Teststand of Electrical Drives, Acquisition of Stationary and Transient Quantities Using a Personal Computer

Richard Leeb, Wolfgang Kurt Mörtl Institute for Electrical Engineering, University Leoben

19th September 2001

"Ich erkläre an Eides statt, dass ich die vorliegende Diplomarbeit selbständig und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt und die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche erkenntlich gemacht habe."

"I declare on oath that I have done this diploma-theses independently and without help of others with no use of any other sources and aids than the indicated and that I have indicated all literally and texual taken passages from used sources."

Unterschrift des Diplomanden Diplomand's Signature

Abstract

In order to keep track with technical development in electrical drive engineering, the Institute for Electrical Engineering enforced the development of low power traction drive systems for vehicles up to 20 [kw] maximum Power used for e.g. scooter golf mobiles, and zero-emission vehicles for short distances. The improvement of such systems determined the build up of an automated test stand. This test stand monitors the whole drive. A personal computer (PC) and measurement devices linked with several interfaces meet the demands regarding the data acquisition. Additionally reliability and security of the system is ensured with a programmable logic controller (PLC). The software implementation features a modular concept, a standardized measurement protocol and a user friendly interface. The modular concept allows expanding the Test-Stand for future development. A standardized measurement protocol ensures easy data processing. A user friendly interface keeps training periods short.

Furthermore this measurement system is used for teaching LabView and electrical drive engineering. Future development will be a fully automated test stand control with access via internet.

Abstrakt

Sensorlose Regelungsverfahren kombiniert mit einer hoch ausgenützten, optimal dimensionierten (hohes Anfahrmoment und großer Drehzahlbereich) pulswechelsrichtergespeisten Asynchronmaschine ergeben eine neue, hocheffiziente, robuste, warungsfreie und zugleich kostengünstige Generation von Traktionsantrieben. Eine Verbesserung solcher Traktionsantriebe und deren Antriebsysteme bedingte den Aufbau eines automatisierten Prüfstandes.

Zu den Aufgaben eines solchen Prüfstandes zählt die Aufnahme von Meßdaten und die Überwachung des Betriebzustandes von Testantrieb und dessen Versorgung. Die Datenaufnahme wird von einem Personal Computer (PC) und mehreren Meßgeräten übernommen. Die Verbindung zwischen den Geräten wird durch verschieden Bussysteme realisiert. Mit Hilfe eines PCt's und einer speicherprogrammierbaren Steuerung (SPS) wird Für Zuverläss igkeit und Sicherheit während der Messung garantiert. Die eigens entwickelte Software zeichnet sich durch einen modularen Aufbau, ein standardisiertes Meßprotokoll und durch eine benutzerfreundliche Bedienoberfläche aus. Das modulare Konzept der Software erlaubt es auch neue Meßgeräte in den Prüfstand zu integrieren. Ein standardisiertes Meßprotokoll soll eine leichte und nachvollziehbare Meßdatenauswertung gewährleisten, und mit einer benutzerfreundlichen Bedienoberfläche soll die Einschulungszeiten neuer Benutzer kurzgehalten werden. Neben Forschung und Entwicklung findet der Prüfstand auch in der Lehre Verwendung finden. Studenten wird die Antriebstechnik und die Programmiersprache G (LabView) näher gebracht werden.

Inhaltsverzeichnis

1	Intr	oducti	on						1
	1.1	Challe	nge				 		1
	1.2	The m	ain theme of interest \ldots \ldots \ldots \ldots \ldots				 •		1
	1.3	Demai	nds				 		2
	1.4	Genera	al Framework		 •		 		3
		1.4.1	Test-Bench				 		3
		1.4.2	Test-Object				 •		3
2	The	Test S	Stand						5
	2.1	Struct	ure				 		5
	2.2	Test E	Sench - Measurement System						5
		2.2.1	Personal Computer						7
		2.2.2	Dewerack-16 Serial with Special Features						8
		2.2.3	Poweranalyzer						11
		2.2.4	Sensors						12
	2.3	Test E	Sench - Control System						13
		2.3.1	Load						13
		2.3.2	Usage of PLC S7 212				 		15
	2.4	Test C	Dbject						17
3	LOL	A- Lov	v Observing Laboratory Application						18
0	3.1		$\operatorname{nds} \ldots \ldots$	_			 		18
	0.1	3.1.1	Functionality						19
		3.1.2	Maintainability						19
		3.1.3	Usability						20
	3.2								20
		3.2.1	Measurement Data						20
		3.2.2	Control Data						20
	3.3	Basics	of LabView						20
		3.3.1	Introduction to G						20
		3.3.2	Independent Data Exchange						22
	3.4	Struct	- 0						22
		3.4.1	Principle						22
		3.4.2	Parts						23
		3.4.3	Summary						24

INHALTSVERZEICHNIS

4	Dat	a Proc	cessing	2	5
	4.1	Measu	urement-Data	2	5
	4.2	Contro	ol-Data	2	5
	4.3	Data I	Delivery System	2	8
	4.4		age Gathering System		8
	4.5		rtant Parts of DDS and MGS		0
		4.5.1	Temporary-Storages		0
		4.5.2	DICE_DIstribution_CEnter.vi		0
		4.5.3	SICE_Sinage_Center.vi		
5	Use	r Inter	raction	3	5
	5.1	Design	n Strategies		5
		5.1.1	Object-Action Interface Model		5
		5.1.2	The Design Process		5
		5.1.3	Golden Rules of Interface Design		6
	5.2	Impler	ementation		7
		5.2.1	Characterization of the User		7
		5.2.2	User-Interface for Initialization		7
		5.2.3	User-Interface for Operation		8
	5.3	LabVi	iew VIs	4	2
		5.3.1	INCE_INitialization_CEnter.vi	4	2
		5.3.2	INIF_INitialization_Ini_File.vi	4	2
		5.3.3	UIUI_UserInterface_UserInterface.vi	4	2
	5.4	First I	Evaluation of User-Interface	4	7
		5.4.1	Aspects	4	7
		5.4.2	Result		7
6	Dat	a Savi	ing	4	9
	6.1	SASH.	LSAve_SHot.vi	4	9
	6.2	Data I	Format	5	0
7	Har	dware	e Communication	5	2
	7.1	Device			2
	7.2	Realiz	zation in G		2
		7.2.1	Concept of VISA		2
		7.2.2	Advanced I/O VIs		3
	7.3	Comm	nunication VIs		3
		7.3.1	Initialization		3
		7.3.2	Communication Dewerack-16		4
		7.3.3	Communication Poweranalyzer		5
		7.3.4	Communication Measurement Board	5	5

V

8	Security Concept 57												
	8.1												
	8.2	Intrinsic Safety	8										
		8.2.1 Power Supply	8										
		8.2.2 Measurement System	8										
		8.2.3 Load System	1										
	8.3	PLC Control	3										
		8.3.1 Overview	3										
		8.3.2 Identification of all inputs	5										
		8.3.3 Identification of All Outputs	5										
		8.3.4 Identification of the States	5										
		8.3.5 Design of the State Diagram	6										
		8.3.6 Definition of the Transition Conditions	6										
		8.3.7 Declaration of All Outputs	6										
	8.4	Software Control	8										
		8.4.1 (MGS) Message Gathering System											
		8.4.2 (SICE) Signage-Center											
	8.5		0										
	0.0		Č										
9	Mea	asurement Example 7	1										
	9.1	Problem Definition	1										
	9.2	Procedure	2										
	9.3	Result	4										
10	Con	clusion 7	5										
	10.1	Further Goals	5										
		10.1.1 Evaluation of the Measurement System	6										
		10.1.2 Improvement for Test-Stand	6										
		10.1.3 Expansions for LOLA	6										
			_										
Α	Filov	vcharts 7	8										
в	PLO	7	9										
	B.1	Table X Inputs 7	9										
	B.2	Table User Input Codes 7	9										
	B.3	-	9										
	B.4	Table PC Output Codes 7	9										
	B.5	-	9										
	B.6		9										
	B.7		9										
C	Б		-										
\mathbf{C}		or Codes 8											
	C.1	Labview Error Codes											
	C.2	Poweranalyzer Error Codes											
	C.3	User Error Codes	7										

INHALTSVERZEICHNIS

D	Snapshots	91			
	D.1 Load Inverter - Staiger&Mohilo - Dewerack	91			
	D.2 First experimental setup	91			
	D.3 Test Bench with Experimental Setup	91			
E	PLC Ladder Diagram	95			
\mathbf{F}	F Programming Diagram of LOLA				
Ał	obreviations	97			
Bi	bliography	98			

Kapitel 1

Introduction

1.1 Challenge

The Institute of Electrical Engineering's main scientific work focuses on power electronics. This includes the development of whole drive (motor design, inverter, control, electronics ...) systems as well as the development of large power conversion facilities.

When developing traction drive systems a lot of measurement has to be done. Data acquisition itself is a very structured work to do. It is often time consuming with little variety. To release highly educated workforce for other more challenging tasks and also to decrease the costs, the build up of an automated test stand was decided.

The two main motivations are saving time and saving money. Besides these the test stand should also facilitate the analysis and improve safety matters and the reliability of the data.

1.2 The main theme of interest

Improvement and development includes the whole traction drive system. The drive system encloses the electrical motor, the inverter, the control of the drive, mechanical parts and the source of power. The drive system may also enclose any mechanical components like the shaft or the coupling.

Interesting quantities for examination of the traction drive system are shown in Table 1.1 on page 2. If these quantities are known, the motor performance can be calculated.

Further targets for examination are

• the motor with its parameter and their dependencies, its behavior while steady state or transient state;

KAPITEL 1. INTRODUCTION

Quantities	Affected part of the system
current RMS	electrical motor
voltage RMS	electrical motor
power	electrical motor
power factor	electrical motor
frequency	supply
speed	electrical motor
torque	electrical motor
temperature	electrical motor, housing, coupling

Tabelle 1.1: Examined Quantities

- the battery, its capacity and its charging properties;
- the inverter and the Digital Signal Processor (DSP) and
- the interaction between the parts of the drive (estimated efficiency, travelling range ...).

Therefore an Automated Test Stand should allow to look at the whole drive system development with a more widespread view.

1.3 Demands

The following demands are made on the test stand:

- full automatization
- timesaving (easy use)
- standardized measurement protocol (easy evaluation) in detail:
 - time;
 - current, voltage (L1, L2, L3 to induction motor, line);
 - temperatures:
 - $\ast\,$ cooling sink
 - * induction motor
 - * load
 - * environment
 - * shaft
 - torque

- rotating speed
- testing of the whole drive system from batteries to inverter;
- defined quality assurance;
- safe operation(software, hardware, environment);
- flexibility for further extensions

1.4 General Framework

The Test-Stand can be logically divided into *Test-Object* and *Test-Bench*. The Test-Object is the target of testing, the Test-Bench is everthing needed for testing the Test-Object. Test-Bench consists of *Measurement-System* and *Control-System*. All parts needed for data acquisition are referred to Measurement-System. Parts including controlling tasks are counted among Control-System. A possible carrying out of the Test-Stand is shown in figure 1.1 on page 4

1.4.1 Test-Bench

Measurement-System

The Measurement-System consists of an Intel based Personal Computer (PC) with a built in Data AcQuisition (DAQ) board and a General Purpose Interface Bus Board (GPIB) both from National Instruments. A Poweranalyzer by LEM Norma a Dewerack-16 with several signal conditioning plug-in modules (Pads) by Dewetron and several temperature-, torque- and rotating-speed-sensors are the measurement devices.

Control-System

The Control-System consists of a load system by Lenze (inverter and motor), a programmable logical controller (PLC) S7-S212 by Siemens.

The task is to combine these parts logically and physically to a Test-Bench. Logically with a suited program written in G (Labview) and physically with the appropriate connections. While testing the Test-Object this Test-Bench has to meet all the demands mentioned above.

1.4.2 Test-Object

Whole traction drive systems up to 13 kW rated power and 22 kW maximum power (short time operation) are the target of testing.

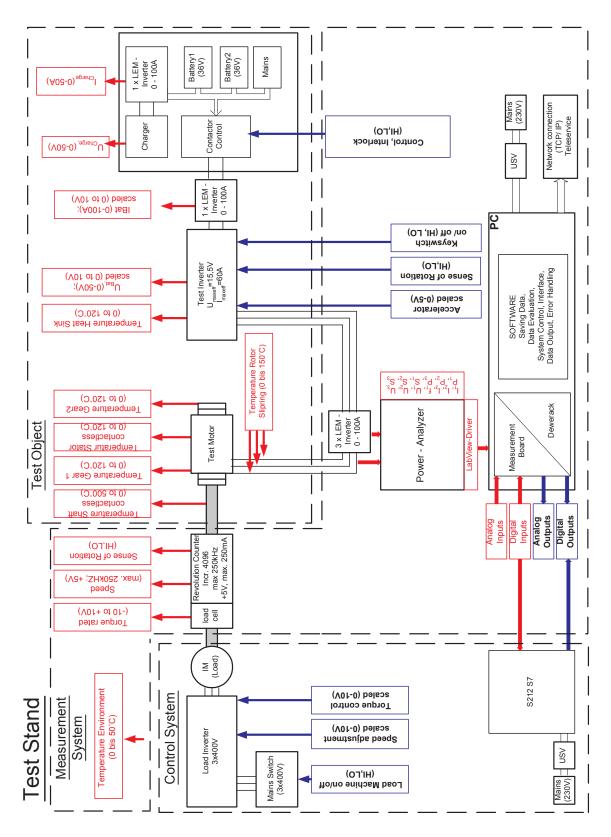


Abbildung 1.1: Possible Measurement Concept

Kapitel 2

The Test Stand

2.1 Structure

The general system structure is shown in picture 2.1 on page 6.

2.2 Test Bench - Measurement System

The measurement system consists of:

- 1. personal computer with
 - DAQ device
 - GPIB device
 - RS232 device
- 2. Poweranalyzer with
 - GPIB interface
- 3. Dewerack with
 - RS232 interface
 - DAQ interface
 - PAD-modules and DAQ-modules
 - attached sensors:
 - speed
 - torque
 - temperature

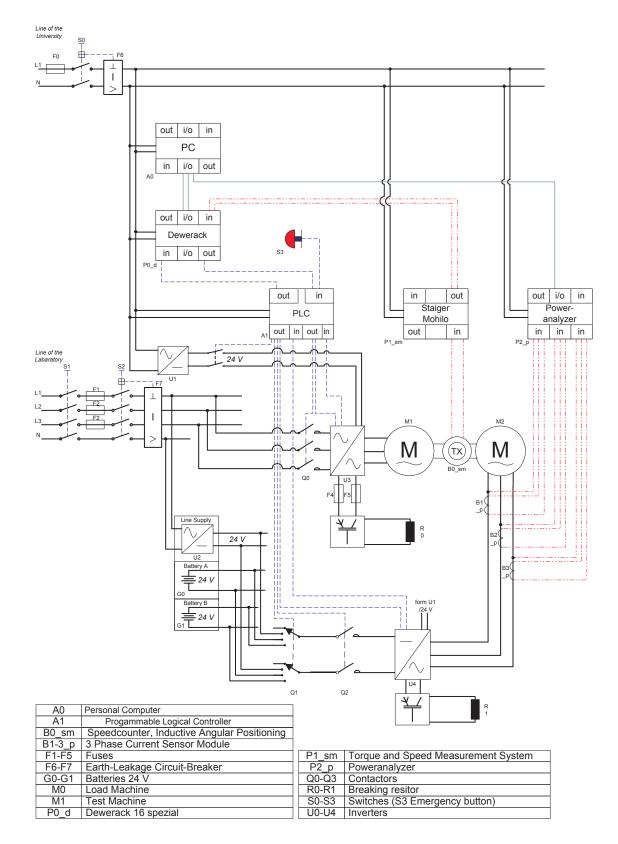


Abbildung 2.1: System Wiring Diagram

Internal System Resources			Additional Information	
Processor Speed 500 MHz		Intel Pentium III		
Memory	128	MB	DIMM-RAM-ECC	
Cache	512	kB		
Hard disc capacity	20	GB		
Internal System Interfac	ces		Additional Information	Connection to
Printer Interface	1 x		EPP	
RS232 Interfaces	2 x		RS232c	Dewerack, Load Inverter
PS/2 Interfaces	1 x			
USB Interfaces	1 x			
Plug-in Boards			Additional Information	Connection to
Measurement Board	PCI -	6024E	NI Multi I/O Board	more than one option
GPIB	PCI -	GPIB	NI-448.2, X2 cable	Poweranalyzer
Ethernet board	PCI		Kingston fast Ethernet	Local Area Network
Graphic board AG			Matrox G400	Monitor

Personal Computer Resources

Tabelle 2.1: List of Resources

2.2.1 Personal Computer

To give an idea of the available hardware capacity, system specification are shown in Table 2.1 on page 7.

In the following devices will be described in a more detailed way.

RS232 Interfaces

This kind of serial interface can be found in almost every IBM-compatible PC. The data transfer rate in this system is set to 9600 bits per second (bps). A higher rate can be achieved if necessary.

There are two Recommended Standard 232 (RS232) Interfaces and both are in use. The first COM port is used to realize the communication between PC and the Dewerack. There are four pads which are affected from this communication link. Two of these pads DE-PAD-TH8-K and DE-PAD-V8 are used for signal conditioning of all measured temperature values. These values are taken by seven thermoelements type K and two infrared temperature sensors. Two pads are of type PAD-D07. They have seven digital outputs each and are used for communication with a PLC S7-212.

The second COM port is used to communicate with the load inverter. In the future this task can be realized via CAN-bus.

PCI 6024 Low Cost Multifunctional I/O Board

There are 16 analog inputs, two analog outputs, eight digital in- and outputs and two counters. If only one input channel is used, the board will offer the ability to scan it

200 000 times per second. If more than one channel is used the scan rate decreases accordingly to the number of the channels used. The resolution of a measurement point is 12 bit.

The measurement board is connected with the Dewerack. Several channels are combined with pads installed in the Dewerack or only passed through to connectors to the chassis of the Dewerack. Six pads type DE-DAQ-V-D are connected with the first six analog inputs of the board. Two pads type DE-DAQ-Out are connected to the two existing analog outputs. One counter input channel is assigned to one BNC connector of the Dewerack. One of the digital input/ output (I/O) channel is connected to a BNC connector to control the rotary direction, the rest of the digital I/O channels are passed through to a sub-D connector located at the back of the Dewerack.

Two analog inputs are in use. They are used to survey torque and rotation speed.

GPIB PCI plug-in board

This board is needed to realize an interconnection between the PC and the Poweranalyzer via IEEE 488.2, also called the General Purpose Interface Bus (GPIB).

The IEEE 488 interface is a general purpose digital interface system that can be used to transfer data between two or more devices.

Some of its key features are: Up to 15 devices may be connected to one bus. Total bus length may be up to 20m and the distance between devices may be up to 2m. Communication is digital and messages are sent one byte (8 bits) at a time. Message transactions are hardware handshaked. Data rates may be up to 1 Mbyte/sec.

Ethernet board

The Kingston Ethernet board connects the local PC to the local area network of the department. This provides the possibility to future extensions like online publication in the internet or online control.

2.2.2 Dewerack-16 Serial with Special Features

Dewerack-16 in combination with installed plug-in pads is a signal conditioning rack. Possible input signals are set according to the used DEWE-DAQ, DEWE-PAD modules and the connectors on the rear (see manuals [8, 9]).

Abbildung 2.2: Dewrack-16 Serial Special

The use of the available 16 slots is shown in the following:

- slot zero to five: DAQP-V
- slot six to eight: unused
- slot nine: PAD-TH8
- slot ten: PAD-V8
- slot 11 to 12: PAD-D07 (out)
- slot 13: PAD-A01 (out)
- slot 14 to 15: DAQ-SPEC (out)

DAQxx- Modules

DAQP-V modules are voltage isolation amplifiers, standardized for voltages from $\pm 10 \, mV$ up to $\pm 50 \, V$. Using a shunt resistor currents also can be measured. Signal conditioning is done by selectable low pass filters. The selection ranges from 10 Hz to 10 kHz. There are two ways to change measurement range and input filters. One is realized with button selection, the selection will be stored to an electrical erasable programmable read only memory (EEPROM). The second is a temporary setting via RS-232/485 interface. The analog digital (A/D) conversion is realized external by the measurement board in the PC.

DAQ-SPEC modules are output modules. They provide an isolated voltage output from -10 to +10 V. The actual output depends on the DAC-output-voltage of the measurement board. The proportion is 1:1.

PADxx- modules

All PAD- modules are to program via a RS232 interface. Data operations (read, write operations), configuration setting and calibration are done via this interface. The maximum transfer speed concerning the modules specification is 9600 bps.

PAD-TH8 modules are eight channel thermocouple amplifiers. Eight thermocouple type K can be connected to this module (seven are currently installed). These channels are differential with an resolution of 16 bit. The input signals are converted by an integrated A/D converter and transferred via RS232 interface.

PAD-V8 modules are eight channel amplifiers for voltage and current measurement. These input channels are differential with a resolution of 16 bit. Voltage ranges are available from ± 10 V to ± 150 mV, for a current range of 20 mA an external 125 Ω shunt resistor is necessary. The input signals are converted by an integrated A/D converter and transferred via RS232 interface. Both infrared temperature sensors are connected to this module.

PAD-D07 modules are seven relay output modules with maximum load 0.5 A using 60 VAC or 1 A using 24 VDC featuring a high isolation voltage of 1000 V. The relays itself are form 'A' type relay SPST N.O. Relay on time accounts to 5 ms. Their state can be set via the RS232 interface. Five of the 14 relays are used for the communication between the PC and the PLC S7.

PAD-A01 modules are one channel output (digital to analog) modules. The output resolution is 12 bit and the range of the output signal lasts from 0 to 10 V or from 0 to 20 mA respectively from 4 to 20 mA. The kind of the output and its value is set via the RS232 interface.

Rear Connectors

In this special configuration three BNC connectors and a 37 pin female Sub-d connector are mounted to the rear panel of the Dewerack-16.

The first BNC connector (DI0) is wired to "Digital I/O 0" of the measurement board, the second (Counter0) and the third (Counter1) to "PFI8/GPCTR0_Source" respectively to PFI3/GPCTR1_SOURCE both are counter inputs of the measurement board.

Via the Sub-d connector the remaining digital in- and outputs of the measurement board "Digital I/O_"(one to seven) can be wired.

2.2.3 Poweranalyzer

Abbildung 2.3: Poweranalyzer D4000

Figure 2.3 shows the Poweranalyzer NORMA D4000 which is a true root means square (TRMS) measurement device for three phase power measurement. Measurement categories are voltage, current, frequency and derived values like power and powerfactor (see manual [10]).

A three phase current sensor module increases the possible measurable current to 100 ampere.

In addition to the voltage and current inputs four analogue inputs and four analogue outputs are implemented and combined to a 25 pin female Sub-d connector.

Voltage

There are 8 voltage ranges selectable, from 0,3 V up to 1000 V. Values to be measured can be TRMS, rectified mean value, averaged value, peak to peak value, minimum and maximum value, peak factor and form factor.

Current

The measurable current depend on the input used. There are two inputs per line, a five ampere input with possible selectable ranges lasting from 15 mA to 5 A and a 15 ampere input with ranges from 1 A to 30 A. Values to be measured can be TRMS, rectified mean value, averaged value, peak to peak value, minimum and maximum value, peak factor and form factor.

KAPITEL 2. THE TEST STAND

Power

There are 80 ranges according to the product of voltage and current. Values to be measured are real power, complex power and reactive power.

Frequency

The measurable frequency ranges from direct current (DC) to 300 kHz. NORMA D4000 can calculate Fast Fourier-Transformation (FFT)in a range from 2 Hz to 100 kHz referring to the actual current, voltage or real power.

External Communication

This measurement device is also capable to communicate with other devices. The interfaces built in are IEEE 488.2, RS232 and Centronics. IEEE 488.2 is connected with GPIB PCI plug-in board of the PC. For further detail please refer to the manual of the Poweranalyzer Norma D4000 [10].

2.2.4 Sensors

In the measurement system implemented sensors are: Nine temperature sensors, three hall sensors, and a metering shaft for torque and speed detection.

Temperature Sensors

Seven of the nine temperature sensors are thermocouples of the type K the measurement range lasts from - 50 °C to 1300 °C. They are connected via PAD-TH8 to the Dewerack 16.

The remaining two senors are infrared (IR) thermometers. They allow a non-contact temperature measurement up to 1371 $^{\circ}$ C. They are connected via PAD-V8 to the Dewerack 16.

Hall Senors

The three hall senors are part of a three phase current sensor module. This module is used to measure currents up to 100 ampere in a frequency range from DC to 10 kHz.

The hall sensors are supplied by the analogue outputs of the Poweranalyzer and connected to the five ampere input of the same.

ſ	Type	Design Value		Spark Suppression Rat			
		Rated Current	Inductivity	A	В		
	9328	42 A	0,8 mH		0		

Network Filter Characteristics

Tabelle 2.2: Network Filter Characteristics

Metering Shaft- Torque

The torque is proportional to the angle of torsion. The angle of torsion of the shaft between load machine and traction machine is measured using an inductive angular position measuring system. The measurement system converts the angle to a proportional signal. The torque is derived from this signal.

The signal is conditioned and amplified by a torque and speed measurement system by Staiger & Mohilo and passed on to a DAQP-V module of the Dewerack.

Metering Shaft - Speed

The speed is measured with an optical speed counter. The optical speed counter is realized as speed measurement device with optical scanning of a raster disc.

The signal is conditioned and amplified by a torque and speed measurement system by Staiger & Mohilo (see manual [6, 7]) and passed on to 'Counter0' of the Dewerack.

2.3 Test Bench - Control System

2.3.1 Load

The load consists of a network filter, an inverter, a brake chopper, an external braking resistor and an induction machine. All parts are purchased from the same producer, 'Lenze Antriebstechnik Ges.m.b.H' and are phased on each other. The system is designed for a power range up to 13,2 kW rated power with an overload capacity of 22 kw (see manuals [2, 3, 4, 5]).

Network Filter

For an absence of feedback concerning the public mains a network filter is installed. The network filter also contains anti-interference components. Its characteristics are shown in table 2.2 on page 13 see [3] (page 3-7).

Туре			9328
Servo Inverter			EVS9328-ES
Mains Voltage	U_N	[V]	320-528
Mains Frequency	F_N	[Hz]	45-65
Alternative DC Supply	U_G	[V]	460-740
Motor Rating (4. pol ASM)	P_N	[KW]	22,0
Output Current (8 kHz)	I_{N8}	[A]	47
Output Current (16 kHz)	I_{N16}	[A]	30,6
Output Rating	S_N	[kVA]	32,6
Max Output Current (8 kHz)	I_{N8}	[A]	70,5
Max Output Current (16 kHz)	I_N	[A]	44,0
Mains Current (U_{mains} 400 V)	I_{N16}	[A]	30,6
Motor Voltage	U_M	[V]	$3 \sim 0 \cdots U_{mains}$
Dissipation $(U_{mains} 400 \text{ V})$	P_D	[W]	640
Power Reduction (40 $^{\circ}C$ - 50 $^{\circ}C$)		%/K	2
Power Reduction $(1000m - 4000m)$		%/km	5

Load Inverter Characteristics

 Tabelle 2.3: Load Inverter Characteristics

Load Inverter

The load inverter is one of the vector control frequency inverters from the 9300 series of Lenze. It is a servo inverter with technology and PLC functions.

These technology functions mean that additional external controls or mechanical speed controllers can be omitted. It is capable of speed, torque and angular control of servo motors including synchronous motors and induction motors. Integrated PLC functionality in the servo inverter means that the control and regulating functions can be wired as required. These functions can be internally adapted to the tasks with a programming language from automation engineering (IEC 1131-3) or by means of function block wiring.

There are several ways to access the inverter to change system parameter or set regulating functions. It can be done via a console or by "Global Drive Control" a software for a PC. The connection between PC and inverter can be realized with an additional interbus module, a profibus module, or a RS232/485 module.

The power consumption is covered by the 3AC/400V/50Hz line of the laboratory. The inverter control is supplied by external 24 V. Table 2.3 on page 14 is an overview of the main characteristics. Taken from catalogue [2] page 22.

Brake Chopper with External Braking Resistor

Dynamic braking leads to an inverse energy flow. To cope with this energy one can either recover it to the main or consume it by a braking resistor. In this system the

Break Chopper	Type	EMB93	52-E
Supply Voltage	U_S	[V]	270-780
Max Current (DC)	I_{max}	[A]	42
Continuous Rating	P_c	[KW]	19
Peak Power (max 60 sek)	P_p	[KW]	32
Smallest Resistor	R	$[\Omega]$	18
Operating Point $(U_{mains} 400 \text{ V})$	U_{op}	[V]	725 (DC)
Operating Point $(U_{mains} 460 \text{ V})$	U_{op}	[V]	725 (DC)
Operating Point (U_{mains} 480 V)	U_{op}	[V]	765 (DC)

Break Chopper Characteristics

Tabelle 2.4: Break Chopper Characteristics

Break Resistor Characteristics

Break Resistor	Type	ERBD022R0	3k0
Resistance	R	$[\Omega]$	22
Peak Power	P_p	[KW]	26
Continuous Rating	P_c	[W]	3000
Heat Capacity	C_p	[kJ/(kg K)]	450
Mass	m	[kg]	10,6

Tabelle 2.5: Break Resistor Characteristics

second possibility is applied. Table 2.4 on page 15 and Table 2.5 on page 15 indicate the characteristics of the brake chopper and the resistor. Taken from manual [4] page 3-3.

Load Machine

The load machine is a squirrel-cage asynchronous servo motor with a rated power of 13,2 [kW]. Its nominal speed is 3510 RPM and it has a field weakening range up to a maximal speed of 8000 RPM. Protection for overheating is realized by an integrated KTY temperature sensor and the cooling is done by a separate driven fan. Table 2.6 at page 16. Taken from manual [5] page 12.

2.3.2 Usage of PLC S7 212

Main objectives:

- Control tasks
 - of the PC and software are operating
 - of Hardware operating
 - settings made by the PC and software are allowed

Servo Motor	Type N	IDFKA 100	-22,120
Axis height	h	[mm]	96
Speed (rated)	n_r	$[min^{-1}]$	3510
Torque (rated)	M_r	[Nm]	36.0
Power (rated)	P_r	[kW]	13.2
Voltage (rated)	V_{r3}	[V]	390
Current (rated)	I_r	[A]	28.7
Torque max	M_{max}	[Nm]	180
Speed max	n_{max}	$[min^{-1}]$	8000
Mass moment of inertia	J	$[kg \cdot cm^2]$	72
Weight	m	[kg]	48.2

Servo Motor Characteristics

Tabelle 2.6	: Servo	Motor	Characteristics
-------------	---------	-------	-----------------

Properties S7-212

SPS S7 212	Expansion EM223					
Memory		Connector	°S	Connectors		
EEPROM	512	Inputs	8 DC	Inputs	8 DC	
	words		24V		24V	
User Data	512	Outputs	6 relays	Outputs	8 Relays	
	words					
Internal Marker	128					

Tabelle 2	2.7:	Properties	PLC
-----------	------	------------	-----

- the hardware has carried out settings made by the PC and software
- start-up and shut-down tasks
 - Start up of all hardware components in a defined order (the measurement PC is not regarded)
 - Shut down of all hardware components in a defined order (the measurement PC is not regarded)

Properties and Possibilities of the PLC S7 212

Table 2.7 and figure 2.4 give a small review over the properties of the PLC S7-212 (S7). The stored program can link the values at the inputs and set the outputs accordingly. The programming language contains commands to define sequences, sub-programs, boolean operations, delays, counters, and timers. For detailed information refer to the system guide of the S7 [13].

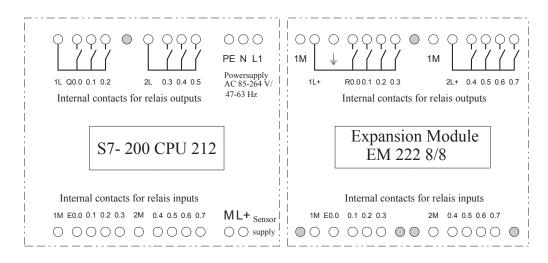


Abbildung 2.4: Terminal Diagram SPS S7 212

2.4 Test Object

Every electrical drive with power up to 22 kw and speed up to 10 000 RPM can be tested with the above described test bench. Problems which have to be solved are the physical adaptation of a changed mechanical coupling and also the adaptation of the supply of the test motor.

The Test-Stand was planned with a test object consisting of induction motor, an inverter, two batteries and a main supply and a charging unit. With this approach every part of a common drive system can be considered, all aspect concerning the power supply, a possible power conversion and the drive itself. A possible measurement concept with this mentioned test object is shown above in figure 1.1 on page 4.

The projects aim was the development of an extensible test stand. Extendability means also the ability to test different kind of electrical drives. It should be pointed out here that the Test-Stand can test more than induction engines but all kind of electrical drives.

Kapitel 3

LOLA– Low Observing Laboratory Application

3.1 Demands

The software controlling the test stand is called LOLA. This is a synonym for Low observing Laboratory Application. LOLA handles communication between the user, the Test-Object, the Measurement-System and the Control-System. It enables the user to handle all the test stand's functionality from one place. Therefore it is an low observing application.

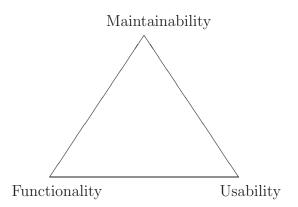


Abbildung 3.1: Demands

Figure 3.1 shows the area of conflict developing software for the proposed Test-Stand. There are three main objectives: Functionality, usability and maintainability. Functionality includes all possibilities of the system. Usability means how easy the system is to use. Maintainability means how easy it is to adapt and improve the system.

3.1.1 Functionality

Providing a Software with good functionality is not easy. In order to manage the size of LOLA its structure had to be planed carefully. Data sheets, flow sheets, drafts and name conventions for variables and subVIs helped to develop, improve, and adapt the software. Logically independent parts were programmed as independent modules to ensure separate testing and easy replacement by improved VIs.

LOLA's Functionality covers the following functions:

- Acquiring Data,
- Processing Data,
- Control of the Test-Stand,
- Well Designed User-Interface,
- Quality assurance.

Basically LOLA has to acquire data which result from signals at the used sensors. For our purpose a *signal* is defined as any physical quantity that varies with time [21]. The physical quantity has to be transformed into an electrical signal. The electrical signals are generated by sensors. Next the signal is standardized, sampled and quantized. The resulting values with according *Time-Stamps* are the *Measurement-Data* (see section 3.2.1).

The Measurement-Data is processed in the PC. Processing Measurement-Data includes transferring, rearranging, displaying and saving. A standardized data format for saving is essential for automated data analysis.

Information of every system part's actual state is important for LOLA to keep control of the Test-Stand. With this information LOLA is able to derive actions that ensure a secure operation. This information is called *Control-Data* (see section 3.2.2).

A well-designed User Interface is vital to an easy use of the program.

Quality assurance is an important issue in the world of industry. The reliability of data is one of the property of the Test-Stand (see chapter 6).

3.1.2 Maintainability

A good maintainability means that enhancing, improving and changing is easy. There are some cases of such:

- Investigating different Test-Objects.
- Expansion, replacement or removal of system components.
- Changing processing of Measurement-Data.

In order to meet the demands of maintainability LOLA is constructed in a modular way. If the Test-Object changes, parameters can be changed easily. A measurement device with a different system bus can also be added, replaced or removed easily.

3.1.3 Usability

The Usability focuses on things concerning the user. This means

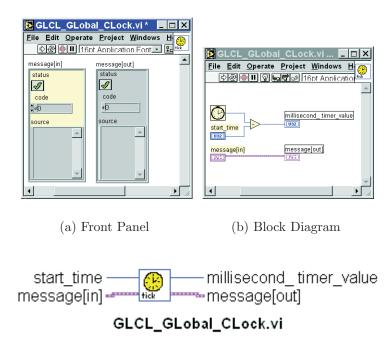
- short time to learn,
- operational reliability,
- self-explaining user interface.

These mentioned facts are discussed more detailed in chapter 5.

3.2 Data

3.2.1 Measurement Data

Measurement-Data includes measured values. These values are completed with their time of acquisition the *Time-Stamp* (see chapter 6). Time-Stamp is the difference between PC-system-time on start of LOLA and PC-system-time at time of acquisition. Measurement-Data is organized in two-dimensional arrays. First column contains Time-Stamp and the further columns measurement values. An array of column-names declared in the settings is used to identify the columns (see chapter 4).


3.2.2 Control Data

As mentioned above LOLA needs information to control the Test-Stand. This information together with the derived commands for the Test-Stand is the Control-Data. It includes the state of every subVI and the state of the Measurement- and Control-System. The structure of Control-Data is described more detailed in chapter 4.

3.3 Basics of LabView

3.3.1 Introduction to G

LOLA is developed with LabView. Therefore a short introduction to LabView is given in this section.

(c) Connector Pane

Abbildung 3.2: Make-up of a LabView Application

LabView, with its programming language G, is a fully featured programming language ge produced by National Instruments. It is a general-purpose graphical programming language quite different to popular text-based programming languages. There is no text based code as such, but a diagrammatic view of data flow through the program.

G programs are called virtual instruments (VIs) which are similar to functions of conventional programming languages.

A VI consists of an interactive user interface, the *front panel*, a dataflow diagram, the *block diagram* and icon connections, the *connector pane*. The make-up is visualized at Figure 3.2 on page and subsequently described more detailed. Expressions are taken from G Reference Manual [15].

- The *front panel* contains controls and indicators like buttons, graphs, etc. Its appearance was designed to simulate real instruments. See figure 3.2(a).
- The *block diagram* is the pictorial solution to the programming problem. A VI handles data according to its block diagram. See figure 3.2(b). There are objects and connections. The objects can be controls, operators or subVIs. Data 'flows' along connections. Objects are sequentially executed the way data flows.
- The *connector pane* is a symbol for the VI. It can have inputs and outputs called connectors. Via these connectors several VI's can interchange data. Its usage could be described as a graphical parameter list. See figure 3.2(c).

For further information see [14, 16, 17] and [15] all manuals provided by National Instruments (www.ni.com/manuals) especially 'LabView, User Manual' [14] is recommended.

3.3.2 Independent Data Exchange

This section will introduce possibilities of exchanging data between subVIs running parallel at the same time. In LabView there are three such possibilities:

- 1. *Global Variables* can be accessed in every part of an LabView application. They can not be adapted for special purposes. Debugging is difficult.
- 2. Direct Data Exchange (DDE) or Transmission Control Protocol / Internet Protocol (TCP/IP): This system establishes a client-server structure. To ensure a lossless data transfer several control structures have to be added. Furthermore there is big overhead.
- 3. *Temporary-Storages* are non-reentrant subVIs which can theoretically be called everywhere in the program. In LOLA each of them is called twice: Once for writing and once for reading. So the connection is a point to point connection. The detailed construction can be found in chapter 4.

Originally this method had to be used with LabView 4 as there were no global variables.

LOLA uses the third possibility. The advantage of the Temporary-Storages is that many different values can be buffered with one call, the storages can be easily adapted for different purposes and they can even get a kind of "intelligence".

3.4 Structure

3.4.1 Principle

In principle the main program LOLA is a common VI containing several subVIs. The differences between a workaday G solution and LOLA are first the grown complex structure, second the claim of an well designed user interface, third a secure operation for the user and the equipment, and fourth the independent execution of the subVIs while maintaining a steady data flow to the hard-disk and the user interface.

This last difference is mainly dictating the structure of LOLA. On the one hand LOLA has to process data from different locations on different scan rates using multi-threading capability of Microsoft Windows NT^{TM} , on the other hand LOLA has to send the gathered data to two different sinks – the userinterface and the hard-disk. If data is not processed independently one source has to wait for the other. Different

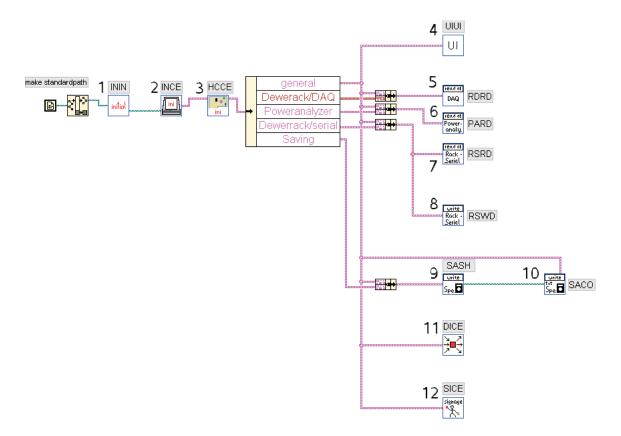


Abbildung 3.3: LOLA: Diagram of Main Program

scan rates on different location can easily produce data jams like buffer overflow and resulting loss of data.

Each communication connection to a measurement device is implemented by an independent subVI. This subVI holds the driver and transfers the data to a buffer. This buffer is the *Temporary-Storage*. It stores the data until the *Distribution-Center* reads it out.

The Distribution-Center's duty is to collect all Measurement-Data of the system by reading out the Temporary-Storages and distributes it to target Temporary-Storages for further processing. Further processing means displaying for the user, saving on hard-disk and controlling the data. Detailed description is given in chapter 4. SubVIs for generating- and processing data are called *Modules*.

3.4.2 Parts

The main programm contains all main parts (VIs) of the program see figure 3.3 on page 23.

Initialization subVIs

The VIs 1,2 and 3 are for initializing the system: (1) ININ_INITIALIZATION_INITIALIZATION.VI (ININ) resets all parts of LOLA. (2) INCE_INITIALIZATION_CENTER.VI (INCE) enables the user to change settings all parts of LOLA. (3) HCCE_Hardware_Configuration_CEnter.vi (HCCE) starts the Measurement- and Control-System.

Control SubVIs

Measurement- and Control-Data distribution from their sources to their predefined sinks is performed by (10) DICE_DIstribution_CEnter.vi (DICE). The control of the system's status is done by (11) SICE_SIgnage_CEnter.vi (SICE).

Data Read SubVIs

(5) RDRD_RackDAQ_ReadData.vi gets measurement data from Dewerack using the DAQ-board. (6) PARD_PowerAnalyzer_ReadData.vi gets measurement data from LEM Poweranalyzer. (7) RSRD_RackSerial_ReadData.vi gets measurement data from Dewerack using RS232-interface.

Data Write SubVIs

(8) RSWS_RackSerial_WriteS7.vi sends Commands to the PLC S7 S212.

Processing SubVIs

(9) SASH_SAve_SHot.vi saves Data on demand. (4) UIUI_UserInterface_UserInterface.vi enables the user to interact with the system. (12) SACO_SAve_COnversion.vi (SACO) is executed after the data acquisition has been terminated. It converts the saved data file from the LabView intern format to ASCII-text format

The following chapters include more detailed information on the Modules.

3.4.3 Summary

LOLA contains a main VI with several subVIs called Modules, the diagram is shown in 3.3. Apart from the VIs (1,2,3) and (10) the modules execute parallel without waiting for data from any other VI. The steady dataflow is guaranteed by the Distribution-Center in concert with Temporary-Storages.

Kapitel 4

Data Processing

As mentioned in the previous chapter there is Measurement- an Control-Data. How these data is composed and transported between the Modules is explained in this chapter.

Figure 4.1 on page 26 gives an overview of the connection of the parallel running Modules while operation. These can be sorted into groups:

• Data Read subVIs

• Control subVIs

• Data Write subVIs

• Processing subVIs

4.1 Measurement-Data

Measurement-Data is organized in two-dimensional arrays. In LOLA there are three sources for Measurement- Data the VIs (5) RDRD, (6) PARD, (7) RSRD (see figure 4.1 on page 26). For every source a two-dimensional array is created. First column contains time and the further columns measurement values. The number of columns with measurement values depends on the number and kind of commands set in the user setting while the initialization. The header of each column is also declared in the settings while the initialization (see chapter 5). For example the in table 4.1 listed settings were used while testing LOLA.

4.2 Control-Data

Before discussing the way Control-Data is processed, the structure of Control-Data and the error handling in LabView in general have to be explained.

In LabView standard error clusters and *General Error Handler* (GEH) are used to cope with errors which may occur in executing VIs. Standard error cluster consists of *Status* (boolean), *Code* (large integer) and *Source* (string).

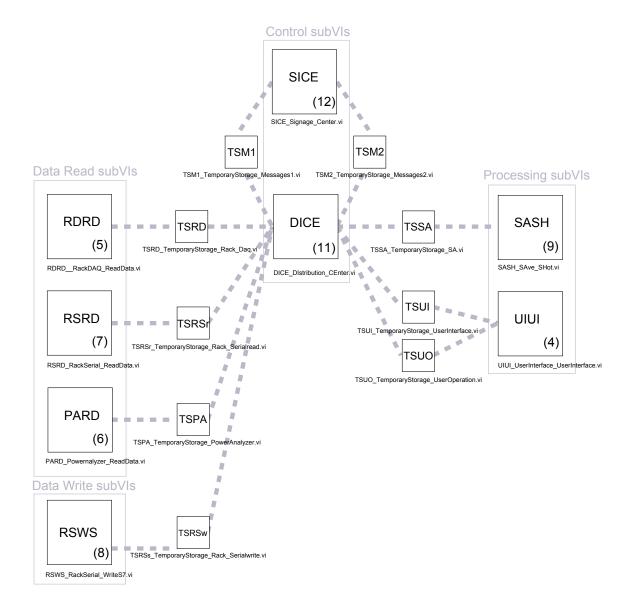


Abbildung 4.1: Synopsis of DDS and MGS Numbers in brackets according to figure 3.3 on page 23.

PowerAnalyzer_ReadData										
	L1			L2			L3			All
time	V_1	I_1	f_1	V_2	I_2	f_2	V_2	I_3	f_3	φ
		•••								
RackS	$RackSerial_ReadData$									
	K- Elements					Infrared Sens.				
time	ϑ_{ke0}	ϑ_{ke1}	ϑ_{ke2}	ϑ_{ke3}	ϑ_{ke4}	ϑ_{ke5}	ϑ_{ke6}	ϑ_{is_0}	ϑ_{is_1}	
	•••		•••	•••	•••	•••				
RackL	RackDaq_ReadData									
	Metering Shaft									
time	n	T_{Torque}								

Tabelle 4.1: Measured Values

 $V \dots$ voltage, $I \dots$ current, $f \dots$ frequency, $\varphi \dots$ power-factor angle, $n \dots$ speed, $T \dots$ torque.

The standardized error handling differs between No Error, Warning and Error. In case of No Error (default) Status is False, Code and Source are empty. If a warning occurs Status is unchanged, but code is set according to the warning and the name of the VI is written to source. If an error occurs in the executing VI Status is set to TRUE, Code is set according to the occurred error and the name of the VI is written to Source.

In LabView there are two ways to get error or warning information about the execution of the running VI. The first way is to wire the error-connector of a LabViewstandard VI with a GEH. The GEH stops the execution of the VI and replaces the string of Source with an explanation of the occurred error and displays it via a pop-up menu. The second way to get error or warning information is to define user errors. Own routines have to decide wether the error is triggered or not. The codes and explanations of the user-defined error codes have to be added to the GEH codes. LOLA uses both ways.

Unfortunately the standardized error handling is too strict to implement the sum of Control-Data. To circumvent these restrictions *Messages* and SICE_SInage_Center.vi are introduced to LOLA. Messages represent all Control-Data needed in LOLA and SICE is the core to process them. In general Messages are LabView standard error clusters. The exception are Reports.

Messages in turn can be Condition, Command, Confirmation, Log, and Report. Messages have the following tasks:

- *Condition*: Information about the condition of each Module, can be a Warning or an Error.
- Command: Information sent to modules to control their behaviour. The mea-

ning can be: termination, halt for the the Control-System, or save-operation to name only a few.

- Confirmation: An answer of each module to a given Command.
- Log: Information consisting of concentrated and reformatted Conditions. This information is saved into a log-file and displayed at the userinterface in the Messages-Panel.
- *Report*: All information generated in the modules except the Measurement-Data. Its data format does not allow an integration with the standard error cluster but they are also used to control and monitor status of the Test-Stand.

4.3 Data Delivery System

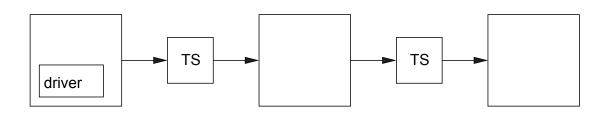


Abbildung 4.2: Data Delivery System (DDS)

In order to make Measurement-Data processing possible some communication links between the participating parts of the system have to be established. The way this is done is called *Data Delivery System (DDS)*. In principle the DDS ensures that Measurement-Data gets from the driver-subVI to the process subVIs without affecting the independent execution of the VIs concerned.

The physical links have been described in chapter 2. Figure 4.2 shows the principle of the software solution of the communication link. It shows a block diagram of two exemplary Modules and their communication. Driver-subVIs do the communication between hardware and software which is described more detailed in Chapter 7. *Temporary-Storages* (TS) buffer the Measurement-Data so that other parts get it independently. The *Distribution-Center* collects and distributes the data. These two steps will be explained later on. The process-subVIs display, save and control the Measurement-Data. They will be described in the chapters 5 and 6.

4.4 Message Gathering System

Parallel to the DDS a *Message Gathering System (MGS)* is implemented to gather all relevant Messages.

KAPITEL 4. DATA PROCESSING

The way Messages are collected and distributed can be seen in figure 4.3. The MGS ensures a proper communication between the Modules of LOLA. It owns all functions of a bus-system except data transfer which is realized by the DDS as said above.

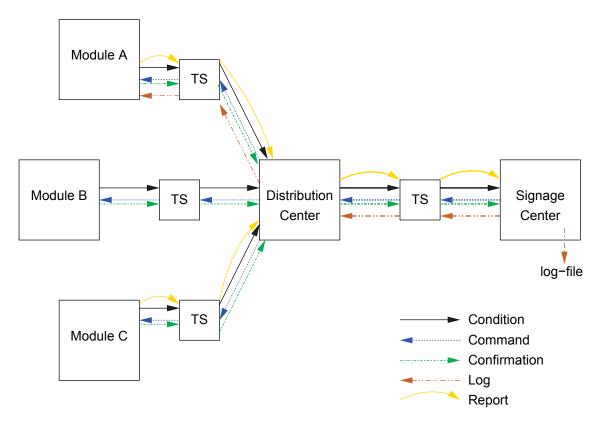


Abbildung 4.3: Message Gathering System (MGS)

The Modules have to notify their Condition so the system can react accordingly. Conditions from all Modules are passed on through Temporary-Storages to the Distribution-Center. The collected Conditions are forwarded to the Signage-Center. There proper reactions have to be initiated (See Section 4.5). For the fact that Reports are different formatted Conditions the same procedures are applied.

The proper reaction results in Commands. These are sent to the Modules via Temporary-Storages and Distribution-Center. In each subVI rules are defined to react to these Commands. After executing a Command the Module generates a Confirmation.

The Confirmation is sent back so that the Signage-Center knows whether the Commands were executed properly or not.

Additionally there is Log. Log are all conditions and reports reformatted for the user. It is displayed at the User-Interface and stored to a log-file. This log-file is usually called log.lok, located in subdirectory misc.

4.5 Important Parts of DDS and MGS

4.5.1 Temporary-Storages

Temporary-Storages are part of every Module except for Initialization-Modules. Basically Temporary-Storages consist of a while loop with a shift register. The while loop is executed only once and data is stored in the shift register. The stored data can be read again later. In some of the Temporary-Storages there are also If-Then instructions included. This means that some Temporary-Storages decide, following the terms of the If-Then instructions, whether new data is added to the referring storage or not.

So Temporary-Storages are buffers, which can be either read or written. In terms of Measurement-Data *read* means take the buffered Measurement-Data and emptying the buffer. *Write* means adding measurement data to the buffer. Table 4.2 shows a list of existing Temporary-Storages in LOLA and which modules they connect.

Temporary Storage	Communication between DICE and
TSM1_TemporaryStorage_Messages1.vi	SICE_SInage_CEnter.vi
TSM2_TemporaryStorage_Messages2.vi	SICE_SInage_CEnter.vi
TSPA_TemporaryStorage_PowerAnalyzer.vi	PARD_PowerAnalyzer_ReadData.vi
TSRD_TemporaryStorage_Rack_Daq.vi	RDRD_RackDaq_REadData.vi
TSRSr_TemporaryStorage_Rack_Serialread.vi	RSRD_RackSerial_ReadData.vi
TSRSw_TemporaryStorage_Rack_Serialwrite.vi	RSWS_RackSerial_WriteS7.vi
TSSA_TemporaryStorage_SAve.vi	SASH_SAveSHot.vi
TSUL_TemporaryStorage_UserInterface.vi	UIUL_UserInterface_UserInterface.vi
TSUO_TemporaryStorage_UserOperation.vi	UIULUserInterface_UserInterface.vi

Tabelle 4.2: List of Temporary-Storages

Messages are handled differently compared to Measurement-Data. Which Temporary-Storage handles which kind of message as well as the action done can be seen in table 4.3 on page 34.

4.5.2 DICE_DIstribution_CEnter.vi

The *DICE_Distribution_CEnter.vi* (*DICE*) collects and distributes data via Temporary-Storages listed in table 4.2.

In figure 4.4 the Block Diagram of DICE_DIstribution_CEnter.vi can be seen. As usual data flows from left to right. DICE does the following:

- reading data from Temporary-Storages;
- organize Messages in order to
 - terminate zero Messages (code=0, status=FALSE),
 - terminate double Messages so that each Message appears only once,

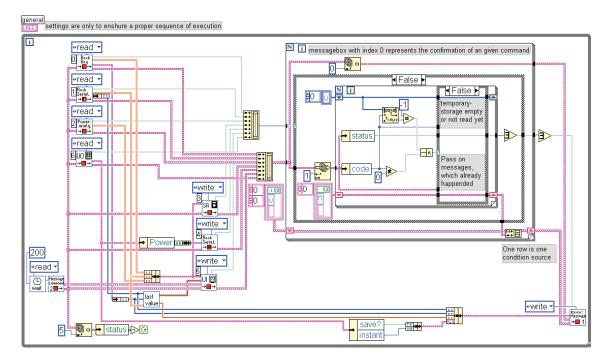


Abbildung 4.4: Block Diagram DICE

- sort message so that all modules get the data and only the data they need for proper operation;
- write data to Temporary-Storages.

The detailed sequence can be seen in Flowchart DICE in appendix A.

4.5.3 SICE_Sinage_Center.vi

The core of the software control implemented in LOLA is the subVI *SICE_SInage_Center.vi* (*SICE*). Its block diagram is shown in figure 4.5 and the detailed sequence can be seen in Flowchart SICE in appendix A.

As explained above in section 4.4 this VI gathers all relevant messages (Conditions, Confirmations and Reports). Those are sent by DICE via the Temporary-Storage TSM1_Temporary_Storage_Messages1.vi. SICE has four objectives:

- derive Commands from Conditions,
- derive Commands from actual reports,
- check if Commands are accomplished,
- save Logs in log.lok for debugging.

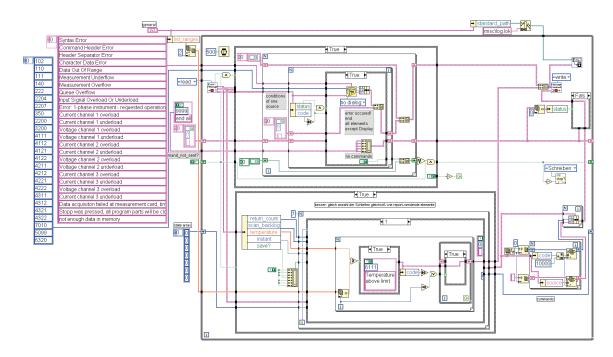


Abbildung 4.5: Block Diagram SICE

Condition Evaluation

The idea of SICE was to create a special Command for related Conditions. Therefore SICE has to recognize the Condition and derive the proper Command. The recognition of a Condition is realized by a unique Code and its Status. This action is carried out by one adapted GEH. It uses the LabView internal error codes listed in the online help of the program and the user-defined error codes, which are listed and explained more detailed in table C.1 in chapter 8.

In this stage of the program SICE only distinguishes between the main two groups of conditions, Errors and Warnings. If any error occurs, the termination Command is sent to all operating subVIs. The hardware is sent into the wait-state and the operator is informed of the program termination and the reason why. If any warning occurs it is only reformatted and displayed as log so the user is informed but the program continues. The structure (1) in the diagram is executing the Condition evaluation.

Report Evaluation

For the fact that Reports are system information in other format than the errorcluster the course of action is the same as Condition evaluation. All reports have to be evaluated and a proper reaction has to be defined. The difference between Condition evaluation and Report evaluation is that no GEH is available. Therefore a check routine is implemented for each different kind of Report.

Structure (2) realizes the check routine. It can be described as state machine. Every

Module (e.g. UIUI, RDRD, RSRD ...) has its own states and their state variable defines the actual state. The states are realized as encapsulated case structures and the state variables are stored in a shift register. During every execution of the whileloop all reports are checked. This can cause a change of the state of the referring Module. The change of state results in a Command or at least in a Warning.

Commands

At this stage only the termination command is explained. The number and kind of the other commands used in LOLA is described more detailed in chapter 8.

If an executing Module receives the termination command it stops the execution of the main while loop and executes possible remaining operations located at the right side of the while loop (data flows from the left to the right). The structure which enables the Module to recognize the termination signal is the subVI GLCM_GLobal_CheckMessages.vi. This subVI looks in the array of incoming messages for the termination command. Is it found, the output *stop?* is set to TRUE. This value is sent to the termination operator of the main while loop.

Confirmation

Once a Command is sent, SICE has to check if the Command was executed by the target-VI(s). If the Command is executed by the target-Module, it will send back the same Command as Confirmation. While waiting for the Confirmation SICE stops sending new Commands. An exception of this rule is the termination Command. This Command has the highest priority and can be sent at any time.

Log saving

After the incoming Messages were evaluated a short version Log of the Condition and Reports is saved to hard disk and sent to the User-Interface. This short version consists of the name of the Condition or exceptional Report and the Location of Occurrence.

Action	TSM1	TSM2	TSPA	TSRD	TSRSr	TSRSw	TSSA	IUST	OUST
READ									
$measurement_data_array[out], report_array[out]$				1	1				
are read and the referring storage emptied.			v	v	v		v		
<i>measurement_data_array[out]</i> , <i>log_array[out]</i> are								\checkmark	
read and the referring storage emptied.								, v	<u> </u>
<i>message_array[out]</i> is read and replaced by									\checkmark
message_array[in].					· ·				
<i>Command_array[out]</i> and <i>log_array[out]</i> are read.		V							
<i>confirmation_array[out]</i> and <i>condition_array[out]</i> are read and the referring storage emptied.	\checkmark								
<i>report*/out/</i> is read and the referring storage									
emptied.						\checkmark			\checkmark
if $not_read? = FALSE$ and $message_array[out]$									
contains no error then $message_array[out]$ is							1		
replaced by message_array/in].						v	v		
if $not_read? = TRUE$ then $message_array[out]$ is								,	
read and replaced by message_array[in].								\checkmark	
empty? := TRUE.	1								
$new_messages? := FALSE.$									
$not_read? := FALSE.$									
WRITH	T.								
<i>measurement_data_array[in]</i> is added to			/	/	/		/	/	
$measurement_data_array[out]$			\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	
<i>message_array[out]</i> is read and replaced by	1						/	/	
$message_array[in].$						V	V	\checkmark	
<i>Command_array[out]</i> and <i>log_array[out]</i> are									
replaced by <i>Command_array[in]</i> and		\checkmark							
log_array[in].									
confirmation_array[in] and condition_array[in]	, I								
are added to <i>confirmation_array[out]</i> and	\checkmark								
condition_array[out].						/			<u> </u>
report*[in] is added to report*[out]									
<pre>log_array[in] is added to log_array[out] if last reports/in].useroperation.save = FALSE</pre>								\vee	
then reports/in].useroperation.save = FALSE	/								
reports/out]	\checkmark								
if last $reports[in]$.useroperation.save = TRUE									
then reports/out/.useroperation is replaced by									
reports/in].useroperation else the referring									
storage is emptied.									
if $new_messages?[out] = FALSE$ then									<u> </u>
<i>new_messages?[out]</i> is replaced by	\checkmark								
new_messages?[in].	`								
if $empty? = FALSE$ and $message_array/out]$	1			1	1				
contains no error then <i>message_array[out]</i> is			\checkmark	\checkmark	\checkmark				\checkmark
replaced by $message_array[in]$.									
empty? := FALSE.									
$not_read? := TRUE.$									

Tabelle 4.3: Functionality of Temporary-Strorages

Kapitel 5

User Interaction

This chapter copes with aspects of the User-Interface, design strategies and their implementation. A spot on Strategies for effective human-computer interaction and ideas that mainly affected the design of the User-Interface is included (see [20]). The LabView VIs are described and results of a first evaluation is added.

5.1 Design Strategies

5.1.1 Object-Action Interface Model

The "Object-Action Interface Model (OAI)" (see [20] page 61ff) is a very helpful tool for structuring the design process. User-interface developing with OAI starts with understanding the users tasks. They include the universe of real-world objects with which users work to accomplish their intentions and actions that they want to apply to those objects. Once these tasks are identified the metaphoric representations of the interface objects and actions can be created.

LOLA's User-Interface was basically created using the main ideas of the OAI.

5.1.2 The Design Process

Development of a simple and clear user-interface demands several stages of work:

- 1. The first step is to specify tasks and subjects that must be carried out.
- 2. A second step is ensuring system reliability. This means that the system works in a proper way.
- 3. The third step is ensuring consistency. This leads to common action sequences, terms, units, layouts, color, typography and so on.

4. In [20] a fourth step is mentioned: Schedules and Budgets which is not considered within this work.

If all these steps are done sufficiently the attention can be focused on the design and testing process.

For a proper design the user has to be characterized as precise and complete as possible. According to this characterization the style of interaction and the actions and objects can be created.

5.1.3 Golden Rules of Interface Design

Shneiderman gives "Eight Golden Rules of Interface Design" (see [20] page 74f). Five of them are vital to the basic ideas of LOLA's User-Interface:

- 1. Strive for consistency. "This rule is the most frequently violated one, but following it can be tricky because there are many forms of consistency. Consistent sequences of actions should be required in similar situations; identical terminology should be used in prompts, menus and help screens; and consistent color, layout, capitalization, fonts, and so on should be employed throughout. Exceptions, such as no echoing of passwords or confirmation of the delete command, should be comprehensible and limited in number."
- 2. Offer informative feedback. "For every user action, there should be system feedback. For frequent and minor actions, the response can be modest, whereas for infrequent and major actions, the response should be more substantial. Visual presentation of the objects of interest provides a convenient environment for showing changes explicitly."
- 3. Offer error prevention and simple error handling. "As much as possible, design the system such that users cannot make a serious error; for example, prefer menu selection to form filling and do not allow alphabetic characters in numeric entry fields. If users make an error, the system should detect the error and offer simple, constructive and specific instructions for recovery. Erroneous actions should leave the system state unchanged, or the system should give instructions about restoring the state.
- 4. Support internal locus of control. Experienced operators strongly desire the sense that they are in charge of the system and that the system responds to their actions. Surprising system actions, tedious sequences of data entries inability or difficulty in obtaining necessary information and inability to produce the action desired all build anxiety and dissatisfaction."
- 5. *Reduce short-term memory load.* "The limitation of human information processing in short-term memory (the rule of thumb is that humans can remember "seven-plus or minus-two chunks" of information) requires that displays be kept

simple, multiple page displays be consolidated, window motion frequency be reduced and sufficient training time be allotted for codes, mnemonics and sequences of actions. Where appropriate, online access to command-syntax forms, abbreviations, codes and other information should be provided."

5.2 Implementation

This section describes the basic ideas of LOLA's User-Interface taking into account what was mentioned above. LOLA enables the user to interact with the system twice. First for initialization. Second for operation. Both use direct manipulation interaction style (see [20]). This means that a visual representation of the real world is presented on screen.

In the following sections the implementation of the above mentioned ideas is explained. Objects and actions are developed from task according to OAI. System reliability is discussed in the previous chapters. Intensive efforts were made to strive for consistency. Further improvement can be done if necessary.

5.2.1 Characterization of the User

The User of LOLA and the Test-Stand, has to be considered as an engineer that knows the basics of LabView and therefore has well understood the principle of LOLA's implementation (DDS, MGS, ...). The user knows the functionality of all devices an their communication, basic principles of digital signal processing and is capable of the English language.

5.2.2 User-Interface for Initialization

Tasks

The users tasks are: changing settings, saving and loading settings to and from harddisk and telling the system being ready.

Objects

The whole Test-Stand is the main object. So there are settings for nearly every part. The user-Interface for initialization shows a structure of the Test-Stands parts. Each part is an object. Objects are combined to groups indicated with a box.

Furthermore there are two buttons for saving and loading settings and one for getting to the User-Interface for Operation.

The User-Interface for initialization is programmed in *INCE_INitialization_CEnter.vi* (*INCE*) (see section 5.3.1).

Actions

Moving the cursor on a group activates lines representing "communication connections" between the referring objects (see figure 5.1 on page 39). Moving the cursors on an object and pressing the left mouse-button activates a popup menu. In this menu the user can change referring object's settings.

Additionally there is an Status-Panel which displays the actual settings of the object as well as the current .ini-file.

For more experienced users there is a object called "expert settings". Clicking on it opens a pop-up menu with all settings possible.

As there was not enough time yet to test this user-interface for a extended practical use most pop-up menus are not complete. A frequency-of-use-classification of each setting is necessary to decide whether it is only an expert setting or not.

5.2.3 User-Interface for Operation

Tasks

The user wants to explore the characteristics of a Test-Object. Therefore the state of the system can be change by changing rotary speed or torque. LOLA supports the user to save measured quantities for different states of the Test-Object to hard-disk. Further analysis can be done with pertinent data analysis software.

This main task can be split into several sub-tasks as listed in the following:

- Trigger the save-action.
- Set speed or torque at load-inverter.
- Turn on and off devices (supply, load- and test-inverter, ...).
- Watch quantities on Graph-Panel and digital display.
- Set color of quantity graphs.
- Change graph-properties (zoom in and out, ...).
- Control warning- and alarm-situations.
- Watch Messages.
- Find out where warning- and alarm-levels are exceeded.

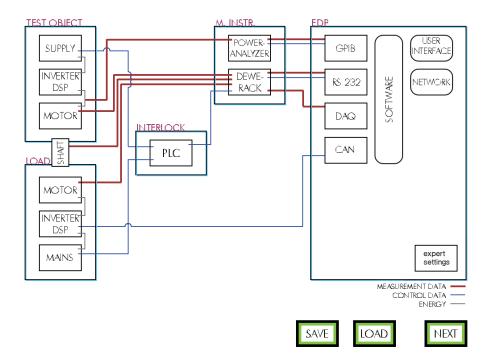


Abbildung 5.1: Front Panel INCE_INitialization_CEnter.vi

Abbildung 5.2: Front Panel UIUL_UserInterface_UserInterface.vi

KAPITEL 5. USER INTERACTION

Objects

Control facilities generally consist of objects like switches, numeric displays, and so on. With LabView these objects are easily realized on screen. The user can click on objects with a pointing device. So desired actions like turning a device on and off or change the color of a certain graph may be performed.

The User-Interface for Operation is divided into *panels* (see figure 5.2 on page 39). Each panel consists of objects. The panels are described in the following:

Graph-Panel The Graph-Panel consists of one single object: a two-dimensional LabView graph. This graph displays measurement data graphs. One for each quantity.

Channel-Panel The Channel-Panel lists all quantities by name. The lines of the list are called *channels*. Each line consist of: A control to turn the graph on and off, a control to select the color of the graph, the graphs name and unit, the nominal value, the current value and an indicator indicating whether an alarm- or warning-level is exceeded. The alarm and warning-level indicator is normally green and changes to yellow if the warning- and red if the alarm-level is exceeded.

Messages-Panel The Messages-Panel consists of a text-field for displaying messages.

Control-Panel The Control-Panel consists of functions the user needs to control the Test-Stand. There are buttons, switches and bars.

Status-Panel The Status-Panel is a stylized picture of the Test-Bench and Test-Object with squares to indicate each part's status.

Actions

Graph-Panel In order to bring data from different devices with different scan-rate into one graph the data is transformed: The target is to get measurement data with values from all quantities connected to one time. In addition a constant time gap between two adjacent values is . This is done via linear interpolation of all incoming data-streams. So the time axes does not need to be the same scale.

Figure 5.3 shows how the interpolation is done. The axis of abscissae is the timeaxis and the ordinate is the value-axis of one measured point. The area under the new displayed points (red line) has the same size as the area under the interpolated original measured points (blue line) between $(t_a|y_a)$ and $(t_b|y_b)$.

The graphs represent relative values in percent (%) of the rated values.

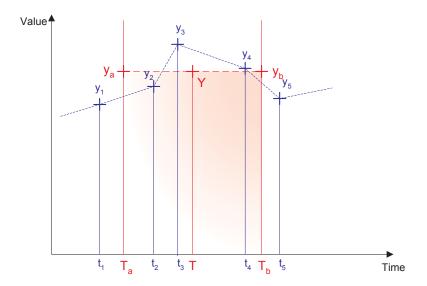


Abbildung 5.3: Interpolation for Graph-Panel $(t_{1...n}|y_{1...n})$... original measured point, (T|Y)... average new point, $(t_{a,b}|y_{a,b})$... new displayed points

Channel-Panel The Channel-Panel enables the user to turn on and off graphs, watch digital values of each channel, watch warning and alarm-levels and change graph colors.

Messages-Panel Messages-Panel displays the content of Log¹. This informs the user about the systems status.

Control-Panel The Control-Panel enables the user to control the system. The following actions can be done:

- Program operation can be stopped. When LOLA is fully stopped an pop-up menu appears to inform the user about the stop.
- System parameters as load characteristics (T,n) can be changed.
- Devices can be turned on and off.
- Saving of quantities can be triggered.

Status-Panel Status-Panel indicates the location of warning- and alarm-level exceed.

¹See chapter 4.

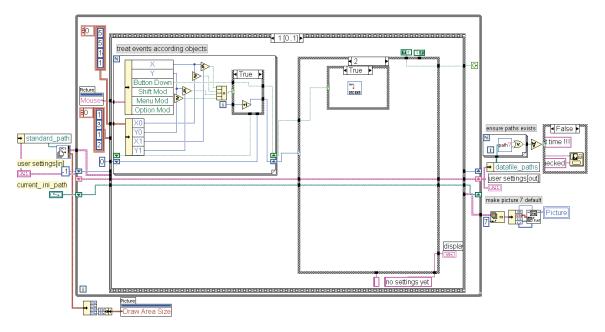


Abbildung 5.4: Block Diagram INCE_INitialization_CEnter.vi

5.3 LabView VIs

5.3.1 INCE_INitialization_CEnter.vi

Figure 5.1 shows the front panel of *INCE_INitialization_CEnter.vi* (*INCE*). It contains the mentioned map of the system showing all connection lines.

Figure 5.4 on page 42 shows the block diagram $INCE_INitialization_CEnter.vi$ (IN-CE). The idea behind this user-interface is not to use LabView controls but a picture environment. The picture environment recognizes the position of the mouse cursor and the mouse click. This can be seen in sequence (1) in figure 5.4 on page 42. Sequence (2) in figure 5.4 on page 42 activates the according pop-up menu to the action.

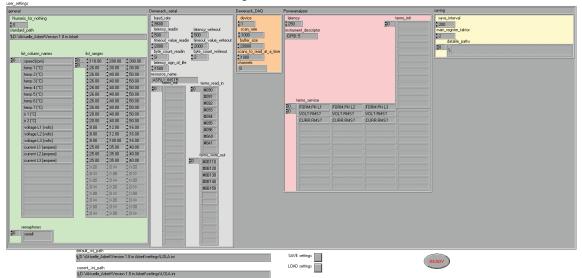

5.3.2 INIF_INitialization_Ini_File.vi

Figure 5.5 on page 43 shows the front panel of *INIF_INitialization_Ini_File.vi (INIF)*. It contains all available settings that can be changed.

Figure 5.6 on page 44 and 5.7 on page 45 give a short explanation of the most important settings.

5.3.3 UIULUserInterface_UserInterface.vi

The panels of the user-interface for operation except the Control-Panel can be seen in figure 5.2 on page 39 which shows the front panel of the UIUI_UserInterface_-

LOLA - advanced settings

Abbildung 5.5: Front Panel INIF_INitialization_FIle.vi

UserInterface.vi (UIUI). The Control-Panel can be activated via the "display mode" switch.

Figure 5.8 on page 46 shows the block diagram of UIUI:

- (1) While loop containing all elements that display data and information.
- (1a) Case structure containing sub VIs for interpolation for the Graph-Panel.
- (1b) For loop containing preparation of messages for the Messages-Panel.
- (1c) Structures belonging to DDS ensuring proper termination of UIUI.
- (2) While loop containing all elements for user interaction.
- (2a) Triggering the save action.
- (2b) Controlling the load-inverter speed.
- (2c) Cases controlling the states of buttons and switches.
- (2d) Structures ensuring proper termination of UIUI.

general	
sta	andard_path is the path where the program is located.
lis	t_column_names is an array containing the titles of the measurement categories.
	The names' order must match to the commands' order.
	name_of_channel is displayed in the user interface, it consists of identifier and unit.
lis	t_ranges is an array of all rated-, warning- and alarm-levels ordered according to list_column_names.
se	maphores is an array of names of all existing semaphores.
Dewerac	k_serial
la	tency_readin is the time in milliseconds for RSRD_RSReadData.vi to wait between two executions of the while loop.
la	tency_writeout is the time in milliseconds for RSWD_RSWriteData.vi to wait between two executions of the while loop.
by	'te_count_readin is the number of bytes to be read.
by	te_count_writeout is the number of bytes to be written.
la	tency_sign_of_life is the time-period between two alternating signals sent to the PLC S7 200.
re	source_name is the instrument descriptor of the interface addressing the Dewerack for VISA driver.
te	rms_init is an array of commands for initialization of the Dewerack
te	rms_read_in is an array of addresses respectively commands for the read request at a certain port.
te	rms_write_out is an array of addresses respectively commands for the write request at a certain port.
Dewerac	k_DAQ
de	evice is the device number of the DAQ board.
sc	an_rate is the number of scans performed per second.
bu	iffer_size buffer size is the number of scans each buffer should hold.
sc	ans_to_read_at_a_time number of scans to read specifies the number of scans the VI retrieves from the acquisition buffer. The default input is -1, which tells LabView to set number of scans to read equal to the value of the number of scans to acquire control when AI Start was called. If number of scans to read is -1 and number of scans to acquire was 0, LabView sets number of scans to read to 100.
	Execution of the loop is halted until the <i>number_of_scans_to_read</i> is available in the internal memory of the DAQ board.
ch	cannels specifies the set of analog input channels for a group and task. You cannot assign a channel to more than one group. The default input is channel 0. See the description of the Analog Input Group Config VI for a detailed description of this parameter and the valid syntax for the channel strings.

Poweranalyzer latency is the time in milliseconds for PARD_PowerAnalyzer_ReadData.vi to wait between two executions of the while loop. instrument_descriptor is the instrument descriptor of the interface addressing the Poweranalyzer for the VISA driver. terms_init is an array of commands (called terms here) for the initialization of the Poweranalyzer. terms_service is an array of commands (called terms here) for the read request. The structure is: first, second and third collum are for the first, second and third phase; the fourth collum is for all phases. saving save_interval determines the amount of measurement-data saved. main_register_faktor determines the amount of measurement-data buffered in the main register. The size of the main register is *main_register_factor* multiplied by $save_interval.$ datafile_paths name and location of files where the measured data is saved.

Abbildung 5.7: List of most important Settings (2)

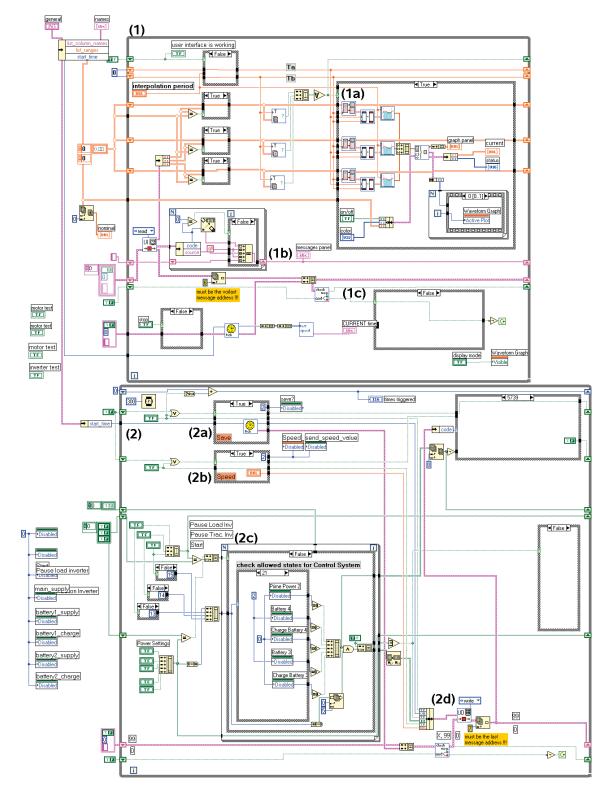


Abbildung 5.8: Block Diagram UIUI_UserInterface_UserInterface.vi

5.4 First Evaluation of User-Interface

A first evaluation should ensure that the basic challenge of LOLA's design meets all demands. Some evaluation aspects additionally to the already mentioned aspects is introduced before the tasks are evaluated.

5.4.1 Aspects

Ben Shneiderman lists five measurable factors which are central to evaluation (see [20] page 15):

- *Time to learn*: How long does it take for typical members of the user community to learn how to use the commands relevant to a set of tasks?
- *Speed of performance*: How long does it take to carry out the benchmark tasks? How fast are the tasks processed?
- *Rate of errors by users*: How many and what kinds of errors do people make in carrying out the benchmark tasks? Although time to make and correct errors might be incorporate into the speed of performance, error handling is such a critical component of system usage that it deserves extensive study.
- *Retention over time*: How well do users maintain their knowledge after an hour, a day, or a week? Retention over time may be linked closely to time to learn, and frequent of use plays an important role.
- *Subjective satisfaction*: How much did users like using various aspects of the system? The answer can be ascertained by interview or by written surveys that include satisfaction scales and space for free-form comments.

This test is less concerned in these five factors, they are only to be kept in mind. Emphasis is laid on a basic evaluation of functionality and design.

5.4.2 Result

The following lists all evaluated aspects with proposed improvements. Some of the improvements were implemented immediately. This evaluation lacks surveys of an independent user. The feedback of an independent user who is using the Test-Stand extensively will be interesting for future development.

KAPITEL 5. USER INTERACTION

User-Interface for Initialization

Pop-up menus are incomplete.	Implement the pop-up menus so that settings can be done as easy as possi- ble.		
User has to wait long until interaction			
is possible.			
Auto-creation of paths cannot be can-	Correct the INM15_Initialization-		
celled.	_Menue15.vi.		

User-Interface for Operation

Current states of devices cannot be re-	Use switches instead of buttons.		
cognized sufficiently.			
Messages in the Message-Panel change	Split Message-Panel into tree fields for		
to fast.	different messages rising in importan-		
	ce.		
Status-Panel does not work properly.	Make user surveys to find out which		
	information is reasonable in the		
	Status-Panel.		
Display of digits is not sufficient for all	Enable different number of digits for		
channels.	each channel		

Stress must be laid on the fact that this 'test' is very intuitive. Further evaluations must be prepared carefully. A scientific approach including the clear definition of a target and a precise measurement problem would be the basis for such an evaluation.

Kapitel 6

Data Saving

6.1 SASH_SAve_SHot.vi

Before explaining the process of saving something has to be said about time: *GLCL_GLobal_CLock.vi* (*GLCL*) gives the time from initialization up to point of execution in milliseconds. This value of time is called 'time-stamp' in ININ_INITIALISATION_INITIALISATION_INITIALISATION_VI GLCL is initialized. This means that a initial system time is stored.

Saving is done in *SASH_SAve_SHot.vi* (*SASH*). In a first realization saving can be triggered by the user by clicking on the 'trigger' button. When clicking on the 'trigger' button, UIUI sends a message and the time-stamp (report) of the trigger action via the MGS to the SASH. Once the save action is triggered a certain amount of data is saved to hard-disk Each saved quantity is an average value of the certain amount of Measurement-Data.

The following explains the Block-Diagram of SASH (see figure 6.1):

(1) Settings are handed over:

- 'datafile_paths': Location where measurement data is saved on hard-disk.
- 'save_interval': The amount of data for averaging is determined by 'save_interval' (see figure 6.2 on page 51). SASH buffers a more data than the 'save_interval' determines. If the 'trigger' message comes from UIUI, SASH derives average values for each quantity. Which values are averaged is determined by the reported 'trigger' time and the save interval.
- 'main_register_factor': SASH buffers an amount of Measurement-Data. 'save_interval' multiplied with 'main_register_factor' specifies the amount of data in the buffer.

(2) Time-stamp row is extracted from the measurement-data.

(3) Structures belonging to DDS ensuring proper termination of SASH.

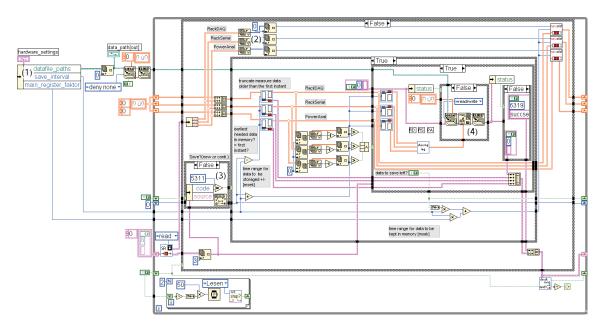


Abbildung 6.1: Block-Diagram SASH_SAve_SHot.vi

(4) Case structure handles the actual process of saving data to hard-disk. Here the values of the 'save_interval' are averaged so that only one value has to be saved to disk.

6.2 Data Format

In order make a flexible use of the measured data possible measurement data is saved to an ASCII-formatted file. The structure of this file can be seen in figure 6.3 on page 51 which shows the result of an example measurement.

The file consists of rows and columns. The first row contains are the names of quantities. Remaining rows contain measurement values. The first collum contains timestamps. Remaining columns contain averaged values.

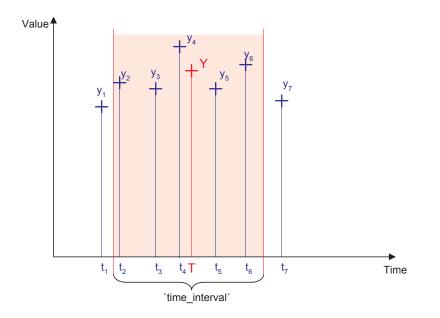


Abbildung 6.2: Process of Saving $y_n \dots$ measured values, $t_n \dots$ time-stamps of measured values, $Y = \frac{\sum_{n=2}^{6} y_n}{n} \dots$ average value, $T \dots$ 'trigger' time

Time [ms]	speed [RPM]	temp 1 [$^{\circ}$ C]	voltage L1 [volts]	voltage L2 [volts]	
1070796.875	1494.104	32.600	2.456	2.749	
1109556.000	1499.615	31.800	4.283	4.606	
1132578.000	1499.468	31.600	4.130	4.568	

Abbildung 6.3: Example Save-File

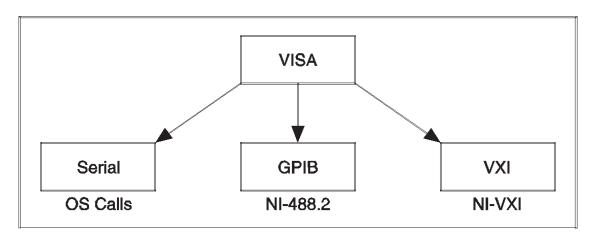
Kapitel 7

Hardware Communication

7.1 Devices

LOLA communicates as mentioned above with three devices:

- Dewerack-16,
- Poweranalyzer,
- Measurement board.


The first device is the Dewerack 16. Via the RS232 interface the temperature values of the nine temperature sensors are gathered and the communication with the PLC is realized. The second device is the Poweranalyzer. LOLA receives the measurement values of current and voltage from the Poweranalyzer via the GPIB-interface. The third device is the built-in measurement card which sends the measured values of torque and speed via the PCI-bus to LOLA.

7.2 Realization in G

The realization of the communication with these devices is done by using a application programming interface (API) called *Virtual Instrumentation Software Architecture* (VISA) and by using advanced LabView standard I/O-VIs. Whereas VISA is used for communication via GPIB and RS232 the I/O-VIs are used only for the data acquisition with the DAQ-board.

7.2.1 Concept of VISA

VISA is a standard I/O API for instrumentation programming. VISA by itself does not provide programming capability to realize communication with interfaces. Visa

is a high-level API that calls into lower level drivers. The hierarchy of NLVISA is shown in the figure 7.1 below.

Abbildung 7.1: hierarchy of NI-VISA

VISA can control three bus systems, Vme eXtension for Instrumentation (VXI) (not used in the Test-Stand), GPIB or RS232, making the appropriate driver calls depending on the type of instrument being used. VISA uses the same operations to communicate with instruments regardless of the interface type. For example, the VISA command to write an ASCII string to a message-based instrument is the same wether the instrument is serial, GPIB or VXI. While the way the ASCII string is sent is independent of the device, the commands are not. Usually every device has its own set of commands to initialize, request data and write data. Detailed information of the concept of VISA, respectively NI-Visa is to be found in the user manual of LabView [14]

7.2.2 Advanced I/O VIs

For the data acquisition at the measurement board all subVI origin from the tool palette 'Data Acquisition'. This tool palette contains VIs to configure the measurement board, to receive and send data.

7.3 Communication VIs

7.3.1 Initialization

The settings for the communication origin from ININ_INitialization_INitialization.vi. They are used in HCCE_ HardwareConfiguration_CEnter.vi to set all parameters for the communication between the three devices in LOLA. The parameter are set in the according configuration-VI which are LabView own VIs. They can be found in the function palette in section *Data Acquisition* and *Instrument I/O*.

7.3.2 Communication Dewerack-16

In the VI RSRD_RackSerial_ReadData.vi (RSRD) VISA subVIs are used to read the temperatures values at PAD-TH8 and PAD-V8 from the Dewerack. In the VI RSWS_RackSerial_WriteS7.vi (RSWS)VISA subVIs are used to write through PAD-D07 to the PLC.

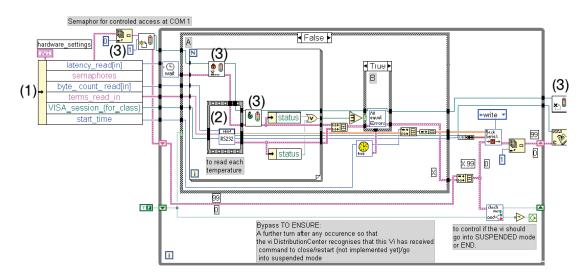


Abbildung 7.2: Read at Dewerack-16

$RSRD_RackSerial_ReadData.vi$

To receive a temperature value from a sensor a message string has to be sent to the Dewerack-16. Such a message string includes the address of the pad and the port where the sensor is plugged in. In order to receive all temperature values a whole set of message strings have to be sent sequentially. In figure 7.2 the set of message strings is found at (1) (terms_read_in). The single string is sent via VI-SA_write.vi to the Dewerack-16 and the according temperature value is passed back with VISA_read.vi. Both VIs are LabView own VIs and in RSRD they are located in RSRL_RackSerial_Read_dIrect.vi (2). Label (3) in figure 7.2 marks a special of this VI. The structures marked are VIs to manage semaphores. in RSRD a semaphore is used to control the access to the RS232 communication session. The access has to be controlled because the RS232 session is used by two VIs, RSRD and RSWS.

${\bf RSWS_RackSerial_WriteS7.vi}$

While RSRD is used to receive Measurement-Data, RSWS is used to write Commands to the PLC via digital outputs in PAD-D07. The procedure of writing is the same as reading. The difference lies only within the message string (1)(terms_write_out) in figure 7.3 on page 55.

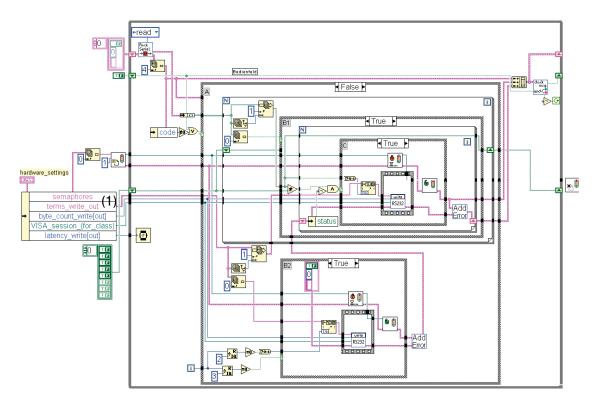


Abbildung 7.3: Write at Dewerack-16

7.3.3 Communication Poweranalyzer

For the fact that VISA is also used to communicate with the Poweranalyzer, the procedure is similar to the one in RSRD. The set of message strings (1) (terms_service) is also transferred via Visa_write.vi (2) and the Measurement-Data is received at (3) VISA_read.vi (figure 7.4).

7.3.4 Communication Measurement Board

The structure of RDRD is mainly derived from the example 'Acquire N Scans using Multiple Asynchronous Occurrences' which is one of the examples added to the online help. A Temporary-Storage, a GLCM_GLobal_CheckMessages.vi (1), a GLCL_GLobal _CLock.vi (2) and an error generating routine (3) are combined with the example (figure 7.5). The changes made to the example VI insure the compatibility with the MGS and the DDS.

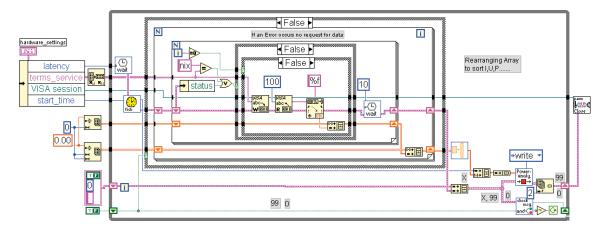


Abbildung 7.4: Read at Poweranalyzer

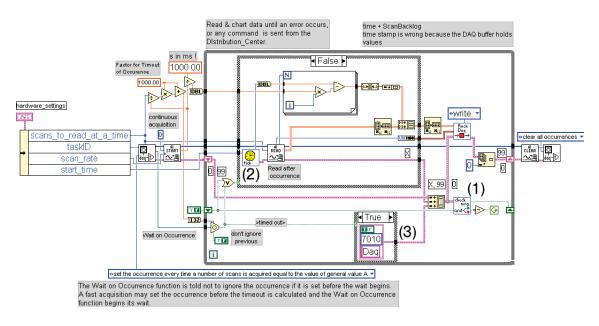


Abbildung 7.5: Read at Measurement Board

Kapitel 8

Security Concept

8.1 Overview

The global aim of the security system is to protect the operator and the expensive equipment. In the concept following possible threats are concerned:

- Overvoltage,
- Overcurrent,
- Destructive Heat,
- Exceeded Speed,
- PC Breakdown.

The concept is based on four domains, which are mentioned subsequently in figure 8.1 ordered by their reaction time with the fastest at first.

In this diagram more emphasis is put on the physical connections of the PLC with the surrounding system.

Figure 8.3 shows the general relations between the hardware devices, the PLC, the PC and the operator. As indicated each device offers information on its current status for different receivers. While each device is capable of protecting itself within certain limits (intrinsic safety), it is necessary to think about a strategy for all devices if a failure occurs. The PLC is the central device to gather all information and to decide if the system is to be set in a safe condition (Stop, Off). The safe condition is regarded as off-circuit except of the 24 V supply for the control equipment (PLC, contactors and control units of the inverters). Processes are deduced as mentioned from considered threats but were also deduced from termination commands given by the operator via the emergency break button or the PC.

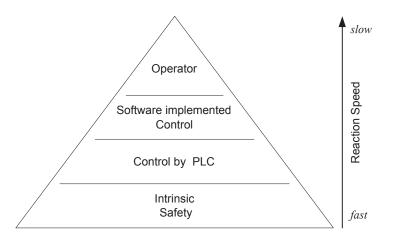


Abbildung 8.1: Security Domains

8.2 Intrinsic Safety

The intrinsic safety of the devices is regarded as the fastest and primary protection. It includes protection against damaging the device and endangering persons. This protection can be active like fuses or earth- leakage circuit breaker or passive like a high tolerable input range and a protective earth (PE) conductor. The following gives information of the intrinsic safety appliance in the system.

8.2.1 Power Supply

The line of the university (230 V line voltage) is secured by a ten- ampere quickacting fuse and a current-operating earth-leakage circuit breaker with a maximum leakage current of 30 mA.

The 380 V line of the laboratory is secured by 25-ampere quick-acting fuse and current-operating earth-leakage circuit breaker with a maximum leakage current of 30 mA.

The 230 V line of the laboratory is secured by six-ampere quick-acting fuse and a current-operating earth-leakage circuit breaker with a maximum leakage current of 30 mA.

8.2.2 Measurement System

Dewerack 16

The line supply connector is equipped with a PE-conductor.

Except of the PAD-A01 all used modules are isolated between the input and the system. In general the isolation amounts to 1 kV. Therefore no direct current can

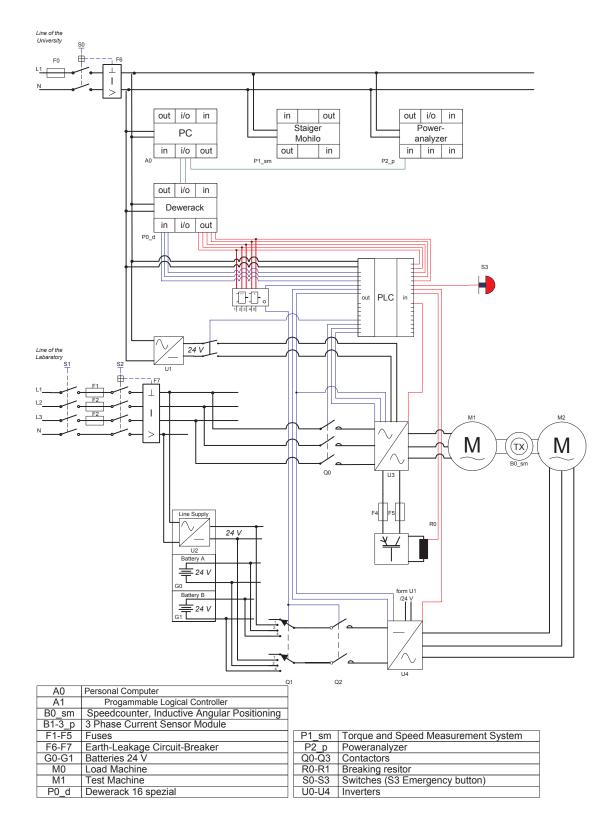


Abbildung 8.2: PLC Connection Plan

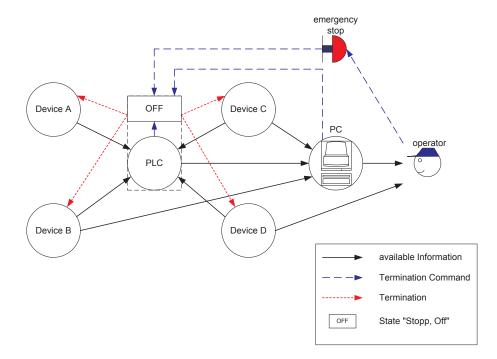


Abbildung 8.3: Security Concept – general Relationship

flow from the supply to the inputs if the voltage at the isolation remains below. The applied voltages and currents should be handled with care, because there is no tolerance according to the input ranges of the modules (see manual [8]).

Following standards are applied:

- EN50081 Part 1 and 2
- EN50082 Part 1 and 2
- general safety test according CE regulations

Poweranalyzer

The line supply connector is equipped with a PE-conductor and secured by a twoampere quick-acting fuse. The connected voltage of 230 V is allowed to vary ± 15 percent and its frequency may range from 45 up to 65 Hz.

The voltage to earth applied to the voltage and current inputs is limited to 600 V. This complies to the over-voltage category two. The five-ampere current input is secured against a short-term overload of 15 A and the thirty-ampere current input is secured against short- term overload of 100 A. The short term may last 20 msec.

The disruptive strength from housing to inputs amounts 2.2 kV / 50 Hz / 1 min, from input to input 4 kV/ 50Hz/ 1 min and from supply line to housing 1.5 kV / 50 Hz / 1 min (see manual [10]).

KAPITEL 8. SECURITY CONCEPT

Following standards are applied:

- IEC 61010-1
- EN 61010-1
- IEC 61010-2-031
- EN 61010-2-031

Poweranalyzer is classified as class of protection I, disruptive strength class II and pollution severity class II.

Staiger & Mohilo

The line supply connector is equipped with a PE-conductor and secured by a twoampere quick-acting fuse (see [6, 7]).

8.2.3 Load System

Load Inverter

The load inverter is protected by the security devices of the 380 V line supply. The task of upstream line filter is not to protect the inverter but to condition the supply.

For a save operation the load inverter offers the possibility to monitor several condition of the load system. The monitored conditions are listed below.

- temperature load motor
- temperature cooling sink
- internal temperature of the inverter
- external error
- resolver
- contouring error
- phase-angle sensor
- CAN bus
- speed

For each condition critical values and proximate reactions can be defined. If one of the monitored conditions exceeds its critical value, the system will start the proximate reaction. The name of these reactions and their triggered processes are described in figure 8.4 on page 62.

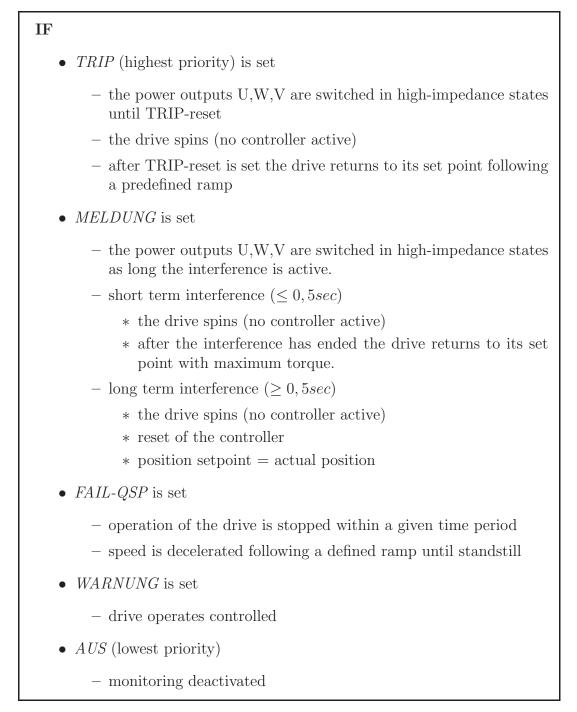


Abbildung 8.4: Load Inverter – Reactions and their Processes

KAPITEL 8. SECURITY CONCEPT

Load Resistor

The load resistor is protected by means of a 50-ampere fuse for each line. A Temperature monitor is built in. If the resistort's temperature exceeds the permissible limit the inverter has to be cut off from the supply and the controller inhibit has to be set. Therefore the external monitoring circuit is connected to the temperature monitor.

Load Motor

The load motor is also equipped with an internal temperature sensor (type KTY). The sensor is connected via the resolver to the inverter which carries out the monitoring task.

Following *standards* are applied by all parts of the load system:

- EN50178,
- EN60146,
- EN60439,
- General safety test according CE regulations.

For further detail please refer to the manuals [2], [3], [4], [5].

8.3 PLC Control

8.3.1 Overview

The PLC with its expansion has 16 Inputs (E0.0-E1.7) and 14 outputs (A0.0-A0.5, A1.0-1.7) .These In- and Outputs enable the PLC to interact with the PC, the inverters and the contactors (further referred to as *System*). Figure 8.2 and 8.5 gives an overview of the connector assignment.

The task of the PLC are:

- reaction to errors at both inverters
- reaction to activation of the emergency button
- monitoring if the PC is online
- receiving and processing user-inputs
- control if the supply and charge status of the traction drive is allowed

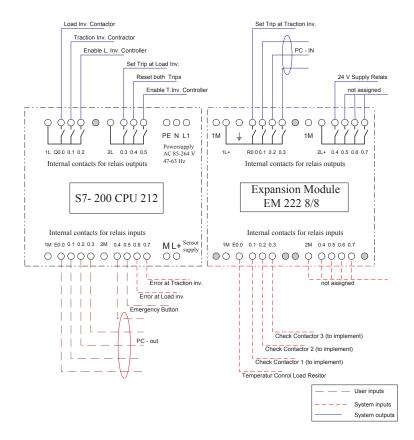


Abbildung 8.5: PLC assigned connectors

Reaction according to errors at both inverters and reaction to the activation of the emergency button is switching the System in a safe condition. A safe condition as mentioned above is regarded as off-circuit. Except of the 24 V supply for the control equipment (PLC, contactors and control units of the inverters) every power source is drained off. This is accomplished by operating the contactors.

The PC sends an alternating signal to the PLC. If the signal stops alternating the PLC regards the PC as off-line and pauses the system until the PC is online again or the system is shut down.

The operator has several possibilities to interact with the system. The System can be started, paused, stopped, and single inverters can be paused while the other is still operating.

To ensure that the operator does not mistakenly choose the wrong combination of supplying and charging, the settings for the two batteries and the line supply are controlled.

The implemented programming realize the mentioned tasks. Its developing Steps are listed below:

- identification of all inputs,
- identification of all outputs,

- identification of the states,
- design of a state diagram,
- definition of the transition conditions,
- declaration of all outputs each state.

The resulting program to meet the requirements above is realized as ladder diagram or statement list. The program itself is added to the appendix E.

8.3.2 Identification of all inputs

In table B.1 in appendix B all considered inputs with their assigned connection are shown. The inputs are divided in user-inputs and system-inputs. User inputs origin by an user-action (pressed button, pulled level ...) and system-inputs are generated by the hardware (sensor input, error bit ...).

Except of the emergency button all user-inputs are set by the user via LOLA. These user-inputs (2-8) are coded with 5 bits to save connectors and to be more flexibly if further user-inputs are to be added. In table B.2 in appendix B all used codes are listed.

8.3.3 Identification of All Outputs

In table B.3 in appendix B all considered outputs with their assigned connection are shown. There are only system outputs. The communication to the Pc is realized with three connectors. The combination of the three reflects the actual state the PLC program is in. All used combinations are listed In table B.4 in appendix B.

8.3.4 Identification of the States

This section deals with the question which states should be implemented in the PLC program to control the system. States are defined conditions of the System and there are no other conditions as the defined. The System can only be in one state at a time. Following states are implemented in the PLC program.

- S0 Initialization,
- S1 Wait,
- S2 Load Inverter Online,
- S3 Traction Inverter Online,
- S4 Both Inverter Online,

- S5 Stop,
- S6 Close Session,

The first state (S0) Initialization resets all used outputs and variables at System start. This has to be done so that the start condition is defined and every time the same.

(S1) Wait has the purpose to "pause" the system. "Pause" means that the System is halted without an error occurred. The system can be set online at any time.

State (S2) Load Inverter Online indicates that the load inverter is online and ready to receive the set point value for speed or torque. In this state the traction inverter is not online. It might be paused by the operator, or the supply is not proper set yet.

State (S3) Traction Inverter is online is the same state as S2 but the traction inverter is online and the load inverter is not.

(S4) Both Inverter Online represents the state where both inverter are online and ready to receive the set point value for speed or torque.

Only if an error at the inverters or the emergency button is pressed the System goes into (S5) Stop. The System is switched to a safe condition.

(S6) Close Session powers down the System and the 24V supply for the control equipment. After powering down the PLC and the Measurement-System can be shut down.

8.3.5 Design of the State Diagram

In figure 8.6 the state diagram is shown. It shows the way the System can change its state. A change in state can be accomplished along the drawn connections. The diagram also gives an preview of the transition conditions.

8.3.6 Definition of the Transition Conditions

The transition conditions are shown in detail in table B.6 in appendix B. If the transition condition is met, the System changes its state. As an example the transition condition for the transition from the state S2 Load Inverter Online to S1 Wait is explained:

The state is changed if no system error *and* one of the following occurred: Close-, Stop- or Pause Load Inverter- command *or* PC off-line.

8.3.7 Declaration of All Outputs

After identification of all states and the definition of transition conditions, each output has to be set in each state accordingly. The values of the outputs in every

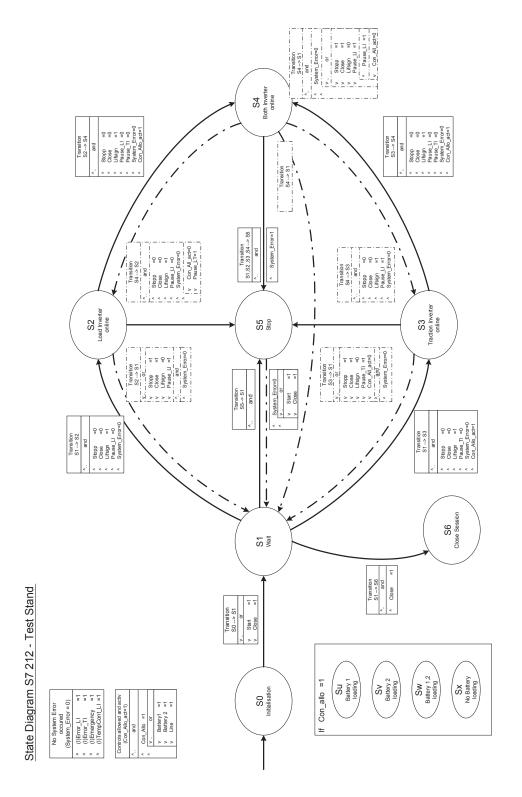


Abbildung 8.6: State Diagram

state is listed in table B.7 in appendix B.

8.4 Software Control

The theme software control encloses all security tasks handled by $\mathsf{LOLA}.$ These tasks are

- ensuring a proper programm execution,
- a lossless data acquisition as possible,
- processing of user-inputs.

These task are performed by MGS and SICE.

8.4.1 (MGS) Message Gathering System

The MGS is the transport system for all Control-Data. Its principle is explained in chapter 4.

8.4.2 (SICE) Signage-Center

The core of the software control implemented in LOLA is the subVI SICE_SInage_-CEnter.vi (SICE). The principles of SICE (fig 8.7), Condition evaluation (1) and Report evaluation (2) are explained in chapter 4. In this subsection more detailed information about the user-defined error codes and the used state machine in the Report evaluation is given.

User-defined Error Codes

In LabView a wide range of Codes is used. Codes lasting from 5000 to 10000 are reserved for user-defined codes. Table C.1 and table C.2in appendix C is a list of all commonly used error codes. For an easier use the range of user-defined codes are split up in three parts. In LOLA the range from 5000 to 5999 is reserved for Commands. The range from 6000 to 6999 is reserved for Warnings and the remaining codes 7000 to 10000 are used for Errors. Table C.3 presents the detailed allocation of the user-defined error codes.

Report Evaluation - State Machine

Table 8.1 is a summary of the main functions of the state machine used for the Report evaluation. In the first column all concerned variables are listed. They are

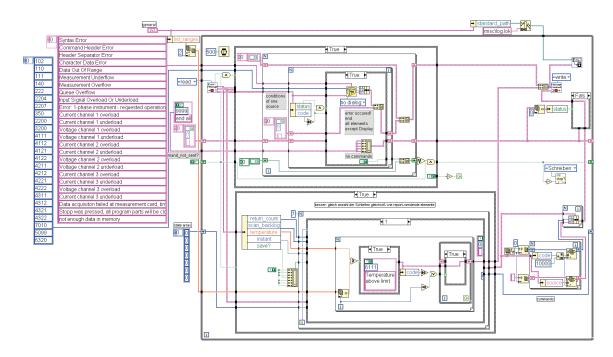


Abbildung 8.7: Block Diagram SICE

checked every turn and are compared with the evaluation criteria listed in the next column. The elements of the third column represent the requirement for a resulting action. The actions themselves are listed in the last column.

Example SSave is pressed"

To give an idea of the order of events the result of pressing the Save Button is described more detailed.

Without the Save-Button pressed the value of the state variable of Shot (the saving VI) is equal to zero. If the Save-Button is pressed at the user-interface, the button will be disabled, so no further activation can take place. The report of the activation containing a boolean variable (save? = TRUE) and the time of activation (instant) is sent via the Temporary-Storage TSUO, the distributing VI DICE and the Temporary-Storage TSM1 to the Message evaluating VI SICE. The Report evaluation registers the activation and sets the state variable of SHOT to one. In the same turn it sends the Command 5311 (User has pressed Save-Button) via TSM2. DICE and TSSA to SHOT. This Command will be sent until SHOT sends back the Warning 6311 (Saving in progress) or 6319 (Saving finished). If the sent Warning is 6311 the state variable of SHOT will be increased by one to two. The Report evaluation checks the incoming Messages for the Warning 6319 but the Command 5311 will not be sent anymore. If the sent Warning is 6319 the state variable is set to four. The Command 5619 (Enable the Save-Button) is sent to the user-interface the same way back which the report had taken. Afterwards the state variable is set back to zero. When Command is received in UIUI, the Save-Button is enabled again.

From State	Evaluation (Criteria		Command Sent
Scanrate	Warning Level	W_S	$W_S \le S \le E_S$	display
(S)	Error Level	E_S	$S \ge E_S$	terminate
Temperatures	Warning Level	W_{T1-T9}	$W_{T1-T9} \le (T_1 - T_9)$	display
			$\leq E_{T1-T9}$	
$(T_1 - T_9)$	Error Level	E_{T1-T9}	$(T_1 - T_9) \ge E_{t1 - T2}$	terminate
Return Count	Byte read	9	$RCR \le 9$	display
Read (RCR)				
Return Count	Byte written	2	$RCW \neq 2$	terminate
Write (RCW)				
Save Button	Action	Pressed	=TRUE	start saving
			=FALSE	nothing
Settings	Action	Pressed	=TRUE	send new setting
Buttons			=FALSE	nothing

Tabelle 8.1: Evaluation Criteria

This procedure is used for every variable in table 8.1. The given example is a more complex one. In general there are less steps used.

8.5 Operator

The operator himself is also a part of the security concept. Operating the Test-Stand at this stage requires a schooled operator. He must be aware of all risks of his actions. Therefore the knowledge of all user-manuals of the used equipment is a requirement.

Kapitel 9

Measurement Example

This chapter is a report of a first test-circle of the Test-Stand. Measured and calculated values shall exemplify proper function of the test stand. They are of no significance to any real Test-Object. The theoretical background is taken from [22] page 399ff.

9.1 Problem Definition

The Test-Object is an four-pole induction motor.

Figure 9.1 shows the per-phase equivalent circuit of an induction motor. In the following the resistance of the stator R_s , the , the magnetizing inductance L_m , the the leakage inductance of the stator L_{ls} and the resister and the leakage inductance of the per-phase equivalent rotor winding R_r and L_{lr} will be evaluated from measured values, where \vec{V}_s is the per-phase voltage and \vec{E}_{ag} is the air gap voltage. R_s is the resistance of the stator winding and L_{ls} is the leakage inductance of the stator winding. \vec{I}_m is the magnetizing component of the stator current \vec{I}_s .

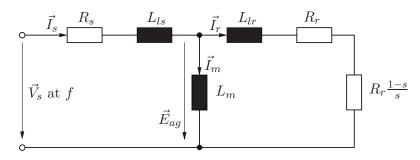


Abbildung 9.1: Per-phase Equivalent Circuit

9.2 Procedure

The synchronous speed in p-pole motor, supplied by frequency f, can be obtained as

$$\omega_s = \frac{2\pi/(p/2)}{1/f} = \frac{2}{p}(2\pi f) = \frac{2}{p}\omega$$
 (rad/s)

In terms of revolutions per minute (rpm), the synchronous speed is

$$n_s = 60 \times \frac{\omega_s}{2\pi} = \frac{120}{p}f$$

The slip s is

$$s = \frac{\text{slip speed}}{\text{synchronous speed}} = \frac{\omega_s - \omega_r}{\omega_s} = \frac{f_s - f_r}{f_s}$$

where ω_r is the speed of the rotor. The Slip speed ω_{sl}

$$\omega_{sl} = \omega_s - \omega_r = s \,\omega_s$$

is the speed of the air gap flux. Equations result from the per-phase equivalent circuit in figure 9.1:

$$\vec{E}_{ag} = \omega_s \frac{R_r}{\omega_{sl}} \vec{I}_r + j\omega_s L_{ir} \vec{I}_r$$
$$\vec{I}_s = \vec{i}m + \vec{I}_r$$
$$\vec{V}_s = \vec{E}_{ag} + (R_S + j\omega_s L_{ls}) \vec{I}_s$$

No-load In no-load operation $\omega_r = \omega_s$ therefore s = 0. Thus

$$R_r \frac{1-s}{s} = \infty$$

and the per-phase equivalent circuit reduces to one circuit with R_s , L_{ls} and L_m . To summarize:

$$E_{ag} = j\omega_s L_m I_s$$
$$\vec{V_s} = [R_s + j\omega_s (L_{ls} + L_m)]\vec{I_s}$$

Standstill In standstill operation $\omega_r = 0$ therefore s = 1. Thus

$$R_r \frac{1-s}{s} = 0.$$

As the voltages are low in order to keep ${\cal I}_s$ in the allowed boundaries the magnetizing inductance

$$L_m \simeq 0$$

and the per-phase equivalent circuit reduces to one circuit with R_s , L_{ls} , L_{lr} and R_r .

quantity	f	$V_{meas.}$	$I_{meas.}$	$\cos(\varphi_{meas.})$
units	Hz	volts	ampere	
no-load 1	86.45	5.28	10.67	0.927
no-load 2	86.37	8.95	18.41	0.909
no-load 3	86.29	11.37	24.03	0.910
standstill 1	74.17	2.01	16.81	0.584
standstill 2	74.18	2.148	24.18	0.688
standstill 3	74.069	2.151	24.18	0.691

Tabelle 9.1: Measured Values

To summarize:

$$\vec{E}_{ag} = [R_r + j\omega_s L_m]\vec{I}_s$$

$$\vec{V}_s = [R_s + R_r + j\omega_s (L_{ls} + L_l r)]\vec{I}_s$$

Table 9.1 shows the values measured with LOLA and the Test-Stand in the mentioned Example.

As the tested induction motor is delta connected and the measured voltages and currents are measured connected in star $V_{meas.}$, $I_{meas.}$ and $\cos(\varphi_{meas.})$ have to be transformed as follows:

$$V_s = V_{meas.}\sqrt{3},$$
$$I_s = \frac{I_{meas.}}{\sqrt{3}},$$
$$\cos \varphi_s = \cos(\varphi_{meas} + 30^\circ).$$

Table 9.2 shows the results of this transformation.

quantity	ω	V_s	I_s	$\varphi_{meas.}$	φ_s	$\cos(\varphi_s)$
units	$sec.^{-1}$	volts	ampere	degree	degree	
no-load 1	543.2	9.14	6.16	22.03	52.03	0.615
no-load 2	542.7	15.50	10.63	24.63	54.63	0.579
no-load 3	543.1	19.69	13.87	24.50	54.50	0.581
standstill 1	466.0	3.478	9.71	54.27	84.27	0.100
standstill 2	466.1	3.72	13.96	46.53	76.53	0.233
standstill 3	465.4	3.73	13.96	46.30	76.30	0.237

Tabelle 9.2: Transformated Values

After transformation the per-phase equivalent circuit can be calculated. First the no-load operation is calculated.

$$\underline{R_s} = \frac{|V_s|}{|I_s|} \cos(\varphi)$$

$$\underline{L_m + L_{ls}} = \frac{1}{\omega_s} \cdot \frac{|V_s|}{|I_s|} \sin(\varphi)$$

Second the standstill operation is calculated.

$$\underline{R_r} = \frac{|V_s|}{|I_s|} \cos(\varphi) - R_s$$
$$\underline{L_{ls} + L_{lr}} = \frac{1}{\omega_s} \cdot \frac{|V_s|}{|I_s|} \sin(\varphi)$$
$$\underline{L_{ls} = L_{lr}}$$

9.3 Result

	D	T T	
quantity	R_s	$L_m + L_{ls}$	
units	ohm	henry	
no-load 1	0.913	$2.154 \cdot 10^{-03}$	
no-load 2	0.844	$2.192 \cdot 10^{-03}$	
no-load 3	0.825	$2.132 \cdot 10^{-03}$	
average	0.861	$2.159 \cdot 10^{-03}$	
quantity	R_r	$L_r = L_{ls}$	L_m
quantity units	R_r ohm	$L_r = L_{ls}$ henry	L_m henry
1 0			-
units	ohm	henry	henry
units standstill 1	ohm 0.897	henry $7.650 \cdot 10^{-04}$	henry $1.394 \cdot 10^{-03}$

Figure 9.3 shows the Results of the calculation.

Tabelle 9.3: Transformated Values

For an overview of the result the calculated per-phase equivalent circuit is summarized:

$$\frac{R_s = 0.861 \,\Omega}{\underline{R_m} = 0.914 \,\Omega}$$
$$\underline{L_r = L_{ls} = 0.626 \,\mathrm{mH}}$$
$$\underline{L_m = 1.53 \,\mathrm{mH}}$$

Kapitel 10

Conclusion

The primary goal of our work was to build up an automated test stand. Our task was to create a concept and a program in G (LabView) which combines the given parts to a unit. The following list summaries our work done:

- Development of a general concept concerning:
 - Measurement Hardware;
 - Data-Acquisition;
 - Control Hardware and
 - Security
- Programming LOLA;
- Review of the concept.

The demands on the resulting Test-Stand are flexibility, an easy usage, reliable data acquisition and security concerning its operation.

The requirement of flexibility is met by LOLA. Due to its modular concept it can be improved or extended. With a specific measurement task LOLA can be 'easily' adapted and put in service. Unfortunately the word 'easily' has to be seen in relation to good programming skills in the programming language G. Therefore only skilled personal should adapt LOLA for further purposes.

Further requirements are met theoretically. The concept has been completed, but further tests and practical experience are necessary to proof its capability.

10.1 Further Goals

LOLA was never intended to be complete at all. Demand on the Test-Stand will change. Therefore demands on LOLA will change. This section should provide ideas

and suggestions for successors concerning expansions and improvements of the Test-Stand and LOLA.

10.1.1 Evaluation of the Measurement System

There was no evaluation whether the measured values are reproducible or not. Therefore the system should be tested carefully to ensure proper measurement functionality.

10.1.2 Improvement for Test-Stand

Several user operations and the evaluation of the acquired data have not been automatized yet. This full automatization combined with a certain given application is still a great challenge.

10.1.3 Expansions for LOLA

During developing there were several ideas according additional capabilities of LOLA. To mention only the most important: First there is improvement of automation, second there predefined load diagrams, third there is TCP/IP connectivity and last but not least there is perfection of the security concept.

The modular construction of the software establishes the basis for more automatization of the system. The target is to have test-cycles that last several days or even weeks without any user operation. Such long-time tests can help to improve traction drive systems for vehicles.

Long-time tests are reasonable if there are predefined load diagrams. Load diagrams are simulations of driving situations which a vehicle has to cope with when it is used. This means that a load diagram is an alternating load, simulating a certain road profile (e.g. rush-hour traffic, mountain trips). This makes realistic testing possible.

A TCP/IP connectivity enables offering data online in the local area network of the department and worldwide through the internet. Furthermore such a connection makes control of LOLA from possible from everywhere.

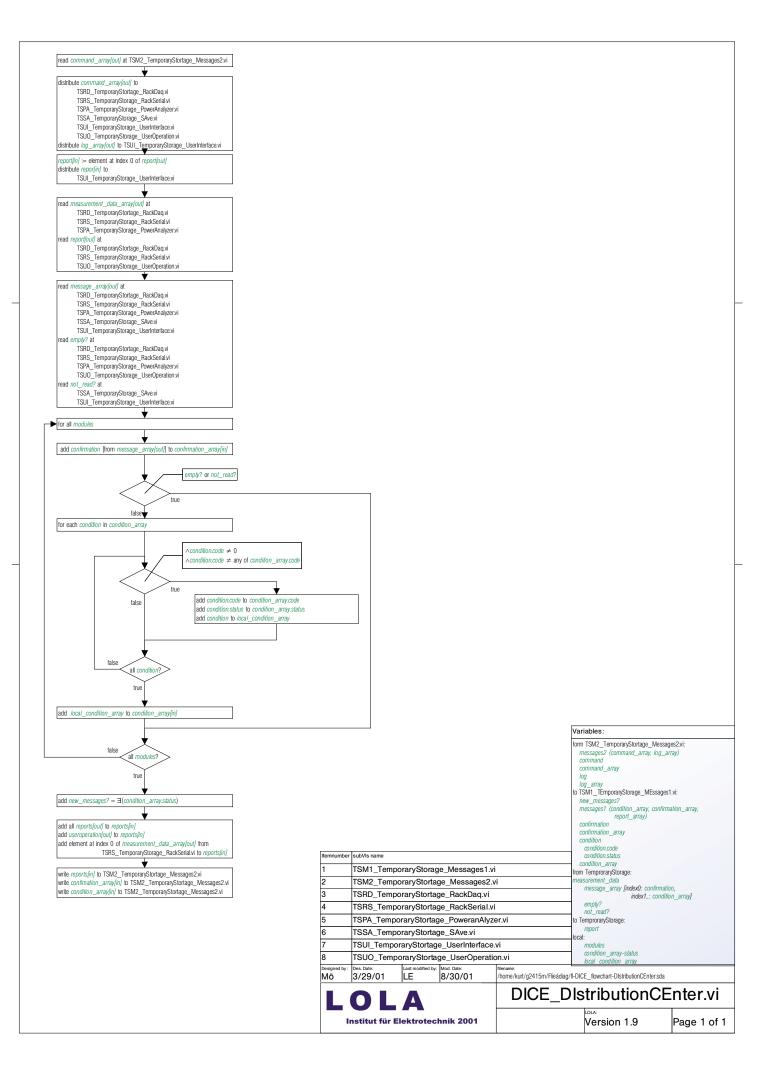
Last but not least the realization and improvement of the security concept has also be counted to future goals, because at the moment only the concept is elaborated.

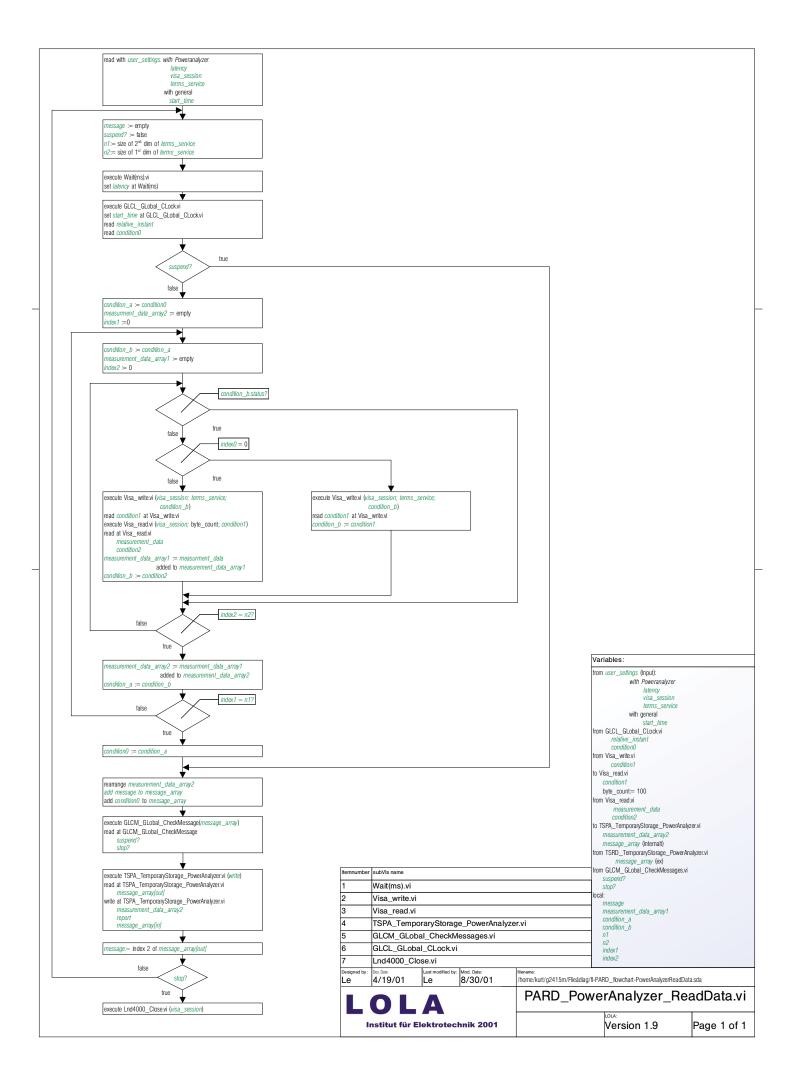
Improvements for the programming of LOLA

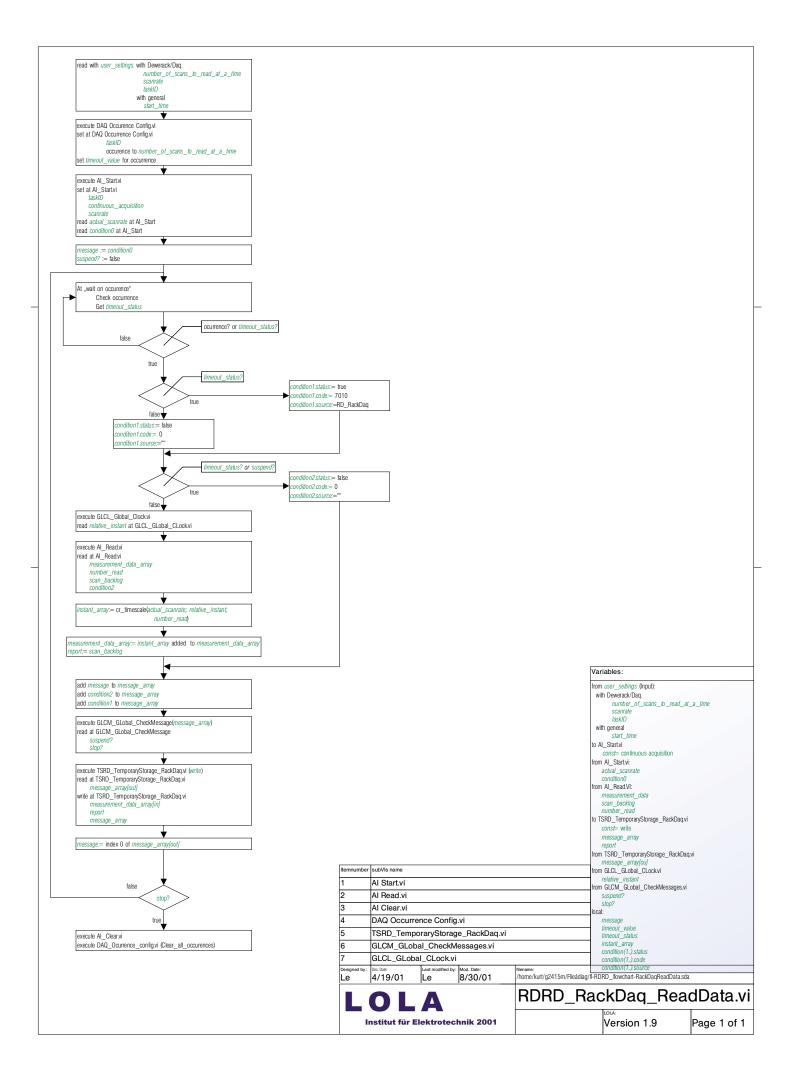
There are some aspects of LOLA which can be improved in further versions. The proposal for improvement concern the Message Gathering System (MGS) and Sinage_Center.vi (SICE), saving and the initialization user-interface.

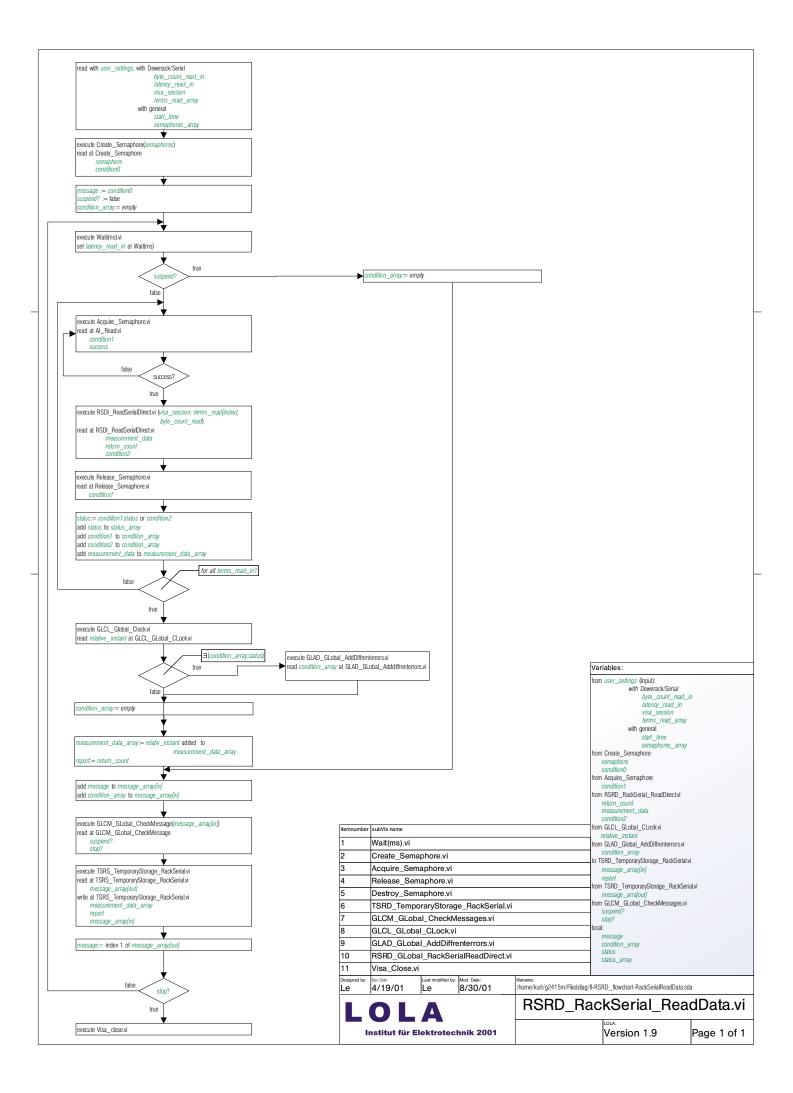
KAPITEL 10. CONCLUSION

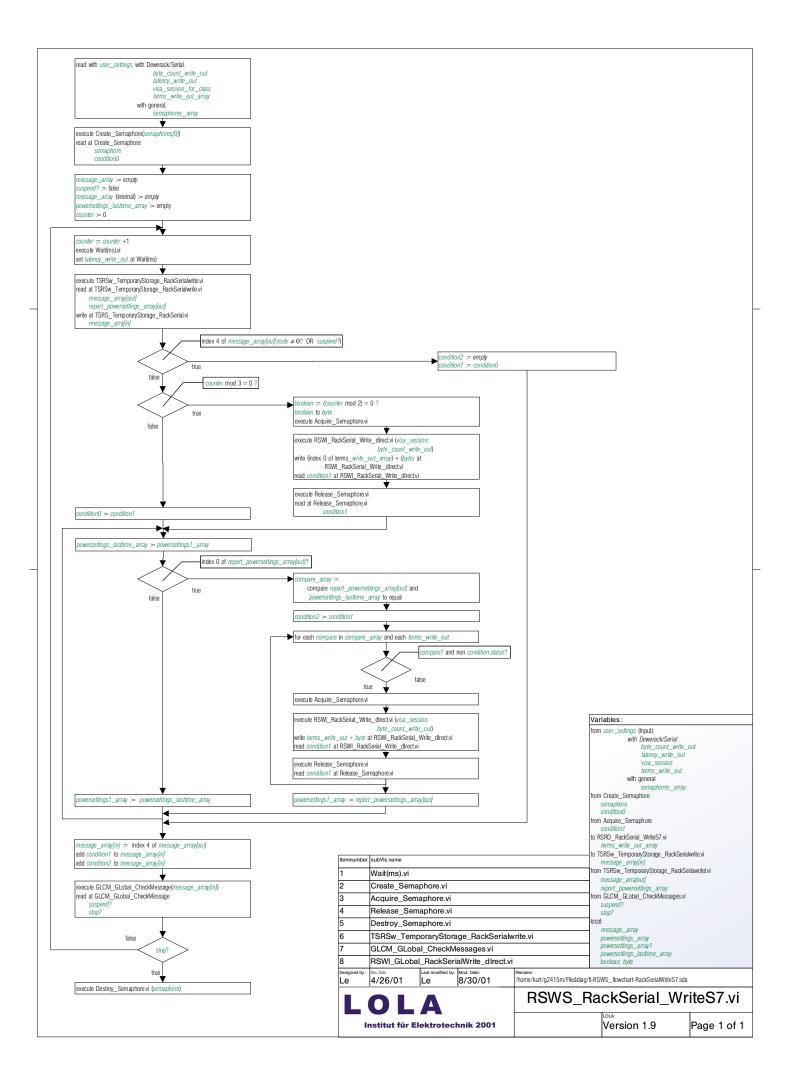
The proposed change to SICE is to standardize the message evaluation by integrating the condition evaluation in the state machine of the report evaluation. The structure would become easier to handle.

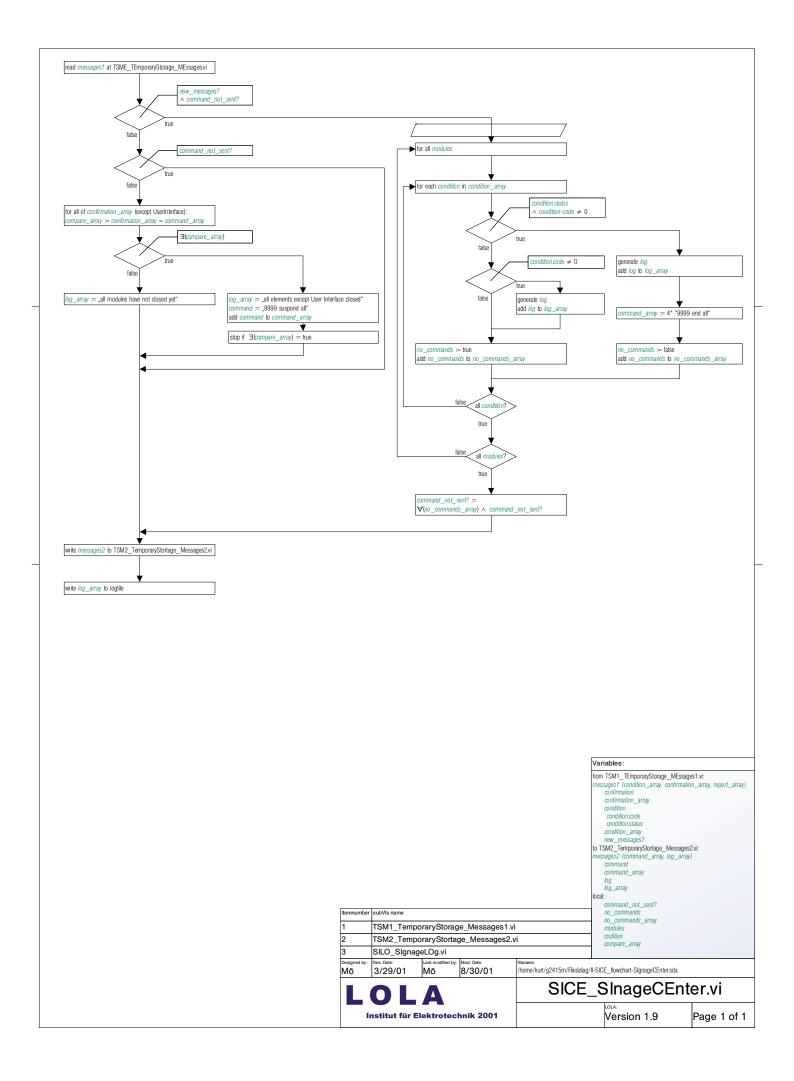

The influence of MGS can be extended over the whole program. At the moment it is implemented in the simultaneously executing VIs. It will allow reactivating and re-initializing LOLA. Therefore it must not be terminated after one execution.

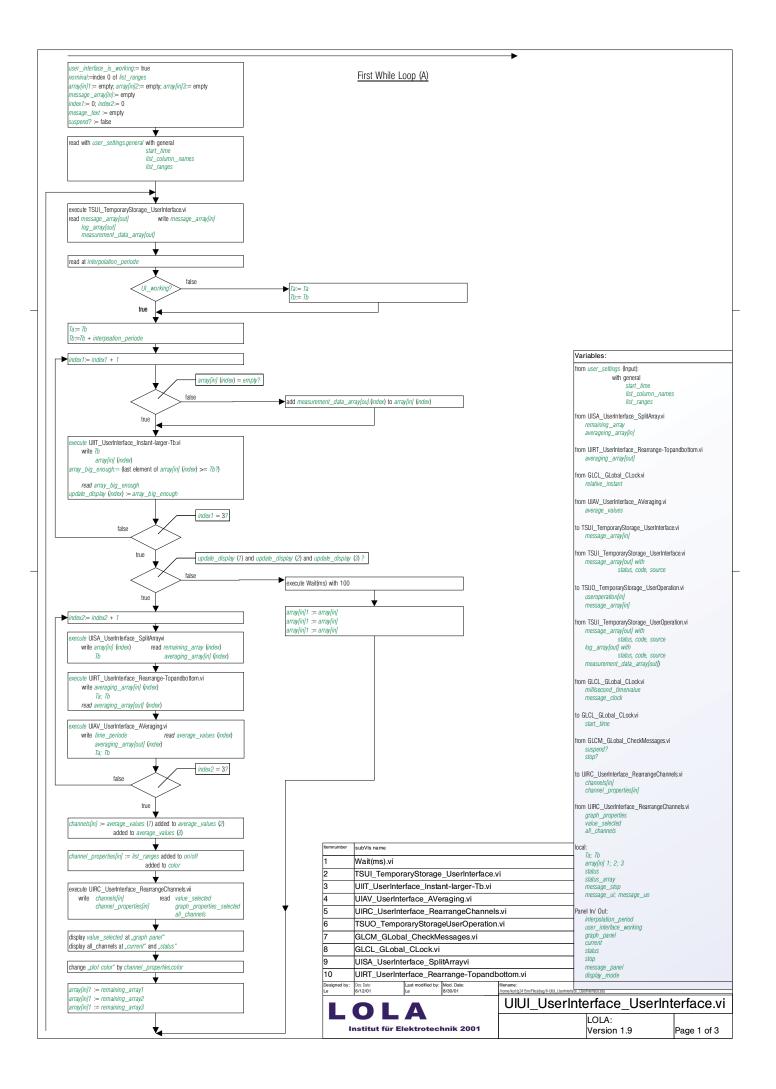

The saving of data to disk can be improved regarding to statistic and mathematical operations and its degree of automatization can be increased too. This will ease the Measurement-Data evaluation and improve also the data reliability.

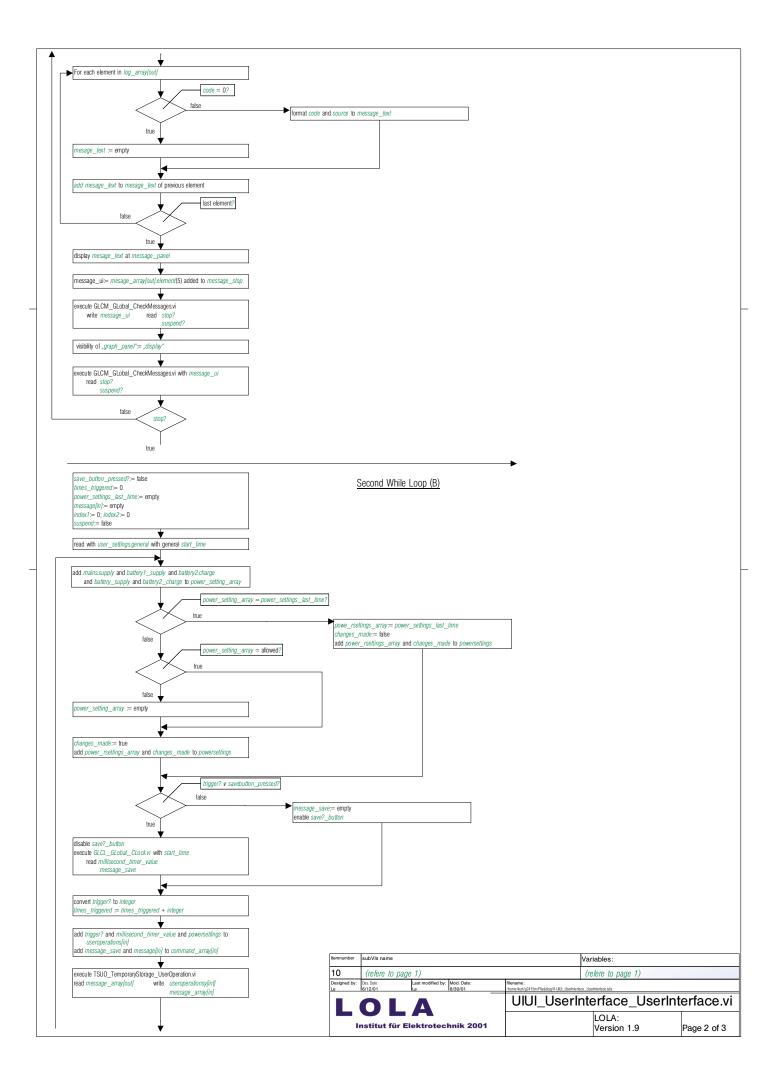

The proposal for improvement of the user-interface for initialization concern the adaption to an specific operator. At the moment there is a excellent shell. But it could not been tested for all incidence.

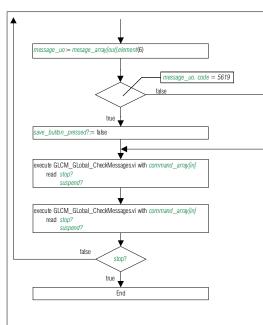

Anhang A


Flowcharts









Itemnumber	subVIs name				Variables:	
10	(refere to page	1)			(refere to page 1)	
	Des. Date: 6/12/01	Last modified by: Le	Mod. Date: 8/30/01	filename : /home/kurt/g2415m/Fileádiag/11-UIU_UserInterfa	ce_UserInterface.sda	
	OL	Δ		UIUI_UserIr	nterface_UserInt	erface.vi
	nstitut für El		nnik 2001		LOLA: Version 1.9	Page 3 of 3

Anhang B

\mathbf{PLC}

- B.1 Table X Inputs
- B.2 Table User Input Codes
- B.3 Table Y Outputs
- B.4 Table PC Output Codes
- B.5 State Diagram
- B.6 Transition Condition
- **B.7** Output States

			Х	Input		
աւս	- 110 A		emer.		connector	
• 1110717	~~ <i>L</i> ~~				assignment	. \
1	system input	LifeSign	lifesign PC	alternate signal sent by the Pc	5 inputs	E0.0-E0.
2	user input	Main_Su	main supply button	main supply on or off		
3	user input	Batt1_Su	battery1 supply butte	supply buttdmatteryl supply on or off		
4	user input	Batt1 Ch	battery1 charge butt	charge butturharge battery1 yes or no		
5	user input	Batt2 Su	battery2 supply butt	battery2 supply butt <mark>b</mark> mattery2 supply on or off		
9	user input	Batt2 Ch	battery2 charge buttomharge battery2	wharge battery2 yes or no		
7	user input	Start	start button	enables system		
8	user input	Stopp	stopp button	pauses system		
6	system input		close session	shuts down the system		
10	user input	Етегдепсу	emergency button	emergency stopp	1 input	E0.5
11	system input	MotorProt_L	motor protection load	loabvercurrent relais between inverter	and motosertain	
12	system input	Errorinv L	erorr inverter load	error status of inverter (load)	1 input	E0.6
13	system input			programmable output of the load inv	invertemot planned	
14	system input			programmable output of the load invertemot planned	ertemot planned	
15	system input			programmable output of the load invertemot planned	ertemot planned	
16	system input	MotorProt_T	motor protection tra	motor protection tradition transmittent relais between inverter	and motcoertain	
17	system input	ErrorInv T	erorr inverter tract	erorr inverter tract terror status of inverter (traction)	1 input	Е0.7
18	system input			programmable output of the traction	invenderplanned	
19	system input			programmable output of the traction inventerplanned	invenderplanned	
20	system input			programmable output of the traction	invenderplanned	
21	system input	ResProt L	resistor protection	koanp erature control in load resistor	r 1 input	E1.0
22	system input	CheckSh1	check shunt1	to control system status	1 input	E1.1
23	system input	CheckSh2	check shunt2	to control system status	1 input	E1.2
24	system input	Che	check shunt3	to control system status	uncertain	
25	system input	CheckSh4	check shunt4	to control system status	uncertain	
					used 11 of 1	16

ANHANG B. PLC

Tabelle B.1: X Inputs

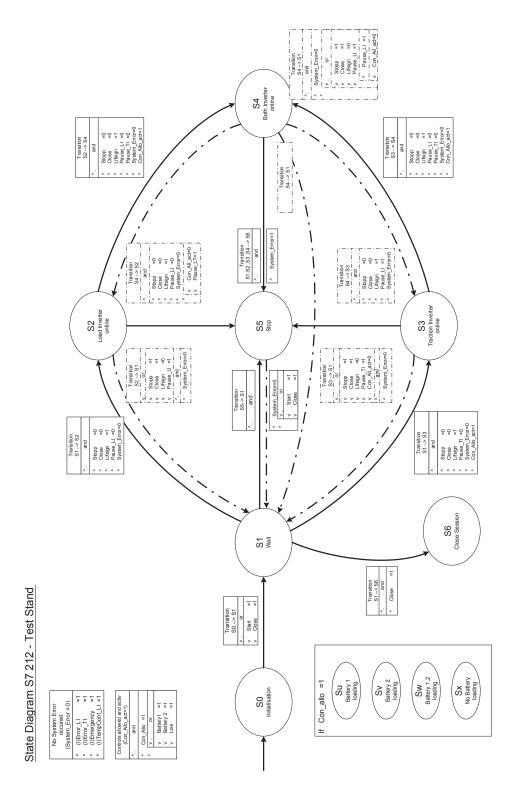


Abbildung B.1: State Diagram

Nr.	5 I	Bits	-Co	de		Explanation
0	0	0	0	0	0	No supply for the Traction Drive (T. D.) chosen
1	0	0	0	0	1	Line supply for T. D.
2	0	0	0	1	0	Battery 1 supply for T. D.
3	0	0	0	1	1	Start button
5	0	0	1	0	1	Line supply for T. D. and charge battery 1
6	0	0	1	1	0	Close session
7	0	0	1	1	1	Lifesign
8	0	1	0	0	0	Battery 2 supply for T. D.
9	0	1	0	0	1	Pause load inverter
10	0	1	0	1	0	Pause traction inverter
11	0	1	0	1	1	Reset all commands
12	0	1	1	0	0	Battery 2 supply for T. D. and charge battery 1
13	0	1	1	0	1	Reset Pause load inverter
14	0	1	1	1	0	Reset Pause T. D.
15	0	1	1	1	1	Stop button
17	0	1	0	0	1	Line supply for T. D. and charge battery 2
18	0	1	0	1	0	Battery 1 supply for T. D. and charge battery 2
21	1	0	1	0	1	Line supply for T. D. and charge battery $1/2$
22	1	0	1	1	0	Reverse Lifesign

Tabelle B.2: Used 5-bit Input Codes

				Y Output		
.mun	type	shortcut	t name	description	connector assignment	oî ≘n†
1	machine outputnvShunt	u∎nvShunt L	inverter shunt tract	tract <mark>ish</mark> unt to en/disable powersupply for tract on	n inv d rbetrput	A0.0
2	machine outpu	outputnvShunt T	inverter shunt load	shunt to en/disable powersupply for load <mark>inv</mark>	verteñ output	A0.1
Э	machine outpuMain Su Sh		main supply shunt	shunt to en/disable main supply for traction	n witter permission	u
4	machine outpuBatt1	uBattl Su Sh	battery1 supply shun shunt to	shunt to en/disable battery1 supply for tradtion inverter	ction inverter	
5	machine outpuBatt1	uBatt1 Ch Sh	battery1 charge shunt	shunshunt to en/disable charging of battery1		
9	machine outpuBatt2	uBatt2 Su Sh	battery2 supply shun shunt	to en/disable battery2 supply for	tradtion inverter	
7	machine outpuBatt2	uBatt2 Ch Sh	battery2 charge shun shunt to	shunt to en/disable charging of battery2		
8	machine outpuMeachBreak		mechanical break	•••	not planned	
6	machine outpu	outpuEnCont L	enable controller (1	mend)ble controller in load inverter	1 output	A0.2
10	machine outputset T	RIP L	set TRIP (load)	sets TRIP true (load inverter)	1 output	A0.3
11	machine outputeset	uReset_TRIP_I	reset TRIP (load)	sets TRIP false> true (load inverter)	1 output	A0.4
12	machine output	ut			uncertain	
13	machine output	ut			uncertain	
14	machine output	ut			uncertain	
15	machine outpuEnCont	UEnCont_T	enable controller (t	controller (terratilen)controller in traction inverter	1 output	A0.5
16	machine outpuset TRIP T	uset TRIP T	set TRIP (traction)	sets TRIP true (traction inverter)	1 output	A1.0
17	machine outpulleset	TRIPI	reset TRIP(traction) sets	sets TRIP false> true (traction invert <mark>er</mark>		A0.4
18	machine output	ut			uncertain	
19	machine output	ut			uncertain	
20	machine output	ut			uncertain	
21	machine outpuBC	uBC_Out	pc output	information output to Pc	3 outputs	A1.1- A1
22	machine outpu	outputugupply24V Sh	Shsupply 24V shunt	shunt to en/disable 24 V external supply	1 input	A1.4
					used 11 of 14	

Tabelle B.3: Y Outputs

ANHANG B. PLC

Number	3 Bits-Code	Explanation
6	0 0 0	State Close (like no current)
0	0 0 1	State Initialize
1	0 1 0	State Wait
2	0 1 1	State Load Inverter Online
3	1 0 0	State Traction Inverter Online
4	1 0 1	State Both Inverter Online
5	1 1 0	State Stop

Tabelle B.4: Used 3-bit Output Codes

From State	Jump to State	Transition Condition
S0 Initialization	S1 Wait	$\overline{System - Error} \cap (Start \cup Close)$
S1 Wait	S2 Load Inverter Online	$(\underline{System_Error} \cup Close \cup Stop \cup Pause_LI) \cap Lifesign$
	S3 Traction Inv. Online	$(\underline{System_Error} \cup Close \cup Stop \cup Pause_TI) \cap (\underline{No_Supply} \cap Lifesign)$
	S5 Stop	System Error
	S6 Close Session	Close
S2 Load Inverter	S1 Wait	$\overline{\mathrm{System}\operatorname{-}\mathrm{Error}}\cap(\mathrm{Close}\cup\mathrm{Stop}\cup\mathrm{Pause}\operatorname{-}\mathrm{LI}\cup\overline{\mathrm{Lifsign}})$
Online	S4 Both Inv. Online	$(\underline{System_Error} \cup Close \cup Stop \cup Pause_TI \cup Pause_LI) \cap (\underline{No_Supply} \cap Lifesign)$
	S5 Stop	System Error
S3 Traction Inv.	S1 Wait	$\overline{\mathrm{System}\ \mathrm{Error}} \cap (\mathrm{Close} \cup \mathrm{Stop} \cup \mathrm{Pause_TI} \cup \overline{\mathrm{Lifsign}} \cup \overline{\mathrm{No_Supply}})$
Online	S4 Both Inv. Online	$(\overline{System_Error} \cup Close \cup Stop \cup Pause_TI \cup Pause_LI) \cap (\overline{No_Supply} \cap Lifesign)$
	S5 Stop	System_Error
S4 Both Inverter	S1 Wait	$\overline{\mathrm{System}\ \mathrm{Error}} \cap (\mathrm{Close} \cup \mathrm{Stop} \cup (\mathrm{Pause}\ \mathrm{LI} \cap \mathrm{Pause}\ \mathrm{TI}) \cup \overline{\mathrm{Lifsign}} \cup \overline{\mathrm{No}}\ \mathrm{Supply})$
Online	S2 Load Inv. Online	$(\underline{System_Error} \cup Close \cup Stop \cup Pause_LI) \cap Lifesign \cap (Pause_TI \cup No_Supply)$
	S3 Traction Inv. Online	$(\underline{System_Error} \cup Close \cup Stop \cup Pause_LI) \cap Lifesign \cap Pause_LI)$
	S5 Stop	System_Error

Tabelle B.5: Transition Conditions

20					01				
SO				7.0.6	S1				20.6
InvShunt	LOW	0	V400.(A0.(InvShunt	LOW	0	V400.(A0.(
InvShunt	LOW	0	V400.1	A0.1	InvShunt		X	V400.1	A0.1
EnCont_L	LOW	0	V400.2	A0.2	EnCont_L	LOW	0	V400.2	A0.2
Set_TRIP_	LOW	0	V400.1	A0.3	Set_TRIP_:	HIGH	1	V400.3	A0.3
Reset_TRIP_	LOW	0	V400.4	A0.4	Reset_TRIP_	HIGH	1	V400.4	A0.4
Reset_TRIP_	LOW	0		A0.4	Reset_TRIP	HIGH	1	V401.(A0.4
Set_TRIP_'	LOW	0	V400.4	A1.(EnCont_I	LOW	0	V400.5	A0.5
EnCont_I	LOW	0	V400.5	A0.5	Set_TRIP_'	HIGH	1	V400.4	A1.(
PC_Out	XXX	0	V401.1	A1.1	PC_Out	XXX	0	V401.1	A1.1
		0	V401.2	A1.2			1	V401.2	A1.2
		1	V401.3	A1.3			0	V401.3	A1.3
Supply24V_Sł	HIGH	1	V401.4	A1.4	Supply24V_Sh	HIGH	1	V401.4	A1.4
S2					S3				
InvShunt	HIGH	1	V400.(A0.(InvShunt	LOW	0	V400.(A0.(
InvShunt	пісп	X	V400.1	A0.1	InvShunt	MOIT I	x	V400.1	A0.1
EnCont L	HIGH	 	V400.1	A0.1 A0.2	EnCont L	HIGH	1	V400.1	A0.1 A0.2
Set TRIP :	HIGH	1	V400.2	A0.2	Set TRIP :	LOW	1	V400.2	A0.2
Reset TRIP	_	0					0	V400.4	A0.3
	LOW		V400.4	A0.4	Reset_TRIP	LOW			
Reset_TRIP	LOW	0	V401.(A0.4	Reset_TRIP	LOW	0	V401.(A0.4
EnCont_T	LOW	0	V400.5	A0.5	EnCont_I	HIGH	1	V400.5	A0.5
Set_TRIP_'	HIGH	1	V400.4	A1.(Set_TRIP_'	HIGH	1	V400.4	A1.(
PC_Out	XXX	0	V401.1	A1.1	PC_Out	XXX	1	V401.1	A1.1
	_	1	V401.2	A1.2			0	V401.2	A1.2
		1	V401.3	A1.3			0	V401.3	A1.3
Supply24V_Sł	HIGH	1	V401.4	A1.4	Supply24V_St	HIGH	1	V401.4	A1.4
S4									
01					55		1 1		
	нтсн	1	V400 (λ <u>ο</u> (S5	LOW	0	V400 (20 (
InvShunt_	HIGH	1 x	V400.(A0.(InvShunt_	LOW	0	V400.(A0.(
InvShunt_ InvShunt_		Х	V400.1	A0.1	InvShunt InvShunt	LOW	0	V400.1	A0.1
InvShunt InvShunt EnCont_L	HIGH	X 1	V400.1 V400.2	A0.1 A0.2	InvShunt InvShunt EnCont_L	LOW LOW	0	V400.1 V400.2	A0.1 A0.2
InvShunt InvShunt EnCont_L Set_TRIP	HIGH HIGH	X 1 1	V400.1 V400.2 V400.1	A0.1 A0.2 A0.3	InvShunt InvShunt EnCont_L Set_TRIP	LOW LOW LOW	0 0 0	V400.1 V400.2 V400.1	A0.1 A0.2 A0.3
InvShunt InvShunt EnCont_L Set_TRIP Reset_TRIP	HIGH HIGH LOW	X 1 1	V400.1 V400.2 V400.3 V400.4	A0.1 A0.2 A0.3 A0.4	InvShunt InvShunt EnCont_L Set_TRIP Reset_TRIP	LOW LOW LOW	0 0 0 0	V400.1 V400.2 V400.3 V400.4	A0.1 A0.2 A0.3 A0.4
InvShunt InvShunt EnCont_L Set_TRIP Reset_TRIP Reset_TRIP	HIGH HIGH LOW LOW	X 1 0 0	V400.1 V400.2 V400.3 V400.4 V401.(A0.1 A0.2 A0.3 A0.4 A0.4	InvShunt_ InvShunt_ EnCont_L Set_TRIP_ Reset_TRIP_ Reset_TRIP_	LOW LOW LOW LOW	0 0 0 0	V400.1 V400.2 V400.3 V400.4 V401.(A0.1 A0.2 A0.3 A0.4 A0.4
InvShunt InvShunt EnCont_L Set_TRIP Reset_TRIP Reset_TRIP EnCont_T	HIGH HIGH LOW LOW HIGH	X 1 1 0 0 1	V400.: V400.: V400.: V400.: V400.4 V401.(V400.!	A0.1 A0.2 A0.3 A0.4 A0.4 A0.5	InvShunt_ InvShunt_ EnCont_L Set_TRIP_ Reset_TRIP_ Reset_TRIP_ EnCont_T	LOW LOW LOW LOW LOW	0 0 0 0 0 0	V400.1 V400.2 V400.3 V400.4 V400.4 V401.(V400.5	A0.1 A0.2 A0.3 A0.4 A0.4 A0.5
InvShunt_ InvShunt_ EnCont_L Set_TRIP_ Reset_TRIP_ Reset_TRIP_ EnCont_T Set_TRIP_'	HIGH HIGH LOW LOW HIGH	X 1 0 0 1	V400.: V400.: V400.: V400.: V401.(V401.(V400.! V400.4	A0.1 A0.2 A0.3 A0.4 A0.4 A0.5 A1.(InvShunt_ InvShunt_ EnCont_L Set_TRIP_ Reset_TRIP_ Reset_TRIP_ EnCont_T Set_TRIP_'	LOW LOW LOW LOW LOW LOW	0 0 0 0 0 0 0 0 0	V400.1 V400.2 V400.3 V400.4 V400.4 V400.5 V400.4	A0.1 A0.2 A0.3 A0.4 A0.5 A1.0
InvShunt InvShunt EnCont_L Set_TRIP Reset_TRIP Reset_TRIP EnCont_T	HIGH HIGH LOW LOW HIGH	X 1 0 0 1 1 1	V400.: V400.: V400.: V400.4 V401.(V400.4 V400.4 V400.4	A0.1 A0.2 A0.3 A0.4 A0.4 A0.4 A1.(A1.1	InvShunt_ InvShunt_ EnCont_L Set_TRIP_ Reset_TRIP_ Reset_TRIP_ EnCont_T	LOW LOW LOW LOW LOW	0 0 0 0 0 0 0 0 0 1	V400.: V400.: V400.: V400.4 V401.(V400.5 V400.4 V400.4 V400.4	A0.1 A0.2 A0.3 A0.4 A0.4 A0.4 A0.5 A1.0 A1.1
InvShunt_ InvShunt_ EnCont_L Set_TRIP_ Reset_TRIP_ Reset_TRIP_ EnCont_T Set_TRIP_'	HIGH HIGH LOW LOW HIGH	X 1 0 0 1 1 1 0	V400.: V400.: V400.: V400.4 V401.(V400.4 V400.4 V400.4 V401.2	A0.1 A0.2 A0.3 A0.4 A0.4 A0.4 A0.5 A1.(A1.1 A1.2	InvShunt_ InvShunt_ EnCont_L Set_TRIP_ Reset_TRIP_ Reset_TRIP_ EnCont_T Set_TRIP_'	LOW LOW LOW LOW LOW LOW	0 0 0 0 0 0 0 0 1 1	V400.: V400.: V400.: V400.4 V401.(V400.5 V400.4 V400.4 V400.4 V401.1 V401.2	A0.1 A0.2 A0.3 A0.4 A0.4 A0.5 A1.0 A1.1 A1.2
InvShunt_ InvShunt_ EnCont_L Set_TRIP_ Reset_TRIP_ EnCont_T Set_TRIP' PC_Out	HIGH HIGH LOW LOW HIGH XXX	X 1 0 1 1 1 0 1	V400.: V400.2 V400.3 V400.4 V401.(V400.4 V400.4 V400.4 V400.4 V401.2 V401.2 V401.3	A0.1 A0.2 A0.3 A0.4 A0.4 A0.4 A0.5 A1.(A1.1 A1.2 A1.3	InvShunt_ InvShunt_ EnCont_L Set_TRIP_ Reset_TRIP_ EnCont_T Set_TRIP_' PC_Out	LOW LOW LOW LOW LOW LOW XXX	0 0 0 0 0 0 0 0 1 1 1 0	V400.: V400.: V400.: V400.4 V401.(V400.5 V400.4 V400.4 V400.4 V401.2 V401.2 V401.2	A0.1 A0.2 A0.3 A0.4 A0.5 A1.0 A1.1 A1.2
InvShunt_ InvShunt_ EnCont_L Set_TRIP_ Reset_TRIP_ Reset_TRIP_ EnCont_T Set_TRIP_'	HIGH HIGH LOW LOW HIGH	X 1 0 0 1 1 1 0	V400.: V400.: V400.: V400.4 V401.(V400.4 V400.4 V400.4 V401.2	A0.1 A0.2 A0.3 A0.4 A0.4 A0.4 A0.5 A1.(A1.1 A1.2	InvShunt_ InvShunt_ EnCont_L Set_TRIP_ Reset_TRIP_ Reset_TRIP_ EnCont_T Set_TRIP_'	LOW LOW LOW LOW LOW LOW	0 0 0 0 0 0 0 0 1 1	V400.: V400.: V400.: V400.4 V401.(V400.5 V400.4 V400.4 V400.4 V401.1 V401.2	A0.1 A0.2 A0.3 A0.4 A0.4 A0.5 A1.0 A1.1 A1.2
InvShunt_ InvShunt_ EnCont_L Set_TRIP_ Reset_TRIP_ EnCont_T Set_TRIP' PC_Out	HIGH HIGH LOW LOW HIGH XXX	X 1 0 1 1 1 0 1	V400.: V400.2 V400.3 V400.4 V401.(V400.4 V400.4 V400.4 V400.4 V401.2 V401.2 V401.3	A0.1 A0.2 A0.3 A0.4 A0.4 A0.4 A0.5 A1.(A1.1 A1.2 A1.3	InvShunt_ InvShunt_ EnCont_L Set_TRIP_ Reset_TRIP_ EnCont_T Set_TRIP_' PC_Out	LOW LOW LOW LOW LOW LOW XXX	0 0 0 0 0 0 0 0 1 1 1 0	V400.: V400.: V400.: V400.4 V401.(V400.5 V400.4 V400.4 V400.4 V401.2 V401.2 V401.2	A0.1 A0.2 A0.3 A0.4 A0.5 A1.0 A1.1 A1.2
InvShunt_ InvShunt_ EnCont_L Set_TRIP_ Reset_TRIP_ Reset_TRIP_ EnCont_T Set_TRIP_' PC_Out Supply24V_Sh	HIGH HIGH LOW LOW HIGH XXX	X 1 0 1 1 1 0 1	V400.: V400.2 V400.3 V400.4 V401.(V400.4 V400.4 V400.4 V400.4 V401.2 V401.2 V401.3	A0.1 A0.2 A0.3 A0.4 A0.4 A0.4 A0.5 A1.(A1.1 A1.2 A1.3	InvShunt_ InvShunt_ EnCont_L Set_TRIP_ Reset_TRIP_ EnCont_T Set_TRIP_' PC_Out	LOW LOW LOW LOW LOW LOW XXX	0 0 0 0 0 0 0 0 1 1 1 0	V400.: V400.: V400.: V400.4 V401.(V400.5 V400.4 V400.4 V400.4 V401.2 V401.2 V401.2	A0.1 A0.2 A0.3 A0.4 A0.5 A1.0 A1.1 A1.2
InvShunt_ InvShunt_ EnCont_L Set_TRIP_ Reset_TRIP_ Reset_TRIP_ EnCont_T Set_TRIP_ PC_Out Supply24V_Sh S6	HIGH HIGH LOW HIGH HIGH XXX HIGH	X 1 1 0 0 1 1 1 1 1 1	V400.: V400.2 V400.3 V400.4 V401.(V400.5 V400.4 V401.2 V401.2 V401.2 V401.2 V401.4	A0.1 A0.2 A0.3 A0.4 A0.4 A0.5 A1.(A1.1 A1.2 A1.3 A1.4	InvShunt_ InvShunt_ EnCont_L Set_TRIP_ Reset_TRIP_ EnCont_T Set_TRIP_' PC_Out	LOW LOW LOW LOW LOW LOW XXX	0 0 0 0 0 0 0 0 1 1 1 0	V400.: V400.: V400.: V400.4 V401.(V400.5 V400.4 V400.4 V400.4 V401.2 V401.2 V401.2	A0.1 A0.2 A0.3 A0.4 A0.5 A1.0 A1.1 A1.2
InvShunt_ InvShunt_ EnCont_L Set_TRIP_ Reset_TRIP_ Encont_T Set_TRIP_ PC_Out Supply24V_Sh S6 InvShunt_	HIGH HIGH LOW HIGH HIGH XXX HIGH HIGH	X 1 0 0 1 1 1 1 0 1 1 1 0 0	V400.: V400.2 V400.3 V400.4 V401.(V400.4 V401.2 V401.2 V401.2 V401.2 V401.4 V401.4 V401.4	A0.1 A0.2 A0.3 A0.4 A0.4 A0.5 A1.(A1.1 A1.2 A1.3 A1.4 A0.(InvShunt_ InvShunt_ EnCont_L Set_TRIP_ Reset_TRIP_ EnCont_T Set_TRIP_' PC_Out	LOW LOW LOW LOW LOW LOW XXX	0 0 0 0 0 0 0 0 1 1 1 0	V400.: V400.: V400.: V400.4 V401.(V400.5 V400.4 V400.4 V400.4 V401.2 V401.2 V401.2	A0.1 A0.2 A0.3 A0.4 A0.5 A1.0 A1.1 A1.2
InvShunt_ InvShunt_ EnCont_L Set_TRIP_ Reset_TRIP_ Reset_TRIP_ EnCont_T Set_TRIP_ PC_Out Supply24V_Sh S6 InvShunt_ InvShunt_	HIGH HIGH LOW HIGH HIGH HIGH HIGH LOW LOW	X 1 0 0 1 1 1 1 1 1 1 0 0 0 0 0	V400.: V400.2 V400.3 V400.4 V401.(V400.4 V401.2 V401.2 V401.2 V401.2 V401.3 V401.4 V401.4 V400.4 V400.4	A0.1 A0.2 A0.3 A0.4 A0.4 A0.5 A1.0 A1.1 A1.2 A1.3 A1.4 A0.0 A0.1	InvShunt_ InvShunt_ EnCont_L Set_TRIP_ Reset_TRIP_ EnCont_T Set_TRIP_' PC_Out	LOW LOW LOW LOW LOW LOW XXX	0 0 0 0 0 0 0 0 1 1 1 0	V400.: V400.: V400.: V400.4 V401.(V400.5 V400.4 V400.4 V400.4 V401.2 V401.2 V401.2	A0.1 A0.2 A0.3 A0.4 A0.5 A1.0 A1.1 A1.2
InvShunt InvShunt EnCont L Set_TRIP: Reset_TRIP EnCont T Set_TRIP PC_Out Supply24V_Sh S6 InvShunt InvShunt EnCont L Set_TRIP:	HIGH HIGH LOW HIGH HIGH XXX HIGH LOW LOW LOW LOW	X 1 0 0 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0	V400.: V400.4 V400.4 V400.4 V401.(V400.4 V401.2 V401.2 V401.2 V401.2 V401.3 V401.4 V401.4 V400.4 V400.4 V400.4 V400.1 V400.2 V400.2	A0.1 A0.2 A0.2 A0.4 A0.4 A0.4 A1.7 A1.7 A1.7 A1.7 A1.7 A1.4 A1.7 A1.4 A0.7 A0.1 A0.2 A0.3	InvShunt_ InvShunt_ EnCont_L Set_TRIP_ Reset_TRIP_ EnCont_T Set_TRIP_' PC_Out	LOW LOW LOW LOW LOW LOW XXX	0 0 0 0 0 0 0 0 1 1 1 0	V400.: V400.: V400.: V400.4 V401.(V400.5 V400.4 V400.4 V400.4 V401.2 V401.2 V401.2	A0.1 A0.2 A0.3 A0.4 A0.5 A1.0 A1.1 A1.2
InvShunt InvShunt EnCont L Set_TRIP: Reset_TRIP EnCont T Set_TRIP PC_Out Supply24V_Sh S6 InvShunt InvShunt EnCont L Set_TRIP: Reset_TRIP	HIGH HIGH LOW HIGH HIGH XXX HIGH LOW LOW LOW LOW LOW	X 1 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0	V400.: V400.2 V400.3 V400.4 V401.(V400.4 V401.2 V401.2 V401.2 V401.2 V401.3 V401.4 V401.4 V400.4 V400.1 V400.2 V400.2 V400.4	A0.1 A0.2 A0.2 A0.4 A0.4 A0.4 A1.7 A1.7 A1.7 A1.7 A1.7 A1.4 A1.7 A1.4 A0.7 A0.1 A0.2 A0.3 A0.4	InvShunt_ InvShunt_ EnCont_L Set_TRIP_ Reset_TRIP_ EnCont_T Set_TRIP_' PC_Out	LOW LOW LOW LOW LOW LOW XXX	0 0 0 0 0 0 0 0 1 1 1 0	V400.: V400.: V400.: V400.4 V401.(V400.5 V400.4 V400.4 V400.4 V401.2 V401.2 V401.2	A0.1 A0.2 A0.3 A0.4 A0.5 A1.0 A1.1 A1.2
InvShunt InvShunt EnCont L Set_TRIP Reset_TRIP EnCont T Set_TRIP PC_Out Supply24V_Sh S6 InvShunt InvShunt EnCont L Set_TRIP Reset_TRIP Reset_TRIP Reset_TRIP	HIGH HIGH LOW HIGH HIGH XXX HIGH LOW LOW LOW LOW LOW LOW	X 1 0 0 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0	V400.: V400.2 V400.3 V400.4 V401.(V400.4 V401.2 V401.2 V401.2 V401.2 V401.3 V401.4 V401.4 V400.4 V400.1 V400.2 V400.2 V400.4 V400.4 V401.(A0.1 A0.2 A0.2 A0.4 A0.4 A0.4 A1.7 A1.7 A1.7 A1.7 A1.7 A1.7 A1.4 A0.7 A0.7 A0.1 A0.2 A0.3 A0.4 A0.4	InvShunt_ InvShunt_ EnCont_L Set_TRIP_ Reset_TRIP_ EnCont_T Set_TRIP_' PC_Out	LOW LOW LOW LOW LOW LOW XXX	0 0 0 0 0 0 0 0 1 1 1 0	V400.: V400.: V400.: V400.4 V401.(V400.5 V400.4 V400.4 V400.4 V401.2 V401.2 V401.2	A0.1 A0.2 A0.3 A0.4 A0.5 A1.0 A1.1 A1.2
InvShunt InvShunt EnCont_L Set_TRIP Reset_TRIP Reset_TRIP EnCont_T Set_TRIP PC_Out Supply24V_Sh S6 InvShunt_ InvShunt_ EnCont_L Set_TRIP Reset_TRIP Reset_TRIP EnCont_T	HIGH HIGH LOW HIGH HIGH XXX HIGH LOW LOW LOW LOW LOW LOW LOW	X 1 0 0 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0	V400.: V400.2 V400.3 V400.4 V401.(V400.5 V400.4 V401.2 V401.2 V401.2 V401.2 V401.4 V401.4 V400.4 V400.1 V400.2 V400.2 V400.4 V400.4 V400.4 V400.5	A0.1 A0.2 A0.2 A0.4 A0.4 A0.4 A0.5 A1.(A1.1 A1.2 A1.2 A1.3 A1.4 A0.(A0.1 A0.2 A0.3 A0.4 A0.4 A0.5	InvShunt_ InvShunt_ EnCont_L Set_TRIP_ Reset_TRIP_ EnCont_T Set_TRIP_' PC_Out	LOW LOW LOW LOW LOW LOW XXX	0 0 0 0 0 0 0 0 1 1 1 0	V400.: V400.: V400.: V400.4 V401.(V400.5 V400.4 V400.4 V400.4 V401.2 V401.2 V401.2	A0.1 A0.2 A0.3 A0.4 A0.5 A1.0 A1.1 A1.2
InvShunt InvShunt EnCont L Set_TRIP Reset_TRIP EnCont T Set_TRIP PC_Out Supply24V_Sh S6 InvShunt InvShunt EnCont L Set_TRIP Reset_TRIP Reset_TRIP EnCont T Set_TRIP	HIGH HIGH LOW HIGH HIGH XXX HIGH LOW LOW LOW LOW LOW LOW LOW LOW	X 1 1 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0	V400.: V400.2 V400.3 V400.4 V401.(V400.4 V401.2 V401.2 V401.2 V401.2 V401.3 V401.4 V401.4 V400.4 V400.1 V400.2 V400.4 V400.4 V400.4	A0.1 A0.2 A0.2 A0.4 A0.4 A0.4 A0.5 A1.(A1.1 A1.2 A1.3 A1.3 A1.4 A0.(A0.1 A0.2 A0.3 A0.4 A0.4 A0.5 A1.(InvShunt_ InvShunt_ EnCont_L Set_TRIP_ Reset_TRIP_ EnCont_T Set_TRIP_' PC_Out	LOW LOW LOW LOW LOW LOW XXX	0 0 0 0 0 0 0 0 1 1 1 0	V400.: V400.: V400.: V400.4 V401.(V400.5 V400.4 V400.4 V400.4 V401.2 V401.2 V401.2	A0.1 A0.2 A0.3 A0.4 A0.5 A1.0 A1.1 A1.2
InvShunt InvShunt EnCont_L Set_TRIP Reset_TRIP Reset_TRIP EnCont_T Set_TRIP PC_Out Supply24V_Sh S6 InvShunt_ InvShunt_ EnCont_L Set_TRIP Reset_TRIP Reset_TRIP EnCont_T	HIGH HIGH LOW HIGH HIGH XXX HIGH LOW LOW LOW LOW LOW LOW LOW	X 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 0	V400.: V400.2 V400.4 V400.4 V401.(V400.4 V401.2 V401.2 V401.2 V401.2 V401.2 V401.4 V401.4 V400.4 V400.4 V400.2 V400.4 V400.4 V400.4 V400.4 V400.4	A0.1 A0.2 A0.2 A0.4 A0.4 A0.4 A0.5 A1.(A1.1 A1.2 A1.2 A1.3 A1.4 A0.(A0.1 A0.2 A0.3 A0.4 A0.4 A0.4 A0.5 A1.(A1.1	InvShunt_ InvShunt_ EnCont_L Set_TRIP_ Reset_TRIP_ EnCont_T Set_TRIP_' PC_Out	LOW LOW LOW LOW LOW LOW XXX	0 0 0 0 0 0 0 0 1 1 1 0	V400.: V400.: V400.: V400.4 V401.(V400.5 V400.4 V400.4 V400.4 V401.2 V401.2 V401.2	A0.1 A0.2 A0.3 A0.4 A0.5 A1.0 A1.1 A1.2
InvShunt InvShunt EnCont L Set_TRIP Reset_TRIP EnCont T Set_TRIP PC_Out Supply24V_Sh S6 InvShunt InvShunt EnCont L Set_TRIP Reset_TRIP Reset_TRIP EnCont T Set_TRIP	HIGH HIGH LOW HIGH HIGH XXX HIGH LOW LOW LOW LOW LOW LOW LOW LOW	X 1 1 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0	V400.: V400.2 V400.3 V400.4 V401.(V400.4 V401.2 V401.2 V401.2 V401.2 V401.3 V401.4 V401.4 V400.4 V400.1 V400.2 V400.4 V400.4 V400.4	A0.1 A0.2 A0.2 A0.4 A0.4 A0.4 A0.5 A1.(A1.1 A1.2 A1.3 A1.3 A1.4 A0.(A0.1 A0.2 A0.3 A0.4 A0.4 A0.5 A1.(InvShunt_ InvShunt_ EnCont_L Set_TRIP_ Reset_TRIP_ EnCont_T Set_TRIP_' PC_Out	LOW LOW LOW LOW LOW LOW XXX	0 0 0 0 0 0 0 0 1 1 1 0	V400.: V400.: V400.: V400.4 V401.(V400.5 V400.4 V400.4 V400.4 V401.2 V401.2 V401.2	A0.1 A0.2 A0.3 A0.4 A0.5 A1.0 A1.1 A1.2

Tabelle B.6: Output States

Anhang C

Error Codes

- C.1 Labview Error Codes
- C.2 Poweranalyzer Error Codes
- C.3 User Error Codes

Error codes in general:

Name	Codo Pango
	Code Range
Mathematics Error Codes	-23001 to -23054
Signal Processing Error Code	s -20001 to -20065
Data Acquisition VI Error Co	des -10001 to -10920
AppleEvent Error Codes	-1700 to -1719
Instrument Driver Error Code	s -1200 to -13xx
PPC Error Codes	-900 to -932
G Function Error Codes	0 to 85
Labview Specific PPC Error C	odes 1 to 5
GPIB Error Codes	0 to 32
TCP and UDP Error Codes	53 to 66
Serial Port Error Codes	61 to 65
PowerAnalyzer	102 to 350
Labview Specific Apple Error	Codes 1000 to 1004
MATLAB and HiQ Error Codes	1046 to 1050
PowerAnalyzer	2200 to 4322
User spezified Error Codes	5000 to 9999
Command codes	: 5000 to 5999
Warning code	s: 6000 to 6999
Error code	s: 7000 to 9999
DDE Error Codes	14001 to 14020

Tabelle C	.1: Erro	r-codes ι	used	in	LOLA
-----------	----------	-----------	------	----	------

PowerAnalyzer spezified Error Codes

Classification			Description	Code
System			Syntax Error	102
			Command Header Error	110
			Header Seperator Error	111
			Character Data Error	140
			Data Out Of Range	222
			Measurement Underflow	2204
			Measurement Overflow	2207
			Queue Overflow	350
			Input Signal Overload Or Underload	2200
Channels			Error: 1-Phase instrument - requeste	d oppændati
	Current chann	Overload	4111	
		chaim	Underload	4112
	Voltage	Voltage chann	Oveload	4121
	VOICage		Underload	4222
	Current chann	chann	Overload	4211
		Chann	Underload	4212
	Voltage channe	1 2 Oveload Underload	4221	
			4222	
	Current channe	Overload	4311	
		Underload	4312	
	Voltage chann	,	Oveload	4321
		channe	Underload	4322

Tabelle C.2: Error-codes used in LOLA

User spezified Error Codes:

Classification		Description	Code	
Command codes TO:	Quere to a m	Reactivate module	5000	
	System	User pressed STOP_button - STOP!	5099	
[RDRD		5001	
	RSRD		5101	
	PARD		5201	
	SASH		5301	
	SASH	User pressed SAVE_button - SAVE!	5311	
	RSWS		5401	
		Send comands	5411	
	UIUI		5501	
	UIUO		5601	
		Enable SAVE_button	5619	
		Enable System_buttons	5629	
Warning_from codes:	DAQ	Scan backlog above limit	6011	
	RSRD	Temperature above limit	6111	
	SASH	Saving in progress	6311	
		Saving finished	6319	
		not enough data in memory yet	6320	
	RSWS	Sending comands in progress	6411	
	CSWS	Transmission completed	6419	
	System	Not all modules have been closed yet	6990	
Error codes:	RDRD	Time_Out occurred	7010	
	System	End Program	9999	

Tabelle C.3: Error-codes used in LOLA

Anhang D

Snapshots

- D.1 Load Inverter Staiger&Mohilo Dewerack
- D.2 First experimental setup
- D.3 Test Bench with Experimental Setup

Abbildung D.1: Load Inverter - Staiger&Mohilo - Dewerack

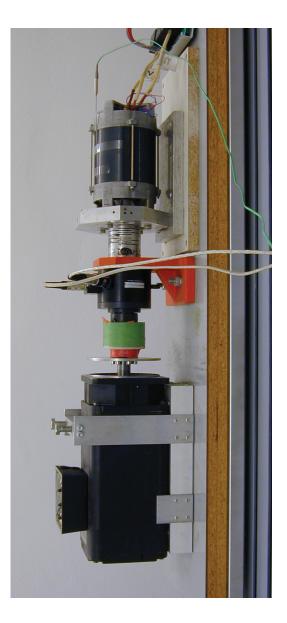
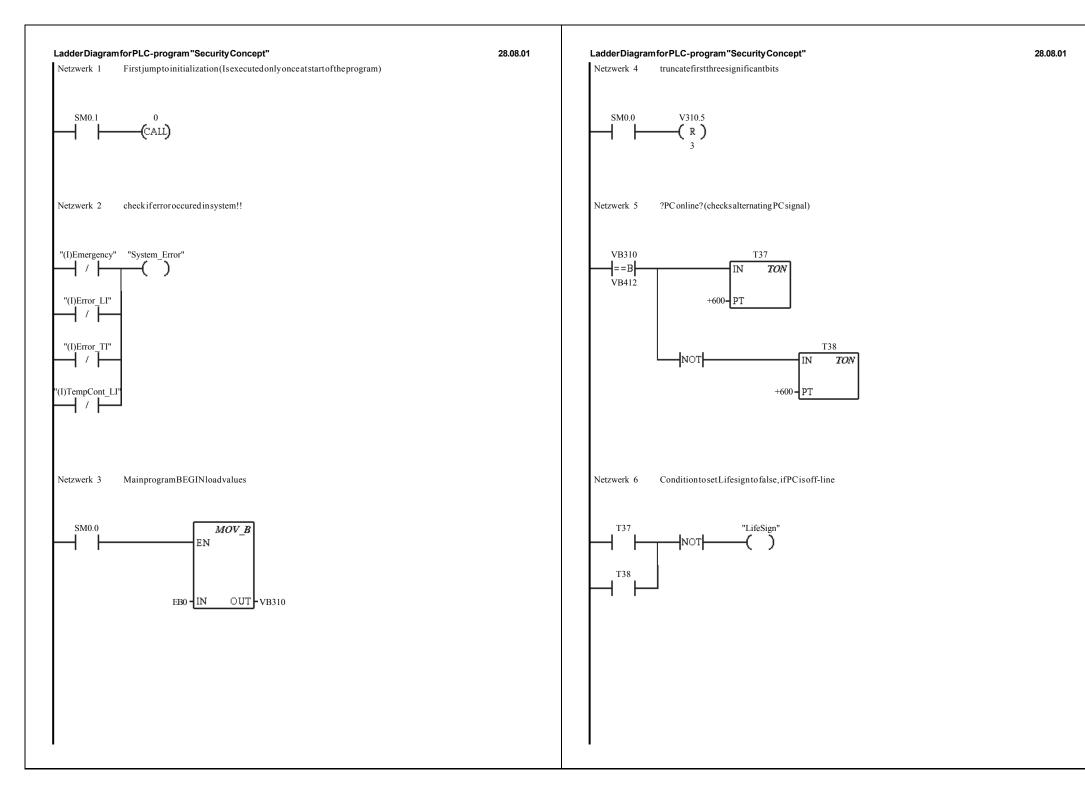



Abbildung D.2: First experimental setup

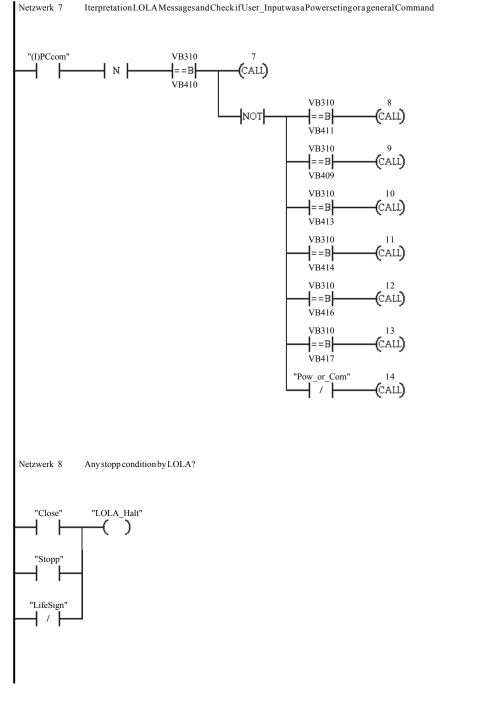


Abbildung D.3: Test Bench with Experimental Setup and Poweranalyzer

Anhang E PLC Ladder Diagram

 $Iterpretation LOLAM essages and Check if User_Input was a Powerseting or a general Command$

LadderDiagramforPLC-program"SecurityConcept"

Netzwerk 9 Jump to State 0

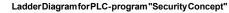
28.08.01

"S0" 0 -(CALL)

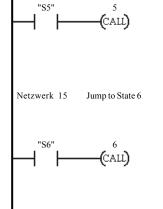
Netzwerk 10 Jump to State 1

"S1" 1 -(CALL)

Netzwerk 11 Jump to State 2


"S2" 2 -(CALL)

Netzwerk 12 Jump to State 3

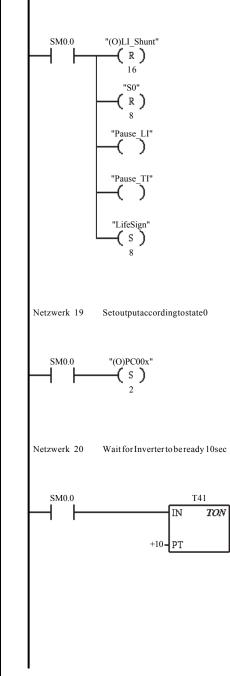

"S3" 3 -(CALL)

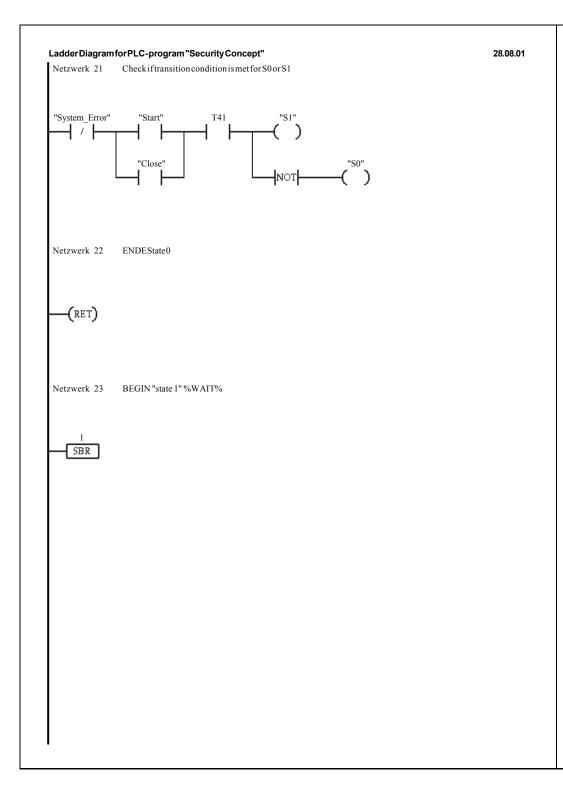
Netzwerk 13 Jump to State 4

"S4" 4 -(CALL) +

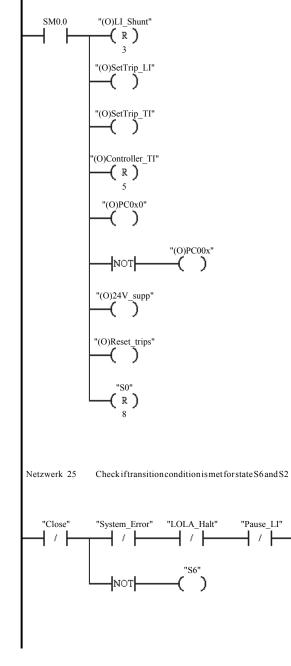
Netzwerk 14 Jump to State 5

Netzwerk 16

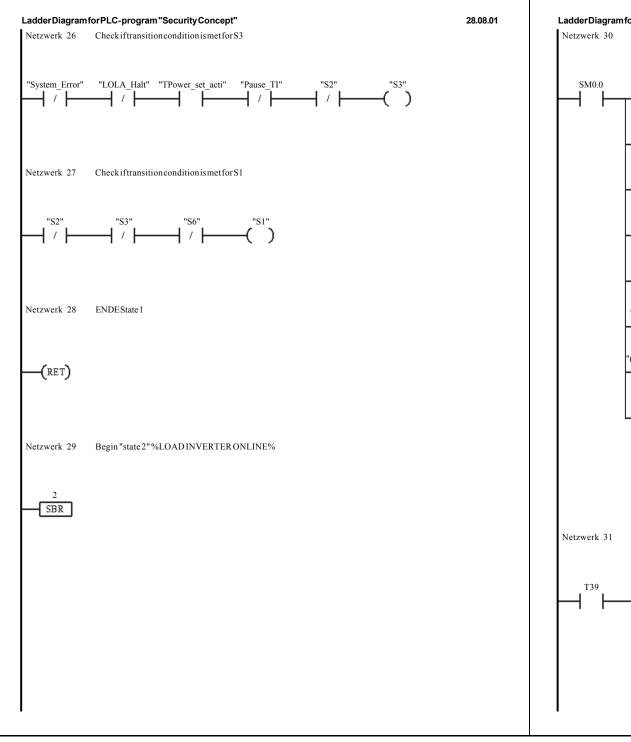

-(END)


BEGIN "state 0" %INITIALIZATION% Netzwerk 17

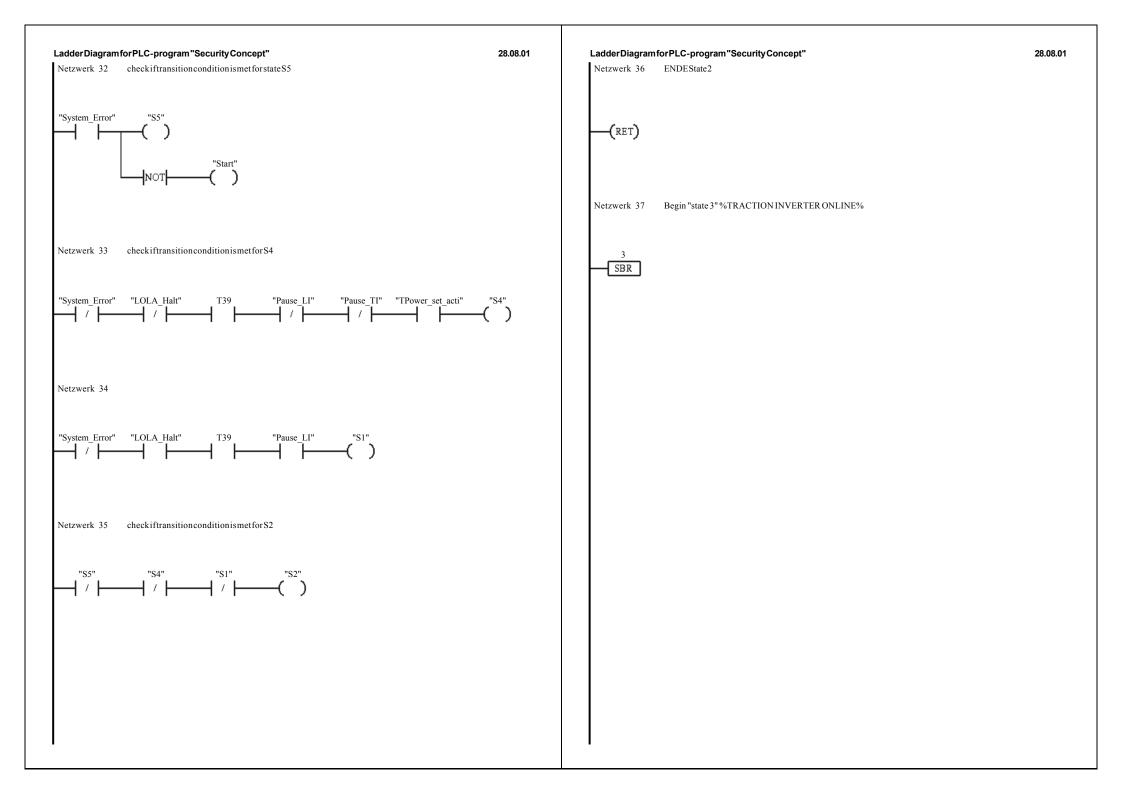
0 SBR LadderDiagramforPLC-program"SecurityConcept"

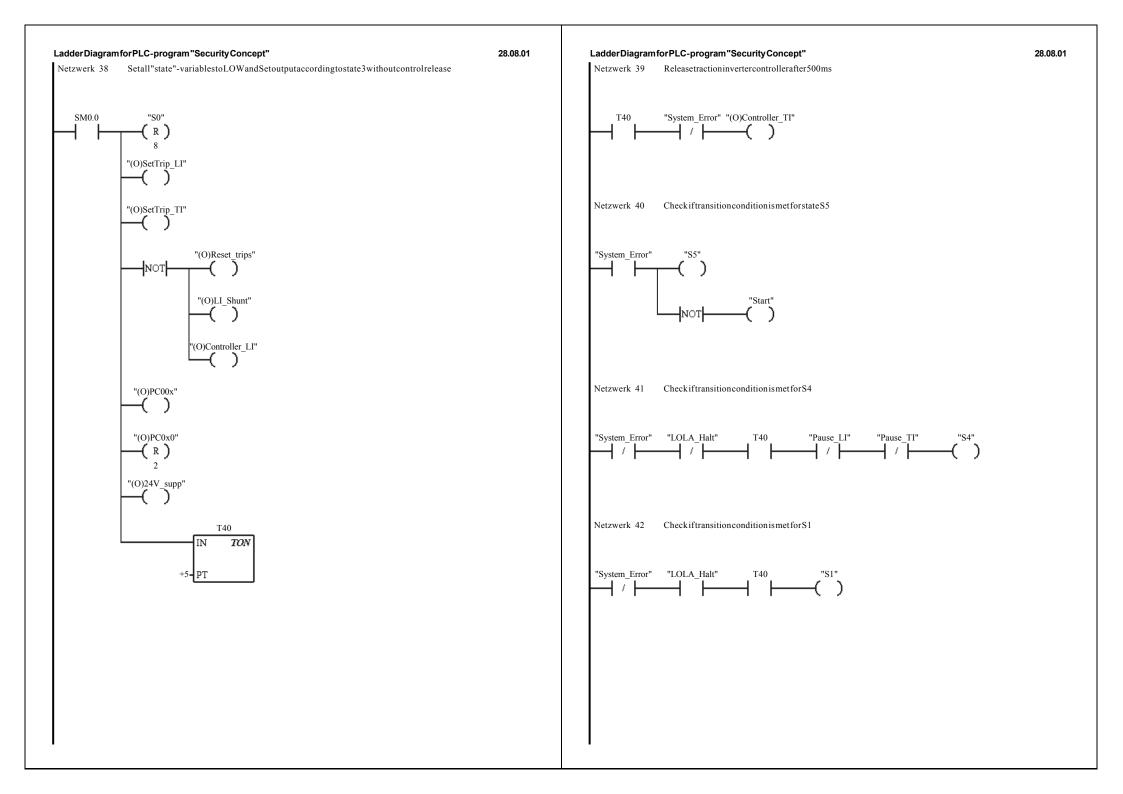

28.08.01

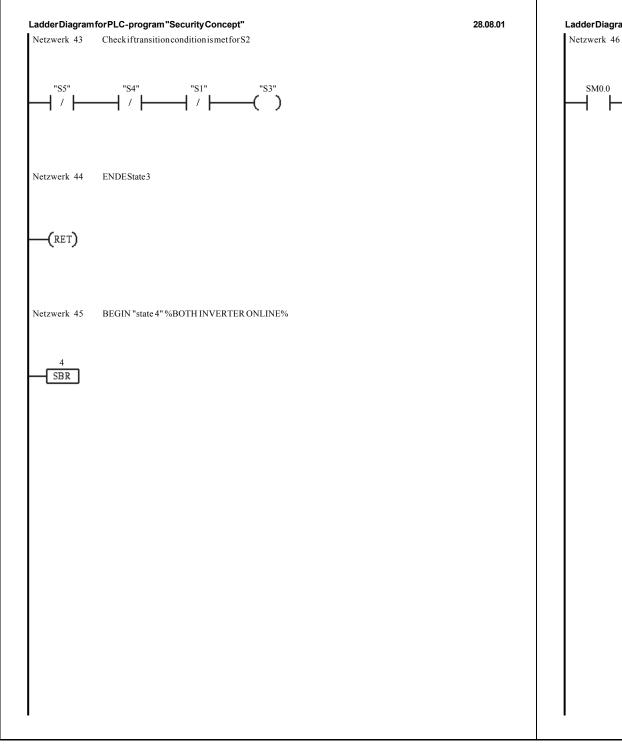
Netzwerk 18 Setalloutputsand"state"toLOW



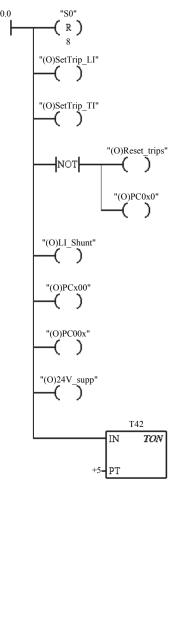

Netzwerk 24 Setoutputaccordingtostatelandall"state"variablentoLOW

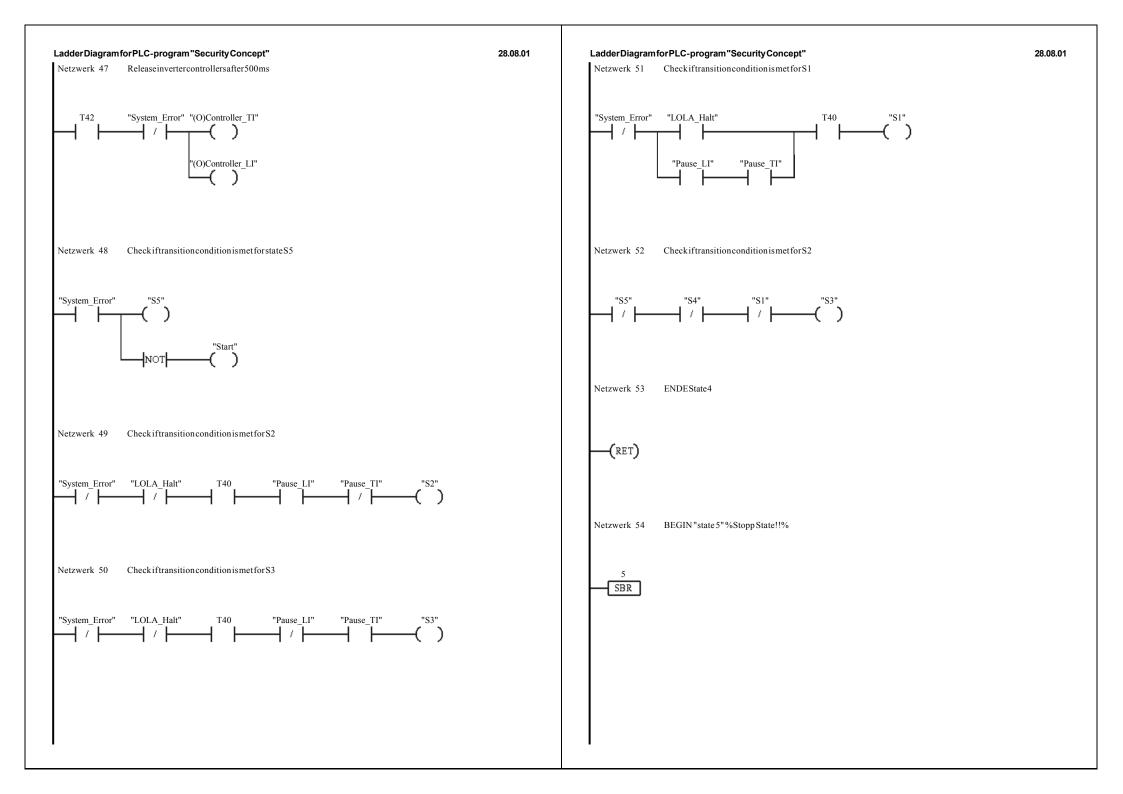


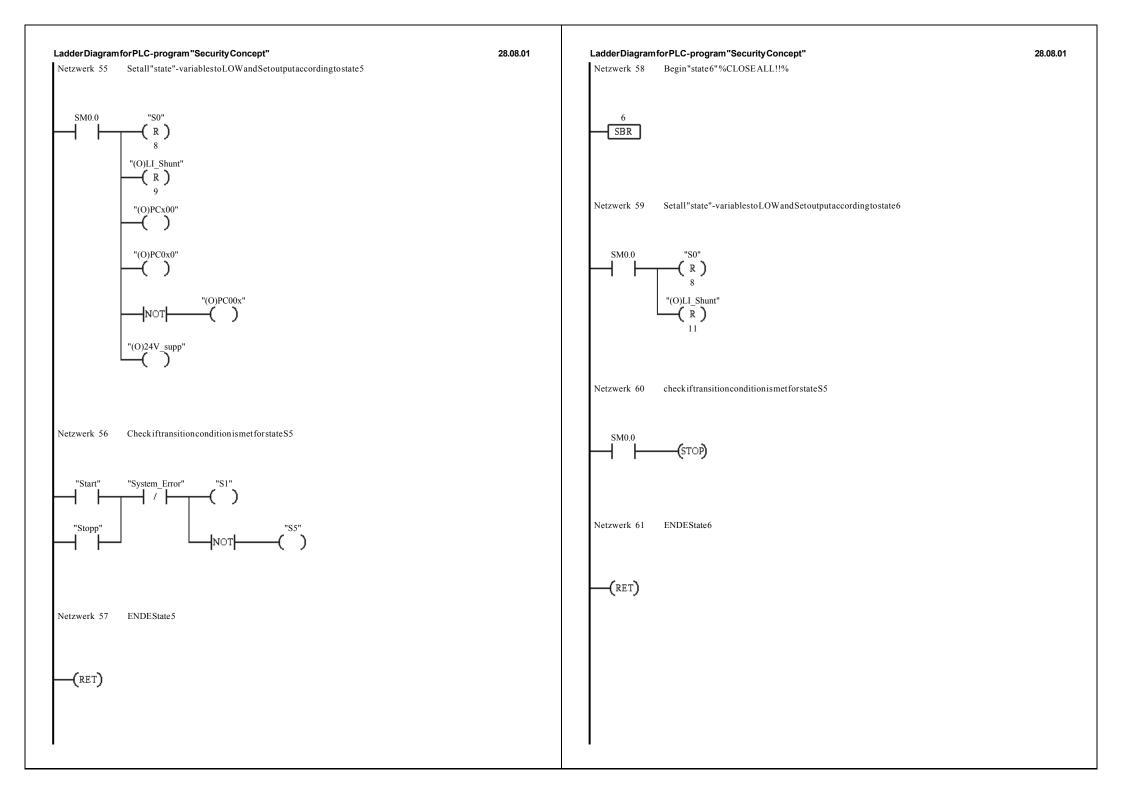

(^{"S2"})

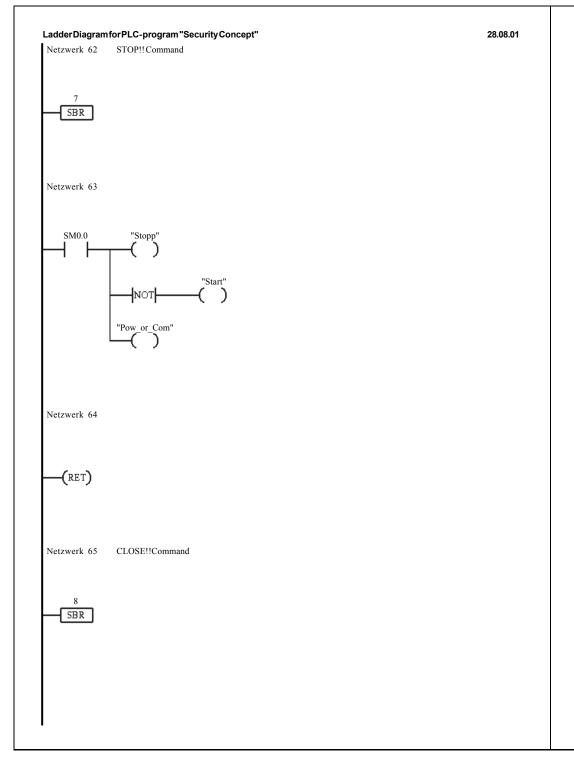


Netzwerk 30 Setall"state"variblentoLOWandSetoutputaccordingtostate2withoutcontrolrelease

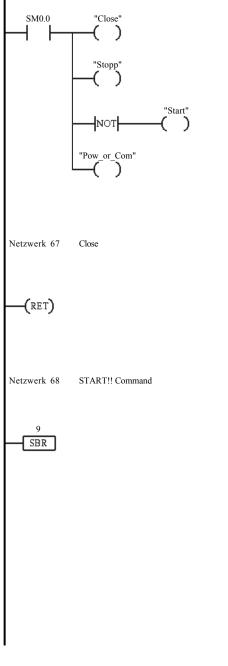


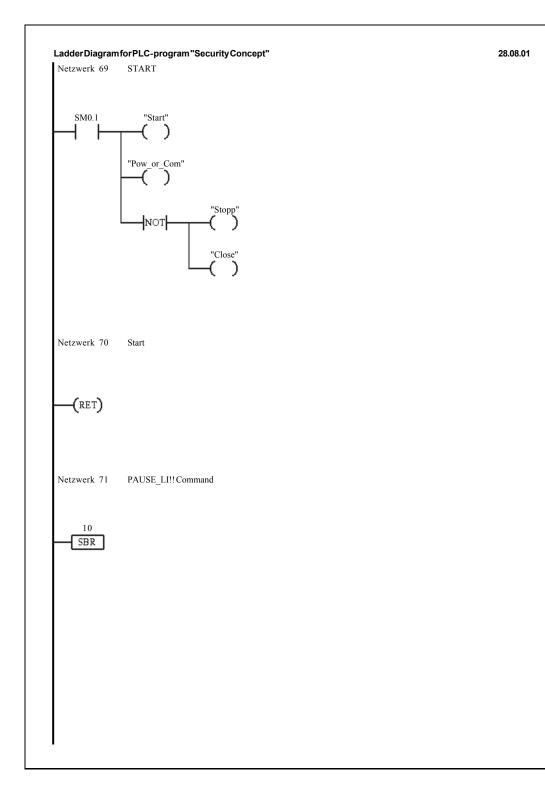


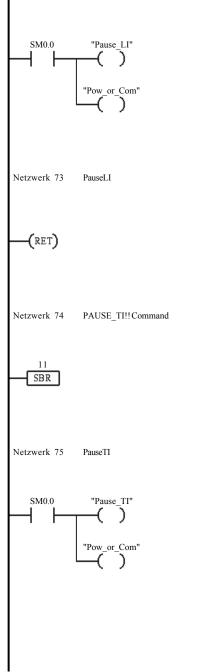


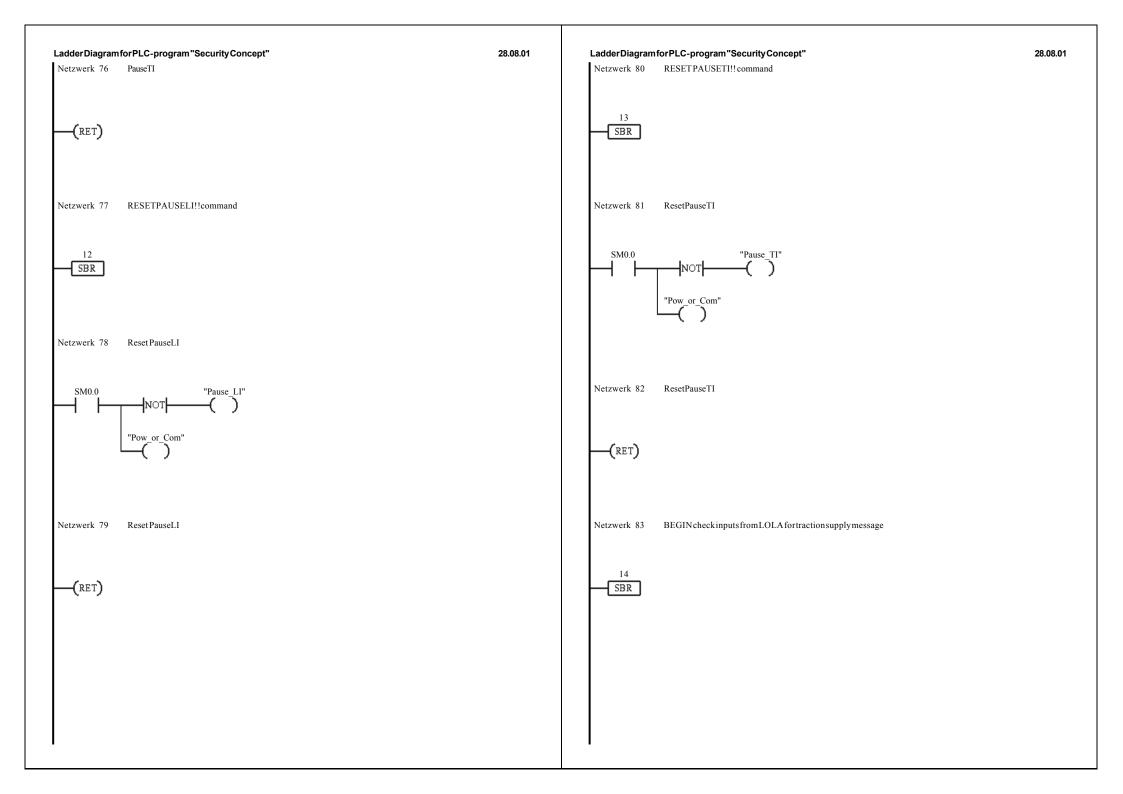


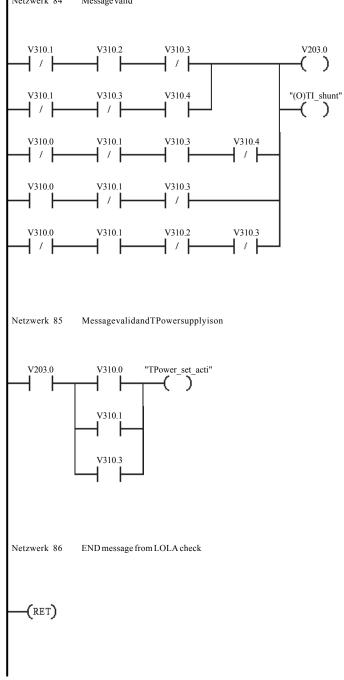
Netzwerk 46 Setall"state"-variablestoLOWandSetoutputaccordingtostate4withoutcontrolrelease








Netzwerk 66 Close



Netzwerk 72 PauseLI

Netzwerk 84 Message valid

LadderDiagramforPLC-program"SecurityConcept"

28.08.01

//Variable definition for interpreting User-Inputs 11 VB4000 //no supply for traction chosen //line supply (tr.)
//line supply (tr.) and charge batt1 VB4011 VB4025 VB40317 //line supply (tr.) and charge batt2 VB40421 //line supply (tr.) and charge batt1/ batt2 VB4052 //batt1 supply (tr.) //batt1 suplly (tr.) and charge batt2
//batt2 supply (tr.) VB40618 VB4078 VB40812 //batt2 supply (tr.) and charge batt1 VB4093 //start button VB41015 //stop button VB4116 //close session VB4127 //lifesign VB4139 //pause load inverter VB41410 //pause traction inverter //Reset all commands VB41511 VB41613 //Reset Pause load inverter //Reset Pause traction inverter VB41714 VB41822 //Revers lifsign

LadderDiagramforPLC-program	"Security Concept"	28.08.01	LadderDiagramforPLC-program	"SecurityConcept"	28.08.01
Symbolischer Name	Adresse	Kommentar	Symbolischer Name	Adresse	Kommentar
Sys OUT	AD0	outputs of the PLC S7 212	(I) PC00x00	E0.2	
			(I) PC000x0	E0.3	
TPower set Allo	V203.0	If powersetting is allowed	(I) PC0000x	E0.4	
TPower set acti	V203.1	If powersetting is allowed and	(I) PCcom	E0.5	
		supply on	(I)Emergency	E0.6	Emergency Button Input 1=no error
Pause LI	V203.2	Should load inverter be paused	(I)Error LI	E0.7	Error at load inverter 1= no error
Pause TI	V203.3	Should traction inverter be paused	(I)Error TI	E1.0	Error at traction inverter 1=no
Pow or Com	V203.4	determins if bits sent by LOLA is a	_		error
		command	(I)TempCont LI	E1.1	Temperature control at
System Error	V203.5	System error?	(I)ChechShuntL	E1.2	-
LOLA Halt	V203.6	Has LOLA sent a halt command?	(I)CheckshuntT	E1.3	
Reset All	V203.7	Reset all commands			
—			(O)LI Shunt	A0.0	Load inverter shun
Main	V200.0	<pre>main supply button {LV (LabView) }</pre>	(O) TI shunt	A0.1	Traction inverter shunt
Battl Su	V200.1	battery1 supply button {LV}	(O)Controller LI	A0.2	Enable controller for load inverter
Batt1_Ch	V200.2	battery1 charge button {LV}	(0)SetTrip LI	A0.3	
Batt2_Su	V200.3	battery2 supply button {LV}	(0)Reset trips	A0.4	Reset both Trips
Batt2 Ch	V200.4	battery2 charge button {LV}	(O)Controller TI	A0.5	Enable controller for traction
 Start	V200.5	start button {LV}			inverter
Stopp	V200.6	stopp button {LV}	(O)SetTrip TI	A1.0	
Close	V200.7	close session {LV}	(O) PCx00	A1.1	
			(O) PC0x0	A1.2	
LifeSign	V201.0	lifsign PC {LV}	(O) PC00x	A1.3	
Time switch37	V201.1	To enable wait before controller	(0)24V supp	A1.4	
—		release			
Time switch38	V201.2				
Time_switch39	V201.3				
Time switch40	V201.4				
Time switch41	V201.5				
Time_switch42	V201.6				
state	VB202	state variable detrmines the state the system is in			
S0	V202.0	state variable if TRUE main			
		programm jumps to sub programm			
S1	V202.1	state variable			
S2	V202.2	state variable			
S3	V202.3	state variable			
S 4	V202.3	state variable			
S5	v202.5	state variable			
S 6	V202.6	state variable			
s7	V202.7	state variable			
(I) PCx0000	E0.0				
(I) PC0x000	E0.1				
、,=======					

Element	Netzwerk / Operation			Elem	enhettzwerk	/ Operat	tion	
				30	— ()			
				38	— ()			
'(I) PCcom" 7 — –	-			46	-()			
				55	—(R) (H			
"(I)Emergency"	2 - 1 -			59	—(R) (I	Bereich)		
"(I)Error_LI"	2 - + +	"(O)Controller_TI"		18	—(R) (I	Bereich)		
				24	—(R)			
"(I)Error_TI"	2			30	- ()			
				39	- ()			
"(I)TempCont_LI"	2			47	-()			
				55	—(R) (H —(R) (H			
EBO 3 MOV_B				59		Bereich)		
"(0)LI_Shunt"	18 —(R)	A0.6 18	—(R)	(Bereich)	24	—(R)	(Bereich)	
	24 —(R)	55	—(R)	(Bereich)	59	-(R)	(Bereich)	
	30 —()							
	38 —()	A0.7 18		(Bereich)	24		(Bereich)	
	46 — ()	55	—(R)	(Bereich)	59	—(R)	(Bereich)	
	55 —(R)							
	59 —(R)	"(O)SetTrip_TI"		18	—(R) (H	Bereich)		
				24	— ()			
"(O)TI_shunt"	18 -(R) (Bereich)			24	-(R) (H	Bereich)		
	24 -(R) (Bereich)			30	— ()			
	55 — (R) (Bereich)			38	—()			
	59 — (R) (Bereich)			46	- ()			
	84 —)			55	—(R) (I			
				59	—(R) (I	Bereich)		
"(O)Controller_LI"	18 — (R) (Bereich) 24 — (R) (Bereich)	" (O) DG00" 10	(1)	(Bereich)	24	(1)	(Bereich)	
		"(O)PCx00" 18	–(∍) –()	(Bereich)	24		(Bereich)	
	31 — () 38 — ()	46 59		(Bereich)	55	-()		
	47 –()	28	-(°)	(Bereich)				
	55 –(R) (Bereich)	"(O)PC0x0" 18	(e)	(Bereich)	24	— ()		
	59 $-(R)$ (Bereich)	30	-(s)	(Bererch)	38	(R)		
	33 - (") (beretch)	46	-()		55	-0		
"(O)SetTrip LI"	18 -(R) (Bereich)	46 59		(Bereich)	55	-、)		
(0,000111b ⁻ 11	24 -()	55	×	(DOTOTOII)				
	30 - ()	"(O)PC00x" 18	—(s)	(Bereich)	19	-(s)		
		24	-()	,20101011)	30		(Bereich)	
	46 ()	38	-()		38		(Bereich)	
	55 — (R) (Bereich)	46	-0		55			
	59 — (R) (Bereich)	- 0						
		"(0)24V_supp"		18	—(R) (I	Bereich)		
"(O)Reset_trips"	18 -(R) (Bereich)			19	-(s) (I			
_ •	24 -()			24	-()	,		

LadderDiagram	forPLC	C-program "Security Con	^{cept"} dhatzwerk / Operation	28.08.01	Ladder Diag Element		-program
			-				
		30	-(S) (Bereich)		"S1"	10	
		38	-()			21	-()
		46				27	-()
		55	-()			34	—() —()
A1.5	10	-(R) (Bereich)				38 43	
A1.5	18	(Bereich)				43 51	
A1.6	18	-(R) (Bereich)				51	_(₪)
A1.0	10	-(") (Bereich)				59	-(R)
A1.7	18	-(R) (Bereich)				29	()
					"s2"	11	
"Start"	21		$\begin{array}{cccc} 32 & -() \\ 48 & -() \end{array}$			24	—(R) —(/
	40 56		$\begin{array}{ccc} 48 & -() \\ 63 & -() \end{array}$			26 30	—(R)
	56 66		63 – ()			30 38	—(¤) —(¤)
	00	~)	το τ			38 49	-(s) -(s)
"Stopp"	8	-	56 — —			59	-(R)
SCOPP	8 63		66 –()			28	、 ,
	69	-()			"S3"	12	
						24	—(R)
"Close"	8		21			27	
	25		66 —()			38	—(R)
	69					46	—(R)
						52	-()
"LifeSign"	6	(s)	8 <i>i</i> 			59	—(R)
	18	-(»)			"S4"	13	
Umine and tak	274	18	-(\$) (Bereich)			13 24	— (R)
"Time_switch	37.	18	(Bereich)			33	-()
"Time switch	38"	18	-(\$) (Bereich)			38	_(¤)
		10				43	
"Time switch	39"	18	-(\$) (Bereich)			52	
	-	10				59	—(R)
"Time_switch	40"	18	-(\$) (Bereich)		"s5"	14	<u> </u>
"Time switch	41"	18	-(\$) (Bereich)		55	24	— (R)
TTWE_SWICCH		10	·· / (Deteton)			32	-(·)
"Time_switch	42"	18	-(\$) (Bereich)			38	—(R)
		10	• • • • • • • •			43	
V201.7	18	-(\$) (Bereich)				48	-()
	-					55	—(R)
"s0"	9	<u> </u>	18 —(R)			59	—(R)
	21	— ()	24 —(R)				
	30	—(R)	38 —(R)		"S6"	15	\dashv \vdash
	46	—(R)	55 —(R)			24	—(R)
	59	—(R)				27	\neg

	N	etzwerk	/ Operation
10	\neg \vdash	18	-(R) (Bereich)
21	—()	24	-(R) (Bereich)
27	— ()	30	-(R) (Bereich)
34	—()	35	
38	-(R) (Bereich)	42	—()
43		46	-(R) (Bereich)
51	—()	52	
55	-(R) (Bereich)	56	-()
59	-(R) (Bereich)		
11		18	-(R) (Bereich)
24	-(R) (Bereich)	25	—()
26		27	
30	-(R) (Bereich)	35	— ()
38	-(R) (Bereich)	46	-(R) (Bereich)
49	—()	55	-(R) (Bereich)
59	-(R) (Bereich)		
12		18	-(R) (Bereich)
24	-(R) (Bereich)	26	—()
27		30	-(R) (Bereich)
38	-(R) (Bereich)	43	—()
46	-(R) (Bereich)	50	—()
52	—()	55	-(R) (Bereich)
59	-(R) (Bereich)		
13		18	-(R) (Bereich)
24	-(R) (Bereich)	30	-(R) (Bereich)
33	—()	35	
38	-(R) (Bereich)	41	—()
43		46	-(R) (Bereich)
52 59		55	-(R) (Bereich)
14		18	(Bereich)
24	-(R) (Bereich)	30	-(R) (Bereich)
32	— ()	35	
38	-(R) (Bereich)	40	—()
43		46	-(R) (Bereich)
48	— ()	52	
55	-(R) (Bereich)	56	-()
59	-(R) (Bereich)		
15	\dashv \vdash	18	-(R) (Bereich)
24	-(R) (Bereich)	25	— ()
27		30	-(R) (Bereich)

	Elem	ent		Netzwe	rk / Oper	ation			Eleme	Mettzwerk	/ Operation	
	38	—(R)	(Bereich)	46	5 —(R) (Bereich)			49			
	55		(Bereich)	59) (Bereich)			50			
									51			
'S7"	18	—(R)	(Bereich)	24	1 —(R) (Bereich)			56	\neg		
	30	—(R)	(Bereich)	38) (Bereich)						
	46	—(R)	(Bereich)	55	5 —(R) (Bereich)	"LOLA_Halt"	8	—()	25		
	59	—(R)	(Bereich)					26		33		
								34	\dashv \vdash	41		
"TPower_set	_Allo"		84	– ()				42	\rightarrow \vdash	49		
			85	\neg \vdash				50		51	\dashv \vdash	
"TPower_set	_acti"		26				V310.0	84		84		
			33		•			84		85	$\dashv \vdash$	
			85	-()					1.1		1.1	
"Davia 77"	10					L	V310.1	84		84		
"Pause_LI"	18		_	25				84		84		
	33			34				84		85	$\neg \vdash$	
	41 50			49			V310.2	84	$\neg \vdash$	84		
	72	-0	-	78			V310.2	04		04		
	12	~ /		/ 0	, – ,	,	V310.3	84		84		
"Pause TI"	18	– ()		26	5 – 1	<u> </u>	V310.3	84		84		
14456_11	33	,	_	41				84		85		
	49			50				04	1.1	05		
	51	— –		75			V310.4	84	\dashv \vdash	84		
	81	$-\!$			•	r						
							V310.5	4	—(R)			
"Pow_or_Com	ı " 7		-	63	з — с)						
	66	-()		69	• –)	V310.6	4	-(R) (Bereich)			
	72	-()		75	- -)						
	78	$-\!$		81)	V310.7	4	-(R) (Bereich)			
"System_Err	or"		2	– ()			VB310	3	MOV B	5	━━┫₌=≌┣━━	
			21					7		7		
			25					7		7		
			26		•			7	━━┫₌=∋┣━━	7	━━┫≡≡₿┣━━	
			31		•			7	━━┫≡≡₿┣━━			
			32				TTD 4 6 6	-				
			33 34				VB409	7	━━┫₌≡₿┣━━			
			34 39				VB410	7	━━┫≡≡₿┣━━			
			40				VD4TO	/	1			
			40				VB411	7	━━┫≡≡⋑┣━━╸			
			41				AD4TT	1	11			
			42				VB412	5				
			47				VD 112	5	1 -1			

TE4147 $+=1$ $TE416$ 7 $+=1$ $TE417$ 7 $-+=1$ $TS7$ 5 TON 6 -1 $TS3$ 5 TON 6 -1 $TS3$ 5 TON 31 -1 $TS3$ 30 TON 31 -1 $TS3$ -1 -1 -1 <	Element			Netzwerk / O	peration	
TB416 7 $+ + = +$ TB417 7 $+ = = +$ T37 5 TON 6 $- + = +$ T38 5 TON 6 $- + = +$ T38 5 TON 6 $- + = +$ T39 30 TON 31 $- + = +$ T40 38 TON 39 $- + + = +$ T41 $- + + +$ $- + + +$ $- + + +$ T41 $- + + + +$ $- + + + +$ $- + + + +$ T41 20 TON 21 $- + + + + + +$ T42 46 TON 47 $- + + + + + + + +$ T41 20 $- + + + + + + + + + + + + + + + + + + +$	VB413	7	━━┫≡≡╜┠━━━			
AFB 17 7 $+ = = +$ 137 5 TON 6 $- = + =$ 138 5 TON 6 $- = + =$ 139 30 TON 31 $- = + =$ 139 30 TON 31 $- = + =$ 140 38 TON 39 $- = + =$ 141 $- = + + =$ 42 $- = + + =$ 141 $- = + + + + =$ 50 $- = + + + + + + + + =$ 141 20 TON 21 $- = + + + + + + + + + + + + + + + + + + $	VB414	7				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	VB416	7				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	VB417	7	===B			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Т37	5	TON	6 •		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Т38	5	TON	6 •		
38 TON 39 1 1 41 1 1 42 1 1 49 1 1 50 1 1 51 1 1 1 1 1 241 20 TON 21 1 1 242 46 TON 47 1 1 242 46 TON 47 1 1 $3M0.0$ 3 1 1 19 1 1 20 1 1 19 1 1 1 1 20 1 1 38 1 1 1 1	Т39	30	TON	31 •		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		33	\dashv \vdash	34	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Т40	38	TON	39		
$51 -1 -1 -1$ $21 -1 -1$ $241 \qquad 20 TON \qquad 21 -1 -1$ $47 -1 -1$ $5M0 \cdot 0 \qquad 3 -1 -1 \qquad 44 \qquad -1 -1$ $18 -1 -1 \qquad 19 \qquad -1 -1$ $20 -1 -1 \qquad 24 \qquad -1 -1$ $30 -1 -1 \qquad 38 \qquad -1 -1$		41	<u> </u>	42		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		49	<u> </u>	50	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		51	\dashv \vdash			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Т41	20	TON	21	-	
18 \rightarrow \vdash 19 \rightarrow \vdash 20 \rightarrow \vdash 24 \rightarrow \vdash 30 \rightarrow \vdash 38 \rightarrow \vdash	Т42	46	TON	47	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SM0.0	3		4		
30 - - 38		18	\neg \vdash	19	-	
		20	\neg \square	24	-	
46 - - 55 - -		30	\neg \vdash	38	-	
		46	\neg \vdash			
59 — — 60 — —		59	\neg \vdash	60	-	
63 - - 66 - -				66 .	-	
72 - F 75 - F						
78		78	\dashv \vdash	81 •	\dashv \vdash	
M0.1 1 — — 69 — —	SM0.1	1	\neg \vdash	69 .	-	

Anhang F

Programming Diagram of LOLA

Contents

1	DICE_DIstribution_CEnter.vi	10
	1.1Connector Pane1.2Front Panel1.3Controls and Indicators1.4Block Diagram1.5List of SubVIs1.6History	10 10 10 10 11 12
2	DILV_DIstribution_LastValues.vi2.1Connector Pane2.2Front Panel2.3Controls and Indicators2.4Block Diagram2.5List of SubVIs2.6History	12 12 12 12 13 13 13
3	GCEH_Global_Changed_Error_Handler.vi3.1Connector Pane3.2Front Panel3.3Controls and Indicators3.4Block Diagram3.5List of SubVIs3.6History	13 14 14 14 17 17 17
4	GLAD_GLobal_AddDiffrent_errors.vi4.1Connector Pane4.2Front Panel4.3Controls and Indicators4.4Block Diagram4.5List of SubVIs4.6History	17 17 17 17 19 19 19
5	GLAE_GLobal_AddtwoErrors.vi5.1Connector Pane5.2Front Panel5.3Controls and Indicators5.4Block Diagram5.5List of SubVIs5.6History	 19 20 20 20 21 21 21
6	GLCL_GLobal_CLock.vi6.1Connector Pane6.2Front Panel6.3Controls and Indicators6.4Block Diagram6.5List of SubVIs6.6History	 21 21 21 22 22 22 22 22
7	GLCM_GLobal_CheckMessages.vi7.1Connector Pane7.2Front Panel7.3Controls and Indicators7.4Block Diagram7.5List of SubVIs	 23 23 23 23 23 25

	7.6	History	25
8	GL	P_GLobal_Check_Path.vi	25
	8.1	Connector Pane	25
	8.2	Front Panel	25
	8.3	Controls and Indicators	25
	8.4	Block Diagram	25
	8.5	List of SubVIs	25
	8.6	History	25
_			_
9		1	25
	9.1	Connector Pane	26
	9.2	Front Panel	26
	9.3	Controls and Indicators	26
	9.4	Block Diagram	26
	9.5	List of SubVIs	26
	9.6	History	26
10	GLS	N_GLobal_SearchforNumber.vi	26
10		Connector Pane	26
		Front Panel	26
		Controls and Indicators	20 28
		Block Diagram	28
		List of SubVIs	$\frac{20}{28}$
		History	$\frac{20}{28}$
	10.0	induity	20
11	GL	A_GLobalWAit.vi	28
	11.1	Connector Pane	28
	11.2	Front Panel	28
	11.3	Controls and Indicators	28
	11.4	Block Diagram	29
		List of SubVIs	29
	11.6	History	29
		•	
12			30
			30
			30
		Controls and Indicators	30
		0	33
	12.5	List of SubVIs	33
	12.6	History	33
19	TN1	I_INitialization_1dNatospradsh.vi	34
10		Connector Pane	3 4
		Front Panel	34 34
		Controls and Indicators	34 34
			34 34
		Block Diagram	
		List of SubVIs	35
	13.0	History	35
14	IN1	_INitialization_1dstring_array_to_Spradsheet.vi	35
		Connector Pane	35
		Front Panel	35
		Controls and Indicators	35
		Block Diagram	35
		List of SubVIs	35

14.6 History	35
15 INCE_INitialization_CEnter.vi	35
15.1 Connector Pane	36
15.2 Front Panel	36
15.3 Controls and Indicators	36
15.4 Block Diagram	40
15.5 List of SubVIs	40
15.6 History	46
16 INIF_INitialization_Ini_File.vi	46
16.1 Connector Pane	
16.2 Front Panel	
16.3 Controls and Indicators	46
16.4 Block Diagram	
16.5 List of SubVIs	
16.6 History	54
17 ININ_INitialistation_INitialisation.vi	54
17.1 Connector Pane	
17.2 Front Panel	
17.3 Controls and Indicators	
17.4 Block Diagram	
17.5 List of SubVIs	
17.6 History	
18 INLP_INitialisation_LoadPictures.vi	58
18.1 Connector Pane	
18.1 Connector Fane 18.2 Front Panel 18.2 Front Pan	
18.3 Controls and Indicators	
18.4 Block Diagram	
18.5 List of SubVIs	
18.6 History	
10 INM11 INitialization Manual1(CDID) vi	60
19 INM11_INitialisation_Menue11(GPIB).vi 19.1 Connector Pane	
19.1 Connector Fane 19.2 Front Panel 19.2 Front Panel	
19.2 Front Faller	
19.5 Controls and Indicators	
19.4 Diotek Diagram	
19.6 History	
	01
20 INPS_INitialization_Path_array_to_Spradsheet.vi 20.1 Connector Pane	61 61
20.1 Connector Pane 20.2 Front Panel 20.2 Front Panel	
20.3 Controls and Indicators	
20.4 Block Diagram	
20.5 List of SubVIs	
•	-
21 INRN_INitialization_Read_Number.vi	62
21.1 Connector Pane	
21.2 Front Panel	
21.3 Controls and Indicators	62
21.4 Block Diagram	

21.6 History	· · · · 64
22 INRS_INitialization_Read_String.vi	64
22.1 Connector Pane	64
22.2 Front Panel	
22.3 Controls and Indicators	
22.4 Block Diagram	
22.4 Diock Diagram	
22.6 History	60
23 INS1_Spradsheet_to_1dstring_array.vi	66
23.1 Connector Pane	66
23.2 Front Panel	60
23.3 Controls and Indicators	
23.4 Block Diagram	
23.5 List of SubVIs	
23.6 History	
20.0 mistory	0
24 INSN_spradsheet_to_1dNumber_array.vi	67
24.1 Connector Pane	67
24.2 Front Panel	67
24.3 Controls and Indicators	
24.4 Block Diagram	
24.5 List of SubVIs	
24.6 History	67
25 INSP_Initialization_Spradsheet_to_Path_array.vi	67
25.1 Connector Pane	
25.2 Front Panel	
25.2 Controls and Indicators	
25.5 Controls and indicators	
25.5 List of SubVIs	
25.6 History	68
26 INWN_INitialization_Write_Number.vi	68
26.1 Connector Pane	68
26.2 Front Panel	
26.3 Controls and Indicators	
26.4 Block Diagram	
26.5 List of SubVIs	
26.6 History	71
27 INWS_INitialization_Write_String.vi	71
27.1 Connector Pane	71
27.2 Front Panel	
27.3 Controls and Indicators	
27.4 Block Diagram	
27.5 List of SubVIs	
27.6 History	72
28 LOLA_Low_Observing_Laboratory_Application.vi	73
28.1 Connector Pane	73
28.2 Front Panel	
28.3 Controls and Indicators	
28.4 Block Diagram	
28.5 List of SubVIs	75

28.6 History	75
29 PARC_PowerAnalyzer_RearrangeChannels.vi	75
29.1 Connector Pane	75
29.2 Front Panel	
29.3 Controls and Indicators	
29.4 Block Diagram	
29.5 List of SubVIs	
29.6 History	
30 PARD_PowerAnalyzer_ReadData.vi	76
30.1 Connector Pane	
30.2 Front Panel \ldots	
30.3 Controls and Indicators	
30.4 Block Diagram	77
30.5 List of SubVIs	77
30.6 History	78
	-
31 RDRD_RackDAQ_ReadData.vi	78
31.1 Connector Pane	
31.2 Front Panel	
31.3 Controls and Indicators	
31.4 Block Diagram	
31.5 List of SubVIs	
31.6 History	80
32 RSRD_RackSerial_ReadData.vi	81
32.1 Connector Pane	
32.2 Front Panel	
32.3 Controls and Indicators	
32.4 Block Diagram	
32.5 List of SubVIs	
32.6 History	
52.0 Instory	00
33 RSRI_RackSerial_Read_dIrect.vi	83
33.1 Connector Pane	84
33.2 Front Panel	84
33.3 Controls and Indicators	
33.4 Block Diagram	
33.5 List of SubVIs	
33.6 History	85
*	
$34 \ {\rm RSWI_RackSerial_Write_dIrect.vi}$	85
34.1 Connector Pane	85
34.2 Front Panel	85
34.3 Controls and Indicators	87
34.4 Block Diagram	87
34.5 List of SubVIs	87
34.6 History	87
	~-
35 RSWS_RackSerial_WriteS7.vi	87
35.1 Connector Pane	
35.2 Front Panel	
35.3 Controls and Indicators	
35.4 Block Diagram	
35.5 List of SubVIs	89

	5.6 History	91
36	SAAV_SAve_AVeraging.vi	91
	6.1 Connector Pane	91
	6.2 Front Panel	91
	6.3 Controls and Indicators	91
	6.4 Block Diagram	
	6.5 List of SubVIs	
	6.6 History	92
	·	
37	$SACO_SAve_COnversion.vi$	92
	7.1 Connector Pane	92
	7.2 Front Panel	
	7.3 Controls and Indicators	93
	7.4 Block Diagram	93
	7.5 List of SubVIs	94
	7.6 History	94
		0.4
38	SADO_SAveDeleteOldest.vi 8.1 Connector Pane	94 94
	8.1 Connector Pane	
	8.2 Front Panel	-
	8.4 Block Diagram	
	8.5 List of SubVIs	
	8.6 History	90
39	SASH_SAveSHot.vi	95
	9.1 Connector Pane	95
	9.2 Front Panel	
	9.3 Controls and Indicators	~ ~
	9.4 Block Diagram	
	9.5 List of SubVIs	
	9.6 History	
	v	
40	${f SATB}_{-}{f SAveTruncateButtom.vi}$	98
	0.1 Connector Pane	
	0.2 Front Panel	
	0.3 Controls and Indicators	
	0.4 Block Diagram	100
	0.5 List of SubVIs	
	0.6 History	100
11	ATT SAveThungeteTen wi	100
41	SATT_SAveTruncateTop.vi 1.1 Connector Pane	200
	1.1.2 Front Panel Front Panel	
	1.3 Controls and Indicators	
	1.4 Block Diagram	-
	1.4 Block Diagram	
	1.6 History	
	1.0 Instory	102
42	SICE_SIgnage_CEnter.vi	102
_	2.1 Connector Pane	
	2.2 Front Panel	
	2.3 Controls and Indicators	
	2.4 Block Diagram	
	2.5 List of SubVIs	

42.6 History	. 103
43 SILO_Signage_LOg.vi	103
43.1 Connector Pane	. 106
43.2 Front Panel	
43.3 Controls and Indicators	
43.4 Block Diagram	
43.5 List of SubVIs	
43.6 History	
40.0 mistory	. 107
44 TSM1_TemporaryStorage_Messages1.vi	107
44.1 Connector Pane	
44.2 Front Panel	
44.3 Controls and Indicators	
44.4 Block Diagram	. 110
44.5 List of SubVIs	. 110
44.6 History	. 110
45 TSM2_TemporaryStorage_Messages2.vi 45.1 Connector Pane	111
45.2 Front Panel	
45.3 Controls and Indicators	
45.4 Block Diagram	
45.5 List of SubVIs	
45.6 History	. 113
46 TSPA_TemporaryStorage_PowerAnalyzer.vi	113
46.1 Connector Pane	
46.1 Connector Fane	
46.3 Controls and Indicators	
46.4 Block Diagram	
46.5 List of SubVIs	
46.6 History	. 115
47 TSRD_TemporaryStorage_Rack_Daq.vi	115
47.1 Connector Pane	. 116
47.2 Front Panel	
47.3 Controls and Indicators	
47.4 Block Diagram	
47.5 List of SubVIs	
47.6 History	
47.0 Instory	. 110
$48 \ {\rm TSRSr_TemporaryStorage_Rack_Serialread.vi}$	118
48.1 Connector Pane	
48.2 Front Panel	. 119
48.3 Controls and Indicators	. 119
48.4 Block Diagram	. 120
48.5 List of SubVIs	. 121
48.6 History	. 121
40 TCD Say Town on one Stone on Deals Savislandity and	101
49 TSRSw_TemporaryStorage_Rack_Serialwrite.vi	121
49.1 Connector Pane	
49.2 Front Panel	
49.3 Controls and Indicators	
49.4 Block Diagram	
49.5 List of SubVIs	. 123

	19.6 History	123
50	FSSA_TemporaryStorage_SAve.vi 1	23
	50.1 Connector Pane	123
	50.2 Front Panel	
	50.3 Controls and Indicators	
	50.4 Block Diagram	
	50.5 List of SubVIs	
	50.6 History	
	0.0 Instory	121
		27
	51.1 Connector Pane	
	51.2 Front Panel	127
	51.3 Controls and Indicators	127
	51.4 Block Diagram	130
	51.5 List of SubVIs	130
	51.6 History	130
-		
	ISUO_TemporaryStorage_UserOperation.vi 1 52.1 Connector Pane 1	30
	52.2 Front Panel	
	52.3 Controls and Indicators	
	52.4 Block Diagram	
	52.5 List of SubVIs	
	52.6 History	133
53	UIAV_UserInterface_AVeraging.vi 1	.33
	53.1 Connector Pane	133
	53.2 Front Panel	
	53.3 Controls and Indicators	
	53.4 Block Diagram	
	53.5 List of SubVIs	
	53.6 History	
		35
	54.1 Connector Pane	
	54.2 Front Panel	
	54.3 Controls and Indicators	
	54.4 Block Diagram	136
	54.5 List of SubVIs	136
	54.6 History	136
55	UIRC_UserInterface_RearrangeChannels.vi 1	36
	55.1 Connector Pane	
	55.2 Front Panel	
	55.3 Controls and Indicators	
	55.4 Block Diagram	
	55.5 List of SubVIs	
	55.6 History	
	5.0 mstory	100
		.38
	56.1 Connector Pane	138
	6.2 Front Panel	138
	6.3 Controls and Indicators	138
	6.4 Block Diagram	
	56.5 List of SubVIs	

56.6 History	 139
57 UISA_UserInterface_SplitArray.vi	139
57.1 Connector Pane	 139
57.2 Front Panel	 139
57.3 Controls and Indicators	 140
57.4 Block Diagram	 140
57.5 List of SubVIs	
57.6 History	
	1.40
58 UITC_UserInterface_Topandbottom-Create.vi	140
58.1 Connector Pane	
58.2 Front Panel	
58.3 Controls and Indicators	
58.4 Block Diagram	 141
58.5 List of SubVIs	 141
58.6 History	 141
59 UIUI_UserInterface_UserInterface.vi	141
59.1 Connector Pane	 142
59.2 Front Panel	
59.3 Controls and Indicators	
59.4 Block Diagram	
59.5 List of SubVIs	
59.6 History	

general

Figure 1: Connector Pane of DICE_DIstribution_CEnter.vi

1 DICE_DIstribution_CEnter.vi

The Distribution Center handles data. This data consists of measurement data and messages. Measurement data are the digitalized quantities from the measurement hardware. Messages consist of:

condition : Is information about the condition of each module (subVI's running at the same time).

report : All information that is necessary to control the Test Stand.

command : Information sent to modules to control their behaviour.

confirmation : Is an answer of each module to a given command .

log: Is information consisting of concentrated and reformatted *conditions*. This information is saved into a log-file and displayed at the user interface.

The Distribution Centers duty is to collect the data from Temporary Storages, sort it and distribute it to modules. In this way each module gets the data and only the data it needs.

1.1 Connector Pane

See figure 1 on page 10.

1.2 Front Panel

1.3 Controls and Indicators

💷 general

- **standard_path** path where the program is located
- **start_time** [ms] is the time reference. In *LOLAstart_time* is set at INKH_INitialisation_KonfigHardware.vi at the start of the program.
- **list_column_names** is an array containing the titles of the measurement categories The names' order must match to the commands' order.
 - **name_of_channel** channel name is displayed in the user interface, it consists of identifier and unit
- **[DEL] list_ranges** is an array of all rated-, warning- and alarm-levels ordered according to *list_column_names*

DBL value

semaphores is an array of names of all existing semaphores

🔤 name

1.4 Block Diagram

See figure 2 on page 11.

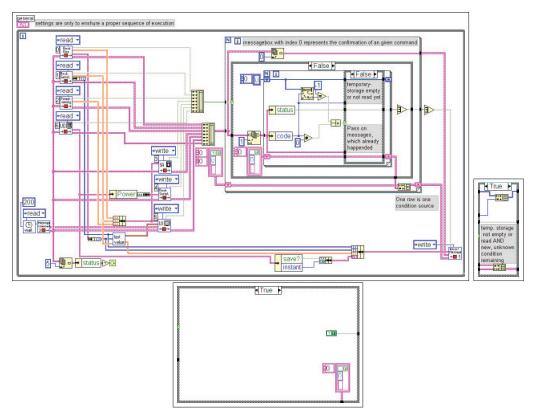


Figure 2: Block Diagram of DICE_DIstribution_CEnter.vi

1.5 List of SubVIs

${\bf TSUI}_{-} {\bf TemporaryStorage}_{-} {\bf UserInterface.vi}$

D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\Temporary_Storages.llb\-TSUI_TemporaryStorage_UserInterface.vi

DILV_DIstribution_LastValues.vi

D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\Distribution.llb\DILV_DIstribution_LastValues.vi

TSSA_TemporaryStorage_SAve.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\-Temporary_Storages.llb\TSSA_TemporaryStorage_SAve.vi

Rack Daq →■→

TSRD_TemporaryStorage_Rack_Daq.vi
D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\-
$Temporary_Storage_Rack_Daq.vi$
TOM1 T C+ M1

TSM1_TemporaryStorage_Messages1.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\-

Temporary_Storages.llb\TSM1_TemporaryStorage_Messages1.vi

TSM2_TemporaryStorage_Messages2.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\-Temporary_Storages.llb\TSM2_TemporaryStorage_Messages2.vi

TSPA_TemporaryStorage_PowerAnalyzer.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\Temporary_Storages.llb\-TSPA_TemporaryStorage_PowerAnalyzer.vi

report_array1[in]lastreport[out] report_array2[in]valuetemperature[a temperature[in]	out]
--	------

Figure 3: Connector Pane of DILV_DIstribution_LastValues.vi

 $TSRSr_TemporaryStorage_Rack_Serialread.vi$

D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\Temporary_Storages.llb\-TSRSr_TemporaryStorage_Rack_Serialread.vi

 $TSRSw_TemporaryStorage_Rack_Serialwrite.vi$

D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\Temporary_Storages.llb\-TSRSw_TemporaryStorage_Rack_Serialwrite.vi

GLWA_GLobalWAit.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\global.llb\GLWA_GLobalWAit.vi

TSUO_TemporaryStorage_UserOperation.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\Temporary_Storages.llb\-TSUO_TemporaryStorage_UserOperation.vi

1.6 History

DICE_DIstribution_CEnter.vi History Current Revision: 115

$2 \quad DILV_DIstribution_LastValues.vi$

For displaying the report data at the Userinterface only the actual values are of interest, because the evaluation of all these values is done in SICE_SInage_CEnter.vi. Therefore except the last values the rest of the incoming array will be truncated.

2.1 Connector Pane

See figure 3 on page 12.

2.2 Front Panel

See figure 4 on page 13.

2.3 Controls and Indicators

[usz] report_array1[in]

1132 Return count

[III] report_array2[in]

U32

[DBL] temperature[in]

DBL Measured Value

	report(out)
report_arrav1[in] ∯O ©ü	stan_backlog 0
report_array2(in)	return_count
temperature[in]	temperature[out]

Figure 4: Front Panel of DILV_DIstribution_LastValues.vi

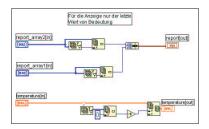


Figure 5: Block Diagram of DILV_DIstribution_LastValues.vi

m report[out]

scan_backlog

use return_count

[DBL] temperature[out]

DBL Measured Value

2.4 Block Diagram

See figure 5 on page 13.

2.5 List of SubVIs

2.6 History

DILV_DIstribution_LastValues.vi History Current Revision: 11

$3 \quad GCEH_Global_Changed_Error_Handler.vi$

Changes: extension of known error codes

This error handler is used primarily to inform the user if an input error exists, to describe the error, and to identify where it occurred. The information for this is derived from the inputs error in, error code, and error source, and from an internal error description table. The table describes all errors that can be created by LabView or its associated I/O operations. The handler has provisions to take alternative actions, such as to cancel or set an error status, and to test for and describe user-defined errors. See instruction on the front panel.

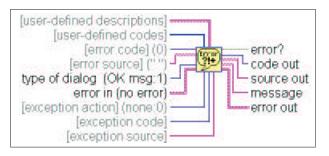


Figure 6: Connector Pane of GCEH_Global_Changed_Error_Handler.vi

3.1 Connector Pane

See figure 6 on page 14.

3.2 Front Panel

See figure 7 on page 15.

3.3 Controls and Indicators

- **type of dialog (OK msg:1)** type of dialog determines what type dialog box will be displayed, if any. Regardless of its value, the VI outputs error information and message describing the error. 0: displays no dialog box. This is useful if you want to have programmatic control over how the error is handled. 1: (the default value) displays a dialog box with a single OK button. After the user responds, the VI returns control to the main VI. 2: displays a dialog box with buttons allowing the user to either continue or stop. If the user cancels, the VI calls the Stop function to halt execution.
- [E32] [exception code] exception code is the error code that you want to treat as an exception. By default, it is 0.
- **[exception source**] exception source is the error message that you want to use to test for an exception. By default, it is an empty string.
- **[error source]** () error source is an optional string you can use to describe the source of error code. The VI uses the string in message if there is an error.
- [error code] (0) error code is a numeric error code. If error in indicates an error, the VI ignores error code. If not, the VI tests it. A non-zero value signifies an error.
- [exception action] (none:0) exception action is a way for you to create exceptions to error handling. You can treat what is normally an error as no error, or treat a no error condition as an error using this parameter. 0: (the default value) performs no error exception handling. 1: cancels error under the following conditions: If the VI detects an error, as described in the status and error code parameters, and if that error code value matches exception code and the error source value matches exception source, the VI sets status out to FALSE, code out to 0, and source out to an empty string. An empty exception source string matches any error source string. 2: sets error under the following conditions: If the VI detects no error, as described in the status and error code parameters, but the code value of error in matches exception code and the error source value matches exception source, the VI sets status out to TRUE, code out to the code value from error in, and source out to the source value from error in.
- **error in (no error)** error in describes an error that you want to check. If not wired, this VI checks error code for errors.

[error code] (0) \$.0 [error source] (" ") type of dialog (OK msg.1) no dialog	reinitialize to default to display instructions message	error? no enor code out do source out
error in (no error) status code I talo source	[user-defined codes] [user-defined descriptions] Image:	error out status code Ø k0 source
2021	Error %d occurred at %s Warning %d occurred at %s an unidentified location Possible reasons: %s Error not listed GetCommError x%bx	

Figure 7: Front Panel of GCEH_Global_Changed_Error_Handler.vi

TE status The status boolean is either TRUE (cross) for an error, or FALSE (checkmark) for no error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

code The code input identifies the error or warning reported.

The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

source The source string describes the origin of the error or warning reported.

The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

[132] [user-defined codes] user-defined codes is an array of the numeric error codes you define in your VIs. The VI searches this array after searching the internal list of error codes. Codes in the range of 5000 to 9999 are reserved for users.

132

[asc] [user-defined descriptions] user-defined descriptions is an array of descriptions of userdefined codes. If an incoming error matches one in user-defined codes, the VI uses the corresponding description from user-defined descriptions in message.

abc

[abc] error descriptions

abc

[132] error codes

132

prompts

- **Error %d occurred at %s**
- **Warning %d occurred at %s**
- **Describe reasons:** %s
- **Error not listed**
- GetCommError x%lx
- Lance Continue
- 🔤 Stop
- an unidentified location
- **IDE No Error**

132 code out code out is the error code indicated by the error in or error code.

source out source out indicates the source of the error.

TF error?

- **error out** error out contains the same information as status out, code out, and source out. It has the same structure as error in.
 - **TE** status The status boolean is either TRUE (cross) for an error, or FALSE (checkmark) for no error or a warning.
 - The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

code The code input identifies the error or warning reported.

The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

source The source string describes the origin of the error or warning reported. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

message message describes the error code that occurred, the source of the error, and a description of the error.

3.4 Block Diagram

See figure 8 on page 18.

3.5 List of SubVIs

3.6 History

GCEH_Global_Changed_Error_Handler.vi History Current Revision: 42

4 GLAD_GLobal_AddDiffrent_errors.vi

This Vi rearranges $message_array[in]$ in the way that multiple messages with the same *code* appear only once in $message_array[out]$.

4.1 Connector Pane

See figure 9 on page 18.

4.2 Front Panel

See figure 10 on page 19.

4.3 Controls and Indicators

- **message_array**[in] is an array of *message*[in] which describe the error status before the actual VI executes. Usually the messages are checked or passed on. Messages can be condition, commands, confirmations, logs and reports. The collectivity of all messages ensures the communication between all parts of *LOLA*.
 - **message**[in] is a cluster that describes the message status before the actual VI's execution. This message is checked or passed on. It contains *status*, *code* and *source*
 - **status** is TRUE if an error occurred, or FALSE if not.
 - **code** is the number identifying a message . If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.
 - **source** indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.
- **message_array[out]** is an array of *message_[out]* which describe the message status after the actual VI's execution. Usually the messages are checked or passed on. Messages can be condition, commands, confirmations, logs and reports. The collectivity of all messages ensures the communication between all parts of *LOLA*.

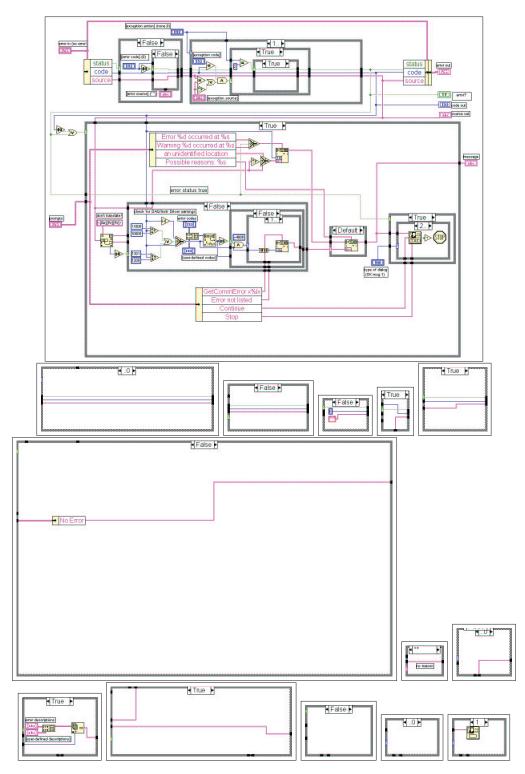


Figure 8: Block Diagram of GCEH_Global_Changed_Error_Handler.vi

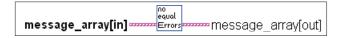


Figure 9: Connector Pane of GLAD_GLobal_AddDiffrent_errors.vi

mes	isage_array[in]	me	ssage_array[out]
:0	messaga(in)	50	message[put]
	status Dode		slatus Cote ali
	2001CG	×	
			-

Figure 10: Front Panel of GLAD_GLobal_AddDiffrent_errors.vi

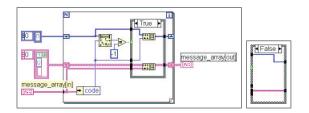


Figure 11: Block Diagram of GLAD_GLobal_AddDiffrent_errors.vi

- **message**[**out**] is a cluster that describes the message status before the actual VI executes. This message is checked or only passed on. It contains *status*, *code* and *source*.
 - **TE** status is TRUE if an error occurred, or FALSE if not.
 - **code** is the number identifying a message . If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.
 - **source** indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.

4.4 Block Diagram

See figure 11 on page 19.

4.5 List of SubVIs

4.6 History

 $GLAD_GLobal_AddDiffrent_errors.vi\ History\ Current\ Revision:\ 18$

5 GLAE_GLobal_AddtwoErrors.vi

Passes on the message cluster with status = true. If both clusters contain status = true, error[in]-high will be passed on.

message[in]_lowAdd message[in]_highError

Figure 12: Connector Pane of GLAE_GLobal_AddtwoErrors.vi

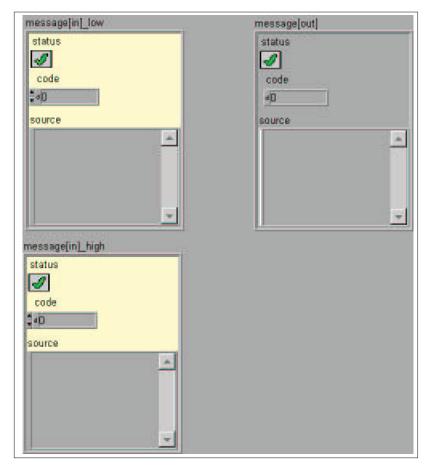


Figure 13: Front Panel of GLAE_GLobal_AddtwoErrors.vi

5.1 Connector Pane

See figure 12 on page 20.

5.2 Front Panel

See figure 13 on page 20.

5.3 Controls and Indicators

message[**in**]_**low** is a cluster that describes the message status before the actual VI's execution. This message is checked or passed on. It contains *status*, *code* and *source*.

This cluster got a lower priority compared to the cluster message[in]_high .

- **status** is TRUE if an error occurred, or FALSE if not.
- **code** is the number identifying a message . If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.
- **source** indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.

message[in]_high	messarelout
	[7:41]
message[in]_low	

Figure 14: Block Diagram of GLAE_GLobal_AddtwoErrors.vi

start_time — 🙀 — millisecond_ timer_value	
message[in]	

Figure 15: Connector Pane of GLCL_GLobal_CLock.vi

message[**in**]_**high** is a cluster that describes the message status before the actual VI's execution. This message is checked or passed on. It contains *status*, *code* and *source*.

This cluster got a higher priority compared to the cluster message[in]_low .

TE status is TRUE if an error occurred, or FALSE if not.

code is the number identifying a message . If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.

source indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.

message[**out**] is a cluster that describes the message status before the actual VI executes. This message is checked or only passed on. It contains *status*, *code* and *source*.

TF status is TRUE if an error occurred, or FALSE if not.

code is the number identifying a message. If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.

source indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.

5.4 Block Diagram

See figure 14 on page 21.

5.5 List of SubVIs

5.6 History

GLAE_GLobal_AddtwoErrors.vi History Current Revision: 9

6 GLCL_GLobal_CLock.vi

This Vi computes the actual time with reference to *start_time*.

 $millisecond_timer_value := current time - start_time$

6.1 Connector Pane

See figure 15 on page 21.

6.2 Front Panel

See figure 16 on page 22.

message[in] status		message[out] status	
code		code	
÷40		۹D	
source	-	source	-

Figure 16: Front Panel of GLCL_GLobal_CLock.vi

6.3 Controls and Indicators

- **use start_time** [ms] is the time reference. In *LOLA*it is set at INCH_INitialisation_Config-Hardware.vi at the start of the program.
- **message**[in] is a cluster that describes the message status before the actual VI's execution. This message is checked or passed on. It contains *status*, *code* and *source*.
 - **T** status is TRUE if an error occurred, or FALSE if not.
 - **code** is the number identifying a message . If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.
 - **source** indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.
- **millisecond** timer_value is the time period in [ms] between the actual time and *start_time*.

message[**out**] is a cluster that describes the message status before the actual VI executes. This message is checked or only passed on. It contains *status*, *code* and *source*.

TF status is TRUE if an error occurred, or FALSE if not.

- **code** is the number identifying a message . If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.
- **source** indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.

6.4 Block Diagram

See figure 17 on page 23.

6.5 List of SubVIs

6.6 History

GLCL_GLobal_CLock.vi History Current Revision: 23

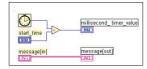


Figure 17: Block Diagram of GLCL_GLobal_CLock.vi

message_array[in]	
yet_suspended?	and <: stop?

Figure 18: Connector Pane of GLCM_GLobal_CheckMessages.vi

7 GLCM_GLobal_CheckMessages.vi

Looks up $message_array[in]$ if any code of the $message_array[in]$ is equal to 9999 (global stop condition) or 5000 (reactivation condition, not implemented yet). In case one code = 9000, suspend? := TRUE and stop? := TRUE. In case one code is 5000, suspend? := FALSE.

7.1 Connector Pane

See figure 18 on page 23.

7.2 Front Panel

See figure 19 on page 24.

7.3 Controls and Indicators

yet_suspended? is true if higher vi is suspended, false if it is active.

- **message_array[in]** is an array of *message[in]* which describe the error status before the actual VI executes. Usually the messages are checked or passed on. Messages can be condition, commands, confirmations, logs and reports. The collectivity of all messages ensures the communication between all parts of *LOLA*.
 - **message**[in] is a cluster that describes the message status before the actual VI's execution. This message is checked or passed on. It contains *status*, *code* and *source*

status is TRUE if an error occurred, or FALSE if not.

- **code** is the number identifying a message . If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.
- **source** indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.

IF suspend?

IF stop?

7.4 Block Diagram

See figure 20 on page 24.

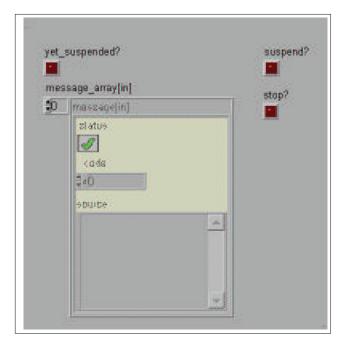


Figure 19: Front Panel of GLCM_GLobal_CheckMessages.vi

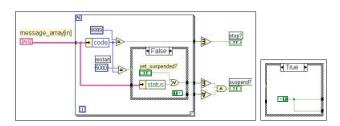


Figure 20: Block Diagram of GLCM_GLobal_CheckMessages.vi

path_input+filepath?path existed

Figure 21: Connector Pane of GLCP_GLobal_Check_Path.vi

path_input+file	path existed
5	
	path now exists
	-

Figure 22: Front Panel of GLCP_GLobal_Check_Path.vi

7.5 List of SubVIs

7.6 History

GLCM_GLobal_CheckMessages.vi History Current Revision: 29

8 GLCP_GLobal_Check_Path.vi

checks if the given path is valid and creates it if it does not exist

8.1 Connector Pane

See figure 21 on page 25.

8.2 Front Panel

See figure 22 on page 25.

8.3 Controls and Indicators

path_input+file path that should be checked

path existed true if *input_path* existed

TF path now exists true if *input_path* exists after execution

8.4 Block Diagram

See figure 23 on page 26.

8.5 List of SubVIs

8.6 History

GLCP_GLobal_Check_Path.vi History Current Revision: 7

9 GLSA_Stop_to_All.vi

This VI stops VIs running at the same time.

|--|--|

Figure 23: Block Diagram of GLCP_GLobal_Check_Path.vi

Figure 24: Connector Pane of GLSA_Stop_to_All.vi

9.1 Connector Pane

See figure 24 on page 26. $\,$

9.2 Front Panel

See figure 25 on page 27.

9.3 Controls and Indicators

TF stop

🛄 mode

TF stop to all

9.4 Block Diagram

See figure 26 on page 27.

9.5 List of SubVIs

9.6 History

GLSA_Stop_to_All.vi History Current Revision: 16

10 GLSN_GLobal_SearchforNumber.vi

searches the index of *number_to_search_for* in *array_in*

10.1 Connector Pane

See figure 27 on page 27.

10.2 Front Panel

See figure 28 on page 27.

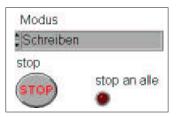


Figure 25: Front Panel of GLSA_Stop_to_All.vi

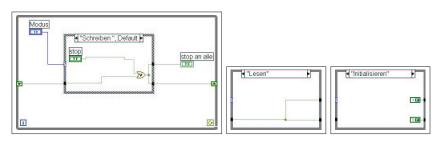


Figure 26: Block Diagram of GLSA_Stop_to_All.vi

array[in] —— [] - in number_to_serach_for ?]	dex_of_found
---	--------------

Figure 27: Connector Pane of GLSN_GLobal_SearchforNumber.vi

array[in]	index_of_found
0.00	0
number_to_serach_fo	re.
0	

Figure 28: Front Panel of GLSN_GLobal_SearchforNumber.vi

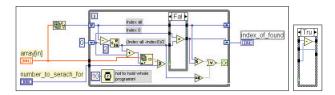


Figure 29: Block Diagram of GLSN_GLobal_SearchforNumber.vi

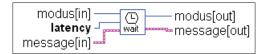


Figure 30: Connector Pane of GLWA_GLobalWAit.vi

10.3 Controls and Indicators

[DBL] array[in] array in which number_to_search_for should be found

DBL Measured Value

_____ number_to_serach_for number to look for

II32 index_of_found index of found element in *array[in]*

10.4 Block Diagram

See figure 29 on page 28.

10.5 List of SubVIs

10.6 History

GLSN_GLobal_SearchforNumber.vi History Current Revision: 8

11 GLWA_GLobalWAit.vi

This VI waits *latency* milliseconds and is usually used to release processor resources for certain time period.

11.1 Connector Pane

See figure 30 on page 28.

11.2 Front Panel

See figure 31 on page 29.

11.3 Controls and Indicators

latency time period to halt the calling VI

message[in] is a cluster that describes the message status before the actual VI's execution. This message is checked or passed on. It contains *status*, *code* and *source*.

TE status is TRUE if an error occurred, or FALSE if not.

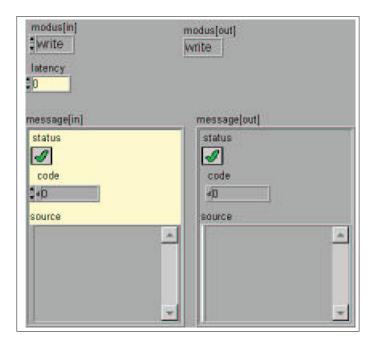


Figure 31: Front Panel of GLWA_GLobalWAit.vi

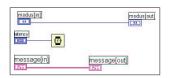


Figure 32: Block Diagram of GLWA_GLobalWAit.vi

- **code** is the number identifying a message . If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.
- **source** indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.

modus[in]

message[**out**] is a cluster that describes the message status before the actual VI executes. This message is checked or only passed on. It contains *status*, *code* and *source*.

- **status** is TRUE if an error occurred, or FALSE if not.
- **code** is the number identifying a message . If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.
- **source** indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.

modus[out]

11.4 Block Diagram

See figure 32 on page 29.

11.5 List of SubVIs

11.6 History

GLWA_GLobalWAit.vi History Current Revision: 13

user_settings	hardware_settings
message[in]	message[out]

Figure 33: Connector Pane of HCCE_HardwareConfig_CEnter.vi

12 HCCE_HardwareConfig_CEnter.vi

Start of all measurement.

12.1 Connector Pane

See figure 33 on page 30.

12.2 Front Panel

12.3 Controls and Indicators

message[in] is a cluster that describes the message status before the actual VI's execution. This message is checked or passed on. It contains *status*, *code* and *source*.

TE status is TRUE if an error occurred, or FALSE if not.

code is the number identifying a message . If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.

source indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.

VISA session (for class) is a unique logical identifier used to communicate with a resource.

user settings[in]

💷 general

Numeric_for_nothing this numeric is for nothing

- **standard_path** is the path where the program is located
- [abc] list_column_names is an array containing the titles of the measurement categories

The names' order must match to the commands' order.

- **ibc name_of_channel** channel name is displayed in the user interface, it consists of identifier and unit
- **[bel] list_ranges** is an array of all rated-, warning- and alarm-level ordered according to *list_column_names*
 - **DBL** value
- **[abc]** semaphores is an array of names of all existing semaphores **[abc]** name
- **Dewerack/serial**
 - **baud_rate**
 - **Interim interim** in milliseconds for RSRD_RSReadData.vi to wait between two executions of the while loop
 - **Intercy_write[out]** is the time in milliseconds for RSWD_RSWriteData.vi to wait between two executions of the while loop
 - **timeout_value_read**[in] (not in use at the moment)
 - **timeout_value_write[out]** (not in use at the moment)

- **byte** count read[in] is the number of bytes to be read
- **byte_count_write**[**out**] is the number of bytes to be written
- **latency_sign_of_life** is the time period between two alternating signals sent to the PLC S7 200
- **resource_name** is the instrument descriptor of the interface addressing the Dewerack for VISA driver
- [abc] terms_init is an array of commands for initialization of the Dewerack
 - **term** address respectively command for the read request at a certain port (called term here)
- **terms_read_in** is an array of addresses respectively commands for the read request at a certain port
 - **term** address respectively command for the read request at a certain port (called term here)
- **[abc] terms_write_out** is an array of addresses respectively commands for the write request at a certain port
 - **term** address respectively command for the read request at a certain port (called term here)

Dewerack/DAQ

- **device** is the device number of the DAQ board
- **scan_rate** is the number of scans performed per second
- **buffer_size** buffer size is the number of scans each buffer should hold
- **scans_to_read_at_a_time** number of scans to read specifies the number of scans the VI retrieves from the acquisition buffer. The default input is -1, which tells LabView to set number of scans to read equal to the value of the number of scans to acquire control when AI Start was called. If number of scans to read is -1 and number of scans to acquire was 0, LabView sets number of scans to read to 100.
 - Execution of the loop is halted until the *number_of_scans_to_read* is available in the internal memory of the DAQ board.
- **channels** specifies the set of analog input channels for a group and task. You cannot assign a channel to more than one group. The default input is channel 0. See the description of the Analog Input Group Config VI for a detailed description of this parameter and the valid syntax for the channel strings.

E Poweranalyzer

- **Interview** is the time in milliseconds for PARD_PowerAnalyzer_ReasData.vi to wait between two executions of the while loop
- **instrument_descriptor** is the instrument descriptor of the interface addressing the Poweranalyzer for the VISA driver
- **[abc]** terms_init is an array of commands (called terms here) for the initialization of the Poweranalyzer
 - **term** for the initialization request at the Poweranalyzer (called term here)
- **terms_service** is an array of commands (called terms here) for the read request the structure is: first, second and third collum are for the first, second and third phase; the fourth collum is for all phases
 - **term** command for the read request at the Poweranalyzer (called term here)

🔤 saving

- **save_interval** determines the amount of measurement data saved
- **main_register_faktor** determines the amount of measurement data buffered in the main register. The size of the main register is *main_register_factor* multiplied by *save_interval*

datafile_paths name and location of files where the measured data is saved **path** consists of path (location) and filename

message[**out**] is a cluster that describes the message status before the actual VI executes. This message is checked or only passed on. It contains *status*, *code* and *source*.

status is TRUE if an error occurred, or FALSE if not.

- **code** is the number identifying a message. If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.
- **source** indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.

hardware_settings

💷 general

standard_path path where the program is located

- **start_time** [ms] is the time reference. In *LOLAstart_time* is set at INKH_-INitialisation_KonfigHardware.vi at the start of the program.
- **list_column_names** is an array containing the titles of the measurement categories The names' order must match to the commands' order.
 - **a name_of_channel** channel name is displayed in the user interface, it consists of identifier and unit
- **[bel] list_ranges** is an array of all rated-, warning- and alarm-levels ordered according to *list_column_names*
 - **DBL** value
- **semaphores** is an array of names of all existing semaphores

Dewerrack/serial

- **Intercy_read**[in] is the time in milliseconds for RSRD_RSReadData.vi to wait between two executions of the while loop
- **latency_write[out]** is the time in milliseconds for RSWD_RSWriteData.vi to wait between two executions of the while loop
- **timeout_value_read**[in] (not in use at the moment)
- **timeout_value_write[out]** (not in use at the moment)
- **byte** count read[in] is the number of bytes to be read
- **byte_count_write**[**out**] is the number of bytes to be written
- **Internet Sign_of_life** is the time period between two alternating signals sent to the PLC S7 200
- **terms_read_in** is an array of addresses respectively commands for the read request at a certain port
 - **term** address respectively command for the read request at a certain port (called term here)
- **[abc] terms_write_out** is an array of addresses respectively commands for the write request at a certain port
 - **term** address respectively command for the read request at a certain port (called term here)
- **VISA_session_(for_class)** is a unique logical identifier used to communicate with a resource.

Dewerack/DAQ

IB21 scans_to_read_at_a_time number of scans to read specifies the number of scans the VI retrieves from the acquisition buffer. The default input is -1, which tells LabView to set number of scans to read equal to the value of the number of scans to acquire control when AI Start was called. If number of scans to read is -1 and number of scans to acquire was 0, LabView sets number of scans to read to 100.

Execution of the loop is halted until the *number_of_scans_to_read* is available in the internal memory of the DAQ board.

- **taskID** is a unique logical identifier used to communicate with a resource.
- **use** scan_rate is the number of scans performed per second

B Poweranalyzer

- **Interview** is the time in milliseconds for PARD_PowerAnalyzer_ReasData.vi to wait between two executions of the while loop
- **VISA session** is a unique logical identifier used to communicate with a resource.
- **terms_service** is an array of commands (called terms here) for the read request the structure is: first, second and third collum are for the first, second and third phase; the fourth collum is for all phases
 - **term** command for the read request at the Poweranalyzer (called term here)
- **Saving**
 - **IB22** save_interval determines the amount of Measurement-Data saved
 - **main_register_faktor** determines the amount of Measurement-Data buffered in the main register. The size of the main register is *main_register_factor* multiplied by *save_interval*
 - **datafile_paths** name and location of files where the measured data is saved **path** consists of path (location) and filename

12.4 Block Diagram

See figure 34 on page 34.

12.5 List of SubVIs

LND4000_Initialize.vi

C:\Programme\National Instruments\Labview\instr.lib\-D4000\LND4000.llb\LND4000_Initialize.vi

AIConfig.vi C:\Programme\National Instruments\Labview\vi.lib\DAQ\AI.LLB\AIConfig.vi

i.	
	-
	C13
	0.171
	1.0002
	41 - L
	TICR

GLCL_GLobal_CLock.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\Global.llb\GLCL_GLobal_CLock.vi

GCEH_Global_Changed_Error_Handler.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\global.llb\GCEH_Global_Changed_Error_Handler.vi

12.6 History

HCCE_HardwareConfig_CEnter.vi History Current Revision: 77

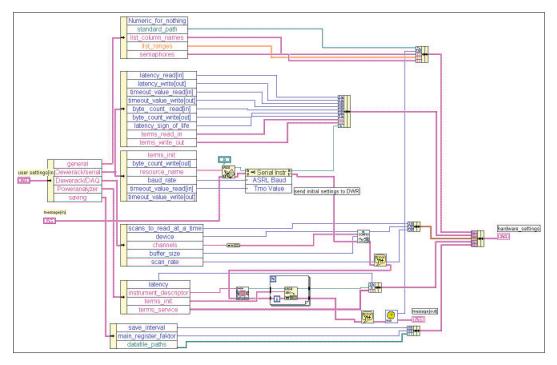


Figure 34: Block Diagram of HCCE_HardwareConfig_CEnter.vi

Figure 35: Connector Pane of IN1N_INitialization_1dNatospradsh.vi

13 IN1N_INitialization_1dNatospradsh.vi

converts one dimensional array of numbers (u32) to spreadsheet string

13.1 Connector Pane

See figure 35 on page 34.

13.2 Front Panel

See figure 36 on page 35.

13.3 Controls and Indicators

[DBL] array array of numbers (DBL)

DBL Numeric

labc spreadsheet string

13.4 Block Diagram

See figure 37 on page 35.

array		spreadsheet string	
0 0	000		

Figure 36: Front Panel of IN1N_INitialization_1dNatospradsh.vi

%f	
array 100	spreadsheet string

Figure 37: Block Diagram of IN1N_INitialization_1dNatospradsh.vi

13.5 List of SubVIs

13.6 History

IN1N_INitialization_1dNatospradsh.vi History Current Revision: 13

14 IN1S_INitialization_1dstring_array_to_Spradsheet.vi

converts one dimensional array of strings to spreadsheet string

14.1 Connector Pane

See figure 38 on page 36.

14.2 Front Panel

See figure 39 on page 36.

14.3 Controls and Indicators

[abc] array array of strings

Imp String

label spreadsheet string

14.4 Block Diagram

See figure 40 on page 37.

14.5 List of SubVIs

14.6 History

IN1S_INitialization_1dstring_array_to_Spradsheet.vi History Current Revision: 12

15 INCE_INitialization_CEnter.vi

This VI enables the user to edit the settings in a comfortable way. The graphic shows a map of the system. Clicking on the appropriate field will popup a menu where the settings can be changed.

Figure 38: Connector Pane of IN1S_INitialization_1dstring_array_to_Spradsheet.vi

Figure 39: Front Panel of IN1S_INitialization_1dstring_array_to_Spradsheet.vi

15.1 Connector Pane

See figure 41 on page 37.

15.2 Front Panel

See figure 42 on page 37.

15.3 Controls and Indicators

user settings[in]

💷 general

- **Numeric_for_nothing** this numeric is for nothing
- **standard_path** is the path where the program is located
- **list_column_names** is an array containing the titles of the measurement categories

The names' order must match to the commands' order.

- **ibc name_of_channel** channel name is displayed in the user interface, it consists of identifier and unit
- **[bel]** list_ranges is an array of all rated-, warning- and alarm-levels ordered according to *list_column_names*

DBL value

[abc] semaphores is an array of names of all existing semaphores

🔤 name

Dewerack/serial

- **132** baud_rate
- **Interventian** is the time in milliseconds for RSRD_RSReadData.vi to wait between two executions of the while loop
- **Intervention Intervention Inter**
- **timeout_value_read**[in] (not in use at the moment)
- **timeout_value_write**[**out**] (not in use at the moment)
- **byte**₋ **count**₋ **read**[**in**] is the number of bytes to be read
- **byte_count_write[out]** is the number of bytes to be written
- **Internet Sign_of_life** is the time period between two alternating signals sent to the PLC S7 200
- **resource_name** is the instrument descriptor of the interface addressing the Dewerack for VISA driver
- **terms_init** is an array of commands for initialization of the Dewerack

%f array (ma)	spreadsheet string
---------------------	--------------------

Figure 40: Block Diagram of IN1S_INitialization_1dstring_array_to_Spradsheet.vi

Figure 41: Connector Pane of INCE_INitialization_CEnter.vi

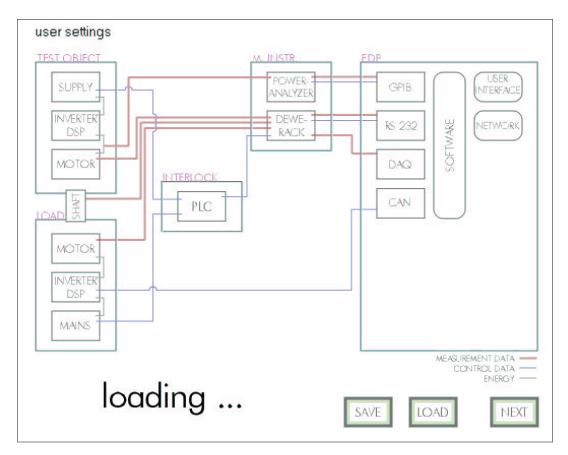


Figure 42: Front Panel of INCE_INitialization_CEnter.vi

term address respectively command for the read request at a certain port (called term here)

- **[abc] terms_read_in** is an array of addresses respectively commands for the read request at a certain port
 - **term** address respectively command for the read request at a certain port (called term here)
- **[abc] terms_write_out** is an array of addresses respectively commands for the write request at a certain port
 - **term** address respectively command for the read request at a certain port (called term here)

Dewerack/DAQ

device is the device number of the DAQ board

- **use** scan_rate is the number of scans performed per second
- **buffer_size** buffer size is the number of scans each buffer should hold
- **scans_to_read_at_a_time** number of scans to read specifies the number of scans the VI retrieves from the acquisition buffer. The default input is -1, which tells LabView to set number of scans to read equal to the value of the number of scans to acquire control when AI Start was called. If number of scans to read is -1 and number of scans to acquire was 0, LabView sets number of scans to read to 100.

Execution of the loop is halted until the *number_of_scans_to_read* is available in the internal memory of the DAQ board.

channels specifies the set of analog input channels for a group and task. You cannot assign a channel to more than one group. The default input is channel 0. See the description of the Analog Input Group Config VI for a detailed description of this parameter and the valid syntax for the channel strings.

Poweranalyzer

- **Interview** is the time in milliseconds for PARD_PowerAnalyzer_ReasData.vi to wait between two executions of the while loop
- **instrument_descriptor** is the instrument descriptor of the interface addressing the Poweranalyzer for the VISA driver
- **[abc]** terms_init is an array of commands (called terms here) for the initialization of the Poweranalyzer
 - **term** for the initialization request at the Poweranalyzer (called term here)
- **terms_service** is an array of commands (called terms here) for the read request the structure is: first, second and third collum are for the first, second and third phase; the fourth collum is for all phases
 - **term** command for the read request at the Poweranalyzer (called term here)

🔤 saving

- **save_interval** determines the amount of Measurement-Data saved
- **main_register_faktor** determines the amount of Measurement-Data buffered in the main register. The size of the main register is *main_register_factor* multiplied by *save_interval*
- **datafile_paths** name and location of files where the measured data is saved **path** consists of path (location) and filename

current_.ini_path

- **Picture** click on the appropriate field on the system map to edit the according settings
- user settings[out]

💷 general

- **Numeric_for_nothing** this numeric is for nothing
- **standard_path** is the path where the program is located
- **list_column_names** is an array containing the titles of the measurement categories
 - The names' order must match to the commands' order.
 - **ibc name_of_channel** channel name is displayed in the user interface, it consists of identifier and unit
- **[bel]** list_ranges is an array of all rated-, warning- and alarm-levels ordered according to *list_column_names*

DBL value

semaphores is an array of names of all existing semaphores

🔤 name

Dewerack/serial

- use baud_rate
- **Intercy_read**[in] is the time in milliseconds for RSRD_RSReadData.vi to wait between two executions of the while loop
- **Intervention Intervention Inter**
- **timeout_value_read**[in] (not in use at the moment)
- **timeout_value_write[out]** (not in use at the moment)
- **byte**₋ **count**₋ **read**[**in**] is the number of bytes to be read
- **_____** byte_count_write[out] is the number of bytes to be written
- **Internet Sign_of_life** is the time period between two alternating signals sent to the PLC S7 200
- **resource_name** is the instrument descriptor of the interface addressing the Dewerack for VISA driver
- [abc] terms_init is an array of commands for initialization of the Dewerack
 - **term** address respectively command for the read request at a certain port (called term here)
- **[abc] terms_read_in** is an array of addresses respectively commands for the read request at a certain port
 - **term** address respectively command for the read request at a certain port (called term here)
- **terms_write_out** is an array of addresses respectively commands for the write request at a certain port
 - **term** address respectively command for the read request at a certain port (called term here)

Dewerack/DAQ

- **device** is the device number of the DAQ board
- **scan_rate** is the number of scans performed per second
- **buffer_size** buffer size is the number of scans each buffer should hold
- **IEED** scans_to_read_at_a_time number of scans to read specifies the number of scans the VI retrieves from the acquisition buffer. The default input is -1, which tells LabView to set number of scans to read equal to the value of the number of scans to acquire control when AI Start was called. If number of scans to read is -1 and number of scans to acquire was 0, LabView sets number of scans to read to 100.

Execution of the loop is halted until the *number_of_scans_to_read* is available in the internal memory of the DAQ board.

channels specifies the set of analog input channels for a group and task. You cannot assign a channel to more than one group. The default input is channel 0. See the description of the Analog Input Group Config VI for a detailed description of this parameter and the valid syntax for the channel strings.

Poweranalyzer

- **Interview** is the time in milliseconds for PARD_PowerAnalyzer_ReasData.vi to wait between two executions of the while loop
- **instrument_descriptor** is the instrument descriptor of the interface addressing the Poweranalyzer for the VISA driver
- **[abc] terms_init** is an array of commands (called terms here) for the initialization of the Poweranalyzer
 - **term** for the initialization request at the Poweranalyzer (called term here)
- **[abd]** terms_service is an array of commands (called terms here) for the read request the structure is: first, second and third collum are for the first, second and third phase; the fourth collum is for all phases
 - **term** command for the read request at the Poweranalyzer (called term here)

saving

- **use save_interval** determines the amount of Measurement-Data saved
- **main_register_faktor** determines the amount of Measurement-Data buffered in the main register. The size of the main register is *main_register_factor* multiplied by *save_interval*
- **Let** datafile_paths name and location of files where the measured data is saved **b** path consists of path (location) and filename

libe display current settings are displayed here

15.4 Block Diagram

See figure 43 on page 41, figure 44 on page 42, figure 45 on page 43 and figure 46 on page 44.

15.5 List of SubVIs

INLP_INitialisation_LoadPictures.vi

D:\Version

Ē t
FLAT

Draw Flattened Pixmap.vi

C:\programme\national instruments\Labview\vi.lib\picture\picture.llb\Draw Flattened Pixmap.vi

supp
1
ok kel

INM01_INitialisation_Menue01(supply).vi

D:\Version

2.0\INitialization.llb\INM01_INitialisation_Menue01(supply).vi

inu. 2	
ok kel	

INM02_INitialisation_Menue02(inverter).vi D:\Version 2.0\INitialization.llb\INM02_INitialisation_Menue02(inverter).vi

INM03_INitialisation_Menue03(motor).vi

D:\Version

2.0\INitialization.llb\INM03_INitialisation_Menue03(motor).vi

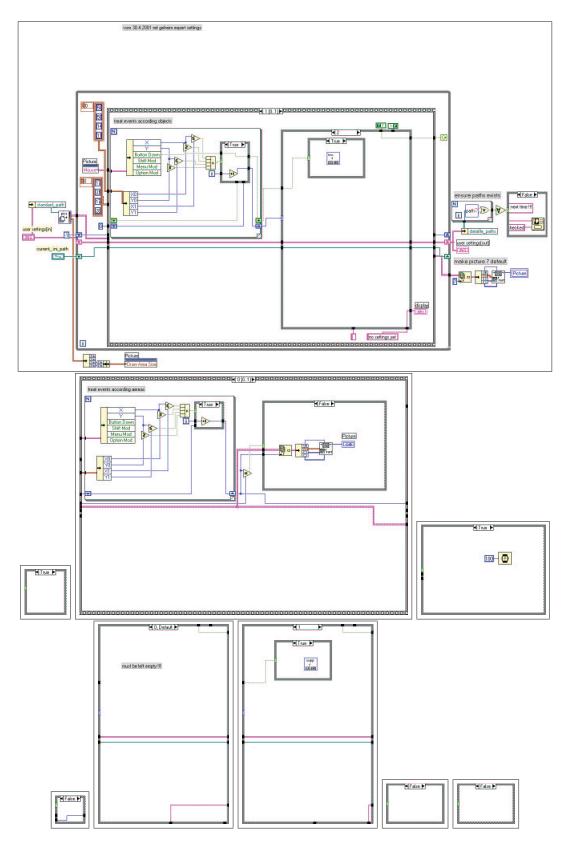


Figure 43: Block Diagram (a) of INCE_INitialization_CEnter.vi

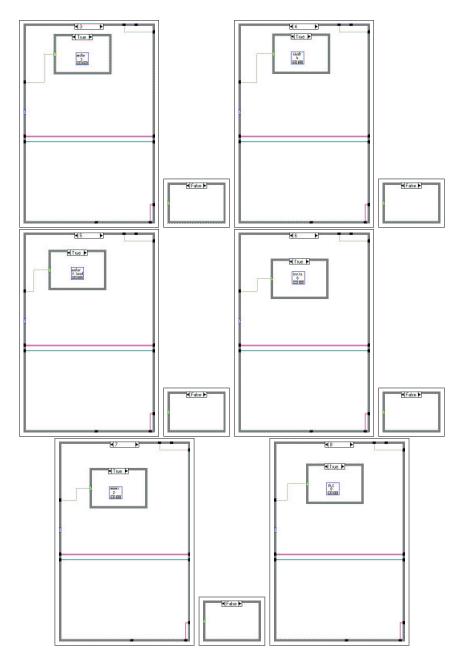


Figure 44: Block Diagram (b) of INCE_INitialization_CEnter.vi

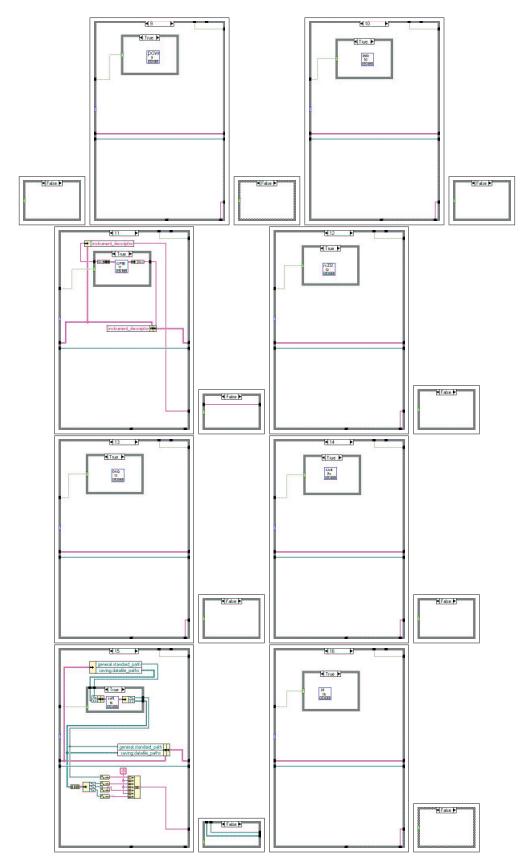


Figure 45: Block Diagram (c) of INCE_INitialization_CEnter.vi

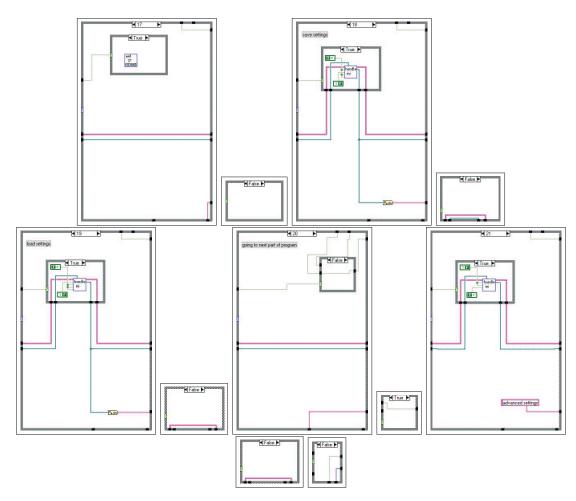


Figure 46: Block Diagram (d) of INCE_INitialization_CEnter.vi

shaft	INM04_INitialisation_Menue04(shaft).vi
५	D:\Version
ाहा हाहा	2.0\INitialization.llb\INM04_INitialisation_Menue04(shaft).vi
motor	INM05_INitialisation_Menue05(motor-load).vi
ऽ load	D:\Version 2.0\INitialization.llb\-
उन्हाइला	INM05_INitialisation_Menue05(motor-load).vi
inv.to.	INM06_INitialisation_Menue06(inverter-load).vi
6	D:\Version 2.0\INitialization.llb\-
or: and	INM06_INitialisation_Menue06(inverter-load).vi
Mains	INM07_INitialisation_Menue07(mains).vi
7	D:\Version
or ari	2.0\INitialization.llb\INM07_INitialisation_Menue07(mains).vi
PLC	INM08_INitialisation_Menue08(PLC).vi
8	D:\Version
or cel	2.0\INitialization.llb\INM08_INitialisation_Menue08(PLC).vi
pow exica	INM09_INitialisation_Menue09(Poweranalyzer).vi D:\Version 2.0\INitialization.llb\- INM09_INitialisation_Menue09(Poweranalyzer).vi
DWR	INM10_INitialisation_Menue10(dewerack).vi
10	D:\Version 2.0\INitialization.llb\-
ाह इस्स	INM10_INitialisation_Menue10(dewerack).vi
G PIB	INM11_INitialisation_Menue11(GPIB).vi
11	D:\Version
ाह ब्रह्म	2.0\INitialization.llb\INM11_INitialisation_Menue11(GPIB).vi
rs 232	INM12_INitialisation_Menue12(rs232).vi
12	D:\Version
©K 660	2.0\INitialization.llb\INM12_INitialisation_Menue12(rs232).vi
DAQ	INM13_INitialisation_Menue13(DAQ).vi
13	D:\Version
ok ari	2.0\INitialization.llb\INM13_INitialisation_Menue13(DAQ).vi
CAN	INM14_INitialisation_Menue14(CAN).vi
14	D:\Version
08 881	2.0\INitialization.llb\INM14_INitialisation_Menue14(CAN).vi
soft.	INM15_INitialisation_Menue15(software).vi
15	D:\Version
लह हला	2.0\INitialization.llb\INM15_INitialisation_Menue15(software).vi
UI	INM16_INitialisation_Menue16(UI).vi
16	D:\Version
(76) (761)	2.0\INitialization.llb\INM16_INitialisation_Menue16(UI).vi
net	INM17_INitialisation_Menue17(network).vi
17	D:\Version
ok ani	2.0\INitialization.llb\INM17_INitialisation_Menue17(network).vi
handle	INIF_INitialization_Ini_File.vi
ini	D:\Version 2.0\INitialization.llb\INIF_INitialization_Ini_File.vi
path?	GLCP_GLobal_Check_Path.vi D:\Version 2.0\global.llb\GLCP_GLobal_Check_Path.vi

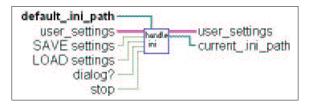


Figure 47: Connector Pane of INIF_INitialization_Ini_File.vi

15.6 History

INCE_INitialization_CEnter.vi History Current Revision: 76

16 INIF_INitialization_Ini_File.vi

This VI saves and loads Settings into and from a .ini file.

LOLASettings are saved in files called LOLA.ini. The default .ini file is \settings\LOLA.ini.

16.1 Connector Pane

See figure 47 on page 46.

16.2 Front Panel

See figure 48 on page 47.

16.3 Controls and Indicators

user settings

💷 general

- **Numeric_for_nothing** this numeric is for nothing
- \blacksquare standard_path is the path where the program is located
- [abc] list_column_names is an array containing the titles of the measurement categories
 - The names' order must match to the commands' order.
 - **name_of_channel** channel name is displayed in the user interface, it consists of identifier and unit
- **[bel] list_ranges** is an array of all rated-, warning- and alarm-levels ordered according to *list_column_names*
 - **DBL** value
- **semaphores** is an array of names of all existing semaphores **label name**
- Dewerack_serial
 - 💷 baud_rate
 - **Intercy_readin** is the time in milliseconds for RSRD_RSReadData.vi to wait between two executions of the while loop
 - **Intercy_writeout** is the time in milliseconds for RSWD_RSWriteData.vi to wait between two executions of the while loop
 - **timeout_value_readin** (not in use at the moment)
 - **timeout_value_writeout** (not in use at the moment)

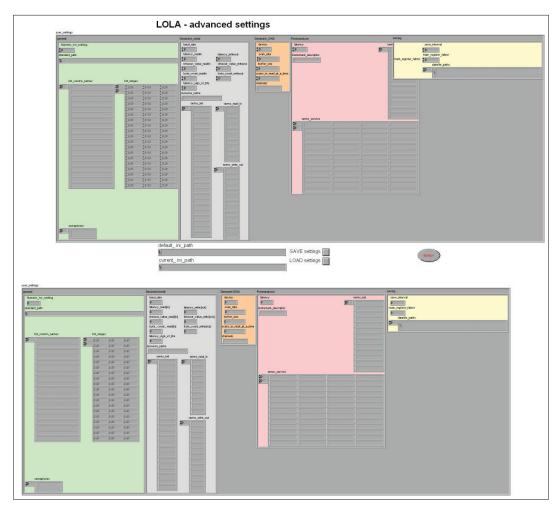


Figure 48: Front Panel of INIF_INitialization_Ini_File.vi

- **byte_count_readin** is the number of bytes to be read
- **byte_count_writeout** is the number of bytes to be written
- **latency_sign_of_life** is the time period between two alternating signals sent to the PLC S7 200
- **resource_name** is the instrument descriptor of the interface addressing the Dewerack for VISA driver
- **terms_init** is an array of commands for initialization of the Dewerack
 - **term** address respectively command for the read request at a certain port (called term here)
- **terms_read_in** is an array of addresses respectively commands for the read request at a certain port
 - **term** address respectively command for the read request at a certain port (called term here)
- **[abc] terms_write_out** is an array of addresses respectively commands for the write request at a certain port
 - **term** address respectively command for the read request at a certain port (called term here)

Dewerack_DAQ

- **device** is the device number of the DAQ board
- **scan_rate** is the number of scans performed per second
- **buffer_size** buffer size is the number of scans each buffer should hold
- **scans_to_read_at_a_time** number of scans to read specifies the number of scans the VI retrieves from the acquisition buffer. The default input is -1, which tells LabView to set number of scans to read equal to the value of the number of scans to acquire control when AI Start was called. If number of scans to read is -1 and number of scans to acquire was 0, LabView sets number of scans to read to 100.
 - Execution of the loop is halted until the *number_of_scans_to_read* is available in the internal memory of the DAQ board.
- **channels** specifies the set of analog input channels for a group and task. You cannot assign a channel to more than one group. The default input is channel 0. See the description of the Analog Input Group Config VI for a detailed description of this parameter and the valid syntax for the channel strings.

Poweranalyzer

- **Interview** is the time in milliseconds for PARD_PowerAnalyzer_ReasData.vi to wait between two executions of the while loop
- **instrument_descriptor** is the instrument descriptor of the interface addressing the Poweranalyzer for the VISA driver
- **terms_init** is an array of commands (called terms here) for the initialization of the Poweranalyzer

term for the initialization request at the Poweranalyzer (called term here)

- **terms_service** is an array of commands (called terms here) for the read request the structure is: first, second and third collum are for the first, second and third phase; the fourth collum is for all phases
 - **term** command for the read request at the Poweranalyzer (called term here)

🔤 saving

- www.interval determines the amount of Measurement-Data saved
- **main_register_faktor** determines the amount of Measurement-Data buffered in the main register. The size of the main register is *main_register_factor* multiplied by *save_interval*

datafile_paths name and location of files where the measured data is saved **path** consists of path (location) and filename

- **III** SAVE settings
- **III** LOAD settings
- **TF** stop
- limi_path default_.ini_path
- **III** dialog?
- **□** current_.ini_path
- user settings[out]
 - 💷 general
 - **Numeric_for_nothing** this numeric is for nothing
 - **standard_path** is the path where the program is located
 - **list_column_names** is an array containing the titles of the measurement categories
 - The names' order must match to the commands' order.
 - **abc name_of_channel** channel name is displayed in the user interface, it consists of identifier and unit
 - **[bel] list_ranges** is an array of all rated-, warning- and alarm-levels ordered according to *list_column_names*
 - **DBL** value
 - **semaphores** is an array of names of all existing semaphores **label name**
 - Dewerack/serial
 - baud_rate
 - **Interview Interview Inter**
 - **Intervention Intervention Inter**
 - **timeout_value_read**[in] (not in use at the moment)
 - **timeout_value_write[out]** (not in use at the moment)
 - **byte** count read[in] is the number of bytes to be read
 - **byte_count_write**[out] is the number of bytes to be written
 - **Internet Sign_of_life** is the time period between two alternating signals sent to the PLC S7 200
 - **resource_name** is the instrument descriptor of the interface addressing the Dewerack for VISA driver
 - **[abc]** terms_init is an array of commands for initialization of the Dewerack
 - **term** address respectively command for the read request at a certain port (called term here)
 - **terms_read_in** is an array of addresses respectively commands for the read request at a certain port
 - **term** address respectively command for the read request at a certain port (called term here)
 - **[abc] terms_write_out** is an array of addresses respectively commands for the write request at a certain port

term address respectively command for the read request at a certain port (called term here)

Dewerack/DAQ

- **116** device is the device number of the DAQ board
- **use scan_rate** is the number of scans performed per second
- **132** buffer_size buffer size is the number of scans each buffer should hold
- **IDENT** scans_to_read_at_a_time number of scans to read specifies the number of scans the VI retrieves from the acquisition buffer. The default input is -1, which tells LabView to set number of scans to read equal to the value of the number of scans to acquire control when AI Start was called. If number of scans to read is -1 and number of scans to acquire was 0, LabView sets number of scans to read to 100.

Execution of the loop is halted until the *number_of_scans_to_read* is available in the internal memory of the DAQ board.

channels specifies the set of analog input channels for a group and task. You cannot assign a channel to more than one group. The default input is channel 0. See the description of the Analog Input Group Config VI for a detailed description of this parameter and the valid syntax for the channel strings.

Poweranalyzer

- **Interview** is the time in milliseconds for PARD_PowerAnalyzer_ReasData.vi to wait between two executions of the while loop
- **instrument_descriptor** is the instrument descriptor of the interface addressing the Poweranalyzer for the VISA driver
- **terms_init** is an array of commands (called terms here) for the initialization of the Poweranalyzer

term for the initialization request at the Poweranalyzer (called term here)

- **[abd]** terms_service is an array of commands (called terms here) for the read request the structure is: first, second and third collum are for the first, second and third phase; the fourth collum is for all phases
 - **term** command for the read request at the Poweranalyzer (called term here)

saving

- **Interval** determines the amount of Measurement-Data saved
- **main_register_faktor** determines the amount of Measurement-Data buffered in the main register. The size of the main register is *main_register_factor* multiplied by *save_interval*
- **the datafile_paths** name and location of files where the measured data is saved **test path** consists of path (location) and filename

16.4 Block Diagram

See figure 49 on page 51, figure 50 on page 52, and See figure 51 on page 53.

16.5 List of SubVIs

Open Config Data.vi

C:\Programme\National Instruments\Labview\vi.lib\UTILITY\config.llb\Open Config Data.vi

Close Config Data.vi C:\Programme\National

Instruments\Labview\vi.lib\UTILITY\config.llb\Close Config Data.vi

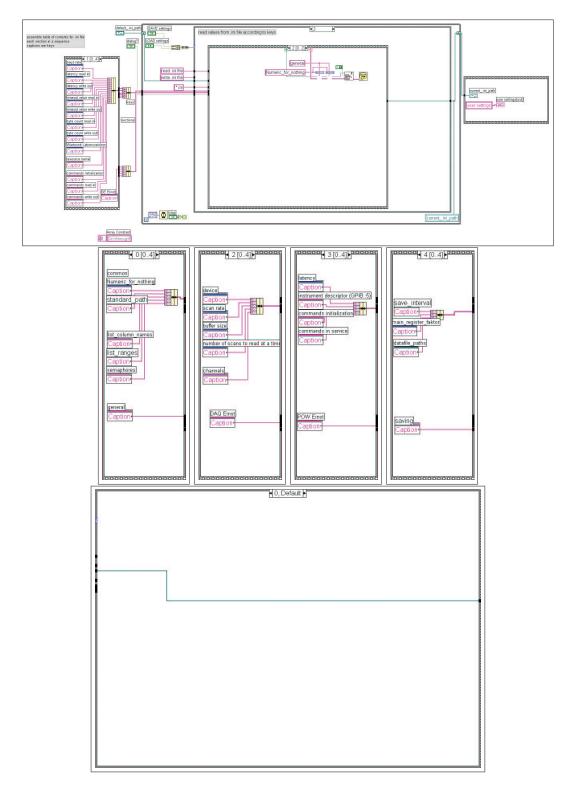


Figure 49: Block Diagram (a) of INIF_INitialization_Ini_File.vi

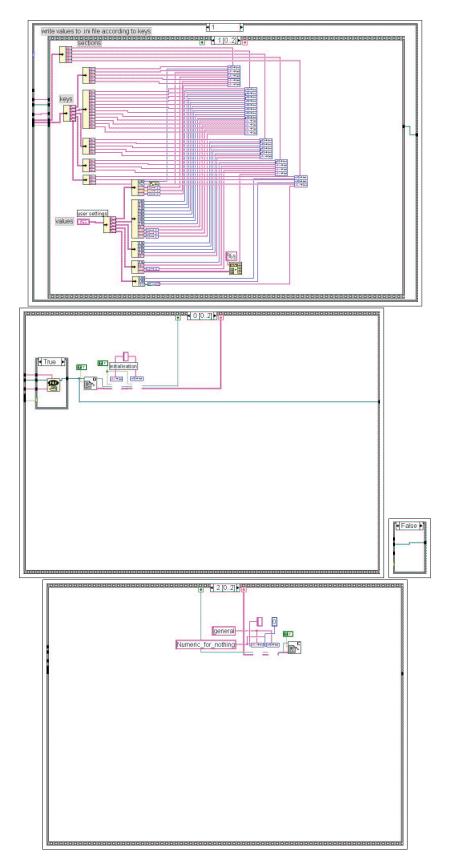


Figure 50: Block Diagram (b) of INIF_INitialization_Ini_File.vi

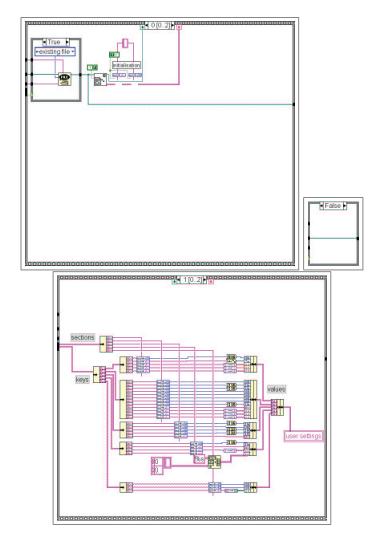


Figure 51: Block Diagram (c) of INIF_INitialization_Ini_File.vi

1d→ S	IN1S_INitialization_1dstring_array_to_Spradsheet.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\INitialization.llb\- IN1S_INitialization_1dstring_array_to_Spradsheet.vi
ini→ 032	INRN_INitialization_Read_Number.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\INitialization.llb\INRN_INitialization_Read_Number.vi
ini→aba	INRS_INitialization_Read_String.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\INitialization.llb\INRS_INitialization_Read_String.vi
S → 14	INS1_Spradsheet_to_1dstring_array.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\INitialization.llb\INS1_Spradsheet_to_1dstring_array.vi
;,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	INPS_INitialization_Path_array_to_Spradsheet.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\INitialization.llb\- INPS_INitialization_Path_array_to_Spradsheet.vi
團→團	INSP_Initialization_Spradsheet_to_Path_array.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\INitialization.llb\- INSP_Initialization_Spradsheet_to_Path_array.vi
032→ini	INWN_INitialization_Write_Number.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\INitialization.llb\INWN_INitialization_Write_Number.vi
obe i ni	INWS_INitialization_Write_String.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\INitialization.llb\INWS_INitialization_Write_String.vi
S+ 14	INSN_spradsheet_to_1dNumber_array.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\INitialization.llb\INSN_spradsheet_to_1dNumber_array.vi
1d → S	IN1N_INitialization_1dNatospradsh.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\INitialization.llb\IN1N_INitialization_1dNatospradsh.vi
Error 21+	GCEH_Global_Changed_Error_Handler.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\global.llb\GCEH_Global_Changed_Error_Handler.vi

16.6 History

INIF_INitialization_Ini_File.vi History Current Revision: 137

17 ININ_INitialistation_INitialisation.vi

Initialization of all Temporary-Storages.

17.1 Connector Pane

See figure 52 on page 55.

17.2 Front Panel

See figure 53 on page 55.

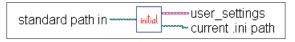


Figure 52: Connector Pane of ININ_INitialistation_INitialisation.vi

Figure 53: Front Panel of ININ_INitialistation_INitialisation.vi

17.3 Controls and Indicators

standard path in

user settings

- 💷 general
 - **Image Numeric_for_nothing** this numeric is for nothing
 - **standard_path** is the path where the program is located
 - [abc] list_column_names is an array containing the titles of the measurement categories
 - The names' order must match to the commands' order.
 - **name_of_channel** channel name is displayed in the user interface, it consists of identifier and unit
 - **[bel] list_ranges** is an array of all rated-, warning- and alarm-levels ordered according to *list_column_names*

DEL value

[abc] semaphores is an array of names of all existing semaphores

🔤 name

Dewerack/serial

132 baud_rate

- **Intercy_read**[in] is the time in milliseconds for RSRD_RSReadData.vi to wait between two executions of the while loop
- **Intervention Intervention Inter**
- **use** timeout_value_read[in] (not in use at the moment)
- **use timeout_value_write[out]** (not in use at the moment)
- **byte_ count_ read**[in] is the number of bytes to be read
- **byte_count_write[out]** is the number of bytes to be written
- **Intercy_sign_of_life** is the time period between two alternating signals sent to the PLC S7 200
- **resource_name** is the instrument descriptor of the interface addressing the Dewerack for VISA driver
- [abc] terms_init is an array of commands for initialization of the Dewerack
 - **ibel command** address respectively command for the initialization request at a certain port
- **[abc] terms_read_in** is an array of addresses respectively commands for the read request at a certain port

- **command** address respectively command for the read request at a certain port
- **[abc] terms_write_out** is an array of addresses respectively commands for the write request at a certain port
 - **command** address respectively command for the write request at a certain port

Dewerack/DAQ

- **device** is the device number of the DAQ board
- **use** scan_rate is the number of scans performed per second
- **1321** buffer_size buffer size is the number of scans each buffer should hold
- **Image scans_to_read_at_a_time** number of scans to read specifies the number of scans the VI retrieves from the acquisition buffer. The default input is -1, which tells LabView to set number of scans to read equal to the value of the number of scans to acquire control when AI Start was called. If number of scans to read is -1 and number of scans to acquire was 0, LabView sets number of scans to read to 100.

Execution of the loop is halted until the *number_of_scans_to_read* is available in the internal memory of the DAQ board.

channels specifies the set of analog input channels for a group and task. You cannot assign a channel to more than one group. The default input is channel 0. See the description of the Analog Input Group Config VI for a detailed description of this parameter and the valid syntax for the channel strings.

Poweranalyzer

- **Interview** is the time in milliseconds for PARD_PowerAnalyzer_ReasData.vi to wait between two executions of the while loop
- **instrument_descriptor** is the instrument descriptor of the interface addressing the Poweranalyzer for the VISA driver
- **terms_init** is an array of commands for the initialization of the Poweranalyzer **command** for the initialization request at the Poweranalyzer
- **[abd]** terms_service is an array of commands for the read request
 - the structure is: first, second and third collum are for the first, second and third phase; the fourth collum is for all phases
 - $\fbox{\sc bc}$ term command for the read request at the Power analyzer

saving

- **Images save_interval** determines the amount of Measurement-Data saved
- **main_register_faktor** determines the amount of Measurement-Data buffered in the main register. The size of the main register is *main_register_factor* multiplied by *save_interval*
- **datafile_paths** name and location of files where the measured data is saved **path** consists of path (location) and filename

🔄 current .ini path

17.4 Block Diagram

See figure 54 on page 57.

17.5 List of SubVIs

$TSRD_TemporaryStorage_Rack_Daq.vi$

D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\-Temporary_Storages.llb\TSRD_TemporaryStorage_Rack_Daq.vi

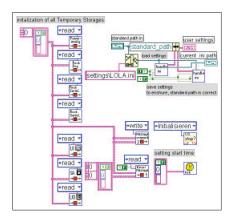


Figure 54: Block Diagram of ININ_INitialistation_INitialisation.vi

GLSA_Stop_to_All.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\Global.llb\GLSA_Stop_to_All.vi

TSUI_TemporaryStorage_UserInterface.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\Temporary_Storages.llb\-TSUI_TemporaryStorage_UserInterface.vi

TSSA_TemporaryStorage_SAve.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\-Temporary_Storages.llb\TSSA_TemporaryStorage_SAve.vi

TSM1_TemporaryStorage_Messages1.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\-Temporary_Storages.llb\TSM1_TemporaryStorage_Messages1.vi

TSM2_TemporaryStorage_Messages2.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\-Temporary_Storages.llb\TSM2_TemporaryStorage_Messages2.vi

 $TSPA_TemporaryStorage_PowerAnalyzer.vi$

D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\Temporary_Storages.llb\-TSPA_TemporaryStorage_PowerAnalyzer.vi

Rack
Serial
\rightarrow \square \rightarrow

TSRSr_TemporaryStorage_Rack_Serialread.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\Temporary_Storages.llb\-TSRSr_TemporaryStorage_Rack_Serialread.vi

TSRSw_TemporaryStorage_Rack_Serialwrite.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\Temporary_Storages.llb\-TSRSw_TemporaryStorage_Rack_Serialwrite.vi

INIF_INitialization_Ini_File.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\INitialization.llb\INIF_INitialization_Ini_File.vi

GLCL_GLobal_CLock.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\Global.llb\GLCL_GLobal_CLock.vi

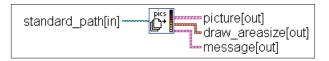


Figure 55: Connector Pane of INLP_INitialisation_LoadPictures.vi

draw_areasize(out)	picture[out]	message[out]
left D top D night D bottom D	depth 0 east left 0 top 0 light 0 bottom 0 botto	status code d0 source

Figure 56: Front Panel of INLP_INitialisation_LoadPictures.vi

TSUO_TemporaryStorage_UserOperation.vi D:\Aktuelle_Arbeit\Version 1.8 in

Arbeit\Temporary_Storage_UserOperation.vi

17.6 History

ININ_INitialistation_INitialisation.vi History Current Revision: 106

18 INLP_INitialisation_LoadPictures.vi

This VI reads picture files that are necessary for the front panel of INCE_INitialization_CEnter.vi.

18.1 Connector Pane

See figure 55 on page 58.

18.2 Front Panel

See figure 56 on page 58.

18.3 Controls and Indicators

 \square standard_path[in] path where the programm is located

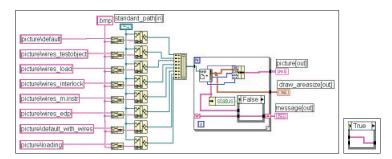


Figure 57: Block Diagram of INLP_INitialisation_LoadPictures.vi

[sec:] picture[out]

🕮 picture_cluster

depth
rect
file left
file top
file right
file bottom
flattened image data
color table
file

draw_areasize[out]

lefttopright

116 bottom

message[**out**] is a cluster that describes the message status before the actual VI executes. This message is checked or only passed on. It contains *status*, *code* and *source*.

TF status is TRUE if an error occurred, or FALSE if not.

code is the number identifying a message . If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.

source indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.

18.4 Block Diagram

See figure 57 on page 59.

18.5 List of SubVIs

Read BMP File.vi

C:\Programme\National Instruments\Labview\vi.lib\picture\bmp.llb\Read BMP File.vi

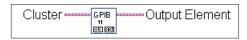


Figure 58: Connector Pane of INM11_INitialisation_Menue11(GPIB).vi

 nstument_desc	

Figure 59: Front Panel of INM11_INitialisation_Menue11(GPIB).vi

18.6 History

INLP_INitialisation_LoadPictures.vi History Current Revision: 15

19 INM11_INitialisation_Menue11(GPIB).vi

prompts the settings for GPIB interface

19.1 Connector Pane

See figure 58 on page 60.

19.2 Front Panel

See figure 59 on page 60.

19.3 Controls and Indicators

TF cancel

TF ok

instument_descriptor

📰 Cluster

Dutput Element

Gutput Element

 $\fbox{\tiny \texttt{lbc}} instument_descriptor$

19.4 Block Diagram

See figure 60 on page 61.

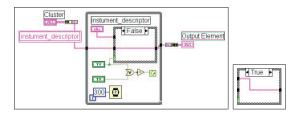


Figure 60: Block Diagram of INM11_INitialisation_Menue11(GPIB).vi

Figure 61: Connector Pane of INPS_INitialization_Path_array_to_Spradsheet.vi

19.5 List of SubVIs

19.6 History

INM11_INitialisation_Menue11(GPIB).vi History Current Revision: 35

$20 \quad INPS_INitialization_Path_array_to_Spradsheet.vi$

converts path to spreadsheet string

20.1 Connector Pane

See figure 61 on page 61.

20.2 Front Panel

See figure 62 on page 62.

20.3 Controls and Indicators

data-file paths array of paths

🔄 path

label spreadsheet string

20.4 Block Diagram

See figure 63 on page 62.

20.5 List of SubVIs

20.6 History

INPS_INitialization_Path_array_to_Spradsheet.vi History Current Revision: 7

	datafile paths	spreadsheet string
0	9	

Figure 62: Front Panel of INPS_INitialization_Path_array_to_Spradsheet.vi

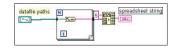


Figure 63: Block Diagram of INPS_INitialization_Path_array_to_Spradsheet.vi

21 INRN_INitialization_Read_Number.vi

reads out U32 of the .ini file $% \left({{{\rm{D}}_{{\rm{B}}}} \right)$

initialization necessary, so that the file ID has not to be handed over for further readings

21.1 Connector Pane

See figure 64 on page 63.

21.2 Front Panel

See figure 65 on page 63.

21.3 Controls and Indicators

🔤 error[in]

- **TE** status is TRUE if an error occurred, or FALSE if not. If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero or a warning code.
- **code** is the number identifying an error or warning. If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero or a warning code.
- **source** indicates the origin of the error, if any. Usually *source* is the name of the VI in which the error occurred.
- **section** The name of the section from which to read the specified key.
- **key** The name of the key to read.
- **IF** init? true, if VI is initialized
- **refnum in** The reference number of the configuration data.

error[out]

- **TE** status is TRUE if an error occurred, or FALSE if not. If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero or a warning code.
- **code** is the number identifying an error or warning. If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero or a warning code.
- **source** indicates the origin of the error, if any. Usually *source* is the name of the VI in which the error occurred.
- **U32** value the wanted value of key in section
- **refnum out** The reference number of the configuration data.

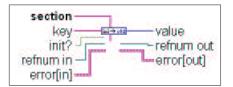


Figure 64: Connector Pane of INRN_INitialization_Read_Number.vi

section	key	value 0
refnum in		refnum out
error[in] status code		error[out] status code
1 200		
source		source
	-	
init?		14
OFF		

Figure 65: Front Panel of INRN_INitialization_Read_Number.vi

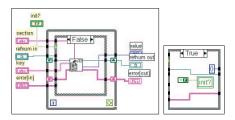


Figure 66: Block Diagram of INRN_INitialization_Read_Number.vi

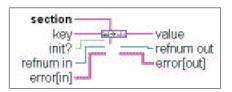


Figure 67: Connector Pane of INRS_INitialization_Read_String.vi

21.4 Block Diagram

See figure 66 on page 64.

21.5 List of SubVIs

Read Key (U32).vi

C:\Programme\National Instruments\Labview\vi.lib\UTILITY\config.llb\Read Key (U32).vi

Config Data RefNum

C:\Programme\National Instruments\Labview\vi.lib\Utility\config.llb\Config Data RefNum

21.6 History

 $INRN_INitialization_Read_Number.vi$ History Current Revision: 23

22 INRS_INitialization_Read_String.vi

reads out string of the .ini file

initialization necessary, so that the file ID has not to be handed over for further readings

22.1 Connector Pane

See figure 67 on page 64.

22.2 Front Panel

See figure 68 on page 65.

section	key	value
refnum in error[in] status code source init?		refnum out error[out] status code error

Figure 68: Front Panel of INRS_INitialization_Read_String.vi

22.3 Controls and Indicators

error[in]

- **EF** status is TRUE if an error occurred, or FALSE if not. If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero or a warning code.
- **code** is the number identifying an error or warning. If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero or a warning code.
- **source** indicates the origin of the error, if any. Usually *source* is the name of the VI in which the error occurred.
- **section** The name of the section from which to read the specified key.
- **key** The name of the key to read.
- **III** init? true, if VI is initialized
- **refnum in** The reference number of the configuration data.
- error[out]
 - **TE** status is TRUE if an error occurred, or FALSE if not. If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero or a warning code.
 - **code** is the number identifying an error or warning. If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero or a warning code.
 - **source** indicates the origin of the error, if any. Usually *source* is the name of the VI in which the error occurred.

value the wanted value of key in section

refnum out The reference number of the configuration data.

22.4 Block Diagram

See figure 69 on page 66.

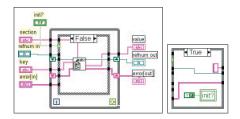


Figure 69: Block Diagram of INRS_INitialization_Read_String.vi

spreadsheet string{S14}>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	rray

Figure 70: Connector Pane of INS1_Spradsheet_to_1dstring_array.vi

22.5 List of SubVIs

Read Key (String).vi

C:\Programme\National Instruments\Labview\vi.lib\UTILITY\config.llb\Read Key (String).vi

Α
ctg

Config Data RefNum

C:\Programme\National Instruments\Labview\vi.lib\Utility\config.llb\Config Data RefNum

22.6 History

INRS_INitialization_Read_String.vi History Current Revision: 22

$23 \quad INS1_Spradsheet_to_1dstring_array.vi$

converts spreadsheet string to one dimension array of string

23.1 Connector Pane

See figure 70 on page 66.

23.2 Front Panel

See figure 71 on page 67.

23.3 Controls and Indicators

labc spreadsheet string

[abc] array

abc

23.4 Block Diagram

See figure 72 on page 67.

spreadsheet string	array
--------------------	-------

Figure 71: Front Panel of INS1_Spradsheet_to_1dstring_array.vi

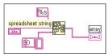


Figure 72: Block Diagram of INS1_Spradsheet_to_1dstring_array.vi

23.5 List of SubVIs

23.6 History

INS1_Spradsheet_to_1dstring_array.vi History Current Revision: 10

$24 \quad INSN_spradsheet_to_1dNumber_array.vi$

converts spreadsheet string to one dimension array of number (DBL)

24.1 Connector Pane

See figure 73 on page 68.

24.2 Front Panel

See figure 74 on page 68.

24.3 Controls and Indicators

labc spreadsheet string

[DBL] array

DBL Numeric

24.4 Block Diagram

See figure 75 on page 69.

24.5 List of SubVIs

24.6 History

INSN_spradsheet_to_1dNumber_array.vi History Current Revision: 12

25 INSP_Initialization_Spradsheet_to_Path_array.vi

converts string to path

spreadsheet stringspreadsheet string

Figure 73: Connector Pane of INSN_spradsheet_to_1dNumber_array.vi

spreadsheet string	array
	0 0 00

Figure 74: Front Panel of INSN_spradsheet_to_1dNumber_array.vi

25.1 Connector Pane

See figure 76 on page 69.

25.2 Front Panel

See figure 77 on page 69.

25.3 Controls and Indicators

labc spreadsheet string

🔄 data-file paths

🔄 path

25.4 Block Diagram

See figure 78 on page 69.

25.5 List of SubVIs

25.6 History

 $INSP_Initialization_Spradsheet_to_Path_array.vi\ History\ Current\ Revision:\ 8$

26 INWN_INitialization_Write_Number.vi

reads out U32 of the .ini file

initialization necessary, so that the file ID has not to be handed over for further readings

26.1 Connector Pane

See figure 79 on page 69.

26.2 Front Panel

See figure 80 on page 69.

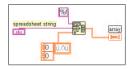


Figure 75: Block Diagram of INSN_spradsheet_to_1dNumber_array.vi

spreadsheet stringanalysessess datafile paths

Figure 76: Connector Pane of INSP_Initialization_Spradsheet_to_Path_array.vi

Figure 77: Front Panel of INSP_Initialization_Spradsheet_to_Path_array.vi

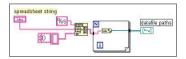


Figure 78: Block Diagram of INSP_Initialization_Spradsheet_to_Path_array.vi

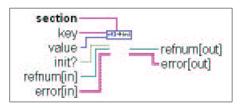


Figure 79: Connector Pane of INWN_INitialization_Write_Number.vi

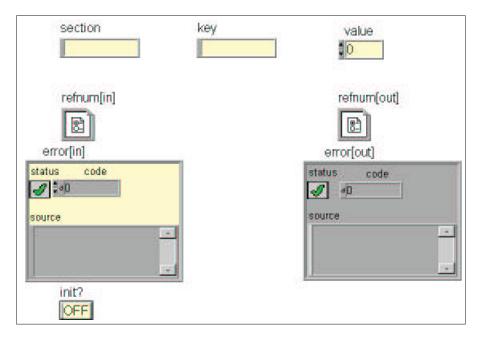


Figure 80: Front Panel of INWN_INitialization_Write_Number.vi

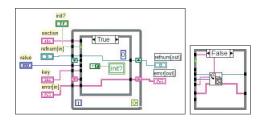


Figure 81: Block Diagram of INWN_INitialization_Write_Number.vi

26.3 Controls and Indicators

error[in]

- **TE** status is TRUE if an error occurred, or FALSE if not. If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero or a warning code.
- **code** is the number identifying an error or warning. If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero or a warning code.
- **source** indicates the origin of the error, if any. Usually *source* is the name of the VI in which the error occurred.
- **section** The name of the section from which to read the specified key.
- **key** The name of the key to read.
- **III** init? true, if VI is initialized
- **use value** the wanted value of key in section
- **refnum**[in] The reference number of the configuration data.

error[out]

- **TE** status is TRUE if an error occurred, or FALSE if not. If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero or a warning code.
- **code** is the number identifying an error or warning. If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero or a warning code.
- **source** indicates the origin of the error, if any. Usually *source* is the name of the VI in which the error occurred.

refnum[**out**] The reference number of the configuration data.

26.4 Block Diagram

See figure 81 on page 70.

26.5 List of SubVIs

Config Data RefNum

C:\Programme\National Instruments\Labview\vi.lib\Utility\config.llb\Config Data RefNum

Write Key (U32).vi C:\Programme\National

Instruments\Labview\vi.lib\UTILITY\config.llb\Write Key (U32).vi

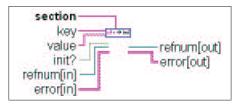


Figure 82: Connector Pane of INWS_INitialization_Write_String.vi

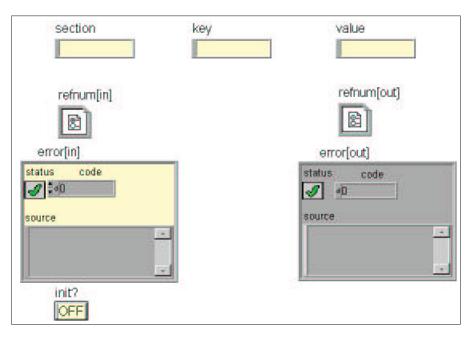


Figure 83: Front Panel of INWS_INitialization_Write_String.vi

26.6 History

INWN_INitialization_Write_Number.vi History Current Revision: 26

27 INWS_INitialization_Write_String.vi

reads out string of the .ini file

initialization necessary, so that the file ID has not to be handed over for further readings

27.1 Connector Pane

See figure 82 on page 71.

27.2 Front Panel

See figure 83 on page 71.

27.3 Controls and Indicators

error[in]

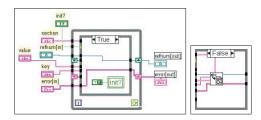


Figure 84: Block Diagram of INWS_INitialization_Write_String.vi

- **TE** status is TRUE if an error occurred, or FALSE if not. If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero or a warning code.
- **code** is the number identifying an error or warning. If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero or a warning code.
- **source** indicates the origin of the error, if any. Usually *source* is the name of the VI in which the error occurred.
- **section** The name of the section from which to read the specified key.
- **key** The name of the key to read.
- **value** the wanted value of key in section
- **IF** init? true, if VI is initialized
- **refnum**[**in**] The reference number of the configuration data.
- error[out]
 - **TE** status is TRUE if an error occurred, or FALSE if not. If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero or a warning code.
 - **code** is the number identifying an error or warning. If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero or a warning code.
 - **source** indicates the origin of the error, if any. Usually *source* is the name of the VI in which the error occurred.

refnum[**out**] The reference number of the configuration data.

27.4 Block Diagram

See figure 84 on page 72.

27.5 List of SubVIs

Config Data RefNum

C:\Programme\National Instruments\Labview\vi.lib\Utility\config.llb\Config Data RefNum

Write Key (String).vi

C:\Programme\National Instruments\Labview\vi.lib\UTILITY\config.llb\Write Key (String).vi

27.6 History

 $INWS_INitialization_Write_String.vi$ History Current Revision: 24

|--|

Figure 85: Connector Pane of LOLA_Low_Observing_Laboratory_Application.vi

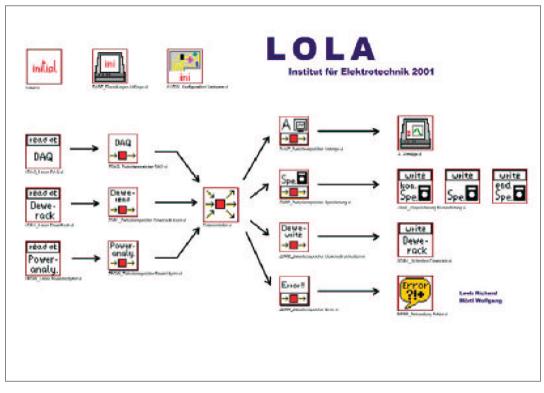


Figure 86: Front Panel of LOLA_Low_Observing_Laboratory_Application.vi

$28 \quad LOLA_Low_Observing_Laboratory_Application.vi$

This is the main program.

28.1 Connector Pane

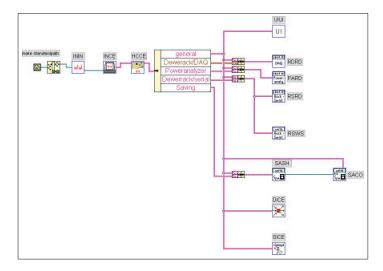
See figure 85 on page 73.

28.2 Front Panel

See figure 86 on page 73.

28.3 Controls and Indicators

28.4 Block Diagram


See figure 87 on page 74.

28.5 List of SubVIs

DICE_DIstribution_CEnter.vi D:\Aktuelle_Arbeit\Version 1.8 in

Arbeit\Distribution.llb\DICE_DIstribution_CEnter.vi

PARD_PowerAnalyzer_ReadData.vi

r- D:\Aktuelle_Arbeit\Version 1.8 in

Arbeit\Poweranalyzer.llb\PARD_PowerAnalyzer_ReadData.vi

$RDRD_RackDAQ_ReadData.vi$

D:\Aktuelle_Arbeit Version 1.8 in Arbeit RackDaq.llb RDRD_RackDAQ_ReadData.vi

${\bf SICE_SIgnage_CEnter.vi}$

D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\Signage.llb\SICE_SIgnage_CEnter.vi

SASH_SAveSHot.vi

D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\SAve.llb\SASH_SAveSHot.vi

SACO_SAve_COnversion.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\SAve.llb\SACO_SAve_COnversion.vi

RSRD_RackSerial_ReadData.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\RackSerial.llb\RSRD_RackSerial_ReadData.vi

Write
Rack -
Serial
Denve

RSWS_RackSerial_WriteS7.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\RackSerial.llb\RSWS_RackSerial_WriteS7.vi

ł	ini	h

INCE_INitialization_CEnter.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\INitialization.llb\INCE_INitialization_CEnter.vi

UIUI_UserInterface_UserInterface.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\UserInterface.llb\UIUI_UserInterface_UserInterface.vi

ININ_INitialistation_INitialisation.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\INitialization.llb\ININ_INitialistation_INitialisation.vi

Figure 88: Connector Pane of PARC_PowerAnalyzer_RearrangeChannels.vi

Array							ged_arra	y .								
:0.00	\$0.00	:000	\$0.00	0.00	\$ 0	0.00	0.00	0.00	0.00	0,00	0.00	000	o tio	0.00	0.00	0.00
:000	\$0.00	:000	\$0.00	0.00												
:000	10.00	:0 to	00.0	000												
10.00	00.0	000	00.00	2000												
:000	0.00	:010	\$10.00	:0.00												
:000	\$0.00	:0.00	\$0.00	:0.00												
:0.00	t0.00	:0.00	\$0.00	0.00												
000	\$0.00	:000	\$0.00	0.00												

Figure 89: Front Panel of PARC_PowerAnalyzer_RearrangeChannels.vi

HCCE_HardwareConfig_CEnter.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\HardwareConfig.llb\HCCE_HardwareConfig_CEnter.vi

28.6 History

LOLA_Low_Observing_Laboratory_Application.vi History Current Revision: 98

29 PARC_PowerAnalyzer_RearrangeChannels.vi

This array changes the order of elements in the first three columns to allow an easier handling in UIUI_UserInterface_UserInterface.vi.

29.1 Connector Pane

See figure 88 on page 75.

29.2 Front Panel

See figure 89 on page 75.

29.3 Controls and Indicators

[DBL] Array Array to be rearranged.

DBL Measured Value

[DBL] rearranged_array Rearranged array.

DBL Measured Value

29.4 Block Diagram

See figure 90 on page 76.

29.5 List of SubVIs

29.6 History

PARC_PowerAnalyzer_RearrangeChannels.vi History Current Revision: 3

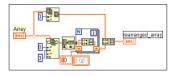


Figure 90: Block Diagram of PARC_PowerAnalyzer_RearrangeChannels.vi

Figure 91: Connector Pane of PARD_PowerAnalyzer_ReadData.vi

30 PARD_PowerAnalyzer_ReadData.vi

This VI is designed to read data (measurement data) from instruments connected to the PC by a GPIB Interface. At the moment one instrument, Poweranalyzer4000 is connected. All actual values of the three phases are acquired with this VI and are passed on to the VI TSPA_TemporayStorage_PowerAnalyzer.vi.

30.1 Connector Pane

See figure 91 on page 76.

30.2 Front Panel

See figure 92 on page 77.

30.3 Controls and Indicators

\square hardware_settings

💷 general

- **standard_path** path where the program is located
- **start_time** [ms] is the time reference. In *LOLAstart_time* is set at INKH_INitialisation_KonfigHardware.vi at the start of the program.
- **[abc] list_column_names** is an array containing the titles of the measurement categories The names' order must match to the commands' order.

ibc name_of_channel channel name is displayed in the user interface, it consists of identifier and unit

[bel] list_ranges is an array of all rated-, warning- and alarm-levels ordered according to *list_column_names*

DBL value

[bbc] semaphores is an array of names of all existing semaphores

💵 name

E Poweranalyzer

Interview is the time in milliseconds for PARD_PowerAnalyzer_ReasData.vi to wait between two executions of the while loop

VISA session is a unique logical identifier used to communicate with a resource.

[abc] terms_service is an array of commands (called terms here) for the read request the structure is: first, second and third collum are for the first, second and third phase; the fourth collum is for all phases

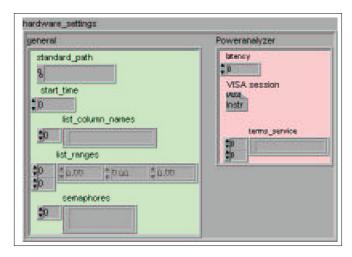


Figure 92: Front Panel of PARD_PowerAnalyzer_ReadData.vi

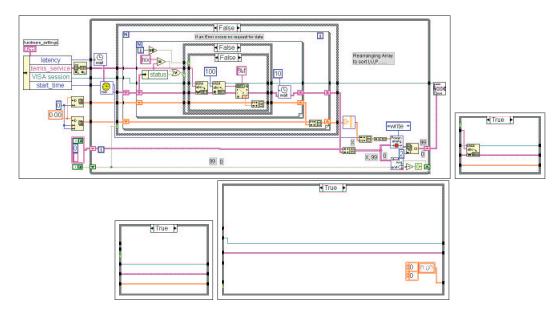


Figure 93: Block Diagram of PARD_PowerAnalyzer_ReadData.vi

term command for the read request at the Poweranalyzer (called term here)

30.4 Block Diagram

See figure 93 on page 77.

30.5 List of SubVIs

LND4000 Close.vi

C:\Programme\National Instruments\Labview\instr.lib\D4000\LND4000.llb\LND4000 Close.vi

GLCL_GLobal_CLock.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\Global.llb\GLCL_GLobal_CLock.vi

bardware cottings	read ot DAQ	
-------------------	----------------	--

Figure 94: Connector Pane of RDRD_RackDAQ_ReadData.vi

GLCM_GLobal_CheckMessages.vi

D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\Global.llb\GLCM_GLobal_CheckMessages.vi

TSPA_TemporaryStorage_PowerAnalyzer.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\Temporary_Storages.llb\-TSPA_TemporaryStorage_PowerAnalyzer.vi

PARC_PowerAnalyzer_RearrangeChannels.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\Poweranalyzer.llb\-PARC_PowerAnalyzer_RearrangeChannels.vi

GLWA_GLobalWAit.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\global.llb\GLWA_GLobalWAit.vi

30.6 History

PARD_PowerAnalyzer_ReadData.vi History Current Revision: 113

$\mathbf{31}$ RDRD_RackDAQ_ReadData.vi

Taken from analogin.llb: Acquire N Scans- Async Occurrence.vi

DESCRIPTION:

This is a timed acquisition, meaning that a hardware clock is used to control the acquisition for fast and accurate timing. It is also a continuous circular buffered acquisition. This means that a software buffer is used between your DAQ board and LabView. While data are being transferred from your board into one part of the input buffer, LabView is reading data from another part of that buffer. The occurrence makes the acquisition asynchronous (allowing processor time for other things to run) by causing the loop to wait until the number of scans to read at a time is available before it is read into LabView. For this reason it is important that you set your parameters such that LabView reads data out of the buffer fast enough to keep up with the rate at which your board is writing new data into the buffer. If not, unread data will be overwritten and an error will occur.

DAQ VIs USED:

AI Config.vi, DAQ Occurrence Config.vi, AI Start.vi, AI Read.vi, AI Clear.vi.

31.1**Connector Pane**

See figure 94 on page 78.

31.2Front Panel

See figure 95 on page 79.

ener	al	Dewerack/DAQ
8	idard_path int_time ist_column_names list_ranges	scans_to_read_at_s_time
10 10 10	senaphores	

Figure 95: Front Panel of RDRD_RackDAQ_ReadData.vi

31.3 Controls and Indicators

hardware_settings

💷 general

- **standard_path** path where the program is located
- **start_time** [ms] is the time reference. In *LOLAstart_time* is set at INKH_-INitialisation_KonfigHardware.vi at the start of the program.
- **list_column_names** is an array containing the titles of the measurement categories The names' order must match to the commands' order.
 - **IDENT name_of_channel** channel name is displayed in the user interface, it consists of identifier and unit
- **[Del] list_ranges** is an array of all rated-, warning- and alarm-levels ordered according to *list_column_names*

DBL value

- **[abc]** semaphores is an array of names of all existing semaphores
 - 🔤 name

Dewerack/DAQ

scans_to_read_at_a_time number of scans to read specifies the number of scans the VI retrieves from the acquisition buffer. The default input is -1, which tells LabView to set number of scans to read equal to the value of the number of scans to acquire control when AI Start was called. If number of scans to read is -1 and number of scans to acquire was 0, LabView sets number of scans to read to 100.

Execution of the loop is halted until the *number_of_scans_to_read* is available in the internal memory of the DAQ board.

taskID is a unique logical identifier used to communicate with a resource.

scan_rate is the number of scans performed per second

31.4 Block Diagram

See figure 96 on page 80.

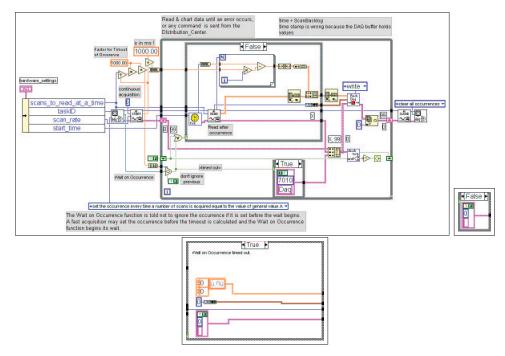


Figure 96: Block Diagram of RDRD_RackDAQ_ReadData.vi

List of SubVIs 31.5

AI Read.vi

AI READ C:\Programme\National Instruments\Labview\vi.lib\DAQ\AI.LLB\AI Read.vi

AI Start.vi C:\Programme\National Instruments\Labview\vi.lib\DAQ\AI.LLB\AI Start.vi

AI Clear.vi

C:\Programme\National Instruments\Labview\vi.lib\DAQ\AI.LLB\AI Clear.vi

DAQ Occurrence Config.vi

C:\Programme\National Instruments\Labview\vi.lib\DAQ\MISC.LLB\DAQ Occurrence Config.vi

$TSRD_TemporaryStorage_Rack_Daq.vi$ D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\-Temporary_Storages.llb\TSRD_TemporaryStorage_Rack_Daq.vi

GLCL_GLobal_CLock.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\Global.llb\GLCL_GLobal_CLock.vi

 $GLCM_GLobal_CheckMessages.vi$ D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\Global.llb\GLCM_GLobal_CheckMessages.vi

31.6 History

RDRD_RackDAQ_ReadData.vi History Current Revision: 137

Figure 97: Connector Pane of RSRD_RackSerial_ReadData.vi

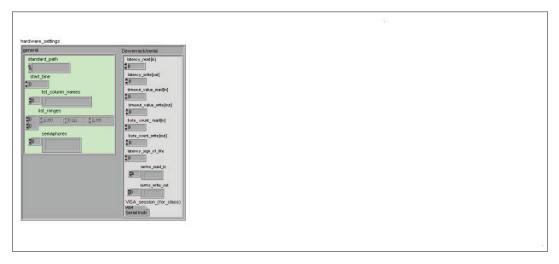


Figure 98: Front Panel of RSRD_RackSerial_ReadData.vi

32 RSRD_RackSerial_ReadData.vi

This VI is designed to read control and measurement data from any serial source. At the moment one serial source is implemented. It is the RS232 interface of the Dewerack. All actual values of the temperature sensors (seven K_modules, two infrared sensors) are acquired with this VI and are passed on to the VI TSRSr_TemporayStorage_RackSerialread.

32.1 Connector Pane

See figure 97 on page 81.

32.2 Front Panel

See figure 98 on page 81.

32.3 Controls and Indicators

hardware_settings

💷 general

- **standard_path** path where the program is located
- **use start_time** [ms] is the time reference. In *LOLAstart_time* is set at INKH_-INitialisation_KonfigHardware.vi at the start of the program.
- [abc] list_column_names is an array containing the titles of the measurement categories The names' order must match to the commands' order.
 - **name_of_channel** channel name is displayed in the user interface, it consists of identifier and unit
- $[\ensuremath{\texttt{bel}}]$ list_ranges is an array of all rated-, warning- and a larm-levels ordered according to $list_column_names$
 - DBL value

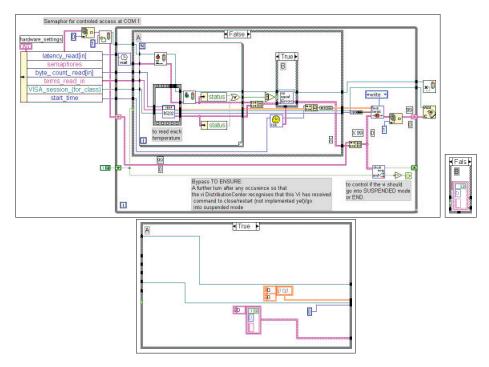


Figure 99: Block Diagram of RSRD_RackSerial_ReadData.vi

- **semaphores** is an array of names of all existing semaphores **ibc name**
- Dewerrack/serial
 - **Interview Interview Inter**
 - **Intervention Intervention Inter**
 - **timeout_value_read**[in] (not in use at the moment)
 - **timeout_value_write[out]** (not in use at the moment)
 - **byte**₋ **count**₋ **read**[**in**] is the number of bytes to be read
 - **byte_count_write[out]** is the number of bytes to be written
 - **Internet_sign_of_life** is the time period between two alternating signals sent to the PLC S7 200
 - **terms_read_in** is an array of addresses respectively commands for the read request at a certain port
 - **term** address respectively command for the read request at a certain port (called term here)
 - [abc] terms_write_out is an array of addresses respectively commands for the write request at a certain port
 - **term** address respectively command for the read request at a certain port (called term here)
 - **VISA_session_(for_class)** is a unique logical identifier used to communicate with a resource.

32.4 Block Diagram

See figure 99 on page 82.

32.5 List of SubVIs

Create Semaphore.vi

C:\Programme\National Instruments\Labview\vi.lib\Utility\semaphor.llb\Create Semaphore.vi

|--|

Destroy Semaphore.vi

C:\Programme\National Instruments\Labview\vi.lib\Utility\semaphor.llb\Destroy Semaphore.vi

A	۲
Ð	2
区	~

Acquire Semaphore.vi

C:\Programme\National Instruments\Labview\vi.lib\Utility\semaphor.llb\Acquire Semaphore.vi

Release Semaphore.vi

C:\Programme\National Instruments\Labview\vi.lib\Utility\semaphor.llb\Release Semaphore.vi

$GLCM_GLobal_CheckMessages.vi$

D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\Global.llb\GLCM_GLobal_CheckMessages.vi

GLCL_GLobal_CLock.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\Global.llb\GLCL_GLobal_CLock.vi

GLAD_GLobal_AddDiffrent_errors.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\global.llb\GLAD_GLobal_AddDiffrent_errors.vi

TSRSr_TemporaryStorage_Rack_Serialread.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\Temporary_Storages.llb\-

TSRSr_TemporaryStorage_Rack_Serialread.vi

RSRI_RackSerial_Read_dIrect.vi

D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\RackSerial.llb\RSRI_RackSerial_Read_dIrect.vi

wait

$GLWA_GLobalWAit.vi$

D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\global.llb\GLWA_GLobalWAit.vi

32.6 History

RSRD_RackSerial_ReadData.vi History Current Revision: 144

33 RSRI_RackSerial_Read_dIrect.vi

This Vi returns one value which refers to the address at the called pad.

FURTHER DETAIL

Dewerack and the communication need at an average 14 [ms] to generate an answer for a request. As VISAread.vi doesn't release cpu resources while waiting for the answer, the subVI GLWA_GLobal_WAit.vi is put after VISAwrite.vi and before VISAwrite.vi. The subVI waits

byte_count_Sread	value
address	VISA_session[out]
VISA_session[in]	return_count
message[in]	message[out]

Figure 100: Connector Pane of RSRI_RackSerial_Read_dIrect.vi

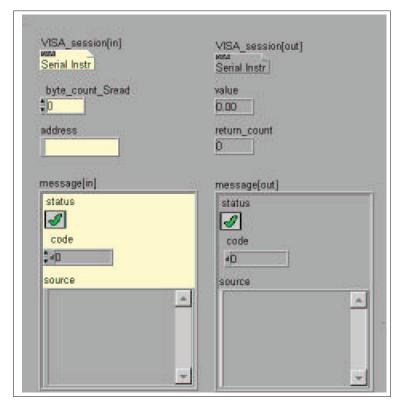


Figure 101: Front Panel of RSRI_RackSerial_Read_dIrect.vi

these 14 [ms] and additionally releases cpu resources.

In case the answer arrives before VISAread.vi is executed, data is buffered at the RS232 board.

33.1 Connector Pane

See figure 100 on page 84.

33.2 Front Panel

See figure 101 on page 84.

33.3 Controls and Indicators

address for the read request

byte_count_Sread is the number of bytes to be read.

VISA_session[in] is a unique logical identifier used to communicate with a resource.

message[in] is a cluster that describes the message status before the actual VI's execution. This message is checked or passed on. It contains *status*, *code* and *source*.

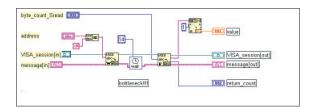


Figure 102: Block Diagram of RSRI_RackSerial_Read_dIrect.vi

THE STATUS is TRUE if an error occurred, or FALSE if not.

- **code** is the number identifying a message . If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.
- **source** indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.

return_count contains the number of bytes actually read.

value value at the port read. In this case a temperature.

VISA_session[out] is a unique logical identifier used to communicate with a resource.

message[**out**] is a cluster that describes the message status before the actual VI executes. This message is checked or only passed on. It contains *status*, *code* and *source*.

TE status is TRUE if an error occurred, or FALSE if not.

code is the number identifying a message . If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.

source indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.

33.4 Block Diagram

See figure 102 on page 85.

33.5 List of SubVIs

GLWA_GLobalWAit.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\global.llb\GLWA_GLobalWAit.vi

33.6 History

RSRI_RackSerial_Read_dIrect.vi History Current Revision: 32

34 RSWI_RackSerial_Write_dIrect.vi

This VI is used to write out a bit to a port with the address in $terms_write$.

34.1 Connector Pane

See figure 103 on page 86.

34.2 Front Panel

See figure 104 on page 86.

terms_write byte_count_Swrite VISA_session[in] message[in]	VISA_session[out]
---	-------------------

Figure 103: Connector Pane of RSWI_RackSerial_Write_dIrect.vi

VISA_session[in] Visa Serial Instr byte_count_Swrite	VISA_session[out] VISA_Serial Instr Serial Instr
terms write	return_count
message[in]	message[out]
status Code	status Code
source	#D source
	-

Figure 104: Front Panel of RSWI_RackSerial_Write_dIrect.vi

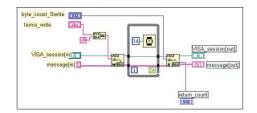


Figure 105: Block Diagram of RSWI_RackSerial_Write_dIrect.vi

- **terms_write** is a write command including an address for the port and a value (high / low).
- **message**[in] is a cluster that describes the message status before the actual VI's execution. This message is checked or passed on. It contains *status*, *code* and *source*.
 - **TE status** is TRUE if an error occurred, or FALSE if not.
 - **code** is the number identifying a message . If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.
 - **source** indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.
- **byte_count_Swrite** is the number of bytes to be written.
- **VISA_session**[in] is a unique logical identifier used to communicate with a resource.
- **return_count** passes on the number of bytes read after writing.
- **message**[**out**] is a cluster that describes the message status before the actual VI executes. This message is checked or only passed on. It contains *status*, *code* and *source*.
 - **TE** status is TRUE if an error occurred, or FALSE if not.
 - **code** is the number identifying a message . If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.
 - **source** indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.

VISA_session[out] is a unique logical identifier used to communicate with a resource.

34.4 Block Diagram

See figure 105 on page 87.

34.5 List of SubVIs

34.6 History

RSWI_RackSerial_Write_dIrect.vi History Current Revision: 19

35 RSWS_RackSerial_WriteS7.vi

This VI sets commands for PLC S 212. The commands are 5 bit coded. The bits are set by addressing a digital output via RS232. The addresses are given in the array *terms_write* the values in the array *power_settings[out]*.

hardware_settings general Dewerrack/serial standard_path latency_read[n] 20 8 latency_write[out] start_time **\$**0 :0 timeout_value_read[in] list_column_names 1 20 timeout_value_write[out] list_ranges ÷ • 1 UÚ <u>*</u>ù.na **0** 00 byte_count_read[in] :0 10 semaphores byte_count_write[out] \$0 10 latency_sign_of_life 1 terms read in \$0 terms_write_out 20 VISA_session_(for_class) **WSA** Serial Instr

Figure 106: Connector Pane of RSWS_RackSerial_WriteS7.vi

Figure 107: Front Panel of RSWS_RackSerial_WriteS7.vi

35.1 Connector Pane

See figure 106 on page 88.

35.2 Front Panel

See figure 107 on page 88.

35.3 Controls and Indicators

hardware_settings

💷 general

- **standard_path** path where the program is located
- **start_time** [ms] is the time reference. In *LOLAstart_time* is set at INKH_-INitialisation_KonfigHardware.vi at the start of the program.
- **[abc] list_column_names** is an array containing the titles of the measurement categories The names' order must match to the commands' order.
 - **a mame_of_channel** channel name is displayed in the user interface, it consists of identifier and unit
- **[DEL]** list_ranges is an array of all rated-, warning- and alarm-levels ordered according to *list_column_names*
 - **DBL** value
- **semaphores** is an array of names of all existing semaphores

🔤 name

Dewerrack/serial

Interim latency_read[**in**] is the time in milliseconds for RSRD_RSReadData.vi to wait between two executions of the while loop

Intercy_write[out] is the time in milliseconds for RSWD_RSWriteData.vi to wait between two executions of the while loop

- **timeout_value_read**[in] (not in use at the moment)
- **timeout_value_write[out]** (not in use at the moment)
- **byte_ count_ read[in]** is the number of bytes to be read
- **byte_count_write[out]** is the number of bytes to be written
- **Internet_sign_of_life** is the time period between two alternating signals sent to the PLC S7 200
- **[abc] terms_read_in** is an array of addresses respectively commands for the read request at a certain port

term address respectively command for the read request at a certain port (called term here)

[abc] terms_write_out is an array of addresses respectively commands for the write request at a certain port

term address respectively command for the read request at a certain port (called term here)

VISA_session_(for_class) is a unique logical identifier used to communicate with a resource.

35.4 Block Diagram

See figure 108 on page 90.

35.5 List of SubVIs

🔁 pá	

Acquire Semaphore.vi

C:\Programme\National Instruments\Labview\vi.lib\Utility\semaphor.llb\Acquire Semaphore.vi

Write
RS232
RS232

$\mathbf{RSWI_RackSerial_Write_dIrect.vi}$

D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\RackSerial.llb\RSWI_RackSerial_Write_dIrect.vi

• 🔋	6	8
-----	---	---

Release Semaphore.vi

C:\Programme\National Instruments\Labview\vi.lib\Utility\semaphor.llb\Release Semaphore.vi

<u></u> *Դ	8
------------	---

Create Semaphore.vi

C:\Programme\National Instruments\Labview\vi.lib\Utility\semaphor.llb\Create Semaphore.vi

Destroy Semaphore.vi

C:\Programme\National Instruments\Labview\vi.lib\Utility\semaphor.llb\Destroy Semaphore.vi

$GLAE_{-}\ GLobal_{-}AddtwoErrors.vi$

D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\Global.llb\GLAE_ GLobal_AddtwoErrors.vi

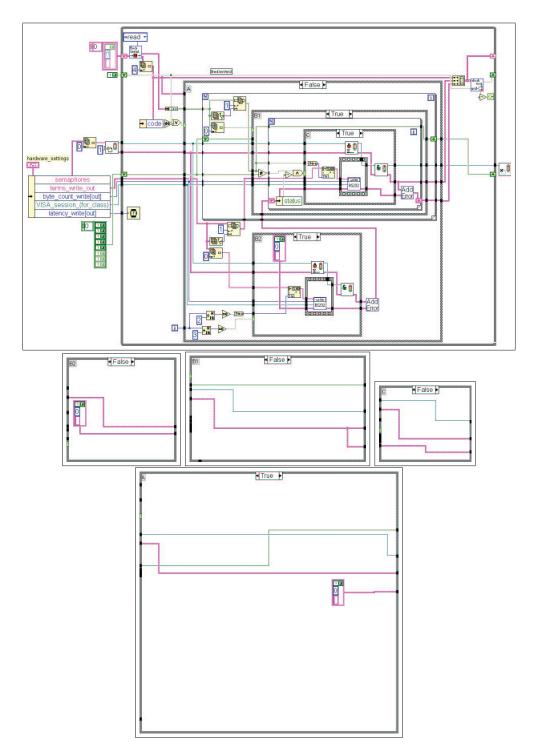


Figure 108: Block Diagram of RSWS_RackSerial_WriteS7.vi

rack_DAQ — Ayerog rack_serial - ing	-averaged_data
power_analyzer –	

Figure 109: Connector Pane of SAAV_SAve_AVeraging.vi

rack_DAQ 0 0 0	
rack_serial	averaged_deta
power_analyzer	

Figure 110: Front Panel of SAAV_SAve_AVeraging.vi

TSRSw_TemporaryStorage_Rack_Serialwrite.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\Temporary_Storages.llb\-TSRSw_TemporaryStorage_Rack_Serialwrite.vi

GLCM_GLobal_CheckMessages.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\Global.llb\GLCM_GLobal_CheckMessages.vi

35.6 History

RSWS_RackSerial_WriteS7.vi History Current Revision: 28

36 SAAV_SAve_AVeraging.vi

This VI takes the average of all data taken during *saving_intervall* and aggregates them to one array with the trigger instant as time stamp.

36.1 Connector Pane

See figure 109 on page 91.

36.2 Front Panel

See figure 110 on page 91.

36.3 Controls and Indicators

[DBL] rack_serial

DBL Measured Value

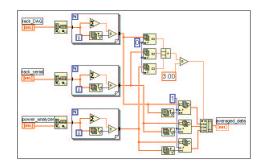


Figure 111: Block Diagram of SAAV_SAve_AVeraging.vi

Figure 112: Connector Pane of SACO_SAve_COnversion.vi

[DBL] power_analyzer

Measured Value

[DBL] rack_DAQ

Measured Value

averaged_data one- dimensional array representing the average of all acquired data within the given time-range of the saving period.

DBL

36.4 Block Diagram

See figure 111 on page 92.

36.5 List of SubVIs

36.6 History

SAAV_SAve_AVeraging.vi History Current Revision: 9

37 SACO_SAve_COnversion.vi

converts all acquired measurement data from datalog format to text format

37.1 Connector Pane

See figure 112 on page 92.

37.2 Front Panel

See figure 113 on page 93.

stand	ard_path				
a start_time					
0					
	list_colum	n_names			
; 0					
	list_range	5			
0 0	\$0.00	20.00	÷0.00		
20					
-	semaphor	83			
\$ 0					
	-				

Figure 113: Front Panel of SACO_SAve_COnversion.vi

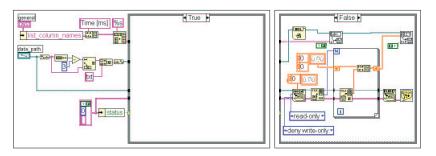


Figure 114: Block Diagram of SACO_SAve_COnversion.vi

💷 general

- **standard_path** path where the program is located
- **start_time** [ms] is the time reference. In *LOLAstart_time* is set at INKH_INitialisation_KonfigHardware.vi at the start of the program.
- **list_column_names** is an array containing the titles of the measurement categories The names' order must match to the commands' order.
 - **name_of_channel** channel name is displayed in the user interface, it consists of identifier and unit
- **[bel] list_ranges** is an array of all rated-, warning- and alarm-levels ordered according to *list_column_names*

DBL value

semaphores is an array of names of all existing semaphores

🔤 name

data_path path where measurement data is stored

37.4 Block Diagram

See figure 114 on page 93.

number_to_delete	mogeusroment data array [out]
main_register_size - 👝 🛲	measusrement_data_array_[out]
measurement_data_array[in] –	

Figure 115: Connector Pane of SADO_SAveDeleteOldest.vi

number_to_delete	
main_register_size	
measurement_data_array(in)	measusrement_data_array_[out]

Figure 116: Front Panel of SADO_SAveDeleteOldest.vi

37.5 List of SubVIs

Write To Spreadsheet File.vi

C:\Programme\National Instruments\Labview\vi.lib\Utility\file.llb\Write To Spreadsheet File.vi

Write Characters To File.vi

C:\Programme\National Instruments\Labview\vi.lib\Utility\file.llb\Write Characters To File.vi

Changed_Error_Handler.vi

D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\global.llb\Changed_Error_Handler.vi

37.6 History

 $SACO_SAve_COnversion.vi$ History Current Revision: 46

$38 \quad SADO_SAveDeleteOldest.vi$

controls which data should be passed on to the shift register. If the time interval of measurement_data_array[in] is greater than time_interval, an amount of elements equal to number_to_delete is deleted in each dimension.

38.1 Connector Pane

See figure 115 on page 94.

38.2 Front Panel

See figure 116 on page 94.

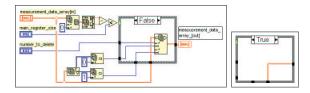


Figure 117: Block Diagram of SADO_SAveDeleteOldest.vi

	hardware_settings Spece data_path[c	out]
--	-------------------------------------	------

Figure 118: Connector Pane of SASH_SAveSHot.vi

main_register_size determines the size *measurement_data_array/in/* should have.

[DBL] measurement_data_array[in]

measured_value

number_to_delete is the number of elements (starting with the first) that should be deleted if the size of *measurement_data_array[in]* is greater than *main_register_size*

[DBL] measusrement_data_array_[out]

DBL measured_value

38.4 Block Diagram

See figure 117 on page 95.

38.5 List of SubVIs

38.6 History

SADO_SAveDeleteOldest.vi History Current Revision: 6

39 SASH_SAveSHot.vi

This VI manages the single shot saving. Whenever the trigger button on the panel of the Userinterface is pressed measurement data is saved. The data is averaged and saved to hard-disk.

39.1 Connector Pane

See figure 118 on page 95.

39.2 Front Panel

See figure 119 on page 96.

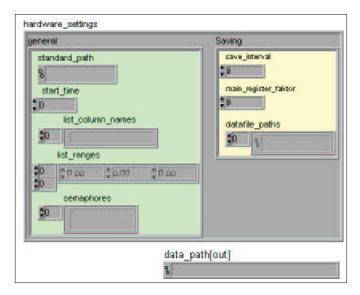


Figure 119: Front Panel of SASH_SAveSHot.vi

hardware_settings

💷 general

standard_path path where the program is located

- **start_time** [ms] is the time reference. In *LOLAstart_time* is set at INKH_-INitialisation_KonfigHardware.vi at the start of the program.
- **list_column_names** is an array containing the titles of the measurement categories The names' order must match to the commands' order.
 - **ibc name_of_channel** channel name is displayed in the user interface, it consists of identifier and unit
- **[DEL]** list_ranges is an array of all rated-, warning- and alarm-levels ordered according to *list_column_names*

DBL value

[bbc] semaphores is an array of names of all existing semaphores

💵 name

Saving

- **use save_interval** determines the amount of Measurement-Data saved
- **main_register_faktor** determines the amount of Measurement-Data buffered in the main register. The size of the main register is *main_register_factor* multiplied by *save_interval*
- **datafile_paths** name and location of files where the measured data is saved **path** consists of path (location) and filename

data_path[**out**] path where measurement data is stored

39.4 Block Diagram

See figure 120 on page 97.

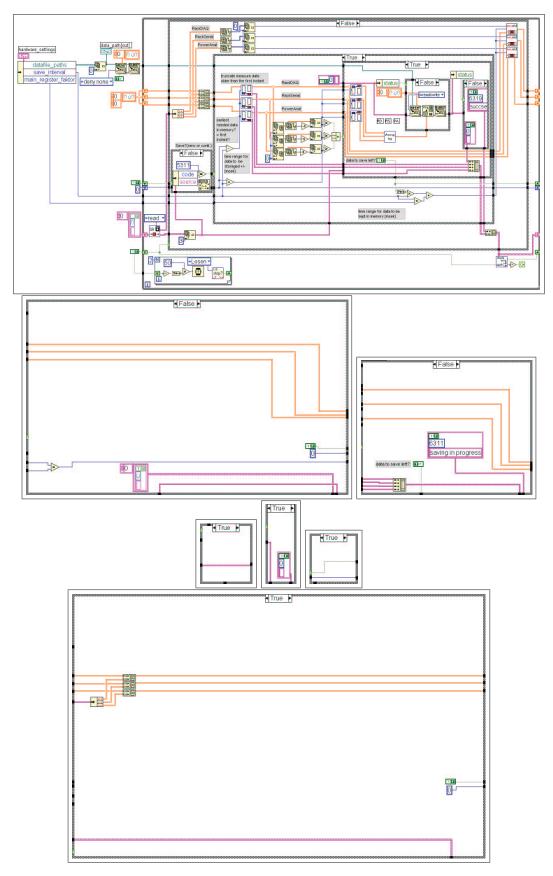


Figure 120: Block Diagram of SASH_SAveSHot.vi

measure_data_array— first_ instant[in] √	
	🏎 message[in]

Figure 121: Connector Pane of SATB_SAveTruncateButtom.vi

List of SubVIs 39.5

GLSA_Stop_to_All.vi

D:\Aktuelle_Arbeit\Version 1.8 in

U/S stop?

Φ L Arbeit\Global.llb\GLSA_Stop_to_All.vi GLCM_GLobal_CheckMessages.vi

D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\Global.llb\GLCM_GLobal_CheckMessages.vi

 ${\bf TSSA_TemporaryStorage_SAve.vi}$ D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\-Temporary_Storages.llb\TSSA_TemporaryStorage_SAve.vi

 ${\bf SATB_SAveTruncateButtom.vi}$ D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\SAve.llb\SATB_SAveTruncateButtom.vi

SATT_SAveTruncateTop.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\SAve.llb\SATT_SAveTruncateTop.vi

SADO_SAveDeleteOldest.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\SAve.llb\SADO_SAveDeleteOldest.vi

 $SAAV_SAve_AVeraging.vi$ D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\SAve.llb\SAAV_SAve_AVeraging.vi

39.6 History

SASH_SAveSHot.vi History Current Revision: 95

SATB_SAveTruncateButtom.vi **40**

This VI truncates the first part of the array up to the index of *first_instant*

40.1**Connector Pane**

See figure 121 on page 98.

40.2Front Panel

See figure 122 on page 99.

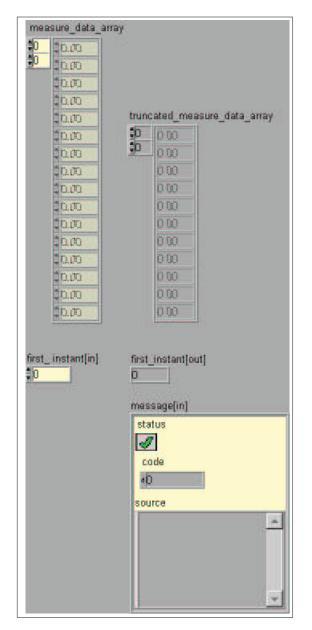


Figure 122: Front Panel of SATB_SAveTruncateButtom.vi

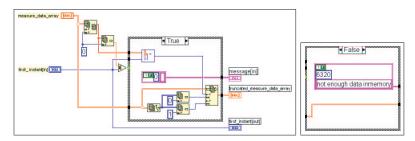


Figure 123: Block Diagram of SATB_SAveTruncateButtom.vi

- $\textcircled{IIII} \textbf{first_instant[in]} refers to a certain index at measurement_data_array, this index becomes the index 0 in truncated_measurement_data_array$
- **[DB1]** measure_data_array measurement data array to be truncated

Measured Value

[DOL] truncated_measure_data_array equals *measurement_data_array* minus all elements with index smaller than *first_instant*

Measured Value

- **Image: first_instant[out]** refers to a certain index at *measurement_data_array*, this index becomes the index 0 in *truncated_measurement_data_array*
- **message**[in] is a cluster that describes the message status before the actual VI's execution. This message is checked or passed on. It contains *status*, *code* and *source*.

TE status is TRUE if an error occurred, or FALSE if not.

- **code** is the number identifying a message . If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.
- **source** indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.

40.4 Block Diagram

See figure 123 on page 100.

40.5 List of SubVIs

GLSN_GLobal_SearchforNumber.vi D:\Aktuelle_Arbeit\Version 1.8 in

 $\label{eq:arbeit} Arbeit\global.llb\GLSN_GLobal_SearchforNumber.vi$

40.6 History

SATB_SAveTruncateButtom.vi History Current Revision: 16

41 SATT_SAveTruncateTop.vi

truncates the last part of the array beginning with the index of *last_instant*

measure_data_array[in] —	__	truncated_measure_data_array last instant[out]	
last_instant[in] -		─-last_instant[out]	

measur	e_data_array[in]	truncated_measure_data_array
0	0.00	000
1 0	0,00	0.00
	000	<u>n</u> ún
	Ú.ÚÚ	0.00
	000	0.00
	Ú.0Ú	0.00
	000	0.00
	0.00	iù,00
	0.00	Ú ÚŅ
	0.00	Ú,QÚ
	000	0.00
	Ú.0Ú	à,Qù
	000	
	Ú.0Ú	
lest_ins 0	tant[in]	last_instant[out]

Figure 124: Connector Pane of SATT_SAveTruncateTop.vi

Figure 125: Front Panel of SATT_SAveTruncateTop.vi

41.1 Connector Pane

See figure 124 on page 101.

41.2 Front Panel

See figure 125 on page 101.

41.3 Controls and Indicators

 $\label{eq:last_instant[in]} \ensuremath{\texttt{Instant[in]}} \ensuremath{\texttt{refers}} \ensuremath{\texttt{totacharray}} \ensuremath{\texttt{totacharay}} \ensuremath{\texttt{totacharray}} \ensur$

measure_data_array[in] measurement data array to be truncated

DBL Measured Value

[DEL] truncated_measure_data_array equals *measurement_data_array* minus all elements with index greater than *first_instant*

DBL Measured Value

[III] last_instant[out] refers to a certain index at *measurement_data_array*, this index becomes the last index in *truncated_measurement_data_array*

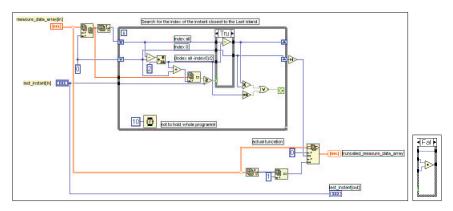


Figure 126: Block Diagram of SATT_SAveTruncateTop.vi

general —— signage	
--------------------	--

Figure 127: Connector Pane of SICE_SIgnage_CEnter.vi

41.4 Block Diagram

See figure 126 on page 102.

41.5 List of SubVIs

41.6 History

SATT_SAveTruncateTop.vi History Current Revision: 11

42 SICE_SIgnage_CEnter.vi

This VI provides communication and a condition evaluation for all modules.

42.1 Connector Pane

See figure 127 on page 102.

42.2 Front Panel

See figure 128 on page 103.

42.3 Controls and Indicators

💷 general

standard_path path where the program is located

- **start_time** [ms] is the time reference. In *LOLAstart_time* is set at INKH_INitialisation_KonfigHardware.vi at the start of the program.
- **list_column_names** is an array containing the titles of the measurement categories The names' order must match to the commands' order.
 - **is name_of_channel** channel name is displayed in the user interface, it consists of identifier and unit

stand	ard_path
1	
sta 20	rt_time list_column_names
; 0	list_ranges
,0 ,0	10.00 10.00 10.00
‡ 0	semaphores

Figure 128: Front Panel of SICE_SIgnage_CEnter.vi

[Del] list_ranges is an array of all rated-, warning- and alarm-levels ordered according to *list_column_names*

DBL value

[abc] semaphores is an array of names of all existing semaphores

💵 name

42.4 Block Diagram

See figure 129 on page 104 and figure 130 on page 105.

42.5 List of SubVIs

GLSA_Stop_to_All.vi

D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\Global.llb\GLSA_Stop_to_All.vi

GCEH_Global_Changed_Error_Handler.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\global.llb\GCEH_Global_Changed_Error_Handler.vi

TSM2_TemporaryStorage_Messages2.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\-Temporary_Storages.llb\TSM2_TemporaryStorage_Messages2.vi

TSM1_TemporaryStorage_Messages1.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\-Temporary_Storages.llb\TSM1_TemporaryStorage_Messages1.vi

SILO_Signage_LOg.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\Signage.llb\SILO_Signage_LOg.vi

42.6 History

SICE_SIgnage_CEnter.vi History Current Revision: 86

43 SILO_Signage_LOg.vi

This VI saves *log_array* with date and time to hard-disk.

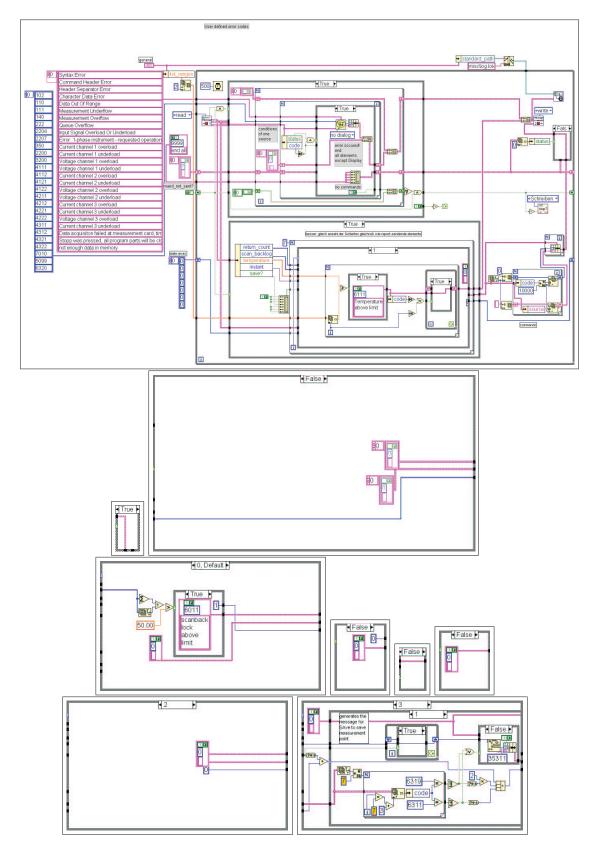


Figure 129: Block Diagram of SICE_SIgnage_CEnter.vi

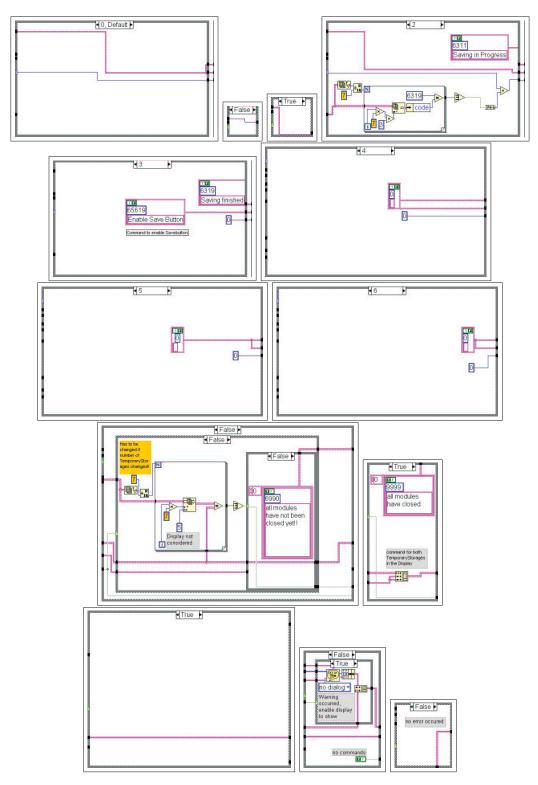


Figure 130: Block Diagram of SICE_SIgnage_CEnter.vi

file_path log_array=777777

Figure 131: Connector Pane of SILO_Signage_LOg.vi

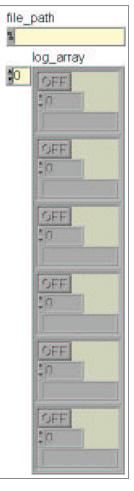


Figure 132: Front Panel of SILO_Signage_LOg.vi

43.1 Connector Pane

See figure 131 on page 106.

43.2 Front Panel

See figure 132 on page 106.

43.3 Controls and Indicators

log_array are messages consisting of concentrated and reformatted conditions

file_path where *log_array* is saved

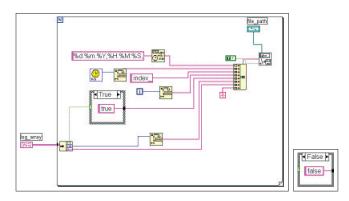


Figure 133: Block Diagram of SILO_Signage_LOg.vi

43.4 Block Diagram

See figure 133 on page 107.

43.5 List of SubVIs

GLCL_GLobal_CLock.vi

D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\Global.llb\GLCL_GLobal_CLock.vi

Write Characters To File.vi
C:\Programme\National
Instruments\Labview\vi.lib\Utility\file.llb\Write Characters To
File.vi

43.6 History

SILO_Signage_LOg.vi History Current Revision: 13

$44 \quad TSM1_TemporaryStorage_Messages1.vi$

This VI is used as temporary storage of messages and reports. There are two ways to access this VI, mode: READ and mode: WRITE.

READ:

- 1. reports/out/ is read and the referring storage emptied
- 2. confirmation_array/out] is read and the referring storage is emptied
- 3. condition_array[out] is read and the referring storage is emptied
- 4. $new_messages?$:= FALSE.

WRITE:

- 1. reports[in] is added to reports[out]
- 2. $confirmation_array[in]$ is added to $confirmation_array[out]$
- 3. if last reports[in].useroperation.save = FALSE then reports[in].useroperation.save is added to reports[out]
- 4. condition_array[in] is added to condition_array[out]
- 5. if new_messages?[out] = FALSE new_messages?[out] is replaced by new_message?[in]

44.1 Connector Pane

See figure 134 on page 108.

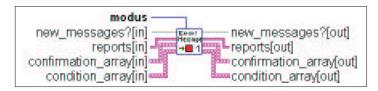


Figure 134: Connector Pane of TSM1_TemporaryStorage_Messages1.vi

44.2 Front Panel

See figure 135 on page 109.

44.3 Controls and Indicators

modus determines the access mode of the caller.

- **mew_messages?**[in] if new messages are available or not
- **condition_array**[**in**] is an array of *condition*[*in*] containing information about the condition of each module
 - **condition**[**in**] is a cluster that describes the condition. This message is checked or passed on. It contains *status*, *code* and *source*.
 - **status** is TRUE if an error occurred, or FALSE if not.
 - **code** is the number identifying a message . If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.
 - **source** indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.

confirmation_array[in] is an array of *confirmation*[in]

- **confirmation**[in] is a cluster that describes the confirmation. This message is checked or passed on. It contains *status*, *code* and *source*.
 - **status** is TRUE if an error occurred, or FALSE if not.
 - **code** is the number identifying a message . If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.
 - **source** indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.

reports[in] information necessary to control the test stand

[132] return_count

Return count passes on the number of bytes actually read in RSRI_Rack-Serial_Read_dIrect.vi.

scan_backlog

scan backlog is the amount of data acquired minus the amount of data read in RDRD_RacDaq_ReadData.vi

[DBL] temperature

DBL Measured Value

useroperation contains the condition of the trigger button on the panel of userinterface and the instant when it was pressed

TF save?

💷 instant

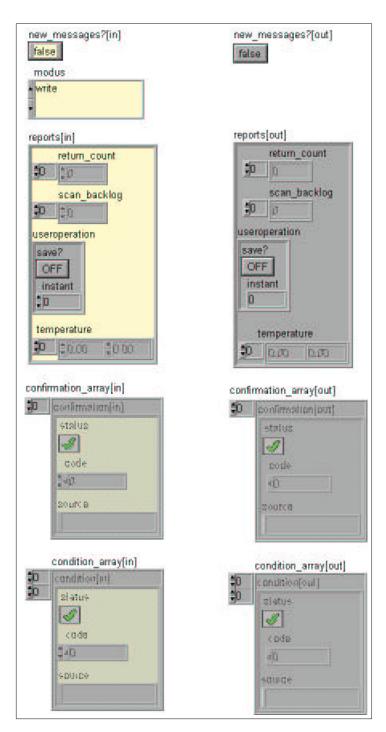


Figure 135: Front Panel of TSM1_TemporaryStorage_Messages1.vi

- **[F:]** condition_array[out] is an array of *condition[out]* containing information about the condition of each module
 - **condition**[**out**] is a cluster that describes the condition. This message is checked or passed on. It contains *status*, *code* and *source*.
 - **status** is TRUE if an error occurred, or FALSE if not.
 - **code** is the number identifying a message . If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.
 - **source** indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.

confirmation_array[**out**] is an array of *confirmation*[*out*]

- **confirmation**[**out**] is a cluster that describes the confirmation. This message is checked or passed on. It contains *status*, *code* and *source*.
 - **IF** status is TRUE if an error occurred, or FALSE if not.
 - **code** is the number identifying a message . If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.
 - **source** indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.

IF new_messages?[out] if new messages are available or not

reports[out] information necessary to control the test stand

[132] return_count

Return count passes on the number of bytes actually read in RSRI_Rack-Serial_Read_dIrect.vi.

scan_backlog

scan backlog is the amount of data acquired minus the amount of data read in RDRD_RacDaq_ReadData.vi

[DBL] temperature

DBL Measured Value

useroperation contains the condition of the trigger button on the panel of userinterface and the instant when it was pressed

TF save?

💷 instant

44.4 Block Diagram

See figure 136 on page 111.

44.5 List of SubVIs

44.6 History

TSM1_TemporaryStorage_Messages1.vi History Current Revision: 63

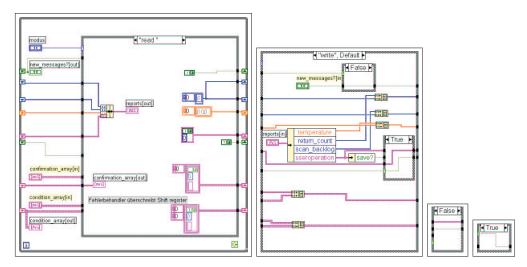


Figure 136: Block Diagram of TSM1_TemporaryStorage_Messages1.vi

Figure 137: Connector Pane of TSM2_TemporaryStorage_Messages2.vi

45 TSM2_TemporaryStorage_Messages2.vi

This VI is used as temporary storage of messages. There are two ways to access this VI, mode: READ and mode: WRITE.

READ:

- 1. *command_array/out/* is read
- 2. *log_array[out]* is read

WRITE commands:

- 1. command_array[out] is replaced by command_array[in]
- 2. log_array[out] is replaced by log_array[in]

45.1 Connector Pane

See figure 137 on page 111.

45.2 Front Panel

See figure 138 on page 112.

45.3 Controls and Indicators

modus determines the access mode of the caller.

[III] log_array[in] are messages consisting of concentrated and reformatted conditions

error out FF status

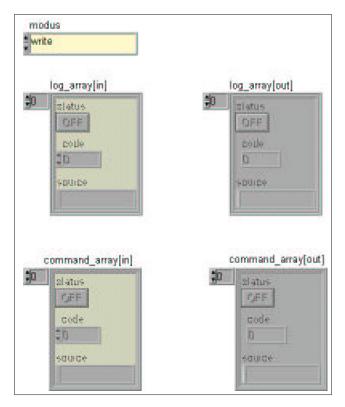


Figure 138: Front Panel of TSM2_TemporaryStorage_Messages2.vi

source

[F:] command_array[in] are messages to control the behavior of modules

error out

IF status

^{I32} code

abc source

error out

TF status

132 code

libc source

[set] command_array[out] are messages to control the behavior of modules

error out status status code

abc source

45.4 Block Diagram

See figure 139 on page 113.

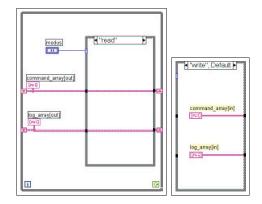


Figure 139: Block Diagram of TSM2_TemporaryStorage_Messages2.vi

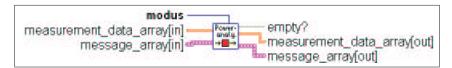


Figure 140: Connector Pane of TSPA_TemporaryStorage_PowerAnalyzer.vi

45.5 List of SubVIs

45.6 History

TSM2_TemporaryStorage_Messages2.vi History Current Revision: 52

$46 \quad TSPA_TemporaryStorage_PowerAnalyzer.vi$

This VI is used as temporary storage of data and messages. There are two ways to access this VI, mode: READ and mode: WRITE.

READ:

1. measurement_data[out], report_array[out] is read and the referring storage emptied

2. message_array[out] is read and afterwards replaced by message_array[in]

3. empty := TRUE.

WRITE:

1. measurement_data_array/in/ is added to measurment_data_array/out/

2. if empty? = FALSE and $message_array[out]$ contains no error $message_array[out]$ is replaced by $message_array[in]$.

4. empty? := FALSE

46.1 Connector Pane

See figure 140 on page 113.

46.2 Front Panel

See figure 141 on page 114.

neasurement _. D 00.00 D	_data_array[in]	measurement_data_an	ray[out]
nessage_arra		 message_array[out]	
0 mezsag	a[a1]	 measaga(oul)	
status Code		status dode	
Sonce.		 alti	
			-

Figure 141: Front Panel of TSPA_TemporaryStorage_PowerAnalyzer.vi

- **message_array[in]** is an array of *message[in]* which describe the error status before the actual VI executes. Usually the messages are checked or passed on. Messages can be conditions, commands, confirmations, logs and reports. The collectivity of all messages ensures the communication between all parts of *LOLA*.
 - **message**[in] is a cluster that describes the message status before the actual VI's execution. This message is checked or passed on. It contains *status*, *code* and *source*
 - **TE status** is TRUE if an error occurred, or FALSE if not.
 - **code** is the number identifying a message. If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.
 - **source** indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.
- **measurement_data_array**[**in**] passes on measured data from the writing VI to the storage.
 - **Measured Value** represents in this case a temperature value.
- **modus** determines the access mode of the caller.
- **message_array[out]** is an array of *message_[out]* which describe the message status after the actual VI's execution. Usually the messages are checked or passed on. Messages can be conditions, commands, confirmations, logs and reports. The collectivity of all messages ensures the communication between all parts of *LOLA*.
 - **message**[**out**] is a cluster that describes the message status before the actual VI executes. This message is checked or only passed on. It contains *status*, *code* and *source*.

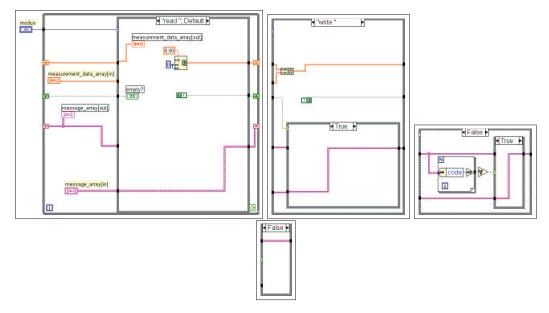


Figure 142: Block Diagram of TSPA_TemporaryStorage_PowerAnalyzer.vi

TE status is TRUE if an error occurred, or FALSE if not.

- **code** is the number identifying a message. If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.
- **source** indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.

measurement_data_array[out] The stored measurement data is passed on to the reading VI.

Measured Value represents in this case a temperature value.

EFF empty? indicates if the temporary storage contains any data.

46.4 Block Diagram

See figure 142 on page 115.

46.5 List of SubVIs

46.6 History

TSPA_TemporaryStorage_PowerAnalyzer.vi History Current Revision: 45

47 TSRD_TemporaryStorage_Rack_Daq.vi

This VI is used as temporary storage of data, messages and reports. There are two ways to access this VI, mode: READ and mode WRITE.

READ:

1. measurement_data_array[out], report_array[out] is read and the referring storage emptied

2. message_array[out] is read and afterwards replaced by message_array[in]

```
3. empty := TRUE
```

WRITE:

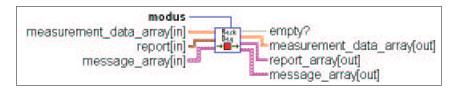


Figure 143: Connector Pane of TSRD_TemporaryStorage_Rack_Daq.vi

Figure 144: Front Panel of TSRD_TemporaryStorage_Rack_Daq.vi

1. measurement_data_array[in] is added to measurment_data_array[out]

2. report[in] is added to report_array[out]

3. if *empty*? = FALSE and *message_array[out]* contains no error then *message_array[out]* is replaced by *message_array[in]*

4. empty? := FALSE

47.1 Connector Pane

See figure 143 on page 116.

47.2 Front Panel

See figure 144 on page 116.

report[in] passes on *scan_backlog* from the writing vi to the storage.

- **scan_backlog** scan backlog is the amount of data acquired minus the amount of data read.
- **modus** determines the access mode of the caller.
- **message_array**[in] is an array of *message*[in] which describe the error status before the actual VI executes. Usually the messages are checked or passed on. Messages can be conditions, commands, confirmations, logs and reports. The collectivity of all messages ensures the communication between all parts of *LOLA*.
 - **message**[in] is a cluster that describes the message status before the actual VI's execution. This message is checked or passed on. It contains *status*, *code* and *source*

TO status is TRUE if an error occurred, or FALSE if not.

- **code** is the number identifying a message. If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.
- **source** indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.
- **measurement_data_array**[**in**] passes on measured data from the writing vi to the storage.

Measured Value represents in this case a temperature value.

measurement_data_array[out] The stored measurement data is passed on to the reading vi.

DBL Measured Value

- **report_array**[**out**] passes on an array on to reading VI. This array contains all occurred scan- backlogs of RDRD_RackDAQ_Read_Data.vi.
 - **scan_backlog** scan backlog is the amount of data acquired minus the amount of data read.
 - **scan_backlog** scan backlog is the amount of data acquired minus the amount of data read.

empty? indicates if the temporary storage contains any data.

- **message_array[out]** is an array of *message_[out]* which describe the message status after the actual VI's execution. Usually the messages are checked or passed on. Messages can be conditions, commands, confirmations, logs and reports. The collectivity of all messages ensures the communication between all parts of *LOLA*.
 - **message**[**out**] is a cluster that describes the message status before the actual VI executes. This message is checked or only passed on. It contains *status*, *code* and *source*.
 - **TE** status is TRUE if an error occurred, or FALSE if not.
 - **code** is the number identifying a message. If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.
 - **source** indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.

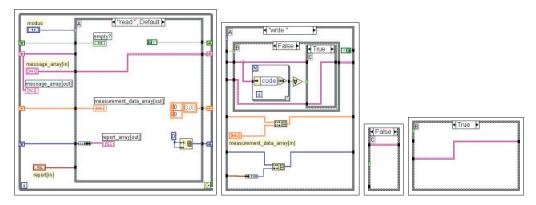


Figure 145: Block Diagram of TSRD_TemporaryStorage_Rack_Daq.vi

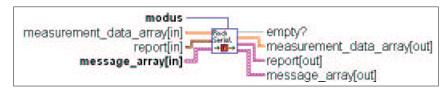


Figure 146: Connector Pane of TSRSr_TemporaryStorage_Rack_Serialread.vi

47.4 Block Diagram

See figure 145 on page 118.

47.5 List of SubVIs

47.6 History

TSRD_TemporaryStorage_Rack_Daq.vi History Current Revision: 62

48 TSRSr_TemporaryStorage_Rack_Serialread.vi

This VI is used as temporary storage of data, messages and reports. There are two ways to access this VI, mode: READ and mode: WRITE.

READ:

1. measurement_data[out], report_array[out] is read and the referring storage emptied

- 2. message_array[out] is read and afterwards replaced by message_array[in]
- 3. empty := TRUE.

WRITE:

1. *measurement_data_array[in]* is added to *measurment_data_array[out]*

2. report[in]_return_count is added to report_array[out]_return_count

3. if empty? = FALSE and $message_array[out]$ contains no error then $message_array[out]$ is replaced by $message_array[in]$

4. empty? := FALSE

48.1 Connector Pane

See figure 146 on page 118.

write measurement_data_array[in]	measurement_data_array[out]
0 0.00 report[in]	report[out]
return_count D message_array[in]	return_count
0 meseage(in)	message_anay[out]
stalus code	stalus pode
\$4D source	cóurca

Figure 147: Front Panel of TSRSr_TemporaryStorage_Rack_Serialread.vi

48.2 Front Panel

See figure 147 on page 119. $\,$

48.3 Controls and Indicators

measurement_data_array[**in**] passes on measured data from the writing VI to the storage.

Measured Value represents in this case a temperature value.

modus determines the access mode of the caller.

- **message_array[in]** is an array of *message[in]* which describe the error status before the actual VI executes. Usually the messages are checked or passed on. Messages can be conditions, commands, confirmations, logs and reports. The collectivity of all messages ensures the communication between all parts of *LOLA*.
 - **message**[**in**] is a cluster that describes the message status before the actual VI's execution. This message is checked or passed on. It contains *status*, *code* and *source*

TE status is TRUE if an error occurred, or FALSE if not.

code is the number identifying a message. If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.

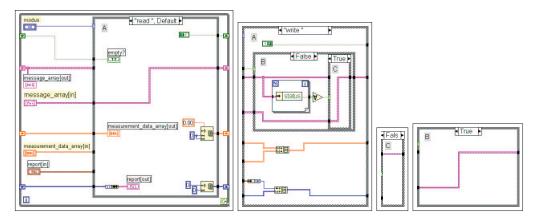


Figure 148: Block Diagram of TSRSr_TemporaryStorage_Rack_Serialread.vi

source indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.

report[**in**] passes on the number of bytes actually read in RSRI_RackSerial_Read_dIrect.vi.

return_count passes on the number of bytes actually read in RSRI_RackSerial_-Read_dIrect.vi.

measurement_data_array[out] The stored measurement data is passed on to the reading VI.

DBL Measured Value represents in this case a temperature value.

- **message_array[out]** is an array of *message_[out]* which describe the message status after the actual VI's execution. Usually the messages are checked or passed on. Messages can be conditions, commands, confirmations, logs and reports. The collectivity of all messages ensures the communication between all parts of *LOLA*.
 - **message**[**out**] is a cluster that describes the message status before the actual VI executes. This message is checked or only passed on. It contains *status*, *code* and *source*.
 - **status** is TRUE if an error occurred, or FALSE if not.
 - **code** is the number identifying a message. If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.
 - **source** indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.
- **empty?** indicates if the temporary storage contains any data.
- **report**[**out**] passes on the number of bytes actually read in RSRI_RackSerial_Read_dIrect.vi.
 - [1922] return_count passes on an array of numbers referring to the amount of bytes read in RSRI_RackSerial_Read_dIrect.vi.

💷 return_count

48.4 Block Diagram

See figure 148 on page 120. $\,$

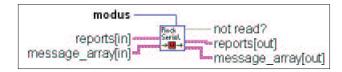


Figure 149: Connector Pane of TSRSw_TemporaryStorage_Rack_Serialwrite.vi

48.5 List of SubVIs

48.6 History

TSRSr_TemporaryStorage_Rack_Serialread.vi History Current Revision: 64

49 TSRSw_TemporaryStorage_Rack_Serialwrite.vi

This VI is used as temporary storage of data and messages. There are two ways to access this VI, mode: READ and mode: WRITE.

READ:

reports/out].power_settings is read and the referring storage emptied
 only if not_read? = FALSE and message_array[out] contains no error, message_array[out] is replaced by message_array[in]
 not_read? :=FALSE.

WRITE:

1. reports[in].power_settings is added to reports[out].power_settings

2. message_array[out] is read and afterwards replaced by message_array[in]

3. $not_read? := TRUE.$

49.1 Connector Pane

See figure 149 on page 121.

49.2 Front Panel

See figure 150 on page 122.

49.3 Controls and Indicators

message_array[in] is an array of *message[in]* which describe the error status before the actual VI executes. Usually the messages are checked or passed on. Messages can be conditions, commands, confirmations, logs and reports. The collectivity of all messages ensures the communication between all parts of *LOLA*.

TO status is TRUE if an error occurred, or FALSE if not.

- **code** is the number identifying a message. If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.
- **source** indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.

modus determines the access mode of the caller.

message[in] is a cluster that describes the message status before the actual VI's execution. This message is checked or passed on. It contains *status*, *code* and *source*

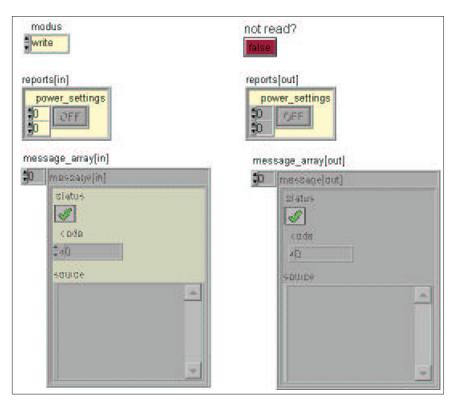


Figure 150: Front Panel of TSRSw_TemporaryStorage_Rack_Serialwrite.vi

- **reports[in]** information necessary to control the test stand
 - **[TF] power_settings** is an array of boolean representing different supply and charging states for the line and the two batteries.

E Charge Battery 2

- **message_array[out]** is an array of *message_[out]* which describe the message status after the actual VI's execution. Usually the messages are checked or passed on. Messages can be conditions, commands, confirmations, logs and reports. The collectivity of all messages ensures the communication between all parts of *LOLA*.
 - **message**[**out**] is a cluster that describes the message status before the actual VI executes. This message is checked or only passed on. It contains *status*, *code* and *source*.
 - **III** status is TRUE if an error occurred, or FALSE if not.
 - **code** is the number identifying a message. If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.
 - **source** indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.

IF not read? indicates if the temporary storage contains any data.

- **reports[out]** information necessary to control the test stand
 - **[Tr] power_settings** is an array of boolean representing different supply and charging states for the line and the two batteries.
 - **TF** Charge Battery 2

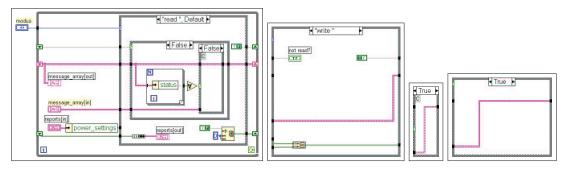


Figure 151: Block Diagram of TSRSw_TemporaryStorage_Rack_Serialwrite.vi

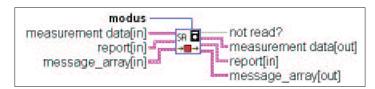


Figure 152: Connector Pane of TSSA_TemporaryStorage_SAve.vi

49.4 Block Diagram

See figure 151 on page 123.

49.5 List of SubVIs

49.6 History

TSRSw_TemporaryStorage_Rack_Serialwrite.vi History Current Revision: 59

50 $TSSA_TemporaryStorage_SAve.vi$

This VI is used as temporary storage of data, messages and reports. There are two ways to access this VI, mode: READ and mode: WRITE.

READ:

measurement_data[out], report_array[out] is read and the referring storage emptied
 only if not read? = FALSE and message_array[out] contains no error, message_array[out] is replaced by message_array[in]
 not read? := FALSE.

WRITE:

1. measurement_data_array[in] is added to measurment_data_array[out]

2. report/in/ is added to report_array[out]

3. message_array[out] is read and afterwards replaced by message_array[in]

4. not read? is set to TRUE.

50.1 Connector Pane

See figure 152 on page 123.

50.2 Front Panel

See figure 153 on page 124.

modus write	not read? faise
measurement data[in]	measurement data[out]
DAQ D (1).01 DRA DRA D (1).01 DRA D (1).01 D (1).01 D (1).01 D (1).01	DAQ 10 10 DRA 10 DRA 10 10 POW 10 10 10 10 10 10 10 10 10 10
report[in] DAQ DRA scan_backlog return_count D 10 10 10 time_out_daq	report[in] DAQ DRA scan_backlog return_count time_out_daq D roff
message_array[in]	message_array[out]
slatus code \$40 \$00004	code enace

Figure 153: Front Panel of TSSA_TemporaryStorage_SAve.vi

50.3 Controls and Indicators

measurement data[in]

DAQ passes on measurement data acquired at RDRD_RackDAQ_ReadData.vi from the writing vi to the storage.

DBL Measured Value

DRA passes on measurement data acquired at RSRD_RackSerial_ReadData.vi from the writing vi to the storage.

DBL Measured Value

POW passes on measurement data acquired at PARD_PowerAnalyzer_ReadData.vi from the writing vi to the storage.

DBL Measured Value

[III] report[in]

DAQ scan_backlog passes on an array on to reading VI. This array contains all occurred scan- backlogs of RDRD_RackDAQ_Read_Data.vi.

U32

[TF] time_out_daq contains boolean expressions. The value true implies that a time out condition occurred at RDRD_RackDAQ_ReadData.vi.

TF

DRA return_count passes on an array of numbers referring to the amount of bytes read in RSRI_RackSerial_Read_dIrect.vi.

E Return count

modus determines the access mode of the caller.

- **message_array**[**in**] is an array of *message*[*in*] which describe the error status before the actual VI executes. Usually the messages are checked or passed on. Messages can be conditions, commands, confirmations, logs and reports. The collectivity of all messages ensures the communication between all parts of *LOLA*.
 - **message**[in] is a cluster that describes the message status before the actual VI's execution. This message is checked or passed on. It contains *status*, *code* and *source*
 - **THE** status is TRUE if an error occurred, or FALSE if not.
 - **code** is the number identifying a message. If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.
 - **source** indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.

III not read? indicates if the temporary storage contains any data.

measurement data[out]

DAQ passes on measurement data acquired at RDRD_RackDAQ_ReadData.vi from the writing vi to the storage.

DBL Measured Value

DRA passes on measurement data acquired at RSRD_RackSerial_ReadData.vi from the writing vi to the storage.

DBL Measured Value

POW passes on measurement data acquired at PARD_PowerAnalyzer_ReadData.vi from the writing vi to the storage.

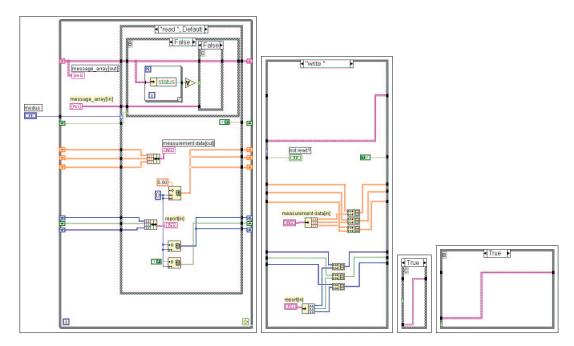


Figure 154: Block Diagram of TSSA_TemporaryStorage_SAve.vi

DBL Measured Value

report[in]

DAQ scan_backlog passes on an array on to reading VI. This array contains all occurred scan- backlogs of RDRD_RackDAQ_Read_Data.vi.

U32

[**TF**] **time_out_daq** contains boolean expressions. The value true implies that a time out condition occurred at RDRD_RackDAQ_ReadData.vi.

TF

DRA return_count passes on an array of numbers referring to the amount of bytes read in RSRI_RackSerial_Read_dIrect.vi.

Return count

- **message_array[out]** is an array of *message_[out]* which describe the message status after the actual VI's execution. Usually the messages are checked or passed on. Messages can be conditions, commands, confirmations, logs and reports. The collectivity of all messages ensures the communication between all parts of *LOLA*.
 - **message**[**out**] is a cluster that describes the message status before the actual VI executes. This message is checked or only passed on. It contains *status*, *code* and *source*.
 - **status** is TRUE if an error occurred, or FALSE if not.
 - **code** is the number identifying a message. If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.
 - **source** indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.

50.4 Block Diagram

See figure 154 on page 126.

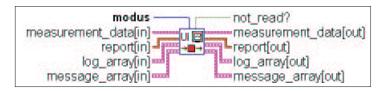


Figure 155: Connector Pane of TSUI_TemporaryStorage_UserInterface.vi

50.5 List of SubVIs

50.6 History

TSSA_TemporaryStorage_SAve.vi History Current Revision: 46

51 TSUI_TemporaryStorage_UserInterface.vi

This VI is used as temporary storage of data, messages and reports. There are two ways to access this VI, mode: READ and mode:WRITE.

READ:

measurement_data[out] and log_array[out] is read and the referring storage emptied
 if not_read? = TRUE then message_array[out] is read and replaced by command_array[in] else
 not_read := FALSE

WRITE:

- 1. *measurement_data[in]* is added to *mesurement_data[out]*
- 2. log_array/in/ is added to log_array/out/
- 3. message_array/out] is read and replace by command_array[in]
- 4. $not_read? := TRUE$

51.1 Connector Pane

See figure 155 on page 127.

51.2 Front Panel

See figure 156 on page 128.

51.3 Controls and Indicators

measurement_data[in] all measurment_data to visualize at the screen

DAQ passes on measurement data acquired at RDRD_RackDAQ_ReadData.vi from the writing vi to the storage.

DBL Measured Value

DRA passes on measurement data acquired at RSRD_RackSerial_ReadData.vi from the writing vi to the storage.

Measured Value

- **POW** passes on measurement data acquired at PARD_PowerAnalyzer_ReadData.vi from the writing vi to the storage.
 - Measured Value

modus	not_read?
write	false
measurement_data[in]	measurement_data(out)
DAQ	DAQ
10 .000	D 0.00
30	<u>50</u>
DRA	DRA
10 10 CO	
POW	POW
	and the second se
10 10 w	
report[in]	report[out] DAQ DRA
DAQ DRA scan backlog Return count	DAQ DRA scan backlog Return count
\$0 1 0	D
log_array[in]	log_array[out]
50 staluz	\$0 status
VEF	CEE
CDdG	c.od+
20	D
SOUPCE	source
	B -2
message_array[in]	message_array[out]
niesesgo(n)	📁 megeaga(out)
stalus	stalus
	1
code	gode
	40
SOURCE	20 UPC B
<u>.</u>	
w.	

Figure 156: Front Panel of TSUL_TemporaryStorage_UserInterface.vi

report[in]

- **DAQ scan backlog** scan backlog is the amount of data acquired minus the amount of data read
- **DRA Return count** passes on the number of bytes actually read in RSRI_Rack-Serial_Read_dIrect.vi.

modus determines the access mode of the caller.

IDE log_array[in] are messages consisting of concentrated and reformatted conditions

TF	status
132	code
abc	source

- **message_array**[**in**] is an array of *message*[*in*] which describe the error status before the actual VI executes. Usually the messages are checked or passed on. Messages can be conditions, commands, confirmations, logs and reports. The collectivity of all messages ensures the communication between all parts of *LOLA*.
 - **message**[in] is a cluster that describes the message status before the actual VI's execution. This message is checked or passed on. It contains *status*, *code* and *source*
 - **EXAMPLE** if an error occurred, or FALSE if not.
 - **code** is the number identifying a message. If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.
 - **source** indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.

III not_read? indicates if the temporary storage contains any data.

- **measurement_data[out]** all measurment_data to visualize at the screen
 - **DAQ** passes on measurement data acquired at RDRD_RackDAQ_ReadData.vi from the writing vi to the storage.

DBL Measured Value

DRA passes on measurement data acquired at RSRD_RackSerial_ReadData.vi from the writing vi to the storage.

DBL Measured Value

POW passes on measurement data acquired at PARD_PowerAnalyzer_ReadData.vi from the writing vi to the storage.

DBL Measured Value

report[out]

DAQ scan backlog scan backlog is the amount of data acquired minus the amount of data read

DRA Return count passes on the number of bytes actually read in RSRI_RackSerial_Read_dIrect.vi.

[#] log_array[out] are messages consisting of concentrated and reformatted conditions

500

TFstatusI32code



Figure 157: Block Diagram of TSULTemporaryStorage_UserInterface.vi

labc source

- **message_array[out]** is an array of *message_[out]* which describe the message status after the actual VI's execution. Usually the messages are checked or passed on. Messages can be conditions, commands, confirmations, logs and reports. The collectivity of all messages ensures the communication between all parts of *LOLA*.
 - **message**[**out**] is a cluster that describes the message status before the actual VI executes. This message is checked or only passed on. It contains *status*, *code* and *source*.
 - **TE** status is TRUE if an error occurred, or FALSE if not.
 - **code** is the number identifying a message. If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.
 - **source** indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.

51.4 Block Diagram

See figure 157 on page 130. $\,$

51.5 List of SubVIs

51.6 History

 $TSUI_TemporaryStorage_UserInterface.vi\ History\ Current\ Revision:\ 62$

52 TSUO_TemporaryStorage_UserOperation.vi

This VI is used as temporary storage of data, messages and reports. There are two ways to access this VI, mode: READ and mode: WRITE.

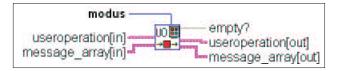


Figure 158: Connector Pane of TSUO_TemporaryStorage_UserOperation.vi

READ:

1. useroperation/out/ is read and the referring storage emptied

2. message_array[out] is read and afterwards replaced by message_array[in]

3. empty := TRUE

WRITE:

1. if save? = TRUE then useroperation[out] is replaced by useroperation[in] else useroperation[out] is emptied.

3. if empty? = FALSE and $message_array[out]$ contains no error then $message_array[out]$ is replaced by $message_array[in]$

4. empty? := FALSE

52.1 Connector Pane

See figure 158 on page 131.

52.2 Front Panel

See figure 159 on page 132.

52.3 Controls and Indicators

modus determines the access mode of the caller.

useroperation[in]

- **save?** indicates if the save_button is pressed or not
- **instant** instant when save_button was pressed
- **[TF]** Power Settings array of boolean, referring to the powersettings which were set at the InterAction Panel of the User Interface.

Charge Battery 2

- **message_array**[**in**] is an array of *message*[*in*] which describe the error status before the actual VI executes. Usually the messages are checked or passed on. Messages can be conditions, commands, confirmations, logs and reports. The collectivity of all messages ensures the communication between all parts of *LOLA*.
 - **message**[in] is a cluster that describes the message status before the actual VI's execution. This message is checked or passed on. It contains *status*, *code* and *source*

TD status is TRUE if an error occurred, or FALSE if not.

- **code** is the number identifying a message. If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.
- **source** indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.

EFF empty? indicates if the temporary storage contains any data.

ma • writ	dus te	empty? false
saw Of inst	r Settings	useroperation(out) save? OFF instant D Power 10 OFF
	age_array[in] message[#]	message_array[out]
	stalus code source	status pride 4D source

Figure 159: Front Panel of TSUO_TemporaryStorage_UserOperation.vi

useroperation[out]

save? indicates if the save_button is pressed or not

- **III32** instant instant when save_button was pressed
- **[TF] Power** array of boolean, referring to the powersettings which were set at the Inter-Action Panel of the User Interface.

IF Charge Battery 2

- **message_array[out]** is an array of *message_[out]* which describe the message status after the actual VI's execution. Usually the messages are checked or passed on. Messages can be conditions, commands, confirmations, logs and reports. The collectivity of all messages ensures the communication between all parts of *LOLA*.
 - **message**[**out**] is a cluster that describes the message status before the actual VI executes. This message is checked or only passed on. It contains *status*, *code* and *source*.
 - **status** is TRUE if an error occurred, or FALSE if not.
 - **code** is the number identifying a message. If *status* is TRUE, *code* is an error code. If *status* is FALSE, *code* can be zero, a warning or a command code.
 - **source** indicates the origin of the message, if any. Usually *source* is the name of the VI in which the message occurred. *Source* can also give further detail.

52.4 Block Diagram

See figure 160 on page 134.

52.5 List of SubVIs

52.6 History

TSUO_TemporaryStorage_UserOperation.vi History Current Revision: 70

53 UIAV_UserInterface_AVeraging.vi

array_averaging : First column: time axis Further column: according measurement values

This VI calculates the area below the graphs represented by the measurement values and divides it by *time_period* (Tb-Ta). *average_values* is the result.

53.1 Connector Pane

See figure 161 on page 134.

53.2 Front Panel

See figure 162 on page 134.

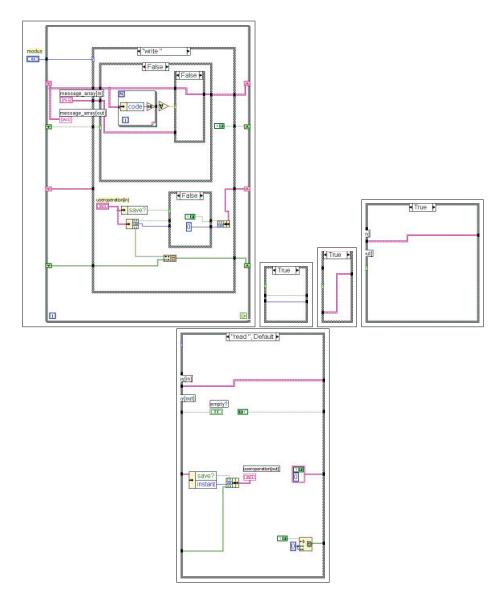


Figure 160: Block Diagram of TSUO_TemporaryStorage_UserOperation.vi

time_period —		
array_averaging 🖛	— <u>L.,</u>	uvoruge_values

Figure 161: Connector Pane of UIAV_UserInterface_AVeraging.vi

tim	e_period	average_values					
0		:0	Ú.NU				
	array_averaging						
0	00.00	F.					
0		ž.					

Figure 162: Front Panel of UIAV_UserInterface_AVeraging.vi

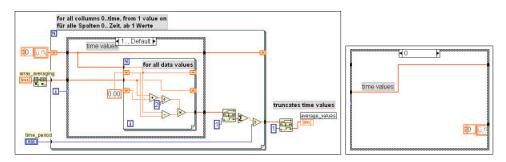


Figure 163: Block Diagram of UIAV_UserInterface_AVeraging.vi

Figure 164: Connector Pane of UIIT_UserInterface_Instant-larger-Tb.vi

53.3 Controls and Indicators

time_period the time period defines the interval for averaging it is Tb-Ta

[DBL] array_averaging array that should be averaged

first row is the time, the other are data

DBL values

[DBL] average_values

DBL value

53.4 Block Diagram

See figure 163 on page 135.

53.5 List of SubVIs

53.6 History

UIAV_UserInterface_AVeraging.vi History Current Revision: 25

54 UIIT_UserInterface_Instant-larger-Tb.vi

If the latest instant is larger than $Tb \ array[in]$ is big enough to be averaged

54.1 Connector Pane

See figure 164 on page 135.

54.2 Front Panel

See figure 165 on page 136.

Figure 165: Front Panel of UIIT_UserInterface_Instant-larger-Tb.vi

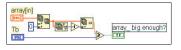


Figure 166: Block Diagram of UIIT_UserInterface_Instant-larger-Tb.vi

54.3 Controls and Indicators

U32 Tb

[DBL] array[in]

Measured Value

IF array big enough? If the latest instant is larger than Tb the array is big enough

54.4 Block Diagram

See figure 166 on page 136.

54.5 List of SubVIs

54.6 History

UIIT_UserInterface_Instant-larger-Tb.vi History Current Revision: 30

55 $UIRC_UserInterface_RearrangeChannels.vi$

This VI rearranges channels according to wether they are turned on or off and calculates the value relative to the rated value for all channels.

55.1 Connector Pane

See figure 167 on page 137.

55.2 Front Panel

See figure 168 on page 137.

55.3 Controls and Indicators

channel_properties[in] properties listed for each channel

 TF
 on/off_array

 TF
 Boolean

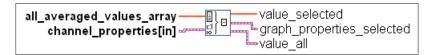


Figure 167: Connector Pane of UIRC_UserInterface_RearrangeChannels.vi

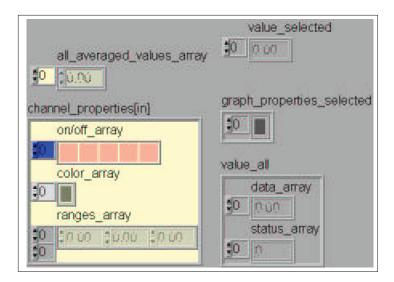


Figure 168: Front Panel of UIRC_UserInterface_RearrangeChannels.vi

ui color

[DBL] ranges_array

DBL range

[Del] all_averaged_values_array raw input data for the Display Graph

DBL value

value_selected values of channels that are selected for being displayed in the Display Graph.

DBL value

graph_properties_selected graph properties for channels that are selected for display graph

[132] colors_array

use color

value_all changed values for all channels

55.4 Block Diagram

See figure 169 on page 138.

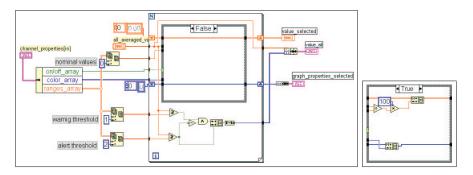


Figure 169: Block Diagram of UIRC_UserInterface_RearrangeChannels.vi

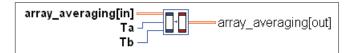


Figure 170: Connector Pane of UIRT_UserInterface_Rearrange-Topandbottom.vi

55.5 List of SubVIs

55.6 History

UIRC_UserInterface_RearrangeChannels.vi History Current Revision: 32

56 UIRT_UserInterface_Rearrange-Topandbottom.vi

First and last record are changed in the way that their time value is equal to Ta and Tb. The according measurement-values are computed via linear interpolation.

The result is that the area under the graph lasts only from Ta to Tb.

56.1 Connector Pane

See figure 170 on page 138.

56.2 Front Panel

See figure 171 on page 139.

56.3 Controls and Indicators

 $\fbox{1}$ Tb end of interval for interpolation

[DEL] array_averaging[in] array in

the span of the time-axis overlaps the span from Ta to Tb.

DBL Measured Value

Ta start of interval for interpolation

[DBL] array_averaging[out] array out

the time axis has Ta as first and Tb as last value.

DBL S

array_averaging(in)	array_averaging[out] 0.00
Ta \$10	
ть \$ 0	

Figure 171: Front Panel of UIRT_UserInterface_Rearrange-Topandbottom.vi

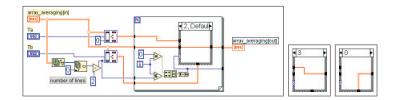


Figure 172: Block Diagram of UIRT_UserInterface_Rearrange-Topandbottom.vi

56.4 Block Diagram

See figure 172 on page 139.

56.5 List of SubVIs

UITC_UserInterface_Topandbottom-Create.vi D:\Aktuelle_Arbeit\Version 1.8 in Arbeit\UserInterface.llb\-UITC_UserInterface_Topandbottom-Create.vi

56.6 History

UIRT_UserInterface_Rearrange-Topandbottom.vi History Current Revision: 28

57 UISA_UserInterface_SplitArray.vi

This VI splits array[in] into array_averaging and array_remaining at instant Tb.

Array_averaging lasts from index=0 to index(Tb)+1.

Array_remaining lasts from index(Tb)-1 to the end.

57.1 Connector Pane

See figure 173 on page 140.

57.2 Front Panel

See figure 174 on page 140.

array[in]	array_remaining
-----------	-----------------

Figure 173: Connector Pane of UISA_UserInterface_SplitArray.vi

array(in) 10 10 10	array_remaining
ть \$ <mark>0</mark>	array_averaging

Figure 174: Front Panel of UISA_UserInterface_SplitArray.vi

57.3 Controls and Indicators

 $\fbox{132}$ Tb instant where array[in] is split

[DBL] array[in] input array

DBL value

[DEL] array_averaging lasts from index=0 to index(Tb)+1.

DBL value

[DB1] array_remaining lasts from index(Tb)-1 to the end.

DBL Measured Value

57.4 Block Diagram

See figure 175 on page 141.

57.5 List of SubVIs

GLSN_GLobal_SearchforNumber.vi D:\Aktuelle_Arbeit\Version 1.8 in

Arbeit\global.llb\GLSN_GLobal_SearchforNumber.vi

57.6 History

UISA_UserInterface_SplitArray.vi History Current Revision: 12

${\bf 58} \quad {\bf UITC_UserInterface_Top and bottom-Create.vi}$

interpolates the values of array [in] after $position_index$ at time position $time_value$.

58.1 Connector Pane

See figure 176 on page 141.

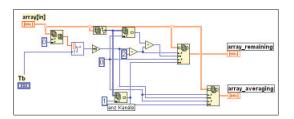


Figure 175: Block Diagram of UISA_UserInterface_SplitArray.vi

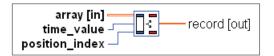


Figure 176: Connector Pane of UITC_UserInterface_Topandbottom-Create.vi

58.2 Front Panel

See figure 177 on page 142.

58.3 Controls and Indicators

[DBL] array [in]

Measured Value

Image: Imag

1321 time_value

[DBL] record **[out]** interpolated record

DBL

58.4 Block Diagram

See figure 178 on page 142.

58.5 List of SubVIs

58.6 History

UITC_UserInterface_Topandbottom-Create.vi History Current Revision: 17

$59 \quad UIUI_UserInterface_UserInterface.vi$

The User Interface displays data and offers the ability to interact with the system.

The User Interface is divided into five panels. The Channel Panel, Graph Panel, Status Panel and the Message Panel display information. The Interaction Panel contains buttons and scroll-bars to interact with the system.

CHANNEL PANEL

The Channel Panel is divided into rows and lines. Each line contains information of a channel. The on/off row consists of buttons to turn the graph of the channel on and off.

The *color* row is to select the color of the according graph.

The *names* row contains the name and the unit of the channel.

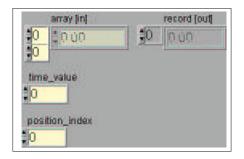


Figure 177: Front Panel of UITC_UserInterface_Topandbottom-Create.vi

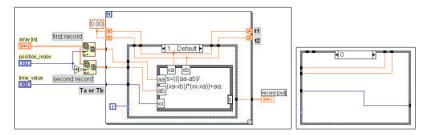


Figure 178: Block Diagram of UITC_UserInterface_Topandbottom-Create.vi

The *nominal* row contains the nominal value of the channel.

The *current* row contains the actual value of the channel.

The *status* row displays the status of the channel that can be green (means that the system is in *operating condition*), yellow (means that the channel has reached the warning level), red (means that the channel has reached the alarm level)

GRAPH PANEL

The Graph Panel displays trends of turned on channels. Graphs are linear interpolations of original data. This is to bring them all into one display.

The abscissa (time-axis) indicates interpolation periods.

The ordinate (value-axis) indicates the relative value in percent (%) of the nominal value.

STATUS PANEL

The Status Panel is a sketch of the test assembly where status signs indicate the state of the system.

MESSAGE PANEL The Messages Panel displays user-relevant messages.

INTERACTION PANEL

Most buttons for user-interaction are located in the Interaction Panel. The user can:

- 1. Stop the program
- 2. Trigger a measurement point
- 3. Turn on and off parts of the test assembly

59.1 Connector Pane

See figure 179 on page 143.

nnel pa fi color	names	nominal	current	status	panel														
	speed [spm]	1490	1469.		22-	المجرير وم													
	torque [Nm]	16	0.4		00-														
	temp 1 ["C]	26	33.4		80-														
	temp 2 ["C]	26	37.8		60-														
100	temp 3 [*C]	26	37.6	F	40-														
	temp 4 [°C]	26	87.4		20-														
	temp 5 (*C)	26	37.5		00-														
	temp 6 ["C]	26	37.3		80-														
	temp 7 [*C]	26	37.3		60-														
	ir 1. ["C]	20	5.0		40-														
	ir 2 [*C]	20	5.0		20-														
	voltage L1 [volts]	8	2.8		00-														
	voltage L2 [volts]	8	3.0		80-														
	voltage L3 [volts]	8	8.0		60-														
	current L1 [ampere]	25	12.8		40-														
	current L2 [ampere]	25	18.6																
	current L3 [ampere]	25	17.3		20-														
	frequ L1 [Hz]	50	50.0		0-														
	frequ L2 [Hz]	50	50.1		20-														
	frequ L3[Hz]	50	50.0		40-														
	factor all [*0.1]	1	0.6		60-														
			10 3		78-051	0 15 20	25 :	30 35	40	45	sò	55 6	0 6	5 7	0 7	5 8	io a	5 90	9
ssage	s panel		s	and the second second	- 23 12 IX	anna an	ACKAR	925 Q	0.00		102	100-127		CURP		time	ex 9	100	
							DA0 time			1	INTER	VAL time		33:5	6.347			Щ.	8. 8. 88 • . 8. 88
							DWRtime				00:00	500		DWR		time		10	1 a-aŭ
											1			33:5	6.344				
							POW time						-				0	times trig	gered
Main	s Bet	ery I	Bat	tery II		Spe	-							inte	emel	ation	perior		
Supp		100	Sup			ope								500)			Т	RIGO
				and the			2000	4000	6000		10	000		mil	isecor	nds to	wait	22	
1	ON	ON		ON							10			20					display
																			Ш
	Cha	rge	Che	irge		Load Inve	rter T	raction	Invert	er				(Contro	ol Sy:	atem		All
	_							-	-						-				
		ON		ON		Paus	•	Pe	use						5	Start i	8		End
	1	_		_	22				_						-	-	_		-
_							x = 07												

Figure 179: Connector Pane of UIUI_UserInterface_UserInterface.vi

Figure 180: Front Panel of UIUI_UserInterface_UserInterface.vi

59.2 Front Panel

See figure 180 on page 143.

59.3 Controls and Indicators

interpolation period period of time which is relevant for averaging each channel

trigger when the trigger button is pressed, one measuring is taken

general

- **standard_path** path where the program is located
- **start_time** [ms] is the time reference. In *LOLAstart_time* is set at INKH_INitialisation_KonfigHardware.vi at the start of the program.
- **list_column_names** is an array containing the titles of the measurement categories The names' order must match to the commands' order.
 - **name_of_channel** channel name is displayed in the user interface, it consists of identifier and unit

- **list_ranges** is an array of all rated-, warning- and alarm-levels ordered according to *list_column_names*
 - **DBL** value
- **[abc]** semaphores is an array of names of all existing semaphores
 - 🔤 name
- **III** battery2_supply
- **III** battery2_charge
- **main_supply**
- **III** battery1_supply
- **III** battery1_charge
- **color** array of buttons to change color of the according channel in the graph.
 - **color** color of channel
- **stop** when the stop button is pressed, the program is stopped
- [**TF**] on/off array of buttons to turn displaying the channels in the graph on and off
 - **IF** Boolean channel on/off
- **III** display mode switch to change between display modes either graph or status information
- **Improved**
- **milliseconds** to wait
- **Start** when the trigger button is pressed, one measuring is taken
- **Pause Traction Inverter** when the trigger button is pressed, one measuring is taken
- **Pause load inverter** when the trigger button is pressed, one measuring is taken
- **TF** motor test
- **IF** inverter test
- **[DBL]** current current value of channel
 - **DBL** value current value of channel
- **IF** user interface is working if this indicator is blinking, the userinterface is working will become obsolete as user interface is always working
- **[abc]** names of channels including unit
 - **String** name of channel including unit
- **[DBL]** nominal nominal value of channel is displayed here
 - **DBL** Numeric nominal value of channel is displayed here
- **TF** motor test
- **TF** motor test
- **messages panel** all relevant messages are displayed here
- **[DEL]** graph panel each channel is displayed relatively to its nominal value in percent (%)

[115] status green in operating condition

yellow warning

red alarm

Ring green in operating condition yellow warning red alarm

times triggered displays number of times triggered since start of measurement

INTERVAL time

- **LICURRENT** time
- **IDUR-ACT** time

IDE POW time

DWR time

DAQ time

 $\mathbf{IF} \mathbf{x} = \mathbf{0}?$

59.4 Block Diagram

See figure 181 on page 146 and figure 182 on page 147.

59.5List of SubVIs

$TSUI_TemporaryStorage_UserInterface.vi$

D:\Version 2.0\Temporary_Storages.llb\-TSULTemporaryStorage_UserInterface.vi

UIIT_UserInterface_Instant-larger-Tb.vi

D:\Version

 $2.0 \ UserInterface.llb \ UIIT_UserInterface_Instant-larger-Tb.vi$

T	
1.1	
$1 \sim$	سو ر
0	

UIAV_UserInterface_AVeraging.vi

2.0\UserInterface.llb\UIAV_UserInterface_AVeraging.vi

]]	=	

UIRC_UserInterface_RearrangeChannels.vi D:\Version

2.0\UserInterface.llb\UIRC_UserInterface_RearrangeChannels.vi

 $GLCM_GLobal_CheckMessages.vi$ D:\Version 2.0\Global.llb\GLCM_GLobal_CheckMessages.vi

IIN	
→	l→

TSUO_TemporaryStorage_UserOperation.vi D:\Version 2.0\Temporary_Storages.llb\-TSUO_TemporaryStorage_UserOperation.vi

GLCL_GLobal_CLock.vi D:\Version 2.0\Global.llb\GLCL_GLobal_CLock.vi

UISA_UserInterface_SplitArray.vi

D:\Version 2.0\UserInterface.llb\UISA_UserInterface_SplitArray.vi

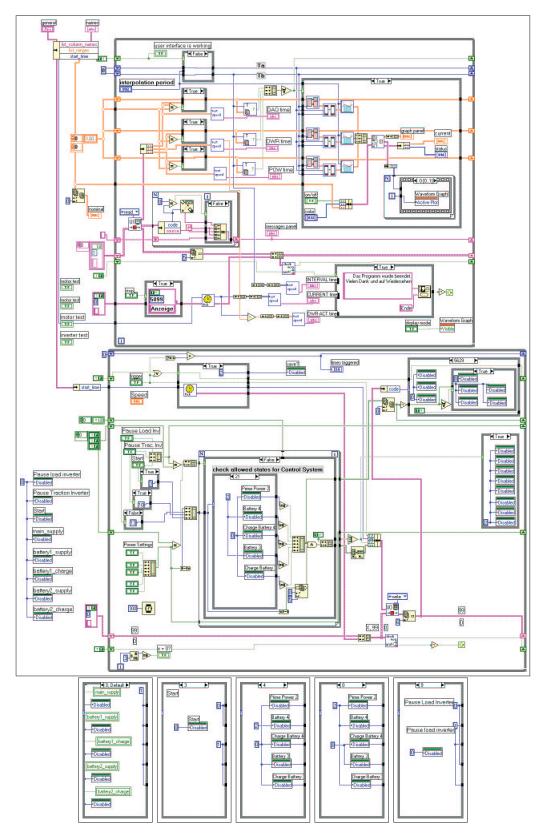


Figure 181: Block Diagram (a) of UIUL-UserInterface-UserInterface.vi

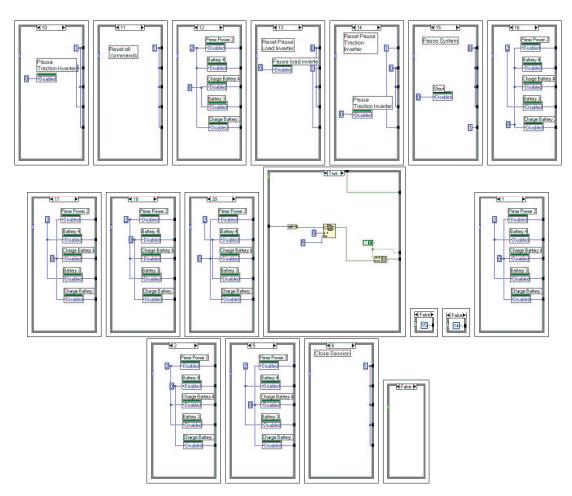


Figure 182: Block Diagram (b) of UIUI_UserInterface_UserInterface.vi

 $\label{eq:uirdef} \begin{array}{l} UIRT_UserInterface_Rearrange-Topandbottom.vi\\ D:\Version 2.0\UserInterface.llb\UIRT_UserInterface_Rearrange-Topandbottom.vi\\ Topandbottom.vi \end{array}$

GLTS_GLobal_TestSpeed.vi D:\Version 2.0\misc\TestVis\GLTS_GLobal_TestSpeed.vi

59.6 History

 $UIUI_UserInterface_UserInterface.vi$ History Current Revision: 222

Abbreviations

A/D Analogue/ Digital **API** Application Programming Interface **DAQ** Data AcQuisition **DICE** DICE_DIstritution_CEnter.vi **DDS** Data Delivery System **GPIB** General Purpose Interface Bus HCCE HCCE_HardwareConfiguration_CEnter.vi **INCE** INCE_INinizialisation_CEnter.vi **ININ** ININ_INinizialisation_INizialisation.vi I/O Input/ Output LOLA Low Observing Laboratory Application MGS Message Gathering System PARD PARD_PowerAnalyzer_ReadData.vi **PC** Personal Computer PLC Programmable Logical Controller RDRD RDRD_RackDaq_ReadData.vi **RPM** Revolution Per Minute RS232 Recommended Standard 232 RSRD RSRD_RackSerial_ReadData.vi **RSWS** RSWS_RackSerial_WriteS7.vi SACO SACO_SAve_COnversion.vi

ABBREVIATIONS

 ${\bf SASH}\ {\bf SASH_SAve_SHot.vi}$

 ${\bf SICE}\ {\bf SICE_SInage_CEnter.vi}$

 ${\bf TRMS}\,$ True Root Means Square

 ${\bf VI}$ Visual Instrument

VISA Virtual Instrumentation Software Architecture

 \mathbf{VME} Versa Module Eurocard

 $\mathbf{VXI}\ \mathrm{VME}\ \mathrm{eXtension}$ for Instrumentation

Literaturverzeichnis

- [1] Wolfgang Kurt Mörtl, Teststand of Electrical Drives, Acquisition of Stationary and Transient Quantities using a Personal Computer. Institute of Electrical Engineering Montan University Leoben (2001)
- [2] Lenze, Global Drive, Servo Umrichter 9300. 1998 Lenze GmbH & Co KG, Stand 06.99
- [3] Lenze, Betriebsanleitung Global Drive, Servo Umrichter 9300. 1998 Lenze GmbH & Co KG, Stand 2.0 1298
- [4] Lenze, Betriebsanleitung, Bremseinheit 9350. 1997 Lenze GmbH & Co KG, Stand 03.04.2000
- [5] Lenze, Betriebsanleitung, Servo Motoren. 1997 Lenze GmbH & Co KG, Stand 03.04.2000
- Staiger & Mohilo, Drehmoment, Drehzahl, MeSSeinrichtung I40014. 1990 Staiger & Mohilo, Stand 27.04.90BE GS2511
- [7] Staiger & Mohilo, Bedienungsanleitung Nr.1232, 1990 Staiger & Mohilo, Stand 06.96 Nr.1232
- [8] Dewetron, Dewe-Rack, Technical Reference Manual. 1998 2000 Dewetron GesmbH, Release July 2000
- [9] Dewetron, Dewe-Rack, Software User Manual. 1998 2000 Dewetron GesmbH, Release July 1999
- [10] Lem, Poweranalyzer D4000, User Manual. 1999 Lem Norma GesmbH, Release 1999
- [11] Lem, Software, LabVIew Driver for D4000. 1999 Lem Norma GesmbH, Release 1999
- [12] Ωœmega, OS5550/ OS550-BB Series, Industrial Infrared Thermometer/ Transmitter, Users Guide. 2001 Ω œmega
- [13] Siemens, SIMATIC, Automatisierungssystem S/-200, Systemhandbuch. Siemens AG 1997

- [14] National Instruments, LabViewTM, User Manual 5.1. Januar 1998 Edition, Part number 320999B-01
- [15] National Instruments, LabViewTM and BridgeViewTM, G Programmin Reference Manual. Januar 1998 Edition, Part number 321296B-01
- [16] National Instruments, LabView, Function and VI Reference Manual. Januar 1998 Edition, Part number 321526B01
- [17] National Instruments, LabView, Data Acquisition Basics Manual. Januar 2000 Edition, Part number 320997E-01
- [18] National Instruments, DAQ, 6023E/6024E/6025E User Manual, Multifunction I/O Boards for PCI, PXI and CompactPCI Bus Computers. Januar 1999 Edition, Part number 322072B-01
- [19] National Instruments, NI- DAQ^{TM} User Manual for PC Compatibles, Version 6.7. January 2000 Edition, Part number 321644F-01
- [20] Ben Shneiderman Designing the User Interface, Strategies for Effective Human-Computer Interaction. 3rd edition, Addison Wesley Longman, Inc. 1998
- [21] John G. Proakis, Dimitris G. Manolaeikis, Digital Signal Processing; Principles, Algorithms, and Applications 3rd. edition, New Jersey: Prentice-Hall, Inc. 1996.
- [22] Ned Mohan, Tore M. Undeland, William P. Robbins, Power Electronics: Converters, Applications, and Design. John Wiley & Sons, INC., second edition 1989, 1995
- [23] National Instruments, Main www.ni.com. July 2001
- [24] LEM Norma, www.lem.com. July 2001
- [25] Ω cemega, www.omeg.com July 2001
- [26] Dewetron, sl www.dewetron.com July 2001