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Kurzfassung 
 
Es ist ein Axiom des wirtschaftlichen Handelns, dass die Zukunft ungewiss ist. Diese Tat-
sache ist besonders der Ölindustrie bekannt, die mit vielen unbekannten Variablen und 
Risiken umgehen muss. Besonders die Projektplanung ist von diesem Problem betroffen, 
da es ihre Aufgabe ist, zukünftige Ereignisse zuverlässig vorherzusehen. 
Daher ist die Analyse von Projektplänen ein wichtiger Bestandteil des Projektmanage-
ments, um Risiken im Zeit- und Kostenplan angemessen zu begegnen. Dieser Vorgang 
wird als “Probabilistic Schedule Analysis” (PSA) bezeichnet. Es handelt sich hierbei um 
eine probabilistische Analyse der Zeitpläne, also eine Abschätzung möglicher Projektver-
läufe mit Hilfe der Wahrscheinlichkeitsrechnung. Schlüsselfragen sind die Schätzung der 
Projektlaufzeiten (und Kosten), das Bestimmen die wichtigsten Risiken und deren Einfluss-
faktoren und die Entwicklung von Ausweich- oder Milderungsmaßnahmen. 
Der Fokus dieser Arbeit lag einerseits auf der theoretischen Herleitung (Literaturstudie, 
Interviews) von optimalen PSA-Strategien und andererseits auf der praktischen Erprobung 
der Strategien mit realen Projektplänen (MS Project) und der Risikoanalyse-Software 
@Risk. 
Die Ergebnisse des theoretischen Teils besagen, dass die probabilistische Zeitplan-Analyse 
einem deterministischen Ansatz überlegen ist, weil sie Unsicherheit und damit reale Ver-
hältnisse widerspiegelt. In vielen Fällen wurde und wird dabei die Monte-Carlo-Simulation 
angewendet. Neben Monte-Carlo ist die einfachere PERT-Analyse zwar eine rohe, aber 
schnelle Methode, um mögliche Zeitpläne abschätzen zu können. Weiters ist die Abschät-
zung valider Eingangsdaten wesentlich wichtiger als die Suche nach einer „magischen Ein-
gangsverteilung“. Somit sollte die Abschätzung von Eingangsdaten mit einer elaborierten 
Methodik geschehen. Die Interviews mit Experten bei der OMV bestätigten im Grunde die 
Literaturrecherche. Zusätzlich wurde aber zusätzlich eine transparente und klar kommuni-
ziert PSA-Richtlinie gefordert und PSA-Ergebnisse müssen für die Präsentation richtig 
aufbereitet werden. 
Die Simulationsergebnisse des praktischen Teils ergaben, dass die Schlüsselfaktoren: Form 
der Eingangsverteilung, Mittelwert und Streuung der Eingangsverteilung, der zentrale 
Grenzwertsatz, Aktivitätseinschränkungen und Aktivitätskorrelationen für empfindliche 
Verschiebungen im Zeitplan verantwortlich sind. Diese Faktoren haben besondere Aus-
wirkungen auf die Fertigstellung des Projekts und müssen sorgfältig während der Planung 
überprüft werden. 
Alle wichtigen Erkenntnisse dieser Arbeit sind in einem Flussdiagramm (vgl. Abbildung 92) 
zusammengefasst, das eine adäquate PSA-Vorgangsweise beschreibt. 
Insgesamt sagt die Arbeit aus, dass eine gut ausgeführte PSA eine Grundvorrausetzung ist, 
um reale Verhältnisse in die Projekt-Zeitpläne einzuarbeiten und so zuverlässige Daten für 
den Projektverlauf, die Projektkosten etc. zu bekommen. Nur so ist es möglich, Zeitverzö-
gerungen und Kostentreiber wirkungsvoll zu identifizieren. 

  



 

  
 

Abstract 
 
It is an axiom of economically act that future is uncertain. This fact is known in particular 
by the oilfield industry which naturally is an industry that faces many uncertainties (un-
known variables) and risks. Especially project scheduling is concerned by this problem, 
because its job is to make future events manageable.  
Thus the analysis of project schedules is an important part of project management in order 
to manage project schedule risk adequately. This procedure is called probability schedule 
analysis (PSA). Key issues of PSA are estimating the project durations (and consecutively 
costs), finding the most critical risks and important impact factors and determining mitigat-
ing or avoiding strategies. 
Therefore, the core of this study was to collect best practices of probabilistic schedule anal-
ysis from the theoretical (literature) view and conduct some PSA examples with @Risk and 
MS Project from the practical point of view. To do so this work has four base chapters 
(Chapter 1: theoretical probability schedule analysis, Chapter 2: input data estimation, 
Chapter 3: company survey, Chapter 4: applied probability schedule analysis) studying the 
most important fields of today`s PSA. 
The literature outcome says that probabilistic schedule analysis is superior to a determinis-
tic approach by taking uncertainty and therefore reality into account. In many cases Monte 
Carlo simulation was and is used. On the other hand the more straightforward PERT anal-
ysis can give you a raw and quick approach to possible values. Furthermore collecting the 
right input data is more crucial than finding a “magical input distribution”. Input data esti-
mation for your schedule analysis must include diverse groups of estimators (controlled by 
some estimation workshop) which are aware of black swans, cognitive biases, heuristics 
and the statistical concept of crowd wisdom. The company survey basically confirms the 
literature output, moreover a transparent and clearly communicated PSA guideline is de-
manded and PSA outcomes must be well documented for presentation. 
On the practical side @Risk simulation results state that the main key factors are input 
distribution shape, input distribution mean and spread, the Central Limit Theorem, task 
constraints and task correlations. All of them have specific impacts on the completion date 
of the project and should be carefully revisited during scheduling. 
All results mentioned above are implicated in a flowchart (cp. Figure 92) suggesting a way 
of doing PSA. Firstly an estimation workshop takes place where probabilistic input data is 
generated. Ideally this is combined with producing the deterministic baseline schedule, thus 
the same people can work on both parts. As result a probabilistic schedule is achieved that 
can enter the Monte Carlo simulation stage. Schedule risk drivers are now (hopefully) de-
tected and schedule can be optimised. One important process step is filling, checking and 
maintaining a Monte Carlo input value database. This database builds the foundation for 
subsequent estimation workshop and will be an assessment reference in the following pro-
cess steps. 
Overall the true intent of PSA is encompassing all uncertainties to elicit confidence inter-
vals in order to make better decisions and highlight important duration and cost drivers. 
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Aims of this Study 
In general, OMV is interested in improving its knowledge base on conducting a probability 
schedule analysis (PSA). To cope with those allowances PSA has to deliver the following 
results: 

 Identifying sensitive tasks! 

 Finding realistic project completion dates! 

 Testing the robustness of existing deterministic schedules! 
Therefore it was the central goal of this study to collect best practices of probabilistic 
schedule analysis from the theoretical and practical point of view. To do so the following 
sub goals were broken down: 

 Investigation of PSA practices from relevant literature. 

 Identification of best practices and lessons learnt. 

 Practical analysis of real schedules of field development projects. 

 Short guideline for conducting a PSA. 
Furthermore, the basic structure of this work has a theory and a practical part: 
 

Practical Part Theoretical Part 

Reality check: 2 genuine OMV schedules 
(based on MS Project 2010) and several 
dummy schedules will be observed and pro-
cessed with the risk analysis software @Risk. 

Literature check: a closer look at papers, 
books, articles dealing with PSA and esti-
mation approaches in general. 

Stakeholder opinions: company survey. Finding critical points of PSA. 

Knowledge management: short guideline for 
conducting a PSA. 

Dealing with critical points of PSA. 

Expected results:  

 Simulation results 

 Best practices 

 Lessons learnt 

 Important factors and specif-
ics 

Expected results: 

 PSA basics 

 Best practices 

 Lessons learnt 

 List of best literature 
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1 Theoretical Probabilistic Schedule Analysis 

1.1 Basics of Deterministic and Probabilistic Scheduling 

1.1.1 Principle of a Deterministic Schedule Analysis 

Basic deterministic schedule estimating and analysis contains the subsequent points: con-
struct a logical task network, determine a best estimate of every task duration, compare 
these estimates to find network`s critical path (→ critical path), sum all best estimates on this 
path and define the sum as the overall duration of the project. 
The next chapter will describe two techniques that are very common to support the deter-
ministic approach. 

Critical Path Analysis and the PERT Approach 

Critical Path Analysis (which is also called the Critical Path Method, CPM) and the addi-
tional PERT (Program Evaluation and Review Technique) were developed in the 1950s to 
control large defence projects in the United States and have been used routinely since then. 
Within a project it is likely that you will display your final project plan as a Gantt chart (for 
example using MS Project or other software). A Gantt chart is a bar chart to display project 
tasks, their duration, time locations and connections with each other. 
 

 

Figure 1: Example for a Gantt chart (MS Project). 

The benefit of using CPM within scheduling and on base of a Gantt chart is helping to 
develop and test your plan ensuring robustness. Critical Path Analysis formally identifies 
tasks which must be completed on time for the whole project to be completed on time. 
These tasks form the critical path. CPM gives you therefore the minimum length of time 
needed to complete a project. It also identifies which tasks can be delayed if resource needs 
to be reallocated to catch up on overrunning tasks.1 
PERT is a variation on CPM that takes a more sceptical view of time estimates made for 
each project stage and brings in uncertainty.  
You can perform a basic PERT analysis to estimate task duration. After you specify the 
optimistic, pessimistic and expected durations of all tasks in your schedule, PERT (often 
implemented in project planning software) calculates a weighted average of the three dura-
tions. You can also use these durations separately to determine a shortest, longest and most 
likely project end date.2 

                                                 
1
 Cp. Mind Tools Ltd (1996) 

2
 Cp. MS Office Support (2011) 
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1.1.2 How to use CPM?3 

As with Gantt charts, the essential concept behind the Critical Path Method is that you 
cannot start some activities until others are finished. These activities need to be completed 
in a sequence, with each stage being more or less completed before the next stage can 
begin. These are called sequential tasks.  
Other activities are not dependent on completion of any other tasks. You can do these at 
any time before or after a particular stage is reached. These are called parallel tasks. 

Drawing a CPM Chart 

The following simple example deals with a computer project. It gives an insight into fun-
damental drawing of a CPM chart. Normally this is made automatically by software, but to 
understand CPM basics it is worthwhile to do it “bottom up”. 
In general use the following steps to draw a CPM Chart: 

 Step 1: List all activities in the plan 
For each activity, show the earliest start date, estimated length of time it will take and 
whether it is parallel or sequential. If tasks are sequential, show which stage they depend 
on. 

 Step 2: Plot the activities as a circle and arrow diagram 
Critical Path Analysis is presented using circle and arrow diagrams. In these, circles show 
events within the project, such as the start and finish of tasks. The number shown in the 
left hand half of the circle allows you to identify each one easily. Circles are sometimes also 
known as nodes. An arrow running between two event circles shows the activity needed to 
complete that task. A description of the task is written underneath the arrow. The length of 
the task is shown above it. By convention, all arrows run left to right. Arrows are some-
times also called arcs. An example of a very simple diagram is shown in Figure 2. The 
computer project has a start event (circle 1) and a completion of the “High Level Analysis” 
task (circle 2). The arrow between them shows the activity of carrying out the High Level 
Analysis. This activity should take 1 week.  
 

 

Figure 2: Task connection
4
. 

Where one activity cannot start until another has been completed, we start the arrow for 
the dependent activity at the completion event circle of the previous activity. You can see 
an example below (Figure 3): 
 

 

Figure 3: Tasks in sequential order
5
. 

                                                 
3
   Mind Tools Ltd. (1996) 

4
   Source: Mind Tools Ltd. (1996) 
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Here the activities of “Select Hardware” and “Core Module Analysis” cannot be started 
until “High Level Analysis” has been completed. You can see a second number in the top, 
right hand quadrant of each circle. This shows the earliest start time for the following activ-
ity. It is conventional to start at 0 (units: whole weeks). 
A different case is shown below (Figure 4): Here activity 6 to 7 cannot start until the other 
four activities (11 to 6, 5 to 6, 4 to 6, and 8 to 6) have been completed. 
 

 

Figure 4: Dependency of task 6 to previous tasks
6
. 

Figure 5 shows all the activities that will take place as part of the project. Notice that each 
event circle also has a figure in the bottom, right hand quadrant. This shows the latest fin-
ish time that is permissible for the preceding activity if the project has to be completed in 
minimum time. You can calculate this by starting at the last event and working backwards. 
Events 1 to 2, 2 to 3, 3 to 4, 4 to 5, 5 to 6 and 6 to 7 must be started and completed on 
time if the project has to be completed in 10 weeks. This is the critical path. So the latest 
finish time of the preceding event and the earliest start time of the following event will be 
the same for circles on the critical path. You have no slack (→ slack) possibilities on this 
path except you accept a change of the overall project duration. If jobs on the critical path 
slip, immediate action should be taken to get the project back on schedule. 
 

 

Figure 5: Whole computer project CPM network
7
. 

                                                                                                                                               
5
   Source: Mind Tools Ltd. (1996) 

6
   Source: Mind Tools Ltd. (1996) 
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 Step 3: Schedule crashing 
Frequently you want to complete a project earlier than your critical path says it is possible. 
In this case you need to re-schedule your project (“crashing”).  
As an example, it may be necessary to complete the computer project in Figure 5 in 8 
weeks rather than 10 weeks. So you could look at using two analysts in activities 2 to 3 and 
3 to 4. This would shorten the project by two weeks (but may raise the project cost). 
In some situations, shortening the original critical path of a project can lead to a different 
series of activities becoming the critical path. For example, if activity 4 to 5 were reduced to 
1 week, activities 4 to 8 and 8 to 6 would come onto critical path. 
As with Gantt charts, in practice software tools like MS Project create CPM charts auto-
matically. Not only this makes drawing them easier, they also make modifications of plans 
easier and provide facilities for monitoring progress against plans.  

1.1.3 How to use PERT? 

PERT is an enhancement to CPM due to taking a closer look on task duration estimation. 
There are generally two ways to define duration values: Firstly, you can apply a single value 
without any uncertainty (not very realistic) or you can define a range with a min value 
(shortest time), max value (longest time) and a most likely value (expected time). This range 
is a far more realistic approach. Hence, PERT is the first step into probabilistic schedule 
analysis. The underlying distribution (see Chapter 1.3 for further information on this topic) 
is a PERT (also called Beta) distribution. 
The following formula (1) gives you the duration estimation for each task: 

 

Tas  Duration 
Min 4 Most Li ely Ma 

6
 1 

 
In a nutshell PERT is a simple way to keep you from too optimistic scheduling. 

1.1.4 Principle of a Probabilistic Schedule Analysis 

Uncertainty in Project Schedules 

When you develop a project schedule that plans ahead for the future you make certain as-
sumptions. These assumptions generally have to answer three questions: 

 How long will it take to complete a certain task? 

 How long will it take to complete the whole project? 

 What main influences (risks) will have an impact on the first two estimations? 
Therefore you have to glimpse into the future and the best you can do is to estimate the 
expected values. Not knowing with certainty what the actual value will be, but based on 
historical data, experiences or experts, you can draw an estimate. While this estimate is use-
ful for a first appraisal, it contains some inherent uncertainty and risk. Therefrom it can be 
advantageous to estimate a range of values that includes all possible states of a value with 
high certainty.  
For instance in a construction project, you might estimate the time it will take to complete 
a particular job. Based on some expert knowledge, you can also estimate the absolute max-
imum time it might take in the worst possible case and the absolute minimum time in the 
best possible case. 
As already mentioned the benefit using a range of possible values instead of a single guess 
(remember PERT) is a more realistic picture of what might happen in the future. When a 
model is based on a range of estimates, the output of the model will also be a range. This 

                                                                                                                                               
7
   Source: Mind Tools Ltd. (1996) 
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range will have the form of a distribution (→ distribution) where all output values have an 
associated possibility to occur (i.e. durations are random variables then). This is different 
from a normal forecasting model, in which you start with some fixed estimates (for exam-
ple the time it will take to complete each task of a project) and get another value, the total 
time for the project. 
So when each part has a minimum and maximum estimate, we can use those values to es-
timate the minimum, the maximum and the most likely time for the project.8 

1.2 Monte Carlo Simulation 

1.2.1 Basics 

Monte Carlo Simulation is basically a forecasting method to estimate a process output in-
volving uncertainty. The simulation is based on a mathematical model that describes how a 
process will likely turn out.  
Named for Monte Carlo, the Monaco resort town renowned for its casinos, it was first 
used by scientists working on the atom bomb in the 1940s in Los Alamos. Monte Carlo is 
actually a general modelling technique that can be applied to any process where uncertainty 
is involved (for example life time assessments of products or physical processes). In our 
specific case it will be applied to project scheduling. 

1.2.2 How does it exactly work? 

Hence input data are probability distributions (→ Probability Distribution) of values, Monte 
Carlo calculates results over and over, each time using a different set of random values 
from the various probability distributions. 
As already mentioned the simulation does not return a single answer but a range of possi-
ble answers and the probability that each answer will occur. All answers and the associated 
probabilities are combined then to an output distribution that is the final result of the simu-
lation. A random number generator draws samples from various duration input distribu-
tions and calculates for each step a duration sum over the whole project. The result is an 
assembly histogram, which converts in a continuous distribution with more and more itera-
tions (cp. Figure 6). 
 

 

Figure 6: Fed with input distributions Monte Carlo simulation calculates an output distribution. 

A Monte Carlo simulation could involve thousands to tens of thousands of recalculations 
before it is complete. Plainly spoken every simulation run is a possible project life cycle. 
Thus if you running through thousands of life cycles you eventually get the most likely pro-
ject duration, the least likely ones and all between.9 

                                                 
8
   Cp. N.N., www.riskAMP.com (2011) 
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1.2.3 Monte Carlo Simulation and Project Management 

A Monte Carlo model is in principle a project plan (Gantt chart) in which some tasks con-
tain probability distributions rather than deterministic values.10 
So creating your project schedule, you typically put together a series of tasks and estimate 
duration for each task. When you are finished, you look at the resulting timeline to see the 
estimated end date. Since uncertainty is associated with each step, additionally a Monte 
Carlo analysis can be performed in the following way: 
First instead of just one duration estimate for an activity, we create three of them. From 
there we estimate the most likely duration and then we estimate the worst case and the best 
case. Note: we even can estimate in a more sophisticated manner a whole distribution on 
the base of the following parameters: 

 A central value to anchor the distribution somewhere 

 Two boundary values to confine the distribution 

 Some values in between to shape the distribution 
With each estimate, we assign what we think is a likely probability that it will occur.  
Let’s loo  at a small project with three tas s that must be worked on sequentially: 11 
Task A is likely to take two days (70 % probability), but it is possible that it could take one 
day (20 %) or three days (10 %).  
Task B will likely take 5 days (60 %), but could take as few as 4 days (20 %) or as many as 8 
days (20 %).  
Task C will probably take four days (80 %), three days (5 %), or five days (15 %).  
Now the question is: How long will this project take to complete? 
The Monte Carlo analysis involves a series of random simulations on our little project. It is 
possible it would calculate 10 days (2 + 5 + 3) in the first run. The next time, it might cal-
culate 11 days (3 + 5 + 3). Then it could calculate 10 days again (3 + 4 + 3) and so on. 
Normally these simulations were run more than 1,000 times. By the time the simulation is 
completed, you can expect around 700 simulations in which task A took two days (70 %). 
Likewise, there should be around 150 simulations where task C took five days (15 %). 
When the Monte Carlo analysis is complete, you do not have a single end date. You have a 
probability curve showing expected outcomes and the probability of achieving each one. 
For the purposes of scheduling, we would look at a cumulative curve showing the probabil-
ity of completing the project between the best case 7 days (1 + 4 + 3) and the worst case 
16 days (3 + 8 + 5). 
In general, the technique is used to provide safe end date estimates for far larger projects. 
You would not want to pick the end date that has a 50 % chance of success. The Monte 
Carlo analysis will tell you the date that you have an 80 % chance to achieve, or a 90 % 
chance, depending on how safe you need to be. 
Note: incorrect input values are an important problem, because the best simulation model 
is worthless when fed with wrong data. Plainly spoken: garbage in - garbage out! Thus a 
right estimation setting (experts, historical data etc.) is crucial. This topic will be further 
treated in Chapter 2. 
 
The following steps sum up the Monte Carlo process in brief: 

Input: 

 Schedule  

 Probability Distributions (as example task duration) 

 Simulation setting (like number of iteration) 
Process: 

                                                 
10

   Cp. Peterson (2005) 
11

   Cp. Mochal (2002) 
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 Monte Carlo Simulation 
Output: 

 P10, P50, and P90 value (→ P values) for the expected project completion time 
taken from a output distribution 

 Confidence intervals (→ Confidence interval) 

 Task sensitivities (→ Tornado chart) 

 Critical indices (→ Critical inde ) 

1.3 Distributions 

1.3.1 Terms and Definitions 

Knowing and understanding the basic terms of probabilistic analysis and distributions as 
backbone is crucial for an effective and efficient data drawing, simulation and result inter-
pretation. Check Chapter 7 (Glossary) for further information on important terms and 
definitions. 

1.3.2 Why Should I Use Distributions? 

Task durations usually have a range of possible values and furthermore every value has its 
associated probability. To cover this fact you have to define an input distribution where 
values can have different probabilities of different outcomes occurring. As example Figure 
7 shows a very simple Uniform distribution. All values have an equal chance of occurring, 
and one has to define simply the minimum and maximum value to confine the distribution. 
As example manufacturing costs are normally uniformly distributed. 
 

 

Figure 7: Example for a Uniform distribution. 

As already mentioned probability distributions are a much more realistic way of describing 
uncertainty in your project schedule than single values. 

1.3.3 Crucial Distributions in Project Scheduling 

The following distributions were taken out of the @Risk database (in fact there are over 60 
distributions stored there). They are all useful distributions in project scheduling. 



Theoretical Probabilistic Schedule Analysis 

8 

Most common 

 Uniform 

 Triangular 

 PERT (a special form of a Beta distribution) 

 Normal/Lognormal 
Additionally (in special cases): 

 Exponential 

 Weibull 

 Rayleigh 

 General 

 Discrete 
The selection has been done by literature study and a company survey at OMV. The target 
hereby was to create a useful catalogue for simply application in daily scheduling. 

Distribution catalogue 

Table 1 to 10 denote a more detailed view on the selected distributions. A short descrip-
tion, a guideline for application and some defining parameters are given in each case. 

Table 1: The Uniform distribution. 

Distribution name Uniform 
RiskUniform(Minimum,Maximum) 

Description All values have an equal chance of occurring and the user 
simply defines the minimum and maximum.  

Guidelines Uniform is sometimes referred to as “no  nowledge” distri-
bution. You have a base value but no clue, if the probability 
decreases moving away from that central value. Normally real 
world situations do not fall into this assumption; in many 
cases you can estimate a best guess (most likely value) and 
minimum and maximum values additionally. 
Example: the position of a particular air molecule in a 
room. 

Parameters: Continuous distribution 

Range Min≤x≤Max, continuous 

Mean        

 
 

Variance           

  
 

Example12 
 

 

Table 2: The Triangular distribution. 

Distribution name Triangular 
RiskTriang(Minimum,Most Likely,Maximum) 

Description 3 points - minimum, most likely and maximum - define this 

                                                 
12

   N.N., Guide to Using @RISK (2010), p. 576 



Theoretical Probabilistic Schedule Analysis 

9 

distribution. It is a typical three point estimation, where the 
range is  nown and some central value (“inspired guess”). 
Skew direction is set by the relation of most likely to min and 
max. 

Guidelines If you have a best guess and a range (min-max), you can cre-
ate a distribution that favours the most likely value in some 
way. The simplest distribution taking this into account is the 
triangular one. This distribution has a number of desirable 
properties, including a simple set of parameters and the use 
of a modal value for instance a most likely case. Furthermore 
values around the most likely are more likely to occur. There 
is no requirement that the distribution is symmetrical around 
the best guess, so you can model a variety of different cir-
cumstances.  
There are two main disadvantages of a Triangular distribu-
tion. First, when the parameters result in a skewed distribu-
tion, then there may be an over-emphasis of the outcomes in 
the direction of the skew. Second, the distribution is bound-
ed on both sides, whereas many real-life processes are 
bounded on one side but unbounded on the other. 
Example: inventory levels. 

Parameters: Continuous distribution 

Range Min≤x≤Max, continuous 

Mean                    

 
 

Mode Most Likely (ML) 

Variance                                     

  
 

Example13 
 

 

Table 3: The PERT distribution. 

Distribution name PERT (Beta) 
RiskPert(Minimum, Most Likely, Maximum) 

Description It is a special Beta distribution with a min-max confinement 
and the shape parameters α1 and α2 that are calculated from 
the most likely value. 

Guidelines PERT is rather like the Triangular distribution (3 point esti-
mation),  but a more realistic approach and it could be seen a 
min-max confined Normal distribution. So assuming that 
many real world problems are normally distributed, you can 
take PERT as approximation without knowing the precise 
parameters of a Normal distribution. 
Like the triangular distribution, the PERT distribution em-
phasizes the most likely value over the minimum and maxi-
mum estimates. However values between the most likely and 

                                                 
13

   N.N., Guide to Using @RISK (2010), p. 573 
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extremes are more likely to occur than in triangular distribu-
tions and the extremes are not as emphasized. In practice, 
this means that we “trust” the estimate for the most likely 
value, and we believe that even if it is not exactly accurate, 
we have an expectation that the resulting value will be close 
to that estimate. Furthermore PERT is superior to Triangu-
lar, if skewness takes place as the smooth shape of the curve 
places less emphasis in the skew direction. PERT is heavily 
used in three point estimation techniques. Cons of PERT are 
bad capturing of extreme events and tails.  
Example: Project costs.  

Parameters: Continuous distribution 

Range Min≤x≤Max 

Shape α1  ⌊
     

       
⌋       α   ⌊

     

       
⌋ 

Mean 
  

            

 
 

Mode Most Likely (ML) 

Variance                

 
 

Example14 
 

 

Table 4: The Normal distribution. 

Distribution name Normal 
RiskNormal(Mean,Standard Deviation) 

Description 2 parameters, mean and standard deviation, specify this 
well-known distribution. It is unbounded on both sides. 
Many data could be described by this “bell shaped” curve.  

Guidelines Generally the output of many models is approximately 
normally distributed, because they add a lot of uncertain 
sub-processes (→ Central Limit Theorem). The distribution 
can be used to represent the uncertainty of a model’s input 
whenever it is believed that the input itself is the result of 
many other similar random processes acting together in an 
additive manner (but where it may be unnecessary, ineffi-
cient or impractical to model these detailed driving factors 
individually). Values in the middle near the mean are most 
likely to occur.  
Example: total goal number in a soccer season. 

Parameters: Continuous distribution 

Range -∞<x<+∞, continuous 

Mean µ, continuous location parameter 

Mode µ 

Variance σ2, continuous spread parameter 

                                                 
14

   N.N., Guide to Using @RISK (2010), p. 560-561 
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Example15 
 

 

Table 5: The Lognormal distribution. 

Distribution name Lognormal 
RiskLognorm(Mean,Standard Deviation) 

Description 2 parameters, mean and standard deviation, specify this dis-
tribution. Just as the Normal distribution results from add-
ing many random processes, the Lognormal arises by multi-
plying many random processes (the logarithm of the prod-
uct of random numbers is equal to the sum of the loga-
rithms). 

Guidelines As the Normal distribution, the Lognormal has two parame-
ters (μ, σ) corresponding to the mean and standard devia-
tion. But in addition values are positively skewed, not sym-
metric. It is used to represent values which do not go below 
zero but have unlimited positive potential like stock prices. 
The distribution has a number of desirable properties of real 
world processes. These include that it is skewed and that it 
has a positive and one-side unbounded range i.e. it ranges 
from 0 to infinity. With this “tail” you can ta e seldom ris s 
into account. 
Example: oil reserves. 

Parameters: Continuous distribution 

Range 0≤x<+∞ 

Mean µ 

Mode   

       
 
 

 

Variance σ2 
Example16 
 

 

Table 6: The Exponential distribution. 

Distribution name Exponential  
RiskExpon(Beta) 

Description An exponential distribution is defined by the entered Beta 
value. The mean of the distribution equals Beta. 

Guidelines The exponential is often used to model the time between 
independent events that happen at a constant average rate. 
For example waiting for a train after the train before has 

                                                 
15

   N.N., Guide to Using @RISK (2010), p. 545-546 
16

   N.N., Guide to Using @RISK (2010), p. 537 
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passed. That can be calculated with the knowledge of a single 
variable called the expectation value (Beta). Because trains 
use to pass very regularly (with an expected value), say every 
20 Minutes, it will be very unlikely to wait 3 hours for a train 
(except in Austria). The main disadvantage of an Exponential 
distribution is the assumption of constant event rates. If you 
don`t want this, take a Weibull distribution. 
Example: incoming phone calls in a call center.  

Parameters: Continuous distribution 

Range 0≤x<+∞ 

Mean β 

Mode 0 

Variance β2 

Example17 
 

 

Table 7: The Weibull distribution. 

Distribution name Weibull 
RiskWeibull(Alpha,Beta) 

Description It is a more flexible version of an Exponential distribution. 
Weibull can take on the characteristics of other types of dis-
tributions, based on the value of the shape parameter β. α 
measures the time-dependent location and frequency of 
some event(s). So shape and scale are dependent to the pa-
rameters. 
α >1 Event rate increases over time. 
α =1 Constant event rate (random events, Exponential dis-
tribution).  
α <1 Event rate decreases over time. 

Guidelines This distribution is often used as a “distribution of time to 
first occurrence”, where it is desired to have a non-constant 
intensity of occurrence. This distribution is flexible enough 
to allow an implicit assumption of constant, increasing or 
decreasing intensity, according to the choice of its parameter 
α (α<1, =1, or >1). For example calculating life time of a 
mechanical forced product, one may choose to use α<1 to 
represent that the older something is, the more likely it fails. 
Example: Material breakdown.  

Parameters: Continuous distribution 

Range Min≤x<+∞ 

Shape α>0 

Scale β>0 

Mean 
  (  

 

 
)                                  
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   N.N., Guide to Using @RISK (2010), p. 499 
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Mode 
 (  

 

 
)

 
 
           

                                

Variance 
  ⌊ (  

 

 
)    (  

 

 
)⌋                      

Example18 
 

 

Table 8: The Rayleigh distribution. 

Distribution name Rayleigh 
RiskRayleigh(Beta) 

Description The Rayleigh distribution is a Weibull distribution with a 
shape factor of 2. 

Guideline It could be used as an alternative to Normal but with a min-
boundary. 

Example19 
 

 

Table 9: A General distribution. 

Distribution name General  
RiskGeneral(Min, Max, {X1, X2,…, Xn},{p1, p2,…, pn}) 

Description This generalized probability distribution is based on a densi-
ty curve created using the specified (X,p) pairs. Each pair 
has a value X and a probability weight p that specifies the 
relative height of the probability curve at that X value. 

Guidelines This distribution is a try to fit a general distribution to some 
approximated values: 
For instance:20 
RiskGeneral(0,10,{2,5,7,9},{1,2,3,1}) specifies a general 
probability density function with four points. The distribu-
tion ranges from 0 to 10 with four points 2,5,7,9 specified 
on the curve. The height of the curve at 2 is 1, at 5 is 2, at 7 
is 3 and at 9 is 1. The curve intersects the X-axis at 0 and 10. 
Example: no specific example. 

Parameters: Continuous distribution 

Range No closed form 

Mean No closed form 

Mode No closed form 

Variance No closed form 

                                                 
18

   N.N., Guide to Using @RISK (2010), p. 580 
19

   N.N., Guide to Using @RISK (2010), p. 565 
20

   N.N., Guide to Using @RISK (2010), p. 507 
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Example21 
 

 

Table 10: A Discrete distribution. 

Distribution name Discrete 
RiskDiscrete({X1,X2,...,Xn},{p1,p2,...,pn}) 

Description Each outcome has a value X and exactly one weight p 
(probability weight) which specifies the outcome’s probabil-
ity of occurrence. 

Guidelines The user defines specific values that may occur and the like-
lihood of each. For instance think of the results of a lawsuit: 
20 % chance of positive verdict, 30 % change of negative 
verdict, 40 % chance of settlement and 10 % chance of mis-
trial. 
Example: dicing. 

Parameters: Discrete distribution 

Domain Xє{Xn} 

Mean 
  ∑    

 

   

 

Mode The X value corresponding to the highest p value. 

Variance 
   ∑    

 

   

 

Example22 
 

 

1.3.4 Selecting a Distribution 

Generally it is wise to ensure that each input distribution has a range/parameters corre-
sponding to realistic input data. For example there could be technical limits like a min value 
of 0 for well production rates and a max value that is certainly not infinity.  
Furthermore one should favour simple distributions with logical story behind each parame-
ter. If you have a small data set and no most likely points, then take a uniform distribution. 
Where some evidence of modes/means/most likelies and fixed min-max values is arising, 
take a simple triangular distribution as first approach. Do you expect some extreme events, 
take a long tailored distribution to cover that fact and so on. 
The general conclusion may be that the most common mistake in choosing distributions is 
time waste debating the choice of shape (Central Limit Theorem, Chapter 1.4.1) rather than 
trying to get realistic distribution parameters. 

                                                 
21

   N.N., Guide to Using @RISK (2010), p. 508 
22

   N.N., Guide to Using @RISK (2010), p. 490 
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1.4 PSA Key Factors Given by Literature 

1.4.1 Central Limit Theorem (CLT) 

Two important statistical facts can take place, if you have a large collection of input distri-
butions with different parameters sampled. These two outcomes summarize under the 
name Central Limit Theorem (also called CLT). The sum of independent input distribu-
tions of any shape will (1) tend to a normal output distribution with (2) diminishing stand-
ard deviation. 
David Vose states in his book Risk Analysis23: “The Central Limit theorem [sic!] is probably 
the most important theorem for ris  analysis modelling.”24 

Normal shaping of input distributions 

When you have an overall summation of a sufficiently large number of uncorrelated input 
distributions by Monte Carlo simulation, you will get an output distribution that is approx-
imately Gaussian. Amazingly it is irrelevant what types of input distributions are summed 
(cp. Figure 8).  

 

Figure 8: The output distribution of five independent random variables is still approximately normal despite 
the fact that the five random variables have very different distributions. This is one main aspect of CLT. 

For example various natural phenomena, such as the heights of individuals, are approxi-
mately normal distributed. These phenomena are sums of a large number of independent 
random variables and hence approximately normally distributed by the Central Limit Theo-
rem. 
Additionally some side-effects take place: 

 Output mean will be close to the sum of means of input distributions. 
However, because Gaussian distribution is symmetric, mean=median=mode holds. There-
for the sum of all task duration medians/modes is normally smaller than the total duration 
median/mode (especially due to positively skewed input distributions).25 

 Output variance will be close to the sum of variances of input distributions. 
Both effects are also true for a multiplication of input variables except for the output dis-
tribution shape which is lognormal. 

Narrowing output distribution 

Furthermore increasing the sample size the output distribution becomes narrower as given 
by Equation 2: 

σo 
σp

√n
 2 

σo = standard deviation of output distribution 

                                                 
23

   Vose (2003) 
24

   Vose (2003) 
25

   Book (2002) 
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σp = standard deviation of population (=sum of all input standard deviations) 
n = sample size 
In plain words: with more and more tasks the spread of the result will reduce until the re-
sults are clearly in conflict with our experience.26 
We can counter this effect by27 

 reducing the number of distributions, 

 avoid to narrow input ranges, 

 introducing correlations between tasks28 

 and implementing seldom risk events and their impacts. 
 
Summarizing (1) and (2) you can say that output distributions of a large number of input 
variables depend more on the input means and variances and less on their individual 
shapes. Furthermore schedules should focus on limited set of essential task durations.29,30 

1.4.2 Constraints 

Constraints impose restrictions on the start and finish dates of tasks. There are different 
types of constraints in MS Project31: 

Flexible constraints 

Such constraints like “As Soon As Possible (ASAP)” or “As Late As Possible (ALAP)” do 
not have specific dates associated with them. 

Semiflexible constraints 

A semiflexible constraint requires an associated date that controls the earliest or latest start 
or finish date for a task. It allows a task to finish at any time, as long as it meets the start or 
finish deadline. 

Inflexible constraints 

Such constraints li e “Must Start On (MSO)” and “Must Finish On (MFO)” have an asso-
ciated date, which controls the start or finish date of the task.  
For optimal scheduling flexibility, the MS Office team recommends that you allow MS 
Project to use flexible constraints to calculate the start and finish dates for tasks based on 
the durations and task dependencies you enter. Despite schedulers often use inflexible con-
straints it could be useful to eliminate them, so the project can overrun in the simulation 
and not in reality. Inflexible constraints will hide risks and give an unrealistic simulation 
result such as too early completion dates.  

1.4.3 Correlations 

For example Holtz32 and Murtha33 have emphasized the importance of taking into account 
correlations between uncertainty variables when conducting Monte Carlo simulation. 
Correlation tells us thereby how two task durations are related to each other. It makes the 
durations move together (in same directions if positive correlated, in other directions if 
negative correlated). Both tasks will take more or less time together. Therefore correlations 
increase the risk of unexpected and/or extreme completion dates. Correlation strength is 
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   Cp. N.N., MS Office Support: About Constraints (2011) 
32

   Cp. Holtz (1993) 
33

   Cp. Murtha (1993) 



Theoretical Probabilistic Schedule Analysis 

17 

measured by correlation coefficients. Correlation coefficients if existing have to be well 
estimated and implied in the schedule. 

1.4.4 Monte Carlo Analysis as Analysing Tool 

Monte Carlo Simulation is nowadays a widely used analysing tool. Since Hertz`s widely 
read article34, there have been interesting articles35,36 and books37,38,39 dealing with the topic. 
Monte Carlo is arguably better than other methods, especially PERT, due to the following 
points: 

 PERT only uses Beta distributions, but Monte Carlo can use all. 

 PERT does not recognize a changing critical path, whereas Monte Carlo calculates 
the actual critical path (→ critical path) within every simulation run. 

 PERT becomes very time-consuming with big schedules. Monte Carlo gives you 
many “case studies” within a very short time. 

Monte Carlo offers additional information like critical indices (→ critical indices) or sensitivi-
ty charts based on a correlation analysis. 
But MC Simulation has some limitations too: 
Schedule must be complete and correct. All tas s are correctly tied in and lags (→ lag time) 
are appropriate. Be careful of negative lags (→ lead time), because they are not easy to han-
dle.40 Secondly estimation of input data must be appropriate (very often experts are not 
very experienced in estimating min and max values). Collection of real data for comparison 
will be beneficial.41 Thirdly, it is difficult to represent correlation between tasks, so often 
approximations are developed to simplify simulation. The effects of approximations are 
not detected precisely.42 

1.4.5 Precise and Accurate Input Values 

A correct and well defined stochastic modelling is worthless, when it is fed with incorrect 
data or in other words “garbage in - garbage out”. There has to be a strong emphasize on 
gathering correct input data (see also Chapter 2 Input Data Estimation). Also a regular up-
date of input data and associated distributions using performance measurement data is very 
useful. Secondly correlations if of existence must be defined and selected for further simu-
lation. 

 Input values are the fuel of good scheduling. 

1.4.6 Well Defined Schedule 

If input data is the fuel of every simulation, the basic schedule is the backbone. A non-
logical, wrongly linked and inflexible (constraints) Gantt chart kills every simulation. An-
other problem associated with Monte Carlo simulations is that, if a project slips, project 
managers usually perform certain actions. So the base schedule is changing without simula-
tion control. As already mentioned in Chapter 1.4.5, a regular schedule and simulation revi-
sion is needed. 

 A well-defined schedule is the backbone of good scheduling. 
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1.4.7 The Difficulty of Assessing Uncertainty - Objective and Subjective 
Estimation 

Uncertainty estimation can be objective, subjective or both.43 Objective data are historical 
data sets etc., subjective data is normally generated by experts (cp. 1.4.8 Expert Judge-
ments). However, Capen44 and subsequently Rose45 has confirmed with their work, that 
experts are not precise estimators. 
Maybe the combination of both approaches is the best way for data assessment, so the 
following discussion is divided in two parts. 

Objective Data Estimation 

As already mentioned the basis of objective uncertainty assessment is historical data. Data-
bases could be generated by evaluating older projects, comparing similar projects or buying 
it from third-party suppliers (for example International Project Management Association; 
IPMA).  
Once you have some data, you can analyse it by finding important parameters like mean, 
standard deviation etc. You can also do a distribution fitting with the use of commercial 
software like Best Fit (Palisade Corporation). 

Subjective Data Estimation 

As commonly known interviewing different experts can produce very different data sets. 
Inherent biases, experiences, knowledge and so on cause these differences. Chapter 1.4.8 
and in deep Chapter 2 deal with that phenomenon. 
 
In summary it is the combination of both, objective and subjective data, that will improve 
data input for schedule estimation.46 

1.4.8 Expert Judgements 

Probabilistic Schedule Analysis can be realized either with large historical data sets or ex-
pert judgement of actual data. Latter approach is a valid way to generate estimations, but 
there some potential pitfalls and limitations worth thinking of.47 
For example experts could be influenced by negative or positive experiences or far too 
certain regarding their own ability. A very often-referenced paper by Capen48 provides a 
good insight in this topic. Key results of this work are:49 

 Experts are often using too narrow min-max ranges. Basic rule of thumb says 
that when you feel right about your estimation you are probably too narrow. 

 Use as many experts as possible. This will give you feedback, peer reviews and a 
broader range of estimation (also cp. Chapter 2.4 Estimation and the Wisdom 
of Crowds). 

1.5 Literature Outcome 
Probabilistic schedule analysis is superior to a deterministic approach by taking uncertainty 
and therefor reality into account. 
In many cases Monte Carlo simulation was and is used. On the other hand PERT analysis 
can give you a raw and quick approach to possible values. 
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Probability distributions represent the relative likelihood of each of the possible task dura-
tions. Single values (deterministic approach) instead are not realistic and will lead to non-
feasible completion times. The typical distribution for task durations is continuous. This 
means an activity can take all durations within the range. Additionally most distributions 
have a single most likely value and diminishing probability toward the optimistic and pes-
simistic duration limits. Finally distributions do not have to be symmetrical, because possi-
ble durations tend to be asymmetrical distributed between the max and the min value.50 
All in all literature say the effort in examining and selecting the right distributions is greater 
than the payback. Time will be better spent in finding the right input data than finding a 
“magical distribution”. If this statement is true for a small number of tasks (minor CLT 
impact) or correlated input values was not mentioned. This will be a point of departure for 
applied probabilistic schedule analysis (cp. Chapter 4). Moreover it is not prudent to say 
that one shape, say the normal, fits all cases. Rather, the ten most common distributions 
given in Chapter 1.3.3 seem to be sufficiently diverse to represent uncertainty. Choosing 
between them should be done by fitting the special characteristics of a task with the distri-
bution catalogue (1.3.3).51 

1.6 Literature List 
This is a selection of best literature regarding PSA. In fact all literature in Chapter 6 (Refer-
ences) is worthy to read. 
 
An Innovative Tool on a Probabilistic Approach Related to the Well Construction Costs and Time Esti-
mation (A. Merlo et al., Eni, 2009) 

 Describes a software tool and its basis for cost and time estimation in well con-
struction requested by Eni E&P. 

Monte Carlo Techniques Applied to Well Forecasting: Some Pitfalls (H.S. Williamson et al., SPE, 
BP, 2006) 

 Contrasts deterministic and stochastic approach and highlights the potential 
benefits of the latter. Main part is the application of Monte Carlo simulation to 
time and cost estimation of single wells. 

Judgment in Probabilistic Analysis (D.C. Purvis, The Strickland Group Inc., 2003) 

 Provides a general instruction to probabilistic analysis and deals with some ex-
amples of pitfalls and common mistakes. 

Decision Making in the Oil and Gas Industry: From Blissful Ignorance to Uncertainty-Induced Confusion 
(J. Eric Bickel et al., Texas A&M University, SPE, 2007) 

 Tries to combine decision making tools and uncertainty analysis and recom-
mends that uncertainty quantification should be made decision-focused and 
with an iterative modeling. 

A Probabilistic Approach for Drilling Cost Engineering and Management Case Study: Hassi-Messaoud 
Oil Field (M. Saibi, Sonatrach, 2007) 

 Introduces a method for cost estimation, focal points are data distribution sam-
pling, Monte Carlo simulation, correlations etc. 

Judgement in Probabilistic Analysis (D.C. Purvis, The Strickland Group Inc., 2003) 

 Gives a general introduction to probabilistic analysis and some examples of pit-
falls and common mistakes. 
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Risk and Uncertainty Management: Best Practices and Misapplications for Cost and Schedule Estimates 
(S.K: Peterson et al., J Murtha Assocs., SPE, 2005) 

 Presents best practices for applying risk management, risk analysis and uncer-
tainty analysis to capital expenditure cost and schedule estimates. Some current 
misapplications as potential barriers are highlighted. 

A New Tool To Evaluate the Feasibility of Petroleum Exploration Projects Using a Combination of 
Deterministic and Probabilistic Methods (A. Al-Thawadi, Schlumberger, SPE, 2007) 

 Gives a comparison between (deterministic) decision trees and (probabilistic) 
Monte Carlo simulation. 
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2 Input Data Estimation 

2.1 Overview 
Without precise input values every simulation must fail. So it is a crucial part in the begin-
ning of a probabilistic schedule analysis (or better in times of starting scheduling) to find a 
proper way to estimate the right values with the right people and the right surroundings. 
To do so the main characteristics of estimation must be examined and correctly imple-
mented in an estimation workshop. The following chapters should give the basis for an 
estimation workshop. Chapter 2.2 examines psychological biases, Chapter 2,3, 2.4 and 2.5 
are based on recently published books dealing with our capability of (right) estimation and 
our awareness of risks. 

2.2 Estimation and Biases 
Estimations made by human beings cannot be objective and have an unavoidable subject 
specific component. Humans are basically not accurate estimators.52 
They are exposed to many different biases and other cognitive effects. Knowing cause and 
effect of various so-called biases is essential for realistic estimation.  
Based on previous work of Stephan Staber (OMV) and the ground-breaking work of 
Kahneman53 and Tversky a list of cognitive effects was compiled which can help to be 
aware of potential disadvantageous influences on estimating task duration values. 

2.2.1 Cognitive Effects on Duration Estimation54 

There are 2 types of biases, motivational and cognitive ones. Motivational biases are basi-
cally the discrepancy related to personal situation and/or reward. Cognitive biases are a 
subconscious difference in the way mind processes information.55 
Many papers56,57,58 say that the two most frequent biases are cognitive: 

Anchoring and Adjustment 

Estimations of durations are linked to a starting point (anchoring) like a best guess and 
then are stepwise adjusted (adjustment). Therefore the estimation of uncertain durations is 
dependent on the anchor as a subjective reference point.59 

Availability Bias 

Human beings estimate the probability of possible durations, the easier and faster they are 
able to imagine examples for the underlying tasks or they recall past examples. Therefore 
emotionality, experience and recent occurrence lead to an overestimation of the probability 
and in consequence to biased estimates. 
 

 
Some other less frequent but also important biases are: 
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Inexpert Expert 

The person nominated (wrongly) as being able to provide the best estimate occasionally has 
very little idea. 

Culture of Organization 

The environment people work in may sometimes impact on their estimating. Project man-
ager, for example, will often provide too optimistic estimates of future project completion 
dates because of the eager working culture. 

Conflicting Agendas 

Sometimes the expert will have strong interest in the values that are submitted to a sched-
ule. 

Unwillingness to Consider Extremes 

Estimators will frequently find it difficult or be unwilling to cognize circumstances that 
would cause a variable to be extremely low or high. The data analyst will often have to en-
courage the development of such extreme scenarios in order to force an opinion that realis-
tically covers the entire possible range. This can be done by the analyst making up some 
examples of extreme circumstances and discussing them with the estimator. 

Eagerness to Say the Right Thing 

Occasionally, the estimator will be trying to provide the answer she/he thinks the work-
shop moderator wants to hear. For this reason, it is important not to ask questions that are 
leading or to offer a value for the expert to comment on. 

People Too Busy 

A time-intensive estimation workshop may not be very welcome. Obvious symptoms in 
returned estimations are when the expert offers over-simplistic estimate or minimum, most 
likely and maximum values that are equally spaced for all estimated variables. 

Belief that the Estimator Is Quite Certain 

It may be perceived by the expert that assigning a large uncertainty to a parameter would 
indicate a lack of knowledge and thereby undermine his/her reputation. The expert may 
need to be reassured that this is not the case. An expert should have a more precise under-
standing of a parameter’s true uncertainty and may, in fact, appreciate that the uncertainty 
could be greater than expected. 

Halo Effect 

When estimating a subject or object one single aspect - which is very well developed - is 
outshining all other aspects. In other words the decision maker is dazzled by positive or 
negative aspects. For example persons who have done well in the past, benefit from the 
halo effect when being evaluated in the present. 

Illusion of Control 

We tend to believe we have more control over certain tasks than we actually have. This 
leads to an under- or overestimation of probabilities. 

Representativeness 

One type of bias is the erroneous belief that the large scale nature of uncertainty is reflected 
in small scale sampling. This means one usually believes that the output sample drawn from 
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a population has the same characteristics as the population itself. For example in National 
Lotteries many would say they had no chance of winning if they selected the consecutive 
numbers 16, 17, 18, 19, 20 and 21. The lottery numbers are randomly picked each week so 
it is believed that the winning numbers should also exhibit a random pattern, e.g. 3, 11, 15, 
21, 29 and 41. Of course, both sets of numbers are equally likely. 

Need for Confirmation  

We tend to gather facts that support certain conclusions but disregard other facts that sup-
port different conclusions.  

Wishful Thinking  

We tend to see things in a positive light and this can distort realistic estimation.  

Group Thinking 

There can be peer pressure to conform to the opinions held by the group. So task duration 
estimation in a group is frequently biased. 

Source Credibility Bias 

We reject something if we have a bias against the person, organization or group to which 
the person belongs. On the other hand we tend to accept a statement by someone we like. 

2.3 Estimation and Black Swans60 
A Black Swan is a metaphor of something so rare that it seems not to exist. For a long time 
it was widely believed in Europe that all swans were white. Then a Dutch explorer in Aus-
tralia sighted a black swan. One contrary observation overturned years of shared under-
standing. This is called the problem of induction. In his works beginning in the 1930`s the 
famous philosopher Karl Popper delivered a solution for this “blac  swan problem”. He 
proposed empirical falsification (basically try to detect a black swan) instead of verification 
to find out, if the statement: I have only seen white swans so all swans are white is true or 
not. 
Circa 70 years later this is again the leading topic of a book called The Black Swan by Nassim 
Nicholas Taleb published in 2007. Taleb defines Black Swans as a metaphor for surprising 
events (to the observer) with major impact. His thesis is that not only Black Swans are new 
information or events entirely outside our expectations or predictions and more common 
than we think they are, they are far more influential as well. Additionally he argues that we 
naturally expect tomorrow to be like yesterday, build narrative explanations that establish a 
sense of continuity and predictability and have great difficulty wrapping our minds around 
the possibility of the unexpected. But such aspects of modern life as highly interconnected 
financial structures, hugely increased access to information and increases in world popula-
tion are making Black Swans more and more likely. 
In fact we drastically overestimate risks with spectacular narratives attached, drastically un-
derestimate other risks (particularly ones embedded in day-to-day life) and do a bad job at 
analysing risk trade-offs around improbable events. Taleb argues that we naturally and 
through education expect most aspects of the world to follow something like a bell curve, 
where the outliers drop off so quickly that they can be safely ignored. One example he uses 
is human height: if you fill a stadium full of people and then want to measure their average 
height, missing a person or two would not matter. No single person can be so tall or so 
short as to throw off your measurement very far. Height is a property that we are good at 
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reasoning about, as are many natural facts that we have lived with since we evolved from 
apes. Wealth, on the other hand, is one of Taleb's examples of a more modern, infor-
mation-driven, and Black Swan-susceptible measurement. If you are attempting to measure 
the average wealth of that same stadium full of people, it suddenly matters whether you 
account for everyone or not. If Bill Gates is in the stadium, he could easily have more 
money than everyone else in the stadium put together, so he has a significant effect on the 
outcome. Most of The Black Swan is devoted to an inventory of all the ways in which our 
reasoning breaks on such quantities and how much we are in denial about that. So basically 
it is a book about the limits of knowledge.61 
For project scheduling the benefit of including Black Swans is to widen the estimation per-
spective and more specifically to use long tailored distributions to cover these extreme 
events. Consecutively it is necessary to imply the Black Swan concept in systematic estima-
tion workshops. 

2.4 Estimation and the Wisdom of Crowds62 
We tend to think, that if we make the individuals smarter, we make the group smarter and a 
team more effective. But it can be shown that if we make the individuals more diverse, we 
get even better teams, smarter groups and wiser crowds.  
Of course, there are some conditions, which must be fulfilled to get wise crowds working. 
For instance, if someone requires open-heart surgery, he certainly does not want a collec-
tion of butchers, bakers and carpenters to open the chest cavity. He would prefer a trained 
heart surgeon and for good reason. But in other circumstances, such as designing a physics 
experiment, cracking a secret code or evaluating post-heart attack treatment, diversity can 
be very helpful.  
Understanding when and why wise crowds prove beneficial and how it could be used in an 
estimation workshop is the purpose of this chapter. 
In 2004, a book called The wisdom of crowds: why the many are smarter than the few and how collective 
wisdom shapes business, economies, societies and nations by James Surowiecki was published and 
instantly had a big success. Its central thesis was that a diverse collection of independently 
deciding individuals is likely to make better decisions and predictions than any single mem-
ber of that group or even experts. For Surowiecki consecutively three types of problems 
could be easier solved by involving crowds. The first are cognition problems, those have 
definitive solutions. For example how many products a firm will sell during the next year. 
The second is called a coordination problem, such as driving safely in heavy traffic or 
buyers and sellers finding each other and trading at fair prices. The final one is called a co-
operation problem, which focuses as example on getting mainly self-interested people to 
work together paying less taxes or dealing with pollution. 
On the other hand there are many cases, where crowds are acting very irrational like riots 
or stock-market people creating bubbles. So there must be some conditions for a wise 
crowd. 

2.4.1 Requirements for a Wise Crowd63 

There are some key factors according to Surowiecki separating wise crowds from unrea-
sonable ones. 

 Diversity of opinion and knowledge 
Each member of the group should have private information. This could also be a very in-
dividualistic interpretation of known facts. 
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 Independence 
One`s opinion should not be influenced by surrounding opinions. 

 Decentralization 
This means, an individual is able to draw on local knowledge and surroundings. New per-
spectives and a broader knowledge basement are reached consecutively. 

 Aggregation 
Some mechanism is needed in the end to turn individual judgements into collective deci-
sions. This is very important, because decentralisation without aggregation is a recipe for 
disaster. 

 Incentives 
The final condition is to have incentives. The basic idea is a reward, if you are right, and a 
penalty, if you are wrong. The payoffs can be monetary (e.g. stock markets), but do not 
have to be. For example a reputation payoff or something else can be installed. Incentives 
have several impacts:64 

 Improved prediction accuracy. 

 Encouragement to greater diversity (payoff is higher if your bet is away from 
the crowd). 

2.4.2 Types of Crowd Wisdom 

Three types of crowd wisdom can occur regarding Surowiecki. These types are correlating 
to the already mentioned problems for wise crowds in Chapter 2.4: 

 Cognition (=insight into something) 
As a good example market judgement, which can be seen as based on crowd wisdom, is 
regularly much faster, more reliable and less influenced by political forces than decisions of 
experts or even expert committees. 

 Coordination (=a reasonable interaction or teamwork between individuals) 
Not colliding in moving traffic flows or pavement flows is a fine example for the ability of 
crowds to coordinate their behaviour. Surowiecki examines in his book how common un-
derstanding within a society or culture, ergo a group, allows accurate judgements about 
specific reactions of other group members. 

 Cooperation (=trade-off between individual targets)  
A free market is basically a network of trust without a central station controlling the behav-
iour of people in that network. Also their compliance is not directly forced. Therefore it is 
a self-organised example of decentralised teamwork. 

2.4.3 What Can Go Wrong with Crowd Wisdom? 

In Surowiecki`s opinion there are several situations, in which the crowd produces very bad 
judgements (like rational bubbles) and argues that in these types of situation their cognition 
or cooperation fails because the group members are too conscious of the opinions of oth-
ers and began to conform rather than think in a different way. Now the benefit of individ-
ual judgement and private information is lost and the crowd can only do as well as its 
smartest member rather than perform better. 
There are several ways this could happen: 

 Homogenity 
Same background, same culture, a certain bias within a crowd cannot ensure enough diver-
sity and therefore less variance in approach. 

 Centralization 
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Everyone is part of the same rigid hierarchical structure or has the same authority, so im-
portant parts of crowd are isolated. 

 Emotions 
Herd phenomena, group pressure, in extreme cases collective hysteria, all based on a strong 
feeling of belonging can destroy a sensible crowd. 

 Imitation 
Where choices are visible and in sequence, an information cascade can occur: once first 
decisioners have made their choice, this choice is sufficiently informative, and it pays for 
later decision makers to simply copy those. You lose diversity. 

 Division 
Free flow of information is needed, so everyone can choose what information is important 
to him. Divisions, let`s say expert sub divisions as an example, are knowledge walls and 
lead to isolation of important data. 

2.4.4 Applications 

Applications of crowd wisdom exist in three general categories: Prediction markets, Delphi 
methods and extended traditional opinion polls. 
Prediction- or decision markets are speculative and virtual markets based on a betting 
structure. They ask questions like “Who do you thin  will win the election?” and predict 
outcomes rather well, in many cases even better than opinion polls. Several companies of-
fer prediction market places to predict project completion dates or the market potential for 
new ideas. An adapted prediction market is also used in some project management soft-
ware such as Yanomo (http://www.yanomo.com) to let team members predict a project's 
"real" deadline and budget. Consecutively Yanomo manages projects, collaborates across 
teams and tracks activities. It bases on the principle of team sourcing and therefore on the 
wisdom of the crowd, which states that the entire team knows more about the project than 
the manager alone. 
Another good e ample of crowdsourcing is the online game “Fold it!” (http://fold.it). 
Online gamers are motivated to re-structure proteins in 3D ensuring energy minimum. Bio-
Scientists can use the results to solve "real-world" problems. 
The Delphi method is important for an estimation workshop, so it will be treated more 
deeply in the following chapter: 

The Delphi Method - a Way to Catch the Wisdom of the Crowd 

The Delphi method (see Figure 9) is a systematic, interactive prediction method, which is 
built on a panel of independent experts.  
The accurately selected experts answer questionnaires in two or more rounds. After each 
round, a facilitator provides an anonymous summary of the e perts’ forecasts from the 
previous round as well as the reasons they offer for their judgments.  
Therefore participants are encouraged to revise their earlier answers in light of the replies 
of other members of the group.  
During the process the range of the answers will decrease and the group will converge to-
wards the most correct answer. Many of the consensus predictions have proven to be more 
accurate than forecasts made by individuals. 

http://en.wikipedia.org/wiki/Speculation
http://en.wikipedia.org/wiki/Project_management_software
http://en.wikipedia.org/wiki/Project_management_software
http://en.wikipedia.org/w/index.php?title=Yanomo&action=edit&redlink=1
http://www.ask.com/wiki/Teamsourcing?qsrc=3044
http://fold.it/
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Figure 9: The principle of a Delphi method. 

The key characteristics of this method are: 

 Feedback loops force intensive examination of the own estimations 

 Independence of the participants (no herding effect) 

 Decentralization of participants 

 Diverse structuring of group 

 Controlling and aggregation of information flow 
For an estimation workshop there are two practical ways: 

 Large Circuit: Email-Loops etc. 

 Small Circuit: Estimate-Talk with participant-Estimate 

2.5 Estimation and the Power of Diversity65 
The payoff of this chapter will be some theorems that should explain the centre of crowd 
wisdom, diversity. These theorems are mathematical facts and show, why crowds must be 
wiser then people within the crowd and why in particular the crowd does so well. Further-
more crowds of experts (intentionally they may predict best) and the effect of incentives on 
prediction accuracy will be investigated. This is a more detailed approach then Surowiecki 
did. 
So why can teams of people find better solutions than brilliant individuals working alone? 
The answer lies in diversity. It is not the difference in what we look like outside, but what 
we look like within, in other words our distinct tools and abilities. 
A book called The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools and 
Societies by Scott E. Page examines this topic and reveals that progress and innovation may 
depend less on lone thinkers with enormous IQs than on diverse people working together 
and using their individuality. In particular and different to other published books or papers 
this publication uses mathematical modelling and case studies to show how variety in staff-
ing produces organizational strength. Furthermore Page shows how groups that display a 
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range of perspectives outperform groups of like-minded experts. Diversity yields superior 
outcomes, whether you are talking about citizens in a democracy or scientists in the labora-
tory. Also he examines practical ways to apply diversity's logic to a bunch of problems.66 

2.5.1 Expert or Crowd? 

The answer to that question depends on the underlying problem. For example if your 
plumbing is damaged, you will need a plumber rather than a social worker, a German 
teacher and a politician working together. But diversity becomes more important when the 
problem is complex and given rules cannot solve it. 
It is very common to say “let`s form an e pert group!” to solve emerging problems, but 
experts are not the only game in town. This notion is perfectly introduced by Philipp E. 
Tetlock. His primary finding is that (political) experts are poor forecasters. He demonstrat-
ed this with a large sample of forecasts and with comparison to reasonable alternatives.67 
Furthermore he stated that the best way is to combine “fo es” ( fle ible non-experts) and 
“hedgehogs” ( infle ible e perts) notions to get more accuracy. In other words: his results 
lead to accumulate diverse information sources. 
On the other hand crowds based on a majority of non-experts can do very well. This will 
be shown later on (in Chapter 2.5.3) by three distinct problems, which give an insight in the 
power of crowd wisdom. The first one is called needle-in-the-haystack problem. Here some 
people in the crowd know the answer while many, if not most, do not (e.g. “Who wants to 
be a millionaire?”). The second one is an estimation problem, where one person knows the 
correct answer, but the crowd does not (e.g. estimation of an ox-weight). Third problem 
turns out to be a prediction, where no one knows the correct answer, because it has to be 
revealed in the future (e.g. duration estimation)68. To discuss these three problems we will 
need a so-called toolbox of diversity at first (see next chapter).  

2.5.2 The Toolbox of Diversity 

More often than not, when organizations discuss diversity, they refer to social identity di-
versity, for example gender, race, religion, age, etc. Social identity diversity and cognitive 
diversity are certainly not the same. The ultimate goal is nevertheless cognitive diversity.69 
Page unpacks diversity into four frameworks in his book, which he calls the toolbox of 
diversity.70 Plainly told these frameworks are explaining how we differ cognitively. 

Perspectives: Ways of Seeing Things and Solving Problems. 

A perspective switch and a new way of solving a problem are often very effective. A simple 
example is the change from Cartesian coordinates to Polar coordinates for area calculation 
of rotation-symmetrical 2D shapes. 

Heuristics: Ways of Generating Solutions to Problems.71 

All in all it is obvious that more heads have more different solution tools in mind. A good 
example hereby is finding the correct rules for uncompleted number rows often found in 
IQ tests:72 
 
a) 1 2 3 5 _ 13 
Solution: 8 (Fibonacci), the underlying rule: xi+2 – xi+1 = x (differences) 

                                                 
66

   Cp. N.N. (Book review: "The difference…” by Scott E. Page, 2010) 
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   Cp. Tschoegl et.al. (2007) 
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   Cp. Mauboussin (2007) 
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   Cp. Mauboussin (2007) 
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   Cp. Page (2007) 
71

   Cp. Page (2007) 
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   Cp. Page (2007) 
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b) 1 4 _ 16 25 36 
Solution: 9, the underlying rule: xi

2 = x (squares) 
 
c) 1 2 6  _ 1806 
Solution: 42, the underlying rule: xi+2 – xi+1 = xi

2 (differences of squares) 
 
The last one is just a combination of the first two heuristics. So if you have one person 
with one heuristic (subtraction) in mind and a second person with a second heuristic 
(squaring down) in mind, you may get for free a third heuristic (subtract the squares!). You 
can see some sort of superadditivity effect. This is very important to understand, because 
some people tend to treat diversity like a diverse portfolio in the stock market: You get a 
specific problem, so you need a diverse group to find the specific expert. But in fact if you 
have a problem, you need the superadditivity of tools or heuristics to solve it faster and 
easier. 

Interpretations: Ways of Appropriate Categorizing the World (e.g. your Perspective).73 

Or easy said: “we lump to live!” (→ lumping). If we treat every experienced event as an indi-
vidual, idiosyncratic one, we will basically struggle because of data overflow.  
For instance placing the following food items in piles: 

Table 11: Food items. 

Broccoli Canned Beets Ahi Tuna Fennel 

Fresh Salmon Arugula Sea Bass Niman Pork 

Spam Canned Posole Carrots Canned Salmon 

 
A BOBO (BOurgeois BOhemian) may sort them in three categories: 

Table 12: BOBO selection. 

Veggies Fish & Meat Canned Stuff 

Broccoli Fresh Salmon Canned Salmon 

Carrots Ahi Tuna Spam 

Arugula Niman Pork Canned Beets 

Fennel Sea Bass Canned Posole 

 
A Hillbilly may sort them in three other categories: 

Table 13: Hillbilly selection. 

Veggies Fish & Meat Weird Stuff 

Broccoli Fresh Salmon Arugula 

Carrots Canned Salmon Fennel 

Canned Beets Spam Ahi Tuna 

 Niman Pork Canned Posole 

  Sea Bass 

 
So the different piles are nothing else than interpretations of the world. The point is that 
people categorize the world differently and so they have different predictions of what will 
come next. This circumstance leads us to the last point: 
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Predictive Models: Ways of Figuring Out What Happens Next.74 

Predictive models make inferences from the categories we create. If we lump differently, 
then we are li ely to predict differently. For instance one might say: “Faceboo  is pure rec-
reational activity”, another one might say “Faceboo  is an effective election campaigning 
tool”. The former one is possible still wor ing at Starbuc s, the latter one could be Presi-
dent of the United States. 

2.5.3 An Insight in Diversity Power: 3 Problems75 

Problem One: Who Wants to Be a Millionaire? 

The first problem is a needle-in-a-haystack problem. There is an answer and some mem-
bers of the crowd know what it is. The value of diversity is easy to see here. The remarka-
ble fact is it does not take many people knowing the answer (or even having a better than 
random chance to guess the right answer) for the correct answer to emerge. 
To illustrate the point, I borrow Page’s e ample from The Difference.76 He hypothetically 
presents the following question to a crowd: 
 
Which person from the following list was not a member of the Monkees (a 1960s pop band)? 
(A) Peter Tork 
(B) Davy Jones 
(C) Roger Noll 
(D) Michael Nesmith 
 
The non-Monkee is Roger Noll, a Stanford economist.  
Now imagine a crowd of 100 people with knowledge distributed as follows: 

 7 know all 3 of the Monkees. 

 10 know 2 of the Monkees. 

 15 know 1 of the Monkees. 

 68 have no clue. 
In other words, less than 10 per cent of the crowd knows the answer, and over two-thirds 
do not know the Monkees at all. As assumption we can say that individuals without the 
right answer vote randomly. As next step you can make the following breakdown:  

 The 7 who know all the Monkees vote for Noll. 

 5 of the 10 who know 2 of the Monkees will vote for Noll. 

 5 of the 15 who know 1 of the Monkees will vote for Noll. 

 17 of the 68 clueless will vote for Noll. 
Therefore Noll will get 34 votes versus 22 votes for each of the other choices. The crowd 
easily identifies the non-Monkee. We could add even more clueless people without violat-
ing the result: while the percentage margin by which Noll wins would decline, he would be 
the selection nonetheless.  
Two variables are important: the percentage of the crowd who know the answer and the 
degree of randomness in the answers. Hereby randomness is more important than accura-
cy. A surprisingly small percentage of the population can know the answer and the popula-
tion itself will be right with high randomness. Deviations from randomness will create less-
than-perfect crowd answers, but still very good ones. 
A popular problem, which is the same type as the above one, is simply asking a World 
Wide Web search engine for something. The engine uses rankings based on the wisdom of 
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crowds and answers most routine questions like the correct names of the Monkees very 
quickly. 

Problem Two: Guessing the Right Number of Jelly Beans77 

The second problem deals with estimating a state. Hence only one person (the questioner) 
knows the answer and none of the problem solvers do. A classic example of this problem 
is asking for a guess concerning the number of jelly beans in a jar. The core of this experi-
ment is handled in Page`s book and it is called the Diversity Prediction Theorem. 
Basically we want to define how far a crowd, an expert, a non-expert etc. is away from re-
ality. Secondly we want a comparison, who does better. So we have to define some parame-
ter to measure these differences. The solution is to build squared errors. Simple subtraction 
would be not enough, because there will be a cancelling out, if you have positive and nega-
tive values. In plain language: if one dart is thrown 5 cm left to the bull and one dart 5 cm 
right to the bull, you certainly do not hit bull`s eye. Equation 3 gives an example. 
 

(predicted value – actual value)2 = squared error of prediction 3 
 
Squared errors as a measure of accuracy are the mathematical foundation for the theorem. 
The bigger the error the worse estimating is. 
The following simply example is applying this squared errors technique. Imagine some sort 
of low temperature prediction (in °F) for different American cities. You have two expert 
estimations, NOAA (National Oceanic and Atmospheric Administration) and WEDC 
(weather.com). The average (Ave) of these two experts will be the crowds guessing. The 
actual temperature is given in the last row. 

Table 14: Predicted and actual temperatures in different cities. 

 New York Chicago Los Angeles 

NOAA 16  6 40 

WEDC 10 14 46 

Ave (Crowd) 13 10 43 

Actual 18 16 39 

 
Firstly the average individual error, that combines the squared errors of all of the partici-
pants, is calculated.  
 
NOAA: (16-18)2 + (6-16)2 + (40-39)2 = 105 
WEDC: (10-18)2 + (14-16)2 + (46-39)2 = 117 
Average: (105 + 117)/2 = 111 
 
Plainly said it captures the average accuracy of the individual guesses. So this is a measure 
how smart people are and how well they can guess. We have to calculate the crowd error: 
 
Ave (Crowd): (13-18)2 + (10-16)2 + (43-39)2 = 77 
 
Firstly you can see the crowd is better than the average individual guess. Secondly to get 
the variance of the predictions as comparison between experts and crowd, you have to 
calculate another difference: 
 
(NOAA - Crowd)2 = (16-13)2 + (6-10)2 + (40-43)2 = 34 
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(WEDC - Crowd)2 = (10-13)2 + (14 - 10)2 + (46-43)2 = 34 
 
These results are called “Prediction Diversity”. Prediction diversity combines the squared 
difference between the individuals guess and the crowd guess. It reflects the dispersion of 
guesses or how different they are. In other words: It is a parameter how the estimators 
differ in mind and how disperse the estimations are. 
What Page found out is that you can calculate the collective ability or the crowd error (that 
is simply the difference between the actual value and the crowd guess) as follows by equa-
tion 4: 
 

crowd error = actual value – crowd guess  4 
                   = average individual error – prediction diversity  

 
This equation is called Diversity Prediction Theorem (DPT) and has some important im-
plications. At first a crowds guess is depended on individual ability and collective difference 
(=diversity) in equal parts. You can reduce crowd error by either increasing accuracy by a 
unit or by increasing diversity by a unit. That is maybe surprising for a society that is tend-
ing to praise ability. Secondly a diverse crowd will always predict more accurately than the 
average individual. Consecutively the crowd always predicts better than the people in it. 
Finally, while not a formal implication of the theorem, it is true that the collective is often 
better than even the best of the individuals. A diverse crowd always beats the average indi-
vidual and frequently beats everyone. And the individuals, who do beat the crowd, general-
ly change, suggesting they are more of a statistical remainder than super-smart people. 
To illustrate the Prediction Diversity Theorem the following experiment was done at Co-
lumbia Business School in 2007: 

Experiment 1: Jelly Beans 

73 students had to guess independently the number of jelly beans in a jar. As incen-
tive/punishment there was a $20 money reward for best guessing and a $5 penalty for 
worst guessing. In Figure 10 Column A shows the individual estimations. The crowd`s 
guess that is calculated by the mean of all guesses was 1.151 beans. The actual bean number 
was 1.116. So the crowd was off by 35 beans or 3,1 %. Column B-E present differences 
and squared errors to calculate the DPT. 
I want to run through an example with Student 1 to exemplify how this works. Her guess 
was 250 beans. Hence the actual value was 1.116 beans, the difference to reality was -866 
beans. Then we have to square this difference and get 749,9. Next step is to do this for 
each student and take the average for the whole class. This is the average individual error 
with the value of 490,9 (remember: the more accurate each student estimates the smaller 
this error is).  
Now we can compare Student 1`s guess (250) with the class` average guess (1.151). The 
difference is -901 and squared 811,8 (column E). Again we do this for each student. Thus 
we get the prediction diversity with the value of 489,7 (remember: the more disperse the 
estimations are the larger the prediction diversity is). 
 
Finally we bring all together and calculate the crowd error or collective error by means of 
the DPT: 
 
crowd error = average individual error – prediction diversity = 490,9 – 489,7 = 1,2 
 
You can see that the crowd is guessing more accurate than the average individual. As a 
result check you can calculate the square root of the collective error: 
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√  2 8 ~ 35 beans. 
 
35 beans are the difference between the crowd`s guess and the actual bean number in the 
jar. Only two estimators were better than that (both voted for 1.120 beans, so they were +4 
beans off). 
Again a diverse crowd has beaten the average individual, but as already mentioned not al-
ways could beat everyone. The individuals, who do beat the crowd, generally change. They 
seem to be more a random phenomenon than some sort of super-estimator. Therefore you 
cannot predict the person or persons who may beat the crowd. The crowd`s guess is the 
nearest assured value to reality you can detect.  

Problem Three: “And the Oscar Goes To…”.78 

The last problem deals with a prediction, where the answer is unknown and will be re-
vealed in the future. This problem is almost like a combination of the first two. As with the 
Monkees` example (problem one), some people probably have better predictive models 
than others (i.e. they know the film industry), hence allowing the most likely answer to 
arise.  
To get this answer surely we combine a lot of diversity (some must have the right predic-
tive models) with little predictive accuracy (most estimators know not much about films). 
This step is concerning problem two. 
The following example is an experiment conducted at Columbia Business School with stu-
dents and will show how the DPT also works on this type of problem. 

Experiment 2: Oscar Favourites 

Prior to the Academy Awards Ceremony 2007 a two-sided sheet with some known and 
some less known prize categories was distributed. The goal was to predict the winner in 
those categories. The students could contribute 1 dollar to a pot (with the winner getting 
the proceeds as incentive) and then select their favourite. The goal was to win the pot, not 
to choose the emotional favourites.  
Front page are the six most popular Academy Awards categories: 

 Best actor 

 Best actress 

 Best supporting actor 

 Best supporting actress 

 Best film 

 Best director 
On the back are six less known categories: 

 Best adapted screenplay 

 Best cinematography 

 Best film editing 

 Best music (original score) 

 Best documentary 

 Best art direction 
 
Figure 11 shows the categories and a 1 for each right guess and a 0 for the wrong ones. 
Furthermore all differences (highest possible value is 12, lowest is 0) and squared errors are 
inscribed.  
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The results show the Diversity Prediction Theorem at work. The crowd guess defined as 
the most likely value in each category got 11 of 12 winners correct, including all 6 lesser 
known categories. Two students win the pot for the most correct answer (9 of 12 correct) 
and the average student (= average individual error) got just 5 of 12 right. 
This result illustrates again how accuracy and diversity combine to produce an individual-
beating answer. 
While the logic of diversity certainly provides some important insights and useful models, 
we by no means fully understand the wisdom of crowds. But the given models and exam-
ples provide a concrete step in the right direction. 
 
Finally Page has summarized the power of diversity in a very short and impressive manner: 
 
“These theorems that when solving problems diversity can trump ability and that when 
making predictions diversity matters just as much as ability are not political statements. 
They are mathematical truths.”79 
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   Page (2007) 
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Figure 10: Statistical approach to the Jelly Beans Problem.
80 
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Figure 11: Statistical examination for the Oscar Problem for all categories.
81 
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Figure 12: Statistical examination for the Oscar Problem for one category
82
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3 Company Survey 

3.1 Objective 
PSA is already applied in various companies, so at OMV as well. This means some related 
knowledge must be accumulated over time and it is reasonable to do some data mining.  
The main target was to detect the right experts and the right way to grab their know-how in 
terms of conducting PSA practically. 

3.2 Approach 

3.2.1 Information Sources in a Company 

Overall there are two different types of information sources:83 

 Primary information sources (counting, measuring, asking etc.) 

 Secondary information sources (interpreting of and deducing from information) 
In this work an interrogation as primary source was chosen. That could be conducted in 
different ways showed in Figure 13: 
 

 

Figure 13: Interrogation concepts. 

In our case a structured, oral form (telephone interview based on a questionary) was pre-
ferred. The reason for that was the possibility of standardization and comparability. Sec-
ondly the problem of misunderstanding some questions in written form like e-mails can 
occur. An oral and structured interview should avoid all these difficulties. 
In order to do so OMV compiled a catalogue with contact data of experts, who offer great 
knowledge concerning PSA. This catalogue was used to make telephone interviews. Table 
15 shows the way all interrogations were done. 

Table 15: Guideline for telephone interviewing. 

Task (in chronological 
order) 

Duration (approximation) Tools 

Working out questionary 
and contact person list 
with expert panel 

1 week E-mail 

Making appointments with 
contact persons 

2 days E-mail, Telephone 

Interviewing 30 Min. to 60 Min. (1 Inter-
view). 
Pay attention: to have all 

Telephone 
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persons interviewed could 
take some time due to ap-
pointment spreading. 

Info wrap-up und conclu-
sions 

1 day MS Word 

3.3 Outcome and Lessons Learnt from Interviews 
In this chapter the list of asked questions is presented and to every question a summary of 
given answers below. 

Have you ever done a PSA before (PERT, Monte Carlo Simulation etc.) und if so, what are 
your experiences with? 

PSA is very important to all interview partners and has become a widely used tool in prac-
tical project management. A deterministic approach is too optimistic or inexact and has its 
benefits only in the concept phase to make rough schedule drafts. An important fact is 
sometimes the lack of “native mathematics” in the project. So it is a common agreement 
that PSA should be transparent and well documented.  
Furthermore all biases on the input value side (for example a too optimistic estimator) do 
have a big influence on the output. This should be captured in an estimation workshop to 
make estimators more aware of that. 
Moreover constraints are an important factor. They are necessary for deadlines that cannot 
float in the schedule. But constraints should be kept to a minimum, because they could not 
be captured by probabilistic analysis due to their deterministic character. Negative con-
straints should be totally avoided. 
In all cases MC simulation was and is used. If you are uncertain about your duration esti-
mations, a PERT analysis can give you a raw, but often realistic approach. A well-thought 
logic diagram of your schedule (sequence of tasks etc.) is necessary too. 
Mostly a top-down principle is applied to get your final schedule. This means you generate 
a target schedule at first, very rough and with most likely values. Then uncertainty is taken 
into account and as result you get a mean schedule, which should be regularly revised and 
communicated. 
Basic project management tools are MS Project84 and Oracle Primavera85. Primavera is in-
dustry standard and for more complex projects, MS Project has its credits in creating fast 
and less complex schedules. 
For modelling uncertainty @Risk86 and Futurenova are in use. Different to @Risk the lat-
ter is designed to be in „live action“. This can help a team to evolve a comprehensive over-
view of a situation or project in terms of time and budget. 
In general there should be no distinction between cost and schedule analysis, both base on 
the same principles and should take action simultaneously. Perhaps there will be a merging 
in the future to get synergy effects. Secondly you should work out your schedule with great 
foresight and intensive information gathering. This will pay off later, because working in a 
“no surprise area” is more efficient. 

If you have done a PSA before: what were typical pitfalls and the main difficulties you 
faced respectively? 

Employees should have statistical and practical understanding in doing PSA and a pro-
found knowledge about distributions. For example: A new compressor has to be delivered 
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in 2 years. Engineers with “triangular bias” estimate gently on the right side of the distribu-
tion (let`s say +10 months). Engineers with a tendency to tailored distributions estimate 
boldly, also including Black Swans (for example +4 years, it is not very likely, but neverthe-
less not impossible). 
There are also different estimation individuals: 

 realistic, 

 cautious, 

 management affine and 

 bold. 
That aspect of diversity should be balanced. 
A well-planned and continuous communication of PSA is needed. It is not only a working 
tool, but also a way of thinking or in other words: PSA does not start in MS Project, but in 
the employee`s mind. 
As often mentioned: “garbage in - garbage out!”. Correct and e tensive input information 
are crucial. Otherwise you have too many assumptions and this can harm your results. 
Furthermore a too optimistic approach can take place. On the one hand you can detect this 
in a very small range between the P10 and P90 value (some risks are denied or not seen), 
on the other hand the use of a P10 to P30 value as mean value (should lie between P30 to 
P50) often occurs, but is not realistic at all. Reasons for over-optimistic statistics are a not 
well-defined project and the ambition and/or ignorance of basic PSA theory. If you have a 
very optimistic target schedule to motivate your co-workers, you must communicate this 
well. 
A not often considered pitfall is the time loss in the beginning of the project, because a lack 
of motivation (as example: first oil is far away, no milestone pressure) is occurring. 
Another aspect is that people tend to handle PSA information as sacrosanct, because these 
values are coming out of a black box they will never understand. But in fact it is more a 
working platform that should be used as reference system, where you can rely on for fur-
ther planning. PSA is therefore another example for the need of a PDCA (Plan, Do, Check 
and Act!) system. 
Moreover realistic values should come first followed by corresponding distributions, not 
the other way round. People tend to favour “convenient” distributions without loo ing at 
the data basement. 
When taking a look at the project management side: the target and the scope of the project 
must be very clear. People have to buy-in. Intermediate milestones are necessary to keep a 
“motivation tension”.  

In your opinion, what are the main factors that can cause uncertainties in the project 
schedule? 

Typical for all interview partners was some uncertainty according to partner approval. This 
means sometimes financial burdens are allocated between project partners, but approval 
from your own company is not sure (for example: board is on holidays).  
If you take a look at BP: 378 risks concerning budget/schedule/quality are stored in a da-
tabase and as suggestion it could be worthy to combine different risk matrices to find 
common risks. Consequently you could create an uncertainty/risk ranking, which leads to 
priorities and postpone actions later on. 
Moreover one important uncertainty factor is the company itself, as an example: no proper 
project management. 
Of course political surroundings can have a big influence. Typically been treated as Black 
Swans, they are not necessarily unlikely, because many oil projects are located in politically 
unstable countries. 
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All in all there are very different causes of uncertainty, let`s say contracting, financing, au-
thorisation (bureaucracy), board decisions, delivery delays. Every project is different and 
therefore the main uncertainty drivers are changing every time.  

For which projects does PSA make sense (budget, complexity)? Can you quantify it? 

There is an overall agreement that PSA does make sense for all projects. For example re-
calling a rental contract from the day an office movement is finished. PSA is done for pro-
jects in a financial range of 1 Million to 1 Billion Euros and for schedule task numbers up 
to 10 000. 

In which project phases (concept, pre-feasibility, feasibility and execution) would a PSA 
make sense? 

PSA in the concept phase does not make sense, because the level of details is too low and 
there are often more versions of the same schedule considered. If you take a look at OMV: 
from Tollgate 5B (= defined general company milestone) on it is necessary. 
In general a PSA should be started in the pre-feasibility phase and it has to be started at 
feasibility level. Furthermore you can say: the earlier the better, because you have more 
alternatives at the front-end. Mostly PSA is performed at the end of a phase. The best way 
would be in the middle, because you already have important information and enough time 
contingencies to go against. 

How do the interview partners usually gather the input data (minimum, mode, maximum 
etc.), during the risk workshop or in advance? How many different opinions are consid-
ered? 

Look at BP: a special one man-office is installed risking all the time. In addition a planning 
team runs a database, so many considerations, opinions and hints are stored. This system 
has its advantages, because risk workshops do not offer a proper data updating and it is 
further a problem, that in workshops sometimes the deterministic base schedule is dis-
cussed too long. 
Look at OMV: here you can find a risk workshop, where ca. 12-15 (head quarter) experts 
are discussing the appropriate values. Additionally a basic and raw schedule is determined 
and then uncertainty data is gathered. 
Overall a risk workshop/expert panel with a multi-disciplinary group is common. Major 
data sources are historical data (most accurate, database!) and expert judgement. Uncertain-
ty data should be allocated in advance, when global schedule data is collected. 
If you want to rely on expert judgement, sometimes single expert interviews (on a simpli-
fied Delphi method base) are preferred. This could counteract herd effects. 

What is the usual number of tasks considered in the PSA? All tasks? Is lumping of tasks 
performed? Suggestions? 

It normally depends on the planning stage: 

 concept phase: ca. 100 Tasks (several scenarios),  

 prefeasibility phase: ca. 250 Tasks (ca. 2 scenarios) and 

 Tollgate 5B: ca. 1000 and more (can go up to 10.000 tasks).  
But there were also notions that the schedule should have a maximum task number of 200 
and you better pay attention to tied networks with no logically gaps. Otherwise you can get 
problems with complexity and logically breakdowns during simulation. 
At the feasibility stage all tasks should be included in a PSA. In the execution phase you 
should have one man-one work package structures. 
The impact of lumping is generally not known, there was no exact opinion on this topic. 
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Which distributions are in use? How are they selected? Suggestions? 

It heavily depends on the situation. Frequently used distributions are: 

 Triangular 

 Normal 

 Long-tailored like Lognormal 

 Uniform 

 Trapezoid 

 Yes-No (discrete, only for risks) 

 Beta (constraints in the beginning of a task) 
Some say that you should take a Triangular one, where it is possible. This approximates real 
data best. If you have absolutely no information, take a Normal distribution. 
Distribution selection is based on experience, software settings and trial and error ap-
proach. Literature has less impact. But again it is very important to get some uncertainty 
key data as distribution parameters first before you look out for the right distributions. 
Sometimes the curves are not expanded enough (too small range) and therefore to optimis-
tic. A counter strategy could be as ing the question “In one of hundred cases, what could 
happen?” Then you get an estimation of fringe values. 
Overall this is a complicated topic and a preference is to take more simple and understand-
able distributions.  

How the result of the PSA should be implemented in the further course of the project? 
Actual situation? Suggestions? 

At BP you will find a PDCA loop, so everyone can have his project evaluated all the time. 
This means you get for example a quality-quantity-link: anchor chain of a production ship 
is broken (quality), how does this influence my whole schedule and/or single tasks (quanti-
ty)? Consecutively you can achieve time line scenarios (with/without mitigation etc.). 
Generally there is a PSA update two times a year, for this some single talks with persons 
responsible for the work package or a small work team is sufficient to gather information. 

What “end dates” for the projects are communicated to the board motion after having 
performed PSA? P50? Deterministic value? Deterministic value + contingency? 

In general risk calculations are requested by the board, no deterministic schedule even with 
contingencies will be accepted anymore. A “most likely schedule” could be used as target 
(basic) schedule. 
As an optimum P70 to P80 values should be given to the board, generally the opposite 
takes place (P15 values) to satisfy board ambitions. Overall estimations are too optimistic 
(≈ P30). In real and in very rare cases P35 values were achieved. 
The following counter strategy was suggested: high P values should be well explained to 
board, there has to be a value labelling: “unris ed”, “P70 ris ed” etc. Additionally all statis-
tics should be presented to the board, but an emphasis on the mean value is a reasonable 
approach, because this is the best approximation. 
Always have in mind: transparent, profound estimations are commonly the most likely 
ones. Secondly: if you want to be very safe, keep a contingency of not less than ten per 
cent. 

In general: what is the subjective effort/benefit-ratio for PSA? (Differentiate between peo-
ple working in branch offices and people who give support from head office!)  

For branch office people a budgeting without PSA is nearly impossible, because otherwise 
you cannot get a realistic and achievable plan. Consecutively this schedule can be sent with 
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all conscience. For the supporting head office this means a better ability to plan and a bet-
ter visibility of the status quo.  
Common sense is that you have, if well done, a win-win situation, which justifies quite an 
effort. 

Do you think a guideline as blueprint for conducting a PSA would be useful? 

You can find an overall agreement: yes, of course. But it must be transparent, thought 
through and usable! 
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4 Applied Probabilistic Schedule Analysis 

Thus far plenty of theory concerning probabilistic schedule analysis was investigated and 
presented in this work. But do theory framework and its key approaches pass a reality 
check and furthermore can it be implemented in daily workflows? 
A practical attempt to verify literature was already done with the company survey. Now 
results from this survey and literature`s key issues will be examined “in real” in the ne t 
chapter with MS Project, some test schedules and a special probabilistic analysis software 
called @Risk. 

4.1 Material and Methods 

4.1.1 MS Project 

MS Project is a program designed and sold by Microsoft to manage projects in developing 
and analysing project plans, Gantt charts, budgets or resource allocations. 
 

 

Figure 14: MS Project 2011, task view. 

For more information on the product please visit www.microsoft.com. An excellent intro-
duction for managing projects with MS Project 2010 is given by the boo  “Using Microsoft 
Project 2010” by Sonja Atchison87. 

4.1.2 Palisade`s @Risk for Project88 

@Risk is an add-in for MS Project. It offers the possibility to turn a deterministic schedule 
into a probabilistic schedule by adding probability distributions to the single point estimates 
and running a Monte Carlo simulation. 

                                                 
87

   Cp. Atchison (2011) 
88

   Cp. Wallace (2010) 

http://www.microsoft.com/
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Figure 15: MS Project (Project I) with activated @Risk, the "Add distribution" window is opened. 

For further information on @Risk two reference works are recommend: “Schedule risk 
and contingency using @Risk and probabilistic analysis”89 by Ian Wallace (this chapter is 
mostly based on this paper) and “Guide to Using @Risk”90 provided by www.palisade.com. 

Basic Techniques to Use @Risk 

Basic schedule with distributed task durations: 

This is the basic way using @Risk. Uncertain task durations do not base on single values, 
but on distributed values (cp. Figure 15, Project I). Consecutively the Monte Carlo algo-
rithm grabs samples within each duration distribution based on the density probability 
function defined by shape and area. Each time a sample is taken, it is returned to the 
schedule, so MS Project can recalculate the completion date. All in all, when we simulate 
1000 different schedules, we will obtain 1000 potential completion dates along with a dis-
tribution of where most of them lie. The wider this distribution is, the more uncertain the 
outlook is. 

IF/THEN conditions: 

Supplemental this approach allows to include a risk register (a list of possibly risks linked 
with probability of occurrence and impact severity) into the schedule. The risks are entered 
as tasks with zero duration like milestones. These risk milestones are then linked to the 
tasks affected using Finish to Start (FS) dependency links. 
Firstly the probabilities of occurrence for each risk are entered as variable in the model 
definition window using a Binomial distribution (cp. Figure 16, risk does not occur: val-
ue=0, risk occurs: value=1). 

                                                 
89

   Cp. Wallace (2010) 
90

   Cp. N.N., Guide to Using @RISK, (2010) 

http://www.palisade.com/
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Figure 16: Defining a variable for risk A. 

The variable will now turn either to 1 or to 0 during the Monte Carlo simulation. In the 
next step an IF/THEN statement for risk A is set up to link the occurrence to a probability 
distribution for the impact (cp. Figure 17).  
 

 

Figure 17: Choosing an IF/THEN condition. 

If variable Occurrence Risk A=1, the probability distribution for the duration of the task 
“Ris  A” is triangular distributed with the chosen parameters. Ris  A will now ta e effect 
on sub task III in a certain amount in the associated Monte Carlo run. 
IF/THEN is useful when you have a list of defined risks that can hit your schedule. 
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Probabilistic Branches: 

This method can branch the schedule probabilistically to various task bundles, each of 
them with individual durations and probabilities. 
For example the probabilistic branch leads either to the normal schedule sequence (90 %) 
or to an additional task sequence held in the risk task section (10 %) as showed in Figure 
18: 
 

 

Figure 18: Probabilistic branching concept. 

If the risk section is hit, task Sub Risk B I will occur with a PERT distribution (min=1 day, 
ml=4 days, max=10 days) and is relinked in the schedule (Sub Risk B I -> Sub Task II) 
again. Otherwise the original schedule is simulated. 
 

 

Figure 19: Probabilistic branching with @Risk. 

It is important to link the risk task sequence back to the original plan so that it is correctly 
added to the schedule. 
Probabilistic branches are useful to model alternatives or can give a comparison between 
two different scenarios. 
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Simple discrete distributions: 

Discrete distributions are a simpler way than IF/THEN conditions to bring in risk events. 
Normally this is useful for accidents or other not well known risks, where discrete values 
define the possibilities and durations for the impact. If you not know when an accident can 
take place during the project, it is necessary to relink the impact to the final milestone, so 
that it can affect the finish date if it occurs. 
 
Risk C has been set up as shown in Figure 20: 
 

 

Figure 20: Risk C is discrete distributed and re-linked to the final milestone. 

Now the probability for no impact is 90 %, the possibility for a 5 days delay is 10 %, for a 
10 days delay 5 % and for 20 days delay 5 %. 

Correlations: 

Often durations or other parameters of different tasks are related, for example when dura-
tion of task A is long, duration of task B should also be long. Or when duration of task B is 
long, costs of task B are high at the same time. This is called correlation. More precisely, 
the distributions of the 2 tasks are still independent, but the sampling should be correlated. 
Correlations themselves are defined by a correlation coefficient. This coefficient can have 
values between -1 and 1. 
A coefficient of -1 indicates that two parameters are negatively correlated. When the first 
parameter is sampled at the high end of the min-max range, the other should be sampled at 
the low end.  
A coefficient of 1 indicates that two parameters are positively correlated. When the first 
parameter is sampled at the high end of the min-max range, the other should be also sam-
pled at the high end.  
A coefficient of 0 says that there is no correlation between the two parameters. The sam-
pling of one input will be independent of the other sampling then. 
As example you can see in Figure 21 that Sub Task I and Sub Task II are positively corre-
lated (@Risk->Model->Model Definition->Distributions: Select tasks, right mouse click-
>Correlate Distributions). 
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Figure 21: Correlation of Sub Task I and Sub Task II. 

All in all, the impact of correlation tends to increase the overall uncertainty in a project. 
Therefore it is prudent to estimate correlation coefficients in parallel to task durations or 
other task parameters. 

Define Parameters and Run a Simulation 

The basic sequence of actions to run a simple simulation is as follows (cp. Figure 23): 
1) Enter all input distributions. 
@Risk->Model->Model Definition->Define Distribution 
2) Add the output(s), like the final milestone. 
@Risk->Model->Model Definition->Add Output 
3) Enter the number of iterations (as example 1000) to take during the simulation. 
@Risk->Simulation->Settings 
4) Run the simulation. 
@Risk->Simulation->Start 

 
 
Figure 22: Basic sequence of simulation actions. 
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Interpretation of Results 

Figure 23 obtained from @Risk shows a histogram of the simulation results for Project I 
according to the date of the final milestone. As you can see, 90% (i.e. 900 of 1000) of the 
simulation results ended with a finish date between 10.06.2011 and 01.07.2011. The mean 
outcome is 21.06.2011. There is only a less than 5% chance to meet the baseline date (de-
terministic date) of 8.6.2011 due to involved risks and task distributions. 

 

Figure 23: Probability density function (histogram): date of final milestone (Project I). 

Next important information source is the cumulative curve (cp. Figure 24). Here, an 80th 

percentile of 1000 simulations were less than or equal to 27.6.2011, 19 days later than the 
original baseline date.  
So to imply a contingency buffer, it would be a possibility not to quote below this 80th per-
centile officially and set the internal target at the 50th percentile. 
 

 

Figure 24: Cumulative probability function: date of final milestone (Project I). 

Mean=21.06.2011 

X <=10.06.2011 
5% 

X <=01.07.2011 
95% 

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

01.06.2011 12.06.2011 24.06.2011 05.07.2011 17.07.2011

  

  

Mean=21.06.2011 

X <=10.06.2011 
5% 

X <=01.07.2011 
95% 

0

0,2

0,4

0,6

0,8

1

01.06.2011 12.06.2011 24.06.2011 05.07.2011 17.07.2011

  

  

80th percentile 

27.6.2011 



Applied Probabilistic Schedule Analysis 

51 

If this contingency is unacceptable, one has to mitigate risks or re-schedule the plan. Here 
another diagram is very helpful, the tornado graph (→ tornado graph), a sensitivity analysis 
(cp. Figure 25).  
In this graph you can see a positive correlation of four tasks to the final milestone date. As 
you can see, Risk A/duration impact according to Sub Task III and the duration impact of 
Sub Task II are important. So a schedule improvement contains more precise duration 
estimations, maybe a better probability parameter setting to these two tasks and a risk miti-
gation strategy for Risk A. 

 

Figure 25: Tornado graph: correlation impact of tasks on final milestone date. 

4.1.3 Model schedules 

Three model schedules (OMV_A, OMV_B, OMV_C) that cover original OMV explora-
tion & production projects were examined. These schedules are coded due to confidentiali-
ty and cannot be displayed in full detail.  
The schedules comprise a lot of typical exploration & production characteristics and thus 
will provide a sufficient basis for comprehensive simulation results. 
For testing CLT, correlations and constraints (→ constraint) dummy schedules without orig-
inal OMV background were used due to easier handling. 

4.2 Experimental Design 

4.2.1 Simulation Settings91 

Sampling 

Sampling (→ sample) is used in @Risk simulations to generate random values (→ random 
value) from probability distribution functions. These sets of values are then used to evalu-
ate your project schedule. So sampling is the basis for the hundreds or thousands of “what-
if” scenarios of possible schedules. Choosing a sampling method affects both the quality of 
results, and the length of time necessary to simulate the schedule.  
Sampling is done repetitively with one sample drawn every iteration from each input prob-
ability distribution. With enough iteration, the sampled values become distributed in a 
manner which approximates the original input probability distribution. The statistics of the 

                                                 
91

   Cp. N.N., Guide to Using @RISK (2010) 
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sampled distribution (mean, standard deviation and higher moments) approximate there-
fore the true input statistics. The graph of the sampled distribution looks like a graph of the 
true input distribution.  
Another important factor to examine when evaluating sampling techniques is the number 
of iterations required to accurately recreate an input distribution through sampling because 
accurate results for output distributions depend on a complete sampling of input distribu-
tions. If one sampling method requires more iterations, and longer simulation runtimes 
than another to appro imate input distributions, it is the less “efficient” method. 
There are several techniques for drawing random samples. @Risk uses two of them called 
Monte Carlo Sampling and Latin Hypercube Sampling. They differ in the number of itera-
tions required until sampled values approximate input distributions. Monte Carlo is the less 
exact one, it often requires a large number of samples to approximate an input distribution, 
especially if the input distribution is highly skewed or has some outcomes of low probabil-
ity. Latin Hypercube Sampling, a newer sampling technique, forces the samples drawn to 
correspond more closely with the input distribution, and thus converges faster on the true 
statistics of the input distribution.  
In the following section these methods are described more detailed. 

Cumulative Distribution 

It is helpful, when reviewing different sampling methods, to understand the concept of a 
cumulative distribution (→ cumulative density distribution) first. 
Any probability distribution may be expressed in cumulative form. A cumulative curve is 
typically scaled from 0 to 1 on the Y-axis, with Y-axis values representing the cumulative 
probability up to the corresponding X-axis values. The 0 cumulative value is the minimum 
value (0% of the values will fall below this point) and the 1.0 cumulative value is the maxi-
mum value (100% of the values will fall below this point). The 0.5 cumulative value is the 
point of 50% cumulative probability. Fifty per cent of the values in the distribution fall 
below and 50% are above (see Figure 26). 

 

Figure 26: Example of a cumulative distribution. 

Simultaneously the 0 to 1.0 scale of the curve is the range of the possible random numbers 
generated during sampling. In a typical Monte Carlo Sampling sequence, the computer will 
generate a random number between 0 and 1 with any number in the range equally likely to 
occur. This number is then used to select a value from the cumulative curve. In the figure 
above, the value sampled for the distribution shown would be x1 if a random number of 
0.5 was generated during sampling. Since the shape of the cumulative curve is based on the 
shape of the input probability distribution, it is more probable that more likely outcomes 
defined by the input distribution will be sampled. The more likely outcomes are in the 
range where the cumulative curve is the “steepest”. 
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Monte Carlo Sampling 

Monte Carlo sampling refers to the traditional technique for using numbers to sample from 
a probability distribution. It is applied to a wide variety of complex problems involving 
random behaviour. Monte Carlo sampling techniques are entirely random, so any given 
sample may fall anywhere within the range of the input distribution. Samples, of course, are 
more likely to be drawn in areas of the distribution which have higher probabilities of oc-
currence. In the cumulative distribution shown earlier, each Monte Carlo sample uses a 
new random number between 0 and 1. With enough iteration, Monte Carlo sampling “rec-
reates” the input distributions through sampling. A problem of clustering, however, arises 
when a small number of iterations are performed. 
In the illustration shown below (Figure 27), each of the 4 samples drawn falls in the middle 
of the distribution. The values in the outer ranges of the distribution are not represented in 
the samples, and thus their impact on the results is not included in your simulation output. 
Clustering becomes especially pronounced when a distribution includes low probability 
outcomes, which could have a major impact on your results. So if probability is low 
enough, a small number of Monte Carlo iterations may not sample sufficient quantities of 
these outcomes to accurately represent their probability. This problem has led to the devel-
opment of stratified (→ stratification) sampling techniques such as the Latin Hypercube 
sampling. 

 

Figure 27: Monte Carlo Sampling. 

Latin Hypercube Sampling 

Latin Hypercube sampling is a recent development in sampling technology, designed to 
accurately recreate the input distribution through sampling in fewer iterations compared to 
the Monte Carlo method. The key to Latin Hypercube sampling is stratification of the in-
put probability distributions. Stratification divides the cumulative curve into equal intervals 
on the cumulative probability scale (0 to 1). A sample is then randomly taken from each 
interval or “stratification” of the input distribution. Sampling is forced to represent values 
in each interval and thus recreate the input probability distribution. 
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Figure 28: Latin Hypercube sampling. 

In the illustration above (Figure 28), the cumulative curve has been divided into 5 intervals. 
During sampling, a sample is drawn from each interval (compare this to the 5 clustered 
samples drawn using the Monte Carlo method). With Latin Hypercube, the samples more 
accurately reflect the distribution of values in the input probability distribution. However, 
once a sample is taken from stratification, this stratification is not sampled from again.  
As a more efficient sampling method, Latin Hypercube offers great benefits in terms of 
increased sampling efficiency and faster runtimes (due to less iteration). 
In literature typically 1/3 as many Latin Hypercube iterations are required to get equal or 
better results as the equivalent amount of Monte Carlo iterations. Of course, the number of 
iterations required for good stable results depends on the nature of the model being ana-
lysed. 

Testing Convergence 

The concept of convergence (→ convergence) is used to test a sampling method. At the point 
of convergence, the output distributions are stable (additional iterations do not markedly 
change the shape or statistics of the sampled distribution). The sample mean versus the 
true mean is typically a measure of convergence. @Risk provides a solution for testing 
convergence with the so-called convergence monitor. Simply run a simulation and the 
built-in convergence monitoring capability in @Risk can estimate how many iterations it 
takes to stabilize the percentiles, mean and standard deviation. 
 

 

Figure 29: Convergence monitor for project OMV_A.
92

 

                                                 
92

   Source: @RISK for Project 
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As you can see in Figure 29, the simulation result for project OMV_A is on convergence 
(convergence level < 1,5%) after 800 iterations. Therefore 1000 iterations should be a suf-
ficient trade-off between effort and accuracy in this case.  
Project OMV_B and OMV_C were examined the same way and in all cases 1000 iterations 
were effectual. 

4.2.2 Design of Experiments (DoE) 

Before starting an experiment it is necessary to create an experimental design to plan, fulfil 
and control experimental process. 
In the first place the following parameters for schedule simulation were selected in an ex-
pert meeting: 

 distribution shape, 

 distribution central value and spread values, 

 number of tasks (testing CLT), 

 correlations, 

 and constraints. 
As testing basis three original OMV schedules with exploration & production background: 

 OMV_A, 

 OMV_B, 

 OMV_C, 
and three dummy schedules without OMV background: 

 CLT (CLT testing), 

 COR (correlation testing), 

 and CON (constraints testing) 
were checked. 
 
Consecutively every parameter got its own DoE to examine the impact systematically. In 
the following section this process is described more deeply. 

Distribution Shape 

All test schedules had a various amount of different distribution shapes built in. When test-
ing the impact of a shape change, it was necessary to find a test setting that produces com-
parable results. 
Consecutively the general approach was to change an original distribution with a similar 
distribution because in praxis the problem is to find the right distribution shape amongst 
similar shapes. The following criteria defined a similar distribution: 

 Similar shape 

 Same boundary conditions 

 Same mean value 
For example a Lognormal function is replaced by a Weibull function due to these criteria. 
Additionally varying change percentage, you get a DoE as follows in Table 16. 

Table 16: DoE “distribution shape” for OMV_A, OMV_B. 

Schedule ID OMV_A 
distribution change (%) 

OMV_B 
distribution change (%) 

OMV_X (Original) 0 0 

OMV_X1 50 50 

OMV_X2 100 100 
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OMV_C got a different DoE (cp. Table 17), because it uses Vary functions. The Vary 
function allows you to assign minimum and maximum values for a field using per cent or 
+/- changes of a central value like the mode. It also describes how a field’s value will be 
distributed across a minimum-maximum range: you can choose a Triangular, Uniform, 
PERT or TRI1090 distribution (a Triangular distribution where the min value is at the 10th 

percentile of the distribution and the max value is at the 90th percentile of the distribution). 
For example: if the selected distribution type takes three arguments, the entered min value 
is the minimum argument of the distribution, the existing value for the task field is the 
most likely value, and the entered max value is the maximum argument of the distribution. 
During simulation @Risk converts the entered Vary function into a standard Triangular, 
Uniform or PERT distribution for sampling.93 Consecutively it was possible to vary distri-
butions in OMV_C quickly and to examine the impact of triangular (Triangular), curvy 
(PERT) and rectangular (Uniform) distributions. 

Table 17: DoE “distribution shape” for OMV_C. 

Schedule ID OMV_C distribution content  (%) 

OMV_X (Original) 100, Triangular 

OMV_X1 100, PERT 

OMV_X2 100, Uniform 

Distribution Central Value and Spread Values 

Beside shape the central values like mean, mode or median and spread values like minimum 
and maximum or standard deviation are often estimated parameters for input distributions. 
Hence, the effect of modifying these values’ percentage was e amined with the following 
DoE (cp. Table 18): 

Table 18: DoE “mean and spread”. 

Schedule ID 
∆ varied  
= constant 

OMV_A 
value change (%) 

OMV_B 
value change (%) 

OMV_C 
value change (%) 

OMV_X (Original) 
= mean 
= spread 

0 0 0 

OMV_X3+X% 
∆ mean 
= spread 

+10 +50 +100 +10 +50 +100 +10 +50 +100 

OMV_X4+X% 
= mean 
∆ spread 

+10 +50 +100 +10 +50 +100 +10 +50 +100 

OMV_X5+X% 
∆ mean 
∆ spread 

+10 +50 +100 +10 +50 +100 +10 +50 +100 

CLT: Number of Tasks 

The Central Limit Theorem (CLT) is an important parameter in literature and therefore it 
was examined in this work. As basis a dummy schedule was produced due to increase the 
number of tasks easily and to insert an adequate distribution mix. 
This dummy schedule starts with 10 tasks and goes up to 1000 tasks. Simultaneously the 
project duration remains the same (1000 days), because otherwise the results are not com-
parable. As distribution mix 30 % PERT, 30 % Triangular and 30 % Uniform were imple-
mented with a standard parameter set (@Risk default setting). 10 % of the tasks remained 
deterministic. 
 shows the according DoE: 
 
Table 19 shows the according DoE: 
 

                                                 
93

 Cp. @RISK for Project Help (2005) 
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Table 19: DoE “CLT”. 

Schedule ID # Tasks Task durations (days) Project duration (days) 

CLT10 10 100 1000 

CLT25 25 40 1000 

CLT50 50 20 1000 

CLT100 100 10 1000 

CLT500 500 2 1000 

CLT1000 1000 1 1000 

Constraints 

As already mentioned each task has a certain rule applied that helps the scheduling software 
to figure out when the task should start or finish. These rules are called constraints. Also 
there are three types of constraints: flexible, semi-flexible and inflexible ones. Flexible con-
straints are default setting, so semi-flexible and inflexible ones are typically user-driven and 
therefore their impact on schedule uncertainty was examined here. 
Two semi-flexible constraints: Finish No Earlier Than (FNET) and Finish No Later Than 
(FNLT) and one inflexible constraint: Must Finish On (MFO) were implemented in the 
dummy schedule. This dummy schedule was already used in CLT simulations (cp. dummy 
schedule “CLT10”). The following DoE (Table 20) wraps up the experimental setting: 

Table 20: DoE “Constraints”. 

Schedule ID Constraint type Constraint content (%) 

CON_0% (Control) / 0 

CON_MFO+20% Must Finish On 20 

CON_MFO+40% Must Finish On 40 

CON_FNLT+20% Finish No Later Than 20 

CON_FNLT+40% Finish No Later Than 40 

CON_FNET+20% Finish No Earlier Than 20 

CON_FNET+40% Finish No Earlier Than 40 

Correlations 

Many times your uncertain inputs are related. For example one input has a low value, some 
one other should also has. This is called correlation. Examination of different correlation 
inputs were conducted with the DoE`s in  
Table 22 to Table 24. 3 genuine OMV schedules were used to simulate real-world condi-
tions.  
Correlation coefficients were set randomly and chosen regarding a “life-li e” mi  (see Ta-
ble 21). 

Table 21: Correlation mix. 

Correlated 
Tasks 

Correlation 
Coefficient 

5 %  -1 

15 %  -0,8 

15 % -0,5 

15 % -0,3 

12 % 0 

15 %  0,3 

15 %  0,5 

15 %  0,8 

5 %  1 
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Table 22: DoE “random correlation” for OMV_A. 

Schedule ID 
Correlated  

Task # 
Correlation Coefficients 

OMV_A / / 

COR_OMV_A All distributed inputs (21) Mix 

 
Table 23: DoE “random correlation” for OMV_B. 

Schedule ID 
Correlated  

Task # 
Correlation  
Coefficients 

OMV_B / / 

COR_OMV_B All distributed inputs (27) Mix 

 

Table 24: DoE “random correlation” for OMV_C. 

Schedule ID 
Correlated  

Task # 
Correlation  
Coefficients 

OMV_C / / 

COR_OMV_C All distributed inputs (35) Mix 

4.3 Results and Conclusions 

This chapter deals with the outcome of all @Risk simulations with various schedules. 
These results displayed by outcome distributions are shown in Figure 30 to Figure 86 and 
the according distribution data is summarized in  
Table 25 to  
Table 73. 
The correlation results are presented in different form (Figure 89 to 92), because output 
distribution shapes change very little and moreover line charts are more effective in show-
ing correlation impact.  
In addition interpretations of the outcome are made in each case. 

4.3.1 Distribution Shape 

Firstly the impact of input distribution shapes on outcome distribution shape and parame-
ters was investigated. DoE “Distribution shape” served as basis for the simulations. 

Shape: OMV_A 

As you can see in Figure 30, Figure 31 and Figure 32, there is a slight shift of the mean 
value to later dates. Kurtosis (→ kurtosis) remains basically the same, but skewness (→ 
skewness) shifts from left skewed towards symmetrical. Furthermore the 90 % spread (→ 
range, in this case it is called “Diff. X”) increases heavily, this means, the output distribution 
is more uncertain or “ris ier”. 
There are a lot of Lognormal distributions in OMV_A that are replaced by Weibull distri-
butions. This explains the bigger spread and less skewness, because Weibull is not as slim 
as Lognormal (and therefore uncertainties with high probability are more scattered) and 
more symmetrical. Hence, the mean moves due to bigger outlier impact too. 
All mentioned impacts increase with switching from 50 % to 100 % distribution change. 
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Figure 30: Output distribution for OMV_A. 

 
Table 25: Distribution data OMV_A. 

Minimum 13.05.2014 Skewness 0,76 Mode 07.07.2014 

Mean 31.10.2014 Kurtosis 4,51 5th Perc. 25.07.2014 

Maximum 28.09.2015   95th Perc. 19.02.2015 

Std. Dev. 67,0   Diff. X 209 days 

 

Figure 31: Output distribution for OMV_A1. 
 
Table 26: Distribution data for OMV_A1. 

Minimum 03.04.2014 Skewness 0,41 Mode 04.11.2014 

Mean 27.11.2014 Kurtosis 3,14 5th Perc. 07.07.2014 

Maximum 09.10.2015   95th Perc. 15.05.2015 

Std. Dev. 94,1   Diff. X 312 days 
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Figure 32: Output distribution for OMV_A2. 
 
Table 27: Distribution data for OMV_A2. 

Minimum 18.02.2014 Skewness 0,41 Mode 12.08.2014 

Mean 21.12.2014 Kurtosis 3,47 5th Perc. 04.07.2014 

Maximum 14.03.2016   95th Perc. 25.06.2015 

Std. Dev. 109   Diff. X 356 days 

Shape: OMV_B 

Simulations with varied OMV_B affirmed the results obtained with OMV_A (see Figure 
33, Figure 34 and Figure 35). Again a lot of Lognormal distributions are changed into 
Weibull and thus distribution dissolving takes place. Kurtosis is strongly reduced (9,6 to 
2,8) and skewness tends to symmetrical values (1,3 to 0,3). Mean shifts only a little bit. 
Again all mentioned impacts increase with switching from 50 % to 100 % distribution 
change. 

 

Figure 33: Output distribution for OMV_B. 
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Table 28: Distribution data for OMV_B. 

Minimum 19.09.2011 Skewness 1,37 Mode 03.11.2011 

Mean 04.12.2011 Kurtosis 9,06 5th Perc. 17.10.2011 

Maximum 20.09.2012   95th Perc. 02.02.2012 

Std. Dev. 35,9   Diff. X 108 days 

 

Figure 34: Output distribution for OMV_B1. 
 
 
Table 29: Distribution data for OMV_B1. 

Minimum 22.08.2011 Skewness 0,38 Mode 04.11.2011 

Mean 10.12.2011 Kurtosis 2,89 5th Perc. 05.10.2011 

Maximum 04.05.2012   95th Perc. 24.02.2012 

Std. Dev. 42,8   Diff. X 142 days 

 

Figure 35: Output distribution for OMV_B2. 
 
Table 30: Distribution data for OMV_B2. 

Minimum 11.08.2011 Skewness 0,30 Mode 23.09.2011 

Mean=10.12.2011 

X <=05.10.2011 
5% 

X <=24.02.2012 
95% 

0

2

4

6

8

10

12

14

26.07.2011 24.09.2011 23.11.2011 22.01.2012 22.03.2012 22.05.2012

R
e
la

ti
v
e
 f

re
q
u
e
n
c
y
 i
n
 1

0
-3

 

  

 Output: Start All-Out Operation 

Mean=19.12.2011 

X <=26.09.2011 
5% 

X <=20.03.2012 
95% 

0

2

4

6

8

10

12

14

26.07.2011 20.11.2011 16.03.2012 11.07.2012

R
e
la

ti
v
e
 f

re
q
u
e
n
c
y
 i
n
 1

0
-3

 

  

 Output: Start All-Out Operation 



Applied Probabilistic Schedule Analysis 

62 

Mean 19.12.2011 Kurtosis 2,83 5th Perc. 26.09.2011 

Maximum 14.06.2012   95th Perc. 20.03.2012 

Std. Dev. 53,9   Diff. X 176 days 

Shape: OMV_C 

The original C Schedule has only Vary distributions implied, so you can change distribu-
tions very easily to test distribution impact. So OMV_C is completely linked with Triangu-
lar distributions. These distributions were switched to PERT (OMV_C1) and Uniform 
(OMV_C2). 

Triangular to PERT: 

Most significant impact is the decrease of the 90% spread (see Figure 36 and Figure 37) 
after switching to PERT. However, with PERT values between the most likely and ex-
tremes are more likely to occur and the extremes are not as emphasized compared with 
Triangular. In practice, this means that we “trust” the most likely value. Thus, spread is 
smaller and the mean shifts to earlier date. Skewness and kurtosis are basically the same. 

Triangular to Uniform: 

In Figure 36 and Figure 38 means are nearly the same, but spread decreases one more time. 
That is not logically at first, because Uniform distributions are referred to as a “no 
 nowledge” distribution. You have a base value but no clue, if the probability decreases 
moving away from that central value. All values have the same probability, even outliers. 
Therefore spread should increase and consecutively be bigger than OMV_C`s spread. One 
possible reason could be skewed Triangular distributions in OMV_C that over-emphasize 
values in the skew direction. 

 

Figure 36: Output distribution for OMV_C. 
 
Table 31: Distribution data for OMV_C. 

Minimum 19.06.2015 Skewness 0,22 Mode 29.01.2016 

Mean 17.08.2016 Kurtosis 2,99 5th Perc. 16.12.2015 

Maximum 22.03.2018   95th Perc. 04.05.2017 

Std. Dev. 159   Diff. X 505 days 
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Figure 37: Output distribution for OMV_C1. 
 
Table 32: Distribution data for OMV_C1. 

Minimum 24.07.2015 Skewness 0,21 Mode 26.02.2016 

Mean 23.02.2016 Kurtosis 2,87 5th Perc. 14.10.2015 

Maximum 01.11.2016   95th Perc. 18.07.2016 

Std. Dev. 81,6   Diff. X 278 days 

 

Figure 38: Output distribution for OMV_C2. 
 
Table 33: Distribution data for OMV_C2. 

Minimum 18.08.2015 Skewness 5,37E-02 Mode 16.03.2016 

Mean 24.08.2016 Kurtosis 2,83 5th Perc. 11.02.2016 

Maximum 08.09.2017   95th Perc. 09.03.2017 

Std. Dev. 123   Diff. X 392 days 
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4.3.2 Mean and Spread 

Next step was to examine the outcome effect of mean and spread variations when defining 
input distributions. DoE “Mean and spread” provided the simulation basis. 

Mean and spread: OMV_A 

Figure 39 to Figure 47 show the impact of varying mean and spread separately in first and 
then together. A summarize of the results is given by Figure 48 and Figure 49. If the inputs 
mean increases, the outputs mean increases too. Moreover the spread remains basically the 
same. If the inputs spread increases, the outputs mean increases too. Here, the mean does 
not differ much. If both mean and spread increase simultaneously, the outputs mean and 
spread increase consecutively.  
All in all input mean and spread and output mean and spread are correlating positively and 
it seems that mean and spread are independent (note: without a correlation test there is no 
proof for the latter statement).  
Moreover it seems like there is less impact on outcome shape when spread is increased 
separately (cp. OMV_A4+X%). 

 

Figure 39: Output distribution for OMV_A3+10%. 
 
Table 34: Distribution data for OMV_A3+10%. 

Minimum 20.06.2014 Skewness 1,14 Mode 24.11.2014 

Mean 08.12.2014 Kurtosis 7,25 5th Perc. 03.09.2014 

Maximum 28.04.2016   95th Perc. 03.04.2015 

Std Dev 68,5   Diff. X 212 days 
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Figure 40: Output distribution for OMV_A3+50%. 
 
Table 35: Distribution data for OMV_A3+50%. 

Minimum 29.12.2014 Skewness 0,48 Mode 15.04.2015 

Mean 16.07.2015 Kurtosis 3,70 5th Perc. 02.04.2015 

Maximum 06.06.2016   95th Perc. 20.11.2015 

Std Dev 69,8   Diff. X 232 days 

 

Figure 41: Output distribution for OMV_A3+100% 
 
Table 36: Distribution data for OMV_A3+100%. 

Minimum 13.08.2015 Skewness 0,44 Mode 27.10.2015 

Mean 21.03.2016 Kurtosis 3,64 5th Perc. 01.12.2015 

Maximum 27.03.2017   95th Perc. 01.08.2016 

Std Dev 74,4   Diff. X 244 days 
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Figure 42: Output distribution for OMV_A4+10%. 
 
Table 37: Distribution data for OMV_A4+10%. 

Minimum 22.05.2014 Skewness 1,15 Mode 27.08.2014 

Mean 06.11.2014 Kurtosis 6,27 5th Perc. 23.07.2014 

Maximum 01.03.2016   95th Perc. 10.03.2015 

Std Dev 76,6   Diff. X 230 days 

 

Figure 43: Output distribution for OMV_A4+50%. 
 
Table 38: Distribution data for OMV_A4+50%. 

Minimum 10.04.2014 Skewness 1,93 Mode 14.07.2014 

Mean 28.11.2014 Kurtosis 12,2 5th Perc. 08.07.2014 

Maximum 15.06.2017   95th Perc. 16.06.2015 

Std Dev 115   Diff. X 343 days 
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Figure 44: Output distribution for OMV_A4+100%. 
 
Table 39: Distribution data for OMV_A4+100%. 

Minimum 17.03.2014 Skewness 2,00 Mode 24.07.2014 

Mean 25.12.2014 Kurtosis 10,7 5th Perc. 26.06.2014 

Maximum 05.07.2018   95th Perc. 14.10.2015 

Std Dev 162   Diff. X 475 days 

 

Figure 45: Output distribution for OMV_A5+10%. 
 
Table 40: Distribution data for OMV_A5+10%. 

Minimum 10.07.2014 Skewness 0,81 Mode 28.11.2014 

Mean 22.12.2014 Kurtosis 4,79 5th Perc. 26.08.2014 

Maximum 06.01.2016   95th Perc. 30.04.2015 

Std Dev 76,6   Diff. X 247 days 
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Figure 46: Output distribution for OMV_A5+50%. 
 
Table 41: Distribution data for OMV_A5+50%. 

Minimum 25.12.2014 Skewness 1,21 Mode 28.04.2015 

Mean 02.08.2015 Kurtosis 6,39 5th Perc. 10.03.2015 

Maximum 18.07.2017   95th Perc. 10.02.2016 

Std Dev 108   Diff. X 337 days 

 

Figure 47: Output distribution for OMV_A5+100%. 
 
Table 42: Distribution data for OMV_A5+100%. 

Minimum 07.05.2015 Skewness 0,95 Mode 16.09.2015 

Mean 26.04.2016 Kurtosis 5,10 5th Perc. 21.09.2015 

Maximum 22.08.2018   95th Perc. 13.01.2017 

Std Dev 154   Diff. X 480 days 
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Figure 48: Mean distribution of OMV_A variations. 

 

Figure 49: Spread distribution of OMV_A variations. 

Mean and spread: OMV_B 

Simulations with OMV_B and its derivatives proofed the results and conclusion from sim-
ulating OMV_A derivatives. Outcome means and spreads correlate positively with input 
means and spreads (cp. Figure 59 and Figure 60). A specific fact occurred with 
OMV_A5+50%. As you can see in Figure 59, this test schedule with 50 % input mean and 
spread escalation led to almost the same outcome mean as 100 % input mean and spread 
escalation did. Therefore it is possible that a synchronized mean and spread increase started 
some synergy effects. Small effects on output shape exist, because distributions are more 
symmetrical (lower positive skewness) and are less slim (lower positive kurtosis). 
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Figure 50: Output distribution for OMV_B3+10%. 
 
Table 43: Distribution data for OMV_B3+10%. 

Minimum 30.09.2011 Skewness 0,65 Mode 02.12.2011 

Mean 29.12.2011 Kurtosis 4,05 5th Perc. 09.11.2011 

Maximum 20.06.2012   95th Perc. 27.02.2012 

Std Dev 33,6   Diff. X 110 days 

 

Figure 51: Output distribution for OMV_B3+50%. 
 
Table 44: Distribution data for OMV_B3+50%. 

Minimum 06.02.2012 Skewness 0,30 Mode 11.04.2012 

Mean 08.05.2012 Kurtosis 2,85 5th Perc. 15.03.2012 

Maximum 21.08.2012   95th Perc. 04.07.2012 

Std Dev 34,6   Diff. X 111 days 
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Figure 52: Output distribution for OMV_B3+100%. 
 
Table 45: Distribution data for OMV_B3+100%. 

Minimum 25.07.2012 Skewness 0,19 Mode 04.10.2012 

Mean 05.11.2012 Kurtosis 2,95 5th Perc. 12.09.2012 

Maximum 27.02.2013   95th Perc. 01.01.2013 

Std Dev 35,0   Diff. X 111 days 

 

Figure 53: Output distribution for OMV_B4+10%. 
 
Table 46: Distribution data for OMV_B4+10%. 

Minimum 16.09.2011 Skewness 0,86 Mode 07.11.2011 

Mean 07.12.2011 Kurtosis 4,43 5th Perc. 14.10.2011 

Maximum 01.06.2012   95th Perc. 15.02.2012 

Std Dev 37,3   Diff. X 124 days 
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Figure 54: Output distribution for OMV_B4+50%. 
 
Table 47: Distribution data for OMV_B4+50%. 

Minimum 09.08.2011 Skewness 0,98 Mode 22.12.2011 

Mean 19.12.2011 Kurtosis 4,83 5th Perc. 11.10.2011 

Maximum 03.10.2012   95th Perc. 30.03.2012 

Std Dev 52,1   Diff. X 171 days 

 

Figure 55: Output distribution for OMV_B4+100%. 
 
Table 48: Distribution data for OMV_B4+100%. 

Minimum 02.09.2011 Skewness 2,02 Mode 09.11.2011 

Mean 09.01.2012 Kurtosis 11,6 5th Perc. 07.10.2011 

Maximum 12.09.2013   95th Perc. 31.05.2012 

Std Dev 79,4   Diff. X 237 days 
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Figure 56: Output distribution for OMV_B5+10%. 
 
Table 49: Distribution data for OMV_B5+10%. 

Minimum 21.10.2011 Skewness 0,74 Mode 21.12.2011 

Mean 15.01.2012 Kurtosis 3,98 5th Perc. 22.11.2011 

Maximum 14.06.2012   95th Perc. 22.03.2012 

Std Dev 37,8   Diff. X 121 days 

 

Figure 57: Output distribution for OMV_B5+50%. 
 
Table 50: Distribution data for OMV_B5+50%. 

Minimum 12.06.2012 Skewness 0,29 Mode 23.10.2012 

Mean 07.11.2012 Kurtosis 3,17 5th Perc. 21.08.2012 

Maximum 21.06.2013   95th Perc. 07.02.2013 

Std Dev 51,9   Diff. X 170 days 
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Figure 58: Output distribution for OMV_B5+100%. 
 
Table 51: Distribution data for OMV_B5+100%. 

Minimum 21.05.2012 Skewness 0,77 Mode 05.09.2012 

Mean 18.11.2012 Kurtosis 4,74 5th Perc. 01.08.2012 

Maximum 15.01.2014   95th Perc. 25.03.2013 

Std Dev 73,2   Diff. X 236 days 

 

 

Figure 59: Mean distribution of OMV_B variations. 

 

 

Figure 60: Spread distribution of OMV_B variations. 
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Mean and spread: OMV_C 

Simulations with OMV_C and its derivatives give essentially the same results simulating 
OMV_A and OMV_B derivatives. Again outcome means and spreads correlate positively 
with input means and spreads (cp. Figure 70 and Figure 71). Furthermore mean and spread 
appear to be independent.  
An influence on output shape (skewness, kurtosis) could not be detected. 

 

Figure 61: Output distribution for OMV_C3+10%. 
 
Table 52: Distribution data for OMV_C3+10%. 

Minimum 26.04.2016 Skewness 0,18 Mode 11.10.2016 

Mean 20.06.2017 Kurtosis 2,75 5th Perc. 27.10.2016 

Maximum 07.09.2018   95th Perc. 16.03.2018 

Std Dev 154   Diff. X 505 days 

 

Figure 62: Output distribution for OMV_C3+50%. 
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Table 53: Distribution data for OMV_C3+50%. 

Minimum 09.09.2019 Skewness 5,95E-02 Mode 06.04.2020 

Mean 19.11.2020 Kurtosis 2,78 5th Perc. 03.03.2020 

Maximum 21.03.2022   95th Perc. 17.08.2021 

Std Dev 159   Diff. X 532 days 

 

Figure 63: Output distribution for OMV_C3+100%. 
 
Table 54: Distribution data for OMV_C3+100%. 

Minimum 03.10.2023 Skewness 0,14 Mode 02.08.2024 

Mean 07.02.2025 Kurtosis 2,88 5th Perc. 20.05.2024 

Maximum 13.07.2026   95th Perc. 03.11.2025 

Std Dev 166   Diff. X 532 days 

 

Figure 64: Output distribution for OMV_C4+10%. 
 
Table 55: Distribution data for OMV_C4+10%. 
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Mean 18.09.2016 Kurtosis 2,98 5th Perc. 15.12.2015 

Maximum 19.04.2018   95th Perc. 24.07.2017 

Std Dev 177   Diff. X 587 days 

 

Figure 65: Output distribution for OMV_C4+50%. 
 
Table 56: Distribution data for OMV_C4+50%. 

Minimum 11.03.2015 Skewness 0,23 Mode 20.05.2016 

Mean 07.12.2016 Kurtosis 2,91 5th Perc. 26.11.2015 

Maximum 01.02.2019   95th Perc. 24.01.2018 

Std Dev 235   Diff. X 790 days 

 

Figure 66: Output distribution for OMV_C4+100%. 
 
Table 57: Distribution data for OMV_C4+100%. 

Minimum 02.04.2015 Skewness 7,81E-02 Mode 05.01.2017 

Mean 17.07.2017 Kurtosis 2,92 5th Perc. 11.02.2016 

Maximum 27.05.2020   95th Perc. 02.01.2019 

Std Dev 314   Diff. X 1056 days 
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Figure 67: Output distribution for OMV_C5+10%. 
 
Table 58: Distribution data for OMV_C5+10%. 

Minimum 12.01.2016 Skewness 0,15 Mode 05.01.2017 

Mean 13.07.2017 Kurtosis 2,91 5th Perc. 06.10.2016 

Maximum 11.02.2019   95th Perc. 11.05.2018 

Std Dev 177   Diff. X 582 days 

 

Figure 68: Output distribution of OMV_C5+50%. 
 
Table 59: Distribution data for OMV_C5+50%. 

Minimum 17.07.2019 Skewness 0,15 Mode 26.03.2020 

Mean 15.02.2021 Kurtosis 2,94 5th Perc. 20.01.2020 

Maximum 09.06.2023   95th Perc. 03.03.2022 

Std Dev 237   Diff. X 773 days 
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Figure 69: Output distribution for OMV_C5+100%. 
 
Table 60: Distribution data for OMV_C5+100%. 

Minimum 28.02.2023 Skewness 0,13 Mode 27.05.2024 

Mean 06.12.2025 Kurtosis 3,06 5th Perc. 20.06.2024 

Maximum 16.10.2028   95th Perc. 06.05.2027 

Std Dev 321   Diff. X 1050 days 

 

 

Figure 70: Mean distribution of OMV_C variations. 

 

Figure 71: Spread distribution of OMV_C variations. 
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4.3.3 CLT 

Third investigated parameter was the number of schedule tasks that might have influence 
on standard deviation and spread due to the Central Limit Theorem (literature says so, but 
engineers always want to try out). DoE “CLT” gave the framework for simulation proce-
dure. 
As demonstrated in Figure 72 to Figure 77 and even better presented in Figure 78 and Fig-
ure 79 CLT does have a significant effect on standard deviation and spread. Both decrease 
if the number of tasks goes up. That is not a realistic outcome because there are more and 
more uncertain tasks in the schedule. In contrast mean is settling in a two month range 
which is almost a constant value in comparison. So outcome distribution is fixed on the 
same place but becomes slimmer and slimmer which means less risky in other words. Thus, 
there is danger to underestimate risk and give in to unrealistic small spread. 
Especially in case of lumping (summarize sub tasks to one task) it could be possible that 
due to “reverse CLT” spread and standard deviation increases if you lump heavily. For 
example lumping CLT25 into CLT10 will bring about 40 % more spread and about 50 % 
more standard deviation.  
One interesting consequence of higher task number is that the output distribution becomes 
bi-modal or even tri-modal. This is simply because there are non-working days like week-
ends, where the possibility of project completion is zero. Thus if the spread is very small 
(typical for high task numbers), the X-axis resolution is high and you can see the non-
working days as “zero possibility divider”. 

 

Figure 72: Output distribution for CLT10. 
 
Table 61: Distribution data for CLT10. 

Minimum 05.02.2015 Skewness -0,13 Mode 25.03.2015 

Mean 05.04.2015 Kurtosis 2,82 5th Perc. 27.02.2015 
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Std Dev 19,9   Diff. X 70 days 
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Figure 73: Output distribution for CLT25. 
 
Table 62: Distribution data for CLT25. 

Minimum 29.12.2014 Skewness 2,18E-02 Mode 02.02.2015 

Mean 08.02.2015 Kurtosis 3,17 5th Perc. 19.01.2015 

Maximum 19.03.2015   95th Perc. 27.02.2015 

Std Dev 12,2   Diff. X 39 days 

 
Figure 74: Output distribution for CLT50. 
 
Table 63: Distribution data for CLT50. 

Minimum 11.03.2015 Skewness 1,27E-03 Mode 26.03.2015 

Mean 05.04.2015 Kurtosis 2,82 5th Perc. 20.03.2015 

Maximum 30.04.2015   95th Perc. 20.04.2015 

Std Dev 8,93   Diff. X 31 days 
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Figure 75: Output distribution for CLT100. 
 
Table 64: Distribution data for CLT100. 

Minimum 16.03.2015 Skewness -5,39E-02 Mode 02.04.2015 

Mean 05.04.2015 Kurtosis 3,14 5th Perc. 25.03.2015 

Maximum 27.04.2015   95th Perc. 15.04.2015 

Std Dev 6,34   Diff. X 21 days 

 

Figure 76: Output distribution for CLT500. 
 
Table 65: Distribution data for CLT500. 

Minimum 12.03.2015 Skewness -0,18 Mode 23.03.2015 

Mean 24.03.2015 Kurtosis 3,98 5th Perc. 19.03.2015 

Maximum 01.04.2015   95th Perc. 30.03.2015 

Std Dev 2,77   Diff. X 11 days 
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Figure 77: Output distribution for CLT1000. 
 
Table 66: Distribution data for CLT1000. 

Minimum 18.02.2015 Skewness -0,63 Mode 23.02.2015 

Mean 23.02.2015 Kurtosis 2,58 5th Perc. 19.02.2015 

Maximum 02.03.2015   95th Perc. 26.02.2015 

Std Dev 2,10   Diff. X 7 days 

 

 

Figure 78: Standard deviation for different CLT dummy schedules. 

 

Figure 79: Spread for different CLT dummy schedules. 
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4.3.4 Constraints 

Constraints have a great impact to schedule and completion dates. Testing this important 
parameter (often mentioned by project schedulers) is based on the DoE “Constraints”. 
Figure 80 to Figure 86 (wrapped up in Figure 87 and Figure 88) indicate that constraints 
principally truncate input distributions and thus produce outcomes with less standard devi-
ation and spread. The schedule is more inflexible and outliers are more rarely sequentially. 
MFO constraints are in this way more effective. FNLT and FNET have the same but less 
significant impact. With MFO`s mean and shape are not affected. With FNET constraints 
mean roams towards later dates, on the opposite FNLT constraints are bringing mean to 
earlier dates. 

 

Figure 80: Output distributions CON_0%. 
Table 67: Distribution data for CON_0%. 

Minimum 05.02.2015 Skewness -0,13 Mode 25.03.2015 

Mean 05.04.2015 Kurtosis 2,82 5th Perc. 27.02.2015 

Maximum 02.06.2015   95th Perc. 07.05.2015 

Std Dev 19,9   Diff. X 69 days 

 

Figure 81: Output distribution for CON_MFO+20%. 
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Table 68: Distribution data for CON_MFO+20%. 

Minimum 12.02.2015 Skewness -0,11 Mode 03.04.2015 

Mean 05.04.2015 Kurtosis 2,83 5th Perc. 10.03.2015 

Maximum 20.05.2015   95th Perc. 30.04.2015 

Std Dev 15,9   Diff. X 51 days 

 

Figure 82: Output distribution for CON_MFO+40%. 
 
Table 69: Distribution data for CON_MFO+40%. 

Minimum 10.03.2015 Skewness 8,41E-02 Mode 30.03.2015 

Mean 05.04.2015 Kurtosis 2,44 5th Perc. 18.03.2015 

Maximum 01.05.2015   95th Perc. 23.04.2015 

Std Dev 11,3   Diff. X 36 days 

 

Figure 83: Output distribution for CON_FNLT+20%. 
 
Table 70: Distribution data for CON_FNLT+20%. 
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Mean 04.04.2015 Kurtosis 2,57 5th Perc. 11.03.2015 

Maximum 19.05.2015   95th Perc. 29.04.2015 

Std Dev 15,6   Diff. X 49 days 

 

Figure 84: Output distribution for CON_FNLT+40%. 
 
Table 71: Distribution data for CON_FNLT+40%. 

Minimum 10.02.2015 Skewness -0,23 Mode 04.03.2015 

Mean 27.03.2015 Kurtosis 2,68 5th Perc. 27.02.2015 

Maximum 30.04.2015   95th Perc. 21.04.2015 

Std Dev 14,9   Diff. X 53 days 

 

Figure 85: Output distribution for CON_FNET+20%. 
 
Table 72: Distribution data for CON_FNET+20%. 

Minimum 23.02.2015 Skewness -1,14E-02 Mode 06.04.2015 

Mean 10.04.2015 Kurtosis 2,72 5th Perc. 12.03.2015 

Maximum 02.06.2015   95th Perc. 07.05.2015 

Std Dev 17,3   Diff. X 56 days 
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Figure 86: Output distribution for CON_FNET+40%. 
 
Table 73: Distribution data for CON_FNET+40%. 

Minimum 10.03.2015 Skewness 0,28 Mode 09.04.2015 

Mean 13.04.2015 Kurtosis 2,85 5th Perc. 20.03.2015 

Maximum 29.05.2015   95th Perc. 08.05.2015 

Std Dev 14,5   Diff. X 49 days 

 
 
 
 

 

Figure 87: Standard deviation of different constraint dummy schedules. 
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Figure 88: Spread of different constraint dummy schedules. 

4.3.5 Correlations 

Literature states that correlation makes your schedule more uncertain and produces more 
spread and different means in your output distribution. In other words, not taking correla-
tion into account tends to be over-optimistic. Proving these statements simulation of 3 
genuine OMV schedules containing a correlation coefficient mix (cp. Table 21) was con-
ducted. DoE basis is given by Table 23 and Table 24. 

Table 23: DoE “random correlation” for OMV_B. 

Schedule ID 
Correlated  

Task # 
Correlation  
Coefficients 

OMV_B / / 

COR_OMV_B All distributed inputs (27) Mix 
 

As you can see in Figure 89, Figure 90 and Figure 91, correlation seems to widen expected 
project completion data. Mean value and spread increases as correlation takes place. That is 
what literature says and it is comprehensible because linking between tasks is kind of an 
additive uncertainty dimension. In reality there is a high possibility that tasks are not inde-
pendent from each other, so implementing correlation in your simulation model can give a 
more reliable output. 

 
 

Figure 89: Correlation simulation for OMV_A. 
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Figure 90: Correlation simulation for OMV_B. 

 

Figure 91: Correlation simulation for OMV_C. 

4.4 PSA Key Factors Given by MC Simulations 
Comparing key factors given by literature and applied PSA the following parameters are 
affirmed by MC simulations: 

 Input distribution shape: Use distribution catalogue! 

 Input mean and spread: Use precise/realistic input values! 

 CLT: Minimize schedule task number and/or correlate them! 

 Constraints: Do not use them at all and make schedule flexible! 

 Correlations: Correlations are important regarding literature and simulations. 
o Determine correlation coefficients parallel to duration data estimation! 
o Additionally the relationship between correlation and CLT has to be inves-

tigated in future. It will be interesting, if literature notion (correlation de-
crease CLT effect) goes hand in hand with MC simulation. 
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5 Summary of Work 

This chapter will wrap up best practices and lessons learnt of PSA on basis of oil and gas 
field development projects. The key points of this work: theoretical probabilistic schedule 
analysis, input data estimation, company survey and applied probabilistic schedule analysis 
melt together in Chapter 5.1: How to do a PSA? 

5.1 How to do a PSA? 

Suggested basis for conducting a PSA is the flowchart shown in Figure 92. Firstly an esti-
mation workshop takes place where probabilistic input data is generated. Ideally this is 
combined with producing the deterministic baseline schedule, thus the same people can 
work on both parts. As result a probabilistic schedule is achieved that can enter now the 
MC simulation stage. Schedule risk drivers are (hopefully) detected afterwards and the 
schedule can be optimised. Now there are two options: either the reviewed schedule goes 
back to simulation (looping) or it is perfectly enough to execute. 
One important process step is filling, checking and maintaining an MC input value data-
base. This database builds the foundation for subsequent estimation workshop and will be 
an assessment reference in the following process steps. Figure 93 illustrates embedding of 
database in all important process steps. 
Finally the true intent of PSA is to encompass the range of uncertainty giving some sort of 
confidence intervals in order to make better decisions and highlight important task dura-
tions and cost drivers. 

5.1.1 PSA Flowchart 
 

PSA WS
Estimation WS

Probabilistic 
Schedule

Deterministic Schedule + Input Values

MC 
Simulation

Analyse 
Results

Optimize 
Schedule

Schedule 
Execution

Report

PSA 
Database

 

Figure 92: Suggested flowchart of a PSA. 
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Figure 93: Cycle process and working with a database. 

Figure 96 emphasizes that PSA is a looped process. As the project moves on, project plans 
(with all data) must be revisited and updated. Some risks and uncertainties will then be ob-
solete. Some new one will be introduced and so on. All in all PSA is a dynamic process 
which must be permanently documented and communicated. 
 
The following points deal with the most important flowchart steps in detail: 

5.1.2 Input Data Estimation by PSA/Estimation Workshops 

Using the main statements of Chapter 2 it will be necessary to initialize some kind of work-
shop for data gathering (group estimation, bias controlling etc.). So the main goal is to find 
out how an appropriate estimation workshop could be conducted. A good one will provide 
the right input data for the Monte Carlo analysis such as distribution parameters, distribu-
tion forms and maybe even correlation coefficients (see Figure 94). 

Figure 94: Output of an estimation workshop. 

So we have to encounter the challenges of estimation biases and Black Swans and further-
more bring in the benefits of crowd wisdom and diversity. I propose the following way of 
doing it:  
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You need 10 at minimum (the more the better). 
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Group Member Diversity 

Take participants from different departments (like IT, Research, Sales etc.), but include the 
schedule-affected one! 
 

TIP: in preparation of the estimation workshop you can staff a permanent personnel pool 
of interested and motivated people. 

Interrogation Process 

Interviews should always observe the rules of a wise group: 

 Diversity (various departments) 

 Independence (isolated individual estimation) 

 Decentralization (no expert leading, full involvement of the group) 

 Aggregation (workshop moderator has to aggregate opinions and loop when 
needed) 

Subsequently there are two basic ways to conduct the interviews: 

1) Delphi Method (workshop is decentralized in time and space) 

The Delphi Method is a forecasting method relying on a panel of independent experts. 
These experts are answering a tailored questionary iteratively with feedback loops. After a 
certain number of iterations the collective values are calculated, for example the spread 
(Equation 5): 
 

S    ( 
i
)     ( i)  5 

 
Feedback can evocate intensive examination and correction of the own estimations. Fur-
thermore independence and decentralization of the participants are kept. A good selection 
of the interview partners should give you diversity. Finally a controlled aggregation of the 
information flow takes place. 
The Delphi Method could be carried out in large circuits like e-mail loops or in small cir-
cuits like personal interviews (talk-estimate-talk). 

2) Without Delphi Method 

If the Delphi Method is not possible (too time consuming etc.) and there is a classical 
closed workshop estimation taking place, it is very important (besides all rules of a wise 
crowd) to isolate the group members during the personal estimation process. This avoids 
herding effects. 

Estimation Process 

Although extensive literature on subjective estimation94,95,96 suggests different methods, I 
worked out an own approach based on Hawkins97.  

Three-Point Estimation 

Normally you are asking for a three-point approximation of the distribution. For symmet-
rical distributions like Normal, min, max and a central value is mostly enough to character-
ize the distribution.  

                                                 
94

   Cp. Spetzler (1975) 
95

   Cp. Howard (1989) 
96

   Cp. Goodwin (1999) 
97

   Cp. Hawkins (2002) 
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Skewed distributions need a little more elaborate approach. Mathematicians98,99,100,101,102 pro-
vided weightings best suited for three-point estimation, based on a variety of points:103 

 PERT: Extreme fractiles and the Mode (0,16; 0,66; 016) 

 Moder & Rodgers: P5, the Mode, P95 (0,185; 0,63; 0,185) 

 Swanson-Megill: P10, the Median, P90 (0,3; 0,4; 0,3) 

 Extended Pearson & Tukey: P5, the Median; P95 (0,185; 0,63; 0,185)  
The most accurate three-point estimation of a skewed distribution is hereby the extended 
Pearson & Tukey. However, it is more difficult to estimate low probability values, such as 
P5 or P95. If you take this into account, the better method is Swanson-Megill, which uses 
fractiles closer to the center like P10 etc. Pioneering in risk analysis regarding the oil indus-
try Megill is the main influence behind the common use of the “80 % confidence interval” 
(→confidence interval) in today`s oil companies.104 

Biases Confrontation 

Confront participants with possible subjective biases to make them aware of it! 

Clearly Define the Asked Variable 

Remove ambiguity about the estimated value by discussing assumptions and units of meas-
ure!105 

Fix Extreme Outcomes 

Ask for a list of events that can lead to extreme duration outcomes. This step encourages 
imagination of low probabilities! 

Influence Diagram 

Draw a simple influence diagram, so everybody can capture in short the key factors for the 
measured durations! 

„Outside in“ Method 

This method can help you to get a correct distribution, because a better range leads to a 
better mean: 

 Think of a range of uncertainty (spread), in which the true value could be. A re-
alistic range is often more important than the distribution form! 

 Then assign a relatively small probability to the range encompassing the truth, 
say 40 % (this is your confidence interval)! 

 Now choose the right distribution form. Normal, Lognormal (for something 
beginning at 0 and reaching to infinity etc.) and Triangular are very often suffi-
cient! In general, when the absolute difference between P10-P50 and P50-P90 is 
not equal, assume a skewed distribution. Otherwise it should be a symmetrical 
one.106 

 Think in whole distributions, also reality-check the 60 %-point, the 90 %-point 
etc.! 
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 Make some feedback-loops and do step 1-4 again, then you get more ranges 
with more distributions, playing one against each other! 

 If you have in your opinion the right range and form, then set the mean value! 
 

 

Figure 95: "Outside in" means iteratively narrowing the range from out sided start values to get a correct 
located mean value. 

Reality Check 

Performing a reality check can bring large deviations from historical or analogous time data 
to light. Furthermore check distributions, P5, P10, P50, P90, P95 etc. for logic and con-
sistency! 

5.1.3 Deterministic Schedule 

The base schedule (normally a deterministic schedule) is the backbone of every simulation. 
A non-logical, wrongly linked and inflexible Gantt chart kills every simulation. Another 
problem associated with Monte Carlo simulations is that, if a project slips, project manag-
ers usually perform certain actions. So the base schedule is changing without simulation 
control. As already mentioned in Chapter 1.4.6, a regular schedule and simulation revision 
is needed. 
 
TIP: Generally it can be said that a new schedule always needs a new simulation. 

5.1.4 MC Simulation 

Monte Carlo simulation is arguably better than other methods due to the following points: 

 Monte Carlo can use any distribution form. 

 Monte Carlo calculates the actual critical path within every simulation run. 

 Monte Carlo gives you many “case studies” within a very short time. 

 Monte Carlo offers additional information like critical indices (probability that a 
task lies on the critical path) or sensitivity charts based on a correlation analysis. 

Moreover there are some key factors in simulation: 

Precise and Accurate Input Values 

Stochastic modelling is worthless when fed with incorrect data or in other words “garbage 
in – garbage out”. Also a regular update of input data and associated distributions using 
performance measurement data is very useful (database!).  
 

TIP: use data estimation workshops, Delphi Method etc. introduced in Chapter 2! 

Distribution Shape 

All tested OMV project schedules have a task number below 200 and moreover not every 
task does have probabilistic parameter.  
CLT does not seem to have a big effect here. Instead the output distributions generated by 
@Risk simulations show specific characteristics of the input distributions. 
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Thus every task should get its appropriate distribution based on the distribution catalogue 
(cp. Chapter 1.3.4) and a profound task environment analysis. 
 

TIP: use distribution catalogue introduced in Chapter 1.3.3. 

Central Value and Spread Value 

Varying input means and spread values positively correlates with output means and 
spreads. In addition it seems that for example a 10% increase on the input side produces a 
10% increase on the output concerning the examined OMV schedules. Further investiga-
tions (in fact a higher number of schedules in the DoE) should be made to verify signifi-
cance of correlation. 
 

TIP: use data estimation workshops, Delphi Method etc. introduced in Chapter 2! 

Central Limit Theorem (CLT) 

The number of input distributions does have an effect on the spread and the standard de-
viation of the outcome. The higher this number is the minor spread and deviation are. Sur-
prisingly this takes effect even in the common task number range (10 to 100) and it should 
be observed when lumping as a task number reducer is done (note: lumping makes the 
spread bigger, so lumping seems to bring you on the safe side). 

 3 main ways to reduce the impact of central limits: 
o Restrict the number of input variables (lumping) 
o Combat too narrow input ranges: importance of realistic Min/Max. 
o Use correlation to introduce dependencies between inputs. 

 Estimation group should give correlation coefficient from 0.0 (no 
correlation) to 1.0 (inputs perfectly correlated). 

 

TIP: minimize schedule tasks and/or correlate them! 

Constraints 

Inflexible constraints like Must Finish On (MFO) do have an impact on probabilistic analy-
sis. It makes output spreads and standard deviation smaller. Semi flexible ones like Finish 
No Later Than (FNLT) do have a similar but minor impact. For optimal schedule flexibil-
ity, even Microsoft recommends allowing MS Project to use flexible constraints to calculate 
the start and finish dates for tasks based on the entered durations and task dependencies 
(cp. http://office.microsoft.com). Only if you have unavoidable constraints, such as an 
event date that cannot be moved, it should be considered setting a constraint for a task 
manually. Only with no or flexible constraints a PSA can give you a picture of all possible 
project durations outcomes and therefore a realistic risk estimation basis. 
 

TIP: Do not use them at all and make schedule flexible! 

Correlations 

Correlations increase the risk of unexpected and/or extreme completion dates. Therefore 
they must be estimated together with the base values like durations in the estimation work-
shop. 

Sense Check 

Always test, interrogate and review the model you using. Breaking the model into sequen-
tial phases could be advantageous. Furthermore the output can be broken into P10, P50 
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and P90 outcomes. Too small or too big differences between those values could be a warn-
ing sign. Remember that ranges are frequently more poorly estimated than central values. 
So P10 and P90 should be more affected by input changing than P50.107 

5.1.5 Model Sensitivity Analysis 

When a MC model is built, it should be run and re-run many times to check sensitivities. 
Tornado charts and scenario overlays are essential.  
In first think about a base plan (1) with no explicit risk event, only uncertainties that still 
exist if everything goes right. With this rough plan we can find stages or phases to focus 
resources for biggest benefit. Next (2), we execute the plan with risks that are manageable, 
but not 100 % mitigable. This risk event sensitivity will rank those events that most affect 
our schedule. The following model runs (3) should focus on implemented mitigation strat-
egies. That will measure mitigation effectiveness and highlight the greatest pay-offs. In the 
end repeat (2) and (3) using the base model, but with risk events that are beyond our influ-
ence (like dictatorship downfalls etc.). Doing so you can determine if the hierarchy of un-
certainties or risks changes. Finally from the above sensitivities and percentiles you can 
draw a contingency and allocation plan.108  
 

TIP: use tornado charts to detect and optimize schedule key drivers! 

5.1.6 Database 

As already mentioned a well maintained database is the foundation of well-done PSA. All 
estimations and further the real outcomes should go to a project archive, so project manag-
ers on future projects can learn from it. 
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7 Glossary 

7.1 Basic Statistic Terms 

Continuous Distribution  

A probability distribution where any value between the minimum and maximum is possible 
(see Figure 96 on the right). 
 

 

Figure 96: An example for a discrete (left) and a continuous (right) distribution. 

Cumulative Density Distribution  

A cumulative distribution (CDF) is the set of points, each of which equals the integral of a 
probability distribution, starting at the minimum value and ending at the associated value of 
the random variable. 

Confidence Interval 

Is used to indicate the reliability of an estimate. It is the probability that your estimated 
value lies between a defined upper and lower distribution value. 

Convergence 

Some functions and sequences approach a limit (value) under certain conditions. 

Discrete Distribution  

A probability distribution, where only a finite number of discrete values are possible be-
tween the minimum and maximum (see Figure 96 on the left). 

Distribution Parameters  

Define the characteristics of a distribution like location (central values like mean), spread 
(range, variance) and shape (skewness, kurtosis). 

Frequency Distribution  

Frequency distributions are constructed from data by arranging values into classes and rep-
resenting the frequency of occurrence in any class by the height of bar. The frequency of 
occurrence corresponds to probability. 

Kurtosis 

Kurtosis is a measure for the degree of peakedness/flatness of the distribution (see Figure 
97). 
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Low degree of peakedness 

Kurtosis <0  

Normal distribution 

Kurtosis = 0  

High degree of peakedness 

Kurtosis > 0 

Figure 97: Kurtosis.
113

 

Mean 

Measure of central tendency of a distribution, the average value: sum all values and divide it 
by the number of values. Works well if the data on which it is based are more or less nor-
mally distributed. Skewed or multimodal distributions and the presence of extreme values 
distort the mean. 
Note: you CAN ADD mean values! 

Median 

Measure of central tendency of a distribution, the midpoint of this distribution: the point 
above which and below which 50 % of the values lie. Works well if extreme values occur. 

Mode 

Measure of central tendency of a distribution, the most frequently occurring value. Works 
well if skewness or bi(multi)-modality occurs. 
 

 

Figure 98: Various measures of central tendency of a positive skewed distribution. Note: if the distribution 
is normal, median, mode and mean are the same. 

Percentiles (the “P levels”):109 

Percentiles are values that divide your calculated project duration into 100 equal parts. The 
percentile rank is the proportion of values in a distribution that a specific value is lesser 
than or equal to. For example, if your presented project duration value is on a P95 (aka 95th 
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Percentile) level, than all possible project duration in future will be equal to that level or 
lesser with a probability of 95 per cent. 
Note: DO NOT ADD percentiles! 

Population 

The set of all possible outcomes of the process being studied.110 

Probability Density Distribution 

A probability density function (PDF) is the proper statistical term for a frequency distribu-
tion constructed from an infinitely large set of values where the class size is infinitesimally 
small (see Figure 99). 
 

 

Figure 99: PDF and CDF of a Beta distribution.
111

 

Random Variable (Stochastic Variable, Chance Variable) 

A real number taken from a set of real numbers which have a specific probability distribu-
tion function. The random number is used to select a random event.112 

Range  

The range is the absolute difference between the maximum and minimum values in a set of 
values. The range is the simplest measure of the dispersion or “ris ” of a distribution (see 
Figure 101): broader range means that more values are possible and therefore as example 
completion dates of a project cannot be limited to a certain area. 

Sample 

A subset of a population. Statistics are calculated from samples so you can make inferences 
or extrapolations from the sample to the population. 

Skewness 

Skewness is a measure of the shape of a distribution. Skewness indicates the degree of 
asymmetry in a distribution. Skewed distributions have more values to one side of the peak 
or most likely value, so one tail is much longer than the other. A skewness of 0 indicates a 
symmetric distribution, while a negative skewness means the distribution is skewed to the 
left. Positive skewness indicates a skew to the right (see Figure 100). 
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Negatively skewed distribu-

tion or skewed to the left 

Skewness <0 
 

Normal distribution 

Symmetrical 

Skewness = 0 
 

Positively skewed distribu-

tion or skewed to the right 

Skewness > 0 

Figure 100: Skewness.
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Stratification 

Stratification divides the cumulative curve into equal intervals on the cumulative probability 
scale.  

Truncation 

Truncation is the process by which a user chooses a minimum-maximum range for a ran-
dom variable that differs from the range indicated by the distribution type of the variable. 
A truncated distribution has a smaller range than the non-truncated distribution, because 
the truncation minimum is bigger than the distribution minimum and/or the truncation 
maximum is smaller than the distribution maximum. 

Variance 

The variance is a measure of how widely dispersed values are and thus it is another indica-
tion for the “ris ” content of the distribution. The variance gives disproportionate weight 
to “outliers”, values that are far away from the mean. Technically variance is the square of 
the standard deviation (see Figure 101). 
Note: DO NOT ADD variances/standard deviations! 
 

 

 

Figure 101: Variance and range. 
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7.2 Specific Project Scheduling Terms114 

Constraint 

A restriction on the start or finish date of a task. You can specify that a task must start on 
or finish no later than a particular date. Constraints can be flexible (not tied to a specific 
date) or inflexible (tied to a specific date).115 

Critical Index 

Probability that a task lies on the critical path. 

Critical Path 

“A series of critical tasks makes up a project's critical path.”116 

Critical Tasks 

Tasks that have to be completed on schedule for the project to finish on time. If such a 
critical task is delayed, the project completion date might also be delayed.117 

Lag Time (positive Lag) 

A delay between tasks that have a dependency. For example, if you need two-day space 
between the finish of the first task and the start of the second, you can establish a finish-to-
start dependency and specify a two-day lag time. 

Lead Time (negative Lag) 

An overlap between tasks that have a dependency. For example, if second task can start 
when the first task is half-finished, you can specify a finish-to-start relation with a lead time 
of 50 % for the second task. 

Lumping 

In scheduling: Summarizing many sub-tasks to fewer top-tasks. Advantages could be sim-
pler schedules, fewer tasks to estimate, less risk-driven schedules etc. 
Other meaning: Simplifying experienced facts by personal prediction skills. 

Risk 

Loss or gain, i.e. a change in assets associated with some chance of occurrence.118 

Slack (Float) 

The amount of time that a task can slip before it has impact on another task (“free slac ”) 
or the project's finish date (“total slac ”). 

Tornado Chart 

A special type of Bar chart, where the data categories are listed vertically instead of the 
standard horizontal presentation. Categories are ordered so that the largest bar appears at 
the top of the chart, the second largest appears second from the top etc. The name comes 
from a tornado-like appearance. 
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