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Abstract

A huge fraction of engineering materials, ranging from steels to ceramics, are composed

of crystals. These constituent crystals exhibit a wide variety of defects, which modern

materials science exploits to use for tuning of specific material properties. However, for

knowledge-driven materials design it is of utmost importance to understand the fundamental

mechanisms, how such defects impacts materials. Atomistic modeling combined with first-

principles methods is able to provide unique insight into properties such as e.g., local atomic

structures.

The microstructural complexity of modern materials requires increasingly demanding and

sophisticated atomistic models. The standard tools for modelling such complex models how-

ever have several shortcomings. Density functional theory (DFT), which gives insight into the

electronic structure, is limited to small models. These are small in terms of atoms present

and hence fail to describe structurally complex defects. In contrast, molecular dynamics

(MD) can handle large models, however falls short in describing the chemical complexity of

modern materials such as, e.g. alloys.

In the present thesis we have implemented a hybrid approach coupling DFT and MD, to

overcome these limitations. We have applied the approach to study interfaces (planar defects)

in TiAl intermetallic alloys. Thereby, we study the impact of alloying elements on interfacial

mechanical properties.

In a second part we tackle the challenge of modeling disordered alloys with finite atomistic

models. We provide the theory and a corresponding implementation to generate atomistic

models of disordered system. Using the developed tools we create models to study a grain

boundary in a (disordered) Ni-base alloy. Besides giving the theoretical prerequisites, we fo-

cus on the impact of chemical disorder on solute segregation of alloying elements. Finally, we

compare predictions from thermodynamic models between a standard single-species-matrix

and the realistic chemically complex matrix.
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Kurzfassung

Ein beträchtlicher Anteil der technisch relevanten Werkstoffe, von Stählen bis hin zu Ker-

amiken, ist aus Kristallen aufgebaut. Jene Kristalle sind mit verschiedenen Defekten verse-

hen, welche die moderne Werkstoffwissenschaft nutzt, um gewisse Materialeigenschaften zu

verbessern. Um jedoch wissensbasiertes Werkstoffdesign betreiben zu können, ist es wichtig

die fundamentalen Mechanismen zu kennen, um den Einfluss der Defekte auf das Material zu

verstehen. Atomistische Modellierung in Kombination mit ab-initio Berechnungen können

hier einzigartige Einsichten, wie z.B. die lokale atomare Struktur, in die Werkstoffe bringen.

Die mikrostrukturelle Komplexität moderner Materialien verlangt jedoch nach immer größeren

und dementsprechend komplexeren atomaren Modellen. Die Standardmethoden, um sol-

che Modelle zu untersuchen, weisen jedoch einige Defizite auf. Die Dichtefunktionaltheorie

(DFT), mit der die elektronische Struktur untersucht werden kann, ist auf kleine Modelle

limitiert. Die, hinsichtlich der Anzahl der vorhandenen Atome, kleinen Modelle versagen,

wenn strukturell komplexe Defekte beschrieben werden müssen. Im Gegensatz dazu können

mit Molekulardynamik (MD) große Systeme modelliert werden. Hier ist jedoch der eins-

chränkende Faktor die chemische Komplexität, wie sie z.B. bei Legierungen auftritt.

In dieser Arbeit wurde ein hybrider Ansatz implementiert, wobei DFT und MD gekoppelt

werden, um die vorhin beschriebenen Probleme zu lösen. Der Ansatz wurde verwendet,

um Phasengrenzflächen (ebene Defekte) in intermetallischen TiAl Legierungen zu unter-

suchen. Dabei wurden weiters der Einfluss von Legierungselementen auf die mechanischen

Eigenschaften dieser Grenzflächen untersucht. Der zweite Teil dieser Arbeit widmet sich

der atomistischen Modellierung von Lösungen in Festkörpern, zur Beschreibung von Le-

gierungen mit einer endlichen Anzahl von Atomen. Wir präsentieren dafür die theoret-

ischen Grundlagen, sowohl als auch eine Implementierung dieser, für die Generierung eben

jener Modelle. Mit den entwickelten Werkzeugen untersuchen wir eine Korngrenze in einer

(ungeordneten) Nickelbasislegierung. Neben den theoretischen Grundlagen zeigen wir den

Einfluss von chemischer Unordnung, auf das Verhalten von Segregationselementen. Ab-

schließend vergleichen wir Vorhersagen von thermodynamischen Modellen, zwischen einem

vereinfachten Reinelementsystem und dem realistischen ungeordneten System.
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Chapter 1

Introduction

1.1 Interfaces in materials

In the past decades, materials science was tremendously successful in pushing properties

of materials systems to their limits. A very impressive example of this material tuning

can be observed if one has a look at the mechanical properties of the third generation of

Advanced High Strength Steels (AHSS). Although a typical alloy still consists of nearly pure

iron (Fe) with only a few per cent of alloying elements, ultimate tensile strengths of more

than ≈ 1200 MPa are achievable, while pure bcc-Fe is soft and weak with a strength of

≈ 450 MPa. Only slight changes in chemistry induce this tremendous improvement (nearly

three times), which can be attributed to microstructural differences, involving the presence

of vast amounts of crystal defects such as grain boundaries, stacking faults, or dislocations.

However, it is crucial to point out that extended two-dimensional planar crystal defects,

such as interfaces and grain boundaries are by far one of the most important tools material

scientists have at hand when it comes to designing novel materials (not only steels or metals).

Furthermore, because of their significance, there is a huge demand for understanding these

defects from a fundamental point of view and in various different classes of materials such as

but not limited to steels, non-ferrous alloys (e.g. aluminum), protective coatings, refractory

metals or ceramics, to name just a few. Atomistic investigations of these defects push the

current tools to their limits or sometimes even beyond. The huge demand for fundamental

understanding, in combination with the limitation of the standard tools, provides the main

motivation for the present thesis.

As a consequence of the defects’ importance for materials performance, much experimental

effort has been invested to study them already for decades. Experiments in general, and

investigations at the atomic scale in particular, however, come with great efforts in terms of

technical equipment, research staff, and financial means. Here, atomistic simulations proved

to be a complementary tool to help to understand experimentally observed phenomena
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1.2 Outline

at only a fraction of the costs of an experimental investigation. Some physical quantities

are sometimes hardly or not at all accessible experimentally (e.g. activation energies for

diffusion processes). In such cases, theoretical methods can give insight and a qualitative and

increasingly more often also quantitaive feeling for the physical quantities under investigation

and thus guide experiments.

To be able to design such interfaces in a controlled manner, it is of utmost importance to

understand how alloying elements interact with such interfaces. Consequently, understand-

ing solute segregation and the impact of those on interfacial properties is a key aspect when

designing novel materials. Due to the complexity (chemical or structural) of modern mater-

ials, this turns out to be very hard on the atomistic level. Here the present thesis aims at

making two small steps forward which will be explained in greater detail in the next section.

Hence we try to improve the current understanding of solute segregation phenomena, to

planar defects in metallic systems.

1.2 Outline

In the following section, we will give a short written outline of the present thesis. The thesis

is divided into three parts, each consisting of two chapters.

In the first part, we point out the challenges and summarize the suggested solutions. There-

fore, we start in Chap. 2 with the theoretical foundations of the standard tools namely

molecular dynamics (MD) and density functional theory (DFT). Those will be needed to

understand their limitations. In Chap. 3 we give an overview of alternative or adapted

methods that try to overcome the shortcomings. Therein, we discuss density-based methods

intended to improve DFT (in certain aspects), while we put a major focus on the recent

development of machine-learned force fields (ML-FF). These ML-FFs are intended to speed

up DFT calculations or to make MD applicable to a wider range of materials. We conclude

the chapter, with an overview of hybrid methods trying to combine the best of both worlds.

The second part of the thesis tackles the challenge of structurally complex planar de-

fects. Therefore, Chap. 4 starts with an introduction to a coupled quantum-mechanical and

molecular-mechanical (QM/MM) scheme [1]. Within the scope of this thesis we have imple-

mented this approach and therefore provide details on the implementation. The QM/MM

approach requires a system decomposition into a QM and MM part, however, not all prop-

erties (e.g. pressure) are known in both parts. Hence, Chapter 4 continues by suggesting

how volume relaxations might be incorporated which itself requires to know the pressure for

the whole QM/MM system. The final part of the Chap. 4 provides a guide on how to carry

out the methodologically rather involved QM/MM calculations. In Chap. 5 we apply the

approach implemented in Chap. 4 to study solute segregation to interfaces in TiAl alloys.

6



1.2 Outline

Beyond studying and elucidating energetics of segregation, we present the impact of solute

on the mechanical properties of the interfaces.

The third part of the thesis tackles the challenge of chemical complexity in real alloys.

Therefore, in Chap. 6 we present a method to generate finite sized-cells of disordered alloys

optimizing pair correlations. We furthermore suggest a way to include triplet interactions

and present our implementation. In the last chapter, we apply our computer program to

generate models of disordered bulk and grain boundary structures (GB). We use these models

to study solute segregation to a grain boundary in a specific Ni-base superalloy. We adapt an

existing thermodynamic model for GB segregation to be applicable for disordered systems.

Finally, we provide a simple method on how to extract the necessary model parameters from

DFT calculations.

7





Chapter 2

Standard tools of atomistic modeling

In modern atomistic modeling, there are a lot of methods out there. While some are specific,

and suitable only for a small range of problems (e.g. special class of material systems), we

will give an introduction to the two most-widespread methods. Namely, to Kohn-Sham

density functional theory (KS-DFT) that operates on the electronic level, and to Molecular

Dynamics (MD) that treats systems on the atomistic level. The by far larger part of this

chapter is dedicated to DFT, as we try to give the reader an overview of the assumptions

and approximations which are at its heart. In a very condensed fashion, we go from the N -

electron problem over Hartree and Hartree-Fock approximation to KS-DFT. We then shortly

outline the main idea of MD. Finally, we discuss the shortcomings of the methods in light

of their suitability to model planar defects in metallic systems.

2.1 Quantum mechanical descriptions

Upon investigation of condensed matter one usually thinks of an atom, as a core surrounded

by electrons. As those electrons form bonds, their spatial distribution determines nearly

all subsequent material properties. Consequently, methods able to compute properties of

electrons can give a unique insight into materials and are therefore called electronic structure

methods. Since they often require no empirical data, they are often termed first-principles

methods. Secondly, in practice they reveal additional insights only at a high computational

costs. The present section shall give the reader an overview of the most important parts of

the underlying theory and the most important approximations made. Therefore the following

text is structured as follows. Firstly, we introduce the theoretical foundations, as well as the

first attempts to solve the underlying problem. The second part introduces the workhorse of

modern QM calculations, namely DFT. Finally, the last section introduces alternative, less

popular methods which proved to be successful in materials science problems.
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2.1 Quantum mechanical descriptions

2.1.1 N-electron problem and wave function-based methods

To know how electrons behave around a core, one has to solve the fundamental equation of

quantum mechanics, the Schrödinger equation. The equation describes the evolution of a

system of N quantum particles at positions r⃗i, . . . , r⃗N over time and reads

−iℏ ∂
∂t

Ψ = ĤΨ (2.1)

where Ĥ is the Hamilton operator. The solution is called the many-body wave function Ψ.

For most applications, it is sufficient to know only stationary (time-independent) solutions,

which modifies the above equation to

ĤΨ = EΨ (2.2)

and drastically reduces the efforts to solve the equation. Although Eq. (2.2) is compact

in its notation, putting it into the context of atoms and electrons reveals the underlying

complexity. We can do so by having a closer look at the two main constituents Φ and Ĥ.

Consider a simulation box with M atoms located in space at {R⃗i} where R⃗i ∈ R3, which

are surrounded by N electrons at {r⃗i} where r⃗i ∈ R3. As a matter of fact the many-body

wave function Ψ depends on all these coordinates Ψ({r⃗i}, {R⃗i}). The difficulty in solving the

equation becomes even more obvious when looking at Ĥ. As the Hamiltonian “measures” the

energy in the system we can write it simply as the sum of kinetic energies and electrostatic

interactions occurring in the box

Ĥ = T̂ n + T̂ e + V̂ n−n + V̂ e−e + V̂ n−e (2.3)

where

T̂ n is the kinetic energy (operator) of the nuclei (note that n means nuclei in this context)

T̂ e is the kinetic energy (operator) of the electrons

V̂ n−n the electrostatic repulsion of the positively charged munclei

V̂ e−e the electrostatic repulsion of the negatively charged electrons

V̂ n−e the electrostatic attraction between electrons and nuclei

and may be expanded to (in atomic units)

10



2.1 Quantum mechanical descriptions

Ĥ = −1

2

M∑︂

i

∆R⃗i

Mi
⏞ ⏟⏟ ⏞

T̂n

− 1

2

N∑︂

j

∆r⃗j

⏞ ⏟⏟ ⏞
T̂ e

+

M,M∑︂

i,i′ ̸=i

ZiZi′⃓⃓
⃓R⃗i − R⃗i′

⃓⃓
⃓

⏞ ⏟⏟ ⏞
V̂ n−n

+

N,N∑︂

j,j′ ̸=j

1

|r⃗j − r⃗j′ |
⏞ ⏟⏟ ⏞

V̂ e−e

−
M,N∑︂

i,j

Zi⃓⃓
⃓R⃗i − r⃗j

⃓⃓
⃓

⏞ ⏟⏟ ⏞
V̂ n−e

(2.4)

where Zi is the nuclear charge and Mi the mass of the ith’s atoms core. Note that finding Ψ

is a 3(N +M) dimensional problem and is infeasible to solve for any practical application.

Born-Oppenheimer (BO) approximation

The mass of a single proton is three orders of magnitude larger than that of electrons, and

hence one expects the nuclei to react only slowly to external changes. Consequently T̂ n ≪ T̂ e,

and it is legit to think of our system as electrons orbiting around the “static” cores [2].

In other words, we solve Eq. (2.4) for fixed values of R⃗1, . . . , R⃗M . Instead of the wave

function being dependent on the nuclear coordinates, those become parameters of the same

Ψ({r⃗i}, {R⃗i}) → Ψ({r⃗i}; {R⃗i}). Note the semi-colon to indicate that the nuclei positions are

no dependent variables but rather parameters. Thus, to fully explore a system one has to

sample the whole 3M dimensional space of the nuclei coordinates. This hyper-dimensional

surface spanned by R⃗1, . . . , R⃗M) is therefore called the Born-Oppenheimer surface. For

brevity, we will omit the nuclear coordinates in the following and refer to Ψ as Ψ({r⃗i}). This

approximation with fixed the nuclei coordinates, however, has four positive consequences on

the problem. Firstly the problem is reduced from 3(N + M) to 3N dimensions. Secondly

V̂ n−n becomes a constant. Thirdly the electron-nucleus interaction V̂ n−e can be seen as

the interaction of an electron with an external (coulombic) potential of ions. Hence in

the following V̂ n−e becomes V̂ ext. Lastly, the kinetic energy of the nuclei can be omitted.

Consequently, Eq. (2.4) reduces under the BO approximation to

Ĥ = − 1

2

N∑︂

j

∆r⃗j

⏞ ⏟⏟ ⏞
T̂ e

+
1

2

N,N∑︂

i,i′ ̸=i

1

|r⃗i − r⃗i′|
⏞ ⏟⏟ ⏞

V̂ e−e

− V̂ ext⏞⏟⏟⏞
V̂ n−e

. (2.5)

Ground state approximation

Although the BO approximation is sensible, intuitive, and extraordinarily helpful towards

solving the problem, it is yet still too complex for practical applications. One reason is that

there is not only one function Ψ that would satisfy Schrödinger equation with the many-

body Hamiltonian, but rather infinitely many. Each solution is called “eigenfunction” of

the Hamiltonian Ĥ where the energy is the corresponding “eigenvalue”. A step forward is

to search only for the solution with the lowest eigenvalue E0. Again the problem becomes

11



2.1 Quantum mechanical descriptions

more trackable, as it becomes an optimization (minimization) problem. As the object to

minimize is a function, one can apply variational calculus to find the ground state solution.

The Rayleigh-Ritz principle states that for any trial wave function |Ψ⟩ the following relation

must hold [3]

E [Ψ] =

⟨︂
Ψ
⃓⃓
⃓Ĥ
⃓⃓
⃓Ψ
⟩︂

⟨Ψ|Ψ⟩ ≥ E0 . (2.6)

Consequently, only the ground state solution Ψ0 will satisfy Ψ0 > E0. Hence when searching

for the ground state energy, the Schrödinger equation with the many-body Hamiltonian can

be reformulated as a minimization problem. Searching for the ground state makes solving

the equation actually feasible at all, however, comes at a cost. The ground state of a system

corresponds to the state the system will have at 0 K. Whenever we search for a solution

to the Schrödinger equation using variational methods, we demand the system to be at

0 K implicitly. Note, that any theory which puts the many-body problem in a variational

framework, is inherently a ground state theory.

Finally, restricting ourselves to the ground state also reduces the complexity of the BO

surface. The BO surface for the ground state is parameterized by the ionic positions {R⃗i}
and reads

E({R⃗i}) =
⟨︂

Ψ0({r⃗i}; {R⃗i})
⃓⃓
⃓Ĥ
⃓⃓
⃓Ψ0({r⃗i}; {R⃗i})

⟩︂
. (2.7)

Moreover, Eq. (2.7) is referred to as the potential energy surface (PES). The PES becomes

the central quantity when bringing machine learning to materials science, see Sec. 3.2.

Hartree approximation

As we have restricted the domain of solutions, some actual wave functions might be inserted.

Hartree suggested to approximating the many-body wave function as the product of single

particle wave functions [4], such that

Ψ({r⃗i}) =
N∏︂

i

φ(r⃗i) (2.8)

Hence by plugging Eq. (2.8) into the Rayleigh-Ritz principle it follows that the energy func-

tional E depends on the single particle wave function E [φ1, . . . , φN ]. The functional is min-

imized when all functional derivatives with respect to the single particle orbitals vanish.

Hence, instead of one we arrive at N simpler single particle Schrödinger equations, we can

be obtained by computing the functional derivatives with respect to the single particle wave

function φi

12



2.1 Quantum mechanical descriptions

δE [φ1, . . . , φN ]

δφi

=
δ

δφi

[︄⟨︂
Ψ
⃓⃓
⃓Ĥ
⃓⃓
⃓Ψ
⟩︂
−

N∑︂

i

εi

∫︂
φ∗
i (r⃗i)φi(r⃗i)dr⃗i

]︄

=
δ

δφi

[︄∫︂ N∏︂

i

φ∗
i (r⃗i)

{︄
−1

2

N∑︂

i

∆r⃗i +
1

2

N,N∑︂

i,i′ ̸=i

1

|r⃗i − r⃗i′ |

}︄
N∏︂

i

φi(r⃗i)dr⃗1 · · · dr⃗N

−
N∑︂

i

εi

∫︂
φ∗
i (r⃗i)φi(r⃗i)dr⃗i

]︄
(2.9)

where εi are the corresponding Lagrange multipliers. By demanding that every variation of

φi vanishes we arrive at the Hartree equations, which therefore read

[︄
−1

2
∆r⃗i +

N∑︂

j ̸=i

∫︂
φ∗
j(r⃗

′)φj(r⃗
′)⃓⃓

r⃗ − r⃗′
⃓⃓ dr⃗′

⏞ ⏟⏟ ⏞
vH,i

+Vext(r⃗)

]︄
φi(r⃗) = εiφi(r⃗). (2.10)

After splitting the equation into the N single particle equations in Eq. (2.10), one should note

that all φi enters all N equations. Hence, these equations must be solved self-consistently.

To give a more intuitive interpretation of the Hartree term we can use the fact that, one can

compute the total charge density as the sum of the single particle’s charge density.

n(r⃗) =
N∑︂

i

φ∗
i (r⃗)φi(r⃗) =

N∑︂

i

|φi(r⃗)|2 (2.11)

Therefore we can rewrite and simplify Eq. (2.10) even more by

VH,i(r⃗) =
N∑︂

j ̸=i

∫︂
φ∗
j(r⃗

′)φj(r⃗
′)⃓⃓

r⃗ − r⃗′
⃓⃓ dr⃗′ =

∫︂

≈n(r⃗)⏟ ⏞⏞ ⏟
N∑︂

j ̸=i

|φj(r⃗
′)|2

⃓⃓
r⃗ − r⃗′

⃓⃓ dr⃗′ ≈
∫︂

n(r⃗)⃓⃓
r⃗ − r⃗′

⃓⃓dr⃗′ = VH(r⃗)

(2.12)

where vH is usually referred to as the Hartree potential. Note that by substituting
∑︁N

j ̸=i |φj(r⃗
′)|2

with the n(r⃗), one introduces an artificial term which is the interaction of the ith particle

with itself. Hence this spurious interaction is referred to as the self-interaction. The Hartree

potential, however, has an intuitive physical interpretation. It represents the coulombic

repulsion caused by the charge density n(r⃗).

13



2.1 Quantum mechanical descriptions

Hartree–Fock approximation

The Hartree-Fock (HF) approximation [5] tries to overcome an important shortcoming of the

Hartree approximation. Namely, Pauli exclusion principle which is not taken into account.

Upon exchanging any two particles, Ψ must change its sign. In other words

Ψ(r⃗1, . . . , r⃗i, . . . , r⃗j, . . . , r⃗N) = −Ψ(r⃗1, . . . , r⃗j, . . . , r⃗i, . . . , r⃗N) (2.13)

must hold true for any indices i and j. A clever way to construct a wave function satisfy-

ing this property and still being made of single particle wave functions is to use a Slater-

determinant [6]

Ψ(r⃗1, . . . , r⃗N) =
1√
N !

⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓

φ1(r⃗1) φ2(r⃗1) · · · φN(r⃗1)

φ1(r⃗2) φ2(r⃗2) · · · φN(r⃗2)
...

...
. . .

...

φ1(r⃗N) φ2(r⃗N) · · · φN(r⃗N)

⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
. (2.14)

Similarly to Eq. (2.9), one can now plug Eq. (2.14) into the variational calculus apparatus.

The derivation is more cumbersome than it was for the Hartree equation, hence we only

provide the resulting Hartree-Fock equations which read

[︄
∆r⃗i +

∫︂
n(r′⃗)

|r⃗ − r⃗′|dr⃗
′

⏞ ⏟⏟ ⏞
vH(r⃗)

−
N∑︂

j

∫︂
φ∗
j(r⃗

′)φj(r⃗)φi(r⃗
′)

φi(r⃗)|r⃗ − r⃗′| dr⃗

⏞ ⏟⏟ ⏞
V i
F (r⃗)

]︄
φi(r⃗) = εiφi(r⃗) (2.15)

where VH(r⃗) is the Hartree potential as introduced in Eq. (2.12). V i
F (r⃗) is the Fock-exchange

potential for the ith particle to account for the Pauli exchange. However, in contrast to the

Hartree potential, the Fock exchange potential has no classical analogous physical interpret-

ation. It is caused by the purely quantum-mechanical exchange phenomena. Similarly to the

Hartree-equations (Eq. (2.10)) the Hartree-Fock equations need to be solved self-consistently.

Although the HF method fully accounts for electron exchange, it does not exactly describe

the coulombic correlation. Stating
∑︁N

i |φi(r⃗)|2 ≈ ∑︁N
i |φj ̸=i(r⃗)|2 in Eq. (2.12) is a so called

mean-field assumption, and any deviations will not be captured properly. Due to this latter

approximation, there are several limitations to the HF method. Firstly, even for an infinitely

large basis set, one will never reach the exact energy. This limit is called Hartree-Fock limit.

Secondly, solutions of the HF equations for real molecules usually provide an approximate

electronic structure. Thirdly, especially in strongly-correlated materials, this approximation

can lead to large deviations from experimental values.
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2.1 Quantum mechanical descriptions

2.1.2 Density-based methods – Density Functional Theory (DFT)

Wave-function-based methods suffer from a major drawback, preventing their use in a broad

field of materials science: The problem needs to be solved still in a 3N dimensional function

space. Already in the early 1930s, Thomas and Fermi tried to solve this problem. By using

the charge density n(r⃗) as the central variable. Such an approach would of course reduce

the problem to the three dimensions only.

Hohenberg–Kohn theorems

Such a reduction raises the question if a quantum-mechanical system is fully described by

a single quantity n(r⃗) at all, compared to e.g. N single particle functions in the Hartree

approximation. It is, indeed surprisingly easy to prove it. In the 1960s, Hohenberg and

Kohn proved two theorems in their paper [7]:

Firstly, that for any external potential Vext(r⃗) (as defined in Eq. 2.5) there exists exactly

one ground state charge density n(r⃗) or vice versa. In other words, there exists a unique

mapping (up to a constant), between an external potential Vext(r⃗) and the ground state

electron density n(r⃗). Furthermore, as the many-body wave function Ψ itself is a functional

of the charge density, it follows that the external potential hence uniquely determines Ψ.

Thus the system is fully determined by the charge density only. The theorem is simply

proven by a reductio ad absurdum, by comparing two Hamiltonians that only differ by Vext.

Secondly, they rigorously proved that there exists a universal functional, that yields the

ground state energy. In other words, they proved, that the ground state approximation

(Section 2.1.1) can be applied to the density directly, assuming the energy functional is

known. Nevertheless, up to this day, there has not been found a functional that would

express the total energy of the many-body Hamiltonian as a function of the electron density.

While the functionals for the electron-electron repulsion (Eq. 2.12) and the electron-ion

attraction are straightforward to write down, other contributions are not. Those include:

Kinetic energy A functional for the kinetic energy is only known of the homogeneous

electron gas [8]. For any general electron distribution, this is not known. Finding

approximate kinetic energy density functionals (KEDF) is the central subject of in-

vestigation for all research in the field of orbital free DFT (OF-DFT, see Sec. 3.1.1).

However, the contribution of the kinetic energy is very large compared to other terms.

Hence, in practice methods minimizing the total energy functional, often suffer from

convergence troubles, upon employing approximate kinetic energy density functionals.
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2.1 Quantum mechanical descriptions

Exchange energy is the energy increase due to Pauli’s repulsion of fermions. Similar to

the kinetic energy, an expression has been found for the homogeneous electron gas,

by Dirac [9]. For general distributions of the electron density, no expression has been

found.

Correlation turned out to be more difficult than computing the exchange energy. To treat

correlation effects in the homogeneous electron gas an approximation for low electron

densities [10] and a limit form for very high electron densities were found [11].

Kohn-Sham method

Only a few years later, fully aware of the shortcomings described before (Sec. 2.1.2), they

proposed a different method to obtain the round state density. Therein, they suggest using

a fictitious system non-interacting particles. This set of non interacting particles is chosen

such that it yields the same ground state density as the interacting system. The Kohn-Sham

(KS) equations

{︃
−1

2
∇2 + Veff

}︃
ϕi(r⃗) = ϵiϕi(r⃗) . (2.16)

where ϕi(r⃗) are called Kohn-Sham (KS) orbitals and ϵi the corresponding eigenvalues, and

veff is the so called “effective” of KS-potential. Again computing the sum of the density of

all KS orbitals would yield the electron density, similarly to Eq. (2.11). There are, however,

a few things to note about this scheme.

Firstly, the real system is replaced with a set of fictitious non-interacting particles. Con-

sequently, the energies of the KS-orbitals ϵi have no physical correspondence except for the

highest occupied one [12]. There were many approaches how to interpret the eigenvalues [13–

15]. The actual physics in the above equations is hidden in the effective or Kohn-Sham

potential which reads

Veff = Vext + VH + VXC (2.17)

where VXC is the so-called exchange correlation potential. Therefore only the last term

contains “unknown” contributions, which are subject to approximations. Note that the KS

approach is exact in case VXC would be known. As this exchange-correlation term is usually

a rather small part of the total energy, the KS approach was definitely a major breakthrough.

Nevertheless, the major challenge, namely finding accurate and efficient approximations to

the exchange-correlation energy remained.

We note that from the definition of the universal energy functional a definition for vXC might

be obtained, and show which quantum-mechanical effects one needs to take into account.

However, for brevity, we omit this derivation.
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2.1 Quantum mechanical descriptions

It was Kohn and Sham themselves in their original work, who provided the first approxima-

tion for vXC . As it was of particular interest to compute the electronic structure of metallic

materials, where the valence electrons are spatially delocalized, it is fair to assume that the

electron density in the interstitial regions is close to a homogeneous electron gas. Thus, the

idea was to approximate the exchange and correlation effects with a homogeneous electron

gas

VXC = V hom
X + V hom

C (2.18)

where vhomX and vhomC are the exchange and correlation potentials of the homogeneous electron

gas. While V hom
X is known in closed form, Perdew and Zunger [16] suggested using an

interpolation between the aforementioned high and low-density form of V hom
C . This approach,

as both V hom
X and V hom

C are local functionals, was named local density approximation (LDA).

Although LDA is a rather crude approximation, it turned out to be a real success due to

the cancellation of errors. LDA tends to overestimate EX and underestimate EC . However,

for metallic systems where fluctuations in the electron density are usually small, LDA yields

good results.

Eq. (2.17) moreover reveals that also the KS-equations have to be solved self-consistently,

as the effective potential is a functional of the electron density.

KS-DFT became the workhorse of modern atomistic DFT calculations. There are many

different implementations available, and the KS method became the de-facto standard in

DFT. Therefore, in the following we review its shortcomings which exist until the present

day.

Wave-function method Strictly, spoken, KS-DFT is not within the original spirit of DFT,

as it considers an orbital for each particle. Treating each particle separately leads to

enormous computational demand. Hence, further approximations, namely e.g. pseudo-

potentials, are needed to apply DFT to practically relevant systems. We note that

accurate density-based methods remain elusive until the present day.

Exchange-correlation energy Over the past decades, there have been many of different

exchange-correlations functionals suggested by the scientific community. Those vary

in the physics they include as well as in their computational demand. While some

of them became popular (e.g. PBE [17], B3LYP [18], PW91 [19] or SCAN [20, 21])

and turned out to be universally applicable, many of them were fitted to special use

cases. One must note that the improved exchange-correlation functionals, especially

PBE, led to the real breakthrough of DFT. Despite all improvements in functional

design, major DFT-codes use the HF method to compute Fock exchange energy from

the KS-orbitals, when “exact” exchange is needed.
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2.2 Molecular dynamics/statics

2.2 Molecular dynamics/statics

In MD, one shifts the focus from electrons to atoms. Instead of electrons treated using

quantum mechanics, in MD the motion of atoms is governed by classical mechanics. There-

fore, MD is inherently suited to study larger systems than DFT. Therefore, for a system of

atoms located at positions R⃗i the equations of motions in a Hamiltonian formalism read

∂p⃗i
∂t

=
∂Ĥ

∂R⃗i

(2.19)

∂R⃗i

∂t
=
∂Ĥ

∂p⃗i
(2.20)

where p⃗i is the momentum vector of the ith atom. In practice, the equations of motion are

solved numerically, by introducing a time discretization and integrating to obtain the new

positions and velocities. We note that within this thesis we applied only molecular statics.

In molecular statics, the Hamiltonian is evaluated for a set of atoms and are moved to find

the lowest energy configuration. In contrast in MD they move due thermal vibrations. Con-

sequently, within this section, we will neglect to provide details about integration algorithms

and thermostats. The Hamiltonian of a system of M interacting particles is given by the

kinetic energy and the particle interaction energies

Ĥ =
M∑︂

i

|p⃗i|2
2mi

+

M,M∑︂

i,j>i

V (2)(R⃗i, R⃗j) +

M,M,M∑︂

i,j>i,k>j

V (3)(R⃗i, R⃗j, R⃗k) + . . . (2.21)

where the first term refers to the kinetic energy and will be zero in molecular statics. The

second and third terms include pair and three-body interactions consequently. In principle

the above sum continues to clusters of size N , in practice, two and three-body potentials are

used. Prominent examples of pair potentials are the Lennard-Jones or the Morse potential.

Tersoff [22] potentials and a reformulated version of them named analytic bond-order poten-

tials (ABOP) [23] or the Stillinger-Weber [24] are examples of three-body potentials. The

latter (three-body) potentials were all developed as improved descriptions for covalent bond-

ing in C and Si. In contrast, the semi-empirical embedded-atom-method (EAM) [25, 26] and

derived models such as the Finnis-Sinclair [27] or the modified-EAM [28] became popular

choices for metallic systems. In contrast to first-principles methods such as DFT, the po-

tentials have to be parameterized, which in itself is a highly non-trivial task. The predictive

power of such a potential strongly depends on the parameterization during which the po-

tential is tuned to reproduce pre-defined properties. The forces on the atoms are computed

by the gradient of the internal energy F⃗ i = ∇iU . More recently, huge efforts were made to
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parameterize interatomic potentials from DFT data using machine learning. We will review

this technique in detail in Sec. 3.2

2.3 Limits of the methods

Although the combination of experimental and theoretical investigations can bring unique

insights into the basic mechanisms of materials, there are limits to the standard tools avail-

able in computational materials science. The two main tools presented for investigations at

the atomic length scale, namely DFT and MD each exhibit different types of limitations,

which are discussed in the following section.

DFT MD

underlying physics quantum mechanics classical mechanics

basic equations Ĥψ = Eψ F⃗ = ma⃗
scaling (N = number of atoms) O(N3) O(N)
accuracy best available depends on potential
maximum system size ≈ 1000 atoms ≈ 106 − 109 atoms [29]
resolution electrons atoms

Table 2.1: A short comparison of the basic principles and properties of DFT and MD.

2.3.1 Pracatical limitations of DFT

As the interest in has DFT exploded in the last two decades, it also became the tool of

choice for a lot of material scientists. The computational efficiency of DFT increased dra-

matically, due to groundbreaking developments such as pseudo potentials (PPs) [30–33] or

the projector augmented wave (PAW) method [34], resulting in ever-larger system sizes and

shorted computational times, which in turn allowed investigations of a wide range of com-

plex materials and problems. Nevertheless, modeling spatially extended defects remains still

a highly non-trivial task. Modern efficient DFT codes use periodic boundary conditions,

thus large enough simulation boxes have to be built to screen off interactions of defects with

their periodic images. This, in turn, leads to large numbers of atoms needed to model those

scenarios. As a consequence of being an ab-inito electronic structure method, DFT allows

the calculation of systems with nearly arbitrary chemistry, since PPs are available for nearly

all elements of the periodic table. Furthermore, there is no other tool available that would

outperform DFT in terms of the accuracy of its predictions, not to speak of unparalleled

computational efficiency, stability, and reproducibility of the results. Nevertheless, there are

some drawbacks if one wants to employ DFT tools for modeling spatially extended defects.
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system size Although (as mentioned in the paragraph before) incredible progress has been

made, and more powerful computer hardware and computing concepts (GPU comput-

ing) push the limits of possible constantly year by year, the matrix inversions at the

heart of every DFT code remain and scale badly. When accurately modeling planar

defects, the number of atoms remains the main limiting factor. Of course, clever struc-

tural models can mimic a defect with a limited number of atoms, however, as materials

(e.g. alloying concepts) become more complex, it becomes more and more necessary

to have accurate atomistic models, and thus larger simulation boxes. In the end, the

tractable system size is the prohibitive factor for creating accurate atomistic models.

calculated quantities A full DFT calculation requires the calculation of all (non-interacting

[35]) (valence) electron wave functions, which is computationally demanding. For many

materials science problems, the knowledge of electronic structure is not necessary and

many simple quantities such as energies and forces on atoms suffice. Consequently

(hand-wavy spoken), more than 99% of the data produced by a DFT code is not

needed and thus discarded in many of the evaluations.

ground state-theory The theoretical framework behind DFT [7, 35] is a so-called ”ground

state-theory”, thus all calculated quantities describe the quantum-mechanical ground

state of a system. Consequently, finite temperatures are not treatable since the theory

only holds, strictly speaking, at zero Kelvin. Extensions to finite temperatures (phonon

thermodynamics, ab-initio MD) are often computationally prohibitive.

2.3.2 Pracatical limitations of MD

Instead of calculating each (valence) electron’s wave function, MD treats whole atoms.

The total information about the electronic structure, which is calculated by same ab-initio

method such as DFT, is “packed” into an effective interaction between two (or more atoms),

the potential. This approach brings numerous advantages, and at first glance seems to over-

come all the problems of DFT, from a materials science point of view. First, by employing

modern algorithms, MD scales linearly with the number of atoms O(N), thus tens of thou-

sands of atoms which is more than what is needed to model 2D defects can be computed

on a desktop workstation. Also finite temperature studies are possible. Lastly, because of

classical mechanics, only forces and energies are calculated in order to evolve the system over

time. Therefore MD calculates only data that is mostly needed for further post-processing.

However, there are still prohibitive challenges in applying solely MD within the scope of the

proposed project.

chemistry To carry out MD simulations, an interatomic potential (IP) is needed for the

system under investigation. Although there are many potentials out there and also a
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database exists, e.g. the NIST’s Interatomic Potential Repository1, most of them are

fitted to properly describe simple single species of binary systems. Hence complex alloys

or compounds cannot be studied, since creating potentials requires a lot of experience,

a vast amount of DFT/experimental data, and knowledge about the system to be

described.

transferability Usually the potentials are fitted to accurately reproduce certain quantities

(e.g. mechanical properties, surface properties). Most often the potentials are fitted to

bulk properties. When carrying out an MD simulation, one can rely on the potential

is very good at describing bulk regions, while for defect regions no information is

at hand. Consequently, one has to benchmark the potential against an electronic-

structure method in order to ensure that it can reproduce the atomic structure also in

the defective region. Therefore, even if an IP might be available for a special system,

its computed properties may not be transferable to a special case of interest.

1https://www.ctcms.nist.gov/potentials/
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Chapter 3

Overcoming the limits

We have concluded the previous chapter by summarizing the shortcomings of DFT and MD.

For DFT the small model sizes heavily constrain their applicability for planar defects. In

contrast for MD, the limited complexity of the chemistry is problematic. The following

chapter starts by introducing derivatives of KS-DFT which have the potential to overcome

the size limitations, but also points out still existing challenges also with respect to practical

usability. The second part is meant as an introduction and concise summary of machine-

learned force fields (ML-FF). Those ML-FFs can create potentials for MD from DFT data

and hence greatly improve the number of materials systems that can be studied. Further-

more, although more computationally expensive than traditional MD potentials, they allow

for MD calculations with close to DFT accuracy. The final part of this chapter is dedic-

ated to hybrid methods. Hybrid methods try to either couple or augment DFT with other

methods, its overcome the size limitation.

3.1 DFT-based methods

3.1.1 Orbital-Free DFT

Suppose the kinetic energy is known as a functional of the electron density. Consequently,

the energy functional from the second HK theorem is known. For a system with N particles,

the dimension of the problem is reduced from 3N to 3, compared to a KS-DFT approach.

Instead, of solving N single particle equations, the ground state is the solution of a minim-

ization problem which reads [36, 37],

Emin = min
n≥0

{︃
E[n] − µ

(︃∫︂

Ω

n(r⃗)dr⃗ −N

)︃}︃
(3.1)

where µ, the Lagrange multiplier, as well as the second integral term is to enforce a constant

number of electrons N . Ω denotes the cell volume. E[n] is the total energy functional, and
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reads in the OF framework,

EOF = T [n] +

∫︂

Ω

{Vext(r⃗) + VH(r⃗) + VXC(r⃗)} dr⃗ (3.2)

where T [n] is the kinetic energy functional, Vext is the external potential from the BO-many-

body Hamiltonian (Eq. 2.5), VH – the Hartree potential (Eq. 2.17) and VXC the exchange-

correlation potential as discussed in the previous section (Eq. 2.18). The minimization of

Eq. (3.2) can be carried out in two different ways.

Reusing a KS-calculator

As KS-DFT became very popular, and software was available already many (=four) decades

ago, Levy, Perdew, and Sahni [38] showed how to recast the OF problem such, that it can be

used with any KS-DFT calculator [39, 40]. Therefore, KS-equations are reduced to a single

orbital, representing the square root of the many-body wave function, such that Eq. (2.16)

becomes {︃
−∇2

2
+ veff(r⃗)

}︃
n

1
2 (r⃗) = λn

1
2 (r⃗) , (3.3)

where λ corresponds to the negative ionization energy [38]. However, in practice, it is

known that the approach suffers from convergence issues [41]. Although, Chan, Cohen, and

Handy [42] and more recently Karasiev and Trickey [43] tried to understand the convergence

problems, the reasons remain unclear to the present day. Hence, this approach is limited to

small molecules, which is unfavorable as OF-DFT is expected to be particularly strong for

large-scale simulation, due to its inherent linear scaling.

Direct minimization

Due to the aforementioned drawbacks, most implementations directly minimize the energy

functional (Eq. (3.2)). Therefore, investigations of large-scale problems using OF-DFT,

which would be inaccessible by KS-DFT, are possible.

The most challenging part, however, is to come up with the kinetic energy density functional

(KEDF). The main difficulty is that the contribution of the kinetic energy is a substantial

part of the system’s total energy, roughly one or even more orders larger than the XC. Hence

even small inaccuracies in the description have a large impact on the simulations’ overall

accuracy and performance. KEDFs can be separated into local T [n], and non-local T [n, n′]

functionals, where the latter ones allow for a more accurate description, but therefore break

the linear scaling. The most popular KEDFs were suggested by Wang, Govind, and Carter

[44] (WGC, local), and Huang and Carter [45] (HC, non-local), however with a specific

material system in mind. The need for a KEDF to accurately describe a system makes

them inevitably non-transferable, which has hindered the application of OF-DFT for many

decades.
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3.1 DFT-based methods

The strong dependency on the quality of an OF-DFT calculation with respect to the em-

ployed KEDF makes the method not suitable for all types of materials systems. A few

successful applications of the OF-DFT approach include investigations of Al-nanowires [46],

dislocations in Mg [47], or melting of Li [48] with up to 106 atoms [49].

Advances in OF-DFT theory

Research in OF-DFT, which inherently scales better than KS-DFT, gained a new momentum

with the advent of multi-core architectures. Therefore, the following section is separated

into two parts. The first one shows theoretical improvements, while the latter one focuses

on recent implementations. All of the research in OF-DFT is focused on finding (if possible

transferable) KEDFs. While Burke and co-workers [50] suggested already in 2012 to use ML

to KEDFs, several research groups [51, 52] for a more detailed review we refer the reader to

Ref. [53].

The second approach is to add a kinetic potential to the Levy, Perdew, and Sahni [38]

formulation, discussed in Sec. 3.1.1, to come up with an accurate description [54]. Such a

potential can then be exactly constructed from KS-orbitals or HF-wave functions [55]. Both

ML and potential construction approaches are far more data-efficient (only one or a few QM

calculations) compared to ML-FF approaches, moreover providing access to the electronic

structure. Yet the methods are still under vivid research, and yet reference implementations

are missing.

Recent OF-DFT implementations

As best to our knowledge, there exists only one implementation, by Lehtomäki et al. [56]

that reuses a KS code (GPAW [57, 58]), as this approach suffers from convergence problems.

What VASP is in the KS-DFT community, PROFESS [37, 59, 60] is the corresponding

popular counterpart in the OF-DFT, written by the Carter group.

More recently three new OF-DFT implementations appeared, namely ATLAS [61], CONUN-

Drum [62], and DFTpy [63], all utilizing direct minimization and designed with large-scale

simulations in mind. While an OF-DFT approach is much simpler to implement than the

KS approach, one should bear in mind that the scientific community is orders of magnitude

smaller. Therefore, a review of the source code of the latter two codes (CONUNDrum [64]

and DFTpy) reveals that the code quality is far behind those of well-established KS-DFT

codes written in the same languages e.g comparing DFTpy [65] with GPAW (Python) or

CONUNDrum [64] with S/PHI/nX [66] (C++). For the ATLAS code, sources are not avail-

able. Moreover, the implementations are far less feature-complete.
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3.1 DFT-based methods

3.1.2 Linear scaling methods

Mostly “linear-scaling” or “O(N)” methods became a synonym for approaches that do not

use wave functions as the central quantity but rather use the “density matrix”. For the

sake of brevity in this section, we omit, how to recast the many-body Hamiltonian into a

density-matrix formalism. In KS-DFT the density can be expressed as

n(r⃗, r⃗′) =
∑︂

i

ϕKS
i (r⃗)ϕ∗,KS

i (r⃗′) (3.4)

where ϕKS refers to the KS-orbitals, and the sum runs over all occupied states. Similarly,

the density matrix is then defined as

n(r⃗, r⃗′) =
∑︂

i,α

∑︂

j,β

ϕi,α(r⃗)Kiαjβϕj,β(r⃗′) (3.5)

where K is referred to as the “density kernel”. ϕi,α are called the “support functions” [67,

68]. Imposing a locality assumption makes the kernel, and matrix, sparse and banded, and

hence leads to a linear scaling of implementations. Note, that nearsightedness of electronic

interactions [69] is also the key assumption beneath ML-FF force-fields (Sec. 3.2). Indeed it

can be shown that the matrix elements decay exponentially in size with the distance |r⃗− r⃗′|
for metals, semiconductors, and insulators [70]. Note that the basic concept of the density

matrix is even older than DFT [71].

The calculation itself is usually carried out by an iterative optimization of the matrix elements

of the density matrix Kiαjβ, while two constraints must be met

1. Conservation of the total number of electrons: During an iterative process no

electrons may be lost or created. In a density-matrix framework, the total number of

electrons is given by

N = 2Tr [K · S] (3.6)

where K is the density kernel from Eq. (3.5) and Siαjβ = ⟨ϕi,α|ϕj,β⟩ is called the overlap

matrix.

2. Idempotency: While the above constrained is relatively easy to satisfy, driving the

matrix elements such that

n(r⃗, r⃗′) =

∫︂
n(r⃗, r⃗′′)n(r⃗′′, r⃗′)dr⃗′′ (3.7)

holds, is not. In fact, as Eq. (3.7) is hard to satisfy, many practical implementations

rely on a weaker formulation of idempotency.
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3.1 DFT-based methods

Note that in some implementations such as CONQUEST [72] the support functions are

modeled as atom-centered functions, that also depend on their neighboring atoms’ posi-

tions [72]. Such a construction is very similar to the ML-FF, with the difference that the

charge density rather than the total energy is the central quantity. For a review of linear-

scaling methods, we refer the reader to Ref. [73].

Although being successfully applied to large systems [74], the localized nature of the support

functions makes the method suitable primarily for covalently bonded systems. The assump-

tion of near sighted electronic interactions (similar to ML-FFs), makes them a bad choice

for the description of the delocalized electrons in metallic systems.

As mentioned in Sec. 3.1.2, the nearsightedness of the electronic interactions, makes linear-

scaling methods not a universal tool as KS-DFT, but rather limits its use to systems with

ionic or covalent bonding. While for such systems linear-scaling methods were successfully

employed for over two decades, the application to metals is still ongoing research [75]. Cur-

rently, many electronic structure codes implement linear-scaling methods, therefore, we focus

here on recent advances in computing metallic systems. For a more detailed review of the

implementations, we refer the reader to Ref. [76].

OpenMx implements a linear-scaling method, that is applicable even for metals [77]. Due

to the pseudo atomic orbitals (PAO) used in OpenMx, it is highly non-trivial and requires

careful tuning, to construct such a basis set suitable for large-scale calculations. Moreover,

using more PAOs strongly increases memory requirements. Direct minimization is used to

reduce the computational demand by the implementation in Onetep by Ruiz-Serrano and

Skylaris [78]. More recently, BigDFT’s[79] basis (Daubechies wavelets) were shown to be

suited for an efficient linear-scaling approach [80], and was used to calculate E−V curve and

DOS of bulk tungsten tungsten employing 3456 atoms [81]. Nevertheless, the work of Mohr

et al. [81], reveals that the cross-over point between standard KS-DFT and linear-scaling

approach (for the tungsten bulk) is at a system size of around 500 atoms. Although, the

above methods still scale linearly for metals, they come with huge prefactor, and should be

therefore viewed as a proof of concept.

3.1.3 Extended-electron formalism

Within this approach, the authors try to overcome, the problem of finding a general KEDF

of OF-DFT. A setback to the OF-DFT endeavors was when Seidl, Perdew, and Kurth [82]

showed that the construction of such a general KEDF using perturbation theory would

diverge. Therefore, the authors of this method took a more fundamental approach and

suggested treating electrons as extended objects in space [83]. It took them nearly a decade

to include spin [84] such that the model satisfies empirical observations. In their approach,

the wave function of a many-body electron system might be written as a sum of mass and
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3.2 Machine Learned Force Fields (ML-FF)

spin density

Ψ(r⃗) =
√︁
ρ(r⃗) + ie⃗S

√︁
S(r⃗) (3.8)

where ρ is the mass and S the spin density. The total wave function consists of a scalar

(mass) and a vectorial part (spin) which has three components in the most general case. ie⃗S

denotes a bivector in a geometric algebra. Even before they came up with such an idea it

was shown that geometric algebra can reproduce the results of the Pauli (standard) matrix

approach of treating spin [85, 86]. Over the last decade, they proved that such a formulation

can successfully explain observations made in the Stern-Gerlach [83, 87] or Aspect-type

experiments [88, 89]. By restricting the spin to a scalar variable, they reformulated the

many-body problem as OF-DFT-like two-density and proved that it yields results extremely

close to KS-DFT [90] for small molecules. Therein, they reused the CASTEP code and

experienced convergence troubles1, which might be attributed to issues generally typical for

OF-DFT [43]. More recently, they generalized their approach (=find an expression for the

bivector potential) for vectorial spin components. We note that this approach has actually

raised no attention in the scientific community. However, if such a description is suitable,

it will be, firstly be truly linear scaling, secondly, inherently treating magnetism, thirdly,

accounting for exact exchange, and finally pushing the boundaries in terms of system size

by at least three orders of magnitude. Nevertheless, reference implementations are missing,

as reusing a KS-code is probably not a good idea [43] and the vectorial spin component is

hard to integrate into an existing OF-DFT code. Finally, due to the fully local nature of the

appearing terms, implementation of this model is inherently very well suited to paralleling

on modern many-core architectures.

3.2 Machine Learned Force Fields (ML-FF)

The task of creating an ML-FF is to construct a functional form of the PES (Eq. (2.7))

of a system from a small number of reference calculations. The calculations, often carried

out using DFT or post-HF methods provide sample points on the PES. The ML-FF is then

fitted/trained and used to predict the energy/forces of new configurations. Many different

flavors of machine-learned inter-atomic potentials popped up recently and are applied to

study various phenomena. While we restrict ourselves to flavors used to study thermody-

namics in bulk systems, to demonstrate the broader applicability of ML-FFs, we list a few

recent examples. Sauceda et al. [91, 92], Chmiela et al. [93] studied electronic effects in small

molecules using CCSDT (coupled-cluster-singlets-doublets-triplets), reference data. Chem-

ical reactions were studied using both CCSDT [94] and MP2 references [95, 96]. There exist

1Private communication with T. Pope
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3.2 Machine Learned Force Fields (ML-FF)

many ML-FFs, and they differ mainly in two points. Firstly, the method they use to encode

atomic environments (the descriptors) and consequently the basis functions in which they

expand the PES. Secondly, the machine-learning method (regressor), which is used to train

the potential.

3.2.1 Common ingredients and concepts of ML-FF

No matter, which flavor of ML-FFs is chosen, all of them try to solve the same problem.

Namely, to break up a non-local quantity e.g., the energy into a sum of local contributions.

Therefore, in a system with N atoms, the property is rewritten as a sum of local “environ-

ments”. These local environments are usually defined as the set of atoms within a cut-off

sphere of size rcut, often chosen to be between 5 and at most 10 Å [97, 98]. Thus, given Mi

neighboring atomic positions R⃗
′
j within the cut-off sphere of the ith atom , the problem reads

E =
N∑︂

i

Ui(D(R⃗
′
1, . . . , R⃗

′
Mi

)) . (3.9)

Ui is the energy contribution of the environment centered around the ith. As the Cartesian

coordinates are a bad choice for the parameterization of Ui, the “descriptor” function D is

introduced. D extracts a representation of the local atomic environment – the “descriptors”

– from the local atomic environment. Given such an environment, an arbitrary number K

of descriptors d⃗ = (d1, . . . , dK) are computed, such that D(R⃗
′,i

1 , . . . , R⃗
′,i

M) → d⃗. Note that

each descriptor di ∈ d⃗, (in general) is not necessarily a scalar (as the notation may suggest),

but also might be a vector, matrix, or even a function. Consequently, D actually represents

“family” of functions, yet for simplicity we refer to it as function. We recapitulate: For each

atom i, the descriptors d⃗ of its surrounding environment are computed by feeding it (the

positions of the neighboring atoms) into D. Those descriptors are used to parameterize Ui

and hence again fed into the representation of Ui(d⃗).

These observations yield the two key steps of creating any ML-FF:

1. Find a set of descriptors (d1, . . . , dK), often called the structure representation (Sec. 3.2.2).

2. Find a representation of Ui in terms of the descriptors.

It is int these two points where ML-FFs differ from each other.

3.2.2 Structure representations

Properties of structure representations

One of the main goals in mind when creating an ML-FF is to accelerate (or replace to

a certain degree) computationally demanding electronic-structure calculations. Hence, to
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3.2 Machine Learned Force Fields (ML-FF)

keep the computational acceptable, the descriptors should fulfill several properties. Firstly,

a lower number of descriptors reduces the computational demand, however, in turn, reduces

the degrees of freedom in parameterizing Ui. Secondly, the set of descriptors should be

complete. In other words, each possible atomic environment should be mapped to a unique

set of descriptors. Thirdly, the descriptors should be “cheap” to compute from the input

structure. Moreover, there are further properties the descriptors have to fulfill, namely:

Translational invariantness Translating the nuclei, given an arbitrary translation vector

T⃗ must not change the potential energy

D(R⃗i) = D(R⃗i + T⃗ ) ∀ i ∈ 1, . . . ,Mi . (3.10)

A natural way to construct a representation that satisfies translational invariantness is

to use pair-wise distances, as they are used in Moment-Tensor-Potentials (MTP) [99].

Pair-distances R⃗ij = R⃗j − R⃗i is an efficient and robust choice for e.g. bulk systems,

as phenomena such as bond-stretching are described accurately. However, in organic

molecules, slight angular changes of functional groups can affect many pair distances

simultaneously, in which such a description is not the optimal choice [97] as it is hard

to learn.

Rotational invariantness Similarly to translation, the potential energy has to be invariant

under any rotation Q in the orthogonal group of R3

D(R⃗i) = D({Q · R⃗i

j}) ∀ i ∈ 1, . . . ,Mi . (3.11)

A potential that does not satisfy the rotational property would potentially cause angu-

lar momenta to arise on molecules in dynamical simulations and hence is not practically

usable [97].

Invariance to atomic permutations The potential energy surface is defined within the

Born-Oppenheimer approximation (Sec. 2.1.1). Thus the ions are assumed to be in-

distinguishable. Hence, the energy must be invariant to any permutation of atoms of

the same species.

Smoothness when an atom leaves or enters the interaction neighborhood While the

cut-off sphere is an artificial restriction to be able to perform practical calculations effi-

ciently, nature does not know about it. Therefore, if another atom is leaving or entering

the sphere, the PES must not exhibit any discontinuities.

3.2.3 Representation of the atomic contribution

After having found proper descriptors d⃗, reference data can be collected to construct the

PES. Therefore, suppose, we have computed N structures with DFT to sample the PES
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3.2 Machine Learned Force Fields (ML-FF)

and computed their descriptor vectors (= training set). Note that in the previous section N

referred to the number of atoms. Then, the atomic contributions of the PES for an unknown

configuration d⃗ are computed

Ui(d⃗) =
N∑︂

j

αjK(d⃗, d⃗
(j)

) . (3.12)

The training configurations are indexed by j. αj refers to the elements of the coefficient

vector, determined during the regression process. K refers to the kernel and measures

the similarity between a training configuration d⃗
(j)

and the unknown d⃗. It is usually, but

not necessarily linear, function and must be symmetric (K(d⃗, d⃗
′
) = K(d⃗

′
, d⃗) ) and positive

definite. Eq. (3.12) has one import consequence: To obtain a good quality PES [100], in

addition to the descriptors, a good measure of the distance in feature space (=kernel) K(d⃗, d⃗
′
)

is essential. The representation (Eq. (3.12)) of the local atomic energy contribution, more

precisely, the kernel function is determined by the regression method. This is the point

where “machine-learning” enters the game.

3.2.4 Commonly used potentials by their descriptors

The research area is very vivid and therefore it is hard to give a complete overview. Never-

theless, recently, Drautz [101] as well as Musil et al. [102] showed that nearly all descriptors

described below, including more recent developments (PIP [103], or NICE[104]) are related

to each other. For an in-depth review of structural representations, we refer the reader to

Ref. [102].

Steinhardt parameters Describing local atomic environments was necessary already be-

fore the ML era. Steinhardt, Nelson, and Ronchetti [105] proposed bond order parameters,

which found many different applications over the last decades. Specific subsets of Stein-

hardt’s parameters are used to accomplish, e.g., solid/liquid [106] or lattice classification, or

identification of defects. Being computed by a sum of spherical harmonics over all neigh-

boring atoms, they are already inherently translation and rotation invariant. They have

been used already as a basis for the empirical interatomic-potentials [107]. Note, that the

bispectrum descriptor (discussed below) is a generalization of Steinhardt’s parameters [108].

Atom-centered symmetry functions (ACSF) In 2011 Behler suggested ACSFs [109].

He proposed three two-body (=functions of the pair-distances) functions to encode the radial

part of the environment and two three-body functions to encode the angular part. Those

functions consist of an ad-hoc chosen analytic part multiplied by a cut-off function, inspired
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3.2 Machine Learned Force Fields (ML-FF)

by Tersoff [110] potentials. ACSFs were designed for and are still a popular choice in neural

netword (NN)-based FFs [109].

Gaussian Approximation Potentials (GAP) was the first non NN approach. The

main novelty of Bartók et al. [111] is the usage of the so-called bispectrum many-body

descriptor [112]. It is a three-point correlation function, allowing nearly a one-to-one rep-

resentation of the atomic neighborhood (completeness), and is computed by projecting the

atomic density function on a four-dimensional unit-sphere. Represented by a series expan-

sion of 4D spherical harmonics it satisfies all the properties discussed in Sec. 3.2.2. The

potential gets its name from the fact that the bispectrum coefficients are computed using

Gaussian process regression (kernel in Eq. (3.12) is a generalized multivariate Gaussian).

The representation of the atomic structure as a bispectrum brought superior accuracy to

GAPs, compared to the NN potentials at the time they were developed.

Smooth overlap of atomic positions (SOAP) representation improves a shortcoming

of ACSF in combination with NN. Namely, no matter how good the descriptors are, in a

NN approach the kernel function – Eq. (3.12) – might not necessarily be a good choice

for the PES prediction. Using NNs, the kernel depends on the setup (number of hidden

layers and activation function). Using the bispectrum descriptors from the GAPs approach,

Bartók, Kondor, and Csányi [100] derived a closed form for a kernel (SOAP kernel) yet with

a slightly different definition of the atomic density function (sum of Gaussian’s centered at

the neighboring atoms). The advantage of a known kernel function is three-fold. Firstly,

adjusting the similarity measure during the fitting process allows for more control during the

fitting process. Secondly, results become more reproducible compared to NN approaches.

Thirdly, the kernel allows for a better representation of the atomic contributions (Eq. (3.12)).

Finally, we note that SOAP is not a representation of atoms, but rather a definition for a

kernel. Summarizing, the SOAP kernel improves the representation of Ui (Eq. (3.12)) for

the descriptors used in GAP.

Spectral neighbor analysis potential (SNAP) uses the same (bispectrum) descriptors

as proposed by the early version of GAP [111]. The major difference to GAP is it uses

a different representation of the atomic contribution. SNAP [113] expresses the atomic

contribution, by adding a linear term of selected bispectrum components to a reference

potential. Having a linear kernel allows an efficient calculation of the forces [113] as a closed

form is known. Recently, it was found that SNAPs can be improved by adding an additional

quadratic term [114].

Moment Tensor Potential (MTP) use a cleverly chosen set of basis functions, of which

the atomic energy is a linear expansion of, and which satisfy all the properties discussed in
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Sec. 3.2.2. The basic building blocks of the basis functions are so-called moment-tensors,

consisting, similarly to the bispectrum, of a radial and an angular part. The angular part

is encoded in “powers” of the pair-distance vectors of the neighborhood. The “powers” are

constructed, such that they yield multi-dimensional tensors, representing moments of the

pair-distances. While ACSFs contain only two and three body terms, the bispectrum and

the moment-tensor approach can approximate any arbitrary multibody interaction. Their

accuracy, similarly as for GAPs, is systematically improvable [99], and consequently they

can be efficiently evaluated [115] and therefore cut the computational demand.

Atomic cluster expansion (ACE) is based on an earlier work [116] showing a close

relation between multibody-potentials and cluster expansion (CE) formalism. Drautz [101]

expands the local atomic energy in a CE style, as a sum of multi-body contributions that

read

Ui = U
(1)
i (R⃗i) +

1

2!

∑︂

j

U
(2)
i (R⃗i, R⃗j) +

1

3!

∑︂

j,k

U
(3)
i (R⃗i, R⃗j, R⃗k) + . . . . (3.13)

However, CE expansions suffer from two major drawbacks. Firstly, the CE sum converges

slowly, such that multi-body contributions of order > 15 are required to describe properties

of metals [116]. Secondly, the number of individual contributions U (k) scales exponentially,

and thus is prohibitively expensive. By expanding the multi-body-terms U (k) as a product of

orthogonal basis functions, one can rewrite Eq. (3.13) by exploiting coefficient symmetries.

Doing so the CE energy becomes polynomial with respect to the basis, and therefore can be

evaluated in linear time [101]. Moreover, Steinhardt’s bond-order parameters, bispectra, as

well as the moment-tensor description can be cast into the ACE formalism [101].

3.2.5 Concluding note on what potential to use

While all of the above-presented potentials are designed for general usage, there are a few

considerations to make when applying such ML-FF. Under the perspective of data efficiency

– how much data is needed to train such a potential – GAP, MTP, and ACE outperform [98]

NN approaches. The flexibility of NNs (adjustable, yet intransparent kernel) has to be

accounted for with more data. Furthermore, they are also superior in both accuracy and

computational efficiency, as the underlying energy representation is physically informed. In

contrast to NNs, all approaches utilizing a series of basis functions (GAP, MTP, ACE), are

systematically improvable. Adding more basis functions will improve the accuracy at the

cost of computational efficiency. While larger NNs will achieve the same, one can not do that

in a systematic way. The newer development (MTP and ACE) allow for more efficient evalu-

ation, compared to GAPs and SNAPs, without, sacrificing (at least for showcases) accuracy.

While at this time (spring 2023), ACE’s implementation – PACE – allows for the fastest
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evaluation per MD time step [117]. Nevertheless, even PACE increases the computational

cost, compared to an empirical potential, by roughly two orders of magnitude [117]. We note

that for quantum-chemistry applications different types of potentials, then those described

here are used [93, 118]. For an overview of available potential flavours we refer the reader to

Tab. 3.1.

3.3 Hybrid methods

Hybrid methods exploit, that in a system with a crystal defect, only a small region is

of interest. Only within this region, “high accuracy” of electronic structure methods is

necessary, while the bulk-like surroundings might be treated with a computationally cheaper

methodology. Hence, such hybrid approaches are inherently not as universal as electronic

structure methods, as they assume a bulk-like material around the defect. However, they

can greatly improve computational efficiency compared to using electronic structure methods

solely.

3.3.1 Lattice Green’s functions

A very elegant and computationally efficient approach is to couple the QM region with the

bulk via lattice Green’s functions (LGFs), developed by Sinclair et al. [133]. Woodward and

Rao [134] were able to study the long-ranged strain field of dislocations [135]. Therefore, the

surrounding region is coupled via LGF

u(R⃗
′
) = −

∑︂

R⃗
′

GL(R⃗, R⃗
′
)f(R⃗

′
) . (3.14)

GL, the lattice Green function provides an approximation to the displacements u near a defect

due the forces f in the harmonic limit [136]. The forces on an atom can be expressed in turn

via the force constant matrix D(R⃗, R⃗
′
). In other words, GL denotes the lattice’s response to

the forces around the defect. Such a coupling allows very accurate coupling by eliminating

the mismatch between QM and classical molecular mechanical (MM) potentials. There, are

a few reasons why the method is limited to selected applications (mostly dislocations).

Firstly, while LGFs for points are known for a long time in a closed form [137, 138], one has

to note that the response is different for each crystal structure. Although Ghazisaeidi and

Trinkle [139] proposed an approach for general Bravais lattices, it remained unsuitable for

multi-atom-basis geometries. Yasi and Trinkle [140] came up with a method to compute the

LGF for bulk cells with multiple atoms in the unit cell. Note, that all of these developments

refer to a point (line) defect in a bulk crystal, which immediately shows up the next short-

coming in terms of applicability. QM/LGF coupling becomes a highly non-trivial task once
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3.3 Hybrid methods

a planar defect (grain-boundary, interface) crosses the QM domain. Ghazisaeidi and Trinkle

[141] proposed a method how to compute LGF for planar defects, however to the best of our

knowledge, the method has never been applied to a real use case. Furthermore, all the afore-

mentioned developments, came from a single group (Trinkle at Illinois), consequently only a

very limited set of tools are available to implement such QM/LGF coupling with a boundary

inside the QM region. Finally, the main setback of the QM/LGF coupling is that there is

no universal approach. Consequently, a change in the bulk material or defect type (e.g.

interface, vacancy, or dislocation) would implicitly lead to methodological changes. Lastly,

with real material becoming chemically more complex, it will be hard — if not impossible

— to couple a disordered QM region (discrete picture), with an LGF for a disordered bulk

(continuous picture).

3.3.2 Constrained DFT

Another, elegant way of coupling a QM region to a bulk MM region is by introducing

boundary conditions. The charge density at a sufficient distance from a defect is again

similar to those found in the bulk region. Such a coupling proposed by Zhang, Lu, and

Curtin [142], works by partitioning the total system into three, a core (I), buffer (II) and

a bulk-like region (III), according to Fig. 3.1. Regions I and II are placed into a vacuum,

which will introduce forces, due to undulations in electrostatic potential (see Fig. 3.1d)

Figure 3.1: System decomposition into core (I, blue), buffer (II, red) and bulk-like region
(III, green) [142]. The lower panel shows the compensation potential from Eq. (3.15).
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3.3 Hybrid methods

Hence, the main concept is to drive the charge density n(r⃗) towards a bulk-like density, to

eliminate the artificial forces. Practically, this is achieved by introducing a penalty term

to the KS-Hamiltonian, and introducing an external potential in an overlap (=constrained)

region ΩC between II and III (dashed lines in Fig. 3.1c). The external potential, driving the

charge density to be a bulk-like reads

ṽλc (r⃗) = λ

∫︂

Ω

nQM(r⃗′) − ntarget(r⃗
′)

|r⃗ − r⃗′| dr⃗′ (3.15)

The constraint potential ṽλc constraint is a penalty term associated with the total electrostatic

potential generated by any differences between the target and actual electron densities [142].

λ is the weight of the penalty term. Consequently, introducing such a potential requires a

modification of the KS-Hamiltonian, such that Eq. (2.16) becomes

{︃
−∇2

2
+ veff+

vλc⏟⏞⏞⏟
wṽλc

}︃
ϕλ
i (r⃗) = ελi ϕ

λ
i (r⃗) . (3.16)

w(r⃗) is a cutoff function, to spatially confine within Ωc and thus to make the coupling

numerically stable. Note, that in addition to the constraint potential Eq. (3.16), λ was

introduced as a parameter. The solution is then found for λ → ∞ [143], which refers to

perfect coupling. Therefore, the only source of methodological error is introduced from λ

not being infinity. Hence, the “error”, arising from a finite λ can be measured using

C(λ) =
1

2λ

∫︂

Ωc

(nQM(r⃗) − ntarget(r⃗)) v
λ
c (r⃗)dr⃗ . (3.17)

Consequently, there is a single knob to turn to improve coupling. In practice, the λ parameter

space is sampled with a few numbers, and the solution λ → ∞ is extrapolated. While

coupling QM and MM on a charge density level, is without a doubt extremely elegant, the

approach does not come without shortcomings.

Firstly, keeping the QM buffer regions, and, consequently, system sizes small, is traded

against the sampling of the penalty parameter λ. Thus at least a few SC-loops are needed to

get a converged KS-DFT. For calculations, where ionic relaxations take place, the sampling

becomes a major bottleneck. Unfortunately, this is often the case for defects. Secondly,

the construction of the bulk-like charge-density ntarget, which is an elaborated process, and

requires again a DFT calculation in advance. Zhang, Lu, and Curtin [142], broke the total

density apart into atomic contributions and parameterized the atomic charge densities using

Gaussian-type orbitals. Thirdly, modifying a KS-Hamiltonian requires also changing the

underlying code, which is a nontrivial task. Lastly, also the convergence of the constrained

charge density as a function of λ varies from system to system and needs investigation.
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Chapter 4

QM/MM for metals

The main challenge in studying crystal defects is that many (hundreds) of atoms are needed

to model them, while still, a very accurate description is necessary. The reasons for large

models are manifold. Some defects, such as dislocations exhibit long-ranged stress fields.

Consequently, the dislocation core needs to be padded with matrix material resulting in

large simulation cells. Another reason is that in practice many implementations of DFT

utilize periodic boundary conditions to solve Eq. (2.16) efficiently. Thus structural motifs

for low-symmetry (planar) defects require to incorporate hundreds of atoms. The grains

in Fig. 4.1 are separated by a highly symmetric boundary, which allows to create small

atomistic models. This is however, not the case for grain boundaries in general. However,

a closer look at the underlying atomistic models reveals that the majority of the atoms are

constituents of a matrix region, marked red in Fig. 4.1 in which the defect is embedded.

Thus the simple idea of QM/MM is to treat the matrix-like regions (red in Fig. 4.1) by

classical approach (=MM), and the region of interest with modified chemistry (blue) using

solute to study region of interestbulk region

Figure 4.1: Atomistic model of a Σ5(210) grain boundary in fcc-Al with a solute atom. The
blue region represents the chemically interesting region.
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4.1 System decomposition/partitioning

an accurate quantum-mechanical treatment (=QM). Both methods are coupled by a property

that is accessible to QM and MM treatments. In most QM/MM schemes the regions are

coupled by the atomic forces. This makes QM/MM schemes a very universal tool since any

method capable of computing forces on atoms is a potential candidate for the QM region.

Similar arguments hold for the MM region. In practice, most of the schemes couple KS-

DFT with MD [1, 144, 145]. If not specified otherwise, in the following we will assume

exactly such coupling. Of course, such an approach also exhibits downsides. Firstly, some

system properties (e.g. electronic structure, pressure) are not accessible throughout the

whole system as they might not be defined or representative. Secondly, the method exhibits

a computational overhead in terms of additional atoms resulting in large(r) DFT cells which

needs to be taken into account.

The present section gives an introduction to the QM/MM scheme suggested by Huber et al.

[1]. Therefore, the notation and the order of presentation for Secstions 4.1 and 4.2 are

taken from Ref. [1]. We then continue with a short section presenting some technical details

of our implementation. The next section suggests a method on how volume relaxations

might be incorporated into the QM/MM scheme if the system can be modeled with reduced

dimensions as presented in Sec. 4.5.1.

4.1 System decomposition/partitioning

Consider a large system — similar to Fig. 4.1 — with a small region of interest (I, blue)

surrounded by matrix material (II, red). In the following, we will refer to Region I as

“QM” and Region II as “MM” region. Moreover, following the notation of [1], superscripts

denote the description of the method the region is treated with. As already suggested in the

1990s [146, 147], the total energy for such a system can be written as

EI+II = EQM
I + EMM

II + Eint (4.1)

where Eint is the interaction energy between the systems. If Eint is known exactly, the

decomposition would be ideal (Fig. 4.3a). Upon partitioning a system into a QM and a MM

region, the applicability of a scheme strongly depends on how accurately the interactions

between the systems, Eint, are described. In molecular systems, due to covalent bonding, the

electrons are confined within those bonds. Thus, the QM part is “cut” out from the whole

system upon partitioning, and the broken bonds are saturated with so-called “link” atoms.

In organic chemistry, well-established and mature QM/MM schemes such as ONOIM [148–

150] are available. However, cutting the QM region out of a metal bulk will create vacuum

surfaces, which themselves introduce large perturbations of the charge density. Moreover,

40



4.1 System decomposition/partitioning

Fig. 4.2 reveals that those are long-ranged, thus leading to incorrect forces also far away

from the surface, which in turn makes the force-based coupling more difficult.

2 4 6 8

Al (111)
-1.5

0.0

1.5

0 5 10 15 20
z (Å)

Δ
ρ(

z)
/ρ

o 
(%

)

Figure 4.2: Friedel oscillations on Al (111) surface. The bottom axes are the distance from
the surface and the top axis is the index of the atomic layers [151].

In practice Eint has to be approximated. Following the work of Choly et al. [144] and [1] we

employ a classical approximation.

Eint ≈ EMM
int = EMM

I+II + EMM
I − EMM

II (4.2)

Note that, it is hypothetically possible to compute Eint using QM methods, the additional

computational demand would outweigh the gain in accuracy by far [152]. Hence, a classical

approximation was found to be a good compromise between accuracy and computational

cost [144]. Now, substituting Eq. 4.2 into Eq. 4.1 leaves us with an expression for the total

QM/MM energy

EI+II ≈ E
QM/MM
I+II = EMM

I+II − EQM
I − EMM

I . (4.3)

This scheme was first presented by Choly et al. [144]. They cut region I from the bulk

material, and impose 3D-periodic boundary conditions on the QM cell. Moreover, they

employed OF-DFT in the QM region to investigate the core of a screw dislocation. As the

dislocation core is embedded in pure bulk, there are no discontinuities at the edges of the

QM cell, which is specific to the dislocation model. Consequently, Choly’s scheme cannot be

straightforwardly applied to grain boundaries. Liu et al. [153] refined Choly’s approach and

suggested to subdivide region I into a “core” and “buffer” zone (Fig. 4.3b). For the core

region, the corresponding energies of the MM representations EMM
I+II−EMM

I cancel each other

such that only EQM
I is left. The positions of the buffer atoms are determined by the MM

forces. Consequently, they do not suffer from the vacuum surface and protect the core atoms

from begin exposed to the artificial interface [153]. To obtain accurate energies for the total

system, again the QM and MM energy contributions of the buffer-vacuum surface need to

cancel. However, as a consequence of Eq. (4.2), this cancellation is rather poor. Nevertheless,
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4.2 Ionic relaxation

upon comparing the energy differences between two systems (e.g. formation energies), also

this cancels unless the two systems yield very different buffer-vacuum interfaces. However,

this is not expected, at least not for practical applications.

Figure 4.3: Schematic of the system partitioning into (a) ideal decomposition, (b) approx-
imating classically and subdividing region I into core and buffer zones [153], and (c) the
method proposed by Huber et al. [1], with filler region shown in gray.

4.2 Ionic relaxation

While the Eqs. (4.1)–(4.3) allow to carry out single point calculations, bear in mind that

applying hybrid methods in metallic systems was mostly driven to capture long-range, e.g.

elastic effects. Hence, it is desirable to relax the coupled system’s ionic positions. Therefore,

one needs to compute the forces on the ions for both regions, I and II. For the core region,

we obtain contributions from all three energy terms of Eq. (4.3), hence the forces on the ions

read

F
QM/MM
I+II (Rcore

I ) = −∇Rcore
I
E

QM/MM
I+II = FQM

I (Rcore
I ) + FMM

I+II(R
core
I ) − FMM

I (Rcore
I )⏞ ⏟⏟ ⏞

≈0

. (4.4)

In the core region we want to have QM forces only, it turns out that the latter two terms

cancel out nearly perfectly. Note, that if the buffer size is larger than the MM potential’s

cutoff radius, both terms equate exactly to zero [1]. Furthermore, to close the cutoff, the
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4.3 Filler-filler interface

MM potential must go to zero, thus this term is small anyhow. Nevertheless, to make sure

that region I is exclusively described by QM, a correction force Fcorr
Icore

= −FMM
I+II(R

core
I ) +

FMM
I (Rcore

I ), such that Eq. (4.4) reads

F
QM/MM
I+II (Rcore

I ) = FQM
I (Rcore

I ) . (4.5)

Similarly to Eq. (4.4) for the core region, we obtain all three contributions also for the buffer

region:

F
QM/MM
I+II (Rbuffer

I ) = −∇Rbuffer
I

E
QM/MM
I+II = FQM

I (Rbuffer
I )+FMM

I+II(R
buffer
I )−FMM

I (Rbuffer
I ) . (4.6)

There is however, a substantial difference compared to Eq. (4.6), namely that FQM
I (Rbuffer

I )

and FMM
I (Rbuffer

I ) are strongly influenced by the artificial vacuum surface introduced due to

the decomposition. Those forces are not sensible from a physical point of view, and similarly

to the energies there is no reason to expect that they cancel out. Thus, as suggested by

Liu et al. [153], a reasonable correction is to take the forces from the MM descriptions

of the system. Hence, similarly as before, by introducing a correction force that reads

Fcorr
Ibuffer

= −FQM
I (Rbuffer

I ) + FMM
I (Rbuffer

I ), Eq. (4.6) will simplify to the MM forces of the

whole system and hence become

F
QM/MM
I+II (Rbuffer

I ) = FMM
I+II(R

buffer
I ) . (4.7)

Finally, for Region II there is only the MM description available such that the forces there

are taken from the MM calculation of the whole system

F
QM/MM
I+II (RII) = FMM

I+II(RII) (4.8)

4.3 Filler-filler interface

Huber et al. [1] addressed the influence of the artificial vacuum surface on FQM
I (Rbuffer

I ) and

FMM
I (Rbuffer

I ). Thus, as shown in Fig. 4.3c, they suggest substituting the vacuum surface, by

a metal-metal interface. Atoms making up this interface are called “filler” atoms and are

kept fixed during an ionic relaxation process. By imposing PBCs, the filler -filler interface

electronically is much less perturbative compared to the vacuum surface, however, comes

at the cost of additional atoms in the QM region. One may take the view, that the filler

atoms lead very quickly to bulk-like charge density in the buffer zone. Consequently, Huber’s
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4.4 Implementation

filler atoms work similarly as the coupling to a bulk-like charge density via-constrained DFT

(Sec. 3.3.2) proposed by Zhang, Lu, and Curtin [142].

By keeping the filler -filler interface static throughout most of the calculations, those energy

contributions will largely cancel upon taking the difference. The drawback of keeping the

filler atoms fixed is, that since the buffer atoms are allowed to relax, also a buffer-filler

interface is introduced. Those contributions do not necessarily cancel as those from the filler -

filer interface do. Nevertheless, by increasing the buffer thickness the buffer atoms bordering

the filler zone will exhibit smaller displacements. In other words, the methodological error

introduced by the buffer -filler interface can be tackled with larger buffer zones. Nevertheless,

note that this (probably) incomplete canceling is a concern also for schemes using a vacuum

surface.

Huber’s QM/MM scheme is similar to the QM/LGF coupling suggested earlier by Woodward

and Rao [134]. If instead of the filler atoms, the buffer zone was to extend to the edge of

the periodic domain, one would reproduce Woodward’s method. However, the QM and MM

contributions of the buffer -filler interface cancel better than for a buffer -buffer interface.

Despite reported successful applications of Woodward’s approach [135, 154–156], note that

all applications require accurate forces and geometries only. In this point the filler augmented

QM/MM scheme excels as it additionally to forces allows to compute also accurate energies

of a system [1], e.g. segregation energies [157].

The errors of a QM/MM scheme with fictious filler atoms are comparable to the constrained

DFT approach. The QM/MM scheme is however, preferable from a practical point of view.

We have summarized arguments for this decision in Sec. 3.3.2.

4.4 Implementation

4.4.1 Basic infrastructure and algorithm representation

Since the QM/MM workflow requires coupling to different simulation codes to interact, in

addition to structural partitioning, ionic relaxation, etc. it is desirable, to code such a

workflow at a high level of abstraction. We note, that common workflows — assuming they

are simple enough — can be encoded as a directed graph. A directed graph representation

of a general workflow consists only of two types of nodes. Command nodes, shown in blue

in Fig. 4.4, and branching nodes for a flow control. Each of the command nodes can be seen

as a function taking several input values (possibly generated by a different command node)

and producing several output values itself. Hence, in addition to the black lines (Fig. 4.4)

denoting the execution flow, a “data-flow” exists in parallel. In practice the visualization of

such yields extensive diagrams which is the reason why we omit them here.
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4.4 Implementation

Start

Command 1

1

Branch
Command 2

Command 3End

yes

n
o

Figure 4.4: A directed graph, to represent a general workflow. The execution flow is de-
noted by the arrows. Blue rounded rectangles are operations, and yellow diamonds refer to
branching blocks

Deferred execution of data flow We quickly want to focus on a the practical challenge

encountered during encoding such directed graphs in a computer language. Consider the

simple example of computing 2x2. Therefore, we link two command nodes, namely “square”

having one (named ”x”), and “mul”, having two number(s) (”a” and ”b”) input values and

one output value. Figure 4.5 shows how a corresponding directed graph might look like.

Therefore consider the following listing to set up the data flow (blue arrows) in for the

workflow shown in Fig. 4.5:

def setup_data_flow(g: Graph) -> NoReturn:

g.square.input.x = g.input

g.mul.input.a = g.power.output

g.mul.input.b = 2

g.result = g.mul.output

Listing 1: Setup of the dataflow for simple directed graph

Especially focus on the last line. Any computer program (independent of language) will

execute the right-hand side and try to evaluate the corresponding value, which results in

constant values being set upon the graph construction. Consequently, the correct behavior

would be that g.power.output is evaluated at each time the command node is encountered

during the execution. We have solved the problem by allowing “Pointer” to be set as values,

which themselves represent a recipe on how to obtain the proper input value from another

node. If such a pointer is encountered it is in-directed at run-time and the corresponding

value is loaded. This is an elegant way to delay the execution with only minor changes to
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4.4 Implementation

Start

square

mul

g: Graph

End

g.square.input.x

g.square.output

g.mul.input.a

g.mul.output

g.result

g.mul.
input.

b

g.input

2

Figure 4.5: A directed graph, to represent the 2x2 workflow. The execution flow is denoted
by the black arrows. Blue arrows represent the data flow. Each arrow corresponds to a input
or output value of a node. The descriptions at the arrows refer to Lst. 1.

the code and maintain expressiveness. Hence, the only modification such that the above

example works in our framework would be changing the last line from g.power.output to

Pointer(g).power.output.

We have implemented such a directed graph infrastructure as a sub-part in an open-source

package named pyiron contrib [158], which itself implements community additions to the

pyiron [159]. The present work focuses on the QM/MM workflow implementation, however,

note, that using this directed graph infrastructure also other simulation workflows such as

nudged-elastic-band method [160], general structural relaxation, finite-temperature-string

method [161] and thermodynamic integration have been implemented.

4.4.2 System partitioning

The system partitioning step is the most important step of the QM/MM setup as it will

strongly influence the quality of the results. However, there is no general way to construct

the core, buffer, and filler zones. Consequently, our implementation features two different

modes to decompose the system and set up the QM cell. The first one is to manually assign

the atoms (through their id) to the individual QM domains, and manually specify the box

size. The second, semi-automated approach was suggested by Huber et al. [1], where a
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4.4 Implementation

number of seed atoms (usually only a few around the defect) are chosen.
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Figure 4.6: Illustration of the semi-automatic QM cell construction in our implementation.
The schematic figure start from one seed atom, and adds two core and two buffer shells. The
numbers within the atoms denote the shell index. For example, 2 in a blue circle indicates
that these atoms belong to the second core shell.

Instead of manually assigning the atoms, the number of shells is specified for both core and

buffer regions. As a “shell” we refer to the set nearest neighboring atoms. Fig. 4.6 illustrates

such a schematic construction for two core and two buffer shells. After the construction of

core and buffer domain, the cluster is padded with a user-specified filler spacing (see lower

left figure in Fig. 4.6). This filler spacing might differ in different coordinate directions in

practice. Finally, our algorithm fills up the cell with filler atoms marked in green in Fig. 4.6.

Note, however, that even this semi-automated approach needs human intervention as atoms

might get too close and eventually require manual deletion, depending on the system. Fur-

thermore, this approach will not work, or at least not yield the most computationally efficient

cells, under all circumstances.

4.4.3 Structural minimizers

Most of the implementation efforts within this work were dedicated to providing calculation

framework, that allows coupled QM/MM relaxation. Therefore, we have implemented two

different minimizers. A simple gradient descent and a (limited memory) Broyden-Fletcher-

Goldfarb-Shanno (L) [162]-BFGS [163–166] algorithm. Internal tests revealed that the gradi-

ent descent algorithm led to more robust calculations at the cost of slower convergence. The

gradient descent implementation exhibits an adaptive weight feature, which itself was found
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Figure 4.7: Possible QM/MM decompositions and QM cells for a) a dislocation and b) a
stacking fault.

(again by internal tests) to slow down the convergence overall. If not mentioned otherwise,

results within this thesis were obtained using the gradient descent algorithm.

4.5 Properties across both systems

4.5.1 Volume relaxation in with reduced dimensions

As previously mentioned not all system quantities are available both to classical and elec-

tronic structure methods. Furthermore, due to the artificial coupling artifacts, e.g., filler

atoms due to PBCs, some properties such as, e.g., pressure in the QM cell have no physical

meaning. The consequence is that volume relaxation cannot be taken into account for the

QM region. Usually, the stress on a simulation box is defined in DFT codes as

σαβ =
1

V

∂2E

∂εα∂εβ
, (4.9)
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Figure 4.8: Execution diagram of the QM/MM scheme proposed by Huber et al. [1] for
an ionic relaxation calculation. Blue rectangles refer to execution blocks, whereas orange
denotes branching blocks

where the greek subscript letter denote the coordinate axes. While in a plane-wave expansion,

for instance, the components of σαβ can be calculated analytically for each term of the

Hamiltonian, the above equation does not apply to the MD approach. In the classical

simulation approaches, the pressure is computed via the virial theorem and reads

σαβ =
1

V

⎡
⎣

N∑︂

k

Mkv
k
αv

k
β⏞ ⏟⏟ ⏞

at 0K=0

+
N∑︂

k

Rk
αf

k
β

]︄
(4.10)

where Mk is the atomic mass, vkα the velocity of the kth atom into the α direction. Rk
α is the

α component of the kth atom position vector, and fk
β the β component of the corresponding

force vector.

Note that, all presented QM/MM schemes (presented above) are centered around calculating

accurate forces, which are then used to couple both methods. As the forces fk are accessible to
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both DFT and MD, we suggest that the virial stress (Eq. (4.10)) can be used to relax (a subset

of) the lattice parameters of the simulation cell. However, for point defects where the QM cell

is padded with filler atoms in all three dimensions (e.g. Fig 4.7a), the pressure of the system

has no meaning as the filler atoms are kept fixed artificially. Moreover, it would be hard to

model shearing of the core (and buffer) region as that leads to a deformation of the QM cell

and hence possibly to non-constant filler -filler interactions throughout a single calculation.

Nevertheless, consider a system that can be modeled with reduced dimensionality such as the

stacking-fault shown in Fig. 4.7b, where the core region is spanning the whole QM cell in two

dimensions and is padded with buffer and filler atoms only in the direction perpendicular

to the interface. In such scenario, the stress components σxx and σyy can be computed for

the QM cell, from the forces obtained from the QM methodology. Note, that Eq. (4.10) will

need an adaption since the QM forces for the buffer atoms at the buffer -filler interface have

again no physical meaning. To circumvent this we suggest a linear force-mixing in the buffer

region, such that Eq. (4.10) becomes

σαβ =
N∑︂

k∈{Rcore
I }

Rk
αf

k
β +

N∑︂

k∈{Rbuffer
I }

Rk
α

[︂
χfk,QM

β − (1 − χ)fk,MM
β

]︂
. (4.11)

Hence for the buffer atoms we mix the QM and MM forces such that at the core-buffer

interface we use QM and at the buffer -filler interface pure MM forces. Consequently, those

atoms (at the buffer -filler interface) exhibit a “bulk“-like force rather than artificial ones

induced by the filler atoms. Therefore, χ is a function of distance from the core region

having the value one at the core-buffer and zero at the buffer -filler interface. For Fig. 4.7b

with a buffer thickness of dbuff and d as the distance from the core region one obtains

χ = 1 − d

dbuff
(4.12)

Finally, we note that the presented approach is not implemented in the current version of

the QM/MM scheme, as it is only suitable for a subset of the problems.

4.5.2 Local atomic strain

Furthermore, it is possible to derive the virial strain also for an atom i, which at 0K is

computed from by a tensor product of the interatomic forces and the distance vectors to the

neighboring atoms within a sphere of volume Ω as [167]

σi
αβ =

1

2Ω

∑︂

j∈Ω
(Ri

α −Rj
α) ⊗ f ij

β . (4.13)
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Similary to Eq. (4.10) the greek subscripts correspond to the individual components. The

summation includes all neighbors within a volume Ω and is usually truncated using a cutoff

radius. To compute the local atomic strain throughout the whole QM/MM cell one must

recall that the β component of the pair force between atom i and the neighboring atom j, f ij
β

and is easily accessible in MM. For the QM we have to reconstruct this property manually.

Reconstruction of the pair-forces via charge density

In a DFT framework where the spatial distribution of all electrons n(r⃗) is known, the forces on

the ions are calculated using Hellman-Feynman theorem as the derivatives of the Hamiltonian

with respect to the ith nucleic coordinate component in a direction α

f i
α = −

⟨︄
Ψ

⃓⃓
⃓⃓
⃓
∂Ĥ

∂Ri
α

⃓⃓
⃓⃓
⃓Ψ
⟩︄
. (4.14)

Carrying out the differentiation for the many-body Hamiltonian one obtains [168]

f i
α = −Zi

N∑︂

j ̸=i

Zj
Ri

α −Ri
α

|R⃗j − R⃗i|3
+ Zi

∫︂
n(r⃗)(rα −Ri

α)

|r⃗ − R⃗i|3
dr⃗ . (4.15)

Note that in the above equation, the (first) electrostatic contribution excludes the self-

interaction using the j ̸= i condition. However, the latter (second) term accounts for

the electron-nuclei interaction with atoms “own” electrons. To resolve this part of self-

interaction, when reconstructing pair forces in a DFT calculation, it is desirable, to re-write

the total charge density as a sum of atomic contributions.

n(r⃗) =
N∑︂

i

ni(r⃗) (4.16)

Technically, such a decomposition is achieved by assigning spatial regions of the charge

density to individual atoms using charge partitioning schemes. By plugging Eq. (4.16) into

Eq. (4.15) and exchanging the sum and integral of the second term we can rewrite as

f i
α = −Zi

N∑︂

j ̸=i

Zj
Ri

α −Ri
α

|R⃗j − R⃗i|3
+ Zi

N∑︂

j ̸=i

∫︂
nj(r⃗)(rα −Ri

α)

|r⃗ − R⃗i|3
dr⃗ . (4.17)

Finally, we can decompose the sums and pull out just the contributions of the jth atom and

hence arrive at a definition of pair force which reads:

f ij
α = −ZiZj

Ri
α −Ri

α

|R⃗j − R⃗i|3
+ Zi

∫︂
nj(r⃗)(rα −Ri

α)

|r⃗ − R⃗i|3
dr⃗ . (4.18)

51



4.5 Properties across both systems

The definition, however, exhibits one major shortcoming, namely it is not invariant to the

permutation of the atoms. However, pair forces must be symmetric such that

f ij
α = −f ji

α (4.19)

exchanging indices only changes the sign. The definition in Eq. (4.18) however will satisfy

Eq. (4.19) only in the case that ni(r⃗) = nj(r⃗), which cannot be assumed. Therefore, propose

adapting Eq. (4.18) to

f ij
α = −ZiZj

[︄
Ri

α −Ri
α

|R⃗j − R⃗i|3
+

1

2Zj

∫︂
nj(r⃗)(rα −Ri

α)

|r⃗ − R⃗i|3
dr⃗ − 1

2Zi

∫︂
ni(r⃗)(rα −Rj

α)

|r⃗ − R⃗j|3
dr⃗

]︄
(4.20)

As f⃗
ij

and f⃗
ji

must add up to zero, the (first) electrostatic term of the nuclei in Eq. (4.20)

cancels by changing the indices as well as the latter two terms. Note that this was not the

case for Eq. (4.18). Furthermore, consider a conventional fcc Al cell, where all four atoms of

the cell have to be assigned the same charge density distribution, due to symmetry reasons,

the electron-nuclei interaction will also vanish. In other words, Eq. (4.20) measures the net

Coulomb force on the ions which arises from the deformation of the atomic charge density

contributions, due to the formation of the atomic bonds.

Implementation of pair-force reconstruction via charge density composition We

have implemented the above-presented formalism, to study the local atomic strain for a

TiN/AlN multilayer system. However, instead of Eq. (4.20) we used Eq. (4.18) to compute

the pair forces and symmetrized f ij˜ = 1
2

(︂
f⃗
ij

+ f⃗
ji
)︂

them manually afterwards. For the

charge density decomposition (Eq. (4.16)) we have tested Hirshfeld [169], Bader [170] and

Voronoi charge partitioning. For Hirshfeld charge partitioning, a custom implementation

was created, while for Bader- and Voronoi-partitioning we employed tools from the Henkel-

man group [171–173]. However, during applying the reconstruction a lot of technical issues

appeared, which in the end made the process impractical. Firstly, charge partitioning al-

gorithms are grid-based algorithms, thus n(r⃗) must be known on a sufficiently dense grid.

Besides convergence tests to estimate proper FFT grid sizes (for the employed plane-wave

code), dense-enough grids are impractical for a DFT-based geometry optimization (due to

a vast computational overhead). Hence, obtaining n(r⃗) at a dense grid is outsourced into a

separate DFT calculation. This is a major drawback as calculation results cannot be used

directly. In addition all the partitioning algorithms are intended to be used using the all-

electron charge density, which must be reconstructed manually if frozen-core approximation

(such as projector-augmented-wave [34] PAW) is used. Furthermore, for the employed wurz-

ite w-AlN and cubic c-TiN multilayer (w-AlN/c-TiN) model containing 288 atoms in total,
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Figure 4.9: Out of (interface) plane atomic stress component σ33 for each layer of a w-AlN/c-
TiN multilayer system. The atomic stress tensor was averaged over all atoms in one place.
Blue crosses refer to the nitrogen layer, while orange correspond to Ti and green to Al layers.

the partial charges ni(r⃗) must be known on the dense grid, resulting in vast amounts of data

(≈ 1 TB for the presented case).

Nevertheless, Fig. 4.9 shows the local atomic stress, for each layer in the w-AlN/c-TiN

multilayer. The forces to required to calculate the local atomic stress tenors were computed

according to Eq. (4.20), while a cutoff radius of rc = 12.5 Å(Ω = 3
4
r3cπ) was used in the

summation of Eq. (4.13).

The main message of Fig. 4.9 is that due to the stress peaks in the nitrogen layers (orange

circles), the multilayer is expected to fail in the w-AlN region. More precisely, the weakest

link is not the interface, but rather a region ≈ 10 − 15 Åaway from it in the AlN bulk

material. Interestingly, Koutná et al. [174], Löfler [175] recently showed using MD that such

multilayer systems fracture in w-AlN region, slightly away from the interface.

Although we have shown that the above proposed workflow to is able to reconstruct pair

forces, there are a few caveats that limit the applicability of the proposed approach. Firstly,

the DFT charge density needs to be partitioned into atomic contributions, which is a data

intensive task. Consequently, also when computing the pair forces one has to sum of the

atomic contributions, which is is again a data intensive task. Moreover, it might be necessary

to carry out a convergence test with respect to the FFT grid to ensure that the results are

converged. In summary, while the approach might be able to bring useful insight, the

practical applicability is difficult due to technical details.

Reconstruction of the pair-forces via atom-removal

Another, much simpler method, inspired by beam theory from classical mechanical engin-

eering was suggested by Cui and Chew [176]. To calculate local atomic stresses at a grain
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Figure 4.10: Removing an atom from a bulk system, will exert forces on all other atoms in
the system. This is a consequence of the atomic force being a variable charge density

boundary, they reconstructed the pair forces by removing an atom from the system. Fig-

ure 4.10 illustrates their method. After removing an atom from the system, a DFT cal-

culation is carried out with fixed atomic positions to find the forces on all other atoms.

Thus, when removing an atom i from the structure, one will obtain the forces for all atoms

j ̸= i. In other words, one (DFT) calculation is needed to compute one row (or column) of

the pair-force matrix f ij. While this approach circumvents all the technical difficulties as

it is inherently not a grid-based algorithm — compared to the previously presented one —

it comes at the cost that N single-point DFT calculations are needed to fill the pair-force

matrix fully.

While Cui tried to recover local atomic stresses at a copper grain boundary we have applied,

the method to recover pair forces in an amorphous WBC system. Thus, for the W120B45C135,

300 additional calculations were carried out to obtain f⃗
ij

as a proof-of-concept. Fig. 4.11

shows the norm of the reconstructed (pair) forces as a function of the neighbor distance.

By plotting the forces per pair-type as a function of distance, we recover the interaction

of the individual species with each other. Finally we note that it would be interesting to

compare the forces from Fig. 4.11, with the predictions of a ML-FF in order to validate the

presented approach.

During the course of this thesis, we did neither develop/implement the pair-force reconstruc-

tion via charge density (Sec. 4.5.2) nor atom removal (Sec. 4.5.2) beyond a proof-of-concept

studies (see Fig. 4.11). The main reason for not following the ideas is, that recently, machine-

learned force fields (see Sec. 3.2) became routinely available for the major codes, such as

VASP or LAMMPS (see Tab. 3.1). Upon training of these force fields, energies and forces

are correlated with ionic environments. Hence, these properties are broken up into a sum

of local contributions. Using such ML-FF allows us to extract the desired pair-forces f⃗
ij

more elegantly, and most importantly with only minimal computational overhead once the

ML-FF is trained.
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Figure 4.11: Norms of the recovered pair forces for an amorphous W120B45C135 cell (14.55×
14.55 × 14.55 Å). The force-norms are plotted against the neighbor distance, and grouped
by the bond type.

4.6 Caveats and practical guide to QM/MM for metals

The following section will deal with practical considerations when applying QM/MM to

metallic systems. Such include tips with respect to system choice, and parameter tuning as

well as a step-by-step guide to carry out production QM/MM calculations.

4.6.1 Strengths and weaknesses

It is inevitable to understand the strengths and weaknesses of a QM/MM approach compared

to a DFT, MD, or ML-FF treatment before, choosing a system to study. QM/MM is – as any

other hybrid approach – fundamentally limited where only a small part of the system (core

region) is of special interest, such as boundary planes or defects. Especially when systems
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are fundamentally inaccessible to a DFT treatment QM/MM turns out to be superior for

practical reasons. Hence, we will discuss only such use cases in the following if not specified

otherwise.

Chemical versatility

Compared to MD and ML-FF, DFT (or KS-DFT or QM) allows to investigate complex

chemistries within the core region leveraging its computational demands. In this regard,

MD is severely limited in terms of chemistry due to the potential available. Furthermore,

even if an interatomic potential existed, it is non-trivial to verify that it would model the

defect accurately if it was not fitted for such a specific purpose. The same argument holds

when comparing ML-FF approaches. Due to the data-driven approach, the local atomic

environments similar to those around the defect need to be amongst the training data to allow

for confident predictions. Hence, a benchmark is necessary to prove that defect geometries

and energies are predicted correctly. In contrast, we [177] and Huber et al. [157] have

extensively proven that a proper QM/MM scheme can reproduce DFT results extremely

accurately. Moreover, an ML-FF is usually fitted for a limited chemical compositional range,

hence to screen the periodic table a multitude of those is needed.

Efficiency

ML-FFs come at the cost of input data generation and fitting, where the cost of a QM/MM

calculation is usually comparable to one heavy single-point DFT calculation. That is because

the MM part is negligible in terms of computational demand compared to the MM region.

While an ML-FF, once it is fitted, is superior in terms of computational demand, to generate

sufficient input data for training a ML can still be a resource-intensive process. Neverthe-

less, when many structurally different defects are investigated, an ML based approach will

outperform QM/MM.

Transparency and simplicity

Compared to other methods, described in Chapter 3, which overcome the size limitation,

the presented QM/MM approach is transparent in a twofold manner. Firstly, all the ap-

proximations made are rather simple and do not require changes to DFT or MD formalism

and hence the underlying codes. Secondly, the coupling does not require computing of com-

plex properties but rather solely relies on forces. This leads to two major advantages, yet

not for the user. Although our QM/MM approach is not as general as the O(N)-DFT ap-

proach, it took two individuals almost a year to implement the underlying infrastructure

and the QM/MM scheme. In contrast, developing a modern DFT/MD package can take

whole research groups many years if not decades. The algorithmic simplicity, furthermore,
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allows one to easily prove the correctness of the implementation. This is manifested in our

implementation having not more than a few hundred lines of code.

Here, we note a nice property of our coupled approach, which we will illustrate with an

example. Suppose, the QM/MM approach predicts wrong formation energies for a solute

atom at a dislocation. There are only three points where things can go wrong. Firstly, the

DFT part does not converge. Such a problem is easy to track down, and, more importantly, to

fix. Secondly, the MD calculation exhibits problems. However, when choosing and rescaling

a proper potential this is very unlikely to happen. Thirdly, one or more of the coupling

parameters are not properly set. Again, such errors are easily tracked down by visually

inspecting the QM cell, or looking at the output of the coupled programs. Most importantly,

those problems are very easy to solve in practice.

Methodological overhead

Although the QM/MM approach can efficiently treat systems that are inaccessible to QM

methods, while maintaining their accuracy, this comes at a cost of a methodological over-

head. Those additional steps include potential rescaling and manual system partitioning.

Furthermore, convergence tests with respect to the coupling parameters (number of buffer

and core shells) and as well for the structure minimizer settings need to be carried out.

Most of these steps are moreover difficult to automate. This makes the approach intensive

from the human-resources rather than the computational point of view. Finally, we want to

point out that the setup to carry out QM/MM calculations is rather involved compared to

standard DFT or MD approaches.

Limitations of the matrix chemistry

This is a direct consequence of employing MD in the bulk region. Thus, there must be an

interatomic potential available to describe the matrix (MM) region far away from the defect.

There is, however, a second issue that needs to be addressed. The interatomic potential

should yield the same lattice parameters and if possible also the same elastic constants as

obtained from the employed QM method. Both constraints put severe limits on the matrix

composition. In Sec. 4.6.2 we explain how to overcome these limitations.

4.6.2 General workflow

System selection

Before starting with calculations, it is important to know the limitations and strengths of

the QM/MM approach (see Sec. 4.6.1). Therefore, a good example would be to model solute

instance solute segregation to a dislocation. A dislocation usually exhibits a long ranged
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elastic stress field, which can be accurately described using QM/MM [178]. To investigate

the core structure with purely periodic QM approaches [179, 180], depending on the type

of dislocation di- [181] or quadropole [182] arrangements are used such that the stress-fields

cancel each other. Furthermore, compared to the Greens function approach (see Sec. 3.3.1),

QM/MM can account for non-linear elastic displacements, and more importantly compute

total energies for the system, to compare different states. Generally, it is advisable to employ

QM/MM if a defect is structurally not accessible by DFT, yet an excellent description is

necessary.

Potential rescaling

The empirical potential of the MM region is required to yield similar lattice parameters as

the method used in the QM region (usually DFT). If it does not, the used potential needs to

be rescaled. This is a common step in QM/MM schemes [1, 153]. To rescale a potential is

technically easy for EAM or LJ potentials, but might be highly non-trivial for other potential

types. Especially if the matrix contains multiple phases, this has to be done with a great

care. We, therefore, demonstrated how to study a multi-phase system with QM/MM in

Ref. [177] and summarize it in Chapter 5. Huber et al. [1] reported extensively on how the

deviations of the lattice parameters and bulk-modulus between the empirical potential and

DFT affect the computed energies. A alternative option would be to train a simple ML-FF

for the matrix region, as shown by Grigorev et al. [178]. Such an approach circumvents

potential rescaling, and possible errors arising from a mismatch.

System partitioning

The automatic QM cell construction process in Fig. 4.6 works in practice for a lot of systems.

Nevertheless, among the few parameters to choose from are the following:

seed atoms The seed atoms are the starting point for every construction. Usually, only a

few are chosen. Seed atoms might be, for instance, be sites directly at a grain boundary

or those of a dislocation core.

core shells Starting from the seed atoms, determines how many shells are built around

the seed atoms. Note that seed and core atoms make up the QM region (I), where

only QM forces will be used. Its actual number depends on the crystal structure and

defect geometry. In general, more core shells lead to a larger QM region, however,

also increase the number of buffer atoms surrounding the core region. Nevertheless,

at least two core shells should be chosen for production calculations.

buffer shells The buffer atoms surround the core region. It is desirable to keep this num-

ber as small as possible, as they are an artifact from the coupling itself. For most
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applications, two at most three1 shells are sufficient. This is, furthermore, confirmed

by a convergence test carried out in Ref. [177].

filler width After the core + buffer cluster is constructed, a bounding box is drawn around

it. This box is filled up with filler atoms from the initial positions superstructure. The

filler width is a padding around the cluster. To make use of our scheme at least one

filler layer of atoms must be at each face of the simulation box. As those atoms

represent overhead, the number should be as small as possible on the other hand. A

good starting point would be values in the range from 2 − 3 Åto pad the cluster with

one layer of atoms. Note, that our algorithms allows to specify three different filler

widths, one for each spatial direction.

filler vacuum Finally, to avoid that filler atoms coming too close to each other due to

periodic boundaries a vacuum padding is added along all coordinate axes. A good

starting point for the filler vacuum padding is the nearest neighbor distance. For an

optimal choice a visual inspection of the cell is inevitable.

While we have given some practical advice above, we note that there is no general recipe

for how to choose the number of shells. Nevertheless, it is helpful to experiment with the

numbers above in combination with a visualization of the resulting QM cell. This can be done

effortlessly, when using our implementation through Jupyter Notebooks. Those decisions will

greatly affect the computational demand of the study, hence this critical step is best carried

out by humans to find a tradeoff between accuracy and computational demand. Upon

choosing the filler width and filler vacuum, experimenting with the values is very helpful. To

complement this trial and error procedure and to avoid atoms coming too close, observing

the pair-distance histogram turned out to be very helpful (see Chapter 6).

1private communication with L. Huber

59





Chapter 5

Interfacial segregation to phase

boundaries in TiAl

Parts of this chapter were published within the article “Segregation to α2/γ interfaces in

TiAl alloys: a multiscale QM/MM study” [177]

5.1 Introduction

We have selected the TiAl intermetallic system for this case study. Our motivation is three-

fold. Firstly, the base TiAl system is simple enough (simple crystallographic structures,

non-magnetic, binary, stable,. . . ) to allow for testing new methodological implementa-

tions. Specifically, we apply the QM/MM approach to study segregation to Ti3Al/TiAl

α2(1000)/γ(111) phase boundary. Secondly, the TiAl-based alloys have been extensively

investigated (primarily experimentally), including numerous contributions from the Leoben

group [183, 184], thus guaranteeing sufficient data for validation of our predictions. Lastly,

the development of novel TiAl-based alloys is a very vivid research area, both from the fun-

damental as well as from the applied (industrial) point of view. Therefore, consistent and

complete datasets are necessary for the knowledge-based design of new systems.

To properly elucidate the behavior of solutes at a phase boundary, it is necessary to formulate

the segregation energetics for a two-component two-phase system carefully. We present such

an approach in Sec. 5.2.6. The majority of the available literature deals with segregation in

simple metals (e.g., Mg [185], Mo or W [186]).

The chapter is organized as follows: We first introduce structural models for the considered

boundaries and the QM/MM methodology. Next, we focus on important aspects of coupled

QM and MM calculations. Afterwards, we compare two different QM/MM setups by bench-

marking them against pure density functional theory (DFT) calculations. In the next section,
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we provide details for the discussion of the site preference and compare our results against

literature data. The largest portion of the results focuses on determining the segregation

and phase preference for selected 3d, 4d, and 5d transition metal solutes, and compares the

predictions with concentration profiles across phase boundaries determined using the atom

probe tomography.

5.2 Computational methods

5.2.1 Structural models

An advantage of the coherent phase boundary is that due to the periodic boundary condi-

tions, the simulation cells can be small in the x and y (in-plane) directions. Our cells are

aperiodic out-of-plane. As Kanani, Hartmaier, and Janisch [187, 188] pointed out, there is

no unique way to model α2/γ interfaces, since the constituting half-crystals may be rotated

against each other, thus making up different phase-boundaries, yielding different interface

energies. Based on their results we chose the energetically most favorable interface config-

urations [187, 188], which are depicted in Fig. 5.1.

(a) The α2(0001)/γ(111) inter-
face (the γ half-crystal is ro-
tated by 180◦).

γ[11̄0]

γ
[1

12̄
]

(b) The γ/γ interface “true-
twin-boundary” (TT),

Figure 5.1: Atomistic interface models for (a) the α2/γ phase-boundary and (b) the γ/γ
boundary. The orange and blue spheres represent Ti and Al atoms, respectively. The solid
border atoms refer to the α2 or γ-grain sitting above. The γ half-crystals are rotated by
60◦ with respect to each other. The dashed lines and dashed atom border correspond to the
lower grains.

Although the α2(0001)/γ(111) interface yields a near-to-hexagonal cell, we have used ortho-

gonalized cells. This is because the LAMMPS’s triclinic crystal symmetry setting cannot

handle hcp-like cells. Thereby, the number of atoms is doubled, which is particularly im-

portant for the QM region. Moreover, this reduces the relative solute concentration at the

interface, which is 1/16 = 6.25 at.%. Each QM/MM cell consists of 56 layers, where each
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of those consists of eight atoms (56 × 8 = 448). The cells (α2(0001)/γ(111)) contain 28

layers above and below the interface. The cell dimensions are 5.77 × 9.90 × 130.02 Å. The

cells are periodic along a, and b vectors and exhibit no periodicity along the c direction.

Similarly, we constructed α2 and γ-bulk cells to compute bulk formation energies, result-

ing in the same amount of atoms. We have chosen two QM/MM setups, which drastically

differ in their computational demand. In the first (demanding) one, the model sizes were

chosen such that the QM region results in similar (same number of atoms) models as used

in previous work [189]. In the truly dilute limit, the planar cell dimensions should be much

larger, however the above-mentioned in-plane dimensions make parts of the present study

comparable with previous work and hence allows for validation of the new implementation.

The computational cost of the demanding QM/MM setup is almost equal to the DFT. The

overhead introduced in terms of CPU time due to QM/MM is (within this study) compared

to the DFT setup on average less than one percent. The second setup is minimalistic and

reduces the computational effort for a single-point calculation by roughly one order of mag-

nitude. Finally, we repeat all calculations with DFT and benchmark both QM/MM setups

against pure DFT. We show that QM/MM is also applicable to systems that are chemically

more complex than simple metals.

5.2.2 QM calculations

All quantum-mechanical calculations were carried out in the framework of Density Func-

tional Theory (DFT) with the Vienna Ab-initio Simulation Package (VASP) [190, 191]. The

exchange and correlation functional was treated at a generalized gradient approximation

level parametrized by Perdew-Burke-Ernzerhof (PBE-GGA) [15, 17]. For the electronic self-

consistent cycle we set a convergence criterion of ∆ESCF = 10−4 eV/cell. The convergence

criterion for the ionic loop is discussed in Sec. 5.2.5. All calculations were carried out in

non-spin-polarized mode. The projector augmented wave (PAW) method [34, 192] was used

to describe the electron-ion interactions. The plane-wave cutoff energy was set to 350 eV.

For the k-mesh sampling of the Brillouin zone, a Monkhorst-Pack [193] scheme with 6×3×1

k-points was chosen. These settings were used for the QM region of the coupled QM/MM

calculations (Sec. 5.2.5). In DFT calculations carried out for benchmarking the QM/MM

setups, we allow all ions to relax.

5.2.3 MM calculations

MM calculations were performed with the LAMMPS simulator [194, 195] using an embedded-

atom-method (EAM) potential for the binary Al-Ti system parameterized by Zope and

Mishin [196]. To make it compatible with the QM calculations, it was spatially rescaled to

match the DFT computed lattice parameters of both γ-TiAl and α2-Ti3Al. This process is
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γ-TiAl α2-Ti3Al
a c a c

DFT [Å] 3.993 4.065 5.751 4.655
EAM [Å] 4.037 4.109 5.812 4.706
Deviation [%] +1.11 +1.08 +1.08 +1.08

Rescaled EAM [Å] 3.995 4.065 5.749 4.654
Deviation [%] +0.041 +0.011 −0.034 −0.025

Table 5.1: Ground state lattice parameters produced by the rescaled EAM potential com-
pared with DFT with settings described in Sec. 5.2.2.

described in the next section.

5.2.4 EAM potential rescaling

To obtain a force convergence during the coupled QM/MM relaxation, both methods (DFT

and MD) should yield the same lattice parameters for the same phases. This rescaling is an

important part of any QM/MM [153, 157, 178] scheme and has been extensively discussed

by Huber et al. [1]. Therefore we calculated the potential energy surfaces (PES) for the

unit cells of both phases, γ-TiAl (tetragonal) and α2-Ti3Al (hexagonal), as functions of the

lattice parameters a and c, Eγ
DFT(a, c) and Eα2

DFT(a, c). The DFT-optimized lattice paramet-

ers corresponding to the global minimum on these PES are displayed in Tab. 5.1. EAM

potentials are tabulated on an equidistant mesh of radial points and the spatial distance ∆r

of the table entries is given in the potential header. We, therefore, computed the ∆r value

which minimises the objective function

O(∆r) = (aγDFT − aγMM)2 + (aα2
DFT − aα2

MM)2 + (cγDFT − cγMM)2 + (cα2
DFT − cα2

MM)2 → min (5.1)

The equilibrium lattice parameters of the re-scaled EAM potential, as well as their deviations

from the DFT values, are shown in Tab. 5.1.

Table 5.1 shows that the rescaled EAM potential largely reduces the deviation between DFT

and MD. Therefore, the aforementioned ∆r was changed by ≈ −0.98%, such that the new

EAM potential minimizes Eq. (5.1). Huber et al. [1] intensively assessed the influence of the

lattice mismatch and number of buffer shells on the formation energies of solutes at a grain

boundary. They show that a mismatch in bulk moduli between DFT and rescaled EAM

potential does not lead to a substantial error [1, 157]. Hence, we focused the re-scaling solely

on matching the lattice parameters. Nevertheless, there remains a mismatch, which might

cause an error introduced by the presented methodology. We will show in Sec. 5.3.1 that
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Figure 5.2: Error estimation of the total QM/MM energy, ∆E
QM/MM
α2/γ

, (blue) and the max-

imum force norm on an atom in the core region of the QM cell, max(|FI
core|) (orange) for a

Pd decorated α2/γ interface as a function of buffer shells. The number of core shells was
set to two. The reference line (black dashes) corresponds to N shell

buffer = 6. The green bars
represent the relative computational cost.

those differences are small (|EDFT −EQM/MM| < 10 meV). Finally we note that throughout

the study we use only the rescaled EAM potential in the MM region.

5.2.5 The QM/MM coupling

In a hybrid QM/MM approach (cf. Chapter 4) the system is decomposed into two regions (I

and II). Region one (I) is treated accurately with QM and is furthermore the domain where

the solutes are placed. In the present study, we refer to those layers around the interface as

the core region. The remaining part of the cell is treated with MM and is usually denoted

as region II. In other words region I denote the QM and II the MM part. We have used

a QM/MM scheme as proposed by Huber et al. [1, 157], to perform DFT/MD coupled

relaxations. The algorithm was implemented in the pyiron contrib[158] project within the

pyiron framework [159]. The QM/MM workflow was implemented as a directed graph. For

its visualization, the reader is referred to the Sec. 4.4.1 (Fig. 4.8).

We have chosen two different QM/MM setups. For both setups, the filler region was chosen

to be a second α2(0001)/γ(111) interface. The reason is that a material-material interface in

contrast to a material-vacuum interface introduces only weak electronic perturbations, and

therefore leads to accurate forces in the core region [1]. The first, accurate, setup (denoted

with ↑) uses two atomic layers around the interface planes (the region of interest) for the core

region. Furthermore, to obtain accurate total QM/MM energies and forces in the core region,

we have chosen to construct six buffer -layers to shield the core region. The convergence of
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the total energy as a function of the number of buffer shells, for a Pd decorated α2/γ-interface

is shown in Fig. 5.2. The same number of core, buffer, and filler layers were chosen for both

γ and α2-bulk cells. Using this setup our QM region becomes similar to the cells used to

study this system with pure DFT [189]. This setup yields 192 atoms in the QM region.

The second, minimalistic setup, in the following marked with ↓, uses only one core, and

one buffer shell and results in only 64 atoms in the QM region. This setting lowers the

computational effort by roughly one order of magnitude.

All calculations are performed at constant volume obtained by optimizing the pristine cells

with the EAM potential. The ionic positions of the coupled QM/MM systems were relaxed

with a force convergence criterion ∆F ≤ 0.015 eV/Å. To find the equilibrium positions, we

used at most Nmax = 200 coupled steps with a gradient descent minimizer. The initial step

size of the minimizer was set to Γ0 = 0.075.

5.2.6 Evaluation methods

Site preference

To determine the preferred sublattice Θ, Al or Ti in our case, of a solute X in a bulk phase P,

we compare the formation energies of the solute of both sublattices. The formation energy

reads

Ef,X→Θ
P = EX→Θ

P − EP + µΘ
P − µX . (5.2)

where EX→Θ
P denotes the energy where X replaces a Θ atom. EP corresponds to the un-

decorated system. In bulk systems, µΘ
P corresponds to a range of values rather than a single

scalar. Taking the difference of Eq. (5.2) for Θ = Ti and Θ = Al, eliminates the dependence

of µX
P and yields

∆Ef,X
P = Ef,X→Al

P − Ef,X→Ti
P

= EX→Al
P − EP + µAl

P − µX −
[︁
EX→Ti

P − EP + µTi
P − µX

]︁

= EX→Al
P − EX→Ti

P + µAl
P − µTi

P⏞ ⏟⏟ ⏞
∆µP

.
(5.3)

which is solely a function of the difference of the chemical potentials ∆µP. Hence, negative

values of ∆Ef,X
P denote that X will prefer the Al sublattice. Consequently, the site preference

of defects in the bulk system depends on the chemical potential difference ∆µP, which is

related to the composition. The range allowed for ∆µP can be estimated by computing

the thermodynamic limits, upon imposing the co-existence conditions with the neighboring
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phases. If ∆Ef,X
P does not cross the zero line within the thermodynamically accessible range

of ∆µP, we regard the alloying element X to exhibit a “strong” site preference in phase P.

Otherwise, we call it a “weak” or “compositionally dependent”. The actual values for the

range of ∆µα2 and ∆µγ are given in the next section, while for the derivation we refer the

reader to Appendix .1.1.

Thermodynamic limits of the difference of chemical potentials

As ∆µP is bounded by thermodynamic limits we have calculated those using Eqs. (38)–(41).

For the stochiometric composition, ∆µ̃P an expression is obtained by requiring the formation

energies of the anti-site defects to be identical. Therefore we get

Ef,Ti→Al
P ≈ Ef,Al→Ti

P (5.4)

∆µ̃P ≡ (µTi
P − µAl

P ) ≈ EAl→Ti
P − ETi→Al

P

2
. (5.5)

The α2 phase (P = α2) is bordered by the α-Ti with ≈ 6 at.% Al [197] for low and the

γ-TiAl phase for high aluminum contents. Hence, we have computed the thermodynamic

limits as −2.89 eV = ∆µα/α2 ≥ ∆µα2 ≥ ∆µα2/γ = −3.55 eV. This is in good agreement

with Wei et al. [189] who obtained −3.52 eV for ∆µα2/γ. For the derivation of these limits,

the reader is referred to Appendix .1.1. For the difference at the stochiometric composition

we obtained ∆µ̃α2
= −3.30 eV.

For the γ-TiAl phase, which is bordered h-TiAl2 for high aluminum contents, we obtained

for the limits −3.55 eV = ∆µα2/γ ≥ ∆µγ ≥ ∆µγ/h = −3.96 eV and ∆µ̃γ = −3.71 eV for the

stochiometric composition. The derivation is given in Appendix .1.2.

Segregation and phase-preference energies

Unlike in bulk regions of the γ and α2 phases, where all Ti or Al sites are equivalent, breaking

the translation symmetry at the interface may lead to various Ti or Al sites becoming non-

equivalent. At a phase-boundary B, on the atomistic level, each of the sublattices Θ may

split into i symmetry non-equivalent sites Θi. For each of those sites and for a solute X

occupying this site, the energy of formation reads

Ef,X→Θi

B = EX→Θi
B − EB + µΘ

B − µX
B . (5.6)

Consequently, we refer to the minimum of those formation energies as the formation energy

for a specific sublattice Θ of a boundary B
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Ef,X→Θ
B = min

i
Ef,X→Θi

B . (5.7)

Indeed, at the α2/γ interface, a solute can be placed at two chemically distinct Ti sites on

the α2 side of the interface and at two different Al sites on the γ side. We distinguish those

by a subscript index. Hence, similarly to Eq. 5.3, using Eq. 5.7 one can define the difference

in the sublattice formation energies, to investigate site preference at the boundary.

Moreover, in the following, we distinguish between two scenarios. α2/γ refers to the solute X

decorating the α2 side and, similarly, α2/γ represents X sitting on the γ side of the interface.

To elucidate the mechanisms at the α2/γ interface we define three differences of formation

energies.

∆Ef
α2→α2/γ

= Ef,X→Θ
α2/γ

− Ef,X→Θ′

α2

= min
Θ,Θ′∈{Ti,Al}

(︂
EX→Θi

α2/γ
+ Eα2 + µΘ

)︂
−
(︂
EX→Θ′

α2
+ Eα2/γ + µΘ′

)︂ (5.8)

and similarly,

∆Ef
γ→α2/γ

= min
Θ,Θ′∈{Ti,Al}

Ef,X→Θ
α2/γ

− Ef,X→Θ′

γ (5.9)

∆Ef
γ→α2

= min
Θ,Θ′∈{Ti,Al}

Ef,X→Θ
α2

− Ef,X→Θ′

γ (5.10)

Note that in the case of Θ = Θ′ the chemical potential terms vanish, otherwise they equate

to ±∆µα2/γ. In contrast to the pure bulk-setting (Eq. (5.3)), the chemical potential µΘ in

Eqs. (5.8)–(5.10) becomes a scalar value. Due to the co-existence of the α2 and γ phase,

Gibbs’ phase rule yields one degree of freedom less. A negative value for Eqs. (5.8) and (5.9)

corresponds to segregation to the interface at the corresponding site. In contrast, values

for Eq. (5.10) represent a tendency for the solute X to partition into the α2-bulk phase.

Figure 5.3 illustrates a schematic physical interpretation of the energies defined above for

the α2/γ interface.

We note, that it is possible the come up with a single value for the segregation energy

by minimizing the energy difference over all boundaries and bulk states simultaneously.

Nevertheless, the presented approach helps to elucidate the behavior of the solutes at the

interface better, as it allows us to draw a qualitative spatial energy profile (see Fig. 5.3). As

this concept, however, introduces some additional complexity, we have visualized Fig. 5.3

for each solute separately (Fig. .15), where we used the γ-bulk as a reference state.
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Figure 5.3: Schematic illustration of the energy levels, and meaning of the defined energies
at the α2(0001)/γ(111) interface. The brown line represents the spatial energy profile. The
colored arrows correspond to the difference in formation energies. Eq. (5.9) – blue, Eq. (5.10)
– red and Eq. (5.8) – orange

5.2.7 Interface properties

Cleavage energy and critical interface strength

In order to quantify the impact of solutes on the mechanical properties of the interfaces, we

carried out cleavage calculations to estimate the cohesive energy and the critical interface

strength. Therefore, the solutes were placed at their preferred sites (Tab. 5.3) and the

simulation box is cleaved by inserting vacuum between the atomic layers which form the

interface. This method is also referred to in the literature as a rigid displacement method

[198] as no relaxations are allowed during separating the two half-crystals. For the α2/γ

interface, the calculations were carried out with the solute sitting on either side of the

interface. Twenty discrete separations (vacuum sizes) δ between 0.01 Å and 6 Å were used

to fit the universal binding energy relation [199]:

∆E(δ) = Ec

[︃
1 −

(︃
1 +

δ

lc

)︃
e−

δ
lc

]︃
, (5.11)

∆E(δ) expresses the increase of the total energy (per interface area unit) as a function of

the displacement (inserted vacuum thickness) δ. The fitting parameters Ec and lc are the

cleavage energy and the critical length (elongation at which all bonds simultaneously break).

σc =
d∆E(δ)

dδ

⃓⃓
⃓⃓
δ=lc

=
Ec

elc
(5.12)
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defines critical stress which is the maximum stress the system survives before cleaving. The

approach was used to discuss the interface strengths in transition-metal nitrides and carbides

[198, 200–203]. The raw data and the corresponding fits are available in the Appendix 7.3

(Fig. .13).

The cleavage energy is often related to the surface energy Esurf as Ec = 2Esurf. It is worth

noting that while no relaxations are allowed during the rigid displacement method, the

cleavage energy Ec is overestimated with respect to the corresponding surface energy Esurf.

Additionally, since structural relaxations were prevented, only the QM region (containing

the added vacuum and the alloying species X) and its corresponding energy ∆EQM(δ) were

considered for ∆E(δ).

Elasticity and fracture toughness

For estimating the fracture toughness we combine the results from Sec. 5.2.7 with the elasti-

city data using the following formula [204]:

KIC ≈
√︁

4γdC ≈
√︁

4EcCzzzz, (5.13)

where γd is the interfacial debonding energy, which we approximate with the cleavage energy

Ec. C refers to the directional Young’s modulus of the system, normal to the cleavage

plane. Eq. (5.13) was previously successfully used for estimating fracture toughness of thin-

film systems [205], including superlattices [206, 207]. The α2/γ lamellar colonies, which

are an important microstructural feature of advanced Ti-Al alloys, can be seen as a pack

of alternating α2 and γ Ti-Al thin layers. In the present work, C is approximated by the

interface stiffness Czzzz, calculated using the energy–strain method. The simulations cell is

deformed with uniaxial strain in the interface normal direction. We used six discrete loading

steps until a maximum deformation of 4 %. Importantly, the whole strain was localised

only at the interfacial bond in order to get an interface-relevant material descriptor. The

interface stiffness is determined from a quadratic fit of the total energy as function of the

strain, U(εzz):

Czzzz =
∂2U

∂ε2zz

⃓⃓
⃓⃓
εzz=0

. (5.14)

The fits for the individual solutes are shown separately in the Appendix 7.3 (Fig. .14).

5.3 Results

5.3.1 Benchmark QM/MM against DFT and literature

For 22 alloying elements we have computed the differences in the formation energies for the

different sublattices (Eq. (5.3)) with DFT and compared it with our two QM/MM setups.
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Figure 5.4: Error in QM/MM computed formation energies (Eq. (5.3)) of different solutes
in the γ-TiAl and α2-Ti3Al bulk, with respect to the full DFT reference. Squares represent
the computationally more demanding QM/MM ↑ and diamonds the minimalistic ↓ setup.
Orange points refer to the α2 and blue points to the γ phase. The green ribbon represents
the target confidence interval of ±10 meV region around the DFT reference.

Figure 5.4 shows the energy differences between the DFT and the QM/MM values for both

setups. The green ribbon represents ±10 meV and encloses all values of the computationally

demanding (↑ = squares) QM/MM setup. Thus it proves, that the difference between DFT

and QM/MM is vanishing for computationally demanding settings.

For the minimalistic QM/MM setup (↓), the differences are much larger, up to ≈ 80 meV for

Pt. The deviations are larger in the α2 phase than in the γ-bulk phase. The difference tends

to increase for later transition metals. This can be understood in terms of strain energy

errors, which are introduced by the QM/MM methodology in two ways: firstly, relaxations

are only accounted for in the positional (and not cell) degrees of freedom, and, secondly,

since the filler atoms are held fixed, large segregants may induce filler-buffer strain that

does not cancel out in other components of the segregation energy calculation. The latter is

of particular concern when the number of core shells is small. Nevertheless, usually ∆Ef
P is

in the range of 1eV, and consequently, even this setup produces very reasonable estimates,

as we show later.

Figure 5.5 compares the values computed by Eq. 5.3 for the α2 (upper panel) and γ-bulk

phase (lower panel), for three different setups (DFT, QM/MM ↑ and ↓) to literature data.

It confirms, in addition to Fig. 5.4, that the presented QM/MM method is able to reproduce

DFT extremely accurately. Notably, even for minimalistic QM/MM settings (↓), our im-

plementation manages to reproduce DFT values well. Although the differences might seem

large in Fig. 5.4 at a first glance, they are small compared to the spread found throughout

the presented literature data (see Tab. 5.2).
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Figure 5.5: Difference of the defect formation energy between the Ti and Al sublattice
(Eq. (5.3)) for the α2-Ti3Al and the γ-TiAl bulk phases. The shaded regions represent the
range of allowed values. The construction and meaning of the thermodynamic limits are
defined in Sec. 5.2.6. Points, representing literature data, exhibit a small black border.

Figure 5.5 reveals excellent agreement with the study of Wei et al. [189] for both α2 and γ

bulk phases. Comparing our data with Holec et al. [208] reveals a good agreement, yet a

slight underestimation of ∆Ef
α2

and overestimation of ∆Ef
γ . Furthermore, upon comparison

with Benedek et al. [209], Fig. 5.5 reveals no systematic trend. Finally, the largest differences

are observed, when comparing the present study with Ouadah, Merad, and Abdelkader [210].

Interestingly, for the α2 phase, there is a good agreement for Si and Cr, while for Cu, Nb,

Mo, and Re the differences are more than 100%. (∆Ef
α2

= 0.74 eV compared to 1.58 eV for

Re). A more detailed and quantitative analysis is presented in Tab. 5.2.

5.3.2 Site preference

We calculated the site preference energies for a wide range of solutes for the α2- and γ-bulk

phases as well as for the α2/γ and γ/γ interfaces. For the α2/γ interface we also have

differentiated between the site preference energy at each side of the interface, α2/γ and α2/γ

respectively. For the bulk phases, the ∆Ef
P is a function of ∆µP, which allows drawing a
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Table 5.2: Average, standard and maximum deviation of the ∆Ef
α2

and ∆Ef
γ compared to

literature data, shown in Fig. 5.5. All values are in eV. The first column corresponds to the
brown circles, the second to the red crosses, the third to the green square, and the fourth
column to the purple pentagons in Fig. 5.5. The last column corresponds to data points
denoted by the black diamonds.

|∆Ef,lit.
P − ∆Ef

P| Wei [189] Holec [208] Benedek [209] Ouadah [210] QM/MM ↓

P = α2

average 0.092 0.138 0.127 0.436 0.042
std 0.048 0.038 0.058 0.323 0.027
max 0.161 0.178 0.239 0.847 0.080

P = γ
average 0.099 0.205 0.160 0.403 0.016
std 0.045 0.085 0.128 0.111 0.011
max 0.151 0.314 0.533 0.547 0.037

point-defect phase diagram for each of the solutes. For these diagrams we refer the reader to

the Appendix .1 (Fig. .11 shows the diagrams for the α2 and Fig. .12 for the γ phase). For

the interface structure, this degree of freedom is lost due to the requirement of co-existing

α2 and γ phases. Therefore, in Fig. 5.6 ∆Ef is fully defined by a scalar value.

Table 5.3: Summary of the site preference of different solutes, according to Eq. (5.2). Bold
sublattice names indicate a strong site preference for the solute. When sublattice splitting
occurs due to the broken symmetry at the interface, the preferred sites are indicated with
subscript (see Sec. 5.3.2 for an explanation).

Al Si Sc Ti V Cr Mn Fe Co Ni Cu Y Zr Nb Mo Pd Ag Hf Ta Re Pt Au

α2 Al Al Ti Ti Ti Ti Ti Ti Ti Ti Al Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Al
γ Al Al Ti Ti Al Al Al Al Al Al Al Ti Ti Ti Al Al Al Ti Ti Al Al Al
α2/γ Al Al Ti1 Ti2 Ti2 Ti2 Ti2 Ti2 Ti2 Ti2 Ti2 Ti1 Ti1 Ti2 Ti2 Ti2 Ti2 Ti1 Ti2 Ti2 Al Al
α2/γ Al1 Al1 Ti Ti Al2 Al2 Al2 Al2 Al2 Al2 Al2 Ti Ti Ti Al2 Al2 Al2 Ti Ti Al2 Al2 Al2
γ/γ Al Al Ti Ti Ti Al Al Al Al Al Al Ti Ti Ti Al Al Al Ti Ti Al Al Al

Site preference at the α2(0001)/γ(111) interface

As mentioned in Sec. 5.3.2, there are two Ti sites at the α2 side of the interface. The different

sites are marked explicitly in Fig. 5.1. The first one (Ti1) exhibits five Al and seven Ti nearest

neighbors. The Ti2 site is surrounded by four Al and eight Ti atoms. Thus the Ti1 is slightly

Al-rich compared with the Ti2 site. The γ side of the interface also exhibits a splitting of

the Al sublattice into two symmetry in-equivalent sites. Al1 sites have nine Ti and three Al

neighbors (we refer to them as the Ti-rich sites), whereas Al2 sites are surrounded by four

Al and eight Ti atoms.

Focusing on the latter (γ) side, Tab. 5.3 reveals that Si and Al prefer the Ti-rich Al1 sites

while all other solutes with the Al sublattice preference occupy the Al2 sites. Table 5.3 and
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Figure 5.6: Formation energy differences between Ti and Al sublattices. Orange squares rep-
resent α2-bulk (Eq. (5.3)), crosses α2/γ boundary (Eq. (5.7)), blue squares γ-bulk (Eq. (5.3))
and crosses α2/γ boundary (Eq. (5.7)). All values are calculated at ∆µα2/γ (see Sec. 5.2.6).

Fig. 5.6 (blue ) show that most of the solutes considered here prefer the Al site, and only the

early 3d (Sc and Ti), 4d (Y and Zr) and (Hf and Ta) 5d elements prefer the Ti sublattice.

Absolute values of ∆Ef
α2

and ∆Ef
α2/γ

continuously decrease with increasing atomic number

throughout the periods for the α2 side of the interface (Fig. 5.6, orange diamonds). Our

calculations predict that almost all transition metals prefer the Ti sites. Moreover, the Ti

sublattice preference gets more pronounced with increasing period (3d < 4d < 5d). Except

for Sc, Zr, and Mn (preferring Ti1 sites), all elements prefer the Ti2 sites (Tab. 5.3).

The early transition metals (Sc, Ti, Y, Zr, and Hf) prefer the Ti sublattice independent of the

interface side. Except for V (γ side) and Cu and Pt (α2 side), all elements preserve their bulk

site preference, although the absolute values of the site energy at the interface decrease with

respect to their bulk states (see arrows in Fig. 5.6). Thus, solutes become more “indifferent”

about their preferred sublattice, most likely due to a less ordered chemical environment at

the interface. This is in good agreement with previous works as mentioned in Sec. 5.3.1.

Site preference at the γ/γ interface

It is noteworthy that the bulk-to-interface changes of the site energy at the γ/γ interface

(overlaying diamonds and squares in Fig. 5.7) are much smaller as compared with the α2/γ

interface (Fig. 5.5). We attribute this to the (chemically) coherent nature of the γ/γ interface.

Except for Y, the energy differences stay below an absolute value of ≈ 100 meV.

Due to the similarity between bulk and interface site preference, the trends are identical

with the γ bulk and also with the γ side of the α2/γ interface: early transition metals (Sc,

Ti, Y, Zr and Hf) strongly prefer Ti sublattice, Al, Si and late transition metals prefer the

Al sublattice.
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5.3.3 Solute segregation

For a more detailed visualization, we refer the reader to Fig. .15. Following the principle of

minimum energy, the following segregation behavior is predicted:

Segregation and phase-partitioning at the α2/γ phase-boundary

Partitioning into the γ bulk phase Sc prefers both the γ side of the interface and the γ

bulk over the α2 side of the interface and the α2 bulk phase. The positive values of Ef
γ→γ/α2

further indicate that the bulk state is preferred (although marginally in the case of Sc).

Partitioning into the α2 bulk phase 3d transition metals (Cr, Mn, Fe, Co, Ni), as well

as Mo, Pd, Ag, Ta, Au, Cu, and Re, prefer the α2 phase. All those solutes show substantial

positive (orange) Ef
α2→α2/γ

values, and thus prefer the α2 bulk state. Moreover, the elements

show a strong phase preference for the α2 bulk phase (Ef
γ→α2

< 0).

Elements segregating to the interface Y, V, Zr, and Nb exhibit the minimum energy

state at the γ side of the interface. Y, Zr and Nb exhibit similar Ef
γ→α2/γ

between −50

and −100 meV/at. Consequently, the preference for the interface (with respect to γ bulk) is

rather small. Interestingly, the phase preference (and hence the driving force for segregation

from the α2 phase) is largest for Y and almost disappears for Nb. In contrast to those

three elements, V shows a strong preference for the γ side of the interface state, although it

otherwise prefers the α2 bulk phase.

Si, Hf, and Pt are predicted to reside on the α2 side of the interface. In the case of Si, this

reflects the overall phase preference for the α2 phase, and within that a slight preference for

the interface position. Similar scenario applies also to Pt, whereby the preference for the
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interface is much stronger. Lastly, Hf exhibits a slight phase preference for the γ bulk phase,

as well as negative segregation energy from both phases to the interface with the α2 side

being the preferred one.

Comparison with experiments The amounts of alloying elements in experimentally

studied alloys refer to the overall compositions and often range values above a few at. %. In

multiphase systems, the alloying element is likely preferably present in one of the co-existing

phases, whereas other phases are depleted of this element. Consequently, the local composi-

tions may reach above 10 at. % or even more. Enrichment at the phase boundary in the order

1 at. % is therefore difficult to detect, since in the same spacial region happens the transition

from e.g. 10 at.% (phase containing the alloying element) to 0 at. % (phase depleted of the

element). In other words, a strong phase preference may hinder the experimental observation

of phase-boundary segregation (happening on top of the phase segregation). This needs to

be kept in mind when discussing the phase boundary segregation in multi-phase alloys, as it

is the case of studies where the alloying composition exhibits more than 0.5 at. % of Nb and

Cr in Ref. [211] and Mn and Cr for Ref. [212].

Using atom-probe-tomography (APT), Klein et al. [211] found Si to strongly partition into

the α2 bulk phase. Although our results suggest Si to segregate to the α2 side of the interface,

the energy gain at the interface itself is rather small, i.e. |Ef
γ→α2

| ≫ |Ef
α2→α2/γ

|. Moreover,

the segregation to the interface may be soon disadvantaged by a Si accumulation during the

initial phase of the partitioning process, which will later lead to a substantial amount of Si

in the α2 grain due to Ef
γ→α2

≪ 0. Mn and Cr [212] and Mo [211] were also experimentally

reported to partition into the α2 phase, fully in line with our predictions.

Gerstl, Kim, and Seidman [212, 213] reported on a partitioning of Zr and Nb to the γ bulk

phase. In our predictions, both of these elements would prefer to occupy sites at the γ side

of the interface. Using similar arguments as for Si above, we speculate that the segregation

tendency of the γ side of the interface will be saturated and at later stages, which presumably

correspond to the experimental conditions, Zr and Nb will occupy γ bulk site (which are

preferred over any site in the α2 phase). Especially for Y and Nb, the scales in Fig. .15 reveal

a small difference between the γ-bulk and α2/γ-state.

Finally, let us recall the APT measurement of Gerstl, Kim, and Seidman [212, 213] proving

that Hf favors the α2 side of the α2/γ interface, fully in line with our results.

As for most elements, the phase preference (Ef
γ→α2

) tends to overrule interface segregation,

we especially want to highlight Nb, Hf, Zr, and Sc (where |Ef
γ→α2

| is small) as promising

candidates for tailoring interface properties. Elements such as Mn, Fe, Co, Re, etc. will ex-

hibit a strong thermodynamic force to partition into one phase, which inhibits any potential

of using them for grain boundary-based micro-structure design. On the contrary, Nb, Hf,
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Figure 5.8: Segregation energies for the cases γ → γ/γ (green), α2 → α2/γ (orange) and γ →
α2/γ (blue). γ → α2-bulk Squares indicate a Ti-sublattice-preference, diamonds refer to a
preference for the Al sublattice. Stars indicate that the solute changes its preferred sublattice.
Filled and drawn symbols distinguish between strong and compositionally dependent site
preference. Half-filled points indicate segregation from “strong” → “weak” if filled on the
right side and vice versa in case the left side is filled. If a solute exhibits a box above the plot,
it experiences negative segregation energy, while the color intensity represents the strength
with respect to the strongest segregating element.

Zr, and Sc could be engineered to stay at the interface, since the phase preference may be

overruled by thermal contributions.

In conclusion, although the specimens underwent heat treatments and show complex alloy-

ing concepts in the experimental studies [211–213] our predictions show very good qualit-

ative predictive power. Some discrepancies may be related to the actual overall amount

of the alloying element—our calculations correspond to a dilute limit—, the overall alloy

constitution—we assume ideal compositions of the α2 and γ phases—and finite temperature

heat treatments.

Segregation to the γ/γ interface

Due to the coherent nature of the γ/γ interface, solutes feel only a small thermodynamic

force to segregate. This is a similar behaviour due to the almost identical site energies for

the γ/γ interface and γ bulk (Fig. 5.7) for nearly all solutes. As both sides of the interface

are chemically equivalent the segregation behaviour of the solute is solely defined E
γ→γ/γ
seg .

The absolute values of the segregation energy are expected to be smaller compared with the

α2/γ interface which is indeed confirmed by our calculations (Fig. 5.8, cf. the green points

to all other). Nonetheless, we predict a small segregation tendency for the 3d metals, as well
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as for Si, Mo and Re.

5.3.4 Interface properties

As with segregation properties presented in Fig. 5.8, the mechanical properties in Fig.

5.9 are only expected to be a qualitative guide, since approximations in the calculations

interfere with a direct, quantitative comparison with experiment. To describe the impact of

segregating elements, we will focus on the changes in mechanical properties with respect to

pristine interfaces (e.g., ∆σc) rather than on the absolute values (e.g., σc).

Cleavage energy, Ec The cleavage energy Ec = 3.64 J/m2 for the α2/γ interface is in

excellent agreement with previous study by Wei et al. [189] (Ec = 3.62 J/m2), wheres the

γ/γ interface yields a lower value of 3.47 J/m2. V, Cr, Nb, Mo, Ta and Re slightly increase

Ec value when placed on the α2 side of the interface, however, most of the remaining studied

species decrease Ec with respect to the pristine interface. Majority of elements lead to an

increase when placed on the γ side of the interface; the largest enhancement is predicted for

Re with over 5% increase. Interestingly, when solutes at the γ side of the α2/γ interface

exhibit a cleavage energy trend almost identical to that of the γ/γ interface. Y and Sc have

a detrimental effect on Ec for all interface positions.

Critical stress, σc The critical stress values σc = 22.4 GPa is predicted to be higher than

tensile strength obtained from tensile tests simulated using molecular dynamics (σ
α2/γ
C =

15.6 GPa Li et al. [214]). This is due to the localisation of strain in cleavage calculations. All

three configurations show very similar behaviour. Cu, Nb, Pd and Pt do not influence the

critical stress; Y, Sc and Zr are major detrimental dopants, similarly to the cleavage energy,

while Re yields an increase of ≈ 9%. Overall, 3d metals improve σc.

Interface stiffness, Czzzz Pristine γ/γ and α2/γ interfaces have interface stiffness of

214 GPa and 157 GPa, respectively, suggesting that the γ/γ interface is significantly stiffer.

Czzzz is mostly anti-correlated to the cleavage energy and critical stress. The 3d metals

(Cr, Mn, Fe, Co and Ni) reduce the absolute values, at both interfaces. On the other hand

Y, Zr, Hf and Ta increase Czzzz in considered configurations. The largest enhancement of

Czzzz (stiffening) is predicted for Mo at the α2/γ interface. In general, solutes have a more

detrimental effect on the γ/γ interface than on the α2/γ one; the largest deviation from

the pristine values is predicted for Fe (δC
γ/γ
zzzz(Fe) ≈ 14%); also, the impact of segregating

species seem generally larger than in the cases of cleavage energy and critical stress. Nb, Mo

and Ta are exceptions from the anti-correlation by simultaneously enhancing both cleavage

energy Ec and interface stiffness (∆Czzzz > 0) at the α2/γ interface. Finally, in contrast
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to the cleavage energy, we obtain similar values for solutes being on either side of the α2/γ

interface.

Fracture toughness KIC We combined cleavage energy, Ec, and interface stiffness, Czzzz,

according to Eq. (5.13) to obtain a prediction for KIC . Due to the significantly larger Czzzz

for the γ/γ interface as compared with the α2/γ interface, and comparable values for Ec,

more energy is needed to stretch the γ/γ than the α2/γ interface bonds, resulting in higher

fracture toughness values. Regarding the solute impact, since larger relative deviations are

obtained in the stiffness values, the trends for the fracture toughness are mostly governed

by stiffness trends.

Although 3d metals (Cr, Mn, Fe, Co) increase cleavage energy, they reduce the overall

fracture toughness of the γ/γ interface. Sc, Zr and Y show no influence at the α2/γ but a

drop at the γ/γ interface. Generally, all solutes except for Hf, Zr and Ta reduce fracture

toughness at the γ/γ interface. Regarding the α2/γ interface, elements that are not subject

to the anti-correlation between Ec and ∆Czzzz, namely Nb, Ta and Mo, result in the largest

enhancement of fracture toughness. It is worth mentioning also Re, which has a similar

impact as Ta, but the enhancement is fully governed by an increase in Ec, unlike the case of

Hf and Zr, where an increase in Czzzz overrules a slight decrease in Ec.
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Figure 5.9: Critical interface stress σC , interfacial cleavage energy EC , directional Young’s
modulus (normal to the interface-plane) Czzzz and estimated fracture-toughness of (α2/γ,
γ/γ) lammellar packet KIC . The orange curve denotes that the solute was placed on the
α2-side of the α2/γ interface, while the blue curve corresponds to the γ side of the interface.
The green curve shows the values for solutes at the γ/γ-TT interface. The elements are
sorted in ascending order by ∆Ef

α2/γ
(c.f. Fig. 5.6).
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Chapter 6

Models for configurational complex alloys

Many metals exhibit miscibility over the whole or at least partial composition range. This

property is crucial as it allows the creation of alloys with outstanding properties. In such

solid solutions, the lattice positions are randomly occupied with several atomic species. This

disorder, however, poses a challenge for first-principles modeling. As mentioned many times,

in this thesis before, the simulation boxes one can deal with are of finite size and most often

rather small (tens to hundreds of atoms). In their ground-breaking work, Wei et al. [215]

showed, how to arrange small (simulation) cells such that they mimic the properties of real

alloys well. Such structures are named special quasirandom structures (SQS). Furthermore,

they were the first to come up with an algorithm for finding such SQS [216].

The following chapter is structured as follows: Firstly, we give an introduction to quantifying

short-range order in crystalline solids. The notation of this part is borrowed from a publica-

tion [217]. In the second part, we describe how Warren-Cowley short-range order (WC-SRO)

parameters can be extended to describe triplet correlations. This work was partly carried

out together with Ulrich Pototschnig, hence a small part of the second section is based on his

bachelor thesis [218] (first paragraph of Sec. 6.2). From there on we make a short detour, and

try to link our approach to traditional cluster expansion (CE). Then we briefly introduce,

our implementation. Finally, we discuss how triplet parameters might be incorporated into

our current structure enumerator based on pair WC-SRO parameters.

6.1 Measuring (dis)order in crystals

To generate crystal structures, that mimic a real solid solution, one has to be able to “meas-

ure” (dis)order in the simulation cell and compare it with the ideal case. Such a measure,

by comparing the number of bond pairs in a finite cell with those of an ideal solution

was suggested many decades ago [219–221]. Consider a finite simulation box with N lat-

tice sites, occupied with atoms A and B. We refer to the sequence of A and B atoms,
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σ = ⟨A,B,A, . . . , B⟩, as the (atomic) configuration or arrangement. To quantify disorder in

the cell, corresponding Warren-Cowley short-range order (SRO) parameter reads

αAB(σ) = 1 − NAB(σ)

NMxAxB
. (6.1)

Where NAB denotes the number of A − B bonds in the finite cell. The denominator of

Eq. (6.1) corresponds to the number of bonds in the ideal solution. Consequently, M is

the number of nearest neighbors in the given atomic arrangement. Fig. 6.1 illustrates the

possible values the SRO parameter can take. For a clustered (Fig. 6.1a) case the number of

bonds in the ideal solutions will outweigh those in the simulations box and lead to negative

values for the SRO parameters. The opposite holds for the ordered case (Fig. 6.1c). The cell

will mimic the random alloy best once Eq. (6.1) approaches zero (Fig. 6.1b).

(a) clustering: αAB > 0
since NAB < NMxaxb

(b) random: αAB ≈ 0
since NAB ≈ NMxaxb

(c) ordered: αAB < 0
since NAB > NMxaxb

Figure 6.1: Visualization on the clustered state (a), disordered state (b), and ordered state
(c) together with the corresponding relations between the number of A − B bonds with
αAB [222].

6.1.1 Pair correlations

Figure 6.1 illustrates the physical intuition behind Eq. (6.1). Nevertheless, the above equa-

tion needs generalization to be applicable to real-world use cases. Before starting to gen-

eralize Eq. (6.1), one should clarify the terminology. More precisely, above when speaking

of A − B bonds we referred to nearest neighbor A − B pairs. Our simulation box contains
1
2
N(N−1) pairs, from which the above definition takes into account only a fraction of them.

Therefore, from now on we will refer to nearest neighbors, as “pairs in the first coordination

shell”. Consequently, Eq. (6.1) can be generalized to an arbitrary number of coordination

shells. The radius and hence, the number of coordination shells available is given by the

maximum pair distance of atoms in the simulation box. The WC-SRO describing disorder

using pairs of the ith coordination shell therefore reads
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6.1 Measuring (dis)order in crystals

αi
AB(σ) = 1 − N i

AB(σ)

NM ixAxB
. (6.2)

While the above equation looks very similar to Eq. (6.1), the generalization has major

implications. Assuming, that C coordination shells fit into the box, many SRO parameters

are needed to describe the finite cell. Furthermore, M i now denotes the number of pairs in

the ith coordination shell. Finally, another final step is missing to describe the disorder of

real-world composition. Therefore, the above equation needs adaptions such that it is suited

to multi-component systems. The corresponding SRO parameters are defined as

αi
ξη(σ) = 1 −

N i
ξη(σ)

NM ixξxη
(6.3)

where ξ and η are species occurring in the system. Similarly to Eq. (6.2), more SRO paramet-

ers in multi-component cases. Suppose the configuration contains S different atomic species,

for each coordination shell 1
2
S(S+ 1) parameters are required for a full description. Thus to

find an ideal finite cell 1
2
C ·S · (S + 1) SRO parameters need to be minimized independently

of each other. Note that due to the discrete nature of lattice positions, it is generally not

possible to get all SRO parameters to zero for small cells at least.

We note that the 1
2

prefactor arises because atom pairs are invariant to the exchange of the

atoms. Hence, the symmetry condition

αi
ξη = αi

ηξ ∀ ξ ̸= η (6.4)

holds, as we treat ξ − η and η − ξ pairs equally.

We point out that while developing the theory to describe the disorder, we implicitly assumed

that the atoms in the simulation box are arranged on a perfect periodic lattice. Therefore, we

compute the number of pairs in a finite box with N lattice positions for a specific coordination

shell as follows

M i =
|{rjk | Ri−1 < rjk ≤ Ri}|

N
. (6.5)

For a perfect lattice, M i will be an integer number, while otherwise, its meaning changes to

an average coordination number within the shell.
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6.1.2 Limitations of pair correlations

The applicability of our approach can be judged by looking at the spectrum (histogram) of

pair distances. For a perfect lattice in a finite simulation box with coordination shell radii

Ri the spectrum proportional to a sum a delta functions

|r⃗ij|(r) =
C∑︂

i=1

fiδ(r −Ri) (6.6)

where fi are just arbitrary coefficients depending on the box size and lattice type. In general,

when applying relaxations, these delta-peaks begin to smear out. Figure 6.2 illustrates such

smearing, happening during an ionic relaxation. As long as the individual distributions

do not overlap one might choose artificial coordination shell radii such that N i
ξη remains

constant throughout the relaxation process. Nevertheless, we note that this only holds

for the first four coordination shells in Fig. 6.2, as the distributions around the sixth and

seventh coordination shell overlap. This is, related to the fact, that the difference between

coordination shell radii to decrease with increasing shell index.
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Figure 6.2: Pair distances for a fcc lattice (blue) and the histogram for a relaxed
Ni60Cr20Co16Ti6Al6 cell (orange).

Furthermore, in the case of overlapping distributions, Eq. (6.5) becomes a real instead of an

integer number. In such a case, minimizing the SRO parameters will still yield a random

structure, however, as it is not uniquely determined how to partition the pair distances into

coordination shells the results might slightly differ depending on its choice.
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6.1.3 Objective function

Minimizing all pair SRO parameters at the same time independently of each other to obtain a

disordered model, does not leverage the full power of the WC-SRO parameter quantification.

Hence, it restricts an implementation to generating only disordered cells, while the descrip-

tion would allow generating clustered (Fig. 6.1a), partially clustered, partially ordered as

well as ordered (Fig. 6.1c) cells. Thus, by combining the WC-SRO parameters into a single

scalar using

Oα(σ) =
S∑︂

i

wi

C∑︂

ξ,η

pξη
⃓⃓
α̃i
ξη − αi

ξη(σ)
⃓⃓

(6.7)

=
S∑︂

i

C∑︂

ξ,η

w̃i
ξη

⃓⃓
α̃i
ξη − αi

ξη(σ)
⃓⃓

where w̃i
ξη = wipξη (6.8)

enables a more flexible optimization process. In Eq. (6.8), wi is the ith element of a vector of

length C containing the weighting factors of the contributions of the individual coordination

shells. pξη is a matrix of size S×S through which, each bond type may be weighted differently

or disabled completely. Finally, α̃i
ξη is a set of “target” SRO parameter values allowing to

tune each element of Eq. (6.3) towards a desired values. To see for which material systems

or cases these parameters may be tuned we refer the reader to Ref. [217].

6.2 Generalization to triplet - correlations

In addition to the generalizations — arbitrary coordination shells and multi-component con-

figurations — one can also include higher-order correlations such as triangles. The motivation

to do so is twofold. Firstly, there exist material systems where pair-correlations alone cannot

explain all observed phenomena [223]. Secondly, and more importantly, for practical applic-

ations there are usually many atomic arrangements σ which minimize a given set of pair

SRO parameters or Eq. (6.8). To avoid the degeneracy of solutions, we can further refine

our description of randomness. Hence, the next larger cluster of atoms (other than a pair)

would be a triplet, made of three atoms and three bonds, between those atoms as depicted

in Fig. 6.3b.

Before, generalizing the pair SRO parameter, it is helpful to introduce a notation to describe

triplets of atoms. A triplet itself consists of three bonds. We denote a bond between a

ξ and an η atom by their distance cξη, which is the corresponding coordination shell and

consequently must be an integer number between one and C, the number of coordination

shells.
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ξ η

η ξ

cξη = i

cηξ = i

(a) Schematic illustration of an atom pair,
described by a (pair) SRO parameter αi

ξη.
The pairs show the possible construction
paths. cξη, cηξ denote the coordination shell
of the pair

ξ

ζ

η

c ζξ
=
k c

ηζ =
j

cξη = i

(b) Schematic illustration of a triplet, de-

scribed by a (triplet) SRO parameter βijk
ξηζ

Figure 6.3: Schematic illustrations of general atom pairs and triplets. ξ, η and ζ refer to
atomic species. i, j and k denote coordination shell indices.

Since, we treat ξ − η and η − ξ bonds equally the symmetry relation

cξη = cηξ (6.9)

must hold, which also gives rise to Eq. (6.4). In the most general case a triplet consists of

three atoms ξ, η and ζ which are connected by three bonds of length i, j and k, where e.g.

i refers to the ith neighbor distance. Therefore, we describe such specific triplet using T ijk
ξηζ .

Note that the order of sub- and superscript indices does matter. Hence, T ijk
ξηζ refers to a

triangle made up of a ξ — η bond of length i (cξη = i), an η — ζ bond of length j (cηζ = j)

and finally a ζ — ξ bond of length k (cζξ = k). Such a construction is illustrated in Fig. 6.3b.

This notation is however, needs some further clarification. Observe, that both both sub- and

superscript indices contain three distinct entries, allowing six different arrangements of the

indices each. Those again may be combined into 36 constellation of indices. Figure 6.4

visualizes the fact that for T ijk
ξηζ we can find six different index constellations that describe

the same triplet, for which we introduce the notation T
{︂
ijk
ξηζ

}︂
.

The braces denote that the indices may be permuted, yet not arbitrarily the sub- and super-

script indices are in a relation to each other. Having 36 constellations at our disposal where

always six of them describe the same triangle, reveals it is possible to construct, again six,

non-equivalent triangles (see Fig. 6.5a).

Therefore we will denote a triplet SRO parameter comparing the number of T
{︂
ijk
ξηζ

}︂
triangles

in a cell with those of an ideal solution, to as βijk
ξηζ with. Such a parameter will have the form

of

βijk
ξηζ = 1 −

N ijk
ξηζ(σ)

# of triplets in the ideal solution
(6.10)

where N ijk
ξηζ(σ) is the number of T

{︂
ijk
ξηζ

}︂
triplets in the cell for a given atomic arrangement
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ηξ ζ

η ζ

ηζ
N NN

c ξ
η
=
i

c
η
ζ
=

j

c ζ
ξ
=
k

c
ξζ =

k

c
ζ
η
=

j

c
η
ξ
=
i

ξ ζ

ξζ

c η
ξ
=
i

c
ξ
ζ
=

k

c ζ
η
=
j

c
ηζ =

j

c
ζ
ξ
=

k

c
ξ
η
=
i

η ξ

ηξ

c ζ
η
=
j

c
η
ξ
=

i

c ξ
ζ
=
k

c
ζξ =

k

c
ξ
η
=

i

c
η
ζ
=
j

T ijk
ξηζ T kji

ξζη T ikj
ηξζ T jki

ηζξ T jik
ζηξ T kij

ζξη

T
{
ijk
ξηζ

}

Figure 6.4: Visualisation of the six different construction routes for triplets.

σ. In the next section we will elaborate on how to determine the denominator of Eq. (6.10)

and find an expression for the triplet SRO.

6.2.1 Denominator - Number of triplets in an ideal solution

To start with, we forget about the species populating a triplet and focus solely on its lengths.

Ignoring the species, we find that we can define a triangle as a multiset1 of the coordination

shells of the constituent pairs. Therefore, denoting a triangle using {1, 2, 3} also includes

triangles, that would be formed by permutation of the numbers within the braces, e.g.,

{2, 3, 1} or {3, 1, 2}. This is rather obvious as the order of how the triangle is constructed

does not matter. Suppose we want to compute the number triangles T {ijk} with length

{i, j, k} for a general lattice. Therefore, let M̄ be the set of all lattice sites within the largest

coordination sphere max{i, j, k}. Hence, the number of all triplets we can form from the

sites in M̄ , whose constituent pairs form the multiset {i, j, k}, is defined as T {ijk}. In more

formal notation

T̃
{ijk}

=
1

6

M̄,M̄,M̄∑︂

α,β,γ

{cαβ, cβγ, cγα}δ{cαβ ,cβγ ,cγα},{i,j,k} (6.11)

1a multiset is a set can hold each element multiple times
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6.2 Generalization to triplet - correlations

where cαβ etc. is the coordination shells distance of the pair α−−β formed by sites α and

β. The Kronecker-delta will yield one in case the multisets are identical, and zero otherwise.

For a finite set of lattice positions, such as our simulation box, we average all lattice positions,

and Eq. (6.11) becomes

T {ijk} =
1

6N

N,N,N∑︂

α,β,γ

{cαβ, cβγ, cγα}δ{cαβ ,cβγ ,cγα},{i,j,k} (6.12)

where N is the number of lattice positions. Note, that this definition yields similar properties

as Eq. (6.5) as it will give integer numbers for perfect lattices.

Finally, we have to populate all the calculated triangles with species. According to Fig. 6.4,

for the first atom we can on average either choose either Nxξ — ξ atoms, Nxη — η atoms

or Nxζ — ζ atoms. However, no matter which of the paths we take we must be able to

construct exactly T {ijk}. Therefore by averaging over the path from Fig. 6.4 we obtain an

expression for the triplet SRO parameter which reads

βijk
ξηζ = 1 −

N ijk
ξηζ(σ)

NT {ijk}xξxηxζ
(6.13)

where similarly to Eq. (6.3), N ijk
ξηζ is the number of triplets found in the cell. We want to note

that the super-/subscript notation used in Eq. (6.13) suffers from two shortcomings. Firstly,

there exist index permutations that represent the same physical triplet parameter, as shown

in Fig. 6.4. Secondly, it is as a consequence not apparent at first sight which sub/superscript

index permutations refer to different triplets. For pairs where the pair might be either

occupied by one or two different species it is therefore easy to compute how many pair

parameters (1
2
C(S2 + S), given S different species and C coordination shells) are needed to

fully describe the interactions (see the end of Sec. 6.1.1).

6.2.2 Number of triplet parameters

To account for all triplet interactions, in contrast, to pair SRO parameters, many more

triplet SROs are needed.

Furthermore, to compute the number of correlation parameters needed, we introduce the

index multiplicity c̃ for the coordination shells and the s̃ for the species indices. A pair

parameter αi
ξη has one coordination shell index (superscript) and two distinct species indices

as a subscript. Hence follows that c̃ = 1 and s̃ = 2. Analogously, for a triplet correlation

parameter βijk
ξηζ we obtain c̃ = s̃ = 3. In contrast we find c̃ = 2 and s̃ = 2 for a parameter of

type βiij
ξξη.
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6.2 Generalization to triplet - correlations

Hence, the number of parameters needed to describe all interactions in a system with S

species and considering C coordination shells can be written as

N tuples =
3∑︂

c̃=1

3∑︂

s̃=1

mc̃s̃

(︃
C

c̃

)︃(︃
S

s̃

)︃
(6.14)

where mc̃s̃ refers to a multiplicity. That is how many distinct tuples can be constructed for a

given set of pair distances and species. For example, consider an equilateral triplet ({i, i, i},

c̃ = 1) composed by two species ξ and η. In such a case one can only create two distinct

triplets (as all other permutations lead to the same physical object). Those are βiii
ξξη and its

inversion with respect to the atomic species βiii
ηηξ, resulting in m12 = 2. All multiplicities for

triplet SRO parameters are listed in Tab. 6.1.

s̃ 1 2 3

{ξ, ξ, ξ} {ξ, ξ, η} {ξ, η, ζ}{η, η, ξ}

c̃

1 {i, i, i} 1 2 1

2
{i, i, j}

2 8 6{j, j, i}
3 {i, j, k} 1 6 6

Table 6.1: Multiplicities with respect to the number of distinct species and distinct coordin-
ation shells in the indices mc̃s̃.

To illustrate how we arrive at the number of given numbers in Tab. 6.1, all the possible

construction are visualized in Fig. 6.5. Plugging in the values from Tab. 6.1 into Eq. (6.14)

(c̃ = s̃ = 3), leads to an expression for the number of triplets required to describe all possible

occurring interaction which reads

Nβ =
1

6
CS (CS + 1) (CS + 2) ≈ O(C3S3) (6.15)

We will discuss the implication of this result later. For now, we want to point out that

Eq. (6.14) recovers also our formula for the number required pair SRO parameters by setting

c̃ = mcs = 1 and s̃ = 2 we obtain

Nα =
1

2
CS (S + 1) ≈ O(S2) (6.16)

Finally, we want briefly discuss the implications of Eq. (6.4). As mentioned earlier (at the

end of the last section) due to the different construction paths, leading to different sub- and

superscript permutations for β, it is not straightforward to distinguish between β notation
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6.2 Generalization to triplet - correlations

referring to equal or distinct parameters. Therefore we have summarized all the β parameter

permutations describing different triplets in Tab. 6.2. Therein, the references to Fig. 6.5

visualize the triplets described by the parameters. Note that the number of entries in each

cell in Tab. 6.2 corresponds to the multiplicity number found in Tab. 6.1.

s̃ 1 2 3

{ξ, ξ, ξ} {ξ, ξ, η} {ξ, η, ζ}{η, η, ξ}

c̃

1 {i, i, i} βiii
ξξξ

βiii
ξξη βiii

ξηζβiii
ηηξ

2

(Fig. 6.5d)

βiij
ξηξ, β

iij
ηξη, β

jji
ξηξ, β

jji
ηξη

βiij
ξξη = βiij

ηξξ

βiij
ξηζ = βiij

ζηξ (Fig. 6.5b)

βiij
ζξη = βiij

ηξζ

{i, i, j} βiij
ξξξ βiij

ηζξ = βiij
ξζη

{j, j, i} βjji
ξξξ βiij

ηηξ = βiij
ξηδ

βjji
ξξη = βjji

ηξξ

βjji
ηηξ = βjji

ξηη

βjji
ηζξ = βjji

ξζη

βjji
ηζξ = βjji

ξζη

βjji
ηζξ = βjji

ξζη

3 {i, j, k} βijk
ξξξ

βijk
ξξη (Fig. 6.5c) βijk

ξηζ (Fig. 6.5a)

βijk
ηηξ βijk

ξζη

βijk
ηξξ βijk

ζξη

βijk
ξηη βijk

ζηξ

βijk
ξηξ βijk

ηζξ

βijk
ηξη βijk

ηξζ

Table 6.2: Index symmetries of triplet SRO parameters according to Fig. 6.5.

Geometric constraints in perfect lattices

The above considerations represent the most general case where triangles can be built from

any sequence of coordination shell indices. However, since the triangle inequality must hold,

not all of them are geometrically possible of view for each lattice. Therefore, Tab. 6.3

compares the theoretical amount of index sequences in a system with C = 7 coordination

shells, with the geometrically allowed number. Please note, that here we omit the number

of species in the system. The actual number of β triplet SRO parameters will also depend

on S.

6.2.3 Triplet objective function

Similarly to the pair SRO parameters, one can define a triplet objective function that reads
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(a) Possible (distinct) triplet constructions for three different species {ξ, η, ζ}, with three different
side lengths {i, j, k}. (mcs = m33 = 6),

ξ η
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T
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= = =

(b) Possible (distinct) triplet constructions for three different species {ξ, η, ζ}, with two different side
lengths {i, i, j}. Note that of a given index pair i, j one may also construct different triangles using
{j, j, i} hence the three parameters exhibit a multiplicity of two, totaling in six (mcs = m23 = 6)
different triangles.
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ξ ξ
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k j
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}
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{
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ηξξ
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ξ

k j

i

T
{
ijk
ξηξ
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(c) Possible (distinct) triplet constructions for two different species {ξ, ξ, η}, with three different
side lengths {i, j, k}. Similarly to Fig. 6.5b, the above construction exhibits also a multiplicity of
two by inverting species to a set {η, ξ, ξ}. Consequently it is possible to construct mcs = m32 = 6
different triangles.

ξ ξ

η

j i

i

T
{
iij
ξξη

}
η ξ

ξ

j i

i

T
{
iij
ηξξ

}
ξ η

ξ

j i

i

T
{
iij
ξηξ

}
=

(d) Possible (distinct) triplet constructions for two different species {ξ, ξ, η}, with two different
side lengths {i, i, j}. The number of possible triangles (mcs = m22 = 8) for this case is eight, two
parameters for each of the two shell permutations ({i, i, j}, {j, j, i}) and furthermore, two for each
of the species permutations ({ξ, ξ, η}, {η, ξ, ξ}).

ξ ξ

ξ

j i

i

T
{
iii
ξξξ

}

(e) Possible (distinct)
triplet constructions for
one specie {ξ, ξ, ξ}, with
one side length {i, i, i}
(mcs = m11 = 1).

Figure 6.5: Visualization of possible triplets, for different general (Figs. 6.5a & 6.5c), isosceles
(Figs. 6.5b & 6.5d) and equilateral (Fig. 6.5e) triangles, formed by atoms of one (Fig. 6.5e)
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6.3 Relation to cluster expansion

1 = {i, i, i} 2 = {i, i, j} 3 = {i, j, k}
theoretical

(︁
7
1

)︁
= 7 2

(︁
7
2

)︁
= 42

(︁
7
3

)︁
= 35

fcc 4 19 19
bcc 1 13 11
hcp 2 12 10

Table 6.3: Number of triplet SRO parameters for maximal coordination of C = 7, tabulated
for equilateral, isosceles, and general triangles for the most important lattices. Note that
the above table does not contain any information about the species.

Oβ(σ) =
C∑︂

i,j,k

S∑︂

ξ,η,ζ

wijk
ξηζ |β̃

ijk

ξηζ − βijk
ξηζ | (6.17)

where similar to Eq. (6.8), wijk
ξ,ηζ denote triplet interaction weights. Similarly, β̃

ijk

ξηζ denote

the target triplet SRO parameters. To quantify both pair and triplet randomness of the cell,

we add Eq. (6.8) and Eq. (6.17) and rewrite the sums to finally obtain

Oα+β(σ) =
C∑︂

i

S∑︂

ξ,η

w̃i
ξη|α̃i

ξη − αi
ξη| +

C∑︂

j,k

S∑︂

ζ

wijk
ξηζ |β̃

ijk

ξηζ − βijk
ξηζ | . (6.18)

As the pair weights w̃i
jk decrease with increasing coordination shell i, they account for the fact

that far distant pairs are less important than nearest neighbors. The number of triplet SRO

parameters is huge compared to the number of pair SRO parameters, hence it is impractical

to choose a separate interaction weight for each triplet interaction. Therefore, we propose to

assemble the triplet interaction weights wijk
ξηζ from the weights of the constituent pairs, such

that

wijk
ξηζ = w̃i

ξηw̃
j
ηζw̃

k
ζξ = wiwjwkpξηpηζpζξ . (6.19)

This way we do reduce the number of parameter while keeping the intuitive relation that

“smaller” triplets (i.e with shorter sides) have higher importance.

6.3 Relation to cluster expansion

One of the main criticisms of WC-SRO parameters is that they are not physically-informed.

Hence, using them to find SQS structures solely considers atom geometry. In this section,

we propose a possible way, how to inform pair and triplet parameters about the system’s

chemistry. We, therefore, start by expanding the total energy of a system with u = 1, . . . , N

atoms into many-atom clusters. Such an expansion reads
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6.3 Relation to cluster expansion

E = V (0) +
N∑︂

u

V (1)(R⃗u) +

E(2)

⏟ ⏞⏞ ⏟
1

2

N∑︂

u,v

V (2)(R⃗u, R⃗v) +
1

6

N∑︂

u,v,w

V (3)(R⃗u, R⃗v, R⃗w) + . . . (6.20)

where R⃗w denote the atom positions. V (0) is a constant that is often set to zero. V (2), . . . , V (M)

are the many-body potentials. While these potentials, in reality, may take a complicated

form, let us restrict ourselves to systems where the atomic positions are limited to a perfect

lattice. The most important consequence is that the input arguments for the many-body

potentials become discrete. Hence, instead of a full parameterization, one needs to know the

values of many-body potentials only at a few points of the input space. To illustrate this

more clearly, we focus on the pair-potential term, V (2). To evaluate the sum, only a few

pair-distances, namely the coordination-shell radii (see. Fig. 6.2) are needed. However, V (2)

also takes into account the atomic species, making up the pair. In other words, V (2) will

yield different values for the same given distance of ξ — η and η — ζ atoms. Consequently,

we can rewrite the pair-term of Eq. (6.20) for a lattice to

E(2) =
1

2

C∑︂

i

S,S∑︂

ξ,η

V
i,(2)
ξη N i

ξη where
1

2
N(N − 1) =

1

2

C∑︂

i

S,S∑︂

ξ,η

N i
ξη (6.21)

C and S represent the coordination shell and species in the system repectively. N i
ξη is the

number of ξ — η pairs separated by radius of the coordination shell i, similarly as in the

definition of the pair SRO in Eq. (6.3). Moreover, the equation reveals that we need to

know
1

2
CS(S+ 1) values of V (2) to fully describe the pair interactions. Note, that this again

corresponds to the number of pair SRO parameters. Analogously, we can rewrite the triplet

term of Eq. (6.20) to

E(3) =
C∑︂

i,j,k

S∑︂

ξ,η,ζ

V
ijk,(3)
ξηζ N ijk

ξηζ . (6.22)

Observe the similarity between the interaction of clusters on a lattice and our objective

function (Eq. (6.8) and Eq. (6.21)), and thereby the relation between the artificial weights

w̃i
ξη and V

i,(2)
ξη and wijk

ξηζ and V
ijk,(3)
ξηζ . Hence we can recast the cluster expansion into our

notation as follows

E = V (0) +
S∑︂

ξ

V
(1)
ξ Nξ +

C∑︂

i

S∑︂

ξ,η

V
i,(2)
ξη N i

ξη +
C∑︂

i,j,k

S∑︂

ξ,η,ζ

V
ijk,(3)
ξηζ N ijk

ξηζ + · · · (6.23)
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Before unifying the purely geometric SRO approach with cluster expansion, we have to

rewrite the SRO parameters and plug them into the objective functions (Eqs. (6.8) and

(6.17) to see the relation more clearly

Oα(σ) =
S∑︂

i

C∑︂

ξ,η

w̃i
ξη|α̃i

ξη −
αi
ξη⏟ ⏞⏞ ⏟

1 + f i
ξηN

i
ξη(σ) | with f i

ξη = (NM ixξxη)
−1 (6.24)

Oβ(σ) =
C∑︂

i,j,k

S∑︂

ξ,η,ζ

wijk
ξηζ |β̃

ijk

ξηζ − 1 + f ijk
ξηζN

ijk
ξηζ(σ)

⏞ ⏟⏟ ⏞
βijk
ξηζ

| with f ijk
ξηζ = (NT {ijk}xξxηxζ)

−1 (6.25)

All that happened in the above equations is that we have gathered the denominator of the

pair and triplet SRO parameters into the variable f i
ξη and f ijk

ξηζ respectively. The motivation

for doing so is twofold. Firstly it shows clearly that this part (the denominator) of the

SRO parameters does not depend on the atomic configuration σ. Therefore, one can pre-

compute those in advance. Secondly, these prefactors are furthermore subject to performance

considerations as in an implementation they avoid floating point division in the inner loops

and replace them with multiplications. Our implementation uses Eq. (6.24) for finding

optimized structures. Despite, the performance considerations, by choosing f i
ξη = α̃i

ξη =

f ijk
ξηζ = β̃

ijk

ξηζ = 1, we find that the above equations reduce to

Oα(σ) =
S∑︂

i

C∑︂

ξ,η

w̃i
ξηN

i
ξη(σ) (6.26)

Oβ(σ) =
C∑︂

i,j,k

S∑︂

ξ,η,ζ

wijk
ξηζN

ijk
ξηζ(σ) (6.27)

For fixed compositions furthermore, the first term of our reformulated cluster expansion in

Eq. (6.23) become constants. Consequently, the combined objective function in Eq. (6.18)

can be interpreted as a cluster expansion, which is truncated at clusters of size three. In

other words: by simply changing setting the values for f i
ξη, α̃

i
ξη, f

ijk
ξηζ and β̃

ijk

ξηζ to 1, the

implementation will — instead of finding optimized SQSs — predict total energies for given

atomic arrangements. Furthermore, it becomes obvious to inform your system about the

chemistry by choosing physically sensible values for the interaction weights, such that our

objective function truly becomes Eq. (6.23).
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6.3.1 Determining interaction parameters

To find the minimal energy structure, we have to give physical meaning to the interaction

parameters rather than choosing arbitrary numbers. Therefore, we suggest determining the

interaction parameters from first-principles methods. In traditional cluster expansion, the

interaction parameters are obtained via linear regression from DFT cells. In contrast, to

the traditional “top-down” approach we propose to compute the interaction energies of the

individual occurring clusters directly. Consequently, in such an approach many small clusters

have to be computed. The actual number that needs to be carried out is identical to the

number of SRO parameters. We note that this might be handled efficiently and accurately

using real-space DFT implementations such as, e.g., SIESTA [224]. Let us we denote the

total energy of an atom ξ by Eξ. Consequently, the interaction energy of an ξ — η atom

pair, separated by the radius of the ith coordination shell, can be computed as

Ei,int
ξη = Ei

ξη − Eξ − Eη (6.28)

where Ei
ξη the total energy of the system. Similarly, the interactions energy of a triplet can

be defined, by subtracting the constituent pair interactions and singlet energies as

Eijk,int
ξηζ = Eijk

ξηζ − Ei,int
ξη − Ej,int

ηζ − Ek,int
ζξ⏞ ⏟⏟ ⏞

pairs

−Eξ − Eη − Eζ⏞ ⏟⏟ ⏞
single atoms

= Eijk
ξηζ − Ei

ξη − Ej
ηζ − Ek

ζξ + Eξ + Eη + Eζ . (6.29)

Finally by choosing w̃i
ξη = Ei,int

ξη = V
i,(2)
ξη and correspondingly in wijk

ξηζ = Eijk,int
ξηζ = V

ijk,(3)
ξηζ ,

the objective functions (Eqs. (6.24)–(6.25)) yield the physically informed energies for a given

configuration σ. Note, that there exist tools to extract the interaction energy already for a

long time. In the cluster expansion approach [225, 226] the interaction energies are extracted

from a set of DFT calculations. They can be also computed directly using Greens function

methods [223, 227, 228]. Both motioned approaches result in more accurate and physically

sensible energies compared to interaction energies compute from isolated clusters. However,

those interaction parameters have to be computed for each material system separately. In

contrast, isolated cluster interactions, although lacking physical insight for a specific system,

would be transferable, to physically-informed the generation of an SQS in the first place.

Furthermore, it would be easily possible, with modest computational effort, to compute

those energies for a large part of the periodic table, and tabulate them. A database might

be shipped with our implementation (see next section), that would allow users to choose

better values for w̃i
ξη and wijk

ξηζ .
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6.4 Implementation

6.4 Implementation

Within this thesis, we have implemented a structure enumerator which efficiently computes

pair SRO parameters of atomic arrangements σ. The implementation is named sqsgenerator.

The code is available as a Python package and features a command line interface. The core

parts, e.g., to compute the values of Eq. (6.3) are written in C++ to exploit shared memory

parallelization using OpenMP. Furthermore, the core routines are MPI (distributed memory)

parallelized, such that the code is able to exploit high-performance-computing (HPC) sys-

tems. For desktop-scale applications, OpenMP parallelized pre-built binaries are available

via Anaconda package repositories. Searching for an optimal atomic arrangement employing

the above description is inherently suited to be carried out on a parallel architecture. This

is because communication is only needed when a new minimum is found. However, with

ongoing execution time, this becomes a rare event in practice. Furthermore, as memory

requirements are negligible on a modern system, one can easily afford MPI parallelization,

which has the advantage that less synchronization happens. Therefore, our implementation

exhibits nearly an ideal speedup for distributed memory parallelization as shown in Fig. 6.6.

Implementation details are given in a more extensive way in Ref. [217]
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Figure 6.6: Number of analyzed structures (right black y-axis) per second of sqsgenerator
in MPI mode as a function of the number of the physical cores (lower black x-axis) and
coordination shells (full symbols, dashed lines). Open symbols connected by the solid lines
show the linear scaling time (left red y-axis) versus the number of nodes (upper red x-axis).
The analyzed structures represent a binary A0.5B0.5 alloy on a bcc lattice with 128 atoms.
(Taken from Ref. [217])

6.4.1 Outlook for our implementation

We emphasize that our implementation uses currently only pair SRO parameters to find

optimal SQS structures. Hence, expanding it to take into account triplet SRO parameters
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6.4 Implementation

is desirable. However, there are a few caveats. Firstly, our implementation is focused on

an efficient pair SRO computation, which is necessary due to exponentially growing con-

figurational space (= possible permutations of σ) with the model size. Consequently, as

the number of triplets grows with O(N3) in combination with the vast amount of triplet

SRO parameters, would substantially increase the computational cost per atomic configur-

ation σ. To solve this Pototschnig [218] has suggested to pre-scan the configurational space

by computing pair-correlations and determining the triplet SRO parameters only for those

arrangements which yield the same value for the pair objective (Eq. (6.8)). He was able

to show that atomic arrangements which are equal from a pair perspective, can be further

distinguished by accounting for the triplet correlations for selected cases. In contrast, to

use the implementation to predict energies and ordering of systems, both (pair and triplet)

objective functions need to be calculated. Furthermore, choosing this path would require,

from a usability perspective, to couple the code with DFT packages in order to compute the

interaction energies in Eqs. (6.28) and (6.29) on the fly.
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Chapter 7

Segregation in a disordered Ni-based

alloy

Segregation to grain boundaries (GB) in pure metals has been studied extensively [229] using

first principles. Also, solute segregation in Ni-base superalloys was subject to many theoret-

ical investigations [230–233], especially by Razumovskiy et al. [234–236] already more than

one decade ago. Nevertheless, all of the studies try to guide alloy development of Ni-based

super alloys [232, 233, 236], by predicting solute segregation to GB by using pure Ni models.

The main motivation of this chapter is to reveal the impact of solute segregation, when

accounting for chemical disorder in the atomistic models, and hence employ more “realistic”

models. Therefore, this chapter is structured as follows. In the beginning, we will give an

introduction to solute segregation in simple metals. Then we present the computational

setup for treating disordered systems. After pointing out the main differences between se-

gregation energies in a pure and disordered system, we continue by discussing the impact of

the spectral properties of the segregation energy on McLean-type isotherms. In the second

part of the chapter, we adapt Guttman’s model to include solute-matrix interactions in a dis-

ordered system. After presenting the adapted model, we propose a simple method to extract

the necessary interaction parameters, needed for the (adapted Guttmann) model. Finally

we conclude this chapter by presenting further research topics towards a better theoretical

description of Ni-based alloys.

7.1 Segregation in simple metals

The tendency of a solute to segregate to a boundary, in the dilute limit, is usually quantified

using the segregation energy. In contrast to the two-phase system in Chap. 5, we focus in

this chapter on grain boundaries between grains of one phase. We start by considering a

grain boundary in a pure metal of species M (matrix). We compare the formation energy of
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7.1 Segregation in simple metals

a solute atom X in the bulk (B) with the formation energy at the grain boundary (GB)

∆EX,i
seg =

(︁
EX→Mi

GB − EGB + µM
GB − µX

GB

)︁
⏞ ⏟⏟ ⏞

Ef,X
GB

−
(︁
EX→M

B − EB + µM
B − µX

B

)︁
⏞ ⏟⏟ ⏞

Ef,X
B

= EX→Mi
GB − EX→M

B − EGB + EB for µM
GB = µM

B , µ
X
GB = µX

B . (7.1)

EGB and EB refer to the total energies of the undecorated systems with and without GB,

respectively. µM is the chemical potential of the matrix element M . EX→M
B and EX→Mi

GB

represent the energies of the decorated system, where one M atom is replaced by an X atom.

The i denotes the index of the segregation site. Compared to the bulk, the GB plane breaks

the translational symmetry of the lattice, therefore, not all lattice positions at the GB are

symmetrically equivalent anymore. Fig. 7.1a illustrates this for a pure Ni Σ5(210) for which

three sites at the grain boundary are different. Consequently, Eq. (7.1) yields three energies

for one solute. If the above definition of the segregation energy exhibits negative values, the

solute tends to segregate to the GB, whereas for positive values it stays in the bulk.
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(b) Segregation energies, EX,i
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gregation sites shown in Fig. 7.1a. The colors of
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are values reported by Xue et al. [233].

Figure 7.1: Atomistic model of a Ni grain boundary, showing the symmetrically inequivalent
segregation sites and corresponding segregation energies.

Often, literature reports a single value for the segregation energy, rather than a set of val-

ues. Therefore a common convention is to use the minimum value across all sites ∆EX
seg =

mini ∆EX,i
seg . Figure 7.1b shows the segregation energies for five different solutes for the three

segregation sites at a Σ5(210)[001] Ni symmetric tilt grain boundary. The plot reveals an

excellent agreement with literature data reported by Xue et al. [233] (red crosses). Never-

theless, those values were obtained using a standard approach, therefore within this section,
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7.2 Segregation in disordered systems

we will not discuss the numbers further. We will comment them later in the light of a

comparison with a more realistic alloy model.

7.2 Segregation in disordered systems

To best to our knowledge, within first principles approaches, segregation in alloys is always

investigated with models of the corresponding pure metal. That is, the calculations for Ni-

based superalloys are done in pure Ni systems [232, 233, 235], or similarly, pure iron grain

boundaries are used as a surrogate model for steels [237–240]. Therefore, in the following

section, we will elucidate the impact of the chemical disorder on solute segregation in a

Ni-based alloy.

xNi (NNi) xCr (NCr) xCo (NCo) xTi (NTi) xAl (NAl)

bulk (108) 0.555̇ (60) 0.185 (20) 0.148 (16) 0.055 (6) 0.055 (6)
GB (114) 0.561 (61) 0.184 (21) 0.149 (17) 0.053 (6) 0.053 (6)

|xB − xGB| 5.85 · 10−3 9.75 · 10−4 8.29 · 10−3 2.92 · 10−3 2.92 · 10−3

Table 7.1: Compositions of the bulk and GB simulations cells. The number of atoms distrib-
uted in the cells is written in parenthesis next to the mole fractions. The difference between
the cell compositions for each matrix element is given in the last row.

7.2.1 Computational setup

If not specified otherwise in the following section the term “literature” refers to Refs [233,

236]. To compute the bulk energy, in contrast to the literature, we do not place the solute

atoms at “bulk” like sites of the grain-boundary, but rather use 4 × 4 × 4 supercell of fcc-

Nickel. The cell with 108 atoms in total, is randomly occupied with the composition shown

in Tab. 7.1. To find a good SQS, we use sqsgenerator (see Sec. 6.4) with a Monte-Carlo

approach, considering the first seven coordination shells with interaction weights wi = 1
i
.

We select the best cell among 1010. In contrast to the pure Ni bulk, where only one bulk state

is available, this symmetry is broken in a disordered system. Consequently, the individual

lattice positions exhibit different local compositions. Therefore, placing a solute atom at

each lattice position allows to sample bulk energies for different local compositions.

To make our results closely comparable with the literature, we have used very similar GB

cells as reported by the studies of Razumovskiy, Lozovoi, and Razumovskii [236]. The cell

vectors a⃗ = [12̄0], b⃗ = [001] and c⃗ = [210] refer to the axes in Fig. 7.1a.

We use a vacuum padding of 9.5 Å in c⃗ direction. In contrast to literature, however, we

use a much larger GB-plane area of AGB = |a⃗ × b⃗| = 82.88 Å2 (27.75 Å2 in Ref. [233]),

resulting in cells that contain 114 atoms. The motivation for this choice is two-fold. Firstly,
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Figure 7.2: Pair distance histogram (orange) of the Ni-Σ5(210)[001] simulation cell with 114
atoms. The red dashed lines are the manually chosen coordination shell radii for the SQS
optimization. The blue refers to the distances in a pure fcc-Ni crystal.

a larger cell with a solute atom will more accurately model the dilute limit. Secondly,

and more importantly, for a model of an alloy with a complex composition as in Tab. 7.1

we want the GB and bulk compositions to be as similar as possible. In an ideal case,

the are the same. The reason is that the chemical potential of a species is a function of

concentration/composition. More precisely the chemical potential µMξ
of a matrix species

M ξ is a function of the composition vector µMξ
= µMξ

(x) where x = (xNi, xCr, xCo, xTi, xAl)

in the present case. Consequently, to apply Eq. (7.1), we demand chemical potential in the

bulk and grain boundary system µMξ

B (xB) = µMξ

GB(xGB), and hence xB = xGB to be the same.

As the number of atoms in the bulk and GB cell is not the same, we try to get them as close

as possible to minimize the compositional deviations |xB − xGB|. The last row of Tab. 7.1

clearly shows that the maximum deviation is < 0.5 % for our setup. Thus it is reasonable to

assume µMξ

B (xB) ≈ µMξ

GB(xGB) and hence to use a modified (simplified) version of Eq. (7.1).

SQS of grain boundaries

While we have employed our implementation to find a SQS for the bulk system, applying

it to the GB structure needs more care. We start with a GB structure without vacuum

padding as an input for sqsgenerator. Due to the presence of the GB, the pair distances

histogram strongly deviates from a perfect fcc crystal, as shown in Fig. 7.2.

Therefore, we have manually specified the coordination shell radii (see Sec. 6.1.2) to group

the pairs as depicted in Fig. 7.2. Consequently, for the GB cells we omit the distinction

between the individual segregation sites (Site 1 – 3 in Fig. 7.1a). Therefore each SQS cell

exhibits thirty different segregation sites (Site 1 splits into twelve, 2 into six, and 3 again

into twelve). To get proper statistics we generate five different GB-SQS. We find them by
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7.2 Segregation in disordered systems

enumerating 1011 atomic arrangements in a Monte-Carlo approach using our sqsgenerator

package. The optimization process yields multiple solutions, from which we select five as

follows.

Selecting the five best SQS As each of the thirty GB sites might be coordinated differ-

ently, we want to sample as many possible local atomic environments as possible. For each

solution of the SQS optimization, we compute the local composition vector for all GB sites

by taking into account the nearest neighbors. Therefore we define the set of all composition

vectors for the jth solution of the SQS optimization

Xj =
{︂
xi
GBj

}︂
i=1,...,30

. (7.2)

We now want to find a combination of five SQS structures from all N solutions, which yield

the maximum number of distinct local composition vectors. In other words, we find the

solution indices j,k,l,m, and n which we need to combine to maximize the number of local

environments

N env = max |Xj ∪Xk ∪Xl ∪Xm ∪Xn| . (7.3)

Although this process of selecting the right SQS structure might look like pettifoggery we

point out that the worst combination (from our SQS solutions) yields only 96 different while

the optimal choice results in 133 out of 150 theoretically possible environments. In total this

results in 253 DFT calculations per solute, 108 for the bulk plus 150 (30 sites × 5 SQSs) for

the GB states. This strongly contrasts with the pure Ni system, where we need only four

(one bulk plus three GB sites) calculations.

7.2.2 Segregation energy in a complex matrix

Before we generalize Eq. (7.1), let us clarify the implications of a disordered matrix. Firstly,

the formation energy for a point defect in bulk cannot be described by a single value anymore,

as it is strongly influenced by the local environment. Therefore, to get a proper description,

it is necessary to sample as many local environments as possible. This is why we place the

solute at each of the 108 bulk sites. Secondly, the solute can replace not only one species

in bulk but rather any of the species present ˜︂M ∈ {Ni,Cr,Co,Ti,Al}. Therefore in the

following, we refer to the formation energy of a solute X ∈ {Fe,Mn,W,Nb,Zr} replacing

an ˜︂M atom at the jth site to as E
f,X

˜︂M
j

B . Similarly, if ˜︂M is replaced at the ith site at the

grain-boundary we refer to it as E
f,X

˜︂M
i

GB . Taking all this into account the segregation energies

for multi-component matrix reads
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∆E
X

˜︂M ˜︂M′
ij

seg =

E
f,X

˜︂M
i

GB⏟ ⏞⏞ ⏟
EX→˜︂Mi

GB − EGB + µ
˜︂M
GB − µX

GB−

E
f,X

˜︂M′
j

B⏟ ⏞⏞ ⏟
E

X→˜︂M ′
j

B + EB − µ
˜︂M ′

B + µX
GB . (7.4)

We will assume the same chemical potential of the matrix spices in bulk and at the GB

µ
˜︂M
GB ≈ µ

˜︂M
B = µ

˜︂M . Furthermore, the solute species X is both the GB and the bulk are in

the dilute limit at nearly the same concentrations, therefore µX
GB = µX

B , and they cancel out

each other. Finally, by regrouping the chemical potential term to ∆µ
˜︂M˜︂M ′

= µ
˜︂M − µ

˜︂M ′
we

can rewrite the above equation to

∆E
X

˜︂M ˜︂M′
ij

seg − EX→˜︂Mi
GB − EGB − E

X→˜︂M ′
j

B + EB + ∆µ
˜︂M˜︂M ′

δ˜︂M˜︂M ′ (7.5)

where δ˜︂M˜︂M ′ is the Kronecker δ to indicate that the chemical potential term vanishes for equal

bulk and GB species. Hence, the chemical potential term only vanishes if the solute replaces

the same atom in the bulk and the GB. Therefore, in the following, if not specified otherwise,

we will account only for such cases ˜︂M = ˜︂M ′ such that the above equation becomes

∆E
X

˜︂M
ij

seg = EX→˜︂Mi
GB − EGB − E

X→˜︂M ′
j

B + EB (7.6)

Furthermore, it is noteworthy that when speaking about the segregation of the solute X to

the GB cannot be quantified anymore by a single value for the segregation energy, but rather

by a whole spectrum. Consequently, when considering NB bulk and NGB GB states, with

∆EX
seg,

∆EX
seg =

{︃
∆E

X
˜︂M ˜︂M′
ij

seg

⃓⃓
⃓⃓ ˜︂M = ˜︂M ′

}︃

∀ i=1,...,NGB,j=1,...,NB

(7.7)

we refer to the set of all possible combinations of GB sites i and bulk sites j where both are

occupied with the same atoms ˜︂M . In the following, when speaking of the segregation of a

solute to the grain boundary we refer to the whole set/spectrum of segregation energies

7.2.3 Segregation in a complex matrix

Energy spectrum of segregation energies

We have concluded the last section, stating that we have to deal with a whole spectrum of

segregation energies. Such an approach had been suggested already by White and Coghlan

[241] and got attention again more recently. Huber et al. [242] sampled the fundamental
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zones [243] (orientations of the cutting boundary plane [244, 245]) of a Σ5 grain bound-

ary. Therein, he uses a Gaussian distribution to describe the energy spectra. Scheiber and

Romaner [246] discussed the impact of energy spectra more intensively and tried to connect

it with the measurable enthalpy and entropy. They found a Gumbel distribution fitting

their energy spectra best. Similarly, Wagih and Schuh [247] studied the grain boundary

segregation in a polycrystal and investigated the impact of the segregation energy spectra

on the stability of noncrystalline materials. We follow the approach from Wagih and Schuh

[247] and use a skew-normal distribution to fit the distribution of the segregation energies

of Eq. (7.6). We note that this brings an additional degree of freedom as compared to the

Gumbel distribution. In contrast to the inherently symmetric Gaussian and the left-skewed

Gumbel distribution, the skew-normal distribution exhibits an additional skew parameter al-

lowing for both left and right-hand skewed energy spectra. For a solute X, the skew-normal

distribution reads

F̂
X

(∆EX
seg) =

1

σ
√

2π
exp

(︄
−(∆EX

seg − µ)2

2σ2

)︄
erfc

(︄
−α(∆EX

seg − µ)√
2σ2

)︄
(7.8)

where µ and σ are the parameters of a Gaussian distribution, and α the skewness parameter.

The sign of α determines the side of the skew; α = 0 yields a Gaussian distribution.

If not mentioned otherwise, we employ an “exact” normalized discrete distribution (histo-

gram) for further calculations, rather than the skew-normal fit. We denote the frequency of

the ξth bin as F̂
X

ξ where ξ = 1, . . . , N and N is the number of bins of the histogram. Finally,

we define the mean values of the discrete distribution as

⟨︁
∆EX

seg

⟩︁
=
⟨︁
FX
⟩︁

=
N∑︂

ξ

FX
ξ ∆EX,ξ

seg ∆(∆EX
seg)⏞ ⏟⏟ ⏞

bin width

(7.9)

where ∆EX
seg,ξ is the center of the ξth histogram bin and ∆(∆EX

seg) is the histogram’s bin

width. Analogously, by turning the sum into an integral we arrive at the mean value for the

continuous representation

⟨︂
F̂

X
⟩︂

=

∫︂ ∞

−∞
F̂

X
(∆EX

seg)∆E
X
segd∆EX

seg . (7.10)

Finally, we want to point out the difference between the energy spectra discussed in liter-

ature [242, 246, 247] and the present work. All the literature studies obtain the spectra

in pure metals by studying a wide variety of structurally different GBs. In contrast, we
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7.2 Segregation in disordered systems

focus only on one GB (Σ5(210)[001]). The segregation of energy distribution arises from the

chemically different local coordinations of bulk and states. In other words, the distribution

in the literature is due to the structural variety of grain boundaries, while in the present

study, it is caused by the chemical complexity of the alloy model.
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Figure 7.3: Bulk formation (Ef,X
B ) is the left and GB formation energy spectra Ef,X

GB as the
right column for each solute. The spectra for each solute replacing Ni (solid), Co (dotted),
and Cr (dashed) sites are plotted individually. For the individual formation energies the
chemical potential terms do not cancel out hence the individual spectra are shifted along the

y-axis by a constant offset µX − µ
˜︂M with ˜︂M ∈ {Ni,Co,Cr}.

Figure 7.3 shows that the spectral property of the segregation energy is given by the spectral

nature of both Ef,X
B and Ef,X

GB throughout all solutes. Furthermore, we find that the spectral

width is similar for both GB and bulk formation energy. In contrast, in the noncrystalline

case as investigated in Refs. [246, 247], the left part Ef,X
B would collapse into a single energy

level. Furthermore, only a single spectrum would be there per solute. The splitting is due

to the multi-component nature of the matrix. More precisely there would be five matrix

elements and consequently five spectra per solute. Due to the low concentrations of Ti and

Al, we have omitted those as the number of computed states is not large enough to generate

a sensible histogram.

Comparison with the pure Ni system

Figure 7.4 shows the discrete and fitted (skew-normal) segregation energy spectra for all

five solutes. Each of the plots (Figs. 7.4a – 7.4e) shows three spectra, one for each of the

three pristine GB sites. All values (mean, fit parameters, and pure segregation energies) for

Fig. 7.4 are summarized in Tab. 7.3.
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Figure 7.4: Segregation energy spectra ∆EX
seg for Fe (Fig. 7.4a), Mn (Fig. 7.4b), W (Fig. 7.4c),

Nb (Fig. 7.4d) and Zr (Fig. 7.4e). The energies forming the spectra are grouped by their
former location of the GB state (site 1 to 3) on the pristine boundary. The solid line around
the histogram is a fitted skew-normal distribution. The colored solid horizontal line refers
to the distribution’s mean value ⟨∆Eseg⟩ (Eq. (7.9)). The black triangle and bar denote the
mode and the FWHM. The dashed colored lines represent the corresponding energy in the
pure Ni system.

Analyzing the expectation value
⟨︁
∆EX

seg

⟩︁
(solid colored horizontal line) of the distributions

in Figs. 7.4a – 7.4e immediately reveals a drastically enhanced segregation (more negative)

tendency compared to the pristine system. While for iron the enhancement in Fig. 7.4a is

≈ 0.25 eV for all three segregation spectra we find up to ≈ 1 eV for Nb. Interestingly the

relation between the segregation energies of the sites in the pure system corresponds to the

relation of the mean values of the distributions, except for Mn. Therefore, for Fe we find

S1 ≈ S2 ≈ S3, and S1 ≈ S2 < S3 for Mn, W and Nb. Similarly, the relation S1 < S2 < S3

holds for Zr. To quantify the width of the spectra we employ the FWHM. Therefore, for

Fe, Mn, and Zr we find nearly the same FWHM (all three values within 0.1 eV). For W, S3

shows a broadening of ≈ 0.3 eV (compared to S1), and Nb a sharpening of 0.2 eV.

Analyzing, the corresponding skew values in Tab. 7.2 clearly reveals that a Gaussian distri-

bution would not be sufficient to describe the spectra since |α| > 0. Similarly, also Gumbel
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Site Fe Mn W Nb Zr

∆Epure
seg [eV]

S1 −0.01 −0.09 −0.07 −0.07 −0.95
S2 0.05 −0.10 0.08 0.08 −0.64
S3 0.05 0.15 0.22 0.40 −0.20

⟨︁
∆EX

seg

⟩︁
[eV]

S1 −0.23 −0.28 −0.59 −1.05 −1.70
S2 −0.26 −0.28 −0.60 −1.00 −1.46
S3 −0.24 −0.19 −0.19 −0.56 −1.11

α [-]
S1 -0.86 −1.44 1.06 0.79 −0.78
S2 −1.40 1.77 0.81 −1.43 −1.81
S3 2.30 1.66 1.05 0.87 −0.01

FWHM [eV]
S1 0.50 0.66 1.30 1.70 2.00
S2 0.57 0.67 1.37 1.71 2.10
S3 0.52 0.63 1.64 1.53 2.06

Table 7.2: Expectation values of the energy spectra
⟨︁
∆EX

seg

⟩︁
(Eq. (7.9)), skew parameter α

and FWHM of the fitted skew-normal distribution. The first three rows show the segrega-
tion energy in the pure Ni system ∆Epure

seg , for each of the pristine GB sites. The columns
correspond to Fig. 7.4a – 7.4e.

distribution does not have enough degrees of freedom. This is shown by a sign change of

the skew values for Fe of S2 (α < 0) and S3 (α > 0). Thus, S2 exhibits left- and S3 a

right-skewed spectrum. Finally, we find that the FWHM tends to decrease from Fig. 7.4a to

Fig. 7.4e.

Fe M
n W N

b Zr

−3

−2

−1

0

1

∆
E
X se

g
[e

V
]

Figure 7.5: Segregation energy spectra ∆EX
seg for all five solute elements. The solid line

around the histogram is a fitted skew-normal distribution. The colored solid horizontal line
refers to the mean values

⟨︁
EX

seg

⟩︁
. The black triangle and bar denote the mode and the

FWHM of the skew-normal distribution. The dashed colored lines represent the segregation
energy in the pure Ni system.
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However, keep in mind that the separation between S1, S2, and S3 in the disordered sys-

tem is not present any more and is solely for better comparison with the pristine system.

Consequently, for each solute, there is only one spectrum in the disordered system rather

than three. Those are shown in Fig. 7.5, where each of the spectra corresponds to the union

of all three from Fig. 7.4. E.g. the blue spectrum in Fig. 7.5 is computed by unifying all

three from Fig. 7.4a. Similarly, as Tab. 7.2 corresponds to Fig. 7.4, Tab. 7.3 summarizes the

fitting parameters and the values for the segregation energies in the pristine system.

Fe Mn W Nb Zr

min ∆Epure
seg [eV] −0.01 −0.10 −0.07 −0.07 −0.95⟨︁

∆EX
seg

⟩︁
[eV] −0.24 −0.24 −0.42 −0.83 −1.41

α [-] 0.97 0.72 1.45 −0.94 −0.66
FWHM [eV] 0.53 0.66 1.49 1.70 2.14

Table 7.3: Fitting parameters of the unified energy spectra (combination of S1, S2, and S3).
It shows the same values as Tab. 7.2 but for Fig. 7.5.

Therefore, by looking at the mean values in Fig. 7.5, we observe again a strongly enhance

segregation tendency for all of the five elements. Note that the enhancement is up to an order

of magnitude larger than the predicted tendency in the pristine system for Fe, Mn, W, and

Nb. E.g., for Nb, we find nearly no tendency to segregate to the GB (∆Epure
set = −0.07 eV)

in the pure system, Tab. 7.3 reports a mean value of the spectrum at
⟨︁
∆ENb

seg

⟩︁
= −0.83 eV.

In contrast, for Zr we report ∆Epure
seg = −0.95 eV and hence already a strong segregation

tendency in pure Ni, we still find an enhancement to
⟨︁
∆EZr

seg

⟩︁
= −1.41 eV for the alloyed

system.

7.2.4 Impact on McLean type segregation

To predict the equilibrium concentration at a grain boundary as a function of the segregation

energy, we can employ a thermodynamic model. The first, yet still commonly used, is the

McLean isotherm [248]. It connects the equilibrium solute concentration for a species X at

the GB, XX
GB with the the Gibbs free-energy of segregation, ∆GX

seg, and reads

XGB

1 −XGB
=

XB

1 −XB
exp

(︄
−∆GX

seg

kBT

)︄
(7.11)

where XB is the bulk concentration. In 0 K first-principles calculation, it is common to

substitute ∆EX
seg for ∆GX

seg due to the relation

∆G = ∆H − T∆S =

∆E⏟⏞⏞⏟
∆U +

0⏟ ⏞⏞ ⏟
∆pV + p∆V +

0 K=0⏟ ⏞⏞ ⏟
T∆S . (7.12)
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When applying Eq. (7.11) to real material systems one faces several shortcomings. Firstly,

most metals and alloys are poly crystalline, hence not only one GB but a huge variety

of GBs will be present. Furthermore, even for a single GB in a pure system, it is not

sufficient to describe it with a single segregation energy (see Fig. 7.1a). In other words, the

McLean-isotherm corresponds to a single site approximation. Therefore, Eq. (7.11) might

be generalized to multiple segregation sites i as suggested by [241]. To account for our

disordered system, similarly as for a poly crystalline systems we have to average over the

whole set of states forming an energy spectrum [247]. To employ a density of states (=

spectrum) distribution to obtain an averaged solute concentration
⟨︁
XGB(T )

⟩︁
was proposed

earlier [249–251] and reads according to Ref. [252] for a continuous distribution as

⟨︂
X̂

GB
(T )
⟩︂

=

∫︂ ∞

−∞
XGB

i (∆EX
seg, T )F̂

X
(∆EX

seg)d∆EX
seg . (7.13)

Similarly, for a discrete spectrum, the above equation need to be modified to

⟨︁
XGB(T )

⟩︁
=

N∑︂

u

XGB(∆EX,u
seg , T )FX

u ∆(∆EX
seg)⏞ ⏟⏟ ⏞

bin width

(7.14)

for the discrete case respectively, where u is the bin index. XGB is obtained by rewriting

Eq. (7.11) and reads for the multi-site case as derived by White and Coghlan [241] as

XGB
u =

[︄
1 +

1 −XB

XB
exp

(︄
−∆EX,u

seg

kBT

)︄]︄−1

(7.15)

for the , ξth site. At this point, we want to clarify the terminology. Although Eq. (7.13)

appears similarly in Ref. [247], the underlying physical meaning is slightly different. In the

works [246, 247], the formation of the energy spectrum arises from combining exactly one

bulk state (because there is only one nonequivalent site on an fcc lattice) with the large

variety of GB states (from many different sites at different GBs). In other words, there is

a spectrum of GB site formation energies but only one bulk formation energy per solute.

Hence, when computing ∆Eseg the bulk formation energy stays always the same. Hence each

segregation energy corresponds to a state at a GB. Therefore the term “multi-site” McLean

equation is accurate. In the present case, we deal also with a spectrum of bulk-formation

energies (108 distinct energies per solute), which is again combined with a spectrum of GB

site formation energies. Consequently, each site i in the “multi-site” McLean equation refers

to a set of combinations of bulk and GB states that yield the same (continuous) or similar

(discrete) segregation energy. Similarly we group (the states) with a certain energy bin

width, since we deal with a discrete histogram.

For a good model, it is necessary that the ensemble of local environments sampled for both

bulk and GB states is representative of the real alloy.
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Figure 7.6: Segregation energy spectrum for tungsten. The black line is the spectrum as
shown in Fig. 7.5. The dash-dot and dotted lines refer to distributions multiplied with
Fermi-Dirac distribution at 10 and 2500 K respectively.

Temperature dependence of the energy spectrum

At 0 K all states with a negative segregation energy will be filled up, in equilibrium. At finite

temperatures, also higher states might be filled with solute atoms due to thermal activation.

As each site or “trap“ can be only filled by a single solute atom, it should be legit to apply

Fermi-Dirac statistics [253, 254]. To account for the thermal activation, we multiply the

energy spectrum and consequently set the “Fermi level” to zero. Segregation energy of zero

means that the bulk and grain boundary formation energies for the solute point defect are

the same. Hence, it refers analogously to the highest occupied state. Figure 7.6 shows the

impact of temperature, due to the FD distribution for tungsten. Consequently to account for

this type of temperature dependence, the distribution to average over (Eqs. (7.13) – (7.14))

is different at each temperature T .

Determining the enthalpy and entropy of segregation

The original purpose of the McLean isotherm was to determine the segregation energy from

a set of measured concentrations at different temperatures. By rewriting the equation we

hence get an expression for an “effective” segregation energy which reads

∆Geff = −kBT ln

(︄⟨︁
XGB

⟩︁
(1 −

⟨︁
XGB

⟩︁
)

XB(1 −XB)

)︄
. (7.16)

where
⟨︁
XGB

⟩︁
is the the averaged equilibrium GB concentration from Eq. (7.14). Therein

we follow the work by Scheiber and Romaner [246], to obtain a temperature dependence of

∆Geff(T ). Note that if we would have used Eq. (7.15) instead of
⟨︁
XGB

⟩︁
the temperature

dependence of ∆G would cancel.
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Therefore, for a given bulk concentration XB we obtain a temperature dependence for the

segregation energy. Furthermore, we exploit the relation from Eq. (7.12). Hence, the slope

and intercept from a linear fit will yield an estimate for ∆H and ∆S. Recall that ∆Geff of

a single (non averaged) McLean isotherm is a constant, with respect to T . Consequently,

a temperature range in which Eq. (7.16) becomes constant indicates that the segregation

behavior (determined by the averaged isotherm) can be approximated with a single value.

Technical details on how the linear fit is carried out are given in Appendix .3.1. The influence

of the parameters of the skew-normal distribution’s parameters on ∆Geff(T ) are summarized

in Figs. .16 – .19.

Impact of energy spectra on McLean isotherms

Figures 7.7a – 7.7e compare all the different isotherms discussed so far. Firstly we focus on

the upper panels of Fig. 7.7. The difference between the simply averaged isotherm (dashed

colored line) according to Eq. (7.14) and the FD-smeared (solid colored lines) is negligible

as they overlap. However, a comparison of the averaged (colored dashed line) with the black

dashed isotherm computed from ∆Epure
seg reveals significantly lower solute concentrations

at higher temperatures. In contrast, the single isotherm computed from the mean value

spectrum (colored dotted line) overestimates the GB concentration at lower temperatures

but drops below the averaged isotherms, as those show a significantly flatter slope. The

flattening of the averaged isotherms becomes more pronounced for solutes with an increased

segregation tendency (e.g., compare Fe and Mn on the one hand, with W, Nb, and Zr on the

other hand) while consequently, the crossover between the mean and the averaged isotherm

shifts to higher temperature. Therefore, for Nb and Zr it is not on the shown temperature

scale anymore. In summary, all three isotherms are significantly distinct from each other,

e.g., for Nb we find at 1500 K concentrations ranging from XGB(∆Epure
seg ) = 6.9% over

XXB(⟨∆(Eseg)⟩) = 69.4 % to
⟨︁
XGB(F (∆Eseg))

⟩︁
= 95.0 %.

The lower panels show the effective segregation energy according to Eq. (7.16). The dot-

ted line gives a mean value of the distribution as a reference. The black dashed linear fit

illustrates how we arrive at ∆H and ∆S. For Fe (Fig. 7.7a) and Mn (Fig. 7.7b), ∆Geff con-

verges to a (nearly) constant value for temperatures > 1500 K. This convergence curvature

decreases for W and Nb, whereas for Zr, ∆Geff exhibits nearly linear behavior. Therefore,

we focus on Fe and Mn and try to elucidate this deviation. A “simple” McLean isotherm (at

constant XB) is characterized by a single segregation energy, which is constant throughout

a temperature range. The temperature dependence hence arises due to the spectral nature

of the segregation energy. We find a strong temperature dependence for ∆Geff for Fe and

Mn for up to T ≈ 750 K. The flattening behaviour to a constant level means that for high

T , it is possible to describe the isotherm using a single-site McLean isotherm. In contrast,

W, Nb, and Zr show a strong dependency on the effective segregation energy over the whole
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temperature range.
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Figure 7.7: The upper panels show the impact of the energy spectra on McLean-type segreg-
ation. The black dashed and the colored dotted line shows the isotherms (Eq. (7.11)) for the
pure system and the mean value of the distribution (Eq. (7.9)). The translucent isotherms
in the background refer to the different energy states (Eq. (7.15)) of the histogram. The
colored dashed line is the average of those isotherms according to Eq. (7.13). The solid
colored line represents the average employing FD-smeared energy spectra as described in
Sec. 7.2.4. The lower panels show a colored solid line representing the effective segregation
energy ∆Geff according to Eq. (7.16). The black dashed line is a linear fit for the low T
regime. The colored dotted line is

⟨︁
∆EX

seg

⟩︁
as a reference. All isotherms in Figs. 7.7a–7.7e

are plotted for constant XB = 3.5 at. %.

So far Fig. 7.7 showed the averaged McLean isotherms for a constant bulk solute concen-

tration of XB = 0.035. Nevertheless, one may vary also the XB and study the impact on

the isotherms. Furthermore, executing a linear fit to Eq. (7.16) at each bulk concentration

allows reporting the dependence of ∆H and ∆S on XB. Fig. 7.8 shows XGB in the first and

∆Geff in the second panel for a bulk solute concentration range of 1.0 · 10−5 < XB < 0.5.

However, note that XB = 0.5 is far beyond the dilute limit, hence, the underlying assump-

tion of non-interacting solutes will not hold anymore. Interestingly, we find that the effective

segregation energy changes its curvature in Fig. 7.8a for Fe at ≈ 2000 K and at ≈ 1000 K

for Mn. The linear behavior of the effective segregation energy in Fig. 7.7e is preserved

throughout the whole concentration range of XB as shown in Fig. 7.8c. For all solutes, we
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find (in the third panel) a logarithmic-like shaped dependency of ∆H and ∆S. For Zr, Nb,

and W, ∆H and ∆S have nearly overlapping shapes. However, upon comparing the solute

with each other, note that each panel for each solute has a different y-axis scale.
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Figure 7.8: McLean isotherms for all five solutes. For each solute there are three plots,
where Fig. 7.8a gathers Fe and Mn, and Fig. 7.8b combines W and Nb. The first panel
(with the solute’s name in it) shows the McLean isotherms for different bulk concentrations
1.0 · 10−5 < XB < 0.5. The second panel (below the first) visualizes the corresponding
effective segregation energies ∆Geff . The last plot shows ∆H and ∆S as a function of the
bulk solute concentration XB.
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7.2.5 Beyond the McLean segregation - An (adapted) Guttmann model

The McLean model has been extended and adapted for various applications. E.g., the Fowler-

Guggenheim isotherm [255] adds a concentration-dependent term to ∆Gseg to account for

solute interactions beyond the dilute limit. The model of Guttmann [256] is an extension

to a ternary system within a non-ideal solution. Another prominent example would be the

model from Wynblatt and Chatain [257]. For a more extensive review of the thermodynamic

model for GB segregation, we refer the reader to the excellent book from Lejček [258].

A modified Guttmann model

As our models depict a multicomponent system, in the following we will adapt Guttmann’s

model in two ways. Firstly, as atomistic models always replace only one solute atom per

cell, they represent a dilute system. Secondly, as pointed out by Wagih and Schuh [247],

the Guttmann model was designed to be used with a single segregation energy. Therefore,

we will adapt it for application in our disordered system, exhibiting a segregation energy

spectrum. Before we start with the modifications, we quickly summarize the basics of the

original Guttmann model.

In the above McLean equation, we made a simplification to ∆Gseg which we did not speak of

yet. As the Gibbs free energy is composed of the standard Gibbs free energy of segregation

∆G0
seg and an excess term ∆GE

seg such that

∆Gseg = ∆G0
seg + ∆GE

seg (7.17)

we implicitly set ∆GE
seg = 0 in Eq. 7.11. In a regular solution of randomly distributed

solvent and solute atoms, the excess Gibbs energy is equal to the mixing enthalpy and might

be expressed by a constant pair interaction energy between nearest neighbors [259–262].

∆GE
seg = ∆Hm =

∑︂

ξ ̸=η

αξηXξXη . (7.18)

When ξ and η are species of the system, Xξ and Xη denote the corresponding site fractions

in the bulk. αξη are the interaction parameters. Within the context of this thesis, note the

difference to the pair SRO parameters discussed in Sec. 6.1.1, as those interaction parameters

represent an energy. Furthermore, αξη can be expressed in terms of bonding energies εξη for

the corresponding bonds [263] as

αξη = Z

(︃
εξη −

εξξ + εηη
2

)︃
(7.19)
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where Z is the coordination number in the crystal or at the GB. In the following, M denotes

the species of a pure elemental matrix. Then, the excess Gibbs energy for a solute ξ reads

in a multi-component setting in a matrix of species M is given [258]

∆GE
ξ = −2

(︁
αGB
ξMX

GB
ξ − αB

ξMX
B
ξ

)︁
+
∑︂

η ̸=ξ,M

(︂
α

′GB
ξη XGB

η − α
′B
ξηX

B
η

)︂
. (7.20)

with α
′

ξη = αξη − αξM − αηM . Note, that in the above equation, one differentiates between

the pair interaction parameters at the GB, αGB
ξM , and in the bulk phase, αB

ξM . Commonly

one assumes αGB
ξM ≃ αB

ξM for which the equation simplifies to [259]

∆GE
ξ = −2αGB

ξM

(︁
XGB

ξ −XB
ξ

)︁
+
∑︂

η ̸=ξ,M

α
′GB
ξη

(︁
XGB

η −XB
η

)︁
. (7.21)

Adapting the model to our needs

As described through Eqs. (7.20) – (7.21) we cannot use the model yet. Firstly, our setup

within this chapter models the dilute limit, hence there are no interactions between the

solutes, αξη = 0. Hence, the net interaction parameter becomes α
′

ξη = −αξM − αηM , and we

can rewrite Eq. (7.20) to

∆GE
ξ = −2

(︁
αGB
ξMX

GB
ξ − αB

ξMX
B
ξ

)︁
+
∑︂

η ̸=ξ,M

[︁
(αB

ξM + αB
ηM)XB

η − (αGB
ξM + αGB

ηM)XGB
η

]︁
. (7.22)

This has an important implication: Eq. (7.22) only contains solute-matrix pair interaction

parameters of type αξM . The dilute limit model also affects the definition of the pair inter-

action parameters αξM . Eq. (7.19) requires the solute’s self pair interaction energy εξξ, to

computer the interaction parameter. Due to the dilute limit models this we cannot extract

this value from our calculation (see Sec. 7.2.5, later this chapter). Therefore we assume that

the pair interaction energy between two solutes ξ is the equals to the pair interaction energy

of the matrix M . Consequently, for εξξ = εMM , Eq. (7.19) becomes

αξM = Z (εξM − εMM) . (7.23)

The second shortcoming with the model is that it considers only one matrix species M while

our composition according to Tab. 7.1 exhibits five matrix elements. To account for that we

compute an ”effective” or ”averaged” pair interaction parameter modeling the solute matrix

interaction, for both the GB and bulk. Therefore, suppose ˜︂M is a matrix species (Ni, Co,

Cr, Ti, or Al in our case), and ξ is a solute species. Furthermore, let a ξ atom replace the ith
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site in a GB structure and the jth site in the bulk. Then we define a “per-site” interaction

parameter as

ᾱGB,i
ξM =

∑︂

˜︂M
Zi˜︂M

(︂
εGB
ξ˜︂M − εGB˜︂M˜︂M

)︂
(7.24)

ᾱB,j
ξM =

∑︂

˜︂M ′

Zj˜︂M ′

(︂
εB
ξ˜︂M − εB˜︂M ′˜︂M ′

)︂
(7.25)

where Zi˜︂M and Zj˜︂M ′ are the numbers of ξ−˜︂M bonds at the ith GB and jth bulk site respectively.

Note that the subscript M is not any more to the matrix species (as our models exhibit five

of them) but rather denotes the effctive matrix at the corresponding site. In the above

equation, ˜︂M ′ is the host species that is replaced by the solute atom ξ at the site i and

j. Still, we find a physical interpretation of the averaged “per-site” interaction parameter

ᾱi
ξM : It measures whether the site i is attractive for a solute ξ compared to its original state

when occupied with a ˜︂M ′ atom. Substituting the averaged pair interactions (Eqs. (7.24) and

(7.25)) back into Eq. (7.22) we obtain an expression for the excess Gibbs free energy for a

pair of a GB and bulk sites which reads

∆GE,ij
ξ = −2

(︂
ᾱGB,i
ξM XGB

ξ − ᾱB,j
ξMX

B
ξ

)︂
+
∑︂

η ̸=ξ,M

[︂
(ᾱB,j

ξM + ᾱB,j
ηM)XB

η − (ᾱGB,i
ξM + ᾱGB,i

ηM )XGB
η

]︂
.

(7.26)

Note, that we have similarly defined a single segregation energy for a combination of a GB

site i and a bulk site j in Eq. (7.6). Such a formulation has the advantage, that, similarly to

the multi-site McLean formalism, we can group the states such that we arrive at a multi-site

multi-component Guttmann isotherm. We do so, however only within a discrete setting

by averaging over Eq. (7.26). Therefore let K be the set of all tuples (i, j) within the kth

bin of our discrete segregation energy histogram for the solute ξ. We then average over all

combination of allowed sites in K as

∆Ḡ
E
u =

1

|K|
∑︂

(i,j)∈K
GE,ij

u . (7.27)

Note that if N is the total number of combinations of bulk and GB states, then FX
u = |K|

N

holds. In other words the number of states in histogram bin must be equal the number of

elements in K. Finally we arrive at a multi-state isotherm which reads for the uth segregation

energy state when solved for XGB
u as
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XGB
u =

[︄
1 +

1 −XB

XB
exp

(︄
−∆Eu

seg + ∆Ḡ
E
u

kbT

)︄]︄−1

(7.28)

where ∆Eξ,i
seg is substituted for ∆Gξ,i

seg. Note that although Eq. (7.28) looks similar to the

McLean multi-site Eq. (7.15) solving it is much more involved. Since ∆Ḡ
E,i
ξ (XGB

1 , . . . , XGB
ξ , . . . , XGB

N )

is a function of all the N solute site fraction at the GB, the Eq. (7.20) represents a fixed

point expression. Furthermore, for each state i one has to solve a system of N coupled fixed

point equations simultaneously.

Determining pair interaction energies

One last ingredient is missing, namely the pair interaction energies at the GB εGB
ξ˜︂M and in the

bulk εB
ξ˜︂M . While it is possible to estimate them using a pair potential (when available), we

describe a different approach here. As mentioned Sec. 7.2.1, we have 258 DFT calculations

at our disposal per solute, hence for all five solutes there are 540 bulk and 750 calculation

involving GBs. Although this is a large number of calculations, it is not sufficient as it does

not allow for extracting solute self-interactions (for segregation of a single solute) and solute-

solute interactions (for co-segregation). Nevertheless, in the following we demonstrate, how

the pair interactions involving one solute and matrix elements, as well as matrix-matrix

interactions, could be extracted from our present data. To get all inputs necessary for using

the Guttmann’s model, approximately doubled amount of calculations (with more than one

solute in the simulation box) would be needed. Such data is not at our disposal at this

time. To continue we assume that upon replacing a solute in either the bulk a GB the

energy differences can be mostly attributed to the reforming of the bonds (chemical part

of the solution energy), while the elastic contribution can be neglected. Furthermore, we

assume the atoms in the relaxed cell to occupy a perfect lattice and therefore ignore the

local elastic distortions. Using these assumptions, we expand the energy of a system in a

cluster-expansion-like manner as in Eq. (6.23) as

E = V (0) +
S∑︂

ξ

V
(1)
ξ Nξ +

C∑︂

i

S,S∑︂

ξ,η

V
i,(2)
ξη N i

ξη + . . . (7.29)

but truncate the series at the level of pair interactions. S and C are, similar as in the

previous chapter, the species and the coordination shells in the system. We can neglect V (0)

and set V
(1)
ξ = µξ to the chemical potential. Moreover, we only consider nearest-neighbor

interactions, which causes the sum over the coordination shells to drop. We rewrite the

above equation as
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E ≈
S∑︂

ξ

µξNξ +
S∑︂

ξ,η

V
1,(2)
ξη N1

ξη . (7.30)

Therefore Nξ is the number of ξ atoms in the system, and N1
ξη the number of ξ–η bonds

(= nearest neighbor pairs) in the system. In that case V
1,(2)
ξη will correspond to the pair

interaction energies εξη. We continue by expanding the following expression EX→˜︂M
B − EB

into such a cluster expansion, where the first term refers to the total energy of the system

where a solute atom X replaces a matrix atom of species ˜︂M . The latter term is the energy

of the disordered system without the solute X. Substituting this expression into Eq. (7.30),

we obtain

EX→˜︂M
B − EB ≈ µX − µ

˜︂M +

S,S∑︂

ξ,η

εξη∆N
1
ξη , (7.31)

where ∆N1
ξη is the difference in numbers of ξ – η bonds between the system with and

without the solute atoms. In our system with five solute atoms ξ ∈ {Fe,Mn,W,Nb,Zr}
and five matrix ˜︂M ∈ {Ni,Cr,Co,Ti,Al}, we need in total fifty parameters to express the

energy: Ten chemical potentials, five of type µξ plus five of type µ
˜︂M , and 40 pair interaction

energies. 25 solute-matrix interactions εξ˜︂M , five matrix element self-interactions ε˜︂M˜︂M , and

ten matrix-matrix interaction energies ε˜︂M˜︂M ′ . Note, due to the dilute limit we do not have εξξ

terms. We define an interaction vector J with NP (50 in our case) entries where NP is the

number of parameters. Similarly, we introduce an energy vector E with NC (540 = 5 × 108

in our case, for the bulk) entries with NC being the number of calculations available. The

matrix Π connecting J and E will consequently have dimensions NC ×NP. For NC ≥ NP

we find the over-determined set of equation

E = Π · J . (7.32)

Finally, we can compute the pair interaction energies using

J = Π−1 · E . (7.33)

Using our (somewhat artificial) splitting of the species of the system into solute (ξ) and

matrix species (˜︂M), the interaction vector J is defined as

J =
[︂
µξ1 , · · · , µξN , µ

˜︂M1 , · · · , µ˜︂MN′ , εξ1˜︂M1
, · · · εξN ˜︂MN′

, ε˜︂M1
˜︂M1
, · · · ε˜︂MN

˜︂MN′

]︂T
. (7.34)
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Consequently, assuming N solute species and N ′ matrix species, Π reads

Π = (7.35)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N
(1)
ξ1

· · · N (1)
ξN

N
(1)˜︂M1

· · · N (1)˜︂MN′
∆N

(1)

ξ1˜︂M1
· · · ∆N

(1)

ξN ˜︂MN′
∆N

(1)˜︂M1
˜︂M1

· · · ∆N
(1)˜︂MN

˜︂MN′
...

...
...

...
...

...
...

...

N
(i)
ξ1

· · · N
(i)
ξN

N
(i)˜︂M1

· · · N (i)˜︂MN′
∆N

(i)

ξ1˜︂M1
· · · ∆N

(i)

ξN ˜︂MN′
∆N

(i)˜︂M1
˜︂M1

· · · ∆N
(i)˜︂MN

˜︂MN′
...

...
...

...
...

...
...

...

N
(NC)
ξ1

· · ·N (NC)
ξN

N
(NC)˜︂M1

· · ·N (NC)˜︂MN′
∆N

(i)

ξ1˜︂M1
· · · ∆N

(NC)

ξN ˜︂MN′
∆N

(NC)˜︂M1
˜︂M1

· · · ∆N
(NC)˜︂MN

˜︂MN′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the superscript indices in parenthesis denote the index of the calculation. By applying

the (pseudo)-inverse matrix on the energy vector yield an estimation for εB. Similarly, we

might expand EX→˜︂M
GB − EGB, for which in our case NC = 750 (five solutes times five SQS

times 30 sites per SQS) calculations are available, to arrive at an estimate for εGB. As for

both the bulk and the GB cases, Eq. (7.33) is over-determined, Eq. (7.32) can be used to

inversely predict the energies for the interaction vector J to verify our assumptions.

−8 −6 −4 −2 0 2

∆Ef
B [eV]

−8

−6

−4

−2

0

2

∆
E
f B
,p

re
d
ic

te
d

[e
V

]

RMSE = 0.186 eV

R2 = 0.994

(a) Predicted energy differences EX→˜︂M
B − EB

for all bulk calculation using JB

−8 −6 −4 −2 0

∆Ef
GB [eV]

−8

−6

−4

−2

0

∆
E
f G

B
,p

re
d
ic

te
d

[e
V

]

RMSE = 0.304 eV

R2 = 0.983

(b) Predicted energy differences EX→˜︂M
GB −EGB

for all GB calculation using JGB

Figure 7.9: Actual energy versus the predicted energy using a simple pair-interaction model
for bulk and GB calculations.

Figures 7.9a and 7.9b show the deviation of the difference in energies when expanding it as

a linear sum of the interaction parameters JB and JGB. The predicted energies are plotted

against the calculated ones. The deviations originate of two main reasons. Firstly the pair

interaction energy is a function of the distance between two atoms. On a perfect lattice,

the nearest neighbor distance is constant for all pairs, which is not the case for our relaxed

models, where the pair distances are smeared out (see Fig. 6.2). Secondly, taking into account

only nearest neighbor pairs is a simplification that neglects pairs at larger distances as well

as multi-body terms. The first shortcoming explains why we find from Fig. 7.9 a smaller
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deviation for the bulk case (RMSE = 0.186 eV) than for the GB case (RMSE = 0.304 eV):

The distribution of first-neighbor distances is broader in the relaxed GB structures. This is

firstly, due to the inherent structural complexity of the GB resulting in a broader distribution

of first neighbor distances. Secondly, stronger local relaxations at the disordered GB will

broaden the distribution even further.
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Figure 7.10: Computed pair interaction energies at the GB (upright triangles) and in the bulk
(downwards pointing triangle). Colored interaction energies are solute-matrix interaction
εξ˜︂M , where black symbols represent matrix-matrix type interaction energies ε˜︂M˜︂M .

Figure 7.10 shows the values of the pair interaction energies for all occurring interactions in

our model system. The values for the bulk and GB interaction are represented by upright and

inverted triangles. The horizontal bar refers to the mean value of the interaction. Focusing

on the solute atoms (colored blocks) reveals that for across all solutes the interaction with

Al is the weakest one (always the last entry in the colored blocks). Additionally, we find

weaker solute-matrix interactions for Fe and Mn than for W and Nb. Furthermore, Fig. 7.10

confirms that Guttmann’s assumption of εGB ≃ εB is justified, the values are similar for most

of the interactions. Except for the solute-matrix interactions of W (green block), we find a

larger discrepancy between the bulk and GB interaction parameters. Finally, we observe the

largest differences for interaction containing aluminum, e.g., εZrAl, εAlAl, εAlCo, εAlNi with the

largest deviation of ≈ 0.8 eV for εTiAl. Due to the low amounts of Ti and Al in our models,

it is much more unlikely to (re)form Ti–Al than e. g. Ni–Cr bonds. Consequently the

∆NTiAl term will be nonzero only rarely in Π, leading to bad estimates for those interaction

parameters.

While we have given the theoretical foundation for our modified Guttmann model in Sec. 7.2.5

and estimated the necessary (interaction) parameters for our multi-component systems in

the previous section, we have not implemented a solver for Eq. (7.28). It would be interesting

to compare the mod. Guttmann model with the McLean, as it takes into account solute-

matrix interactions. As the segregation energy spectrum, therefore, becomes a function of

the matrix elements, tungsten would be an interesting candidate for comparison, due to its

strong interaction with the matrix.
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7.3 Outlook

Besides the fact that the numerical solution of the coupled isotherms of the modified Guttmann

model are to be computed, we want to point the reader’s attention to several other research

topics that will complement the present studies. First of all, one might go beyond the dilute

limit in the multi-component system. However, as this is a computationally demanding task

already in a pure system, using first-principle methods only a few selected solutes might be

studied in a disordered system. Secondly, solute-solute interaction might also impact the

segregation behavior, which is also the reason why Guttmann’s model exists at all, namely

to study the co-segregation of phosphorous in iron. Similarly, exploring such solute-solute

interactions in a disordered matrix is highly non-trivial and computationally expensive. Fi-

nally, and probably the most important feature of the microstructure of Ni-base alloys is

the γ′ phase. Hence, to fully understand a solute’s behavior it is crucial to know also its

phase preferences (matrix of γ′). Interestingly, due to the disorder in the matrix, also the

phase preference, needs a spectrum-based treatment in contrast to a pure system where a

single scalar value is sufficient. However accessing the thermodynamics of the L10 γ
′-phase

is again computationally demanding without prior knowledge from experiments, due to the

two different sublattices.
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List of publications

First author publications

1. D. Gehringer , L. Huber, J. Neugebauer & D. Holec . “Segregation to α2/γ interfaces

in TiAl alloys: A multiscale QM/MM study”. Physical Review Materials, 7 (6), (2023),

DOI: 10.1103/physrevmaterials.7.063604

Abstract: In this study we present an implementation of a coupled multiscale quantum

mechanics/molecular mechanics approach well suited for studying compositionally

rich extended defects. Our focus is on interfacial phenomena of α2/γ phase bound-

aries in intermetallic TiAl alloys. We prove that our implementation is capable

of accurately reproducing site-preference energies of solutes reported by previous

density functional theory studies. To properly study segregation phenomena, we

developed a formalism for segregation energies in systems with two sublattices (Ti

and Al). Our model provides predictions consistent with atom probe tomography

measurements reported in literature for a large number of solute atoms

Parts of Chap. 4 are based on this publication.

2. D. Gehringer, M. Friák, D. Holec: ”Models of configurationally-complex alloys made

simple”. Comput. Phys. Commun., 286, 108664 (2023). DOI: 10.1016/j.cpc.2023.108664

Abstract: We present a Python package for the efficient generation of special quasi-

random structures (SQS) for atomic-scale calculations of disordered systems.

Both, a Monte-Carlo approach or a systematic enumeration of structures can

be used to carry out optimizations to ensure the best optimal configuration is

found for given cell size and composition. We present a measure of randomness

based on Warren-Cowley short-range order parameters allowing for fast analysis

of atomic structures. Hence, optimal structures are found in a reasonable time for
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several dozens or even hundreds of atoms. Both SQS optimizations and analysis

of structures can be carried out via a command-line interface or a Python API.

Additional features, such as optimization towards partial ordering or independent

sublattices allow the generation of atomistic models of modern complex mater-

ials. Moreover, hybrid parallelization, as well as distribution of vacancies, are

supported. The output data format is compatible with ase, pymatgen and pyiron

packages to be easily embeddable in complex simulation workflows.

Parts of Chap. 5 are based on this publication.

3. D. Gehringer, T. Dengg, M. N. Popov, D. Holec: “Interactions between a H2 Molecule

and Carbon Nanostructures: A DFT Study”. C — Journal of Carbon Research, 6 (1),

16 (2020). DOI: 10.3390/c6010016

Abstract: On a long path of finding appropriate materials to store hydrogen, graphene

and carbon nanotubes have drawn a lot of attention as potential storage materials.

Their advantages lie at hand since those materials provide a large surface area

(which can be used for physisorption), are cheap compared to metal hydrides, are

abundant nearly everywhere, and most importantly, can increase safety to existing

storage solutions. Therefore, a great variety of theoretical studies were employed

to study those materials. After a benchmark study of different van-der-Waals

corrections to Generalized Gradient Approximation (GGA), the present Density

Functional Theory (DFT) study employs Tkatchenko–Scheffler (TS) correction

to study the influence of vacancy and Stone–Wales defects in graphene on the

physisorption of the hydrogen molecule. Furthermore, we investigate a large-angle

(1,0) grain boundary as well as the adsorption behaviour of Penta-Octa-Penta

(POP)-graphene.

Co-authored publications

1. I. Spacil, D. Gehringer, D. Holec, M. Albu, J. Li: ”Elucidating effects of Eu and

P on solidification and precipitation of Al-7Si-0.3Mg based alloys refined by Ta and

stochiometric Al-Ti-B”. submitted to Journal of Alloys and Compounds – under review

Abstract Effects of Eu (up to 500 ppm) and P (up to 40 ppm) on solidification

and precipitation of Al-7Si-0.3Mg based alloys refined by solute Ta (0.12wt.%)

and stochiometric Al-2.2Ti-1B grain refiner was investigated using optical mi-

croscopy, differential scanning calorimetry (DSC) scanning electron microscopy

(SEM) and transmission electron microscopy (TEM) as well as density functional

theory (DFT) calculations. It was found that (i) solute Ta can refine α-Al grains

and is unaffected by the addition of Eu and/or P. (ii) 200 ppm Eu is enough to
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modify eutectic Si although its modification effect can be enhanced with higher Eu

additions (up to 500 ppm). (iii) A high P concentration (40 ppm) counteratcs the

modification effect in the alloy modified with 200 ppm Eu and therefore unmodi-

fied structure is obtained. (iv) Even with the addition of Eu and P, the activation

energy of stable β-Mg2Si is calculated to be very low (60-70 kJ/mol), indicating

a short time for complete precipitation of β-precipitates. (v) One possible nuc-

leation sequence in Al-Si-Mg based alloys modified with Eu has been proposed

to be Mg3P2 → EuP → Al2Si2Eu based on the lattice mismatch calculation and

thermodynamic stability. (vi) DFT calculations suggest that Eu is energetically

favourable for TPRE growth mechanism, which is also true for other chemical

modifiers (Ca, Na, Sr, Y and Yb). The present investigation provides new in-

sights into controlling solidification (mainly for the grain refinement of primary

Al and eutectic grains) and precipitation (mainly for β-MgSi precipitate) of Al-

7Si-0.3Mg based alloys via the addition of Ta as a refiner of α-Al and Eu as a

modifier of eutectic Si.

Contribution: I have contributed, during discussions on how to interpret the calcu-

lation results. I helped to design the study of the computational part. Moreover

I have carried out parts DFT calculations and supplied the models.

2. Y.W. Sun, D. Holec, D. Gehringer, L. Li, O. Fenwick, D.J. Dunstan, C.J. Humphreys:

”Graphene on silicon: Effects of the silicon surface orientation on the work function

and carrier density of graphene”. Phys. Rev. B Condens. Matter, 105 (16), 165416

(2022). DOI: 10.1103/PhysRevB.105.165416

Abstract: Density functional theory has been employed to study graphene on the

(111), (100), and (110) surfaces of bare silicon (Si) substrates, which provide

three different densities of surface atoms. There are several interesting findings.

First, carbon atoms in graphene can form covalent bonds with Si atoms, when

placed close enough on Si (111) and (100) surfaces, but not on the (110) surface.

The Si (111) surface shifts the Fermi level of graphene into its conduction band,

resulting in an increase of the electron density by three orders of magnitude. The

work function of graphene is increased by 0.29 eV on the (111) surface, likely

due to the surface dipole from the redistribution of π orbitals. The change in the

number of available states below the Fermi level of graphene due to its interaction

with the Si surface, is the main cause for the unconventional doping reported in

this paper. The electron density can also be increased by eighty times on a Si

(100) substrate without the shift of Fermi level, which is another clear example of

the proposed doping mechanism. These striking effects that different orientations

of a silicon substrate can have on the properties of graphene are related to the
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surface atom density of the substrate. These results provide valuable guidance to

the growth of graphene on Si for various purposes for electronic devices.

Contribution: I have contributed, during discussions on how to interpret the calcu-

lation results. Moreover I have carried out the DFT calculations

3. F. Schmid, D. Gehringer, T. Kremmer, L. Cattini, P.J. Uggowitzer, D. Holec, S.

Pogatscher: “Stabilization of Al3Zr allotropes in dilute aluminum alloys via the addi-

tion of ternary elements”. Materialia, 21, 101321 (2022).

DOI: 10.1016/j.mtla.2022.101321

Abstract: The formation of Al3Zr particles within dilute aluminum alloys can con-

tribute effectively to controlling microstructure evolution and enhancing material

properties. However, the possible transformation of Al3Zr from its initial meta-

stable crystal structure L12 into its stable, tetragonal structure D023 is associated

with faster coherency loss and the coarsening of Al3Zr particles. In this regard,

our study aims at identifying ternary elements that can disrupt this mechanism.

For this purpose, nine ternary Al-Zr-X alloys (Er, Sc, Hf, Y, Nb, Mn, Cu, Zn

and Si) plus a base alloy (Al-Zr) were produced. Isochronal aging was performed

at 475 ◦C and 550 ◦C, and an investigation of the particle landscape was carried

out by STEM and HR-TEM. In parallel, we conducted ab initio calculations to

investigate fundamental properties of ternary AlZrX-particles such as substitu-

tion likeliness, heat of formation and transformation mechanisms. The elements

investigated show various behaviors. Fewer than half of the elements (Er, Sc, Hf

and Si) are found to be incorporated into Zr-rich particles to any large extent;

Er and Sc exhibit the well-known core-shell structure. Y and Zn do not interfere

at all with the precipitation process. Nb, Mn and Cu form particles on their

own, with Zr particles often attached to them. Concerning crystal structures, all

element additions except for Y and Si widen the stability regime of L12.

Contribution: I have contributed, the design of the study for the computational part

of the paper. Furthermore, the calculations the evaluations and the plotting of

the figures in the respective chapter.

4. Y.W. Sun, D. Gehringer, D. Holec, D.G. Papageorgiou, O. Fenwick, S.M. Qureshi,

C.J. Humphreys, D.J. Dunstan: “Significant interlayer coupling in bilayer graphene

and double-walled carbon nanotubes: A refinement of obtaining strain in low-dimensional

materials”. Phys. Rev. B Condens. Matter, 105 (2), 024103 (2022).

DOI: 10.1103/PhysRevB.105.024103

Abstract: This paper solves a longstanding debate: Raman measurements on double-

walled carbon nanotubes appear to show that significantly more pressure than
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expected can be transmitted to the inner tube. We reinterpret those Raman

spectra consistently reported in the literature, by assigning the Raman peaks to

coupled vibrational modes of both walls, instead of individual contributions from

the inner and outer tubes. These coupled vibrational modes are important for

the correct interpretation of the Raman shift from strained layered 2D materials

(we demonstrate it on bilayer graphene as an example), for researching the mech-

anical properties, thermal expansion, and strain engineering of two-dimensional

materials.

Contribution: I have provided the calculations and evaluations for the figures in

Sec. B.

5. D. Holec, N. Abdoshahi, D. Gehringer, L. Hatzenbichler, A. Sakic, H. Clemens:

“Electrons meet alloy development: a γ-TiAl-based alloys showcase”. Adv. Eng.

Mater., (2021). DOI: 10.1002/adem.202100977

Abstract: Density functional theory is a workhorse of present electronic structure cal-

culations. These are increasingly more applied in materials science as they allow

for insight beyond experimental capabilities, testing hypotheses, or isolating vari-

ous phenomena. Herein, an overview of the applications of the electronic structure

calculations applied to extracting alloying trends, which, in turn, leads to refining

of alloys, is presented. The topic covers the construction of structural models by

properly considering site preference. Next are discussed alloying trends in struc-

tural and mechanical properties. The final part deals with microstructure features

such as extended defects or multi-phase constitutions. The unifying themes of the

presented application are compositional trends in properties of lightweight inter-

metallic γ-TiAl-based alloys

Contribution: I have provided, the methodology and the data for Sec. 2.1 of the

publication

6. Y. W. Sun, D. Holec, D. Gehringer, O. Fenwick, D. J. Dunstan, C. J. Humphreys: “Er-

ratum: Unexpected softness of bilayer graphene and softening of A-A stacked graphene

layers [Phys. Rev. B 101, 125421 (2020)]”. Phys. Rev. B Condens. Matter, 103 (11),

119901 (2021). DOI: 10.1103/PhysRevB.103.119901

Contribution: I have performed the calculations presented in the erratum. Moreover,

I have found the error which lead to the publication of this correction. Finally I

have also written a small section, explaining the technical details which needed

to correct the error.
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7. M. N. Popov, T. Dengg, D. Gehringer, D. Holec: ”Adsorption of H2 on Penta-Octa-

Penta Graphene: Grand Canonical Monte Carlo Study”. C — Journal of Carbon

Research, 6 (2), 20 (2020). DOI: 10.3390/c6020020

Abstract: In this paper, we report the results of hydrogen adsorption properties of a

new 2D carbon-based material, consisting of pentagons and octagons (Penta-Octa-

Penta-graphene or POP-graphene), based on the Grand-Canonical Monte Carlo

simulations. The new material exhibits a moderately higher gravimetric uptake

at cryogenic temperatures (77 K), as compared to the regular graphene. We

discuss the origin of the enhanced uptake of POP-graphene and offer a consistent

explanation.

Contribution: I have contributed the pair-potential with which the study was con-

ducted.

8. Y. W. Sun, D. Holec, D. Gehringer, O. Fenwick, D. J. Dunstan, C. J. Humphreys:

“Unexpected softness of bilayer graphene and softening of A-A stacked graphene lay-

ers”. Phys. Rev. B Condens. Matter, 101 (12), 125421 (2020).

DOI: 10.1103/PhysRevB.101.125421

Abstract: Density functional theory has been used to investigate the behavior of the π

electrons in bilayer graphene and graphite under compression along the c axis. We

have studied both conventional Bernal (A-B) and A-A stackings of the graphene

layers. In bilayer graphene, only about 0.5 % of the π-electron density is queezed

through the sp2 network for a compression of 20 %, regardless of the stacking

order. However, this has a major effect, resulting in bilayer graphene being about

six times softer than graphite along the c axis. Under compression along the

c axis, the heavily deformed electron orbitals (mainly those of the π electrons)

increase the interlayer interaction between the graphene layers as expected, but,

surprisingly, to a similar extent for A-A and Bernal stackings. On the other

hand, this compression shifts the in-plane phonon frequencies of A-A stacked

graphene layers significantly and very differently from the Bernal stacked layers.

We attribute these results to some sp2 electrons in A-A stacking escaping the

graphene plane and filling lower charge-density regions when under compression,

hence, resulting in a nonmonotonic change in the sp2-bond stiffness.

Contribution: I have performed the calculations presented in the paper, performed

parts of the evaluation. Furthermore, I tried to help throughout various discus-

sions.
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Appendix

.1 Thermodynamic limits of the difference of the chemical

potentials

.1.1 for the α2-bulk phase

The thermodynamic limits for the α2 phase, which is bordered by the α-Ti with ≈ 6 at %.

Al, and the γ-TiAl phase. As the α-Ti with Al is a solid solution we have calculated the

energy of five different optimized special quasirandom [215] (SQS) structures. Those (SQS)

structures’ pair-correlations were optimized by systematically probing all possible (25.6 ·106)

atomic arrangements using the sqsgenerator package [217]. Each cell having 81 (3 × 3 × 3-

supercell) atoms from which five were aluminum (6.17 at %. Al). For α-Ti and α2-Ti3Al to

coexist we require

Ē
α
SQS

9
=

5

81
µAl +

76

81
µTi (36)

Eα2 = 3µTi + µAl . (37)

Therefore we obtain the lower limit

∆µα/α2 = µTi
α/α2

− µAl
α/α2

=
1

61
(36Eα − 81Eα2) . (38)

Similarly for the upper thermodynamic limit (γ-TiAl), from requiring

Eγ = µTi + µAl (39)

Eα2 = 3µTi + µAl (40)

we get analogously
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.1 Thermodynamic limits of the difference of the chemical potentials

∆µα2/γ = µTi
α2/γ

− µAl
α2/γ

= Eα2 − 2Eγ (41)

.1.2 for the γ-bulk phase

The γ-TiAl phase is, for lower Al contents bordered by the α2-Ti3Al phase in is hence given

by Eq.41. For higher aluminum contents the γ-phase field borders the h-TiAl2. Again, for

both phases to co-exist

Eh = µTi + 2µAl (42)

Eγ = µTi + µAl (43)

from which we obtain

∆µγ/h = µTi
γ/h − µAl

γ/h = 3Eγ − 2Eh (44)
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.2 Fits for mechanical properties of TiAl interfaces

.2 Fits for mechanical properties of TiAl interfaces
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Figure .13: Fit of the universal binding-energy relation [199] for the screened solutes at the
γ/γ interface. The x-axis refers to the vacuum-separation.
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Figure .14: Fits for the estimation of the directional Young’s modulus of the γ(111)/γ(111)
interface, into the direction perpendicular to the interface direction. Five discrete data-

points were used to estimate the elastic constants
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.3.1 Linear fit to extract enthalpy and entropy of segregation

While it may not be visible to the reader, all McLean isotherms (Figs. 7.7, 7.8, .16, .17,

.18 and .19) presented exhibit a temperature range from 50 to 2500 K. This is because for

very low temperatures finite sized (in terms of bits) floating point arithmetic reaches its

accuracy limit. Furthermore, Figs. 7.7 and 7.8 present ∆Geff as a function of temperature

accompanied by a linear fit. However, for Fe, Mn and also W we find a strong non-linear

behaviour of the effective segregation energy for high temperatures. To tackle this issue we

have manually fixed the temperature range for which the linear fit to extract ∆H and ∆S

is carried out. For all solutes the lower border is Tmin = 50 K, while the upper border for

Fe and Mn is TFe
max = TMn

max = 750 K. For W we have used TFe
max = 1250 K. Finally for Nb

and Zr the upper limits are TNb
max = T Zr

max = 2000 K. We note that for Fig. 7.8 we keep the

temperature ranges constant when varying the bulk concentration XB.

Impact of skew-normal distribution parameters on ∆Geff

In the following we want to study the impact of the skew-normal distribution parameters,

µ, σ XB and α on the temperature dependence of ∆Geff We begin to obtain an analytic

expression for the concentration averaged isotherm
⟨︂
X̂

GB
⟩︂

. By substituting Eqs. (7.8) and

(7.15) in Eq. (7.13) we obtain

⟨︂
X̂

GB
⟩︂

=
1

σ
√

2π

∫︂ ∞

−∞

exp
(︂
− (u−µ)2

2σ2

)︂
erfc

(︂
−α(u−µ)√

2σ2

)︂

1 +
1 −XB

XB
exp

(︃
− x

kbT

)︃ du . (45)

As best to our knowledge there is no solution in terms of elementary functions when plugging

the above averaged isotherm into Eq. (7.16). Therefore, Figs. .16 – .19 show averaged McLean

isotherms and effective segregation energies, for hypothetical energy spectra. Each figure

presents isotherms are for the variation of a different parameter.
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Figure .15: Segregation energies (Eqs. (5.8)-(5.10)) are shown in reference to Ef
γ . The purple

line represents the α2/γ interface. In each plot, the x-axis represents the states of the solute
in γ-bulk (very left), at α2/γ (left of the purple line), α2/γ (right of the purple line) and
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Figure .16: Influence of the variance parameter σ on averaged McLean isotherms (upper
panel) and the corresponding effective segregation energy (lower panel). The isotherms are
computed for constant σ = 0.25 eV, α = 1, and XB = 3.5 %. µ is varied from -1 to -0.05 eV.
The plot on the right shows the corresponding energy spectra.
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Figure .17: Influence of the skew parameter α on averaged McLean isotherms (upper panel)
and the corresponding effective segregation energy (lower panel). The isotherms are com-
puted for constant µ = −0.5 eV, α = 1 and XB = 3.5 %. σ is varied from 0.05 to 0.5 eV.
The plot on the right shows the corresponding energy spectra.
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Figure .18: Influence of the variance parameter σ on averaged McLean isotherms (upper
panel) and the corresponding effective segregation energy (lower panel). The isotherms are
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Figure .19: Influence of the bulk solute concentration XB on averaged McLean isotherms
(upper panel) and the corresponding effective segregation energy (lower panel). The iso-
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[103] C. van der Oord, G. Dusson, G. Csányi, and C. Ortner, Machine Learning: Science

and Technology 1, 015004 (2020).

[104] J. Nigam, S. Pozdnyakov, and M. Ceriotti, The Journal of Chemical Physics 153,

121101 (2020).

[105] P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Physical Review B 28, 784 (1983).
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