

Diplomarbeit

Untersuchung des Stoffaustausches bei der SO₂ – Absorption am fallenden Einzeltropfen

erstellt am

Institut für Verfahrenstechnik des Industriellen Umweltschutzes

o.Univ.Prof.Dr.W.L.Kepplinger

Peter-Tunner-Strasse 15

A - 8700 Leoben

Vorgelegt von: Jürgen Gronostay Ringweg 15 9524 St. Magdalen Betreuer: DI Dr. Christian Weiß a.o. Prof. DI Dr. J. Draxler

Leoben, April 2003

An dieser Stelle möchte ich mich bei all jenen Menschen bedanken, die zum Gelingen dieser Diplomarbeit beigetragen haben. Besonders dankbar bin ich Herrn Dr. Christian Weiß und Herrn a.o. Professor Dr. Josef Draxler für die sehr gute Betreuung und die nachfolgenden Korrekturarbeiten. Herrn Dr. Christian Weiß danke ich besonders, weil er mich auf freundschaftliche Weise betreut hat und mir seine wertvolle Erfahrung auf diesem Gebiet weitergegeben hat. Darüber hinaus danke ich meinen Freunden für das Verständnis für mein Engagement am Projekt, sowie meiner Familie für die Unterstützung und Geduld während meines gesamten Studiums.

Ich erkläre an Eides statt, dass ich die vorliegende Diplomarbeit selbständig und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt und die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche erkenntlich gemacht habe.

1 Kurzfassungen Deutsch und Englisch

1.1 Kurzfassung Deutsch

Im Zuge der vorliegenden Diplomarbeit wurde eine Versuchsanlage zur Durchführung von Stoffaustauschmessungen an fallenden Einzeltopfen konstruiert und am Institut für Verfahrenstechnik des industriellen Umweltschutzes in Betrieb genommen.

Ziel dieser Arbeit war es, zu zeigen, dass der Stoffaustausch durch Absorption am fallenden Einzeltropfen messtechnisch erfassbar ist. Weiters sollten die Einflussparameter auf den Stoffaustausch, im Hinblick auf die von Seiten der Theorie absehbaren Wirkungen, experimentell überprüft werden.

Die Hauptkomponenten der Versuchsanlage sind die Tropfensäule, der Tropfengenerator und die Absaugtrichterkapillare. Die Tropfenerzeugung im Tropfengenerator erfolgt nach dem Grundprinzip einer mit Druckstößen beaufschlagten Kapillare, wobei die Druckstöße durch eine Pulsgeberschaltung und einem elektromagnetischen Stößel hervorgerufen werden. Die transparente Stoffaustauschsäule besitzt einen Innendurchmesser von 90 mm und eine Aktivhöhe von 2000 mm, wobei sich entlang der Säule vier Messstutzen befinden, welche zur Aufnahme und Fixierung der Absaugtrichterkapillare dienen. Die aktive Messhöhe wurde verändert, um die Kontaktzeit der frei fallenden Einzeltropfen mit der Gasphase variieren zu können. Die aufgefangenen Tropfen wurden in einem Probenahmegefäß gesammelt und der Nassanalytik zugeführt.

Die Gasphase stellte ein Luft-SO₂-Gemisch dar, wobei der SO₂-Gehalt je nach Versuchsanordnung zwischen 500 ppm und 3000 ppm variierte. Als Flüssigphase wurde deionisiertes Wasser eingesetzt.

Die SO₂-Konzentration in der Gasphase wurde mittels einer Online-Gasanalytik NDIRspektrometrisch bestimmt, die Sulfit-Konzentration, in den Tropfen, iodometrisch erfasst. Diese Messungen gestatten in Kombination mit einer Größenbestimmung der Tropfen eine Bilanzierung des Austauschvorganges im Stoffsystem.

1.2 Abstract

The aim of this diploma thesis was the construction of an apparatus for the measurement of mass transfer in a single falling droplet. This apparatus was constructed and tested in the Department for Process Technology and Industrial Environment Protection. A secondary aim was to show that the mass transfer is measurable within the chemisorption experiment. The influencing parameters with regard to the theory were also experimentally checked.

The main components of the apparatus comprised the droplet column, the droplet generator and a collector capillary. The droplets were generated based on the principle of a pressure pulse in a capillary coupled with an electronic plunger. The droplet column consisted of a Plexiglas tube with an inside diameter of 90 mm and an effective height of 2000 mm. Four measuring points containing the respective capillary where built into this column. Using these measurement points the effective height of the column and therefore the contact time of the droplet with the gas phase could be varied. The droplets were collected and chemically analysed.

The gas phase consisted of a SO₂ in air mixture and depending on the test was varied between 500 ppm and 3000 ppm SO₂. For the liquid phase deionised water was used.

The SO₂ concentration was measured with an online NDIR-spectrometer and the sulphite concentration in the droplet was iodometric determined. These measurements combined with a determination of the droplet size allowed a balance of the mass transfer to be calculated.

1	K	KURZFASSUNGEN DEUTSCH UND ENGLISCH					
	1.1 Kurzfassung Deutsch						
	1.2	zt	2				
2.	AU	ISGA	NGS	SITUATION	6		
3.	ZIE	ELSE	TZUI	NG	7		
4 THEORETISCHE GRUNDLAGEN							
	41	Da	as Ph	asengleichgewicht	8		
	4.2	Die	Die Stoffübertragung				
	4.3	4.3 Absorption		tion	9		
	4.4	St	offüb	ergangstheorien	10		
	4	.4.1	Die	Zwei-Film-Theorie	.10		
		4.4.1	1.1	Gesamtwiderstand auf die Gasseite bezogen	.11		
		4.4.1	1.2	Gesamtwiderstand auf die Flüssigseite bezogen	.11		
	4	.4.2	Die	Penetrationstheorie	.13		
	4	.4.3	Die	Oberflächenerneuerungstheorie	.14		
	4	.4.4	Die	kombinierte Film – Penetrationstheorie	.14		
	4.5	Äh	nnlich	keitstheorie	15		
4.5.1 Allgemeines		jemeines	.15				
	4	.5.2	Arte	en von Ähnlichkeiten	.16		
2		4.5.2	2.1	Geometrische Ähnlichkeit	16		
		4.5.2	2.2	Physikalische Ähnlichkeit	16		
		4.5.2	2.3	Partielle Ähnlichkeit	.16		
	4	.5.3	Vor	teile der Ähnlichkeitstheorie	16		
	4	.5.4	Wic	htige dimensionslose Kennzahlen	ərt.		
	4	.6.1	Sto	ffübergang an Kugeln und anderen Körpern	19		
	4	.6.2	Sto	fftransport	.19		
5	В	ESC	HRE	IBUNG DES STOFFSYSTEMS	26		
	5.1	Wa	asse	r	26		
	5.2	loc	db		28		
	5.3	Sc	hwe	feldioxid	30		
	5.4	Na	atriun	nthiosulfat	31		

Ę	5.5	Sch	wefel	31
6	BESCH		REIBUNG DER VERSUCHSANLAGE UND	
	VE	VERSUCHSDURCHFÜHRUNG		
6	5.1	Bes	chreibung der Einzelkomponenten der Anlage	34
	6.1	.1	Aufgabebehälter der Flüssigphase	34
	6.1.2 6.1.3 6.1.5 6.1.6		Die Präzisionsschlauchpumpe	34
			Der Tropfengenerator	35
			Die Absaugtrichterkapillare	41
			Das Probenahmegefäß mit vorgelegter lodlösung	42
	6.1	.7	Die Gasanalytik	42
6	6.2	Inb	etriebnahme der Anlage	45
	6.2	.1	Vorbereitungen im Labor	45
	6.2	.2	Anfahren der Anlage	45
	6.2	.3	Aufgabe der Gasphase	46
	6.2	.4	Durchführung des Einzelversuches	47
	6.2	.5	Auswertung des Versuches	47
6	5.3	Sch	ematische Darstellung der Versuchsanlage	49
6 7	5.3 ТН	Sch EOF	ematische Darstellung der Versuchsanlage	49
6 7	3.3 ТН КО	Sch EOF EFF	ematische Darstellung der Versuchsanlage RETISCHE BERECHNUNG DES STOFFDURCHGANGS- IZIENTEN	49 50
7	5.3 ТН КО 7.1	Sch EOF EFF Ern	ematische Darstellung der Versuchsanlage RETISCHE BERECHNUNG DES STOFFDURCHGANGS- IZIENTEN nittlung der Tropfengröße	49 50 50
7	5.3 TH KO 7.1 7.2	Sch EOF EFF Ern Ber	ematische Darstellung der Versuchsanlage RETISCHE BERECHNUNG DES STOFFDURCHGANGS- IZIENTEN nittlung der Tropfengröße echnung der Tropfengeschwindigkeit	49 50 50 52
7 7 7	5.3 TH KO 7.1 7.2 7.2	Sch EOF EFF Erm Ber .1	ematische Darstellung der Versuchsanlage RETISCHE BERECHNUNG DES STOFFDURCHGANGS- IZIENTEN nittlung der Tropfengröße echnung der Tropfengeschwindigkeit Formeln zur Berechnung der Fallgeschwindigkeit	49 50 50 52 52
7 7 7	5.3 TH KO 7.1 7.2 7.2 7.2	Sch EOF EFF Ber .1 .2	nematische Darstellung der Versuchsanlage RETISCHE BERECHNUNG DES STOFFDURCHGANGS- IZIENTEN nittlung der Tropfengröße echnung der Tropfengeschwindigkeit Formeln zur Berechnung der Fallgeschwindigkeit Berechnung über das Diagramm: Widerstandsbeiwert als Funktion der	49 50 52 52
6 7 7 7	5.3 TH KO 7.1 7.2 7.2 7.2	Sch EOF EFF Ber .1 .2	nematische Darstellung der Versuchsanlage RETISCHE BERECHNUNG DES STOFFDURCHGANGS- IZIENTEN	49 50 52 52 53
6 7 7	5.3 TH KO 7.1 7.2 7.2 7.2 7.2	Sch EOF EFF Ber .1 .2 .3	nematische Darstellung der Versuchsanlage RETISCHE BERECHNUNG DES STOFFDURCHGANGS- IZIENTEN	49 50 52 52 53
6 7 7 7	5.3 TH KO 7.1 7.2 7.2 7.2 7.2	Sch EOF EFF Ber .1 .2 .3 Ber	Aematische Darstellung der Versuchsanlage RETISCHE BERECHNUNG DES STOFFDURCHGANGS- IZIENTEN hittlung der Tropfengröße echnung der Tropfengeschwindigkeit Formeln zur Berechnung der Fallgeschwindigkeit Berechnung über das Diagramm: Widerstandsbeiwert als Funktion der Reynolds-Zahl Berechnung über die Formel von Kaskas und Brauer für den Widerstandsbeiwert echnung der Tropfenkonzentration und des Stoffaustausches	49 50 52 52 53 55 57
6 7 7 7	5.3 TH KO 7.1 7.2 7.2 7.2 7.2 7.3	Sch EOF EFF Ber .1 .2 .3 Ber .1	Arematische Darstellung der Versuchsanlage	49 50 52 52 53 53 57 57
6 7 7 7	5.3 TH KO 7.1 7.2 7.2 7.2 7.3 7.3 7.3	Sch EOF EFF Ber .1 .2 .3 Ber .1 .2	Arematische Darstellung der Versuchsanlage RETISCHE BERECHNUNG DES STOFFDURCHGANGS- IZIENTEN hittlung der Tropfengröße echnung der Tropfengeschwindigkeit Formeln zur Berechnung der Fallgeschwindigkeit Berechnung über das Diagramm: Widerstandsbeiwert als Funktion der Reynolds-Zahl Berechnung über die Formel von Kaskas und Brauer für den Widerstandsbeiwert echnung der Tropfenkonzentration und des Stoffaustausches Formeln allgemein Berechnung des Stoffdurchgangskoeffizienten:	49 50 52 52 53 53 57 57 57
6 7 7 7	5.3 TH KO 7.1 7.2 7.2 7.2 7.2 7.3 7.3 7.3 7.3	Sch EOF EFF Ber .1 .2 .3 Ber .1 .2 .3	Arematische Darstellung der Versuchsanlage	49 50 52 52 53 53 57 57 57 58
e 7 7 7	5.3 TH KO 7.1 7.2 7.2 7.2 7.3 7.3 7.3 7.3 7.3 7.3	Sch EOF EFF Ber .1 .2 .3 Ber .1 .2 .3 .4	nematische Darstellung der Versuchsanlage RETISCHE BERECHNUNG DES STOFFDURCHGANGS- IZIENTEN nittlung der Tropfengröße echnung der Tropfengeschwindigkeit Formeln zur Berechnung der Fallgeschwindigkeit Berechnung über das Diagramm: Widerstandsbeiwert als Funktion der Reynolds-Zahl Berechnung über die Formel von Kaskas und Brauer für den Widerstandsbeiwert echnung der Tropfenkonzentration und des Stoffaustausches Formeln allgemein Berechnung des Stoffdurchgangskoeffizienten: Berechnung der Kontaktfläche Berechnung des Konzentrationsunterschiedes	49 50 52 52 53 53 57 57 57 57 57 57 58 58
e 7 7 7	5.3 TH KO 7.1 7.2 7.2 7.2 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3	Sch EOF EFF Ber .1 .2 .3 Ber .3 .4 Ber	nematische Darstellung der Versuchsanlage	49 50 52 52 53 53 57 57 57 57 57 57 57 57 57 57 58 59
e 7 7 7	5.3 TH KO 7.1 7.2 7.2 7.2 7.2 7.2 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3	Sch EOF EFF Ber .1 .2 .3 Ber .1 .2 .3 .4 Ber .1	Arematische Darstellung der Versuchsanlage	49 50 52 52 52 53 53 57

8	PARAM	ETER DER DURCHGEFÜHRTEN VERSUCHE	70
9	BERECH	HNUNGEN ZUR AUSWERTUNG DER DURCHGEFÜHRTEN	72
(72
	9.1.1 Aiige	Auswertung der Ergebnisse der einzelnen Messstellen	72
	9.1.1.1	Gemessene Daten, Einzelversuch 12 (unterste Messstelle = 1900m	nm)74
	9.1.1.2	Gemessene Daten, Einzelversuch 2 (oberste Messstelle=400mm)	77
	9.1.1.3	Gemessene Daten, Einzelversuch 3 (oberste Messstelle= 400 mm)	79
	9.1.1.4	Gemessene Daten, Einzelversuch 11 (unterste Messstelle = 1900m	nm)81
10	DISKUS	SION UND INTERPRETATION DER ERGEBNISSE	84
	10.1 Inter	pretation der Ergebnisse und Ausblick auf weitere Versuchsreihe	n85
11	ZUSAMM	IENFASSUNG	87

2 Ausgangssituation

Absorbieren nennt man die selektive Aufnahme eines Gases in einer Flüssigkeit unter molekulardisperser Verteilung. [1]

Bei der Absorption findet eine Stoffübertragung zwischen einer gasförmigen und einer flüssigen Phase statt.

Der Absorptionsprozess ist ein selektiver Vorgang, d. h. jedes Absorbens (Flüssigkeit) besitzt die Fähigkeit, nur ganz bestimmte Absorptive (Gaskomponenten) aufzunehmen. Andere Gaskomponenten werden entweder überhaupt nicht oder nur in sehr geringen Mengen absorbiert.

So verwendet man beispielsweise für die Absorption von Schwefeldioxid als Absorptionsmittel Wasser sowie Ammonsulfat-, Soda- und Kalklösungen.

Da bei der industriellen Gasreinigung von SO₂ Sprühwäscher zum Einsatz kommen, bei denen auf verschiedenen Ebenen in den Sprühtürmen Wasser bzw. Kalklösungen eingespritzt werden, deren Flüssigkeitsstrahlen gleich abreisen und sich Tropfen bilden, ist es wichtig, das Stoffübergangsverhalten des Einzeltropfen zu kennen. [1],[2]

3 Zielsetzung

Ziel dieser Arbeit ist der Entwurf, der Bau und die Inbetriebnahme einer Versuchsanlage zur Durchführung von Stoffaustauschmessungen an fallenden Einzeltopfen. Weiters ist zu zeigen, dass der Stoffaustausch durch Absorption am fallenden Einzeltropfen messtechnisch erfassbar sei. Es soll durch verschiedene Versuchsreihen bewiesen werden, dass der Stoffdurchgangskoeffizient k experimentell ermittelt werden kann. Mit Hilfe der Stoffübergangstheorien, wie der Zwei-Film-Theorie, der Penetrationstheorie, der Oberflächenerneuerungstheorie und der kombinierten Zwei-Film-Penetrationstheorie können die erlangten Ergebnisse rechnerisch bestätigt werden.

Weiters soll diese Demonstrationsanlage für Laborübungen am Institut für Verfahrenstechnik zur Ausbildung der Studenten Verwendung finden. Ziel der Laborübung ist es, die grundlegenden Stoffaustauschphänomene beim SO₂-Übergang aus einer Gasphase eine in fluide Phase aufzuzeigen und zu verdeutlichen.

4 Theoretische Grundlagen

4.1 Das Phasengleichgewicht

Ein Stofftransport tritt dann auf, wenn zwei Phasen miteinander in Kontakt gebracht werden. Dieser Stofftransport hält so lange an, bis die Temperatur und die Konzentrationen in beiden Phasen konstante Werte angenommen haben. Ist dieser Zustand erreicht, so spricht man von einem Gleichgewichtszustand.

Da die Gleichgewichtszusammensetzung der beiden Phasen oft sehr unterschiedlich ist, kann diese Konzentrationsdifferenz in Trennprozessen ausgenutzt werden. Dies geschieht alltäglich bei den verschiedenen Trennverfahren wie Rektifikation, Extraktion, Absorption, Kristallisation usw.. Deshalb ist das Phasengleichgewichtsverhalten im Chemieingenieurwesen von besonderer Bedeutung.

Die Gleichgewichtszusammensetzung hängt von den intensiven Variablen Temperatur, Druck und der Zusammensetzung der unterschiedlichen chemischen Verbindungen ab. Mit Hilfe der Phasengleichgewichtsthermodynamik versucht man eine Beziehung zwischen diesen Variablen herzustellen, um das Phasengleichgewichtsproblem zu lösen. [3]

4.2 Die Stoffübertragung

Unter Stoffübertragung versteht man den Transport einer oder mehrerer Komponenten eines Gemisches fluider oder fester Stoffe innerhalb einer Phase, oder über Phasengrenzflächen hinweg.

Die Stoffübertragung innerhalb einer Phase bis an die Phasengrenzfläche bezeichnet man als "Stoffübergang", die über die Phasengrenze hinweg in eine andere Phase als "Stoffdurchgang". Die treibende Kraft für den Stoffübergang sind Konzentration, Temperatur und Druckgradienten. Ich befasse mich mit dem am häufigsten vorkommenden Stoffübergang durch den Konzentrationsgradienten. Die Komponenten eines Gemisches bewegen sich von Bereichen höherer zu denen niedrigerer Konzentration. Gleichgewicht hinsichtlich des Stoffüberganges ist dann erreicht, wenn die treibenden Kräfte, also die Konzentrationsunterschiede verschwunden sind. Trennprozesse der Verfahrenstechnik, wie die Trocknung fester Stoffe, die Destillation, Extraktion und Sorption beruhen auf Vorgänge der Stoffübertragung. Diese spielen ebenso eine Rolle bei der Herstellung von Werkstoffen um gewünschte Eigenschaften zu erzielen. Der Ablauf chemischer Reaktionen wird oft entscheidend durch die Stoffübertragung bestimmt. [3],[4]

4.3 Absorption

Die Absorption ist schon immer ein wichtiger Bestandteil vieler technischer Prozesse gewesen. Überall, wo Gasgemische getrennt werden sollen um eine Komponente einen Prozess zuzuführen oder um eine Komponente als Produkt rein zu erhalten, muss sie als Verfahrensschritt in Betracht gezogen werden. Zusätzliche Bedeutung erlangte die Absorption in den letzten Jahren, seitdem Umweltschutz wachsende Bedeutung zukommt und schädliche Prozessabgase nicht mehr ohne weiteres der Umwelt zugeführt werden dürfen. Die Absorption muss deshalb zu jenen verfahrenstechnischen Grundoperationen gezählt werden, die eine Schlüsselstellung einnehmen. Es ist somit unumgänglich, sich im Rahmen einer verfahrenstechnischen Grundbildung auf diesem Gebiet einige Kenntnisse zu verschaffen. [4]

Der Begriff Absorption ist wie folgt definiert:

"Absorbieren ist die Aufnahme eines Gases in das Innere einer kondensierten Phase unter molekulardisperser Verteilung." [1]

Den umgekehrten Vorgang, die Entfernung des aufgenommenen Absorptivs aus dem Absorbat, bezeichnet man als Desorption (oder Austreiben). Unter Desorption wird das Trennen eines absorbierten Gases, einer als Sorbens dienenden Flüssigkeit durch Temperatursteigerung und/oder Partialdruckerniedrigung, verstanden. Dabei handelt es sich um eine Regenerierung des Absorptionsmittels, wenn dieses erneut für die Durchführung des Absorptionsprozesses eingesetzt werden soll – unter gleichzeitiger Gewinnung des Absorptivs. Dabei unterscheidet man folgende Desorptionsmethoden:

- Austreiben im inerten Gasstrom (Strippen),
- Austreiben durch Entspannen des Absorptionsmittels bei Absorptionstemperatur,
- Austreiben durch Erwärmen des Absorptionsmittels unterhalb der Siedetemperatur des Absorptionsmittels.

Bei der Absorption findet eine Stoffübertragung zwischen einer gasförmigen und einer flüssigen Phase statt. Diese Stoffübertragung kann physikalischer oder chemischer Art sein. Vorwiegend physikalische Bindungskräfte sind bei der physikalischen Absorption (z.B. bei der Entfernung von Butadin aus Synthesegasen mittels Petroleums) wirksam. Die chemisch wirkenden Lösungsmittel gehen im Gegensatz zu den physikalisch lösenden mit dem zu absorbierenden Stoff eine chemische Bindung ein (zum Beispiel bei der Entfernung des Ammoniaks aus NH₃-Luftgemischen mittels Wasser). [5]

4.4 Stoffübergangstheorien

Die Berechnung von Stoffübergangskoeffizienten β kann in verschiedener Weise geschehen, wobei man nach der Art des jeweiligen Problems darüber entscheiden muss, nach welcher Theorie man die Stoffübergangskoeffizienten am besten bestimmt. Die wichtigsten Theorien sind die Zwei-Film-, die Grenzschicht- und die Penetrationstheorie.

4.4.1 Die Zwei-Film-Theorie

Die Zwei-Film-Theorie ist die einfachste und älteste Modelltheorie zur Beschreibung des Stoffdurchganges. Sie versucht die Stoffaustauschvorgänge anhand eines Modells darzustellen, welchem gesamte vorhandene Widerstand in der durch die Diffusionswiderstände der beiden laminaren Grenzschichten beiderseits der Phasengrenzfläche ersetzt wird. In den beiden Grenzschichten soll der Stoffaustausch nur durch Molekulardiffusion erfolgen, so dass sich in diesen, in erster Näherung ein linearer Verlauf der Konzentration, entsprechend Abbildung 4.4.1. einstellt.

Abbildung 4.4.1.: Konzentrationsverlauf beim Stoffaustausch gemäß der Zwei-Film-Theorie

Der Stoffaustausch zwischen der Grenzschicht und dem Kern der Flüssigkeits- bzw. Gasphase erfolgt durch turbulente Strömungsvorgänge. Dabei kann das Konzentrationsgefälle vernachlässigt werden. Die Dicke der laminaren Grenzschicht und damit die Größe des Diffusionswiderstandes verkleinert sich bei dieser Modellvorstellung mit wachsender Strömungsgeschwindigkeit der einzelnen Phase. [6],[7],[8]

Die Molstromdichte kann nun mit Hilfe des Stoffübergangskoeffizienten β folgend formuliert werden:

$$n_{i,g}^* = \beta_g * (c_i^* - c_{i,g})$$
(GI.: 4.4.1.1)

$$n_{i,l}^* = \beta_l * (c_i^* - c_{i,l})$$
(GI.: 4.4.1.2)

Da unter stationären Verhältnissen der Stoffstrom in gleicher Größe von der einen Phase durch die Grenzfläche in die andere Phase übergeht, muss gelten:

$$n_{i}^{*} = n_{i,g}^{*} = n_{i,l}^{*}$$
 (GI.: 4.4.1.3)

$$\beta_g * (c_i^* - c_{i,g}) = \beta_l * (c_i^* - c_{i,l})$$
(Gl.: 4.4.1.4)

Es ist fast nicht möglich die Konzentration an der Phasengrenzfläche anzugeben. Daher wurde zur Berechnung der ausgetauschten Stoffmenge der "Stoffdurchgangskoeffizient k" eingeführt, durch den der Gesamtwiderstand entweder nur auf die Gasseite oder nur auf die Flüssigkeitsseite bezogen wird.

4.4.1.1 Gesamtwiderstand auf die Gasseite bezogen

$$n_{i,g}^* = k_g^* (c_i^* - c_{i,g})$$
(GI.:4.4.1.1.1)

Das treibende Gefälle wird durch die Differenz zwischen der Konzentration $c_{i,\infty}$ der auszutauschenden Komponente i im Kern der Gasströmung und der Gleichgewichtskonzentration c_i^* dargestellt, welcher im Phasengleichgewicht mit der Konzentration $c_{i,l,\infty}$ der Kernströmung der Flüssigkeit steht. [6]

4.4.1.2 Gesamtwiderstand auf die Flüssigseite bezogen

Hier geht man von der Beziehung aus:

$$n_i^* = k_l^* (c_i^* - c_{i,l})$$
 (Gl.: 4.4.1.2.1)

Nimmt man nun den Fickschen Satz zu Hilfe, erhält man für die Stoffstromdichte:

$$n_{i,}^{*} = D_{i,l} * \frac{c_{i,l,\infty} - c_{i,l,1}^{*}}{\delta_{1}}$$
(GI.: 4.4.1.2.2)

$$n_{i,g}^* = D_{i,g} * \frac{c_{i,l,\infty} - c_{i,l,2}^*}{\delta_2}$$
(Gl.: 4.4.1.2.3)

daraus folgt:

$$\beta_{i,g} = \frac{D_{i,g}}{\delta_g}$$
 (GI.: 4.4.1.2.4)

$$\beta_{i,l} = \frac{D_{i,l}}{\delta_l}$$
(Gl.: 4.4.1.2.5)

daraus kann man für den Stoffdurchgangskoeffizienten sagen, dass gilt:

$$\frac{1}{k_{i,g}} = \frac{1}{\beta_{i,g}} + \frac{m}{\beta_{i,l}}$$
(GI.:4.4.1.2.6)

$$\frac{1}{k_{i,l}} = \frac{1}{m * \beta_{i,g}} + \frac{1}{\beta_{i,l}}$$
(GI.: 4.4.1.2.7)

Für den stationären Zustand gilt also:

$$n_{i}^{*} = \beta_{i,g} * (c_{i,g,\infty} - c_{i,g,I}^{*}) = \beta_{i,l} * (c_{i,l,I}^{*} - c_{i,g,\infty}) = k_{i,g} * (c_{i,g,\infty} - c_{i,g}^{*}) = k_{i,l} * (c_{i,l}^{*} - c_{i,l,\infty})$$
(GI.: 4.4.1.2.8)

Zusammenfassend werden hier bei der Zwei-Film-Theorie folgende Annahmen getroffen:

- a.) Konstante Strömungsgeschwindigkeiten bis zur Grenzschicht
- b.) Konstante Konzentration in den Hauptphasen
- c.) Konzentrationsänderungen nur in den beiden Grenzschichten
- d.) Phasengleichgewicht an der Phasengrenze
- e.) Stationärer Zustand
- f.) Keine chemische Reaktion. [8]

Institut für Verfahrenstechnik

4.4.2 Die Penetrationstheorie

Dieses Modell wurde von Higbie im Jahre 1935 bei Versuchen zur Absorption von reinem CO_2 in Wasser bei Laborversuchen entwickelt. Er ging davon aus, dass die Kontaktzeit zwischen zwei fluider Medien zur Ausbildung eines Konzentrationsgradienten in einer Grenzschicht als stationärer Zustand nicht ausreicht. Deshalb nahm er an, dass die Stoffübertragung in der flüssigen Phase, bei sehr kurzer Kontaktzeit, als instationäre Diffusion erfolgt. Die Flüssigkeitsteilchen sollen aus der Hauptmasse der Flüssigkeit durch turbulente Bewegung an die Phasengrenzfläche transportiert werden. Damit wird die Turbulenz bis an die Phasengrenzfläche ausgedehnt. An der Phasengrenzfläche soll sich augenblicklich das Phasengleichgewicht einstellen, dann beginnt das Eindringen des Gases in die Flüssigkeitsteilchen an der Phasengrenzfläche wird das Lösliche nur an die obere Flüssigkeitsteilchen son dass man die Tiefe der Flüssigkeit mit der Konzentration $c_{g,\infty}$ als unendlich annehmen kann. Ein stationärer Zustand wird hier nicht erreicht, weil das Flüssigkeitsteilchen vorher wieder in den Kern der Strömung zurückgeführt wird. Die Sättigung der Waschflüssigkeit mit dem Löslichen hängt also von der Kontaktzeit ab.

Für die Stoffstromdichte aus dem Fickschen Gesetz erhält man

$$n_{i}^{*} = \sqrt{\frac{4 * D_{i,j}}{\pi * \tau}} * (c_{i,l}^{*} - c_{i,\infty})$$
(GI.: 4.4.2.1)
$$\beta_{f} = 2 * \sqrt{\frac{D_{i,j}}{\pi * \tau}}$$
(GI.: 4.4.2.2)

Dieses Zwei-Film-Theorie. Ergebnis steht im Gegensatz zur denn der Stoffübergangskoeffizient ist hier proportional der Wurzel aus dem Diffusionskoeffizienten und nicht direkt proportional wie bei der Zwei-Film-Theorie. Die Penetrationstheorie beinhaltet also den Transport von Masseteilchen durch turbulente Bewegung an die Phasengrenzfläche, wobei sich augenblicklich Phasengleichgewicht der an Phasengrenzfläche einstellt und anschließend die Übergangskomponente durch instationäre Diffusion in die Phase eindringt ohne dass ein stationärer Zustand erreicht wird. Will man den Stoffübergangskoeffizienten berechnen, so ist eine Annahme der Strömungszustände im Inneren des Fluids zu treffen, weil eine Vorhersage über die Kontaktzeit des Flüssigkeitselementes an der Phasengrenze zu tätigen ist. Bei der Anwendung der Penetrationstheorie auf den Stoffaustausch vom starren Tropfen und Tropfen mit

Institut für Verfahrenstechnik

vollkommen ausgebildeter Zirkulation (mobiler Tropfen) erhält man folgende Beziehung für die Sherwood-Zahl:

$$Sh = 2 + 0.57 * \text{Re}^{0.5} * Sc^{0.33}$$
 (Gl.: 4.4.2.3)

[6],[7],[8],[9]

4.4.3 Die Oberflächenerneuerungstheorie

Bei der Oberflächenerneuerungstheorie handelt es sich um eine Abwandlung der Penetrationstheorie. Danckwerts Variante im Jahre 1951 geht von der Annahme aus, dass eine Zufallsverteilung der Kontaktzeit zwischen den Flüssigkeitselementen und der Gasphase voraussetzt. Die Oberflächenerneuerungstheorie verwendet daher an Stelle einer konstanten Verweilzeit, eine Verteilungsfunktion für die Verweilzeit der einzelnen Teilchen und einen, den Turbulenzgrad und das Alter der Teilchen berücksichtigenden Oberflächenerneuerungsfaktor. Aus dem Fickschen Gesetz erhält man daher für die mittlere Diffusionsstromdichte:

$$n_i^* = \sqrt{D_{i,j} * s} * (c_{i,l}^* - c_{i,\infty})$$
(Gl.: 4.4.3.1)

und demnach ist der Stoffübergangskoeffizient flüssigseitig:

$$\beta_f = \sqrt{D_{i,j}} * s$$
 (GI.: 4.4.3.2)

Der Stoffübergangskoeffizient ist also analog zur Penetrationstheorie proportional der Wurzel aus dem Diffusionskoeffizienten. [1],[9]

4.4.4 Die kombinierte Film – Penetrationstheorie

Die Kombination der Film- und Penetrationstheorie durch Toor und Marchello im Jahre 1958 geht aus. dass sich die Oberfläche _ ähnlich wie bei der davon Oberflächenerneuerungstheorie - fortlaufend durch Turbulenzen aus der Hauptmasse der Flüssigkeit erneuert. Dadurch wird bei kurzen Kontaktzeiten zwischen Gas und Flüssigkeit die Annahme eines instationären Diffusionsprozesses aufrecht erhalten. Bei sehr langen Diffusionszeiten gilt diese Annahme jedoch nicht mehr. Denn es wird sich - wie bei der Zwei-Film-Theorie – in Grenzflächennähe eine stagnierende Schicht mit stationärem Konzentrationsgradienten aufbauen, durch welche die Stoffaustauschkomponente hindurch diffundieren muss. Dadurch gehorchen jene Teilchen, die eine andauernde Erneuerung erfahren, der Penetrationstheorie und solche Teilchen, die eine sehr lange Verweilzeit an der Flüssigkeitsoberfläche aufweisen, der Zwei-Film-Theorie. Für die kombinierte Film- und Penetrationstheorie gelten nun folgende Gesetzmäßigkeiten:

Für die Stoffstromdichte aus dem Fickschen Gesetz:

$$n_{i}^{*} = \sqrt{\frac{D_{i,j}}{\pi * \tau}} * \left(1 + 2 * \sum_{n=1}^{\infty} e^{-\frac{n^{2} * \delta^{2}}{D_{i,j} * t}} \right) (c_{i,l}^{*} - c_{i,\infty})$$
(GI.: 4.4.4.1)

Für lange Verweilzeiten ist die Stoffstromdichte direkt proportional dem Diffusionskoeffizienten und für kurze Verweilzeiten ist die Stoffstromdichte analog zur Penetrationstheorie direkt proportional der Wurzel aus dem Diffusionskoeffizienten:

$$n_i^* = \sqrt{\frac{D_{i,j}}{\pi * \tau}} * (c_{i,I}^* - c_{i,\infty})$$
(GI.: 4.4.4.2)

[1],[9],[10].

4.5 Ähnlichkeitstheorie

4.5.1 Allgemeines

Die allgemeinen Differentialgleichungen des Stofftransportes, die alle den Vorgang beschreiben und physikalische Größen miteinander verknüpfen, führen auf technische Probleme angewandt, zu unübersichtlichen Ergebnissen oder unlösbaren Gleichungen. Das Anwenden spezieller empirischer Gleichungen, durch Auswerten von Versuchsergebnissen gewonnen, bleibt stets auf den einen konkreten Fall beschränkt. In der Praxis verwendet man häufig empirische Gleichungen. Ziel aber bleibt, eine allgemeine Gesetzmäßigkeit zu finden. Diese Lücke wird vor allem bei komplizierten Vorgängen fühlbar, die von einer großen Anzahl physikalischer Größen abhängen. Die Ähnlichkeitstheorie gestattet nun ein Auswerten der Versuchsergebnisse, die an Pilotanlagen gewonnen wurden, das zu allgemeinen Gesetzmäßigkeiten führt. Die Grundlage dabei bildet die Erkenntnis, dass alle physikalischen Gesetze unabhängig von der Wahl des Maßsystems sind. Dies macht sie mit Hilfe dimensionsloser Kennzahlen. Die Ähnlichkeitstheorie gewährt somit Einblicke in technische Sachverhalte auch dort, wo sich mathematische Formulierungen auf numerischen Weg nur sehr schwer lösen lassen. Weiters erlaubt die Ähnlichkeitstheorie die Auslegung und Optimierung einer verfahrenstechnischen Anlage ohne langwierige theoretische Vorausberechnung, sondern allein durch Versuche an Pilotanlagen. Die Ähnlichkeitstheorie stellt also zur Zeit unter den bekannten Möglichkeiten zur Berechnung des konvektiven Stoff- und Wärmeüberganges

- 1. Aufstellen und Lösen des kompletten Differentialgleichungssystems
- 2. Empirische Beziehungen
- 3. Versuche zur Bestimmung aller Einflussgrößen
- 4. Versuche und Auswertung mit der Ähnlichkeitstheorie

die beste Möglichkeit dar. [8],[11]

4.5.2 Arten von Ähnlichkeiten

4.5.2.1 Geometrische Ähnlichkeit

Die geometrische Ähnlichkeit sagt folgendes aus: einander entsprechende Längen sind immer im konstanten Verhältnis.

4.5.2.2 Physikalische Ähnlichkeit

Die physikalische Ähnlichkeit verlangt neben konstanten Verhältnissen der Längen auch solche der übrigen physikalischen Messgrößen des Problems wie die Kräfte, Zeiten, Geschwindigkeiten und Temperaturen (dynamische und thermische Ähnlichkeit).

4.5.2.3 Partielle Ähnlichkeit

Von partieller Ähnlichkeit spricht man, wenn nicht alle Messgrößen in einem konstanten Verhältnis gehalten werden können.

4.5.3 Vorteile der Ähnlichkeitstheorie

Die Kombination der Messgrößen zu nur wenigen dimensionslosen Kennzahlen der Ähnlichkeit verringert die Anzahl der veränderlichen Kennzahlen. Darin liegt mit die Bedeutung der Ähnlichkeitstheorie, denn eine Funktion zwischen beispielsweise drei Veränderlichen ist viel bestimmter und erfordert zum Prüfen einen geringeren experimentellen Aufwand als eine Funktion zwischen einer größeren Anzahl an Veränderlichen. [2],[11] Die bedeutendsten Vorteile der Ähnlichkeitstheorie sind:

- 1. Unabhängigkeit vom Dimensionssystem,
- 2. Reduzierung der Parameter die das Problem beschreiben,
- 3. die Verringerung des Versuchaufwandes,
- 4. sie ermöglicht die Extrapolierbarkeit einzelner Parameter und die Modellübertragung,
- 5. sie ermöglicht die Untersuchung, ob totale Ähnlichkeit erreichbar ist,
- 6. sie stellt die Basis für Konzepte für eine teilweise Ähnlichkeit zur Verfügung,
- 7. sie verbessert die Durchschaubarkeit des physikalischen Problems. [8]

4.5.4 Wichtige dimensionslose Kennzahlen

Die nachfolgende Zusammenstellung gibt eine Übersicht häufig verwendeter Kennzahlen des Stoffwärme- und Impulstransportes.

	Bezeichnung	Kennzahl	Formelzeichen	
Sim- plexe	Geometriezahl	$\Gamma = L$ ängenverhältnis = $\frac{l_1}{l}$	a Temperaturleitzahl c Schallgeschwindigkeit D Diffusionszahl	
	KNUDSEN-Zahl	$Kn = \frac{\text{mittlere freie Weglänge}}{\text{Rohrdurchmesser}} = \frac{\Lambda}{d}$	d Durchmesser F Kraft - g Erdbeschleunigung	
	Zähigkeitszahl	$\mathbf{H} = \mathbf{Z} \ddot{\mathbf{a}} \mathbf{h} \mathbf{i} \mathbf{g} \mathbf{k} \mathbf{e} \mathbf{i} \mathbf{t} \mathbf{s} \mathbf{v} \mathbf{e} \mathbf{h} \ddot{\mathbf{a}} \mathbf{l} \mathbf{h} \mathbf{s} \mathbf{s} \mathbf{s}$	 kennzeichnende Abmessung m Masse 	
	Mach-Zahl	$Ma = \frac{Strömungsgeschwindigkeit}{Schallgeschwindigkeit} = \frac{w}{c}$	p Druck T Temperatur w Strömungsgeschwindigkeit	
Kom- olexe	Archimedes- Zahl	$Ar = \frac{\text{Dichte-Antriebskraft}}{\text{innere Trägheitskraft}} = \frac{gl^3}{r^2} \frac{\Delta \varrho}{\varrho}$	 α Wärmeübergangszahl β Stoffübergangszahl ν Volumenausdehnungszahl 	
	Bodenstein- Zahl	$Bo = \frac{Konvektionsstrom}{Diffusionsstrom} = Sc Re = \frac{wl}{D}$	 η dynamische Zähigkeit Λ mittlere freie Weglänge λ Wärmeleitzahl 	
	Euler-Zahl	$Eu = \frac{Druckkraft}{Trägheitskraft} = \frac{\Delta p}{\rho w^2}$	 ν kinematische Zähigkeit φ Dichte σ Oberflächenspannung 	
	Fourier-Zahl	$Fo = \frac{\text{Wärmeleitstrom}}{\text{Konvektionsstrom}} = \frac{a\tau}{l^2}$	τ Zeit Fa Fanning-Zahl	
	Froude-Zahl	$Fr = \frac{Trägheitskraft}{Schwerkraft} = \frac{1}{Fa} = \frac{w^2}{gl}$		
	Galilei-Zahl	$Ga = \frac{Schwere Antriebskraft}{innere Trägheitskraft} = \frac{Re^2}{Fr} = \frac{gI^3}{\nu^2}$		
	Grashof-Zahl	$Gr = \frac{\text{thermische Antriebskraft}}{\text{innere Trägheitskraft}} = \frac{gl^3}{\nu^2} \gamma \Delta T$		
	Newron-Zahl	$Ne = \frac{Antriebskraft}{Trägheitskraft} = \frac{F\tau}{mw}$		
	Nusselt-Zahl	$Nu = \frac{W\ddot{a}rme\ddot{u}bergangsstrom}{W\ddot{a}rmeleitstrom} = \frac{\alpha l}{\lambda}$		
	Péclet-Zahl	$Pe = \frac{Konvektionsstrom}{W"armeleitstrom} = \frac{Re}{Pr} = \frac{wl}{a}$		
	Reynolds-Zahl	$Re = \frac{Trägheitskraft}{innere Reibungskraft} = \frac{wl}{v}$		
	Sherwood-Zahl	$Sh = \frac{Stoffübergangsstrom}{Diffusionsstrom} = \frac{\beta l}{D}$		
	Weber-Zahl	$We = \frac{Trägheitskraft}{Oberflächenkraft} = \frac{\varrho w^2 l}{\sigma}$		
Güte- grade	Lewis-Zahl	$Le = \frac{W \ddot{a}rmeleitstrom}{Diffusionsstrom} = \frac{Sc}{Pr} = \frac{a}{D}$	8 18	
	PRANDTL-Zahl	$\Pr = \frac{\text{innere Reibung}}{\text{Wärmeleitstrom}} = \frac{\Pr}{\text{Re}} = \frac{\nu}{a}$		
	SCHMIDT-Zahl	$Sc = \frac{\text{innere Reibung}}{\text{Diffusionsstrom}} = \frac{Bo}{Re} = \frac{\nu}{D}$		
	STANTON-Zahl	$St = \frac{Stoffübergangsstrom}{Konvektionsstrom} = \frac{Sh}{Bo} = \frac{\beta}{w}$		

Abbildung 4.4.5.1.: Wichtige Ähnlichkeitszahlen

4.6 Stoffaustausch am Einzeltropfen

4.6.1 Stoffübergang an Kugeln und anderen Körpern

Der Stoffübergang Kugeln ist von grundsätzlicher Bedeutung viele an für verfahrenstechnische Prozesse, bei denen einzelne Partikel oder auch Partikelschwärme auftreten. Die Partikel können sowohl feste als auch fluide Körper sein. Fluide Körper sind Tropfen und Blasen. Sie haben im Bereich sehr kleiner Werte für den Durchmesser stets Kugelform. Unter technisch bedeutsamen Bedingungen weicht die Form der Tropfen oder Blasen aber fast immer von der einer Kugel ab. Die Deformationsfähigkeit der Tropfen und Blasen führt zu eigenen Gesetzmäßigkeiten für die Bewegung und den Stoff- und Wärmeübergang. Wird allerdings vorausgesetzt, dass die Konzentration der diffundierenden Komponente gering ist, darf die Ficksche Transportgleichung eingeführt werden. [12],[25]

4.6.2 Stofftransport

Die Zwei-Film-Theorie fluider Phasen bildet die Grundlage der Stoffübertragung und der Absorption. Danach muss bei der Absorption das Absorptiv aus der Gasphase durch je eine dünne Gas- und Flüssigkeitsgrenzschicht hindurch, in das Absorptionsmittel diffundieren. Diese Grenzschichten gelten als Hauptwiderstände des Stofftransportes. Unmittelbar an der Phasengrenzfläche herrscht nach der Zwei-Film-Theorie zu jedem Zeitpunkt des Vorganges Gleichgewicht. Bedeuten $m_{a,r}$ die in der Trägermasse m_r (Raffinat) enthaltene Absorptivmasse und $m_{a,s}$ die in der Absorptionsmittelmasse m_s (Sulvent) gelöste Absorptivmasse, so folgt – analog den für die Solventextraktion angewandten Beladungen – als Absorptivbeladung des Trägergases. [2]

$$y = \frac{m_{a,r}}{m_r}$$
 (GI. 4.6.2.1)

und als Absorptivbeladung des Absorptionsmittels

$$x = \frac{m_{a,s}}{m_s}$$
 (GI. 4.6.2.2)

Mit den Gleichgewichtsbeladungen y_{gr} und x_{gr} an der Phasengrenzfläche erhält das Henry-Beladungsgesetz die Form:

$$y_{gr} = H^* x_{gr}$$
 (Gl. 4.6.2.3)

Der Stofftransport durch die Phasengrenzfläche hindurch findet nach der Zwei-Film-Theorie aufgrund der Gleichgewichtsbedingungen keinen Übergangswiderstand. Diese

vereinfachende Annahme entspricht jedoch nicht den tatsächlichen Gegebenheiten, da der Phasenübergang der Gaskomponente bei Absorption mit einem Solvatisierungsprozess verbunden ist, der in seiner Geschwindigkeit einer Reaktion erster Ordnung gleicht. Für den Stoffübergang des Absorptivs von der Gasphase zur Phasengrenzfläche und von der Phasengrenzfläche zur Flüssigphase, ist nicht die unmittelbare Beladungsdifferenz beider Phasen als molekulare Triebkraft entscheidend, sondern jeweils die Differenz zwischen den örtlichen Beladungen in der Gasphase y und an der Phasengrenzfläche y_{gr} auf der Gasseite

$$\Delta y = y - y_{gr}$$
 (Gl. 4.6.2.4)

sowie die Beladungsdifferenz zwischen x_{gr} und dem Absorptionsmittel x auf der Flüssigkeitsseite

$$\Delta x = x_{or} - x$$
 (Gl. 4.6.2.5)

Im kontinuierlich arbeitenden Gegenstromabsorbern verläuft der Stofftransport stationär. Dabei ändert sich die Phasenzusammensetzung stetig entlang der Prozessraumphasengrenzfläche, bleibt aber für jeden Querschnitt der Grenzschicht und damit für jeden Absorberquerschnitt zeitlich unverändert. Das Berechnen des Stoffüberganges erfordert deshalb ein Ersetzen der örtlichen Triebkräfte Δy und Δx durch die mittleren Prozessraumtriebkräfte Δy_m , Δx_m des Gesamtvorganges im Absorber. Alle nachfolgenden Betrachtungen setzen vereinfacht voraus, dass entlang der gesamten Grenzfläche für die Henry-Beladungskoeffizienten des Verteilungsgleichgewichtes gilt:

H` = konstant.

Isotherme Arbeitsweise und annähernd linearer Verlauf der Gleichgewichtskurve im Arbeitskonzentrationsbereich des Absorbers erfüllen diese Bedingung. [2]

Der erste Schritt der Absorption ist der Stoffübergang von der Gasphase zur Phasengrenzfläche. Die Gasphase tritt im Gegenstrom zum Absorptionsmittel ein und aus. Mit den Phasenbeladungen y_a und y_e der Gasphase und der dazugehörenden Grenzflächenbeladung $y_{gr,a}, y_{gr,e}$ folgt für die örtlichen Triebkräfte am Anfang und am Ende der Prozessraumgasgrenzschicht

$$\Delta y_a = y_a - y_{gr,a}, \tag{GI. 4.6.2.6}$$

$$\Delta y_e = y_e - y_{gr,e}$$
(Gl. 4.6.2.7)

20

wobei die Anfangs- und Endtriebkräfte des Gegenstromes nach der Forderung:

$$\Delta y_a \rangle \Delta y_e$$
 (GI. 4.6.2.8)

zu wählen sind. Diese Beladungsdifferenzen geben die mittlere Prozessraumtriebkraft der Gasgrenzschicht

$$\Delta y_m = \frac{\Delta y_a - \Delta y_e}{\ln \frac{\Delta y_a}{\Delta y_e}}$$
(Gl. 4.6.2.9)

und die Stoffübergangsgeschwindigkeit erhält mit der Stoffübergangszahl der Gasgrenzschicht β_v die Form

$$g_{d,y} = \beta_y * \Delta y_m$$
 (Gl. 4.6.2.10)

Der zweite Schritt der Absorption, der Stoffübergang von der Phasengrenze in die Flüssigphase findet im Prozessraum die Anfangs- und Endbedingungen $x_a, x_e, x_{gr,a}, x_{gr,e}$ vor, welche die örtlichen Triebkräfte aller bestimmen

$$\Delta x_a = x_{gr,a} - x_a \tag{GI. 4.6.2.11}$$

$$\Delta x_e = x_{gr,e} - x_e \tag{GI. 4.6.2.12}$$

Auch hier sind die Anfangs- und Endtriebkräfte des Gegenstromes nach der Forderung zu wählen

$$\Delta x_a \rangle \Delta x_e$$
 (Gl. 4.6.2.13)

Die mittlere Prozessraumtriebkraft der Flüssigkeitsgrenzschicht

$$\Delta x_m = \frac{\Delta x_a - \Delta x_e}{\ln \frac{\Delta x_a}{\Delta x_e}}$$
(Gl. 4.6.2.14)

und die Stoffübergangsgeschwindigkeit erhält mit der Stoffübergangszahl der Flüssigkeitsgrenzschicht β_x die Form

$$g_{d,x} = \beta_x * \Delta x_m$$
 (Gl. 4.6.2.15)

Die während eines stationären Absorptionsvorganges durch die Gas- und Flüssigkeitsgrenzschicht übergehenden Absorptivmengen müssen einander gleich sein

$$g_d = g_{d,y} = g_{d,x}.$$
 (Gl. 4.6.2.16)

Diese Absorptionsgeschwindigkeit g_d – als Absorptivmassenstromdichte – führt zu der Gleichung

$$\frac{\beta_y}{\beta_x} = \frac{\Delta x_m}{\Delta y_m}$$
(Gl. 4.6.2.17)

Das Verhältnis der Stoffübergangszahlen der Gas- und Flüssigkeitsgrenzschicht gleicht dem umgekehrten Verhältnis der mittleren Grenzschichttriebkräfte im Prozessraum. Die Gleichungen (Gl. 4.6.2.10) und (Gl. 4.6.2.15) sind für praktische Berechnungen ungeeignet, da Δy oder Δx der Phasengrenzzustände Δy_{or} oder Δx_{or} fordern. Das Eliminieren dieser Zustandswerte gelingt mittels des Henry-Verteilungsgesetzes. Die Triebkräfte des Stoffdurchganges in der Gasgrenzschicht (Δy) unterscheiden sich von denen in der Flüssigkeitsgrenzschicht (Δx). Dagegen ist die Triebkraft des Wärmeüberganges stets die Temperaturdifferenz. Soll eine der Wärmedurchgangsgleichung analoge Stoffdurchgangsgleichung für den Gesamtvorgang der Absorption entstehen, so müssen gleiche Größen für die Triebkräfte beider Grenzschichten vorliegen. Das Henry-Beladungsgesetz kennzeichnet den Gleichgewichtszustand der Phasengrenzfläche. Dieses Gleichgewichtsgesetz findet Anwendung um Ersatzbeladungen zum Berechnen des Stoffdurchganges zu schaffen. Für den Stoffdurchgang von der Gasphase zur Flüssigphase ausgehend von der Beladung y der Gasphase als Bezugsphase vertritt eine Ersatzbeladung y* die Beladung x der Flüssigphase

$$y^* = H' * x$$
 (Gl. 4.6.2.18)

Diese Ersatzbeladung y* würde mit der Flüssigkeitsbeladung x im Gleichgewicht stehen und tritt an Stelle der Grenzflächenbeladung y_{gr} . Die Anfangs- und Endtriebkräfte des stationären Stoffdurchganges betragen für den Prozessraum – bezogen auf die Gasphase –

$$\Delta y_a = y_a - y_a^*$$
 (GI. 4.6.2.19)

$$\Delta y_e = y_e - y_e^*$$
 (Gl. 4.6.2.20)

wobei die Anfangs- und Endtriebkräfte des Gegenstromes so zu wählen sind

$$\Delta y_a \rangle \Delta y_e$$
 (Gl. 4.6.2.21)

Diese Beladungsdifferenzen gehen in die Gleichung (Gl. 4.6.2.9.) der mittleren Prozessraumtriebkraft Δy_m ein und die Stofftransportgeschwindigkeit des Stoffdurchganges folgt mit einer Stoffdurchgangskennzahl k_v - bezogen auf die Gasphase - aus:

$$g_d = k_y * \Delta y_m$$
. (Gl. 4.6.2.22)

Anstelle der Gasphase kann auch die Flüssigphase mit ihrer Beladung x als Bezugsphase dienen. In diesem Falle ist die Ersatzbeladung x* der Gasphase y gegeben durch

$$x^* = \frac{y}{H'}$$
 (Gl. 4.6.2.23)

Die Anfangs- und Endtriebkräfte des stationären Stoffdurchganges betragen für den Prozessraum - bezogen auf die Flüssigphase -

$$\Delta x_a = x_a^* - x_a \tag{GI. 4.6.2.24}$$

$$\Delta x_e = x_e^* - x_e \tag{GI. 4.6.2.25}$$

wobei die Anfangs- und Endtriebkräfte des Gegenstromes wieder entsprechend der Forderung (Gl. 4.6.2.13.) zu wählen sind. Diese Beladungsdifferenzen gehen in die Gleichung (Gl.4.6.2.14.) der mittleren Prozessraumtriebkraft Δx_m ein und die Stofftransportgeschwindigkeit des Stoffdurchganges folgt mit der Stoffdurchgangskennzahl k_x - bezogen auf die Flüssigphase - aus

$$g_d = k_x * \Delta x_m.$$
 (Gl. 4.6.2.26)

Die Stoffübergangszahlen der beiden Grenzschichten β_y , β_x und die phasenbezogenen Stoffdurchgangszahlen k_y , k_x stehen miteinander im Zusammenhang. Für die Stoffdurchgangszahl k_y gilt:

$$\frac{1}{k_y} = \frac{1}{\beta_y} + \frac{H'}{\beta_x}$$
(Gl. 4.6.2.27)

und für die Stoffdurchgangszahl k_x

$$\frac{1}{k_x} = \frac{1}{\beta_x} + \frac{1}{H' * \beta_y}$$
(Gl. 4.6.2.28)

Liegt Chemisorption vor, d. h. findet während der Absorption eine chemische Reaktion zwischen Absorptiv und Absorptionsmittel statt, so tritt Stoffübergangsgeschwindigkeit in der Flüssigkeitsgrenzschicht die Reaktionsgeschwindigkeit als bestimmender Faktor hinzu. Der Teildruck des Absorptivs über die Lösung wird dann von dem Anteil bestimmt, der nicht mit dem Absorptionsmittel reagiert. Für umkehrbare Reaktionen erster Ordnung genügt nach A.P. Bjelopolski das Einführen eines Erhöhungsfaktors b, der die Steigerung der Stoffübergangsgeschwindigkeit in der Flüssigkeitsgrenzschicht in Folge Chemisorption angibt und (GI. 4.6.2.27) geht für die Chemisorption über in

$$\frac{1}{k_y} = \frac{1}{\beta_y} + \frac{H'}{b * \beta_x} .$$
 (GI. 4.6.2.29)

Die einander gleichwertigen, den Gesamtvorgang der Absorption beschreibenden Stoffdurchgangsgleichungen (Gl. 4.6.2.28) und (Gl. 4.6.2.29) enthalten messbare Triebkraftgrößen (y,x) und experimentell zugängige phasenbezogene Stoffdurchgangszahlen. Die beiden Stoffdurchgangszahlen stehen in gesetzmäßiger Beziehung zueinander; es gilt nach Vereinigen der Gleichungen (Gl. 4.6.2.27) und (Gl.4.6.2.28):

$$k_x = H' * k_y$$
 (Gl. 4.6.2.30)

d. h. die phasenbezogenen Stoffdurchgangszahlen sind einander proportional.

Es gibt Grenzfälle für die Gleichungen (Gl. 4.6.2.27) und (Gl. 4.6.2.28) je nach Überwiegen des Widerstandes der Gasgrenzschicht 1/ß_y oder der Flüssigkeitsgrenzschicht 1/ß_x. Derartige Grenzfälle liegen in der Praxis häufig vor. Für leichtlösliche Gase - H' klein - bleibt der Widerstand der Flüssigkeitsgrenzschicht gering im Vergleich zum Widerstand der Gasgrenzschicht und Gleichung (Gl. 4.6.2.27) ergibt:

$$k_{y} = \beta_{y}$$
 (Gl. 4.6.2.31)

Im umgekehrten Falle - bei schwerer Gaslöslichkeit (H' groß) - lässt sich der Widerstand der Gasgrenzschicht vernachlässigen und Gleichung (Gl. 3.6.2.28) führt zu

$k_x = \beta_x$.	(Gl. 4.6.2.32)
$k_x = \beta_x$.	(Gl. 4.6.2.32

Diese Grenzfälle gestatten ein angenähertes experimentelles Bestimmen der Stoffübergangszahlen. Das Berechnen der Stoffübergangs- und Stoffdurchgangszahlen erfordert ähnlichkeitstheoretische Betrachtungen der Strömungs- und Austauschvorgänge in Absorbern. Die Kriteriengleichungen des Stoffübergangs bei erzwungener Strömung haben für die Gasgrenzschicht die Grundform [2]

$$Sh_g = c * \operatorname{Re}_g^a * Sc_g^b$$
(GI.4.6.2.33)

und für die Flüssigkeitsgrenzschicht die Grundform

 $Sh_f = c * \operatorname{Re}_f^a * Sc_f^b * Ga^d$ (GI. 4.6.2.34)

5 Beschreibung des Stoffsystems

5.1 Wasser

(Wasserstoffoxid) H₂O

Molekulargewicht: 18,02 g/mol

In reinstem Zustand ist Wasser eine klare, geruch- und geschmackslose, farblose – in dicker Schicht jedoch ebenso wie Eis bläulich schimmernde – Flüssigkeit.

Schmelzpunkt 0°C = 273,15 K

Siedepunkt 100°C = 373,15 K

Durch den Schmelzpunkt (Gefrier- oder Erstarrungspunkt) und Siedepunkt des Wassers bei 1013 mbar ist die Celsius-Temperatur-Skala festgelegt. 1 cm³ Wasser von 4°C besitzt die Masse von 1 g. Eis von 0°C hat die Dichte 0,9168.

Das (berechnete) Litergewicht des Wasserdampfes beträgt unter Normalbedingungen (0°C und 1013 mbar) 0,5974 g. Seine kritische Temperatur 374°C, der kritische Druck 221,29 bar, das kritische Molvolumen 0,057 l/mol.

Beim Tripelpunkt des Wassers liegen flüssiges Wassers, Eis und Wasserdampf im nonvarianten Gleichgewicht nebeneinander vor. Als zugehörige Temperatur ist 273,16 K definiert worden – der "wahre" Tripelpunkt liegt bei 0,0099°C und 611 Pa (6,11mbar).

Abbildung 5.1.1.: Zustandsdiagramm von Wasser [20]

Die Abbildung zeigt das Zustandsdiagramm von Wasser. Da es mehrere Eis-Modifikationen gibt, sind zahlreiche weitere Tripelpunkte bekannt, z.B. zwischen flüssigem Wasser und zwei festen Eis-Phasen und zwischen drei Eis-Modifikationen.

Bildungsenthalpie 285,89 kJ/mol

Schmelzenthalpie 6,010 kJ/mol (bei 0°C)

Verdampfungsenthalpie 40,651 kJ/mol (bei 100°C)

Oberflächenspannung 71,96*10exp-3 N/m

Viskosität 0,8937 mPa*s.

Die elektrische Leitfähigkeit 0,0635 mS/cm ist ein Maß für die Reinheit des Wassers. Schon geringe Zusätze verändern die Leitfähigkeit erheblich.

Die in mancher Hinsicht anomalen Eigenschaften des Wassers lassen sich auf die Struktur des H₂O-Molekül zurückführen, in dem die beiden Wasserstoffatome unter einem Winkel von 105° angeordnet sind. Aufgrund der unterschiedlichen Elektronegativitäten von Sauerstoff

und Wasserstoff ist die O–H-Bindung polarisiert, d.h. die beiden entgegengesetzten elektrischen Pole fallen in ihrer räumlichen Lage nicht zusammen, sodass das Wassermolekül einen Dipol bildet.

Diese und die dielektrischen Eigenschaften erklären die Eignung des Wassers als Lösungsmittel für polare Stoffe, die elektrolytische Dissoziation gelöster Salze, Basen und Säuren, die Neigung zur Komplex-Bildung. Die Solvatation (Hydratation; die Bildung von Hydraten) kann mit Erwärmung oder Abkühlung verbunden sein, die Fähigkeit zur Ausbildung von Wasserstoff-Brückenbindungen und damit vor allem auch die Struktur des flüssigen Wassers.

Wasser ist mischbar mit den niederen Alkoholen, Glykolen, zyklischen Ethern, Aminen, Carbonsäuren und Aceton, in den höheren Homologen nimmt die Löslichkeit mit steigender C-Zahl ab, und in unpolaren Flüssigkeiten wie Kohlenwasserstoffen und Halogenkohlenwasserstoffen ist es praktisch unlöslich. Desgleichen in aliphatischen Ethern und Estern. Bei Raumtemperatur ist Wasser kaum dissoziiert. [19],[20]

5.2 lod

(vom griechischen: iodes = veilchenfarbig, nach der Farbe des Dampfes).

Chemisches Symbol: I

Ordnungszahl: 53

Schmelzpunkt: 113,5°C

Siedepunkt: 184,5°C

Atomgewicht: 126,9045 g/mol

lod ist ein nichtmetallisches, anisotopes Element, mit mehr als 30 künstlichen Isotopen 110I– 140I und HWZ von 0,65 Sek. bis 1,57*107 Jahren.

- Eigenschaften:

lod steht in der 7. Hauptgruppe des Periodensystems (Halogene). Seine Wertigkeit ist infolgedessen meist –1, seltener +1, +3 bis +7. Die Verbindungen sind in der Regel farblos. Reines lod bildet schwarzgraue, graphitartige, rhombisch kristalline Blättchen, die sich schon bei Raumtemperatur allmählich (oft unter Bräunung der näheren Umgebung) verflüchtigen (Sublimation). Beim Erhitzen bis zum Siedepunkt entstehen blauviolett gefärbte giftige Dämpfe von charakteristischen Geruch, die zu heftigen, katarrhaltigen Reaktionen der Nasen- und Augenschleimhäute führen.

MAK-Wert: 1mg/m³

In Wasser löst sich lod bei 20° nur sehr wenig (1:3500) und ähnlich wie in den sauerstoffhältigen organischen Lösungsmitteln (Alkohol, Ether, Aceton) mit bräunlichgelber bis brauner Farbe, während es sich in den sauerstofffreien Lösungsmitteln (Schwefelkohlenstoff, Benzol, Chloroform, Tetrachlormethan) mit violetter bzw. roter Farbe löst.

- Reaktionen:

lod ist wesentlich reaktionsträger als die übrigen Halogene. Es verbindet sich z.B. weniger energisch mit Wasserstoff und der entstehende lodwasserstoff lässt sich durch Erhitzen großteils wieder in lod und Wasserstoff zurückverwandeln. Iod vereinigt sich direkt (ggf. bei leichtem Erwärmen) mit Schwefel, Phosphor, Eisen, Quecksilber, Antimon, Silicium, Nickel oder Kalium zu lodiden.

- Nachweis:

Freies lod erkennt man an dem violetten, typisch riechenden Dampf, an der braunen alkalischen und rotvioletten Schwefelkohlenstoff-Lösung, an der Bildung von blauer lodstärke.

Iodid-Ionen in Iodiden geben folgende charakteristische Reaktion:

bei Zusatz von Chlorwasser zu einer lodid-Lösung scheidet sich bräunliches lod aus: 2KI+Cl₂ ↔ 2KCI+I₂, das beim Mischen mit Schwefelkohlenstoff diesen rotviolett färbt. Zur quantitativen Bestimmung von freiem lod bedient man sich z.B. der Titration mit Thiosulfat.

- Herstellung:

Bedeutende Mengen lod werden aus Salzsolen hergestellt, die bei der Erdöl- u. Erdgas-Förderung anfallen. Sie enthalten zwischen 30 und mehr als 100 ppm lod, das als lodid vorliegt und aus diesem mit Chlor freigesetzt, mit Luft ausgeblasen und in schwefelsaurer Lösung mit SO₂ reduziert wird. Aus der erhaltenen Lösung von lodwasserstoffsäure wird durch gasförmiges Chlor elementares lod ausgeschieden.

- Verwendung:

In der Medizin kann lod in elementarer oder gebundener Form verwendet werden und zwar als Antiseptikum in Arzneimitteln gegen Schilddrüsenstörungen.

Weiter verwendet man lod für Katalysatoren, in Stabilisatoren, für Farbstoffe und Tinten, zur Herstellung reinster Metalle nach dem Aufwachsverfahren, in der Photographie und in der analytischen Chemie (lodometrie). [12],[13],[14]

5.3 Schwefeldioxid

SO₂

Molekulargewicht. 64,06 g/mol.

Farbloses, stechend riechendes Gas, Litergewicht 2,927 g (ca. 2,3mal schwerer als Luft).

Schmelzpunkt –72,7°C

Siedepunkt –10°C

kritischer Druck 77,8 bar (7,78 MPa)

kritische Temperatur 157,5°C

Die Löslichkeit von SO₂ in Wasser zu schwefeliger Säure beträgt 18,6 bzw. 10,1 Gewichtsprozent (bei 20°C bzw. 0°C u. 1013 mbar). Sehr leicht löslich ist SO₂ auch in Alkohol. Konzentrierte Schwefelsäure löst das 58fache Volumen an SO₂. Formal ist SO₂ das Anhydrid der schwefeligen Säure.

Gasförmiges SO₂ ist unbrennbar, kann jedoch (besonders unter dem Einfluss von Katalysatoren) zu Schwefeltrioxid oxidiert werden.

Die Reaktion von SO2 mit Schwefelwasserstoff führt im Claus-Verfahren zu Schwefel.

- Physiologisch:

SO₂ ist stark toxisch (MAK 5 mg/m³) und ruft in Mischung mit Luft schon in einer Konzentration von 0,04% Vergiftungserscheinungen (Hornhauttrübung, Atemnot, Entzündungen der Atmungsorgane) hervor. Größere Mengen können tödlich wirken. Lösungen von SO₂ in Wasser (3:1000) verätzen die Magenwände.

- Nachweis:

In höheren Konzentrationen ist SO₂ am stechenden Geruch kenntlich. Mit Prüfröhrchen kann es im Bereich 0,5–5000 ppm nachgewiesen werden.

- Herstellung:

Die Gewinnung von reinem SO₂ erfolgt aus SO₂-haltigen Gasen, die durch Verbrennen von Elementarschwefel oder durch Rösten von Pyrit, Pyrrhotit oder anderen sulfidischen Erzen erhalten werden.

Erhebliche SO₂-Mengen fallen bei den Entschwefelungsprozessen an, die aus Gründen des Umweltschutzes heute der Verbrennung fossiler Brennstoffe nachgeschaltet werden. Dabei wird SO₂ meist direkt zu Gips weiterverarbeitet. [14],[15],[20]

5.4 Natriumthiosulfat

 $Na_2S_2O_3$

Molekulargewicht 248,20g/mol

Schmelzpunkt 45 - 50°C

Natriumthiosulfat löst sich sehr leicht in Wasser mit schwach alkalischer Reaktion. Beim Ansäuern entsteht eine sich allmählich verstärkende, anfangs weiße, später gelbliche Trübung von ausgeschiedenem Schwefel; die Säure (z.B. Salzsäure) macht zunächst Thioschwefelsäure (H₂S₂O₃) frei, die sofort zerfällt. Außerdem ist Natriumthiosulfat auch das wichtigste Salz der Thioschwefelsäure.

Elementares Chlor wird von Natriumthiosulfat leicht gebunden und Silberhalogenide lösen sich in Natriumthiosulfat-Lösung auf. Stärkere Natriumthiosulfat-Lösungen bewirken bei manchen Pflanzen Keimhemmung oder Hemmung des Wurzelwachstums.

- Herstellung:

Aus Natriumsulfit mit Natriumdisulfid oder durch Erhitzen von Natriumsulfit-Lösung mit fein verteiltem Schwefel unter Druck (Na₂SO₃+S \leftrightarrow Na₂S₂O₃), früher als Nebenprodukt bei der Fabrikation von Schwefel-Farbstoffen.

- Verwendung:

Als Fixiersalz in der Photographie, zur Entfernung des Chlors aus gebleichten Geweben und Papiermasse (Antichlor), in der Iodometrie wegen seiner quantitativen Umsetzung mit Iod zu Natriumtetrathionat ($Na_2S_4O_6$) und in der Chromlederfabrikation, zur Extraktion von Silberchlorid aus Silbererzen. [13],[16],[17]

5.5 Schwefel

sulfur.

chemisches Symbol S

Nichtmetallisches Element der 6. Hauptgruppe des Periodensystems,

Ordnungszahl: 16

Atomgewicht 32,066 g/mol

- Modifikation:

Cyclooctaschwefel, der am häufigsten vorkommende Schwefel, liegt bei Raumtemperatur in Gestalt von zitronengelben Brocken, Stangen oder Pulver vor und wird rhombischer Schwefel genannt.

Je nach der Geschwindigkeit des Erhitzens geht dieser Schwefel zwischen 110°C und 119°C in eine hellgelbe dünnflüssige Schmelze über, die bei 114°C–115°C wieder erstarrt, wobei häufig auch von einem idealen (112,8°C) und einem natürlichen (110,2°C) Schmelzpunkt gesprochen wird.

Erwärmt man die gelbe, leicht bewegliche Schwefelschmelze auf 159° (Floor-Temperatur), so wird diese braun und allmählich dickflüssig. Bei 200°C ist die Schwefel-Schmelze dunkelbraun und etwa so zäh wie Harz, oberhalb 250°C nimmt die Zähflüssigkeit wieder ab. Bei 400°C wird die Schmelze dünnflüssig, der Siedepunkt liegt bei 444,6°C.

Rhombischer Schwefel ist unlöslich in Wasser, nur wenig löslich in den meisten organischen Lösungsmitteln und gut löslich in Schwefelkohlenstoff (bei 25° lösen sich in 100 g CS₂ etwa 30 g, in 100 g Benzol nur etwa 1,2 g).

- Chemische Eigenschaften:

Schwefel hat mit Sauerstoff nur wenig Ähnlichkeit. An der Luft entzündet sich Schwefel bei ca. 260°C und verbrennt mit schwach blauer Flamme zu stechend riechendem Schwefeldioxid und bis zu 40% Schwefeltrioxid.

- Physiologisch:

Auf der Haut bewirkt Schwefelpulver erst nach längerer Zeit eine leichte Reizung. Aus diesem Grund wird Schwefel gelegentlich zur Reizkörpertherapie genutzt. Auch auf niedere Tiere und Pflanzen zeigt Schwefel kaum Wirkung, er wirkt aber giftig, wenn er bei Berührung mit der lebenden Substanz in Schwefeldioxid oder Schwefelwasserstoff übergeführt wird.

- Nachweis:

Freien Schwefel erkennt man leicht an seiner Farbe und an der charakteristischen blauen Flamme, die von stechendem Schwefeldioxidgeruch begleitet wird. Vermutet man freien Schwefel in Gemischen, so schüttelt man diese mit Schwefelkohlenstoff, filtriert und lässt das Filtrat eintrocknen, worauf sich gelber Schwefel ausscheidet, falls dieser im Gemisch vorhanden war.

- Vorkommen:

Schwefel kommt als Element und in Form von Sulfiden oder Sulfaten an vielen Punkten der Erde vor. Vulkanische Gase enthalten oft Schwefelwasserstoff und Schwefeldioxid, wobei beide Gase miteinander unter Bildung von dichten Schwefelwolken reagieren.

- Herstellung:

Den größten Teil des weltweit produzierten Schwefels erhält man heute als Rekuperationsschwefel aus dem bei der Entschwefelung von Erdgas und Erdöl (sowie von Synthese- u. Koksofengas) anfallenden H₂S-haltigen sogenannten "Sauergas". [14],[15],[16]

6 Beschreibung der Versuchsanlage und Versuchsdurchführung

6.1 Beschreibung der Einzelkomponenten der Anlage

In diesem Kapitel wird auf die einzelnen Anlagenteile etwas näher eingegangen, um die Funktion der Versuchsanlage leichter verstehen zu können und um den Einzelversuch nachvollziehen zu können.

6.1.1 Aufgabebehälter der Flüssigphase

Der Aufgabebehälter der Flüssigphase hat ein maximales Fassungsvolumen von 50 Liter, wurde aber nie vollgefüllt, da die benötigte Wassermenge pro Versuch im Vergleich zum Fassungsvolumen vernachlässigbar klein ist.

6.1.2 Die Präzisionsschlauchpumpe

Die Präzisionsschlauchpumpe ist mikroprozessorgesteuert und dient zur genauen Dosierung der Flüssigkeitsmenge, die dem Tropfengenerator zugeführt wird.

Firma / Typ : ISMATEC Laboratoriumstechnik (D) / REGLO Digital 2-Kanal

Abbildung 6.1.2.1: Präzisionsschlauchpumpe, Vorderansicht

Beim Aktivieren der Pumpe beginnt sich das Zellrad, je nachdem wie groß die erwünschte Durchflussmenge ist, mit definierter Drehzahl zu drehen. Die Walzen, welche sich auf dem Zellrad befinden, bewirken zusammen mit der einen Gegendruck erzeugenden
Schlauchhalterung, einen konstanten Durchfluss im Präzisionsschlauch. Somit ist garantiert, dass dem Tropfengenerator eine definierte Flüssigkeitsmenge zugeführt wird.

6.1.3 Der Tropfengenerator

Der Tropfengenerator dient zur Erzeugung der Einzeltropfen, wobei eine konstante Tropfenfrequenz und eine konstante Tropfengröße gewährleistet sein soll.

Dieser Tropfengenerator ragt durch eine Glaskapillare oder durch eine Kunststoffkapillare, je nach gewünschter Tropfengröße, in die Tropfensäule. Durch einen Seitenarm wird die fluide Phase mit konstantem Druck und konstanter Durchflussmenge zugegeben. Zur Tropfenerzeugung dient eine Membran, die durch eine elektromagnetische Spule angeregt, regelmäßige Stöße ausübt. Die dadurch in der Kapillare entstehenden Druckwellen bewirken den Abschlag des Einzelltropfen. Da dies immer im selben zeitlichen Abstand erfolgt, werden die Tropfen alle gleich groß

Im Wesentlichen besteht der Tropfengenerator aus folgenden Einzelkomponenten:

- der Druckstoßsperre
- der Pulskammer
- der Tropfenkapillare
- dem elektromagnetischen Stößel
- Pulsgeberschaltung mit Tropfenzähler
- dem Netzgerät zur Spannungsversorgung.

Die Druckstoßsperre:

Als Druckstoßsperre dient eine handelsübliche Stahlkanüle für Einwegspritzen der Dimension 0,7 x 50 mm. Sie hat die Aufgabe zu verhindern, dass sich der Druckstoß von der Pulskammer in den Vorlagebehälter der Flüssigphase fortpflanzt.

Die Pulskammer:

Die Pulskammer besteht in der Hauptachse aus einem T-förmigen Laborglas mit einer Länge von 150 mm und einem Nenndurchmesser von einem Zoll. Die Abzweigung befindet sich seitlich in der Mitte, ist 100 mm lang und hat einen Durchmesser von 3/4 Zoll. Die Zuleitung der Flüssigphase in die Pulskammer und die Einbindung der Druckstoßsperre ist dadurch realisiert, indem die als Druckstoßsperre wirkende Stahlkanüle der Einwegspritze mit ihrem spitzen Ende durch einen Silikonstopfen gesteckt ist, der seinerseits das seitliche Stück der Pulskammer verschließt. Am anderen Ende der Stahlkanüle wird der Schlauch für die Zuleitung der Flüssigphase aufgesteckt. Das obere Ende der Pulskammer ist mit einer

0,3 mm starken Teflonmembran verschlossen, die zusätzlich mit Silikon abgedichtet ist. In der unteren Öffnung steckt ein durchbohrter Silikonstopfen, in dem die Tropfenkapillare eingeführt wird.

Das Netzgerät:

Als Spannungsversorgung für die Pulsgeberschaltung mit Tropfenzähler dient ein handelsübliches Labornetzgerät mit regelbarer Spannung und einstellbarer Strombegrenzung.

Firma / Typ: CONRAD / Laboratory Power Supply PS-403D

Die Pulsgeberschaltung mit Tropfenzähler:

An der Vorderseite des Pulsgebergehäuses befindet sich eine LED-Anzeige zur Überprüfung der Tropfenanzahl und ein Drehknopf zum Einstellen der Periodendauer.

Voreinstellung (Drehknopf)	1	2
Pulszeit in [ms]	350	750
Pausezeit in [ms]	500	1000
Periodendauer in [ms]	850	1750
Tropfenzahl pro Sekunde	1,20	0,58

Tabelle 6.1.3.1.: Periodendauer der Pulsgeberschaltung

Die Stromversorgung erfolgt durch das Netzgerät über zwei Bananenstecker, das Ausgangssignal zum Stößel läuft über eine Klinkersteckerbuchse.

Die Aufgabe der Pulsgeberschaltung besteht also darin, Rechtecksignale zu erzeugen und damit den elektromagnetischen Stößel zu versorgen, der wiederum regelmäßige Stöße auf die Membran der Pulskammer ausübt.

Abbildung 6.1.3.1.: Pulsgeberschaltung mit Zähleinheit und Netzgerät zur Spannungsversorgung

Die Tropfenkapillare:

Die Tropfenkapillare dient zur Einbringung der Tropfen in die Stoffaustauschsäule und ist ein an einem Ende auf einen Innendurchmesser von etwa 1 mm dünngezogenes Glas- oder Kunststoffröhrchen mit einem Innendurchmesser von 2,2 mm und einer Länge von 150 mm. Die Tropfenkapillare wird am oberen Ende der Stoffaustauschsäule montiert.

Der elektromagnetische Stößel:

Der elektromagnetische Stößel ist eine einfache elektromagnetische Spule mit Eisenkern und dient zur Erzeugung des Druckstoßes in der Pulskammer.

Tropfengenerator während des Füllvorganges

Um das Aussehen des Tropfengenerators zu veranschaulichen, soll diese Abbildung, welche den Generator während des Füllvorganges darstellt, beitragen. Beim Füllen wird er von der Tropfensäule genommen und auf den Kopf gestellt, damit die Luft, welche sich in der Pulskammer befindet, durch die Tropfenkapillare entweichen kann.

Abbildung. 6.1.3.2.: Tropfengenerator während des Füllvorganges

Abbildung.6.1.3.3.: Schematische Darstellung des Tropfengenerators

40

Abbildung: 6.1.4.1.: Stoffaustauschsäule während des Versuches

6.1.5 Die Absaugtrichterkapillare

Abbildung: 6.1.5.1.: Absaugtrichterkapillare, ausgebaut aus der Tropfensäule

6.1.6 Das Probenhamegefäß mit vorgelegter lodlösung

Abbildung: 6.1.6.1.: Probenahmegefäß und Erlenmeyerkolben mit vorgelegter Iodlösung

6.1.7 Die Gasanalytik

Mit Hilfe der Gasanalytik wurde die Rohgaskonzentration bestimmt. Die SO₂-Konzentration in der Gasphase konnte mittels einer Online-Gasanalytik NDIR-spektrometisch bestimmt werden.

Betriebsdaten der Analysatormodule: Uras 14

Die folgenden Daten beziehen sich auf die kleinsten Messbereiche Klasse 1. Bei Messbereichen kleiner als Klasse 1 bis hin zu Klasse 2 können die Daten bezüglich des Nullpunktes von den folgenden Angaben abweichen.

Stabilität: Linearitätsabweichung < 1 % der Messspanne

Wiederholbarkeit :~ 0,5 % der Messspanne

Nullpunktsdrift < 1 % der Messspanne pro Woche

42

Empfindlichkeitsdrift 51 % des Messwertes pro Woche

Ausgangssignalschwankungen: 5 0,2 % der Messspanne bei 2 a und

elektronischer T9O-Zeit = 5 s

Nachweisgrenze 0,5 % der Messspanne

Einflusseffekte: Durchflusseinfluss: Durchfluss im Bereich 20 100 l/h: innerhalb der

Nachweisgrenze

Begleitgaseinfluss: der Kalibrierung des Analysators muss eine Analyse des Messgases zugrundegelegt werden. Selektivierungsmaßnahmen zur Verringerung des Begleitgaseinflusseffektes (Optionen): Einbau von Interferenzfiltern oder Filterküvetten oder interne elektronische Querempfindlichkeits- bzw. Trägergaskorrektur einer Messkomponenten durch die anderen mit dem Uras 14 gemessenen Messkomponenten.

Temperatureinfluss Umgebungstemperatur im zulässigen Bereich; am

Nullpunkt: 51 % der Messspanne pro 10 Grad Celsius auf die Empfindlichkeit mit Temperaturkompensation: kleiner 3 % des Messwertes pro 10 Grad C; auf die Empfindlichkeit mit Thermostatisierung auf 60 Grad C (Option): kleiner 1 % des Messwertes pro 10 Grad C

Luftdruckeinfluss am Nullpunkt: kein Einflusseffekt auf die Empfindlichkeit mit Druckkorrektur mittels eingebautem Drucksensor kleiner 0,2 % des Messwertes pro 1 % Luftdruckänderung. Arbeitsbereich des Drucksensors: 600 ... 1200 h*Pa. Option: Anschluss des Drucksensors nach außen geführt

Energieversorgungseinfluss 24 V DC ± 5 %::9 0,2 % der Messspanne

T₉₀ -Zeit abhängig von der Länge der Messküvette und der Messgasleitung sowie vom

Messgasdurchfluss und von der Dämpfung

Abbildung der Analyseeinheit

Abbildung: 6.1.7.1.: NIDR spektrometische Gasanalyseeinheit

6.2 Inbetriebnahme der Anlage

In diesem Kapitel werden die Richtlinien für die richtige Inbetriebnahme der Anlage beschrieben und eine Arbeitsanweisung für die korrekte Durchführung des Versuches gegeben.

6.2.1 Vorbereitungen im Labor

- Ein mit deionisiertem Wasser gespültes Probenahmegefäß wird mit einer definierten lodmenge bestückt, welche sich im Bereich von 2 ml bis zu 5 ml bewegt. Die Aufgabe dieser lodmenge erfolgt mit Hilfe einer Pipette und wird mit verdünnter Salzsäure versetzt, damit die Reaktionsfreudigkeit der Stammlösung erhöht wird. Danach wird dieser Stammlösung noch deionisiertes Wasser hinzugegeben.

6.2.2 Anfahren der Anlage

- Füllen des Tropfengenerators:

Da sich der Tropfengenerator, wenn gewisse Zeit kein Versuch gefahren wurde, teilweise entleert, dieser aber, damit der durch die Pulsgeberschaltung beaufschlagte elektromagnetische Stößel korrekt arbeiten kann, immer bis zum Rand gefüllt sein soll, muss der Tropfengenerator aus der Halterung entnommen werden, umgedreht und gefüllt werden. Die in Kapitel 8 angeführten Versuche wurden mit deionisiertem Wasser durchgeführt.

Wenn die gesamte Luft aus dem Tropfengenerator entfernt wurde, kann dieser wieder in die Halterung eingespannt werden.

- Spülen der Absaugtrichterkapillare:

Da sich die Trichterabsaugkapillare von Zeit zu Zeit benetzt, muss sie vor jedem Versuch mit Aceton gespült werden, um ein korrektes Abrinnen der Tropfen zu gewährleisten. Dies erfolgt noch vor dem Einspannen der Absaugkapillare in die Tropfensäule. Nach der Montage des Absaugtrichters muss ein weiteres mal, mit Hilfe einer handelsüblichen Spritze, mit Aceton gespült werden.

- Einstellen des Pulsgenerators:

Das Einstellen des Pulsgenerators ist deshalb wichtig, damit eine konstante Tropfengröße erreicht werden kann. Bei den gefahrenen Vorversuchen wurde die optimale Pulsgebereinstellung gefunden: - eingestellte Spannung: 24 Volt

- eingestellte Stromstärke: 0.2 Ampere

- die Frequenz variiert jedoch zwischen

TG-Stellung 1 und TG-Stellung 2.

- Einstellung der Durchflussmenge der Präzisionsschlauchpumpe

Diese Präzisionsschlauchpumpe sorgt für Förderung der fluiden Phase aus dem Versorgungsbehälter in die Kammer des Tropfengenerators. Durch die Einstellung einer exakten Fördermenge wird sichergestellt, dass die Tropfenkammer während des Versuches immer voll gefüllt ist. Die Fördermenge bewegt sich je nach verwendeter Tropfengeneratorkapillare zwischen 1.3 ml/min und 1.6 ml/min.

- Reinigen der Absaugkapillare:

Da die Absaugkapillare mit Aceton benetzt sein könnte, schaltet man, ohne das sich das Probenamegefäß in der dafür vorgesehenen Einspannvorrichtung hinter der Absaugkapillare befindet, die Anlage kurzfristig ein, um diese mit der fluiden Phase zu reinigen. Die Tropfenanzahl ist hierbei nebensächlich, sollte aber nicht unter 100 Tropfen liegen.

6.2.3 Aufgabe der Gasphase

- Einwiegen des Schwefels:

Um die gewünschte Konzentration SO₂ in der Tropfensäule zu erhalten, werden einige Milligramm Schwefel auf einem Löffel eingewogen. Diese eingewogene Schwefelmenge wird noch außerhalb der Tropfensäule entzündet und in die dafür vorgesehen Öffnung in die Säule hineingehalten. Der entstehende Schwefelrauch verteilt sich dann in der Säule und um die gewünschte Gasbulkkonzentration zu erreichen, sollte die Verweilzeit des brennenden Schwefels etwa eine halbe bis eine Minute betragen.

- Einschalten der Umwälzpumpe:

Nachdem die Schwefelaufgabeöffnung wieder verschlossen wurde, schließt man die Umwälzpumpe an die Tropfensäule an, um eine disperse Verteilung des SO₂ in Luft zu erreichen. Hierbei hat sich gezeigt, dass es völlig ausreicht, wenn die Pumpe eine Minute in Betrieb ist, um das gewünschte Ergebnis zu erzielen.

- Überprüfen auf Überdruck

Nach dem Schließen aller Hähne ist die gesamte Anlage dicht. Da durch die Umwälzung der Luft in der Tropfensäule ein Überdruck entstanden sein könnte, muss

mit Hilfe des Manometers überprüft werden, ob im Inneren der Säule Atmosphärendruck herrscht.

- Messen der Gasbulkkonzentration

Nach abermaligen Öffnen der Hähne wird die Anlage an ein Online-Gasanalytik-Messgerät angeschlossen. Die Gasbulkkonzentration wird nun NDIR-spektrometisch bestimmt, wobei dieser Vorgang einige Minuten dauern kann, um exakte Werte zu erhalten.

6.2.4 Durchführung des Einzelversuches

- Einspannen des Probenahmegefäßes

Das Gasanalytik-Messgerät wird wieder abgeschlossen, die Anlage dicht gemacht und das Probenahmegefäß in die dafür vorgesehene Halterung eingespannt. Damit ein optimales Abrinnen der Tropfen durch die Auffangkapillare in das Gefäß gewährleistet ist, geschieht dies in einem Winkel von 45°. Die Klemme des Schlauches der von der Absaugkapillare zum Probenamegefäß führt, muss entfernt werden.

- Starten des Tropfengenerators

Die Zähleinheit, welche die Tropfenanzahl widerspiegelt, wird auf null gesetzt, die Präzisionsschlauchpumpe eingeschaltet und der Pulsgenerator aktiviert. Damit ist der Versuch gestartet.

- Versuchende

Nachdem alle Einzeltropfen die Auffangkapillare erreicht haben, wobei die Tropfenanzahl zwischen 400 und 1000 Tropfen variiert, wird der Pulsgenerator und die Präzisionsschlauchpumpe wieder abgeschaltet und das Probenahmegerät wird aus der Halterung entnommen.

6.2.5 Auswertung des Versuches

Um Sulfit in wässriger Lösung quantitativ erfassen zu können, bedient man sich eines iodometrischen Titrationsverfahren. Wie bereits erwähnt, wird ein mit deionisiertem Wasser gespültes Probenahmegefäß mit einer definierten lodmenge bestückt und mit ein wenig verdünnter HCI versetzt.

Das Sulfit in der wässrigen Probe reagiert mit dem Iod nach folgender Gleichung:

$$SO_3^{2-} + I_2 + H_2O \rightarrow SO_4^{2-} + 2I^- + 2H^+$$

Die nach der Umsetzung verbleibende Restmenge an Iod wird durch Titration mit einer Natriumthiosulfat-Lösung bestimmt:

$$I_2 + 2S_2O_3^{2-} \rightarrow S_4O_6^{2-} + 2I^-$$

Diese Titration erfolgt händisch, wobei der Punkt exakt stöchiometrischer Umsetzung dann erreicht ist, wenn die lodfärbung der Lösung verschwunden ist.

Mit dem erlangten Titrationsergebnis kann man nun unter zu Hilfenahme der einzelnen Berechnungsmodelle die Menge an SO₂, die während des Versuches vom Gas in die Flüssigkeit überging, ermitteln.

Abbildung 6.2.5.1.: Bürette zur Durchführung des Titrationsvorganges

6.3 Schematische Darstellung der Versuchsanlage

7 Theoretische Berechnung des Stoffdurchgangs-Koeffizienten gemäß der Stoffaustauschmodelle

7.1 Ermittlung der Tropfengröße

Im Zuge einer Vorversuchsreihe wurden Tropfen generiert, deren Tropfengröße ein stabiles Flugverhalten gewährleisten. Dabei ist besonders wichtig, dass die kritische Weberzahl = 10 nicht überschritten wird (kein Tropfenzerfall).

$$m_{Tropfen} = \frac{m_{gesamt}}{Tropfenanzahl}$$
(GI. 7.1.1)

$$V_{Tropfen} = \frac{m_{Tropfen}}{\rho_{Wasser}}$$
(GI. 7.1.2)

$$d_{Tropfen} = \sqrt[3]{\frac{6*V_{Tropfen}}{\pi}}$$
(GI. 7.1.3)

Da zu diesem Zeitpunkt noch nicht klar war, wie eine konstante Tropfengröße erreicht werden kann, bei der sich die Tropfen im freien Fall stabil verhalten, wurde mit der Höhendifferenz der Pipettenspitze und der Bezugshöhe des Versorgungswasserpegels experimentiert (siehe Tabelle: 7.1.1.).

Durch verändern dieser Höhendifferenz ändert sich natürlich auch die potentielle Energie. Ziel dieser Experimente war es herauszufinden, bei welcher Höhendifferenz der Tropfengenerator genau mit der selben Flüssigkeitsmenge befüllt wird, welche den Generator über die Kapillarspitze wieder verlässt. Das die Pulskammer des Tropfengenerators immer voll gefüllt ist, ist für eine korrekte Arbeitsweise unumgänglich.

Da aber dann bei den Hauptversuchen eine Präzisionsschlauchpumpe zwischen dem Versorgungsbehälter und dem Tropfengenerator installiert wurde, kann die Höhendifferenz ignoriert werden, da durch das Einstellen der richtigen Fördermenge der Pumpe (ml/min) gewährleistet ist, dass die Pulskammer immer voll gefüllt ist.

lf.Nr.	U[V]	I[A]	TG-Stellung	n-Tropfen	h1[mm]	h2[mm]	h3[mm]	m1[g]	m2[g]	m3[mg]	V[m³]	d[mm]
1	24	0,2	2	999	415	429	14	65,93	72,46	6,54	6,55E-09	2,32
2	24	0,2	2	2000	415	428	13	66,05	78,50	6,23	6,24E-09	2,28
3	24	0,2	2	500	415	426	11	65,57	68,42	5,70	5,71E-09	2,22
4	24	0,2	2	2263	332	425	93	65,93	126,32	26,69	2,67E-08	3,71
5	24	0,2	2	1070	332	423	91	66,05	93,55	25,70	2,57E-08	3,66
6	24	0,2	2	707	332	422	90	65,57	84,05	26,14	2,62E-08	3,68
7	24	0,2	2	603	363	421	58	65,93	76,87	18,14	1,82E-08	3,26
8	24	0,2	2	1212	363	420	57	66,05	88,20	18,28	1,83E-08	3,27
9	24	0,2	2	1860	363	419	56	65,57	99,66	18,33	1,84E-08	3,27

7.2 Berechnung der Tropfengeschwindigkeit

7.2.1 Formeln zur Berechnung der Fallgeschwindigkeit

Bei Annahme eines festen kugelförmigen Teilchens und unter der Voraussetzung, dass sich die Teilchen gegenseitig nicht beeinflussen, ergibt sich die stationäre Endgeschwindigkeit aus der Kräftebilanz von Auftriebskraft, Widerstandskraft und Gewichtskraft.[21]

$$F_A = V_{H_2O} * \rho_{Luft} * g \tag{GI. 7.2.1.1}$$

$$Fw = c_w * \frac{\rho_{Luft}}{2} * \omega^2 * A$$
 (GI. 7.2.1.2)

$$F_G = V_{H_2O} * \rho_{Waser} * g \tag{GI. 7.2.1.3}$$

$$V_{H_2O} = \frac{d_{Tropfen}{}^{3*}\pi}{6}$$
(GI. 7.2.1.4)

$$A_{Tropfen} = d_{Troppfen}^{2} * \pi$$
 (GI. 7.2.1.5)

Formelapparat zur Berechnung der Fallgeschwindigkeit der Tropfen:

$$F(A) + F(W) = F(G) \Rightarrow F(W) = F(G) - F(A)$$

$$c(w) * \frac{\rho(Luft)}{2} * \omega^{2} * A = (V(H2O) * \rho(H2O) * g) - (V(H2O) * \rho(Luft) * g)$$

$$c(w) * \frac{\rho(Luft)}{2} * \omega^{2} * (\frac{d^{2} * \pi}{4}) = \frac{\pi * d^{3}}{6} * (\rho(H2O) - \rho(Luft)) * g$$

$$\omega^{2} = \frac{4}{c(w)} * \frac{d}{3} * (\rho(H2O - \rho(Luft)) * g * \frac{1}{\rho(Luft)}$$

$$\omega = \sqrt{\frac{4 * (\rho(H2O) - \rho(Luft)) * d * g}{3 * c(w) * \rho(Luft)}}$$

7.2.2 Berechnung über das Diagramm: Widerstandsbeiwert als **Funktion der Reynolds-Zahl**

Ziel dieser Berechnung ist es, die Fallgeschwindigkeit der frei fallenden Tropfen zu ermitteln. Dabei wird ein Tropfendurchmesser angenommen und danach wird die Geschwindigkeit für diesen Durchmesser mit nachstehender Formel berechnet. [22],[23],[24]

$$\omega = \sqrt{\frac{4^{*}(\rho_{Wasser} - \rho_{Luft})^{*} d_{Tropfen}^{*} g}{3^{*} c_{\omega} + \rho_{Luft}}}$$
(GI. 7.2.2.1)

Dichten bei 20°C (293.15K): $\rho_{Wasser} = 998.21 \frac{kg}{m^3}$

$$\rho_{Luft} = 1.188 \frac{kg}{m^3}$$

Die Reynolds-Zahl wird berechnet, um im Diagramm den richtigen Widerstandsbeiwert c_w ablesen zu können. Die Weber-Zahl, die das Verhältnis der Trägheitskraft zur Oberflächenkraft ausdrückt, muss ermittelt werden um sicher zu stellen, dass kein Tropfenzerfall stattfinden kann.

$$Re = \frac{w^* d_{Tropfen}}{v_{Gas}}$$
(GI. 7.2.2.2)
$$We = \frac{\rho_{Wasser} * w^2 * d_{Tropfen}}{v_{Gas}}$$
(GI. 7.2.2.3)

MUL

Abbildung:7.2.2.1.: Widerstandsbeiwert als Funktion der Reynoldszahl

Tabelle7.2.2.1: Reynolds- bzw. Weberzahlen für bestimmte Tropfendurchmesser

d [mm]	<i>C</i> _w [-]	w [m/s]	We-Zahl	Re-Zahl
2	0,41	7,32	1.55	813
3	0,42	8,86	3.41	1476
4	0,5	9,37	5,08	2082
5	0,5	10,48	7,95	2911

Abbildng:7.2.2.2.: Tropfengeschwindigkeit als Funktion des Tropfendurchmessers gemäß (GI.7.2.2.1.) und unter der Verwendung des Widerstandsbeiwertdiagramms Abbildung 7.2.2.1..

7.2.3 Berechnung über die Formel von Kaskas und Brauer für den Widerstandsbeiwert

Im Gegensatz zur vorherigen Berechnung wird der Widerstandsbeiwert c_w nicht mehr über ein Diagramm ermittelt, sondern über die Formel:

$$c_w = \frac{24}{\text{Re}} + \frac{4}{\sqrt{\text{Re}}} + 0.4$$
 (Gl. 7.2.3.1.)

Dichten bei 20°C (293.15K): $\rho_{Wasser} = 998.21 \frac{kg}{m^3}$

$$\rho_{Luft} = 1.188 \frac{kg}{m^3}$$

Die Tropfengeschwindigkeit, die Reynolds-Zahl und die Weber-Zahl werden jedoch wieder auf die gleiche Weise ermittelt.

d [mm]	С _w [-]	w [m/s]	We-Zahl	Re-Zahl
2	0,44	7,06	1,44	784
3	0,43	8,75	3,33	1458
4	0,42	10,22	6,05	2271
5	0,42	11,43	9,46	3175

Tabelle 7.2.3.1.: Reynolds- bzw. Weberzahlen für bestimmte Tropfendurchmesser

Abb. 7.2.3.1.: Tropfengeschwindigkeit als Funktion des Tropfendurchmessers unter Verwendung der Widerstandsbeiwertkorrelation nach der Formel von Kaskas und Brauer (7.2.3.1.).

7.3 Berechnung der Tropfenkonzentration und des Stoffaustausches

7.3.1 Formeln allgemein

$$N_{SO2} = k * A * \Delta c$$
 (Gl. 7.3.1.1)

$$k = \frac{1}{\frac{H}{R * T * \beta_l} + \frac{1}{\beta_g}}$$

$$A = d_{Tropfen}^{2*\pi}$$

$$\Delta c = c_{g,\infty} - c_g^*$$

(Gl. 7.3.1.2 – 7.3.1.4)

7.3.2 Berechnung des Stoffdurchgangskoeffizienten:

$$k = \frac{1}{\frac{H}{R*T*\beta_l} + \frac{1}{\beta_g}}$$
(GI. 7.3.1.5)

- Stoffübergangskoeffizienten:

$$\beta_{l} = \sqrt{\frac{D_{l}}{\pi * t_{exp}}}$$
(GI. 7.3.1.6 + 7.3.1.7)
$$\beta_{g} = \frac{Sh * D_{g}}{d_{Tropfen}}$$

- Die Sherwood-Zahl ist definiert als: Stoffübergangsstrom / Diffusionsstrom.

Sie ist ein Maß dafür, um wie viel schneller eine Stoffübertragung einer Phase in eine andere Phase erfolgt, als dies bei reiner Diffusion geschehen würde.

$$Sh = 2 + 0.57 * \text{Re}^{0.5} * Sc^{0.33}$$
 (GI. 7.3.1.8)

wobei Re für die Reynolds-Zahl (Trägheitskraft /innere Reibung) und Sc für die Schmidt-Zahl (innere Reibung / Diffusionsstrom) steht.

$$\operatorname{Re} = \frac{\omega * d_{Tropfen}}{v_{gas}}$$

$$Sc = \frac{V_{gas}}{D_g}$$

(Gl. 7.3.1.9 + 7.3.1.10)

7.3.3 Berechnung der Kontaktfläche

$$A = d_{Tropfen}^{2} * \pi$$
 (Gl. 7.3.1.11)

7.3.4 Berechnung des Konzentrationsunterschiedes

$$\Delta c = c_{g,\infty} - c_g^*$$
 (GI. 7.3.1.12)

- Man wählt eine Anfangskonzentration Δc_{A} und eine c^{\star_g} .

c^{*}₉ ist jene hypothetische Konzentration des Gases, welche mit dem gesättigten Tropfen am Boden der Kolonne im Gleichgewicht steht.

Diese Konzentration wird nun für die Berechnung der Konzentration am Boden der Kolonne herangezogen.

$$\Delta c_{Ende} = \Delta c_{Anfang} - c_g^* \left[\frac{mol}{m^3}\right]$$
(Gl. 7.3.1.13)

Nun ist man in der Lage das treibende mittlere Gefälle zu berechnen:

$$\Delta c = \frac{\Delta c_{Anfang} - \Delta c_{Ende}}{\ln \frac{\Delta c_{Anfang}}{\Delta c_{Ende}}}$$
(Gl. 7.3.1.14)

7.4 Berechnungsbeispiele für verschiedene Tropfendurchmesser

7.4.1 Tropfendurchmesser: 2,3 mm

In diesem Berechnungsbeispiel wurde die Tropfengröße bzw. der Tropfendurchmesser mit 2.3 mm festgelegt und aus (GI. 7.2.2.1) folgt eine Tropfengeschwindigkeit von 7.3 m/s.

Es können folgende weitere Berechnungen gemacht werden:

$$\beta_l = \sqrt{\frac{D_l}{\pi * t_{\exp}}} = \sqrt{\frac{3.4 * 10^{-9}}{\pi * 0.03}} = 1.899 * 10^{-4} \frac{m}{s}$$

 $D_{1}...bei 20^{\circ}C = 3.4exp-9[m^{2}/s]$

Kontaktzeit des Tropfensegmentes liegt zwischen 0.01s und 0.05s (gewählt = 0.03s).

$$\operatorname{Re} = \frac{\omega * d_{Tropfen}}{v_{gas}} = \frac{7.3[\frac{m}{s}] * (2.3 * 10^{-3})[m]}{1.8 * 10^{-5}[\frac{m^2}{s}]} = 932.7 \approx 930$$

$$Sc = \frac{v_{gas}}{D_g} = \frac{1.8 \times 10^{-5} [\frac{m^2}{s}]}{1.55 \times 10^{-5} [\frac{m^2}{s}]} = 1.161$$

$$Sh = 2 + 0.57 * \text{Re}^{0.5} * Sc^{0.33} = 2 + 0.57 * 930^{0.5} * 1.161^{0.33} = 20.26$$

$$\beta_g = \frac{Sh^* D_g}{d_{Tropfen}} = \frac{20.26^* 1.55^* 10^{-5}}{2.3^* 10^{-3}} = 0.137 \frac{m}{s}$$

$$k = \frac{1}{\frac{H}{R*T*\beta_l} + \frac{1}{\beta_g}} = \frac{1}{\frac{120}{8.314*293.15*1.899*10^{-4}} + \frac{1}{0.137}} = 3,751*10^{-3}\frac{m}{s}$$

H...bei 25 °C = 120 [kg m² / mol s]

$$A = d_{Tropfen}^{2} * \pi = (2.3 * 10^{-3})^{2} * \pi = 1.66 * 10^{-5} m^{2}$$

 $\Delta c_{\rm Ende} = c_{g,\infty} - c_g^*$

Rohgaskonzentration gewählt 1000 [mg / m³]

Relative Atommasse SO₂ = 64.064 [g / mol]

Daraus ergibt sich eine Konzentration von 0.0156 [mol / m³]

Anfangskonzentration $\Delta c_{Anfang} = 0.016 \text{ [mol / m³]}$

c^{*}_g = 0.008 [mol / m³]

 $\Delta c_{Ende} = c_{g,\infty} - c_g^* = 0.016 - 0.008 = 0.008 \frac{mol}{m^3}$

Konzentration am Kolonnenboden $\Delta c_{Ende} = 0.008 \text{ [mol / m³]}$

$$\Delta c = \frac{\Delta c_{Anfang} - \Delta c_{Ende}}{\ln \frac{\Delta c_{Anfang}}{\Delta c_{Ende}}} = \frac{0.016 - 0.008}{\ln 2} = 0.0115 \frac{mol}{m^3}$$

$$N_{SO2} = k * A * \Delta c = 1.424 * 10^{-3} \frac{m}{s} * 1.66 * 10^{-5} m^2 * 0.0115 \frac{mol}{m^3} = 2.718 * 10^{-10} \frac{mol}{s}$$

$$N_{SO2} = 2.718 * 10^{-10} \frac{mol}{s}$$

Bei einer Fallgeschwindigkeit von 7.3 m/s und einer Fallhöhe von 2 m ergibt sich eine Kontaktzeit von 0.27 Sekunden.

D.h. der Stoffaustausch aus dem Gasstrom in den fallenden Einzeltropfen definiert sich wie folgt:

$$\stackrel{\bullet}{N}_{SO\,2} = 7.34 * 10^{-11} mol.SO_2$$

Institut für Verfahrenstechnik

Kugelvolumen:

$$V_{Tropfen} = \frac{d^3 * \pi}{6} = \frac{(2.3 * 10^{-3})^3 * \pi}{6} = 6.37 * 10^{-9} m^3.$$

Dies ergibt eine Konzentration im Tropfen:

$$c_{Tropfen} = \frac{7.34 * 10^{-11} mol}{6.37 * 10^{-9} m^3} = 0.01172 \frac{mol}{m^3}$$

Henry-Gesetz: (Berechnung von c_g^*)

$$c_g^* = c_{Tropfen} * \frac{H}{R*T}$$

Kontrolle der Einheiten:

$$c_{g}^{*}\left[\frac{mol}{m^{3}}\right] = c_{Tropfen}\left[\frac{mol}{m^{3}}\right]^{*}H\left[\frac{kg^{*}m^{2}}{mol^{*}s^{2}}\right]^{*}\frac{1}{R^{*}T}\left[\frac{mol^{*}K^{*}s^{2}}{kg^{*}m^{2}*K}\right]$$
$$c_{g}^{*} = c_{Tropfen}^{*}\frac{H}{R^{*}T} = 0.01175^{*}\frac{360}{8.314^{*}328.15} = 0.0015\frac{mol}{m^{3}}$$

Iterationsrechnung für die hypothetische Gaskonzentration, die mit der Flüssigkonzentration im Gleichgewicht steht:

Diese Berechnung funktioniert wie folgt: eine hypothetische Gaskonzentration wird angenommen, mit der dann eine Δc_{Ende} bestimmt wird. Über die Formel (7.3.1.14.) berechnet man dann das mittlere treibende Gefälle, die Stoffmenge von SO₂ wird ermittelt. Über das Kugelvolumen erhält man die Konzentration im Tropfen und über das Henrysche Gesetz wird nun wiederum die hypothetische Gaskonzentration, die mit der Flüssigkeitskonzentration im Gleichgewicht steht, berechnet werden. Dies hat so lange zu erfolgen, bis der Wert iteriert.

Anfangskonzentration Δ c_{Anfang} = 0.016 [mol / m³]

$$\Delta c_{Ende} = \Delta c_{g,\infty} - c_g^* = 0.016 - 0.0015 = 0.0145 \frac{mol}{m^3}$$

Konzentration am Kolonnenboden $\Delta c_{Ende} = 0.0145 \text{ [mol / m³]}$

$$\Delta c = \frac{\Delta c_{Anfang} - \Delta c_{Ende}}{\ln \frac{\Delta c_{Anfang}}{\Delta c_{Ende}}} = \frac{0.016 - 0.0145}{\ln \frac{0.016}{0.0145}} = 0.01523 \frac{mol}{m^3}$$

$$N_{SO2} = k * A * \Delta c = 1.424 * 10^{-3} \frac{m}{s} * 1.66 * 10^{-5} m^2 * 0.01523 \frac{mol}{m^3} = 3.60 * 10^{-11} \frac{mol}{s}$$

$$N_{SO2} = 3.60 * 10^{-11} \frac{mol}{s}$$

$$N_{SO2} = 9.72 * 10^{-11} molSO_2$$

Kugelvolumen:

$$V_{Tropfen} = \frac{d^3 * \pi}{6} = \frac{(2.3 * 10^{-3})^3 * \pi}{6} = 6.37 * 10^{-9} m^3$$

Dies ergibt eine Konzentration im Tropfen:

$$c_{Tropfen} = \frac{9.72 * 10^{-11} mol}{6.37 * 10^{-9} m^3} = 0.01525 \frac{mol}{m^3}$$

Henry-Gesetz: (Berechnung von c_g^*)

$$c_g^* = c_{Tropfen} * \frac{H}{R*T}$$

$$c_g^* = c_{Tropfen} * \frac{H}{R*T} = 0.01525 * \frac{360}{8.314*328.15} = 0.0020 \frac{mol}{m^3}$$

Anfangskonzentration Δ CAnfang = 0.016 [mol / m³]

$$\Delta c_{Ende} = c_{g,\infty} - c_g^* = 0.016 - 0.0020 = 0.014 \frac{mol}{m^3}$$

Konzentration am Kolonnenboden $\Delta c_{Ende} = 0.014 \text{ [mol / m³]}$

$$\Delta c = \frac{\Delta c_A - \Delta c_B}{\ln \frac{\Delta c_A}{\Delta c_B}} = \frac{0.016 - 0.014}{\ln \frac{0.016}{0.014}} = 0.015 \frac{mol}{m^3}$$

$$N_{SO2} = k * A * \Delta c = 1.424 * 10^{-3} \frac{m}{s} * 1.66 * 10^{-5} m^2 * 0.015 \frac{mol}{m^3} = 3.54 * 10^{-10} \frac{mol}{s}$$

$$N_{SO2} = 3.54 * 10^{-10} \frac{mol}{s}$$

$$\dot{N}_{SO2} = 9.57 * 10^{-11} mol SO$$

$$10 \ 802 = 9.57 \ 10 \ molso_2$$

Dies ergibt eine Konzentration im Tropfen:

$$c_{Tropfen} = \frac{9.57 * 10^{-11} mol}{6.37 * 10^{-9} m^3} = 0.015 \frac{mol}{m^3}$$

Henry-Gesetz: (Berechnung von $\boldsymbol{c}_{\boldsymbol{g}}^{*}$)

$$c_g^* = c_{Tropfen} * \frac{H}{R*T}$$

$$c_g^* = c_{Tropfen} * \frac{H}{R*T} = 0.015 * \frac{360}{8.314*328.15} = 0.00198 \frac{mol}{m^3}$$

Anfangskonzentration Δ c_{Anfang} = 0.016 [mol / m³]

$$\Delta c_{Ende} = c_{g,\infty} - c_g^* = 0.016 - 0.00198 = 0.014 \frac{mol}{m^3}$$

Tabelle 7.4.1.1.: Eckdaten der iterativen Berechnung der Stoffstromdichte für einen Tropfendurchmesser von 2.5 mm und einer Anfangskonzentration von 0.016 mol/m³:

lf.Nr. der						*
Iterationen	Δ CAnfang	Δ CEnde	Δ CMitte	N so2	C Tropfen	\mathcal{C}_{g}
	[mol / m³]	[mol / m³]	[mol/m³]	[mol/s]	[mol / m³]	[mol / m³]
						0,00800
1	0,016	0,0080	0,01150	7.34exp-11	0,01172	0,00150
2	0,016	0.0145	0.01523	9.72exp-11	0,01525	0,00200
3	0,016	0,0140	0,01500	9,57exp-11	0,01500	0,00198

Zusammengefasstes Berechnungsergebnis für einen Tropfendurchmesser von 2.3mm:

Bei der Berechnung wurde der Tropfendurchmesser mit 2,3 mm gewählt und mit der Formel (GI.7.2.2.1.) erhielt man daraus eine Tropfengeschwindigkeit von 7,3 m/s. Dieser Tropfen fiel in einer Gasatmosphäre mit einer SO₂-Konzentration von 0,016 mol/m³. Bei dieser Fallgeschwindigkeit und einer Fallhöhe von 2 m ergab sich eine tatsächliche Fallzeit von 0,27 Sekunden.

Daraus wurde der Stoffdurchgangskoeffizient mit dem Wert: $3,751*10^{-3} \frac{m}{s}$ berechnet und

die Stoffmenge SO₂ beträgt: $9,57*10^{-11} \frac{mol}{s}$. Die Tropfenkonzentration nach der Iteration

beläuft sich auf $0,015 \frac{mol}{m^3}$.

7.4.2 Tropfendurchmesser: 3,5 mm

Da bei den Versuchen kein Tropfen mit einem Durchmesser von 2,3 mm erzeugt werden konnte, wird hier ein weiteres Berechnungsbeispiel angeführt und zwar mit einem festgelegten Tropfendurchmesser von 3,5 mm.

Aus (Gl. 7.2.2.1) folgt eine Tropfengeschwindigkeit von 7.43 m/s.

Es können folgende weitere Berechnungen durchgeführt werden:

$$\beta_l = \sqrt{\frac{D_l}{\pi * t_{\exp}}} = \sqrt{\frac{3.4 * 10^{-9}}{\pi * 0.03}} = 1.899 * 10^{-4} \frac{m}{s}$$

D₁...bei 20°C = 3.4exp-9[m²/s]

Kontaktzeit des Tropfensegmentes liegt

zwischen 0.01s und 0.05s (gewählt = 0.03s).

Re =
$$\frac{\omega * d_{Tropfen}}{v_{gas}} = \frac{7,43[\frac{m}{s}] * (3,5*10^{-3})[m]}{1.8*10^{-5}[\frac{m^2}{s}]} = 1444$$

$$Sc = \frac{v_{gas}}{D_g} = \frac{1.8 * 10^{-5} [\frac{m^2}{s}]}{1.55 * 10^{-5} [\frac{m^2}{s}]} = 1.161$$

$$Sh = 2 + 0.57 * \text{Re}^{0.5} * Sc^{0.33} = 2 + 0.57 * 1444^{0.5} * 1.161^{0.33} = 24.76$$

$$\beta_g = \frac{Sh * D_g}{d_{Tropfen}} = \frac{24.76 * 1.55 * 10^{-5}}{3.5 * 10^{-3}} = 0.110 \frac{m}{s}$$

$$k = \frac{1}{\frac{H}{R*T*\beta_l} + \frac{1}{\beta_g}} = \frac{1}{\frac{120}{8.314*293.15*1.899*10^{-4}} + \frac{1}{0.110}} = 3,707*10^{-3}\frac{m}{s}$$

Da bei den Versuchen weiters festgestellt wurde, dass die Gasbulkkonzentration höher ist als ursprünglich angenommen, wurde die Iterationsrechnung ein zweites mal und zwar mit einer Anfangskonzentration von 0.05 [mol / m³] durchgeführt

Anfangskonzentration $\Delta c_{Anfang} = 0.05 \text{ [mol / m³]}$

$$\Delta c_{Ende} = c_{g,\infty} - c_g^* = 0.05 - 0.025 = 0.025 \frac{mol}{m^3}$$

Konzentration am Kolonnenboden $\Delta c_{Ende} = 0.025 \text{ [mol / m³]}$

$$\Delta c = \frac{\Delta c_{Anfang} - \Delta c_{Ende}}{\ln \frac{\Delta c_{Anfang}}{\Delta c_{Ende}}} = \frac{0.05 - 0.025}{\ln 2} = 0.0361 \frac{mol}{m^3}$$

$$N_{SO2} = k * A * \Delta c = 3.751 * 10^{-3} \frac{m}{s} * 3.848 * 10^{-5} m^2 * 0.0361 \frac{mol}{m^3} = 5.2112 * 10^{-9} \frac{mol}{s}$$

$$N_{SO2} = 5.2112 * 10^{-9} \frac{mol}{s}$$

Bei einer Fallgeschwindigkeit von 7.43 m/s und einer Fallhöhe von 2[m ergibt sich eine Kontaktzeit von 0.27 Sekunden.

D.h. der Stoffaustausch aus dem Gasstrom in den fallenden Einzeltropfen beträgt:

$$\stackrel{\bullet}{N}_{SO\,2} = 1.407 * 10^{-9} mol .SO_2$$

Kugelvolumen:

$$V_{Tropfen} = \frac{d_{Tropfen}^{3} * \pi}{6} = \frac{(3.5 * 10^{-3})^{3} * \pi}{6} = 2.245 * 10^{-8} m^{3}$$

S

ergibt eine Konzentration im Tropfen:

$$c_{Tropfen} = \frac{1.407 * 10^{-9} mol}{2.245 * 10^{-8} m^3} = 0.0627 \frac{mol}{m^3}$$

Henry-Gesetz: (Berechnung von c_g^*)

$$c_g^* = c_{Tropfen} * \frac{H}{R*T}$$

$$c_g^* = c_{Tropfen} * \frac{H}{R*T} = 0.0627 * \frac{360}{8.314*328.15} = 3.034*10^{-3} \frac{mol}{m^3}$$

Anfangskonzentration Δ c_{Anfang} = 0.05 [mol / m³]

$$\Delta c_{Ende} = \Delta c_{g,\infty} - c_g^* = 0.05 - 3.034 * 10^{-3} = 0.047 \frac{mol}{m^3}$$

Konzentration am Kolonnenboden $\Delta c_{Ende} = 0.047 \text{ [mol / m³]}$

$$\Delta c = \frac{\Delta c_{Anfang} - \Delta c_{Ende}}{\ln \frac{\Delta c_{Anfang}}{\Delta c_{Ende}}} = \frac{0.05 - 0.047}{\ln \frac{0.05}{0.047}} = 0.048 \frac{mol}{m^3}$$

$$N_{SO2} = k * A * \Delta c = 3.751 * 10^{-3} \frac{m}{s} * 3.848 * 10^{-5} m^2 * 0.048 \frac{mol}{m^3} = 6.93 * 10^{-9} \frac{mol}{s}$$

$$N_{SO2} = 6.93 * 10^{-9} \frac{mol}{s}$$

$$\overset{\bullet}{N}_{so\,2} = 1.87 * 10^{-9} molSO_2$$

Kugelvolumen:

$$V_{Topfen} = \frac{d_{Tropfen}^{3} * \pi}{6} = \frac{(3.5 * 10^{-3})^{3} * \pi}{6} = 2.245 * 10^{-8} m^{3}$$

Ergibt eine Konzentration im Tropfen:

$$c_{Tropfen} = \frac{1.87 * 10^{-9} mol}{2.245 * 10^{-8} m^3} = 0.0833 \frac{mol}{m^3}$$

Henry-Gesetz: (Berechnung von c_{g}^{*})

$$c_g^* = c_{Tropfen} * \frac{H}{R*T}$$

$$c_g^* = c_{Tropfen} * \frac{H}{R*T} = 0.0833 * \frac{360}{8.314*328.15} = 4.03*10^{-3} \frac{mol}{m^3}$$

Anfangskonzentration $\Delta c_{Anfang} = 0.05 \text{ [mol / m³]}$

$$\Delta c_{Ende} = c_{g,\infty} - c_g^* = 0.05 - 4.04 * 10^{-3} = 0.046 \frac{mol}{m^3}$$

Konzentration am Kolonnenboden $\Delta c_{Ende} = 0.046 \text{ [mol / m³]}$

$$\Delta c = \frac{\Delta c_A - \Delta c_B}{\ln \frac{\Delta c_A}{\Delta c_B}} = \frac{0.05 - 0.046}{\ln \frac{0.05}{0.046}} = 0.048 \frac{mol}{m^3}$$

$$N_{SO2} = k * A * \Delta c = 3.751 * 10^{-3} \frac{m}{s} * 3.848 * 10^{-5} m^2 * 0.046 \frac{mol}{m^3} = 6.64 * 10^{-9} \frac{mol}{s}$$

$$N_{SO2} = 6.64 * 10^{-9} \frac{mol}{s}$$

$$\overset{\bullet}{N}_{SO\,2} = 1.80 * 10^{-9} molSO_2$$

Ergibt eine Konzentration im Tropfen:

$$c_{Tropfen} = \frac{1.80*10^{-9}mol}{2.245*10^{-8}m^3} = 0.080\frac{mol}{m^3}$$

Henry-Gesetz: (Berechnung von c_{g}^{*})

$$c_g^* = c_{Tropfen} * \frac{H}{R*T}$$

$$c_g^* = c_{Tropfen} * \frac{H}{R*T} = 0.08 * \frac{360}{8.314*328.15} = 3.90 * 10^{-3} \frac{mol}{m^3}$$

Tabelle	7.4.1.2.:	Eckdaten	der	iterativen	Berechnung	der	Stoffstromdichte	für	einen
Tropfend	lurchmess	ser von 3,5	mm ι	und einer A	nfangskonzen	tratio	n von 0.05 mol/m³	3 - -	

lf.Nr. der						
Iterationen	Δ CAnfang	Δ CEnde	Δ CMitte	N so2	C Tropfen	c_g^*
	[mol / m³]	[mol / m³]	[mol/m³]	[mol/s]	[mol / m³]	[mol / m³]
						0,025
1	0,05	0,025	0,0361	5.21exp-9	0,0627	0,034exp-3
2	0,05	0.047	0.048	1.87exp-9	0,0833	4.03exp-3
3	0,05	0,046	0,048	1.80exp-9	0,080	3.90exp-3

Zusammengefasstes Berechnungsergebnis für einen Tropfendurchmesser von 3,5mm:

Bei der Berechnung wurde der Tropfendurchmesser mit 3.5 mm gewählt und mit der Formel (GI.7.2.2.1.) erhielt man daraus eine Tropfengeschwindigkeit von 7,43 m/s. Dieser Tropfen fiel in einer Gasatmosphäre mit einer SO₂-Konzentration von 0,05 mol/m³. Bei dieser Fallgeschwindigkeit und einer Fallhöhe von 2 m ergab sich eine tatsächliche Fallzeit von 0,27 Sekunden.

Daraus wurde der Stoffdurchgangskoeffizient mit dem Wert: $3,707 * 10^{-3} \frac{m}{s}$ berechnet und

die Stoffmenge SO₂ beträgt: $1.80 * 10^{-9} \frac{mol}{s}$. Die Tropfenkonzentration nach der Iteration beläuft sich auf $0.08 \frac{mol}{m^3}$.

Der Stoffdurchgangskoeffizient unterscheidet sich also nur unwesentlich von jenem mit dem Tropfendurchmesser 2.3 mm und der Anfangskonzentration von 0.0016 mol/m³. Die Stoffmenge an SO₂ ist jedoch um exp2 höher und die Tropfenkonzentration ist fünf mal so groß als beim kleineren Tropfen mit der niedrigeren Anfangskonzentration.

8 Parameter der durchgeführten Versuche

In diesem Kapitel werden einige charakteristische Versuchsergebnisse zusammengefasst, um in weiterer Folge Aussagen über die Wirkung des veränderns gewisser Kenngrößen zu erlangen. Verändert wurden hierbei die Gasbulkkonzentration, die Tropfenanzahl, die Tropfengröße und die Weglänge der frei fallenden Tropfen.

lf.Nr.	Fallstrecke	Tropfengröße	Tropfenanzahl	$\mathcal{C}_{g,\infty,anfang}$	$C_{g,\infty,ende}$	Tropfen-
	[mm]	[mm]	[1]	[ppm]	[ppm]	auffang-
						vorrichtung
1	400	4,21	400	2040	1890	Kapillar-
2	400	3,58	500	3040	2780	absaugung
3	400	4,21	400	1710	1650	
4	400	4,18	400	1710	1650	
5	400	4,25	400	1650	1550	
6	400	3,34	800	1300	1200	
7	900	3,23	800	900	840	
8	900	3,06	600	1400	1320	
9	900	3,42	400	840	810	
10	1900	3,47	1000	950	650	
11	1900	3,54	500	1340	1140	
12	1900	3,44	500	1130	930	
13	1900	3,42	700	840	700	
14	1900	3,47	500	900	700	
15	1900	3,37	700	1370	1210	
16	2000	3,31	600	740	650	Silikonöl-
17	2000	3,42	400	1980	1800	vorlage
18	2000	3,22	1000	1690	1250	

Tabelle8.1.: Zusammenfassung der veränderten Einflussgrößen der Versuche

Die Fallstrecke ergibt sich automatisch wenn die Messstelle gewählt wurde. Bei der obersten Messstelle ergibt sich von der Tropfenkapillarspitze bis zum Auffangtrichter eine freie Weglänge von 400 mm, bei der mittleren Messstelle ein Fallweg von 900 mm und bei der untersten Messstelle muss der Tropfen 1900 mm zurücklegen. Bei jenen Versuchen, bei denen der Erlenmeyerkolben zum Einsatz kam, musste die Tropfensäule unten geöffnet werden und die mit Siliconöl überschichtete Vorlage wurde am Boden der Säule platziert. Dadurch ergab sich eine Fallstrecke von 2000 mm.

Die Silikonölüberschichtung soll einen Stoffaustausch nach dem Fallen der Tropfen verhindern, indem die aufgefangene Probe vom Gasbulk inert getrennt wurde.

Die verschiedenen Tropfengrößen ergaben sich aus den diversen Tropfenabschlagfrequenzen und den verschieden Tropfenkapillaren (siehe auch Kapitel 6.1.3.).

Bei der Wahl der Tropfenanzahl soll eruiert werden, ob die Abnahme der Gasbulkkonzentration Einfluss auf den Stoffübergang aus dem Gas in die Flüssigkeit hat.
Gemessen wurden die Gasbulkkonzentrationen $c_{g,\infty,anfang}$ und $c_{g,\infty,ende}$ mit einem Gasanalysemessgerät (Kapitel 6.1.8.). Diese Messungen fanden unmittelbar vor dem Aktivieren der Pulsgeberschaltung bzw. gleich nach Beendigung des Einzelversuches statt.

Die Variation der Tropfenauffangvorrichtung soll in weitere Folge zeigen, ob nach dem Fallen der Tropfen, das bedeutetet, wenn die Tropfen sich bereits im Auffanggefäß befinden, noch ein Stoffaustausch erfolgt oder ob das treibende Konzentrationsgefälle während des Tropfenfalles auf null sinkt.

9 Berechnungen zur Auswertung der durchgeführten Versuche

9.1 Allgemeines

Die eruierten Versuchsergebnisse wurden anhand des folgenden Formelapparates ausgewertet:

Die relevanten Daten werden festgehalten:

- die Menge an lod, welche in das Probegefäß vorgelegt wurde
- die Anfangskonzentration des SO₂ im Gaspulk
- die Endkonzentration im Gaspulk
- die Masse der fallenden und mit dem Gas in Kontakt getreten Tropfen
- die Anzahl der fallenden Einzeltropfen

Formelapparat für die Auswertung

Mit den hier angeführten Daten kann nun berechnet werden:

- das Volumen des Topfens:

$$V_{Tropfen} = \frac{m_{Tropfen}}{\rho_{Wasser}}$$
(Gl. 9.1.1)

wobei sich die Masse des Einzeltropfens aus der Beziehung ergibt:

$$m_{Tropfen} = \frac{m_{gesamt}}{Tropfenanzahl} \,. \tag{GI. 9.1.2}$$

- Über das Volumen kann nun der Tropfendurchmesser bestimmt werden: $V_{Tropfen} = \frac{d^{3} * \pi}{6}$ umgeformt ergibt:

$$d_{Tropfen} = \sqrt[3]{\frac{6*V_{Tropfen}}{\pi}}.$$
 (GI. 9.1.3)

- Wenn der Durchmesser berechnet wurde, kommt man mit

$$A_{Tropfen} = d_{Tropfen}^{2} * \pi$$
 (Gl. 9.1.4)

auf die Kontaktfläche des fallenden Einzeltropfens.

- Mit den stöchiometrischen Beziehungen:

$$SO_3^{2-} + I_2 + H_2O \longrightarrow SO_4^{2-} + 2I^- + 2H^+$$

 $2S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-} + 2I^-$

kann durch iodometrische Bestimmung die Konzentration im Tropfen bestimmt werden.

- Ermittlung der Stoffmenge von Iod, welches durch Titration neutralisiert wird
- Ermittlung der vorgelegten Stoffmenge
- Daraus ergibt sich die Stoffmenge $n_{SO^{2-}}$ im Einzeltropfen:

$$n_{SO_3^{2^-}(Tropfen)} = \frac{n_{SO_3^{2^-}}}{Tropfenanzahl}.$$
 (GI. 9.1.5)

- Die Konzentration ergibt sich aus:

$$c_{Tropfen} = \frac{n_{SO_3^{2-}(Tropfen)}}{V_{Tropfen}}.$$
 (GI. 9.1.6)

- Die mittlere Gaspulkkonzentration ergibt sich aus der Anfangs- und der Endkonzentration, es muss aber darauf geachtet werden, dass die Einheiten von ppm auf mol/m³ umzuwandeln sind:

$$c_{g,\infty} = \frac{c_{SO_2Anfang} + c_{SO_2Ende}}{2}.$$
 (GI. 9.1.7)

- Weiters ergibt sich die hypothetische Gleichgewichtskonzentration c_g^* aus folgender Beziehung:

$$c_{g}^{*} = c_{Tropfen}^{*} * \frac{H}{R * T}$$
 (Gl. 9.1.8)

- Der logarithmische Mittelwert folgt aus:

$$\Delta c_{Ende} = c_{g,\infty} - c_g^*$$
 (GI. 9.1.9)

und

$$\Delta c_{Anfang} = c_{g,\infty} \tag{GI. 9.1.10}$$

$$\Delta c = \frac{\Delta c_{Anfang} - \Delta c_{Ende}}{\ln \frac{\Delta c_{Anfang}}{\Delta c_{Ende}}}.$$
(GI. 9.1.11)

Und so kann man letztlich über die Fallzeit und den übergehenden Stoffmengenfluss den Stoffdurchgangskoeffizienten bestimmen:

•
$$N_{SO_2} = \frac{n_{SO_3^2 - Trofen}}{Fallzeit}$$
 (Gl. 9.1.12)

$$k = \frac{N_{SO_2}}{A^* \Delta c} \tag{GI. 9.1.13}$$

9.1.1 Auswertung der Ergebnisse der einzelnen Messstellen

9.1.1.1 Gemessene Daten, Einzelversuch 12 (unterste Messstelle = 1900mm)

- Vorgelegte lodmenge: 2 ml
- liquide Phase: deionisiertes Wasser
- Anfangskonzentration:1130 ppm
- Endkonzentration:930 ppm
- Gesamtmasse: 10.645 g
- Tropfenanzahl: 500

- Tropfenmasse:
$$m_{Tropfen} = \frac{m_{gesamt}}{Tropfenanzahl} = \frac{10.604 * 10^{-3} kg}{500} = 21.29 * 10^{-5} kg$$

- das Volumen des Tropfens: $V_{Tropfen} = \frac{m_{Tropfen}}{\rho_{Wasser}} = \frac{21.29 \times 10^{-5} kg}{998.21 \frac{kg}{m^3}} = 2.13282 \times 10^{-8} m^3$

- Tropfendurchmesser:
$$d_{Tropfen} = \sqrt[3]{\frac{6*V_{Tropfen}}{\pi}} = \sqrt[3]{\frac{6*2.13282*10^{-3}}{\pi}} = 0.00344m \cong 3.4mm$$
.

- Kontaktfläche : $A_{Tropfen} = d_{Tropfen}^{2*} \pi = 0.00344^{2*} \pi = 3.7192*10^{-5} m^{2}$

- Mit den stöchiometrischen Beziehungen:

$$SO_3^{2-} + I_2 + H_2O \longrightarrow SO_4^{2-} + 2I^- + 2H^+$$
$$2S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-} + 2I^-$$

kann durch iodometrische Bestimmung die Konzentration im Tropfen bestimmt werden.

- Ermittlung der Stoffmenge von Iod: $n_{Iod,rück} = \frac{1.50ml}{1000ml} * 0.05mol = 7.50 * 10^{-5} mol$
- Ermittlung der vorgelegten Stoffmenge: $n_{lod,Vorlage} = \frac{2.00ml}{1000ml} * 0.05mol = 10.00 * 10^{-5} mol$

Stoffmenge $n_{SO^{2-}}$ im Einzeltropfen:

$$n_{SO_3^{2^-}} = n_{Iod,Vorlage} - n_{Iod,rück} = 10.00 * 10^{-5} - 7.50 * 10^{-5} = 2.50 * 10^{-5} mol$$

$$n_{SO_3^{2^-}(Tropfen)} = \frac{n_{SO_3^{2^-}}}{Tropfenanzahl} = \frac{2.5*10^{-5}}{500} = 50.00*10^{-9} mol.$$

Die Konzentration ergibt sich aus: $c_{Tropfen} = \frac{n_{SO_3^{2-}(Tropfen)}}{V_{Tropfen}} = \frac{50.00*10^{-9}mol}{2.13282*10^{-8}m^3} = 2.344\frac{mol}{m^3}$.

Die mittlere Gasbulkkonzentration:

$$1130 ppm = \frac{\frac{1130 \times 10^{-6} \frac{kgSO_2}{kgLuft} \times 1.1845 \frac{kgLuft}{m^3}}{64,0648 \frac{kgSO_2}{mol}} = 2.0892 \times 10^{-2} \frac{mol}{m^3}$$

$$930 ppm = \frac{930 \times 10^{-6} \frac{kgSO_2}{kgLuft} \times 1.1845 \frac{kgLuft}{m^3}}{64,0648 \frac{kgSO_2}{mol}} = 1.7190 \times 10^{-2} \frac{mol}{m^3}$$

$$c_{g,\infty} = \frac{c_{SO_2Anfang} + c_{SO_2Ende}}{2} = \frac{(2.0892 + 1.7190) * 10^{-2}}{2} = 1.9043 * 10^{-2} \frac{mol}{m^3}$$

Hypothetische Gleichgewichtskonzentration:

$$c_{g}^{*} = c_{Tropfen} * \frac{H}{R*T} = 2.344 \frac{mol}{m^{3}} * \frac{1.2*10^{5} \frac{Pa*m^{3}}{kmol}}{8314 \frac{J}{kmol*K} * 298.15K} = 0.1135 \frac{mol}{m^{3}}$$

Logarithmischer Mittelwert: $\Delta c_{Ende} = c_{g,\infty} - c^* = 1.9043 * 10^{-2} - 0.1135 = -0.0945 \frac{mol.}{m^3}$.

Da angenommen werden kann, dass das Konzentrationsgefälle bis zum Boden der Tropfensäule ausgeglichen ist, kann festgestellt werden, dass der negative Δc_{Ende} -Wert einen auf die Ungenauigkeit in der Messung zurückzuführender Messfehler darstellt. Für die weitere Berechnung wird nun angenommen, dass Δc_{Ende} den Zahlenwert: Δc_{Ende} = $0.01^* \Delta c_{Anfang}$ entspricht, um zumindest eine tendenzielle Berechnung eines Stoffdurchgangskoeffizienten zu ermöglichen.

$$\Delta c_{Anfang} = c_{g,\infty} = 1.9043 * 10^{-2} \frac{mol}{m^3}$$

$$\Delta c = \frac{\Delta c_{Anfang} - \Delta c_{Ende}}{\ln \frac{\Delta c_{Anfang}}{\Delta c_{Ende}}} = \frac{1.9043 \times 10^{-2} - (1.9 \times 10^{-4})}{\ln \frac{1.9043 \times 10^{-2}}{(1.9 \times 10^{-4})}} = 4.09 \times 10^{-3} \frac{mol}{m^3}$$

Stoffdurchgangskoeffizient berechnet über die Stoffmenge:

•
$$N_{SO_2} = \frac{n_{SO_3^2 - Trofen}}{Fallzeit} = \frac{50*10^{-9}}{0.7} = 7.1429*10^{-8} \frac{mol}{s}$$

$$k = \frac{N_{SO_2}}{A * \Delta c} = \frac{7.1429 * 10^{-8}}{3.7182 * 10^{-5} * 4.09 * 10^{-3}} = 0.4697 \frac{m}{s}$$

9.1.1.2 Gemessene Daten, Einzelversuch 2 (oberste Messstelle=400mm)

- Vorgelegte lodmenge: 4 ml
- liquide Phase: deionisiertes Wasser
- Anfangskonzentration: 3040 ppm
- Endkonzentration: 2780 ppm
- Gesamtmasse: 12.039 g
- Tropfenanzahl : 500

- Tropfenmasse : $m_{Tropfen} = \frac{m_{gesamt}}{Tropfenanzahl} = \frac{12.039 * 10^{-3} kg}{500} = 2.4078 * 10^{-5} kg$

- das Volumen des Tropfens : $V_{Tropfen} = \frac{m_{Tropfen}}{\rho_{Wasser}} = \frac{2.4078 * 10^{-5} kg}{998.21 \frac{kg}{m^3}} = 2.41211 * 10^{-8} m^3$

- Tropfendurchmesser : $d_{Tropfen} = \sqrt[3]{\frac{6*V_{Tropfen}}{\pi}} = \sqrt[3]{\frac{6*2.4078*10^{-8}}{\pi}} = 0.00358m \cong 3.58mm$.

- Kontaktfläche : $A_{Tropfen} = d_{Tropfen}^{2*} \pi = 0.00358^{2*} \pi = 4.03*10^{-5} m^2$
- Mit den stöchiometrischen Beziehungen:

$$SO_3^{2-} + I_2 + H_2O \longrightarrow SO_4^{2-} + 2I^- + 2H^+$$

$$2S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-} + 2I^-$$

kann durch iodometrische Bestimmung die Konzentration im Tropfen bestimmt werden.

- Ermittlung der Stoffmenge von Iod: $n_{Iod,rück} = \frac{3.75ml}{1000ml} * 0.05mol = 18.75 * 10^{-5} mol$
- Ermittlung der vorgelegten Stoffmenge: $n_{Iod,Vorlage} = \frac{4.00ml}{1000ml} * 0.05mol = 20.00 * 10^{-5} mol$

Stoffmenge $n_{SO_3^{2-}}$ im Einzeltropfen:

$$n_{SO_3^{2^-}} = n_{Iod} - n_{ges} = 20.00 * 10^{-5} - 18.75 * 10^{-5} = 1.25 * 10^{-5} mol$$

$$n_{SO_3^{2^-}(Tropfen)} = \frac{n_{SO_3^{2^-}}}{Tropfenanzahl} = \frac{1.25*10^{-5}}{500} = 25.00*10^{-9} \, mol \, .$$

Die Konzentration ergibt sich aus: $c_{Tropfen} = \frac{n_{SO_3^{2^-}(Tropfen)}}{V_{Tropfen}} = \frac{25.00*10^{-9} mol}{2.4078*10^{-8} m^3} = 1.036 \frac{mol}{m^3}$.

Die mittlere Gasbulkkonzentration:

$$3040 ppm = \frac{3040 * 10^{-6} \frac{kgSO_2}{kgLuft} * 1.1845 \frac{kgLuft}{m^3}}{64,0648 \frac{kgSO_2}{mol}} = 5.62 * 10^{-2} \frac{mol}{m^3}$$

$$2780 ppm = \frac{2780 * 10^{-6} \frac{kgSO_2}{kgLuft} * 1.1845 \frac{kgLuft}{m^3}}{64,0648 \frac{kgSO_2}{mol}} = 5.14 * 10^{-2} \frac{mol}{m^3}$$

$$c_{g,\infty} = \frac{c_{SO_2Anfang} + c_{SO_2Ende}}{2} = \frac{(5.62 + 5.14) * 10^{-2}}{2} = 5.38 * 10^{-2} \frac{mol}{m^3}$$

Hypothetische Gleichgewichtskonzentration:

$$c_{g}^{*} = c_{Tropfen} * \frac{H}{R*T} = 1.036 \frac{mol}{m^{3}} * \frac{1.2*10^{5} \frac{Pa*m^{3}}{kmol}}{8314 \frac{J}{mol*K} * 298.15K} = 5.017*10^{-2} \frac{mol}{m^{3}}$$

Logarithmischer Mittelwert: $\Delta c_{Ende} = c_{g,\infty} - c^* = 5.380 * 10^{-2} - 5.017 = 0.363 * 10^{-2} \frac{mol.}{m^3}$,

$$\Delta c_{Anfang} = c_{g,\infty} = 5.017 * 10^{-2} \, \frac{mol}{m^3}$$

$$\Delta c = \frac{\Delta c_{Anfang} - \Delta c_{Ende}}{\ln \frac{\Delta c_{Anfang}}{\Delta c_{Ende}}} = \frac{(5.38 - 0.363) * 10^{-2}}{\ln \frac{5.38 * 10^{-2}}{0.363 * 10^{-2}}} = 1.861 * 10^{-2} \frac{mol}{m^3}$$

Stoffdurchgangskoeffizient :

$$N_{SO_2} = \frac{n_{SO_3^2 - Trofen}}{Fallzeit} = \frac{25 * 10^{-9}}{0.7} = 3.57 * 10^{-8} \frac{mol}{s}$$

$$k = \frac{N_{SO_2}}{A^* \Delta c} = \frac{3.57 * 10^{-8}}{4.03 * 10^{-5} * 1.861 * 10^{-2}} = 4.7 * 10^{-2} \frac{m}{s}$$

9.1.1.3 Gemessene Daten, Einzelversuch 3 (oberste Messstelle= 400 mm)

- Vorgelegte lodmenge: 2 ml
- Anfangskonzentration :1710 ppm
- Endkonzentration :1650 ppm
- Gesamtmasse : 15.544 g
- Tropfenanzahl: 400

- Tropfenmasse :
$$m_{Tropfen} = \frac{m_{gesamt}}{Tropfenanzahl} = \frac{15.544 * 10^{-3} kg}{400} = 3.8885 * 10^{-5} kg$$

- Volumen des Tropfens :
$$V_{Tropfen} = \frac{m_{Tropfen}}{\rho_{Wasser}} = \frac{3.8885 * 10^{-5} kg}{998.21 \frac{kg}{m^3}} = 3.8954 * 10^{-8} m^3$$

- Tropfendurchmesser :
$$d_{Tropfen} = \sqrt[3]{\frac{6*V_{Tropfen}}{\pi}} = \sqrt[3]{\frac{6*3.8954*10^{-8}}{\pi}} = 0.004205m \cong 4.205mm$$
.

- Kontaktfläche : $A_{Tropfen} = d_{Tropfen}^{2*} \pi = 0.004205^{2*} \pi = 5.557*10^{-5} m^2$
- Mit den stöchiometrischen Beziehungen:

$$SO_3^{2^-} + I_2 + H_2O \longrightarrow SO_4^{2^-} + 2I^- + 2H^+$$

$$2S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-} + 2I^-$$

kann durch iodometrische Bestimmung die Konzentration im Tropfen bestimmt werden.

- Ermittlung der Stoffmenge von Iod: $n_{Iod,rück} = \frac{1.85ml}{1000ml} * 0.05mol = 9.25 * 10^{-5} mol$

- Ermittlung der vorgelegten Stoffmenge: $n_{Iod,Vorlage} = \frac{2.00ml}{1000ml} * 0.05mol = 10.00 * 10^{-5} mol$

Stoffmenge $n_{SO_2^{2-}}$ im Einzeltropfen:

 $n_{SO_3^{2-}} = n_{Iod} - n_{ges} = 10.00 * 10^{-5} - 9.25 * 10^{-5} = 0.75 * 10^{-5} mol$

 $n_{SO_3^{2^-}(Tropfen)} = \frac{n_{SO_3^{2^-}}}{Tropfenanzahl} = \frac{0.75*10^{-5}}{400} = 18.75*10^{-9} mol.$

Die Konzentration ergibt sich aus: $c_{Tropfen} = \frac{n_{SO_3^{2-}(Tropfen)}}{V_{Tropfen}} = \frac{18.75 * 10^{-9} mol}{3.8954 * 10^{-8} m^3} = 0.4813 \frac{mol}{m^3}$.

Die mittlere Gasbulkkonzentration:

$$1710 ppm = \frac{1710*10^{-6} \frac{kgSO_2}{kgLuft}*1.1845 \frac{kgLuft}{m^3}}{64,0648 \frac{kgSO_2}{mol}} = 3.309*10^{-2} \frac{mol}{m^3}$$

$$1650 ppm = \frac{\frac{1650 \times 10^{-6} \frac{kgSO_2}{kgLuft} \times 1.1845 \frac{kgLuft}{m^3}}{64,0648 \frac{kgSO_2}{mol}} = 3.050 \times 10^{-2} \frac{mol}{m^3}$$

$$c_{g,\infty} = \frac{c_{SO_2Anfang} + c_{SO_2Ende}}{2} = \frac{(3.309 + 3.050) * 10^{-2}}{2} = 3.180 * 10^{-2} \frac{mol}{m^3}$$

Hypothetische Gleichgewichtskonzentration:

$$c_{g}^{*} = c_{Tropfen} * \frac{H}{R*T} = 0.4813 \frac{mol}{m^{3}} * \frac{1.2*10^{5} \frac{Pa*m^{3}}{kmol}}{8314 \frac{J}{mol*K} * 298.15K} = 2.33*10^{-2} \frac{mol}{m^{3}}$$

Logarithmischer Mittelwert: $\Delta c_{Ende} = c_{g,\infty} - c_g^* = 3.180 * 10^{-2} - 2.33 * 10^{-2} = 0.85 * 10^{-2} \frac{mol.}{m^3}$,

$$\Delta c_{Anfang} = c_{g,\infty} = 3.180 * 10^{-2} \, \frac{mol}{m^3}$$

$$\Delta c = \frac{\Delta c_{Anfang} - \Delta c_{Ende}}{\ln \frac{\Delta c_{Anfang}}{\Delta c_{Ende}}} = \frac{(3.180 - 0.850) * 10^{-2}}{\ln \frac{3.180 * 10^{-2}}{0.850 * 10^{-2}}} = 1.766 * 10^{-2} \frac{mol}{m^3}$$

Stoffdurchgangskoeffizient :

$$N_{SO_2}^{\bullet} = \frac{n_{SO_3^2 - Trofen}}{Fallzeit} = \frac{18.75 * 10^{-9}}{0.7} = 2.678 * 10^{-8} \frac{mol}{s}$$

$$k = \frac{N_{SO_2}}{A * \Delta c} = \frac{18.75 * 10^{-8}}{5.557 * 10^{-5} * 1.766 * 10^{-2}} = 2.73 * 10^{-2} \frac{m}{s}$$

9.1.1.4 Gemessene Daten, Einzelversuch 11 (unterste Messstelle = 1900mm)

- Vorgelegte lodmenge: 4 ml
- Anfangskonzentration :1340 ppm
- Endkonzentration :1140 ppm
- Gesamtmasse : 11.594 g
- Tropfenanzahl : 500

- Tropfenmasse : $m_{Tropfen} = \frac{m_{gesamt}}{Tropfenanzahl} = \frac{11.594 * 10^{-3} kg}{500} = 2.3188 * 10^{-5} kg$

- Volumen des Tropfens : $V_{Tropfen} = \frac{m_{Tropfen}}{\rho_{Wasser}} = \frac{2.3188*10^{-5} kg}{998.12 \frac{kg}{m^3}} = 2.3232*10^{-8} m^3$
- Tropfendurchmesser : $d_{Tropfen} = \sqrt[3]{\frac{6*V_{Tropfen}}{\pi}} = \sqrt[3]{\frac{6*2.3232*10^{-3}}{\pi}} = 0.00354m \cong 3.54mm$.
- Kontaktfläche : $A_{Tropfen} = d_{Tropfen}^{2*} \pi = 0.003454^{2*} \pi = 3.937*10^{-5} m^{2}$
- Mit den stöchiometrischen Beziehungen:

$$SO_3^{2-} + I_2 + H_2O \longrightarrow SO_4^{2-} + 2I^- + 2H^+$$
$$2S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-} + 2I^-$$

kann durch iodometrische Bestimmung die Konzentration im Tropfen bestimmt werden.

- Ermittlung der Stoffmenge von Iod: $n_{Iod,rück} = \frac{3.35ml}{1000ml} * 0.05mol = 16.75 * 10^{-5} mol$
- Ermittlung der vorgelegten Stoffmenge: $n_{Iod,Vorlage} = \frac{4.00ml}{1000ml} * 0.05mol = 20.00 * 10^{-5} mol$

Stoffmenge $n_{SO^{2-}}$ im Einzeltropfen:

 $n_{SO_3^{2-}} = n_{Iod,Vorlage} - n_{Iod,rück} = 20.00 * 10^{-5} - 16.75 * 10^{-5} = 3.25 * 10^{-5} mol$

$$n_{SO_3^{2-}(Tropfen)} = \frac{n_{SO_3^{2-}}}{Tropfenanzahl} = \frac{3.25*10^{-5}}{500} = 65*10^{-9} mol.$$

Die Konzentration ergibt sich aus: $c_{Tropfen} = \frac{n_{SO_3^{2-}(Tropfen)}}{V_{Tropfen}} = \frac{65.00*10^{-9} mol}{2.3232*10^{-8} m^3} = 2.7979 \frac{mol}{m^3}$.

Die mittlere Gasbulkkonzentration:

$$1340 ppm = \frac{\frac{1340 \times 10^{-6} \frac{kgSO_2}{kgLuft} \times 1.1845 \frac{kgLuft}{m^3}}{64,0648 \frac{kgSO_2}{mol}} = 2.4775 \times 10^{-2} \frac{mol}{m^3}$$

$$1140 ppm = \frac{\frac{1140 \times 10^{-6} \frac{kgSO_2}{kgLuft} \times 1.1845 \frac{kgLuft}{m^3}}{64,0648 \frac{kgSO_2}{mol}} = 2.1077 \times 10^{-2} \frac{mol}{m^3}$$

$$c_{g,\infty} = \frac{c_{SO_2Anfang} + c_{SO_2Ende}}{2} = \frac{(2.4775 + 2.1077) * 10^{-2}}{2} = 2.29265 * 10^{-2} \frac{mol}{m^3}$$

Hypothetische Gleichgewichtskonzentration:

$$c_{g}^{*} = c_{Tropfen} * \frac{H}{R*T} = 2.7979 \frac{mol}{m^{3}} * \frac{1.2*10^{5} \frac{Pa*m^{3}}{kmol}}{8314 \frac{J}{kmol*K} * 298.15K} = 0.13544 \frac{mol}{m^{3}}$$

Logarithmischer Mittelwert: $\Delta c_{Ende} = c_{g,\infty} - c^* = 2.29265 * 10^{-2} - 0.13544 = -0.1125 \frac{mol.}{m^3}$,

Da angenommen werden kann, dass das Konzentrationsgefälle bis zum Boden der Tropfensäule ausgeglichen ist, kann festgestellt werden, dass der negative Δc_{Ende} -Wert einen auf die Ungenauigkeit in der Messung zurückzuführender Messfehler darstellt. Für die weitere Berechnung wird nun angenommen, dass $\Delta c_{\it Ende}$ den Zahlenwert: $\Delta c_{\it Ende}$ =

 $0.01^* \Delta c_{Anfang} \left[\frac{mol.}{m^3}\right]$ entspricht, um zumindest eine tendenzielle Berechnung eines Stoffdurchgangskoeffizienten zu ermöglichen.

$$\Delta c_{Anfang} = c_{g,\infty} = 2.29265 * 10^{-2} \frac{mol}{m^3}$$

$$\Delta c = \frac{\Delta c_{Anfang} - \Delta c_{Ende}}{\ln \frac{\Delta c_{Anfang}}{\Delta c_{Ende}}} = \frac{2.29265 * 10^{-2} - (2.29 * 10^{-4})}{\ln \frac{2.29265 * 10^{-2}}{(2.29 * 10^{-4})}} = 4.927 * 10^{-3} \frac{mol}{m^3}$$

Stoffdurchgangskoeffizient berechnet über die Stoffmenge:

•
$$N_{SO_2} = \frac{n_{SO_3^2 - Trofen}}{Fallzeit} = \frac{65*10^{-9}}{0.7} = 9.286*10^{-8} \frac{mol}{s}$$

$$k = \frac{N_{SO_2}}{A * \Delta c} = \frac{9.286 * 10^{-8}}{3.7182 * 10^{-5} * 4.927 * 10^{-3}} = 0.507 \frac{m}{s}$$

10 Diskussion und Interpretation der Ergebnisse

Tabelle 10.1.: Einflussgrößen und deren Auswirkung auf die Konzentrationen

	Fall	Tropfen	Tropfen				Δc_{anfang}					
lf.Nr.	strecke	größe	anzahl	$c_{Gas,m}$	$\mathcal{C}_{Tropfen}$	${\cal C}_g^*$	$c_{g,\infty}$	Δc_{ende}	$\Delta c_{ende,th}$	Δc	N _{SO2}	k
	mm	mm	-	ppm	$\frac{mol}{m^3}$	$\frac{mol}{m^3}$	$\frac{mol}{m^3}$	$\frac{mol}{m^3}$	$\frac{mol}{m^3}$	$\frac{mol}{m^3}$	$\frac{mol}{s}$	$\frac{m}{s}$
						Exp-2	Exp-2	Exp-2	Exp-4	Exp -3	Exp-8	
1	400	4,21	400	1965	0.802	3,800	3,63	-0,20	3,63	7,804	4,46	0,1030
2	400	3,58	500	2910	1,036	5,017	5,38	0,363		18,61	3,57	0,0470
3	400	4,21	400	1680	0,483	2,330	3,18	0,85		17,66	2,68	0,0273
4	400	4,18	400	1680	0,656	3,176	3,16	-0,7	3,162	6,677	3,57	0,0970
5	400	4,25	400	1600	0,465	2,253	2,96	0,706		15,72	2,68	0,0299
6	400	3.34	800	1250	2.240	10,80	2,31	-8,50	2,31	4,963	6,25	0,3600
7	900	3,23	800	870	1,231	5,960	1,61	-4,351	1,61	3,450	3,13	0,2750
8	900	3,06	600	1360	1,383	6,694	2,52	-4,179	2,52	5,404	2,98	0,1870
9	900	3.42	400	005	4 400							0 3700
10		-,	400	825	1,490	7,213	1,53	-5,688	1,53	3,277	4,46	0,3700
	1900	3,47	1000	825	1,490	7,213 8,780	1,53 1,48	-5,688 -7,305	1,53	3,277 3,170	4,46 5,71	0,3700
11	1900 1900	3,47 3,54	400 1000 500	825 800 1240	1,490 1,815 2,798	7,213 8,780 13,544	1,53 1,48 2,29	-5,688 -7,305 -10,62	1,53 1,48 2,29	3,277 3,170 4,929	4,46 5,71 9,29	0,3700 0,4740 0,5321
11 12	1900 1900 1900	3,47 3,54 3,44	1000 500 500	825 800 1240 1030	1,490 1,815 2,798 2,344	7,213 8,780 13,544 11,34	1,53 1,48 2,29 1,91	-5,688 -7,305 -10,62 -9,43	1,53 1,48 2,29 1,91	3,277 3,170 4,929 4,106	4,46 5,71 9,29 7,14	0,4740 0,5321 0,4677
11 12 13	1900 1900 1900 1900	3,47 3,54 3,44 3,42	1000 500 500 700	825 800 1240 1030 770	1,490 1,815 2,798 2,344 4,094	7,213 8,780 13,544 11,34 19,81	1,53 1,48 2,29 1,91 1,42	-5,688 -7,305 -10,62 -9,43 -18,40	1,53 1,48 2,29 1,91 1,42	3,277 3,170 4,929 4,106 3,06	4,46 5,71 9,29 7,14 12,24	0,4740 0,5321 0,4677 1,080
11 12 13 14	1900 1900 1900 1900 1900	3,47 3,54 3,44 3,42 3,47	1000 500 500 700 500	825 800 1240 1030 770 800	1,490 1,815 2,798 2,344 4,094 1,830	7,213 8,780 13,544 11,34 19,81 8,900	1,53 1,48 2,29 1,91 1,42 1,48	-5,688 -7,305 -10,62 -9,43 -18,40 -7,40	1,53 1,48 2,29 1,91 1,42 1,48	3,277 3,170 4,929 4,106 3,06 3,176	4,46 5,71 9,29 7,14 12,24 5,714	0,4740 0,5321 0,4677 1,080 0,476
11 12 13 14 15	1900 1900 1900 1900 1900 1900	3,47 3,54 3,44 3,42 3,47 3,37	400 1000 500 700 500 700	825 800 1240 1030 770 800 1290	1,490 1,815 2,798 2,344 4,094 1,830 3,741	7,213 8,780 13,544 11,34 19,81 8,900 18,10	1,53 1,48 2,29 1,91 1,42 1,48 2,39	-5,688 -7,305 -10,62 -9,43 -18,40 -7,40 -15,70	1,53 1,48 2,29 1,91 1,42 1,48 2,39	3,277 3,170 4,929 4,106 3,06 3,176 5,125	4,46 5,71 9,29 7,14 12,24 5,714 10,70	0,3700 0,4740 0,5321 0,4677 1,080 0,476 0,565
11 12 13 14 15 16	1900 1900 1900 1900 1900 1900 2000	3,47 3,54 3,44 3,42 3,47 3,37 3,31	400 1000 500 500 700 500 700 600	825 800 1240 1030 770 800 1290 695	1,490 1,815 2,798 2,344 4,094 1,830 3,741 3,947	7,213 8,780 13,544 11,34 19,81 8,900 18,10 19,11	1,53 1,48 2,29 1,91 1,42 1,48 2,39 1,29	-5,688 -7,305 -10,62 -9,43 -18,40 -7,40 -15,70 -15,70	1,53 1,48 2,29 1,91 1,42 1,48 2,39 1,29	3,277 3,170 4,929 4,106 3,06 3,176 5,125 2,76	4,46 5,71 9,29 7,14 12,24 5,714 10,70 10,70	0,3700 0,4740 0,5321 0,4677 1,080 0,476 0,565 1,12
11 12 13 14 15 16 17	1900 1900 1900 1900 1900 1900 2000 2000	3,47 3,54 3,44 3,42 3,47 3,37 3,31 3,42	400 1000 500 500 700 500 700 600 400	825 800 1240 1030 770 800 1290 695 1890	1,490 1,815 2,798 2,344 4,094 1,830 3,741 3,947 1,191	7,213 8,780 13,544 11,34 19,81 8,900 18,10 19,11 5,76	1,53 1,48 2,29 1,91 1,42 1,48 2,39 1,29 3,49	-5,688 -7,305 -10,62 -9,43 -18,40 -7,40 -15,70 -15,70 -17,82 -2,2	1,53 1,48 2,29 1,91 1,42 1,48 2,39 1,29 3,49	3,277 3,170 4,929 4,106 3,06 3,176 5,125 2,76 12,38	4,46 5,71 9,29 7,14 12,24 5,714 10,70 10,70 3,57	0,3700 0,4740 0,5321 0,4677 1,080 0,476 0,565 1,12 0,0783

10.1 Interpretation der Ergebnisse und Ausblick auf weitere Versuchsreihen

In der *Tabelle 10.1* wurden einige wichtige Versuchsdaten zusammengefasst. Diese Ergebnisse der Einzelversuche lassen nachstehende Beobachtungen zu:

- Die Gasbulkkonzentration abzüglich der hypothetischen Gaskonzentration die, mit der Flüssigkonzentration im Gleichgewicht steht, ergibt das treibende Gefälle am Ende der Fallstrecke der Tropfen. Dieses treibende Gefälle kehrt sich vorzeichenmäßig während des Versuches scheinbar um.
- Weitere Versuche sollen nun aufklären, ob das auf Grund unbeeinflussbarer Parameter, wie zum Beispiel dem Absinken der Gasbulkkonzentration während des Versuches, bedingt durch die nicht vollständig gasdichte Ausführung der Versuchsanlage, verursacht wird, oder ob dafür die Auswirkung von Messungenauigkeiten verantwortlich ist.
- Die Kontaktzeit der Tropfen mit dem Gas geht weit über die Fallzeit hinaus, da die Bildung der Tropfen an der Kapillare des Tropfengenerators beinahe gleich lange dauert, wie die eigentliche Fallzeit.
- Die Ergebnisse der obersten Messstelle sind im Vergleich zu den tiefer liegenden Messstellen plausibler. Je länger die Fallstrecke, desto höher wird die Konzentration im Tropfen.
- Würde man den Tropfen in einer inerten Atmosphäre bilden können, dann würde der Stoffaustausch erst während der Flugphase beginnen. Unter der Voraussetzung, dass die Überschichtung mit Silikonöl ebenfalls eine inerte Atmosphäre, diesmal aber am Ende der Fallstrecke schafft, könnte nun, in Kombination mit der inerten Bildung der Tropfen tatsächlich der Stoffaustausch nur während des Falles betrachtet werden.
- Man kann jedoch zum jetzigen Zeitpunkt nicht sagen, ob eine Überschichtung der Probe mit Silikonöl zielführend ist, da der gesamte Stoffaustausch beim Auffangen an der untersten Messstelle bereits stattgefunden hat.
- Eine mögliche Messungenauigkeit könnte sich auch in der lodometrie ergeben haben, da beim Titrieren mit der Bürette nur in 0,05 ml-Schritten vorgegangen werden kann und damit der Tropfenfehler für die geringe Menge an insgesamt verbrauchtem lod während des Versuches doch relativ hoch erscheint.
- Es könnten Versuche gefahren werden, bei denen die Tropfenanzahl viel höher gewählt wird und dadurch die Masse der Gesamtprobe größer wird. Dadurch ergibt sich jedoch das Problem, dass diese Variante der

Versuchsdurchführung länger dauert. Während der längeren Versuchszeit, sinkt auch die Gasbulkkonzentration weiter ab (Dichtheitsproblem, siehe oben), und es sollte untersucht werden, welchen Einfluss dies auf den gesamten Stoffaustausch hat.

11 Zusammenfassung

Die vorliegende Arbeit besteht im Prinzip aus zwei Teilabschnitten. Zum Ersten wurde eine Versuchsanlage zur Durchführung von Stoffaustauschmessungen an fallenden Einzeltopfen konstruiert und am Institut für Verfahrenstechnik des industriellen Umweltschutzes in Betrieb genommen. Mit dieser Anlage wurde gezeigt, dass der Stoffaustausch am fallenden Einzeltropfen messtechnisch erfassbar ist und darüber hinaus wurden die aufgenommenen Messwerte rechnerisch ausgewertet. Dabei wurden für bestimmte Tropfengrößen und bestimmte Gasbulkkonzentrationen die Tropfenkonzentration und weiters auch der Stoffdurchgangskoeffizient ermittelt.

Im zweiten Teil der Arbeit wurde die Tropfengröße und die Konzentration des Gases im Bulk den Versuchswerten angepasst, und mit Hilfe der Stoffübergangstheorien und den daraus Formelapparat wiederum Konzentration Tropfen entstanden die im und der Stoffdurchgangskoeffizient berechnet.

In der nachstehenden Tabelle 11.1 wird der Vergleich des berechneten Stoffaustausches mit den Messdaten und deren Auswertung aufgezeigt.

		Brechnet:	Gemessen:
Tropfendurchmesser	[mm]	3,5	3,58
Δ CAnfang	[mol / m³]	0.050	0.054
Λ CEnde	[mol / m³]	0.0460	0.0034
Δ CMitte	[mol / m³]	0.048	0.018
N so2	[mol/s]	1.8exp-9	35,7exp-9
C Tropfen	[mol / m³]	0,08	1,04
c_g^*	[mol / m ³]	3.9exp-3	50,2exp-2
k	[m/s]	0,0037	0.040

Tabelle 11.1 Vergleich der berechneten und der gemessen und ausgewerteten Zahlenwerte :

Literaturverzeichnis:

- [1] Weiss, Militzer, Gramlich, Thermische Verfahrenstechnik. Deutscher Verlag für Grundstoffindustrie (1993)
- [2] Vauck, Müller, Grundoperationen chemischer Verfahrenstechnik. 9. überarbeitete Auflage. Deutscher Verlag für Grundstoffindustrie (1992)
- [3] Prausnitz, Gmehling, Thermodynamik der Phasengleichgewichte. VT3-Hochschulkurs, Fachzeitschrift vt "Verfahrenstechnik" 13 (1979)
- [4] Bierwerth, Lehrbrief, Thermische Verfahrenstechnik II. Studiengemeinschaft Darmstadt, VEF3
- [5] Bockhard, Güntzschel, Poetschukat, Grundlagen der Verfahrenstechnik für Ingenieure. Deutscher Verlag für Grundstoffindustrie, Leipzig, Stuttgart (1981)
- [6] Grassman, Widmer, Einführung in die thermische Verfahrenstechnik 2. Auflage. Walter de Gruyter, Berlin (1974)
- [7] Kögl, Moser, Grundlagen der Verfahrenstechnik. Wien, Springer Verlag (1981)
- [8] Pflügl, Renz, Vorlesungsskriptum Stoffaustausch. 5. korrigierte Auflage, Institut für Grundlagen der Verfahrenstechnik und Anlagentechnik, TU Graz (2001)
- [9] Baer, Stephan, Wärme und Stoffübertragung. 2. Auflage. Springer Verlag Berlin, Heidelberg (1994)
- [10] Jakubith, Chemische Verfahrenstechnik- Einführung in die Reaktionstechnik und Grundoperationen. Weinheim, VHS Verlagsgesellschaft (1991)
- [11] Draxler, Vorlesungsskriptum Thermische Verfahrenstechnik, Institut für Verfahrenstechnik, Montanuniversität Leoben (2003)
- [12] Fries, Getost, Organische Reagenzien für die Spurenanalyse. Darmstadt, Merk (1975)
- [13] Schwister, Taschenbuch der Chemie. Fachbuchverlag Leipzig, Köln (1995)
- [14] Braun, Dörnhardt, Vergiftungsregister. Stuttgart, Fischer (1975)
- [15] Ludewig, Lohs, Akute Vergiftungen. Stuttgart, Fischer (1981)
- [16] Otto, Analytische Chemie, 2. überarbeitete Auflage. WILEY-VCH Verlagsgesellschaft, Weinheim, Deutschland (2000)
- [17] Winnacher, Küdler, Chemische Technologie 3. Auflage. München, Hanser Verlag (1970)

- [18] Analytiker Taschebuch. Berlin, Springerverlag (1980)
- [19] Duden, Grundwissen der Chemie. Brockhaus AG, Mannheim (1995)
- [20] Atkins, Physikalische Chemie. VCH Verlagsgesellschaft, Weinheim, Deutschland (1990)
- [21] Kepplinger, Vorlesungsskriptum Verfahrenstechnik I, Institut für Verfahrenstechnik, Montanuniversität Leoben (1998)
- [22] Kalide, Einführung in die Technische Strömungslehre. Carl Hanserverlag, München, Wien (1990)
- [23] Noll, Numerische Strömungsmechanik. Springer Verlag, Berlin, Heidelberg (1993)
- [24] Kuchling, Taschenbuch der Physik. Fachbuchverlag, Leibzig, Köln (1991)
- [25] Brauer, Stoffaustausch einschließlich chemischer Reaktionen. Verlag Sauerländer, Aarau, Frankfurt (1971)

Zeichen	Bedeutung	Einheit
$ ho_{{\scriptscriptstyle L}{\scriptscriptstyle u}{\scriptscriptstyle ft}}$	Dichte der Luft	kg/m³
$ ho_{\scriptscriptstyle Wasser}$	Dichte des Wassers	kg/m³
V_{gas}	dynamische Viskosität, Gas	m²/s
<i>x</i> *	Ersatzbeladung die mit y im Gleichgewicht steht	kg/kg
${\cal Y}_a^*$	Ersatzbeladung, Anfang	kg/kg
<i>y</i> *	Ersatzbeladung, die mit x im Gleichgewicht steht	kg/kg
${\cal Y}_e^*$	Ersatzbeladung, Ende	kg/kg
$D_{i,l}$	Flüssigdiffusionskoeffizient der Komponente i	m/s²
${\cal C}^*_{i,l,\infty}$	Flüssigkeitsbulkkonzentration der Komponente i	mol/m³
$\mathcal{C}_{g,\infty}$	Gasbulkkonzentration	mol/m³
$\mathcal{C}_{g,Ende}$	Gasbulkkonzentration, Versuchsende	ppm
$D_{i,g}$	Gasdiffusionskoeffizient der Komponente i	m/s2
c_i^*	Gleichgewichtskonzentration der Komponente i	mol/m³
$c^*_{i,l}$	Gleichgewichtskonzentration der Komponente i, flüssig	mol/m³
$\mathcal{C}^*_{i,g}$	Gleichgewichtskonzentration der Komponente i, gas	mol/m³
${\cal Y}_{gr,a}$	Grenzflächenbeladung, Anfang	kg/kg
${\cal Y}_{gr,e}$	Grenzflächenbeladung, Ende	kg/kg
δ_1	Grenzschichtdichte	m
δ_2	Grenzschichtdichte	m

\mathcal{C}_{g}^{*}	Hypothetische Gleichgewichtskonzentration	mol/m³
$c^*_{i,I}$	Konzentration an der Phasengrenze	mol/m³
$\Delta c_{\scriptscriptstyle Ende}$	Konzentrationsdifferenz, Kolonnenboden	mol/m³
Δy_m	mittlere Prozessraumtriebkraft	kg/kg
Δx_m	mittlere Prozessraumtriebkraft	kg/kg
\mathcal{U}_{gas}	Oberflächenspannung	N/m
Δx	örtliche Triebkraft	kg/kg
${\mathcal{Y}}_a$	Phasenbeladung, Anfang	kg/kg
${\cal Y}_e$	Phasenbeladung, Ende	kg/kg
k	Stoffdurchgangskoeffizient	m/s
k _g	Stoffdurchgangskoeffizient, gas	m/s
k_l	Stoffdurchgangskoeffizient, flüssig	m/s
<i>n</i> _{SO3²⁻}	Stoffmenge an SO_3^{2-} in der Probe	mol
n_i^*	Stoffstromdichte	mol*s/m²
$n_{i,l}^*$	Stoffstromdichte, flüssig	mol*s/m²
$n_{i,g}^*$	Stoffstromdichte, gas	mol*s/m²
$g_{\scriptscriptstyle D}$	Stoffübergangsgeschwindigkeit	s
β	Stoffübergangskoeffizient	m/s
eta_l	Stoffübergangskoeffizient, flüssig	m/s
eta_{g}	Stoffübergangskoeffizient, gas	m/s
β_{g}	Stoffübergangskoeffizient, gas	m/s

$oldsymbol{eta}_l$	Stoffübergangskoeffizient, liquid	m/s
• N so ₂	Transportstrom	mol/s
n _{Tropfen}	Tropfenanzahl	-
ω	Tropfengeschwindigkeit	m/s
${\cal C}_{Tropfen}$	Tropfenkonzentration	mol/m³
<i>m</i> _{Tropfen}	Tropfenmasse	kg
C _w	Widerstandsbeiwert	-
$\mathcal{C}_{g,Anfang}$	Gasbulkkonzentration, Versuchsanfang	ppm
Δc_{Anfang}	Konzentrationsdifferenz, Kolonnenkopf	mol/m³
$n_{SO_3^{2^-}, Tropfen}$	Stoffmenge an SO_3^{2-} im Tropfen	mol
n _{Ion,Rück}	Stoffmenge des rücktitrierten lod	mol
	Ctoffmonge des verselegtes led	mol
$n_{Ion,Vorlage}$	Stoffmenge des vorgelegten lod	mor
n _{Ion,Vorlage}	Tropfenfläche	m²
n _{Ion,Vorlage}	Tropfenfläche an der Phasengrenze	m² s
n _{Ion,Vorlage} A	Tropfenfläche an der Phasengrenze Erhöhungsfaktor	m² s
n _{Ion,Vorlage} A b	Tropfenfläche an der Phasengrenze Erhöhungsfaktor Tropfendurchmesser	m² s - mm
n _{Ion,Vorlage} A b d Dg	Stoffmenge des vorgelegten fod Tropfenfläche an der Phasengrenze Erhöhungsfaktor Tropfendurchmesser Diffusionskoeffizient SO2 in Luft	m² s - mm m²/s
n _{Ion,Vorlage} A b d Dg	Stoffmenge des vorgelegten fod Tropfenfläche an der Phasengrenze Erhöhungsfaktor Tropfendurchmesser Diffusionskoeffizient SO2 in Luft Diffusionskoeffizient SO2 in H2O	m² s - mm m²/s m²/s
n _{Ion,Vorlage} A b d Dg Dı dTropfen	Stoffmenge des vorgelegten fod Tropfenfläche an der Phasengrenze Erhöhungsfaktor Tropfendurchmesser Diffusionskoeffizient SO2 in Luft Diffusionskoeffizient SO2 in H2O Tropfendurchmesser	m² s - mm m²/s m²/s m
n _{Ion,Vorlage} A b d Dg Dl dTropfen FA	Stoffmenge des vorgelegten fodTropfenflächean der PhasengrenzeErhöhungsfaktorTropfendurchmesserDiffusionskoeffizient SO2 in LuftDiffusionskoeffizient SO2 in H2OTropfendurchmesserAuftriebskraft	m² s - mm m²/s m²/s m N
n _{Ion,Vorlage} A b d Dg D₁ d⊤ropfen FA FG	Stoffmenge des vorgelegten fod Tropfenfläche an der Phasengrenze Erhöhungsfaktor Tropfendurchmesser Diffusionskoeffizient SO2 in Luft Diffusionskoeffizient SO2 in H2O Tropfendurchmesser Auftriebskraft Gewichtskraft	m² s - mm m²/s m²/s m N

g	Erdbeschleunigung	m/s²
н	Henrykoeffizient	kg*m²/mol*s²
H′	Henry Beladungskoeffizient	-
h1	Bezugshöhe zur Pipettenspitze	mm
h2	Bezugshöhe zum Versorgungswasserpegel	mm
h3	Höhendifferenz absolut	mm
I	Strom der Pulsgeberschaltung	А
к	Stoffdurchgangskoeffizient	m/s
M a,r	Im Trägergas enthaltene Absorbtivmasse	kg
M _{a,s}	im Absorptionsmittel gelöste Absorbtivmasse	kg
m r	Trägermasse Rafinat	kg
M s	Trägermasse Sorbens	kg
m	Steigung der Gleichgewichtskurve	-
m1	Masse des leeren Becherglases	g
m2	Masse Becherglas + Wasser	g
m3	Masse des einzelnen Tropfens	mg
Δy	örtliche Triebkraft	kg/kg
R	Gaskonstante	kg*m²/mol*K*s²
Re	Reynolds-Zahl	-
S	Oberflächenerneuerungsfaktor	-
Sh	Sherwood-Zahl	-
t exp	Expositionszeit	S
Т	Temperatur des Gases	К
t	Zeit	S
TG-Stellung	Tropfenabschlagfrequenzprogramm	-

U	angelegte Spannung an die Pulsgeberschaltung	V
τ	Verweilzeit eines Flüssigkeitsteilchens	s
VTropfen	Volumen des einzelnen Tropfens	M ³
We	Weber-Zahl	-
X g,r	Gleichgewichtsbeladung an der Phasengrenze	kg/kg
x	Sorbensbeladung	kg/kg Sorbens
y g,r	Gleichgewichtsbeladung an der Phasengrenze	kg/kg
у	Trägergasbeladung	kg/kg Trägergas
Δc	Konzentrationsdifferenz	mol/m³