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Abstract
Natural materials are a constant source of inspiration for material scientists in man-
ufacturing materials with new and desired mechanical properties. However, this
requires a thorough understanding of the structure and the mechanisms that make
biological materials achieve their outstanding mechanical properties. One strategy
to improve the mechanical performance of natural materials is sacrificial bonding
that can be found in bone, wood, and in some softer biological materials like silk,
mussel byssus threads and whelk egg capsules. Sacrificial bonds (SBs) are weaker
than the covalent bonds that hold the structure together. Thus, upon loading SBs
break before the covalent bonds rupture. The rupture of SBs reveals hidden length
providing a very efficient energy dissipation significantly toughening the structure.
Furthermore, SBs can form and open reversibly. Thus, they can reform after release
of the load providing molecular repair and self-healing.

In this thesis Monte Caro simulations are used to examine the role of SBs on the me-
chanical properties of single polymeric chains and chain bundles. The polymers are
modeled as a string of hard spheres that are covalently connected to their two neigh-
bors. Additionally some of the beads are defined as "sticky". These so called "sticky
sites" are allowed to form a SB. The SBs are assumed to be a factor of 4 weaker than
the covalent bonds. The influence of SB topology and thermal backbone fluctuations
on the mechanical behavior of the chains is investigated by computationally mimick-
ing tensile loading tests. It is shown that the topology of the bonds determines the
position and spacing of the force peaks due to SBs in the load-displacement curves.
The height of these peaks (i.e. the effective strength of SBs) is intimately tied to the
magnitude of thermal fluctuations in the chain that are dependent on the effective
chain length. This large influence of thermal fluctuations is surprising, because the
lowest energy in the system is still a factor 50 larger than kBT . Furthermore, the
effect of different density and arrangements of SBs on the work to fracture and dis-
sipating energy is investigated in a (computational) cyclic loading test. The results
show that increasing the density of SBs increases the work to fracture as well as the
dissipation of energy. The arrangement of SBs has a strong influence on the work
to fracture as well as on the strength and apparent stiffness of the single polymeric
chain.

The second part of this thesis investigates the role of reversible cross-links on the
mechanical properties of a chain-bundle system. The biggest topological difference
between a single chain and a chain bundle is the possibility of the cross-links to
connect two different chains (i.e. forming an interchain cross-link), while for a
single chain naturally only intrachain cross-links can be formed. This bears some
surprising consequences, like that only two interchain cross-links (each having the
strength of a quarter of a covalent bond) are necessary to provide backbone rupture
of the chain. Load-displacement curves are simulated to investigate the influence
of grafting density and cross-link density on the mechanical response of the system.
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Special emphasis is put on the interplay of inter- and intrachain cross-links. It is
shown that the possibility of backbone failure reduces the strength of the bundle
but increases the work to elongate the molecule. The results show that the most
important factor influencing the ratio of intra- to interchain cross-links is the grafting
density (i.e. the distance of the different chains).
These results bear important implications for the understanding of natural systems
and for the generation of strong and ductile biomimetic polymers.
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Zusammenfassung
In dieser Arbeit wird der Einfluss von reversiblen Querverbindungen auf die mech-
anischen Eigenschaften polymerer Systeme untersucht. Die Motivation für diese
Arbeit findet sich in der Vielzahl von quervernetzten Systemen in biologischen
Systemen. Die Natur verwendet solche Querverbindungen, um die mechanischen
Eigenschaften von Proteinnetzwerken gezielt zu steuern und einzustellen. Diese
Querverbindungen sind schwächer als die kovalenten Bindungen der Hauptkette
und brechen daher früher unter Belastung. Dieses frühzeitige Brechen der zusät-
zlichen Bindungen öffnet Schleifen im Protein, deren Auseinanderziehen Energie
sehr effizient dissipiert. Deshalb spricht man im Englischen auch von „Sacrificial
Bonds“ und „Hidden Length“. In der vorliegenden Arbeit wurde ein einfaches
Modell entwickelt, um solche Prozesse im Computer nachstellen zu können. In
diesem Modell werden Polymere als Ketten von Massenpunkten beschrieben, die
über kovalente Bindungen zusammengehalten werden. Weiters wurden manche der
Monomere als „klebrig“ definiert. Jeweils zwei solcher klebrigen Monomere kon-
nten eine Querverbindung schaffen, die als Sacrificial Bond wirkt. Das Verhalten
dieses einfachen Modells wurde mittels Monte Carlo Simulationstechniken unter-
sucht. Zunächst wurde das Verhalten von einzelnen Polymerketten untersucht. Es
konnte gezeigt werden, dass die Topologie der Querverbindungen einen großen Ein-
fluss auf die mechanischen Eigenschaften der Kette hat. Überraschenderweise ist
auch die zusätzliche Kraft, die durch die Sacrificial Bonds ausgeübt wird, rein en-
tropischen Ursprungs. Das ist vor allem deshalb überraschend, weil die kleinsten
Energien im System einen Faktor 50 größer als kT sind und somit eigentlich zu er-
warten wäre, dass der Einfluss der Temperatur eher gering ist. In weiterer Folge kon-
nte auch gezeigt werden, dass die Verteilung der klebrigen Monomere einen großen
Einfluss auf die Mechanik des Systems hat. Eine regelmäßige Verteilung erhöht die
Festigkeit des Systems und eine zufällige Verteilung erniedrigt diese. Weiters konnte
durch zyklische Belastungstest gezeigt werden, dass die Systeme Energie dissipieren.
Die Menge der dissipierten Energie hängt von der Anzahl der Sacrificial Bonds im
System ab. Es konnte auch gezeigt werden, dass die Geschwindigkeit der Entlastung
einen großen Einfluss auf die Topologie der wieder geformten Bindungen hat und
somit das Verhalten des zweiten Belastungszyklus stark bestimmt. Zusätzlich wur-
den auch Faserbündel untersucht. Hier können sich Querverbindungen auch zwis-
chen einzelnen Ketten ausbilden. Das überraschendste Resultat in diesen Systemen
ist, dass schon zwei Sacrificial Bonds ausreichen, um zu einem Aufbrechen der Haup-
tkette zu führen. Und das obwohl eine Querverbindung einen Faktor 4 schwächer
als die Bindung entlang der Hauptkette ist. Gleichzeitig erhöht sich allerdings die
Steifigkeit dieser Systeme beträchtlich.
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1 Motivation

Computational science has become an essential and indispensable branch to solve
and analyze complicated problems and complex systems in every sector of science
ranging from economic innovation to the natural and engineering sciences. In par-
ticular, computer simulations are a reliable and powerful tool to investigate systems
of many different scales ranging from the atomic scale to macroscopic and even as-
tronomic scales. Astrophysics, climate and earth system research, fluid dynamics,
polymer physics, genomics, condensed and soft matter physics and particle physics
are examples where computational approaches play a tremendous role on progress-
ing these fields. One advantage of computational approaches is that the system is
known in every detail [1]. This can be especially helpful in interpreting experiments
on biological systems that are characterized by a tremendous complexity. Reduc-
ing this complexity by developing simple, computationally tractable models of the
processes and structures in these systems and testing these models by computer
simulations is one strategy in identifying the most important mechanism underlying
the biological function. Understanding these mechanisms from a fundamental point
of view is of utmost importance to be able to transfer some of the concepts that
nature has developed to technology. Of special interest is to understand how natural
materials achieve their outstanding performance and which were the demands that
gave the biological constraints they were optimized for.

This thesis follows exactly this strategy. Computational tractable models are built
to simplify the situation faced when dealing with real experimental systems. The
systems studied are motivated by the enormous amount of polymers used as struc-
tural load bearing materials in biological and technological applications. The work
of this thesis focuses on a very important aspect of these materials: the influence of
(reversible) cross-linking of the polymer chains on the mechanical behavior of these
systems.

As the name suggests "polymers" can be seen as macromolecules consisting of a long
chain composed as a sequence of many repeating "monomers". In the most simple
case all these monomers are the same. One example would be Polyethylene, where
the monomer is simply one C2H4 group. Natural polymers, so called biopolymers,
are of course much more complex. Examples include DNA, RNA, cellulose or pro-
teins. The monomers building the latter ones are taken out of an "alphabet" of about
twenty different amino acids that are all characterized by different side-groups [2].
It is the subtle interplay of the mutual interaction of the side-groups and of the
side-groups with the solvent that are responsible for the enormous diversity of pro-
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Chapter 1 Motivation

tein structures. The motivation of this thesis is found in load-bearing proteins like
collagen (that is found in e.g. bone or tendon) or the proteins making the byssus of
marine mussels. Mostly the mechanical behavior of the polymeric structures is not
determined by the properties of the bare protein, but the mechanical properties are
carefully tailored to meet specific demands by introducing cross-links in the system.
A cross-link is an additional bond that connects two monomers that are not (di-
rectly) covalently bonded along the chain. Such cross-links can either be reversible
or irreversible, whereas the focus of this thesis lies on reversible cross-links.
This thesis is organized as follows: in the remaining sections of this chapter some
examples from biology and technology are introduced to highlight the importance
and the fascinating and unexpected properties of cross-linked systems.
The second chapter explains some fundamentals of theoretical polymer science. The
concepts of ideal and real chains are introduced. Then existing theoretical ap-
proaches from literature are presented to describe permanent and reversible cross-
links as well as the effect of cross-link topology.
In the third chapter the method and models used in this thesis are presented. First
the bead-spring model as well as the potential functions used to describe the inter-
actions in the polymeric system are explained. Then a short review of the Monte
Carlo method is given. Then the simulation procedure is explained in detail. Fi-
nally some aspects of the difference of load and displacement controlled experiments
are discussed and basic mechanical parameters used to describe the obtained load-
displacement curves are introduced.
Chapter 4 presents and discusses the results obtained for a single cross-linked chain,
while chapter 5 deals with a system composed of a bundle of chains.
Finally in chapter 6 some concluding remarks and an outlook on how this work
could be possibly extended in future work are given.
In the following section, some examples of biological and technological materials
containing reversible cross-links are introduced and explained how these cross-links
improve the mechanical properties of material.

1.1 Reversible cross-links in biological materials

Although nature uses a very limited number of base elements to built its struc-
tures, these structures show an enormous diversity in shape and properties [3]. An
effective strategy used by nature to specifically tailor the mechanical properties of
load-bearing polymeric structures is to reversibly cross-link the polymers. Different
to covalent cross-links these reversible cross-links can open and close reversibly [4].
Such reversible cross-links can be found in a large variety of biological materials
such as some hard tissues like wood [5], bone [6, 7], abalone shell [4] and in some
softer fibers like silk [8, 9, 10], mussel byssus threads [11, 12, 13, 14], their cuticle
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1.1 Reversible cross-links in biological materials

[12] and whelk egg capsules [15, 16]. These bonds are weaker than the covalent
bonds that hold the structure and , thus, upon loading break before the backbone
ruptures. Because they are reversible, unlike typical covalent cross-links, they can
reform during unloading the structure. Consequently after some time the material
may recover its initial mechanical performance providing some type of self-healing
behavior[17, 18, 19, 20]. Typically such a cross-link constrains a part of the molecule
from stretching. The shielded length of this part unravels due to SB rupture and is
called "hidden length". The combination of hidden length unraveling and self-repair
capability provides a very effective energy dissipation mechanism that increases the
toughness of the material dramatically [6, 21]. Because the cross-links rupture "sac-
rificially" to provide the hidden length, such cross-links are called sacrificial bonds
(SBs).

Different kind of bonds are known as sacrificial bonds such as ionic bonds [22],
hydrogen bonds [23, 24, 25, 26, 27, 28], hydrophobic interaction [29, 30, 31], Van
der Waals interaction [32] and metal-coordination bonds [33]. This large variety
of types of SBs results also in a large variety of the strength of individual SBs.
The strength can differ from several 100meV for hydrogen bridges to a value close
to the strength of covalent bonds of about few eV for metal coordination bonds
[34, 20]. One example of such a strong metal-coordination bond can be found in
the histidine-rich domain and in 3,4-dihydroxyphenylalanine (DOPA)-Fe proteins
found in the mussel byssus. The strength of these bonds strongly depend on the
environmental conditions like the pH value [35, 36, 37, 38, 39] but they are always
much stronger than hydrogen bonds.

One of the most important experimental tools in deciphering the secrets of SBs is the
Atomic Force Microscope (AFM). The AFM consists of a sharp tip on a cantilever
that can be scanned over the surface of a sample. By monitoring the deflection of
the cantilever, the loads experienced on the tip can be monitored. Additionally, by
tethering single molecules to the tip the AFM can be used to study the unfolding
of single molecules and proteins (Figure 1.1.1 shows a sketch of the measuring prin-
ciple) [40]. One prominent example of such a single molecule stretching experiment
using the AFM was to study the unfolding and refolding of globular domains of
titin. It could be shown that some domains of this molecules could reversibly un-
fold. Each unfolding event was seen as a peak in the recorded force-displacement
curve. When the structure was unloaded and subsequently reloaded, peaks in the
force-displacement curves indicated that some of these domains had refolded [23, 41].

In the following sections, the influence of SBs on the mechanical properties of some
biological materials such as abalone shell, bone and the mussel byssus is described.
Finally, also the effect of cross-linking in man-made materials is discussed.
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Chapter 1 Motivation

Figure 1.1.1: Atomic force microscopy (AFM) experiment, (a) the cantilever is brought to
the surface making a contact between the grafted polymer and the molecule, (b) when the tip is
too close to the grafted film, the repulsion force between tip and the surface, bends the cantilever
and (c) retraction of the cantilever stretches the molecule. For the three steps, the force and
the elongation are recorded (figure taken from [40])

1.1.1 SBs in abalone and bone

Nacre is a composite of the mineral calcium carbonate that is sandwiched between
a thin layer of organic material. Due to this special structure the material is ap-
proximately 3000 times more fracture resistant than the pure brittle mineral [4].
Cyclic loading tests on nacre done with the AFM produced load-displacement curves
showing the characteristic (reversible) saw-tooth patterns of SBs reminiscent of the
unfolding of single molecular domains. The strength of these cross-links was found
to be in the order of a few hundred piconewton which is lower than the amount of
force required to break a single covalent bond. Furthermore, cyclic loading curves
revealed an asymmetry between loading and unloading providing a hysteresis loop
as a measure of the dissipated energy per cycle [4]. Interestingly, it could be shown
that the saw-tooth pattern sustains even for the second and third loading cycle
indicating that the bonds can reform.
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1.1 Reversible cross-links in biological materials

A similar mechanism could also be found in bone [42, 43]. Bone is a nanocomposite of
an organic matrix and hydroxyapatite crystals. The organic matrix mainly consist-
ing of collagen (a triple helical load-bearing protein) contains reversible cross-links
as could be shown by cyclic loading test on bone. Using the AFM and nanoinden-
tation techniques it could be shown that the sacrificial bonds in bone protect the
polymer backbone and dissipate energy [43]. Experiments with different waiting
times between successive loading cycles showed that longer waiting times increased
the amount of dissipated energy due to the larger number of reformed SBs. Further-
more, it was shown that indenting the bone surface by 50 nm does not produce any
permanent deformation due to the SB reversibility [42]. A sketch of the situation
that was motivated by the experimental findings is shown Figure 1.1.2.

Figure 1.1.2: (A) The organic matrix acts as a glue resisting the separation of the mineralized
collagen fibrils,(B) a hypothesized structure of polymers between two mineralized fibril plates
containing three types of SBs. The first type of SB is linking two segments from the same polymer
(intrachain SB), the second SB is cross-linking two segments of different chains (interchain SB)
and the third is a bond between the polymer chains and the surface. The figure is taken with
permission from [6].

In this model three possible kinds of SBs have been proposed (see Figure 1.1.2B):
(1) The SBs could link two regions of the same polymer i.e. forming intrachain SB,
(2) it could cross-link two different polymer chains i.e. forming an interchain SB
and (3) the SB may form between the polymer chain and the mineralized plate. In
this thesis SBs of the first and second kind will be investigated [33]. Using a simple
model based on the worm-like chain model it could be shown that the SBs increase
the stiffness as well as the fracture toughness of these systems [33].
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Chapter 1 Motivation

1.1.2 Mussel byssus threads

The mussel byssus is produced by marine mussels to adhere to rocky substrates.
Not only that the byssus has to stick in wet environments, it also sustains strains
up to 100 % without breaking and after release of the load, it recovers its original
mechanical properties. The mussel byssus combines a high strength with a large
extensibility. In Figure 1.1.3(A) the strength of these threads is indicated by showing
that only three threads can hold three mussels and a piece of mica [44]. Byssus
threads consist of two parts with different morphological and mechanical properties:
the proximal (closer to the organism) and the distal part (closer to the substrate
connected to surface by plaque). One of the main functions of the proximal part is
decelerating the mussel speed in a very short time to balance the large accelerations
the mussel experiences by high speed detachment from or collisions with rocks [45,
46, 47].
In [11] the distal part of the byssus was investigated, showing that its low-strain be-
havior was similar to tendon, but that the ultimate strain it can bear was up to 100%
compared to only 10 % to 15 % for tendon. The distal part consists of collagen-like
domains, flanking domains and histidine rich end-domains [48, 49]. The collagen-
like domains are triple helical, stiff motifs. The flanking domains surrounding the
collagen-like domains resemble load-bearing motifs in e.g. silk-dragline. The his-
tidine rich end-domains are known to coordinate with metal ions and are able to
cross-link reversibly shown as is in Figure 1.1.3(C). It is these end-domains that
include metal-coordination bonds as SBs and that the model investigated in this
thesis is based on.
Figure 1.1.3(D) shows a typical stress-strain curve of the distal region of a byssal
thread [11]. For low strains (< 15%) the distal thread behaves elastically. For inter-
mediate strains (15 to 45 %) the thread shows a pronounced yield behavior, where
no increase in stress can be observed. For larger strains, stress rises significantly
(post-yield stiffening) and the thread fails catastrophically for strains larger than
100 %. An interesting behavior could be observed for cyclic loading with different
waiting times between successive loading cycles (see Figure 1.1.3E). While there is
a large deterioration of mechanical properties when there is no waiting time be-
tween the first and second cycle, the mechanical properties recover when there is
a 1 h lag between different loading cycles (see Figure 1.1.3E). During unloading,
the cross-links need some time to find their partners and to reform. Therefore, if
the second stretching is immediately started after unloading, the energy dissipation
(i.e. the area of the hysteresis loop) as well as the stiffness of the material are
strongly reduced. Nevertheless, for longer waiting times the SBs reform and the
system recovers its initial mechanical properties [17]. Furthermore, it was shown
that the recovery process is thermally induced, i.e. recovery is faster at elevated
temperatures [11].
Using in-situ x-ray diffraction further evidence of the validity of the concept of
"hidden length" could be found. It could be shown that the collagen-like domains
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1.2 Cross-links in man-made materials

stretched not more than 2 %, even when the thread strain was as high as 70 %
[11]. These results motivate the following model (see also Figure 1.1.3C): Some part
of the molecule has to provide hidden length to the system that allow for large
thread strains, while the corresponding strain in the collagen-like domains remains
small. The best candidate are the histidine-rich end-domains that allow to form
reversible SB cross-linking. These SBs start opening at intermediate strains allowing
for unfolding of the polymer chain and providing hidden length for efficient energy
dissipation. After release of the load and upon re-folding of the polymer chain these
bonds can close reversibly [11]. As indicated by the temperature dependence of the
refolding this process is thermally activated where increasing temperature from 4 °C
to 37 °C associates the faster recovery of mechanical performance [11].

1.1.3 The byssal thread cuticle

The extensible byssal threads are covered with a hard coating providing wear re-
sistance when they are in contact with hard rocks during the natural occurring
tides. This proteinous cover has remarkable mechanical properties combining high
hardness (100 − 150 MPa which is almost five times harder than the thread core)
and extensibility (70 % strain) [50]. The cuticle contains granules which are rich in
DOPA and inorganic ions like Fe forming metal-coordination bonds and a surround-
ing matrix with a lower amount of cross-links [51]. The mechanical properties of
different mussels strongly depend on the structure of the granules i.e. their diameter,
their volume fraction and their homogeneity [50, 52]. In this structure the densely
cross-linked granules provide the high hardness, while the less densely cross-linked
matrix is responsible for the large extensibility [12]. Nanoindentation experiments
confirmed the importance of the metals (Ca and Fe) for the integrity of the struc-
ture. Removal of the metal ions resulted in a 50 % reduction of the hardness as well
as in disrupting the cuticle [51].

1.2 Cross-links in man-made materials

Reversible and irreversible (covalent) cross-linking are also used in polymer science
to create materials with unique mechanical properties. The most famous example is
probably the vulcanization process invented by Charles Goodyear in 1839 to make
natural rubber harder and more durable. In this process rubber is (permanently)
cross-linked with sulfur bridges. The vulcanization process is introducing permanent
cross-links in the system that result in hard material, but make the material also
very difficult to recycle by devulcanization [53].
More recent examples of covalent cross-linking are found in double network gels. In
these materials the aim is to manufacture materials having a high water content
and high mechanical strength and toughness at the same time. Typically these gels

7



Chapter 1 Motivation

consist of two types of polymers with opposing physical properties; a rigid network
containing a large number of covalent cross-links and a ductile part including few
cross-links. This combination is similar to bone and dentin containing organic-
inorganic composites where the organic part is usually very soft and the inorganic
part is very brittle [54, 6]. During tensile loading of the double networks, first the
rigid part ruptures serving as some kind of sacrificial bond at a relatively low strain,
while the soft network effectively acts as the hidden length making the material
tougher [54, 55]. In these hydrogels, non-reversible cross-links have been used, they
show negligible self-recovery and fatigue resistance regarding.
Most recent approaches try replacing the brittle network of covalent bonds with
a material composed of physical reversible bonds making a "super tough". Upon
cyclic loading, the internal reversible bonds break and reform and thus, they serve as
reversible sacrificial bonds [56, 57, 31]. Cyclic loading experiments of such structures
showed that these materials show a large dissipation of energy as well as a recovery
of their initial mechanical properties [58, 59, 55].
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1.2 Cross-links in man-made materials

Figure 1.1.3: (A) shows one mussel holding three other mussels plus a piece of mica (B)
enlargement of the square area in (A) showing the mussel holds the others with only three
threads indicating the high strength of the threads [44] (C) shows a sketch of the histidine
rich end-domains that are able to coordinate with metal ions and to form reversible cross-links.
Green pentagons indicate so called sticky sites that may form a cross-link. Upon stretching these
sacrificial bonds open revealing hidden length. When the load is released the domain returns
to its initial length and after some time due to thermal fluctuations the sacrificial bonds may
reform. (D) An experimental stress-strain curve of a byssus thread in tension. The deformation
behavior can be divided into three distinct regimes. First, an elastic, tendon like behavior for
strains up to 15 %. Then a pronounced yield regime where the strain increases at constant
load (15 to 45 % of strain). Lastly the regime of post-yield stiffening, where the stress increases
again until thread ruptures. (E) Cyclic loading of such a thread with different waiting times
between different cycles (cycle 1: first loading, cycle 2: no waiting time and cycle 3: one hour
waiting time) shows partial recovery of the initial stiffness and energy dissipation of the thread
for longer waiting times (Figure reproduced from [44, 11]).
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2 Fundamentals

The systems this thesis deals with are polymeric in nature. To put the models
used in this thesis into the context of existing concepts used in polymer science this
chapter introduces very shortly basic concepts of polymer science. All shown results
of this chapter are used from the standard textbooks such as [60, 61, 62] otherwise
it will have the corresponding reference.

A polymer is a macromolecule that is made of several repeating units called monomers.
These monomers are connected via covalent bonds providing the backbone of the
structure. Polymers are heavily used in technology like Polyethylen and also in
nature (DNA, RNA, proteins, cellulose). Polymers exist in a broad range of con-
figurations and show a remarkable variety of properties. Their characteristics are
related to their degree of polymerization (the number of monomers), the polymer ar-
chitecture, the location of the monomer in the polymer (polymer configuration) and
the spatial location of the monomers (polymer conformation). Different connections
between the polymer segments provide different architectures of the polymers such
as linear, ring, star, H, comb, ladder dendrimer and randomly branched polymers
[60] (see Figure 2.0.1).

Figure 2.0.1: Examples of different polymer architectures; (a) linear, (b) ring, (c) star, (d) H,
(e) comb, (f) ladder, (g) dendrimer which is a repeatedly branched molecule and (h) randomly
branched ( Figure taken from [60]).

In addition to the bonds in the backbone that hold the structure together, many
polymers may also form a bond between non-neighboring monomers or segments.
These bond can be formed between two segments of one polymer chain or two
different polymer chains. Though not as strong as the backbone, these “cross-links”
have important effects on the polymer characteristics. One famous example is the
sol-gel transition.
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Chapter 2 Fundamentals

Upon adding cross-links to the system first branched polymers form and the polymer
remains soluble, which is known as the sol stage. Increasing the number of cross-
links leads to the formation of clusters that increase their size upon further increase
in the cross-link density. Eventually at a certain point, the structure changes and
the polymer chains link to each other at multi points such that the whole system
acts as a big covalently bonded molecule known as the gel stage [63].
In this chapter, some basic theoretical physical models available to describe poly-
meric system will be discussed. Essentially these models can be classified in two
different groups: mesoscopic models where the single monomers are averaged out
and the polymer is described as a continuous contour and microscopic models that
keep the monomer as the basic unit of the polymer.

2.1 Theoretical approaches to describe polymers

As already discussed in the introduction, a polymer is a macromolecule made of a
sequence of many repeating units, the monomers. When the monomers are effec-
tively averaged out the polymer may be described as a continuous contour, whose
behavior is determined by a bending rigidity. The standard model in this frame-
work is the worm like chain model of a stretched chain described by the following
hamiltonian,

H = Hbending +Hexternal = κ

2

ˆ LC

0
(d

2~r(s)
ds2 )2ds− F

ˆ LC

0

dz

ds
ds

where the first term describes the resistance of the chain to bending which is pro-
portional to the inverse square of curvature of the of the continuous chain. Here κ
denotes the bending rigidity. The second term is the stretching energy of an external
force on the chain [64, 65, 66].
~rS is the position vector along the chain at point s, F the puling force along z
direction and LC the effective contour length. One essential parameter in describing
the WLC is the so called persistence length LP . The persistence length is a measure
over which length orientational correlations decay. For a chain with constant bond-
length between the monomers, it is found via

LP = l
n∑
i=1

n∑
j=1

cos θij (2.1.1)

where θij shows the angle between bond vectors ~ri and ~rj in the chain with n bonds.
It can be shown that the bending rigidity and the persistence length are related via
Lp = 2κ/kBT [64]. Thus, the WLC model as formulated above includes the limit
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2.1 Theoretical approaches to describe polymers

of rigid rods for LC � LP , the limit of flexible chains for LC � LP and the very
important subclass of semiflexible polymers for LP ≈ LC [60].
Using the theoretical framework of the WLC model in [67] a formula for the force
as a function of elongation was derived. The force on the chain upon stretching is

F = kBT

LP

[
L

LC
+ 1

4
1

(1− L/LC)2 −
1
4

]
(2.1.2)

Equation 2.1.2 is heavily used to derive the persistence length by fitting this expres-
sion to experimentally derived load-displacement curves [65].
The total energy of a polymer chain can be divided in to covalent and non-covalent
contributions

Etot = Ecovalent + Enon−covalent (2.1.3)

The covalent term is the energy contribution due to the backbone bonds of covalently
linked neighbors. In general this covalent interaction is split into a sum of bond
stretching, bending and torsion terms [68]. The non-covalent bonds are between
non-neighboring particles. Among others non-covalent interactions include van der
Waals, electrostatic and excluded volume interactions.

Ecovalent = EStretching + Ebending + Etorsion
Enon−covalent = Evan derWaals + Eelectrostatic + Eexcluded−V

(2.1.4)

In the following two important groups of models will be shortly introduced that are
widely used in describing polymeric configurations. Ideal chain models take only the
covalent interactions into account and totally neglect the non-covalent interactions.
One famous example of such a model is the WLC model mentioned above. There
the only interaction is due to local bending of the contour. The second group are the
real chain models. Here covalent as well as non-covalent interactions are considered.
Excluded volume interactions effectively forbid self intersections of the chain, while
van der Waals and coulombic interactions also allow to describe the interaction of
monomers with the solvent as well as mutual interactions of the different side groups
[60].

2.1.1 Ideal chains

The ideal chain model is based on two assumptions; first, the monomers which
occupy no space i.e. the volume is zero (which essentially means to neglect excluded
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Chapter 2 Fundamentals

volume interactions), and second, there is no long interaction between the monomers
i.e. if the monomers are not covalently bound neighbors, then they do not interact
at all, Enon−covalent = 0 [60]. Suppose now a linear chain with N similar monomers
(n = N − 1 bonds) where atom i− 1 is connected to atom i by a bond vector ~ri as
shown in Figure 2.1.1.

Figure 2.1.1: Typical conformation of a flexible chain: Ai denotes the i-th
monomer in the chain. θij shows the angle between bond vectors ~ri and ~rj and
~Rn indicates the end-to-end vector (figure is reproduced from [60]).

Since there is no preferred direction, the average end-to-end vector ~Rn of the chain
is zero; < ~Rn >= 0 . The simplest non-zero average is the mean square of the
end-to-end distance;

< R2 >=
〈(

n∑
i=1
~ri

)
.

 n∑
j=1

~rj

〉 =
n∑
i=1

n∑
j=1
〈~ri.~rj〉 (2.1.5)

If all bond vectors are of similar length l, then we can write (see Figure 2.1.1).

< R2 >= l2
n∑
i=1

n∑
j=1
〈cos θij〉 (2.1.6)

with θij the angle between the bonds ~ri and ~rj.
One of the most simple models for ideal chains is the “freely jointed chain model”
where all bonds are identical and there is no correlation between the direction of
different bond vectors. In other words Ebending = Etorsion = 0 and all bond-lengths
are constrained to their equilibrium length l. Thus we find for the mean square of
the end-to-end distance of the freely jointed chain

< cosθij >= 0 if : i 6= j
< cosθij >= 1 if : i = j

=⇒< R2 >= nl2 (2.1.7)
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2.1 Theoretical approaches to describe polymers

This theoretical framework is completely analogous the concept of a random walk.
Thus, one of the simplest models for a polymer is a random walk or self avoiding
walk on a lattice [62, 69]. By modeling the interaction of monomers by assigning
nearest neighbor energies this model can be refined to (also) describe the sol-gel
transition [70].
One generalization of the freely jointed chain model is the freely rotating chain.
Here bond lengths and bond angles are fixed, but all torsional angles are equally
probable and independent from each other.
The worm like chain model (some times called Katky-Porod model) which has been
discussed at the beginning of this chapter can be seen as a special case of the freely
rotating chain model for very small bond angles and is usually used for very stiff
chains.
Finally, the hindered rotation model also includes the description of torsional angles
in the model. Here the bond length and angles are fixed and the torsion potential is
restricting the torsional angle to the configurations corresponding to the trans and
gauche states [60].

2.1.2 Real chains

In contrast to ideal chain models, real chain models also contain non-covalent interac-
tions (Enon−covalent 6= 0 ). The additional short and long-range interactions between
the monomers and the monomers and the solvent largely influence the conformation
of the polymer. The conformation of the polymer mainly depends on three charac-
teristics; the flexibility of the chain, the interactions between the monomers in the
chain and the interactions between the monomer and the environment (especially
the solvent) [60].
The effective interaction between monomers depends on the difference between the
monomer-monomer interaction and the interaction between the monomers with the
surroundings [60]. An attractive effective interaction means that the monomer-
monomer energy is lower than the corresponding monomer-solvent interaction en-
ergy. As a consequence the monomers would rather be near each other than to
expose themselves to the solvent leading to a rather condensed structure. In con-
trast, effective repulsive interactions mean that the monomers prefer to interact with
the surrounding molecules rather than the other monomers resulting in rather open
structures. The required energy to bring two monomers from ∞ to a distance r is
characterized by first an attractive interaction for large distances and a very strong
repulsive interaction for shorter distances. The reason for this strong repulsive in-
teraction is the beginning overlap of two monomers is the beginning overlap of two
monomers i.e. the steric repulsion of overlapping monomers the so called excluded
volume interaction. For the system with hard spheres, the excluded volume inter-
action is 8 times larger than the volume of the monomer. This interaction plays a
very important role for an isolated chain and has a large influence on the long-range
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structure of the chain because it essentially forbids self-intersection of the chain [71].
Moreover if the monomers are identical to the solvent and there is no energy differ-
ence between monomer-monomer and monomer-solvent interaction, then the energy
contains only the steric repulsion and the solvent is known as athermal.
Real chains models show a collapse of the chain due to the large attraction compared
to the repulsion, for low temperatures while for high temperatures, the repulsion
between the monomers overcomes the attraction and the chains swell. At a special
intermediate temperature the so called “θ-temperature”, the repulsive and attractive
interactions between the monomers exactly cancel and the chain behaves nearly like
an ideal chain [60].
Another interaction strongly influencing the conformation of polymers are additional
bonds between monomers that are not directly covalently linked. These cross-links
can be either very strong bonds similar to the covalent bond of the backbone acting
as permanent cross-links or weaker, reversible physical bonds like ionic , Van der
Waals or hydrogen bonds.

2.2 Permanent cross-links

In this part theoretical approaches are presented to describe polymers containing
permanent cross-links modeled as stable covalent bonds that are not allowed to
break. Thus, there will be no bond rupture and the main influence of the cross-links
is on the structure of the polymer network.
The topology and density of permanent cross-links determine the polymer config-
urations [72]. For instance, suppose a network containing a number of semiflex-
ible chains that are randomly distributed. Adding random permanent cross-links
changes the alignment and direction of the segments and fix their orientation of
with respect to the other polymer chains. When the density of cross-links increases
a fluid-gel transition may occur and since the cross-links are randomly distributed
in the network, the small regions containing high density of cross-links get localized
at the random positions. The random distribution of the localized regions together
with the similar orientation of the chains result in an isotropic to nematic phase
transition for stiff enough polymers. As the stiffness of the polymer decreases, the
transition shifts to higher cross-link densities and results in an amorphous structure
with randomly frozen chains [72].
Furthermore, it could be shown that if the polymer chains are grafted between two
planes with the ending points free to slide along the planes, then the localization
length is larger for regions close to the boundaries where the polymers are free to
move. As a consequence, the gelation transition upon increasing the cross-link den-
sity provides also an in-plane shear modulus of the system [73]. The force-extension
curve for parallel-stretched polymer chains with permanent random cross-links shows
that the contribution of the cross-links is inversely proportional to the force. This is
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because a higher number of cross-links increases the differential stretching stiffness
of the network by reducing thermal fluctuations [66, 74]. It has also been shown
that the reduction of thermal fluctuations is because a single cross-link between two
chains grafted onto a rigid planar surface reduces the fluctuations of the free endings
of the chains i.e. reducing the number of allowed configurations [75].

2.3 Reversible cross-links

This section introduces some theoretical approaches to study the influence of re-
versible cross-links on the mechanical properties of polymeric chains. In particular
these approaches are based on the SB model to describe deformations in bone pro-
posed by Fantner et. al. [6]. In this model the polymers are described in the frame-
work of the WLC model and the polymers between two mineralized fibril plates
may form three different types of SBs as shown in Figure 1.1.2. These are, first,
intrachain SB (the cross-link is between two particles located at the same polymer
chain), second, interchain SB (the cross-link is between two particles located at two
different polymer chains) and, third, the SB may form between the polymer chain
and the plate. The topology of intrachain cross-links strongly influences the entropy
contributions of the chain [76, 77]. Three different cross-link configurations may
form: the independent, pseudoknotted and nested structure [77, 78]. These three
different topologies will be discussed in detail in chapter 4.
A numerical analysis of the model presented by Fantner et al. shows that the
topologies of SBs and the SB strength provide different mechanical properties. It
can also be shown that for a constant contour length there is an optimal number
of cross-links, while for a higher number of cross-links no further benefit on the
toughness can be gained and the force-extension curves become indistinguishable
from each other [79].
In order to have a higher mechanical performance of the system with three types
of SB having different strengths, SB cross-link between the polymer chain and the
plates should be strongest (type 3 in Figure 1.1.2(B)). Upon loading, the weaker
SBs rupture earlier and then the SBs with higher strength start to rupture. Thus,
the force extension curve shows a stepwise decrease of the experienced load [79] due
to breaking of connected segments of polymer from the plates (see Figure 2.3.1A
and B). Experimental results showed that the supported force by a fibril is in the
order of a few micronewton while the strength of a single polymer chain is in the
order of a few hundred piconewton. Therefore it is necessary to have more than
thousand polymer chains to sustain the force [79]. Elbanna et. al. performed an
analytical calculation for multiple chains up to N = 200. The results for the system
with 200 chains showed that increasing the number of chains in the system increases
the toughness as well as the stiffness of the system significantly as can be seen in
Figure 2.3.1(B). The results for 200 polymer chains is in good qualitative agreement
with the experimental results in terms of the shape of the load-displacement curve
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Figure 2.3.1: (A) Experimental curve of pulling a dentin molecule with the AFM where all
filaments are broken [6]. (B) The analytical results of force-extension curve for a different
number of chains using the model presented in [79]. The small force drops show the sacrificial
bond rupture while the larger force drops indicate the detachment of the polymer from the plate.
The figures are reproduced with permission from [6, 79].

as shown in Figure 2.3.1(A). In particular, increasing the number of polymers does
not influence the maximum displacement. In the force-extension curve two different
regions can be observed (see Figure 2.3.1(B)). First, for small extensions the force
increases resisting against crack initiation and second for larger extensions the force
decreases stepwise due to detachments of SBs from the plates [79]. The analytical
results of the kinetic model show that the height of the peaks depends on the pulling
rate where increasing the stretching rate increases the height of the peaks. After each
stretching cycle when all end bonds have ruptured, the time till the next stretching
has considerable impact on the mechanical response since increasing the time delay
increases the amount of work to fracture [80].

2.4 Cross-links topology

The topology of cross-links in single polymer chain is a key factor determining the
influence of these cross-links on the stability and mechanical properties of the chain
[77]. If cross-links form a loop such that the applied force is distributed over all
the cross-links, then the strength of the chains is directly related to the number of
cross-links [81]. Figure 2.4.1 shows such configurations maximizing the strength for
a chain with 51 beads and a different number of cross-links along the chain. The
numbers shown in Figure 2.4.1(A) are the number of the bead along the chain, e.g.
for the chain with two cross-links, the two cross-links are formed between beads
(22, 47) and (23, 48). When the chain is stretched, a shear force acts on the two
cross-links simultaneously, such that both cross-links experience a similar amount of
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force. Finally the two cross-links break. The required force to break the cross-links
gets larger by increasing the number of cross-links in this configuration. As a further
consequence, the amount of work to fracture for the chain increases, considerably(see
Figure 2.4.1(B)).

Figure 2.4.1: The optimum polymer configuration to make a strong material. For a different
number of cross-links (A) shows the cross-links configuration along the chain with 2 to 5 cross-
links. The shown number denote the position of the bead along the chain e.g. for the chain
with two cross-links the beads (22, 47) and (23, 48) form a loop. (B) shows the corresponding
force-extension curves. The force is measured in units of fc i.e. the critical force to rupture
one cross-link and the extension in units of fc/γ where γ is the effective force constant (Figure
taken from [81]).

Comparing the results for the chain with a cross-link topology that is maximizing
strength (shown in Figure 2.4.1(A)) and a random topology of four cross-links shows
that the work done on the chain in the first configuration is five times larger than
for a chain with random cross-link configuration [81, 82]. In biological materials, a
configuration of cross-links maximizing strength can be found e.g. in in the mus-
cle protein titin that is making parallel β sheets providing a material with a high
mechanical performance [83].
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3 Method and Models

In this chapter the model investigated throughout this thesis is presented. This
model is motivated by the experimental results obtained in [11]. The model was
built to describe a situation as shown in Figure 1.1.3C to study the influence of
reversible cross-linking on the mechanical properties of the polymeric chains. Then
the Monte Carlo method is shortly introduced and the simulation procedure is ex-
plained in detail. Finally, some basic mechanical parameters are described that
are used throughout this thesis to characterize the mechanical behavior of the in-
vestigated structures. These include displacement (strain), load (stress), stiffness,
strength, work to fracture and dissipated energy.

3.1 The model

The model consists of a (linear) polymeric chain modeled as a covalently linked
chain of N hard spheres with diameter R (to avoid self-intersecting phantom chains)
oriented along the Z-axis. In the following the hard sphere radius will serve as the
unit of length. The covalent binding energy between neighboring beads is described
by a Morse potential since this potential is known to provide an accurate description
of covalent bonds (see Figure 3.1.1B). All (inner) beads are covalently linked to their
two neighbors (bead i − 1 and i + 1) and are allowed to move freely during the
simulation, while the first and the last bead (i = 0 and i = N − 1, respectively)
have only one neighbor and are held fixed. Thus, the excluded volume and covalent
interactions between two beads i and j separated a distance r can be described via

Eij(r) =


∞ r ≤ 2R

E0[(1− e−β(r−r0))2 − 1] r > 2R
0 else

and |i− j| = 1 (3.1.1)

where E0 is the depth of the energy minimum and about 5eV for a covalent bond,
β−1 = 0.5 R, is a measure for the width of the potential that is set to 2 in the
simulations (i.e. the width of the potential is given by half of the hard sphere
radius). r0 = 3 R is the equilibrium distance of a covalent bond (i.e. the position
of the energy minimum) in the following. Consequently, the contour length of the
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Figure 3.1.1: (A) Sketch of the used model. Gray beads denote the two fixed outer beads
defining the end-to-end distance, non-sticky sites are shown in blue and sticky sites in orange,
respectively. Covalent bonds are indicated by black bars, while a closed SB is shown by the
green zig-zag line. (B) The Morse potential as a function of the distance between two beads.
The equilibrium distance r0 and the binding energy E0 for covalent bonds and E0(SB) for
sacrificial bonds are also shown. The Morse potential is used to describe the covalent bonds
between neighboring beads and (with a reduced value of the binding energy) the energetics of
sacrificial bonds.

chain is given by LC = (N − 1)r0. In the framework of presented models, our model
contains only covalent bonds with the excluded volume interaction.
To mimic the effect of SBs some of the monomers are defined as "sticky". It is these
sticky sites that can additionally form SBs (see Figure 3.1.1(A). In the model, SBs
can be only between two sticky sites and are allowed to open and close reversibly.
ρs = Ns/N is defined as the sticky site density with Ns the number of sticky sites in
the chain. The energetics of the SBs are not well characterized. The experimental
results available indicate that the strength of the His-rich domains as well as the
dopa-Fe complex are 20 to 30 % of the strength of a covalent bond [33, 13]. To keep
the model as simple as possible in the simulations, the energetics of SBs are chosen
to follow an identical Morse potential as the covalent bonds with a strength reduced
by a factor of 4 (i.e. ESB

0 = 0.25E0).
The chain-bundle system is made of nine chains each consisting of N = 50 beads
(the total number of beads in the system is 450). At both sides the end beads
of the chain are permanently grafted to a substrate, described as two hard walls
impenetrable for the beads at z = 0 and z = L, respectively. The end-beads are
arranged to occupy a triangular lattice with lattice constant d that essentially defines
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the grafting density of the system (see Figure 3.1.2). Also in this system some of the
monomers are defined as sticky. Always two of these sticky sites may form a SB that
can now either link two segments of the same chain providing an “intrachain” cross-
link or connect two segments of different chains making an “interchain” cross-link
as is shown in Figure 3.1.2B.

Figure 3.1.2: (A) Top view of the chain-bundle system in the stretched configuration, i.e. the
end-to-end distance of the chains is equal the contour length. The end beads of the chains are
permanently grafted to a hard substrate. d denotes the distance between the grafting points
that are arranged as a triangular lattice. (B) Side view of the same system for a smaller end-to-
end distance. Yellow beads indicate open sticky sites, red beads denote closed sticky sites. One
interchain and one intrachain SB is shown.

3.2 The Monte Carlo method

Monte Carlo (MC) and molecular dynamics (MD) methods are tools from statisti-
cal mechanics to investigate systems with many degrees of freedom. They are used,
when it is not possible to calculate the partition sum of a system analytically. The
basic concept of MD is to calculate a time average of the investigated system by di-
rect integration of Newton’s equation of motion, while MC simulations apply special
algorithms (in our case the Metropolis algorithm) to create a successive number of
states of the investigated system (a so called Markov chain) where the single states
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arising follow the equilibrium Boltzmann distribution (i.e. MC uses the concept
of an ensemble average). Thus, in a MC simulation calculating the mean of some
observable A reduces to

< A >=
ˆ
Ae−E/kBTdr/Z = 1

N

∑
Ai (3.2.1)

where the Ai are the actual values of the observable A in configuration i. Since the
configurations arise with their proper Boltzmann weight, no further weighting of the
observables has to be performed.
Producing a Markov chain consists of two main steps: First, starting from the
current state of the system o (for old state) choose a new state n by some small
displacement δ [61]. Second, decide if the new state is accepted or rejected. There
are several different algorithms resulting in the correct equilibrium configuration,
but all of them have to fulfill the detailed balance condition ensuring that once the
equilibrium distribution has been reached, further application of the algorithm has
to keep this distribution. This means that in equilibrium the average number of
moves out of any given state o, has to be exactly canceled by the number of moves
in the state o from all other states. Detailed balance demands an even stronger
condition: The number of moves from a configuration o to the new configuration n
has to be exactly canceled, by moves from the configuration n to the configuration
o, i.e.

N(o)p(o→ n) = N(n)p(n→ o)
with N(o) (N(n)) the number of systems being in state o (n, respectively) which
is given by the Boltzmann distribution and p(o→ n) (p(n→ o)) the probability of
going from state o to n (n to o, respectively). The probability p(o→ n) is given by

α(o→ n)× acc(o→ n)

where the α denotes the probability of choosing state n when starting from state o
and acc() denotes the probability of acceptance of the new state n. The Metropolis
method is a special algorithm fulfilling detailed balance by choosing α symmetric,
i.e. α(o→ n) = α(n→ o), and the probability to accept the new state by

acc(o→ n) = min(exp [−(E(n)− E(o))/kBT ] , 1) (3.2.2)

with E(o) (E(n)) the energy of the old (new) configuration.
Thus, a simulation step consists of: first, choose a new position. Second, determine
the energy of the current and the new configuration and calculate acc(o → n).
Third, draw a random number equally distributed between zero and one. If the
number is smaller than acc(o → n) then the new position is accepted, otherwise it
is rejected [84, 85, 86].
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3.3 Simulation procedure

There are two basic moves in the simulations: moving the beads and updating
the SBs. Both steps are executed by following a Metropolis algorithm that was
introduced in the preceding section. Figure 3.3.1 shows a flowchart of the program
that will be explained in more detail in the following. First a random number is
chosen to decide if one bead is going to be moved or the SBs updated. The numbers
are chosen such that on average each time step in the simulation consists of N tries
to move the beads and Ns tries to update the SBs.

Figure 3.3.1: Flowchart of the simulation procedure used in this thesis. The two main loops
consist in moving the beads and updating the bonds.

3.3.1 Move beads

The blue part in Figure 3.3.1 shows the branch corresponding to move the beads.
One of the N − 2 inner beads is chosen randomly. Then a new position is chosen
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randomly in a cube around the old position.

Rx(new) = Rx(old) + δ(1− 2X)

Ry(new) = Ry(old) + δ(1− 2X)

Rz(new) = Rz(old) + δ(1− 2X)

whereX is a random number on (0, 1) and the δ is the jump length i.e. the maximum
size of a trial move [86]. According to Equation 3.1.1, the energy difference of the
new and of the old configuration is calculated ∆E = En − Eo. If the bead is part
of an intact SB then not only the energy due to excluded volume and the covalent
bond is taken into account, but also the change in SB energy. The jump length is
chosen such that the mean rate of acceptance of a new position is around 50 % [84].
Following a standard metropolis algorithm [87, 69] the new position is accepted with
probability p = min

{
1, exp

(
− 4E
kBT

)}
.

3.3.2 Update SBs

The yellow part in Figure 3.3.1 shows the branch corresponding to updating the
SBs. In this process, one of the sticky sites is chosen randomly. If the chosen site
is part of an intact SB, the probability of breaking this bond is calculated. Here
the old energy Eo is the current energy of the sacrificial bond, while the new energy
(corresponding to the broken bond) is zero. Thus, the bond opens with probability
p = min

{
1, exp

(
+ Eo

kBT

)}
.

Otherwise, if the chosen sticky site is not part of an intact SB, a second open sticky
site is chosen randomly. Then the probability for formation of a SB between these
two beads is given by p = min

{
1, exp

(
− En

kBT

)}
. Here En denotes the energy of the

newly formed bond, while the old energy (no bond) is zero.

During the simulations, all sticky sites with every distance are allowed to form a
SB. This leads to a technical detail concerning the definition of the number of closed
sticky sites explained in the following. Sticky sites that are a large distance apart
have a negligible energy. Thus, the energy difference of an opened and a closed bond
is almost zero. Consequently, the probability of formation for such a bond is close
to 1, as is the probability of rupture for this newly formed bond. This leads to the
result that when the chain is completely stretched and all sticky sites are far apart
on average 50% of the bonds are closed. But of course these bonds have no influence
on the mechanics or any other property of the system. In this thesis a SB is defined
as "closed" whenever the bond length is smaller than 5.
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3.4 Load and displacement control experiments

3.3.3 Obtaining load-displacement curves

In the simulations up to 90 million Monte Carlo steps (MCS) were performed. One
MCS defines the time scale of the simulations being defined as one jump trial per
monomer. In the simulations the end-to-end distance of the chain was defined by
fixing the outer beads. The force on the outer beads (as well as any other relevant
parameter) was recorded and averaged

F = −∂E
∂r

= 2βE0[e−β(r−r0)(1− e−β(r−r0))] (3.3.1)

Increasing (or decreasing) the end-to-end distance of the chain to perform a computa-
tional loading test is done incrementally in small steps with additional equilibration
steps. Small steps and equilibration are necessary to avoid hard sphere overlap and
bond rupture. A single step consists in moving each bead a small distance according
to its z-coordinate

znew = zold(1 + ∆L
Lold

)

with ∆L giving the displacement of the last bead with z-coordinate zold = Lold

Positive ∆L stretches the chain and negative unloads the chain. During stretching
changing the position of all beads does not lead to hard-sphere overlap but during
unloading, the hard-sphere overlapping should be checked, If there is no hard sphere
overlap the new positions of the beads are accepted (otherwise a smaller ∆L is
chosen). Then equilibration of the inner beads and SBs is performed. These steps
are repeated until the desired length of the chain is reached.

3.4 Load and displacement control experiments

Two different scenarios are possible to measure a load-displacement curve. These are
the displacement controlled experiment (as is performed in this thesis) and the load-
controlled experiment [88, 89]. In the former the displacement is set and the resulting
load is measured, while in the latter it is the load that is set and the corresponding
displacement measured. The displacement control led measurement represents the
Helmholtz ensemble while the force control is called the Gibbs ensemble. However
in the thermodynamic limit the two ensembles are equivalent [90]. In the Helmholtz
ensemble the first derivative of the free energy determines the force while large
fluctuations of the end-to-end distance in the Gibbs ensemble do not permit to
formulate such an easy relationship for systems too small for the thermodynamic
limit to be applicable [88].
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3.5 Basics for mechanical analysis

This part, presents some mechanical parameters used for analyzing and describ-
ing the obtained load-displacement curves and also explains briefly, the different
mechanical behavior of materials. The mechanical properties of a material are ana-
lyzed by measuring the relation between load (stress) and displacement (strain) for
this material. Stress is defined as the force per area acting on the material, while
strain is defined as the relative elongation of the material given by ε = (L−L0)/L0.
In this thesis load-displacement curves are used throughout instead of stress-strain
curves. This is because it is not possible to define a meaningful area to normalize the
force in single molecule measurements. Figure 3.5.1 shows sketches of some typical
responses of a material to an applied load. An elastic response is characterized by
an identical loading and unloading branch. A deformation is said to be plastic, if
a permanent deformation persists after release of the load. A viscoelastic behavior
is characterized by a difference in the loading and unloading unbranched, but no
permanent deformation persists [91].
All of these stress-strain curves are characterized by a small stress region where
stress and strain are linear dependent on each other. The slope of this curve is
called the stiffness or the Young’s modulus E of the material and is a measure of
the resistance of the material against loading. Another important characteristic of
these curves is the strength, i.e. the maximum amount of load or stress that the
structure can sustain before it fails. The work to fracture is the area under the
loading curve and denotes the energy that is needed to break the material. This
quantity is closely related to the toughness. Finally, the area between the loading
and the unloading branch is a measure of the dissipated energy per loading cycle
[91].
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Figure 3.5.1: Different mechanical behavior of materials is shown. The top row shows the
response of the material versus time when the load is released and the bottom row shows
corresponding Stress-Strain curves. Elastic materials return to their original shape immediately.
Materials behaving plastically do not return to their original shape and keep the deformation
forever after sufficient large deformation. Viscoelastic materials return to the original shape
slowly and the area of hysteresis shows the amount of dissipated energy. Note that for small
deformations all of these materials show a linear dependence of stress and strain. The slope of
this linear part of the curve is the stiffness of the material. Figure reproduced from [91].

29





4 Single Chain with Reversible
Cross-links

The results from this chapter show that the SB topology determines the position of
the force peaks, while the efficacy of the sacrificial bonds (the height of the peaks)
is reduced due to thermal fluctuations of the backbone. Furthermore, simulations
mimicking cyclic loading experiments revealed an asymmetry between loading and
unloading resulting in a pronounced hysteresis. Because the mechanical properties
strongly depend on the topology of the SBs, the speed of unloading determines the
mechanical properties of the second loading cycle. Moreover, for chains with a simi-
lar number of SBs, the mechanical properties like the strength (maximum force) and
apparent stiffness may be considerably different due to a different arrangement of
the sticky sites.

This chapter presents simulation results for a single polymeric chain with reversible
cross-links. The model presented in section 3.1. First, test runs on simple models
are shown to validate the program and check the code for programing errors. Then
the influence of SB topology on the mechanical response of single polymer chains
is described. In particular, the influence of thermal backbone fluctuations on the
efficacy of SBs is analyzed and discussed. Part of these results is published in [78]. In
section 4.3 the influence of SB density and topology on the load-displacement curves
in a computational cyclic loading experiment is presented. Furthermore, the effect
of the rate of unloading on the recovery of the system is discussed. Here the focus
lies on the two extreme scenarios of infinitely fast and infinitely slow (quasi-static)
unloading, respectively. Finally, in section 4.4 the influence of the arrangement
of sticky sites on some mechanical key parameters like the work to fracture, the
apparent stiffness and the strength of the system is presented. This work has been
published in [92].

4.1 Validation of the model—Test runs

To test the program, first simulations were performed with a small number of beads
and no sticky sites (ρS = 0). The simulations were starting from a predefined start-
ing configuration (see the inset of Figure 4.1.1A) and the system was slowly stretched
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as explained in chapter 3. Figure 4.1.1(A) shows the resulting load-displacement
curve. As expected the load is very low until L/LC ≈ 1. At this end-to-end dis-
tance the covalent backbone starts stretching resulting in a sharp peak in the load-
displacement curve. When the chain is considerably stretched beyond its contour
length, the load drops again which is characteristic for chain rupture.

Figure 4.1.1: The Load-Displacement curve for N = 5 beads and no sticky sites (A) and with
two sticky sites (B), respectively. The two insets shows the starting configuration. Sticky sites
are shown in red, non-sticky sites in blue and the fixed end beads are shown in gray. The green
zigzag line indicates the intact SB between the two sticky sites in the starting configuration for
(B).

Now two sticky sites are introduced in the structure that are located at the sec-
ond and fourth bead (see the inset of Figure 4.1.1B). These sticky sites (shown in
red) can now reversibly form a SB (which is shown in green). The starting con-
figuration is chosen such that the distance between the sticky sites is r0, i.e. the
equilibrium sacrificial bond length. Now this structure is stretched. Figure 4.1.1(B)
shows the obtained load-displacement curve for this setting. Compared to the load-
displacement curve without sticky sites the resulting curve shows an additional peak
near L/LC = 0.8 which is approximately four times weaker than the covalent bond
contribution. This additional peak is due to stretching and breaking of the sacrificial
bond that is formed between beads two and four.

Finally, structures with more than two sticky sites were tested. The length of the
chains is changed according to the number of sticky sites present. In the cases in-
vestigated these are N = 5 and 2 sticky sites, N = 9 and 4 sticky sites and N = 13
and 6 sticky sites, respectively (see Figure 4.1.2 (A) for a sketch of the correspond-
ing starting configurations). Figure 4.1.2 (B) shows the resulting load-displacement
curves, when these structures are stretched. The figure shows the expected results
that each additional SB gives an additional peak in the load-displacement curve.
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Figure 4.1.2: (A) starting configurations and (B) load-displacement curves for short chains of
different length and with different number of SBs.

These first results indicate that the program is working fine and is free of program-
ming errors.

4.2 The role of topology and thermal backbone
fluctuations on sacrificial bond efficacy

In this section the influence of SB topology on the mechanical properties of a single
polymeric chain is investigated. As sketched in the introduction, this model is
motivated by the load-bearing metalloproteins found, e.g., in the mussel byssus
threads. The strategy followed in this thesis is to start with simple models that can
be completely understood and then to proceed step by step to more complicated
structures. Thus, first a polymeric chain of length N = 50 with only four sticky
sites is investigated. Load-displacement curves are obtained and analyzed. Special
emphasis is put on understanding the number, spacing and height of the force peaks
that are due to SB rupture during loading. It is shown that these parameters are
intimately tied to the topology of SBs but also to thermal fluctuations of the polymer
backbone.

Independent starting configurations were produced by slowly unloading the single
chain with no sticky sites from the contour length until the desirable short end-to-
end distance was reached. Then the sticky sites were introduced and the SBs allowed
to form. Figure 4.2.1 shows an averaged load-displacement curve of 20 independent
simulation runs for a single chain with N = 50 and 4 sticky sites (ρS = 0.08) at
ambient temperature (kBT = 0.025 meV). This curve resembles the experimentally
observed “saw-tooth” pattern which has been reported for some biological materials,
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e.g. nacre [4], in single molecule measurements of titin [23, 93], tenascin [26], DOPA
[94] and modular proteins [95] as well as in the adhesive mucilage pads of diatoms
[96, 97] and polymer brushes from rat tail tendon [98]. In particular, the curve shows
four distinct peaks. The last peak (IV) that is centered around the contour length
is the trivial contribution due to backbone stretching and will not be considered
further. All the other peaks (I, IIA, IIB and III) stem from the breaking of SBs and
will be analyzed further. Especially I will focus on the number, position and the
height of the different peaks. It is the simplicity of the model of this setting that
helps to understand this system completely and pave the way for understanding
more complicated structures.

Figure 4.2.1: Averaged load-displacement curve for N = 50, kBT = 25 meV and ρs = 0.08 of
20 independent runs.

First we focus on the positions and the number of peaks. At first sight one might
expect that in a single chain with 4 sticky sites, i.e. the possibility of forming
two SBs, only two peaks corresponding to SB rupture could be observed. But
the result shows 4 peaks (see Figure 4.2.1). This elevated number of sacrificial
force peaks comes from averaging 20 independent runs. In each single run SBs
of three different topologies may form. These are the independent, pseudoknotted
and nested topology as shown in Figure 4.2.2. In 20 simulation runs, 60 % showed
the independent, 10 % the pseudoknotted and 30 % the nested topology. In the
chain the sticky sites were introduced regularly: the sticky sites are all separated
by 10 non-sticky sites. Thus, the SB separates the chain into 5 parts (see also inset
of Figure 4.2.2). The two outer parts have a total length of d0 = 16r0 resulting
in L/LC = 16r0/LC ≈ 0.32, which is the length below which no peak can be
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observed. The inner part is divided into three segments of equal length d = 11r0.
Figure 4.2.2(A) shows the load displacement curve for the independent topology.
Here the SBs are formed between sticky sites (1, 2) and (3, 4). Upon loading the
SBs start being loaded around L/LC = (d+d0+2r0)/LC ≈ 0.59 which is the position
of peak (IIB) in Figure 4.2.1. After rupture of the first SB, the next SB starts being
loaded at L/LC = (2d+ d0 + r0)/LC ≈ 0.8 (peak (III)). Figure 4.2.2(B) shows the
load-displacement curve for the pseudoknotted topology. Here the SB is formed
between sticky sites (1, 3) and (2, 4). This results in a parallel loading of the SBs at
a slightly smaller extension than the first peak of the independent topology giving
rise to peak (IIA) in Figure 4.2.1. This small difference in the extensions is due
to the hard core repulsion of the beads that forbids the exactly parallel alignment
in the direction of the load of the beads. After rupture of the pseudoknotted loop,
the two intermediate sticky sites (2, 3) form a new SB which fails after extending
the chain to L/LC = 0.8, which is exactly the same position as the second peak in
the independent configuration. Finally, in the nested topology the SBs are formed
between the two outer sticky sites (1, 4) and the two inner SB between (2, 3). Thus,
upon loading the first SB first shields the inner one. The first SB starts being loaded
around L/LC = (d0 + r0)/LC ≈ 0.35. This gives rise to peak (I) in Figure 4.2.1.
Finally the second SB breaks at L/LC = 0.8 corresponding to peak (III).

Figure 4.2.2: Load-displacement curves for N = 50 at kBT = 25 meV with four sticky sites
and different topologies of the formed SBs. The first and last bead of the chain are shown
in black; sticky sites are shown in red. SBs are indicated by dotted green lines, covalent con-
nections by blue lines. Load-displacement curves shown with thick, green lines indicate the
expected curves. The thin, black line shows actual simulation results of selected single runs.
(A) independent configuration: two force peaks of equal height Fmax = βESB

0 /2 = 1.25 eV/R
at L/LC ≈ 0.59 and 0.8 are expected. (B) pseudoknotted configuration: two force peaks are ex-
pected: the first at L/LC slightly lower than 0.59 and of height 2Fmax, the second of height Fmax

at L/LC ≈ 0.8. (C) nested configuration: two force peaks of equal height Fmax at L/LC ≈ 0.35
and 0.8 are expected. Note, that not a single SB attains its theoretical strength.

Thus, the number and the positions of the peaks for loading the single chain with 4
sticky sites can be well explained with the different topologies of the involved SBs.
But the height of the peaks can not be understood that easily. Partly the height
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of the averaged curves shown in Figure 4.2.1 can be explained by the probability
of formation of a certain topology. Out of 20 runs, 12 showed the independent
topology, 2 the pseudoknotted and 6 the nested topology. Thus, simply due to the
improbability of the pseudoknotted configuration the peak (IIA) is much reduced in
height compared to the others. But also peak (III) that is present in all different
topologies as well as the peaks observed for the single runs shown in Figure 4.2.2
do not show their expected theoretical height, which is indicated by the green solid
lines in the figure. This theoretical height is given by the maximum force generated
by the used potential. We find the position of the maximum force by setting the
first derivative of the force (the second derivative of the energy) to zero

ESB = ESB
0 [(1− e−β(r−r0))2− 1] =⇒ F = −∂E

∂r
= 2βE0[e−β(r−r0)(1− e−β(r−r0))]

∂F
∂r

= 0→ rmax = r0 + ln 2/β ≈ r0 + 0.35

Figure 4.2.3: The black curve shows the Morse potential: E/kBT as a function of the distance
between two sticky sites. exp(E/kBT ) gives the probability of SB breaking. The red curve
shows the force on the SB as a function of distance. The maximum force FSB = 1.25 eV/R
occurs when the distance between sticky site is about r = 3.35R0 and the corresponding energy
is 0.933 eV corresponding to E/kBT = −37. Therefore breaking of SB is not expected since the
probability of SB rupture is very small exp(E/kBT ) = exp(−37) ≈ 10−16.

Furthermore, we find the maximum force of a single SB as Fmax = βESB
0 /2 =

1.25 eV/R, the corresponding energy is given by 0.933 eV (see also Figure 4.2.3).
Because the energy at the maximum force is still large compared to kBT , it is
expected that the SB does not fail before the bond is stretched to its maximum force.
Consequently it is also expected that the SB force peaks shown in Figure 4.2.2 attain
the theoretical maximum force. In particular, the probability of breaking one SB at
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the extension of maximum force (which is corresponding to an energy of 0.933 eV)
is 10−16 which is extremely small.

=⇒
{
Fmax = βESB

0 /2 = 1.25 eV/R
ESB = 0.933 eV

}
=⇒ exp(ESB/kBT ) ≈ e−37 ≈ 10−16 (4.2.1)

Although the probability of SB breaking for the maximum force is very small, the
results of the simulation show that the SBs break at loads considerably lower than
Fmax. To investigate this point further, the SB bond length was monitored as a
function of extension for the nested configuration (see Figure 4.2.4). The results
show that for a broad range of end-to-end distances the SB length is around its
equilibrium value of 3, while it considerable extends when the bonds are loaded.
Nevertheless, the first SB stretches only until about rmax = r0 +0.22 and the second
SB to rmax = r0 + 0.15. Both values are considerable smaller than the bond length
corresponding to maximum force rmax = r0 + ln 2/β ≈ r0 + 0.35.

Figure 4.2.4: The sacrificial bond length upon loading for a chain with nested topology as
shown in Figure 4.2.2(C) i.e. the chain with N = 50 at kBT = 25 meV and four sticky sites.

To understand the reduced amount of force observed for SB rupture, the investigated
system was even more simplified. Figure 4.2.5(A) shows the starting configuration
of a linear chain with only two sticky sites in its middle. The end-to-end distance
of this starting configuration is L/LC = (N − 2)/(N − 1) = L∗ and denotes the
length when a SB starts being loaded at zero temperature. Figure 4.2.5(B) shows
the resulting load-displacement curves for two chains of different length (N=5 and
N=50, respectively). The load-displacement curve of the short chain with N = 5
beads at kBT = 25 meV shows a sacrificial force peak of approximately the expected
theoretical height. This situation changes for longer chains. For N = 50 no peak
can be observed. Thus, the SB ruptured in the very first simulation steps. As
explained before at zero temperature the bond would be completely unloaded. The
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reason for SB rupture can only be the elevated temperature, increasing the entropy
leading to thermal backbone fluctuations. This is the more surprising, because as
shown and discussed in Equation 4.2.1 the binding energies of the involved bonds
are much higher than ambient temperature. Thus, at first sight one might conclude
that temperature effects are of minor importance in this setting.

Figure 4.2.5: (A): The starting configuration of the simplified system with only two sticky sites.
Only the middle beads of the chain are shown. Normal monomers are shown in blue, sticky sites
in red. Longer chains are created by adding additional monomers on both sides. The simulations
are started with the SB closed (green connection). Covalent bonds are shown in gray. (B): Load-
displacement curves obtained by stretching the chains for NS = 2, kBT = 25 meV and N = 5
(black) and N = 50 (red), respectively.

To validate the hypothesis that SB rupture is due to temperature and entropy, load-
displacement curves at different temperatures were obtained for the system with
N = 50 and two sticky sites. The starting configuration was chosen such that, first,
the SB was closed and, second, that the end-to-end distance was shorter than the
effective length L∗ (i.e. the length at which loading starts at zero temperature). The
results are depicted in Figure 4.2.6. For all investigated temperatures a sacrificial
force peak is observed. Its height increases with decreasing temperature approaching
the theoretical expected strength of one SB for the lowest investigated temperature
(kBT = 1 meV). The effect of higher temperature is not only a decrease in peak
height, but also a shift of the position of the peak to smaller extensions of the
chain. At ambient temperature (kBT = 1 meV) the SB ruptures before L∗ that is
indicated by the gray dashed line. This explains why no trace of the SB was seen
for the simulations starting exactly at L∗ at room temperature and shows that the
effect of SBs at ambient temperature is completely entropic. This means that if
one would lower the temperature at a length below L∗ then the force would drop to
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zero. Whereas for an extension larger than L∗ the load is enthalpic, meaning that a
load larger than zero can persist even at zero temperature. This is a very surprising
result that even for relatively stable SBs with a binding energy of a quarter of a
covalent bond temperature and entropy play such a major role.

Figure 4.2.6: Load-displacement curves for chains with N = 50 at different temperatures.
When the temperature is decreased an additional force peak due to the SB starts growing that
is approaching the theoretical strength of 1.25 eV/R at temperatures below one meV . The
vertical dashed line indicates L∗.

To study this effect further, the covalent force distribution for the chain with N = 5
and two sticky sites was recorded. Figure 4.2.7 shows the frequency of how often
one bead experiences a certain amount of force. The covalent force distribution of
the three beads close to the SB are shown (i.e. the two sticky sites and the one
non-sticky in between). The simulation was done directly at L∗. The black line
shows the covalent force distribution on the left sticky site, the green line shows the
force on the right sticky site and the red line shows the force distribution on the
non-sticky site located in between the two sticky sites (for a sketch of the geom-
etry see Figure 4.2.5A). Figure 4.2.7 clearly shows that on average the two sticky
sites experience a covalent force, while the non-sticky site in between is force free.
This confirms the earlier results that the SB between the sticky sites is also loaded
canceling out the covalent forces. Once again, it should be noted that this load is
entropic because at L∗ no load above zero can persist for zero temperature.
To further investigate the influence of backbone fluctuations on the efficacy of SBs,
sacrificial bond length and sacrificial force distributions were recorded. These give
the probability of the SB to experience a certain strain or a special amount of force
at each time step. Also in these investigations the end-to-end distance of the chain
was set to L∗, i.e. the onset of enthalpic loading. Chains of two different length
were investigated: N = 5 and 33, respectively. The latter length (33) was the
largest length that not a single SB rupture occurred during the simulation time.
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Figure 4.2.7: Covalent force histograms for the two sticky sites and one non-sticky in between
for the chain shown in Figure 4.2.5A. The black and green curves show that the left and right
sticky site experience a covalent force larger than zero, while the red curve shows that the non-
sticky site does on average not experience any force. Thus, it is the SB in between the two
sticky sites that neutralizes this covalent force.

Figure 4.2.8 shows the sacrificial bond length distribution and loading of the SB for
the two investigated number of monomers, while the inset in Figure 4.2.8(B) shows
the peak position (evaluated at the maximum of the curve) and width (measured
as full width at half maximum) of the distributions as a function of the number of
monomers. Compared to N = 5 the peak position of the sacrificial bond length
shifts to larger lengths for N = 33. Simultaneously the curve also considerable
broadens. Thus, increasing the number of monomers of the chain N increases the
mean strain on the SB, shifting the position of the peak in the force to the higher
values. It is this shift of the force peak (Figure 4.2.8(B)) to larger values that is
responsible for the weakening of the SBs resulting in the rupture of premature SBs.
The shift of the peaks of SB length and load as well as the simultaneous broadening
of the peak are the two reasons that the SB is strained beyond rmax for chains with
large N . Subsequently, the bond is brought close to its maximum load leading to
bond rupture. Both distributions are asymmetric. The pronounced drop in the force
distribution is due to the maximum load at F = 1.25 eV/R. This sharp drop of the
force distribution at Fmax results in a slight decrease of the width of the distribution
for large N .

The small increase in the load-histogram for N = 33 close the maximum load is due
to the following reason: The maximum load is characterized by a local extremum of
the force with respect to distance (see Figure 4.2.3). Close to the extremum there
are always two values of the distance corresponding to one force (one distance below
and one above the maximum). Due to fluctuations the bond distance is fluctuating
around the most probable value. When this most probable value is reasonably close
to the maximum distance then there is also a non-negligible probability for the bond
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to be strained beyond rmax, giving the same amount of force as for a symmetric value
below rmax. Thus, for force values close to Fmax there are two distances giving the
same force which is effectively increasing the probability of finding this force.

Figure 4.2.8: (A): Sacrificial bond length histograms at kBT = 25 meV. The distance rmax

corresponding to the theoretical maximum force is indicated by a gray dashed line. (B): The
distribution of loads on the SBs at kBT = 25 meV. The dashed gray line indicates the maximum
force. The inset shows the width and position of the histograms as a function of monomer
number. The data in (A), (B) were recorded at L/LC = L∗.

Although the binding energy of SBs is much larger than ambient temperature, via
the fluctuations of the backbone temperature and entropy have a profound effect on
the behavior of SBs and can not be neglected. Figure 4.2.9(A) shows load distribu-
tions of the SB for N = 33 for two different temperatures, while the inset shows the
width and position of the peaks as a function of temperature. Increasing the tem-
perature makes the peak broader and leads to a shift of the position of the peaks to
higher loads. While the shift of the peak maximum is similar to Figure 4.2.8(B) for
increasing the number of monomers, the broadening of the peaks behaves differently.
One could expect that increasing N should increase the fluctuations of the chain.
But in contrast, a narrowing of the load distribution for increasing N is observed
(see inset in Figure 4.2.5B). This effect comes from the change of L∗ with N . While
L∗ ≈ 1 for N = 33, for N = 5 L∗ = 0.75. The smaller the effective length the easier
it is for the SBs to follow the backbone fluctuations making the peak broader. For
a system with larger N the number of confirmations is reduced, effectively reducing
the peak width for larger N . Figure 4.2.9(B) shows the load distribution for N = 33
for two different end-to-end distances. This figure summarizes the the effect of end-
to-end distance of the chain on the fluctuation: a smaller length leads to a shift of
the peak maximum to smaller values as well as to a broadening of the peak.
Thus, it could be shown that the load on SBs is purely entropic. Such entropic loads
can also be found in nature and have been reported experimentally in systems like
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Figure 4.2.9: (A) Load distributions forN = 33 at two different temperatures. The inset shows
the position and width of the distributions as a function of temperature. (B) Load distribution
for N = 33 and two different end-to-end distances at kBT = 25 meV. The inset shows the two
starting configurations.

rat tail tendon and single chains of poly(methacrylic acid) [98, 99]. The standard
theoretical model to describe such entropic loads is the Freely Jointed Chain (FJC)
and the (more often used) Worm Like Chain (WLC) model. As a final confirmation
of the entropic nature of the loads in the presented model, the single force peaks
were fitted with the aforementioned models. The results show that the single SB
rupture event can be well fitted with either the worm like chain model as well as
the freely jointed chain model. The analytical form of the load as a function of
end-to-end distance of the chain in the WLC model [100, 101] is given by:

F = kBT

LP

[
L

LeffC

+ 1
4

1
(1− L/LeffC )2

− 1
4

]
(4.2.2)

with the persistence length LP and the effective contour length LeffC as the two
fitting parameters of the model (see Figure 4.2.10A for an example of such a fit for
the pseudoknotted topology). The effective contour length is smaller than the real
contour length because the SBs provide some hidden length (i.e. the length of the
loop that is shielded by the SB from being extended). More exact, the effective
contour length is given by the real contour length minus the hidden length shielded
by the SBs. The persistence length obtained by the fit for the first peak of the
pseudoknotted topology is about 3.1 and it increases to 5.4 for the second peak
as shown in Figure 4.2.10A. The value of the persistence length for the other two
topologies is in the order of LP ≈ 5.5 similar to the value obtained amount for
the second peak of the pseudoknotted topology. This small value of the persistence
length (only one to two monomer distances) shows the high flexibility of the chain.
Although it was shown that the WLC model breaks down due to excluded volume
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effects for chains with a small relative length [102, 103], this does not deteriorate the
fits in the model presented. In the present case close to SB rupture the chains are
completely stretched and excluded volume does not play any role. This is also the
deep reason why the WLC model applies well, although the chain is very flexible.
Before SB rupture, when the model is applied, the available length of the polymer is
stretched out, showing only minor deviations from the straight line. Thus, effectively
the chain resembles a WLC characterized by a rather high bending rigidity.

Figure 4.2.10: Two typical examples of WLC and FJC fitting curves for the pseudoknotted
topology and ρs = 0.08. The crosses shows our simulation results and the dashed lines indicate
the fit with the two models. Each model has two fitting parameters; for WLC model, the
effective contour length Leff

C and the persistence length LP . The parameters of the FJC are
the effective contour length and the Kuhn length.

The analytic form of the load-displacement curve for the freely jointed chain is given
by [104, 105]:

F = kBT/a(1− L/LeffC ) (4.2.3)

here the effective contour length LeffC and the statistical segment length (Kuhn
length) a are the two fitting parameters. The effective contour length for the two
models is almost the same. The statistical segment length is of the order of the hard
spheres diameters used in the simulations. This small value is also an indication of
the flexibility of the chain. The Kuhn length for both peaks of the pseudoknotted
topology are 1.43 and 2.58. The Kuhn length for the peaks of other two topologies
is about a ≈ 2.5. The effective contour length is in the order of the peak positions
in the simulation. The effective contour lengths from fitting the FJC model to the
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simulation results are in the order of the effective contour length obtained from a
fit with the WLC model and the Kuhn length is half the value of the persistence
length for all corresponding peaks.
The results presented in this chapter explain the number, spacing and especially the
reduced height of the force peaks observed in Figure 4.2.1 and Figure 4.2.2 in the
simple model of SBs presented. It was shown that the topology primarily influences
the position and number of the peaks, while the height of the peaks is intimately
tied to the fluctuations of the backbone and is, thus, an entropic effect. That the
resulting force is entropic in nature could be consistently shown by changing the
temperature in the simulations, by evaluating load probability distributions as well
as by the fitting of the force peaks with the WLC and FJC model; two theoretical
models that were especially designed for describing entropic loads. Nevertheless,
that the effect of SBs is completely entropic in nature is the (surprising) main result
of this chapter. It was completely unexpected that in a system where the lowest
energy is a factor of 50 larger than kBT entropy and temperature play such a big
role. Another important conclusion that can be drawn from the results obtained for
this simple model is that the load-displacement curves do not necessarily reflect the
underlying microscopic potential. The enthalpic potential of the SBs is completely
smeared out due to the entropic backbone fluctuations.

4.2.1 Conclusion

Employing a simple model with reversible cross-links mimicking SBs between pro-
teins and metal ions in the mussel byssus makes it possible to reproduce character-
istic features found in experimental load–displacement curves in natural materials.
Characteristic sawtooth patterns corresponding to the rupture of single bonds were
observed. The distance between two peaks (the hidden length revealed) is directly
linked to the topology of the bonds and corresponds to the length of the loops
defined by the SBs. The height of the peak force is considerably lower than the the-
oretical strength of a SB. It was shown that this reduction is of entropic origin. The
capability of SBs to transmit load are drastically reduced at ambient temperature
due to thermal fluctuations in the backbone of the chain.

4.3 Influence of sticky site density

In the present section we investigate the influence of SB density and topology on the
work to fracture and especially on the amount of dissipated energy per loading cycle.
Special emphasis is put on the reforming of ruptured SBs during unloading of the
system. This reforming determines the mechanical properties after one loading cycle
and is, thus, strongly linked to the self healing capabilities of the structures. The
mechanical properties itself depend on the topology that SBs form when closing. The
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type of the topology formed is strongly influenced by the rate of return of the loaded
structure into its native state. Additionally, the sacrificial bond length distribution
is measured for three extreme SB topologies. As discussed in the previous section the
simplicity of the model gives the advantage of understanding the system completely.
It is hoped that the basic mechanisms underlying energy dissipation and recovery
identified in this model and the information about the mean bond length for different
topologies will help to understand the much more complex situation in real systems.
Independent starting configurations are produced by slowly unloading a completely
stretched chain without sticky sites until the starting end-to-end distance was reached.
Then the sticky sites were introduced in the system. Whenever not stated differently
the arrangement of sticky sites is ordered, meaning that always after a certain num-
ber of non-sticky sites one sticky site is set (this number is defined by the sticky site
density). The sticky site densities investigated in this thesis are ρs = 0.08, ρs = 0.24
and ρs = 0.48, respectively. Therefore for the lowest SB density each two sticky
sites are separated by 10 non-sticky sites along the chain while for the other two
SB densities, 4 and 1 non-sticky sites are in between each two sticky sites along the
chain, respectively. The top row of Figure 4.3.1 shows the load-displacement curve
for the corresponding SB densities. Black dots shows the behavior of the chain upon
loading and the red dots show unloading. The bottom row shows the number of
intact SBs (as explain in section 3.3 intact SB means that the sacrificial bond length
is smaller than 5R) during the cyclic loading test for each corresponding SB density.
The chain with the lowest SB density corresponds to 4 sticky sites along the chain.
The corresponding loading curve shows 5 discrete peaks with special peak spacing.
As explained in the last section, the position of the peaks as well as the peak spacing
is determined by the different topologies of the involved SBs while the height of the
peaks is intimately related to the backbone fluctuation and is significantly smaller
than the theoretical strength of one SB. When the number of SBs in the chain
increases the discrete peaks merge into one large plateau and the force does not
drop to zero between the discrete rupture events.
When the chain reaches the contour length all SBs are open, because the distance
between individual SBs is too large to form stable bonds. Now the direction of load-
ing is reversed and the structures are unloaded until the starting contour length is
reached. This completes one loading cycle. For all three SB densities, an asymmetry
between the loading and unloading branch can be observed (see Figure 4.3.1(A,C
and E)). This shows that more energy is needed to elongate the chain than energy
is restored during unloading. The area between the loading and unloading curve is
a measure of the dissipated energy per loading cycle ∆E = E1 − E2. Here E1 and
E2 are the area under the loading and unloading curves, respectively. While E1 is
the work to elongate the molecule, the work to fracture is given by W = E1 + EC
with EC = 25 eV is the additional energy to break the elongated chain. Because
all SBs are open for chains stretched to the contour length, EC is a constant for all
chains independent of the SB density and arrangements. Therefore, in the following
EC will be omitted and the work to fracture and the work to elongate the molecule
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will be used interchangeably. Table 4.1 shows the measured work to fracture, the
restored energy, the amount of dissipated energy and the relative amount of dissi-
pated energy for each SB density. The results show that the work to fracture as
well as the dissipated energy increase for chains with a larger number of sticky sites.
The work to fracture changes from E1 = 11.4 eV for ρs = 0.08 to E1 = 36.7 eV for
ρs = 0.48 and the dissipated energy changes from ∆E = 5.5 eV to ∆E = 23.9 eV ,
respectively. As shown in Table 4.1 the relative amount of dissipated energy ∆E/E1
changes from ∆E/E1 = 0.48 for the lowest SB density to about 0.67 and 0.65 for
the other two densities ρs = 0.24 and ρs = 0.48, respectively. Experimental results
show that the relative energy dissipation for the distal part of the mussel byssus is
about 0.7 [106].

Figure 4.3.1: (A), (C) and (E): Cyclic loading curves for N = 50 at kBT = 25 meV with three
different densities of sticky sites i.e. ρs = 0.08, 0.24, and 0.48 . (B), (D), (F): The corresponding
mean number of closed SBs as a function of the end-to-end distance. The presented curves are
the averages of 20 runs of stretching and 10 runs of unloading. For all figures, the black symbols
indicate loading and the red correspond to the unloading branch.

The bottom row of Figure 4.3.1 shows the number of intact SBs upon cyclic loading
tests. The asymmetry between loading and unloading is also reflected in the different
behavior of the number of closed SBs during the loading and unloading. For the
lowest sticky site density, the sticky sites reform during unloading in a shorter end-
to-end distance than the SBs were rupturing during loading. This is because the
shorter end-to-end distance, gives the monomers of the chain enough conformational
freedom that the sticky sites can fluctuate to find a partner for forming a new SB.
For longer end-to-end distances it is highly improbable to find a confirmation of
the fluctuating chain with the sticky sites in close spatial vicinity that is necessary
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to form a stable SB. The unloading process for the chain with ρs = 0.24 is almost
identical to the case of ρs = 0.08. Also here the sticky sites recombine mostly at a
shorter chain length compared to the rupture during loading. Only in a small region
around L/LC = 0.6, the number of intact SBs during unloading is larger than during
loading i.e. the sticky sites have recombined earlier than they ruptured. This effect
comes from sticky sites that form between sticky sites that are closer along the chain
than the sticky sites were during loading (i.e. the topology of the bonds changes).
This situation is even more pronounced for the highest SB density. For the chain
with ρs = 0.48 (see Figure 4.3.1(C) and (F)) the number of intact bonds shows three
different stages: first, for end-to-end distances close to the contour length (from the
contour length till L/LC ≈ 0.8), the number of intact SBs increases considerably.
Here the sticky sites find their partner in close vicinity along the chain. Because
of the elevated length this newly formed SBs are strained resulting in the force
plateau upon unloading in the load-displacement curve. This region is absent in
the low density case, because due to the low density of sticky sites the sticky sites
are that much separated along the chain that it is highly improbable that a stable
SB can form at large extensions of the chain. Second, for intermediate end-to-end
distances from L/LC ≈ 0.8 to L/LC ≈ 0.6, the number of SBs stays constant,
but the force drops sharply because the SBs relax. a Third, for small end-to-end
distances the chain is relaxed enough that the remaining sticky sites that are far
apart along the chain can form SBs. Because the end-to-end distance is already
small the monomers have enough conformational freedom that this newly formed
SBs are not strained. Thus, the number of intact SBs slowly increases again, while
the force is slowly decaying to zero. For the low SB density all sticky sites are well
separated along the chain and unloading of the chain is described by the third stage
only (see Figure 4.3.1A).

4.3.1 Influence of the topology of the bonds

The results of the previous section showed the influence of SB density on the mechan-
ical properties of the chain. It was shown that a higher number of SBs in the chain
increases the work to fracture as well as the amount of dissipated energy. In the
following section we focus on the influence of the topology of SBs on the mechanical
parameters. To investigate the influence of the topology, the starting configuration
of the simulations was changed. In contrast to the simulations described in the
previous section that were started from a crumpled configuration where the sticky
sites were allowed to find their partner randomly, the starting configurations used
in this section were set up such that the SBs were forming a predefined topology:
the independent, nested and pseudoknotted topology. A sketch of these different
topologies can be seen in top row of Figure 4.3.2. Note, that in this set up the SB
density is constant ρs = 0.48, and the only difference in the load-displacement curves
stems from the different topologies of the bonds. The bottom row of Figure 4.3.2
shows the load-displacement curves for the corresponding topology. Black and red
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dots denote the loading and unloading branch, respectively. Although the number
of sticky sites and as a consequence, the initial number of SBs for the three topolo-
gies are the same, the loading curves show significant difference resulting a different
behavior of the chains.

Figure 4.3.2: Starting configurations (top) and load-displacement curves (bottom) for three
different topologies of SBs: independent (A), nested (B) and pseudoknotted (C). The black line
shows stretching of the different starting configurations until the contour length. The red line
shows the subsequent unloading curve which is identical for all structures. The length of the
chains was N = 50 and the sticky site density ρs = 0.48. Note that the range of the force is
different in (C) than in (A) and (B).

The loading curve for the independent topology starts rising at a larger end-to-end
distance compared the other two topologies. In particular, for the independent topol-
ogy the first SB starts to rupture at approximately L/LC = 1 − ( NS

2(N−1)) = 0.76,
while for the nested topology the first SB ruptures at an end-to-end distance of
about L/LC = 3

N−1 = 0.06 and the pseudoknotted topology at an extension of about
L/LC = 5

N−1 = 0.1 (see Figure 4.3.2). Another striking difference in the curves is
the number of single peaks denoting the single rupture events upon loading. For the
independent case there are exactly 12 peaks, while this number increases by a factor
more than three for the other two topologies. For a sticky site density of ρs = 0.48
there are 24 sticky sites in the system, leading to a maximum number of 12 SBs
that can be closed simultaneously. Thus, the number of 12 rupture events for the
independent case indicates that after breaking of a SB, the sticky sites do not reform
a new stable SB. The much larger number of SB ruptures found for the nested and
pseudoknotted configuration shows the opposite: after bond rupture the open sticky
sites reform new SBs upon loading. As a result the work under the stretching curve
largely increases (see also Table 4.1). For the independent topology the lack of SB
reforming during loading leads to a reduction of more than 50 % in the work to
fracture compared to the other two cases. It can be concluded that the reforming of
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SB has a very strong influence on the work to fracture and, thus, on the toughness
of the material. Since E2, the area under the unloading curve, is constant for all
three configurations, the dissipated energy is smallest for the independent configu-
ration ∆E = 11.3 eV and increases considerably for the nested and pseudoknotted
configuration to about ∆E = 41.7 eV and ∆E = 50.1 eV , respectively (see also
Table 4.1 for a summary of the obtained parameters for different configurations).

Starting Config. E1[eV ] E2[eV ] ∆E[eV ] ∆E
E1

[−]

Crumpled

ρs = 0.08 11.4 5.9 5.5 0.48
ρs = 0.24 22.6 7.42 15.1 0.67
ρs = 0.48 36.7 12.84 23.9 0.65

2nd− Stretching ρs = 0.48 30.0 12.84 17.0 0.57

Regular (ρs = 0.48)
Independent 24.2 12.84 11.3 0.47
Nested 54.6 12.84 41.7 0.76

Pseudoknotted 63.0 12.84 50.1 0.80
Table 4.1: The work to fracture E1, the energy during unloading E2, the corresponding en-

ergy dissipation E1 − E2 and the amount of dissipated energy (E1 − E2)/E1 for the different
investigated structures.

Another interesting point concerns the height of the peaks corresponding to single
SB rupture events. Although the SBs in the simulation are identical, a variation of
the peak height for different elongations of the chain can be observed. For instance,
the peaks for the independent configuration have an almost similar height during
stretching, while for the nested as well as for the pseudoknotted configuration this
height changes during loading. As discussed before and explained in section 4.2
and [78] the effective SB strength is reduced by thermal backbone fluctuations and,
thus, significantly depends on the effective chain length defined by the SB. Since,
the effective length for the initial peaks of the nested configuration is short (L/LC =
0.06), the peak height is close to the theoretical value, while for the peaks with larger
end-to-end distances and, thus, larger effective length, the effective SB strength is
reduced (see Figure 4.3.2B). For the independent topology the SBs start to break
from L/LC ≈ 0.75 and the height of the peaks is almost identical for all SBs rupture
events (about 0.8 eV/R) (see Figure 4.3.2A). In the pseudoknotted configuration 6
sharp peaks due to the rupture of 6 parallel SBs can be observed and in between
these high peaks other peaks of approximately half the height are observed that
are due to the rupture of reformed single SBs. Similar to the variation of the peak
height for the nested topology, the height of the high peaks corresponding to the
pseudoknotted topology reduces from 2.25 eV/R to 1.7 eV/R (see Figure 4.3.2C).

Influence of the topology on the mean bond length
As discussed before the mechanical performance of a single polymer chain crucially
depends on the SBs topology. In the following part the influence of the three extreme

49



Chapter 4 Single Chain with Reversible Cross-links

topologies (independent, nested and pseudoknotted) on the SB length distribution
and the mean bond length is investigated. For a sketch of the topologies see the inset
in Figure 4.3.3. For small end-to-end distances (not shown) all three investigated
topologies show the same behavior: the SBs are unloaded and the bond-length
distributions are identical and centered at the equilibrium bond length r0 = 3.

Figure 4.3.3: The sacrificial bond length distribution for different topologies. (A) Independent
at an end-to-end distance L/LC = 0.75. All 12 distributions are identical and centered at
d = 3.09 (ε = 0.03). (B) Nested at L/LC = 0.06. The SB that has been formed between the two
outer sticky sites shows a shifted bond length distribution centered at d = 3.26 (ε = 0.09). The
distribution of the other 11 bond lengths are identical and centered at d = 3. (C) Pseudoknotted
at L/LC = 0.1. Here we have two SBs that shield the 10 others. The two loaded SBs are centered
at 3.13 (ε = 0.04), while the others are unloaded.

The situation changes, when the end-to-end distance is increased until the SBs start
being loaded (but still in the entropic regime, i.e. with decreasing temperature the
load would drop to zero). Figure 4.3.3(A) shows the bond-length distribution for
the independent topology and L/LC = 0.75. The histogram shows that all the
12 distributions are identical and that the mean bond length is about 3.09 (the
equilibrium bond length is r0 = 3, i.e. the bond strain is ε = 0.03). The nested and
pseudoknotted topology (Figure 4.3.3B and C) break the symmetry inherent to the
independent case. At the onset of loading (L/LC = 0.06 for nested and L/LC = 0.1
for pseudoknotted) it is only the outermost SBs that take the load, while the inner
bonds are unloaded (see Figure 4.3.3B and C). As a consequence the mean sacrificial
bond length decreases in the nested and pseudoknotted topology because most of
the bonds are unstrained. We find for the independent topology the mean bond
length is < d >= 3.09 (< ε >= 0.03), while it is < d >= (11 ∗ 3 + 3.26)/12 = 3.02
(< ε >= 0.007) for the nested and < d >= (10 ∗ 3 + 2 ∗ 3.13)/12 = 3.02 (< ε >=
0.007) for the pseudoknotted topology.

As these results show at the onset of loading the mean bond length are different for
different topologies. Nevertheless, the onset of loading is at significantly different
end-to-end distances (compare L/LC = 0.75 and 0.06 for the independent and nested
topology, respectively). Consequently, it can not clearly be distinguished if the
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Figure 4.3.4: A simple model to measure SB length distributions for an independent (above)
and nested (below) configuration. In this configuration the end-to-end distance of the chains is
identical. Thus, differences in the sacrificial bond length distribution are not due to different
end-to-end distances, but only stem from the different SB topology.

change in bond length is due to the different topologies or due to the different end-
to-end distance. Thus, in a simplified setting with 4 sticky sites only an independent
and a nested configuration was constructed that shows the onset of loading at exactly
the same end-to-end distance (see Figure 4.3.4). Nevertheless it should be noted
that the position of the sticky sites along the chain are not identical for the two
topologies.
Figure 4.3.5 shows the load-displacement curve upon loading and the bond length
distribution for the two structures shown in Figure 4.3.4 at L/LC = 0.897. Both
configurations experience the same amount of force at the chosen end-to-end dis-
tance. Therefore changes in the distribution can be attributed purely to the different
topologies. Similar to the previous results shown in Figure 4.3.3 also here both SBs
of the independent topology behave identically, while the inner nested SB is shielded
by the outer. It is found that < d >= 3.115 and 3.06 for the independent and nested
topology, respectively. Thus, also in this setting the nested topology has a reduced
mean bond length compared to the independent case.
This results may have implications for experiments that measure the mean bond
length in a system with SBs, like e.g. EXAFS. Measuring a change of bond length
over time may indicate a change of the topology of the involved bonds. In future
the results presented in this thesis may help in deciphering such processes.

Backbone rupture before LC

Our previous results showed that the topology and arrangement of the SBs improves
the mechanical response of single polymer chains. These results have been published
in [78, 92]. In this section it is investigated which topology of SBs gives the high-
est strength. In particular, it will be shown that even if the strength of SBs (the
binding energy) is weaker than the covalent bond (by factor of four in the model
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Figure 4.3.5: (A) The load-displacement curve for the two configurations shown in
Figure 4.3.4. The results show that the force for the two configurations is identical. The bond
length distributions were evaluated at the indicated end-to-end distance (vertical dashed line)
assuring that both systems experience the same amount of mean force. (B) SB length distribu-
tion for the two configurations shown in Figure 4.3.4 at the end-to-end distance L/LC = 0.897
indicated by the vertical dashed line in (A). The SB length distribution for the two SBs of inde-
pendent topology are identical, while the distribution for the nested configuration is different.
In the latter case the outer SB shields the inner one from an elevated load.

presented in this thesis) there exists a certain topology that the strength of the SBs
exceeds the strength of the polymer backbone. In more detail, if more than four
SBs are loaded in parallel and, thus, stretched simultaneously, then their combined
strength exceeds that of the covalent back bone. To investigate this effect a pre-
defined structure as shown in Figure 4.3.6A is investigated. In this structure the
SBs are formed between pairs of (1, 20), (3, 22), (5, 24), (7, 26) and (9, 28). Here the
molecule forms a large loop (something like a minimal parallel β-sheet) and the five
SBs present in the structure are loaded in parallel leading to an effective shear force
on the backbone. The corresponding load displacement curve is the black line in
Figure 4.3.6B. At L/LC = 0.65 the load rises to the strength of the backbone given
by 4 eV/R and then drops suddenly to zero. This behavior is characteristic for
backbone rupture, because the force does not rise again. The red and green curve in
the same figure shows the load-displacement curve for a similar configuration with
a reduced number of 4 and 3 SBs, respectively. These two configurations are weaker
than the covalent backbone. Thus, it is the SBs that rupture resulting in a sequence
of peaks decaying in height. That the curve corresponding to 3 SBs shows 4 peaks
is due to reforming of opened sticky sites during stretching (see Figure 4.3.6B). In
summary, the configuration with 5 SBs loaded in parallel shows a higher strength
than the other two other configurations with four and three SBs, respectively. Thus,
the chain with five parallel SBs is considerably stiffer and stronger but on the other
hand more brittle and less extensible than the other two structures. Most interest-
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ingly, these mechanical properties can be tuned only by manipulating the topologies
of SBs and leaving their absolute number constant.

Figure 4.3.6: Stretching of a single chain with the optimal pseudoknotted SB configuration as
shown in (A). (B) shows the corresponding load-displacement curve for a single chain with 5, 4
and 3 optimal SBs. Stretching of the chain causes a shear strain on the SBs loaded in parallel.
(C) The configuration of the chain with 4 SBs and the mechanism of rupture during tensile
loading and (D) shows the load displacement curve for the corresponding chain.

In order to understand the mechanism of SB rupture for the optimum configuration,
the system with four SBs as shown in Figure 4.3.6C is investigated in more detail.
Figure 4.3.6D shows the loading response of the chain. Upon loading, first, all
four SBs break simultaneously and try reforming new stable SBs. Interestingly,
they form another pseudoknotted loop consisting of three SBs (Figure 4.3.6D-II)
instead of a random SB configuration. The reason is that when the length of the
chain increases by a tensile load, the relative displacement for the upper sticky sites
shown in Figure 4.3.6C is much larger than for the sticky sites in the lower part of
the chain. The six inner sticky sites are still in close vicinity and form an optimal
pseudoknotted loop by three SBs. A similar mechanism occurs for the chain with
three SBs as is demonstrated by the green curve in Figure 4.3.6B. These results
show that it is possible to tune the mechanical properties of a single polymeric
chain by changing the topology of the involved SBs only and leaving the number
of bonds constant. In particular, it is possible to tune the toughness, stiffness and
extensibility of the involved molecules.
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4.3.2 Implications on self-healing

One of the most important properties of biological materials is their ability to heal
and self-repair. One way to achieve this property is to use reversible bonds in
their structure. The reversibility allows the material to reorganize the structure
and recover the mechanical properties such as stiffness and toughness after the load
was released. Nevertheless, the repairing takes some time and the material can not
heal instantaneously [107]. Furthermore, the experimental results show that the
recovery depends on the temperature and that it speeds up when the temperature
is increased. Thus, it was concluded that the SB formation is a random thermally
activated process [11]. In the simulations, we can monitor the polymer recovery by
investigating the formation of SBs in the starting configuration and during unloading
of the loaded structure during a cycling loading experiment.
Although—in contrast to molecular dynamics simulations—Monte Carlo simulations
do not directly give a time scale of the involved processes, it is still possible to gain
insight on two extreme scenarios of unloading, i.e. infinitely fast and quasi-static
unloading. For infinitely fast unloading the time for chain unloading is smaller than
the time needed for SB formation. This condition is fulfilled when the sticky sites are
introduced in the chain, when the small end-to-end distance of the starting configu-
ration is reached. Here no SB is closed before the structure is completely unloaded.
Thus, the unloading is much faster than SB formation. The other extreme of quasi-
static unloading has been used as the standard procedure for the unloading branch
of a cyclic loading experiment. Here the end-to-end distance was only gradually
decreased and the system was given enough time to equilibrate during each simula-
tion step. Thus, the SBs had enough time to form during unloading. All unloading
curves shown in this thesis have been obtained for quasi static unloading (e.g. in
Figure 4.3.1).
For the case of fast unloading Figure 4.3.7 shows the average number of formed
SBs as a function of time in unit of Monte Carlo steps (MCS) for two different SB
densities. Both densities show an initially very steep increase in the number of SBs
that subsequently slows down for longer times. This behavior was also observed
experimentally. For cyclic loading experiments of the mussel byssus with different
waiting times between consecutive loading cycles, it was shown that during the first
hour after loading almost 70 % of the mechanical properties have been recovered,
while the rate of recovery then considerably slows down to a recovery of 95 % after
about 168 hours [11].
Since after the chains have been stretched to their contour length all SBs are open,
quasi-static unloading yields the same results for all systems with the same density
and arrangement of sticky sites. The results of these unloading tests are summarized
in Table 4.1. Nevertheless, the topology of SBs after quasi-static unloading differs
from the topology after fast unloading that was used for preparing the starting
configuration of the first loading. Therefore, the second stretching differs from the
first loading as can be seen in Figure 4.3.8 for the chain with ρs = 0.48.
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Figure 4.3.7: The number of closed SBs as a function of time for two SB densities. The data
are the average of 100 independent runs for each sticky site density. Note, the logarithmic
scaling of the time axis. The inset shows the same data with a linear time axis.

4F shown in Figure 4.3.8 is the difference between first (F 1) and second (F 2) load-
ing e.g. 4F = F1 − F2. Whenever 4F is negative (indicated by red points) this
shows that the second loading had a higher load than the first, while black dots de-
note 4F > 0. The results clearly show that on average 4F > 0 indicating that the
area under the first loading is clearly larger than the second loading. The decrease
in the work to fracture is approximately 20 % from 36.7 to 30 eV (see Table 4.1)
i.e. when the quasi-statically unloaded chains are stretched for the second time, the
area under the curve for the second stretching is smaller than the first one. This
decrease directly corresponds to the different preparation of the starting configura-
tion that changes the SB configuration of the chain. The starting configuration for
the first loading cycle has been prepared by fast unloading the system, while the
starting configuration of the second stretching cycle has been prepared by quasi-
static unloading. During quasi-static unloading the majority of the reformed SBs
are neighbors along the chain. For the system with ρs = 0.48, 83± 3 % are indepen-
dent SBs and the 17± 3 % are of nested configuration after quasi static unloading.
The starting configuration obtained by fast unloading was made of 72± 3.4 % inde-
pendent, 14.5±2.4% nested and 13.5±2.1% pseudoknotted SBs. The decrease in the
number of pseudoknotted configurations is responsible for the 20 % of the reduced
area for the second stretching. Thus, the results presented indicate that one way to
achieve a complete recovery is to ensure a fast unloading process. A similar mecha-
nism might explain why there are a clear difference in the load-displacement curves
of titin in consecutive cycles, where the second stretching cycle has a lower number
of the characteristic saw-tooth pattern corresponding to bond rupture [4, 23].
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Figure 4.3.8: The difference ∆F = F1 − F2 of the load-displacement curves for the first and
second stretching. Black points denote ∆F > 0 and red points ∆F < 0, respectively. Clearly,
on average ∆F > 0 showing that the first stretching cycle shows on average a higher load than
the second. This results in an approximately 20 % decrease in E1 - see also Table 4.1.

4.3.3 Conclusion

Using a simple model, the influence of the number and topology of SBs on the
mechanical behavior of polymeric chains during cyclic loading was investigated. In
general both, the work to fracture E1 and the energy dissipation ∆E, increase with
increasing sticky site density. While for low sticky site densities a discrete rupture of
single SBs can be observed, for high sticky site densities these single peaks merge into
one large plateau. Computational cyclic loading experiments showed a pronounced
asymmetry between the stretching and unloading branch for all sticky site densities.
This hysteresis is due to two different reasons: first, the SBs reform at elongations
smaller than they rupture and, second, the SBs reform between sticky sites with
a smaller distance along the chain than they have been originally formed. Conse-
quently upon quasi-static unloading the topology of the SBs changes. In general,
the amount of SBs of the independent type increases on cost of the pseudoknotted
type.
It was shown that the nested and pseudoknotted topology possess superior mechan-
ical properties compared to the independent configuration. The work to fracture
and the dissipated energy are increased a factor more than two from a purely inde-
pendent to the pseudoknotted topology. This large increase is due to a pronounced
reforming of the bonds ruptured during loading. After a quasi-static unloading the
formation of SBs of independent type are favored on cost of the pseudoknotted be-
havior. Thus, the mechanical performance of the polymer is deteriorated when it
is stretched a second time. It can be concluded that after release of the load a fast
return to its initial state is essential for the polymer to maintain its mechanical
performance.
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Although simple the model presented captures several aspects of sacrificial bonding
also found in experiments. These are, first, the characteristic sawtooth patterns
found for low sticky site densities, second, the pronounced hysteresis in cyclic load-
ing with an energy dissipation of 70 % for high sticky site densities, third, the
characteristic time scale of reformation of SBs after unloading with an initial fast
and a subsequent slow recovery, and fourth, the deterioration of mechanical proper-
ties during second loading depending on unloading speed. In addition, it has been
found that the mean SB length is different for chains with a constant number of
sticky sites but different SB configuration. Thus, it was shown that the SB topology
may change the mean bond length of SBs, which might have important implications
for the interpretation of experiments that measure the mean bond length, like e.g.
EXAFS methods.

4.4 Influence of the arrangement of sticky sites

In the previous section we have discussed the influence of SB density and topology on
the mechanical properties of single polymer chains. In this section we will focus on
the impact of a different arrangement of SBs in the chain on their mechanics. Three
different arrangements of sticky sites (ordered, patches and random, respectively)
have been investigated for a chain with ρs = 0.24, and two arrangements (ordered
and random) have been investigated for ρs = 0.08. For each case, 20 independent
simulations were generated and tested. The starting configurations were prepared by
introducing the sticky sites in the crumpled configuration with the short end-to-end
distance L/LC = 0.04 (corresponding to fast unloading as discussed in the previous
section). The top row of Figure 4.4.2 shows a sketch of the different arrangements.
For the ordered arrangement the sticky sites are introduced regularly with always
the same number of non-sticky sites in between. For example, in the chain with
ρs = 0.08 the sticky sites are separated by ten non-sticky sites and for ρs = 0.24
three non-sticky sites are in between two neighboring sticky sites. For the patches
arrangement, the chain was divided into three segments of equal length. The sticky
sites have been introduced only in the outer two patches such that each sticky site
is between two non-sticky sites; the middle segment is without any sticky sites. In
the third arrangement the sticky sites were distributed randomly along the chain.
The only constraint was that the two ending beads were not allowed to be sticky, as
well as it was forbidden that two sticky sites are direct neighbors.
Figure 4.4.1 shows load-displacement curves of a chain with ρs = 0.08 and two dif-
ferent sticky sites arrangements; ordered and random, respectively. The five peaks in
Figure 4.4.1(A) for the ordered arrangement have been explained before section 4.3
and [78]. A parameter directly related to the toughness of the chain is the work
to fracture W = E1 + EC . E1 is the work to elongate the chain until the contour
length and EC = 25 eV is the additional contribution of backbone stretching and
rupture when elongating the chain over its contour length. As discussed before in
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Chapter 4 Single Chain with Reversible Cross-links

Figure 4.4.1: Load-displacement curves for an ordered and random arrangement of sticky sites
with N = 50, kBT = 25 meV and ρs = 0.08. In the random arrangement the apparent stiffness
of the material (i.e. the mean slope of the initial part of the curve) is indicated.

section 4.3, the backbone contribution is identical for all systems. The work to frac-
ture for ρs = 0.08 with the ordered and random arrangements are E1 = 11.38 eV
and E1 = 11.45 eV , respectively (EC is omitted throughout this thesis) (see also
Table 4.2).
The strength Fm of the chain is calculated as the maximum amount of force after
subtracting the pure covalent contribution during the loading test. The pure covalent
contribution is given by a loading test of the bare chain without any sticky sites. For
the ordered arrangement it is found that Fm = 0.77eV/R for the ordered distribution
(in particular also lower than the theoretical strength of F theory

m = 1.25 eV/R - see
section 4.2). Loading of the chain with a random distribution of sticky sites created
SB rupture events in different end-to-end distances due to different distances between
the sticky sites along the chain. Consequently, the load-displacement curve shown
in Figure 4.4.1(B) indicates a higher number of peaks compared to the ordered
arrangement, but with a lower height, because after averaging the peaks are smeared
out. Thus, the strength for random arrangement is Fm = 0.26eV/R which is almost
three times smaller than the strength of the ordered arrangement.
Another parameter that can be deduced from the load-displacement curves is the
apparent stiffness. In this thesis the apparent stiffness is defined as the mean slope
of the first increase in the load-displacement curve. This is in contrast to the normal
stiffness which is defined as the slope of the first peak in the curve and describes the
elastic behavior of the material. In other words, the apparent stiffness is a measure of
how much force is needed to elongate the molecule including the plastic deformation
of the material, i.e. including the rupture of bonds that is characteristic for plastic
deformation. For ρs = 0.08 and the random arrangement the slope of the gray line
in Figure 4.4.1(B) shows the apparent stiffness which is about Y = 1.84meV/R2(see
Table 4.2).
Three different arrangements (ordered, patches and random)have been generated

58



4.4 Influence of the arrangement of sticky sites

and tested for the chains with ρs = 0.24. Figure 4.4.2 shows the arrangement of
sticky sites along the chain as well as the corresponding load-displacement curves.
Figure 4.4.2(A) shows the load displacement curve for ρs = 0.24 and the ordered
arrangement where the two neighboring sticky sites are separated by other three
beads. Therefore the distance between them is much smaller than for the chain
with ρs = 0.08 where ten beads are between sticky sites. Consequently, in contrast
to the low SB density, the load-displacement curve does not show single peaks but
after rupture of each SB the force does not drop to zero. Thus, it is possible to
measure the apparent stiffness also for the ordered distribution which is given by
Y = 5.03 meV/R2 and indicated by the gray line in Figure 4.4.2(A). As discussed
before the work to fracture depends on the number of SBs and is larger for higher
SB densities. We find E1 = 22.55 eV for ρs = 0.24 and E1 = 11.38 eV for ρs = 0.08,
respectively. The strength of the chain with ρs = 0.24 and the ordered arrangement
is Fm = 0.7 eV/R which is almost similar to the strength for ρs = 0.08 (see also
Table 4.2 for a summary of the found parameters). Thus, one can conclude that the
strength does not depend on the number of sticky sites for the chains with ordered
arrangement.

Figure 4.4.2: Load displacement curves for three different distributions of sticky sites (ordered,
patches and random) and N = 50, kBT = 25 meV and ρs = 0.24. The gray lines indicate the
apparent stiffness of the materials defined as the mean slope of the first part of the load-
displacement curve. In the top part of the figure a sketch of the different arrangements of sticky
sites are shown (sticky sites are shown in red, non-sticky sites in blue).

When the arrangement changes from ordered to patches, the load-displacement curve
shows significant changes that can be seen in Figure 4.4.2(B). For the patches ar-
rangement, a very late onset of the force is observed (L/LC ≈ 0.7) and before this
length, only a few small peaks can be seen which are due to breaking of a few SBs
that have been formed between sticky sites between different segments. Thereafter,
the intermediate non-sticky site segment stretches and no force upon loading is ob-
served from L/LC ≈ 0.3 to L/LC ≈ 0.6. Therefore the force rises abruptly when
L/LC ≈ 0.7 in a very short length which is the reason for the rather high apparent
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Chapter 4 Single Chain with Reversible Cross-links

stiffness (Y = 16.26meV/R2) compared to all other SB densities and arrangements
(see Table 4.2). The work to fracture (E1 = 19.63 eV ) is a bit smaller than for the
ordered arrangement which is due to the smaller number of reformed SBs during
loading.
Finally Figure 4.4.2(C) shows the load-displacement curve for the random arrange-
ment with two distinct regions; below L/LC ≈ 0.8 irregular small peaks and above
this length more regular peaks with higher heights can be observed. The first region
corresponds to the breaking of SBs formed by the sticky sites which are far apart
along the chain. Due to the large distance between sticky sites, the SB breaks in a
shorter chain length. Nevertheless, the number of intact SBs stays almost constant
meaning that after breaking of each SB, the opened sticky sites which are closer
together along the chain reform a new SB. When the end-to-end distance of the
chain reaches L/LC ≈ 0.8, the chain is so much stretched that reforming of SBs
stops and the number of intact SBs drops rapidly to zero during further elongation.
It is the breaking of this noticeable number of SBs in a short distance that provides
the number of peaks with higher amount of force. Compared to the chain with
ρs = 0.08, it is clear that due to the fewer number of sticky sites, the reforming
of SBs is not occurring and only a single region of rather low force is observed as
shown in Figure 4.4.1(B). The chain with ρs = 0.24 and random arrangement shows
the work to fracture of E1 = 23.51 eV , the apparent stiffness of Y = 1.84 meV/R2

and the strength of Fm = 0.55 eV/R.
Table 4.2 summarizes the three discussed parameters to recognize the influence of
SB density and arrangement on the mechanical properties of the single chain. The
results demonstrate that the work to fracture strongly depends on the number of SBs
in the chain and it does not change dramatically with the SB distribution. The work
to fracture for the chain of ρs = 0.08 and two arrangements stays almost constant
within error bars but it changes slightly for the chain with ρs = 0.24. The random
and the ordered distribution have an almost similar work to fracture E1 = 23.51 eV
and E1 = 22.55 eV , respectively, that moderately decreases to E1 = 19.63 eV for
the patches arrangement which is a reduction by factor of 20 % .
Thus, it is the number of broken SBs which determine the work to fracture of the
material and not the arrangement. For non-reversible SBs, it is expected to have an
identical amount of work to fracture for different arrangements even for chains with
the two extreme configurations of SBs loaded in series or in parallel. However, the
force needed to break parallel SBs is much larger than to rupture the same number
of SBs loaded in parallel, but the product of elongation and strength stays constant.
It is the reversibility of the SBs allowing for bond reformation after rupture that
is responsible for the slight decrease in E1. Therefore the difference of the work to
fracture of the patches arrangement and the other two configurations shows that in
the former case the number of reformed SBs is smaller than for the two latter cases.
This is because SB rupturing starts in a large end-to-end distance comparable to
the second region of the random configuration and the SB reforming is negligible.
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SB density arrangement
Work to fracture Apparent stiffness Strength

E1[eV ] Y [meV/R2] Fm[eV/R]

ρs = 0.08 Random 11.45 1.84 0.26
Ordered 11.38 − 0.77

ρs = 0.24
Random 23.51 1.84 0.55
Ordered 22.55 5.03 0.7
Patches 19.63 16.26 0.9

Table 4.2: The work to fracture E1, the apparent stiffness Y and the strength Fm of the different
investigated structures in this section.

This situation is reversed when the apparent stiffness is investigated. The results
show that the apparent stiffness depends rather on the SB distribution and not on
the number of SBs. The apparent stiffness is a measure of how much force needed to
elongate the chain and therefore is a result of SB rupture. The measured apparent
stiffness for chains with different SB densities (i.e. ρs = 0.08 and ρs = 0.24) and
random distribution show that the apparent stiffness depends on the arrangement
of sticky sites. Although the number of SBs has changed by factor of three for the
two investigated densities the apparent stiffness is the same. For the chains with
ρs = 0.24 and different SB distributions the apparent stiffness (shown by the gray
dashed line in Figure 4.4.2) changes from 1.84meV/R2 for the random distribution
to 16.26meV/R2 for the patches arrangement which is almost a factor of nine. This
increase for the patches is due to very short distance between sticky sites along the
chain (each two sticky sites have only one non-sticky site in between). Thus, the
SBs form between sticky sites that are very close along the chain. Therefore the
SBs are going to break at large extensions of the chain leading to a late but high
increase in the load.

The measured results for the strength show that for the same sticky site density the
random configuration has always the smallest strength due to smearing of the SB
force peaks over the entire length. The two fold increase in strength for the random
arrangement with ρs = 0.08 and ρs = 0.24, respectively, is due to the second region
of loading for the higher SB density. The chain with ρs = 0.24 and the patches
arrangement has the largest strength of all investigated structures.

This can be explained by a higher probability of formation of the pseudoknotted
topology for the patches configuration. Out of 20 simulation runs only 3 showed a
pseudoknotted topology for random configuration, while this number increased to
10 for the ordered and patches configuration. The higher strength of the patches
configuration is because more of these 10 loops ruptured at the same elongation of
the chain.
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4.4.1 Conclusion

The results presented in this work suggest the following guidelines for tailoring
the behavior of materials by controlling sticky site density and distribution. To
maximize the work to fracture (toughness) of the systems, the number of SBs and
their ability to reform should be maximized, regardless of the specific distribution
of the SBs. For an equal number of SBs, the apparent stiffness of a material can be
greatly enhanced when the SBs are distributed such that it is ensured that the force
rises over a small change in length of the polymer. In the present study, this was
achieved by arranging SBs in patches in particular regions of the polymer, effectively
reducing the distance between sticky sites. Finally, any ordered arrangement of SBs
yields an elevated strength (both ordered and patches) when compared with a purely
random configuration.
The influence of the number and the distribution of SBs on the mechanical behavior
of single polymeric chains were investigated. It was shown that the work to fracture,
related to the toughness of the material, is mainly determined by the number of SBs
that have to be broken when the polymer is elongated, while the apparent stiffness
and, to a lesser extent, the strength of the material is strongly dependent on the
distribution of SBs in the system. The results presented have important implica-
tions for the development of new materials with tailored mechanical properties that
employ sacrificial bonding – a concept that is masterly applied by nature to enhance
the properties of biological materials.
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5 Chain Bundles
The presented results in this chapter show that there are two possibilities of backbone
failure before the contour length is reached. Most surprisingly only two cross-links
are sufficient to break the backbone. This failure is caused by the topology of the
interchain cross-links in the chain bundle where the sticky sites are distributed in
an ordered arrangement. However, the backbone failure weakens the strength of the
material, but increases the amount of work to elongate the system as well as the ap-
parent stiffness of the bundles. Three configurations prevent backbone failure, first,
the small grafting density, second, the low sticky site density and third, the random
distribution of sticky sites. Furthermore, the simulations showed a significant dif-
ference between consecutive loading cycles. This is due to different topologies of the
cross-links.

The presented work in this chapter is based on a model of chain bundles. In our
model a chain model is made of nine chains consisting of N = 50 beads each, i.e. a
total number of 450 beads is present in the system. On each side the end beads of
each chain are permanently grafted to a planer substrate. The distance of the two
plates defines the end-to-end distance of the chains. The grafting points are located
on the positions of triangular lattice. As in the previous chapters some of the inner
beads are defined as sticky sites. Always two of these sticky sites can form one
reversible cross link. If the formed cross-link is between the sticky sites located in
the same chain the cross-link is called an intrachain cross-link and if the two sticky
sites are in different chains, it is called an interchain cross-link. In this chapter,
first we focus on the possibility of backbone failure before the contour length for
a chain bundle caused by weak reversible cross-links. In the previous chapter, it
was shown that by manipulating the structure and the cross-link configuration in a
single chain,the backbone may rupture before the contour length is reached during
elongation as is shown in Figure 4.3.6. Additionally, we also present two simple
configurations of sticky sites that lead to backbone rupture before the chains reach
their contour length.
The simplified models help to understand the load-displacement curves of more
general models with more cross-links and chains in the system. Simulations have
been performed to investigate the influence of cross-link density and the grafting
density on the mechanical response of the system during loading and cyclic loading
tests.
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5.1 Different configurations of sticky sites leading to
bundle failure

As shown in chapter 4, shearing five cross-links in one of the chains causes backbone
failure. For a chain bundle there exist more configurations of cross-links that lead
to backbone failure. These are depending on the interchain cross-links configuration
and on the grafting density of the chains. Figure 5.1.1 presents three simple config-
urations containing cross-links to investigate the possibility of backbone failure in
the chain-bundles system for a simple system with two chains only each of length
N = 15. The configurations investigated differ in the grafting density. In the first
model the grafting density is large. Here the ending beads of the chains have the dis-
tance equal to the equilibrium distance (d = r0) as is indicated in Figure 5.1.1(a,b).
The second configuration is characterized by a grafting density where the ending
beads of the chains have a larger distance than the equilibrium distance (d > r0) as
is shown in Figure 5.1.1(c). The main difference of the two configurations is that
in the case of the high grafting density, an interchain cross-link does not experience
any force if the involved sticky sites have the same position on their chain. This
is because in this case the equilibrium distance of cross-links is the same as the
distance between the two chains.

For the case of d = r0 the backbone ruptures when the system contains five interchain
cross-links that experience the same force since the strength of each cross-link is the
quarter of the covalent bond strength. Therefore the tensile load on the chains
would be transmitted as a shear force on the five cross-link that is stronger than
one covalent bond. In order to distribute the force among the five cross-link in
such a way, the configuration should fulfill two conditions; first: the two connected
sticky sites should not have the same positions in their chains (see Figure 5.1.1a).
Otherwise the cross-links would not feel any force. E.g. the three right cross-
links in Figure 5.1.1b do not experience any load. The second condition is that the
distance between the sticky sites in the chains should be the same, otherwise the
force does not distribute equally on the five cross-links and the cross-links start to
break separately. Figure 5.1.1A shows a load-displacement curve for a configuration
fulfilling these two conditions. It shows a sharp peak at L/LC ≈ 0.8 due to the
failure of one of the two chains and the second rise of the load close to the contour
length is because of contribution of the second chain.

If the cross-links have a configuration as shown in Figure 5.1.1b then the cross-links
are not loaded in parallel. Here the first two cross-links are formed between beads
(1, 5) and (3, 7) (the two number give the position of the beads in the two chains).
The other three cross-links are formed between beads having the same position in
the chain. In this case the load is taken by the first two cross-links leading to cross-
link rupture and the other three cross-links do not contribute in loading since they
have the same positions in their chains. Thus, they are not influenced by the tensile
load. In Figure 5.1.1B, the first peak shows the breaking of the two cross-links ((1, 5)
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Figure 5.1.1: Different cross-link configurations that lead to backbone rupture of chain bun-
dles. The top row shows sketches of the starting configuration of the system and the positions of
the beads along the chain. The numbers shown indicate the number of the beads in the chain. In
(A), the connected sticky sites do not have the same Z positions along their chain and therefore
five cross-links simultaneously feel a shear load. In (B), the last three cross-links have the same
Z positions in their chains and thus the three cross-links do not feel any force. Note that the
distance of the chains d (defining the grafting density) is equal to the equilibrium distance of
the cross-links in (A) and (B). (C) shows a system with only two cross-links where the distance
between the chains is larger than the equilibrium distance of the cross-links. The bottom row
shows the load-displacement curves for the corresponding configurations. The gray dashed line
shows the load displacement curve for the system without sticky sites. The load-displacement
curve for (A) shows a backbone rupture at L/LC ≈ 0.8. In (B), there is no backbone rupture
and, thus, the peaks in the corresponding load-displacement curve are due to the contribution
of the first two cross-links between (1, 5) and (3, 7). The Load-displacement curve for (C) shows
that the backbone ruptures slightly before the system without sticky sites and the inset shows
the force analysis on the bead number (7) in the corresponding configuration in the top chain.

and(3, 7)). Then during stretching new intrachain cross-links are formed between
(1, 3) and (5, 7). The rupture of these two cross-links result in the second sharp
peak around L/LC = 0.9. In particular in this configuration there is no failure of
the backbone before L/LC = 1.

Most interestingly, if the distance between the chains is larger than the equilibrium
distance of the cross-links d > r0, backbone failure is possible even with only two
interchain cross-links. This is unexpected because the strength of one cross-link is
only a quarter of a covalent bond. Thus, at first sight one would expect that a
minimum of 5 sticky sites is needed for reaching a strength larger than the strength
of the backbone. Figure 5.1.1C shows a sketch of the corresponding configuration
and the inset shows the force analysis of the bead number 7 in the upper chain.
In this configuration, the two cross-links hold the intermediate part of the chains
parallel together. Thus, they are aligned in the longitudinal direction. F1 shows the
covalent force on the inner part of the loop formed by the two cross-links. F2 shows
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the outer covalent force, FSB shows the force on the cross-link and θ shows the angle
between the chain with the direction of tensile load. Investigating the forces show
that:

F2sin(θ) = FSB
F2cos(θ) = F1

=⇒ FSB = F1tan(θ) V if

 F1tan(θ) > 1.25
FSB
tan(θ) > 5

SB Rupture

Backbone Rupture

(5.1.1)

This analysis shows that if F1tan(θ) > 1.25 then the cross-link ruptures and if
FSB

tan(θ) > 5 the backbone fails. If we insert the values of the strength of sacrificial
and covalent bonds FSB = 1.25 eV/R and F1 = 5 eV/R then the backbone ruptures
when tan θ < FSB

F1
= 0.25 (see inset of Figure 5.1.1C) and the cross-link breaks when

tan θ > FSB

F1
= 0.25. Therefore, the backbone of the chain will fail by a rupture of

one covalent bond located outside the two cross-links (the covalent bond which is
not inside the loop formed by cross-links) if θ < 15°, while for θ > 15°, the cross-
links break. In this configuration, the two cross-links hold the intermediate part of
the chains parallel together. Thus, they are aligned in the longitudinal direction
and the force on the backbone is a bit smaller than the net force on the outer part.
Consequently, the failure of the backbone in the outer part in the structure results
in a sharp peak in the load-displacement curve (see Figure 5.1.1C).
So far we have shown that for special configurations of the cross-links failure of
the backbone is possible. Different to the case of a single chain, in a chain bundle
even two cross-links may be sufficient to rupture the chain, although the strength
of one bond is only one quarter of covalent bond. In the following parts, first we
perform stretching and cyclic loading test on the bundles to investigate the influence
of grafting and cross-link density on the mechanical properties of the system.

5.2 Stretching of chain bundles

The following sections discuss the mechanical properties of chain bundles containing
cross-links by investigating the influence of cross-link density and grafting density
on the mechanical properties of the bundles. For this experiment, the starting
configuration was prepared by unloading the bundle without sticky sites from the
contour length to the starting end-to-end distance L/LC ≈ 0.18. Then the sticky
sites in the ordered arrangement were introduced and allowed to find their partner
randomly to form cross-link. Then, the chain bundle is stretched from the starting
end-to-end distance above the contour length i.e. from L/LC ≈ 0.18 to L/LC ≈ 1.06.
The load-displacement curve, the number of intact cross-link and the mechanical
parameters are calculated to understand, first, the influence of grafting density on
the bundle mechanics for the system with constant cross-link density ρ = 0.48.
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Second, the most critical grafting density has been chosen to investigate the influence
of cross-link density on the mechanical responses of the system.

5.2.1 Influence of the grafting density

Chain bundles with different distances d between the chains and constant cross-link
density (ρ = 0.48) were stretched to understand the role of grafting density on load-
displacement curves. The smaller the distance between the chains, the higher the
grafting density. Simulations were performed for several chain distances from d = r0
to d = 20r0. Figure 5.2.1 shows the results for d = r0, 5r0, 6r0 and 20r0.
Figure 5.2.1 shows that for small end-to-end distances the number of intrachain
cross-links is consistently larger than the number of interchain cross-links for all
investigated grafting densities. Focusing on the number of interchain cross-links
only it can be observed that this number decreases with decreasing grafting density.
For the lowest grafting density investigated (d = 20r0) the chains are that much
separated that no interchain cross-links can form. Thus, this system behaves like
nine independent chains loaded in parallel, i.e. the load-displacement curve is given
by multiplying the load-displacement curves of the single chain by nine. During
stretching mostly the intrachain cross-links rupture and the opened sticky sites form
new cross-links. This reforming is dependent on the grafting density. E.g. the
number of interchain cross-links rises for the system with d = r0 and d = 6r0 from
L/LC ≈ 0.5 and L/LC ≈ 0.8, respectively while for the system with d = 20r0 no
interchain cross-link forms. Because the end-to-end distance increases, the crumpled
starting structure straightens and the probability of forming interchain cross-link is
largely increased. Most important even a small number of interchain cross-links hold
the chains close together. In particular for the system with d = 5r0 and 6r0 , at first
there are only few interchain cross-links but upon stretching this number suddenly
increases as is shown in the insets of Figure 5.2.1.
In Figure 5.2.1 orange lines in the load-displacement curves denote the first chain
rupture during stretching. For d = r0 the interchain cross-link configuration as dis-
cussed shown in Figure 5.1.1a causes the backbone rupturing, while for d = 5r0 both
discussed models of backbone failure are possible i.e. backbone failure is possible
with two or more parallel interchain cross-link (see Figure 5.1.1a and c). Because
increasing the distance between the chains (i.e., decreasing the grafting density)
decreases the number of interchain cross-links, grafting density is the most crucial
parameter determining backbone rupture. For the systems with r0 ≤ d ≤ 5r0 upon
stretching the number of interchain cross-links increases and the first backbone rup-
ture occurs at smaller end-to-end distances (see also Figure 5.2.2A).
Simultaneously the work to elongate the chain to its contour length increases. This
result seems to indicate that the work to elongate the molecule is directly related
to the position of the first backbone rupture (see Figure 5.2.2A,C). Figure 5.2.2B
shows the strength of the bundle for different grafting densities. The strength is
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Figure 5.2.1: Load-displacement curves for systems with ρ = 0.48 and different grafting den-
sities. The distance between the chains is (A)d = r0, (B)d = 5r0, (C)d = 6r0 and (D)d = 20r0.
Black dots show the load-displacement of the system, while the gray dashed line shows the
load-displacement curve for the bare system without cross-link. The solid orange line indicates
the position of the first backbone rupture. The insets show the averaged percentage of intact
cross-links. Black dots show the intrachain intact cross-links and red dots denote the interchain
intact cross-links.

defined by the maximum load the system can sustain. For all investigated systems
this maximum load occurs after the system was stretched to its contour length.
Because at extensions larger than the contour length all covalent bonds rupture, the
strength determined in our model is a measure of the number of unbroken chains
when reaching the contour length. As an example, the strength for d = r0 is larger
than for d = 2r0 showing that the number of broken chains before reaching the
contour length is larger for d = 2r0 than for d = r0. Figure 5.2.2D shows the
work to fracture that (differently from the single chain case) is significantly different
from the work to elongate the system. It is the chain failure before reaching the
contour length that changes the situation. The work to fracture is now related to
the strength of the system. The system with larger strength need more energy to
fracture the system (see Figure 5.2.2B,D).

For the configuration with d = 6r0, the grafting density is a bit smaller than in
the d = 5r0 case, but the number of interchain cross-links upon stretching is much
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Figure 5.2.2: Mechanical parameters for systems with ρ = 0.48 and different grafting densities.
The blue dashed line is a guide to the eye. (A) shows the position of the first backbone rupture,
(B) shows the strength of the systems, (C) shows the work to elongate the chains till the contour
length and (D) shows the work to fracture.

lower and thus, the probability of backbone rupture before reaching the contour
length is strongly reduced (see Figure 5.2.1B,C). Comparison of the data shown in
Figure 5.2.2 shows the large change in the mechanical behavior for systems with
grafting densities between d = 5r0 and 10r0. In this range of grafting densities the
systems essentially evolves from a system consisting of many interacting chains to
a system consisting of many non-interacting, independent chains. This is shown by
the steep increase in the position of the first backbone rupture from a value well
below to a value well above the contour length. Simultaneously the strength as well
as the work to fracture rise considerably, while the work to elongate the molecule
shows a significant drop.

5.2.2 Cross-link density

The results of the influence of the grafting density on the mechanical properties
of chain bundles indicated that the first rupture happens earlier for chain bundles
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with d = 5r0. This system also showed the largest amount of energy to elongate
the molecule till the contour length. Therefore in the following the system with
d = 5r0 has been chosen to investigate the role of cross-link density on the mechanical
response of the systems. Three different cross-link densities ρ = 0.08, ρ = 0.24 and
ρ = 0.48 were studied. For all densities the sticky sites are distributed in the ordered
arrangement i.e. the distance between the sticky sites along the chains are identical.

For ρ = 0.08 (see Figure 5.2.3A) a few low peaks before L/LC = 0.8 can be observed
that are due to the rupture of mostly intrachain cross-links. The inset in the figure
shows that the number of interchain cross-link increases upon loading on cost of the
number of intrachain cross-links. Increasing the density of cross-links to ρ = 0.24 and
ρ = 0.48 (see Figure 5.2.3B,C) causes the change of discrete cross-link rupture for
ρ = 0.08 to the continuous rupture for cross-links in ρ = 0.48. During stretching, the
intrachain cross-links start to break and more interchain cross-links are formed. thus
the backbone rupture occurs earlier for a system with higher number of cross-links
(compare the shift of the orange line indicating first backbone rupture in Figure 5.2.3
for the different densities). There is no backbone rupture before reaching the contour
length for the chain with ρ = 0.08. Thus, the strength of the bundle with ρ = 0.08
is identical to the strength of the bundles without cross-link i.e. all chains are
intact and are, thus, contributing to the strength when the system finally breaks at
extensions larger than the contour length.

Figure 5.2.3: Load-displacement curve for the system with d = 5r0 and different cross-link
densities: (A) ρ = 0.08, (B) ρ = 0.24 and (C) ρ = 0.48. The black symbol shows the loading
response of the chain bundles. The gray dash line shows the loading curve of the bundles without
sticky sites and the solid orange line indicates the first backbone rupture upon loading. The
inset figures denote the intact cross-link percentage whereas the black dots shows the percentage
of intrachain cross-links and the red shows the interchain cross-link percentages upon loading.

The work to fracture and also the work to elongate the system till the contour length
are higher for higher cross-link densities. Furthermore, Figure 5.2.3 shows that the
apparent stiffness increases when the density of cross-links increases. Therefore the
mechanical properties of chain bundles strongly depend on the density of cross-links
in the system. In one hand increasing cross-links increases the area under the loading
curves as well as the apparent stiffness, while on the other hand it may provide the
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backbone failure effectively weakening the material. Additionally a broken backbone
can not recover again.

5.3 Cyclic loading on chain-bundles

This section describes cyclic loading experiments on systems with a constant cross-
link density of ρ = 0.48 and different chain distances. Then the cyclic loading test is
performed on the system with d = 5r0 and different cross-link densities ρ = 0.08, ρ =
0.24 and ρ = 0.48. The sticky sites are distributed in ordered arrangement for all
densities, i.e. the distance between the sticky sites along the chains are identical. In
these simulations the bundles are stretched to their contour length. Subsequently the
loading is reversed to unload the system until an end-to-end distance of L/LC ≈ 0.18
is reached. Then the structures are stretched second time to L/LC = 1.06 the
extension at which all chains fail (see Figure 5.3.1, Figure 5.3.3).

5.3.1 Influence of grafting density on cyclic loading

Figure 5.3.1A shows the load-displacement curve for cyclic loading tests of bundles
with d = r0 and ρ = 0.48. The result of the first stretching is similar to the
previously shown results. The only difference is that the chains are loaded till the
contour length and not beyond. Thus, the behavior of intact cross-links in the
system is the same as shown previously where the intrachain cross-link breaks and
the interchain cross-links reform during stretching (see Figure 5.3.1A,a).
Upon unloading, the force drops fast and provides a large asymmetry between load-
ing and unloading. Simultaneously the number of intact interchain and intrachain
cross-links slightly increase. The second loading is significantly different to the first
loading. During the second loading the cross-links do not contribute to the loading
and the system behaves like bundles without cross-links. The significant difference
between the first and second stretching cycle is caused by the different topologies of
cross-links during these two tests. In the starting configuration 60 % of the cross-
links were intrachain and 40 % interchain cross-links. Upon loading all intrachain
and some of the interchain cross-links rupture. The only cross-links that persist
are interchain cross-links that are formed between sticky sites that have the same
position in their chains. This is due to the special grafting density that ensures
that the distance of the chains equals the equilibrium distance of the cross-links.
Furthermore, due to the ordered arrangement and the appropriate distance of the
chain, most of the cross-links that reform are formed between sticky sites at the
same position in different chains. As a result, during the first stretching cycle al-
most all the cross-links are transformed into interchain cross-links (at the end of
the first stretching cycle when the contour length is reached, 96 % of the cross-links
are interchain). These cross-links do not contribute to the loading. Nevertheless,

71



Chapter 5 Chain Bundles

Figure 5.3.1: Cyclic loading and the number of intact cross-links for the system with ρ = 0.48
and different grafting densities for d = r0,d = 6r0, d = 8r0 and d = 20r0. The figures shows
the load-displacement curve of the system (top) and the number of intact cross-links (bottom)
for different grafting densities, the black curve shows the first stretching of the system until
the contour length, the red curve shows the unloading and the green curve shows the second
stretching failure of the system. In the bottom row the closed symbols show the number of intact
intrachain cross-links and the open symbols show the number of interchain cross-links. The
numbers correspond to first stretching (black), unloading (red) and second stretching (green).

the cross-links present reduce the fluctuations of the chains. This effect was also
reported in the work of [74, 66] for a different rigidity of the chain. Because the
topology of the starting configuration was forming randomly, there is also the pos-
sibility that some cross-links are of the topology that leads to backbone failure as
discussed in the last section. On average 2.4 chains fail during the first stretching
before the contour length is reached. The newly formed topology during loading
and unloading of the structure does not allow for any backbone rupture before LC
is reached. Thus, during second stretching the system fails by rupture of the intact
chains after the contour length was reached. Nevertheless, the ultimate force for the
second loading is much smaller than for the system without cross-links because of
the rupture of some chains during the first loading (see Figure 5.3.1A,a).

As discussed before the number of interchain cross-links in the starting configura-
tions is lower for systems with smaller grafting densities. For bundles with d ≥ 6r0,
almost no interchain cross-links are formed. During loading some interchain cross-
links form but still this number is lower for systems with smaller grafting density.
For example, for bundles with d = r0, 40 % of the formed cross-links in the starting
configuration are of interchain type and after loading to the contour length this num-
ber increases to about 91 %. For the system with d = 6r0 the number of interchain
cross-link changes from about 2% to 24% from the starting configuration to the fully
elongated chain (see Figure 5.3.1b). During unloading this number further increases
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to approximately 40%. (see Figure 5.3.1b) . Thus, the starting configuration for the
second stretching cycle is characterized by 40% inter- and 60% intrachain cross-links.
This difference to the initial starting configuration for the first stretching results in
the difference between first and second loading as well as in the backbone rupture
during the second loading cycle before the contour length (see Figure 5.3.1B). The
influence of the backbone rupture can be figured out by comparing the strength
(maximum force) of each system with the bundle d = 20r0 where no backbone fail-
ure occurs. The strength of the system d = 20r0 is about 34 eV/R but this value
decreases for d = 8r0 and d = 6r0 to ≈ 22 and ≈ 19eV/R, respectively (please note
the different scaling of the force axis in Figure 5.3.1D compared to the others).
For a grafting density corresponding to d = 8r0 (see Figure 5.3.1c) not a single inter-
chain cross-link is formed during the first loading. Nevertheless, during unloading
a small number of interchain cross-links forms at elongations of L/LC ≈ 0.5. These
few cross-links keep the chains at a small distance such that during the second load-
ing after rupture of some intrachain cross-links, the now open sticky sites form even
more interchain cross-links starting from L/LC ≈ 0.8 (see the thin green dots in
Figure 5.3.1c). These interchain cross-links lead to failure of the backbone before
the contour length while there was no backbone rupture during first loading (see
Figure 5.3.1C). This effect is effectively weakening the system. The situation for
d = 20r0 is completely different. The chains are completely independent from each
other because their distance is so large that no interchain cross-link can form during
the simulations (see Figure 5.3.1d). Nevertheless, the first and the second loading
are still slightly different similar to the single chain results shown in section 4.3 (see
Figure 4.3.8).
Thus, it can be concluded that increasing the distance between the chains (decreas-
ing the grafting density) reduces the number of interchain cross-link for the first
loading cycle. The number of interchain cross-link after the first loading is about
90 % for d = r0 and drops to about 25 % for d = 6r0 and to zero for d = 8r0, 20r0.
In this elongation no intrachain cross-links is formed and thus some of the sticky
sites are opened (see bottom row of Figure 5.3.1). Therefore, during unloading the
open sticky sites can form intrachain cross-links specially for the systems with low
grafting density 6r0 ≤ d ≤ 20r0 resulting in a very low plateau in the corresponding
force-displacement curves. The low plateau (see red curves in Figure 5.3.1B, C and
D) shows that the sticky sites formed intrachain cross-link (see the increase in the
number of intrachain cross-links in Figure 5.3.1b, c and d) but their distance is still
larger than the equilibrium bond length providing a low plateau. The difference
between the first and second loadings for d = 6r0 and 8r0 are due to the different
number of intrachain cross-links. The area under the curve is larger for the higher
number of intrachain cross-links. The maximum area under the second loading
curves is for the system with d = 20r0 where all sticky sites formed the intrachain
cross-links.
Figure 5.3.2A shows the area under the load-displacement curve for each experiment
(i.e. first loading, unloading and the second loading) for different grafting densities.
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As expected the unloading curve has the lowest area under the curve that is slightly
increasing for lower grafting densities (red curve in Figure 5.2.2A). This increase
stems from the increase in the number of intrachain cross-links for the lower grafting
densities. Figure 5.3.2A shows that for the systems with large grafting densities,
the first stretching needs more energy than the second one. Increasing the distance
between the chains leads to a strong increase in the area under the second stretching
curve finally becoming larger than the energy needed for the first stretching. This
shows that the area under the stretching curve strongly depends on the number of
intrachain cross-links in the system during loading.

Figure 5.3.2: (A) Area under the Load-Displacement curve obtained during cyclic loading
tests for the system with ρ = 0.48 and different grafting densities. The black dots denote the
results corresponding to first stretching, red dots correspond to unloading and green dots to
second stretching. (B) The dissipated energy during cyclic loading plus the work to fracture
during the second stretching i.e. the total work done on the system upon the whole process of
loading-unloading and second loading until failure.

In a system with a large number of interchain cross-links, the probability of backbone
rupture before the contour length is reached is strongly enhanced. This increases
the area under the stretching curve but decreases the work to fracture for the next
loading since some of the chains have already broken and , thus, do not contribute
any more to the bundle mechanics. For systems with a large number of intrachain
cross-link, there are less broken chains and , thus, more chains contribute in the
loading. In particular, the work done during the whole process (loading1-unloading-
loading2) is highest for the lowest grafting density. Therefore the system with few
interchain cross-links needs more energy in the experiments consisting of several
loading tests, the area for d = 8r0 is similar to the d = 20r0 case. Nevertheless, if
more than two loading cycles would be performed then the area would be smaller
for a grafting density corresponding to d = 8r0, because during the second loading
a few interchain cross-links have formed and some chains ruptured before the con-
tour length as can be inferred from the lower strength of the system with d = 8r0
(see Figure 5.3.2B). For the case d = 20r0 the work done during several loading
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cycles stays constant because the chains are independent and the whole process is
completely reversible.

5.3.2 Influence of cross-link density

In this section we discuss cyclic loading experiments on bundles with a constant
grafting density corresponding to d = 5r0 and different cross-link densities (ρ = 0.08,
0.24 and 0.48). Similar to the cyclic loading test for different grafting densities, the
first and the second stretching show significant differences (see Figure 5.3.3).

Figure 5.3.3: A,B and C shows the load-displacement curves for cyclic loading for the system
with grafting density d = 5r0 and different cross-link densities of ρ = 0.08, 0.24, 0.48. Black
symbols denote the first loading till the contour length, red symbols show the unloading response
of the system and the green symbols show the second loading until failure. Additionally, as a
comparison the dashed blue line indicates the loading curve of the bare bundles without sticky
sites. The bottom figures shows the corresponding intact cross-links for the cyclic loading test.
the closed symbols show the percentage of the intrachain cross-links and the open symbols depict
the percentage of interchain cross-links.

For ρ = 0.08, the first stretching shows few peaks due to rupture of mostly intrachain
cross-links. When L/LC = 0.8 is reached all intrachain cross-links have ruptured and
at the same time, the number of interchain cross-links increases. During unloading,
both the number of inter- and intrachain cross-links increases. The intrachain cross-
links are responsible for the peaks observed before the contour length was reached
for the second stretching cycle. The strength of the system is slightly reduced
in comparison to the system without sticky sites. The same mechanism applies
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cross-link density EL
1 [eV] EU [eV] EL

2 [eV] ETotal[eV] Fm[eV/R] Y [meV/R2]
0.08 114.4 70.5 268.7 312.6 30.6 -
0.24 258.6 69.4 247.6 436.8 21.4 34
0.48 418 74 197.1 541.1 15.4 71

Table 5.1: The area under the first loading EL
1 [eV], unloading EU [eV], the second loading

EL
2 [eV], the work done during the whole process loading1-unloading-loading2 i.e. ET otal[eV]=

EL
1 -EU+EL

2 , the strength Fm and apparent stiffness Y for different cross-link densities ρ =
0.08, 0.24 and ρ = 0.48 for the system with constant d = 5r0.

to the system with higher sticky site density. Nevertheless, the form of the first
loading curve changes. The discrete rupture of bonds for the low density case is
transformed to a continuous breaking for the higher densities. Also the strength
drops dramatically due to the breaking of some chains during the first stretching.
During the second stretching, no backbone rupture before the contour length can
be observed (even not for the case of ρ = 0.48 with many interchain cross-links).
The strength for the system with ρ = 0.08 is two times larger than the strength for
the ρ = 0.48. Clearly it can be seen that, the apparent stiffness increases for large
cross-link densities. The apparent stiffness increases from 34meV/R2 to 71meV/R2

for ρ = 0.24 and ρ = 0.48, respectively (see Table 5.1).
The area under the first loading curves increases significantly from 114eV to 418eV
when the cross-link density changes from ρ = 0.08 to ρ = 0.48. This considerable
increase is because the ρ = 0.48 has more intrachain cross-links providing the more
peaks and also rupturing some chains which also needs energy. The area under the
second loading curve decreases by increasing the density of cross-links from 270 eV
forρ = 0.08 to 197 eV for ρ = 0.48 since some of the chains are broken during first
loading for the high cross-link density. The area under the unloading curve stays
roughly constant, therefore, the total work during the process loading1-unloading-
loading2 increases for higher cross-link densities. In particular, it increases from
312 eV to 541 eV when the density changes from ρ = 0.08 to ρ = 0.48, respectively
(see Table 5.1).

5.4 Random arrangement

All results shown until now were for chain bundle systems with an ordered ar-
rangement of sticky sites. If the sticky sites are randomly distributed along the
chains, the mechanical properties of the system changes. Figure 5.4.1A,B shows
the load-displacement curve for ρ = 0.24 and two different arrangements; ordered
and random. In contrast to the ordered arrangement, the system with a random
distribution shows no backbone rupture before the contour length is reached. The
first loading shows a smooth increase of the force while the ordered arrangement
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shows three discrete peaks. For both arrangements, in the starting configuration,
the number of cross-links is about 90 % intrachain and 10 % interchain. During un-
loading the number of intrachain cross-links decreases and the number of interchains
increases Figure 5.4.1a,b. After unloading, the total number of intact cross-links (in-
terchain and intrachain) for the random configuration is 50 % while for the ordered
configurations all sticky sites are intact.

Figure 5.4.1: The load-displacement curves for cyclic loading for a system with grafting density
d = 5r0, sticky site density ρ = 0.24 and different arrangement of sticky sites along the chains:
A) random and B) ordered. Black symbols denote the first loading till the contour length, red
symbols show the unloading response of the system and the green symbols show the second
loading until failure. Additionally, as a comparison the dashed blue line indicates the loading
curve of the bare bundles without sticky sites. The bottom figures shows the corresponding
intact cross-links for the cyclic loading test; a) random and b) ordered. the closed symbols
show the percentage of the intrachain cross-links and the open symbols depict the percentage
of interchain cross-links during cyclic loading test.

Table 5.2 shows the mechanical parameters for the two systems with similar grafting
density and sticky site density but different arrangements. The work to elongate
the molecule is larger for the ordered configuration, because some of the chains are
broken during the first loading. The work to fracture (second loading) of the random
configuration is larger because there was no backbone rupture upon first loading. In
total, the work done on the system with the random configuration is slightly larger
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sticky sites arrangement EL
1 [eV] EU [eV] EL

2 [eV] ETotal[eV] Fm[ eVR ] Y [meV
R2 ]

Random 246.6 84 285.5 448.1 25.45 32
Ordered 258.6 69.4 247.6 436.8 21.4 34

Table 5.2: The area under the first loading EL
1 [eV], unloading EU [eV], the second loading

EL
2 [eV], the work done on the whole process loading1-unloading-loading2 i.e. ET otal[eV]= EL

1 -
EU+EL

2 , the strength Fm and apparent stiffness Y for different sticky site arrangements; random
and ordered for the system with constant ρ = 0.24 and d = 5r0.

than for the ordered configuration. The strength of the system with the random
configuration is also higher but the apparent stiffness of the ordered configuration
is larger than for the random arrangement.

5.5 Conclusion

In this chapter the mechanical properties of chain bundles including reversible cross-
links were investigated to understand the influence of the grafting density and the
cross-link density on the mechanical response of the system. The results show that
there are two possibilities of backbone rupture upon loading before the contour
length is reached. This failure of the backbone is caused by the topology of the
cross-links in the system. Two simple cases of such topologies were analyzed in
this thesis (see Figure 5.1.1). If the distance between the chains is equal to the
equilibrium distance of cross-links, then the backbone ruptures if the bundle contains
5 parallel interchain cross-links. Most surprisingly for larger distances between the
chains (i.e. smaller grafting densities), backbone failure is possible with only two
parallel cross-links. On first sight this is completely unexpected because one cross-
link has only a quarter of the strength of a covalent bond. The results from loading
chain bundles with constant density of cross-link (ρ = 0.48) and different grafting
densities showed that the backbone rupture occurs earlier for bundles with d = 5R0
resulting in a lower strength of the system but increasing the work to elongate the
chain till the contour length. The mechanical behavior of the bundles also depends
on the density of cross-link in the system in such a way that more cross-links lead
to an earlier backbone rupture upon loading reducing the strength of the material
but increases the energy to elongate the bundles as well as the work to fracture.
Furthermore, the results showed a considerable difference between the first and
second loading cycle. This difference is mostly due to the formation of interchain
cross-links. The number of interchain cross-links depends more on the grafting
density (i.e. the distance between the chains) and the end-to-end distance of the
chain. For the system with a large number of interchain cross-links, no backbone
rupture was observed during the second loading and the system behaved like a bundle
without cross-links and of course with some broken chains. Thus, the interchain
cross-links do not experience any force during second loading providing a significant
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difference with the first loading test. As a consequence, the interchain cross-links
increases the work to elongate for the first loading but also some chains failure. In
order to have a material with a recoverable mechanical performance, it is better
to have a chain bundle (ordered arrangement of sticky sites) with no interchain
cross-links. This can be achieved by increasing the distance between the chains to
prevent the formation of interchain cross-links or decreasing the number of sticky
sites in the system. Another way to make the system recoverable is using a random
arrangement for the sticky sites along the chains.
To summarize, for the system with ordered arrangement of sticky sites along the
chains, the grafting density determines the number of interchain cross-link. The in-
terchain cross-links provide the backbone failure before the contour length is reached
and thus the system needs more energy to elongate (large work to elongate). On the
other hand, the backbone failure decreases the strength of the system significantly.
Also increasing the cross-link density increases the apparent stiffness but reduces
the strength of the system and the mechanical properties of the bundle is not re-
coverable. In order to prevent the failure there are three possible configurations of
the system; first: decreasing the grafting density, second: decreasing the density of
cross-links and third: the random arrangement of the sticky sites along the chains.
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6 Final Remarks

The findings of the presented thesis give new insight into the role of reversible
crosslinks on the mechanical properties of single polymer chains as well as of chain-
bundle systems. Cross-linking of polymeric materials is a strategy widely used to
develop new biomedical instruments and drugs as well as to improve the mechanical
properties of materials e.g. by creating super tough hydrogels with the capability of
mechanical recovery.
Computational approaches are an indispensable tool in analyzing experimental re-
sults and in testing simple models making the enormous complexity of polymeric
systems theoretically tractable. In this thesis a simple generic model was investi-
gated to study the role of reversible crosslinks (sometimes called sacrificial bonds)
on the mechanical behavior of single polymeric chains and chain bundles. The
model consisted of a standard bead-spring model. Additionally some of the beads
were defined as "sticky". These sticky sites were allowed to form additional cross
links in the systems. For different number and arrangement of sticky sites cyclic
load-displacement curves were obtained using Monte Carlo simulations.
For single chains it could be shown that the efficacy of sacrificial bonds is strongly
reduced due to backbone fluctuations of the polymer chain. Furthermore, it was
shown that mechanical response of the system is strongly dependent on the topol-
ogy of sacrificial bonds. This is the reason why the speed of unloading has a large
influence on the mechanical response, because it is the rate of unloading that deter-
mines which topology may form. It was also shown that a different distribution of
sticky sites has a large impact on the mechanical properties of the chain. The work
to fracture is dependent on the number of sacrificial bonds that have to be broken
and, thus, crucially depends on the capability of re-forming of ruptured bonds. The
strength is higher for any ordered arrangement compared to a random arrangement
of sticky sites. The apparent stiffness can be enhanced by ensuring that the forces
rises over a small distance. This can be achieved by confining the sticky sites to
certain regions of the polymer (the patches configuration). Finally, the energy dis-
sipation of these structures was investigated by performing computational cyclic
loading experiments.
The effect of grafting density and sticky site density was investigated also for the
system made of chain bundles. The most surprising result for this system is that only
two sacrificial bonds are sufficient to break the backbone of the system. In general
it was shown that the possibility of forming inter-chain crosslinks leads to material
that is quite stiff on one hand, but also more brittle on the other. Comparison of
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the random and ordered arrangement of sticky sites showed significant differences
between the two systems. It was shown that the stiffness of the ordered arrangement
was higher than of the random arrangement, while the strength showed the opposite
trend. The mechanical properties of a chain bundle can be dramatically altered by
controlling the ratio of inter- to intra-chain SBs.
Comparing the mechanical parameters of the chain bundle and single chains shows
that the apparent stiffness of the chain bundles are much larger than of the single
chains. The apparent stiffness of a single chain was varying from 1.8 to 5 meV/R2

for the random and ordered configuration, respectively, while it was increasing to
more than 30meV/R2 for both configurations of the chain bundle.
In this study no additional backbone rigidity other than stretching was included.
In particular bending contributions were neglected. It is likely that additional in-
teractions resulting in spatial folding pattern may effectively reduce the fluctuation
which stabilizes the SBs. The interplay of backbone rigidity, thermal fluctuations
and the ratio of covalent and sacrificial bond strength dictate the mechanical prop-
erties of this single polymer chain. Two open questions in this context that still
need to be answered are, first, is there an optimum value of the ratio of the strength
of sacrificial to covalent bonds? Second, what is the influence of the width and the
equilibrium distance of the SB potential on the mechanical properties. In the thesis
presented these two values were set equal to the corresponding properties of the
covalent bonds.
While the crosslinks in this thesis were modeled as bonds between two monomers,
in reality often more than two monomers take part in one cross-link. E.g. it is
known that depending on the concentration of Fe-ions and the pH-value the dopa-
Fe complex may exist in the mono-, bis- or tris-state [37, 36]. One possible route to
continue the present work would be to effectively model such crosslinks consisting
of more than two monomers. It is expected that this new geometry gives rise to
a variety of new topologies strongly influencing the mechanics. In particular the
force flow through such a cross-link will be dramatically changed compared to a
bis-complex. Furthermore, also the dynamic behavior of such crosslinks is expected
to be different, because rupture of a cross-link is now always a two stage process.
After detachment of the first monomer additionally to the possibility of complete
rupture there is also the possibility of reforming the cross-link by attachment of a
new sticky site.
Another route that can be taken to extend this work is to investigate the energetics
of the crosslinks from a more fundamental point of view. Almost no work exists so far
where the formation of metal coordination bonds and their mechanics are addressed
by ab-initio methods. [20] is one of the few examples of such a work. Hybrid
molecular dynamics simulations [108], where the cross-link itself is described by
quantum mechanical DFT methods and the rest of the protein is described classically
might close this gap.
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Abstract
Sacrificia bonding is a ubiquitous cross-linking strategy for increasing
toughness that is found throughout nature in various biological materials such as
bone, wood, silk and mussel byssal threads. However, the molecular mechanism
of sacrificia bonding remains only poorly understood. Molecular modeling
possesses a strong potential to provide insights into the behavior of these cross-
links. Here we use Monte Carlo simulations to investigate the effect of reversible
sacrificia binding sites on the mechanical properties of single linear polymer
chains based on load-bearing metalloproteins found in the mussel byssus. It is
shown that the topology of the bonds determines the position and spacing of
sacrificia force peaks, while the height of these peaks is intimately tied to the
magnitude of thermal fluctuation in the chain that are dependent on effective
chain length. These results bear important implications for understanding natural
systems and for the generation of strong and ductile biomimetic polymers.

3 Author to whom any correspondence should be addressed.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence.
Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal

citation and DOI.

New Journal of Physics 16 (2014) 013003
1367-2630/14/013003+13$33.00 © 2014 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft



New J. Phys. 16 (2014) 013003 S Soran Nabavi et al

1. Introduction

Evolution via natural selection has provided an effective means for achieving practical and
economic solutions to various physical challenges encountered by load-bearing structures in
nature. Natural materials, therefore, are a potentially valuable source of inspiration for the
design of novel man-made materials. However, this firs requires a thorough understanding
of the underlying structure-function relationships that determine the material behavior. For
example, in many natural materials increased toughness is achieved via careful tuning of
molecular interactions at numerous levels of hierarchy [1]. One particularly effective strategy
for increasing toughness found in bone [2, 3], wood [4] and some softer biological fibers
such as silk [5–7], mussel byssus [8–10] and whelk egg capsule [11], is the use of sacrificia
bonds (SBs). SBs are load-bearing cross-links which are weaker than covalent bonds making
up the backbone structure of the materials that rupture ‘sacrificially in order that the
overall material integrity survives [2]. In doing so, these bonds dissipate mechanical energy
by unraveling of ‘hidden’ folded protein length. These bonds can often be reformed after
rupture leading to a kind of molecular repair and possibly self-healing behavior in the
material. This combination of hidden length unraveling and self-repair capability makes SBs
a very effective energy dissipation mechanism and increases the toughness of a material
dramatically [2, 12].

Hydrogen bonding, electrostatic interactions and most recently, protein–metal coordination
bonds have been identifie as SBs in natural materials. In metal coordination complexes, several
ligands (amino acid side chains such as 3,4-dihydroxyphenylalanine (DOPA) and histidine in
protein based systems) contribute lone pairs of electrons to the outer orbitals of transition metal
ions. These bonds are ideal as reversible SBs because they require large energy inputs to rupture,
but, unlike typical covalent cross-links, will reform rapidly afterwards [13, 14]. For example, in
mussel byssal threads that are produced by marine mussels to adhere to rocky substrates, load-
bearing protein–metal complexes based on histidine–Zn2+ and DOPA–Fe3+ interactions have
been implicated in increased toughness, hardness and self-healing behavior in various structures
of the threads [8–10].

While SBs have been correlated with increased toughness in biological materials,
as well as in some recently developed supramolecular polymers [15] and bio-inspired
metallopolymers [16, 17], there is not a solid understanding of how the molecular environment
of the SBs influence mechanics. Cao et al [18] demonstrated at the molecular level that
recombinantly engineered metal bonds can increase the force to unfold a protein and the total
energy dissipated via unfolding. However, the magnitude of this increase was found to be
highly dependent upon the location of the cross-link in the folded structure. In other words,
the mechanical behavior of the system is influence by how the SBs are situated within the
rest of the chain. Along these lines, it was suggested from molecular simulation that there is
an ideal size of β-sheet nanocrystals for maximizing toughness in spider silk, which reflect
the most effective use of sacrificia hydrogen bonds [7]. Clearly, there is more to be understood
regarding the molecular mechanism of toughening inherent to SBs. Here, we take a step toward
unraveling this phenomenon by using Monte Carlo (MC) simulations to examine the influenc
of topology, chain length and thermal fluctuation on the mechanical behavior of SB reinforced
fibrou systems. As a starting point for our model, we consider the histidine- and DOPA-
containing proteins from the mussel byssus; however, the extracted concepts can be abstracted
and applied more broadly, such as in the design of mechanical metallopolymers. The results of
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the simulations show that the effica y of these SBs is closely related to the magnitude of thermal
fluctuation in the backbone of the chain, which depends upon chain length and temperature.

2. The model

The biological system inspiring this work are the SB-forming histidine-rich regions of the load-
bearing proteins in the tough fibrou core of mussel byssal threads [8] and DOPA-rich proteins
found in the plaque [10] and the protective cuticle [9]. The his-rich sequences from the core
proteins are relatively short segments that consist typically of 30–80 amino acids [19] and are
clamped between collagen and flankin domains [8]. This clamping define an effective length
of the polymer over which it is free to fluctuate The DOPA-rich proteins from the thread plaque
and cuticle consist of short tandemly repeated amino acid sequences containing between 5 and
25 mol% DOPA [20]. In the present paper this situation was modeled by a linear chain of N hard
spheres with radius R (which we set as the unit of length). The covalent interaction between
neighboring beads was described by a Morse potential

E(ri j) = E0
{
[1 − exp(−β(ri j − r0))]2

− 1
}

(1)

with the depth E0 = 5 eV, the width β−1
= 0.5 R, the equilibrium bond length r0 = 3 R and

the actual distance between two neighboring beads i and j , ri j . The contour length of the
chain is given by L0 = (N − 1)r0. To model the presence of SBs, Ns of the beads were
define as sticky, two of which could form a SB (ρs = Ns/N is the sticky site density). The
sticky sites were introduced regularly: the same number of non-sticky sites separating them.
The protein backbone is a linear polymer consisting of C–C and C–N bonds which possess
average bond energies of several eV. The energetics of the SBs in proteins have not been well
characterized; however, several studies on DOPA and histidine-based metal complexes suggest
they possess binding energies that range between 20–30% of a C–N bond [21, 22]. Thus a
value of ESB

0 = 1.25 eV was chosen for the SB in this study, corresponding to 25% of the
bond energy of the covalent backbone bond in our simulated polymer. Additionally, the SBs
were allowed to open and close reversibly. Simulations mimicking loading experiments were
performed by starting from a small end-to-end distance L that was define by pinning the
two outer beads. The positions of the inner beads were updated according to a standard MC
procedure using the Metropolis algorithm [23]. For SB updating, one sticky site was chosen
randomly and the probability for bond breaking or bond formation was calculated using the
Metropolis algorithm, depending on whether the bond was intact or already broken, respectively.
During the simulation the forces on the outer beads were recorded and averaged. Subsequently,
L was increased and the simulation re-run until the contour length L0 was reached. Up to
90 million MC step (i.e. jump trials per bead) were performed for the single step. For each
simulation an independent starting configuratio was produced by relaxing a fully stretched
chain L/L0 = 1 without sticky sites. When the initial end-to-end distance was reached the
sticky sites were added and allowed to form SBs. Subsequently this structure was stretched. The
model presented bears some resemblance to the dynamic loop model used to describe mitotic
chromosomes [24]. The main differences are, firstl , in our model SBs can’t form between all
monomers but only between sticky sites. Secondly, SB formation and rupture are determined by
a distance dependent potential, rather than by rate constants and lifetimes drawn from a Poisson
distribution. Thirdly, the monomers can move freely in space, because no lattice model is used.
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Figure 1. Mean load–displacement curve for N = 50, kBT = 25 meV and ρs = 0.08.
The presented curve is the average of 20 independent runs.

3. Results and discussion

Figure 1 shows an averaged load–displacement curve for a chain with Ns = 4 sticky sites
separated by ten monomers (sticky site density ρs = 0.08) at ambient temperature of kBT =

25 meV. The curve shows four distinct peaks (the second being a double peak IIA and IIB)
approximately equally spaced but with significantl different heights. This behavior closely
resembles the experimentally found sawtooth patterns, which were reported in a variety of
biological systems, e.g. in nacre [25], in single molecule measurements of titin [26, 27],
tenascin [28], DOPA [22] and modular proteins [29] as well as in the adhesive mucilage pads of
diatoms [30, 31] and polymer brushes from rat tail tendon [32]. In the following we will focus at
explaining the number, position and especially the height of the observed peaks. Peak IV is the
trivial contribution corresponding to the onset of backbone stretching and will not be considered
here.

First, we focus on the number and position of the peaks. In the crumpled starting
configuratio the four sticky sites form two SBs out of three possible topologies: the
independent, pseudoknotted and nested configuratio [33]. Figure 2 shows a sketch of the
different topologies together with the expected load–displacement curve and a simulated one.
For the case of the independent configuratio the SBs form between sticky sites (1,2) and (3,4),
respectively (see figur 2(a)). Due to symmetry the inner part of the chain is now divided
into three parts of equal length d = 11r0, the outer part of the chain having a total length of
d0 = 16r0. The firs bond starts stretching when L/L0 = (d0 + d + 2r0)/L0 ≈ 0.59 (the additional
term 2r0 taking into account the two SBs). The opening of this loop reveals an additional
length of d giving rise to another force peak at L/L0 ≈ 0.8. When this second SB has broken
backbone stretching sets in at L/L0 ≈ 1. These two bond stretching events correspond to
peak (IIB) and (III) in the averaged load–displacement curves shown in figur 1. In the
pseudoknotted configuratio (figur 2(b)) sticky sites (1,3) and (2,4) form SBs. Ideally the force
peak corresponding to the stretching of this structure should be found at the same value of the
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(a)

(b)

(c)

Figure 2. Load–displacement curves for N = 50 at kBT = 25 meV with four sticky
sites and different topologies of the formed SBs. The firs and last bead of
the chain are shown in black; sticky sites are shown in red. SBs are indicated
by dotted green lines, covalent connections by blue lines. Load–displacement
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Figure 2. (Continued) curves shown with thick, green lines indicate the expected
curves. The thin, black line shows actual simulation results of selected single runs.
(a) independent configuration two force peaks of equal height Fmax = βESB

0 /2 =

1.25 eV R−1 at L/L0 ≈ 0.59 and 0.8 are expected. (b) pseudoknotted configuration
two force peaks are expected: the firs at L/L0 slightly lower than 0.59 and of height
2Fmax, the second of height Fmax at L/L0 ≈ 0.8. (c) nested configuratio : two force
peaks of equal height Fmax at L/L0 ≈ 0.35 and 0.8 are expected. Note, that not a single
SB attains its theoretical strength.

chain extension as the firs peak in the independent configuratio L/L0 = (d0 + d + 2r0)/L0.
Nevertheless, it is found at a slightly lower chain extension giving rise to the peak (IIA)
in figur 1. This decrease can be attributed to the hard core repulsion of beads that forbid
that the chain can exactly align in the direction of the load, which is possible for the
independent topology. Whenever the pseudoknotted configuratio ruptures the reversibility of
SBs assures that another SB is formed between sticky sites (2,3). Like in the independent
configuratio this SB starts stretching at L/L0 ≈ 0.8 corresponding to peak (III). Finally, in
the nested configuratio (see figur 2(c)) the SBs form between sticky sites (1,4) and (2,3),
respectively. Thus, the firs SB stretching occurs already at extensions L/L0 = (16r0 + r0)/L0 ≈

0.35 corresponding to peak (I) in figur 1. As in the preceding case the second stretching takes
place whenever the chain is elongated to L/L0 ≈ 0.8 once again contributing to peak (III).

While the position of the peaks occurring in figure 1 and 2 can well be explained with the
different topologies of the involved SBs, their height can not be understood that easily. Partly the
height of the peaks in the averaged load–displacement curve shown in figur 1 can be attributed
to the different occurrences of the different topologies. Out of 20 simulation runs there were 12
independent, 2 pseudoknotted and 6 nested configurations It is due to this different frequency
that peak (I) and (IIA) belonging to the less probable pseudoknotted and nested configuratio
are reduced in height compared to peak (IIB) and (III). Nevertheless, the different probability
of topologies can explain only partly the different heights. Also in the single runs shown in
figur 2 not a single SB in any topology attains its expected strength (which we defin as
the maximum force that can be generated by the used potential) shown by the solid lines.
For all bond rupture events except for peak (IIA) this expected peak height coincides with the
theoretical strength of one SB Fmax = βESB

0 /2 = 1.25 eV R−1. In the case of the pseudoknotted
configuratio the rupture force should be twice the strength of one SB, because the force
can be simultaneously distributed between the two SBs. Nevertheless, the simulation results
show that all forces are considerably reduced compared to the expected value of Fmax. This
is surprising because the energy of SBs at the distance of maximum force rmax = ln 2/β + r0
compared to temperature is E(rmax)/kBT = 37.5. Thus, the probability of bond failure at this
point is extremely small. Therefore it is not expected that the SBs fail, before they are stretched
beyond rmax corresponding to a peak with height Fmax in the load–displacement curve.

To understand the reduced height of the forces, a very simple distribution of sticky sites
in the chain was investigated. The number of sticky sites was set to Ns = 2 (i.e. the formation
of only one SB was possible). The position of the sticky sites was in the middle of the chain,
one non-sticky site separating them. The starting configuratio was chosen such that the system
was in its energetic ground state with L/L0 = (N − 2)/(N − 1) ≡ L∗ (see also figur 3(a)).
Figure 3(b) shows the resulting load–displacement curve in stretching for a chain with N = 5
at kBT = 25 meV. When the chain is stretched from its equilibrium configuration the SB starts
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(a)

(b)

Figure 3. (a) The starting configuratio of the simplifie system with only two sticky
sites. The middle beads of the chain are shown. Normal monomers are shown in blue,
sticky sites in red. Longer chains are created by adding additional monomers on both
sides. The simulations are started with the SB closed (green connection). Covalent
bonds are shown in gray. (b) Load–displacement curves in stretching for Ns = 2,
kBT = 25 meV and N = 5 (black) and N = 50 (red), respectively.

stretching, resulting in an elevated force that reaches its maximum around F = 1.25 eV R−1,
in good agreement with the theoretical strength of a SB. Eventually, the SB fails and the
chain is further stretched until backbone elasticity sets in around L/L0 ≈ 1. The situation
changes, however, when the same simulation is repeated on the longer chain with N = 50 (see
figur 3(b)). In the corresponding length region no additional load on SB can be observed. Only
elevated backbone stretching takes place, being due to a higher entropic contribution from the
higher number of monomers. The reason for this unexpected absence of the sacrificia force
peak is due to SB opening during the very firs simulation steps of the unstretched chain. As
discussed before, due to the high ratio of binding energy to thermal energy from a purely
energetic point of view the SBs should be thermally stable producing an additional peak in
the load–displacement curve as observed for the short chain. The only reasonable physical
explanation for SB bond breaking at these low temperatures is that for longer chains, fluctuation
of the covalent backbone bonds lead to such large loads on the SB that it fails already before
the external load sets in. In other words, it is backbone entropy that leads to SB failure.
To validate this explanation the temperature in the simulation was changed. Figure 4 shows
load–displacement curves for chains with N = 50 for different temperatures and for a larger
range of L/L0. A sacrificia force peak is observed for all temperatures and comes close to
the theoretical strength of SBs for low temperatures. When the temperature is increased this
peak shifts to smaller values of L/L0 and decreases in height. Simultaneously the entropic
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Figure 4. Load–displacement curves for chains with N = 50 at different temperatures.
When the temperature is reduced an additional force peak due to the SB starts growing
that is approaching the theoretical strength of 1.25 eV R−1 at temperatures below one
meV. The vertical dashed line indicates L∗.

background (the baseline of the curves) is rising. Finally, for kBT = 25 meV the sacrificia force
peak is shifted below L∗. This means that for this temperature, the elevated loading is a purely
entropic effect stemming from internal thermal fluctuation and not from external loading. For
L/L0 < L∗ no load larger than zero can prevail when the temperature is reduced to zero.

To investigate the effect of chain fluctuation on SBs further, the force experienced by
SBs during the simulation was recorded. Figure 5 shows the distribution of bond lengths (a)
and the loading of SBs (b) for two different chain lengths: N = 5 and N = 33, the latter
one corresponding to the longest chain where no SB rupture was observed below L∗. For all
chains longer than 33 monomers backbone fluctuation are sufficientl large to rupture SBs
without external loading. An increase in monomer number leads to an increase of the mean
bond length and a corresponding shift toward higher forces. These effects correspond to an
effective weakening of the SB and are the reason for premature SB rupture. For increasing
chain length, the most probable bond length is shifted to higher values and the distribution
is broadened significantl . These two effects lead to a non-zero probability that the SB is
strained beyond rmax. Subsequently, the bond is brought close to its maximum load, leading
to bond rupture. Both distributions show a pronounced asymmetric shape, but—in contrast
to the bond length distribution—the force distribution shows a pronounced drop at its right
flank This drop takes place at the maximum load, since above a value of F = 1.25 eV R−1 the
distribution is exactly zero by definition This is also the reason for the slight narrowing of the
force histogram for larger N . Therefore, whenever the number of monomers is high enough that
the SB length fluctuation considerably exceed rmax or—equivalently—the position of the force
histograms coincides with the theoretical maximum force, the SB spontaneously fails. The inset
in figur 5(b) shows the width and position of the distributions as a function of N . The position
was evaluated at the maximum of the curve, while the width was define to be the full width at
half maximum.
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(a) (c)

(b) (d)

Figure 5. (a) SB lengths histograms at kBT = 25 meV. The distance rmax corresponding
to the theoretical maximum force is indicated by a gray dashed line. (b) The distribution
of loads on the SBs at kBT = 25 meV. The inset shows the width and position of the
histograms as a function of monomer number. (c) Load distributions for N = 33 at two
different temperatures. The inset shows the position and width of the distributions as a
function of temperature. (d) Load distribution for N = 33 at kBT = 25 meV. The inset
shows the two starting configurations The data in (a)–(c) were recorded at L/L0 = L∗.

The temperature, although small compared to the involved binding energies, is a
crucial parameter in determining SB rupture. Figure 5(c) shows sacrific al force probability
distributions for N = 33 at two different temperatures. An increased temperature leads to a
broadening of the distribution and to a shift of the maximum to higher loads. While the shift
of the maximum with increasing temperature is similar to the behavior of the probability
distributions for increasing N (figur 5(b)), the width of the distributions behaves differently. On
firs sight, the observed narrowing of the curve with increasing N is counter-intuitive since one
would expect stronger fluctuation with larger N . However, it is the difference in relative length
that explains this effect. For large N , the relative length of the chain in the starting configuratio
reaches L∗

≈ 1, while it is L∗
= 0.75 for N = 5. A short relative length gives the SB enough

freedom to follow the covalent bond fluctuation and transmit additional load through the system
(see figur 3(b)). On the other hand, a relative length close to 1 reduces the number of possible
configuration of the system (in the limit of T = 0 there is only one single state), thus effectively
reducing its fluctuations
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Figure 5(d) summarizes this effect. Force histograms for N = 33 at two different starting
lengths are shown. Clearly, the distribution shifts to larger loads and narrows upon increasing
L . For chains longer than N = 33 the SB already fails, when the relative length of the chain is
below L∗. Thus, only a reduced sacrificia load of ≈ 0.8 eV R−1 that is purely entropic in nature
can be transmitted (see figur 4). Such entropic loads have been found experimentally [32, 34]
and are often described using the freely jointed or —its variant for small bond angles—the worm
like chain (WLC) model [35]. Also the shape of the single rupture events in figur 2 can be well
fitte with the analytical load–displacement expression obtained for the WLC model [36]

F =
kBT

Lp

[
L

Leff
0

+
1
4

1
(1 − L/Leff

0 )2
−

1
4

]
(2)

with the persistence length Lp and an effective contour length Leff
0 as the two fittin parameters.

The fittin results yielded a similar persistence length of approximately Lp = 5.63 for all peaks
except the firs rupture of the pseudoknotted configuratio that gives Lp = 3.1. The effective
contour lengths obtained are smaller than the actual contour lengths L0. This effective contour
length is given by L0 minus the hidden length shielded by the SBs. The rather small persistence
length of the chain reflect its rotational freedom resulting in the high entropic forces. Thus,
close to bond rupture the chain behaves as a WLC that is effectively stretched close to its contour
length and whose elasticity is described as an entropic spring. Although the WLC equation can
well reproduce the found curves, it should be noted that care has to be taken when analyzing
polymer stretching using this simple model. Recently it has been shown that the WLC model
breaks down for chains too short due to excluded volume effects [37, 38]. Nevertheless, because
in the present case the chain is rather extended close to bond rupture it can be expected that these
effects can be neglected.

These results explain the reduced peak forces observed in figure 1 and 2. Furthermore,
the results also explain why SBs that rupture at lower chain extensions are effectively
stronger than those that rupture at larger chain lengths (compare e.g. the firs and second
peak in figur 2(c)). This is because at lower chain extensions the effective length of the
chain is reduced which effectively stabilizes SBs. This shows that a reduction in effective
bond strength upon loading can also be found for identical SBs, which is an alternative
interpretation to the view that such a reduction can only be explained by a successive
decrease in SB strength or by multiple molecules loaded in parallel [39]. These results
bear the important conclusion that load–displacement curves measured in single-molecule
experiments need not necessarily directly reflec the underlying microscopic potential. Rather,
the effective potential may be smeared out and significantl reduced in its strength due to
entropic contributions. Single-molecule measurements with different chain length might clarify
this question. Furthermore, our results indicate that the effective breaking forces of ligand-metal
bonds could be considerable lower than the previously measured breaking forces of single bonds
(e.g. His–metal complexes [40, 41]), if they were embedded in a chain that is free to vibrate.
This has important consequences for our understanding of the biological materials and for the
design of biomimetic metallopolymers.

The idealized model presented in this paper is a simplifie representation of the real
situation. Firstly, one isolated polymeric chain is investigated here while in biological systems
many protein chains are assembled into larger structures into which the SBs are embedded.
This confine the chain into a reptation tube hindering its transverse fluctuation [35, 42]. We
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studied the magnitude of the root mean-square transversal fluctuation in our model and found
them to be less than a monomer-monomer distance. This is a very short length compared to
the reptation tube diameters of several nanometers found for polymer melts, for instance [43].
This short length indicates that the hinderance of transversal fluctuation due to local reptation
is not sufficien to prevent SB rupture. Secondly, the polymer model chosen in this letter
corresponds to a freely jointed chain without considering any bending or torsional contributions
to the energy. It is likely that additional interactions resulting in special folding patterns may
effectively reduce monomer fluctuations thus stabilizing SBs. Third, in the presented model
a SB is always formed between two monomers, while real metal coordination bonds involve
three or more partners that are cross linked. Thus, even when one partner detaches, there
remain ligands that hold the structure together. However, since the effect of bond weakening
is significan for SBs with a rather high but realistic binding energy compared to ambient
temperature, it can be concluded that despite the obvious simplification of the model, protein
backbone fluctuation will definitel reduce SB strength in real biological materials. These
fluctuation may even prove beneficia for the self-healing process. Thus, the interplay of
thermal fluctuations backbone rigidity, covalent bond strength and SB strength dictate the
overall mechanical behavior of these structures. An important question to answer in this context
is, whether there is an optimum value of the strength of SBs compared to covalent bonds and if
there is an optimum length of the protein chains? Our results indicate that the relatively short
segment length of the SB rich domains of only 30–80 amino acids is not incidental, but rather
due to SB weakening for longer segments. For hydrogen bonded beta sheet configuration it
has already been shown that thermodynamic stability determines the optimum length of the
involved beta-strands [44]. Our results in addition indicate that there is a strong temperature
dependence of the mechanical properties of materials relying on SBs. Thus, mechanical tests
on e.g. byssus fiber at different temperatures seem promising to further decipher the secrets
of their mechanical performance. First experiments confirmin the importance of temperature
have shown that self-healing proceeds faster at higher temperatures [8].

4. Conclusion

Employing a simple model with reversible crosslinks mimicking SBs between proteins and
metal ions in the mussel byssus makes it possible to reproduce characteristic features found
in experimental load–displacement curves in natural materials. Characteristic sawtooth patterns
corresponding to the rupture of single bonds were observed. The distance between two peaks
(the hidden length revealed) is directly linked to the topology of the bonds and corresponds to
the length of the loops define by the SBs. The height of the peak force is considerably lower
than the theoretical strength of a SB. It was shown that this reduction is of entropic origin. The
capability of SBs to transmit load are drastically reduced at ambient temperature due to thermal
fluctuation in the backbone of the chain.
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A growing focus in modern materials science is the attempt to transfer principles found in nature into new technological 

concepts with the goal of producing novel materials with tailored mechanical properties. One of these principles used 

in nature is the concept of sacrificial bonding (i.e. non-covalent cross-links that rupture prior to the protein backbone), 

which is associated with increased toughness in many biological materials. In the present work, the influence of the 

number and distribution of sacrificial bonds (SBs) on three main mechanical parameters—strength, work to fracture 

and apparent stiffness—is investigated in a simple model system using computer simulations. The results show that 

the work to fracture is mainly determined by the number of SBs present in the system, while the apparent stiffness 

and, to a lesser extent, the strength is altered when the distribution of SBs is changed.

1. Introduction
In contrast to engineered materials, biological organisms utilize 
a relatively limited selection of building blocks to synthesize 
materials (e.g. proteins, sugars, environmentally abundant ions). In 
spite of this, however, natural materials span an extremely wide 
range of mechanical properties, which is achieved by hierarchical 
structuring of the material over multiple length scales and by a 
combination of materials with opposing mechanical properties.1 
One common and successful strategy to increase the toughness 
of protein-based biological materials is to use so-called sacrificial 
bonds (SBs).2 These non-covalent cross-links are weaker than 
the covalent bonds that comprise the protein backbone, and 
consequently, upon loading, they rupture before the covalent bonds 
fail. By doing so, SBs reveal hidden length (i.e. the length increase 
associated with unfolding of folded proteins) providing an efficient 
energy dissipation mechanism, while the overall material integrity 
survives.3 Furthermore, these bonds are reversible and may reform 
when the load is released, allowing for molecular repair. SBs have 
been found in a large variety of biologial materials like wood,4 
bone5–7 and in some softer biological fibres such as silk,8 whelk egg 
capsule9 and mussel byssus threads.10–13

In materials such as silk, SBs are often weak hydrogen bonds 
combined in large numbers in regular protein conformations 
in order to collectively produce high stiffness14; however, in the 
case of the mussel byssus, much stronger interactions between 
metal ions and proteins are employed. In this regard, the mussel 
byssus is an especially fascinating material. The mussel secretes 
the collageneous byssal threads as a means of creating a secure 
attachment in wave-swept rocky seashore habitats. Among the 
impressive properties of the mussel byssus are its high extensibility 
of over 100%, high stiffness and toughness,10 its hard and wear-
resistant outer coating15–18 and, last but not least, its ability to 
create strong and long-lasting underwater adhesion to a variety of 
surfaces.17 A fundamental aspect shaping each of these properties is 
the interaction of proteins with metal ions. In particular, histidine–
zinc and 3,4-dihydroxyphenylalanine (DOPA)–iron coordination 
complexes in the protein building blocks of the material serve as 
reversible SBs with a relatively high binding energy of 20–30% of 
a covalent bond.19,20

Recently, a number of technological materials have emerged that 
attempt to draw inspiration from the aforementioned notable 
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properties of the mussel byssus, for example, strong biocompatible 
surgical adhesives,21 implantable drug-eluting devices in human 
blood vessels capable of withstanding blood flow22 and super 
tough hydrogel materials that may serve as artificial cartilage.23 
Additionally, a new generation of biomimetic self-repairing 
metallopolymers has arisen, which directly draw inspiration from 
the byssal threads.24–27 In spite of these advances, many challenges 
still persist. Thus, a thorough experimental and theoretical 
understanding of the molecular processes underlying the SB 
mechanism is crucial.

In particular, the specific details of the topology and nature of 
the metal-binding domains have been found to be increasingly 
important in determining material properties. It was shown, for 
example, that the type of coordination bond (i.e. the metal and 
ligand utilized) affects the stiffness and strength of a polymer25,27,28 
and that the fracture toughness as well as the extensibility of 
materials based on SBs is strongly dependent on the pulling 
speed.29,30 Furthermore, it was shown that the topology of SBs 
and thermal backbone fluctuations strongly affect the efficacy of 
SBs31 and that the spatial distribution of SBs can have a strong 
effect on mechanics32—a random distribution of SBs is necessary 
to provide the system with shear deformability. Along these lines, 
the histidine-rich domains in the load-bearing proteins comprising 
the self-healing mussel thread core contain numerous variations in 
sequence depending on the protein variant and species.33 Sequence 
variations result in differences in distribution and number of 
metal-binding histidine residues and are believed to be associated 
with differences in the mechanics between threads from different 
species.33 It has been demonstrated that the binding energy of 
histidine–metal complexes can be greatly affected by the number 
and spacing of histidine residues in short peptides34 and that the 
position of the metal-coordination bond in the folded protein chain 
influences the mechanical stability of the proteins.35 In the current 
study, the influence of the distribution of SBs on the mechanical 
properties in fibrous systems inspired by the mussel byssus is 
further investigated utilizing computer simulations. Monte Carlo 
simulations mimicking tensile experiments were carried out 
on a simple model system, and the main mechanical properties 
(strength, work to fracture and apparent stiffness) as a function of 
the number and distribution of SBs was assessed. It was shown that 
the work to fracture is mainly determined by the number of SBs, 
while their distribution has a significant impact on the strength and 
apparent stiffness.

2. The model
The histidine-rich regions of the load-bearing proteins in the 
tough fibrous core of mussel byssal threads10,33 and the DOPA-rich 
proteins found in the plaque12 and the protective cuticle18 form 
protein–metal SBs that provide the inspiration for the presented 
model, already introduced in Ref. 31. The histidine-rich sequences 
from the byssal core, for example, are relatively short segments that 

consist typically of 30–80 amino acids.33 This motif is described 
by a linear chain of N = 50 covalently bonded beads. To prevent 
self-interaction of the chain, the beads were assigned a hard-sphere 
radius R that essentially forbids the overlap of two beads and that 
we set as the unit of length in the simulations. The covalent bonds 
were described via a Morse potential

1. 

E
0
 = 5 eV is the depth of the potential, β−1 = 0·5R is the width of the 

potential, r
0
 = 3R is the equilibrium distance and r

ij
 is the distance 

between two neighbouring beads (Figure 1b). Consequently, the 
contour length of the chain is given by L N rc = −( )1 0. SBs were 
described by defining N

s
 of the beads as sticky, setting the sticky site 

density as ρs s= N N/ . SBs in this model always formed from only 
two sticky sites and were allowed to open and close reversibly (see 
Figure 1a for a schematic sketch of the model). Not much is known 

E r E r rij ij( ) ( )= − − −⎡⎣ ⎤⎦{ } −⎡
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⎦⎥0 0

2

1 1exp β

Figure 1. (a) Sketch of the used model. Gray beads denote the two 

fixed outer beads defining the end-to-end distance, non-sticky sites 

are shown in blue and sticky sites in orange, respectively. Covalent 

bonds are indicated by black bars, while a closed sacrificial bond 

is shown by the green zigzag line. (b) The Morse potential used to 

describe the energetics of covalent (black) and sacrificial (red) bonds. 

The vertical dotted line indicates the equilibrium distance r0, while the 

two horizontal lines indicate the used binding energies E0 and E0
SB, 

respectively.
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about the energetics of SBs. Nevertheless, there are experimental 
indications that the binding energy of a histidine–metal complex 
lies between 20 and 30% of a covalent bond.19,20 For the sake of 
simplicity, in this study, the SBs are also described with a Morse 
potential as are the covalent bonds. The binding energy of the SBs 
is set to 25% of the value of a covalent bond, E0 1 25SB  eV= ⋅ .

In the simulations, we investigated two different sticky site densities 
(ρ

s
 = 0·08 and 0·24, respectively) and three different arrangements 

of sticky sites: (a) ordered, (b) patches and (c) random (see top row 
of Figure 3). In the ordered case, the sticky sites were introduced 
regularly with always the same number of non-sticky sites in 
between. In the second arrangement, the chain is divided into 
three segments of equal length (the patches). The sticky sites are 
distributed regularly on the outer two patches, while the middle 
patch is sticky site free. In the third arrangement, the sticky sites are 
distributed randomly under the additional constraint that two sticky 
sites are not allowed to be directly neighbouring.

In the simulations, load-displacement curves were obtained using 
the Helmholtz ensemble.36 The end-to-end distance L of the polymer 
was defined by pinning its two outer beads. The position of the 
inner beads and the SBs were updated using a standard Metropolis 
algorithm37 and the force on the outer beads was recorded and 
averaged. Starting from a small end-to-end distance L was slowly 
increased until L/L

C
 = 1. Up to 20 independent simulation runs 

have been done for each density and arrangement. Up to 3 million 
Monte Carlo steps (i.e. jump trials per bead) were performed for 
each single point. The temperature was set to the ambient value of 
k

B
T = 25 meV.

3. Results and discussion
Figure 2 shows the averaged load-displacement curves of a 
single polymer chain with ρ

s
 = 0·08 for an ordered and random 

arrangement of sticky sites. In the ordered arrangement, five 
peaks can be observed. The first four peaks correspond to the 
rupture of SBs with different topologies, the last peak is due to 
backbone stretching (Figure 2a).31 Each of these single peaks can 
be well fitted with the worm-like chain model38 that was shown to 
describe entropic forces due to the tendency of elongated polymers 
to recoil.39,40 A parameter that is connected to the toughness of the 
material is the work to fracture W W W0 = + Δ  that is given by the 
area under the curve. W = 11·38 eV is the work to straighten the 
molecule, that is, to elongate the molecule to its contour length, 
and ∆W = 25 eV is the additional contribution due to the rupture of 
the covalent backbone. Because all SBs are open when the chain 
is fully elongated, ∆W is the same for all configurations and is 
omitted in the following. The strength of the material F

m
 due to SBs 

is calculated as the maximum load of the curve after subtracting 
the pure, covalent interaction. For the ordered distribution of 
sticky sites, the rather high value of F

m
 = 0·77 eV/R is found. 

Nevertheless, due to thermal fluctuations of the backbone, this 

value is considerably lower than the theoretical strength of one SB 
F Em

th /  eV/R= =0 2 1 25β ⋅ .31

In the random distribution of sticky sites, 20 independent 
configurations were generated and tested. The single force 
peaks of the loading curve are smeared out compared to the 
ordered distribution, an effect that considerably reduces the 
strength to F

m
 = 0·26 eV/R. Because of the randomness of the 

sticky site distribution, their positions along the chain and thus 
the corresponding positions of the force peaks are not fixed. 
Consequently, the load is distributed over the entire range of the 
load-displacement curve leading to a lowering of the peak height 
compared to the ordered case. Nevertheless, within error, the work 
to fracture W = 11·45 eV is identical with the result for the ordered 
arrangement. Furthermore, the random arrangement allows one to 
define an apparent stiffness E of the material that is defined as the 
mean slope of the first increase in the load-displacement curve. It 
is found that E = 1·84 meV/R2. Analogous to an ordinary stiffness, 
the apparent stiffness is a measure of how much force is needed 

Figure 2. Load-displacement curves for an (a) ordered and (b) random 

arrangement of sticky sites with N =50, kBT =25 meV and ρs = 0·08. In 

the random arrangement, the apparent stiffness of the material (i.e. 

the mean slope of the initial part of the curve) is indicated.
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to elongate the structure to a certain length. While the ordinary 
stiffness describes the elastic behaviour of a material, the apparent 
stiffness is determined by the rupture of bonds that is characteristic 
for plastic deformation. Nevertheless, due to the reversibility of the 
SBs, they are able to reform over time following unloading, and the 
initial apparent stiffness is recovered.

Figure 3 shows the load-displacement curves for a high sticky 
site density ρ

s
 = 0·24 and three different arrangements of sticky 

sites. In the ordered arrangement, two successive sticky sites are 
separated by three non-sticky sites. In contrast to the low-density 
ordered arrangement, the stretching part of the load-displacement 
curve does not show single peaks corresponding to SB rupture, 
but rather a continuous shape (Figure 3a). This shows that after 
a single SB rupture, the force does not drop to zero but is taken 
up by some other SBs. Similar to the low-density arrangement 
(Figure 2), this allows the definition of an apparent stiffness E = 
5·03 meV/R2 that is also indicated by the gray line in the figure. 
The strength of this material is found to be F

m
 = 0·7 eV/R and the 

work to fracture W = 22·55 eV.

The load-displacement curve changes significantly when the 
arrangement of sticky sites is changed to the patches configuration 
(Figure 3b). When stretched, the intermediate patch that contains 
non-sticky sites only fully elongates before the SBs starts to rupture. 
Thus, the force starts rising only when the chain is stretched to 
L/L

C
 = 0·7 (the few rupture events at small end-to-end distances 

correspond to SBs that have been formed between sticky sites in 
different patches). Compared to the ordered distribution, this late 
onset of the force slightly reduces the area under the curve to W = 

19·63 eV, but largely enhances the apparent stiffness of the material 
to E = 16·26 meV/R2. The reason for this large value of the apparent 
stiffness is that due to the late onset of the force, the force has to 
rise over a smaller distance, yielding a large slope. The strength of 
the material is given by F

m
 = 0·9 eV/R.

Finally, Figure 3c shows the load-displacement curve for the random 
arrangement and ρ

s
 = 0·24. The curve shows two distinct regions: 

below L/L
C
 = 0·8, an irregular region of low force and above this 

value, a more regular region of higher forces. The first of these two 
regions corresponds to the rupture of SBs that connect sticky sites 
that are far apart along the chain. Due to their long distance along 
the chain, these SBs rupture at smaller end-to-end distances than 
SBs between neighbouring sticky sites. Nevertheless, in this regime, 
the number of intact SBs stays roughly constant showing that new 
SBs are reformed, but now, between sticky sites in closer distances 
along the chain. When the elongation L/L

C
 = 0·8 is reached, the 

chain is stretched to the extent that SB reformation ceases, and on 
further elongation, the number of intact SBs rapidly decreases to 
zero. It is the large number of SB rupture events distributed over 
a short length that is responsible for the higher value of the force 
in the region above L/L

C
 = 0·8. Due to the small number of sticky 

sites for the random arrangement and ρ
s
 = 0·08, SB reforming is not 

possible, and the load-displacement curve shows a single region of 
low force only (Figure 2b). The random arrangement with ρ

s
 = 0·24 

shows an apparent stiffness of E = 1·84 meV/R2, a work to fracture 
W = 23·51 eV and a strength of F

m
 = 0·55 eV/R.

Table 1 summarizes the different mechanical parameters 
obtained for the different structures characterized by the number 

Figure 3. Load-displacement curves for three different distributions 

of sticky sites ((a) ordered, (b) patches and (c) random) and N =50, kBT 

=25 meV and ρs = 0·24. The gray lines indicate the apparent stiffness 

of the materials defined as the mean slope of the first part of the 

load-displacement curve. In the top part of the figure, a sketch of the 

different arrangements of sticky sites are shown (sticky sites are shown 

in red, non-sticky sites in blue).
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and distribution of sticky sites. The results show that the work 
to fracture is mostly dependent on the number of SBs present 
in the system and does not dramatically change when the 
distribution of sticky sites is changed. For ρ

s
 = 0·08, the work to 

fracture is identical within error bars for the ordered and random 
arrangement, while for ρ

s
 = 0·24, it moderately increases from 

W = 19·63 eV in the patches configuration to 23·51 eV for the 
random arrangement, which is a change of 20% only. Thus, it is 
the number of SBs that has to be broken and not their distribution 
that mainly determines the toughness of a material. For non-
reversible bonds, it is even expected that W is constant because 
for the two extreme configurations of all bonds loaded in series 
or in parallel, the product of elongation and strength is constant. 
It is the reversibility of the SBs allowing bond reformation after 
rupture that is responsible for the slight increase in W. This 
situation is reversed when the behaviour of the apparent stiffness is 
investigated. The apparent stiffness is a measure of how much force 
is needed to elongate the chain. However, in contrast to the elastic 
modulus that is determined by the reversible elastic behaviour of 
a material, the apparent stiffness is a result of SB rupture, that 
is, plastic deformation. Nevertheless, the reversibility of the SBs 
allows for molecular repair and recovery of the initial mechanical 
parameters. The apparent stiffness for the two investigated 
random configurations is the same, although the number of 
SBs changes by a factor of 3 for the two investigated densities. 
Otherwise, when the number of SBs is kept constant and only 
their distribution is changed, the apparent stiffness changes from 
E = 1·84 meV/R2 for the random distribution to 16·26 meV/R2 for 
the patches configuration, which is almost a factor of nine. The 
high apparent stiffness of the patches configuration is because 
in contrast to the other configurations, the SBs form between 
sticky sites that are very close along the chain. On average, 
there is only one non-sticky site in between, while in the ordered 
configuration, this distance is at least three non-sticky sites, 
and all distances are possible in the random arrangement. SBs 
between close sticky sites rupture at large elongations; thus, the 
patches arrangement ensures a late but high increase in the load. 
When comparing the strength of the different configurations, it 
can be observed that for the same sticky site density, the strength 
of the random configuration is always the smallest, while the 
strength of the ordered and the patches arrangement are of similar 
magnitude. It is the smearing of the sacrificial force peaks over 

the entire length that is responsible for the reduced strength in 
the random distribution. The approximately twofold increase in 
the strength when increasing the sticky site density in the random 
distribution is due to the second region above L/L

C
 = 0·8 in the 

load-displacement curve for the random arrangement and the 
high sticky site density that is missing in the low-density case.

The results presented in this work suggest the following 
guidelines for tuning behaviour of materials based on SBs via 
sticky site (ligand) distribution and number. To maximize the 
work to fracture (toughness) of the systems, the number of SBs 
and their ability to reform should be maximized, regardless of the 
specific distribution of the SBs. For an equal number of SBs, the 
apparent stiffness of a material can be greatly enhanced when the 
SBs are distributed such that it is ensured that the force rises over 
a small change in length of the polymer. In the present study, this 
was achieved by arranging SBs in patches in particular regions 
of the polymer, effectively reducing the distance between sticky 
sites. Finally, any ordered arrangement of SBs yields an elevated 
strength (both ordered and patches) when compared with a purely 
random configuration.

4. Conclusions
The influence of the number and the distribution of SBs on 
the mechanical behaviour of single polymeric chains were 
investigated. It was shown that the work to fracture, related to the 
toughness of the material, is mainly determined by the number 
of SBs that have to be broken when the polymer is elongated, 
while the apparent stiffness and, to a lesser extent, the strength 
of the material is strongly dependent on the distribution of SBs 
in the system. The results presented have important implications 
for the development of new materials with tailored mechanical 
properties that employ sacrificial bonding – a concept that is 
masterly applied by nature to enhance the properties of biological 
materials.
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Work to fracture (W): eV Apparent stiffness (E): meV/R2 Strength (Fm): eV/R

ρs = 0·08 Random 11·45 1·84 0·26

Ordered 11·38 — 0·77

ρs = 0·24 Random 23·51 1·84 0·55

Ordered 22·55 5·03 0·7

Patches 19·63 16·26 0·9

Table 1. The work to fracture W, the apparent stiffness E and the strength Fm of the different investigated structures in this study
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Abstract

Reversible cross-linking is a method of enhancing the mechanical properties of polymeric ma-

terials. The inspiration for this kind of cross-linking comes from nature that uses this strategy

in a large variety of biological materials to dramatically increase their toughness. Recently, first

attempts have been made to transfer this principle into technological applications. In this study,

Monte Carlo simulations are used to investigate the effect of the number and the topology of

reversible cross-links on the mechanical performance of a simple model system. Computational

cyclic loading tests are performed and the work to fracture as well as the energy dissipation per

cycle are determined that both increase when the density of cross-links is increased. Furthermore,

a different topology of the bonds may increase the work to fracture a factor more than two for

the same density. This dependence of the mechanical properties on the topology of the bonds has

important implications on the self healing properties of such systems, because only a fast return

of the system to its unloaded state after release of the load ensures that the optimal topology may

form.

PACS numbers: ***

Keywords: ***

∗Electronic address: markus.hartmann@unileoben.ac.at

1



I. INTRODUCTION

Cross-linking is a common strategy used in natural as well as in technological polymeric

materials to enhance their mechanical properties [1]. One of the most prominent examples

is the development of vulcanization by Ch. Goodyear in 1839. Permanent cross-linking with

sulfur bridges significantly improved the mechanical performance of rubber products. Since

then many other applications for polymer cross-linking have been invented [2]. Recently

covalent cross-linking was also suggested to improve the shear stability in carbon nanostruc-

tures like graphene and carbon nanotubes [3, 4]. In natural materials the bending properties

of actin bundles of the cell cytoskeleton differ by several orders of magnitude depending on

the degree of cross-linking [5–7].

Besides permanent (covalent) cross-linking nature also uses the concept of reversible

cross-links that provides an efficient way of toughening the material. Different to permanent

cross-links these so called sacrificial bonds (SBs) can open and close reversibly. SBs have

been found in a large variety of biological materials like bone [8, 9], wood [10], and some

fibrous materials such as silk [11, 12], the mussel byssus [13–15] and the whelk egg capsule

[16]. The strength of individual SBs can largely differ from several 100 meV for hydrogen

bridges to a value close to the strength of covalent bonds for metal coordination bonds

[17, 18].

SBs are cross-links that are weaker than the covalent bonds that hold the structure

together. Thus, upon loading the SBs rupture first while the covalent bonds stay intact [8,

19]. Whenever a SB fails, hidden length may be revealed by opening and unfolding of loops in

the protein and, thus, energy dissipated [8]. Furthermore, SBs are often reversible, i.e. they

can open and close repeatedly. Consequently, after some time the material regains its original

mechanical properties when the load was released [20, 21]. These remarkable properties of

reversible cross-links trigger the desire to transfer some of the underlying principles into

technological applications. These attempts include the development of self-healing polymeric

materials with increased stiffness and extensibility [22–24], the mechanical improvement of

hydrogels [25–28], the fabrication of mussel inspired polydopamine films for use in biomedical

or electrochemical applications [29–31] and the functionalization of graphene using mussel

inspired chemistry [32].

Understanding the underlying structure-function relationships that allow for these ex-
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traordinary mechanical performance is of utmost importance to mimic these fundamental

design principles and to transfer them into novel man-made materials [33]. This under-

standing, nevertheless, is an extremely complicated task due to the enormous complexity

and subtle interactions that are found in biological systems. Thus, simple models focusing

on well defined aspects of the problem may be addressed either analytically or with the help

of computer simulations and are indispensable tools making these complex systems theo-

retically tractable and helping the interpretation of experimental findings. Using analytical

and computational modeling techniques, it was shown that confinement strongly influences

the rupture of hydrogen bonds in silk like structures [34, 35], that the distribution of SBs

determines the shear deformability in bone [36] and that mechanical properties of structures

relying on SBs show a pronounced dependence on pulling speed [37, 38].

In the present paper we investigate a simple model of a polymer chain that can reversibly

form cross-links between some of its monomers mimicking the effect of SBs. Using Monte

Carlo (MC) simulations we investigate the influence of SB density and topology on the work

to fracture and specifically on the amount of dissipated energy per loading cycle. Special

emphasis in the discussion is put on the process of reforming ruptured SBs during unloading

of the system. This reforming determines the mechanical properties after one loading cycle

and is thus strongly linked to the self healing capabilities of the structures. The mechanical

properties depend on the topology that SBs form when closing. The type of topology

is strongly influenced by the rate at which the loaded structure returns into its native

state. The approach chosen in this paper is to build an especially simple model, capturing

the essentials of sacrificial bonding. The simplicity of the model gives the advantage of

understanding the system completely. As a next step the basic mechanisms underlying

energy dissipation and recovery identified in this model will also help to understand the

much more complex situation in real systems.

II. THE MODEL

The model is inspired by the fascinating class of metalloproteins and was already pre-

sented in [39]. Thus, in the following only a short description is given focusing on the new

concepts used in this paper. The model consists of a linear chain of N = 50 covalently

bonded beads with a hard-sphere radius R (that we set as the unit of length). The covalent
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bonds are described via a Morse potential

E(rij) = E0{[1− exp(−β(rij − r0))]2 − 1} (1)

E0 = 5 eV is the depth of the potential, β−1 = 0.5 R the width of the potential, r0 =

3R the equilibrium distance and rij is the distance between the two neighboring beads.

Consequently the contour length of the chain is given by LC = (N − 1)r0. To account for

the effect of reversible cross-links Ns of the beads are defined as sticky. The sticky sites are

introduced regularly, i.e., the same number of non-sticky sites separating them. Always two

of these sticky sites could form a SB. The energetics of the SBs are described with an identical

potential as the covalent bonds but with a reduced binding energy ESB
0 = 1.25 eV. The

cross-links were allowed to open and close reversibly and cross-link updating was performed

using a standard Metropolis algorithm [40]. Updating the position of the inner beads of the

chain was also performed using the Metropolis algorithm. Simulations were performed in

the Helmholtz ensemble by pinning the first and last bead defining the end-to-end distance

L =| r1 − rN | of the chain [41]. Simulations mimicking cyclic loading experiments were

performed by starting from a small end-to-end distance that was gradually increased until

L/LC = 1. Then the loading was reversed, i.e. L was slowly decreased, until the initial

end-to-end distance was recovered. Eventually the chain was then stretched a second time.

During each simulation step the force on the outer beads was recorded and averaged. For

each length up to 3 million Monte Carlo steps (MCS), i.e. jump trials per bead and per sticky

site, were performed. The results shown in this paper are the averages of 20 independent

runs for stretching and 10 independent runs for unloading of the chain. In the simulations

the temperature was set to the ambient value of kBT = 25 meV.

III. RESULTS

A. Influence of the sticky site density

Independent starting configurations with small end-to-end distances were prepared by

slowly unloading a fully stretched chain without sticky sites to the starting length L/LC =

0.04. Then the sticky sites were introduced corresponding to densities ρs = Ns/N = 0.08,

0.24 and 0.48, respectively, and the SBs were allowed to form. Figure 1 shows the average

number of closed SBs as a function of time measured in units of MCS and the two densities
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FIG. 1: The number of closed SBs as a function of time for the two high SB densities. The data

are the average of 100 independent runs for each sticky site density. Note, the logarithmic scaling

of the time axis. The inset shows the same data with a linear time axis.

of sticky sites. At both densities there is an initial steep increase in sticky site number that

is subsequently slowed down at longer times. This behavior is similar to what was shown

in experiments that report an initially fast recovery of the mechanical properties reaching

approximately 70 % after waiting times of one hour, but considerably slowing down to a

recovery of only 95 % after 168 hours [13].

Figure 2 shows load-displacement curves for cyclic loading and the three investigated

sticky site densities obtained after the SBs have formed. The black symbols show the

behavior during loading, while red symbols denote unloading of the structure. The bottom

row of the same figure shows the corresponding number of intact SBs. The lowest density

corresponds to Ns = 4 sticky sites in the system that are separated by 10 monomers. When

this structure is stretched a discrete rupture of SBs can be observed (see Fig. 2A). The

position of the observed force peaks is determined by the topology of the involved SBs,

while its height is intimately tied to the thermal fluctuations of the protein backbone and

is considerable smaller than the theoretical strength of one SB given by Fmax = βESB
0 /2 =

1.25 eV/R [39]. Each single peak can be fitted with the worm-like-chain model [1, 42] that

has been shown to reasonably well describe such entropic loads [43, 44]. When ρs is increased

(corresponding to Ns = 12 and 24 sticky sites, respectively) the distinct peaks corresponding

to SB rupture merge into one large plateau and the force does not drop to zero between
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FIG. 2: (A), (C), (E): Cyclic loading curves for N = 50 at kBT = 25 meV and three different

sticky site densities. (B), (D), (F): The corresponding mean number of closed SBs as a function of

the end-to-end distance. Black symbols denote loading, red the unloading branches. The presented

curves are the averages of 20 runs of stretching and 10 runs of unloading.

discrete rupture events (see Fig. 2(C and E)). The height of this plateau is comparable to

the height of the distinct force peaks seen in Fig. 2(A), in particular the plateau is also lower

than the theoretical strength of one SB. Thus, entropic effects continue to largely influence

the effective strength of SBs also for high sticky site densities.

As soon as the polymer is stretched to its contour length LC , the direction of loading

is reversed and the structures are unloaded. For all three sticky site densities the load-

displacement curves show a pronounced asymmetry between loading and unloading—more

energy is needed to elongate the polymer, than is restored when it is unloaded. The difference

in the area of the two curves is a measure of the dissipated energy per loading cycle ∆E =

E1 − E2, with E1 and E2 the area under the loading and unloading curve, respectively.

The work to fracture is given by W = E1 + EC with EC = 25 eV the energy needed to

finally rupture the fully elongated polymer. Because all SBs are open for a fully elongated

polymer, EC is a constant for all investigated structures. Thus, in the following, EC will be

omitted and the energy to elongate the polymer E1 and the work to fracture will be used

interchangeably. For the three investigated densities the dissipated energy was found to be
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∆E = 5.5±0.2 eV, 15.1±0.5 eV and 23.8±1.4 eV, respectively. The corresponding relative

amount of dissipated energy was given by ∆E/E1 = 0.49, 0.67 and 0.65, respectively (see

also Table I). The lower part of Figure 2 shows that all SBs are open when the chains are

stretched to their contour lengths. Upon unloading of the chain with ρs = 0.08 the SBs re-

form, but at end-to-end distances smaller than the distance corresponding to bond breaking

(see Figure 2(B)). At these smaller distances the chain has already enough conformational

freedom that the formed SBs can relax and, thus, do not experience an elevated force. The

reason for delayed bond formation is that two sticky sites have to come into close spatial

vicinity that a stable SB may form. At large end-to-end distances it is highly improbable

that in a fluctuating chain sticky sites find each other.

Unloading of the chain with ρs = 0.24 is similar to the low density case ρs = 0.08. Mostly,

the bonds reform at distances lower than when they were broken. At higher sticky site

density the distance between neighboring sites is smaller and the force is slightly increased

compared to the unloading for the case ρs = 0.08 (see Fig. 2). The small region around

L/LC = 0.6, where sticky sites reform earlier than they were broken, is due to SBs that

have been originally formed between sticky sites separated a long distance along the chain

and that reform between closer sticky sites.

This effect is even more pronounced for the highest sticky site density ρs = 0.48, whose

unloading behavior can be described as a three stage process (Fig. 2(E) and (F)): first, for

an end-to-end distance still close to the contour length the number of intact SBs increases

considerably due to bond formation between sticky sites that are in close vicinity along

the chain. This different behavior compared to the low density case is explained by, first,

the higher number of sticky sites and, second, their closer distance along the chain, which

both increase the probability of SB formation. In contrast to the low density case, due to

the elevated length of the chain these bonds have not yet the conformational freedom to

relax. Thus, the SBs are still strained resulting in the plateau in the unloading part of the

load-displacement curve. Second, for intermediate end-to-end distances no new bonds are

formed, but the existing bonds relax. This can be seen as a sharp drop in the force in the

load-displacement curve (Fig. 2(E)) and a constant number of the intact bonds (Fig. 2(F)).

Third, for small end-to-end distances the chain is relaxed enough that the remaining sticky

sites that are far apart along the chain can form SBs. Thus, the number of intact SBs slowly

increases again, while the force is slowly decaying to zero. For low ρs all sticky sites are well
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FIG. 3: Starting configurations (top) and load-displacement curves (bottom) for three different

topologies of SBs: independent (A), nested (B) and pseudoknotted (C). The black line shows

stretching of the different starting configurations until the contour length, the red line shows

subsequent (quasi static) unloading. Note, that this curve is identical for all structures. The

length of the chains was N = 50 and the sticky site density ρs = 0.48.

separated along the chain and unloading of the chain is described by the third stage only

(see Fig. 2A).

B. Influence of the topology of bonds

Previous work has shown that the topology of bonds has a large influence on the mechan-

ical behavior of the polymer and its capability of dissipating energy [39, 45–47]. To test the

influence of the topology on E1 and the dissipated energy ∆E a new set of simulations with

special starting configurations were performed. Instead of introducing the sticky sites in the

crumpled starting state of the polymer and allowing the formation of SBs without any bias,

in these new starting configurations the topology of the SBs was predefined at the beginning:

the independent, nested and pseudoknotted configuration (see the top row of Figure 3 for a

sketch of the starting configurations and corresponding topologies) [45]. The bottom row of

Figure 3 shows the resulting load-displacement curves. The black symbols denote loading

of the different starting configurations. Although the number of sticky sites and thus the

initial number of SBs is equal for all three structures (ρs = 0.48), the stretching part of
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the load-displacement curves shows a considerable different behavior. For the independent

configuration the force starts rising at the largest elongations compared to the other two

topologies. The first SB starts stretching when the length of the structure is increased to

L/LC = 1−Ns/2(N − 1) ≈ 1− ρs/2 = 0.76 (see Figure 3(A)), while the much lower values

L/LC ≈ 3/(N − 1) = 0.06 and L/LC ≈ 5/(N − 1) = 0.10 are found for the nested and the

pseudoknotted configuration, respectively. Another difference between the topologies can

be seen in the number of single rupture events characterized by the force peaks in the load-

displacement curves. There are exactly 12 rupture events for the independent configuration,

while for the nested and pseudoknotted configuration the number of rupture events increases

by a factor more than three. In all the different configurations there are 24 sticky sites, giv-

ing a maximum number of 12 simultaneously closed SBs. The number of 12 SB ruptures

for the independent configuration shows that after SB rupture the now open sticky sites do

not reform. This is different for the nested and pseudoknotted configurations. The number

of SB ruptures is much larger than 12, indicating that in this case after rupture the open

sticky sites recombine leading to the formation of new SBs. It is clear that reforming of SBs

increases the work under the stretching curve. On the other hand, the lack of SB reforming

leads to a reduction of more than 50% in E1 for the independent topology compared to the

other two cases (see Table I). Another point that can be observed concerns the height of the

force peaks corresponding to individual SB rupture events. Although in the simulations all

SBs are identical, the height of the observed force peaks shows significant variations. In [39]

it was shown that the effective strength of SBs is reduced by thermal backbone fluctuations

and, thus, crucially depends on the effective length of the chain defined by the SB. This effect

can be clearly seen in the presented figure. For the independent configuration SB rupture

starts at a large effective length of L/LC ≈ 0.75 and all the force peaks show a height of

≈ 0.8 eV/R which is a reduction of one third compared to the theoretical strength of one

SB of Fmax = 1.25 eV/R (see Figure 3(A)). The first rupture in the nested configuration

occurs at a small effective length of L/LC ≈ 0.06. Due to this small length the effective

strength of the SB is close to its theoretical value Fmax. When the chain is further stretched

its effective length increases and the effective strength of SBs decreases attaining the same

value of ≈ 0.8 eV/R as in the independent configuration for large elongations (see Figure

3(B)). The rupture of the six pseudoknotted loops in Figure 3(C) results in force peaks

approximately twice the size of the single SBs. Also here the reduction of effective strength
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E1 E2 ∆E ∆E/E1

[eV] [eV] [eV] [-]

Crumpled starting configuration

ρs = 0.08 11.4± 0.2 5.90± 0.02 5.5± 0.2 0.48± 0.02

ρs = 0.24 22.6± 0.5 7.42± 0.06 15.1± 0.5 0.67± 0.03

ρs = 0.48 36.7± 1.3 12.84± 0.14 23.9± 1.3 0.65± 0.04

Predefined topologies

Independent 24.2± 0.1 12.84± 0.14 11.3± 0.2 0.47± 0.01

Nested 54.6± 0.5 12.84± 0.14 41.7± 0.6 0.76± 0.01

Pseudoknotted 63.0± 0.7 12.84± 0.14 50.1± 0.7 0.80± 0.01

Second stretching 30.0± 1.2 12.84± 0.14 17.2± 1.2 0.57± 0.05

TABLE I: The energy needed to stretch the molecule to its contour length E1 (up to an additive

constant this is corresponding to the work to fracture), the energy gained during unloading E2,

the corresponding energy dissipation ∆E = E1 −E2 and the amount of dissipated energy ∆E/E1

for the different investigated structures.

with increasing elongation is clearly visible.

When the chains were stretched to L/LC = 1 the loading was reversed and the chains un-

loaded. At this point all SBs were open. Thus, the starting configuration, and consequently

the behavior upon unloading, is the same for all cases with the same sticky site density

(especially it is also identical to the unloading already discussed and shown in Figure 2(E).

IV. DISCUSSION

The simple model presented here can not claim to describe the microscopic details of

enormous complexity characterizing load bearing structures in real materials. The polymer

itself is described by a simple bead model, the monomer interactions are excluded volume

only, backbone elasticity is given solely by bond stretching contributions and the solvent is

totally neglected. SBs are described phenomenologically with an effective potential connect-

ing always to beads, whereas in natural and technological materials SBs are often formed

between three partners [14]. Despite these massive simplifications that are necessary to
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make the situation computationally tractable many characteristics found in the mechanical

behavior of biological materials can also be found in the model presented. The sawtooth

pattern characteristic for single SB rupture for low sticky site densities (see fig. 2A) closely

resembles experimentally found loading curves reported in nacre [19] or in single molecule

measurements [48–53]. Furthermore, experimental investigations of the mussel byssus show

an energy dissipation of ∆E/E1 ≈ 0.7 [54] that is similar to the values found during cyclic

loading for the two high sticky site densities investigated in this paper.

One of the most remarkable properties of biological materials is their ability to repair and

self heal. One concept of nature to achieve this, is to use reversible sacrificial bonds. It is the

reversibility of these bonds that allows for repair after the load was released. Nevertheless,

the repair takes some time and healing does not occur instantaneous. Whenever the structure

is re-loaded immediately after unloading the mechanical properties characterizing second

stretching are strongly deteriorated compared to the first, while the mechanical properties

recover after some waiting time in between consecutive loading cycles [55]. This effect

is attributed to the time needed for the sticky sites (that are mostly open after loading)

to find and reform stable SBs. Experiments showed that this process speeds up when the

temperature is increased, thus indicating that SB formation is a random, thermally activated

process [13]. The rate of bond formation obtained with the present model resembles the

experimental finding of an initially fast formation that subsequently slows down (see Fig.

1) giving further indication that the recovery is a stochastic, thermally activated process.

Nevertheless, one should keep in mind that the self healing process in reality is much more

complicated than can be captured with the simple model presented, depending e.g. on the

pH [56, 57] and the pI value [58].

Not only reforming of SBs rather all relevant mechanical parameters depend on time,

i.e. stretching speed [38, 59]. Energy dissipation becomes larger if the structure is unloaded

faster than the SBs can form, i.e. ∆tUnload � τSB. No elevated force would be seen on the

unloading branch, effectively increasing the area between the curves. On the other hand, the

energy dissipation would decrease when stretching is faster than the relaxation time of the

polymer, such that it is not the SBs but rather the covalent bonds that fail. Although MC

simulations do not allow to directly determine time dependent properties it is still possible to

gain some insights on the two limiting cases of infinitely fast and infinitely slow (quasi static)

loading. The load-displacement curves presented in Figs. 2 and 3 correspond to quasi-static
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deformation, i.e. the polymer was stretched so slowly that the structure was given enough

time to equilibrate at each loading step. When these quasi statically unloaded structures

are stretched a second time, this second stretching is different to the first. This is due to the

different preparation of the starting state. The starting configuration for the first stretching

was prepared such that SB formation was allowed only when the polymer was fully unloaded.

This corresponds to a unloading much faster than the SBs can form, i.e. the limiting case

of infinitely fast unloading ∆tUnload � τSB. In contrast the starting configuration for the

second stretching was obtained by a quasi static unloading of the polymer allowing for SB

formation already at large elongations. Fig. 4 shows the difference of the first and second

stretching cycle ∆F = F1 − F2 calculated from the averaged load-displacement curves as

a function of elongation. Clearly, on average ∆F > 0 showing that the load of the second

stretching is reduced compared to the first. This leads to a 20 % reduction of the area under

the stretching curve from 36.7 to 30 eV (see Table I). The different mechanical behavior of

the second stretching cycle can be attributed to a changed topology of the SBs induced by

the different methods of preparation of the starting configuration. On average 72 ± 3.4 %

independent, 14.5 ± 2.4 % nested and 13.5 ± 2.1 % pseudoknotted SBs are formed for the

fast unloading. In contrast, quasi-static unloading favors the independent topology (SBs

are formed between neighboring sticky sites) on cost of the pseudoknotted structure (SBs

are formed between non-neighboring sticky sites). A detailed analysis showed that during

quasi static unloading 83± 3 % of the SBs show the independent topology. The remaining

17± 3 % of SBs are of the nested type, while not a single pseudoknotted configuration was

created in any unloading simulation run. It is this decrease in the number of pseudoknotted

SBs that is responsible for the roughly 20 % decrease in E1 for the second stretching cycle

after a quasi static return. Thus, in the investigated model a fast unloading is essential

to achieve a complete recovery of the initial material properties, i.e. the unloading has to

be much faster than the time scale of SB reformation. A similar mechanism might explain

why the mussel byssus possesses a highly ordered elastic framework that ensure a very fast

return of the stretched structure upon release of the load [60]. An analogous situation is

found for cyclic loading of titin where the second stretching cycles are characterized by a

lower number of the characteristic sawtooth peaks compared to the first [49].

As discussed above for random polymers a fast return of the structure into its unstrained

state can give an approximately 20 % increase in the work to fracture. This increase can
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FIG. 4: The difference ∆F = F1 − F2 of the load-displacement curves for the first and second

stretching. Black points denote ∆F > 0 and red points ∆F < 0, respectively. Clearly, on average

∆F > 0 showing that the first stretching cycle shows on average a higher load than the second.

This results in an approximately 20 % decrease in Es - see also Table I.

be enhanced to almost 100 % if it is possible to favor the nested or pseudoknotted over

the independent topology (see Table I). This can be achieved if the polymer shows a certain

folding pattern. While random polymers have to rely on thermally induced formation of SBs

governed by the fluctuations of the backbone, the advantage of folding is that it is possible to

bring selected sticky sites into close spatial vicinity that can form SBs of a chosen topology.

While proteins control their folding pattern via the mutual interaction of the sidechains and

of the sidechains with water, one of the most important factors determining the shape of

polymers in general is backbone elasticity. When additional bending terms are included in

the description of the backbone elasticity of the polymers, depending on the magnitude of the

bending constant and the temperature a broad range of equilibrium shapes of the polymers,

including hair pin structures, can be observed [61]. Naturally these hair pin structures favor

the formation of the nested topology. Another example are SBs based on hydrogen bridges

in beta-sheets that are responsible for the remarkable mechanical properties of silk [34, 35].

The parallel strands allow for the pseudoknotted topology. The resulting cooperative failure

of the SBs maximize the force to unfold the polymer [59, 62]. Furthermore, due to the

cooperative loading of the SBs in these structures the rather weak hydrogen bridges can

provide considerable forces. On the other hand, to provide sufficient mechanical stability
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SBs in random coil polymers like the metal coordination bonds investigated in this paper

are much stronger, because they normally fail sequentially.

V. SUMMARY AND CONCLUSIONS

Using a simple model the influence of the number and topology of SBs on the mechanical

behavior of polymeric chains during cyclic loading was investigated. In general both, the

work to fracture E1 and the energy dissipation ∆E, increase with increasing sticky site

density. While for low sticky site densities a discrete rupture of single SBs can be observed,

for high sticky site densities these single peaks merge into one large plateau. Computational

cyclic loading experiments showed a pronounced asymmetry between the stretching and

unloading branch for all sticky site densities. This hysteresis is due to two different reasons:

first, the SBs reform at elongations smaller than they rupture and, second, the SBs reform

between sticky sites with a smaller distance along the chain than they have been originally

formed. Consequently upon quasi static unloading the topology of the SBs changes. In

general, the amount of SBs of the independent type increases on cost of the pseudoknotted

type.

It was shown that the nested and pseudoknotted topology possess superior mechani-

cal properties compared to the independent configuration. The work to fracture and the

dissipated energy are increased a factor more than two from a purely independent to the

pseudoknotted topology. This large increase is due to a pronounced reforming of the bonds

ruptured during loading. After a quasi-static unloading the formation of SBs of independent

type are favored on cost of the pseudoknotted behavior. Thus, the mechanical performance

of the polymer is deteriorated when it is stretched a second time. It can be concluded

that after release of the load a fast return to its initial state is essential for the polymer to

maintain its mechanical performance.

Although simple, the model presented captures several aspects of sacrificial bonding also

found in real systems. These are, first, the characteristic sawtooth patterns found for low

sticky site densities, second, the pronounced hysteresis in cyclic loading with an energy

dissipation of ≈ 70 % for high sticky site densities, third, the characteristic time scale of

reformation of SBs after unloading with an initial fast and a subsequent slow recovery,

and fourth, the deterioration of mechanical properties during second loading depending on
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unloading speed. This resemblance might indicate that the mechanisms of energy dissipation

and recovery identified in this simple model have also some importance in real systems.
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