OFF)

with default constraint enforcement method (the stress from the dummy are not copied on the axle)
m.interactionProperties ['IntProp—Contact_old']. NormalBehavior(

allowSeparation=ON, constraintEnforcementMethod=DEFAULT,

pressureOverclosure=HARD)

with hard constraint enforcement method; the value of the contact stiffness must be evaluated with augment lagrange
m.interactionProperties|['IntProp—Contact_penalty ']. NormalBehavior(allowSeparation=ON,
clearanceAtZeroContactPressure=0.0,

constraintEnforcementMethod=PENALTY,

contactStiffness=500000.0,

contactStiffnessScaleFactor=1.0,

pressureOverclosure=HARD,

stiffnessBehavior=LINEAR)

with augmented lagrange constraint enforcement method
m.interactionProperties['IntProp—Augmented_Lagrange']. NormalBehavior(allowSeparation=ON,
clearanceAtZeroContactPressure=0.0,

constraintEnforcementMethod=AUGMENTED_LAGRANGE,

contactStiffness=DEFAULT,

contactStiffnessScaleFactor=1.0,

pressureOverclosure=HARD)

m. SurfaceToSurfaceContactStd (adjustMethod=OVERCLOSED,

clearanceRegion=None, createStepName='Initial’', datumAxis=None,

initialClearance=OMIT, interactionProperty="IntProp—Augmented_Lagrange’', # IntProp—Contact ',
master=a.surfaces [Surf_WRoller '], name='Int—Surf_cont_Axle’,
slave=a.surfaces ['Surf_Sector_outside '],

sliding=FINITE, surfaceSmoothing=AUTOMATIC, thickness=ON)

contact controlls for finding contact in Pre—Load Step

for i_cycles in range(l,nr_cycles+1):

m.StdContactControl (name='ContCtrl—FindingContact’', stabilizeChoice=AUTOMATIC)
m.interactions['Int—Surf_cont_Axle'].setValuesInStep(
contactControls="ContCtrl—FindingContact ',

stepName='Pre—Load’ + str(i_cycles). zfill (2))
m.interactions|['Int—Surf_cont_Axle'].setValuesInStep(

contactControls=FREED,

stepName="Load ' + str(i_cycles). zfill (2))

return

#

def make_equations(m, a, inst_Axle_sector, r_Axle, t_Partition, mesh_num_depth, mesh_num_side,
|_Axle_sector, aa_Axle_sector, ta_Axle_sector, a_dummy, |_comp, a_comp, mesh_bias_ratio):

Node sets for the equations
r_list_fine = np.linspace(r_Axle, r_Axle—t_Partition, mesh_num_depth+1)

if coarse_bias:

bias_factor = np.array ([mesh_bias_ratio**(float (i)/(mesh_num_depth/2—1)) for i in range(mesh_num_depth/2)])
10 = (r_Axle — t_Partition — r_Axle_hollow)/np.sum(bias_factor)

r_list_coarse = r_Axle — t_Partition — 10 * np.cumsum(bias_factor)

else:

r_list_coarse = np.linspace(r_Axle—t_Partition, r_Axle_hollow, mesh_num_depth/2 + 1)[1:]
r_list = np.hstack((r_list_fine, r_list_coarse))

z_list = np.linspace (0., |_Axle_sector — |I_comp, mesh_num_side+1)

h_axle = r_Axle % (math.sin(aa_Axle_sector — ta_Axle_sector) — math.sin(—ta_Axle_sector))
if a_comp==0:

h_all = h_axle

else:

h_all = I_comp / math.tan (a_comp)

z_list_bottom = np.linspace(l_comp,

I_Axle_sector,
mesh_num_side + 1)

A.2 Cold Rolling py-Script

A29

z_list_top = np.linspace(l_comp*(1—h_axle/h_all),
|_Axle_sector — |_compxh_axle/h_all,
mesh_num_side + 1)

h_axle_zero_top = h_allx(aa_Axle_sector—ta_Axle_sector)/(aa_Axle_sector+a_dummy)
h_axle_zero_bottom = h_all*(ta_Axle_sector)/(aa_Axle_sector+a_dummy)

row_counter =1

node_counter = 1

for r_val in r_list:

node_counter = 1

r_comp_top = (r_Axle—r_val)/r_Axlexh_axle_zero_top*math.tan (a_comp)
r_comp_bottom = (r_Axle—r_val)/r_Axlexh_axle_zero_bottomx*math.tan (a_comp)

for z_val_bottom in z_list_bottom:
bottom Surface of the axle sector

node_label = inst_Axle_sector.nodes. getClosest ((r_val x math.cos(—ta_Axle_sector),

r_val x math.sin(—ta_Axle_sector),
z_val_bottom—r_comp_bottom) ,). label

a.Set(name='N_Set—bottom_row_{}_node_{}'.format(str(row_counter). zfill (2),

str(node_counter). zfill (3)),
nodes=inst_Axle_sector.nodes[node_label —1:node_label])
node_counter = node_counter + 1

node_counter = 1
for z_val_top in z_list_top:
top Surface of the axle sector

node_label = inst_Axle_sector.nodes. getClosest ((r_val x math.cos(aa_Axle_sector—ta_Axle_sector),

r_val x math.sin(aa_Axle_sector—ta_Axle_sector),
z_val_top+r_comp_top),).label

a.Set(name='N_Set—top_row_{}_node_{}'.format(str(row_counter). zfill (2),
str(node_counter). zfill (3)),

nodes=inst_Axle_sector.nodes[node_label — 1l:node_label])

node_counter = node_counter + 1

row_counter = row_counter + 1

Dummy

a_start_dummy = aa_Axle_sector—ta_Axle_sector

angle_list = np.linspace (0., a_dummy, nr_dummy+1)[1:]

row_counter_dummy = 1

node_counter_dummy = 1

for angle in angle_list:

node_counter_dummy = 1

h_val_bottom = r_Axle * (math.sin(angle — ta_Axle_sector) — math.sin(—ta_Axle_sector))
h_val_dummy = r_Axle * (math.sin(a_start_dummy + angle) — math.sin(—ta_Axle_sector))
for z_val in z_list:

z_val_bottom = z_val + I_comp % (1 — h_val_bottom/h_all)

z_val_dummy = z_val + I_comp x (1 — h_val_dummy / h_all)

Nodes from the lower edge of the axle sector

node_label = inst_Axle_sector.nodes.getClosest ((r_Axle * math.cos(—ta_Axle_sector + angle),

r_Axle x math.sin(—ta_Axle_sector + angle),
z_val_bottom),).label

a.Set(name='N_Set—lower_edge_row_{}_node_{}'.format(str(row_counter_dummy).

str (node_counter_dummy). zfill (3)),

nodes=inst_Axle_sector.nodes[node_label — 1l:node_label])

Nodes on the dummy

node_label = inst_Axle_sector.nodes.getClosest ((r_Axle % math.cos(a_start_dummy + angle),
r_Axle x math.sin (a_start_dummy + angle),

z_val_dummy),).label
a.Set(name='N_Set—dummy_row_{}_node_{}'.format(str(row_counter_dummy). zfill (2),

str(node_counter_dummy). zfill (3)),

nodes=inst_Axle_sector.nodes[node_label — 1l:node_label])
node_counter_dummy = node_counter_dummy + 1
row_counter_dummy = row_counter_dummy + 1

front and back area coupling

z_list_bottom = np.linspace(l_comp,
I_Axle_sector ,
mesh_num_side + 1)

z_list_top = np.linspace(l_comp*(1—h_axle/h_all),
|_Axle_sector — |_compxh_axle/h_all,
mesh_num_side + 1)

zfill (2),

A30 A Appendix

angle_list_all_side = np.linspace(0, aa_Axle_sector, mesh_num_edges + 1)[1:—1]
r_list = np.hstack((r_list_fine, r_list_coarse))[1:]

row_counter_front = 1
if front_z_loose — False:

for r_val_2 in r_list:

node_counter_front = 1

counter_front = 0

counter_back = 0

r_comp_top_side = (r_Axle—r_val_2)/r_Axlexh_axle_zero_top*math.tan (a_comp)
r_comp_bottom_side = (r_Axle—r_val_2)/r_Axlexh_axle_zero_bottoms*math.tan (a_comp)

for angle_2 in angle_list_all_side:

z_koordinate_1 = |_comp — r_comp_bottom_side
z_koordinate_2 = |I_comp * (1—h_axle/h_all) + r_comp_top_side
phi_comp_list = np.linspace(z_koordinate_1, z_koordinate_2, mesh_num_edges +1)

Front Surface of the axle sector

node_label_front = inst_Assembly.nodes.getClosest ((r_val_2 * math.cos(—ta_Axle_sector + angle_2),
r_val_2 * math.sin(—ta_Axle_sector + angle_2),

phi_comp_list[counter_front]),).label
a.Set(name='N_Set—front_row_{}_node_{}'.format(str(row_counter_front). zfill (2),
str(node_counter_front). zfill (3)),

nodes=inst_Assembly .nodes[node_label_front — 1l:node_label_front])

node_counter_front += 1
counter_front 4= 1

Necessary for the back side sets (so the iteration of the nodes starts from 1)
node_counter_front = 1

for angle_2_back in angle_list_all_side:

back Surface of the axle sector

node_label_back = inst_Assembly.nodes.getClosest ((r_val_2 * math.cos(—ta_Axle_sector + angle_2_back),
r_val_2 % math.sin(—ta_Axle_sector + angle_2_back),

|_Axle_sector — I_comp + phi_comp_list[counter_back]),).label
a.Set(name='N_Set—back_row_{}_node_{}'.format(str(row_counter_front). zfill (2),
str(node_counter_front). zfill (3)),

nodes=inst_Assembly.nodes[node_label_back — 1:node_label_back])

node_counter_front += 1
counter_back +=1

row_counter_front 4= 1

Internal coupling of the side edges

r_list = np.hstack((r_list_fine, r_list_coarse))[1:]

node_counter_edges = 1

row_counter_edges = 1

for r_val_side in r_list:

r_comp_top_side = (r_Axle—r_val_side)/r_Axlexh_axle_zero_topxmath.tan(a_comp)
r_comp_bottom_side = (r_Axle—r_val_side)/r_Axlexh_axle_zero_bottom*math.tan (a_comp)
z_koordinate_bot= |_comp — r_comp_bottom_side

z_koordinate_top = I_comp x (1—h_axle/h_all) + r_comp_top_side

Master edge of the assembly edges

node_label_master_edge = inst_Assembly.nodes.getClosest ((r_val_side x math.cos(—ta_Axle_sector),
r_val_side % math.sin(—ta_Axle_sector),

z_koordinate_bot),).label
a.Set(name='N_Set—Master_edge—row_{}_node_{}'.format(str(row_counter_edges). zfill (2),
str(node_counter_edges). zfill (3)),

nodes=inst_Assembly .nodes[node_label_master_edge — 1l:node_label_master_edge])

Slave nodes sets edges

node_label_slave_edge_| = inst_Assembly.nodes.getClosest ((r_val_side * math.cos(—ta_Axle_sector),

r_val_side % math.sin(—ta_Axle_sector),

|_Axle_sector — I_comp + z_koordinate_bot),).label

node_label_slave_edge_Il = inst_Assembly.nodes.getClosest((r_val_side * math.cos(—ta_Axle_sector + aa_Axle_sector),

r_val_side * math.sin(—ta_Axle_sector + aa_AxIe_sector),

z_koordinate_top),).label

node_label_slave_edge_Ill = inst_Assembly.nodes. getClosest ((r_val_side % math.cos(—ta_Axle_sector + aa_Axle_sector),
r_val_side * math.sin(—ta_Axle_sector + aa_Axle_sector),

|_Axle_sector — I_comp + z_koordinate_top),).label

A.2 Cold Rolling py-Script A3l

a.Set(name='N_Set—Slave_edges_I_II_Ill—row_{}_node_{}'.format(str(row_counter_edges). zfill (2),
str(node_counter_edges). zfill (3)),

nodes = inst_Assembly.nodes[node_label_slave_edge_| — 1l:node_label_slave_edge_I] +
inst_Assembly .nodes[node_label_slave_edge_Il — 1:node_label_slave_edge_II] +
inst_Assembly.nodes[node_label_slave_edge_IIl — 1:node_label_slave_edge_IIl])

node_counter_edges += 1
print ('Sets_done")

#
Local Coordinate Systems for DOF

dat_csys_cylindrical = a.DatumCsysByThreePoints(coordSysType=CYLINDRICAL,
linel =(1.0, 0.0, 0.0),

line2=(0.0, 1.0, 0.0),

name='Datum_Csys—Cylindrical ',

origin=(0.0, 0.0, 0.0))

#
Definition of the equations

for dof in range(1,4):

for row in range(l, row_counter):

for node in range(l, node_counter):

m. Equation (name="Equ—Row_{}_node_{}_DOF_{}'.format(str(row). zfill (2),
str(node). zfill (3),

dof),

terms=((—1.0, 'N_Set—top_row_{}_node_{}'.format(str(row). zfill (2),
str(node). zfill (3)),

dof, dat_csys_cylindrical.id), #dat_csys_top.id),

(1.0, 'N_Set—bottom_row_{}_node_{}"'.format(str(row). zfill (2),
str(node). zfill (3)),

dof, dat_csys_cylindrical.id)))#dat_csys_bottom.id)))

for row in range(l, row_counter_dummy):

for node in range(l, node_counter_dummy):

m. Equation (name='Equ—Dummy_Row_{}_node_{}_DOF_{}'.format(str(row). zfill (2),
str(node). zfill (3),

dof),

terms=((—1.0, 'N_Set—dummy_row_{}_node_{} . format(str(row). zfill (2),
str(node). zfill (3)),

dof, dat_csys_cylindrical.id) #dat_csys_top.id),

(1.0, 'N_Set—lower_edge_row_{}_node_{}'.format(str(row). zfill (2),
str(node). zfill (3)),

dof, dat_csys_cylindrical.id)))# dat_csys_bottom.id)))

for row in range(l, row_counter_front):

for node in range(l, node_counter_front):

m. Equation (name='Equ—front_back —Dummy_Row_{}_node_{}_DOF_{} "' .format(str(row). zfill (2),
str(node). zfill (3),

dof),

terms=((—1.0, 'N_Set—back_row_{}_node_{}'.format(str(row). zfill (2),
str(node). zfill (3)),

dof, dat_csys_cylindrical.id) #dat_csys_top.id),

(1.0, 'N_Set—front_row_{}_node_{}'.format(str(row). zfill(2),
str(node). zfill (3)),

dof, dat_csys_cylindrical.id)))# dat_csys_bottom.id)))

for node in range(l, node_counter_edges):

m. Equation (name="Equ—edges_Row_{}_node_{}_DOF_{} ' .format(str(row_counter_edges). zfill (2),
str(node). zfill (3),

dof),

terms=((—1.0, 'N_Set—Slave_edges_|I
str(node). zfill (3)),

dof, dat_csys_cylindrical.id) #dat_csys_top.id),

(1.0, 'N_Set—Master_edge—row_{}_node_{}'.format(str(row_counter_edges). zfill (2),
str(node). zfill (3)),

dof, dat_csys_cylindrical.id)))# dat_csys_bottom.id)))

IH_I1l—row_{}_node_{}'.format(str(row_counter_edges). zfill (2),

exclude the nodes that bounded by a BC

if side faces fix

for i_row in range(1l, row_counter):

del m.constraints [Equ—Row_{}_node_{}_DOF_{} '.format(str(i_row). zfill (2), str(1).zfill(3), dof)]

del m.constraints ['Equ—Row_{}_node_{}_DOF_{}'.format(str(i_row). zfill (2), str(node_counter — 1).zfill(3), dof)]

for i_row in range(1l, row_counter_dummy):
del m.constraints [Equ—Dummy_Row_{}_node_{}_DOF_{} ' .format(str(i_row). zfill (2), str(1).zfill(3), dof)]
del m.constraints ['Equ—Dummy_Row_{}_node_{}_DOF_{} . format(str(i_row). zfill (2), str(node_counter — 1).zfill(3), dof)]

return z_list_bottom , z_list_top, r_list, h_all, h_axle, h_axle_zero_top, h_axle_zero_bottom, r_comp_top, r_comp_bottom

#

A32 A Appendix

def make_load(m, load_WR, ta_Axle_sector, a_WR_start, nr_cycles, preload):
for i_cycles in range(l, nr_cycles+1):

m. ConcentratedForce(cfl=preload*cos(ta_Axle_sector—a_WR_start),
cf2=—preload*sin(ta_Axle_sector—a_WR_start),

createStepName='Pre—Load '+str(i_cycles). zfill (2),

name='Preload_WR_Hinge '+str(i_cycles). zfill (2),

region=a.sets [’ Set—RP—Hinge'],

follower=0ON)

m.loads ['Preload_WR_Hinge '+str(i_cycles). zfill (2)].deactivate('Load '+str(i_cycles). zfill(2))
Load

m. ConcentratedForce (cfl=load_WRxcos(ta_Axle_sector—a_WR_start),

cf2=—load_WRx*sin (ta_Axle_sector—a_WR_start),

createStepName="Load '+str(i_cycles). zfill (2),

name="load_WR_Hinge '+str (i_cycles). zfill (2),

region=a.sets ['Set—RP—Hinge'],

follower=ON)

m. loads ['load_WR_Hinge '+str (i_cycles). zfill (2)].deactivate('Unload '+str(i_cycles). zfill (2))

return

#

def make_boundary(m, a, rad_per_s, feed_v, aa_Axle_sector, ta_Axle_sector,

r_Axle_hollow, nr_cycles, timePeriodperCycle, timePeriod,

timePeriodperRoll , timePeriodperReturn, movement_type):
num_rev=(r_Axle+R_WRoller)/R_WRoller
rot_vel_WR=num_rev*2xpi/timePeriodperCycle—rad_per_s # rotational velocity of
the WorkRoller in radiant

per second

vr_return = rad_per_sxtimePeriodperRoll/timePeriodperReturn

Different variants of boundary conditions

Variant_1: front side z—direction is loose
if front_z_loose =— True:

m. DisplacementBC (createStepName="1Initial ',
name="BC—Axle_back_fix ",

region=inst_Axle_sector.sets ['Set—Axle_side_back '],
ul=SET, u2=SET, u3=SET, url=UNSET, ur2=UNSET, ur3=UNSET)
m. DisplacementBC(createStepName="1Initial ',
name='BC—Axle_front_Z_loose’,
region=inst_Axle_sector.sets['Set—Axle_side_front'],
ul=SET, u2=SET, u3=UNSET, url=UNSET, ur2=UNSET, ur3=UNSET)

Variant_2: hollow_axle is fixed

if hollow_encastre =— True:

m. EncastreBC(createStepName = ’'lInitial ',

name = 'BC—Axle_hollow_fix ",

region = inst_Axle_sector.sets [' Encastre_Set'])

#

m. VelocityBC(amplitude=UNSET, createStepName="Initial ',
distributionType=UNIFORM, fieldName=""', localCsys=None, name='WR_Movement',

region=a.sets ['Set—RP—Rolling—Centre '],
v1=0.0, v2=0.0, v3=0.0, vr1=0.0, vr2=0.0, vr3=0.0)

for i_cycles in range(l, nr_cycles+1):
if movement_type=—"free'

Load—Step

if i_cycles==I:

m. ConnVelocityBC(amplitude=UNSET, createStepName='Pre—Load '+str(i_cycles). zfill(2),

distributionType=UNIFORM, name='ConnVel_Hinge_Load '+str(i_cycles). zfill (2),

region=a.sets [' Wire—Hinge '],

v1=UNSET, v2=UNSET, v3=UNSET, vr1=0.0, vr2=UNSET, vr3=UNSET)

if i_cycles>1:

m. boundaryConditions ["WR_Movement']. setValuesInStep (

stepName="Pre—Load '+str (i_cycles). zfill (2), v3=0.0, vr3=0.0)

m. boundaryConditions['ConnDisp_Trans_Unload '+str (i_cycles —1). zfill (2)]. deactivate('Load '+str(i_cycles). zfill (2))

#
Cycles—Step

if i_cycles==I:

m. boundaryConditions['ConnVel_Hinge_Load '+str(i_cycles). zfill (2)].deactivate('Cycles '+str(i_cycles). zfill(2))

m. boundaryConditions ["WR_Movement ']. setValuesInStep (
stepName="Cycles '+str(i_cycles). zfill (2), v3=feed_v, vr3=rad_per_s)

#
Unload—Step
m. ConnVelocityBC(amplitude=UNSET, createStepName='Unload '+str(i_cycles). zfill (2),

A.2 Cold Rolling py-Script A33

distribution Type=UNIFORM, name='ConnVel_Hinge_Unload '+str(i_cycles). zfill (2), region=
a.sets['Wire—Hinge '], v1=UNSET, v2=UNSET, v3=UNSET, vr1=0.0, vr2=UNSET, vr3=UNSET)

m. boundaryConditions ["WR_Movement']. setValuesInStep (

stepName="Unload '+str(i_cycles). zfill (2), v3=0.0, vr3=0.0)

m. ConnDisplacementBC(amplitude=UNSET, createStepName="Unload '+str(i_cycles). zfill (2),
distributionType=UNIFORM, fixed=OFF,

name="ConnDisp_Trans_Unload '+str(i_cycles). zfill (2),

region=a.sets ['Wire—Translator '],

ul=0.5, u2=UNSET, u3=UNSET, url=UNSET, ur2=UNSET, ur3=UNSET)

if i_cycles<nr_cycles:

m. boundaryConditions ['ConnVel_Hinge_Unload '+str(i_cycles). zfill (2)].deactivate('Cycles '+str(i_cycles+1).zfill(2))

#
Return—Step
m. boundaryConditions ["WR_Movement ']. setValuesInStep (

stepName="Return '+str(i_cycles). zfill (2), v3=feed_v, vr3=(—1)xvr_return)

if movement_type=—'controlled ":

Load—Step

if i_cycles==1:

m. ConnVelocityBC(amplitude=UNSET, createStepName='Pre—Load '+str(i_cycles). zfill(2),
distributionType=UNIFORM, name='ConnVel_Hinge_Load’,

region=a.sets ['Wire—Hinge '],

v1=UNSET, v2=UNSET, v3=UNSET, vr1=0.0, vr2=UNSET, vr3=UNSET)

if i_cycles>1:

m. boundaryConditions ["WR_Movement ']. setValuesInStep (

stepName="Pre—Load '+str (i_cycles). zfill (2), v3=0.0, vr3=0.0)

m. boundaryConditions['ConnDisp_Trans_Unload '+str (i_cycles —1).zfill (2)]. deactivate('Pre—Load '+str(i_cycles). zfill (2))

#
Cycles—Step

m. boundaryConditions['ConnVel_Hinge_Load'].setValuesInStep (
stepName="Cycles '+str(i_cycles). zfill (2),vri=rot_vel _WR)

m. boundaryConditions ["WR_Movement']. setValuesInStep (

stepName="Cycles '+str(i_cycles). zfill (2), v3=feed_v, vr3=rad_per_s)

#
Unload—Step

m. boundaryConditions ['ConnVel_Hinge_Load'].setValuesInStep (

stepName="Unload '+str(i_cycles). zfill (2),vr1=0.0)

m. boundaryConditions ["WR_Movement']. setValuesInStep (

stepName="Unload '+str (i_cycles). zfill (2), v3=0.0, vr3=0.0)

m. ConnDisplacementBC(amplitude=UNSET, createStepName="Unload '+str(i_cycles). zfill (2),
distributionType=UNIFORM, fixed=OFF,

name="'ConnDisp_Trans_Unload '+str(i_cycles). zfill (2),
region=a.sets ['Wire—Translator'],

ul=0.5, u2=UNSET, u3=UNSET, url=UNSET, ur2=UNSET, ur3=UNSET)

#
Return—Step

m. boundaryConditions ["WR_Movement ']. setValuesInStep (

stepName="Return '+str(i_cycles). zfill (2), v3=feed_v, vr3=(—1)%vr_return)

#
Stop Movement for element—deletion steps
m.boundaryConditions ["WR_Movement ']. setValuesInStep (
stepName='Step—Element_Deletion—Layer_01",

v3=0.,

vr3=0.)

return

#

def make_el_deletion(m, nr_dels_per_layer):

Deactivate Contact interaction for element deletion steps
m.interactions['Int—Surf_cont_Axle’'].deactivate('Step—Element_Deletion—Layer_01")

Delete the elements in layers:

for i_del in range(1l, nr_dels + 1):

m. ModelChange(activelnStep=False ,
createStepName='Step—Element_Deletion—Layer_{}'.format(str(i_del). zfill (2)),
includeStrain=False ,

name='Int—Element_Deletion—Layer_{} ' .format(str(i_del). zfill (2)),
region=inst_Axle_sector.sets ['Set—el_del_Layer_{}'.format(str(i_del). zfill (2))],
regionType=ELEMENTS)

return

#

def create_job(m, dir_name):

job_name="DR_DAxle_{} WR D{}R{}_feed_{}_load_{}'.format(str(int(r_Axlex2)).replace(’.’, 'p’),

A34 A Appendix

str(int (round(R_WRollerx2/scale_analytical))). replace(’.", 'p"’),
str(int (round(r_WRoller/scale_analytical))).replace(’'."','p’),
str(feed). replace(’'.",'p"’),

str(abs(load_WR/1000)).replace(’.", 'p’))

job_name = dir_name

job_type = ANALYSIS

allow Model change for subsequent restart simulations
m. ModelChange (createStepName='Pre—Load01 ",
isRestart=True,

name='"Int—Model—Change ")

job = mdb.Job(atTime=None, contactPrint=OFF, description='", echoPrint=0OFF,
explicitPrecision=SINGLE, getMemoryFromAnalysis=True, historyPrint=OFF,
memory=90, memoryUnits=PERCENTAGE, model=m.name, modelPrint=0OFF,
multiprocessingMode=THREADS, name=job_name, nodalOutputPrecision=SINGLE,

numCpus=num_cpus, numDomains=num_cpus, numGPUs=0, queue=None, resultsFormat=0ODB,

type=job_type, userSubroutine='"', waitHours=0, waitMinutes=0)
create field outputs

del m.fieldOutputRequests['F—Output—1"]

m. FieldOutputRequest(createStepName='Pre—Load01 ',
name='F—Output’', variables=PRESELECT)

create history outputs

del m. historyOutputRequests ['H-Output—1"]

m. HistoryOutputRequest (createStepName='Pre—Load01 ",
name='H-Output ', variables=PRESELECT)

m. HistoryOutputRequest (createStepName='Pre—Load01 "',
name="H-Output_contact ',

variables=('CAREA’', 'ALLAE’', 'ALLCD’', 'ALLDMD', 'ALLEE’,
"ALLFD', "ALLIE', 'ALLIJD', 'ALLKE', 'ALLKL', 'ALLPD’,
"ALLQB', 'ALLSE', 'ALLSD', 'ALLVD', 'ALLWK', 'ETOTAL'))

#
additional keywords for inp.—file

m. keywordBlock.synchVersions ()

block_list = m. keywordBlock.sieBlocks

pos_i = [i for i, j in enumerate(block_list) if 'Output, field’

in]

str_out = 'sx\nxElement Output, directions=YES\nCOORD, IVOL\n#x\xNode_ Output\nCOORD, *

m. keywordBlock . insert (pos_i[0], str_out)
m. keywordBlock . insert (pos_i[1]+1, str_out)
#

create inp.—file

job.writelnput ()

save CAE

mdb. saveAs (pathName=job_name+'.cae’)
return

#

def move_files(dir_calc,nr_cycles):

list_dir=os. listdir(dir_calc)

for files in list_dir:

for i_cycles in range(l,nr_cycles):

if (files.startswith('m-c’ + str(i_cycles).zfill (2)) or
files.startswith('j—' + str(i_cycles).zfill (2))):
shutil .move(files , ('m-c’ 4 str(i_cycles).zfill (2)))
return

#

Ly Ly Ly Ly

running program

4 Sy [NN [Sy s Sy

Ft—H— 1 1 FA——1 e
if __name__ — '__main__"

Models

m_name="DR_axle’

mdb. models. changeKey (fromName='Model—1"', toName=m_name)
m = mdb. models [m_name]

m.setValues(noPartslnputFile=ON)

r_Axle, t_Axle_sector, |_Axle_sector, aa_Axle_sector, ta_Axle_sector,

r_WRoller, R_WRoller, h_WRoller, scale_analytical , geom_par,\
a_WR_start, a_dummy_min, nr_layer_dummy, lowerbound_Trans, \
upperbound_Trans = get_geometry_parameters ()

nr_cycles, i_models, feed, rpm, rad_per_s, load_WR, indent_WR,
movement_type, t_Partition, num_cpus, process_par, \
nr_el_del, nr_dels_per_cyc, nr_dels, mesh_num, mesh_num_edges,

rolling_angle ,

mesh__num_depth,

r_Axle_hollow ,\

feed_v ,

\

scratch="'

\

A.2 Cold Rolling py-Script A35

mesh_num_side, mesh_bias_ratio, reduced, nr_dummy, a_dummy, depth_dummy, preload=\
get_process_parameters(aa_Axle_sector, ta_Axle_sector, a_WR_start, a_dummy_min, nr_layer_dummy)

dir_name, dir_calc = set_directory()

mat_name, mat_name_dummy, youngs_modulus, nu, yield_stress, cl, gammal, c2, gamma2, \
c3, gamma3, equiv_stress, q_infinity , hardening_b, \

youngs_modulus_dummy, nu_dummy, mat_par = \

get_material_parameters()

save_parameter(geom_par, process_par, mat_par)

r_WRoller ,R_WRoller , h_WRoller = scale_WRoller (r_WRoller ,R_WRoller, h_WRoller,scale_analytical)
p_Axle_sector ,p_WRoller = make_geometry(m, r_Axle ,t_Axle_sector ,|_Axle_sector ,aa_Axle_sector,
ta_Axle_sector ,r_WRoller, R_WRoller, h_WRoller,

r_Axle_hollow , a_dummy, depth_dummy)

|_comp, h_all, a_comp = make_feed_compensation(m, p_Axle_sector, r_Axle, |_Axle_sector, ta_Axle_sector,

aa_Axle_sector, a_dummy, feed)

dat_WR_XZ_h, dat_Ax_XY_0 = make_datum_planes(p_WRoller, h_WRoller,
p_Axle_sector, indent_WR,
|_comp)

a, inst_Axle_sector, inst_WRoller, dat_axis_x, dat_axis_y, dat_axis_z =\
make_instances(m, p_Axle_sector, p_WRoller, r_Axle)

make_p_sets(p_Axle_sector, r_Axle, t_Axle_sector, |_Axle_sector, a_dummy, depth_dummy,
|_comp, h_all, a_comp)

make_mesh (p_Axle_sector, mesh_num_edges, mesh_num_depth, mesh_num_side, mesh_bias_ratio, reduced)
rp_RC, rp_H, rp_H2 = make_a_sets(a, inst_Axle_sector,p_WRoller, r_Axle,R_WRoller,

h_WRoller, ta_Axle_sector, a_WR_start,

dat_Ax_XY_0, dat_WR_XZ_h, indent_WR, |_comp)

make_mat_sections(m, mat_name, mat_name_dummy, youngs_modulus, youngs_modulus_dummy,

nu, nu_dummy, yield_stress, cl, gammal, c2, gamma2, c3, gamma3,

equiv_stress , q_infinity , hardening_b)

make_rigid(a,m, inst_WRoller)

make_connectors(a,m,rp_RC,rp_H, rp_H2, r_Axle,R_WRoller, h_WRoller, ta_Axle_sector ,a_WR_start,
lowerbound_Trans, upperbound_Trans)

nr_dels_per_layer = make_el_sets(p_Axle_sector, nr_el_del, nr_dels, mesh_num_depth,
mesh_num_side, |_comp, a_comp)
timePeriodperCycle, timePeriod, timePeriodperRoll, timePeriodperReturn =\

make_step(a, m, rpm, rad_per_s, feed_v, nr_cycles,
rolling_angle , nr_dels_per_layer)

make_contact(m, movement_type)

z_list_bottom , z_list_top, r_list, h_all, h_axle, h_axle_zero_top, h_axle_zero_bottom, r_comp_top, r_comp_bottom
t_Partition , mesh_num_depth,

mesh_num_side, |_Axle_sector ,

aa_Axle_sector, ta_Axle_sector,

a_dummy, |_comp, a_comp,

mesh_bias_ratio)

make_load(m, load_WR, ta_Axle_sector, a_WR_start, nr_cycles, preload)
make_boundary(m, a, rad_per_s, feed_v, aa_Axle_sector, ta_Axle_sector,
r_Axle_hollow, nr_cycles , timePeriodperCycle, timePeriod,
timePeriodperRoll , timePeriodperReturn, movement_type)
make_el_deletion(m, nr_dels_per_layer)

create_job(m, dir_name)

os.chdir(dir0)

make_equations(m,

A.3 Heat Treatment py-Script

A37

A.3 Heat Treatment py-Script

Heat—Treatment—Wheel—Axisymmetric—Python—Script
2023—04—25

J. Bialowas, S. Gapp

#
Import of packages

from abaqus import *

from abaqusConstants import x*

from caeModules import x
import numpy as np

import os

import math

import shutil

from connectorBehavior import *
#
Model parameters (N-mm-s—K)
#

session.journalOptions.setValues(replayGeometry=COORDINATE,
recoverGeometry=COORDINATE)
TOL = le—6

dir=os.path.abspath('")
os.chdir(dir)

Mdb ()
job_name = '_HT_brake’
dir_name = 'HT_wheel '+job_name

DIRO = os.path.abspath('")

Functions

#

def get_geometry_parameters():
Wheel

#

geom_name = 'CityJet’

reference: wheel Lucchini

radii of the wheel

r_inside = 182.1/2 # inside radius of the wheel

r_bottom = 300.3/2 # radius of the bottom of the wheel

r_head_inside = 722.8/2 # inside radius of the wheel head

r_head_left_outside = 872.1/2 # outside radius of the wheel head on the top left corner
r_head_transition_flank = 878.9/2 # radius at the transition of the head, where RI18 is
#length

width_bottom = 192.9 # bottom width of the wheel

width_head = 147.2 # head width of the wheel

dist_left_head = 39.6 # horizontal distance from the left bottom to the left top edge
dist_web_left_bottom = 91.4 # horizontal distance from the left bottom edge

to the left bottom corner of the web

dist_web_left_top = dist_left_head + 52.3 # horizontal distance from the left bottom
edge to the left top corner of the web

dist_web_right_bottom = dist_web_left_bottom + 43.6 # horizontal distance from the left
bottom edge to the right bottom corner of the web

dist_web_right_top = dist_web_left_top + 42.6 # horizontal distance from the left bottom
edge to the left top corner of the web

height_flank = 29. # height of the flank

dist_flank_1 = dist_left_head + width_head — 49.2 # horizontal distance from the left bottom

edge to the start of the flank

dist_flank_2 = dist_left_head + width_head — 31.4 # horizontal distance from the left bottom

edge to the end of the straight flank

angles:

angle_web = 10%pi /180 # transition angle at the web

angle_head_1 = 2xpi /180 # transition angle 1(left side) at the head
angle_head_2 = 31.5 % pi / 180 # transition angle 2(middle) at the head
transition radii

tran_r_web_bottom = 34. # transition radius at the bottom of the web
tran_r_web_top = 25. # transition radius at the top of the web
tran_r_head_1 = 18. # transition radius 1 at the head

tran_r_head_2 = 21. # transition radius 1 at the head
tran_r_head_3 = 20. # transition radius 1 at the head

Saving parameters for future availability

20)), ('Parameter’, np.float64)]
geom_par = np.array ([('r_inside’, r_inside), ('r_bottom', r_bottom),
('r_head_inside’', r_head_inside),

('r_head_left_outside r_head_left_outside),
('r_head_transition_flank’', r_head_transition_flank),
('width_bottom ', width_bottom), (’'width_head’, width_head),

dtype = [('Name', (np.str

A38 A Appendix

('dist_left_head ', dist_left_head),
('dist_web_left_bottom ', dist_web_left_bottom),
('dist_web_left_top’', dist_web_left_top),
(’'dist_web_right_bottom’
('dist_web_right_top', dist_web_right_top),

("height_flank ', height_flank), ('dist_flank_1', dist_flank_1),
('dist_flank_2"', dist_flank_2), ('angle_web', angle_web),
('angle_head_1"', angle_head_1), ('angle_head_2', angle_head_2),

, dist_web_right_bottom),

('tran_r_web_bottom ', tran_r_web_bottom),

('tran_r_web_top', tran_r_web_top),

('tran_r_head_1"', tran_r_head_1), (’'tran_r_head_2"', tran_r_head_2),

('tran_r_head_3"', tran_r_head_3),

], dtype=dtype)

return geom_name, r_inside, r_bottom, r_head_inside, r_head_left_outside, \
r_head_transition_flank , width_bottom, width_head, dist_left_head b \
dist_web_left_bottom , dist_web_left_top, dist_web_right_bottom, dist_web_right_top, \
height_flank , dist_flank_1, dist_flank_2, angle_web, angle_head_1, angle_head_2, \
tran_r_web_bottom, tran_r_web_top, tran_r_head_1, tran_r_head_2, tran_r_head_3, \
geom_par

#
def get_process_parameters(dist_left_head , r_head_left_outside, kelvin):
User Subroutine

bool_user = True # bool that defines whether user subroutines are used

bool_HT = True # bool that defines whether the simulation is of type heat transfer
Element size

el_size = 1.5 # normal element size

el_size_fine = 0.8 # fine element size

Water Temperature during quenching
Temp_water = 25. + kelvin

Annealing Temperature
Temp_annealing = 500. + kelvin

Partition
t_Partition = 20. # depth of finely meshed section, from the top left point

partition_offset = 5.

Calculation with one cpu only because of subroutine usage
num_cpus = 1

Saving parameters for future availability

dtype = [('Name', (np.str_, 20)), ('Parameter’, np.float64)]
process_par = np.array ([('bool_user’, int(bool_user)),
("bool_HT ', int(bool_HT)),

('el_size’', el_size),

('el_size_fine', el_size_fine),

(' Temp_water', Temp_water),

(' Temp_annealing’, Temp_annealing),

], dtype=dtype)

return bool_user, bool_HT, el_size, el_size_fine, Temp_water, Temp_annealing, \
t_Partition, partition_offset , num_cpus, process_par

#

def calc_true_strain(engineering_strain):

true_strain = math.log(l+engineering_strain)
return true_strain

#

def calc_true_stress(engineering_stress, engineering_strain):

true_stress = engineering_stress x (l+engineering_strain)
return true_stress

#
def create_material(m, p, kelvin):
mat = m. Material (name="ER7-TD")

mat. Depvar(n=25)
mat. UserDefinedField ()

density in kg/m~3 and degrees C
rho_conversion_fact = le—12

os.chdir('material_data’)

density_data = np.loadtxt(os.path.join (os.getcwd(),
"ER7_density_TD.csv '),

skiprows=1,
delimiter=",",
unpack=True)
density_data [0]
density_data [1]
os.chdir(DIRO)

= density_data [0][:] * rho_conversion_fact

[:]
[:] = density_data[1][:] + kelvin

A.3 Heat Treatment py-Script

A39

#

Mechanical data
elastic in Pa and degrees C
E_conversion_fact = le—6

os.chdir('material_data')

elastic_data = np.loadtxt(os.path.join (os.getcwd(),
"ER7_youngs_modulus_TD.csv '),

skiprows=1,
delimiter=","
unpack=True)
elastic_data [0]
elastic_data [2]
os.chdir(DIRO)

[:] = elastic_data[0][:] * E_conversion_fact

[:] = elastic_data [2][:] + kelvin

temperature dependent plastic material data for individual phases
pl_mat_table = []

Austenite

temp_list_M = [300, 400., 500., 600.]

for temp in temp_list_M:

os.chdir('flow_curves')

pl_data_A = np.loadtxt(os.path.join (os.getcwd(),
"ER7_plastic_L_Austenite_T_{} _extrapolated.csv'.\
format(str(int(temp)))),

skiprows=0,
delimiter=",",
unpack=True)
os.chdir(DIRO)

for i in range(pl_data_A.shape[1l]):

strain_A= (pl_data_A[0, i] — pl_data_A[O0, 0]) = 0.01

stress_A = pl_data_A[1l, i]

pl_mat_table.append ([stress_A, strain_A, temp + kelvin, 1, 0, 0, 0])

os.chdir('flow_curves')

pl_data_A = np.loadtxt(os.path.join(os.getcwd(),
"ER7_plastic_L_austenite_T_700.csv "),
skiprows=0,
delimiter=","
unpack=True)
os.chdir (DIRO)

for i in range(pl_data_A.shape[1l]):

strain_A = (pl_data_A[0, i] — pl_data_A[0, 0]) = 0.01

stress_A = pl_data_A[1l, i]

pl_mat_table.append ([stress_A, strain_A, 700. + kelvin, 1, 0, 0, 0])

temp_list_M = [25., 150., 250., 300., 450.]

for temp in temp_list_M:

os.chdir('flow_curves')

pl_data_M = np.loadtxt(os.path.join (os.getcwd(),
"ER7_plastic_L_0p013_T_{}.csv'.format(str(int(temp)))),
skiprows=0,
delimiter=",",
unpack=True)
os.chdir(DIRO)

for i in range(pl_data_M .shape[1]):

strain_M = (pl_data_M[0, i] — pl_data_M[0, O]) = 0.01

stress_M = pl_data_M[1, i]

pl_mat_table.append ([stress_M, strain_M, temp + kelvin, 0, 1, 0, 0])

temp_list_B = [25., 150., 300., 450.]

for temp in temp_list_B:
os.chdir('flow_curves')

pl_data_B = np.loadtxt(os.path.join (os.getcwd(),
"ER7_plastic_L_0p150_T_{} _pure_bainite.csv '\
.format(str(int(temp)))),

skiprows=0,
delimiter=",",
unpack=True)
os.chdir (DIR0)

for i in range(pl_data_B.shape[1]):

strain_B = (pl_data_B[0, i] — pl_data_B[0, 0]) = 0.01

stress_B = pl_data_B[1, i]

pl_mat_table.append ([stress_B, strain_B, temp + kelvin, 0, 0, 1, 0])

A40 A Appendix

temp_list_P = [25., 150., 300., 450., 600., 700]

for temp in temp_list_P:

os.chdir('flow_curves')

pl_data_P = np.loadtxt(os.path.join (os.getcwd(),
"ER7_plastic_L_5p000_T_{}.csv'.format(str(int(temp)))),
skiprows=0,
delimiter=",",
unpack=True)
os.chdir (DIRO)

for i in range(pl_data_P.shape[1]):

strain_P = (pl_data_P[0, i] — pl_data_P[0, 0]) % 0.01

stress_P = pl_data_P[1, i]

pl_mat_table.append ([stress_P, strain_P, temp + kelvin, 0, 0, 0, 1])

mat. Plastic(dependencies = 4,

table = pl_mat_table,
temperatureDependency = ON)

#

Thermophysical data

Specific Heat in J/(kg K)

cp_conversion_fact = le+46

os.chdir('material_data")

specitic_heat_data = np.loadtxt(os.path.join(os.getcwd(),
"ER7_specific_heat_TD.csv '),

skiprows=1,
delimiter=",",

unpack=True)

specitic_heat_data [0][:] = specitic_heat_data [0][:] * cp_conversion_fact
specitic_heat_data [1][:] = specitic_heat_data[1][:] + kelvin
os.chdir(DIRO)

Conductivity in W/(m K)

Conversion into t—-mm-s with factor 1
os.chdir('material_data')

conductivity_data = np.loadtxt(os.path.join(os.getcwd(),
"ER7_conductivity_TD.csv '),

skiprows=1,
delimiter=",",

unpack=True)

conductivity_data [0][:] = conductivity_data [0][:]
conductivity_data [1][:] = conductivity_data [1][:] 4+ kelvin
os.chdir(DIRO)

#
Assign material data to material properties in Abaqus
mat. Density (dependencies=0,

table=(tuple(map(tuple,

zip (density_data [0][:] , density_data [1][:])))) .
temperatureDependency=ON)

mat. Elastic(dependencies=0,
table=(tuple (map(tuple,

zip (elastic_data [0][:],
elastic_data [1][:],
elastic_data [2][:])))) .
temperatureDependency=ON)

mat. Conductivity (dependencies=0,

table=(tuple(map(tuple,

zip (conductivity_data [0][:] , conductivity_data [1][:])))) .
temperatureDependency=ON)

mat. SpecificHeat(dependencies=0,

table=(tuple(map(tuple,

zip (specitic_heat_data [0][:], specitic_heat_data [1][:])))) .
temperatureDependency=ON)

USER DEFINED material properties

mat. Expansion ()

mat. expansion.setValues (type=ISOTROPIC, userSubroutine=ON)
mat. Creep (law=USER, table=())

mat. HeatGeneration ()

print 'material datagisgimplemented’

Section and material assignment
m. HomogeneousSolidSection(material="ER7—TD’, name='Section—Wheel ',

A.3 Heat Treatment py-Script A4l

thickness=None)
p_Wheel.SectionAssignment (region=p_Wheel.sets ['Set—all_Wheel '],
sectionName='Section—Wheel ")

#
def set_directory ():

Set the working directory
job_name = job_name

dir_name = dir_name

DIRO = os.path.abspath('")

chooses the directory if it exists already
if os.path.exists(dir_name):

change directory
os.chdir(dir_name)

save the directory path

DIRO = os.path.abspath('’)

if not os.path.exists (' Results’):
creates a new directory 'Results’
os. mkdir('Results’)

creates the directory

else:

create a new directory

os. mkdir(dir_name)

change directory

os. chdir(dir_name)

save the directory path

DIRO = os.path.abspath(’’)

creates a new directory 'Results’
os. mkdir('Results ')

return dir_name, DIRO, job_name

#
def save_parameter(geom_par,
process_par ,
name_geom="'geometry_parameters ',
name_process='process_parameters’):

par = {name_geom: geom_par, name_process: process_par}

for i_name, i_par in par.items():

np.savetxt(i_name + '.csv’', i_par, delimiter=",", fmt=["%s’', '%f'])
return

#

def make_geometry(m, geom_name, r_inside, r_bottom, r_head_inside,
r_head_left_outside, r_head_transition_flank , width_bottom,

width_head, dist_left_head , dist_web_left_bottom , dist_web_left_top,
dist_web_right_bottom , dist_web_right_top, height_flank, dist_flank_1,
dist_flank_2, angle_web, angle_head_1, angle_head_2, tran_r_web_bottom,
tran_r_web_top, tran_r_head_1, tran_r_head_2, tran_r_head_3, t_Partition):

Wheel

Load the step file as a sketch

Attention: the sketch origin is not the left bottom point of the sketch because the
wheel is hollow!

name_s_wheel = 's_wheel_' + geom_name

#mdb. openStep (path_geometry, scaleFromFile=OFF)

#m. ConstrainedSketchFromGeometryFile(geometryFile=mdb. acis , name=’s_ ' + geom_name)
#s_wheel = m. ConstrainedSketch (name='__profile__ ', sheetSize=200.0)

#s_wheel. retrieveSketch (sketch=m. sketches['s_ ' + geom_name])

sketch the wheel

dist_web_top = dist_web_left_top — dist_left_head # horizontal distance from the edge of
the head to the web

for the sketch of the flank some dimensions had to be measured from 2D—Step model:
end_straight = (r_head_transition_flank + 19.0462590450569,

dist_flank_1 + 11.6715625539186)

end_R21 = (r_head_transition_flank + 27.524216279494,

dist_flank_1 + 21.6598798928313)

s_wheel = m. ConstrainedSketch (name=name_s_wheel, sheetSize=200.0)

s_wheel . Line(pointl=(r_inside, 0), point2=(r_bottom, 0))

s_wheel. Line(pointl=(r_bottom, 0),

point2=(r_bottom + dist_web_left_bottom x tan(angle_web),

dist_web_left_bottom))

s_wheel . Line(pointl=(r_bottom + dist_web_left_bottom * tan(angle_web),
dist_web_left_bottom),

point2=(r_head_inside — dist_web_top * tan(angle_web),

dist_web_left_top))

s_wheel . Line(pointl=(r_head_inside — dist_web_top * tan(angle_web),
dist_web_left_top),

point2=(r_head_inside, dist_left_head))

s_wheel.Line(pointl=(r_head_inside, dist_left_head),

point2=(r_head_left_outside, dist_left_head))

A42 A Appendix

s_wheel.Line(pointl=(r_head_left_outside, dist_left_head),
point2=(r_head_left_outside +

(dist_flank_1—dist_left_head) * tan(angle_head_1),

dist_flank_1))

s_wheel.Line(pointl=(r_head_left_outside +

(dist_flank_1—dist_left_head) * tan(angle_head_1),

dist_flank_1),

point2=end_straight)

s_wheel.ArcByStartEndTangent(entity= s_wheel.geometry.findAt(end_straight,),
pointl=end_straight,

point2=end_R21)

s_wheel . ArcByStartEndTangent(entity= s_wheel.geometry.findAt(end_R21,),
pointl=end_R21,

point2=(r_head_transition_flank + height_flank —

tran_r_head_3,

dist_left_head + width_head))

s_wheel.Line(pointl=(r_head_transition_flank + height_flank — tran_r_head_3,
dist_left_head + width_head),

point2=(r_head_inside, dist_left_head + width_head))
s_wheel.Line(pointl=(r_head_inside, dist_left_head + width_head),
point2=(r_head_inside — dist_web_top * tan(angle_web),

dist_web_right_top))

s_wheel.Line(pointl=(r_head_inside — dist_web_top * tan(angle_web),
dist_web_right_top),

point2=(r_bottom + (width_bottom — dist_web_right_bottom) x tan(angle_web),
dist_web_right_bottom))

s_wheel.Line(pointl=(r_bottom + (width_bottom — dist_web_right_bottom) x tan(angle_web),
dist_web_right_bottom),

point2=(r_bottom, width_bottom))

s_wheel.Line(pointl=(r_bottom, width_bottom),

point2=(r_inside , width_bottom))

s_wheel.Line(pointl=(r_inside , width_bottom),

point2=(r_inside , 0.0))

fillets :

web bottom left

s_wheel. FilletByRadius(curvel=s_wheel.geometry.findAt ((r_bottom + dist_web_left_bottom /2 *
tan (angle_web),

dist_web_left_bottom/2),),

curve2=s_wheel.geometry.findAt ((((r_head_inside — dist_web_top*tan(angle_web))
+(r_bottom + dist_web_left_bottomxtan(angle_web)))/2,

dist_web_left_bottom +

(dist_web_left_top—dist_web_left_bottom)/2),),

nearPointl=(r_bottom + dist_web_left_bottom /2xtan(angle_web),
dist_web_left_bottom /2),

nearPoint2=(r_bottom + tran_r_web_bottom,

dist_web_left_bottom),

radius=tran_r_web_bottom)

web bottom right

dist_tran_web_r_bot = dist_web_right_bottom + tran_r_web_bottom # horizontal distance to
define the fillet at the right bottom of the web

s_wheel. FilletByRadius(curvel=s_wheel.geometry.findAt ((r_bottom + (width_bottom —
dist_tran_web_r_bot) *

tan (angle_web),

dist_tran_web_r_bot),),

curve2=s_wheel.geometry.findAt ((((r_head_inside — dist_web_top*tan(angle_web))
+(r_bottom + (width_bottom — dist_tran_web_r_bot) =*

tan (angle_web)))/2,

dist_web_right_bottom +

(dist_web_right_top—dist_web_right_bottom)/2),),

nearPointl=(r_bottom + (width_bottom — dist_tran_web_r_bot) x*

tan (angle_web),

dist_tran_web_r_bot),

nearPoint2=(r_bottom + tran_r_web_bottom,

dist_web_right_bottom),

radius=tran_r_web_bottom)

web top left
s_wheel.FilletByRadius(curvel=s_wheel.geometry.findAt ((r_head_inside — dist_web_top/2 *
tan(angle_web),

dist_left_head + dist_web_top/2),),

curve2=s_wheel.geometry.findAt ((((r_head_inside — dist_web_topx*tan(angle_web))
+(r_bottom + dist_web_left_bottomxtan(angle_web)))/2,

dist_web_left_bottom +

(dist_web_left_top—dist_web_left_bottom)/2),),

nearPointl=(r_head_inside — (dist_left_head + dist_web_top / 2) x

tan (angle_web),

dist_left_head + dist_web_top/2),

nearPoint2=(r_head_inside — tran_r_web_top,

dist_web_left_top),

radius=tran_r_web_top)

web top right

A.3 Heat Treatment py-Script A43

dist_tran_web_r_top = dist_web_right_top + tran_r_web_top # horizontal distance to
define the fillet at the right bottom of the web
s_wheel.FilletByRadius(curvel=s_wheel.geometry.findAt ((r_head_inside —
(dist_web_top — tran_r_web_top) *

tan(angle_web),

dist_tran_web_r_top),),

curve2=s_wheel . geometry.findAt ((((r_head_inside — dist_web_topxtan(angle_web))
+(r_bottom + (width_bottom — dist_tran_web_r_top) =

tan(angle_web)))/2,

dist_web_right_bottom +

(dist_web_right_top—dist_web_right_bottom)/2),),
nearPointl=(r_head_inside + (dist_web_top — tran_r_web_top) *
tan(angle_web),

dist_tran_web_r_top),

nearPoint2=(r_head_inside — tran_r_web_top,

dist_web_right_top),

radius=tran_r_web_top)

flank

s_wheel.FilletByRadius(curvel=s_wheel.geometry.findAt ((r_head_left_outside +
(dist_flank_1/2 — dist_left_head)x*

tan(angle_head_1),

dist_flank_1/2),),

curve2=s_wheel.geometry.findAt ((r_head_transition_flank + height_flank/2,
dist_flank_1 + height_flank/2 =

tan(angle_head_2)),),

nearPointl=(r_head_left_outside + (dist_flank_1 — tran_r_head_1) =
tan(angle_head_1),

dist_flank_1 — tran_r_head_1),
nearPoint2=(r_head_transition_flank+height_flank /2,

dist_flank_1 + height_flank/2 x

tan(angle_head_2)),

radius=tran_r_head_1)

Create the wheel part as axisymmetric part from the sketch s_wheel
s_wheel_AS= m. ConstrainedSketch (name='s_wheel _AS’', sheetSize=200.0)
s_wheel _AS.sketchOptions.setValues(viewStyle=AXISYM)

s_wheel_AS . ConstructionLine(pointl=(0.0, —100.0), point2=(0.0, 100.0))
s_wheel _AS.geometry. findAt ((0.0, 0.0))

s_wheel_AS . FixedConstraint(entity=s_wheel _AS.geometry.findAt((0.0, 0.0),))
s_wheel _AS.retrieveSketch (sketch=s_wheel)

p_Wheel=m. Part(dimensionality=AXISYMMETRIC,

name='p_Wheel ', type=DEFORMABLE_BODY)

p_Wheel. BaseShell (sketch=s_wheel_AS)

return s_wheel_AS, s_wheel, p_Wheel

#

def make_thermocouples():

P1 = {
"x" : 230.0,
"y" : 65.0,
"z" : 0.0

}

P2 = {
"x" : 250.0,
"y" : 80.0,
"z" . 0.0

}

P3 = {
"x" : 365.0,
"y" : 30.0,
"z" : 0.0

}

P4 = {
"x" : 330.0,
"y" : 30.0,
"z" . 0.0

}

P5 = {
"x" : 340.0,
"y" : 80.0,
"z" 1 0.0

}

P6 = {
"x" : 310.0,

"y" : 80.0,

Ad4 A Appendix

"z" : 0.0

¥

P7 = {
"x" : 290.0,
"y" : 80.0,
"z" : 0.0

}

P8 = {
"x" : 290.0,
"y" : 145.0,
"z" : 0.0

¥

PO = {
"x" : 340.0,
"y" : 140.0,
"z" : 0.0

}

P10 = {
"x" : 345.0,
"y" : 153.3,
"z" . 0.0

¥

thermocouples = {
"P1" : P1,
"p2" : P2,
"P3" : P3,
"Pa" : P4,
"P5" : P5,
"P6" : P6,
"P7" : PT7,
"Pg8" : P8,
"P9" : P9,
"P10" : P10

}

coordinate transformation to local coordinate system
coord_x = 91.05
coord_y = 192.9

for i in thermocouples.keys ():
thermocouples[i]["x"] = thermocouples[i]["x"]+coord_x
thermocouples[i]["y"] = (—1)*thermocouples[i]["y"]+coord_y

return thermocouples

#

def make_p_sets(p_Wheel, width_head, partition_offset):
Sets
Wheel
Sets have to be adjusted for every change in geometry

p_Wheel . Set(faces=p_Wheel.faces [:], name='Set—all_Wheel ")

p_Wheel.Set (edges=p_Wheel . edges. findAt (((r_inside, width_bottom/3, 0.0),)),
name='Set—inside_Wheel ")

p_Wheel.Set (edges=p_Wheel.edges.findAt (((r_head_left_outside+(width_head /5)*
math.tan(angle_head_1),

width_head/5+dist_left_head ,

0.0),),

((468.34844, 168.853046, 0.0),),
((461.185779, 151.230374, 0.0),),
((450.4073, 144.308848, 0.0),),

((439.831446, 132.308944, 0.0),)

name='Set—water—quenching ')
p_Wheel.Set (edges=p_Wheel. edges. findAt (
(((r_bottom—r_inside)/3+r_inside, 0.0, 0.0),),
(((r_head_left_outside—r_head_inside)/3+r_head_inside ,
dist_left_head,

0.0),),

).

name='Set—ceramic—contact ')

p_Wheel.Set (edges=p_Wheel.edges . findAt(

((437.85, 186.8, 0.0),),
((394.8875, 186.8, 0.0),),
((360.007614, 178.903384, 0.
((352.852745, 147.040634, 0.

)
)

).

0),
0),).

A.3 Heat Treatment py-Script

A45

((295.562119, 134.647577, 0.0
((159.445882, 151.944907, 0.0),),
((154.101266, 170.491258, 0.0
((135.375, 192.9, 0.0),),
((91.05, 144.675, 0.0),),
((152.943931, 15.84517, 0.0),),
((
((
((
(

165.3529, 74.45684, 0.0),),
228.824143, 91.568246, 0.0),),
352.852793, 79.358073, 0.0),),
(357.223071, 63.288542, 0.0),),),

name='air—contact’)

p_Wheel.Set (edges=p_Wheel . edges. findAt (
(413.55, 39.6, 0.0),),

(436.821227, 61.685044, 0.0),),
(439.831446, 132.308944, 0.0),),
(450.4073, 144.308848, 0.0),),
(461.185779, 151.230374, 0.0),),
(468.34844, 168.853046, 0.0),),
(437.85, 186.8, 0.0),),
(394.8875, 186.8, 0.0),),
(360.007614, 178.903384, 0
(352.852745, 147.040634, 0
(295.562119, 134.647577, 0.
(159.445882, 151.944907, 0
(154.101266, 170.491258, 0
(135.375, 192.9, 0.0),),
(91.05, 144.675, 0.0),
(105.825, 0.0, 0.0),),
(152.943931, 15.84517, 0.0),),
(
(
(
(

(
(
(
(
(
(
(
(
(
(
(
(
(
(
()
(
(
(
(
(
(
(

165.3529, 74.45684, 0.0),),
228.824143, 91.568246, 0.0),),
352.852793, 79.358073, 0.0),),
357.223071, 63.288542, 0.0),),
(372.5625, 39.6, 0.0),),),

name='Set—all_surf ")
return

#

def make_p_surf(p_Wheel, width_head):
p_Wheel.Surface(sidelEdges=p_Wheel.edges. findAt (
((r_head_left_outside+(width_head /5)*
math.tan(angle_head_1),
width_head/5+dist_left_head ,

0.0),),

((468.34844, 168.853046, 0.0),),
((461.185779, 151.230374, 0.0),),
((450.4073, 144.308848, 0.0),),

((439.831446, 132.308944, 0.0),)

name='Surf—water_contact’)

p_Wheel . Surface(sidelEdges=p_Wheel.edges. findAt (
(((r_bottom—r_inside)/3+r_inside, 0.0, 0.0),),
(((r_head_left_outside—r_head_inside)/3+r_head_inside ,
dist_left_head ,

0.0),),

).

name='Surf—ceramic_contact ')

p_Wheel. Surface (name='Surf—air_contact_vertical ',
sidelEdges=p_Wheel . edges. findAt(

((360.007614, 178.903384, 0.0),)
((352.852745, 147.040634, 0.0),),
((159.445882, 151.944907, 0.0),)
((154.101266, 170.491258, 0.0),)
((91.05, 144.675, 0.0),),
(152.943931, 15.84517, 0.0),),
(165.3529, 74.45684, 0.0),),
(352.852793, 79.358073, 0.0),),
(357.223071, 63.288542, 0.0),),))

(
(
(
(

p_Wheel. Surface (name='Surf—air_contact—horizontal—top ',
sidelEdges=p_Wheel . edges. findAt(

((437.85, 186.8, 0.0),),

((394.8875, 186.8, 0.0),),
((135.375, 192.9, 0.0),),
((295.562119, 134.647577, 0.0),)
)

p_Wheel. Surface(name='Surf—all ',

A46 A Appendix

sidelEdges=p_Wheel . edges. findAt (
((413.55, 39.6, 0.0),),
((436.821227, 61.685044, 0.0),),
((439.831446, 132.308944, 0.0),),
((450.4073, 144.308848, 0.0),),
((461.185779, 151.230374, 0.0),),
((468.34844, 168.853046, 0.0),),
((437.85, 186.8, 0.0),),
((394.8875, 186.8, 0.0),),
((360.007614, 178.903384, 0.0),)
((352.852745, 147.040634, 0.0),),
((295.562119, 134.647577, 0.0),),
((159.445882, 151.944907, 0.0),)
((154.101266, 170.491258, 0.0),)
((135.375, 192.9, 0.0),),
((91.05, 144.675, 0.0),),
((105.825, 0.0, 0.0),),
((152.943931, 15.84517, 0.0),),
((
((
((
((
((
)

165.3529, 74.45684, 0.0),),

228.824143, 91.568246, 0.0),),
352.852793, 79.358073, 0.0),),
357.223071, 63.288542, 0.0),),

372.5625, 39.6, 0.0),)

p_Wheel.Surface (name='Surf—air_contact—horizontal —bottom’
sidelEdges=p_Wheel . edges.findAt (((228.824143, 91.568246, 0.0),
return

#

)))

def make_mat_sections(m, p_Wheel, mat_name, density_tbl, bool_user,

bool_plastic , youngs_modulus_TD_tbl, plastic_isotropic_TD_tbl,
specificheat_tbl , conductivity_tbl):

Material

mat = m. Material (name=mat_name)

general
mat. Density (table=density_tbl ,
temperatureDependency=ON)

if not bool_HT:
elastic

mat. Elastic (table=youngs_modulus_TD_tbl,temperatureDependency=0ON)

plastic

if bool_plastic:

mat. Plastic (dataType=PARAMETERS,
hardening=ISOTROPIC,

rate=OFF,
temperatureDependency=ON,
table=plastic_isotropic_TD_tbl)
else:

mat. Plastic (dataType=PARAMETERS,
hardening=COMBINED,
numBackstresses=3,
table=(plastic_isotropic_TD_tbl[1],)

)

Section and material assignment

bool_HT,

m. HomogeneousSolidSection(material=mat_name, name='Section—' + mat_name,

thickness=None)
p_Wheel.SectionAssignment (region=p_Wheel.sets ['Set—all_Wheel '],
sectionName='Section—' + mat_name)

Specific heat

mat. SpecificHeat (
table=specificheat_tbl ,
temperatureDependency=ON)

Conductivity

mat. Conductivity (

table = conductivity_tbl,
temperatureDependency=ON)

Latent heat
mat. LatentHeat (
table=((100.0, 600.0, 700.0),))

Variables controlled by user subroutine
if bool_user:

A.3 Heat Treatment py-Script

A47

depvar
mat. Depvar (n=25)

UEXPAN
mat. Expansion (userSubroutine=ON)

CREEP
#mat. Creep (law=USER, table=())

user defienied field (USDFLD)
mat. UserDefinedField ()

HETVAL
mat. HeatGeneration ()
return

#
def make_partition(p_Wheel, partition_offset=2):

Partition of fine meshed surface zone

s_partition_fine=m. ConstrainedSketch (name="s_partition_fine
transform=p_Wheel. MakeSketchTransform (
sketchPlane=p_Wheel.faces.findAt((r_inside+(r_bottom—r_inside)/2,
width_bottom /2,

0.0),

(0.0, 0.0, 1.0)),

sketchPlaneSide=SIDE1,

sketchOrientation=RIGHT,

origin=(0.0, 0.0, 0.0))

)

p_Wheel. projectReferencesOntoSketch (filter=

COPLANAR_EDGES, sketch=s_partition_fine)
s_partition_fine.Line(pointl=(r_head_left_outside—t_Partition , dist_left_head),
point2=(r_head_left_outside—t_Partition , dist_left_head+width_head))

p_Wheel. PartitionFaceBySketch (faces=p_Wheel.faces. findAt((
(r_inside+(r_bottom—r_inside)/2, width_bottom/2, 0.0),)),
sketch=s_partition_fine)

', sheetSize=10.0,

Partition for element deletion due to machining operations
t = p_Wheel. MakeSketchTransform (
sketchPlane=p_Wheel. faces [0],

sketchPlaneSide=SIDE1,

origin=(0.0, 0.0, 0.0))

s = m.ConstrainedSketch (name="s_wheel_partition’

sheetSize=1000., gridSpacing=25., transform=t)

edge_list = [edge for edge in p_Wheel.sets['Set—water—quenching']. edges]
p_Wheel. projectEdgesOntoSketch (

sketch=s,

edges=edge_list ,

constrainToBackground=False)

s.move(vector=(—partition_offset, 0.0), objectList=[s.geometry[key] for key in s.geometry.keys()])
p_Wheel. PartitionFaceBySketch (faces=p_Wheel.faces, sketch=s)

Additional partition necessary for meshing

s_part_circ = m. ConstrainedSketch(name='s_wheel_partition_circ’,
sheetSize=1000.0,

transform=t)

p_Wheel. projectReferencesOntoSketch (filter=COPLANAR_EDGES,
sketch=s_part_circ)
s_part_circ.CircleByCenterPerimeter(center=(448.45 — partition_offset ,186.8),
pointl =(448.45, 186.8))

p_Wheel. PartitionFaceBySketch (faces=p_Wheel.faces.findAt ((

(448.45 — 2xpartition_offset, 186.8 — 2xpartition_offset, 0.0),)),
sketch=s_part_circ)

Create element set for element deletion
p_Wheel.Set(faces=p_Wheel.faces.findAt ((

(436.05 — partition_offset /2,

39.6 + partition_offset /2,

0.).)).

name='Set—eldel ")

Partition for braking surface

s_part_brake = m. ConstrainedSketch (name="s_wheel_partition_brake ',
sheetSize=1000.0,

transform=t)

p_Wheel. projectReferencesOntoSketch (filter=COPLANAR_EDGES,
sketch=s_part_brake)

s_part_brake. Line(

pointl=(416.05, 39.6+15),

point2=(416.05 + 50, 39.6+15))

s_part_brake. Line(

A48 A Appendix

pointl=(416.05, 39.6+15+80),

point2=(416.05 + 50, 39.6+15+80))

p_Wheel. PartitionFaceBySketch (faces=p_Wheel. faces,
sketch=s_part_brake)

Partition for mesh of web

s_part_hub = m. ConstrainedSketch (name="s_wheel_partition_hub ',
sheetSize=1000.0,

transform=t)

p_Wheel. projectReferencesOntoSketch (filter=COPLANAR_EDGES,
sketch=s_part_hub)

s_part_hub.rectangle (

pointl=(192.,145),

point2=(330,80))

p_Wheel. PartitionFaceBySketch (faces=p_Wheel. faces,
sketch=s_part_hub)

p_Wheel.Surface (name='Surf—Brake ',
sidelEdges=p_Wheel.edges. findAt ((
(432.214085, 72.935044, 0.0),)))
return

#
def make_mesh(p_Wheel, el_size, partition_offset):
Mesh

p_Wheel.seedEdgeBySize(constraint=FINER,
edges=p_Wheel.edges. findAt(
((416.05,39.64+15+80+1,0.),),

((436.948081, 136.991512, 0.0),),

(441.948081, 136.991512, 0.0),),
(416.05,113.2,0.),),

(416.05,39.6+1,0.),),

(436.05 — partition_offsetx1.01,39.6,0.),),
(436.821227, 61.685044, 0.0),),
(
(
(
(
(

439.831446, 132.308944, 0.0),),

450.4073, 144.308848, 0.0),),

461.185779, 151.230374, 0.0),),

468.34844, 168.853046, 0.0),),

437.85, 186.8, 0.0),),), size=el_size_fine)

p_Wheel .seedEdgeBySize(constraint=FINER,
edges=p_Wheel.edges. findAt(

((436.358504 ,48.434405,0.),),

((436.358504— partition_offset ,48.434405,0.),),
((416.05,48.434405,0.),),

((446.45 — partition_offset /2,186.8,0.),),
((442.2, 186.8, 0.0),),

((436.05 — 0.01, 39.6, 0.),),

((436.821227 — partition_offset , 61.685044, 0.0),),

((439.831446 — partition_offset , 132.308944, 0.0),),

((450.4073 — partition_offset , 144.308848, 0.0),),

((461.185779 — partition_offset , 151.230374, 0.0),),

((468.34844 — partition_offset , 168.853046, 0.0),),

((448.45 — 0.01, 186.8, 0.),),

((437.85 — partition_offset , 186.8, 0.0),),), size=el_size_fine)

p_Wheel.seedPart(minSizeFactor=0.1, size=el_size)

mdb. models ['m—wheel —01']. parts ['p_Wheel'].setElementType(elemTypes=(mesh.ElemType(
elemCode=DCAX4, elemLibrary=STANDARD),

mesh . ElemType(elemCode=DCAX4, elemLibrary=STANDARD)),
regions=(p_Wheel.sets['Set—all_Wheel "]))

p_Wheel . generateMesh ()

return

#
def make_instances(m, p_Wheel):

Instances

a = m.rootAssembly

inst_Wheel = a.lnstance(dependent=ON, name='p_Wheel—1"', part=p_Wheel)
return a, inst_Wheel

#
def make_p_sets_with_mesh(m, a, p_Wheel, thermocouples):

Sets

Wheel

Sets have to be adjusted for every change in geometry

allNodes = p_Wheel.nodes

delta = 1.0e—0

for i in thermocouples.keys():

x, y, z = thermocouples[i]["x"], thermocouples[i]["y"], thermocouples[i]["z"]

A.3 Heat Treatment py-Script

A49

myNodes = allNodes. getClosest((x, y, z),)
p_Wheel.Set (name="Set—'+str (i), nodes=allNodes[(myNodes.label —1):myNodes. label])
return myNodes

#
def make_steps(m):

b0 seconds of transport

m. HeatTransferStep (deltmx=1.0, initiallnc=0.00001, maxIlnc=10.0,
maxNumlnc=10000, minlnc=0.0000001, name='Step—Transport—1",
previous='lnitial ', timePeriod=50.0)

740 seconds of quenching

m. HeatTransferStep (deltmx=1.0, initiallnc=0.00001, maxIlnc=10.0,
maxNumlnc=10000, minlnc=0.0000001, name='Step—Quenching’,
previous='Step—Transport—1', timePeriod=740.0)

800 seconds of transport

m. HeatTransferStep (deltmx=1.0, initiallnc=0.00001, maxIlnc=10.0,
maxNumlnc=10000, minlnc=0.0000001, name='Step—Transport—2",
previous='Step—Quenching ', timePeriod =800.0)

6 hours of annealing

m. HeatTransferStep (deltmx=1.0, initiallnc=0.01, maxlnc=1000.0,
maxNumlnc=10000, minlnc=0.0000001, name='Step—Annealing ',
previous='Step—Transport—2', timePeriod=21600.0)

24 hours of cooling to RT

m. HeatTransferStep (deltmx=100.0, initiallnc=0.01,
maxlnc=1000.0, maxNumlnc=10000,

minlnc=0.0001, name='Step—Cooling—RT",
previous='Step—Annealing’', timePeriod =86400.0)

Element deletion representing machining operation

m. HeatTransferStep (deltmx=100.0, initiallnc=0.01,

maxlnc=1.0, maxNumlnc=10000,

minlnc=0.0001, name='Step—Element—Deletion’
previous='Step—Cooling—RT’', timePeriod=1.0)

Brake Test for 45 minutes

m. HeatTransferStep (deltmx=100.0, initiallnc=0.01,

maxInc=1000, maxNumlnc=10000,

minlnc=0.0001, name='Step—Brake—Test ',
previous='Step—Element—Deletion’', timePeriod=45x%60)

Cooling after brake test for 4 hours

m. HeatTransferStep (deltmx=100.0, initiallnc=0.01,

maxInc=1000, maxNumlnc=10000,

minlnc=0.0001, name='Step—Cooling—after —Brake—Test ',
previous='Step—Brake—Test', timePeriod =4%60%60)

Restart options for further analysis
m.steps['Step—Transport—1']. Restart(

frequency=1, numberlntervals=0, overlay=ON, timeMarks=OFF)
m.steps [’ Step—Quenching']. Restart(

frequency=1, numberlntervals=0, overlay=ON, timeMarks=OFF)
m.steps ['Step—Transport—2']. Restart(

frequency=1, numberlntervals=0, overlay=ON, timeMarks=OFF)
m.steps [’ Step—Annealing ']. Restart(

frequency=1, numberlntervals=0, overlay=ON, timeMarks=OFF)
m.steps['Step—Cooling—RT']. Restart(

frequency=1, numberlntervals=0, overlay=ON, timeMarks=OFF)
m.steps ['Step—Element—Deletion']. Restart(

frequency=1, numberlntervals=0, overlay=ON, timeMarks=OFF)
m.steps [’ 'Step—Brake—Test']. Restart(

frequency=1, numberlntervals=0, overlay=ON, timeMarks=OFF)
m.steps ['Step—Cooling—after—Brake—Test ']. Restart (
frequency=1, numberlntervals=0, overlay=ON, timeMarks=OFF)
return

#

def make_initial_conditions(m, kelvin):

m. Temperature (createStepName="1Initial ',
crossSectionDistribution=CONSTANT_THROUGH_THICKNESS, distributionType=
UNIFORM, magnitudes=(850.0 +kelvin,), name='Predefined Field—Init—Temp",
region=inst_Wheel.sets ['Set—all_Wheel'])

return

#
def make_boundary(a, m, inst_Wheel):

Fixation of the bottom

m. DisplacementBC (createStepName="1Initial ',
name='BC—bottom_Wheel ',
region=inst_Wheel.sets['Set—ceramic—contact '],

ul=UNSET, u2=SET, u3=UNSET, url=UNSET, ur2=UNSET, ur3=UNSET)
return

#

def make_interaction(m, inst_Wheel, Temp_water, Temp_annealing, kelvin):
emissivity : data estimated

AbQ A Appendix

emissivity = 0.29

data from https://doi.org/10.1016/j.jmrt.2019.09.024
h_water_tdep = ((0.07, 25.0),

(0.3, 150.0),
(1.2, 180.0),
(0.8, 200.0),
(0.6, 250.0),
(0.8, 350.0),
(0.8, 650.0),
(0.4, 800.0),
(0.4, 850.0),
(0.1, 950.0))

calculated using Excel tool in W/(m™2 K)
h_water_tdep_calc = ((459.43, 0.0),
(30.834, 25.0),

(868.48, 50.0),

(1541.3, 100.0),

(9518.5, 162.5),

(9518.5, 850.0))

estimated in W/(m™2 K)
h_ceramic_tdep_calc = ((459.43, 0.0),
(30.834, 25.0),

(868.48, 50.0),

(1541.3, 100.0),

(9518.5, 162.5),

(9518.5, 850.0))

calculated using Excel tool in W/(m™2 K)
h_dry_air_horz_top_tdep_calc = ((4.03910, 0.0000E+00),
(0.00000, 2.5000E+01),

(3.75268, 5.0000E+01),
(5.12464, 1.0000E+02),
(5.77934, 1.5000E+02),
(6.16802, 2.0000E+02),
(6.41983, 2.5000E+02),
(6.58736, 3.0000E+02),
(6.70430, 3.5000E+02),
(6.78203, 4.0000E+02),
(6.83337, 4.5000E+02),
(6.86454, 5.0000E+02),
(6.88202, 5.5000E+02),
(6.89197, 6.0000E+02),
(6.89851, 6.5000E+02),
(6.89382, 7.0000E+02),
(6.87282, 7.5000E+02),
(6.85550, 8.0000E+02),
(6.84205, 8.5000E+02))

calculated using Excel tool in W/(m™2 K)
h_dry_air_horz_bottom_tdep_calc = ((1.78321, 0.0000E+00),
(0.00000, 2.5000E+01),

(1.75308, 5.0000E+01),
(2.16861, 1.0000E+02),
(2.38670, 1.5000E+02),
(2.53664, 2.0000E+02),
(2.65149, 2.5000E+02),
(2.74421, 3.0000E+02),
(2.82299, 3.5000E+02),
(2.89020, 4.0000E+02),
(2.94935, 4.5000E+02),
(3.00190, 5.0000E+02),
(3.04946, 5.5000E+02),
(3.09335, 6.0000E+02),
(3.13471, 6.5000E+02),
(3.17228, 7.0000E+02),
(3.20456, 7.5000E+02),
(3.23626, 8.0000E+02),
(3.26755, 8.5000E+02))

calculated using Excel tool in W/(m™2 K)
h_dry_air_vert_tdep_calc = ((5.3064, 0.0000),
(0.13345, 2.5000E+01),

(5.0326, 5.0000E+01),
(6.6195, 1.0000E+02
(7.4006, 1.5000E+02
(
(

7.8867, 2.0000E+02
8.2207, 2.5000E+02

A.3 Heat Treatment py-Script Ab1

(8.4607, 3.0000E+02),
(8.6437, 3.5000E+02),
(8.7818, 4.0000E+02),
(8.8895, 4.5000E+02),
(8.9735, 5.0000E+02),
(9.0411, 5.5000E+02),
(9.0987, 6.0000E+02),
(9.1509, 6.5000E+02),
(9.1900, 7.0000E+02),
(9.2101, 7.5000E+02),
(9.2329, 8.0000E+02),
(9.2585, 8.5000E+02))

Conversion of h into mW/(m™2 K) and K
h_conversion_fact = 1le—3

h_water_tdep_calc = np.asarray(h_water_tdep_calc)
h_water_tdep_calc[:,0] *= (h_conversion_fact /4.)
h_water_tdep_calc[:,1] += kelvin

h_ceramic_tdep_calc = np.asarray(h_ceramic_tdep_calc)
h_ceramic_tdep_calc[:,0] *= h_conversion_fact*xle—2
h_ceramic_tdep_calc[:,1] 4= kelvin

h_dry_air_horz_top_tdep_calc = np.asarray(h_dry_air_horz_top_tdep_calc)
h_dry_air_horz_top_tdep_calc[:,0] *= h_conversion_fact
h_dry_air_horz_top_tdep_calc[: ,1] 4= kelvin
h_dry_air_horz_bottom_tdep_calc = np.asarray(h_dry_air_horz_bottom_tdep_calc)
h_dry_air_horz_bottom_tdep_calc[:,0] *= h_conversion_fact
h_dry_air_horz_bottom_tdep_calc[:,1] += kelvin

h_dry_air_vert_tdep_calc = np.asarray(h_dry_air_vert_tdep_calc)
h_dry_air_vert_tdep_calc[:,0] *= h_conversion_fact
h_dry_air_vert_tdep_calc[:,1] += kelvin

h_water_10000 = 10. # turn temperature Dependency OFF

h_water_1000 = 1. # turn temperature Dependency OFF

Film conditions for transport step

m. FilmConditionProp(dependencies=0,
name='IntProp—h—air—vertical —transport ',
property=h_dry_air_vert_tdep_calc,
temperatureDependency=ON)

m. FilmCondition (createStepName='Step—Transport—1",
definition=PROPERTY_REF,
interactionProperty="IntProp—h—air—vertical —transport ',
name='Int—film—air—vertical —transportl —2",
sinkAmplitude=""

sinkDistributionType=UNIFORM,

sinkFieldName="",

sinkTemperature=Temp_water,
surface=inst_Wheel.surfaces['Surf—water_contact'])

m. FilmCondition (createStepName="'Step—Transport—1",
definition=PROPERTY_REF,
interactionProperty="IntProp—h—air—vertical —transport’,
name="Int—film —air—vertical —transportl ',
sinkAmplitude=""

sinkDistributionType=UNIFORM,

sinkFieldName="",

sinkTemperature=Temp_water,

surface=inst_Wheel.surfaces ['Surf—air_contact_vertical '])

m. FilmConditionProp(dependencies=0,
name='IntProp—h—air—horizontal —bottom—transport ',
property=h_dry_air_horz_bottom_tdep_calc,
temperatureDependency=ON)

m. FilmCondition (createStepName='Step—Transport—1",
definition=PROPERTY_REF,
interactionProperty="IntProp—h—air—horizontal —bottom—transport ',
name='Int—film—air—horizontal —bottom—transportl ',
sinkAmplitude=""

sinkDistributionType=UNIFORM,

sinkFieldName="",

sinkTemperature=Temp_water,
surface=inst_Wheel.surfaces [’ Surf—ceramic_contact'])

m. FilmConditionProp(dependencies=0,
name='IntProp—h—air—horizontal —top—transport’,
property=h_dry_air_horz_top_tdep_calc,
temperatureDependency=ON)

m. FilmCondition (createStepName="'Step—Transport—1",
definition=PROPERTY_REF,
interactionProperty="IntProp—h—air—horizontal —top—transport ',

name='Int—film—air—horizontal —top—transportl’,

Ab2 A Appendix

sinkAmplitude="",
sinkDistributionType=UNIFORM,

sinkFieldName="",

sinkTemperature=Temp_water,

surface=inst_Wheel.surfaces ['Surf—air_contact—horizontal—top'])

m. FilmCondition (createStepName='Step—Transport—1",
definition=PROPERTY_REF,
interactionProperty="IntProp—h—air—horizontal —bottom—transport’,
name='Int—film—air—horizontal —bottom—transportl —2",
sinkAmplitude=""

sinkDistributionType=UNIFORM,

sinkFieldName="",

sinkTemperature=Temp_water,

surface=inst_Wheel.surfaces [Surf—air_contact—horizontal —bottom'])

Film conditions for annealing step
.interactions['Int—film—air—horizontal —top—transportl']. deactivate(' Step—Quenching’)
.interactions['Int—film—air—vertical —transportl']. deactivate('Step—Quenching")
.interactions['Int—film—air—vertical —transportl —2']. deactivate('Step—Quenching’)
.interactions['Int—film—air—horizontal —bottom—transportl ']. deactivate('Step—Quenching’)

3 33 3 3 %

.interactions['Int—film—air—horizontal —bottom—transportl —2']. deactivate('Step—Quenching’)

Film conditions for quenching step

m. FilmConditionProp(dependencies=0,

name="IntProp—h—water ',

property=h_water_tdep_calc,

temperatureDependency=ON)

m. FilmCondition (createStepName="'Step—Quenching ',
definition=PROPERTY_REF, interactionProperty='IntProp—h—water’,
name="Int—film —water—quenching ', sinkAmplitude="",
sinkDistributionType=UNIFORM, sinkFieldName=""
sinkTemperature=Temp_water, surface=inst_Wheel.surfaces|[' Surf—water_contact'])

m. FilmConditionProp(dependencies=0,
name="IntProp—h—ceramic ',
property=h_ceramic_tdep_calc,
temperatureDependency=ON)

m. FilmCondition (createStepName="'Step—Quenching ',
definition=PROPERTY_REF,
interactionProperty="IntProp—h—ceramic’,
name='Int—film —ceramic—quenching ', sinkAmplitude="",
sinkDistributionType=UNIFORM, sinkFieldName="",

sinkTemperature=Temp_water, surface=inst_Wheel.surfaces['Surf—ceramic_contact’'])

m. FilmConditionProp(dependencies=0,
name="IntProp—h—air—vertical ',
property=h_dry_air_vert_tdep_calc,
temperatureDependency=ON)

m. FilmCondition (createStepName="'Step—Quenching ',
definition=PROPERTY_REF,
interactionProperty="IntProp—h—air—vertical ',
name='Int—film—air—vertical —quenching ',
sinkAmplitude="",

sinkDistributionType=UNIFORM,

sinkFieldName="",

sinkTemperature=Temp_water,
surface=inst_Wheel.surfaces ['Surf—air_contact_vertical '])

m. FilmConditionProp(dependencies=0,
name="IntProp—h—air—horizontal —top ',
property=h_dry_air_horz_top_tdep_calc,
temperatureDependency=ON)

m. FilmCondition (createStepName="'Step—Quenching ',
definition=PROPERTY_REF,
interactionProperty="IntProp—h—air—horizontal —top ',
name="Int—film —air—horizontal —top—quenching ',
sinkAmplitude=""

sinkDistributionType=UNIFORM,

sinkFieldName="",

sinkTemperature=Temp_water,

surface=inst_Wheel.surfaces[' Surf—air_contact—horizontal—top'])

m. FilmConditionProp(dependencies=0,
name="IntProp—h—air—horizontal —bottom ',
property=h_dry_air_horz_bottom_tdep_calc,
temperatureDependency=ON)

m. FilmCondition (createStepName="'Step—Quenching ',
definition=PROPERTY_REF,
interactionProperty="IntProp—h—air—horizontal —bottom ',

A.3 Heat Treatment py-Script Ab3

name='Int—film—air—horizontal —bottom—quenching ',

sinkAmplitude="",

sinkDistributionType=UNIFORM,

sinkFieldName="",

sinkTemperature=Temp_water,

surface=inst_Wheel.surfaces ['Surf—air_contact—horizontal —bottom'])

Film conditions for transport 2 step
interactions['Int—film—air—horizontal —top—quenching']. deactivate (’'Step—Transport—2")
interactions['Int—film—air—vertical —quenching']. deactivate('Step—Transport—2")
.interactions ['Int—film—water—quenching’']. deactivate('Step—Transport—2")
interactions['Int—film—ceramic—quenching']. deactivate('Step—Transport—2")
.interactions['Int—film—air—horizontal —bottom—quenching']. deactivate('Step—Transport—2")

33333%

Film conditions for transport 2 step

m. FilmConditionProp(dependencies=0,
name='IntProp—h—air—vertical —transport ',
property=h_dry_air_vert_tdep_calc,
temperatureDependency=ON)

m. FilmCondition (createStepName="'Step—Transport—2",
definition=PROPERTY_REF,
interactionProperty="IntProp—h—air—vertical —transport ',
name="Int—film—air—vertical —transport—2",
sinkAmplitude=""

sinkDistributionType=UNIFORM,

sinkFieldName="",

sinkTemperature=Temp_water,
surface=inst_Wheel.surfaces [' Surf—water_contact'])

m. FilmCondition (createStepName='Step—Transport—2",
definition=PROPERTY_REF,
interactionProperty="IntProp—h—air—vertical —transport ',
name="Int—film—air—vertical —transport ',

sinkAmplitude="",

sinkDistributionType=UNIFORM,

sinkFieldName="",

sinkTemperature=Temp_water,

surface=inst_Wheel.surfaces ['Surf—air_contact_vertical '])

m. FilmConditionProp(dependencies=0,
name="IntProp—h—air—horizontal —bottom—transport ',
property=h_dry_air_horz_bottom_tdep_calc,
temperatureDependency=ON)

m. FilmCondition (createStepName="'Step—Transport—2"',
definition=PROPERTY_REF,
interactionProperty="IntProp—h—air—horizontal —bottom—transport ',
name='Int—film—air—horizontal —bottom—transport ',
sinkAmplitude=""

sinkDistributionType=UNIFORM,

sinkFieldName="",

sinkTemperature=Temp_water,
surface=inst_Wheel.surfaces [' Surf—ceramic_contact’'])

m. FilmConditionProp(dependencies=0,
name="IntProp—h—air—horizontal —top—transport ',
property=h_dry_air_horz_top_tdep_calc,
temperatureDependency=ON)

m. FilmCondition (createStepName="'Step—Transport—2",
definition=PROPERTY_REF,
interactionProperty="IntProp—h—air—horizontal —top—transport ',
name="Int—film—air—horizontal —top—transport ',
sinkAmplitude="",

sinkDistributionType=UNIFORM,

sinkFieldName="",

sinkTemperature=Temp_water,

surface=inst_Wheel.surfaces ['Surf—air_contact—horizontal—top'])

m. FilmCondition (createStepName='Step—Transport—2",
definition=PROPERTY_REF,
interactionProperty="IntProp—h—air—horizontal —bottom—transport ',
name='Int—film —air—horizontal —bottom—transport —2",
sinkAmplitude=""

sinkDistributionType=UNIFORM,

sinkFieldName="",

sinkTemperature=Temp_water,

surface=inst_Wheel.surfaces ['Surf—air_contact—horizontal —bottom'])

Film conditions for annealing step
m.interactions['Int—film—air—horizontal —top—transport’']. deactivate('Step—Annealing")
m.interactions['Int—film—air—vertical —transport']. deactivate('Step—Annealing’)

Ab4 A Appendix

m.interactions['Int—film—air—vertical —transport—2']. deactivate('Step—Annealing’)
m.interactions['Int—film—air—horizontal —bottom—transport']. deactivate('Step—Annealing’)
m.interactions[’'Int—film—air—horizontal —bottom—transport—2']. deactivate('Step—Annealing ")

m. FilmCondition (createStepName="'Step—Annealing ',
definition=PROPERTY_REF,
interactionProperty="IntProp—h—air—horizontal —top ',
name="Int—film—air—horizontal —top—annealing ',
sinkAmplitude="",

sinkDistributionType=

UNIFORM, sinkFieldName="",
sinkTemperature=Temp_annealing ,
surface=inst_Wheel.surfaces ['Surf—air_contact—horizontal—top'])
m. FilmCondition (createStepName="'Step—Annealing ',
definition=PROPERTY_REF,
interactionProperty="IntProp—h—air—horizontal —bottom

name='Int—film —air—horizontal —bottom—annealing ',

sinkAmplitude=""

sinkDistributionType=UNIFORM,

sinkFieldName="",

sinkTemperature=Temp_annealing,

surface=inst_Wheel.surfaces [' Surf—air_contact—horizontal —bottom'])
m. FilmCondition (createStepName='Step—Annealing ',
definition=PROPERTY_REF,
interactionProperty="IntProp—h—air—vertical ',
name="Int—film—air—vertical —annealing ',

sinkAmplitude=""

sinkDistributionType=UNIFORM,

sinkFieldName="",

sinkTemperature=Temp_annealing ,
surface=inst_Wheel.surfaces[Surf—air_contact_vertical '])
m. FilmCondition (createStepName='Step—Annealing ',
definition=PROPERTY_REF,
interactionProperty="IntProp—h—air—vertical ',
name="Int—film—air—vertical —annealing—tread ',
sinkAmplitude=""

sinkDistributionType=UNIFORM,

sinkFieldName="",

sinkTemperature=Temp_annealing,
surface=inst_Wheel.surfaces [' Surf—water_contact'])

Film conditions for cooling to RT step
m.interactions['Int—film—air—horizontal —top—annealing']. deactivate ('Step—Cooling—RT")
m.interactions['Int—film—air—horizontal —bottom—annealing']. deactivate('Step—Cooling—RT")
m.interactions['Int—film—air—vertical —annealing']. deactivate('Step—Cooling—RT")
m.interactions['Int—film—air—vertical —annealing—tread']. deactivate('Step—Cooling—RT")

Film conditions for cooling to RT step

m. FilmConditionProp(dependencies=0,
name='IntProp—h—air—vertical —transport’,
property=h_dry_air_vert_tdep_calc,
temperatureDependency=ON)

m. FilmCondition (createStepName="'Step—Cooling—RT",
definition=PROPERTY_REF,
interactionProperty="IntProp—h—air—vertical —transport ',
name="Int—film —air—vertical —cooling—RT",
sinkAmplitude=""

sinkDistributionType=UNIFORM,

sinkFieldName="",

sinkTemperature=Temp_water,
surface=inst_Wheel.surfaces [' Surf—water_contact'])

m. FilmCondition (createStepName="'Step—Cooling—RT",
definition=PROPERTY_REF,
interactionProperty="IntProp—h—air—vertical —transport ',
name="Int—film—air—vertical —2—cooling—RT",
sinkAmplitude=""

sinkDistributionType=UNIFORM,

sinkFiel[dName="",

sinkTemperature=Temp_water,

surface=inst_Wheel.surfaces[Surf—air_contact_vertical '])

m. FilmConditionProp(dependencies=0,
name='IntProp—h—air—horizontal —bottom—transport ',
property=h_dry_air_horz_bottom_tdep_calc,
temperatureDependency=ON)

m. FilmCondition (createStepName="'Step—Cooling—RT",
definition=PROPERTY_REF,
interactionProperty="IntProp—h—air—horizontal —bottom—transport ',
name="Int—film—air—horizontal —bottom—cooling —RT",

A.3 Heat Treatment py-Script

Ab5

sinkAmplitude="",
sinkDistributionType=UNIFORM,

sinkFieldName="",

sinkTemperature=Temp_water,
surface=inst_Wheel.surfaces | ' Surf—ceramic_contact'])

m. FilmConditionProp(dependencies=0,
name='IntProp—h—air—horizontal —top—transport ',
property=h_dry_air_horz_top_tdep_calc,
temperatureDependency=ON)

m. FilmCondition (createStepName='Step—Cooling—RT ",
definition=PROPERTY_REF,
interactionProperty="IntProp—h—air—horizontal —top—transport ',
name='Int—film—air—horizontal —top—cooling—RT",
sinkAmplitude=""

sinkDistributionType=UNIFORM,

sinkFieldName="",

sinkTemperature=Temp_water,

surface=inst_Wheel.surfaces ['Surf—air_contact—horizontal—top'])

m. FilmCondition (createStepName="'Step—Cooling—RT",
definition=PROPERTY_REF,
interactionProperty="IntProp—h—air—horizontal —bottom—transport ',
name="Int—film—air—horizontal —bottom—2—cooling—RT",
sinkAmplitude="",

sinkDistributionType=UNIFORM,

sinkFieldName="",

sinkTemperature=Temp_water,

surface=inst_Wheel.surfaces ['Surf—air_contact—horizontal —bottom'])

Surface radiation Transportl step

m. RadiationToAmbient (

ambientTemperature=Temp_water,
createStepName="'Step—Transport—1",

distributionType=UNIFORM,

emissivity = emissivity ,

name='Int—rad—transport ',

radiationType=AMBIENT,

surface=inst_Wheel.surfaces [’ Surf—all'])
m.interactions['Int—rad—transport’']. deactivate('Step—Quenching’)

Surface radiation Quenching step

m. RadiationToAmbient (

ambientTemperature=Temp_water,

createStepName="Step—Quenching ',

distributionType=UNIFORM,

emissivity = emissivity ,

name='Int—rad—quenching ',

radiationType=AMBIENT,

surface=inst_Wheel.surfaces ['Surf—all'])
m.interactions['Int—rad—quenching’'].deactivate('Step—Transport—2")

Surface radiation Transport2 step

m. RadiationToAmbient (

ambientTemperature=Temp_water,
createStepName='Step—Transport—2",

distributionType=UNIFORM,

emissivity = emissivity ,

name='Int—rad—transport ',

radiationType=AMBIENT,

surface=inst_Wheel.surfaces ['Surf—all'])
m.interactions['Int—rad—transport']. deactivate('Step—Annealing')

Surface radiation Annealing step

m. RadiationToAmbient (

ambientTemperature=Temp_annealing,

createStepName='Step—Annealing ',

distributionType=UNIFORM,

emissivity = emissivity ,

name='Int—rad—annealing ',

radiationType=AMBIENT,

surface=inst_Wheel.surfaces [’ Surf—all'])
m.interactions['Int—rad—annealing']. deactivate('Step—Cooling—RT")

Surface radiation Cooling to RT step
m. RadiationToAmbient (
ambientTemperature=Temp_water,
createStepName='Step—Cooling—RT",
distributionType=UNIFORM,

emissivity = emissivity ,

Ab6 A Appendix

name='Int—rad—cooling—RT",
radiationType=AMBIENT,
surface=inst_Wheel.surfaces [Surf—all '])

.interactions['Int—film—air—horizontal —bottom—2—cooling—RT']. deactivate('Step—Element—Deletion ")
.interactions['Int—film—air—horizontal —bottom—cooling—RT']. deactivate('Step—Element—Deletion ")

m
m
m.interactions['Int—film—air—horizontal —top—cooling—RT']. deactivate(’'Step—Element—Deletion ")
m.interactions['Int—film—air—vertical —2—cooling—RT']. deactivate('Step—Element—Deletion")
m.interactions['Int—film—air—vertical —cooling—RT']. deactivate('Step—Element—Deletion ")

m

.interactions['Int—rad—cooling—RT']. deactivate('Step—Element—Deletion ")

m. ModelChange(activelnStep=False,
createStepName="'Step—Element—Deletion ',
includeStrain=False ,
name="Int—Model—Change—Element—Deletion’
region=inst_Wheel.sets ['Set—eldel '])

Cooling after braking

Surface definition for surfaces after partitioning
p_Wheel . Surface (name='Surf—Tread ',

side2Edges= p_Wheel.edges. findAt(

((447.193015, 186.448482, 0.0),),

((463.437552, 167.603143, 0.0),),

((456.185779, 151.230374, 0.0),),

((445.4073, 144.308848, 0.0),),
((436.948081, 136.991512, 0.0),),
((431.180953, 43.35, 0.0),),
((432.214085, 72.935044, 0.0),),
((434.27675, 129.65244, 0.0),),))

p_Wheel. Surface (name="Surf—Tread—without—brake’
side2Edges=p_Wheel . edges . findAt (

((447.193015, 186.448482, 0.0),),
((456.185779, 151.230374, 0.0),),

((445.4073, 144.308848, 0.0),),

((436.948081, 136.991512, 0.0),),
((431.180953, 43.35, 0.0),),

((432.214085, 72.935044, 0.0),),

((434.27675, 129.65244, 0.0),),))

m. FilmCondition (createStepName='Step—Cooling—after —Brake—Test ',
definition=PROPERTY_REF,
interactionProperty="IntProp—h—air—vertical —transport ',
name="Int—film—air—vertical —Colling—braking ',

sinkAmplitude=
sinkDistributionType=UNIFORM,

sinkFieldName=""

sinkTemperature=Temp_water,

surface=inst_Wheel.surfaces [Surf—Tread—without—brake'])
m. RadiationToAmbient (

ambientTemperature=Temp_water,

createStepName="Step—Cooling—after —Brake—Test ',
distributionType=UNIFORM,

emissivity = emissivity ,
name='Int—rad—break—test—tread’,

radiationType=AMBIENT,

surface=inst_Wheel.surfaces [Surf—Tread—without—brake'])

m. FilmCondition (createStepName="'Step—Brake—Test ',
definition=PROPERTY_REF,
interactionProperty="IntProp—h—air—vertical —transport ',
name="Int—film—air—vertical —2—cooling—RT",
sinkAmplitude=""

sinkDistributionType=UNIFORM,

sinkFieldName="",

sinkTemperature=Temp_water,

surface=inst_Wheel.surfaces[Surf—air_contact_vertical '])
m. RadiationToAmbient (

ambientTemperature=Temp_water,
createStepName="'Step—Brake—Test ',
distributionType=UNIFORM,

emissivity

= emissivity ,
name="Int—rad—break—test—vertical ',
radiation Type=AMBIENT,

surface=inst_Wheel.surfaces['Surf—air_contact_vertical '])

m. FilmCondition (createStepName="'Step—Brake—Test ',
definition=PROPERTY_REF,
interactionProperty="IntProp—h—air—horizontal —bottom—transport ',
name="Int—film—air—horizontal —bottom—cooling —RT",

A.3 Heat Treatment py-Script

A57

sinkAmplitude="",
sinkDistributionType=UNIFORM,

sinkFieldName="",

sinkTemperature=Temp_water,
surface=inst_Wheel.surfaces | ' Surf—ceramic_contact'])
m. RadiationToAmbient (

ambientTemperature=Temp_water,
createStepName='Step—Brake—Test ',
distributionType=UNIFORM,

emissivity = emissivity ,
name='Int—rad—break—test —ceramic ',

radiation Type=AMBIENT,

surface=inst_Wheel.surfaces | ' Surf—ceramic_contact'])

m. FilmCondition (createStepName='Step—Brake—Test ',
definition=PROPERTY_REF,
interactionProperty="IntProp—h—air—horizontal —top—transport ',
name='Int—film—air—horizontal —top—cooling—RT",

sinkAmplitude=""

sinkDistributionType=UNIFORM,

sinkFieldName="",

sinkTemperature=Temp_water,

surface=inst_Wheel.surfaces ['Surf—air_contact—horizontal—top'])
m. RadiationToAmbient (

ambientTemperature=Temp_water,

createStepName='Step—Brake—Test ',

distributionType=UNIFORM,

emissivity = emissivity ,
name='Int—rad—break—test—horizontal —top ',
radiationType=AMBIENT,

surface=inst_Wheel.surfaces ['Surf—air_contact—horizontal—top'])

m. FilmCondition (createStepName="'Step—Brake—Test ',
definition=PROPERTY_REF,
interactionProperty="IntProp—h—air—horizontal —bottom—transport ',
name="Int—film—air—horizontal —bottom—2—cooling—RT",
sinkAmplitude=""

sinkDistributionType=UNIFORM,

sinkFieldName="",

sinkTemperature=Temp_water,

surface=inst_Wheel.surfaces ['Surf—air_contact—horizontal —bottom'])
m. RadiationToAmbient (

ambientTemperature=Temp_water,

createStepName='Step—Brake—Test ',

distributionType=UNIFORM,

emissivity = emissivity ,
name='Int—rad—break—test—horizontal —bottom’

radiationType=AMBIENT,

surface=inst_Wheel.surfaces ['Surf—air_contact—horizontal —bottom'])

m. FilmCondition (createStepName='Step—Cooling—after —Brake—Test ',
definition=PROPERTY_REF,
interactionProperty="IntProp—h—air—vertical —transport ',
name='Int—film—air—vertical —Colling—after—braking ',
sinkAmplitude=""

sinkDistributionType=UNIFORM,

sinkFieldName="",

sinkTemperature=Temp_water,
surface=inst_Wheel.surfaces[' Surf—Tread'])

m. RadiationToAmbient (
ambientTemperature=Temp_water,
createStepName="'Step—Cooling—after —Brake—Test ',
distributionType=UNIFORM,

emissivity = emissivity ,

name='Int—rad—after —break—test ',
radiationType=AMBIENT,
surface=inst_Wheel.surfaces[' Surf—Tread'])

return

#

def make_load(m, heat_flux_braking):

m.SurfaceHeatFlux(createStepName = ’'Step—Brake—Test ',

magnitude = heat_flux_braking,

name = 'Load—Surface_Heat_Flux_Breaking ',

region = inst_Wheel.surfaces['Surf—Brake'])

m.loads ['Load—Surface_Heat_Flux_Breaking']. deactivate ('Step—Cooling—after —Brake—Test")
return

#

def make_job(m, job_name):

Ab3 A Appendix

job = mdb.Job(atTime=None, contactPrint=OFF, description="", echoPrint=0OFF,
explicitPrecision=SINGLE, getMemoryFromAnalysis=True, historyPrint=OFF,

memory=90, memoryUnits=PERCENTAGE, model="m-wheel —01"', modelPrint=OFF,
multiprocessingMode=DEFAULT, name='Job '+job_name, nodalOutputPrecision=FULL,

numCpus=num_cpus, numDomains=num_cpus, numGPUs=0, queue=None, resultsFormat=0ODB,

scratch="", type=ANALYSIS, userSubroutine="'Sub_HT_wheel_process.f', waitHours=0, waitMinutes=0)

create field outputs

m. FieldOutputRequest (createStepName="Step—Transport—1",
name='F—Output ',

variables=('TEMP', 'HFL', ’'NFLUX', 'FLUXS', 'FILMCOEF',
"SINKTEMP’, "FV',’'SDV’,'COORD', 'NT'),

frequency=1)

create history outputs
m. HistoryOutputRequest (createStepName="Step—Transport—1",
name="H-Output ', variables=PRESELECT, frequency=1)

#
additional keywords for inp.—file

m. keywordBlock.synchVersions ()

block_list = m. keywordBlock.sieBlocks

pos_i = [i for i, j in enumerate(block_list) if 'Output, field' ' in j]

str_out = ’'sxx\nxElement Output, directions=YES\nCOORD, IVOL\nxx*\nxNode Output\nCOORD, '
m. keywordBlock . insert (pos_i[0], str_out)

#
additional keywords when usig user subroutines
if bool_user:

m. keywordBlock.synchVersions ()

block_list = m. keywordBlock.sieBlocks
pos_i = [i for i, j in enumerate(block_list) if '«User,Defined Field’ in j]
str_out = 'xInitial Conditions , type=SOLUTION, yuser,\n*Initial Conditions , type=FIELD’

m. keywordBlock.insert (pos_i[0], str_out)

adding new names for state variables

pos_i = [i for i, j in enumerate(block_list) if '«Depvar’ in j]
str_out = '1,TEMP, TEMP\

\n2,AUSTENITE, AUSTENITE\

\n3,MARTENSITE, MARTENSITE\

\n4,BAINITE, ,BAINITE\

\n5, PEARLITE, PEARLITE\

\n6 , DMARTENSITE, DMARTENSITE\

\n7,DBAINITE, DBAINITE\

\n8,DPEARLITE, DPEARLITE\

\n9 ,DTEMP,DTEMP\

\n10, RBAINITE, RBAINITE\

\nll,RPERLITE, RPERLITE\

\n12 ,NELEMENTS, NELEMENTS\

\n13,NAUSTENITE, NAUSTENITE\

\n14 ,NMARTENSITE, NMARTENSITE\

\n15,NBAINITE, NBAINITE\

\n16 ,NPERLITE,NPERLITE\

\n17 ,RKRITBAIN , RKRITBAIN\

\n18 ,RKRITPERL, RKRITPERL\

\n19,NOEL, NOEL\

\n20 , EXPAN, EXPAN’

String einfuegen!

m. keywordBlock . insert (pos_i[0], str_out)

#
create inp.—file
job.writelnput ()
return

#

T Ty

K K K K K K K K K K K K K K K Kk K oK ok K K K K K K K K K K K K K K K K K K ok K K K K K K K K KK K kK K K ok
define the model
mdb. models. changeKey (fromName='Model—1", toName='m-wheel —01")

m = mdb. models ['m—wheel —01"]

define physical constants of the model
absolute zero in C

Stefan Boltzmann in t—mm-s
m.setValues(absoluteZero = 0,
stefanBoltzmann = 5.670371e—11)
m.setValues(noPartslnputFile = ON)
kelvin = 273.15

heat_flux_braking = 162.2 #W/(mm~2)
#

A.3 Heat Treatment py-Script Ab9

Set the parameter

geom_name, r_inside , r_bottom, r_head_inside, r_head_left_outside, \
r_head_transition_flank , width_bottom, width_head, dist_left_head , dist_web_left_bottom ,k \
dist_web_left_top, dist_web_right_bottom, dist_web_right_top, height_flank , dist_flank_1, \
dist_flank_2, angle_web, angle_head_1, angle_head_2, tran_r_web_bottom, tran_r_web_top, \
tran_r_head_1, tran_r_head_2, tran_r_head_3, geom_par = \

get_geometry_parameters ()

bool_user, bool_HT, el_size, el_size_fine, \

Temp_water, Temp_annealing, t_Partition, partition_offset, \
num_cpus, process_par = \

get_process_parameters(dist_left_head , r_head_left_outside, kelvin)

#

Set the working directory and save the parameter
#dir_name, DIRO, job_name = set_directory()

save_parameter(geom_par, process_par)

#

Load the wheel geometry and create the parts

s_wheel _AS, s_wheel, p_Wheel= make_geometry(m, geom_name, r_inside , r_bottom,
r_head_inside, r_head_left_outside ,

r_head_transition_flank , width_bottom,

width_head, dist_left_head , dist_web_left_bottom,

dist_web_left_top, dist_web_right_bottom,

dist_web_right_top, height_flank, dist_flank_1,

dist_flank_2 , angle_web, angle_head_1, angle_head_2,

tran_r_web_bottom, tran_r_web_top, tran_r_head_1,

tran_r_head_2, tran_r_head_3, t_Partition)

#
Create part sets
make_p_sets(p_Wheel, width_head, partition_offset)

#

Create dictionary with coordinates of thermocouples
thermocouples = make_thermocouples()

#

Create part surfaces
make_p_surf(p_Wheel, width_head)

#
Partition the wheel

make_partition (p_Wheel, partition_offset)
#
Define and assign the material
create_material (m, p_Wheel, kelvin)

make_mat_sections(m, p_Wheel, mat_name, density_tbl, bool_user, bool_HT, bool_plastic,
youngs_modulus_TD_tbl, plastic_isotropic_TD_tbl, specificheat_tbl,
conductivity_tbl)

#
Mesh the wheel
make_mesh (p_Wheel, el_size, partition_offset)

#
Create the assembly
a, inst_Wheel= make_instances(m, p_Wheel)

#

Create part sets with mesh

myNodes = make_p_sets_with_mesh(m, a, p_Wheel, thermocouples)
#

Create steps
make_steps(m)

#
Create the initial conditions
make_initial_conditions(m, kelvin)

#
Create the boundary conditions
make_boundary(a, m, inst_Wheel)

#

Create interaction

A60 A Appendix

make_interaction(m, inst_Wheel, Temp_water, Temp_annealing, kelvin)

#

Create thermal loads due to braking
make_load(m, heat_flux_braking)

#

Create the job and the inputfile for calculation
make_job(m, job_name)

#

os.chdir(dir)

	Declaration in Lieu of Oath
	Preamble
	Abstract
	List of Symbols
	List of Abbreviations
	Introduction
	Theoretical Background
	Constitutive Equations
	Phase Transformation
	Residual Stresses
	Definition of Residual Stresses
	Measurement of Residual Stresses

	Heat Transfer

	Cold Rolling of Wheelset Axles
	The Component Wheelset Axle
	Requirements for Wheelset Axles
	Manufacturing of Wheelset Axles

	Cold Rolling Process
	Modeling of Cold Rolling
	Geometries for Cold Rolling Simulations
	Materials and Material Models for Cold Rolling Simulations

	Finite Element Model of Cold Rolled Wheelset Axles
	Requirements for a FE Model of Cold Rolled Wheelset Axles
	Geometry for the Cold Rolling Process Model
	Coupling and Boundary Conditions
	Material Model for Cold Rolling Simulation
	Kinematics of Cold Rolling Simulation
	Contact Settings
	Python Script for Model Generation
	Model Extension

	Results and Discussion
	Validation of Model Size
	Stress Distribution in Cold Rolled Wheelset Axles
	Parameter Study for the Cold Rolling of Wheelset Axles
	Comparison of Simulation and Experimental Results
	Stress Redistribution

	Conclusions

	Heat Treatment of Railway Wheels
	The Component Railway Wheel
	Requirements for Wheels
	Manufacturing of Wheels

	Heat Treatment Process
	Modeling of Heat Treatment
	Heat Treatment Simulations of Railway Wheels
	Materials and Material Models for Heat Treatment Simulations

	Material Characterization Experiments
	Continuous Cooling Transformation Phase Diagram
	Hot Tensile Tests
	Deformation Dilatometry

	Modeling of the Material Behavior
	Modeling of Phase Transformation Kinetics
	Modeling of Plastic Material Behavior
	Modeling of Transformation Induced Plasticity

	Finite Element Models for the Heat Treatment of Railway Wheels
	Representative Volume Element for Material Modeling
	Process Model for the Heat Treatment of Wheels
	Model Extension: Block Braking

	Results and Discussion
	Continuous Cooling Transformation Phase Diagram
	Hot Tensile Tests
	Deformation Dilatometry
	ER7 Material Model for the Implementation in a Finite Element Software
	Process Model for Heat Treatment of Wheels
	Block Braking of Railway Wheels

	Conclusions

	Summary
	List of Figures
	List of Tables
	Bibliography
	Appendix
	RVE py-Script
	Cold Rolling py-Script
	Heat Treatment py-Script

